1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24 
25 #include "igbvf.h"
26 
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 		  "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42 
43 static struct igbvf_info igbvf_vf_info = {
44 	.mac		= e1000_vfadapt,
45 	.flags		= 0,
46 	.pba		= 10,
47 	.init_ops	= e1000_init_function_pointers_vf,
48 };
49 
50 static struct igbvf_info igbvf_i350_vf_info = {
51 	.mac		= e1000_vfadapt_i350,
52 	.flags		= 0,
53 	.pba		= 10,
54 	.init_ops	= e1000_init_function_pointers_vf,
55 };
56 
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 	[board_vf]	= &igbvf_vf_info,
59 	[board_i350_vf]	= &igbvf_i350_vf_info,
60 };
61 
62 /**
63  * igbvf_desc_unused - calculate if we have unused descriptors
64  * @ring: address of receive ring structure
65  **/
66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 	if (ring->next_to_clean > ring->next_to_use)
69 		return ring->next_to_clean - ring->next_to_use - 1;
70 
71 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73 
74 /**
75  * igbvf_receive_skb - helper function to handle Rx indications
76  * @adapter: board private structure
77  * @netdev: pointer to netdev struct
78  * @skb: skb to indicate to stack
79  * @status: descriptor status field as written by hardware
80  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81  * @skb: pointer to sk_buff to be indicated to stack
82  **/
83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 			      struct net_device *netdev,
85 			      struct sk_buff *skb,
86 			      u32 status, __le16 vlan)
87 {
88 	u16 vid;
89 
90 	if (status & E1000_RXD_STAT_VP) {
91 		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 		    (status & E1000_RXDEXT_STATERR_LB))
93 			vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 		else
95 			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 		if (test_bit(vid, adapter->active_vlans))
97 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 	}
99 
100 	napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102 
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 					 u32 status_err, struct sk_buff *skb)
105 {
106 	skb_checksum_none_assert(skb);
107 
108 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 	if ((status_err & E1000_RXD_STAT_IXSM) ||
110 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 		return;
112 
113 	/* TCP/UDP checksum error bit is set */
114 	if (status_err &
115 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 		/* let the stack verify checksum errors */
117 		adapter->hw_csum_err++;
118 		return;
119 	}
120 
121 	/* It must be a TCP or UDP packet with a valid checksum */
122 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 		skb->ip_summed = CHECKSUM_UNNECESSARY;
124 
125 	adapter->hw_csum_good++;
126 }
127 
128 /**
129  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130  * @rx_ring: address of ring structure to repopulate
131  * @cleaned_count: number of buffers to repopulate
132  **/
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 				   int cleaned_count)
135 {
136 	struct igbvf_adapter *adapter = rx_ring->adapter;
137 	struct net_device *netdev = adapter->netdev;
138 	struct pci_dev *pdev = adapter->pdev;
139 	union e1000_adv_rx_desc *rx_desc;
140 	struct igbvf_buffer *buffer_info;
141 	struct sk_buff *skb;
142 	unsigned int i;
143 	int bufsz;
144 
145 	i = rx_ring->next_to_use;
146 	buffer_info = &rx_ring->buffer_info[i];
147 
148 	if (adapter->rx_ps_hdr_size)
149 		bufsz = adapter->rx_ps_hdr_size;
150 	else
151 		bufsz = adapter->rx_buffer_len;
152 
153 	while (cleaned_count--) {
154 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155 
156 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 			if (!buffer_info->page) {
158 				buffer_info->page = alloc_page(GFP_ATOMIC);
159 				if (!buffer_info->page) {
160 					adapter->alloc_rx_buff_failed++;
161 					goto no_buffers;
162 				}
163 				buffer_info->page_offset = 0;
164 			} else {
165 				buffer_info->page_offset ^= PAGE_SIZE / 2;
166 			}
167 			buffer_info->page_dma =
168 				dma_map_page(&pdev->dev, buffer_info->page,
169 					     buffer_info->page_offset,
170 					     PAGE_SIZE / 2,
171 					     DMA_FROM_DEVICE);
172 			if (dma_mapping_error(&pdev->dev,
173 					      buffer_info->page_dma)) {
174 				__free_page(buffer_info->page);
175 				buffer_info->page = NULL;
176 				dev_err(&pdev->dev, "RX DMA map failed\n");
177 				break;
178 			}
179 		}
180 
181 		if (!buffer_info->skb) {
182 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 			if (!skb) {
184 				adapter->alloc_rx_buff_failed++;
185 				goto no_buffers;
186 			}
187 
188 			buffer_info->skb = skb;
189 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 							  bufsz,
191 							  DMA_FROM_DEVICE);
192 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 				dev_kfree_skb(buffer_info->skb);
194 				buffer_info->skb = NULL;
195 				dev_err(&pdev->dev, "RX DMA map failed\n");
196 				goto no_buffers;
197 			}
198 		}
199 		/* Refresh the desc even if buffer_addrs didn't change because
200 		 * each write-back erases this info.
201 		 */
202 		if (adapter->rx_ps_hdr_size) {
203 			rx_desc->read.pkt_addr =
204 			     cpu_to_le64(buffer_info->page_dma);
205 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 		} else {
207 			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 			rx_desc->read.hdr_addr = 0;
209 		}
210 
211 		i++;
212 		if (i == rx_ring->count)
213 			i = 0;
214 		buffer_info = &rx_ring->buffer_info[i];
215 	}
216 
217 no_buffers:
218 	if (rx_ring->next_to_use != i) {
219 		rx_ring->next_to_use = i;
220 		if (i == 0)
221 			i = (rx_ring->count - 1);
222 		else
223 			i--;
224 
225 		/* Force memory writes to complete before letting h/w
226 		 * know there are new descriptors to fetch.  (Only
227 		 * applicable for weak-ordered memory model archs,
228 		 * such as IA-64).
229 		*/
230 		wmb();
231 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 	}
233 }
234 
235 /**
236  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237  * @adapter: board private structure
238  * @work_done: output parameter used to indicate completed work
239  * @work_to_do: input parameter setting limit of work
240  *
241  * the return value indicates whether actual cleaning was done, there
242  * is no guarantee that everything was cleaned
243  **/
244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 			       int *work_done, int work_to_do)
246 {
247 	struct igbvf_ring *rx_ring = adapter->rx_ring;
248 	struct net_device *netdev = adapter->netdev;
249 	struct pci_dev *pdev = adapter->pdev;
250 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 	struct igbvf_buffer *buffer_info, *next_buffer;
252 	struct sk_buff *skb;
253 	bool cleaned = false;
254 	int cleaned_count = 0;
255 	unsigned int total_bytes = 0, total_packets = 0;
256 	unsigned int i;
257 	u32 length, hlen, staterr;
258 
259 	i = rx_ring->next_to_clean;
260 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262 
263 	while (staterr & E1000_RXD_STAT_DD) {
264 		if (*work_done >= work_to_do)
265 			break;
266 		(*work_done)++;
267 		rmb(); /* read descriptor and rx_buffer_info after status DD */
268 
269 		buffer_info = &rx_ring->buffer_info[i];
270 
271 		/* HW will not DMA in data larger than the given buffer, even
272 		 * if it parses the (NFS, of course) header to be larger.  In
273 		 * that case, it fills the header buffer and spills the rest
274 		 * into the page.
275 		 */
276 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 		       E1000_RXDADV_HDRBUFLEN_SHIFT;
279 		if (hlen > adapter->rx_ps_hdr_size)
280 			hlen = adapter->rx_ps_hdr_size;
281 
282 		length = le16_to_cpu(rx_desc->wb.upper.length);
283 		cleaned = true;
284 		cleaned_count++;
285 
286 		skb = buffer_info->skb;
287 		prefetch(skb->data - NET_IP_ALIGN);
288 		buffer_info->skb = NULL;
289 		if (!adapter->rx_ps_hdr_size) {
290 			dma_unmap_single(&pdev->dev, buffer_info->dma,
291 					 adapter->rx_buffer_len,
292 					 DMA_FROM_DEVICE);
293 			buffer_info->dma = 0;
294 			skb_put(skb, length);
295 			goto send_up;
296 		}
297 
298 		if (!skb_shinfo(skb)->nr_frags) {
299 			dma_unmap_single(&pdev->dev, buffer_info->dma,
300 					 adapter->rx_ps_hdr_size,
301 					 DMA_FROM_DEVICE);
302 			buffer_info->dma = 0;
303 			skb_put(skb, hlen);
304 		}
305 
306 		if (length) {
307 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 				       PAGE_SIZE / 2,
309 				       DMA_FROM_DEVICE);
310 			buffer_info->page_dma = 0;
311 
312 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 					   buffer_info->page,
314 					   buffer_info->page_offset,
315 					   length);
316 
317 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 			    (page_count(buffer_info->page) != 1))
319 				buffer_info->page = NULL;
320 			else
321 				get_page(buffer_info->page);
322 
323 			skb->len += length;
324 			skb->data_len += length;
325 			skb->truesize += PAGE_SIZE / 2;
326 		}
327 send_up:
328 		i++;
329 		if (i == rx_ring->count)
330 			i = 0;
331 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 		prefetch(next_rxd);
333 		next_buffer = &rx_ring->buffer_info[i];
334 
335 		if (!(staterr & E1000_RXD_STAT_EOP)) {
336 			buffer_info->skb = next_buffer->skb;
337 			buffer_info->dma = next_buffer->dma;
338 			next_buffer->skb = skb;
339 			next_buffer->dma = 0;
340 			goto next_desc;
341 		}
342 
343 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 			dev_kfree_skb_irq(skb);
345 			goto next_desc;
346 		}
347 
348 		total_bytes += skb->len;
349 		total_packets++;
350 
351 		igbvf_rx_checksum_adv(adapter, staterr, skb);
352 
353 		skb->protocol = eth_type_trans(skb, netdev);
354 
355 		igbvf_receive_skb(adapter, netdev, skb, staterr,
356 				  rx_desc->wb.upper.vlan);
357 
358 next_desc:
359 		rx_desc->wb.upper.status_error = 0;
360 
361 		/* return some buffers to hardware, one at a time is too slow */
362 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 			cleaned_count = 0;
365 		}
366 
367 		/* use prefetched values */
368 		rx_desc = next_rxd;
369 		buffer_info = next_buffer;
370 
371 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 	}
373 
374 	rx_ring->next_to_clean = i;
375 	cleaned_count = igbvf_desc_unused(rx_ring);
376 
377 	if (cleaned_count)
378 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379 
380 	adapter->total_rx_packets += total_packets;
381 	adapter->total_rx_bytes += total_bytes;
382 	netdev->stats.rx_bytes += total_bytes;
383 	netdev->stats.rx_packets += total_packets;
384 	return cleaned;
385 }
386 
387 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 			    struct igbvf_buffer *buffer_info)
389 {
390 	if (buffer_info->dma) {
391 		if (buffer_info->mapped_as_page)
392 			dma_unmap_page(&adapter->pdev->dev,
393 				       buffer_info->dma,
394 				       buffer_info->length,
395 				       DMA_TO_DEVICE);
396 		else
397 			dma_unmap_single(&adapter->pdev->dev,
398 					 buffer_info->dma,
399 					 buffer_info->length,
400 					 DMA_TO_DEVICE);
401 		buffer_info->dma = 0;
402 	}
403 	if (buffer_info->skb) {
404 		dev_kfree_skb_any(buffer_info->skb);
405 		buffer_info->skb = NULL;
406 	}
407 	buffer_info->time_stamp = 0;
408 }
409 
410 /**
411  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412  * @adapter: board private structure
413  * @tx_ring: ring being initialized
414  *
415  * Return 0 on success, negative on failure
416  **/
417 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 			     struct igbvf_ring *tx_ring)
419 {
420 	struct pci_dev *pdev = adapter->pdev;
421 	int size;
422 
423 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 	tx_ring->buffer_info = vzalloc(size);
425 	if (!tx_ring->buffer_info)
426 		goto err;
427 
428 	/* round up to nearest 4K */
429 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 	tx_ring->size = ALIGN(tx_ring->size, 4096);
431 
432 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 					   &tx_ring->dma, GFP_KERNEL);
434 	if (!tx_ring->desc)
435 		goto err;
436 
437 	tx_ring->adapter = adapter;
438 	tx_ring->next_to_use = 0;
439 	tx_ring->next_to_clean = 0;
440 
441 	return 0;
442 err:
443 	vfree(tx_ring->buffer_info);
444 	dev_err(&adapter->pdev->dev,
445 		"Unable to allocate memory for the transmit descriptor ring\n");
446 	return -ENOMEM;
447 }
448 
449 /**
450  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451  * @adapter: board private structure
452  * @rx_ring: ring being initialized
453  *
454  * Returns 0 on success, negative on failure
455  **/
456 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 			     struct igbvf_ring *rx_ring)
458 {
459 	struct pci_dev *pdev = adapter->pdev;
460 	int size, desc_len;
461 
462 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 	rx_ring->buffer_info = vzalloc(size);
464 	if (!rx_ring->buffer_info)
465 		goto err;
466 
467 	desc_len = sizeof(union e1000_adv_rx_desc);
468 
469 	/* Round up to nearest 4K */
470 	rx_ring->size = rx_ring->count * desc_len;
471 	rx_ring->size = ALIGN(rx_ring->size, 4096);
472 
473 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 					   &rx_ring->dma, GFP_KERNEL);
475 	if (!rx_ring->desc)
476 		goto err;
477 
478 	rx_ring->next_to_clean = 0;
479 	rx_ring->next_to_use = 0;
480 
481 	rx_ring->adapter = adapter;
482 
483 	return 0;
484 
485 err:
486 	vfree(rx_ring->buffer_info);
487 	rx_ring->buffer_info = NULL;
488 	dev_err(&adapter->pdev->dev,
489 		"Unable to allocate memory for the receive descriptor ring\n");
490 	return -ENOMEM;
491 }
492 
493 /**
494  * igbvf_clean_tx_ring - Free Tx Buffers
495  * @tx_ring: ring to be cleaned
496  **/
497 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498 {
499 	struct igbvf_adapter *adapter = tx_ring->adapter;
500 	struct igbvf_buffer *buffer_info;
501 	unsigned long size;
502 	unsigned int i;
503 
504 	if (!tx_ring->buffer_info)
505 		return;
506 
507 	/* Free all the Tx ring sk_buffs */
508 	for (i = 0; i < tx_ring->count; i++) {
509 		buffer_info = &tx_ring->buffer_info[i];
510 		igbvf_put_txbuf(adapter, buffer_info);
511 	}
512 
513 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 	memset(tx_ring->buffer_info, 0, size);
515 
516 	/* Zero out the descriptor ring */
517 	memset(tx_ring->desc, 0, tx_ring->size);
518 
519 	tx_ring->next_to_use = 0;
520 	tx_ring->next_to_clean = 0;
521 
522 	writel(0, adapter->hw.hw_addr + tx_ring->head);
523 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
524 }
525 
526 /**
527  * igbvf_free_tx_resources - Free Tx Resources per Queue
528  * @tx_ring: ring to free resources from
529  *
530  * Free all transmit software resources
531  **/
532 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533 {
534 	struct pci_dev *pdev = tx_ring->adapter->pdev;
535 
536 	igbvf_clean_tx_ring(tx_ring);
537 
538 	vfree(tx_ring->buffer_info);
539 	tx_ring->buffer_info = NULL;
540 
541 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 			  tx_ring->dma);
543 
544 	tx_ring->desc = NULL;
545 }
546 
547 /**
548  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549  * @rx_ring: ring structure pointer to free buffers from
550  **/
551 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552 {
553 	struct igbvf_adapter *adapter = rx_ring->adapter;
554 	struct igbvf_buffer *buffer_info;
555 	struct pci_dev *pdev = adapter->pdev;
556 	unsigned long size;
557 	unsigned int i;
558 
559 	if (!rx_ring->buffer_info)
560 		return;
561 
562 	/* Free all the Rx ring sk_buffs */
563 	for (i = 0; i < rx_ring->count; i++) {
564 		buffer_info = &rx_ring->buffer_info[i];
565 		if (buffer_info->dma) {
566 			if (adapter->rx_ps_hdr_size) {
567 				dma_unmap_single(&pdev->dev, buffer_info->dma,
568 						 adapter->rx_ps_hdr_size,
569 						 DMA_FROM_DEVICE);
570 			} else {
571 				dma_unmap_single(&pdev->dev, buffer_info->dma,
572 						 adapter->rx_buffer_len,
573 						 DMA_FROM_DEVICE);
574 			}
575 			buffer_info->dma = 0;
576 		}
577 
578 		if (buffer_info->skb) {
579 			dev_kfree_skb(buffer_info->skb);
580 			buffer_info->skb = NULL;
581 		}
582 
583 		if (buffer_info->page) {
584 			if (buffer_info->page_dma)
585 				dma_unmap_page(&pdev->dev,
586 					       buffer_info->page_dma,
587 					       PAGE_SIZE / 2,
588 					       DMA_FROM_DEVICE);
589 			put_page(buffer_info->page);
590 			buffer_info->page = NULL;
591 			buffer_info->page_dma = 0;
592 			buffer_info->page_offset = 0;
593 		}
594 	}
595 
596 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 	memset(rx_ring->buffer_info, 0, size);
598 
599 	/* Zero out the descriptor ring */
600 	memset(rx_ring->desc, 0, rx_ring->size);
601 
602 	rx_ring->next_to_clean = 0;
603 	rx_ring->next_to_use = 0;
604 
605 	writel(0, adapter->hw.hw_addr + rx_ring->head);
606 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
607 }
608 
609 /**
610  * igbvf_free_rx_resources - Free Rx Resources
611  * @rx_ring: ring to clean the resources from
612  *
613  * Free all receive software resources
614  **/
615 
616 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617 {
618 	struct pci_dev *pdev = rx_ring->adapter->pdev;
619 
620 	igbvf_clean_rx_ring(rx_ring);
621 
622 	vfree(rx_ring->buffer_info);
623 	rx_ring->buffer_info = NULL;
624 
625 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 			  rx_ring->dma);
627 	rx_ring->desc = NULL;
628 }
629 
630 /**
631  * igbvf_update_itr - update the dynamic ITR value based on statistics
632  * @adapter: pointer to adapter
633  * @itr_setting: current adapter->itr
634  * @packets: the number of packets during this measurement interval
635  * @bytes: the number of bytes during this measurement interval
636  *
637  * Stores a new ITR value based on packets and byte counts during the last
638  * interrupt.  The advantage of per interrupt computation is faster updates
639  * and more accurate ITR for the current traffic pattern.  Constants in this
640  * function were computed based on theoretical maximum wire speed and thresholds
641  * were set based on testing data as well as attempting to minimize response
642  * time while increasing bulk throughput.
643  **/
644 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 					   enum latency_range itr_setting,
646 					   int packets, int bytes)
647 {
648 	enum latency_range retval = itr_setting;
649 
650 	if (packets == 0)
651 		goto update_itr_done;
652 
653 	switch (itr_setting) {
654 	case lowest_latency:
655 		/* handle TSO and jumbo frames */
656 		if (bytes/packets > 8000)
657 			retval = bulk_latency;
658 		else if ((packets < 5) && (bytes > 512))
659 			retval = low_latency;
660 		break;
661 	case low_latency:  /* 50 usec aka 20000 ints/s */
662 		if (bytes > 10000) {
663 			/* this if handles the TSO accounting */
664 			if (bytes/packets > 8000)
665 				retval = bulk_latency;
666 			else if ((packets < 10) || ((bytes/packets) > 1200))
667 				retval = bulk_latency;
668 			else if ((packets > 35))
669 				retval = lowest_latency;
670 		} else if (bytes/packets > 2000) {
671 			retval = bulk_latency;
672 		} else if (packets <= 2 && bytes < 512) {
673 			retval = lowest_latency;
674 		}
675 		break;
676 	case bulk_latency: /* 250 usec aka 4000 ints/s */
677 		if (bytes > 25000) {
678 			if (packets > 35)
679 				retval = low_latency;
680 		} else if (bytes < 6000) {
681 			retval = low_latency;
682 		}
683 		break;
684 	default:
685 		break;
686 	}
687 
688 update_itr_done:
689 	return retval;
690 }
691 
692 static int igbvf_range_to_itr(enum latency_range current_range)
693 {
694 	int new_itr;
695 
696 	switch (current_range) {
697 	/* counts and packets in update_itr are dependent on these numbers */
698 	case lowest_latency:
699 		new_itr = IGBVF_70K_ITR;
700 		break;
701 	case low_latency:
702 		new_itr = IGBVF_20K_ITR;
703 		break;
704 	case bulk_latency:
705 		new_itr = IGBVF_4K_ITR;
706 		break;
707 	default:
708 		new_itr = IGBVF_START_ITR;
709 		break;
710 	}
711 	return new_itr;
712 }
713 
714 static void igbvf_set_itr(struct igbvf_adapter *adapter)
715 {
716 	u32 new_itr;
717 
718 	adapter->tx_ring->itr_range =
719 			igbvf_update_itr(adapter,
720 					 adapter->tx_ring->itr_val,
721 					 adapter->total_tx_packets,
722 					 adapter->total_tx_bytes);
723 
724 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
725 	if (adapter->requested_itr == 3 &&
726 	    adapter->tx_ring->itr_range == lowest_latency)
727 		adapter->tx_ring->itr_range = low_latency;
728 
729 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730 
731 	if (new_itr != adapter->tx_ring->itr_val) {
732 		u32 current_itr = adapter->tx_ring->itr_val;
733 		/* this attempts to bias the interrupt rate towards Bulk
734 		 * by adding intermediate steps when interrupt rate is
735 		 * increasing
736 		 */
737 		new_itr = new_itr > current_itr ?
738 			  min(current_itr + (new_itr >> 2), new_itr) :
739 			  new_itr;
740 		adapter->tx_ring->itr_val = new_itr;
741 
742 		adapter->tx_ring->set_itr = 1;
743 	}
744 
745 	adapter->rx_ring->itr_range =
746 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 					 adapter->total_rx_packets,
748 					 adapter->total_rx_bytes);
749 	if (adapter->requested_itr == 3 &&
750 	    adapter->rx_ring->itr_range == lowest_latency)
751 		adapter->rx_ring->itr_range = low_latency;
752 
753 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754 
755 	if (new_itr != adapter->rx_ring->itr_val) {
756 		u32 current_itr = adapter->rx_ring->itr_val;
757 
758 		new_itr = new_itr > current_itr ?
759 			  min(current_itr + (new_itr >> 2), new_itr) :
760 			  new_itr;
761 		adapter->rx_ring->itr_val = new_itr;
762 
763 		adapter->rx_ring->set_itr = 1;
764 	}
765 }
766 
767 /**
768  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769  * @tx_ring: ring structure to clean descriptors from
770  *
771  * returns true if ring is completely cleaned
772  **/
773 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774 {
775 	struct igbvf_adapter *adapter = tx_ring->adapter;
776 	struct net_device *netdev = adapter->netdev;
777 	struct igbvf_buffer *buffer_info;
778 	struct sk_buff *skb;
779 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 	unsigned int total_bytes = 0, total_packets = 0;
781 	unsigned int i, count = 0;
782 	bool cleaned = false;
783 
784 	i = tx_ring->next_to_clean;
785 	buffer_info = &tx_ring->buffer_info[i];
786 	eop_desc = buffer_info->next_to_watch;
787 
788 	do {
789 		/* if next_to_watch is not set then there is no work pending */
790 		if (!eop_desc)
791 			break;
792 
793 		/* prevent any other reads prior to eop_desc */
794 		smp_rmb();
795 
796 		/* if DD is not set pending work has not been completed */
797 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 			break;
799 
800 		/* clear next_to_watch to prevent false hangs */
801 		buffer_info->next_to_watch = NULL;
802 
803 		for (cleaned = false; !cleaned; count++) {
804 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 			cleaned = (tx_desc == eop_desc);
806 			skb = buffer_info->skb;
807 
808 			if (skb) {
809 				unsigned int segs, bytecount;
810 
811 				/* gso_segs is currently only valid for tcp */
812 				segs = skb_shinfo(skb)->gso_segs ?: 1;
813 				/* multiply data chunks by size of headers */
814 				bytecount = ((segs - 1) * skb_headlen(skb)) +
815 					    skb->len;
816 				total_packets += segs;
817 				total_bytes += bytecount;
818 			}
819 
820 			igbvf_put_txbuf(adapter, buffer_info);
821 			tx_desc->wb.status = 0;
822 
823 			i++;
824 			if (i == tx_ring->count)
825 				i = 0;
826 
827 			buffer_info = &tx_ring->buffer_info[i];
828 		}
829 
830 		eop_desc = buffer_info->next_to_watch;
831 	} while (count < tx_ring->count);
832 
833 	tx_ring->next_to_clean = i;
834 
835 	if (unlikely(count && netif_carrier_ok(netdev) &&
836 	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 		/* Make sure that anybody stopping the queue after this
838 		 * sees the new next_to_clean.
839 		 */
840 		smp_mb();
841 		if (netif_queue_stopped(netdev) &&
842 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 			netif_wake_queue(netdev);
844 			++adapter->restart_queue;
845 		}
846 	}
847 
848 	netdev->stats.tx_bytes += total_bytes;
849 	netdev->stats.tx_packets += total_packets;
850 	return count < tx_ring->count;
851 }
852 
853 static irqreturn_t igbvf_msix_other(int irq, void *data)
854 {
855 	struct net_device *netdev = data;
856 	struct igbvf_adapter *adapter = netdev_priv(netdev);
857 	struct e1000_hw *hw = &adapter->hw;
858 
859 	adapter->int_counter1++;
860 
861 	hw->mac.get_link_status = 1;
862 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
864 
865 	ew32(EIMS, adapter->eims_other);
866 
867 	return IRQ_HANDLED;
868 }
869 
870 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871 {
872 	struct net_device *netdev = data;
873 	struct igbvf_adapter *adapter = netdev_priv(netdev);
874 	struct e1000_hw *hw = &adapter->hw;
875 	struct igbvf_ring *tx_ring = adapter->tx_ring;
876 
877 	if (tx_ring->set_itr) {
878 		writel(tx_ring->itr_val,
879 		       adapter->hw.hw_addr + tx_ring->itr_register);
880 		adapter->tx_ring->set_itr = 0;
881 	}
882 
883 	adapter->total_tx_bytes = 0;
884 	adapter->total_tx_packets = 0;
885 
886 	/* auto mask will automatically re-enable the interrupt when we write
887 	 * EICS
888 	 */
889 	if (!igbvf_clean_tx_irq(tx_ring))
890 		/* Ring was not completely cleaned, so fire another interrupt */
891 		ew32(EICS, tx_ring->eims_value);
892 	else
893 		ew32(EIMS, tx_ring->eims_value);
894 
895 	return IRQ_HANDLED;
896 }
897 
898 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899 {
900 	struct net_device *netdev = data;
901 	struct igbvf_adapter *adapter = netdev_priv(netdev);
902 
903 	adapter->int_counter0++;
904 
905 	/* Write the ITR value calculated at the end of the
906 	 * previous interrupt.
907 	 */
908 	if (adapter->rx_ring->set_itr) {
909 		writel(adapter->rx_ring->itr_val,
910 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 		adapter->rx_ring->set_itr = 0;
912 	}
913 
914 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 		adapter->total_rx_bytes = 0;
916 		adapter->total_rx_packets = 0;
917 		__napi_schedule(&adapter->rx_ring->napi);
918 	}
919 
920 	return IRQ_HANDLED;
921 }
922 
923 #define IGBVF_NO_QUEUE -1
924 
925 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 				int tx_queue, int msix_vector)
927 {
928 	struct e1000_hw *hw = &adapter->hw;
929 	u32 ivar, index;
930 
931 	/* 82576 uses a table-based method for assigning vectors.
932 	 * Each queue has a single entry in the table to which we write
933 	 * a vector number along with a "valid" bit.  Sadly, the layout
934 	 * of the table is somewhat counterintuitive.
935 	 */
936 	if (rx_queue > IGBVF_NO_QUEUE) {
937 		index = (rx_queue >> 1);
938 		ivar = array_er32(IVAR0, index);
939 		if (rx_queue & 0x1) {
940 			/* vector goes into third byte of register */
941 			ivar = ivar & 0xFF00FFFF;
942 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 		} else {
944 			/* vector goes into low byte of register */
945 			ivar = ivar & 0xFFFFFF00;
946 			ivar |= msix_vector | E1000_IVAR_VALID;
947 		}
948 		adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 		array_ew32(IVAR0, index, ivar);
950 	}
951 	if (tx_queue > IGBVF_NO_QUEUE) {
952 		index = (tx_queue >> 1);
953 		ivar = array_er32(IVAR0, index);
954 		if (tx_queue & 0x1) {
955 			/* vector goes into high byte of register */
956 			ivar = ivar & 0x00FFFFFF;
957 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 		} else {
959 			/* vector goes into second byte of register */
960 			ivar = ivar & 0xFFFF00FF;
961 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 		}
963 		adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 		array_ew32(IVAR0, index, ivar);
965 	}
966 }
967 
968 /**
969  * igbvf_configure_msix - Configure MSI-X hardware
970  * @adapter: board private structure
971  *
972  * igbvf_configure_msix sets up the hardware to properly
973  * generate MSI-X interrupts.
974  **/
975 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976 {
977 	u32 tmp;
978 	struct e1000_hw *hw = &adapter->hw;
979 	struct igbvf_ring *tx_ring = adapter->tx_ring;
980 	struct igbvf_ring *rx_ring = adapter->rx_ring;
981 	int vector = 0;
982 
983 	adapter->eims_enable_mask = 0;
984 
985 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 	adapter->eims_enable_mask |= tx_ring->eims_value;
987 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 	adapter->eims_enable_mask |= rx_ring->eims_value;
990 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991 
992 	/* set vector for other causes, i.e. link changes */
993 
994 	tmp = (vector++ | E1000_IVAR_VALID);
995 
996 	ew32(IVAR_MISC, tmp);
997 
998 	adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 	adapter->eims_other = BIT(vector - 1);
1000 	e1e_flush();
1001 }
1002 
1003 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004 {
1005 	if (adapter->msix_entries) {
1006 		pci_disable_msix(adapter->pdev);
1007 		kfree(adapter->msix_entries);
1008 		adapter->msix_entries = NULL;
1009 	}
1010 }
1011 
1012 /**
1013  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014  * @adapter: board private structure
1015  *
1016  * Attempt to configure interrupts using the best available
1017  * capabilities of the hardware and kernel.
1018  **/
1019 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020 {
1021 	int err = -ENOMEM;
1022 	int i;
1023 
1024 	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 					GFP_KERNEL);
1027 	if (adapter->msix_entries) {
1028 		for (i = 0; i < 3; i++)
1029 			adapter->msix_entries[i].entry = i;
1030 
1031 		err = pci_enable_msix_range(adapter->pdev,
1032 					    adapter->msix_entries, 3, 3);
1033 	}
1034 
1035 	if (err < 0) {
1036 		/* MSI-X failed */
1037 		dev_err(&adapter->pdev->dev,
1038 			"Failed to initialize MSI-X interrupts.\n");
1039 		igbvf_reset_interrupt_capability(adapter);
1040 	}
1041 }
1042 
1043 /**
1044  * igbvf_request_msix - Initialize MSI-X interrupts
1045  * @adapter: board private structure
1046  *
1047  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048  * kernel.
1049  **/
1050 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051 {
1052 	struct net_device *netdev = adapter->netdev;
1053 	int err = 0, vector = 0;
1054 
1055 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 	} else {
1059 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 	}
1062 
1063 	err = request_irq(adapter->msix_entries[vector].vector,
1064 			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 			  netdev);
1066 	if (err)
1067 		goto out;
1068 
1069 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 	adapter->tx_ring->itr_val = adapter->current_itr;
1071 	vector++;
1072 
1073 	err = request_irq(adapter->msix_entries[vector].vector,
1074 			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 			  netdev);
1076 	if (err)
1077 		goto out;
1078 
1079 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 	adapter->rx_ring->itr_val = adapter->current_itr;
1081 	vector++;
1082 
1083 	err = request_irq(adapter->msix_entries[vector].vector,
1084 			  igbvf_msix_other, 0, netdev->name, netdev);
1085 	if (err)
1086 		goto out;
1087 
1088 	igbvf_configure_msix(adapter);
1089 	return 0;
1090 out:
1091 	return err;
1092 }
1093 
1094 /**
1095  * igbvf_alloc_queues - Allocate memory for all rings
1096  * @adapter: board private structure to initialize
1097  **/
1098 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1099 {
1100 	struct net_device *netdev = adapter->netdev;
1101 
1102 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 	if (!adapter->tx_ring)
1104 		return -ENOMEM;
1105 
1106 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 	if (!adapter->rx_ring) {
1108 		kfree(adapter->tx_ring);
1109 		return -ENOMEM;
1110 	}
1111 
1112 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1113 
1114 	return 0;
1115 }
1116 
1117 /**
1118  * igbvf_request_irq - initialize interrupts
1119  * @adapter: board private structure
1120  *
1121  * Attempts to configure interrupts using the best available
1122  * capabilities of the hardware and kernel.
1123  **/
1124 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1125 {
1126 	int err = -1;
1127 
1128 	/* igbvf supports msi-x only */
1129 	if (adapter->msix_entries)
1130 		err = igbvf_request_msix(adapter);
1131 
1132 	if (!err)
1133 		return err;
1134 
1135 	dev_err(&adapter->pdev->dev,
1136 		"Unable to allocate interrupt, Error: %d\n", err);
1137 
1138 	return err;
1139 }
1140 
1141 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1142 {
1143 	struct net_device *netdev = adapter->netdev;
1144 	int vector;
1145 
1146 	if (adapter->msix_entries) {
1147 		for (vector = 0; vector < 3; vector++)
1148 			free_irq(adapter->msix_entries[vector].vector, netdev);
1149 	}
1150 }
1151 
1152 /**
1153  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1154  * @adapter: board private structure
1155  **/
1156 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1157 {
1158 	struct e1000_hw *hw = &adapter->hw;
1159 
1160 	ew32(EIMC, ~0);
1161 
1162 	if (adapter->msix_entries)
1163 		ew32(EIAC, 0);
1164 }
1165 
1166 /**
1167  * igbvf_irq_enable - Enable default interrupt generation settings
1168  * @adapter: board private structure
1169  **/
1170 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171 {
1172 	struct e1000_hw *hw = &adapter->hw;
1173 
1174 	ew32(EIAC, adapter->eims_enable_mask);
1175 	ew32(EIAM, adapter->eims_enable_mask);
1176 	ew32(EIMS, adapter->eims_enable_mask);
1177 }
1178 
1179 /**
1180  * igbvf_poll - NAPI Rx polling callback
1181  * @napi: struct associated with this polling callback
1182  * @budget: amount of packets driver is allowed to process this poll
1183  **/
1184 static int igbvf_poll(struct napi_struct *napi, int budget)
1185 {
1186 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 	struct igbvf_adapter *adapter = rx_ring->adapter;
1188 	struct e1000_hw *hw = &adapter->hw;
1189 	int work_done = 0;
1190 
1191 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1192 
1193 	if (work_done == budget)
1194 		return budget;
1195 
1196 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1197 	 * poll us due to busy-polling
1198 	 */
1199 	if (likely(napi_complete_done(napi, work_done))) {
1200 		if (adapter->requested_itr & 3)
1201 			igbvf_set_itr(adapter);
1202 
1203 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1204 			ew32(EIMS, adapter->rx_ring->eims_value);
1205 	}
1206 
1207 	return work_done;
1208 }
1209 
1210 /**
1211  * igbvf_set_rlpml - set receive large packet maximum length
1212  * @adapter: board private structure
1213  *
1214  * Configure the maximum size of packets that will be received
1215  */
1216 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1217 {
1218 	int max_frame_size;
1219 	struct e1000_hw *hw = &adapter->hw;
1220 
1221 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1222 
1223 	spin_lock_bh(&hw->mbx_lock);
1224 
1225 	e1000_rlpml_set_vf(hw, max_frame_size);
1226 
1227 	spin_unlock_bh(&hw->mbx_lock);
1228 }
1229 
1230 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1231 				 __be16 proto, u16 vid)
1232 {
1233 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1234 	struct e1000_hw *hw = &adapter->hw;
1235 
1236 	spin_lock_bh(&hw->mbx_lock);
1237 
1238 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1239 		dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1240 		spin_unlock_bh(&hw->mbx_lock);
1241 		return -EINVAL;
1242 	}
1243 
1244 	spin_unlock_bh(&hw->mbx_lock);
1245 
1246 	set_bit(vid, adapter->active_vlans);
1247 	return 0;
1248 }
1249 
1250 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1251 				  __be16 proto, u16 vid)
1252 {
1253 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1254 	struct e1000_hw *hw = &adapter->hw;
1255 
1256 	spin_lock_bh(&hw->mbx_lock);
1257 
1258 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1259 		dev_err(&adapter->pdev->dev,
1260 			"Failed to remove vlan id %d\n", vid);
1261 		spin_unlock_bh(&hw->mbx_lock);
1262 		return -EINVAL;
1263 	}
1264 
1265 	spin_unlock_bh(&hw->mbx_lock);
1266 
1267 	clear_bit(vid, adapter->active_vlans);
1268 	return 0;
1269 }
1270 
1271 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1272 {
1273 	u16 vid;
1274 
1275 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1276 		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1277 }
1278 
1279 /**
1280  * igbvf_configure_tx - Configure Transmit Unit after Reset
1281  * @adapter: board private structure
1282  *
1283  * Configure the Tx unit of the MAC after a reset.
1284  **/
1285 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1286 {
1287 	struct e1000_hw *hw = &adapter->hw;
1288 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1289 	u64 tdba;
1290 	u32 txdctl, dca_txctrl;
1291 
1292 	/* disable transmits */
1293 	txdctl = er32(TXDCTL(0));
1294 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1295 	e1e_flush();
1296 	msleep(10);
1297 
1298 	/* Setup the HW Tx Head and Tail descriptor pointers */
1299 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1300 	tdba = tx_ring->dma;
1301 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1302 	ew32(TDBAH(0), (tdba >> 32));
1303 	ew32(TDH(0), 0);
1304 	ew32(TDT(0), 0);
1305 	tx_ring->head = E1000_TDH(0);
1306 	tx_ring->tail = E1000_TDT(0);
1307 
1308 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1309 	 * MUST be delivered in order or it will completely screw up
1310 	 * our bookkeeping.
1311 	 */
1312 	dca_txctrl = er32(DCA_TXCTRL(0));
1313 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1314 	ew32(DCA_TXCTRL(0), dca_txctrl);
1315 
1316 	/* enable transmits */
1317 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1318 	ew32(TXDCTL(0), txdctl);
1319 
1320 	/* Setup Transmit Descriptor Settings for eop descriptor */
1321 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1322 
1323 	/* enable Report Status bit */
1324 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1325 }
1326 
1327 /**
1328  * igbvf_setup_srrctl - configure the receive control registers
1329  * @adapter: Board private structure
1330  **/
1331 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1332 {
1333 	struct e1000_hw *hw = &adapter->hw;
1334 	u32 srrctl = 0;
1335 
1336 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1337 		    E1000_SRRCTL_BSIZEHDR_MASK |
1338 		    E1000_SRRCTL_BSIZEPKT_MASK);
1339 
1340 	/* Enable queue drop to avoid head of line blocking */
1341 	srrctl |= E1000_SRRCTL_DROP_EN;
1342 
1343 	/* Setup buffer sizes */
1344 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1345 		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1346 
1347 	if (adapter->rx_buffer_len < 2048) {
1348 		adapter->rx_ps_hdr_size = 0;
1349 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1350 	} else {
1351 		adapter->rx_ps_hdr_size = 128;
1352 		srrctl |= adapter->rx_ps_hdr_size <<
1353 			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1354 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1355 	}
1356 
1357 	ew32(SRRCTL(0), srrctl);
1358 }
1359 
1360 /**
1361  * igbvf_configure_rx - Configure Receive Unit after Reset
1362  * @adapter: board private structure
1363  *
1364  * Configure the Rx unit of the MAC after a reset.
1365  **/
1366 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1367 {
1368 	struct e1000_hw *hw = &adapter->hw;
1369 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1370 	u64 rdba;
1371 	u32 rxdctl;
1372 
1373 	/* disable receives */
1374 	rxdctl = er32(RXDCTL(0));
1375 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1376 	e1e_flush();
1377 	msleep(10);
1378 
1379 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1380 	 * the Base and Length of the Rx Descriptor Ring
1381 	 */
1382 	rdba = rx_ring->dma;
1383 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384 	ew32(RDBAH(0), (rdba >> 32));
1385 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386 	rx_ring->head = E1000_RDH(0);
1387 	rx_ring->tail = E1000_RDT(0);
1388 	ew32(RDH(0), 0);
1389 	ew32(RDT(0), 0);
1390 
1391 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392 	rxdctl &= 0xFFF00000;
1393 	rxdctl |= IGBVF_RX_PTHRESH;
1394 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1395 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1396 
1397 	igbvf_set_rlpml(adapter);
1398 
1399 	/* enable receives */
1400 	ew32(RXDCTL(0), rxdctl);
1401 }
1402 
1403 /**
1404  * igbvf_set_multi - Multicast and Promiscuous mode set
1405  * @netdev: network interface device structure
1406  *
1407  * The set_multi entry point is called whenever the multicast address
1408  * list or the network interface flags are updated.  This routine is
1409  * responsible for configuring the hardware for proper multicast,
1410  * promiscuous mode, and all-multi behavior.
1411  **/
1412 static void igbvf_set_multi(struct net_device *netdev)
1413 {
1414 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1415 	struct e1000_hw *hw = &adapter->hw;
1416 	struct netdev_hw_addr *ha;
1417 	u8  *mta_list = NULL;
1418 	int i;
1419 
1420 	if (!netdev_mc_empty(netdev)) {
1421 		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422 					 GFP_ATOMIC);
1423 		if (!mta_list)
1424 			return;
1425 	}
1426 
1427 	/* prepare a packed array of only addresses. */
1428 	i = 0;
1429 	netdev_for_each_mc_addr(ha, netdev)
1430 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431 
1432 	spin_lock_bh(&hw->mbx_lock);
1433 
1434 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1435 
1436 	spin_unlock_bh(&hw->mbx_lock);
1437 	kfree(mta_list);
1438 }
1439 
1440 /**
1441  * igbvf_set_uni - Configure unicast MAC filters
1442  * @netdev: network interface device structure
1443  *
1444  * This routine is responsible for configuring the hardware for proper
1445  * unicast filters.
1446  **/
1447 static int igbvf_set_uni(struct net_device *netdev)
1448 {
1449 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1450 	struct e1000_hw *hw = &adapter->hw;
1451 
1452 	if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1453 		pr_err("Too many unicast filters - No Space\n");
1454 		return -ENOSPC;
1455 	}
1456 
1457 	spin_lock_bh(&hw->mbx_lock);
1458 
1459 	/* Clear all unicast MAC filters */
1460 	hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1461 
1462 	spin_unlock_bh(&hw->mbx_lock);
1463 
1464 	if (!netdev_uc_empty(netdev)) {
1465 		struct netdev_hw_addr *ha;
1466 
1467 		/* Add MAC filters one by one */
1468 		netdev_for_each_uc_addr(ha, netdev) {
1469 			spin_lock_bh(&hw->mbx_lock);
1470 
1471 			hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1472 						ha->addr);
1473 
1474 			spin_unlock_bh(&hw->mbx_lock);
1475 			udelay(200);
1476 		}
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 static void igbvf_set_rx_mode(struct net_device *netdev)
1483 {
1484 	igbvf_set_multi(netdev);
1485 	igbvf_set_uni(netdev);
1486 }
1487 
1488 /**
1489  * igbvf_configure - configure the hardware for Rx and Tx
1490  * @adapter: private board structure
1491  **/
1492 static void igbvf_configure(struct igbvf_adapter *adapter)
1493 {
1494 	igbvf_set_rx_mode(adapter->netdev);
1495 
1496 	igbvf_restore_vlan(adapter);
1497 
1498 	igbvf_configure_tx(adapter);
1499 	igbvf_setup_srrctl(adapter);
1500 	igbvf_configure_rx(adapter);
1501 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1502 			       igbvf_desc_unused(adapter->rx_ring));
1503 }
1504 
1505 /* igbvf_reset - bring the hardware into a known good state
1506  * @adapter: private board structure
1507  *
1508  * This function boots the hardware and enables some settings that
1509  * require a configuration cycle of the hardware - those cannot be
1510  * set/changed during runtime. After reset the device needs to be
1511  * properly configured for Rx, Tx etc.
1512  */
1513 static void igbvf_reset(struct igbvf_adapter *adapter)
1514 {
1515 	struct e1000_mac_info *mac = &adapter->hw.mac;
1516 	struct net_device *netdev = adapter->netdev;
1517 	struct e1000_hw *hw = &adapter->hw;
1518 
1519 	spin_lock_bh(&hw->mbx_lock);
1520 
1521 	/* Allow time for pending master requests to run */
1522 	if (mac->ops.reset_hw(hw))
1523 		dev_warn(&adapter->pdev->dev, "PF still resetting\n");
1524 
1525 	mac->ops.init_hw(hw);
1526 
1527 	spin_unlock_bh(&hw->mbx_lock);
1528 
1529 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1530 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1531 		       netdev->addr_len);
1532 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1533 		       netdev->addr_len);
1534 	}
1535 
1536 	adapter->last_reset = jiffies;
1537 }
1538 
1539 int igbvf_up(struct igbvf_adapter *adapter)
1540 {
1541 	struct e1000_hw *hw = &adapter->hw;
1542 
1543 	/* hardware has been reset, we need to reload some things */
1544 	igbvf_configure(adapter);
1545 
1546 	clear_bit(__IGBVF_DOWN, &adapter->state);
1547 
1548 	napi_enable(&adapter->rx_ring->napi);
1549 	if (adapter->msix_entries)
1550 		igbvf_configure_msix(adapter);
1551 
1552 	/* Clear any pending interrupts. */
1553 	er32(EICR);
1554 	igbvf_irq_enable(adapter);
1555 
1556 	/* start the watchdog */
1557 	hw->mac.get_link_status = 1;
1558 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1559 
1560 	return 0;
1561 }
1562 
1563 void igbvf_down(struct igbvf_adapter *adapter)
1564 {
1565 	struct net_device *netdev = adapter->netdev;
1566 	struct e1000_hw *hw = &adapter->hw;
1567 	u32 rxdctl, txdctl;
1568 
1569 	/* signal that we're down so the interrupt handler does not
1570 	 * reschedule our watchdog timer
1571 	 */
1572 	set_bit(__IGBVF_DOWN, &adapter->state);
1573 
1574 	/* disable receives in the hardware */
1575 	rxdctl = er32(RXDCTL(0));
1576 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1577 
1578 	netif_carrier_off(netdev);
1579 	netif_stop_queue(netdev);
1580 
1581 	/* disable transmits in the hardware */
1582 	txdctl = er32(TXDCTL(0));
1583 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1584 
1585 	/* flush both disables and wait for them to finish */
1586 	e1e_flush();
1587 	msleep(10);
1588 
1589 	napi_disable(&adapter->rx_ring->napi);
1590 
1591 	igbvf_irq_disable(adapter);
1592 
1593 	del_timer_sync(&adapter->watchdog_timer);
1594 
1595 	/* record the stats before reset*/
1596 	igbvf_update_stats(adapter);
1597 
1598 	adapter->link_speed = 0;
1599 	adapter->link_duplex = 0;
1600 
1601 	igbvf_reset(adapter);
1602 	igbvf_clean_tx_ring(adapter->tx_ring);
1603 	igbvf_clean_rx_ring(adapter->rx_ring);
1604 }
1605 
1606 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1607 {
1608 	might_sleep();
1609 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1610 		usleep_range(1000, 2000);
1611 	igbvf_down(adapter);
1612 	igbvf_up(adapter);
1613 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1614 }
1615 
1616 /**
1617  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1618  * @adapter: board private structure to initialize
1619  *
1620  * igbvf_sw_init initializes the Adapter private data structure.
1621  * Fields are initialized based on PCI device information and
1622  * OS network device settings (MTU size).
1623  **/
1624 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1625 {
1626 	struct net_device *netdev = adapter->netdev;
1627 	s32 rc;
1628 
1629 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1630 	adapter->rx_ps_hdr_size = 0;
1631 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1632 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1633 
1634 	adapter->tx_int_delay = 8;
1635 	adapter->tx_abs_int_delay = 32;
1636 	adapter->rx_int_delay = 0;
1637 	adapter->rx_abs_int_delay = 8;
1638 	adapter->requested_itr = 3;
1639 	adapter->current_itr = IGBVF_START_ITR;
1640 
1641 	/* Set various function pointers */
1642 	adapter->ei->init_ops(&adapter->hw);
1643 
1644 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1645 	if (rc)
1646 		return rc;
1647 
1648 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1649 	if (rc)
1650 		return rc;
1651 
1652 	igbvf_set_interrupt_capability(adapter);
1653 
1654 	if (igbvf_alloc_queues(adapter))
1655 		return -ENOMEM;
1656 
1657 	spin_lock_init(&adapter->tx_queue_lock);
1658 
1659 	/* Explicitly disable IRQ since the NIC can be in any state. */
1660 	igbvf_irq_disable(adapter);
1661 
1662 	spin_lock_init(&adapter->stats_lock);
1663 	spin_lock_init(&adapter->hw.mbx_lock);
1664 
1665 	set_bit(__IGBVF_DOWN, &adapter->state);
1666 	return 0;
1667 }
1668 
1669 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1670 {
1671 	struct e1000_hw *hw = &adapter->hw;
1672 
1673 	adapter->stats.last_gprc = er32(VFGPRC);
1674 	adapter->stats.last_gorc = er32(VFGORC);
1675 	adapter->stats.last_gptc = er32(VFGPTC);
1676 	adapter->stats.last_gotc = er32(VFGOTC);
1677 	adapter->stats.last_mprc = er32(VFMPRC);
1678 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1679 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1680 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1681 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1682 
1683 	adapter->stats.base_gprc = er32(VFGPRC);
1684 	adapter->stats.base_gorc = er32(VFGORC);
1685 	adapter->stats.base_gptc = er32(VFGPTC);
1686 	adapter->stats.base_gotc = er32(VFGOTC);
1687 	adapter->stats.base_mprc = er32(VFMPRC);
1688 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1689 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1690 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1691 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1692 }
1693 
1694 /**
1695  * igbvf_open - Called when a network interface is made active
1696  * @netdev: network interface device structure
1697  *
1698  * Returns 0 on success, negative value on failure
1699  *
1700  * The open entry point is called when a network interface is made
1701  * active by the system (IFF_UP).  At this point all resources needed
1702  * for transmit and receive operations are allocated, the interrupt
1703  * handler is registered with the OS, the watchdog timer is started,
1704  * and the stack is notified that the interface is ready.
1705  **/
1706 static int igbvf_open(struct net_device *netdev)
1707 {
1708 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1709 	struct e1000_hw *hw = &adapter->hw;
1710 	int err;
1711 
1712 	/* disallow open during test */
1713 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1714 		return -EBUSY;
1715 
1716 	/* allocate transmit descriptors */
1717 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1718 	if (err)
1719 		goto err_setup_tx;
1720 
1721 	/* allocate receive descriptors */
1722 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1723 	if (err)
1724 		goto err_setup_rx;
1725 
1726 	/* before we allocate an interrupt, we must be ready to handle it.
1727 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1728 	 * as soon as we call pci_request_irq, so we have to setup our
1729 	 * clean_rx handler before we do so.
1730 	 */
1731 	igbvf_configure(adapter);
1732 
1733 	err = igbvf_request_irq(adapter);
1734 	if (err)
1735 		goto err_req_irq;
1736 
1737 	/* From here on the code is the same as igbvf_up() */
1738 	clear_bit(__IGBVF_DOWN, &adapter->state);
1739 
1740 	napi_enable(&adapter->rx_ring->napi);
1741 
1742 	/* clear any pending interrupts */
1743 	er32(EICR);
1744 
1745 	igbvf_irq_enable(adapter);
1746 
1747 	/* start the watchdog */
1748 	hw->mac.get_link_status = 1;
1749 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1750 
1751 	return 0;
1752 
1753 err_req_irq:
1754 	igbvf_free_rx_resources(adapter->rx_ring);
1755 err_setup_rx:
1756 	igbvf_free_tx_resources(adapter->tx_ring);
1757 err_setup_tx:
1758 	igbvf_reset(adapter);
1759 
1760 	return err;
1761 }
1762 
1763 /**
1764  * igbvf_close - Disables a network interface
1765  * @netdev: network interface device structure
1766  *
1767  * Returns 0, this is not allowed to fail
1768  *
1769  * The close entry point is called when an interface is de-activated
1770  * by the OS.  The hardware is still under the drivers control, but
1771  * needs to be disabled.  A global MAC reset is issued to stop the
1772  * hardware, and all transmit and receive resources are freed.
1773  **/
1774 static int igbvf_close(struct net_device *netdev)
1775 {
1776 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1777 
1778 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1779 	igbvf_down(adapter);
1780 
1781 	igbvf_free_irq(adapter);
1782 
1783 	igbvf_free_tx_resources(adapter->tx_ring);
1784 	igbvf_free_rx_resources(adapter->rx_ring);
1785 
1786 	return 0;
1787 }
1788 
1789 /**
1790  * igbvf_set_mac - Change the Ethernet Address of the NIC
1791  * @netdev: network interface device structure
1792  * @p: pointer to an address structure
1793  *
1794  * Returns 0 on success, negative on failure
1795  **/
1796 static int igbvf_set_mac(struct net_device *netdev, void *p)
1797 {
1798 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1799 	struct e1000_hw *hw = &adapter->hw;
1800 	struct sockaddr *addr = p;
1801 
1802 	if (!is_valid_ether_addr(addr->sa_data))
1803 		return -EADDRNOTAVAIL;
1804 
1805 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1806 
1807 	spin_lock_bh(&hw->mbx_lock);
1808 
1809 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1810 
1811 	spin_unlock_bh(&hw->mbx_lock);
1812 
1813 	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1814 		return -EADDRNOTAVAIL;
1815 
1816 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1817 
1818 	return 0;
1819 }
1820 
1821 #define UPDATE_VF_COUNTER(reg, name) \
1822 { \
1823 	u32 current_counter = er32(reg); \
1824 	if (current_counter < adapter->stats.last_##name) \
1825 		adapter->stats.name += 0x100000000LL; \
1826 	adapter->stats.last_##name = current_counter; \
1827 	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1828 	adapter->stats.name |= current_counter; \
1829 }
1830 
1831 /**
1832  * igbvf_update_stats - Update the board statistics counters
1833  * @adapter: board private structure
1834 **/
1835 void igbvf_update_stats(struct igbvf_adapter *adapter)
1836 {
1837 	struct e1000_hw *hw = &adapter->hw;
1838 	struct pci_dev *pdev = adapter->pdev;
1839 
1840 	/* Prevent stats update while adapter is being reset, link is down
1841 	 * or if the pci connection is down.
1842 	 */
1843 	if (adapter->link_speed == 0)
1844 		return;
1845 
1846 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1847 		return;
1848 
1849 	if (pci_channel_offline(pdev))
1850 		return;
1851 
1852 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1853 	UPDATE_VF_COUNTER(VFGORC, gorc);
1854 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1855 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1856 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1857 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1858 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1859 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1860 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1861 
1862 	/* Fill out the OS statistics structure */
1863 	adapter->netdev->stats.multicast = adapter->stats.mprc;
1864 }
1865 
1866 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1867 {
1868 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1869 		 adapter->link_speed,
1870 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1871 }
1872 
1873 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1874 {
1875 	struct e1000_hw *hw = &adapter->hw;
1876 	s32 ret_val = E1000_SUCCESS;
1877 	bool link_active;
1878 
1879 	/* If interface is down, stay link down */
1880 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1881 		return false;
1882 
1883 	spin_lock_bh(&hw->mbx_lock);
1884 
1885 	ret_val = hw->mac.ops.check_for_link(hw);
1886 
1887 	spin_unlock_bh(&hw->mbx_lock);
1888 
1889 	link_active = !hw->mac.get_link_status;
1890 
1891 	/* if check for link returns error we will need to reset */
1892 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1893 		schedule_work(&adapter->reset_task);
1894 
1895 	return link_active;
1896 }
1897 
1898 /**
1899  * igbvf_watchdog - Timer Call-back
1900  * @t: timer list pointer containing private struct
1901  **/
1902 static void igbvf_watchdog(struct timer_list *t)
1903 {
1904 	struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1905 
1906 	/* Do the rest outside of interrupt context */
1907 	schedule_work(&adapter->watchdog_task);
1908 }
1909 
1910 static void igbvf_watchdog_task(struct work_struct *work)
1911 {
1912 	struct igbvf_adapter *adapter = container_of(work,
1913 						     struct igbvf_adapter,
1914 						     watchdog_task);
1915 	struct net_device *netdev = adapter->netdev;
1916 	struct e1000_mac_info *mac = &adapter->hw.mac;
1917 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1918 	struct e1000_hw *hw = &adapter->hw;
1919 	u32 link;
1920 	int tx_pending = 0;
1921 
1922 	link = igbvf_has_link(adapter);
1923 
1924 	if (link) {
1925 		if (!netif_carrier_ok(netdev)) {
1926 			mac->ops.get_link_up_info(&adapter->hw,
1927 						  &adapter->link_speed,
1928 						  &adapter->link_duplex);
1929 			igbvf_print_link_info(adapter);
1930 
1931 			netif_carrier_on(netdev);
1932 			netif_wake_queue(netdev);
1933 		}
1934 	} else {
1935 		if (netif_carrier_ok(netdev)) {
1936 			adapter->link_speed = 0;
1937 			adapter->link_duplex = 0;
1938 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1939 			netif_carrier_off(netdev);
1940 			netif_stop_queue(netdev);
1941 		}
1942 	}
1943 
1944 	if (netif_carrier_ok(netdev)) {
1945 		igbvf_update_stats(adapter);
1946 	} else {
1947 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1948 			      tx_ring->count);
1949 		if (tx_pending) {
1950 			/* We've lost link, so the controller stops DMA,
1951 			 * but we've got queued Tx work that's never going
1952 			 * to get done, so reset controller to flush Tx.
1953 			 * (Do the reset outside of interrupt context).
1954 			 */
1955 			adapter->tx_timeout_count++;
1956 			schedule_work(&adapter->reset_task);
1957 		}
1958 	}
1959 
1960 	/* Cause software interrupt to ensure Rx ring is cleaned */
1961 	ew32(EICS, adapter->rx_ring->eims_value);
1962 
1963 	/* Reset the timer */
1964 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1965 		mod_timer(&adapter->watchdog_timer,
1966 			  round_jiffies(jiffies + (2 * HZ)));
1967 }
1968 
1969 #define IGBVF_TX_FLAGS_CSUM		0x00000001
1970 #define IGBVF_TX_FLAGS_VLAN		0x00000002
1971 #define IGBVF_TX_FLAGS_TSO		0x00000004
1972 #define IGBVF_TX_FLAGS_IPV4		0x00000008
1973 #define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1974 #define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1975 
1976 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1977 			      u32 type_tucmd, u32 mss_l4len_idx)
1978 {
1979 	struct e1000_adv_tx_context_desc *context_desc;
1980 	struct igbvf_buffer *buffer_info;
1981 	u16 i = tx_ring->next_to_use;
1982 
1983 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1984 	buffer_info = &tx_ring->buffer_info[i];
1985 
1986 	i++;
1987 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1988 
1989 	/* set bits to identify this as an advanced context descriptor */
1990 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1991 
1992 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1993 	context_desc->seqnum_seed	= 0;
1994 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1995 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1996 
1997 	buffer_info->time_stamp = jiffies;
1998 	buffer_info->dma = 0;
1999 }
2000 
2001 static int igbvf_tso(struct igbvf_ring *tx_ring,
2002 		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2003 {
2004 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2005 	union {
2006 		struct iphdr *v4;
2007 		struct ipv6hdr *v6;
2008 		unsigned char *hdr;
2009 	} ip;
2010 	union {
2011 		struct tcphdr *tcp;
2012 		unsigned char *hdr;
2013 	} l4;
2014 	u32 paylen, l4_offset;
2015 	int err;
2016 
2017 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2018 		return 0;
2019 
2020 	if (!skb_is_gso(skb))
2021 		return 0;
2022 
2023 	err = skb_cow_head(skb, 0);
2024 	if (err < 0)
2025 		return err;
2026 
2027 	ip.hdr = skb_network_header(skb);
2028 	l4.hdr = skb_checksum_start(skb);
2029 
2030 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2031 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2032 
2033 	/* initialize outer IP header fields */
2034 	if (ip.v4->version == 4) {
2035 		unsigned char *csum_start = skb_checksum_start(skb);
2036 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2037 
2038 		/* IP header will have to cancel out any data that
2039 		 * is not a part of the outer IP header
2040 		 */
2041 		ip.v4->check = csum_fold(csum_partial(trans_start,
2042 						      csum_start - trans_start,
2043 						      0));
2044 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2045 
2046 		ip.v4->tot_len = 0;
2047 	} else {
2048 		ip.v6->payload_len = 0;
2049 	}
2050 
2051 	/* determine offset of inner transport header */
2052 	l4_offset = l4.hdr - skb->data;
2053 
2054 	/* compute length of segmentation header */
2055 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2056 
2057 	/* remove payload length from inner checksum */
2058 	paylen = skb->len - l4_offset;
2059 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2060 
2061 	/* MSS L4LEN IDX */
2062 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2063 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2064 
2065 	/* VLAN MACLEN IPLEN */
2066 	vlan_macip_lens = l4.hdr - ip.hdr;
2067 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2068 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2069 
2070 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2071 
2072 	return 1;
2073 }
2074 
2075 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2076 			  u32 tx_flags, __be16 protocol)
2077 {
2078 	u32 vlan_macip_lens = 0;
2079 	u32 type_tucmd = 0;
2080 
2081 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2082 csum_failed:
2083 		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2084 			return false;
2085 		goto no_csum;
2086 	}
2087 
2088 	switch (skb->csum_offset) {
2089 	case offsetof(struct tcphdr, check):
2090 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2091 		fallthrough;
2092 	case offsetof(struct udphdr, check):
2093 		break;
2094 	case offsetof(struct sctphdr, checksum):
2095 		/* validate that this is actually an SCTP request */
2096 		if (skb_csum_is_sctp(skb)) {
2097 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2098 			break;
2099 		}
2100 		fallthrough;
2101 	default:
2102 		skb_checksum_help(skb);
2103 		goto csum_failed;
2104 	}
2105 
2106 	vlan_macip_lens = skb_checksum_start_offset(skb) -
2107 			  skb_network_offset(skb);
2108 no_csum:
2109 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2110 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2111 
2112 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2113 	return true;
2114 }
2115 
2116 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2117 {
2118 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2119 
2120 	/* there is enough descriptors then we don't need to worry  */
2121 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2122 		return 0;
2123 
2124 	netif_stop_queue(netdev);
2125 
2126 	/* Herbert's original patch had:
2127 	 *  smp_mb__after_netif_stop_queue();
2128 	 * but since that doesn't exist yet, just open code it.
2129 	 */
2130 	smp_mb();
2131 
2132 	/* We need to check again just in case room has been made available */
2133 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2134 		return -EBUSY;
2135 
2136 	netif_wake_queue(netdev);
2137 
2138 	++adapter->restart_queue;
2139 	return 0;
2140 }
2141 
2142 #define IGBVF_MAX_TXD_PWR	16
2143 #define IGBVF_MAX_DATA_PER_TXD	(1u << IGBVF_MAX_TXD_PWR)
2144 
2145 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2146 				   struct igbvf_ring *tx_ring,
2147 				   struct sk_buff *skb)
2148 {
2149 	struct igbvf_buffer *buffer_info;
2150 	struct pci_dev *pdev = adapter->pdev;
2151 	unsigned int len = skb_headlen(skb);
2152 	unsigned int count = 0, i;
2153 	unsigned int f;
2154 
2155 	i = tx_ring->next_to_use;
2156 
2157 	buffer_info = &tx_ring->buffer_info[i];
2158 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2159 	buffer_info->length = len;
2160 	/* set time_stamp *before* dma to help avoid a possible race */
2161 	buffer_info->time_stamp = jiffies;
2162 	buffer_info->mapped_as_page = false;
2163 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2164 					  DMA_TO_DEVICE);
2165 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2166 		goto dma_error;
2167 
2168 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2169 		const skb_frag_t *frag;
2170 
2171 		count++;
2172 		i++;
2173 		if (i == tx_ring->count)
2174 			i = 0;
2175 
2176 		frag = &skb_shinfo(skb)->frags[f];
2177 		len = skb_frag_size(frag);
2178 
2179 		buffer_info = &tx_ring->buffer_info[i];
2180 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2181 		buffer_info->length = len;
2182 		buffer_info->time_stamp = jiffies;
2183 		buffer_info->mapped_as_page = true;
2184 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2185 						    DMA_TO_DEVICE);
2186 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2187 			goto dma_error;
2188 	}
2189 
2190 	tx_ring->buffer_info[i].skb = skb;
2191 
2192 	return ++count;
2193 
2194 dma_error:
2195 	dev_err(&pdev->dev, "TX DMA map failed\n");
2196 
2197 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2198 	buffer_info->dma = 0;
2199 	buffer_info->time_stamp = 0;
2200 	buffer_info->length = 0;
2201 	buffer_info->mapped_as_page = false;
2202 	if (count)
2203 		count--;
2204 
2205 	/* clear timestamp and dma mappings for remaining portion of packet */
2206 	while (count--) {
2207 		if (i == 0)
2208 			i += tx_ring->count;
2209 		i--;
2210 		buffer_info = &tx_ring->buffer_info[i];
2211 		igbvf_put_txbuf(adapter, buffer_info);
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2218 				      struct igbvf_ring *tx_ring,
2219 				      int tx_flags, int count,
2220 				      unsigned int first, u32 paylen,
2221 				      u8 hdr_len)
2222 {
2223 	union e1000_adv_tx_desc *tx_desc = NULL;
2224 	struct igbvf_buffer *buffer_info;
2225 	u32 olinfo_status = 0, cmd_type_len;
2226 	unsigned int i;
2227 
2228 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2229 			E1000_ADVTXD_DCMD_DEXT);
2230 
2231 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2232 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2233 
2234 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2235 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2236 
2237 		/* insert tcp checksum */
2238 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2239 
2240 		/* insert ip checksum */
2241 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2242 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2243 
2244 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2245 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2246 	}
2247 
2248 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2249 
2250 	i = tx_ring->next_to_use;
2251 	while (count--) {
2252 		buffer_info = &tx_ring->buffer_info[i];
2253 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2254 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2255 		tx_desc->read.cmd_type_len =
2256 			 cpu_to_le32(cmd_type_len | buffer_info->length);
2257 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2258 		i++;
2259 		if (i == tx_ring->count)
2260 			i = 0;
2261 	}
2262 
2263 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2264 	/* Force memory writes to complete before letting h/w
2265 	 * know there are new descriptors to fetch.  (Only
2266 	 * applicable for weak-ordered memory model archs,
2267 	 * such as IA-64).
2268 	 */
2269 	wmb();
2270 
2271 	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2272 	tx_ring->next_to_use = i;
2273 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2274 }
2275 
2276 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2277 					     struct net_device *netdev,
2278 					     struct igbvf_ring *tx_ring)
2279 {
2280 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2281 	unsigned int first, tx_flags = 0;
2282 	u8 hdr_len = 0;
2283 	int count = 0;
2284 	int tso = 0;
2285 	__be16 protocol = vlan_get_protocol(skb);
2286 
2287 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2288 		dev_kfree_skb_any(skb);
2289 		return NETDEV_TX_OK;
2290 	}
2291 
2292 	if (skb->len <= 0) {
2293 		dev_kfree_skb_any(skb);
2294 		return NETDEV_TX_OK;
2295 	}
2296 
2297 	/* need: count + 4 desc gap to keep tail from touching
2298 	 *       + 2 desc gap to keep tail from touching head,
2299 	 *       + 1 desc for skb->data,
2300 	 *       + 1 desc for context descriptor,
2301 	 * head, otherwise try next time
2302 	 */
2303 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2304 		/* this is a hard error */
2305 		return NETDEV_TX_BUSY;
2306 	}
2307 
2308 	if (skb_vlan_tag_present(skb)) {
2309 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2310 		tx_flags |= (skb_vlan_tag_get(skb) <<
2311 			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2312 	}
2313 
2314 	if (protocol == htons(ETH_P_IP))
2315 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2316 
2317 	first = tx_ring->next_to_use;
2318 
2319 	tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2320 	if (unlikely(tso < 0)) {
2321 		dev_kfree_skb_any(skb);
2322 		return NETDEV_TX_OK;
2323 	}
2324 
2325 	if (tso)
2326 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2327 	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2328 		 (skb->ip_summed == CHECKSUM_PARTIAL))
2329 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2330 
2331 	/* count reflects descriptors mapped, if 0 then mapping error
2332 	 * has occurred and we need to rewind the descriptor queue
2333 	 */
2334 	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2335 
2336 	if (count) {
2337 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2338 				   first, skb->len, hdr_len);
2339 		/* Make sure there is space in the ring for the next send. */
2340 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2341 	} else {
2342 		dev_kfree_skb_any(skb);
2343 		tx_ring->buffer_info[first].time_stamp = 0;
2344 		tx_ring->next_to_use = first;
2345 	}
2346 
2347 	return NETDEV_TX_OK;
2348 }
2349 
2350 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2351 				    struct net_device *netdev)
2352 {
2353 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2354 	struct igbvf_ring *tx_ring;
2355 
2356 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2357 		dev_kfree_skb_any(skb);
2358 		return NETDEV_TX_OK;
2359 	}
2360 
2361 	tx_ring = &adapter->tx_ring[0];
2362 
2363 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2364 }
2365 
2366 /**
2367  * igbvf_tx_timeout - Respond to a Tx Hang
2368  * @netdev: network interface device structure
2369  * @txqueue: queue timing out (unused)
2370  **/
2371 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2372 {
2373 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2374 
2375 	/* Do the reset outside of interrupt context */
2376 	adapter->tx_timeout_count++;
2377 	schedule_work(&adapter->reset_task);
2378 }
2379 
2380 static void igbvf_reset_task(struct work_struct *work)
2381 {
2382 	struct igbvf_adapter *adapter;
2383 
2384 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2385 
2386 	igbvf_reinit_locked(adapter);
2387 }
2388 
2389 /**
2390  * igbvf_change_mtu - Change the Maximum Transfer Unit
2391  * @netdev: network interface device structure
2392  * @new_mtu: new value for maximum frame size
2393  *
2394  * Returns 0 on success, negative on failure
2395  **/
2396 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2397 {
2398 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2399 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2400 
2401 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2402 		usleep_range(1000, 2000);
2403 	/* igbvf_down has a dependency on max_frame_size */
2404 	adapter->max_frame_size = max_frame;
2405 	if (netif_running(netdev))
2406 		igbvf_down(adapter);
2407 
2408 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2409 	 * means we reserve 2 more, this pushes us to allocate from the next
2410 	 * larger slab size.
2411 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2412 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2413 	 * fragmented skbs
2414 	 */
2415 
2416 	if (max_frame <= 1024)
2417 		adapter->rx_buffer_len = 1024;
2418 	else if (max_frame <= 2048)
2419 		adapter->rx_buffer_len = 2048;
2420 	else
2421 #if (PAGE_SIZE / 2) > 16384
2422 		adapter->rx_buffer_len = 16384;
2423 #else
2424 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2425 #endif
2426 
2427 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2428 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2429 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2430 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2431 					 ETH_FCS_LEN;
2432 
2433 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
2434 		   netdev->mtu, new_mtu);
2435 	netdev->mtu = new_mtu;
2436 
2437 	if (netif_running(netdev))
2438 		igbvf_up(adapter);
2439 	else
2440 		igbvf_reset(adapter);
2441 
2442 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2443 
2444 	return 0;
2445 }
2446 
2447 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2448 {
2449 	switch (cmd) {
2450 	default:
2451 		return -EOPNOTSUPP;
2452 	}
2453 }
2454 
2455 static int igbvf_suspend(struct device *dev_d)
2456 {
2457 	struct net_device *netdev = dev_get_drvdata(dev_d);
2458 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2459 
2460 	netif_device_detach(netdev);
2461 
2462 	if (netif_running(netdev)) {
2463 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2464 		igbvf_down(adapter);
2465 		igbvf_free_irq(adapter);
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 static int __maybe_unused igbvf_resume(struct device *dev_d)
2472 {
2473 	struct pci_dev *pdev = to_pci_dev(dev_d);
2474 	struct net_device *netdev = pci_get_drvdata(pdev);
2475 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2476 	u32 err;
2477 
2478 	pci_set_master(pdev);
2479 
2480 	if (netif_running(netdev)) {
2481 		err = igbvf_request_irq(adapter);
2482 		if (err)
2483 			return err;
2484 	}
2485 
2486 	igbvf_reset(adapter);
2487 
2488 	if (netif_running(netdev))
2489 		igbvf_up(adapter);
2490 
2491 	netif_device_attach(netdev);
2492 
2493 	return 0;
2494 }
2495 
2496 static void igbvf_shutdown(struct pci_dev *pdev)
2497 {
2498 	igbvf_suspend(&pdev->dev);
2499 }
2500 
2501 #ifdef CONFIG_NET_POLL_CONTROLLER
2502 /* Polling 'interrupt' - used by things like netconsole to send skbs
2503  * without having to re-enable interrupts. It's not called while
2504  * the interrupt routine is executing.
2505  */
2506 static void igbvf_netpoll(struct net_device *netdev)
2507 {
2508 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2509 
2510 	disable_irq(adapter->pdev->irq);
2511 
2512 	igbvf_clean_tx_irq(adapter->tx_ring);
2513 
2514 	enable_irq(adapter->pdev->irq);
2515 }
2516 #endif
2517 
2518 /**
2519  * igbvf_io_error_detected - called when PCI error is detected
2520  * @pdev: Pointer to PCI device
2521  * @state: The current pci connection state
2522  *
2523  * This function is called after a PCI bus error affecting
2524  * this device has been detected.
2525  */
2526 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2527 						pci_channel_state_t state)
2528 {
2529 	struct net_device *netdev = pci_get_drvdata(pdev);
2530 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2531 
2532 	netif_device_detach(netdev);
2533 
2534 	if (state == pci_channel_io_perm_failure)
2535 		return PCI_ERS_RESULT_DISCONNECT;
2536 
2537 	if (netif_running(netdev))
2538 		igbvf_down(adapter);
2539 	pci_disable_device(pdev);
2540 
2541 	/* Request a slot slot reset. */
2542 	return PCI_ERS_RESULT_NEED_RESET;
2543 }
2544 
2545 /**
2546  * igbvf_io_slot_reset - called after the pci bus has been reset.
2547  * @pdev: Pointer to PCI device
2548  *
2549  * Restart the card from scratch, as if from a cold-boot. Implementation
2550  * resembles the first-half of the igbvf_resume routine.
2551  */
2552 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2553 {
2554 	struct net_device *netdev = pci_get_drvdata(pdev);
2555 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2556 
2557 	if (pci_enable_device_mem(pdev)) {
2558 		dev_err(&pdev->dev,
2559 			"Cannot re-enable PCI device after reset.\n");
2560 		return PCI_ERS_RESULT_DISCONNECT;
2561 	}
2562 	pci_set_master(pdev);
2563 
2564 	igbvf_reset(adapter);
2565 
2566 	return PCI_ERS_RESULT_RECOVERED;
2567 }
2568 
2569 /**
2570  * igbvf_io_resume - called when traffic can start flowing again.
2571  * @pdev: Pointer to PCI device
2572  *
2573  * This callback is called when the error recovery driver tells us that
2574  * its OK to resume normal operation. Implementation resembles the
2575  * second-half of the igbvf_resume routine.
2576  */
2577 static void igbvf_io_resume(struct pci_dev *pdev)
2578 {
2579 	struct net_device *netdev = pci_get_drvdata(pdev);
2580 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2581 
2582 	if (netif_running(netdev)) {
2583 		if (igbvf_up(adapter)) {
2584 			dev_err(&pdev->dev,
2585 				"can't bring device back up after reset\n");
2586 			return;
2587 		}
2588 	}
2589 
2590 	netif_device_attach(netdev);
2591 }
2592 
2593 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2594 {
2595 	struct e1000_hw *hw = &adapter->hw;
2596 	struct net_device *netdev = adapter->netdev;
2597 	struct pci_dev *pdev = adapter->pdev;
2598 
2599 	if (hw->mac.type == e1000_vfadapt_i350)
2600 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2601 	else
2602 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2603 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2604 }
2605 
2606 static int igbvf_set_features(struct net_device *netdev,
2607 			      netdev_features_t features)
2608 {
2609 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2610 
2611 	if (features & NETIF_F_RXCSUM)
2612 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2613 	else
2614 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2615 
2616 	return 0;
2617 }
2618 
2619 #define IGBVF_MAX_MAC_HDR_LEN		127
2620 #define IGBVF_MAX_NETWORK_HDR_LEN	511
2621 
2622 static netdev_features_t
2623 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2624 		     netdev_features_t features)
2625 {
2626 	unsigned int network_hdr_len, mac_hdr_len;
2627 
2628 	/* Make certain the headers can be described by a context descriptor */
2629 	mac_hdr_len = skb_network_header(skb) - skb->data;
2630 	if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2631 		return features & ~(NETIF_F_HW_CSUM |
2632 				    NETIF_F_SCTP_CRC |
2633 				    NETIF_F_HW_VLAN_CTAG_TX |
2634 				    NETIF_F_TSO |
2635 				    NETIF_F_TSO6);
2636 
2637 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2638 	if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2639 		return features & ~(NETIF_F_HW_CSUM |
2640 				    NETIF_F_SCTP_CRC |
2641 				    NETIF_F_TSO |
2642 				    NETIF_F_TSO6);
2643 
2644 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2645 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2646 	 */
2647 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2648 		features &= ~NETIF_F_TSO;
2649 
2650 	return features;
2651 }
2652 
2653 static const struct net_device_ops igbvf_netdev_ops = {
2654 	.ndo_open		= igbvf_open,
2655 	.ndo_stop		= igbvf_close,
2656 	.ndo_start_xmit		= igbvf_xmit_frame,
2657 	.ndo_set_rx_mode	= igbvf_set_rx_mode,
2658 	.ndo_set_mac_address	= igbvf_set_mac,
2659 	.ndo_change_mtu		= igbvf_change_mtu,
2660 	.ndo_eth_ioctl		= igbvf_ioctl,
2661 	.ndo_tx_timeout		= igbvf_tx_timeout,
2662 	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2663 	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2664 #ifdef CONFIG_NET_POLL_CONTROLLER
2665 	.ndo_poll_controller	= igbvf_netpoll,
2666 #endif
2667 	.ndo_set_features	= igbvf_set_features,
2668 	.ndo_features_check	= igbvf_features_check,
2669 };
2670 
2671 /**
2672  * igbvf_probe - Device Initialization Routine
2673  * @pdev: PCI device information struct
2674  * @ent: entry in igbvf_pci_tbl
2675  *
2676  * Returns 0 on success, negative on failure
2677  *
2678  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2679  * The OS initialization, configuring of the adapter private structure,
2680  * and a hardware reset occur.
2681  **/
2682 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2683 {
2684 	struct net_device *netdev;
2685 	struct igbvf_adapter *adapter;
2686 	struct e1000_hw *hw;
2687 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2688 
2689 	static int cards_found;
2690 	int err, pci_using_dac;
2691 
2692 	err = pci_enable_device_mem(pdev);
2693 	if (err)
2694 		return err;
2695 
2696 	pci_using_dac = 0;
2697 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2698 	if (!err) {
2699 		pci_using_dac = 1;
2700 	} else {
2701 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2702 		if (err) {
2703 			dev_err(&pdev->dev,
2704 				"No usable DMA configuration, aborting\n");
2705 			goto err_dma;
2706 		}
2707 	}
2708 
2709 	err = pci_request_regions(pdev, igbvf_driver_name);
2710 	if (err)
2711 		goto err_pci_reg;
2712 
2713 	pci_set_master(pdev);
2714 
2715 	err = -ENOMEM;
2716 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2717 	if (!netdev)
2718 		goto err_alloc_etherdev;
2719 
2720 	SET_NETDEV_DEV(netdev, &pdev->dev);
2721 
2722 	pci_set_drvdata(pdev, netdev);
2723 	adapter = netdev_priv(netdev);
2724 	hw = &adapter->hw;
2725 	adapter->netdev = netdev;
2726 	adapter->pdev = pdev;
2727 	adapter->ei = ei;
2728 	adapter->pba = ei->pba;
2729 	adapter->flags = ei->flags;
2730 	adapter->hw.back = adapter;
2731 	adapter->hw.mac.type = ei->mac;
2732 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2733 
2734 	/* PCI config space info */
2735 
2736 	hw->vendor_id = pdev->vendor;
2737 	hw->device_id = pdev->device;
2738 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2739 	hw->subsystem_device_id = pdev->subsystem_device;
2740 	hw->revision_id = pdev->revision;
2741 
2742 	err = -EIO;
2743 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2744 				      pci_resource_len(pdev, 0));
2745 
2746 	if (!adapter->hw.hw_addr)
2747 		goto err_ioremap;
2748 
2749 	if (ei->get_variants) {
2750 		err = ei->get_variants(adapter);
2751 		if (err)
2752 			goto err_get_variants;
2753 	}
2754 
2755 	/* setup adapter struct */
2756 	err = igbvf_sw_init(adapter);
2757 	if (err)
2758 		goto err_sw_init;
2759 
2760 	/* construct the net_device struct */
2761 	netdev->netdev_ops = &igbvf_netdev_ops;
2762 
2763 	igbvf_set_ethtool_ops(netdev);
2764 	netdev->watchdog_timeo = 5 * HZ;
2765 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2766 
2767 	adapter->bd_number = cards_found++;
2768 
2769 	netdev->hw_features = NETIF_F_SG |
2770 			      NETIF_F_TSO |
2771 			      NETIF_F_TSO6 |
2772 			      NETIF_F_RXCSUM |
2773 			      NETIF_F_HW_CSUM |
2774 			      NETIF_F_SCTP_CRC;
2775 
2776 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2777 				    NETIF_F_GSO_GRE_CSUM | \
2778 				    NETIF_F_GSO_IPXIP4 | \
2779 				    NETIF_F_GSO_IPXIP6 | \
2780 				    NETIF_F_GSO_UDP_TUNNEL | \
2781 				    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2782 
2783 	netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2784 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2785 			       IGBVF_GSO_PARTIAL_FEATURES;
2786 
2787 	netdev->features = netdev->hw_features;
2788 
2789 	if (pci_using_dac)
2790 		netdev->features |= NETIF_F_HIGHDMA;
2791 
2792 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2793 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2794 	netdev->hw_enc_features |= netdev->vlan_features;
2795 
2796 	/* set this bit last since it cannot be part of vlan_features */
2797 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2798 			    NETIF_F_HW_VLAN_CTAG_RX |
2799 			    NETIF_F_HW_VLAN_CTAG_TX;
2800 
2801 	/* MTU range: 68 - 9216 */
2802 	netdev->min_mtu = ETH_MIN_MTU;
2803 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2804 
2805 	spin_lock_bh(&hw->mbx_lock);
2806 
2807 	/*reset the controller to put the device in a known good state */
2808 	err = hw->mac.ops.reset_hw(hw);
2809 	if (err) {
2810 		dev_info(&pdev->dev,
2811 			 "PF still in reset state. Is the PF interface up?\n");
2812 	} else {
2813 		err = hw->mac.ops.read_mac_addr(hw);
2814 		if (err)
2815 			dev_info(&pdev->dev, "Error reading MAC address.\n");
2816 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2817 			dev_info(&pdev->dev,
2818 				 "MAC address not assigned by administrator.\n");
2819 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2820 		       netdev->addr_len);
2821 	}
2822 
2823 	spin_unlock_bh(&hw->mbx_lock);
2824 
2825 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2826 		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2827 		eth_hw_addr_random(netdev);
2828 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2829 		       netdev->addr_len);
2830 	}
2831 
2832 	timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2833 
2834 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2835 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2836 
2837 	/* ring size defaults */
2838 	adapter->rx_ring->count = 1024;
2839 	adapter->tx_ring->count = 1024;
2840 
2841 	/* reset the hardware with the new settings */
2842 	igbvf_reset(adapter);
2843 
2844 	/* set hardware-specific flags */
2845 	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2846 		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2847 
2848 	strcpy(netdev->name, "eth%d");
2849 	err = register_netdev(netdev);
2850 	if (err)
2851 		goto err_hw_init;
2852 
2853 	/* tell the stack to leave us alone until igbvf_open() is called */
2854 	netif_carrier_off(netdev);
2855 	netif_stop_queue(netdev);
2856 
2857 	igbvf_print_device_info(adapter);
2858 
2859 	igbvf_initialize_last_counter_stats(adapter);
2860 
2861 	return 0;
2862 
2863 err_hw_init:
2864 	kfree(adapter->tx_ring);
2865 	kfree(adapter->rx_ring);
2866 err_sw_init:
2867 	igbvf_reset_interrupt_capability(adapter);
2868 err_get_variants:
2869 	iounmap(adapter->hw.hw_addr);
2870 err_ioremap:
2871 	free_netdev(netdev);
2872 err_alloc_etherdev:
2873 	pci_release_regions(pdev);
2874 err_pci_reg:
2875 err_dma:
2876 	pci_disable_device(pdev);
2877 	return err;
2878 }
2879 
2880 /**
2881  * igbvf_remove - Device Removal Routine
2882  * @pdev: PCI device information struct
2883  *
2884  * igbvf_remove is called by the PCI subsystem to alert the driver
2885  * that it should release a PCI device.  The could be caused by a
2886  * Hot-Plug event, or because the driver is going to be removed from
2887  * memory.
2888  **/
2889 static void igbvf_remove(struct pci_dev *pdev)
2890 {
2891 	struct net_device *netdev = pci_get_drvdata(pdev);
2892 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2893 	struct e1000_hw *hw = &adapter->hw;
2894 
2895 	/* The watchdog timer may be rescheduled, so explicitly
2896 	 * disable it from being rescheduled.
2897 	 */
2898 	set_bit(__IGBVF_DOWN, &adapter->state);
2899 	del_timer_sync(&adapter->watchdog_timer);
2900 
2901 	cancel_work_sync(&adapter->reset_task);
2902 	cancel_work_sync(&adapter->watchdog_task);
2903 
2904 	unregister_netdev(netdev);
2905 
2906 	igbvf_reset_interrupt_capability(adapter);
2907 
2908 	/* it is important to delete the NAPI struct prior to freeing the
2909 	 * Rx ring so that you do not end up with null pointer refs
2910 	 */
2911 	netif_napi_del(&adapter->rx_ring->napi);
2912 	kfree(adapter->tx_ring);
2913 	kfree(adapter->rx_ring);
2914 
2915 	iounmap(hw->hw_addr);
2916 	if (hw->flash_address)
2917 		iounmap(hw->flash_address);
2918 	pci_release_regions(pdev);
2919 
2920 	free_netdev(netdev);
2921 
2922 	pci_disable_device(pdev);
2923 }
2924 
2925 /* PCI Error Recovery (ERS) */
2926 static const struct pci_error_handlers igbvf_err_handler = {
2927 	.error_detected = igbvf_io_error_detected,
2928 	.slot_reset = igbvf_io_slot_reset,
2929 	.resume = igbvf_io_resume,
2930 };
2931 
2932 static const struct pci_device_id igbvf_pci_tbl[] = {
2933 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2934 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2935 	{ } /* terminate list */
2936 };
2937 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2938 
2939 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2940 
2941 /* PCI Device API Driver */
2942 static struct pci_driver igbvf_driver = {
2943 	.name		= igbvf_driver_name,
2944 	.id_table	= igbvf_pci_tbl,
2945 	.probe		= igbvf_probe,
2946 	.remove		= igbvf_remove,
2947 	.driver.pm	= &igbvf_pm_ops,
2948 	.shutdown	= igbvf_shutdown,
2949 	.err_handler	= &igbvf_err_handler
2950 };
2951 
2952 /**
2953  * igbvf_init_module - Driver Registration Routine
2954  *
2955  * igbvf_init_module is the first routine called when the driver is
2956  * loaded. All it does is register with the PCI subsystem.
2957  **/
2958 static int __init igbvf_init_module(void)
2959 {
2960 	int ret;
2961 
2962 	pr_info("%s\n", igbvf_driver_string);
2963 	pr_info("%s\n", igbvf_copyright);
2964 
2965 	ret = pci_register_driver(&igbvf_driver);
2966 
2967 	return ret;
2968 }
2969 module_init(igbvf_init_module);
2970 
2971 /**
2972  * igbvf_exit_module - Driver Exit Cleanup Routine
2973  *
2974  * igbvf_exit_module is called just before the driver is removed
2975  * from memory.
2976  **/
2977 static void __exit igbvf_exit_module(void)
2978 {
2979 	pci_unregister_driver(&igbvf_driver);
2980 }
2981 module_exit(igbvf_exit_module);
2982 
2983 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2984 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2985 MODULE_LICENSE("GPL v2");
2986 
2987 /* netdev.c */
2988