1 /*******************************************************************************
2 
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46 
47 #include "igbvf.h"
48 
49 #define DRV_VERSION "2.0.2-k"
50 char igbvf_driver_name[] = "igbvf";
51 const char igbvf_driver_version[] = DRV_VERSION;
52 static const char igbvf_driver_string[] =
53 		  "Intel(R) Gigabit Virtual Function Network Driver";
54 static const char igbvf_copyright[] =
55 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
56 
57 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
58 static int debug = -1;
59 module_param(debug, int, 0);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61 
62 static int igbvf_poll(struct napi_struct *napi, int budget);
63 static void igbvf_reset(struct igbvf_adapter *);
64 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
65 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
66 
67 static struct igbvf_info igbvf_vf_info = {
68 	.mac		= e1000_vfadapt,
69 	.flags		= 0,
70 	.pba		= 10,
71 	.init_ops	= e1000_init_function_pointers_vf,
72 };
73 
74 static struct igbvf_info igbvf_i350_vf_info = {
75 	.mac		= e1000_vfadapt_i350,
76 	.flags		= 0,
77 	.pba		= 10,
78 	.init_ops	= e1000_init_function_pointers_vf,
79 };
80 
81 static const struct igbvf_info *igbvf_info_tbl[] = {
82 	[board_vf]	= &igbvf_vf_info,
83 	[board_i350_vf]	= &igbvf_i350_vf_info,
84 };
85 
86 /**
87  * igbvf_desc_unused - calculate if we have unused descriptors
88  * @rx_ring: address of receive ring structure
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92 	if (ring->next_to_clean > ring->next_to_use)
93 		return ring->next_to_clean - ring->next_to_use - 1;
94 
95 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97 
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 			      struct net_device *netdev,
107 			      struct sk_buff *skb,
108 			      u32 status, u16 vlan)
109 {
110 	u16 vid;
111 
112 	if (status & E1000_RXD_STAT_VP) {
113 		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 		    (status & E1000_RXDEXT_STATERR_LB))
115 			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 		else
117 			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 		if (test_bit(vid, adapter->active_vlans))
119 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120 	}
121 
122 	napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124 
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 					 u32 status_err, struct sk_buff *skb)
127 {
128 	skb_checksum_none_assert(skb);
129 
130 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 	if ((status_err & E1000_RXD_STAT_IXSM) ||
132 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 		return;
134 
135 	/* TCP/UDP checksum error bit is set */
136 	if (status_err &
137 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 		/* let the stack verify checksum errors */
139 		adapter->hw_csum_err++;
140 		return;
141 	}
142 
143 	/* It must be a TCP or UDP packet with a valid checksum */
144 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 		skb->ip_summed = CHECKSUM_UNNECESSARY;
146 
147 	adapter->hw_csum_good++;
148 }
149 
150 /**
151  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152  * @rx_ring: address of ring structure to repopulate
153  * @cleaned_count: number of buffers to repopulate
154  **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 				   int cleaned_count)
157 {
158 	struct igbvf_adapter *adapter = rx_ring->adapter;
159 	struct net_device *netdev = adapter->netdev;
160 	struct pci_dev *pdev = adapter->pdev;
161 	union e1000_adv_rx_desc *rx_desc;
162 	struct igbvf_buffer *buffer_info;
163 	struct sk_buff *skb;
164 	unsigned int i;
165 	int bufsz;
166 
167 	i = rx_ring->next_to_use;
168 	buffer_info = &rx_ring->buffer_info[i];
169 
170 	if (adapter->rx_ps_hdr_size)
171 		bufsz = adapter->rx_ps_hdr_size;
172 	else
173 		bufsz = adapter->rx_buffer_len;
174 
175 	while (cleaned_count--) {
176 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177 
178 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 			if (!buffer_info->page) {
180 				buffer_info->page = alloc_page(GFP_ATOMIC);
181 				if (!buffer_info->page) {
182 					adapter->alloc_rx_buff_failed++;
183 					goto no_buffers;
184 				}
185 				buffer_info->page_offset = 0;
186 			} else {
187 				buffer_info->page_offset ^= PAGE_SIZE / 2;
188 			}
189 			buffer_info->page_dma =
190 				dma_map_page(&pdev->dev, buffer_info->page,
191 					     buffer_info->page_offset,
192 					     PAGE_SIZE / 2,
193 					     DMA_FROM_DEVICE);
194 			if (dma_mapping_error(&pdev->dev,
195 					      buffer_info->page_dma)) {
196 				__free_page(buffer_info->page);
197 				buffer_info->page = NULL;
198 				dev_err(&pdev->dev, "RX DMA map failed\n");
199 				break;
200 			}
201 		}
202 
203 		if (!buffer_info->skb) {
204 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 			if (!skb) {
206 				adapter->alloc_rx_buff_failed++;
207 				goto no_buffers;
208 			}
209 
210 			buffer_info->skb = skb;
211 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 							  bufsz,
213 							  DMA_FROM_DEVICE);
214 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 				dev_kfree_skb(buffer_info->skb);
216 				buffer_info->skb = NULL;
217 				dev_err(&pdev->dev, "RX DMA map failed\n");
218 				goto no_buffers;
219 			}
220 		}
221 		/* Refresh the desc even if buffer_addrs didn't change because
222 		 * each write-back erases this info.
223 		 */
224 		if (adapter->rx_ps_hdr_size) {
225 			rx_desc->read.pkt_addr =
226 			     cpu_to_le64(buffer_info->page_dma);
227 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
228 		} else {
229 			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
230 			rx_desc->read.hdr_addr = 0;
231 		}
232 
233 		i++;
234 		if (i == rx_ring->count)
235 			i = 0;
236 		buffer_info = &rx_ring->buffer_info[i];
237 	}
238 
239 no_buffers:
240 	if (rx_ring->next_to_use != i) {
241 		rx_ring->next_to_use = i;
242 		if (i == 0)
243 			i = (rx_ring->count - 1);
244 		else
245 			i--;
246 
247 		/* Force memory writes to complete before letting h/w
248 		 * know there are new descriptors to fetch.  (Only
249 		 * applicable for weak-ordered memory model archs,
250 		 * such as IA-64).
251 		*/
252 		wmb();
253 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
254 	}
255 }
256 
257 /**
258  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
259  * @adapter: board private structure
260  *
261  * the return value indicates whether actual cleaning was done, there
262  * is no guarantee that everything was cleaned
263  **/
264 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
265 			       int *work_done, int work_to_do)
266 {
267 	struct igbvf_ring *rx_ring = adapter->rx_ring;
268 	struct net_device *netdev = adapter->netdev;
269 	struct pci_dev *pdev = adapter->pdev;
270 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
271 	struct igbvf_buffer *buffer_info, *next_buffer;
272 	struct sk_buff *skb;
273 	bool cleaned = false;
274 	int cleaned_count = 0;
275 	unsigned int total_bytes = 0, total_packets = 0;
276 	unsigned int i;
277 	u32 length, hlen, staterr;
278 
279 	i = rx_ring->next_to_clean;
280 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
281 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
282 
283 	while (staterr & E1000_RXD_STAT_DD) {
284 		if (*work_done >= work_to_do)
285 			break;
286 		(*work_done)++;
287 		rmb(); /* read descriptor and rx_buffer_info after status DD */
288 
289 		buffer_info = &rx_ring->buffer_info[i];
290 
291 		/* HW will not DMA in data larger than the given buffer, even
292 		 * if it parses the (NFS, of course) header to be larger.  In
293 		 * that case, it fills the header buffer and spills the rest
294 		 * into the page.
295 		 */
296 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
297 		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
298 		       E1000_RXDADV_HDRBUFLEN_SHIFT;
299 		if (hlen > adapter->rx_ps_hdr_size)
300 			hlen = adapter->rx_ps_hdr_size;
301 
302 		length = le16_to_cpu(rx_desc->wb.upper.length);
303 		cleaned = true;
304 		cleaned_count++;
305 
306 		skb = buffer_info->skb;
307 		prefetch(skb->data - NET_IP_ALIGN);
308 		buffer_info->skb = NULL;
309 		if (!adapter->rx_ps_hdr_size) {
310 			dma_unmap_single(&pdev->dev, buffer_info->dma,
311 					 adapter->rx_buffer_len,
312 					 DMA_FROM_DEVICE);
313 			buffer_info->dma = 0;
314 			skb_put(skb, length);
315 			goto send_up;
316 		}
317 
318 		if (!skb_shinfo(skb)->nr_frags) {
319 			dma_unmap_single(&pdev->dev, buffer_info->dma,
320 					 adapter->rx_ps_hdr_size,
321 					 DMA_FROM_DEVICE);
322 			skb_put(skb, hlen);
323 		}
324 
325 		if (length) {
326 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
327 				       PAGE_SIZE / 2,
328 				       DMA_FROM_DEVICE);
329 			buffer_info->page_dma = 0;
330 
331 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
332 					   buffer_info->page,
333 					   buffer_info->page_offset,
334 					   length);
335 
336 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
337 			    (page_count(buffer_info->page) != 1))
338 				buffer_info->page = NULL;
339 			else
340 				get_page(buffer_info->page);
341 
342 			skb->len += length;
343 			skb->data_len += length;
344 			skb->truesize += PAGE_SIZE / 2;
345 		}
346 send_up:
347 		i++;
348 		if (i == rx_ring->count)
349 			i = 0;
350 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
351 		prefetch(next_rxd);
352 		next_buffer = &rx_ring->buffer_info[i];
353 
354 		if (!(staterr & E1000_RXD_STAT_EOP)) {
355 			buffer_info->skb = next_buffer->skb;
356 			buffer_info->dma = next_buffer->dma;
357 			next_buffer->skb = skb;
358 			next_buffer->dma = 0;
359 			goto next_desc;
360 		}
361 
362 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
363 			dev_kfree_skb_irq(skb);
364 			goto next_desc;
365 		}
366 
367 		total_bytes += skb->len;
368 		total_packets++;
369 
370 		igbvf_rx_checksum_adv(adapter, staterr, skb);
371 
372 		skb->protocol = eth_type_trans(skb, netdev);
373 
374 		igbvf_receive_skb(adapter, netdev, skb, staterr,
375 				  rx_desc->wb.upper.vlan);
376 
377 next_desc:
378 		rx_desc->wb.upper.status_error = 0;
379 
380 		/* return some buffers to hardware, one at a time is too slow */
381 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
382 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
383 			cleaned_count = 0;
384 		}
385 
386 		/* use prefetched values */
387 		rx_desc = next_rxd;
388 		buffer_info = next_buffer;
389 
390 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
391 	}
392 
393 	rx_ring->next_to_clean = i;
394 	cleaned_count = igbvf_desc_unused(rx_ring);
395 
396 	if (cleaned_count)
397 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
398 
399 	adapter->total_rx_packets += total_packets;
400 	adapter->total_rx_bytes += total_bytes;
401 	adapter->net_stats.rx_bytes += total_bytes;
402 	adapter->net_stats.rx_packets += total_packets;
403 	return cleaned;
404 }
405 
406 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
407 			    struct igbvf_buffer *buffer_info)
408 {
409 	if (buffer_info->dma) {
410 		if (buffer_info->mapped_as_page)
411 			dma_unmap_page(&adapter->pdev->dev,
412 				       buffer_info->dma,
413 				       buffer_info->length,
414 				       DMA_TO_DEVICE);
415 		else
416 			dma_unmap_single(&adapter->pdev->dev,
417 					 buffer_info->dma,
418 					 buffer_info->length,
419 					 DMA_TO_DEVICE);
420 		buffer_info->dma = 0;
421 	}
422 	if (buffer_info->skb) {
423 		dev_kfree_skb_any(buffer_info->skb);
424 		buffer_info->skb = NULL;
425 	}
426 	buffer_info->time_stamp = 0;
427 }
428 
429 /**
430  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
431  * @adapter: board private structure
432  *
433  * Return 0 on success, negative on failure
434  **/
435 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
436 			     struct igbvf_ring *tx_ring)
437 {
438 	struct pci_dev *pdev = adapter->pdev;
439 	int size;
440 
441 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
442 	tx_ring->buffer_info = vzalloc(size);
443 	if (!tx_ring->buffer_info)
444 		goto err;
445 
446 	/* round up to nearest 4K */
447 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
448 	tx_ring->size = ALIGN(tx_ring->size, 4096);
449 
450 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
451 					   &tx_ring->dma, GFP_KERNEL);
452 	if (!tx_ring->desc)
453 		goto err;
454 
455 	tx_ring->adapter = adapter;
456 	tx_ring->next_to_use = 0;
457 	tx_ring->next_to_clean = 0;
458 
459 	return 0;
460 err:
461 	vfree(tx_ring->buffer_info);
462 	dev_err(&adapter->pdev->dev,
463 		"Unable to allocate memory for the transmit descriptor ring\n");
464 	return -ENOMEM;
465 }
466 
467 /**
468  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
469  * @adapter: board private structure
470  *
471  * Returns 0 on success, negative on failure
472  **/
473 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
474 			     struct igbvf_ring *rx_ring)
475 {
476 	struct pci_dev *pdev = adapter->pdev;
477 	int size, desc_len;
478 
479 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
480 	rx_ring->buffer_info = vzalloc(size);
481 	if (!rx_ring->buffer_info)
482 		goto err;
483 
484 	desc_len = sizeof(union e1000_adv_rx_desc);
485 
486 	/* Round up to nearest 4K */
487 	rx_ring->size = rx_ring->count * desc_len;
488 	rx_ring->size = ALIGN(rx_ring->size, 4096);
489 
490 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
491 					   &rx_ring->dma, GFP_KERNEL);
492 	if (!rx_ring->desc)
493 		goto err;
494 
495 	rx_ring->next_to_clean = 0;
496 	rx_ring->next_to_use = 0;
497 
498 	rx_ring->adapter = adapter;
499 
500 	return 0;
501 
502 err:
503 	vfree(rx_ring->buffer_info);
504 	rx_ring->buffer_info = NULL;
505 	dev_err(&adapter->pdev->dev,
506 		"Unable to allocate memory for the receive descriptor ring\n");
507 	return -ENOMEM;
508 }
509 
510 /**
511  * igbvf_clean_tx_ring - Free Tx Buffers
512  * @tx_ring: ring to be cleaned
513  **/
514 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
515 {
516 	struct igbvf_adapter *adapter = tx_ring->adapter;
517 	struct igbvf_buffer *buffer_info;
518 	unsigned long size;
519 	unsigned int i;
520 
521 	if (!tx_ring->buffer_info)
522 		return;
523 
524 	/* Free all the Tx ring sk_buffs */
525 	for (i = 0; i < tx_ring->count; i++) {
526 		buffer_info = &tx_ring->buffer_info[i];
527 		igbvf_put_txbuf(adapter, buffer_info);
528 	}
529 
530 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
531 	memset(tx_ring->buffer_info, 0, size);
532 
533 	/* Zero out the descriptor ring */
534 	memset(tx_ring->desc, 0, tx_ring->size);
535 
536 	tx_ring->next_to_use = 0;
537 	tx_ring->next_to_clean = 0;
538 
539 	writel(0, adapter->hw.hw_addr + tx_ring->head);
540 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
541 }
542 
543 /**
544  * igbvf_free_tx_resources - Free Tx Resources per Queue
545  * @tx_ring: ring to free resources from
546  *
547  * Free all transmit software resources
548  **/
549 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
550 {
551 	struct pci_dev *pdev = tx_ring->adapter->pdev;
552 
553 	igbvf_clean_tx_ring(tx_ring);
554 
555 	vfree(tx_ring->buffer_info);
556 	tx_ring->buffer_info = NULL;
557 
558 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
559 			  tx_ring->dma);
560 
561 	tx_ring->desc = NULL;
562 }
563 
564 /**
565  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
566  * @adapter: board private structure
567  **/
568 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
569 {
570 	struct igbvf_adapter *adapter = rx_ring->adapter;
571 	struct igbvf_buffer *buffer_info;
572 	struct pci_dev *pdev = adapter->pdev;
573 	unsigned long size;
574 	unsigned int i;
575 
576 	if (!rx_ring->buffer_info)
577 		return;
578 
579 	/* Free all the Rx ring sk_buffs */
580 	for (i = 0; i < rx_ring->count; i++) {
581 		buffer_info = &rx_ring->buffer_info[i];
582 		if (buffer_info->dma) {
583 			if (adapter->rx_ps_hdr_size) {
584 				dma_unmap_single(&pdev->dev, buffer_info->dma,
585 						 adapter->rx_ps_hdr_size,
586 						 DMA_FROM_DEVICE);
587 			} else {
588 				dma_unmap_single(&pdev->dev, buffer_info->dma,
589 						 adapter->rx_buffer_len,
590 						 DMA_FROM_DEVICE);
591 			}
592 			buffer_info->dma = 0;
593 		}
594 
595 		if (buffer_info->skb) {
596 			dev_kfree_skb(buffer_info->skb);
597 			buffer_info->skb = NULL;
598 		}
599 
600 		if (buffer_info->page) {
601 			if (buffer_info->page_dma)
602 				dma_unmap_page(&pdev->dev,
603 					       buffer_info->page_dma,
604 					       PAGE_SIZE / 2,
605 					       DMA_FROM_DEVICE);
606 			put_page(buffer_info->page);
607 			buffer_info->page = NULL;
608 			buffer_info->page_dma = 0;
609 			buffer_info->page_offset = 0;
610 		}
611 	}
612 
613 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
614 	memset(rx_ring->buffer_info, 0, size);
615 
616 	/* Zero out the descriptor ring */
617 	memset(rx_ring->desc, 0, rx_ring->size);
618 
619 	rx_ring->next_to_clean = 0;
620 	rx_ring->next_to_use = 0;
621 
622 	writel(0, adapter->hw.hw_addr + rx_ring->head);
623 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
624 }
625 
626 /**
627  * igbvf_free_rx_resources - Free Rx Resources
628  * @rx_ring: ring to clean the resources from
629  *
630  * Free all receive software resources
631  **/
632 
633 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
634 {
635 	struct pci_dev *pdev = rx_ring->adapter->pdev;
636 
637 	igbvf_clean_rx_ring(rx_ring);
638 
639 	vfree(rx_ring->buffer_info);
640 	rx_ring->buffer_info = NULL;
641 
642 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
643 			  rx_ring->dma);
644 	rx_ring->desc = NULL;
645 }
646 
647 /**
648  * igbvf_update_itr - update the dynamic ITR value based on statistics
649  * @adapter: pointer to adapter
650  * @itr_setting: current adapter->itr
651  * @packets: the number of packets during this measurement interval
652  * @bytes: the number of bytes during this measurement interval
653  *
654  * Stores a new ITR value based on packets and byte counts during the last
655  * interrupt.  The advantage of per interrupt computation is faster updates
656  * and more accurate ITR for the current traffic pattern.  Constants in this
657  * function were computed based on theoretical maximum wire speed and thresholds
658  * were set based on testing data as well as attempting to minimize response
659  * time while increasing bulk throughput.
660  **/
661 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
662 					   enum latency_range itr_setting,
663 					   int packets, int bytes)
664 {
665 	enum latency_range retval = itr_setting;
666 
667 	if (packets == 0)
668 		goto update_itr_done;
669 
670 	switch (itr_setting) {
671 	case lowest_latency:
672 		/* handle TSO and jumbo frames */
673 		if (bytes/packets > 8000)
674 			retval = bulk_latency;
675 		else if ((packets < 5) && (bytes > 512))
676 			retval = low_latency;
677 		break;
678 	case low_latency:  /* 50 usec aka 20000 ints/s */
679 		if (bytes > 10000) {
680 			/* this if handles the TSO accounting */
681 			if (bytes/packets > 8000)
682 				retval = bulk_latency;
683 			else if ((packets < 10) || ((bytes/packets) > 1200))
684 				retval = bulk_latency;
685 			else if ((packets > 35))
686 				retval = lowest_latency;
687 		} else if (bytes/packets > 2000) {
688 			retval = bulk_latency;
689 		} else if (packets <= 2 && bytes < 512) {
690 			retval = lowest_latency;
691 		}
692 		break;
693 	case bulk_latency: /* 250 usec aka 4000 ints/s */
694 		if (bytes > 25000) {
695 			if (packets > 35)
696 				retval = low_latency;
697 		} else if (bytes < 6000) {
698 			retval = low_latency;
699 		}
700 		break;
701 	default:
702 		break;
703 	}
704 
705 update_itr_done:
706 	return retval;
707 }
708 
709 static int igbvf_range_to_itr(enum latency_range current_range)
710 {
711 	int new_itr;
712 
713 	switch (current_range) {
714 	/* counts and packets in update_itr are dependent on these numbers */
715 	case lowest_latency:
716 		new_itr = IGBVF_70K_ITR;
717 		break;
718 	case low_latency:
719 		new_itr = IGBVF_20K_ITR;
720 		break;
721 	case bulk_latency:
722 		new_itr = IGBVF_4K_ITR;
723 		break;
724 	default:
725 		new_itr = IGBVF_START_ITR;
726 		break;
727 	}
728 	return new_itr;
729 }
730 
731 static void igbvf_set_itr(struct igbvf_adapter *adapter)
732 {
733 	u32 new_itr;
734 
735 	adapter->tx_ring->itr_range =
736 			igbvf_update_itr(adapter,
737 					 adapter->tx_ring->itr_val,
738 					 adapter->total_tx_packets,
739 					 adapter->total_tx_bytes);
740 
741 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
742 	if (adapter->requested_itr == 3 &&
743 	    adapter->tx_ring->itr_range == lowest_latency)
744 		adapter->tx_ring->itr_range = low_latency;
745 
746 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
747 
748 	if (new_itr != adapter->tx_ring->itr_val) {
749 		u32 current_itr = adapter->tx_ring->itr_val;
750 		/* this attempts to bias the interrupt rate towards Bulk
751 		 * by adding intermediate steps when interrupt rate is
752 		 * increasing
753 		 */
754 		new_itr = new_itr > current_itr ?
755 			  min(current_itr + (new_itr >> 2), new_itr) :
756 			  new_itr;
757 		adapter->tx_ring->itr_val = new_itr;
758 
759 		adapter->tx_ring->set_itr = 1;
760 	}
761 
762 	adapter->rx_ring->itr_range =
763 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
764 					 adapter->total_rx_packets,
765 					 adapter->total_rx_bytes);
766 	if (adapter->requested_itr == 3 &&
767 	    adapter->rx_ring->itr_range == lowest_latency)
768 		adapter->rx_ring->itr_range = low_latency;
769 
770 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
771 
772 	if (new_itr != adapter->rx_ring->itr_val) {
773 		u32 current_itr = adapter->rx_ring->itr_val;
774 
775 		new_itr = new_itr > current_itr ?
776 			  min(current_itr + (new_itr >> 2), new_itr) :
777 			  new_itr;
778 		adapter->rx_ring->itr_val = new_itr;
779 
780 		adapter->rx_ring->set_itr = 1;
781 	}
782 }
783 
784 /**
785  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786  * @adapter: board private structure
787  *
788  * returns true if ring is completely cleaned
789  **/
790 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791 {
792 	struct igbvf_adapter *adapter = tx_ring->adapter;
793 	struct net_device *netdev = adapter->netdev;
794 	struct igbvf_buffer *buffer_info;
795 	struct sk_buff *skb;
796 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
797 	unsigned int total_bytes = 0, total_packets = 0;
798 	unsigned int i, count = 0;
799 	bool cleaned = false;
800 
801 	i = tx_ring->next_to_clean;
802 	buffer_info = &tx_ring->buffer_info[i];
803 	eop_desc = buffer_info->next_to_watch;
804 
805 	do {
806 		/* if next_to_watch is not set then there is no work pending */
807 		if (!eop_desc)
808 			break;
809 
810 		/* prevent any other reads prior to eop_desc */
811 		read_barrier_depends();
812 
813 		/* if DD is not set pending work has not been completed */
814 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815 			break;
816 
817 		/* clear next_to_watch to prevent false hangs */
818 		buffer_info->next_to_watch = NULL;
819 
820 		for (cleaned = false; !cleaned; count++) {
821 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822 			cleaned = (tx_desc == eop_desc);
823 			skb = buffer_info->skb;
824 
825 			if (skb) {
826 				unsigned int segs, bytecount;
827 
828 				/* gso_segs is currently only valid for tcp */
829 				segs = skb_shinfo(skb)->gso_segs ?: 1;
830 				/* multiply data chunks by size of headers */
831 				bytecount = ((segs - 1) * skb_headlen(skb)) +
832 					    skb->len;
833 				total_packets += segs;
834 				total_bytes += bytecount;
835 			}
836 
837 			igbvf_put_txbuf(adapter, buffer_info);
838 			tx_desc->wb.status = 0;
839 
840 			i++;
841 			if (i == tx_ring->count)
842 				i = 0;
843 
844 			buffer_info = &tx_ring->buffer_info[i];
845 		}
846 
847 		eop_desc = buffer_info->next_to_watch;
848 	} while (count < tx_ring->count);
849 
850 	tx_ring->next_to_clean = i;
851 
852 	if (unlikely(count && netif_carrier_ok(netdev) &&
853 	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
854 		/* Make sure that anybody stopping the queue after this
855 		 * sees the new next_to_clean.
856 		 */
857 		smp_mb();
858 		if (netif_queue_stopped(netdev) &&
859 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
860 			netif_wake_queue(netdev);
861 			++adapter->restart_queue;
862 		}
863 	}
864 
865 	adapter->net_stats.tx_bytes += total_bytes;
866 	adapter->net_stats.tx_packets += total_packets;
867 	return count < tx_ring->count;
868 }
869 
870 static irqreturn_t igbvf_msix_other(int irq, void *data)
871 {
872 	struct net_device *netdev = data;
873 	struct igbvf_adapter *adapter = netdev_priv(netdev);
874 	struct e1000_hw *hw = &adapter->hw;
875 
876 	adapter->int_counter1++;
877 
878 	netif_carrier_off(netdev);
879 	hw->mac.get_link_status = 1;
880 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
881 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
882 
883 	ew32(EIMS, adapter->eims_other);
884 
885 	return IRQ_HANDLED;
886 }
887 
888 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
889 {
890 	struct net_device *netdev = data;
891 	struct igbvf_adapter *adapter = netdev_priv(netdev);
892 	struct e1000_hw *hw = &adapter->hw;
893 	struct igbvf_ring *tx_ring = adapter->tx_ring;
894 
895 	if (tx_ring->set_itr) {
896 		writel(tx_ring->itr_val,
897 		       adapter->hw.hw_addr + tx_ring->itr_register);
898 		adapter->tx_ring->set_itr = 0;
899 	}
900 
901 	adapter->total_tx_bytes = 0;
902 	adapter->total_tx_packets = 0;
903 
904 	/* auto mask will automatically re-enable the interrupt when we write
905 	 * EICS
906 	 */
907 	if (!igbvf_clean_tx_irq(tx_ring))
908 		/* Ring was not completely cleaned, so fire another interrupt */
909 		ew32(EICS, tx_ring->eims_value);
910 	else
911 		ew32(EIMS, tx_ring->eims_value);
912 
913 	return IRQ_HANDLED;
914 }
915 
916 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917 {
918 	struct net_device *netdev = data;
919 	struct igbvf_adapter *adapter = netdev_priv(netdev);
920 
921 	adapter->int_counter0++;
922 
923 	/* Write the ITR value calculated at the end of the
924 	 * previous interrupt.
925 	 */
926 	if (adapter->rx_ring->set_itr) {
927 		writel(adapter->rx_ring->itr_val,
928 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929 		adapter->rx_ring->set_itr = 0;
930 	}
931 
932 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933 		adapter->total_rx_bytes = 0;
934 		adapter->total_rx_packets = 0;
935 		__napi_schedule(&adapter->rx_ring->napi);
936 	}
937 
938 	return IRQ_HANDLED;
939 }
940 
941 #define IGBVF_NO_QUEUE -1
942 
943 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944 				int tx_queue, int msix_vector)
945 {
946 	struct e1000_hw *hw = &adapter->hw;
947 	u32 ivar, index;
948 
949 	/* 82576 uses a table-based method for assigning vectors.
950 	 * Each queue has a single entry in the table to which we write
951 	 * a vector number along with a "valid" bit.  Sadly, the layout
952 	 * of the table is somewhat counterintuitive.
953 	 */
954 	if (rx_queue > IGBVF_NO_QUEUE) {
955 		index = (rx_queue >> 1);
956 		ivar = array_er32(IVAR0, index);
957 		if (rx_queue & 0x1) {
958 			/* vector goes into third byte of register */
959 			ivar = ivar & 0xFF00FFFF;
960 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
961 		} else {
962 			/* vector goes into low byte of register */
963 			ivar = ivar & 0xFFFFFF00;
964 			ivar |= msix_vector | E1000_IVAR_VALID;
965 		}
966 		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
967 		array_ew32(IVAR0, index, ivar);
968 	}
969 	if (tx_queue > IGBVF_NO_QUEUE) {
970 		index = (tx_queue >> 1);
971 		ivar = array_er32(IVAR0, index);
972 		if (tx_queue & 0x1) {
973 			/* vector goes into high byte of register */
974 			ivar = ivar & 0x00FFFFFF;
975 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
976 		} else {
977 			/* vector goes into second byte of register */
978 			ivar = ivar & 0xFFFF00FF;
979 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
980 		}
981 		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
982 		array_ew32(IVAR0, index, ivar);
983 	}
984 }
985 
986 /**
987  * igbvf_configure_msix - Configure MSI-X hardware
988  * @adapter: board private structure
989  *
990  * igbvf_configure_msix sets up the hardware to properly
991  * generate MSI-X interrupts.
992  **/
993 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
994 {
995 	u32 tmp;
996 	struct e1000_hw *hw = &adapter->hw;
997 	struct igbvf_ring *tx_ring = adapter->tx_ring;
998 	struct igbvf_ring *rx_ring = adapter->rx_ring;
999 	int vector = 0;
1000 
1001 	adapter->eims_enable_mask = 0;
1002 
1003 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1004 	adapter->eims_enable_mask |= tx_ring->eims_value;
1005 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1006 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1007 	adapter->eims_enable_mask |= rx_ring->eims_value;
1008 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1009 
1010 	/* set vector for other causes, i.e. link changes */
1011 
1012 	tmp = (vector++ | E1000_IVAR_VALID);
1013 
1014 	ew32(IVAR_MISC, tmp);
1015 
1016 	adapter->eims_enable_mask = (1 << (vector)) - 1;
1017 	adapter->eims_other = 1 << (vector - 1);
1018 	e1e_flush();
1019 }
1020 
1021 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1022 {
1023 	if (adapter->msix_entries) {
1024 		pci_disable_msix(adapter->pdev);
1025 		kfree(adapter->msix_entries);
1026 		adapter->msix_entries = NULL;
1027 	}
1028 }
1029 
1030 /**
1031  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1032  * @adapter: board private structure
1033  *
1034  * Attempt to configure interrupts using the best available
1035  * capabilities of the hardware and kernel.
1036  **/
1037 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1038 {
1039 	int err = -ENOMEM;
1040 	int i;
1041 
1042 	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1043 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1044 					GFP_KERNEL);
1045 	if (adapter->msix_entries) {
1046 		for (i = 0; i < 3; i++)
1047 			adapter->msix_entries[i].entry = i;
1048 
1049 		err = pci_enable_msix_range(adapter->pdev,
1050 					    adapter->msix_entries, 3, 3);
1051 	}
1052 
1053 	if (err < 0) {
1054 		/* MSI-X failed */
1055 		dev_err(&adapter->pdev->dev,
1056 			"Failed to initialize MSI-X interrupts.\n");
1057 		igbvf_reset_interrupt_capability(adapter);
1058 	}
1059 }
1060 
1061 /**
1062  * igbvf_request_msix - Initialize MSI-X interrupts
1063  * @adapter: board private structure
1064  *
1065  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1066  * kernel.
1067  **/
1068 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1069 {
1070 	struct net_device *netdev = adapter->netdev;
1071 	int err = 0, vector = 0;
1072 
1073 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1074 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1075 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1076 	} else {
1077 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1078 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1079 	}
1080 
1081 	err = request_irq(adapter->msix_entries[vector].vector,
1082 			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1083 			  netdev);
1084 	if (err)
1085 		goto out;
1086 
1087 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1088 	adapter->tx_ring->itr_val = adapter->current_itr;
1089 	vector++;
1090 
1091 	err = request_irq(adapter->msix_entries[vector].vector,
1092 			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1093 			  netdev);
1094 	if (err)
1095 		goto out;
1096 
1097 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1098 	adapter->rx_ring->itr_val = adapter->current_itr;
1099 	vector++;
1100 
1101 	err = request_irq(adapter->msix_entries[vector].vector,
1102 			  igbvf_msix_other, 0, netdev->name, netdev);
1103 	if (err)
1104 		goto out;
1105 
1106 	igbvf_configure_msix(adapter);
1107 	return 0;
1108 out:
1109 	return err;
1110 }
1111 
1112 /**
1113  * igbvf_alloc_queues - Allocate memory for all rings
1114  * @adapter: board private structure to initialize
1115  **/
1116 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1117 {
1118 	struct net_device *netdev = adapter->netdev;
1119 
1120 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121 	if (!adapter->tx_ring)
1122 		return -ENOMEM;
1123 
1124 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1125 	if (!adapter->rx_ring) {
1126 		kfree(adapter->tx_ring);
1127 		return -ENOMEM;
1128 	}
1129 
1130 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * igbvf_request_irq - initialize interrupts
1137  * @adapter: board private structure
1138  *
1139  * Attempts to configure interrupts using the best available
1140  * capabilities of the hardware and kernel.
1141  **/
1142 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1143 {
1144 	int err = -1;
1145 
1146 	/* igbvf supports msi-x only */
1147 	if (adapter->msix_entries)
1148 		err = igbvf_request_msix(adapter);
1149 
1150 	if (!err)
1151 		return err;
1152 
1153 	dev_err(&adapter->pdev->dev,
1154 		"Unable to allocate interrupt, Error: %d\n", err);
1155 
1156 	return err;
1157 }
1158 
1159 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1160 {
1161 	struct net_device *netdev = adapter->netdev;
1162 	int vector;
1163 
1164 	if (adapter->msix_entries) {
1165 		for (vector = 0; vector < 3; vector++)
1166 			free_irq(adapter->msix_entries[vector].vector, netdev);
1167 	}
1168 }
1169 
1170 /**
1171  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1172  * @adapter: board private structure
1173  **/
1174 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1175 {
1176 	struct e1000_hw *hw = &adapter->hw;
1177 
1178 	ew32(EIMC, ~0);
1179 
1180 	if (adapter->msix_entries)
1181 		ew32(EIAC, 0);
1182 }
1183 
1184 /**
1185  * igbvf_irq_enable - Enable default interrupt generation settings
1186  * @adapter: board private structure
1187  **/
1188 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1189 {
1190 	struct e1000_hw *hw = &adapter->hw;
1191 
1192 	ew32(EIAC, adapter->eims_enable_mask);
1193 	ew32(EIAM, adapter->eims_enable_mask);
1194 	ew32(EIMS, adapter->eims_enable_mask);
1195 }
1196 
1197 /**
1198  * igbvf_poll - NAPI Rx polling callback
1199  * @napi: struct associated with this polling callback
1200  * @budget: amount of packets driver is allowed to process this poll
1201  **/
1202 static int igbvf_poll(struct napi_struct *napi, int budget)
1203 {
1204 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1205 	struct igbvf_adapter *adapter = rx_ring->adapter;
1206 	struct e1000_hw *hw = &adapter->hw;
1207 	int work_done = 0;
1208 
1209 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1210 
1211 	/* If not enough Rx work done, exit the polling mode */
1212 	if (work_done < budget) {
1213 		napi_complete(napi);
1214 
1215 		if (adapter->requested_itr & 3)
1216 			igbvf_set_itr(adapter);
1217 
1218 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1219 			ew32(EIMS, adapter->rx_ring->eims_value);
1220 	}
1221 
1222 	return work_done;
1223 }
1224 
1225 /**
1226  * igbvf_set_rlpml - set receive large packet maximum length
1227  * @adapter: board private structure
1228  *
1229  * Configure the maximum size of packets that will be received
1230  */
1231 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1232 {
1233 	int max_frame_size;
1234 	struct e1000_hw *hw = &adapter->hw;
1235 
1236 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1237 	e1000_rlpml_set_vf(hw, max_frame_size);
1238 }
1239 
1240 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1241 				 __be16 proto, u16 vid)
1242 {
1243 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1244 	struct e1000_hw *hw = &adapter->hw;
1245 
1246 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1247 		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1248 		return -EINVAL;
1249 	}
1250 	set_bit(vid, adapter->active_vlans);
1251 	return 0;
1252 }
1253 
1254 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1255 				  __be16 proto, u16 vid)
1256 {
1257 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1258 	struct e1000_hw *hw = &adapter->hw;
1259 
1260 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1261 		dev_err(&adapter->pdev->dev,
1262 			"Failed to remove vlan id %d\n", vid);
1263 		return -EINVAL;
1264 	}
1265 	clear_bit(vid, adapter->active_vlans);
1266 	return 0;
1267 }
1268 
1269 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1270 {
1271 	u16 vid;
1272 
1273 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1274 		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1275 }
1276 
1277 /**
1278  * igbvf_configure_tx - Configure Transmit Unit after Reset
1279  * @adapter: board private structure
1280  *
1281  * Configure the Tx unit of the MAC after a reset.
1282  **/
1283 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1284 {
1285 	struct e1000_hw *hw = &adapter->hw;
1286 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1287 	u64 tdba;
1288 	u32 txdctl, dca_txctrl;
1289 
1290 	/* disable transmits */
1291 	txdctl = er32(TXDCTL(0));
1292 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1293 	e1e_flush();
1294 	msleep(10);
1295 
1296 	/* Setup the HW Tx Head and Tail descriptor pointers */
1297 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1298 	tdba = tx_ring->dma;
1299 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1300 	ew32(TDBAH(0), (tdba >> 32));
1301 	ew32(TDH(0), 0);
1302 	ew32(TDT(0), 0);
1303 	tx_ring->head = E1000_TDH(0);
1304 	tx_ring->tail = E1000_TDT(0);
1305 
1306 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1307 	 * MUST be delivered in order or it will completely screw up
1308 	 * our bookkeeping.
1309 	 */
1310 	dca_txctrl = er32(DCA_TXCTRL(0));
1311 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1312 	ew32(DCA_TXCTRL(0), dca_txctrl);
1313 
1314 	/* enable transmits */
1315 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1316 	ew32(TXDCTL(0), txdctl);
1317 
1318 	/* Setup Transmit Descriptor Settings for eop descriptor */
1319 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1320 
1321 	/* enable Report Status bit */
1322 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1323 }
1324 
1325 /**
1326  * igbvf_setup_srrctl - configure the receive control registers
1327  * @adapter: Board private structure
1328  **/
1329 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1330 {
1331 	struct e1000_hw *hw = &adapter->hw;
1332 	u32 srrctl = 0;
1333 
1334 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1335 		    E1000_SRRCTL_BSIZEHDR_MASK |
1336 		    E1000_SRRCTL_BSIZEPKT_MASK);
1337 
1338 	/* Enable queue drop to avoid head of line blocking */
1339 	srrctl |= E1000_SRRCTL_DROP_EN;
1340 
1341 	/* Setup buffer sizes */
1342 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1343 		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1344 
1345 	if (adapter->rx_buffer_len < 2048) {
1346 		adapter->rx_ps_hdr_size = 0;
1347 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1348 	} else {
1349 		adapter->rx_ps_hdr_size = 128;
1350 		srrctl |= adapter->rx_ps_hdr_size <<
1351 			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1352 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1353 	}
1354 
1355 	ew32(SRRCTL(0), srrctl);
1356 }
1357 
1358 /**
1359  * igbvf_configure_rx - Configure Receive Unit after Reset
1360  * @adapter: board private structure
1361  *
1362  * Configure the Rx unit of the MAC after a reset.
1363  **/
1364 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1365 {
1366 	struct e1000_hw *hw = &adapter->hw;
1367 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1368 	u64 rdba;
1369 	u32 rdlen, rxdctl;
1370 
1371 	/* disable receives */
1372 	rxdctl = er32(RXDCTL(0));
1373 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1374 	e1e_flush();
1375 	msleep(10);
1376 
1377 	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1378 
1379 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1380 	 * the Base and Length of the Rx Descriptor Ring
1381 	 */
1382 	rdba = rx_ring->dma;
1383 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384 	ew32(RDBAH(0), (rdba >> 32));
1385 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386 	rx_ring->head = E1000_RDH(0);
1387 	rx_ring->tail = E1000_RDT(0);
1388 	ew32(RDH(0), 0);
1389 	ew32(RDT(0), 0);
1390 
1391 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392 	rxdctl &= 0xFFF00000;
1393 	rxdctl |= IGBVF_RX_PTHRESH;
1394 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1395 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1396 
1397 	igbvf_set_rlpml(adapter);
1398 
1399 	/* enable receives */
1400 	ew32(RXDCTL(0), rxdctl);
1401 }
1402 
1403 /**
1404  * igbvf_set_multi - Multicast and Promiscuous mode set
1405  * @netdev: network interface device structure
1406  *
1407  * The set_multi entry point is called whenever the multicast address
1408  * list or the network interface flags are updated.  This routine is
1409  * responsible for configuring the hardware for proper multicast,
1410  * promiscuous mode, and all-multi behavior.
1411  **/
1412 static void igbvf_set_multi(struct net_device *netdev)
1413 {
1414 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1415 	struct e1000_hw *hw = &adapter->hw;
1416 	struct netdev_hw_addr *ha;
1417 	u8  *mta_list = NULL;
1418 	int i;
1419 
1420 	if (!netdev_mc_empty(netdev)) {
1421 		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422 					 GFP_ATOMIC);
1423 		if (!mta_list)
1424 			return;
1425 	}
1426 
1427 	/* prepare a packed array of only addresses. */
1428 	i = 0;
1429 	netdev_for_each_mc_addr(ha, netdev)
1430 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431 
1432 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1433 	kfree(mta_list);
1434 }
1435 
1436 /**
1437  * igbvf_configure - configure the hardware for Rx and Tx
1438  * @adapter: private board structure
1439  **/
1440 static void igbvf_configure(struct igbvf_adapter *adapter)
1441 {
1442 	igbvf_set_multi(adapter->netdev);
1443 
1444 	igbvf_restore_vlan(adapter);
1445 
1446 	igbvf_configure_tx(adapter);
1447 	igbvf_setup_srrctl(adapter);
1448 	igbvf_configure_rx(adapter);
1449 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1450 			       igbvf_desc_unused(adapter->rx_ring));
1451 }
1452 
1453 /* igbvf_reset - bring the hardware into a known good state
1454  * @adapter: private board structure
1455  *
1456  * This function boots the hardware and enables some settings that
1457  * require a configuration cycle of the hardware - those cannot be
1458  * set/changed during runtime. After reset the device needs to be
1459  * properly configured for Rx, Tx etc.
1460  */
1461 static void igbvf_reset(struct igbvf_adapter *adapter)
1462 {
1463 	struct e1000_mac_info *mac = &adapter->hw.mac;
1464 	struct net_device *netdev = adapter->netdev;
1465 	struct e1000_hw *hw = &adapter->hw;
1466 
1467 	/* Allow time for pending master requests to run */
1468 	if (mac->ops.reset_hw(hw))
1469 		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1470 
1471 	mac->ops.init_hw(hw);
1472 
1473 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1474 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1475 		       netdev->addr_len);
1476 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1477 		       netdev->addr_len);
1478 	}
1479 
1480 	adapter->last_reset = jiffies;
1481 }
1482 
1483 int igbvf_up(struct igbvf_adapter *adapter)
1484 {
1485 	struct e1000_hw *hw = &adapter->hw;
1486 
1487 	/* hardware has been reset, we need to reload some things */
1488 	igbvf_configure(adapter);
1489 
1490 	clear_bit(__IGBVF_DOWN, &adapter->state);
1491 
1492 	napi_enable(&adapter->rx_ring->napi);
1493 	if (adapter->msix_entries)
1494 		igbvf_configure_msix(adapter);
1495 
1496 	/* Clear any pending interrupts. */
1497 	er32(EICR);
1498 	igbvf_irq_enable(adapter);
1499 
1500 	/* start the watchdog */
1501 	hw->mac.get_link_status = 1;
1502 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1503 
1504 	return 0;
1505 }
1506 
1507 void igbvf_down(struct igbvf_adapter *adapter)
1508 {
1509 	struct net_device *netdev = adapter->netdev;
1510 	struct e1000_hw *hw = &adapter->hw;
1511 	u32 rxdctl, txdctl;
1512 
1513 	/* signal that we're down so the interrupt handler does not
1514 	 * reschedule our watchdog timer
1515 	 */
1516 	set_bit(__IGBVF_DOWN, &adapter->state);
1517 
1518 	/* disable receives in the hardware */
1519 	rxdctl = er32(RXDCTL(0));
1520 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1521 
1522 	netif_carrier_off(netdev);
1523 	netif_stop_queue(netdev);
1524 
1525 	/* disable transmits in the hardware */
1526 	txdctl = er32(TXDCTL(0));
1527 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1528 
1529 	/* flush both disables and wait for them to finish */
1530 	e1e_flush();
1531 	msleep(10);
1532 
1533 	napi_disable(&adapter->rx_ring->napi);
1534 
1535 	igbvf_irq_disable(adapter);
1536 
1537 	del_timer_sync(&adapter->watchdog_timer);
1538 
1539 	/* record the stats before reset*/
1540 	igbvf_update_stats(adapter);
1541 
1542 	adapter->link_speed = 0;
1543 	adapter->link_duplex = 0;
1544 
1545 	igbvf_reset(adapter);
1546 	igbvf_clean_tx_ring(adapter->tx_ring);
1547 	igbvf_clean_rx_ring(adapter->rx_ring);
1548 }
1549 
1550 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1551 {
1552 	might_sleep();
1553 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1554 		usleep_range(1000, 2000);
1555 	igbvf_down(adapter);
1556 	igbvf_up(adapter);
1557 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1558 }
1559 
1560 /**
1561  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1562  * @adapter: board private structure to initialize
1563  *
1564  * igbvf_sw_init initializes the Adapter private data structure.
1565  * Fields are initialized based on PCI device information and
1566  * OS network device settings (MTU size).
1567  **/
1568 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1569 {
1570 	struct net_device *netdev = adapter->netdev;
1571 	s32 rc;
1572 
1573 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1574 	adapter->rx_ps_hdr_size = 0;
1575 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1576 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1577 
1578 	adapter->tx_int_delay = 8;
1579 	adapter->tx_abs_int_delay = 32;
1580 	adapter->rx_int_delay = 0;
1581 	adapter->rx_abs_int_delay = 8;
1582 	adapter->requested_itr = 3;
1583 	adapter->current_itr = IGBVF_START_ITR;
1584 
1585 	/* Set various function pointers */
1586 	adapter->ei->init_ops(&adapter->hw);
1587 
1588 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1589 	if (rc)
1590 		return rc;
1591 
1592 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1593 	if (rc)
1594 		return rc;
1595 
1596 	igbvf_set_interrupt_capability(adapter);
1597 
1598 	if (igbvf_alloc_queues(adapter))
1599 		return -ENOMEM;
1600 
1601 	spin_lock_init(&adapter->tx_queue_lock);
1602 
1603 	/* Explicitly disable IRQ since the NIC can be in any state. */
1604 	igbvf_irq_disable(adapter);
1605 
1606 	spin_lock_init(&adapter->stats_lock);
1607 
1608 	set_bit(__IGBVF_DOWN, &adapter->state);
1609 	return 0;
1610 }
1611 
1612 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1613 {
1614 	struct e1000_hw *hw = &adapter->hw;
1615 
1616 	adapter->stats.last_gprc = er32(VFGPRC);
1617 	adapter->stats.last_gorc = er32(VFGORC);
1618 	adapter->stats.last_gptc = er32(VFGPTC);
1619 	adapter->stats.last_gotc = er32(VFGOTC);
1620 	adapter->stats.last_mprc = er32(VFMPRC);
1621 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1622 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1623 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1624 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1625 
1626 	adapter->stats.base_gprc = er32(VFGPRC);
1627 	adapter->stats.base_gorc = er32(VFGORC);
1628 	adapter->stats.base_gptc = er32(VFGPTC);
1629 	adapter->stats.base_gotc = er32(VFGOTC);
1630 	adapter->stats.base_mprc = er32(VFMPRC);
1631 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1632 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1633 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1634 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1635 }
1636 
1637 /**
1638  * igbvf_open - Called when a network interface is made active
1639  * @netdev: network interface device structure
1640  *
1641  * Returns 0 on success, negative value on failure
1642  *
1643  * The open entry point is called when a network interface is made
1644  * active by the system (IFF_UP).  At this point all resources needed
1645  * for transmit and receive operations are allocated, the interrupt
1646  * handler is registered with the OS, the watchdog timer is started,
1647  * and the stack is notified that the interface is ready.
1648  **/
1649 static int igbvf_open(struct net_device *netdev)
1650 {
1651 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1652 	struct e1000_hw *hw = &adapter->hw;
1653 	int err;
1654 
1655 	/* disallow open during test */
1656 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1657 		return -EBUSY;
1658 
1659 	/* allocate transmit descriptors */
1660 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1661 	if (err)
1662 		goto err_setup_tx;
1663 
1664 	/* allocate receive descriptors */
1665 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1666 	if (err)
1667 		goto err_setup_rx;
1668 
1669 	/* before we allocate an interrupt, we must be ready to handle it.
1670 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1671 	 * as soon as we call pci_request_irq, so we have to setup our
1672 	 * clean_rx handler before we do so.
1673 	 */
1674 	igbvf_configure(adapter);
1675 
1676 	err = igbvf_request_irq(adapter);
1677 	if (err)
1678 		goto err_req_irq;
1679 
1680 	/* From here on the code is the same as igbvf_up() */
1681 	clear_bit(__IGBVF_DOWN, &adapter->state);
1682 
1683 	napi_enable(&adapter->rx_ring->napi);
1684 
1685 	/* clear any pending interrupts */
1686 	er32(EICR);
1687 
1688 	igbvf_irq_enable(adapter);
1689 
1690 	/* start the watchdog */
1691 	hw->mac.get_link_status = 1;
1692 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1693 
1694 	return 0;
1695 
1696 err_req_irq:
1697 	igbvf_free_rx_resources(adapter->rx_ring);
1698 err_setup_rx:
1699 	igbvf_free_tx_resources(adapter->tx_ring);
1700 err_setup_tx:
1701 	igbvf_reset(adapter);
1702 
1703 	return err;
1704 }
1705 
1706 /**
1707  * igbvf_close - Disables a network interface
1708  * @netdev: network interface device structure
1709  *
1710  * Returns 0, this is not allowed to fail
1711  *
1712  * The close entry point is called when an interface is de-activated
1713  * by the OS.  The hardware is still under the drivers control, but
1714  * needs to be disabled.  A global MAC reset is issued to stop the
1715  * hardware, and all transmit and receive resources are freed.
1716  **/
1717 static int igbvf_close(struct net_device *netdev)
1718 {
1719 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1720 
1721 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1722 	igbvf_down(adapter);
1723 
1724 	igbvf_free_irq(adapter);
1725 
1726 	igbvf_free_tx_resources(adapter->tx_ring);
1727 	igbvf_free_rx_resources(adapter->rx_ring);
1728 
1729 	return 0;
1730 }
1731 
1732 /**
1733  * igbvf_set_mac - Change the Ethernet Address of the NIC
1734  * @netdev: network interface device structure
1735  * @p: pointer to an address structure
1736  *
1737  * Returns 0 on success, negative on failure
1738  **/
1739 static int igbvf_set_mac(struct net_device *netdev, void *p)
1740 {
1741 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1742 	struct e1000_hw *hw = &adapter->hw;
1743 	struct sockaddr *addr = p;
1744 
1745 	if (!is_valid_ether_addr(addr->sa_data))
1746 		return -EADDRNOTAVAIL;
1747 
1748 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1749 
1750 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1751 
1752 	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1753 		return -EADDRNOTAVAIL;
1754 
1755 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1756 
1757 	return 0;
1758 }
1759 
1760 #define UPDATE_VF_COUNTER(reg, name) \
1761 { \
1762 	u32 current_counter = er32(reg); \
1763 	if (current_counter < adapter->stats.last_##name) \
1764 		adapter->stats.name += 0x100000000LL; \
1765 	adapter->stats.last_##name = current_counter; \
1766 	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1767 	adapter->stats.name |= current_counter; \
1768 }
1769 
1770 /**
1771  * igbvf_update_stats - Update the board statistics counters
1772  * @adapter: board private structure
1773 **/
1774 void igbvf_update_stats(struct igbvf_adapter *adapter)
1775 {
1776 	struct e1000_hw *hw = &adapter->hw;
1777 	struct pci_dev *pdev = adapter->pdev;
1778 
1779 	/* Prevent stats update while adapter is being reset, link is down
1780 	 * or if the pci connection is down.
1781 	 */
1782 	if (adapter->link_speed == 0)
1783 		return;
1784 
1785 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1786 		return;
1787 
1788 	if (pci_channel_offline(pdev))
1789 		return;
1790 
1791 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1792 	UPDATE_VF_COUNTER(VFGORC, gorc);
1793 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1794 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1795 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1796 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1797 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1798 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1799 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1800 
1801 	/* Fill out the OS statistics structure */
1802 	adapter->net_stats.multicast = adapter->stats.mprc;
1803 }
1804 
1805 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1806 {
1807 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1808 		 adapter->link_speed,
1809 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1810 }
1811 
1812 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1813 {
1814 	struct e1000_hw *hw = &adapter->hw;
1815 	s32 ret_val = E1000_SUCCESS;
1816 	bool link_active;
1817 
1818 	/* If interface is down, stay link down */
1819 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1820 		return false;
1821 
1822 	ret_val = hw->mac.ops.check_for_link(hw);
1823 	link_active = !hw->mac.get_link_status;
1824 
1825 	/* if check for link returns error we will need to reset */
1826 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1827 		schedule_work(&adapter->reset_task);
1828 
1829 	return link_active;
1830 }
1831 
1832 /**
1833  * igbvf_watchdog - Timer Call-back
1834  * @data: pointer to adapter cast into an unsigned long
1835  **/
1836 static void igbvf_watchdog(unsigned long data)
1837 {
1838 	struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1839 
1840 	/* Do the rest outside of interrupt context */
1841 	schedule_work(&adapter->watchdog_task);
1842 }
1843 
1844 static void igbvf_watchdog_task(struct work_struct *work)
1845 {
1846 	struct igbvf_adapter *adapter = container_of(work,
1847 						     struct igbvf_adapter,
1848 						     watchdog_task);
1849 	struct net_device *netdev = adapter->netdev;
1850 	struct e1000_mac_info *mac = &adapter->hw.mac;
1851 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1852 	struct e1000_hw *hw = &adapter->hw;
1853 	u32 link;
1854 	int tx_pending = 0;
1855 
1856 	link = igbvf_has_link(adapter);
1857 
1858 	if (link) {
1859 		if (!netif_carrier_ok(netdev)) {
1860 			mac->ops.get_link_up_info(&adapter->hw,
1861 						  &adapter->link_speed,
1862 						  &adapter->link_duplex);
1863 			igbvf_print_link_info(adapter);
1864 
1865 			netif_carrier_on(netdev);
1866 			netif_wake_queue(netdev);
1867 		}
1868 	} else {
1869 		if (netif_carrier_ok(netdev)) {
1870 			adapter->link_speed = 0;
1871 			adapter->link_duplex = 0;
1872 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1873 			netif_carrier_off(netdev);
1874 			netif_stop_queue(netdev);
1875 		}
1876 	}
1877 
1878 	if (netif_carrier_ok(netdev)) {
1879 		igbvf_update_stats(adapter);
1880 	} else {
1881 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1882 			      tx_ring->count);
1883 		if (tx_pending) {
1884 			/* We've lost link, so the controller stops DMA,
1885 			 * but we've got queued Tx work that's never going
1886 			 * to get done, so reset controller to flush Tx.
1887 			 * (Do the reset outside of interrupt context).
1888 			 */
1889 			adapter->tx_timeout_count++;
1890 			schedule_work(&adapter->reset_task);
1891 		}
1892 	}
1893 
1894 	/* Cause software interrupt to ensure Rx ring is cleaned */
1895 	ew32(EICS, adapter->rx_ring->eims_value);
1896 
1897 	/* Reset the timer */
1898 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1899 		mod_timer(&adapter->watchdog_timer,
1900 			  round_jiffies(jiffies + (2 * HZ)));
1901 }
1902 
1903 #define IGBVF_TX_FLAGS_CSUM		0x00000001
1904 #define IGBVF_TX_FLAGS_VLAN		0x00000002
1905 #define IGBVF_TX_FLAGS_TSO		0x00000004
1906 #define IGBVF_TX_FLAGS_IPV4		0x00000008
1907 #define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1908 #define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1909 
1910 static int igbvf_tso(struct igbvf_adapter *adapter,
1911 		     struct igbvf_ring *tx_ring,
1912 		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1913 		     __be16 protocol)
1914 {
1915 	struct e1000_adv_tx_context_desc *context_desc;
1916 	struct igbvf_buffer *buffer_info;
1917 	u32 info = 0, tu_cmd = 0;
1918 	u32 mss_l4len_idx, l4len;
1919 	unsigned int i;
1920 	int err;
1921 
1922 	*hdr_len = 0;
1923 
1924 	err = skb_cow_head(skb, 0);
1925 	if (err < 0) {
1926 		dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1927 		return err;
1928 	}
1929 
1930 	l4len = tcp_hdrlen(skb);
1931 	*hdr_len += l4len;
1932 
1933 	if (protocol == htons(ETH_P_IP)) {
1934 		struct iphdr *iph = ip_hdr(skb);
1935 
1936 		iph->tot_len = 0;
1937 		iph->check = 0;
1938 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1939 							 iph->daddr, 0,
1940 							 IPPROTO_TCP,
1941 							 0);
1942 	} else if (skb_is_gso_v6(skb)) {
1943 		ipv6_hdr(skb)->payload_len = 0;
1944 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1945 						       &ipv6_hdr(skb)->daddr,
1946 						       0, IPPROTO_TCP, 0);
1947 	}
1948 
1949 	i = tx_ring->next_to_use;
1950 
1951 	buffer_info = &tx_ring->buffer_info[i];
1952 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1953 	/* VLAN MACLEN IPLEN */
1954 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1955 		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1956 	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1957 	*hdr_len += skb_network_offset(skb);
1958 	info |= (skb_transport_header(skb) - skb_network_header(skb));
1959 	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1960 	context_desc->vlan_macip_lens = cpu_to_le32(info);
1961 
1962 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1963 	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1964 
1965 	if (protocol == htons(ETH_P_IP))
1966 		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1967 	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968 
1969 	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1970 
1971 	/* MSS L4LEN IDX */
1972 	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1973 	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1974 
1975 	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1976 	context_desc->seqnum_seed = 0;
1977 
1978 	buffer_info->time_stamp = jiffies;
1979 	buffer_info->dma = 0;
1980 	i++;
1981 	if (i == tx_ring->count)
1982 		i = 0;
1983 
1984 	tx_ring->next_to_use = i;
1985 
1986 	return true;
1987 }
1988 
1989 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1990 				 struct igbvf_ring *tx_ring,
1991 				 struct sk_buff *skb, u32 tx_flags,
1992 				 __be16 protocol)
1993 {
1994 	struct e1000_adv_tx_context_desc *context_desc;
1995 	unsigned int i;
1996 	struct igbvf_buffer *buffer_info;
1997 	u32 info = 0, tu_cmd = 0;
1998 
1999 	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2000 	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2001 		i = tx_ring->next_to_use;
2002 		buffer_info = &tx_ring->buffer_info[i];
2003 		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2004 
2005 		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2006 			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2007 
2008 		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2009 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2010 			info |= (skb_transport_header(skb) -
2011 				 skb_network_header(skb));
2012 
2013 		context_desc->vlan_macip_lens = cpu_to_le32(info);
2014 
2015 		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2016 
2017 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2018 			switch (protocol) {
2019 			case htons(ETH_P_IP):
2020 				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2021 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2022 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023 				break;
2024 			case htons(ETH_P_IPV6):
2025 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2026 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2027 				break;
2028 			default:
2029 				break;
2030 			}
2031 		}
2032 
2033 		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2034 		context_desc->seqnum_seed = 0;
2035 		context_desc->mss_l4len_idx = 0;
2036 
2037 		buffer_info->time_stamp = jiffies;
2038 		buffer_info->dma = 0;
2039 		i++;
2040 		if (i == tx_ring->count)
2041 			i = 0;
2042 		tx_ring->next_to_use = i;
2043 
2044 		return true;
2045 	}
2046 
2047 	return false;
2048 }
2049 
2050 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2051 {
2052 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2053 
2054 	/* there is enough descriptors then we don't need to worry  */
2055 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2056 		return 0;
2057 
2058 	netif_stop_queue(netdev);
2059 
2060 	/* Herbert's original patch had:
2061 	 *  smp_mb__after_netif_stop_queue();
2062 	 * but since that doesn't exist yet, just open code it.
2063 	 */
2064 	smp_mb();
2065 
2066 	/* We need to check again just in case room has been made available */
2067 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2068 		return -EBUSY;
2069 
2070 	netif_wake_queue(netdev);
2071 
2072 	++adapter->restart_queue;
2073 	return 0;
2074 }
2075 
2076 #define IGBVF_MAX_TXD_PWR	16
2077 #define IGBVF_MAX_DATA_PER_TXD	(1 << IGBVF_MAX_TXD_PWR)
2078 
2079 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2080 				   struct igbvf_ring *tx_ring,
2081 				   struct sk_buff *skb)
2082 {
2083 	struct igbvf_buffer *buffer_info;
2084 	struct pci_dev *pdev = adapter->pdev;
2085 	unsigned int len = skb_headlen(skb);
2086 	unsigned int count = 0, i;
2087 	unsigned int f;
2088 
2089 	i = tx_ring->next_to_use;
2090 
2091 	buffer_info = &tx_ring->buffer_info[i];
2092 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2093 	buffer_info->length = len;
2094 	/* set time_stamp *before* dma to help avoid a possible race */
2095 	buffer_info->time_stamp = jiffies;
2096 	buffer_info->mapped_as_page = false;
2097 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2098 					  DMA_TO_DEVICE);
2099 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2100 		goto dma_error;
2101 
2102 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2103 		const struct skb_frag_struct *frag;
2104 
2105 		count++;
2106 		i++;
2107 		if (i == tx_ring->count)
2108 			i = 0;
2109 
2110 		frag = &skb_shinfo(skb)->frags[f];
2111 		len = skb_frag_size(frag);
2112 
2113 		buffer_info = &tx_ring->buffer_info[i];
2114 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2115 		buffer_info->length = len;
2116 		buffer_info->time_stamp = jiffies;
2117 		buffer_info->mapped_as_page = true;
2118 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2119 						    DMA_TO_DEVICE);
2120 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2121 			goto dma_error;
2122 	}
2123 
2124 	tx_ring->buffer_info[i].skb = skb;
2125 
2126 	return ++count;
2127 
2128 dma_error:
2129 	dev_err(&pdev->dev, "TX DMA map failed\n");
2130 
2131 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2132 	buffer_info->dma = 0;
2133 	buffer_info->time_stamp = 0;
2134 	buffer_info->length = 0;
2135 	buffer_info->mapped_as_page = false;
2136 	if (count)
2137 		count--;
2138 
2139 	/* clear timestamp and dma mappings for remaining portion of packet */
2140 	while (count--) {
2141 		if (i == 0)
2142 			i += tx_ring->count;
2143 		i--;
2144 		buffer_info = &tx_ring->buffer_info[i];
2145 		igbvf_put_txbuf(adapter, buffer_info);
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2152 				      struct igbvf_ring *tx_ring,
2153 				      int tx_flags, int count,
2154 				      unsigned int first, u32 paylen,
2155 				      u8 hdr_len)
2156 {
2157 	union e1000_adv_tx_desc *tx_desc = NULL;
2158 	struct igbvf_buffer *buffer_info;
2159 	u32 olinfo_status = 0, cmd_type_len;
2160 	unsigned int i;
2161 
2162 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2163 			E1000_ADVTXD_DCMD_DEXT);
2164 
2165 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2166 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2167 
2168 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2169 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2170 
2171 		/* insert tcp checksum */
2172 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173 
2174 		/* insert ip checksum */
2175 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2176 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2177 
2178 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2179 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2180 	}
2181 
2182 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2183 
2184 	i = tx_ring->next_to_use;
2185 	while (count--) {
2186 		buffer_info = &tx_ring->buffer_info[i];
2187 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2188 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2189 		tx_desc->read.cmd_type_len =
2190 			 cpu_to_le32(cmd_type_len | buffer_info->length);
2191 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2192 		i++;
2193 		if (i == tx_ring->count)
2194 			i = 0;
2195 	}
2196 
2197 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2198 	/* Force memory writes to complete before letting h/w
2199 	 * know there are new descriptors to fetch.  (Only
2200 	 * applicable for weak-ordered memory model archs,
2201 	 * such as IA-64).
2202 	 */
2203 	wmb();
2204 
2205 	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2206 	tx_ring->next_to_use = i;
2207 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2208 	/* we need this if more than one processor can write to our tail
2209 	 * at a time, it synchronizes IO on IA64/Altix systems
2210 	 */
2211 	mmiowb();
2212 }
2213 
2214 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2215 					     struct net_device *netdev,
2216 					     struct igbvf_ring *tx_ring)
2217 {
2218 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2219 	unsigned int first, tx_flags = 0;
2220 	u8 hdr_len = 0;
2221 	int count = 0;
2222 	int tso = 0;
2223 	__be16 protocol = vlan_get_protocol(skb);
2224 
2225 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2226 		dev_kfree_skb_any(skb);
2227 		return NETDEV_TX_OK;
2228 	}
2229 
2230 	if (skb->len <= 0) {
2231 		dev_kfree_skb_any(skb);
2232 		return NETDEV_TX_OK;
2233 	}
2234 
2235 	/* need: count + 4 desc gap to keep tail from touching
2236 	 *       + 2 desc gap to keep tail from touching head,
2237 	 *       + 1 desc for skb->data,
2238 	 *       + 1 desc for context descriptor,
2239 	 * head, otherwise try next time
2240 	 */
2241 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2242 		/* this is a hard error */
2243 		return NETDEV_TX_BUSY;
2244 	}
2245 
2246 	if (skb_vlan_tag_present(skb)) {
2247 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2248 		tx_flags |= (skb_vlan_tag_get(skb) <<
2249 			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2250 	}
2251 
2252 	if (protocol == htons(ETH_P_IP))
2253 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2254 
2255 	first = tx_ring->next_to_use;
2256 
2257 	tso = skb_is_gso(skb) ?
2258 		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2259 	if (unlikely(tso < 0)) {
2260 		dev_kfree_skb_any(skb);
2261 		return NETDEV_TX_OK;
2262 	}
2263 
2264 	if (tso)
2265 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2266 	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) &&
2267 		 (skb->ip_summed == CHECKSUM_PARTIAL))
2268 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2269 
2270 	/* count reflects descriptors mapped, if 0 then mapping error
2271 	 * has occurred and we need to rewind the descriptor queue
2272 	 */
2273 	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2274 
2275 	if (count) {
2276 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2277 				   first, skb->len, hdr_len);
2278 		/* Make sure there is space in the ring for the next send. */
2279 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2280 	} else {
2281 		dev_kfree_skb_any(skb);
2282 		tx_ring->buffer_info[first].time_stamp = 0;
2283 		tx_ring->next_to_use = first;
2284 	}
2285 
2286 	return NETDEV_TX_OK;
2287 }
2288 
2289 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2290 				    struct net_device *netdev)
2291 {
2292 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2293 	struct igbvf_ring *tx_ring;
2294 
2295 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2296 		dev_kfree_skb_any(skb);
2297 		return NETDEV_TX_OK;
2298 	}
2299 
2300 	tx_ring = &adapter->tx_ring[0];
2301 
2302 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2303 }
2304 
2305 /**
2306  * igbvf_tx_timeout - Respond to a Tx Hang
2307  * @netdev: network interface device structure
2308  **/
2309 static void igbvf_tx_timeout(struct net_device *netdev)
2310 {
2311 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2312 
2313 	/* Do the reset outside of interrupt context */
2314 	adapter->tx_timeout_count++;
2315 	schedule_work(&adapter->reset_task);
2316 }
2317 
2318 static void igbvf_reset_task(struct work_struct *work)
2319 {
2320 	struct igbvf_adapter *adapter;
2321 
2322 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2323 
2324 	igbvf_reinit_locked(adapter);
2325 }
2326 
2327 /**
2328  * igbvf_get_stats - Get System Network Statistics
2329  * @netdev: network interface device structure
2330  *
2331  * Returns the address of the device statistics structure.
2332  * The statistics are actually updated from the timer callback.
2333  **/
2334 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2335 {
2336 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2337 
2338 	/* only return the current stats */
2339 	return &adapter->net_stats;
2340 }
2341 
2342 /**
2343  * igbvf_change_mtu - Change the Maximum Transfer Unit
2344  * @netdev: network interface device structure
2345  * @new_mtu: new value for maximum frame size
2346  *
2347  * Returns 0 on success, negative on failure
2348  **/
2349 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2350 {
2351 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2352 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2353 
2354 	if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2355 	    max_frame > MAX_JUMBO_FRAME_SIZE)
2356 		return -EINVAL;
2357 
2358 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2359 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2360 		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2361 		return -EINVAL;
2362 	}
2363 
2364 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2365 		usleep_range(1000, 2000);
2366 	/* igbvf_down has a dependency on max_frame_size */
2367 	adapter->max_frame_size = max_frame;
2368 	if (netif_running(netdev))
2369 		igbvf_down(adapter);
2370 
2371 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2372 	 * means we reserve 2 more, this pushes us to allocate from the next
2373 	 * larger slab size.
2374 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2375 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2376 	 * fragmented skbs
2377 	 */
2378 
2379 	if (max_frame <= 1024)
2380 		adapter->rx_buffer_len = 1024;
2381 	else if (max_frame <= 2048)
2382 		adapter->rx_buffer_len = 2048;
2383 	else
2384 #if (PAGE_SIZE / 2) > 16384
2385 		adapter->rx_buffer_len = 16384;
2386 #else
2387 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2388 #endif
2389 
2390 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2391 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2392 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2393 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2394 					 ETH_FCS_LEN;
2395 
2396 	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2397 		 netdev->mtu, new_mtu);
2398 	netdev->mtu = new_mtu;
2399 
2400 	if (netif_running(netdev))
2401 		igbvf_up(adapter);
2402 	else
2403 		igbvf_reset(adapter);
2404 
2405 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2406 
2407 	return 0;
2408 }
2409 
2410 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2411 {
2412 	switch (cmd) {
2413 	default:
2414 		return -EOPNOTSUPP;
2415 	}
2416 }
2417 
2418 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2419 {
2420 	struct net_device *netdev = pci_get_drvdata(pdev);
2421 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2422 #ifdef CONFIG_PM
2423 	int retval = 0;
2424 #endif
2425 
2426 	netif_device_detach(netdev);
2427 
2428 	if (netif_running(netdev)) {
2429 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2430 		igbvf_down(adapter);
2431 		igbvf_free_irq(adapter);
2432 	}
2433 
2434 #ifdef CONFIG_PM
2435 	retval = pci_save_state(pdev);
2436 	if (retval)
2437 		return retval;
2438 #endif
2439 
2440 	pci_disable_device(pdev);
2441 
2442 	return 0;
2443 }
2444 
2445 #ifdef CONFIG_PM
2446 static int igbvf_resume(struct pci_dev *pdev)
2447 {
2448 	struct net_device *netdev = pci_get_drvdata(pdev);
2449 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2450 	u32 err;
2451 
2452 	pci_restore_state(pdev);
2453 	err = pci_enable_device_mem(pdev);
2454 	if (err) {
2455 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2456 		return err;
2457 	}
2458 
2459 	pci_set_master(pdev);
2460 
2461 	if (netif_running(netdev)) {
2462 		err = igbvf_request_irq(adapter);
2463 		if (err)
2464 			return err;
2465 	}
2466 
2467 	igbvf_reset(adapter);
2468 
2469 	if (netif_running(netdev))
2470 		igbvf_up(adapter);
2471 
2472 	netif_device_attach(netdev);
2473 
2474 	return 0;
2475 }
2476 #endif
2477 
2478 static void igbvf_shutdown(struct pci_dev *pdev)
2479 {
2480 	igbvf_suspend(pdev, PMSG_SUSPEND);
2481 }
2482 
2483 #ifdef CONFIG_NET_POLL_CONTROLLER
2484 /* Polling 'interrupt' - used by things like netconsole to send skbs
2485  * without having to re-enable interrupts. It's not called while
2486  * the interrupt routine is executing.
2487  */
2488 static void igbvf_netpoll(struct net_device *netdev)
2489 {
2490 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2491 
2492 	disable_irq(adapter->pdev->irq);
2493 
2494 	igbvf_clean_tx_irq(adapter->tx_ring);
2495 
2496 	enable_irq(adapter->pdev->irq);
2497 }
2498 #endif
2499 
2500 /**
2501  * igbvf_io_error_detected - called when PCI error is detected
2502  * @pdev: Pointer to PCI device
2503  * @state: The current pci connection state
2504  *
2505  * This function is called after a PCI bus error affecting
2506  * this device has been detected.
2507  */
2508 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2509 						pci_channel_state_t state)
2510 {
2511 	struct net_device *netdev = pci_get_drvdata(pdev);
2512 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2513 
2514 	netif_device_detach(netdev);
2515 
2516 	if (state == pci_channel_io_perm_failure)
2517 		return PCI_ERS_RESULT_DISCONNECT;
2518 
2519 	if (netif_running(netdev))
2520 		igbvf_down(adapter);
2521 	pci_disable_device(pdev);
2522 
2523 	/* Request a slot slot reset. */
2524 	return PCI_ERS_RESULT_NEED_RESET;
2525 }
2526 
2527 /**
2528  * igbvf_io_slot_reset - called after the pci bus has been reset.
2529  * @pdev: Pointer to PCI device
2530  *
2531  * Restart the card from scratch, as if from a cold-boot. Implementation
2532  * resembles the first-half of the igbvf_resume routine.
2533  */
2534 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2535 {
2536 	struct net_device *netdev = pci_get_drvdata(pdev);
2537 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2538 
2539 	if (pci_enable_device_mem(pdev)) {
2540 		dev_err(&pdev->dev,
2541 			"Cannot re-enable PCI device after reset.\n");
2542 		return PCI_ERS_RESULT_DISCONNECT;
2543 	}
2544 	pci_set_master(pdev);
2545 
2546 	igbvf_reset(adapter);
2547 
2548 	return PCI_ERS_RESULT_RECOVERED;
2549 }
2550 
2551 /**
2552  * igbvf_io_resume - called when traffic can start flowing again.
2553  * @pdev: Pointer to PCI device
2554  *
2555  * This callback is called when the error recovery driver tells us that
2556  * its OK to resume normal operation. Implementation resembles the
2557  * second-half of the igbvf_resume routine.
2558  */
2559 static void igbvf_io_resume(struct pci_dev *pdev)
2560 {
2561 	struct net_device *netdev = pci_get_drvdata(pdev);
2562 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2563 
2564 	if (netif_running(netdev)) {
2565 		if (igbvf_up(adapter)) {
2566 			dev_err(&pdev->dev,
2567 				"can't bring device back up after reset\n");
2568 			return;
2569 		}
2570 	}
2571 
2572 	netif_device_attach(netdev);
2573 }
2574 
2575 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2576 {
2577 	struct e1000_hw *hw = &adapter->hw;
2578 	struct net_device *netdev = adapter->netdev;
2579 	struct pci_dev *pdev = adapter->pdev;
2580 
2581 	if (hw->mac.type == e1000_vfadapt_i350)
2582 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2583 	else
2584 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2585 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2586 }
2587 
2588 static int igbvf_set_features(struct net_device *netdev,
2589 			      netdev_features_t features)
2590 {
2591 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2592 
2593 	if (features & NETIF_F_RXCSUM)
2594 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2595 	else
2596 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2597 
2598 	return 0;
2599 }
2600 
2601 static const struct net_device_ops igbvf_netdev_ops = {
2602 	.ndo_open		= igbvf_open,
2603 	.ndo_stop		= igbvf_close,
2604 	.ndo_start_xmit		= igbvf_xmit_frame,
2605 	.ndo_get_stats		= igbvf_get_stats,
2606 	.ndo_set_rx_mode	= igbvf_set_multi,
2607 	.ndo_set_mac_address	= igbvf_set_mac,
2608 	.ndo_change_mtu		= igbvf_change_mtu,
2609 	.ndo_do_ioctl		= igbvf_ioctl,
2610 	.ndo_tx_timeout		= igbvf_tx_timeout,
2611 	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2612 	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2613 #ifdef CONFIG_NET_POLL_CONTROLLER
2614 	.ndo_poll_controller	= igbvf_netpoll,
2615 #endif
2616 	.ndo_set_features	= igbvf_set_features,
2617 };
2618 
2619 /**
2620  * igbvf_probe - Device Initialization Routine
2621  * @pdev: PCI device information struct
2622  * @ent: entry in igbvf_pci_tbl
2623  *
2624  * Returns 0 on success, negative on failure
2625  *
2626  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2627  * The OS initialization, configuring of the adapter private structure,
2628  * and a hardware reset occur.
2629  **/
2630 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2631 {
2632 	struct net_device *netdev;
2633 	struct igbvf_adapter *adapter;
2634 	struct e1000_hw *hw;
2635 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2636 
2637 	static int cards_found;
2638 	int err, pci_using_dac;
2639 
2640 	err = pci_enable_device_mem(pdev);
2641 	if (err)
2642 		return err;
2643 
2644 	pci_using_dac = 0;
2645 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2646 	if (!err) {
2647 		pci_using_dac = 1;
2648 	} else {
2649 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2650 		if (err) {
2651 			dev_err(&pdev->dev,
2652 				"No usable DMA configuration, aborting\n");
2653 			goto err_dma;
2654 		}
2655 	}
2656 
2657 	err = pci_request_regions(pdev, igbvf_driver_name);
2658 	if (err)
2659 		goto err_pci_reg;
2660 
2661 	pci_set_master(pdev);
2662 
2663 	err = -ENOMEM;
2664 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2665 	if (!netdev)
2666 		goto err_alloc_etherdev;
2667 
2668 	SET_NETDEV_DEV(netdev, &pdev->dev);
2669 
2670 	pci_set_drvdata(pdev, netdev);
2671 	adapter = netdev_priv(netdev);
2672 	hw = &adapter->hw;
2673 	adapter->netdev = netdev;
2674 	adapter->pdev = pdev;
2675 	adapter->ei = ei;
2676 	adapter->pba = ei->pba;
2677 	adapter->flags = ei->flags;
2678 	adapter->hw.back = adapter;
2679 	adapter->hw.mac.type = ei->mac;
2680 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2681 
2682 	/* PCI config space info */
2683 
2684 	hw->vendor_id = pdev->vendor;
2685 	hw->device_id = pdev->device;
2686 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2687 	hw->subsystem_device_id = pdev->subsystem_device;
2688 	hw->revision_id = pdev->revision;
2689 
2690 	err = -EIO;
2691 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2692 				      pci_resource_len(pdev, 0));
2693 
2694 	if (!adapter->hw.hw_addr)
2695 		goto err_ioremap;
2696 
2697 	if (ei->get_variants) {
2698 		err = ei->get_variants(adapter);
2699 		if (err)
2700 			goto err_get_variants;
2701 	}
2702 
2703 	/* setup adapter struct */
2704 	err = igbvf_sw_init(adapter);
2705 	if (err)
2706 		goto err_sw_init;
2707 
2708 	/* construct the net_device struct */
2709 	netdev->netdev_ops = &igbvf_netdev_ops;
2710 
2711 	igbvf_set_ethtool_ops(netdev);
2712 	netdev->watchdog_timeo = 5 * HZ;
2713 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2714 
2715 	adapter->bd_number = cards_found++;
2716 
2717 	netdev->hw_features = NETIF_F_SG |
2718 			   NETIF_F_IP_CSUM |
2719 			   NETIF_F_IPV6_CSUM |
2720 			   NETIF_F_TSO |
2721 			   NETIF_F_TSO6 |
2722 			   NETIF_F_RXCSUM;
2723 
2724 	netdev->features = netdev->hw_features |
2725 			   NETIF_F_HW_VLAN_CTAG_TX |
2726 			   NETIF_F_HW_VLAN_CTAG_RX |
2727 			   NETIF_F_HW_VLAN_CTAG_FILTER;
2728 
2729 	if (pci_using_dac)
2730 		netdev->features |= NETIF_F_HIGHDMA;
2731 
2732 	netdev->vlan_features |= NETIF_F_TSO;
2733 	netdev->vlan_features |= NETIF_F_TSO6;
2734 	netdev->vlan_features |= NETIF_F_IP_CSUM;
2735 	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2736 	netdev->vlan_features |= NETIF_F_SG;
2737 
2738 	/*reset the controller to put the device in a known good state */
2739 	err = hw->mac.ops.reset_hw(hw);
2740 	if (err) {
2741 		dev_info(&pdev->dev,
2742 			 "PF still in reset state. Is the PF interface up?\n");
2743 	} else {
2744 		err = hw->mac.ops.read_mac_addr(hw);
2745 		if (err)
2746 			dev_info(&pdev->dev, "Error reading MAC address.\n");
2747 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2748 			dev_info(&pdev->dev,
2749 				 "MAC address not assigned by administrator.\n");
2750 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2751 		       netdev->addr_len);
2752 	}
2753 
2754 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2755 		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2756 		eth_hw_addr_random(netdev);
2757 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2758 		       netdev->addr_len);
2759 	}
2760 
2761 	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2762 		    (unsigned long)adapter);
2763 
2764 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2765 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2766 
2767 	/* ring size defaults */
2768 	adapter->rx_ring->count = 1024;
2769 	adapter->tx_ring->count = 1024;
2770 
2771 	/* reset the hardware with the new settings */
2772 	igbvf_reset(adapter);
2773 
2774 	/* set hardware-specific flags */
2775 	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2776 		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2777 
2778 	strcpy(netdev->name, "eth%d");
2779 	err = register_netdev(netdev);
2780 	if (err)
2781 		goto err_hw_init;
2782 
2783 	/* tell the stack to leave us alone until igbvf_open() is called */
2784 	netif_carrier_off(netdev);
2785 	netif_stop_queue(netdev);
2786 
2787 	igbvf_print_device_info(adapter);
2788 
2789 	igbvf_initialize_last_counter_stats(adapter);
2790 
2791 	return 0;
2792 
2793 err_hw_init:
2794 	kfree(adapter->tx_ring);
2795 	kfree(adapter->rx_ring);
2796 err_sw_init:
2797 	igbvf_reset_interrupt_capability(adapter);
2798 err_get_variants:
2799 	iounmap(adapter->hw.hw_addr);
2800 err_ioremap:
2801 	free_netdev(netdev);
2802 err_alloc_etherdev:
2803 	pci_release_regions(pdev);
2804 err_pci_reg:
2805 err_dma:
2806 	pci_disable_device(pdev);
2807 	return err;
2808 }
2809 
2810 /**
2811  * igbvf_remove - Device Removal Routine
2812  * @pdev: PCI device information struct
2813  *
2814  * igbvf_remove is called by the PCI subsystem to alert the driver
2815  * that it should release a PCI device.  The could be caused by a
2816  * Hot-Plug event, or because the driver is going to be removed from
2817  * memory.
2818  **/
2819 static void igbvf_remove(struct pci_dev *pdev)
2820 {
2821 	struct net_device *netdev = pci_get_drvdata(pdev);
2822 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2823 	struct e1000_hw *hw = &adapter->hw;
2824 
2825 	/* The watchdog timer may be rescheduled, so explicitly
2826 	 * disable it from being rescheduled.
2827 	 */
2828 	set_bit(__IGBVF_DOWN, &adapter->state);
2829 	del_timer_sync(&adapter->watchdog_timer);
2830 
2831 	cancel_work_sync(&adapter->reset_task);
2832 	cancel_work_sync(&adapter->watchdog_task);
2833 
2834 	unregister_netdev(netdev);
2835 
2836 	igbvf_reset_interrupt_capability(adapter);
2837 
2838 	/* it is important to delete the NAPI struct prior to freeing the
2839 	 * Rx ring so that you do not end up with null pointer refs
2840 	 */
2841 	netif_napi_del(&adapter->rx_ring->napi);
2842 	kfree(adapter->tx_ring);
2843 	kfree(adapter->rx_ring);
2844 
2845 	iounmap(hw->hw_addr);
2846 	if (hw->flash_address)
2847 		iounmap(hw->flash_address);
2848 	pci_release_regions(pdev);
2849 
2850 	free_netdev(netdev);
2851 
2852 	pci_disable_device(pdev);
2853 }
2854 
2855 /* PCI Error Recovery (ERS) */
2856 static const struct pci_error_handlers igbvf_err_handler = {
2857 	.error_detected = igbvf_io_error_detected,
2858 	.slot_reset = igbvf_io_slot_reset,
2859 	.resume = igbvf_io_resume,
2860 };
2861 
2862 static const struct pci_device_id igbvf_pci_tbl[] = {
2863 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2864 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2865 	{ } /* terminate list */
2866 };
2867 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2868 
2869 /* PCI Device API Driver */
2870 static struct pci_driver igbvf_driver = {
2871 	.name		= igbvf_driver_name,
2872 	.id_table	= igbvf_pci_tbl,
2873 	.probe		= igbvf_probe,
2874 	.remove		= igbvf_remove,
2875 #ifdef CONFIG_PM
2876 	/* Power Management Hooks */
2877 	.suspend	= igbvf_suspend,
2878 	.resume		= igbvf_resume,
2879 #endif
2880 	.shutdown	= igbvf_shutdown,
2881 	.err_handler	= &igbvf_err_handler
2882 };
2883 
2884 /**
2885  * igbvf_init_module - Driver Registration Routine
2886  *
2887  * igbvf_init_module is the first routine called when the driver is
2888  * loaded. All it does is register with the PCI subsystem.
2889  **/
2890 static int __init igbvf_init_module(void)
2891 {
2892 	int ret;
2893 
2894 	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2895 	pr_info("%s\n", igbvf_copyright);
2896 
2897 	ret = pci_register_driver(&igbvf_driver);
2898 
2899 	return ret;
2900 }
2901 module_init(igbvf_init_module);
2902 
2903 /**
2904  * igbvf_exit_module - Driver Exit Cleanup Routine
2905  *
2906  * igbvf_exit_module is called just before the driver is removed
2907  * from memory.
2908  **/
2909 static void __exit igbvf_exit_module(void)
2910 {
2911 	pci_unregister_driver(&igbvf_driver);
2912 }
2913 module_exit(igbvf_exit_module);
2914 
2915 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2916 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2917 MODULE_LICENSE("GPL");
2918 MODULE_VERSION(DRV_VERSION);
2919 
2920 /* netdev.c */
2921