1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2009 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/pci.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/delay.h> 13 #include <linux/netdevice.h> 14 #include <linux/tcp.h> 15 #include <linux/ipv6.h> 16 #include <linux/slab.h> 17 #include <net/checksum.h> 18 #include <net/ip6_checksum.h> 19 #include <linux/mii.h> 20 #include <linux/ethtool.h> 21 #include <linux/if_vlan.h> 22 #include <linux/prefetch.h> 23 #include <linux/sctp.h> 24 25 #include "igbvf.h" 26 27 char igbvf_driver_name[] = "igbvf"; 28 static const char igbvf_driver_string[] = 29 "Intel(R) Gigabit Virtual Function Network Driver"; 30 static const char igbvf_copyright[] = 31 "Copyright (c) 2009 - 2012 Intel Corporation."; 32 33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 34 static int debug = -1; 35 module_param(debug, int, 0); 36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 37 38 static int igbvf_poll(struct napi_struct *napi, int budget); 39 static void igbvf_reset(struct igbvf_adapter *); 40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 42 43 static struct igbvf_info igbvf_vf_info = { 44 .mac = e1000_vfadapt, 45 .flags = 0, 46 .pba = 10, 47 .init_ops = e1000_init_function_pointers_vf, 48 }; 49 50 static struct igbvf_info igbvf_i350_vf_info = { 51 .mac = e1000_vfadapt_i350, 52 .flags = 0, 53 .pba = 10, 54 .init_ops = e1000_init_function_pointers_vf, 55 }; 56 57 static const struct igbvf_info *igbvf_info_tbl[] = { 58 [board_vf] = &igbvf_vf_info, 59 [board_i350_vf] = &igbvf_i350_vf_info, 60 }; 61 62 /** 63 * igbvf_desc_unused - calculate if we have unused descriptors 64 * @rx_ring: address of receive ring structure 65 **/ 66 static int igbvf_desc_unused(struct igbvf_ring *ring) 67 { 68 if (ring->next_to_clean > ring->next_to_use) 69 return ring->next_to_clean - ring->next_to_use - 1; 70 71 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 72 } 73 74 /** 75 * igbvf_receive_skb - helper function to handle Rx indications 76 * @adapter: board private structure 77 * @status: descriptor status field as written by hardware 78 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 79 * @skb: pointer to sk_buff to be indicated to stack 80 **/ 81 static void igbvf_receive_skb(struct igbvf_adapter *adapter, 82 struct net_device *netdev, 83 struct sk_buff *skb, 84 u32 status, u16 vlan) 85 { 86 u16 vid; 87 88 if (status & E1000_RXD_STAT_VP) { 89 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) && 90 (status & E1000_RXDEXT_STATERR_LB)) 91 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 92 else 93 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 94 if (test_bit(vid, adapter->active_vlans)) 95 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 96 } 97 98 napi_gro_receive(&adapter->rx_ring->napi, skb); 99 } 100 101 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 102 u32 status_err, struct sk_buff *skb) 103 { 104 skb_checksum_none_assert(skb); 105 106 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 107 if ((status_err & E1000_RXD_STAT_IXSM) || 108 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 109 return; 110 111 /* TCP/UDP checksum error bit is set */ 112 if (status_err & 113 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 114 /* let the stack verify checksum errors */ 115 adapter->hw_csum_err++; 116 return; 117 } 118 119 /* It must be a TCP or UDP packet with a valid checksum */ 120 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 121 skb->ip_summed = CHECKSUM_UNNECESSARY; 122 123 adapter->hw_csum_good++; 124 } 125 126 /** 127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 128 * @rx_ring: address of ring structure to repopulate 129 * @cleaned_count: number of buffers to repopulate 130 **/ 131 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 132 int cleaned_count) 133 { 134 struct igbvf_adapter *adapter = rx_ring->adapter; 135 struct net_device *netdev = adapter->netdev; 136 struct pci_dev *pdev = adapter->pdev; 137 union e1000_adv_rx_desc *rx_desc; 138 struct igbvf_buffer *buffer_info; 139 struct sk_buff *skb; 140 unsigned int i; 141 int bufsz; 142 143 i = rx_ring->next_to_use; 144 buffer_info = &rx_ring->buffer_info[i]; 145 146 if (adapter->rx_ps_hdr_size) 147 bufsz = adapter->rx_ps_hdr_size; 148 else 149 bufsz = adapter->rx_buffer_len; 150 151 while (cleaned_count--) { 152 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 153 154 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 155 if (!buffer_info->page) { 156 buffer_info->page = alloc_page(GFP_ATOMIC); 157 if (!buffer_info->page) { 158 adapter->alloc_rx_buff_failed++; 159 goto no_buffers; 160 } 161 buffer_info->page_offset = 0; 162 } else { 163 buffer_info->page_offset ^= PAGE_SIZE / 2; 164 } 165 buffer_info->page_dma = 166 dma_map_page(&pdev->dev, buffer_info->page, 167 buffer_info->page_offset, 168 PAGE_SIZE / 2, 169 DMA_FROM_DEVICE); 170 if (dma_mapping_error(&pdev->dev, 171 buffer_info->page_dma)) { 172 __free_page(buffer_info->page); 173 buffer_info->page = NULL; 174 dev_err(&pdev->dev, "RX DMA map failed\n"); 175 break; 176 } 177 } 178 179 if (!buffer_info->skb) { 180 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 181 if (!skb) { 182 adapter->alloc_rx_buff_failed++; 183 goto no_buffers; 184 } 185 186 buffer_info->skb = skb; 187 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 188 bufsz, 189 DMA_FROM_DEVICE); 190 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 191 dev_kfree_skb(buffer_info->skb); 192 buffer_info->skb = NULL; 193 dev_err(&pdev->dev, "RX DMA map failed\n"); 194 goto no_buffers; 195 } 196 } 197 /* Refresh the desc even if buffer_addrs didn't change because 198 * each write-back erases this info. 199 */ 200 if (adapter->rx_ps_hdr_size) { 201 rx_desc->read.pkt_addr = 202 cpu_to_le64(buffer_info->page_dma); 203 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 204 } else { 205 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); 206 rx_desc->read.hdr_addr = 0; 207 } 208 209 i++; 210 if (i == rx_ring->count) 211 i = 0; 212 buffer_info = &rx_ring->buffer_info[i]; 213 } 214 215 no_buffers: 216 if (rx_ring->next_to_use != i) { 217 rx_ring->next_to_use = i; 218 if (i == 0) 219 i = (rx_ring->count - 1); 220 else 221 i--; 222 223 /* Force memory writes to complete before letting h/w 224 * know there are new descriptors to fetch. (Only 225 * applicable for weak-ordered memory model archs, 226 * such as IA-64). 227 */ 228 wmb(); 229 writel(i, adapter->hw.hw_addr + rx_ring->tail); 230 } 231 } 232 233 /** 234 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 235 * @adapter: board private structure 236 * 237 * the return value indicates whether actual cleaning was done, there 238 * is no guarantee that everything was cleaned 239 **/ 240 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 241 int *work_done, int work_to_do) 242 { 243 struct igbvf_ring *rx_ring = adapter->rx_ring; 244 struct net_device *netdev = adapter->netdev; 245 struct pci_dev *pdev = adapter->pdev; 246 union e1000_adv_rx_desc *rx_desc, *next_rxd; 247 struct igbvf_buffer *buffer_info, *next_buffer; 248 struct sk_buff *skb; 249 bool cleaned = false; 250 int cleaned_count = 0; 251 unsigned int total_bytes = 0, total_packets = 0; 252 unsigned int i; 253 u32 length, hlen, staterr; 254 255 i = rx_ring->next_to_clean; 256 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 257 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 258 259 while (staterr & E1000_RXD_STAT_DD) { 260 if (*work_done >= work_to_do) 261 break; 262 (*work_done)++; 263 rmb(); /* read descriptor and rx_buffer_info after status DD */ 264 265 buffer_info = &rx_ring->buffer_info[i]; 266 267 /* HW will not DMA in data larger than the given buffer, even 268 * if it parses the (NFS, of course) header to be larger. In 269 * that case, it fills the header buffer and spills the rest 270 * into the page. 271 */ 272 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) 273 & E1000_RXDADV_HDRBUFLEN_MASK) >> 274 E1000_RXDADV_HDRBUFLEN_SHIFT; 275 if (hlen > adapter->rx_ps_hdr_size) 276 hlen = adapter->rx_ps_hdr_size; 277 278 length = le16_to_cpu(rx_desc->wb.upper.length); 279 cleaned = true; 280 cleaned_count++; 281 282 skb = buffer_info->skb; 283 prefetch(skb->data - NET_IP_ALIGN); 284 buffer_info->skb = NULL; 285 if (!adapter->rx_ps_hdr_size) { 286 dma_unmap_single(&pdev->dev, buffer_info->dma, 287 adapter->rx_buffer_len, 288 DMA_FROM_DEVICE); 289 buffer_info->dma = 0; 290 skb_put(skb, length); 291 goto send_up; 292 } 293 294 if (!skb_shinfo(skb)->nr_frags) { 295 dma_unmap_single(&pdev->dev, buffer_info->dma, 296 adapter->rx_ps_hdr_size, 297 DMA_FROM_DEVICE); 298 buffer_info->dma = 0; 299 skb_put(skb, hlen); 300 } 301 302 if (length) { 303 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 304 PAGE_SIZE / 2, 305 DMA_FROM_DEVICE); 306 buffer_info->page_dma = 0; 307 308 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 309 buffer_info->page, 310 buffer_info->page_offset, 311 length); 312 313 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 314 (page_count(buffer_info->page) != 1)) 315 buffer_info->page = NULL; 316 else 317 get_page(buffer_info->page); 318 319 skb->len += length; 320 skb->data_len += length; 321 skb->truesize += PAGE_SIZE / 2; 322 } 323 send_up: 324 i++; 325 if (i == rx_ring->count) 326 i = 0; 327 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 328 prefetch(next_rxd); 329 next_buffer = &rx_ring->buffer_info[i]; 330 331 if (!(staterr & E1000_RXD_STAT_EOP)) { 332 buffer_info->skb = next_buffer->skb; 333 buffer_info->dma = next_buffer->dma; 334 next_buffer->skb = skb; 335 next_buffer->dma = 0; 336 goto next_desc; 337 } 338 339 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 340 dev_kfree_skb_irq(skb); 341 goto next_desc; 342 } 343 344 total_bytes += skb->len; 345 total_packets++; 346 347 igbvf_rx_checksum_adv(adapter, staterr, skb); 348 349 skb->protocol = eth_type_trans(skb, netdev); 350 351 igbvf_receive_skb(adapter, netdev, skb, staterr, 352 rx_desc->wb.upper.vlan); 353 354 next_desc: 355 rx_desc->wb.upper.status_error = 0; 356 357 /* return some buffers to hardware, one at a time is too slow */ 358 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 359 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 360 cleaned_count = 0; 361 } 362 363 /* use prefetched values */ 364 rx_desc = next_rxd; 365 buffer_info = next_buffer; 366 367 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 368 } 369 370 rx_ring->next_to_clean = i; 371 cleaned_count = igbvf_desc_unused(rx_ring); 372 373 if (cleaned_count) 374 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 375 376 adapter->total_rx_packets += total_packets; 377 adapter->total_rx_bytes += total_bytes; 378 netdev->stats.rx_bytes += total_bytes; 379 netdev->stats.rx_packets += total_packets; 380 return cleaned; 381 } 382 383 static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 384 struct igbvf_buffer *buffer_info) 385 { 386 if (buffer_info->dma) { 387 if (buffer_info->mapped_as_page) 388 dma_unmap_page(&adapter->pdev->dev, 389 buffer_info->dma, 390 buffer_info->length, 391 DMA_TO_DEVICE); 392 else 393 dma_unmap_single(&adapter->pdev->dev, 394 buffer_info->dma, 395 buffer_info->length, 396 DMA_TO_DEVICE); 397 buffer_info->dma = 0; 398 } 399 if (buffer_info->skb) { 400 dev_kfree_skb_any(buffer_info->skb); 401 buffer_info->skb = NULL; 402 } 403 buffer_info->time_stamp = 0; 404 } 405 406 /** 407 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 408 * @adapter: board private structure 409 * 410 * Return 0 on success, negative on failure 411 **/ 412 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 413 struct igbvf_ring *tx_ring) 414 { 415 struct pci_dev *pdev = adapter->pdev; 416 int size; 417 418 size = sizeof(struct igbvf_buffer) * tx_ring->count; 419 tx_ring->buffer_info = vzalloc(size); 420 if (!tx_ring->buffer_info) 421 goto err; 422 423 /* round up to nearest 4K */ 424 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 425 tx_ring->size = ALIGN(tx_ring->size, 4096); 426 427 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 428 &tx_ring->dma, GFP_KERNEL); 429 if (!tx_ring->desc) 430 goto err; 431 432 tx_ring->adapter = adapter; 433 tx_ring->next_to_use = 0; 434 tx_ring->next_to_clean = 0; 435 436 return 0; 437 err: 438 vfree(tx_ring->buffer_info); 439 dev_err(&adapter->pdev->dev, 440 "Unable to allocate memory for the transmit descriptor ring\n"); 441 return -ENOMEM; 442 } 443 444 /** 445 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 446 * @adapter: board private structure 447 * 448 * Returns 0 on success, negative on failure 449 **/ 450 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 451 struct igbvf_ring *rx_ring) 452 { 453 struct pci_dev *pdev = adapter->pdev; 454 int size, desc_len; 455 456 size = sizeof(struct igbvf_buffer) * rx_ring->count; 457 rx_ring->buffer_info = vzalloc(size); 458 if (!rx_ring->buffer_info) 459 goto err; 460 461 desc_len = sizeof(union e1000_adv_rx_desc); 462 463 /* Round up to nearest 4K */ 464 rx_ring->size = rx_ring->count * desc_len; 465 rx_ring->size = ALIGN(rx_ring->size, 4096); 466 467 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 468 &rx_ring->dma, GFP_KERNEL); 469 if (!rx_ring->desc) 470 goto err; 471 472 rx_ring->next_to_clean = 0; 473 rx_ring->next_to_use = 0; 474 475 rx_ring->adapter = adapter; 476 477 return 0; 478 479 err: 480 vfree(rx_ring->buffer_info); 481 rx_ring->buffer_info = NULL; 482 dev_err(&adapter->pdev->dev, 483 "Unable to allocate memory for the receive descriptor ring\n"); 484 return -ENOMEM; 485 } 486 487 /** 488 * igbvf_clean_tx_ring - Free Tx Buffers 489 * @tx_ring: ring to be cleaned 490 **/ 491 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 492 { 493 struct igbvf_adapter *adapter = tx_ring->adapter; 494 struct igbvf_buffer *buffer_info; 495 unsigned long size; 496 unsigned int i; 497 498 if (!tx_ring->buffer_info) 499 return; 500 501 /* Free all the Tx ring sk_buffs */ 502 for (i = 0; i < tx_ring->count; i++) { 503 buffer_info = &tx_ring->buffer_info[i]; 504 igbvf_put_txbuf(adapter, buffer_info); 505 } 506 507 size = sizeof(struct igbvf_buffer) * tx_ring->count; 508 memset(tx_ring->buffer_info, 0, size); 509 510 /* Zero out the descriptor ring */ 511 memset(tx_ring->desc, 0, tx_ring->size); 512 513 tx_ring->next_to_use = 0; 514 tx_ring->next_to_clean = 0; 515 516 writel(0, adapter->hw.hw_addr + tx_ring->head); 517 writel(0, adapter->hw.hw_addr + tx_ring->tail); 518 } 519 520 /** 521 * igbvf_free_tx_resources - Free Tx Resources per Queue 522 * @tx_ring: ring to free resources from 523 * 524 * Free all transmit software resources 525 **/ 526 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 527 { 528 struct pci_dev *pdev = tx_ring->adapter->pdev; 529 530 igbvf_clean_tx_ring(tx_ring); 531 532 vfree(tx_ring->buffer_info); 533 tx_ring->buffer_info = NULL; 534 535 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 536 tx_ring->dma); 537 538 tx_ring->desc = NULL; 539 } 540 541 /** 542 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 543 * @adapter: board private structure 544 **/ 545 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 546 { 547 struct igbvf_adapter *adapter = rx_ring->adapter; 548 struct igbvf_buffer *buffer_info; 549 struct pci_dev *pdev = adapter->pdev; 550 unsigned long size; 551 unsigned int i; 552 553 if (!rx_ring->buffer_info) 554 return; 555 556 /* Free all the Rx ring sk_buffs */ 557 for (i = 0; i < rx_ring->count; i++) { 558 buffer_info = &rx_ring->buffer_info[i]; 559 if (buffer_info->dma) { 560 if (adapter->rx_ps_hdr_size) { 561 dma_unmap_single(&pdev->dev, buffer_info->dma, 562 adapter->rx_ps_hdr_size, 563 DMA_FROM_DEVICE); 564 } else { 565 dma_unmap_single(&pdev->dev, buffer_info->dma, 566 adapter->rx_buffer_len, 567 DMA_FROM_DEVICE); 568 } 569 buffer_info->dma = 0; 570 } 571 572 if (buffer_info->skb) { 573 dev_kfree_skb(buffer_info->skb); 574 buffer_info->skb = NULL; 575 } 576 577 if (buffer_info->page) { 578 if (buffer_info->page_dma) 579 dma_unmap_page(&pdev->dev, 580 buffer_info->page_dma, 581 PAGE_SIZE / 2, 582 DMA_FROM_DEVICE); 583 put_page(buffer_info->page); 584 buffer_info->page = NULL; 585 buffer_info->page_dma = 0; 586 buffer_info->page_offset = 0; 587 } 588 } 589 590 size = sizeof(struct igbvf_buffer) * rx_ring->count; 591 memset(rx_ring->buffer_info, 0, size); 592 593 /* Zero out the descriptor ring */ 594 memset(rx_ring->desc, 0, rx_ring->size); 595 596 rx_ring->next_to_clean = 0; 597 rx_ring->next_to_use = 0; 598 599 writel(0, adapter->hw.hw_addr + rx_ring->head); 600 writel(0, adapter->hw.hw_addr + rx_ring->tail); 601 } 602 603 /** 604 * igbvf_free_rx_resources - Free Rx Resources 605 * @rx_ring: ring to clean the resources from 606 * 607 * Free all receive software resources 608 **/ 609 610 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 611 { 612 struct pci_dev *pdev = rx_ring->adapter->pdev; 613 614 igbvf_clean_rx_ring(rx_ring); 615 616 vfree(rx_ring->buffer_info); 617 rx_ring->buffer_info = NULL; 618 619 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 620 rx_ring->dma); 621 rx_ring->desc = NULL; 622 } 623 624 /** 625 * igbvf_update_itr - update the dynamic ITR value based on statistics 626 * @adapter: pointer to adapter 627 * @itr_setting: current adapter->itr 628 * @packets: the number of packets during this measurement interval 629 * @bytes: the number of bytes during this measurement interval 630 * 631 * Stores a new ITR value based on packets and byte counts during the last 632 * interrupt. The advantage of per interrupt computation is faster updates 633 * and more accurate ITR for the current traffic pattern. Constants in this 634 * function were computed based on theoretical maximum wire speed and thresholds 635 * were set based on testing data as well as attempting to minimize response 636 * time while increasing bulk throughput. 637 **/ 638 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter, 639 enum latency_range itr_setting, 640 int packets, int bytes) 641 { 642 enum latency_range retval = itr_setting; 643 644 if (packets == 0) 645 goto update_itr_done; 646 647 switch (itr_setting) { 648 case lowest_latency: 649 /* handle TSO and jumbo frames */ 650 if (bytes/packets > 8000) 651 retval = bulk_latency; 652 else if ((packets < 5) && (bytes > 512)) 653 retval = low_latency; 654 break; 655 case low_latency: /* 50 usec aka 20000 ints/s */ 656 if (bytes > 10000) { 657 /* this if handles the TSO accounting */ 658 if (bytes/packets > 8000) 659 retval = bulk_latency; 660 else if ((packets < 10) || ((bytes/packets) > 1200)) 661 retval = bulk_latency; 662 else if ((packets > 35)) 663 retval = lowest_latency; 664 } else if (bytes/packets > 2000) { 665 retval = bulk_latency; 666 } else if (packets <= 2 && bytes < 512) { 667 retval = lowest_latency; 668 } 669 break; 670 case bulk_latency: /* 250 usec aka 4000 ints/s */ 671 if (bytes > 25000) { 672 if (packets > 35) 673 retval = low_latency; 674 } else if (bytes < 6000) { 675 retval = low_latency; 676 } 677 break; 678 default: 679 break; 680 } 681 682 update_itr_done: 683 return retval; 684 } 685 686 static int igbvf_range_to_itr(enum latency_range current_range) 687 { 688 int new_itr; 689 690 switch (current_range) { 691 /* counts and packets in update_itr are dependent on these numbers */ 692 case lowest_latency: 693 new_itr = IGBVF_70K_ITR; 694 break; 695 case low_latency: 696 new_itr = IGBVF_20K_ITR; 697 break; 698 case bulk_latency: 699 new_itr = IGBVF_4K_ITR; 700 break; 701 default: 702 new_itr = IGBVF_START_ITR; 703 break; 704 } 705 return new_itr; 706 } 707 708 static void igbvf_set_itr(struct igbvf_adapter *adapter) 709 { 710 u32 new_itr; 711 712 adapter->tx_ring->itr_range = 713 igbvf_update_itr(adapter, 714 adapter->tx_ring->itr_val, 715 adapter->total_tx_packets, 716 adapter->total_tx_bytes); 717 718 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 719 if (adapter->requested_itr == 3 && 720 adapter->tx_ring->itr_range == lowest_latency) 721 adapter->tx_ring->itr_range = low_latency; 722 723 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range); 724 725 if (new_itr != adapter->tx_ring->itr_val) { 726 u32 current_itr = adapter->tx_ring->itr_val; 727 /* this attempts to bias the interrupt rate towards Bulk 728 * by adding intermediate steps when interrupt rate is 729 * increasing 730 */ 731 new_itr = new_itr > current_itr ? 732 min(current_itr + (new_itr >> 2), new_itr) : 733 new_itr; 734 adapter->tx_ring->itr_val = new_itr; 735 736 adapter->tx_ring->set_itr = 1; 737 } 738 739 adapter->rx_ring->itr_range = 740 igbvf_update_itr(adapter, adapter->rx_ring->itr_val, 741 adapter->total_rx_packets, 742 adapter->total_rx_bytes); 743 if (adapter->requested_itr == 3 && 744 adapter->rx_ring->itr_range == lowest_latency) 745 adapter->rx_ring->itr_range = low_latency; 746 747 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range); 748 749 if (new_itr != adapter->rx_ring->itr_val) { 750 u32 current_itr = adapter->rx_ring->itr_val; 751 752 new_itr = new_itr > current_itr ? 753 min(current_itr + (new_itr >> 2), new_itr) : 754 new_itr; 755 adapter->rx_ring->itr_val = new_itr; 756 757 adapter->rx_ring->set_itr = 1; 758 } 759 } 760 761 /** 762 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 763 * @adapter: board private structure 764 * 765 * returns true if ring is completely cleaned 766 **/ 767 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 768 { 769 struct igbvf_adapter *adapter = tx_ring->adapter; 770 struct net_device *netdev = adapter->netdev; 771 struct igbvf_buffer *buffer_info; 772 struct sk_buff *skb; 773 union e1000_adv_tx_desc *tx_desc, *eop_desc; 774 unsigned int total_bytes = 0, total_packets = 0; 775 unsigned int i, count = 0; 776 bool cleaned = false; 777 778 i = tx_ring->next_to_clean; 779 buffer_info = &tx_ring->buffer_info[i]; 780 eop_desc = buffer_info->next_to_watch; 781 782 do { 783 /* if next_to_watch is not set then there is no work pending */ 784 if (!eop_desc) 785 break; 786 787 /* prevent any other reads prior to eop_desc */ 788 smp_rmb(); 789 790 /* if DD is not set pending work has not been completed */ 791 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 792 break; 793 794 /* clear next_to_watch to prevent false hangs */ 795 buffer_info->next_to_watch = NULL; 796 797 for (cleaned = false; !cleaned; count++) { 798 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 799 cleaned = (tx_desc == eop_desc); 800 skb = buffer_info->skb; 801 802 if (skb) { 803 unsigned int segs, bytecount; 804 805 /* gso_segs is currently only valid for tcp */ 806 segs = skb_shinfo(skb)->gso_segs ?: 1; 807 /* multiply data chunks by size of headers */ 808 bytecount = ((segs - 1) * skb_headlen(skb)) + 809 skb->len; 810 total_packets += segs; 811 total_bytes += bytecount; 812 } 813 814 igbvf_put_txbuf(adapter, buffer_info); 815 tx_desc->wb.status = 0; 816 817 i++; 818 if (i == tx_ring->count) 819 i = 0; 820 821 buffer_info = &tx_ring->buffer_info[i]; 822 } 823 824 eop_desc = buffer_info->next_to_watch; 825 } while (count < tx_ring->count); 826 827 tx_ring->next_to_clean = i; 828 829 if (unlikely(count && netif_carrier_ok(netdev) && 830 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 831 /* Make sure that anybody stopping the queue after this 832 * sees the new next_to_clean. 833 */ 834 smp_mb(); 835 if (netif_queue_stopped(netdev) && 836 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 837 netif_wake_queue(netdev); 838 ++adapter->restart_queue; 839 } 840 } 841 842 netdev->stats.tx_bytes += total_bytes; 843 netdev->stats.tx_packets += total_packets; 844 return count < tx_ring->count; 845 } 846 847 static irqreturn_t igbvf_msix_other(int irq, void *data) 848 { 849 struct net_device *netdev = data; 850 struct igbvf_adapter *adapter = netdev_priv(netdev); 851 struct e1000_hw *hw = &adapter->hw; 852 853 adapter->int_counter1++; 854 855 hw->mac.get_link_status = 1; 856 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 857 mod_timer(&adapter->watchdog_timer, jiffies + 1); 858 859 ew32(EIMS, adapter->eims_other); 860 861 return IRQ_HANDLED; 862 } 863 864 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 865 { 866 struct net_device *netdev = data; 867 struct igbvf_adapter *adapter = netdev_priv(netdev); 868 struct e1000_hw *hw = &adapter->hw; 869 struct igbvf_ring *tx_ring = adapter->tx_ring; 870 871 if (tx_ring->set_itr) { 872 writel(tx_ring->itr_val, 873 adapter->hw.hw_addr + tx_ring->itr_register); 874 adapter->tx_ring->set_itr = 0; 875 } 876 877 adapter->total_tx_bytes = 0; 878 adapter->total_tx_packets = 0; 879 880 /* auto mask will automatically re-enable the interrupt when we write 881 * EICS 882 */ 883 if (!igbvf_clean_tx_irq(tx_ring)) 884 /* Ring was not completely cleaned, so fire another interrupt */ 885 ew32(EICS, tx_ring->eims_value); 886 else 887 ew32(EIMS, tx_ring->eims_value); 888 889 return IRQ_HANDLED; 890 } 891 892 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 893 { 894 struct net_device *netdev = data; 895 struct igbvf_adapter *adapter = netdev_priv(netdev); 896 897 adapter->int_counter0++; 898 899 /* Write the ITR value calculated at the end of the 900 * previous interrupt. 901 */ 902 if (adapter->rx_ring->set_itr) { 903 writel(adapter->rx_ring->itr_val, 904 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 905 adapter->rx_ring->set_itr = 0; 906 } 907 908 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 909 adapter->total_rx_bytes = 0; 910 adapter->total_rx_packets = 0; 911 __napi_schedule(&adapter->rx_ring->napi); 912 } 913 914 return IRQ_HANDLED; 915 } 916 917 #define IGBVF_NO_QUEUE -1 918 919 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 920 int tx_queue, int msix_vector) 921 { 922 struct e1000_hw *hw = &adapter->hw; 923 u32 ivar, index; 924 925 /* 82576 uses a table-based method for assigning vectors. 926 * Each queue has a single entry in the table to which we write 927 * a vector number along with a "valid" bit. Sadly, the layout 928 * of the table is somewhat counterintuitive. 929 */ 930 if (rx_queue > IGBVF_NO_QUEUE) { 931 index = (rx_queue >> 1); 932 ivar = array_er32(IVAR0, index); 933 if (rx_queue & 0x1) { 934 /* vector goes into third byte of register */ 935 ivar = ivar & 0xFF00FFFF; 936 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 937 } else { 938 /* vector goes into low byte of register */ 939 ivar = ivar & 0xFFFFFF00; 940 ivar |= msix_vector | E1000_IVAR_VALID; 941 } 942 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector); 943 array_ew32(IVAR0, index, ivar); 944 } 945 if (tx_queue > IGBVF_NO_QUEUE) { 946 index = (tx_queue >> 1); 947 ivar = array_er32(IVAR0, index); 948 if (tx_queue & 0x1) { 949 /* vector goes into high byte of register */ 950 ivar = ivar & 0x00FFFFFF; 951 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 952 } else { 953 /* vector goes into second byte of register */ 954 ivar = ivar & 0xFFFF00FF; 955 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 956 } 957 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector); 958 array_ew32(IVAR0, index, ivar); 959 } 960 } 961 962 /** 963 * igbvf_configure_msix - Configure MSI-X hardware 964 * @adapter: board private structure 965 * 966 * igbvf_configure_msix sets up the hardware to properly 967 * generate MSI-X interrupts. 968 **/ 969 static void igbvf_configure_msix(struct igbvf_adapter *adapter) 970 { 971 u32 tmp; 972 struct e1000_hw *hw = &adapter->hw; 973 struct igbvf_ring *tx_ring = adapter->tx_ring; 974 struct igbvf_ring *rx_ring = adapter->rx_ring; 975 int vector = 0; 976 977 adapter->eims_enable_mask = 0; 978 979 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 980 adapter->eims_enable_mask |= tx_ring->eims_value; 981 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register); 982 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 983 adapter->eims_enable_mask |= rx_ring->eims_value; 984 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register); 985 986 /* set vector for other causes, i.e. link changes */ 987 988 tmp = (vector++ | E1000_IVAR_VALID); 989 990 ew32(IVAR_MISC, tmp); 991 992 adapter->eims_enable_mask = GENMASK(vector - 1, 0); 993 adapter->eims_other = BIT(vector - 1); 994 e1e_flush(); 995 } 996 997 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 998 { 999 if (adapter->msix_entries) { 1000 pci_disable_msix(adapter->pdev); 1001 kfree(adapter->msix_entries); 1002 adapter->msix_entries = NULL; 1003 } 1004 } 1005 1006 /** 1007 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 1008 * @adapter: board private structure 1009 * 1010 * Attempt to configure interrupts using the best available 1011 * capabilities of the hardware and kernel. 1012 **/ 1013 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 1014 { 1015 int err = -ENOMEM; 1016 int i; 1017 1018 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */ 1019 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), 1020 GFP_KERNEL); 1021 if (adapter->msix_entries) { 1022 for (i = 0; i < 3; i++) 1023 adapter->msix_entries[i].entry = i; 1024 1025 err = pci_enable_msix_range(adapter->pdev, 1026 adapter->msix_entries, 3, 3); 1027 } 1028 1029 if (err < 0) { 1030 /* MSI-X failed */ 1031 dev_err(&adapter->pdev->dev, 1032 "Failed to initialize MSI-X interrupts.\n"); 1033 igbvf_reset_interrupt_capability(adapter); 1034 } 1035 } 1036 1037 /** 1038 * igbvf_request_msix - Initialize MSI-X interrupts 1039 * @adapter: board private structure 1040 * 1041 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1042 * kernel. 1043 **/ 1044 static int igbvf_request_msix(struct igbvf_adapter *adapter) 1045 { 1046 struct net_device *netdev = adapter->netdev; 1047 int err = 0, vector = 0; 1048 1049 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1050 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1051 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1052 } else { 1053 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1054 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1055 } 1056 1057 err = request_irq(adapter->msix_entries[vector].vector, 1058 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1059 netdev); 1060 if (err) 1061 goto out; 1062 1063 adapter->tx_ring->itr_register = E1000_EITR(vector); 1064 adapter->tx_ring->itr_val = adapter->current_itr; 1065 vector++; 1066 1067 err = request_irq(adapter->msix_entries[vector].vector, 1068 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1069 netdev); 1070 if (err) 1071 goto out; 1072 1073 adapter->rx_ring->itr_register = E1000_EITR(vector); 1074 adapter->rx_ring->itr_val = adapter->current_itr; 1075 vector++; 1076 1077 err = request_irq(adapter->msix_entries[vector].vector, 1078 igbvf_msix_other, 0, netdev->name, netdev); 1079 if (err) 1080 goto out; 1081 1082 igbvf_configure_msix(adapter); 1083 return 0; 1084 out: 1085 return err; 1086 } 1087 1088 /** 1089 * igbvf_alloc_queues - Allocate memory for all rings 1090 * @adapter: board private structure to initialize 1091 **/ 1092 static int igbvf_alloc_queues(struct igbvf_adapter *adapter) 1093 { 1094 struct net_device *netdev = adapter->netdev; 1095 1096 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1097 if (!adapter->tx_ring) 1098 return -ENOMEM; 1099 1100 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1101 if (!adapter->rx_ring) { 1102 kfree(adapter->tx_ring); 1103 return -ENOMEM; 1104 } 1105 1106 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * igbvf_request_irq - initialize interrupts 1113 * @adapter: board private structure 1114 * 1115 * Attempts to configure interrupts using the best available 1116 * capabilities of the hardware and kernel. 1117 **/ 1118 static int igbvf_request_irq(struct igbvf_adapter *adapter) 1119 { 1120 int err = -1; 1121 1122 /* igbvf supports msi-x only */ 1123 if (adapter->msix_entries) 1124 err = igbvf_request_msix(adapter); 1125 1126 if (!err) 1127 return err; 1128 1129 dev_err(&adapter->pdev->dev, 1130 "Unable to allocate interrupt, Error: %d\n", err); 1131 1132 return err; 1133 } 1134 1135 static void igbvf_free_irq(struct igbvf_adapter *adapter) 1136 { 1137 struct net_device *netdev = adapter->netdev; 1138 int vector; 1139 1140 if (adapter->msix_entries) { 1141 for (vector = 0; vector < 3; vector++) 1142 free_irq(adapter->msix_entries[vector].vector, netdev); 1143 } 1144 } 1145 1146 /** 1147 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1148 * @adapter: board private structure 1149 **/ 1150 static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1151 { 1152 struct e1000_hw *hw = &adapter->hw; 1153 1154 ew32(EIMC, ~0); 1155 1156 if (adapter->msix_entries) 1157 ew32(EIAC, 0); 1158 } 1159 1160 /** 1161 * igbvf_irq_enable - Enable default interrupt generation settings 1162 * @adapter: board private structure 1163 **/ 1164 static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1165 { 1166 struct e1000_hw *hw = &adapter->hw; 1167 1168 ew32(EIAC, adapter->eims_enable_mask); 1169 ew32(EIAM, adapter->eims_enable_mask); 1170 ew32(EIMS, adapter->eims_enable_mask); 1171 } 1172 1173 /** 1174 * igbvf_poll - NAPI Rx polling callback 1175 * @napi: struct associated with this polling callback 1176 * @budget: amount of packets driver is allowed to process this poll 1177 **/ 1178 static int igbvf_poll(struct napi_struct *napi, int budget) 1179 { 1180 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1181 struct igbvf_adapter *adapter = rx_ring->adapter; 1182 struct e1000_hw *hw = &adapter->hw; 1183 int work_done = 0; 1184 1185 igbvf_clean_rx_irq(adapter, &work_done, budget); 1186 1187 if (work_done == budget) 1188 return budget; 1189 1190 /* Exit the polling mode, but don't re-enable interrupts if stack might 1191 * poll us due to busy-polling 1192 */ 1193 if (likely(napi_complete_done(napi, work_done))) { 1194 if (adapter->requested_itr & 3) 1195 igbvf_set_itr(adapter); 1196 1197 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1198 ew32(EIMS, adapter->rx_ring->eims_value); 1199 } 1200 1201 return work_done; 1202 } 1203 1204 /** 1205 * igbvf_set_rlpml - set receive large packet maximum length 1206 * @adapter: board private structure 1207 * 1208 * Configure the maximum size of packets that will be received 1209 */ 1210 static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1211 { 1212 int max_frame_size; 1213 struct e1000_hw *hw = &adapter->hw; 1214 1215 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; 1216 1217 spin_lock_bh(&hw->mbx_lock); 1218 1219 e1000_rlpml_set_vf(hw, max_frame_size); 1220 1221 spin_unlock_bh(&hw->mbx_lock); 1222 } 1223 1224 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, 1225 __be16 proto, u16 vid) 1226 { 1227 struct igbvf_adapter *adapter = netdev_priv(netdev); 1228 struct e1000_hw *hw = &adapter->hw; 1229 1230 spin_lock_bh(&hw->mbx_lock); 1231 1232 if (hw->mac.ops.set_vfta(hw, vid, true)) { 1233 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); 1234 spin_unlock_bh(&hw->mbx_lock); 1235 return -EINVAL; 1236 } 1237 1238 spin_unlock_bh(&hw->mbx_lock); 1239 1240 set_bit(vid, adapter->active_vlans); 1241 return 0; 1242 } 1243 1244 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, 1245 __be16 proto, u16 vid) 1246 { 1247 struct igbvf_adapter *adapter = netdev_priv(netdev); 1248 struct e1000_hw *hw = &adapter->hw; 1249 1250 spin_lock_bh(&hw->mbx_lock); 1251 1252 if (hw->mac.ops.set_vfta(hw, vid, false)) { 1253 dev_err(&adapter->pdev->dev, 1254 "Failed to remove vlan id %d\n", vid); 1255 spin_unlock_bh(&hw->mbx_lock); 1256 return -EINVAL; 1257 } 1258 1259 spin_unlock_bh(&hw->mbx_lock); 1260 1261 clear_bit(vid, adapter->active_vlans); 1262 return 0; 1263 } 1264 1265 static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1266 { 1267 u16 vid; 1268 1269 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1270 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 1271 } 1272 1273 /** 1274 * igbvf_configure_tx - Configure Transmit Unit after Reset 1275 * @adapter: board private structure 1276 * 1277 * Configure the Tx unit of the MAC after a reset. 1278 **/ 1279 static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1280 { 1281 struct e1000_hw *hw = &adapter->hw; 1282 struct igbvf_ring *tx_ring = adapter->tx_ring; 1283 u64 tdba; 1284 u32 txdctl, dca_txctrl; 1285 1286 /* disable transmits */ 1287 txdctl = er32(TXDCTL(0)); 1288 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1289 e1e_flush(); 1290 msleep(10); 1291 1292 /* Setup the HW Tx Head and Tail descriptor pointers */ 1293 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1294 tdba = tx_ring->dma; 1295 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1296 ew32(TDBAH(0), (tdba >> 32)); 1297 ew32(TDH(0), 0); 1298 ew32(TDT(0), 0); 1299 tx_ring->head = E1000_TDH(0); 1300 tx_ring->tail = E1000_TDT(0); 1301 1302 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1303 * MUST be delivered in order or it will completely screw up 1304 * our bookkeeping. 1305 */ 1306 dca_txctrl = er32(DCA_TXCTRL(0)); 1307 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1308 ew32(DCA_TXCTRL(0), dca_txctrl); 1309 1310 /* enable transmits */ 1311 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1312 ew32(TXDCTL(0), txdctl); 1313 1314 /* Setup Transmit Descriptor Settings for eop descriptor */ 1315 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1316 1317 /* enable Report Status bit */ 1318 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1319 } 1320 1321 /** 1322 * igbvf_setup_srrctl - configure the receive control registers 1323 * @adapter: Board private structure 1324 **/ 1325 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1326 { 1327 struct e1000_hw *hw = &adapter->hw; 1328 u32 srrctl = 0; 1329 1330 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1331 E1000_SRRCTL_BSIZEHDR_MASK | 1332 E1000_SRRCTL_BSIZEPKT_MASK); 1333 1334 /* Enable queue drop to avoid head of line blocking */ 1335 srrctl |= E1000_SRRCTL_DROP_EN; 1336 1337 /* Setup buffer sizes */ 1338 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1339 E1000_SRRCTL_BSIZEPKT_SHIFT; 1340 1341 if (adapter->rx_buffer_len < 2048) { 1342 adapter->rx_ps_hdr_size = 0; 1343 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1344 } else { 1345 adapter->rx_ps_hdr_size = 128; 1346 srrctl |= adapter->rx_ps_hdr_size << 1347 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1348 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1349 } 1350 1351 ew32(SRRCTL(0), srrctl); 1352 } 1353 1354 /** 1355 * igbvf_configure_rx - Configure Receive Unit after Reset 1356 * @adapter: board private structure 1357 * 1358 * Configure the Rx unit of the MAC after a reset. 1359 **/ 1360 static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1361 { 1362 struct e1000_hw *hw = &adapter->hw; 1363 struct igbvf_ring *rx_ring = adapter->rx_ring; 1364 u64 rdba; 1365 u32 rxdctl; 1366 1367 /* disable receives */ 1368 rxdctl = er32(RXDCTL(0)); 1369 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1370 e1e_flush(); 1371 msleep(10); 1372 1373 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1374 * the Base and Length of the Rx Descriptor Ring 1375 */ 1376 rdba = rx_ring->dma; 1377 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1378 ew32(RDBAH(0), (rdba >> 32)); 1379 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1380 rx_ring->head = E1000_RDH(0); 1381 rx_ring->tail = E1000_RDT(0); 1382 ew32(RDH(0), 0); 1383 ew32(RDT(0), 0); 1384 1385 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1386 rxdctl &= 0xFFF00000; 1387 rxdctl |= IGBVF_RX_PTHRESH; 1388 rxdctl |= IGBVF_RX_HTHRESH << 8; 1389 rxdctl |= IGBVF_RX_WTHRESH << 16; 1390 1391 igbvf_set_rlpml(adapter); 1392 1393 /* enable receives */ 1394 ew32(RXDCTL(0), rxdctl); 1395 } 1396 1397 /** 1398 * igbvf_set_multi - Multicast and Promiscuous mode set 1399 * @netdev: network interface device structure 1400 * 1401 * The set_multi entry point is called whenever the multicast address 1402 * list or the network interface flags are updated. This routine is 1403 * responsible for configuring the hardware for proper multicast, 1404 * promiscuous mode, and all-multi behavior. 1405 **/ 1406 static void igbvf_set_multi(struct net_device *netdev) 1407 { 1408 struct igbvf_adapter *adapter = netdev_priv(netdev); 1409 struct e1000_hw *hw = &adapter->hw; 1410 struct netdev_hw_addr *ha; 1411 u8 *mta_list = NULL; 1412 int i; 1413 1414 if (!netdev_mc_empty(netdev)) { 1415 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN, 1416 GFP_ATOMIC); 1417 if (!mta_list) 1418 return; 1419 } 1420 1421 /* prepare a packed array of only addresses. */ 1422 i = 0; 1423 netdev_for_each_mc_addr(ha, netdev) 1424 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1425 1426 spin_lock_bh(&hw->mbx_lock); 1427 1428 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1429 1430 spin_unlock_bh(&hw->mbx_lock); 1431 kfree(mta_list); 1432 } 1433 1434 /** 1435 * igbvf_set_uni - Configure unicast MAC filters 1436 * @netdev: network interface device structure 1437 * 1438 * This routine is responsible for configuring the hardware for proper 1439 * unicast filters. 1440 **/ 1441 static int igbvf_set_uni(struct net_device *netdev) 1442 { 1443 struct igbvf_adapter *adapter = netdev_priv(netdev); 1444 struct e1000_hw *hw = &adapter->hw; 1445 1446 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) { 1447 pr_err("Too many unicast filters - No Space\n"); 1448 return -ENOSPC; 1449 } 1450 1451 spin_lock_bh(&hw->mbx_lock); 1452 1453 /* Clear all unicast MAC filters */ 1454 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL); 1455 1456 spin_unlock_bh(&hw->mbx_lock); 1457 1458 if (!netdev_uc_empty(netdev)) { 1459 struct netdev_hw_addr *ha; 1460 1461 /* Add MAC filters one by one */ 1462 netdev_for_each_uc_addr(ha, netdev) { 1463 spin_lock_bh(&hw->mbx_lock); 1464 1465 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD, 1466 ha->addr); 1467 1468 spin_unlock_bh(&hw->mbx_lock); 1469 udelay(200); 1470 } 1471 } 1472 1473 return 0; 1474 } 1475 1476 static void igbvf_set_rx_mode(struct net_device *netdev) 1477 { 1478 igbvf_set_multi(netdev); 1479 igbvf_set_uni(netdev); 1480 } 1481 1482 /** 1483 * igbvf_configure - configure the hardware for Rx and Tx 1484 * @adapter: private board structure 1485 **/ 1486 static void igbvf_configure(struct igbvf_adapter *adapter) 1487 { 1488 igbvf_set_rx_mode(adapter->netdev); 1489 1490 igbvf_restore_vlan(adapter); 1491 1492 igbvf_configure_tx(adapter); 1493 igbvf_setup_srrctl(adapter); 1494 igbvf_configure_rx(adapter); 1495 igbvf_alloc_rx_buffers(adapter->rx_ring, 1496 igbvf_desc_unused(adapter->rx_ring)); 1497 } 1498 1499 /* igbvf_reset - bring the hardware into a known good state 1500 * @adapter: private board structure 1501 * 1502 * This function boots the hardware and enables some settings that 1503 * require a configuration cycle of the hardware - those cannot be 1504 * set/changed during runtime. After reset the device needs to be 1505 * properly configured for Rx, Tx etc. 1506 */ 1507 static void igbvf_reset(struct igbvf_adapter *adapter) 1508 { 1509 struct e1000_mac_info *mac = &adapter->hw.mac; 1510 struct net_device *netdev = adapter->netdev; 1511 struct e1000_hw *hw = &adapter->hw; 1512 1513 spin_lock_bh(&hw->mbx_lock); 1514 1515 /* Allow time for pending master requests to run */ 1516 if (mac->ops.reset_hw(hw)) 1517 dev_err(&adapter->pdev->dev, "PF still resetting\n"); 1518 1519 mac->ops.init_hw(hw); 1520 1521 spin_unlock_bh(&hw->mbx_lock); 1522 1523 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1524 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 1525 netdev->addr_len); 1526 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1527 netdev->addr_len); 1528 } 1529 1530 adapter->last_reset = jiffies; 1531 } 1532 1533 int igbvf_up(struct igbvf_adapter *adapter) 1534 { 1535 struct e1000_hw *hw = &adapter->hw; 1536 1537 /* hardware has been reset, we need to reload some things */ 1538 igbvf_configure(adapter); 1539 1540 clear_bit(__IGBVF_DOWN, &adapter->state); 1541 1542 napi_enable(&adapter->rx_ring->napi); 1543 if (adapter->msix_entries) 1544 igbvf_configure_msix(adapter); 1545 1546 /* Clear any pending interrupts. */ 1547 er32(EICR); 1548 igbvf_irq_enable(adapter); 1549 1550 /* start the watchdog */ 1551 hw->mac.get_link_status = 1; 1552 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1553 1554 return 0; 1555 } 1556 1557 void igbvf_down(struct igbvf_adapter *adapter) 1558 { 1559 struct net_device *netdev = adapter->netdev; 1560 struct e1000_hw *hw = &adapter->hw; 1561 u32 rxdctl, txdctl; 1562 1563 /* signal that we're down so the interrupt handler does not 1564 * reschedule our watchdog timer 1565 */ 1566 set_bit(__IGBVF_DOWN, &adapter->state); 1567 1568 /* disable receives in the hardware */ 1569 rxdctl = er32(RXDCTL(0)); 1570 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1571 1572 netif_carrier_off(netdev); 1573 netif_stop_queue(netdev); 1574 1575 /* disable transmits in the hardware */ 1576 txdctl = er32(TXDCTL(0)); 1577 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1578 1579 /* flush both disables and wait for them to finish */ 1580 e1e_flush(); 1581 msleep(10); 1582 1583 napi_disable(&adapter->rx_ring->napi); 1584 1585 igbvf_irq_disable(adapter); 1586 1587 del_timer_sync(&adapter->watchdog_timer); 1588 1589 /* record the stats before reset*/ 1590 igbvf_update_stats(adapter); 1591 1592 adapter->link_speed = 0; 1593 adapter->link_duplex = 0; 1594 1595 igbvf_reset(adapter); 1596 igbvf_clean_tx_ring(adapter->tx_ring); 1597 igbvf_clean_rx_ring(adapter->rx_ring); 1598 } 1599 1600 void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1601 { 1602 might_sleep(); 1603 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1604 usleep_range(1000, 2000); 1605 igbvf_down(adapter); 1606 igbvf_up(adapter); 1607 clear_bit(__IGBVF_RESETTING, &adapter->state); 1608 } 1609 1610 /** 1611 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1612 * @adapter: board private structure to initialize 1613 * 1614 * igbvf_sw_init initializes the Adapter private data structure. 1615 * Fields are initialized based on PCI device information and 1616 * OS network device settings (MTU size). 1617 **/ 1618 static int igbvf_sw_init(struct igbvf_adapter *adapter) 1619 { 1620 struct net_device *netdev = adapter->netdev; 1621 s32 rc; 1622 1623 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1624 adapter->rx_ps_hdr_size = 0; 1625 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1626 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1627 1628 adapter->tx_int_delay = 8; 1629 adapter->tx_abs_int_delay = 32; 1630 adapter->rx_int_delay = 0; 1631 adapter->rx_abs_int_delay = 8; 1632 adapter->requested_itr = 3; 1633 adapter->current_itr = IGBVF_START_ITR; 1634 1635 /* Set various function pointers */ 1636 adapter->ei->init_ops(&adapter->hw); 1637 1638 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1639 if (rc) 1640 return rc; 1641 1642 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1643 if (rc) 1644 return rc; 1645 1646 igbvf_set_interrupt_capability(adapter); 1647 1648 if (igbvf_alloc_queues(adapter)) 1649 return -ENOMEM; 1650 1651 spin_lock_init(&adapter->tx_queue_lock); 1652 1653 /* Explicitly disable IRQ since the NIC can be in any state. */ 1654 igbvf_irq_disable(adapter); 1655 1656 spin_lock_init(&adapter->stats_lock); 1657 spin_lock_init(&adapter->hw.mbx_lock); 1658 1659 set_bit(__IGBVF_DOWN, &adapter->state); 1660 return 0; 1661 } 1662 1663 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1664 { 1665 struct e1000_hw *hw = &adapter->hw; 1666 1667 adapter->stats.last_gprc = er32(VFGPRC); 1668 adapter->stats.last_gorc = er32(VFGORC); 1669 adapter->stats.last_gptc = er32(VFGPTC); 1670 adapter->stats.last_gotc = er32(VFGOTC); 1671 adapter->stats.last_mprc = er32(VFMPRC); 1672 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1673 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1674 adapter->stats.last_gorlbc = er32(VFGORLBC); 1675 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1676 1677 adapter->stats.base_gprc = er32(VFGPRC); 1678 adapter->stats.base_gorc = er32(VFGORC); 1679 adapter->stats.base_gptc = er32(VFGPTC); 1680 adapter->stats.base_gotc = er32(VFGOTC); 1681 adapter->stats.base_mprc = er32(VFMPRC); 1682 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1683 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1684 adapter->stats.base_gorlbc = er32(VFGORLBC); 1685 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1686 } 1687 1688 /** 1689 * igbvf_open - Called when a network interface is made active 1690 * @netdev: network interface device structure 1691 * 1692 * Returns 0 on success, negative value on failure 1693 * 1694 * The open entry point is called when a network interface is made 1695 * active by the system (IFF_UP). At this point all resources needed 1696 * for transmit and receive operations are allocated, the interrupt 1697 * handler is registered with the OS, the watchdog timer is started, 1698 * and the stack is notified that the interface is ready. 1699 **/ 1700 static int igbvf_open(struct net_device *netdev) 1701 { 1702 struct igbvf_adapter *adapter = netdev_priv(netdev); 1703 struct e1000_hw *hw = &adapter->hw; 1704 int err; 1705 1706 /* disallow open during test */ 1707 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1708 return -EBUSY; 1709 1710 /* allocate transmit descriptors */ 1711 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1712 if (err) 1713 goto err_setup_tx; 1714 1715 /* allocate receive descriptors */ 1716 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1717 if (err) 1718 goto err_setup_rx; 1719 1720 /* before we allocate an interrupt, we must be ready to handle it. 1721 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1722 * as soon as we call pci_request_irq, so we have to setup our 1723 * clean_rx handler before we do so. 1724 */ 1725 igbvf_configure(adapter); 1726 1727 err = igbvf_request_irq(adapter); 1728 if (err) 1729 goto err_req_irq; 1730 1731 /* From here on the code is the same as igbvf_up() */ 1732 clear_bit(__IGBVF_DOWN, &adapter->state); 1733 1734 napi_enable(&adapter->rx_ring->napi); 1735 1736 /* clear any pending interrupts */ 1737 er32(EICR); 1738 1739 igbvf_irq_enable(adapter); 1740 1741 /* start the watchdog */ 1742 hw->mac.get_link_status = 1; 1743 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1744 1745 return 0; 1746 1747 err_req_irq: 1748 igbvf_free_rx_resources(adapter->rx_ring); 1749 err_setup_rx: 1750 igbvf_free_tx_resources(adapter->tx_ring); 1751 err_setup_tx: 1752 igbvf_reset(adapter); 1753 1754 return err; 1755 } 1756 1757 /** 1758 * igbvf_close - Disables a network interface 1759 * @netdev: network interface device structure 1760 * 1761 * Returns 0, this is not allowed to fail 1762 * 1763 * The close entry point is called when an interface is de-activated 1764 * by the OS. The hardware is still under the drivers control, but 1765 * needs to be disabled. A global MAC reset is issued to stop the 1766 * hardware, and all transmit and receive resources are freed. 1767 **/ 1768 static int igbvf_close(struct net_device *netdev) 1769 { 1770 struct igbvf_adapter *adapter = netdev_priv(netdev); 1771 1772 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1773 igbvf_down(adapter); 1774 1775 igbvf_free_irq(adapter); 1776 1777 igbvf_free_tx_resources(adapter->tx_ring); 1778 igbvf_free_rx_resources(adapter->rx_ring); 1779 1780 return 0; 1781 } 1782 1783 /** 1784 * igbvf_set_mac - Change the Ethernet Address of the NIC 1785 * @netdev: network interface device structure 1786 * @p: pointer to an address structure 1787 * 1788 * Returns 0 on success, negative on failure 1789 **/ 1790 static int igbvf_set_mac(struct net_device *netdev, void *p) 1791 { 1792 struct igbvf_adapter *adapter = netdev_priv(netdev); 1793 struct e1000_hw *hw = &adapter->hw; 1794 struct sockaddr *addr = p; 1795 1796 if (!is_valid_ether_addr(addr->sa_data)) 1797 return -EADDRNOTAVAIL; 1798 1799 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1800 1801 spin_lock_bh(&hw->mbx_lock); 1802 1803 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1804 1805 spin_unlock_bh(&hw->mbx_lock); 1806 1807 if (!ether_addr_equal(addr->sa_data, hw->mac.addr)) 1808 return -EADDRNOTAVAIL; 1809 1810 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1811 1812 return 0; 1813 } 1814 1815 #define UPDATE_VF_COUNTER(reg, name) \ 1816 { \ 1817 u32 current_counter = er32(reg); \ 1818 if (current_counter < adapter->stats.last_##name) \ 1819 adapter->stats.name += 0x100000000LL; \ 1820 adapter->stats.last_##name = current_counter; \ 1821 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1822 adapter->stats.name |= current_counter; \ 1823 } 1824 1825 /** 1826 * igbvf_update_stats - Update the board statistics counters 1827 * @adapter: board private structure 1828 **/ 1829 void igbvf_update_stats(struct igbvf_adapter *adapter) 1830 { 1831 struct e1000_hw *hw = &adapter->hw; 1832 struct pci_dev *pdev = adapter->pdev; 1833 1834 /* Prevent stats update while adapter is being reset, link is down 1835 * or if the pci connection is down. 1836 */ 1837 if (adapter->link_speed == 0) 1838 return; 1839 1840 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1841 return; 1842 1843 if (pci_channel_offline(pdev)) 1844 return; 1845 1846 UPDATE_VF_COUNTER(VFGPRC, gprc); 1847 UPDATE_VF_COUNTER(VFGORC, gorc); 1848 UPDATE_VF_COUNTER(VFGPTC, gptc); 1849 UPDATE_VF_COUNTER(VFGOTC, gotc); 1850 UPDATE_VF_COUNTER(VFMPRC, mprc); 1851 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1852 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1853 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1854 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1855 1856 /* Fill out the OS statistics structure */ 1857 adapter->netdev->stats.multicast = adapter->stats.mprc; 1858 } 1859 1860 static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1861 { 1862 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n", 1863 adapter->link_speed, 1864 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half"); 1865 } 1866 1867 static bool igbvf_has_link(struct igbvf_adapter *adapter) 1868 { 1869 struct e1000_hw *hw = &adapter->hw; 1870 s32 ret_val = E1000_SUCCESS; 1871 bool link_active; 1872 1873 /* If interface is down, stay link down */ 1874 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1875 return false; 1876 1877 spin_lock_bh(&hw->mbx_lock); 1878 1879 ret_val = hw->mac.ops.check_for_link(hw); 1880 1881 spin_unlock_bh(&hw->mbx_lock); 1882 1883 link_active = !hw->mac.get_link_status; 1884 1885 /* if check for link returns error we will need to reset */ 1886 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1887 schedule_work(&adapter->reset_task); 1888 1889 return link_active; 1890 } 1891 1892 /** 1893 * igbvf_watchdog - Timer Call-back 1894 * @data: pointer to adapter cast into an unsigned long 1895 **/ 1896 static void igbvf_watchdog(struct timer_list *t) 1897 { 1898 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer); 1899 1900 /* Do the rest outside of interrupt context */ 1901 schedule_work(&adapter->watchdog_task); 1902 } 1903 1904 static void igbvf_watchdog_task(struct work_struct *work) 1905 { 1906 struct igbvf_adapter *adapter = container_of(work, 1907 struct igbvf_adapter, 1908 watchdog_task); 1909 struct net_device *netdev = adapter->netdev; 1910 struct e1000_mac_info *mac = &adapter->hw.mac; 1911 struct igbvf_ring *tx_ring = adapter->tx_ring; 1912 struct e1000_hw *hw = &adapter->hw; 1913 u32 link; 1914 int tx_pending = 0; 1915 1916 link = igbvf_has_link(adapter); 1917 1918 if (link) { 1919 if (!netif_carrier_ok(netdev)) { 1920 mac->ops.get_link_up_info(&adapter->hw, 1921 &adapter->link_speed, 1922 &adapter->link_duplex); 1923 igbvf_print_link_info(adapter); 1924 1925 netif_carrier_on(netdev); 1926 netif_wake_queue(netdev); 1927 } 1928 } else { 1929 if (netif_carrier_ok(netdev)) { 1930 adapter->link_speed = 0; 1931 adapter->link_duplex = 0; 1932 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1933 netif_carrier_off(netdev); 1934 netif_stop_queue(netdev); 1935 } 1936 } 1937 1938 if (netif_carrier_ok(netdev)) { 1939 igbvf_update_stats(adapter); 1940 } else { 1941 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1942 tx_ring->count); 1943 if (tx_pending) { 1944 /* We've lost link, so the controller stops DMA, 1945 * but we've got queued Tx work that's never going 1946 * to get done, so reset controller to flush Tx. 1947 * (Do the reset outside of interrupt context). 1948 */ 1949 adapter->tx_timeout_count++; 1950 schedule_work(&adapter->reset_task); 1951 } 1952 } 1953 1954 /* Cause software interrupt to ensure Rx ring is cleaned */ 1955 ew32(EICS, adapter->rx_ring->eims_value); 1956 1957 /* Reset the timer */ 1958 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1959 mod_timer(&adapter->watchdog_timer, 1960 round_jiffies(jiffies + (2 * HZ))); 1961 } 1962 1963 #define IGBVF_TX_FLAGS_CSUM 0x00000001 1964 #define IGBVF_TX_FLAGS_VLAN 0x00000002 1965 #define IGBVF_TX_FLAGS_TSO 0x00000004 1966 #define IGBVF_TX_FLAGS_IPV4 0x00000008 1967 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1968 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1969 1970 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens, 1971 u32 type_tucmd, u32 mss_l4len_idx) 1972 { 1973 struct e1000_adv_tx_context_desc *context_desc; 1974 struct igbvf_buffer *buffer_info; 1975 u16 i = tx_ring->next_to_use; 1976 1977 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1978 buffer_info = &tx_ring->buffer_info[i]; 1979 1980 i++; 1981 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 1982 1983 /* set bits to identify this as an advanced context descriptor */ 1984 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 1985 1986 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 1987 context_desc->seqnum_seed = 0; 1988 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 1989 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1990 1991 buffer_info->time_stamp = jiffies; 1992 buffer_info->dma = 0; 1993 } 1994 1995 static int igbvf_tso(struct igbvf_ring *tx_ring, 1996 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) 1997 { 1998 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 1999 union { 2000 struct iphdr *v4; 2001 struct ipv6hdr *v6; 2002 unsigned char *hdr; 2003 } ip; 2004 union { 2005 struct tcphdr *tcp; 2006 unsigned char *hdr; 2007 } l4; 2008 u32 paylen, l4_offset; 2009 int err; 2010 2011 if (skb->ip_summed != CHECKSUM_PARTIAL) 2012 return 0; 2013 2014 if (!skb_is_gso(skb)) 2015 return 0; 2016 2017 err = skb_cow_head(skb, 0); 2018 if (err < 0) 2019 return err; 2020 2021 ip.hdr = skb_network_header(skb); 2022 l4.hdr = skb_checksum_start(skb); 2023 2024 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 2025 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2026 2027 /* initialize outer IP header fields */ 2028 if (ip.v4->version == 4) { 2029 unsigned char *csum_start = skb_checksum_start(skb); 2030 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 2031 2032 /* IP header will have to cancel out any data that 2033 * is not a part of the outer IP header 2034 */ 2035 ip.v4->check = csum_fold(csum_partial(trans_start, 2036 csum_start - trans_start, 2037 0)); 2038 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 2039 2040 ip.v4->tot_len = 0; 2041 } else { 2042 ip.v6->payload_len = 0; 2043 } 2044 2045 /* determine offset of inner transport header */ 2046 l4_offset = l4.hdr - skb->data; 2047 2048 /* compute length of segmentation header */ 2049 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2050 2051 /* remove payload length from inner checksum */ 2052 paylen = skb->len - l4_offset; 2053 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 2054 2055 /* MSS L4LEN IDX */ 2056 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 2057 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 2058 2059 /* VLAN MACLEN IPLEN */ 2060 vlan_macip_lens = l4.hdr - ip.hdr; 2061 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 2062 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2063 2064 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 2065 2066 return 1; 2067 } 2068 2069 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb) 2070 { 2071 unsigned int offset = 0; 2072 2073 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 2074 2075 return offset == skb_checksum_start_offset(skb); 2076 } 2077 2078 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb, 2079 u32 tx_flags, __be16 protocol) 2080 { 2081 u32 vlan_macip_lens = 0; 2082 u32 type_tucmd = 0; 2083 2084 if (skb->ip_summed != CHECKSUM_PARTIAL) { 2085 csum_failed: 2086 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN)) 2087 return false; 2088 goto no_csum; 2089 } 2090 2091 switch (skb->csum_offset) { 2092 case offsetof(struct tcphdr, check): 2093 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 2094 fallthrough; 2095 case offsetof(struct udphdr, check): 2096 break; 2097 case offsetof(struct sctphdr, checksum): 2098 /* validate that this is actually an SCTP request */ 2099 if (((protocol == htons(ETH_P_IP)) && 2100 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 2101 ((protocol == htons(ETH_P_IPV6)) && 2102 igbvf_ipv6_csum_is_sctp(skb))) { 2103 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 2104 break; 2105 } 2106 fallthrough; 2107 default: 2108 skb_checksum_help(skb); 2109 goto csum_failed; 2110 } 2111 2112 vlan_macip_lens = skb_checksum_start_offset(skb) - 2113 skb_network_offset(skb); 2114 no_csum: 2115 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 2116 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK; 2117 2118 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 2119 return true; 2120 } 2121 2122 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 2123 { 2124 struct igbvf_adapter *adapter = netdev_priv(netdev); 2125 2126 /* there is enough descriptors then we don't need to worry */ 2127 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2128 return 0; 2129 2130 netif_stop_queue(netdev); 2131 2132 /* Herbert's original patch had: 2133 * smp_mb__after_netif_stop_queue(); 2134 * but since that doesn't exist yet, just open code it. 2135 */ 2136 smp_mb(); 2137 2138 /* We need to check again just in case room has been made available */ 2139 if (igbvf_desc_unused(adapter->tx_ring) < size) 2140 return -EBUSY; 2141 2142 netif_wake_queue(netdev); 2143 2144 ++adapter->restart_queue; 2145 return 0; 2146 } 2147 2148 #define IGBVF_MAX_TXD_PWR 16 2149 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR) 2150 2151 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2152 struct igbvf_ring *tx_ring, 2153 struct sk_buff *skb) 2154 { 2155 struct igbvf_buffer *buffer_info; 2156 struct pci_dev *pdev = adapter->pdev; 2157 unsigned int len = skb_headlen(skb); 2158 unsigned int count = 0, i; 2159 unsigned int f; 2160 2161 i = tx_ring->next_to_use; 2162 2163 buffer_info = &tx_ring->buffer_info[i]; 2164 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2165 buffer_info->length = len; 2166 /* set time_stamp *before* dma to help avoid a possible race */ 2167 buffer_info->time_stamp = jiffies; 2168 buffer_info->mapped_as_page = false; 2169 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2170 DMA_TO_DEVICE); 2171 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2172 goto dma_error; 2173 2174 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2175 const skb_frag_t *frag; 2176 2177 count++; 2178 i++; 2179 if (i == tx_ring->count) 2180 i = 0; 2181 2182 frag = &skb_shinfo(skb)->frags[f]; 2183 len = skb_frag_size(frag); 2184 2185 buffer_info = &tx_ring->buffer_info[i]; 2186 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2187 buffer_info->length = len; 2188 buffer_info->time_stamp = jiffies; 2189 buffer_info->mapped_as_page = true; 2190 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len, 2191 DMA_TO_DEVICE); 2192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2193 goto dma_error; 2194 } 2195 2196 tx_ring->buffer_info[i].skb = skb; 2197 2198 return ++count; 2199 2200 dma_error: 2201 dev_err(&pdev->dev, "TX DMA map failed\n"); 2202 2203 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2204 buffer_info->dma = 0; 2205 buffer_info->time_stamp = 0; 2206 buffer_info->length = 0; 2207 buffer_info->mapped_as_page = false; 2208 if (count) 2209 count--; 2210 2211 /* clear timestamp and dma mappings for remaining portion of packet */ 2212 while (count--) { 2213 if (i == 0) 2214 i += tx_ring->count; 2215 i--; 2216 buffer_info = &tx_ring->buffer_info[i]; 2217 igbvf_put_txbuf(adapter, buffer_info); 2218 } 2219 2220 return 0; 2221 } 2222 2223 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2224 struct igbvf_ring *tx_ring, 2225 int tx_flags, int count, 2226 unsigned int first, u32 paylen, 2227 u8 hdr_len) 2228 { 2229 union e1000_adv_tx_desc *tx_desc = NULL; 2230 struct igbvf_buffer *buffer_info; 2231 u32 olinfo_status = 0, cmd_type_len; 2232 unsigned int i; 2233 2234 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2235 E1000_ADVTXD_DCMD_DEXT); 2236 2237 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2238 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2239 2240 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2241 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2242 2243 /* insert tcp checksum */ 2244 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2245 2246 /* insert ip checksum */ 2247 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2248 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2249 2250 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2251 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2252 } 2253 2254 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2255 2256 i = tx_ring->next_to_use; 2257 while (count--) { 2258 buffer_info = &tx_ring->buffer_info[i]; 2259 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2260 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2261 tx_desc->read.cmd_type_len = 2262 cpu_to_le32(cmd_type_len | buffer_info->length); 2263 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2264 i++; 2265 if (i == tx_ring->count) 2266 i = 0; 2267 } 2268 2269 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2270 /* Force memory writes to complete before letting h/w 2271 * know there are new descriptors to fetch. (Only 2272 * applicable for weak-ordered memory model archs, 2273 * such as IA-64). 2274 */ 2275 wmb(); 2276 2277 tx_ring->buffer_info[first].next_to_watch = tx_desc; 2278 tx_ring->next_to_use = i; 2279 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2280 } 2281 2282 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2283 struct net_device *netdev, 2284 struct igbvf_ring *tx_ring) 2285 { 2286 struct igbvf_adapter *adapter = netdev_priv(netdev); 2287 unsigned int first, tx_flags = 0; 2288 u8 hdr_len = 0; 2289 int count = 0; 2290 int tso = 0; 2291 __be16 protocol = vlan_get_protocol(skb); 2292 2293 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2294 dev_kfree_skb_any(skb); 2295 return NETDEV_TX_OK; 2296 } 2297 2298 if (skb->len <= 0) { 2299 dev_kfree_skb_any(skb); 2300 return NETDEV_TX_OK; 2301 } 2302 2303 /* need: count + 4 desc gap to keep tail from touching 2304 * + 2 desc gap to keep tail from touching head, 2305 * + 1 desc for skb->data, 2306 * + 1 desc for context descriptor, 2307 * head, otherwise try next time 2308 */ 2309 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2310 /* this is a hard error */ 2311 return NETDEV_TX_BUSY; 2312 } 2313 2314 if (skb_vlan_tag_present(skb)) { 2315 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2316 tx_flags |= (skb_vlan_tag_get(skb) << 2317 IGBVF_TX_FLAGS_VLAN_SHIFT); 2318 } 2319 2320 if (protocol == htons(ETH_P_IP)) 2321 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2322 2323 first = tx_ring->next_to_use; 2324 2325 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len); 2326 if (unlikely(tso < 0)) { 2327 dev_kfree_skb_any(skb); 2328 return NETDEV_TX_OK; 2329 } 2330 2331 if (tso) 2332 tx_flags |= IGBVF_TX_FLAGS_TSO; 2333 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) && 2334 (skb->ip_summed == CHECKSUM_PARTIAL)) 2335 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2336 2337 /* count reflects descriptors mapped, if 0 then mapping error 2338 * has occurred and we need to rewind the descriptor queue 2339 */ 2340 count = igbvf_tx_map_adv(adapter, tx_ring, skb); 2341 2342 if (count) { 2343 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2344 first, skb->len, hdr_len); 2345 /* Make sure there is space in the ring for the next send. */ 2346 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2347 } else { 2348 dev_kfree_skb_any(skb); 2349 tx_ring->buffer_info[first].time_stamp = 0; 2350 tx_ring->next_to_use = first; 2351 } 2352 2353 return NETDEV_TX_OK; 2354 } 2355 2356 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2357 struct net_device *netdev) 2358 { 2359 struct igbvf_adapter *adapter = netdev_priv(netdev); 2360 struct igbvf_ring *tx_ring; 2361 2362 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2363 dev_kfree_skb_any(skb); 2364 return NETDEV_TX_OK; 2365 } 2366 2367 tx_ring = &adapter->tx_ring[0]; 2368 2369 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2370 } 2371 2372 /** 2373 * igbvf_tx_timeout - Respond to a Tx Hang 2374 * @netdev: network interface device structure 2375 **/ 2376 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 2377 { 2378 struct igbvf_adapter *adapter = netdev_priv(netdev); 2379 2380 /* Do the reset outside of interrupt context */ 2381 adapter->tx_timeout_count++; 2382 schedule_work(&adapter->reset_task); 2383 } 2384 2385 static void igbvf_reset_task(struct work_struct *work) 2386 { 2387 struct igbvf_adapter *adapter; 2388 2389 adapter = container_of(work, struct igbvf_adapter, reset_task); 2390 2391 igbvf_reinit_locked(adapter); 2392 } 2393 2394 /** 2395 * igbvf_change_mtu - Change the Maximum Transfer Unit 2396 * @netdev: network interface device structure 2397 * @new_mtu: new value for maximum frame size 2398 * 2399 * Returns 0 on success, negative on failure 2400 **/ 2401 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2402 { 2403 struct igbvf_adapter *adapter = netdev_priv(netdev); 2404 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2405 2406 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2407 usleep_range(1000, 2000); 2408 /* igbvf_down has a dependency on max_frame_size */ 2409 adapter->max_frame_size = max_frame; 2410 if (netif_running(netdev)) 2411 igbvf_down(adapter); 2412 2413 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2414 * means we reserve 2 more, this pushes us to allocate from the next 2415 * larger slab size. 2416 * i.e. RXBUFFER_2048 --> size-4096 slab 2417 * However with the new *_jumbo_rx* routines, jumbo receives will use 2418 * fragmented skbs 2419 */ 2420 2421 if (max_frame <= 1024) 2422 adapter->rx_buffer_len = 1024; 2423 else if (max_frame <= 2048) 2424 adapter->rx_buffer_len = 2048; 2425 else 2426 #if (PAGE_SIZE / 2) > 16384 2427 adapter->rx_buffer_len = 16384; 2428 #else 2429 adapter->rx_buffer_len = PAGE_SIZE / 2; 2430 #endif 2431 2432 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2433 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2434 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2435 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2436 ETH_FCS_LEN; 2437 2438 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2439 netdev->mtu, new_mtu); 2440 netdev->mtu = new_mtu; 2441 2442 if (netif_running(netdev)) 2443 igbvf_up(adapter); 2444 else 2445 igbvf_reset(adapter); 2446 2447 clear_bit(__IGBVF_RESETTING, &adapter->state); 2448 2449 return 0; 2450 } 2451 2452 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2453 { 2454 switch (cmd) { 2455 default: 2456 return -EOPNOTSUPP; 2457 } 2458 } 2459 2460 static int igbvf_suspend(struct device *dev_d) 2461 { 2462 struct net_device *netdev = dev_get_drvdata(dev_d); 2463 struct igbvf_adapter *adapter = netdev_priv(netdev); 2464 2465 netif_device_detach(netdev); 2466 2467 if (netif_running(netdev)) { 2468 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2469 igbvf_down(adapter); 2470 igbvf_free_irq(adapter); 2471 } 2472 2473 return 0; 2474 } 2475 2476 static int __maybe_unused igbvf_resume(struct device *dev_d) 2477 { 2478 struct pci_dev *pdev = to_pci_dev(dev_d); 2479 struct net_device *netdev = pci_get_drvdata(pdev); 2480 struct igbvf_adapter *adapter = netdev_priv(netdev); 2481 u32 err; 2482 2483 pci_set_master(pdev); 2484 2485 if (netif_running(netdev)) { 2486 err = igbvf_request_irq(adapter); 2487 if (err) 2488 return err; 2489 } 2490 2491 igbvf_reset(adapter); 2492 2493 if (netif_running(netdev)) 2494 igbvf_up(adapter); 2495 2496 netif_device_attach(netdev); 2497 2498 return 0; 2499 } 2500 2501 static void igbvf_shutdown(struct pci_dev *pdev) 2502 { 2503 igbvf_suspend(&pdev->dev); 2504 } 2505 2506 #ifdef CONFIG_NET_POLL_CONTROLLER 2507 /* Polling 'interrupt' - used by things like netconsole to send skbs 2508 * without having to re-enable interrupts. It's not called while 2509 * the interrupt routine is executing. 2510 */ 2511 static void igbvf_netpoll(struct net_device *netdev) 2512 { 2513 struct igbvf_adapter *adapter = netdev_priv(netdev); 2514 2515 disable_irq(adapter->pdev->irq); 2516 2517 igbvf_clean_tx_irq(adapter->tx_ring); 2518 2519 enable_irq(adapter->pdev->irq); 2520 } 2521 #endif 2522 2523 /** 2524 * igbvf_io_error_detected - called when PCI error is detected 2525 * @pdev: Pointer to PCI device 2526 * @state: The current pci connection state 2527 * 2528 * This function is called after a PCI bus error affecting 2529 * this device has been detected. 2530 */ 2531 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2532 pci_channel_state_t state) 2533 { 2534 struct net_device *netdev = pci_get_drvdata(pdev); 2535 struct igbvf_adapter *adapter = netdev_priv(netdev); 2536 2537 netif_device_detach(netdev); 2538 2539 if (state == pci_channel_io_perm_failure) 2540 return PCI_ERS_RESULT_DISCONNECT; 2541 2542 if (netif_running(netdev)) 2543 igbvf_down(adapter); 2544 pci_disable_device(pdev); 2545 2546 /* Request a slot slot reset. */ 2547 return PCI_ERS_RESULT_NEED_RESET; 2548 } 2549 2550 /** 2551 * igbvf_io_slot_reset - called after the pci bus has been reset. 2552 * @pdev: Pointer to PCI device 2553 * 2554 * Restart the card from scratch, as if from a cold-boot. Implementation 2555 * resembles the first-half of the igbvf_resume routine. 2556 */ 2557 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2558 { 2559 struct net_device *netdev = pci_get_drvdata(pdev); 2560 struct igbvf_adapter *adapter = netdev_priv(netdev); 2561 2562 if (pci_enable_device_mem(pdev)) { 2563 dev_err(&pdev->dev, 2564 "Cannot re-enable PCI device after reset.\n"); 2565 return PCI_ERS_RESULT_DISCONNECT; 2566 } 2567 pci_set_master(pdev); 2568 2569 igbvf_reset(adapter); 2570 2571 return PCI_ERS_RESULT_RECOVERED; 2572 } 2573 2574 /** 2575 * igbvf_io_resume - called when traffic can start flowing again. 2576 * @pdev: Pointer to PCI device 2577 * 2578 * This callback is called when the error recovery driver tells us that 2579 * its OK to resume normal operation. Implementation resembles the 2580 * second-half of the igbvf_resume routine. 2581 */ 2582 static void igbvf_io_resume(struct pci_dev *pdev) 2583 { 2584 struct net_device *netdev = pci_get_drvdata(pdev); 2585 struct igbvf_adapter *adapter = netdev_priv(netdev); 2586 2587 if (netif_running(netdev)) { 2588 if (igbvf_up(adapter)) { 2589 dev_err(&pdev->dev, 2590 "can't bring device back up after reset\n"); 2591 return; 2592 } 2593 } 2594 2595 netif_device_attach(netdev); 2596 } 2597 2598 static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2599 { 2600 struct e1000_hw *hw = &adapter->hw; 2601 struct net_device *netdev = adapter->netdev; 2602 struct pci_dev *pdev = adapter->pdev; 2603 2604 if (hw->mac.type == e1000_vfadapt_i350) 2605 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n"); 2606 else 2607 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2608 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2609 } 2610 2611 static int igbvf_set_features(struct net_device *netdev, 2612 netdev_features_t features) 2613 { 2614 struct igbvf_adapter *adapter = netdev_priv(netdev); 2615 2616 if (features & NETIF_F_RXCSUM) 2617 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED; 2618 else 2619 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED; 2620 2621 return 0; 2622 } 2623 2624 #define IGBVF_MAX_MAC_HDR_LEN 127 2625 #define IGBVF_MAX_NETWORK_HDR_LEN 511 2626 2627 static netdev_features_t 2628 igbvf_features_check(struct sk_buff *skb, struct net_device *dev, 2629 netdev_features_t features) 2630 { 2631 unsigned int network_hdr_len, mac_hdr_len; 2632 2633 /* Make certain the headers can be described by a context descriptor */ 2634 mac_hdr_len = skb_network_header(skb) - skb->data; 2635 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN)) 2636 return features & ~(NETIF_F_HW_CSUM | 2637 NETIF_F_SCTP_CRC | 2638 NETIF_F_HW_VLAN_CTAG_TX | 2639 NETIF_F_TSO | 2640 NETIF_F_TSO6); 2641 2642 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2643 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN)) 2644 return features & ~(NETIF_F_HW_CSUM | 2645 NETIF_F_SCTP_CRC | 2646 NETIF_F_TSO | 2647 NETIF_F_TSO6); 2648 2649 /* We can only support IPV4 TSO in tunnels if we can mangle the 2650 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2651 */ 2652 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2653 features &= ~NETIF_F_TSO; 2654 2655 return features; 2656 } 2657 2658 static const struct net_device_ops igbvf_netdev_ops = { 2659 .ndo_open = igbvf_open, 2660 .ndo_stop = igbvf_close, 2661 .ndo_start_xmit = igbvf_xmit_frame, 2662 .ndo_set_rx_mode = igbvf_set_rx_mode, 2663 .ndo_set_mac_address = igbvf_set_mac, 2664 .ndo_change_mtu = igbvf_change_mtu, 2665 .ndo_do_ioctl = igbvf_ioctl, 2666 .ndo_tx_timeout = igbvf_tx_timeout, 2667 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2668 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2669 #ifdef CONFIG_NET_POLL_CONTROLLER 2670 .ndo_poll_controller = igbvf_netpoll, 2671 #endif 2672 .ndo_set_features = igbvf_set_features, 2673 .ndo_features_check = igbvf_features_check, 2674 }; 2675 2676 /** 2677 * igbvf_probe - Device Initialization Routine 2678 * @pdev: PCI device information struct 2679 * @ent: entry in igbvf_pci_tbl 2680 * 2681 * Returns 0 on success, negative on failure 2682 * 2683 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2684 * The OS initialization, configuring of the adapter private structure, 2685 * and a hardware reset occur. 2686 **/ 2687 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2688 { 2689 struct net_device *netdev; 2690 struct igbvf_adapter *adapter; 2691 struct e1000_hw *hw; 2692 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2693 2694 static int cards_found; 2695 int err, pci_using_dac; 2696 2697 err = pci_enable_device_mem(pdev); 2698 if (err) 2699 return err; 2700 2701 pci_using_dac = 0; 2702 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2703 if (!err) { 2704 pci_using_dac = 1; 2705 } else { 2706 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2707 if (err) { 2708 dev_err(&pdev->dev, 2709 "No usable DMA configuration, aborting\n"); 2710 goto err_dma; 2711 } 2712 } 2713 2714 err = pci_request_regions(pdev, igbvf_driver_name); 2715 if (err) 2716 goto err_pci_reg; 2717 2718 pci_set_master(pdev); 2719 2720 err = -ENOMEM; 2721 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2722 if (!netdev) 2723 goto err_alloc_etherdev; 2724 2725 SET_NETDEV_DEV(netdev, &pdev->dev); 2726 2727 pci_set_drvdata(pdev, netdev); 2728 adapter = netdev_priv(netdev); 2729 hw = &adapter->hw; 2730 adapter->netdev = netdev; 2731 adapter->pdev = pdev; 2732 adapter->ei = ei; 2733 adapter->pba = ei->pba; 2734 adapter->flags = ei->flags; 2735 adapter->hw.back = adapter; 2736 adapter->hw.mac.type = ei->mac; 2737 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2738 2739 /* PCI config space info */ 2740 2741 hw->vendor_id = pdev->vendor; 2742 hw->device_id = pdev->device; 2743 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2744 hw->subsystem_device_id = pdev->subsystem_device; 2745 hw->revision_id = pdev->revision; 2746 2747 err = -EIO; 2748 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2749 pci_resource_len(pdev, 0)); 2750 2751 if (!adapter->hw.hw_addr) 2752 goto err_ioremap; 2753 2754 if (ei->get_variants) { 2755 err = ei->get_variants(adapter); 2756 if (err) 2757 goto err_get_variants; 2758 } 2759 2760 /* setup adapter struct */ 2761 err = igbvf_sw_init(adapter); 2762 if (err) 2763 goto err_sw_init; 2764 2765 /* construct the net_device struct */ 2766 netdev->netdev_ops = &igbvf_netdev_ops; 2767 2768 igbvf_set_ethtool_ops(netdev); 2769 netdev->watchdog_timeo = 5 * HZ; 2770 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2771 2772 adapter->bd_number = cards_found++; 2773 2774 netdev->hw_features = NETIF_F_SG | 2775 NETIF_F_TSO | 2776 NETIF_F_TSO6 | 2777 NETIF_F_RXCSUM | 2778 NETIF_F_HW_CSUM | 2779 NETIF_F_SCTP_CRC; 2780 2781 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 2782 NETIF_F_GSO_GRE_CSUM | \ 2783 NETIF_F_GSO_IPXIP4 | \ 2784 NETIF_F_GSO_IPXIP6 | \ 2785 NETIF_F_GSO_UDP_TUNNEL | \ 2786 NETIF_F_GSO_UDP_TUNNEL_CSUM) 2787 2788 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES; 2789 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 2790 IGBVF_GSO_PARTIAL_FEATURES; 2791 2792 netdev->features = netdev->hw_features; 2793 2794 if (pci_using_dac) 2795 netdev->features |= NETIF_F_HIGHDMA; 2796 2797 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 2798 netdev->mpls_features |= NETIF_F_HW_CSUM; 2799 netdev->hw_enc_features |= netdev->vlan_features; 2800 2801 /* set this bit last since it cannot be part of vlan_features */ 2802 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 2803 NETIF_F_HW_VLAN_CTAG_RX | 2804 NETIF_F_HW_VLAN_CTAG_TX; 2805 2806 /* MTU range: 68 - 9216 */ 2807 netdev->min_mtu = ETH_MIN_MTU; 2808 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 2809 2810 spin_lock_bh(&hw->mbx_lock); 2811 2812 /*reset the controller to put the device in a known good state */ 2813 err = hw->mac.ops.reset_hw(hw); 2814 if (err) { 2815 dev_info(&pdev->dev, 2816 "PF still in reset state. Is the PF interface up?\n"); 2817 } else { 2818 err = hw->mac.ops.read_mac_addr(hw); 2819 if (err) 2820 dev_info(&pdev->dev, "Error reading MAC address.\n"); 2821 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2822 dev_info(&pdev->dev, 2823 "MAC address not assigned by administrator.\n"); 2824 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 2825 netdev->addr_len); 2826 } 2827 2828 spin_unlock_bh(&hw->mbx_lock); 2829 2830 if (!is_valid_ether_addr(netdev->dev_addr)) { 2831 dev_info(&pdev->dev, "Assigning random MAC address.\n"); 2832 eth_hw_addr_random(netdev); 2833 memcpy(adapter->hw.mac.addr, netdev->dev_addr, 2834 netdev->addr_len); 2835 } 2836 2837 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0); 2838 2839 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2840 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2841 2842 /* ring size defaults */ 2843 adapter->rx_ring->count = 1024; 2844 adapter->tx_ring->count = 1024; 2845 2846 /* reset the hardware with the new settings */ 2847 igbvf_reset(adapter); 2848 2849 /* set hardware-specific flags */ 2850 if (adapter->hw.mac.type == e1000_vfadapt_i350) 2851 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP; 2852 2853 strcpy(netdev->name, "eth%d"); 2854 err = register_netdev(netdev); 2855 if (err) 2856 goto err_hw_init; 2857 2858 /* tell the stack to leave us alone until igbvf_open() is called */ 2859 netif_carrier_off(netdev); 2860 netif_stop_queue(netdev); 2861 2862 igbvf_print_device_info(adapter); 2863 2864 igbvf_initialize_last_counter_stats(adapter); 2865 2866 return 0; 2867 2868 err_hw_init: 2869 kfree(adapter->tx_ring); 2870 kfree(adapter->rx_ring); 2871 err_sw_init: 2872 igbvf_reset_interrupt_capability(adapter); 2873 err_get_variants: 2874 iounmap(adapter->hw.hw_addr); 2875 err_ioremap: 2876 free_netdev(netdev); 2877 err_alloc_etherdev: 2878 pci_release_regions(pdev); 2879 err_pci_reg: 2880 err_dma: 2881 pci_disable_device(pdev); 2882 return err; 2883 } 2884 2885 /** 2886 * igbvf_remove - Device Removal Routine 2887 * @pdev: PCI device information struct 2888 * 2889 * igbvf_remove is called by the PCI subsystem to alert the driver 2890 * that it should release a PCI device. The could be caused by a 2891 * Hot-Plug event, or because the driver is going to be removed from 2892 * memory. 2893 **/ 2894 static void igbvf_remove(struct pci_dev *pdev) 2895 { 2896 struct net_device *netdev = pci_get_drvdata(pdev); 2897 struct igbvf_adapter *adapter = netdev_priv(netdev); 2898 struct e1000_hw *hw = &adapter->hw; 2899 2900 /* The watchdog timer may be rescheduled, so explicitly 2901 * disable it from being rescheduled. 2902 */ 2903 set_bit(__IGBVF_DOWN, &adapter->state); 2904 del_timer_sync(&adapter->watchdog_timer); 2905 2906 cancel_work_sync(&adapter->reset_task); 2907 cancel_work_sync(&adapter->watchdog_task); 2908 2909 unregister_netdev(netdev); 2910 2911 igbvf_reset_interrupt_capability(adapter); 2912 2913 /* it is important to delete the NAPI struct prior to freeing the 2914 * Rx ring so that you do not end up with null pointer refs 2915 */ 2916 netif_napi_del(&adapter->rx_ring->napi); 2917 kfree(adapter->tx_ring); 2918 kfree(adapter->rx_ring); 2919 2920 iounmap(hw->hw_addr); 2921 if (hw->flash_address) 2922 iounmap(hw->flash_address); 2923 pci_release_regions(pdev); 2924 2925 free_netdev(netdev); 2926 2927 pci_disable_device(pdev); 2928 } 2929 2930 /* PCI Error Recovery (ERS) */ 2931 static const struct pci_error_handlers igbvf_err_handler = { 2932 .error_detected = igbvf_io_error_detected, 2933 .slot_reset = igbvf_io_slot_reset, 2934 .resume = igbvf_io_resume, 2935 }; 2936 2937 static const struct pci_device_id igbvf_pci_tbl[] = { 2938 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2939 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2940 { } /* terminate list */ 2941 }; 2942 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2943 2944 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume); 2945 2946 /* PCI Device API Driver */ 2947 static struct pci_driver igbvf_driver = { 2948 .name = igbvf_driver_name, 2949 .id_table = igbvf_pci_tbl, 2950 .probe = igbvf_probe, 2951 .remove = igbvf_remove, 2952 .driver.pm = &igbvf_pm_ops, 2953 .shutdown = igbvf_shutdown, 2954 .err_handler = &igbvf_err_handler 2955 }; 2956 2957 /** 2958 * igbvf_init_module - Driver Registration Routine 2959 * 2960 * igbvf_init_module is the first routine called when the driver is 2961 * loaded. All it does is register with the PCI subsystem. 2962 **/ 2963 static int __init igbvf_init_module(void) 2964 { 2965 int ret; 2966 2967 pr_info("%s\n", igbvf_driver_string); 2968 pr_info("%s\n", igbvf_copyright); 2969 2970 ret = pci_register_driver(&igbvf_driver); 2971 2972 return ret; 2973 } 2974 module_init(igbvf_init_module); 2975 2976 /** 2977 * igbvf_exit_module - Driver Exit Cleanup Routine 2978 * 2979 * igbvf_exit_module is called just before the driver is removed 2980 * from memory. 2981 **/ 2982 static void __exit igbvf_exit_module(void) 2983 { 2984 pci_unregister_driver(&igbvf_driver); 2985 } 2986 module_exit(igbvf_exit_module); 2987 2988 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 2989 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver"); 2990 MODULE_LICENSE("GPL v2"); 2991 2992 /* netdev.c */ 2993