1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24 
25 #include "igbvf.h"
26 
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 		  "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42 
43 static struct igbvf_info igbvf_vf_info = {
44 	.mac		= e1000_vfadapt,
45 	.flags		= 0,
46 	.pba		= 10,
47 	.init_ops	= e1000_init_function_pointers_vf,
48 };
49 
50 static struct igbvf_info igbvf_i350_vf_info = {
51 	.mac		= e1000_vfadapt_i350,
52 	.flags		= 0,
53 	.pba		= 10,
54 	.init_ops	= e1000_init_function_pointers_vf,
55 };
56 
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 	[board_vf]	= &igbvf_vf_info,
59 	[board_i350_vf]	= &igbvf_i350_vf_info,
60 };
61 
62 /**
63  * igbvf_desc_unused - calculate if we have unused descriptors
64  * @rx_ring: address of receive ring structure
65  **/
66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 	if (ring->next_to_clean > ring->next_to_use)
69 		return ring->next_to_clean - ring->next_to_use - 1;
70 
71 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73 
74 /**
75  * igbvf_receive_skb - helper function to handle Rx indications
76  * @adapter: board private structure
77  * @status: descriptor status field as written by hardware
78  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
79  * @skb: pointer to sk_buff to be indicated to stack
80  **/
81 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
82 			      struct net_device *netdev,
83 			      struct sk_buff *skb,
84 			      u32 status, u16 vlan)
85 {
86 	u16 vid;
87 
88 	if (status & E1000_RXD_STAT_VP) {
89 		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
90 		    (status & E1000_RXDEXT_STATERR_LB))
91 			vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
92 		else
93 			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
94 		if (test_bit(vid, adapter->active_vlans))
95 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
96 	}
97 
98 	napi_gro_receive(&adapter->rx_ring->napi, skb);
99 }
100 
101 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
102 					 u32 status_err, struct sk_buff *skb)
103 {
104 	skb_checksum_none_assert(skb);
105 
106 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
107 	if ((status_err & E1000_RXD_STAT_IXSM) ||
108 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
109 		return;
110 
111 	/* TCP/UDP checksum error bit is set */
112 	if (status_err &
113 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
114 		/* let the stack verify checksum errors */
115 		adapter->hw_csum_err++;
116 		return;
117 	}
118 
119 	/* It must be a TCP or UDP packet with a valid checksum */
120 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
121 		skb->ip_summed = CHECKSUM_UNNECESSARY;
122 
123 	adapter->hw_csum_good++;
124 }
125 
126 /**
127  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128  * @rx_ring: address of ring structure to repopulate
129  * @cleaned_count: number of buffers to repopulate
130  **/
131 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
132 				   int cleaned_count)
133 {
134 	struct igbvf_adapter *adapter = rx_ring->adapter;
135 	struct net_device *netdev = adapter->netdev;
136 	struct pci_dev *pdev = adapter->pdev;
137 	union e1000_adv_rx_desc *rx_desc;
138 	struct igbvf_buffer *buffer_info;
139 	struct sk_buff *skb;
140 	unsigned int i;
141 	int bufsz;
142 
143 	i = rx_ring->next_to_use;
144 	buffer_info = &rx_ring->buffer_info[i];
145 
146 	if (adapter->rx_ps_hdr_size)
147 		bufsz = adapter->rx_ps_hdr_size;
148 	else
149 		bufsz = adapter->rx_buffer_len;
150 
151 	while (cleaned_count--) {
152 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
153 
154 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
155 			if (!buffer_info->page) {
156 				buffer_info->page = alloc_page(GFP_ATOMIC);
157 				if (!buffer_info->page) {
158 					adapter->alloc_rx_buff_failed++;
159 					goto no_buffers;
160 				}
161 				buffer_info->page_offset = 0;
162 			} else {
163 				buffer_info->page_offset ^= PAGE_SIZE / 2;
164 			}
165 			buffer_info->page_dma =
166 				dma_map_page(&pdev->dev, buffer_info->page,
167 					     buffer_info->page_offset,
168 					     PAGE_SIZE / 2,
169 					     DMA_FROM_DEVICE);
170 			if (dma_mapping_error(&pdev->dev,
171 					      buffer_info->page_dma)) {
172 				__free_page(buffer_info->page);
173 				buffer_info->page = NULL;
174 				dev_err(&pdev->dev, "RX DMA map failed\n");
175 				break;
176 			}
177 		}
178 
179 		if (!buffer_info->skb) {
180 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
181 			if (!skb) {
182 				adapter->alloc_rx_buff_failed++;
183 				goto no_buffers;
184 			}
185 
186 			buffer_info->skb = skb;
187 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
188 							  bufsz,
189 							  DMA_FROM_DEVICE);
190 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
191 				dev_kfree_skb(buffer_info->skb);
192 				buffer_info->skb = NULL;
193 				dev_err(&pdev->dev, "RX DMA map failed\n");
194 				goto no_buffers;
195 			}
196 		}
197 		/* Refresh the desc even if buffer_addrs didn't change because
198 		 * each write-back erases this info.
199 		 */
200 		if (adapter->rx_ps_hdr_size) {
201 			rx_desc->read.pkt_addr =
202 			     cpu_to_le64(buffer_info->page_dma);
203 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
204 		} else {
205 			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
206 			rx_desc->read.hdr_addr = 0;
207 		}
208 
209 		i++;
210 		if (i == rx_ring->count)
211 			i = 0;
212 		buffer_info = &rx_ring->buffer_info[i];
213 	}
214 
215 no_buffers:
216 	if (rx_ring->next_to_use != i) {
217 		rx_ring->next_to_use = i;
218 		if (i == 0)
219 			i = (rx_ring->count - 1);
220 		else
221 			i--;
222 
223 		/* Force memory writes to complete before letting h/w
224 		 * know there are new descriptors to fetch.  (Only
225 		 * applicable for weak-ordered memory model archs,
226 		 * such as IA-64).
227 		*/
228 		wmb();
229 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 	}
231 }
232 
233 /**
234  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
235  * @adapter: board private structure
236  *
237  * the return value indicates whether actual cleaning was done, there
238  * is no guarantee that everything was cleaned
239  **/
240 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
241 			       int *work_done, int work_to_do)
242 {
243 	struct igbvf_ring *rx_ring = adapter->rx_ring;
244 	struct net_device *netdev = adapter->netdev;
245 	struct pci_dev *pdev = adapter->pdev;
246 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
247 	struct igbvf_buffer *buffer_info, *next_buffer;
248 	struct sk_buff *skb;
249 	bool cleaned = false;
250 	int cleaned_count = 0;
251 	unsigned int total_bytes = 0, total_packets = 0;
252 	unsigned int i;
253 	u32 length, hlen, staterr;
254 
255 	i = rx_ring->next_to_clean;
256 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
257 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
258 
259 	while (staterr & E1000_RXD_STAT_DD) {
260 		if (*work_done >= work_to_do)
261 			break;
262 		(*work_done)++;
263 		rmb(); /* read descriptor and rx_buffer_info after status DD */
264 
265 		buffer_info = &rx_ring->buffer_info[i];
266 
267 		/* HW will not DMA in data larger than the given buffer, even
268 		 * if it parses the (NFS, of course) header to be larger.  In
269 		 * that case, it fills the header buffer and spills the rest
270 		 * into the page.
271 		 */
272 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
273 		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
274 		       E1000_RXDADV_HDRBUFLEN_SHIFT;
275 		if (hlen > adapter->rx_ps_hdr_size)
276 			hlen = adapter->rx_ps_hdr_size;
277 
278 		length = le16_to_cpu(rx_desc->wb.upper.length);
279 		cleaned = true;
280 		cleaned_count++;
281 
282 		skb = buffer_info->skb;
283 		prefetch(skb->data - NET_IP_ALIGN);
284 		buffer_info->skb = NULL;
285 		if (!adapter->rx_ps_hdr_size) {
286 			dma_unmap_single(&pdev->dev, buffer_info->dma,
287 					 adapter->rx_buffer_len,
288 					 DMA_FROM_DEVICE);
289 			buffer_info->dma = 0;
290 			skb_put(skb, length);
291 			goto send_up;
292 		}
293 
294 		if (!skb_shinfo(skb)->nr_frags) {
295 			dma_unmap_single(&pdev->dev, buffer_info->dma,
296 					 adapter->rx_ps_hdr_size,
297 					 DMA_FROM_DEVICE);
298 			buffer_info->dma = 0;
299 			skb_put(skb, hlen);
300 		}
301 
302 		if (length) {
303 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
304 				       PAGE_SIZE / 2,
305 				       DMA_FROM_DEVICE);
306 			buffer_info->page_dma = 0;
307 
308 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
309 					   buffer_info->page,
310 					   buffer_info->page_offset,
311 					   length);
312 
313 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
314 			    (page_count(buffer_info->page) != 1))
315 				buffer_info->page = NULL;
316 			else
317 				get_page(buffer_info->page);
318 
319 			skb->len += length;
320 			skb->data_len += length;
321 			skb->truesize += PAGE_SIZE / 2;
322 		}
323 send_up:
324 		i++;
325 		if (i == rx_ring->count)
326 			i = 0;
327 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
328 		prefetch(next_rxd);
329 		next_buffer = &rx_ring->buffer_info[i];
330 
331 		if (!(staterr & E1000_RXD_STAT_EOP)) {
332 			buffer_info->skb = next_buffer->skb;
333 			buffer_info->dma = next_buffer->dma;
334 			next_buffer->skb = skb;
335 			next_buffer->dma = 0;
336 			goto next_desc;
337 		}
338 
339 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
340 			dev_kfree_skb_irq(skb);
341 			goto next_desc;
342 		}
343 
344 		total_bytes += skb->len;
345 		total_packets++;
346 
347 		igbvf_rx_checksum_adv(adapter, staterr, skb);
348 
349 		skb->protocol = eth_type_trans(skb, netdev);
350 
351 		igbvf_receive_skb(adapter, netdev, skb, staterr,
352 				  rx_desc->wb.upper.vlan);
353 
354 next_desc:
355 		rx_desc->wb.upper.status_error = 0;
356 
357 		/* return some buffers to hardware, one at a time is too slow */
358 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
359 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
360 			cleaned_count = 0;
361 		}
362 
363 		/* use prefetched values */
364 		rx_desc = next_rxd;
365 		buffer_info = next_buffer;
366 
367 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
368 	}
369 
370 	rx_ring->next_to_clean = i;
371 	cleaned_count = igbvf_desc_unused(rx_ring);
372 
373 	if (cleaned_count)
374 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
375 
376 	adapter->total_rx_packets += total_packets;
377 	adapter->total_rx_bytes += total_bytes;
378 	netdev->stats.rx_bytes += total_bytes;
379 	netdev->stats.rx_packets += total_packets;
380 	return cleaned;
381 }
382 
383 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
384 			    struct igbvf_buffer *buffer_info)
385 {
386 	if (buffer_info->dma) {
387 		if (buffer_info->mapped_as_page)
388 			dma_unmap_page(&adapter->pdev->dev,
389 				       buffer_info->dma,
390 				       buffer_info->length,
391 				       DMA_TO_DEVICE);
392 		else
393 			dma_unmap_single(&adapter->pdev->dev,
394 					 buffer_info->dma,
395 					 buffer_info->length,
396 					 DMA_TO_DEVICE);
397 		buffer_info->dma = 0;
398 	}
399 	if (buffer_info->skb) {
400 		dev_kfree_skb_any(buffer_info->skb);
401 		buffer_info->skb = NULL;
402 	}
403 	buffer_info->time_stamp = 0;
404 }
405 
406 /**
407  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
408  * @adapter: board private structure
409  *
410  * Return 0 on success, negative on failure
411  **/
412 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
413 			     struct igbvf_ring *tx_ring)
414 {
415 	struct pci_dev *pdev = adapter->pdev;
416 	int size;
417 
418 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
419 	tx_ring->buffer_info = vzalloc(size);
420 	if (!tx_ring->buffer_info)
421 		goto err;
422 
423 	/* round up to nearest 4K */
424 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
425 	tx_ring->size = ALIGN(tx_ring->size, 4096);
426 
427 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
428 					   &tx_ring->dma, GFP_KERNEL);
429 	if (!tx_ring->desc)
430 		goto err;
431 
432 	tx_ring->adapter = adapter;
433 	tx_ring->next_to_use = 0;
434 	tx_ring->next_to_clean = 0;
435 
436 	return 0;
437 err:
438 	vfree(tx_ring->buffer_info);
439 	dev_err(&adapter->pdev->dev,
440 		"Unable to allocate memory for the transmit descriptor ring\n");
441 	return -ENOMEM;
442 }
443 
444 /**
445  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
446  * @adapter: board private structure
447  *
448  * Returns 0 on success, negative on failure
449  **/
450 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
451 			     struct igbvf_ring *rx_ring)
452 {
453 	struct pci_dev *pdev = adapter->pdev;
454 	int size, desc_len;
455 
456 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
457 	rx_ring->buffer_info = vzalloc(size);
458 	if (!rx_ring->buffer_info)
459 		goto err;
460 
461 	desc_len = sizeof(union e1000_adv_rx_desc);
462 
463 	/* Round up to nearest 4K */
464 	rx_ring->size = rx_ring->count * desc_len;
465 	rx_ring->size = ALIGN(rx_ring->size, 4096);
466 
467 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
468 					   &rx_ring->dma, GFP_KERNEL);
469 	if (!rx_ring->desc)
470 		goto err;
471 
472 	rx_ring->next_to_clean = 0;
473 	rx_ring->next_to_use = 0;
474 
475 	rx_ring->adapter = adapter;
476 
477 	return 0;
478 
479 err:
480 	vfree(rx_ring->buffer_info);
481 	rx_ring->buffer_info = NULL;
482 	dev_err(&adapter->pdev->dev,
483 		"Unable to allocate memory for the receive descriptor ring\n");
484 	return -ENOMEM;
485 }
486 
487 /**
488  * igbvf_clean_tx_ring - Free Tx Buffers
489  * @tx_ring: ring to be cleaned
490  **/
491 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
492 {
493 	struct igbvf_adapter *adapter = tx_ring->adapter;
494 	struct igbvf_buffer *buffer_info;
495 	unsigned long size;
496 	unsigned int i;
497 
498 	if (!tx_ring->buffer_info)
499 		return;
500 
501 	/* Free all the Tx ring sk_buffs */
502 	for (i = 0; i < tx_ring->count; i++) {
503 		buffer_info = &tx_ring->buffer_info[i];
504 		igbvf_put_txbuf(adapter, buffer_info);
505 	}
506 
507 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
508 	memset(tx_ring->buffer_info, 0, size);
509 
510 	/* Zero out the descriptor ring */
511 	memset(tx_ring->desc, 0, tx_ring->size);
512 
513 	tx_ring->next_to_use = 0;
514 	tx_ring->next_to_clean = 0;
515 
516 	writel(0, adapter->hw.hw_addr + tx_ring->head);
517 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
518 }
519 
520 /**
521  * igbvf_free_tx_resources - Free Tx Resources per Queue
522  * @tx_ring: ring to free resources from
523  *
524  * Free all transmit software resources
525  **/
526 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
527 {
528 	struct pci_dev *pdev = tx_ring->adapter->pdev;
529 
530 	igbvf_clean_tx_ring(tx_ring);
531 
532 	vfree(tx_ring->buffer_info);
533 	tx_ring->buffer_info = NULL;
534 
535 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
536 			  tx_ring->dma);
537 
538 	tx_ring->desc = NULL;
539 }
540 
541 /**
542  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
543  * @adapter: board private structure
544  **/
545 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
546 {
547 	struct igbvf_adapter *adapter = rx_ring->adapter;
548 	struct igbvf_buffer *buffer_info;
549 	struct pci_dev *pdev = adapter->pdev;
550 	unsigned long size;
551 	unsigned int i;
552 
553 	if (!rx_ring->buffer_info)
554 		return;
555 
556 	/* Free all the Rx ring sk_buffs */
557 	for (i = 0; i < rx_ring->count; i++) {
558 		buffer_info = &rx_ring->buffer_info[i];
559 		if (buffer_info->dma) {
560 			if (adapter->rx_ps_hdr_size) {
561 				dma_unmap_single(&pdev->dev, buffer_info->dma,
562 						 adapter->rx_ps_hdr_size,
563 						 DMA_FROM_DEVICE);
564 			} else {
565 				dma_unmap_single(&pdev->dev, buffer_info->dma,
566 						 adapter->rx_buffer_len,
567 						 DMA_FROM_DEVICE);
568 			}
569 			buffer_info->dma = 0;
570 		}
571 
572 		if (buffer_info->skb) {
573 			dev_kfree_skb(buffer_info->skb);
574 			buffer_info->skb = NULL;
575 		}
576 
577 		if (buffer_info->page) {
578 			if (buffer_info->page_dma)
579 				dma_unmap_page(&pdev->dev,
580 					       buffer_info->page_dma,
581 					       PAGE_SIZE / 2,
582 					       DMA_FROM_DEVICE);
583 			put_page(buffer_info->page);
584 			buffer_info->page = NULL;
585 			buffer_info->page_dma = 0;
586 			buffer_info->page_offset = 0;
587 		}
588 	}
589 
590 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
591 	memset(rx_ring->buffer_info, 0, size);
592 
593 	/* Zero out the descriptor ring */
594 	memset(rx_ring->desc, 0, rx_ring->size);
595 
596 	rx_ring->next_to_clean = 0;
597 	rx_ring->next_to_use = 0;
598 
599 	writel(0, adapter->hw.hw_addr + rx_ring->head);
600 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
601 }
602 
603 /**
604  * igbvf_free_rx_resources - Free Rx Resources
605  * @rx_ring: ring to clean the resources from
606  *
607  * Free all receive software resources
608  **/
609 
610 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
611 {
612 	struct pci_dev *pdev = rx_ring->adapter->pdev;
613 
614 	igbvf_clean_rx_ring(rx_ring);
615 
616 	vfree(rx_ring->buffer_info);
617 	rx_ring->buffer_info = NULL;
618 
619 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
620 			  rx_ring->dma);
621 	rx_ring->desc = NULL;
622 }
623 
624 /**
625  * igbvf_update_itr - update the dynamic ITR value based on statistics
626  * @adapter: pointer to adapter
627  * @itr_setting: current adapter->itr
628  * @packets: the number of packets during this measurement interval
629  * @bytes: the number of bytes during this measurement interval
630  *
631  * Stores a new ITR value based on packets and byte counts during the last
632  * interrupt.  The advantage of per interrupt computation is faster updates
633  * and more accurate ITR for the current traffic pattern.  Constants in this
634  * function were computed based on theoretical maximum wire speed and thresholds
635  * were set based on testing data as well as attempting to minimize response
636  * time while increasing bulk throughput.
637  **/
638 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
639 					   enum latency_range itr_setting,
640 					   int packets, int bytes)
641 {
642 	enum latency_range retval = itr_setting;
643 
644 	if (packets == 0)
645 		goto update_itr_done;
646 
647 	switch (itr_setting) {
648 	case lowest_latency:
649 		/* handle TSO and jumbo frames */
650 		if (bytes/packets > 8000)
651 			retval = bulk_latency;
652 		else if ((packets < 5) && (bytes > 512))
653 			retval = low_latency;
654 		break;
655 	case low_latency:  /* 50 usec aka 20000 ints/s */
656 		if (bytes > 10000) {
657 			/* this if handles the TSO accounting */
658 			if (bytes/packets > 8000)
659 				retval = bulk_latency;
660 			else if ((packets < 10) || ((bytes/packets) > 1200))
661 				retval = bulk_latency;
662 			else if ((packets > 35))
663 				retval = lowest_latency;
664 		} else if (bytes/packets > 2000) {
665 			retval = bulk_latency;
666 		} else if (packets <= 2 && bytes < 512) {
667 			retval = lowest_latency;
668 		}
669 		break;
670 	case bulk_latency: /* 250 usec aka 4000 ints/s */
671 		if (bytes > 25000) {
672 			if (packets > 35)
673 				retval = low_latency;
674 		} else if (bytes < 6000) {
675 			retval = low_latency;
676 		}
677 		break;
678 	default:
679 		break;
680 	}
681 
682 update_itr_done:
683 	return retval;
684 }
685 
686 static int igbvf_range_to_itr(enum latency_range current_range)
687 {
688 	int new_itr;
689 
690 	switch (current_range) {
691 	/* counts and packets in update_itr are dependent on these numbers */
692 	case lowest_latency:
693 		new_itr = IGBVF_70K_ITR;
694 		break;
695 	case low_latency:
696 		new_itr = IGBVF_20K_ITR;
697 		break;
698 	case bulk_latency:
699 		new_itr = IGBVF_4K_ITR;
700 		break;
701 	default:
702 		new_itr = IGBVF_START_ITR;
703 		break;
704 	}
705 	return new_itr;
706 }
707 
708 static void igbvf_set_itr(struct igbvf_adapter *adapter)
709 {
710 	u32 new_itr;
711 
712 	adapter->tx_ring->itr_range =
713 			igbvf_update_itr(adapter,
714 					 adapter->tx_ring->itr_val,
715 					 adapter->total_tx_packets,
716 					 adapter->total_tx_bytes);
717 
718 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
719 	if (adapter->requested_itr == 3 &&
720 	    adapter->tx_ring->itr_range == lowest_latency)
721 		adapter->tx_ring->itr_range = low_latency;
722 
723 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
724 
725 	if (new_itr != adapter->tx_ring->itr_val) {
726 		u32 current_itr = adapter->tx_ring->itr_val;
727 		/* this attempts to bias the interrupt rate towards Bulk
728 		 * by adding intermediate steps when interrupt rate is
729 		 * increasing
730 		 */
731 		new_itr = new_itr > current_itr ?
732 			  min(current_itr + (new_itr >> 2), new_itr) :
733 			  new_itr;
734 		adapter->tx_ring->itr_val = new_itr;
735 
736 		adapter->tx_ring->set_itr = 1;
737 	}
738 
739 	adapter->rx_ring->itr_range =
740 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
741 					 adapter->total_rx_packets,
742 					 adapter->total_rx_bytes);
743 	if (adapter->requested_itr == 3 &&
744 	    adapter->rx_ring->itr_range == lowest_latency)
745 		adapter->rx_ring->itr_range = low_latency;
746 
747 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
748 
749 	if (new_itr != adapter->rx_ring->itr_val) {
750 		u32 current_itr = adapter->rx_ring->itr_val;
751 
752 		new_itr = new_itr > current_itr ?
753 			  min(current_itr + (new_itr >> 2), new_itr) :
754 			  new_itr;
755 		adapter->rx_ring->itr_val = new_itr;
756 
757 		adapter->rx_ring->set_itr = 1;
758 	}
759 }
760 
761 /**
762  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
763  * @adapter: board private structure
764  *
765  * returns true if ring is completely cleaned
766  **/
767 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
768 {
769 	struct igbvf_adapter *adapter = tx_ring->adapter;
770 	struct net_device *netdev = adapter->netdev;
771 	struct igbvf_buffer *buffer_info;
772 	struct sk_buff *skb;
773 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
774 	unsigned int total_bytes = 0, total_packets = 0;
775 	unsigned int i, count = 0;
776 	bool cleaned = false;
777 
778 	i = tx_ring->next_to_clean;
779 	buffer_info = &tx_ring->buffer_info[i];
780 	eop_desc = buffer_info->next_to_watch;
781 
782 	do {
783 		/* if next_to_watch is not set then there is no work pending */
784 		if (!eop_desc)
785 			break;
786 
787 		/* prevent any other reads prior to eop_desc */
788 		smp_rmb();
789 
790 		/* if DD is not set pending work has not been completed */
791 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
792 			break;
793 
794 		/* clear next_to_watch to prevent false hangs */
795 		buffer_info->next_to_watch = NULL;
796 
797 		for (cleaned = false; !cleaned; count++) {
798 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
799 			cleaned = (tx_desc == eop_desc);
800 			skb = buffer_info->skb;
801 
802 			if (skb) {
803 				unsigned int segs, bytecount;
804 
805 				/* gso_segs is currently only valid for tcp */
806 				segs = skb_shinfo(skb)->gso_segs ?: 1;
807 				/* multiply data chunks by size of headers */
808 				bytecount = ((segs - 1) * skb_headlen(skb)) +
809 					    skb->len;
810 				total_packets += segs;
811 				total_bytes += bytecount;
812 			}
813 
814 			igbvf_put_txbuf(adapter, buffer_info);
815 			tx_desc->wb.status = 0;
816 
817 			i++;
818 			if (i == tx_ring->count)
819 				i = 0;
820 
821 			buffer_info = &tx_ring->buffer_info[i];
822 		}
823 
824 		eop_desc = buffer_info->next_to_watch;
825 	} while (count < tx_ring->count);
826 
827 	tx_ring->next_to_clean = i;
828 
829 	if (unlikely(count && netif_carrier_ok(netdev) &&
830 	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
831 		/* Make sure that anybody stopping the queue after this
832 		 * sees the new next_to_clean.
833 		 */
834 		smp_mb();
835 		if (netif_queue_stopped(netdev) &&
836 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
837 			netif_wake_queue(netdev);
838 			++adapter->restart_queue;
839 		}
840 	}
841 
842 	netdev->stats.tx_bytes += total_bytes;
843 	netdev->stats.tx_packets += total_packets;
844 	return count < tx_ring->count;
845 }
846 
847 static irqreturn_t igbvf_msix_other(int irq, void *data)
848 {
849 	struct net_device *netdev = data;
850 	struct igbvf_adapter *adapter = netdev_priv(netdev);
851 	struct e1000_hw *hw = &adapter->hw;
852 
853 	adapter->int_counter1++;
854 
855 	hw->mac.get_link_status = 1;
856 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
857 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
858 
859 	ew32(EIMS, adapter->eims_other);
860 
861 	return IRQ_HANDLED;
862 }
863 
864 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
865 {
866 	struct net_device *netdev = data;
867 	struct igbvf_adapter *adapter = netdev_priv(netdev);
868 	struct e1000_hw *hw = &adapter->hw;
869 	struct igbvf_ring *tx_ring = adapter->tx_ring;
870 
871 	if (tx_ring->set_itr) {
872 		writel(tx_ring->itr_val,
873 		       adapter->hw.hw_addr + tx_ring->itr_register);
874 		adapter->tx_ring->set_itr = 0;
875 	}
876 
877 	adapter->total_tx_bytes = 0;
878 	adapter->total_tx_packets = 0;
879 
880 	/* auto mask will automatically re-enable the interrupt when we write
881 	 * EICS
882 	 */
883 	if (!igbvf_clean_tx_irq(tx_ring))
884 		/* Ring was not completely cleaned, so fire another interrupt */
885 		ew32(EICS, tx_ring->eims_value);
886 	else
887 		ew32(EIMS, tx_ring->eims_value);
888 
889 	return IRQ_HANDLED;
890 }
891 
892 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
893 {
894 	struct net_device *netdev = data;
895 	struct igbvf_adapter *adapter = netdev_priv(netdev);
896 
897 	adapter->int_counter0++;
898 
899 	/* Write the ITR value calculated at the end of the
900 	 * previous interrupt.
901 	 */
902 	if (adapter->rx_ring->set_itr) {
903 		writel(adapter->rx_ring->itr_val,
904 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
905 		adapter->rx_ring->set_itr = 0;
906 	}
907 
908 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
909 		adapter->total_rx_bytes = 0;
910 		adapter->total_rx_packets = 0;
911 		__napi_schedule(&adapter->rx_ring->napi);
912 	}
913 
914 	return IRQ_HANDLED;
915 }
916 
917 #define IGBVF_NO_QUEUE -1
918 
919 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
920 				int tx_queue, int msix_vector)
921 {
922 	struct e1000_hw *hw = &adapter->hw;
923 	u32 ivar, index;
924 
925 	/* 82576 uses a table-based method for assigning vectors.
926 	 * Each queue has a single entry in the table to which we write
927 	 * a vector number along with a "valid" bit.  Sadly, the layout
928 	 * of the table is somewhat counterintuitive.
929 	 */
930 	if (rx_queue > IGBVF_NO_QUEUE) {
931 		index = (rx_queue >> 1);
932 		ivar = array_er32(IVAR0, index);
933 		if (rx_queue & 0x1) {
934 			/* vector goes into third byte of register */
935 			ivar = ivar & 0xFF00FFFF;
936 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
937 		} else {
938 			/* vector goes into low byte of register */
939 			ivar = ivar & 0xFFFFFF00;
940 			ivar |= msix_vector | E1000_IVAR_VALID;
941 		}
942 		adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
943 		array_ew32(IVAR0, index, ivar);
944 	}
945 	if (tx_queue > IGBVF_NO_QUEUE) {
946 		index = (tx_queue >> 1);
947 		ivar = array_er32(IVAR0, index);
948 		if (tx_queue & 0x1) {
949 			/* vector goes into high byte of register */
950 			ivar = ivar & 0x00FFFFFF;
951 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
952 		} else {
953 			/* vector goes into second byte of register */
954 			ivar = ivar & 0xFFFF00FF;
955 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
956 		}
957 		adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
958 		array_ew32(IVAR0, index, ivar);
959 	}
960 }
961 
962 /**
963  * igbvf_configure_msix - Configure MSI-X hardware
964  * @adapter: board private structure
965  *
966  * igbvf_configure_msix sets up the hardware to properly
967  * generate MSI-X interrupts.
968  **/
969 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
970 {
971 	u32 tmp;
972 	struct e1000_hw *hw = &adapter->hw;
973 	struct igbvf_ring *tx_ring = adapter->tx_ring;
974 	struct igbvf_ring *rx_ring = adapter->rx_ring;
975 	int vector = 0;
976 
977 	adapter->eims_enable_mask = 0;
978 
979 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
980 	adapter->eims_enable_mask |= tx_ring->eims_value;
981 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
982 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
983 	adapter->eims_enable_mask |= rx_ring->eims_value;
984 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
985 
986 	/* set vector for other causes, i.e. link changes */
987 
988 	tmp = (vector++ | E1000_IVAR_VALID);
989 
990 	ew32(IVAR_MISC, tmp);
991 
992 	adapter->eims_enable_mask = GENMASK(vector - 1, 0);
993 	adapter->eims_other = BIT(vector - 1);
994 	e1e_flush();
995 }
996 
997 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
998 {
999 	if (adapter->msix_entries) {
1000 		pci_disable_msix(adapter->pdev);
1001 		kfree(adapter->msix_entries);
1002 		adapter->msix_entries = NULL;
1003 	}
1004 }
1005 
1006 /**
1007  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1008  * @adapter: board private structure
1009  *
1010  * Attempt to configure interrupts using the best available
1011  * capabilities of the hardware and kernel.
1012  **/
1013 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1014 {
1015 	int err = -ENOMEM;
1016 	int i;
1017 
1018 	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1019 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1020 					GFP_KERNEL);
1021 	if (adapter->msix_entries) {
1022 		for (i = 0; i < 3; i++)
1023 			adapter->msix_entries[i].entry = i;
1024 
1025 		err = pci_enable_msix_range(adapter->pdev,
1026 					    adapter->msix_entries, 3, 3);
1027 	}
1028 
1029 	if (err < 0) {
1030 		/* MSI-X failed */
1031 		dev_err(&adapter->pdev->dev,
1032 			"Failed to initialize MSI-X interrupts.\n");
1033 		igbvf_reset_interrupt_capability(adapter);
1034 	}
1035 }
1036 
1037 /**
1038  * igbvf_request_msix - Initialize MSI-X interrupts
1039  * @adapter: board private structure
1040  *
1041  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1042  * kernel.
1043  **/
1044 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1045 {
1046 	struct net_device *netdev = adapter->netdev;
1047 	int err = 0, vector = 0;
1048 
1049 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1050 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1051 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1052 	} else {
1053 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1054 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1055 	}
1056 
1057 	err = request_irq(adapter->msix_entries[vector].vector,
1058 			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1059 			  netdev);
1060 	if (err)
1061 		goto out;
1062 
1063 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1064 	adapter->tx_ring->itr_val = adapter->current_itr;
1065 	vector++;
1066 
1067 	err = request_irq(adapter->msix_entries[vector].vector,
1068 			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1069 			  netdev);
1070 	if (err)
1071 		goto out;
1072 
1073 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1074 	adapter->rx_ring->itr_val = adapter->current_itr;
1075 	vector++;
1076 
1077 	err = request_irq(adapter->msix_entries[vector].vector,
1078 			  igbvf_msix_other, 0, netdev->name, netdev);
1079 	if (err)
1080 		goto out;
1081 
1082 	igbvf_configure_msix(adapter);
1083 	return 0;
1084 out:
1085 	return err;
1086 }
1087 
1088 /**
1089  * igbvf_alloc_queues - Allocate memory for all rings
1090  * @adapter: board private structure to initialize
1091  **/
1092 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1093 {
1094 	struct net_device *netdev = adapter->netdev;
1095 
1096 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1097 	if (!adapter->tx_ring)
1098 		return -ENOMEM;
1099 
1100 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1101 	if (!adapter->rx_ring) {
1102 		kfree(adapter->tx_ring);
1103 		return -ENOMEM;
1104 	}
1105 
1106 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1107 
1108 	return 0;
1109 }
1110 
1111 /**
1112  * igbvf_request_irq - initialize interrupts
1113  * @adapter: board private structure
1114  *
1115  * Attempts to configure interrupts using the best available
1116  * capabilities of the hardware and kernel.
1117  **/
1118 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1119 {
1120 	int err = -1;
1121 
1122 	/* igbvf supports msi-x only */
1123 	if (adapter->msix_entries)
1124 		err = igbvf_request_msix(adapter);
1125 
1126 	if (!err)
1127 		return err;
1128 
1129 	dev_err(&adapter->pdev->dev,
1130 		"Unable to allocate interrupt, Error: %d\n", err);
1131 
1132 	return err;
1133 }
1134 
1135 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1136 {
1137 	struct net_device *netdev = adapter->netdev;
1138 	int vector;
1139 
1140 	if (adapter->msix_entries) {
1141 		for (vector = 0; vector < 3; vector++)
1142 			free_irq(adapter->msix_entries[vector].vector, netdev);
1143 	}
1144 }
1145 
1146 /**
1147  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1148  * @adapter: board private structure
1149  **/
1150 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1151 {
1152 	struct e1000_hw *hw = &adapter->hw;
1153 
1154 	ew32(EIMC, ~0);
1155 
1156 	if (adapter->msix_entries)
1157 		ew32(EIAC, 0);
1158 }
1159 
1160 /**
1161  * igbvf_irq_enable - Enable default interrupt generation settings
1162  * @adapter: board private structure
1163  **/
1164 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1165 {
1166 	struct e1000_hw *hw = &adapter->hw;
1167 
1168 	ew32(EIAC, adapter->eims_enable_mask);
1169 	ew32(EIAM, adapter->eims_enable_mask);
1170 	ew32(EIMS, adapter->eims_enable_mask);
1171 }
1172 
1173 /**
1174  * igbvf_poll - NAPI Rx polling callback
1175  * @napi: struct associated with this polling callback
1176  * @budget: amount of packets driver is allowed to process this poll
1177  **/
1178 static int igbvf_poll(struct napi_struct *napi, int budget)
1179 {
1180 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1181 	struct igbvf_adapter *adapter = rx_ring->adapter;
1182 	struct e1000_hw *hw = &adapter->hw;
1183 	int work_done = 0;
1184 
1185 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1186 
1187 	if (work_done == budget)
1188 		return budget;
1189 
1190 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1191 	 * poll us due to busy-polling
1192 	 */
1193 	if (likely(napi_complete_done(napi, work_done))) {
1194 		if (adapter->requested_itr & 3)
1195 			igbvf_set_itr(adapter);
1196 
1197 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1198 			ew32(EIMS, adapter->rx_ring->eims_value);
1199 	}
1200 
1201 	return work_done;
1202 }
1203 
1204 /**
1205  * igbvf_set_rlpml - set receive large packet maximum length
1206  * @adapter: board private structure
1207  *
1208  * Configure the maximum size of packets that will be received
1209  */
1210 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1211 {
1212 	int max_frame_size;
1213 	struct e1000_hw *hw = &adapter->hw;
1214 
1215 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1216 
1217 	spin_lock_bh(&hw->mbx_lock);
1218 
1219 	e1000_rlpml_set_vf(hw, max_frame_size);
1220 
1221 	spin_unlock_bh(&hw->mbx_lock);
1222 }
1223 
1224 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1225 				 __be16 proto, u16 vid)
1226 {
1227 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1228 	struct e1000_hw *hw = &adapter->hw;
1229 
1230 	spin_lock_bh(&hw->mbx_lock);
1231 
1232 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1233 		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1234 		spin_unlock_bh(&hw->mbx_lock);
1235 		return -EINVAL;
1236 	}
1237 
1238 	spin_unlock_bh(&hw->mbx_lock);
1239 
1240 	set_bit(vid, adapter->active_vlans);
1241 	return 0;
1242 }
1243 
1244 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1245 				  __be16 proto, u16 vid)
1246 {
1247 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1248 	struct e1000_hw *hw = &adapter->hw;
1249 
1250 	spin_lock_bh(&hw->mbx_lock);
1251 
1252 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1253 		dev_err(&adapter->pdev->dev,
1254 			"Failed to remove vlan id %d\n", vid);
1255 		spin_unlock_bh(&hw->mbx_lock);
1256 		return -EINVAL;
1257 	}
1258 
1259 	spin_unlock_bh(&hw->mbx_lock);
1260 
1261 	clear_bit(vid, adapter->active_vlans);
1262 	return 0;
1263 }
1264 
1265 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1266 {
1267 	u16 vid;
1268 
1269 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1270 		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1271 }
1272 
1273 /**
1274  * igbvf_configure_tx - Configure Transmit Unit after Reset
1275  * @adapter: board private structure
1276  *
1277  * Configure the Tx unit of the MAC after a reset.
1278  **/
1279 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1280 {
1281 	struct e1000_hw *hw = &adapter->hw;
1282 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1283 	u64 tdba;
1284 	u32 txdctl, dca_txctrl;
1285 
1286 	/* disable transmits */
1287 	txdctl = er32(TXDCTL(0));
1288 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1289 	e1e_flush();
1290 	msleep(10);
1291 
1292 	/* Setup the HW Tx Head and Tail descriptor pointers */
1293 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1294 	tdba = tx_ring->dma;
1295 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1296 	ew32(TDBAH(0), (tdba >> 32));
1297 	ew32(TDH(0), 0);
1298 	ew32(TDT(0), 0);
1299 	tx_ring->head = E1000_TDH(0);
1300 	tx_ring->tail = E1000_TDT(0);
1301 
1302 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1303 	 * MUST be delivered in order or it will completely screw up
1304 	 * our bookkeeping.
1305 	 */
1306 	dca_txctrl = er32(DCA_TXCTRL(0));
1307 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1308 	ew32(DCA_TXCTRL(0), dca_txctrl);
1309 
1310 	/* enable transmits */
1311 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1312 	ew32(TXDCTL(0), txdctl);
1313 
1314 	/* Setup Transmit Descriptor Settings for eop descriptor */
1315 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1316 
1317 	/* enable Report Status bit */
1318 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1319 }
1320 
1321 /**
1322  * igbvf_setup_srrctl - configure the receive control registers
1323  * @adapter: Board private structure
1324  **/
1325 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1326 {
1327 	struct e1000_hw *hw = &adapter->hw;
1328 	u32 srrctl = 0;
1329 
1330 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1331 		    E1000_SRRCTL_BSIZEHDR_MASK |
1332 		    E1000_SRRCTL_BSIZEPKT_MASK);
1333 
1334 	/* Enable queue drop to avoid head of line blocking */
1335 	srrctl |= E1000_SRRCTL_DROP_EN;
1336 
1337 	/* Setup buffer sizes */
1338 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1339 		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1340 
1341 	if (adapter->rx_buffer_len < 2048) {
1342 		adapter->rx_ps_hdr_size = 0;
1343 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1344 	} else {
1345 		adapter->rx_ps_hdr_size = 128;
1346 		srrctl |= adapter->rx_ps_hdr_size <<
1347 			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1348 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1349 	}
1350 
1351 	ew32(SRRCTL(0), srrctl);
1352 }
1353 
1354 /**
1355  * igbvf_configure_rx - Configure Receive Unit after Reset
1356  * @adapter: board private structure
1357  *
1358  * Configure the Rx unit of the MAC after a reset.
1359  **/
1360 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1361 {
1362 	struct e1000_hw *hw = &adapter->hw;
1363 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1364 	u64 rdba;
1365 	u32 rxdctl;
1366 
1367 	/* disable receives */
1368 	rxdctl = er32(RXDCTL(0));
1369 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1370 	e1e_flush();
1371 	msleep(10);
1372 
1373 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1374 	 * the Base and Length of the Rx Descriptor Ring
1375 	 */
1376 	rdba = rx_ring->dma;
1377 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378 	ew32(RDBAH(0), (rdba >> 32));
1379 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380 	rx_ring->head = E1000_RDH(0);
1381 	rx_ring->tail = E1000_RDT(0);
1382 	ew32(RDH(0), 0);
1383 	ew32(RDT(0), 0);
1384 
1385 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386 	rxdctl &= 0xFFF00000;
1387 	rxdctl |= IGBVF_RX_PTHRESH;
1388 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1389 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1390 
1391 	igbvf_set_rlpml(adapter);
1392 
1393 	/* enable receives */
1394 	ew32(RXDCTL(0), rxdctl);
1395 }
1396 
1397 /**
1398  * igbvf_set_multi - Multicast and Promiscuous mode set
1399  * @netdev: network interface device structure
1400  *
1401  * The set_multi entry point is called whenever the multicast address
1402  * list or the network interface flags are updated.  This routine is
1403  * responsible for configuring the hardware for proper multicast,
1404  * promiscuous mode, and all-multi behavior.
1405  **/
1406 static void igbvf_set_multi(struct net_device *netdev)
1407 {
1408 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1409 	struct e1000_hw *hw = &adapter->hw;
1410 	struct netdev_hw_addr *ha;
1411 	u8  *mta_list = NULL;
1412 	int i;
1413 
1414 	if (!netdev_mc_empty(netdev)) {
1415 		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416 					 GFP_ATOMIC);
1417 		if (!mta_list)
1418 			return;
1419 	}
1420 
1421 	/* prepare a packed array of only addresses. */
1422 	i = 0;
1423 	netdev_for_each_mc_addr(ha, netdev)
1424 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425 
1426 	spin_lock_bh(&hw->mbx_lock);
1427 
1428 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1429 
1430 	spin_unlock_bh(&hw->mbx_lock);
1431 	kfree(mta_list);
1432 }
1433 
1434 /**
1435  * igbvf_set_uni - Configure unicast MAC filters
1436  * @netdev: network interface device structure
1437  *
1438  * This routine is responsible for configuring the hardware for proper
1439  * unicast filters.
1440  **/
1441 static int igbvf_set_uni(struct net_device *netdev)
1442 {
1443 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1444 	struct e1000_hw *hw = &adapter->hw;
1445 
1446 	if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1447 		pr_err("Too many unicast filters - No Space\n");
1448 		return -ENOSPC;
1449 	}
1450 
1451 	spin_lock_bh(&hw->mbx_lock);
1452 
1453 	/* Clear all unicast MAC filters */
1454 	hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1455 
1456 	spin_unlock_bh(&hw->mbx_lock);
1457 
1458 	if (!netdev_uc_empty(netdev)) {
1459 		struct netdev_hw_addr *ha;
1460 
1461 		/* Add MAC filters one by one */
1462 		netdev_for_each_uc_addr(ha, netdev) {
1463 			spin_lock_bh(&hw->mbx_lock);
1464 
1465 			hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1466 						ha->addr);
1467 
1468 			spin_unlock_bh(&hw->mbx_lock);
1469 			udelay(200);
1470 		}
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static void igbvf_set_rx_mode(struct net_device *netdev)
1477 {
1478 	igbvf_set_multi(netdev);
1479 	igbvf_set_uni(netdev);
1480 }
1481 
1482 /**
1483  * igbvf_configure - configure the hardware for Rx and Tx
1484  * @adapter: private board structure
1485  **/
1486 static void igbvf_configure(struct igbvf_adapter *adapter)
1487 {
1488 	igbvf_set_rx_mode(adapter->netdev);
1489 
1490 	igbvf_restore_vlan(adapter);
1491 
1492 	igbvf_configure_tx(adapter);
1493 	igbvf_setup_srrctl(adapter);
1494 	igbvf_configure_rx(adapter);
1495 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1496 			       igbvf_desc_unused(adapter->rx_ring));
1497 }
1498 
1499 /* igbvf_reset - bring the hardware into a known good state
1500  * @adapter: private board structure
1501  *
1502  * This function boots the hardware and enables some settings that
1503  * require a configuration cycle of the hardware - those cannot be
1504  * set/changed during runtime. After reset the device needs to be
1505  * properly configured for Rx, Tx etc.
1506  */
1507 static void igbvf_reset(struct igbvf_adapter *adapter)
1508 {
1509 	struct e1000_mac_info *mac = &adapter->hw.mac;
1510 	struct net_device *netdev = adapter->netdev;
1511 	struct e1000_hw *hw = &adapter->hw;
1512 
1513 	spin_lock_bh(&hw->mbx_lock);
1514 
1515 	/* Allow time for pending master requests to run */
1516 	if (mac->ops.reset_hw(hw))
1517 		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1518 
1519 	mac->ops.init_hw(hw);
1520 
1521 	spin_unlock_bh(&hw->mbx_lock);
1522 
1523 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1524 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1525 		       netdev->addr_len);
1526 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1527 		       netdev->addr_len);
1528 	}
1529 
1530 	adapter->last_reset = jiffies;
1531 }
1532 
1533 int igbvf_up(struct igbvf_adapter *adapter)
1534 {
1535 	struct e1000_hw *hw = &adapter->hw;
1536 
1537 	/* hardware has been reset, we need to reload some things */
1538 	igbvf_configure(adapter);
1539 
1540 	clear_bit(__IGBVF_DOWN, &adapter->state);
1541 
1542 	napi_enable(&adapter->rx_ring->napi);
1543 	if (adapter->msix_entries)
1544 		igbvf_configure_msix(adapter);
1545 
1546 	/* Clear any pending interrupts. */
1547 	er32(EICR);
1548 	igbvf_irq_enable(adapter);
1549 
1550 	/* start the watchdog */
1551 	hw->mac.get_link_status = 1;
1552 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1553 
1554 	return 0;
1555 }
1556 
1557 void igbvf_down(struct igbvf_adapter *adapter)
1558 {
1559 	struct net_device *netdev = adapter->netdev;
1560 	struct e1000_hw *hw = &adapter->hw;
1561 	u32 rxdctl, txdctl;
1562 
1563 	/* signal that we're down so the interrupt handler does not
1564 	 * reschedule our watchdog timer
1565 	 */
1566 	set_bit(__IGBVF_DOWN, &adapter->state);
1567 
1568 	/* disable receives in the hardware */
1569 	rxdctl = er32(RXDCTL(0));
1570 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1571 
1572 	netif_carrier_off(netdev);
1573 	netif_stop_queue(netdev);
1574 
1575 	/* disable transmits in the hardware */
1576 	txdctl = er32(TXDCTL(0));
1577 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1578 
1579 	/* flush both disables and wait for them to finish */
1580 	e1e_flush();
1581 	msleep(10);
1582 
1583 	napi_disable(&adapter->rx_ring->napi);
1584 
1585 	igbvf_irq_disable(adapter);
1586 
1587 	del_timer_sync(&adapter->watchdog_timer);
1588 
1589 	/* record the stats before reset*/
1590 	igbvf_update_stats(adapter);
1591 
1592 	adapter->link_speed = 0;
1593 	adapter->link_duplex = 0;
1594 
1595 	igbvf_reset(adapter);
1596 	igbvf_clean_tx_ring(adapter->tx_ring);
1597 	igbvf_clean_rx_ring(adapter->rx_ring);
1598 }
1599 
1600 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1601 {
1602 	might_sleep();
1603 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1604 		usleep_range(1000, 2000);
1605 	igbvf_down(adapter);
1606 	igbvf_up(adapter);
1607 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1608 }
1609 
1610 /**
1611  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1612  * @adapter: board private structure to initialize
1613  *
1614  * igbvf_sw_init initializes the Adapter private data structure.
1615  * Fields are initialized based on PCI device information and
1616  * OS network device settings (MTU size).
1617  **/
1618 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1619 {
1620 	struct net_device *netdev = adapter->netdev;
1621 	s32 rc;
1622 
1623 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1624 	adapter->rx_ps_hdr_size = 0;
1625 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1626 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1627 
1628 	adapter->tx_int_delay = 8;
1629 	adapter->tx_abs_int_delay = 32;
1630 	adapter->rx_int_delay = 0;
1631 	adapter->rx_abs_int_delay = 8;
1632 	adapter->requested_itr = 3;
1633 	adapter->current_itr = IGBVF_START_ITR;
1634 
1635 	/* Set various function pointers */
1636 	adapter->ei->init_ops(&adapter->hw);
1637 
1638 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1639 	if (rc)
1640 		return rc;
1641 
1642 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1643 	if (rc)
1644 		return rc;
1645 
1646 	igbvf_set_interrupt_capability(adapter);
1647 
1648 	if (igbvf_alloc_queues(adapter))
1649 		return -ENOMEM;
1650 
1651 	spin_lock_init(&adapter->tx_queue_lock);
1652 
1653 	/* Explicitly disable IRQ since the NIC can be in any state. */
1654 	igbvf_irq_disable(adapter);
1655 
1656 	spin_lock_init(&adapter->stats_lock);
1657 	spin_lock_init(&adapter->hw.mbx_lock);
1658 
1659 	set_bit(__IGBVF_DOWN, &adapter->state);
1660 	return 0;
1661 }
1662 
1663 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1664 {
1665 	struct e1000_hw *hw = &adapter->hw;
1666 
1667 	adapter->stats.last_gprc = er32(VFGPRC);
1668 	adapter->stats.last_gorc = er32(VFGORC);
1669 	adapter->stats.last_gptc = er32(VFGPTC);
1670 	adapter->stats.last_gotc = er32(VFGOTC);
1671 	adapter->stats.last_mprc = er32(VFMPRC);
1672 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1673 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1674 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1675 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1676 
1677 	adapter->stats.base_gprc = er32(VFGPRC);
1678 	adapter->stats.base_gorc = er32(VFGORC);
1679 	adapter->stats.base_gptc = er32(VFGPTC);
1680 	adapter->stats.base_gotc = er32(VFGOTC);
1681 	adapter->stats.base_mprc = er32(VFMPRC);
1682 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1683 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1684 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1685 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1686 }
1687 
1688 /**
1689  * igbvf_open - Called when a network interface is made active
1690  * @netdev: network interface device structure
1691  *
1692  * Returns 0 on success, negative value on failure
1693  *
1694  * The open entry point is called when a network interface is made
1695  * active by the system (IFF_UP).  At this point all resources needed
1696  * for transmit and receive operations are allocated, the interrupt
1697  * handler is registered with the OS, the watchdog timer is started,
1698  * and the stack is notified that the interface is ready.
1699  **/
1700 static int igbvf_open(struct net_device *netdev)
1701 {
1702 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1703 	struct e1000_hw *hw = &adapter->hw;
1704 	int err;
1705 
1706 	/* disallow open during test */
1707 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1708 		return -EBUSY;
1709 
1710 	/* allocate transmit descriptors */
1711 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1712 	if (err)
1713 		goto err_setup_tx;
1714 
1715 	/* allocate receive descriptors */
1716 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1717 	if (err)
1718 		goto err_setup_rx;
1719 
1720 	/* before we allocate an interrupt, we must be ready to handle it.
1721 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1722 	 * as soon as we call pci_request_irq, so we have to setup our
1723 	 * clean_rx handler before we do so.
1724 	 */
1725 	igbvf_configure(adapter);
1726 
1727 	err = igbvf_request_irq(adapter);
1728 	if (err)
1729 		goto err_req_irq;
1730 
1731 	/* From here on the code is the same as igbvf_up() */
1732 	clear_bit(__IGBVF_DOWN, &adapter->state);
1733 
1734 	napi_enable(&adapter->rx_ring->napi);
1735 
1736 	/* clear any pending interrupts */
1737 	er32(EICR);
1738 
1739 	igbvf_irq_enable(adapter);
1740 
1741 	/* start the watchdog */
1742 	hw->mac.get_link_status = 1;
1743 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1744 
1745 	return 0;
1746 
1747 err_req_irq:
1748 	igbvf_free_rx_resources(adapter->rx_ring);
1749 err_setup_rx:
1750 	igbvf_free_tx_resources(adapter->tx_ring);
1751 err_setup_tx:
1752 	igbvf_reset(adapter);
1753 
1754 	return err;
1755 }
1756 
1757 /**
1758  * igbvf_close - Disables a network interface
1759  * @netdev: network interface device structure
1760  *
1761  * Returns 0, this is not allowed to fail
1762  *
1763  * The close entry point is called when an interface is de-activated
1764  * by the OS.  The hardware is still under the drivers control, but
1765  * needs to be disabled.  A global MAC reset is issued to stop the
1766  * hardware, and all transmit and receive resources are freed.
1767  **/
1768 static int igbvf_close(struct net_device *netdev)
1769 {
1770 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1771 
1772 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1773 	igbvf_down(adapter);
1774 
1775 	igbvf_free_irq(adapter);
1776 
1777 	igbvf_free_tx_resources(adapter->tx_ring);
1778 	igbvf_free_rx_resources(adapter->rx_ring);
1779 
1780 	return 0;
1781 }
1782 
1783 /**
1784  * igbvf_set_mac - Change the Ethernet Address of the NIC
1785  * @netdev: network interface device structure
1786  * @p: pointer to an address structure
1787  *
1788  * Returns 0 on success, negative on failure
1789  **/
1790 static int igbvf_set_mac(struct net_device *netdev, void *p)
1791 {
1792 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1793 	struct e1000_hw *hw = &adapter->hw;
1794 	struct sockaddr *addr = p;
1795 
1796 	if (!is_valid_ether_addr(addr->sa_data))
1797 		return -EADDRNOTAVAIL;
1798 
1799 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1800 
1801 	spin_lock_bh(&hw->mbx_lock);
1802 
1803 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1804 
1805 	spin_unlock_bh(&hw->mbx_lock);
1806 
1807 	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1808 		return -EADDRNOTAVAIL;
1809 
1810 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1811 
1812 	return 0;
1813 }
1814 
1815 #define UPDATE_VF_COUNTER(reg, name) \
1816 { \
1817 	u32 current_counter = er32(reg); \
1818 	if (current_counter < adapter->stats.last_##name) \
1819 		adapter->stats.name += 0x100000000LL; \
1820 	adapter->stats.last_##name = current_counter; \
1821 	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1822 	adapter->stats.name |= current_counter; \
1823 }
1824 
1825 /**
1826  * igbvf_update_stats - Update the board statistics counters
1827  * @adapter: board private structure
1828 **/
1829 void igbvf_update_stats(struct igbvf_adapter *adapter)
1830 {
1831 	struct e1000_hw *hw = &adapter->hw;
1832 	struct pci_dev *pdev = adapter->pdev;
1833 
1834 	/* Prevent stats update while adapter is being reset, link is down
1835 	 * or if the pci connection is down.
1836 	 */
1837 	if (adapter->link_speed == 0)
1838 		return;
1839 
1840 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1841 		return;
1842 
1843 	if (pci_channel_offline(pdev))
1844 		return;
1845 
1846 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1847 	UPDATE_VF_COUNTER(VFGORC, gorc);
1848 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1849 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1850 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1851 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1852 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1853 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1854 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1855 
1856 	/* Fill out the OS statistics structure */
1857 	adapter->netdev->stats.multicast = adapter->stats.mprc;
1858 }
1859 
1860 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1861 {
1862 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1863 		 adapter->link_speed,
1864 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1865 }
1866 
1867 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1868 {
1869 	struct e1000_hw *hw = &adapter->hw;
1870 	s32 ret_val = E1000_SUCCESS;
1871 	bool link_active;
1872 
1873 	/* If interface is down, stay link down */
1874 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1875 		return false;
1876 
1877 	spin_lock_bh(&hw->mbx_lock);
1878 
1879 	ret_val = hw->mac.ops.check_for_link(hw);
1880 
1881 	spin_unlock_bh(&hw->mbx_lock);
1882 
1883 	link_active = !hw->mac.get_link_status;
1884 
1885 	/* if check for link returns error we will need to reset */
1886 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1887 		schedule_work(&adapter->reset_task);
1888 
1889 	return link_active;
1890 }
1891 
1892 /**
1893  * igbvf_watchdog - Timer Call-back
1894  * @data: pointer to adapter cast into an unsigned long
1895  **/
1896 static void igbvf_watchdog(struct timer_list *t)
1897 {
1898 	struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1899 
1900 	/* Do the rest outside of interrupt context */
1901 	schedule_work(&adapter->watchdog_task);
1902 }
1903 
1904 static void igbvf_watchdog_task(struct work_struct *work)
1905 {
1906 	struct igbvf_adapter *adapter = container_of(work,
1907 						     struct igbvf_adapter,
1908 						     watchdog_task);
1909 	struct net_device *netdev = adapter->netdev;
1910 	struct e1000_mac_info *mac = &adapter->hw.mac;
1911 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1912 	struct e1000_hw *hw = &adapter->hw;
1913 	u32 link;
1914 	int tx_pending = 0;
1915 
1916 	link = igbvf_has_link(adapter);
1917 
1918 	if (link) {
1919 		if (!netif_carrier_ok(netdev)) {
1920 			mac->ops.get_link_up_info(&adapter->hw,
1921 						  &adapter->link_speed,
1922 						  &adapter->link_duplex);
1923 			igbvf_print_link_info(adapter);
1924 
1925 			netif_carrier_on(netdev);
1926 			netif_wake_queue(netdev);
1927 		}
1928 	} else {
1929 		if (netif_carrier_ok(netdev)) {
1930 			adapter->link_speed = 0;
1931 			adapter->link_duplex = 0;
1932 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1933 			netif_carrier_off(netdev);
1934 			netif_stop_queue(netdev);
1935 		}
1936 	}
1937 
1938 	if (netif_carrier_ok(netdev)) {
1939 		igbvf_update_stats(adapter);
1940 	} else {
1941 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1942 			      tx_ring->count);
1943 		if (tx_pending) {
1944 			/* We've lost link, so the controller stops DMA,
1945 			 * but we've got queued Tx work that's never going
1946 			 * to get done, so reset controller to flush Tx.
1947 			 * (Do the reset outside of interrupt context).
1948 			 */
1949 			adapter->tx_timeout_count++;
1950 			schedule_work(&adapter->reset_task);
1951 		}
1952 	}
1953 
1954 	/* Cause software interrupt to ensure Rx ring is cleaned */
1955 	ew32(EICS, adapter->rx_ring->eims_value);
1956 
1957 	/* Reset the timer */
1958 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1959 		mod_timer(&adapter->watchdog_timer,
1960 			  round_jiffies(jiffies + (2 * HZ)));
1961 }
1962 
1963 #define IGBVF_TX_FLAGS_CSUM		0x00000001
1964 #define IGBVF_TX_FLAGS_VLAN		0x00000002
1965 #define IGBVF_TX_FLAGS_TSO		0x00000004
1966 #define IGBVF_TX_FLAGS_IPV4		0x00000008
1967 #define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1968 #define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1969 
1970 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1971 			      u32 type_tucmd, u32 mss_l4len_idx)
1972 {
1973 	struct e1000_adv_tx_context_desc *context_desc;
1974 	struct igbvf_buffer *buffer_info;
1975 	u16 i = tx_ring->next_to_use;
1976 
1977 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1978 	buffer_info = &tx_ring->buffer_info[i];
1979 
1980 	i++;
1981 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1982 
1983 	/* set bits to identify this as an advanced context descriptor */
1984 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1985 
1986 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1987 	context_desc->seqnum_seed	= 0;
1988 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1989 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1990 
1991 	buffer_info->time_stamp = jiffies;
1992 	buffer_info->dma = 0;
1993 }
1994 
1995 static int igbvf_tso(struct igbvf_ring *tx_ring,
1996 		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1997 {
1998 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1999 	union {
2000 		struct iphdr *v4;
2001 		struct ipv6hdr *v6;
2002 		unsigned char *hdr;
2003 	} ip;
2004 	union {
2005 		struct tcphdr *tcp;
2006 		unsigned char *hdr;
2007 	} l4;
2008 	u32 paylen, l4_offset;
2009 	int err;
2010 
2011 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2012 		return 0;
2013 
2014 	if (!skb_is_gso(skb))
2015 		return 0;
2016 
2017 	err = skb_cow_head(skb, 0);
2018 	if (err < 0)
2019 		return err;
2020 
2021 	ip.hdr = skb_network_header(skb);
2022 	l4.hdr = skb_checksum_start(skb);
2023 
2024 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2025 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2026 
2027 	/* initialize outer IP header fields */
2028 	if (ip.v4->version == 4) {
2029 		unsigned char *csum_start = skb_checksum_start(skb);
2030 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2031 
2032 		/* IP header will have to cancel out any data that
2033 		 * is not a part of the outer IP header
2034 		 */
2035 		ip.v4->check = csum_fold(csum_partial(trans_start,
2036 						      csum_start - trans_start,
2037 						      0));
2038 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2039 
2040 		ip.v4->tot_len = 0;
2041 	} else {
2042 		ip.v6->payload_len = 0;
2043 	}
2044 
2045 	/* determine offset of inner transport header */
2046 	l4_offset = l4.hdr - skb->data;
2047 
2048 	/* compute length of segmentation header */
2049 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2050 
2051 	/* remove payload length from inner checksum */
2052 	paylen = skb->len - l4_offset;
2053 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2054 
2055 	/* MSS L4LEN IDX */
2056 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2057 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2058 
2059 	/* VLAN MACLEN IPLEN */
2060 	vlan_macip_lens = l4.hdr - ip.hdr;
2061 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2062 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2063 
2064 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2065 
2066 	return 1;
2067 }
2068 
2069 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2070 {
2071 	unsigned int offset = 0;
2072 
2073 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2074 
2075 	return offset == skb_checksum_start_offset(skb);
2076 }
2077 
2078 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2079 			  u32 tx_flags, __be16 protocol)
2080 {
2081 	u32 vlan_macip_lens = 0;
2082 	u32 type_tucmd = 0;
2083 
2084 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2085 csum_failed:
2086 		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2087 			return false;
2088 		goto no_csum;
2089 	}
2090 
2091 	switch (skb->csum_offset) {
2092 	case offsetof(struct tcphdr, check):
2093 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2094 		fallthrough;
2095 	case offsetof(struct udphdr, check):
2096 		break;
2097 	case offsetof(struct sctphdr, checksum):
2098 		/* validate that this is actually an SCTP request */
2099 		if (((protocol == htons(ETH_P_IP)) &&
2100 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2101 		    ((protocol == htons(ETH_P_IPV6)) &&
2102 		     igbvf_ipv6_csum_is_sctp(skb))) {
2103 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2104 			break;
2105 		}
2106 		fallthrough;
2107 	default:
2108 		skb_checksum_help(skb);
2109 		goto csum_failed;
2110 	}
2111 
2112 	vlan_macip_lens = skb_checksum_start_offset(skb) -
2113 			  skb_network_offset(skb);
2114 no_csum:
2115 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2116 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2117 
2118 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2119 	return true;
2120 }
2121 
2122 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2123 {
2124 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2125 
2126 	/* there is enough descriptors then we don't need to worry  */
2127 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2128 		return 0;
2129 
2130 	netif_stop_queue(netdev);
2131 
2132 	/* Herbert's original patch had:
2133 	 *  smp_mb__after_netif_stop_queue();
2134 	 * but since that doesn't exist yet, just open code it.
2135 	 */
2136 	smp_mb();
2137 
2138 	/* We need to check again just in case room has been made available */
2139 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2140 		return -EBUSY;
2141 
2142 	netif_wake_queue(netdev);
2143 
2144 	++adapter->restart_queue;
2145 	return 0;
2146 }
2147 
2148 #define IGBVF_MAX_TXD_PWR	16
2149 #define IGBVF_MAX_DATA_PER_TXD	(1u << IGBVF_MAX_TXD_PWR)
2150 
2151 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2152 				   struct igbvf_ring *tx_ring,
2153 				   struct sk_buff *skb)
2154 {
2155 	struct igbvf_buffer *buffer_info;
2156 	struct pci_dev *pdev = adapter->pdev;
2157 	unsigned int len = skb_headlen(skb);
2158 	unsigned int count = 0, i;
2159 	unsigned int f;
2160 
2161 	i = tx_ring->next_to_use;
2162 
2163 	buffer_info = &tx_ring->buffer_info[i];
2164 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2165 	buffer_info->length = len;
2166 	/* set time_stamp *before* dma to help avoid a possible race */
2167 	buffer_info->time_stamp = jiffies;
2168 	buffer_info->mapped_as_page = false;
2169 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2170 					  DMA_TO_DEVICE);
2171 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2172 		goto dma_error;
2173 
2174 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2175 		const skb_frag_t *frag;
2176 
2177 		count++;
2178 		i++;
2179 		if (i == tx_ring->count)
2180 			i = 0;
2181 
2182 		frag = &skb_shinfo(skb)->frags[f];
2183 		len = skb_frag_size(frag);
2184 
2185 		buffer_info = &tx_ring->buffer_info[i];
2186 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2187 		buffer_info->length = len;
2188 		buffer_info->time_stamp = jiffies;
2189 		buffer_info->mapped_as_page = true;
2190 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2191 						    DMA_TO_DEVICE);
2192 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2193 			goto dma_error;
2194 	}
2195 
2196 	tx_ring->buffer_info[i].skb = skb;
2197 
2198 	return ++count;
2199 
2200 dma_error:
2201 	dev_err(&pdev->dev, "TX DMA map failed\n");
2202 
2203 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2204 	buffer_info->dma = 0;
2205 	buffer_info->time_stamp = 0;
2206 	buffer_info->length = 0;
2207 	buffer_info->mapped_as_page = false;
2208 	if (count)
2209 		count--;
2210 
2211 	/* clear timestamp and dma mappings for remaining portion of packet */
2212 	while (count--) {
2213 		if (i == 0)
2214 			i += tx_ring->count;
2215 		i--;
2216 		buffer_info = &tx_ring->buffer_info[i];
2217 		igbvf_put_txbuf(adapter, buffer_info);
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2224 				      struct igbvf_ring *tx_ring,
2225 				      int tx_flags, int count,
2226 				      unsigned int first, u32 paylen,
2227 				      u8 hdr_len)
2228 {
2229 	union e1000_adv_tx_desc *tx_desc = NULL;
2230 	struct igbvf_buffer *buffer_info;
2231 	u32 olinfo_status = 0, cmd_type_len;
2232 	unsigned int i;
2233 
2234 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2235 			E1000_ADVTXD_DCMD_DEXT);
2236 
2237 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2238 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2239 
2240 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2241 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2242 
2243 		/* insert tcp checksum */
2244 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2245 
2246 		/* insert ip checksum */
2247 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2248 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2249 
2250 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2251 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2252 	}
2253 
2254 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2255 
2256 	i = tx_ring->next_to_use;
2257 	while (count--) {
2258 		buffer_info = &tx_ring->buffer_info[i];
2259 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2260 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2261 		tx_desc->read.cmd_type_len =
2262 			 cpu_to_le32(cmd_type_len | buffer_info->length);
2263 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2264 		i++;
2265 		if (i == tx_ring->count)
2266 			i = 0;
2267 	}
2268 
2269 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2270 	/* Force memory writes to complete before letting h/w
2271 	 * know there are new descriptors to fetch.  (Only
2272 	 * applicable for weak-ordered memory model archs,
2273 	 * such as IA-64).
2274 	 */
2275 	wmb();
2276 
2277 	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2278 	tx_ring->next_to_use = i;
2279 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2280 }
2281 
2282 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2283 					     struct net_device *netdev,
2284 					     struct igbvf_ring *tx_ring)
2285 {
2286 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2287 	unsigned int first, tx_flags = 0;
2288 	u8 hdr_len = 0;
2289 	int count = 0;
2290 	int tso = 0;
2291 	__be16 protocol = vlan_get_protocol(skb);
2292 
2293 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2294 		dev_kfree_skb_any(skb);
2295 		return NETDEV_TX_OK;
2296 	}
2297 
2298 	if (skb->len <= 0) {
2299 		dev_kfree_skb_any(skb);
2300 		return NETDEV_TX_OK;
2301 	}
2302 
2303 	/* need: count + 4 desc gap to keep tail from touching
2304 	 *       + 2 desc gap to keep tail from touching head,
2305 	 *       + 1 desc for skb->data,
2306 	 *       + 1 desc for context descriptor,
2307 	 * head, otherwise try next time
2308 	 */
2309 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2310 		/* this is a hard error */
2311 		return NETDEV_TX_BUSY;
2312 	}
2313 
2314 	if (skb_vlan_tag_present(skb)) {
2315 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2316 		tx_flags |= (skb_vlan_tag_get(skb) <<
2317 			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2318 	}
2319 
2320 	if (protocol == htons(ETH_P_IP))
2321 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2322 
2323 	first = tx_ring->next_to_use;
2324 
2325 	tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2326 	if (unlikely(tso < 0)) {
2327 		dev_kfree_skb_any(skb);
2328 		return NETDEV_TX_OK;
2329 	}
2330 
2331 	if (tso)
2332 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2333 	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2334 		 (skb->ip_summed == CHECKSUM_PARTIAL))
2335 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2336 
2337 	/* count reflects descriptors mapped, if 0 then mapping error
2338 	 * has occurred and we need to rewind the descriptor queue
2339 	 */
2340 	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2341 
2342 	if (count) {
2343 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2344 				   first, skb->len, hdr_len);
2345 		/* Make sure there is space in the ring for the next send. */
2346 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2347 	} else {
2348 		dev_kfree_skb_any(skb);
2349 		tx_ring->buffer_info[first].time_stamp = 0;
2350 		tx_ring->next_to_use = first;
2351 	}
2352 
2353 	return NETDEV_TX_OK;
2354 }
2355 
2356 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2357 				    struct net_device *netdev)
2358 {
2359 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2360 	struct igbvf_ring *tx_ring;
2361 
2362 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2363 		dev_kfree_skb_any(skb);
2364 		return NETDEV_TX_OK;
2365 	}
2366 
2367 	tx_ring = &adapter->tx_ring[0];
2368 
2369 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2370 }
2371 
2372 /**
2373  * igbvf_tx_timeout - Respond to a Tx Hang
2374  * @netdev: network interface device structure
2375  **/
2376 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2377 {
2378 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2379 
2380 	/* Do the reset outside of interrupt context */
2381 	adapter->tx_timeout_count++;
2382 	schedule_work(&adapter->reset_task);
2383 }
2384 
2385 static void igbvf_reset_task(struct work_struct *work)
2386 {
2387 	struct igbvf_adapter *adapter;
2388 
2389 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2390 
2391 	igbvf_reinit_locked(adapter);
2392 }
2393 
2394 /**
2395  * igbvf_change_mtu - Change the Maximum Transfer Unit
2396  * @netdev: network interface device structure
2397  * @new_mtu: new value for maximum frame size
2398  *
2399  * Returns 0 on success, negative on failure
2400  **/
2401 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2402 {
2403 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2404 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2405 
2406 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2407 		usleep_range(1000, 2000);
2408 	/* igbvf_down has a dependency on max_frame_size */
2409 	adapter->max_frame_size = max_frame;
2410 	if (netif_running(netdev))
2411 		igbvf_down(adapter);
2412 
2413 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2414 	 * means we reserve 2 more, this pushes us to allocate from the next
2415 	 * larger slab size.
2416 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2417 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2418 	 * fragmented skbs
2419 	 */
2420 
2421 	if (max_frame <= 1024)
2422 		adapter->rx_buffer_len = 1024;
2423 	else if (max_frame <= 2048)
2424 		adapter->rx_buffer_len = 2048;
2425 	else
2426 #if (PAGE_SIZE / 2) > 16384
2427 		adapter->rx_buffer_len = 16384;
2428 #else
2429 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2430 #endif
2431 
2432 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2433 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2434 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2435 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2436 					 ETH_FCS_LEN;
2437 
2438 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
2439 		   netdev->mtu, new_mtu);
2440 	netdev->mtu = new_mtu;
2441 
2442 	if (netif_running(netdev))
2443 		igbvf_up(adapter);
2444 	else
2445 		igbvf_reset(adapter);
2446 
2447 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2448 
2449 	return 0;
2450 }
2451 
2452 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2453 {
2454 	switch (cmd) {
2455 	default:
2456 		return -EOPNOTSUPP;
2457 	}
2458 }
2459 
2460 static int igbvf_suspend(struct device *dev_d)
2461 {
2462 	struct net_device *netdev = dev_get_drvdata(dev_d);
2463 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2464 
2465 	netif_device_detach(netdev);
2466 
2467 	if (netif_running(netdev)) {
2468 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2469 		igbvf_down(adapter);
2470 		igbvf_free_irq(adapter);
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 static int __maybe_unused igbvf_resume(struct device *dev_d)
2477 {
2478 	struct pci_dev *pdev = to_pci_dev(dev_d);
2479 	struct net_device *netdev = pci_get_drvdata(pdev);
2480 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2481 	u32 err;
2482 
2483 	pci_set_master(pdev);
2484 
2485 	if (netif_running(netdev)) {
2486 		err = igbvf_request_irq(adapter);
2487 		if (err)
2488 			return err;
2489 	}
2490 
2491 	igbvf_reset(adapter);
2492 
2493 	if (netif_running(netdev))
2494 		igbvf_up(adapter);
2495 
2496 	netif_device_attach(netdev);
2497 
2498 	return 0;
2499 }
2500 
2501 static void igbvf_shutdown(struct pci_dev *pdev)
2502 {
2503 	igbvf_suspend(&pdev->dev);
2504 }
2505 
2506 #ifdef CONFIG_NET_POLL_CONTROLLER
2507 /* Polling 'interrupt' - used by things like netconsole to send skbs
2508  * without having to re-enable interrupts. It's not called while
2509  * the interrupt routine is executing.
2510  */
2511 static void igbvf_netpoll(struct net_device *netdev)
2512 {
2513 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2514 
2515 	disable_irq(adapter->pdev->irq);
2516 
2517 	igbvf_clean_tx_irq(adapter->tx_ring);
2518 
2519 	enable_irq(adapter->pdev->irq);
2520 }
2521 #endif
2522 
2523 /**
2524  * igbvf_io_error_detected - called when PCI error is detected
2525  * @pdev: Pointer to PCI device
2526  * @state: The current pci connection state
2527  *
2528  * This function is called after a PCI bus error affecting
2529  * this device has been detected.
2530  */
2531 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2532 						pci_channel_state_t state)
2533 {
2534 	struct net_device *netdev = pci_get_drvdata(pdev);
2535 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2536 
2537 	netif_device_detach(netdev);
2538 
2539 	if (state == pci_channel_io_perm_failure)
2540 		return PCI_ERS_RESULT_DISCONNECT;
2541 
2542 	if (netif_running(netdev))
2543 		igbvf_down(adapter);
2544 	pci_disable_device(pdev);
2545 
2546 	/* Request a slot slot reset. */
2547 	return PCI_ERS_RESULT_NEED_RESET;
2548 }
2549 
2550 /**
2551  * igbvf_io_slot_reset - called after the pci bus has been reset.
2552  * @pdev: Pointer to PCI device
2553  *
2554  * Restart the card from scratch, as if from a cold-boot. Implementation
2555  * resembles the first-half of the igbvf_resume routine.
2556  */
2557 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2558 {
2559 	struct net_device *netdev = pci_get_drvdata(pdev);
2560 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2561 
2562 	if (pci_enable_device_mem(pdev)) {
2563 		dev_err(&pdev->dev,
2564 			"Cannot re-enable PCI device after reset.\n");
2565 		return PCI_ERS_RESULT_DISCONNECT;
2566 	}
2567 	pci_set_master(pdev);
2568 
2569 	igbvf_reset(adapter);
2570 
2571 	return PCI_ERS_RESULT_RECOVERED;
2572 }
2573 
2574 /**
2575  * igbvf_io_resume - called when traffic can start flowing again.
2576  * @pdev: Pointer to PCI device
2577  *
2578  * This callback is called when the error recovery driver tells us that
2579  * its OK to resume normal operation. Implementation resembles the
2580  * second-half of the igbvf_resume routine.
2581  */
2582 static void igbvf_io_resume(struct pci_dev *pdev)
2583 {
2584 	struct net_device *netdev = pci_get_drvdata(pdev);
2585 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2586 
2587 	if (netif_running(netdev)) {
2588 		if (igbvf_up(adapter)) {
2589 			dev_err(&pdev->dev,
2590 				"can't bring device back up after reset\n");
2591 			return;
2592 		}
2593 	}
2594 
2595 	netif_device_attach(netdev);
2596 }
2597 
2598 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2599 {
2600 	struct e1000_hw *hw = &adapter->hw;
2601 	struct net_device *netdev = adapter->netdev;
2602 	struct pci_dev *pdev = adapter->pdev;
2603 
2604 	if (hw->mac.type == e1000_vfadapt_i350)
2605 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2606 	else
2607 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2608 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2609 }
2610 
2611 static int igbvf_set_features(struct net_device *netdev,
2612 			      netdev_features_t features)
2613 {
2614 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2615 
2616 	if (features & NETIF_F_RXCSUM)
2617 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2618 	else
2619 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2620 
2621 	return 0;
2622 }
2623 
2624 #define IGBVF_MAX_MAC_HDR_LEN		127
2625 #define IGBVF_MAX_NETWORK_HDR_LEN	511
2626 
2627 static netdev_features_t
2628 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2629 		     netdev_features_t features)
2630 {
2631 	unsigned int network_hdr_len, mac_hdr_len;
2632 
2633 	/* Make certain the headers can be described by a context descriptor */
2634 	mac_hdr_len = skb_network_header(skb) - skb->data;
2635 	if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2636 		return features & ~(NETIF_F_HW_CSUM |
2637 				    NETIF_F_SCTP_CRC |
2638 				    NETIF_F_HW_VLAN_CTAG_TX |
2639 				    NETIF_F_TSO |
2640 				    NETIF_F_TSO6);
2641 
2642 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2643 	if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2644 		return features & ~(NETIF_F_HW_CSUM |
2645 				    NETIF_F_SCTP_CRC |
2646 				    NETIF_F_TSO |
2647 				    NETIF_F_TSO6);
2648 
2649 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2650 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2651 	 */
2652 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2653 		features &= ~NETIF_F_TSO;
2654 
2655 	return features;
2656 }
2657 
2658 static const struct net_device_ops igbvf_netdev_ops = {
2659 	.ndo_open		= igbvf_open,
2660 	.ndo_stop		= igbvf_close,
2661 	.ndo_start_xmit		= igbvf_xmit_frame,
2662 	.ndo_set_rx_mode	= igbvf_set_rx_mode,
2663 	.ndo_set_mac_address	= igbvf_set_mac,
2664 	.ndo_change_mtu		= igbvf_change_mtu,
2665 	.ndo_do_ioctl		= igbvf_ioctl,
2666 	.ndo_tx_timeout		= igbvf_tx_timeout,
2667 	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2668 	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2669 #ifdef CONFIG_NET_POLL_CONTROLLER
2670 	.ndo_poll_controller	= igbvf_netpoll,
2671 #endif
2672 	.ndo_set_features	= igbvf_set_features,
2673 	.ndo_features_check	= igbvf_features_check,
2674 };
2675 
2676 /**
2677  * igbvf_probe - Device Initialization Routine
2678  * @pdev: PCI device information struct
2679  * @ent: entry in igbvf_pci_tbl
2680  *
2681  * Returns 0 on success, negative on failure
2682  *
2683  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2684  * The OS initialization, configuring of the adapter private structure,
2685  * and a hardware reset occur.
2686  **/
2687 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2688 {
2689 	struct net_device *netdev;
2690 	struct igbvf_adapter *adapter;
2691 	struct e1000_hw *hw;
2692 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2693 
2694 	static int cards_found;
2695 	int err, pci_using_dac;
2696 
2697 	err = pci_enable_device_mem(pdev);
2698 	if (err)
2699 		return err;
2700 
2701 	pci_using_dac = 0;
2702 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2703 	if (!err) {
2704 		pci_using_dac = 1;
2705 	} else {
2706 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2707 		if (err) {
2708 			dev_err(&pdev->dev,
2709 				"No usable DMA configuration, aborting\n");
2710 			goto err_dma;
2711 		}
2712 	}
2713 
2714 	err = pci_request_regions(pdev, igbvf_driver_name);
2715 	if (err)
2716 		goto err_pci_reg;
2717 
2718 	pci_set_master(pdev);
2719 
2720 	err = -ENOMEM;
2721 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2722 	if (!netdev)
2723 		goto err_alloc_etherdev;
2724 
2725 	SET_NETDEV_DEV(netdev, &pdev->dev);
2726 
2727 	pci_set_drvdata(pdev, netdev);
2728 	adapter = netdev_priv(netdev);
2729 	hw = &adapter->hw;
2730 	adapter->netdev = netdev;
2731 	adapter->pdev = pdev;
2732 	adapter->ei = ei;
2733 	adapter->pba = ei->pba;
2734 	adapter->flags = ei->flags;
2735 	adapter->hw.back = adapter;
2736 	adapter->hw.mac.type = ei->mac;
2737 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2738 
2739 	/* PCI config space info */
2740 
2741 	hw->vendor_id = pdev->vendor;
2742 	hw->device_id = pdev->device;
2743 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2744 	hw->subsystem_device_id = pdev->subsystem_device;
2745 	hw->revision_id = pdev->revision;
2746 
2747 	err = -EIO;
2748 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2749 				      pci_resource_len(pdev, 0));
2750 
2751 	if (!adapter->hw.hw_addr)
2752 		goto err_ioremap;
2753 
2754 	if (ei->get_variants) {
2755 		err = ei->get_variants(adapter);
2756 		if (err)
2757 			goto err_get_variants;
2758 	}
2759 
2760 	/* setup adapter struct */
2761 	err = igbvf_sw_init(adapter);
2762 	if (err)
2763 		goto err_sw_init;
2764 
2765 	/* construct the net_device struct */
2766 	netdev->netdev_ops = &igbvf_netdev_ops;
2767 
2768 	igbvf_set_ethtool_ops(netdev);
2769 	netdev->watchdog_timeo = 5 * HZ;
2770 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771 
2772 	adapter->bd_number = cards_found++;
2773 
2774 	netdev->hw_features = NETIF_F_SG |
2775 			      NETIF_F_TSO |
2776 			      NETIF_F_TSO6 |
2777 			      NETIF_F_RXCSUM |
2778 			      NETIF_F_HW_CSUM |
2779 			      NETIF_F_SCTP_CRC;
2780 
2781 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2782 				    NETIF_F_GSO_GRE_CSUM | \
2783 				    NETIF_F_GSO_IPXIP4 | \
2784 				    NETIF_F_GSO_IPXIP6 | \
2785 				    NETIF_F_GSO_UDP_TUNNEL | \
2786 				    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2787 
2788 	netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2789 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2790 			       IGBVF_GSO_PARTIAL_FEATURES;
2791 
2792 	netdev->features = netdev->hw_features;
2793 
2794 	if (pci_using_dac)
2795 		netdev->features |= NETIF_F_HIGHDMA;
2796 
2797 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2798 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2799 	netdev->hw_enc_features |= netdev->vlan_features;
2800 
2801 	/* set this bit last since it cannot be part of vlan_features */
2802 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2803 			    NETIF_F_HW_VLAN_CTAG_RX |
2804 			    NETIF_F_HW_VLAN_CTAG_TX;
2805 
2806 	/* MTU range: 68 - 9216 */
2807 	netdev->min_mtu = ETH_MIN_MTU;
2808 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2809 
2810 	spin_lock_bh(&hw->mbx_lock);
2811 
2812 	/*reset the controller to put the device in a known good state */
2813 	err = hw->mac.ops.reset_hw(hw);
2814 	if (err) {
2815 		dev_info(&pdev->dev,
2816 			 "PF still in reset state. Is the PF interface up?\n");
2817 	} else {
2818 		err = hw->mac.ops.read_mac_addr(hw);
2819 		if (err)
2820 			dev_info(&pdev->dev, "Error reading MAC address.\n");
2821 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2822 			dev_info(&pdev->dev,
2823 				 "MAC address not assigned by administrator.\n");
2824 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2825 		       netdev->addr_len);
2826 	}
2827 
2828 	spin_unlock_bh(&hw->mbx_lock);
2829 
2830 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2831 		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2832 		eth_hw_addr_random(netdev);
2833 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2834 		       netdev->addr_len);
2835 	}
2836 
2837 	timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2838 
2839 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2840 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2841 
2842 	/* ring size defaults */
2843 	adapter->rx_ring->count = 1024;
2844 	adapter->tx_ring->count = 1024;
2845 
2846 	/* reset the hardware with the new settings */
2847 	igbvf_reset(adapter);
2848 
2849 	/* set hardware-specific flags */
2850 	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2851 		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2852 
2853 	strcpy(netdev->name, "eth%d");
2854 	err = register_netdev(netdev);
2855 	if (err)
2856 		goto err_hw_init;
2857 
2858 	/* tell the stack to leave us alone until igbvf_open() is called */
2859 	netif_carrier_off(netdev);
2860 	netif_stop_queue(netdev);
2861 
2862 	igbvf_print_device_info(adapter);
2863 
2864 	igbvf_initialize_last_counter_stats(adapter);
2865 
2866 	return 0;
2867 
2868 err_hw_init:
2869 	kfree(adapter->tx_ring);
2870 	kfree(adapter->rx_ring);
2871 err_sw_init:
2872 	igbvf_reset_interrupt_capability(adapter);
2873 err_get_variants:
2874 	iounmap(adapter->hw.hw_addr);
2875 err_ioremap:
2876 	free_netdev(netdev);
2877 err_alloc_etherdev:
2878 	pci_release_regions(pdev);
2879 err_pci_reg:
2880 err_dma:
2881 	pci_disable_device(pdev);
2882 	return err;
2883 }
2884 
2885 /**
2886  * igbvf_remove - Device Removal Routine
2887  * @pdev: PCI device information struct
2888  *
2889  * igbvf_remove is called by the PCI subsystem to alert the driver
2890  * that it should release a PCI device.  The could be caused by a
2891  * Hot-Plug event, or because the driver is going to be removed from
2892  * memory.
2893  **/
2894 static void igbvf_remove(struct pci_dev *pdev)
2895 {
2896 	struct net_device *netdev = pci_get_drvdata(pdev);
2897 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2898 	struct e1000_hw *hw = &adapter->hw;
2899 
2900 	/* The watchdog timer may be rescheduled, so explicitly
2901 	 * disable it from being rescheduled.
2902 	 */
2903 	set_bit(__IGBVF_DOWN, &adapter->state);
2904 	del_timer_sync(&adapter->watchdog_timer);
2905 
2906 	cancel_work_sync(&adapter->reset_task);
2907 	cancel_work_sync(&adapter->watchdog_task);
2908 
2909 	unregister_netdev(netdev);
2910 
2911 	igbvf_reset_interrupt_capability(adapter);
2912 
2913 	/* it is important to delete the NAPI struct prior to freeing the
2914 	 * Rx ring so that you do not end up with null pointer refs
2915 	 */
2916 	netif_napi_del(&adapter->rx_ring->napi);
2917 	kfree(adapter->tx_ring);
2918 	kfree(adapter->rx_ring);
2919 
2920 	iounmap(hw->hw_addr);
2921 	if (hw->flash_address)
2922 		iounmap(hw->flash_address);
2923 	pci_release_regions(pdev);
2924 
2925 	free_netdev(netdev);
2926 
2927 	pci_disable_device(pdev);
2928 }
2929 
2930 /* PCI Error Recovery (ERS) */
2931 static const struct pci_error_handlers igbvf_err_handler = {
2932 	.error_detected = igbvf_io_error_detected,
2933 	.slot_reset = igbvf_io_slot_reset,
2934 	.resume = igbvf_io_resume,
2935 };
2936 
2937 static const struct pci_device_id igbvf_pci_tbl[] = {
2938 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2939 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2940 	{ } /* terminate list */
2941 };
2942 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2943 
2944 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2945 
2946 /* PCI Device API Driver */
2947 static struct pci_driver igbvf_driver = {
2948 	.name		= igbvf_driver_name,
2949 	.id_table	= igbvf_pci_tbl,
2950 	.probe		= igbvf_probe,
2951 	.remove		= igbvf_remove,
2952 	.driver.pm	= &igbvf_pm_ops,
2953 	.shutdown	= igbvf_shutdown,
2954 	.err_handler	= &igbvf_err_handler
2955 };
2956 
2957 /**
2958  * igbvf_init_module - Driver Registration Routine
2959  *
2960  * igbvf_init_module is the first routine called when the driver is
2961  * loaded. All it does is register with the PCI subsystem.
2962  **/
2963 static int __init igbvf_init_module(void)
2964 {
2965 	int ret;
2966 
2967 	pr_info("%s\n", igbvf_driver_string);
2968 	pr_info("%s\n", igbvf_copyright);
2969 
2970 	ret = pci_register_driver(&igbvf_driver);
2971 
2972 	return ret;
2973 }
2974 module_init(igbvf_init_module);
2975 
2976 /**
2977  * igbvf_exit_module - Driver Exit Cleanup Routine
2978  *
2979  * igbvf_exit_module is called just before the driver is removed
2980  * from memory.
2981  **/
2982 static void __exit igbvf_exit_module(void)
2983 {
2984 	pci_unregister_driver(&igbvf_driver);
2985 }
2986 module_exit(igbvf_exit_module);
2987 
2988 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2989 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2990 MODULE_LICENSE("GPL v2");
2991 
2992 /* netdev.c */
2993