xref: /openbmc/linux/drivers/net/ethernet/intel/igb/igb_ptp.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63 
64 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580			40
70 
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72 
73 /* SYSTIM read access for the 82576 */
74 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
75 {
76 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
77 	struct e1000_hw *hw = &igb->hw;
78 	u64 val;
79 	u32 lo, hi;
80 
81 	lo = rd32(E1000_SYSTIML);
82 	hi = rd32(E1000_SYSTIMH);
83 
84 	val = ((u64) hi) << 32;
85 	val |= lo;
86 
87 	return val;
88 }
89 
90 /* SYSTIM read access for the 82580 */
91 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
92 {
93 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
94 	struct e1000_hw *hw = &igb->hw;
95 	u32 lo, hi;
96 	u64 val;
97 
98 	/* The timestamp latches on lowest register read. For the 82580
99 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
100 	 * need to provide nanosecond resolution, so we just ignore it.
101 	 */
102 	rd32(E1000_SYSTIMR);
103 	lo = rd32(E1000_SYSTIML);
104 	hi = rd32(E1000_SYSTIMH);
105 
106 	val = ((u64) hi) << 32;
107 	val |= lo;
108 
109 	return val;
110 }
111 
112 /* SYSTIM read access for I210/I211 */
113 static void igb_ptp_read_i210(struct igb_adapter *adapter,
114 			      struct timespec64 *ts)
115 {
116 	struct e1000_hw *hw = &adapter->hw;
117 	u32 sec, nsec;
118 
119 	/* The timestamp latches on lowest register read. For I210/I211, the
120 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
121 	 * resolution, we can ignore it.
122 	 */
123 	rd32(E1000_SYSTIMR);
124 	nsec = rd32(E1000_SYSTIML);
125 	sec = rd32(E1000_SYSTIMH);
126 
127 	ts->tv_sec = sec;
128 	ts->tv_nsec = nsec;
129 }
130 
131 static void igb_ptp_write_i210(struct igb_adapter *adapter,
132 			       const struct timespec64 *ts)
133 {
134 	struct e1000_hw *hw = &adapter->hw;
135 
136 	/* Writing the SYSTIMR register is not necessary as it only provides
137 	 * sub-nanosecond resolution.
138 	 */
139 	wr32(E1000_SYSTIML, ts->tv_nsec);
140 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
141 }
142 
143 /**
144  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
145  * @adapter: board private structure
146  * @hwtstamps: timestamp structure to update
147  * @systim: unsigned 64bit system time value.
148  *
149  * We need to convert the system time value stored in the RX/TXSTMP registers
150  * into a hwtstamp which can be used by the upper level timestamping functions.
151  *
152  * The 'tmreg_lock' spinlock is used to protect the consistency of the
153  * system time value. This is needed because reading the 64 bit time
154  * value involves reading two (or three) 32 bit registers. The first
155  * read latches the value. Ditto for writing.
156  *
157  * In addition, here have extended the system time with an overflow
158  * counter in software.
159  **/
160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
161 				       struct skb_shared_hwtstamps *hwtstamps,
162 				       u64 systim)
163 {
164 	unsigned long flags;
165 	u64 ns;
166 
167 	switch (adapter->hw.mac.type) {
168 	case e1000_82576:
169 	case e1000_82580:
170 	case e1000_i354:
171 	case e1000_i350:
172 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
173 
174 		ns = timecounter_cyc2time(&adapter->tc, systim);
175 
176 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
177 
178 		memset(hwtstamps, 0, sizeof(*hwtstamps));
179 		hwtstamps->hwtstamp = ns_to_ktime(ns);
180 		break;
181 	case e1000_i210:
182 	case e1000_i211:
183 		memset(hwtstamps, 0, sizeof(*hwtstamps));
184 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
185 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 						systim & 0xFFFFFFFF);
187 		break;
188 	default:
189 		break;
190 	}
191 }
192 
193 /* PTP clock operations */
194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
195 {
196 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 					       ptp_caps);
198 	struct e1000_hw *hw = &igb->hw;
199 	int neg_adj = 0;
200 	u64 rate;
201 	u32 incvalue;
202 
203 	if (ppb < 0) {
204 		neg_adj = 1;
205 		ppb = -ppb;
206 	}
207 	rate = ppb;
208 	rate <<= 14;
209 	rate = div_u64(rate, 1953125);
210 
211 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
212 
213 	if (neg_adj)
214 		incvalue -= rate;
215 	else
216 		incvalue += rate;
217 
218 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
219 
220 	return 0;
221 }
222 
223 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
224 {
225 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
226 					       ptp_caps);
227 	struct e1000_hw *hw = &igb->hw;
228 	int neg_adj = 0;
229 	u64 rate;
230 	u32 inca;
231 
232 	if (scaled_ppm < 0) {
233 		neg_adj = 1;
234 		scaled_ppm = -scaled_ppm;
235 	}
236 	rate = scaled_ppm;
237 	rate <<= 13;
238 	rate = div_u64(rate, 15625);
239 
240 	inca = rate & INCVALUE_MASK;
241 	if (neg_adj)
242 		inca |= ISGN;
243 
244 	wr32(E1000_TIMINCA, inca);
245 
246 	return 0;
247 }
248 
249 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
250 {
251 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
252 					       ptp_caps);
253 	unsigned long flags;
254 
255 	spin_lock_irqsave(&igb->tmreg_lock, flags);
256 	timecounter_adjtime(&igb->tc, delta);
257 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
258 
259 	return 0;
260 }
261 
262 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
263 {
264 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
265 					       ptp_caps);
266 	unsigned long flags;
267 	struct timespec64 now, then = ns_to_timespec64(delta);
268 
269 	spin_lock_irqsave(&igb->tmreg_lock, flags);
270 
271 	igb_ptp_read_i210(igb, &now);
272 	now = timespec64_add(now, then);
273 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
274 
275 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
276 
277 	return 0;
278 }
279 
280 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
281 				 struct timespec64 *ts)
282 {
283 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
284 					       ptp_caps);
285 	unsigned long flags;
286 	u64 ns;
287 
288 	spin_lock_irqsave(&igb->tmreg_lock, flags);
289 
290 	ns = timecounter_read(&igb->tc);
291 
292 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
293 
294 	*ts = ns_to_timespec64(ns);
295 
296 	return 0;
297 }
298 
299 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
300 				struct timespec64 *ts)
301 {
302 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
303 					       ptp_caps);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(&igb->tmreg_lock, flags);
307 
308 	igb_ptp_read_i210(igb, ts);
309 
310 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
311 
312 	return 0;
313 }
314 
315 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
316 				 const struct timespec64 *ts)
317 {
318 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319 					       ptp_caps);
320 	unsigned long flags;
321 	u64 ns;
322 
323 	ns = timespec64_to_ns(ts);
324 
325 	spin_lock_irqsave(&igb->tmreg_lock, flags);
326 
327 	timecounter_init(&igb->tc, &igb->cc, ns);
328 
329 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
330 
331 	return 0;
332 }
333 
334 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
335 				const struct timespec64 *ts)
336 {
337 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
338 					       ptp_caps);
339 	unsigned long flags;
340 
341 	spin_lock_irqsave(&igb->tmreg_lock, flags);
342 
343 	igb_ptp_write_i210(igb, ts);
344 
345 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
346 
347 	return 0;
348 }
349 
350 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
351 {
352 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
353 	static const u32 mask[IGB_N_SDP] = {
354 		E1000_CTRL_SDP0_DIR,
355 		E1000_CTRL_SDP1_DIR,
356 		E1000_CTRL_EXT_SDP2_DIR,
357 		E1000_CTRL_EXT_SDP3_DIR,
358 	};
359 
360 	if (input)
361 		*ptr &= ~mask[pin];
362 	else
363 		*ptr |= mask[pin];
364 }
365 
366 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
367 {
368 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
369 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
370 	};
371 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
372 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
373 	};
374 	static const u32 ts_sdp_en[IGB_N_SDP] = {
375 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
376 	};
377 	struct e1000_hw *hw = &igb->hw;
378 	u32 ctrl, ctrl_ext, tssdp = 0;
379 
380 	ctrl = rd32(E1000_CTRL);
381 	ctrl_ext = rd32(E1000_CTRL_EXT);
382 	tssdp = rd32(E1000_TSSDP);
383 
384 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
385 
386 	/* Make sure this pin is not enabled as an output. */
387 	tssdp &= ~ts_sdp_en[pin];
388 
389 	if (chan == 1) {
390 		tssdp &= ~AUX1_SEL_SDP3;
391 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
392 	} else {
393 		tssdp &= ~AUX0_SEL_SDP3;
394 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
395 	}
396 
397 	wr32(E1000_TSSDP, tssdp);
398 	wr32(E1000_CTRL, ctrl);
399 	wr32(E1000_CTRL_EXT, ctrl_ext);
400 }
401 
402 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
403 {
404 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
405 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
406 	};
407 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
408 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
409 	};
410 	static const u32 ts_sdp_en[IGB_N_SDP] = {
411 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
412 	};
413 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
414 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
415 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
416 	};
417 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
418 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
419 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
420 	};
421 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
422 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
423 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
424 	};
425 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
426 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
427 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
428 	};
429 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
430 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
431 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
432 	};
433 	struct e1000_hw *hw = &igb->hw;
434 	u32 ctrl, ctrl_ext, tssdp = 0;
435 
436 	ctrl = rd32(E1000_CTRL);
437 	ctrl_ext = rd32(E1000_CTRL_EXT);
438 	tssdp = rd32(E1000_TSSDP);
439 
440 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
441 
442 	/* Make sure this pin is not enabled as an input. */
443 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
444 		tssdp &= ~AUX0_TS_SDP_EN;
445 
446 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
447 		tssdp &= ~AUX1_TS_SDP_EN;
448 
449 	tssdp &= ~ts_sdp_sel_clr[pin];
450 	if (freq) {
451 		if (chan == 1)
452 			tssdp |= ts_sdp_sel_fc1[pin];
453 		else
454 			tssdp |= ts_sdp_sel_fc0[pin];
455 	} else {
456 		if (chan == 1)
457 			tssdp |= ts_sdp_sel_tt1[pin];
458 		else
459 			tssdp |= ts_sdp_sel_tt0[pin];
460 	}
461 	tssdp |= ts_sdp_en[pin];
462 
463 	wr32(E1000_TSSDP, tssdp);
464 	wr32(E1000_CTRL, ctrl);
465 	wr32(E1000_CTRL_EXT, ctrl_ext);
466 }
467 
468 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
469 				       struct ptp_clock_request *rq, int on)
470 {
471 	struct igb_adapter *igb =
472 		container_of(ptp, struct igb_adapter, ptp_caps);
473 	struct e1000_hw *hw = &igb->hw;
474 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
475 	unsigned long flags;
476 	struct timespec64 ts;
477 	int use_freq = 0, pin = -1;
478 	s64 ns;
479 
480 	switch (rq->type) {
481 	case PTP_CLK_REQ_EXTTS:
482 		if (on) {
483 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
484 					   rq->extts.index);
485 			if (pin < 0)
486 				return -EBUSY;
487 		}
488 		if (rq->extts.index == 1) {
489 			tsauxc_mask = TSAUXC_EN_TS1;
490 			tsim_mask = TSINTR_AUTT1;
491 		} else {
492 			tsauxc_mask = TSAUXC_EN_TS0;
493 			tsim_mask = TSINTR_AUTT0;
494 		}
495 		spin_lock_irqsave(&igb->tmreg_lock, flags);
496 		tsauxc = rd32(E1000_TSAUXC);
497 		tsim = rd32(E1000_TSIM);
498 		if (on) {
499 			igb_pin_extts(igb, rq->extts.index, pin);
500 			tsauxc |= tsauxc_mask;
501 			tsim |= tsim_mask;
502 		} else {
503 			tsauxc &= ~tsauxc_mask;
504 			tsim &= ~tsim_mask;
505 		}
506 		wr32(E1000_TSAUXC, tsauxc);
507 		wr32(E1000_TSIM, tsim);
508 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
509 		return 0;
510 
511 	case PTP_CLK_REQ_PEROUT:
512 		if (on) {
513 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
514 					   rq->perout.index);
515 			if (pin < 0)
516 				return -EBUSY;
517 		}
518 		ts.tv_sec = rq->perout.period.sec;
519 		ts.tv_nsec = rq->perout.period.nsec;
520 		ns = timespec64_to_ns(&ts);
521 		ns = ns >> 1;
522 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
523 			   (ns == 250000000LL) || (ns == 500000000LL))) {
524 			if (ns < 8LL)
525 				return -EINVAL;
526 			use_freq = 1;
527 		}
528 		ts = ns_to_timespec64(ns);
529 		if (rq->perout.index == 1) {
530 			if (use_freq) {
531 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
532 				tsim_mask = 0;
533 			} else {
534 				tsauxc_mask = TSAUXC_EN_TT1;
535 				tsim_mask = TSINTR_TT1;
536 			}
537 			trgttiml = E1000_TRGTTIML1;
538 			trgttimh = E1000_TRGTTIMH1;
539 			freqout = E1000_FREQOUT1;
540 		} else {
541 			if (use_freq) {
542 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
543 				tsim_mask = 0;
544 			} else {
545 				tsauxc_mask = TSAUXC_EN_TT0;
546 				tsim_mask = TSINTR_TT0;
547 			}
548 			trgttiml = E1000_TRGTTIML0;
549 			trgttimh = E1000_TRGTTIMH0;
550 			freqout = E1000_FREQOUT0;
551 		}
552 		spin_lock_irqsave(&igb->tmreg_lock, flags);
553 		tsauxc = rd32(E1000_TSAUXC);
554 		tsim = rd32(E1000_TSIM);
555 		if (rq->perout.index == 1) {
556 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
557 			tsim &= ~TSINTR_TT1;
558 		} else {
559 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
560 			tsim &= ~TSINTR_TT0;
561 		}
562 		if (on) {
563 			int i = rq->perout.index;
564 			igb_pin_perout(igb, i, pin, use_freq);
565 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
566 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
567 			igb->perout[i].period.tv_sec = ts.tv_sec;
568 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
569 			wr32(trgttimh, rq->perout.start.sec);
570 			wr32(trgttiml, rq->perout.start.nsec);
571 			if (use_freq)
572 				wr32(freqout, ns);
573 			tsauxc |= tsauxc_mask;
574 			tsim |= tsim_mask;
575 		}
576 		wr32(E1000_TSAUXC, tsauxc);
577 		wr32(E1000_TSIM, tsim);
578 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
579 		return 0;
580 
581 	case PTP_CLK_REQ_PPS:
582 		spin_lock_irqsave(&igb->tmreg_lock, flags);
583 		tsim = rd32(E1000_TSIM);
584 		if (on)
585 			tsim |= TSINTR_SYS_WRAP;
586 		else
587 			tsim &= ~TSINTR_SYS_WRAP;
588 		igb->pps_sys_wrap_on = !!on;
589 		wr32(E1000_TSIM, tsim);
590 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
591 		return 0;
592 	}
593 
594 	return -EOPNOTSUPP;
595 }
596 
597 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
598 				  struct ptp_clock_request *rq, int on)
599 {
600 	return -EOPNOTSUPP;
601 }
602 
603 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
604 			      enum ptp_pin_function func, unsigned int chan)
605 {
606 	switch (func) {
607 	case PTP_PF_NONE:
608 	case PTP_PF_EXTTS:
609 	case PTP_PF_PEROUT:
610 		break;
611 	case PTP_PF_PHYSYNC:
612 		return -1;
613 	}
614 	return 0;
615 }
616 
617 /**
618  * igb_ptp_tx_work
619  * @work: pointer to work struct
620  *
621  * This work function polls the TSYNCTXCTL valid bit to determine when a
622  * timestamp has been taken for the current stored skb.
623  **/
624 static void igb_ptp_tx_work(struct work_struct *work)
625 {
626 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
627 						   ptp_tx_work);
628 	struct e1000_hw *hw = &adapter->hw;
629 	u32 tsynctxctl;
630 
631 	if (!adapter->ptp_tx_skb)
632 		return;
633 
634 	if (time_is_before_jiffies(adapter->ptp_tx_start +
635 				   IGB_PTP_TX_TIMEOUT)) {
636 		dev_kfree_skb_any(adapter->ptp_tx_skb);
637 		adapter->ptp_tx_skb = NULL;
638 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
639 		adapter->tx_hwtstamp_timeouts++;
640 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
641 		 * interrupt
642 		 */
643 		rd32(E1000_TXSTMPH);
644 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
645 		return;
646 	}
647 
648 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
649 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
650 		igb_ptp_tx_hwtstamp(adapter);
651 	else
652 		/* reschedule to check later */
653 		schedule_work(&adapter->ptp_tx_work);
654 }
655 
656 static void igb_ptp_overflow_check(struct work_struct *work)
657 {
658 	struct igb_adapter *igb =
659 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
660 	struct timespec64 ts;
661 
662 	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
663 
664 	pr_debug("igb overflow check at %lld.%09lu\n",
665 		 (long long) ts.tv_sec, ts.tv_nsec);
666 
667 	schedule_delayed_work(&igb->ptp_overflow_work,
668 			      IGB_SYSTIM_OVERFLOW_PERIOD);
669 }
670 
671 /**
672  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
673  * @adapter: private network adapter structure
674  *
675  * This watchdog task is scheduled to detect error case where hardware has
676  * dropped an Rx packet that was timestamped when the ring is full. The
677  * particular error is rare but leaves the device in a state unable to timestamp
678  * any future packets.
679  **/
680 void igb_ptp_rx_hang(struct igb_adapter *adapter)
681 {
682 	struct e1000_hw *hw = &adapter->hw;
683 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
684 	unsigned long rx_event;
685 
686 	/* Other hardware uses per-packet timestamps */
687 	if (hw->mac.type != e1000_82576)
688 		return;
689 
690 	/* If we don't have a valid timestamp in the registers, just update the
691 	 * timeout counter and exit
692 	 */
693 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
694 		adapter->last_rx_ptp_check = jiffies;
695 		return;
696 	}
697 
698 	/* Determine the most recent watchdog or rx_timestamp event */
699 	rx_event = adapter->last_rx_ptp_check;
700 	if (time_after(adapter->last_rx_timestamp, rx_event))
701 		rx_event = adapter->last_rx_timestamp;
702 
703 	/* Only need to read the high RXSTMP register to clear the lock */
704 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
705 		rd32(E1000_RXSTMPH);
706 		adapter->last_rx_ptp_check = jiffies;
707 		adapter->rx_hwtstamp_cleared++;
708 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
709 	}
710 }
711 
712 /**
713  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
714  * @adapter: private network adapter structure
715  */
716 void igb_ptp_tx_hang(struct igb_adapter *adapter)
717 {
718 	struct e1000_hw *hw = &adapter->hw;
719 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
720 					      IGB_PTP_TX_TIMEOUT);
721 
722 	if (!adapter->ptp_tx_skb)
723 		return;
724 
725 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
726 		return;
727 
728 	/* If we haven't received a timestamp within the timeout, it is
729 	 * reasonable to assume that it will never occur, so we can unlock the
730 	 * timestamp bit when this occurs.
731 	 */
732 	if (timeout) {
733 		cancel_work_sync(&adapter->ptp_tx_work);
734 		dev_kfree_skb_any(adapter->ptp_tx_skb);
735 		adapter->ptp_tx_skb = NULL;
736 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
737 		adapter->tx_hwtstamp_timeouts++;
738 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
739 		 * interrupt
740 		 */
741 		rd32(E1000_TXSTMPH);
742 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
743 	}
744 }
745 
746 /**
747  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
748  * @adapter: Board private structure.
749  *
750  * If we were asked to do hardware stamping and such a time stamp is
751  * available, then it must have been for this skb here because we only
752  * allow only one such packet into the queue.
753  **/
754 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
755 {
756 	struct sk_buff *skb = adapter->ptp_tx_skb;
757 	struct e1000_hw *hw = &adapter->hw;
758 	struct skb_shared_hwtstamps shhwtstamps;
759 	u64 regval;
760 	int adjust = 0;
761 
762 	regval = rd32(E1000_TXSTMPL);
763 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
764 
765 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
766 	/* adjust timestamp for the TX latency based on link speed */
767 	if (adapter->hw.mac.type == e1000_i210) {
768 		switch (adapter->link_speed) {
769 		case SPEED_10:
770 			adjust = IGB_I210_TX_LATENCY_10;
771 			break;
772 		case SPEED_100:
773 			adjust = IGB_I210_TX_LATENCY_100;
774 			break;
775 		case SPEED_1000:
776 			adjust = IGB_I210_TX_LATENCY_1000;
777 			break;
778 		}
779 	}
780 
781 	shhwtstamps.hwtstamp =
782 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
783 
784 	/* Clear the lock early before calling skb_tstamp_tx so that
785 	 * applications are not woken up before the lock bit is clear. We use
786 	 * a copy of the skb pointer to ensure other threads can't change it
787 	 * while we're notifying the stack.
788 	 */
789 	adapter->ptp_tx_skb = NULL;
790 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
791 
792 	/* Notify the stack and free the skb after we've unlocked */
793 	skb_tstamp_tx(skb, &shhwtstamps);
794 	dev_kfree_skb_any(skb);
795 }
796 
797 /**
798  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
799  * @q_vector: Pointer to interrupt specific structure
800  * @va: Pointer to address containing Rx buffer
801  * @skb: Buffer containing timestamp and packet
802  *
803  * This function is meant to retrieve a timestamp from the first buffer of an
804  * incoming frame.  The value is stored in little endian format starting on
805  * byte 8.
806  **/
807 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
808 			 struct sk_buff *skb)
809 {
810 	__le64 *regval = (__le64 *)va;
811 	struct igb_adapter *adapter = q_vector->adapter;
812 	int adjust = 0;
813 
814 	/* The timestamp is recorded in little endian format.
815 	 * DWORD: 0        1        2        3
816 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
817 	 */
818 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
819 				   le64_to_cpu(regval[1]));
820 
821 	/* adjust timestamp for the RX latency based on link speed */
822 	if (adapter->hw.mac.type == e1000_i210) {
823 		switch (adapter->link_speed) {
824 		case SPEED_10:
825 			adjust = IGB_I210_RX_LATENCY_10;
826 			break;
827 		case SPEED_100:
828 			adjust = IGB_I210_RX_LATENCY_100;
829 			break;
830 		case SPEED_1000:
831 			adjust = IGB_I210_RX_LATENCY_1000;
832 			break;
833 		}
834 	}
835 	skb_hwtstamps(skb)->hwtstamp =
836 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
837 }
838 
839 /**
840  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
841  * @q_vector: Pointer to interrupt specific structure
842  * @skb: Buffer containing timestamp and packet
843  *
844  * This function is meant to retrieve a timestamp from the internal registers
845  * of the adapter and store it in the skb.
846  **/
847 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
848 			 struct sk_buff *skb)
849 {
850 	struct igb_adapter *adapter = q_vector->adapter;
851 	struct e1000_hw *hw = &adapter->hw;
852 	u64 regval;
853 	int adjust = 0;
854 
855 	/* If this bit is set, then the RX registers contain the time stamp. No
856 	 * other packet will be time stamped until we read these registers, so
857 	 * read the registers to make them available again. Because only one
858 	 * packet can be time stamped at a time, we know that the register
859 	 * values must belong to this one here and therefore we don't need to
860 	 * compare any of the additional attributes stored for it.
861 	 *
862 	 * If nothing went wrong, then it should have a shared tx_flags that we
863 	 * can turn into a skb_shared_hwtstamps.
864 	 */
865 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
866 		return;
867 
868 	regval = rd32(E1000_RXSTMPL);
869 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
870 
871 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
872 
873 	/* adjust timestamp for the RX latency based on link speed */
874 	if (adapter->hw.mac.type == e1000_i210) {
875 		switch (adapter->link_speed) {
876 		case SPEED_10:
877 			adjust = IGB_I210_RX_LATENCY_10;
878 			break;
879 		case SPEED_100:
880 			adjust = IGB_I210_RX_LATENCY_100;
881 			break;
882 		case SPEED_1000:
883 			adjust = IGB_I210_RX_LATENCY_1000;
884 			break;
885 		}
886 	}
887 	skb_hwtstamps(skb)->hwtstamp =
888 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
889 
890 	/* Update the last_rx_timestamp timer in order to enable watchdog check
891 	 * for error case of latched timestamp on a dropped packet.
892 	 */
893 	adapter->last_rx_timestamp = jiffies;
894 }
895 
896 /**
897  * igb_ptp_get_ts_config - get hardware time stamping config
898  * @netdev:
899  * @ifreq:
900  *
901  * Get the hwtstamp_config settings to return to the user. Rather than attempt
902  * to deconstruct the settings from the registers, just return a shadow copy
903  * of the last known settings.
904  **/
905 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
906 {
907 	struct igb_adapter *adapter = netdev_priv(netdev);
908 	struct hwtstamp_config *config = &adapter->tstamp_config;
909 
910 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
911 		-EFAULT : 0;
912 }
913 
914 /**
915  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
916  * @adapter: networking device structure
917  * @config: hwtstamp configuration
918  *
919  * Outgoing time stamping can be enabled and disabled. Play nice and
920  * disable it when requested, although it shouldn't case any overhead
921  * when no packet needs it. At most one packet in the queue may be
922  * marked for time stamping, otherwise it would be impossible to tell
923  * for sure to which packet the hardware time stamp belongs.
924  *
925  * Incoming time stamping has to be configured via the hardware
926  * filters. Not all combinations are supported, in particular event
927  * type has to be specified. Matching the kind of event packet is
928  * not supported, with the exception of "all V2 events regardless of
929  * level 2 or 4".
930  */
931 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
932 				      struct hwtstamp_config *config)
933 {
934 	struct e1000_hw *hw = &adapter->hw;
935 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
936 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
937 	u32 tsync_rx_cfg = 0;
938 	bool is_l4 = false;
939 	bool is_l2 = false;
940 	u32 regval;
941 
942 	/* reserved for future extensions */
943 	if (config->flags)
944 		return -EINVAL;
945 
946 	switch (config->tx_type) {
947 	case HWTSTAMP_TX_OFF:
948 		tsync_tx_ctl = 0;
949 	case HWTSTAMP_TX_ON:
950 		break;
951 	default:
952 		return -ERANGE;
953 	}
954 
955 	switch (config->rx_filter) {
956 	case HWTSTAMP_FILTER_NONE:
957 		tsync_rx_ctl = 0;
958 		break;
959 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
960 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
961 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
962 		is_l4 = true;
963 		break;
964 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
965 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
966 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
967 		is_l4 = true;
968 		break;
969 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
970 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
971 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
972 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
973 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
974 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
975 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
976 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
977 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
978 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
979 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
980 		is_l2 = true;
981 		is_l4 = true;
982 		break;
983 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
984 	case HWTSTAMP_FILTER_NTP_ALL:
985 	case HWTSTAMP_FILTER_ALL:
986 		/* 82576 cannot timestamp all packets, which it needs to do to
987 		 * support both V1 Sync and Delay_Req messages
988 		 */
989 		if (hw->mac.type != e1000_82576) {
990 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
991 			config->rx_filter = HWTSTAMP_FILTER_ALL;
992 			break;
993 		}
994 		/* fall through */
995 	default:
996 		config->rx_filter = HWTSTAMP_FILTER_NONE;
997 		return -ERANGE;
998 	}
999 
1000 	if (hw->mac.type == e1000_82575) {
1001 		if (tsync_rx_ctl | tsync_tx_ctl)
1002 			return -EINVAL;
1003 		return 0;
1004 	}
1005 
1006 	/* Per-packet timestamping only works if all packets are
1007 	 * timestamped, so enable timestamping in all packets as
1008 	 * long as one Rx filter was configured.
1009 	 */
1010 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1011 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1012 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1013 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1014 		is_l2 = true;
1015 		is_l4 = true;
1016 
1017 		if ((hw->mac.type == e1000_i210) ||
1018 		    (hw->mac.type == e1000_i211)) {
1019 			regval = rd32(E1000_RXPBS);
1020 			regval |= E1000_RXPBS_CFG_TS_EN;
1021 			wr32(E1000_RXPBS, regval);
1022 		}
1023 	}
1024 
1025 	/* enable/disable TX */
1026 	regval = rd32(E1000_TSYNCTXCTL);
1027 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1028 	regval |= tsync_tx_ctl;
1029 	wr32(E1000_TSYNCTXCTL, regval);
1030 
1031 	/* enable/disable RX */
1032 	regval = rd32(E1000_TSYNCRXCTL);
1033 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1034 	regval |= tsync_rx_ctl;
1035 	wr32(E1000_TSYNCRXCTL, regval);
1036 
1037 	/* define which PTP packets are time stamped */
1038 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1039 
1040 	/* define ethertype filter for timestamped packets */
1041 	if (is_l2)
1042 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1043 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1044 		      E1000_ETQF_1588 | /* enable timestamping */
1045 		      ETH_P_1588));     /* 1588 eth protocol type */
1046 	else
1047 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1048 
1049 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1050 	if (is_l4) {
1051 		u32 ftqf = (IPPROTO_UDP /* UDP */
1052 			| E1000_FTQF_VF_BP /* VF not compared */
1053 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1054 			| E1000_FTQF_MASK); /* mask all inputs */
1055 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1056 
1057 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1058 		wr32(E1000_IMIREXT(3),
1059 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1060 		if (hw->mac.type == e1000_82576) {
1061 			/* enable source port check */
1062 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1063 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1064 		}
1065 		wr32(E1000_FTQF(3), ftqf);
1066 	} else {
1067 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1068 	}
1069 	wrfl();
1070 
1071 	/* clear TX/RX time stamp registers, just to be sure */
1072 	regval = rd32(E1000_TXSTMPL);
1073 	regval = rd32(E1000_TXSTMPH);
1074 	regval = rd32(E1000_RXSTMPL);
1075 	regval = rd32(E1000_RXSTMPH);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  * igb_ptp_set_ts_config - set hardware time stamping config
1082  * @netdev:
1083  * @ifreq:
1084  *
1085  **/
1086 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1087 {
1088 	struct igb_adapter *adapter = netdev_priv(netdev);
1089 	struct hwtstamp_config config;
1090 	int err;
1091 
1092 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1093 		return -EFAULT;
1094 
1095 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1096 	if (err)
1097 		return err;
1098 
1099 	/* save these settings for future reference */
1100 	memcpy(&adapter->tstamp_config, &config,
1101 	       sizeof(adapter->tstamp_config));
1102 
1103 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1104 		-EFAULT : 0;
1105 }
1106 
1107 /**
1108  * igb_ptp_init - Initialize PTP functionality
1109  * @adapter: Board private structure
1110  *
1111  * This function is called at device probe to initialize the PTP
1112  * functionality.
1113  */
1114 void igb_ptp_init(struct igb_adapter *adapter)
1115 {
1116 	struct e1000_hw *hw = &adapter->hw;
1117 	struct net_device *netdev = adapter->netdev;
1118 	int i;
1119 
1120 	switch (hw->mac.type) {
1121 	case e1000_82576:
1122 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1123 		adapter->ptp_caps.owner = THIS_MODULE;
1124 		adapter->ptp_caps.max_adj = 999999881;
1125 		adapter->ptp_caps.n_ext_ts = 0;
1126 		adapter->ptp_caps.pps = 0;
1127 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1128 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1129 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1130 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1131 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1132 		adapter->cc.read = igb_ptp_read_82576;
1133 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1134 		adapter->cc.mult = 1;
1135 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1136 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1137 		break;
1138 	case e1000_82580:
1139 	case e1000_i354:
1140 	case e1000_i350:
1141 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1142 		adapter->ptp_caps.owner = THIS_MODULE;
1143 		adapter->ptp_caps.max_adj = 62499999;
1144 		adapter->ptp_caps.n_ext_ts = 0;
1145 		adapter->ptp_caps.pps = 0;
1146 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1147 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1148 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1149 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1150 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1151 		adapter->cc.read = igb_ptp_read_82580;
1152 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1153 		adapter->cc.mult = 1;
1154 		adapter->cc.shift = 0;
1155 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1156 		break;
1157 	case e1000_i210:
1158 	case e1000_i211:
1159 		for (i = 0; i < IGB_N_SDP; i++) {
1160 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1161 
1162 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1163 			ppd->index = i;
1164 			ppd->func = PTP_PF_NONE;
1165 		}
1166 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1167 		adapter->ptp_caps.owner = THIS_MODULE;
1168 		adapter->ptp_caps.max_adj = 62499999;
1169 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1170 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1171 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1172 		adapter->ptp_caps.pps = 1;
1173 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1174 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1175 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1176 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1177 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1178 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1179 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1180 		break;
1181 	default:
1182 		adapter->ptp_clock = NULL;
1183 		return;
1184 	}
1185 
1186 	spin_lock_init(&adapter->tmreg_lock);
1187 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1188 
1189 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1190 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1191 				  igb_ptp_overflow_check);
1192 
1193 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1194 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1195 
1196 	igb_ptp_reset(adapter);
1197 
1198 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1199 						&adapter->pdev->dev);
1200 	if (IS_ERR(adapter->ptp_clock)) {
1201 		adapter->ptp_clock = NULL;
1202 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1203 	} else if (adapter->ptp_clock) {
1204 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1205 			 adapter->netdev->name);
1206 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1207 	}
1208 }
1209 
1210 /**
1211  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1212  * @adapter: Board private structure
1213  *
1214  * This function stops the overflow check work and PTP Tx timestamp work, and
1215  * will prepare the device for OS suspend.
1216  */
1217 void igb_ptp_suspend(struct igb_adapter *adapter)
1218 {
1219 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1220 		return;
1221 
1222 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1223 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1224 
1225 	cancel_work_sync(&adapter->ptp_tx_work);
1226 	if (adapter->ptp_tx_skb) {
1227 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1228 		adapter->ptp_tx_skb = NULL;
1229 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1230 	}
1231 }
1232 
1233 /**
1234  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1235  * @adapter: Board private structure.
1236  *
1237  * This function stops the PTP support and cancels the delayed work.
1238  **/
1239 void igb_ptp_stop(struct igb_adapter *adapter)
1240 {
1241 	igb_ptp_suspend(adapter);
1242 
1243 	if (adapter->ptp_clock) {
1244 		ptp_clock_unregister(adapter->ptp_clock);
1245 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1246 			 adapter->netdev->name);
1247 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1248 	}
1249 }
1250 
1251 /**
1252  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1253  * @adapter: Board private structure.
1254  *
1255  * This function handles the reset work required to re-enable the PTP device.
1256  **/
1257 void igb_ptp_reset(struct igb_adapter *adapter)
1258 {
1259 	struct e1000_hw *hw = &adapter->hw;
1260 	unsigned long flags;
1261 
1262 	/* reset the tstamp_config */
1263 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1264 
1265 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1266 
1267 	switch (adapter->hw.mac.type) {
1268 	case e1000_82576:
1269 		/* Dial the nominal frequency. */
1270 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1271 		break;
1272 	case e1000_82580:
1273 	case e1000_i354:
1274 	case e1000_i350:
1275 	case e1000_i210:
1276 	case e1000_i211:
1277 		wr32(E1000_TSAUXC, 0x0);
1278 		wr32(E1000_TSSDP, 0x0);
1279 		wr32(E1000_TSIM,
1280 		     TSYNC_INTERRUPTS |
1281 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1282 		wr32(E1000_IMS, E1000_IMS_TS);
1283 		break;
1284 	default:
1285 		/* No work to do. */
1286 		goto out;
1287 	}
1288 
1289 	/* Re-initialize the timer. */
1290 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1291 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1292 
1293 		igb_ptp_write_i210(adapter, &ts);
1294 	} else {
1295 		timecounter_init(&adapter->tc, &adapter->cc,
1296 				 ktime_to_ns(ktime_get_real()));
1297 	}
1298 out:
1299 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1300 
1301 	wrfl();
1302 
1303 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1304 		schedule_delayed_work(&adapter->ptp_overflow_work,
1305 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1306 }
1307