1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */ 3 4 #include <linux/module.h> 5 #include <linux/device.h> 6 #include <linux/pci.h> 7 #include <linux/ptp_classify.h> 8 9 #include "igb.h" 10 11 #define INCVALUE_MASK 0x7fffffff 12 #define ISGN 0x80000000 13 14 /* The 82580 timesync updates the system timer every 8ns by 8ns, 15 * and this update value cannot be reprogrammed. 16 * 17 * Neither the 82576 nor the 82580 offer registers wide enough to hold 18 * nanoseconds time values for very long. For the 82580, SYSTIM always 19 * counts nanoseconds, but the upper 24 bits are not available. The 20 * frequency is adjusted by changing the 32 bit fractional nanoseconds 21 * register, TIMINCA. 22 * 23 * For the 82576, the SYSTIM register time unit is affect by the 24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this 25 * field are needed to provide the nominal 16 nanosecond period, 26 * leaving 19 bits for fractional nanoseconds. 27 * 28 * We scale the NIC clock cycle by a large factor so that relatively 29 * small clock corrections can be added or subtracted at each clock 30 * tick. The drawbacks of a large factor are a) that the clock 31 * register overflows more quickly (not such a big deal) and b) that 32 * the increment per tick has to fit into 24 bits. As a result we 33 * need to use a shift of 19 so we can fit a value of 16 into the 34 * TIMINCA register. 35 * 36 * 37 * SYSTIMH SYSTIML 38 * +--------------+ +---+---+------+ 39 * 82576 | 32 | | 8 | 5 | 19 | 40 * +--------------+ +---+---+------+ 41 * \________ 45 bits _______/ fract 42 * 43 * +----------+---+ +--------------+ 44 * 82580 | 24 | 8 | | 32 | 45 * +----------+---+ +--------------+ 46 * reserved \______ 40 bits _____/ 47 * 48 * 49 * The 45 bit 82576 SYSTIM overflows every 50 * 2^45 * 10^-9 / 3600 = 9.77 hours. 51 * 52 * The 40 bit 82580 SYSTIM overflows every 53 * 2^40 * 10^-9 / 60 = 18.3 minutes. 54 * 55 * SYSTIM is converted to real time using a timecounter. As 56 * timecounter_cyc2time() allows old timestamps, the timecounter needs 57 * to be updated at least once per half of the SYSTIM interval. 58 * Scheduling of delayed work is not very accurate, and also the NIC 59 * clock can be adjusted to run up to 6% faster and the system clock 60 * up to 10% slower, so we aim for 6 minutes to be sure the actual 61 * interval in the NIC time is shorter than 9.16 minutes. 62 */ 63 64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6) 65 #define IGB_PTP_TX_TIMEOUT (HZ * 15) 66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT) 67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0) 68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT) 69 #define IGB_NBITS_82580 40 70 71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); 72 73 /* SYSTIM read access for the 82576 */ 74 static u64 igb_ptp_read_82576(const struct cyclecounter *cc) 75 { 76 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 77 struct e1000_hw *hw = &igb->hw; 78 u64 val; 79 u32 lo, hi; 80 81 lo = rd32(E1000_SYSTIML); 82 hi = rd32(E1000_SYSTIMH); 83 84 val = ((u64) hi) << 32; 85 val |= lo; 86 87 return val; 88 } 89 90 /* SYSTIM read access for the 82580 */ 91 static u64 igb_ptp_read_82580(const struct cyclecounter *cc) 92 { 93 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 94 struct e1000_hw *hw = &igb->hw; 95 u32 lo, hi; 96 u64 val; 97 98 /* The timestamp latches on lowest register read. For the 82580 99 * the lowest register is SYSTIMR instead of SYSTIML. However we only 100 * need to provide nanosecond resolution, so we just ignore it. 101 */ 102 rd32(E1000_SYSTIMR); 103 lo = rd32(E1000_SYSTIML); 104 hi = rd32(E1000_SYSTIMH); 105 106 val = ((u64) hi) << 32; 107 val |= lo; 108 109 return val; 110 } 111 112 /* SYSTIM read access for I210/I211 */ 113 static void igb_ptp_read_i210(struct igb_adapter *adapter, 114 struct timespec64 *ts) 115 { 116 struct e1000_hw *hw = &adapter->hw; 117 u32 sec, nsec; 118 119 /* The timestamp latches on lowest register read. For I210/I211, the 120 * lowest register is SYSTIMR. Since we only need to provide nanosecond 121 * resolution, we can ignore it. 122 */ 123 rd32(E1000_SYSTIMR); 124 nsec = rd32(E1000_SYSTIML); 125 sec = rd32(E1000_SYSTIMH); 126 127 ts->tv_sec = sec; 128 ts->tv_nsec = nsec; 129 } 130 131 static void igb_ptp_write_i210(struct igb_adapter *adapter, 132 const struct timespec64 *ts) 133 { 134 struct e1000_hw *hw = &adapter->hw; 135 136 /* Writing the SYSTIMR register is not necessary as it only provides 137 * sub-nanosecond resolution. 138 */ 139 wr32(E1000_SYSTIML, ts->tv_nsec); 140 wr32(E1000_SYSTIMH, (u32)ts->tv_sec); 141 } 142 143 /** 144 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp 145 * @adapter: board private structure 146 * @hwtstamps: timestamp structure to update 147 * @systim: unsigned 64bit system time value. 148 * 149 * We need to convert the system time value stored in the RX/TXSTMP registers 150 * into a hwtstamp which can be used by the upper level timestamping functions. 151 * 152 * The 'tmreg_lock' spinlock is used to protect the consistency of the 153 * system time value. This is needed because reading the 64 bit time 154 * value involves reading two (or three) 32 bit registers. The first 155 * read latches the value. Ditto for writing. 156 * 157 * In addition, here have extended the system time with an overflow 158 * counter in software. 159 **/ 160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, 161 struct skb_shared_hwtstamps *hwtstamps, 162 u64 systim) 163 { 164 unsigned long flags; 165 u64 ns; 166 167 switch (adapter->hw.mac.type) { 168 case e1000_82576: 169 case e1000_82580: 170 case e1000_i354: 171 case e1000_i350: 172 spin_lock_irqsave(&adapter->tmreg_lock, flags); 173 174 ns = timecounter_cyc2time(&adapter->tc, systim); 175 176 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 177 178 memset(hwtstamps, 0, sizeof(*hwtstamps)); 179 hwtstamps->hwtstamp = ns_to_ktime(ns); 180 break; 181 case e1000_i210: 182 case e1000_i211: 183 memset(hwtstamps, 0, sizeof(*hwtstamps)); 184 /* Upper 32 bits contain s, lower 32 bits contain ns. */ 185 hwtstamps->hwtstamp = ktime_set(systim >> 32, 186 systim & 0xFFFFFFFF); 187 break; 188 default: 189 break; 190 } 191 } 192 193 /* PTP clock operations */ 194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb) 195 { 196 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 197 ptp_caps); 198 struct e1000_hw *hw = &igb->hw; 199 int neg_adj = 0; 200 u64 rate; 201 u32 incvalue; 202 203 if (ppb < 0) { 204 neg_adj = 1; 205 ppb = -ppb; 206 } 207 rate = ppb; 208 rate <<= 14; 209 rate = div_u64(rate, 1953125); 210 211 incvalue = 16 << IGB_82576_TSYNC_SHIFT; 212 213 if (neg_adj) 214 incvalue -= rate; 215 else 216 incvalue += rate; 217 218 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); 219 220 return 0; 221 } 222 223 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm) 224 { 225 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 226 ptp_caps); 227 struct e1000_hw *hw = &igb->hw; 228 int neg_adj = 0; 229 u64 rate; 230 u32 inca; 231 232 if (scaled_ppm < 0) { 233 neg_adj = 1; 234 scaled_ppm = -scaled_ppm; 235 } 236 rate = scaled_ppm; 237 rate <<= 13; 238 rate = div_u64(rate, 15625); 239 240 inca = rate & INCVALUE_MASK; 241 if (neg_adj) 242 inca |= ISGN; 243 244 wr32(E1000_TIMINCA, inca); 245 246 return 0; 247 } 248 249 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) 250 { 251 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 252 ptp_caps); 253 unsigned long flags; 254 255 spin_lock_irqsave(&igb->tmreg_lock, flags); 256 timecounter_adjtime(&igb->tc, delta); 257 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 258 259 return 0; 260 } 261 262 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) 263 { 264 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 265 ptp_caps); 266 unsigned long flags; 267 struct timespec64 now, then = ns_to_timespec64(delta); 268 269 spin_lock_irqsave(&igb->tmreg_lock, flags); 270 271 igb_ptp_read_i210(igb, &now); 272 now = timespec64_add(now, then); 273 igb_ptp_write_i210(igb, (const struct timespec64 *)&now); 274 275 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 276 277 return 0; 278 } 279 280 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp, 281 struct timespec64 *ts) 282 { 283 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 284 ptp_caps); 285 unsigned long flags; 286 u64 ns; 287 288 spin_lock_irqsave(&igb->tmreg_lock, flags); 289 290 ns = timecounter_read(&igb->tc); 291 292 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 293 294 *ts = ns_to_timespec64(ns); 295 296 return 0; 297 } 298 299 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp, 300 struct timespec64 *ts) 301 { 302 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 303 ptp_caps); 304 unsigned long flags; 305 306 spin_lock_irqsave(&igb->tmreg_lock, flags); 307 308 igb_ptp_read_i210(igb, ts); 309 310 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 311 312 return 0; 313 } 314 315 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, 316 const struct timespec64 *ts) 317 { 318 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 319 ptp_caps); 320 unsigned long flags; 321 u64 ns; 322 323 ns = timespec64_to_ns(ts); 324 325 spin_lock_irqsave(&igb->tmreg_lock, flags); 326 327 timecounter_init(&igb->tc, &igb->cc, ns); 328 329 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 330 331 return 0; 332 } 333 334 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, 335 const struct timespec64 *ts) 336 { 337 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 338 ptp_caps); 339 unsigned long flags; 340 341 spin_lock_irqsave(&igb->tmreg_lock, flags); 342 343 igb_ptp_write_i210(igb, ts); 344 345 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 346 347 return 0; 348 } 349 350 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) 351 { 352 u32 *ptr = pin < 2 ? ctrl : ctrl_ext; 353 static const u32 mask[IGB_N_SDP] = { 354 E1000_CTRL_SDP0_DIR, 355 E1000_CTRL_SDP1_DIR, 356 E1000_CTRL_EXT_SDP2_DIR, 357 E1000_CTRL_EXT_SDP3_DIR, 358 }; 359 360 if (input) 361 *ptr &= ~mask[pin]; 362 else 363 *ptr |= mask[pin]; 364 } 365 366 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin) 367 { 368 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 369 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 370 }; 371 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 372 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 373 }; 374 static const u32 ts_sdp_en[IGB_N_SDP] = { 375 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 376 }; 377 struct e1000_hw *hw = &igb->hw; 378 u32 ctrl, ctrl_ext, tssdp = 0; 379 380 ctrl = rd32(E1000_CTRL); 381 ctrl_ext = rd32(E1000_CTRL_EXT); 382 tssdp = rd32(E1000_TSSDP); 383 384 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext); 385 386 /* Make sure this pin is not enabled as an output. */ 387 tssdp &= ~ts_sdp_en[pin]; 388 389 if (chan == 1) { 390 tssdp &= ~AUX1_SEL_SDP3; 391 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN; 392 } else { 393 tssdp &= ~AUX0_SEL_SDP3; 394 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN; 395 } 396 397 wr32(E1000_TSSDP, tssdp); 398 wr32(E1000_CTRL, ctrl); 399 wr32(E1000_CTRL_EXT, ctrl_ext); 400 } 401 402 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq) 403 { 404 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 405 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 406 }; 407 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 408 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 409 }; 410 static const u32 ts_sdp_en[IGB_N_SDP] = { 411 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 412 }; 413 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = { 414 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0, 415 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0, 416 }; 417 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = { 418 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1, 419 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1, 420 }; 421 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = { 422 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0, 423 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0, 424 }; 425 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = { 426 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 427 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 428 }; 429 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = { 430 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 431 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 432 }; 433 struct e1000_hw *hw = &igb->hw; 434 u32 ctrl, ctrl_ext, tssdp = 0; 435 436 ctrl = rd32(E1000_CTRL); 437 ctrl_ext = rd32(E1000_CTRL_EXT); 438 tssdp = rd32(E1000_TSSDP); 439 440 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext); 441 442 /* Make sure this pin is not enabled as an input. */ 443 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin]) 444 tssdp &= ~AUX0_TS_SDP_EN; 445 446 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin]) 447 tssdp &= ~AUX1_TS_SDP_EN; 448 449 tssdp &= ~ts_sdp_sel_clr[pin]; 450 if (freq) { 451 if (chan == 1) 452 tssdp |= ts_sdp_sel_fc1[pin]; 453 else 454 tssdp |= ts_sdp_sel_fc0[pin]; 455 } else { 456 if (chan == 1) 457 tssdp |= ts_sdp_sel_tt1[pin]; 458 else 459 tssdp |= ts_sdp_sel_tt0[pin]; 460 } 461 tssdp |= ts_sdp_en[pin]; 462 463 wr32(E1000_TSSDP, tssdp); 464 wr32(E1000_CTRL, ctrl); 465 wr32(E1000_CTRL_EXT, ctrl_ext); 466 } 467 468 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp, 469 struct ptp_clock_request *rq, int on) 470 { 471 struct igb_adapter *igb = 472 container_of(ptp, struct igb_adapter, ptp_caps); 473 struct e1000_hw *hw = &igb->hw; 474 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; 475 unsigned long flags; 476 struct timespec64 ts; 477 int use_freq = 0, pin = -1; 478 s64 ns; 479 480 switch (rq->type) { 481 case PTP_CLK_REQ_EXTTS: 482 if (on) { 483 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS, 484 rq->extts.index); 485 if (pin < 0) 486 return -EBUSY; 487 } 488 if (rq->extts.index == 1) { 489 tsauxc_mask = TSAUXC_EN_TS1; 490 tsim_mask = TSINTR_AUTT1; 491 } else { 492 tsauxc_mask = TSAUXC_EN_TS0; 493 tsim_mask = TSINTR_AUTT0; 494 } 495 spin_lock_irqsave(&igb->tmreg_lock, flags); 496 tsauxc = rd32(E1000_TSAUXC); 497 tsim = rd32(E1000_TSIM); 498 if (on) { 499 igb_pin_extts(igb, rq->extts.index, pin); 500 tsauxc |= tsauxc_mask; 501 tsim |= tsim_mask; 502 } else { 503 tsauxc &= ~tsauxc_mask; 504 tsim &= ~tsim_mask; 505 } 506 wr32(E1000_TSAUXC, tsauxc); 507 wr32(E1000_TSIM, tsim); 508 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 509 return 0; 510 511 case PTP_CLK_REQ_PEROUT: 512 if (on) { 513 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT, 514 rq->perout.index); 515 if (pin < 0) 516 return -EBUSY; 517 } 518 ts.tv_sec = rq->perout.period.sec; 519 ts.tv_nsec = rq->perout.period.nsec; 520 ns = timespec64_to_ns(&ts); 521 ns = ns >> 1; 522 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) || 523 (ns == 250000000LL) || (ns == 500000000LL))) { 524 if (ns < 8LL) 525 return -EINVAL; 526 use_freq = 1; 527 } 528 ts = ns_to_timespec64(ns); 529 if (rq->perout.index == 1) { 530 if (use_freq) { 531 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1; 532 tsim_mask = 0; 533 } else { 534 tsauxc_mask = TSAUXC_EN_TT1; 535 tsim_mask = TSINTR_TT1; 536 } 537 trgttiml = E1000_TRGTTIML1; 538 trgttimh = E1000_TRGTTIMH1; 539 freqout = E1000_FREQOUT1; 540 } else { 541 if (use_freq) { 542 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0; 543 tsim_mask = 0; 544 } else { 545 tsauxc_mask = TSAUXC_EN_TT0; 546 tsim_mask = TSINTR_TT0; 547 } 548 trgttiml = E1000_TRGTTIML0; 549 trgttimh = E1000_TRGTTIMH0; 550 freqout = E1000_FREQOUT0; 551 } 552 spin_lock_irqsave(&igb->tmreg_lock, flags); 553 tsauxc = rd32(E1000_TSAUXC); 554 tsim = rd32(E1000_TSIM); 555 if (rq->perout.index == 1) { 556 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1); 557 tsim &= ~TSINTR_TT1; 558 } else { 559 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0); 560 tsim &= ~TSINTR_TT0; 561 } 562 if (on) { 563 int i = rq->perout.index; 564 igb_pin_perout(igb, i, pin, use_freq); 565 igb->perout[i].start.tv_sec = rq->perout.start.sec; 566 igb->perout[i].start.tv_nsec = rq->perout.start.nsec; 567 igb->perout[i].period.tv_sec = ts.tv_sec; 568 igb->perout[i].period.tv_nsec = ts.tv_nsec; 569 wr32(trgttimh, rq->perout.start.sec); 570 wr32(trgttiml, rq->perout.start.nsec); 571 if (use_freq) 572 wr32(freqout, ns); 573 tsauxc |= tsauxc_mask; 574 tsim |= tsim_mask; 575 } 576 wr32(E1000_TSAUXC, tsauxc); 577 wr32(E1000_TSIM, tsim); 578 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 579 return 0; 580 581 case PTP_CLK_REQ_PPS: 582 spin_lock_irqsave(&igb->tmreg_lock, flags); 583 tsim = rd32(E1000_TSIM); 584 if (on) 585 tsim |= TSINTR_SYS_WRAP; 586 else 587 tsim &= ~TSINTR_SYS_WRAP; 588 igb->pps_sys_wrap_on = !!on; 589 wr32(E1000_TSIM, tsim); 590 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 591 return 0; 592 } 593 594 return -EOPNOTSUPP; 595 } 596 597 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp, 598 struct ptp_clock_request *rq, int on) 599 { 600 return -EOPNOTSUPP; 601 } 602 603 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, 604 enum ptp_pin_function func, unsigned int chan) 605 { 606 switch (func) { 607 case PTP_PF_NONE: 608 case PTP_PF_EXTTS: 609 case PTP_PF_PEROUT: 610 break; 611 case PTP_PF_PHYSYNC: 612 return -1; 613 } 614 return 0; 615 } 616 617 /** 618 * igb_ptp_tx_work 619 * @work: pointer to work struct 620 * 621 * This work function polls the TSYNCTXCTL valid bit to determine when a 622 * timestamp has been taken for the current stored skb. 623 **/ 624 static void igb_ptp_tx_work(struct work_struct *work) 625 { 626 struct igb_adapter *adapter = container_of(work, struct igb_adapter, 627 ptp_tx_work); 628 struct e1000_hw *hw = &adapter->hw; 629 u32 tsynctxctl; 630 631 if (!adapter->ptp_tx_skb) 632 return; 633 634 if (time_is_before_jiffies(adapter->ptp_tx_start + 635 IGB_PTP_TX_TIMEOUT)) { 636 dev_kfree_skb_any(adapter->ptp_tx_skb); 637 adapter->ptp_tx_skb = NULL; 638 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 639 adapter->tx_hwtstamp_timeouts++; 640 /* Clear the tx valid bit in TSYNCTXCTL register to enable 641 * interrupt 642 */ 643 rd32(E1000_TXSTMPH); 644 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); 645 return; 646 } 647 648 tsynctxctl = rd32(E1000_TSYNCTXCTL); 649 if (tsynctxctl & E1000_TSYNCTXCTL_VALID) 650 igb_ptp_tx_hwtstamp(adapter); 651 else 652 /* reschedule to check later */ 653 schedule_work(&adapter->ptp_tx_work); 654 } 655 656 static void igb_ptp_overflow_check(struct work_struct *work) 657 { 658 struct igb_adapter *igb = 659 container_of(work, struct igb_adapter, ptp_overflow_work.work); 660 struct timespec64 ts; 661 662 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts); 663 664 pr_debug("igb overflow check at %lld.%09lu\n", 665 (long long) ts.tv_sec, ts.tv_nsec); 666 667 schedule_delayed_work(&igb->ptp_overflow_work, 668 IGB_SYSTIM_OVERFLOW_PERIOD); 669 } 670 671 /** 672 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched 673 * @adapter: private network adapter structure 674 * 675 * This watchdog task is scheduled to detect error case where hardware has 676 * dropped an Rx packet that was timestamped when the ring is full. The 677 * particular error is rare but leaves the device in a state unable to timestamp 678 * any future packets. 679 **/ 680 void igb_ptp_rx_hang(struct igb_adapter *adapter) 681 { 682 struct e1000_hw *hw = &adapter->hw; 683 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); 684 unsigned long rx_event; 685 686 /* Other hardware uses per-packet timestamps */ 687 if (hw->mac.type != e1000_82576) 688 return; 689 690 /* If we don't have a valid timestamp in the registers, just update the 691 * timeout counter and exit 692 */ 693 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { 694 adapter->last_rx_ptp_check = jiffies; 695 return; 696 } 697 698 /* Determine the most recent watchdog or rx_timestamp event */ 699 rx_event = adapter->last_rx_ptp_check; 700 if (time_after(adapter->last_rx_timestamp, rx_event)) 701 rx_event = adapter->last_rx_timestamp; 702 703 /* Only need to read the high RXSTMP register to clear the lock */ 704 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 705 rd32(E1000_RXSTMPH); 706 adapter->last_rx_ptp_check = jiffies; 707 adapter->rx_hwtstamp_cleared++; 708 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n"); 709 } 710 } 711 712 /** 713 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes 714 * @adapter: private network adapter structure 715 */ 716 void igb_ptp_tx_hang(struct igb_adapter *adapter) 717 { 718 struct e1000_hw *hw = &adapter->hw; 719 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 720 IGB_PTP_TX_TIMEOUT); 721 722 if (!adapter->ptp_tx_skb) 723 return; 724 725 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state)) 726 return; 727 728 /* If we haven't received a timestamp within the timeout, it is 729 * reasonable to assume that it will never occur, so we can unlock the 730 * timestamp bit when this occurs. 731 */ 732 if (timeout) { 733 cancel_work_sync(&adapter->ptp_tx_work); 734 dev_kfree_skb_any(adapter->ptp_tx_skb); 735 adapter->ptp_tx_skb = NULL; 736 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 737 adapter->tx_hwtstamp_timeouts++; 738 /* Clear the tx valid bit in TSYNCTXCTL register to enable 739 * interrupt 740 */ 741 rd32(E1000_TXSTMPH); 742 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); 743 } 744 } 745 746 /** 747 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp 748 * @adapter: Board private structure. 749 * 750 * If we were asked to do hardware stamping and such a time stamp is 751 * available, then it must have been for this skb here because we only 752 * allow only one such packet into the queue. 753 **/ 754 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) 755 { 756 struct sk_buff *skb = adapter->ptp_tx_skb; 757 struct e1000_hw *hw = &adapter->hw; 758 struct skb_shared_hwtstamps shhwtstamps; 759 u64 regval; 760 int adjust = 0; 761 762 regval = rd32(E1000_TXSTMPL); 763 regval |= (u64)rd32(E1000_TXSTMPH) << 32; 764 765 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); 766 /* adjust timestamp for the TX latency based on link speed */ 767 if (adapter->hw.mac.type == e1000_i210) { 768 switch (adapter->link_speed) { 769 case SPEED_10: 770 adjust = IGB_I210_TX_LATENCY_10; 771 break; 772 case SPEED_100: 773 adjust = IGB_I210_TX_LATENCY_100; 774 break; 775 case SPEED_1000: 776 adjust = IGB_I210_TX_LATENCY_1000; 777 break; 778 } 779 } 780 781 shhwtstamps.hwtstamp = 782 ktime_add_ns(shhwtstamps.hwtstamp, adjust); 783 784 /* Clear the lock early before calling skb_tstamp_tx so that 785 * applications are not woken up before the lock bit is clear. We use 786 * a copy of the skb pointer to ensure other threads can't change it 787 * while we're notifying the stack. 788 */ 789 adapter->ptp_tx_skb = NULL; 790 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 791 792 /* Notify the stack and free the skb after we've unlocked */ 793 skb_tstamp_tx(skb, &shhwtstamps); 794 dev_kfree_skb_any(skb); 795 } 796 797 /** 798 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp 799 * @q_vector: Pointer to interrupt specific structure 800 * @va: Pointer to address containing Rx buffer 801 * @skb: Buffer containing timestamp and packet 802 * 803 * This function is meant to retrieve a timestamp from the first buffer of an 804 * incoming frame. The value is stored in little endian format starting on 805 * byte 8. 806 **/ 807 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va, 808 struct sk_buff *skb) 809 { 810 __le64 *regval = (__le64 *)va; 811 struct igb_adapter *adapter = q_vector->adapter; 812 int adjust = 0; 813 814 /* The timestamp is recorded in little endian format. 815 * DWORD: 0 1 2 3 816 * Field: Reserved Reserved SYSTIML SYSTIMH 817 */ 818 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), 819 le64_to_cpu(regval[1])); 820 821 /* adjust timestamp for the RX latency based on link speed */ 822 if (adapter->hw.mac.type == e1000_i210) { 823 switch (adapter->link_speed) { 824 case SPEED_10: 825 adjust = IGB_I210_RX_LATENCY_10; 826 break; 827 case SPEED_100: 828 adjust = IGB_I210_RX_LATENCY_100; 829 break; 830 case SPEED_1000: 831 adjust = IGB_I210_RX_LATENCY_1000; 832 break; 833 } 834 } 835 skb_hwtstamps(skb)->hwtstamp = 836 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust); 837 } 838 839 /** 840 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register 841 * @q_vector: Pointer to interrupt specific structure 842 * @skb: Buffer containing timestamp and packet 843 * 844 * This function is meant to retrieve a timestamp from the internal registers 845 * of the adapter and store it in the skb. 846 **/ 847 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, 848 struct sk_buff *skb) 849 { 850 struct igb_adapter *adapter = q_vector->adapter; 851 struct e1000_hw *hw = &adapter->hw; 852 u64 regval; 853 int adjust = 0; 854 855 /* If this bit is set, then the RX registers contain the time stamp. No 856 * other packet will be time stamped until we read these registers, so 857 * read the registers to make them available again. Because only one 858 * packet can be time stamped at a time, we know that the register 859 * values must belong to this one here and therefore we don't need to 860 * compare any of the additional attributes stored for it. 861 * 862 * If nothing went wrong, then it should have a shared tx_flags that we 863 * can turn into a skb_shared_hwtstamps. 864 */ 865 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 866 return; 867 868 regval = rd32(E1000_RXSTMPL); 869 regval |= (u64)rd32(E1000_RXSTMPH) << 32; 870 871 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 872 873 /* adjust timestamp for the RX latency based on link speed */ 874 if (adapter->hw.mac.type == e1000_i210) { 875 switch (adapter->link_speed) { 876 case SPEED_10: 877 adjust = IGB_I210_RX_LATENCY_10; 878 break; 879 case SPEED_100: 880 adjust = IGB_I210_RX_LATENCY_100; 881 break; 882 case SPEED_1000: 883 adjust = IGB_I210_RX_LATENCY_1000; 884 break; 885 } 886 } 887 skb_hwtstamps(skb)->hwtstamp = 888 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust); 889 890 /* Update the last_rx_timestamp timer in order to enable watchdog check 891 * for error case of latched timestamp on a dropped packet. 892 */ 893 adapter->last_rx_timestamp = jiffies; 894 } 895 896 /** 897 * igb_ptp_get_ts_config - get hardware time stamping config 898 * @netdev: 899 * @ifreq: 900 * 901 * Get the hwtstamp_config settings to return to the user. Rather than attempt 902 * to deconstruct the settings from the registers, just return a shadow copy 903 * of the last known settings. 904 **/ 905 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) 906 { 907 struct igb_adapter *adapter = netdev_priv(netdev); 908 struct hwtstamp_config *config = &adapter->tstamp_config; 909 910 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 911 -EFAULT : 0; 912 } 913 914 /** 915 * igb_ptp_set_timestamp_mode - setup hardware for timestamping 916 * @adapter: networking device structure 917 * @config: hwtstamp configuration 918 * 919 * Outgoing time stamping can be enabled and disabled. Play nice and 920 * disable it when requested, although it shouldn't case any overhead 921 * when no packet needs it. At most one packet in the queue may be 922 * marked for time stamping, otherwise it would be impossible to tell 923 * for sure to which packet the hardware time stamp belongs. 924 * 925 * Incoming time stamping has to be configured via the hardware 926 * filters. Not all combinations are supported, in particular event 927 * type has to be specified. Matching the kind of event packet is 928 * not supported, with the exception of "all V2 events regardless of 929 * level 2 or 4". 930 */ 931 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter, 932 struct hwtstamp_config *config) 933 { 934 struct e1000_hw *hw = &adapter->hw; 935 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 936 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 937 u32 tsync_rx_cfg = 0; 938 bool is_l4 = false; 939 bool is_l2 = false; 940 u32 regval; 941 942 /* reserved for future extensions */ 943 if (config->flags) 944 return -EINVAL; 945 946 switch (config->tx_type) { 947 case HWTSTAMP_TX_OFF: 948 tsync_tx_ctl = 0; 949 case HWTSTAMP_TX_ON: 950 break; 951 default: 952 return -ERANGE; 953 } 954 955 switch (config->rx_filter) { 956 case HWTSTAMP_FILTER_NONE: 957 tsync_rx_ctl = 0; 958 break; 959 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 960 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 961 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; 962 is_l4 = true; 963 break; 964 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 965 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 966 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; 967 is_l4 = true; 968 break; 969 case HWTSTAMP_FILTER_PTP_V2_EVENT: 970 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 971 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 972 case HWTSTAMP_FILTER_PTP_V2_SYNC: 973 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 974 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 975 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 976 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 977 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 978 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 979 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 980 is_l2 = true; 981 is_l4 = true; 982 break; 983 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 984 case HWTSTAMP_FILTER_NTP_ALL: 985 case HWTSTAMP_FILTER_ALL: 986 /* 82576 cannot timestamp all packets, which it needs to do to 987 * support both V1 Sync and Delay_Req messages 988 */ 989 if (hw->mac.type != e1000_82576) { 990 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 991 config->rx_filter = HWTSTAMP_FILTER_ALL; 992 break; 993 } 994 /* fall through */ 995 default: 996 config->rx_filter = HWTSTAMP_FILTER_NONE; 997 return -ERANGE; 998 } 999 1000 if (hw->mac.type == e1000_82575) { 1001 if (tsync_rx_ctl | tsync_tx_ctl) 1002 return -EINVAL; 1003 return 0; 1004 } 1005 1006 /* Per-packet timestamping only works if all packets are 1007 * timestamped, so enable timestamping in all packets as 1008 * long as one Rx filter was configured. 1009 */ 1010 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { 1011 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 1012 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 1013 config->rx_filter = HWTSTAMP_FILTER_ALL; 1014 is_l2 = true; 1015 is_l4 = true; 1016 1017 if ((hw->mac.type == e1000_i210) || 1018 (hw->mac.type == e1000_i211)) { 1019 regval = rd32(E1000_RXPBS); 1020 regval |= E1000_RXPBS_CFG_TS_EN; 1021 wr32(E1000_RXPBS, regval); 1022 } 1023 } 1024 1025 /* enable/disable TX */ 1026 regval = rd32(E1000_TSYNCTXCTL); 1027 regval &= ~E1000_TSYNCTXCTL_ENABLED; 1028 regval |= tsync_tx_ctl; 1029 wr32(E1000_TSYNCTXCTL, regval); 1030 1031 /* enable/disable RX */ 1032 regval = rd32(E1000_TSYNCRXCTL); 1033 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 1034 regval |= tsync_rx_ctl; 1035 wr32(E1000_TSYNCRXCTL, regval); 1036 1037 /* define which PTP packets are time stamped */ 1038 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); 1039 1040 /* define ethertype filter for timestamped packets */ 1041 if (is_l2) 1042 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 1043 (E1000_ETQF_FILTER_ENABLE | /* enable filter */ 1044 E1000_ETQF_1588 | /* enable timestamping */ 1045 ETH_P_1588)); /* 1588 eth protocol type */ 1046 else 1047 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0); 1048 1049 /* L4 Queue Filter[3]: filter by destination port and protocol */ 1050 if (is_l4) { 1051 u32 ftqf = (IPPROTO_UDP /* UDP */ 1052 | E1000_FTQF_VF_BP /* VF not compared */ 1053 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ 1054 | E1000_FTQF_MASK); /* mask all inputs */ 1055 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ 1056 1057 wr32(E1000_IMIR(3), htons(PTP_EV_PORT)); 1058 wr32(E1000_IMIREXT(3), 1059 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); 1060 if (hw->mac.type == e1000_82576) { 1061 /* enable source port check */ 1062 wr32(E1000_SPQF(3), htons(PTP_EV_PORT)); 1063 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; 1064 } 1065 wr32(E1000_FTQF(3), ftqf); 1066 } else { 1067 wr32(E1000_FTQF(3), E1000_FTQF_MASK); 1068 } 1069 wrfl(); 1070 1071 /* clear TX/RX time stamp registers, just to be sure */ 1072 regval = rd32(E1000_TXSTMPL); 1073 regval = rd32(E1000_TXSTMPH); 1074 regval = rd32(E1000_RXSTMPL); 1075 regval = rd32(E1000_RXSTMPH); 1076 1077 return 0; 1078 } 1079 1080 /** 1081 * igb_ptp_set_ts_config - set hardware time stamping config 1082 * @netdev: 1083 * @ifreq: 1084 * 1085 **/ 1086 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) 1087 { 1088 struct igb_adapter *adapter = netdev_priv(netdev); 1089 struct hwtstamp_config config; 1090 int err; 1091 1092 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1093 return -EFAULT; 1094 1095 err = igb_ptp_set_timestamp_mode(adapter, &config); 1096 if (err) 1097 return err; 1098 1099 /* save these settings for future reference */ 1100 memcpy(&adapter->tstamp_config, &config, 1101 sizeof(adapter->tstamp_config)); 1102 1103 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1104 -EFAULT : 0; 1105 } 1106 1107 /** 1108 * igb_ptp_init - Initialize PTP functionality 1109 * @adapter: Board private structure 1110 * 1111 * This function is called at device probe to initialize the PTP 1112 * functionality. 1113 */ 1114 void igb_ptp_init(struct igb_adapter *adapter) 1115 { 1116 struct e1000_hw *hw = &adapter->hw; 1117 struct net_device *netdev = adapter->netdev; 1118 int i; 1119 1120 switch (hw->mac.type) { 1121 case e1000_82576: 1122 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1123 adapter->ptp_caps.owner = THIS_MODULE; 1124 adapter->ptp_caps.max_adj = 999999881; 1125 adapter->ptp_caps.n_ext_ts = 0; 1126 adapter->ptp_caps.pps = 0; 1127 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576; 1128 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1129 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576; 1130 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1131 adapter->ptp_caps.enable = igb_ptp_feature_enable; 1132 adapter->cc.read = igb_ptp_read_82576; 1133 adapter->cc.mask = CYCLECOUNTER_MASK(64); 1134 adapter->cc.mult = 1; 1135 adapter->cc.shift = IGB_82576_TSYNC_SHIFT; 1136 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK; 1137 break; 1138 case e1000_82580: 1139 case e1000_i354: 1140 case e1000_i350: 1141 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1142 adapter->ptp_caps.owner = THIS_MODULE; 1143 adapter->ptp_caps.max_adj = 62499999; 1144 adapter->ptp_caps.n_ext_ts = 0; 1145 adapter->ptp_caps.pps = 0; 1146 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580; 1147 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1148 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576; 1149 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1150 adapter->ptp_caps.enable = igb_ptp_feature_enable; 1151 adapter->cc.read = igb_ptp_read_82580; 1152 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580); 1153 adapter->cc.mult = 1; 1154 adapter->cc.shift = 0; 1155 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK; 1156 break; 1157 case e1000_i210: 1158 case e1000_i211: 1159 for (i = 0; i < IGB_N_SDP; i++) { 1160 struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; 1161 1162 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); 1163 ppd->index = i; 1164 ppd->func = PTP_PF_NONE; 1165 } 1166 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1167 adapter->ptp_caps.owner = THIS_MODULE; 1168 adapter->ptp_caps.max_adj = 62499999; 1169 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS; 1170 adapter->ptp_caps.n_per_out = IGB_N_PEROUT; 1171 adapter->ptp_caps.n_pins = IGB_N_SDP; 1172 adapter->ptp_caps.pps = 1; 1173 adapter->ptp_caps.pin_config = adapter->sdp_config; 1174 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580; 1175 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; 1176 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210; 1177 adapter->ptp_caps.settime64 = igb_ptp_settime_i210; 1178 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210; 1179 adapter->ptp_caps.verify = igb_ptp_verify_pin; 1180 break; 1181 default: 1182 adapter->ptp_clock = NULL; 1183 return; 1184 } 1185 1186 spin_lock_init(&adapter->tmreg_lock); 1187 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); 1188 1189 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1190 INIT_DELAYED_WORK(&adapter->ptp_overflow_work, 1191 igb_ptp_overflow_check); 1192 1193 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1194 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1195 1196 igb_ptp_reset(adapter); 1197 1198 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1199 &adapter->pdev->dev); 1200 if (IS_ERR(adapter->ptp_clock)) { 1201 adapter->ptp_clock = NULL; 1202 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); 1203 } else if (adapter->ptp_clock) { 1204 dev_info(&adapter->pdev->dev, "added PHC on %s\n", 1205 adapter->netdev->name); 1206 adapter->ptp_flags |= IGB_PTP_ENABLED; 1207 } 1208 } 1209 1210 /** 1211 * igb_ptp_suspend - Disable PTP work items and prepare for suspend 1212 * @adapter: Board private structure 1213 * 1214 * This function stops the overflow check work and PTP Tx timestamp work, and 1215 * will prepare the device for OS suspend. 1216 */ 1217 void igb_ptp_suspend(struct igb_adapter *adapter) 1218 { 1219 if (!(adapter->ptp_flags & IGB_PTP_ENABLED)) 1220 return; 1221 1222 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1223 cancel_delayed_work_sync(&adapter->ptp_overflow_work); 1224 1225 cancel_work_sync(&adapter->ptp_tx_work); 1226 if (adapter->ptp_tx_skb) { 1227 dev_kfree_skb_any(adapter->ptp_tx_skb); 1228 adapter->ptp_tx_skb = NULL; 1229 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 1230 } 1231 } 1232 1233 /** 1234 * igb_ptp_stop - Disable PTP device and stop the overflow check. 1235 * @adapter: Board private structure. 1236 * 1237 * This function stops the PTP support and cancels the delayed work. 1238 **/ 1239 void igb_ptp_stop(struct igb_adapter *adapter) 1240 { 1241 igb_ptp_suspend(adapter); 1242 1243 if (adapter->ptp_clock) { 1244 ptp_clock_unregister(adapter->ptp_clock); 1245 dev_info(&adapter->pdev->dev, "removed PHC on %s\n", 1246 adapter->netdev->name); 1247 adapter->ptp_flags &= ~IGB_PTP_ENABLED; 1248 } 1249 } 1250 1251 /** 1252 * igb_ptp_reset - Re-enable the adapter for PTP following a reset. 1253 * @adapter: Board private structure. 1254 * 1255 * This function handles the reset work required to re-enable the PTP device. 1256 **/ 1257 void igb_ptp_reset(struct igb_adapter *adapter) 1258 { 1259 struct e1000_hw *hw = &adapter->hw; 1260 unsigned long flags; 1261 1262 /* reset the tstamp_config */ 1263 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1264 1265 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1266 1267 switch (adapter->hw.mac.type) { 1268 case e1000_82576: 1269 /* Dial the nominal frequency. */ 1270 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); 1271 break; 1272 case e1000_82580: 1273 case e1000_i354: 1274 case e1000_i350: 1275 case e1000_i210: 1276 case e1000_i211: 1277 wr32(E1000_TSAUXC, 0x0); 1278 wr32(E1000_TSSDP, 0x0); 1279 wr32(E1000_TSIM, 1280 TSYNC_INTERRUPTS | 1281 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0)); 1282 wr32(E1000_IMS, E1000_IMS_TS); 1283 break; 1284 default: 1285 /* No work to do. */ 1286 goto out; 1287 } 1288 1289 /* Re-initialize the timer. */ 1290 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { 1291 struct timespec64 ts = ktime_to_timespec64(ktime_get_real()); 1292 1293 igb_ptp_write_i210(adapter, &ts); 1294 } else { 1295 timecounter_init(&adapter->tc, &adapter->cc, 1296 ktime_to_ns(ktime_get_real())); 1297 } 1298 out: 1299 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1300 1301 wrfl(); 1302 1303 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK) 1304 schedule_delayed_work(&adapter->ptp_overflow_work, 1305 IGB_SYSTIM_OVERFLOW_PERIOD); 1306 } 1307