1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter
57  * needs to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, so we aim for 8
59  * minutes to be sure the actual interval is shorter than 9.16 minutes.
60  */
61 
62 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 8)
63 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
64 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
65 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
66 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
67 #define IGB_NBITS_82580			40
68 
69 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
70 
71 /* SYSTIM read access for the 82576 */
72 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
73 {
74 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
75 	struct e1000_hw *hw = &igb->hw;
76 	u64 val;
77 	u32 lo, hi;
78 
79 	lo = rd32(E1000_SYSTIML);
80 	hi = rd32(E1000_SYSTIMH);
81 
82 	val = ((u64) hi) << 32;
83 	val |= lo;
84 
85 	return val;
86 }
87 
88 /* SYSTIM read access for the 82580 */
89 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
90 {
91 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
92 	struct e1000_hw *hw = &igb->hw;
93 	u32 lo, hi;
94 	u64 val;
95 
96 	/* The timestamp latches on lowest register read. For the 82580
97 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
98 	 * need to provide nanosecond resolution, so we just ignore it.
99 	 */
100 	rd32(E1000_SYSTIMR);
101 	lo = rd32(E1000_SYSTIML);
102 	hi = rd32(E1000_SYSTIMH);
103 
104 	val = ((u64) hi) << 32;
105 	val |= lo;
106 
107 	return val;
108 }
109 
110 /* SYSTIM read access for I210/I211 */
111 static void igb_ptp_read_i210(struct igb_adapter *adapter,
112 			      struct timespec64 *ts)
113 {
114 	struct e1000_hw *hw = &adapter->hw;
115 	u32 sec, nsec;
116 
117 	/* The timestamp latches on lowest register read. For I210/I211, the
118 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
119 	 * resolution, we can ignore it.
120 	 */
121 	rd32(E1000_SYSTIMR);
122 	nsec = rd32(E1000_SYSTIML);
123 	sec = rd32(E1000_SYSTIMH);
124 
125 	ts->tv_sec = sec;
126 	ts->tv_nsec = nsec;
127 }
128 
129 static void igb_ptp_write_i210(struct igb_adapter *adapter,
130 			       const struct timespec64 *ts)
131 {
132 	struct e1000_hw *hw = &adapter->hw;
133 
134 	/* Writing the SYSTIMR register is not necessary as it only provides
135 	 * sub-nanosecond resolution.
136 	 */
137 	wr32(E1000_SYSTIML, ts->tv_nsec);
138 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
139 }
140 
141 /**
142  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
143  * @adapter: board private structure
144  * @hwtstamps: timestamp structure to update
145  * @systim: unsigned 64bit system time value.
146  *
147  * We need to convert the system time value stored in the RX/TXSTMP registers
148  * into a hwtstamp which can be used by the upper level timestamping functions.
149  *
150  * The 'tmreg_lock' spinlock is used to protect the consistency of the
151  * system time value. This is needed because reading the 64 bit time
152  * value involves reading two (or three) 32 bit registers. The first
153  * read latches the value. Ditto for writing.
154  *
155  * In addition, here have extended the system time with an overflow
156  * counter in software.
157  **/
158 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
159 				       struct skb_shared_hwtstamps *hwtstamps,
160 				       u64 systim)
161 {
162 	unsigned long flags;
163 	u64 ns;
164 
165 	switch (adapter->hw.mac.type) {
166 	case e1000_82576:
167 	case e1000_82580:
168 	case e1000_i354:
169 	case e1000_i350:
170 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
171 
172 		ns = timecounter_cyc2time(&adapter->tc, systim);
173 
174 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
175 
176 		memset(hwtstamps, 0, sizeof(*hwtstamps));
177 		hwtstamps->hwtstamp = ns_to_ktime(ns);
178 		break;
179 	case e1000_i210:
180 	case e1000_i211:
181 		memset(hwtstamps, 0, sizeof(*hwtstamps));
182 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
183 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
184 						systim & 0xFFFFFFFF);
185 		break;
186 	default:
187 		break;
188 	}
189 }
190 
191 /* PTP clock operations */
192 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
193 {
194 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
195 					       ptp_caps);
196 	struct e1000_hw *hw = &igb->hw;
197 	int neg_adj = 0;
198 	u64 rate;
199 	u32 incvalue;
200 
201 	if (ppb < 0) {
202 		neg_adj = 1;
203 		ppb = -ppb;
204 	}
205 	rate = ppb;
206 	rate <<= 14;
207 	rate = div_u64(rate, 1953125);
208 
209 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
210 
211 	if (neg_adj)
212 		incvalue -= rate;
213 	else
214 		incvalue += rate;
215 
216 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
217 
218 	return 0;
219 }
220 
221 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
222 {
223 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
224 					       ptp_caps);
225 	struct e1000_hw *hw = &igb->hw;
226 	int neg_adj = 0;
227 	u64 rate;
228 	u32 inca;
229 
230 	if (scaled_ppm < 0) {
231 		neg_adj = 1;
232 		scaled_ppm = -scaled_ppm;
233 	}
234 	rate = scaled_ppm;
235 	rate <<= 13;
236 	rate = div_u64(rate, 15625);
237 
238 	inca = rate & INCVALUE_MASK;
239 	if (neg_adj)
240 		inca |= ISGN;
241 
242 	wr32(E1000_TIMINCA, inca);
243 
244 	return 0;
245 }
246 
247 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
248 {
249 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
250 					       ptp_caps);
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(&igb->tmreg_lock, flags);
254 	timecounter_adjtime(&igb->tc, delta);
255 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
256 
257 	return 0;
258 }
259 
260 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
261 {
262 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
263 					       ptp_caps);
264 	unsigned long flags;
265 	struct timespec64 now, then = ns_to_timespec64(delta);
266 
267 	spin_lock_irqsave(&igb->tmreg_lock, flags);
268 
269 	igb_ptp_read_i210(igb, &now);
270 	now = timespec64_add(now, then);
271 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
272 
273 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
274 
275 	return 0;
276 }
277 
278 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
279 				 struct timespec64 *ts)
280 {
281 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
282 					       ptp_caps);
283 	unsigned long flags;
284 	u64 ns;
285 
286 	spin_lock_irqsave(&igb->tmreg_lock, flags);
287 
288 	ns = timecounter_read(&igb->tc);
289 
290 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
291 
292 	*ts = ns_to_timespec64(ns);
293 
294 	return 0;
295 }
296 
297 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
298 				struct timespec64 *ts)
299 {
300 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
301 					       ptp_caps);
302 	unsigned long flags;
303 
304 	spin_lock_irqsave(&igb->tmreg_lock, flags);
305 
306 	igb_ptp_read_i210(igb, ts);
307 
308 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
309 
310 	return 0;
311 }
312 
313 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
314 				 const struct timespec64 *ts)
315 {
316 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
317 					       ptp_caps);
318 	unsigned long flags;
319 	u64 ns;
320 
321 	ns = timespec64_to_ns(ts);
322 
323 	spin_lock_irqsave(&igb->tmreg_lock, flags);
324 
325 	timecounter_init(&igb->tc, &igb->cc, ns);
326 
327 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
328 
329 	return 0;
330 }
331 
332 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
333 				const struct timespec64 *ts)
334 {
335 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
336 					       ptp_caps);
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(&igb->tmreg_lock, flags);
340 
341 	igb_ptp_write_i210(igb, ts);
342 
343 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
344 
345 	return 0;
346 }
347 
348 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
349 {
350 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
351 	static const u32 mask[IGB_N_SDP] = {
352 		E1000_CTRL_SDP0_DIR,
353 		E1000_CTRL_SDP1_DIR,
354 		E1000_CTRL_EXT_SDP2_DIR,
355 		E1000_CTRL_EXT_SDP3_DIR,
356 	};
357 
358 	if (input)
359 		*ptr &= ~mask[pin];
360 	else
361 		*ptr |= mask[pin];
362 }
363 
364 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
365 {
366 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
367 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
368 	};
369 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
370 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
371 	};
372 	static const u32 ts_sdp_en[IGB_N_SDP] = {
373 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
374 	};
375 	struct e1000_hw *hw = &igb->hw;
376 	u32 ctrl, ctrl_ext, tssdp = 0;
377 
378 	ctrl = rd32(E1000_CTRL);
379 	ctrl_ext = rd32(E1000_CTRL_EXT);
380 	tssdp = rd32(E1000_TSSDP);
381 
382 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
383 
384 	/* Make sure this pin is not enabled as an output. */
385 	tssdp &= ~ts_sdp_en[pin];
386 
387 	if (chan == 1) {
388 		tssdp &= ~AUX1_SEL_SDP3;
389 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
390 	} else {
391 		tssdp &= ~AUX0_SEL_SDP3;
392 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
393 	}
394 
395 	wr32(E1000_TSSDP, tssdp);
396 	wr32(E1000_CTRL, ctrl);
397 	wr32(E1000_CTRL_EXT, ctrl_ext);
398 }
399 
400 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
401 {
402 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
403 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
404 	};
405 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
406 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
407 	};
408 	static const u32 ts_sdp_en[IGB_N_SDP] = {
409 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
410 	};
411 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
412 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
413 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
414 	};
415 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
416 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
417 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
418 	};
419 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
420 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
421 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
422 	};
423 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
424 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
425 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
426 	};
427 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
428 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
429 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
430 	};
431 	struct e1000_hw *hw = &igb->hw;
432 	u32 ctrl, ctrl_ext, tssdp = 0;
433 
434 	ctrl = rd32(E1000_CTRL);
435 	ctrl_ext = rd32(E1000_CTRL_EXT);
436 	tssdp = rd32(E1000_TSSDP);
437 
438 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
439 
440 	/* Make sure this pin is not enabled as an input. */
441 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
442 		tssdp &= ~AUX0_TS_SDP_EN;
443 
444 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
445 		tssdp &= ~AUX1_TS_SDP_EN;
446 
447 	tssdp &= ~ts_sdp_sel_clr[pin];
448 	if (freq) {
449 		if (chan == 1)
450 			tssdp |= ts_sdp_sel_fc1[pin];
451 		else
452 			tssdp |= ts_sdp_sel_fc0[pin];
453 	} else {
454 		if (chan == 1)
455 			tssdp |= ts_sdp_sel_tt1[pin];
456 		else
457 			tssdp |= ts_sdp_sel_tt0[pin];
458 	}
459 	tssdp |= ts_sdp_en[pin];
460 
461 	wr32(E1000_TSSDP, tssdp);
462 	wr32(E1000_CTRL, ctrl);
463 	wr32(E1000_CTRL_EXT, ctrl_ext);
464 }
465 
466 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
467 				       struct ptp_clock_request *rq, int on)
468 {
469 	struct igb_adapter *igb =
470 		container_of(ptp, struct igb_adapter, ptp_caps);
471 	struct e1000_hw *hw = &igb->hw;
472 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
473 	unsigned long flags;
474 	struct timespec64 ts;
475 	int use_freq = 0, pin = -1;
476 	s64 ns;
477 
478 	switch (rq->type) {
479 	case PTP_CLK_REQ_EXTTS:
480 		if (on) {
481 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
482 					   rq->extts.index);
483 			if (pin < 0)
484 				return -EBUSY;
485 		}
486 		if (rq->extts.index == 1) {
487 			tsauxc_mask = TSAUXC_EN_TS1;
488 			tsim_mask = TSINTR_AUTT1;
489 		} else {
490 			tsauxc_mask = TSAUXC_EN_TS0;
491 			tsim_mask = TSINTR_AUTT0;
492 		}
493 		spin_lock_irqsave(&igb->tmreg_lock, flags);
494 		tsauxc = rd32(E1000_TSAUXC);
495 		tsim = rd32(E1000_TSIM);
496 		if (on) {
497 			igb_pin_extts(igb, rq->extts.index, pin);
498 			tsauxc |= tsauxc_mask;
499 			tsim |= tsim_mask;
500 		} else {
501 			tsauxc &= ~tsauxc_mask;
502 			tsim &= ~tsim_mask;
503 		}
504 		wr32(E1000_TSAUXC, tsauxc);
505 		wr32(E1000_TSIM, tsim);
506 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
507 		return 0;
508 
509 	case PTP_CLK_REQ_PEROUT:
510 		if (on) {
511 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
512 					   rq->perout.index);
513 			if (pin < 0)
514 				return -EBUSY;
515 		}
516 		ts.tv_sec = rq->perout.period.sec;
517 		ts.tv_nsec = rq->perout.period.nsec;
518 		ns = timespec64_to_ns(&ts);
519 		ns = ns >> 1;
520 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
521 			   (ns == 250000000LL) || (ns == 500000000LL))) {
522 			if (ns < 8LL)
523 				return -EINVAL;
524 			use_freq = 1;
525 		}
526 		ts = ns_to_timespec64(ns);
527 		if (rq->perout.index == 1) {
528 			if (use_freq) {
529 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
530 				tsim_mask = 0;
531 			} else {
532 				tsauxc_mask = TSAUXC_EN_TT1;
533 				tsim_mask = TSINTR_TT1;
534 			}
535 			trgttiml = E1000_TRGTTIML1;
536 			trgttimh = E1000_TRGTTIMH1;
537 			freqout = E1000_FREQOUT1;
538 		} else {
539 			if (use_freq) {
540 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
541 				tsim_mask = 0;
542 			} else {
543 				tsauxc_mask = TSAUXC_EN_TT0;
544 				tsim_mask = TSINTR_TT0;
545 			}
546 			trgttiml = E1000_TRGTTIML0;
547 			trgttimh = E1000_TRGTTIMH0;
548 			freqout = E1000_FREQOUT0;
549 		}
550 		spin_lock_irqsave(&igb->tmreg_lock, flags);
551 		tsauxc = rd32(E1000_TSAUXC);
552 		tsim = rd32(E1000_TSIM);
553 		if (rq->perout.index == 1) {
554 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
555 			tsim &= ~TSINTR_TT1;
556 		} else {
557 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
558 			tsim &= ~TSINTR_TT0;
559 		}
560 		if (on) {
561 			int i = rq->perout.index;
562 			igb_pin_perout(igb, i, pin, use_freq);
563 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
564 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
565 			igb->perout[i].period.tv_sec = ts.tv_sec;
566 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
567 			wr32(trgttimh, rq->perout.start.sec);
568 			wr32(trgttiml, rq->perout.start.nsec);
569 			if (use_freq)
570 				wr32(freqout, ns);
571 			tsauxc |= tsauxc_mask;
572 			tsim |= tsim_mask;
573 		}
574 		wr32(E1000_TSAUXC, tsauxc);
575 		wr32(E1000_TSIM, tsim);
576 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
577 		return 0;
578 
579 	case PTP_CLK_REQ_PPS:
580 		spin_lock_irqsave(&igb->tmreg_lock, flags);
581 		tsim = rd32(E1000_TSIM);
582 		if (on)
583 			tsim |= TSINTR_SYS_WRAP;
584 		else
585 			tsim &= ~TSINTR_SYS_WRAP;
586 		igb->pps_sys_wrap_on = !!on;
587 		wr32(E1000_TSIM, tsim);
588 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
589 		return 0;
590 	}
591 
592 	return -EOPNOTSUPP;
593 }
594 
595 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
596 				  struct ptp_clock_request *rq, int on)
597 {
598 	return -EOPNOTSUPP;
599 }
600 
601 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
602 			      enum ptp_pin_function func, unsigned int chan)
603 {
604 	switch (func) {
605 	case PTP_PF_NONE:
606 	case PTP_PF_EXTTS:
607 	case PTP_PF_PEROUT:
608 		break;
609 	case PTP_PF_PHYSYNC:
610 		return -1;
611 	}
612 	return 0;
613 }
614 
615 /**
616  * igb_ptp_tx_work
617  * @work: pointer to work struct
618  *
619  * This work function polls the TSYNCTXCTL valid bit to determine when a
620  * timestamp has been taken for the current stored skb.
621  **/
622 static void igb_ptp_tx_work(struct work_struct *work)
623 {
624 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
625 						   ptp_tx_work);
626 	struct e1000_hw *hw = &adapter->hw;
627 	u32 tsynctxctl;
628 
629 	if (!adapter->ptp_tx_skb)
630 		return;
631 
632 	if (time_is_before_jiffies(adapter->ptp_tx_start +
633 				   IGB_PTP_TX_TIMEOUT)) {
634 		dev_kfree_skb_any(adapter->ptp_tx_skb);
635 		adapter->ptp_tx_skb = NULL;
636 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
637 		adapter->tx_hwtstamp_timeouts++;
638 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
639 		 * interrupt
640 		 */
641 		rd32(E1000_TXSTMPH);
642 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
643 		return;
644 	}
645 
646 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
647 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
648 		igb_ptp_tx_hwtstamp(adapter);
649 	else
650 		/* reschedule to check later */
651 		schedule_work(&adapter->ptp_tx_work);
652 }
653 
654 static void igb_ptp_overflow_check(struct work_struct *work)
655 {
656 	struct igb_adapter *igb =
657 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
658 	struct timespec64 ts;
659 
660 	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
661 
662 	pr_debug("igb overflow check at %lld.%09lu\n",
663 		 (long long) ts.tv_sec, ts.tv_nsec);
664 
665 	schedule_delayed_work(&igb->ptp_overflow_work,
666 			      IGB_SYSTIM_OVERFLOW_PERIOD);
667 }
668 
669 /**
670  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
671  * @adapter: private network adapter structure
672  *
673  * This watchdog task is scheduled to detect error case where hardware has
674  * dropped an Rx packet that was timestamped when the ring is full. The
675  * particular error is rare but leaves the device in a state unable to timestamp
676  * any future packets.
677  **/
678 void igb_ptp_rx_hang(struct igb_adapter *adapter)
679 {
680 	struct e1000_hw *hw = &adapter->hw;
681 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
682 	unsigned long rx_event;
683 
684 	/* Other hardware uses per-packet timestamps */
685 	if (hw->mac.type != e1000_82576)
686 		return;
687 
688 	/* If we don't have a valid timestamp in the registers, just update the
689 	 * timeout counter and exit
690 	 */
691 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
692 		adapter->last_rx_ptp_check = jiffies;
693 		return;
694 	}
695 
696 	/* Determine the most recent watchdog or rx_timestamp event */
697 	rx_event = adapter->last_rx_ptp_check;
698 	if (time_after(adapter->last_rx_timestamp, rx_event))
699 		rx_event = adapter->last_rx_timestamp;
700 
701 	/* Only need to read the high RXSTMP register to clear the lock */
702 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
703 		rd32(E1000_RXSTMPH);
704 		adapter->last_rx_ptp_check = jiffies;
705 		adapter->rx_hwtstamp_cleared++;
706 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
707 	}
708 }
709 
710 /**
711  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
712  * @adapter: private network adapter structure
713  */
714 void igb_ptp_tx_hang(struct igb_adapter *adapter)
715 {
716 	struct e1000_hw *hw = &adapter->hw;
717 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
718 					      IGB_PTP_TX_TIMEOUT);
719 
720 	if (!adapter->ptp_tx_skb)
721 		return;
722 
723 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
724 		return;
725 
726 	/* If we haven't received a timestamp within the timeout, it is
727 	 * reasonable to assume that it will never occur, so we can unlock the
728 	 * timestamp bit when this occurs.
729 	 */
730 	if (timeout) {
731 		cancel_work_sync(&adapter->ptp_tx_work);
732 		dev_kfree_skb_any(adapter->ptp_tx_skb);
733 		adapter->ptp_tx_skb = NULL;
734 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
735 		adapter->tx_hwtstamp_timeouts++;
736 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
737 		 * interrupt
738 		 */
739 		rd32(E1000_TXSTMPH);
740 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
741 	}
742 }
743 
744 /**
745  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
746  * @adapter: Board private structure.
747  *
748  * If we were asked to do hardware stamping and such a time stamp is
749  * available, then it must have been for this skb here because we only
750  * allow only one such packet into the queue.
751  **/
752 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
753 {
754 	struct sk_buff *skb = adapter->ptp_tx_skb;
755 	struct e1000_hw *hw = &adapter->hw;
756 	struct skb_shared_hwtstamps shhwtstamps;
757 	u64 regval;
758 	int adjust = 0;
759 
760 	regval = rd32(E1000_TXSTMPL);
761 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
762 
763 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
764 	/* adjust timestamp for the TX latency based on link speed */
765 	if (adapter->hw.mac.type == e1000_i210) {
766 		switch (adapter->link_speed) {
767 		case SPEED_10:
768 			adjust = IGB_I210_TX_LATENCY_10;
769 			break;
770 		case SPEED_100:
771 			adjust = IGB_I210_TX_LATENCY_100;
772 			break;
773 		case SPEED_1000:
774 			adjust = IGB_I210_TX_LATENCY_1000;
775 			break;
776 		}
777 	}
778 
779 	shhwtstamps.hwtstamp =
780 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
781 
782 	/* Clear the lock early before calling skb_tstamp_tx so that
783 	 * applications are not woken up before the lock bit is clear. We use
784 	 * a copy of the skb pointer to ensure other threads can't change it
785 	 * while we're notifying the stack.
786 	 */
787 	adapter->ptp_tx_skb = NULL;
788 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
789 
790 	/* Notify the stack and free the skb after we've unlocked */
791 	skb_tstamp_tx(skb, &shhwtstamps);
792 	dev_kfree_skb_any(skb);
793 }
794 
795 /**
796  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
797  * @q_vector: Pointer to interrupt specific structure
798  * @va: Pointer to address containing Rx buffer
799  * @skb: Buffer containing timestamp and packet
800  *
801  * This function is meant to retrieve a timestamp from the first buffer of an
802  * incoming frame.  The value is stored in little endian format starting on
803  * byte 8.
804  **/
805 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
806 			 struct sk_buff *skb)
807 {
808 	__le64 *regval = (__le64 *)va;
809 	struct igb_adapter *adapter = q_vector->adapter;
810 	int adjust = 0;
811 
812 	/* The timestamp is recorded in little endian format.
813 	 * DWORD: 0        1        2        3
814 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
815 	 */
816 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
817 				   le64_to_cpu(regval[1]));
818 
819 	/* adjust timestamp for the RX latency based on link speed */
820 	if (adapter->hw.mac.type == e1000_i210) {
821 		switch (adapter->link_speed) {
822 		case SPEED_10:
823 			adjust = IGB_I210_RX_LATENCY_10;
824 			break;
825 		case SPEED_100:
826 			adjust = IGB_I210_RX_LATENCY_100;
827 			break;
828 		case SPEED_1000:
829 			adjust = IGB_I210_RX_LATENCY_1000;
830 			break;
831 		}
832 	}
833 	skb_hwtstamps(skb)->hwtstamp =
834 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
835 }
836 
837 /**
838  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
839  * @q_vector: Pointer to interrupt specific structure
840  * @skb: Buffer containing timestamp and packet
841  *
842  * This function is meant to retrieve a timestamp from the internal registers
843  * of the adapter and store it in the skb.
844  **/
845 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
846 			 struct sk_buff *skb)
847 {
848 	struct igb_adapter *adapter = q_vector->adapter;
849 	struct e1000_hw *hw = &adapter->hw;
850 	u64 regval;
851 	int adjust = 0;
852 
853 	/* If this bit is set, then the RX registers contain the time stamp. No
854 	 * other packet will be time stamped until we read these registers, so
855 	 * read the registers to make them available again. Because only one
856 	 * packet can be time stamped at a time, we know that the register
857 	 * values must belong to this one here and therefore we don't need to
858 	 * compare any of the additional attributes stored for it.
859 	 *
860 	 * If nothing went wrong, then it should have a shared tx_flags that we
861 	 * can turn into a skb_shared_hwtstamps.
862 	 */
863 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
864 		return;
865 
866 	regval = rd32(E1000_RXSTMPL);
867 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
868 
869 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
870 
871 	/* adjust timestamp for the RX latency based on link speed */
872 	if (adapter->hw.mac.type == e1000_i210) {
873 		switch (adapter->link_speed) {
874 		case SPEED_10:
875 			adjust = IGB_I210_RX_LATENCY_10;
876 			break;
877 		case SPEED_100:
878 			adjust = IGB_I210_RX_LATENCY_100;
879 			break;
880 		case SPEED_1000:
881 			adjust = IGB_I210_RX_LATENCY_1000;
882 			break;
883 		}
884 	}
885 	skb_hwtstamps(skb)->hwtstamp =
886 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
887 
888 	/* Update the last_rx_timestamp timer in order to enable watchdog check
889 	 * for error case of latched timestamp on a dropped packet.
890 	 */
891 	adapter->last_rx_timestamp = jiffies;
892 }
893 
894 /**
895  * igb_ptp_get_ts_config - get hardware time stamping config
896  * @netdev:
897  * @ifreq:
898  *
899  * Get the hwtstamp_config settings to return to the user. Rather than attempt
900  * to deconstruct the settings from the registers, just return a shadow copy
901  * of the last known settings.
902  **/
903 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
904 {
905 	struct igb_adapter *adapter = netdev_priv(netdev);
906 	struct hwtstamp_config *config = &adapter->tstamp_config;
907 
908 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
909 		-EFAULT : 0;
910 }
911 
912 /**
913  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
914  * @adapter: networking device structure
915  * @config: hwtstamp configuration
916  *
917  * Outgoing time stamping can be enabled and disabled. Play nice and
918  * disable it when requested, although it shouldn't case any overhead
919  * when no packet needs it. At most one packet in the queue may be
920  * marked for time stamping, otherwise it would be impossible to tell
921  * for sure to which packet the hardware time stamp belongs.
922  *
923  * Incoming time stamping has to be configured via the hardware
924  * filters. Not all combinations are supported, in particular event
925  * type has to be specified. Matching the kind of event packet is
926  * not supported, with the exception of "all V2 events regardless of
927  * level 2 or 4".
928  */
929 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
930 				      struct hwtstamp_config *config)
931 {
932 	struct e1000_hw *hw = &adapter->hw;
933 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
934 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
935 	u32 tsync_rx_cfg = 0;
936 	bool is_l4 = false;
937 	bool is_l2 = false;
938 	u32 regval;
939 
940 	/* reserved for future extensions */
941 	if (config->flags)
942 		return -EINVAL;
943 
944 	switch (config->tx_type) {
945 	case HWTSTAMP_TX_OFF:
946 		tsync_tx_ctl = 0;
947 	case HWTSTAMP_TX_ON:
948 		break;
949 	default:
950 		return -ERANGE;
951 	}
952 
953 	switch (config->rx_filter) {
954 	case HWTSTAMP_FILTER_NONE:
955 		tsync_rx_ctl = 0;
956 		break;
957 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
958 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
959 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
960 		is_l4 = true;
961 		break;
962 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
963 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
964 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
965 		is_l4 = true;
966 		break;
967 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
968 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
969 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
970 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
971 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
972 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
973 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
974 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
975 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
976 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
977 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
978 		is_l2 = true;
979 		is_l4 = true;
980 		break;
981 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
982 	case HWTSTAMP_FILTER_NTP_ALL:
983 	case HWTSTAMP_FILTER_ALL:
984 		/* 82576 cannot timestamp all packets, which it needs to do to
985 		 * support both V1 Sync and Delay_Req messages
986 		 */
987 		if (hw->mac.type != e1000_82576) {
988 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
989 			config->rx_filter = HWTSTAMP_FILTER_ALL;
990 			break;
991 		}
992 		/* fall through */
993 	default:
994 		config->rx_filter = HWTSTAMP_FILTER_NONE;
995 		return -ERANGE;
996 	}
997 
998 	if (hw->mac.type == e1000_82575) {
999 		if (tsync_rx_ctl | tsync_tx_ctl)
1000 			return -EINVAL;
1001 		return 0;
1002 	}
1003 
1004 	/* Per-packet timestamping only works if all packets are
1005 	 * timestamped, so enable timestamping in all packets as
1006 	 * long as one Rx filter was configured.
1007 	 */
1008 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1009 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1010 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1011 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1012 		is_l2 = true;
1013 		is_l4 = true;
1014 
1015 		if ((hw->mac.type == e1000_i210) ||
1016 		    (hw->mac.type == e1000_i211)) {
1017 			regval = rd32(E1000_RXPBS);
1018 			regval |= E1000_RXPBS_CFG_TS_EN;
1019 			wr32(E1000_RXPBS, regval);
1020 		}
1021 	}
1022 
1023 	/* enable/disable TX */
1024 	regval = rd32(E1000_TSYNCTXCTL);
1025 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1026 	regval |= tsync_tx_ctl;
1027 	wr32(E1000_TSYNCTXCTL, regval);
1028 
1029 	/* enable/disable RX */
1030 	regval = rd32(E1000_TSYNCRXCTL);
1031 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1032 	regval |= tsync_rx_ctl;
1033 	wr32(E1000_TSYNCRXCTL, regval);
1034 
1035 	/* define which PTP packets are time stamped */
1036 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1037 
1038 	/* define ethertype filter for timestamped packets */
1039 	if (is_l2)
1040 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1041 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1042 		      E1000_ETQF_1588 | /* enable timestamping */
1043 		      ETH_P_1588));     /* 1588 eth protocol type */
1044 	else
1045 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1046 
1047 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1048 	if (is_l4) {
1049 		u32 ftqf = (IPPROTO_UDP /* UDP */
1050 			| E1000_FTQF_VF_BP /* VF not compared */
1051 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1052 			| E1000_FTQF_MASK); /* mask all inputs */
1053 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1054 
1055 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1056 		wr32(E1000_IMIREXT(3),
1057 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1058 		if (hw->mac.type == e1000_82576) {
1059 			/* enable source port check */
1060 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1061 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1062 		}
1063 		wr32(E1000_FTQF(3), ftqf);
1064 	} else {
1065 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1066 	}
1067 	wrfl();
1068 
1069 	/* clear TX/RX time stamp registers, just to be sure */
1070 	regval = rd32(E1000_TXSTMPL);
1071 	regval = rd32(E1000_TXSTMPH);
1072 	regval = rd32(E1000_RXSTMPL);
1073 	regval = rd32(E1000_RXSTMPH);
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  * igb_ptp_set_ts_config - set hardware time stamping config
1080  * @netdev:
1081  * @ifreq:
1082  *
1083  **/
1084 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1085 {
1086 	struct igb_adapter *adapter = netdev_priv(netdev);
1087 	struct hwtstamp_config config;
1088 	int err;
1089 
1090 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1091 		return -EFAULT;
1092 
1093 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1094 	if (err)
1095 		return err;
1096 
1097 	/* save these settings for future reference */
1098 	memcpy(&adapter->tstamp_config, &config,
1099 	       sizeof(adapter->tstamp_config));
1100 
1101 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1102 		-EFAULT : 0;
1103 }
1104 
1105 /**
1106  * igb_ptp_init - Initialize PTP functionality
1107  * @adapter: Board private structure
1108  *
1109  * This function is called at device probe to initialize the PTP
1110  * functionality.
1111  */
1112 void igb_ptp_init(struct igb_adapter *adapter)
1113 {
1114 	struct e1000_hw *hw = &adapter->hw;
1115 	struct net_device *netdev = adapter->netdev;
1116 	int i;
1117 
1118 	switch (hw->mac.type) {
1119 	case e1000_82576:
1120 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1121 		adapter->ptp_caps.owner = THIS_MODULE;
1122 		adapter->ptp_caps.max_adj = 999999881;
1123 		adapter->ptp_caps.n_ext_ts = 0;
1124 		adapter->ptp_caps.pps = 0;
1125 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1126 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1127 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1128 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1129 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1130 		adapter->cc.read = igb_ptp_read_82576;
1131 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1132 		adapter->cc.mult = 1;
1133 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1134 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1135 		break;
1136 	case e1000_82580:
1137 	case e1000_i354:
1138 	case e1000_i350:
1139 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1140 		adapter->ptp_caps.owner = THIS_MODULE;
1141 		adapter->ptp_caps.max_adj = 62499999;
1142 		adapter->ptp_caps.n_ext_ts = 0;
1143 		adapter->ptp_caps.pps = 0;
1144 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1145 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1146 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1147 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1148 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1149 		adapter->cc.read = igb_ptp_read_82580;
1150 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1151 		adapter->cc.mult = 1;
1152 		adapter->cc.shift = 0;
1153 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1154 		break;
1155 	case e1000_i210:
1156 	case e1000_i211:
1157 		for (i = 0; i < IGB_N_SDP; i++) {
1158 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1159 
1160 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1161 			ppd->index = i;
1162 			ppd->func = PTP_PF_NONE;
1163 		}
1164 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1165 		adapter->ptp_caps.owner = THIS_MODULE;
1166 		adapter->ptp_caps.max_adj = 62499999;
1167 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1168 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1169 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1170 		adapter->ptp_caps.pps = 1;
1171 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1172 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1173 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1174 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1175 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1176 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1177 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1178 		break;
1179 	default:
1180 		adapter->ptp_clock = NULL;
1181 		return;
1182 	}
1183 
1184 	spin_lock_init(&adapter->tmreg_lock);
1185 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1186 
1187 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1188 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1189 				  igb_ptp_overflow_check);
1190 
1191 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1192 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1193 
1194 	igb_ptp_reset(adapter);
1195 
1196 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1197 						&adapter->pdev->dev);
1198 	if (IS_ERR(adapter->ptp_clock)) {
1199 		adapter->ptp_clock = NULL;
1200 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1201 	} else if (adapter->ptp_clock) {
1202 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1203 			 adapter->netdev->name);
1204 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1205 	}
1206 }
1207 
1208 /**
1209  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1210  * @adapter: Board private structure
1211  *
1212  * This function stops the overflow check work and PTP Tx timestamp work, and
1213  * will prepare the device for OS suspend.
1214  */
1215 void igb_ptp_suspend(struct igb_adapter *adapter)
1216 {
1217 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1218 		return;
1219 
1220 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1221 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1222 
1223 	cancel_work_sync(&adapter->ptp_tx_work);
1224 	if (adapter->ptp_tx_skb) {
1225 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1226 		adapter->ptp_tx_skb = NULL;
1227 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1228 	}
1229 }
1230 
1231 /**
1232  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1233  * @adapter: Board private structure.
1234  *
1235  * This function stops the PTP support and cancels the delayed work.
1236  **/
1237 void igb_ptp_stop(struct igb_adapter *adapter)
1238 {
1239 	igb_ptp_suspend(adapter);
1240 
1241 	if (adapter->ptp_clock) {
1242 		ptp_clock_unregister(adapter->ptp_clock);
1243 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1244 			 adapter->netdev->name);
1245 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1246 	}
1247 }
1248 
1249 /**
1250  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1251  * @adapter: Board private structure.
1252  *
1253  * This function handles the reset work required to re-enable the PTP device.
1254  **/
1255 void igb_ptp_reset(struct igb_adapter *adapter)
1256 {
1257 	struct e1000_hw *hw = &adapter->hw;
1258 	unsigned long flags;
1259 
1260 	/* reset the tstamp_config */
1261 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1262 
1263 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1264 
1265 	switch (adapter->hw.mac.type) {
1266 	case e1000_82576:
1267 		/* Dial the nominal frequency. */
1268 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1269 		break;
1270 	case e1000_82580:
1271 	case e1000_i354:
1272 	case e1000_i350:
1273 	case e1000_i210:
1274 	case e1000_i211:
1275 		wr32(E1000_TSAUXC, 0x0);
1276 		wr32(E1000_TSSDP, 0x0);
1277 		wr32(E1000_TSIM,
1278 		     TSYNC_INTERRUPTS |
1279 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1280 		wr32(E1000_IMS, E1000_IMS_TS);
1281 		break;
1282 	default:
1283 		/* No work to do. */
1284 		goto out;
1285 	}
1286 
1287 	/* Re-initialize the timer. */
1288 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1289 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1290 
1291 		igb_ptp_write_i210(adapter, &ts);
1292 	} else {
1293 		timecounter_init(&adapter->tc, &adapter->cc,
1294 				 ktime_to_ns(ktime_get_real()));
1295 	}
1296 out:
1297 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1298 
1299 	wrfl();
1300 
1301 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1302 		schedule_delayed_work(&adapter->ptp_overflow_work,
1303 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1304 }
1305