xref: /openbmc/linux/drivers/net/ethernet/intel/igb/igb_ptp.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3  *
4  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/pci.h>
22 #include <linux/ptp_classify.h>
23 
24 #include "igb.h"
25 
26 #define INCVALUE_MASK		0x7fffffff
27 #define ISGN			0x80000000
28 
29 /* The 82580 timesync updates the system timer every 8ns by 8ns,
30  * and this update value cannot be reprogrammed.
31  *
32  * Neither the 82576 nor the 82580 offer registers wide enough to hold
33  * nanoseconds time values for very long. For the 82580, SYSTIM always
34  * counts nanoseconds, but the upper 24 bits are not available. The
35  * frequency is adjusted by changing the 32 bit fractional nanoseconds
36  * register, TIMINCA.
37  *
38  * For the 82576, the SYSTIM register time unit is affect by the
39  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
40  * field are needed to provide the nominal 16 nanosecond period,
41  * leaving 19 bits for fractional nanoseconds.
42  *
43  * We scale the NIC clock cycle by a large factor so that relatively
44  * small clock corrections can be added or subtracted at each clock
45  * tick. The drawbacks of a large factor are a) that the clock
46  * register overflows more quickly (not such a big deal) and b) that
47  * the increment per tick has to fit into 24 bits.  As a result we
48  * need to use a shift of 19 so we can fit a value of 16 into the
49  * TIMINCA register.
50  *
51  *
52  *             SYSTIMH            SYSTIML
53  *        +--------------+   +---+---+------+
54  *  82576 |      32      |   | 8 | 5 |  19  |
55  *        +--------------+   +---+---+------+
56  *         \________ 45 bits _______/  fract
57  *
58  *        +----------+---+   +--------------+
59  *  82580 |    24    | 8 |   |      32      |
60  *        +----------+---+   +--------------+
61  *          reserved  \______ 40 bits _____/
62  *
63  *
64  * The 45 bit 82576 SYSTIM overflows every
65  *   2^45 * 10^-9 / 3600 = 9.77 hours.
66  *
67  * The 40 bit 82580 SYSTIM overflows every
68  *   2^40 * 10^-9 /  60  = 18.3 minutes.
69  */
70 
71 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
72 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
73 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
75 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580			40
77 
78 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
79 
80 /* SYSTIM read access for the 82576 */
81 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
82 {
83 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
84 	struct e1000_hw *hw = &igb->hw;
85 	u64 val;
86 	u32 lo, hi;
87 
88 	lo = rd32(E1000_SYSTIML);
89 	hi = rd32(E1000_SYSTIMH);
90 
91 	val = ((u64) hi) << 32;
92 	val |= lo;
93 
94 	return val;
95 }
96 
97 /* SYSTIM read access for the 82580 */
98 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
99 {
100 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
101 	struct e1000_hw *hw = &igb->hw;
102 	u32 lo, hi;
103 	u64 val;
104 
105 	/* The timestamp latches on lowest register read. For the 82580
106 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
107 	 * need to provide nanosecond resolution, so we just ignore it.
108 	 */
109 	rd32(E1000_SYSTIMR);
110 	lo = rd32(E1000_SYSTIML);
111 	hi = rd32(E1000_SYSTIMH);
112 
113 	val = ((u64) hi) << 32;
114 	val |= lo;
115 
116 	return val;
117 }
118 
119 /* SYSTIM read access for I210/I211 */
120 static void igb_ptp_read_i210(struct igb_adapter *adapter,
121 			      struct timespec64 *ts)
122 {
123 	struct e1000_hw *hw = &adapter->hw;
124 	u32 sec, nsec;
125 
126 	/* The timestamp latches on lowest register read. For I210/I211, the
127 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
128 	 * resolution, we can ignore it.
129 	 */
130 	rd32(E1000_SYSTIMR);
131 	nsec = rd32(E1000_SYSTIML);
132 	sec = rd32(E1000_SYSTIMH);
133 
134 	ts->tv_sec = sec;
135 	ts->tv_nsec = nsec;
136 }
137 
138 static void igb_ptp_write_i210(struct igb_adapter *adapter,
139 			       const struct timespec64 *ts)
140 {
141 	struct e1000_hw *hw = &adapter->hw;
142 
143 	/* Writing the SYSTIMR register is not necessary as it only provides
144 	 * sub-nanosecond resolution.
145 	 */
146 	wr32(E1000_SYSTIML, ts->tv_nsec);
147 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
148 }
149 
150 /**
151  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
152  * @adapter: board private structure
153  * @hwtstamps: timestamp structure to update
154  * @systim: unsigned 64bit system time value.
155  *
156  * We need to convert the system time value stored in the RX/TXSTMP registers
157  * into a hwtstamp which can be used by the upper level timestamping functions.
158  *
159  * The 'tmreg_lock' spinlock is used to protect the consistency of the
160  * system time value. This is needed because reading the 64 bit time
161  * value involves reading two (or three) 32 bit registers. The first
162  * read latches the value. Ditto for writing.
163  *
164  * In addition, here have extended the system time with an overflow
165  * counter in software.
166  **/
167 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
168 				       struct skb_shared_hwtstamps *hwtstamps,
169 				       u64 systim)
170 {
171 	unsigned long flags;
172 	u64 ns;
173 
174 	switch (adapter->hw.mac.type) {
175 	case e1000_82576:
176 	case e1000_82580:
177 	case e1000_i354:
178 	case e1000_i350:
179 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
180 
181 		ns = timecounter_cyc2time(&adapter->tc, systim);
182 
183 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
184 
185 		memset(hwtstamps, 0, sizeof(*hwtstamps));
186 		hwtstamps->hwtstamp = ns_to_ktime(ns);
187 		break;
188 	case e1000_i210:
189 	case e1000_i211:
190 		memset(hwtstamps, 0, sizeof(*hwtstamps));
191 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
192 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
193 						systim & 0xFFFFFFFF);
194 		break;
195 	default:
196 		break;
197 	}
198 }
199 
200 /* PTP clock operations */
201 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
202 {
203 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
204 					       ptp_caps);
205 	struct e1000_hw *hw = &igb->hw;
206 	int neg_adj = 0;
207 	u64 rate;
208 	u32 incvalue;
209 
210 	if (ppb < 0) {
211 		neg_adj = 1;
212 		ppb = -ppb;
213 	}
214 	rate = ppb;
215 	rate <<= 14;
216 	rate = div_u64(rate, 1953125);
217 
218 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
219 
220 	if (neg_adj)
221 		incvalue -= rate;
222 	else
223 		incvalue += rate;
224 
225 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
226 
227 	return 0;
228 }
229 
230 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
231 {
232 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
233 					       ptp_caps);
234 	struct e1000_hw *hw = &igb->hw;
235 	int neg_adj = 0;
236 	u64 rate;
237 	u32 inca;
238 
239 	if (scaled_ppm < 0) {
240 		neg_adj = 1;
241 		scaled_ppm = -scaled_ppm;
242 	}
243 	rate = scaled_ppm;
244 	rate <<= 13;
245 	rate = div_u64(rate, 15625);
246 
247 	inca = rate & INCVALUE_MASK;
248 	if (neg_adj)
249 		inca |= ISGN;
250 
251 	wr32(E1000_TIMINCA, inca);
252 
253 	return 0;
254 }
255 
256 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
257 {
258 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
259 					       ptp_caps);
260 	unsigned long flags;
261 
262 	spin_lock_irqsave(&igb->tmreg_lock, flags);
263 	timecounter_adjtime(&igb->tc, delta);
264 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
265 
266 	return 0;
267 }
268 
269 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
270 {
271 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
272 					       ptp_caps);
273 	unsigned long flags;
274 	struct timespec64 now, then = ns_to_timespec64(delta);
275 
276 	spin_lock_irqsave(&igb->tmreg_lock, flags);
277 
278 	igb_ptp_read_i210(igb, &now);
279 	now = timespec64_add(now, then);
280 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
281 
282 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
283 
284 	return 0;
285 }
286 
287 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
288 				 struct timespec64 *ts)
289 {
290 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 					       ptp_caps);
292 	unsigned long flags;
293 	u64 ns;
294 
295 	spin_lock_irqsave(&igb->tmreg_lock, flags);
296 
297 	ns = timecounter_read(&igb->tc);
298 
299 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
300 
301 	*ts = ns_to_timespec64(ns);
302 
303 	return 0;
304 }
305 
306 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
307 				struct timespec64 *ts)
308 {
309 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310 					       ptp_caps);
311 	unsigned long flags;
312 
313 	spin_lock_irqsave(&igb->tmreg_lock, flags);
314 
315 	igb_ptp_read_i210(igb, ts);
316 
317 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318 
319 	return 0;
320 }
321 
322 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
323 				 const struct timespec64 *ts)
324 {
325 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
326 					       ptp_caps);
327 	unsigned long flags;
328 	u64 ns;
329 
330 	ns = timespec64_to_ns(ts);
331 
332 	spin_lock_irqsave(&igb->tmreg_lock, flags);
333 
334 	timecounter_init(&igb->tc, &igb->cc, ns);
335 
336 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
337 
338 	return 0;
339 }
340 
341 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
342 				const struct timespec64 *ts)
343 {
344 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
345 					       ptp_caps);
346 	unsigned long flags;
347 
348 	spin_lock_irqsave(&igb->tmreg_lock, flags);
349 
350 	igb_ptp_write_i210(igb, ts);
351 
352 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353 
354 	return 0;
355 }
356 
357 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
358 {
359 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
360 	static const u32 mask[IGB_N_SDP] = {
361 		E1000_CTRL_SDP0_DIR,
362 		E1000_CTRL_SDP1_DIR,
363 		E1000_CTRL_EXT_SDP2_DIR,
364 		E1000_CTRL_EXT_SDP3_DIR,
365 	};
366 
367 	if (input)
368 		*ptr &= ~mask[pin];
369 	else
370 		*ptr |= mask[pin];
371 }
372 
373 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
374 {
375 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
376 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
377 	};
378 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
379 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
380 	};
381 	static const u32 ts_sdp_en[IGB_N_SDP] = {
382 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
383 	};
384 	struct e1000_hw *hw = &igb->hw;
385 	u32 ctrl, ctrl_ext, tssdp = 0;
386 
387 	ctrl = rd32(E1000_CTRL);
388 	ctrl_ext = rd32(E1000_CTRL_EXT);
389 	tssdp = rd32(E1000_TSSDP);
390 
391 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
392 
393 	/* Make sure this pin is not enabled as an output. */
394 	tssdp &= ~ts_sdp_en[pin];
395 
396 	if (chan == 1) {
397 		tssdp &= ~AUX1_SEL_SDP3;
398 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
399 	} else {
400 		tssdp &= ~AUX0_SEL_SDP3;
401 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
402 	}
403 
404 	wr32(E1000_TSSDP, tssdp);
405 	wr32(E1000_CTRL, ctrl);
406 	wr32(E1000_CTRL_EXT, ctrl_ext);
407 }
408 
409 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
410 {
411 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
412 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
413 	};
414 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
415 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
416 	};
417 	static const u32 ts_sdp_en[IGB_N_SDP] = {
418 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
419 	};
420 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
421 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
422 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
423 	};
424 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
425 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
426 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
427 	};
428 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
429 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
430 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
431 	};
432 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
433 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
434 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
435 	};
436 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
437 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
438 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
439 	};
440 	struct e1000_hw *hw = &igb->hw;
441 	u32 ctrl, ctrl_ext, tssdp = 0;
442 
443 	ctrl = rd32(E1000_CTRL);
444 	ctrl_ext = rd32(E1000_CTRL_EXT);
445 	tssdp = rd32(E1000_TSSDP);
446 
447 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
448 
449 	/* Make sure this pin is not enabled as an input. */
450 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
451 		tssdp &= ~AUX0_TS_SDP_EN;
452 
453 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
454 		tssdp &= ~AUX1_TS_SDP_EN;
455 
456 	tssdp &= ~ts_sdp_sel_clr[pin];
457 	if (freq) {
458 		if (chan == 1)
459 			tssdp |= ts_sdp_sel_fc1[pin];
460 		else
461 			tssdp |= ts_sdp_sel_fc0[pin];
462 	} else {
463 		if (chan == 1)
464 			tssdp |= ts_sdp_sel_tt1[pin];
465 		else
466 			tssdp |= ts_sdp_sel_tt0[pin];
467 	}
468 	tssdp |= ts_sdp_en[pin];
469 
470 	wr32(E1000_TSSDP, tssdp);
471 	wr32(E1000_CTRL, ctrl);
472 	wr32(E1000_CTRL_EXT, ctrl_ext);
473 }
474 
475 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
476 				       struct ptp_clock_request *rq, int on)
477 {
478 	struct igb_adapter *igb =
479 		container_of(ptp, struct igb_adapter, ptp_caps);
480 	struct e1000_hw *hw = &igb->hw;
481 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
482 	unsigned long flags;
483 	struct timespec64 ts;
484 	int use_freq = 0, pin = -1;
485 	s64 ns;
486 
487 	switch (rq->type) {
488 	case PTP_CLK_REQ_EXTTS:
489 		if (on) {
490 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
491 					   rq->extts.index);
492 			if (pin < 0)
493 				return -EBUSY;
494 		}
495 		if (rq->extts.index == 1) {
496 			tsauxc_mask = TSAUXC_EN_TS1;
497 			tsim_mask = TSINTR_AUTT1;
498 		} else {
499 			tsauxc_mask = TSAUXC_EN_TS0;
500 			tsim_mask = TSINTR_AUTT0;
501 		}
502 		spin_lock_irqsave(&igb->tmreg_lock, flags);
503 		tsauxc = rd32(E1000_TSAUXC);
504 		tsim = rd32(E1000_TSIM);
505 		if (on) {
506 			igb_pin_extts(igb, rq->extts.index, pin);
507 			tsauxc |= tsauxc_mask;
508 			tsim |= tsim_mask;
509 		} else {
510 			tsauxc &= ~tsauxc_mask;
511 			tsim &= ~tsim_mask;
512 		}
513 		wr32(E1000_TSAUXC, tsauxc);
514 		wr32(E1000_TSIM, tsim);
515 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
516 		return 0;
517 
518 	case PTP_CLK_REQ_PEROUT:
519 		if (on) {
520 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
521 					   rq->perout.index);
522 			if (pin < 0)
523 				return -EBUSY;
524 		}
525 		ts.tv_sec = rq->perout.period.sec;
526 		ts.tv_nsec = rq->perout.period.nsec;
527 		ns = timespec64_to_ns(&ts);
528 		ns = ns >> 1;
529 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
530 			   (ns == 250000000LL) || (ns == 500000000LL))) {
531 			if (ns < 8LL)
532 				return -EINVAL;
533 			use_freq = 1;
534 		}
535 		ts = ns_to_timespec64(ns);
536 		if (rq->perout.index == 1) {
537 			if (use_freq) {
538 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
539 				tsim_mask = 0;
540 			} else {
541 				tsauxc_mask = TSAUXC_EN_TT1;
542 				tsim_mask = TSINTR_TT1;
543 			}
544 			trgttiml = E1000_TRGTTIML1;
545 			trgttimh = E1000_TRGTTIMH1;
546 			freqout = E1000_FREQOUT1;
547 		} else {
548 			if (use_freq) {
549 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
550 				tsim_mask = 0;
551 			} else {
552 				tsauxc_mask = TSAUXC_EN_TT0;
553 				tsim_mask = TSINTR_TT0;
554 			}
555 			trgttiml = E1000_TRGTTIML0;
556 			trgttimh = E1000_TRGTTIMH0;
557 			freqout = E1000_FREQOUT0;
558 		}
559 		spin_lock_irqsave(&igb->tmreg_lock, flags);
560 		tsauxc = rd32(E1000_TSAUXC);
561 		tsim = rd32(E1000_TSIM);
562 		if (rq->perout.index == 1) {
563 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
564 			tsim &= ~TSINTR_TT1;
565 		} else {
566 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
567 			tsim &= ~TSINTR_TT0;
568 		}
569 		if (on) {
570 			int i = rq->perout.index;
571 			igb_pin_perout(igb, i, pin, use_freq);
572 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
573 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
574 			igb->perout[i].period.tv_sec = ts.tv_sec;
575 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
576 			wr32(trgttimh, rq->perout.start.sec);
577 			wr32(trgttiml, rq->perout.start.nsec);
578 			if (use_freq)
579 				wr32(freqout, ns);
580 			tsauxc |= tsauxc_mask;
581 			tsim |= tsim_mask;
582 		}
583 		wr32(E1000_TSAUXC, tsauxc);
584 		wr32(E1000_TSIM, tsim);
585 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
586 		return 0;
587 
588 	case PTP_CLK_REQ_PPS:
589 		spin_lock_irqsave(&igb->tmreg_lock, flags);
590 		tsim = rd32(E1000_TSIM);
591 		if (on)
592 			tsim |= TSINTR_SYS_WRAP;
593 		else
594 			tsim &= ~TSINTR_SYS_WRAP;
595 		igb->pps_sys_wrap_on = !!on;
596 		wr32(E1000_TSIM, tsim);
597 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
598 		return 0;
599 	}
600 
601 	return -EOPNOTSUPP;
602 }
603 
604 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
605 				  struct ptp_clock_request *rq, int on)
606 {
607 	return -EOPNOTSUPP;
608 }
609 
610 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
611 			      enum ptp_pin_function func, unsigned int chan)
612 {
613 	switch (func) {
614 	case PTP_PF_NONE:
615 	case PTP_PF_EXTTS:
616 	case PTP_PF_PEROUT:
617 		break;
618 	case PTP_PF_PHYSYNC:
619 		return -1;
620 	}
621 	return 0;
622 }
623 
624 /**
625  * igb_ptp_tx_work
626  * @work: pointer to work struct
627  *
628  * This work function polls the TSYNCTXCTL valid bit to determine when a
629  * timestamp has been taken for the current stored skb.
630  **/
631 static void igb_ptp_tx_work(struct work_struct *work)
632 {
633 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
634 						   ptp_tx_work);
635 	struct e1000_hw *hw = &adapter->hw;
636 	u32 tsynctxctl;
637 
638 	if (!adapter->ptp_tx_skb)
639 		return;
640 
641 	if (time_is_before_jiffies(adapter->ptp_tx_start +
642 				   IGB_PTP_TX_TIMEOUT)) {
643 		dev_kfree_skb_any(adapter->ptp_tx_skb);
644 		adapter->ptp_tx_skb = NULL;
645 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
646 		adapter->tx_hwtstamp_timeouts++;
647 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
648 		 * interrupt
649 		 */
650 		rd32(E1000_TXSTMPH);
651 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
652 		return;
653 	}
654 
655 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
656 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
657 		igb_ptp_tx_hwtstamp(adapter);
658 	else
659 		/* reschedule to check later */
660 		schedule_work(&adapter->ptp_tx_work);
661 }
662 
663 static void igb_ptp_overflow_check(struct work_struct *work)
664 {
665 	struct igb_adapter *igb =
666 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
667 	struct timespec64 ts;
668 
669 	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
670 
671 	pr_debug("igb overflow check at %lld.%09lu\n",
672 		 (long long) ts.tv_sec, ts.tv_nsec);
673 
674 	schedule_delayed_work(&igb->ptp_overflow_work,
675 			      IGB_SYSTIM_OVERFLOW_PERIOD);
676 }
677 
678 /**
679  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
680  * @adapter: private network adapter structure
681  *
682  * This watchdog task is scheduled to detect error case where hardware has
683  * dropped an Rx packet that was timestamped when the ring is full. The
684  * particular error is rare but leaves the device in a state unable to timestamp
685  * any future packets.
686  **/
687 void igb_ptp_rx_hang(struct igb_adapter *adapter)
688 {
689 	struct e1000_hw *hw = &adapter->hw;
690 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
691 	unsigned long rx_event;
692 
693 	/* Other hardware uses per-packet timestamps */
694 	if (hw->mac.type != e1000_82576)
695 		return;
696 
697 	/* If we don't have a valid timestamp in the registers, just update the
698 	 * timeout counter and exit
699 	 */
700 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
701 		adapter->last_rx_ptp_check = jiffies;
702 		return;
703 	}
704 
705 	/* Determine the most recent watchdog or rx_timestamp event */
706 	rx_event = adapter->last_rx_ptp_check;
707 	if (time_after(adapter->last_rx_timestamp, rx_event))
708 		rx_event = adapter->last_rx_timestamp;
709 
710 	/* Only need to read the high RXSTMP register to clear the lock */
711 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
712 		rd32(E1000_RXSTMPH);
713 		adapter->last_rx_ptp_check = jiffies;
714 		adapter->rx_hwtstamp_cleared++;
715 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
716 	}
717 }
718 
719 /**
720  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
721  * @adapter: private network adapter structure
722  */
723 void igb_ptp_tx_hang(struct igb_adapter *adapter)
724 {
725 	struct e1000_hw *hw = &adapter->hw;
726 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
727 					      IGB_PTP_TX_TIMEOUT);
728 
729 	if (!adapter->ptp_tx_skb)
730 		return;
731 
732 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
733 		return;
734 
735 	/* If we haven't received a timestamp within the timeout, it is
736 	 * reasonable to assume that it will never occur, so we can unlock the
737 	 * timestamp bit when this occurs.
738 	 */
739 	if (timeout) {
740 		cancel_work_sync(&adapter->ptp_tx_work);
741 		dev_kfree_skb_any(adapter->ptp_tx_skb);
742 		adapter->ptp_tx_skb = NULL;
743 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
744 		adapter->tx_hwtstamp_timeouts++;
745 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
746 		 * interrupt
747 		 */
748 		rd32(E1000_TXSTMPH);
749 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
750 	}
751 }
752 
753 /**
754  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
755  * @adapter: Board private structure.
756  *
757  * If we were asked to do hardware stamping and such a time stamp is
758  * available, then it must have been for this skb here because we only
759  * allow only one such packet into the queue.
760  **/
761 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
762 {
763 	struct sk_buff *skb = adapter->ptp_tx_skb;
764 	struct e1000_hw *hw = &adapter->hw;
765 	struct skb_shared_hwtstamps shhwtstamps;
766 	u64 regval;
767 	int adjust = 0;
768 
769 	regval = rd32(E1000_TXSTMPL);
770 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
771 
772 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
773 	/* adjust timestamp for the TX latency based on link speed */
774 	if (adapter->hw.mac.type == e1000_i210) {
775 		switch (adapter->link_speed) {
776 		case SPEED_10:
777 			adjust = IGB_I210_TX_LATENCY_10;
778 			break;
779 		case SPEED_100:
780 			adjust = IGB_I210_TX_LATENCY_100;
781 			break;
782 		case SPEED_1000:
783 			adjust = IGB_I210_TX_LATENCY_1000;
784 			break;
785 		}
786 	}
787 
788 	shhwtstamps.hwtstamp =
789 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
790 
791 	/* Clear the lock early before calling skb_tstamp_tx so that
792 	 * applications are not woken up before the lock bit is clear. We use
793 	 * a copy of the skb pointer to ensure other threads can't change it
794 	 * while we're notifying the stack.
795 	 */
796 	adapter->ptp_tx_skb = NULL;
797 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
798 
799 	/* Notify the stack and free the skb after we've unlocked */
800 	skb_tstamp_tx(skb, &shhwtstamps);
801 	dev_kfree_skb_any(skb);
802 }
803 
804 /**
805  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
806  * @q_vector: Pointer to interrupt specific structure
807  * @va: Pointer to address containing Rx buffer
808  * @skb: Buffer containing timestamp and packet
809  *
810  * This function is meant to retrieve a timestamp from the first buffer of an
811  * incoming frame.  The value is stored in little endian format starting on
812  * byte 8.
813  **/
814 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
815 			 struct sk_buff *skb)
816 {
817 	__le64 *regval = (__le64 *)va;
818 	struct igb_adapter *adapter = q_vector->adapter;
819 	int adjust = 0;
820 
821 	/* The timestamp is recorded in little endian format.
822 	 * DWORD: 0        1        2        3
823 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
824 	 */
825 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
826 				   le64_to_cpu(regval[1]));
827 
828 	/* adjust timestamp for the RX latency based on link speed */
829 	if (adapter->hw.mac.type == e1000_i210) {
830 		switch (adapter->link_speed) {
831 		case SPEED_10:
832 			adjust = IGB_I210_RX_LATENCY_10;
833 			break;
834 		case SPEED_100:
835 			adjust = IGB_I210_RX_LATENCY_100;
836 			break;
837 		case SPEED_1000:
838 			adjust = IGB_I210_RX_LATENCY_1000;
839 			break;
840 		}
841 	}
842 	skb_hwtstamps(skb)->hwtstamp =
843 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
844 }
845 
846 /**
847  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
848  * @q_vector: Pointer to interrupt specific structure
849  * @skb: Buffer containing timestamp and packet
850  *
851  * This function is meant to retrieve a timestamp from the internal registers
852  * of the adapter and store it in the skb.
853  **/
854 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
855 			 struct sk_buff *skb)
856 {
857 	struct igb_adapter *adapter = q_vector->adapter;
858 	struct e1000_hw *hw = &adapter->hw;
859 	u64 regval;
860 	int adjust = 0;
861 
862 	/* If this bit is set, then the RX registers contain the time stamp. No
863 	 * other packet will be time stamped until we read these registers, so
864 	 * read the registers to make them available again. Because only one
865 	 * packet can be time stamped at a time, we know that the register
866 	 * values must belong to this one here and therefore we don't need to
867 	 * compare any of the additional attributes stored for it.
868 	 *
869 	 * If nothing went wrong, then it should have a shared tx_flags that we
870 	 * can turn into a skb_shared_hwtstamps.
871 	 */
872 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
873 		return;
874 
875 	regval = rd32(E1000_RXSTMPL);
876 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
877 
878 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
879 
880 	/* adjust timestamp for the RX latency based on link speed */
881 	if (adapter->hw.mac.type == e1000_i210) {
882 		switch (adapter->link_speed) {
883 		case SPEED_10:
884 			adjust = IGB_I210_RX_LATENCY_10;
885 			break;
886 		case SPEED_100:
887 			adjust = IGB_I210_RX_LATENCY_100;
888 			break;
889 		case SPEED_1000:
890 			adjust = IGB_I210_RX_LATENCY_1000;
891 			break;
892 		}
893 	}
894 	skb_hwtstamps(skb)->hwtstamp =
895 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
896 
897 	/* Update the last_rx_timestamp timer in order to enable watchdog check
898 	 * for error case of latched timestamp on a dropped packet.
899 	 */
900 	adapter->last_rx_timestamp = jiffies;
901 }
902 
903 /**
904  * igb_ptp_get_ts_config - get hardware time stamping config
905  * @netdev:
906  * @ifreq:
907  *
908  * Get the hwtstamp_config settings to return to the user. Rather than attempt
909  * to deconstruct the settings from the registers, just return a shadow copy
910  * of the last known settings.
911  **/
912 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
913 {
914 	struct igb_adapter *adapter = netdev_priv(netdev);
915 	struct hwtstamp_config *config = &adapter->tstamp_config;
916 
917 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
918 		-EFAULT : 0;
919 }
920 
921 /**
922  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
923  * @adapter: networking device structure
924  * @config: hwtstamp configuration
925  *
926  * Outgoing time stamping can be enabled and disabled. Play nice and
927  * disable it when requested, although it shouldn't case any overhead
928  * when no packet needs it. At most one packet in the queue may be
929  * marked for time stamping, otherwise it would be impossible to tell
930  * for sure to which packet the hardware time stamp belongs.
931  *
932  * Incoming time stamping has to be configured via the hardware
933  * filters. Not all combinations are supported, in particular event
934  * type has to be specified. Matching the kind of event packet is
935  * not supported, with the exception of "all V2 events regardless of
936  * level 2 or 4".
937  */
938 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
939 				      struct hwtstamp_config *config)
940 {
941 	struct e1000_hw *hw = &adapter->hw;
942 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
943 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
944 	u32 tsync_rx_cfg = 0;
945 	bool is_l4 = false;
946 	bool is_l2 = false;
947 	u32 regval;
948 
949 	/* reserved for future extensions */
950 	if (config->flags)
951 		return -EINVAL;
952 
953 	switch (config->tx_type) {
954 	case HWTSTAMP_TX_OFF:
955 		tsync_tx_ctl = 0;
956 	case HWTSTAMP_TX_ON:
957 		break;
958 	default:
959 		return -ERANGE;
960 	}
961 
962 	switch (config->rx_filter) {
963 	case HWTSTAMP_FILTER_NONE:
964 		tsync_rx_ctl = 0;
965 		break;
966 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
967 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
968 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
969 		is_l4 = true;
970 		break;
971 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
972 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
973 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
974 		is_l4 = true;
975 		break;
976 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
977 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
978 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
979 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
980 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
981 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
982 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
983 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
984 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
985 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
986 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
987 		is_l2 = true;
988 		is_l4 = true;
989 		break;
990 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
991 	case HWTSTAMP_FILTER_NTP_ALL:
992 	case HWTSTAMP_FILTER_ALL:
993 		/* 82576 cannot timestamp all packets, which it needs to do to
994 		 * support both V1 Sync and Delay_Req messages
995 		 */
996 		if (hw->mac.type != e1000_82576) {
997 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
998 			config->rx_filter = HWTSTAMP_FILTER_ALL;
999 			break;
1000 		}
1001 		/* fall through */
1002 	default:
1003 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1004 		return -ERANGE;
1005 	}
1006 
1007 	if (hw->mac.type == e1000_82575) {
1008 		if (tsync_rx_ctl | tsync_tx_ctl)
1009 			return -EINVAL;
1010 		return 0;
1011 	}
1012 
1013 	/* Per-packet timestamping only works if all packets are
1014 	 * timestamped, so enable timestamping in all packets as
1015 	 * long as one Rx filter was configured.
1016 	 */
1017 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1018 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1019 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1020 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1021 		is_l2 = true;
1022 		is_l4 = true;
1023 
1024 		if ((hw->mac.type == e1000_i210) ||
1025 		    (hw->mac.type == e1000_i211)) {
1026 			regval = rd32(E1000_RXPBS);
1027 			regval |= E1000_RXPBS_CFG_TS_EN;
1028 			wr32(E1000_RXPBS, regval);
1029 		}
1030 	}
1031 
1032 	/* enable/disable TX */
1033 	regval = rd32(E1000_TSYNCTXCTL);
1034 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1035 	regval |= tsync_tx_ctl;
1036 	wr32(E1000_TSYNCTXCTL, regval);
1037 
1038 	/* enable/disable RX */
1039 	regval = rd32(E1000_TSYNCRXCTL);
1040 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1041 	regval |= tsync_rx_ctl;
1042 	wr32(E1000_TSYNCRXCTL, regval);
1043 
1044 	/* define which PTP packets are time stamped */
1045 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1046 
1047 	/* define ethertype filter for timestamped packets */
1048 	if (is_l2)
1049 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1050 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1051 		      E1000_ETQF_1588 | /* enable timestamping */
1052 		      ETH_P_1588));     /* 1588 eth protocol type */
1053 	else
1054 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1055 
1056 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1057 	if (is_l4) {
1058 		u32 ftqf = (IPPROTO_UDP /* UDP */
1059 			| E1000_FTQF_VF_BP /* VF not compared */
1060 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1061 			| E1000_FTQF_MASK); /* mask all inputs */
1062 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1063 
1064 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1065 		wr32(E1000_IMIREXT(3),
1066 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1067 		if (hw->mac.type == e1000_82576) {
1068 			/* enable source port check */
1069 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1070 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1071 		}
1072 		wr32(E1000_FTQF(3), ftqf);
1073 	} else {
1074 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1075 	}
1076 	wrfl();
1077 
1078 	/* clear TX/RX time stamp registers, just to be sure */
1079 	regval = rd32(E1000_TXSTMPL);
1080 	regval = rd32(E1000_TXSTMPH);
1081 	regval = rd32(E1000_RXSTMPL);
1082 	regval = rd32(E1000_RXSTMPH);
1083 
1084 	return 0;
1085 }
1086 
1087 /**
1088  * igb_ptp_set_ts_config - set hardware time stamping config
1089  * @netdev:
1090  * @ifreq:
1091  *
1092  **/
1093 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1094 {
1095 	struct igb_adapter *adapter = netdev_priv(netdev);
1096 	struct hwtstamp_config config;
1097 	int err;
1098 
1099 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1100 		return -EFAULT;
1101 
1102 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1103 	if (err)
1104 		return err;
1105 
1106 	/* save these settings for future reference */
1107 	memcpy(&adapter->tstamp_config, &config,
1108 	       sizeof(adapter->tstamp_config));
1109 
1110 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1111 		-EFAULT : 0;
1112 }
1113 
1114 /**
1115  * igb_ptp_init - Initialize PTP functionality
1116  * @adapter: Board private structure
1117  *
1118  * This function is called at device probe to initialize the PTP
1119  * functionality.
1120  */
1121 void igb_ptp_init(struct igb_adapter *adapter)
1122 {
1123 	struct e1000_hw *hw = &adapter->hw;
1124 	struct net_device *netdev = adapter->netdev;
1125 	int i;
1126 
1127 	switch (hw->mac.type) {
1128 	case e1000_82576:
1129 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1130 		adapter->ptp_caps.owner = THIS_MODULE;
1131 		adapter->ptp_caps.max_adj = 999999881;
1132 		adapter->ptp_caps.n_ext_ts = 0;
1133 		adapter->ptp_caps.pps = 0;
1134 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1135 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1136 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1137 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1138 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1139 		adapter->cc.read = igb_ptp_read_82576;
1140 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1141 		adapter->cc.mult = 1;
1142 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1143 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1144 		break;
1145 	case e1000_82580:
1146 	case e1000_i354:
1147 	case e1000_i350:
1148 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1149 		adapter->ptp_caps.owner = THIS_MODULE;
1150 		adapter->ptp_caps.max_adj = 62499999;
1151 		adapter->ptp_caps.n_ext_ts = 0;
1152 		adapter->ptp_caps.pps = 0;
1153 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1154 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1155 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1156 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1157 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1158 		adapter->cc.read = igb_ptp_read_82580;
1159 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1160 		adapter->cc.mult = 1;
1161 		adapter->cc.shift = 0;
1162 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1163 		break;
1164 	case e1000_i210:
1165 	case e1000_i211:
1166 		for (i = 0; i < IGB_N_SDP; i++) {
1167 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1168 
1169 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1170 			ppd->index = i;
1171 			ppd->func = PTP_PF_NONE;
1172 		}
1173 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1174 		adapter->ptp_caps.owner = THIS_MODULE;
1175 		adapter->ptp_caps.max_adj = 62499999;
1176 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1177 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1178 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1179 		adapter->ptp_caps.pps = 1;
1180 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1181 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1182 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1183 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1184 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1185 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1186 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1187 		break;
1188 	default:
1189 		adapter->ptp_clock = NULL;
1190 		return;
1191 	}
1192 
1193 	spin_lock_init(&adapter->tmreg_lock);
1194 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1195 
1196 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1197 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1198 				  igb_ptp_overflow_check);
1199 
1200 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1201 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1202 
1203 	igb_ptp_reset(adapter);
1204 
1205 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1206 						&adapter->pdev->dev);
1207 	if (IS_ERR(adapter->ptp_clock)) {
1208 		adapter->ptp_clock = NULL;
1209 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1210 	} else if (adapter->ptp_clock) {
1211 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1212 			 adapter->netdev->name);
1213 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1214 	}
1215 }
1216 
1217 /**
1218  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1219  * @adapter: Board private structure
1220  *
1221  * This function stops the overflow check work and PTP Tx timestamp work, and
1222  * will prepare the device for OS suspend.
1223  */
1224 void igb_ptp_suspend(struct igb_adapter *adapter)
1225 {
1226 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1227 		return;
1228 
1229 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1230 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1231 
1232 	cancel_work_sync(&adapter->ptp_tx_work);
1233 	if (adapter->ptp_tx_skb) {
1234 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1235 		adapter->ptp_tx_skb = NULL;
1236 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1237 	}
1238 }
1239 
1240 /**
1241  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1242  * @adapter: Board private structure.
1243  *
1244  * This function stops the PTP support and cancels the delayed work.
1245  **/
1246 void igb_ptp_stop(struct igb_adapter *adapter)
1247 {
1248 	igb_ptp_suspend(adapter);
1249 
1250 	if (adapter->ptp_clock) {
1251 		ptp_clock_unregister(adapter->ptp_clock);
1252 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1253 			 adapter->netdev->name);
1254 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1255 	}
1256 }
1257 
1258 /**
1259  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1260  * @adapter: Board private structure.
1261  *
1262  * This function handles the reset work required to re-enable the PTP device.
1263  **/
1264 void igb_ptp_reset(struct igb_adapter *adapter)
1265 {
1266 	struct e1000_hw *hw = &adapter->hw;
1267 	unsigned long flags;
1268 
1269 	/* reset the tstamp_config */
1270 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1271 
1272 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1273 
1274 	switch (adapter->hw.mac.type) {
1275 	case e1000_82576:
1276 		/* Dial the nominal frequency. */
1277 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1278 		break;
1279 	case e1000_82580:
1280 	case e1000_i354:
1281 	case e1000_i350:
1282 	case e1000_i210:
1283 	case e1000_i211:
1284 		wr32(E1000_TSAUXC, 0x0);
1285 		wr32(E1000_TSSDP, 0x0);
1286 		wr32(E1000_TSIM,
1287 		     TSYNC_INTERRUPTS |
1288 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1289 		wr32(E1000_IMS, E1000_IMS_TS);
1290 		break;
1291 	default:
1292 		/* No work to do. */
1293 		goto out;
1294 	}
1295 
1296 	/* Re-initialize the timer. */
1297 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1298 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1299 
1300 		igb_ptp_write_i210(adapter, &ts);
1301 	} else {
1302 		timecounter_init(&adapter->tc, &adapter->cc,
1303 				 ktime_to_ns(ktime_get_real()));
1304 	}
1305 out:
1306 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1307 
1308 	wrfl();
1309 
1310 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1311 		schedule_delayed_work(&adapter->ptp_overflow_work,
1312 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1313 }
1314