1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22 
23 #include "igb.h"
24 
25 #define INCVALUE_MASK		0x7fffffff
26 #define ISGN			0x80000000
27 
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not availible. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  */
69 
70 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72 #define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580			40
76 
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78 
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 	struct e1000_hw *hw = &igb->hw;
84 	u64 val;
85 	u32 lo, hi;
86 
87 	lo = rd32(E1000_SYSTIML);
88 	hi = rd32(E1000_SYSTIMH);
89 
90 	val = ((u64) hi) << 32;
91 	val |= lo;
92 
93 	return val;
94 }
95 
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 	struct e1000_hw *hw = &igb->hw;
101 	u32 lo, hi;
102 	u64 val;
103 
104 	/* The timestamp latches on lowest register read. For the 82580
105 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106 	 * need to provide nanosecond resolution, so we just ignore it.
107 	 */
108 	rd32(E1000_SYSTIMR);
109 	lo = rd32(E1000_SYSTIML);
110 	hi = rd32(E1000_SYSTIMH);
111 
112 	val = ((u64) hi) << 32;
113 	val |= lo;
114 
115 	return val;
116 }
117 
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120 {
121 	struct e1000_hw *hw = &adapter->hw;
122 	u32 sec, nsec;
123 
124 	/* The timestamp latches on lowest register read. For I210/I211, the
125 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126 	 * resolution, we can ignore it.
127 	 */
128 	rd32(E1000_SYSTIMR);
129 	nsec = rd32(E1000_SYSTIML);
130 	sec = rd32(E1000_SYSTIMH);
131 
132 	ts->tv_sec = sec;
133 	ts->tv_nsec = nsec;
134 }
135 
136 static void igb_ptp_write_i210(struct igb_adapter *adapter,
137 			       const struct timespec *ts)
138 {
139 	struct e1000_hw *hw = &adapter->hw;
140 
141 	/* Writing the SYSTIMR register is not necessary as it only provides
142 	 * sub-nanosecond resolution.
143 	 */
144 	wr32(E1000_SYSTIML, ts->tv_nsec);
145 	wr32(E1000_SYSTIMH, ts->tv_sec);
146 }
147 
148 /**
149  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150  * @adapter: board private structure
151  * @hwtstamps: timestamp structure to update
152  * @systim: unsigned 64bit system time value.
153  *
154  * We need to convert the system time value stored in the RX/TXSTMP registers
155  * into a hwtstamp which can be used by the upper level timestamping functions.
156  *
157  * The 'tmreg_lock' spinlock is used to protect the consistency of the
158  * system time value. This is needed because reading the 64 bit time
159  * value involves reading two (or three) 32 bit registers. The first
160  * read latches the value. Ditto for writing.
161  *
162  * In addition, here have extended the system time with an overflow
163  * counter in software.
164  **/
165 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166 				       struct skb_shared_hwtstamps *hwtstamps,
167 				       u64 systim)
168 {
169 	unsigned long flags;
170 	u64 ns;
171 
172 	switch (adapter->hw.mac.type) {
173 	case e1000_82576:
174 	case e1000_82580:
175 	case e1000_i354:
176 	case e1000_i350:
177 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
178 
179 		ns = timecounter_cyc2time(&adapter->tc, systim);
180 
181 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182 
183 		memset(hwtstamps, 0, sizeof(*hwtstamps));
184 		hwtstamps->hwtstamp = ns_to_ktime(ns);
185 		break;
186 	case e1000_i210:
187 	case e1000_i211:
188 		memset(hwtstamps, 0, sizeof(*hwtstamps));
189 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
190 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
191 						systim & 0xFFFFFFFF);
192 		break;
193 	default:
194 		break;
195 	}
196 }
197 
198 /* PTP clock operations */
199 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200 {
201 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202 					       ptp_caps);
203 	struct e1000_hw *hw = &igb->hw;
204 	int neg_adj = 0;
205 	u64 rate;
206 	u32 incvalue;
207 
208 	if (ppb < 0) {
209 		neg_adj = 1;
210 		ppb = -ppb;
211 	}
212 	rate = ppb;
213 	rate <<= 14;
214 	rate = div_u64(rate, 1953125);
215 
216 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217 
218 	if (neg_adj)
219 		incvalue -= rate;
220 	else
221 		incvalue += rate;
222 
223 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224 
225 	return 0;
226 }
227 
228 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229 {
230 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 					       ptp_caps);
232 	struct e1000_hw *hw = &igb->hw;
233 	int neg_adj = 0;
234 	u64 rate;
235 	u32 inca;
236 
237 	if (ppb < 0) {
238 		neg_adj = 1;
239 		ppb = -ppb;
240 	}
241 	rate = ppb;
242 	rate <<= 26;
243 	rate = div_u64(rate, 1953125);
244 
245 	inca = rate & INCVALUE_MASK;
246 	if (neg_adj)
247 		inca |= ISGN;
248 
249 	wr32(E1000_TIMINCA, inca);
250 
251 	return 0;
252 }
253 
254 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255 {
256 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257 					       ptp_caps);
258 	unsigned long flags;
259 
260 	spin_lock_irqsave(&igb->tmreg_lock, flags);
261 	timecounter_adjtime(&igb->tc, delta);
262 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
263 
264 	return 0;
265 }
266 
267 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
268 {
269 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 					       ptp_caps);
271 	unsigned long flags;
272 	struct timespec now, then = ns_to_timespec(delta);
273 
274 	spin_lock_irqsave(&igb->tmreg_lock, flags);
275 
276 	igb_ptp_read_i210(igb, &now);
277 	now = timespec_add(now, then);
278 	igb_ptp_write_i210(igb, (const struct timespec *)&now);
279 
280 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
281 
282 	return 0;
283 }
284 
285 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
286 				 struct timespec *ts)
287 {
288 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
289 					       ptp_caps);
290 	unsigned long flags;
291 	u64 ns;
292 	u32 remainder;
293 
294 	spin_lock_irqsave(&igb->tmreg_lock, flags);
295 
296 	ns = timecounter_read(&igb->tc);
297 
298 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299 
300 	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
301 	ts->tv_nsec = remainder;
302 
303 	return 0;
304 }
305 
306 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
307 				struct timespec *ts)
308 {
309 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310 					       ptp_caps);
311 	unsigned long flags;
312 
313 	spin_lock_irqsave(&igb->tmreg_lock, flags);
314 
315 	igb_ptp_read_i210(igb, ts);
316 
317 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318 
319 	return 0;
320 }
321 
322 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
323 				 const struct timespec *ts)
324 {
325 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
326 					       ptp_caps);
327 	unsigned long flags;
328 	u64 ns;
329 
330 	ns = ts->tv_sec * 1000000000ULL;
331 	ns += ts->tv_nsec;
332 
333 	spin_lock_irqsave(&igb->tmreg_lock, flags);
334 
335 	timecounter_init(&igb->tc, &igb->cc, ns);
336 
337 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
338 
339 	return 0;
340 }
341 
342 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
343 				const struct timespec *ts)
344 {
345 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
346 					       ptp_caps);
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&igb->tmreg_lock, flags);
350 
351 	igb_ptp_write_i210(igb, ts);
352 
353 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
354 
355 	return 0;
356 }
357 
358 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
359 {
360 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
361 	u32 mask[IGB_N_SDP] = {
362 		E1000_CTRL_SDP0_DIR,
363 		E1000_CTRL_SDP1_DIR,
364 		E1000_CTRL_EXT_SDP2_DIR,
365 		E1000_CTRL_EXT_SDP3_DIR,
366 	};
367 
368 	if (input)
369 		*ptr &= ~mask[pin];
370 	else
371 		*ptr |= mask[pin];
372 }
373 
374 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
375 {
376 	struct e1000_hw *hw = &igb->hw;
377 	u32 aux0_sel_sdp[IGB_N_SDP] = {
378 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
379 	};
380 	u32 aux1_sel_sdp[IGB_N_SDP] = {
381 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
382 	};
383 	u32 ts_sdp_en[IGB_N_SDP] = {
384 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
385 	};
386 	u32 ctrl, ctrl_ext, tssdp = 0;
387 
388 	ctrl = rd32(E1000_CTRL);
389 	ctrl_ext = rd32(E1000_CTRL_EXT);
390 	tssdp = rd32(E1000_TSSDP);
391 
392 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
393 
394 	/* Make sure this pin is not enabled as an output. */
395 	tssdp &= ~ts_sdp_en[pin];
396 
397 	if (chan == 1) {
398 		tssdp &= ~AUX1_SEL_SDP3;
399 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
400 	} else {
401 		tssdp &= ~AUX0_SEL_SDP3;
402 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
403 	}
404 
405 	wr32(E1000_TSSDP, tssdp);
406 	wr32(E1000_CTRL, ctrl);
407 	wr32(E1000_CTRL_EXT, ctrl_ext);
408 }
409 
410 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin)
411 {
412 	struct e1000_hw *hw = &igb->hw;
413 	u32 aux0_sel_sdp[IGB_N_SDP] = {
414 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
415 	};
416 	u32 aux1_sel_sdp[IGB_N_SDP] = {
417 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
418 	};
419 	u32 ts_sdp_en[IGB_N_SDP] = {
420 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
421 	};
422 	u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
423 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
424 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
425 	};
426 	u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
427 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
428 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
429 	};
430 	u32 ts_sdp_sel_clr[IGB_N_SDP] = {
431 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
432 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
433 	};
434 	u32 ctrl, ctrl_ext, tssdp = 0;
435 
436 	ctrl = rd32(E1000_CTRL);
437 	ctrl_ext = rd32(E1000_CTRL_EXT);
438 	tssdp = rd32(E1000_TSSDP);
439 
440 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
441 
442 	/* Make sure this pin is not enabled as an input. */
443 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
444 		tssdp &= ~AUX0_TS_SDP_EN;
445 
446 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
447 		tssdp &= ~AUX1_TS_SDP_EN;
448 
449 	tssdp &= ~ts_sdp_sel_clr[pin];
450 	if (chan == 1)
451 		tssdp |= ts_sdp_sel_tt1[pin];
452 	else
453 		tssdp |= ts_sdp_sel_tt0[pin];
454 
455 	tssdp |= ts_sdp_en[pin];
456 
457 	wr32(E1000_TSSDP, tssdp);
458 	wr32(E1000_CTRL, ctrl);
459 	wr32(E1000_CTRL_EXT, ctrl_ext);
460 }
461 
462 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
463 				       struct ptp_clock_request *rq, int on)
464 {
465 	struct igb_adapter *igb =
466 		container_of(ptp, struct igb_adapter, ptp_caps);
467 	struct e1000_hw *hw = &igb->hw;
468 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh;
469 	unsigned long flags;
470 	struct timespec ts;
471 	int pin;
472 	s64 ns;
473 
474 	switch (rq->type) {
475 	case PTP_CLK_REQ_EXTTS:
476 		if (on) {
477 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
478 					   rq->extts.index);
479 			if (pin < 0)
480 				return -EBUSY;
481 		}
482 		if (rq->extts.index == 1) {
483 			tsauxc_mask = TSAUXC_EN_TS1;
484 			tsim_mask = TSINTR_AUTT1;
485 		} else {
486 			tsauxc_mask = TSAUXC_EN_TS0;
487 			tsim_mask = TSINTR_AUTT0;
488 		}
489 		spin_lock_irqsave(&igb->tmreg_lock, flags);
490 		tsauxc = rd32(E1000_TSAUXC);
491 		tsim = rd32(E1000_TSIM);
492 		if (on) {
493 			igb_pin_extts(igb, rq->extts.index, pin);
494 			tsauxc |= tsauxc_mask;
495 			tsim |= tsim_mask;
496 		} else {
497 			tsauxc &= ~tsauxc_mask;
498 			tsim &= ~tsim_mask;
499 		}
500 		wr32(E1000_TSAUXC, tsauxc);
501 		wr32(E1000_TSIM, tsim);
502 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
503 		return 0;
504 
505 	case PTP_CLK_REQ_PEROUT:
506 		if (on) {
507 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
508 					   rq->perout.index);
509 			if (pin < 0)
510 				return -EBUSY;
511 		}
512 		ts.tv_sec = rq->perout.period.sec;
513 		ts.tv_nsec = rq->perout.period.nsec;
514 		ns = timespec_to_ns(&ts);
515 		ns = ns >> 1;
516 		if (on && ns < 500000LL) {
517 			/* 2k interrupts per second is an awful lot. */
518 			return -EINVAL;
519 		}
520 		ts = ns_to_timespec(ns);
521 		if (rq->perout.index == 1) {
522 			tsauxc_mask = TSAUXC_EN_TT1;
523 			tsim_mask = TSINTR_TT1;
524 			trgttiml = E1000_TRGTTIML1;
525 			trgttimh = E1000_TRGTTIMH1;
526 		} else {
527 			tsauxc_mask = TSAUXC_EN_TT0;
528 			tsim_mask = TSINTR_TT0;
529 			trgttiml = E1000_TRGTTIML0;
530 			trgttimh = E1000_TRGTTIMH0;
531 		}
532 		spin_lock_irqsave(&igb->tmreg_lock, flags);
533 		tsauxc = rd32(E1000_TSAUXC);
534 		tsim = rd32(E1000_TSIM);
535 		if (on) {
536 			int i = rq->perout.index;
537 
538 			igb_pin_perout(igb, i, pin);
539 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
540 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
541 			igb->perout[i].period.tv_sec = ts.tv_sec;
542 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
543 			wr32(trgttiml, rq->perout.start.sec);
544 			wr32(trgttimh, rq->perout.start.nsec);
545 			tsauxc |= tsauxc_mask;
546 			tsim |= tsim_mask;
547 		} else {
548 			tsauxc &= ~tsauxc_mask;
549 			tsim &= ~tsim_mask;
550 		}
551 		wr32(E1000_TSAUXC, tsauxc);
552 		wr32(E1000_TSIM, tsim);
553 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
554 		return 0;
555 
556 	case PTP_CLK_REQ_PPS:
557 		spin_lock_irqsave(&igb->tmreg_lock, flags);
558 		tsim = rd32(E1000_TSIM);
559 		if (on)
560 			tsim |= TSINTR_SYS_WRAP;
561 		else
562 			tsim &= ~TSINTR_SYS_WRAP;
563 		wr32(E1000_TSIM, tsim);
564 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
565 		return 0;
566 	}
567 
568 	return -EOPNOTSUPP;
569 }
570 
571 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
572 				  struct ptp_clock_request *rq, int on)
573 {
574 	return -EOPNOTSUPP;
575 }
576 
577 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
578 			      enum ptp_pin_function func, unsigned int chan)
579 {
580 	switch (func) {
581 	case PTP_PF_NONE:
582 	case PTP_PF_EXTTS:
583 	case PTP_PF_PEROUT:
584 		break;
585 	case PTP_PF_PHYSYNC:
586 		return -1;
587 	}
588 	return 0;
589 }
590 
591 /**
592  * igb_ptp_tx_work
593  * @work: pointer to work struct
594  *
595  * This work function polls the TSYNCTXCTL valid bit to determine when a
596  * timestamp has been taken for the current stored skb.
597  **/
598 static void igb_ptp_tx_work(struct work_struct *work)
599 {
600 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
601 						   ptp_tx_work);
602 	struct e1000_hw *hw = &adapter->hw;
603 	u32 tsynctxctl;
604 
605 	if (!adapter->ptp_tx_skb)
606 		return;
607 
608 	if (time_is_before_jiffies(adapter->ptp_tx_start +
609 				   IGB_PTP_TX_TIMEOUT)) {
610 		dev_kfree_skb_any(adapter->ptp_tx_skb);
611 		adapter->ptp_tx_skb = NULL;
612 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
613 		adapter->tx_hwtstamp_timeouts++;
614 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
615 		return;
616 	}
617 
618 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
619 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
620 		igb_ptp_tx_hwtstamp(adapter);
621 	else
622 		/* reschedule to check later */
623 		schedule_work(&adapter->ptp_tx_work);
624 }
625 
626 static void igb_ptp_overflow_check(struct work_struct *work)
627 {
628 	struct igb_adapter *igb =
629 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
630 	struct timespec ts;
631 
632 	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
633 
634 	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
635 
636 	schedule_delayed_work(&igb->ptp_overflow_work,
637 			      IGB_SYSTIM_OVERFLOW_PERIOD);
638 }
639 
640 /**
641  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
642  * @adapter: private network adapter structure
643  *
644  * This watchdog task is scheduled to detect error case where hardware has
645  * dropped an Rx packet that was timestamped when the ring is full. The
646  * particular error is rare but leaves the device in a state unable to timestamp
647  * any future packets.
648  **/
649 void igb_ptp_rx_hang(struct igb_adapter *adapter)
650 {
651 	struct e1000_hw *hw = &adapter->hw;
652 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
653 	unsigned long rx_event;
654 
655 	if (hw->mac.type != e1000_82576)
656 		return;
657 
658 	/* If we don't have a valid timestamp in the registers, just update the
659 	 * timeout counter and exit
660 	 */
661 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
662 		adapter->last_rx_ptp_check = jiffies;
663 		return;
664 	}
665 
666 	/* Determine the most recent watchdog or rx_timestamp event */
667 	rx_event = adapter->last_rx_ptp_check;
668 	if (time_after(adapter->last_rx_timestamp, rx_event))
669 		rx_event = adapter->last_rx_timestamp;
670 
671 	/* Only need to read the high RXSTMP register to clear the lock */
672 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
673 		rd32(E1000_RXSTMPH);
674 		adapter->last_rx_ptp_check = jiffies;
675 		adapter->rx_hwtstamp_cleared++;
676 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
677 	}
678 }
679 
680 /**
681  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
682  * @adapter: Board private structure.
683  *
684  * If we were asked to do hardware stamping and such a time stamp is
685  * available, then it must have been for this skb here because we only
686  * allow only one such packet into the queue.
687  **/
688 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
689 {
690 	struct e1000_hw *hw = &adapter->hw;
691 	struct skb_shared_hwtstamps shhwtstamps;
692 	u64 regval;
693 
694 	regval = rd32(E1000_TXSTMPL);
695 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
696 
697 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
698 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
699 	dev_kfree_skb_any(adapter->ptp_tx_skb);
700 	adapter->ptp_tx_skb = NULL;
701 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
702 }
703 
704 /**
705  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
706  * @q_vector: Pointer to interrupt specific structure
707  * @va: Pointer to address containing Rx buffer
708  * @skb: Buffer containing timestamp and packet
709  *
710  * This function is meant to retrieve a timestamp from the first buffer of an
711  * incoming frame.  The value is stored in little endian format starting on
712  * byte 8.
713  **/
714 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
715 			 unsigned char *va,
716 			 struct sk_buff *skb)
717 {
718 	__le64 *regval = (__le64 *)va;
719 
720 	/* The timestamp is recorded in little endian format.
721 	 * DWORD: 0        1        2        3
722 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
723 	 */
724 	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
725 				   le64_to_cpu(regval[1]));
726 }
727 
728 /**
729  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
730  * @q_vector: Pointer to interrupt specific structure
731  * @skb: Buffer containing timestamp and packet
732  *
733  * This function is meant to retrieve a timestamp from the internal registers
734  * of the adapter and store it in the skb.
735  **/
736 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
737 			 struct sk_buff *skb)
738 {
739 	struct igb_adapter *adapter = q_vector->adapter;
740 	struct e1000_hw *hw = &adapter->hw;
741 	u64 regval;
742 
743 	/* If this bit is set, then the RX registers contain the time stamp. No
744 	 * other packet will be time stamped until we read these registers, so
745 	 * read the registers to make them available again. Because only one
746 	 * packet can be time stamped at a time, we know that the register
747 	 * values must belong to this one here and therefore we don't need to
748 	 * compare any of the additional attributes stored for it.
749 	 *
750 	 * If nothing went wrong, then it should have a shared tx_flags that we
751 	 * can turn into a skb_shared_hwtstamps.
752 	 */
753 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
754 		return;
755 
756 	regval = rd32(E1000_RXSTMPL);
757 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
758 
759 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
760 
761 	/* Update the last_rx_timestamp timer in order to enable watchdog check
762 	 * for error case of latched timestamp on a dropped packet.
763 	 */
764 	adapter->last_rx_timestamp = jiffies;
765 }
766 
767 /**
768  * igb_ptp_get_ts_config - get hardware time stamping config
769  * @netdev:
770  * @ifreq:
771  *
772  * Get the hwtstamp_config settings to return to the user. Rather than attempt
773  * to deconstruct the settings from the registers, just return a shadow copy
774  * of the last known settings.
775  **/
776 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
777 {
778 	struct igb_adapter *adapter = netdev_priv(netdev);
779 	struct hwtstamp_config *config = &adapter->tstamp_config;
780 
781 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
782 		-EFAULT : 0;
783 }
784 
785 /**
786  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
787  * @adapter: networking device structure
788  * @config: hwtstamp configuration
789  *
790  * Outgoing time stamping can be enabled and disabled. Play nice and
791  * disable it when requested, although it shouldn't case any overhead
792  * when no packet needs it. At most one packet in the queue may be
793  * marked for time stamping, otherwise it would be impossible to tell
794  * for sure to which packet the hardware time stamp belongs.
795  *
796  * Incoming time stamping has to be configured via the hardware
797  * filters. Not all combinations are supported, in particular event
798  * type has to be specified. Matching the kind of event packet is
799  * not supported, with the exception of "all V2 events regardless of
800  * level 2 or 4".
801  */
802 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
803 				      struct hwtstamp_config *config)
804 {
805 	struct e1000_hw *hw = &adapter->hw;
806 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
807 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
808 	u32 tsync_rx_cfg = 0;
809 	bool is_l4 = false;
810 	bool is_l2 = false;
811 	u32 regval;
812 
813 	/* reserved for future extensions */
814 	if (config->flags)
815 		return -EINVAL;
816 
817 	switch (config->tx_type) {
818 	case HWTSTAMP_TX_OFF:
819 		tsync_tx_ctl = 0;
820 	case HWTSTAMP_TX_ON:
821 		break;
822 	default:
823 		return -ERANGE;
824 	}
825 
826 	switch (config->rx_filter) {
827 	case HWTSTAMP_FILTER_NONE:
828 		tsync_rx_ctl = 0;
829 		break;
830 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
831 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
832 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
833 		is_l4 = true;
834 		break;
835 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
836 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
837 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
838 		is_l4 = true;
839 		break;
840 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
841 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
842 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
843 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
844 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
845 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
846 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
847 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
848 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
849 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
850 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
851 		is_l2 = true;
852 		is_l4 = true;
853 		break;
854 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
855 	case HWTSTAMP_FILTER_ALL:
856 		/* 82576 cannot timestamp all packets, which it needs to do to
857 		 * support both V1 Sync and Delay_Req messages
858 		 */
859 		if (hw->mac.type != e1000_82576) {
860 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
861 			config->rx_filter = HWTSTAMP_FILTER_ALL;
862 			break;
863 		}
864 		/* fall through */
865 	default:
866 		config->rx_filter = HWTSTAMP_FILTER_NONE;
867 		return -ERANGE;
868 	}
869 
870 	if (hw->mac.type == e1000_82575) {
871 		if (tsync_rx_ctl | tsync_tx_ctl)
872 			return -EINVAL;
873 		return 0;
874 	}
875 
876 	/* Per-packet timestamping only works if all packets are
877 	 * timestamped, so enable timestamping in all packets as
878 	 * long as one Rx filter was configured.
879 	 */
880 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
881 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
882 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
883 		config->rx_filter = HWTSTAMP_FILTER_ALL;
884 		is_l2 = true;
885 		is_l4 = true;
886 
887 		if ((hw->mac.type == e1000_i210) ||
888 		    (hw->mac.type == e1000_i211)) {
889 			regval = rd32(E1000_RXPBS);
890 			regval |= E1000_RXPBS_CFG_TS_EN;
891 			wr32(E1000_RXPBS, regval);
892 		}
893 	}
894 
895 	/* enable/disable TX */
896 	regval = rd32(E1000_TSYNCTXCTL);
897 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
898 	regval |= tsync_tx_ctl;
899 	wr32(E1000_TSYNCTXCTL, regval);
900 
901 	/* enable/disable RX */
902 	regval = rd32(E1000_TSYNCRXCTL);
903 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
904 	regval |= tsync_rx_ctl;
905 	wr32(E1000_TSYNCRXCTL, regval);
906 
907 	/* define which PTP packets are time stamped */
908 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
909 
910 	/* define ethertype filter for timestamped packets */
911 	if (is_l2)
912 		wr32(E1000_ETQF(3),
913 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
914 		      E1000_ETQF_1588 | /* enable timestamping */
915 		      ETH_P_1588));     /* 1588 eth protocol type */
916 	else
917 		wr32(E1000_ETQF(3), 0);
918 
919 	/* L4 Queue Filter[3]: filter by destination port and protocol */
920 	if (is_l4) {
921 		u32 ftqf = (IPPROTO_UDP /* UDP */
922 			| E1000_FTQF_VF_BP /* VF not compared */
923 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
924 			| E1000_FTQF_MASK); /* mask all inputs */
925 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
926 
927 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
928 		wr32(E1000_IMIREXT(3),
929 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
930 		if (hw->mac.type == e1000_82576) {
931 			/* enable source port check */
932 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
933 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
934 		}
935 		wr32(E1000_FTQF(3), ftqf);
936 	} else {
937 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
938 	}
939 	wrfl();
940 
941 	/* clear TX/RX time stamp registers, just to be sure */
942 	regval = rd32(E1000_TXSTMPL);
943 	regval = rd32(E1000_TXSTMPH);
944 	regval = rd32(E1000_RXSTMPL);
945 	regval = rd32(E1000_RXSTMPH);
946 
947 	return 0;
948 }
949 
950 /**
951  * igb_ptp_set_ts_config - set hardware time stamping config
952  * @netdev:
953  * @ifreq:
954  *
955  **/
956 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
957 {
958 	struct igb_adapter *adapter = netdev_priv(netdev);
959 	struct hwtstamp_config config;
960 	int err;
961 
962 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
963 		return -EFAULT;
964 
965 	err = igb_ptp_set_timestamp_mode(adapter, &config);
966 	if (err)
967 		return err;
968 
969 	/* save these settings for future reference */
970 	memcpy(&adapter->tstamp_config, &config,
971 	       sizeof(adapter->tstamp_config));
972 
973 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
974 		-EFAULT : 0;
975 }
976 
977 void igb_ptp_init(struct igb_adapter *adapter)
978 {
979 	struct e1000_hw *hw = &adapter->hw;
980 	struct net_device *netdev = adapter->netdev;
981 	int i;
982 
983 	switch (hw->mac.type) {
984 	case e1000_82576:
985 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
986 		adapter->ptp_caps.owner = THIS_MODULE;
987 		adapter->ptp_caps.max_adj = 999999881;
988 		adapter->ptp_caps.n_ext_ts = 0;
989 		adapter->ptp_caps.pps = 0;
990 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
991 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
992 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
993 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
994 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
995 		adapter->cc.read = igb_ptp_read_82576;
996 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
997 		adapter->cc.mult = 1;
998 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
999 		/* Dial the nominal frequency. */
1000 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1001 		break;
1002 	case e1000_82580:
1003 	case e1000_i354:
1004 	case e1000_i350:
1005 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1006 		adapter->ptp_caps.owner = THIS_MODULE;
1007 		adapter->ptp_caps.max_adj = 62499999;
1008 		adapter->ptp_caps.n_ext_ts = 0;
1009 		adapter->ptp_caps.pps = 0;
1010 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1011 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1012 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
1013 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
1014 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1015 		adapter->cc.read = igb_ptp_read_82580;
1016 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1017 		adapter->cc.mult = 1;
1018 		adapter->cc.shift = 0;
1019 		/* Enable the timer functions by clearing bit 31. */
1020 		wr32(E1000_TSAUXC, 0x0);
1021 		break;
1022 	case e1000_i210:
1023 	case e1000_i211:
1024 		for (i = 0; i < IGB_N_SDP; i++) {
1025 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1026 
1027 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1028 			ppd->index = i;
1029 			ppd->func = PTP_PF_NONE;
1030 		}
1031 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1032 		adapter->ptp_caps.owner = THIS_MODULE;
1033 		adapter->ptp_caps.max_adj = 62499999;
1034 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1035 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1036 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1037 		adapter->ptp_caps.pps = 1;
1038 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1039 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1040 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1041 		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
1042 		adapter->ptp_caps.settime = igb_ptp_settime_i210;
1043 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1044 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1045 		/* Enable the timer functions by clearing bit 31. */
1046 		wr32(E1000_TSAUXC, 0x0);
1047 		break;
1048 	default:
1049 		adapter->ptp_clock = NULL;
1050 		return;
1051 	}
1052 
1053 	wrfl();
1054 
1055 	spin_lock_init(&adapter->tmreg_lock);
1056 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1057 
1058 	/* Initialize the clock and overflow work for devices that need it. */
1059 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1060 		struct timespec ts = ktime_to_timespec(ktime_get_real());
1061 
1062 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1063 	} else {
1064 		timecounter_init(&adapter->tc, &adapter->cc,
1065 				 ktime_to_ns(ktime_get_real()));
1066 
1067 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1068 				  igb_ptp_overflow_check);
1069 
1070 		schedule_delayed_work(&adapter->ptp_overflow_work,
1071 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1072 	}
1073 
1074 	/* Initialize the time sync interrupts for devices that support it. */
1075 	if (hw->mac.type >= e1000_82580) {
1076 		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1077 		wr32(E1000_IMS, E1000_IMS_TS);
1078 	}
1079 
1080 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1081 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1082 
1083 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1084 						&adapter->pdev->dev);
1085 	if (IS_ERR(adapter->ptp_clock)) {
1086 		adapter->ptp_clock = NULL;
1087 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1088 	} else {
1089 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1090 			 adapter->netdev->name);
1091 		adapter->flags |= IGB_FLAG_PTP;
1092 	}
1093 }
1094 
1095 /**
1096  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1097  * @adapter: Board private structure.
1098  *
1099  * This function stops the PTP support and cancels the delayed work.
1100  **/
1101 void igb_ptp_stop(struct igb_adapter *adapter)
1102 {
1103 	switch (adapter->hw.mac.type) {
1104 	case e1000_82576:
1105 	case e1000_82580:
1106 	case e1000_i354:
1107 	case e1000_i350:
1108 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1109 		break;
1110 	case e1000_i210:
1111 	case e1000_i211:
1112 		/* No delayed work to cancel. */
1113 		break;
1114 	default:
1115 		return;
1116 	}
1117 
1118 	cancel_work_sync(&adapter->ptp_tx_work);
1119 	if (adapter->ptp_tx_skb) {
1120 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1121 		adapter->ptp_tx_skb = NULL;
1122 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1123 	}
1124 
1125 	if (adapter->ptp_clock) {
1126 		ptp_clock_unregister(adapter->ptp_clock);
1127 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1128 			 adapter->netdev->name);
1129 		adapter->flags &= ~IGB_FLAG_PTP;
1130 	}
1131 }
1132 
1133 /**
1134  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1135  * @adapter: Board private structure.
1136  *
1137  * This function handles the reset work required to re-enable the PTP device.
1138  **/
1139 void igb_ptp_reset(struct igb_adapter *adapter)
1140 {
1141 	struct e1000_hw *hw = &adapter->hw;
1142 	unsigned long flags;
1143 
1144 	if (!(adapter->flags & IGB_FLAG_PTP))
1145 		return;
1146 
1147 	/* reset the tstamp_config */
1148 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1149 
1150 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1151 
1152 	switch (adapter->hw.mac.type) {
1153 	case e1000_82576:
1154 		/* Dial the nominal frequency. */
1155 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1156 		break;
1157 	case e1000_82580:
1158 	case e1000_i354:
1159 	case e1000_i350:
1160 	case e1000_i210:
1161 	case e1000_i211:
1162 		wr32(E1000_TSAUXC, 0x0);
1163 		wr32(E1000_TSSDP, 0x0);
1164 		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1165 		wr32(E1000_IMS, E1000_IMS_TS);
1166 		break;
1167 	default:
1168 		/* No work to do. */
1169 		goto out;
1170 	}
1171 
1172 	/* Re-initialize the timer. */
1173 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1174 		struct timespec ts = ktime_to_timespec(ktime_get_real());
1175 
1176 		igb_ptp_write_i210(adapter, &ts);
1177 	} else {
1178 		timecounter_init(&adapter->tc, &adapter->cc,
1179 				 ktime_to_ns(ktime_get_real()));
1180 	}
1181 out:
1182 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1183 }
1184