1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63 
64 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580			40
70 
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72 
73 /* SYSTIM read access for the 82576 */
74 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
75 {
76 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
77 	struct e1000_hw *hw = &igb->hw;
78 	u64 val;
79 	u32 lo, hi;
80 
81 	lo = rd32(E1000_SYSTIML);
82 	hi = rd32(E1000_SYSTIMH);
83 
84 	val = ((u64) hi) << 32;
85 	val |= lo;
86 
87 	return val;
88 }
89 
90 /* SYSTIM read access for the 82580 */
91 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
92 {
93 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
94 	struct e1000_hw *hw = &igb->hw;
95 	u32 lo, hi;
96 	u64 val;
97 
98 	/* The timestamp latches on lowest register read. For the 82580
99 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
100 	 * need to provide nanosecond resolution, so we just ignore it.
101 	 */
102 	rd32(E1000_SYSTIMR);
103 	lo = rd32(E1000_SYSTIML);
104 	hi = rd32(E1000_SYSTIMH);
105 
106 	val = ((u64) hi) << 32;
107 	val |= lo;
108 
109 	return val;
110 }
111 
112 /* SYSTIM read access for I210/I211 */
113 static void igb_ptp_read_i210(struct igb_adapter *adapter,
114 			      struct timespec64 *ts)
115 {
116 	struct e1000_hw *hw = &adapter->hw;
117 	u32 sec, nsec;
118 
119 	/* The timestamp latches on lowest register read. For I210/I211, the
120 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
121 	 * resolution, we can ignore it.
122 	 */
123 	rd32(E1000_SYSTIMR);
124 	nsec = rd32(E1000_SYSTIML);
125 	sec = rd32(E1000_SYSTIMH);
126 
127 	ts->tv_sec = sec;
128 	ts->tv_nsec = nsec;
129 }
130 
131 static void igb_ptp_write_i210(struct igb_adapter *adapter,
132 			       const struct timespec64 *ts)
133 {
134 	struct e1000_hw *hw = &adapter->hw;
135 
136 	/* Writing the SYSTIMR register is not necessary as it only provides
137 	 * sub-nanosecond resolution.
138 	 */
139 	wr32(E1000_SYSTIML, ts->tv_nsec);
140 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
141 }
142 
143 /**
144  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
145  * @adapter: board private structure
146  * @hwtstamps: timestamp structure to update
147  * @systim: unsigned 64bit system time value.
148  *
149  * We need to convert the system time value stored in the RX/TXSTMP registers
150  * into a hwtstamp which can be used by the upper level timestamping functions.
151  *
152  * The 'tmreg_lock' spinlock is used to protect the consistency of the
153  * system time value. This is needed because reading the 64 bit time
154  * value involves reading two (or three) 32 bit registers. The first
155  * read latches the value. Ditto for writing.
156  *
157  * In addition, here have extended the system time with an overflow
158  * counter in software.
159  **/
160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
161 				       struct skb_shared_hwtstamps *hwtstamps,
162 				       u64 systim)
163 {
164 	unsigned long flags;
165 	u64 ns;
166 
167 	switch (adapter->hw.mac.type) {
168 	case e1000_82576:
169 	case e1000_82580:
170 	case e1000_i354:
171 	case e1000_i350:
172 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
173 
174 		ns = timecounter_cyc2time(&adapter->tc, systim);
175 
176 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
177 
178 		memset(hwtstamps, 0, sizeof(*hwtstamps));
179 		hwtstamps->hwtstamp = ns_to_ktime(ns);
180 		break;
181 	case e1000_i210:
182 	case e1000_i211:
183 		memset(hwtstamps, 0, sizeof(*hwtstamps));
184 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
185 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 						systim & 0xFFFFFFFF);
187 		break;
188 	default:
189 		break;
190 	}
191 }
192 
193 /* PTP clock operations */
194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
195 {
196 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 					       ptp_caps);
198 	struct e1000_hw *hw = &igb->hw;
199 	int neg_adj = 0;
200 	u64 rate;
201 	u32 incvalue;
202 
203 	if (ppb < 0) {
204 		neg_adj = 1;
205 		ppb = -ppb;
206 	}
207 	rate = ppb;
208 	rate <<= 14;
209 	rate = div_u64(rate, 1953125);
210 
211 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
212 
213 	if (neg_adj)
214 		incvalue -= rate;
215 	else
216 		incvalue += rate;
217 
218 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
219 
220 	return 0;
221 }
222 
223 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
224 {
225 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
226 					       ptp_caps);
227 	struct e1000_hw *hw = &igb->hw;
228 	int neg_adj = 0;
229 	u64 rate;
230 	u32 inca;
231 
232 	if (scaled_ppm < 0) {
233 		neg_adj = 1;
234 		scaled_ppm = -scaled_ppm;
235 	}
236 	rate = scaled_ppm;
237 	rate <<= 13;
238 	rate = div_u64(rate, 15625);
239 
240 	inca = rate & INCVALUE_MASK;
241 	if (neg_adj)
242 		inca |= ISGN;
243 
244 	wr32(E1000_TIMINCA, inca);
245 
246 	return 0;
247 }
248 
249 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
250 {
251 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
252 					       ptp_caps);
253 	unsigned long flags;
254 
255 	spin_lock_irqsave(&igb->tmreg_lock, flags);
256 	timecounter_adjtime(&igb->tc, delta);
257 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
258 
259 	return 0;
260 }
261 
262 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
263 {
264 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
265 					       ptp_caps);
266 	unsigned long flags;
267 	struct timespec64 now, then = ns_to_timespec64(delta);
268 
269 	spin_lock_irqsave(&igb->tmreg_lock, flags);
270 
271 	igb_ptp_read_i210(igb, &now);
272 	now = timespec64_add(now, then);
273 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
274 
275 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
276 
277 	return 0;
278 }
279 
280 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
281 				  struct timespec64 *ts,
282 				  struct ptp_system_timestamp *sts)
283 {
284 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
285 					       ptp_caps);
286 	struct e1000_hw *hw = &igb->hw;
287 	unsigned long flags;
288 	u32 lo, hi;
289 	u64 ns;
290 
291 	spin_lock_irqsave(&igb->tmreg_lock, flags);
292 
293 	ptp_read_system_prets(sts);
294 	lo = rd32(E1000_SYSTIML);
295 	ptp_read_system_postts(sts);
296 	hi = rd32(E1000_SYSTIMH);
297 
298 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
299 
300 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
301 
302 	*ts = ns_to_timespec64(ns);
303 
304 	return 0;
305 }
306 
307 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
308 				  struct timespec64 *ts,
309 				  struct ptp_system_timestamp *sts)
310 {
311 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
312 					       ptp_caps);
313 	struct e1000_hw *hw = &igb->hw;
314 	unsigned long flags;
315 	u32 lo, hi;
316 	u64 ns;
317 
318 	spin_lock_irqsave(&igb->tmreg_lock, flags);
319 
320 	ptp_read_system_prets(sts);
321 	rd32(E1000_SYSTIMR);
322 	ptp_read_system_postts(sts);
323 	lo = rd32(E1000_SYSTIML);
324 	hi = rd32(E1000_SYSTIMH);
325 
326 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
327 
328 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
329 
330 	*ts = ns_to_timespec64(ns);
331 
332 	return 0;
333 }
334 
335 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
336 				 struct timespec64 *ts,
337 				 struct ptp_system_timestamp *sts)
338 {
339 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 					       ptp_caps);
341 	struct e1000_hw *hw = &igb->hw;
342 	unsigned long flags;
343 
344 	spin_lock_irqsave(&igb->tmreg_lock, flags);
345 
346 	ptp_read_system_prets(sts);
347 	rd32(E1000_SYSTIMR);
348 	ptp_read_system_postts(sts);
349 	ts->tv_nsec = rd32(E1000_SYSTIML);
350 	ts->tv_sec = rd32(E1000_SYSTIMH);
351 
352 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353 
354 	return 0;
355 }
356 
357 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
358 				 const struct timespec64 *ts)
359 {
360 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
361 					       ptp_caps);
362 	unsigned long flags;
363 	u64 ns;
364 
365 	ns = timespec64_to_ns(ts);
366 
367 	spin_lock_irqsave(&igb->tmreg_lock, flags);
368 
369 	timecounter_init(&igb->tc, &igb->cc, ns);
370 
371 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372 
373 	return 0;
374 }
375 
376 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
377 				const struct timespec64 *ts)
378 {
379 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
380 					       ptp_caps);
381 	unsigned long flags;
382 
383 	spin_lock_irqsave(&igb->tmreg_lock, flags);
384 
385 	igb_ptp_write_i210(igb, ts);
386 
387 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
388 
389 	return 0;
390 }
391 
392 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
393 {
394 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
395 	static const u32 mask[IGB_N_SDP] = {
396 		E1000_CTRL_SDP0_DIR,
397 		E1000_CTRL_SDP1_DIR,
398 		E1000_CTRL_EXT_SDP2_DIR,
399 		E1000_CTRL_EXT_SDP3_DIR,
400 	};
401 
402 	if (input)
403 		*ptr &= ~mask[pin];
404 	else
405 		*ptr |= mask[pin];
406 }
407 
408 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
409 {
410 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412 	};
413 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415 	};
416 	static const u32 ts_sdp_en[IGB_N_SDP] = {
417 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418 	};
419 	struct e1000_hw *hw = &igb->hw;
420 	u32 ctrl, ctrl_ext, tssdp = 0;
421 
422 	ctrl = rd32(E1000_CTRL);
423 	ctrl_ext = rd32(E1000_CTRL_EXT);
424 	tssdp = rd32(E1000_TSSDP);
425 
426 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
427 
428 	/* Make sure this pin is not enabled as an output. */
429 	tssdp &= ~ts_sdp_en[pin];
430 
431 	if (chan == 1) {
432 		tssdp &= ~AUX1_SEL_SDP3;
433 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
434 	} else {
435 		tssdp &= ~AUX0_SEL_SDP3;
436 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
437 	}
438 
439 	wr32(E1000_TSSDP, tssdp);
440 	wr32(E1000_CTRL, ctrl);
441 	wr32(E1000_CTRL_EXT, ctrl_ext);
442 }
443 
444 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
445 {
446 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
447 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
448 	};
449 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
450 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
451 	};
452 	static const u32 ts_sdp_en[IGB_N_SDP] = {
453 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
454 	};
455 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
456 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
457 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
458 	};
459 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
460 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
461 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
462 	};
463 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
464 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
465 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
466 	};
467 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
468 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
469 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
470 	};
471 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
472 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
473 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
474 	};
475 	struct e1000_hw *hw = &igb->hw;
476 	u32 ctrl, ctrl_ext, tssdp = 0;
477 
478 	ctrl = rd32(E1000_CTRL);
479 	ctrl_ext = rd32(E1000_CTRL_EXT);
480 	tssdp = rd32(E1000_TSSDP);
481 
482 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
483 
484 	/* Make sure this pin is not enabled as an input. */
485 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
486 		tssdp &= ~AUX0_TS_SDP_EN;
487 
488 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
489 		tssdp &= ~AUX1_TS_SDP_EN;
490 
491 	tssdp &= ~ts_sdp_sel_clr[pin];
492 	if (freq) {
493 		if (chan == 1)
494 			tssdp |= ts_sdp_sel_fc1[pin];
495 		else
496 			tssdp |= ts_sdp_sel_fc0[pin];
497 	} else {
498 		if (chan == 1)
499 			tssdp |= ts_sdp_sel_tt1[pin];
500 		else
501 			tssdp |= ts_sdp_sel_tt0[pin];
502 	}
503 	tssdp |= ts_sdp_en[pin];
504 
505 	wr32(E1000_TSSDP, tssdp);
506 	wr32(E1000_CTRL, ctrl);
507 	wr32(E1000_CTRL_EXT, ctrl_ext);
508 }
509 
510 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
511 				       struct ptp_clock_request *rq, int on)
512 {
513 	struct igb_adapter *igb =
514 		container_of(ptp, struct igb_adapter, ptp_caps);
515 	struct e1000_hw *hw = &igb->hw;
516 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
517 	unsigned long flags;
518 	struct timespec64 ts;
519 	int use_freq = 0, pin = -1;
520 	s64 ns;
521 
522 	switch (rq->type) {
523 	case PTP_CLK_REQ_EXTTS:
524 		/* Reject requests with unsupported flags */
525 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
526 					PTP_RISING_EDGE |
527 					PTP_FALLING_EDGE |
528 					PTP_STRICT_FLAGS))
529 			return -EOPNOTSUPP;
530 
531 		/* Reject requests failing to enable both edges. */
532 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
533 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
534 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
535 			return -EOPNOTSUPP;
536 
537 		if (on) {
538 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
539 					   rq->extts.index);
540 			if (pin < 0)
541 				return -EBUSY;
542 		}
543 		if (rq->extts.index == 1) {
544 			tsauxc_mask = TSAUXC_EN_TS1;
545 			tsim_mask = TSINTR_AUTT1;
546 		} else {
547 			tsauxc_mask = TSAUXC_EN_TS0;
548 			tsim_mask = TSINTR_AUTT0;
549 		}
550 		spin_lock_irqsave(&igb->tmreg_lock, flags);
551 		tsauxc = rd32(E1000_TSAUXC);
552 		tsim = rd32(E1000_TSIM);
553 		if (on) {
554 			igb_pin_extts(igb, rq->extts.index, pin);
555 			tsauxc |= tsauxc_mask;
556 			tsim |= tsim_mask;
557 		} else {
558 			tsauxc &= ~tsauxc_mask;
559 			tsim &= ~tsim_mask;
560 		}
561 		wr32(E1000_TSAUXC, tsauxc);
562 		wr32(E1000_TSIM, tsim);
563 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
564 		return 0;
565 
566 	case PTP_CLK_REQ_PEROUT:
567 		/* Reject requests with unsupported flags */
568 		if (rq->perout.flags)
569 			return -EOPNOTSUPP;
570 
571 		if (on) {
572 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
573 					   rq->perout.index);
574 			if (pin < 0)
575 				return -EBUSY;
576 		}
577 		ts.tv_sec = rq->perout.period.sec;
578 		ts.tv_nsec = rq->perout.period.nsec;
579 		ns = timespec64_to_ns(&ts);
580 		ns = ns >> 1;
581 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
582 			   (ns == 250000000LL) || (ns == 500000000LL))) {
583 			if (ns < 8LL)
584 				return -EINVAL;
585 			use_freq = 1;
586 		}
587 		ts = ns_to_timespec64(ns);
588 		if (rq->perout.index == 1) {
589 			if (use_freq) {
590 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
591 				tsim_mask = 0;
592 			} else {
593 				tsauxc_mask = TSAUXC_EN_TT1;
594 				tsim_mask = TSINTR_TT1;
595 			}
596 			trgttiml = E1000_TRGTTIML1;
597 			trgttimh = E1000_TRGTTIMH1;
598 			freqout = E1000_FREQOUT1;
599 		} else {
600 			if (use_freq) {
601 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
602 				tsim_mask = 0;
603 			} else {
604 				tsauxc_mask = TSAUXC_EN_TT0;
605 				tsim_mask = TSINTR_TT0;
606 			}
607 			trgttiml = E1000_TRGTTIML0;
608 			trgttimh = E1000_TRGTTIMH0;
609 			freqout = E1000_FREQOUT0;
610 		}
611 		spin_lock_irqsave(&igb->tmreg_lock, flags);
612 		tsauxc = rd32(E1000_TSAUXC);
613 		tsim = rd32(E1000_TSIM);
614 		if (rq->perout.index == 1) {
615 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
616 			tsim &= ~TSINTR_TT1;
617 		} else {
618 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
619 			tsim &= ~TSINTR_TT0;
620 		}
621 		if (on) {
622 			int i = rq->perout.index;
623 			igb_pin_perout(igb, i, pin, use_freq);
624 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
625 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
626 			igb->perout[i].period.tv_sec = ts.tv_sec;
627 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
628 			wr32(trgttimh, rq->perout.start.sec);
629 			wr32(trgttiml, rq->perout.start.nsec);
630 			if (use_freq)
631 				wr32(freqout, ns);
632 			tsauxc |= tsauxc_mask;
633 			tsim |= tsim_mask;
634 		}
635 		wr32(E1000_TSAUXC, tsauxc);
636 		wr32(E1000_TSIM, tsim);
637 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
638 		return 0;
639 
640 	case PTP_CLK_REQ_PPS:
641 		spin_lock_irqsave(&igb->tmreg_lock, flags);
642 		tsim = rd32(E1000_TSIM);
643 		if (on)
644 			tsim |= TSINTR_SYS_WRAP;
645 		else
646 			tsim &= ~TSINTR_SYS_WRAP;
647 		igb->pps_sys_wrap_on = !!on;
648 		wr32(E1000_TSIM, tsim);
649 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
650 		return 0;
651 	}
652 
653 	return -EOPNOTSUPP;
654 }
655 
656 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
657 				  struct ptp_clock_request *rq, int on)
658 {
659 	return -EOPNOTSUPP;
660 }
661 
662 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
663 			      enum ptp_pin_function func, unsigned int chan)
664 {
665 	switch (func) {
666 	case PTP_PF_NONE:
667 	case PTP_PF_EXTTS:
668 	case PTP_PF_PEROUT:
669 		break;
670 	case PTP_PF_PHYSYNC:
671 		return -1;
672 	}
673 	return 0;
674 }
675 
676 /**
677  * igb_ptp_tx_work
678  * @work: pointer to work struct
679  *
680  * This work function polls the TSYNCTXCTL valid bit to determine when a
681  * timestamp has been taken for the current stored skb.
682  **/
683 static void igb_ptp_tx_work(struct work_struct *work)
684 {
685 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
686 						   ptp_tx_work);
687 	struct e1000_hw *hw = &adapter->hw;
688 	u32 tsynctxctl;
689 
690 	if (!adapter->ptp_tx_skb)
691 		return;
692 
693 	if (time_is_before_jiffies(adapter->ptp_tx_start +
694 				   IGB_PTP_TX_TIMEOUT)) {
695 		dev_kfree_skb_any(adapter->ptp_tx_skb);
696 		adapter->ptp_tx_skb = NULL;
697 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
698 		adapter->tx_hwtstamp_timeouts++;
699 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
700 		 * interrupt
701 		 */
702 		rd32(E1000_TXSTMPH);
703 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
704 		return;
705 	}
706 
707 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
708 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
709 		igb_ptp_tx_hwtstamp(adapter);
710 	else
711 		/* reschedule to check later */
712 		schedule_work(&adapter->ptp_tx_work);
713 }
714 
715 static void igb_ptp_overflow_check(struct work_struct *work)
716 {
717 	struct igb_adapter *igb =
718 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
719 	struct timespec64 ts;
720 	u64 ns;
721 
722 	/* Update the timecounter */
723 	ns = timecounter_read(&igb->tc);
724 
725 	ts = ns_to_timespec64(ns);
726 	pr_debug("igb overflow check at %lld.%09lu\n",
727 		 (long long) ts.tv_sec, ts.tv_nsec);
728 
729 	schedule_delayed_work(&igb->ptp_overflow_work,
730 			      IGB_SYSTIM_OVERFLOW_PERIOD);
731 }
732 
733 /**
734  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
735  * @adapter: private network adapter structure
736  *
737  * This watchdog task is scheduled to detect error case where hardware has
738  * dropped an Rx packet that was timestamped when the ring is full. The
739  * particular error is rare but leaves the device in a state unable to timestamp
740  * any future packets.
741  **/
742 void igb_ptp_rx_hang(struct igb_adapter *adapter)
743 {
744 	struct e1000_hw *hw = &adapter->hw;
745 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
746 	unsigned long rx_event;
747 
748 	/* Other hardware uses per-packet timestamps */
749 	if (hw->mac.type != e1000_82576)
750 		return;
751 
752 	/* If we don't have a valid timestamp in the registers, just update the
753 	 * timeout counter and exit
754 	 */
755 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
756 		adapter->last_rx_ptp_check = jiffies;
757 		return;
758 	}
759 
760 	/* Determine the most recent watchdog or rx_timestamp event */
761 	rx_event = adapter->last_rx_ptp_check;
762 	if (time_after(adapter->last_rx_timestamp, rx_event))
763 		rx_event = adapter->last_rx_timestamp;
764 
765 	/* Only need to read the high RXSTMP register to clear the lock */
766 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
767 		rd32(E1000_RXSTMPH);
768 		adapter->last_rx_ptp_check = jiffies;
769 		adapter->rx_hwtstamp_cleared++;
770 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
771 	}
772 }
773 
774 /**
775  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
776  * @adapter: private network adapter structure
777  */
778 void igb_ptp_tx_hang(struct igb_adapter *adapter)
779 {
780 	struct e1000_hw *hw = &adapter->hw;
781 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
782 					      IGB_PTP_TX_TIMEOUT);
783 
784 	if (!adapter->ptp_tx_skb)
785 		return;
786 
787 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
788 		return;
789 
790 	/* If we haven't received a timestamp within the timeout, it is
791 	 * reasonable to assume that it will never occur, so we can unlock the
792 	 * timestamp bit when this occurs.
793 	 */
794 	if (timeout) {
795 		cancel_work_sync(&adapter->ptp_tx_work);
796 		dev_kfree_skb_any(adapter->ptp_tx_skb);
797 		adapter->ptp_tx_skb = NULL;
798 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
799 		adapter->tx_hwtstamp_timeouts++;
800 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
801 		 * interrupt
802 		 */
803 		rd32(E1000_TXSTMPH);
804 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
805 	}
806 }
807 
808 /**
809  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
810  * @adapter: Board private structure.
811  *
812  * If we were asked to do hardware stamping and such a time stamp is
813  * available, then it must have been for this skb here because we only
814  * allow only one such packet into the queue.
815  **/
816 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
817 {
818 	struct sk_buff *skb = adapter->ptp_tx_skb;
819 	struct e1000_hw *hw = &adapter->hw;
820 	struct skb_shared_hwtstamps shhwtstamps;
821 	u64 regval;
822 	int adjust = 0;
823 
824 	regval = rd32(E1000_TXSTMPL);
825 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
826 
827 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
828 	/* adjust timestamp for the TX latency based on link speed */
829 	if (adapter->hw.mac.type == e1000_i210) {
830 		switch (adapter->link_speed) {
831 		case SPEED_10:
832 			adjust = IGB_I210_TX_LATENCY_10;
833 			break;
834 		case SPEED_100:
835 			adjust = IGB_I210_TX_LATENCY_100;
836 			break;
837 		case SPEED_1000:
838 			adjust = IGB_I210_TX_LATENCY_1000;
839 			break;
840 		}
841 	}
842 
843 	shhwtstamps.hwtstamp =
844 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
845 
846 	/* Clear the lock early before calling skb_tstamp_tx so that
847 	 * applications are not woken up before the lock bit is clear. We use
848 	 * a copy of the skb pointer to ensure other threads can't change it
849 	 * while we're notifying the stack.
850 	 */
851 	adapter->ptp_tx_skb = NULL;
852 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
853 
854 	/* Notify the stack and free the skb after we've unlocked */
855 	skb_tstamp_tx(skb, &shhwtstamps);
856 	dev_kfree_skb_any(skb);
857 }
858 
859 #define IGB_RET_PTP_DISABLED 1
860 #define IGB_RET_PTP_INVALID 2
861 
862 /**
863  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
864  * @q_vector: Pointer to interrupt specific structure
865  * @va: Pointer to address containing Rx buffer
866  * @skb: Buffer containing timestamp and packet
867  *
868  * This function is meant to retrieve a timestamp from the first buffer of an
869  * incoming frame.  The value is stored in little endian format starting on
870  * byte 8
871  *
872  * Returns: 0 if success, nonzero if failure
873  **/
874 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
875 			struct sk_buff *skb)
876 {
877 	struct igb_adapter *adapter = q_vector->adapter;
878 	__le64 *regval = (__le64 *)va;
879 	int adjust = 0;
880 
881 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
882 		return IGB_RET_PTP_DISABLED;
883 
884 	/* The timestamp is recorded in little endian format.
885 	 * DWORD: 0        1        2        3
886 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
887 	 */
888 
889 	/* check reserved dwords are zero, be/le doesn't matter for zero */
890 	if (regval[0])
891 		return IGB_RET_PTP_INVALID;
892 
893 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
894 				   le64_to_cpu(regval[1]));
895 
896 	/* adjust timestamp for the RX latency based on link speed */
897 	if (adapter->hw.mac.type == e1000_i210) {
898 		switch (adapter->link_speed) {
899 		case SPEED_10:
900 			adjust = IGB_I210_RX_LATENCY_10;
901 			break;
902 		case SPEED_100:
903 			adjust = IGB_I210_RX_LATENCY_100;
904 			break;
905 		case SPEED_1000:
906 			adjust = IGB_I210_RX_LATENCY_1000;
907 			break;
908 		}
909 	}
910 	skb_hwtstamps(skb)->hwtstamp =
911 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
912 
913 	return 0;
914 }
915 
916 /**
917  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
918  * @q_vector: Pointer to interrupt specific structure
919  * @skb: Buffer containing timestamp and packet
920  *
921  * This function is meant to retrieve a timestamp from the internal registers
922  * of the adapter and store it in the skb.
923  **/
924 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
925 {
926 	struct igb_adapter *adapter = q_vector->adapter;
927 	struct e1000_hw *hw = &adapter->hw;
928 	int adjust = 0;
929 	u64 regval;
930 
931 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
932 		return;
933 
934 	/* If this bit is set, then the RX registers contain the time stamp. No
935 	 * other packet will be time stamped until we read these registers, so
936 	 * read the registers to make them available again. Because only one
937 	 * packet can be time stamped at a time, we know that the register
938 	 * values must belong to this one here and therefore we don't need to
939 	 * compare any of the additional attributes stored for it.
940 	 *
941 	 * If nothing went wrong, then it should have a shared tx_flags that we
942 	 * can turn into a skb_shared_hwtstamps.
943 	 */
944 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
945 		return;
946 
947 	regval = rd32(E1000_RXSTMPL);
948 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
949 
950 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
951 
952 	/* adjust timestamp for the RX latency based on link speed */
953 	if (adapter->hw.mac.type == e1000_i210) {
954 		switch (adapter->link_speed) {
955 		case SPEED_10:
956 			adjust = IGB_I210_RX_LATENCY_10;
957 			break;
958 		case SPEED_100:
959 			adjust = IGB_I210_RX_LATENCY_100;
960 			break;
961 		case SPEED_1000:
962 			adjust = IGB_I210_RX_LATENCY_1000;
963 			break;
964 		}
965 	}
966 	skb_hwtstamps(skb)->hwtstamp =
967 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
968 
969 	/* Update the last_rx_timestamp timer in order to enable watchdog check
970 	 * for error case of latched timestamp on a dropped packet.
971 	 */
972 	adapter->last_rx_timestamp = jiffies;
973 }
974 
975 /**
976  * igb_ptp_get_ts_config - get hardware time stamping config
977  * @netdev: netdev struct
978  * @ifr: interface struct
979  *
980  * Get the hwtstamp_config settings to return to the user. Rather than attempt
981  * to deconstruct the settings from the registers, just return a shadow copy
982  * of the last known settings.
983  **/
984 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
985 {
986 	struct igb_adapter *adapter = netdev_priv(netdev);
987 	struct hwtstamp_config *config = &adapter->tstamp_config;
988 
989 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
990 		-EFAULT : 0;
991 }
992 
993 /**
994  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
995  * @adapter: networking device structure
996  * @config: hwtstamp configuration
997  *
998  * Outgoing time stamping can be enabled and disabled. Play nice and
999  * disable it when requested, although it shouldn't case any overhead
1000  * when no packet needs it. At most one packet in the queue may be
1001  * marked for time stamping, otherwise it would be impossible to tell
1002  * for sure to which packet the hardware time stamp belongs.
1003  *
1004  * Incoming time stamping has to be configured via the hardware
1005  * filters. Not all combinations are supported, in particular event
1006  * type has to be specified. Matching the kind of event packet is
1007  * not supported, with the exception of "all V2 events regardless of
1008  * level 2 or 4".
1009  */
1010 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1011 				      struct hwtstamp_config *config)
1012 {
1013 	struct e1000_hw *hw = &adapter->hw;
1014 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1015 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1016 	u32 tsync_rx_cfg = 0;
1017 	bool is_l4 = false;
1018 	bool is_l2 = false;
1019 	u32 regval;
1020 
1021 	/* reserved for future extensions */
1022 	if (config->flags)
1023 		return -EINVAL;
1024 
1025 	switch (config->tx_type) {
1026 	case HWTSTAMP_TX_OFF:
1027 		tsync_tx_ctl = 0;
1028 		break;
1029 	case HWTSTAMP_TX_ON:
1030 		break;
1031 	default:
1032 		return -ERANGE;
1033 	}
1034 
1035 	switch (config->rx_filter) {
1036 	case HWTSTAMP_FILTER_NONE:
1037 		tsync_rx_ctl = 0;
1038 		break;
1039 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1040 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1041 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1042 		is_l4 = true;
1043 		break;
1044 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1045 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1046 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1047 		is_l4 = true;
1048 		break;
1049 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1050 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1051 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1052 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1053 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1054 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1055 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1056 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1057 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1058 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1059 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1060 		is_l2 = true;
1061 		is_l4 = true;
1062 		break;
1063 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1064 	case HWTSTAMP_FILTER_NTP_ALL:
1065 	case HWTSTAMP_FILTER_ALL:
1066 		/* 82576 cannot timestamp all packets, which it needs to do to
1067 		 * support both V1 Sync and Delay_Req messages
1068 		 */
1069 		if (hw->mac.type != e1000_82576) {
1070 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1071 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1072 			break;
1073 		}
1074 		fallthrough;
1075 	default:
1076 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1077 		return -ERANGE;
1078 	}
1079 
1080 	if (hw->mac.type == e1000_82575) {
1081 		if (tsync_rx_ctl | tsync_tx_ctl)
1082 			return -EINVAL;
1083 		return 0;
1084 	}
1085 
1086 	/* Per-packet timestamping only works if all packets are
1087 	 * timestamped, so enable timestamping in all packets as
1088 	 * long as one Rx filter was configured.
1089 	 */
1090 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1091 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1092 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1093 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1094 		is_l2 = true;
1095 		is_l4 = true;
1096 
1097 		if ((hw->mac.type == e1000_i210) ||
1098 		    (hw->mac.type == e1000_i211)) {
1099 			regval = rd32(E1000_RXPBS);
1100 			regval |= E1000_RXPBS_CFG_TS_EN;
1101 			wr32(E1000_RXPBS, regval);
1102 		}
1103 	}
1104 
1105 	/* enable/disable TX */
1106 	regval = rd32(E1000_TSYNCTXCTL);
1107 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1108 	regval |= tsync_tx_ctl;
1109 	wr32(E1000_TSYNCTXCTL, regval);
1110 
1111 	/* enable/disable RX */
1112 	regval = rd32(E1000_TSYNCRXCTL);
1113 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1114 	regval |= tsync_rx_ctl;
1115 	wr32(E1000_TSYNCRXCTL, regval);
1116 
1117 	/* define which PTP packets are time stamped */
1118 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1119 
1120 	/* define ethertype filter for timestamped packets */
1121 	if (is_l2)
1122 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1123 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1124 		      E1000_ETQF_1588 | /* enable timestamping */
1125 		      ETH_P_1588));     /* 1588 eth protocol type */
1126 	else
1127 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1128 
1129 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1130 	if (is_l4) {
1131 		u32 ftqf = (IPPROTO_UDP /* UDP */
1132 			| E1000_FTQF_VF_BP /* VF not compared */
1133 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1134 			| E1000_FTQF_MASK); /* mask all inputs */
1135 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1136 
1137 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1138 		wr32(E1000_IMIREXT(3),
1139 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1140 		if (hw->mac.type == e1000_82576) {
1141 			/* enable source port check */
1142 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1143 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1144 		}
1145 		wr32(E1000_FTQF(3), ftqf);
1146 	} else {
1147 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1148 	}
1149 	wrfl();
1150 
1151 	/* clear TX/RX time stamp registers, just to be sure */
1152 	regval = rd32(E1000_TXSTMPL);
1153 	regval = rd32(E1000_TXSTMPH);
1154 	regval = rd32(E1000_RXSTMPL);
1155 	regval = rd32(E1000_RXSTMPH);
1156 
1157 	return 0;
1158 }
1159 
1160 /**
1161  * igb_ptp_set_ts_config - set hardware time stamping config
1162  * @netdev: netdev struct
1163  * @ifr: interface struct
1164  *
1165  **/
1166 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1167 {
1168 	struct igb_adapter *adapter = netdev_priv(netdev);
1169 	struct hwtstamp_config config;
1170 	int err;
1171 
1172 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1173 		return -EFAULT;
1174 
1175 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1176 	if (err)
1177 		return err;
1178 
1179 	/* save these settings for future reference */
1180 	memcpy(&adapter->tstamp_config, &config,
1181 	       sizeof(adapter->tstamp_config));
1182 
1183 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1184 		-EFAULT : 0;
1185 }
1186 
1187 /**
1188  * igb_ptp_init - Initialize PTP functionality
1189  * @adapter: Board private structure
1190  *
1191  * This function is called at device probe to initialize the PTP
1192  * functionality.
1193  */
1194 void igb_ptp_init(struct igb_adapter *adapter)
1195 {
1196 	struct e1000_hw *hw = &adapter->hw;
1197 	struct net_device *netdev = adapter->netdev;
1198 	int i;
1199 
1200 	switch (hw->mac.type) {
1201 	case e1000_82576:
1202 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1203 		adapter->ptp_caps.owner = THIS_MODULE;
1204 		adapter->ptp_caps.max_adj = 999999881;
1205 		adapter->ptp_caps.n_ext_ts = 0;
1206 		adapter->ptp_caps.pps = 0;
1207 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1208 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1209 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1210 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1211 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1212 		adapter->cc.read = igb_ptp_read_82576;
1213 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1214 		adapter->cc.mult = 1;
1215 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1216 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1217 		break;
1218 	case e1000_82580:
1219 	case e1000_i354:
1220 	case e1000_i350:
1221 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1222 		adapter->ptp_caps.owner = THIS_MODULE;
1223 		adapter->ptp_caps.max_adj = 62499999;
1224 		adapter->ptp_caps.n_ext_ts = 0;
1225 		adapter->ptp_caps.pps = 0;
1226 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1227 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1228 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1229 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1230 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1231 		adapter->cc.read = igb_ptp_read_82580;
1232 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1233 		adapter->cc.mult = 1;
1234 		adapter->cc.shift = 0;
1235 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1236 		break;
1237 	case e1000_i210:
1238 	case e1000_i211:
1239 		for (i = 0; i < IGB_N_SDP; i++) {
1240 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1241 
1242 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1243 			ppd->index = i;
1244 			ppd->func = PTP_PF_NONE;
1245 		}
1246 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1247 		adapter->ptp_caps.owner = THIS_MODULE;
1248 		adapter->ptp_caps.max_adj = 62499999;
1249 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1250 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1251 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1252 		adapter->ptp_caps.pps = 1;
1253 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1254 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1255 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1256 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1257 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1258 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1259 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1260 		break;
1261 	default:
1262 		adapter->ptp_clock = NULL;
1263 		return;
1264 	}
1265 
1266 	spin_lock_init(&adapter->tmreg_lock);
1267 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1268 
1269 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1270 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1271 				  igb_ptp_overflow_check);
1272 
1273 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1274 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1275 
1276 	igb_ptp_reset(adapter);
1277 
1278 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1279 						&adapter->pdev->dev);
1280 	if (IS_ERR(adapter->ptp_clock)) {
1281 		adapter->ptp_clock = NULL;
1282 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1283 	} else if (adapter->ptp_clock) {
1284 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1285 			 adapter->netdev->name);
1286 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1287 	}
1288 }
1289 
1290 /**
1291  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1292  * @adapter: Board private structure
1293  *
1294  * This function stops the overflow check work and PTP Tx timestamp work, and
1295  * will prepare the device for OS suspend.
1296  */
1297 void igb_ptp_suspend(struct igb_adapter *adapter)
1298 {
1299 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1300 		return;
1301 
1302 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1303 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1304 
1305 	cancel_work_sync(&adapter->ptp_tx_work);
1306 	if (adapter->ptp_tx_skb) {
1307 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1308 		adapter->ptp_tx_skb = NULL;
1309 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1310 	}
1311 }
1312 
1313 /**
1314  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1315  * @adapter: Board private structure.
1316  *
1317  * This function stops the PTP support and cancels the delayed work.
1318  **/
1319 void igb_ptp_stop(struct igb_adapter *adapter)
1320 {
1321 	igb_ptp_suspend(adapter);
1322 
1323 	if (adapter->ptp_clock) {
1324 		ptp_clock_unregister(adapter->ptp_clock);
1325 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1326 			 adapter->netdev->name);
1327 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1328 	}
1329 }
1330 
1331 /**
1332  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1333  * @adapter: Board private structure.
1334  *
1335  * This function handles the reset work required to re-enable the PTP device.
1336  **/
1337 void igb_ptp_reset(struct igb_adapter *adapter)
1338 {
1339 	struct e1000_hw *hw = &adapter->hw;
1340 	unsigned long flags;
1341 
1342 	/* reset the tstamp_config */
1343 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1344 
1345 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1346 
1347 	switch (adapter->hw.mac.type) {
1348 	case e1000_82576:
1349 		/* Dial the nominal frequency. */
1350 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1351 		break;
1352 	case e1000_82580:
1353 	case e1000_i354:
1354 	case e1000_i350:
1355 	case e1000_i210:
1356 	case e1000_i211:
1357 		wr32(E1000_TSAUXC, 0x0);
1358 		wr32(E1000_TSSDP, 0x0);
1359 		wr32(E1000_TSIM,
1360 		     TSYNC_INTERRUPTS |
1361 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1362 		wr32(E1000_IMS, E1000_IMS_TS);
1363 		break;
1364 	default:
1365 		/* No work to do. */
1366 		goto out;
1367 	}
1368 
1369 	/* Re-initialize the timer. */
1370 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1371 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1372 
1373 		igb_ptp_write_i210(adapter, &ts);
1374 	} else {
1375 		timecounter_init(&adapter->tc, &adapter->cc,
1376 				 ktime_to_ns(ktime_get_real()));
1377 	}
1378 out:
1379 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1380 
1381 	wrfl();
1382 
1383 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1384 		schedule_delayed_work(&adapter->ptp_overflow_work,
1385 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1386 }
1387