1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22 
23 #include "igb.h"
24 
25 #define INCVALUE_MASK		0x7fffffff
26 #define ISGN			0x80000000
27 
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not available. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  */
69 
70 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
74 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580			40
76 
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78 
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 	struct e1000_hw *hw = &igb->hw;
84 	u64 val;
85 	u32 lo, hi;
86 
87 	lo = rd32(E1000_SYSTIML);
88 	hi = rd32(E1000_SYSTIMH);
89 
90 	val = ((u64) hi) << 32;
91 	val |= lo;
92 
93 	return val;
94 }
95 
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 	struct e1000_hw *hw = &igb->hw;
101 	u32 lo, hi;
102 	u64 val;
103 
104 	/* The timestamp latches on lowest register read. For the 82580
105 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106 	 * need to provide nanosecond resolution, so we just ignore it.
107 	 */
108 	rd32(E1000_SYSTIMR);
109 	lo = rd32(E1000_SYSTIML);
110 	hi = rd32(E1000_SYSTIMH);
111 
112 	val = ((u64) hi) << 32;
113 	val |= lo;
114 
115 	return val;
116 }
117 
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter,
120 			      struct timespec64 *ts)
121 {
122 	struct e1000_hw *hw = &adapter->hw;
123 	u32 sec, nsec;
124 
125 	/* The timestamp latches on lowest register read. For I210/I211, the
126 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
127 	 * resolution, we can ignore it.
128 	 */
129 	rd32(E1000_SYSTIMR);
130 	nsec = rd32(E1000_SYSTIML);
131 	sec = rd32(E1000_SYSTIMH);
132 
133 	ts->tv_sec = sec;
134 	ts->tv_nsec = nsec;
135 }
136 
137 static void igb_ptp_write_i210(struct igb_adapter *adapter,
138 			       const struct timespec64 *ts)
139 {
140 	struct e1000_hw *hw = &adapter->hw;
141 
142 	/* Writing the SYSTIMR register is not necessary as it only provides
143 	 * sub-nanosecond resolution.
144 	 */
145 	wr32(E1000_SYSTIML, ts->tv_nsec);
146 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
147 }
148 
149 /**
150  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151  * @adapter: board private structure
152  * @hwtstamps: timestamp structure to update
153  * @systim: unsigned 64bit system time value.
154  *
155  * We need to convert the system time value stored in the RX/TXSTMP registers
156  * into a hwtstamp which can be used by the upper level timestamping functions.
157  *
158  * The 'tmreg_lock' spinlock is used to protect the consistency of the
159  * system time value. This is needed because reading the 64 bit time
160  * value involves reading two (or three) 32 bit registers. The first
161  * read latches the value. Ditto for writing.
162  *
163  * In addition, here have extended the system time with an overflow
164  * counter in software.
165  **/
166 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167 				       struct skb_shared_hwtstamps *hwtstamps,
168 				       u64 systim)
169 {
170 	unsigned long flags;
171 	u64 ns;
172 
173 	switch (adapter->hw.mac.type) {
174 	case e1000_82576:
175 	case e1000_82580:
176 	case e1000_i354:
177 	case e1000_i350:
178 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
179 
180 		ns = timecounter_cyc2time(&adapter->tc, systim);
181 
182 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
183 
184 		memset(hwtstamps, 0, sizeof(*hwtstamps));
185 		hwtstamps->hwtstamp = ns_to_ktime(ns);
186 		break;
187 	case e1000_i210:
188 	case e1000_i211:
189 		memset(hwtstamps, 0, sizeof(*hwtstamps));
190 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
191 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
192 						systim & 0xFFFFFFFF);
193 		break;
194 	default:
195 		break;
196 	}
197 }
198 
199 /* PTP clock operations */
200 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201 {
202 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203 					       ptp_caps);
204 	struct e1000_hw *hw = &igb->hw;
205 	int neg_adj = 0;
206 	u64 rate;
207 	u32 incvalue;
208 
209 	if (ppb < 0) {
210 		neg_adj = 1;
211 		ppb = -ppb;
212 	}
213 	rate = ppb;
214 	rate <<= 14;
215 	rate = div_u64(rate, 1953125);
216 
217 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
218 
219 	if (neg_adj)
220 		incvalue -= rate;
221 	else
222 		incvalue += rate;
223 
224 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
225 
226 	return 0;
227 }
228 
229 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230 {
231 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232 					       ptp_caps);
233 	struct e1000_hw *hw = &igb->hw;
234 	int neg_adj = 0;
235 	u64 rate;
236 	u32 inca;
237 
238 	if (ppb < 0) {
239 		neg_adj = 1;
240 		ppb = -ppb;
241 	}
242 	rate = ppb;
243 	rate <<= 26;
244 	rate = div_u64(rate, 1953125);
245 
246 	inca = rate & INCVALUE_MASK;
247 	if (neg_adj)
248 		inca |= ISGN;
249 
250 	wr32(E1000_TIMINCA, inca);
251 
252 	return 0;
253 }
254 
255 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256 {
257 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258 					       ptp_caps);
259 	unsigned long flags;
260 
261 	spin_lock_irqsave(&igb->tmreg_lock, flags);
262 	timecounter_adjtime(&igb->tc, delta);
263 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
264 
265 	return 0;
266 }
267 
268 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
269 {
270 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
271 					       ptp_caps);
272 	unsigned long flags;
273 	struct timespec64 now, then = ns_to_timespec64(delta);
274 
275 	spin_lock_irqsave(&igb->tmreg_lock, flags);
276 
277 	igb_ptp_read_i210(igb, &now);
278 	now = timespec64_add(now, then);
279 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
280 
281 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282 
283 	return 0;
284 }
285 
286 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287 				 struct timespec64 *ts)
288 {
289 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290 					       ptp_caps);
291 	unsigned long flags;
292 	u64 ns;
293 
294 	spin_lock_irqsave(&igb->tmreg_lock, flags);
295 
296 	ns = timecounter_read(&igb->tc);
297 
298 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299 
300 	*ts = ns_to_timespec64(ns);
301 
302 	return 0;
303 }
304 
305 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306 				struct timespec64 *ts)
307 {
308 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309 					       ptp_caps);
310 	unsigned long flags;
311 
312 	spin_lock_irqsave(&igb->tmreg_lock, flags);
313 
314 	igb_ptp_read_i210(igb, ts);
315 
316 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317 
318 	return 0;
319 }
320 
321 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322 				 const struct timespec64 *ts)
323 {
324 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
325 					       ptp_caps);
326 	unsigned long flags;
327 	u64 ns;
328 
329 	ns = timespec64_to_ns(ts);
330 
331 	spin_lock_irqsave(&igb->tmreg_lock, flags);
332 
333 	timecounter_init(&igb->tc, &igb->cc, ns);
334 
335 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336 
337 	return 0;
338 }
339 
340 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341 				const struct timespec64 *ts)
342 {
343 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 					       ptp_caps);
345 	unsigned long flags;
346 
347 	spin_lock_irqsave(&igb->tmreg_lock, flags);
348 
349 	igb_ptp_write_i210(igb, ts);
350 
351 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
352 
353 	return 0;
354 }
355 
356 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
357 {
358 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359 	static const u32 mask[IGB_N_SDP] = {
360 		E1000_CTRL_SDP0_DIR,
361 		E1000_CTRL_SDP1_DIR,
362 		E1000_CTRL_EXT_SDP2_DIR,
363 		E1000_CTRL_EXT_SDP3_DIR,
364 	};
365 
366 	if (input)
367 		*ptr &= ~mask[pin];
368 	else
369 		*ptr |= mask[pin];
370 }
371 
372 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
373 {
374 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
376 	};
377 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
379 	};
380 	static const u32 ts_sdp_en[IGB_N_SDP] = {
381 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
382 	};
383 	struct e1000_hw *hw = &igb->hw;
384 	u32 ctrl, ctrl_ext, tssdp = 0;
385 
386 	ctrl = rd32(E1000_CTRL);
387 	ctrl_ext = rd32(E1000_CTRL_EXT);
388 	tssdp = rd32(E1000_TSSDP);
389 
390 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
391 
392 	/* Make sure this pin is not enabled as an output. */
393 	tssdp &= ~ts_sdp_en[pin];
394 
395 	if (chan == 1) {
396 		tssdp &= ~AUX1_SEL_SDP3;
397 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
398 	} else {
399 		tssdp &= ~AUX0_SEL_SDP3;
400 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
401 	}
402 
403 	wr32(E1000_TSSDP, tssdp);
404 	wr32(E1000_CTRL, ctrl);
405 	wr32(E1000_CTRL_EXT, ctrl_ext);
406 }
407 
408 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
409 {
410 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412 	};
413 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415 	};
416 	static const u32 ts_sdp_en[IGB_N_SDP] = {
417 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418 	};
419 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
421 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
422 	};
423 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
425 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
426 	};
427 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
428 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
429 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
430 	};
431 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
432 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
433 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
434 	};
435 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
436 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
437 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
438 	};
439 	struct e1000_hw *hw = &igb->hw;
440 	u32 ctrl, ctrl_ext, tssdp = 0;
441 
442 	ctrl = rd32(E1000_CTRL);
443 	ctrl_ext = rd32(E1000_CTRL_EXT);
444 	tssdp = rd32(E1000_TSSDP);
445 
446 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
447 
448 	/* Make sure this pin is not enabled as an input. */
449 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
450 		tssdp &= ~AUX0_TS_SDP_EN;
451 
452 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
453 		tssdp &= ~AUX1_TS_SDP_EN;
454 
455 	tssdp &= ~ts_sdp_sel_clr[pin];
456 	if (freq) {
457 		if (chan == 1)
458 			tssdp |= ts_sdp_sel_fc1[pin];
459 		else
460 			tssdp |= ts_sdp_sel_fc0[pin];
461 	} else {
462 		if (chan == 1)
463 			tssdp |= ts_sdp_sel_tt1[pin];
464 		else
465 			tssdp |= ts_sdp_sel_tt0[pin];
466 	}
467 	tssdp |= ts_sdp_en[pin];
468 
469 	wr32(E1000_TSSDP, tssdp);
470 	wr32(E1000_CTRL, ctrl);
471 	wr32(E1000_CTRL_EXT, ctrl_ext);
472 }
473 
474 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
475 				       struct ptp_clock_request *rq, int on)
476 {
477 	struct igb_adapter *igb =
478 		container_of(ptp, struct igb_adapter, ptp_caps);
479 	struct e1000_hw *hw = &igb->hw;
480 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
481 	unsigned long flags;
482 	struct timespec64 ts;
483 	int use_freq = 0, pin = -1;
484 	s64 ns;
485 
486 	switch (rq->type) {
487 	case PTP_CLK_REQ_EXTTS:
488 		if (on) {
489 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
490 					   rq->extts.index);
491 			if (pin < 0)
492 				return -EBUSY;
493 		}
494 		if (rq->extts.index == 1) {
495 			tsauxc_mask = TSAUXC_EN_TS1;
496 			tsim_mask = TSINTR_AUTT1;
497 		} else {
498 			tsauxc_mask = TSAUXC_EN_TS0;
499 			tsim_mask = TSINTR_AUTT0;
500 		}
501 		spin_lock_irqsave(&igb->tmreg_lock, flags);
502 		tsauxc = rd32(E1000_TSAUXC);
503 		tsim = rd32(E1000_TSIM);
504 		if (on) {
505 			igb_pin_extts(igb, rq->extts.index, pin);
506 			tsauxc |= tsauxc_mask;
507 			tsim |= tsim_mask;
508 		} else {
509 			tsauxc &= ~tsauxc_mask;
510 			tsim &= ~tsim_mask;
511 		}
512 		wr32(E1000_TSAUXC, tsauxc);
513 		wr32(E1000_TSIM, tsim);
514 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
515 		return 0;
516 
517 	case PTP_CLK_REQ_PEROUT:
518 		if (on) {
519 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
520 					   rq->perout.index);
521 			if (pin < 0)
522 				return -EBUSY;
523 		}
524 		ts.tv_sec = rq->perout.period.sec;
525 		ts.tv_nsec = rq->perout.period.nsec;
526 		ns = timespec64_to_ns(&ts);
527 		ns = ns >> 1;
528 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
529 			   (ns == 250000000LL) || (ns == 500000000LL))) {
530 			if (ns < 8LL)
531 				return -EINVAL;
532 			use_freq = 1;
533 		}
534 		ts = ns_to_timespec64(ns);
535 		if (rq->perout.index == 1) {
536 			if (use_freq) {
537 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
538 				tsim_mask = 0;
539 			} else {
540 				tsauxc_mask = TSAUXC_EN_TT1;
541 				tsim_mask = TSINTR_TT1;
542 			}
543 			trgttiml = E1000_TRGTTIML1;
544 			trgttimh = E1000_TRGTTIMH1;
545 			freqout = E1000_FREQOUT1;
546 		} else {
547 			if (use_freq) {
548 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
549 				tsim_mask = 0;
550 			} else {
551 				tsauxc_mask = TSAUXC_EN_TT0;
552 				tsim_mask = TSINTR_TT0;
553 			}
554 			trgttiml = E1000_TRGTTIML0;
555 			trgttimh = E1000_TRGTTIMH0;
556 			freqout = E1000_FREQOUT0;
557 		}
558 		spin_lock_irqsave(&igb->tmreg_lock, flags);
559 		tsauxc = rd32(E1000_TSAUXC);
560 		tsim = rd32(E1000_TSIM);
561 		if (rq->perout.index == 1) {
562 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
563 			tsim &= ~TSINTR_TT1;
564 		} else {
565 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
566 			tsim &= ~TSINTR_TT0;
567 		}
568 		if (on) {
569 			int i = rq->perout.index;
570 			igb_pin_perout(igb, i, pin, use_freq);
571 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
572 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
573 			igb->perout[i].period.tv_sec = ts.tv_sec;
574 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
575 			wr32(trgttimh, rq->perout.start.sec);
576 			wr32(trgttiml, rq->perout.start.nsec);
577 			if (use_freq)
578 				wr32(freqout, ns);
579 			tsauxc |= tsauxc_mask;
580 			tsim |= tsim_mask;
581 		}
582 		wr32(E1000_TSAUXC, tsauxc);
583 		wr32(E1000_TSIM, tsim);
584 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
585 		return 0;
586 
587 	case PTP_CLK_REQ_PPS:
588 		spin_lock_irqsave(&igb->tmreg_lock, flags);
589 		tsim = rd32(E1000_TSIM);
590 		if (on)
591 			tsim |= TSINTR_SYS_WRAP;
592 		else
593 			tsim &= ~TSINTR_SYS_WRAP;
594 		igb->pps_sys_wrap_on = !!on;
595 		wr32(E1000_TSIM, tsim);
596 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
597 		return 0;
598 	}
599 
600 	return -EOPNOTSUPP;
601 }
602 
603 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
604 				  struct ptp_clock_request *rq, int on)
605 {
606 	return -EOPNOTSUPP;
607 }
608 
609 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
610 			      enum ptp_pin_function func, unsigned int chan)
611 {
612 	switch (func) {
613 	case PTP_PF_NONE:
614 	case PTP_PF_EXTTS:
615 	case PTP_PF_PEROUT:
616 		break;
617 	case PTP_PF_PHYSYNC:
618 		return -1;
619 	}
620 	return 0;
621 }
622 
623 /**
624  * igb_ptp_tx_work
625  * @work: pointer to work struct
626  *
627  * This work function polls the TSYNCTXCTL valid bit to determine when a
628  * timestamp has been taken for the current stored skb.
629  **/
630 static void igb_ptp_tx_work(struct work_struct *work)
631 {
632 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
633 						   ptp_tx_work);
634 	struct e1000_hw *hw = &adapter->hw;
635 	u32 tsynctxctl;
636 
637 	if (!adapter->ptp_tx_skb)
638 		return;
639 
640 	if (time_is_before_jiffies(adapter->ptp_tx_start +
641 				   IGB_PTP_TX_TIMEOUT)) {
642 		dev_kfree_skb_any(adapter->ptp_tx_skb);
643 		adapter->ptp_tx_skb = NULL;
644 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
645 		adapter->tx_hwtstamp_timeouts++;
646 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
647 		return;
648 	}
649 
650 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
651 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
652 		igb_ptp_tx_hwtstamp(adapter);
653 	else
654 		/* reschedule to check later */
655 		schedule_work(&adapter->ptp_tx_work);
656 }
657 
658 static void igb_ptp_overflow_check(struct work_struct *work)
659 {
660 	struct igb_adapter *igb =
661 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
662 	struct timespec64 ts;
663 
664 	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
665 
666 	pr_debug("igb overflow check at %lld.%09lu\n",
667 		 (long long) ts.tv_sec, ts.tv_nsec);
668 
669 	schedule_delayed_work(&igb->ptp_overflow_work,
670 			      IGB_SYSTIM_OVERFLOW_PERIOD);
671 }
672 
673 /**
674  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
675  * @adapter: private network adapter structure
676  *
677  * This watchdog task is scheduled to detect error case where hardware has
678  * dropped an Rx packet that was timestamped when the ring is full. The
679  * particular error is rare but leaves the device in a state unable to timestamp
680  * any future packets.
681  **/
682 void igb_ptp_rx_hang(struct igb_adapter *adapter)
683 {
684 	struct e1000_hw *hw = &adapter->hw;
685 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
686 	unsigned long rx_event;
687 
688 	/* Other hardware uses per-packet timestamps */
689 	if (hw->mac.type != e1000_82576)
690 		return;
691 
692 	/* If we don't have a valid timestamp in the registers, just update the
693 	 * timeout counter and exit
694 	 */
695 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
696 		adapter->last_rx_ptp_check = jiffies;
697 		return;
698 	}
699 
700 	/* Determine the most recent watchdog or rx_timestamp event */
701 	rx_event = adapter->last_rx_ptp_check;
702 	if (time_after(adapter->last_rx_timestamp, rx_event))
703 		rx_event = adapter->last_rx_timestamp;
704 
705 	/* Only need to read the high RXSTMP register to clear the lock */
706 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
707 		rd32(E1000_RXSTMPH);
708 		adapter->last_rx_ptp_check = jiffies;
709 		adapter->rx_hwtstamp_cleared++;
710 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
711 	}
712 }
713 
714 /**
715  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
716  * @adapter: Board private structure.
717  *
718  * If we were asked to do hardware stamping and such a time stamp is
719  * available, then it must have been for this skb here because we only
720  * allow only one such packet into the queue.
721  **/
722 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
723 {
724 	struct e1000_hw *hw = &adapter->hw;
725 	struct skb_shared_hwtstamps shhwtstamps;
726 	u64 regval;
727 	int adjust = 0;
728 
729 	regval = rd32(E1000_TXSTMPL);
730 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
731 
732 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
733 	/* adjust timestamp for the TX latency based on link speed */
734 	if (adapter->hw.mac.type == e1000_i210) {
735 		switch (adapter->link_speed) {
736 		case SPEED_10:
737 			adjust = IGB_I210_TX_LATENCY_10;
738 			break;
739 		case SPEED_100:
740 			adjust = IGB_I210_TX_LATENCY_100;
741 			break;
742 		case SPEED_1000:
743 			adjust = IGB_I210_TX_LATENCY_1000;
744 			break;
745 		}
746 	}
747 
748 	shhwtstamps.hwtstamp =
749 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
750 
751 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
752 	dev_kfree_skb_any(adapter->ptp_tx_skb);
753 	adapter->ptp_tx_skb = NULL;
754 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
755 }
756 
757 /**
758  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
759  * @q_vector: Pointer to interrupt specific structure
760  * @va: Pointer to address containing Rx buffer
761  * @skb: Buffer containing timestamp and packet
762  *
763  * This function is meant to retrieve a timestamp from the first buffer of an
764  * incoming frame.  The value is stored in little endian format starting on
765  * byte 8.
766  **/
767 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
768 			 unsigned char *va,
769 			 struct sk_buff *skb)
770 {
771 	__le64 *regval = (__le64 *)va;
772 	struct igb_adapter *adapter = q_vector->adapter;
773 	int adjust = 0;
774 
775 	/* The timestamp is recorded in little endian format.
776 	 * DWORD: 0        1        2        3
777 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
778 	 */
779 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
780 				   le64_to_cpu(regval[1]));
781 
782 	/* adjust timestamp for the RX latency based on link speed */
783 	if (adapter->hw.mac.type == e1000_i210) {
784 		switch (adapter->link_speed) {
785 		case SPEED_10:
786 			adjust = IGB_I210_RX_LATENCY_10;
787 			break;
788 		case SPEED_100:
789 			adjust = IGB_I210_RX_LATENCY_100;
790 			break;
791 		case SPEED_1000:
792 			adjust = IGB_I210_RX_LATENCY_1000;
793 			break;
794 		}
795 	}
796 	skb_hwtstamps(skb)->hwtstamp =
797 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
798 }
799 
800 /**
801  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
802  * @q_vector: Pointer to interrupt specific structure
803  * @skb: Buffer containing timestamp and packet
804  *
805  * This function is meant to retrieve a timestamp from the internal registers
806  * of the adapter and store it in the skb.
807  **/
808 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
809 			 struct sk_buff *skb)
810 {
811 	struct igb_adapter *adapter = q_vector->adapter;
812 	struct e1000_hw *hw = &adapter->hw;
813 	u64 regval;
814 	int adjust = 0;
815 
816 	/* If this bit is set, then the RX registers contain the time stamp. No
817 	 * other packet will be time stamped until we read these registers, so
818 	 * read the registers to make them available again. Because only one
819 	 * packet can be time stamped at a time, we know that the register
820 	 * values must belong to this one here and therefore we don't need to
821 	 * compare any of the additional attributes stored for it.
822 	 *
823 	 * If nothing went wrong, then it should have a shared tx_flags that we
824 	 * can turn into a skb_shared_hwtstamps.
825 	 */
826 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
827 		return;
828 
829 	regval = rd32(E1000_RXSTMPL);
830 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
831 
832 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
833 
834 	/* adjust timestamp for the RX latency based on link speed */
835 	if (adapter->hw.mac.type == e1000_i210) {
836 		switch (adapter->link_speed) {
837 		case SPEED_10:
838 			adjust = IGB_I210_RX_LATENCY_10;
839 			break;
840 		case SPEED_100:
841 			adjust = IGB_I210_RX_LATENCY_100;
842 			break;
843 		case SPEED_1000:
844 			adjust = IGB_I210_RX_LATENCY_1000;
845 			break;
846 		}
847 	}
848 	skb_hwtstamps(skb)->hwtstamp =
849 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
850 
851 	/* Update the last_rx_timestamp timer in order to enable watchdog check
852 	 * for error case of latched timestamp on a dropped packet.
853 	 */
854 	adapter->last_rx_timestamp = jiffies;
855 }
856 
857 /**
858  * igb_ptp_get_ts_config - get hardware time stamping config
859  * @netdev:
860  * @ifreq:
861  *
862  * Get the hwtstamp_config settings to return to the user. Rather than attempt
863  * to deconstruct the settings from the registers, just return a shadow copy
864  * of the last known settings.
865  **/
866 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
867 {
868 	struct igb_adapter *adapter = netdev_priv(netdev);
869 	struct hwtstamp_config *config = &adapter->tstamp_config;
870 
871 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
872 		-EFAULT : 0;
873 }
874 
875 /**
876  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
877  * @adapter: networking device structure
878  * @config: hwtstamp configuration
879  *
880  * Outgoing time stamping can be enabled and disabled. Play nice and
881  * disable it when requested, although it shouldn't case any overhead
882  * when no packet needs it. At most one packet in the queue may be
883  * marked for time stamping, otherwise it would be impossible to tell
884  * for sure to which packet the hardware time stamp belongs.
885  *
886  * Incoming time stamping has to be configured via the hardware
887  * filters. Not all combinations are supported, in particular event
888  * type has to be specified. Matching the kind of event packet is
889  * not supported, with the exception of "all V2 events regardless of
890  * level 2 or 4".
891  */
892 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
893 				      struct hwtstamp_config *config)
894 {
895 	struct e1000_hw *hw = &adapter->hw;
896 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
897 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
898 	u32 tsync_rx_cfg = 0;
899 	bool is_l4 = false;
900 	bool is_l2 = false;
901 	u32 regval;
902 
903 	/* reserved for future extensions */
904 	if (config->flags)
905 		return -EINVAL;
906 
907 	switch (config->tx_type) {
908 	case HWTSTAMP_TX_OFF:
909 		tsync_tx_ctl = 0;
910 	case HWTSTAMP_TX_ON:
911 		break;
912 	default:
913 		return -ERANGE;
914 	}
915 
916 	switch (config->rx_filter) {
917 	case HWTSTAMP_FILTER_NONE:
918 		tsync_rx_ctl = 0;
919 		break;
920 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
921 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
922 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
923 		is_l4 = true;
924 		break;
925 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
926 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
927 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
928 		is_l4 = true;
929 		break;
930 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
931 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
932 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
933 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
934 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
935 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
936 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
937 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
938 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
939 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
940 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
941 		is_l2 = true;
942 		is_l4 = true;
943 		break;
944 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
945 	case HWTSTAMP_FILTER_ALL:
946 		/* 82576 cannot timestamp all packets, which it needs to do to
947 		 * support both V1 Sync and Delay_Req messages
948 		 */
949 		if (hw->mac.type != e1000_82576) {
950 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
951 			config->rx_filter = HWTSTAMP_FILTER_ALL;
952 			break;
953 		}
954 		/* fall through */
955 	default:
956 		config->rx_filter = HWTSTAMP_FILTER_NONE;
957 		return -ERANGE;
958 	}
959 
960 	if (hw->mac.type == e1000_82575) {
961 		if (tsync_rx_ctl | tsync_tx_ctl)
962 			return -EINVAL;
963 		return 0;
964 	}
965 
966 	/* Per-packet timestamping only works if all packets are
967 	 * timestamped, so enable timestamping in all packets as
968 	 * long as one Rx filter was configured.
969 	 */
970 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
971 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
972 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
973 		config->rx_filter = HWTSTAMP_FILTER_ALL;
974 		is_l2 = true;
975 		is_l4 = true;
976 
977 		if ((hw->mac.type == e1000_i210) ||
978 		    (hw->mac.type == e1000_i211)) {
979 			regval = rd32(E1000_RXPBS);
980 			regval |= E1000_RXPBS_CFG_TS_EN;
981 			wr32(E1000_RXPBS, regval);
982 		}
983 	}
984 
985 	/* enable/disable TX */
986 	regval = rd32(E1000_TSYNCTXCTL);
987 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
988 	regval |= tsync_tx_ctl;
989 	wr32(E1000_TSYNCTXCTL, regval);
990 
991 	/* enable/disable RX */
992 	regval = rd32(E1000_TSYNCRXCTL);
993 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
994 	regval |= tsync_rx_ctl;
995 	wr32(E1000_TSYNCRXCTL, regval);
996 
997 	/* define which PTP packets are time stamped */
998 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
999 
1000 	/* define ethertype filter for timestamped packets */
1001 	if (is_l2)
1002 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1003 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1004 		      E1000_ETQF_1588 | /* enable timestamping */
1005 		      ETH_P_1588));     /* 1588 eth protocol type */
1006 	else
1007 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1008 
1009 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1010 	if (is_l4) {
1011 		u32 ftqf = (IPPROTO_UDP /* UDP */
1012 			| E1000_FTQF_VF_BP /* VF not compared */
1013 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1014 			| E1000_FTQF_MASK); /* mask all inputs */
1015 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1016 
1017 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1018 		wr32(E1000_IMIREXT(3),
1019 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1020 		if (hw->mac.type == e1000_82576) {
1021 			/* enable source port check */
1022 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1023 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1024 		}
1025 		wr32(E1000_FTQF(3), ftqf);
1026 	} else {
1027 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1028 	}
1029 	wrfl();
1030 
1031 	/* clear TX/RX time stamp registers, just to be sure */
1032 	regval = rd32(E1000_TXSTMPL);
1033 	regval = rd32(E1000_TXSTMPH);
1034 	regval = rd32(E1000_RXSTMPL);
1035 	regval = rd32(E1000_RXSTMPH);
1036 
1037 	return 0;
1038 }
1039 
1040 /**
1041  * igb_ptp_set_ts_config - set hardware time stamping config
1042  * @netdev:
1043  * @ifreq:
1044  *
1045  **/
1046 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1047 {
1048 	struct igb_adapter *adapter = netdev_priv(netdev);
1049 	struct hwtstamp_config config;
1050 	int err;
1051 
1052 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1053 		return -EFAULT;
1054 
1055 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1056 	if (err)
1057 		return err;
1058 
1059 	/* save these settings for future reference */
1060 	memcpy(&adapter->tstamp_config, &config,
1061 	       sizeof(adapter->tstamp_config));
1062 
1063 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1064 		-EFAULT : 0;
1065 }
1066 
1067 /**
1068  * igb_ptp_init - Initialize PTP functionality
1069  * @adapter: Board private structure
1070  *
1071  * This function is called at device probe to initialize the PTP
1072  * functionality.
1073  */
1074 void igb_ptp_init(struct igb_adapter *adapter)
1075 {
1076 	struct e1000_hw *hw = &adapter->hw;
1077 	struct net_device *netdev = adapter->netdev;
1078 	int i;
1079 
1080 	switch (hw->mac.type) {
1081 	case e1000_82576:
1082 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1083 		adapter->ptp_caps.owner = THIS_MODULE;
1084 		adapter->ptp_caps.max_adj = 999999881;
1085 		adapter->ptp_caps.n_ext_ts = 0;
1086 		adapter->ptp_caps.pps = 0;
1087 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1088 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1089 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1090 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1091 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1092 		adapter->cc.read = igb_ptp_read_82576;
1093 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1094 		adapter->cc.mult = 1;
1095 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1096 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1097 		break;
1098 	case e1000_82580:
1099 	case e1000_i354:
1100 	case e1000_i350:
1101 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1102 		adapter->ptp_caps.owner = THIS_MODULE;
1103 		adapter->ptp_caps.max_adj = 62499999;
1104 		adapter->ptp_caps.n_ext_ts = 0;
1105 		adapter->ptp_caps.pps = 0;
1106 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1107 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1108 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1109 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1110 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1111 		adapter->cc.read = igb_ptp_read_82580;
1112 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1113 		adapter->cc.mult = 1;
1114 		adapter->cc.shift = 0;
1115 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1116 		break;
1117 	case e1000_i210:
1118 	case e1000_i211:
1119 		for (i = 0; i < IGB_N_SDP; i++) {
1120 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1121 
1122 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1123 			ppd->index = i;
1124 			ppd->func = PTP_PF_NONE;
1125 		}
1126 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1127 		adapter->ptp_caps.owner = THIS_MODULE;
1128 		adapter->ptp_caps.max_adj = 62499999;
1129 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1130 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1131 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1132 		adapter->ptp_caps.pps = 1;
1133 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1134 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1135 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1136 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1137 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1138 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1139 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1140 		break;
1141 	default:
1142 		adapter->ptp_clock = NULL;
1143 		return;
1144 	}
1145 
1146 	spin_lock_init(&adapter->tmreg_lock);
1147 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1148 
1149 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1150 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1151 				  igb_ptp_overflow_check);
1152 
1153 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1154 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1155 
1156 	igb_ptp_reset(adapter);
1157 
1158 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1159 						&adapter->pdev->dev);
1160 	if (IS_ERR(adapter->ptp_clock)) {
1161 		adapter->ptp_clock = NULL;
1162 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1163 	} else if (adapter->ptp_clock) {
1164 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1165 			 adapter->netdev->name);
1166 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1167 	}
1168 }
1169 
1170 /**
1171  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1172  * @adapter: Board private structure
1173  *
1174  * This function stops the overflow check work and PTP Tx timestamp work, and
1175  * will prepare the device for OS suspend.
1176  */
1177 void igb_ptp_suspend(struct igb_adapter *adapter)
1178 {
1179 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1180 		return;
1181 
1182 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1183 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1184 
1185 	cancel_work_sync(&adapter->ptp_tx_work);
1186 	if (adapter->ptp_tx_skb) {
1187 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1188 		adapter->ptp_tx_skb = NULL;
1189 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1190 	}
1191 }
1192 
1193 /**
1194  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1195  * @adapter: Board private structure.
1196  *
1197  * This function stops the PTP support and cancels the delayed work.
1198  **/
1199 void igb_ptp_stop(struct igb_adapter *adapter)
1200 {
1201 	igb_ptp_suspend(adapter);
1202 
1203 	if (adapter->ptp_clock) {
1204 		ptp_clock_unregister(adapter->ptp_clock);
1205 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1206 			 adapter->netdev->name);
1207 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1208 	}
1209 }
1210 
1211 /**
1212  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1213  * @adapter: Board private structure.
1214  *
1215  * This function handles the reset work required to re-enable the PTP device.
1216  **/
1217 void igb_ptp_reset(struct igb_adapter *adapter)
1218 {
1219 	struct e1000_hw *hw = &adapter->hw;
1220 	unsigned long flags;
1221 
1222 	/* reset the tstamp_config */
1223 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1224 
1225 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1226 
1227 	switch (adapter->hw.mac.type) {
1228 	case e1000_82576:
1229 		/* Dial the nominal frequency. */
1230 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1231 		break;
1232 	case e1000_82580:
1233 	case e1000_i354:
1234 	case e1000_i350:
1235 	case e1000_i210:
1236 	case e1000_i211:
1237 		wr32(E1000_TSAUXC, 0x0);
1238 		wr32(E1000_TSSDP, 0x0);
1239 		wr32(E1000_TSIM,
1240 		     TSYNC_INTERRUPTS |
1241 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1242 		wr32(E1000_IMS, E1000_IMS_TS);
1243 		break;
1244 	default:
1245 		/* No work to do. */
1246 		goto out;
1247 	}
1248 
1249 	/* Re-initialize the timer. */
1250 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1251 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1252 
1253 		igb_ptp_write_i210(adapter, &ts);
1254 	} else {
1255 		timecounter_init(&adapter->tc, &adapter->cc,
1256 				 ktime_to_ns(ktime_get_real()));
1257 	}
1258 out:
1259 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1260 
1261 	wrfl();
1262 
1263 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1264 		schedule_delayed_work(&adapter->ptp_overflow_work,
1265 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1266 }
1267