1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  */
55 
56 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
57 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
58 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
59 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
60 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
61 #define IGB_NBITS_82580			40
62 
63 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
64 
65 /* SYSTIM read access for the 82576 */
66 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
67 {
68 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
69 	struct e1000_hw *hw = &igb->hw;
70 	u64 val;
71 	u32 lo, hi;
72 
73 	lo = rd32(E1000_SYSTIML);
74 	hi = rd32(E1000_SYSTIMH);
75 
76 	val = ((u64) hi) << 32;
77 	val |= lo;
78 
79 	return val;
80 }
81 
82 /* SYSTIM read access for the 82580 */
83 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
84 {
85 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
86 	struct e1000_hw *hw = &igb->hw;
87 	u32 lo, hi;
88 	u64 val;
89 
90 	/* The timestamp latches on lowest register read. For the 82580
91 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
92 	 * need to provide nanosecond resolution, so we just ignore it.
93 	 */
94 	rd32(E1000_SYSTIMR);
95 	lo = rd32(E1000_SYSTIML);
96 	hi = rd32(E1000_SYSTIMH);
97 
98 	val = ((u64) hi) << 32;
99 	val |= lo;
100 
101 	return val;
102 }
103 
104 /* SYSTIM read access for I210/I211 */
105 static void igb_ptp_read_i210(struct igb_adapter *adapter,
106 			      struct timespec64 *ts)
107 {
108 	struct e1000_hw *hw = &adapter->hw;
109 	u32 sec, nsec;
110 
111 	/* The timestamp latches on lowest register read. For I210/I211, the
112 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
113 	 * resolution, we can ignore it.
114 	 */
115 	rd32(E1000_SYSTIMR);
116 	nsec = rd32(E1000_SYSTIML);
117 	sec = rd32(E1000_SYSTIMH);
118 
119 	ts->tv_sec = sec;
120 	ts->tv_nsec = nsec;
121 }
122 
123 static void igb_ptp_write_i210(struct igb_adapter *adapter,
124 			       const struct timespec64 *ts)
125 {
126 	struct e1000_hw *hw = &adapter->hw;
127 
128 	/* Writing the SYSTIMR register is not necessary as it only provides
129 	 * sub-nanosecond resolution.
130 	 */
131 	wr32(E1000_SYSTIML, ts->tv_nsec);
132 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
133 }
134 
135 /**
136  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
137  * @adapter: board private structure
138  * @hwtstamps: timestamp structure to update
139  * @systim: unsigned 64bit system time value.
140  *
141  * We need to convert the system time value stored in the RX/TXSTMP registers
142  * into a hwtstamp which can be used by the upper level timestamping functions.
143  *
144  * The 'tmreg_lock' spinlock is used to protect the consistency of the
145  * system time value. This is needed because reading the 64 bit time
146  * value involves reading two (or three) 32 bit registers. The first
147  * read latches the value. Ditto for writing.
148  *
149  * In addition, here have extended the system time with an overflow
150  * counter in software.
151  **/
152 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
153 				       struct skb_shared_hwtstamps *hwtstamps,
154 				       u64 systim)
155 {
156 	unsigned long flags;
157 	u64 ns;
158 
159 	switch (adapter->hw.mac.type) {
160 	case e1000_82576:
161 	case e1000_82580:
162 	case e1000_i354:
163 	case e1000_i350:
164 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
165 
166 		ns = timecounter_cyc2time(&adapter->tc, systim);
167 
168 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
169 
170 		memset(hwtstamps, 0, sizeof(*hwtstamps));
171 		hwtstamps->hwtstamp = ns_to_ktime(ns);
172 		break;
173 	case e1000_i210:
174 	case e1000_i211:
175 		memset(hwtstamps, 0, sizeof(*hwtstamps));
176 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
177 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
178 						systim & 0xFFFFFFFF);
179 		break;
180 	default:
181 		break;
182 	}
183 }
184 
185 /* PTP clock operations */
186 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
187 {
188 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
189 					       ptp_caps);
190 	struct e1000_hw *hw = &igb->hw;
191 	int neg_adj = 0;
192 	u64 rate;
193 	u32 incvalue;
194 
195 	if (ppb < 0) {
196 		neg_adj = 1;
197 		ppb = -ppb;
198 	}
199 	rate = ppb;
200 	rate <<= 14;
201 	rate = div_u64(rate, 1953125);
202 
203 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
204 
205 	if (neg_adj)
206 		incvalue -= rate;
207 	else
208 		incvalue += rate;
209 
210 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
211 
212 	return 0;
213 }
214 
215 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
216 {
217 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
218 					       ptp_caps);
219 	struct e1000_hw *hw = &igb->hw;
220 	int neg_adj = 0;
221 	u64 rate;
222 	u32 inca;
223 
224 	if (scaled_ppm < 0) {
225 		neg_adj = 1;
226 		scaled_ppm = -scaled_ppm;
227 	}
228 	rate = scaled_ppm;
229 	rate <<= 13;
230 	rate = div_u64(rate, 15625);
231 
232 	inca = rate & INCVALUE_MASK;
233 	if (neg_adj)
234 		inca |= ISGN;
235 
236 	wr32(E1000_TIMINCA, inca);
237 
238 	return 0;
239 }
240 
241 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
242 {
243 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 					       ptp_caps);
245 	unsigned long flags;
246 
247 	spin_lock_irqsave(&igb->tmreg_lock, flags);
248 	timecounter_adjtime(&igb->tc, delta);
249 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
250 
251 	return 0;
252 }
253 
254 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
255 {
256 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257 					       ptp_caps);
258 	unsigned long flags;
259 	struct timespec64 now, then = ns_to_timespec64(delta);
260 
261 	spin_lock_irqsave(&igb->tmreg_lock, flags);
262 
263 	igb_ptp_read_i210(igb, &now);
264 	now = timespec64_add(now, then);
265 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
266 
267 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268 
269 	return 0;
270 }
271 
272 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
273 				 struct timespec64 *ts)
274 {
275 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
276 					       ptp_caps);
277 	unsigned long flags;
278 	u64 ns;
279 
280 	spin_lock_irqsave(&igb->tmreg_lock, flags);
281 
282 	ns = timecounter_read(&igb->tc);
283 
284 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
285 
286 	*ts = ns_to_timespec64(ns);
287 
288 	return 0;
289 }
290 
291 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
292 				struct timespec64 *ts)
293 {
294 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
295 					       ptp_caps);
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&igb->tmreg_lock, flags);
299 
300 	igb_ptp_read_i210(igb, ts);
301 
302 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
303 
304 	return 0;
305 }
306 
307 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
308 				 const struct timespec64 *ts)
309 {
310 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
311 					       ptp_caps);
312 	unsigned long flags;
313 	u64 ns;
314 
315 	ns = timespec64_to_ns(ts);
316 
317 	spin_lock_irqsave(&igb->tmreg_lock, flags);
318 
319 	timecounter_init(&igb->tc, &igb->cc, ns);
320 
321 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
322 
323 	return 0;
324 }
325 
326 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
327 				const struct timespec64 *ts)
328 {
329 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
330 					       ptp_caps);
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(&igb->tmreg_lock, flags);
334 
335 	igb_ptp_write_i210(igb, ts);
336 
337 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
338 
339 	return 0;
340 }
341 
342 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
343 {
344 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
345 	static const u32 mask[IGB_N_SDP] = {
346 		E1000_CTRL_SDP0_DIR,
347 		E1000_CTRL_SDP1_DIR,
348 		E1000_CTRL_EXT_SDP2_DIR,
349 		E1000_CTRL_EXT_SDP3_DIR,
350 	};
351 
352 	if (input)
353 		*ptr &= ~mask[pin];
354 	else
355 		*ptr |= mask[pin];
356 }
357 
358 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
359 {
360 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
361 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
362 	};
363 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
364 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
365 	};
366 	static const u32 ts_sdp_en[IGB_N_SDP] = {
367 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
368 	};
369 	struct e1000_hw *hw = &igb->hw;
370 	u32 ctrl, ctrl_ext, tssdp = 0;
371 
372 	ctrl = rd32(E1000_CTRL);
373 	ctrl_ext = rd32(E1000_CTRL_EXT);
374 	tssdp = rd32(E1000_TSSDP);
375 
376 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
377 
378 	/* Make sure this pin is not enabled as an output. */
379 	tssdp &= ~ts_sdp_en[pin];
380 
381 	if (chan == 1) {
382 		tssdp &= ~AUX1_SEL_SDP3;
383 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
384 	} else {
385 		tssdp &= ~AUX0_SEL_SDP3;
386 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
387 	}
388 
389 	wr32(E1000_TSSDP, tssdp);
390 	wr32(E1000_CTRL, ctrl);
391 	wr32(E1000_CTRL_EXT, ctrl_ext);
392 }
393 
394 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
395 {
396 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
397 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
398 	};
399 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
400 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
401 	};
402 	static const u32 ts_sdp_en[IGB_N_SDP] = {
403 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
404 	};
405 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
406 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
407 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
408 	};
409 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
410 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
411 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
412 	};
413 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
414 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
415 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
416 	};
417 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
418 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
419 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
420 	};
421 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
422 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
423 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
424 	};
425 	struct e1000_hw *hw = &igb->hw;
426 	u32 ctrl, ctrl_ext, tssdp = 0;
427 
428 	ctrl = rd32(E1000_CTRL);
429 	ctrl_ext = rd32(E1000_CTRL_EXT);
430 	tssdp = rd32(E1000_TSSDP);
431 
432 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
433 
434 	/* Make sure this pin is not enabled as an input. */
435 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
436 		tssdp &= ~AUX0_TS_SDP_EN;
437 
438 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
439 		tssdp &= ~AUX1_TS_SDP_EN;
440 
441 	tssdp &= ~ts_sdp_sel_clr[pin];
442 	if (freq) {
443 		if (chan == 1)
444 			tssdp |= ts_sdp_sel_fc1[pin];
445 		else
446 			tssdp |= ts_sdp_sel_fc0[pin];
447 	} else {
448 		if (chan == 1)
449 			tssdp |= ts_sdp_sel_tt1[pin];
450 		else
451 			tssdp |= ts_sdp_sel_tt0[pin];
452 	}
453 	tssdp |= ts_sdp_en[pin];
454 
455 	wr32(E1000_TSSDP, tssdp);
456 	wr32(E1000_CTRL, ctrl);
457 	wr32(E1000_CTRL_EXT, ctrl_ext);
458 }
459 
460 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
461 				       struct ptp_clock_request *rq, int on)
462 {
463 	struct igb_adapter *igb =
464 		container_of(ptp, struct igb_adapter, ptp_caps);
465 	struct e1000_hw *hw = &igb->hw;
466 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
467 	unsigned long flags;
468 	struct timespec64 ts;
469 	int use_freq = 0, pin = -1;
470 	s64 ns;
471 
472 	switch (rq->type) {
473 	case PTP_CLK_REQ_EXTTS:
474 		if (on) {
475 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
476 					   rq->extts.index);
477 			if (pin < 0)
478 				return -EBUSY;
479 		}
480 		if (rq->extts.index == 1) {
481 			tsauxc_mask = TSAUXC_EN_TS1;
482 			tsim_mask = TSINTR_AUTT1;
483 		} else {
484 			tsauxc_mask = TSAUXC_EN_TS0;
485 			tsim_mask = TSINTR_AUTT0;
486 		}
487 		spin_lock_irqsave(&igb->tmreg_lock, flags);
488 		tsauxc = rd32(E1000_TSAUXC);
489 		tsim = rd32(E1000_TSIM);
490 		if (on) {
491 			igb_pin_extts(igb, rq->extts.index, pin);
492 			tsauxc |= tsauxc_mask;
493 			tsim |= tsim_mask;
494 		} else {
495 			tsauxc &= ~tsauxc_mask;
496 			tsim &= ~tsim_mask;
497 		}
498 		wr32(E1000_TSAUXC, tsauxc);
499 		wr32(E1000_TSIM, tsim);
500 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
501 		return 0;
502 
503 	case PTP_CLK_REQ_PEROUT:
504 		if (on) {
505 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
506 					   rq->perout.index);
507 			if (pin < 0)
508 				return -EBUSY;
509 		}
510 		ts.tv_sec = rq->perout.period.sec;
511 		ts.tv_nsec = rq->perout.period.nsec;
512 		ns = timespec64_to_ns(&ts);
513 		ns = ns >> 1;
514 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
515 			   (ns == 250000000LL) || (ns == 500000000LL))) {
516 			if (ns < 8LL)
517 				return -EINVAL;
518 			use_freq = 1;
519 		}
520 		ts = ns_to_timespec64(ns);
521 		if (rq->perout.index == 1) {
522 			if (use_freq) {
523 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
524 				tsim_mask = 0;
525 			} else {
526 				tsauxc_mask = TSAUXC_EN_TT1;
527 				tsim_mask = TSINTR_TT1;
528 			}
529 			trgttiml = E1000_TRGTTIML1;
530 			trgttimh = E1000_TRGTTIMH1;
531 			freqout = E1000_FREQOUT1;
532 		} else {
533 			if (use_freq) {
534 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
535 				tsim_mask = 0;
536 			} else {
537 				tsauxc_mask = TSAUXC_EN_TT0;
538 				tsim_mask = TSINTR_TT0;
539 			}
540 			trgttiml = E1000_TRGTTIML0;
541 			trgttimh = E1000_TRGTTIMH0;
542 			freqout = E1000_FREQOUT0;
543 		}
544 		spin_lock_irqsave(&igb->tmreg_lock, flags);
545 		tsauxc = rd32(E1000_TSAUXC);
546 		tsim = rd32(E1000_TSIM);
547 		if (rq->perout.index == 1) {
548 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
549 			tsim &= ~TSINTR_TT1;
550 		} else {
551 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
552 			tsim &= ~TSINTR_TT0;
553 		}
554 		if (on) {
555 			int i = rq->perout.index;
556 			igb_pin_perout(igb, i, pin, use_freq);
557 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
558 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
559 			igb->perout[i].period.tv_sec = ts.tv_sec;
560 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
561 			wr32(trgttimh, rq->perout.start.sec);
562 			wr32(trgttiml, rq->perout.start.nsec);
563 			if (use_freq)
564 				wr32(freqout, ns);
565 			tsauxc |= tsauxc_mask;
566 			tsim |= tsim_mask;
567 		}
568 		wr32(E1000_TSAUXC, tsauxc);
569 		wr32(E1000_TSIM, tsim);
570 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
571 		return 0;
572 
573 	case PTP_CLK_REQ_PPS:
574 		spin_lock_irqsave(&igb->tmreg_lock, flags);
575 		tsim = rd32(E1000_TSIM);
576 		if (on)
577 			tsim |= TSINTR_SYS_WRAP;
578 		else
579 			tsim &= ~TSINTR_SYS_WRAP;
580 		igb->pps_sys_wrap_on = !!on;
581 		wr32(E1000_TSIM, tsim);
582 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
583 		return 0;
584 	}
585 
586 	return -EOPNOTSUPP;
587 }
588 
589 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
590 				  struct ptp_clock_request *rq, int on)
591 {
592 	return -EOPNOTSUPP;
593 }
594 
595 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
596 			      enum ptp_pin_function func, unsigned int chan)
597 {
598 	switch (func) {
599 	case PTP_PF_NONE:
600 	case PTP_PF_EXTTS:
601 	case PTP_PF_PEROUT:
602 		break;
603 	case PTP_PF_PHYSYNC:
604 		return -1;
605 	}
606 	return 0;
607 }
608 
609 /**
610  * igb_ptp_tx_work
611  * @work: pointer to work struct
612  *
613  * This work function polls the TSYNCTXCTL valid bit to determine when a
614  * timestamp has been taken for the current stored skb.
615  **/
616 static void igb_ptp_tx_work(struct work_struct *work)
617 {
618 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
619 						   ptp_tx_work);
620 	struct e1000_hw *hw = &adapter->hw;
621 	u32 tsynctxctl;
622 
623 	if (!adapter->ptp_tx_skb)
624 		return;
625 
626 	if (time_is_before_jiffies(adapter->ptp_tx_start +
627 				   IGB_PTP_TX_TIMEOUT)) {
628 		dev_kfree_skb_any(adapter->ptp_tx_skb);
629 		adapter->ptp_tx_skb = NULL;
630 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
631 		adapter->tx_hwtstamp_timeouts++;
632 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
633 		 * interrupt
634 		 */
635 		rd32(E1000_TXSTMPH);
636 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
637 		return;
638 	}
639 
640 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
641 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
642 		igb_ptp_tx_hwtstamp(adapter);
643 	else
644 		/* reschedule to check later */
645 		schedule_work(&adapter->ptp_tx_work);
646 }
647 
648 static void igb_ptp_overflow_check(struct work_struct *work)
649 {
650 	struct igb_adapter *igb =
651 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
652 	struct timespec64 ts;
653 
654 	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
655 
656 	pr_debug("igb overflow check at %lld.%09lu\n",
657 		 (long long) ts.tv_sec, ts.tv_nsec);
658 
659 	schedule_delayed_work(&igb->ptp_overflow_work,
660 			      IGB_SYSTIM_OVERFLOW_PERIOD);
661 }
662 
663 /**
664  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
665  * @adapter: private network adapter structure
666  *
667  * This watchdog task is scheduled to detect error case where hardware has
668  * dropped an Rx packet that was timestamped when the ring is full. The
669  * particular error is rare but leaves the device in a state unable to timestamp
670  * any future packets.
671  **/
672 void igb_ptp_rx_hang(struct igb_adapter *adapter)
673 {
674 	struct e1000_hw *hw = &adapter->hw;
675 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
676 	unsigned long rx_event;
677 
678 	/* Other hardware uses per-packet timestamps */
679 	if (hw->mac.type != e1000_82576)
680 		return;
681 
682 	/* If we don't have a valid timestamp in the registers, just update the
683 	 * timeout counter and exit
684 	 */
685 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
686 		adapter->last_rx_ptp_check = jiffies;
687 		return;
688 	}
689 
690 	/* Determine the most recent watchdog or rx_timestamp event */
691 	rx_event = adapter->last_rx_ptp_check;
692 	if (time_after(adapter->last_rx_timestamp, rx_event))
693 		rx_event = adapter->last_rx_timestamp;
694 
695 	/* Only need to read the high RXSTMP register to clear the lock */
696 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
697 		rd32(E1000_RXSTMPH);
698 		adapter->last_rx_ptp_check = jiffies;
699 		adapter->rx_hwtstamp_cleared++;
700 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
701 	}
702 }
703 
704 /**
705  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
706  * @adapter: private network adapter structure
707  */
708 void igb_ptp_tx_hang(struct igb_adapter *adapter)
709 {
710 	struct e1000_hw *hw = &adapter->hw;
711 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
712 					      IGB_PTP_TX_TIMEOUT);
713 
714 	if (!adapter->ptp_tx_skb)
715 		return;
716 
717 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
718 		return;
719 
720 	/* If we haven't received a timestamp within the timeout, it is
721 	 * reasonable to assume that it will never occur, so we can unlock the
722 	 * timestamp bit when this occurs.
723 	 */
724 	if (timeout) {
725 		cancel_work_sync(&adapter->ptp_tx_work);
726 		dev_kfree_skb_any(adapter->ptp_tx_skb);
727 		adapter->ptp_tx_skb = NULL;
728 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
729 		adapter->tx_hwtstamp_timeouts++;
730 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
731 		 * interrupt
732 		 */
733 		rd32(E1000_TXSTMPH);
734 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
735 	}
736 }
737 
738 /**
739  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
740  * @adapter: Board private structure.
741  *
742  * If we were asked to do hardware stamping and such a time stamp is
743  * available, then it must have been for this skb here because we only
744  * allow only one such packet into the queue.
745  **/
746 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
747 {
748 	struct sk_buff *skb = adapter->ptp_tx_skb;
749 	struct e1000_hw *hw = &adapter->hw;
750 	struct skb_shared_hwtstamps shhwtstamps;
751 	u64 regval;
752 	int adjust = 0;
753 
754 	regval = rd32(E1000_TXSTMPL);
755 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
756 
757 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
758 	/* adjust timestamp for the TX latency based on link speed */
759 	if (adapter->hw.mac.type == e1000_i210) {
760 		switch (adapter->link_speed) {
761 		case SPEED_10:
762 			adjust = IGB_I210_TX_LATENCY_10;
763 			break;
764 		case SPEED_100:
765 			adjust = IGB_I210_TX_LATENCY_100;
766 			break;
767 		case SPEED_1000:
768 			adjust = IGB_I210_TX_LATENCY_1000;
769 			break;
770 		}
771 	}
772 
773 	shhwtstamps.hwtstamp =
774 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
775 
776 	/* Clear the lock early before calling skb_tstamp_tx so that
777 	 * applications are not woken up before the lock bit is clear. We use
778 	 * a copy of the skb pointer to ensure other threads can't change it
779 	 * while we're notifying the stack.
780 	 */
781 	adapter->ptp_tx_skb = NULL;
782 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
783 
784 	/* Notify the stack and free the skb after we've unlocked */
785 	skb_tstamp_tx(skb, &shhwtstamps);
786 	dev_kfree_skb_any(skb);
787 }
788 
789 /**
790  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
791  * @q_vector: Pointer to interrupt specific structure
792  * @va: Pointer to address containing Rx buffer
793  * @skb: Buffer containing timestamp and packet
794  *
795  * This function is meant to retrieve a timestamp from the first buffer of an
796  * incoming frame.  The value is stored in little endian format starting on
797  * byte 8.
798  **/
799 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
800 			 struct sk_buff *skb)
801 {
802 	__le64 *regval = (__le64 *)va;
803 	struct igb_adapter *adapter = q_vector->adapter;
804 	int adjust = 0;
805 
806 	/* The timestamp is recorded in little endian format.
807 	 * DWORD: 0        1        2        3
808 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
809 	 */
810 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
811 				   le64_to_cpu(regval[1]));
812 
813 	/* adjust timestamp for the RX latency based on link speed */
814 	if (adapter->hw.mac.type == e1000_i210) {
815 		switch (adapter->link_speed) {
816 		case SPEED_10:
817 			adjust = IGB_I210_RX_LATENCY_10;
818 			break;
819 		case SPEED_100:
820 			adjust = IGB_I210_RX_LATENCY_100;
821 			break;
822 		case SPEED_1000:
823 			adjust = IGB_I210_RX_LATENCY_1000;
824 			break;
825 		}
826 	}
827 	skb_hwtstamps(skb)->hwtstamp =
828 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
829 }
830 
831 /**
832  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
833  * @q_vector: Pointer to interrupt specific structure
834  * @skb: Buffer containing timestamp and packet
835  *
836  * This function is meant to retrieve a timestamp from the internal registers
837  * of the adapter and store it in the skb.
838  **/
839 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
840 			 struct sk_buff *skb)
841 {
842 	struct igb_adapter *adapter = q_vector->adapter;
843 	struct e1000_hw *hw = &adapter->hw;
844 	u64 regval;
845 	int adjust = 0;
846 
847 	/* If this bit is set, then the RX registers contain the time stamp. No
848 	 * other packet will be time stamped until we read these registers, so
849 	 * read the registers to make them available again. Because only one
850 	 * packet can be time stamped at a time, we know that the register
851 	 * values must belong to this one here and therefore we don't need to
852 	 * compare any of the additional attributes stored for it.
853 	 *
854 	 * If nothing went wrong, then it should have a shared tx_flags that we
855 	 * can turn into a skb_shared_hwtstamps.
856 	 */
857 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
858 		return;
859 
860 	regval = rd32(E1000_RXSTMPL);
861 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
862 
863 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
864 
865 	/* adjust timestamp for the RX latency based on link speed */
866 	if (adapter->hw.mac.type == e1000_i210) {
867 		switch (adapter->link_speed) {
868 		case SPEED_10:
869 			adjust = IGB_I210_RX_LATENCY_10;
870 			break;
871 		case SPEED_100:
872 			adjust = IGB_I210_RX_LATENCY_100;
873 			break;
874 		case SPEED_1000:
875 			adjust = IGB_I210_RX_LATENCY_1000;
876 			break;
877 		}
878 	}
879 	skb_hwtstamps(skb)->hwtstamp =
880 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
881 
882 	/* Update the last_rx_timestamp timer in order to enable watchdog check
883 	 * for error case of latched timestamp on a dropped packet.
884 	 */
885 	adapter->last_rx_timestamp = jiffies;
886 }
887 
888 /**
889  * igb_ptp_get_ts_config - get hardware time stamping config
890  * @netdev:
891  * @ifreq:
892  *
893  * Get the hwtstamp_config settings to return to the user. Rather than attempt
894  * to deconstruct the settings from the registers, just return a shadow copy
895  * of the last known settings.
896  **/
897 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
898 {
899 	struct igb_adapter *adapter = netdev_priv(netdev);
900 	struct hwtstamp_config *config = &adapter->tstamp_config;
901 
902 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
903 		-EFAULT : 0;
904 }
905 
906 /**
907  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
908  * @adapter: networking device structure
909  * @config: hwtstamp configuration
910  *
911  * Outgoing time stamping can be enabled and disabled. Play nice and
912  * disable it when requested, although it shouldn't case any overhead
913  * when no packet needs it. At most one packet in the queue may be
914  * marked for time stamping, otherwise it would be impossible to tell
915  * for sure to which packet the hardware time stamp belongs.
916  *
917  * Incoming time stamping has to be configured via the hardware
918  * filters. Not all combinations are supported, in particular event
919  * type has to be specified. Matching the kind of event packet is
920  * not supported, with the exception of "all V2 events regardless of
921  * level 2 or 4".
922  */
923 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
924 				      struct hwtstamp_config *config)
925 {
926 	struct e1000_hw *hw = &adapter->hw;
927 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
928 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
929 	u32 tsync_rx_cfg = 0;
930 	bool is_l4 = false;
931 	bool is_l2 = false;
932 	u32 regval;
933 
934 	/* reserved for future extensions */
935 	if (config->flags)
936 		return -EINVAL;
937 
938 	switch (config->tx_type) {
939 	case HWTSTAMP_TX_OFF:
940 		tsync_tx_ctl = 0;
941 	case HWTSTAMP_TX_ON:
942 		break;
943 	default:
944 		return -ERANGE;
945 	}
946 
947 	switch (config->rx_filter) {
948 	case HWTSTAMP_FILTER_NONE:
949 		tsync_rx_ctl = 0;
950 		break;
951 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
952 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
953 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
954 		is_l4 = true;
955 		break;
956 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
957 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
958 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
959 		is_l4 = true;
960 		break;
961 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
962 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
963 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
964 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
965 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
966 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
967 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
968 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
969 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
970 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
971 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
972 		is_l2 = true;
973 		is_l4 = true;
974 		break;
975 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
976 	case HWTSTAMP_FILTER_NTP_ALL:
977 	case HWTSTAMP_FILTER_ALL:
978 		/* 82576 cannot timestamp all packets, which it needs to do to
979 		 * support both V1 Sync and Delay_Req messages
980 		 */
981 		if (hw->mac.type != e1000_82576) {
982 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
983 			config->rx_filter = HWTSTAMP_FILTER_ALL;
984 			break;
985 		}
986 		/* fall through */
987 	default:
988 		config->rx_filter = HWTSTAMP_FILTER_NONE;
989 		return -ERANGE;
990 	}
991 
992 	if (hw->mac.type == e1000_82575) {
993 		if (tsync_rx_ctl | tsync_tx_ctl)
994 			return -EINVAL;
995 		return 0;
996 	}
997 
998 	/* Per-packet timestamping only works if all packets are
999 	 * timestamped, so enable timestamping in all packets as
1000 	 * long as one Rx filter was configured.
1001 	 */
1002 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1003 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1004 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1005 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1006 		is_l2 = true;
1007 		is_l4 = true;
1008 
1009 		if ((hw->mac.type == e1000_i210) ||
1010 		    (hw->mac.type == e1000_i211)) {
1011 			regval = rd32(E1000_RXPBS);
1012 			regval |= E1000_RXPBS_CFG_TS_EN;
1013 			wr32(E1000_RXPBS, regval);
1014 		}
1015 	}
1016 
1017 	/* enable/disable TX */
1018 	regval = rd32(E1000_TSYNCTXCTL);
1019 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1020 	regval |= tsync_tx_ctl;
1021 	wr32(E1000_TSYNCTXCTL, regval);
1022 
1023 	/* enable/disable RX */
1024 	regval = rd32(E1000_TSYNCRXCTL);
1025 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1026 	regval |= tsync_rx_ctl;
1027 	wr32(E1000_TSYNCRXCTL, regval);
1028 
1029 	/* define which PTP packets are time stamped */
1030 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1031 
1032 	/* define ethertype filter for timestamped packets */
1033 	if (is_l2)
1034 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1035 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1036 		      E1000_ETQF_1588 | /* enable timestamping */
1037 		      ETH_P_1588));     /* 1588 eth protocol type */
1038 	else
1039 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1040 
1041 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1042 	if (is_l4) {
1043 		u32 ftqf = (IPPROTO_UDP /* UDP */
1044 			| E1000_FTQF_VF_BP /* VF not compared */
1045 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1046 			| E1000_FTQF_MASK); /* mask all inputs */
1047 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1048 
1049 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1050 		wr32(E1000_IMIREXT(3),
1051 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1052 		if (hw->mac.type == e1000_82576) {
1053 			/* enable source port check */
1054 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1055 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1056 		}
1057 		wr32(E1000_FTQF(3), ftqf);
1058 	} else {
1059 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1060 	}
1061 	wrfl();
1062 
1063 	/* clear TX/RX time stamp registers, just to be sure */
1064 	regval = rd32(E1000_TXSTMPL);
1065 	regval = rd32(E1000_TXSTMPH);
1066 	regval = rd32(E1000_RXSTMPL);
1067 	regval = rd32(E1000_RXSTMPH);
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  * igb_ptp_set_ts_config - set hardware time stamping config
1074  * @netdev:
1075  * @ifreq:
1076  *
1077  **/
1078 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1079 {
1080 	struct igb_adapter *adapter = netdev_priv(netdev);
1081 	struct hwtstamp_config config;
1082 	int err;
1083 
1084 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1085 		return -EFAULT;
1086 
1087 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1088 	if (err)
1089 		return err;
1090 
1091 	/* save these settings for future reference */
1092 	memcpy(&adapter->tstamp_config, &config,
1093 	       sizeof(adapter->tstamp_config));
1094 
1095 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1096 		-EFAULT : 0;
1097 }
1098 
1099 /**
1100  * igb_ptp_init - Initialize PTP functionality
1101  * @adapter: Board private structure
1102  *
1103  * This function is called at device probe to initialize the PTP
1104  * functionality.
1105  */
1106 void igb_ptp_init(struct igb_adapter *adapter)
1107 {
1108 	struct e1000_hw *hw = &adapter->hw;
1109 	struct net_device *netdev = adapter->netdev;
1110 	int i;
1111 
1112 	switch (hw->mac.type) {
1113 	case e1000_82576:
1114 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1115 		adapter->ptp_caps.owner = THIS_MODULE;
1116 		adapter->ptp_caps.max_adj = 999999881;
1117 		adapter->ptp_caps.n_ext_ts = 0;
1118 		adapter->ptp_caps.pps = 0;
1119 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1120 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1121 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1122 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1123 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1124 		adapter->cc.read = igb_ptp_read_82576;
1125 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1126 		adapter->cc.mult = 1;
1127 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1128 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1129 		break;
1130 	case e1000_82580:
1131 	case e1000_i354:
1132 	case e1000_i350:
1133 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1134 		adapter->ptp_caps.owner = THIS_MODULE;
1135 		adapter->ptp_caps.max_adj = 62499999;
1136 		adapter->ptp_caps.n_ext_ts = 0;
1137 		adapter->ptp_caps.pps = 0;
1138 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1139 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1140 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1141 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1142 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1143 		adapter->cc.read = igb_ptp_read_82580;
1144 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1145 		adapter->cc.mult = 1;
1146 		adapter->cc.shift = 0;
1147 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1148 		break;
1149 	case e1000_i210:
1150 	case e1000_i211:
1151 		for (i = 0; i < IGB_N_SDP; i++) {
1152 			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1153 
1154 			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1155 			ppd->index = i;
1156 			ppd->func = PTP_PF_NONE;
1157 		}
1158 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1159 		adapter->ptp_caps.owner = THIS_MODULE;
1160 		adapter->ptp_caps.max_adj = 62499999;
1161 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1162 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1163 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1164 		adapter->ptp_caps.pps = 1;
1165 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1166 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1167 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1168 		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1169 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1170 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1171 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1172 		break;
1173 	default:
1174 		adapter->ptp_clock = NULL;
1175 		return;
1176 	}
1177 
1178 	spin_lock_init(&adapter->tmreg_lock);
1179 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1180 
1181 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1182 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1183 				  igb_ptp_overflow_check);
1184 
1185 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1186 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1187 
1188 	igb_ptp_reset(adapter);
1189 
1190 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1191 						&adapter->pdev->dev);
1192 	if (IS_ERR(adapter->ptp_clock)) {
1193 		adapter->ptp_clock = NULL;
1194 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1195 	} else if (adapter->ptp_clock) {
1196 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1197 			 adapter->netdev->name);
1198 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1199 	}
1200 }
1201 
1202 /**
1203  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1204  * @adapter: Board private structure
1205  *
1206  * This function stops the overflow check work and PTP Tx timestamp work, and
1207  * will prepare the device for OS suspend.
1208  */
1209 void igb_ptp_suspend(struct igb_adapter *adapter)
1210 {
1211 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1212 		return;
1213 
1214 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1215 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1216 
1217 	cancel_work_sync(&adapter->ptp_tx_work);
1218 	if (adapter->ptp_tx_skb) {
1219 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1220 		adapter->ptp_tx_skb = NULL;
1221 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1222 	}
1223 }
1224 
1225 /**
1226  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1227  * @adapter: Board private structure.
1228  *
1229  * This function stops the PTP support and cancels the delayed work.
1230  **/
1231 void igb_ptp_stop(struct igb_adapter *adapter)
1232 {
1233 	igb_ptp_suspend(adapter);
1234 
1235 	if (adapter->ptp_clock) {
1236 		ptp_clock_unregister(adapter->ptp_clock);
1237 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1238 			 adapter->netdev->name);
1239 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1240 	}
1241 }
1242 
1243 /**
1244  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1245  * @adapter: Board private structure.
1246  *
1247  * This function handles the reset work required to re-enable the PTP device.
1248  **/
1249 void igb_ptp_reset(struct igb_adapter *adapter)
1250 {
1251 	struct e1000_hw *hw = &adapter->hw;
1252 	unsigned long flags;
1253 
1254 	/* reset the tstamp_config */
1255 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1256 
1257 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1258 
1259 	switch (adapter->hw.mac.type) {
1260 	case e1000_82576:
1261 		/* Dial the nominal frequency. */
1262 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1263 		break;
1264 	case e1000_82580:
1265 	case e1000_i354:
1266 	case e1000_i350:
1267 	case e1000_i210:
1268 	case e1000_i211:
1269 		wr32(E1000_TSAUXC, 0x0);
1270 		wr32(E1000_TSSDP, 0x0);
1271 		wr32(E1000_TSIM,
1272 		     TSYNC_INTERRUPTS |
1273 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1274 		wr32(E1000_IMS, E1000_IMS_TS);
1275 		break;
1276 	default:
1277 		/* No work to do. */
1278 		goto out;
1279 	}
1280 
1281 	/* Re-initialize the timer. */
1282 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1283 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1284 
1285 		igb_ptp_write_i210(adapter, &ts);
1286 	} else {
1287 		timecounter_init(&adapter->tc, &adapter->cc,
1288 				 ktime_to_ns(ktime_get_real()));
1289 	}
1290 out:
1291 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1292 
1293 	wrfl();
1294 
1295 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1296 		schedule_delayed_work(&adapter->ptp_overflow_work,
1297 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1298 }
1299