1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22 
23 #include "igb.h"
24 
25 #define INCVALUE_MASK		0x7fffffff
26 #define ISGN			0x80000000
27 
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not availible. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  */
69 
70 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72 #define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580			40
76 
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78 
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 	struct e1000_hw *hw = &igb->hw;
84 	u64 val;
85 	u32 lo, hi;
86 
87 	lo = rd32(E1000_SYSTIML);
88 	hi = rd32(E1000_SYSTIMH);
89 
90 	val = ((u64) hi) << 32;
91 	val |= lo;
92 
93 	return val;
94 }
95 
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 	struct e1000_hw *hw = &igb->hw;
101 	u32 lo, hi;
102 	u64 val;
103 
104 	/* The timestamp latches on lowest register read. For the 82580
105 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106 	 * need to provide nanosecond resolution, so we just ignore it.
107 	 */
108 	rd32(E1000_SYSTIMR);
109 	lo = rd32(E1000_SYSTIML);
110 	hi = rd32(E1000_SYSTIMH);
111 
112 	val = ((u64) hi) << 32;
113 	val |= lo;
114 
115 	return val;
116 }
117 
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120 {
121 	struct e1000_hw *hw = &adapter->hw;
122 	u32 sec, nsec;
123 
124 	/* The timestamp latches on lowest register read. For I210/I211, the
125 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126 	 * resolution, we can ignore it.
127 	 */
128 	rd32(E1000_SYSTIMR);
129 	nsec = rd32(E1000_SYSTIML);
130 	sec = rd32(E1000_SYSTIMH);
131 
132 	ts->tv_sec = sec;
133 	ts->tv_nsec = nsec;
134 }
135 
136 static void igb_ptp_write_i210(struct igb_adapter *adapter,
137 			       const struct timespec *ts)
138 {
139 	struct e1000_hw *hw = &adapter->hw;
140 
141 	/* Writing the SYSTIMR register is not necessary as it only provides
142 	 * sub-nanosecond resolution.
143 	 */
144 	wr32(E1000_SYSTIML, ts->tv_nsec);
145 	wr32(E1000_SYSTIMH, ts->tv_sec);
146 }
147 
148 /**
149  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150  * @adapter: board private structure
151  * @hwtstamps: timestamp structure to update
152  * @systim: unsigned 64bit system time value.
153  *
154  * We need to convert the system time value stored in the RX/TXSTMP registers
155  * into a hwtstamp which can be used by the upper level timestamping functions.
156  *
157  * The 'tmreg_lock' spinlock is used to protect the consistency of the
158  * system time value. This is needed because reading the 64 bit time
159  * value involves reading two (or three) 32 bit registers. The first
160  * read latches the value. Ditto for writing.
161  *
162  * In addition, here have extended the system time with an overflow
163  * counter in software.
164  **/
165 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166 				       struct skb_shared_hwtstamps *hwtstamps,
167 				       u64 systim)
168 {
169 	unsigned long flags;
170 	u64 ns;
171 
172 	switch (adapter->hw.mac.type) {
173 	case e1000_82576:
174 	case e1000_82580:
175 	case e1000_i354:
176 	case e1000_i350:
177 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
178 
179 		ns = timecounter_cyc2time(&adapter->tc, systim);
180 
181 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182 
183 		memset(hwtstamps, 0, sizeof(*hwtstamps));
184 		hwtstamps->hwtstamp = ns_to_ktime(ns);
185 		break;
186 	case e1000_i210:
187 	case e1000_i211:
188 		memset(hwtstamps, 0, sizeof(*hwtstamps));
189 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
190 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
191 						systim & 0xFFFFFFFF);
192 		break;
193 	default:
194 		break;
195 	}
196 }
197 
198 /* PTP clock operations */
199 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200 {
201 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202 					       ptp_caps);
203 	struct e1000_hw *hw = &igb->hw;
204 	int neg_adj = 0;
205 	u64 rate;
206 	u32 incvalue;
207 
208 	if (ppb < 0) {
209 		neg_adj = 1;
210 		ppb = -ppb;
211 	}
212 	rate = ppb;
213 	rate <<= 14;
214 	rate = div_u64(rate, 1953125);
215 
216 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217 
218 	if (neg_adj)
219 		incvalue -= rate;
220 	else
221 		incvalue += rate;
222 
223 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224 
225 	return 0;
226 }
227 
228 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229 {
230 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 					       ptp_caps);
232 	struct e1000_hw *hw = &igb->hw;
233 	int neg_adj = 0;
234 	u64 rate;
235 	u32 inca;
236 
237 	if (ppb < 0) {
238 		neg_adj = 1;
239 		ppb = -ppb;
240 	}
241 	rate = ppb;
242 	rate <<= 26;
243 	rate = div_u64(rate, 1953125);
244 
245 	inca = rate & INCVALUE_MASK;
246 	if (neg_adj)
247 		inca |= ISGN;
248 
249 	wr32(E1000_TIMINCA, inca);
250 
251 	return 0;
252 }
253 
254 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255 {
256 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257 					       ptp_caps);
258 	unsigned long flags;
259 	s64 now;
260 
261 	spin_lock_irqsave(&igb->tmreg_lock, flags);
262 
263 	now = timecounter_read(&igb->tc);
264 	now += delta;
265 	timecounter_init(&igb->tc, &igb->cc, now);
266 
267 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268 
269 	return 0;
270 }
271 
272 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
273 {
274 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275 					       ptp_caps);
276 	unsigned long flags;
277 	struct timespec now, then = ns_to_timespec(delta);
278 
279 	spin_lock_irqsave(&igb->tmreg_lock, flags);
280 
281 	igb_ptp_read_i210(igb, &now);
282 	now = timespec_add(now, then);
283 	igb_ptp_write_i210(igb, (const struct timespec *)&now);
284 
285 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286 
287 	return 0;
288 }
289 
290 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291 				 struct timespec *ts)
292 {
293 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294 					       ptp_caps);
295 	unsigned long flags;
296 	u64 ns;
297 	u32 remainder;
298 
299 	spin_lock_irqsave(&igb->tmreg_lock, flags);
300 
301 	ns = timecounter_read(&igb->tc);
302 
303 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304 
305 	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306 	ts->tv_nsec = remainder;
307 
308 	return 0;
309 }
310 
311 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312 				struct timespec *ts)
313 {
314 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315 					       ptp_caps);
316 	unsigned long flags;
317 
318 	spin_lock_irqsave(&igb->tmreg_lock, flags);
319 
320 	igb_ptp_read_i210(igb, ts);
321 
322 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323 
324 	return 0;
325 }
326 
327 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328 				 const struct timespec *ts)
329 {
330 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331 					       ptp_caps);
332 	unsigned long flags;
333 	u64 ns;
334 
335 	ns = ts->tv_sec * 1000000000ULL;
336 	ns += ts->tv_nsec;
337 
338 	spin_lock_irqsave(&igb->tmreg_lock, flags);
339 
340 	timecounter_init(&igb->tc, &igb->cc, ns);
341 
342 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343 
344 	return 0;
345 }
346 
347 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348 				const struct timespec *ts)
349 {
350 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351 					       ptp_caps);
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&igb->tmreg_lock, flags);
355 
356 	igb_ptp_write_i210(igb, ts);
357 
358 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359 
360 	return 0;
361 }
362 
363 static int igb_ptp_enable(struct ptp_clock_info *ptp,
364 			  struct ptp_clock_request *rq, int on)
365 {
366 	return -EOPNOTSUPP;
367 }
368 
369 /**
370  * igb_ptp_tx_work
371  * @work: pointer to work struct
372  *
373  * This work function polls the TSYNCTXCTL valid bit to determine when a
374  * timestamp has been taken for the current stored skb.
375  **/
376 static void igb_ptp_tx_work(struct work_struct *work)
377 {
378 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379 						   ptp_tx_work);
380 	struct e1000_hw *hw = &adapter->hw;
381 	u32 tsynctxctl;
382 
383 	if (!adapter->ptp_tx_skb)
384 		return;
385 
386 	if (time_is_before_jiffies(adapter->ptp_tx_start +
387 				   IGB_PTP_TX_TIMEOUT)) {
388 		dev_kfree_skb_any(adapter->ptp_tx_skb);
389 		adapter->ptp_tx_skb = NULL;
390 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
391 		adapter->tx_hwtstamp_timeouts++;
392 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
393 		return;
394 	}
395 
396 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
397 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
398 		igb_ptp_tx_hwtstamp(adapter);
399 	else
400 		/* reschedule to check later */
401 		schedule_work(&adapter->ptp_tx_work);
402 }
403 
404 static void igb_ptp_overflow_check(struct work_struct *work)
405 {
406 	struct igb_adapter *igb =
407 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
408 	struct timespec ts;
409 
410 	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
411 
412 	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
413 
414 	schedule_delayed_work(&igb->ptp_overflow_work,
415 			      IGB_SYSTIM_OVERFLOW_PERIOD);
416 }
417 
418 /**
419  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
420  * @adapter: private network adapter structure
421  *
422  * This watchdog task is scheduled to detect error case where hardware has
423  * dropped an Rx packet that was timestamped when the ring is full. The
424  * particular error is rare but leaves the device in a state unable to timestamp
425  * any future packets.
426  **/
427 void igb_ptp_rx_hang(struct igb_adapter *adapter)
428 {
429 	struct e1000_hw *hw = &adapter->hw;
430 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
431 	unsigned long rx_event;
432 
433 	if (hw->mac.type != e1000_82576)
434 		return;
435 
436 	/* If we don't have a valid timestamp in the registers, just update the
437 	 * timeout counter and exit
438 	 */
439 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
440 		adapter->last_rx_ptp_check = jiffies;
441 		return;
442 	}
443 
444 	/* Determine the most recent watchdog or rx_timestamp event */
445 	rx_event = adapter->last_rx_ptp_check;
446 	if (time_after(adapter->last_rx_timestamp, rx_event))
447 		rx_event = adapter->last_rx_timestamp;
448 
449 	/* Only need to read the high RXSTMP register to clear the lock */
450 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
451 		rd32(E1000_RXSTMPH);
452 		adapter->last_rx_ptp_check = jiffies;
453 		adapter->rx_hwtstamp_cleared++;
454 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
455 	}
456 }
457 
458 /**
459  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
460  * @adapter: Board private structure.
461  *
462  * If we were asked to do hardware stamping and such a time stamp is
463  * available, then it must have been for this skb here because we only
464  * allow only one such packet into the queue.
465  **/
466 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
467 {
468 	struct e1000_hw *hw = &adapter->hw;
469 	struct skb_shared_hwtstamps shhwtstamps;
470 	u64 regval;
471 
472 	regval = rd32(E1000_TXSTMPL);
473 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
474 
475 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
476 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
477 	dev_kfree_skb_any(adapter->ptp_tx_skb);
478 	adapter->ptp_tx_skb = NULL;
479 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
480 }
481 
482 /**
483  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
484  * @q_vector: Pointer to interrupt specific structure
485  * @va: Pointer to address containing Rx buffer
486  * @skb: Buffer containing timestamp and packet
487  *
488  * This function is meant to retrieve a timestamp from the first buffer of an
489  * incoming frame.  The value is stored in little endian format starting on
490  * byte 8.
491  **/
492 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
493 			 unsigned char *va,
494 			 struct sk_buff *skb)
495 {
496 	__le64 *regval = (__le64 *)va;
497 
498 	/* The timestamp is recorded in little endian format.
499 	 * DWORD: 0        1        2        3
500 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
501 	 */
502 	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
503 				   le64_to_cpu(regval[1]));
504 }
505 
506 /**
507  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
508  * @q_vector: Pointer to interrupt specific structure
509  * @skb: Buffer containing timestamp and packet
510  *
511  * This function is meant to retrieve a timestamp from the internal registers
512  * of the adapter and store it in the skb.
513  **/
514 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
515 			 struct sk_buff *skb)
516 {
517 	struct igb_adapter *adapter = q_vector->adapter;
518 	struct e1000_hw *hw = &adapter->hw;
519 	u64 regval;
520 
521 	/* If this bit is set, then the RX registers contain the time stamp. No
522 	 * other packet will be time stamped until we read these registers, so
523 	 * read the registers to make them available again. Because only one
524 	 * packet can be time stamped at a time, we know that the register
525 	 * values must belong to this one here and therefore we don't need to
526 	 * compare any of the additional attributes stored for it.
527 	 *
528 	 * If nothing went wrong, then it should have a shared tx_flags that we
529 	 * can turn into a skb_shared_hwtstamps.
530 	 */
531 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
532 		return;
533 
534 	regval = rd32(E1000_RXSTMPL);
535 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
536 
537 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
538 
539 	/* Update the last_rx_timestamp timer in order to enable watchdog check
540 	 * for error case of latched timestamp on a dropped packet.
541 	 */
542 	adapter->last_rx_timestamp = jiffies;
543 }
544 
545 /**
546  * igb_ptp_get_ts_config - get hardware time stamping config
547  * @netdev:
548  * @ifreq:
549  *
550  * Get the hwtstamp_config settings to return to the user. Rather than attempt
551  * to deconstruct the settings from the registers, just return a shadow copy
552  * of the last known settings.
553  **/
554 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
555 {
556 	struct igb_adapter *adapter = netdev_priv(netdev);
557 	struct hwtstamp_config *config = &adapter->tstamp_config;
558 
559 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
560 		-EFAULT : 0;
561 }
562 /**
563  * igb_ptp_set_ts_config - control hardware time stamping
564  * @netdev:
565  * @ifreq:
566  *
567  * Outgoing time stamping can be enabled and disabled. Play nice and
568  * disable it when requested, although it shouldn't case any overhead
569  * when no packet needs it. At most one packet in the queue may be
570  * marked for time stamping, otherwise it would be impossible to tell
571  * for sure to which packet the hardware time stamp belongs.
572  *
573  * Incoming time stamping has to be configured via the hardware
574  * filters. Not all combinations are supported, in particular event
575  * type has to be specified. Matching the kind of event packet is
576  * not supported, with the exception of "all V2 events regardless of
577  * level 2 or 4".
578  **/
579 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
580 {
581 	struct igb_adapter *adapter = netdev_priv(netdev);
582 	struct e1000_hw *hw = &adapter->hw;
583 	struct hwtstamp_config *config = &adapter->tstamp_config;
584 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
585 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
586 	u32 tsync_rx_cfg = 0;
587 	bool is_l4 = false;
588 	bool is_l2 = false;
589 	u32 regval;
590 
591 	if (copy_from_user(config, ifr->ifr_data, sizeof(*config)))
592 		return -EFAULT;
593 
594 	/* reserved for future extensions */
595 	if (config->flags)
596 		return -EINVAL;
597 
598 	switch (config->tx_type) {
599 	case HWTSTAMP_TX_OFF:
600 		tsync_tx_ctl = 0;
601 	case HWTSTAMP_TX_ON:
602 		break;
603 	default:
604 		return -ERANGE;
605 	}
606 
607 	switch (config->rx_filter) {
608 	case HWTSTAMP_FILTER_NONE:
609 		tsync_rx_ctl = 0;
610 		break;
611 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
612 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
613 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
614 		is_l4 = true;
615 		break;
616 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
617 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
618 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
619 		is_l4 = true;
620 		break;
621 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
622 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
623 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
624 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
625 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
626 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
627 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
628 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
629 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
630 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
631 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
632 		is_l2 = true;
633 		is_l4 = true;
634 		break;
635 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
636 	case HWTSTAMP_FILTER_ALL:
637 		/* 82576 cannot timestamp all packets, which it needs to do to
638 		 * support both V1 Sync and Delay_Req messages
639 		 */
640 		if (hw->mac.type != e1000_82576) {
641 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
642 			config->rx_filter = HWTSTAMP_FILTER_ALL;
643 			break;
644 		}
645 		/* fall through */
646 	default:
647 		config->rx_filter = HWTSTAMP_FILTER_NONE;
648 		return -ERANGE;
649 	}
650 
651 	if (hw->mac.type == e1000_82575) {
652 		if (tsync_rx_ctl | tsync_tx_ctl)
653 			return -EINVAL;
654 		return 0;
655 	}
656 
657 	/* Per-packet timestamping only works if all packets are
658 	 * timestamped, so enable timestamping in all packets as
659 	 * long as one Rx filter was configured.
660 	 */
661 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
662 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
663 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
664 		config->rx_filter = HWTSTAMP_FILTER_ALL;
665 		is_l2 = true;
666 		is_l4 = true;
667 
668 		if ((hw->mac.type == e1000_i210) ||
669 		    (hw->mac.type == e1000_i211)) {
670 			regval = rd32(E1000_RXPBS);
671 			regval |= E1000_RXPBS_CFG_TS_EN;
672 			wr32(E1000_RXPBS, regval);
673 		}
674 	}
675 
676 	/* enable/disable TX */
677 	regval = rd32(E1000_TSYNCTXCTL);
678 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
679 	regval |= tsync_tx_ctl;
680 	wr32(E1000_TSYNCTXCTL, regval);
681 
682 	/* enable/disable RX */
683 	regval = rd32(E1000_TSYNCRXCTL);
684 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
685 	regval |= tsync_rx_ctl;
686 	wr32(E1000_TSYNCRXCTL, regval);
687 
688 	/* define which PTP packets are time stamped */
689 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
690 
691 	/* define ethertype filter for timestamped packets */
692 	if (is_l2)
693 		wr32(E1000_ETQF(3),
694 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
695 		      E1000_ETQF_1588 | /* enable timestamping */
696 		      ETH_P_1588));     /* 1588 eth protocol type */
697 	else
698 		wr32(E1000_ETQF(3), 0);
699 
700 	/* L4 Queue Filter[3]: filter by destination port and protocol */
701 	if (is_l4) {
702 		u32 ftqf = (IPPROTO_UDP /* UDP */
703 			| E1000_FTQF_VF_BP /* VF not compared */
704 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
705 			| E1000_FTQF_MASK); /* mask all inputs */
706 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
707 
708 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
709 		wr32(E1000_IMIREXT(3),
710 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
711 		if (hw->mac.type == e1000_82576) {
712 			/* enable source port check */
713 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
714 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
715 		}
716 		wr32(E1000_FTQF(3), ftqf);
717 	} else {
718 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
719 	}
720 	wrfl();
721 
722 	/* clear TX/RX time stamp registers, just to be sure */
723 	regval = rd32(E1000_TXSTMPL);
724 	regval = rd32(E1000_TXSTMPH);
725 	regval = rd32(E1000_RXSTMPL);
726 	regval = rd32(E1000_RXSTMPH);
727 
728 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
729 		-EFAULT : 0;
730 }
731 
732 void igb_ptp_init(struct igb_adapter *adapter)
733 {
734 	struct e1000_hw *hw = &adapter->hw;
735 	struct net_device *netdev = adapter->netdev;
736 
737 	switch (hw->mac.type) {
738 	case e1000_82576:
739 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
740 		adapter->ptp_caps.owner = THIS_MODULE;
741 		adapter->ptp_caps.max_adj = 999999881;
742 		adapter->ptp_caps.n_ext_ts = 0;
743 		adapter->ptp_caps.pps = 0;
744 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
745 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
746 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
747 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
748 		adapter->ptp_caps.enable = igb_ptp_enable;
749 		adapter->cc.read = igb_ptp_read_82576;
750 		adapter->cc.mask = CLOCKSOURCE_MASK(64);
751 		adapter->cc.mult = 1;
752 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
753 		/* Dial the nominal frequency. */
754 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
755 		break;
756 	case e1000_82580:
757 	case e1000_i354:
758 	case e1000_i350:
759 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
760 		adapter->ptp_caps.owner = THIS_MODULE;
761 		adapter->ptp_caps.max_adj = 62499999;
762 		adapter->ptp_caps.n_ext_ts = 0;
763 		adapter->ptp_caps.pps = 0;
764 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
765 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
766 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
767 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
768 		adapter->ptp_caps.enable = igb_ptp_enable;
769 		adapter->cc.read = igb_ptp_read_82580;
770 		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
771 		adapter->cc.mult = 1;
772 		adapter->cc.shift = 0;
773 		/* Enable the timer functions by clearing bit 31. */
774 		wr32(E1000_TSAUXC, 0x0);
775 		break;
776 	case e1000_i210:
777 	case e1000_i211:
778 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
779 		adapter->ptp_caps.owner = THIS_MODULE;
780 		adapter->ptp_caps.max_adj = 62499999;
781 		adapter->ptp_caps.n_ext_ts = 0;
782 		adapter->ptp_caps.pps = 0;
783 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
784 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
785 		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
786 		adapter->ptp_caps.settime = igb_ptp_settime_i210;
787 		adapter->ptp_caps.enable = igb_ptp_enable;
788 		/* Enable the timer functions by clearing bit 31. */
789 		wr32(E1000_TSAUXC, 0x0);
790 		break;
791 	default:
792 		adapter->ptp_clock = NULL;
793 		return;
794 	}
795 
796 	wrfl();
797 
798 	spin_lock_init(&adapter->tmreg_lock);
799 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
800 
801 	/* Initialize the clock and overflow work for devices that need it. */
802 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
803 		struct timespec ts = ktime_to_timespec(ktime_get_real());
804 
805 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
806 	} else {
807 		timecounter_init(&adapter->tc, &adapter->cc,
808 				 ktime_to_ns(ktime_get_real()));
809 
810 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
811 				  igb_ptp_overflow_check);
812 
813 		schedule_delayed_work(&adapter->ptp_overflow_work,
814 				      IGB_SYSTIM_OVERFLOW_PERIOD);
815 	}
816 
817 	/* Initialize the time sync interrupts for devices that support it. */
818 	if (hw->mac.type >= e1000_82580) {
819 		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
820 		wr32(E1000_IMS, E1000_IMS_TS);
821 	}
822 
823 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
824 						&adapter->pdev->dev);
825 	if (IS_ERR(adapter->ptp_clock)) {
826 		adapter->ptp_clock = NULL;
827 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
828 	} else {
829 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
830 			 adapter->netdev->name);
831 		adapter->flags |= IGB_FLAG_PTP;
832 	}
833 }
834 
835 /**
836  * igb_ptp_stop - Disable PTP device and stop the overflow check.
837  * @adapter: Board private structure.
838  *
839  * This function stops the PTP support and cancels the delayed work.
840  **/
841 void igb_ptp_stop(struct igb_adapter *adapter)
842 {
843 	switch (adapter->hw.mac.type) {
844 	case e1000_82576:
845 	case e1000_82580:
846 	case e1000_i354:
847 	case e1000_i350:
848 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
849 		break;
850 	case e1000_i210:
851 	case e1000_i211:
852 		/* No delayed work to cancel. */
853 		break;
854 	default:
855 		return;
856 	}
857 
858 	cancel_work_sync(&adapter->ptp_tx_work);
859 	if (adapter->ptp_tx_skb) {
860 		dev_kfree_skb_any(adapter->ptp_tx_skb);
861 		adapter->ptp_tx_skb = NULL;
862 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
863 	}
864 
865 	if (adapter->ptp_clock) {
866 		ptp_clock_unregister(adapter->ptp_clock);
867 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
868 			 adapter->netdev->name);
869 		adapter->flags &= ~IGB_FLAG_PTP;
870 	}
871 }
872 
873 /**
874  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
875  * @adapter: Board private structure.
876  *
877  * This function handles the reset work required to re-enable the PTP device.
878  **/
879 void igb_ptp_reset(struct igb_adapter *adapter)
880 {
881 	struct e1000_hw *hw = &adapter->hw;
882 
883 	if (!(adapter->flags & IGB_FLAG_PTP))
884 		return;
885 
886 	/* reset the tstamp_config */
887 	memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
888 
889 	switch (adapter->hw.mac.type) {
890 	case e1000_82576:
891 		/* Dial the nominal frequency. */
892 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
893 		break;
894 	case e1000_82580:
895 	case e1000_i354:
896 	case e1000_i350:
897 	case e1000_i210:
898 	case e1000_i211:
899 		/* Enable the timer functions and interrupts. */
900 		wr32(E1000_TSAUXC, 0x0);
901 		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
902 		wr32(E1000_IMS, E1000_IMS_TS);
903 		break;
904 	default:
905 		/* No work to do. */
906 		return;
907 	}
908 
909 	/* Re-initialize the timer. */
910 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
911 		struct timespec ts = ktime_to_timespec(ktime_get_real());
912 
913 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
914 	} else {
915 		timecounter_init(&adapter->tc, &adapter->cc,
916 				 ktime_to_ns(ktime_get_real()));
917 	}
918 }
919