1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580 2 * 3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 #include <linux/module.h> 19 #include <linux/device.h> 20 #include <linux/pci.h> 21 #include <linux/ptp_classify.h> 22 23 #include "igb.h" 24 25 #define INCVALUE_MASK 0x7fffffff 26 #define ISGN 0x80000000 27 28 /* The 82580 timesync updates the system timer every 8ns by 8ns, 29 * and this update value cannot be reprogrammed. 30 * 31 * Neither the 82576 nor the 82580 offer registers wide enough to hold 32 * nanoseconds time values for very long. For the 82580, SYSTIM always 33 * counts nanoseconds, but the upper 24 bits are not available. The 34 * frequency is adjusted by changing the 32 bit fractional nanoseconds 35 * register, TIMINCA. 36 * 37 * For the 82576, the SYSTIM register time unit is affect by the 38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this 39 * field are needed to provide the nominal 16 nanosecond period, 40 * leaving 19 bits for fractional nanoseconds. 41 * 42 * We scale the NIC clock cycle by a large factor so that relatively 43 * small clock corrections can be added or subtracted at each clock 44 * tick. The drawbacks of a large factor are a) that the clock 45 * register overflows more quickly (not such a big deal) and b) that 46 * the increment per tick has to fit into 24 bits. As a result we 47 * need to use a shift of 19 so we can fit a value of 16 into the 48 * TIMINCA register. 49 * 50 * 51 * SYSTIMH SYSTIML 52 * +--------------+ +---+---+------+ 53 * 82576 | 32 | | 8 | 5 | 19 | 54 * +--------------+ +---+---+------+ 55 * \________ 45 bits _______/ fract 56 * 57 * +----------+---+ +--------------+ 58 * 82580 | 24 | 8 | | 32 | 59 * +----------+---+ +--------------+ 60 * reserved \______ 40 bits _____/ 61 * 62 * 63 * The 45 bit 82576 SYSTIM overflows every 64 * 2^45 * 10^-9 / 3600 = 9.77 hours. 65 * 66 * The 40 bit 82580 SYSTIM overflows every 67 * 2^40 * 10^-9 / 60 = 18.3 minutes. 68 */ 69 70 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9) 71 #define IGB_PTP_TX_TIMEOUT (HZ * 15) 72 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT) 73 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1) 74 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT) 75 #define IGB_NBITS_82580 40 76 77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); 78 79 /* SYSTIM read access for the 82576 */ 80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc) 81 { 82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 83 struct e1000_hw *hw = &igb->hw; 84 u64 val; 85 u32 lo, hi; 86 87 lo = rd32(E1000_SYSTIML); 88 hi = rd32(E1000_SYSTIMH); 89 90 val = ((u64) hi) << 32; 91 val |= lo; 92 93 return val; 94 } 95 96 /* SYSTIM read access for the 82580 */ 97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc) 98 { 99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); 100 struct e1000_hw *hw = &igb->hw; 101 u32 lo, hi; 102 u64 val; 103 104 /* The timestamp latches on lowest register read. For the 82580 105 * the lowest register is SYSTIMR instead of SYSTIML. However we only 106 * need to provide nanosecond resolution, so we just ignore it. 107 */ 108 rd32(E1000_SYSTIMR); 109 lo = rd32(E1000_SYSTIML); 110 hi = rd32(E1000_SYSTIMH); 111 112 val = ((u64) hi) << 32; 113 val |= lo; 114 115 return val; 116 } 117 118 /* SYSTIM read access for I210/I211 */ 119 static void igb_ptp_read_i210(struct igb_adapter *adapter, 120 struct timespec64 *ts) 121 { 122 struct e1000_hw *hw = &adapter->hw; 123 u32 sec, nsec; 124 125 /* The timestamp latches on lowest register read. For I210/I211, the 126 * lowest register is SYSTIMR. Since we only need to provide nanosecond 127 * resolution, we can ignore it. 128 */ 129 rd32(E1000_SYSTIMR); 130 nsec = rd32(E1000_SYSTIML); 131 sec = rd32(E1000_SYSTIMH); 132 133 ts->tv_sec = sec; 134 ts->tv_nsec = nsec; 135 } 136 137 static void igb_ptp_write_i210(struct igb_adapter *adapter, 138 const struct timespec64 *ts) 139 { 140 struct e1000_hw *hw = &adapter->hw; 141 142 /* Writing the SYSTIMR register is not necessary as it only provides 143 * sub-nanosecond resolution. 144 */ 145 wr32(E1000_SYSTIML, ts->tv_nsec); 146 wr32(E1000_SYSTIMH, ts->tv_sec); 147 } 148 149 /** 150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp 151 * @adapter: board private structure 152 * @hwtstamps: timestamp structure to update 153 * @systim: unsigned 64bit system time value. 154 * 155 * We need to convert the system time value stored in the RX/TXSTMP registers 156 * into a hwtstamp which can be used by the upper level timestamping functions. 157 * 158 * The 'tmreg_lock' spinlock is used to protect the consistency of the 159 * system time value. This is needed because reading the 64 bit time 160 * value involves reading two (or three) 32 bit registers. The first 161 * read latches the value. Ditto for writing. 162 * 163 * In addition, here have extended the system time with an overflow 164 * counter in software. 165 **/ 166 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, 167 struct skb_shared_hwtstamps *hwtstamps, 168 u64 systim) 169 { 170 unsigned long flags; 171 u64 ns; 172 173 switch (adapter->hw.mac.type) { 174 case e1000_82576: 175 case e1000_82580: 176 case e1000_i354: 177 case e1000_i350: 178 spin_lock_irqsave(&adapter->tmreg_lock, flags); 179 180 ns = timecounter_cyc2time(&adapter->tc, systim); 181 182 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 183 184 memset(hwtstamps, 0, sizeof(*hwtstamps)); 185 hwtstamps->hwtstamp = ns_to_ktime(ns); 186 break; 187 case e1000_i210: 188 case e1000_i211: 189 memset(hwtstamps, 0, sizeof(*hwtstamps)); 190 /* Upper 32 bits contain s, lower 32 bits contain ns. */ 191 hwtstamps->hwtstamp = ktime_set(systim >> 32, 192 systim & 0xFFFFFFFF); 193 break; 194 default: 195 break; 196 } 197 } 198 199 /* PTP clock operations */ 200 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb) 201 { 202 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 203 ptp_caps); 204 struct e1000_hw *hw = &igb->hw; 205 int neg_adj = 0; 206 u64 rate; 207 u32 incvalue; 208 209 if (ppb < 0) { 210 neg_adj = 1; 211 ppb = -ppb; 212 } 213 rate = ppb; 214 rate <<= 14; 215 rate = div_u64(rate, 1953125); 216 217 incvalue = 16 << IGB_82576_TSYNC_SHIFT; 218 219 if (neg_adj) 220 incvalue -= rate; 221 else 222 incvalue += rate; 223 224 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); 225 226 return 0; 227 } 228 229 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb) 230 { 231 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 232 ptp_caps); 233 struct e1000_hw *hw = &igb->hw; 234 int neg_adj = 0; 235 u64 rate; 236 u32 inca; 237 238 if (ppb < 0) { 239 neg_adj = 1; 240 ppb = -ppb; 241 } 242 rate = ppb; 243 rate <<= 26; 244 rate = div_u64(rate, 1953125); 245 246 inca = rate & INCVALUE_MASK; 247 if (neg_adj) 248 inca |= ISGN; 249 250 wr32(E1000_TIMINCA, inca); 251 252 return 0; 253 } 254 255 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) 256 { 257 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 258 ptp_caps); 259 unsigned long flags; 260 261 spin_lock_irqsave(&igb->tmreg_lock, flags); 262 timecounter_adjtime(&igb->tc, delta); 263 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 264 265 return 0; 266 } 267 268 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) 269 { 270 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 271 ptp_caps); 272 unsigned long flags; 273 struct timespec64 now, then = ns_to_timespec64(delta); 274 275 spin_lock_irqsave(&igb->tmreg_lock, flags); 276 277 igb_ptp_read_i210(igb, &now); 278 now = timespec64_add(now, then); 279 igb_ptp_write_i210(igb, (const struct timespec64 *)&now); 280 281 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 282 283 return 0; 284 } 285 286 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp, 287 struct timespec64 *ts) 288 { 289 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 290 ptp_caps); 291 unsigned long flags; 292 u64 ns; 293 294 spin_lock_irqsave(&igb->tmreg_lock, flags); 295 296 ns = timecounter_read(&igb->tc); 297 298 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 299 300 *ts = ns_to_timespec64(ns); 301 302 return 0; 303 } 304 305 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp, 306 struct timespec64 *ts) 307 { 308 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 309 ptp_caps); 310 unsigned long flags; 311 312 spin_lock_irqsave(&igb->tmreg_lock, flags); 313 314 igb_ptp_read_i210(igb, ts); 315 316 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 317 318 return 0; 319 } 320 321 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, 322 const struct timespec64 *ts) 323 { 324 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 325 ptp_caps); 326 unsigned long flags; 327 u64 ns; 328 329 ns = timespec64_to_ns(ts); 330 331 spin_lock_irqsave(&igb->tmreg_lock, flags); 332 333 timecounter_init(&igb->tc, &igb->cc, ns); 334 335 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 336 337 return 0; 338 } 339 340 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, 341 const struct timespec64 *ts) 342 { 343 struct igb_adapter *igb = container_of(ptp, struct igb_adapter, 344 ptp_caps); 345 unsigned long flags; 346 347 spin_lock_irqsave(&igb->tmreg_lock, flags); 348 349 igb_ptp_write_i210(igb, ts); 350 351 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 352 353 return 0; 354 } 355 356 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) 357 { 358 u32 *ptr = pin < 2 ? ctrl : ctrl_ext; 359 static const u32 mask[IGB_N_SDP] = { 360 E1000_CTRL_SDP0_DIR, 361 E1000_CTRL_SDP1_DIR, 362 E1000_CTRL_EXT_SDP2_DIR, 363 E1000_CTRL_EXT_SDP3_DIR, 364 }; 365 366 if (input) 367 *ptr &= ~mask[pin]; 368 else 369 *ptr |= mask[pin]; 370 } 371 372 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin) 373 { 374 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 375 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 376 }; 377 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 378 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 379 }; 380 static const u32 ts_sdp_en[IGB_N_SDP] = { 381 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 382 }; 383 struct e1000_hw *hw = &igb->hw; 384 u32 ctrl, ctrl_ext, tssdp = 0; 385 386 ctrl = rd32(E1000_CTRL); 387 ctrl_ext = rd32(E1000_CTRL_EXT); 388 tssdp = rd32(E1000_TSSDP); 389 390 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext); 391 392 /* Make sure this pin is not enabled as an output. */ 393 tssdp &= ~ts_sdp_en[pin]; 394 395 if (chan == 1) { 396 tssdp &= ~AUX1_SEL_SDP3; 397 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN; 398 } else { 399 tssdp &= ~AUX0_SEL_SDP3; 400 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN; 401 } 402 403 wr32(E1000_TSSDP, tssdp); 404 wr32(E1000_CTRL, ctrl); 405 wr32(E1000_CTRL_EXT, ctrl_ext); 406 } 407 408 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin) 409 { 410 static const u32 aux0_sel_sdp[IGB_N_SDP] = { 411 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3, 412 }; 413 static const u32 aux1_sel_sdp[IGB_N_SDP] = { 414 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3, 415 }; 416 static const u32 ts_sdp_en[IGB_N_SDP] = { 417 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN, 418 }; 419 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = { 420 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0, 421 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0, 422 }; 423 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = { 424 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1, 425 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1, 426 }; 427 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = { 428 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1, 429 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1, 430 }; 431 struct e1000_hw *hw = &igb->hw; 432 u32 ctrl, ctrl_ext, tssdp = 0; 433 434 ctrl = rd32(E1000_CTRL); 435 ctrl_ext = rd32(E1000_CTRL_EXT); 436 tssdp = rd32(E1000_TSSDP); 437 438 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext); 439 440 /* Make sure this pin is not enabled as an input. */ 441 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin]) 442 tssdp &= ~AUX0_TS_SDP_EN; 443 444 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin]) 445 tssdp &= ~AUX1_TS_SDP_EN; 446 447 tssdp &= ~ts_sdp_sel_clr[pin]; 448 if (chan == 1) 449 tssdp |= ts_sdp_sel_tt1[pin]; 450 else 451 tssdp |= ts_sdp_sel_tt0[pin]; 452 453 tssdp |= ts_sdp_en[pin]; 454 455 wr32(E1000_TSSDP, tssdp); 456 wr32(E1000_CTRL, ctrl); 457 wr32(E1000_CTRL_EXT, ctrl_ext); 458 } 459 460 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp, 461 struct ptp_clock_request *rq, int on) 462 { 463 struct igb_adapter *igb = 464 container_of(ptp, struct igb_adapter, ptp_caps); 465 struct e1000_hw *hw = &igb->hw; 466 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh; 467 unsigned long flags; 468 struct timespec ts; 469 int pin = -1; 470 s64 ns; 471 472 switch (rq->type) { 473 case PTP_CLK_REQ_EXTTS: 474 if (on) { 475 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS, 476 rq->extts.index); 477 if (pin < 0) 478 return -EBUSY; 479 } 480 if (rq->extts.index == 1) { 481 tsauxc_mask = TSAUXC_EN_TS1; 482 tsim_mask = TSINTR_AUTT1; 483 } else { 484 tsauxc_mask = TSAUXC_EN_TS0; 485 tsim_mask = TSINTR_AUTT0; 486 } 487 spin_lock_irqsave(&igb->tmreg_lock, flags); 488 tsauxc = rd32(E1000_TSAUXC); 489 tsim = rd32(E1000_TSIM); 490 if (on) { 491 igb_pin_extts(igb, rq->extts.index, pin); 492 tsauxc |= tsauxc_mask; 493 tsim |= tsim_mask; 494 } else { 495 tsauxc &= ~tsauxc_mask; 496 tsim &= ~tsim_mask; 497 } 498 wr32(E1000_TSAUXC, tsauxc); 499 wr32(E1000_TSIM, tsim); 500 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 501 return 0; 502 503 case PTP_CLK_REQ_PEROUT: 504 if (on) { 505 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT, 506 rq->perout.index); 507 if (pin < 0) 508 return -EBUSY; 509 } 510 ts.tv_sec = rq->perout.period.sec; 511 ts.tv_nsec = rq->perout.period.nsec; 512 ns = timespec_to_ns(&ts); 513 ns = ns >> 1; 514 if (on && ns < 500000LL) { 515 /* 2k interrupts per second is an awful lot. */ 516 return -EINVAL; 517 } 518 ts = ns_to_timespec(ns); 519 if (rq->perout.index == 1) { 520 tsauxc_mask = TSAUXC_EN_TT1; 521 tsim_mask = TSINTR_TT1; 522 trgttiml = E1000_TRGTTIML1; 523 trgttimh = E1000_TRGTTIMH1; 524 } else { 525 tsauxc_mask = TSAUXC_EN_TT0; 526 tsim_mask = TSINTR_TT0; 527 trgttiml = E1000_TRGTTIML0; 528 trgttimh = E1000_TRGTTIMH0; 529 } 530 spin_lock_irqsave(&igb->tmreg_lock, flags); 531 tsauxc = rd32(E1000_TSAUXC); 532 tsim = rd32(E1000_TSIM); 533 if (on) { 534 int i = rq->perout.index; 535 536 igb_pin_perout(igb, i, pin); 537 igb->perout[i].start.tv_sec = rq->perout.start.sec; 538 igb->perout[i].start.tv_nsec = rq->perout.start.nsec; 539 igb->perout[i].period.tv_sec = ts.tv_sec; 540 igb->perout[i].period.tv_nsec = ts.tv_nsec; 541 wr32(trgttiml, rq->perout.start.sec); 542 wr32(trgttimh, rq->perout.start.nsec); 543 tsauxc |= tsauxc_mask; 544 tsim |= tsim_mask; 545 } else { 546 tsauxc &= ~tsauxc_mask; 547 tsim &= ~tsim_mask; 548 } 549 wr32(E1000_TSAUXC, tsauxc); 550 wr32(E1000_TSIM, tsim); 551 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 552 return 0; 553 554 case PTP_CLK_REQ_PPS: 555 spin_lock_irqsave(&igb->tmreg_lock, flags); 556 tsim = rd32(E1000_TSIM); 557 if (on) 558 tsim |= TSINTR_SYS_WRAP; 559 else 560 tsim &= ~TSINTR_SYS_WRAP; 561 wr32(E1000_TSIM, tsim); 562 spin_unlock_irqrestore(&igb->tmreg_lock, flags); 563 return 0; 564 } 565 566 return -EOPNOTSUPP; 567 } 568 569 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp, 570 struct ptp_clock_request *rq, int on) 571 { 572 return -EOPNOTSUPP; 573 } 574 575 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, 576 enum ptp_pin_function func, unsigned int chan) 577 { 578 switch (func) { 579 case PTP_PF_NONE: 580 case PTP_PF_EXTTS: 581 case PTP_PF_PEROUT: 582 break; 583 case PTP_PF_PHYSYNC: 584 return -1; 585 } 586 return 0; 587 } 588 589 /** 590 * igb_ptp_tx_work 591 * @work: pointer to work struct 592 * 593 * This work function polls the TSYNCTXCTL valid bit to determine when a 594 * timestamp has been taken for the current stored skb. 595 **/ 596 static void igb_ptp_tx_work(struct work_struct *work) 597 { 598 struct igb_adapter *adapter = container_of(work, struct igb_adapter, 599 ptp_tx_work); 600 struct e1000_hw *hw = &adapter->hw; 601 u32 tsynctxctl; 602 603 if (!adapter->ptp_tx_skb) 604 return; 605 606 if (time_is_before_jiffies(adapter->ptp_tx_start + 607 IGB_PTP_TX_TIMEOUT)) { 608 dev_kfree_skb_any(adapter->ptp_tx_skb); 609 adapter->ptp_tx_skb = NULL; 610 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 611 adapter->tx_hwtstamp_timeouts++; 612 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); 613 return; 614 } 615 616 tsynctxctl = rd32(E1000_TSYNCTXCTL); 617 if (tsynctxctl & E1000_TSYNCTXCTL_VALID) 618 igb_ptp_tx_hwtstamp(adapter); 619 else 620 /* reschedule to check later */ 621 schedule_work(&adapter->ptp_tx_work); 622 } 623 624 static void igb_ptp_overflow_check(struct work_struct *work) 625 { 626 struct igb_adapter *igb = 627 container_of(work, struct igb_adapter, ptp_overflow_work.work); 628 struct timespec64 ts; 629 630 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts); 631 632 pr_debug("igb overflow check at %lld.%09lu\n", 633 (long long) ts.tv_sec, ts.tv_nsec); 634 635 schedule_delayed_work(&igb->ptp_overflow_work, 636 IGB_SYSTIM_OVERFLOW_PERIOD); 637 } 638 639 /** 640 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched 641 * @adapter: private network adapter structure 642 * 643 * This watchdog task is scheduled to detect error case where hardware has 644 * dropped an Rx packet that was timestamped when the ring is full. The 645 * particular error is rare but leaves the device in a state unable to timestamp 646 * any future packets. 647 **/ 648 void igb_ptp_rx_hang(struct igb_adapter *adapter) 649 { 650 struct e1000_hw *hw = &adapter->hw; 651 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); 652 unsigned long rx_event; 653 654 if (hw->mac.type != e1000_82576) 655 return; 656 657 /* If we don't have a valid timestamp in the registers, just update the 658 * timeout counter and exit 659 */ 660 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { 661 adapter->last_rx_ptp_check = jiffies; 662 return; 663 } 664 665 /* Determine the most recent watchdog or rx_timestamp event */ 666 rx_event = adapter->last_rx_ptp_check; 667 if (time_after(adapter->last_rx_timestamp, rx_event)) 668 rx_event = adapter->last_rx_timestamp; 669 670 /* Only need to read the high RXSTMP register to clear the lock */ 671 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 672 rd32(E1000_RXSTMPH); 673 adapter->last_rx_ptp_check = jiffies; 674 adapter->rx_hwtstamp_cleared++; 675 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n"); 676 } 677 } 678 679 /** 680 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp 681 * @adapter: Board private structure. 682 * 683 * If we were asked to do hardware stamping and such a time stamp is 684 * available, then it must have been for this skb here because we only 685 * allow only one such packet into the queue. 686 **/ 687 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) 688 { 689 struct e1000_hw *hw = &adapter->hw; 690 struct skb_shared_hwtstamps shhwtstamps; 691 u64 regval; 692 693 regval = rd32(E1000_TXSTMPL); 694 regval |= (u64)rd32(E1000_TXSTMPH) << 32; 695 696 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); 697 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps); 698 dev_kfree_skb_any(adapter->ptp_tx_skb); 699 adapter->ptp_tx_skb = NULL; 700 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 701 } 702 703 /** 704 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp 705 * @q_vector: Pointer to interrupt specific structure 706 * @va: Pointer to address containing Rx buffer 707 * @skb: Buffer containing timestamp and packet 708 * 709 * This function is meant to retrieve a timestamp from the first buffer of an 710 * incoming frame. The value is stored in little endian format starting on 711 * byte 8. 712 **/ 713 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, 714 unsigned char *va, 715 struct sk_buff *skb) 716 { 717 __le64 *regval = (__le64 *)va; 718 719 /* The timestamp is recorded in little endian format. 720 * DWORD: 0 1 2 3 721 * Field: Reserved Reserved SYSTIML SYSTIMH 722 */ 723 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), 724 le64_to_cpu(regval[1])); 725 } 726 727 /** 728 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register 729 * @q_vector: Pointer to interrupt specific structure 730 * @skb: Buffer containing timestamp and packet 731 * 732 * This function is meant to retrieve a timestamp from the internal registers 733 * of the adapter and store it in the skb. 734 **/ 735 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, 736 struct sk_buff *skb) 737 { 738 struct igb_adapter *adapter = q_vector->adapter; 739 struct e1000_hw *hw = &adapter->hw; 740 u64 regval; 741 742 /* If this bit is set, then the RX registers contain the time stamp. No 743 * other packet will be time stamped until we read these registers, so 744 * read the registers to make them available again. Because only one 745 * packet can be time stamped at a time, we know that the register 746 * values must belong to this one here and therefore we don't need to 747 * compare any of the additional attributes stored for it. 748 * 749 * If nothing went wrong, then it should have a shared tx_flags that we 750 * can turn into a skb_shared_hwtstamps. 751 */ 752 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 753 return; 754 755 regval = rd32(E1000_RXSTMPL); 756 regval |= (u64)rd32(E1000_RXSTMPH) << 32; 757 758 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 759 760 /* Update the last_rx_timestamp timer in order to enable watchdog check 761 * for error case of latched timestamp on a dropped packet. 762 */ 763 adapter->last_rx_timestamp = jiffies; 764 } 765 766 /** 767 * igb_ptp_get_ts_config - get hardware time stamping config 768 * @netdev: 769 * @ifreq: 770 * 771 * Get the hwtstamp_config settings to return to the user. Rather than attempt 772 * to deconstruct the settings from the registers, just return a shadow copy 773 * of the last known settings. 774 **/ 775 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) 776 { 777 struct igb_adapter *adapter = netdev_priv(netdev); 778 struct hwtstamp_config *config = &adapter->tstamp_config; 779 780 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 781 -EFAULT : 0; 782 } 783 784 /** 785 * igb_ptp_set_timestamp_mode - setup hardware for timestamping 786 * @adapter: networking device structure 787 * @config: hwtstamp configuration 788 * 789 * Outgoing time stamping can be enabled and disabled. Play nice and 790 * disable it when requested, although it shouldn't case any overhead 791 * when no packet needs it. At most one packet in the queue may be 792 * marked for time stamping, otherwise it would be impossible to tell 793 * for sure to which packet the hardware time stamp belongs. 794 * 795 * Incoming time stamping has to be configured via the hardware 796 * filters. Not all combinations are supported, in particular event 797 * type has to be specified. Matching the kind of event packet is 798 * not supported, with the exception of "all V2 events regardless of 799 * level 2 or 4". 800 */ 801 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter, 802 struct hwtstamp_config *config) 803 { 804 struct e1000_hw *hw = &adapter->hw; 805 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 806 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 807 u32 tsync_rx_cfg = 0; 808 bool is_l4 = false; 809 bool is_l2 = false; 810 u32 regval; 811 812 /* reserved for future extensions */ 813 if (config->flags) 814 return -EINVAL; 815 816 switch (config->tx_type) { 817 case HWTSTAMP_TX_OFF: 818 tsync_tx_ctl = 0; 819 case HWTSTAMP_TX_ON: 820 break; 821 default: 822 return -ERANGE; 823 } 824 825 switch (config->rx_filter) { 826 case HWTSTAMP_FILTER_NONE: 827 tsync_rx_ctl = 0; 828 break; 829 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 830 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 831 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; 832 is_l4 = true; 833 break; 834 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 835 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 836 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; 837 is_l4 = true; 838 break; 839 case HWTSTAMP_FILTER_PTP_V2_EVENT: 840 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 841 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 842 case HWTSTAMP_FILTER_PTP_V2_SYNC: 843 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 844 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 845 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 846 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 847 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 848 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 849 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 850 is_l2 = true; 851 is_l4 = true; 852 break; 853 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 854 case HWTSTAMP_FILTER_ALL: 855 /* 82576 cannot timestamp all packets, which it needs to do to 856 * support both V1 Sync and Delay_Req messages 857 */ 858 if (hw->mac.type != e1000_82576) { 859 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 860 config->rx_filter = HWTSTAMP_FILTER_ALL; 861 break; 862 } 863 /* fall through */ 864 default: 865 config->rx_filter = HWTSTAMP_FILTER_NONE; 866 return -ERANGE; 867 } 868 869 if (hw->mac.type == e1000_82575) { 870 if (tsync_rx_ctl | tsync_tx_ctl) 871 return -EINVAL; 872 return 0; 873 } 874 875 /* Per-packet timestamping only works if all packets are 876 * timestamped, so enable timestamping in all packets as 877 * long as one Rx filter was configured. 878 */ 879 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { 880 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 881 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 882 config->rx_filter = HWTSTAMP_FILTER_ALL; 883 is_l2 = true; 884 is_l4 = true; 885 886 if ((hw->mac.type == e1000_i210) || 887 (hw->mac.type == e1000_i211)) { 888 regval = rd32(E1000_RXPBS); 889 regval |= E1000_RXPBS_CFG_TS_EN; 890 wr32(E1000_RXPBS, regval); 891 } 892 } 893 894 /* enable/disable TX */ 895 regval = rd32(E1000_TSYNCTXCTL); 896 regval &= ~E1000_TSYNCTXCTL_ENABLED; 897 regval |= tsync_tx_ctl; 898 wr32(E1000_TSYNCTXCTL, regval); 899 900 /* enable/disable RX */ 901 regval = rd32(E1000_TSYNCRXCTL); 902 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 903 regval |= tsync_rx_ctl; 904 wr32(E1000_TSYNCRXCTL, regval); 905 906 /* define which PTP packets are time stamped */ 907 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); 908 909 /* define ethertype filter for timestamped packets */ 910 if (is_l2) 911 wr32(E1000_ETQF(3), 912 (E1000_ETQF_FILTER_ENABLE | /* enable filter */ 913 E1000_ETQF_1588 | /* enable timestamping */ 914 ETH_P_1588)); /* 1588 eth protocol type */ 915 else 916 wr32(E1000_ETQF(3), 0); 917 918 /* L4 Queue Filter[3]: filter by destination port and protocol */ 919 if (is_l4) { 920 u32 ftqf = (IPPROTO_UDP /* UDP */ 921 | E1000_FTQF_VF_BP /* VF not compared */ 922 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ 923 | E1000_FTQF_MASK); /* mask all inputs */ 924 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ 925 926 wr32(E1000_IMIR(3), htons(PTP_EV_PORT)); 927 wr32(E1000_IMIREXT(3), 928 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); 929 if (hw->mac.type == e1000_82576) { 930 /* enable source port check */ 931 wr32(E1000_SPQF(3), htons(PTP_EV_PORT)); 932 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; 933 } 934 wr32(E1000_FTQF(3), ftqf); 935 } else { 936 wr32(E1000_FTQF(3), E1000_FTQF_MASK); 937 } 938 wrfl(); 939 940 /* clear TX/RX time stamp registers, just to be sure */ 941 regval = rd32(E1000_TXSTMPL); 942 regval = rd32(E1000_TXSTMPH); 943 regval = rd32(E1000_RXSTMPL); 944 regval = rd32(E1000_RXSTMPH); 945 946 return 0; 947 } 948 949 /** 950 * igb_ptp_set_ts_config - set hardware time stamping config 951 * @netdev: 952 * @ifreq: 953 * 954 **/ 955 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) 956 { 957 struct igb_adapter *adapter = netdev_priv(netdev); 958 struct hwtstamp_config config; 959 int err; 960 961 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 962 return -EFAULT; 963 964 err = igb_ptp_set_timestamp_mode(adapter, &config); 965 if (err) 966 return err; 967 968 /* save these settings for future reference */ 969 memcpy(&adapter->tstamp_config, &config, 970 sizeof(adapter->tstamp_config)); 971 972 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 973 -EFAULT : 0; 974 } 975 976 void igb_ptp_init(struct igb_adapter *adapter) 977 { 978 struct e1000_hw *hw = &adapter->hw; 979 struct net_device *netdev = adapter->netdev; 980 int i; 981 982 switch (hw->mac.type) { 983 case e1000_82576: 984 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 985 adapter->ptp_caps.owner = THIS_MODULE; 986 adapter->ptp_caps.max_adj = 999999881; 987 adapter->ptp_caps.n_ext_ts = 0; 988 adapter->ptp_caps.pps = 0; 989 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576; 990 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 991 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576; 992 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 993 adapter->ptp_caps.enable = igb_ptp_feature_enable; 994 adapter->cc.read = igb_ptp_read_82576; 995 adapter->cc.mask = CYCLECOUNTER_MASK(64); 996 adapter->cc.mult = 1; 997 adapter->cc.shift = IGB_82576_TSYNC_SHIFT; 998 /* Dial the nominal frequency. */ 999 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); 1000 break; 1001 case e1000_82580: 1002 case e1000_i354: 1003 case e1000_i350: 1004 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1005 adapter->ptp_caps.owner = THIS_MODULE; 1006 adapter->ptp_caps.max_adj = 62499999; 1007 adapter->ptp_caps.n_ext_ts = 0; 1008 adapter->ptp_caps.pps = 0; 1009 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; 1010 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; 1011 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576; 1012 adapter->ptp_caps.settime64 = igb_ptp_settime_82576; 1013 adapter->ptp_caps.enable = igb_ptp_feature_enable; 1014 adapter->cc.read = igb_ptp_read_82580; 1015 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580); 1016 adapter->cc.mult = 1; 1017 adapter->cc.shift = 0; 1018 /* Enable the timer functions by clearing bit 31. */ 1019 wr32(E1000_TSAUXC, 0x0); 1020 break; 1021 case e1000_i210: 1022 case e1000_i211: 1023 for (i = 0; i < IGB_N_SDP; i++) { 1024 struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; 1025 1026 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); 1027 ppd->index = i; 1028 ppd->func = PTP_PF_NONE; 1029 } 1030 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); 1031 adapter->ptp_caps.owner = THIS_MODULE; 1032 adapter->ptp_caps.max_adj = 62499999; 1033 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS; 1034 adapter->ptp_caps.n_per_out = IGB_N_PEROUT; 1035 adapter->ptp_caps.n_pins = IGB_N_SDP; 1036 adapter->ptp_caps.pps = 1; 1037 adapter->ptp_caps.pin_config = adapter->sdp_config; 1038 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; 1039 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; 1040 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210; 1041 adapter->ptp_caps.settime64 = igb_ptp_settime_i210; 1042 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210; 1043 adapter->ptp_caps.verify = igb_ptp_verify_pin; 1044 /* Enable the timer functions by clearing bit 31. */ 1045 wr32(E1000_TSAUXC, 0x0); 1046 break; 1047 default: 1048 adapter->ptp_clock = NULL; 1049 return; 1050 } 1051 1052 wrfl(); 1053 1054 spin_lock_init(&adapter->tmreg_lock); 1055 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); 1056 1057 /* Initialize the clock and overflow work for devices that need it. */ 1058 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { 1059 struct timespec64 ts = ktime_to_timespec64(ktime_get_real()); 1060 1061 igb_ptp_settime_i210(&adapter->ptp_caps, &ts); 1062 } else { 1063 timecounter_init(&adapter->tc, &adapter->cc, 1064 ktime_to_ns(ktime_get_real())); 1065 1066 INIT_DELAYED_WORK(&adapter->ptp_overflow_work, 1067 igb_ptp_overflow_check); 1068 1069 schedule_delayed_work(&adapter->ptp_overflow_work, 1070 IGB_SYSTIM_OVERFLOW_PERIOD); 1071 } 1072 1073 /* Initialize the time sync interrupts for devices that support it. */ 1074 if (hw->mac.type >= e1000_82580) { 1075 wr32(E1000_TSIM, TSYNC_INTERRUPTS); 1076 wr32(E1000_IMS, E1000_IMS_TS); 1077 } 1078 1079 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1080 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1081 1082 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1083 &adapter->pdev->dev); 1084 if (IS_ERR(adapter->ptp_clock)) { 1085 adapter->ptp_clock = NULL; 1086 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); 1087 } else { 1088 dev_info(&adapter->pdev->dev, "added PHC on %s\n", 1089 adapter->netdev->name); 1090 adapter->flags |= IGB_FLAG_PTP; 1091 } 1092 } 1093 1094 /** 1095 * igb_ptp_stop - Disable PTP device and stop the overflow check. 1096 * @adapter: Board private structure. 1097 * 1098 * This function stops the PTP support and cancels the delayed work. 1099 **/ 1100 void igb_ptp_stop(struct igb_adapter *adapter) 1101 { 1102 switch (adapter->hw.mac.type) { 1103 case e1000_82576: 1104 case e1000_82580: 1105 case e1000_i354: 1106 case e1000_i350: 1107 cancel_delayed_work_sync(&adapter->ptp_overflow_work); 1108 break; 1109 case e1000_i210: 1110 case e1000_i211: 1111 /* No delayed work to cancel. */ 1112 break; 1113 default: 1114 return; 1115 } 1116 1117 cancel_work_sync(&adapter->ptp_tx_work); 1118 if (adapter->ptp_tx_skb) { 1119 dev_kfree_skb_any(adapter->ptp_tx_skb); 1120 adapter->ptp_tx_skb = NULL; 1121 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 1122 } 1123 1124 if (adapter->ptp_clock) { 1125 ptp_clock_unregister(adapter->ptp_clock); 1126 dev_info(&adapter->pdev->dev, "removed PHC on %s\n", 1127 adapter->netdev->name); 1128 adapter->flags &= ~IGB_FLAG_PTP; 1129 } 1130 } 1131 1132 /** 1133 * igb_ptp_reset - Re-enable the adapter for PTP following a reset. 1134 * @adapter: Board private structure. 1135 * 1136 * This function handles the reset work required to re-enable the PTP device. 1137 **/ 1138 void igb_ptp_reset(struct igb_adapter *adapter) 1139 { 1140 struct e1000_hw *hw = &adapter->hw; 1141 unsigned long flags; 1142 1143 if (!(adapter->flags & IGB_FLAG_PTP)) 1144 return; 1145 1146 /* reset the tstamp_config */ 1147 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1148 1149 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1150 1151 switch (adapter->hw.mac.type) { 1152 case e1000_82576: 1153 /* Dial the nominal frequency. */ 1154 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); 1155 break; 1156 case e1000_82580: 1157 case e1000_i354: 1158 case e1000_i350: 1159 case e1000_i210: 1160 case e1000_i211: 1161 wr32(E1000_TSAUXC, 0x0); 1162 wr32(E1000_TSSDP, 0x0); 1163 wr32(E1000_TSIM, TSYNC_INTERRUPTS); 1164 wr32(E1000_IMS, E1000_IMS_TS); 1165 break; 1166 default: 1167 /* No work to do. */ 1168 goto out; 1169 } 1170 1171 /* Re-initialize the timer. */ 1172 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { 1173 struct timespec64 ts = ktime_to_timespec64(ktime_get_real()); 1174 1175 igb_ptp_write_i210(adapter, &ts); 1176 } else { 1177 timecounter_init(&adapter->tc, &adapter->cc, 1178 ktime_to_ns(ktime_get_real())); 1179 } 1180 out: 1181 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1182 } 1183