1 /*
2  * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3  *
4  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19  */
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/pci.h>
23 
24 #include "igb.h"
25 
26 #define INCVALUE_MASK		0x7fffffff
27 #define ISGN			0x80000000
28 
29 /*
30  * The 82580 timesync updates the system timer every 8ns by 8ns,
31  * and this update value cannot be reprogrammed.
32  *
33  * Neither the 82576 nor the 82580 offer registers wide enough to hold
34  * nanoseconds time values for very long. For the 82580, SYSTIM always
35  * counts nanoseconds, but the upper 24 bits are not availible. The
36  * frequency is adjusted by changing the 32 bit fractional nanoseconds
37  * register, TIMINCA.
38  *
39  * For the 82576, the SYSTIM register time unit is affect by the
40  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
41  * field are needed to provide the nominal 16 nanosecond period,
42  * leaving 19 bits for fractional nanoseconds.
43  *
44  * We scale the NIC clock cycle by a large factor so that relatively
45  * small clock corrections can be added or subtracted at each clock
46  * tick. The drawbacks of a large factor are a) that the clock
47  * register overflows more quickly (not such a big deal) and b) that
48  * the increment per tick has to fit into 24 bits.  As a result we
49  * need to use a shift of 19 so we can fit a value of 16 into the
50  * TIMINCA register.
51  *
52  *
53  *             SYSTIMH            SYSTIML
54  *        +--------------+   +---+---+------+
55  *  82576 |      32      |   | 8 | 5 |  19  |
56  *        +--------------+   +---+---+------+
57  *         \________ 45 bits _______/  fract
58  *
59  *        +----------+---+   +--------------+
60  *  82580 |    24    | 8 |   |      32      |
61  *        +----------+---+   +--------------+
62  *          reserved  \______ 40 bits _____/
63  *
64  *
65  * The 45 bit 82576 SYSTIM overflows every
66  *   2^45 * 10^-9 / 3600 = 9.77 hours.
67  *
68  * The 40 bit 82580 SYSTIM overflows every
69  *   2^40 * 10^-9 /  60  = 18.3 minutes.
70  */
71 
72 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
73 #define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75 #define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580			40
77 
78 /*
79  * SYSTIM read access for the 82576
80  */
81 
82 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
83 {
84 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
85 	struct e1000_hw *hw = &igb->hw;
86 	u64 val;
87 	u32 lo, hi;
88 
89 	lo = rd32(E1000_SYSTIML);
90 	hi = rd32(E1000_SYSTIMH);
91 
92 	val = ((u64) hi) << 32;
93 	val |= lo;
94 
95 	return val;
96 }
97 
98 /*
99  * SYSTIM read access for the 82580
100  */
101 
102 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
103 {
104 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
105 	struct e1000_hw *hw = &igb->hw;
106 	u64 val;
107 	u32 lo, hi, jk;
108 
109 	/*
110 	 * The timestamp latches on lowest register read. For the 82580
111 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
112 	 * need to provide nanosecond resolution, so we just ignore it.
113 	 */
114 	jk = rd32(E1000_SYSTIMR);
115 	lo = rd32(E1000_SYSTIML);
116 	hi = rd32(E1000_SYSTIMH);
117 
118 	val = ((u64) hi) << 32;
119 	val |= lo;
120 
121 	return val;
122 }
123 
124 /*
125  * SYSTIM read access for I210/I211
126  */
127 
128 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
129 {
130 	struct e1000_hw *hw = &adapter->hw;
131 	u32 sec, nsec, jk;
132 
133 	/*
134 	 * The timestamp latches on lowest register read. For I210/I211, the
135 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
136 	 * resolution, we can ignore it.
137 	 */
138 	jk = rd32(E1000_SYSTIMR);
139 	nsec = rd32(E1000_SYSTIML);
140 	sec = rd32(E1000_SYSTIMH);
141 
142 	ts->tv_sec = sec;
143 	ts->tv_nsec = nsec;
144 }
145 
146 static void igb_ptp_write_i210(struct igb_adapter *adapter,
147 			       const struct timespec *ts)
148 {
149 	struct e1000_hw *hw = &adapter->hw;
150 
151 	/*
152 	 * Writing the SYSTIMR register is not necessary as it only provides
153 	 * sub-nanosecond resolution.
154 	 */
155 	wr32(E1000_SYSTIML, ts->tv_nsec);
156 	wr32(E1000_SYSTIMH, ts->tv_sec);
157 }
158 
159 /**
160  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
161  * @adapter: board private structure
162  * @hwtstamps: timestamp structure to update
163  * @systim: unsigned 64bit system time value.
164  *
165  * We need to convert the system time value stored in the RX/TXSTMP registers
166  * into a hwtstamp which can be used by the upper level timestamping functions.
167  *
168  * The 'tmreg_lock' spinlock is used to protect the consistency of the
169  * system time value. This is needed because reading the 64 bit time
170  * value involves reading two (or three) 32 bit registers. The first
171  * read latches the value. Ditto for writing.
172  *
173  * In addition, here have extended the system time with an overflow
174  * counter in software.
175  **/
176 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
177 				       struct skb_shared_hwtstamps *hwtstamps,
178 				       u64 systim)
179 {
180 	unsigned long flags;
181 	u64 ns;
182 
183 	switch (adapter->hw.mac.type) {
184 	case e1000_82576:
185 	case e1000_82580:
186 	case e1000_i350:
187 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
188 
189 		ns = timecounter_cyc2time(&adapter->tc, systim);
190 
191 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
192 
193 		memset(hwtstamps, 0, sizeof(*hwtstamps));
194 		hwtstamps->hwtstamp = ns_to_ktime(ns);
195 		break;
196 	case e1000_i210:
197 	case e1000_i211:
198 		memset(hwtstamps, 0, sizeof(*hwtstamps));
199 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
200 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
201 						systim & 0xFFFFFFFF);
202 		break;
203 	default:
204 		break;
205 	}
206 }
207 
208 /*
209  * PTP clock operations
210  */
211 
212 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
213 {
214 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
215 					       ptp_caps);
216 	struct e1000_hw *hw = &igb->hw;
217 	int neg_adj = 0;
218 	u64 rate;
219 	u32 incvalue;
220 
221 	if (ppb < 0) {
222 		neg_adj = 1;
223 		ppb = -ppb;
224 	}
225 	rate = ppb;
226 	rate <<= 14;
227 	rate = div_u64(rate, 1953125);
228 
229 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
230 
231 	if (neg_adj)
232 		incvalue -= rate;
233 	else
234 		incvalue += rate;
235 
236 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
237 
238 	return 0;
239 }
240 
241 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
242 {
243 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 					       ptp_caps);
245 	struct e1000_hw *hw = &igb->hw;
246 	int neg_adj = 0;
247 	u64 rate;
248 	u32 inca;
249 
250 	if (ppb < 0) {
251 		neg_adj = 1;
252 		ppb = -ppb;
253 	}
254 	rate = ppb;
255 	rate <<= 26;
256 	rate = div_u64(rate, 1953125);
257 
258 	inca = rate & INCVALUE_MASK;
259 	if (neg_adj)
260 		inca |= ISGN;
261 
262 	wr32(E1000_TIMINCA, inca);
263 
264 	return 0;
265 }
266 
267 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
268 {
269 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 					       ptp_caps);
271 	unsigned long flags;
272 	s64 now;
273 
274 	spin_lock_irqsave(&igb->tmreg_lock, flags);
275 
276 	now = timecounter_read(&igb->tc);
277 	now += delta;
278 	timecounter_init(&igb->tc, &igb->cc, now);
279 
280 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
281 
282 	return 0;
283 }
284 
285 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
286 {
287 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
288 					       ptp_caps);
289 	unsigned long flags;
290 	struct timespec now, then = ns_to_timespec(delta);
291 
292 	spin_lock_irqsave(&igb->tmreg_lock, flags);
293 
294 	igb_ptp_read_i210(igb, &now);
295 	now = timespec_add(now, then);
296 	igb_ptp_write_i210(igb, (const struct timespec *)&now);
297 
298 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299 
300 	return 0;
301 }
302 
303 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
304 				 struct timespec *ts)
305 {
306 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
307 					       ptp_caps);
308 	unsigned long flags;
309 	u64 ns;
310 	u32 remainder;
311 
312 	spin_lock_irqsave(&igb->tmreg_lock, flags);
313 
314 	ns = timecounter_read(&igb->tc);
315 
316 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317 
318 	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
319 	ts->tv_nsec = remainder;
320 
321 	return 0;
322 }
323 
324 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
325 				struct timespec *ts)
326 {
327 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
328 					       ptp_caps);
329 	unsigned long flags;
330 
331 	spin_lock_irqsave(&igb->tmreg_lock, flags);
332 
333 	igb_ptp_read_i210(igb, ts);
334 
335 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336 
337 	return 0;
338 }
339 
340 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
341 				 const struct timespec *ts)
342 {
343 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 					       ptp_caps);
345 	unsigned long flags;
346 	u64 ns;
347 
348 	ns = ts->tv_sec * 1000000000ULL;
349 	ns += ts->tv_nsec;
350 
351 	spin_lock_irqsave(&igb->tmreg_lock, flags);
352 
353 	timecounter_init(&igb->tc, &igb->cc, ns);
354 
355 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
356 
357 	return 0;
358 }
359 
360 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
361 				const struct timespec *ts)
362 {
363 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
364 					       ptp_caps);
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&igb->tmreg_lock, flags);
368 
369 	igb_ptp_write_i210(igb, ts);
370 
371 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372 
373 	return 0;
374 }
375 
376 static int igb_ptp_enable(struct ptp_clock_info *ptp,
377 			  struct ptp_clock_request *rq, int on)
378 {
379 	return -EOPNOTSUPP;
380 }
381 
382 /**
383  * igb_ptp_tx_work
384  * @work: pointer to work struct
385  *
386  * This work function polls the TSYNCTXCTL valid bit to determine when a
387  * timestamp has been taken for the current stored skb.
388  */
389 void igb_ptp_tx_work(struct work_struct *work)
390 {
391 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
392 						   ptp_tx_work);
393 	struct e1000_hw *hw = &adapter->hw;
394 	u32 tsynctxctl;
395 
396 	if (!adapter->ptp_tx_skb)
397 		return;
398 
399 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
400 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
401 		igb_ptp_tx_hwtstamp(adapter);
402 	else
403 		/* reschedule to check later */
404 		schedule_work(&adapter->ptp_tx_work);
405 }
406 
407 static void igb_ptp_overflow_check(struct work_struct *work)
408 {
409 	struct igb_adapter *igb =
410 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
411 	struct timespec ts;
412 
413 	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
414 
415 	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
416 
417 	schedule_delayed_work(&igb->ptp_overflow_work,
418 			      IGB_SYSTIM_OVERFLOW_PERIOD);
419 }
420 
421 /**
422  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
423  * @adapter: Board private structure.
424  *
425  * If we were asked to do hardware stamping and such a time stamp is
426  * available, then it must have been for this skb here because we only
427  * allow only one such packet into the queue.
428  */
429 void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
430 {
431 	struct e1000_hw *hw = &adapter->hw;
432 	struct skb_shared_hwtstamps shhwtstamps;
433 	u64 regval;
434 
435 	regval = rd32(E1000_TXSTMPL);
436 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
437 
438 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
439 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
440 	dev_kfree_skb_any(adapter->ptp_tx_skb);
441 	adapter->ptp_tx_skb = NULL;
442 }
443 
444 void igb_ptp_rx_hwtstamp(struct igb_q_vector *q_vector,
445 			 union e1000_adv_rx_desc *rx_desc,
446 			 struct sk_buff *skb)
447 {
448 	struct igb_adapter *adapter = q_vector->adapter;
449 	struct e1000_hw *hw = &adapter->hw;
450 	u64 regval;
451 
452 	if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
453 				       E1000_RXDADV_STAT_TS))
454 		return;
455 
456 	/*
457 	 * If this bit is set, then the RX registers contain the time stamp. No
458 	 * other packet will be time stamped until we read these registers, so
459 	 * read the registers to make them available again. Because only one
460 	 * packet can be time stamped at a time, we know that the register
461 	 * values must belong to this one here and therefore we don't need to
462 	 * compare any of the additional attributes stored for it.
463 	 *
464 	 * If nothing went wrong, then it should have a shared tx_flags that we
465 	 * can turn into a skb_shared_hwtstamps.
466 	 */
467 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
468 		u32 *stamp = (u32 *)skb->data;
469 		regval = le32_to_cpu(*(stamp + 2));
470 		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
471 		skb_pull(skb, IGB_TS_HDR_LEN);
472 	} else {
473 		if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
474 			return;
475 
476 		regval = rd32(E1000_RXSTMPL);
477 		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
478 	}
479 
480 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
481 }
482 
483 /**
484  * igb_ptp_hwtstamp_ioctl - control hardware time stamping
485  * @netdev:
486  * @ifreq:
487  * @cmd:
488  *
489  * Outgoing time stamping can be enabled and disabled. Play nice and
490  * disable it when requested, although it shouldn't case any overhead
491  * when no packet needs it. At most one packet in the queue may be
492  * marked for time stamping, otherwise it would be impossible to tell
493  * for sure to which packet the hardware time stamp belongs.
494  *
495  * Incoming time stamping has to be configured via the hardware
496  * filters. Not all combinations are supported, in particular event
497  * type has to be specified. Matching the kind of event packet is
498  * not supported, with the exception of "all V2 events regardless of
499  * level 2 or 4".
500  *
501  **/
502 int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
503 			   struct ifreq *ifr, int cmd)
504 {
505 	struct igb_adapter *adapter = netdev_priv(netdev);
506 	struct e1000_hw *hw = &adapter->hw;
507 	struct hwtstamp_config config;
508 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
509 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
510 	u32 tsync_rx_cfg = 0;
511 	bool is_l4 = false;
512 	bool is_l2 = false;
513 	u32 regval;
514 
515 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
516 		return -EFAULT;
517 
518 	/* reserved for future extensions */
519 	if (config.flags)
520 		return -EINVAL;
521 
522 	switch (config.tx_type) {
523 	case HWTSTAMP_TX_OFF:
524 		tsync_tx_ctl = 0;
525 	case HWTSTAMP_TX_ON:
526 		break;
527 	default:
528 		return -ERANGE;
529 	}
530 
531 	switch (config.rx_filter) {
532 	case HWTSTAMP_FILTER_NONE:
533 		tsync_rx_ctl = 0;
534 		break;
535 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
536 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
537 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
538 	case HWTSTAMP_FILTER_ALL:
539 		/*
540 		 * register TSYNCRXCFG must be set, therefore it is not
541 		 * possible to time stamp both Sync and Delay_Req messages
542 		 * => fall back to time stamping all packets
543 		 */
544 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
545 		config.rx_filter = HWTSTAMP_FILTER_ALL;
546 		break;
547 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
548 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
549 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
550 		is_l4 = true;
551 		break;
552 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
553 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
554 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
555 		is_l4 = true;
556 		break;
557 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
558 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
559 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
560 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
561 		is_l2 = true;
562 		is_l4 = true;
563 		config.rx_filter = HWTSTAMP_FILTER_SOME;
564 		break;
565 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
566 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
567 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
568 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
569 		is_l2 = true;
570 		is_l4 = true;
571 		config.rx_filter = HWTSTAMP_FILTER_SOME;
572 		break;
573 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
574 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
575 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
576 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
577 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
578 		is_l2 = true;
579 		is_l4 = true;
580 		break;
581 	default:
582 		return -ERANGE;
583 	}
584 
585 	if (hw->mac.type == e1000_82575) {
586 		if (tsync_rx_ctl | tsync_tx_ctl)
587 			return -EINVAL;
588 		return 0;
589 	}
590 
591 	/*
592 	 * Per-packet timestamping only works if all packets are
593 	 * timestamped, so enable timestamping in all packets as
594 	 * long as one rx filter was configured.
595 	 */
596 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
597 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
598 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
599 
600 		if ((hw->mac.type == e1000_i210) ||
601 		    (hw->mac.type == e1000_i211)) {
602 			regval = rd32(E1000_RXPBS);
603 			regval |= E1000_RXPBS_CFG_TS_EN;
604 			wr32(E1000_RXPBS, regval);
605 		}
606 	}
607 
608 	/* enable/disable TX */
609 	regval = rd32(E1000_TSYNCTXCTL);
610 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
611 	regval |= tsync_tx_ctl;
612 	wr32(E1000_TSYNCTXCTL, regval);
613 
614 	/* enable/disable RX */
615 	regval = rd32(E1000_TSYNCRXCTL);
616 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
617 	regval |= tsync_rx_ctl;
618 	wr32(E1000_TSYNCRXCTL, regval);
619 
620 	/* define which PTP packets are time stamped */
621 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
622 
623 	/* define ethertype filter for timestamped packets */
624 	if (is_l2)
625 		wr32(E1000_ETQF(3),
626 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
627 		      E1000_ETQF_1588 | /* enable timestamping */
628 		      ETH_P_1588));     /* 1588 eth protocol type */
629 	else
630 		wr32(E1000_ETQF(3), 0);
631 
632 #define PTP_PORT 319
633 	/* L4 Queue Filter[3]: filter by destination port and protocol */
634 	if (is_l4) {
635 		u32 ftqf = (IPPROTO_UDP /* UDP */
636 			| E1000_FTQF_VF_BP /* VF not compared */
637 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
638 			| E1000_FTQF_MASK); /* mask all inputs */
639 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
640 
641 		wr32(E1000_IMIR(3), htons(PTP_PORT));
642 		wr32(E1000_IMIREXT(3),
643 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
644 		if (hw->mac.type == e1000_82576) {
645 			/* enable source port check */
646 			wr32(E1000_SPQF(3), htons(PTP_PORT));
647 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
648 		}
649 		wr32(E1000_FTQF(3), ftqf);
650 	} else {
651 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
652 	}
653 	wrfl();
654 
655 	/* clear TX/RX time stamp registers, just to be sure */
656 	regval = rd32(E1000_TXSTMPL);
657 	regval = rd32(E1000_TXSTMPH);
658 	regval = rd32(E1000_RXSTMPL);
659 	regval = rd32(E1000_RXSTMPH);
660 
661 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
662 		-EFAULT : 0;
663 }
664 
665 void igb_ptp_init(struct igb_adapter *adapter)
666 {
667 	struct e1000_hw *hw = &adapter->hw;
668 	struct net_device *netdev = adapter->netdev;
669 
670 	switch (hw->mac.type) {
671 	case e1000_82576:
672 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
673 		adapter->ptp_caps.owner = THIS_MODULE;
674 		adapter->ptp_caps.max_adj = 1000000000;
675 		adapter->ptp_caps.n_ext_ts = 0;
676 		adapter->ptp_caps.pps = 0;
677 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
678 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
679 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
680 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
681 		adapter->ptp_caps.enable = igb_ptp_enable;
682 		adapter->cc.read = igb_ptp_read_82576;
683 		adapter->cc.mask = CLOCKSOURCE_MASK(64);
684 		adapter->cc.mult = 1;
685 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
686 		/* Dial the nominal frequency. */
687 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
688 		break;
689 	case e1000_82580:
690 	case e1000_i350:
691 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
692 		adapter->ptp_caps.owner = THIS_MODULE;
693 		adapter->ptp_caps.max_adj = 62499999;
694 		adapter->ptp_caps.n_ext_ts = 0;
695 		adapter->ptp_caps.pps = 0;
696 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
697 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
698 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
699 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
700 		adapter->ptp_caps.enable = igb_ptp_enable;
701 		adapter->cc.read = igb_ptp_read_82580;
702 		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
703 		adapter->cc.mult = 1;
704 		adapter->cc.shift = 0;
705 		/* Enable the timer functions by clearing bit 31. */
706 		wr32(E1000_TSAUXC, 0x0);
707 		break;
708 	case e1000_i210:
709 	case e1000_i211:
710 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
711 		adapter->ptp_caps.owner = THIS_MODULE;
712 		adapter->ptp_caps.max_adj = 62499999;
713 		adapter->ptp_caps.n_ext_ts = 0;
714 		adapter->ptp_caps.pps = 0;
715 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
716 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
717 		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
718 		adapter->ptp_caps.settime = igb_ptp_settime_i210;
719 		adapter->ptp_caps.enable = igb_ptp_enable;
720 		/* Enable the timer functions by clearing bit 31. */
721 		wr32(E1000_TSAUXC, 0x0);
722 		break;
723 	default:
724 		adapter->ptp_clock = NULL;
725 		return;
726 	}
727 
728 	wrfl();
729 
730 	spin_lock_init(&adapter->tmreg_lock);
731 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
732 
733 	/* Initialize the clock and overflow work for devices that need it. */
734 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
735 		struct timespec ts = ktime_to_timespec(ktime_get_real());
736 
737 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
738 	} else {
739 		timecounter_init(&adapter->tc, &adapter->cc,
740 				 ktime_to_ns(ktime_get_real()));
741 
742 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
743 				  igb_ptp_overflow_check);
744 
745 		schedule_delayed_work(&adapter->ptp_overflow_work,
746 				      IGB_SYSTIM_OVERFLOW_PERIOD);
747 	}
748 
749 	/* Initialize the time sync interrupts for devices that support it. */
750 	if (hw->mac.type >= e1000_82580) {
751 		wr32(E1000_TSIM, E1000_TSIM_TXTS);
752 		wr32(E1000_IMS, E1000_IMS_TS);
753 	}
754 
755 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
756 						&adapter->pdev->dev);
757 	if (IS_ERR(adapter->ptp_clock)) {
758 		adapter->ptp_clock = NULL;
759 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
760 	} else {
761 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
762 			 adapter->netdev->name);
763 		adapter->flags |= IGB_FLAG_PTP;
764 	}
765 }
766 
767 /**
768  * igb_ptp_stop - Disable PTP device and stop the overflow check.
769  * @adapter: Board private structure.
770  *
771  * This function stops the PTP support and cancels the delayed work.
772  **/
773 void igb_ptp_stop(struct igb_adapter *adapter)
774 {
775 	switch (adapter->hw.mac.type) {
776 	case e1000_82576:
777 	case e1000_82580:
778 	case e1000_i350:
779 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
780 		break;
781 	case e1000_i210:
782 	case e1000_i211:
783 		/* No delayed work to cancel. */
784 		break;
785 	default:
786 		return;
787 	}
788 
789 	cancel_work_sync(&adapter->ptp_tx_work);
790 
791 	if (adapter->ptp_clock) {
792 		ptp_clock_unregister(adapter->ptp_clock);
793 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
794 			 adapter->netdev->name);
795 		adapter->flags &= ~IGB_FLAG_PTP;
796 	}
797 }
798 
799 /**
800  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
801  * @adapter: Board private structure.
802  *
803  * This function handles the reset work required to re-enable the PTP device.
804  **/
805 void igb_ptp_reset(struct igb_adapter *adapter)
806 {
807 	struct e1000_hw *hw = &adapter->hw;
808 
809 	if (!(adapter->flags & IGB_FLAG_PTP))
810 		return;
811 
812 	switch (adapter->hw.mac.type) {
813 	case e1000_82576:
814 		/* Dial the nominal frequency. */
815 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
816 		break;
817 	case e1000_82580:
818 	case e1000_i350:
819 	case e1000_i210:
820 	case e1000_i211:
821 		/* Enable the timer functions and interrupts. */
822 		wr32(E1000_TSAUXC, 0x0);
823 		wr32(E1000_TSIM, E1000_TSIM_TXTS);
824 		wr32(E1000_IMS, E1000_IMS_TS);
825 		break;
826 	default:
827 		/* No work to do. */
828 		return;
829 	}
830 
831 	/* Re-initialize the timer. */
832 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
833 		struct timespec ts = ktime_to_timespec(ktime_get_real());
834 
835 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
836 	} else {
837 		timecounter_init(&adapter->tc, &adapter->cc,
838 				 ktime_to_ns(ktime_get_real()));
839 	}
840 }
841