1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41 
42 enum queue_mode {
43 	QUEUE_MODE_STRICT_PRIORITY,
44 	QUEUE_MODE_STREAM_RESERVATION,
45 };
46 
47 enum tx_queue_prio {
48 	TX_QUEUE_PRIO_HIGH,
49 	TX_QUEUE_PRIO_LOW,
50 };
51 
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 				"Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 				"Copyright (c) 2007-2014 Intel Corporation.";
57 
58 static const struct e1000_info *igb_info_tbl[] = {
59 	[board_82575] = &e1000_82575_info,
60 };
61 
62 static const struct pci_device_id igb_pci_tbl[] = {
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 	/* required last entry */
99 	{0, }
100 };
101 
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103 
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110 static void igb_remove(struct pci_dev *pdev);
111 static void igb_init_queue_configuration(struct igb_adapter *adapter);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
179 #endif
180 
181 static int igb_suspend(struct device *);
182 static int igb_resume(struct device *);
183 static int igb_runtime_suspend(struct device *dev);
184 static int igb_runtime_resume(struct device *dev);
185 static int igb_runtime_idle(struct device *dev);
186 static const struct dev_pm_ops igb_pm_ops = {
187 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
188 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
189 			igb_runtime_idle)
190 };
191 static void igb_shutdown(struct pci_dev *);
192 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
193 #ifdef CONFIG_IGB_DCA
194 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
195 static struct notifier_block dca_notifier = {
196 	.notifier_call	= igb_notify_dca,
197 	.next		= NULL,
198 	.priority	= 0
199 };
200 #endif
201 #ifdef CONFIG_PCI_IOV
202 static unsigned int max_vfs;
203 module_param(max_vfs, uint, 0);
204 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
205 #endif /* CONFIG_PCI_IOV */
206 
207 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
208 		     pci_channel_state_t);
209 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
210 static void igb_io_resume(struct pci_dev *);
211 
212 static const struct pci_error_handlers igb_err_handler = {
213 	.error_detected = igb_io_error_detected,
214 	.slot_reset = igb_io_slot_reset,
215 	.resume = igb_io_resume,
216 };
217 
218 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
219 
220 static struct pci_driver igb_driver = {
221 	.name     = igb_driver_name,
222 	.id_table = igb_pci_tbl,
223 	.probe    = igb_probe,
224 	.remove   = igb_remove,
225 #ifdef CONFIG_PM
226 	.driver.pm = &igb_pm_ops,
227 #endif
228 	.shutdown = igb_shutdown,
229 	.sriov_configure = igb_pci_sriov_configure,
230 	.err_handler = &igb_err_handler
231 };
232 
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL v2");
236 
237 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
238 static int debug = -1;
239 module_param(debug, int, 0);
240 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
241 
242 struct igb_reg_info {
243 	u32 ofs;
244 	char *name;
245 };
246 
247 static const struct igb_reg_info igb_reg_info_tbl[] = {
248 
249 	/* General Registers */
250 	{E1000_CTRL, "CTRL"},
251 	{E1000_STATUS, "STATUS"},
252 	{E1000_CTRL_EXT, "CTRL_EXT"},
253 
254 	/* Interrupt Registers */
255 	{E1000_ICR, "ICR"},
256 
257 	/* RX Registers */
258 	{E1000_RCTL, "RCTL"},
259 	{E1000_RDLEN(0), "RDLEN"},
260 	{E1000_RDH(0), "RDH"},
261 	{E1000_RDT(0), "RDT"},
262 	{E1000_RXDCTL(0), "RXDCTL"},
263 	{E1000_RDBAL(0), "RDBAL"},
264 	{E1000_RDBAH(0), "RDBAH"},
265 
266 	/* TX Registers */
267 	{E1000_TCTL, "TCTL"},
268 	{E1000_TDBAL(0), "TDBAL"},
269 	{E1000_TDBAH(0), "TDBAH"},
270 	{E1000_TDLEN(0), "TDLEN"},
271 	{E1000_TDH(0), "TDH"},
272 	{E1000_TDT(0), "TDT"},
273 	{E1000_TXDCTL(0), "TXDCTL"},
274 	{E1000_TDFH, "TDFH"},
275 	{E1000_TDFT, "TDFT"},
276 	{E1000_TDFHS, "TDFHS"},
277 	{E1000_TDFPC, "TDFPC"},
278 
279 	/* List Terminator */
280 	{}
281 };
282 
283 /* igb_regdump - register printout routine */
284 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
285 {
286 	int n = 0;
287 	char rname[16];
288 	u32 regs[8];
289 
290 	switch (reginfo->ofs) {
291 	case E1000_RDLEN(0):
292 		for (n = 0; n < 4; n++)
293 			regs[n] = rd32(E1000_RDLEN(n));
294 		break;
295 	case E1000_RDH(0):
296 		for (n = 0; n < 4; n++)
297 			regs[n] = rd32(E1000_RDH(n));
298 		break;
299 	case E1000_RDT(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDT(n));
302 		break;
303 	case E1000_RXDCTL(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RXDCTL(n));
306 		break;
307 	case E1000_RDBAL(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDBAL(n));
310 		break;
311 	case E1000_RDBAH(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RDBAH(n));
314 		break;
315 	case E1000_TDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_TDBAL(n));
318 		break;
319 	case E1000_TDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_TDBAH(n));
322 		break;
323 	case E1000_TDLEN(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_TDLEN(n));
326 		break;
327 	case E1000_TDH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDH(n));
330 		break;
331 	case E1000_TDT(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDT(n));
334 		break;
335 	case E1000_TXDCTL(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TXDCTL(n));
338 		break;
339 	default:
340 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
341 		return;
342 	}
343 
344 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
345 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
346 		regs[2], regs[3]);
347 }
348 
349 /* igb_dump - Print registers, Tx-rings and Rx-rings */
350 static void igb_dump(struct igb_adapter *adapter)
351 {
352 	struct net_device *netdev = adapter->netdev;
353 	struct e1000_hw *hw = &adapter->hw;
354 	struct igb_reg_info *reginfo;
355 	struct igb_ring *tx_ring;
356 	union e1000_adv_tx_desc *tx_desc;
357 	struct my_u0 { __le64 a; __le64 b; } *u0;
358 	struct igb_ring *rx_ring;
359 	union e1000_adv_rx_desc *rx_desc;
360 	u32 staterr;
361 	u16 i, n;
362 
363 	if (!netif_msg_hw(adapter))
364 		return;
365 
366 	/* Print netdevice Info */
367 	if (netdev) {
368 		dev_info(&adapter->pdev->dev, "Net device Info\n");
369 		pr_info("Device Name     state            trans_start\n");
370 		pr_info("%-15s %016lX %016lX\n", netdev->name,
371 			netdev->state, dev_trans_start(netdev));
372 	}
373 
374 	/* Print Registers */
375 	dev_info(&adapter->pdev->dev, "Register Dump\n");
376 	pr_info(" Register Name   Value\n");
377 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
378 	     reginfo->name; reginfo++) {
379 		igb_regdump(hw, reginfo);
380 	}
381 
382 	/* Print TX Ring Summary */
383 	if (!netdev || !netif_running(netdev))
384 		goto exit;
385 
386 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
387 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
388 	for (n = 0; n < adapter->num_tx_queues; n++) {
389 		struct igb_tx_buffer *buffer_info;
390 		tx_ring = adapter->tx_ring[n];
391 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
392 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
393 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
394 			(u64)dma_unmap_addr(buffer_info, dma),
395 			dma_unmap_len(buffer_info, len),
396 			buffer_info->next_to_watch,
397 			(u64)buffer_info->time_stamp);
398 	}
399 
400 	/* Print TX Rings */
401 	if (!netif_msg_tx_done(adapter))
402 		goto rx_ring_summary;
403 
404 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
405 
406 	/* Transmit Descriptor Formats
407 	 *
408 	 * Advanced Transmit Descriptor
409 	 *   +--------------------------------------------------------------+
410 	 * 0 |         Buffer Address [63:0]                                |
411 	 *   +--------------------------------------------------------------+
412 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
413 	 *   +--------------------------------------------------------------+
414 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
415 	 */
416 
417 	for (n = 0; n < adapter->num_tx_queues; n++) {
418 		tx_ring = adapter->tx_ring[n];
419 		pr_info("------------------------------------\n");
420 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
421 		pr_info("------------------------------------\n");
422 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
423 
424 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
425 			const char *next_desc;
426 			struct igb_tx_buffer *buffer_info;
427 			tx_desc = IGB_TX_DESC(tx_ring, i);
428 			buffer_info = &tx_ring->tx_buffer_info[i];
429 			u0 = (struct my_u0 *)tx_desc;
430 			if (i == tx_ring->next_to_use &&
431 			    i == tx_ring->next_to_clean)
432 				next_desc = " NTC/U";
433 			else if (i == tx_ring->next_to_use)
434 				next_desc = " NTU";
435 			else if (i == tx_ring->next_to_clean)
436 				next_desc = " NTC";
437 			else
438 				next_desc = "";
439 
440 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
441 				i, le64_to_cpu(u0->a),
442 				le64_to_cpu(u0->b),
443 				(u64)dma_unmap_addr(buffer_info, dma),
444 				dma_unmap_len(buffer_info, len),
445 				buffer_info->next_to_watch,
446 				(u64)buffer_info->time_stamp,
447 				buffer_info->skb, next_desc);
448 
449 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
450 				print_hex_dump(KERN_INFO, "",
451 					DUMP_PREFIX_ADDRESS,
452 					16, 1, buffer_info->skb->data,
453 					dma_unmap_len(buffer_info, len),
454 					true);
455 		}
456 	}
457 
458 	/* Print RX Rings Summary */
459 rx_ring_summary:
460 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
461 	pr_info("Queue [NTU] [NTC]\n");
462 	for (n = 0; n < adapter->num_rx_queues; n++) {
463 		rx_ring = adapter->rx_ring[n];
464 		pr_info(" %5d %5X %5X\n",
465 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
466 	}
467 
468 	/* Print RX Rings */
469 	if (!netif_msg_rx_status(adapter))
470 		goto exit;
471 
472 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
473 
474 	/* Advanced Receive Descriptor (Read) Format
475 	 *    63                                           1        0
476 	 *    +-----------------------------------------------------+
477 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
478 	 *    +----------------------------------------------+------+
479 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
480 	 *    +-----------------------------------------------------+
481 	 *
482 	 *
483 	 * Advanced Receive Descriptor (Write-Back) Format
484 	 *
485 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
486 	 *   +------------------------------------------------------+
487 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
488 	 *   | Checksum   Ident  |   |           |    | Type | Type |
489 	 *   +------------------------------------------------------+
490 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
491 	 *   +------------------------------------------------------+
492 	 *   63       48 47    32 31            20 19               0
493 	 */
494 
495 	for (n = 0; n < adapter->num_rx_queues; n++) {
496 		rx_ring = adapter->rx_ring[n];
497 		pr_info("------------------------------------\n");
498 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
499 		pr_info("------------------------------------\n");
500 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
501 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
502 
503 		for (i = 0; i < rx_ring->count; i++) {
504 			const char *next_desc;
505 			struct igb_rx_buffer *buffer_info;
506 			buffer_info = &rx_ring->rx_buffer_info[i];
507 			rx_desc = IGB_RX_DESC(rx_ring, i);
508 			u0 = (struct my_u0 *)rx_desc;
509 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
510 
511 			if (i == rx_ring->next_to_use)
512 				next_desc = " NTU";
513 			else if (i == rx_ring->next_to_clean)
514 				next_desc = " NTC";
515 			else
516 				next_desc = "";
517 
518 			if (staterr & E1000_RXD_STAT_DD) {
519 				/* Descriptor Done */
520 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
521 					"RWB", i,
522 					le64_to_cpu(u0->a),
523 					le64_to_cpu(u0->b),
524 					next_desc);
525 			} else {
526 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
527 					"R  ", i,
528 					le64_to_cpu(u0->a),
529 					le64_to_cpu(u0->b),
530 					(u64)buffer_info->dma,
531 					next_desc);
532 
533 				if (netif_msg_pktdata(adapter) &&
534 				    buffer_info->dma && buffer_info->page) {
535 					print_hex_dump(KERN_INFO, "",
536 					  DUMP_PREFIX_ADDRESS,
537 					  16, 1,
538 					  page_address(buffer_info->page) +
539 						      buffer_info->page_offset,
540 					  igb_rx_bufsz(rx_ring), true);
541 				}
542 			}
543 		}
544 	}
545 
546 exit:
547 	return;
548 }
549 
550 /**
551  *  igb_get_i2c_data - Reads the I2C SDA data bit
552  *  @data: opaque pointer to adapter struct
553  *
554  *  Returns the I2C data bit value
555  **/
556 static int igb_get_i2c_data(void *data)
557 {
558 	struct igb_adapter *adapter = (struct igb_adapter *)data;
559 	struct e1000_hw *hw = &adapter->hw;
560 	s32 i2cctl = rd32(E1000_I2CPARAMS);
561 
562 	return !!(i2cctl & E1000_I2C_DATA_IN);
563 }
564 
565 /**
566  *  igb_set_i2c_data - Sets the I2C data bit
567  *  @data: pointer to hardware structure
568  *  @state: I2C data value (0 or 1) to set
569  *
570  *  Sets the I2C data bit
571  **/
572 static void igb_set_i2c_data(void *data, int state)
573 {
574 	struct igb_adapter *adapter = (struct igb_adapter *)data;
575 	struct e1000_hw *hw = &adapter->hw;
576 	s32 i2cctl = rd32(E1000_I2CPARAMS);
577 
578 	if (state) {
579 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
580 	} else {
581 		i2cctl &= ~E1000_I2C_DATA_OE_N;
582 		i2cctl &= ~E1000_I2C_DATA_OUT;
583 	}
584 
585 	wr32(E1000_I2CPARAMS, i2cctl);
586 	wrfl();
587 }
588 
589 /**
590  *  igb_set_i2c_clk - Sets the I2C SCL clock
591  *  @data: pointer to hardware structure
592  *  @state: state to set clock
593  *
594  *  Sets the I2C clock line to state
595  **/
596 static void igb_set_i2c_clk(void *data, int state)
597 {
598 	struct igb_adapter *adapter = (struct igb_adapter *)data;
599 	struct e1000_hw *hw = &adapter->hw;
600 	s32 i2cctl = rd32(E1000_I2CPARAMS);
601 
602 	if (state) {
603 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
604 	} else {
605 		i2cctl &= ~E1000_I2C_CLK_OUT;
606 		i2cctl &= ~E1000_I2C_CLK_OE_N;
607 	}
608 	wr32(E1000_I2CPARAMS, i2cctl);
609 	wrfl();
610 }
611 
612 /**
613  *  igb_get_i2c_clk - Gets the I2C SCL clock state
614  *  @data: pointer to hardware structure
615  *
616  *  Gets the I2C clock state
617  **/
618 static int igb_get_i2c_clk(void *data)
619 {
620 	struct igb_adapter *adapter = (struct igb_adapter *)data;
621 	struct e1000_hw *hw = &adapter->hw;
622 	s32 i2cctl = rd32(E1000_I2CPARAMS);
623 
624 	return !!(i2cctl & E1000_I2C_CLK_IN);
625 }
626 
627 static const struct i2c_algo_bit_data igb_i2c_algo = {
628 	.setsda		= igb_set_i2c_data,
629 	.setscl		= igb_set_i2c_clk,
630 	.getsda		= igb_get_i2c_data,
631 	.getscl		= igb_get_i2c_clk,
632 	.udelay		= 5,
633 	.timeout	= 20,
634 };
635 
636 /**
637  *  igb_get_hw_dev - return device
638  *  @hw: pointer to hardware structure
639  *
640  *  used by hardware layer to print debugging information
641  **/
642 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
643 {
644 	struct igb_adapter *adapter = hw->back;
645 	return adapter->netdev;
646 }
647 
648 /**
649  *  igb_init_module - Driver Registration Routine
650  *
651  *  igb_init_module is the first routine called when the driver is
652  *  loaded. All it does is register with the PCI subsystem.
653  **/
654 static int __init igb_init_module(void)
655 {
656 	int ret;
657 
658 	pr_info("%s\n", igb_driver_string);
659 	pr_info("%s\n", igb_copyright);
660 
661 #ifdef CONFIG_IGB_DCA
662 	dca_register_notify(&dca_notifier);
663 #endif
664 	ret = pci_register_driver(&igb_driver);
665 	return ret;
666 }
667 
668 module_init(igb_init_module);
669 
670 /**
671  *  igb_exit_module - Driver Exit Cleanup Routine
672  *
673  *  igb_exit_module is called just before the driver is removed
674  *  from memory.
675  **/
676 static void __exit igb_exit_module(void)
677 {
678 #ifdef CONFIG_IGB_DCA
679 	dca_unregister_notify(&dca_notifier);
680 #endif
681 	pci_unregister_driver(&igb_driver);
682 }
683 
684 module_exit(igb_exit_module);
685 
686 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
687 /**
688  *  igb_cache_ring_register - Descriptor ring to register mapping
689  *  @adapter: board private structure to initialize
690  *
691  *  Once we know the feature-set enabled for the device, we'll cache
692  *  the register offset the descriptor ring is assigned to.
693  **/
694 static void igb_cache_ring_register(struct igb_adapter *adapter)
695 {
696 	int i = 0, j = 0;
697 	u32 rbase_offset = adapter->vfs_allocated_count;
698 
699 	switch (adapter->hw.mac.type) {
700 	case e1000_82576:
701 		/* The queues are allocated for virtualization such that VF 0
702 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
703 		 * In order to avoid collision we start at the first free queue
704 		 * and continue consuming queues in the same sequence
705 		 */
706 		if (adapter->vfs_allocated_count) {
707 			for (; i < adapter->rss_queues; i++)
708 				adapter->rx_ring[i]->reg_idx = rbase_offset +
709 							       Q_IDX_82576(i);
710 		}
711 		fallthrough;
712 	case e1000_82575:
713 	case e1000_82580:
714 	case e1000_i350:
715 	case e1000_i354:
716 	case e1000_i210:
717 	case e1000_i211:
718 	default:
719 		for (; i < adapter->num_rx_queues; i++)
720 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
721 		for (; j < adapter->num_tx_queues; j++)
722 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
723 		break;
724 	}
725 }
726 
727 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
728 {
729 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
730 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
731 	u32 value = 0;
732 
733 	if (E1000_REMOVED(hw_addr))
734 		return ~value;
735 
736 	value = readl(&hw_addr[reg]);
737 
738 	/* reads should not return all F's */
739 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
740 		struct net_device *netdev = igb->netdev;
741 		hw->hw_addr = NULL;
742 		netdev_err(netdev, "PCIe link lost\n");
743 		WARN(pci_device_is_present(igb->pdev),
744 		     "igb: Failed to read reg 0x%x!\n", reg);
745 	}
746 
747 	return value;
748 }
749 
750 /**
751  *  igb_write_ivar - configure ivar for given MSI-X vector
752  *  @hw: pointer to the HW structure
753  *  @msix_vector: vector number we are allocating to a given ring
754  *  @index: row index of IVAR register to write within IVAR table
755  *  @offset: column offset of in IVAR, should be multiple of 8
756  *
757  *  This function is intended to handle the writing of the IVAR register
758  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
759  *  each containing an cause allocation for an Rx and Tx ring, and a
760  *  variable number of rows depending on the number of queues supported.
761  **/
762 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
763 			   int index, int offset)
764 {
765 	u32 ivar = array_rd32(E1000_IVAR0, index);
766 
767 	/* clear any bits that are currently set */
768 	ivar &= ~((u32)0xFF << offset);
769 
770 	/* write vector and valid bit */
771 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
772 
773 	array_wr32(E1000_IVAR0, index, ivar);
774 }
775 
776 #define IGB_N0_QUEUE -1
777 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
778 {
779 	struct igb_adapter *adapter = q_vector->adapter;
780 	struct e1000_hw *hw = &adapter->hw;
781 	int rx_queue = IGB_N0_QUEUE;
782 	int tx_queue = IGB_N0_QUEUE;
783 	u32 msixbm = 0;
784 
785 	if (q_vector->rx.ring)
786 		rx_queue = q_vector->rx.ring->reg_idx;
787 	if (q_vector->tx.ring)
788 		tx_queue = q_vector->tx.ring->reg_idx;
789 
790 	switch (hw->mac.type) {
791 	case e1000_82575:
792 		/* The 82575 assigns vectors using a bitmask, which matches the
793 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
794 		 * or more queues to a vector, we write the appropriate bits
795 		 * into the MSIXBM register for that vector.
796 		 */
797 		if (rx_queue > IGB_N0_QUEUE)
798 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
799 		if (tx_queue > IGB_N0_QUEUE)
800 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
801 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
802 			msixbm |= E1000_EIMS_OTHER;
803 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
804 		q_vector->eims_value = msixbm;
805 		break;
806 	case e1000_82576:
807 		/* 82576 uses a table that essentially consists of 2 columns
808 		 * with 8 rows.  The ordering is column-major so we use the
809 		 * lower 3 bits as the row index, and the 4th bit as the
810 		 * column offset.
811 		 */
812 		if (rx_queue > IGB_N0_QUEUE)
813 			igb_write_ivar(hw, msix_vector,
814 				       rx_queue & 0x7,
815 				       (rx_queue & 0x8) << 1);
816 		if (tx_queue > IGB_N0_QUEUE)
817 			igb_write_ivar(hw, msix_vector,
818 				       tx_queue & 0x7,
819 				       ((tx_queue & 0x8) << 1) + 8);
820 		q_vector->eims_value = BIT(msix_vector);
821 		break;
822 	case e1000_82580:
823 	case e1000_i350:
824 	case e1000_i354:
825 	case e1000_i210:
826 	case e1000_i211:
827 		/* On 82580 and newer adapters the scheme is similar to 82576
828 		 * however instead of ordering column-major we have things
829 		 * ordered row-major.  So we traverse the table by using
830 		 * bit 0 as the column offset, and the remaining bits as the
831 		 * row index.
832 		 */
833 		if (rx_queue > IGB_N0_QUEUE)
834 			igb_write_ivar(hw, msix_vector,
835 				       rx_queue >> 1,
836 				       (rx_queue & 0x1) << 4);
837 		if (tx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       tx_queue >> 1,
840 				       ((tx_queue & 0x1) << 4) + 8);
841 		q_vector->eims_value = BIT(msix_vector);
842 		break;
843 	default:
844 		BUG();
845 		break;
846 	}
847 
848 	/* add q_vector eims value to global eims_enable_mask */
849 	adapter->eims_enable_mask |= q_vector->eims_value;
850 
851 	/* configure q_vector to set itr on first interrupt */
852 	q_vector->set_itr = 1;
853 }
854 
855 /**
856  *  igb_configure_msix - Configure MSI-X hardware
857  *  @adapter: board private structure to initialize
858  *
859  *  igb_configure_msix sets up the hardware to properly
860  *  generate MSI-X interrupts.
861  **/
862 static void igb_configure_msix(struct igb_adapter *adapter)
863 {
864 	u32 tmp;
865 	int i, vector = 0;
866 	struct e1000_hw *hw = &adapter->hw;
867 
868 	adapter->eims_enable_mask = 0;
869 
870 	/* set vector for other causes, i.e. link changes */
871 	switch (hw->mac.type) {
872 	case e1000_82575:
873 		tmp = rd32(E1000_CTRL_EXT);
874 		/* enable MSI-X PBA support*/
875 		tmp |= E1000_CTRL_EXT_PBA_CLR;
876 
877 		/* Auto-Mask interrupts upon ICR read. */
878 		tmp |= E1000_CTRL_EXT_EIAME;
879 		tmp |= E1000_CTRL_EXT_IRCA;
880 
881 		wr32(E1000_CTRL_EXT, tmp);
882 
883 		/* enable msix_other interrupt */
884 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
885 		adapter->eims_other = E1000_EIMS_OTHER;
886 
887 		break;
888 
889 	case e1000_82576:
890 	case e1000_82580:
891 	case e1000_i350:
892 	case e1000_i354:
893 	case e1000_i210:
894 	case e1000_i211:
895 		/* Turn on MSI-X capability first, or our settings
896 		 * won't stick.  And it will take days to debug.
897 		 */
898 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
899 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
900 		     E1000_GPIE_NSICR);
901 
902 		/* enable msix_other interrupt */
903 		adapter->eims_other = BIT(vector);
904 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
905 
906 		wr32(E1000_IVAR_MISC, tmp);
907 		break;
908 	default:
909 		/* do nothing, since nothing else supports MSI-X */
910 		break;
911 	} /* switch (hw->mac.type) */
912 
913 	adapter->eims_enable_mask |= adapter->eims_other;
914 
915 	for (i = 0; i < adapter->num_q_vectors; i++)
916 		igb_assign_vector(adapter->q_vector[i], vector++);
917 
918 	wrfl();
919 }
920 
921 /**
922  *  igb_request_msix - Initialize MSI-X interrupts
923  *  @adapter: board private structure to initialize
924  *
925  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
926  *  kernel.
927  **/
928 static int igb_request_msix(struct igb_adapter *adapter)
929 {
930 	unsigned int num_q_vectors = adapter->num_q_vectors;
931 	struct net_device *netdev = adapter->netdev;
932 	int i, err = 0, vector = 0, free_vector = 0;
933 
934 	err = request_irq(adapter->msix_entries[vector].vector,
935 			  igb_msix_other, 0, netdev->name, adapter);
936 	if (err)
937 		goto err_out;
938 
939 	if (num_q_vectors > MAX_Q_VECTORS) {
940 		num_q_vectors = MAX_Q_VECTORS;
941 		dev_warn(&adapter->pdev->dev,
942 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
943 			 adapter->num_q_vectors, MAX_Q_VECTORS);
944 	}
945 	for (i = 0; i < num_q_vectors; i++) {
946 		struct igb_q_vector *q_vector = adapter->q_vector[i];
947 
948 		vector++;
949 
950 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
951 
952 		if (q_vector->rx.ring && q_vector->tx.ring)
953 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
954 				q_vector->rx.ring->queue_index);
955 		else if (q_vector->tx.ring)
956 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
957 				q_vector->tx.ring->queue_index);
958 		else if (q_vector->rx.ring)
959 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
960 				q_vector->rx.ring->queue_index);
961 		else
962 			sprintf(q_vector->name, "%s-unused", netdev->name);
963 
964 		err = request_irq(adapter->msix_entries[vector].vector,
965 				  igb_msix_ring, 0, q_vector->name,
966 				  q_vector);
967 		if (err)
968 			goto err_free;
969 	}
970 
971 	igb_configure_msix(adapter);
972 	return 0;
973 
974 err_free:
975 	/* free already assigned IRQs */
976 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
977 
978 	vector--;
979 	for (i = 0; i < vector; i++) {
980 		free_irq(adapter->msix_entries[free_vector++].vector,
981 			 adapter->q_vector[i]);
982 	}
983 err_out:
984 	return err;
985 }
986 
987 /**
988  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
989  *  @adapter: board private structure to initialize
990  *  @v_idx: Index of vector to be freed
991  *
992  *  This function frees the memory allocated to the q_vector.
993  **/
994 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
995 {
996 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
997 
998 	adapter->q_vector[v_idx] = NULL;
999 
1000 	/* igb_get_stats64() might access the rings on this vector,
1001 	 * we must wait a grace period before freeing it.
1002 	 */
1003 	if (q_vector)
1004 		kfree_rcu(q_vector, rcu);
1005 }
1006 
1007 /**
1008  *  igb_reset_q_vector - Reset config for interrupt vector
1009  *  @adapter: board private structure to initialize
1010  *  @v_idx: Index of vector to be reset
1011  *
1012  *  If NAPI is enabled it will delete any references to the
1013  *  NAPI struct. This is preparation for igb_free_q_vector.
1014  **/
1015 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1016 {
1017 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1018 
1019 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1020 	 * allocated. So, q_vector is NULL so we should stop here.
1021 	 */
1022 	if (!q_vector)
1023 		return;
1024 
1025 	if (q_vector->tx.ring)
1026 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1027 
1028 	if (q_vector->rx.ring)
1029 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1030 
1031 	netif_napi_del(&q_vector->napi);
1032 
1033 }
1034 
1035 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1036 {
1037 	int v_idx = adapter->num_q_vectors;
1038 
1039 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1040 		pci_disable_msix(adapter->pdev);
1041 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1042 		pci_disable_msi(adapter->pdev);
1043 
1044 	while (v_idx--)
1045 		igb_reset_q_vector(adapter, v_idx);
1046 }
1047 
1048 /**
1049  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1050  *  @adapter: board private structure to initialize
1051  *
1052  *  This function frees the memory allocated to the q_vectors.  In addition if
1053  *  NAPI is enabled it will delete any references to the NAPI struct prior
1054  *  to freeing the q_vector.
1055  **/
1056 static void igb_free_q_vectors(struct igb_adapter *adapter)
1057 {
1058 	int v_idx = adapter->num_q_vectors;
1059 
1060 	adapter->num_tx_queues = 0;
1061 	adapter->num_rx_queues = 0;
1062 	adapter->num_q_vectors = 0;
1063 
1064 	while (v_idx--) {
1065 		igb_reset_q_vector(adapter, v_idx);
1066 		igb_free_q_vector(adapter, v_idx);
1067 	}
1068 }
1069 
1070 /**
1071  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1072  *  @adapter: board private structure to initialize
1073  *
1074  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1075  *  MSI-X interrupts allocated.
1076  */
1077 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1078 {
1079 	igb_free_q_vectors(adapter);
1080 	igb_reset_interrupt_capability(adapter);
1081 }
1082 
1083 /**
1084  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1085  *  @adapter: board private structure to initialize
1086  *  @msix: boolean value of MSIX capability
1087  *
1088  *  Attempt to configure interrupts using the best available
1089  *  capabilities of the hardware and kernel.
1090  **/
1091 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1092 {
1093 	int err;
1094 	int numvecs, i;
1095 
1096 	if (!msix)
1097 		goto msi_only;
1098 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1099 
1100 	/* Number of supported queues. */
1101 	adapter->num_rx_queues = adapter->rss_queues;
1102 	if (adapter->vfs_allocated_count)
1103 		adapter->num_tx_queues = 1;
1104 	else
1105 		adapter->num_tx_queues = adapter->rss_queues;
1106 
1107 	/* start with one vector for every Rx queue */
1108 	numvecs = adapter->num_rx_queues;
1109 
1110 	/* if Tx handler is separate add 1 for every Tx queue */
1111 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1112 		numvecs += adapter->num_tx_queues;
1113 
1114 	/* store the number of vectors reserved for queues */
1115 	adapter->num_q_vectors = numvecs;
1116 
1117 	/* add 1 vector for link status interrupts */
1118 	numvecs++;
1119 	for (i = 0; i < numvecs; i++)
1120 		adapter->msix_entries[i].entry = i;
1121 
1122 	err = pci_enable_msix_range(adapter->pdev,
1123 				    adapter->msix_entries,
1124 				    numvecs,
1125 				    numvecs);
1126 	if (err > 0)
1127 		return;
1128 
1129 	igb_reset_interrupt_capability(adapter);
1130 
1131 	/* If we can't do MSI-X, try MSI */
1132 msi_only:
1133 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1134 #ifdef CONFIG_PCI_IOV
1135 	/* disable SR-IOV for non MSI-X configurations */
1136 	if (adapter->vf_data) {
1137 		struct e1000_hw *hw = &adapter->hw;
1138 		/* disable iov and allow time for transactions to clear */
1139 		pci_disable_sriov(adapter->pdev);
1140 		msleep(500);
1141 
1142 		kfree(adapter->vf_mac_list);
1143 		adapter->vf_mac_list = NULL;
1144 		kfree(adapter->vf_data);
1145 		adapter->vf_data = NULL;
1146 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1147 		wrfl();
1148 		msleep(100);
1149 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1150 	}
1151 #endif
1152 	adapter->vfs_allocated_count = 0;
1153 	adapter->rss_queues = 1;
1154 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1155 	adapter->num_rx_queues = 1;
1156 	adapter->num_tx_queues = 1;
1157 	adapter->num_q_vectors = 1;
1158 	if (!pci_enable_msi(adapter->pdev))
1159 		adapter->flags |= IGB_FLAG_HAS_MSI;
1160 }
1161 
1162 static void igb_add_ring(struct igb_ring *ring,
1163 			 struct igb_ring_container *head)
1164 {
1165 	head->ring = ring;
1166 	head->count++;
1167 }
1168 
1169 /**
1170  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1171  *  @adapter: board private structure to initialize
1172  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1173  *  @v_idx: index of vector in adapter struct
1174  *  @txr_count: total number of Tx rings to allocate
1175  *  @txr_idx: index of first Tx ring to allocate
1176  *  @rxr_count: total number of Rx rings to allocate
1177  *  @rxr_idx: index of first Rx ring to allocate
1178  *
1179  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1180  **/
1181 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1182 			      int v_count, int v_idx,
1183 			      int txr_count, int txr_idx,
1184 			      int rxr_count, int rxr_idx)
1185 {
1186 	struct igb_q_vector *q_vector;
1187 	struct igb_ring *ring;
1188 	int ring_count;
1189 	size_t size;
1190 
1191 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1192 	if (txr_count > 1 || rxr_count > 1)
1193 		return -ENOMEM;
1194 
1195 	ring_count = txr_count + rxr_count;
1196 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1197 
1198 	/* allocate q_vector and rings */
1199 	q_vector = adapter->q_vector[v_idx];
1200 	if (!q_vector) {
1201 		q_vector = kzalloc(size, GFP_KERNEL);
1202 	} else if (size > ksize(q_vector)) {
1203 		struct igb_q_vector *new_q_vector;
1204 
1205 		new_q_vector = kzalloc(size, GFP_KERNEL);
1206 		if (new_q_vector)
1207 			kfree_rcu(q_vector, rcu);
1208 		q_vector = new_q_vector;
1209 	} else {
1210 		memset(q_vector, 0, size);
1211 	}
1212 	if (!q_vector)
1213 		return -ENOMEM;
1214 
1215 	/* initialize NAPI */
1216 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1217 
1218 	/* tie q_vector and adapter together */
1219 	adapter->q_vector[v_idx] = q_vector;
1220 	q_vector->adapter = adapter;
1221 
1222 	/* initialize work limits */
1223 	q_vector->tx.work_limit = adapter->tx_work_limit;
1224 
1225 	/* initialize ITR configuration */
1226 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1227 	q_vector->itr_val = IGB_START_ITR;
1228 
1229 	/* initialize pointer to rings */
1230 	ring = q_vector->ring;
1231 
1232 	/* intialize ITR */
1233 	if (rxr_count) {
1234 		/* rx or rx/tx vector */
1235 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1236 			q_vector->itr_val = adapter->rx_itr_setting;
1237 	} else {
1238 		/* tx only vector */
1239 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1240 			q_vector->itr_val = adapter->tx_itr_setting;
1241 	}
1242 
1243 	if (txr_count) {
1244 		/* assign generic ring traits */
1245 		ring->dev = &adapter->pdev->dev;
1246 		ring->netdev = adapter->netdev;
1247 
1248 		/* configure backlink on ring */
1249 		ring->q_vector = q_vector;
1250 
1251 		/* update q_vector Tx values */
1252 		igb_add_ring(ring, &q_vector->tx);
1253 
1254 		/* For 82575, context index must be unique per ring. */
1255 		if (adapter->hw.mac.type == e1000_82575)
1256 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1257 
1258 		/* apply Tx specific ring traits */
1259 		ring->count = adapter->tx_ring_count;
1260 		ring->queue_index = txr_idx;
1261 
1262 		ring->cbs_enable = false;
1263 		ring->idleslope = 0;
1264 		ring->sendslope = 0;
1265 		ring->hicredit = 0;
1266 		ring->locredit = 0;
1267 
1268 		u64_stats_init(&ring->tx_syncp);
1269 		u64_stats_init(&ring->tx_syncp2);
1270 
1271 		/* assign ring to adapter */
1272 		adapter->tx_ring[txr_idx] = ring;
1273 
1274 		/* push pointer to next ring */
1275 		ring++;
1276 	}
1277 
1278 	if (rxr_count) {
1279 		/* assign generic ring traits */
1280 		ring->dev = &adapter->pdev->dev;
1281 		ring->netdev = adapter->netdev;
1282 
1283 		/* configure backlink on ring */
1284 		ring->q_vector = q_vector;
1285 
1286 		/* update q_vector Rx values */
1287 		igb_add_ring(ring, &q_vector->rx);
1288 
1289 		/* set flag indicating ring supports SCTP checksum offload */
1290 		if (adapter->hw.mac.type >= e1000_82576)
1291 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292 
1293 		/* On i350, i354, i210, and i211, loopback VLAN packets
1294 		 * have the tag byte-swapped.
1295 		 */
1296 		if (adapter->hw.mac.type >= e1000_i350)
1297 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298 
1299 		/* apply Rx specific ring traits */
1300 		ring->count = adapter->rx_ring_count;
1301 		ring->queue_index = rxr_idx;
1302 
1303 		u64_stats_init(&ring->rx_syncp);
1304 
1305 		/* assign ring to adapter */
1306 		adapter->rx_ring[rxr_idx] = ring;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 
1313 /**
1314  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315  *  @adapter: board private structure to initialize
1316  *
1317  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1318  *  return -ENOMEM.
1319  **/
1320 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321 {
1322 	int q_vectors = adapter->num_q_vectors;
1323 	int rxr_remaining = adapter->num_rx_queues;
1324 	int txr_remaining = adapter->num_tx_queues;
1325 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326 	int err;
1327 
1328 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329 		for (; rxr_remaining; v_idx++) {
1330 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331 						 0, 0, 1, rxr_idx);
1332 
1333 			if (err)
1334 				goto err_out;
1335 
1336 			/* update counts and index */
1337 			rxr_remaining--;
1338 			rxr_idx++;
1339 		}
1340 	}
1341 
1342 	for (; v_idx < q_vectors; v_idx++) {
1343 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345 
1346 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347 					 tqpv, txr_idx, rqpv, rxr_idx);
1348 
1349 		if (err)
1350 			goto err_out;
1351 
1352 		/* update counts and index */
1353 		rxr_remaining -= rqpv;
1354 		txr_remaining -= tqpv;
1355 		rxr_idx++;
1356 		txr_idx++;
1357 	}
1358 
1359 	return 0;
1360 
1361 err_out:
1362 	adapter->num_tx_queues = 0;
1363 	adapter->num_rx_queues = 0;
1364 	adapter->num_q_vectors = 0;
1365 
1366 	while (v_idx--)
1367 		igb_free_q_vector(adapter, v_idx);
1368 
1369 	return -ENOMEM;
1370 }
1371 
1372 /**
1373  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374  *  @adapter: board private structure to initialize
1375  *  @msix: boolean value of MSIX capability
1376  *
1377  *  This function initializes the interrupts and allocates all of the queues.
1378  **/
1379 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380 {
1381 	struct pci_dev *pdev = adapter->pdev;
1382 	int err;
1383 
1384 	igb_set_interrupt_capability(adapter, msix);
1385 
1386 	err = igb_alloc_q_vectors(adapter);
1387 	if (err) {
1388 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389 		goto err_alloc_q_vectors;
1390 	}
1391 
1392 	igb_cache_ring_register(adapter);
1393 
1394 	return 0;
1395 
1396 err_alloc_q_vectors:
1397 	igb_reset_interrupt_capability(adapter);
1398 	return err;
1399 }
1400 
1401 /**
1402  *  igb_request_irq - initialize interrupts
1403  *  @adapter: board private structure to initialize
1404  *
1405  *  Attempts to configure interrupts using the best available
1406  *  capabilities of the hardware and kernel.
1407  **/
1408 static int igb_request_irq(struct igb_adapter *adapter)
1409 {
1410 	struct net_device *netdev = adapter->netdev;
1411 	struct pci_dev *pdev = adapter->pdev;
1412 	int err = 0;
1413 
1414 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415 		err = igb_request_msix(adapter);
1416 		if (!err)
1417 			goto request_done;
1418 		/* fall back to MSI */
1419 		igb_free_all_tx_resources(adapter);
1420 		igb_free_all_rx_resources(adapter);
1421 
1422 		igb_clear_interrupt_scheme(adapter);
1423 		err = igb_init_interrupt_scheme(adapter, false);
1424 		if (err)
1425 			goto request_done;
1426 
1427 		igb_setup_all_tx_resources(adapter);
1428 		igb_setup_all_rx_resources(adapter);
1429 		igb_configure(adapter);
1430 	}
1431 
1432 	igb_assign_vector(adapter->q_vector[0], 0);
1433 
1434 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1436 				  netdev->name, adapter);
1437 		if (!err)
1438 			goto request_done;
1439 
1440 		/* fall back to legacy interrupts */
1441 		igb_reset_interrupt_capability(adapter);
1442 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443 	}
1444 
1445 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446 			  netdev->name, adapter);
1447 
1448 	if (err)
1449 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450 			err);
1451 
1452 request_done:
1453 	return err;
1454 }
1455 
1456 static void igb_free_irq(struct igb_adapter *adapter)
1457 {
1458 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459 		int vector = 0, i;
1460 
1461 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1462 
1463 		for (i = 0; i < adapter->num_q_vectors; i++)
1464 			free_irq(adapter->msix_entries[vector++].vector,
1465 				 adapter->q_vector[i]);
1466 	} else {
1467 		free_irq(adapter->pdev->irq, adapter);
1468 	}
1469 }
1470 
1471 /**
1472  *  igb_irq_disable - Mask off interrupt generation on the NIC
1473  *  @adapter: board private structure
1474  **/
1475 static void igb_irq_disable(struct igb_adapter *adapter)
1476 {
1477 	struct e1000_hw *hw = &adapter->hw;
1478 
1479 	/* we need to be careful when disabling interrupts.  The VFs are also
1480 	 * mapped into these registers and so clearing the bits can cause
1481 	 * issues on the VF drivers so we only need to clear what we set
1482 	 */
1483 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484 		u32 regval = rd32(E1000_EIAM);
1485 
1486 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1488 		regval = rd32(E1000_EIAC);
1489 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490 	}
1491 
1492 	wr32(E1000_IAM, 0);
1493 	wr32(E1000_IMC, ~0);
1494 	wrfl();
1495 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496 		int i;
1497 
1498 		for (i = 0; i < adapter->num_q_vectors; i++)
1499 			synchronize_irq(adapter->msix_entries[i].vector);
1500 	} else {
1501 		synchronize_irq(adapter->pdev->irq);
1502 	}
1503 }
1504 
1505 /**
1506  *  igb_irq_enable - Enable default interrupt generation settings
1507  *  @adapter: board private structure
1508  **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511 	struct e1000_hw *hw = &adapter->hw;
1512 
1513 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515 		u32 regval = rd32(E1000_EIAC);
1516 
1517 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518 		regval = rd32(E1000_EIAM);
1519 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1521 		if (adapter->vfs_allocated_count) {
1522 			wr32(E1000_MBVFIMR, 0xFF);
1523 			ims |= E1000_IMS_VMMB;
1524 		}
1525 		wr32(E1000_IMS, ims);
1526 	} else {
1527 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1528 				E1000_IMS_DRSTA);
1529 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 	}
1532 }
1533 
1534 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535 {
1536 	struct e1000_hw *hw = &adapter->hw;
1537 	u16 pf_id = adapter->vfs_allocated_count;
1538 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1539 	u16 old_vid = adapter->mng_vlan_id;
1540 
1541 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542 		/* add VID to filter table */
1543 		igb_vfta_set(hw, vid, pf_id, true, true);
1544 		adapter->mng_vlan_id = vid;
1545 	} else {
1546 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547 	}
1548 
1549 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550 	    (vid != old_vid) &&
1551 	    !test_bit(old_vid, adapter->active_vlans)) {
1552 		/* remove VID from filter table */
1553 		igb_vfta_set(hw, vid, pf_id, false, true);
1554 	}
1555 }
1556 
1557 /**
1558  *  igb_release_hw_control - release control of the h/w to f/w
1559  *  @adapter: address of board private structure
1560  *
1561  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562  *  For ASF and Pass Through versions of f/w this means that the
1563  *  driver is no longer loaded.
1564  **/
1565 static void igb_release_hw_control(struct igb_adapter *adapter)
1566 {
1567 	struct e1000_hw *hw = &adapter->hw;
1568 	u32 ctrl_ext;
1569 
1570 	/* Let firmware take over control of h/w */
1571 	ctrl_ext = rd32(E1000_CTRL_EXT);
1572 	wr32(E1000_CTRL_EXT,
1573 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574 }
1575 
1576 /**
1577  *  igb_get_hw_control - get control of the h/w from f/w
1578  *  @adapter: address of board private structure
1579  *
1580  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581  *  For ASF and Pass Through versions of f/w this means that
1582  *  the driver is loaded.
1583  **/
1584 static void igb_get_hw_control(struct igb_adapter *adapter)
1585 {
1586 	struct e1000_hw *hw = &adapter->hw;
1587 	u32 ctrl_ext;
1588 
1589 	/* Let firmware know the driver has taken over */
1590 	ctrl_ext = rd32(E1000_CTRL_EXT);
1591 	wr32(E1000_CTRL_EXT,
1592 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593 }
1594 
1595 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1596 {
1597 	struct net_device *netdev = adapter->netdev;
1598 	struct e1000_hw *hw = &adapter->hw;
1599 
1600 	WARN_ON(hw->mac.type != e1000_i210);
1601 
1602 	if (enable)
1603 		adapter->flags |= IGB_FLAG_FQTSS;
1604 	else
1605 		adapter->flags &= ~IGB_FLAG_FQTSS;
1606 
1607 	if (netif_running(netdev))
1608 		schedule_work(&adapter->reset_task);
1609 }
1610 
1611 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1612 {
1613 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1614 }
1615 
1616 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1617 				   enum tx_queue_prio prio)
1618 {
1619 	u32 val;
1620 
1621 	WARN_ON(hw->mac.type != e1000_i210);
1622 	WARN_ON(queue < 0 || queue > 4);
1623 
1624 	val = rd32(E1000_I210_TXDCTL(queue));
1625 
1626 	if (prio == TX_QUEUE_PRIO_HIGH)
1627 		val |= E1000_TXDCTL_PRIORITY;
1628 	else
1629 		val &= ~E1000_TXDCTL_PRIORITY;
1630 
1631 	wr32(E1000_I210_TXDCTL(queue), val);
1632 }
1633 
1634 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1635 {
1636 	u32 val;
1637 
1638 	WARN_ON(hw->mac.type != e1000_i210);
1639 	WARN_ON(queue < 0 || queue > 1);
1640 
1641 	val = rd32(E1000_I210_TQAVCC(queue));
1642 
1643 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1644 		val |= E1000_TQAVCC_QUEUEMODE;
1645 	else
1646 		val &= ~E1000_TQAVCC_QUEUEMODE;
1647 
1648 	wr32(E1000_I210_TQAVCC(queue), val);
1649 }
1650 
1651 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1652 {
1653 	int i;
1654 
1655 	for (i = 0; i < adapter->num_tx_queues; i++) {
1656 		if (adapter->tx_ring[i]->cbs_enable)
1657 			return true;
1658 	}
1659 
1660 	return false;
1661 }
1662 
1663 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1664 {
1665 	int i;
1666 
1667 	for (i = 0; i < adapter->num_tx_queues; i++) {
1668 		if (adapter->tx_ring[i]->launchtime_enable)
1669 			return true;
1670 	}
1671 
1672 	return false;
1673 }
1674 
1675 /**
1676  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1677  *  @adapter: pointer to adapter struct
1678  *  @queue: queue number
1679  *
1680  *  Configure CBS and Launchtime for a given hardware queue.
1681  *  Parameters are retrieved from the correct Tx ring, so
1682  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1683  *  for setting those correctly prior to this function being called.
1684  **/
1685 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1686 {
1687 	struct net_device *netdev = adapter->netdev;
1688 	struct e1000_hw *hw = &adapter->hw;
1689 	struct igb_ring *ring;
1690 	u32 tqavcc, tqavctrl;
1691 	u16 value;
1692 
1693 	WARN_ON(hw->mac.type != e1000_i210);
1694 	WARN_ON(queue < 0 || queue > 1);
1695 	ring = adapter->tx_ring[queue];
1696 
1697 	/* If any of the Qav features is enabled, configure queues as SR and
1698 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699 	 * as SP.
1700 	 */
1701 	if (ring->cbs_enable || ring->launchtime_enable) {
1702 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704 	} else {
1705 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707 	}
1708 
1709 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1710 	if (ring->cbs_enable || queue == 0) {
1711 		/* i210 does not allow the queue 0 to be in the Strict
1712 		 * Priority mode while the Qav mode is enabled, so,
1713 		 * instead of disabling strict priority mode, we give
1714 		 * queue 0 the maximum of credits possible.
1715 		 *
1716 		 * See section 8.12.19 of the i210 datasheet, "Note:
1717 		 * Queue0 QueueMode must be set to 1b when
1718 		 * TransmitMode is set to Qav."
1719 		 */
1720 		if (queue == 0 && !ring->cbs_enable) {
1721 			/* max "linkspeed" idleslope in kbps */
1722 			ring->idleslope = 1000000;
1723 			ring->hicredit = ETH_FRAME_LEN;
1724 		}
1725 
1726 		/* Always set data transfer arbitration to credit-based
1727 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728 		 * the queues.
1729 		 */
1730 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733 
1734 		/* According to i210 datasheet section 7.2.7.7, we should set
1735 		 * the 'idleSlope' field from TQAVCC register following the
1736 		 * equation:
1737 		 *
1738 		 * For 100 Mbps link speed:
1739 		 *
1740 		 *     value = BW * 0x7735 * 0.2                          (E1)
1741 		 *
1742 		 * For 1000Mbps link speed:
1743 		 *
1744 		 *     value = BW * 0x7735 * 2                            (E2)
1745 		 *
1746 		 * E1 and E2 can be merged into one equation as shown below.
1747 		 * Note that 'link-speed' is in Mbps.
1748 		 *
1749 		 *     value = BW * 0x7735 * 2 * link-speed
1750 		 *                           --------------               (E3)
1751 		 *                                1000
1752 		 *
1753 		 * 'BW' is the percentage bandwidth out of full link speed
1754 		 * which can be found with the following equation. Note that
1755 		 * idleSlope here is the parameter from this function which
1756 		 * is in kbps.
1757 		 *
1758 		 *     BW =     idleSlope
1759 		 *          -----------------                             (E4)
1760 		 *          link-speed * 1000
1761 		 *
1762 		 * That said, we can come up with a generic equation to
1763 		 * calculate the value we should set it TQAVCC register by
1764 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1765 		 *
1766 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1767 		 *         -----------------            --------------    (E5)
1768 		 *         link-speed * 1000                 1000
1769 		 *
1770 		 * 'link-speed' is present in both sides of the fraction so
1771 		 * it is canceled out. The final equation is the following:
1772 		 *
1773 		 *     value = idleSlope * 61034
1774 		 *             -----------------                          (E6)
1775 		 *                  1000000
1776 		 *
1777 		 * NOTE: For i210, given the above, we can see that idleslope
1778 		 *       is represented in 16.38431 kbps units by the value at
1779 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1780 		 *       the granularity for idleslope increments.
1781 		 *       For instance, if you want to configure a 2576kbps
1782 		 *       idleslope, the value to be written on the register
1783 		 *       would have to be 157.23. If rounded down, you end
1784 		 *       up with less bandwidth available than originally
1785 		 *       required (~2572 kbps). If rounded up, you end up
1786 		 *       with a higher bandwidth (~2589 kbps). Below the
1787 		 *       approach we take is to always round up the
1788 		 *       calculated value, so the resulting bandwidth might
1789 		 *       be slightly higher for some configurations.
1790 		 */
1791 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792 
1793 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795 		tqavcc |= value;
1796 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797 
1798 		wr32(E1000_I210_TQAVHC(queue),
1799 		     0x80000000 + ring->hicredit * 0x7735);
1800 	} else {
1801 
1802 		/* Set idleSlope to zero. */
1803 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806 
1807 		/* Set hiCredit to zero. */
1808 		wr32(E1000_I210_TQAVHC(queue), 0);
1809 
1810 		/* If CBS is not enabled for any queues anymore, then return to
1811 		 * the default state of Data Transmission Arbitration on
1812 		 * TQAVCTRL.
1813 		 */
1814 		if (!is_any_cbs_enabled(adapter)) {
1815 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818 		}
1819 	}
1820 
1821 	/* If LaunchTime is enabled, set DataTranTIM. */
1822 	if (ring->launchtime_enable) {
1823 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 		 * for any of the SR queues, and configure fetchtime delta.
1825 		 * XXX NOTE:
1826 		 *     - LaunchTime will be enabled for all SR queues.
1827 		 *     - A fixed offset can be added relative to the launch
1828 		 *       time of all packets if configured at reg LAUNCH_OS0.
1829 		 *       We are keeping it as 0 for now (default value).
1830 		 */
1831 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835 	} else {
1836 		/* If Launchtime is not enabled for any SR queues anymore,
1837 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 		 * effectively disabling Launchtime.
1839 		 */
1840 		if (!is_any_txtime_enabled(adapter)) {
1841 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845 		}
1846 	}
1847 
1848 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 	 * CBS are not configurable by software so we don't do any 'controller
1850 	 * configuration' in respect to these parameters.
1851 	 */
1852 
1853 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1854 		   ring->cbs_enable ? "enabled" : "disabled",
1855 		   ring->launchtime_enable ? "enabled" : "disabled",
1856 		   queue,
1857 		   ring->idleslope, ring->sendslope,
1858 		   ring->hicredit, ring->locredit);
1859 }
1860 
1861 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1862 				  bool enable)
1863 {
1864 	struct igb_ring *ring;
1865 
1866 	if (queue < 0 || queue > adapter->num_tx_queues)
1867 		return -EINVAL;
1868 
1869 	ring = adapter->tx_ring[queue];
1870 	ring->launchtime_enable = enable;
1871 
1872 	return 0;
1873 }
1874 
1875 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1876 			       bool enable, int idleslope, int sendslope,
1877 			       int hicredit, int locredit)
1878 {
1879 	struct igb_ring *ring;
1880 
1881 	if (queue < 0 || queue > adapter->num_tx_queues)
1882 		return -EINVAL;
1883 
1884 	ring = adapter->tx_ring[queue];
1885 
1886 	ring->cbs_enable = enable;
1887 	ring->idleslope = idleslope;
1888 	ring->sendslope = sendslope;
1889 	ring->hicredit = hicredit;
1890 	ring->locredit = locredit;
1891 
1892 	return 0;
1893 }
1894 
1895 /**
1896  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1897  *  @adapter: pointer to adapter struct
1898  *
1899  *  Configure TQAVCTRL register switching the controller's Tx mode
1900  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1901  *  a call to igb_config_tx_modes() per queue so any previously saved
1902  *  Tx parameters are applied.
1903  **/
1904 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1905 {
1906 	struct net_device *netdev = adapter->netdev;
1907 	struct e1000_hw *hw = &adapter->hw;
1908 	u32 val;
1909 
1910 	/* Only i210 controller supports changing the transmission mode. */
1911 	if (hw->mac.type != e1000_i210)
1912 		return;
1913 
1914 	if (is_fqtss_enabled(adapter)) {
1915 		int i, max_queue;
1916 
1917 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1918 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1919 		 * so SP queues wait for SR ones.
1920 		 */
1921 		val = rd32(E1000_I210_TQAVCTRL);
1922 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1923 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1924 		wr32(E1000_I210_TQAVCTRL, val);
1925 
1926 		/* Configure Tx and Rx packet buffers sizes as described in
1927 		 * i210 datasheet section 7.2.7.7.
1928 		 */
1929 		val = rd32(E1000_TXPBS);
1930 		val &= ~I210_TXPBSIZE_MASK;
1931 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1932 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1933 		wr32(E1000_TXPBS, val);
1934 
1935 		val = rd32(E1000_RXPBS);
1936 		val &= ~I210_RXPBSIZE_MASK;
1937 		val |= I210_RXPBSIZE_PB_30KB;
1938 		wr32(E1000_RXPBS, val);
1939 
1940 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1941 		 * register should not exceed the buffer size programmed in
1942 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1943 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1944 		 * 4kB / 64.
1945 		 *
1946 		 * However, when we do so, no frame from queue 2 and 3 are
1947 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1948 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1949 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1950 		 */
1951 		val = (4096 - 1) / 64;
1952 		wr32(E1000_I210_DTXMXPKTSZ, val);
1953 
1954 		/* Since FQTSS mode is enabled, apply any CBS configuration
1955 		 * previously set. If no previous CBS configuration has been
1956 		 * done, then the initial configuration is applied, which means
1957 		 * CBS is disabled.
1958 		 */
1959 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1960 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1961 
1962 		for (i = 0; i < max_queue; i++) {
1963 			igb_config_tx_modes(adapter, i);
1964 		}
1965 	} else {
1966 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1967 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1968 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1969 
1970 		val = rd32(E1000_I210_TQAVCTRL);
1971 		/* According to Section 8.12.21, the other flags we've set when
1972 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1973 		 * don't set they here.
1974 		 */
1975 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1976 		wr32(E1000_I210_TQAVCTRL, val);
1977 	}
1978 
1979 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1980 		   "enabled" : "disabled");
1981 }
1982 
1983 /**
1984  *  igb_configure - configure the hardware for RX and TX
1985  *  @adapter: private board structure
1986  **/
1987 static void igb_configure(struct igb_adapter *adapter)
1988 {
1989 	struct net_device *netdev = adapter->netdev;
1990 	int i;
1991 
1992 	igb_get_hw_control(adapter);
1993 	igb_set_rx_mode(netdev);
1994 	igb_setup_tx_mode(adapter);
1995 
1996 	igb_restore_vlan(adapter);
1997 
1998 	igb_setup_tctl(adapter);
1999 	igb_setup_mrqc(adapter);
2000 	igb_setup_rctl(adapter);
2001 
2002 	igb_nfc_filter_restore(adapter);
2003 	igb_configure_tx(adapter);
2004 	igb_configure_rx(adapter);
2005 
2006 	igb_rx_fifo_flush_82575(&adapter->hw);
2007 
2008 	/* call igb_desc_unused which always leaves
2009 	 * at least 1 descriptor unused to make sure
2010 	 * next_to_use != next_to_clean
2011 	 */
2012 	for (i = 0; i < adapter->num_rx_queues; i++) {
2013 		struct igb_ring *ring = adapter->rx_ring[i];
2014 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2015 	}
2016 }
2017 
2018 /**
2019  *  igb_power_up_link - Power up the phy/serdes link
2020  *  @adapter: address of board private structure
2021  **/
2022 void igb_power_up_link(struct igb_adapter *adapter)
2023 {
2024 	igb_reset_phy(&adapter->hw);
2025 
2026 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2027 		igb_power_up_phy_copper(&adapter->hw);
2028 	else
2029 		igb_power_up_serdes_link_82575(&adapter->hw);
2030 
2031 	igb_setup_link(&adapter->hw);
2032 }
2033 
2034 /**
2035  *  igb_power_down_link - Power down the phy/serdes link
2036  *  @adapter: address of board private structure
2037  */
2038 static void igb_power_down_link(struct igb_adapter *adapter)
2039 {
2040 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2041 		igb_power_down_phy_copper_82575(&adapter->hw);
2042 	else
2043 		igb_shutdown_serdes_link_82575(&adapter->hw);
2044 }
2045 
2046 /**
2047  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2048  * @adapter: address of the board private structure
2049  **/
2050 static void igb_check_swap_media(struct igb_adapter *adapter)
2051 {
2052 	struct e1000_hw *hw = &adapter->hw;
2053 	u32 ctrl_ext, connsw;
2054 	bool swap_now = false;
2055 
2056 	ctrl_ext = rd32(E1000_CTRL_EXT);
2057 	connsw = rd32(E1000_CONNSW);
2058 
2059 	/* need to live swap if current media is copper and we have fiber/serdes
2060 	 * to go to.
2061 	 */
2062 
2063 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2064 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2065 		swap_now = true;
2066 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2067 		   !(connsw & E1000_CONNSW_SERDESD)) {
2068 		/* copper signal takes time to appear */
2069 		if (adapter->copper_tries < 4) {
2070 			adapter->copper_tries++;
2071 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2072 			wr32(E1000_CONNSW, connsw);
2073 			return;
2074 		} else {
2075 			adapter->copper_tries = 0;
2076 			if ((connsw & E1000_CONNSW_PHYSD) &&
2077 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2078 				swap_now = true;
2079 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2080 				wr32(E1000_CONNSW, connsw);
2081 			}
2082 		}
2083 	}
2084 
2085 	if (!swap_now)
2086 		return;
2087 
2088 	switch (hw->phy.media_type) {
2089 	case e1000_media_type_copper:
2090 		netdev_info(adapter->netdev,
2091 			"MAS: changing media to fiber/serdes\n");
2092 		ctrl_ext |=
2093 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2094 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2095 		adapter->copper_tries = 0;
2096 		break;
2097 	case e1000_media_type_internal_serdes:
2098 	case e1000_media_type_fiber:
2099 		netdev_info(adapter->netdev,
2100 			"MAS: changing media to copper\n");
2101 		ctrl_ext &=
2102 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2103 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2104 		break;
2105 	default:
2106 		/* shouldn't get here during regular operation */
2107 		netdev_err(adapter->netdev,
2108 			"AMS: Invalid media type found, returning\n");
2109 		break;
2110 	}
2111 	wr32(E1000_CTRL_EXT, ctrl_ext);
2112 }
2113 
2114 /**
2115  *  igb_up - Open the interface and prepare it to handle traffic
2116  *  @adapter: board private structure
2117  **/
2118 int igb_up(struct igb_adapter *adapter)
2119 {
2120 	struct e1000_hw *hw = &adapter->hw;
2121 	int i;
2122 
2123 	/* hardware has been reset, we need to reload some things */
2124 	igb_configure(adapter);
2125 
2126 	clear_bit(__IGB_DOWN, &adapter->state);
2127 
2128 	for (i = 0; i < adapter->num_q_vectors; i++)
2129 		napi_enable(&(adapter->q_vector[i]->napi));
2130 
2131 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2132 		igb_configure_msix(adapter);
2133 	else
2134 		igb_assign_vector(adapter->q_vector[0], 0);
2135 
2136 	/* Clear any pending interrupts. */
2137 	rd32(E1000_TSICR);
2138 	rd32(E1000_ICR);
2139 	igb_irq_enable(adapter);
2140 
2141 	/* notify VFs that reset has been completed */
2142 	if (adapter->vfs_allocated_count) {
2143 		u32 reg_data = rd32(E1000_CTRL_EXT);
2144 
2145 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2146 		wr32(E1000_CTRL_EXT, reg_data);
2147 	}
2148 
2149 	netif_tx_start_all_queues(adapter->netdev);
2150 
2151 	/* start the watchdog. */
2152 	hw->mac.get_link_status = 1;
2153 	schedule_work(&adapter->watchdog_task);
2154 
2155 	if ((adapter->flags & IGB_FLAG_EEE) &&
2156 	    (!hw->dev_spec._82575.eee_disable))
2157 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2158 
2159 	return 0;
2160 }
2161 
2162 void igb_down(struct igb_adapter *adapter)
2163 {
2164 	struct net_device *netdev = adapter->netdev;
2165 	struct e1000_hw *hw = &adapter->hw;
2166 	u32 tctl, rctl;
2167 	int i;
2168 
2169 	/* signal that we're down so the interrupt handler does not
2170 	 * reschedule our watchdog timer
2171 	 */
2172 	set_bit(__IGB_DOWN, &adapter->state);
2173 
2174 	/* disable receives in the hardware */
2175 	rctl = rd32(E1000_RCTL);
2176 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2177 	/* flush and sleep below */
2178 
2179 	igb_nfc_filter_exit(adapter);
2180 
2181 	netif_carrier_off(netdev);
2182 	netif_tx_stop_all_queues(netdev);
2183 
2184 	/* disable transmits in the hardware */
2185 	tctl = rd32(E1000_TCTL);
2186 	tctl &= ~E1000_TCTL_EN;
2187 	wr32(E1000_TCTL, tctl);
2188 	/* flush both disables and wait for them to finish */
2189 	wrfl();
2190 	usleep_range(10000, 11000);
2191 
2192 	igb_irq_disable(adapter);
2193 
2194 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2195 
2196 	for (i = 0; i < adapter->num_q_vectors; i++) {
2197 		if (adapter->q_vector[i]) {
2198 			napi_synchronize(&adapter->q_vector[i]->napi);
2199 			napi_disable(&adapter->q_vector[i]->napi);
2200 		}
2201 	}
2202 
2203 	del_timer_sync(&adapter->watchdog_timer);
2204 	del_timer_sync(&adapter->phy_info_timer);
2205 
2206 	/* record the stats before reset*/
2207 	spin_lock(&adapter->stats64_lock);
2208 	igb_update_stats(adapter);
2209 	spin_unlock(&adapter->stats64_lock);
2210 
2211 	adapter->link_speed = 0;
2212 	adapter->link_duplex = 0;
2213 
2214 	if (!pci_channel_offline(adapter->pdev))
2215 		igb_reset(adapter);
2216 
2217 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2218 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2219 
2220 	igb_clean_all_tx_rings(adapter);
2221 	igb_clean_all_rx_rings(adapter);
2222 #ifdef CONFIG_IGB_DCA
2223 
2224 	/* since we reset the hardware DCA settings were cleared */
2225 	igb_setup_dca(adapter);
2226 #endif
2227 }
2228 
2229 void igb_reinit_locked(struct igb_adapter *adapter)
2230 {
2231 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2232 		usleep_range(1000, 2000);
2233 	igb_down(adapter);
2234 	igb_up(adapter);
2235 	clear_bit(__IGB_RESETTING, &adapter->state);
2236 }
2237 
2238 /** igb_enable_mas - Media Autosense re-enable after swap
2239  *
2240  * @adapter: adapter struct
2241  **/
2242 static void igb_enable_mas(struct igb_adapter *adapter)
2243 {
2244 	struct e1000_hw *hw = &adapter->hw;
2245 	u32 connsw = rd32(E1000_CONNSW);
2246 
2247 	/* configure for SerDes media detect */
2248 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2249 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2250 		connsw |= E1000_CONNSW_ENRGSRC;
2251 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2252 		wr32(E1000_CONNSW, connsw);
2253 		wrfl();
2254 	}
2255 }
2256 
2257 #ifdef CONFIG_IGB_HWMON
2258 /**
2259  *  igb_set_i2c_bb - Init I2C interface
2260  *  @hw: pointer to hardware structure
2261  **/
2262 static void igb_set_i2c_bb(struct e1000_hw *hw)
2263 {
2264 	u32 ctrl_ext;
2265 	s32 i2cctl;
2266 
2267 	ctrl_ext = rd32(E1000_CTRL_EXT);
2268 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2269 	wr32(E1000_CTRL_EXT, ctrl_ext);
2270 	wrfl();
2271 
2272 	i2cctl = rd32(E1000_I2CPARAMS);
2273 	i2cctl |= E1000_I2CBB_EN
2274 		| E1000_I2C_CLK_OE_N
2275 		| E1000_I2C_DATA_OE_N;
2276 	wr32(E1000_I2CPARAMS, i2cctl);
2277 	wrfl();
2278 }
2279 #endif
2280 
2281 void igb_reset(struct igb_adapter *adapter)
2282 {
2283 	struct pci_dev *pdev = adapter->pdev;
2284 	struct e1000_hw *hw = &adapter->hw;
2285 	struct e1000_mac_info *mac = &hw->mac;
2286 	struct e1000_fc_info *fc = &hw->fc;
2287 	u32 pba, hwm;
2288 
2289 	/* Repartition Pba for greater than 9k mtu
2290 	 * To take effect CTRL.RST is required.
2291 	 */
2292 	switch (mac->type) {
2293 	case e1000_i350:
2294 	case e1000_i354:
2295 	case e1000_82580:
2296 		pba = rd32(E1000_RXPBS);
2297 		pba = igb_rxpbs_adjust_82580(pba);
2298 		break;
2299 	case e1000_82576:
2300 		pba = rd32(E1000_RXPBS);
2301 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2302 		break;
2303 	case e1000_82575:
2304 	case e1000_i210:
2305 	case e1000_i211:
2306 	default:
2307 		pba = E1000_PBA_34K;
2308 		break;
2309 	}
2310 
2311 	if (mac->type == e1000_82575) {
2312 		u32 min_rx_space, min_tx_space, needed_tx_space;
2313 
2314 		/* write Rx PBA so that hardware can report correct Tx PBA */
2315 		wr32(E1000_PBA, pba);
2316 
2317 		/* To maintain wire speed transmits, the Tx FIFO should be
2318 		 * large enough to accommodate two full transmit packets,
2319 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2320 		 * the Rx FIFO should be large enough to accommodate at least
2321 		 * one full receive packet and is similarly rounded up and
2322 		 * expressed in KB.
2323 		 */
2324 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2325 
2326 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2327 		 * but don't include Ethernet FCS because hardware appends it.
2328 		 * We only need to round down to the nearest 512 byte block
2329 		 * count since the value we care about is 2 frames, not 1.
2330 		 */
2331 		min_tx_space = adapter->max_frame_size;
2332 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2333 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2334 
2335 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2336 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2337 
2338 		/* If current Tx allocation is less than the min Tx FIFO size,
2339 		 * and the min Tx FIFO size is less than the current Rx FIFO
2340 		 * allocation, take space away from current Rx allocation.
2341 		 */
2342 		if (needed_tx_space < pba) {
2343 			pba -= needed_tx_space;
2344 
2345 			/* if short on Rx space, Rx wins and must trump Tx
2346 			 * adjustment
2347 			 */
2348 			if (pba < min_rx_space)
2349 				pba = min_rx_space;
2350 		}
2351 
2352 		/* adjust PBA for jumbo frames */
2353 		wr32(E1000_PBA, pba);
2354 	}
2355 
2356 	/* flow control settings
2357 	 * The high water mark must be low enough to fit one full frame
2358 	 * after transmitting the pause frame.  As such we must have enough
2359 	 * space to allow for us to complete our current transmit and then
2360 	 * receive the frame that is in progress from the link partner.
2361 	 * Set it to:
2362 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2363 	 */
2364 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2365 
2366 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2367 	fc->low_water = fc->high_water - 16;
2368 	fc->pause_time = 0xFFFF;
2369 	fc->send_xon = 1;
2370 	fc->current_mode = fc->requested_mode;
2371 
2372 	/* disable receive for all VFs and wait one second */
2373 	if (adapter->vfs_allocated_count) {
2374 		int i;
2375 
2376 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2377 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2378 
2379 		/* ping all the active vfs to let them know we are going down */
2380 		igb_ping_all_vfs(adapter);
2381 
2382 		/* disable transmits and receives */
2383 		wr32(E1000_VFRE, 0);
2384 		wr32(E1000_VFTE, 0);
2385 	}
2386 
2387 	/* Allow time for pending master requests to run */
2388 	hw->mac.ops.reset_hw(hw);
2389 	wr32(E1000_WUC, 0);
2390 
2391 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2392 		/* need to resetup here after media swap */
2393 		adapter->ei.get_invariants(hw);
2394 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2395 	}
2396 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2397 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2398 		igb_enable_mas(adapter);
2399 	}
2400 	if (hw->mac.ops.init_hw(hw))
2401 		dev_err(&pdev->dev, "Hardware Error\n");
2402 
2403 	/* RAR registers were cleared during init_hw, clear mac table */
2404 	igb_flush_mac_table(adapter);
2405 	__dev_uc_unsync(adapter->netdev, NULL);
2406 
2407 	/* Recover default RAR entry */
2408 	igb_set_default_mac_filter(adapter);
2409 
2410 	/* Flow control settings reset on hardware reset, so guarantee flow
2411 	 * control is off when forcing speed.
2412 	 */
2413 	if (!hw->mac.autoneg)
2414 		igb_force_mac_fc(hw);
2415 
2416 	igb_init_dmac(adapter, pba);
2417 #ifdef CONFIG_IGB_HWMON
2418 	/* Re-initialize the thermal sensor on i350 devices. */
2419 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2420 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2421 			/* If present, re-initialize the external thermal sensor
2422 			 * interface.
2423 			 */
2424 			if (adapter->ets)
2425 				igb_set_i2c_bb(hw);
2426 			mac->ops.init_thermal_sensor_thresh(hw);
2427 		}
2428 	}
2429 #endif
2430 	/* Re-establish EEE setting */
2431 	if (hw->phy.media_type == e1000_media_type_copper) {
2432 		switch (mac->type) {
2433 		case e1000_i350:
2434 		case e1000_i210:
2435 		case e1000_i211:
2436 			igb_set_eee_i350(hw, true, true);
2437 			break;
2438 		case e1000_i354:
2439 			igb_set_eee_i354(hw, true, true);
2440 			break;
2441 		default:
2442 			break;
2443 		}
2444 	}
2445 	if (!netif_running(adapter->netdev))
2446 		igb_power_down_link(adapter);
2447 
2448 	igb_update_mng_vlan(adapter);
2449 
2450 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2451 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2452 
2453 	/* Re-enable PTP, where applicable. */
2454 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2455 		igb_ptp_reset(adapter);
2456 
2457 	igb_get_phy_info(hw);
2458 }
2459 
2460 static netdev_features_t igb_fix_features(struct net_device *netdev,
2461 	netdev_features_t features)
2462 {
2463 	/* Since there is no support for separate Rx/Tx vlan accel
2464 	 * enable/disable make sure Tx flag is always in same state as Rx.
2465 	 */
2466 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2467 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2468 	else
2469 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2470 
2471 	return features;
2472 }
2473 
2474 static int igb_set_features(struct net_device *netdev,
2475 	netdev_features_t features)
2476 {
2477 	netdev_features_t changed = netdev->features ^ features;
2478 	struct igb_adapter *adapter = netdev_priv(netdev);
2479 
2480 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2481 		igb_vlan_mode(netdev, features);
2482 
2483 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2484 		return 0;
2485 
2486 	if (!(features & NETIF_F_NTUPLE)) {
2487 		struct hlist_node *node2;
2488 		struct igb_nfc_filter *rule;
2489 
2490 		spin_lock(&adapter->nfc_lock);
2491 		hlist_for_each_entry_safe(rule, node2,
2492 					  &adapter->nfc_filter_list, nfc_node) {
2493 			igb_erase_filter(adapter, rule);
2494 			hlist_del(&rule->nfc_node);
2495 			kfree(rule);
2496 		}
2497 		spin_unlock(&adapter->nfc_lock);
2498 		adapter->nfc_filter_count = 0;
2499 	}
2500 
2501 	netdev->features = features;
2502 
2503 	if (netif_running(netdev))
2504 		igb_reinit_locked(adapter);
2505 	else
2506 		igb_reset(adapter);
2507 
2508 	return 1;
2509 }
2510 
2511 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2512 			   struct net_device *dev,
2513 			   const unsigned char *addr, u16 vid,
2514 			   u16 flags,
2515 			   struct netlink_ext_ack *extack)
2516 {
2517 	/* guarantee we can provide a unique filter for the unicast address */
2518 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2519 		struct igb_adapter *adapter = netdev_priv(dev);
2520 		int vfn = adapter->vfs_allocated_count;
2521 
2522 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2523 			return -ENOMEM;
2524 	}
2525 
2526 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2527 }
2528 
2529 #define IGB_MAX_MAC_HDR_LEN	127
2530 #define IGB_MAX_NETWORK_HDR_LEN	511
2531 
2532 static netdev_features_t
2533 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2534 		   netdev_features_t features)
2535 {
2536 	unsigned int network_hdr_len, mac_hdr_len;
2537 
2538 	/* Make certain the headers can be described by a context descriptor */
2539 	mac_hdr_len = skb_network_header(skb) - skb->data;
2540 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2541 		return features & ~(NETIF_F_HW_CSUM |
2542 				    NETIF_F_SCTP_CRC |
2543 				    NETIF_F_GSO_UDP_L4 |
2544 				    NETIF_F_HW_VLAN_CTAG_TX |
2545 				    NETIF_F_TSO |
2546 				    NETIF_F_TSO6);
2547 
2548 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2549 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2550 		return features & ~(NETIF_F_HW_CSUM |
2551 				    NETIF_F_SCTP_CRC |
2552 				    NETIF_F_GSO_UDP_L4 |
2553 				    NETIF_F_TSO |
2554 				    NETIF_F_TSO6);
2555 
2556 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2557 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2558 	 */
2559 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2560 		features &= ~NETIF_F_TSO;
2561 
2562 	return features;
2563 }
2564 
2565 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2566 {
2567 	if (!is_fqtss_enabled(adapter)) {
2568 		enable_fqtss(adapter, true);
2569 		return;
2570 	}
2571 
2572 	igb_config_tx_modes(adapter, queue);
2573 
2574 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2575 		enable_fqtss(adapter, false);
2576 }
2577 
2578 static int igb_offload_cbs(struct igb_adapter *adapter,
2579 			   struct tc_cbs_qopt_offload *qopt)
2580 {
2581 	struct e1000_hw *hw = &adapter->hw;
2582 	int err;
2583 
2584 	/* CBS offloading is only supported by i210 controller. */
2585 	if (hw->mac.type != e1000_i210)
2586 		return -EOPNOTSUPP;
2587 
2588 	/* CBS offloading is only supported by queue 0 and queue 1. */
2589 	if (qopt->queue < 0 || qopt->queue > 1)
2590 		return -EINVAL;
2591 
2592 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2593 				  qopt->idleslope, qopt->sendslope,
2594 				  qopt->hicredit, qopt->locredit);
2595 	if (err)
2596 		return err;
2597 
2598 	igb_offload_apply(adapter, qopt->queue);
2599 
2600 	return 0;
2601 }
2602 
2603 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2604 #define VLAN_PRIO_FULL_MASK (0x07)
2605 
2606 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2607 				struct flow_cls_offload *f,
2608 				int traffic_class,
2609 				struct igb_nfc_filter *input)
2610 {
2611 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2612 	struct flow_dissector *dissector = rule->match.dissector;
2613 	struct netlink_ext_ack *extack = f->common.extack;
2614 
2615 	if (dissector->used_keys &
2616 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2617 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2618 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2619 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2620 		NL_SET_ERR_MSG_MOD(extack,
2621 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2622 		return -EOPNOTSUPP;
2623 	}
2624 
2625 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2626 		struct flow_match_eth_addrs match;
2627 
2628 		flow_rule_match_eth_addrs(rule, &match);
2629 		if (!is_zero_ether_addr(match.mask->dst)) {
2630 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2631 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2632 				return -EINVAL;
2633 			}
2634 
2635 			input->filter.match_flags |=
2636 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2637 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2638 		}
2639 
2640 		if (!is_zero_ether_addr(match.mask->src)) {
2641 			if (!is_broadcast_ether_addr(match.mask->src)) {
2642 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2643 				return -EINVAL;
2644 			}
2645 
2646 			input->filter.match_flags |=
2647 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2648 			ether_addr_copy(input->filter.src_addr, match.key->src);
2649 		}
2650 	}
2651 
2652 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2653 		struct flow_match_basic match;
2654 
2655 		flow_rule_match_basic(rule, &match);
2656 		if (match.mask->n_proto) {
2657 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2658 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2659 				return -EINVAL;
2660 			}
2661 
2662 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2663 			input->filter.etype = match.key->n_proto;
2664 		}
2665 	}
2666 
2667 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2668 		struct flow_match_vlan match;
2669 
2670 		flow_rule_match_vlan(rule, &match);
2671 		if (match.mask->vlan_priority) {
2672 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2673 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2674 				return -EINVAL;
2675 			}
2676 
2677 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2678 			input->filter.vlan_tci =
2679 				(__force __be16)match.key->vlan_priority;
2680 		}
2681 	}
2682 
2683 	input->action = traffic_class;
2684 	input->cookie = f->cookie;
2685 
2686 	return 0;
2687 }
2688 
2689 static int igb_configure_clsflower(struct igb_adapter *adapter,
2690 				   struct flow_cls_offload *cls_flower)
2691 {
2692 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2693 	struct igb_nfc_filter *filter, *f;
2694 	int err, tc;
2695 
2696 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2697 	if (tc < 0) {
2698 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2699 		return -EINVAL;
2700 	}
2701 
2702 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2703 	if (!filter)
2704 		return -ENOMEM;
2705 
2706 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2707 	if (err < 0)
2708 		goto err_parse;
2709 
2710 	spin_lock(&adapter->nfc_lock);
2711 
2712 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2713 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2714 			err = -EEXIST;
2715 			NL_SET_ERR_MSG_MOD(extack,
2716 					   "This filter is already set in ethtool");
2717 			goto err_locked;
2718 		}
2719 	}
2720 
2721 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2722 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2723 			err = -EEXIST;
2724 			NL_SET_ERR_MSG_MOD(extack,
2725 					   "This filter is already set in cls_flower");
2726 			goto err_locked;
2727 		}
2728 	}
2729 
2730 	err = igb_add_filter(adapter, filter);
2731 	if (err < 0) {
2732 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2733 		goto err_locked;
2734 	}
2735 
2736 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2737 
2738 	spin_unlock(&adapter->nfc_lock);
2739 
2740 	return 0;
2741 
2742 err_locked:
2743 	spin_unlock(&adapter->nfc_lock);
2744 
2745 err_parse:
2746 	kfree(filter);
2747 
2748 	return err;
2749 }
2750 
2751 static int igb_delete_clsflower(struct igb_adapter *adapter,
2752 				struct flow_cls_offload *cls_flower)
2753 {
2754 	struct igb_nfc_filter *filter;
2755 	int err;
2756 
2757 	spin_lock(&adapter->nfc_lock);
2758 
2759 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2760 		if (filter->cookie == cls_flower->cookie)
2761 			break;
2762 
2763 	if (!filter) {
2764 		err = -ENOENT;
2765 		goto out;
2766 	}
2767 
2768 	err = igb_erase_filter(adapter, filter);
2769 	if (err < 0)
2770 		goto out;
2771 
2772 	hlist_del(&filter->nfc_node);
2773 	kfree(filter);
2774 
2775 out:
2776 	spin_unlock(&adapter->nfc_lock);
2777 
2778 	return err;
2779 }
2780 
2781 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2782 				   struct flow_cls_offload *cls_flower)
2783 {
2784 	switch (cls_flower->command) {
2785 	case FLOW_CLS_REPLACE:
2786 		return igb_configure_clsflower(adapter, cls_flower);
2787 	case FLOW_CLS_DESTROY:
2788 		return igb_delete_clsflower(adapter, cls_flower);
2789 	case FLOW_CLS_STATS:
2790 		return -EOPNOTSUPP;
2791 	default:
2792 		return -EOPNOTSUPP;
2793 	}
2794 }
2795 
2796 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2797 				 void *cb_priv)
2798 {
2799 	struct igb_adapter *adapter = cb_priv;
2800 
2801 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2802 		return -EOPNOTSUPP;
2803 
2804 	switch (type) {
2805 	case TC_SETUP_CLSFLOWER:
2806 		return igb_setup_tc_cls_flower(adapter, type_data);
2807 
2808 	default:
2809 		return -EOPNOTSUPP;
2810 	}
2811 }
2812 
2813 static int igb_offload_txtime(struct igb_adapter *adapter,
2814 			      struct tc_etf_qopt_offload *qopt)
2815 {
2816 	struct e1000_hw *hw = &adapter->hw;
2817 	int err;
2818 
2819 	/* Launchtime offloading is only supported by i210 controller. */
2820 	if (hw->mac.type != e1000_i210)
2821 		return -EOPNOTSUPP;
2822 
2823 	/* Launchtime offloading is only supported by queues 0 and 1. */
2824 	if (qopt->queue < 0 || qopt->queue > 1)
2825 		return -EINVAL;
2826 
2827 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2828 	if (err)
2829 		return err;
2830 
2831 	igb_offload_apply(adapter, qopt->queue);
2832 
2833 	return 0;
2834 }
2835 
2836 static int igb_tc_query_caps(struct igb_adapter *adapter,
2837 			     struct tc_query_caps_base *base)
2838 {
2839 	switch (base->type) {
2840 	case TC_SETUP_QDISC_TAPRIO: {
2841 		struct tc_taprio_caps *caps = base->caps;
2842 
2843 		caps->broken_mqprio = true;
2844 
2845 		return 0;
2846 	}
2847 	default:
2848 		return -EOPNOTSUPP;
2849 	}
2850 }
2851 
2852 static LIST_HEAD(igb_block_cb_list);
2853 
2854 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2855 			void *type_data)
2856 {
2857 	struct igb_adapter *adapter = netdev_priv(dev);
2858 
2859 	switch (type) {
2860 	case TC_QUERY_CAPS:
2861 		return igb_tc_query_caps(adapter, type_data);
2862 	case TC_SETUP_QDISC_CBS:
2863 		return igb_offload_cbs(adapter, type_data);
2864 	case TC_SETUP_BLOCK:
2865 		return flow_block_cb_setup_simple(type_data,
2866 						  &igb_block_cb_list,
2867 						  igb_setup_tc_block_cb,
2868 						  adapter, adapter, true);
2869 
2870 	case TC_SETUP_QDISC_ETF:
2871 		return igb_offload_txtime(adapter, type_data);
2872 
2873 	default:
2874 		return -EOPNOTSUPP;
2875 	}
2876 }
2877 
2878 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2879 {
2880 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2881 	struct igb_adapter *adapter = netdev_priv(dev);
2882 	struct bpf_prog *prog = bpf->prog, *old_prog;
2883 	bool running = netif_running(dev);
2884 	bool need_reset;
2885 
2886 	/* verify igb ring attributes are sufficient for XDP */
2887 	for (i = 0; i < adapter->num_rx_queues; i++) {
2888 		struct igb_ring *ring = adapter->rx_ring[i];
2889 
2890 		if (frame_size > igb_rx_bufsz(ring)) {
2891 			NL_SET_ERR_MSG_MOD(bpf->extack,
2892 					   "The RX buffer size is too small for the frame size");
2893 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2894 				    igb_rx_bufsz(ring), frame_size);
2895 			return -EINVAL;
2896 		}
2897 	}
2898 
2899 	old_prog = xchg(&adapter->xdp_prog, prog);
2900 	need_reset = (!!prog != !!old_prog);
2901 
2902 	/* device is up and bpf is added/removed, must setup the RX queues */
2903 	if (need_reset && running) {
2904 		igb_close(dev);
2905 	} else {
2906 		for (i = 0; i < adapter->num_rx_queues; i++)
2907 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2908 			    adapter->xdp_prog);
2909 	}
2910 
2911 	if (old_prog)
2912 		bpf_prog_put(old_prog);
2913 
2914 	/* bpf is just replaced, RXQ and MTU are already setup */
2915 	if (!need_reset) {
2916 		return 0;
2917 	} else {
2918 		if (prog)
2919 			xdp_features_set_redirect_target(dev, true);
2920 		else
2921 			xdp_features_clear_redirect_target(dev);
2922 	}
2923 
2924 	if (running)
2925 		igb_open(dev);
2926 
2927 	return 0;
2928 }
2929 
2930 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2931 {
2932 	switch (xdp->command) {
2933 	case XDP_SETUP_PROG:
2934 		return igb_xdp_setup(dev, xdp);
2935 	default:
2936 		return -EINVAL;
2937 	}
2938 }
2939 
2940 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2941 {
2942 	/* Force memory writes to complete before letting h/w know there
2943 	 * are new descriptors to fetch.
2944 	 */
2945 	wmb();
2946 	writel(ring->next_to_use, ring->tail);
2947 }
2948 
2949 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2950 {
2951 	unsigned int r_idx = smp_processor_id();
2952 
2953 	if (r_idx >= adapter->num_tx_queues)
2954 		r_idx = r_idx % adapter->num_tx_queues;
2955 
2956 	return adapter->tx_ring[r_idx];
2957 }
2958 
2959 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2960 {
2961 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2962 	int cpu = smp_processor_id();
2963 	struct igb_ring *tx_ring;
2964 	struct netdev_queue *nq;
2965 	u32 ret;
2966 
2967 	if (unlikely(!xdpf))
2968 		return IGB_XDP_CONSUMED;
2969 
2970 	/* During program transitions its possible adapter->xdp_prog is assigned
2971 	 * but ring has not been configured yet. In this case simply abort xmit.
2972 	 */
2973 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2974 	if (unlikely(!tx_ring))
2975 		return IGB_XDP_CONSUMED;
2976 
2977 	nq = txring_txq(tx_ring);
2978 	__netif_tx_lock(nq, cpu);
2979 	/* Avoid transmit queue timeout since we share it with the slow path */
2980 	txq_trans_cond_update(nq);
2981 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2982 	__netif_tx_unlock(nq);
2983 
2984 	return ret;
2985 }
2986 
2987 static int igb_xdp_xmit(struct net_device *dev, int n,
2988 			struct xdp_frame **frames, u32 flags)
2989 {
2990 	struct igb_adapter *adapter = netdev_priv(dev);
2991 	int cpu = smp_processor_id();
2992 	struct igb_ring *tx_ring;
2993 	struct netdev_queue *nq;
2994 	int nxmit = 0;
2995 	int i;
2996 
2997 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2998 		return -ENETDOWN;
2999 
3000 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3001 		return -EINVAL;
3002 
3003 	/* During program transitions its possible adapter->xdp_prog is assigned
3004 	 * but ring has not been configured yet. In this case simply abort xmit.
3005 	 */
3006 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
3007 	if (unlikely(!tx_ring))
3008 		return -ENXIO;
3009 
3010 	nq = txring_txq(tx_ring);
3011 	__netif_tx_lock(nq, cpu);
3012 
3013 	/* Avoid transmit queue timeout since we share it with the slow path */
3014 	txq_trans_cond_update(nq);
3015 
3016 	for (i = 0; i < n; i++) {
3017 		struct xdp_frame *xdpf = frames[i];
3018 		int err;
3019 
3020 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3021 		if (err != IGB_XDP_TX)
3022 			break;
3023 		nxmit++;
3024 	}
3025 
3026 	__netif_tx_unlock(nq);
3027 
3028 	if (unlikely(flags & XDP_XMIT_FLUSH))
3029 		igb_xdp_ring_update_tail(tx_ring);
3030 
3031 	return nxmit;
3032 }
3033 
3034 static const struct net_device_ops igb_netdev_ops = {
3035 	.ndo_open		= igb_open,
3036 	.ndo_stop		= igb_close,
3037 	.ndo_start_xmit		= igb_xmit_frame,
3038 	.ndo_get_stats64	= igb_get_stats64,
3039 	.ndo_set_rx_mode	= igb_set_rx_mode,
3040 	.ndo_set_mac_address	= igb_set_mac,
3041 	.ndo_change_mtu		= igb_change_mtu,
3042 	.ndo_eth_ioctl		= igb_ioctl,
3043 	.ndo_tx_timeout		= igb_tx_timeout,
3044 	.ndo_validate_addr	= eth_validate_addr,
3045 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3046 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3047 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3048 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3049 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3050 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3051 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3052 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3053 	.ndo_fix_features	= igb_fix_features,
3054 	.ndo_set_features	= igb_set_features,
3055 	.ndo_fdb_add		= igb_ndo_fdb_add,
3056 	.ndo_features_check	= igb_features_check,
3057 	.ndo_setup_tc		= igb_setup_tc,
3058 	.ndo_bpf		= igb_xdp,
3059 	.ndo_xdp_xmit		= igb_xdp_xmit,
3060 };
3061 
3062 /**
3063  * igb_set_fw_version - Configure version string for ethtool
3064  * @adapter: adapter struct
3065  **/
3066 void igb_set_fw_version(struct igb_adapter *adapter)
3067 {
3068 	struct e1000_hw *hw = &adapter->hw;
3069 	struct e1000_fw_version fw;
3070 
3071 	igb_get_fw_version(hw, &fw);
3072 
3073 	switch (hw->mac.type) {
3074 	case e1000_i210:
3075 	case e1000_i211:
3076 		if (!(igb_get_flash_presence_i210(hw))) {
3077 			snprintf(adapter->fw_version,
3078 				 sizeof(adapter->fw_version),
3079 				 "%2d.%2d-%d",
3080 				 fw.invm_major, fw.invm_minor,
3081 				 fw.invm_img_type);
3082 			break;
3083 		}
3084 		fallthrough;
3085 	default:
3086 		/* if option is rom valid, display its version too */
3087 		if (fw.or_valid) {
3088 			snprintf(adapter->fw_version,
3089 				 sizeof(adapter->fw_version),
3090 				 "%d.%d, 0x%08x, %d.%d.%d",
3091 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3092 				 fw.or_major, fw.or_build, fw.or_patch);
3093 		/* no option rom */
3094 		} else if (fw.etrack_id != 0X0000) {
3095 			snprintf(adapter->fw_version,
3096 			    sizeof(adapter->fw_version),
3097 			    "%d.%d, 0x%08x",
3098 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3099 		} else {
3100 		snprintf(adapter->fw_version,
3101 		    sizeof(adapter->fw_version),
3102 		    "%d.%d.%d",
3103 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3104 		}
3105 		break;
3106 	}
3107 }
3108 
3109 /**
3110  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3111  *
3112  * @adapter: adapter struct
3113  **/
3114 static void igb_init_mas(struct igb_adapter *adapter)
3115 {
3116 	struct e1000_hw *hw = &adapter->hw;
3117 	u16 eeprom_data;
3118 
3119 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3120 	switch (hw->bus.func) {
3121 	case E1000_FUNC_0:
3122 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3123 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3124 			netdev_info(adapter->netdev,
3125 				"MAS: Enabling Media Autosense for port %d\n",
3126 				hw->bus.func);
3127 		}
3128 		break;
3129 	case E1000_FUNC_1:
3130 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3131 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3132 			netdev_info(adapter->netdev,
3133 				"MAS: Enabling Media Autosense for port %d\n",
3134 				hw->bus.func);
3135 		}
3136 		break;
3137 	case E1000_FUNC_2:
3138 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3139 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3140 			netdev_info(adapter->netdev,
3141 				"MAS: Enabling Media Autosense for port %d\n",
3142 				hw->bus.func);
3143 		}
3144 		break;
3145 	case E1000_FUNC_3:
3146 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3147 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3148 			netdev_info(adapter->netdev,
3149 				"MAS: Enabling Media Autosense for port %d\n",
3150 				hw->bus.func);
3151 		}
3152 		break;
3153 	default:
3154 		/* Shouldn't get here */
3155 		netdev_err(adapter->netdev,
3156 			"MAS: Invalid port configuration, returning\n");
3157 		break;
3158 	}
3159 }
3160 
3161 /**
3162  *  igb_init_i2c - Init I2C interface
3163  *  @adapter: pointer to adapter structure
3164  **/
3165 static s32 igb_init_i2c(struct igb_adapter *adapter)
3166 {
3167 	s32 status = 0;
3168 
3169 	/* I2C interface supported on i350 devices */
3170 	if (adapter->hw.mac.type != e1000_i350)
3171 		return 0;
3172 
3173 	/* Initialize the i2c bus which is controlled by the registers.
3174 	 * This bus will use the i2c_algo_bit structure that implements
3175 	 * the protocol through toggling of the 4 bits in the register.
3176 	 */
3177 	adapter->i2c_adap.owner = THIS_MODULE;
3178 	adapter->i2c_algo = igb_i2c_algo;
3179 	adapter->i2c_algo.data = adapter;
3180 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3181 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3182 	strscpy(adapter->i2c_adap.name, "igb BB",
3183 		sizeof(adapter->i2c_adap.name));
3184 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3185 	return status;
3186 }
3187 
3188 /**
3189  *  igb_probe - Device Initialization Routine
3190  *  @pdev: PCI device information struct
3191  *  @ent: entry in igb_pci_tbl
3192  *
3193  *  Returns 0 on success, negative on failure
3194  *
3195  *  igb_probe initializes an adapter identified by a pci_dev structure.
3196  *  The OS initialization, configuring of the adapter private structure,
3197  *  and a hardware reset occur.
3198  **/
3199 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3200 {
3201 	struct net_device *netdev;
3202 	struct igb_adapter *adapter;
3203 	struct e1000_hw *hw;
3204 	u16 eeprom_data = 0;
3205 	s32 ret_val;
3206 	static int global_quad_port_a; /* global quad port a indication */
3207 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3208 	u8 part_str[E1000_PBANUM_LENGTH];
3209 	int err;
3210 
3211 	/* Catch broken hardware that put the wrong VF device ID in
3212 	 * the PCIe SR-IOV capability.
3213 	 */
3214 	if (pdev->is_virtfn) {
3215 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3216 			pci_name(pdev), pdev->vendor, pdev->device);
3217 		return -EINVAL;
3218 	}
3219 
3220 	err = pci_enable_device_mem(pdev);
3221 	if (err)
3222 		return err;
3223 
3224 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3225 	if (err) {
3226 		dev_err(&pdev->dev,
3227 			"No usable DMA configuration, aborting\n");
3228 		goto err_dma;
3229 	}
3230 
3231 	err = pci_request_mem_regions(pdev, igb_driver_name);
3232 	if (err)
3233 		goto err_pci_reg;
3234 
3235 	pci_set_master(pdev);
3236 	pci_save_state(pdev);
3237 
3238 	err = -ENOMEM;
3239 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3240 				   IGB_MAX_TX_QUEUES);
3241 	if (!netdev)
3242 		goto err_alloc_etherdev;
3243 
3244 	SET_NETDEV_DEV(netdev, &pdev->dev);
3245 
3246 	pci_set_drvdata(pdev, netdev);
3247 	adapter = netdev_priv(netdev);
3248 	adapter->netdev = netdev;
3249 	adapter->pdev = pdev;
3250 	hw = &adapter->hw;
3251 	hw->back = adapter;
3252 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3253 
3254 	err = -EIO;
3255 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3256 	if (!adapter->io_addr)
3257 		goto err_ioremap;
3258 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3259 	hw->hw_addr = adapter->io_addr;
3260 
3261 	netdev->netdev_ops = &igb_netdev_ops;
3262 	igb_set_ethtool_ops(netdev);
3263 	netdev->watchdog_timeo = 5 * HZ;
3264 
3265 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3266 
3267 	netdev->mem_start = pci_resource_start(pdev, 0);
3268 	netdev->mem_end = pci_resource_end(pdev, 0);
3269 
3270 	/* PCI config space info */
3271 	hw->vendor_id = pdev->vendor;
3272 	hw->device_id = pdev->device;
3273 	hw->revision_id = pdev->revision;
3274 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3275 	hw->subsystem_device_id = pdev->subsystem_device;
3276 
3277 	/* Copy the default MAC, PHY and NVM function pointers */
3278 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3279 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3280 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3281 	/* Initialize skew-specific constants */
3282 	err = ei->get_invariants(hw);
3283 	if (err)
3284 		goto err_sw_init;
3285 
3286 	/* setup the private structure */
3287 	err = igb_sw_init(adapter);
3288 	if (err)
3289 		goto err_sw_init;
3290 
3291 	igb_get_bus_info_pcie(hw);
3292 
3293 	hw->phy.autoneg_wait_to_complete = false;
3294 
3295 	/* Copper options */
3296 	if (hw->phy.media_type == e1000_media_type_copper) {
3297 		hw->phy.mdix = AUTO_ALL_MODES;
3298 		hw->phy.disable_polarity_correction = false;
3299 		hw->phy.ms_type = e1000_ms_hw_default;
3300 	}
3301 
3302 	if (igb_check_reset_block(hw))
3303 		dev_info(&pdev->dev,
3304 			"PHY reset is blocked due to SOL/IDER session.\n");
3305 
3306 	/* features is initialized to 0 in allocation, it might have bits
3307 	 * set by igb_sw_init so we should use an or instead of an
3308 	 * assignment.
3309 	 */
3310 	netdev->features |= NETIF_F_SG |
3311 			    NETIF_F_TSO |
3312 			    NETIF_F_TSO6 |
3313 			    NETIF_F_RXHASH |
3314 			    NETIF_F_RXCSUM |
3315 			    NETIF_F_HW_CSUM;
3316 
3317 	if (hw->mac.type >= e1000_82576)
3318 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3319 
3320 	if (hw->mac.type >= e1000_i350)
3321 		netdev->features |= NETIF_F_HW_TC;
3322 
3323 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3324 				  NETIF_F_GSO_GRE_CSUM | \
3325 				  NETIF_F_GSO_IPXIP4 | \
3326 				  NETIF_F_GSO_IPXIP6 | \
3327 				  NETIF_F_GSO_UDP_TUNNEL | \
3328 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3329 
3330 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3331 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3332 
3333 	/* copy netdev features into list of user selectable features */
3334 	netdev->hw_features |= netdev->features |
3335 			       NETIF_F_HW_VLAN_CTAG_RX |
3336 			       NETIF_F_HW_VLAN_CTAG_TX |
3337 			       NETIF_F_RXALL;
3338 
3339 	if (hw->mac.type >= e1000_i350)
3340 		netdev->hw_features |= NETIF_F_NTUPLE;
3341 
3342 	netdev->features |= NETIF_F_HIGHDMA;
3343 
3344 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3345 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3346 	netdev->hw_enc_features |= netdev->vlan_features;
3347 
3348 	/* set this bit last since it cannot be part of vlan_features */
3349 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3350 			    NETIF_F_HW_VLAN_CTAG_RX |
3351 			    NETIF_F_HW_VLAN_CTAG_TX;
3352 
3353 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3354 
3355 	netdev->priv_flags |= IFF_UNICAST_FLT;
3356 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3357 
3358 	/* MTU range: 68 - 9216 */
3359 	netdev->min_mtu = ETH_MIN_MTU;
3360 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3361 
3362 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3363 
3364 	/* before reading the NVM, reset the controller to put the device in a
3365 	 * known good starting state
3366 	 */
3367 	hw->mac.ops.reset_hw(hw);
3368 
3369 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3370 	 * that doesn't contain a checksum
3371 	 */
3372 	switch (hw->mac.type) {
3373 	case e1000_i210:
3374 	case e1000_i211:
3375 		if (igb_get_flash_presence_i210(hw)) {
3376 			if (hw->nvm.ops.validate(hw) < 0) {
3377 				dev_err(&pdev->dev,
3378 					"The NVM Checksum Is Not Valid\n");
3379 				err = -EIO;
3380 				goto err_eeprom;
3381 			}
3382 		}
3383 		break;
3384 	default:
3385 		if (hw->nvm.ops.validate(hw) < 0) {
3386 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3387 			err = -EIO;
3388 			goto err_eeprom;
3389 		}
3390 		break;
3391 	}
3392 
3393 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3394 		/* copy the MAC address out of the NVM */
3395 		if (hw->mac.ops.read_mac_addr(hw))
3396 			dev_err(&pdev->dev, "NVM Read Error\n");
3397 	}
3398 
3399 	eth_hw_addr_set(netdev, hw->mac.addr);
3400 
3401 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3402 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3403 		err = -EIO;
3404 		goto err_eeprom;
3405 	}
3406 
3407 	igb_set_default_mac_filter(adapter);
3408 
3409 	/* get firmware version for ethtool -i */
3410 	igb_set_fw_version(adapter);
3411 
3412 	/* configure RXPBSIZE and TXPBSIZE */
3413 	if (hw->mac.type == e1000_i210) {
3414 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3415 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3416 	}
3417 
3418 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3419 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3420 
3421 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3422 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3423 
3424 	/* Initialize link properties that are user-changeable */
3425 	adapter->fc_autoneg = true;
3426 	hw->mac.autoneg = true;
3427 	hw->phy.autoneg_advertised = 0x2f;
3428 
3429 	hw->fc.requested_mode = e1000_fc_default;
3430 	hw->fc.current_mode = e1000_fc_default;
3431 
3432 	igb_validate_mdi_setting(hw);
3433 
3434 	/* By default, support wake on port A */
3435 	if (hw->bus.func == 0)
3436 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3437 
3438 	/* Check the NVM for wake support on non-port A ports */
3439 	if (hw->mac.type >= e1000_82580)
3440 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3441 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3442 				 &eeprom_data);
3443 	else if (hw->bus.func == 1)
3444 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3445 
3446 	if (eeprom_data & IGB_EEPROM_APME)
3447 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3448 
3449 	/* now that we have the eeprom settings, apply the special cases where
3450 	 * the eeprom may be wrong or the board simply won't support wake on
3451 	 * lan on a particular port
3452 	 */
3453 	switch (pdev->device) {
3454 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3455 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3456 		break;
3457 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3458 	case E1000_DEV_ID_82576_FIBER:
3459 	case E1000_DEV_ID_82576_SERDES:
3460 		/* Wake events only supported on port A for dual fiber
3461 		 * regardless of eeprom setting
3462 		 */
3463 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3464 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3465 		break;
3466 	case E1000_DEV_ID_82576_QUAD_COPPER:
3467 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3468 		/* if quad port adapter, disable WoL on all but port A */
3469 		if (global_quad_port_a != 0)
3470 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3471 		else
3472 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3473 		/* Reset for multiple quad port adapters */
3474 		if (++global_quad_port_a == 4)
3475 			global_quad_port_a = 0;
3476 		break;
3477 	default:
3478 		/* If the device can't wake, don't set software support */
3479 		if (!device_can_wakeup(&adapter->pdev->dev))
3480 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3481 	}
3482 
3483 	/* initialize the wol settings based on the eeprom settings */
3484 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3485 		adapter->wol |= E1000_WUFC_MAG;
3486 
3487 	/* Some vendors want WoL disabled by default, but still supported */
3488 	if ((hw->mac.type == e1000_i350) &&
3489 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3490 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3491 		adapter->wol = 0;
3492 	}
3493 
3494 	/* Some vendors want the ability to Use the EEPROM setting as
3495 	 * enable/disable only, and not for capability
3496 	 */
3497 	if (((hw->mac.type == e1000_i350) ||
3498 	     (hw->mac.type == e1000_i354)) &&
3499 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3500 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3501 		adapter->wol = 0;
3502 	}
3503 	if (hw->mac.type == e1000_i350) {
3504 		if (((pdev->subsystem_device == 0x5001) ||
3505 		     (pdev->subsystem_device == 0x5002)) &&
3506 				(hw->bus.func == 0)) {
3507 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3508 			adapter->wol = 0;
3509 		}
3510 		if (pdev->subsystem_device == 0x1F52)
3511 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3512 	}
3513 
3514 	device_set_wakeup_enable(&adapter->pdev->dev,
3515 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3516 
3517 	/* reset the hardware with the new settings */
3518 	igb_reset(adapter);
3519 
3520 	/* Init the I2C interface */
3521 	err = igb_init_i2c(adapter);
3522 	if (err) {
3523 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3524 		goto err_eeprom;
3525 	}
3526 
3527 	/* let the f/w know that the h/w is now under the control of the
3528 	 * driver.
3529 	 */
3530 	igb_get_hw_control(adapter);
3531 
3532 	strcpy(netdev->name, "eth%d");
3533 	err = register_netdev(netdev);
3534 	if (err)
3535 		goto err_register;
3536 
3537 	/* carrier off reporting is important to ethtool even BEFORE open */
3538 	netif_carrier_off(netdev);
3539 
3540 #ifdef CONFIG_IGB_DCA
3541 	if (dca_add_requester(&pdev->dev) == 0) {
3542 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3543 		dev_info(&pdev->dev, "DCA enabled\n");
3544 		igb_setup_dca(adapter);
3545 	}
3546 
3547 #endif
3548 #ifdef CONFIG_IGB_HWMON
3549 	/* Initialize the thermal sensor on i350 devices. */
3550 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3551 		u16 ets_word;
3552 
3553 		/* Read the NVM to determine if this i350 device supports an
3554 		 * external thermal sensor.
3555 		 */
3556 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3557 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3558 			adapter->ets = true;
3559 		else
3560 			adapter->ets = false;
3561 		/* Only enable I2C bit banging if an external thermal
3562 		 * sensor is supported.
3563 		 */
3564 		if (adapter->ets)
3565 			igb_set_i2c_bb(hw);
3566 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3567 		if (igb_sysfs_init(adapter))
3568 			dev_err(&pdev->dev,
3569 				"failed to allocate sysfs resources\n");
3570 	} else {
3571 		adapter->ets = false;
3572 	}
3573 #endif
3574 	/* Check if Media Autosense is enabled */
3575 	adapter->ei = *ei;
3576 	if (hw->dev_spec._82575.mas_capable)
3577 		igb_init_mas(adapter);
3578 
3579 	/* do hw tstamp init after resetting */
3580 	igb_ptp_init(adapter);
3581 
3582 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3583 	/* print bus type/speed/width info, not applicable to i354 */
3584 	if (hw->mac.type != e1000_i354) {
3585 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3586 			 netdev->name,
3587 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3588 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3589 			   "unknown"),
3590 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3591 			  "Width x4" :
3592 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3593 			  "Width x2" :
3594 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3595 			  "Width x1" : "unknown"), netdev->dev_addr);
3596 	}
3597 
3598 	if ((hw->mac.type == e1000_82576 &&
3599 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3600 	    (hw->mac.type >= e1000_i210 ||
3601 	     igb_get_flash_presence_i210(hw))) {
3602 		ret_val = igb_read_part_string(hw, part_str,
3603 					       E1000_PBANUM_LENGTH);
3604 	} else {
3605 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3606 	}
3607 
3608 	if (ret_val)
3609 		strcpy(part_str, "Unknown");
3610 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3611 	dev_info(&pdev->dev,
3612 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3613 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3614 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3615 		adapter->num_rx_queues, adapter->num_tx_queues);
3616 	if (hw->phy.media_type == e1000_media_type_copper) {
3617 		switch (hw->mac.type) {
3618 		case e1000_i350:
3619 		case e1000_i210:
3620 		case e1000_i211:
3621 			/* Enable EEE for internal copper PHY devices */
3622 			err = igb_set_eee_i350(hw, true, true);
3623 			if ((!err) &&
3624 			    (!hw->dev_spec._82575.eee_disable)) {
3625 				adapter->eee_advert =
3626 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3627 				adapter->flags |= IGB_FLAG_EEE;
3628 			}
3629 			break;
3630 		case e1000_i354:
3631 			if ((rd32(E1000_CTRL_EXT) &
3632 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3633 				err = igb_set_eee_i354(hw, true, true);
3634 				if ((!err) &&
3635 					(!hw->dev_spec._82575.eee_disable)) {
3636 					adapter->eee_advert =
3637 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3638 					adapter->flags |= IGB_FLAG_EEE;
3639 				}
3640 			}
3641 			break;
3642 		default:
3643 			break;
3644 		}
3645 	}
3646 
3647 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3648 
3649 	pm_runtime_put_noidle(&pdev->dev);
3650 	return 0;
3651 
3652 err_register:
3653 	igb_release_hw_control(adapter);
3654 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3655 err_eeprom:
3656 	if (!igb_check_reset_block(hw))
3657 		igb_reset_phy(hw);
3658 
3659 	if (hw->flash_address)
3660 		iounmap(hw->flash_address);
3661 err_sw_init:
3662 	kfree(adapter->mac_table);
3663 	kfree(adapter->shadow_vfta);
3664 	igb_clear_interrupt_scheme(adapter);
3665 #ifdef CONFIG_PCI_IOV
3666 	igb_disable_sriov(pdev, false);
3667 #endif
3668 	pci_iounmap(pdev, adapter->io_addr);
3669 err_ioremap:
3670 	free_netdev(netdev);
3671 err_alloc_etherdev:
3672 	pci_release_mem_regions(pdev);
3673 err_pci_reg:
3674 err_dma:
3675 	pci_disable_device(pdev);
3676 	return err;
3677 }
3678 
3679 #ifdef CONFIG_PCI_IOV
3680 static int igb_sriov_reinit(struct pci_dev *dev)
3681 {
3682 	struct net_device *netdev = pci_get_drvdata(dev);
3683 	struct igb_adapter *adapter = netdev_priv(netdev);
3684 	struct pci_dev *pdev = adapter->pdev;
3685 
3686 	rtnl_lock();
3687 
3688 	if (netif_running(netdev))
3689 		igb_close(netdev);
3690 	else
3691 		igb_reset(adapter);
3692 
3693 	igb_clear_interrupt_scheme(adapter);
3694 
3695 	igb_init_queue_configuration(adapter);
3696 
3697 	if (igb_init_interrupt_scheme(adapter, true)) {
3698 		rtnl_unlock();
3699 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3700 		return -ENOMEM;
3701 	}
3702 
3703 	if (netif_running(netdev))
3704 		igb_open(netdev);
3705 
3706 	rtnl_unlock();
3707 
3708 	return 0;
3709 }
3710 
3711 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3712 {
3713 	struct net_device *netdev = pci_get_drvdata(pdev);
3714 	struct igb_adapter *adapter = netdev_priv(netdev);
3715 	struct e1000_hw *hw = &adapter->hw;
3716 	unsigned long flags;
3717 
3718 	/* reclaim resources allocated to VFs */
3719 	if (adapter->vf_data) {
3720 		/* disable iov and allow time for transactions to clear */
3721 		if (pci_vfs_assigned(pdev)) {
3722 			dev_warn(&pdev->dev,
3723 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3724 			return -EPERM;
3725 		} else {
3726 			pci_disable_sriov(pdev);
3727 			msleep(500);
3728 		}
3729 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3730 		kfree(adapter->vf_mac_list);
3731 		adapter->vf_mac_list = NULL;
3732 		kfree(adapter->vf_data);
3733 		adapter->vf_data = NULL;
3734 		adapter->vfs_allocated_count = 0;
3735 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3736 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3737 		wrfl();
3738 		msleep(100);
3739 		dev_info(&pdev->dev, "IOV Disabled\n");
3740 
3741 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3742 		adapter->flags |= IGB_FLAG_DMAC;
3743 	}
3744 
3745 	return reinit ? igb_sriov_reinit(pdev) : 0;
3746 }
3747 
3748 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3749 {
3750 	struct net_device *netdev = pci_get_drvdata(pdev);
3751 	struct igb_adapter *adapter = netdev_priv(netdev);
3752 	int old_vfs = pci_num_vf(pdev);
3753 	struct vf_mac_filter *mac_list;
3754 	int err = 0;
3755 	int num_vf_mac_filters, i;
3756 
3757 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3758 		err = -EPERM;
3759 		goto out;
3760 	}
3761 	if (!num_vfs)
3762 		goto out;
3763 
3764 	if (old_vfs) {
3765 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3766 			 old_vfs, max_vfs);
3767 		adapter->vfs_allocated_count = old_vfs;
3768 	} else
3769 		adapter->vfs_allocated_count = num_vfs;
3770 
3771 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3772 				sizeof(struct vf_data_storage), GFP_KERNEL);
3773 
3774 	/* if allocation failed then we do not support SR-IOV */
3775 	if (!adapter->vf_data) {
3776 		adapter->vfs_allocated_count = 0;
3777 		err = -ENOMEM;
3778 		goto out;
3779 	}
3780 
3781 	/* Due to the limited number of RAR entries calculate potential
3782 	 * number of MAC filters available for the VFs. Reserve entries
3783 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3784 	 * for each VF for VF MAC.
3785 	 */
3786 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3787 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3788 			      adapter->vfs_allocated_count);
3789 
3790 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3791 				       sizeof(struct vf_mac_filter),
3792 				       GFP_KERNEL);
3793 
3794 	mac_list = adapter->vf_mac_list;
3795 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3796 
3797 	if (adapter->vf_mac_list) {
3798 		/* Initialize list of VF MAC filters */
3799 		for (i = 0; i < num_vf_mac_filters; i++) {
3800 			mac_list->vf = -1;
3801 			mac_list->free = true;
3802 			list_add(&mac_list->l, &adapter->vf_macs.l);
3803 			mac_list++;
3804 		}
3805 	} else {
3806 		/* If we could not allocate memory for the VF MAC filters
3807 		 * we can continue without this feature but warn user.
3808 		 */
3809 		dev_err(&pdev->dev,
3810 			"Unable to allocate memory for VF MAC filter list\n");
3811 	}
3812 
3813 	dev_info(&pdev->dev, "%d VFs allocated\n",
3814 		 adapter->vfs_allocated_count);
3815 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3816 		igb_vf_configure(adapter, i);
3817 
3818 	/* DMA Coalescing is not supported in IOV mode. */
3819 	adapter->flags &= ~IGB_FLAG_DMAC;
3820 
3821 	if (reinit) {
3822 		err = igb_sriov_reinit(pdev);
3823 		if (err)
3824 			goto err_out;
3825 	}
3826 
3827 	/* only call pci_enable_sriov() if no VFs are allocated already */
3828 	if (!old_vfs)
3829 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3830 
3831 	goto out;
3832 
3833 err_out:
3834 	kfree(adapter->vf_mac_list);
3835 	adapter->vf_mac_list = NULL;
3836 	kfree(adapter->vf_data);
3837 	adapter->vf_data = NULL;
3838 	adapter->vfs_allocated_count = 0;
3839 out:
3840 	return err;
3841 }
3842 
3843 #endif
3844 /**
3845  *  igb_remove_i2c - Cleanup  I2C interface
3846  *  @adapter: pointer to adapter structure
3847  **/
3848 static void igb_remove_i2c(struct igb_adapter *adapter)
3849 {
3850 	/* free the adapter bus structure */
3851 	i2c_del_adapter(&adapter->i2c_adap);
3852 }
3853 
3854 /**
3855  *  igb_remove - Device Removal Routine
3856  *  @pdev: PCI device information struct
3857  *
3858  *  igb_remove is called by the PCI subsystem to alert the driver
3859  *  that it should release a PCI device.  The could be caused by a
3860  *  Hot-Plug event, or because the driver is going to be removed from
3861  *  memory.
3862  **/
3863 static void igb_remove(struct pci_dev *pdev)
3864 {
3865 	struct net_device *netdev = pci_get_drvdata(pdev);
3866 	struct igb_adapter *adapter = netdev_priv(netdev);
3867 	struct e1000_hw *hw = &adapter->hw;
3868 
3869 	pm_runtime_get_noresume(&pdev->dev);
3870 #ifdef CONFIG_IGB_HWMON
3871 	igb_sysfs_exit(adapter);
3872 #endif
3873 	igb_remove_i2c(adapter);
3874 	igb_ptp_stop(adapter);
3875 	/* The watchdog timer may be rescheduled, so explicitly
3876 	 * disable watchdog from being rescheduled.
3877 	 */
3878 	set_bit(__IGB_DOWN, &adapter->state);
3879 	del_timer_sync(&adapter->watchdog_timer);
3880 	del_timer_sync(&adapter->phy_info_timer);
3881 
3882 	cancel_work_sync(&adapter->reset_task);
3883 	cancel_work_sync(&adapter->watchdog_task);
3884 
3885 #ifdef CONFIG_IGB_DCA
3886 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3887 		dev_info(&pdev->dev, "DCA disabled\n");
3888 		dca_remove_requester(&pdev->dev);
3889 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3890 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3891 	}
3892 #endif
3893 
3894 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3895 	 * would have already happened in close and is redundant.
3896 	 */
3897 	igb_release_hw_control(adapter);
3898 
3899 #ifdef CONFIG_PCI_IOV
3900 	igb_disable_sriov(pdev, false);
3901 #endif
3902 
3903 	unregister_netdev(netdev);
3904 
3905 	igb_clear_interrupt_scheme(adapter);
3906 
3907 	pci_iounmap(pdev, adapter->io_addr);
3908 	if (hw->flash_address)
3909 		iounmap(hw->flash_address);
3910 	pci_release_mem_regions(pdev);
3911 
3912 	kfree(adapter->mac_table);
3913 	kfree(adapter->shadow_vfta);
3914 	free_netdev(netdev);
3915 
3916 	pci_disable_device(pdev);
3917 }
3918 
3919 /**
3920  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3921  *  @adapter: board private structure to initialize
3922  *
3923  *  This function initializes the vf specific data storage and then attempts to
3924  *  allocate the VFs.  The reason for ordering it this way is because it is much
3925  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3926  *  the memory for the VFs.
3927  **/
3928 static void igb_probe_vfs(struct igb_adapter *adapter)
3929 {
3930 #ifdef CONFIG_PCI_IOV
3931 	struct pci_dev *pdev = adapter->pdev;
3932 	struct e1000_hw *hw = &adapter->hw;
3933 
3934 	/* Virtualization features not supported on i210 family. */
3935 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3936 		return;
3937 
3938 	/* Of the below we really only want the effect of getting
3939 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3940 	 * igb_enable_sriov() has no effect.
3941 	 */
3942 	igb_set_interrupt_capability(adapter, true);
3943 	igb_reset_interrupt_capability(adapter);
3944 
3945 	pci_sriov_set_totalvfs(pdev, 7);
3946 	igb_enable_sriov(pdev, max_vfs, false);
3947 
3948 #endif /* CONFIG_PCI_IOV */
3949 }
3950 
3951 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3952 {
3953 	struct e1000_hw *hw = &adapter->hw;
3954 	unsigned int max_rss_queues;
3955 
3956 	/* Determine the maximum number of RSS queues supported. */
3957 	switch (hw->mac.type) {
3958 	case e1000_i211:
3959 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3960 		break;
3961 	case e1000_82575:
3962 	case e1000_i210:
3963 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3964 		break;
3965 	case e1000_i350:
3966 		/* I350 cannot do RSS and SR-IOV at the same time */
3967 		if (!!adapter->vfs_allocated_count) {
3968 			max_rss_queues = 1;
3969 			break;
3970 		}
3971 		fallthrough;
3972 	case e1000_82576:
3973 		if (!!adapter->vfs_allocated_count) {
3974 			max_rss_queues = 2;
3975 			break;
3976 		}
3977 		fallthrough;
3978 	case e1000_82580:
3979 	case e1000_i354:
3980 	default:
3981 		max_rss_queues = IGB_MAX_RX_QUEUES;
3982 		break;
3983 	}
3984 
3985 	return max_rss_queues;
3986 }
3987 
3988 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3989 {
3990 	u32 max_rss_queues;
3991 
3992 	max_rss_queues = igb_get_max_rss_queues(adapter);
3993 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3994 
3995 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3996 }
3997 
3998 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3999 			      const u32 max_rss_queues)
4000 {
4001 	struct e1000_hw *hw = &adapter->hw;
4002 
4003 	/* Determine if we need to pair queues. */
4004 	switch (hw->mac.type) {
4005 	case e1000_82575:
4006 	case e1000_i211:
4007 		/* Device supports enough interrupts without queue pairing. */
4008 		break;
4009 	case e1000_82576:
4010 	case e1000_82580:
4011 	case e1000_i350:
4012 	case e1000_i354:
4013 	case e1000_i210:
4014 	default:
4015 		/* If rss_queues > half of max_rss_queues, pair the queues in
4016 		 * order to conserve interrupts due to limited supply.
4017 		 */
4018 		if (adapter->rss_queues > (max_rss_queues / 2))
4019 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4020 		else
4021 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4022 		break;
4023 	}
4024 }
4025 
4026 /**
4027  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4028  *  @adapter: board private structure to initialize
4029  *
4030  *  igb_sw_init initializes the Adapter private data structure.
4031  *  Fields are initialized based on PCI device information and
4032  *  OS network device settings (MTU size).
4033  **/
4034 static int igb_sw_init(struct igb_adapter *adapter)
4035 {
4036 	struct e1000_hw *hw = &adapter->hw;
4037 	struct net_device *netdev = adapter->netdev;
4038 	struct pci_dev *pdev = adapter->pdev;
4039 
4040 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4041 
4042 	/* set default ring sizes */
4043 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4044 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4045 
4046 	/* set default ITR values */
4047 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4048 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4049 
4050 	/* set default work limits */
4051 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4052 
4053 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4054 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4055 
4056 	spin_lock_init(&adapter->nfc_lock);
4057 	spin_lock_init(&adapter->stats64_lock);
4058 
4059 	/* init spinlock to avoid concurrency of VF resources */
4060 	spin_lock_init(&adapter->vfs_lock);
4061 #ifdef CONFIG_PCI_IOV
4062 	switch (hw->mac.type) {
4063 	case e1000_82576:
4064 	case e1000_i350:
4065 		if (max_vfs > 7) {
4066 			dev_warn(&pdev->dev,
4067 				 "Maximum of 7 VFs per PF, using max\n");
4068 			max_vfs = adapter->vfs_allocated_count = 7;
4069 		} else
4070 			adapter->vfs_allocated_count = max_vfs;
4071 		if (adapter->vfs_allocated_count)
4072 			dev_warn(&pdev->dev,
4073 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4074 		break;
4075 	default:
4076 		break;
4077 	}
4078 #endif /* CONFIG_PCI_IOV */
4079 
4080 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4081 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4082 
4083 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4084 				     sizeof(struct igb_mac_addr),
4085 				     GFP_KERNEL);
4086 	if (!adapter->mac_table)
4087 		return -ENOMEM;
4088 
4089 	igb_probe_vfs(adapter);
4090 
4091 	igb_init_queue_configuration(adapter);
4092 
4093 	/* Setup and initialize a copy of the hw vlan table array */
4094 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4095 				       GFP_KERNEL);
4096 	if (!adapter->shadow_vfta)
4097 		return -ENOMEM;
4098 
4099 	/* This call may decrease the number of queues */
4100 	if (igb_init_interrupt_scheme(adapter, true)) {
4101 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4102 		return -ENOMEM;
4103 	}
4104 
4105 	/* Explicitly disable IRQ since the NIC can be in any state. */
4106 	igb_irq_disable(adapter);
4107 
4108 	if (hw->mac.type >= e1000_i350)
4109 		adapter->flags &= ~IGB_FLAG_DMAC;
4110 
4111 	set_bit(__IGB_DOWN, &adapter->state);
4112 	return 0;
4113 }
4114 
4115 /**
4116  *  __igb_open - Called when a network interface is made active
4117  *  @netdev: network interface device structure
4118  *  @resuming: indicates whether we are in a resume call
4119  *
4120  *  Returns 0 on success, negative value on failure
4121  *
4122  *  The open entry point is called when a network interface is made
4123  *  active by the system (IFF_UP).  At this point all resources needed
4124  *  for transmit and receive operations are allocated, the interrupt
4125  *  handler is registered with the OS, the watchdog timer is started,
4126  *  and the stack is notified that the interface is ready.
4127  **/
4128 static int __igb_open(struct net_device *netdev, bool resuming)
4129 {
4130 	struct igb_adapter *adapter = netdev_priv(netdev);
4131 	struct e1000_hw *hw = &adapter->hw;
4132 	struct pci_dev *pdev = adapter->pdev;
4133 	int err;
4134 	int i;
4135 
4136 	/* disallow open during test */
4137 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4138 		WARN_ON(resuming);
4139 		return -EBUSY;
4140 	}
4141 
4142 	if (!resuming)
4143 		pm_runtime_get_sync(&pdev->dev);
4144 
4145 	netif_carrier_off(netdev);
4146 
4147 	/* allocate transmit descriptors */
4148 	err = igb_setup_all_tx_resources(adapter);
4149 	if (err)
4150 		goto err_setup_tx;
4151 
4152 	/* allocate receive descriptors */
4153 	err = igb_setup_all_rx_resources(adapter);
4154 	if (err)
4155 		goto err_setup_rx;
4156 
4157 	igb_power_up_link(adapter);
4158 
4159 	/* before we allocate an interrupt, we must be ready to handle it.
4160 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4161 	 * as soon as we call pci_request_irq, so we have to setup our
4162 	 * clean_rx handler before we do so.
4163 	 */
4164 	igb_configure(adapter);
4165 
4166 	err = igb_request_irq(adapter);
4167 	if (err)
4168 		goto err_req_irq;
4169 
4170 	/* Notify the stack of the actual queue counts. */
4171 	err = netif_set_real_num_tx_queues(adapter->netdev,
4172 					   adapter->num_tx_queues);
4173 	if (err)
4174 		goto err_set_queues;
4175 
4176 	err = netif_set_real_num_rx_queues(adapter->netdev,
4177 					   adapter->num_rx_queues);
4178 	if (err)
4179 		goto err_set_queues;
4180 
4181 	/* From here on the code is the same as igb_up() */
4182 	clear_bit(__IGB_DOWN, &adapter->state);
4183 
4184 	for (i = 0; i < adapter->num_q_vectors; i++)
4185 		napi_enable(&(adapter->q_vector[i]->napi));
4186 
4187 	/* Clear any pending interrupts. */
4188 	rd32(E1000_TSICR);
4189 	rd32(E1000_ICR);
4190 
4191 	igb_irq_enable(adapter);
4192 
4193 	/* notify VFs that reset has been completed */
4194 	if (adapter->vfs_allocated_count) {
4195 		u32 reg_data = rd32(E1000_CTRL_EXT);
4196 
4197 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4198 		wr32(E1000_CTRL_EXT, reg_data);
4199 	}
4200 
4201 	netif_tx_start_all_queues(netdev);
4202 
4203 	if (!resuming)
4204 		pm_runtime_put(&pdev->dev);
4205 
4206 	/* start the watchdog. */
4207 	hw->mac.get_link_status = 1;
4208 	schedule_work(&adapter->watchdog_task);
4209 
4210 	return 0;
4211 
4212 err_set_queues:
4213 	igb_free_irq(adapter);
4214 err_req_irq:
4215 	igb_release_hw_control(adapter);
4216 	igb_power_down_link(adapter);
4217 	igb_free_all_rx_resources(adapter);
4218 err_setup_rx:
4219 	igb_free_all_tx_resources(adapter);
4220 err_setup_tx:
4221 	igb_reset(adapter);
4222 	if (!resuming)
4223 		pm_runtime_put(&pdev->dev);
4224 
4225 	return err;
4226 }
4227 
4228 int igb_open(struct net_device *netdev)
4229 {
4230 	return __igb_open(netdev, false);
4231 }
4232 
4233 /**
4234  *  __igb_close - Disables a network interface
4235  *  @netdev: network interface device structure
4236  *  @suspending: indicates we are in a suspend call
4237  *
4238  *  Returns 0, this is not allowed to fail
4239  *
4240  *  The close entry point is called when an interface is de-activated
4241  *  by the OS.  The hardware is still under the driver's control, but
4242  *  needs to be disabled.  A global MAC reset is issued to stop the
4243  *  hardware, and all transmit and receive resources are freed.
4244  **/
4245 static int __igb_close(struct net_device *netdev, bool suspending)
4246 {
4247 	struct igb_adapter *adapter = netdev_priv(netdev);
4248 	struct pci_dev *pdev = adapter->pdev;
4249 
4250 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4251 
4252 	if (!suspending)
4253 		pm_runtime_get_sync(&pdev->dev);
4254 
4255 	igb_down(adapter);
4256 	igb_free_irq(adapter);
4257 
4258 	igb_free_all_tx_resources(adapter);
4259 	igb_free_all_rx_resources(adapter);
4260 
4261 	if (!suspending)
4262 		pm_runtime_put_sync(&pdev->dev);
4263 	return 0;
4264 }
4265 
4266 int igb_close(struct net_device *netdev)
4267 {
4268 	if (netif_device_present(netdev) || netdev->dismantle)
4269 		return __igb_close(netdev, false);
4270 	return 0;
4271 }
4272 
4273 /**
4274  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4275  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4276  *
4277  *  Return 0 on success, negative on failure
4278  **/
4279 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4280 {
4281 	struct device *dev = tx_ring->dev;
4282 	int size;
4283 
4284 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4285 
4286 	tx_ring->tx_buffer_info = vmalloc(size);
4287 	if (!tx_ring->tx_buffer_info)
4288 		goto err;
4289 
4290 	/* round up to nearest 4K */
4291 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4292 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4293 
4294 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4295 					   &tx_ring->dma, GFP_KERNEL);
4296 	if (!tx_ring->desc)
4297 		goto err;
4298 
4299 	tx_ring->next_to_use = 0;
4300 	tx_ring->next_to_clean = 0;
4301 
4302 	return 0;
4303 
4304 err:
4305 	vfree(tx_ring->tx_buffer_info);
4306 	tx_ring->tx_buffer_info = NULL;
4307 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4308 	return -ENOMEM;
4309 }
4310 
4311 /**
4312  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4313  *				 (Descriptors) for all queues
4314  *  @adapter: board private structure
4315  *
4316  *  Return 0 on success, negative on failure
4317  **/
4318 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4319 {
4320 	struct pci_dev *pdev = adapter->pdev;
4321 	int i, err = 0;
4322 
4323 	for (i = 0; i < adapter->num_tx_queues; i++) {
4324 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4325 		if (err) {
4326 			dev_err(&pdev->dev,
4327 				"Allocation for Tx Queue %u failed\n", i);
4328 			for (i--; i >= 0; i--)
4329 				igb_free_tx_resources(adapter->tx_ring[i]);
4330 			break;
4331 		}
4332 	}
4333 
4334 	return err;
4335 }
4336 
4337 /**
4338  *  igb_setup_tctl - configure the transmit control registers
4339  *  @adapter: Board private structure
4340  **/
4341 void igb_setup_tctl(struct igb_adapter *adapter)
4342 {
4343 	struct e1000_hw *hw = &adapter->hw;
4344 	u32 tctl;
4345 
4346 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4347 	wr32(E1000_TXDCTL(0), 0);
4348 
4349 	/* Program the Transmit Control Register */
4350 	tctl = rd32(E1000_TCTL);
4351 	tctl &= ~E1000_TCTL_CT;
4352 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4353 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4354 
4355 	igb_config_collision_dist(hw);
4356 
4357 	/* Enable transmits */
4358 	tctl |= E1000_TCTL_EN;
4359 
4360 	wr32(E1000_TCTL, tctl);
4361 }
4362 
4363 /**
4364  *  igb_configure_tx_ring - Configure transmit ring after Reset
4365  *  @adapter: board private structure
4366  *  @ring: tx ring to configure
4367  *
4368  *  Configure a transmit ring after a reset.
4369  **/
4370 void igb_configure_tx_ring(struct igb_adapter *adapter,
4371 			   struct igb_ring *ring)
4372 {
4373 	struct e1000_hw *hw = &adapter->hw;
4374 	u32 txdctl = 0;
4375 	u64 tdba = ring->dma;
4376 	int reg_idx = ring->reg_idx;
4377 
4378 	wr32(E1000_TDLEN(reg_idx),
4379 	     ring->count * sizeof(union e1000_adv_tx_desc));
4380 	wr32(E1000_TDBAL(reg_idx),
4381 	     tdba & 0x00000000ffffffffULL);
4382 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4383 
4384 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4385 	wr32(E1000_TDH(reg_idx), 0);
4386 	writel(0, ring->tail);
4387 
4388 	txdctl |= IGB_TX_PTHRESH;
4389 	txdctl |= IGB_TX_HTHRESH << 8;
4390 	txdctl |= IGB_TX_WTHRESH << 16;
4391 
4392 	/* reinitialize tx_buffer_info */
4393 	memset(ring->tx_buffer_info, 0,
4394 	       sizeof(struct igb_tx_buffer) * ring->count);
4395 
4396 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4397 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4398 }
4399 
4400 /**
4401  *  igb_configure_tx - Configure transmit Unit after Reset
4402  *  @adapter: board private structure
4403  *
4404  *  Configure the Tx unit of the MAC after a reset.
4405  **/
4406 static void igb_configure_tx(struct igb_adapter *adapter)
4407 {
4408 	struct e1000_hw *hw = &adapter->hw;
4409 	int i;
4410 
4411 	/* disable the queues */
4412 	for (i = 0; i < adapter->num_tx_queues; i++)
4413 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4414 
4415 	wrfl();
4416 	usleep_range(10000, 20000);
4417 
4418 	for (i = 0; i < adapter->num_tx_queues; i++)
4419 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4420 }
4421 
4422 /**
4423  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4424  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4425  *
4426  *  Returns 0 on success, negative on failure
4427  **/
4428 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4429 {
4430 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4431 	struct device *dev = rx_ring->dev;
4432 	int size, res;
4433 
4434 	/* XDP RX-queue info */
4435 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4436 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4437 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4438 			       rx_ring->queue_index, 0);
4439 	if (res < 0) {
4440 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4441 			rx_ring->queue_index);
4442 		return res;
4443 	}
4444 
4445 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4446 
4447 	rx_ring->rx_buffer_info = vmalloc(size);
4448 	if (!rx_ring->rx_buffer_info)
4449 		goto err;
4450 
4451 	/* Round up to nearest 4K */
4452 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4453 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4454 
4455 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4456 					   &rx_ring->dma, GFP_KERNEL);
4457 	if (!rx_ring->desc)
4458 		goto err;
4459 
4460 	rx_ring->next_to_alloc = 0;
4461 	rx_ring->next_to_clean = 0;
4462 	rx_ring->next_to_use = 0;
4463 
4464 	rx_ring->xdp_prog = adapter->xdp_prog;
4465 
4466 	return 0;
4467 
4468 err:
4469 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4470 	vfree(rx_ring->rx_buffer_info);
4471 	rx_ring->rx_buffer_info = NULL;
4472 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4473 	return -ENOMEM;
4474 }
4475 
4476 /**
4477  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4478  *				 (Descriptors) for all queues
4479  *  @adapter: board private structure
4480  *
4481  *  Return 0 on success, negative on failure
4482  **/
4483 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4484 {
4485 	struct pci_dev *pdev = adapter->pdev;
4486 	int i, err = 0;
4487 
4488 	for (i = 0; i < adapter->num_rx_queues; i++) {
4489 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4490 		if (err) {
4491 			dev_err(&pdev->dev,
4492 				"Allocation for Rx Queue %u failed\n", i);
4493 			for (i--; i >= 0; i--)
4494 				igb_free_rx_resources(adapter->rx_ring[i]);
4495 			break;
4496 		}
4497 	}
4498 
4499 	return err;
4500 }
4501 
4502 /**
4503  *  igb_setup_mrqc - configure the multiple receive queue control registers
4504  *  @adapter: Board private structure
4505  **/
4506 static void igb_setup_mrqc(struct igb_adapter *adapter)
4507 {
4508 	struct e1000_hw *hw = &adapter->hw;
4509 	u32 mrqc, rxcsum;
4510 	u32 j, num_rx_queues;
4511 	u32 rss_key[10];
4512 
4513 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4514 	for (j = 0; j < 10; j++)
4515 		wr32(E1000_RSSRK(j), rss_key[j]);
4516 
4517 	num_rx_queues = adapter->rss_queues;
4518 
4519 	switch (hw->mac.type) {
4520 	case e1000_82576:
4521 		/* 82576 supports 2 RSS queues for SR-IOV */
4522 		if (adapter->vfs_allocated_count)
4523 			num_rx_queues = 2;
4524 		break;
4525 	default:
4526 		break;
4527 	}
4528 
4529 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4530 		for (j = 0; j < IGB_RETA_SIZE; j++)
4531 			adapter->rss_indir_tbl[j] =
4532 			(j * num_rx_queues) / IGB_RETA_SIZE;
4533 		adapter->rss_indir_tbl_init = num_rx_queues;
4534 	}
4535 	igb_write_rss_indir_tbl(adapter);
4536 
4537 	/* Disable raw packet checksumming so that RSS hash is placed in
4538 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4539 	 * offloads as they are enabled by default
4540 	 */
4541 	rxcsum = rd32(E1000_RXCSUM);
4542 	rxcsum |= E1000_RXCSUM_PCSD;
4543 
4544 	if (adapter->hw.mac.type >= e1000_82576)
4545 		/* Enable Receive Checksum Offload for SCTP */
4546 		rxcsum |= E1000_RXCSUM_CRCOFL;
4547 
4548 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4549 	wr32(E1000_RXCSUM, rxcsum);
4550 
4551 	/* Generate RSS hash based on packet types, TCP/UDP
4552 	 * port numbers and/or IPv4/v6 src and dst addresses
4553 	 */
4554 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4555 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4556 	       E1000_MRQC_RSS_FIELD_IPV6 |
4557 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4558 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4559 
4560 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4561 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4562 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4563 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4564 
4565 	/* If VMDq is enabled then we set the appropriate mode for that, else
4566 	 * we default to RSS so that an RSS hash is calculated per packet even
4567 	 * if we are only using one queue
4568 	 */
4569 	if (adapter->vfs_allocated_count) {
4570 		if (hw->mac.type > e1000_82575) {
4571 			/* Set the default pool for the PF's first queue */
4572 			u32 vtctl = rd32(E1000_VT_CTL);
4573 
4574 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4575 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4576 			vtctl |= adapter->vfs_allocated_count <<
4577 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4578 			wr32(E1000_VT_CTL, vtctl);
4579 		}
4580 		if (adapter->rss_queues > 1)
4581 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4582 		else
4583 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4584 	} else {
4585 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4586 	}
4587 	igb_vmm_control(adapter);
4588 
4589 	wr32(E1000_MRQC, mrqc);
4590 }
4591 
4592 /**
4593  *  igb_setup_rctl - configure the receive control registers
4594  *  @adapter: Board private structure
4595  **/
4596 void igb_setup_rctl(struct igb_adapter *adapter)
4597 {
4598 	struct e1000_hw *hw = &adapter->hw;
4599 	u32 rctl;
4600 
4601 	rctl = rd32(E1000_RCTL);
4602 
4603 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4604 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4605 
4606 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4607 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4608 
4609 	/* enable stripping of CRC. It's unlikely this will break BMC
4610 	 * redirection as it did with e1000. Newer features require
4611 	 * that the HW strips the CRC.
4612 	 */
4613 	rctl |= E1000_RCTL_SECRC;
4614 
4615 	/* disable store bad packets and clear size bits. */
4616 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4617 
4618 	/* enable LPE to allow for reception of jumbo frames */
4619 	rctl |= E1000_RCTL_LPE;
4620 
4621 	/* disable queue 0 to prevent tail write w/o re-config */
4622 	wr32(E1000_RXDCTL(0), 0);
4623 
4624 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4625 	 * queue drop for all VF and PF queues to prevent head of line blocking
4626 	 * if an un-trusted VF does not provide descriptors to hardware.
4627 	 */
4628 	if (adapter->vfs_allocated_count) {
4629 		/* set all queue drop enable bits */
4630 		wr32(E1000_QDE, ALL_QUEUES);
4631 	}
4632 
4633 	/* This is useful for sniffing bad packets. */
4634 	if (adapter->netdev->features & NETIF_F_RXALL) {
4635 		/* UPE and MPE will be handled by normal PROMISC logic
4636 		 * in e1000e_set_rx_mode
4637 		 */
4638 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4639 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4640 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4641 
4642 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4643 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4644 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4645 		 * and that breaks VLANs.
4646 		 */
4647 	}
4648 
4649 	wr32(E1000_RCTL, rctl);
4650 }
4651 
4652 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4653 				   int vfn)
4654 {
4655 	struct e1000_hw *hw = &adapter->hw;
4656 	u32 vmolr;
4657 
4658 	if (size > MAX_JUMBO_FRAME_SIZE)
4659 		size = MAX_JUMBO_FRAME_SIZE;
4660 
4661 	vmolr = rd32(E1000_VMOLR(vfn));
4662 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4663 	vmolr |= size | E1000_VMOLR_LPE;
4664 	wr32(E1000_VMOLR(vfn), vmolr);
4665 
4666 	return 0;
4667 }
4668 
4669 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4670 					 int vfn, bool enable)
4671 {
4672 	struct e1000_hw *hw = &adapter->hw;
4673 	u32 val, reg;
4674 
4675 	if (hw->mac.type < e1000_82576)
4676 		return;
4677 
4678 	if (hw->mac.type == e1000_i350)
4679 		reg = E1000_DVMOLR(vfn);
4680 	else
4681 		reg = E1000_VMOLR(vfn);
4682 
4683 	val = rd32(reg);
4684 	if (enable)
4685 		val |= E1000_VMOLR_STRVLAN;
4686 	else
4687 		val &= ~(E1000_VMOLR_STRVLAN);
4688 	wr32(reg, val);
4689 }
4690 
4691 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4692 				 int vfn, bool aupe)
4693 {
4694 	struct e1000_hw *hw = &adapter->hw;
4695 	u32 vmolr;
4696 
4697 	/* This register exists only on 82576 and newer so if we are older then
4698 	 * we should exit and do nothing
4699 	 */
4700 	if (hw->mac.type < e1000_82576)
4701 		return;
4702 
4703 	vmolr = rd32(E1000_VMOLR(vfn));
4704 	if (aupe)
4705 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4706 	else
4707 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4708 
4709 	/* clear all bits that might not be set */
4710 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4711 
4712 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4713 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4714 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4715 	 * multicast packets
4716 	 */
4717 	if (vfn <= adapter->vfs_allocated_count)
4718 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4719 
4720 	wr32(E1000_VMOLR(vfn), vmolr);
4721 }
4722 
4723 /**
4724  *  igb_setup_srrctl - configure the split and replication receive control
4725  *                     registers
4726  *  @adapter: Board private structure
4727  *  @ring: receive ring to be configured
4728  **/
4729 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4730 {
4731 	struct e1000_hw *hw = &adapter->hw;
4732 	int reg_idx = ring->reg_idx;
4733 	u32 srrctl = 0;
4734 
4735 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4736 	if (ring_uses_large_buffer(ring))
4737 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4738 	else
4739 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4740 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4741 	if (hw->mac.type >= e1000_82580)
4742 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4743 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4744 	 * queues and rx flow control is disabled
4745 	 */
4746 	if (adapter->vfs_allocated_count ||
4747 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4748 	     adapter->num_rx_queues > 1))
4749 		srrctl |= E1000_SRRCTL_DROP_EN;
4750 
4751 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4752 }
4753 
4754 /**
4755  *  igb_configure_rx_ring - Configure a receive ring after Reset
4756  *  @adapter: board private structure
4757  *  @ring: receive ring to be configured
4758  *
4759  *  Configure the Rx unit of the MAC after a reset.
4760  **/
4761 void igb_configure_rx_ring(struct igb_adapter *adapter,
4762 			   struct igb_ring *ring)
4763 {
4764 	struct e1000_hw *hw = &adapter->hw;
4765 	union e1000_adv_rx_desc *rx_desc;
4766 	u64 rdba = ring->dma;
4767 	int reg_idx = ring->reg_idx;
4768 	u32 rxdctl = 0;
4769 
4770 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4771 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4772 					   MEM_TYPE_PAGE_SHARED, NULL));
4773 
4774 	/* disable the queue */
4775 	wr32(E1000_RXDCTL(reg_idx), 0);
4776 
4777 	/* Set DMA base address registers */
4778 	wr32(E1000_RDBAL(reg_idx),
4779 	     rdba & 0x00000000ffffffffULL);
4780 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4781 	wr32(E1000_RDLEN(reg_idx),
4782 	     ring->count * sizeof(union e1000_adv_rx_desc));
4783 
4784 	/* initialize head and tail */
4785 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4786 	wr32(E1000_RDH(reg_idx), 0);
4787 	writel(0, ring->tail);
4788 
4789 	/* set descriptor configuration */
4790 	igb_setup_srrctl(adapter, ring);
4791 
4792 	/* set filtering for VMDQ pools */
4793 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4794 
4795 	rxdctl |= IGB_RX_PTHRESH;
4796 	rxdctl |= IGB_RX_HTHRESH << 8;
4797 	rxdctl |= IGB_RX_WTHRESH << 16;
4798 
4799 	/* initialize rx_buffer_info */
4800 	memset(ring->rx_buffer_info, 0,
4801 	       sizeof(struct igb_rx_buffer) * ring->count);
4802 
4803 	/* initialize Rx descriptor 0 */
4804 	rx_desc = IGB_RX_DESC(ring, 0);
4805 	rx_desc->wb.upper.length = 0;
4806 
4807 	/* enable receive descriptor fetching */
4808 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4809 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4810 }
4811 
4812 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4813 				  struct igb_ring *rx_ring)
4814 {
4815 	/* set build_skb and buffer size flags */
4816 	clear_ring_build_skb_enabled(rx_ring);
4817 	clear_ring_uses_large_buffer(rx_ring);
4818 
4819 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4820 		return;
4821 
4822 	set_ring_build_skb_enabled(rx_ring);
4823 
4824 #if (PAGE_SIZE < 8192)
4825 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4826 		return;
4827 
4828 	set_ring_uses_large_buffer(rx_ring);
4829 #endif
4830 }
4831 
4832 /**
4833  *  igb_configure_rx - Configure receive Unit after Reset
4834  *  @adapter: board private structure
4835  *
4836  *  Configure the Rx unit of the MAC after a reset.
4837  **/
4838 static void igb_configure_rx(struct igb_adapter *adapter)
4839 {
4840 	int i;
4841 
4842 	/* set the correct pool for the PF default MAC address in entry 0 */
4843 	igb_set_default_mac_filter(adapter);
4844 
4845 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4846 	 * the Base and Length of the Rx Descriptor Ring
4847 	 */
4848 	for (i = 0; i < adapter->num_rx_queues; i++) {
4849 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4850 
4851 		igb_set_rx_buffer_len(adapter, rx_ring);
4852 		igb_configure_rx_ring(adapter, rx_ring);
4853 	}
4854 }
4855 
4856 /**
4857  *  igb_free_tx_resources - Free Tx Resources per Queue
4858  *  @tx_ring: Tx descriptor ring for a specific queue
4859  *
4860  *  Free all transmit software resources
4861  **/
4862 void igb_free_tx_resources(struct igb_ring *tx_ring)
4863 {
4864 	igb_clean_tx_ring(tx_ring);
4865 
4866 	vfree(tx_ring->tx_buffer_info);
4867 	tx_ring->tx_buffer_info = NULL;
4868 
4869 	/* if not set, then don't free */
4870 	if (!tx_ring->desc)
4871 		return;
4872 
4873 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4874 			  tx_ring->desc, tx_ring->dma);
4875 
4876 	tx_ring->desc = NULL;
4877 }
4878 
4879 /**
4880  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4881  *  @adapter: board private structure
4882  *
4883  *  Free all transmit software resources
4884  **/
4885 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4886 {
4887 	int i;
4888 
4889 	for (i = 0; i < adapter->num_tx_queues; i++)
4890 		if (adapter->tx_ring[i])
4891 			igb_free_tx_resources(adapter->tx_ring[i]);
4892 }
4893 
4894 /**
4895  *  igb_clean_tx_ring - Free Tx Buffers
4896  *  @tx_ring: ring to be cleaned
4897  **/
4898 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4899 {
4900 	u16 i = tx_ring->next_to_clean;
4901 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4902 
4903 	while (i != tx_ring->next_to_use) {
4904 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4905 
4906 		/* Free all the Tx ring sk_buffs or xdp frames */
4907 		if (tx_buffer->type == IGB_TYPE_SKB)
4908 			dev_kfree_skb_any(tx_buffer->skb);
4909 		else
4910 			xdp_return_frame(tx_buffer->xdpf);
4911 
4912 		/* unmap skb header data */
4913 		dma_unmap_single(tx_ring->dev,
4914 				 dma_unmap_addr(tx_buffer, dma),
4915 				 dma_unmap_len(tx_buffer, len),
4916 				 DMA_TO_DEVICE);
4917 
4918 		/* check for eop_desc to determine the end of the packet */
4919 		eop_desc = tx_buffer->next_to_watch;
4920 		tx_desc = IGB_TX_DESC(tx_ring, i);
4921 
4922 		/* unmap remaining buffers */
4923 		while (tx_desc != eop_desc) {
4924 			tx_buffer++;
4925 			tx_desc++;
4926 			i++;
4927 			if (unlikely(i == tx_ring->count)) {
4928 				i = 0;
4929 				tx_buffer = tx_ring->tx_buffer_info;
4930 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4931 			}
4932 
4933 			/* unmap any remaining paged data */
4934 			if (dma_unmap_len(tx_buffer, len))
4935 				dma_unmap_page(tx_ring->dev,
4936 					       dma_unmap_addr(tx_buffer, dma),
4937 					       dma_unmap_len(tx_buffer, len),
4938 					       DMA_TO_DEVICE);
4939 		}
4940 
4941 		tx_buffer->next_to_watch = NULL;
4942 
4943 		/* move us one more past the eop_desc for start of next pkt */
4944 		tx_buffer++;
4945 		i++;
4946 		if (unlikely(i == tx_ring->count)) {
4947 			i = 0;
4948 			tx_buffer = tx_ring->tx_buffer_info;
4949 		}
4950 	}
4951 
4952 	/* reset BQL for queue */
4953 	netdev_tx_reset_queue(txring_txq(tx_ring));
4954 
4955 	/* reset next_to_use and next_to_clean */
4956 	tx_ring->next_to_use = 0;
4957 	tx_ring->next_to_clean = 0;
4958 }
4959 
4960 /**
4961  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4962  *  @adapter: board private structure
4963  **/
4964 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4965 {
4966 	int i;
4967 
4968 	for (i = 0; i < adapter->num_tx_queues; i++)
4969 		if (adapter->tx_ring[i])
4970 			igb_clean_tx_ring(adapter->tx_ring[i]);
4971 }
4972 
4973 /**
4974  *  igb_free_rx_resources - Free Rx Resources
4975  *  @rx_ring: ring to clean the resources from
4976  *
4977  *  Free all receive software resources
4978  **/
4979 void igb_free_rx_resources(struct igb_ring *rx_ring)
4980 {
4981 	igb_clean_rx_ring(rx_ring);
4982 
4983 	rx_ring->xdp_prog = NULL;
4984 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4985 	vfree(rx_ring->rx_buffer_info);
4986 	rx_ring->rx_buffer_info = NULL;
4987 
4988 	/* if not set, then don't free */
4989 	if (!rx_ring->desc)
4990 		return;
4991 
4992 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4993 			  rx_ring->desc, rx_ring->dma);
4994 
4995 	rx_ring->desc = NULL;
4996 }
4997 
4998 /**
4999  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
5000  *  @adapter: board private structure
5001  *
5002  *  Free all receive software resources
5003  **/
5004 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5005 {
5006 	int i;
5007 
5008 	for (i = 0; i < adapter->num_rx_queues; i++)
5009 		if (adapter->rx_ring[i])
5010 			igb_free_rx_resources(adapter->rx_ring[i]);
5011 }
5012 
5013 /**
5014  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5015  *  @rx_ring: ring to free buffers from
5016  **/
5017 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5018 {
5019 	u16 i = rx_ring->next_to_clean;
5020 
5021 	dev_kfree_skb(rx_ring->skb);
5022 	rx_ring->skb = NULL;
5023 
5024 	/* Free all the Rx ring sk_buffs */
5025 	while (i != rx_ring->next_to_alloc) {
5026 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5027 
5028 		/* Invalidate cache lines that may have been written to by
5029 		 * device so that we avoid corrupting memory.
5030 		 */
5031 		dma_sync_single_range_for_cpu(rx_ring->dev,
5032 					      buffer_info->dma,
5033 					      buffer_info->page_offset,
5034 					      igb_rx_bufsz(rx_ring),
5035 					      DMA_FROM_DEVICE);
5036 
5037 		/* free resources associated with mapping */
5038 		dma_unmap_page_attrs(rx_ring->dev,
5039 				     buffer_info->dma,
5040 				     igb_rx_pg_size(rx_ring),
5041 				     DMA_FROM_DEVICE,
5042 				     IGB_RX_DMA_ATTR);
5043 		__page_frag_cache_drain(buffer_info->page,
5044 					buffer_info->pagecnt_bias);
5045 
5046 		i++;
5047 		if (i == rx_ring->count)
5048 			i = 0;
5049 	}
5050 
5051 	rx_ring->next_to_alloc = 0;
5052 	rx_ring->next_to_clean = 0;
5053 	rx_ring->next_to_use = 0;
5054 }
5055 
5056 /**
5057  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5058  *  @adapter: board private structure
5059  **/
5060 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5061 {
5062 	int i;
5063 
5064 	for (i = 0; i < adapter->num_rx_queues; i++)
5065 		if (adapter->rx_ring[i])
5066 			igb_clean_rx_ring(adapter->rx_ring[i]);
5067 }
5068 
5069 /**
5070  *  igb_set_mac - Change the Ethernet Address of the NIC
5071  *  @netdev: network interface device structure
5072  *  @p: pointer to an address structure
5073  *
5074  *  Returns 0 on success, negative on failure
5075  **/
5076 static int igb_set_mac(struct net_device *netdev, void *p)
5077 {
5078 	struct igb_adapter *adapter = netdev_priv(netdev);
5079 	struct e1000_hw *hw = &adapter->hw;
5080 	struct sockaddr *addr = p;
5081 
5082 	if (!is_valid_ether_addr(addr->sa_data))
5083 		return -EADDRNOTAVAIL;
5084 
5085 	eth_hw_addr_set(netdev, addr->sa_data);
5086 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5087 
5088 	/* set the correct pool for the new PF MAC address in entry 0 */
5089 	igb_set_default_mac_filter(adapter);
5090 
5091 	return 0;
5092 }
5093 
5094 /**
5095  *  igb_write_mc_addr_list - write multicast addresses to MTA
5096  *  @netdev: network interface device structure
5097  *
5098  *  Writes multicast address list to the MTA hash table.
5099  *  Returns: -ENOMEM on failure
5100  *           0 on no addresses written
5101  *           X on writing X addresses to MTA
5102  **/
5103 static int igb_write_mc_addr_list(struct net_device *netdev)
5104 {
5105 	struct igb_adapter *adapter = netdev_priv(netdev);
5106 	struct e1000_hw *hw = &adapter->hw;
5107 	struct netdev_hw_addr *ha;
5108 	u8  *mta_list;
5109 	int i;
5110 
5111 	if (netdev_mc_empty(netdev)) {
5112 		/* nothing to program, so clear mc list */
5113 		igb_update_mc_addr_list(hw, NULL, 0);
5114 		igb_restore_vf_multicasts(adapter);
5115 		return 0;
5116 	}
5117 
5118 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5119 	if (!mta_list)
5120 		return -ENOMEM;
5121 
5122 	/* The shared function expects a packed array of only addresses. */
5123 	i = 0;
5124 	netdev_for_each_mc_addr(ha, netdev)
5125 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5126 
5127 	igb_update_mc_addr_list(hw, mta_list, i);
5128 	kfree(mta_list);
5129 
5130 	return netdev_mc_count(netdev);
5131 }
5132 
5133 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5134 {
5135 	struct e1000_hw *hw = &adapter->hw;
5136 	u32 i, pf_id;
5137 
5138 	switch (hw->mac.type) {
5139 	case e1000_i210:
5140 	case e1000_i211:
5141 	case e1000_i350:
5142 		/* VLAN filtering needed for VLAN prio filter */
5143 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5144 			break;
5145 		fallthrough;
5146 	case e1000_82576:
5147 	case e1000_82580:
5148 	case e1000_i354:
5149 		/* VLAN filtering needed for pool filtering */
5150 		if (adapter->vfs_allocated_count)
5151 			break;
5152 		fallthrough;
5153 	default:
5154 		return 1;
5155 	}
5156 
5157 	/* We are already in VLAN promisc, nothing to do */
5158 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5159 		return 0;
5160 
5161 	if (!adapter->vfs_allocated_count)
5162 		goto set_vfta;
5163 
5164 	/* Add PF to all active pools */
5165 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5166 
5167 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5168 		u32 vlvf = rd32(E1000_VLVF(i));
5169 
5170 		vlvf |= BIT(pf_id);
5171 		wr32(E1000_VLVF(i), vlvf);
5172 	}
5173 
5174 set_vfta:
5175 	/* Set all bits in the VLAN filter table array */
5176 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5177 		hw->mac.ops.write_vfta(hw, i, ~0U);
5178 
5179 	/* Set flag so we don't redo unnecessary work */
5180 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5181 
5182 	return 0;
5183 }
5184 
5185 #define VFTA_BLOCK_SIZE 8
5186 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5187 {
5188 	struct e1000_hw *hw = &adapter->hw;
5189 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5190 	u32 vid_start = vfta_offset * 32;
5191 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5192 	u32 i, vid, word, bits, pf_id;
5193 
5194 	/* guarantee that we don't scrub out management VLAN */
5195 	vid = adapter->mng_vlan_id;
5196 	if (vid >= vid_start && vid < vid_end)
5197 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5198 
5199 	if (!adapter->vfs_allocated_count)
5200 		goto set_vfta;
5201 
5202 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5203 
5204 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5205 		u32 vlvf = rd32(E1000_VLVF(i));
5206 
5207 		/* pull VLAN ID from VLVF */
5208 		vid = vlvf & VLAN_VID_MASK;
5209 
5210 		/* only concern ourselves with a certain range */
5211 		if (vid < vid_start || vid >= vid_end)
5212 			continue;
5213 
5214 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5215 			/* record VLAN ID in VFTA */
5216 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5217 
5218 			/* if PF is part of this then continue */
5219 			if (test_bit(vid, adapter->active_vlans))
5220 				continue;
5221 		}
5222 
5223 		/* remove PF from the pool */
5224 		bits = ~BIT(pf_id);
5225 		bits &= rd32(E1000_VLVF(i));
5226 		wr32(E1000_VLVF(i), bits);
5227 	}
5228 
5229 set_vfta:
5230 	/* extract values from active_vlans and write back to VFTA */
5231 	for (i = VFTA_BLOCK_SIZE; i--;) {
5232 		vid = (vfta_offset + i) * 32;
5233 		word = vid / BITS_PER_LONG;
5234 		bits = vid % BITS_PER_LONG;
5235 
5236 		vfta[i] |= adapter->active_vlans[word] >> bits;
5237 
5238 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5239 	}
5240 }
5241 
5242 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5243 {
5244 	u32 i;
5245 
5246 	/* We are not in VLAN promisc, nothing to do */
5247 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5248 		return;
5249 
5250 	/* Set flag so we don't redo unnecessary work */
5251 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5252 
5253 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5254 		igb_scrub_vfta(adapter, i);
5255 }
5256 
5257 /**
5258  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5259  *  @netdev: network interface device structure
5260  *
5261  *  The set_rx_mode entry point is called whenever the unicast or multicast
5262  *  address lists or the network interface flags are updated.  This routine is
5263  *  responsible for configuring the hardware for proper unicast, multicast,
5264  *  promiscuous mode, and all-multi behavior.
5265  **/
5266 static void igb_set_rx_mode(struct net_device *netdev)
5267 {
5268 	struct igb_adapter *adapter = netdev_priv(netdev);
5269 	struct e1000_hw *hw = &adapter->hw;
5270 	unsigned int vfn = adapter->vfs_allocated_count;
5271 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5272 	int count;
5273 
5274 	/* Check for Promiscuous and All Multicast modes */
5275 	if (netdev->flags & IFF_PROMISC) {
5276 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5277 		vmolr |= E1000_VMOLR_MPME;
5278 
5279 		/* enable use of UTA filter to force packets to default pool */
5280 		if (hw->mac.type == e1000_82576)
5281 			vmolr |= E1000_VMOLR_ROPE;
5282 	} else {
5283 		if (netdev->flags & IFF_ALLMULTI) {
5284 			rctl |= E1000_RCTL_MPE;
5285 			vmolr |= E1000_VMOLR_MPME;
5286 		} else {
5287 			/* Write addresses to the MTA, if the attempt fails
5288 			 * then we should just turn on promiscuous mode so
5289 			 * that we can at least receive multicast traffic
5290 			 */
5291 			count = igb_write_mc_addr_list(netdev);
5292 			if (count < 0) {
5293 				rctl |= E1000_RCTL_MPE;
5294 				vmolr |= E1000_VMOLR_MPME;
5295 			} else if (count) {
5296 				vmolr |= E1000_VMOLR_ROMPE;
5297 			}
5298 		}
5299 	}
5300 
5301 	/* Write addresses to available RAR registers, if there is not
5302 	 * sufficient space to store all the addresses then enable
5303 	 * unicast promiscuous mode
5304 	 */
5305 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5306 		rctl |= E1000_RCTL_UPE;
5307 		vmolr |= E1000_VMOLR_ROPE;
5308 	}
5309 
5310 	/* enable VLAN filtering by default */
5311 	rctl |= E1000_RCTL_VFE;
5312 
5313 	/* disable VLAN filtering for modes that require it */
5314 	if ((netdev->flags & IFF_PROMISC) ||
5315 	    (netdev->features & NETIF_F_RXALL)) {
5316 		/* if we fail to set all rules then just clear VFE */
5317 		if (igb_vlan_promisc_enable(adapter))
5318 			rctl &= ~E1000_RCTL_VFE;
5319 	} else {
5320 		igb_vlan_promisc_disable(adapter);
5321 	}
5322 
5323 	/* update state of unicast, multicast, and VLAN filtering modes */
5324 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5325 				     E1000_RCTL_VFE);
5326 	wr32(E1000_RCTL, rctl);
5327 
5328 #if (PAGE_SIZE < 8192)
5329 	if (!adapter->vfs_allocated_count) {
5330 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5331 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5332 	}
5333 #endif
5334 	wr32(E1000_RLPML, rlpml);
5335 
5336 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5337 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5338 	 * we will have issues with VLAN tag stripping not being done for frames
5339 	 * that are only arriving because we are the default pool
5340 	 */
5341 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5342 		return;
5343 
5344 	/* set UTA to appropriate mode */
5345 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5346 
5347 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5348 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5349 
5350 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5351 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5352 #if (PAGE_SIZE < 8192)
5353 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5354 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5355 	else
5356 #endif
5357 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5358 	vmolr |= E1000_VMOLR_LPE;
5359 
5360 	wr32(E1000_VMOLR(vfn), vmolr);
5361 
5362 	igb_restore_vf_multicasts(adapter);
5363 }
5364 
5365 static void igb_check_wvbr(struct igb_adapter *adapter)
5366 {
5367 	struct e1000_hw *hw = &adapter->hw;
5368 	u32 wvbr = 0;
5369 
5370 	switch (hw->mac.type) {
5371 	case e1000_82576:
5372 	case e1000_i350:
5373 		wvbr = rd32(E1000_WVBR);
5374 		if (!wvbr)
5375 			return;
5376 		break;
5377 	default:
5378 		break;
5379 	}
5380 
5381 	adapter->wvbr |= wvbr;
5382 }
5383 
5384 #define IGB_STAGGERED_QUEUE_OFFSET 8
5385 
5386 static void igb_spoof_check(struct igb_adapter *adapter)
5387 {
5388 	int j;
5389 
5390 	if (!adapter->wvbr)
5391 		return;
5392 
5393 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5394 		if (adapter->wvbr & BIT(j) ||
5395 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5396 			dev_warn(&adapter->pdev->dev,
5397 				"Spoof event(s) detected on VF %d\n", j);
5398 			adapter->wvbr &=
5399 				~(BIT(j) |
5400 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5401 		}
5402 	}
5403 }
5404 
5405 /* Need to wait a few seconds after link up to get diagnostic information from
5406  * the phy
5407  */
5408 static void igb_update_phy_info(struct timer_list *t)
5409 {
5410 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5411 	igb_get_phy_info(&adapter->hw);
5412 }
5413 
5414 /**
5415  *  igb_has_link - check shared code for link and determine up/down
5416  *  @adapter: pointer to driver private info
5417  **/
5418 bool igb_has_link(struct igb_adapter *adapter)
5419 {
5420 	struct e1000_hw *hw = &adapter->hw;
5421 	bool link_active = false;
5422 
5423 	/* get_link_status is set on LSC (link status) interrupt or
5424 	 * rx sequence error interrupt.  get_link_status will stay
5425 	 * false until the e1000_check_for_link establishes link
5426 	 * for copper adapters ONLY
5427 	 */
5428 	switch (hw->phy.media_type) {
5429 	case e1000_media_type_copper:
5430 		if (!hw->mac.get_link_status)
5431 			return true;
5432 		fallthrough;
5433 	case e1000_media_type_internal_serdes:
5434 		hw->mac.ops.check_for_link(hw);
5435 		link_active = !hw->mac.get_link_status;
5436 		break;
5437 	default:
5438 	case e1000_media_type_unknown:
5439 		break;
5440 	}
5441 
5442 	if (((hw->mac.type == e1000_i210) ||
5443 	     (hw->mac.type == e1000_i211)) &&
5444 	     (hw->phy.id == I210_I_PHY_ID)) {
5445 		if (!netif_carrier_ok(adapter->netdev)) {
5446 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5447 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5448 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5449 			adapter->link_check_timeout = jiffies;
5450 		}
5451 	}
5452 
5453 	return link_active;
5454 }
5455 
5456 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5457 {
5458 	bool ret = false;
5459 	u32 ctrl_ext, thstat;
5460 
5461 	/* check for thermal sensor event on i350 copper only */
5462 	if (hw->mac.type == e1000_i350) {
5463 		thstat = rd32(E1000_THSTAT);
5464 		ctrl_ext = rd32(E1000_CTRL_EXT);
5465 
5466 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5467 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5468 			ret = !!(thstat & event);
5469 	}
5470 
5471 	return ret;
5472 }
5473 
5474 /**
5475  *  igb_check_lvmmc - check for malformed packets received
5476  *  and indicated in LVMMC register
5477  *  @adapter: pointer to adapter
5478  **/
5479 static void igb_check_lvmmc(struct igb_adapter *adapter)
5480 {
5481 	struct e1000_hw *hw = &adapter->hw;
5482 	u32 lvmmc;
5483 
5484 	lvmmc = rd32(E1000_LVMMC);
5485 	if (lvmmc) {
5486 		if (unlikely(net_ratelimit())) {
5487 			netdev_warn(adapter->netdev,
5488 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5489 				    lvmmc);
5490 		}
5491 	}
5492 }
5493 
5494 /**
5495  *  igb_watchdog - Timer Call-back
5496  *  @t: pointer to timer_list containing our private info pointer
5497  **/
5498 static void igb_watchdog(struct timer_list *t)
5499 {
5500 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5501 	/* Do the rest outside of interrupt context */
5502 	schedule_work(&adapter->watchdog_task);
5503 }
5504 
5505 static void igb_watchdog_task(struct work_struct *work)
5506 {
5507 	struct igb_adapter *adapter = container_of(work,
5508 						   struct igb_adapter,
5509 						   watchdog_task);
5510 	struct e1000_hw *hw = &adapter->hw;
5511 	struct e1000_phy_info *phy = &hw->phy;
5512 	struct net_device *netdev = adapter->netdev;
5513 	u32 link;
5514 	int i;
5515 	u32 connsw;
5516 	u16 phy_data, retry_count = 20;
5517 
5518 	link = igb_has_link(adapter);
5519 
5520 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5521 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5522 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5523 		else
5524 			link = false;
5525 	}
5526 
5527 	/* Force link down if we have fiber to swap to */
5528 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5529 		if (hw->phy.media_type == e1000_media_type_copper) {
5530 			connsw = rd32(E1000_CONNSW);
5531 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5532 				link = 0;
5533 		}
5534 	}
5535 	if (link) {
5536 		/* Perform a reset if the media type changed. */
5537 		if (hw->dev_spec._82575.media_changed) {
5538 			hw->dev_spec._82575.media_changed = false;
5539 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5540 			igb_reset(adapter);
5541 		}
5542 		/* Cancel scheduled suspend requests. */
5543 		pm_runtime_resume(netdev->dev.parent);
5544 
5545 		if (!netif_carrier_ok(netdev)) {
5546 			u32 ctrl;
5547 
5548 			hw->mac.ops.get_speed_and_duplex(hw,
5549 							 &adapter->link_speed,
5550 							 &adapter->link_duplex);
5551 
5552 			ctrl = rd32(E1000_CTRL);
5553 			/* Links status message must follow this format */
5554 			netdev_info(netdev,
5555 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5556 			       netdev->name,
5557 			       adapter->link_speed,
5558 			       adapter->link_duplex == FULL_DUPLEX ?
5559 			       "Full" : "Half",
5560 			       (ctrl & E1000_CTRL_TFCE) &&
5561 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5562 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5563 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5564 
5565 			/* disable EEE if enabled */
5566 			if ((adapter->flags & IGB_FLAG_EEE) &&
5567 				(adapter->link_duplex == HALF_DUPLEX)) {
5568 				dev_info(&adapter->pdev->dev,
5569 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5570 				adapter->hw.dev_spec._82575.eee_disable = true;
5571 				adapter->flags &= ~IGB_FLAG_EEE;
5572 			}
5573 
5574 			/* check if SmartSpeed worked */
5575 			igb_check_downshift(hw);
5576 			if (phy->speed_downgraded)
5577 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5578 
5579 			/* check for thermal sensor event */
5580 			if (igb_thermal_sensor_event(hw,
5581 			    E1000_THSTAT_LINK_THROTTLE))
5582 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5583 
5584 			/* adjust timeout factor according to speed/duplex */
5585 			adapter->tx_timeout_factor = 1;
5586 			switch (adapter->link_speed) {
5587 			case SPEED_10:
5588 				adapter->tx_timeout_factor = 14;
5589 				break;
5590 			case SPEED_100:
5591 				/* maybe add some timeout factor ? */
5592 				break;
5593 			}
5594 
5595 			if (adapter->link_speed != SPEED_1000 ||
5596 			    !hw->phy.ops.read_reg)
5597 				goto no_wait;
5598 
5599 			/* wait for Remote receiver status OK */
5600 retry_read_status:
5601 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5602 					      &phy_data)) {
5603 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5604 				    retry_count) {
5605 					msleep(100);
5606 					retry_count--;
5607 					goto retry_read_status;
5608 				} else if (!retry_count) {
5609 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5610 				}
5611 			} else {
5612 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5613 			}
5614 no_wait:
5615 			netif_carrier_on(netdev);
5616 
5617 			igb_ping_all_vfs(adapter);
5618 			igb_check_vf_rate_limit(adapter);
5619 
5620 			/* link state has changed, schedule phy info update */
5621 			if (!test_bit(__IGB_DOWN, &adapter->state))
5622 				mod_timer(&adapter->phy_info_timer,
5623 					  round_jiffies(jiffies + 2 * HZ));
5624 		}
5625 	} else {
5626 		if (netif_carrier_ok(netdev)) {
5627 			adapter->link_speed = 0;
5628 			adapter->link_duplex = 0;
5629 
5630 			/* check for thermal sensor event */
5631 			if (igb_thermal_sensor_event(hw,
5632 			    E1000_THSTAT_PWR_DOWN)) {
5633 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5634 			}
5635 
5636 			/* Links status message must follow this format */
5637 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5638 			       netdev->name);
5639 			netif_carrier_off(netdev);
5640 
5641 			igb_ping_all_vfs(adapter);
5642 
5643 			/* link state has changed, schedule phy info update */
5644 			if (!test_bit(__IGB_DOWN, &adapter->state))
5645 				mod_timer(&adapter->phy_info_timer,
5646 					  round_jiffies(jiffies + 2 * HZ));
5647 
5648 			/* link is down, time to check for alternate media */
5649 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5650 				igb_check_swap_media(adapter);
5651 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5652 					schedule_work(&adapter->reset_task);
5653 					/* return immediately */
5654 					return;
5655 				}
5656 			}
5657 			pm_schedule_suspend(netdev->dev.parent,
5658 					    MSEC_PER_SEC * 5);
5659 
5660 		/* also check for alternate media here */
5661 		} else if (!netif_carrier_ok(netdev) &&
5662 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5663 			igb_check_swap_media(adapter);
5664 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5665 				schedule_work(&adapter->reset_task);
5666 				/* return immediately */
5667 				return;
5668 			}
5669 		}
5670 	}
5671 
5672 	spin_lock(&adapter->stats64_lock);
5673 	igb_update_stats(adapter);
5674 	spin_unlock(&adapter->stats64_lock);
5675 
5676 	for (i = 0; i < adapter->num_tx_queues; i++) {
5677 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5678 		if (!netif_carrier_ok(netdev)) {
5679 			/* We've lost link, so the controller stops DMA,
5680 			 * but we've got queued Tx work that's never going
5681 			 * to get done, so reset controller to flush Tx.
5682 			 * (Do the reset outside of interrupt context).
5683 			 */
5684 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5685 				adapter->tx_timeout_count++;
5686 				schedule_work(&adapter->reset_task);
5687 				/* return immediately since reset is imminent */
5688 				return;
5689 			}
5690 		}
5691 
5692 		/* Force detection of hung controller every watchdog period */
5693 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5694 	}
5695 
5696 	/* Cause software interrupt to ensure Rx ring is cleaned */
5697 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5698 		u32 eics = 0;
5699 
5700 		for (i = 0; i < adapter->num_q_vectors; i++)
5701 			eics |= adapter->q_vector[i]->eims_value;
5702 		wr32(E1000_EICS, eics);
5703 	} else {
5704 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5705 	}
5706 
5707 	igb_spoof_check(adapter);
5708 	igb_ptp_rx_hang(adapter);
5709 	igb_ptp_tx_hang(adapter);
5710 
5711 	/* Check LVMMC register on i350/i354 only */
5712 	if ((adapter->hw.mac.type == e1000_i350) ||
5713 	    (adapter->hw.mac.type == e1000_i354))
5714 		igb_check_lvmmc(adapter);
5715 
5716 	/* Reset the timer */
5717 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5718 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5719 			mod_timer(&adapter->watchdog_timer,
5720 				  round_jiffies(jiffies +  HZ));
5721 		else
5722 			mod_timer(&adapter->watchdog_timer,
5723 				  round_jiffies(jiffies + 2 * HZ));
5724 	}
5725 }
5726 
5727 enum latency_range {
5728 	lowest_latency = 0,
5729 	low_latency = 1,
5730 	bulk_latency = 2,
5731 	latency_invalid = 255
5732 };
5733 
5734 /**
5735  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5736  *  @q_vector: pointer to q_vector
5737  *
5738  *  Stores a new ITR value based on strictly on packet size.  This
5739  *  algorithm is less sophisticated than that used in igb_update_itr,
5740  *  due to the difficulty of synchronizing statistics across multiple
5741  *  receive rings.  The divisors and thresholds used by this function
5742  *  were determined based on theoretical maximum wire speed and testing
5743  *  data, in order to minimize response time while increasing bulk
5744  *  throughput.
5745  *  This functionality is controlled by ethtool's coalescing settings.
5746  *  NOTE:  This function is called only when operating in a multiqueue
5747  *         receive environment.
5748  **/
5749 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5750 {
5751 	int new_val = q_vector->itr_val;
5752 	int avg_wire_size = 0;
5753 	struct igb_adapter *adapter = q_vector->adapter;
5754 	unsigned int packets;
5755 
5756 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5757 	 * ints/sec - ITR timer value of 120 ticks.
5758 	 */
5759 	if (adapter->link_speed != SPEED_1000) {
5760 		new_val = IGB_4K_ITR;
5761 		goto set_itr_val;
5762 	}
5763 
5764 	packets = q_vector->rx.total_packets;
5765 	if (packets)
5766 		avg_wire_size = q_vector->rx.total_bytes / packets;
5767 
5768 	packets = q_vector->tx.total_packets;
5769 	if (packets)
5770 		avg_wire_size = max_t(u32, avg_wire_size,
5771 				      q_vector->tx.total_bytes / packets);
5772 
5773 	/* if avg_wire_size isn't set no work was done */
5774 	if (!avg_wire_size)
5775 		goto clear_counts;
5776 
5777 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5778 	avg_wire_size += 24;
5779 
5780 	/* Don't starve jumbo frames */
5781 	avg_wire_size = min(avg_wire_size, 3000);
5782 
5783 	/* Give a little boost to mid-size frames */
5784 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5785 		new_val = avg_wire_size / 3;
5786 	else
5787 		new_val = avg_wire_size / 2;
5788 
5789 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5790 	if (new_val < IGB_20K_ITR &&
5791 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5792 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5793 		new_val = IGB_20K_ITR;
5794 
5795 set_itr_val:
5796 	if (new_val != q_vector->itr_val) {
5797 		q_vector->itr_val = new_val;
5798 		q_vector->set_itr = 1;
5799 	}
5800 clear_counts:
5801 	q_vector->rx.total_bytes = 0;
5802 	q_vector->rx.total_packets = 0;
5803 	q_vector->tx.total_bytes = 0;
5804 	q_vector->tx.total_packets = 0;
5805 }
5806 
5807 /**
5808  *  igb_update_itr - update the dynamic ITR value based on statistics
5809  *  @q_vector: pointer to q_vector
5810  *  @ring_container: ring info to update the itr for
5811  *
5812  *  Stores a new ITR value based on packets and byte
5813  *  counts during the last interrupt.  The advantage of per interrupt
5814  *  computation is faster updates and more accurate ITR for the current
5815  *  traffic pattern.  Constants in this function were computed
5816  *  based on theoretical maximum wire speed and thresholds were set based
5817  *  on testing data as well as attempting to minimize response time
5818  *  while increasing bulk throughput.
5819  *  This functionality is controlled by ethtool's coalescing settings.
5820  *  NOTE:  These calculations are only valid when operating in a single-
5821  *         queue environment.
5822  **/
5823 static void igb_update_itr(struct igb_q_vector *q_vector,
5824 			   struct igb_ring_container *ring_container)
5825 {
5826 	unsigned int packets = ring_container->total_packets;
5827 	unsigned int bytes = ring_container->total_bytes;
5828 	u8 itrval = ring_container->itr;
5829 
5830 	/* no packets, exit with status unchanged */
5831 	if (packets == 0)
5832 		return;
5833 
5834 	switch (itrval) {
5835 	case lowest_latency:
5836 		/* handle TSO and jumbo frames */
5837 		if (bytes/packets > 8000)
5838 			itrval = bulk_latency;
5839 		else if ((packets < 5) && (bytes > 512))
5840 			itrval = low_latency;
5841 		break;
5842 	case low_latency:  /* 50 usec aka 20000 ints/s */
5843 		if (bytes > 10000) {
5844 			/* this if handles the TSO accounting */
5845 			if (bytes/packets > 8000)
5846 				itrval = bulk_latency;
5847 			else if ((packets < 10) || ((bytes/packets) > 1200))
5848 				itrval = bulk_latency;
5849 			else if ((packets > 35))
5850 				itrval = lowest_latency;
5851 		} else if (bytes/packets > 2000) {
5852 			itrval = bulk_latency;
5853 		} else if (packets <= 2 && bytes < 512) {
5854 			itrval = lowest_latency;
5855 		}
5856 		break;
5857 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5858 		if (bytes > 25000) {
5859 			if (packets > 35)
5860 				itrval = low_latency;
5861 		} else if (bytes < 1500) {
5862 			itrval = low_latency;
5863 		}
5864 		break;
5865 	}
5866 
5867 	/* clear work counters since we have the values we need */
5868 	ring_container->total_bytes = 0;
5869 	ring_container->total_packets = 0;
5870 
5871 	/* write updated itr to ring container */
5872 	ring_container->itr = itrval;
5873 }
5874 
5875 static void igb_set_itr(struct igb_q_vector *q_vector)
5876 {
5877 	struct igb_adapter *adapter = q_vector->adapter;
5878 	u32 new_itr = q_vector->itr_val;
5879 	u8 current_itr = 0;
5880 
5881 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5882 	if (adapter->link_speed != SPEED_1000) {
5883 		current_itr = 0;
5884 		new_itr = IGB_4K_ITR;
5885 		goto set_itr_now;
5886 	}
5887 
5888 	igb_update_itr(q_vector, &q_vector->tx);
5889 	igb_update_itr(q_vector, &q_vector->rx);
5890 
5891 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5892 
5893 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5894 	if (current_itr == lowest_latency &&
5895 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5896 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5897 		current_itr = low_latency;
5898 
5899 	switch (current_itr) {
5900 	/* counts and packets in update_itr are dependent on these numbers */
5901 	case lowest_latency:
5902 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5903 		break;
5904 	case low_latency:
5905 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5906 		break;
5907 	case bulk_latency:
5908 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5909 		break;
5910 	default:
5911 		break;
5912 	}
5913 
5914 set_itr_now:
5915 	if (new_itr != q_vector->itr_val) {
5916 		/* this attempts to bias the interrupt rate towards Bulk
5917 		 * by adding intermediate steps when interrupt rate is
5918 		 * increasing
5919 		 */
5920 		new_itr = new_itr > q_vector->itr_val ?
5921 			  max((new_itr * q_vector->itr_val) /
5922 			  (new_itr + (q_vector->itr_val >> 2)),
5923 			  new_itr) : new_itr;
5924 		/* Don't write the value here; it resets the adapter's
5925 		 * internal timer, and causes us to delay far longer than
5926 		 * we should between interrupts.  Instead, we write the ITR
5927 		 * value at the beginning of the next interrupt so the timing
5928 		 * ends up being correct.
5929 		 */
5930 		q_vector->itr_val = new_itr;
5931 		q_vector->set_itr = 1;
5932 	}
5933 }
5934 
5935 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5936 			    struct igb_tx_buffer *first,
5937 			    u32 vlan_macip_lens, u32 type_tucmd,
5938 			    u32 mss_l4len_idx)
5939 {
5940 	struct e1000_adv_tx_context_desc *context_desc;
5941 	u16 i = tx_ring->next_to_use;
5942 	struct timespec64 ts;
5943 
5944 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5945 
5946 	i++;
5947 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5948 
5949 	/* set bits to identify this as an advanced context descriptor */
5950 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5951 
5952 	/* For 82575, context index must be unique per ring. */
5953 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5954 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5955 
5956 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5957 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5958 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5959 
5960 	/* We assume there is always a valid tx time available. Invalid times
5961 	 * should have been handled by the upper layers.
5962 	 */
5963 	if (tx_ring->launchtime_enable) {
5964 		ts = ktime_to_timespec64(first->skb->tstamp);
5965 		skb_txtime_consumed(first->skb);
5966 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5967 	} else {
5968 		context_desc->seqnum_seed = 0;
5969 	}
5970 }
5971 
5972 static int igb_tso(struct igb_ring *tx_ring,
5973 		   struct igb_tx_buffer *first,
5974 		   u8 *hdr_len)
5975 {
5976 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5977 	struct sk_buff *skb = first->skb;
5978 	union {
5979 		struct iphdr *v4;
5980 		struct ipv6hdr *v6;
5981 		unsigned char *hdr;
5982 	} ip;
5983 	union {
5984 		struct tcphdr *tcp;
5985 		struct udphdr *udp;
5986 		unsigned char *hdr;
5987 	} l4;
5988 	u32 paylen, l4_offset;
5989 	int err;
5990 
5991 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5992 		return 0;
5993 
5994 	if (!skb_is_gso(skb))
5995 		return 0;
5996 
5997 	err = skb_cow_head(skb, 0);
5998 	if (err < 0)
5999 		return err;
6000 
6001 	ip.hdr = skb_network_header(skb);
6002 	l4.hdr = skb_checksum_start(skb);
6003 
6004 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6005 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6006 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6007 
6008 	/* initialize outer IP header fields */
6009 	if (ip.v4->version == 4) {
6010 		unsigned char *csum_start = skb_checksum_start(skb);
6011 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6012 
6013 		/* IP header will have to cancel out any data that
6014 		 * is not a part of the outer IP header
6015 		 */
6016 		ip.v4->check = csum_fold(csum_partial(trans_start,
6017 						      csum_start - trans_start,
6018 						      0));
6019 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6020 
6021 		ip.v4->tot_len = 0;
6022 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6023 				   IGB_TX_FLAGS_CSUM |
6024 				   IGB_TX_FLAGS_IPV4;
6025 	} else {
6026 		ip.v6->payload_len = 0;
6027 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6028 				   IGB_TX_FLAGS_CSUM;
6029 	}
6030 
6031 	/* determine offset of inner transport header */
6032 	l4_offset = l4.hdr - skb->data;
6033 
6034 	/* remove payload length from inner checksum */
6035 	paylen = skb->len - l4_offset;
6036 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6037 		/* compute length of segmentation header */
6038 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6039 		csum_replace_by_diff(&l4.tcp->check,
6040 			(__force __wsum)htonl(paylen));
6041 	} else {
6042 		/* compute length of segmentation header */
6043 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6044 		csum_replace_by_diff(&l4.udp->check,
6045 				     (__force __wsum)htonl(paylen));
6046 	}
6047 
6048 	/* update gso size and bytecount with header size */
6049 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6050 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6051 
6052 	/* MSS L4LEN IDX */
6053 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6054 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6055 
6056 	/* VLAN MACLEN IPLEN */
6057 	vlan_macip_lens = l4.hdr - ip.hdr;
6058 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6059 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6060 
6061 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6062 			type_tucmd, mss_l4len_idx);
6063 
6064 	return 1;
6065 }
6066 
6067 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6068 {
6069 	struct sk_buff *skb = first->skb;
6070 	u32 vlan_macip_lens = 0;
6071 	u32 type_tucmd = 0;
6072 
6073 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6074 csum_failed:
6075 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6076 		    !tx_ring->launchtime_enable)
6077 			return;
6078 		goto no_csum;
6079 	}
6080 
6081 	switch (skb->csum_offset) {
6082 	case offsetof(struct tcphdr, check):
6083 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6084 		fallthrough;
6085 	case offsetof(struct udphdr, check):
6086 		break;
6087 	case offsetof(struct sctphdr, checksum):
6088 		/* validate that this is actually an SCTP request */
6089 		if (skb_csum_is_sctp(skb)) {
6090 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6091 			break;
6092 		}
6093 		fallthrough;
6094 	default:
6095 		skb_checksum_help(skb);
6096 		goto csum_failed;
6097 	}
6098 
6099 	/* update TX checksum flag */
6100 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6101 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6102 			  skb_network_offset(skb);
6103 no_csum:
6104 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6105 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6106 
6107 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6108 }
6109 
6110 #define IGB_SET_FLAG(_input, _flag, _result) \
6111 	((_flag <= _result) ? \
6112 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6113 	 ((u32)(_input & _flag) / (_flag / _result)))
6114 
6115 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6116 {
6117 	/* set type for advanced descriptor with frame checksum insertion */
6118 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6119 		       E1000_ADVTXD_DCMD_DEXT |
6120 		       E1000_ADVTXD_DCMD_IFCS;
6121 
6122 	/* set HW vlan bit if vlan is present */
6123 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6124 				 (E1000_ADVTXD_DCMD_VLE));
6125 
6126 	/* set segmentation bits for TSO */
6127 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6128 				 (E1000_ADVTXD_DCMD_TSE));
6129 
6130 	/* set timestamp bit if present */
6131 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6132 				 (E1000_ADVTXD_MAC_TSTAMP));
6133 
6134 	/* insert frame checksum */
6135 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6136 
6137 	return cmd_type;
6138 }
6139 
6140 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6141 				 union e1000_adv_tx_desc *tx_desc,
6142 				 u32 tx_flags, unsigned int paylen)
6143 {
6144 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6145 
6146 	/* 82575 requires a unique index per ring */
6147 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6148 		olinfo_status |= tx_ring->reg_idx << 4;
6149 
6150 	/* insert L4 checksum */
6151 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6152 				      IGB_TX_FLAGS_CSUM,
6153 				      (E1000_TXD_POPTS_TXSM << 8));
6154 
6155 	/* insert IPv4 checksum */
6156 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6157 				      IGB_TX_FLAGS_IPV4,
6158 				      (E1000_TXD_POPTS_IXSM << 8));
6159 
6160 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6161 }
6162 
6163 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6164 {
6165 	struct net_device *netdev = tx_ring->netdev;
6166 
6167 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6168 
6169 	/* Herbert's original patch had:
6170 	 *  smp_mb__after_netif_stop_queue();
6171 	 * but since that doesn't exist yet, just open code it.
6172 	 */
6173 	smp_mb();
6174 
6175 	/* We need to check again in a case another CPU has just
6176 	 * made room available.
6177 	 */
6178 	if (igb_desc_unused(tx_ring) < size)
6179 		return -EBUSY;
6180 
6181 	/* A reprieve! */
6182 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6183 
6184 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6185 	tx_ring->tx_stats.restart_queue2++;
6186 	u64_stats_update_end(&tx_ring->tx_syncp2);
6187 
6188 	return 0;
6189 }
6190 
6191 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6192 {
6193 	if (igb_desc_unused(tx_ring) >= size)
6194 		return 0;
6195 	return __igb_maybe_stop_tx(tx_ring, size);
6196 }
6197 
6198 static int igb_tx_map(struct igb_ring *tx_ring,
6199 		      struct igb_tx_buffer *first,
6200 		      const u8 hdr_len)
6201 {
6202 	struct sk_buff *skb = first->skb;
6203 	struct igb_tx_buffer *tx_buffer;
6204 	union e1000_adv_tx_desc *tx_desc;
6205 	skb_frag_t *frag;
6206 	dma_addr_t dma;
6207 	unsigned int data_len, size;
6208 	u32 tx_flags = first->tx_flags;
6209 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6210 	u16 i = tx_ring->next_to_use;
6211 
6212 	tx_desc = IGB_TX_DESC(tx_ring, i);
6213 
6214 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6215 
6216 	size = skb_headlen(skb);
6217 	data_len = skb->data_len;
6218 
6219 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6220 
6221 	tx_buffer = first;
6222 
6223 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6224 		if (dma_mapping_error(tx_ring->dev, dma))
6225 			goto dma_error;
6226 
6227 		/* record length, and DMA address */
6228 		dma_unmap_len_set(tx_buffer, len, size);
6229 		dma_unmap_addr_set(tx_buffer, dma, dma);
6230 
6231 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6232 
6233 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6234 			tx_desc->read.cmd_type_len =
6235 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6236 
6237 			i++;
6238 			tx_desc++;
6239 			if (i == tx_ring->count) {
6240 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6241 				i = 0;
6242 			}
6243 			tx_desc->read.olinfo_status = 0;
6244 
6245 			dma += IGB_MAX_DATA_PER_TXD;
6246 			size -= IGB_MAX_DATA_PER_TXD;
6247 
6248 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6249 		}
6250 
6251 		if (likely(!data_len))
6252 			break;
6253 
6254 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6255 
6256 		i++;
6257 		tx_desc++;
6258 		if (i == tx_ring->count) {
6259 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6260 			i = 0;
6261 		}
6262 		tx_desc->read.olinfo_status = 0;
6263 
6264 		size = skb_frag_size(frag);
6265 		data_len -= size;
6266 
6267 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6268 				       size, DMA_TO_DEVICE);
6269 
6270 		tx_buffer = &tx_ring->tx_buffer_info[i];
6271 	}
6272 
6273 	/* write last descriptor with RS and EOP bits */
6274 	cmd_type |= size | IGB_TXD_DCMD;
6275 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6276 
6277 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6278 
6279 	/* set the timestamp */
6280 	first->time_stamp = jiffies;
6281 
6282 	skb_tx_timestamp(skb);
6283 
6284 	/* Force memory writes to complete before letting h/w know there
6285 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6286 	 * memory model archs, such as IA-64).
6287 	 *
6288 	 * We also need this memory barrier to make certain all of the
6289 	 * status bits have been updated before next_to_watch is written.
6290 	 */
6291 	dma_wmb();
6292 
6293 	/* set next_to_watch value indicating a packet is present */
6294 	first->next_to_watch = tx_desc;
6295 
6296 	i++;
6297 	if (i == tx_ring->count)
6298 		i = 0;
6299 
6300 	tx_ring->next_to_use = i;
6301 
6302 	/* Make sure there is space in the ring for the next send. */
6303 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6304 
6305 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6306 		writel(i, tx_ring->tail);
6307 	}
6308 	return 0;
6309 
6310 dma_error:
6311 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6312 	tx_buffer = &tx_ring->tx_buffer_info[i];
6313 
6314 	/* clear dma mappings for failed tx_buffer_info map */
6315 	while (tx_buffer != first) {
6316 		if (dma_unmap_len(tx_buffer, len))
6317 			dma_unmap_page(tx_ring->dev,
6318 				       dma_unmap_addr(tx_buffer, dma),
6319 				       dma_unmap_len(tx_buffer, len),
6320 				       DMA_TO_DEVICE);
6321 		dma_unmap_len_set(tx_buffer, len, 0);
6322 
6323 		if (i-- == 0)
6324 			i += tx_ring->count;
6325 		tx_buffer = &tx_ring->tx_buffer_info[i];
6326 	}
6327 
6328 	if (dma_unmap_len(tx_buffer, len))
6329 		dma_unmap_single(tx_ring->dev,
6330 				 dma_unmap_addr(tx_buffer, dma),
6331 				 dma_unmap_len(tx_buffer, len),
6332 				 DMA_TO_DEVICE);
6333 	dma_unmap_len_set(tx_buffer, len, 0);
6334 
6335 	dev_kfree_skb_any(tx_buffer->skb);
6336 	tx_buffer->skb = NULL;
6337 
6338 	tx_ring->next_to_use = i;
6339 
6340 	return -1;
6341 }
6342 
6343 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6344 		      struct igb_ring *tx_ring,
6345 		      struct xdp_frame *xdpf)
6346 {
6347 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6348 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6349 	u16 count, i, index = tx_ring->next_to_use;
6350 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6351 	struct igb_tx_buffer *tx_buffer = tx_head;
6352 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6353 	u32 len = xdpf->len, cmd_type, olinfo_status;
6354 	void *data = xdpf->data;
6355 
6356 	count = TXD_USE_COUNT(len);
6357 	for (i = 0; i < nr_frags; i++)
6358 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6359 
6360 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6361 		return IGB_XDP_CONSUMED;
6362 
6363 	i = 0;
6364 	/* record the location of the first descriptor for this packet */
6365 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6366 	tx_head->type = IGB_TYPE_XDP;
6367 	tx_head->gso_segs = 1;
6368 	tx_head->xdpf = xdpf;
6369 
6370 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6371 	/* 82575 requires a unique index per ring */
6372 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6373 		olinfo_status |= tx_ring->reg_idx << 4;
6374 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6375 
6376 	for (;;) {
6377 		dma_addr_t dma;
6378 
6379 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6380 		if (dma_mapping_error(tx_ring->dev, dma))
6381 			goto unmap;
6382 
6383 		/* record length, and DMA address */
6384 		dma_unmap_len_set(tx_buffer, len, len);
6385 		dma_unmap_addr_set(tx_buffer, dma, dma);
6386 
6387 		/* put descriptor type bits */
6388 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6389 			   E1000_ADVTXD_DCMD_IFCS | len;
6390 
6391 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6392 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6393 
6394 		tx_buffer->protocol = 0;
6395 
6396 		if (++index == tx_ring->count)
6397 			index = 0;
6398 
6399 		if (i == nr_frags)
6400 			break;
6401 
6402 		tx_buffer = &tx_ring->tx_buffer_info[index];
6403 		tx_desc = IGB_TX_DESC(tx_ring, index);
6404 		tx_desc->read.olinfo_status = 0;
6405 
6406 		data = skb_frag_address(&sinfo->frags[i]);
6407 		len = skb_frag_size(&sinfo->frags[i]);
6408 		i++;
6409 	}
6410 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6411 
6412 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6413 	/* set the timestamp */
6414 	tx_head->time_stamp = jiffies;
6415 
6416 	/* Avoid any potential race with xdp_xmit and cleanup */
6417 	smp_wmb();
6418 
6419 	/* set next_to_watch value indicating a packet is present */
6420 	tx_head->next_to_watch = tx_desc;
6421 	tx_ring->next_to_use = index;
6422 
6423 	/* Make sure there is space in the ring for the next send. */
6424 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6425 
6426 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6427 		writel(index, tx_ring->tail);
6428 
6429 	return IGB_XDP_TX;
6430 
6431 unmap:
6432 	for (;;) {
6433 		tx_buffer = &tx_ring->tx_buffer_info[index];
6434 		if (dma_unmap_len(tx_buffer, len))
6435 			dma_unmap_page(tx_ring->dev,
6436 				       dma_unmap_addr(tx_buffer, dma),
6437 				       dma_unmap_len(tx_buffer, len),
6438 				       DMA_TO_DEVICE);
6439 		dma_unmap_len_set(tx_buffer, len, 0);
6440 		if (tx_buffer == tx_head)
6441 			break;
6442 
6443 		if (!index)
6444 			index += tx_ring->count;
6445 		index--;
6446 	}
6447 
6448 	return IGB_XDP_CONSUMED;
6449 }
6450 
6451 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6452 				struct igb_ring *tx_ring)
6453 {
6454 	struct igb_tx_buffer *first;
6455 	int tso;
6456 	u32 tx_flags = 0;
6457 	unsigned short f;
6458 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6459 	__be16 protocol = vlan_get_protocol(skb);
6460 	u8 hdr_len = 0;
6461 
6462 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6463 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6464 	 *       + 2 desc gap to keep tail from touching head,
6465 	 *       + 1 desc for context descriptor,
6466 	 * otherwise try next time
6467 	 */
6468 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6469 		count += TXD_USE_COUNT(skb_frag_size(
6470 						&skb_shinfo(skb)->frags[f]));
6471 
6472 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6473 		/* this is a hard error */
6474 		return NETDEV_TX_BUSY;
6475 	}
6476 
6477 	/* record the location of the first descriptor for this packet */
6478 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6479 	first->type = IGB_TYPE_SKB;
6480 	first->skb = skb;
6481 	first->bytecount = skb->len;
6482 	first->gso_segs = 1;
6483 
6484 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6485 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6486 
6487 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6488 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6489 					   &adapter->state)) {
6490 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6491 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6492 
6493 			adapter->ptp_tx_skb = skb_get(skb);
6494 			adapter->ptp_tx_start = jiffies;
6495 			if (adapter->hw.mac.type == e1000_82576)
6496 				schedule_work(&adapter->ptp_tx_work);
6497 		} else {
6498 			adapter->tx_hwtstamp_skipped++;
6499 		}
6500 	}
6501 
6502 	if (skb_vlan_tag_present(skb)) {
6503 		tx_flags |= IGB_TX_FLAGS_VLAN;
6504 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6505 	}
6506 
6507 	/* record initial flags and protocol */
6508 	first->tx_flags = tx_flags;
6509 	first->protocol = protocol;
6510 
6511 	tso = igb_tso(tx_ring, first, &hdr_len);
6512 	if (tso < 0)
6513 		goto out_drop;
6514 	else if (!tso)
6515 		igb_tx_csum(tx_ring, first);
6516 
6517 	if (igb_tx_map(tx_ring, first, hdr_len))
6518 		goto cleanup_tx_tstamp;
6519 
6520 	return NETDEV_TX_OK;
6521 
6522 out_drop:
6523 	dev_kfree_skb_any(first->skb);
6524 	first->skb = NULL;
6525 cleanup_tx_tstamp:
6526 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6527 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6528 
6529 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6530 		adapter->ptp_tx_skb = NULL;
6531 		if (adapter->hw.mac.type == e1000_82576)
6532 			cancel_work_sync(&adapter->ptp_tx_work);
6533 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6534 	}
6535 
6536 	return NETDEV_TX_OK;
6537 }
6538 
6539 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6540 						    struct sk_buff *skb)
6541 {
6542 	unsigned int r_idx = skb->queue_mapping;
6543 
6544 	if (r_idx >= adapter->num_tx_queues)
6545 		r_idx = r_idx % adapter->num_tx_queues;
6546 
6547 	return adapter->tx_ring[r_idx];
6548 }
6549 
6550 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6551 				  struct net_device *netdev)
6552 {
6553 	struct igb_adapter *adapter = netdev_priv(netdev);
6554 
6555 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6556 	 * in order to meet this minimum size requirement.
6557 	 */
6558 	if (skb_put_padto(skb, 17))
6559 		return NETDEV_TX_OK;
6560 
6561 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6562 }
6563 
6564 /**
6565  *  igb_tx_timeout - Respond to a Tx Hang
6566  *  @netdev: network interface device structure
6567  *  @txqueue: number of the Tx queue that hung (unused)
6568  **/
6569 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6570 {
6571 	struct igb_adapter *adapter = netdev_priv(netdev);
6572 	struct e1000_hw *hw = &adapter->hw;
6573 
6574 	/* Do the reset outside of interrupt context */
6575 	adapter->tx_timeout_count++;
6576 
6577 	if (hw->mac.type >= e1000_82580)
6578 		hw->dev_spec._82575.global_device_reset = true;
6579 
6580 	schedule_work(&adapter->reset_task);
6581 	wr32(E1000_EICS,
6582 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6583 }
6584 
6585 static void igb_reset_task(struct work_struct *work)
6586 {
6587 	struct igb_adapter *adapter;
6588 	adapter = container_of(work, struct igb_adapter, reset_task);
6589 
6590 	rtnl_lock();
6591 	/* If we're already down or resetting, just bail */
6592 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6593 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6594 		rtnl_unlock();
6595 		return;
6596 	}
6597 
6598 	igb_dump(adapter);
6599 	netdev_err(adapter->netdev, "Reset adapter\n");
6600 	igb_reinit_locked(adapter);
6601 	rtnl_unlock();
6602 }
6603 
6604 /**
6605  *  igb_get_stats64 - Get System Network Statistics
6606  *  @netdev: network interface device structure
6607  *  @stats: rtnl_link_stats64 pointer
6608  **/
6609 static void igb_get_stats64(struct net_device *netdev,
6610 			    struct rtnl_link_stats64 *stats)
6611 {
6612 	struct igb_adapter *adapter = netdev_priv(netdev);
6613 
6614 	spin_lock(&adapter->stats64_lock);
6615 	igb_update_stats(adapter);
6616 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6617 	spin_unlock(&adapter->stats64_lock);
6618 }
6619 
6620 /**
6621  *  igb_change_mtu - Change the Maximum Transfer Unit
6622  *  @netdev: network interface device structure
6623  *  @new_mtu: new value for maximum frame size
6624  *
6625  *  Returns 0 on success, negative on failure
6626  **/
6627 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6628 {
6629 	struct igb_adapter *adapter = netdev_priv(netdev);
6630 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6631 
6632 	if (adapter->xdp_prog) {
6633 		int i;
6634 
6635 		for (i = 0; i < adapter->num_rx_queues; i++) {
6636 			struct igb_ring *ring = adapter->rx_ring[i];
6637 
6638 			if (max_frame > igb_rx_bufsz(ring)) {
6639 				netdev_warn(adapter->netdev,
6640 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6641 					    max_frame);
6642 				return -EINVAL;
6643 			}
6644 		}
6645 	}
6646 
6647 	/* adjust max frame to be at least the size of a standard frame */
6648 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6649 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6650 
6651 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6652 		usleep_range(1000, 2000);
6653 
6654 	/* igb_down has a dependency on max_frame_size */
6655 	adapter->max_frame_size = max_frame;
6656 
6657 	if (netif_running(netdev))
6658 		igb_down(adapter);
6659 
6660 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6661 		   netdev->mtu, new_mtu);
6662 	netdev->mtu = new_mtu;
6663 
6664 	if (netif_running(netdev))
6665 		igb_up(adapter);
6666 	else
6667 		igb_reset(adapter);
6668 
6669 	clear_bit(__IGB_RESETTING, &adapter->state);
6670 
6671 	return 0;
6672 }
6673 
6674 /**
6675  *  igb_update_stats - Update the board statistics counters
6676  *  @adapter: board private structure
6677  **/
6678 void igb_update_stats(struct igb_adapter *adapter)
6679 {
6680 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6681 	struct e1000_hw *hw = &adapter->hw;
6682 	struct pci_dev *pdev = adapter->pdev;
6683 	u32 reg, mpc;
6684 	int i;
6685 	u64 bytes, packets;
6686 	unsigned int start;
6687 	u64 _bytes, _packets;
6688 
6689 	/* Prevent stats update while adapter is being reset, or if the pci
6690 	 * connection is down.
6691 	 */
6692 	if (adapter->link_speed == 0)
6693 		return;
6694 	if (pci_channel_offline(pdev))
6695 		return;
6696 
6697 	bytes = 0;
6698 	packets = 0;
6699 
6700 	rcu_read_lock();
6701 	for (i = 0; i < adapter->num_rx_queues; i++) {
6702 		struct igb_ring *ring = adapter->rx_ring[i];
6703 		u32 rqdpc = rd32(E1000_RQDPC(i));
6704 		if (hw->mac.type >= e1000_i210)
6705 			wr32(E1000_RQDPC(i), 0);
6706 
6707 		if (rqdpc) {
6708 			ring->rx_stats.drops += rqdpc;
6709 			net_stats->rx_fifo_errors += rqdpc;
6710 		}
6711 
6712 		do {
6713 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6714 			_bytes = ring->rx_stats.bytes;
6715 			_packets = ring->rx_stats.packets;
6716 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6717 		bytes += _bytes;
6718 		packets += _packets;
6719 	}
6720 
6721 	net_stats->rx_bytes = bytes;
6722 	net_stats->rx_packets = packets;
6723 
6724 	bytes = 0;
6725 	packets = 0;
6726 	for (i = 0; i < adapter->num_tx_queues; i++) {
6727 		struct igb_ring *ring = adapter->tx_ring[i];
6728 		do {
6729 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6730 			_bytes = ring->tx_stats.bytes;
6731 			_packets = ring->tx_stats.packets;
6732 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6733 		bytes += _bytes;
6734 		packets += _packets;
6735 	}
6736 	net_stats->tx_bytes = bytes;
6737 	net_stats->tx_packets = packets;
6738 	rcu_read_unlock();
6739 
6740 	/* read stats registers */
6741 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6742 	adapter->stats.gprc += rd32(E1000_GPRC);
6743 	adapter->stats.gorc += rd32(E1000_GORCL);
6744 	rd32(E1000_GORCH); /* clear GORCL */
6745 	adapter->stats.bprc += rd32(E1000_BPRC);
6746 	adapter->stats.mprc += rd32(E1000_MPRC);
6747 	adapter->stats.roc += rd32(E1000_ROC);
6748 
6749 	adapter->stats.prc64 += rd32(E1000_PRC64);
6750 	adapter->stats.prc127 += rd32(E1000_PRC127);
6751 	adapter->stats.prc255 += rd32(E1000_PRC255);
6752 	adapter->stats.prc511 += rd32(E1000_PRC511);
6753 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6754 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6755 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6756 	adapter->stats.sec += rd32(E1000_SEC);
6757 
6758 	mpc = rd32(E1000_MPC);
6759 	adapter->stats.mpc += mpc;
6760 	net_stats->rx_fifo_errors += mpc;
6761 	adapter->stats.scc += rd32(E1000_SCC);
6762 	adapter->stats.ecol += rd32(E1000_ECOL);
6763 	adapter->stats.mcc += rd32(E1000_MCC);
6764 	adapter->stats.latecol += rd32(E1000_LATECOL);
6765 	adapter->stats.dc += rd32(E1000_DC);
6766 	adapter->stats.rlec += rd32(E1000_RLEC);
6767 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6768 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6769 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6770 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6771 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6772 	adapter->stats.gptc += rd32(E1000_GPTC);
6773 	adapter->stats.gotc += rd32(E1000_GOTCL);
6774 	rd32(E1000_GOTCH); /* clear GOTCL */
6775 	adapter->stats.rnbc += rd32(E1000_RNBC);
6776 	adapter->stats.ruc += rd32(E1000_RUC);
6777 	adapter->stats.rfc += rd32(E1000_RFC);
6778 	adapter->stats.rjc += rd32(E1000_RJC);
6779 	adapter->stats.tor += rd32(E1000_TORH);
6780 	adapter->stats.tot += rd32(E1000_TOTH);
6781 	adapter->stats.tpr += rd32(E1000_TPR);
6782 
6783 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6784 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6785 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6786 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6787 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6788 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6789 
6790 	adapter->stats.mptc += rd32(E1000_MPTC);
6791 	adapter->stats.bptc += rd32(E1000_BPTC);
6792 
6793 	adapter->stats.tpt += rd32(E1000_TPT);
6794 	adapter->stats.colc += rd32(E1000_COLC);
6795 
6796 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6797 	/* read internal phy specific stats */
6798 	reg = rd32(E1000_CTRL_EXT);
6799 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6800 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6801 
6802 		/* this stat has invalid values on i210/i211 */
6803 		if ((hw->mac.type != e1000_i210) &&
6804 		    (hw->mac.type != e1000_i211))
6805 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6806 	}
6807 
6808 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6809 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6810 
6811 	adapter->stats.iac += rd32(E1000_IAC);
6812 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6813 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6814 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6815 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6816 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6817 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6818 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6819 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6820 
6821 	/* Fill out the OS statistics structure */
6822 	net_stats->multicast = adapter->stats.mprc;
6823 	net_stats->collisions = adapter->stats.colc;
6824 
6825 	/* Rx Errors */
6826 
6827 	/* RLEC on some newer hardware can be incorrect so build
6828 	 * our own version based on RUC and ROC
6829 	 */
6830 	net_stats->rx_errors = adapter->stats.rxerrc +
6831 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6832 		adapter->stats.ruc + adapter->stats.roc +
6833 		adapter->stats.cexterr;
6834 	net_stats->rx_length_errors = adapter->stats.ruc +
6835 				      adapter->stats.roc;
6836 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6837 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6838 	net_stats->rx_missed_errors = adapter->stats.mpc;
6839 
6840 	/* Tx Errors */
6841 	net_stats->tx_errors = adapter->stats.ecol +
6842 			       adapter->stats.latecol;
6843 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6844 	net_stats->tx_window_errors = adapter->stats.latecol;
6845 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6846 
6847 	/* Tx Dropped needs to be maintained elsewhere */
6848 
6849 	/* Management Stats */
6850 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6851 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6852 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6853 
6854 	/* OS2BMC Stats */
6855 	reg = rd32(E1000_MANC);
6856 	if (reg & E1000_MANC_EN_BMC2OS) {
6857 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6858 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6859 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6860 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6861 	}
6862 }
6863 
6864 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6865 {
6866 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6867 	struct e1000_hw *hw = &adapter->hw;
6868 	struct timespec64 ts;
6869 	u32 tsauxc;
6870 
6871 	if (pin < 0 || pin >= IGB_N_SDP)
6872 		return;
6873 
6874 	spin_lock(&adapter->tmreg_lock);
6875 
6876 	if (hw->mac.type == e1000_82580 ||
6877 	    hw->mac.type == e1000_i354 ||
6878 	    hw->mac.type == e1000_i350) {
6879 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6880 		u32 systiml, systimh, level_mask, level, rem;
6881 		u64 systim, now;
6882 
6883 		/* read systim registers in sequence */
6884 		rd32(E1000_SYSTIMR);
6885 		systiml = rd32(E1000_SYSTIML);
6886 		systimh = rd32(E1000_SYSTIMH);
6887 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6888 		now = timecounter_cyc2time(&adapter->tc, systim);
6889 
6890 		if (pin < 2) {
6891 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6892 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6893 		} else {
6894 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6895 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6896 		}
6897 
6898 		div_u64_rem(now, ns, &rem);
6899 		systim = systim + (ns - rem);
6900 
6901 		/* synchronize pin level with rising/falling edges */
6902 		div_u64_rem(now, ns << 1, &rem);
6903 		if (rem < ns) {
6904 			/* first half of period */
6905 			if (level == 0) {
6906 				/* output is already low, skip this period */
6907 				systim += ns;
6908 				pr_notice("igb: periodic output on %s missed falling edge\n",
6909 					  adapter->sdp_config[pin].name);
6910 			}
6911 		} else {
6912 			/* second half of period */
6913 			if (level == 1) {
6914 				/* output is already high, skip this period */
6915 				systim += ns;
6916 				pr_notice("igb: periodic output on %s missed rising edge\n",
6917 					  adapter->sdp_config[pin].name);
6918 			}
6919 		}
6920 
6921 		/* for this chip family tv_sec is the upper part of the binary value,
6922 		 * so not seconds
6923 		 */
6924 		ts.tv_nsec = (u32)systim;
6925 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6926 	} else {
6927 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
6928 				    adapter->perout[tsintr_tt].period);
6929 	}
6930 
6931 	/* u32 conversion of tv_sec is safe until y2106 */
6932 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6933 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6934 	tsauxc = rd32(E1000_TSAUXC);
6935 	tsauxc |= TSAUXC_EN_TT0;
6936 	wr32(E1000_TSAUXC, tsauxc);
6937 	adapter->perout[tsintr_tt].start = ts;
6938 
6939 	spin_unlock(&adapter->tmreg_lock);
6940 }
6941 
6942 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6943 {
6944 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6945 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6946 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6947 	struct e1000_hw *hw = &adapter->hw;
6948 	struct ptp_clock_event event;
6949 	struct timespec64 ts;
6950 
6951 	if (pin < 0 || pin >= IGB_N_SDP)
6952 		return;
6953 
6954 	if (hw->mac.type == e1000_82580 ||
6955 	    hw->mac.type == e1000_i354 ||
6956 	    hw->mac.type == e1000_i350) {
6957 		s64 ns = rd32(auxstmpl);
6958 
6959 		ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6960 		ts = ns_to_timespec64(ns);
6961 	} else {
6962 		ts.tv_nsec = rd32(auxstmpl);
6963 		ts.tv_sec  = rd32(auxstmph);
6964 	}
6965 
6966 	event.type = PTP_CLOCK_EXTTS;
6967 	event.index = tsintr_tt;
6968 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6969 	ptp_clock_event(adapter->ptp_clock, &event);
6970 }
6971 
6972 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6973 {
6974 	struct e1000_hw *hw = &adapter->hw;
6975 	u32 ack = 0, tsicr = rd32(E1000_TSICR);
6976 	struct ptp_clock_event event;
6977 
6978 	if (tsicr & TSINTR_SYS_WRAP) {
6979 		event.type = PTP_CLOCK_PPS;
6980 		if (adapter->ptp_caps.pps)
6981 			ptp_clock_event(adapter->ptp_clock, &event);
6982 		ack |= TSINTR_SYS_WRAP;
6983 	}
6984 
6985 	if (tsicr & E1000_TSICR_TXTS) {
6986 		/* retrieve hardware timestamp */
6987 		schedule_work(&adapter->ptp_tx_work);
6988 		ack |= E1000_TSICR_TXTS;
6989 	}
6990 
6991 	if (tsicr & TSINTR_TT0) {
6992 		igb_perout(adapter, 0);
6993 		ack |= TSINTR_TT0;
6994 	}
6995 
6996 	if (tsicr & TSINTR_TT1) {
6997 		igb_perout(adapter, 1);
6998 		ack |= TSINTR_TT1;
6999 	}
7000 
7001 	if (tsicr & TSINTR_AUTT0) {
7002 		igb_extts(adapter, 0);
7003 		ack |= TSINTR_AUTT0;
7004 	}
7005 
7006 	if (tsicr & TSINTR_AUTT1) {
7007 		igb_extts(adapter, 1);
7008 		ack |= TSINTR_AUTT1;
7009 	}
7010 
7011 	/* acknowledge the interrupts */
7012 	wr32(E1000_TSICR, ack);
7013 }
7014 
7015 static irqreturn_t igb_msix_other(int irq, void *data)
7016 {
7017 	struct igb_adapter *adapter = data;
7018 	struct e1000_hw *hw = &adapter->hw;
7019 	u32 icr = rd32(E1000_ICR);
7020 	/* reading ICR causes bit 31 of EICR to be cleared */
7021 
7022 	if (icr & E1000_ICR_DRSTA)
7023 		schedule_work(&adapter->reset_task);
7024 
7025 	if (icr & E1000_ICR_DOUTSYNC) {
7026 		/* HW is reporting DMA is out of sync */
7027 		adapter->stats.doosync++;
7028 		/* The DMA Out of Sync is also indication of a spoof event
7029 		 * in IOV mode. Check the Wrong VM Behavior register to
7030 		 * see if it is really a spoof event.
7031 		 */
7032 		igb_check_wvbr(adapter);
7033 	}
7034 
7035 	/* Check for a mailbox event */
7036 	if (icr & E1000_ICR_VMMB)
7037 		igb_msg_task(adapter);
7038 
7039 	if (icr & E1000_ICR_LSC) {
7040 		hw->mac.get_link_status = 1;
7041 		/* guard against interrupt when we're going down */
7042 		if (!test_bit(__IGB_DOWN, &adapter->state))
7043 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7044 	}
7045 
7046 	if (icr & E1000_ICR_TS)
7047 		igb_tsync_interrupt(adapter);
7048 
7049 	wr32(E1000_EIMS, adapter->eims_other);
7050 
7051 	return IRQ_HANDLED;
7052 }
7053 
7054 static void igb_write_itr(struct igb_q_vector *q_vector)
7055 {
7056 	struct igb_adapter *adapter = q_vector->adapter;
7057 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7058 
7059 	if (!q_vector->set_itr)
7060 		return;
7061 
7062 	if (!itr_val)
7063 		itr_val = 0x4;
7064 
7065 	if (adapter->hw.mac.type == e1000_82575)
7066 		itr_val |= itr_val << 16;
7067 	else
7068 		itr_val |= E1000_EITR_CNT_IGNR;
7069 
7070 	writel(itr_val, q_vector->itr_register);
7071 	q_vector->set_itr = 0;
7072 }
7073 
7074 static irqreturn_t igb_msix_ring(int irq, void *data)
7075 {
7076 	struct igb_q_vector *q_vector = data;
7077 
7078 	/* Write the ITR value calculated from the previous interrupt. */
7079 	igb_write_itr(q_vector);
7080 
7081 	napi_schedule(&q_vector->napi);
7082 
7083 	return IRQ_HANDLED;
7084 }
7085 
7086 #ifdef CONFIG_IGB_DCA
7087 static void igb_update_tx_dca(struct igb_adapter *adapter,
7088 			      struct igb_ring *tx_ring,
7089 			      int cpu)
7090 {
7091 	struct e1000_hw *hw = &adapter->hw;
7092 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7093 
7094 	if (hw->mac.type != e1000_82575)
7095 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7096 
7097 	/* We can enable relaxed ordering for reads, but not writes when
7098 	 * DCA is enabled.  This is due to a known issue in some chipsets
7099 	 * which will cause the DCA tag to be cleared.
7100 	 */
7101 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7102 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7103 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7104 
7105 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7106 }
7107 
7108 static void igb_update_rx_dca(struct igb_adapter *adapter,
7109 			      struct igb_ring *rx_ring,
7110 			      int cpu)
7111 {
7112 	struct e1000_hw *hw = &adapter->hw;
7113 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7114 
7115 	if (hw->mac.type != e1000_82575)
7116 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7117 
7118 	/* We can enable relaxed ordering for reads, but not writes when
7119 	 * DCA is enabled.  This is due to a known issue in some chipsets
7120 	 * which will cause the DCA tag to be cleared.
7121 	 */
7122 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7123 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7124 
7125 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7126 }
7127 
7128 static void igb_update_dca(struct igb_q_vector *q_vector)
7129 {
7130 	struct igb_adapter *adapter = q_vector->adapter;
7131 	int cpu = get_cpu();
7132 
7133 	if (q_vector->cpu == cpu)
7134 		goto out_no_update;
7135 
7136 	if (q_vector->tx.ring)
7137 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7138 
7139 	if (q_vector->rx.ring)
7140 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7141 
7142 	q_vector->cpu = cpu;
7143 out_no_update:
7144 	put_cpu();
7145 }
7146 
7147 static void igb_setup_dca(struct igb_adapter *adapter)
7148 {
7149 	struct e1000_hw *hw = &adapter->hw;
7150 	int i;
7151 
7152 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7153 		return;
7154 
7155 	/* Always use CB2 mode, difference is masked in the CB driver. */
7156 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7157 
7158 	for (i = 0; i < adapter->num_q_vectors; i++) {
7159 		adapter->q_vector[i]->cpu = -1;
7160 		igb_update_dca(adapter->q_vector[i]);
7161 	}
7162 }
7163 
7164 static int __igb_notify_dca(struct device *dev, void *data)
7165 {
7166 	struct net_device *netdev = dev_get_drvdata(dev);
7167 	struct igb_adapter *adapter = netdev_priv(netdev);
7168 	struct pci_dev *pdev = adapter->pdev;
7169 	struct e1000_hw *hw = &adapter->hw;
7170 	unsigned long event = *(unsigned long *)data;
7171 
7172 	switch (event) {
7173 	case DCA_PROVIDER_ADD:
7174 		/* if already enabled, don't do it again */
7175 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7176 			break;
7177 		if (dca_add_requester(dev) == 0) {
7178 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7179 			dev_info(&pdev->dev, "DCA enabled\n");
7180 			igb_setup_dca(adapter);
7181 			break;
7182 		}
7183 		fallthrough; /* since DCA is disabled. */
7184 	case DCA_PROVIDER_REMOVE:
7185 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7186 			/* without this a class_device is left
7187 			 * hanging around in the sysfs model
7188 			 */
7189 			dca_remove_requester(dev);
7190 			dev_info(&pdev->dev, "DCA disabled\n");
7191 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7192 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7193 		}
7194 		break;
7195 	}
7196 
7197 	return 0;
7198 }
7199 
7200 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7201 			  void *p)
7202 {
7203 	int ret_val;
7204 
7205 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7206 					 __igb_notify_dca);
7207 
7208 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7209 }
7210 #endif /* CONFIG_IGB_DCA */
7211 
7212 #ifdef CONFIG_PCI_IOV
7213 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7214 {
7215 	unsigned char mac_addr[ETH_ALEN];
7216 
7217 	eth_zero_addr(mac_addr);
7218 	igb_set_vf_mac(adapter, vf, mac_addr);
7219 
7220 	/* By default spoof check is enabled for all VFs */
7221 	adapter->vf_data[vf].spoofchk_enabled = true;
7222 
7223 	/* By default VFs are not trusted */
7224 	adapter->vf_data[vf].trusted = false;
7225 
7226 	return 0;
7227 }
7228 
7229 #endif
7230 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7231 {
7232 	struct e1000_hw *hw = &adapter->hw;
7233 	u32 ping;
7234 	int i;
7235 
7236 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7237 		ping = E1000_PF_CONTROL_MSG;
7238 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7239 			ping |= E1000_VT_MSGTYPE_CTS;
7240 		igb_write_mbx(hw, &ping, 1, i);
7241 	}
7242 }
7243 
7244 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7245 {
7246 	struct e1000_hw *hw = &adapter->hw;
7247 	u32 vmolr = rd32(E1000_VMOLR(vf));
7248 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7249 
7250 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7251 			    IGB_VF_FLAG_MULTI_PROMISC);
7252 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7253 
7254 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7255 		vmolr |= E1000_VMOLR_MPME;
7256 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7257 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7258 	} else {
7259 		/* if we have hashes and we are clearing a multicast promisc
7260 		 * flag we need to write the hashes to the MTA as this step
7261 		 * was previously skipped
7262 		 */
7263 		if (vf_data->num_vf_mc_hashes > 30) {
7264 			vmolr |= E1000_VMOLR_MPME;
7265 		} else if (vf_data->num_vf_mc_hashes) {
7266 			int j;
7267 
7268 			vmolr |= E1000_VMOLR_ROMPE;
7269 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7270 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7271 		}
7272 	}
7273 
7274 	wr32(E1000_VMOLR(vf), vmolr);
7275 
7276 	/* there are flags left unprocessed, likely not supported */
7277 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7278 		return -EINVAL;
7279 
7280 	return 0;
7281 }
7282 
7283 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7284 				  u32 *msgbuf, u32 vf)
7285 {
7286 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7287 	u16 *hash_list = (u16 *)&msgbuf[1];
7288 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7289 	int i;
7290 
7291 	/* salt away the number of multicast addresses assigned
7292 	 * to this VF for later use to restore when the PF multi cast
7293 	 * list changes
7294 	 */
7295 	vf_data->num_vf_mc_hashes = n;
7296 
7297 	/* only up to 30 hash values supported */
7298 	if (n > 30)
7299 		n = 30;
7300 
7301 	/* store the hashes for later use */
7302 	for (i = 0; i < n; i++)
7303 		vf_data->vf_mc_hashes[i] = hash_list[i];
7304 
7305 	/* Flush and reset the mta with the new values */
7306 	igb_set_rx_mode(adapter->netdev);
7307 
7308 	return 0;
7309 }
7310 
7311 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7312 {
7313 	struct e1000_hw *hw = &adapter->hw;
7314 	struct vf_data_storage *vf_data;
7315 	int i, j;
7316 
7317 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7318 		u32 vmolr = rd32(E1000_VMOLR(i));
7319 
7320 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7321 
7322 		vf_data = &adapter->vf_data[i];
7323 
7324 		if ((vf_data->num_vf_mc_hashes > 30) ||
7325 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7326 			vmolr |= E1000_VMOLR_MPME;
7327 		} else if (vf_data->num_vf_mc_hashes) {
7328 			vmolr |= E1000_VMOLR_ROMPE;
7329 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7330 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7331 		}
7332 		wr32(E1000_VMOLR(i), vmolr);
7333 	}
7334 }
7335 
7336 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7337 {
7338 	struct e1000_hw *hw = &adapter->hw;
7339 	u32 pool_mask, vlvf_mask, i;
7340 
7341 	/* create mask for VF and other pools */
7342 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7343 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7344 
7345 	/* drop PF from pool bits */
7346 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7347 			     adapter->vfs_allocated_count);
7348 
7349 	/* Find the vlan filter for this id */
7350 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7351 		u32 vlvf = rd32(E1000_VLVF(i));
7352 		u32 vfta_mask, vid, vfta;
7353 
7354 		/* remove the vf from the pool */
7355 		if (!(vlvf & vlvf_mask))
7356 			continue;
7357 
7358 		/* clear out bit from VLVF */
7359 		vlvf ^= vlvf_mask;
7360 
7361 		/* if other pools are present, just remove ourselves */
7362 		if (vlvf & pool_mask)
7363 			goto update_vlvfb;
7364 
7365 		/* if PF is present, leave VFTA */
7366 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7367 			goto update_vlvf;
7368 
7369 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7370 		vfta_mask = BIT(vid % 32);
7371 
7372 		/* clear bit from VFTA */
7373 		vfta = adapter->shadow_vfta[vid / 32];
7374 		if (vfta & vfta_mask)
7375 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7376 update_vlvf:
7377 		/* clear pool selection enable */
7378 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7379 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7380 		else
7381 			vlvf = 0;
7382 update_vlvfb:
7383 		/* clear pool bits */
7384 		wr32(E1000_VLVF(i), vlvf);
7385 	}
7386 }
7387 
7388 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7389 {
7390 	u32 vlvf;
7391 	int idx;
7392 
7393 	/* short cut the special case */
7394 	if (vlan == 0)
7395 		return 0;
7396 
7397 	/* Search for the VLAN id in the VLVF entries */
7398 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7399 		vlvf = rd32(E1000_VLVF(idx));
7400 		if ((vlvf & VLAN_VID_MASK) == vlan)
7401 			break;
7402 	}
7403 
7404 	return idx;
7405 }
7406 
7407 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7408 {
7409 	struct e1000_hw *hw = &adapter->hw;
7410 	u32 bits, pf_id;
7411 	int idx;
7412 
7413 	idx = igb_find_vlvf_entry(hw, vid);
7414 	if (!idx)
7415 		return;
7416 
7417 	/* See if any other pools are set for this VLAN filter
7418 	 * entry other than the PF.
7419 	 */
7420 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7421 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7422 	bits &= rd32(E1000_VLVF(idx));
7423 
7424 	/* Disable the filter so this falls into the default pool. */
7425 	if (!bits) {
7426 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7427 			wr32(E1000_VLVF(idx), BIT(pf_id));
7428 		else
7429 			wr32(E1000_VLVF(idx), 0);
7430 	}
7431 }
7432 
7433 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7434 			   bool add, u32 vf)
7435 {
7436 	int pf_id = adapter->vfs_allocated_count;
7437 	struct e1000_hw *hw = &adapter->hw;
7438 	int err;
7439 
7440 	/* If VLAN overlaps with one the PF is currently monitoring make
7441 	 * sure that we are able to allocate a VLVF entry.  This may be
7442 	 * redundant but it guarantees PF will maintain visibility to
7443 	 * the VLAN.
7444 	 */
7445 	if (add && test_bit(vid, adapter->active_vlans)) {
7446 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7447 		if (err)
7448 			return err;
7449 	}
7450 
7451 	err = igb_vfta_set(hw, vid, vf, add, false);
7452 
7453 	if (add && !err)
7454 		return err;
7455 
7456 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7457 	 * we may need to drop the PF pool bit in order to allow us to free
7458 	 * up the VLVF resources.
7459 	 */
7460 	if (test_bit(vid, adapter->active_vlans) ||
7461 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7462 		igb_update_pf_vlvf(adapter, vid);
7463 
7464 	return err;
7465 }
7466 
7467 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7468 {
7469 	struct e1000_hw *hw = &adapter->hw;
7470 
7471 	if (vid)
7472 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7473 	else
7474 		wr32(E1000_VMVIR(vf), 0);
7475 }
7476 
7477 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7478 				u16 vlan, u8 qos)
7479 {
7480 	int err;
7481 
7482 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7483 	if (err)
7484 		return err;
7485 
7486 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7487 	igb_set_vmolr(adapter, vf, !vlan);
7488 
7489 	/* revoke access to previous VLAN */
7490 	if (vlan != adapter->vf_data[vf].pf_vlan)
7491 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7492 				false, vf);
7493 
7494 	adapter->vf_data[vf].pf_vlan = vlan;
7495 	adapter->vf_data[vf].pf_qos = qos;
7496 	igb_set_vf_vlan_strip(adapter, vf, true);
7497 	dev_info(&adapter->pdev->dev,
7498 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7499 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7500 		dev_warn(&adapter->pdev->dev,
7501 			 "The VF VLAN has been set, but the PF device is not up.\n");
7502 		dev_warn(&adapter->pdev->dev,
7503 			 "Bring the PF device up before attempting to use the VF device.\n");
7504 	}
7505 
7506 	return err;
7507 }
7508 
7509 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7510 {
7511 	/* Restore tagless access via VLAN 0 */
7512 	igb_set_vf_vlan(adapter, 0, true, vf);
7513 
7514 	igb_set_vmvir(adapter, 0, vf);
7515 	igb_set_vmolr(adapter, vf, true);
7516 
7517 	/* Remove any PF assigned VLAN */
7518 	if (adapter->vf_data[vf].pf_vlan)
7519 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7520 				false, vf);
7521 
7522 	adapter->vf_data[vf].pf_vlan = 0;
7523 	adapter->vf_data[vf].pf_qos = 0;
7524 	igb_set_vf_vlan_strip(adapter, vf, false);
7525 
7526 	return 0;
7527 }
7528 
7529 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7530 			       u16 vlan, u8 qos, __be16 vlan_proto)
7531 {
7532 	struct igb_adapter *adapter = netdev_priv(netdev);
7533 
7534 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7535 		return -EINVAL;
7536 
7537 	if (vlan_proto != htons(ETH_P_8021Q))
7538 		return -EPROTONOSUPPORT;
7539 
7540 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7541 			       igb_disable_port_vlan(adapter, vf);
7542 }
7543 
7544 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7545 {
7546 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7547 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7548 	int ret;
7549 
7550 	if (adapter->vf_data[vf].pf_vlan)
7551 		return -1;
7552 
7553 	/* VLAN 0 is a special case, don't allow it to be removed */
7554 	if (!vid && !add)
7555 		return 0;
7556 
7557 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7558 	if (!ret)
7559 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7560 	return ret;
7561 }
7562 
7563 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7564 {
7565 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7566 
7567 	/* clear flags - except flag that indicates PF has set the MAC */
7568 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7569 	vf_data->last_nack = jiffies;
7570 
7571 	/* reset vlans for device */
7572 	igb_clear_vf_vfta(adapter, vf);
7573 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7574 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7575 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7576 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7577 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7578 
7579 	/* reset multicast table array for vf */
7580 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7581 
7582 	/* Flush and reset the mta with the new values */
7583 	igb_set_rx_mode(adapter->netdev);
7584 }
7585 
7586 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7587 {
7588 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7589 
7590 	/* clear mac address as we were hotplug removed/added */
7591 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7592 		eth_zero_addr(vf_mac);
7593 
7594 	/* process remaining reset events */
7595 	igb_vf_reset(adapter, vf);
7596 }
7597 
7598 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7599 {
7600 	struct e1000_hw *hw = &adapter->hw;
7601 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7602 	u32 reg, msgbuf[3] = {};
7603 	u8 *addr = (u8 *)(&msgbuf[1]);
7604 
7605 	/* process all the same items cleared in a function level reset */
7606 	igb_vf_reset(adapter, vf);
7607 
7608 	/* set vf mac address */
7609 	igb_set_vf_mac(adapter, vf, vf_mac);
7610 
7611 	/* enable transmit and receive for vf */
7612 	reg = rd32(E1000_VFTE);
7613 	wr32(E1000_VFTE, reg | BIT(vf));
7614 	reg = rd32(E1000_VFRE);
7615 	wr32(E1000_VFRE, reg | BIT(vf));
7616 
7617 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7618 
7619 	/* reply to reset with ack and vf mac address */
7620 	if (!is_zero_ether_addr(vf_mac)) {
7621 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7622 		memcpy(addr, vf_mac, ETH_ALEN);
7623 	} else {
7624 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7625 	}
7626 	igb_write_mbx(hw, msgbuf, 3, vf);
7627 }
7628 
7629 static void igb_flush_mac_table(struct igb_adapter *adapter)
7630 {
7631 	struct e1000_hw *hw = &adapter->hw;
7632 	int i;
7633 
7634 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7635 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7636 		eth_zero_addr(adapter->mac_table[i].addr);
7637 		adapter->mac_table[i].queue = 0;
7638 		igb_rar_set_index(adapter, i);
7639 	}
7640 }
7641 
7642 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7643 {
7644 	struct e1000_hw *hw = &adapter->hw;
7645 	/* do not count rar entries reserved for VFs MAC addresses */
7646 	int rar_entries = hw->mac.rar_entry_count -
7647 			  adapter->vfs_allocated_count;
7648 	int i, count = 0;
7649 
7650 	for (i = 0; i < rar_entries; i++) {
7651 		/* do not count default entries */
7652 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7653 			continue;
7654 
7655 		/* do not count "in use" entries for different queues */
7656 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7657 		    (adapter->mac_table[i].queue != queue))
7658 			continue;
7659 
7660 		count++;
7661 	}
7662 
7663 	return count;
7664 }
7665 
7666 /* Set default MAC address for the PF in the first RAR entry */
7667 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7668 {
7669 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7670 
7671 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7672 	mac_table->queue = adapter->vfs_allocated_count;
7673 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7674 
7675 	igb_rar_set_index(adapter, 0);
7676 }
7677 
7678 /* If the filter to be added and an already existing filter express
7679  * the same address and address type, it should be possible to only
7680  * override the other configurations, for example the queue to steer
7681  * traffic.
7682  */
7683 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7684 				      const u8 *addr, const u8 flags)
7685 {
7686 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7687 		return true;
7688 
7689 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7690 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7691 		return false;
7692 
7693 	if (!ether_addr_equal(addr, entry->addr))
7694 		return false;
7695 
7696 	return true;
7697 }
7698 
7699 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7700  * 'flags' is used to indicate what kind of match is made, match is by
7701  * default for the destination address, if matching by source address
7702  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7703  */
7704 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7705 				    const u8 *addr, const u8 queue,
7706 				    const u8 flags)
7707 {
7708 	struct e1000_hw *hw = &adapter->hw;
7709 	int rar_entries = hw->mac.rar_entry_count -
7710 			  adapter->vfs_allocated_count;
7711 	int i;
7712 
7713 	if (is_zero_ether_addr(addr))
7714 		return -EINVAL;
7715 
7716 	/* Search for the first empty entry in the MAC table.
7717 	 * Do not touch entries at the end of the table reserved for the VF MAC
7718 	 * addresses.
7719 	 */
7720 	for (i = 0; i < rar_entries; i++) {
7721 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7722 					       addr, flags))
7723 			continue;
7724 
7725 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7726 		adapter->mac_table[i].queue = queue;
7727 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7728 
7729 		igb_rar_set_index(adapter, i);
7730 		return i;
7731 	}
7732 
7733 	return -ENOSPC;
7734 }
7735 
7736 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7737 			      const u8 queue)
7738 {
7739 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7740 }
7741 
7742 /* Remove a MAC filter for 'addr' directing matching traffic to
7743  * 'queue', 'flags' is used to indicate what kind of match need to be
7744  * removed, match is by default for the destination address, if
7745  * matching by source address is to be removed the flag
7746  * IGB_MAC_STATE_SRC_ADDR can be used.
7747  */
7748 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7749 				    const u8 *addr, const u8 queue,
7750 				    const u8 flags)
7751 {
7752 	struct e1000_hw *hw = &adapter->hw;
7753 	int rar_entries = hw->mac.rar_entry_count -
7754 			  adapter->vfs_allocated_count;
7755 	int i;
7756 
7757 	if (is_zero_ether_addr(addr))
7758 		return -EINVAL;
7759 
7760 	/* Search for matching entry in the MAC table based on given address
7761 	 * and queue. Do not touch entries at the end of the table reserved
7762 	 * for the VF MAC addresses.
7763 	 */
7764 	for (i = 0; i < rar_entries; i++) {
7765 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7766 			continue;
7767 		if ((adapter->mac_table[i].state & flags) != flags)
7768 			continue;
7769 		if (adapter->mac_table[i].queue != queue)
7770 			continue;
7771 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7772 			continue;
7773 
7774 		/* When a filter for the default address is "deleted",
7775 		 * we return it to its initial configuration
7776 		 */
7777 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7778 			adapter->mac_table[i].state =
7779 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7780 			adapter->mac_table[i].queue =
7781 				adapter->vfs_allocated_count;
7782 		} else {
7783 			adapter->mac_table[i].state = 0;
7784 			adapter->mac_table[i].queue = 0;
7785 			eth_zero_addr(adapter->mac_table[i].addr);
7786 		}
7787 
7788 		igb_rar_set_index(adapter, i);
7789 		return 0;
7790 	}
7791 
7792 	return -ENOENT;
7793 }
7794 
7795 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7796 			      const u8 queue)
7797 {
7798 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7799 }
7800 
7801 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7802 				const u8 *addr, u8 queue, u8 flags)
7803 {
7804 	struct e1000_hw *hw = &adapter->hw;
7805 
7806 	/* In theory, this should be supported on 82575 as well, but
7807 	 * that part wasn't easily accessible during development.
7808 	 */
7809 	if (hw->mac.type != e1000_i210)
7810 		return -EOPNOTSUPP;
7811 
7812 	return igb_add_mac_filter_flags(adapter, addr, queue,
7813 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7814 }
7815 
7816 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7817 				const u8 *addr, u8 queue, u8 flags)
7818 {
7819 	return igb_del_mac_filter_flags(adapter, addr, queue,
7820 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7821 }
7822 
7823 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7824 {
7825 	struct igb_adapter *adapter = netdev_priv(netdev);
7826 	int ret;
7827 
7828 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7829 
7830 	return min_t(int, ret, 0);
7831 }
7832 
7833 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7834 {
7835 	struct igb_adapter *adapter = netdev_priv(netdev);
7836 
7837 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7838 
7839 	return 0;
7840 }
7841 
7842 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7843 				 const u32 info, const u8 *addr)
7844 {
7845 	struct pci_dev *pdev = adapter->pdev;
7846 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7847 	struct list_head *pos;
7848 	struct vf_mac_filter *entry = NULL;
7849 	int ret = 0;
7850 
7851 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7852 	    !vf_data->trusted) {
7853 		dev_warn(&pdev->dev,
7854 			 "VF %d requested MAC filter but is administratively denied\n",
7855 			  vf);
7856 		return -EINVAL;
7857 	}
7858 	if (!is_valid_ether_addr(addr)) {
7859 		dev_warn(&pdev->dev,
7860 			 "VF %d attempted to set invalid MAC filter\n",
7861 			  vf);
7862 		return -EINVAL;
7863 	}
7864 
7865 	switch (info) {
7866 	case E1000_VF_MAC_FILTER_CLR:
7867 		/* remove all unicast MAC filters related to the current VF */
7868 		list_for_each(pos, &adapter->vf_macs.l) {
7869 			entry = list_entry(pos, struct vf_mac_filter, l);
7870 			if (entry->vf == vf) {
7871 				entry->vf = -1;
7872 				entry->free = true;
7873 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7874 			}
7875 		}
7876 		break;
7877 	case E1000_VF_MAC_FILTER_ADD:
7878 		/* try to find empty slot in the list */
7879 		list_for_each(pos, &adapter->vf_macs.l) {
7880 			entry = list_entry(pos, struct vf_mac_filter, l);
7881 			if (entry->free)
7882 				break;
7883 		}
7884 
7885 		if (entry && entry->free) {
7886 			entry->free = false;
7887 			entry->vf = vf;
7888 			ether_addr_copy(entry->vf_mac, addr);
7889 
7890 			ret = igb_add_mac_filter(adapter, addr, vf);
7891 			ret = min_t(int, ret, 0);
7892 		} else {
7893 			ret = -ENOSPC;
7894 		}
7895 
7896 		if (ret == -ENOSPC)
7897 			dev_warn(&pdev->dev,
7898 				 "VF %d has requested MAC filter but there is no space for it\n",
7899 				 vf);
7900 		break;
7901 	default:
7902 		ret = -EINVAL;
7903 		break;
7904 	}
7905 
7906 	return ret;
7907 }
7908 
7909 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7910 {
7911 	struct pci_dev *pdev = adapter->pdev;
7912 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7913 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7914 
7915 	/* The VF MAC Address is stored in a packed array of bytes
7916 	 * starting at the second 32 bit word of the msg array
7917 	 */
7918 	unsigned char *addr = (unsigned char *)&msg[1];
7919 	int ret = 0;
7920 
7921 	if (!info) {
7922 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7923 		    !vf_data->trusted) {
7924 			dev_warn(&pdev->dev,
7925 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7926 				 vf);
7927 			return -EINVAL;
7928 		}
7929 
7930 		if (!is_valid_ether_addr(addr)) {
7931 			dev_warn(&pdev->dev,
7932 				 "VF %d attempted to set invalid MAC\n",
7933 				 vf);
7934 			return -EINVAL;
7935 		}
7936 
7937 		ret = igb_set_vf_mac(adapter, vf, addr);
7938 	} else {
7939 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7940 	}
7941 
7942 	return ret;
7943 }
7944 
7945 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7946 {
7947 	struct e1000_hw *hw = &adapter->hw;
7948 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7949 	u32 msg = E1000_VT_MSGTYPE_NACK;
7950 
7951 	/* if device isn't clear to send it shouldn't be reading either */
7952 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7953 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7954 		igb_write_mbx(hw, &msg, 1, vf);
7955 		vf_data->last_nack = jiffies;
7956 	}
7957 }
7958 
7959 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7960 {
7961 	struct pci_dev *pdev = adapter->pdev;
7962 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7963 	struct e1000_hw *hw = &adapter->hw;
7964 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7965 	s32 retval;
7966 
7967 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7968 
7969 	if (retval) {
7970 		/* if receive failed revoke VF CTS stats and restart init */
7971 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7972 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7973 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7974 			goto unlock;
7975 		goto out;
7976 	}
7977 
7978 	/* this is a message we already processed, do nothing */
7979 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7980 		goto unlock;
7981 
7982 	/* until the vf completes a reset it should not be
7983 	 * allowed to start any configuration.
7984 	 */
7985 	if (msgbuf[0] == E1000_VF_RESET) {
7986 		/* unlocks mailbox */
7987 		igb_vf_reset_msg(adapter, vf);
7988 		return;
7989 	}
7990 
7991 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7992 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7993 			goto unlock;
7994 		retval = -1;
7995 		goto out;
7996 	}
7997 
7998 	switch ((msgbuf[0] & 0xFFFF)) {
7999 	case E1000_VF_SET_MAC_ADDR:
8000 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8001 		break;
8002 	case E1000_VF_SET_PROMISC:
8003 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8004 		break;
8005 	case E1000_VF_SET_MULTICAST:
8006 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8007 		break;
8008 	case E1000_VF_SET_LPE:
8009 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8010 		break;
8011 	case E1000_VF_SET_VLAN:
8012 		retval = -1;
8013 		if (vf_data->pf_vlan)
8014 			dev_warn(&pdev->dev,
8015 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8016 				 vf);
8017 		else
8018 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8019 		break;
8020 	default:
8021 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8022 		retval = -1;
8023 		break;
8024 	}
8025 
8026 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8027 out:
8028 	/* notify the VF of the results of what it sent us */
8029 	if (retval)
8030 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8031 	else
8032 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8033 
8034 	/* unlocks mailbox */
8035 	igb_write_mbx(hw, msgbuf, 1, vf);
8036 	return;
8037 
8038 unlock:
8039 	igb_unlock_mbx(hw, vf);
8040 }
8041 
8042 static void igb_msg_task(struct igb_adapter *adapter)
8043 {
8044 	struct e1000_hw *hw = &adapter->hw;
8045 	unsigned long flags;
8046 	u32 vf;
8047 
8048 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8049 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8050 		/* process any reset requests */
8051 		if (!igb_check_for_rst(hw, vf))
8052 			igb_vf_reset_event(adapter, vf);
8053 
8054 		/* process any messages pending */
8055 		if (!igb_check_for_msg(hw, vf))
8056 			igb_rcv_msg_from_vf(adapter, vf);
8057 
8058 		/* process any acks */
8059 		if (!igb_check_for_ack(hw, vf))
8060 			igb_rcv_ack_from_vf(adapter, vf);
8061 	}
8062 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8063 }
8064 
8065 /**
8066  *  igb_set_uta - Set unicast filter table address
8067  *  @adapter: board private structure
8068  *  @set: boolean indicating if we are setting or clearing bits
8069  *
8070  *  The unicast table address is a register array of 32-bit registers.
8071  *  The table is meant to be used in a way similar to how the MTA is used
8072  *  however due to certain limitations in the hardware it is necessary to
8073  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8074  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8075  **/
8076 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8077 {
8078 	struct e1000_hw *hw = &adapter->hw;
8079 	u32 uta = set ? ~0 : 0;
8080 	int i;
8081 
8082 	/* we only need to do this if VMDq is enabled */
8083 	if (!adapter->vfs_allocated_count)
8084 		return;
8085 
8086 	for (i = hw->mac.uta_reg_count; i--;)
8087 		array_wr32(E1000_UTA, i, uta);
8088 }
8089 
8090 /**
8091  *  igb_intr_msi - Interrupt Handler
8092  *  @irq: interrupt number
8093  *  @data: pointer to a network interface device structure
8094  **/
8095 static irqreturn_t igb_intr_msi(int irq, void *data)
8096 {
8097 	struct igb_adapter *adapter = data;
8098 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8099 	struct e1000_hw *hw = &adapter->hw;
8100 	/* read ICR disables interrupts using IAM */
8101 	u32 icr = rd32(E1000_ICR);
8102 
8103 	igb_write_itr(q_vector);
8104 
8105 	if (icr & E1000_ICR_DRSTA)
8106 		schedule_work(&adapter->reset_task);
8107 
8108 	if (icr & E1000_ICR_DOUTSYNC) {
8109 		/* HW is reporting DMA is out of sync */
8110 		adapter->stats.doosync++;
8111 	}
8112 
8113 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8114 		hw->mac.get_link_status = 1;
8115 		if (!test_bit(__IGB_DOWN, &adapter->state))
8116 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8117 	}
8118 
8119 	if (icr & E1000_ICR_TS)
8120 		igb_tsync_interrupt(adapter);
8121 
8122 	napi_schedule(&q_vector->napi);
8123 
8124 	return IRQ_HANDLED;
8125 }
8126 
8127 /**
8128  *  igb_intr - Legacy Interrupt Handler
8129  *  @irq: interrupt number
8130  *  @data: pointer to a network interface device structure
8131  **/
8132 static irqreturn_t igb_intr(int irq, void *data)
8133 {
8134 	struct igb_adapter *adapter = data;
8135 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8136 	struct e1000_hw *hw = &adapter->hw;
8137 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8138 	 * need for the IMC write
8139 	 */
8140 	u32 icr = rd32(E1000_ICR);
8141 
8142 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8143 	 * not set, then the adapter didn't send an interrupt
8144 	 */
8145 	if (!(icr & E1000_ICR_INT_ASSERTED))
8146 		return IRQ_NONE;
8147 
8148 	igb_write_itr(q_vector);
8149 
8150 	if (icr & E1000_ICR_DRSTA)
8151 		schedule_work(&adapter->reset_task);
8152 
8153 	if (icr & E1000_ICR_DOUTSYNC) {
8154 		/* HW is reporting DMA is out of sync */
8155 		adapter->stats.doosync++;
8156 	}
8157 
8158 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8159 		hw->mac.get_link_status = 1;
8160 		/* guard against interrupt when we're going down */
8161 		if (!test_bit(__IGB_DOWN, &adapter->state))
8162 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8163 	}
8164 
8165 	if (icr & E1000_ICR_TS)
8166 		igb_tsync_interrupt(adapter);
8167 
8168 	napi_schedule(&q_vector->napi);
8169 
8170 	return IRQ_HANDLED;
8171 }
8172 
8173 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8174 {
8175 	struct igb_adapter *adapter = q_vector->adapter;
8176 	struct e1000_hw *hw = &adapter->hw;
8177 
8178 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8179 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8180 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8181 			igb_set_itr(q_vector);
8182 		else
8183 			igb_update_ring_itr(q_vector);
8184 	}
8185 
8186 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8187 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8188 			wr32(E1000_EIMS, q_vector->eims_value);
8189 		else
8190 			igb_irq_enable(adapter);
8191 	}
8192 }
8193 
8194 /**
8195  *  igb_poll - NAPI Rx polling callback
8196  *  @napi: napi polling structure
8197  *  @budget: count of how many packets we should handle
8198  **/
8199 static int igb_poll(struct napi_struct *napi, int budget)
8200 {
8201 	struct igb_q_vector *q_vector = container_of(napi,
8202 						     struct igb_q_vector,
8203 						     napi);
8204 	bool clean_complete = true;
8205 	int work_done = 0;
8206 
8207 #ifdef CONFIG_IGB_DCA
8208 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8209 		igb_update_dca(q_vector);
8210 #endif
8211 	if (q_vector->tx.ring)
8212 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8213 
8214 	if (q_vector->rx.ring) {
8215 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8216 
8217 		work_done += cleaned;
8218 		if (cleaned >= budget)
8219 			clean_complete = false;
8220 	}
8221 
8222 	/* If all work not completed, return budget and keep polling */
8223 	if (!clean_complete)
8224 		return budget;
8225 
8226 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8227 	 * poll us due to busy-polling
8228 	 */
8229 	if (likely(napi_complete_done(napi, work_done)))
8230 		igb_ring_irq_enable(q_vector);
8231 
8232 	return work_done;
8233 }
8234 
8235 /**
8236  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8237  *  @q_vector: pointer to q_vector containing needed info
8238  *  @napi_budget: Used to determine if we are in netpoll
8239  *
8240  *  returns true if ring is completely cleaned
8241  **/
8242 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8243 {
8244 	struct igb_adapter *adapter = q_vector->adapter;
8245 	struct igb_ring *tx_ring = q_vector->tx.ring;
8246 	struct igb_tx_buffer *tx_buffer;
8247 	union e1000_adv_tx_desc *tx_desc;
8248 	unsigned int total_bytes = 0, total_packets = 0;
8249 	unsigned int budget = q_vector->tx.work_limit;
8250 	unsigned int i = tx_ring->next_to_clean;
8251 
8252 	if (test_bit(__IGB_DOWN, &adapter->state))
8253 		return true;
8254 
8255 	tx_buffer = &tx_ring->tx_buffer_info[i];
8256 	tx_desc = IGB_TX_DESC(tx_ring, i);
8257 	i -= tx_ring->count;
8258 
8259 	do {
8260 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8261 
8262 		/* if next_to_watch is not set then there is no work pending */
8263 		if (!eop_desc)
8264 			break;
8265 
8266 		/* prevent any other reads prior to eop_desc */
8267 		smp_rmb();
8268 
8269 		/* if DD is not set pending work has not been completed */
8270 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8271 			break;
8272 
8273 		/* clear next_to_watch to prevent false hangs */
8274 		tx_buffer->next_to_watch = NULL;
8275 
8276 		/* update the statistics for this packet */
8277 		total_bytes += tx_buffer->bytecount;
8278 		total_packets += tx_buffer->gso_segs;
8279 
8280 		/* free the skb */
8281 		if (tx_buffer->type == IGB_TYPE_SKB)
8282 			napi_consume_skb(tx_buffer->skb, napi_budget);
8283 		else
8284 			xdp_return_frame(tx_buffer->xdpf);
8285 
8286 		/* unmap skb header data */
8287 		dma_unmap_single(tx_ring->dev,
8288 				 dma_unmap_addr(tx_buffer, dma),
8289 				 dma_unmap_len(tx_buffer, len),
8290 				 DMA_TO_DEVICE);
8291 
8292 		/* clear tx_buffer data */
8293 		dma_unmap_len_set(tx_buffer, len, 0);
8294 
8295 		/* clear last DMA location and unmap remaining buffers */
8296 		while (tx_desc != eop_desc) {
8297 			tx_buffer++;
8298 			tx_desc++;
8299 			i++;
8300 			if (unlikely(!i)) {
8301 				i -= tx_ring->count;
8302 				tx_buffer = tx_ring->tx_buffer_info;
8303 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8304 			}
8305 
8306 			/* unmap any remaining paged data */
8307 			if (dma_unmap_len(tx_buffer, len)) {
8308 				dma_unmap_page(tx_ring->dev,
8309 					       dma_unmap_addr(tx_buffer, dma),
8310 					       dma_unmap_len(tx_buffer, len),
8311 					       DMA_TO_DEVICE);
8312 				dma_unmap_len_set(tx_buffer, len, 0);
8313 			}
8314 		}
8315 
8316 		/* move us one more past the eop_desc for start of next pkt */
8317 		tx_buffer++;
8318 		tx_desc++;
8319 		i++;
8320 		if (unlikely(!i)) {
8321 			i -= tx_ring->count;
8322 			tx_buffer = tx_ring->tx_buffer_info;
8323 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8324 		}
8325 
8326 		/* issue prefetch for next Tx descriptor */
8327 		prefetch(tx_desc);
8328 
8329 		/* update budget accounting */
8330 		budget--;
8331 	} while (likely(budget));
8332 
8333 	netdev_tx_completed_queue(txring_txq(tx_ring),
8334 				  total_packets, total_bytes);
8335 	i += tx_ring->count;
8336 	tx_ring->next_to_clean = i;
8337 	u64_stats_update_begin(&tx_ring->tx_syncp);
8338 	tx_ring->tx_stats.bytes += total_bytes;
8339 	tx_ring->tx_stats.packets += total_packets;
8340 	u64_stats_update_end(&tx_ring->tx_syncp);
8341 	q_vector->tx.total_bytes += total_bytes;
8342 	q_vector->tx.total_packets += total_packets;
8343 
8344 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8345 		struct e1000_hw *hw = &adapter->hw;
8346 
8347 		/* Detect a transmit hang in hardware, this serializes the
8348 		 * check with the clearing of time_stamp and movement of i
8349 		 */
8350 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8351 		if (tx_buffer->next_to_watch &&
8352 		    time_after(jiffies, tx_buffer->time_stamp +
8353 			       (adapter->tx_timeout_factor * HZ)) &&
8354 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8355 
8356 			/* detected Tx unit hang */
8357 			dev_err(tx_ring->dev,
8358 				"Detected Tx Unit Hang\n"
8359 				"  Tx Queue             <%d>\n"
8360 				"  TDH                  <%x>\n"
8361 				"  TDT                  <%x>\n"
8362 				"  next_to_use          <%x>\n"
8363 				"  next_to_clean        <%x>\n"
8364 				"buffer_info[next_to_clean]\n"
8365 				"  time_stamp           <%lx>\n"
8366 				"  next_to_watch        <%p>\n"
8367 				"  jiffies              <%lx>\n"
8368 				"  desc.status          <%x>\n",
8369 				tx_ring->queue_index,
8370 				rd32(E1000_TDH(tx_ring->reg_idx)),
8371 				readl(tx_ring->tail),
8372 				tx_ring->next_to_use,
8373 				tx_ring->next_to_clean,
8374 				tx_buffer->time_stamp,
8375 				tx_buffer->next_to_watch,
8376 				jiffies,
8377 				tx_buffer->next_to_watch->wb.status);
8378 			netif_stop_subqueue(tx_ring->netdev,
8379 					    tx_ring->queue_index);
8380 
8381 			/* we are about to reset, no point in enabling stuff */
8382 			return true;
8383 		}
8384 	}
8385 
8386 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8387 	if (unlikely(total_packets &&
8388 	    netif_carrier_ok(tx_ring->netdev) &&
8389 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8390 		/* Make sure that anybody stopping the queue after this
8391 		 * sees the new next_to_clean.
8392 		 */
8393 		smp_mb();
8394 		if (__netif_subqueue_stopped(tx_ring->netdev,
8395 					     tx_ring->queue_index) &&
8396 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8397 			netif_wake_subqueue(tx_ring->netdev,
8398 					    tx_ring->queue_index);
8399 
8400 			u64_stats_update_begin(&tx_ring->tx_syncp);
8401 			tx_ring->tx_stats.restart_queue++;
8402 			u64_stats_update_end(&tx_ring->tx_syncp);
8403 		}
8404 	}
8405 
8406 	return !!budget;
8407 }
8408 
8409 /**
8410  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8411  *  @rx_ring: rx descriptor ring to store buffers on
8412  *  @old_buff: donor buffer to have page reused
8413  *
8414  *  Synchronizes page for reuse by the adapter
8415  **/
8416 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8417 			      struct igb_rx_buffer *old_buff)
8418 {
8419 	struct igb_rx_buffer *new_buff;
8420 	u16 nta = rx_ring->next_to_alloc;
8421 
8422 	new_buff = &rx_ring->rx_buffer_info[nta];
8423 
8424 	/* update, and store next to alloc */
8425 	nta++;
8426 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8427 
8428 	/* Transfer page from old buffer to new buffer.
8429 	 * Move each member individually to avoid possible store
8430 	 * forwarding stalls.
8431 	 */
8432 	new_buff->dma		= old_buff->dma;
8433 	new_buff->page		= old_buff->page;
8434 	new_buff->page_offset	= old_buff->page_offset;
8435 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8436 }
8437 
8438 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8439 				  int rx_buf_pgcnt)
8440 {
8441 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8442 	struct page *page = rx_buffer->page;
8443 
8444 	/* avoid re-using remote and pfmemalloc pages */
8445 	if (!dev_page_is_reusable(page))
8446 		return false;
8447 
8448 #if (PAGE_SIZE < 8192)
8449 	/* if we are only owner of page we can reuse it */
8450 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8451 		return false;
8452 #else
8453 #define IGB_LAST_OFFSET \
8454 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8455 
8456 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8457 		return false;
8458 #endif
8459 
8460 	/* If we have drained the page fragment pool we need to update
8461 	 * the pagecnt_bias and page count so that we fully restock the
8462 	 * number of references the driver holds.
8463 	 */
8464 	if (unlikely(pagecnt_bias == 1)) {
8465 		page_ref_add(page, USHRT_MAX - 1);
8466 		rx_buffer->pagecnt_bias = USHRT_MAX;
8467 	}
8468 
8469 	return true;
8470 }
8471 
8472 /**
8473  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8474  *  @rx_ring: rx descriptor ring to transact packets on
8475  *  @rx_buffer: buffer containing page to add
8476  *  @skb: sk_buff to place the data into
8477  *  @size: size of buffer to be added
8478  *
8479  *  This function will add the data contained in rx_buffer->page to the skb.
8480  **/
8481 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8482 			    struct igb_rx_buffer *rx_buffer,
8483 			    struct sk_buff *skb,
8484 			    unsigned int size)
8485 {
8486 #if (PAGE_SIZE < 8192)
8487 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8488 #else
8489 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8490 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8491 				SKB_DATA_ALIGN(size);
8492 #endif
8493 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8494 			rx_buffer->page_offset, size, truesize);
8495 #if (PAGE_SIZE < 8192)
8496 	rx_buffer->page_offset ^= truesize;
8497 #else
8498 	rx_buffer->page_offset += truesize;
8499 #endif
8500 }
8501 
8502 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8503 					 struct igb_rx_buffer *rx_buffer,
8504 					 struct xdp_buff *xdp,
8505 					 ktime_t timestamp)
8506 {
8507 #if (PAGE_SIZE < 8192)
8508 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8509 #else
8510 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8511 					       xdp->data_hard_start);
8512 #endif
8513 	unsigned int size = xdp->data_end - xdp->data;
8514 	unsigned int headlen;
8515 	struct sk_buff *skb;
8516 
8517 	/* prefetch first cache line of first page */
8518 	net_prefetch(xdp->data);
8519 
8520 	/* allocate a skb to store the frags */
8521 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8522 	if (unlikely(!skb))
8523 		return NULL;
8524 
8525 	if (timestamp)
8526 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8527 
8528 	/* Determine available headroom for copy */
8529 	headlen = size;
8530 	if (headlen > IGB_RX_HDR_LEN)
8531 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8532 
8533 	/* align pull length to size of long to optimize memcpy performance */
8534 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8535 
8536 	/* update all of the pointers */
8537 	size -= headlen;
8538 	if (size) {
8539 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8540 				(xdp->data + headlen) - page_address(rx_buffer->page),
8541 				size, truesize);
8542 #if (PAGE_SIZE < 8192)
8543 		rx_buffer->page_offset ^= truesize;
8544 #else
8545 		rx_buffer->page_offset += truesize;
8546 #endif
8547 	} else {
8548 		rx_buffer->pagecnt_bias++;
8549 	}
8550 
8551 	return skb;
8552 }
8553 
8554 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8555 				     struct igb_rx_buffer *rx_buffer,
8556 				     struct xdp_buff *xdp,
8557 				     ktime_t timestamp)
8558 {
8559 #if (PAGE_SIZE < 8192)
8560 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8561 #else
8562 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8563 				SKB_DATA_ALIGN(xdp->data_end -
8564 					       xdp->data_hard_start);
8565 #endif
8566 	unsigned int metasize = xdp->data - xdp->data_meta;
8567 	struct sk_buff *skb;
8568 
8569 	/* prefetch first cache line of first page */
8570 	net_prefetch(xdp->data_meta);
8571 
8572 	/* build an skb around the page buffer */
8573 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8574 	if (unlikely(!skb))
8575 		return NULL;
8576 
8577 	/* update pointers within the skb to store the data */
8578 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8579 	__skb_put(skb, xdp->data_end - xdp->data);
8580 
8581 	if (metasize)
8582 		skb_metadata_set(skb, metasize);
8583 
8584 	if (timestamp)
8585 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8586 
8587 	/* update buffer offset */
8588 #if (PAGE_SIZE < 8192)
8589 	rx_buffer->page_offset ^= truesize;
8590 #else
8591 	rx_buffer->page_offset += truesize;
8592 #endif
8593 
8594 	return skb;
8595 }
8596 
8597 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8598 				   struct igb_ring *rx_ring,
8599 				   struct xdp_buff *xdp)
8600 {
8601 	int err, result = IGB_XDP_PASS;
8602 	struct bpf_prog *xdp_prog;
8603 	u32 act;
8604 
8605 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8606 
8607 	if (!xdp_prog)
8608 		goto xdp_out;
8609 
8610 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8611 
8612 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8613 	switch (act) {
8614 	case XDP_PASS:
8615 		break;
8616 	case XDP_TX:
8617 		result = igb_xdp_xmit_back(adapter, xdp);
8618 		if (result == IGB_XDP_CONSUMED)
8619 			goto out_failure;
8620 		break;
8621 	case XDP_REDIRECT:
8622 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8623 		if (err)
8624 			goto out_failure;
8625 		result = IGB_XDP_REDIR;
8626 		break;
8627 	default:
8628 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8629 		fallthrough;
8630 	case XDP_ABORTED:
8631 out_failure:
8632 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8633 		fallthrough;
8634 	case XDP_DROP:
8635 		result = IGB_XDP_CONSUMED;
8636 		break;
8637 	}
8638 xdp_out:
8639 	return ERR_PTR(-result);
8640 }
8641 
8642 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8643 					  unsigned int size)
8644 {
8645 	unsigned int truesize;
8646 
8647 #if (PAGE_SIZE < 8192)
8648 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8649 #else
8650 	truesize = ring_uses_build_skb(rx_ring) ?
8651 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8652 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8653 		SKB_DATA_ALIGN(size);
8654 #endif
8655 	return truesize;
8656 }
8657 
8658 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8659 			       struct igb_rx_buffer *rx_buffer,
8660 			       unsigned int size)
8661 {
8662 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8663 #if (PAGE_SIZE < 8192)
8664 	rx_buffer->page_offset ^= truesize;
8665 #else
8666 	rx_buffer->page_offset += truesize;
8667 #endif
8668 }
8669 
8670 static inline void igb_rx_checksum(struct igb_ring *ring,
8671 				   union e1000_adv_rx_desc *rx_desc,
8672 				   struct sk_buff *skb)
8673 {
8674 	skb_checksum_none_assert(skb);
8675 
8676 	/* Ignore Checksum bit is set */
8677 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8678 		return;
8679 
8680 	/* Rx checksum disabled via ethtool */
8681 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8682 		return;
8683 
8684 	/* TCP/UDP checksum error bit is set */
8685 	if (igb_test_staterr(rx_desc,
8686 			     E1000_RXDEXT_STATERR_TCPE |
8687 			     E1000_RXDEXT_STATERR_IPE)) {
8688 		/* work around errata with sctp packets where the TCPE aka
8689 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8690 		 * packets, (aka let the stack check the crc32c)
8691 		 */
8692 		if (!((skb->len == 60) &&
8693 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8694 			u64_stats_update_begin(&ring->rx_syncp);
8695 			ring->rx_stats.csum_err++;
8696 			u64_stats_update_end(&ring->rx_syncp);
8697 		}
8698 		/* let the stack verify checksum errors */
8699 		return;
8700 	}
8701 	/* It must be a TCP or UDP packet with a valid checksum */
8702 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8703 				      E1000_RXD_STAT_UDPCS))
8704 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8705 
8706 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8707 		le32_to_cpu(rx_desc->wb.upper.status_error));
8708 }
8709 
8710 static inline void igb_rx_hash(struct igb_ring *ring,
8711 			       union e1000_adv_rx_desc *rx_desc,
8712 			       struct sk_buff *skb)
8713 {
8714 	if (ring->netdev->features & NETIF_F_RXHASH)
8715 		skb_set_hash(skb,
8716 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8717 			     PKT_HASH_TYPE_L3);
8718 }
8719 
8720 /**
8721  *  igb_is_non_eop - process handling of non-EOP buffers
8722  *  @rx_ring: Rx ring being processed
8723  *  @rx_desc: Rx descriptor for current buffer
8724  *
8725  *  This function updates next to clean.  If the buffer is an EOP buffer
8726  *  this function exits returning false, otherwise it will place the
8727  *  sk_buff in the next buffer to be chained and return true indicating
8728  *  that this is in fact a non-EOP buffer.
8729  **/
8730 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8731 			   union e1000_adv_rx_desc *rx_desc)
8732 {
8733 	u32 ntc = rx_ring->next_to_clean + 1;
8734 
8735 	/* fetch, update, and store next to clean */
8736 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8737 	rx_ring->next_to_clean = ntc;
8738 
8739 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8740 
8741 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8742 		return false;
8743 
8744 	return true;
8745 }
8746 
8747 /**
8748  *  igb_cleanup_headers - Correct corrupted or empty headers
8749  *  @rx_ring: rx descriptor ring packet is being transacted on
8750  *  @rx_desc: pointer to the EOP Rx descriptor
8751  *  @skb: pointer to current skb being fixed
8752  *
8753  *  Address the case where we are pulling data in on pages only
8754  *  and as such no data is present in the skb header.
8755  *
8756  *  In addition if skb is not at least 60 bytes we need to pad it so that
8757  *  it is large enough to qualify as a valid Ethernet frame.
8758  *
8759  *  Returns true if an error was encountered and skb was freed.
8760  **/
8761 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8762 				union e1000_adv_rx_desc *rx_desc,
8763 				struct sk_buff *skb)
8764 {
8765 	/* XDP packets use error pointer so abort at this point */
8766 	if (IS_ERR(skb))
8767 		return true;
8768 
8769 	if (unlikely((igb_test_staterr(rx_desc,
8770 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8771 		struct net_device *netdev = rx_ring->netdev;
8772 		if (!(netdev->features & NETIF_F_RXALL)) {
8773 			dev_kfree_skb_any(skb);
8774 			return true;
8775 		}
8776 	}
8777 
8778 	/* if eth_skb_pad returns an error the skb was freed */
8779 	if (eth_skb_pad(skb))
8780 		return true;
8781 
8782 	return false;
8783 }
8784 
8785 /**
8786  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8787  *  @rx_ring: rx descriptor ring packet is being transacted on
8788  *  @rx_desc: pointer to the EOP Rx descriptor
8789  *  @skb: pointer to current skb being populated
8790  *
8791  *  This function checks the ring, descriptor, and packet information in
8792  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8793  *  other fields within the skb.
8794  **/
8795 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8796 				   union e1000_adv_rx_desc *rx_desc,
8797 				   struct sk_buff *skb)
8798 {
8799 	struct net_device *dev = rx_ring->netdev;
8800 
8801 	igb_rx_hash(rx_ring, rx_desc, skb);
8802 
8803 	igb_rx_checksum(rx_ring, rx_desc, skb);
8804 
8805 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8806 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8807 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8808 
8809 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8810 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8811 		u16 vid;
8812 
8813 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8814 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8815 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8816 		else
8817 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8818 
8819 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8820 	}
8821 
8822 	skb_record_rx_queue(skb, rx_ring->queue_index);
8823 
8824 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8825 }
8826 
8827 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8828 {
8829 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8830 }
8831 
8832 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8833 					       const unsigned int size, int *rx_buf_pgcnt)
8834 {
8835 	struct igb_rx_buffer *rx_buffer;
8836 
8837 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8838 	*rx_buf_pgcnt =
8839 #if (PAGE_SIZE < 8192)
8840 		page_count(rx_buffer->page);
8841 #else
8842 		0;
8843 #endif
8844 	prefetchw(rx_buffer->page);
8845 
8846 	/* we are reusing so sync this buffer for CPU use */
8847 	dma_sync_single_range_for_cpu(rx_ring->dev,
8848 				      rx_buffer->dma,
8849 				      rx_buffer->page_offset,
8850 				      size,
8851 				      DMA_FROM_DEVICE);
8852 
8853 	rx_buffer->pagecnt_bias--;
8854 
8855 	return rx_buffer;
8856 }
8857 
8858 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8859 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8860 {
8861 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8862 		/* hand second half of page back to the ring */
8863 		igb_reuse_rx_page(rx_ring, rx_buffer);
8864 	} else {
8865 		/* We are not reusing the buffer so unmap it and free
8866 		 * any references we are holding to it
8867 		 */
8868 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8869 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8870 				     IGB_RX_DMA_ATTR);
8871 		__page_frag_cache_drain(rx_buffer->page,
8872 					rx_buffer->pagecnt_bias);
8873 	}
8874 
8875 	/* clear contents of rx_buffer */
8876 	rx_buffer->page = NULL;
8877 }
8878 
8879 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8880 {
8881 	struct igb_adapter *adapter = q_vector->adapter;
8882 	struct igb_ring *rx_ring = q_vector->rx.ring;
8883 	struct sk_buff *skb = rx_ring->skb;
8884 	unsigned int total_bytes = 0, total_packets = 0;
8885 	u16 cleaned_count = igb_desc_unused(rx_ring);
8886 	unsigned int xdp_xmit = 0;
8887 	struct xdp_buff xdp;
8888 	u32 frame_sz = 0;
8889 	int rx_buf_pgcnt;
8890 
8891 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8892 #if (PAGE_SIZE < 8192)
8893 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8894 #endif
8895 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8896 
8897 	while (likely(total_packets < budget)) {
8898 		union e1000_adv_rx_desc *rx_desc;
8899 		struct igb_rx_buffer *rx_buffer;
8900 		ktime_t timestamp = 0;
8901 		int pkt_offset = 0;
8902 		unsigned int size;
8903 		void *pktbuf;
8904 
8905 		/* return some buffers to hardware, one at a time is too slow */
8906 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8907 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8908 			cleaned_count = 0;
8909 		}
8910 
8911 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8912 		size = le16_to_cpu(rx_desc->wb.upper.length);
8913 		if (!size)
8914 			break;
8915 
8916 		/* This memory barrier is needed to keep us from reading
8917 		 * any other fields out of the rx_desc until we know the
8918 		 * descriptor has been written back
8919 		 */
8920 		dma_rmb();
8921 
8922 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8923 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8924 
8925 		/* pull rx packet timestamp if available and valid */
8926 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8927 			int ts_hdr_len;
8928 
8929 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8930 							 pktbuf, &timestamp);
8931 
8932 			pkt_offset += ts_hdr_len;
8933 			size -= ts_hdr_len;
8934 		}
8935 
8936 		/* retrieve a buffer from the ring */
8937 		if (!skb) {
8938 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8939 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8940 
8941 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8942 			xdp_buff_clear_frags_flag(&xdp);
8943 #if (PAGE_SIZE > 4096)
8944 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8945 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8946 #endif
8947 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8948 		}
8949 
8950 		if (IS_ERR(skb)) {
8951 			unsigned int xdp_res = -PTR_ERR(skb);
8952 
8953 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8954 				xdp_xmit |= xdp_res;
8955 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8956 			} else {
8957 				rx_buffer->pagecnt_bias++;
8958 			}
8959 			total_packets++;
8960 			total_bytes += size;
8961 		} else if (skb)
8962 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8963 		else if (ring_uses_build_skb(rx_ring))
8964 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8965 					    timestamp);
8966 		else
8967 			skb = igb_construct_skb(rx_ring, rx_buffer,
8968 						&xdp, timestamp);
8969 
8970 		/* exit if we failed to retrieve a buffer */
8971 		if (!skb) {
8972 			rx_ring->rx_stats.alloc_failed++;
8973 			rx_buffer->pagecnt_bias++;
8974 			break;
8975 		}
8976 
8977 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8978 		cleaned_count++;
8979 
8980 		/* fetch next buffer in frame if non-eop */
8981 		if (igb_is_non_eop(rx_ring, rx_desc))
8982 			continue;
8983 
8984 		/* verify the packet layout is correct */
8985 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8986 			skb = NULL;
8987 			continue;
8988 		}
8989 
8990 		/* probably a little skewed due to removing CRC */
8991 		total_bytes += skb->len;
8992 
8993 		/* populate checksum, timestamp, VLAN, and protocol */
8994 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8995 
8996 		napi_gro_receive(&q_vector->napi, skb);
8997 
8998 		/* reset skb pointer */
8999 		skb = NULL;
9000 
9001 		/* update budget accounting */
9002 		total_packets++;
9003 	}
9004 
9005 	/* place incomplete frames back on ring for completion */
9006 	rx_ring->skb = skb;
9007 
9008 	if (xdp_xmit & IGB_XDP_REDIR)
9009 		xdp_do_flush();
9010 
9011 	if (xdp_xmit & IGB_XDP_TX) {
9012 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9013 
9014 		igb_xdp_ring_update_tail(tx_ring);
9015 	}
9016 
9017 	u64_stats_update_begin(&rx_ring->rx_syncp);
9018 	rx_ring->rx_stats.packets += total_packets;
9019 	rx_ring->rx_stats.bytes += total_bytes;
9020 	u64_stats_update_end(&rx_ring->rx_syncp);
9021 	q_vector->rx.total_packets += total_packets;
9022 	q_vector->rx.total_bytes += total_bytes;
9023 
9024 	if (cleaned_count)
9025 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9026 
9027 	return total_packets;
9028 }
9029 
9030 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9031 				  struct igb_rx_buffer *bi)
9032 {
9033 	struct page *page = bi->page;
9034 	dma_addr_t dma;
9035 
9036 	/* since we are recycling buffers we should seldom need to alloc */
9037 	if (likely(page))
9038 		return true;
9039 
9040 	/* alloc new page for storage */
9041 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9042 	if (unlikely(!page)) {
9043 		rx_ring->rx_stats.alloc_failed++;
9044 		return false;
9045 	}
9046 
9047 	/* map page for use */
9048 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9049 				 igb_rx_pg_size(rx_ring),
9050 				 DMA_FROM_DEVICE,
9051 				 IGB_RX_DMA_ATTR);
9052 
9053 	/* if mapping failed free memory back to system since
9054 	 * there isn't much point in holding memory we can't use
9055 	 */
9056 	if (dma_mapping_error(rx_ring->dev, dma)) {
9057 		__free_pages(page, igb_rx_pg_order(rx_ring));
9058 
9059 		rx_ring->rx_stats.alloc_failed++;
9060 		return false;
9061 	}
9062 
9063 	bi->dma = dma;
9064 	bi->page = page;
9065 	bi->page_offset = igb_rx_offset(rx_ring);
9066 	page_ref_add(page, USHRT_MAX - 1);
9067 	bi->pagecnt_bias = USHRT_MAX;
9068 
9069 	return true;
9070 }
9071 
9072 /**
9073  *  igb_alloc_rx_buffers - Replace used receive buffers
9074  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9075  *  @cleaned_count: count of buffers to allocate
9076  **/
9077 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9078 {
9079 	union e1000_adv_rx_desc *rx_desc;
9080 	struct igb_rx_buffer *bi;
9081 	u16 i = rx_ring->next_to_use;
9082 	u16 bufsz;
9083 
9084 	/* nothing to do */
9085 	if (!cleaned_count)
9086 		return;
9087 
9088 	rx_desc = IGB_RX_DESC(rx_ring, i);
9089 	bi = &rx_ring->rx_buffer_info[i];
9090 	i -= rx_ring->count;
9091 
9092 	bufsz = igb_rx_bufsz(rx_ring);
9093 
9094 	do {
9095 		if (!igb_alloc_mapped_page(rx_ring, bi))
9096 			break;
9097 
9098 		/* sync the buffer for use by the device */
9099 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9100 						 bi->page_offset, bufsz,
9101 						 DMA_FROM_DEVICE);
9102 
9103 		/* Refresh the desc even if buffer_addrs didn't change
9104 		 * because each write-back erases this info.
9105 		 */
9106 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9107 
9108 		rx_desc++;
9109 		bi++;
9110 		i++;
9111 		if (unlikely(!i)) {
9112 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9113 			bi = rx_ring->rx_buffer_info;
9114 			i -= rx_ring->count;
9115 		}
9116 
9117 		/* clear the length for the next_to_use descriptor */
9118 		rx_desc->wb.upper.length = 0;
9119 
9120 		cleaned_count--;
9121 	} while (cleaned_count);
9122 
9123 	i += rx_ring->count;
9124 
9125 	if (rx_ring->next_to_use != i) {
9126 		/* record the next descriptor to use */
9127 		rx_ring->next_to_use = i;
9128 
9129 		/* update next to alloc since we have filled the ring */
9130 		rx_ring->next_to_alloc = i;
9131 
9132 		/* Force memory writes to complete before letting h/w
9133 		 * know there are new descriptors to fetch.  (Only
9134 		 * applicable for weak-ordered memory model archs,
9135 		 * such as IA-64).
9136 		 */
9137 		dma_wmb();
9138 		writel(i, rx_ring->tail);
9139 	}
9140 }
9141 
9142 /**
9143  * igb_mii_ioctl -
9144  * @netdev: pointer to netdev struct
9145  * @ifr: interface structure
9146  * @cmd: ioctl command to execute
9147  **/
9148 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9149 {
9150 	struct igb_adapter *adapter = netdev_priv(netdev);
9151 	struct mii_ioctl_data *data = if_mii(ifr);
9152 
9153 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9154 		return -EOPNOTSUPP;
9155 
9156 	switch (cmd) {
9157 	case SIOCGMIIPHY:
9158 		data->phy_id = adapter->hw.phy.addr;
9159 		break;
9160 	case SIOCGMIIREG:
9161 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9162 				     &data->val_out))
9163 			return -EIO;
9164 		break;
9165 	case SIOCSMIIREG:
9166 	default:
9167 		return -EOPNOTSUPP;
9168 	}
9169 	return 0;
9170 }
9171 
9172 /**
9173  * igb_ioctl -
9174  * @netdev: pointer to netdev struct
9175  * @ifr: interface structure
9176  * @cmd: ioctl command to execute
9177  **/
9178 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9179 {
9180 	switch (cmd) {
9181 	case SIOCGMIIPHY:
9182 	case SIOCGMIIREG:
9183 	case SIOCSMIIREG:
9184 		return igb_mii_ioctl(netdev, ifr, cmd);
9185 	case SIOCGHWTSTAMP:
9186 		return igb_ptp_get_ts_config(netdev, ifr);
9187 	case SIOCSHWTSTAMP:
9188 		return igb_ptp_set_ts_config(netdev, ifr);
9189 	default:
9190 		return -EOPNOTSUPP;
9191 	}
9192 }
9193 
9194 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9195 {
9196 	struct igb_adapter *adapter = hw->back;
9197 
9198 	pci_read_config_word(adapter->pdev, reg, value);
9199 }
9200 
9201 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9202 {
9203 	struct igb_adapter *adapter = hw->back;
9204 
9205 	pci_write_config_word(adapter->pdev, reg, *value);
9206 }
9207 
9208 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9209 {
9210 	struct igb_adapter *adapter = hw->back;
9211 
9212 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9213 		return -E1000_ERR_CONFIG;
9214 
9215 	return 0;
9216 }
9217 
9218 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9219 {
9220 	struct igb_adapter *adapter = hw->back;
9221 
9222 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9223 		return -E1000_ERR_CONFIG;
9224 
9225 	return 0;
9226 }
9227 
9228 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9229 {
9230 	struct igb_adapter *adapter = netdev_priv(netdev);
9231 	struct e1000_hw *hw = &adapter->hw;
9232 	u32 ctrl, rctl;
9233 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9234 
9235 	if (enable) {
9236 		/* enable VLAN tag insert/strip */
9237 		ctrl = rd32(E1000_CTRL);
9238 		ctrl |= E1000_CTRL_VME;
9239 		wr32(E1000_CTRL, ctrl);
9240 
9241 		/* Disable CFI check */
9242 		rctl = rd32(E1000_RCTL);
9243 		rctl &= ~E1000_RCTL_CFIEN;
9244 		wr32(E1000_RCTL, rctl);
9245 	} else {
9246 		/* disable VLAN tag insert/strip */
9247 		ctrl = rd32(E1000_CTRL);
9248 		ctrl &= ~E1000_CTRL_VME;
9249 		wr32(E1000_CTRL, ctrl);
9250 	}
9251 
9252 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9253 }
9254 
9255 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9256 			       __be16 proto, u16 vid)
9257 {
9258 	struct igb_adapter *adapter = netdev_priv(netdev);
9259 	struct e1000_hw *hw = &adapter->hw;
9260 	int pf_id = adapter->vfs_allocated_count;
9261 
9262 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9263 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9264 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9265 
9266 	set_bit(vid, adapter->active_vlans);
9267 
9268 	return 0;
9269 }
9270 
9271 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9272 				__be16 proto, u16 vid)
9273 {
9274 	struct igb_adapter *adapter = netdev_priv(netdev);
9275 	int pf_id = adapter->vfs_allocated_count;
9276 	struct e1000_hw *hw = &adapter->hw;
9277 
9278 	/* remove VID from filter table */
9279 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9280 		igb_vfta_set(hw, vid, pf_id, false, true);
9281 
9282 	clear_bit(vid, adapter->active_vlans);
9283 
9284 	return 0;
9285 }
9286 
9287 static void igb_restore_vlan(struct igb_adapter *adapter)
9288 {
9289 	u16 vid = 1;
9290 
9291 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9292 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9293 
9294 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9295 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9296 }
9297 
9298 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9299 {
9300 	struct pci_dev *pdev = adapter->pdev;
9301 	struct e1000_mac_info *mac = &adapter->hw.mac;
9302 
9303 	mac->autoneg = 0;
9304 
9305 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9306 	 * for the switch() below to work
9307 	 */
9308 	if ((spd & 1) || (dplx & ~1))
9309 		goto err_inval;
9310 
9311 	/* Fiber NIC's only allow 1000 gbps Full duplex
9312 	 * and 100Mbps Full duplex for 100baseFx sfp
9313 	 */
9314 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9315 		switch (spd + dplx) {
9316 		case SPEED_10 + DUPLEX_HALF:
9317 		case SPEED_10 + DUPLEX_FULL:
9318 		case SPEED_100 + DUPLEX_HALF:
9319 			goto err_inval;
9320 		default:
9321 			break;
9322 		}
9323 	}
9324 
9325 	switch (spd + dplx) {
9326 	case SPEED_10 + DUPLEX_HALF:
9327 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9328 		break;
9329 	case SPEED_10 + DUPLEX_FULL:
9330 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9331 		break;
9332 	case SPEED_100 + DUPLEX_HALF:
9333 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9334 		break;
9335 	case SPEED_100 + DUPLEX_FULL:
9336 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9337 		break;
9338 	case SPEED_1000 + DUPLEX_FULL:
9339 		mac->autoneg = 1;
9340 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9341 		break;
9342 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9343 	default:
9344 		goto err_inval;
9345 	}
9346 
9347 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9348 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9349 
9350 	return 0;
9351 
9352 err_inval:
9353 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9354 	return -EINVAL;
9355 }
9356 
9357 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9358 			  bool runtime)
9359 {
9360 	struct net_device *netdev = pci_get_drvdata(pdev);
9361 	struct igb_adapter *adapter = netdev_priv(netdev);
9362 	struct e1000_hw *hw = &adapter->hw;
9363 	u32 ctrl, rctl, status;
9364 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9365 	bool wake;
9366 
9367 	rtnl_lock();
9368 	netif_device_detach(netdev);
9369 
9370 	if (netif_running(netdev))
9371 		__igb_close(netdev, true);
9372 
9373 	igb_ptp_suspend(adapter);
9374 
9375 	igb_clear_interrupt_scheme(adapter);
9376 	rtnl_unlock();
9377 
9378 	status = rd32(E1000_STATUS);
9379 	if (status & E1000_STATUS_LU)
9380 		wufc &= ~E1000_WUFC_LNKC;
9381 
9382 	if (wufc) {
9383 		igb_setup_rctl(adapter);
9384 		igb_set_rx_mode(netdev);
9385 
9386 		/* turn on all-multi mode if wake on multicast is enabled */
9387 		if (wufc & E1000_WUFC_MC) {
9388 			rctl = rd32(E1000_RCTL);
9389 			rctl |= E1000_RCTL_MPE;
9390 			wr32(E1000_RCTL, rctl);
9391 		}
9392 
9393 		ctrl = rd32(E1000_CTRL);
9394 		ctrl |= E1000_CTRL_ADVD3WUC;
9395 		wr32(E1000_CTRL, ctrl);
9396 
9397 		/* Allow time for pending master requests to run */
9398 		igb_disable_pcie_master(hw);
9399 
9400 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9401 		wr32(E1000_WUFC, wufc);
9402 	} else {
9403 		wr32(E1000_WUC, 0);
9404 		wr32(E1000_WUFC, 0);
9405 	}
9406 
9407 	wake = wufc || adapter->en_mng_pt;
9408 	if (!wake)
9409 		igb_power_down_link(adapter);
9410 	else
9411 		igb_power_up_link(adapter);
9412 
9413 	if (enable_wake)
9414 		*enable_wake = wake;
9415 
9416 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9417 	 * would have already happened in close and is redundant.
9418 	 */
9419 	igb_release_hw_control(adapter);
9420 
9421 	pci_disable_device(pdev);
9422 
9423 	return 0;
9424 }
9425 
9426 static void igb_deliver_wake_packet(struct net_device *netdev)
9427 {
9428 	struct igb_adapter *adapter = netdev_priv(netdev);
9429 	struct e1000_hw *hw = &adapter->hw;
9430 	struct sk_buff *skb;
9431 	u32 wupl;
9432 
9433 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9434 
9435 	/* WUPM stores only the first 128 bytes of the wake packet.
9436 	 * Read the packet only if we have the whole thing.
9437 	 */
9438 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9439 		return;
9440 
9441 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9442 	if (!skb)
9443 		return;
9444 
9445 	skb_put(skb, wupl);
9446 
9447 	/* Ensure reads are 32-bit aligned */
9448 	wupl = roundup(wupl, 4);
9449 
9450 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9451 
9452 	skb->protocol = eth_type_trans(skb, netdev);
9453 	netif_rx(skb);
9454 }
9455 
9456 static int __maybe_unused igb_suspend(struct device *dev)
9457 {
9458 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9459 }
9460 
9461 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9462 {
9463 	struct pci_dev *pdev = to_pci_dev(dev);
9464 	struct net_device *netdev = pci_get_drvdata(pdev);
9465 	struct igb_adapter *adapter = netdev_priv(netdev);
9466 	struct e1000_hw *hw = &adapter->hw;
9467 	u32 err, val;
9468 
9469 	pci_set_power_state(pdev, PCI_D0);
9470 	pci_restore_state(pdev);
9471 	pci_save_state(pdev);
9472 
9473 	if (!pci_device_is_present(pdev))
9474 		return -ENODEV;
9475 	err = pci_enable_device_mem(pdev);
9476 	if (err) {
9477 		dev_err(&pdev->dev,
9478 			"igb: Cannot enable PCI device from suspend\n");
9479 		return err;
9480 	}
9481 	pci_set_master(pdev);
9482 
9483 	pci_enable_wake(pdev, PCI_D3hot, 0);
9484 	pci_enable_wake(pdev, PCI_D3cold, 0);
9485 
9486 	if (igb_init_interrupt_scheme(adapter, true)) {
9487 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9488 		return -ENOMEM;
9489 	}
9490 
9491 	igb_reset(adapter);
9492 
9493 	/* let the f/w know that the h/w is now under the control of the
9494 	 * driver.
9495 	 */
9496 	igb_get_hw_control(adapter);
9497 
9498 	val = rd32(E1000_WUS);
9499 	if (val & WAKE_PKT_WUS)
9500 		igb_deliver_wake_packet(netdev);
9501 
9502 	wr32(E1000_WUS, ~0);
9503 
9504 	if (!rpm)
9505 		rtnl_lock();
9506 	if (!err && netif_running(netdev))
9507 		err = __igb_open(netdev, true);
9508 
9509 	if (!err)
9510 		netif_device_attach(netdev);
9511 	if (!rpm)
9512 		rtnl_unlock();
9513 
9514 	return err;
9515 }
9516 
9517 static int __maybe_unused igb_resume(struct device *dev)
9518 {
9519 	return __igb_resume(dev, false);
9520 }
9521 
9522 static int __maybe_unused igb_runtime_idle(struct device *dev)
9523 {
9524 	struct net_device *netdev = dev_get_drvdata(dev);
9525 	struct igb_adapter *adapter = netdev_priv(netdev);
9526 
9527 	if (!igb_has_link(adapter))
9528 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9529 
9530 	return -EBUSY;
9531 }
9532 
9533 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9534 {
9535 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9536 }
9537 
9538 static int __maybe_unused igb_runtime_resume(struct device *dev)
9539 {
9540 	return __igb_resume(dev, true);
9541 }
9542 
9543 static void igb_shutdown(struct pci_dev *pdev)
9544 {
9545 	bool wake;
9546 
9547 	__igb_shutdown(pdev, &wake, 0);
9548 
9549 	if (system_state == SYSTEM_POWER_OFF) {
9550 		pci_wake_from_d3(pdev, wake);
9551 		pci_set_power_state(pdev, PCI_D3hot);
9552 	}
9553 }
9554 
9555 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9556 {
9557 #ifdef CONFIG_PCI_IOV
9558 	int err;
9559 
9560 	if (num_vfs == 0) {
9561 		return igb_disable_sriov(dev, true);
9562 	} else {
9563 		err = igb_enable_sriov(dev, num_vfs, true);
9564 		return err ? err : num_vfs;
9565 	}
9566 #endif
9567 	return 0;
9568 }
9569 
9570 /**
9571  *  igb_io_error_detected - called when PCI error is detected
9572  *  @pdev: Pointer to PCI device
9573  *  @state: The current pci connection state
9574  *
9575  *  This function is called after a PCI bus error affecting
9576  *  this device has been detected.
9577  **/
9578 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9579 					      pci_channel_state_t state)
9580 {
9581 	struct net_device *netdev = pci_get_drvdata(pdev);
9582 	struct igb_adapter *adapter = netdev_priv(netdev);
9583 
9584 	netif_device_detach(netdev);
9585 
9586 	if (state == pci_channel_io_perm_failure)
9587 		return PCI_ERS_RESULT_DISCONNECT;
9588 
9589 	if (netif_running(netdev))
9590 		igb_down(adapter);
9591 	pci_disable_device(pdev);
9592 
9593 	/* Request a slot reset. */
9594 	return PCI_ERS_RESULT_NEED_RESET;
9595 }
9596 
9597 /**
9598  *  igb_io_slot_reset - called after the pci bus has been reset.
9599  *  @pdev: Pointer to PCI device
9600  *
9601  *  Restart the card from scratch, as if from a cold-boot. Implementation
9602  *  resembles the first-half of the __igb_resume routine.
9603  **/
9604 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9605 {
9606 	struct net_device *netdev = pci_get_drvdata(pdev);
9607 	struct igb_adapter *adapter = netdev_priv(netdev);
9608 	struct e1000_hw *hw = &adapter->hw;
9609 	pci_ers_result_t result;
9610 
9611 	if (pci_enable_device_mem(pdev)) {
9612 		dev_err(&pdev->dev,
9613 			"Cannot re-enable PCI device after reset.\n");
9614 		result = PCI_ERS_RESULT_DISCONNECT;
9615 	} else {
9616 		pci_set_master(pdev);
9617 		pci_restore_state(pdev);
9618 		pci_save_state(pdev);
9619 
9620 		pci_enable_wake(pdev, PCI_D3hot, 0);
9621 		pci_enable_wake(pdev, PCI_D3cold, 0);
9622 
9623 		/* In case of PCI error, adapter lose its HW address
9624 		 * so we should re-assign it here.
9625 		 */
9626 		hw->hw_addr = adapter->io_addr;
9627 
9628 		igb_reset(adapter);
9629 		wr32(E1000_WUS, ~0);
9630 		result = PCI_ERS_RESULT_RECOVERED;
9631 	}
9632 
9633 	return result;
9634 }
9635 
9636 /**
9637  *  igb_io_resume - called when traffic can start flowing again.
9638  *  @pdev: Pointer to PCI device
9639  *
9640  *  This callback is called when the error recovery driver tells us that
9641  *  its OK to resume normal operation. Implementation resembles the
9642  *  second-half of the __igb_resume routine.
9643  */
9644 static void igb_io_resume(struct pci_dev *pdev)
9645 {
9646 	struct net_device *netdev = pci_get_drvdata(pdev);
9647 	struct igb_adapter *adapter = netdev_priv(netdev);
9648 
9649 	if (netif_running(netdev)) {
9650 		if (igb_up(adapter)) {
9651 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9652 			return;
9653 		}
9654 	}
9655 
9656 	netif_device_attach(netdev);
9657 
9658 	/* let the f/w know that the h/w is now under the control of the
9659 	 * driver.
9660 	 */
9661 	igb_get_hw_control(adapter);
9662 }
9663 
9664 /**
9665  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9666  *  @adapter: Pointer to adapter structure
9667  *  @index: Index of the RAR entry which need to be synced with MAC table
9668  **/
9669 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9670 {
9671 	struct e1000_hw *hw = &adapter->hw;
9672 	u32 rar_low, rar_high;
9673 	u8 *addr = adapter->mac_table[index].addr;
9674 
9675 	/* HW expects these to be in network order when they are plugged
9676 	 * into the registers which are little endian.  In order to guarantee
9677 	 * that ordering we need to do an leXX_to_cpup here in order to be
9678 	 * ready for the byteswap that occurs with writel
9679 	 */
9680 	rar_low = le32_to_cpup((__le32 *)(addr));
9681 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9682 
9683 	/* Indicate to hardware the Address is Valid. */
9684 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9685 		if (is_valid_ether_addr(addr))
9686 			rar_high |= E1000_RAH_AV;
9687 
9688 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9689 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9690 
9691 		switch (hw->mac.type) {
9692 		case e1000_82575:
9693 		case e1000_i210:
9694 			if (adapter->mac_table[index].state &
9695 			    IGB_MAC_STATE_QUEUE_STEERING)
9696 				rar_high |= E1000_RAH_QSEL_ENABLE;
9697 
9698 			rar_high |= E1000_RAH_POOL_1 *
9699 				    adapter->mac_table[index].queue;
9700 			break;
9701 		default:
9702 			rar_high |= E1000_RAH_POOL_1 <<
9703 				    adapter->mac_table[index].queue;
9704 			break;
9705 		}
9706 	}
9707 
9708 	wr32(E1000_RAL(index), rar_low);
9709 	wrfl();
9710 	wr32(E1000_RAH(index), rar_high);
9711 	wrfl();
9712 }
9713 
9714 static int igb_set_vf_mac(struct igb_adapter *adapter,
9715 			  int vf, unsigned char *mac_addr)
9716 {
9717 	struct e1000_hw *hw = &adapter->hw;
9718 	/* VF MAC addresses start at end of receive addresses and moves
9719 	 * towards the first, as a result a collision should not be possible
9720 	 */
9721 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9722 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9723 
9724 	ether_addr_copy(vf_mac_addr, mac_addr);
9725 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9726 	adapter->mac_table[rar_entry].queue = vf;
9727 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9728 	igb_rar_set_index(adapter, rar_entry);
9729 
9730 	return 0;
9731 }
9732 
9733 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9734 {
9735 	struct igb_adapter *adapter = netdev_priv(netdev);
9736 
9737 	if (vf >= adapter->vfs_allocated_count)
9738 		return -EINVAL;
9739 
9740 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9741 	 * flag and allows to overwrite the MAC via VF netdev.  This
9742 	 * is necessary to allow libvirt a way to restore the original
9743 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9744 	 * down a VM.
9745 	 */
9746 	if (is_zero_ether_addr(mac)) {
9747 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9748 		dev_info(&adapter->pdev->dev,
9749 			 "remove administratively set MAC on VF %d\n",
9750 			 vf);
9751 	} else if (is_valid_ether_addr(mac)) {
9752 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9753 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9754 			 mac, vf);
9755 		dev_info(&adapter->pdev->dev,
9756 			 "Reload the VF driver to make this change effective.");
9757 		/* Generate additional warning if PF is down */
9758 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9759 			dev_warn(&adapter->pdev->dev,
9760 				 "The VF MAC address has been set, but the PF device is not up.\n");
9761 			dev_warn(&adapter->pdev->dev,
9762 				 "Bring the PF device up before attempting to use the VF device.\n");
9763 		}
9764 	} else {
9765 		return -EINVAL;
9766 	}
9767 	return igb_set_vf_mac(adapter, vf, mac);
9768 }
9769 
9770 static int igb_link_mbps(int internal_link_speed)
9771 {
9772 	switch (internal_link_speed) {
9773 	case SPEED_100:
9774 		return 100;
9775 	case SPEED_1000:
9776 		return 1000;
9777 	default:
9778 		return 0;
9779 	}
9780 }
9781 
9782 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9783 				  int link_speed)
9784 {
9785 	int rf_dec, rf_int;
9786 	u32 bcnrc_val;
9787 
9788 	if (tx_rate != 0) {
9789 		/* Calculate the rate factor values to set */
9790 		rf_int = link_speed / tx_rate;
9791 		rf_dec = (link_speed - (rf_int * tx_rate));
9792 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9793 			 tx_rate;
9794 
9795 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9796 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9797 			      E1000_RTTBCNRC_RF_INT_MASK);
9798 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9799 	} else {
9800 		bcnrc_val = 0;
9801 	}
9802 
9803 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9804 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9805 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9806 	 */
9807 	wr32(E1000_RTTBCNRM, 0x14);
9808 	wr32(E1000_RTTBCNRC, bcnrc_val);
9809 }
9810 
9811 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9812 {
9813 	int actual_link_speed, i;
9814 	bool reset_rate = false;
9815 
9816 	/* VF TX rate limit was not set or not supported */
9817 	if ((adapter->vf_rate_link_speed == 0) ||
9818 	    (adapter->hw.mac.type != e1000_82576))
9819 		return;
9820 
9821 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9822 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9823 		reset_rate = true;
9824 		adapter->vf_rate_link_speed = 0;
9825 		dev_info(&adapter->pdev->dev,
9826 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9827 	}
9828 
9829 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9830 		if (reset_rate)
9831 			adapter->vf_data[i].tx_rate = 0;
9832 
9833 		igb_set_vf_rate_limit(&adapter->hw, i,
9834 				      adapter->vf_data[i].tx_rate,
9835 				      actual_link_speed);
9836 	}
9837 }
9838 
9839 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9840 			     int min_tx_rate, int max_tx_rate)
9841 {
9842 	struct igb_adapter *adapter = netdev_priv(netdev);
9843 	struct e1000_hw *hw = &adapter->hw;
9844 	int actual_link_speed;
9845 
9846 	if (hw->mac.type != e1000_82576)
9847 		return -EOPNOTSUPP;
9848 
9849 	if (min_tx_rate)
9850 		return -EINVAL;
9851 
9852 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9853 	if ((vf >= adapter->vfs_allocated_count) ||
9854 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9855 	    (max_tx_rate < 0) ||
9856 	    (max_tx_rate > actual_link_speed))
9857 		return -EINVAL;
9858 
9859 	adapter->vf_rate_link_speed = actual_link_speed;
9860 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9861 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9862 
9863 	return 0;
9864 }
9865 
9866 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9867 				   bool setting)
9868 {
9869 	struct igb_adapter *adapter = netdev_priv(netdev);
9870 	struct e1000_hw *hw = &adapter->hw;
9871 	u32 reg_val, reg_offset;
9872 
9873 	if (!adapter->vfs_allocated_count)
9874 		return -EOPNOTSUPP;
9875 
9876 	if (vf >= adapter->vfs_allocated_count)
9877 		return -EINVAL;
9878 
9879 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9880 	reg_val = rd32(reg_offset);
9881 	if (setting)
9882 		reg_val |= (BIT(vf) |
9883 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9884 	else
9885 		reg_val &= ~(BIT(vf) |
9886 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9887 	wr32(reg_offset, reg_val);
9888 
9889 	adapter->vf_data[vf].spoofchk_enabled = setting;
9890 	return 0;
9891 }
9892 
9893 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9894 {
9895 	struct igb_adapter *adapter = netdev_priv(netdev);
9896 
9897 	if (vf >= adapter->vfs_allocated_count)
9898 		return -EINVAL;
9899 	if (adapter->vf_data[vf].trusted == setting)
9900 		return 0;
9901 
9902 	adapter->vf_data[vf].trusted = setting;
9903 
9904 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9905 		 vf, setting ? "" : "not ");
9906 	return 0;
9907 }
9908 
9909 static int igb_ndo_get_vf_config(struct net_device *netdev,
9910 				 int vf, struct ifla_vf_info *ivi)
9911 {
9912 	struct igb_adapter *adapter = netdev_priv(netdev);
9913 	if (vf >= adapter->vfs_allocated_count)
9914 		return -EINVAL;
9915 	ivi->vf = vf;
9916 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9917 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9918 	ivi->min_tx_rate = 0;
9919 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9920 	ivi->qos = adapter->vf_data[vf].pf_qos;
9921 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9922 	ivi->trusted = adapter->vf_data[vf].trusted;
9923 	return 0;
9924 }
9925 
9926 static void igb_vmm_control(struct igb_adapter *adapter)
9927 {
9928 	struct e1000_hw *hw = &adapter->hw;
9929 	u32 reg;
9930 
9931 	switch (hw->mac.type) {
9932 	case e1000_82575:
9933 	case e1000_i210:
9934 	case e1000_i211:
9935 	case e1000_i354:
9936 	default:
9937 		/* replication is not supported for 82575 */
9938 		return;
9939 	case e1000_82576:
9940 		/* notify HW that the MAC is adding vlan tags */
9941 		reg = rd32(E1000_DTXCTL);
9942 		reg |= E1000_DTXCTL_VLAN_ADDED;
9943 		wr32(E1000_DTXCTL, reg);
9944 		fallthrough;
9945 	case e1000_82580:
9946 		/* enable replication vlan tag stripping */
9947 		reg = rd32(E1000_RPLOLR);
9948 		reg |= E1000_RPLOLR_STRVLAN;
9949 		wr32(E1000_RPLOLR, reg);
9950 		fallthrough;
9951 	case e1000_i350:
9952 		/* none of the above registers are supported by i350 */
9953 		break;
9954 	}
9955 
9956 	if (adapter->vfs_allocated_count) {
9957 		igb_vmdq_set_loopback_pf(hw, true);
9958 		igb_vmdq_set_replication_pf(hw, true);
9959 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9960 					      adapter->vfs_allocated_count);
9961 	} else {
9962 		igb_vmdq_set_loopback_pf(hw, false);
9963 		igb_vmdq_set_replication_pf(hw, false);
9964 	}
9965 }
9966 
9967 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9968 {
9969 	struct e1000_hw *hw = &adapter->hw;
9970 	u32 dmac_thr;
9971 	u16 hwm;
9972 	u32 reg;
9973 
9974 	if (hw->mac.type > e1000_82580) {
9975 		if (adapter->flags & IGB_FLAG_DMAC) {
9976 			/* force threshold to 0. */
9977 			wr32(E1000_DMCTXTH, 0);
9978 
9979 			/* DMA Coalescing high water mark needs to be greater
9980 			 * than the Rx threshold. Set hwm to PBA - max frame
9981 			 * size in 16B units, capping it at PBA - 6KB.
9982 			 */
9983 			hwm = 64 * (pba - 6);
9984 			reg = rd32(E1000_FCRTC);
9985 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9986 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9987 				& E1000_FCRTC_RTH_COAL_MASK);
9988 			wr32(E1000_FCRTC, reg);
9989 
9990 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9991 			 * frame size, capping it at PBA - 10KB.
9992 			 */
9993 			dmac_thr = pba - 10;
9994 			reg = rd32(E1000_DMACR);
9995 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9996 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9997 				& E1000_DMACR_DMACTHR_MASK);
9998 
9999 			/* transition to L0x or L1 if available..*/
10000 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10001 
10002 			/* watchdog timer= +-1000 usec in 32usec intervals */
10003 			reg |= (1000 >> 5);
10004 
10005 			/* Disable BMC-to-OS Watchdog Enable */
10006 			if (hw->mac.type != e1000_i354)
10007 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10008 			wr32(E1000_DMACR, reg);
10009 
10010 			/* no lower threshold to disable
10011 			 * coalescing(smart fifb)-UTRESH=0
10012 			 */
10013 			wr32(E1000_DMCRTRH, 0);
10014 
10015 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10016 
10017 			wr32(E1000_DMCTLX, reg);
10018 
10019 			/* free space in tx packet buffer to wake from
10020 			 * DMA coal
10021 			 */
10022 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10023 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10024 		}
10025 
10026 		if (hw->mac.type >= e1000_i210 ||
10027 		    (adapter->flags & IGB_FLAG_DMAC)) {
10028 			reg = rd32(E1000_PCIEMISC);
10029 			reg |= E1000_PCIEMISC_LX_DECISION;
10030 			wr32(E1000_PCIEMISC, reg);
10031 		} /* endif adapter->dmac is not disabled */
10032 	} else if (hw->mac.type == e1000_82580) {
10033 		u32 reg = rd32(E1000_PCIEMISC);
10034 
10035 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10036 		wr32(E1000_DMACR, 0);
10037 	}
10038 }
10039 
10040 /**
10041  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10042  *  @hw: pointer to hardware structure
10043  *  @byte_offset: byte offset to read
10044  *  @dev_addr: device address
10045  *  @data: value read
10046  *
10047  *  Performs byte read operation over I2C interface at
10048  *  a specified device address.
10049  **/
10050 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10051 		      u8 dev_addr, u8 *data)
10052 {
10053 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10054 	struct i2c_client *this_client = adapter->i2c_client;
10055 	s32 status;
10056 	u16 swfw_mask = 0;
10057 
10058 	if (!this_client)
10059 		return E1000_ERR_I2C;
10060 
10061 	swfw_mask = E1000_SWFW_PHY0_SM;
10062 
10063 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10064 		return E1000_ERR_SWFW_SYNC;
10065 
10066 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10067 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10068 
10069 	if (status < 0)
10070 		return E1000_ERR_I2C;
10071 	else {
10072 		*data = status;
10073 		return 0;
10074 	}
10075 }
10076 
10077 /**
10078  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10079  *  @hw: pointer to hardware structure
10080  *  @byte_offset: byte offset to write
10081  *  @dev_addr: device address
10082  *  @data: value to write
10083  *
10084  *  Performs byte write operation over I2C interface at
10085  *  a specified device address.
10086  **/
10087 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10088 		       u8 dev_addr, u8 data)
10089 {
10090 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10091 	struct i2c_client *this_client = adapter->i2c_client;
10092 	s32 status;
10093 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10094 
10095 	if (!this_client)
10096 		return E1000_ERR_I2C;
10097 
10098 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10099 		return E1000_ERR_SWFW_SYNC;
10100 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10101 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10102 
10103 	if (status)
10104 		return E1000_ERR_I2C;
10105 	else
10106 		return 0;
10107 
10108 }
10109 
10110 int igb_reinit_queues(struct igb_adapter *adapter)
10111 {
10112 	struct net_device *netdev = adapter->netdev;
10113 	struct pci_dev *pdev = adapter->pdev;
10114 	int err = 0;
10115 
10116 	if (netif_running(netdev))
10117 		igb_close(netdev);
10118 
10119 	igb_reset_interrupt_capability(adapter);
10120 
10121 	if (igb_init_interrupt_scheme(adapter, true)) {
10122 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10123 		return -ENOMEM;
10124 	}
10125 
10126 	if (netif_running(netdev))
10127 		err = igb_open(netdev);
10128 
10129 	return err;
10130 }
10131 
10132 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10133 {
10134 	struct igb_nfc_filter *rule;
10135 
10136 	spin_lock(&adapter->nfc_lock);
10137 
10138 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10139 		igb_erase_filter(adapter, rule);
10140 
10141 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10142 		igb_erase_filter(adapter, rule);
10143 
10144 	spin_unlock(&adapter->nfc_lock);
10145 }
10146 
10147 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10148 {
10149 	struct igb_nfc_filter *rule;
10150 
10151 	spin_lock(&adapter->nfc_lock);
10152 
10153 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10154 		igb_add_filter(adapter, rule);
10155 
10156 	spin_unlock(&adapter->nfc_lock);
10157 }
10158 /* igb_main.c */
10159