1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41 
42 enum queue_mode {
43 	QUEUE_MODE_STRICT_PRIORITY,
44 	QUEUE_MODE_STREAM_RESERVATION,
45 };
46 
47 enum tx_queue_prio {
48 	TX_QUEUE_PRIO_HIGH,
49 	TX_QUEUE_PRIO_LOW,
50 };
51 
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54 				"Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56 				"Copyright (c) 2007-2014 Intel Corporation.";
57 
58 static const struct e1000_info *igb_info_tbl[] = {
59 	[board_82575] = &e1000_82575_info,
60 };
61 
62 static const struct pci_device_id igb_pci_tbl[] = {
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 	/* required last entry */
99 	{0, }
100 };
101 
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103 
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110 static void igb_remove(struct pci_dev *pdev);
111 static void igb_init_queue_configuration(struct igb_adapter *adapter);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
179 #endif
180 
181 static int igb_suspend(struct device *);
182 static int igb_resume(struct device *);
183 static int igb_runtime_suspend(struct device *dev);
184 static int igb_runtime_resume(struct device *dev);
185 static int igb_runtime_idle(struct device *dev);
186 #ifdef CONFIG_PM
187 static const struct dev_pm_ops igb_pm_ops = {
188 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
189 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
190 			igb_runtime_idle)
191 };
192 #endif
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_TDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { __le64 a; __le64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state) {
581 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 	} else {
583 		i2cctl &= ~E1000_I2C_DATA_OE_N;
584 		i2cctl &= ~E1000_I2C_DATA_OUT;
585 	}
586 
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 }
590 
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state) {
605 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 	} else {
607 		i2cctl &= ~E1000_I2C_CLK_OUT;
608 		i2cctl &= ~E1000_I2C_CLK_OE_N;
609 	}
610 	wr32(E1000_I2CPARAMS, i2cctl);
611 	wrfl();
612 }
613 
614 /**
615  *  igb_get_i2c_clk - Gets the I2C SCL clock state
616  *  @data: pointer to hardware structure
617  *
618  *  Gets the I2C clock state
619  **/
620 static int igb_get_i2c_clk(void *data)
621 {
622 	struct igb_adapter *adapter = (struct igb_adapter *)data;
623 	struct e1000_hw *hw = &adapter->hw;
624 	s32 i2cctl = rd32(E1000_I2CPARAMS);
625 
626 	return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628 
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 	.setsda		= igb_set_i2c_data,
631 	.setscl		= igb_set_i2c_clk,
632 	.getsda		= igb_get_i2c_data,
633 	.getscl		= igb_get_i2c_clk,
634 	.udelay		= 5,
635 	.timeout	= 20,
636 };
637 
638 /**
639  *  igb_get_hw_dev - return device
640  *  @hw: pointer to hardware structure
641  *
642  *  used by hardware layer to print debugging information
643  **/
644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646 	struct igb_adapter *adapter = hw->back;
647 	return adapter->netdev;
648 }
649 
650 /**
651  *  igb_init_module - Driver Registration Routine
652  *
653  *  igb_init_module is the first routine called when the driver is
654  *  loaded. All it does is register with the PCI subsystem.
655  **/
656 static int __init igb_init_module(void)
657 {
658 	int ret;
659 
660 	pr_info("%s\n", igb_driver_string);
661 	pr_info("%s\n", igb_copyright);
662 
663 #ifdef CONFIG_IGB_DCA
664 	dca_register_notify(&dca_notifier);
665 #endif
666 	ret = pci_register_driver(&igb_driver);
667 	return ret;
668 }
669 
670 module_init(igb_init_module);
671 
672 /**
673  *  igb_exit_module - Driver Exit Cleanup Routine
674  *
675  *  igb_exit_module is called just before the driver is removed
676  *  from memory.
677  **/
678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681 	dca_unregister_notify(&dca_notifier);
682 #endif
683 	pci_unregister_driver(&igb_driver);
684 }
685 
686 module_exit(igb_exit_module);
687 
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690  *  igb_cache_ring_register - Descriptor ring to register mapping
691  *  @adapter: board private structure to initialize
692  *
693  *  Once we know the feature-set enabled for the device, we'll cache
694  *  the register offset the descriptor ring is assigned to.
695  **/
696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698 	int i = 0, j = 0;
699 	u32 rbase_offset = adapter->vfs_allocated_count;
700 
701 	switch (adapter->hw.mac.type) {
702 	case e1000_82576:
703 		/* The queues are allocated for virtualization such that VF 0
704 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 		 * In order to avoid collision we start at the first free queue
706 		 * and continue consuming queues in the same sequence
707 		 */
708 		if (adapter->vfs_allocated_count) {
709 			for (; i < adapter->rss_queues; i++)
710 				adapter->rx_ring[i]->reg_idx = rbase_offset +
711 							       Q_IDX_82576(i);
712 		}
713 		fallthrough;
714 	case e1000_82575:
715 	case e1000_82580:
716 	case e1000_i350:
717 	case e1000_i354:
718 	case e1000_i210:
719 	case e1000_i211:
720 	default:
721 		for (; i < adapter->num_rx_queues; i++)
722 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 		for (; j < adapter->num_tx_queues; j++)
724 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 		break;
726 	}
727 }
728 
729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 	u32 value = 0;
734 
735 	if (E1000_REMOVED(hw_addr))
736 		return ~value;
737 
738 	value = readl(&hw_addr[reg]);
739 
740 	/* reads should not return all F's */
741 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 		struct net_device *netdev = igb->netdev;
743 		hw->hw_addr = NULL;
744 		netdev_err(netdev, "PCIe link lost\n");
745 		WARN(pci_device_is_present(igb->pdev),
746 		     "igb: Failed to read reg 0x%x!\n", reg);
747 	}
748 
749 	return value;
750 }
751 
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 			   int index, int offset)
766 {
767 	u32 ivar = array_rd32(E1000_IVAR0, index);
768 
769 	/* clear any bits that are currently set */
770 	ivar &= ~((u32)0xFF << offset);
771 
772 	/* write vector and valid bit */
773 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774 
775 	array_wr32(E1000_IVAR0, index, ivar);
776 }
777 
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 	struct igb_adapter *adapter = q_vector->adapter;
782 	struct e1000_hw *hw = &adapter->hw;
783 	int rx_queue = IGB_N0_QUEUE;
784 	int tx_queue = IGB_N0_QUEUE;
785 	u32 msixbm = 0;
786 
787 	if (q_vector->rx.ring)
788 		rx_queue = q_vector->rx.ring->reg_idx;
789 	if (q_vector->tx.ring)
790 		tx_queue = q_vector->tx.ring->reg_idx;
791 
792 	switch (hw->mac.type) {
793 	case e1000_82575:
794 		/* The 82575 assigns vectors using a bitmask, which matches the
795 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796 		 * or more queues to a vector, we write the appropriate bits
797 		 * into the MSIXBM register for that vector.
798 		 */
799 		if (rx_queue > IGB_N0_QUEUE)
800 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 		if (tx_queue > IGB_N0_QUEUE)
802 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 			msixbm |= E1000_EIMS_OTHER;
805 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 		q_vector->eims_value = msixbm;
807 		break;
808 	case e1000_82576:
809 		/* 82576 uses a table that essentially consists of 2 columns
810 		 * with 8 rows.  The ordering is column-major so we use the
811 		 * lower 3 bits as the row index, and the 4th bit as the
812 		 * column offset.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue & 0x7,
817 				       (rx_queue & 0x8) << 1);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue & 0x7,
821 				       ((tx_queue & 0x8) << 1) + 8);
822 		q_vector->eims_value = BIT(msix_vector);
823 		break;
824 	case e1000_82580:
825 	case e1000_i350:
826 	case e1000_i354:
827 	case e1000_i210:
828 	case e1000_i211:
829 		/* On 82580 and newer adapters the scheme is similar to 82576
830 		 * however instead of ordering column-major we have things
831 		 * ordered row-major.  So we traverse the table by using
832 		 * bit 0 as the column offset, and the remaining bits as the
833 		 * row index.
834 		 */
835 		if (rx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       rx_queue >> 1,
838 				       (rx_queue & 0x1) << 4);
839 		if (tx_queue > IGB_N0_QUEUE)
840 			igb_write_ivar(hw, msix_vector,
841 				       tx_queue >> 1,
842 				       ((tx_queue & 0x1) << 4) + 8);
843 		q_vector->eims_value = BIT(msix_vector);
844 		break;
845 	default:
846 		BUG();
847 		break;
848 	}
849 
850 	/* add q_vector eims value to global eims_enable_mask */
851 	adapter->eims_enable_mask |= q_vector->eims_value;
852 
853 	/* configure q_vector to set itr on first interrupt */
854 	q_vector->set_itr = 1;
855 }
856 
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 	u32 tmp;
867 	int i, vector = 0;
868 	struct e1000_hw *hw = &adapter->hw;
869 
870 	adapter->eims_enable_mask = 0;
871 
872 	/* set vector for other causes, i.e. link changes */
873 	switch (hw->mac.type) {
874 	case e1000_82575:
875 		tmp = rd32(E1000_CTRL_EXT);
876 		/* enable MSI-X PBA support*/
877 		tmp |= E1000_CTRL_EXT_PBA_CLR;
878 
879 		/* Auto-Mask interrupts upon ICR read. */
880 		tmp |= E1000_CTRL_EXT_EIAME;
881 		tmp |= E1000_CTRL_EXT_IRCA;
882 
883 		wr32(E1000_CTRL_EXT, tmp);
884 
885 		/* enable msix_other interrupt */
886 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 		adapter->eims_other = E1000_EIMS_OTHER;
888 
889 		break;
890 
891 	case e1000_82576:
892 	case e1000_82580:
893 	case e1000_i350:
894 	case e1000_i354:
895 	case e1000_i210:
896 	case e1000_i211:
897 		/* Turn on MSI-X capability first, or our settings
898 		 * won't stick.  And it will take days to debug.
899 		 */
900 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 		     E1000_GPIE_NSICR);
903 
904 		/* enable msix_other interrupt */
905 		adapter->eims_other = BIT(vector);
906 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907 
908 		wr32(E1000_IVAR_MISC, tmp);
909 		break;
910 	default:
911 		/* do nothing, since nothing else supports MSI-X */
912 		break;
913 	} /* switch (hw->mac.type) */
914 
915 	adapter->eims_enable_mask |= adapter->eims_other;
916 
917 	for (i = 0; i < adapter->num_q_vectors; i++)
918 		igb_assign_vector(adapter->q_vector[i], vector++);
919 
920 	wrfl();
921 }
922 
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 	unsigned int num_q_vectors = adapter->num_q_vectors;
933 	struct net_device *netdev = adapter->netdev;
934 	int i, err = 0, vector = 0, free_vector = 0;
935 
936 	err = request_irq(adapter->msix_entries[vector].vector,
937 			  igb_msix_other, 0, netdev->name, adapter);
938 	if (err)
939 		goto err_out;
940 
941 	if (num_q_vectors > MAX_Q_VECTORS) {
942 		num_q_vectors = MAX_Q_VECTORS;
943 		dev_warn(&adapter->pdev->dev,
944 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 			 adapter->num_q_vectors, MAX_Q_VECTORS);
946 	}
947 	for (i = 0; i < num_q_vectors; i++) {
948 		struct igb_q_vector *q_vector = adapter->q_vector[i];
949 
950 		vector++;
951 
952 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953 
954 		if (q_vector->rx.ring && q_vector->tx.ring)
955 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 				q_vector->rx.ring->queue_index);
957 		else if (q_vector->tx.ring)
958 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 				q_vector->tx.ring->queue_index);
960 		else if (q_vector->rx.ring)
961 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 				q_vector->rx.ring->queue_index);
963 		else
964 			sprintf(q_vector->name, "%s-unused", netdev->name);
965 
966 		err = request_irq(adapter->msix_entries[vector].vector,
967 				  igb_msix_ring, 0, q_vector->name,
968 				  q_vector);
969 		if (err)
970 			goto err_free;
971 	}
972 
973 	igb_configure_msix(adapter);
974 	return 0;
975 
976 err_free:
977 	/* free already assigned IRQs */
978 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979 
980 	vector--;
981 	for (i = 0; i < vector; i++) {
982 		free_irq(adapter->msix_entries[free_vector++].vector,
983 			 adapter->q_vector[i]);
984 	}
985 err_out:
986 	return err;
987 }
988 
989 /**
990  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
991  *  @adapter: board private structure to initialize
992  *  @v_idx: Index of vector to be freed
993  *
994  *  This function frees the memory allocated to the q_vector.
995  **/
996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999 
1000 	adapter->q_vector[v_idx] = NULL;
1001 
1002 	/* igb_get_stats64() might access the rings on this vector,
1003 	 * we must wait a grace period before freeing it.
1004 	 */
1005 	if (q_vector)
1006 		kfree_rcu(q_vector, rcu);
1007 }
1008 
1009 /**
1010  *  igb_reset_q_vector - Reset config for interrupt vector
1011  *  @adapter: board private structure to initialize
1012  *  @v_idx: Index of vector to be reset
1013  *
1014  *  If NAPI is enabled it will delete any references to the
1015  *  NAPI struct. This is preparation for igb_free_q_vector.
1016  **/
1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020 
1021 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 	 * allocated. So, q_vector is NULL so we should stop here.
1023 	 */
1024 	if (!q_vector)
1025 		return;
1026 
1027 	if (q_vector->tx.ring)
1028 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029 
1030 	if (q_vector->rx.ring)
1031 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032 
1033 	netif_napi_del(&q_vector->napi);
1034 
1035 }
1036 
1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039 	int v_idx = adapter->num_q_vectors;
1040 
1041 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 		pci_disable_msix(adapter->pdev);
1043 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 		pci_disable_msi(adapter->pdev);
1045 
1046 	while (v_idx--)
1047 		igb_reset_q_vector(adapter, v_idx);
1048 }
1049 
1050 /**
1051  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1052  *  @adapter: board private structure to initialize
1053  *
1054  *  This function frees the memory allocated to the q_vectors.  In addition if
1055  *  NAPI is enabled it will delete any references to the NAPI struct prior
1056  *  to freeing the q_vector.
1057  **/
1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060 	int v_idx = adapter->num_q_vectors;
1061 
1062 	adapter->num_tx_queues = 0;
1063 	adapter->num_rx_queues = 0;
1064 	adapter->num_q_vectors = 0;
1065 
1066 	while (v_idx--) {
1067 		igb_reset_q_vector(adapter, v_idx);
1068 		igb_free_q_vector(adapter, v_idx);
1069 	}
1070 }
1071 
1072 /**
1073  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074  *  @adapter: board private structure to initialize
1075  *
1076  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1077  *  MSI-X interrupts allocated.
1078  */
1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081 	igb_free_q_vectors(adapter);
1082 	igb_reset_interrupt_capability(adapter);
1083 }
1084 
1085 /**
1086  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1087  *  @adapter: board private structure to initialize
1088  *  @msix: boolean value of MSIX capability
1089  *
1090  *  Attempt to configure interrupts using the best available
1091  *  capabilities of the hardware and kernel.
1092  **/
1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095 	int err;
1096 	int numvecs, i;
1097 
1098 	if (!msix)
1099 		goto msi_only;
1100 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1101 
1102 	/* Number of supported queues. */
1103 	adapter->num_rx_queues = adapter->rss_queues;
1104 	if (adapter->vfs_allocated_count)
1105 		adapter->num_tx_queues = 1;
1106 	else
1107 		adapter->num_tx_queues = adapter->rss_queues;
1108 
1109 	/* start with one vector for every Rx queue */
1110 	numvecs = adapter->num_rx_queues;
1111 
1112 	/* if Tx handler is separate add 1 for every Tx queue */
1113 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 		numvecs += adapter->num_tx_queues;
1115 
1116 	/* store the number of vectors reserved for queues */
1117 	adapter->num_q_vectors = numvecs;
1118 
1119 	/* add 1 vector for link status interrupts */
1120 	numvecs++;
1121 	for (i = 0; i < numvecs; i++)
1122 		adapter->msix_entries[i].entry = i;
1123 
1124 	err = pci_enable_msix_range(adapter->pdev,
1125 				    adapter->msix_entries,
1126 				    numvecs,
1127 				    numvecs);
1128 	if (err > 0)
1129 		return;
1130 
1131 	igb_reset_interrupt_capability(adapter);
1132 
1133 	/* If we can't do MSI-X, try MSI */
1134 msi_only:
1135 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 	/* disable SR-IOV for non MSI-X configurations */
1138 	if (adapter->vf_data) {
1139 		struct e1000_hw *hw = &adapter->hw;
1140 		/* disable iov and allow time for transactions to clear */
1141 		pci_disable_sriov(adapter->pdev);
1142 		msleep(500);
1143 
1144 		kfree(adapter->vf_mac_list);
1145 		adapter->vf_mac_list = NULL;
1146 		kfree(adapter->vf_data);
1147 		adapter->vf_data = NULL;
1148 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 		wrfl();
1150 		msleep(100);
1151 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 	}
1153 #endif
1154 	adapter->vfs_allocated_count = 0;
1155 	adapter->rss_queues = 1;
1156 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 	adapter->num_rx_queues = 1;
1158 	adapter->num_tx_queues = 1;
1159 	adapter->num_q_vectors = 1;
1160 	if (!pci_enable_msi(adapter->pdev))
1161 		adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163 
1164 static void igb_add_ring(struct igb_ring *ring,
1165 			 struct igb_ring_container *head)
1166 {
1167 	head->ring = ring;
1168 	head->count++;
1169 }
1170 
1171 /**
1172  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173  *  @adapter: board private structure to initialize
1174  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1175  *  @v_idx: index of vector in adapter struct
1176  *  @txr_count: total number of Tx rings to allocate
1177  *  @txr_idx: index of first Tx ring to allocate
1178  *  @rxr_count: total number of Rx rings to allocate
1179  *  @rxr_idx: index of first Rx ring to allocate
1180  *
1181  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1182  **/
1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 			      int v_count, int v_idx,
1185 			      int txr_count, int txr_idx,
1186 			      int rxr_count, int rxr_idx)
1187 {
1188 	struct igb_q_vector *q_vector;
1189 	struct igb_ring *ring;
1190 	int ring_count;
1191 	size_t size;
1192 
1193 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 	if (txr_count > 1 || rxr_count > 1)
1195 		return -ENOMEM;
1196 
1197 	ring_count = txr_count + rxr_count;
1198 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1199 
1200 	/* allocate q_vector and rings */
1201 	q_vector = adapter->q_vector[v_idx];
1202 	if (!q_vector) {
1203 		q_vector = kzalloc(size, GFP_KERNEL);
1204 	} else if (size > ksize(q_vector)) {
1205 		struct igb_q_vector *new_q_vector;
1206 
1207 		new_q_vector = kzalloc(size, GFP_KERNEL);
1208 		if (new_q_vector)
1209 			kfree_rcu(q_vector, rcu);
1210 		q_vector = new_q_vector;
1211 	} else {
1212 		memset(q_vector, 0, size);
1213 	}
1214 	if (!q_vector)
1215 		return -ENOMEM;
1216 
1217 	/* initialize NAPI */
1218 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1219 
1220 	/* tie q_vector and adapter together */
1221 	adapter->q_vector[v_idx] = q_vector;
1222 	q_vector->adapter = adapter;
1223 
1224 	/* initialize work limits */
1225 	q_vector->tx.work_limit = adapter->tx_work_limit;
1226 
1227 	/* initialize ITR configuration */
1228 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 	q_vector->itr_val = IGB_START_ITR;
1230 
1231 	/* initialize pointer to rings */
1232 	ring = q_vector->ring;
1233 
1234 	/* intialize ITR */
1235 	if (rxr_count) {
1236 		/* rx or rx/tx vector */
1237 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 			q_vector->itr_val = adapter->rx_itr_setting;
1239 	} else {
1240 		/* tx only vector */
1241 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 			q_vector->itr_val = adapter->tx_itr_setting;
1243 	}
1244 
1245 	if (txr_count) {
1246 		/* assign generic ring traits */
1247 		ring->dev = &adapter->pdev->dev;
1248 		ring->netdev = adapter->netdev;
1249 
1250 		/* configure backlink on ring */
1251 		ring->q_vector = q_vector;
1252 
1253 		/* update q_vector Tx values */
1254 		igb_add_ring(ring, &q_vector->tx);
1255 
1256 		/* For 82575, context index must be unique per ring. */
1257 		if (adapter->hw.mac.type == e1000_82575)
1258 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259 
1260 		/* apply Tx specific ring traits */
1261 		ring->count = adapter->tx_ring_count;
1262 		ring->queue_index = txr_idx;
1263 
1264 		ring->cbs_enable = false;
1265 		ring->idleslope = 0;
1266 		ring->sendslope = 0;
1267 		ring->hicredit = 0;
1268 		ring->locredit = 0;
1269 
1270 		u64_stats_init(&ring->tx_syncp);
1271 		u64_stats_init(&ring->tx_syncp2);
1272 
1273 		/* assign ring to adapter */
1274 		adapter->tx_ring[txr_idx] = ring;
1275 
1276 		/* push pointer to next ring */
1277 		ring++;
1278 	}
1279 
1280 	if (rxr_count) {
1281 		/* assign generic ring traits */
1282 		ring->dev = &adapter->pdev->dev;
1283 		ring->netdev = adapter->netdev;
1284 
1285 		/* configure backlink on ring */
1286 		ring->q_vector = q_vector;
1287 
1288 		/* update q_vector Rx values */
1289 		igb_add_ring(ring, &q_vector->rx);
1290 
1291 		/* set flag indicating ring supports SCTP checksum offload */
1292 		if (adapter->hw.mac.type >= e1000_82576)
1293 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294 
1295 		/* On i350, i354, i210, and i211, loopback VLAN packets
1296 		 * have the tag byte-swapped.
1297 		 */
1298 		if (adapter->hw.mac.type >= e1000_i350)
1299 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300 
1301 		/* apply Rx specific ring traits */
1302 		ring->count = adapter->rx_ring_count;
1303 		ring->queue_index = rxr_idx;
1304 
1305 		u64_stats_init(&ring->rx_syncp);
1306 
1307 		/* assign ring to adapter */
1308 		adapter->rx_ring[rxr_idx] = ring;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 
1315 /**
1316  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317  *  @adapter: board private structure to initialize
1318  *
1319  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1320  *  return -ENOMEM.
1321  **/
1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 {
1324 	int q_vectors = adapter->num_q_vectors;
1325 	int rxr_remaining = adapter->num_rx_queues;
1326 	int txr_remaining = adapter->num_tx_queues;
1327 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 	int err;
1329 
1330 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 		for (; rxr_remaining; v_idx++) {
1332 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333 						 0, 0, 1, rxr_idx);
1334 
1335 			if (err)
1336 				goto err_out;
1337 
1338 			/* update counts and index */
1339 			rxr_remaining--;
1340 			rxr_idx++;
1341 		}
1342 	}
1343 
1344 	for (; v_idx < q_vectors; v_idx++) {
1345 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347 
1348 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 					 tqpv, txr_idx, rqpv, rxr_idx);
1350 
1351 		if (err)
1352 			goto err_out;
1353 
1354 		/* update counts and index */
1355 		rxr_remaining -= rqpv;
1356 		txr_remaining -= tqpv;
1357 		rxr_idx++;
1358 		txr_idx++;
1359 	}
1360 
1361 	return 0;
1362 
1363 err_out:
1364 	adapter->num_tx_queues = 0;
1365 	adapter->num_rx_queues = 0;
1366 	adapter->num_q_vectors = 0;
1367 
1368 	while (v_idx--)
1369 		igb_free_q_vector(adapter, v_idx);
1370 
1371 	return -ENOMEM;
1372 }
1373 
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 	struct pci_dev *pdev = adapter->pdev;
1384 	int err;
1385 
1386 	igb_set_interrupt_capability(adapter, msix);
1387 
1388 	err = igb_alloc_q_vectors(adapter);
1389 	if (err) {
1390 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 		goto err_alloc_q_vectors;
1392 	}
1393 
1394 	igb_cache_ring_register(adapter);
1395 
1396 	return 0;
1397 
1398 err_alloc_q_vectors:
1399 	igb_reset_interrupt_capability(adapter);
1400 	return err;
1401 }
1402 
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 	struct net_device *netdev = adapter->netdev;
1413 	struct pci_dev *pdev = adapter->pdev;
1414 	int err = 0;
1415 
1416 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 		err = igb_request_msix(adapter);
1418 		if (!err)
1419 			goto request_done;
1420 		/* fall back to MSI */
1421 		igb_free_all_tx_resources(adapter);
1422 		igb_free_all_rx_resources(adapter);
1423 
1424 		igb_clear_interrupt_scheme(adapter);
1425 		err = igb_init_interrupt_scheme(adapter, false);
1426 		if (err)
1427 			goto request_done;
1428 
1429 		igb_setup_all_tx_resources(adapter);
1430 		igb_setup_all_rx_resources(adapter);
1431 		igb_configure(adapter);
1432 	}
1433 
1434 	igb_assign_vector(adapter->q_vector[0], 0);
1435 
1436 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 				  netdev->name, adapter);
1439 		if (!err)
1440 			goto request_done;
1441 
1442 		/* fall back to legacy interrupts */
1443 		igb_reset_interrupt_capability(adapter);
1444 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 	}
1446 
1447 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 			  netdev->name, adapter);
1449 
1450 	if (err)
1451 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 			err);
1453 
1454 request_done:
1455 	return err;
1456 }
1457 
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 		int vector = 0, i;
1462 
1463 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1464 
1465 		for (i = 0; i < adapter->num_q_vectors; i++)
1466 			free_irq(adapter->msix_entries[vector++].vector,
1467 				 adapter->q_vector[i]);
1468 	} else {
1469 		free_irq(adapter->pdev->irq, adapter);
1470 	}
1471 }
1472 
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 
1481 	/* we need to be careful when disabling interrupts.  The VFs are also
1482 	 * mapped into these registers and so clearing the bits can cause
1483 	 * issues on the VF drivers so we only need to clear what we set
1484 	 */
1485 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 		u32 regval = rd32(E1000_EIAM);
1487 
1488 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 		regval = rd32(E1000_EIAC);
1491 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 	}
1493 
1494 	wr32(E1000_IAM, 0);
1495 	wr32(E1000_IMC, ~0);
1496 	wrfl();
1497 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 		int i;
1499 
1500 		for (i = 0; i < adapter->num_q_vectors; i++)
1501 			synchronize_irq(adapter->msix_entries[i].vector);
1502 	} else {
1503 		synchronize_irq(adapter->pdev->irq);
1504 	}
1505 }
1506 
1507 /**
1508  *  igb_irq_enable - Enable default interrupt generation settings
1509  *  @adapter: board private structure
1510  **/
1511 static void igb_irq_enable(struct igb_adapter *adapter)
1512 {
1513 	struct e1000_hw *hw = &adapter->hw;
1514 
1515 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 		u32 regval = rd32(E1000_EIAC);
1518 
1519 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 		regval = rd32(E1000_EIAM);
1521 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 		if (adapter->vfs_allocated_count) {
1524 			wr32(E1000_MBVFIMR, 0xFF);
1525 			ims |= E1000_IMS_VMMB;
1526 		}
1527 		wr32(E1000_IMS, ims);
1528 	} else {
1529 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 				E1000_IMS_DRSTA);
1533 	}
1534 }
1535 
1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 {
1538 	struct e1000_hw *hw = &adapter->hw;
1539 	u16 pf_id = adapter->vfs_allocated_count;
1540 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 	u16 old_vid = adapter->mng_vlan_id;
1542 
1543 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 		/* add VID to filter table */
1545 		igb_vfta_set(hw, vid, pf_id, true, true);
1546 		adapter->mng_vlan_id = vid;
1547 	} else {
1548 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 	}
1550 
1551 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 	    (vid != old_vid) &&
1553 	    !test_bit(old_vid, adapter->active_vlans)) {
1554 		/* remove VID from filter table */
1555 		igb_vfta_set(hw, vid, pf_id, false, true);
1556 	}
1557 }
1558 
1559 /**
1560  *  igb_release_hw_control - release control of the h/w to f/w
1561  *  @adapter: address of board private structure
1562  *
1563  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564  *  For ASF and Pass Through versions of f/w this means that the
1565  *  driver is no longer loaded.
1566  **/
1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 {
1569 	struct e1000_hw *hw = &adapter->hw;
1570 	u32 ctrl_ext;
1571 
1572 	/* Let firmware take over control of h/w */
1573 	ctrl_ext = rd32(E1000_CTRL_EXT);
1574 	wr32(E1000_CTRL_EXT,
1575 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576 }
1577 
1578 /**
1579  *  igb_get_hw_control - get control of the h/w from f/w
1580  *  @adapter: address of board private structure
1581  *
1582  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583  *  For ASF and Pass Through versions of f/w this means that
1584  *  the driver is loaded.
1585  **/
1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 {
1588 	struct e1000_hw *hw = &adapter->hw;
1589 	u32 ctrl_ext;
1590 
1591 	/* Let firmware know the driver has taken over */
1592 	ctrl_ext = rd32(E1000_CTRL_EXT);
1593 	wr32(E1000_CTRL_EXT,
1594 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595 }
1596 
1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 {
1599 	struct net_device *netdev = adapter->netdev;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 
1602 	WARN_ON(hw->mac.type != e1000_i210);
1603 
1604 	if (enable)
1605 		adapter->flags |= IGB_FLAG_FQTSS;
1606 	else
1607 		adapter->flags &= ~IGB_FLAG_FQTSS;
1608 
1609 	if (netif_running(netdev))
1610 		schedule_work(&adapter->reset_task);
1611 }
1612 
1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 {
1615 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616 }
1617 
1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 				   enum tx_queue_prio prio)
1620 {
1621 	u32 val;
1622 
1623 	WARN_ON(hw->mac.type != e1000_i210);
1624 	WARN_ON(queue < 0 || queue > 4);
1625 
1626 	val = rd32(E1000_I210_TXDCTL(queue));
1627 
1628 	if (prio == TX_QUEUE_PRIO_HIGH)
1629 		val |= E1000_TXDCTL_PRIORITY;
1630 	else
1631 		val &= ~E1000_TXDCTL_PRIORITY;
1632 
1633 	wr32(E1000_I210_TXDCTL(queue), val);
1634 }
1635 
1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637 {
1638 	u32 val;
1639 
1640 	WARN_ON(hw->mac.type != e1000_i210);
1641 	WARN_ON(queue < 0 || queue > 1);
1642 
1643 	val = rd32(E1000_I210_TQAVCC(queue));
1644 
1645 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 		val |= E1000_TQAVCC_QUEUEMODE;
1647 	else
1648 		val &= ~E1000_TQAVCC_QUEUEMODE;
1649 
1650 	wr32(E1000_I210_TQAVCC(queue), val);
1651 }
1652 
1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654 {
1655 	int i;
1656 
1657 	for (i = 0; i < adapter->num_tx_queues; i++) {
1658 		if (adapter->tx_ring[i]->cbs_enable)
1659 			return true;
1660 	}
1661 
1662 	return false;
1663 }
1664 
1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666 {
1667 	int i;
1668 
1669 	for (i = 0; i < adapter->num_tx_queues; i++) {
1670 		if (adapter->tx_ring[i]->launchtime_enable)
1671 			return true;
1672 	}
1673 
1674 	return false;
1675 }
1676 
1677 /**
1678  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679  *  @adapter: pointer to adapter struct
1680  *  @queue: queue number
1681  *
1682  *  Configure CBS and Launchtime for a given hardware queue.
1683  *  Parameters are retrieved from the correct Tx ring, so
1684  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1685  *  for setting those correctly prior to this function being called.
1686  **/
1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 {
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	struct igb_ring *ring;
1692 	u32 tqavcc, tqavctrl;
1693 	u16 value;
1694 
1695 	WARN_ON(hw->mac.type != e1000_i210);
1696 	WARN_ON(queue < 0 || queue > 1);
1697 	ring = adapter->tx_ring[queue];
1698 
1699 	/* If any of the Qav features is enabled, configure queues as SR and
1700 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 	 * as SP.
1702 	 */
1703 	if (ring->cbs_enable || ring->launchtime_enable) {
1704 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 	} else {
1707 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 	}
1710 
1711 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1712 	if (ring->cbs_enable || queue == 0) {
1713 		/* i210 does not allow the queue 0 to be in the Strict
1714 		 * Priority mode while the Qav mode is enabled, so,
1715 		 * instead of disabling strict priority mode, we give
1716 		 * queue 0 the maximum of credits possible.
1717 		 *
1718 		 * See section 8.12.19 of the i210 datasheet, "Note:
1719 		 * Queue0 QueueMode must be set to 1b when
1720 		 * TransmitMode is set to Qav."
1721 		 */
1722 		if (queue == 0 && !ring->cbs_enable) {
1723 			/* max "linkspeed" idleslope in kbps */
1724 			ring->idleslope = 1000000;
1725 			ring->hicredit = ETH_FRAME_LEN;
1726 		}
1727 
1728 		/* Always set data transfer arbitration to credit-based
1729 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 		 * the queues.
1731 		 */
1732 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735 
1736 		/* According to i210 datasheet section 7.2.7.7, we should set
1737 		 * the 'idleSlope' field from TQAVCC register following the
1738 		 * equation:
1739 		 *
1740 		 * For 100 Mbps link speed:
1741 		 *
1742 		 *     value = BW * 0x7735 * 0.2                          (E1)
1743 		 *
1744 		 * For 1000Mbps link speed:
1745 		 *
1746 		 *     value = BW * 0x7735 * 2                            (E2)
1747 		 *
1748 		 * E1 and E2 can be merged into one equation as shown below.
1749 		 * Note that 'link-speed' is in Mbps.
1750 		 *
1751 		 *     value = BW * 0x7735 * 2 * link-speed
1752 		 *                           --------------               (E3)
1753 		 *                                1000
1754 		 *
1755 		 * 'BW' is the percentage bandwidth out of full link speed
1756 		 * which can be found with the following equation. Note that
1757 		 * idleSlope here is the parameter from this function which
1758 		 * is in kbps.
1759 		 *
1760 		 *     BW =     idleSlope
1761 		 *          -----------------                             (E4)
1762 		 *          link-speed * 1000
1763 		 *
1764 		 * That said, we can come up with a generic equation to
1765 		 * calculate the value we should set it TQAVCC register by
1766 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 		 *
1768 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1769 		 *         -----------------            --------------    (E5)
1770 		 *         link-speed * 1000                 1000
1771 		 *
1772 		 * 'link-speed' is present in both sides of the fraction so
1773 		 * it is canceled out. The final equation is the following:
1774 		 *
1775 		 *     value = idleSlope * 61034
1776 		 *             -----------------                          (E6)
1777 		 *                  1000000
1778 		 *
1779 		 * NOTE: For i210, given the above, we can see that idleslope
1780 		 *       is represented in 16.38431 kbps units by the value at
1781 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1782 		 *       the granularity for idleslope increments.
1783 		 *       For instance, if you want to configure a 2576kbps
1784 		 *       idleslope, the value to be written on the register
1785 		 *       would have to be 157.23. If rounded down, you end
1786 		 *       up with less bandwidth available than originally
1787 		 *       required (~2572 kbps). If rounded up, you end up
1788 		 *       with a higher bandwidth (~2589 kbps). Below the
1789 		 *       approach we take is to always round up the
1790 		 *       calculated value, so the resulting bandwidth might
1791 		 *       be slightly higher for some configurations.
1792 		 */
1793 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794 
1795 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 		tqavcc |= value;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		wr32(E1000_I210_TQAVHC(queue),
1801 		     0x80000000 + ring->hicredit * 0x7735);
1802 	} else {
1803 
1804 		/* Set idleSlope to zero. */
1805 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808 
1809 		/* Set hiCredit to zero. */
1810 		wr32(E1000_I210_TQAVHC(queue), 0);
1811 
1812 		/* If CBS is not enabled for any queues anymore, then return to
1813 		 * the default state of Data Transmission Arbitration on
1814 		 * TQAVCTRL.
1815 		 */
1816 		if (!is_any_cbs_enabled(adapter)) {
1817 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 		}
1821 	}
1822 
1823 	/* If LaunchTime is enabled, set DataTranTIM. */
1824 	if (ring->launchtime_enable) {
1825 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 		 * for any of the SR queues, and configure fetchtime delta.
1827 		 * XXX NOTE:
1828 		 *     - LaunchTime will be enabled for all SR queues.
1829 		 *     - A fixed offset can be added relative to the launch
1830 		 *       time of all packets if configured at reg LAUNCH_OS0.
1831 		 *       We are keeping it as 0 for now (default value).
1832 		 */
1833 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 	} else {
1838 		/* If Launchtime is not enabled for any SR queues anymore,
1839 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 		 * effectively disabling Launchtime.
1841 		 */
1842 		if (!is_any_txtime_enabled(adapter)) {
1843 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 		}
1848 	}
1849 
1850 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 	 * CBS are not configurable by software so we don't do any 'controller
1852 	 * configuration' in respect to these parameters.
1853 	 */
1854 
1855 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 		   ring->cbs_enable ? "enabled" : "disabled",
1857 		   ring->launchtime_enable ? "enabled" : "disabled",
1858 		   queue,
1859 		   ring->idleslope, ring->sendslope,
1860 		   ring->hicredit, ring->locredit);
1861 }
1862 
1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 				  bool enable)
1865 {
1866 	struct igb_ring *ring;
1867 
1868 	if (queue < 0 || queue > adapter->num_tx_queues)
1869 		return -EINVAL;
1870 
1871 	ring = adapter->tx_ring[queue];
1872 	ring->launchtime_enable = enable;
1873 
1874 	return 0;
1875 }
1876 
1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 			       bool enable, int idleslope, int sendslope,
1879 			       int hicredit, int locredit)
1880 {
1881 	struct igb_ring *ring;
1882 
1883 	if (queue < 0 || queue > adapter->num_tx_queues)
1884 		return -EINVAL;
1885 
1886 	ring = adapter->tx_ring[queue];
1887 
1888 	ring->cbs_enable = enable;
1889 	ring->idleslope = idleslope;
1890 	ring->sendslope = sendslope;
1891 	ring->hicredit = hicredit;
1892 	ring->locredit = locredit;
1893 
1894 	return 0;
1895 }
1896 
1897 /**
1898  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899  *  @adapter: pointer to adapter struct
1900  *
1901  *  Configure TQAVCTRL register switching the controller's Tx mode
1902  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903  *  a call to igb_config_tx_modes() per queue so any previously saved
1904  *  Tx parameters are applied.
1905  **/
1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908 	struct net_device *netdev = adapter->netdev;
1909 	struct e1000_hw *hw = &adapter->hw;
1910 	u32 val;
1911 
1912 	/* Only i210 controller supports changing the transmission mode. */
1913 	if (hw->mac.type != e1000_i210)
1914 		return;
1915 
1916 	if (is_fqtss_enabled(adapter)) {
1917 		int i, max_queue;
1918 
1919 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 		 * so SP queues wait for SR ones.
1922 		 */
1923 		val = rd32(E1000_I210_TQAVCTRL);
1924 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 		wr32(E1000_I210_TQAVCTRL, val);
1927 
1928 		/* Configure Tx and Rx packet buffers sizes as described in
1929 		 * i210 datasheet section 7.2.7.7.
1930 		 */
1931 		val = rd32(E1000_TXPBS);
1932 		val &= ~I210_TXPBSIZE_MASK;
1933 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 		wr32(E1000_TXPBS, val);
1936 
1937 		val = rd32(E1000_RXPBS);
1938 		val &= ~I210_RXPBSIZE_MASK;
1939 		val |= I210_RXPBSIZE_PB_30KB;
1940 		wr32(E1000_RXPBS, val);
1941 
1942 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 		 * register should not exceed the buffer size programmed in
1944 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 		 * 4kB / 64.
1947 		 *
1948 		 * However, when we do so, no frame from queue 2 and 3 are
1949 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 		 */
1953 		val = (4096 - 1) / 64;
1954 		wr32(E1000_I210_DTXMXPKTSZ, val);
1955 
1956 		/* Since FQTSS mode is enabled, apply any CBS configuration
1957 		 * previously set. If no previous CBS configuration has been
1958 		 * done, then the initial configuration is applied, which means
1959 		 * CBS is disabled.
1960 		 */
1961 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963 
1964 		for (i = 0; i < max_queue; i++) {
1965 			igb_config_tx_modes(adapter, i);
1966 		}
1967 	} else {
1968 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971 
1972 		val = rd32(E1000_I210_TQAVCTRL);
1973 		/* According to Section 8.12.21, the other flags we've set when
1974 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 		 * don't set they here.
1976 		 */
1977 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 		wr32(E1000_I210_TQAVCTRL, val);
1979 	}
1980 
1981 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 		   "enabled" : "disabled");
1983 }
1984 
1985 /**
1986  *  igb_configure - configure the hardware for RX and TX
1987  *  @adapter: private board structure
1988  **/
1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991 	struct net_device *netdev = adapter->netdev;
1992 	int i;
1993 
1994 	igb_get_hw_control(adapter);
1995 	igb_set_rx_mode(netdev);
1996 	igb_setup_tx_mode(adapter);
1997 
1998 	igb_restore_vlan(adapter);
1999 
2000 	igb_setup_tctl(adapter);
2001 	igb_setup_mrqc(adapter);
2002 	igb_setup_rctl(adapter);
2003 
2004 	igb_nfc_filter_restore(adapter);
2005 	igb_configure_tx(adapter);
2006 	igb_configure_rx(adapter);
2007 
2008 	igb_rx_fifo_flush_82575(&adapter->hw);
2009 
2010 	/* call igb_desc_unused which always leaves
2011 	 * at least 1 descriptor unused to make sure
2012 	 * next_to_use != next_to_clean
2013 	 */
2014 	for (i = 0; i < adapter->num_rx_queues; i++) {
2015 		struct igb_ring *ring = adapter->rx_ring[i];
2016 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 	}
2018 }
2019 
2020 /**
2021  *  igb_power_up_link - Power up the phy/serdes link
2022  *  @adapter: address of board private structure
2023  **/
2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026 	igb_reset_phy(&adapter->hw);
2027 
2028 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 		igb_power_up_phy_copper(&adapter->hw);
2030 	else
2031 		igb_power_up_serdes_link_82575(&adapter->hw);
2032 
2033 	igb_setup_link(&adapter->hw);
2034 }
2035 
2036 /**
2037  *  igb_power_down_link - Power down the phy/serdes link
2038  *  @adapter: address of board private structure
2039  */
2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 		igb_power_down_phy_copper_82575(&adapter->hw);
2044 	else
2045 		igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047 
2048 /**
2049  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2050  * @adapter: address of the board private structure
2051  **/
2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054 	struct e1000_hw *hw = &adapter->hw;
2055 	u32 ctrl_ext, connsw;
2056 	bool swap_now = false;
2057 
2058 	ctrl_ext = rd32(E1000_CTRL_EXT);
2059 	connsw = rd32(E1000_CONNSW);
2060 
2061 	/* need to live swap if current media is copper and we have fiber/serdes
2062 	 * to go to.
2063 	 */
2064 
2065 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 		swap_now = true;
2068 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 		   !(connsw & E1000_CONNSW_SERDESD)) {
2070 		/* copper signal takes time to appear */
2071 		if (adapter->copper_tries < 4) {
2072 			adapter->copper_tries++;
2073 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 			wr32(E1000_CONNSW, connsw);
2075 			return;
2076 		} else {
2077 			adapter->copper_tries = 0;
2078 			if ((connsw & E1000_CONNSW_PHYSD) &&
2079 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 				swap_now = true;
2081 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 				wr32(E1000_CONNSW, connsw);
2083 			}
2084 		}
2085 	}
2086 
2087 	if (!swap_now)
2088 		return;
2089 
2090 	switch (hw->phy.media_type) {
2091 	case e1000_media_type_copper:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to fiber/serdes\n");
2094 		ctrl_ext |=
2095 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		adapter->copper_tries = 0;
2098 		break;
2099 	case e1000_media_type_internal_serdes:
2100 	case e1000_media_type_fiber:
2101 		netdev_info(adapter->netdev,
2102 			"MAS: changing media to copper\n");
2103 		ctrl_ext &=
2104 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 		break;
2107 	default:
2108 		/* shouldn't get here during regular operation */
2109 		netdev_err(adapter->netdev,
2110 			"AMS: Invalid media type found, returning\n");
2111 		break;
2112 	}
2113 	wr32(E1000_CTRL_EXT, ctrl_ext);
2114 }
2115 
2116 /**
2117  *  igb_up - Open the interface and prepare it to handle traffic
2118  *  @adapter: board private structure
2119  **/
2120 int igb_up(struct igb_adapter *adapter)
2121 {
2122 	struct e1000_hw *hw = &adapter->hw;
2123 	int i;
2124 
2125 	/* hardware has been reset, we need to reload some things */
2126 	igb_configure(adapter);
2127 
2128 	clear_bit(__IGB_DOWN, &adapter->state);
2129 
2130 	for (i = 0; i < adapter->num_q_vectors; i++)
2131 		napi_enable(&(adapter->q_vector[i]->napi));
2132 
2133 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 		igb_configure_msix(adapter);
2135 	else
2136 		igb_assign_vector(adapter->q_vector[0], 0);
2137 
2138 	/* Clear any pending interrupts. */
2139 	rd32(E1000_TSICR);
2140 	rd32(E1000_ICR);
2141 	igb_irq_enable(adapter);
2142 
2143 	/* notify VFs that reset has been completed */
2144 	if (adapter->vfs_allocated_count) {
2145 		u32 reg_data = rd32(E1000_CTRL_EXT);
2146 
2147 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 		wr32(E1000_CTRL_EXT, reg_data);
2149 	}
2150 
2151 	netif_tx_start_all_queues(adapter->netdev);
2152 
2153 	/* start the watchdog. */
2154 	hw->mac.get_link_status = 1;
2155 	schedule_work(&adapter->watchdog_task);
2156 
2157 	if ((adapter->flags & IGB_FLAG_EEE) &&
2158 	    (!hw->dev_spec._82575.eee_disable))
2159 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160 
2161 	return 0;
2162 }
2163 
2164 void igb_down(struct igb_adapter *adapter)
2165 {
2166 	struct net_device *netdev = adapter->netdev;
2167 	struct e1000_hw *hw = &adapter->hw;
2168 	u32 tctl, rctl;
2169 	int i;
2170 
2171 	/* signal that we're down so the interrupt handler does not
2172 	 * reschedule our watchdog timer
2173 	 */
2174 	set_bit(__IGB_DOWN, &adapter->state);
2175 
2176 	/* disable receives in the hardware */
2177 	rctl = rd32(E1000_RCTL);
2178 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 	/* flush and sleep below */
2180 
2181 	igb_nfc_filter_exit(adapter);
2182 
2183 	netif_carrier_off(netdev);
2184 	netif_tx_stop_all_queues(netdev);
2185 
2186 	/* disable transmits in the hardware */
2187 	tctl = rd32(E1000_TCTL);
2188 	tctl &= ~E1000_TCTL_EN;
2189 	wr32(E1000_TCTL, tctl);
2190 	/* flush both disables and wait for them to finish */
2191 	wrfl();
2192 	usleep_range(10000, 11000);
2193 
2194 	igb_irq_disable(adapter);
2195 
2196 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197 
2198 	for (i = 0; i < adapter->num_q_vectors; i++) {
2199 		if (adapter->q_vector[i]) {
2200 			napi_synchronize(&adapter->q_vector[i]->napi);
2201 			napi_disable(&adapter->q_vector[i]->napi);
2202 		}
2203 	}
2204 
2205 	del_timer_sync(&adapter->watchdog_timer);
2206 	del_timer_sync(&adapter->phy_info_timer);
2207 
2208 	/* record the stats before reset*/
2209 	spin_lock(&adapter->stats64_lock);
2210 	igb_update_stats(adapter);
2211 	spin_unlock(&adapter->stats64_lock);
2212 
2213 	adapter->link_speed = 0;
2214 	adapter->link_duplex = 0;
2215 
2216 	if (!pci_channel_offline(adapter->pdev))
2217 		igb_reset(adapter);
2218 
2219 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221 
2222 	igb_clean_all_tx_rings(adapter);
2223 	igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2225 
2226 	/* since we reset the hardware DCA settings were cleared */
2227 	igb_setup_dca(adapter);
2228 #endif
2229 }
2230 
2231 void igb_reinit_locked(struct igb_adapter *adapter)
2232 {
2233 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 		usleep_range(1000, 2000);
2235 	igb_down(adapter);
2236 	igb_up(adapter);
2237 	clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239 
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241  *
2242  * @adapter: adapter struct
2243  **/
2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 	u32 connsw = rd32(E1000_CONNSW);
2248 
2249 	/* configure for SerDes media detect */
2250 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2252 		connsw |= E1000_CONNSW_ENRGSRC;
2253 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 		wr32(E1000_CONNSW, connsw);
2255 		wrfl();
2256 	}
2257 }
2258 
2259 #ifdef CONFIG_IGB_HWMON
2260 /**
2261  *  igb_set_i2c_bb - Init I2C interface
2262  *  @hw: pointer to hardware structure
2263  **/
2264 static void igb_set_i2c_bb(struct e1000_hw *hw)
2265 {
2266 	u32 ctrl_ext;
2267 	s32 i2cctl;
2268 
2269 	ctrl_ext = rd32(E1000_CTRL_EXT);
2270 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2271 	wr32(E1000_CTRL_EXT, ctrl_ext);
2272 	wrfl();
2273 
2274 	i2cctl = rd32(E1000_I2CPARAMS);
2275 	i2cctl |= E1000_I2CBB_EN
2276 		| E1000_I2C_CLK_OE_N
2277 		| E1000_I2C_DATA_OE_N;
2278 	wr32(E1000_I2CPARAMS, i2cctl);
2279 	wrfl();
2280 }
2281 #endif
2282 
2283 void igb_reset(struct igb_adapter *adapter)
2284 {
2285 	struct pci_dev *pdev = adapter->pdev;
2286 	struct e1000_hw *hw = &adapter->hw;
2287 	struct e1000_mac_info *mac = &hw->mac;
2288 	struct e1000_fc_info *fc = &hw->fc;
2289 	u32 pba, hwm;
2290 
2291 	/* Repartition Pba for greater than 9k mtu
2292 	 * To take effect CTRL.RST is required.
2293 	 */
2294 	switch (mac->type) {
2295 	case e1000_i350:
2296 	case e1000_i354:
2297 	case e1000_82580:
2298 		pba = rd32(E1000_RXPBS);
2299 		pba = igb_rxpbs_adjust_82580(pba);
2300 		break;
2301 	case e1000_82576:
2302 		pba = rd32(E1000_RXPBS);
2303 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2304 		break;
2305 	case e1000_82575:
2306 	case e1000_i210:
2307 	case e1000_i211:
2308 	default:
2309 		pba = E1000_PBA_34K;
2310 		break;
2311 	}
2312 
2313 	if (mac->type == e1000_82575) {
2314 		u32 min_rx_space, min_tx_space, needed_tx_space;
2315 
2316 		/* write Rx PBA so that hardware can report correct Tx PBA */
2317 		wr32(E1000_PBA, pba);
2318 
2319 		/* To maintain wire speed transmits, the Tx FIFO should be
2320 		 * large enough to accommodate two full transmit packets,
2321 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2322 		 * the Rx FIFO should be large enough to accommodate at least
2323 		 * one full receive packet and is similarly rounded up and
2324 		 * expressed in KB.
2325 		 */
2326 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2327 
2328 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2329 		 * but don't include Ethernet FCS because hardware appends it.
2330 		 * We only need to round down to the nearest 512 byte block
2331 		 * count since the value we care about is 2 frames, not 1.
2332 		 */
2333 		min_tx_space = adapter->max_frame_size;
2334 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2335 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2336 
2337 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2338 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2339 
2340 		/* If current Tx allocation is less than the min Tx FIFO size,
2341 		 * and the min Tx FIFO size is less than the current Rx FIFO
2342 		 * allocation, take space away from current Rx allocation.
2343 		 */
2344 		if (needed_tx_space < pba) {
2345 			pba -= needed_tx_space;
2346 
2347 			/* if short on Rx space, Rx wins and must trump Tx
2348 			 * adjustment
2349 			 */
2350 			if (pba < min_rx_space)
2351 				pba = min_rx_space;
2352 		}
2353 
2354 		/* adjust PBA for jumbo frames */
2355 		wr32(E1000_PBA, pba);
2356 	}
2357 
2358 	/* flow control settings
2359 	 * The high water mark must be low enough to fit one full frame
2360 	 * after transmitting the pause frame.  As such we must have enough
2361 	 * space to allow for us to complete our current transmit and then
2362 	 * receive the frame that is in progress from the link partner.
2363 	 * Set it to:
2364 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2365 	 */
2366 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2367 
2368 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2369 	fc->low_water = fc->high_water - 16;
2370 	fc->pause_time = 0xFFFF;
2371 	fc->send_xon = 1;
2372 	fc->current_mode = fc->requested_mode;
2373 
2374 	/* disable receive for all VFs and wait one second */
2375 	if (adapter->vfs_allocated_count) {
2376 		int i;
2377 
2378 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2379 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2380 
2381 		/* ping all the active vfs to let them know we are going down */
2382 		igb_ping_all_vfs(adapter);
2383 
2384 		/* disable transmits and receives */
2385 		wr32(E1000_VFRE, 0);
2386 		wr32(E1000_VFTE, 0);
2387 	}
2388 
2389 	/* Allow time for pending master requests to run */
2390 	hw->mac.ops.reset_hw(hw);
2391 	wr32(E1000_WUC, 0);
2392 
2393 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2394 		/* need to resetup here after media swap */
2395 		adapter->ei.get_invariants(hw);
2396 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2397 	}
2398 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2399 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2400 		igb_enable_mas(adapter);
2401 	}
2402 	if (hw->mac.ops.init_hw(hw))
2403 		dev_err(&pdev->dev, "Hardware Error\n");
2404 
2405 	/* RAR registers were cleared during init_hw, clear mac table */
2406 	igb_flush_mac_table(adapter);
2407 	__dev_uc_unsync(adapter->netdev, NULL);
2408 
2409 	/* Recover default RAR entry */
2410 	igb_set_default_mac_filter(adapter);
2411 
2412 	/* Flow control settings reset on hardware reset, so guarantee flow
2413 	 * control is off when forcing speed.
2414 	 */
2415 	if (!hw->mac.autoneg)
2416 		igb_force_mac_fc(hw);
2417 
2418 	igb_init_dmac(adapter, pba);
2419 #ifdef CONFIG_IGB_HWMON
2420 	/* Re-initialize the thermal sensor on i350 devices. */
2421 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2422 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2423 			/* If present, re-initialize the external thermal sensor
2424 			 * interface.
2425 			 */
2426 			if (adapter->ets)
2427 				igb_set_i2c_bb(hw);
2428 			mac->ops.init_thermal_sensor_thresh(hw);
2429 		}
2430 	}
2431 #endif
2432 	/* Re-establish EEE setting */
2433 	if (hw->phy.media_type == e1000_media_type_copper) {
2434 		switch (mac->type) {
2435 		case e1000_i350:
2436 		case e1000_i210:
2437 		case e1000_i211:
2438 			igb_set_eee_i350(hw, true, true);
2439 			break;
2440 		case e1000_i354:
2441 			igb_set_eee_i354(hw, true, true);
2442 			break;
2443 		default:
2444 			break;
2445 		}
2446 	}
2447 	if (!netif_running(adapter->netdev))
2448 		igb_power_down_link(adapter);
2449 
2450 	igb_update_mng_vlan(adapter);
2451 
2452 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2453 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2454 
2455 	/* Re-enable PTP, where applicable. */
2456 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2457 		igb_ptp_reset(adapter);
2458 
2459 	igb_get_phy_info(hw);
2460 }
2461 
2462 static netdev_features_t igb_fix_features(struct net_device *netdev,
2463 	netdev_features_t features)
2464 {
2465 	/* Since there is no support for separate Rx/Tx vlan accel
2466 	 * enable/disable make sure Tx flag is always in same state as Rx.
2467 	 */
2468 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2469 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2470 	else
2471 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2472 
2473 	return features;
2474 }
2475 
2476 static int igb_set_features(struct net_device *netdev,
2477 	netdev_features_t features)
2478 {
2479 	netdev_features_t changed = netdev->features ^ features;
2480 	struct igb_adapter *adapter = netdev_priv(netdev);
2481 
2482 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2483 		igb_vlan_mode(netdev, features);
2484 
2485 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2486 		return 0;
2487 
2488 	if (!(features & NETIF_F_NTUPLE)) {
2489 		struct hlist_node *node2;
2490 		struct igb_nfc_filter *rule;
2491 
2492 		spin_lock(&adapter->nfc_lock);
2493 		hlist_for_each_entry_safe(rule, node2,
2494 					  &adapter->nfc_filter_list, nfc_node) {
2495 			igb_erase_filter(adapter, rule);
2496 			hlist_del(&rule->nfc_node);
2497 			kfree(rule);
2498 		}
2499 		spin_unlock(&adapter->nfc_lock);
2500 		adapter->nfc_filter_count = 0;
2501 	}
2502 
2503 	netdev->features = features;
2504 
2505 	if (netif_running(netdev))
2506 		igb_reinit_locked(adapter);
2507 	else
2508 		igb_reset(adapter);
2509 
2510 	return 1;
2511 }
2512 
2513 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2514 			   struct net_device *dev,
2515 			   const unsigned char *addr, u16 vid,
2516 			   u16 flags,
2517 			   struct netlink_ext_ack *extack)
2518 {
2519 	/* guarantee we can provide a unique filter for the unicast address */
2520 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2521 		struct igb_adapter *adapter = netdev_priv(dev);
2522 		int vfn = adapter->vfs_allocated_count;
2523 
2524 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2525 			return -ENOMEM;
2526 	}
2527 
2528 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2529 }
2530 
2531 #define IGB_MAX_MAC_HDR_LEN	127
2532 #define IGB_MAX_NETWORK_HDR_LEN	511
2533 
2534 static netdev_features_t
2535 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2536 		   netdev_features_t features)
2537 {
2538 	unsigned int network_hdr_len, mac_hdr_len;
2539 
2540 	/* Make certain the headers can be described by a context descriptor */
2541 	mac_hdr_len = skb_network_header(skb) - skb->data;
2542 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2543 		return features & ~(NETIF_F_HW_CSUM |
2544 				    NETIF_F_SCTP_CRC |
2545 				    NETIF_F_GSO_UDP_L4 |
2546 				    NETIF_F_HW_VLAN_CTAG_TX |
2547 				    NETIF_F_TSO |
2548 				    NETIF_F_TSO6);
2549 
2550 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2551 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2552 		return features & ~(NETIF_F_HW_CSUM |
2553 				    NETIF_F_SCTP_CRC |
2554 				    NETIF_F_GSO_UDP_L4 |
2555 				    NETIF_F_TSO |
2556 				    NETIF_F_TSO6);
2557 
2558 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2559 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2560 	 */
2561 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2562 		features &= ~NETIF_F_TSO;
2563 
2564 	return features;
2565 }
2566 
2567 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2568 {
2569 	if (!is_fqtss_enabled(adapter)) {
2570 		enable_fqtss(adapter, true);
2571 		return;
2572 	}
2573 
2574 	igb_config_tx_modes(adapter, queue);
2575 
2576 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2577 		enable_fqtss(adapter, false);
2578 }
2579 
2580 static int igb_offload_cbs(struct igb_adapter *adapter,
2581 			   struct tc_cbs_qopt_offload *qopt)
2582 {
2583 	struct e1000_hw *hw = &adapter->hw;
2584 	int err;
2585 
2586 	/* CBS offloading is only supported by i210 controller. */
2587 	if (hw->mac.type != e1000_i210)
2588 		return -EOPNOTSUPP;
2589 
2590 	/* CBS offloading is only supported by queue 0 and queue 1. */
2591 	if (qopt->queue < 0 || qopt->queue > 1)
2592 		return -EINVAL;
2593 
2594 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2595 				  qopt->idleslope, qopt->sendslope,
2596 				  qopt->hicredit, qopt->locredit);
2597 	if (err)
2598 		return err;
2599 
2600 	igb_offload_apply(adapter, qopt->queue);
2601 
2602 	return 0;
2603 }
2604 
2605 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2606 #define VLAN_PRIO_FULL_MASK (0x07)
2607 
2608 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2609 				struct flow_cls_offload *f,
2610 				int traffic_class,
2611 				struct igb_nfc_filter *input)
2612 {
2613 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2614 	struct flow_dissector *dissector = rule->match.dissector;
2615 	struct netlink_ext_ack *extack = f->common.extack;
2616 
2617 	if (dissector->used_keys &
2618 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2619 	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2620 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2621 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2622 		NL_SET_ERR_MSG_MOD(extack,
2623 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2624 		return -EOPNOTSUPP;
2625 	}
2626 
2627 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2628 		struct flow_match_eth_addrs match;
2629 
2630 		flow_rule_match_eth_addrs(rule, &match);
2631 		if (!is_zero_ether_addr(match.mask->dst)) {
2632 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2633 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2634 				return -EINVAL;
2635 			}
2636 
2637 			input->filter.match_flags |=
2638 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2639 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2640 		}
2641 
2642 		if (!is_zero_ether_addr(match.mask->src)) {
2643 			if (!is_broadcast_ether_addr(match.mask->src)) {
2644 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2645 				return -EINVAL;
2646 			}
2647 
2648 			input->filter.match_flags |=
2649 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2650 			ether_addr_copy(input->filter.src_addr, match.key->src);
2651 		}
2652 	}
2653 
2654 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2655 		struct flow_match_basic match;
2656 
2657 		flow_rule_match_basic(rule, &match);
2658 		if (match.mask->n_proto) {
2659 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2660 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2661 				return -EINVAL;
2662 			}
2663 
2664 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2665 			input->filter.etype = match.key->n_proto;
2666 		}
2667 	}
2668 
2669 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2670 		struct flow_match_vlan match;
2671 
2672 		flow_rule_match_vlan(rule, &match);
2673 		if (match.mask->vlan_priority) {
2674 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2675 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2676 				return -EINVAL;
2677 			}
2678 
2679 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2680 			input->filter.vlan_tci =
2681 				(__force __be16)match.key->vlan_priority;
2682 		}
2683 	}
2684 
2685 	input->action = traffic_class;
2686 	input->cookie = f->cookie;
2687 
2688 	return 0;
2689 }
2690 
2691 static int igb_configure_clsflower(struct igb_adapter *adapter,
2692 				   struct flow_cls_offload *cls_flower)
2693 {
2694 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2695 	struct igb_nfc_filter *filter, *f;
2696 	int err, tc;
2697 
2698 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2699 	if (tc < 0) {
2700 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2701 		return -EINVAL;
2702 	}
2703 
2704 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2705 	if (!filter)
2706 		return -ENOMEM;
2707 
2708 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2709 	if (err < 0)
2710 		goto err_parse;
2711 
2712 	spin_lock(&adapter->nfc_lock);
2713 
2714 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2715 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2716 			err = -EEXIST;
2717 			NL_SET_ERR_MSG_MOD(extack,
2718 					   "This filter is already set in ethtool");
2719 			goto err_locked;
2720 		}
2721 	}
2722 
2723 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2724 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2725 			err = -EEXIST;
2726 			NL_SET_ERR_MSG_MOD(extack,
2727 					   "This filter is already set in cls_flower");
2728 			goto err_locked;
2729 		}
2730 	}
2731 
2732 	err = igb_add_filter(adapter, filter);
2733 	if (err < 0) {
2734 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2735 		goto err_locked;
2736 	}
2737 
2738 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2739 
2740 	spin_unlock(&adapter->nfc_lock);
2741 
2742 	return 0;
2743 
2744 err_locked:
2745 	spin_unlock(&adapter->nfc_lock);
2746 
2747 err_parse:
2748 	kfree(filter);
2749 
2750 	return err;
2751 }
2752 
2753 static int igb_delete_clsflower(struct igb_adapter *adapter,
2754 				struct flow_cls_offload *cls_flower)
2755 {
2756 	struct igb_nfc_filter *filter;
2757 	int err;
2758 
2759 	spin_lock(&adapter->nfc_lock);
2760 
2761 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2762 		if (filter->cookie == cls_flower->cookie)
2763 			break;
2764 
2765 	if (!filter) {
2766 		err = -ENOENT;
2767 		goto out;
2768 	}
2769 
2770 	err = igb_erase_filter(adapter, filter);
2771 	if (err < 0)
2772 		goto out;
2773 
2774 	hlist_del(&filter->nfc_node);
2775 	kfree(filter);
2776 
2777 out:
2778 	spin_unlock(&adapter->nfc_lock);
2779 
2780 	return err;
2781 }
2782 
2783 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2784 				   struct flow_cls_offload *cls_flower)
2785 {
2786 	switch (cls_flower->command) {
2787 	case FLOW_CLS_REPLACE:
2788 		return igb_configure_clsflower(adapter, cls_flower);
2789 	case FLOW_CLS_DESTROY:
2790 		return igb_delete_clsflower(adapter, cls_flower);
2791 	case FLOW_CLS_STATS:
2792 		return -EOPNOTSUPP;
2793 	default:
2794 		return -EOPNOTSUPP;
2795 	}
2796 }
2797 
2798 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2799 				 void *cb_priv)
2800 {
2801 	struct igb_adapter *adapter = cb_priv;
2802 
2803 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2804 		return -EOPNOTSUPP;
2805 
2806 	switch (type) {
2807 	case TC_SETUP_CLSFLOWER:
2808 		return igb_setup_tc_cls_flower(adapter, type_data);
2809 
2810 	default:
2811 		return -EOPNOTSUPP;
2812 	}
2813 }
2814 
2815 static int igb_offload_txtime(struct igb_adapter *adapter,
2816 			      struct tc_etf_qopt_offload *qopt)
2817 {
2818 	struct e1000_hw *hw = &adapter->hw;
2819 	int err;
2820 
2821 	/* Launchtime offloading is only supported by i210 controller. */
2822 	if (hw->mac.type != e1000_i210)
2823 		return -EOPNOTSUPP;
2824 
2825 	/* Launchtime offloading is only supported by queues 0 and 1. */
2826 	if (qopt->queue < 0 || qopt->queue > 1)
2827 		return -EINVAL;
2828 
2829 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2830 	if (err)
2831 		return err;
2832 
2833 	igb_offload_apply(adapter, qopt->queue);
2834 
2835 	return 0;
2836 }
2837 
2838 static int igb_tc_query_caps(struct igb_adapter *adapter,
2839 			     struct tc_query_caps_base *base)
2840 {
2841 	switch (base->type) {
2842 	case TC_SETUP_QDISC_TAPRIO: {
2843 		struct tc_taprio_caps *caps = base->caps;
2844 
2845 		caps->broken_mqprio = true;
2846 
2847 		return 0;
2848 	}
2849 	default:
2850 		return -EOPNOTSUPP;
2851 	}
2852 }
2853 
2854 static LIST_HEAD(igb_block_cb_list);
2855 
2856 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2857 			void *type_data)
2858 {
2859 	struct igb_adapter *adapter = netdev_priv(dev);
2860 
2861 	switch (type) {
2862 	case TC_QUERY_CAPS:
2863 		return igb_tc_query_caps(adapter, type_data);
2864 	case TC_SETUP_QDISC_CBS:
2865 		return igb_offload_cbs(adapter, type_data);
2866 	case TC_SETUP_BLOCK:
2867 		return flow_block_cb_setup_simple(type_data,
2868 						  &igb_block_cb_list,
2869 						  igb_setup_tc_block_cb,
2870 						  adapter, adapter, true);
2871 
2872 	case TC_SETUP_QDISC_ETF:
2873 		return igb_offload_txtime(adapter, type_data);
2874 
2875 	default:
2876 		return -EOPNOTSUPP;
2877 	}
2878 }
2879 
2880 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2881 {
2882 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2883 	struct igb_adapter *adapter = netdev_priv(dev);
2884 	struct bpf_prog *prog = bpf->prog, *old_prog;
2885 	bool running = netif_running(dev);
2886 	bool need_reset;
2887 
2888 	/* verify igb ring attributes are sufficient for XDP */
2889 	for (i = 0; i < adapter->num_rx_queues; i++) {
2890 		struct igb_ring *ring = adapter->rx_ring[i];
2891 
2892 		if (frame_size > igb_rx_bufsz(ring)) {
2893 			NL_SET_ERR_MSG_MOD(bpf->extack,
2894 					   "The RX buffer size is too small for the frame size");
2895 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2896 				    igb_rx_bufsz(ring), frame_size);
2897 			return -EINVAL;
2898 		}
2899 	}
2900 
2901 	old_prog = xchg(&adapter->xdp_prog, prog);
2902 	need_reset = (!!prog != !!old_prog);
2903 
2904 	/* device is up and bpf is added/removed, must setup the RX queues */
2905 	if (need_reset && running) {
2906 		igb_close(dev);
2907 	} else {
2908 		for (i = 0; i < adapter->num_rx_queues; i++)
2909 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2910 			    adapter->xdp_prog);
2911 	}
2912 
2913 	if (old_prog)
2914 		bpf_prog_put(old_prog);
2915 
2916 	/* bpf is just replaced, RXQ and MTU are already setup */
2917 	if (!need_reset) {
2918 		return 0;
2919 	} else {
2920 		if (prog)
2921 			xdp_features_set_redirect_target(dev, true);
2922 		else
2923 			xdp_features_clear_redirect_target(dev);
2924 	}
2925 
2926 	if (running)
2927 		igb_open(dev);
2928 
2929 	return 0;
2930 }
2931 
2932 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2933 {
2934 	switch (xdp->command) {
2935 	case XDP_SETUP_PROG:
2936 		return igb_xdp_setup(dev, xdp);
2937 	default:
2938 		return -EINVAL;
2939 	}
2940 }
2941 
2942 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2943 {
2944 	/* Force memory writes to complete before letting h/w know there
2945 	 * are new descriptors to fetch.
2946 	 */
2947 	wmb();
2948 	writel(ring->next_to_use, ring->tail);
2949 }
2950 
2951 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2952 {
2953 	unsigned int r_idx = smp_processor_id();
2954 
2955 	if (r_idx >= adapter->num_tx_queues)
2956 		r_idx = r_idx % adapter->num_tx_queues;
2957 
2958 	return adapter->tx_ring[r_idx];
2959 }
2960 
2961 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2962 {
2963 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2964 	int cpu = smp_processor_id();
2965 	struct igb_ring *tx_ring;
2966 	struct netdev_queue *nq;
2967 	u32 ret;
2968 
2969 	if (unlikely(!xdpf))
2970 		return IGB_XDP_CONSUMED;
2971 
2972 	/* During program transitions its possible adapter->xdp_prog is assigned
2973 	 * but ring has not been configured yet. In this case simply abort xmit.
2974 	 */
2975 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2976 	if (unlikely(!tx_ring))
2977 		return IGB_XDP_CONSUMED;
2978 
2979 	nq = txring_txq(tx_ring);
2980 	__netif_tx_lock(nq, cpu);
2981 	/* Avoid transmit queue timeout since we share it with the slow path */
2982 	txq_trans_cond_update(nq);
2983 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2984 	__netif_tx_unlock(nq);
2985 
2986 	return ret;
2987 }
2988 
2989 static int igb_xdp_xmit(struct net_device *dev, int n,
2990 			struct xdp_frame **frames, u32 flags)
2991 {
2992 	struct igb_adapter *adapter = netdev_priv(dev);
2993 	int cpu = smp_processor_id();
2994 	struct igb_ring *tx_ring;
2995 	struct netdev_queue *nq;
2996 	int nxmit = 0;
2997 	int i;
2998 
2999 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
3000 		return -ENETDOWN;
3001 
3002 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3003 		return -EINVAL;
3004 
3005 	/* During program transitions its possible adapter->xdp_prog is assigned
3006 	 * but ring has not been configured yet. In this case simply abort xmit.
3007 	 */
3008 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
3009 	if (unlikely(!tx_ring))
3010 		return -ENXIO;
3011 
3012 	nq = txring_txq(tx_ring);
3013 	__netif_tx_lock(nq, cpu);
3014 
3015 	/* Avoid transmit queue timeout since we share it with the slow path */
3016 	txq_trans_cond_update(nq);
3017 
3018 	for (i = 0; i < n; i++) {
3019 		struct xdp_frame *xdpf = frames[i];
3020 		int err;
3021 
3022 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3023 		if (err != IGB_XDP_TX)
3024 			break;
3025 		nxmit++;
3026 	}
3027 
3028 	__netif_tx_unlock(nq);
3029 
3030 	if (unlikely(flags & XDP_XMIT_FLUSH))
3031 		igb_xdp_ring_update_tail(tx_ring);
3032 
3033 	return nxmit;
3034 }
3035 
3036 static const struct net_device_ops igb_netdev_ops = {
3037 	.ndo_open		= igb_open,
3038 	.ndo_stop		= igb_close,
3039 	.ndo_start_xmit		= igb_xmit_frame,
3040 	.ndo_get_stats64	= igb_get_stats64,
3041 	.ndo_set_rx_mode	= igb_set_rx_mode,
3042 	.ndo_set_mac_address	= igb_set_mac,
3043 	.ndo_change_mtu		= igb_change_mtu,
3044 	.ndo_eth_ioctl		= igb_ioctl,
3045 	.ndo_tx_timeout		= igb_tx_timeout,
3046 	.ndo_validate_addr	= eth_validate_addr,
3047 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3048 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3049 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3050 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3051 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3052 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3053 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3054 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3055 	.ndo_fix_features	= igb_fix_features,
3056 	.ndo_set_features	= igb_set_features,
3057 	.ndo_fdb_add		= igb_ndo_fdb_add,
3058 	.ndo_features_check	= igb_features_check,
3059 	.ndo_setup_tc		= igb_setup_tc,
3060 	.ndo_bpf		= igb_xdp,
3061 	.ndo_xdp_xmit		= igb_xdp_xmit,
3062 };
3063 
3064 /**
3065  * igb_set_fw_version - Configure version string for ethtool
3066  * @adapter: adapter struct
3067  **/
3068 void igb_set_fw_version(struct igb_adapter *adapter)
3069 {
3070 	struct e1000_hw *hw = &adapter->hw;
3071 	struct e1000_fw_version fw;
3072 
3073 	igb_get_fw_version(hw, &fw);
3074 
3075 	switch (hw->mac.type) {
3076 	case e1000_i210:
3077 	case e1000_i211:
3078 		if (!(igb_get_flash_presence_i210(hw))) {
3079 			snprintf(adapter->fw_version,
3080 				 sizeof(adapter->fw_version),
3081 				 "%2d.%2d-%d",
3082 				 fw.invm_major, fw.invm_minor,
3083 				 fw.invm_img_type);
3084 			break;
3085 		}
3086 		fallthrough;
3087 	default:
3088 		/* if option is rom valid, display its version too */
3089 		if (fw.or_valid) {
3090 			snprintf(adapter->fw_version,
3091 				 sizeof(adapter->fw_version),
3092 				 "%d.%d, 0x%08x, %d.%d.%d",
3093 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3094 				 fw.or_major, fw.or_build, fw.or_patch);
3095 		/* no option rom */
3096 		} else if (fw.etrack_id != 0X0000) {
3097 			snprintf(adapter->fw_version,
3098 			    sizeof(adapter->fw_version),
3099 			    "%d.%d, 0x%08x",
3100 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3101 		} else {
3102 		snprintf(adapter->fw_version,
3103 		    sizeof(adapter->fw_version),
3104 		    "%d.%d.%d",
3105 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3106 		}
3107 		break;
3108 	}
3109 }
3110 
3111 /**
3112  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3113  *
3114  * @adapter: adapter struct
3115  **/
3116 static void igb_init_mas(struct igb_adapter *adapter)
3117 {
3118 	struct e1000_hw *hw = &adapter->hw;
3119 	u16 eeprom_data;
3120 
3121 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3122 	switch (hw->bus.func) {
3123 	case E1000_FUNC_0:
3124 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3125 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3126 			netdev_info(adapter->netdev,
3127 				"MAS: Enabling Media Autosense for port %d\n",
3128 				hw->bus.func);
3129 		}
3130 		break;
3131 	case E1000_FUNC_1:
3132 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3133 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3134 			netdev_info(adapter->netdev,
3135 				"MAS: Enabling Media Autosense for port %d\n",
3136 				hw->bus.func);
3137 		}
3138 		break;
3139 	case E1000_FUNC_2:
3140 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3141 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3142 			netdev_info(adapter->netdev,
3143 				"MAS: Enabling Media Autosense for port %d\n",
3144 				hw->bus.func);
3145 		}
3146 		break;
3147 	case E1000_FUNC_3:
3148 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3149 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3150 			netdev_info(adapter->netdev,
3151 				"MAS: Enabling Media Autosense for port %d\n",
3152 				hw->bus.func);
3153 		}
3154 		break;
3155 	default:
3156 		/* Shouldn't get here */
3157 		netdev_err(adapter->netdev,
3158 			"MAS: Invalid port configuration, returning\n");
3159 		break;
3160 	}
3161 }
3162 
3163 /**
3164  *  igb_init_i2c - Init I2C interface
3165  *  @adapter: pointer to adapter structure
3166  **/
3167 static s32 igb_init_i2c(struct igb_adapter *adapter)
3168 {
3169 	s32 status = 0;
3170 
3171 	/* I2C interface supported on i350 devices */
3172 	if (adapter->hw.mac.type != e1000_i350)
3173 		return 0;
3174 
3175 	/* Initialize the i2c bus which is controlled by the registers.
3176 	 * This bus will use the i2c_algo_bit structure that implements
3177 	 * the protocol through toggling of the 4 bits in the register.
3178 	 */
3179 	adapter->i2c_adap.owner = THIS_MODULE;
3180 	adapter->i2c_algo = igb_i2c_algo;
3181 	adapter->i2c_algo.data = adapter;
3182 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3183 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3184 	strscpy(adapter->i2c_adap.name, "igb BB",
3185 		sizeof(adapter->i2c_adap.name));
3186 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3187 	return status;
3188 }
3189 
3190 /**
3191  *  igb_probe - Device Initialization Routine
3192  *  @pdev: PCI device information struct
3193  *  @ent: entry in igb_pci_tbl
3194  *
3195  *  Returns 0 on success, negative on failure
3196  *
3197  *  igb_probe initializes an adapter identified by a pci_dev structure.
3198  *  The OS initialization, configuring of the adapter private structure,
3199  *  and a hardware reset occur.
3200  **/
3201 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3202 {
3203 	struct net_device *netdev;
3204 	struct igb_adapter *adapter;
3205 	struct e1000_hw *hw;
3206 	u16 eeprom_data = 0;
3207 	s32 ret_val;
3208 	static int global_quad_port_a; /* global quad port a indication */
3209 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3210 	u8 part_str[E1000_PBANUM_LENGTH];
3211 	int err;
3212 
3213 	/* Catch broken hardware that put the wrong VF device ID in
3214 	 * the PCIe SR-IOV capability.
3215 	 */
3216 	if (pdev->is_virtfn) {
3217 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3218 			pci_name(pdev), pdev->vendor, pdev->device);
3219 		return -EINVAL;
3220 	}
3221 
3222 	err = pci_enable_device_mem(pdev);
3223 	if (err)
3224 		return err;
3225 
3226 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3227 	if (err) {
3228 		dev_err(&pdev->dev,
3229 			"No usable DMA configuration, aborting\n");
3230 		goto err_dma;
3231 	}
3232 
3233 	err = pci_request_mem_regions(pdev, igb_driver_name);
3234 	if (err)
3235 		goto err_pci_reg;
3236 
3237 	pci_set_master(pdev);
3238 	pci_save_state(pdev);
3239 
3240 	err = -ENOMEM;
3241 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3242 				   IGB_MAX_TX_QUEUES);
3243 	if (!netdev)
3244 		goto err_alloc_etherdev;
3245 
3246 	SET_NETDEV_DEV(netdev, &pdev->dev);
3247 
3248 	pci_set_drvdata(pdev, netdev);
3249 	adapter = netdev_priv(netdev);
3250 	adapter->netdev = netdev;
3251 	adapter->pdev = pdev;
3252 	hw = &adapter->hw;
3253 	hw->back = adapter;
3254 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3255 
3256 	err = -EIO;
3257 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3258 	if (!adapter->io_addr)
3259 		goto err_ioremap;
3260 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3261 	hw->hw_addr = adapter->io_addr;
3262 
3263 	netdev->netdev_ops = &igb_netdev_ops;
3264 	igb_set_ethtool_ops(netdev);
3265 	netdev->watchdog_timeo = 5 * HZ;
3266 
3267 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3268 
3269 	netdev->mem_start = pci_resource_start(pdev, 0);
3270 	netdev->mem_end = pci_resource_end(pdev, 0);
3271 
3272 	/* PCI config space info */
3273 	hw->vendor_id = pdev->vendor;
3274 	hw->device_id = pdev->device;
3275 	hw->revision_id = pdev->revision;
3276 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3277 	hw->subsystem_device_id = pdev->subsystem_device;
3278 
3279 	/* Copy the default MAC, PHY and NVM function pointers */
3280 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3281 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3282 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3283 	/* Initialize skew-specific constants */
3284 	err = ei->get_invariants(hw);
3285 	if (err)
3286 		goto err_sw_init;
3287 
3288 	/* setup the private structure */
3289 	err = igb_sw_init(adapter);
3290 	if (err)
3291 		goto err_sw_init;
3292 
3293 	igb_get_bus_info_pcie(hw);
3294 
3295 	hw->phy.autoneg_wait_to_complete = false;
3296 
3297 	/* Copper options */
3298 	if (hw->phy.media_type == e1000_media_type_copper) {
3299 		hw->phy.mdix = AUTO_ALL_MODES;
3300 		hw->phy.disable_polarity_correction = false;
3301 		hw->phy.ms_type = e1000_ms_hw_default;
3302 	}
3303 
3304 	if (igb_check_reset_block(hw))
3305 		dev_info(&pdev->dev,
3306 			"PHY reset is blocked due to SOL/IDER session.\n");
3307 
3308 	/* features is initialized to 0 in allocation, it might have bits
3309 	 * set by igb_sw_init so we should use an or instead of an
3310 	 * assignment.
3311 	 */
3312 	netdev->features |= NETIF_F_SG |
3313 			    NETIF_F_TSO |
3314 			    NETIF_F_TSO6 |
3315 			    NETIF_F_RXHASH |
3316 			    NETIF_F_RXCSUM |
3317 			    NETIF_F_HW_CSUM;
3318 
3319 	if (hw->mac.type >= e1000_82576)
3320 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3321 
3322 	if (hw->mac.type >= e1000_i350)
3323 		netdev->features |= NETIF_F_HW_TC;
3324 
3325 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3326 				  NETIF_F_GSO_GRE_CSUM | \
3327 				  NETIF_F_GSO_IPXIP4 | \
3328 				  NETIF_F_GSO_IPXIP6 | \
3329 				  NETIF_F_GSO_UDP_TUNNEL | \
3330 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3331 
3332 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3333 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3334 
3335 	/* copy netdev features into list of user selectable features */
3336 	netdev->hw_features |= netdev->features |
3337 			       NETIF_F_HW_VLAN_CTAG_RX |
3338 			       NETIF_F_HW_VLAN_CTAG_TX |
3339 			       NETIF_F_RXALL;
3340 
3341 	if (hw->mac.type >= e1000_i350)
3342 		netdev->hw_features |= NETIF_F_NTUPLE;
3343 
3344 	netdev->features |= NETIF_F_HIGHDMA;
3345 
3346 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3347 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3348 	netdev->hw_enc_features |= netdev->vlan_features;
3349 
3350 	/* set this bit last since it cannot be part of vlan_features */
3351 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3352 			    NETIF_F_HW_VLAN_CTAG_RX |
3353 			    NETIF_F_HW_VLAN_CTAG_TX;
3354 
3355 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3356 
3357 	netdev->priv_flags |= IFF_UNICAST_FLT;
3358 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3359 
3360 	/* MTU range: 68 - 9216 */
3361 	netdev->min_mtu = ETH_MIN_MTU;
3362 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3363 
3364 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3365 
3366 	/* before reading the NVM, reset the controller to put the device in a
3367 	 * known good starting state
3368 	 */
3369 	hw->mac.ops.reset_hw(hw);
3370 
3371 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3372 	 * that doesn't contain a checksum
3373 	 */
3374 	switch (hw->mac.type) {
3375 	case e1000_i210:
3376 	case e1000_i211:
3377 		if (igb_get_flash_presence_i210(hw)) {
3378 			if (hw->nvm.ops.validate(hw) < 0) {
3379 				dev_err(&pdev->dev,
3380 					"The NVM Checksum Is Not Valid\n");
3381 				err = -EIO;
3382 				goto err_eeprom;
3383 			}
3384 		}
3385 		break;
3386 	default:
3387 		if (hw->nvm.ops.validate(hw) < 0) {
3388 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3389 			err = -EIO;
3390 			goto err_eeprom;
3391 		}
3392 		break;
3393 	}
3394 
3395 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3396 		/* copy the MAC address out of the NVM */
3397 		if (hw->mac.ops.read_mac_addr(hw))
3398 			dev_err(&pdev->dev, "NVM Read Error\n");
3399 	}
3400 
3401 	eth_hw_addr_set(netdev, hw->mac.addr);
3402 
3403 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3404 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3405 		err = -EIO;
3406 		goto err_eeprom;
3407 	}
3408 
3409 	igb_set_default_mac_filter(adapter);
3410 
3411 	/* get firmware version for ethtool -i */
3412 	igb_set_fw_version(adapter);
3413 
3414 	/* configure RXPBSIZE and TXPBSIZE */
3415 	if (hw->mac.type == e1000_i210) {
3416 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3417 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3418 	}
3419 
3420 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3421 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3422 
3423 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3424 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3425 
3426 	/* Initialize link properties that are user-changeable */
3427 	adapter->fc_autoneg = true;
3428 	hw->mac.autoneg = true;
3429 	hw->phy.autoneg_advertised = 0x2f;
3430 
3431 	hw->fc.requested_mode = e1000_fc_default;
3432 	hw->fc.current_mode = e1000_fc_default;
3433 
3434 	igb_validate_mdi_setting(hw);
3435 
3436 	/* By default, support wake on port A */
3437 	if (hw->bus.func == 0)
3438 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3439 
3440 	/* Check the NVM for wake support on non-port A ports */
3441 	if (hw->mac.type >= e1000_82580)
3442 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3443 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3444 				 &eeprom_data);
3445 	else if (hw->bus.func == 1)
3446 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3447 
3448 	if (eeprom_data & IGB_EEPROM_APME)
3449 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3450 
3451 	/* now that we have the eeprom settings, apply the special cases where
3452 	 * the eeprom may be wrong or the board simply won't support wake on
3453 	 * lan on a particular port
3454 	 */
3455 	switch (pdev->device) {
3456 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3457 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3458 		break;
3459 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3460 	case E1000_DEV_ID_82576_FIBER:
3461 	case E1000_DEV_ID_82576_SERDES:
3462 		/* Wake events only supported on port A for dual fiber
3463 		 * regardless of eeprom setting
3464 		 */
3465 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3466 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3467 		break;
3468 	case E1000_DEV_ID_82576_QUAD_COPPER:
3469 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3470 		/* if quad port adapter, disable WoL on all but port A */
3471 		if (global_quad_port_a != 0)
3472 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3473 		else
3474 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3475 		/* Reset for multiple quad port adapters */
3476 		if (++global_quad_port_a == 4)
3477 			global_quad_port_a = 0;
3478 		break;
3479 	default:
3480 		/* If the device can't wake, don't set software support */
3481 		if (!device_can_wakeup(&adapter->pdev->dev))
3482 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3483 	}
3484 
3485 	/* initialize the wol settings based on the eeprom settings */
3486 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3487 		adapter->wol |= E1000_WUFC_MAG;
3488 
3489 	/* Some vendors want WoL disabled by default, but still supported */
3490 	if ((hw->mac.type == e1000_i350) &&
3491 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3492 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493 		adapter->wol = 0;
3494 	}
3495 
3496 	/* Some vendors want the ability to Use the EEPROM setting as
3497 	 * enable/disable only, and not for capability
3498 	 */
3499 	if (((hw->mac.type == e1000_i350) ||
3500 	     (hw->mac.type == e1000_i354)) &&
3501 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3502 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3503 		adapter->wol = 0;
3504 	}
3505 	if (hw->mac.type == e1000_i350) {
3506 		if (((pdev->subsystem_device == 0x5001) ||
3507 		     (pdev->subsystem_device == 0x5002)) &&
3508 				(hw->bus.func == 0)) {
3509 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3510 			adapter->wol = 0;
3511 		}
3512 		if (pdev->subsystem_device == 0x1F52)
3513 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3514 	}
3515 
3516 	device_set_wakeup_enable(&adapter->pdev->dev,
3517 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3518 
3519 	/* reset the hardware with the new settings */
3520 	igb_reset(adapter);
3521 
3522 	/* Init the I2C interface */
3523 	err = igb_init_i2c(adapter);
3524 	if (err) {
3525 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3526 		goto err_eeprom;
3527 	}
3528 
3529 	/* let the f/w know that the h/w is now under the control of the
3530 	 * driver.
3531 	 */
3532 	igb_get_hw_control(adapter);
3533 
3534 	strcpy(netdev->name, "eth%d");
3535 	err = register_netdev(netdev);
3536 	if (err)
3537 		goto err_register;
3538 
3539 	/* carrier off reporting is important to ethtool even BEFORE open */
3540 	netif_carrier_off(netdev);
3541 
3542 #ifdef CONFIG_IGB_DCA
3543 	if (dca_add_requester(&pdev->dev) == 0) {
3544 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3545 		dev_info(&pdev->dev, "DCA enabled\n");
3546 		igb_setup_dca(adapter);
3547 	}
3548 
3549 #endif
3550 #ifdef CONFIG_IGB_HWMON
3551 	/* Initialize the thermal sensor on i350 devices. */
3552 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3553 		u16 ets_word;
3554 
3555 		/* Read the NVM to determine if this i350 device supports an
3556 		 * external thermal sensor.
3557 		 */
3558 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3559 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3560 			adapter->ets = true;
3561 		else
3562 			adapter->ets = false;
3563 		/* Only enable I2C bit banging if an external thermal
3564 		 * sensor is supported.
3565 		 */
3566 		if (adapter->ets)
3567 			igb_set_i2c_bb(hw);
3568 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3569 		if (igb_sysfs_init(adapter))
3570 			dev_err(&pdev->dev,
3571 				"failed to allocate sysfs resources\n");
3572 	} else {
3573 		adapter->ets = false;
3574 	}
3575 #endif
3576 	/* Check if Media Autosense is enabled */
3577 	adapter->ei = *ei;
3578 	if (hw->dev_spec._82575.mas_capable)
3579 		igb_init_mas(adapter);
3580 
3581 	/* do hw tstamp init after resetting */
3582 	igb_ptp_init(adapter);
3583 
3584 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3585 	/* print bus type/speed/width info, not applicable to i354 */
3586 	if (hw->mac.type != e1000_i354) {
3587 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3588 			 netdev->name,
3589 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3590 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3591 			   "unknown"),
3592 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3593 			  "Width x4" :
3594 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3595 			  "Width x2" :
3596 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3597 			  "Width x1" : "unknown"), netdev->dev_addr);
3598 	}
3599 
3600 	if ((hw->mac.type == e1000_82576 &&
3601 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3602 	    (hw->mac.type >= e1000_i210 ||
3603 	     igb_get_flash_presence_i210(hw))) {
3604 		ret_val = igb_read_part_string(hw, part_str,
3605 					       E1000_PBANUM_LENGTH);
3606 	} else {
3607 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3608 	}
3609 
3610 	if (ret_val)
3611 		strcpy(part_str, "Unknown");
3612 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3613 	dev_info(&pdev->dev,
3614 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3615 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3616 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3617 		adapter->num_rx_queues, adapter->num_tx_queues);
3618 	if (hw->phy.media_type == e1000_media_type_copper) {
3619 		switch (hw->mac.type) {
3620 		case e1000_i350:
3621 		case e1000_i210:
3622 		case e1000_i211:
3623 			/* Enable EEE for internal copper PHY devices */
3624 			err = igb_set_eee_i350(hw, true, true);
3625 			if ((!err) &&
3626 			    (!hw->dev_spec._82575.eee_disable)) {
3627 				adapter->eee_advert =
3628 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3629 				adapter->flags |= IGB_FLAG_EEE;
3630 			}
3631 			break;
3632 		case e1000_i354:
3633 			if ((rd32(E1000_CTRL_EXT) &
3634 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3635 				err = igb_set_eee_i354(hw, true, true);
3636 				if ((!err) &&
3637 					(!hw->dev_spec._82575.eee_disable)) {
3638 					adapter->eee_advert =
3639 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3640 					adapter->flags |= IGB_FLAG_EEE;
3641 				}
3642 			}
3643 			break;
3644 		default:
3645 			break;
3646 		}
3647 	}
3648 
3649 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3650 
3651 	pm_runtime_put_noidle(&pdev->dev);
3652 	return 0;
3653 
3654 err_register:
3655 	igb_release_hw_control(adapter);
3656 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3657 err_eeprom:
3658 	if (!igb_check_reset_block(hw))
3659 		igb_reset_phy(hw);
3660 
3661 	if (hw->flash_address)
3662 		iounmap(hw->flash_address);
3663 err_sw_init:
3664 	kfree(adapter->mac_table);
3665 	kfree(adapter->shadow_vfta);
3666 	igb_clear_interrupt_scheme(adapter);
3667 #ifdef CONFIG_PCI_IOV
3668 	igb_disable_sriov(pdev, false);
3669 #endif
3670 	pci_iounmap(pdev, adapter->io_addr);
3671 err_ioremap:
3672 	free_netdev(netdev);
3673 err_alloc_etherdev:
3674 	pci_release_mem_regions(pdev);
3675 err_pci_reg:
3676 err_dma:
3677 	pci_disable_device(pdev);
3678 	return err;
3679 }
3680 
3681 #ifdef CONFIG_PCI_IOV
3682 static int igb_sriov_reinit(struct pci_dev *dev)
3683 {
3684 	struct net_device *netdev = pci_get_drvdata(dev);
3685 	struct igb_adapter *adapter = netdev_priv(netdev);
3686 	struct pci_dev *pdev = adapter->pdev;
3687 
3688 	rtnl_lock();
3689 
3690 	if (netif_running(netdev))
3691 		igb_close(netdev);
3692 	else
3693 		igb_reset(adapter);
3694 
3695 	igb_clear_interrupt_scheme(adapter);
3696 
3697 	igb_init_queue_configuration(adapter);
3698 
3699 	if (igb_init_interrupt_scheme(adapter, true)) {
3700 		rtnl_unlock();
3701 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3702 		return -ENOMEM;
3703 	}
3704 
3705 	if (netif_running(netdev))
3706 		igb_open(netdev);
3707 
3708 	rtnl_unlock();
3709 
3710 	return 0;
3711 }
3712 
3713 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3714 {
3715 	struct net_device *netdev = pci_get_drvdata(pdev);
3716 	struct igb_adapter *adapter = netdev_priv(netdev);
3717 	struct e1000_hw *hw = &adapter->hw;
3718 	unsigned long flags;
3719 
3720 	/* reclaim resources allocated to VFs */
3721 	if (adapter->vf_data) {
3722 		/* disable iov and allow time for transactions to clear */
3723 		if (pci_vfs_assigned(pdev)) {
3724 			dev_warn(&pdev->dev,
3725 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3726 			return -EPERM;
3727 		} else {
3728 			pci_disable_sriov(pdev);
3729 			msleep(500);
3730 		}
3731 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3732 		kfree(adapter->vf_mac_list);
3733 		adapter->vf_mac_list = NULL;
3734 		kfree(adapter->vf_data);
3735 		adapter->vf_data = NULL;
3736 		adapter->vfs_allocated_count = 0;
3737 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3738 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3739 		wrfl();
3740 		msleep(100);
3741 		dev_info(&pdev->dev, "IOV Disabled\n");
3742 
3743 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3744 		adapter->flags |= IGB_FLAG_DMAC;
3745 	}
3746 
3747 	return reinit ? igb_sriov_reinit(pdev) : 0;
3748 }
3749 
3750 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3751 {
3752 	struct net_device *netdev = pci_get_drvdata(pdev);
3753 	struct igb_adapter *adapter = netdev_priv(netdev);
3754 	int old_vfs = pci_num_vf(pdev);
3755 	struct vf_mac_filter *mac_list;
3756 	int err = 0;
3757 	int num_vf_mac_filters, i;
3758 
3759 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3760 		err = -EPERM;
3761 		goto out;
3762 	}
3763 	if (!num_vfs)
3764 		goto out;
3765 
3766 	if (old_vfs) {
3767 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3768 			 old_vfs, max_vfs);
3769 		adapter->vfs_allocated_count = old_vfs;
3770 	} else
3771 		adapter->vfs_allocated_count = num_vfs;
3772 
3773 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3774 				sizeof(struct vf_data_storage), GFP_KERNEL);
3775 
3776 	/* if allocation failed then we do not support SR-IOV */
3777 	if (!adapter->vf_data) {
3778 		adapter->vfs_allocated_count = 0;
3779 		err = -ENOMEM;
3780 		goto out;
3781 	}
3782 
3783 	/* Due to the limited number of RAR entries calculate potential
3784 	 * number of MAC filters available for the VFs. Reserve entries
3785 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3786 	 * for each VF for VF MAC.
3787 	 */
3788 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3789 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3790 			      adapter->vfs_allocated_count);
3791 
3792 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3793 				       sizeof(struct vf_mac_filter),
3794 				       GFP_KERNEL);
3795 
3796 	mac_list = adapter->vf_mac_list;
3797 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3798 
3799 	if (adapter->vf_mac_list) {
3800 		/* Initialize list of VF MAC filters */
3801 		for (i = 0; i < num_vf_mac_filters; i++) {
3802 			mac_list->vf = -1;
3803 			mac_list->free = true;
3804 			list_add(&mac_list->l, &adapter->vf_macs.l);
3805 			mac_list++;
3806 		}
3807 	} else {
3808 		/* If we could not allocate memory for the VF MAC filters
3809 		 * we can continue without this feature but warn user.
3810 		 */
3811 		dev_err(&pdev->dev,
3812 			"Unable to allocate memory for VF MAC filter list\n");
3813 	}
3814 
3815 	dev_info(&pdev->dev, "%d VFs allocated\n",
3816 		 adapter->vfs_allocated_count);
3817 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3818 		igb_vf_configure(adapter, i);
3819 
3820 	/* DMA Coalescing is not supported in IOV mode. */
3821 	adapter->flags &= ~IGB_FLAG_DMAC;
3822 
3823 	if (reinit) {
3824 		err = igb_sriov_reinit(pdev);
3825 		if (err)
3826 			goto err_out;
3827 	}
3828 
3829 	/* only call pci_enable_sriov() if no VFs are allocated already */
3830 	if (!old_vfs)
3831 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3832 
3833 	goto out;
3834 
3835 err_out:
3836 	kfree(adapter->vf_mac_list);
3837 	adapter->vf_mac_list = NULL;
3838 	kfree(adapter->vf_data);
3839 	adapter->vf_data = NULL;
3840 	adapter->vfs_allocated_count = 0;
3841 out:
3842 	return err;
3843 }
3844 
3845 #endif
3846 /**
3847  *  igb_remove_i2c - Cleanup  I2C interface
3848  *  @adapter: pointer to adapter structure
3849  **/
3850 static void igb_remove_i2c(struct igb_adapter *adapter)
3851 {
3852 	/* free the adapter bus structure */
3853 	i2c_del_adapter(&adapter->i2c_adap);
3854 }
3855 
3856 /**
3857  *  igb_remove - Device Removal Routine
3858  *  @pdev: PCI device information struct
3859  *
3860  *  igb_remove is called by the PCI subsystem to alert the driver
3861  *  that it should release a PCI device.  The could be caused by a
3862  *  Hot-Plug event, or because the driver is going to be removed from
3863  *  memory.
3864  **/
3865 static void igb_remove(struct pci_dev *pdev)
3866 {
3867 	struct net_device *netdev = pci_get_drvdata(pdev);
3868 	struct igb_adapter *adapter = netdev_priv(netdev);
3869 	struct e1000_hw *hw = &adapter->hw;
3870 
3871 	pm_runtime_get_noresume(&pdev->dev);
3872 #ifdef CONFIG_IGB_HWMON
3873 	igb_sysfs_exit(adapter);
3874 #endif
3875 	igb_remove_i2c(adapter);
3876 	igb_ptp_stop(adapter);
3877 	/* The watchdog timer may be rescheduled, so explicitly
3878 	 * disable watchdog from being rescheduled.
3879 	 */
3880 	set_bit(__IGB_DOWN, &adapter->state);
3881 	del_timer_sync(&adapter->watchdog_timer);
3882 	del_timer_sync(&adapter->phy_info_timer);
3883 
3884 	cancel_work_sync(&adapter->reset_task);
3885 	cancel_work_sync(&adapter->watchdog_task);
3886 
3887 #ifdef CONFIG_IGB_DCA
3888 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3889 		dev_info(&pdev->dev, "DCA disabled\n");
3890 		dca_remove_requester(&pdev->dev);
3891 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3892 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3893 	}
3894 #endif
3895 
3896 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3897 	 * would have already happened in close and is redundant.
3898 	 */
3899 	igb_release_hw_control(adapter);
3900 
3901 #ifdef CONFIG_PCI_IOV
3902 	igb_disable_sriov(pdev, false);
3903 #endif
3904 
3905 	unregister_netdev(netdev);
3906 
3907 	igb_clear_interrupt_scheme(adapter);
3908 
3909 	pci_iounmap(pdev, adapter->io_addr);
3910 	if (hw->flash_address)
3911 		iounmap(hw->flash_address);
3912 	pci_release_mem_regions(pdev);
3913 
3914 	kfree(adapter->mac_table);
3915 	kfree(adapter->shadow_vfta);
3916 	free_netdev(netdev);
3917 
3918 	pci_disable_device(pdev);
3919 }
3920 
3921 /**
3922  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3923  *  @adapter: board private structure to initialize
3924  *
3925  *  This function initializes the vf specific data storage and then attempts to
3926  *  allocate the VFs.  The reason for ordering it this way is because it is much
3927  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3928  *  the memory for the VFs.
3929  **/
3930 static void igb_probe_vfs(struct igb_adapter *adapter)
3931 {
3932 #ifdef CONFIG_PCI_IOV
3933 	struct pci_dev *pdev = adapter->pdev;
3934 	struct e1000_hw *hw = &adapter->hw;
3935 
3936 	/* Virtualization features not supported on i210 family. */
3937 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3938 		return;
3939 
3940 	/* Of the below we really only want the effect of getting
3941 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3942 	 * igb_enable_sriov() has no effect.
3943 	 */
3944 	igb_set_interrupt_capability(adapter, true);
3945 	igb_reset_interrupt_capability(adapter);
3946 
3947 	pci_sriov_set_totalvfs(pdev, 7);
3948 	igb_enable_sriov(pdev, max_vfs, false);
3949 
3950 #endif /* CONFIG_PCI_IOV */
3951 }
3952 
3953 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3954 {
3955 	struct e1000_hw *hw = &adapter->hw;
3956 	unsigned int max_rss_queues;
3957 
3958 	/* Determine the maximum number of RSS queues supported. */
3959 	switch (hw->mac.type) {
3960 	case e1000_i211:
3961 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3962 		break;
3963 	case e1000_82575:
3964 	case e1000_i210:
3965 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3966 		break;
3967 	case e1000_i350:
3968 		/* I350 cannot do RSS and SR-IOV at the same time */
3969 		if (!!adapter->vfs_allocated_count) {
3970 			max_rss_queues = 1;
3971 			break;
3972 		}
3973 		fallthrough;
3974 	case e1000_82576:
3975 		if (!!adapter->vfs_allocated_count) {
3976 			max_rss_queues = 2;
3977 			break;
3978 		}
3979 		fallthrough;
3980 	case e1000_82580:
3981 	case e1000_i354:
3982 	default:
3983 		max_rss_queues = IGB_MAX_RX_QUEUES;
3984 		break;
3985 	}
3986 
3987 	return max_rss_queues;
3988 }
3989 
3990 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3991 {
3992 	u32 max_rss_queues;
3993 
3994 	max_rss_queues = igb_get_max_rss_queues(adapter);
3995 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3996 
3997 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3998 }
3999 
4000 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4001 			      const u32 max_rss_queues)
4002 {
4003 	struct e1000_hw *hw = &adapter->hw;
4004 
4005 	/* Determine if we need to pair queues. */
4006 	switch (hw->mac.type) {
4007 	case e1000_82575:
4008 	case e1000_i211:
4009 		/* Device supports enough interrupts without queue pairing. */
4010 		break;
4011 	case e1000_82576:
4012 	case e1000_82580:
4013 	case e1000_i350:
4014 	case e1000_i354:
4015 	case e1000_i210:
4016 	default:
4017 		/* If rss_queues > half of max_rss_queues, pair the queues in
4018 		 * order to conserve interrupts due to limited supply.
4019 		 */
4020 		if (adapter->rss_queues > (max_rss_queues / 2))
4021 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4022 		else
4023 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4024 		break;
4025 	}
4026 }
4027 
4028 /**
4029  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4030  *  @adapter: board private structure to initialize
4031  *
4032  *  igb_sw_init initializes the Adapter private data structure.
4033  *  Fields are initialized based on PCI device information and
4034  *  OS network device settings (MTU size).
4035  **/
4036 static int igb_sw_init(struct igb_adapter *adapter)
4037 {
4038 	struct e1000_hw *hw = &adapter->hw;
4039 	struct net_device *netdev = adapter->netdev;
4040 	struct pci_dev *pdev = adapter->pdev;
4041 
4042 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4043 
4044 	/* set default ring sizes */
4045 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4046 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4047 
4048 	/* set default ITR values */
4049 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4050 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4051 
4052 	/* set default work limits */
4053 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4054 
4055 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4056 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4057 
4058 	spin_lock_init(&adapter->nfc_lock);
4059 	spin_lock_init(&adapter->stats64_lock);
4060 
4061 	/* init spinlock to avoid concurrency of VF resources */
4062 	spin_lock_init(&adapter->vfs_lock);
4063 #ifdef CONFIG_PCI_IOV
4064 	switch (hw->mac.type) {
4065 	case e1000_82576:
4066 	case e1000_i350:
4067 		if (max_vfs > 7) {
4068 			dev_warn(&pdev->dev,
4069 				 "Maximum of 7 VFs per PF, using max\n");
4070 			max_vfs = adapter->vfs_allocated_count = 7;
4071 		} else
4072 			adapter->vfs_allocated_count = max_vfs;
4073 		if (adapter->vfs_allocated_count)
4074 			dev_warn(&pdev->dev,
4075 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4076 		break;
4077 	default:
4078 		break;
4079 	}
4080 #endif /* CONFIG_PCI_IOV */
4081 
4082 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4083 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4084 
4085 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4086 				     sizeof(struct igb_mac_addr),
4087 				     GFP_KERNEL);
4088 	if (!adapter->mac_table)
4089 		return -ENOMEM;
4090 
4091 	igb_probe_vfs(adapter);
4092 
4093 	igb_init_queue_configuration(adapter);
4094 
4095 	/* Setup and initialize a copy of the hw vlan table array */
4096 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4097 				       GFP_KERNEL);
4098 	if (!adapter->shadow_vfta)
4099 		return -ENOMEM;
4100 
4101 	/* This call may decrease the number of queues */
4102 	if (igb_init_interrupt_scheme(adapter, true)) {
4103 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4104 		return -ENOMEM;
4105 	}
4106 
4107 	/* Explicitly disable IRQ since the NIC can be in any state. */
4108 	igb_irq_disable(adapter);
4109 
4110 	if (hw->mac.type >= e1000_i350)
4111 		adapter->flags &= ~IGB_FLAG_DMAC;
4112 
4113 	set_bit(__IGB_DOWN, &adapter->state);
4114 	return 0;
4115 }
4116 
4117 /**
4118  *  __igb_open - Called when a network interface is made active
4119  *  @netdev: network interface device structure
4120  *  @resuming: indicates whether we are in a resume call
4121  *
4122  *  Returns 0 on success, negative value on failure
4123  *
4124  *  The open entry point is called when a network interface is made
4125  *  active by the system (IFF_UP).  At this point all resources needed
4126  *  for transmit and receive operations are allocated, the interrupt
4127  *  handler is registered with the OS, the watchdog timer is started,
4128  *  and the stack is notified that the interface is ready.
4129  **/
4130 static int __igb_open(struct net_device *netdev, bool resuming)
4131 {
4132 	struct igb_adapter *adapter = netdev_priv(netdev);
4133 	struct e1000_hw *hw = &adapter->hw;
4134 	struct pci_dev *pdev = adapter->pdev;
4135 	int err;
4136 	int i;
4137 
4138 	/* disallow open during test */
4139 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4140 		WARN_ON(resuming);
4141 		return -EBUSY;
4142 	}
4143 
4144 	if (!resuming)
4145 		pm_runtime_get_sync(&pdev->dev);
4146 
4147 	netif_carrier_off(netdev);
4148 
4149 	/* allocate transmit descriptors */
4150 	err = igb_setup_all_tx_resources(adapter);
4151 	if (err)
4152 		goto err_setup_tx;
4153 
4154 	/* allocate receive descriptors */
4155 	err = igb_setup_all_rx_resources(adapter);
4156 	if (err)
4157 		goto err_setup_rx;
4158 
4159 	igb_power_up_link(adapter);
4160 
4161 	/* before we allocate an interrupt, we must be ready to handle it.
4162 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4163 	 * as soon as we call pci_request_irq, so we have to setup our
4164 	 * clean_rx handler before we do so.
4165 	 */
4166 	igb_configure(adapter);
4167 
4168 	err = igb_request_irq(adapter);
4169 	if (err)
4170 		goto err_req_irq;
4171 
4172 	/* Notify the stack of the actual queue counts. */
4173 	err = netif_set_real_num_tx_queues(adapter->netdev,
4174 					   adapter->num_tx_queues);
4175 	if (err)
4176 		goto err_set_queues;
4177 
4178 	err = netif_set_real_num_rx_queues(adapter->netdev,
4179 					   adapter->num_rx_queues);
4180 	if (err)
4181 		goto err_set_queues;
4182 
4183 	/* From here on the code is the same as igb_up() */
4184 	clear_bit(__IGB_DOWN, &adapter->state);
4185 
4186 	for (i = 0; i < adapter->num_q_vectors; i++)
4187 		napi_enable(&(adapter->q_vector[i]->napi));
4188 
4189 	/* Clear any pending interrupts. */
4190 	rd32(E1000_TSICR);
4191 	rd32(E1000_ICR);
4192 
4193 	igb_irq_enable(adapter);
4194 
4195 	/* notify VFs that reset has been completed */
4196 	if (adapter->vfs_allocated_count) {
4197 		u32 reg_data = rd32(E1000_CTRL_EXT);
4198 
4199 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4200 		wr32(E1000_CTRL_EXT, reg_data);
4201 	}
4202 
4203 	netif_tx_start_all_queues(netdev);
4204 
4205 	if (!resuming)
4206 		pm_runtime_put(&pdev->dev);
4207 
4208 	/* start the watchdog. */
4209 	hw->mac.get_link_status = 1;
4210 	schedule_work(&adapter->watchdog_task);
4211 
4212 	return 0;
4213 
4214 err_set_queues:
4215 	igb_free_irq(adapter);
4216 err_req_irq:
4217 	igb_release_hw_control(adapter);
4218 	igb_power_down_link(adapter);
4219 	igb_free_all_rx_resources(adapter);
4220 err_setup_rx:
4221 	igb_free_all_tx_resources(adapter);
4222 err_setup_tx:
4223 	igb_reset(adapter);
4224 	if (!resuming)
4225 		pm_runtime_put(&pdev->dev);
4226 
4227 	return err;
4228 }
4229 
4230 int igb_open(struct net_device *netdev)
4231 {
4232 	return __igb_open(netdev, false);
4233 }
4234 
4235 /**
4236  *  __igb_close - Disables a network interface
4237  *  @netdev: network interface device structure
4238  *  @suspending: indicates we are in a suspend call
4239  *
4240  *  Returns 0, this is not allowed to fail
4241  *
4242  *  The close entry point is called when an interface is de-activated
4243  *  by the OS.  The hardware is still under the driver's control, but
4244  *  needs to be disabled.  A global MAC reset is issued to stop the
4245  *  hardware, and all transmit and receive resources are freed.
4246  **/
4247 static int __igb_close(struct net_device *netdev, bool suspending)
4248 {
4249 	struct igb_adapter *adapter = netdev_priv(netdev);
4250 	struct pci_dev *pdev = adapter->pdev;
4251 
4252 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4253 
4254 	if (!suspending)
4255 		pm_runtime_get_sync(&pdev->dev);
4256 
4257 	igb_down(adapter);
4258 	igb_free_irq(adapter);
4259 
4260 	igb_free_all_tx_resources(adapter);
4261 	igb_free_all_rx_resources(adapter);
4262 
4263 	if (!suspending)
4264 		pm_runtime_put_sync(&pdev->dev);
4265 	return 0;
4266 }
4267 
4268 int igb_close(struct net_device *netdev)
4269 {
4270 	if (netif_device_present(netdev) || netdev->dismantle)
4271 		return __igb_close(netdev, false);
4272 	return 0;
4273 }
4274 
4275 /**
4276  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4277  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4278  *
4279  *  Return 0 on success, negative on failure
4280  **/
4281 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4282 {
4283 	struct device *dev = tx_ring->dev;
4284 	int size;
4285 
4286 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4287 
4288 	tx_ring->tx_buffer_info = vmalloc(size);
4289 	if (!tx_ring->tx_buffer_info)
4290 		goto err;
4291 
4292 	/* round up to nearest 4K */
4293 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4294 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4295 
4296 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4297 					   &tx_ring->dma, GFP_KERNEL);
4298 	if (!tx_ring->desc)
4299 		goto err;
4300 
4301 	tx_ring->next_to_use = 0;
4302 	tx_ring->next_to_clean = 0;
4303 
4304 	return 0;
4305 
4306 err:
4307 	vfree(tx_ring->tx_buffer_info);
4308 	tx_ring->tx_buffer_info = NULL;
4309 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4310 	return -ENOMEM;
4311 }
4312 
4313 /**
4314  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4315  *				 (Descriptors) for all queues
4316  *  @adapter: board private structure
4317  *
4318  *  Return 0 on success, negative on failure
4319  **/
4320 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4321 {
4322 	struct pci_dev *pdev = adapter->pdev;
4323 	int i, err = 0;
4324 
4325 	for (i = 0; i < adapter->num_tx_queues; i++) {
4326 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4327 		if (err) {
4328 			dev_err(&pdev->dev,
4329 				"Allocation for Tx Queue %u failed\n", i);
4330 			for (i--; i >= 0; i--)
4331 				igb_free_tx_resources(adapter->tx_ring[i]);
4332 			break;
4333 		}
4334 	}
4335 
4336 	return err;
4337 }
4338 
4339 /**
4340  *  igb_setup_tctl - configure the transmit control registers
4341  *  @adapter: Board private structure
4342  **/
4343 void igb_setup_tctl(struct igb_adapter *adapter)
4344 {
4345 	struct e1000_hw *hw = &adapter->hw;
4346 	u32 tctl;
4347 
4348 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4349 	wr32(E1000_TXDCTL(0), 0);
4350 
4351 	/* Program the Transmit Control Register */
4352 	tctl = rd32(E1000_TCTL);
4353 	tctl &= ~E1000_TCTL_CT;
4354 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4355 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4356 
4357 	igb_config_collision_dist(hw);
4358 
4359 	/* Enable transmits */
4360 	tctl |= E1000_TCTL_EN;
4361 
4362 	wr32(E1000_TCTL, tctl);
4363 }
4364 
4365 /**
4366  *  igb_configure_tx_ring - Configure transmit ring after Reset
4367  *  @adapter: board private structure
4368  *  @ring: tx ring to configure
4369  *
4370  *  Configure a transmit ring after a reset.
4371  **/
4372 void igb_configure_tx_ring(struct igb_adapter *adapter,
4373 			   struct igb_ring *ring)
4374 {
4375 	struct e1000_hw *hw = &adapter->hw;
4376 	u32 txdctl = 0;
4377 	u64 tdba = ring->dma;
4378 	int reg_idx = ring->reg_idx;
4379 
4380 	wr32(E1000_TDLEN(reg_idx),
4381 	     ring->count * sizeof(union e1000_adv_tx_desc));
4382 	wr32(E1000_TDBAL(reg_idx),
4383 	     tdba & 0x00000000ffffffffULL);
4384 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4385 
4386 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4387 	wr32(E1000_TDH(reg_idx), 0);
4388 	writel(0, ring->tail);
4389 
4390 	txdctl |= IGB_TX_PTHRESH;
4391 	txdctl |= IGB_TX_HTHRESH << 8;
4392 	txdctl |= IGB_TX_WTHRESH << 16;
4393 
4394 	/* reinitialize tx_buffer_info */
4395 	memset(ring->tx_buffer_info, 0,
4396 	       sizeof(struct igb_tx_buffer) * ring->count);
4397 
4398 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4399 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4400 }
4401 
4402 /**
4403  *  igb_configure_tx - Configure transmit Unit after Reset
4404  *  @adapter: board private structure
4405  *
4406  *  Configure the Tx unit of the MAC after a reset.
4407  **/
4408 static void igb_configure_tx(struct igb_adapter *adapter)
4409 {
4410 	struct e1000_hw *hw = &adapter->hw;
4411 	int i;
4412 
4413 	/* disable the queues */
4414 	for (i = 0; i < adapter->num_tx_queues; i++)
4415 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4416 
4417 	wrfl();
4418 	usleep_range(10000, 20000);
4419 
4420 	for (i = 0; i < adapter->num_tx_queues; i++)
4421 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4422 }
4423 
4424 /**
4425  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4426  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4427  *
4428  *  Returns 0 on success, negative on failure
4429  **/
4430 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4431 {
4432 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4433 	struct device *dev = rx_ring->dev;
4434 	int size, res;
4435 
4436 	/* XDP RX-queue info */
4437 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4438 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4439 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4440 			       rx_ring->queue_index, 0);
4441 	if (res < 0) {
4442 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4443 			rx_ring->queue_index);
4444 		return res;
4445 	}
4446 
4447 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4448 
4449 	rx_ring->rx_buffer_info = vmalloc(size);
4450 	if (!rx_ring->rx_buffer_info)
4451 		goto err;
4452 
4453 	/* Round up to nearest 4K */
4454 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4455 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4456 
4457 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4458 					   &rx_ring->dma, GFP_KERNEL);
4459 	if (!rx_ring->desc)
4460 		goto err;
4461 
4462 	rx_ring->next_to_alloc = 0;
4463 	rx_ring->next_to_clean = 0;
4464 	rx_ring->next_to_use = 0;
4465 
4466 	rx_ring->xdp_prog = adapter->xdp_prog;
4467 
4468 	return 0;
4469 
4470 err:
4471 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4472 	vfree(rx_ring->rx_buffer_info);
4473 	rx_ring->rx_buffer_info = NULL;
4474 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4475 	return -ENOMEM;
4476 }
4477 
4478 /**
4479  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4480  *				 (Descriptors) for all queues
4481  *  @adapter: board private structure
4482  *
4483  *  Return 0 on success, negative on failure
4484  **/
4485 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4486 {
4487 	struct pci_dev *pdev = adapter->pdev;
4488 	int i, err = 0;
4489 
4490 	for (i = 0; i < adapter->num_rx_queues; i++) {
4491 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4492 		if (err) {
4493 			dev_err(&pdev->dev,
4494 				"Allocation for Rx Queue %u failed\n", i);
4495 			for (i--; i >= 0; i--)
4496 				igb_free_rx_resources(adapter->rx_ring[i]);
4497 			break;
4498 		}
4499 	}
4500 
4501 	return err;
4502 }
4503 
4504 /**
4505  *  igb_setup_mrqc - configure the multiple receive queue control registers
4506  *  @adapter: Board private structure
4507  **/
4508 static void igb_setup_mrqc(struct igb_adapter *adapter)
4509 {
4510 	struct e1000_hw *hw = &adapter->hw;
4511 	u32 mrqc, rxcsum;
4512 	u32 j, num_rx_queues;
4513 	u32 rss_key[10];
4514 
4515 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4516 	for (j = 0; j < 10; j++)
4517 		wr32(E1000_RSSRK(j), rss_key[j]);
4518 
4519 	num_rx_queues = adapter->rss_queues;
4520 
4521 	switch (hw->mac.type) {
4522 	case e1000_82576:
4523 		/* 82576 supports 2 RSS queues for SR-IOV */
4524 		if (adapter->vfs_allocated_count)
4525 			num_rx_queues = 2;
4526 		break;
4527 	default:
4528 		break;
4529 	}
4530 
4531 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4532 		for (j = 0; j < IGB_RETA_SIZE; j++)
4533 			adapter->rss_indir_tbl[j] =
4534 			(j * num_rx_queues) / IGB_RETA_SIZE;
4535 		adapter->rss_indir_tbl_init = num_rx_queues;
4536 	}
4537 	igb_write_rss_indir_tbl(adapter);
4538 
4539 	/* Disable raw packet checksumming so that RSS hash is placed in
4540 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4541 	 * offloads as they are enabled by default
4542 	 */
4543 	rxcsum = rd32(E1000_RXCSUM);
4544 	rxcsum |= E1000_RXCSUM_PCSD;
4545 
4546 	if (adapter->hw.mac.type >= e1000_82576)
4547 		/* Enable Receive Checksum Offload for SCTP */
4548 		rxcsum |= E1000_RXCSUM_CRCOFL;
4549 
4550 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4551 	wr32(E1000_RXCSUM, rxcsum);
4552 
4553 	/* Generate RSS hash based on packet types, TCP/UDP
4554 	 * port numbers and/or IPv4/v6 src and dst addresses
4555 	 */
4556 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4557 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4558 	       E1000_MRQC_RSS_FIELD_IPV6 |
4559 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4560 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4561 
4562 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4563 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4564 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4565 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4566 
4567 	/* If VMDq is enabled then we set the appropriate mode for that, else
4568 	 * we default to RSS so that an RSS hash is calculated per packet even
4569 	 * if we are only using one queue
4570 	 */
4571 	if (adapter->vfs_allocated_count) {
4572 		if (hw->mac.type > e1000_82575) {
4573 			/* Set the default pool for the PF's first queue */
4574 			u32 vtctl = rd32(E1000_VT_CTL);
4575 
4576 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4577 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4578 			vtctl |= adapter->vfs_allocated_count <<
4579 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4580 			wr32(E1000_VT_CTL, vtctl);
4581 		}
4582 		if (adapter->rss_queues > 1)
4583 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4584 		else
4585 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4586 	} else {
4587 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4588 	}
4589 	igb_vmm_control(adapter);
4590 
4591 	wr32(E1000_MRQC, mrqc);
4592 }
4593 
4594 /**
4595  *  igb_setup_rctl - configure the receive control registers
4596  *  @adapter: Board private structure
4597  **/
4598 void igb_setup_rctl(struct igb_adapter *adapter)
4599 {
4600 	struct e1000_hw *hw = &adapter->hw;
4601 	u32 rctl;
4602 
4603 	rctl = rd32(E1000_RCTL);
4604 
4605 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4606 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4607 
4608 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4609 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4610 
4611 	/* enable stripping of CRC. It's unlikely this will break BMC
4612 	 * redirection as it did with e1000. Newer features require
4613 	 * that the HW strips the CRC.
4614 	 */
4615 	rctl |= E1000_RCTL_SECRC;
4616 
4617 	/* disable store bad packets and clear size bits. */
4618 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4619 
4620 	/* enable LPE to allow for reception of jumbo frames */
4621 	rctl |= E1000_RCTL_LPE;
4622 
4623 	/* disable queue 0 to prevent tail write w/o re-config */
4624 	wr32(E1000_RXDCTL(0), 0);
4625 
4626 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4627 	 * queue drop for all VF and PF queues to prevent head of line blocking
4628 	 * if an un-trusted VF does not provide descriptors to hardware.
4629 	 */
4630 	if (adapter->vfs_allocated_count) {
4631 		/* set all queue drop enable bits */
4632 		wr32(E1000_QDE, ALL_QUEUES);
4633 	}
4634 
4635 	/* This is useful for sniffing bad packets. */
4636 	if (adapter->netdev->features & NETIF_F_RXALL) {
4637 		/* UPE and MPE will be handled by normal PROMISC logic
4638 		 * in e1000e_set_rx_mode
4639 		 */
4640 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4641 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4642 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4643 
4644 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4645 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4646 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4647 		 * and that breaks VLANs.
4648 		 */
4649 	}
4650 
4651 	wr32(E1000_RCTL, rctl);
4652 }
4653 
4654 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4655 				   int vfn)
4656 {
4657 	struct e1000_hw *hw = &adapter->hw;
4658 	u32 vmolr;
4659 
4660 	if (size > MAX_JUMBO_FRAME_SIZE)
4661 		size = MAX_JUMBO_FRAME_SIZE;
4662 
4663 	vmolr = rd32(E1000_VMOLR(vfn));
4664 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4665 	vmolr |= size | E1000_VMOLR_LPE;
4666 	wr32(E1000_VMOLR(vfn), vmolr);
4667 
4668 	return 0;
4669 }
4670 
4671 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4672 					 int vfn, bool enable)
4673 {
4674 	struct e1000_hw *hw = &adapter->hw;
4675 	u32 val, reg;
4676 
4677 	if (hw->mac.type < e1000_82576)
4678 		return;
4679 
4680 	if (hw->mac.type == e1000_i350)
4681 		reg = E1000_DVMOLR(vfn);
4682 	else
4683 		reg = E1000_VMOLR(vfn);
4684 
4685 	val = rd32(reg);
4686 	if (enable)
4687 		val |= E1000_VMOLR_STRVLAN;
4688 	else
4689 		val &= ~(E1000_VMOLR_STRVLAN);
4690 	wr32(reg, val);
4691 }
4692 
4693 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4694 				 int vfn, bool aupe)
4695 {
4696 	struct e1000_hw *hw = &adapter->hw;
4697 	u32 vmolr;
4698 
4699 	/* This register exists only on 82576 and newer so if we are older then
4700 	 * we should exit and do nothing
4701 	 */
4702 	if (hw->mac.type < e1000_82576)
4703 		return;
4704 
4705 	vmolr = rd32(E1000_VMOLR(vfn));
4706 	if (aupe)
4707 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4708 	else
4709 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4710 
4711 	/* clear all bits that might not be set */
4712 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4713 
4714 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4715 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4716 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4717 	 * multicast packets
4718 	 */
4719 	if (vfn <= adapter->vfs_allocated_count)
4720 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4721 
4722 	wr32(E1000_VMOLR(vfn), vmolr);
4723 }
4724 
4725 /**
4726  *  igb_setup_srrctl - configure the split and replication receive control
4727  *                     registers
4728  *  @adapter: Board private structure
4729  *  @ring: receive ring to be configured
4730  **/
4731 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4732 {
4733 	struct e1000_hw *hw = &adapter->hw;
4734 	int reg_idx = ring->reg_idx;
4735 	u32 srrctl = 0;
4736 
4737 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4738 	if (ring_uses_large_buffer(ring))
4739 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4740 	else
4741 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4742 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4743 	if (hw->mac.type >= e1000_82580)
4744 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4745 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4746 	 * queues and rx flow control is disabled
4747 	 */
4748 	if (adapter->vfs_allocated_count ||
4749 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4750 	     adapter->num_rx_queues > 1))
4751 		srrctl |= E1000_SRRCTL_DROP_EN;
4752 
4753 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4754 }
4755 
4756 /**
4757  *  igb_configure_rx_ring - Configure a receive ring after Reset
4758  *  @adapter: board private structure
4759  *  @ring: receive ring to be configured
4760  *
4761  *  Configure the Rx unit of the MAC after a reset.
4762  **/
4763 void igb_configure_rx_ring(struct igb_adapter *adapter,
4764 			   struct igb_ring *ring)
4765 {
4766 	struct e1000_hw *hw = &adapter->hw;
4767 	union e1000_adv_rx_desc *rx_desc;
4768 	u64 rdba = ring->dma;
4769 	int reg_idx = ring->reg_idx;
4770 	u32 rxdctl = 0;
4771 
4772 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4773 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4774 					   MEM_TYPE_PAGE_SHARED, NULL));
4775 
4776 	/* disable the queue */
4777 	wr32(E1000_RXDCTL(reg_idx), 0);
4778 
4779 	/* Set DMA base address registers */
4780 	wr32(E1000_RDBAL(reg_idx),
4781 	     rdba & 0x00000000ffffffffULL);
4782 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4783 	wr32(E1000_RDLEN(reg_idx),
4784 	     ring->count * sizeof(union e1000_adv_rx_desc));
4785 
4786 	/* initialize head and tail */
4787 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4788 	wr32(E1000_RDH(reg_idx), 0);
4789 	writel(0, ring->tail);
4790 
4791 	/* set descriptor configuration */
4792 	igb_setup_srrctl(adapter, ring);
4793 
4794 	/* set filtering for VMDQ pools */
4795 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4796 
4797 	rxdctl |= IGB_RX_PTHRESH;
4798 	rxdctl |= IGB_RX_HTHRESH << 8;
4799 	rxdctl |= IGB_RX_WTHRESH << 16;
4800 
4801 	/* initialize rx_buffer_info */
4802 	memset(ring->rx_buffer_info, 0,
4803 	       sizeof(struct igb_rx_buffer) * ring->count);
4804 
4805 	/* initialize Rx descriptor 0 */
4806 	rx_desc = IGB_RX_DESC(ring, 0);
4807 	rx_desc->wb.upper.length = 0;
4808 
4809 	/* enable receive descriptor fetching */
4810 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4811 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4812 }
4813 
4814 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4815 				  struct igb_ring *rx_ring)
4816 {
4817 	/* set build_skb and buffer size flags */
4818 	clear_ring_build_skb_enabled(rx_ring);
4819 	clear_ring_uses_large_buffer(rx_ring);
4820 
4821 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4822 		return;
4823 
4824 	set_ring_build_skb_enabled(rx_ring);
4825 
4826 #if (PAGE_SIZE < 8192)
4827 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4828 		return;
4829 
4830 	set_ring_uses_large_buffer(rx_ring);
4831 #endif
4832 }
4833 
4834 /**
4835  *  igb_configure_rx - Configure receive Unit after Reset
4836  *  @adapter: board private structure
4837  *
4838  *  Configure the Rx unit of the MAC after a reset.
4839  **/
4840 static void igb_configure_rx(struct igb_adapter *adapter)
4841 {
4842 	int i;
4843 
4844 	/* set the correct pool for the PF default MAC address in entry 0 */
4845 	igb_set_default_mac_filter(adapter);
4846 
4847 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4848 	 * the Base and Length of the Rx Descriptor Ring
4849 	 */
4850 	for (i = 0; i < adapter->num_rx_queues; i++) {
4851 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4852 
4853 		igb_set_rx_buffer_len(adapter, rx_ring);
4854 		igb_configure_rx_ring(adapter, rx_ring);
4855 	}
4856 }
4857 
4858 /**
4859  *  igb_free_tx_resources - Free Tx Resources per Queue
4860  *  @tx_ring: Tx descriptor ring for a specific queue
4861  *
4862  *  Free all transmit software resources
4863  **/
4864 void igb_free_tx_resources(struct igb_ring *tx_ring)
4865 {
4866 	igb_clean_tx_ring(tx_ring);
4867 
4868 	vfree(tx_ring->tx_buffer_info);
4869 	tx_ring->tx_buffer_info = NULL;
4870 
4871 	/* if not set, then don't free */
4872 	if (!tx_ring->desc)
4873 		return;
4874 
4875 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4876 			  tx_ring->desc, tx_ring->dma);
4877 
4878 	tx_ring->desc = NULL;
4879 }
4880 
4881 /**
4882  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4883  *  @adapter: board private structure
4884  *
4885  *  Free all transmit software resources
4886  **/
4887 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4888 {
4889 	int i;
4890 
4891 	for (i = 0; i < adapter->num_tx_queues; i++)
4892 		if (adapter->tx_ring[i])
4893 			igb_free_tx_resources(adapter->tx_ring[i]);
4894 }
4895 
4896 /**
4897  *  igb_clean_tx_ring - Free Tx Buffers
4898  *  @tx_ring: ring to be cleaned
4899  **/
4900 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4901 {
4902 	u16 i = tx_ring->next_to_clean;
4903 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4904 
4905 	while (i != tx_ring->next_to_use) {
4906 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4907 
4908 		/* Free all the Tx ring sk_buffs or xdp frames */
4909 		if (tx_buffer->type == IGB_TYPE_SKB)
4910 			dev_kfree_skb_any(tx_buffer->skb);
4911 		else
4912 			xdp_return_frame(tx_buffer->xdpf);
4913 
4914 		/* unmap skb header data */
4915 		dma_unmap_single(tx_ring->dev,
4916 				 dma_unmap_addr(tx_buffer, dma),
4917 				 dma_unmap_len(tx_buffer, len),
4918 				 DMA_TO_DEVICE);
4919 
4920 		/* check for eop_desc to determine the end of the packet */
4921 		eop_desc = tx_buffer->next_to_watch;
4922 		tx_desc = IGB_TX_DESC(tx_ring, i);
4923 
4924 		/* unmap remaining buffers */
4925 		while (tx_desc != eop_desc) {
4926 			tx_buffer++;
4927 			tx_desc++;
4928 			i++;
4929 			if (unlikely(i == tx_ring->count)) {
4930 				i = 0;
4931 				tx_buffer = tx_ring->tx_buffer_info;
4932 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4933 			}
4934 
4935 			/* unmap any remaining paged data */
4936 			if (dma_unmap_len(tx_buffer, len))
4937 				dma_unmap_page(tx_ring->dev,
4938 					       dma_unmap_addr(tx_buffer, dma),
4939 					       dma_unmap_len(tx_buffer, len),
4940 					       DMA_TO_DEVICE);
4941 		}
4942 
4943 		tx_buffer->next_to_watch = NULL;
4944 
4945 		/* move us one more past the eop_desc for start of next pkt */
4946 		tx_buffer++;
4947 		i++;
4948 		if (unlikely(i == tx_ring->count)) {
4949 			i = 0;
4950 			tx_buffer = tx_ring->tx_buffer_info;
4951 		}
4952 	}
4953 
4954 	/* reset BQL for queue */
4955 	netdev_tx_reset_queue(txring_txq(tx_ring));
4956 
4957 	/* reset next_to_use and next_to_clean */
4958 	tx_ring->next_to_use = 0;
4959 	tx_ring->next_to_clean = 0;
4960 }
4961 
4962 /**
4963  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4964  *  @adapter: board private structure
4965  **/
4966 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4967 {
4968 	int i;
4969 
4970 	for (i = 0; i < adapter->num_tx_queues; i++)
4971 		if (adapter->tx_ring[i])
4972 			igb_clean_tx_ring(adapter->tx_ring[i]);
4973 }
4974 
4975 /**
4976  *  igb_free_rx_resources - Free Rx Resources
4977  *  @rx_ring: ring to clean the resources from
4978  *
4979  *  Free all receive software resources
4980  **/
4981 void igb_free_rx_resources(struct igb_ring *rx_ring)
4982 {
4983 	igb_clean_rx_ring(rx_ring);
4984 
4985 	rx_ring->xdp_prog = NULL;
4986 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4987 	vfree(rx_ring->rx_buffer_info);
4988 	rx_ring->rx_buffer_info = NULL;
4989 
4990 	/* if not set, then don't free */
4991 	if (!rx_ring->desc)
4992 		return;
4993 
4994 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4995 			  rx_ring->desc, rx_ring->dma);
4996 
4997 	rx_ring->desc = NULL;
4998 }
4999 
5000 /**
5001  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
5002  *  @adapter: board private structure
5003  *
5004  *  Free all receive software resources
5005  **/
5006 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5007 {
5008 	int i;
5009 
5010 	for (i = 0; i < adapter->num_rx_queues; i++)
5011 		if (adapter->rx_ring[i])
5012 			igb_free_rx_resources(adapter->rx_ring[i]);
5013 }
5014 
5015 /**
5016  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5017  *  @rx_ring: ring to free buffers from
5018  **/
5019 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5020 {
5021 	u16 i = rx_ring->next_to_clean;
5022 
5023 	dev_kfree_skb(rx_ring->skb);
5024 	rx_ring->skb = NULL;
5025 
5026 	/* Free all the Rx ring sk_buffs */
5027 	while (i != rx_ring->next_to_alloc) {
5028 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5029 
5030 		/* Invalidate cache lines that may have been written to by
5031 		 * device so that we avoid corrupting memory.
5032 		 */
5033 		dma_sync_single_range_for_cpu(rx_ring->dev,
5034 					      buffer_info->dma,
5035 					      buffer_info->page_offset,
5036 					      igb_rx_bufsz(rx_ring),
5037 					      DMA_FROM_DEVICE);
5038 
5039 		/* free resources associated with mapping */
5040 		dma_unmap_page_attrs(rx_ring->dev,
5041 				     buffer_info->dma,
5042 				     igb_rx_pg_size(rx_ring),
5043 				     DMA_FROM_DEVICE,
5044 				     IGB_RX_DMA_ATTR);
5045 		__page_frag_cache_drain(buffer_info->page,
5046 					buffer_info->pagecnt_bias);
5047 
5048 		i++;
5049 		if (i == rx_ring->count)
5050 			i = 0;
5051 	}
5052 
5053 	rx_ring->next_to_alloc = 0;
5054 	rx_ring->next_to_clean = 0;
5055 	rx_ring->next_to_use = 0;
5056 }
5057 
5058 /**
5059  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5060  *  @adapter: board private structure
5061  **/
5062 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5063 {
5064 	int i;
5065 
5066 	for (i = 0; i < adapter->num_rx_queues; i++)
5067 		if (adapter->rx_ring[i])
5068 			igb_clean_rx_ring(adapter->rx_ring[i]);
5069 }
5070 
5071 /**
5072  *  igb_set_mac - Change the Ethernet Address of the NIC
5073  *  @netdev: network interface device structure
5074  *  @p: pointer to an address structure
5075  *
5076  *  Returns 0 on success, negative on failure
5077  **/
5078 static int igb_set_mac(struct net_device *netdev, void *p)
5079 {
5080 	struct igb_adapter *adapter = netdev_priv(netdev);
5081 	struct e1000_hw *hw = &adapter->hw;
5082 	struct sockaddr *addr = p;
5083 
5084 	if (!is_valid_ether_addr(addr->sa_data))
5085 		return -EADDRNOTAVAIL;
5086 
5087 	eth_hw_addr_set(netdev, addr->sa_data);
5088 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5089 
5090 	/* set the correct pool for the new PF MAC address in entry 0 */
5091 	igb_set_default_mac_filter(adapter);
5092 
5093 	return 0;
5094 }
5095 
5096 /**
5097  *  igb_write_mc_addr_list - write multicast addresses to MTA
5098  *  @netdev: network interface device structure
5099  *
5100  *  Writes multicast address list to the MTA hash table.
5101  *  Returns: -ENOMEM on failure
5102  *           0 on no addresses written
5103  *           X on writing X addresses to MTA
5104  **/
5105 static int igb_write_mc_addr_list(struct net_device *netdev)
5106 {
5107 	struct igb_adapter *adapter = netdev_priv(netdev);
5108 	struct e1000_hw *hw = &adapter->hw;
5109 	struct netdev_hw_addr *ha;
5110 	u8  *mta_list;
5111 	int i;
5112 
5113 	if (netdev_mc_empty(netdev)) {
5114 		/* nothing to program, so clear mc list */
5115 		igb_update_mc_addr_list(hw, NULL, 0);
5116 		igb_restore_vf_multicasts(adapter);
5117 		return 0;
5118 	}
5119 
5120 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5121 	if (!mta_list)
5122 		return -ENOMEM;
5123 
5124 	/* The shared function expects a packed array of only addresses. */
5125 	i = 0;
5126 	netdev_for_each_mc_addr(ha, netdev)
5127 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5128 
5129 	igb_update_mc_addr_list(hw, mta_list, i);
5130 	kfree(mta_list);
5131 
5132 	return netdev_mc_count(netdev);
5133 }
5134 
5135 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5136 {
5137 	struct e1000_hw *hw = &adapter->hw;
5138 	u32 i, pf_id;
5139 
5140 	switch (hw->mac.type) {
5141 	case e1000_i210:
5142 	case e1000_i211:
5143 	case e1000_i350:
5144 		/* VLAN filtering needed for VLAN prio filter */
5145 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5146 			break;
5147 		fallthrough;
5148 	case e1000_82576:
5149 	case e1000_82580:
5150 	case e1000_i354:
5151 		/* VLAN filtering needed for pool filtering */
5152 		if (adapter->vfs_allocated_count)
5153 			break;
5154 		fallthrough;
5155 	default:
5156 		return 1;
5157 	}
5158 
5159 	/* We are already in VLAN promisc, nothing to do */
5160 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5161 		return 0;
5162 
5163 	if (!adapter->vfs_allocated_count)
5164 		goto set_vfta;
5165 
5166 	/* Add PF to all active pools */
5167 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5168 
5169 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5170 		u32 vlvf = rd32(E1000_VLVF(i));
5171 
5172 		vlvf |= BIT(pf_id);
5173 		wr32(E1000_VLVF(i), vlvf);
5174 	}
5175 
5176 set_vfta:
5177 	/* Set all bits in the VLAN filter table array */
5178 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5179 		hw->mac.ops.write_vfta(hw, i, ~0U);
5180 
5181 	/* Set flag so we don't redo unnecessary work */
5182 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5183 
5184 	return 0;
5185 }
5186 
5187 #define VFTA_BLOCK_SIZE 8
5188 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5189 {
5190 	struct e1000_hw *hw = &adapter->hw;
5191 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5192 	u32 vid_start = vfta_offset * 32;
5193 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5194 	u32 i, vid, word, bits, pf_id;
5195 
5196 	/* guarantee that we don't scrub out management VLAN */
5197 	vid = adapter->mng_vlan_id;
5198 	if (vid >= vid_start && vid < vid_end)
5199 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5200 
5201 	if (!adapter->vfs_allocated_count)
5202 		goto set_vfta;
5203 
5204 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5205 
5206 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5207 		u32 vlvf = rd32(E1000_VLVF(i));
5208 
5209 		/* pull VLAN ID from VLVF */
5210 		vid = vlvf & VLAN_VID_MASK;
5211 
5212 		/* only concern ourselves with a certain range */
5213 		if (vid < vid_start || vid >= vid_end)
5214 			continue;
5215 
5216 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5217 			/* record VLAN ID in VFTA */
5218 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5219 
5220 			/* if PF is part of this then continue */
5221 			if (test_bit(vid, adapter->active_vlans))
5222 				continue;
5223 		}
5224 
5225 		/* remove PF from the pool */
5226 		bits = ~BIT(pf_id);
5227 		bits &= rd32(E1000_VLVF(i));
5228 		wr32(E1000_VLVF(i), bits);
5229 	}
5230 
5231 set_vfta:
5232 	/* extract values from active_vlans and write back to VFTA */
5233 	for (i = VFTA_BLOCK_SIZE; i--;) {
5234 		vid = (vfta_offset + i) * 32;
5235 		word = vid / BITS_PER_LONG;
5236 		bits = vid % BITS_PER_LONG;
5237 
5238 		vfta[i] |= adapter->active_vlans[word] >> bits;
5239 
5240 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5241 	}
5242 }
5243 
5244 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5245 {
5246 	u32 i;
5247 
5248 	/* We are not in VLAN promisc, nothing to do */
5249 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5250 		return;
5251 
5252 	/* Set flag so we don't redo unnecessary work */
5253 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5254 
5255 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5256 		igb_scrub_vfta(adapter, i);
5257 }
5258 
5259 /**
5260  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5261  *  @netdev: network interface device structure
5262  *
5263  *  The set_rx_mode entry point is called whenever the unicast or multicast
5264  *  address lists or the network interface flags are updated.  This routine is
5265  *  responsible for configuring the hardware for proper unicast, multicast,
5266  *  promiscuous mode, and all-multi behavior.
5267  **/
5268 static void igb_set_rx_mode(struct net_device *netdev)
5269 {
5270 	struct igb_adapter *adapter = netdev_priv(netdev);
5271 	struct e1000_hw *hw = &adapter->hw;
5272 	unsigned int vfn = adapter->vfs_allocated_count;
5273 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5274 	int count;
5275 
5276 	/* Check for Promiscuous and All Multicast modes */
5277 	if (netdev->flags & IFF_PROMISC) {
5278 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5279 		vmolr |= E1000_VMOLR_MPME;
5280 
5281 		/* enable use of UTA filter to force packets to default pool */
5282 		if (hw->mac.type == e1000_82576)
5283 			vmolr |= E1000_VMOLR_ROPE;
5284 	} else {
5285 		if (netdev->flags & IFF_ALLMULTI) {
5286 			rctl |= E1000_RCTL_MPE;
5287 			vmolr |= E1000_VMOLR_MPME;
5288 		} else {
5289 			/* Write addresses to the MTA, if the attempt fails
5290 			 * then we should just turn on promiscuous mode so
5291 			 * that we can at least receive multicast traffic
5292 			 */
5293 			count = igb_write_mc_addr_list(netdev);
5294 			if (count < 0) {
5295 				rctl |= E1000_RCTL_MPE;
5296 				vmolr |= E1000_VMOLR_MPME;
5297 			} else if (count) {
5298 				vmolr |= E1000_VMOLR_ROMPE;
5299 			}
5300 		}
5301 	}
5302 
5303 	/* Write addresses to available RAR registers, if there is not
5304 	 * sufficient space to store all the addresses then enable
5305 	 * unicast promiscuous mode
5306 	 */
5307 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5308 		rctl |= E1000_RCTL_UPE;
5309 		vmolr |= E1000_VMOLR_ROPE;
5310 	}
5311 
5312 	/* enable VLAN filtering by default */
5313 	rctl |= E1000_RCTL_VFE;
5314 
5315 	/* disable VLAN filtering for modes that require it */
5316 	if ((netdev->flags & IFF_PROMISC) ||
5317 	    (netdev->features & NETIF_F_RXALL)) {
5318 		/* if we fail to set all rules then just clear VFE */
5319 		if (igb_vlan_promisc_enable(adapter))
5320 			rctl &= ~E1000_RCTL_VFE;
5321 	} else {
5322 		igb_vlan_promisc_disable(adapter);
5323 	}
5324 
5325 	/* update state of unicast, multicast, and VLAN filtering modes */
5326 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5327 				     E1000_RCTL_VFE);
5328 	wr32(E1000_RCTL, rctl);
5329 
5330 #if (PAGE_SIZE < 8192)
5331 	if (!adapter->vfs_allocated_count) {
5332 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5333 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5334 	}
5335 #endif
5336 	wr32(E1000_RLPML, rlpml);
5337 
5338 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5339 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5340 	 * we will have issues with VLAN tag stripping not being done for frames
5341 	 * that are only arriving because we are the default pool
5342 	 */
5343 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5344 		return;
5345 
5346 	/* set UTA to appropriate mode */
5347 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5348 
5349 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5350 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5351 
5352 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5353 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5354 #if (PAGE_SIZE < 8192)
5355 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5356 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5357 	else
5358 #endif
5359 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5360 	vmolr |= E1000_VMOLR_LPE;
5361 
5362 	wr32(E1000_VMOLR(vfn), vmolr);
5363 
5364 	igb_restore_vf_multicasts(adapter);
5365 }
5366 
5367 static void igb_check_wvbr(struct igb_adapter *adapter)
5368 {
5369 	struct e1000_hw *hw = &adapter->hw;
5370 	u32 wvbr = 0;
5371 
5372 	switch (hw->mac.type) {
5373 	case e1000_82576:
5374 	case e1000_i350:
5375 		wvbr = rd32(E1000_WVBR);
5376 		if (!wvbr)
5377 			return;
5378 		break;
5379 	default:
5380 		break;
5381 	}
5382 
5383 	adapter->wvbr |= wvbr;
5384 }
5385 
5386 #define IGB_STAGGERED_QUEUE_OFFSET 8
5387 
5388 static void igb_spoof_check(struct igb_adapter *adapter)
5389 {
5390 	int j;
5391 
5392 	if (!adapter->wvbr)
5393 		return;
5394 
5395 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5396 		if (adapter->wvbr & BIT(j) ||
5397 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5398 			dev_warn(&adapter->pdev->dev,
5399 				"Spoof event(s) detected on VF %d\n", j);
5400 			adapter->wvbr &=
5401 				~(BIT(j) |
5402 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5403 		}
5404 	}
5405 }
5406 
5407 /* Need to wait a few seconds after link up to get diagnostic information from
5408  * the phy
5409  */
5410 static void igb_update_phy_info(struct timer_list *t)
5411 {
5412 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5413 	igb_get_phy_info(&adapter->hw);
5414 }
5415 
5416 /**
5417  *  igb_has_link - check shared code for link and determine up/down
5418  *  @adapter: pointer to driver private info
5419  **/
5420 bool igb_has_link(struct igb_adapter *adapter)
5421 {
5422 	struct e1000_hw *hw = &adapter->hw;
5423 	bool link_active = false;
5424 
5425 	/* get_link_status is set on LSC (link status) interrupt or
5426 	 * rx sequence error interrupt.  get_link_status will stay
5427 	 * false until the e1000_check_for_link establishes link
5428 	 * for copper adapters ONLY
5429 	 */
5430 	switch (hw->phy.media_type) {
5431 	case e1000_media_type_copper:
5432 		if (!hw->mac.get_link_status)
5433 			return true;
5434 		fallthrough;
5435 	case e1000_media_type_internal_serdes:
5436 		hw->mac.ops.check_for_link(hw);
5437 		link_active = !hw->mac.get_link_status;
5438 		break;
5439 	default:
5440 	case e1000_media_type_unknown:
5441 		break;
5442 	}
5443 
5444 	if (((hw->mac.type == e1000_i210) ||
5445 	     (hw->mac.type == e1000_i211)) &&
5446 	     (hw->phy.id == I210_I_PHY_ID)) {
5447 		if (!netif_carrier_ok(adapter->netdev)) {
5448 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5449 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5450 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5451 			adapter->link_check_timeout = jiffies;
5452 		}
5453 	}
5454 
5455 	return link_active;
5456 }
5457 
5458 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5459 {
5460 	bool ret = false;
5461 	u32 ctrl_ext, thstat;
5462 
5463 	/* check for thermal sensor event on i350 copper only */
5464 	if (hw->mac.type == e1000_i350) {
5465 		thstat = rd32(E1000_THSTAT);
5466 		ctrl_ext = rd32(E1000_CTRL_EXT);
5467 
5468 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5469 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5470 			ret = !!(thstat & event);
5471 	}
5472 
5473 	return ret;
5474 }
5475 
5476 /**
5477  *  igb_check_lvmmc - check for malformed packets received
5478  *  and indicated in LVMMC register
5479  *  @adapter: pointer to adapter
5480  **/
5481 static void igb_check_lvmmc(struct igb_adapter *adapter)
5482 {
5483 	struct e1000_hw *hw = &adapter->hw;
5484 	u32 lvmmc;
5485 
5486 	lvmmc = rd32(E1000_LVMMC);
5487 	if (lvmmc) {
5488 		if (unlikely(net_ratelimit())) {
5489 			netdev_warn(adapter->netdev,
5490 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5491 				    lvmmc);
5492 		}
5493 	}
5494 }
5495 
5496 /**
5497  *  igb_watchdog - Timer Call-back
5498  *  @t: pointer to timer_list containing our private info pointer
5499  **/
5500 static void igb_watchdog(struct timer_list *t)
5501 {
5502 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5503 	/* Do the rest outside of interrupt context */
5504 	schedule_work(&adapter->watchdog_task);
5505 }
5506 
5507 static void igb_watchdog_task(struct work_struct *work)
5508 {
5509 	struct igb_adapter *adapter = container_of(work,
5510 						   struct igb_adapter,
5511 						   watchdog_task);
5512 	struct e1000_hw *hw = &adapter->hw;
5513 	struct e1000_phy_info *phy = &hw->phy;
5514 	struct net_device *netdev = adapter->netdev;
5515 	u32 link;
5516 	int i;
5517 	u32 connsw;
5518 	u16 phy_data, retry_count = 20;
5519 
5520 	link = igb_has_link(adapter);
5521 
5522 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5523 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5524 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5525 		else
5526 			link = false;
5527 	}
5528 
5529 	/* Force link down if we have fiber to swap to */
5530 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5531 		if (hw->phy.media_type == e1000_media_type_copper) {
5532 			connsw = rd32(E1000_CONNSW);
5533 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5534 				link = 0;
5535 		}
5536 	}
5537 	if (link) {
5538 		/* Perform a reset if the media type changed. */
5539 		if (hw->dev_spec._82575.media_changed) {
5540 			hw->dev_spec._82575.media_changed = false;
5541 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5542 			igb_reset(adapter);
5543 		}
5544 		/* Cancel scheduled suspend requests. */
5545 		pm_runtime_resume(netdev->dev.parent);
5546 
5547 		if (!netif_carrier_ok(netdev)) {
5548 			u32 ctrl;
5549 
5550 			hw->mac.ops.get_speed_and_duplex(hw,
5551 							 &adapter->link_speed,
5552 							 &adapter->link_duplex);
5553 
5554 			ctrl = rd32(E1000_CTRL);
5555 			/* Links status message must follow this format */
5556 			netdev_info(netdev,
5557 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5558 			       netdev->name,
5559 			       adapter->link_speed,
5560 			       adapter->link_duplex == FULL_DUPLEX ?
5561 			       "Full" : "Half",
5562 			       (ctrl & E1000_CTRL_TFCE) &&
5563 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5564 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5565 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5566 
5567 			/* disable EEE if enabled */
5568 			if ((adapter->flags & IGB_FLAG_EEE) &&
5569 				(adapter->link_duplex == HALF_DUPLEX)) {
5570 				dev_info(&adapter->pdev->dev,
5571 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5572 				adapter->hw.dev_spec._82575.eee_disable = true;
5573 				adapter->flags &= ~IGB_FLAG_EEE;
5574 			}
5575 
5576 			/* check if SmartSpeed worked */
5577 			igb_check_downshift(hw);
5578 			if (phy->speed_downgraded)
5579 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5580 
5581 			/* check for thermal sensor event */
5582 			if (igb_thermal_sensor_event(hw,
5583 			    E1000_THSTAT_LINK_THROTTLE))
5584 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5585 
5586 			/* adjust timeout factor according to speed/duplex */
5587 			adapter->tx_timeout_factor = 1;
5588 			switch (adapter->link_speed) {
5589 			case SPEED_10:
5590 				adapter->tx_timeout_factor = 14;
5591 				break;
5592 			case SPEED_100:
5593 				/* maybe add some timeout factor ? */
5594 				break;
5595 			}
5596 
5597 			if (adapter->link_speed != SPEED_1000 ||
5598 			    !hw->phy.ops.read_reg)
5599 				goto no_wait;
5600 
5601 			/* wait for Remote receiver status OK */
5602 retry_read_status:
5603 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5604 					      &phy_data)) {
5605 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5606 				    retry_count) {
5607 					msleep(100);
5608 					retry_count--;
5609 					goto retry_read_status;
5610 				} else if (!retry_count) {
5611 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5612 				}
5613 			} else {
5614 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5615 			}
5616 no_wait:
5617 			netif_carrier_on(netdev);
5618 
5619 			igb_ping_all_vfs(adapter);
5620 			igb_check_vf_rate_limit(adapter);
5621 
5622 			/* link state has changed, schedule phy info update */
5623 			if (!test_bit(__IGB_DOWN, &adapter->state))
5624 				mod_timer(&adapter->phy_info_timer,
5625 					  round_jiffies(jiffies + 2 * HZ));
5626 		}
5627 	} else {
5628 		if (netif_carrier_ok(netdev)) {
5629 			adapter->link_speed = 0;
5630 			adapter->link_duplex = 0;
5631 
5632 			/* check for thermal sensor event */
5633 			if (igb_thermal_sensor_event(hw,
5634 			    E1000_THSTAT_PWR_DOWN)) {
5635 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5636 			}
5637 
5638 			/* Links status message must follow this format */
5639 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5640 			       netdev->name);
5641 			netif_carrier_off(netdev);
5642 
5643 			igb_ping_all_vfs(adapter);
5644 
5645 			/* link state has changed, schedule phy info update */
5646 			if (!test_bit(__IGB_DOWN, &adapter->state))
5647 				mod_timer(&adapter->phy_info_timer,
5648 					  round_jiffies(jiffies + 2 * HZ));
5649 
5650 			/* link is down, time to check for alternate media */
5651 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5652 				igb_check_swap_media(adapter);
5653 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5654 					schedule_work(&adapter->reset_task);
5655 					/* return immediately */
5656 					return;
5657 				}
5658 			}
5659 			pm_schedule_suspend(netdev->dev.parent,
5660 					    MSEC_PER_SEC * 5);
5661 
5662 		/* also check for alternate media here */
5663 		} else if (!netif_carrier_ok(netdev) &&
5664 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5665 			igb_check_swap_media(adapter);
5666 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5667 				schedule_work(&adapter->reset_task);
5668 				/* return immediately */
5669 				return;
5670 			}
5671 		}
5672 	}
5673 
5674 	spin_lock(&adapter->stats64_lock);
5675 	igb_update_stats(adapter);
5676 	spin_unlock(&adapter->stats64_lock);
5677 
5678 	for (i = 0; i < adapter->num_tx_queues; i++) {
5679 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5680 		if (!netif_carrier_ok(netdev)) {
5681 			/* We've lost link, so the controller stops DMA,
5682 			 * but we've got queued Tx work that's never going
5683 			 * to get done, so reset controller to flush Tx.
5684 			 * (Do the reset outside of interrupt context).
5685 			 */
5686 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5687 				adapter->tx_timeout_count++;
5688 				schedule_work(&adapter->reset_task);
5689 				/* return immediately since reset is imminent */
5690 				return;
5691 			}
5692 		}
5693 
5694 		/* Force detection of hung controller every watchdog period */
5695 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5696 	}
5697 
5698 	/* Cause software interrupt to ensure Rx ring is cleaned */
5699 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5700 		u32 eics = 0;
5701 
5702 		for (i = 0; i < adapter->num_q_vectors; i++)
5703 			eics |= adapter->q_vector[i]->eims_value;
5704 		wr32(E1000_EICS, eics);
5705 	} else {
5706 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5707 	}
5708 
5709 	igb_spoof_check(adapter);
5710 	igb_ptp_rx_hang(adapter);
5711 	igb_ptp_tx_hang(adapter);
5712 
5713 	/* Check LVMMC register on i350/i354 only */
5714 	if ((adapter->hw.mac.type == e1000_i350) ||
5715 	    (adapter->hw.mac.type == e1000_i354))
5716 		igb_check_lvmmc(adapter);
5717 
5718 	/* Reset the timer */
5719 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5720 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5721 			mod_timer(&adapter->watchdog_timer,
5722 				  round_jiffies(jiffies +  HZ));
5723 		else
5724 			mod_timer(&adapter->watchdog_timer,
5725 				  round_jiffies(jiffies + 2 * HZ));
5726 	}
5727 }
5728 
5729 enum latency_range {
5730 	lowest_latency = 0,
5731 	low_latency = 1,
5732 	bulk_latency = 2,
5733 	latency_invalid = 255
5734 };
5735 
5736 /**
5737  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5738  *  @q_vector: pointer to q_vector
5739  *
5740  *  Stores a new ITR value based on strictly on packet size.  This
5741  *  algorithm is less sophisticated than that used in igb_update_itr,
5742  *  due to the difficulty of synchronizing statistics across multiple
5743  *  receive rings.  The divisors and thresholds used by this function
5744  *  were determined based on theoretical maximum wire speed and testing
5745  *  data, in order to minimize response time while increasing bulk
5746  *  throughput.
5747  *  This functionality is controlled by ethtool's coalescing settings.
5748  *  NOTE:  This function is called only when operating in a multiqueue
5749  *         receive environment.
5750  **/
5751 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5752 {
5753 	int new_val = q_vector->itr_val;
5754 	int avg_wire_size = 0;
5755 	struct igb_adapter *adapter = q_vector->adapter;
5756 	unsigned int packets;
5757 
5758 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5759 	 * ints/sec - ITR timer value of 120 ticks.
5760 	 */
5761 	if (adapter->link_speed != SPEED_1000) {
5762 		new_val = IGB_4K_ITR;
5763 		goto set_itr_val;
5764 	}
5765 
5766 	packets = q_vector->rx.total_packets;
5767 	if (packets)
5768 		avg_wire_size = q_vector->rx.total_bytes / packets;
5769 
5770 	packets = q_vector->tx.total_packets;
5771 	if (packets)
5772 		avg_wire_size = max_t(u32, avg_wire_size,
5773 				      q_vector->tx.total_bytes / packets);
5774 
5775 	/* if avg_wire_size isn't set no work was done */
5776 	if (!avg_wire_size)
5777 		goto clear_counts;
5778 
5779 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5780 	avg_wire_size += 24;
5781 
5782 	/* Don't starve jumbo frames */
5783 	avg_wire_size = min(avg_wire_size, 3000);
5784 
5785 	/* Give a little boost to mid-size frames */
5786 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5787 		new_val = avg_wire_size / 3;
5788 	else
5789 		new_val = avg_wire_size / 2;
5790 
5791 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5792 	if (new_val < IGB_20K_ITR &&
5793 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5794 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5795 		new_val = IGB_20K_ITR;
5796 
5797 set_itr_val:
5798 	if (new_val != q_vector->itr_val) {
5799 		q_vector->itr_val = new_val;
5800 		q_vector->set_itr = 1;
5801 	}
5802 clear_counts:
5803 	q_vector->rx.total_bytes = 0;
5804 	q_vector->rx.total_packets = 0;
5805 	q_vector->tx.total_bytes = 0;
5806 	q_vector->tx.total_packets = 0;
5807 }
5808 
5809 /**
5810  *  igb_update_itr - update the dynamic ITR value based on statistics
5811  *  @q_vector: pointer to q_vector
5812  *  @ring_container: ring info to update the itr for
5813  *
5814  *  Stores a new ITR value based on packets and byte
5815  *  counts during the last interrupt.  The advantage of per interrupt
5816  *  computation is faster updates and more accurate ITR for the current
5817  *  traffic pattern.  Constants in this function were computed
5818  *  based on theoretical maximum wire speed and thresholds were set based
5819  *  on testing data as well as attempting to minimize response time
5820  *  while increasing bulk throughput.
5821  *  This functionality is controlled by ethtool's coalescing settings.
5822  *  NOTE:  These calculations are only valid when operating in a single-
5823  *         queue environment.
5824  **/
5825 static void igb_update_itr(struct igb_q_vector *q_vector,
5826 			   struct igb_ring_container *ring_container)
5827 {
5828 	unsigned int packets = ring_container->total_packets;
5829 	unsigned int bytes = ring_container->total_bytes;
5830 	u8 itrval = ring_container->itr;
5831 
5832 	/* no packets, exit with status unchanged */
5833 	if (packets == 0)
5834 		return;
5835 
5836 	switch (itrval) {
5837 	case lowest_latency:
5838 		/* handle TSO and jumbo frames */
5839 		if (bytes/packets > 8000)
5840 			itrval = bulk_latency;
5841 		else if ((packets < 5) && (bytes > 512))
5842 			itrval = low_latency;
5843 		break;
5844 	case low_latency:  /* 50 usec aka 20000 ints/s */
5845 		if (bytes > 10000) {
5846 			/* this if handles the TSO accounting */
5847 			if (bytes/packets > 8000)
5848 				itrval = bulk_latency;
5849 			else if ((packets < 10) || ((bytes/packets) > 1200))
5850 				itrval = bulk_latency;
5851 			else if ((packets > 35))
5852 				itrval = lowest_latency;
5853 		} else if (bytes/packets > 2000) {
5854 			itrval = bulk_latency;
5855 		} else if (packets <= 2 && bytes < 512) {
5856 			itrval = lowest_latency;
5857 		}
5858 		break;
5859 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5860 		if (bytes > 25000) {
5861 			if (packets > 35)
5862 				itrval = low_latency;
5863 		} else if (bytes < 1500) {
5864 			itrval = low_latency;
5865 		}
5866 		break;
5867 	}
5868 
5869 	/* clear work counters since we have the values we need */
5870 	ring_container->total_bytes = 0;
5871 	ring_container->total_packets = 0;
5872 
5873 	/* write updated itr to ring container */
5874 	ring_container->itr = itrval;
5875 }
5876 
5877 static void igb_set_itr(struct igb_q_vector *q_vector)
5878 {
5879 	struct igb_adapter *adapter = q_vector->adapter;
5880 	u32 new_itr = q_vector->itr_val;
5881 	u8 current_itr = 0;
5882 
5883 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5884 	if (adapter->link_speed != SPEED_1000) {
5885 		current_itr = 0;
5886 		new_itr = IGB_4K_ITR;
5887 		goto set_itr_now;
5888 	}
5889 
5890 	igb_update_itr(q_vector, &q_vector->tx);
5891 	igb_update_itr(q_vector, &q_vector->rx);
5892 
5893 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5894 
5895 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5896 	if (current_itr == lowest_latency &&
5897 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5898 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5899 		current_itr = low_latency;
5900 
5901 	switch (current_itr) {
5902 	/* counts and packets in update_itr are dependent on these numbers */
5903 	case lowest_latency:
5904 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5905 		break;
5906 	case low_latency:
5907 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5908 		break;
5909 	case bulk_latency:
5910 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5911 		break;
5912 	default:
5913 		break;
5914 	}
5915 
5916 set_itr_now:
5917 	if (new_itr != q_vector->itr_val) {
5918 		/* this attempts to bias the interrupt rate towards Bulk
5919 		 * by adding intermediate steps when interrupt rate is
5920 		 * increasing
5921 		 */
5922 		new_itr = new_itr > q_vector->itr_val ?
5923 			  max((new_itr * q_vector->itr_val) /
5924 			  (new_itr + (q_vector->itr_val >> 2)),
5925 			  new_itr) : new_itr;
5926 		/* Don't write the value here; it resets the adapter's
5927 		 * internal timer, and causes us to delay far longer than
5928 		 * we should between interrupts.  Instead, we write the ITR
5929 		 * value at the beginning of the next interrupt so the timing
5930 		 * ends up being correct.
5931 		 */
5932 		q_vector->itr_val = new_itr;
5933 		q_vector->set_itr = 1;
5934 	}
5935 }
5936 
5937 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5938 			    struct igb_tx_buffer *first,
5939 			    u32 vlan_macip_lens, u32 type_tucmd,
5940 			    u32 mss_l4len_idx)
5941 {
5942 	struct e1000_adv_tx_context_desc *context_desc;
5943 	u16 i = tx_ring->next_to_use;
5944 	struct timespec64 ts;
5945 
5946 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5947 
5948 	i++;
5949 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5950 
5951 	/* set bits to identify this as an advanced context descriptor */
5952 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5953 
5954 	/* For 82575, context index must be unique per ring. */
5955 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5956 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5957 
5958 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5959 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5960 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5961 
5962 	/* We assume there is always a valid tx time available. Invalid times
5963 	 * should have been handled by the upper layers.
5964 	 */
5965 	if (tx_ring->launchtime_enable) {
5966 		ts = ktime_to_timespec64(first->skb->tstamp);
5967 		skb_txtime_consumed(first->skb);
5968 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5969 	} else {
5970 		context_desc->seqnum_seed = 0;
5971 	}
5972 }
5973 
5974 static int igb_tso(struct igb_ring *tx_ring,
5975 		   struct igb_tx_buffer *first,
5976 		   u8 *hdr_len)
5977 {
5978 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5979 	struct sk_buff *skb = first->skb;
5980 	union {
5981 		struct iphdr *v4;
5982 		struct ipv6hdr *v6;
5983 		unsigned char *hdr;
5984 	} ip;
5985 	union {
5986 		struct tcphdr *tcp;
5987 		struct udphdr *udp;
5988 		unsigned char *hdr;
5989 	} l4;
5990 	u32 paylen, l4_offset;
5991 	int err;
5992 
5993 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5994 		return 0;
5995 
5996 	if (!skb_is_gso(skb))
5997 		return 0;
5998 
5999 	err = skb_cow_head(skb, 0);
6000 	if (err < 0)
6001 		return err;
6002 
6003 	ip.hdr = skb_network_header(skb);
6004 	l4.hdr = skb_checksum_start(skb);
6005 
6006 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6007 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6008 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6009 
6010 	/* initialize outer IP header fields */
6011 	if (ip.v4->version == 4) {
6012 		unsigned char *csum_start = skb_checksum_start(skb);
6013 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6014 
6015 		/* IP header will have to cancel out any data that
6016 		 * is not a part of the outer IP header
6017 		 */
6018 		ip.v4->check = csum_fold(csum_partial(trans_start,
6019 						      csum_start - trans_start,
6020 						      0));
6021 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6022 
6023 		ip.v4->tot_len = 0;
6024 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6025 				   IGB_TX_FLAGS_CSUM |
6026 				   IGB_TX_FLAGS_IPV4;
6027 	} else {
6028 		ip.v6->payload_len = 0;
6029 		first->tx_flags |= IGB_TX_FLAGS_TSO |
6030 				   IGB_TX_FLAGS_CSUM;
6031 	}
6032 
6033 	/* determine offset of inner transport header */
6034 	l4_offset = l4.hdr - skb->data;
6035 
6036 	/* remove payload length from inner checksum */
6037 	paylen = skb->len - l4_offset;
6038 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6039 		/* compute length of segmentation header */
6040 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6041 		csum_replace_by_diff(&l4.tcp->check,
6042 			(__force __wsum)htonl(paylen));
6043 	} else {
6044 		/* compute length of segmentation header */
6045 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6046 		csum_replace_by_diff(&l4.udp->check,
6047 				     (__force __wsum)htonl(paylen));
6048 	}
6049 
6050 	/* update gso size and bytecount with header size */
6051 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6052 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6053 
6054 	/* MSS L4LEN IDX */
6055 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6056 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6057 
6058 	/* VLAN MACLEN IPLEN */
6059 	vlan_macip_lens = l4.hdr - ip.hdr;
6060 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6061 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6062 
6063 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6064 			type_tucmd, mss_l4len_idx);
6065 
6066 	return 1;
6067 }
6068 
6069 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6070 {
6071 	struct sk_buff *skb = first->skb;
6072 	u32 vlan_macip_lens = 0;
6073 	u32 type_tucmd = 0;
6074 
6075 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6076 csum_failed:
6077 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6078 		    !tx_ring->launchtime_enable)
6079 			return;
6080 		goto no_csum;
6081 	}
6082 
6083 	switch (skb->csum_offset) {
6084 	case offsetof(struct tcphdr, check):
6085 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6086 		fallthrough;
6087 	case offsetof(struct udphdr, check):
6088 		break;
6089 	case offsetof(struct sctphdr, checksum):
6090 		/* validate that this is actually an SCTP request */
6091 		if (skb_csum_is_sctp(skb)) {
6092 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6093 			break;
6094 		}
6095 		fallthrough;
6096 	default:
6097 		skb_checksum_help(skb);
6098 		goto csum_failed;
6099 	}
6100 
6101 	/* update TX checksum flag */
6102 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6103 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6104 			  skb_network_offset(skb);
6105 no_csum:
6106 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6107 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6108 
6109 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6110 }
6111 
6112 #define IGB_SET_FLAG(_input, _flag, _result) \
6113 	((_flag <= _result) ? \
6114 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6115 	 ((u32)(_input & _flag) / (_flag / _result)))
6116 
6117 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6118 {
6119 	/* set type for advanced descriptor with frame checksum insertion */
6120 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6121 		       E1000_ADVTXD_DCMD_DEXT |
6122 		       E1000_ADVTXD_DCMD_IFCS;
6123 
6124 	/* set HW vlan bit if vlan is present */
6125 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6126 				 (E1000_ADVTXD_DCMD_VLE));
6127 
6128 	/* set segmentation bits for TSO */
6129 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6130 				 (E1000_ADVTXD_DCMD_TSE));
6131 
6132 	/* set timestamp bit if present */
6133 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6134 				 (E1000_ADVTXD_MAC_TSTAMP));
6135 
6136 	/* insert frame checksum */
6137 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6138 
6139 	return cmd_type;
6140 }
6141 
6142 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6143 				 union e1000_adv_tx_desc *tx_desc,
6144 				 u32 tx_flags, unsigned int paylen)
6145 {
6146 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6147 
6148 	/* 82575 requires a unique index per ring */
6149 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6150 		olinfo_status |= tx_ring->reg_idx << 4;
6151 
6152 	/* insert L4 checksum */
6153 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6154 				      IGB_TX_FLAGS_CSUM,
6155 				      (E1000_TXD_POPTS_TXSM << 8));
6156 
6157 	/* insert IPv4 checksum */
6158 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6159 				      IGB_TX_FLAGS_IPV4,
6160 				      (E1000_TXD_POPTS_IXSM << 8));
6161 
6162 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6163 }
6164 
6165 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6166 {
6167 	struct net_device *netdev = tx_ring->netdev;
6168 
6169 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6170 
6171 	/* Herbert's original patch had:
6172 	 *  smp_mb__after_netif_stop_queue();
6173 	 * but since that doesn't exist yet, just open code it.
6174 	 */
6175 	smp_mb();
6176 
6177 	/* We need to check again in a case another CPU has just
6178 	 * made room available.
6179 	 */
6180 	if (igb_desc_unused(tx_ring) < size)
6181 		return -EBUSY;
6182 
6183 	/* A reprieve! */
6184 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6185 
6186 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6187 	tx_ring->tx_stats.restart_queue2++;
6188 	u64_stats_update_end(&tx_ring->tx_syncp2);
6189 
6190 	return 0;
6191 }
6192 
6193 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6194 {
6195 	if (igb_desc_unused(tx_ring) >= size)
6196 		return 0;
6197 	return __igb_maybe_stop_tx(tx_ring, size);
6198 }
6199 
6200 static int igb_tx_map(struct igb_ring *tx_ring,
6201 		      struct igb_tx_buffer *first,
6202 		      const u8 hdr_len)
6203 {
6204 	struct sk_buff *skb = first->skb;
6205 	struct igb_tx_buffer *tx_buffer;
6206 	union e1000_adv_tx_desc *tx_desc;
6207 	skb_frag_t *frag;
6208 	dma_addr_t dma;
6209 	unsigned int data_len, size;
6210 	u32 tx_flags = first->tx_flags;
6211 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6212 	u16 i = tx_ring->next_to_use;
6213 
6214 	tx_desc = IGB_TX_DESC(tx_ring, i);
6215 
6216 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6217 
6218 	size = skb_headlen(skb);
6219 	data_len = skb->data_len;
6220 
6221 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6222 
6223 	tx_buffer = first;
6224 
6225 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6226 		if (dma_mapping_error(tx_ring->dev, dma))
6227 			goto dma_error;
6228 
6229 		/* record length, and DMA address */
6230 		dma_unmap_len_set(tx_buffer, len, size);
6231 		dma_unmap_addr_set(tx_buffer, dma, dma);
6232 
6233 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6234 
6235 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6236 			tx_desc->read.cmd_type_len =
6237 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6238 
6239 			i++;
6240 			tx_desc++;
6241 			if (i == tx_ring->count) {
6242 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6243 				i = 0;
6244 			}
6245 			tx_desc->read.olinfo_status = 0;
6246 
6247 			dma += IGB_MAX_DATA_PER_TXD;
6248 			size -= IGB_MAX_DATA_PER_TXD;
6249 
6250 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6251 		}
6252 
6253 		if (likely(!data_len))
6254 			break;
6255 
6256 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6257 
6258 		i++;
6259 		tx_desc++;
6260 		if (i == tx_ring->count) {
6261 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6262 			i = 0;
6263 		}
6264 		tx_desc->read.olinfo_status = 0;
6265 
6266 		size = skb_frag_size(frag);
6267 		data_len -= size;
6268 
6269 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6270 				       size, DMA_TO_DEVICE);
6271 
6272 		tx_buffer = &tx_ring->tx_buffer_info[i];
6273 	}
6274 
6275 	/* write last descriptor with RS and EOP bits */
6276 	cmd_type |= size | IGB_TXD_DCMD;
6277 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6278 
6279 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6280 
6281 	/* set the timestamp */
6282 	first->time_stamp = jiffies;
6283 
6284 	skb_tx_timestamp(skb);
6285 
6286 	/* Force memory writes to complete before letting h/w know there
6287 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6288 	 * memory model archs, such as IA-64).
6289 	 *
6290 	 * We also need this memory barrier to make certain all of the
6291 	 * status bits have been updated before next_to_watch is written.
6292 	 */
6293 	dma_wmb();
6294 
6295 	/* set next_to_watch value indicating a packet is present */
6296 	first->next_to_watch = tx_desc;
6297 
6298 	i++;
6299 	if (i == tx_ring->count)
6300 		i = 0;
6301 
6302 	tx_ring->next_to_use = i;
6303 
6304 	/* Make sure there is space in the ring for the next send. */
6305 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6306 
6307 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6308 		writel(i, tx_ring->tail);
6309 	}
6310 	return 0;
6311 
6312 dma_error:
6313 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6314 	tx_buffer = &tx_ring->tx_buffer_info[i];
6315 
6316 	/* clear dma mappings for failed tx_buffer_info map */
6317 	while (tx_buffer != first) {
6318 		if (dma_unmap_len(tx_buffer, len))
6319 			dma_unmap_page(tx_ring->dev,
6320 				       dma_unmap_addr(tx_buffer, dma),
6321 				       dma_unmap_len(tx_buffer, len),
6322 				       DMA_TO_DEVICE);
6323 		dma_unmap_len_set(tx_buffer, len, 0);
6324 
6325 		if (i-- == 0)
6326 			i += tx_ring->count;
6327 		tx_buffer = &tx_ring->tx_buffer_info[i];
6328 	}
6329 
6330 	if (dma_unmap_len(tx_buffer, len))
6331 		dma_unmap_single(tx_ring->dev,
6332 				 dma_unmap_addr(tx_buffer, dma),
6333 				 dma_unmap_len(tx_buffer, len),
6334 				 DMA_TO_DEVICE);
6335 	dma_unmap_len_set(tx_buffer, len, 0);
6336 
6337 	dev_kfree_skb_any(tx_buffer->skb);
6338 	tx_buffer->skb = NULL;
6339 
6340 	tx_ring->next_to_use = i;
6341 
6342 	return -1;
6343 }
6344 
6345 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6346 		      struct igb_ring *tx_ring,
6347 		      struct xdp_frame *xdpf)
6348 {
6349 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6350 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6351 	u16 count, i, index = tx_ring->next_to_use;
6352 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6353 	struct igb_tx_buffer *tx_buffer = tx_head;
6354 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6355 	u32 len = xdpf->len, cmd_type, olinfo_status;
6356 	void *data = xdpf->data;
6357 
6358 	count = TXD_USE_COUNT(len);
6359 	for (i = 0; i < nr_frags; i++)
6360 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6361 
6362 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6363 		return IGB_XDP_CONSUMED;
6364 
6365 	i = 0;
6366 	/* record the location of the first descriptor for this packet */
6367 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6368 	tx_head->type = IGB_TYPE_XDP;
6369 	tx_head->gso_segs = 1;
6370 	tx_head->xdpf = xdpf;
6371 
6372 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6373 	/* 82575 requires a unique index per ring */
6374 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6375 		olinfo_status |= tx_ring->reg_idx << 4;
6376 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6377 
6378 	for (;;) {
6379 		dma_addr_t dma;
6380 
6381 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6382 		if (dma_mapping_error(tx_ring->dev, dma))
6383 			goto unmap;
6384 
6385 		/* record length, and DMA address */
6386 		dma_unmap_len_set(tx_buffer, len, len);
6387 		dma_unmap_addr_set(tx_buffer, dma, dma);
6388 
6389 		/* put descriptor type bits */
6390 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6391 			   E1000_ADVTXD_DCMD_IFCS | len;
6392 
6393 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6394 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6395 
6396 		tx_buffer->protocol = 0;
6397 
6398 		if (++index == tx_ring->count)
6399 			index = 0;
6400 
6401 		if (i == nr_frags)
6402 			break;
6403 
6404 		tx_buffer = &tx_ring->tx_buffer_info[index];
6405 		tx_desc = IGB_TX_DESC(tx_ring, index);
6406 		tx_desc->read.olinfo_status = 0;
6407 
6408 		data = skb_frag_address(&sinfo->frags[i]);
6409 		len = skb_frag_size(&sinfo->frags[i]);
6410 		i++;
6411 	}
6412 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6413 
6414 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6415 	/* set the timestamp */
6416 	tx_head->time_stamp = jiffies;
6417 
6418 	/* Avoid any potential race with xdp_xmit and cleanup */
6419 	smp_wmb();
6420 
6421 	/* set next_to_watch value indicating a packet is present */
6422 	tx_head->next_to_watch = tx_desc;
6423 	tx_ring->next_to_use = index;
6424 
6425 	/* Make sure there is space in the ring for the next send. */
6426 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6427 
6428 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6429 		writel(index, tx_ring->tail);
6430 
6431 	return IGB_XDP_TX;
6432 
6433 unmap:
6434 	for (;;) {
6435 		tx_buffer = &tx_ring->tx_buffer_info[index];
6436 		if (dma_unmap_len(tx_buffer, len))
6437 			dma_unmap_page(tx_ring->dev,
6438 				       dma_unmap_addr(tx_buffer, dma),
6439 				       dma_unmap_len(tx_buffer, len),
6440 				       DMA_TO_DEVICE);
6441 		dma_unmap_len_set(tx_buffer, len, 0);
6442 		if (tx_buffer == tx_head)
6443 			break;
6444 
6445 		if (!index)
6446 			index += tx_ring->count;
6447 		index--;
6448 	}
6449 
6450 	return IGB_XDP_CONSUMED;
6451 }
6452 
6453 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6454 				struct igb_ring *tx_ring)
6455 {
6456 	struct igb_tx_buffer *first;
6457 	int tso;
6458 	u32 tx_flags = 0;
6459 	unsigned short f;
6460 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6461 	__be16 protocol = vlan_get_protocol(skb);
6462 	u8 hdr_len = 0;
6463 
6464 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6465 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6466 	 *       + 2 desc gap to keep tail from touching head,
6467 	 *       + 1 desc for context descriptor,
6468 	 * otherwise try next time
6469 	 */
6470 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6471 		count += TXD_USE_COUNT(skb_frag_size(
6472 						&skb_shinfo(skb)->frags[f]));
6473 
6474 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6475 		/* this is a hard error */
6476 		return NETDEV_TX_BUSY;
6477 	}
6478 
6479 	/* record the location of the first descriptor for this packet */
6480 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6481 	first->type = IGB_TYPE_SKB;
6482 	first->skb = skb;
6483 	first->bytecount = skb->len;
6484 	first->gso_segs = 1;
6485 
6486 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6487 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6488 
6489 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6490 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6491 					   &adapter->state)) {
6492 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6493 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6494 
6495 			adapter->ptp_tx_skb = skb_get(skb);
6496 			adapter->ptp_tx_start = jiffies;
6497 			if (adapter->hw.mac.type == e1000_82576)
6498 				schedule_work(&adapter->ptp_tx_work);
6499 		} else {
6500 			adapter->tx_hwtstamp_skipped++;
6501 		}
6502 	}
6503 
6504 	if (skb_vlan_tag_present(skb)) {
6505 		tx_flags |= IGB_TX_FLAGS_VLAN;
6506 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6507 	}
6508 
6509 	/* record initial flags and protocol */
6510 	first->tx_flags = tx_flags;
6511 	first->protocol = protocol;
6512 
6513 	tso = igb_tso(tx_ring, first, &hdr_len);
6514 	if (tso < 0)
6515 		goto out_drop;
6516 	else if (!tso)
6517 		igb_tx_csum(tx_ring, first);
6518 
6519 	if (igb_tx_map(tx_ring, first, hdr_len))
6520 		goto cleanup_tx_tstamp;
6521 
6522 	return NETDEV_TX_OK;
6523 
6524 out_drop:
6525 	dev_kfree_skb_any(first->skb);
6526 	first->skb = NULL;
6527 cleanup_tx_tstamp:
6528 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6529 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6530 
6531 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6532 		adapter->ptp_tx_skb = NULL;
6533 		if (adapter->hw.mac.type == e1000_82576)
6534 			cancel_work_sync(&adapter->ptp_tx_work);
6535 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6536 	}
6537 
6538 	return NETDEV_TX_OK;
6539 }
6540 
6541 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6542 						    struct sk_buff *skb)
6543 {
6544 	unsigned int r_idx = skb->queue_mapping;
6545 
6546 	if (r_idx >= adapter->num_tx_queues)
6547 		r_idx = r_idx % adapter->num_tx_queues;
6548 
6549 	return adapter->tx_ring[r_idx];
6550 }
6551 
6552 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6553 				  struct net_device *netdev)
6554 {
6555 	struct igb_adapter *adapter = netdev_priv(netdev);
6556 
6557 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6558 	 * in order to meet this minimum size requirement.
6559 	 */
6560 	if (skb_put_padto(skb, 17))
6561 		return NETDEV_TX_OK;
6562 
6563 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6564 }
6565 
6566 /**
6567  *  igb_tx_timeout - Respond to a Tx Hang
6568  *  @netdev: network interface device structure
6569  *  @txqueue: number of the Tx queue that hung (unused)
6570  **/
6571 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6572 {
6573 	struct igb_adapter *adapter = netdev_priv(netdev);
6574 	struct e1000_hw *hw = &adapter->hw;
6575 
6576 	/* Do the reset outside of interrupt context */
6577 	adapter->tx_timeout_count++;
6578 
6579 	if (hw->mac.type >= e1000_82580)
6580 		hw->dev_spec._82575.global_device_reset = true;
6581 
6582 	schedule_work(&adapter->reset_task);
6583 	wr32(E1000_EICS,
6584 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6585 }
6586 
6587 static void igb_reset_task(struct work_struct *work)
6588 {
6589 	struct igb_adapter *adapter;
6590 	adapter = container_of(work, struct igb_adapter, reset_task);
6591 
6592 	rtnl_lock();
6593 	/* If we're already down or resetting, just bail */
6594 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6595 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6596 		rtnl_unlock();
6597 		return;
6598 	}
6599 
6600 	igb_dump(adapter);
6601 	netdev_err(adapter->netdev, "Reset adapter\n");
6602 	igb_reinit_locked(adapter);
6603 	rtnl_unlock();
6604 }
6605 
6606 /**
6607  *  igb_get_stats64 - Get System Network Statistics
6608  *  @netdev: network interface device structure
6609  *  @stats: rtnl_link_stats64 pointer
6610  **/
6611 static void igb_get_stats64(struct net_device *netdev,
6612 			    struct rtnl_link_stats64 *stats)
6613 {
6614 	struct igb_adapter *adapter = netdev_priv(netdev);
6615 
6616 	spin_lock(&adapter->stats64_lock);
6617 	igb_update_stats(adapter);
6618 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6619 	spin_unlock(&adapter->stats64_lock);
6620 }
6621 
6622 /**
6623  *  igb_change_mtu - Change the Maximum Transfer Unit
6624  *  @netdev: network interface device structure
6625  *  @new_mtu: new value for maximum frame size
6626  *
6627  *  Returns 0 on success, negative on failure
6628  **/
6629 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6630 {
6631 	struct igb_adapter *adapter = netdev_priv(netdev);
6632 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6633 
6634 	if (adapter->xdp_prog) {
6635 		int i;
6636 
6637 		for (i = 0; i < adapter->num_rx_queues; i++) {
6638 			struct igb_ring *ring = adapter->rx_ring[i];
6639 
6640 			if (max_frame > igb_rx_bufsz(ring)) {
6641 				netdev_warn(adapter->netdev,
6642 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6643 					    max_frame);
6644 				return -EINVAL;
6645 			}
6646 		}
6647 	}
6648 
6649 	/* adjust max frame to be at least the size of a standard frame */
6650 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6651 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6652 
6653 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6654 		usleep_range(1000, 2000);
6655 
6656 	/* igb_down has a dependency on max_frame_size */
6657 	adapter->max_frame_size = max_frame;
6658 
6659 	if (netif_running(netdev))
6660 		igb_down(adapter);
6661 
6662 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6663 		   netdev->mtu, new_mtu);
6664 	netdev->mtu = new_mtu;
6665 
6666 	if (netif_running(netdev))
6667 		igb_up(adapter);
6668 	else
6669 		igb_reset(adapter);
6670 
6671 	clear_bit(__IGB_RESETTING, &adapter->state);
6672 
6673 	return 0;
6674 }
6675 
6676 /**
6677  *  igb_update_stats - Update the board statistics counters
6678  *  @adapter: board private structure
6679  **/
6680 void igb_update_stats(struct igb_adapter *adapter)
6681 {
6682 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6683 	struct e1000_hw *hw = &adapter->hw;
6684 	struct pci_dev *pdev = adapter->pdev;
6685 	u32 reg, mpc;
6686 	int i;
6687 	u64 bytes, packets;
6688 	unsigned int start;
6689 	u64 _bytes, _packets;
6690 
6691 	/* Prevent stats update while adapter is being reset, or if the pci
6692 	 * connection is down.
6693 	 */
6694 	if (adapter->link_speed == 0)
6695 		return;
6696 	if (pci_channel_offline(pdev))
6697 		return;
6698 
6699 	bytes = 0;
6700 	packets = 0;
6701 
6702 	rcu_read_lock();
6703 	for (i = 0; i < adapter->num_rx_queues; i++) {
6704 		struct igb_ring *ring = adapter->rx_ring[i];
6705 		u32 rqdpc = rd32(E1000_RQDPC(i));
6706 		if (hw->mac.type >= e1000_i210)
6707 			wr32(E1000_RQDPC(i), 0);
6708 
6709 		if (rqdpc) {
6710 			ring->rx_stats.drops += rqdpc;
6711 			net_stats->rx_fifo_errors += rqdpc;
6712 		}
6713 
6714 		do {
6715 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6716 			_bytes = ring->rx_stats.bytes;
6717 			_packets = ring->rx_stats.packets;
6718 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6719 		bytes += _bytes;
6720 		packets += _packets;
6721 	}
6722 
6723 	net_stats->rx_bytes = bytes;
6724 	net_stats->rx_packets = packets;
6725 
6726 	bytes = 0;
6727 	packets = 0;
6728 	for (i = 0; i < adapter->num_tx_queues; i++) {
6729 		struct igb_ring *ring = adapter->tx_ring[i];
6730 		do {
6731 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6732 			_bytes = ring->tx_stats.bytes;
6733 			_packets = ring->tx_stats.packets;
6734 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6735 		bytes += _bytes;
6736 		packets += _packets;
6737 	}
6738 	net_stats->tx_bytes = bytes;
6739 	net_stats->tx_packets = packets;
6740 	rcu_read_unlock();
6741 
6742 	/* read stats registers */
6743 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6744 	adapter->stats.gprc += rd32(E1000_GPRC);
6745 	adapter->stats.gorc += rd32(E1000_GORCL);
6746 	rd32(E1000_GORCH); /* clear GORCL */
6747 	adapter->stats.bprc += rd32(E1000_BPRC);
6748 	adapter->stats.mprc += rd32(E1000_MPRC);
6749 	adapter->stats.roc += rd32(E1000_ROC);
6750 
6751 	adapter->stats.prc64 += rd32(E1000_PRC64);
6752 	adapter->stats.prc127 += rd32(E1000_PRC127);
6753 	adapter->stats.prc255 += rd32(E1000_PRC255);
6754 	adapter->stats.prc511 += rd32(E1000_PRC511);
6755 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6756 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6757 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6758 	adapter->stats.sec += rd32(E1000_SEC);
6759 
6760 	mpc = rd32(E1000_MPC);
6761 	adapter->stats.mpc += mpc;
6762 	net_stats->rx_fifo_errors += mpc;
6763 	adapter->stats.scc += rd32(E1000_SCC);
6764 	adapter->stats.ecol += rd32(E1000_ECOL);
6765 	adapter->stats.mcc += rd32(E1000_MCC);
6766 	adapter->stats.latecol += rd32(E1000_LATECOL);
6767 	adapter->stats.dc += rd32(E1000_DC);
6768 	adapter->stats.rlec += rd32(E1000_RLEC);
6769 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6770 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6771 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6772 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6773 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6774 	adapter->stats.gptc += rd32(E1000_GPTC);
6775 	adapter->stats.gotc += rd32(E1000_GOTCL);
6776 	rd32(E1000_GOTCH); /* clear GOTCL */
6777 	adapter->stats.rnbc += rd32(E1000_RNBC);
6778 	adapter->stats.ruc += rd32(E1000_RUC);
6779 	adapter->stats.rfc += rd32(E1000_RFC);
6780 	adapter->stats.rjc += rd32(E1000_RJC);
6781 	adapter->stats.tor += rd32(E1000_TORH);
6782 	adapter->stats.tot += rd32(E1000_TOTH);
6783 	adapter->stats.tpr += rd32(E1000_TPR);
6784 
6785 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6786 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6787 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6788 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6789 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6790 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6791 
6792 	adapter->stats.mptc += rd32(E1000_MPTC);
6793 	adapter->stats.bptc += rd32(E1000_BPTC);
6794 
6795 	adapter->stats.tpt += rd32(E1000_TPT);
6796 	adapter->stats.colc += rd32(E1000_COLC);
6797 
6798 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6799 	/* read internal phy specific stats */
6800 	reg = rd32(E1000_CTRL_EXT);
6801 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6802 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6803 
6804 		/* this stat has invalid values on i210/i211 */
6805 		if ((hw->mac.type != e1000_i210) &&
6806 		    (hw->mac.type != e1000_i211))
6807 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6808 	}
6809 
6810 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6811 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6812 
6813 	adapter->stats.iac += rd32(E1000_IAC);
6814 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6815 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6816 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6817 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6818 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6819 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6820 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6821 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6822 
6823 	/* Fill out the OS statistics structure */
6824 	net_stats->multicast = adapter->stats.mprc;
6825 	net_stats->collisions = adapter->stats.colc;
6826 
6827 	/* Rx Errors */
6828 
6829 	/* RLEC on some newer hardware can be incorrect so build
6830 	 * our own version based on RUC and ROC
6831 	 */
6832 	net_stats->rx_errors = adapter->stats.rxerrc +
6833 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6834 		adapter->stats.ruc + adapter->stats.roc +
6835 		adapter->stats.cexterr;
6836 	net_stats->rx_length_errors = adapter->stats.ruc +
6837 				      adapter->stats.roc;
6838 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6839 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6840 	net_stats->rx_missed_errors = adapter->stats.mpc;
6841 
6842 	/* Tx Errors */
6843 	net_stats->tx_errors = adapter->stats.ecol +
6844 			       adapter->stats.latecol;
6845 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6846 	net_stats->tx_window_errors = adapter->stats.latecol;
6847 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6848 
6849 	/* Tx Dropped needs to be maintained elsewhere */
6850 
6851 	/* Management Stats */
6852 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6853 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6854 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6855 
6856 	/* OS2BMC Stats */
6857 	reg = rd32(E1000_MANC);
6858 	if (reg & E1000_MANC_EN_BMC2OS) {
6859 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6860 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6861 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6862 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6863 	}
6864 }
6865 
6866 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6867 {
6868 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6869 	struct e1000_hw *hw = &adapter->hw;
6870 	struct timespec64 ts;
6871 	u32 tsauxc;
6872 
6873 	if (pin < 0 || pin >= IGB_N_SDP)
6874 		return;
6875 
6876 	spin_lock(&adapter->tmreg_lock);
6877 
6878 	if (hw->mac.type == e1000_82580 ||
6879 	    hw->mac.type == e1000_i354 ||
6880 	    hw->mac.type == e1000_i350) {
6881 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6882 		u32 systiml, systimh, level_mask, level, rem;
6883 		u64 systim, now;
6884 
6885 		/* read systim registers in sequence */
6886 		rd32(E1000_SYSTIMR);
6887 		systiml = rd32(E1000_SYSTIML);
6888 		systimh = rd32(E1000_SYSTIMH);
6889 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6890 		now = timecounter_cyc2time(&adapter->tc, systim);
6891 
6892 		if (pin < 2) {
6893 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6894 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6895 		} else {
6896 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6897 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6898 		}
6899 
6900 		div_u64_rem(now, ns, &rem);
6901 		systim = systim + (ns - rem);
6902 
6903 		/* synchronize pin level with rising/falling edges */
6904 		div_u64_rem(now, ns << 1, &rem);
6905 		if (rem < ns) {
6906 			/* first half of period */
6907 			if (level == 0) {
6908 				/* output is already low, skip this period */
6909 				systim += ns;
6910 				pr_notice("igb: periodic output on %s missed falling edge\n",
6911 					  adapter->sdp_config[pin].name);
6912 			}
6913 		} else {
6914 			/* second half of period */
6915 			if (level == 1) {
6916 				/* output is already high, skip this period */
6917 				systim += ns;
6918 				pr_notice("igb: periodic output on %s missed rising edge\n",
6919 					  adapter->sdp_config[pin].name);
6920 			}
6921 		}
6922 
6923 		/* for this chip family tv_sec is the upper part of the binary value,
6924 		 * so not seconds
6925 		 */
6926 		ts.tv_nsec = (u32)systim;
6927 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6928 	} else {
6929 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
6930 				    adapter->perout[tsintr_tt].period);
6931 	}
6932 
6933 	/* u32 conversion of tv_sec is safe until y2106 */
6934 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6935 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6936 	tsauxc = rd32(E1000_TSAUXC);
6937 	tsauxc |= TSAUXC_EN_TT0;
6938 	wr32(E1000_TSAUXC, tsauxc);
6939 	adapter->perout[tsintr_tt].start = ts;
6940 
6941 	spin_unlock(&adapter->tmreg_lock);
6942 }
6943 
6944 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6945 {
6946 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6947 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6948 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6949 	struct e1000_hw *hw = &adapter->hw;
6950 	struct ptp_clock_event event;
6951 	struct timespec64 ts;
6952 	unsigned long flags;
6953 
6954 	if (pin < 0 || pin >= IGB_N_SDP)
6955 		return;
6956 
6957 	if (hw->mac.type == e1000_82580 ||
6958 	    hw->mac.type == e1000_i354 ||
6959 	    hw->mac.type == e1000_i350) {
6960 		u64 ns = rd32(auxstmpl);
6961 
6962 		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6963 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
6964 		ns = timecounter_cyc2time(&adapter->tc, ns);
6965 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6966 		ts = ns_to_timespec64(ns);
6967 	} else {
6968 		ts.tv_nsec = rd32(auxstmpl);
6969 		ts.tv_sec  = rd32(auxstmph);
6970 	}
6971 
6972 	event.type = PTP_CLOCK_EXTTS;
6973 	event.index = tsintr_tt;
6974 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6975 	ptp_clock_event(adapter->ptp_clock, &event);
6976 }
6977 
6978 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6979 {
6980 	struct e1000_hw *hw = &adapter->hw;
6981 	u32 ack = 0, tsicr = rd32(E1000_TSICR);
6982 	struct ptp_clock_event event;
6983 
6984 	if (tsicr & TSINTR_SYS_WRAP) {
6985 		event.type = PTP_CLOCK_PPS;
6986 		if (adapter->ptp_caps.pps)
6987 			ptp_clock_event(adapter->ptp_clock, &event);
6988 		ack |= TSINTR_SYS_WRAP;
6989 	}
6990 
6991 	if (tsicr & E1000_TSICR_TXTS) {
6992 		/* retrieve hardware timestamp */
6993 		schedule_work(&adapter->ptp_tx_work);
6994 		ack |= E1000_TSICR_TXTS;
6995 	}
6996 
6997 	if (tsicr & TSINTR_TT0) {
6998 		igb_perout(adapter, 0);
6999 		ack |= TSINTR_TT0;
7000 	}
7001 
7002 	if (tsicr & TSINTR_TT1) {
7003 		igb_perout(adapter, 1);
7004 		ack |= TSINTR_TT1;
7005 	}
7006 
7007 	if (tsicr & TSINTR_AUTT0) {
7008 		igb_extts(adapter, 0);
7009 		ack |= TSINTR_AUTT0;
7010 	}
7011 
7012 	if (tsicr & TSINTR_AUTT1) {
7013 		igb_extts(adapter, 1);
7014 		ack |= TSINTR_AUTT1;
7015 	}
7016 
7017 	/* acknowledge the interrupts */
7018 	wr32(E1000_TSICR, ack);
7019 }
7020 
7021 static irqreturn_t igb_msix_other(int irq, void *data)
7022 {
7023 	struct igb_adapter *adapter = data;
7024 	struct e1000_hw *hw = &adapter->hw;
7025 	u32 icr = rd32(E1000_ICR);
7026 	/* reading ICR causes bit 31 of EICR to be cleared */
7027 
7028 	if (icr & E1000_ICR_DRSTA)
7029 		schedule_work(&adapter->reset_task);
7030 
7031 	if (icr & E1000_ICR_DOUTSYNC) {
7032 		/* HW is reporting DMA is out of sync */
7033 		adapter->stats.doosync++;
7034 		/* The DMA Out of Sync is also indication of a spoof event
7035 		 * in IOV mode. Check the Wrong VM Behavior register to
7036 		 * see if it is really a spoof event.
7037 		 */
7038 		igb_check_wvbr(adapter);
7039 	}
7040 
7041 	/* Check for a mailbox event */
7042 	if (icr & E1000_ICR_VMMB)
7043 		igb_msg_task(adapter);
7044 
7045 	if (icr & E1000_ICR_LSC) {
7046 		hw->mac.get_link_status = 1;
7047 		/* guard against interrupt when we're going down */
7048 		if (!test_bit(__IGB_DOWN, &adapter->state))
7049 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7050 	}
7051 
7052 	if (icr & E1000_ICR_TS)
7053 		igb_tsync_interrupt(adapter);
7054 
7055 	wr32(E1000_EIMS, adapter->eims_other);
7056 
7057 	return IRQ_HANDLED;
7058 }
7059 
7060 static void igb_write_itr(struct igb_q_vector *q_vector)
7061 {
7062 	struct igb_adapter *adapter = q_vector->adapter;
7063 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7064 
7065 	if (!q_vector->set_itr)
7066 		return;
7067 
7068 	if (!itr_val)
7069 		itr_val = 0x4;
7070 
7071 	if (adapter->hw.mac.type == e1000_82575)
7072 		itr_val |= itr_val << 16;
7073 	else
7074 		itr_val |= E1000_EITR_CNT_IGNR;
7075 
7076 	writel(itr_val, q_vector->itr_register);
7077 	q_vector->set_itr = 0;
7078 }
7079 
7080 static irqreturn_t igb_msix_ring(int irq, void *data)
7081 {
7082 	struct igb_q_vector *q_vector = data;
7083 
7084 	/* Write the ITR value calculated from the previous interrupt. */
7085 	igb_write_itr(q_vector);
7086 
7087 	napi_schedule(&q_vector->napi);
7088 
7089 	return IRQ_HANDLED;
7090 }
7091 
7092 #ifdef CONFIG_IGB_DCA
7093 static void igb_update_tx_dca(struct igb_adapter *adapter,
7094 			      struct igb_ring *tx_ring,
7095 			      int cpu)
7096 {
7097 	struct e1000_hw *hw = &adapter->hw;
7098 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7099 
7100 	if (hw->mac.type != e1000_82575)
7101 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7102 
7103 	/* We can enable relaxed ordering for reads, but not writes when
7104 	 * DCA is enabled.  This is due to a known issue in some chipsets
7105 	 * which will cause the DCA tag to be cleared.
7106 	 */
7107 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7108 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7109 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7110 
7111 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7112 }
7113 
7114 static void igb_update_rx_dca(struct igb_adapter *adapter,
7115 			      struct igb_ring *rx_ring,
7116 			      int cpu)
7117 {
7118 	struct e1000_hw *hw = &adapter->hw;
7119 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7120 
7121 	if (hw->mac.type != e1000_82575)
7122 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7123 
7124 	/* We can enable relaxed ordering for reads, but not writes when
7125 	 * DCA is enabled.  This is due to a known issue in some chipsets
7126 	 * which will cause the DCA tag to be cleared.
7127 	 */
7128 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7129 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7130 
7131 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7132 }
7133 
7134 static void igb_update_dca(struct igb_q_vector *q_vector)
7135 {
7136 	struct igb_adapter *adapter = q_vector->adapter;
7137 	int cpu = get_cpu();
7138 
7139 	if (q_vector->cpu == cpu)
7140 		goto out_no_update;
7141 
7142 	if (q_vector->tx.ring)
7143 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7144 
7145 	if (q_vector->rx.ring)
7146 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7147 
7148 	q_vector->cpu = cpu;
7149 out_no_update:
7150 	put_cpu();
7151 }
7152 
7153 static void igb_setup_dca(struct igb_adapter *adapter)
7154 {
7155 	struct e1000_hw *hw = &adapter->hw;
7156 	int i;
7157 
7158 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7159 		return;
7160 
7161 	/* Always use CB2 mode, difference is masked in the CB driver. */
7162 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7163 
7164 	for (i = 0; i < adapter->num_q_vectors; i++) {
7165 		adapter->q_vector[i]->cpu = -1;
7166 		igb_update_dca(adapter->q_vector[i]);
7167 	}
7168 }
7169 
7170 static int __igb_notify_dca(struct device *dev, void *data)
7171 {
7172 	struct net_device *netdev = dev_get_drvdata(dev);
7173 	struct igb_adapter *adapter = netdev_priv(netdev);
7174 	struct pci_dev *pdev = adapter->pdev;
7175 	struct e1000_hw *hw = &adapter->hw;
7176 	unsigned long event = *(unsigned long *)data;
7177 
7178 	switch (event) {
7179 	case DCA_PROVIDER_ADD:
7180 		/* if already enabled, don't do it again */
7181 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7182 			break;
7183 		if (dca_add_requester(dev) == 0) {
7184 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7185 			dev_info(&pdev->dev, "DCA enabled\n");
7186 			igb_setup_dca(adapter);
7187 			break;
7188 		}
7189 		fallthrough; /* since DCA is disabled. */
7190 	case DCA_PROVIDER_REMOVE:
7191 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7192 			/* without this a class_device is left
7193 			 * hanging around in the sysfs model
7194 			 */
7195 			dca_remove_requester(dev);
7196 			dev_info(&pdev->dev, "DCA disabled\n");
7197 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7198 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7199 		}
7200 		break;
7201 	}
7202 
7203 	return 0;
7204 }
7205 
7206 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7207 			  void *p)
7208 {
7209 	int ret_val;
7210 
7211 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7212 					 __igb_notify_dca);
7213 
7214 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7215 }
7216 #endif /* CONFIG_IGB_DCA */
7217 
7218 #ifdef CONFIG_PCI_IOV
7219 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7220 {
7221 	unsigned char mac_addr[ETH_ALEN];
7222 
7223 	eth_zero_addr(mac_addr);
7224 	igb_set_vf_mac(adapter, vf, mac_addr);
7225 
7226 	/* By default spoof check is enabled for all VFs */
7227 	adapter->vf_data[vf].spoofchk_enabled = true;
7228 
7229 	/* By default VFs are not trusted */
7230 	adapter->vf_data[vf].trusted = false;
7231 
7232 	return 0;
7233 }
7234 
7235 #endif
7236 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7237 {
7238 	struct e1000_hw *hw = &adapter->hw;
7239 	u32 ping;
7240 	int i;
7241 
7242 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7243 		ping = E1000_PF_CONTROL_MSG;
7244 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7245 			ping |= E1000_VT_MSGTYPE_CTS;
7246 		igb_write_mbx(hw, &ping, 1, i);
7247 	}
7248 }
7249 
7250 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7251 {
7252 	struct e1000_hw *hw = &adapter->hw;
7253 	u32 vmolr = rd32(E1000_VMOLR(vf));
7254 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7255 
7256 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7257 			    IGB_VF_FLAG_MULTI_PROMISC);
7258 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7259 
7260 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7261 		vmolr |= E1000_VMOLR_MPME;
7262 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7263 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7264 	} else {
7265 		/* if we have hashes and we are clearing a multicast promisc
7266 		 * flag we need to write the hashes to the MTA as this step
7267 		 * was previously skipped
7268 		 */
7269 		if (vf_data->num_vf_mc_hashes > 30) {
7270 			vmolr |= E1000_VMOLR_MPME;
7271 		} else if (vf_data->num_vf_mc_hashes) {
7272 			int j;
7273 
7274 			vmolr |= E1000_VMOLR_ROMPE;
7275 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7276 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7277 		}
7278 	}
7279 
7280 	wr32(E1000_VMOLR(vf), vmolr);
7281 
7282 	/* there are flags left unprocessed, likely not supported */
7283 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7284 		return -EINVAL;
7285 
7286 	return 0;
7287 }
7288 
7289 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7290 				  u32 *msgbuf, u32 vf)
7291 {
7292 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7293 	u16 *hash_list = (u16 *)&msgbuf[1];
7294 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7295 	int i;
7296 
7297 	/* salt away the number of multicast addresses assigned
7298 	 * to this VF for later use to restore when the PF multi cast
7299 	 * list changes
7300 	 */
7301 	vf_data->num_vf_mc_hashes = n;
7302 
7303 	/* only up to 30 hash values supported */
7304 	if (n > 30)
7305 		n = 30;
7306 
7307 	/* store the hashes for later use */
7308 	for (i = 0; i < n; i++)
7309 		vf_data->vf_mc_hashes[i] = hash_list[i];
7310 
7311 	/* Flush and reset the mta with the new values */
7312 	igb_set_rx_mode(adapter->netdev);
7313 
7314 	return 0;
7315 }
7316 
7317 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7318 {
7319 	struct e1000_hw *hw = &adapter->hw;
7320 	struct vf_data_storage *vf_data;
7321 	int i, j;
7322 
7323 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7324 		u32 vmolr = rd32(E1000_VMOLR(i));
7325 
7326 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7327 
7328 		vf_data = &adapter->vf_data[i];
7329 
7330 		if ((vf_data->num_vf_mc_hashes > 30) ||
7331 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7332 			vmolr |= E1000_VMOLR_MPME;
7333 		} else if (vf_data->num_vf_mc_hashes) {
7334 			vmolr |= E1000_VMOLR_ROMPE;
7335 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7336 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7337 		}
7338 		wr32(E1000_VMOLR(i), vmolr);
7339 	}
7340 }
7341 
7342 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7343 {
7344 	struct e1000_hw *hw = &adapter->hw;
7345 	u32 pool_mask, vlvf_mask, i;
7346 
7347 	/* create mask for VF and other pools */
7348 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7349 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7350 
7351 	/* drop PF from pool bits */
7352 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7353 			     adapter->vfs_allocated_count);
7354 
7355 	/* Find the vlan filter for this id */
7356 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7357 		u32 vlvf = rd32(E1000_VLVF(i));
7358 		u32 vfta_mask, vid, vfta;
7359 
7360 		/* remove the vf from the pool */
7361 		if (!(vlvf & vlvf_mask))
7362 			continue;
7363 
7364 		/* clear out bit from VLVF */
7365 		vlvf ^= vlvf_mask;
7366 
7367 		/* if other pools are present, just remove ourselves */
7368 		if (vlvf & pool_mask)
7369 			goto update_vlvfb;
7370 
7371 		/* if PF is present, leave VFTA */
7372 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7373 			goto update_vlvf;
7374 
7375 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7376 		vfta_mask = BIT(vid % 32);
7377 
7378 		/* clear bit from VFTA */
7379 		vfta = adapter->shadow_vfta[vid / 32];
7380 		if (vfta & vfta_mask)
7381 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7382 update_vlvf:
7383 		/* clear pool selection enable */
7384 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7385 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7386 		else
7387 			vlvf = 0;
7388 update_vlvfb:
7389 		/* clear pool bits */
7390 		wr32(E1000_VLVF(i), vlvf);
7391 	}
7392 }
7393 
7394 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7395 {
7396 	u32 vlvf;
7397 	int idx;
7398 
7399 	/* short cut the special case */
7400 	if (vlan == 0)
7401 		return 0;
7402 
7403 	/* Search for the VLAN id in the VLVF entries */
7404 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7405 		vlvf = rd32(E1000_VLVF(idx));
7406 		if ((vlvf & VLAN_VID_MASK) == vlan)
7407 			break;
7408 	}
7409 
7410 	return idx;
7411 }
7412 
7413 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7414 {
7415 	struct e1000_hw *hw = &adapter->hw;
7416 	u32 bits, pf_id;
7417 	int idx;
7418 
7419 	idx = igb_find_vlvf_entry(hw, vid);
7420 	if (!idx)
7421 		return;
7422 
7423 	/* See if any other pools are set for this VLAN filter
7424 	 * entry other than the PF.
7425 	 */
7426 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7427 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7428 	bits &= rd32(E1000_VLVF(idx));
7429 
7430 	/* Disable the filter so this falls into the default pool. */
7431 	if (!bits) {
7432 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7433 			wr32(E1000_VLVF(idx), BIT(pf_id));
7434 		else
7435 			wr32(E1000_VLVF(idx), 0);
7436 	}
7437 }
7438 
7439 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7440 			   bool add, u32 vf)
7441 {
7442 	int pf_id = adapter->vfs_allocated_count;
7443 	struct e1000_hw *hw = &adapter->hw;
7444 	int err;
7445 
7446 	/* If VLAN overlaps with one the PF is currently monitoring make
7447 	 * sure that we are able to allocate a VLVF entry.  This may be
7448 	 * redundant but it guarantees PF will maintain visibility to
7449 	 * the VLAN.
7450 	 */
7451 	if (add && test_bit(vid, adapter->active_vlans)) {
7452 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7453 		if (err)
7454 			return err;
7455 	}
7456 
7457 	err = igb_vfta_set(hw, vid, vf, add, false);
7458 
7459 	if (add && !err)
7460 		return err;
7461 
7462 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7463 	 * we may need to drop the PF pool bit in order to allow us to free
7464 	 * up the VLVF resources.
7465 	 */
7466 	if (test_bit(vid, adapter->active_vlans) ||
7467 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7468 		igb_update_pf_vlvf(adapter, vid);
7469 
7470 	return err;
7471 }
7472 
7473 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7474 {
7475 	struct e1000_hw *hw = &adapter->hw;
7476 
7477 	if (vid)
7478 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7479 	else
7480 		wr32(E1000_VMVIR(vf), 0);
7481 }
7482 
7483 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7484 				u16 vlan, u8 qos)
7485 {
7486 	int err;
7487 
7488 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7489 	if (err)
7490 		return err;
7491 
7492 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7493 	igb_set_vmolr(adapter, vf, !vlan);
7494 
7495 	/* revoke access to previous VLAN */
7496 	if (vlan != adapter->vf_data[vf].pf_vlan)
7497 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7498 				false, vf);
7499 
7500 	adapter->vf_data[vf].pf_vlan = vlan;
7501 	adapter->vf_data[vf].pf_qos = qos;
7502 	igb_set_vf_vlan_strip(adapter, vf, true);
7503 	dev_info(&adapter->pdev->dev,
7504 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7505 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7506 		dev_warn(&adapter->pdev->dev,
7507 			 "The VF VLAN has been set, but the PF device is not up.\n");
7508 		dev_warn(&adapter->pdev->dev,
7509 			 "Bring the PF device up before attempting to use the VF device.\n");
7510 	}
7511 
7512 	return err;
7513 }
7514 
7515 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7516 {
7517 	/* Restore tagless access via VLAN 0 */
7518 	igb_set_vf_vlan(adapter, 0, true, vf);
7519 
7520 	igb_set_vmvir(adapter, 0, vf);
7521 	igb_set_vmolr(adapter, vf, true);
7522 
7523 	/* Remove any PF assigned VLAN */
7524 	if (adapter->vf_data[vf].pf_vlan)
7525 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7526 				false, vf);
7527 
7528 	adapter->vf_data[vf].pf_vlan = 0;
7529 	adapter->vf_data[vf].pf_qos = 0;
7530 	igb_set_vf_vlan_strip(adapter, vf, false);
7531 
7532 	return 0;
7533 }
7534 
7535 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7536 			       u16 vlan, u8 qos, __be16 vlan_proto)
7537 {
7538 	struct igb_adapter *adapter = netdev_priv(netdev);
7539 
7540 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7541 		return -EINVAL;
7542 
7543 	if (vlan_proto != htons(ETH_P_8021Q))
7544 		return -EPROTONOSUPPORT;
7545 
7546 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7547 			       igb_disable_port_vlan(adapter, vf);
7548 }
7549 
7550 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7551 {
7552 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7553 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7554 	int ret;
7555 
7556 	if (adapter->vf_data[vf].pf_vlan)
7557 		return -1;
7558 
7559 	/* VLAN 0 is a special case, don't allow it to be removed */
7560 	if (!vid && !add)
7561 		return 0;
7562 
7563 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7564 	if (!ret)
7565 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7566 	return ret;
7567 }
7568 
7569 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7570 {
7571 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7572 
7573 	/* clear flags - except flag that indicates PF has set the MAC */
7574 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7575 	vf_data->last_nack = jiffies;
7576 
7577 	/* reset vlans for device */
7578 	igb_clear_vf_vfta(adapter, vf);
7579 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7580 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7581 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7582 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7583 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7584 
7585 	/* reset multicast table array for vf */
7586 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7587 
7588 	/* Flush and reset the mta with the new values */
7589 	igb_set_rx_mode(adapter->netdev);
7590 }
7591 
7592 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7593 {
7594 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7595 
7596 	/* clear mac address as we were hotplug removed/added */
7597 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7598 		eth_zero_addr(vf_mac);
7599 
7600 	/* process remaining reset events */
7601 	igb_vf_reset(adapter, vf);
7602 }
7603 
7604 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7605 {
7606 	struct e1000_hw *hw = &adapter->hw;
7607 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7608 	u32 reg, msgbuf[3] = {};
7609 	u8 *addr = (u8 *)(&msgbuf[1]);
7610 
7611 	/* process all the same items cleared in a function level reset */
7612 	igb_vf_reset(adapter, vf);
7613 
7614 	/* set vf mac address */
7615 	igb_set_vf_mac(adapter, vf, vf_mac);
7616 
7617 	/* enable transmit and receive for vf */
7618 	reg = rd32(E1000_VFTE);
7619 	wr32(E1000_VFTE, reg | BIT(vf));
7620 	reg = rd32(E1000_VFRE);
7621 	wr32(E1000_VFRE, reg | BIT(vf));
7622 
7623 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7624 
7625 	/* reply to reset with ack and vf mac address */
7626 	if (!is_zero_ether_addr(vf_mac)) {
7627 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7628 		memcpy(addr, vf_mac, ETH_ALEN);
7629 	} else {
7630 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7631 	}
7632 	igb_write_mbx(hw, msgbuf, 3, vf);
7633 }
7634 
7635 static void igb_flush_mac_table(struct igb_adapter *adapter)
7636 {
7637 	struct e1000_hw *hw = &adapter->hw;
7638 	int i;
7639 
7640 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7641 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7642 		eth_zero_addr(adapter->mac_table[i].addr);
7643 		adapter->mac_table[i].queue = 0;
7644 		igb_rar_set_index(adapter, i);
7645 	}
7646 }
7647 
7648 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7649 {
7650 	struct e1000_hw *hw = &adapter->hw;
7651 	/* do not count rar entries reserved for VFs MAC addresses */
7652 	int rar_entries = hw->mac.rar_entry_count -
7653 			  adapter->vfs_allocated_count;
7654 	int i, count = 0;
7655 
7656 	for (i = 0; i < rar_entries; i++) {
7657 		/* do not count default entries */
7658 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7659 			continue;
7660 
7661 		/* do not count "in use" entries for different queues */
7662 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7663 		    (adapter->mac_table[i].queue != queue))
7664 			continue;
7665 
7666 		count++;
7667 	}
7668 
7669 	return count;
7670 }
7671 
7672 /* Set default MAC address for the PF in the first RAR entry */
7673 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7674 {
7675 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7676 
7677 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7678 	mac_table->queue = adapter->vfs_allocated_count;
7679 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7680 
7681 	igb_rar_set_index(adapter, 0);
7682 }
7683 
7684 /* If the filter to be added and an already existing filter express
7685  * the same address and address type, it should be possible to only
7686  * override the other configurations, for example the queue to steer
7687  * traffic.
7688  */
7689 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7690 				      const u8 *addr, const u8 flags)
7691 {
7692 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7693 		return true;
7694 
7695 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7696 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7697 		return false;
7698 
7699 	if (!ether_addr_equal(addr, entry->addr))
7700 		return false;
7701 
7702 	return true;
7703 }
7704 
7705 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7706  * 'flags' is used to indicate what kind of match is made, match is by
7707  * default for the destination address, if matching by source address
7708  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7709  */
7710 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7711 				    const u8 *addr, const u8 queue,
7712 				    const u8 flags)
7713 {
7714 	struct e1000_hw *hw = &adapter->hw;
7715 	int rar_entries = hw->mac.rar_entry_count -
7716 			  adapter->vfs_allocated_count;
7717 	int i;
7718 
7719 	if (is_zero_ether_addr(addr))
7720 		return -EINVAL;
7721 
7722 	/* Search for the first empty entry in the MAC table.
7723 	 * Do not touch entries at the end of the table reserved for the VF MAC
7724 	 * addresses.
7725 	 */
7726 	for (i = 0; i < rar_entries; i++) {
7727 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7728 					       addr, flags))
7729 			continue;
7730 
7731 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7732 		adapter->mac_table[i].queue = queue;
7733 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7734 
7735 		igb_rar_set_index(adapter, i);
7736 		return i;
7737 	}
7738 
7739 	return -ENOSPC;
7740 }
7741 
7742 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7743 			      const u8 queue)
7744 {
7745 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7746 }
7747 
7748 /* Remove a MAC filter for 'addr' directing matching traffic to
7749  * 'queue', 'flags' is used to indicate what kind of match need to be
7750  * removed, match is by default for the destination address, if
7751  * matching by source address is to be removed the flag
7752  * IGB_MAC_STATE_SRC_ADDR can be used.
7753  */
7754 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7755 				    const u8 *addr, const u8 queue,
7756 				    const u8 flags)
7757 {
7758 	struct e1000_hw *hw = &adapter->hw;
7759 	int rar_entries = hw->mac.rar_entry_count -
7760 			  adapter->vfs_allocated_count;
7761 	int i;
7762 
7763 	if (is_zero_ether_addr(addr))
7764 		return -EINVAL;
7765 
7766 	/* Search for matching entry in the MAC table based on given address
7767 	 * and queue. Do not touch entries at the end of the table reserved
7768 	 * for the VF MAC addresses.
7769 	 */
7770 	for (i = 0; i < rar_entries; i++) {
7771 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7772 			continue;
7773 		if ((adapter->mac_table[i].state & flags) != flags)
7774 			continue;
7775 		if (adapter->mac_table[i].queue != queue)
7776 			continue;
7777 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7778 			continue;
7779 
7780 		/* When a filter for the default address is "deleted",
7781 		 * we return it to its initial configuration
7782 		 */
7783 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7784 			adapter->mac_table[i].state =
7785 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7786 			adapter->mac_table[i].queue =
7787 				adapter->vfs_allocated_count;
7788 		} else {
7789 			adapter->mac_table[i].state = 0;
7790 			adapter->mac_table[i].queue = 0;
7791 			eth_zero_addr(adapter->mac_table[i].addr);
7792 		}
7793 
7794 		igb_rar_set_index(adapter, i);
7795 		return 0;
7796 	}
7797 
7798 	return -ENOENT;
7799 }
7800 
7801 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7802 			      const u8 queue)
7803 {
7804 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7805 }
7806 
7807 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7808 				const u8 *addr, u8 queue, u8 flags)
7809 {
7810 	struct e1000_hw *hw = &adapter->hw;
7811 
7812 	/* In theory, this should be supported on 82575 as well, but
7813 	 * that part wasn't easily accessible during development.
7814 	 */
7815 	if (hw->mac.type != e1000_i210)
7816 		return -EOPNOTSUPP;
7817 
7818 	return igb_add_mac_filter_flags(adapter, addr, queue,
7819 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7820 }
7821 
7822 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7823 				const u8 *addr, u8 queue, u8 flags)
7824 {
7825 	return igb_del_mac_filter_flags(adapter, addr, queue,
7826 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7827 }
7828 
7829 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7830 {
7831 	struct igb_adapter *adapter = netdev_priv(netdev);
7832 	int ret;
7833 
7834 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7835 
7836 	return min_t(int, ret, 0);
7837 }
7838 
7839 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7840 {
7841 	struct igb_adapter *adapter = netdev_priv(netdev);
7842 
7843 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7844 
7845 	return 0;
7846 }
7847 
7848 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7849 				 const u32 info, const u8 *addr)
7850 {
7851 	struct pci_dev *pdev = adapter->pdev;
7852 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7853 	struct list_head *pos;
7854 	struct vf_mac_filter *entry = NULL;
7855 	int ret = 0;
7856 
7857 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7858 	    !vf_data->trusted) {
7859 		dev_warn(&pdev->dev,
7860 			 "VF %d requested MAC filter but is administratively denied\n",
7861 			  vf);
7862 		return -EINVAL;
7863 	}
7864 	if (!is_valid_ether_addr(addr)) {
7865 		dev_warn(&pdev->dev,
7866 			 "VF %d attempted to set invalid MAC filter\n",
7867 			  vf);
7868 		return -EINVAL;
7869 	}
7870 
7871 	switch (info) {
7872 	case E1000_VF_MAC_FILTER_CLR:
7873 		/* remove all unicast MAC filters related to the current VF */
7874 		list_for_each(pos, &adapter->vf_macs.l) {
7875 			entry = list_entry(pos, struct vf_mac_filter, l);
7876 			if (entry->vf == vf) {
7877 				entry->vf = -1;
7878 				entry->free = true;
7879 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7880 			}
7881 		}
7882 		break;
7883 	case E1000_VF_MAC_FILTER_ADD:
7884 		/* try to find empty slot in the list */
7885 		list_for_each(pos, &adapter->vf_macs.l) {
7886 			entry = list_entry(pos, struct vf_mac_filter, l);
7887 			if (entry->free)
7888 				break;
7889 		}
7890 
7891 		if (entry && entry->free) {
7892 			entry->free = false;
7893 			entry->vf = vf;
7894 			ether_addr_copy(entry->vf_mac, addr);
7895 
7896 			ret = igb_add_mac_filter(adapter, addr, vf);
7897 			ret = min_t(int, ret, 0);
7898 		} else {
7899 			ret = -ENOSPC;
7900 		}
7901 
7902 		if (ret == -ENOSPC)
7903 			dev_warn(&pdev->dev,
7904 				 "VF %d has requested MAC filter but there is no space for it\n",
7905 				 vf);
7906 		break;
7907 	default:
7908 		ret = -EINVAL;
7909 		break;
7910 	}
7911 
7912 	return ret;
7913 }
7914 
7915 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7916 {
7917 	struct pci_dev *pdev = adapter->pdev;
7918 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7919 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7920 
7921 	/* The VF MAC Address is stored in a packed array of bytes
7922 	 * starting at the second 32 bit word of the msg array
7923 	 */
7924 	unsigned char *addr = (unsigned char *)&msg[1];
7925 	int ret = 0;
7926 
7927 	if (!info) {
7928 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7929 		    !vf_data->trusted) {
7930 			dev_warn(&pdev->dev,
7931 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7932 				 vf);
7933 			return -EINVAL;
7934 		}
7935 
7936 		if (!is_valid_ether_addr(addr)) {
7937 			dev_warn(&pdev->dev,
7938 				 "VF %d attempted to set invalid MAC\n",
7939 				 vf);
7940 			return -EINVAL;
7941 		}
7942 
7943 		ret = igb_set_vf_mac(adapter, vf, addr);
7944 	} else {
7945 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7946 	}
7947 
7948 	return ret;
7949 }
7950 
7951 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7952 {
7953 	struct e1000_hw *hw = &adapter->hw;
7954 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7955 	u32 msg = E1000_VT_MSGTYPE_NACK;
7956 
7957 	/* if device isn't clear to send it shouldn't be reading either */
7958 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7959 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7960 		igb_write_mbx(hw, &msg, 1, vf);
7961 		vf_data->last_nack = jiffies;
7962 	}
7963 }
7964 
7965 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7966 {
7967 	struct pci_dev *pdev = adapter->pdev;
7968 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7969 	struct e1000_hw *hw = &adapter->hw;
7970 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7971 	s32 retval;
7972 
7973 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7974 
7975 	if (retval) {
7976 		/* if receive failed revoke VF CTS stats and restart init */
7977 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7978 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7979 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7980 			goto unlock;
7981 		goto out;
7982 	}
7983 
7984 	/* this is a message we already processed, do nothing */
7985 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7986 		goto unlock;
7987 
7988 	/* until the vf completes a reset it should not be
7989 	 * allowed to start any configuration.
7990 	 */
7991 	if (msgbuf[0] == E1000_VF_RESET) {
7992 		/* unlocks mailbox */
7993 		igb_vf_reset_msg(adapter, vf);
7994 		return;
7995 	}
7996 
7997 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7998 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7999 			goto unlock;
8000 		retval = -1;
8001 		goto out;
8002 	}
8003 
8004 	switch ((msgbuf[0] & 0xFFFF)) {
8005 	case E1000_VF_SET_MAC_ADDR:
8006 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8007 		break;
8008 	case E1000_VF_SET_PROMISC:
8009 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8010 		break;
8011 	case E1000_VF_SET_MULTICAST:
8012 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8013 		break;
8014 	case E1000_VF_SET_LPE:
8015 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8016 		break;
8017 	case E1000_VF_SET_VLAN:
8018 		retval = -1;
8019 		if (vf_data->pf_vlan)
8020 			dev_warn(&pdev->dev,
8021 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8022 				 vf);
8023 		else
8024 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8025 		break;
8026 	default:
8027 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8028 		retval = -1;
8029 		break;
8030 	}
8031 
8032 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8033 out:
8034 	/* notify the VF of the results of what it sent us */
8035 	if (retval)
8036 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8037 	else
8038 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8039 
8040 	/* unlocks mailbox */
8041 	igb_write_mbx(hw, msgbuf, 1, vf);
8042 	return;
8043 
8044 unlock:
8045 	igb_unlock_mbx(hw, vf);
8046 }
8047 
8048 static void igb_msg_task(struct igb_adapter *adapter)
8049 {
8050 	struct e1000_hw *hw = &adapter->hw;
8051 	unsigned long flags;
8052 	u32 vf;
8053 
8054 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8055 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8056 		/* process any reset requests */
8057 		if (!igb_check_for_rst(hw, vf))
8058 			igb_vf_reset_event(adapter, vf);
8059 
8060 		/* process any messages pending */
8061 		if (!igb_check_for_msg(hw, vf))
8062 			igb_rcv_msg_from_vf(adapter, vf);
8063 
8064 		/* process any acks */
8065 		if (!igb_check_for_ack(hw, vf))
8066 			igb_rcv_ack_from_vf(adapter, vf);
8067 	}
8068 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8069 }
8070 
8071 /**
8072  *  igb_set_uta - Set unicast filter table address
8073  *  @adapter: board private structure
8074  *  @set: boolean indicating if we are setting or clearing bits
8075  *
8076  *  The unicast table address is a register array of 32-bit registers.
8077  *  The table is meant to be used in a way similar to how the MTA is used
8078  *  however due to certain limitations in the hardware it is necessary to
8079  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8080  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8081  **/
8082 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8083 {
8084 	struct e1000_hw *hw = &adapter->hw;
8085 	u32 uta = set ? ~0 : 0;
8086 	int i;
8087 
8088 	/* we only need to do this if VMDq is enabled */
8089 	if (!adapter->vfs_allocated_count)
8090 		return;
8091 
8092 	for (i = hw->mac.uta_reg_count; i--;)
8093 		array_wr32(E1000_UTA, i, uta);
8094 }
8095 
8096 /**
8097  *  igb_intr_msi - Interrupt Handler
8098  *  @irq: interrupt number
8099  *  @data: pointer to a network interface device structure
8100  **/
8101 static irqreturn_t igb_intr_msi(int irq, void *data)
8102 {
8103 	struct igb_adapter *adapter = data;
8104 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8105 	struct e1000_hw *hw = &adapter->hw;
8106 	/* read ICR disables interrupts using IAM */
8107 	u32 icr = rd32(E1000_ICR);
8108 
8109 	igb_write_itr(q_vector);
8110 
8111 	if (icr & E1000_ICR_DRSTA)
8112 		schedule_work(&adapter->reset_task);
8113 
8114 	if (icr & E1000_ICR_DOUTSYNC) {
8115 		/* HW is reporting DMA is out of sync */
8116 		adapter->stats.doosync++;
8117 	}
8118 
8119 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8120 		hw->mac.get_link_status = 1;
8121 		if (!test_bit(__IGB_DOWN, &adapter->state))
8122 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8123 	}
8124 
8125 	if (icr & E1000_ICR_TS)
8126 		igb_tsync_interrupt(adapter);
8127 
8128 	napi_schedule(&q_vector->napi);
8129 
8130 	return IRQ_HANDLED;
8131 }
8132 
8133 /**
8134  *  igb_intr - Legacy Interrupt Handler
8135  *  @irq: interrupt number
8136  *  @data: pointer to a network interface device structure
8137  **/
8138 static irqreturn_t igb_intr(int irq, void *data)
8139 {
8140 	struct igb_adapter *adapter = data;
8141 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8142 	struct e1000_hw *hw = &adapter->hw;
8143 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8144 	 * need for the IMC write
8145 	 */
8146 	u32 icr = rd32(E1000_ICR);
8147 
8148 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8149 	 * not set, then the adapter didn't send an interrupt
8150 	 */
8151 	if (!(icr & E1000_ICR_INT_ASSERTED))
8152 		return IRQ_NONE;
8153 
8154 	igb_write_itr(q_vector);
8155 
8156 	if (icr & E1000_ICR_DRSTA)
8157 		schedule_work(&adapter->reset_task);
8158 
8159 	if (icr & E1000_ICR_DOUTSYNC) {
8160 		/* HW is reporting DMA is out of sync */
8161 		adapter->stats.doosync++;
8162 	}
8163 
8164 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8165 		hw->mac.get_link_status = 1;
8166 		/* guard against interrupt when we're going down */
8167 		if (!test_bit(__IGB_DOWN, &adapter->state))
8168 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8169 	}
8170 
8171 	if (icr & E1000_ICR_TS)
8172 		igb_tsync_interrupt(adapter);
8173 
8174 	napi_schedule(&q_vector->napi);
8175 
8176 	return IRQ_HANDLED;
8177 }
8178 
8179 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8180 {
8181 	struct igb_adapter *adapter = q_vector->adapter;
8182 	struct e1000_hw *hw = &adapter->hw;
8183 
8184 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8185 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8186 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8187 			igb_set_itr(q_vector);
8188 		else
8189 			igb_update_ring_itr(q_vector);
8190 	}
8191 
8192 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8193 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8194 			wr32(E1000_EIMS, q_vector->eims_value);
8195 		else
8196 			igb_irq_enable(adapter);
8197 	}
8198 }
8199 
8200 /**
8201  *  igb_poll - NAPI Rx polling callback
8202  *  @napi: napi polling structure
8203  *  @budget: count of how many packets we should handle
8204  **/
8205 static int igb_poll(struct napi_struct *napi, int budget)
8206 {
8207 	struct igb_q_vector *q_vector = container_of(napi,
8208 						     struct igb_q_vector,
8209 						     napi);
8210 	bool clean_complete = true;
8211 	int work_done = 0;
8212 
8213 #ifdef CONFIG_IGB_DCA
8214 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8215 		igb_update_dca(q_vector);
8216 #endif
8217 	if (q_vector->tx.ring)
8218 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8219 
8220 	if (q_vector->rx.ring) {
8221 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8222 
8223 		work_done += cleaned;
8224 		if (cleaned >= budget)
8225 			clean_complete = false;
8226 	}
8227 
8228 	/* If all work not completed, return budget and keep polling */
8229 	if (!clean_complete)
8230 		return budget;
8231 
8232 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8233 	 * poll us due to busy-polling
8234 	 */
8235 	if (likely(napi_complete_done(napi, work_done)))
8236 		igb_ring_irq_enable(q_vector);
8237 
8238 	return work_done;
8239 }
8240 
8241 /**
8242  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8243  *  @q_vector: pointer to q_vector containing needed info
8244  *  @napi_budget: Used to determine if we are in netpoll
8245  *
8246  *  returns true if ring is completely cleaned
8247  **/
8248 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8249 {
8250 	struct igb_adapter *adapter = q_vector->adapter;
8251 	struct igb_ring *tx_ring = q_vector->tx.ring;
8252 	struct igb_tx_buffer *tx_buffer;
8253 	union e1000_adv_tx_desc *tx_desc;
8254 	unsigned int total_bytes = 0, total_packets = 0;
8255 	unsigned int budget = q_vector->tx.work_limit;
8256 	unsigned int i = tx_ring->next_to_clean;
8257 
8258 	if (test_bit(__IGB_DOWN, &adapter->state))
8259 		return true;
8260 
8261 	tx_buffer = &tx_ring->tx_buffer_info[i];
8262 	tx_desc = IGB_TX_DESC(tx_ring, i);
8263 	i -= tx_ring->count;
8264 
8265 	do {
8266 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8267 
8268 		/* if next_to_watch is not set then there is no work pending */
8269 		if (!eop_desc)
8270 			break;
8271 
8272 		/* prevent any other reads prior to eop_desc */
8273 		smp_rmb();
8274 
8275 		/* if DD is not set pending work has not been completed */
8276 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8277 			break;
8278 
8279 		/* clear next_to_watch to prevent false hangs */
8280 		tx_buffer->next_to_watch = NULL;
8281 
8282 		/* update the statistics for this packet */
8283 		total_bytes += tx_buffer->bytecount;
8284 		total_packets += tx_buffer->gso_segs;
8285 
8286 		/* free the skb */
8287 		if (tx_buffer->type == IGB_TYPE_SKB)
8288 			napi_consume_skb(tx_buffer->skb, napi_budget);
8289 		else
8290 			xdp_return_frame(tx_buffer->xdpf);
8291 
8292 		/* unmap skb header data */
8293 		dma_unmap_single(tx_ring->dev,
8294 				 dma_unmap_addr(tx_buffer, dma),
8295 				 dma_unmap_len(tx_buffer, len),
8296 				 DMA_TO_DEVICE);
8297 
8298 		/* clear tx_buffer data */
8299 		dma_unmap_len_set(tx_buffer, len, 0);
8300 
8301 		/* clear last DMA location and unmap remaining buffers */
8302 		while (tx_desc != eop_desc) {
8303 			tx_buffer++;
8304 			tx_desc++;
8305 			i++;
8306 			if (unlikely(!i)) {
8307 				i -= tx_ring->count;
8308 				tx_buffer = tx_ring->tx_buffer_info;
8309 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8310 			}
8311 
8312 			/* unmap any remaining paged data */
8313 			if (dma_unmap_len(tx_buffer, len)) {
8314 				dma_unmap_page(tx_ring->dev,
8315 					       dma_unmap_addr(tx_buffer, dma),
8316 					       dma_unmap_len(tx_buffer, len),
8317 					       DMA_TO_DEVICE);
8318 				dma_unmap_len_set(tx_buffer, len, 0);
8319 			}
8320 		}
8321 
8322 		/* move us one more past the eop_desc for start of next pkt */
8323 		tx_buffer++;
8324 		tx_desc++;
8325 		i++;
8326 		if (unlikely(!i)) {
8327 			i -= tx_ring->count;
8328 			tx_buffer = tx_ring->tx_buffer_info;
8329 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8330 		}
8331 
8332 		/* issue prefetch for next Tx descriptor */
8333 		prefetch(tx_desc);
8334 
8335 		/* update budget accounting */
8336 		budget--;
8337 	} while (likely(budget));
8338 
8339 	netdev_tx_completed_queue(txring_txq(tx_ring),
8340 				  total_packets, total_bytes);
8341 	i += tx_ring->count;
8342 	tx_ring->next_to_clean = i;
8343 	u64_stats_update_begin(&tx_ring->tx_syncp);
8344 	tx_ring->tx_stats.bytes += total_bytes;
8345 	tx_ring->tx_stats.packets += total_packets;
8346 	u64_stats_update_end(&tx_ring->tx_syncp);
8347 	q_vector->tx.total_bytes += total_bytes;
8348 	q_vector->tx.total_packets += total_packets;
8349 
8350 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8351 		struct e1000_hw *hw = &adapter->hw;
8352 
8353 		/* Detect a transmit hang in hardware, this serializes the
8354 		 * check with the clearing of time_stamp and movement of i
8355 		 */
8356 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8357 		if (tx_buffer->next_to_watch &&
8358 		    time_after(jiffies, tx_buffer->time_stamp +
8359 			       (adapter->tx_timeout_factor * HZ)) &&
8360 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8361 
8362 			/* detected Tx unit hang */
8363 			dev_err(tx_ring->dev,
8364 				"Detected Tx Unit Hang\n"
8365 				"  Tx Queue             <%d>\n"
8366 				"  TDH                  <%x>\n"
8367 				"  TDT                  <%x>\n"
8368 				"  next_to_use          <%x>\n"
8369 				"  next_to_clean        <%x>\n"
8370 				"buffer_info[next_to_clean]\n"
8371 				"  time_stamp           <%lx>\n"
8372 				"  next_to_watch        <%p>\n"
8373 				"  jiffies              <%lx>\n"
8374 				"  desc.status          <%x>\n",
8375 				tx_ring->queue_index,
8376 				rd32(E1000_TDH(tx_ring->reg_idx)),
8377 				readl(tx_ring->tail),
8378 				tx_ring->next_to_use,
8379 				tx_ring->next_to_clean,
8380 				tx_buffer->time_stamp,
8381 				tx_buffer->next_to_watch,
8382 				jiffies,
8383 				tx_buffer->next_to_watch->wb.status);
8384 			netif_stop_subqueue(tx_ring->netdev,
8385 					    tx_ring->queue_index);
8386 
8387 			/* we are about to reset, no point in enabling stuff */
8388 			return true;
8389 		}
8390 	}
8391 
8392 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8393 	if (unlikely(total_packets &&
8394 	    netif_carrier_ok(tx_ring->netdev) &&
8395 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8396 		/* Make sure that anybody stopping the queue after this
8397 		 * sees the new next_to_clean.
8398 		 */
8399 		smp_mb();
8400 		if (__netif_subqueue_stopped(tx_ring->netdev,
8401 					     tx_ring->queue_index) &&
8402 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8403 			netif_wake_subqueue(tx_ring->netdev,
8404 					    tx_ring->queue_index);
8405 
8406 			u64_stats_update_begin(&tx_ring->tx_syncp);
8407 			tx_ring->tx_stats.restart_queue++;
8408 			u64_stats_update_end(&tx_ring->tx_syncp);
8409 		}
8410 	}
8411 
8412 	return !!budget;
8413 }
8414 
8415 /**
8416  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8417  *  @rx_ring: rx descriptor ring to store buffers on
8418  *  @old_buff: donor buffer to have page reused
8419  *
8420  *  Synchronizes page for reuse by the adapter
8421  **/
8422 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8423 			      struct igb_rx_buffer *old_buff)
8424 {
8425 	struct igb_rx_buffer *new_buff;
8426 	u16 nta = rx_ring->next_to_alloc;
8427 
8428 	new_buff = &rx_ring->rx_buffer_info[nta];
8429 
8430 	/* update, and store next to alloc */
8431 	nta++;
8432 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8433 
8434 	/* Transfer page from old buffer to new buffer.
8435 	 * Move each member individually to avoid possible store
8436 	 * forwarding stalls.
8437 	 */
8438 	new_buff->dma		= old_buff->dma;
8439 	new_buff->page		= old_buff->page;
8440 	new_buff->page_offset	= old_buff->page_offset;
8441 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8442 }
8443 
8444 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8445 				  int rx_buf_pgcnt)
8446 {
8447 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8448 	struct page *page = rx_buffer->page;
8449 
8450 	/* avoid re-using remote and pfmemalloc pages */
8451 	if (!dev_page_is_reusable(page))
8452 		return false;
8453 
8454 #if (PAGE_SIZE < 8192)
8455 	/* if we are only owner of page we can reuse it */
8456 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8457 		return false;
8458 #else
8459 #define IGB_LAST_OFFSET \
8460 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8461 
8462 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8463 		return false;
8464 #endif
8465 
8466 	/* If we have drained the page fragment pool we need to update
8467 	 * the pagecnt_bias and page count so that we fully restock the
8468 	 * number of references the driver holds.
8469 	 */
8470 	if (unlikely(pagecnt_bias == 1)) {
8471 		page_ref_add(page, USHRT_MAX - 1);
8472 		rx_buffer->pagecnt_bias = USHRT_MAX;
8473 	}
8474 
8475 	return true;
8476 }
8477 
8478 /**
8479  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8480  *  @rx_ring: rx descriptor ring to transact packets on
8481  *  @rx_buffer: buffer containing page to add
8482  *  @skb: sk_buff to place the data into
8483  *  @size: size of buffer to be added
8484  *
8485  *  This function will add the data contained in rx_buffer->page to the skb.
8486  **/
8487 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8488 			    struct igb_rx_buffer *rx_buffer,
8489 			    struct sk_buff *skb,
8490 			    unsigned int size)
8491 {
8492 #if (PAGE_SIZE < 8192)
8493 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8494 #else
8495 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8496 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8497 				SKB_DATA_ALIGN(size);
8498 #endif
8499 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8500 			rx_buffer->page_offset, size, truesize);
8501 #if (PAGE_SIZE < 8192)
8502 	rx_buffer->page_offset ^= truesize;
8503 #else
8504 	rx_buffer->page_offset += truesize;
8505 #endif
8506 }
8507 
8508 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8509 					 struct igb_rx_buffer *rx_buffer,
8510 					 struct xdp_buff *xdp,
8511 					 ktime_t timestamp)
8512 {
8513 #if (PAGE_SIZE < 8192)
8514 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8515 #else
8516 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8517 					       xdp->data_hard_start);
8518 #endif
8519 	unsigned int size = xdp->data_end - xdp->data;
8520 	unsigned int headlen;
8521 	struct sk_buff *skb;
8522 
8523 	/* prefetch first cache line of first page */
8524 	net_prefetch(xdp->data);
8525 
8526 	/* allocate a skb to store the frags */
8527 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8528 	if (unlikely(!skb))
8529 		return NULL;
8530 
8531 	if (timestamp)
8532 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8533 
8534 	/* Determine available headroom for copy */
8535 	headlen = size;
8536 	if (headlen > IGB_RX_HDR_LEN)
8537 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8538 
8539 	/* align pull length to size of long to optimize memcpy performance */
8540 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8541 
8542 	/* update all of the pointers */
8543 	size -= headlen;
8544 	if (size) {
8545 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8546 				(xdp->data + headlen) - page_address(rx_buffer->page),
8547 				size, truesize);
8548 #if (PAGE_SIZE < 8192)
8549 		rx_buffer->page_offset ^= truesize;
8550 #else
8551 		rx_buffer->page_offset += truesize;
8552 #endif
8553 	} else {
8554 		rx_buffer->pagecnt_bias++;
8555 	}
8556 
8557 	return skb;
8558 }
8559 
8560 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8561 				     struct igb_rx_buffer *rx_buffer,
8562 				     struct xdp_buff *xdp,
8563 				     ktime_t timestamp)
8564 {
8565 #if (PAGE_SIZE < 8192)
8566 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8567 #else
8568 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8569 				SKB_DATA_ALIGN(xdp->data_end -
8570 					       xdp->data_hard_start);
8571 #endif
8572 	unsigned int metasize = xdp->data - xdp->data_meta;
8573 	struct sk_buff *skb;
8574 
8575 	/* prefetch first cache line of first page */
8576 	net_prefetch(xdp->data_meta);
8577 
8578 	/* build an skb around the page buffer */
8579 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8580 	if (unlikely(!skb))
8581 		return NULL;
8582 
8583 	/* update pointers within the skb to store the data */
8584 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8585 	__skb_put(skb, xdp->data_end - xdp->data);
8586 
8587 	if (metasize)
8588 		skb_metadata_set(skb, metasize);
8589 
8590 	if (timestamp)
8591 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8592 
8593 	/* update buffer offset */
8594 #if (PAGE_SIZE < 8192)
8595 	rx_buffer->page_offset ^= truesize;
8596 #else
8597 	rx_buffer->page_offset += truesize;
8598 #endif
8599 
8600 	return skb;
8601 }
8602 
8603 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8604 				   struct igb_ring *rx_ring,
8605 				   struct xdp_buff *xdp)
8606 {
8607 	int err, result = IGB_XDP_PASS;
8608 	struct bpf_prog *xdp_prog;
8609 	u32 act;
8610 
8611 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8612 
8613 	if (!xdp_prog)
8614 		goto xdp_out;
8615 
8616 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8617 
8618 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8619 	switch (act) {
8620 	case XDP_PASS:
8621 		break;
8622 	case XDP_TX:
8623 		result = igb_xdp_xmit_back(adapter, xdp);
8624 		if (result == IGB_XDP_CONSUMED)
8625 			goto out_failure;
8626 		break;
8627 	case XDP_REDIRECT:
8628 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8629 		if (err)
8630 			goto out_failure;
8631 		result = IGB_XDP_REDIR;
8632 		break;
8633 	default:
8634 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8635 		fallthrough;
8636 	case XDP_ABORTED:
8637 out_failure:
8638 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8639 		fallthrough;
8640 	case XDP_DROP:
8641 		result = IGB_XDP_CONSUMED;
8642 		break;
8643 	}
8644 xdp_out:
8645 	return ERR_PTR(-result);
8646 }
8647 
8648 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8649 					  unsigned int size)
8650 {
8651 	unsigned int truesize;
8652 
8653 #if (PAGE_SIZE < 8192)
8654 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8655 #else
8656 	truesize = ring_uses_build_skb(rx_ring) ?
8657 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8658 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8659 		SKB_DATA_ALIGN(size);
8660 #endif
8661 	return truesize;
8662 }
8663 
8664 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8665 			       struct igb_rx_buffer *rx_buffer,
8666 			       unsigned int size)
8667 {
8668 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8669 #if (PAGE_SIZE < 8192)
8670 	rx_buffer->page_offset ^= truesize;
8671 #else
8672 	rx_buffer->page_offset += truesize;
8673 #endif
8674 }
8675 
8676 static inline void igb_rx_checksum(struct igb_ring *ring,
8677 				   union e1000_adv_rx_desc *rx_desc,
8678 				   struct sk_buff *skb)
8679 {
8680 	skb_checksum_none_assert(skb);
8681 
8682 	/* Ignore Checksum bit is set */
8683 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8684 		return;
8685 
8686 	/* Rx checksum disabled via ethtool */
8687 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8688 		return;
8689 
8690 	/* TCP/UDP checksum error bit is set */
8691 	if (igb_test_staterr(rx_desc,
8692 			     E1000_RXDEXT_STATERR_TCPE |
8693 			     E1000_RXDEXT_STATERR_IPE)) {
8694 		/* work around errata with sctp packets where the TCPE aka
8695 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8696 		 * packets, (aka let the stack check the crc32c)
8697 		 */
8698 		if (!((skb->len == 60) &&
8699 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8700 			u64_stats_update_begin(&ring->rx_syncp);
8701 			ring->rx_stats.csum_err++;
8702 			u64_stats_update_end(&ring->rx_syncp);
8703 		}
8704 		/* let the stack verify checksum errors */
8705 		return;
8706 	}
8707 	/* It must be a TCP or UDP packet with a valid checksum */
8708 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8709 				      E1000_RXD_STAT_UDPCS))
8710 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8711 
8712 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8713 		le32_to_cpu(rx_desc->wb.upper.status_error));
8714 }
8715 
8716 static inline void igb_rx_hash(struct igb_ring *ring,
8717 			       union e1000_adv_rx_desc *rx_desc,
8718 			       struct sk_buff *skb)
8719 {
8720 	if (ring->netdev->features & NETIF_F_RXHASH)
8721 		skb_set_hash(skb,
8722 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8723 			     PKT_HASH_TYPE_L3);
8724 }
8725 
8726 /**
8727  *  igb_is_non_eop - process handling of non-EOP buffers
8728  *  @rx_ring: Rx ring being processed
8729  *  @rx_desc: Rx descriptor for current buffer
8730  *
8731  *  This function updates next to clean.  If the buffer is an EOP buffer
8732  *  this function exits returning false, otherwise it will place the
8733  *  sk_buff in the next buffer to be chained and return true indicating
8734  *  that this is in fact a non-EOP buffer.
8735  **/
8736 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8737 			   union e1000_adv_rx_desc *rx_desc)
8738 {
8739 	u32 ntc = rx_ring->next_to_clean + 1;
8740 
8741 	/* fetch, update, and store next to clean */
8742 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8743 	rx_ring->next_to_clean = ntc;
8744 
8745 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8746 
8747 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8748 		return false;
8749 
8750 	return true;
8751 }
8752 
8753 /**
8754  *  igb_cleanup_headers - Correct corrupted or empty headers
8755  *  @rx_ring: rx descriptor ring packet is being transacted on
8756  *  @rx_desc: pointer to the EOP Rx descriptor
8757  *  @skb: pointer to current skb being fixed
8758  *
8759  *  Address the case where we are pulling data in on pages only
8760  *  and as such no data is present in the skb header.
8761  *
8762  *  In addition if skb is not at least 60 bytes we need to pad it so that
8763  *  it is large enough to qualify as a valid Ethernet frame.
8764  *
8765  *  Returns true if an error was encountered and skb was freed.
8766  **/
8767 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8768 				union e1000_adv_rx_desc *rx_desc,
8769 				struct sk_buff *skb)
8770 {
8771 	/* XDP packets use error pointer so abort at this point */
8772 	if (IS_ERR(skb))
8773 		return true;
8774 
8775 	if (unlikely((igb_test_staterr(rx_desc,
8776 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8777 		struct net_device *netdev = rx_ring->netdev;
8778 		if (!(netdev->features & NETIF_F_RXALL)) {
8779 			dev_kfree_skb_any(skb);
8780 			return true;
8781 		}
8782 	}
8783 
8784 	/* if eth_skb_pad returns an error the skb was freed */
8785 	if (eth_skb_pad(skb))
8786 		return true;
8787 
8788 	return false;
8789 }
8790 
8791 /**
8792  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8793  *  @rx_ring: rx descriptor ring packet is being transacted on
8794  *  @rx_desc: pointer to the EOP Rx descriptor
8795  *  @skb: pointer to current skb being populated
8796  *
8797  *  This function checks the ring, descriptor, and packet information in
8798  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8799  *  other fields within the skb.
8800  **/
8801 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8802 				   union e1000_adv_rx_desc *rx_desc,
8803 				   struct sk_buff *skb)
8804 {
8805 	struct net_device *dev = rx_ring->netdev;
8806 
8807 	igb_rx_hash(rx_ring, rx_desc, skb);
8808 
8809 	igb_rx_checksum(rx_ring, rx_desc, skb);
8810 
8811 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8812 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8813 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8814 
8815 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8816 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8817 		u16 vid;
8818 
8819 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8820 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8821 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8822 		else
8823 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8824 
8825 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8826 	}
8827 
8828 	skb_record_rx_queue(skb, rx_ring->queue_index);
8829 
8830 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8831 }
8832 
8833 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8834 {
8835 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8836 }
8837 
8838 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8839 					       const unsigned int size, int *rx_buf_pgcnt)
8840 {
8841 	struct igb_rx_buffer *rx_buffer;
8842 
8843 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8844 	*rx_buf_pgcnt =
8845 #if (PAGE_SIZE < 8192)
8846 		page_count(rx_buffer->page);
8847 #else
8848 		0;
8849 #endif
8850 	prefetchw(rx_buffer->page);
8851 
8852 	/* we are reusing so sync this buffer for CPU use */
8853 	dma_sync_single_range_for_cpu(rx_ring->dev,
8854 				      rx_buffer->dma,
8855 				      rx_buffer->page_offset,
8856 				      size,
8857 				      DMA_FROM_DEVICE);
8858 
8859 	rx_buffer->pagecnt_bias--;
8860 
8861 	return rx_buffer;
8862 }
8863 
8864 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8865 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8866 {
8867 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8868 		/* hand second half of page back to the ring */
8869 		igb_reuse_rx_page(rx_ring, rx_buffer);
8870 	} else {
8871 		/* We are not reusing the buffer so unmap it and free
8872 		 * any references we are holding to it
8873 		 */
8874 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8875 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8876 				     IGB_RX_DMA_ATTR);
8877 		__page_frag_cache_drain(rx_buffer->page,
8878 					rx_buffer->pagecnt_bias);
8879 	}
8880 
8881 	/* clear contents of rx_buffer */
8882 	rx_buffer->page = NULL;
8883 }
8884 
8885 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8886 {
8887 	struct igb_adapter *adapter = q_vector->adapter;
8888 	struct igb_ring *rx_ring = q_vector->rx.ring;
8889 	struct sk_buff *skb = rx_ring->skb;
8890 	unsigned int total_bytes = 0, total_packets = 0;
8891 	u16 cleaned_count = igb_desc_unused(rx_ring);
8892 	unsigned int xdp_xmit = 0;
8893 	struct xdp_buff xdp;
8894 	u32 frame_sz = 0;
8895 	int rx_buf_pgcnt;
8896 
8897 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8898 #if (PAGE_SIZE < 8192)
8899 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8900 #endif
8901 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8902 
8903 	while (likely(total_packets < budget)) {
8904 		union e1000_adv_rx_desc *rx_desc;
8905 		struct igb_rx_buffer *rx_buffer;
8906 		ktime_t timestamp = 0;
8907 		int pkt_offset = 0;
8908 		unsigned int size;
8909 		void *pktbuf;
8910 
8911 		/* return some buffers to hardware, one at a time is too slow */
8912 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8913 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8914 			cleaned_count = 0;
8915 		}
8916 
8917 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8918 		size = le16_to_cpu(rx_desc->wb.upper.length);
8919 		if (!size)
8920 			break;
8921 
8922 		/* This memory barrier is needed to keep us from reading
8923 		 * any other fields out of the rx_desc until we know the
8924 		 * descriptor has been written back
8925 		 */
8926 		dma_rmb();
8927 
8928 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8929 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8930 
8931 		/* pull rx packet timestamp if available and valid */
8932 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8933 			int ts_hdr_len;
8934 
8935 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8936 							 pktbuf, &timestamp);
8937 
8938 			pkt_offset += ts_hdr_len;
8939 			size -= ts_hdr_len;
8940 		}
8941 
8942 		/* retrieve a buffer from the ring */
8943 		if (!skb) {
8944 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8945 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8946 
8947 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8948 			xdp_buff_clear_frags_flag(&xdp);
8949 #if (PAGE_SIZE > 4096)
8950 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8951 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8952 #endif
8953 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8954 		}
8955 
8956 		if (IS_ERR(skb)) {
8957 			unsigned int xdp_res = -PTR_ERR(skb);
8958 
8959 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8960 				xdp_xmit |= xdp_res;
8961 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8962 			} else {
8963 				rx_buffer->pagecnt_bias++;
8964 			}
8965 			total_packets++;
8966 			total_bytes += size;
8967 		} else if (skb)
8968 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8969 		else if (ring_uses_build_skb(rx_ring))
8970 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8971 					    timestamp);
8972 		else
8973 			skb = igb_construct_skb(rx_ring, rx_buffer,
8974 						&xdp, timestamp);
8975 
8976 		/* exit if we failed to retrieve a buffer */
8977 		if (!skb) {
8978 			rx_ring->rx_stats.alloc_failed++;
8979 			rx_buffer->pagecnt_bias++;
8980 			break;
8981 		}
8982 
8983 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8984 		cleaned_count++;
8985 
8986 		/* fetch next buffer in frame if non-eop */
8987 		if (igb_is_non_eop(rx_ring, rx_desc))
8988 			continue;
8989 
8990 		/* verify the packet layout is correct */
8991 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8992 			skb = NULL;
8993 			continue;
8994 		}
8995 
8996 		/* probably a little skewed due to removing CRC */
8997 		total_bytes += skb->len;
8998 
8999 		/* populate checksum, timestamp, VLAN, and protocol */
9000 		igb_process_skb_fields(rx_ring, rx_desc, skb);
9001 
9002 		napi_gro_receive(&q_vector->napi, skb);
9003 
9004 		/* reset skb pointer */
9005 		skb = NULL;
9006 
9007 		/* update budget accounting */
9008 		total_packets++;
9009 	}
9010 
9011 	/* place incomplete frames back on ring for completion */
9012 	rx_ring->skb = skb;
9013 
9014 	if (xdp_xmit & IGB_XDP_REDIR)
9015 		xdp_do_flush();
9016 
9017 	if (xdp_xmit & IGB_XDP_TX) {
9018 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9019 
9020 		igb_xdp_ring_update_tail(tx_ring);
9021 	}
9022 
9023 	u64_stats_update_begin(&rx_ring->rx_syncp);
9024 	rx_ring->rx_stats.packets += total_packets;
9025 	rx_ring->rx_stats.bytes += total_bytes;
9026 	u64_stats_update_end(&rx_ring->rx_syncp);
9027 	q_vector->rx.total_packets += total_packets;
9028 	q_vector->rx.total_bytes += total_bytes;
9029 
9030 	if (cleaned_count)
9031 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
9032 
9033 	return total_packets;
9034 }
9035 
9036 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9037 				  struct igb_rx_buffer *bi)
9038 {
9039 	struct page *page = bi->page;
9040 	dma_addr_t dma;
9041 
9042 	/* since we are recycling buffers we should seldom need to alloc */
9043 	if (likely(page))
9044 		return true;
9045 
9046 	/* alloc new page for storage */
9047 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9048 	if (unlikely(!page)) {
9049 		rx_ring->rx_stats.alloc_failed++;
9050 		return false;
9051 	}
9052 
9053 	/* map page for use */
9054 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9055 				 igb_rx_pg_size(rx_ring),
9056 				 DMA_FROM_DEVICE,
9057 				 IGB_RX_DMA_ATTR);
9058 
9059 	/* if mapping failed free memory back to system since
9060 	 * there isn't much point in holding memory we can't use
9061 	 */
9062 	if (dma_mapping_error(rx_ring->dev, dma)) {
9063 		__free_pages(page, igb_rx_pg_order(rx_ring));
9064 
9065 		rx_ring->rx_stats.alloc_failed++;
9066 		return false;
9067 	}
9068 
9069 	bi->dma = dma;
9070 	bi->page = page;
9071 	bi->page_offset = igb_rx_offset(rx_ring);
9072 	page_ref_add(page, USHRT_MAX - 1);
9073 	bi->pagecnt_bias = USHRT_MAX;
9074 
9075 	return true;
9076 }
9077 
9078 /**
9079  *  igb_alloc_rx_buffers - Replace used receive buffers
9080  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9081  *  @cleaned_count: count of buffers to allocate
9082  **/
9083 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9084 {
9085 	union e1000_adv_rx_desc *rx_desc;
9086 	struct igb_rx_buffer *bi;
9087 	u16 i = rx_ring->next_to_use;
9088 	u16 bufsz;
9089 
9090 	/* nothing to do */
9091 	if (!cleaned_count)
9092 		return;
9093 
9094 	rx_desc = IGB_RX_DESC(rx_ring, i);
9095 	bi = &rx_ring->rx_buffer_info[i];
9096 	i -= rx_ring->count;
9097 
9098 	bufsz = igb_rx_bufsz(rx_ring);
9099 
9100 	do {
9101 		if (!igb_alloc_mapped_page(rx_ring, bi))
9102 			break;
9103 
9104 		/* sync the buffer for use by the device */
9105 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9106 						 bi->page_offset, bufsz,
9107 						 DMA_FROM_DEVICE);
9108 
9109 		/* Refresh the desc even if buffer_addrs didn't change
9110 		 * because each write-back erases this info.
9111 		 */
9112 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9113 
9114 		rx_desc++;
9115 		bi++;
9116 		i++;
9117 		if (unlikely(!i)) {
9118 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9119 			bi = rx_ring->rx_buffer_info;
9120 			i -= rx_ring->count;
9121 		}
9122 
9123 		/* clear the length for the next_to_use descriptor */
9124 		rx_desc->wb.upper.length = 0;
9125 
9126 		cleaned_count--;
9127 	} while (cleaned_count);
9128 
9129 	i += rx_ring->count;
9130 
9131 	if (rx_ring->next_to_use != i) {
9132 		/* record the next descriptor to use */
9133 		rx_ring->next_to_use = i;
9134 
9135 		/* update next to alloc since we have filled the ring */
9136 		rx_ring->next_to_alloc = i;
9137 
9138 		/* Force memory writes to complete before letting h/w
9139 		 * know there are new descriptors to fetch.  (Only
9140 		 * applicable for weak-ordered memory model archs,
9141 		 * such as IA-64).
9142 		 */
9143 		dma_wmb();
9144 		writel(i, rx_ring->tail);
9145 	}
9146 }
9147 
9148 /**
9149  * igb_mii_ioctl -
9150  * @netdev: pointer to netdev struct
9151  * @ifr: interface structure
9152  * @cmd: ioctl command to execute
9153  **/
9154 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9155 {
9156 	struct igb_adapter *adapter = netdev_priv(netdev);
9157 	struct mii_ioctl_data *data = if_mii(ifr);
9158 
9159 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9160 		return -EOPNOTSUPP;
9161 
9162 	switch (cmd) {
9163 	case SIOCGMIIPHY:
9164 		data->phy_id = adapter->hw.phy.addr;
9165 		break;
9166 	case SIOCGMIIREG:
9167 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9168 				     &data->val_out))
9169 			return -EIO;
9170 		break;
9171 	case SIOCSMIIREG:
9172 	default:
9173 		return -EOPNOTSUPP;
9174 	}
9175 	return 0;
9176 }
9177 
9178 /**
9179  * igb_ioctl -
9180  * @netdev: pointer to netdev struct
9181  * @ifr: interface structure
9182  * @cmd: ioctl command to execute
9183  **/
9184 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9185 {
9186 	switch (cmd) {
9187 	case SIOCGMIIPHY:
9188 	case SIOCGMIIREG:
9189 	case SIOCSMIIREG:
9190 		return igb_mii_ioctl(netdev, ifr, cmd);
9191 	case SIOCGHWTSTAMP:
9192 		return igb_ptp_get_ts_config(netdev, ifr);
9193 	case SIOCSHWTSTAMP:
9194 		return igb_ptp_set_ts_config(netdev, ifr);
9195 	default:
9196 		return -EOPNOTSUPP;
9197 	}
9198 }
9199 
9200 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9201 {
9202 	struct igb_adapter *adapter = hw->back;
9203 
9204 	pci_read_config_word(adapter->pdev, reg, value);
9205 }
9206 
9207 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9208 {
9209 	struct igb_adapter *adapter = hw->back;
9210 
9211 	pci_write_config_word(adapter->pdev, reg, *value);
9212 }
9213 
9214 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9215 {
9216 	struct igb_adapter *adapter = hw->back;
9217 
9218 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9219 		return -E1000_ERR_CONFIG;
9220 
9221 	return 0;
9222 }
9223 
9224 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9225 {
9226 	struct igb_adapter *adapter = hw->back;
9227 
9228 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9229 		return -E1000_ERR_CONFIG;
9230 
9231 	return 0;
9232 }
9233 
9234 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9235 {
9236 	struct igb_adapter *adapter = netdev_priv(netdev);
9237 	struct e1000_hw *hw = &adapter->hw;
9238 	u32 ctrl, rctl;
9239 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9240 
9241 	if (enable) {
9242 		/* enable VLAN tag insert/strip */
9243 		ctrl = rd32(E1000_CTRL);
9244 		ctrl |= E1000_CTRL_VME;
9245 		wr32(E1000_CTRL, ctrl);
9246 
9247 		/* Disable CFI check */
9248 		rctl = rd32(E1000_RCTL);
9249 		rctl &= ~E1000_RCTL_CFIEN;
9250 		wr32(E1000_RCTL, rctl);
9251 	} else {
9252 		/* disable VLAN tag insert/strip */
9253 		ctrl = rd32(E1000_CTRL);
9254 		ctrl &= ~E1000_CTRL_VME;
9255 		wr32(E1000_CTRL, ctrl);
9256 	}
9257 
9258 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9259 }
9260 
9261 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9262 			       __be16 proto, u16 vid)
9263 {
9264 	struct igb_adapter *adapter = netdev_priv(netdev);
9265 	struct e1000_hw *hw = &adapter->hw;
9266 	int pf_id = adapter->vfs_allocated_count;
9267 
9268 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9269 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9270 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9271 
9272 	set_bit(vid, adapter->active_vlans);
9273 
9274 	return 0;
9275 }
9276 
9277 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9278 				__be16 proto, u16 vid)
9279 {
9280 	struct igb_adapter *adapter = netdev_priv(netdev);
9281 	int pf_id = adapter->vfs_allocated_count;
9282 	struct e1000_hw *hw = &adapter->hw;
9283 
9284 	/* remove VID from filter table */
9285 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9286 		igb_vfta_set(hw, vid, pf_id, false, true);
9287 
9288 	clear_bit(vid, adapter->active_vlans);
9289 
9290 	return 0;
9291 }
9292 
9293 static void igb_restore_vlan(struct igb_adapter *adapter)
9294 {
9295 	u16 vid = 1;
9296 
9297 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9298 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9299 
9300 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9301 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9302 }
9303 
9304 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9305 {
9306 	struct pci_dev *pdev = adapter->pdev;
9307 	struct e1000_mac_info *mac = &adapter->hw.mac;
9308 
9309 	mac->autoneg = 0;
9310 
9311 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9312 	 * for the switch() below to work
9313 	 */
9314 	if ((spd & 1) || (dplx & ~1))
9315 		goto err_inval;
9316 
9317 	/* Fiber NIC's only allow 1000 gbps Full duplex
9318 	 * and 100Mbps Full duplex for 100baseFx sfp
9319 	 */
9320 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9321 		switch (spd + dplx) {
9322 		case SPEED_10 + DUPLEX_HALF:
9323 		case SPEED_10 + DUPLEX_FULL:
9324 		case SPEED_100 + DUPLEX_HALF:
9325 			goto err_inval;
9326 		default:
9327 			break;
9328 		}
9329 	}
9330 
9331 	switch (spd + dplx) {
9332 	case SPEED_10 + DUPLEX_HALF:
9333 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9334 		break;
9335 	case SPEED_10 + DUPLEX_FULL:
9336 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9337 		break;
9338 	case SPEED_100 + DUPLEX_HALF:
9339 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9340 		break;
9341 	case SPEED_100 + DUPLEX_FULL:
9342 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9343 		break;
9344 	case SPEED_1000 + DUPLEX_FULL:
9345 		mac->autoneg = 1;
9346 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9347 		break;
9348 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9349 	default:
9350 		goto err_inval;
9351 	}
9352 
9353 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9354 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9355 
9356 	return 0;
9357 
9358 err_inval:
9359 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9360 	return -EINVAL;
9361 }
9362 
9363 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9364 			  bool runtime)
9365 {
9366 	struct net_device *netdev = pci_get_drvdata(pdev);
9367 	struct igb_adapter *adapter = netdev_priv(netdev);
9368 	struct e1000_hw *hw = &adapter->hw;
9369 	u32 ctrl, rctl, status;
9370 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9371 	bool wake;
9372 
9373 	rtnl_lock();
9374 	netif_device_detach(netdev);
9375 
9376 	if (netif_running(netdev))
9377 		__igb_close(netdev, true);
9378 
9379 	igb_ptp_suspend(adapter);
9380 
9381 	igb_clear_interrupt_scheme(adapter);
9382 	rtnl_unlock();
9383 
9384 	status = rd32(E1000_STATUS);
9385 	if (status & E1000_STATUS_LU)
9386 		wufc &= ~E1000_WUFC_LNKC;
9387 
9388 	if (wufc) {
9389 		igb_setup_rctl(adapter);
9390 		igb_set_rx_mode(netdev);
9391 
9392 		/* turn on all-multi mode if wake on multicast is enabled */
9393 		if (wufc & E1000_WUFC_MC) {
9394 			rctl = rd32(E1000_RCTL);
9395 			rctl |= E1000_RCTL_MPE;
9396 			wr32(E1000_RCTL, rctl);
9397 		}
9398 
9399 		ctrl = rd32(E1000_CTRL);
9400 		ctrl |= E1000_CTRL_ADVD3WUC;
9401 		wr32(E1000_CTRL, ctrl);
9402 
9403 		/* Allow time for pending master requests to run */
9404 		igb_disable_pcie_master(hw);
9405 
9406 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9407 		wr32(E1000_WUFC, wufc);
9408 	} else {
9409 		wr32(E1000_WUC, 0);
9410 		wr32(E1000_WUFC, 0);
9411 	}
9412 
9413 	wake = wufc || adapter->en_mng_pt;
9414 	if (!wake)
9415 		igb_power_down_link(adapter);
9416 	else
9417 		igb_power_up_link(adapter);
9418 
9419 	if (enable_wake)
9420 		*enable_wake = wake;
9421 
9422 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9423 	 * would have already happened in close and is redundant.
9424 	 */
9425 	igb_release_hw_control(adapter);
9426 
9427 	pci_disable_device(pdev);
9428 
9429 	return 0;
9430 }
9431 
9432 static void igb_deliver_wake_packet(struct net_device *netdev)
9433 {
9434 	struct igb_adapter *adapter = netdev_priv(netdev);
9435 	struct e1000_hw *hw = &adapter->hw;
9436 	struct sk_buff *skb;
9437 	u32 wupl;
9438 
9439 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9440 
9441 	/* WUPM stores only the first 128 bytes of the wake packet.
9442 	 * Read the packet only if we have the whole thing.
9443 	 */
9444 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9445 		return;
9446 
9447 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9448 	if (!skb)
9449 		return;
9450 
9451 	skb_put(skb, wupl);
9452 
9453 	/* Ensure reads are 32-bit aligned */
9454 	wupl = roundup(wupl, 4);
9455 
9456 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9457 
9458 	skb->protocol = eth_type_trans(skb, netdev);
9459 	netif_rx(skb);
9460 }
9461 
9462 static int __maybe_unused igb_suspend(struct device *dev)
9463 {
9464 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9465 }
9466 
9467 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9468 {
9469 	struct pci_dev *pdev = to_pci_dev(dev);
9470 	struct net_device *netdev = pci_get_drvdata(pdev);
9471 	struct igb_adapter *adapter = netdev_priv(netdev);
9472 	struct e1000_hw *hw = &adapter->hw;
9473 	u32 err, val;
9474 
9475 	pci_set_power_state(pdev, PCI_D0);
9476 	pci_restore_state(pdev);
9477 	pci_save_state(pdev);
9478 
9479 	if (!pci_device_is_present(pdev))
9480 		return -ENODEV;
9481 	err = pci_enable_device_mem(pdev);
9482 	if (err) {
9483 		dev_err(&pdev->dev,
9484 			"igb: Cannot enable PCI device from suspend\n");
9485 		return err;
9486 	}
9487 	pci_set_master(pdev);
9488 
9489 	pci_enable_wake(pdev, PCI_D3hot, 0);
9490 	pci_enable_wake(pdev, PCI_D3cold, 0);
9491 
9492 	if (igb_init_interrupt_scheme(adapter, true)) {
9493 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9494 		return -ENOMEM;
9495 	}
9496 
9497 	igb_reset(adapter);
9498 
9499 	/* let the f/w know that the h/w is now under the control of the
9500 	 * driver.
9501 	 */
9502 	igb_get_hw_control(adapter);
9503 
9504 	val = rd32(E1000_WUS);
9505 	if (val & WAKE_PKT_WUS)
9506 		igb_deliver_wake_packet(netdev);
9507 
9508 	wr32(E1000_WUS, ~0);
9509 
9510 	if (!rpm)
9511 		rtnl_lock();
9512 	if (!err && netif_running(netdev))
9513 		err = __igb_open(netdev, true);
9514 
9515 	if (!err)
9516 		netif_device_attach(netdev);
9517 	if (!rpm)
9518 		rtnl_unlock();
9519 
9520 	return err;
9521 }
9522 
9523 static int __maybe_unused igb_resume(struct device *dev)
9524 {
9525 	return __igb_resume(dev, false);
9526 }
9527 
9528 static int __maybe_unused igb_runtime_idle(struct device *dev)
9529 {
9530 	struct net_device *netdev = dev_get_drvdata(dev);
9531 	struct igb_adapter *adapter = netdev_priv(netdev);
9532 
9533 	if (!igb_has_link(adapter))
9534 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9535 
9536 	return -EBUSY;
9537 }
9538 
9539 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9540 {
9541 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9542 }
9543 
9544 static int __maybe_unused igb_runtime_resume(struct device *dev)
9545 {
9546 	return __igb_resume(dev, true);
9547 }
9548 
9549 static void igb_shutdown(struct pci_dev *pdev)
9550 {
9551 	bool wake;
9552 
9553 	__igb_shutdown(pdev, &wake, 0);
9554 
9555 	if (system_state == SYSTEM_POWER_OFF) {
9556 		pci_wake_from_d3(pdev, wake);
9557 		pci_set_power_state(pdev, PCI_D3hot);
9558 	}
9559 }
9560 
9561 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9562 {
9563 #ifdef CONFIG_PCI_IOV
9564 	int err;
9565 
9566 	if (num_vfs == 0) {
9567 		return igb_disable_sriov(dev, true);
9568 	} else {
9569 		err = igb_enable_sriov(dev, num_vfs, true);
9570 		return err ? err : num_vfs;
9571 	}
9572 #endif
9573 	return 0;
9574 }
9575 
9576 /**
9577  *  igb_io_error_detected - called when PCI error is detected
9578  *  @pdev: Pointer to PCI device
9579  *  @state: The current pci connection state
9580  *
9581  *  This function is called after a PCI bus error affecting
9582  *  this device has been detected.
9583  **/
9584 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9585 					      pci_channel_state_t state)
9586 {
9587 	struct net_device *netdev = pci_get_drvdata(pdev);
9588 	struct igb_adapter *adapter = netdev_priv(netdev);
9589 
9590 	if (state == pci_channel_io_normal) {
9591 		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9592 		return PCI_ERS_RESULT_CAN_RECOVER;
9593 	}
9594 
9595 	netif_device_detach(netdev);
9596 
9597 	if (state == pci_channel_io_perm_failure)
9598 		return PCI_ERS_RESULT_DISCONNECT;
9599 
9600 	if (netif_running(netdev))
9601 		igb_down(adapter);
9602 	pci_disable_device(pdev);
9603 
9604 	/* Request a slot reset. */
9605 	return PCI_ERS_RESULT_NEED_RESET;
9606 }
9607 
9608 /**
9609  *  igb_io_slot_reset - called after the pci bus has been reset.
9610  *  @pdev: Pointer to PCI device
9611  *
9612  *  Restart the card from scratch, as if from a cold-boot. Implementation
9613  *  resembles the first-half of the __igb_resume routine.
9614  **/
9615 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9616 {
9617 	struct net_device *netdev = pci_get_drvdata(pdev);
9618 	struct igb_adapter *adapter = netdev_priv(netdev);
9619 	struct e1000_hw *hw = &adapter->hw;
9620 	pci_ers_result_t result;
9621 
9622 	if (pci_enable_device_mem(pdev)) {
9623 		dev_err(&pdev->dev,
9624 			"Cannot re-enable PCI device after reset.\n");
9625 		result = PCI_ERS_RESULT_DISCONNECT;
9626 	} else {
9627 		pci_set_master(pdev);
9628 		pci_restore_state(pdev);
9629 		pci_save_state(pdev);
9630 
9631 		pci_enable_wake(pdev, PCI_D3hot, 0);
9632 		pci_enable_wake(pdev, PCI_D3cold, 0);
9633 
9634 		/* In case of PCI error, adapter lose its HW address
9635 		 * so we should re-assign it here.
9636 		 */
9637 		hw->hw_addr = adapter->io_addr;
9638 
9639 		igb_reset(adapter);
9640 		wr32(E1000_WUS, ~0);
9641 		result = PCI_ERS_RESULT_RECOVERED;
9642 	}
9643 
9644 	return result;
9645 }
9646 
9647 /**
9648  *  igb_io_resume - called when traffic can start flowing again.
9649  *  @pdev: Pointer to PCI device
9650  *
9651  *  This callback is called when the error recovery driver tells us that
9652  *  its OK to resume normal operation. Implementation resembles the
9653  *  second-half of the __igb_resume routine.
9654  */
9655 static void igb_io_resume(struct pci_dev *pdev)
9656 {
9657 	struct net_device *netdev = pci_get_drvdata(pdev);
9658 	struct igb_adapter *adapter = netdev_priv(netdev);
9659 
9660 	if (netif_running(netdev)) {
9661 		if (igb_up(adapter)) {
9662 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9663 			return;
9664 		}
9665 	}
9666 
9667 	netif_device_attach(netdev);
9668 
9669 	/* let the f/w know that the h/w is now under the control of the
9670 	 * driver.
9671 	 */
9672 	igb_get_hw_control(adapter);
9673 }
9674 
9675 /**
9676  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9677  *  @adapter: Pointer to adapter structure
9678  *  @index: Index of the RAR entry which need to be synced with MAC table
9679  **/
9680 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9681 {
9682 	struct e1000_hw *hw = &adapter->hw;
9683 	u32 rar_low, rar_high;
9684 	u8 *addr = adapter->mac_table[index].addr;
9685 
9686 	/* HW expects these to be in network order when they are plugged
9687 	 * into the registers which are little endian.  In order to guarantee
9688 	 * that ordering we need to do an leXX_to_cpup here in order to be
9689 	 * ready for the byteswap that occurs with writel
9690 	 */
9691 	rar_low = le32_to_cpup((__le32 *)(addr));
9692 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9693 
9694 	/* Indicate to hardware the Address is Valid. */
9695 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9696 		if (is_valid_ether_addr(addr))
9697 			rar_high |= E1000_RAH_AV;
9698 
9699 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9700 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9701 
9702 		switch (hw->mac.type) {
9703 		case e1000_82575:
9704 		case e1000_i210:
9705 			if (adapter->mac_table[index].state &
9706 			    IGB_MAC_STATE_QUEUE_STEERING)
9707 				rar_high |= E1000_RAH_QSEL_ENABLE;
9708 
9709 			rar_high |= E1000_RAH_POOL_1 *
9710 				    adapter->mac_table[index].queue;
9711 			break;
9712 		default:
9713 			rar_high |= E1000_RAH_POOL_1 <<
9714 				    adapter->mac_table[index].queue;
9715 			break;
9716 		}
9717 	}
9718 
9719 	wr32(E1000_RAL(index), rar_low);
9720 	wrfl();
9721 	wr32(E1000_RAH(index), rar_high);
9722 	wrfl();
9723 }
9724 
9725 static int igb_set_vf_mac(struct igb_adapter *adapter,
9726 			  int vf, unsigned char *mac_addr)
9727 {
9728 	struct e1000_hw *hw = &adapter->hw;
9729 	/* VF MAC addresses start at end of receive addresses and moves
9730 	 * towards the first, as a result a collision should not be possible
9731 	 */
9732 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9733 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9734 
9735 	ether_addr_copy(vf_mac_addr, mac_addr);
9736 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9737 	adapter->mac_table[rar_entry].queue = vf;
9738 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9739 	igb_rar_set_index(adapter, rar_entry);
9740 
9741 	return 0;
9742 }
9743 
9744 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9745 {
9746 	struct igb_adapter *adapter = netdev_priv(netdev);
9747 
9748 	if (vf >= adapter->vfs_allocated_count)
9749 		return -EINVAL;
9750 
9751 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9752 	 * flag and allows to overwrite the MAC via VF netdev.  This
9753 	 * is necessary to allow libvirt a way to restore the original
9754 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9755 	 * down a VM.
9756 	 */
9757 	if (is_zero_ether_addr(mac)) {
9758 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9759 		dev_info(&adapter->pdev->dev,
9760 			 "remove administratively set MAC on VF %d\n",
9761 			 vf);
9762 	} else if (is_valid_ether_addr(mac)) {
9763 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9764 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9765 			 mac, vf);
9766 		dev_info(&adapter->pdev->dev,
9767 			 "Reload the VF driver to make this change effective.");
9768 		/* Generate additional warning if PF is down */
9769 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9770 			dev_warn(&adapter->pdev->dev,
9771 				 "The VF MAC address has been set, but the PF device is not up.\n");
9772 			dev_warn(&adapter->pdev->dev,
9773 				 "Bring the PF device up before attempting to use the VF device.\n");
9774 		}
9775 	} else {
9776 		return -EINVAL;
9777 	}
9778 	return igb_set_vf_mac(adapter, vf, mac);
9779 }
9780 
9781 static int igb_link_mbps(int internal_link_speed)
9782 {
9783 	switch (internal_link_speed) {
9784 	case SPEED_100:
9785 		return 100;
9786 	case SPEED_1000:
9787 		return 1000;
9788 	default:
9789 		return 0;
9790 	}
9791 }
9792 
9793 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9794 				  int link_speed)
9795 {
9796 	int rf_dec, rf_int;
9797 	u32 bcnrc_val;
9798 
9799 	if (tx_rate != 0) {
9800 		/* Calculate the rate factor values to set */
9801 		rf_int = link_speed / tx_rate;
9802 		rf_dec = (link_speed - (rf_int * tx_rate));
9803 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9804 			 tx_rate;
9805 
9806 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9807 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9808 			      E1000_RTTBCNRC_RF_INT_MASK);
9809 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9810 	} else {
9811 		bcnrc_val = 0;
9812 	}
9813 
9814 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9815 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9816 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9817 	 */
9818 	wr32(E1000_RTTBCNRM, 0x14);
9819 	wr32(E1000_RTTBCNRC, bcnrc_val);
9820 }
9821 
9822 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9823 {
9824 	int actual_link_speed, i;
9825 	bool reset_rate = false;
9826 
9827 	/* VF TX rate limit was not set or not supported */
9828 	if ((adapter->vf_rate_link_speed == 0) ||
9829 	    (adapter->hw.mac.type != e1000_82576))
9830 		return;
9831 
9832 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9833 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9834 		reset_rate = true;
9835 		adapter->vf_rate_link_speed = 0;
9836 		dev_info(&adapter->pdev->dev,
9837 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9838 	}
9839 
9840 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9841 		if (reset_rate)
9842 			adapter->vf_data[i].tx_rate = 0;
9843 
9844 		igb_set_vf_rate_limit(&adapter->hw, i,
9845 				      adapter->vf_data[i].tx_rate,
9846 				      actual_link_speed);
9847 	}
9848 }
9849 
9850 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9851 			     int min_tx_rate, int max_tx_rate)
9852 {
9853 	struct igb_adapter *adapter = netdev_priv(netdev);
9854 	struct e1000_hw *hw = &adapter->hw;
9855 	int actual_link_speed;
9856 
9857 	if (hw->mac.type != e1000_82576)
9858 		return -EOPNOTSUPP;
9859 
9860 	if (min_tx_rate)
9861 		return -EINVAL;
9862 
9863 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9864 	if ((vf >= adapter->vfs_allocated_count) ||
9865 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9866 	    (max_tx_rate < 0) ||
9867 	    (max_tx_rate > actual_link_speed))
9868 		return -EINVAL;
9869 
9870 	adapter->vf_rate_link_speed = actual_link_speed;
9871 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9872 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9873 
9874 	return 0;
9875 }
9876 
9877 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9878 				   bool setting)
9879 {
9880 	struct igb_adapter *adapter = netdev_priv(netdev);
9881 	struct e1000_hw *hw = &adapter->hw;
9882 	u32 reg_val, reg_offset;
9883 
9884 	if (!adapter->vfs_allocated_count)
9885 		return -EOPNOTSUPP;
9886 
9887 	if (vf >= adapter->vfs_allocated_count)
9888 		return -EINVAL;
9889 
9890 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9891 	reg_val = rd32(reg_offset);
9892 	if (setting)
9893 		reg_val |= (BIT(vf) |
9894 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9895 	else
9896 		reg_val &= ~(BIT(vf) |
9897 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9898 	wr32(reg_offset, reg_val);
9899 
9900 	adapter->vf_data[vf].spoofchk_enabled = setting;
9901 	return 0;
9902 }
9903 
9904 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9905 {
9906 	struct igb_adapter *adapter = netdev_priv(netdev);
9907 
9908 	if (vf >= adapter->vfs_allocated_count)
9909 		return -EINVAL;
9910 	if (adapter->vf_data[vf].trusted == setting)
9911 		return 0;
9912 
9913 	adapter->vf_data[vf].trusted = setting;
9914 
9915 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9916 		 vf, setting ? "" : "not ");
9917 	return 0;
9918 }
9919 
9920 static int igb_ndo_get_vf_config(struct net_device *netdev,
9921 				 int vf, struct ifla_vf_info *ivi)
9922 {
9923 	struct igb_adapter *adapter = netdev_priv(netdev);
9924 	if (vf >= adapter->vfs_allocated_count)
9925 		return -EINVAL;
9926 	ivi->vf = vf;
9927 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9928 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9929 	ivi->min_tx_rate = 0;
9930 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9931 	ivi->qos = adapter->vf_data[vf].pf_qos;
9932 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9933 	ivi->trusted = adapter->vf_data[vf].trusted;
9934 	return 0;
9935 }
9936 
9937 static void igb_vmm_control(struct igb_adapter *adapter)
9938 {
9939 	struct e1000_hw *hw = &adapter->hw;
9940 	u32 reg;
9941 
9942 	switch (hw->mac.type) {
9943 	case e1000_82575:
9944 	case e1000_i210:
9945 	case e1000_i211:
9946 	case e1000_i354:
9947 	default:
9948 		/* replication is not supported for 82575 */
9949 		return;
9950 	case e1000_82576:
9951 		/* notify HW that the MAC is adding vlan tags */
9952 		reg = rd32(E1000_DTXCTL);
9953 		reg |= E1000_DTXCTL_VLAN_ADDED;
9954 		wr32(E1000_DTXCTL, reg);
9955 		fallthrough;
9956 	case e1000_82580:
9957 		/* enable replication vlan tag stripping */
9958 		reg = rd32(E1000_RPLOLR);
9959 		reg |= E1000_RPLOLR_STRVLAN;
9960 		wr32(E1000_RPLOLR, reg);
9961 		fallthrough;
9962 	case e1000_i350:
9963 		/* none of the above registers are supported by i350 */
9964 		break;
9965 	}
9966 
9967 	if (adapter->vfs_allocated_count) {
9968 		igb_vmdq_set_loopback_pf(hw, true);
9969 		igb_vmdq_set_replication_pf(hw, true);
9970 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9971 					      adapter->vfs_allocated_count);
9972 	} else {
9973 		igb_vmdq_set_loopback_pf(hw, false);
9974 		igb_vmdq_set_replication_pf(hw, false);
9975 	}
9976 }
9977 
9978 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9979 {
9980 	struct e1000_hw *hw = &adapter->hw;
9981 	u32 dmac_thr;
9982 	u16 hwm;
9983 	u32 reg;
9984 
9985 	if (hw->mac.type > e1000_82580) {
9986 		if (adapter->flags & IGB_FLAG_DMAC) {
9987 			/* force threshold to 0. */
9988 			wr32(E1000_DMCTXTH, 0);
9989 
9990 			/* DMA Coalescing high water mark needs to be greater
9991 			 * than the Rx threshold. Set hwm to PBA - max frame
9992 			 * size in 16B units, capping it at PBA - 6KB.
9993 			 */
9994 			hwm = 64 * (pba - 6);
9995 			reg = rd32(E1000_FCRTC);
9996 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9997 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9998 				& E1000_FCRTC_RTH_COAL_MASK);
9999 			wr32(E1000_FCRTC, reg);
10000 
10001 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10002 			 * frame size, capping it at PBA - 10KB.
10003 			 */
10004 			dmac_thr = pba - 10;
10005 			reg = rd32(E1000_DMACR);
10006 			reg &= ~E1000_DMACR_DMACTHR_MASK;
10007 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
10008 				& E1000_DMACR_DMACTHR_MASK);
10009 
10010 			/* transition to L0x or L1 if available..*/
10011 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10012 
10013 			/* watchdog timer= +-1000 usec in 32usec intervals */
10014 			reg |= (1000 >> 5);
10015 
10016 			/* Disable BMC-to-OS Watchdog Enable */
10017 			if (hw->mac.type != e1000_i354)
10018 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10019 			wr32(E1000_DMACR, reg);
10020 
10021 			/* no lower threshold to disable
10022 			 * coalescing(smart fifb)-UTRESH=0
10023 			 */
10024 			wr32(E1000_DMCRTRH, 0);
10025 
10026 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10027 
10028 			wr32(E1000_DMCTLX, reg);
10029 
10030 			/* free space in tx packet buffer to wake from
10031 			 * DMA coal
10032 			 */
10033 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10034 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10035 		}
10036 
10037 		if (hw->mac.type >= e1000_i210 ||
10038 		    (adapter->flags & IGB_FLAG_DMAC)) {
10039 			reg = rd32(E1000_PCIEMISC);
10040 			reg |= E1000_PCIEMISC_LX_DECISION;
10041 			wr32(E1000_PCIEMISC, reg);
10042 		} /* endif adapter->dmac is not disabled */
10043 	} else if (hw->mac.type == e1000_82580) {
10044 		u32 reg = rd32(E1000_PCIEMISC);
10045 
10046 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10047 		wr32(E1000_DMACR, 0);
10048 	}
10049 }
10050 
10051 /**
10052  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10053  *  @hw: pointer to hardware structure
10054  *  @byte_offset: byte offset to read
10055  *  @dev_addr: device address
10056  *  @data: value read
10057  *
10058  *  Performs byte read operation over I2C interface at
10059  *  a specified device address.
10060  **/
10061 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10062 		      u8 dev_addr, u8 *data)
10063 {
10064 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10065 	struct i2c_client *this_client = adapter->i2c_client;
10066 	s32 status;
10067 	u16 swfw_mask = 0;
10068 
10069 	if (!this_client)
10070 		return E1000_ERR_I2C;
10071 
10072 	swfw_mask = E1000_SWFW_PHY0_SM;
10073 
10074 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10075 		return E1000_ERR_SWFW_SYNC;
10076 
10077 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10078 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10079 
10080 	if (status < 0)
10081 		return E1000_ERR_I2C;
10082 	else {
10083 		*data = status;
10084 		return 0;
10085 	}
10086 }
10087 
10088 /**
10089  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10090  *  @hw: pointer to hardware structure
10091  *  @byte_offset: byte offset to write
10092  *  @dev_addr: device address
10093  *  @data: value to write
10094  *
10095  *  Performs byte write operation over I2C interface at
10096  *  a specified device address.
10097  **/
10098 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10099 		       u8 dev_addr, u8 data)
10100 {
10101 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10102 	struct i2c_client *this_client = adapter->i2c_client;
10103 	s32 status;
10104 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10105 
10106 	if (!this_client)
10107 		return E1000_ERR_I2C;
10108 
10109 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10110 		return E1000_ERR_SWFW_SYNC;
10111 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10112 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10113 
10114 	if (status)
10115 		return E1000_ERR_I2C;
10116 	else
10117 		return 0;
10118 
10119 }
10120 
10121 int igb_reinit_queues(struct igb_adapter *adapter)
10122 {
10123 	struct net_device *netdev = adapter->netdev;
10124 	struct pci_dev *pdev = adapter->pdev;
10125 	int err = 0;
10126 
10127 	if (netif_running(netdev))
10128 		igb_close(netdev);
10129 
10130 	igb_reset_interrupt_capability(adapter);
10131 
10132 	if (igb_init_interrupt_scheme(adapter, true)) {
10133 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10134 		return -ENOMEM;
10135 	}
10136 
10137 	if (netif_running(netdev))
10138 		err = igb_open(netdev);
10139 
10140 	return err;
10141 }
10142 
10143 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10144 {
10145 	struct igb_nfc_filter *rule;
10146 
10147 	spin_lock(&adapter->nfc_lock);
10148 
10149 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10150 		igb_erase_filter(adapter, rule);
10151 
10152 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10153 		igb_erase_filter(adapter, rule);
10154 
10155 	spin_unlock(&adapter->nfc_lock);
10156 }
10157 
10158 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10159 {
10160 	struct igb_nfc_filter *rule;
10161 
10162 	spin_lock(&adapter->nfc_lock);
10163 
10164 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10165 		igb_add_filter(adapter, rule);
10166 
10167 	spin_unlock(&adapter->nfc_lock);
10168 }
10169 /* igb_main.c */
10170