1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62 
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 3
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 				"Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 				"Copyright (c) 2007-2013 Intel Corporation.";
74 
75 static const struct e1000_info *igb_info_tbl[] = {
76 	[board_82575] = &e1000_82575_info,
77 };
78 
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113 	/* required last entry */
114 	{0, }
115 };
116 
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118 
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143 						 struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173 			       int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176 				   bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178 				 struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180 
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 #endif
184 
185 #ifdef CONFIG_PM
186 #ifdef CONFIG_PM_SLEEP
187 static int igb_suspend(struct device *);
188 #endif
189 static int igb_resume(struct device *);
190 #ifdef CONFIG_PM_RUNTIME
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 #endif
195 static const struct dev_pm_ops igb_pm_ops = {
196 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 			igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 	.notifier_call	= igb_notify_dca,
207 	.next		= NULL,
208 	.priority	= 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs = 0;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219                  "per physical function");
220 #endif /* CONFIG_PCI_IOV */
221 
222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223 		     pci_channel_state_t);
224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225 static void igb_io_resume(struct pci_dev *);
226 
227 static const struct pci_error_handlers igb_err_handler = {
228 	.error_detected = igb_io_error_detected,
229 	.slot_reset = igb_io_slot_reset,
230 	.resume = igb_io_resume,
231 };
232 
233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234 
235 static struct pci_driver igb_driver = {
236 	.name     = igb_driver_name,
237 	.id_table = igb_pci_tbl,
238 	.probe    = igb_probe,
239 	.remove   = igb_remove,
240 #ifdef CONFIG_PM
241 	.driver.pm = &igb_pm_ops,
242 #endif
243 	.shutdown = igb_shutdown,
244 	.sriov_configure = igb_pci_sriov_configure,
245 	.err_handler = &igb_err_handler
246 };
247 
248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250 MODULE_LICENSE("GPL");
251 MODULE_VERSION(DRV_VERSION);
252 
253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254 static int debug = -1;
255 module_param(debug, int, 0);
256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257 
258 struct igb_reg_info {
259 	u32 ofs;
260 	char *name;
261 };
262 
263 static const struct igb_reg_info igb_reg_info_tbl[] = {
264 
265 	/* General Registers */
266 	{E1000_CTRL, "CTRL"},
267 	{E1000_STATUS, "STATUS"},
268 	{E1000_CTRL_EXT, "CTRL_EXT"},
269 
270 	/* Interrupt Registers */
271 	{E1000_ICR, "ICR"},
272 
273 	/* RX Registers */
274 	{E1000_RCTL, "RCTL"},
275 	{E1000_RDLEN(0), "RDLEN"},
276 	{E1000_RDH(0), "RDH"},
277 	{E1000_RDT(0), "RDT"},
278 	{E1000_RXDCTL(0), "RXDCTL"},
279 	{E1000_RDBAL(0), "RDBAL"},
280 	{E1000_RDBAH(0), "RDBAH"},
281 
282 	/* TX Registers */
283 	{E1000_TCTL, "TCTL"},
284 	{E1000_TDBAL(0), "TDBAL"},
285 	{E1000_TDBAH(0), "TDBAH"},
286 	{E1000_TDLEN(0), "TDLEN"},
287 	{E1000_TDH(0), "TDH"},
288 	{E1000_TDT(0), "TDT"},
289 	{E1000_TXDCTL(0), "TXDCTL"},
290 	{E1000_TDFH, "TDFH"},
291 	{E1000_TDFT, "TDFT"},
292 	{E1000_TDFHS, "TDFHS"},
293 	{E1000_TDFPC, "TDFPC"},
294 
295 	/* List Terminator */
296 	{}
297 };
298 
299 /* igb_regdump - register printout routine */
300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301 {
302 	int n = 0;
303 	char rname[16];
304 	u32 regs[8];
305 
306 	switch (reginfo->ofs) {
307 	case E1000_RDLEN(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDLEN(n));
310 		break;
311 	case E1000_RDH(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RDH(n));
314 		break;
315 	case E1000_RDT(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDT(n));
318 		break;
319 	case E1000_RXDCTL(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RXDCTL(n));
322 		break;
323 	case E1000_RDBAL(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAL(n));
326 		break;
327 	case E1000_RDBAH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_RDBAH(n));
330 		break;
331 	case E1000_TDBAL(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_RDBAL(n));
334 		break;
335 	case E1000_TDBAH(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDBAH(n));
338 		break;
339 	case E1000_TDLEN(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDLEN(n));
342 		break;
343 	case E1000_TDH(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TDH(n));
346 		break;
347 	case E1000_TDT(0):
348 		for (n = 0; n < 4; n++)
349 			regs[n] = rd32(E1000_TDT(n));
350 		break;
351 	case E1000_TXDCTL(0):
352 		for (n = 0; n < 4; n++)
353 			regs[n] = rd32(E1000_TXDCTL(n));
354 		break;
355 	default:
356 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357 		return;
358 	}
359 
360 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362 		regs[2], regs[3]);
363 }
364 
365 /* igb_dump - Print registers, Tx-rings and Rx-rings */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368 	struct net_device *netdev = adapter->netdev;
369 	struct e1000_hw *hw = &adapter->hw;
370 	struct igb_reg_info *reginfo;
371 	struct igb_ring *tx_ring;
372 	union e1000_adv_tx_desc *tx_desc;
373 	struct my_u0 { u64 a; u64 b; } *u0;
374 	struct igb_ring *rx_ring;
375 	union e1000_adv_rx_desc *rx_desc;
376 	u32 staterr;
377 	u16 i, n;
378 
379 	if (!netif_msg_hw(adapter))
380 		return;
381 
382 	/* Print netdevice Info */
383 	if (netdev) {
384 		dev_info(&adapter->pdev->dev, "Net device Info\n");
385 		pr_info("Device Name     state            trans_start      "
386 			"last_rx\n");
387 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 			netdev->state, netdev->trans_start, netdev->last_rx);
389 	}
390 
391 	/* Print Registers */
392 	dev_info(&adapter->pdev->dev, "Register Dump\n");
393 	pr_info(" Register Name   Value\n");
394 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 	     reginfo->name; reginfo++) {
396 		igb_regdump(hw, reginfo);
397 	}
398 
399 	/* Print TX Ring Summary */
400 	if (!netdev || !netif_running(netdev))
401 		goto exit;
402 
403 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405 	for (n = 0; n < adapter->num_tx_queues; n++) {
406 		struct igb_tx_buffer *buffer_info;
407 		tx_ring = adapter->tx_ring[n];
408 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 			(u64)dma_unmap_addr(buffer_info, dma),
412 			dma_unmap_len(buffer_info, len),
413 			buffer_info->next_to_watch,
414 			(u64)buffer_info->time_stamp);
415 	}
416 
417 	/* Print TX Rings */
418 	if (!netif_msg_tx_done(adapter))
419 		goto rx_ring_summary;
420 
421 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422 
423 	/* Transmit Descriptor Formats
424 	 *
425 	 * Advanced Transmit Descriptor
426 	 *   +--------------------------------------------------------------+
427 	 * 0 |         Buffer Address [63:0]                                |
428 	 *   +--------------------------------------------------------------+
429 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430 	 *   +--------------------------------------------------------------+
431 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432 	 */
433 
434 	for (n = 0; n < adapter->num_tx_queues; n++) {
435 		tx_ring = adapter->tx_ring[n];
436 		pr_info("------------------------------------\n");
437 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 		pr_info("------------------------------------\n");
439 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440 			"[bi->dma       ] leng  ntw timestamp        "
441 			"bi->skb\n");
442 
443 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444 			const char *next_desc;
445 			struct igb_tx_buffer *buffer_info;
446 			tx_desc = IGB_TX_DESC(tx_ring, i);
447 			buffer_info = &tx_ring->tx_buffer_info[i];
448 			u0 = (struct my_u0 *)tx_desc;
449 			if (i == tx_ring->next_to_use &&
450 			    i == tx_ring->next_to_clean)
451 				next_desc = " NTC/U";
452 			else if (i == tx_ring->next_to_use)
453 				next_desc = " NTU";
454 			else if (i == tx_ring->next_to_clean)
455 				next_desc = " NTC";
456 			else
457 				next_desc = "";
458 
459 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460 				" %04X  %p %016llX %p%s\n", i,
461 				le64_to_cpu(u0->a),
462 				le64_to_cpu(u0->b),
463 				(u64)dma_unmap_addr(buffer_info, dma),
464 				dma_unmap_len(buffer_info, len),
465 				buffer_info->next_to_watch,
466 				(u64)buffer_info->time_stamp,
467 				buffer_info->skb, next_desc);
468 
469 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 				print_hex_dump(KERN_INFO, "",
471 					DUMP_PREFIX_ADDRESS,
472 					16, 1, buffer_info->skb->data,
473 					dma_unmap_len(buffer_info, len),
474 					true);
475 		}
476 	}
477 
478 	/* Print RX Rings Summary */
479 rx_ring_summary:
480 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481 	pr_info("Queue [NTU] [NTC]\n");
482 	for (n = 0; n < adapter->num_rx_queues; n++) {
483 		rx_ring = adapter->rx_ring[n];
484 		pr_info(" %5d %5X %5X\n",
485 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 	}
487 
488 	/* Print RX Rings */
489 	if (!netif_msg_rx_status(adapter))
490 		goto exit;
491 
492 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493 
494 	/* Advanced Receive Descriptor (Read) Format
495 	 *    63                                           1        0
496 	 *    +-----------------------------------------------------+
497 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498 	 *    +----------------------------------------------+------+
499 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500 	 *    +-----------------------------------------------------+
501 	 *
502 	 *
503 	 * Advanced Receive Descriptor (Write-Back) Format
504 	 *
505 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506 	 *   +------------------------------------------------------+
507 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508 	 *   | Checksum   Ident  |   |           |    | Type | Type |
509 	 *   +------------------------------------------------------+
510 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 	 *   +------------------------------------------------------+
512 	 *   63       48 47    32 31            20 19               0
513 	 */
514 
515 	for (n = 0; n < adapter->num_rx_queues; n++) {
516 		rx_ring = adapter->rx_ring[n];
517 		pr_info("------------------------------------\n");
518 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 		pr_info("------------------------------------\n");
520 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 
525 		for (i = 0; i < rx_ring->count; i++) {
526 			const char *next_desc;
527 			struct igb_rx_buffer *buffer_info;
528 			buffer_info = &rx_ring->rx_buffer_info[i];
529 			rx_desc = IGB_RX_DESC(rx_ring, i);
530 			u0 = (struct my_u0 *)rx_desc;
531 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532 
533 			if (i == rx_ring->next_to_use)
534 				next_desc = " NTU";
535 			else if (i == rx_ring->next_to_clean)
536 				next_desc = " NTC";
537 			else
538 				next_desc = "";
539 
540 			if (staterr & E1000_RXD_STAT_DD) {
541 				/* Descriptor Done */
542 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543 					"RWB", i,
544 					le64_to_cpu(u0->a),
545 					le64_to_cpu(u0->b),
546 					next_desc);
547 			} else {
548 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549 					"R  ", i,
550 					le64_to_cpu(u0->a),
551 					le64_to_cpu(u0->b),
552 					(u64)buffer_info->dma,
553 					next_desc);
554 
555 				if (netif_msg_pktdata(adapter) &&
556 				    buffer_info->dma && buffer_info->page) {
557 					print_hex_dump(KERN_INFO, "",
558 					  DUMP_PREFIX_ADDRESS,
559 					  16, 1,
560 					  page_address(buffer_info->page) +
561 						      buffer_info->page_offset,
562 					  IGB_RX_BUFSZ, true);
563 				}
564 			}
565 		}
566 	}
567 
568 exit:
569 	return;
570 }
571 
572 /**
573  *  igb_get_i2c_data - Reads the I2C SDA data bit
574  *  @hw: pointer to hardware structure
575  *  @i2cctl: Current value of I2CCTL register
576  *
577  *  Returns the I2C data bit value
578  **/
579 static int igb_get_i2c_data(void *data)
580 {
581 	struct igb_adapter *adapter = (struct igb_adapter *)data;
582 	struct e1000_hw *hw = &adapter->hw;
583 	s32 i2cctl = rd32(E1000_I2CPARAMS);
584 
585 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586 }
587 
588 /**
589  *  igb_set_i2c_data - Sets the I2C data bit
590  *  @data: pointer to hardware structure
591  *  @state: I2C data value (0 or 1) to set
592  *
593  *  Sets the I2C data bit
594  **/
595 static void igb_set_i2c_data(void *data, int state)
596 {
597 	struct igb_adapter *adapter = (struct igb_adapter *)data;
598 	struct e1000_hw *hw = &adapter->hw;
599 	s32 i2cctl = rd32(E1000_I2CPARAMS);
600 
601 	if (state)
602 		i2cctl |= E1000_I2C_DATA_OUT;
603 	else
604 		i2cctl &= ~E1000_I2C_DATA_OUT;
605 
606 	i2cctl &= ~E1000_I2C_DATA_OE_N;
607 	i2cctl |= E1000_I2C_CLK_OE_N;
608 	wr32(E1000_I2CPARAMS, i2cctl);
609 	wrfl();
610 
611 }
612 
613 /**
614  *  igb_set_i2c_clk - Sets the I2C SCL clock
615  *  @data: pointer to hardware structure
616  *  @state: state to set clock
617  *
618  *  Sets the I2C clock line to state
619  **/
620 static void igb_set_i2c_clk(void *data, int state)
621 {
622 	struct igb_adapter *adapter = (struct igb_adapter *)data;
623 	struct e1000_hw *hw = &adapter->hw;
624 	s32 i2cctl = rd32(E1000_I2CPARAMS);
625 
626 	if (state) {
627 		i2cctl |= E1000_I2C_CLK_OUT;
628 		i2cctl &= ~E1000_I2C_CLK_OE_N;
629 	} else {
630 		i2cctl &= ~E1000_I2C_CLK_OUT;
631 		i2cctl &= ~E1000_I2C_CLK_OE_N;
632 	}
633 	wr32(E1000_I2CPARAMS, i2cctl);
634 	wrfl();
635 }
636 
637 /**
638  *  igb_get_i2c_clk - Gets the I2C SCL clock state
639  *  @data: pointer to hardware structure
640  *
641  *  Gets the I2C clock state
642  **/
643 static int igb_get_i2c_clk(void *data)
644 {
645 	struct igb_adapter *adapter = (struct igb_adapter *)data;
646 	struct e1000_hw *hw = &adapter->hw;
647 	s32 i2cctl = rd32(E1000_I2CPARAMS);
648 
649 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650 }
651 
652 static const struct i2c_algo_bit_data igb_i2c_algo = {
653 	.setsda		= igb_set_i2c_data,
654 	.setscl		= igb_set_i2c_clk,
655 	.getsda		= igb_get_i2c_data,
656 	.getscl		= igb_get_i2c_clk,
657 	.udelay		= 5,
658 	.timeout	= 20,
659 };
660 
661 /**
662  *  igb_get_hw_dev - return device
663  *  @hw: pointer to hardware structure
664  *
665  *  used by hardware layer to print debugging information
666  **/
667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 {
669 	struct igb_adapter *adapter = hw->back;
670 	return adapter->netdev;
671 }
672 
673 /**
674  *  igb_init_module - Driver Registration Routine
675  *
676  *  igb_init_module is the first routine called when the driver is
677  *  loaded. All it does is register with the PCI subsystem.
678  **/
679 static int __init igb_init_module(void)
680 {
681 	int ret;
682 	pr_info("%s - version %s\n",
683 	       igb_driver_string, igb_driver_version);
684 
685 	pr_info("%s\n", igb_copyright);
686 
687 #ifdef CONFIG_IGB_DCA
688 	dca_register_notify(&dca_notifier);
689 #endif
690 	ret = pci_register_driver(&igb_driver);
691 	return ret;
692 }
693 
694 module_init(igb_init_module);
695 
696 /**
697  *  igb_exit_module - Driver Exit Cleanup Routine
698  *
699  *  igb_exit_module is called just before the driver is removed
700  *  from memory.
701  **/
702 static void __exit igb_exit_module(void)
703 {
704 #ifdef CONFIG_IGB_DCA
705 	dca_unregister_notify(&dca_notifier);
706 #endif
707 	pci_unregister_driver(&igb_driver);
708 }
709 
710 module_exit(igb_exit_module);
711 
712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713 /**
714  *  igb_cache_ring_register - Descriptor ring to register mapping
715  *  @adapter: board private structure to initialize
716  *
717  *  Once we know the feature-set enabled for the device, we'll cache
718  *  the register offset the descriptor ring is assigned to.
719  **/
720 static void igb_cache_ring_register(struct igb_adapter *adapter)
721 {
722 	int i = 0, j = 0;
723 	u32 rbase_offset = adapter->vfs_allocated_count;
724 
725 	switch (adapter->hw.mac.type) {
726 	case e1000_82576:
727 		/* The queues are allocated for virtualization such that VF 0
728 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729 		 * In order to avoid collision we start at the first free queue
730 		 * and continue consuming queues in the same sequence
731 		 */
732 		if (adapter->vfs_allocated_count) {
733 			for (; i < adapter->rss_queues; i++)
734 				adapter->rx_ring[i]->reg_idx = rbase_offset +
735 							       Q_IDX_82576(i);
736 		}
737 	case e1000_82575:
738 	case e1000_82580:
739 	case e1000_i350:
740 	case e1000_i354:
741 	case e1000_i210:
742 	case e1000_i211:
743 	default:
744 		for (; i < adapter->num_rx_queues; i++)
745 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746 		for (; j < adapter->num_tx_queues; j++)
747 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748 		break;
749 	}
750 }
751 
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 			   int index, int offset)
766 {
767 	u32 ivar = array_rd32(E1000_IVAR0, index);
768 
769 	/* clear any bits that are currently set */
770 	ivar &= ~((u32)0xFF << offset);
771 
772 	/* write vector and valid bit */
773 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774 
775 	array_wr32(E1000_IVAR0, index, ivar);
776 }
777 
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 	struct igb_adapter *adapter = q_vector->adapter;
782 	struct e1000_hw *hw = &adapter->hw;
783 	int rx_queue = IGB_N0_QUEUE;
784 	int tx_queue = IGB_N0_QUEUE;
785 	u32 msixbm = 0;
786 
787 	if (q_vector->rx.ring)
788 		rx_queue = q_vector->rx.ring->reg_idx;
789 	if (q_vector->tx.ring)
790 		tx_queue = q_vector->tx.ring->reg_idx;
791 
792 	switch (hw->mac.type) {
793 	case e1000_82575:
794 		/* The 82575 assigns vectors using a bitmask, which matches the
795 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796 		 * or more queues to a vector, we write the appropriate bits
797 		 * into the MSIXBM register for that vector.
798 		 */
799 		if (rx_queue > IGB_N0_QUEUE)
800 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 		if (tx_queue > IGB_N0_QUEUE)
802 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 		if (!adapter->msix_entries && msix_vector == 0)
804 			msixbm |= E1000_EIMS_OTHER;
805 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 		q_vector->eims_value = msixbm;
807 		break;
808 	case e1000_82576:
809 		/* 82576 uses a table that essentially consists of 2 columns
810 		 * with 8 rows.  The ordering is column-major so we use the
811 		 * lower 3 bits as the row index, and the 4th bit as the
812 		 * column offset.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue & 0x7,
817 				       (rx_queue & 0x8) << 1);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue & 0x7,
821 				       ((tx_queue & 0x8) << 1) + 8);
822 		q_vector->eims_value = 1 << msix_vector;
823 		break;
824 	case e1000_82580:
825 	case e1000_i350:
826 	case e1000_i354:
827 	case e1000_i210:
828 	case e1000_i211:
829 		/* On 82580 and newer adapters the scheme is similar to 82576
830 		 * however instead of ordering column-major we have things
831 		 * ordered row-major.  So we traverse the table by using
832 		 * bit 0 as the column offset, and the remaining bits as the
833 		 * row index.
834 		 */
835 		if (rx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       rx_queue >> 1,
838 				       (rx_queue & 0x1) << 4);
839 		if (tx_queue > IGB_N0_QUEUE)
840 			igb_write_ivar(hw, msix_vector,
841 				       tx_queue >> 1,
842 				       ((tx_queue & 0x1) << 4) + 8);
843 		q_vector->eims_value = 1 << msix_vector;
844 		break;
845 	default:
846 		BUG();
847 		break;
848 	}
849 
850 	/* add q_vector eims value to global eims_enable_mask */
851 	adapter->eims_enable_mask |= q_vector->eims_value;
852 
853 	/* configure q_vector to set itr on first interrupt */
854 	q_vector->set_itr = 1;
855 }
856 
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 	u32 tmp;
867 	int i, vector = 0;
868 	struct e1000_hw *hw = &adapter->hw;
869 
870 	adapter->eims_enable_mask = 0;
871 
872 	/* set vector for other causes, i.e. link changes */
873 	switch (hw->mac.type) {
874 	case e1000_82575:
875 		tmp = rd32(E1000_CTRL_EXT);
876 		/* enable MSI-X PBA support*/
877 		tmp |= E1000_CTRL_EXT_PBA_CLR;
878 
879 		/* Auto-Mask interrupts upon ICR read. */
880 		tmp |= E1000_CTRL_EXT_EIAME;
881 		tmp |= E1000_CTRL_EXT_IRCA;
882 
883 		wr32(E1000_CTRL_EXT, tmp);
884 
885 		/* enable msix_other interrupt */
886 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 		adapter->eims_other = E1000_EIMS_OTHER;
888 
889 		break;
890 
891 	case e1000_82576:
892 	case e1000_82580:
893 	case e1000_i350:
894 	case e1000_i354:
895 	case e1000_i210:
896 	case e1000_i211:
897 		/* Turn on MSI-X capability first, or our settings
898 		 * won't stick.  And it will take days to debug.
899 		 */
900 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 		     E1000_GPIE_NSICR);
903 
904 		/* enable msix_other interrupt */
905 		adapter->eims_other = 1 << vector;
906 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907 
908 		wr32(E1000_IVAR_MISC, tmp);
909 		break;
910 	default:
911 		/* do nothing, since nothing else supports MSI-X */
912 		break;
913 	} /* switch (hw->mac.type) */
914 
915 	adapter->eims_enable_mask |= adapter->eims_other;
916 
917 	for (i = 0; i < adapter->num_q_vectors; i++)
918 		igb_assign_vector(adapter->q_vector[i], vector++);
919 
920 	wrfl();
921 }
922 
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 	struct net_device *netdev = adapter->netdev;
933 	struct e1000_hw *hw = &adapter->hw;
934 	int i, err = 0, vector = 0, free_vector = 0;
935 
936 	err = request_irq(adapter->msix_entries[vector].vector,
937 			  igb_msix_other, 0, netdev->name, adapter);
938 	if (err)
939 		goto err_out;
940 
941 	for (i = 0; i < adapter->num_q_vectors; i++) {
942 		struct igb_q_vector *q_vector = adapter->q_vector[i];
943 
944 		vector++;
945 
946 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947 
948 		if (q_vector->rx.ring && q_vector->tx.ring)
949 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 				q_vector->rx.ring->queue_index);
951 		else if (q_vector->tx.ring)
952 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 				q_vector->tx.ring->queue_index);
954 		else if (q_vector->rx.ring)
955 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956 				q_vector->rx.ring->queue_index);
957 		else
958 			sprintf(q_vector->name, "%s-unused", netdev->name);
959 
960 		err = request_irq(adapter->msix_entries[vector].vector,
961 				  igb_msix_ring, 0, q_vector->name,
962 				  q_vector);
963 		if (err)
964 			goto err_free;
965 	}
966 
967 	igb_configure_msix(adapter);
968 	return 0;
969 
970 err_free:
971 	/* free already assigned IRQs */
972 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973 
974 	vector--;
975 	for (i = 0; i < vector; i++) {
976 		free_irq(adapter->msix_entries[free_vector++].vector,
977 			 adapter->q_vector[i]);
978 	}
979 err_out:
980 	return err;
981 }
982 
983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984 {
985 	if (adapter->msix_entries) {
986 		pci_disable_msix(adapter->pdev);
987 		kfree(adapter->msix_entries);
988 		adapter->msix_entries = NULL;
989 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990 		pci_disable_msi(adapter->pdev);
991 	}
992 }
993 
994 /**
995  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
996  *  @adapter: board private structure to initialize
997  *  @v_idx: Index of vector to be freed
998  *
999  *  This function frees the memory allocated to the q_vector.  In addition if
1000  *  NAPI is enabled it will delete any references to the NAPI struct prior
1001  *  to freeing the q_vector.
1002  **/
1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004 {
1005 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006 
1007 	if (q_vector->tx.ring)
1008 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009 
1010 	if (q_vector->rx.ring)
1011 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012 
1013 	adapter->q_vector[v_idx] = NULL;
1014 	netif_napi_del(&q_vector->napi);
1015 
1016 	/* ixgbe_get_stats64() might access the rings on this vector,
1017 	 * we must wait a grace period before freeing it.
1018 	 */
1019 	kfree_rcu(q_vector, rcu);
1020 }
1021 
1022 /**
1023  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1024  *  @adapter: board private structure to initialize
1025  *
1026  *  This function frees the memory allocated to the q_vectors.  In addition if
1027  *  NAPI is enabled it will delete any references to the NAPI struct prior
1028  *  to freeing the q_vector.
1029  **/
1030 static void igb_free_q_vectors(struct igb_adapter *adapter)
1031 {
1032 	int v_idx = adapter->num_q_vectors;
1033 
1034 	adapter->num_tx_queues = 0;
1035 	adapter->num_rx_queues = 0;
1036 	adapter->num_q_vectors = 0;
1037 
1038 	while (v_idx--)
1039 		igb_free_q_vector(adapter, v_idx);
1040 }
1041 
1042 /**
1043  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044  *  @adapter: board private structure to initialize
1045  *
1046  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1047  *  MSI-X interrupts allocated.
1048  */
1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050 {
1051 	igb_free_q_vectors(adapter);
1052 	igb_reset_interrupt_capability(adapter);
1053 }
1054 
1055 /**
1056  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1057  *  @adapter: board private structure to initialize
1058  *  @msix: boolean value of MSIX capability
1059  *
1060  *  Attempt to configure interrupts using the best available
1061  *  capabilities of the hardware and kernel.
1062  **/
1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 {
1065 	int err;
1066 	int numvecs, i;
1067 
1068 	if (!msix)
1069 		goto msi_only;
1070 
1071 	/* Number of supported queues. */
1072 	adapter->num_rx_queues = adapter->rss_queues;
1073 	if (adapter->vfs_allocated_count)
1074 		adapter->num_tx_queues = 1;
1075 	else
1076 		adapter->num_tx_queues = adapter->rss_queues;
1077 
1078 	/* start with one vector for every Rx queue */
1079 	numvecs = adapter->num_rx_queues;
1080 
1081 	/* if Tx handler is separate add 1 for every Tx queue */
1082 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083 		numvecs += adapter->num_tx_queues;
1084 
1085 	/* store the number of vectors reserved for queues */
1086 	adapter->num_q_vectors = numvecs;
1087 
1088 	/* add 1 vector for link status interrupts */
1089 	numvecs++;
1090 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091 					GFP_KERNEL);
1092 
1093 	if (!adapter->msix_entries)
1094 		goto msi_only;
1095 
1096 	for (i = 0; i < numvecs; i++)
1097 		adapter->msix_entries[i].entry = i;
1098 
1099 	err = pci_enable_msix(adapter->pdev,
1100 			      adapter->msix_entries,
1101 			      numvecs);
1102 	if (err == 0)
1103 		return;
1104 
1105 	igb_reset_interrupt_capability(adapter);
1106 
1107 	/* If we can't do MSI-X, try MSI */
1108 msi_only:
1109 #ifdef CONFIG_PCI_IOV
1110 	/* disable SR-IOV for non MSI-X configurations */
1111 	if (adapter->vf_data) {
1112 		struct e1000_hw *hw = &adapter->hw;
1113 		/* disable iov and allow time for transactions to clear */
1114 		pci_disable_sriov(adapter->pdev);
1115 		msleep(500);
1116 
1117 		kfree(adapter->vf_data);
1118 		adapter->vf_data = NULL;
1119 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120 		wrfl();
1121 		msleep(100);
1122 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123 	}
1124 #endif
1125 	adapter->vfs_allocated_count = 0;
1126 	adapter->rss_queues = 1;
1127 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128 	adapter->num_rx_queues = 1;
1129 	adapter->num_tx_queues = 1;
1130 	adapter->num_q_vectors = 1;
1131 	if (!pci_enable_msi(adapter->pdev))
1132 		adapter->flags |= IGB_FLAG_HAS_MSI;
1133 }
1134 
1135 static void igb_add_ring(struct igb_ring *ring,
1136 			 struct igb_ring_container *head)
1137 {
1138 	head->ring = ring;
1139 	head->count++;
1140 }
1141 
1142 /**
1143  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144  *  @adapter: board private structure to initialize
1145  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1146  *  @v_idx: index of vector in adapter struct
1147  *  @txr_count: total number of Tx rings to allocate
1148  *  @txr_idx: index of first Tx ring to allocate
1149  *  @rxr_count: total number of Rx rings to allocate
1150  *  @rxr_idx: index of first Rx ring to allocate
1151  *
1152  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153  **/
1154 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155 			      int v_count, int v_idx,
1156 			      int txr_count, int txr_idx,
1157 			      int rxr_count, int rxr_idx)
1158 {
1159 	struct igb_q_vector *q_vector;
1160 	struct igb_ring *ring;
1161 	int ring_count, size;
1162 
1163 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164 	if (txr_count > 1 || rxr_count > 1)
1165 		return -ENOMEM;
1166 
1167 	ring_count = txr_count + rxr_count;
1168 	size = sizeof(struct igb_q_vector) +
1169 	       (sizeof(struct igb_ring) * ring_count);
1170 
1171 	/* allocate q_vector and rings */
1172 	q_vector = kzalloc(size, GFP_KERNEL);
1173 	if (!q_vector)
1174 		return -ENOMEM;
1175 
1176 	/* initialize NAPI */
1177 	netif_napi_add(adapter->netdev, &q_vector->napi,
1178 		       igb_poll, 64);
1179 
1180 	/* tie q_vector and adapter together */
1181 	adapter->q_vector[v_idx] = q_vector;
1182 	q_vector->adapter = adapter;
1183 
1184 	/* initialize work limits */
1185 	q_vector->tx.work_limit = adapter->tx_work_limit;
1186 
1187 	/* initialize ITR configuration */
1188 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189 	q_vector->itr_val = IGB_START_ITR;
1190 
1191 	/* initialize pointer to rings */
1192 	ring = q_vector->ring;
1193 
1194 	/* intialize ITR */
1195 	if (rxr_count) {
1196 		/* rx or rx/tx vector */
1197 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198 			q_vector->itr_val = adapter->rx_itr_setting;
1199 	} else {
1200 		/* tx only vector */
1201 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202 			q_vector->itr_val = adapter->tx_itr_setting;
1203 	}
1204 
1205 	if (txr_count) {
1206 		/* assign generic ring traits */
1207 		ring->dev = &adapter->pdev->dev;
1208 		ring->netdev = adapter->netdev;
1209 
1210 		/* configure backlink on ring */
1211 		ring->q_vector = q_vector;
1212 
1213 		/* update q_vector Tx values */
1214 		igb_add_ring(ring, &q_vector->tx);
1215 
1216 		/* For 82575, context index must be unique per ring. */
1217 		if (adapter->hw.mac.type == e1000_82575)
1218 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219 
1220 		/* apply Tx specific ring traits */
1221 		ring->count = adapter->tx_ring_count;
1222 		ring->queue_index = txr_idx;
1223 
1224 		/* assign ring to adapter */
1225 		adapter->tx_ring[txr_idx] = ring;
1226 
1227 		/* push pointer to next ring */
1228 		ring++;
1229 	}
1230 
1231 	if (rxr_count) {
1232 		/* assign generic ring traits */
1233 		ring->dev = &adapter->pdev->dev;
1234 		ring->netdev = adapter->netdev;
1235 
1236 		/* configure backlink on ring */
1237 		ring->q_vector = q_vector;
1238 
1239 		/* update q_vector Rx values */
1240 		igb_add_ring(ring, &q_vector->rx);
1241 
1242 		/* set flag indicating ring supports SCTP checksum offload */
1243 		if (adapter->hw.mac.type >= e1000_82576)
1244 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245 
1246 		/*
1247 		 * On i350, i354, i210, and i211, loopback VLAN packets
1248 		 * have the tag byte-swapped.
1249 		 */
1250 		if (adapter->hw.mac.type >= e1000_i350)
1251 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252 
1253 		/* apply Rx specific ring traits */
1254 		ring->count = adapter->rx_ring_count;
1255 		ring->queue_index = rxr_idx;
1256 
1257 		/* assign ring to adapter */
1258 		adapter->rx_ring[rxr_idx] = ring;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 
1265 /**
1266  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267  *  @adapter: board private structure to initialize
1268  *
1269  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1270  *  return -ENOMEM.
1271  **/
1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273 {
1274 	int q_vectors = adapter->num_q_vectors;
1275 	int rxr_remaining = adapter->num_rx_queues;
1276 	int txr_remaining = adapter->num_tx_queues;
1277 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278 	int err;
1279 
1280 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281 		for (; rxr_remaining; v_idx++) {
1282 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283 						 0, 0, 1, rxr_idx);
1284 
1285 			if (err)
1286 				goto err_out;
1287 
1288 			/* update counts and index */
1289 			rxr_remaining--;
1290 			rxr_idx++;
1291 		}
1292 	}
1293 
1294 	for (; v_idx < q_vectors; v_idx++) {
1295 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298 					 tqpv, txr_idx, rqpv, rxr_idx);
1299 
1300 		if (err)
1301 			goto err_out;
1302 
1303 		/* update counts and index */
1304 		rxr_remaining -= rqpv;
1305 		txr_remaining -= tqpv;
1306 		rxr_idx++;
1307 		txr_idx++;
1308 	}
1309 
1310 	return 0;
1311 
1312 err_out:
1313 	adapter->num_tx_queues = 0;
1314 	adapter->num_rx_queues = 0;
1315 	adapter->num_q_vectors = 0;
1316 
1317 	while (v_idx--)
1318 		igb_free_q_vector(adapter, v_idx);
1319 
1320 	return -ENOMEM;
1321 }
1322 
1323 /**
1324  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325  *  @adapter: board private structure to initialize
1326  *  @msix: boolean value of MSIX capability
1327  *
1328  *  This function initializes the interrupts and allocates all of the queues.
1329  **/
1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 {
1332 	struct pci_dev *pdev = adapter->pdev;
1333 	int err;
1334 
1335 	igb_set_interrupt_capability(adapter, msix);
1336 
1337 	err = igb_alloc_q_vectors(adapter);
1338 	if (err) {
1339 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340 		goto err_alloc_q_vectors;
1341 	}
1342 
1343 	igb_cache_ring_register(adapter);
1344 
1345 	return 0;
1346 
1347 err_alloc_q_vectors:
1348 	igb_reset_interrupt_capability(adapter);
1349 	return err;
1350 }
1351 
1352 /**
1353  *  igb_request_irq - initialize interrupts
1354  *  @adapter: board private structure to initialize
1355  *
1356  *  Attempts to configure interrupts using the best available
1357  *  capabilities of the hardware and kernel.
1358  **/
1359 static int igb_request_irq(struct igb_adapter *adapter)
1360 {
1361 	struct net_device *netdev = adapter->netdev;
1362 	struct pci_dev *pdev = adapter->pdev;
1363 	int err = 0;
1364 
1365 	if (adapter->msix_entries) {
1366 		err = igb_request_msix(adapter);
1367 		if (!err)
1368 			goto request_done;
1369 		/* fall back to MSI */
1370 		igb_free_all_tx_resources(adapter);
1371 		igb_free_all_rx_resources(adapter);
1372 
1373 		igb_clear_interrupt_scheme(adapter);
1374 		err = igb_init_interrupt_scheme(adapter, false);
1375 		if (err)
1376 			goto request_done;
1377 
1378 		igb_setup_all_tx_resources(adapter);
1379 		igb_setup_all_rx_resources(adapter);
1380 		igb_configure(adapter);
1381 	}
1382 
1383 	igb_assign_vector(adapter->q_vector[0], 0);
1384 
1385 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1387 				  netdev->name, adapter);
1388 		if (!err)
1389 			goto request_done;
1390 
1391 		/* fall back to legacy interrupts */
1392 		igb_reset_interrupt_capability(adapter);
1393 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394 	}
1395 
1396 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397 			  netdev->name, adapter);
1398 
1399 	if (err)
1400 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401 			err);
1402 
1403 request_done:
1404 	return err;
1405 }
1406 
1407 static void igb_free_irq(struct igb_adapter *adapter)
1408 {
1409 	if (adapter->msix_entries) {
1410 		int vector = 0, i;
1411 
1412 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1413 
1414 		for (i = 0; i < adapter->num_q_vectors; i++)
1415 			free_irq(adapter->msix_entries[vector++].vector,
1416 				 adapter->q_vector[i]);
1417 	} else {
1418 		free_irq(adapter->pdev->irq, adapter);
1419 	}
1420 }
1421 
1422 /**
1423  *  igb_irq_disable - Mask off interrupt generation on the NIC
1424  *  @adapter: board private structure
1425  **/
1426 static void igb_irq_disable(struct igb_adapter *adapter)
1427 {
1428 	struct e1000_hw *hw = &adapter->hw;
1429 
1430 	/* we need to be careful when disabling interrupts.  The VFs are also
1431 	 * mapped into these registers and so clearing the bits can cause
1432 	 * issues on the VF drivers so we only need to clear what we set
1433 	 */
1434 	if (adapter->msix_entries) {
1435 		u32 regval = rd32(E1000_EIAM);
1436 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1438 		regval = rd32(E1000_EIAC);
1439 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440 	}
1441 
1442 	wr32(E1000_IAM, 0);
1443 	wr32(E1000_IMC, ~0);
1444 	wrfl();
1445 	if (adapter->msix_entries) {
1446 		int i;
1447 		for (i = 0; i < adapter->num_q_vectors; i++)
1448 			synchronize_irq(adapter->msix_entries[i].vector);
1449 	} else {
1450 		synchronize_irq(adapter->pdev->irq);
1451 	}
1452 }
1453 
1454 /**
1455  *  igb_irq_enable - Enable default interrupt generation settings
1456  *  @adapter: board private structure
1457  **/
1458 static void igb_irq_enable(struct igb_adapter *adapter)
1459 {
1460 	struct e1000_hw *hw = &adapter->hw;
1461 
1462 	if (adapter->msix_entries) {
1463 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464 		u32 regval = rd32(E1000_EIAC);
1465 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466 		regval = rd32(E1000_EIAM);
1467 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1469 		if (adapter->vfs_allocated_count) {
1470 			wr32(E1000_MBVFIMR, 0xFF);
1471 			ims |= E1000_IMS_VMMB;
1472 		}
1473 		wr32(E1000_IMS, ims);
1474 	} else {
1475 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1476 				E1000_IMS_DRSTA);
1477 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1478 				E1000_IMS_DRSTA);
1479 	}
1480 }
1481 
1482 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483 {
1484 	struct e1000_hw *hw = &adapter->hw;
1485 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1486 	u16 old_vid = adapter->mng_vlan_id;
1487 
1488 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489 		/* add VID to filter table */
1490 		igb_vfta_set(hw, vid, true);
1491 		adapter->mng_vlan_id = vid;
1492 	} else {
1493 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494 	}
1495 
1496 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497 	    (vid != old_vid) &&
1498 	    !test_bit(old_vid, adapter->active_vlans)) {
1499 		/* remove VID from filter table */
1500 		igb_vfta_set(hw, old_vid, false);
1501 	}
1502 }
1503 
1504 /**
1505  *  igb_release_hw_control - release control of the h/w to f/w
1506  *  @adapter: address of board private structure
1507  *
1508  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509  *  For ASF and Pass Through versions of f/w this means that the
1510  *  driver is no longer loaded.
1511  **/
1512 static void igb_release_hw_control(struct igb_adapter *adapter)
1513 {
1514 	struct e1000_hw *hw = &adapter->hw;
1515 	u32 ctrl_ext;
1516 
1517 	/* Let firmware take over control of h/w */
1518 	ctrl_ext = rd32(E1000_CTRL_EXT);
1519 	wr32(E1000_CTRL_EXT,
1520 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521 }
1522 
1523 /**
1524  *  igb_get_hw_control - get control of the h/w from f/w
1525  *  @adapter: address of board private structure
1526  *
1527  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528  *  For ASF and Pass Through versions of f/w this means that
1529  *  the driver is loaded.
1530  **/
1531 static void igb_get_hw_control(struct igb_adapter *adapter)
1532 {
1533 	struct e1000_hw *hw = &adapter->hw;
1534 	u32 ctrl_ext;
1535 
1536 	/* Let firmware know the driver has taken over */
1537 	ctrl_ext = rd32(E1000_CTRL_EXT);
1538 	wr32(E1000_CTRL_EXT,
1539 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540 }
1541 
1542 /**
1543  *  igb_configure - configure the hardware for RX and TX
1544  *  @adapter: private board structure
1545  **/
1546 static void igb_configure(struct igb_adapter *adapter)
1547 {
1548 	struct net_device *netdev = adapter->netdev;
1549 	int i;
1550 
1551 	igb_get_hw_control(adapter);
1552 	igb_set_rx_mode(netdev);
1553 
1554 	igb_restore_vlan(adapter);
1555 
1556 	igb_setup_tctl(adapter);
1557 	igb_setup_mrqc(adapter);
1558 	igb_setup_rctl(adapter);
1559 
1560 	igb_configure_tx(adapter);
1561 	igb_configure_rx(adapter);
1562 
1563 	igb_rx_fifo_flush_82575(&adapter->hw);
1564 
1565 	/* call igb_desc_unused which always leaves
1566 	 * at least 1 descriptor unused to make sure
1567 	 * next_to_use != next_to_clean
1568 	 */
1569 	for (i = 0; i < adapter->num_rx_queues; i++) {
1570 		struct igb_ring *ring = adapter->rx_ring[i];
1571 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572 	}
1573 }
1574 
1575 /**
1576  *  igb_power_up_link - Power up the phy/serdes link
1577  *  @adapter: address of board private structure
1578  **/
1579 void igb_power_up_link(struct igb_adapter *adapter)
1580 {
1581 	igb_reset_phy(&adapter->hw);
1582 
1583 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584 		igb_power_up_phy_copper(&adapter->hw);
1585 	else
1586 		igb_power_up_serdes_link_82575(&adapter->hw);
1587 }
1588 
1589 /**
1590  *  igb_power_down_link - Power down the phy/serdes link
1591  *  @adapter: address of board private structure
1592  */
1593 static void igb_power_down_link(struct igb_adapter *adapter)
1594 {
1595 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596 		igb_power_down_phy_copper_82575(&adapter->hw);
1597 	else
1598 		igb_shutdown_serdes_link_82575(&adapter->hw);
1599 }
1600 
1601 /**
1602  *  igb_up - Open the interface and prepare it to handle traffic
1603  *  @adapter: board private structure
1604  **/
1605 int igb_up(struct igb_adapter *adapter)
1606 {
1607 	struct e1000_hw *hw = &adapter->hw;
1608 	int i;
1609 
1610 	/* hardware has been reset, we need to reload some things */
1611 	igb_configure(adapter);
1612 
1613 	clear_bit(__IGB_DOWN, &adapter->state);
1614 
1615 	for (i = 0; i < adapter->num_q_vectors; i++)
1616 		napi_enable(&(adapter->q_vector[i]->napi));
1617 
1618 	if (adapter->msix_entries)
1619 		igb_configure_msix(adapter);
1620 	else
1621 		igb_assign_vector(adapter->q_vector[0], 0);
1622 
1623 	/* Clear any pending interrupts. */
1624 	rd32(E1000_ICR);
1625 	igb_irq_enable(adapter);
1626 
1627 	/* notify VFs that reset has been completed */
1628 	if (adapter->vfs_allocated_count) {
1629 		u32 reg_data = rd32(E1000_CTRL_EXT);
1630 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1631 		wr32(E1000_CTRL_EXT, reg_data);
1632 	}
1633 
1634 	netif_tx_start_all_queues(adapter->netdev);
1635 
1636 	/* start the watchdog. */
1637 	hw->mac.get_link_status = 1;
1638 	schedule_work(&adapter->watchdog_task);
1639 
1640 	return 0;
1641 }
1642 
1643 void igb_down(struct igb_adapter *adapter)
1644 {
1645 	struct net_device *netdev = adapter->netdev;
1646 	struct e1000_hw *hw = &adapter->hw;
1647 	u32 tctl, rctl;
1648 	int i;
1649 
1650 	/* signal that we're down so the interrupt handler does not
1651 	 * reschedule our watchdog timer
1652 	 */
1653 	set_bit(__IGB_DOWN, &adapter->state);
1654 
1655 	/* disable receives in the hardware */
1656 	rctl = rd32(E1000_RCTL);
1657 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658 	/* flush and sleep below */
1659 
1660 	netif_tx_stop_all_queues(netdev);
1661 
1662 	/* disable transmits in the hardware */
1663 	tctl = rd32(E1000_TCTL);
1664 	tctl &= ~E1000_TCTL_EN;
1665 	wr32(E1000_TCTL, tctl);
1666 	/* flush both disables and wait for them to finish */
1667 	wrfl();
1668 	msleep(10);
1669 
1670 	igb_irq_disable(adapter);
1671 
1672 	for (i = 0; i < adapter->num_q_vectors; i++) {
1673 		napi_synchronize(&(adapter->q_vector[i]->napi));
1674 		napi_disable(&(adapter->q_vector[i]->napi));
1675 	}
1676 
1677 
1678 	del_timer_sync(&adapter->watchdog_timer);
1679 	del_timer_sync(&adapter->phy_info_timer);
1680 
1681 	netif_carrier_off(netdev);
1682 
1683 	/* record the stats before reset*/
1684 	spin_lock(&adapter->stats64_lock);
1685 	igb_update_stats(adapter, &adapter->stats64);
1686 	spin_unlock(&adapter->stats64_lock);
1687 
1688 	adapter->link_speed = 0;
1689 	adapter->link_duplex = 0;
1690 
1691 	if (!pci_channel_offline(adapter->pdev))
1692 		igb_reset(adapter);
1693 	igb_clean_all_tx_rings(adapter);
1694 	igb_clean_all_rx_rings(adapter);
1695 #ifdef CONFIG_IGB_DCA
1696 
1697 	/* since we reset the hardware DCA settings were cleared */
1698 	igb_setup_dca(adapter);
1699 #endif
1700 }
1701 
1702 void igb_reinit_locked(struct igb_adapter *adapter)
1703 {
1704 	WARN_ON(in_interrupt());
1705 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1706 		msleep(1);
1707 	igb_down(adapter);
1708 	igb_up(adapter);
1709 	clear_bit(__IGB_RESETTING, &adapter->state);
1710 }
1711 
1712 void igb_reset(struct igb_adapter *adapter)
1713 {
1714 	struct pci_dev *pdev = adapter->pdev;
1715 	struct e1000_hw *hw = &adapter->hw;
1716 	struct e1000_mac_info *mac = &hw->mac;
1717 	struct e1000_fc_info *fc = &hw->fc;
1718 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1719 
1720 	/* Repartition Pba for greater than 9k mtu
1721 	 * To take effect CTRL.RST is required.
1722 	 */
1723 	switch (mac->type) {
1724 	case e1000_i350:
1725 	case e1000_i354:
1726 	case e1000_82580:
1727 		pba = rd32(E1000_RXPBS);
1728 		pba = igb_rxpbs_adjust_82580(pba);
1729 		break;
1730 	case e1000_82576:
1731 		pba = rd32(E1000_RXPBS);
1732 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1733 		break;
1734 	case e1000_82575:
1735 	case e1000_i210:
1736 	case e1000_i211:
1737 	default:
1738 		pba = E1000_PBA_34K;
1739 		break;
1740 	}
1741 
1742 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1743 	    (mac->type < e1000_82576)) {
1744 		/* adjust PBA for jumbo frames */
1745 		wr32(E1000_PBA, pba);
1746 
1747 		/* To maintain wire speed transmits, the Tx FIFO should be
1748 		 * large enough to accommodate two full transmit packets,
1749 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1750 		 * the Rx FIFO should be large enough to accommodate at least
1751 		 * one full receive packet and is similarly rounded up and
1752 		 * expressed in KB.
1753 		 */
1754 		pba = rd32(E1000_PBA);
1755 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1756 		tx_space = pba >> 16;
1757 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1758 		pba &= 0xffff;
1759 		/* the Tx fifo also stores 16 bytes of information about the Tx
1760 		 * but don't include ethernet FCS because hardware appends it
1761 		 */
1762 		min_tx_space = (adapter->max_frame_size +
1763 				sizeof(union e1000_adv_tx_desc) -
1764 				ETH_FCS_LEN) * 2;
1765 		min_tx_space = ALIGN(min_tx_space, 1024);
1766 		min_tx_space >>= 10;
1767 		/* software strips receive CRC, so leave room for it */
1768 		min_rx_space = adapter->max_frame_size;
1769 		min_rx_space = ALIGN(min_rx_space, 1024);
1770 		min_rx_space >>= 10;
1771 
1772 		/* If current Tx allocation is less than the min Tx FIFO size,
1773 		 * and the min Tx FIFO size is less than the current Rx FIFO
1774 		 * allocation, take space away from current Rx allocation
1775 		 */
1776 		if (tx_space < min_tx_space &&
1777 		    ((min_tx_space - tx_space) < pba)) {
1778 			pba = pba - (min_tx_space - tx_space);
1779 
1780 			/* if short on Rx space, Rx wins and must trump Tx
1781 			 * adjustment
1782 			 */
1783 			if (pba < min_rx_space)
1784 				pba = min_rx_space;
1785 		}
1786 		wr32(E1000_PBA, pba);
1787 	}
1788 
1789 	/* flow control settings */
1790 	/* The high water mark must be low enough to fit one full frame
1791 	 * (or the size used for early receive) above it in the Rx FIFO.
1792 	 * Set it to the lower of:
1793 	 * - 90% of the Rx FIFO size, or
1794 	 * - the full Rx FIFO size minus one full frame
1795 	 */
1796 	hwm = min(((pba << 10) * 9 / 10),
1797 			((pba << 10) - 2 * adapter->max_frame_size));
1798 
1799 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1800 	fc->low_water = fc->high_water - 16;
1801 	fc->pause_time = 0xFFFF;
1802 	fc->send_xon = 1;
1803 	fc->current_mode = fc->requested_mode;
1804 
1805 	/* disable receive for all VFs and wait one second */
1806 	if (adapter->vfs_allocated_count) {
1807 		int i;
1808 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1809 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1810 
1811 		/* ping all the active vfs to let them know we are going down */
1812 		igb_ping_all_vfs(adapter);
1813 
1814 		/* disable transmits and receives */
1815 		wr32(E1000_VFRE, 0);
1816 		wr32(E1000_VFTE, 0);
1817 	}
1818 
1819 	/* Allow time for pending master requests to run */
1820 	hw->mac.ops.reset_hw(hw);
1821 	wr32(E1000_WUC, 0);
1822 
1823 	if (hw->mac.ops.init_hw(hw))
1824 		dev_err(&pdev->dev, "Hardware Error\n");
1825 
1826 	/* Flow control settings reset on hardware reset, so guarantee flow
1827 	 * control is off when forcing speed.
1828 	 */
1829 	if (!hw->mac.autoneg)
1830 		igb_force_mac_fc(hw);
1831 
1832 	igb_init_dmac(adapter, pba);
1833 #ifdef CONFIG_IGB_HWMON
1834 	/* Re-initialize the thermal sensor on i350 devices. */
1835 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1836 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1837 			/* If present, re-initialize the external thermal sensor
1838 			 * interface.
1839 			 */
1840 			if (adapter->ets)
1841 				mac->ops.init_thermal_sensor_thresh(hw);
1842 		}
1843 	}
1844 #endif
1845 	if (!netif_running(adapter->netdev))
1846 		igb_power_down_link(adapter);
1847 
1848 	igb_update_mng_vlan(adapter);
1849 
1850 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1851 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1852 
1853 	/* Re-enable PTP, where applicable. */
1854 	igb_ptp_reset(adapter);
1855 
1856 	igb_get_phy_info(hw);
1857 }
1858 
1859 static netdev_features_t igb_fix_features(struct net_device *netdev,
1860 	netdev_features_t features)
1861 {
1862 	/* Since there is no support for separate Rx/Tx vlan accel
1863 	 * enable/disable make sure Tx flag is always in same state as Rx.
1864 	 */
1865 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1866 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1867 	else
1868 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1869 
1870 	return features;
1871 }
1872 
1873 static int igb_set_features(struct net_device *netdev,
1874 	netdev_features_t features)
1875 {
1876 	netdev_features_t changed = netdev->features ^ features;
1877 	struct igb_adapter *adapter = netdev_priv(netdev);
1878 
1879 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1880 		igb_vlan_mode(netdev, features);
1881 
1882 	if (!(changed & NETIF_F_RXALL))
1883 		return 0;
1884 
1885 	netdev->features = features;
1886 
1887 	if (netif_running(netdev))
1888 		igb_reinit_locked(adapter);
1889 	else
1890 		igb_reset(adapter);
1891 
1892 	return 0;
1893 }
1894 
1895 static const struct net_device_ops igb_netdev_ops = {
1896 	.ndo_open		= igb_open,
1897 	.ndo_stop		= igb_close,
1898 	.ndo_start_xmit		= igb_xmit_frame,
1899 	.ndo_get_stats64	= igb_get_stats64,
1900 	.ndo_set_rx_mode	= igb_set_rx_mode,
1901 	.ndo_set_mac_address	= igb_set_mac,
1902 	.ndo_change_mtu		= igb_change_mtu,
1903 	.ndo_do_ioctl		= igb_ioctl,
1904 	.ndo_tx_timeout		= igb_tx_timeout,
1905 	.ndo_validate_addr	= eth_validate_addr,
1906 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1907 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1908 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1909 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1910 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1911 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1912 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1913 #ifdef CONFIG_NET_POLL_CONTROLLER
1914 	.ndo_poll_controller	= igb_netpoll,
1915 #endif
1916 	.ndo_fix_features	= igb_fix_features,
1917 	.ndo_set_features	= igb_set_features,
1918 };
1919 
1920 /**
1921  * igb_set_fw_version - Configure version string for ethtool
1922  * @adapter: adapter struct
1923  **/
1924 void igb_set_fw_version(struct igb_adapter *adapter)
1925 {
1926 	struct e1000_hw *hw = &adapter->hw;
1927 	struct e1000_fw_version fw;
1928 
1929 	igb_get_fw_version(hw, &fw);
1930 
1931 	switch (hw->mac.type) {
1932 	case e1000_i211:
1933 		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1934 			 "%2d.%2d-%d",
1935 			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1936 		break;
1937 
1938 	default:
1939 		/* if option is rom valid, display its version too */
1940 		if (fw.or_valid) {
1941 			snprintf(adapter->fw_version,
1942 				 sizeof(adapter->fw_version),
1943 				 "%d.%d, 0x%08x, %d.%d.%d",
1944 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1945 				 fw.or_major, fw.or_build, fw.or_patch);
1946 		/* no option rom */
1947 		} else {
1948 			snprintf(adapter->fw_version,
1949 				 sizeof(adapter->fw_version),
1950 				 "%d.%d, 0x%08x",
1951 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1952 		}
1953 		break;
1954 	}
1955 	return;
1956 }
1957 
1958 /**
1959  *  igb_init_i2c - Init I2C interface
1960  *  @adapter: pointer to adapter structure
1961  **/
1962 static s32 igb_init_i2c(struct igb_adapter *adapter)
1963 {
1964 	s32 status = E1000_SUCCESS;
1965 
1966 	/* I2C interface supported on i350 devices */
1967 	if (adapter->hw.mac.type != e1000_i350)
1968 		return E1000_SUCCESS;
1969 
1970 	/* Initialize the i2c bus which is controlled by the registers.
1971 	 * This bus will use the i2c_algo_bit structue that implements
1972 	 * the protocol through toggling of the 4 bits in the register.
1973 	 */
1974 	adapter->i2c_adap.owner = THIS_MODULE;
1975 	adapter->i2c_algo = igb_i2c_algo;
1976 	adapter->i2c_algo.data = adapter;
1977 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1978 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1979 	strlcpy(adapter->i2c_adap.name, "igb BB",
1980 		sizeof(adapter->i2c_adap.name));
1981 	status = i2c_bit_add_bus(&adapter->i2c_adap);
1982 	return status;
1983 }
1984 
1985 /**
1986  *  igb_probe - Device Initialization Routine
1987  *  @pdev: PCI device information struct
1988  *  @ent: entry in igb_pci_tbl
1989  *
1990  *  Returns 0 on success, negative on failure
1991  *
1992  *  igb_probe initializes an adapter identified by a pci_dev structure.
1993  *  The OS initialization, configuring of the adapter private structure,
1994  *  and a hardware reset occur.
1995  **/
1996 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1997 {
1998 	struct net_device *netdev;
1999 	struct igb_adapter *adapter;
2000 	struct e1000_hw *hw;
2001 	u16 eeprom_data = 0;
2002 	s32 ret_val;
2003 	static int global_quad_port_a; /* global quad port a indication */
2004 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2005 	unsigned long mmio_start, mmio_len;
2006 	int err, pci_using_dac;
2007 	u8 part_str[E1000_PBANUM_LENGTH];
2008 
2009 	/* Catch broken hardware that put the wrong VF device ID in
2010 	 * the PCIe SR-IOV capability.
2011 	 */
2012 	if (pdev->is_virtfn) {
2013 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2014 			pci_name(pdev), pdev->vendor, pdev->device);
2015 		return -EINVAL;
2016 	}
2017 
2018 	err = pci_enable_device_mem(pdev);
2019 	if (err)
2020 		return err;
2021 
2022 	pci_using_dac = 0;
2023 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2024 	if (!err) {
2025 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2026 		if (!err)
2027 			pci_using_dac = 1;
2028 	} else {
2029 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2030 		if (err) {
2031 			err = dma_set_coherent_mask(&pdev->dev,
2032 						    DMA_BIT_MASK(32));
2033 			if (err) {
2034 				dev_err(&pdev->dev,
2035 					"No usable DMA configuration, aborting\n");
2036 				goto err_dma;
2037 			}
2038 		}
2039 	}
2040 
2041 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2042 					   IORESOURCE_MEM),
2043 					   igb_driver_name);
2044 	if (err)
2045 		goto err_pci_reg;
2046 
2047 	pci_enable_pcie_error_reporting(pdev);
2048 
2049 	pci_set_master(pdev);
2050 	pci_save_state(pdev);
2051 
2052 	err = -ENOMEM;
2053 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2054 				   IGB_MAX_TX_QUEUES);
2055 	if (!netdev)
2056 		goto err_alloc_etherdev;
2057 
2058 	SET_NETDEV_DEV(netdev, &pdev->dev);
2059 
2060 	pci_set_drvdata(pdev, netdev);
2061 	adapter = netdev_priv(netdev);
2062 	adapter->netdev = netdev;
2063 	adapter->pdev = pdev;
2064 	hw = &adapter->hw;
2065 	hw->back = adapter;
2066 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2067 
2068 	mmio_start = pci_resource_start(pdev, 0);
2069 	mmio_len = pci_resource_len(pdev, 0);
2070 
2071 	err = -EIO;
2072 	hw->hw_addr = ioremap(mmio_start, mmio_len);
2073 	if (!hw->hw_addr)
2074 		goto err_ioremap;
2075 
2076 	netdev->netdev_ops = &igb_netdev_ops;
2077 	igb_set_ethtool_ops(netdev);
2078 	netdev->watchdog_timeo = 5 * HZ;
2079 
2080 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2081 
2082 	netdev->mem_start = mmio_start;
2083 	netdev->mem_end = mmio_start + mmio_len;
2084 
2085 	/* PCI config space info */
2086 	hw->vendor_id = pdev->vendor;
2087 	hw->device_id = pdev->device;
2088 	hw->revision_id = pdev->revision;
2089 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2090 	hw->subsystem_device_id = pdev->subsystem_device;
2091 
2092 	/* Copy the default MAC, PHY and NVM function pointers */
2093 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2094 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2095 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2096 	/* Initialize skew-specific constants */
2097 	err = ei->get_invariants(hw);
2098 	if (err)
2099 		goto err_sw_init;
2100 
2101 	/* setup the private structure */
2102 	err = igb_sw_init(adapter);
2103 	if (err)
2104 		goto err_sw_init;
2105 
2106 	igb_get_bus_info_pcie(hw);
2107 
2108 	hw->phy.autoneg_wait_to_complete = false;
2109 
2110 	/* Copper options */
2111 	if (hw->phy.media_type == e1000_media_type_copper) {
2112 		hw->phy.mdix = AUTO_ALL_MODES;
2113 		hw->phy.disable_polarity_correction = false;
2114 		hw->phy.ms_type = e1000_ms_hw_default;
2115 	}
2116 
2117 	if (igb_check_reset_block(hw))
2118 		dev_info(&pdev->dev,
2119 			"PHY reset is blocked due to SOL/IDER session.\n");
2120 
2121 	/* features is initialized to 0 in allocation, it might have bits
2122 	 * set by igb_sw_init so we should use an or instead of an
2123 	 * assignment.
2124 	 */
2125 	netdev->features |= NETIF_F_SG |
2126 			    NETIF_F_IP_CSUM |
2127 			    NETIF_F_IPV6_CSUM |
2128 			    NETIF_F_TSO |
2129 			    NETIF_F_TSO6 |
2130 			    NETIF_F_RXHASH |
2131 			    NETIF_F_RXCSUM |
2132 			    NETIF_F_HW_VLAN_CTAG_RX |
2133 			    NETIF_F_HW_VLAN_CTAG_TX;
2134 
2135 	/* copy netdev features into list of user selectable features */
2136 	netdev->hw_features |= netdev->features;
2137 	netdev->hw_features |= NETIF_F_RXALL;
2138 
2139 	/* set this bit last since it cannot be part of hw_features */
2140 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2141 
2142 	netdev->vlan_features |= NETIF_F_TSO |
2143 				 NETIF_F_TSO6 |
2144 				 NETIF_F_IP_CSUM |
2145 				 NETIF_F_IPV6_CSUM |
2146 				 NETIF_F_SG;
2147 
2148 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2149 
2150 	if (pci_using_dac) {
2151 		netdev->features |= NETIF_F_HIGHDMA;
2152 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2153 	}
2154 
2155 	if (hw->mac.type >= e1000_82576) {
2156 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2157 		netdev->features |= NETIF_F_SCTP_CSUM;
2158 	}
2159 
2160 	netdev->priv_flags |= IFF_UNICAST_FLT;
2161 
2162 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2163 
2164 	/* before reading the NVM, reset the controller to put the device in a
2165 	 * known good starting state
2166 	 */
2167 	hw->mac.ops.reset_hw(hw);
2168 
2169 	/* make sure the NVM is good , i211 parts have special NVM that
2170 	 * doesn't contain a checksum
2171 	 */
2172 	if (hw->mac.type != e1000_i211) {
2173 		if (hw->nvm.ops.validate(hw) < 0) {
2174 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2175 			err = -EIO;
2176 			goto err_eeprom;
2177 		}
2178 	}
2179 
2180 	/* copy the MAC address out of the NVM */
2181 	if (hw->mac.ops.read_mac_addr(hw))
2182 		dev_err(&pdev->dev, "NVM Read Error\n");
2183 
2184 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2185 
2186 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2187 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2188 		err = -EIO;
2189 		goto err_eeprom;
2190 	}
2191 
2192 	/* get firmware version for ethtool -i */
2193 	igb_set_fw_version(adapter);
2194 
2195 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2196 		    (unsigned long) adapter);
2197 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2198 		    (unsigned long) adapter);
2199 
2200 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2201 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2202 
2203 	/* Initialize link properties that are user-changeable */
2204 	adapter->fc_autoneg = true;
2205 	hw->mac.autoneg = true;
2206 	hw->phy.autoneg_advertised = 0x2f;
2207 
2208 	hw->fc.requested_mode = e1000_fc_default;
2209 	hw->fc.current_mode = e1000_fc_default;
2210 
2211 	igb_validate_mdi_setting(hw);
2212 
2213 	/* By default, support wake on port A */
2214 	if (hw->bus.func == 0)
2215 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2216 
2217 	/* Check the NVM for wake support on non-port A ports */
2218 	if (hw->mac.type >= e1000_82580)
2219 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2220 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2221 				 &eeprom_data);
2222 	else if (hw->bus.func == 1)
2223 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2224 
2225 	if (eeprom_data & IGB_EEPROM_APME)
2226 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2227 
2228 	/* now that we have the eeprom settings, apply the special cases where
2229 	 * the eeprom may be wrong or the board simply won't support wake on
2230 	 * lan on a particular port
2231 	 */
2232 	switch (pdev->device) {
2233 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2234 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2235 		break;
2236 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2237 	case E1000_DEV_ID_82576_FIBER:
2238 	case E1000_DEV_ID_82576_SERDES:
2239 		/* Wake events only supported on port A for dual fiber
2240 		 * regardless of eeprom setting
2241 		 */
2242 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2243 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2244 		break;
2245 	case E1000_DEV_ID_82576_QUAD_COPPER:
2246 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2247 		/* if quad port adapter, disable WoL on all but port A */
2248 		if (global_quad_port_a != 0)
2249 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250 		else
2251 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2252 		/* Reset for multiple quad port adapters */
2253 		if (++global_quad_port_a == 4)
2254 			global_quad_port_a = 0;
2255 		break;
2256 	default:
2257 		/* If the device can't wake, don't set software support */
2258 		if (!device_can_wakeup(&adapter->pdev->dev))
2259 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260 	}
2261 
2262 	/* initialize the wol settings based on the eeprom settings */
2263 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2264 		adapter->wol |= E1000_WUFC_MAG;
2265 
2266 	/* Some vendors want WoL disabled by default, but still supported */
2267 	if ((hw->mac.type == e1000_i350) &&
2268 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2269 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2270 		adapter->wol = 0;
2271 	}
2272 
2273 	device_set_wakeup_enable(&adapter->pdev->dev,
2274 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2275 
2276 	/* reset the hardware with the new settings */
2277 	igb_reset(adapter);
2278 
2279 	/* Init the I2C interface */
2280 	err = igb_init_i2c(adapter);
2281 	if (err) {
2282 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2283 		goto err_eeprom;
2284 	}
2285 
2286 	/* let the f/w know that the h/w is now under the control of the
2287 	 * driver. */
2288 	igb_get_hw_control(adapter);
2289 
2290 	strcpy(netdev->name, "eth%d");
2291 	err = register_netdev(netdev);
2292 	if (err)
2293 		goto err_register;
2294 
2295 	/* carrier off reporting is important to ethtool even BEFORE open */
2296 	netif_carrier_off(netdev);
2297 
2298 #ifdef CONFIG_IGB_DCA
2299 	if (dca_add_requester(&pdev->dev) == 0) {
2300 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2301 		dev_info(&pdev->dev, "DCA enabled\n");
2302 		igb_setup_dca(adapter);
2303 	}
2304 
2305 #endif
2306 #ifdef CONFIG_IGB_HWMON
2307 	/* Initialize the thermal sensor on i350 devices. */
2308 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2309 		u16 ets_word;
2310 
2311 		/* Read the NVM to determine if this i350 device supports an
2312 		 * external thermal sensor.
2313 		 */
2314 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2315 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2316 			adapter->ets = true;
2317 		else
2318 			adapter->ets = false;
2319 		if (igb_sysfs_init(adapter))
2320 			dev_err(&pdev->dev,
2321 				"failed to allocate sysfs resources\n");
2322 	} else {
2323 		adapter->ets = false;
2324 	}
2325 #endif
2326 	/* do hw tstamp init after resetting */
2327 	igb_ptp_init(adapter);
2328 
2329 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2330 	/* print bus type/speed/width info, not applicable to i354 */
2331 	if (hw->mac.type != e1000_i354) {
2332 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2333 			 netdev->name,
2334 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2335 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2336 			   "unknown"),
2337 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2338 			  "Width x4" :
2339 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2340 			  "Width x2" :
2341 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2342 			  "Width x1" : "unknown"), netdev->dev_addr);
2343 	}
2344 
2345 	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2346 	if (ret_val)
2347 		strcpy(part_str, "Unknown");
2348 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2349 	dev_info(&pdev->dev,
2350 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2351 		adapter->msix_entries ? "MSI-X" :
2352 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2353 		adapter->num_rx_queues, adapter->num_tx_queues);
2354 	switch (hw->mac.type) {
2355 	case e1000_i350:
2356 	case e1000_i210:
2357 	case e1000_i211:
2358 		igb_set_eee_i350(hw);
2359 		break;
2360 	case e1000_i354:
2361 		if (hw->phy.media_type == e1000_media_type_copper) {
2362 			if ((rd32(E1000_CTRL_EXT) &
2363 			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2364 				igb_set_eee_i354(hw);
2365 		}
2366 		break;
2367 	default:
2368 		break;
2369 	}
2370 
2371 	pm_runtime_put_noidle(&pdev->dev);
2372 	return 0;
2373 
2374 err_register:
2375 	igb_release_hw_control(adapter);
2376 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2377 err_eeprom:
2378 	if (!igb_check_reset_block(hw))
2379 		igb_reset_phy(hw);
2380 
2381 	if (hw->flash_address)
2382 		iounmap(hw->flash_address);
2383 err_sw_init:
2384 	igb_clear_interrupt_scheme(adapter);
2385 	iounmap(hw->hw_addr);
2386 err_ioremap:
2387 	free_netdev(netdev);
2388 err_alloc_etherdev:
2389 	pci_release_selected_regions(pdev,
2390 				     pci_select_bars(pdev, IORESOURCE_MEM));
2391 err_pci_reg:
2392 err_dma:
2393 	pci_disable_device(pdev);
2394 	return err;
2395 }
2396 
2397 #ifdef CONFIG_PCI_IOV
2398 static int  igb_disable_sriov(struct pci_dev *pdev)
2399 {
2400 	struct net_device *netdev = pci_get_drvdata(pdev);
2401 	struct igb_adapter *adapter = netdev_priv(netdev);
2402 	struct e1000_hw *hw = &adapter->hw;
2403 
2404 	/* reclaim resources allocated to VFs */
2405 	if (adapter->vf_data) {
2406 		/* disable iov and allow time for transactions to clear */
2407 		if (pci_vfs_assigned(pdev)) {
2408 			dev_warn(&pdev->dev,
2409 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2410 			return -EPERM;
2411 		} else {
2412 			pci_disable_sriov(pdev);
2413 			msleep(500);
2414 		}
2415 
2416 		kfree(adapter->vf_data);
2417 		adapter->vf_data = NULL;
2418 		adapter->vfs_allocated_count = 0;
2419 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2420 		wrfl();
2421 		msleep(100);
2422 		dev_info(&pdev->dev, "IOV Disabled\n");
2423 
2424 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2425 		adapter->flags |= IGB_FLAG_DMAC;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2432 {
2433 	struct net_device *netdev = pci_get_drvdata(pdev);
2434 	struct igb_adapter *adapter = netdev_priv(netdev);
2435 	int old_vfs = pci_num_vf(pdev);
2436 	int err = 0;
2437 	int i;
2438 
2439 	if (!num_vfs)
2440 		goto out;
2441 	else if (old_vfs && old_vfs == num_vfs)
2442 		goto out;
2443 	else if (old_vfs && old_vfs != num_vfs)
2444 		err = igb_disable_sriov(pdev);
2445 
2446 	if (err)
2447 		goto out;
2448 
2449 	if (num_vfs > 7) {
2450 		err = -EPERM;
2451 		goto out;
2452 	}
2453 
2454 	adapter->vfs_allocated_count = num_vfs;
2455 
2456 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2457 				sizeof(struct vf_data_storage), GFP_KERNEL);
2458 
2459 	/* if allocation failed then we do not support SR-IOV */
2460 	if (!adapter->vf_data) {
2461 		adapter->vfs_allocated_count = 0;
2462 		dev_err(&pdev->dev,
2463 			"Unable to allocate memory for VF Data Storage\n");
2464 		err = -ENOMEM;
2465 		goto out;
2466 	}
2467 
2468 	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2469 	if (err)
2470 		goto err_out;
2471 
2472 	dev_info(&pdev->dev, "%d VFs allocated\n",
2473 		 adapter->vfs_allocated_count);
2474 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2475 		igb_vf_configure(adapter, i);
2476 
2477 	/* DMA Coalescing is not supported in IOV mode. */
2478 	adapter->flags &= ~IGB_FLAG_DMAC;
2479 	goto out;
2480 
2481 err_out:
2482 	kfree(adapter->vf_data);
2483 	adapter->vf_data = NULL;
2484 	adapter->vfs_allocated_count = 0;
2485 out:
2486 	return err;
2487 }
2488 
2489 #endif
2490 /**
2491  *  igb_remove_i2c - Cleanup  I2C interface
2492  *  @adapter: pointer to adapter structure
2493  **/
2494 static void igb_remove_i2c(struct igb_adapter *adapter)
2495 {
2496 	/* free the adapter bus structure */
2497 	i2c_del_adapter(&adapter->i2c_adap);
2498 }
2499 
2500 /**
2501  *  igb_remove - Device Removal Routine
2502  *  @pdev: PCI device information struct
2503  *
2504  *  igb_remove is called by the PCI subsystem to alert the driver
2505  *  that it should release a PCI device.  The could be caused by a
2506  *  Hot-Plug event, or because the driver is going to be removed from
2507  *  memory.
2508  **/
2509 static void igb_remove(struct pci_dev *pdev)
2510 {
2511 	struct net_device *netdev = pci_get_drvdata(pdev);
2512 	struct igb_adapter *adapter = netdev_priv(netdev);
2513 	struct e1000_hw *hw = &adapter->hw;
2514 
2515 	pm_runtime_get_noresume(&pdev->dev);
2516 #ifdef CONFIG_IGB_HWMON
2517 	igb_sysfs_exit(adapter);
2518 #endif
2519 	igb_remove_i2c(adapter);
2520 	igb_ptp_stop(adapter);
2521 	/* The watchdog timer may be rescheduled, so explicitly
2522 	 * disable watchdog from being rescheduled.
2523 	 */
2524 	set_bit(__IGB_DOWN, &adapter->state);
2525 	del_timer_sync(&adapter->watchdog_timer);
2526 	del_timer_sync(&adapter->phy_info_timer);
2527 
2528 	cancel_work_sync(&adapter->reset_task);
2529 	cancel_work_sync(&adapter->watchdog_task);
2530 
2531 #ifdef CONFIG_IGB_DCA
2532 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2533 		dev_info(&pdev->dev, "DCA disabled\n");
2534 		dca_remove_requester(&pdev->dev);
2535 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2536 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2537 	}
2538 #endif
2539 
2540 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2541 	 * would have already happened in close and is redundant.
2542 	 */
2543 	igb_release_hw_control(adapter);
2544 
2545 	unregister_netdev(netdev);
2546 
2547 	igb_clear_interrupt_scheme(adapter);
2548 
2549 #ifdef CONFIG_PCI_IOV
2550 	igb_disable_sriov(pdev);
2551 #endif
2552 
2553 	iounmap(hw->hw_addr);
2554 	if (hw->flash_address)
2555 		iounmap(hw->flash_address);
2556 	pci_release_selected_regions(pdev,
2557 				     pci_select_bars(pdev, IORESOURCE_MEM));
2558 
2559 	kfree(adapter->shadow_vfta);
2560 	free_netdev(netdev);
2561 
2562 	pci_disable_pcie_error_reporting(pdev);
2563 
2564 	pci_disable_device(pdev);
2565 }
2566 
2567 /**
2568  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2569  *  @adapter: board private structure to initialize
2570  *
2571  *  This function initializes the vf specific data storage and then attempts to
2572  *  allocate the VFs.  The reason for ordering it this way is because it is much
2573  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2574  *  the memory for the VFs.
2575  **/
2576 static void igb_probe_vfs(struct igb_adapter *adapter)
2577 {
2578 #ifdef CONFIG_PCI_IOV
2579 	struct pci_dev *pdev = adapter->pdev;
2580 	struct e1000_hw *hw = &adapter->hw;
2581 
2582 	/* Virtualization features not supported on i210 family. */
2583 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2584 		return;
2585 
2586 	pci_sriov_set_totalvfs(pdev, 7);
2587 	igb_enable_sriov(pdev, max_vfs);
2588 
2589 #endif /* CONFIG_PCI_IOV */
2590 }
2591 
2592 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2593 {
2594 	struct e1000_hw *hw = &adapter->hw;
2595 	u32 max_rss_queues;
2596 
2597 	/* Determine the maximum number of RSS queues supported. */
2598 	switch (hw->mac.type) {
2599 	case e1000_i211:
2600 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2601 		break;
2602 	case e1000_82575:
2603 	case e1000_i210:
2604 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2605 		break;
2606 	case e1000_i350:
2607 		/* I350 cannot do RSS and SR-IOV at the same time */
2608 		if (!!adapter->vfs_allocated_count) {
2609 			max_rss_queues = 1;
2610 			break;
2611 		}
2612 		/* fall through */
2613 	case e1000_82576:
2614 		if (!!adapter->vfs_allocated_count) {
2615 			max_rss_queues = 2;
2616 			break;
2617 		}
2618 		/* fall through */
2619 	case e1000_82580:
2620 	case e1000_i354:
2621 	default:
2622 		max_rss_queues = IGB_MAX_RX_QUEUES;
2623 		break;
2624 	}
2625 
2626 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2627 
2628 	/* Determine if we need to pair queues. */
2629 	switch (hw->mac.type) {
2630 	case e1000_82575:
2631 	case e1000_i211:
2632 		/* Device supports enough interrupts without queue pairing. */
2633 		break;
2634 	case e1000_82576:
2635 		/* If VFs are going to be allocated with RSS queues then we
2636 		 * should pair the queues in order to conserve interrupts due
2637 		 * to limited supply.
2638 		 */
2639 		if ((adapter->rss_queues > 1) &&
2640 		    (adapter->vfs_allocated_count > 6))
2641 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2642 		/* fall through */
2643 	case e1000_82580:
2644 	case e1000_i350:
2645 	case e1000_i354:
2646 	case e1000_i210:
2647 	default:
2648 		/* If rss_queues > half of max_rss_queues, pair the queues in
2649 		 * order to conserve interrupts due to limited supply.
2650 		 */
2651 		if (adapter->rss_queues > (max_rss_queues / 2))
2652 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2653 		break;
2654 	}
2655 }
2656 
2657 /**
2658  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2659  *  @adapter: board private structure to initialize
2660  *
2661  *  igb_sw_init initializes the Adapter private data structure.
2662  *  Fields are initialized based on PCI device information and
2663  *  OS network device settings (MTU size).
2664  **/
2665 static int igb_sw_init(struct igb_adapter *adapter)
2666 {
2667 	struct e1000_hw *hw = &adapter->hw;
2668 	struct net_device *netdev = adapter->netdev;
2669 	struct pci_dev *pdev = adapter->pdev;
2670 
2671 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2672 
2673 	/* set default ring sizes */
2674 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2675 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2676 
2677 	/* set default ITR values */
2678 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2679 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2680 
2681 	/* set default work limits */
2682 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2683 
2684 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2685 				  VLAN_HLEN;
2686 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2687 
2688 	spin_lock_init(&adapter->stats64_lock);
2689 #ifdef CONFIG_PCI_IOV
2690 	switch (hw->mac.type) {
2691 	case e1000_82576:
2692 	case e1000_i350:
2693 		if (max_vfs > 7) {
2694 			dev_warn(&pdev->dev,
2695 				 "Maximum of 7 VFs per PF, using max\n");
2696 			max_vfs = adapter->vfs_allocated_count = 7;
2697 		} else
2698 			adapter->vfs_allocated_count = max_vfs;
2699 		if (adapter->vfs_allocated_count)
2700 			dev_warn(&pdev->dev,
2701 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2702 		break;
2703 	default:
2704 		break;
2705 	}
2706 #endif /* CONFIG_PCI_IOV */
2707 
2708 	igb_init_queue_configuration(adapter);
2709 
2710 	/* Setup and initialize a copy of the hw vlan table array */
2711 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2712 				       GFP_ATOMIC);
2713 
2714 	/* This call may decrease the number of queues */
2715 	if (igb_init_interrupt_scheme(adapter, true)) {
2716 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2717 		return -ENOMEM;
2718 	}
2719 
2720 	igb_probe_vfs(adapter);
2721 
2722 	/* Explicitly disable IRQ since the NIC can be in any state. */
2723 	igb_irq_disable(adapter);
2724 
2725 	if (hw->mac.type >= e1000_i350)
2726 		adapter->flags &= ~IGB_FLAG_DMAC;
2727 
2728 	set_bit(__IGB_DOWN, &adapter->state);
2729 	return 0;
2730 }
2731 
2732 /**
2733  *  igb_open - Called when a network interface is made active
2734  *  @netdev: network interface device structure
2735  *
2736  *  Returns 0 on success, negative value on failure
2737  *
2738  *  The open entry point is called when a network interface is made
2739  *  active by the system (IFF_UP).  At this point all resources needed
2740  *  for transmit and receive operations are allocated, the interrupt
2741  *  handler is registered with the OS, the watchdog timer is started,
2742  *  and the stack is notified that the interface is ready.
2743  **/
2744 static int __igb_open(struct net_device *netdev, bool resuming)
2745 {
2746 	struct igb_adapter *adapter = netdev_priv(netdev);
2747 	struct e1000_hw *hw = &adapter->hw;
2748 	struct pci_dev *pdev = adapter->pdev;
2749 	int err;
2750 	int i;
2751 
2752 	/* disallow open during test */
2753 	if (test_bit(__IGB_TESTING, &adapter->state)) {
2754 		WARN_ON(resuming);
2755 		return -EBUSY;
2756 	}
2757 
2758 	if (!resuming)
2759 		pm_runtime_get_sync(&pdev->dev);
2760 
2761 	netif_carrier_off(netdev);
2762 
2763 	/* allocate transmit descriptors */
2764 	err = igb_setup_all_tx_resources(adapter);
2765 	if (err)
2766 		goto err_setup_tx;
2767 
2768 	/* allocate receive descriptors */
2769 	err = igb_setup_all_rx_resources(adapter);
2770 	if (err)
2771 		goto err_setup_rx;
2772 
2773 	igb_power_up_link(adapter);
2774 
2775 	/* before we allocate an interrupt, we must be ready to handle it.
2776 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2777 	 * as soon as we call pci_request_irq, so we have to setup our
2778 	 * clean_rx handler before we do so.
2779 	 */
2780 	igb_configure(adapter);
2781 
2782 	err = igb_request_irq(adapter);
2783 	if (err)
2784 		goto err_req_irq;
2785 
2786 	/* Notify the stack of the actual queue counts. */
2787 	err = netif_set_real_num_tx_queues(adapter->netdev,
2788 					   adapter->num_tx_queues);
2789 	if (err)
2790 		goto err_set_queues;
2791 
2792 	err = netif_set_real_num_rx_queues(adapter->netdev,
2793 					   adapter->num_rx_queues);
2794 	if (err)
2795 		goto err_set_queues;
2796 
2797 	/* From here on the code is the same as igb_up() */
2798 	clear_bit(__IGB_DOWN, &adapter->state);
2799 
2800 	for (i = 0; i < adapter->num_q_vectors; i++)
2801 		napi_enable(&(adapter->q_vector[i]->napi));
2802 
2803 	/* Clear any pending interrupts. */
2804 	rd32(E1000_ICR);
2805 
2806 	igb_irq_enable(adapter);
2807 
2808 	/* notify VFs that reset has been completed */
2809 	if (adapter->vfs_allocated_count) {
2810 		u32 reg_data = rd32(E1000_CTRL_EXT);
2811 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2812 		wr32(E1000_CTRL_EXT, reg_data);
2813 	}
2814 
2815 	netif_tx_start_all_queues(netdev);
2816 
2817 	if (!resuming)
2818 		pm_runtime_put(&pdev->dev);
2819 
2820 	/* start the watchdog. */
2821 	hw->mac.get_link_status = 1;
2822 	schedule_work(&adapter->watchdog_task);
2823 
2824 	return 0;
2825 
2826 err_set_queues:
2827 	igb_free_irq(adapter);
2828 err_req_irq:
2829 	igb_release_hw_control(adapter);
2830 	igb_power_down_link(adapter);
2831 	igb_free_all_rx_resources(adapter);
2832 err_setup_rx:
2833 	igb_free_all_tx_resources(adapter);
2834 err_setup_tx:
2835 	igb_reset(adapter);
2836 	if (!resuming)
2837 		pm_runtime_put(&pdev->dev);
2838 
2839 	return err;
2840 }
2841 
2842 static int igb_open(struct net_device *netdev)
2843 {
2844 	return __igb_open(netdev, false);
2845 }
2846 
2847 /**
2848  *  igb_close - Disables a network interface
2849  *  @netdev: network interface device structure
2850  *
2851  *  Returns 0, this is not allowed to fail
2852  *
2853  *  The close entry point is called when an interface is de-activated
2854  *  by the OS.  The hardware is still under the driver's control, but
2855  *  needs to be disabled.  A global MAC reset is issued to stop the
2856  *  hardware, and all transmit and receive resources are freed.
2857  **/
2858 static int __igb_close(struct net_device *netdev, bool suspending)
2859 {
2860 	struct igb_adapter *adapter = netdev_priv(netdev);
2861 	struct pci_dev *pdev = adapter->pdev;
2862 
2863 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2864 
2865 	if (!suspending)
2866 		pm_runtime_get_sync(&pdev->dev);
2867 
2868 	igb_down(adapter);
2869 	igb_free_irq(adapter);
2870 
2871 	igb_free_all_tx_resources(adapter);
2872 	igb_free_all_rx_resources(adapter);
2873 
2874 	if (!suspending)
2875 		pm_runtime_put_sync(&pdev->dev);
2876 	return 0;
2877 }
2878 
2879 static int igb_close(struct net_device *netdev)
2880 {
2881 	return __igb_close(netdev, false);
2882 }
2883 
2884 /**
2885  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2886  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2887  *
2888  *  Return 0 on success, negative on failure
2889  **/
2890 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2891 {
2892 	struct device *dev = tx_ring->dev;
2893 	int size;
2894 
2895 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2896 
2897 	tx_ring->tx_buffer_info = vzalloc(size);
2898 	if (!tx_ring->tx_buffer_info)
2899 		goto err;
2900 
2901 	/* round up to nearest 4K */
2902 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2903 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2904 
2905 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2906 					   &tx_ring->dma, GFP_KERNEL);
2907 	if (!tx_ring->desc)
2908 		goto err;
2909 
2910 	tx_ring->next_to_use = 0;
2911 	tx_ring->next_to_clean = 0;
2912 
2913 	return 0;
2914 
2915 err:
2916 	vfree(tx_ring->tx_buffer_info);
2917 	tx_ring->tx_buffer_info = NULL;
2918 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2919 	return -ENOMEM;
2920 }
2921 
2922 /**
2923  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2924  *				 (Descriptors) for all queues
2925  *  @adapter: board private structure
2926  *
2927  *  Return 0 on success, negative on failure
2928  **/
2929 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2930 {
2931 	struct pci_dev *pdev = adapter->pdev;
2932 	int i, err = 0;
2933 
2934 	for (i = 0; i < adapter->num_tx_queues; i++) {
2935 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2936 		if (err) {
2937 			dev_err(&pdev->dev,
2938 				"Allocation for Tx Queue %u failed\n", i);
2939 			for (i--; i >= 0; i--)
2940 				igb_free_tx_resources(adapter->tx_ring[i]);
2941 			break;
2942 		}
2943 	}
2944 
2945 	return err;
2946 }
2947 
2948 /**
2949  *  igb_setup_tctl - configure the transmit control registers
2950  *  @adapter: Board private structure
2951  **/
2952 void igb_setup_tctl(struct igb_adapter *adapter)
2953 {
2954 	struct e1000_hw *hw = &adapter->hw;
2955 	u32 tctl;
2956 
2957 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2958 	wr32(E1000_TXDCTL(0), 0);
2959 
2960 	/* Program the Transmit Control Register */
2961 	tctl = rd32(E1000_TCTL);
2962 	tctl &= ~E1000_TCTL_CT;
2963 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965 
2966 	igb_config_collision_dist(hw);
2967 
2968 	/* Enable transmits */
2969 	tctl |= E1000_TCTL_EN;
2970 
2971 	wr32(E1000_TCTL, tctl);
2972 }
2973 
2974 /**
2975  *  igb_configure_tx_ring - Configure transmit ring after Reset
2976  *  @adapter: board private structure
2977  *  @ring: tx ring to configure
2978  *
2979  *  Configure a transmit ring after a reset.
2980  **/
2981 void igb_configure_tx_ring(struct igb_adapter *adapter,
2982                            struct igb_ring *ring)
2983 {
2984 	struct e1000_hw *hw = &adapter->hw;
2985 	u32 txdctl = 0;
2986 	u64 tdba = ring->dma;
2987 	int reg_idx = ring->reg_idx;
2988 
2989 	/* disable the queue */
2990 	wr32(E1000_TXDCTL(reg_idx), 0);
2991 	wrfl();
2992 	mdelay(10);
2993 
2994 	wr32(E1000_TDLEN(reg_idx),
2995 	     ring->count * sizeof(union e1000_adv_tx_desc));
2996 	wr32(E1000_TDBAL(reg_idx),
2997 	     tdba & 0x00000000ffffffffULL);
2998 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2999 
3000 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3001 	wr32(E1000_TDH(reg_idx), 0);
3002 	writel(0, ring->tail);
3003 
3004 	txdctl |= IGB_TX_PTHRESH;
3005 	txdctl |= IGB_TX_HTHRESH << 8;
3006 	txdctl |= IGB_TX_WTHRESH << 16;
3007 
3008 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3009 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3010 }
3011 
3012 /**
3013  *  igb_configure_tx - Configure transmit Unit after Reset
3014  *  @adapter: board private structure
3015  *
3016  *  Configure the Tx unit of the MAC after a reset.
3017  **/
3018 static void igb_configure_tx(struct igb_adapter *adapter)
3019 {
3020 	int i;
3021 
3022 	for (i = 0; i < adapter->num_tx_queues; i++)
3023 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3024 }
3025 
3026 /**
3027  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3028  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3029  *
3030  *  Returns 0 on success, negative on failure
3031  **/
3032 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3033 {
3034 	struct device *dev = rx_ring->dev;
3035 	int size;
3036 
3037 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3038 
3039 	rx_ring->rx_buffer_info = vzalloc(size);
3040 	if (!rx_ring->rx_buffer_info)
3041 		goto err;
3042 
3043 	/* Round up to nearest 4K */
3044 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3045 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3046 
3047 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3048 					   &rx_ring->dma, GFP_KERNEL);
3049 	if (!rx_ring->desc)
3050 		goto err;
3051 
3052 	rx_ring->next_to_alloc = 0;
3053 	rx_ring->next_to_clean = 0;
3054 	rx_ring->next_to_use = 0;
3055 
3056 	return 0;
3057 
3058 err:
3059 	vfree(rx_ring->rx_buffer_info);
3060 	rx_ring->rx_buffer_info = NULL;
3061 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3062 	return -ENOMEM;
3063 }
3064 
3065 /**
3066  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3067  *				 (Descriptors) for all queues
3068  *  @adapter: board private structure
3069  *
3070  *  Return 0 on success, negative on failure
3071  **/
3072 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3073 {
3074 	struct pci_dev *pdev = adapter->pdev;
3075 	int i, err = 0;
3076 
3077 	for (i = 0; i < adapter->num_rx_queues; i++) {
3078 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3079 		if (err) {
3080 			dev_err(&pdev->dev,
3081 				"Allocation for Rx Queue %u failed\n", i);
3082 			for (i--; i >= 0; i--)
3083 				igb_free_rx_resources(adapter->rx_ring[i]);
3084 			break;
3085 		}
3086 	}
3087 
3088 	return err;
3089 }
3090 
3091 /**
3092  *  igb_setup_mrqc - configure the multiple receive queue control registers
3093  *  @adapter: Board private structure
3094  **/
3095 static void igb_setup_mrqc(struct igb_adapter *adapter)
3096 {
3097 	struct e1000_hw *hw = &adapter->hw;
3098 	u32 mrqc, rxcsum;
3099 	u32 j, num_rx_queues, shift = 0;
3100 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3101 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3102 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3103 					0xFA01ACBE };
3104 
3105 	/* Fill out hash function seeds */
3106 	for (j = 0; j < 10; j++)
3107 		wr32(E1000_RSSRK(j), rsskey[j]);
3108 
3109 	num_rx_queues = adapter->rss_queues;
3110 
3111 	switch (hw->mac.type) {
3112 	case e1000_82575:
3113 		shift = 6;
3114 		break;
3115 	case e1000_82576:
3116 		/* 82576 supports 2 RSS queues for SR-IOV */
3117 		if (adapter->vfs_allocated_count) {
3118 			shift = 3;
3119 			num_rx_queues = 2;
3120 		}
3121 		break;
3122 	default:
3123 		break;
3124 	}
3125 
3126 	/* Populate the indirection table 4 entries at a time.  To do this
3127 	 * we are generating the results for n and n+2 and then interleaving
3128 	 * those with the results with n+1 and n+3.
3129 	 */
3130 	for (j = 0; j < 32; j++) {
3131 		/* first pass generates n and n+2 */
3132 		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3133 		u32 reta = (base & 0x07800780) >> (7 - shift);
3134 
3135 		/* second pass generates n+1 and n+3 */
3136 		base += 0x00010001 * num_rx_queues;
3137 		reta |= (base & 0x07800780) << (1 + shift);
3138 
3139 		wr32(E1000_RETA(j), reta);
3140 	}
3141 
3142 	/* Disable raw packet checksumming so that RSS hash is placed in
3143 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3144 	 * offloads as they are enabled by default
3145 	 */
3146 	rxcsum = rd32(E1000_RXCSUM);
3147 	rxcsum |= E1000_RXCSUM_PCSD;
3148 
3149 	if (adapter->hw.mac.type >= e1000_82576)
3150 		/* Enable Receive Checksum Offload for SCTP */
3151 		rxcsum |= E1000_RXCSUM_CRCOFL;
3152 
3153 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3154 	wr32(E1000_RXCSUM, rxcsum);
3155 
3156 	/* Generate RSS hash based on packet types, TCP/UDP
3157 	 * port numbers and/or IPv4/v6 src and dst addresses
3158 	 */
3159 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3160 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3161 	       E1000_MRQC_RSS_FIELD_IPV6 |
3162 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3163 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3164 
3165 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3166 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3167 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3168 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3169 
3170 	/* If VMDq is enabled then we set the appropriate mode for that, else
3171 	 * we default to RSS so that an RSS hash is calculated per packet even
3172 	 * if we are only using one queue
3173 	 */
3174 	if (adapter->vfs_allocated_count) {
3175 		if (hw->mac.type > e1000_82575) {
3176 			/* Set the default pool for the PF's first queue */
3177 			u32 vtctl = rd32(E1000_VT_CTL);
3178 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3179 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3180 			vtctl |= adapter->vfs_allocated_count <<
3181 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3182 			wr32(E1000_VT_CTL, vtctl);
3183 		}
3184 		if (adapter->rss_queues > 1)
3185 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3186 		else
3187 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3188 	} else {
3189 		if (hw->mac.type != e1000_i211)
3190 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3191 	}
3192 	igb_vmm_control(adapter);
3193 
3194 	wr32(E1000_MRQC, mrqc);
3195 }
3196 
3197 /**
3198  *  igb_setup_rctl - configure the receive control registers
3199  *  @adapter: Board private structure
3200  **/
3201 void igb_setup_rctl(struct igb_adapter *adapter)
3202 {
3203 	struct e1000_hw *hw = &adapter->hw;
3204 	u32 rctl;
3205 
3206 	rctl = rd32(E1000_RCTL);
3207 
3208 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3209 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3210 
3211 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3212 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213 
3214 	/* enable stripping of CRC. It's unlikely this will break BMC
3215 	 * redirection as it did with e1000. Newer features require
3216 	 * that the HW strips the CRC.
3217 	 */
3218 	rctl |= E1000_RCTL_SECRC;
3219 
3220 	/* disable store bad packets and clear size bits. */
3221 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3222 
3223 	/* enable LPE to prevent packets larger than max_frame_size */
3224 	rctl |= E1000_RCTL_LPE;
3225 
3226 	/* disable queue 0 to prevent tail write w/o re-config */
3227 	wr32(E1000_RXDCTL(0), 0);
3228 
3229 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3230 	 * queue drop for all VF and PF queues to prevent head of line blocking
3231 	 * if an un-trusted VF does not provide descriptors to hardware.
3232 	 */
3233 	if (adapter->vfs_allocated_count) {
3234 		/* set all queue drop enable bits */
3235 		wr32(E1000_QDE, ALL_QUEUES);
3236 	}
3237 
3238 	/* This is useful for sniffing bad packets. */
3239 	if (adapter->netdev->features & NETIF_F_RXALL) {
3240 		/* UPE and MPE will be handled by normal PROMISC logic
3241 		 * in e1000e_set_rx_mode
3242 		 */
3243 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3244 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3245 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3246 
3247 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3248 			  E1000_RCTL_DPF | /* Allow filtered pause */
3249 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3250 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3251 		 * and that breaks VLANs.
3252 		 */
3253 	}
3254 
3255 	wr32(E1000_RCTL, rctl);
3256 }
3257 
3258 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3259                                    int vfn)
3260 {
3261 	struct e1000_hw *hw = &adapter->hw;
3262 	u32 vmolr;
3263 
3264 	/* if it isn't the PF check to see if VFs are enabled and
3265 	 * increase the size to support vlan tags
3266 	 */
3267 	if (vfn < adapter->vfs_allocated_count &&
3268 	    adapter->vf_data[vfn].vlans_enabled)
3269 		size += VLAN_TAG_SIZE;
3270 
3271 	vmolr = rd32(E1000_VMOLR(vfn));
3272 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3273 	vmolr |= size | E1000_VMOLR_LPE;
3274 	wr32(E1000_VMOLR(vfn), vmolr);
3275 
3276 	return 0;
3277 }
3278 
3279 /**
3280  *  igb_rlpml_set - set maximum receive packet size
3281  *  @adapter: board private structure
3282  *
3283  *  Configure maximum receivable packet size.
3284  **/
3285 static void igb_rlpml_set(struct igb_adapter *adapter)
3286 {
3287 	u32 max_frame_size = adapter->max_frame_size;
3288 	struct e1000_hw *hw = &adapter->hw;
3289 	u16 pf_id = adapter->vfs_allocated_count;
3290 
3291 	if (pf_id) {
3292 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3293 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3294 		 * to our max jumbo frame size, in case we need to enable
3295 		 * jumbo frames on one of the rings later.
3296 		 * This will not pass over-length frames into the default
3297 		 * queue because it's gated by the VMOLR.RLPML.
3298 		 */
3299 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3300 	}
3301 
3302 	wr32(E1000_RLPML, max_frame_size);
3303 }
3304 
3305 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3306 				 int vfn, bool aupe)
3307 {
3308 	struct e1000_hw *hw = &adapter->hw;
3309 	u32 vmolr;
3310 
3311 	/* This register exists only on 82576 and newer so if we are older then
3312 	 * we should exit and do nothing
3313 	 */
3314 	if (hw->mac.type < e1000_82576)
3315 		return;
3316 
3317 	vmolr = rd32(E1000_VMOLR(vfn));
3318 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3319 	if (aupe)
3320 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3321 	else
3322 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3323 
3324 	/* clear all bits that might not be set */
3325 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3326 
3327 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3328 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3329 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3330 	 * multicast packets
3331 	 */
3332 	if (vfn <= adapter->vfs_allocated_count)
3333 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3334 
3335 	wr32(E1000_VMOLR(vfn), vmolr);
3336 }
3337 
3338 /**
3339  *  igb_configure_rx_ring - Configure a receive ring after Reset
3340  *  @adapter: board private structure
3341  *  @ring: receive ring to be configured
3342  *
3343  *  Configure the Rx unit of the MAC after a reset.
3344  **/
3345 void igb_configure_rx_ring(struct igb_adapter *adapter,
3346 			   struct igb_ring *ring)
3347 {
3348 	struct e1000_hw *hw = &adapter->hw;
3349 	u64 rdba = ring->dma;
3350 	int reg_idx = ring->reg_idx;
3351 	u32 srrctl = 0, rxdctl = 0;
3352 
3353 	/* disable the queue */
3354 	wr32(E1000_RXDCTL(reg_idx), 0);
3355 
3356 	/* Set DMA base address registers */
3357 	wr32(E1000_RDBAL(reg_idx),
3358 	     rdba & 0x00000000ffffffffULL);
3359 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3360 	wr32(E1000_RDLEN(reg_idx),
3361 	     ring->count * sizeof(union e1000_adv_rx_desc));
3362 
3363 	/* initialize head and tail */
3364 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3365 	wr32(E1000_RDH(reg_idx), 0);
3366 	writel(0, ring->tail);
3367 
3368 	/* set descriptor configuration */
3369 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3370 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3371 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3372 	if (hw->mac.type >= e1000_82580)
3373 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3374 	/* Only set Drop Enable if we are supporting multiple queues */
3375 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3376 		srrctl |= E1000_SRRCTL_DROP_EN;
3377 
3378 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3379 
3380 	/* set filtering for VMDQ pools */
3381 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3382 
3383 	rxdctl |= IGB_RX_PTHRESH;
3384 	rxdctl |= IGB_RX_HTHRESH << 8;
3385 	rxdctl |= IGB_RX_WTHRESH << 16;
3386 
3387 	/* enable receive descriptor fetching */
3388 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3389 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3390 }
3391 
3392 /**
3393  *  igb_configure_rx - Configure receive Unit after Reset
3394  *  @adapter: board private structure
3395  *
3396  *  Configure the Rx unit of the MAC after a reset.
3397  **/
3398 static void igb_configure_rx(struct igb_adapter *adapter)
3399 {
3400 	int i;
3401 
3402 	/* set UTA to appropriate mode */
3403 	igb_set_uta(adapter);
3404 
3405 	/* set the correct pool for the PF default MAC address in entry 0 */
3406 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3407 			 adapter->vfs_allocated_count);
3408 
3409 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3410 	 * the Base and Length of the Rx Descriptor Ring
3411 	 */
3412 	for (i = 0; i < adapter->num_rx_queues; i++)
3413 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3414 }
3415 
3416 /**
3417  *  igb_free_tx_resources - Free Tx Resources per Queue
3418  *  @tx_ring: Tx descriptor ring for a specific queue
3419  *
3420  *  Free all transmit software resources
3421  **/
3422 void igb_free_tx_resources(struct igb_ring *tx_ring)
3423 {
3424 	igb_clean_tx_ring(tx_ring);
3425 
3426 	vfree(tx_ring->tx_buffer_info);
3427 	tx_ring->tx_buffer_info = NULL;
3428 
3429 	/* if not set, then don't free */
3430 	if (!tx_ring->desc)
3431 		return;
3432 
3433 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3434 			  tx_ring->desc, tx_ring->dma);
3435 
3436 	tx_ring->desc = NULL;
3437 }
3438 
3439 /**
3440  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3441  *  @adapter: board private structure
3442  *
3443  *  Free all transmit software resources
3444  **/
3445 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3446 {
3447 	int i;
3448 
3449 	for (i = 0; i < adapter->num_tx_queues; i++)
3450 		igb_free_tx_resources(adapter->tx_ring[i]);
3451 }
3452 
3453 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3454 				    struct igb_tx_buffer *tx_buffer)
3455 {
3456 	if (tx_buffer->skb) {
3457 		dev_kfree_skb_any(tx_buffer->skb);
3458 		if (dma_unmap_len(tx_buffer, len))
3459 			dma_unmap_single(ring->dev,
3460 					 dma_unmap_addr(tx_buffer, dma),
3461 					 dma_unmap_len(tx_buffer, len),
3462 					 DMA_TO_DEVICE);
3463 	} else if (dma_unmap_len(tx_buffer, len)) {
3464 		dma_unmap_page(ring->dev,
3465 			       dma_unmap_addr(tx_buffer, dma),
3466 			       dma_unmap_len(tx_buffer, len),
3467 			       DMA_TO_DEVICE);
3468 	}
3469 	tx_buffer->next_to_watch = NULL;
3470 	tx_buffer->skb = NULL;
3471 	dma_unmap_len_set(tx_buffer, len, 0);
3472 	/* buffer_info must be completely set up in the transmit path */
3473 }
3474 
3475 /**
3476  *  igb_clean_tx_ring - Free Tx Buffers
3477  *  @tx_ring: ring to be cleaned
3478  **/
3479 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3480 {
3481 	struct igb_tx_buffer *buffer_info;
3482 	unsigned long size;
3483 	u16 i;
3484 
3485 	if (!tx_ring->tx_buffer_info)
3486 		return;
3487 	/* Free all the Tx ring sk_buffs */
3488 
3489 	for (i = 0; i < tx_ring->count; i++) {
3490 		buffer_info = &tx_ring->tx_buffer_info[i];
3491 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3492 	}
3493 
3494 	netdev_tx_reset_queue(txring_txq(tx_ring));
3495 
3496 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3497 	memset(tx_ring->tx_buffer_info, 0, size);
3498 
3499 	/* Zero out the descriptor ring */
3500 	memset(tx_ring->desc, 0, tx_ring->size);
3501 
3502 	tx_ring->next_to_use = 0;
3503 	tx_ring->next_to_clean = 0;
3504 }
3505 
3506 /**
3507  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3508  *  @adapter: board private structure
3509  **/
3510 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3511 {
3512 	int i;
3513 
3514 	for (i = 0; i < adapter->num_tx_queues; i++)
3515 		igb_clean_tx_ring(adapter->tx_ring[i]);
3516 }
3517 
3518 /**
3519  *  igb_free_rx_resources - Free Rx Resources
3520  *  @rx_ring: ring to clean the resources from
3521  *
3522  *  Free all receive software resources
3523  **/
3524 void igb_free_rx_resources(struct igb_ring *rx_ring)
3525 {
3526 	igb_clean_rx_ring(rx_ring);
3527 
3528 	vfree(rx_ring->rx_buffer_info);
3529 	rx_ring->rx_buffer_info = NULL;
3530 
3531 	/* if not set, then don't free */
3532 	if (!rx_ring->desc)
3533 		return;
3534 
3535 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3536 			  rx_ring->desc, rx_ring->dma);
3537 
3538 	rx_ring->desc = NULL;
3539 }
3540 
3541 /**
3542  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3543  *  @adapter: board private structure
3544  *
3545  *  Free all receive software resources
3546  **/
3547 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3548 {
3549 	int i;
3550 
3551 	for (i = 0; i < adapter->num_rx_queues; i++)
3552 		igb_free_rx_resources(adapter->rx_ring[i]);
3553 }
3554 
3555 /**
3556  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3557  *  @rx_ring: ring to free buffers from
3558  **/
3559 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3560 {
3561 	unsigned long size;
3562 	u16 i;
3563 
3564 	if (rx_ring->skb)
3565 		dev_kfree_skb(rx_ring->skb);
3566 	rx_ring->skb = NULL;
3567 
3568 	if (!rx_ring->rx_buffer_info)
3569 		return;
3570 
3571 	/* Free all the Rx ring sk_buffs */
3572 	for (i = 0; i < rx_ring->count; i++) {
3573 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3574 
3575 		if (!buffer_info->page)
3576 			continue;
3577 
3578 		dma_unmap_page(rx_ring->dev,
3579 			       buffer_info->dma,
3580 			       PAGE_SIZE,
3581 			       DMA_FROM_DEVICE);
3582 		__free_page(buffer_info->page);
3583 
3584 		buffer_info->page = NULL;
3585 	}
3586 
3587 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3588 	memset(rx_ring->rx_buffer_info, 0, size);
3589 
3590 	/* Zero out the descriptor ring */
3591 	memset(rx_ring->desc, 0, rx_ring->size);
3592 
3593 	rx_ring->next_to_alloc = 0;
3594 	rx_ring->next_to_clean = 0;
3595 	rx_ring->next_to_use = 0;
3596 }
3597 
3598 /**
3599  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3600  *  @adapter: board private structure
3601  **/
3602 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3603 {
3604 	int i;
3605 
3606 	for (i = 0; i < adapter->num_rx_queues; i++)
3607 		igb_clean_rx_ring(adapter->rx_ring[i]);
3608 }
3609 
3610 /**
3611  *  igb_set_mac - Change the Ethernet Address of the NIC
3612  *  @netdev: network interface device structure
3613  *  @p: pointer to an address structure
3614  *
3615  *  Returns 0 on success, negative on failure
3616  **/
3617 static int igb_set_mac(struct net_device *netdev, void *p)
3618 {
3619 	struct igb_adapter *adapter = netdev_priv(netdev);
3620 	struct e1000_hw *hw = &adapter->hw;
3621 	struct sockaddr *addr = p;
3622 
3623 	if (!is_valid_ether_addr(addr->sa_data))
3624 		return -EADDRNOTAVAIL;
3625 
3626 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3627 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3628 
3629 	/* set the correct pool for the new PF MAC address in entry 0 */
3630 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3631 			 adapter->vfs_allocated_count);
3632 
3633 	return 0;
3634 }
3635 
3636 /**
3637  *  igb_write_mc_addr_list - write multicast addresses to MTA
3638  *  @netdev: network interface device structure
3639  *
3640  *  Writes multicast address list to the MTA hash table.
3641  *  Returns: -ENOMEM on failure
3642  *           0 on no addresses written
3643  *           X on writing X addresses to MTA
3644  **/
3645 static int igb_write_mc_addr_list(struct net_device *netdev)
3646 {
3647 	struct igb_adapter *adapter = netdev_priv(netdev);
3648 	struct e1000_hw *hw = &adapter->hw;
3649 	struct netdev_hw_addr *ha;
3650 	u8  *mta_list;
3651 	int i;
3652 
3653 	if (netdev_mc_empty(netdev)) {
3654 		/* nothing to program, so clear mc list */
3655 		igb_update_mc_addr_list(hw, NULL, 0);
3656 		igb_restore_vf_multicasts(adapter);
3657 		return 0;
3658 	}
3659 
3660 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3661 	if (!mta_list)
3662 		return -ENOMEM;
3663 
3664 	/* The shared function expects a packed array of only addresses. */
3665 	i = 0;
3666 	netdev_for_each_mc_addr(ha, netdev)
3667 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3668 
3669 	igb_update_mc_addr_list(hw, mta_list, i);
3670 	kfree(mta_list);
3671 
3672 	return netdev_mc_count(netdev);
3673 }
3674 
3675 /**
3676  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3677  *  @netdev: network interface device structure
3678  *
3679  *  Writes unicast address list to the RAR table.
3680  *  Returns: -ENOMEM on failure/insufficient address space
3681  *           0 on no addresses written
3682  *           X on writing X addresses to the RAR table
3683  **/
3684 static int igb_write_uc_addr_list(struct net_device *netdev)
3685 {
3686 	struct igb_adapter *adapter = netdev_priv(netdev);
3687 	struct e1000_hw *hw = &adapter->hw;
3688 	unsigned int vfn = adapter->vfs_allocated_count;
3689 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3690 	int count = 0;
3691 
3692 	/* return ENOMEM indicating insufficient memory for addresses */
3693 	if (netdev_uc_count(netdev) > rar_entries)
3694 		return -ENOMEM;
3695 
3696 	if (!netdev_uc_empty(netdev) && rar_entries) {
3697 		struct netdev_hw_addr *ha;
3698 
3699 		netdev_for_each_uc_addr(ha, netdev) {
3700 			if (!rar_entries)
3701 				break;
3702 			igb_rar_set_qsel(adapter, ha->addr,
3703 					 rar_entries--,
3704 					 vfn);
3705 			count++;
3706 		}
3707 	}
3708 	/* write the addresses in reverse order to avoid write combining */
3709 	for (; rar_entries > 0 ; rar_entries--) {
3710 		wr32(E1000_RAH(rar_entries), 0);
3711 		wr32(E1000_RAL(rar_entries), 0);
3712 	}
3713 	wrfl();
3714 
3715 	return count;
3716 }
3717 
3718 /**
3719  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3720  *  @netdev: network interface device structure
3721  *
3722  *  The set_rx_mode entry point is called whenever the unicast or multicast
3723  *  address lists or the network interface flags are updated.  This routine is
3724  *  responsible for configuring the hardware for proper unicast, multicast,
3725  *  promiscuous mode, and all-multi behavior.
3726  **/
3727 static void igb_set_rx_mode(struct net_device *netdev)
3728 {
3729 	struct igb_adapter *adapter = netdev_priv(netdev);
3730 	struct e1000_hw *hw = &adapter->hw;
3731 	unsigned int vfn = adapter->vfs_allocated_count;
3732 	u32 rctl, vmolr = 0;
3733 	int count;
3734 
3735 	/* Check for Promiscuous and All Multicast modes */
3736 	rctl = rd32(E1000_RCTL);
3737 
3738 	/* clear the effected bits */
3739 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3740 
3741 	if (netdev->flags & IFF_PROMISC) {
3742 		/* retain VLAN HW filtering if in VT mode */
3743 		if (adapter->vfs_allocated_count)
3744 			rctl |= E1000_RCTL_VFE;
3745 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3746 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3747 	} else {
3748 		if (netdev->flags & IFF_ALLMULTI) {
3749 			rctl |= E1000_RCTL_MPE;
3750 			vmolr |= E1000_VMOLR_MPME;
3751 		} else {
3752 			/* Write addresses to the MTA, if the attempt fails
3753 			 * then we should just turn on promiscuous mode so
3754 			 * that we can at least receive multicast traffic
3755 			 */
3756 			count = igb_write_mc_addr_list(netdev);
3757 			if (count < 0) {
3758 				rctl |= E1000_RCTL_MPE;
3759 				vmolr |= E1000_VMOLR_MPME;
3760 			} else if (count) {
3761 				vmolr |= E1000_VMOLR_ROMPE;
3762 			}
3763 		}
3764 		/* Write addresses to available RAR registers, if there is not
3765 		 * sufficient space to store all the addresses then enable
3766 		 * unicast promiscuous mode
3767 		 */
3768 		count = igb_write_uc_addr_list(netdev);
3769 		if (count < 0) {
3770 			rctl |= E1000_RCTL_UPE;
3771 			vmolr |= E1000_VMOLR_ROPE;
3772 		}
3773 		rctl |= E1000_RCTL_VFE;
3774 	}
3775 	wr32(E1000_RCTL, rctl);
3776 
3777 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3778 	 * the VMOLR to enable the appropriate modes.  Without this workaround
3779 	 * we will have issues with VLAN tag stripping not being done for frames
3780 	 * that are only arriving because we are the default pool
3781 	 */
3782 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3783 		return;
3784 
3785 	vmolr |= rd32(E1000_VMOLR(vfn)) &
3786 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3787 	wr32(E1000_VMOLR(vfn), vmolr);
3788 	igb_restore_vf_multicasts(adapter);
3789 }
3790 
3791 static void igb_check_wvbr(struct igb_adapter *adapter)
3792 {
3793 	struct e1000_hw *hw = &adapter->hw;
3794 	u32 wvbr = 0;
3795 
3796 	switch (hw->mac.type) {
3797 	case e1000_82576:
3798 	case e1000_i350:
3799 		if (!(wvbr = rd32(E1000_WVBR)))
3800 			return;
3801 		break;
3802 	default:
3803 		break;
3804 	}
3805 
3806 	adapter->wvbr |= wvbr;
3807 }
3808 
3809 #define IGB_STAGGERED_QUEUE_OFFSET 8
3810 
3811 static void igb_spoof_check(struct igb_adapter *adapter)
3812 {
3813 	int j;
3814 
3815 	if (!adapter->wvbr)
3816 		return;
3817 
3818 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3819 		if (adapter->wvbr & (1 << j) ||
3820 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3821 			dev_warn(&adapter->pdev->dev,
3822 				"Spoof event(s) detected on VF %d\n", j);
3823 			adapter->wvbr &=
3824 				~((1 << j) |
3825 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3826 		}
3827 	}
3828 }
3829 
3830 /* Need to wait a few seconds after link up to get diagnostic information from
3831  * the phy
3832  */
3833 static void igb_update_phy_info(unsigned long data)
3834 {
3835 	struct igb_adapter *adapter = (struct igb_adapter *) data;
3836 	igb_get_phy_info(&adapter->hw);
3837 }
3838 
3839 /**
3840  *  igb_has_link - check shared code for link and determine up/down
3841  *  @adapter: pointer to driver private info
3842  **/
3843 bool igb_has_link(struct igb_adapter *adapter)
3844 {
3845 	struct e1000_hw *hw = &adapter->hw;
3846 	bool link_active = false;
3847 	s32 ret_val = 0;
3848 
3849 	/* get_link_status is set on LSC (link status) interrupt or
3850 	 * rx sequence error interrupt.  get_link_status will stay
3851 	 * false until the e1000_check_for_link establishes link
3852 	 * for copper adapters ONLY
3853 	 */
3854 	switch (hw->phy.media_type) {
3855 	case e1000_media_type_copper:
3856 		if (hw->mac.get_link_status) {
3857 			ret_val = hw->mac.ops.check_for_link(hw);
3858 			link_active = !hw->mac.get_link_status;
3859 		} else {
3860 			link_active = true;
3861 		}
3862 		break;
3863 	case e1000_media_type_internal_serdes:
3864 		ret_val = hw->mac.ops.check_for_link(hw);
3865 		link_active = hw->mac.serdes_has_link;
3866 		break;
3867 	default:
3868 	case e1000_media_type_unknown:
3869 		break;
3870 	}
3871 
3872 	return link_active;
3873 }
3874 
3875 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3876 {
3877 	bool ret = false;
3878 	u32 ctrl_ext, thstat;
3879 
3880 	/* check for thermal sensor event on i350 copper only */
3881 	if (hw->mac.type == e1000_i350) {
3882 		thstat = rd32(E1000_THSTAT);
3883 		ctrl_ext = rd32(E1000_CTRL_EXT);
3884 
3885 		if ((hw->phy.media_type == e1000_media_type_copper) &&
3886 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3887 			ret = !!(thstat & event);
3888 	}
3889 
3890 	return ret;
3891 }
3892 
3893 /**
3894  *  igb_watchdog - Timer Call-back
3895  *  @data: pointer to adapter cast into an unsigned long
3896  **/
3897 static void igb_watchdog(unsigned long data)
3898 {
3899 	struct igb_adapter *adapter = (struct igb_adapter *)data;
3900 	/* Do the rest outside of interrupt context */
3901 	schedule_work(&adapter->watchdog_task);
3902 }
3903 
3904 static void igb_watchdog_task(struct work_struct *work)
3905 {
3906 	struct igb_adapter *adapter = container_of(work,
3907 						   struct igb_adapter,
3908 						   watchdog_task);
3909 	struct e1000_hw *hw = &adapter->hw;
3910 	struct e1000_phy_info *phy = &hw->phy;
3911 	struct net_device *netdev = adapter->netdev;
3912 	u32 link;
3913 	int i;
3914 
3915 	link = igb_has_link(adapter);
3916 	if (link) {
3917 		/* Cancel scheduled suspend requests. */
3918 		pm_runtime_resume(netdev->dev.parent);
3919 
3920 		if (!netif_carrier_ok(netdev)) {
3921 			u32 ctrl;
3922 			hw->mac.ops.get_speed_and_duplex(hw,
3923 							 &adapter->link_speed,
3924 							 &adapter->link_duplex);
3925 
3926 			ctrl = rd32(E1000_CTRL);
3927 			/* Links status message must follow this format */
3928 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3929 			       "Duplex, Flow Control: %s\n",
3930 			       netdev->name,
3931 			       adapter->link_speed,
3932 			       adapter->link_duplex == FULL_DUPLEX ?
3933 			       "Full" : "Half",
3934 			       (ctrl & E1000_CTRL_TFCE) &&
3935 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3936 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3937 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3938 
3939 			/* check if SmartSpeed worked */
3940 			igb_check_downshift(hw);
3941 			if (phy->speed_downgraded)
3942 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3943 
3944 			/* check for thermal sensor event */
3945 			if (igb_thermal_sensor_event(hw,
3946 			    E1000_THSTAT_LINK_THROTTLE)) {
3947 				netdev_info(netdev, "The network adapter link "
3948 					    "speed was downshifted because it "
3949 					    "overheated\n");
3950 			}
3951 
3952 			/* adjust timeout factor according to speed/duplex */
3953 			adapter->tx_timeout_factor = 1;
3954 			switch (adapter->link_speed) {
3955 			case SPEED_10:
3956 				adapter->tx_timeout_factor = 14;
3957 				break;
3958 			case SPEED_100:
3959 				/* maybe add some timeout factor ? */
3960 				break;
3961 			}
3962 
3963 			netif_carrier_on(netdev);
3964 
3965 			igb_ping_all_vfs(adapter);
3966 			igb_check_vf_rate_limit(adapter);
3967 
3968 			/* link state has changed, schedule phy info update */
3969 			if (!test_bit(__IGB_DOWN, &adapter->state))
3970 				mod_timer(&adapter->phy_info_timer,
3971 					  round_jiffies(jiffies + 2 * HZ));
3972 		}
3973 	} else {
3974 		if (netif_carrier_ok(netdev)) {
3975 			adapter->link_speed = 0;
3976 			adapter->link_duplex = 0;
3977 
3978 			/* check for thermal sensor event */
3979 			if (igb_thermal_sensor_event(hw,
3980 			    E1000_THSTAT_PWR_DOWN)) {
3981 				netdev_err(netdev, "The network adapter was "
3982 					   "stopped because it overheated\n");
3983 			}
3984 
3985 			/* Links status message must follow this format */
3986 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3987 			       netdev->name);
3988 			netif_carrier_off(netdev);
3989 
3990 			igb_ping_all_vfs(adapter);
3991 
3992 			/* link state has changed, schedule phy info update */
3993 			if (!test_bit(__IGB_DOWN, &adapter->state))
3994 				mod_timer(&adapter->phy_info_timer,
3995 					  round_jiffies(jiffies + 2 * HZ));
3996 
3997 			pm_schedule_suspend(netdev->dev.parent,
3998 					    MSEC_PER_SEC * 5);
3999 		}
4000 	}
4001 
4002 	spin_lock(&adapter->stats64_lock);
4003 	igb_update_stats(adapter, &adapter->stats64);
4004 	spin_unlock(&adapter->stats64_lock);
4005 
4006 	for (i = 0; i < adapter->num_tx_queues; i++) {
4007 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4008 		if (!netif_carrier_ok(netdev)) {
4009 			/* We've lost link, so the controller stops DMA,
4010 			 * but we've got queued Tx work that's never going
4011 			 * to get done, so reset controller to flush Tx.
4012 			 * (Do the reset outside of interrupt context).
4013 			 */
4014 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4015 				adapter->tx_timeout_count++;
4016 				schedule_work(&adapter->reset_task);
4017 				/* return immediately since reset is imminent */
4018 				return;
4019 			}
4020 		}
4021 
4022 		/* Force detection of hung controller every watchdog period */
4023 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4024 	}
4025 
4026 	/* Cause software interrupt to ensure Rx ring is cleaned */
4027 	if (adapter->msix_entries) {
4028 		u32 eics = 0;
4029 		for (i = 0; i < adapter->num_q_vectors; i++)
4030 			eics |= adapter->q_vector[i]->eims_value;
4031 		wr32(E1000_EICS, eics);
4032 	} else {
4033 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4034 	}
4035 
4036 	igb_spoof_check(adapter);
4037 	igb_ptp_rx_hang(adapter);
4038 
4039 	/* Reset the timer */
4040 	if (!test_bit(__IGB_DOWN, &adapter->state))
4041 		mod_timer(&adapter->watchdog_timer,
4042 			  round_jiffies(jiffies + 2 * HZ));
4043 }
4044 
4045 enum latency_range {
4046 	lowest_latency = 0,
4047 	low_latency = 1,
4048 	bulk_latency = 2,
4049 	latency_invalid = 255
4050 };
4051 
4052 /**
4053  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4054  *  @q_vector: pointer to q_vector
4055  *
4056  *  Stores a new ITR value based on strictly on packet size.  This
4057  *  algorithm is less sophisticated than that used in igb_update_itr,
4058  *  due to the difficulty of synchronizing statistics across multiple
4059  *  receive rings.  The divisors and thresholds used by this function
4060  *  were determined based on theoretical maximum wire speed and testing
4061  *  data, in order to minimize response time while increasing bulk
4062  *  throughput.
4063  *  This functionality is controlled by the InterruptThrottleRate module
4064  *  parameter (see igb_param.c)
4065  *  NOTE:  This function is called only when operating in a multiqueue
4066  *         receive environment.
4067  **/
4068 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4069 {
4070 	int new_val = q_vector->itr_val;
4071 	int avg_wire_size = 0;
4072 	struct igb_adapter *adapter = q_vector->adapter;
4073 	unsigned int packets;
4074 
4075 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4076 	 * ints/sec - ITR timer value of 120 ticks.
4077 	 */
4078 	if (adapter->link_speed != SPEED_1000) {
4079 		new_val = IGB_4K_ITR;
4080 		goto set_itr_val;
4081 	}
4082 
4083 	packets = q_vector->rx.total_packets;
4084 	if (packets)
4085 		avg_wire_size = q_vector->rx.total_bytes / packets;
4086 
4087 	packets = q_vector->tx.total_packets;
4088 	if (packets)
4089 		avg_wire_size = max_t(u32, avg_wire_size,
4090 				      q_vector->tx.total_bytes / packets);
4091 
4092 	/* if avg_wire_size isn't set no work was done */
4093 	if (!avg_wire_size)
4094 		goto clear_counts;
4095 
4096 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4097 	avg_wire_size += 24;
4098 
4099 	/* Don't starve jumbo frames */
4100 	avg_wire_size = min(avg_wire_size, 3000);
4101 
4102 	/* Give a little boost to mid-size frames */
4103 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4104 		new_val = avg_wire_size / 3;
4105 	else
4106 		new_val = avg_wire_size / 2;
4107 
4108 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4109 	if (new_val < IGB_20K_ITR &&
4110 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4111 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4112 		new_val = IGB_20K_ITR;
4113 
4114 set_itr_val:
4115 	if (new_val != q_vector->itr_val) {
4116 		q_vector->itr_val = new_val;
4117 		q_vector->set_itr = 1;
4118 	}
4119 clear_counts:
4120 	q_vector->rx.total_bytes = 0;
4121 	q_vector->rx.total_packets = 0;
4122 	q_vector->tx.total_bytes = 0;
4123 	q_vector->tx.total_packets = 0;
4124 }
4125 
4126 /**
4127  *  igb_update_itr - update the dynamic ITR value based on statistics
4128  *  @q_vector: pointer to q_vector
4129  *  @ring_container: ring info to update the itr for
4130  *
4131  *  Stores a new ITR value based on packets and byte
4132  *  counts during the last interrupt.  The advantage of per interrupt
4133  *  computation is faster updates and more accurate ITR for the current
4134  *  traffic pattern.  Constants in this function were computed
4135  *  based on theoretical maximum wire speed and thresholds were set based
4136  *  on testing data as well as attempting to minimize response time
4137  *  while increasing bulk throughput.
4138  *  this functionality is controlled by the InterruptThrottleRate module
4139  *  parameter (see igb_param.c)
4140  *  NOTE:  These calculations are only valid when operating in a single-
4141  *         queue environment.
4142  **/
4143 static void igb_update_itr(struct igb_q_vector *q_vector,
4144 			   struct igb_ring_container *ring_container)
4145 {
4146 	unsigned int packets = ring_container->total_packets;
4147 	unsigned int bytes = ring_container->total_bytes;
4148 	u8 itrval = ring_container->itr;
4149 
4150 	/* no packets, exit with status unchanged */
4151 	if (packets == 0)
4152 		return;
4153 
4154 	switch (itrval) {
4155 	case lowest_latency:
4156 		/* handle TSO and jumbo frames */
4157 		if (bytes/packets > 8000)
4158 			itrval = bulk_latency;
4159 		else if ((packets < 5) && (bytes > 512))
4160 			itrval = low_latency;
4161 		break;
4162 	case low_latency:  /* 50 usec aka 20000 ints/s */
4163 		if (bytes > 10000) {
4164 			/* this if handles the TSO accounting */
4165 			if (bytes/packets > 8000) {
4166 				itrval = bulk_latency;
4167 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4168 				itrval = bulk_latency;
4169 			} else if ((packets > 35)) {
4170 				itrval = lowest_latency;
4171 			}
4172 		} else if (bytes/packets > 2000) {
4173 			itrval = bulk_latency;
4174 		} else if (packets <= 2 && bytes < 512) {
4175 			itrval = lowest_latency;
4176 		}
4177 		break;
4178 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4179 		if (bytes > 25000) {
4180 			if (packets > 35)
4181 				itrval = low_latency;
4182 		} else if (bytes < 1500) {
4183 			itrval = low_latency;
4184 		}
4185 		break;
4186 	}
4187 
4188 	/* clear work counters since we have the values we need */
4189 	ring_container->total_bytes = 0;
4190 	ring_container->total_packets = 0;
4191 
4192 	/* write updated itr to ring container */
4193 	ring_container->itr = itrval;
4194 }
4195 
4196 static void igb_set_itr(struct igb_q_vector *q_vector)
4197 {
4198 	struct igb_adapter *adapter = q_vector->adapter;
4199 	u32 new_itr = q_vector->itr_val;
4200 	u8 current_itr = 0;
4201 
4202 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4203 	if (adapter->link_speed != SPEED_1000) {
4204 		current_itr = 0;
4205 		new_itr = IGB_4K_ITR;
4206 		goto set_itr_now;
4207 	}
4208 
4209 	igb_update_itr(q_vector, &q_vector->tx);
4210 	igb_update_itr(q_vector, &q_vector->rx);
4211 
4212 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4213 
4214 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4215 	if (current_itr == lowest_latency &&
4216 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4217 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4218 		current_itr = low_latency;
4219 
4220 	switch (current_itr) {
4221 	/* counts and packets in update_itr are dependent on these numbers */
4222 	case lowest_latency:
4223 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4224 		break;
4225 	case low_latency:
4226 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4227 		break;
4228 	case bulk_latency:
4229 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4230 		break;
4231 	default:
4232 		break;
4233 	}
4234 
4235 set_itr_now:
4236 	if (new_itr != q_vector->itr_val) {
4237 		/* this attempts to bias the interrupt rate towards Bulk
4238 		 * by adding intermediate steps when interrupt rate is
4239 		 * increasing
4240 		 */
4241 		new_itr = new_itr > q_vector->itr_val ?
4242 			  max((new_itr * q_vector->itr_val) /
4243 			  (new_itr + (q_vector->itr_val >> 2)),
4244 			  new_itr) : new_itr;
4245 		/* Don't write the value here; it resets the adapter's
4246 		 * internal timer, and causes us to delay far longer than
4247 		 * we should between interrupts.  Instead, we write the ITR
4248 		 * value at the beginning of the next interrupt so the timing
4249 		 * ends up being correct.
4250 		 */
4251 		q_vector->itr_val = new_itr;
4252 		q_vector->set_itr = 1;
4253 	}
4254 }
4255 
4256 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4257 			    u32 type_tucmd, u32 mss_l4len_idx)
4258 {
4259 	struct e1000_adv_tx_context_desc *context_desc;
4260 	u16 i = tx_ring->next_to_use;
4261 
4262 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4263 
4264 	i++;
4265 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4266 
4267 	/* set bits to identify this as an advanced context descriptor */
4268 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4269 
4270 	/* For 82575, context index must be unique per ring. */
4271 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4272 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4273 
4274 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4275 	context_desc->seqnum_seed	= 0;
4276 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4277 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4278 }
4279 
4280 static int igb_tso(struct igb_ring *tx_ring,
4281 		   struct igb_tx_buffer *first,
4282 		   u8 *hdr_len)
4283 {
4284 	struct sk_buff *skb = first->skb;
4285 	u32 vlan_macip_lens, type_tucmd;
4286 	u32 mss_l4len_idx, l4len;
4287 
4288 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4289 		return 0;
4290 
4291 	if (!skb_is_gso(skb))
4292 		return 0;
4293 
4294 	if (skb_header_cloned(skb)) {
4295 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4296 		if (err)
4297 			return err;
4298 	}
4299 
4300 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4301 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4302 
4303 	if (first->protocol == __constant_htons(ETH_P_IP)) {
4304 		struct iphdr *iph = ip_hdr(skb);
4305 		iph->tot_len = 0;
4306 		iph->check = 0;
4307 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4308 							 iph->daddr, 0,
4309 							 IPPROTO_TCP,
4310 							 0);
4311 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4312 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4313 				   IGB_TX_FLAGS_CSUM |
4314 				   IGB_TX_FLAGS_IPV4;
4315 	} else if (skb_is_gso_v6(skb)) {
4316 		ipv6_hdr(skb)->payload_len = 0;
4317 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4318 						       &ipv6_hdr(skb)->daddr,
4319 						       0, IPPROTO_TCP, 0);
4320 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4321 				   IGB_TX_FLAGS_CSUM;
4322 	}
4323 
4324 	/* compute header lengths */
4325 	l4len = tcp_hdrlen(skb);
4326 	*hdr_len = skb_transport_offset(skb) + l4len;
4327 
4328 	/* update gso size and bytecount with header size */
4329 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4330 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4331 
4332 	/* MSS L4LEN IDX */
4333 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4334 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4335 
4336 	/* VLAN MACLEN IPLEN */
4337 	vlan_macip_lens = skb_network_header_len(skb);
4338 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4339 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4340 
4341 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4342 
4343 	return 1;
4344 }
4345 
4346 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4347 {
4348 	struct sk_buff *skb = first->skb;
4349 	u32 vlan_macip_lens = 0;
4350 	u32 mss_l4len_idx = 0;
4351 	u32 type_tucmd = 0;
4352 
4353 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4354 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4355 			return;
4356 	} else {
4357 		u8 l4_hdr = 0;
4358 		switch (first->protocol) {
4359 		case __constant_htons(ETH_P_IP):
4360 			vlan_macip_lens |= skb_network_header_len(skb);
4361 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4362 			l4_hdr = ip_hdr(skb)->protocol;
4363 			break;
4364 		case __constant_htons(ETH_P_IPV6):
4365 			vlan_macip_lens |= skb_network_header_len(skb);
4366 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4367 			break;
4368 		default:
4369 			if (unlikely(net_ratelimit())) {
4370 				dev_warn(tx_ring->dev,
4371 					 "partial checksum but proto=%x!\n",
4372 					 first->protocol);
4373 			}
4374 			break;
4375 		}
4376 
4377 		switch (l4_hdr) {
4378 		case IPPROTO_TCP:
4379 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4380 			mss_l4len_idx = tcp_hdrlen(skb) <<
4381 					E1000_ADVTXD_L4LEN_SHIFT;
4382 			break;
4383 		case IPPROTO_SCTP:
4384 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4385 			mss_l4len_idx = sizeof(struct sctphdr) <<
4386 					E1000_ADVTXD_L4LEN_SHIFT;
4387 			break;
4388 		case IPPROTO_UDP:
4389 			mss_l4len_idx = sizeof(struct udphdr) <<
4390 					E1000_ADVTXD_L4LEN_SHIFT;
4391 			break;
4392 		default:
4393 			if (unlikely(net_ratelimit())) {
4394 				dev_warn(tx_ring->dev,
4395 					 "partial checksum but l4 proto=%x!\n",
4396 					 l4_hdr);
4397 			}
4398 			break;
4399 		}
4400 
4401 		/* update TX checksum flag */
4402 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4403 	}
4404 
4405 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4406 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4407 
4408 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4409 }
4410 
4411 #define IGB_SET_FLAG(_input, _flag, _result) \
4412 	((_flag <= _result) ? \
4413 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4414 	 ((u32)(_input & _flag) / (_flag / _result)))
4415 
4416 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4417 {
4418 	/* set type for advanced descriptor with frame checksum insertion */
4419 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4420 		       E1000_ADVTXD_DCMD_DEXT |
4421 		       E1000_ADVTXD_DCMD_IFCS;
4422 
4423 	/* set HW vlan bit if vlan is present */
4424 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4425 				 (E1000_ADVTXD_DCMD_VLE));
4426 
4427 	/* set segmentation bits for TSO */
4428 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4429 				 (E1000_ADVTXD_DCMD_TSE));
4430 
4431 	/* set timestamp bit if present */
4432 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4433 				 (E1000_ADVTXD_MAC_TSTAMP));
4434 
4435 	/* insert frame checksum */
4436 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4437 
4438 	return cmd_type;
4439 }
4440 
4441 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4442 				 union e1000_adv_tx_desc *tx_desc,
4443 				 u32 tx_flags, unsigned int paylen)
4444 {
4445 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4446 
4447 	/* 82575 requires a unique index per ring */
4448 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4449 		olinfo_status |= tx_ring->reg_idx << 4;
4450 
4451 	/* insert L4 checksum */
4452 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4453 				      IGB_TX_FLAGS_CSUM,
4454 				      (E1000_TXD_POPTS_TXSM << 8));
4455 
4456 	/* insert IPv4 checksum */
4457 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4458 				      IGB_TX_FLAGS_IPV4,
4459 				      (E1000_TXD_POPTS_IXSM << 8));
4460 
4461 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4462 }
4463 
4464 static void igb_tx_map(struct igb_ring *tx_ring,
4465 		       struct igb_tx_buffer *first,
4466 		       const u8 hdr_len)
4467 {
4468 	struct sk_buff *skb = first->skb;
4469 	struct igb_tx_buffer *tx_buffer;
4470 	union e1000_adv_tx_desc *tx_desc;
4471 	struct skb_frag_struct *frag;
4472 	dma_addr_t dma;
4473 	unsigned int data_len, size;
4474 	u32 tx_flags = first->tx_flags;
4475 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4476 	u16 i = tx_ring->next_to_use;
4477 
4478 	tx_desc = IGB_TX_DESC(tx_ring, i);
4479 
4480 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4481 
4482 	size = skb_headlen(skb);
4483 	data_len = skb->data_len;
4484 
4485 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4486 
4487 	tx_buffer = first;
4488 
4489 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4490 		if (dma_mapping_error(tx_ring->dev, dma))
4491 			goto dma_error;
4492 
4493 		/* record length, and DMA address */
4494 		dma_unmap_len_set(tx_buffer, len, size);
4495 		dma_unmap_addr_set(tx_buffer, dma, dma);
4496 
4497 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4498 
4499 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4500 			tx_desc->read.cmd_type_len =
4501 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4502 
4503 			i++;
4504 			tx_desc++;
4505 			if (i == tx_ring->count) {
4506 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4507 				i = 0;
4508 			}
4509 			tx_desc->read.olinfo_status = 0;
4510 
4511 			dma += IGB_MAX_DATA_PER_TXD;
4512 			size -= IGB_MAX_DATA_PER_TXD;
4513 
4514 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4515 		}
4516 
4517 		if (likely(!data_len))
4518 			break;
4519 
4520 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4521 
4522 		i++;
4523 		tx_desc++;
4524 		if (i == tx_ring->count) {
4525 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4526 			i = 0;
4527 		}
4528 		tx_desc->read.olinfo_status = 0;
4529 
4530 		size = skb_frag_size(frag);
4531 		data_len -= size;
4532 
4533 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4534 				       size, DMA_TO_DEVICE);
4535 
4536 		tx_buffer = &tx_ring->tx_buffer_info[i];
4537 	}
4538 
4539 	/* write last descriptor with RS and EOP bits */
4540 	cmd_type |= size | IGB_TXD_DCMD;
4541 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4542 
4543 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4544 
4545 	/* set the timestamp */
4546 	first->time_stamp = jiffies;
4547 
4548 	/* Force memory writes to complete before letting h/w know there
4549 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4550 	 * memory model archs, such as IA-64).
4551 	 *
4552 	 * We also need this memory barrier to make certain all of the
4553 	 * status bits have been updated before next_to_watch is written.
4554 	 */
4555 	wmb();
4556 
4557 	/* set next_to_watch value indicating a packet is present */
4558 	first->next_to_watch = tx_desc;
4559 
4560 	i++;
4561 	if (i == tx_ring->count)
4562 		i = 0;
4563 
4564 	tx_ring->next_to_use = i;
4565 
4566 	writel(i, tx_ring->tail);
4567 
4568 	/* we need this if more than one processor can write to our tail
4569 	 * at a time, it synchronizes IO on IA64/Altix systems
4570 	 */
4571 	mmiowb();
4572 
4573 	return;
4574 
4575 dma_error:
4576 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4577 
4578 	/* clear dma mappings for failed tx_buffer_info map */
4579 	for (;;) {
4580 		tx_buffer = &tx_ring->tx_buffer_info[i];
4581 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4582 		if (tx_buffer == first)
4583 			break;
4584 		if (i == 0)
4585 			i = tx_ring->count;
4586 		i--;
4587 	}
4588 
4589 	tx_ring->next_to_use = i;
4590 }
4591 
4592 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4593 {
4594 	struct net_device *netdev = tx_ring->netdev;
4595 
4596 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4597 
4598 	/* Herbert's original patch had:
4599 	 *  smp_mb__after_netif_stop_queue();
4600 	 * but since that doesn't exist yet, just open code it.
4601 	 */
4602 	smp_mb();
4603 
4604 	/* We need to check again in a case another CPU has just
4605 	 * made room available.
4606 	 */
4607 	if (igb_desc_unused(tx_ring) < size)
4608 		return -EBUSY;
4609 
4610 	/* A reprieve! */
4611 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4612 
4613 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4614 	tx_ring->tx_stats.restart_queue2++;
4615 	u64_stats_update_end(&tx_ring->tx_syncp2);
4616 
4617 	return 0;
4618 }
4619 
4620 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4621 {
4622 	if (igb_desc_unused(tx_ring) >= size)
4623 		return 0;
4624 	return __igb_maybe_stop_tx(tx_ring, size);
4625 }
4626 
4627 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4628 				struct igb_ring *tx_ring)
4629 {
4630 	struct igb_tx_buffer *first;
4631 	int tso;
4632 	u32 tx_flags = 0;
4633 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4634 	__be16 protocol = vlan_get_protocol(skb);
4635 	u8 hdr_len = 0;
4636 
4637 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4638 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4639 	 *       + 2 desc gap to keep tail from touching head,
4640 	 *       + 1 desc for context descriptor,
4641 	 * otherwise try next time
4642 	 */
4643 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4644 		unsigned short f;
4645 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4646 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4647 	} else {
4648 		count += skb_shinfo(skb)->nr_frags;
4649 	}
4650 
4651 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4652 		/* this is a hard error */
4653 		return NETDEV_TX_BUSY;
4654 	}
4655 
4656 	/* record the location of the first descriptor for this packet */
4657 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4658 	first->skb = skb;
4659 	first->bytecount = skb->len;
4660 	first->gso_segs = 1;
4661 
4662 	skb_tx_timestamp(skb);
4663 
4664 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4665 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4666 
4667 		if (!(adapter->ptp_tx_skb)) {
4668 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4669 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4670 
4671 			adapter->ptp_tx_skb = skb_get(skb);
4672 			adapter->ptp_tx_start = jiffies;
4673 			if (adapter->hw.mac.type == e1000_82576)
4674 				schedule_work(&adapter->ptp_tx_work);
4675 		}
4676 	}
4677 
4678 	if (vlan_tx_tag_present(skb)) {
4679 		tx_flags |= IGB_TX_FLAGS_VLAN;
4680 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4681 	}
4682 
4683 	/* record initial flags and protocol */
4684 	first->tx_flags = tx_flags;
4685 	first->protocol = protocol;
4686 
4687 	tso = igb_tso(tx_ring, first, &hdr_len);
4688 	if (tso < 0)
4689 		goto out_drop;
4690 	else if (!tso)
4691 		igb_tx_csum(tx_ring, first);
4692 
4693 	igb_tx_map(tx_ring, first, hdr_len);
4694 
4695 	/* Make sure there is space in the ring for the next send. */
4696 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4697 
4698 	return NETDEV_TX_OK;
4699 
4700 out_drop:
4701 	igb_unmap_and_free_tx_resource(tx_ring, first);
4702 
4703 	return NETDEV_TX_OK;
4704 }
4705 
4706 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4707 						    struct sk_buff *skb)
4708 {
4709 	unsigned int r_idx = skb->queue_mapping;
4710 
4711 	if (r_idx >= adapter->num_tx_queues)
4712 		r_idx = r_idx % adapter->num_tx_queues;
4713 
4714 	return adapter->tx_ring[r_idx];
4715 }
4716 
4717 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4718 				  struct net_device *netdev)
4719 {
4720 	struct igb_adapter *adapter = netdev_priv(netdev);
4721 
4722 	if (test_bit(__IGB_DOWN, &adapter->state)) {
4723 		dev_kfree_skb_any(skb);
4724 		return NETDEV_TX_OK;
4725 	}
4726 
4727 	if (skb->len <= 0) {
4728 		dev_kfree_skb_any(skb);
4729 		return NETDEV_TX_OK;
4730 	}
4731 
4732 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4733 	 * in order to meet this minimum size requirement.
4734 	 */
4735 	if (unlikely(skb->len < 17)) {
4736 		if (skb_pad(skb, 17 - skb->len))
4737 			return NETDEV_TX_OK;
4738 		skb->len = 17;
4739 		skb_set_tail_pointer(skb, 17);
4740 	}
4741 
4742 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4743 }
4744 
4745 /**
4746  *  igb_tx_timeout - Respond to a Tx Hang
4747  *  @netdev: network interface device structure
4748  **/
4749 static void igb_tx_timeout(struct net_device *netdev)
4750 {
4751 	struct igb_adapter *adapter = netdev_priv(netdev);
4752 	struct e1000_hw *hw = &adapter->hw;
4753 
4754 	/* Do the reset outside of interrupt context */
4755 	adapter->tx_timeout_count++;
4756 
4757 	if (hw->mac.type >= e1000_82580)
4758 		hw->dev_spec._82575.global_device_reset = true;
4759 
4760 	schedule_work(&adapter->reset_task);
4761 	wr32(E1000_EICS,
4762 	     (adapter->eims_enable_mask & ~adapter->eims_other));
4763 }
4764 
4765 static void igb_reset_task(struct work_struct *work)
4766 {
4767 	struct igb_adapter *adapter;
4768 	adapter = container_of(work, struct igb_adapter, reset_task);
4769 
4770 	igb_dump(adapter);
4771 	netdev_err(adapter->netdev, "Reset adapter\n");
4772 	igb_reinit_locked(adapter);
4773 }
4774 
4775 /**
4776  *  igb_get_stats64 - Get System Network Statistics
4777  *  @netdev: network interface device structure
4778  *  @stats: rtnl_link_stats64 pointer
4779  **/
4780 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4781 						struct rtnl_link_stats64 *stats)
4782 {
4783 	struct igb_adapter *adapter = netdev_priv(netdev);
4784 
4785 	spin_lock(&adapter->stats64_lock);
4786 	igb_update_stats(adapter, &adapter->stats64);
4787 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4788 	spin_unlock(&adapter->stats64_lock);
4789 
4790 	return stats;
4791 }
4792 
4793 /**
4794  *  igb_change_mtu - Change the Maximum Transfer Unit
4795  *  @netdev: network interface device structure
4796  *  @new_mtu: new value for maximum frame size
4797  *
4798  *  Returns 0 on success, negative on failure
4799  **/
4800 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4801 {
4802 	struct igb_adapter *adapter = netdev_priv(netdev);
4803 	struct pci_dev *pdev = adapter->pdev;
4804 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4805 
4806 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4807 		dev_err(&pdev->dev, "Invalid MTU setting\n");
4808 		return -EINVAL;
4809 	}
4810 
4811 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4812 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4813 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4814 		return -EINVAL;
4815 	}
4816 
4817 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4818 		msleep(1);
4819 
4820 	/* igb_down has a dependency on max_frame_size */
4821 	adapter->max_frame_size = max_frame;
4822 
4823 	if (netif_running(netdev))
4824 		igb_down(adapter);
4825 
4826 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4827 		 netdev->mtu, new_mtu);
4828 	netdev->mtu = new_mtu;
4829 
4830 	if (netif_running(netdev))
4831 		igb_up(adapter);
4832 	else
4833 		igb_reset(adapter);
4834 
4835 	clear_bit(__IGB_RESETTING, &adapter->state);
4836 
4837 	return 0;
4838 }
4839 
4840 /**
4841  *  igb_update_stats - Update the board statistics counters
4842  *  @adapter: board private structure
4843  **/
4844 void igb_update_stats(struct igb_adapter *adapter,
4845 		      struct rtnl_link_stats64 *net_stats)
4846 {
4847 	struct e1000_hw *hw = &adapter->hw;
4848 	struct pci_dev *pdev = adapter->pdev;
4849 	u32 reg, mpc;
4850 	u16 phy_tmp;
4851 	int i;
4852 	u64 bytes, packets;
4853 	unsigned int start;
4854 	u64 _bytes, _packets;
4855 
4856 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4857 
4858 	/* Prevent stats update while adapter is being reset, or if the pci
4859 	 * connection is down.
4860 	 */
4861 	if (adapter->link_speed == 0)
4862 		return;
4863 	if (pci_channel_offline(pdev))
4864 		return;
4865 
4866 	bytes = 0;
4867 	packets = 0;
4868 	for (i = 0; i < adapter->num_rx_queues; i++) {
4869 		u32 rqdpc = rd32(E1000_RQDPC(i));
4870 		struct igb_ring *ring = adapter->rx_ring[i];
4871 
4872 		if (rqdpc) {
4873 			ring->rx_stats.drops += rqdpc;
4874 			net_stats->rx_fifo_errors += rqdpc;
4875 		}
4876 
4877 		do {
4878 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4879 			_bytes = ring->rx_stats.bytes;
4880 			_packets = ring->rx_stats.packets;
4881 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4882 		bytes += _bytes;
4883 		packets += _packets;
4884 	}
4885 
4886 	net_stats->rx_bytes = bytes;
4887 	net_stats->rx_packets = packets;
4888 
4889 	bytes = 0;
4890 	packets = 0;
4891 	for (i = 0; i < adapter->num_tx_queues; i++) {
4892 		struct igb_ring *ring = adapter->tx_ring[i];
4893 		do {
4894 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4895 			_bytes = ring->tx_stats.bytes;
4896 			_packets = ring->tx_stats.packets;
4897 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4898 		bytes += _bytes;
4899 		packets += _packets;
4900 	}
4901 	net_stats->tx_bytes = bytes;
4902 	net_stats->tx_packets = packets;
4903 
4904 	/* read stats registers */
4905 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4906 	adapter->stats.gprc += rd32(E1000_GPRC);
4907 	adapter->stats.gorc += rd32(E1000_GORCL);
4908 	rd32(E1000_GORCH); /* clear GORCL */
4909 	adapter->stats.bprc += rd32(E1000_BPRC);
4910 	adapter->stats.mprc += rd32(E1000_MPRC);
4911 	adapter->stats.roc += rd32(E1000_ROC);
4912 
4913 	adapter->stats.prc64 += rd32(E1000_PRC64);
4914 	adapter->stats.prc127 += rd32(E1000_PRC127);
4915 	adapter->stats.prc255 += rd32(E1000_PRC255);
4916 	adapter->stats.prc511 += rd32(E1000_PRC511);
4917 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4918 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4919 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4920 	adapter->stats.sec += rd32(E1000_SEC);
4921 
4922 	mpc = rd32(E1000_MPC);
4923 	adapter->stats.mpc += mpc;
4924 	net_stats->rx_fifo_errors += mpc;
4925 	adapter->stats.scc += rd32(E1000_SCC);
4926 	adapter->stats.ecol += rd32(E1000_ECOL);
4927 	adapter->stats.mcc += rd32(E1000_MCC);
4928 	adapter->stats.latecol += rd32(E1000_LATECOL);
4929 	adapter->stats.dc += rd32(E1000_DC);
4930 	adapter->stats.rlec += rd32(E1000_RLEC);
4931 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4932 	adapter->stats.xontxc += rd32(E1000_XONTXC);
4933 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4934 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4935 	adapter->stats.fcruc += rd32(E1000_FCRUC);
4936 	adapter->stats.gptc += rd32(E1000_GPTC);
4937 	adapter->stats.gotc += rd32(E1000_GOTCL);
4938 	rd32(E1000_GOTCH); /* clear GOTCL */
4939 	adapter->stats.rnbc += rd32(E1000_RNBC);
4940 	adapter->stats.ruc += rd32(E1000_RUC);
4941 	adapter->stats.rfc += rd32(E1000_RFC);
4942 	adapter->stats.rjc += rd32(E1000_RJC);
4943 	adapter->stats.tor += rd32(E1000_TORH);
4944 	adapter->stats.tot += rd32(E1000_TOTH);
4945 	adapter->stats.tpr += rd32(E1000_TPR);
4946 
4947 	adapter->stats.ptc64 += rd32(E1000_PTC64);
4948 	adapter->stats.ptc127 += rd32(E1000_PTC127);
4949 	adapter->stats.ptc255 += rd32(E1000_PTC255);
4950 	adapter->stats.ptc511 += rd32(E1000_PTC511);
4951 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4952 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4953 
4954 	adapter->stats.mptc += rd32(E1000_MPTC);
4955 	adapter->stats.bptc += rd32(E1000_BPTC);
4956 
4957 	adapter->stats.tpt += rd32(E1000_TPT);
4958 	adapter->stats.colc += rd32(E1000_COLC);
4959 
4960 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4961 	/* read internal phy specific stats */
4962 	reg = rd32(E1000_CTRL_EXT);
4963 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4964 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4965 
4966 		/* this stat has invalid values on i210/i211 */
4967 		if ((hw->mac.type != e1000_i210) &&
4968 		    (hw->mac.type != e1000_i211))
4969 			adapter->stats.tncrs += rd32(E1000_TNCRS);
4970 	}
4971 
4972 	adapter->stats.tsctc += rd32(E1000_TSCTC);
4973 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4974 
4975 	adapter->stats.iac += rd32(E1000_IAC);
4976 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4977 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4978 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4979 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4980 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4981 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4982 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4983 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4984 
4985 	/* Fill out the OS statistics structure */
4986 	net_stats->multicast = adapter->stats.mprc;
4987 	net_stats->collisions = adapter->stats.colc;
4988 
4989 	/* Rx Errors */
4990 
4991 	/* RLEC on some newer hardware can be incorrect so build
4992 	 * our own version based on RUC and ROC
4993 	 */
4994 	net_stats->rx_errors = adapter->stats.rxerrc +
4995 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4996 		adapter->stats.ruc + adapter->stats.roc +
4997 		adapter->stats.cexterr;
4998 	net_stats->rx_length_errors = adapter->stats.ruc +
4999 				      adapter->stats.roc;
5000 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5001 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5002 	net_stats->rx_missed_errors = adapter->stats.mpc;
5003 
5004 	/* Tx Errors */
5005 	net_stats->tx_errors = adapter->stats.ecol +
5006 			       adapter->stats.latecol;
5007 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5008 	net_stats->tx_window_errors = adapter->stats.latecol;
5009 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5010 
5011 	/* Tx Dropped needs to be maintained elsewhere */
5012 
5013 	/* Phy Stats */
5014 	if (hw->phy.media_type == e1000_media_type_copper) {
5015 		if ((adapter->link_speed == SPEED_1000) &&
5016 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5017 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5018 			adapter->phy_stats.idle_errors += phy_tmp;
5019 		}
5020 	}
5021 
5022 	/* Management Stats */
5023 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5024 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5025 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5026 
5027 	/* OS2BMC Stats */
5028 	reg = rd32(E1000_MANC);
5029 	if (reg & E1000_MANC_EN_BMC2OS) {
5030 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5031 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5032 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5033 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5034 	}
5035 }
5036 
5037 static irqreturn_t igb_msix_other(int irq, void *data)
5038 {
5039 	struct igb_adapter *adapter = data;
5040 	struct e1000_hw *hw = &adapter->hw;
5041 	u32 icr = rd32(E1000_ICR);
5042 	/* reading ICR causes bit 31 of EICR to be cleared */
5043 
5044 	if (icr & E1000_ICR_DRSTA)
5045 		schedule_work(&adapter->reset_task);
5046 
5047 	if (icr & E1000_ICR_DOUTSYNC) {
5048 		/* HW is reporting DMA is out of sync */
5049 		adapter->stats.doosync++;
5050 		/* The DMA Out of Sync is also indication of a spoof event
5051 		 * in IOV mode. Check the Wrong VM Behavior register to
5052 		 * see if it is really a spoof event.
5053 		 */
5054 		igb_check_wvbr(adapter);
5055 	}
5056 
5057 	/* Check for a mailbox event */
5058 	if (icr & E1000_ICR_VMMB)
5059 		igb_msg_task(adapter);
5060 
5061 	if (icr & E1000_ICR_LSC) {
5062 		hw->mac.get_link_status = 1;
5063 		/* guard against interrupt when we're going down */
5064 		if (!test_bit(__IGB_DOWN, &adapter->state))
5065 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5066 	}
5067 
5068 	if (icr & E1000_ICR_TS) {
5069 		u32 tsicr = rd32(E1000_TSICR);
5070 
5071 		if (tsicr & E1000_TSICR_TXTS) {
5072 			/* acknowledge the interrupt */
5073 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5074 			/* retrieve hardware timestamp */
5075 			schedule_work(&adapter->ptp_tx_work);
5076 		}
5077 	}
5078 
5079 	wr32(E1000_EIMS, adapter->eims_other);
5080 
5081 	return IRQ_HANDLED;
5082 }
5083 
5084 static void igb_write_itr(struct igb_q_vector *q_vector)
5085 {
5086 	struct igb_adapter *adapter = q_vector->adapter;
5087 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5088 
5089 	if (!q_vector->set_itr)
5090 		return;
5091 
5092 	if (!itr_val)
5093 		itr_val = 0x4;
5094 
5095 	if (adapter->hw.mac.type == e1000_82575)
5096 		itr_val |= itr_val << 16;
5097 	else
5098 		itr_val |= E1000_EITR_CNT_IGNR;
5099 
5100 	writel(itr_val, q_vector->itr_register);
5101 	q_vector->set_itr = 0;
5102 }
5103 
5104 static irqreturn_t igb_msix_ring(int irq, void *data)
5105 {
5106 	struct igb_q_vector *q_vector = data;
5107 
5108 	/* Write the ITR value calculated from the previous interrupt. */
5109 	igb_write_itr(q_vector);
5110 
5111 	napi_schedule(&q_vector->napi);
5112 
5113 	return IRQ_HANDLED;
5114 }
5115 
5116 #ifdef CONFIG_IGB_DCA
5117 static void igb_update_tx_dca(struct igb_adapter *adapter,
5118 			      struct igb_ring *tx_ring,
5119 			      int cpu)
5120 {
5121 	struct e1000_hw *hw = &adapter->hw;
5122 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5123 
5124 	if (hw->mac.type != e1000_82575)
5125 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5126 
5127 	/* We can enable relaxed ordering for reads, but not writes when
5128 	 * DCA is enabled.  This is due to a known issue in some chipsets
5129 	 * which will cause the DCA tag to be cleared.
5130 	 */
5131 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5132 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5133 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5134 
5135 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5136 }
5137 
5138 static void igb_update_rx_dca(struct igb_adapter *adapter,
5139 			      struct igb_ring *rx_ring,
5140 			      int cpu)
5141 {
5142 	struct e1000_hw *hw = &adapter->hw;
5143 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5144 
5145 	if (hw->mac.type != e1000_82575)
5146 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5147 
5148 	/* We can enable relaxed ordering for reads, but not writes when
5149 	 * DCA is enabled.  This is due to a known issue in some chipsets
5150 	 * which will cause the DCA tag to be cleared.
5151 	 */
5152 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5153 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5154 
5155 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5156 }
5157 
5158 static void igb_update_dca(struct igb_q_vector *q_vector)
5159 {
5160 	struct igb_adapter *adapter = q_vector->adapter;
5161 	int cpu = get_cpu();
5162 
5163 	if (q_vector->cpu == cpu)
5164 		goto out_no_update;
5165 
5166 	if (q_vector->tx.ring)
5167 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5168 
5169 	if (q_vector->rx.ring)
5170 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5171 
5172 	q_vector->cpu = cpu;
5173 out_no_update:
5174 	put_cpu();
5175 }
5176 
5177 static void igb_setup_dca(struct igb_adapter *adapter)
5178 {
5179 	struct e1000_hw *hw = &adapter->hw;
5180 	int i;
5181 
5182 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5183 		return;
5184 
5185 	/* Always use CB2 mode, difference is masked in the CB driver. */
5186 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5187 
5188 	for (i = 0; i < adapter->num_q_vectors; i++) {
5189 		adapter->q_vector[i]->cpu = -1;
5190 		igb_update_dca(adapter->q_vector[i]);
5191 	}
5192 }
5193 
5194 static int __igb_notify_dca(struct device *dev, void *data)
5195 {
5196 	struct net_device *netdev = dev_get_drvdata(dev);
5197 	struct igb_adapter *adapter = netdev_priv(netdev);
5198 	struct pci_dev *pdev = adapter->pdev;
5199 	struct e1000_hw *hw = &adapter->hw;
5200 	unsigned long event = *(unsigned long *)data;
5201 
5202 	switch (event) {
5203 	case DCA_PROVIDER_ADD:
5204 		/* if already enabled, don't do it again */
5205 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5206 			break;
5207 		if (dca_add_requester(dev) == 0) {
5208 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5209 			dev_info(&pdev->dev, "DCA enabled\n");
5210 			igb_setup_dca(adapter);
5211 			break;
5212 		}
5213 		/* Fall Through since DCA is disabled. */
5214 	case DCA_PROVIDER_REMOVE:
5215 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5216 			/* without this a class_device is left
5217 			 * hanging around in the sysfs model
5218 			 */
5219 			dca_remove_requester(dev);
5220 			dev_info(&pdev->dev, "DCA disabled\n");
5221 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5222 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5223 		}
5224 		break;
5225 	}
5226 
5227 	return 0;
5228 }
5229 
5230 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5231 			  void *p)
5232 {
5233 	int ret_val;
5234 
5235 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5236 					 __igb_notify_dca);
5237 
5238 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5239 }
5240 #endif /* CONFIG_IGB_DCA */
5241 
5242 #ifdef CONFIG_PCI_IOV
5243 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5244 {
5245 	unsigned char mac_addr[ETH_ALEN];
5246 
5247 	eth_zero_addr(mac_addr);
5248 	igb_set_vf_mac(adapter, vf, mac_addr);
5249 
5250 	/* By default spoof check is enabled for all VFs */
5251 	adapter->vf_data[vf].spoofchk_enabled = true;
5252 
5253 	return 0;
5254 }
5255 
5256 #endif
5257 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5258 {
5259 	struct e1000_hw *hw = &adapter->hw;
5260 	u32 ping;
5261 	int i;
5262 
5263 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5264 		ping = E1000_PF_CONTROL_MSG;
5265 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5266 			ping |= E1000_VT_MSGTYPE_CTS;
5267 		igb_write_mbx(hw, &ping, 1, i);
5268 	}
5269 }
5270 
5271 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5272 {
5273 	struct e1000_hw *hw = &adapter->hw;
5274 	u32 vmolr = rd32(E1000_VMOLR(vf));
5275 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5276 
5277 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5278 			    IGB_VF_FLAG_MULTI_PROMISC);
5279 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5280 
5281 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5282 		vmolr |= E1000_VMOLR_MPME;
5283 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5284 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5285 	} else {
5286 		/* if we have hashes and we are clearing a multicast promisc
5287 		 * flag we need to write the hashes to the MTA as this step
5288 		 * was previously skipped
5289 		 */
5290 		if (vf_data->num_vf_mc_hashes > 30) {
5291 			vmolr |= E1000_VMOLR_MPME;
5292 		} else if (vf_data->num_vf_mc_hashes) {
5293 			int j;
5294 			vmolr |= E1000_VMOLR_ROMPE;
5295 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5296 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5297 		}
5298 	}
5299 
5300 	wr32(E1000_VMOLR(vf), vmolr);
5301 
5302 	/* there are flags left unprocessed, likely not supported */
5303 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5304 		return -EINVAL;
5305 
5306 	return 0;
5307 }
5308 
5309 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5310 				  u32 *msgbuf, u32 vf)
5311 {
5312 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5313 	u16 *hash_list = (u16 *)&msgbuf[1];
5314 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315 	int i;
5316 
5317 	/* salt away the number of multicast addresses assigned
5318 	 * to this VF for later use to restore when the PF multi cast
5319 	 * list changes
5320 	 */
5321 	vf_data->num_vf_mc_hashes = n;
5322 
5323 	/* only up to 30 hash values supported */
5324 	if (n > 30)
5325 		n = 30;
5326 
5327 	/* store the hashes for later use */
5328 	for (i = 0; i < n; i++)
5329 		vf_data->vf_mc_hashes[i] = hash_list[i];
5330 
5331 	/* Flush and reset the mta with the new values */
5332 	igb_set_rx_mode(adapter->netdev);
5333 
5334 	return 0;
5335 }
5336 
5337 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5338 {
5339 	struct e1000_hw *hw = &adapter->hw;
5340 	struct vf_data_storage *vf_data;
5341 	int i, j;
5342 
5343 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5344 		u32 vmolr = rd32(E1000_VMOLR(i));
5345 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5346 
5347 		vf_data = &adapter->vf_data[i];
5348 
5349 		if ((vf_data->num_vf_mc_hashes > 30) ||
5350 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5351 			vmolr |= E1000_VMOLR_MPME;
5352 		} else if (vf_data->num_vf_mc_hashes) {
5353 			vmolr |= E1000_VMOLR_ROMPE;
5354 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5355 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5356 		}
5357 		wr32(E1000_VMOLR(i), vmolr);
5358 	}
5359 }
5360 
5361 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5362 {
5363 	struct e1000_hw *hw = &adapter->hw;
5364 	u32 pool_mask, reg, vid;
5365 	int i;
5366 
5367 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5368 
5369 	/* Find the vlan filter for this id */
5370 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5371 		reg = rd32(E1000_VLVF(i));
5372 
5373 		/* remove the vf from the pool */
5374 		reg &= ~pool_mask;
5375 
5376 		/* if pool is empty then remove entry from vfta */
5377 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5378 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5379 			reg = 0;
5380 			vid = reg & E1000_VLVF_VLANID_MASK;
5381 			igb_vfta_set(hw, vid, false);
5382 		}
5383 
5384 		wr32(E1000_VLVF(i), reg);
5385 	}
5386 
5387 	adapter->vf_data[vf].vlans_enabled = 0;
5388 }
5389 
5390 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5391 {
5392 	struct e1000_hw *hw = &adapter->hw;
5393 	u32 reg, i;
5394 
5395 	/* The vlvf table only exists on 82576 hardware and newer */
5396 	if (hw->mac.type < e1000_82576)
5397 		return -1;
5398 
5399 	/* we only need to do this if VMDq is enabled */
5400 	if (!adapter->vfs_allocated_count)
5401 		return -1;
5402 
5403 	/* Find the vlan filter for this id */
5404 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5405 		reg = rd32(E1000_VLVF(i));
5406 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5407 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5408 			break;
5409 	}
5410 
5411 	if (add) {
5412 		if (i == E1000_VLVF_ARRAY_SIZE) {
5413 			/* Did not find a matching VLAN ID entry that was
5414 			 * enabled.  Search for a free filter entry, i.e.
5415 			 * one without the enable bit set
5416 			 */
5417 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5418 				reg = rd32(E1000_VLVF(i));
5419 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5420 					break;
5421 			}
5422 		}
5423 		if (i < E1000_VLVF_ARRAY_SIZE) {
5424 			/* Found an enabled/available entry */
5425 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5426 
5427 			/* if !enabled we need to set this up in vfta */
5428 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5429 				/* add VID to filter table */
5430 				igb_vfta_set(hw, vid, true);
5431 				reg |= E1000_VLVF_VLANID_ENABLE;
5432 			}
5433 			reg &= ~E1000_VLVF_VLANID_MASK;
5434 			reg |= vid;
5435 			wr32(E1000_VLVF(i), reg);
5436 
5437 			/* do not modify RLPML for PF devices */
5438 			if (vf >= adapter->vfs_allocated_count)
5439 				return 0;
5440 
5441 			if (!adapter->vf_data[vf].vlans_enabled) {
5442 				u32 size;
5443 				reg = rd32(E1000_VMOLR(vf));
5444 				size = reg & E1000_VMOLR_RLPML_MASK;
5445 				size += 4;
5446 				reg &= ~E1000_VMOLR_RLPML_MASK;
5447 				reg |= size;
5448 				wr32(E1000_VMOLR(vf), reg);
5449 			}
5450 
5451 			adapter->vf_data[vf].vlans_enabled++;
5452 		}
5453 	} else {
5454 		if (i < E1000_VLVF_ARRAY_SIZE) {
5455 			/* remove vf from the pool */
5456 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5457 			/* if pool is empty then remove entry from vfta */
5458 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5459 				reg = 0;
5460 				igb_vfta_set(hw, vid, false);
5461 			}
5462 			wr32(E1000_VLVF(i), reg);
5463 
5464 			/* do not modify RLPML for PF devices */
5465 			if (vf >= adapter->vfs_allocated_count)
5466 				return 0;
5467 
5468 			adapter->vf_data[vf].vlans_enabled--;
5469 			if (!adapter->vf_data[vf].vlans_enabled) {
5470 				u32 size;
5471 				reg = rd32(E1000_VMOLR(vf));
5472 				size = reg & E1000_VMOLR_RLPML_MASK;
5473 				size -= 4;
5474 				reg &= ~E1000_VMOLR_RLPML_MASK;
5475 				reg |= size;
5476 				wr32(E1000_VMOLR(vf), reg);
5477 			}
5478 		}
5479 	}
5480 	return 0;
5481 }
5482 
5483 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5484 {
5485 	struct e1000_hw *hw = &adapter->hw;
5486 
5487 	if (vid)
5488 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5489 	else
5490 		wr32(E1000_VMVIR(vf), 0);
5491 }
5492 
5493 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5494 			       int vf, u16 vlan, u8 qos)
5495 {
5496 	int err = 0;
5497 	struct igb_adapter *adapter = netdev_priv(netdev);
5498 
5499 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5500 		return -EINVAL;
5501 	if (vlan || qos) {
5502 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5503 		if (err)
5504 			goto out;
5505 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5506 		igb_set_vmolr(adapter, vf, !vlan);
5507 		adapter->vf_data[vf].pf_vlan = vlan;
5508 		adapter->vf_data[vf].pf_qos = qos;
5509 		dev_info(&adapter->pdev->dev,
5510 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5511 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5512 			dev_warn(&adapter->pdev->dev,
5513 				 "The VF VLAN has been set, but the PF device is not up.\n");
5514 			dev_warn(&adapter->pdev->dev,
5515 				 "Bring the PF device up before attempting to use the VF device.\n");
5516 		}
5517 	} else {
5518 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5519 			     false, vf);
5520 		igb_set_vmvir(adapter, vlan, vf);
5521 		igb_set_vmolr(adapter, vf, true);
5522 		adapter->vf_data[vf].pf_vlan = 0;
5523 		adapter->vf_data[vf].pf_qos = 0;
5524 	}
5525 out:
5526 	return err;
5527 }
5528 
5529 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5530 {
5531 	struct e1000_hw *hw = &adapter->hw;
5532 	int i;
5533 	u32 reg;
5534 
5535 	/* Find the vlan filter for this id */
5536 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5537 		reg = rd32(E1000_VLVF(i));
5538 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5539 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5540 			break;
5541 	}
5542 
5543 	if (i >= E1000_VLVF_ARRAY_SIZE)
5544 		i = -1;
5545 
5546 	return i;
5547 }
5548 
5549 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5550 {
5551 	struct e1000_hw *hw = &adapter->hw;
5552 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5553 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5554 	int err = 0;
5555 
5556 	/* If in promiscuous mode we need to make sure the PF also has
5557 	 * the VLAN filter set.
5558 	 */
5559 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5560 		err = igb_vlvf_set(adapter, vid, add,
5561 				   adapter->vfs_allocated_count);
5562 	if (err)
5563 		goto out;
5564 
5565 	err = igb_vlvf_set(adapter, vid, add, vf);
5566 
5567 	if (err)
5568 		goto out;
5569 
5570 	/* Go through all the checks to see if the VLAN filter should
5571 	 * be wiped completely.
5572 	 */
5573 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5574 		u32 vlvf, bits;
5575 
5576 		int regndx = igb_find_vlvf_entry(adapter, vid);
5577 		if (regndx < 0)
5578 			goto out;
5579 		/* See if any other pools are set for this VLAN filter
5580 		 * entry other than the PF.
5581 		 */
5582 		vlvf = bits = rd32(E1000_VLVF(regndx));
5583 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5584 			      adapter->vfs_allocated_count);
5585 		/* If the filter was removed then ensure PF pool bit
5586 		 * is cleared if the PF only added itself to the pool
5587 		 * because the PF is in promiscuous mode.
5588 		 */
5589 		if ((vlvf & VLAN_VID_MASK) == vid &&
5590 		    !test_bit(vid, adapter->active_vlans) &&
5591 		    !bits)
5592 			igb_vlvf_set(adapter, vid, add,
5593 				     adapter->vfs_allocated_count);
5594 	}
5595 
5596 out:
5597 	return err;
5598 }
5599 
5600 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5601 {
5602 	/* clear flags - except flag that indicates PF has set the MAC */
5603 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5604 	adapter->vf_data[vf].last_nack = jiffies;
5605 
5606 	/* reset offloads to defaults */
5607 	igb_set_vmolr(adapter, vf, true);
5608 
5609 	/* reset vlans for device */
5610 	igb_clear_vf_vfta(adapter, vf);
5611 	if (adapter->vf_data[vf].pf_vlan)
5612 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5613 				    adapter->vf_data[vf].pf_vlan,
5614 				    adapter->vf_data[vf].pf_qos);
5615 	else
5616 		igb_clear_vf_vfta(adapter, vf);
5617 
5618 	/* reset multicast table array for vf */
5619 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5620 
5621 	/* Flush and reset the mta with the new values */
5622 	igb_set_rx_mode(adapter->netdev);
5623 }
5624 
5625 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5626 {
5627 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5628 
5629 	/* clear mac address as we were hotplug removed/added */
5630 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5631 		eth_zero_addr(vf_mac);
5632 
5633 	/* process remaining reset events */
5634 	igb_vf_reset(adapter, vf);
5635 }
5636 
5637 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5638 {
5639 	struct e1000_hw *hw = &adapter->hw;
5640 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5641 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5642 	u32 reg, msgbuf[3];
5643 	u8 *addr = (u8 *)(&msgbuf[1]);
5644 
5645 	/* process all the same items cleared in a function level reset */
5646 	igb_vf_reset(adapter, vf);
5647 
5648 	/* set vf mac address */
5649 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5650 
5651 	/* enable transmit and receive for vf */
5652 	reg = rd32(E1000_VFTE);
5653 	wr32(E1000_VFTE, reg | (1 << vf));
5654 	reg = rd32(E1000_VFRE);
5655 	wr32(E1000_VFRE, reg | (1 << vf));
5656 
5657 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5658 
5659 	/* reply to reset with ack and vf mac address */
5660 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5661 	memcpy(addr, vf_mac, 6);
5662 	igb_write_mbx(hw, msgbuf, 3, vf);
5663 }
5664 
5665 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5666 {
5667 	/* The VF MAC Address is stored in a packed array of bytes
5668 	 * starting at the second 32 bit word of the msg array
5669 	 */
5670 	unsigned char *addr = (char *)&msg[1];
5671 	int err = -1;
5672 
5673 	if (is_valid_ether_addr(addr))
5674 		err = igb_set_vf_mac(adapter, vf, addr);
5675 
5676 	return err;
5677 }
5678 
5679 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5680 {
5681 	struct e1000_hw *hw = &adapter->hw;
5682 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5683 	u32 msg = E1000_VT_MSGTYPE_NACK;
5684 
5685 	/* if device isn't clear to send it shouldn't be reading either */
5686 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5687 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5688 		igb_write_mbx(hw, &msg, 1, vf);
5689 		vf_data->last_nack = jiffies;
5690 	}
5691 }
5692 
5693 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5694 {
5695 	struct pci_dev *pdev = adapter->pdev;
5696 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5697 	struct e1000_hw *hw = &adapter->hw;
5698 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5699 	s32 retval;
5700 
5701 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5702 
5703 	if (retval) {
5704 		/* if receive failed revoke VF CTS stats and restart init */
5705 		dev_err(&pdev->dev, "Error receiving message from VF\n");
5706 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5707 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5708 			return;
5709 		goto out;
5710 	}
5711 
5712 	/* this is a message we already processed, do nothing */
5713 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5714 		return;
5715 
5716 	/* until the vf completes a reset it should not be
5717 	 * allowed to start any configuration.
5718 	 */
5719 	if (msgbuf[0] == E1000_VF_RESET) {
5720 		igb_vf_reset_msg(adapter, vf);
5721 		return;
5722 	}
5723 
5724 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5725 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5726 			return;
5727 		retval = -1;
5728 		goto out;
5729 	}
5730 
5731 	switch ((msgbuf[0] & 0xFFFF)) {
5732 	case E1000_VF_SET_MAC_ADDR:
5733 		retval = -EINVAL;
5734 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5735 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5736 		else
5737 			dev_warn(&pdev->dev,
5738 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5739 				 vf);
5740 		break;
5741 	case E1000_VF_SET_PROMISC:
5742 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5743 		break;
5744 	case E1000_VF_SET_MULTICAST:
5745 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5746 		break;
5747 	case E1000_VF_SET_LPE:
5748 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5749 		break;
5750 	case E1000_VF_SET_VLAN:
5751 		retval = -1;
5752 		if (vf_data->pf_vlan)
5753 			dev_warn(&pdev->dev,
5754 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5755 				 vf);
5756 		else
5757 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5758 		break;
5759 	default:
5760 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5761 		retval = -1;
5762 		break;
5763 	}
5764 
5765 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5766 out:
5767 	/* notify the VF of the results of what it sent us */
5768 	if (retval)
5769 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5770 	else
5771 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5772 
5773 	igb_write_mbx(hw, msgbuf, 1, vf);
5774 }
5775 
5776 static void igb_msg_task(struct igb_adapter *adapter)
5777 {
5778 	struct e1000_hw *hw = &adapter->hw;
5779 	u32 vf;
5780 
5781 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5782 		/* process any reset requests */
5783 		if (!igb_check_for_rst(hw, vf))
5784 			igb_vf_reset_event(adapter, vf);
5785 
5786 		/* process any messages pending */
5787 		if (!igb_check_for_msg(hw, vf))
5788 			igb_rcv_msg_from_vf(adapter, vf);
5789 
5790 		/* process any acks */
5791 		if (!igb_check_for_ack(hw, vf))
5792 			igb_rcv_ack_from_vf(adapter, vf);
5793 	}
5794 }
5795 
5796 /**
5797  *  igb_set_uta - Set unicast filter table address
5798  *  @adapter: board private structure
5799  *
5800  *  The unicast table address is a register array of 32-bit registers.
5801  *  The table is meant to be used in a way similar to how the MTA is used
5802  *  however due to certain limitations in the hardware it is necessary to
5803  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5804  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5805  **/
5806 static void igb_set_uta(struct igb_adapter *adapter)
5807 {
5808 	struct e1000_hw *hw = &adapter->hw;
5809 	int i;
5810 
5811 	/* The UTA table only exists on 82576 hardware and newer */
5812 	if (hw->mac.type < e1000_82576)
5813 		return;
5814 
5815 	/* we only need to do this if VMDq is enabled */
5816 	if (!adapter->vfs_allocated_count)
5817 		return;
5818 
5819 	for (i = 0; i < hw->mac.uta_reg_count; i++)
5820 		array_wr32(E1000_UTA, i, ~0);
5821 }
5822 
5823 /**
5824  *  igb_intr_msi - Interrupt Handler
5825  *  @irq: interrupt number
5826  *  @data: pointer to a network interface device structure
5827  **/
5828 static irqreturn_t igb_intr_msi(int irq, void *data)
5829 {
5830 	struct igb_adapter *adapter = data;
5831 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5832 	struct e1000_hw *hw = &adapter->hw;
5833 	/* read ICR disables interrupts using IAM */
5834 	u32 icr = rd32(E1000_ICR);
5835 
5836 	igb_write_itr(q_vector);
5837 
5838 	if (icr & E1000_ICR_DRSTA)
5839 		schedule_work(&adapter->reset_task);
5840 
5841 	if (icr & E1000_ICR_DOUTSYNC) {
5842 		/* HW is reporting DMA is out of sync */
5843 		adapter->stats.doosync++;
5844 	}
5845 
5846 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5847 		hw->mac.get_link_status = 1;
5848 		if (!test_bit(__IGB_DOWN, &adapter->state))
5849 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5850 	}
5851 
5852 	if (icr & E1000_ICR_TS) {
5853 		u32 tsicr = rd32(E1000_TSICR);
5854 
5855 		if (tsicr & E1000_TSICR_TXTS) {
5856 			/* acknowledge the interrupt */
5857 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5858 			/* retrieve hardware timestamp */
5859 			schedule_work(&adapter->ptp_tx_work);
5860 		}
5861 	}
5862 
5863 	napi_schedule(&q_vector->napi);
5864 
5865 	return IRQ_HANDLED;
5866 }
5867 
5868 /**
5869  *  igb_intr - Legacy Interrupt Handler
5870  *  @irq: interrupt number
5871  *  @data: pointer to a network interface device structure
5872  **/
5873 static irqreturn_t igb_intr(int irq, void *data)
5874 {
5875 	struct igb_adapter *adapter = data;
5876 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5877 	struct e1000_hw *hw = &adapter->hw;
5878 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5879 	 * need for the IMC write
5880 	 */
5881 	u32 icr = rd32(E1000_ICR);
5882 
5883 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5884 	 * not set, then the adapter didn't send an interrupt
5885 	 */
5886 	if (!(icr & E1000_ICR_INT_ASSERTED))
5887 		return IRQ_NONE;
5888 
5889 	igb_write_itr(q_vector);
5890 
5891 	if (icr & E1000_ICR_DRSTA)
5892 		schedule_work(&adapter->reset_task);
5893 
5894 	if (icr & E1000_ICR_DOUTSYNC) {
5895 		/* HW is reporting DMA is out of sync */
5896 		adapter->stats.doosync++;
5897 	}
5898 
5899 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5900 		hw->mac.get_link_status = 1;
5901 		/* guard against interrupt when we're going down */
5902 		if (!test_bit(__IGB_DOWN, &adapter->state))
5903 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5904 	}
5905 
5906 	if (icr & E1000_ICR_TS) {
5907 		u32 tsicr = rd32(E1000_TSICR);
5908 
5909 		if (tsicr & E1000_TSICR_TXTS) {
5910 			/* acknowledge the interrupt */
5911 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5912 			/* retrieve hardware timestamp */
5913 			schedule_work(&adapter->ptp_tx_work);
5914 		}
5915 	}
5916 
5917 	napi_schedule(&q_vector->napi);
5918 
5919 	return IRQ_HANDLED;
5920 }
5921 
5922 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5923 {
5924 	struct igb_adapter *adapter = q_vector->adapter;
5925 	struct e1000_hw *hw = &adapter->hw;
5926 
5927 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5928 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5929 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5930 			igb_set_itr(q_vector);
5931 		else
5932 			igb_update_ring_itr(q_vector);
5933 	}
5934 
5935 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5936 		if (adapter->msix_entries)
5937 			wr32(E1000_EIMS, q_vector->eims_value);
5938 		else
5939 			igb_irq_enable(adapter);
5940 	}
5941 }
5942 
5943 /**
5944  *  igb_poll - NAPI Rx polling callback
5945  *  @napi: napi polling structure
5946  *  @budget: count of how many packets we should handle
5947  **/
5948 static int igb_poll(struct napi_struct *napi, int budget)
5949 {
5950 	struct igb_q_vector *q_vector = container_of(napi,
5951 						     struct igb_q_vector,
5952 						     napi);
5953 	bool clean_complete = true;
5954 
5955 #ifdef CONFIG_IGB_DCA
5956 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5957 		igb_update_dca(q_vector);
5958 #endif
5959 	if (q_vector->tx.ring)
5960 		clean_complete = igb_clean_tx_irq(q_vector);
5961 
5962 	if (q_vector->rx.ring)
5963 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5964 
5965 	/* If all work not completed, return budget and keep polling */
5966 	if (!clean_complete)
5967 		return budget;
5968 
5969 	/* If not enough Rx work done, exit the polling mode */
5970 	napi_complete(napi);
5971 	igb_ring_irq_enable(q_vector);
5972 
5973 	return 0;
5974 }
5975 
5976 /**
5977  *  igb_clean_tx_irq - Reclaim resources after transmit completes
5978  *  @q_vector: pointer to q_vector containing needed info
5979  *
5980  *  returns true if ring is completely cleaned
5981  **/
5982 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5983 {
5984 	struct igb_adapter *adapter = q_vector->adapter;
5985 	struct igb_ring *tx_ring = q_vector->tx.ring;
5986 	struct igb_tx_buffer *tx_buffer;
5987 	union e1000_adv_tx_desc *tx_desc;
5988 	unsigned int total_bytes = 0, total_packets = 0;
5989 	unsigned int budget = q_vector->tx.work_limit;
5990 	unsigned int i = tx_ring->next_to_clean;
5991 
5992 	if (test_bit(__IGB_DOWN, &adapter->state))
5993 		return true;
5994 
5995 	tx_buffer = &tx_ring->tx_buffer_info[i];
5996 	tx_desc = IGB_TX_DESC(tx_ring, i);
5997 	i -= tx_ring->count;
5998 
5999 	do {
6000 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6001 
6002 		/* if next_to_watch is not set then there is no work pending */
6003 		if (!eop_desc)
6004 			break;
6005 
6006 		/* prevent any other reads prior to eop_desc */
6007 		read_barrier_depends();
6008 
6009 		/* if DD is not set pending work has not been completed */
6010 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6011 			break;
6012 
6013 		/* clear next_to_watch to prevent false hangs */
6014 		tx_buffer->next_to_watch = NULL;
6015 
6016 		/* update the statistics for this packet */
6017 		total_bytes += tx_buffer->bytecount;
6018 		total_packets += tx_buffer->gso_segs;
6019 
6020 		/* free the skb */
6021 		dev_kfree_skb_any(tx_buffer->skb);
6022 
6023 		/* unmap skb header data */
6024 		dma_unmap_single(tx_ring->dev,
6025 				 dma_unmap_addr(tx_buffer, dma),
6026 				 dma_unmap_len(tx_buffer, len),
6027 				 DMA_TO_DEVICE);
6028 
6029 		/* clear tx_buffer data */
6030 		tx_buffer->skb = NULL;
6031 		dma_unmap_len_set(tx_buffer, len, 0);
6032 
6033 		/* clear last DMA location and unmap remaining buffers */
6034 		while (tx_desc != eop_desc) {
6035 			tx_buffer++;
6036 			tx_desc++;
6037 			i++;
6038 			if (unlikely(!i)) {
6039 				i -= tx_ring->count;
6040 				tx_buffer = tx_ring->tx_buffer_info;
6041 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6042 			}
6043 
6044 			/* unmap any remaining paged data */
6045 			if (dma_unmap_len(tx_buffer, len)) {
6046 				dma_unmap_page(tx_ring->dev,
6047 					       dma_unmap_addr(tx_buffer, dma),
6048 					       dma_unmap_len(tx_buffer, len),
6049 					       DMA_TO_DEVICE);
6050 				dma_unmap_len_set(tx_buffer, len, 0);
6051 			}
6052 		}
6053 
6054 		/* move us one more past the eop_desc for start of next pkt */
6055 		tx_buffer++;
6056 		tx_desc++;
6057 		i++;
6058 		if (unlikely(!i)) {
6059 			i -= tx_ring->count;
6060 			tx_buffer = tx_ring->tx_buffer_info;
6061 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6062 		}
6063 
6064 		/* issue prefetch for next Tx descriptor */
6065 		prefetch(tx_desc);
6066 
6067 		/* update budget accounting */
6068 		budget--;
6069 	} while (likely(budget));
6070 
6071 	netdev_tx_completed_queue(txring_txq(tx_ring),
6072 				  total_packets, total_bytes);
6073 	i += tx_ring->count;
6074 	tx_ring->next_to_clean = i;
6075 	u64_stats_update_begin(&tx_ring->tx_syncp);
6076 	tx_ring->tx_stats.bytes += total_bytes;
6077 	tx_ring->tx_stats.packets += total_packets;
6078 	u64_stats_update_end(&tx_ring->tx_syncp);
6079 	q_vector->tx.total_bytes += total_bytes;
6080 	q_vector->tx.total_packets += total_packets;
6081 
6082 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6083 		struct e1000_hw *hw = &adapter->hw;
6084 
6085 		/* Detect a transmit hang in hardware, this serializes the
6086 		 * check with the clearing of time_stamp and movement of i
6087 		 */
6088 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6089 		if (tx_buffer->next_to_watch &&
6090 		    time_after(jiffies, tx_buffer->time_stamp +
6091 			       (adapter->tx_timeout_factor * HZ)) &&
6092 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6093 
6094 			/* detected Tx unit hang */
6095 			dev_err(tx_ring->dev,
6096 				"Detected Tx Unit Hang\n"
6097 				"  Tx Queue             <%d>\n"
6098 				"  TDH                  <%x>\n"
6099 				"  TDT                  <%x>\n"
6100 				"  next_to_use          <%x>\n"
6101 				"  next_to_clean        <%x>\n"
6102 				"buffer_info[next_to_clean]\n"
6103 				"  time_stamp           <%lx>\n"
6104 				"  next_to_watch        <%p>\n"
6105 				"  jiffies              <%lx>\n"
6106 				"  desc.status          <%x>\n",
6107 				tx_ring->queue_index,
6108 				rd32(E1000_TDH(tx_ring->reg_idx)),
6109 				readl(tx_ring->tail),
6110 				tx_ring->next_to_use,
6111 				tx_ring->next_to_clean,
6112 				tx_buffer->time_stamp,
6113 				tx_buffer->next_to_watch,
6114 				jiffies,
6115 				tx_buffer->next_to_watch->wb.status);
6116 			netif_stop_subqueue(tx_ring->netdev,
6117 					    tx_ring->queue_index);
6118 
6119 			/* we are about to reset, no point in enabling stuff */
6120 			return true;
6121 		}
6122 	}
6123 
6124 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6125 	if (unlikely(total_packets &&
6126 	    netif_carrier_ok(tx_ring->netdev) &&
6127 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6128 		/* Make sure that anybody stopping the queue after this
6129 		 * sees the new next_to_clean.
6130 		 */
6131 		smp_mb();
6132 		if (__netif_subqueue_stopped(tx_ring->netdev,
6133 					     tx_ring->queue_index) &&
6134 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6135 			netif_wake_subqueue(tx_ring->netdev,
6136 					    tx_ring->queue_index);
6137 
6138 			u64_stats_update_begin(&tx_ring->tx_syncp);
6139 			tx_ring->tx_stats.restart_queue++;
6140 			u64_stats_update_end(&tx_ring->tx_syncp);
6141 		}
6142 	}
6143 
6144 	return !!budget;
6145 }
6146 
6147 /**
6148  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6149  *  @rx_ring: rx descriptor ring to store buffers on
6150  *  @old_buff: donor buffer to have page reused
6151  *
6152  *  Synchronizes page for reuse by the adapter
6153  **/
6154 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6155 			      struct igb_rx_buffer *old_buff)
6156 {
6157 	struct igb_rx_buffer *new_buff;
6158 	u16 nta = rx_ring->next_to_alloc;
6159 
6160 	new_buff = &rx_ring->rx_buffer_info[nta];
6161 
6162 	/* update, and store next to alloc */
6163 	nta++;
6164 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6165 
6166 	/* transfer page from old buffer to new buffer */
6167 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6168 
6169 	/* sync the buffer for use by the device */
6170 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6171 					 old_buff->page_offset,
6172 					 IGB_RX_BUFSZ,
6173 					 DMA_FROM_DEVICE);
6174 }
6175 
6176 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6177 				  struct page *page,
6178 				  unsigned int truesize)
6179 {
6180 	/* avoid re-using remote pages */
6181 	if (unlikely(page_to_nid(page) != numa_node_id()))
6182 		return false;
6183 
6184 #if (PAGE_SIZE < 8192)
6185 	/* if we are only owner of page we can reuse it */
6186 	if (unlikely(page_count(page) != 1))
6187 		return false;
6188 
6189 	/* flip page offset to other buffer */
6190 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6191 
6192 	/* since we are the only owner of the page and we need to
6193 	 * increment it, just set the value to 2 in order to avoid
6194 	 * an unnecessary locked operation
6195 	 */
6196 	atomic_set(&page->_count, 2);
6197 #else
6198 	/* move offset up to the next cache line */
6199 	rx_buffer->page_offset += truesize;
6200 
6201 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6202 		return false;
6203 
6204 	/* bump ref count on page before it is given to the stack */
6205 	get_page(page);
6206 #endif
6207 
6208 	return true;
6209 }
6210 
6211 /**
6212  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6213  *  @rx_ring: rx descriptor ring to transact packets on
6214  *  @rx_buffer: buffer containing page to add
6215  *  @rx_desc: descriptor containing length of buffer written by hardware
6216  *  @skb: sk_buff to place the data into
6217  *
6218  *  This function will add the data contained in rx_buffer->page to the skb.
6219  *  This is done either through a direct copy if the data in the buffer is
6220  *  less than the skb header size, otherwise it will just attach the page as
6221  *  a frag to the skb.
6222  *
6223  *  The function will then update the page offset if necessary and return
6224  *  true if the buffer can be reused by the adapter.
6225  **/
6226 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6227 			    struct igb_rx_buffer *rx_buffer,
6228 			    union e1000_adv_rx_desc *rx_desc,
6229 			    struct sk_buff *skb)
6230 {
6231 	struct page *page = rx_buffer->page;
6232 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6233 #if (PAGE_SIZE < 8192)
6234 	unsigned int truesize = IGB_RX_BUFSZ;
6235 #else
6236 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6237 #endif
6238 
6239 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6240 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6241 
6242 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6243 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6244 			va += IGB_TS_HDR_LEN;
6245 			size -= IGB_TS_HDR_LEN;
6246 		}
6247 
6248 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6249 
6250 		/* we can reuse buffer as-is, just make sure it is local */
6251 		if (likely(page_to_nid(page) == numa_node_id()))
6252 			return true;
6253 
6254 		/* this page cannot be reused so discard it */
6255 		put_page(page);
6256 		return false;
6257 	}
6258 
6259 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6260 			rx_buffer->page_offset, size, truesize);
6261 
6262 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6263 }
6264 
6265 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6266 					   union e1000_adv_rx_desc *rx_desc,
6267 					   struct sk_buff *skb)
6268 {
6269 	struct igb_rx_buffer *rx_buffer;
6270 	struct page *page;
6271 
6272 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6273 
6274 	page = rx_buffer->page;
6275 	prefetchw(page);
6276 
6277 	if (likely(!skb)) {
6278 		void *page_addr = page_address(page) +
6279 				  rx_buffer->page_offset;
6280 
6281 		/* prefetch first cache line of first page */
6282 		prefetch(page_addr);
6283 #if L1_CACHE_BYTES < 128
6284 		prefetch(page_addr + L1_CACHE_BYTES);
6285 #endif
6286 
6287 		/* allocate a skb to store the frags */
6288 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6289 						IGB_RX_HDR_LEN);
6290 		if (unlikely(!skb)) {
6291 			rx_ring->rx_stats.alloc_failed++;
6292 			return NULL;
6293 		}
6294 
6295 		/* we will be copying header into skb->data in
6296 		 * pskb_may_pull so it is in our interest to prefetch
6297 		 * it now to avoid a possible cache miss
6298 		 */
6299 		prefetchw(skb->data);
6300 	}
6301 
6302 	/* we are reusing so sync this buffer for CPU use */
6303 	dma_sync_single_range_for_cpu(rx_ring->dev,
6304 				      rx_buffer->dma,
6305 				      rx_buffer->page_offset,
6306 				      IGB_RX_BUFSZ,
6307 				      DMA_FROM_DEVICE);
6308 
6309 	/* pull page into skb */
6310 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6311 		/* hand second half of page back to the ring */
6312 		igb_reuse_rx_page(rx_ring, rx_buffer);
6313 	} else {
6314 		/* we are not reusing the buffer so unmap it */
6315 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6316 			       PAGE_SIZE, DMA_FROM_DEVICE);
6317 	}
6318 
6319 	/* clear contents of rx_buffer */
6320 	rx_buffer->page = NULL;
6321 
6322 	return skb;
6323 }
6324 
6325 static inline void igb_rx_checksum(struct igb_ring *ring,
6326 				   union e1000_adv_rx_desc *rx_desc,
6327 				   struct sk_buff *skb)
6328 {
6329 	skb_checksum_none_assert(skb);
6330 
6331 	/* Ignore Checksum bit is set */
6332 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6333 		return;
6334 
6335 	/* Rx checksum disabled via ethtool */
6336 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6337 		return;
6338 
6339 	/* TCP/UDP checksum error bit is set */
6340 	if (igb_test_staterr(rx_desc,
6341 			     E1000_RXDEXT_STATERR_TCPE |
6342 			     E1000_RXDEXT_STATERR_IPE)) {
6343 		/* work around errata with sctp packets where the TCPE aka
6344 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6345 		 * packets, (aka let the stack check the crc32c)
6346 		 */
6347 		if (!((skb->len == 60) &&
6348 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6349 			u64_stats_update_begin(&ring->rx_syncp);
6350 			ring->rx_stats.csum_err++;
6351 			u64_stats_update_end(&ring->rx_syncp);
6352 		}
6353 		/* let the stack verify checksum errors */
6354 		return;
6355 	}
6356 	/* It must be a TCP or UDP packet with a valid checksum */
6357 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6358 				      E1000_RXD_STAT_UDPCS))
6359 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6360 
6361 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6362 		le32_to_cpu(rx_desc->wb.upper.status_error));
6363 }
6364 
6365 static inline void igb_rx_hash(struct igb_ring *ring,
6366 			       union e1000_adv_rx_desc *rx_desc,
6367 			       struct sk_buff *skb)
6368 {
6369 	if (ring->netdev->features & NETIF_F_RXHASH)
6370 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6371 }
6372 
6373 /**
6374  *  igb_is_non_eop - process handling of non-EOP buffers
6375  *  @rx_ring: Rx ring being processed
6376  *  @rx_desc: Rx descriptor for current buffer
6377  *  @skb: current socket buffer containing buffer in progress
6378  *
6379  *  This function updates next to clean.  If the buffer is an EOP buffer
6380  *  this function exits returning false, otherwise it will place the
6381  *  sk_buff in the next buffer to be chained and return true indicating
6382  *  that this is in fact a non-EOP buffer.
6383  **/
6384 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6385 			   union e1000_adv_rx_desc *rx_desc)
6386 {
6387 	u32 ntc = rx_ring->next_to_clean + 1;
6388 
6389 	/* fetch, update, and store next to clean */
6390 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6391 	rx_ring->next_to_clean = ntc;
6392 
6393 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6394 
6395 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6396 		return false;
6397 
6398 	return true;
6399 }
6400 
6401 /**
6402  *  igb_get_headlen - determine size of header for LRO/GRO
6403  *  @data: pointer to the start of the headers
6404  *  @max_len: total length of section to find headers in
6405  *
6406  *  This function is meant to determine the length of headers that will
6407  *  be recognized by hardware for LRO, and GRO offloads.  The main
6408  *  motivation of doing this is to only perform one pull for IPv4 TCP
6409  *  packets so that we can do basic things like calculating the gso_size
6410  *  based on the average data per packet.
6411  **/
6412 static unsigned int igb_get_headlen(unsigned char *data,
6413 				    unsigned int max_len)
6414 {
6415 	union {
6416 		unsigned char *network;
6417 		/* l2 headers */
6418 		struct ethhdr *eth;
6419 		struct vlan_hdr *vlan;
6420 		/* l3 headers */
6421 		struct iphdr *ipv4;
6422 		struct ipv6hdr *ipv6;
6423 	} hdr;
6424 	__be16 protocol;
6425 	u8 nexthdr = 0;	/* default to not TCP */
6426 	u8 hlen;
6427 
6428 	/* this should never happen, but better safe than sorry */
6429 	if (max_len < ETH_HLEN)
6430 		return max_len;
6431 
6432 	/* initialize network frame pointer */
6433 	hdr.network = data;
6434 
6435 	/* set first protocol and move network header forward */
6436 	protocol = hdr.eth->h_proto;
6437 	hdr.network += ETH_HLEN;
6438 
6439 	/* handle any vlan tag if present */
6440 	if (protocol == __constant_htons(ETH_P_8021Q)) {
6441 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6442 			return max_len;
6443 
6444 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6445 		hdr.network += VLAN_HLEN;
6446 	}
6447 
6448 	/* handle L3 protocols */
6449 	if (protocol == __constant_htons(ETH_P_IP)) {
6450 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6451 			return max_len;
6452 
6453 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6454 		hlen = (hdr.network[0] & 0x0F) << 2;
6455 
6456 		/* verify hlen meets minimum size requirements */
6457 		if (hlen < sizeof(struct iphdr))
6458 			return hdr.network - data;
6459 
6460 		/* record next protocol if header is present */
6461 		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6462 			nexthdr = hdr.ipv4->protocol;
6463 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6464 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6465 			return max_len;
6466 
6467 		/* record next protocol */
6468 		nexthdr = hdr.ipv6->nexthdr;
6469 		hlen = sizeof(struct ipv6hdr);
6470 	} else {
6471 		return hdr.network - data;
6472 	}
6473 
6474 	/* relocate pointer to start of L4 header */
6475 	hdr.network += hlen;
6476 
6477 	/* finally sort out TCP */
6478 	if (nexthdr == IPPROTO_TCP) {
6479 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6480 			return max_len;
6481 
6482 		/* access doff as a u8 to avoid unaligned access on ia64 */
6483 		hlen = (hdr.network[12] & 0xF0) >> 2;
6484 
6485 		/* verify hlen meets minimum size requirements */
6486 		if (hlen < sizeof(struct tcphdr))
6487 			return hdr.network - data;
6488 
6489 		hdr.network += hlen;
6490 	} else if (nexthdr == IPPROTO_UDP) {
6491 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6492 			return max_len;
6493 
6494 		hdr.network += sizeof(struct udphdr);
6495 	}
6496 
6497 	/* If everything has gone correctly hdr.network should be the
6498 	 * data section of the packet and will be the end of the header.
6499 	 * If not then it probably represents the end of the last recognized
6500 	 * header.
6501 	 */
6502 	if ((hdr.network - data) < max_len)
6503 		return hdr.network - data;
6504 	else
6505 		return max_len;
6506 }
6507 
6508 /**
6509  *  igb_pull_tail - igb specific version of skb_pull_tail
6510  *  @rx_ring: rx descriptor ring packet is being transacted on
6511  *  @rx_desc: pointer to the EOP Rx descriptor
6512  *  @skb: pointer to current skb being adjusted
6513  *
6514  *  This function is an igb specific version of __pskb_pull_tail.  The
6515  *  main difference between this version and the original function is that
6516  *  this function can make several assumptions about the state of things
6517  *  that allow for significant optimizations versus the standard function.
6518  *  As a result we can do things like drop a frag and maintain an accurate
6519  *  truesize for the skb.
6520  */
6521 static void igb_pull_tail(struct igb_ring *rx_ring,
6522 			  union e1000_adv_rx_desc *rx_desc,
6523 			  struct sk_buff *skb)
6524 {
6525 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6526 	unsigned char *va;
6527 	unsigned int pull_len;
6528 
6529 	/* it is valid to use page_address instead of kmap since we are
6530 	 * working with pages allocated out of the lomem pool per
6531 	 * alloc_page(GFP_ATOMIC)
6532 	 */
6533 	va = skb_frag_address(frag);
6534 
6535 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6536 		/* retrieve timestamp from buffer */
6537 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6538 
6539 		/* update pointers to remove timestamp header */
6540 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6541 		frag->page_offset += IGB_TS_HDR_LEN;
6542 		skb->data_len -= IGB_TS_HDR_LEN;
6543 		skb->len -= IGB_TS_HDR_LEN;
6544 
6545 		/* move va to start of packet data */
6546 		va += IGB_TS_HDR_LEN;
6547 	}
6548 
6549 	/* we need the header to contain the greater of either ETH_HLEN or
6550 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6551 	 */
6552 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6553 
6554 	/* align pull length to size of long to optimize memcpy performance */
6555 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6556 
6557 	/* update all of the pointers */
6558 	skb_frag_size_sub(frag, pull_len);
6559 	frag->page_offset += pull_len;
6560 	skb->data_len -= pull_len;
6561 	skb->tail += pull_len;
6562 }
6563 
6564 /**
6565  *  igb_cleanup_headers - Correct corrupted or empty headers
6566  *  @rx_ring: rx descriptor ring packet is being transacted on
6567  *  @rx_desc: pointer to the EOP Rx descriptor
6568  *  @skb: pointer to current skb being fixed
6569  *
6570  *  Address the case where we are pulling data in on pages only
6571  *  and as such no data is present in the skb header.
6572  *
6573  *  In addition if skb is not at least 60 bytes we need to pad it so that
6574  *  it is large enough to qualify as a valid Ethernet frame.
6575  *
6576  *  Returns true if an error was encountered and skb was freed.
6577  **/
6578 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6579 				union e1000_adv_rx_desc *rx_desc,
6580 				struct sk_buff *skb)
6581 {
6582 	if (unlikely((igb_test_staterr(rx_desc,
6583 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6584 		struct net_device *netdev = rx_ring->netdev;
6585 		if (!(netdev->features & NETIF_F_RXALL)) {
6586 			dev_kfree_skb_any(skb);
6587 			return true;
6588 		}
6589 	}
6590 
6591 	/* place header in linear portion of buffer */
6592 	if (skb_is_nonlinear(skb))
6593 		igb_pull_tail(rx_ring, rx_desc, skb);
6594 
6595 	/* if skb_pad returns an error the skb was freed */
6596 	if (unlikely(skb->len < 60)) {
6597 		int pad_len = 60 - skb->len;
6598 
6599 		if (skb_pad(skb, pad_len))
6600 			return true;
6601 		__skb_put(skb, pad_len);
6602 	}
6603 
6604 	return false;
6605 }
6606 
6607 /**
6608  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6609  *  @rx_ring: rx descriptor ring packet is being transacted on
6610  *  @rx_desc: pointer to the EOP Rx descriptor
6611  *  @skb: pointer to current skb being populated
6612  *
6613  *  This function checks the ring, descriptor, and packet information in
6614  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6615  *  other fields within the skb.
6616  **/
6617 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6618 				   union e1000_adv_rx_desc *rx_desc,
6619 				   struct sk_buff *skb)
6620 {
6621 	struct net_device *dev = rx_ring->netdev;
6622 
6623 	igb_rx_hash(rx_ring, rx_desc, skb);
6624 
6625 	igb_rx_checksum(rx_ring, rx_desc, skb);
6626 
6627 	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6628 
6629 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6630 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6631 		u16 vid;
6632 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6633 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6634 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6635 		else
6636 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6637 
6638 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6639 	}
6640 
6641 	skb_record_rx_queue(skb, rx_ring->queue_index);
6642 
6643 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6644 }
6645 
6646 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6647 {
6648 	struct igb_ring *rx_ring = q_vector->rx.ring;
6649 	struct sk_buff *skb = rx_ring->skb;
6650 	unsigned int total_bytes = 0, total_packets = 0;
6651 	u16 cleaned_count = igb_desc_unused(rx_ring);
6652 
6653 	do {
6654 		union e1000_adv_rx_desc *rx_desc;
6655 
6656 		/* return some buffers to hardware, one at a time is too slow */
6657 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6658 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6659 			cleaned_count = 0;
6660 		}
6661 
6662 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6663 
6664 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6665 			break;
6666 
6667 		/* This memory barrier is needed to keep us from reading
6668 		 * any other fields out of the rx_desc until we know the
6669 		 * RXD_STAT_DD bit is set
6670 		 */
6671 		rmb();
6672 
6673 		/* retrieve a buffer from the ring */
6674 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6675 
6676 		/* exit if we failed to retrieve a buffer */
6677 		if (!skb)
6678 			break;
6679 
6680 		cleaned_count++;
6681 
6682 		/* fetch next buffer in frame if non-eop */
6683 		if (igb_is_non_eop(rx_ring, rx_desc))
6684 			continue;
6685 
6686 		/* verify the packet layout is correct */
6687 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6688 			skb = NULL;
6689 			continue;
6690 		}
6691 
6692 		/* probably a little skewed due to removing CRC */
6693 		total_bytes += skb->len;
6694 
6695 		/* populate checksum, timestamp, VLAN, and protocol */
6696 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6697 
6698 		napi_gro_receive(&q_vector->napi, skb);
6699 
6700 		/* reset skb pointer */
6701 		skb = NULL;
6702 
6703 		/* update budget accounting */
6704 		total_packets++;
6705 	} while (likely(total_packets < budget));
6706 
6707 	/* place incomplete frames back on ring for completion */
6708 	rx_ring->skb = skb;
6709 
6710 	u64_stats_update_begin(&rx_ring->rx_syncp);
6711 	rx_ring->rx_stats.packets += total_packets;
6712 	rx_ring->rx_stats.bytes += total_bytes;
6713 	u64_stats_update_end(&rx_ring->rx_syncp);
6714 	q_vector->rx.total_packets += total_packets;
6715 	q_vector->rx.total_bytes += total_bytes;
6716 
6717 	if (cleaned_count)
6718 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6719 
6720 	return (total_packets < budget);
6721 }
6722 
6723 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6724 				  struct igb_rx_buffer *bi)
6725 {
6726 	struct page *page = bi->page;
6727 	dma_addr_t dma;
6728 
6729 	/* since we are recycling buffers we should seldom need to alloc */
6730 	if (likely(page))
6731 		return true;
6732 
6733 	/* alloc new page for storage */
6734 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6735 	if (unlikely(!page)) {
6736 		rx_ring->rx_stats.alloc_failed++;
6737 		return false;
6738 	}
6739 
6740 	/* map page for use */
6741 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6742 
6743 	/* if mapping failed free memory back to system since
6744 	 * there isn't much point in holding memory we can't use
6745 	 */
6746 	if (dma_mapping_error(rx_ring->dev, dma)) {
6747 		__free_page(page);
6748 
6749 		rx_ring->rx_stats.alloc_failed++;
6750 		return false;
6751 	}
6752 
6753 	bi->dma = dma;
6754 	bi->page = page;
6755 	bi->page_offset = 0;
6756 
6757 	return true;
6758 }
6759 
6760 /**
6761  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6762  *  @adapter: address of board private structure
6763  **/
6764 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6765 {
6766 	union e1000_adv_rx_desc *rx_desc;
6767 	struct igb_rx_buffer *bi;
6768 	u16 i = rx_ring->next_to_use;
6769 
6770 	/* nothing to do */
6771 	if (!cleaned_count)
6772 		return;
6773 
6774 	rx_desc = IGB_RX_DESC(rx_ring, i);
6775 	bi = &rx_ring->rx_buffer_info[i];
6776 	i -= rx_ring->count;
6777 
6778 	do {
6779 		if (!igb_alloc_mapped_page(rx_ring, bi))
6780 			break;
6781 
6782 		/* Refresh the desc even if buffer_addrs didn't change
6783 		 * because each write-back erases this info.
6784 		 */
6785 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6786 
6787 		rx_desc++;
6788 		bi++;
6789 		i++;
6790 		if (unlikely(!i)) {
6791 			rx_desc = IGB_RX_DESC(rx_ring, 0);
6792 			bi = rx_ring->rx_buffer_info;
6793 			i -= rx_ring->count;
6794 		}
6795 
6796 		/* clear the hdr_addr for the next_to_use descriptor */
6797 		rx_desc->read.hdr_addr = 0;
6798 
6799 		cleaned_count--;
6800 	} while (cleaned_count);
6801 
6802 	i += rx_ring->count;
6803 
6804 	if (rx_ring->next_to_use != i) {
6805 		/* record the next descriptor to use */
6806 		rx_ring->next_to_use = i;
6807 
6808 		/* update next to alloc since we have filled the ring */
6809 		rx_ring->next_to_alloc = i;
6810 
6811 		/* Force memory writes to complete before letting h/w
6812 		 * know there are new descriptors to fetch.  (Only
6813 		 * applicable for weak-ordered memory model archs,
6814 		 * such as IA-64).
6815 		 */
6816 		wmb();
6817 		writel(i, rx_ring->tail);
6818 	}
6819 }
6820 
6821 /**
6822  * igb_mii_ioctl -
6823  * @netdev:
6824  * @ifreq:
6825  * @cmd:
6826  **/
6827 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6828 {
6829 	struct igb_adapter *adapter = netdev_priv(netdev);
6830 	struct mii_ioctl_data *data = if_mii(ifr);
6831 
6832 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6833 		return -EOPNOTSUPP;
6834 
6835 	switch (cmd) {
6836 	case SIOCGMIIPHY:
6837 		data->phy_id = adapter->hw.phy.addr;
6838 		break;
6839 	case SIOCGMIIREG:
6840 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6841 		                     &data->val_out))
6842 			return -EIO;
6843 		break;
6844 	case SIOCSMIIREG:
6845 	default:
6846 		return -EOPNOTSUPP;
6847 	}
6848 	return 0;
6849 }
6850 
6851 /**
6852  * igb_ioctl -
6853  * @netdev:
6854  * @ifreq:
6855  * @cmd:
6856  **/
6857 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6858 {
6859 	switch (cmd) {
6860 	case SIOCGMIIPHY:
6861 	case SIOCGMIIREG:
6862 	case SIOCSMIIREG:
6863 		return igb_mii_ioctl(netdev, ifr, cmd);
6864 	case SIOCSHWTSTAMP:
6865 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6866 	default:
6867 		return -EOPNOTSUPP;
6868 	}
6869 }
6870 
6871 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6872 {
6873 	struct igb_adapter *adapter = hw->back;
6874 
6875 	if (pcie_capability_read_word(adapter->pdev, reg, value))
6876 		return -E1000_ERR_CONFIG;
6877 
6878 	return 0;
6879 }
6880 
6881 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6882 {
6883 	struct igb_adapter *adapter = hw->back;
6884 
6885 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6886 		return -E1000_ERR_CONFIG;
6887 
6888 	return 0;
6889 }
6890 
6891 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6892 {
6893 	struct igb_adapter *adapter = netdev_priv(netdev);
6894 	struct e1000_hw *hw = &adapter->hw;
6895 	u32 ctrl, rctl;
6896 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6897 
6898 	if (enable) {
6899 		/* enable VLAN tag insert/strip */
6900 		ctrl = rd32(E1000_CTRL);
6901 		ctrl |= E1000_CTRL_VME;
6902 		wr32(E1000_CTRL, ctrl);
6903 
6904 		/* Disable CFI check */
6905 		rctl = rd32(E1000_RCTL);
6906 		rctl &= ~E1000_RCTL_CFIEN;
6907 		wr32(E1000_RCTL, rctl);
6908 	} else {
6909 		/* disable VLAN tag insert/strip */
6910 		ctrl = rd32(E1000_CTRL);
6911 		ctrl &= ~E1000_CTRL_VME;
6912 		wr32(E1000_CTRL, ctrl);
6913 	}
6914 
6915 	igb_rlpml_set(adapter);
6916 }
6917 
6918 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6919 			       __be16 proto, u16 vid)
6920 {
6921 	struct igb_adapter *adapter = netdev_priv(netdev);
6922 	struct e1000_hw *hw = &adapter->hw;
6923 	int pf_id = adapter->vfs_allocated_count;
6924 
6925 	/* attempt to add filter to vlvf array */
6926 	igb_vlvf_set(adapter, vid, true, pf_id);
6927 
6928 	/* add the filter since PF can receive vlans w/o entry in vlvf */
6929 	igb_vfta_set(hw, vid, true);
6930 
6931 	set_bit(vid, adapter->active_vlans);
6932 
6933 	return 0;
6934 }
6935 
6936 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6937 				__be16 proto, u16 vid)
6938 {
6939 	struct igb_adapter *adapter = netdev_priv(netdev);
6940 	struct e1000_hw *hw = &adapter->hw;
6941 	int pf_id = adapter->vfs_allocated_count;
6942 	s32 err;
6943 
6944 	/* remove vlan from VLVF table array */
6945 	err = igb_vlvf_set(adapter, vid, false, pf_id);
6946 
6947 	/* if vid was not present in VLVF just remove it from table */
6948 	if (err)
6949 		igb_vfta_set(hw, vid, false);
6950 
6951 	clear_bit(vid, adapter->active_vlans);
6952 
6953 	return 0;
6954 }
6955 
6956 static void igb_restore_vlan(struct igb_adapter *adapter)
6957 {
6958 	u16 vid;
6959 
6960 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6961 
6962 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6963 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6964 }
6965 
6966 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6967 {
6968 	struct pci_dev *pdev = adapter->pdev;
6969 	struct e1000_mac_info *mac = &adapter->hw.mac;
6970 
6971 	mac->autoneg = 0;
6972 
6973 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6974 	 * for the switch() below to work
6975 	 */
6976 	if ((spd & 1) || (dplx & ~1))
6977 		goto err_inval;
6978 
6979 	/* Fiber NIC's only allow 1000 gbps Full duplex
6980 	 * and 100Mbps Full duplex for 100baseFx sfp
6981 	 */
6982 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6983 		switch (spd + dplx) {
6984 		case SPEED_10 + DUPLEX_HALF:
6985 		case SPEED_10 + DUPLEX_FULL:
6986 		case SPEED_100 + DUPLEX_HALF:
6987 			goto err_inval;
6988 		default:
6989 			break;
6990 		}
6991 	}
6992 
6993 	switch (spd + dplx) {
6994 	case SPEED_10 + DUPLEX_HALF:
6995 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6996 		break;
6997 	case SPEED_10 + DUPLEX_FULL:
6998 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6999 		break;
7000 	case SPEED_100 + DUPLEX_HALF:
7001 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7002 		break;
7003 	case SPEED_100 + DUPLEX_FULL:
7004 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7005 		break;
7006 	case SPEED_1000 + DUPLEX_FULL:
7007 		mac->autoneg = 1;
7008 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7009 		break;
7010 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7011 	default:
7012 		goto err_inval;
7013 	}
7014 
7015 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7016 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7017 
7018 	return 0;
7019 
7020 err_inval:
7021 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7022 	return -EINVAL;
7023 }
7024 
7025 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7026 			  bool runtime)
7027 {
7028 	struct net_device *netdev = pci_get_drvdata(pdev);
7029 	struct igb_adapter *adapter = netdev_priv(netdev);
7030 	struct e1000_hw *hw = &adapter->hw;
7031 	u32 ctrl, rctl, status;
7032 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7033 #ifdef CONFIG_PM
7034 	int retval = 0;
7035 #endif
7036 
7037 	netif_device_detach(netdev);
7038 
7039 	if (netif_running(netdev))
7040 		__igb_close(netdev, true);
7041 
7042 	igb_clear_interrupt_scheme(adapter);
7043 
7044 #ifdef CONFIG_PM
7045 	retval = pci_save_state(pdev);
7046 	if (retval)
7047 		return retval;
7048 #endif
7049 
7050 	status = rd32(E1000_STATUS);
7051 	if (status & E1000_STATUS_LU)
7052 		wufc &= ~E1000_WUFC_LNKC;
7053 
7054 	if (wufc) {
7055 		igb_setup_rctl(adapter);
7056 		igb_set_rx_mode(netdev);
7057 
7058 		/* turn on all-multi mode if wake on multicast is enabled */
7059 		if (wufc & E1000_WUFC_MC) {
7060 			rctl = rd32(E1000_RCTL);
7061 			rctl |= E1000_RCTL_MPE;
7062 			wr32(E1000_RCTL, rctl);
7063 		}
7064 
7065 		ctrl = rd32(E1000_CTRL);
7066 		/* advertise wake from D3Cold */
7067 		#define E1000_CTRL_ADVD3WUC 0x00100000
7068 		/* phy power management enable */
7069 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7070 		ctrl |= E1000_CTRL_ADVD3WUC;
7071 		wr32(E1000_CTRL, ctrl);
7072 
7073 		/* Allow time for pending master requests to run */
7074 		igb_disable_pcie_master(hw);
7075 
7076 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7077 		wr32(E1000_WUFC, wufc);
7078 	} else {
7079 		wr32(E1000_WUC, 0);
7080 		wr32(E1000_WUFC, 0);
7081 	}
7082 
7083 	*enable_wake = wufc || adapter->en_mng_pt;
7084 	if (!*enable_wake)
7085 		igb_power_down_link(adapter);
7086 	else
7087 		igb_power_up_link(adapter);
7088 
7089 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7090 	 * would have already happened in close and is redundant.
7091 	 */
7092 	igb_release_hw_control(adapter);
7093 
7094 	pci_disable_device(pdev);
7095 
7096 	return 0;
7097 }
7098 
7099 #ifdef CONFIG_PM
7100 #ifdef CONFIG_PM_SLEEP
7101 static int igb_suspend(struct device *dev)
7102 {
7103 	int retval;
7104 	bool wake;
7105 	struct pci_dev *pdev = to_pci_dev(dev);
7106 
7107 	retval = __igb_shutdown(pdev, &wake, 0);
7108 	if (retval)
7109 		return retval;
7110 
7111 	if (wake) {
7112 		pci_prepare_to_sleep(pdev);
7113 	} else {
7114 		pci_wake_from_d3(pdev, false);
7115 		pci_set_power_state(pdev, PCI_D3hot);
7116 	}
7117 
7118 	return 0;
7119 }
7120 #endif /* CONFIG_PM_SLEEP */
7121 
7122 static int igb_resume(struct device *dev)
7123 {
7124 	struct pci_dev *pdev = to_pci_dev(dev);
7125 	struct net_device *netdev = pci_get_drvdata(pdev);
7126 	struct igb_adapter *adapter = netdev_priv(netdev);
7127 	struct e1000_hw *hw = &adapter->hw;
7128 	u32 err;
7129 
7130 	pci_set_power_state(pdev, PCI_D0);
7131 	pci_restore_state(pdev);
7132 	pci_save_state(pdev);
7133 
7134 	err = pci_enable_device_mem(pdev);
7135 	if (err) {
7136 		dev_err(&pdev->dev,
7137 			"igb: Cannot enable PCI device from suspend\n");
7138 		return err;
7139 	}
7140 	pci_set_master(pdev);
7141 
7142 	pci_enable_wake(pdev, PCI_D3hot, 0);
7143 	pci_enable_wake(pdev, PCI_D3cold, 0);
7144 
7145 	if (igb_init_interrupt_scheme(adapter, true)) {
7146 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7147 		return -ENOMEM;
7148 	}
7149 
7150 	igb_reset(adapter);
7151 
7152 	/* let the f/w know that the h/w is now under the control of the
7153 	 * driver.
7154 	 */
7155 	igb_get_hw_control(adapter);
7156 
7157 	wr32(E1000_WUS, ~0);
7158 
7159 	if (netdev->flags & IFF_UP) {
7160 		rtnl_lock();
7161 		err = __igb_open(netdev, true);
7162 		rtnl_unlock();
7163 		if (err)
7164 			return err;
7165 	}
7166 
7167 	netif_device_attach(netdev);
7168 	return 0;
7169 }
7170 
7171 #ifdef CONFIG_PM_RUNTIME
7172 static int igb_runtime_idle(struct device *dev)
7173 {
7174 	struct pci_dev *pdev = to_pci_dev(dev);
7175 	struct net_device *netdev = pci_get_drvdata(pdev);
7176 	struct igb_adapter *adapter = netdev_priv(netdev);
7177 
7178 	if (!igb_has_link(adapter))
7179 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7180 
7181 	return -EBUSY;
7182 }
7183 
7184 static int igb_runtime_suspend(struct device *dev)
7185 {
7186 	struct pci_dev *pdev = to_pci_dev(dev);
7187 	int retval;
7188 	bool wake;
7189 
7190 	retval = __igb_shutdown(pdev, &wake, 1);
7191 	if (retval)
7192 		return retval;
7193 
7194 	if (wake) {
7195 		pci_prepare_to_sleep(pdev);
7196 	} else {
7197 		pci_wake_from_d3(pdev, false);
7198 		pci_set_power_state(pdev, PCI_D3hot);
7199 	}
7200 
7201 	return 0;
7202 }
7203 
7204 static int igb_runtime_resume(struct device *dev)
7205 {
7206 	return igb_resume(dev);
7207 }
7208 #endif /* CONFIG_PM_RUNTIME */
7209 #endif
7210 
7211 static void igb_shutdown(struct pci_dev *pdev)
7212 {
7213 	bool wake;
7214 
7215 	__igb_shutdown(pdev, &wake, 0);
7216 
7217 	if (system_state == SYSTEM_POWER_OFF) {
7218 		pci_wake_from_d3(pdev, wake);
7219 		pci_set_power_state(pdev, PCI_D3hot);
7220 	}
7221 }
7222 
7223 #ifdef CONFIG_PCI_IOV
7224 static int igb_sriov_reinit(struct pci_dev *dev)
7225 {
7226 	struct net_device *netdev = pci_get_drvdata(dev);
7227 	struct igb_adapter *adapter = netdev_priv(netdev);
7228 	struct pci_dev *pdev = adapter->pdev;
7229 
7230 	rtnl_lock();
7231 
7232 	if (netif_running(netdev))
7233 		igb_close(netdev);
7234 
7235 	igb_clear_interrupt_scheme(adapter);
7236 
7237 	igb_init_queue_configuration(adapter);
7238 
7239 	if (igb_init_interrupt_scheme(adapter, true)) {
7240 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7241 		return -ENOMEM;
7242 	}
7243 
7244 	if (netif_running(netdev))
7245 		igb_open(netdev);
7246 
7247 	rtnl_unlock();
7248 
7249 	return 0;
7250 }
7251 
7252 static int igb_pci_disable_sriov(struct pci_dev *dev)
7253 {
7254 	int err = igb_disable_sriov(dev);
7255 
7256 	if (!err)
7257 		err = igb_sriov_reinit(dev);
7258 
7259 	return err;
7260 }
7261 
7262 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7263 {
7264 	int err = igb_enable_sriov(dev, num_vfs);
7265 
7266 	if (err)
7267 		goto out;
7268 
7269 	err = igb_sriov_reinit(dev);
7270 	if (!err)
7271 		return num_vfs;
7272 
7273 out:
7274 	return err;
7275 }
7276 
7277 #endif
7278 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7279 {
7280 #ifdef CONFIG_PCI_IOV
7281 	if (num_vfs == 0)
7282 		return igb_pci_disable_sriov(dev);
7283 	else
7284 		return igb_pci_enable_sriov(dev, num_vfs);
7285 #endif
7286 	return 0;
7287 }
7288 
7289 #ifdef CONFIG_NET_POLL_CONTROLLER
7290 /* Polling 'interrupt' - used by things like netconsole to send skbs
7291  * without having to re-enable interrupts. It's not called while
7292  * the interrupt routine is executing.
7293  */
7294 static void igb_netpoll(struct net_device *netdev)
7295 {
7296 	struct igb_adapter *adapter = netdev_priv(netdev);
7297 	struct e1000_hw *hw = &adapter->hw;
7298 	struct igb_q_vector *q_vector;
7299 	int i;
7300 
7301 	for (i = 0; i < adapter->num_q_vectors; i++) {
7302 		q_vector = adapter->q_vector[i];
7303 		if (adapter->msix_entries)
7304 			wr32(E1000_EIMC, q_vector->eims_value);
7305 		else
7306 			igb_irq_disable(adapter);
7307 		napi_schedule(&q_vector->napi);
7308 	}
7309 }
7310 #endif /* CONFIG_NET_POLL_CONTROLLER */
7311 
7312 /**
7313  *  igb_io_error_detected - called when PCI error is detected
7314  *  @pdev: Pointer to PCI device
7315  *  @state: The current pci connection state
7316  *
7317  *  This function is called after a PCI bus error affecting
7318  *  this device has been detected.
7319  **/
7320 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7321 					      pci_channel_state_t state)
7322 {
7323 	struct net_device *netdev = pci_get_drvdata(pdev);
7324 	struct igb_adapter *adapter = netdev_priv(netdev);
7325 
7326 	netif_device_detach(netdev);
7327 
7328 	if (state == pci_channel_io_perm_failure)
7329 		return PCI_ERS_RESULT_DISCONNECT;
7330 
7331 	if (netif_running(netdev))
7332 		igb_down(adapter);
7333 	pci_disable_device(pdev);
7334 
7335 	/* Request a slot slot reset. */
7336 	return PCI_ERS_RESULT_NEED_RESET;
7337 }
7338 
7339 /**
7340  *  igb_io_slot_reset - called after the pci bus has been reset.
7341  *  @pdev: Pointer to PCI device
7342  *
7343  *  Restart the card from scratch, as if from a cold-boot. Implementation
7344  *  resembles the first-half of the igb_resume routine.
7345  **/
7346 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7347 {
7348 	struct net_device *netdev = pci_get_drvdata(pdev);
7349 	struct igb_adapter *adapter = netdev_priv(netdev);
7350 	struct e1000_hw *hw = &adapter->hw;
7351 	pci_ers_result_t result;
7352 	int err;
7353 
7354 	if (pci_enable_device_mem(pdev)) {
7355 		dev_err(&pdev->dev,
7356 			"Cannot re-enable PCI device after reset.\n");
7357 		result = PCI_ERS_RESULT_DISCONNECT;
7358 	} else {
7359 		pci_set_master(pdev);
7360 		pci_restore_state(pdev);
7361 		pci_save_state(pdev);
7362 
7363 		pci_enable_wake(pdev, PCI_D3hot, 0);
7364 		pci_enable_wake(pdev, PCI_D3cold, 0);
7365 
7366 		igb_reset(adapter);
7367 		wr32(E1000_WUS, ~0);
7368 		result = PCI_ERS_RESULT_RECOVERED;
7369 	}
7370 
7371 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7372 	if (err) {
7373 		dev_err(&pdev->dev,
7374 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7375 			err);
7376 		/* non-fatal, continue */
7377 	}
7378 
7379 	return result;
7380 }
7381 
7382 /**
7383  *  igb_io_resume - called when traffic can start flowing again.
7384  *  @pdev: Pointer to PCI device
7385  *
7386  *  This callback is called when the error recovery driver tells us that
7387  *  its OK to resume normal operation. Implementation resembles the
7388  *  second-half of the igb_resume routine.
7389  */
7390 static void igb_io_resume(struct pci_dev *pdev)
7391 {
7392 	struct net_device *netdev = pci_get_drvdata(pdev);
7393 	struct igb_adapter *adapter = netdev_priv(netdev);
7394 
7395 	if (netif_running(netdev)) {
7396 		if (igb_up(adapter)) {
7397 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7398 			return;
7399 		}
7400 	}
7401 
7402 	netif_device_attach(netdev);
7403 
7404 	/* let the f/w know that the h/w is now under the control of the
7405 	 * driver.
7406 	 */
7407 	igb_get_hw_control(adapter);
7408 }
7409 
7410 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7411 			     u8 qsel)
7412 {
7413 	u32 rar_low, rar_high;
7414 	struct e1000_hw *hw = &adapter->hw;
7415 
7416 	/* HW expects these in little endian so we reverse the byte order
7417 	 * from network order (big endian) to little endian
7418 	 */
7419 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7420 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7421 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7422 
7423 	/* Indicate to hardware the Address is Valid. */
7424 	rar_high |= E1000_RAH_AV;
7425 
7426 	if (hw->mac.type == e1000_82575)
7427 		rar_high |= E1000_RAH_POOL_1 * qsel;
7428 	else
7429 		rar_high |= E1000_RAH_POOL_1 << qsel;
7430 
7431 	wr32(E1000_RAL(index), rar_low);
7432 	wrfl();
7433 	wr32(E1000_RAH(index), rar_high);
7434 	wrfl();
7435 }
7436 
7437 static int igb_set_vf_mac(struct igb_adapter *adapter,
7438 			  int vf, unsigned char *mac_addr)
7439 {
7440 	struct e1000_hw *hw = &adapter->hw;
7441 	/* VF MAC addresses start at end of receive addresses and moves
7442 	 * towards the first, as a result a collision should not be possible
7443 	 */
7444 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7445 
7446 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7447 
7448 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7449 
7450 	return 0;
7451 }
7452 
7453 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7454 {
7455 	struct igb_adapter *adapter = netdev_priv(netdev);
7456 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7457 		return -EINVAL;
7458 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7459 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7460 	dev_info(&adapter->pdev->dev,
7461 		 "Reload the VF driver to make this change effective.");
7462 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7463 		dev_warn(&adapter->pdev->dev,
7464 			 "The VF MAC address has been set, but the PF device is not up.\n");
7465 		dev_warn(&adapter->pdev->dev,
7466 			 "Bring the PF device up before attempting to use the VF device.\n");
7467 	}
7468 	return igb_set_vf_mac(adapter, vf, mac);
7469 }
7470 
7471 static int igb_link_mbps(int internal_link_speed)
7472 {
7473 	switch (internal_link_speed) {
7474 	case SPEED_100:
7475 		return 100;
7476 	case SPEED_1000:
7477 		return 1000;
7478 	default:
7479 		return 0;
7480 	}
7481 }
7482 
7483 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7484 				  int link_speed)
7485 {
7486 	int rf_dec, rf_int;
7487 	u32 bcnrc_val;
7488 
7489 	if (tx_rate != 0) {
7490 		/* Calculate the rate factor values to set */
7491 		rf_int = link_speed / tx_rate;
7492 		rf_dec = (link_speed - (rf_int * tx_rate));
7493 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7494 			 tx_rate;
7495 
7496 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7497 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7498 			      E1000_RTTBCNRC_RF_INT_MASK);
7499 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7500 	} else {
7501 		bcnrc_val = 0;
7502 	}
7503 
7504 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7505 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7506 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7507 	 */
7508 	wr32(E1000_RTTBCNRM, 0x14);
7509 	wr32(E1000_RTTBCNRC, bcnrc_val);
7510 }
7511 
7512 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7513 {
7514 	int actual_link_speed, i;
7515 	bool reset_rate = false;
7516 
7517 	/* VF TX rate limit was not set or not supported */
7518 	if ((adapter->vf_rate_link_speed == 0) ||
7519 	    (adapter->hw.mac.type != e1000_82576))
7520 		return;
7521 
7522 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7523 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7524 		reset_rate = true;
7525 		adapter->vf_rate_link_speed = 0;
7526 		dev_info(&adapter->pdev->dev,
7527 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7528 	}
7529 
7530 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7531 		if (reset_rate)
7532 			adapter->vf_data[i].tx_rate = 0;
7533 
7534 		igb_set_vf_rate_limit(&adapter->hw, i,
7535 				      adapter->vf_data[i].tx_rate,
7536 				      actual_link_speed);
7537 	}
7538 }
7539 
7540 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7541 {
7542 	struct igb_adapter *adapter = netdev_priv(netdev);
7543 	struct e1000_hw *hw = &adapter->hw;
7544 	int actual_link_speed;
7545 
7546 	if (hw->mac.type != e1000_82576)
7547 		return -EOPNOTSUPP;
7548 
7549 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7550 	if ((vf >= adapter->vfs_allocated_count) ||
7551 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7552 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7553 		return -EINVAL;
7554 
7555 	adapter->vf_rate_link_speed = actual_link_speed;
7556 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7557 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7558 
7559 	return 0;
7560 }
7561 
7562 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7563 				   bool setting)
7564 {
7565 	struct igb_adapter *adapter = netdev_priv(netdev);
7566 	struct e1000_hw *hw = &adapter->hw;
7567 	u32 reg_val, reg_offset;
7568 
7569 	if (!adapter->vfs_allocated_count)
7570 		return -EOPNOTSUPP;
7571 
7572 	if (vf >= adapter->vfs_allocated_count)
7573 		return -EINVAL;
7574 
7575 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7576 	reg_val = rd32(reg_offset);
7577 	if (setting)
7578 		reg_val |= ((1 << vf) |
7579 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7580 	else
7581 		reg_val &= ~((1 << vf) |
7582 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7583 	wr32(reg_offset, reg_val);
7584 
7585 	adapter->vf_data[vf].spoofchk_enabled = setting;
7586 	return E1000_SUCCESS;
7587 }
7588 
7589 static int igb_ndo_get_vf_config(struct net_device *netdev,
7590 				 int vf, struct ifla_vf_info *ivi)
7591 {
7592 	struct igb_adapter *adapter = netdev_priv(netdev);
7593 	if (vf >= adapter->vfs_allocated_count)
7594 		return -EINVAL;
7595 	ivi->vf = vf;
7596 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7597 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7598 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7599 	ivi->qos = adapter->vf_data[vf].pf_qos;
7600 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7601 	return 0;
7602 }
7603 
7604 static void igb_vmm_control(struct igb_adapter *adapter)
7605 {
7606 	struct e1000_hw *hw = &adapter->hw;
7607 	u32 reg;
7608 
7609 	switch (hw->mac.type) {
7610 	case e1000_82575:
7611 	case e1000_i210:
7612 	case e1000_i211:
7613 	case e1000_i354:
7614 	default:
7615 		/* replication is not supported for 82575 */
7616 		return;
7617 	case e1000_82576:
7618 		/* notify HW that the MAC is adding vlan tags */
7619 		reg = rd32(E1000_DTXCTL);
7620 		reg |= E1000_DTXCTL_VLAN_ADDED;
7621 		wr32(E1000_DTXCTL, reg);
7622 	case e1000_82580:
7623 		/* enable replication vlan tag stripping */
7624 		reg = rd32(E1000_RPLOLR);
7625 		reg |= E1000_RPLOLR_STRVLAN;
7626 		wr32(E1000_RPLOLR, reg);
7627 	case e1000_i350:
7628 		/* none of the above registers are supported by i350 */
7629 		break;
7630 	}
7631 
7632 	if (adapter->vfs_allocated_count) {
7633 		igb_vmdq_set_loopback_pf(hw, true);
7634 		igb_vmdq_set_replication_pf(hw, true);
7635 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7636 					      adapter->vfs_allocated_count);
7637 	} else {
7638 		igb_vmdq_set_loopback_pf(hw, false);
7639 		igb_vmdq_set_replication_pf(hw, false);
7640 	}
7641 }
7642 
7643 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7644 {
7645 	struct e1000_hw *hw = &adapter->hw;
7646 	u32 dmac_thr;
7647 	u16 hwm;
7648 
7649 	if (hw->mac.type > e1000_82580) {
7650 		if (adapter->flags & IGB_FLAG_DMAC) {
7651 			u32 reg;
7652 
7653 			/* force threshold to 0. */
7654 			wr32(E1000_DMCTXTH, 0);
7655 
7656 			/* DMA Coalescing high water mark needs to be greater
7657 			 * than the Rx threshold. Set hwm to PBA - max frame
7658 			 * size in 16B units, capping it at PBA - 6KB.
7659 			 */
7660 			hwm = 64 * pba - adapter->max_frame_size / 16;
7661 			if (hwm < 64 * (pba - 6))
7662 				hwm = 64 * (pba - 6);
7663 			reg = rd32(E1000_FCRTC);
7664 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7665 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7666 				& E1000_FCRTC_RTH_COAL_MASK);
7667 			wr32(E1000_FCRTC, reg);
7668 
7669 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7670 			 * frame size, capping it at PBA - 10KB.
7671 			 */
7672 			dmac_thr = pba - adapter->max_frame_size / 512;
7673 			if (dmac_thr < pba - 10)
7674 				dmac_thr = pba - 10;
7675 			reg = rd32(E1000_DMACR);
7676 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7677 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7678 				& E1000_DMACR_DMACTHR_MASK);
7679 
7680 			/* transition to L0x or L1 if available..*/
7681 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7682 
7683 			/* watchdog timer= +-1000 usec in 32usec intervals */
7684 			reg |= (1000 >> 5);
7685 
7686 			/* Disable BMC-to-OS Watchdog Enable */
7687 			if (hw->mac.type != e1000_i354)
7688 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7689 
7690 			wr32(E1000_DMACR, reg);
7691 
7692 			/* no lower threshold to disable
7693 			 * coalescing(smart fifb)-UTRESH=0
7694 			 */
7695 			wr32(E1000_DMCRTRH, 0);
7696 
7697 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7698 
7699 			wr32(E1000_DMCTLX, reg);
7700 
7701 			/* free space in tx packet buffer to wake from
7702 			 * DMA coal
7703 			 */
7704 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7705 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7706 
7707 			/* make low power state decision controlled
7708 			 * by DMA coal
7709 			 */
7710 			reg = rd32(E1000_PCIEMISC);
7711 			reg &= ~E1000_PCIEMISC_LX_DECISION;
7712 			wr32(E1000_PCIEMISC, reg);
7713 		} /* endif adapter->dmac is not disabled */
7714 	} else if (hw->mac.type == e1000_82580) {
7715 		u32 reg = rd32(E1000_PCIEMISC);
7716 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7717 		wr32(E1000_DMACR, 0);
7718 	}
7719 }
7720 
7721 /**
7722  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7723  *  @hw: pointer to hardware structure
7724  *  @byte_offset: byte offset to read
7725  *  @dev_addr: device address
7726  *  @data: value read
7727  *
7728  *  Performs byte read operation over I2C interface at
7729  *  a specified device address.
7730  **/
7731 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7732 		      u8 dev_addr, u8 *data)
7733 {
7734 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7735 	struct i2c_client *this_client = adapter->i2c_client;
7736 	s32 status;
7737 	u16 swfw_mask = 0;
7738 
7739 	if (!this_client)
7740 		return E1000_ERR_I2C;
7741 
7742 	swfw_mask = E1000_SWFW_PHY0_SM;
7743 
7744 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7745 	    != E1000_SUCCESS)
7746 		return E1000_ERR_SWFW_SYNC;
7747 
7748 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7749 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7750 
7751 	if (status < 0)
7752 		return E1000_ERR_I2C;
7753 	else {
7754 		*data = status;
7755 		return E1000_SUCCESS;
7756 	}
7757 }
7758 
7759 /**
7760  *  igb_write_i2c_byte - Writes 8 bit word over I2C
7761  *  @hw: pointer to hardware structure
7762  *  @byte_offset: byte offset to write
7763  *  @dev_addr: device address
7764  *  @data: value to write
7765  *
7766  *  Performs byte write operation over I2C interface at
7767  *  a specified device address.
7768  **/
7769 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7770 		       u8 dev_addr, u8 data)
7771 {
7772 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7773 	struct i2c_client *this_client = adapter->i2c_client;
7774 	s32 status;
7775 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7776 
7777 	if (!this_client)
7778 		return E1000_ERR_I2C;
7779 
7780 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7781 		return E1000_ERR_SWFW_SYNC;
7782 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7783 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7784 
7785 	if (status)
7786 		return E1000_ERR_I2C;
7787 	else
7788 		return E1000_SUCCESS;
7789 
7790 }
7791 /* igb_main.c */
7792