1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62 
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 3
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 				"Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 				"Copyright (c) 2007-2013 Intel Corporation.";
74 
75 static const struct e1000_info *igb_info_tbl[] = {
76 	[board_82575] = &e1000_82575_info,
77 };
78 
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113 	/* required last entry */
114 	{0, }
115 };
116 
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118 
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143 						 struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173 			       int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176 				   bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178 				 struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180 
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 #endif
184 
185 #ifdef CONFIG_PM
186 #ifdef CONFIG_PM_SLEEP
187 static int igb_suspend(struct device *);
188 #endif
189 static int igb_resume(struct device *);
190 #ifdef CONFIG_PM_RUNTIME
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 #endif
195 static const struct dev_pm_ops igb_pm_ops = {
196 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 			igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 	.notifier_call	= igb_notify_dca,
207 	.next		= NULL,
208 	.priority	= 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs = 0;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219                  "per physical function");
220 #endif /* CONFIG_PCI_IOV */
221 
222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223 		     pci_channel_state_t);
224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225 static void igb_io_resume(struct pci_dev *);
226 
227 static const struct pci_error_handlers igb_err_handler = {
228 	.error_detected = igb_io_error_detected,
229 	.slot_reset = igb_io_slot_reset,
230 	.resume = igb_io_resume,
231 };
232 
233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234 
235 static struct pci_driver igb_driver = {
236 	.name     = igb_driver_name,
237 	.id_table = igb_pci_tbl,
238 	.probe    = igb_probe,
239 	.remove   = igb_remove,
240 #ifdef CONFIG_PM
241 	.driver.pm = &igb_pm_ops,
242 #endif
243 	.shutdown = igb_shutdown,
244 	.sriov_configure = igb_pci_sriov_configure,
245 	.err_handler = &igb_err_handler
246 };
247 
248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250 MODULE_LICENSE("GPL");
251 MODULE_VERSION(DRV_VERSION);
252 
253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254 static int debug = -1;
255 module_param(debug, int, 0);
256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257 
258 struct igb_reg_info {
259 	u32 ofs;
260 	char *name;
261 };
262 
263 static const struct igb_reg_info igb_reg_info_tbl[] = {
264 
265 	/* General Registers */
266 	{E1000_CTRL, "CTRL"},
267 	{E1000_STATUS, "STATUS"},
268 	{E1000_CTRL_EXT, "CTRL_EXT"},
269 
270 	/* Interrupt Registers */
271 	{E1000_ICR, "ICR"},
272 
273 	/* RX Registers */
274 	{E1000_RCTL, "RCTL"},
275 	{E1000_RDLEN(0), "RDLEN"},
276 	{E1000_RDH(0), "RDH"},
277 	{E1000_RDT(0), "RDT"},
278 	{E1000_RXDCTL(0), "RXDCTL"},
279 	{E1000_RDBAL(0), "RDBAL"},
280 	{E1000_RDBAH(0), "RDBAH"},
281 
282 	/* TX Registers */
283 	{E1000_TCTL, "TCTL"},
284 	{E1000_TDBAL(0), "TDBAL"},
285 	{E1000_TDBAH(0), "TDBAH"},
286 	{E1000_TDLEN(0), "TDLEN"},
287 	{E1000_TDH(0), "TDH"},
288 	{E1000_TDT(0), "TDT"},
289 	{E1000_TXDCTL(0), "TXDCTL"},
290 	{E1000_TDFH, "TDFH"},
291 	{E1000_TDFT, "TDFT"},
292 	{E1000_TDFHS, "TDFHS"},
293 	{E1000_TDFPC, "TDFPC"},
294 
295 	/* List Terminator */
296 	{}
297 };
298 
299 /* igb_regdump - register printout routine */
300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301 {
302 	int n = 0;
303 	char rname[16];
304 	u32 regs[8];
305 
306 	switch (reginfo->ofs) {
307 	case E1000_RDLEN(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDLEN(n));
310 		break;
311 	case E1000_RDH(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RDH(n));
314 		break;
315 	case E1000_RDT(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDT(n));
318 		break;
319 	case E1000_RXDCTL(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RXDCTL(n));
322 		break;
323 	case E1000_RDBAL(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAL(n));
326 		break;
327 	case E1000_RDBAH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_RDBAH(n));
330 		break;
331 	case E1000_TDBAL(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_RDBAL(n));
334 		break;
335 	case E1000_TDBAH(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDBAH(n));
338 		break;
339 	case E1000_TDLEN(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDLEN(n));
342 		break;
343 	case E1000_TDH(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TDH(n));
346 		break;
347 	case E1000_TDT(0):
348 		for (n = 0; n < 4; n++)
349 			regs[n] = rd32(E1000_TDT(n));
350 		break;
351 	case E1000_TXDCTL(0):
352 		for (n = 0; n < 4; n++)
353 			regs[n] = rd32(E1000_TXDCTL(n));
354 		break;
355 	default:
356 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357 		return;
358 	}
359 
360 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362 		regs[2], regs[3]);
363 }
364 
365 /* igb_dump - Print registers, Tx-rings and Rx-rings */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368 	struct net_device *netdev = adapter->netdev;
369 	struct e1000_hw *hw = &adapter->hw;
370 	struct igb_reg_info *reginfo;
371 	struct igb_ring *tx_ring;
372 	union e1000_adv_tx_desc *tx_desc;
373 	struct my_u0 { u64 a; u64 b; } *u0;
374 	struct igb_ring *rx_ring;
375 	union e1000_adv_rx_desc *rx_desc;
376 	u32 staterr;
377 	u16 i, n;
378 
379 	if (!netif_msg_hw(adapter))
380 		return;
381 
382 	/* Print netdevice Info */
383 	if (netdev) {
384 		dev_info(&adapter->pdev->dev, "Net device Info\n");
385 		pr_info("Device Name     state            trans_start      "
386 			"last_rx\n");
387 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 			netdev->state, netdev->trans_start, netdev->last_rx);
389 	}
390 
391 	/* Print Registers */
392 	dev_info(&adapter->pdev->dev, "Register Dump\n");
393 	pr_info(" Register Name   Value\n");
394 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 	     reginfo->name; reginfo++) {
396 		igb_regdump(hw, reginfo);
397 	}
398 
399 	/* Print TX Ring Summary */
400 	if (!netdev || !netif_running(netdev))
401 		goto exit;
402 
403 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405 	for (n = 0; n < adapter->num_tx_queues; n++) {
406 		struct igb_tx_buffer *buffer_info;
407 		tx_ring = adapter->tx_ring[n];
408 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 			(u64)dma_unmap_addr(buffer_info, dma),
412 			dma_unmap_len(buffer_info, len),
413 			buffer_info->next_to_watch,
414 			(u64)buffer_info->time_stamp);
415 	}
416 
417 	/* Print TX Rings */
418 	if (!netif_msg_tx_done(adapter))
419 		goto rx_ring_summary;
420 
421 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422 
423 	/* Transmit Descriptor Formats
424 	 *
425 	 * Advanced Transmit Descriptor
426 	 *   +--------------------------------------------------------------+
427 	 * 0 |         Buffer Address [63:0]                                |
428 	 *   +--------------------------------------------------------------+
429 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430 	 *   +--------------------------------------------------------------+
431 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432 	 */
433 
434 	for (n = 0; n < adapter->num_tx_queues; n++) {
435 		tx_ring = adapter->tx_ring[n];
436 		pr_info("------------------------------------\n");
437 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 		pr_info("------------------------------------\n");
439 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440 			"[bi->dma       ] leng  ntw timestamp        "
441 			"bi->skb\n");
442 
443 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444 			const char *next_desc;
445 			struct igb_tx_buffer *buffer_info;
446 			tx_desc = IGB_TX_DESC(tx_ring, i);
447 			buffer_info = &tx_ring->tx_buffer_info[i];
448 			u0 = (struct my_u0 *)tx_desc;
449 			if (i == tx_ring->next_to_use &&
450 			    i == tx_ring->next_to_clean)
451 				next_desc = " NTC/U";
452 			else if (i == tx_ring->next_to_use)
453 				next_desc = " NTU";
454 			else if (i == tx_ring->next_to_clean)
455 				next_desc = " NTC";
456 			else
457 				next_desc = "";
458 
459 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460 				" %04X  %p %016llX %p%s\n", i,
461 				le64_to_cpu(u0->a),
462 				le64_to_cpu(u0->b),
463 				(u64)dma_unmap_addr(buffer_info, dma),
464 				dma_unmap_len(buffer_info, len),
465 				buffer_info->next_to_watch,
466 				(u64)buffer_info->time_stamp,
467 				buffer_info->skb, next_desc);
468 
469 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 				print_hex_dump(KERN_INFO, "",
471 					DUMP_PREFIX_ADDRESS,
472 					16, 1, buffer_info->skb->data,
473 					dma_unmap_len(buffer_info, len),
474 					true);
475 		}
476 	}
477 
478 	/* Print RX Rings Summary */
479 rx_ring_summary:
480 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481 	pr_info("Queue [NTU] [NTC]\n");
482 	for (n = 0; n < adapter->num_rx_queues; n++) {
483 		rx_ring = adapter->rx_ring[n];
484 		pr_info(" %5d %5X %5X\n",
485 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 	}
487 
488 	/* Print RX Rings */
489 	if (!netif_msg_rx_status(adapter))
490 		goto exit;
491 
492 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493 
494 	/* Advanced Receive Descriptor (Read) Format
495 	 *    63                                           1        0
496 	 *    +-----------------------------------------------------+
497 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498 	 *    +----------------------------------------------+------+
499 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500 	 *    +-----------------------------------------------------+
501 	 *
502 	 *
503 	 * Advanced Receive Descriptor (Write-Back) Format
504 	 *
505 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506 	 *   +------------------------------------------------------+
507 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508 	 *   | Checksum   Ident  |   |           |    | Type | Type |
509 	 *   +------------------------------------------------------+
510 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 	 *   +------------------------------------------------------+
512 	 *   63       48 47    32 31            20 19               0
513 	 */
514 
515 	for (n = 0; n < adapter->num_rx_queues; n++) {
516 		rx_ring = adapter->rx_ring[n];
517 		pr_info("------------------------------------\n");
518 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 		pr_info("------------------------------------\n");
520 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 
525 		for (i = 0; i < rx_ring->count; i++) {
526 			const char *next_desc;
527 			struct igb_rx_buffer *buffer_info;
528 			buffer_info = &rx_ring->rx_buffer_info[i];
529 			rx_desc = IGB_RX_DESC(rx_ring, i);
530 			u0 = (struct my_u0 *)rx_desc;
531 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532 
533 			if (i == rx_ring->next_to_use)
534 				next_desc = " NTU";
535 			else if (i == rx_ring->next_to_clean)
536 				next_desc = " NTC";
537 			else
538 				next_desc = "";
539 
540 			if (staterr & E1000_RXD_STAT_DD) {
541 				/* Descriptor Done */
542 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543 					"RWB", i,
544 					le64_to_cpu(u0->a),
545 					le64_to_cpu(u0->b),
546 					next_desc);
547 			} else {
548 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549 					"R  ", i,
550 					le64_to_cpu(u0->a),
551 					le64_to_cpu(u0->b),
552 					(u64)buffer_info->dma,
553 					next_desc);
554 
555 				if (netif_msg_pktdata(adapter) &&
556 				    buffer_info->dma && buffer_info->page) {
557 					print_hex_dump(KERN_INFO, "",
558 					  DUMP_PREFIX_ADDRESS,
559 					  16, 1,
560 					  page_address(buffer_info->page) +
561 						      buffer_info->page_offset,
562 					  IGB_RX_BUFSZ, true);
563 				}
564 			}
565 		}
566 	}
567 
568 exit:
569 	return;
570 }
571 
572 /**
573  *  igb_get_i2c_data - Reads the I2C SDA data bit
574  *  @hw: pointer to hardware structure
575  *  @i2cctl: Current value of I2CCTL register
576  *
577  *  Returns the I2C data bit value
578  **/
579 static int igb_get_i2c_data(void *data)
580 {
581 	struct igb_adapter *adapter = (struct igb_adapter *)data;
582 	struct e1000_hw *hw = &adapter->hw;
583 	s32 i2cctl = rd32(E1000_I2CPARAMS);
584 
585 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586 }
587 
588 /**
589  *  igb_set_i2c_data - Sets the I2C data bit
590  *  @data: pointer to hardware structure
591  *  @state: I2C data value (0 or 1) to set
592  *
593  *  Sets the I2C data bit
594  **/
595 static void igb_set_i2c_data(void *data, int state)
596 {
597 	struct igb_adapter *adapter = (struct igb_adapter *)data;
598 	struct e1000_hw *hw = &adapter->hw;
599 	s32 i2cctl = rd32(E1000_I2CPARAMS);
600 
601 	if (state)
602 		i2cctl |= E1000_I2C_DATA_OUT;
603 	else
604 		i2cctl &= ~E1000_I2C_DATA_OUT;
605 
606 	i2cctl &= ~E1000_I2C_DATA_OE_N;
607 	i2cctl |= E1000_I2C_CLK_OE_N;
608 	wr32(E1000_I2CPARAMS, i2cctl);
609 	wrfl();
610 
611 }
612 
613 /**
614  *  igb_set_i2c_clk - Sets the I2C SCL clock
615  *  @data: pointer to hardware structure
616  *  @state: state to set clock
617  *
618  *  Sets the I2C clock line to state
619  **/
620 static void igb_set_i2c_clk(void *data, int state)
621 {
622 	struct igb_adapter *adapter = (struct igb_adapter *)data;
623 	struct e1000_hw *hw = &adapter->hw;
624 	s32 i2cctl = rd32(E1000_I2CPARAMS);
625 
626 	if (state) {
627 		i2cctl |= E1000_I2C_CLK_OUT;
628 		i2cctl &= ~E1000_I2C_CLK_OE_N;
629 	} else {
630 		i2cctl &= ~E1000_I2C_CLK_OUT;
631 		i2cctl &= ~E1000_I2C_CLK_OE_N;
632 	}
633 	wr32(E1000_I2CPARAMS, i2cctl);
634 	wrfl();
635 }
636 
637 /**
638  *  igb_get_i2c_clk - Gets the I2C SCL clock state
639  *  @data: pointer to hardware structure
640  *
641  *  Gets the I2C clock state
642  **/
643 static int igb_get_i2c_clk(void *data)
644 {
645 	struct igb_adapter *adapter = (struct igb_adapter *)data;
646 	struct e1000_hw *hw = &adapter->hw;
647 	s32 i2cctl = rd32(E1000_I2CPARAMS);
648 
649 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650 }
651 
652 static const struct i2c_algo_bit_data igb_i2c_algo = {
653 	.setsda		= igb_set_i2c_data,
654 	.setscl		= igb_set_i2c_clk,
655 	.getsda		= igb_get_i2c_data,
656 	.getscl		= igb_get_i2c_clk,
657 	.udelay		= 5,
658 	.timeout	= 20,
659 };
660 
661 /**
662  *  igb_get_hw_dev - return device
663  *  @hw: pointer to hardware structure
664  *
665  *  used by hardware layer to print debugging information
666  **/
667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 {
669 	struct igb_adapter *adapter = hw->back;
670 	return adapter->netdev;
671 }
672 
673 /**
674  *  igb_init_module - Driver Registration Routine
675  *
676  *  igb_init_module is the first routine called when the driver is
677  *  loaded. All it does is register with the PCI subsystem.
678  **/
679 static int __init igb_init_module(void)
680 {
681 	int ret;
682 	pr_info("%s - version %s\n",
683 	       igb_driver_string, igb_driver_version);
684 
685 	pr_info("%s\n", igb_copyright);
686 
687 #ifdef CONFIG_IGB_DCA
688 	dca_register_notify(&dca_notifier);
689 #endif
690 	ret = pci_register_driver(&igb_driver);
691 	return ret;
692 }
693 
694 module_init(igb_init_module);
695 
696 /**
697  *  igb_exit_module - Driver Exit Cleanup Routine
698  *
699  *  igb_exit_module is called just before the driver is removed
700  *  from memory.
701  **/
702 static void __exit igb_exit_module(void)
703 {
704 #ifdef CONFIG_IGB_DCA
705 	dca_unregister_notify(&dca_notifier);
706 #endif
707 	pci_unregister_driver(&igb_driver);
708 }
709 
710 module_exit(igb_exit_module);
711 
712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713 /**
714  *  igb_cache_ring_register - Descriptor ring to register mapping
715  *  @adapter: board private structure to initialize
716  *
717  *  Once we know the feature-set enabled for the device, we'll cache
718  *  the register offset the descriptor ring is assigned to.
719  **/
720 static void igb_cache_ring_register(struct igb_adapter *adapter)
721 {
722 	int i = 0, j = 0;
723 	u32 rbase_offset = adapter->vfs_allocated_count;
724 
725 	switch (adapter->hw.mac.type) {
726 	case e1000_82576:
727 		/* The queues are allocated for virtualization such that VF 0
728 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729 		 * In order to avoid collision we start at the first free queue
730 		 * and continue consuming queues in the same sequence
731 		 */
732 		if (adapter->vfs_allocated_count) {
733 			for (; i < adapter->rss_queues; i++)
734 				adapter->rx_ring[i]->reg_idx = rbase_offset +
735 							       Q_IDX_82576(i);
736 		}
737 	case e1000_82575:
738 	case e1000_82580:
739 	case e1000_i350:
740 	case e1000_i354:
741 	case e1000_i210:
742 	case e1000_i211:
743 	default:
744 		for (; i < adapter->num_rx_queues; i++)
745 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746 		for (; j < adapter->num_tx_queues; j++)
747 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748 		break;
749 	}
750 }
751 
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 			   int index, int offset)
766 {
767 	u32 ivar = array_rd32(E1000_IVAR0, index);
768 
769 	/* clear any bits that are currently set */
770 	ivar &= ~((u32)0xFF << offset);
771 
772 	/* write vector and valid bit */
773 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774 
775 	array_wr32(E1000_IVAR0, index, ivar);
776 }
777 
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 	struct igb_adapter *adapter = q_vector->adapter;
782 	struct e1000_hw *hw = &adapter->hw;
783 	int rx_queue = IGB_N0_QUEUE;
784 	int tx_queue = IGB_N0_QUEUE;
785 	u32 msixbm = 0;
786 
787 	if (q_vector->rx.ring)
788 		rx_queue = q_vector->rx.ring->reg_idx;
789 	if (q_vector->tx.ring)
790 		tx_queue = q_vector->tx.ring->reg_idx;
791 
792 	switch (hw->mac.type) {
793 	case e1000_82575:
794 		/* The 82575 assigns vectors using a bitmask, which matches the
795 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796 		 * or more queues to a vector, we write the appropriate bits
797 		 * into the MSIXBM register for that vector.
798 		 */
799 		if (rx_queue > IGB_N0_QUEUE)
800 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 		if (tx_queue > IGB_N0_QUEUE)
802 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 		if (!adapter->msix_entries && msix_vector == 0)
804 			msixbm |= E1000_EIMS_OTHER;
805 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 		q_vector->eims_value = msixbm;
807 		break;
808 	case e1000_82576:
809 		/* 82576 uses a table that essentially consists of 2 columns
810 		 * with 8 rows.  The ordering is column-major so we use the
811 		 * lower 3 bits as the row index, and the 4th bit as the
812 		 * column offset.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue & 0x7,
817 				       (rx_queue & 0x8) << 1);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue & 0x7,
821 				       ((tx_queue & 0x8) << 1) + 8);
822 		q_vector->eims_value = 1 << msix_vector;
823 		break;
824 	case e1000_82580:
825 	case e1000_i350:
826 	case e1000_i354:
827 	case e1000_i210:
828 	case e1000_i211:
829 		/* On 82580 and newer adapters the scheme is similar to 82576
830 		 * however instead of ordering column-major we have things
831 		 * ordered row-major.  So we traverse the table by using
832 		 * bit 0 as the column offset, and the remaining bits as the
833 		 * row index.
834 		 */
835 		if (rx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       rx_queue >> 1,
838 				       (rx_queue & 0x1) << 4);
839 		if (tx_queue > IGB_N0_QUEUE)
840 			igb_write_ivar(hw, msix_vector,
841 				       tx_queue >> 1,
842 				       ((tx_queue & 0x1) << 4) + 8);
843 		q_vector->eims_value = 1 << msix_vector;
844 		break;
845 	default:
846 		BUG();
847 		break;
848 	}
849 
850 	/* add q_vector eims value to global eims_enable_mask */
851 	adapter->eims_enable_mask |= q_vector->eims_value;
852 
853 	/* configure q_vector to set itr on first interrupt */
854 	q_vector->set_itr = 1;
855 }
856 
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 	u32 tmp;
867 	int i, vector = 0;
868 	struct e1000_hw *hw = &adapter->hw;
869 
870 	adapter->eims_enable_mask = 0;
871 
872 	/* set vector for other causes, i.e. link changes */
873 	switch (hw->mac.type) {
874 	case e1000_82575:
875 		tmp = rd32(E1000_CTRL_EXT);
876 		/* enable MSI-X PBA support*/
877 		tmp |= E1000_CTRL_EXT_PBA_CLR;
878 
879 		/* Auto-Mask interrupts upon ICR read. */
880 		tmp |= E1000_CTRL_EXT_EIAME;
881 		tmp |= E1000_CTRL_EXT_IRCA;
882 
883 		wr32(E1000_CTRL_EXT, tmp);
884 
885 		/* enable msix_other interrupt */
886 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 		adapter->eims_other = E1000_EIMS_OTHER;
888 
889 		break;
890 
891 	case e1000_82576:
892 	case e1000_82580:
893 	case e1000_i350:
894 	case e1000_i354:
895 	case e1000_i210:
896 	case e1000_i211:
897 		/* Turn on MSI-X capability first, or our settings
898 		 * won't stick.  And it will take days to debug.
899 		 */
900 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 		     E1000_GPIE_NSICR);
903 
904 		/* enable msix_other interrupt */
905 		adapter->eims_other = 1 << vector;
906 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907 
908 		wr32(E1000_IVAR_MISC, tmp);
909 		break;
910 	default:
911 		/* do nothing, since nothing else supports MSI-X */
912 		break;
913 	} /* switch (hw->mac.type) */
914 
915 	adapter->eims_enable_mask |= adapter->eims_other;
916 
917 	for (i = 0; i < adapter->num_q_vectors; i++)
918 		igb_assign_vector(adapter->q_vector[i], vector++);
919 
920 	wrfl();
921 }
922 
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 	struct net_device *netdev = adapter->netdev;
933 	struct e1000_hw *hw = &adapter->hw;
934 	int i, err = 0, vector = 0, free_vector = 0;
935 
936 	err = request_irq(adapter->msix_entries[vector].vector,
937 			  igb_msix_other, 0, netdev->name, adapter);
938 	if (err)
939 		goto err_out;
940 
941 	for (i = 0; i < adapter->num_q_vectors; i++) {
942 		struct igb_q_vector *q_vector = adapter->q_vector[i];
943 
944 		vector++;
945 
946 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947 
948 		if (q_vector->rx.ring && q_vector->tx.ring)
949 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 				q_vector->rx.ring->queue_index);
951 		else if (q_vector->tx.ring)
952 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 				q_vector->tx.ring->queue_index);
954 		else if (q_vector->rx.ring)
955 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956 				q_vector->rx.ring->queue_index);
957 		else
958 			sprintf(q_vector->name, "%s-unused", netdev->name);
959 
960 		err = request_irq(adapter->msix_entries[vector].vector,
961 				  igb_msix_ring, 0, q_vector->name,
962 				  q_vector);
963 		if (err)
964 			goto err_free;
965 	}
966 
967 	igb_configure_msix(adapter);
968 	return 0;
969 
970 err_free:
971 	/* free already assigned IRQs */
972 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973 
974 	vector--;
975 	for (i = 0; i < vector; i++) {
976 		free_irq(adapter->msix_entries[free_vector++].vector,
977 			 adapter->q_vector[i]);
978 	}
979 err_out:
980 	return err;
981 }
982 
983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984 {
985 	if (adapter->msix_entries) {
986 		pci_disable_msix(adapter->pdev);
987 		kfree(adapter->msix_entries);
988 		adapter->msix_entries = NULL;
989 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990 		pci_disable_msi(adapter->pdev);
991 	}
992 }
993 
994 /**
995  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
996  *  @adapter: board private structure to initialize
997  *  @v_idx: Index of vector to be freed
998  *
999  *  This function frees the memory allocated to the q_vector.  In addition if
1000  *  NAPI is enabled it will delete any references to the NAPI struct prior
1001  *  to freeing the q_vector.
1002  **/
1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004 {
1005 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006 
1007 	if (q_vector->tx.ring)
1008 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009 
1010 	if (q_vector->rx.ring)
1011 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012 
1013 	adapter->q_vector[v_idx] = NULL;
1014 	netif_napi_del(&q_vector->napi);
1015 
1016 	/* ixgbe_get_stats64() might access the rings on this vector,
1017 	 * we must wait a grace period before freeing it.
1018 	 */
1019 	kfree_rcu(q_vector, rcu);
1020 }
1021 
1022 /**
1023  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1024  *  @adapter: board private structure to initialize
1025  *
1026  *  This function frees the memory allocated to the q_vectors.  In addition if
1027  *  NAPI is enabled it will delete any references to the NAPI struct prior
1028  *  to freeing the q_vector.
1029  **/
1030 static void igb_free_q_vectors(struct igb_adapter *adapter)
1031 {
1032 	int v_idx = adapter->num_q_vectors;
1033 
1034 	adapter->num_tx_queues = 0;
1035 	adapter->num_rx_queues = 0;
1036 	adapter->num_q_vectors = 0;
1037 
1038 	while (v_idx--)
1039 		igb_free_q_vector(adapter, v_idx);
1040 }
1041 
1042 /**
1043  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044  *  @adapter: board private structure to initialize
1045  *
1046  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1047  *  MSI-X interrupts allocated.
1048  */
1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050 {
1051 	igb_free_q_vectors(adapter);
1052 	igb_reset_interrupt_capability(adapter);
1053 }
1054 
1055 /**
1056  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1057  *  @adapter: board private structure to initialize
1058  *  @msix: boolean value of MSIX capability
1059  *
1060  *  Attempt to configure interrupts using the best available
1061  *  capabilities of the hardware and kernel.
1062  **/
1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 {
1065 	int err;
1066 	int numvecs, i;
1067 
1068 	if (!msix)
1069 		goto msi_only;
1070 
1071 	/* Number of supported queues. */
1072 	adapter->num_rx_queues = adapter->rss_queues;
1073 	if (adapter->vfs_allocated_count)
1074 		adapter->num_tx_queues = 1;
1075 	else
1076 		adapter->num_tx_queues = adapter->rss_queues;
1077 
1078 	/* start with one vector for every Rx queue */
1079 	numvecs = adapter->num_rx_queues;
1080 
1081 	/* if Tx handler is separate add 1 for every Tx queue */
1082 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083 		numvecs += adapter->num_tx_queues;
1084 
1085 	/* store the number of vectors reserved for queues */
1086 	adapter->num_q_vectors = numvecs;
1087 
1088 	/* add 1 vector for link status interrupts */
1089 	numvecs++;
1090 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091 					GFP_KERNEL);
1092 
1093 	if (!adapter->msix_entries)
1094 		goto msi_only;
1095 
1096 	for (i = 0; i < numvecs; i++)
1097 		adapter->msix_entries[i].entry = i;
1098 
1099 	err = pci_enable_msix(adapter->pdev,
1100 			      adapter->msix_entries,
1101 			      numvecs);
1102 	if (err == 0)
1103 		return;
1104 
1105 	igb_reset_interrupt_capability(adapter);
1106 
1107 	/* If we can't do MSI-X, try MSI */
1108 msi_only:
1109 #ifdef CONFIG_PCI_IOV
1110 	/* disable SR-IOV for non MSI-X configurations */
1111 	if (adapter->vf_data) {
1112 		struct e1000_hw *hw = &adapter->hw;
1113 		/* disable iov and allow time for transactions to clear */
1114 		pci_disable_sriov(adapter->pdev);
1115 		msleep(500);
1116 
1117 		kfree(adapter->vf_data);
1118 		adapter->vf_data = NULL;
1119 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120 		wrfl();
1121 		msleep(100);
1122 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123 	}
1124 #endif
1125 	adapter->vfs_allocated_count = 0;
1126 	adapter->rss_queues = 1;
1127 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128 	adapter->num_rx_queues = 1;
1129 	adapter->num_tx_queues = 1;
1130 	adapter->num_q_vectors = 1;
1131 	if (!pci_enable_msi(adapter->pdev))
1132 		adapter->flags |= IGB_FLAG_HAS_MSI;
1133 }
1134 
1135 static void igb_add_ring(struct igb_ring *ring,
1136 			 struct igb_ring_container *head)
1137 {
1138 	head->ring = ring;
1139 	head->count++;
1140 }
1141 
1142 /**
1143  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144  *  @adapter: board private structure to initialize
1145  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1146  *  @v_idx: index of vector in adapter struct
1147  *  @txr_count: total number of Tx rings to allocate
1148  *  @txr_idx: index of first Tx ring to allocate
1149  *  @rxr_count: total number of Rx rings to allocate
1150  *  @rxr_idx: index of first Rx ring to allocate
1151  *
1152  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153  **/
1154 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155 			      int v_count, int v_idx,
1156 			      int txr_count, int txr_idx,
1157 			      int rxr_count, int rxr_idx)
1158 {
1159 	struct igb_q_vector *q_vector;
1160 	struct igb_ring *ring;
1161 	int ring_count, size;
1162 
1163 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164 	if (txr_count > 1 || rxr_count > 1)
1165 		return -ENOMEM;
1166 
1167 	ring_count = txr_count + rxr_count;
1168 	size = sizeof(struct igb_q_vector) +
1169 	       (sizeof(struct igb_ring) * ring_count);
1170 
1171 	/* allocate q_vector and rings */
1172 	q_vector = kzalloc(size, GFP_KERNEL);
1173 	if (!q_vector)
1174 		return -ENOMEM;
1175 
1176 	/* initialize NAPI */
1177 	netif_napi_add(adapter->netdev, &q_vector->napi,
1178 		       igb_poll, 64);
1179 
1180 	/* tie q_vector and adapter together */
1181 	adapter->q_vector[v_idx] = q_vector;
1182 	q_vector->adapter = adapter;
1183 
1184 	/* initialize work limits */
1185 	q_vector->tx.work_limit = adapter->tx_work_limit;
1186 
1187 	/* initialize ITR configuration */
1188 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189 	q_vector->itr_val = IGB_START_ITR;
1190 
1191 	/* initialize pointer to rings */
1192 	ring = q_vector->ring;
1193 
1194 	/* intialize ITR */
1195 	if (rxr_count) {
1196 		/* rx or rx/tx vector */
1197 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198 			q_vector->itr_val = adapter->rx_itr_setting;
1199 	} else {
1200 		/* tx only vector */
1201 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202 			q_vector->itr_val = adapter->tx_itr_setting;
1203 	}
1204 
1205 	if (txr_count) {
1206 		/* assign generic ring traits */
1207 		ring->dev = &adapter->pdev->dev;
1208 		ring->netdev = adapter->netdev;
1209 
1210 		/* configure backlink on ring */
1211 		ring->q_vector = q_vector;
1212 
1213 		/* update q_vector Tx values */
1214 		igb_add_ring(ring, &q_vector->tx);
1215 
1216 		/* For 82575, context index must be unique per ring. */
1217 		if (adapter->hw.mac.type == e1000_82575)
1218 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219 
1220 		/* apply Tx specific ring traits */
1221 		ring->count = adapter->tx_ring_count;
1222 		ring->queue_index = txr_idx;
1223 
1224 		/* assign ring to adapter */
1225 		adapter->tx_ring[txr_idx] = ring;
1226 
1227 		/* push pointer to next ring */
1228 		ring++;
1229 	}
1230 
1231 	if (rxr_count) {
1232 		/* assign generic ring traits */
1233 		ring->dev = &adapter->pdev->dev;
1234 		ring->netdev = adapter->netdev;
1235 
1236 		/* configure backlink on ring */
1237 		ring->q_vector = q_vector;
1238 
1239 		/* update q_vector Rx values */
1240 		igb_add_ring(ring, &q_vector->rx);
1241 
1242 		/* set flag indicating ring supports SCTP checksum offload */
1243 		if (adapter->hw.mac.type >= e1000_82576)
1244 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245 
1246 		/*
1247 		 * On i350, i354, i210, and i211, loopback VLAN packets
1248 		 * have the tag byte-swapped.
1249 		 */
1250 		if (adapter->hw.mac.type >= e1000_i350)
1251 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252 
1253 		/* apply Rx specific ring traits */
1254 		ring->count = adapter->rx_ring_count;
1255 		ring->queue_index = rxr_idx;
1256 
1257 		/* assign ring to adapter */
1258 		adapter->rx_ring[rxr_idx] = ring;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 
1265 /**
1266  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267  *  @adapter: board private structure to initialize
1268  *
1269  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1270  *  return -ENOMEM.
1271  **/
1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273 {
1274 	int q_vectors = adapter->num_q_vectors;
1275 	int rxr_remaining = adapter->num_rx_queues;
1276 	int txr_remaining = adapter->num_tx_queues;
1277 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278 	int err;
1279 
1280 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281 		for (; rxr_remaining; v_idx++) {
1282 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283 						 0, 0, 1, rxr_idx);
1284 
1285 			if (err)
1286 				goto err_out;
1287 
1288 			/* update counts and index */
1289 			rxr_remaining--;
1290 			rxr_idx++;
1291 		}
1292 	}
1293 
1294 	for (; v_idx < q_vectors; v_idx++) {
1295 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298 					 tqpv, txr_idx, rqpv, rxr_idx);
1299 
1300 		if (err)
1301 			goto err_out;
1302 
1303 		/* update counts and index */
1304 		rxr_remaining -= rqpv;
1305 		txr_remaining -= tqpv;
1306 		rxr_idx++;
1307 		txr_idx++;
1308 	}
1309 
1310 	return 0;
1311 
1312 err_out:
1313 	adapter->num_tx_queues = 0;
1314 	adapter->num_rx_queues = 0;
1315 	adapter->num_q_vectors = 0;
1316 
1317 	while (v_idx--)
1318 		igb_free_q_vector(adapter, v_idx);
1319 
1320 	return -ENOMEM;
1321 }
1322 
1323 /**
1324  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325  *  @adapter: board private structure to initialize
1326  *  @msix: boolean value of MSIX capability
1327  *
1328  *  This function initializes the interrupts and allocates all of the queues.
1329  **/
1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 {
1332 	struct pci_dev *pdev = adapter->pdev;
1333 	int err;
1334 
1335 	igb_set_interrupt_capability(adapter, msix);
1336 
1337 	err = igb_alloc_q_vectors(adapter);
1338 	if (err) {
1339 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340 		goto err_alloc_q_vectors;
1341 	}
1342 
1343 	igb_cache_ring_register(adapter);
1344 
1345 	return 0;
1346 
1347 err_alloc_q_vectors:
1348 	igb_reset_interrupt_capability(adapter);
1349 	return err;
1350 }
1351 
1352 /**
1353  *  igb_request_irq - initialize interrupts
1354  *  @adapter: board private structure to initialize
1355  *
1356  *  Attempts to configure interrupts using the best available
1357  *  capabilities of the hardware and kernel.
1358  **/
1359 static int igb_request_irq(struct igb_adapter *adapter)
1360 {
1361 	struct net_device *netdev = adapter->netdev;
1362 	struct pci_dev *pdev = adapter->pdev;
1363 	int err = 0;
1364 
1365 	if (adapter->msix_entries) {
1366 		err = igb_request_msix(adapter);
1367 		if (!err)
1368 			goto request_done;
1369 		/* fall back to MSI */
1370 		igb_free_all_tx_resources(adapter);
1371 		igb_free_all_rx_resources(adapter);
1372 
1373 		igb_clear_interrupt_scheme(adapter);
1374 		err = igb_init_interrupt_scheme(adapter, false);
1375 		if (err)
1376 			goto request_done;
1377 
1378 		igb_setup_all_tx_resources(adapter);
1379 		igb_setup_all_rx_resources(adapter);
1380 		igb_configure(adapter);
1381 	}
1382 
1383 	igb_assign_vector(adapter->q_vector[0], 0);
1384 
1385 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1387 				  netdev->name, adapter);
1388 		if (!err)
1389 			goto request_done;
1390 
1391 		/* fall back to legacy interrupts */
1392 		igb_reset_interrupt_capability(adapter);
1393 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394 	}
1395 
1396 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397 			  netdev->name, adapter);
1398 
1399 	if (err)
1400 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401 			err);
1402 
1403 request_done:
1404 	return err;
1405 }
1406 
1407 static void igb_free_irq(struct igb_adapter *adapter)
1408 {
1409 	if (adapter->msix_entries) {
1410 		int vector = 0, i;
1411 
1412 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1413 
1414 		for (i = 0; i < adapter->num_q_vectors; i++)
1415 			free_irq(adapter->msix_entries[vector++].vector,
1416 				 adapter->q_vector[i]);
1417 	} else {
1418 		free_irq(adapter->pdev->irq, adapter);
1419 	}
1420 }
1421 
1422 /**
1423  *  igb_irq_disable - Mask off interrupt generation on the NIC
1424  *  @adapter: board private structure
1425  **/
1426 static void igb_irq_disable(struct igb_adapter *adapter)
1427 {
1428 	struct e1000_hw *hw = &adapter->hw;
1429 
1430 	/* we need to be careful when disabling interrupts.  The VFs are also
1431 	 * mapped into these registers and so clearing the bits can cause
1432 	 * issues on the VF drivers so we only need to clear what we set
1433 	 */
1434 	if (adapter->msix_entries) {
1435 		u32 regval = rd32(E1000_EIAM);
1436 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1438 		regval = rd32(E1000_EIAC);
1439 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440 	}
1441 
1442 	wr32(E1000_IAM, 0);
1443 	wr32(E1000_IMC, ~0);
1444 	wrfl();
1445 	if (adapter->msix_entries) {
1446 		int i;
1447 		for (i = 0; i < adapter->num_q_vectors; i++)
1448 			synchronize_irq(adapter->msix_entries[i].vector);
1449 	} else {
1450 		synchronize_irq(adapter->pdev->irq);
1451 	}
1452 }
1453 
1454 /**
1455  *  igb_irq_enable - Enable default interrupt generation settings
1456  *  @adapter: board private structure
1457  **/
1458 static void igb_irq_enable(struct igb_adapter *adapter)
1459 {
1460 	struct e1000_hw *hw = &adapter->hw;
1461 
1462 	if (adapter->msix_entries) {
1463 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464 		u32 regval = rd32(E1000_EIAC);
1465 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466 		regval = rd32(E1000_EIAM);
1467 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1469 		if (adapter->vfs_allocated_count) {
1470 			wr32(E1000_MBVFIMR, 0xFF);
1471 			ims |= E1000_IMS_VMMB;
1472 		}
1473 		wr32(E1000_IMS, ims);
1474 	} else {
1475 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1476 				E1000_IMS_DRSTA);
1477 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1478 				E1000_IMS_DRSTA);
1479 	}
1480 }
1481 
1482 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483 {
1484 	struct e1000_hw *hw = &adapter->hw;
1485 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1486 	u16 old_vid = adapter->mng_vlan_id;
1487 
1488 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489 		/* add VID to filter table */
1490 		igb_vfta_set(hw, vid, true);
1491 		adapter->mng_vlan_id = vid;
1492 	} else {
1493 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494 	}
1495 
1496 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497 	    (vid != old_vid) &&
1498 	    !test_bit(old_vid, adapter->active_vlans)) {
1499 		/* remove VID from filter table */
1500 		igb_vfta_set(hw, old_vid, false);
1501 	}
1502 }
1503 
1504 /**
1505  *  igb_release_hw_control - release control of the h/w to f/w
1506  *  @adapter: address of board private structure
1507  *
1508  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509  *  For ASF and Pass Through versions of f/w this means that the
1510  *  driver is no longer loaded.
1511  **/
1512 static void igb_release_hw_control(struct igb_adapter *adapter)
1513 {
1514 	struct e1000_hw *hw = &adapter->hw;
1515 	u32 ctrl_ext;
1516 
1517 	/* Let firmware take over control of h/w */
1518 	ctrl_ext = rd32(E1000_CTRL_EXT);
1519 	wr32(E1000_CTRL_EXT,
1520 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521 }
1522 
1523 /**
1524  *  igb_get_hw_control - get control of the h/w from f/w
1525  *  @adapter: address of board private structure
1526  *
1527  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528  *  For ASF and Pass Through versions of f/w this means that
1529  *  the driver is loaded.
1530  **/
1531 static void igb_get_hw_control(struct igb_adapter *adapter)
1532 {
1533 	struct e1000_hw *hw = &adapter->hw;
1534 	u32 ctrl_ext;
1535 
1536 	/* Let firmware know the driver has taken over */
1537 	ctrl_ext = rd32(E1000_CTRL_EXT);
1538 	wr32(E1000_CTRL_EXT,
1539 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540 }
1541 
1542 /**
1543  *  igb_configure - configure the hardware for RX and TX
1544  *  @adapter: private board structure
1545  **/
1546 static void igb_configure(struct igb_adapter *adapter)
1547 {
1548 	struct net_device *netdev = adapter->netdev;
1549 	int i;
1550 
1551 	igb_get_hw_control(adapter);
1552 	igb_set_rx_mode(netdev);
1553 
1554 	igb_restore_vlan(adapter);
1555 
1556 	igb_setup_tctl(adapter);
1557 	igb_setup_mrqc(adapter);
1558 	igb_setup_rctl(adapter);
1559 
1560 	igb_configure_tx(adapter);
1561 	igb_configure_rx(adapter);
1562 
1563 	igb_rx_fifo_flush_82575(&adapter->hw);
1564 
1565 	/* call igb_desc_unused which always leaves
1566 	 * at least 1 descriptor unused to make sure
1567 	 * next_to_use != next_to_clean
1568 	 */
1569 	for (i = 0; i < adapter->num_rx_queues; i++) {
1570 		struct igb_ring *ring = adapter->rx_ring[i];
1571 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572 	}
1573 }
1574 
1575 /**
1576  *  igb_power_up_link - Power up the phy/serdes link
1577  *  @adapter: address of board private structure
1578  **/
1579 void igb_power_up_link(struct igb_adapter *adapter)
1580 {
1581 	igb_reset_phy(&adapter->hw);
1582 
1583 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584 		igb_power_up_phy_copper(&adapter->hw);
1585 	else
1586 		igb_power_up_serdes_link_82575(&adapter->hw);
1587 }
1588 
1589 /**
1590  *  igb_power_down_link - Power down the phy/serdes link
1591  *  @adapter: address of board private structure
1592  */
1593 static void igb_power_down_link(struct igb_adapter *adapter)
1594 {
1595 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596 		igb_power_down_phy_copper_82575(&adapter->hw);
1597 	else
1598 		igb_shutdown_serdes_link_82575(&adapter->hw);
1599 }
1600 
1601 /**
1602  *  igb_up - Open the interface and prepare it to handle traffic
1603  *  @adapter: board private structure
1604  **/
1605 int igb_up(struct igb_adapter *adapter)
1606 {
1607 	struct e1000_hw *hw = &adapter->hw;
1608 	int i;
1609 
1610 	/* hardware has been reset, we need to reload some things */
1611 	igb_configure(adapter);
1612 
1613 	clear_bit(__IGB_DOWN, &adapter->state);
1614 
1615 	for (i = 0; i < adapter->num_q_vectors; i++)
1616 		napi_enable(&(adapter->q_vector[i]->napi));
1617 
1618 	if (adapter->msix_entries)
1619 		igb_configure_msix(adapter);
1620 	else
1621 		igb_assign_vector(adapter->q_vector[0], 0);
1622 
1623 	/* Clear any pending interrupts. */
1624 	rd32(E1000_ICR);
1625 	igb_irq_enable(adapter);
1626 
1627 	/* notify VFs that reset has been completed */
1628 	if (adapter->vfs_allocated_count) {
1629 		u32 reg_data = rd32(E1000_CTRL_EXT);
1630 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1631 		wr32(E1000_CTRL_EXT, reg_data);
1632 	}
1633 
1634 	netif_tx_start_all_queues(adapter->netdev);
1635 
1636 	/* start the watchdog. */
1637 	hw->mac.get_link_status = 1;
1638 	schedule_work(&adapter->watchdog_task);
1639 
1640 	return 0;
1641 }
1642 
1643 void igb_down(struct igb_adapter *adapter)
1644 {
1645 	struct net_device *netdev = adapter->netdev;
1646 	struct e1000_hw *hw = &adapter->hw;
1647 	u32 tctl, rctl;
1648 	int i;
1649 
1650 	/* signal that we're down so the interrupt handler does not
1651 	 * reschedule our watchdog timer
1652 	 */
1653 	set_bit(__IGB_DOWN, &adapter->state);
1654 
1655 	/* disable receives in the hardware */
1656 	rctl = rd32(E1000_RCTL);
1657 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658 	/* flush and sleep below */
1659 
1660 	netif_tx_stop_all_queues(netdev);
1661 
1662 	/* disable transmits in the hardware */
1663 	tctl = rd32(E1000_TCTL);
1664 	tctl &= ~E1000_TCTL_EN;
1665 	wr32(E1000_TCTL, tctl);
1666 	/* flush both disables and wait for them to finish */
1667 	wrfl();
1668 	msleep(10);
1669 
1670 	for (i = 0; i < adapter->num_q_vectors; i++)
1671 		napi_disable(&(adapter->q_vector[i]->napi));
1672 
1673 	igb_irq_disable(adapter);
1674 
1675 	del_timer_sync(&adapter->watchdog_timer);
1676 	del_timer_sync(&adapter->phy_info_timer);
1677 
1678 	netif_carrier_off(netdev);
1679 
1680 	/* record the stats before reset*/
1681 	spin_lock(&adapter->stats64_lock);
1682 	igb_update_stats(adapter, &adapter->stats64);
1683 	spin_unlock(&adapter->stats64_lock);
1684 
1685 	adapter->link_speed = 0;
1686 	adapter->link_duplex = 0;
1687 
1688 	if (!pci_channel_offline(adapter->pdev))
1689 		igb_reset(adapter);
1690 	igb_clean_all_tx_rings(adapter);
1691 	igb_clean_all_rx_rings(adapter);
1692 #ifdef CONFIG_IGB_DCA
1693 
1694 	/* since we reset the hardware DCA settings were cleared */
1695 	igb_setup_dca(adapter);
1696 #endif
1697 }
1698 
1699 void igb_reinit_locked(struct igb_adapter *adapter)
1700 {
1701 	WARN_ON(in_interrupt());
1702 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1703 		msleep(1);
1704 	igb_down(adapter);
1705 	igb_up(adapter);
1706 	clear_bit(__IGB_RESETTING, &adapter->state);
1707 }
1708 
1709 void igb_reset(struct igb_adapter *adapter)
1710 {
1711 	struct pci_dev *pdev = adapter->pdev;
1712 	struct e1000_hw *hw = &adapter->hw;
1713 	struct e1000_mac_info *mac = &hw->mac;
1714 	struct e1000_fc_info *fc = &hw->fc;
1715 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1716 
1717 	/* Repartition Pba for greater than 9k mtu
1718 	 * To take effect CTRL.RST is required.
1719 	 */
1720 	switch (mac->type) {
1721 	case e1000_i350:
1722 	case e1000_i354:
1723 	case e1000_82580:
1724 		pba = rd32(E1000_RXPBS);
1725 		pba = igb_rxpbs_adjust_82580(pba);
1726 		break;
1727 	case e1000_82576:
1728 		pba = rd32(E1000_RXPBS);
1729 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1730 		break;
1731 	case e1000_82575:
1732 	case e1000_i210:
1733 	case e1000_i211:
1734 	default:
1735 		pba = E1000_PBA_34K;
1736 		break;
1737 	}
1738 
1739 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1740 	    (mac->type < e1000_82576)) {
1741 		/* adjust PBA for jumbo frames */
1742 		wr32(E1000_PBA, pba);
1743 
1744 		/* To maintain wire speed transmits, the Tx FIFO should be
1745 		 * large enough to accommodate two full transmit packets,
1746 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1747 		 * the Rx FIFO should be large enough to accommodate at least
1748 		 * one full receive packet and is similarly rounded up and
1749 		 * expressed in KB.
1750 		 */
1751 		pba = rd32(E1000_PBA);
1752 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1753 		tx_space = pba >> 16;
1754 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1755 		pba &= 0xffff;
1756 		/* the Tx fifo also stores 16 bytes of information about the Tx
1757 		 * but don't include ethernet FCS because hardware appends it
1758 		 */
1759 		min_tx_space = (adapter->max_frame_size +
1760 				sizeof(union e1000_adv_tx_desc) -
1761 				ETH_FCS_LEN) * 2;
1762 		min_tx_space = ALIGN(min_tx_space, 1024);
1763 		min_tx_space >>= 10;
1764 		/* software strips receive CRC, so leave room for it */
1765 		min_rx_space = adapter->max_frame_size;
1766 		min_rx_space = ALIGN(min_rx_space, 1024);
1767 		min_rx_space >>= 10;
1768 
1769 		/* If current Tx allocation is less than the min Tx FIFO size,
1770 		 * and the min Tx FIFO size is less than the current Rx FIFO
1771 		 * allocation, take space away from current Rx allocation
1772 		 */
1773 		if (tx_space < min_tx_space &&
1774 		    ((min_tx_space - tx_space) < pba)) {
1775 			pba = pba - (min_tx_space - tx_space);
1776 
1777 			/* if short on Rx space, Rx wins and must trump Tx
1778 			 * adjustment
1779 			 */
1780 			if (pba < min_rx_space)
1781 				pba = min_rx_space;
1782 		}
1783 		wr32(E1000_PBA, pba);
1784 	}
1785 
1786 	/* flow control settings */
1787 	/* The high water mark must be low enough to fit one full frame
1788 	 * (or the size used for early receive) above it in the Rx FIFO.
1789 	 * Set it to the lower of:
1790 	 * - 90% of the Rx FIFO size, or
1791 	 * - the full Rx FIFO size minus one full frame
1792 	 */
1793 	hwm = min(((pba << 10) * 9 / 10),
1794 			((pba << 10) - 2 * adapter->max_frame_size));
1795 
1796 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1797 	fc->low_water = fc->high_water - 16;
1798 	fc->pause_time = 0xFFFF;
1799 	fc->send_xon = 1;
1800 	fc->current_mode = fc->requested_mode;
1801 
1802 	/* disable receive for all VFs and wait one second */
1803 	if (adapter->vfs_allocated_count) {
1804 		int i;
1805 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1806 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1807 
1808 		/* ping all the active vfs to let them know we are going down */
1809 		igb_ping_all_vfs(adapter);
1810 
1811 		/* disable transmits and receives */
1812 		wr32(E1000_VFRE, 0);
1813 		wr32(E1000_VFTE, 0);
1814 	}
1815 
1816 	/* Allow time for pending master requests to run */
1817 	hw->mac.ops.reset_hw(hw);
1818 	wr32(E1000_WUC, 0);
1819 
1820 	if (hw->mac.ops.init_hw(hw))
1821 		dev_err(&pdev->dev, "Hardware Error\n");
1822 
1823 	/* Flow control settings reset on hardware reset, so guarantee flow
1824 	 * control is off when forcing speed.
1825 	 */
1826 	if (!hw->mac.autoneg)
1827 		igb_force_mac_fc(hw);
1828 
1829 	igb_init_dmac(adapter, pba);
1830 #ifdef CONFIG_IGB_HWMON
1831 	/* Re-initialize the thermal sensor on i350 devices. */
1832 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1833 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1834 			/* If present, re-initialize the external thermal sensor
1835 			 * interface.
1836 			 */
1837 			if (adapter->ets)
1838 				mac->ops.init_thermal_sensor_thresh(hw);
1839 		}
1840 	}
1841 #endif
1842 	if (!netif_running(adapter->netdev))
1843 		igb_power_down_link(adapter);
1844 
1845 	igb_update_mng_vlan(adapter);
1846 
1847 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1848 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1849 
1850 	/* Re-enable PTP, where applicable. */
1851 	igb_ptp_reset(adapter);
1852 
1853 	igb_get_phy_info(hw);
1854 }
1855 
1856 static netdev_features_t igb_fix_features(struct net_device *netdev,
1857 	netdev_features_t features)
1858 {
1859 	/* Since there is no support for separate Rx/Tx vlan accel
1860 	 * enable/disable make sure Tx flag is always in same state as Rx.
1861 	 */
1862 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1863 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1864 	else
1865 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1866 
1867 	return features;
1868 }
1869 
1870 static int igb_set_features(struct net_device *netdev,
1871 	netdev_features_t features)
1872 {
1873 	netdev_features_t changed = netdev->features ^ features;
1874 	struct igb_adapter *adapter = netdev_priv(netdev);
1875 
1876 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1877 		igb_vlan_mode(netdev, features);
1878 
1879 	if (!(changed & NETIF_F_RXALL))
1880 		return 0;
1881 
1882 	netdev->features = features;
1883 
1884 	if (netif_running(netdev))
1885 		igb_reinit_locked(adapter);
1886 	else
1887 		igb_reset(adapter);
1888 
1889 	return 0;
1890 }
1891 
1892 static const struct net_device_ops igb_netdev_ops = {
1893 	.ndo_open		= igb_open,
1894 	.ndo_stop		= igb_close,
1895 	.ndo_start_xmit		= igb_xmit_frame,
1896 	.ndo_get_stats64	= igb_get_stats64,
1897 	.ndo_set_rx_mode	= igb_set_rx_mode,
1898 	.ndo_set_mac_address	= igb_set_mac,
1899 	.ndo_change_mtu		= igb_change_mtu,
1900 	.ndo_do_ioctl		= igb_ioctl,
1901 	.ndo_tx_timeout		= igb_tx_timeout,
1902 	.ndo_validate_addr	= eth_validate_addr,
1903 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1904 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1905 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1906 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1907 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1908 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1909 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1910 #ifdef CONFIG_NET_POLL_CONTROLLER
1911 	.ndo_poll_controller	= igb_netpoll,
1912 #endif
1913 	.ndo_fix_features	= igb_fix_features,
1914 	.ndo_set_features	= igb_set_features,
1915 };
1916 
1917 /**
1918  * igb_set_fw_version - Configure version string for ethtool
1919  * @adapter: adapter struct
1920  **/
1921 void igb_set_fw_version(struct igb_adapter *adapter)
1922 {
1923 	struct e1000_hw *hw = &adapter->hw;
1924 	struct e1000_fw_version fw;
1925 
1926 	igb_get_fw_version(hw, &fw);
1927 
1928 	switch (hw->mac.type) {
1929 	case e1000_i211:
1930 		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1931 			 "%2d.%2d-%d",
1932 			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1933 		break;
1934 
1935 	default:
1936 		/* if option is rom valid, display its version too */
1937 		if (fw.or_valid) {
1938 			snprintf(adapter->fw_version,
1939 				 sizeof(adapter->fw_version),
1940 				 "%d.%d, 0x%08x, %d.%d.%d",
1941 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1942 				 fw.or_major, fw.or_build, fw.or_patch);
1943 		/* no option rom */
1944 		} else {
1945 			snprintf(adapter->fw_version,
1946 				 sizeof(adapter->fw_version),
1947 				 "%d.%d, 0x%08x",
1948 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1949 		}
1950 		break;
1951 	}
1952 	return;
1953 }
1954 
1955 /**
1956  *  igb_init_i2c - Init I2C interface
1957  *  @adapter: pointer to adapter structure
1958  **/
1959 static s32 igb_init_i2c(struct igb_adapter *adapter)
1960 {
1961 	s32 status = E1000_SUCCESS;
1962 
1963 	/* I2C interface supported on i350 devices */
1964 	if (adapter->hw.mac.type != e1000_i350)
1965 		return E1000_SUCCESS;
1966 
1967 	/* Initialize the i2c bus which is controlled by the registers.
1968 	 * This bus will use the i2c_algo_bit structue that implements
1969 	 * the protocol through toggling of the 4 bits in the register.
1970 	 */
1971 	adapter->i2c_adap.owner = THIS_MODULE;
1972 	adapter->i2c_algo = igb_i2c_algo;
1973 	adapter->i2c_algo.data = adapter;
1974 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1975 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1976 	strlcpy(adapter->i2c_adap.name, "igb BB",
1977 		sizeof(adapter->i2c_adap.name));
1978 	status = i2c_bit_add_bus(&adapter->i2c_adap);
1979 	return status;
1980 }
1981 
1982 /**
1983  *  igb_probe - Device Initialization Routine
1984  *  @pdev: PCI device information struct
1985  *  @ent: entry in igb_pci_tbl
1986  *
1987  *  Returns 0 on success, negative on failure
1988  *
1989  *  igb_probe initializes an adapter identified by a pci_dev structure.
1990  *  The OS initialization, configuring of the adapter private structure,
1991  *  and a hardware reset occur.
1992  **/
1993 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1994 {
1995 	struct net_device *netdev;
1996 	struct igb_adapter *adapter;
1997 	struct e1000_hw *hw;
1998 	u16 eeprom_data = 0;
1999 	s32 ret_val;
2000 	static int global_quad_port_a; /* global quad port a indication */
2001 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2002 	unsigned long mmio_start, mmio_len;
2003 	int err, pci_using_dac;
2004 	u8 part_str[E1000_PBANUM_LENGTH];
2005 
2006 	/* Catch broken hardware that put the wrong VF device ID in
2007 	 * the PCIe SR-IOV capability.
2008 	 */
2009 	if (pdev->is_virtfn) {
2010 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2011 			pci_name(pdev), pdev->vendor, pdev->device);
2012 		return -EINVAL;
2013 	}
2014 
2015 	err = pci_enable_device_mem(pdev);
2016 	if (err)
2017 		return err;
2018 
2019 	pci_using_dac = 0;
2020 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2021 	if (!err) {
2022 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2023 		if (!err)
2024 			pci_using_dac = 1;
2025 	} else {
2026 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2027 		if (err) {
2028 			err = dma_set_coherent_mask(&pdev->dev,
2029 						    DMA_BIT_MASK(32));
2030 			if (err) {
2031 				dev_err(&pdev->dev,
2032 					"No usable DMA configuration, aborting\n");
2033 				goto err_dma;
2034 			}
2035 		}
2036 	}
2037 
2038 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2039 					   IORESOURCE_MEM),
2040 					   igb_driver_name);
2041 	if (err)
2042 		goto err_pci_reg;
2043 
2044 	pci_enable_pcie_error_reporting(pdev);
2045 
2046 	pci_set_master(pdev);
2047 	pci_save_state(pdev);
2048 
2049 	err = -ENOMEM;
2050 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2051 				   IGB_MAX_TX_QUEUES);
2052 	if (!netdev)
2053 		goto err_alloc_etherdev;
2054 
2055 	SET_NETDEV_DEV(netdev, &pdev->dev);
2056 
2057 	pci_set_drvdata(pdev, netdev);
2058 	adapter = netdev_priv(netdev);
2059 	adapter->netdev = netdev;
2060 	adapter->pdev = pdev;
2061 	hw = &adapter->hw;
2062 	hw->back = adapter;
2063 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2064 
2065 	mmio_start = pci_resource_start(pdev, 0);
2066 	mmio_len = pci_resource_len(pdev, 0);
2067 
2068 	err = -EIO;
2069 	hw->hw_addr = ioremap(mmio_start, mmio_len);
2070 	if (!hw->hw_addr)
2071 		goto err_ioremap;
2072 
2073 	netdev->netdev_ops = &igb_netdev_ops;
2074 	igb_set_ethtool_ops(netdev);
2075 	netdev->watchdog_timeo = 5 * HZ;
2076 
2077 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2078 
2079 	netdev->mem_start = mmio_start;
2080 	netdev->mem_end = mmio_start + mmio_len;
2081 
2082 	/* PCI config space info */
2083 	hw->vendor_id = pdev->vendor;
2084 	hw->device_id = pdev->device;
2085 	hw->revision_id = pdev->revision;
2086 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2087 	hw->subsystem_device_id = pdev->subsystem_device;
2088 
2089 	/* Copy the default MAC, PHY and NVM function pointers */
2090 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2091 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2092 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2093 	/* Initialize skew-specific constants */
2094 	err = ei->get_invariants(hw);
2095 	if (err)
2096 		goto err_sw_init;
2097 
2098 	/* setup the private structure */
2099 	err = igb_sw_init(adapter);
2100 	if (err)
2101 		goto err_sw_init;
2102 
2103 	igb_get_bus_info_pcie(hw);
2104 
2105 	hw->phy.autoneg_wait_to_complete = false;
2106 
2107 	/* Copper options */
2108 	if (hw->phy.media_type == e1000_media_type_copper) {
2109 		hw->phy.mdix = AUTO_ALL_MODES;
2110 		hw->phy.disable_polarity_correction = false;
2111 		hw->phy.ms_type = e1000_ms_hw_default;
2112 	}
2113 
2114 	if (igb_check_reset_block(hw))
2115 		dev_info(&pdev->dev,
2116 			"PHY reset is blocked due to SOL/IDER session.\n");
2117 
2118 	/* features is initialized to 0 in allocation, it might have bits
2119 	 * set by igb_sw_init so we should use an or instead of an
2120 	 * assignment.
2121 	 */
2122 	netdev->features |= NETIF_F_SG |
2123 			    NETIF_F_IP_CSUM |
2124 			    NETIF_F_IPV6_CSUM |
2125 			    NETIF_F_TSO |
2126 			    NETIF_F_TSO6 |
2127 			    NETIF_F_RXHASH |
2128 			    NETIF_F_RXCSUM |
2129 			    NETIF_F_HW_VLAN_CTAG_RX |
2130 			    NETIF_F_HW_VLAN_CTAG_TX;
2131 
2132 	/* copy netdev features into list of user selectable features */
2133 	netdev->hw_features |= netdev->features;
2134 	netdev->hw_features |= NETIF_F_RXALL;
2135 
2136 	/* set this bit last since it cannot be part of hw_features */
2137 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2138 
2139 	netdev->vlan_features |= NETIF_F_TSO |
2140 				 NETIF_F_TSO6 |
2141 				 NETIF_F_IP_CSUM |
2142 				 NETIF_F_IPV6_CSUM |
2143 				 NETIF_F_SG;
2144 
2145 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2146 
2147 	if (pci_using_dac) {
2148 		netdev->features |= NETIF_F_HIGHDMA;
2149 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2150 	}
2151 
2152 	if (hw->mac.type >= e1000_82576) {
2153 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2154 		netdev->features |= NETIF_F_SCTP_CSUM;
2155 	}
2156 
2157 	netdev->priv_flags |= IFF_UNICAST_FLT;
2158 
2159 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2160 
2161 	/* before reading the NVM, reset the controller to put the device in a
2162 	 * known good starting state
2163 	 */
2164 	hw->mac.ops.reset_hw(hw);
2165 
2166 	/* make sure the NVM is good , i211 parts have special NVM that
2167 	 * doesn't contain a checksum
2168 	 */
2169 	if (hw->mac.type != e1000_i211) {
2170 		if (hw->nvm.ops.validate(hw) < 0) {
2171 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2172 			err = -EIO;
2173 			goto err_eeprom;
2174 		}
2175 	}
2176 
2177 	/* copy the MAC address out of the NVM */
2178 	if (hw->mac.ops.read_mac_addr(hw))
2179 		dev_err(&pdev->dev, "NVM Read Error\n");
2180 
2181 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2182 
2183 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2184 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2185 		err = -EIO;
2186 		goto err_eeprom;
2187 	}
2188 
2189 	/* get firmware version for ethtool -i */
2190 	igb_set_fw_version(adapter);
2191 
2192 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2193 		    (unsigned long) adapter);
2194 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2195 		    (unsigned long) adapter);
2196 
2197 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2198 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2199 
2200 	/* Initialize link properties that are user-changeable */
2201 	adapter->fc_autoneg = true;
2202 	hw->mac.autoneg = true;
2203 	hw->phy.autoneg_advertised = 0x2f;
2204 
2205 	hw->fc.requested_mode = e1000_fc_default;
2206 	hw->fc.current_mode = e1000_fc_default;
2207 
2208 	igb_validate_mdi_setting(hw);
2209 
2210 	/* By default, support wake on port A */
2211 	if (hw->bus.func == 0)
2212 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2213 
2214 	/* Check the NVM for wake support on non-port A ports */
2215 	if (hw->mac.type >= e1000_82580)
2216 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2217 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2218 				 &eeprom_data);
2219 	else if (hw->bus.func == 1)
2220 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2221 
2222 	if (eeprom_data & IGB_EEPROM_APME)
2223 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2224 
2225 	/* now that we have the eeprom settings, apply the special cases where
2226 	 * the eeprom may be wrong or the board simply won't support wake on
2227 	 * lan on a particular port
2228 	 */
2229 	switch (pdev->device) {
2230 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2231 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2232 		break;
2233 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2234 	case E1000_DEV_ID_82576_FIBER:
2235 	case E1000_DEV_ID_82576_SERDES:
2236 		/* Wake events only supported on port A for dual fiber
2237 		 * regardless of eeprom setting
2238 		 */
2239 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2240 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2241 		break;
2242 	case E1000_DEV_ID_82576_QUAD_COPPER:
2243 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2244 		/* if quad port adapter, disable WoL on all but port A */
2245 		if (global_quad_port_a != 0)
2246 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2247 		else
2248 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2249 		/* Reset for multiple quad port adapters */
2250 		if (++global_quad_port_a == 4)
2251 			global_quad_port_a = 0;
2252 		break;
2253 	default:
2254 		/* If the device can't wake, don't set software support */
2255 		if (!device_can_wakeup(&adapter->pdev->dev))
2256 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2257 	}
2258 
2259 	/* initialize the wol settings based on the eeprom settings */
2260 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2261 		adapter->wol |= E1000_WUFC_MAG;
2262 
2263 	/* Some vendors want WoL disabled by default, but still supported */
2264 	if ((hw->mac.type == e1000_i350) &&
2265 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2266 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2267 		adapter->wol = 0;
2268 	}
2269 
2270 	device_set_wakeup_enable(&adapter->pdev->dev,
2271 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2272 
2273 	/* reset the hardware with the new settings */
2274 	igb_reset(adapter);
2275 
2276 	/* Init the I2C interface */
2277 	err = igb_init_i2c(adapter);
2278 	if (err) {
2279 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2280 		goto err_eeprom;
2281 	}
2282 
2283 	/* let the f/w know that the h/w is now under the control of the
2284 	 * driver. */
2285 	igb_get_hw_control(adapter);
2286 
2287 	strcpy(netdev->name, "eth%d");
2288 	err = register_netdev(netdev);
2289 	if (err)
2290 		goto err_register;
2291 
2292 	/* carrier off reporting is important to ethtool even BEFORE open */
2293 	netif_carrier_off(netdev);
2294 
2295 #ifdef CONFIG_IGB_DCA
2296 	if (dca_add_requester(&pdev->dev) == 0) {
2297 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2298 		dev_info(&pdev->dev, "DCA enabled\n");
2299 		igb_setup_dca(adapter);
2300 	}
2301 
2302 #endif
2303 #ifdef CONFIG_IGB_HWMON
2304 	/* Initialize the thermal sensor on i350 devices. */
2305 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2306 		u16 ets_word;
2307 
2308 		/* Read the NVM to determine if this i350 device supports an
2309 		 * external thermal sensor.
2310 		 */
2311 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2312 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2313 			adapter->ets = true;
2314 		else
2315 			adapter->ets = false;
2316 		if (igb_sysfs_init(adapter))
2317 			dev_err(&pdev->dev,
2318 				"failed to allocate sysfs resources\n");
2319 	} else {
2320 		adapter->ets = false;
2321 	}
2322 #endif
2323 	/* do hw tstamp init after resetting */
2324 	igb_ptp_init(adapter);
2325 
2326 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2327 	/* print bus type/speed/width info, not applicable to i354 */
2328 	if (hw->mac.type != e1000_i354) {
2329 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2330 			 netdev->name,
2331 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2332 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2333 			   "unknown"),
2334 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2335 			  "Width x4" :
2336 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2337 			  "Width x2" :
2338 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2339 			  "Width x1" : "unknown"), netdev->dev_addr);
2340 	}
2341 
2342 	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2343 	if (ret_val)
2344 		strcpy(part_str, "Unknown");
2345 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2346 	dev_info(&pdev->dev,
2347 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2348 		adapter->msix_entries ? "MSI-X" :
2349 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2350 		adapter->num_rx_queues, adapter->num_tx_queues);
2351 	switch (hw->mac.type) {
2352 	case e1000_i350:
2353 	case e1000_i210:
2354 	case e1000_i211:
2355 		igb_set_eee_i350(hw);
2356 		break;
2357 	case e1000_i354:
2358 		if (hw->phy.media_type == e1000_media_type_copper) {
2359 			if ((rd32(E1000_CTRL_EXT) &
2360 			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2361 				igb_set_eee_i354(hw);
2362 		}
2363 		break;
2364 	default:
2365 		break;
2366 	}
2367 
2368 	pm_runtime_put_noidle(&pdev->dev);
2369 	return 0;
2370 
2371 err_register:
2372 	igb_release_hw_control(adapter);
2373 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2374 err_eeprom:
2375 	if (!igb_check_reset_block(hw))
2376 		igb_reset_phy(hw);
2377 
2378 	if (hw->flash_address)
2379 		iounmap(hw->flash_address);
2380 err_sw_init:
2381 	igb_clear_interrupt_scheme(adapter);
2382 	iounmap(hw->hw_addr);
2383 err_ioremap:
2384 	free_netdev(netdev);
2385 err_alloc_etherdev:
2386 	pci_release_selected_regions(pdev,
2387 				     pci_select_bars(pdev, IORESOURCE_MEM));
2388 err_pci_reg:
2389 err_dma:
2390 	pci_disable_device(pdev);
2391 	return err;
2392 }
2393 
2394 #ifdef CONFIG_PCI_IOV
2395 static int  igb_disable_sriov(struct pci_dev *pdev)
2396 {
2397 	struct net_device *netdev = pci_get_drvdata(pdev);
2398 	struct igb_adapter *adapter = netdev_priv(netdev);
2399 	struct e1000_hw *hw = &adapter->hw;
2400 
2401 	/* reclaim resources allocated to VFs */
2402 	if (adapter->vf_data) {
2403 		/* disable iov and allow time for transactions to clear */
2404 		if (pci_vfs_assigned(pdev)) {
2405 			dev_warn(&pdev->dev,
2406 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2407 			return -EPERM;
2408 		} else {
2409 			pci_disable_sriov(pdev);
2410 			msleep(500);
2411 		}
2412 
2413 		kfree(adapter->vf_data);
2414 		adapter->vf_data = NULL;
2415 		adapter->vfs_allocated_count = 0;
2416 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2417 		wrfl();
2418 		msleep(100);
2419 		dev_info(&pdev->dev, "IOV Disabled\n");
2420 
2421 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2422 		adapter->flags |= IGB_FLAG_DMAC;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2429 {
2430 	struct net_device *netdev = pci_get_drvdata(pdev);
2431 	struct igb_adapter *adapter = netdev_priv(netdev);
2432 	int old_vfs = pci_num_vf(pdev);
2433 	int err = 0;
2434 	int i;
2435 
2436 	if (!num_vfs)
2437 		goto out;
2438 	else if (old_vfs && old_vfs == num_vfs)
2439 		goto out;
2440 	else if (old_vfs && old_vfs != num_vfs)
2441 		err = igb_disable_sriov(pdev);
2442 
2443 	if (err)
2444 		goto out;
2445 
2446 	if (num_vfs > 7) {
2447 		err = -EPERM;
2448 		goto out;
2449 	}
2450 
2451 	adapter->vfs_allocated_count = num_vfs;
2452 
2453 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2454 				sizeof(struct vf_data_storage), GFP_KERNEL);
2455 
2456 	/* if allocation failed then we do not support SR-IOV */
2457 	if (!adapter->vf_data) {
2458 		adapter->vfs_allocated_count = 0;
2459 		dev_err(&pdev->dev,
2460 			"Unable to allocate memory for VF Data Storage\n");
2461 		err = -ENOMEM;
2462 		goto out;
2463 	}
2464 
2465 	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2466 	if (err)
2467 		goto err_out;
2468 
2469 	dev_info(&pdev->dev, "%d VFs allocated\n",
2470 		 adapter->vfs_allocated_count);
2471 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2472 		igb_vf_configure(adapter, i);
2473 
2474 	/* DMA Coalescing is not supported in IOV mode. */
2475 	adapter->flags &= ~IGB_FLAG_DMAC;
2476 	goto out;
2477 
2478 err_out:
2479 	kfree(adapter->vf_data);
2480 	adapter->vf_data = NULL;
2481 	adapter->vfs_allocated_count = 0;
2482 out:
2483 	return err;
2484 }
2485 
2486 #endif
2487 /**
2488  *  igb_remove_i2c - Cleanup  I2C interface
2489  *  @adapter: pointer to adapter structure
2490  **/
2491 static void igb_remove_i2c(struct igb_adapter *adapter)
2492 {
2493 	/* free the adapter bus structure */
2494 	i2c_del_adapter(&adapter->i2c_adap);
2495 }
2496 
2497 /**
2498  *  igb_remove - Device Removal Routine
2499  *  @pdev: PCI device information struct
2500  *
2501  *  igb_remove is called by the PCI subsystem to alert the driver
2502  *  that it should release a PCI device.  The could be caused by a
2503  *  Hot-Plug event, or because the driver is going to be removed from
2504  *  memory.
2505  **/
2506 static void igb_remove(struct pci_dev *pdev)
2507 {
2508 	struct net_device *netdev = pci_get_drvdata(pdev);
2509 	struct igb_adapter *adapter = netdev_priv(netdev);
2510 	struct e1000_hw *hw = &adapter->hw;
2511 
2512 	pm_runtime_get_noresume(&pdev->dev);
2513 #ifdef CONFIG_IGB_HWMON
2514 	igb_sysfs_exit(adapter);
2515 #endif
2516 	igb_remove_i2c(adapter);
2517 	igb_ptp_stop(adapter);
2518 	/* The watchdog timer may be rescheduled, so explicitly
2519 	 * disable watchdog from being rescheduled.
2520 	 */
2521 	set_bit(__IGB_DOWN, &adapter->state);
2522 	del_timer_sync(&adapter->watchdog_timer);
2523 	del_timer_sync(&adapter->phy_info_timer);
2524 
2525 	cancel_work_sync(&adapter->reset_task);
2526 	cancel_work_sync(&adapter->watchdog_task);
2527 
2528 #ifdef CONFIG_IGB_DCA
2529 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2530 		dev_info(&pdev->dev, "DCA disabled\n");
2531 		dca_remove_requester(&pdev->dev);
2532 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2533 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2534 	}
2535 #endif
2536 
2537 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2538 	 * would have already happened in close and is redundant.
2539 	 */
2540 	igb_release_hw_control(adapter);
2541 
2542 	unregister_netdev(netdev);
2543 
2544 	igb_clear_interrupt_scheme(adapter);
2545 
2546 #ifdef CONFIG_PCI_IOV
2547 	igb_disable_sriov(pdev);
2548 #endif
2549 
2550 	iounmap(hw->hw_addr);
2551 	if (hw->flash_address)
2552 		iounmap(hw->flash_address);
2553 	pci_release_selected_regions(pdev,
2554 				     pci_select_bars(pdev, IORESOURCE_MEM));
2555 
2556 	kfree(adapter->shadow_vfta);
2557 	free_netdev(netdev);
2558 
2559 	pci_disable_pcie_error_reporting(pdev);
2560 
2561 	pci_disable_device(pdev);
2562 }
2563 
2564 /**
2565  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2566  *  @adapter: board private structure to initialize
2567  *
2568  *  This function initializes the vf specific data storage and then attempts to
2569  *  allocate the VFs.  The reason for ordering it this way is because it is much
2570  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2571  *  the memory for the VFs.
2572  **/
2573 static void igb_probe_vfs(struct igb_adapter *adapter)
2574 {
2575 #ifdef CONFIG_PCI_IOV
2576 	struct pci_dev *pdev = adapter->pdev;
2577 	struct e1000_hw *hw = &adapter->hw;
2578 
2579 	/* Virtualization features not supported on i210 family. */
2580 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2581 		return;
2582 
2583 	pci_sriov_set_totalvfs(pdev, 7);
2584 	igb_enable_sriov(pdev, max_vfs);
2585 
2586 #endif /* CONFIG_PCI_IOV */
2587 }
2588 
2589 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2590 {
2591 	struct e1000_hw *hw = &adapter->hw;
2592 	u32 max_rss_queues;
2593 
2594 	/* Determine the maximum number of RSS queues supported. */
2595 	switch (hw->mac.type) {
2596 	case e1000_i211:
2597 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2598 		break;
2599 	case e1000_82575:
2600 	case e1000_i210:
2601 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2602 		break;
2603 	case e1000_i350:
2604 		/* I350 cannot do RSS and SR-IOV at the same time */
2605 		if (!!adapter->vfs_allocated_count) {
2606 			max_rss_queues = 1;
2607 			break;
2608 		}
2609 		/* fall through */
2610 	case e1000_82576:
2611 		if (!!adapter->vfs_allocated_count) {
2612 			max_rss_queues = 2;
2613 			break;
2614 		}
2615 		/* fall through */
2616 	case e1000_82580:
2617 	case e1000_i354:
2618 	default:
2619 		max_rss_queues = IGB_MAX_RX_QUEUES;
2620 		break;
2621 	}
2622 
2623 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2624 
2625 	/* Determine if we need to pair queues. */
2626 	switch (hw->mac.type) {
2627 	case e1000_82575:
2628 	case e1000_i211:
2629 		/* Device supports enough interrupts without queue pairing. */
2630 		break;
2631 	case e1000_82576:
2632 		/* If VFs are going to be allocated with RSS queues then we
2633 		 * should pair the queues in order to conserve interrupts due
2634 		 * to limited supply.
2635 		 */
2636 		if ((adapter->rss_queues > 1) &&
2637 		    (adapter->vfs_allocated_count > 6))
2638 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2639 		/* fall through */
2640 	case e1000_82580:
2641 	case e1000_i350:
2642 	case e1000_i354:
2643 	case e1000_i210:
2644 	default:
2645 		/* If rss_queues > half of max_rss_queues, pair the queues in
2646 		 * order to conserve interrupts due to limited supply.
2647 		 */
2648 		if (adapter->rss_queues > (max_rss_queues / 2))
2649 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2650 		break;
2651 	}
2652 }
2653 
2654 /**
2655  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2656  *  @adapter: board private structure to initialize
2657  *
2658  *  igb_sw_init initializes the Adapter private data structure.
2659  *  Fields are initialized based on PCI device information and
2660  *  OS network device settings (MTU size).
2661  **/
2662 static int igb_sw_init(struct igb_adapter *adapter)
2663 {
2664 	struct e1000_hw *hw = &adapter->hw;
2665 	struct net_device *netdev = adapter->netdev;
2666 	struct pci_dev *pdev = adapter->pdev;
2667 
2668 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2669 
2670 	/* set default ring sizes */
2671 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2672 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2673 
2674 	/* set default ITR values */
2675 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2676 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2677 
2678 	/* set default work limits */
2679 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2680 
2681 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2682 				  VLAN_HLEN;
2683 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2684 
2685 	spin_lock_init(&adapter->stats64_lock);
2686 #ifdef CONFIG_PCI_IOV
2687 	switch (hw->mac.type) {
2688 	case e1000_82576:
2689 	case e1000_i350:
2690 		if (max_vfs > 7) {
2691 			dev_warn(&pdev->dev,
2692 				 "Maximum of 7 VFs per PF, using max\n");
2693 			max_vfs = adapter->vfs_allocated_count = 7;
2694 		} else
2695 			adapter->vfs_allocated_count = max_vfs;
2696 		if (adapter->vfs_allocated_count)
2697 			dev_warn(&pdev->dev,
2698 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2699 		break;
2700 	default:
2701 		break;
2702 	}
2703 #endif /* CONFIG_PCI_IOV */
2704 
2705 	igb_init_queue_configuration(adapter);
2706 
2707 	/* Setup and initialize a copy of the hw vlan table array */
2708 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2709 				       GFP_ATOMIC);
2710 
2711 	/* This call may decrease the number of queues */
2712 	if (igb_init_interrupt_scheme(adapter, true)) {
2713 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2714 		return -ENOMEM;
2715 	}
2716 
2717 	igb_probe_vfs(adapter);
2718 
2719 	/* Explicitly disable IRQ since the NIC can be in any state. */
2720 	igb_irq_disable(adapter);
2721 
2722 	if (hw->mac.type >= e1000_i350)
2723 		adapter->flags &= ~IGB_FLAG_DMAC;
2724 
2725 	set_bit(__IGB_DOWN, &adapter->state);
2726 	return 0;
2727 }
2728 
2729 /**
2730  *  igb_open - Called when a network interface is made active
2731  *  @netdev: network interface device structure
2732  *
2733  *  Returns 0 on success, negative value on failure
2734  *
2735  *  The open entry point is called when a network interface is made
2736  *  active by the system (IFF_UP).  At this point all resources needed
2737  *  for transmit and receive operations are allocated, the interrupt
2738  *  handler is registered with the OS, the watchdog timer is started,
2739  *  and the stack is notified that the interface is ready.
2740  **/
2741 static int __igb_open(struct net_device *netdev, bool resuming)
2742 {
2743 	struct igb_adapter *adapter = netdev_priv(netdev);
2744 	struct e1000_hw *hw = &adapter->hw;
2745 	struct pci_dev *pdev = adapter->pdev;
2746 	int err;
2747 	int i;
2748 
2749 	/* disallow open during test */
2750 	if (test_bit(__IGB_TESTING, &adapter->state)) {
2751 		WARN_ON(resuming);
2752 		return -EBUSY;
2753 	}
2754 
2755 	if (!resuming)
2756 		pm_runtime_get_sync(&pdev->dev);
2757 
2758 	netif_carrier_off(netdev);
2759 
2760 	/* allocate transmit descriptors */
2761 	err = igb_setup_all_tx_resources(adapter);
2762 	if (err)
2763 		goto err_setup_tx;
2764 
2765 	/* allocate receive descriptors */
2766 	err = igb_setup_all_rx_resources(adapter);
2767 	if (err)
2768 		goto err_setup_rx;
2769 
2770 	igb_power_up_link(adapter);
2771 
2772 	/* before we allocate an interrupt, we must be ready to handle it.
2773 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2774 	 * as soon as we call pci_request_irq, so we have to setup our
2775 	 * clean_rx handler before we do so.
2776 	 */
2777 	igb_configure(adapter);
2778 
2779 	err = igb_request_irq(adapter);
2780 	if (err)
2781 		goto err_req_irq;
2782 
2783 	/* Notify the stack of the actual queue counts. */
2784 	err = netif_set_real_num_tx_queues(adapter->netdev,
2785 					   adapter->num_tx_queues);
2786 	if (err)
2787 		goto err_set_queues;
2788 
2789 	err = netif_set_real_num_rx_queues(adapter->netdev,
2790 					   adapter->num_rx_queues);
2791 	if (err)
2792 		goto err_set_queues;
2793 
2794 	/* From here on the code is the same as igb_up() */
2795 	clear_bit(__IGB_DOWN, &adapter->state);
2796 
2797 	for (i = 0; i < adapter->num_q_vectors; i++)
2798 		napi_enable(&(adapter->q_vector[i]->napi));
2799 
2800 	/* Clear any pending interrupts. */
2801 	rd32(E1000_ICR);
2802 
2803 	igb_irq_enable(adapter);
2804 
2805 	/* notify VFs that reset has been completed */
2806 	if (adapter->vfs_allocated_count) {
2807 		u32 reg_data = rd32(E1000_CTRL_EXT);
2808 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2809 		wr32(E1000_CTRL_EXT, reg_data);
2810 	}
2811 
2812 	netif_tx_start_all_queues(netdev);
2813 
2814 	if (!resuming)
2815 		pm_runtime_put(&pdev->dev);
2816 
2817 	/* start the watchdog. */
2818 	hw->mac.get_link_status = 1;
2819 	schedule_work(&adapter->watchdog_task);
2820 
2821 	return 0;
2822 
2823 err_set_queues:
2824 	igb_free_irq(adapter);
2825 err_req_irq:
2826 	igb_release_hw_control(adapter);
2827 	igb_power_down_link(adapter);
2828 	igb_free_all_rx_resources(adapter);
2829 err_setup_rx:
2830 	igb_free_all_tx_resources(adapter);
2831 err_setup_tx:
2832 	igb_reset(adapter);
2833 	if (!resuming)
2834 		pm_runtime_put(&pdev->dev);
2835 
2836 	return err;
2837 }
2838 
2839 static int igb_open(struct net_device *netdev)
2840 {
2841 	return __igb_open(netdev, false);
2842 }
2843 
2844 /**
2845  *  igb_close - Disables a network interface
2846  *  @netdev: network interface device structure
2847  *
2848  *  Returns 0, this is not allowed to fail
2849  *
2850  *  The close entry point is called when an interface is de-activated
2851  *  by the OS.  The hardware is still under the driver's control, but
2852  *  needs to be disabled.  A global MAC reset is issued to stop the
2853  *  hardware, and all transmit and receive resources are freed.
2854  **/
2855 static int __igb_close(struct net_device *netdev, bool suspending)
2856 {
2857 	struct igb_adapter *adapter = netdev_priv(netdev);
2858 	struct pci_dev *pdev = adapter->pdev;
2859 
2860 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2861 
2862 	if (!suspending)
2863 		pm_runtime_get_sync(&pdev->dev);
2864 
2865 	igb_down(adapter);
2866 	igb_free_irq(adapter);
2867 
2868 	igb_free_all_tx_resources(adapter);
2869 	igb_free_all_rx_resources(adapter);
2870 
2871 	if (!suspending)
2872 		pm_runtime_put_sync(&pdev->dev);
2873 	return 0;
2874 }
2875 
2876 static int igb_close(struct net_device *netdev)
2877 {
2878 	return __igb_close(netdev, false);
2879 }
2880 
2881 /**
2882  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2883  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2884  *
2885  *  Return 0 on success, negative on failure
2886  **/
2887 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2888 {
2889 	struct device *dev = tx_ring->dev;
2890 	int size;
2891 
2892 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2893 
2894 	tx_ring->tx_buffer_info = vzalloc(size);
2895 	if (!tx_ring->tx_buffer_info)
2896 		goto err;
2897 
2898 	/* round up to nearest 4K */
2899 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2900 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2901 
2902 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2903 					   &tx_ring->dma, GFP_KERNEL);
2904 	if (!tx_ring->desc)
2905 		goto err;
2906 
2907 	tx_ring->next_to_use = 0;
2908 	tx_ring->next_to_clean = 0;
2909 
2910 	return 0;
2911 
2912 err:
2913 	vfree(tx_ring->tx_buffer_info);
2914 	tx_ring->tx_buffer_info = NULL;
2915 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2916 	return -ENOMEM;
2917 }
2918 
2919 /**
2920  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2921  *				 (Descriptors) for all queues
2922  *  @adapter: board private structure
2923  *
2924  *  Return 0 on success, negative on failure
2925  **/
2926 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2927 {
2928 	struct pci_dev *pdev = adapter->pdev;
2929 	int i, err = 0;
2930 
2931 	for (i = 0; i < adapter->num_tx_queues; i++) {
2932 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2933 		if (err) {
2934 			dev_err(&pdev->dev,
2935 				"Allocation for Tx Queue %u failed\n", i);
2936 			for (i--; i >= 0; i--)
2937 				igb_free_tx_resources(adapter->tx_ring[i]);
2938 			break;
2939 		}
2940 	}
2941 
2942 	return err;
2943 }
2944 
2945 /**
2946  *  igb_setup_tctl - configure the transmit control registers
2947  *  @adapter: Board private structure
2948  **/
2949 void igb_setup_tctl(struct igb_adapter *adapter)
2950 {
2951 	struct e1000_hw *hw = &adapter->hw;
2952 	u32 tctl;
2953 
2954 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2955 	wr32(E1000_TXDCTL(0), 0);
2956 
2957 	/* Program the Transmit Control Register */
2958 	tctl = rd32(E1000_TCTL);
2959 	tctl &= ~E1000_TCTL_CT;
2960 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2961 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2962 
2963 	igb_config_collision_dist(hw);
2964 
2965 	/* Enable transmits */
2966 	tctl |= E1000_TCTL_EN;
2967 
2968 	wr32(E1000_TCTL, tctl);
2969 }
2970 
2971 /**
2972  *  igb_configure_tx_ring - Configure transmit ring after Reset
2973  *  @adapter: board private structure
2974  *  @ring: tx ring to configure
2975  *
2976  *  Configure a transmit ring after a reset.
2977  **/
2978 void igb_configure_tx_ring(struct igb_adapter *adapter,
2979                            struct igb_ring *ring)
2980 {
2981 	struct e1000_hw *hw = &adapter->hw;
2982 	u32 txdctl = 0;
2983 	u64 tdba = ring->dma;
2984 	int reg_idx = ring->reg_idx;
2985 
2986 	/* disable the queue */
2987 	wr32(E1000_TXDCTL(reg_idx), 0);
2988 	wrfl();
2989 	mdelay(10);
2990 
2991 	wr32(E1000_TDLEN(reg_idx),
2992 	     ring->count * sizeof(union e1000_adv_tx_desc));
2993 	wr32(E1000_TDBAL(reg_idx),
2994 	     tdba & 0x00000000ffffffffULL);
2995 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2996 
2997 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2998 	wr32(E1000_TDH(reg_idx), 0);
2999 	writel(0, ring->tail);
3000 
3001 	txdctl |= IGB_TX_PTHRESH;
3002 	txdctl |= IGB_TX_HTHRESH << 8;
3003 	txdctl |= IGB_TX_WTHRESH << 16;
3004 
3005 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3006 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3007 }
3008 
3009 /**
3010  *  igb_configure_tx - Configure transmit Unit after Reset
3011  *  @adapter: board private structure
3012  *
3013  *  Configure the Tx unit of the MAC after a reset.
3014  **/
3015 static void igb_configure_tx(struct igb_adapter *adapter)
3016 {
3017 	int i;
3018 
3019 	for (i = 0; i < adapter->num_tx_queues; i++)
3020 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3021 }
3022 
3023 /**
3024  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3025  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3026  *
3027  *  Returns 0 on success, negative on failure
3028  **/
3029 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3030 {
3031 	struct device *dev = rx_ring->dev;
3032 	int size;
3033 
3034 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3035 
3036 	rx_ring->rx_buffer_info = vzalloc(size);
3037 	if (!rx_ring->rx_buffer_info)
3038 		goto err;
3039 
3040 	/* Round up to nearest 4K */
3041 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3042 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3043 
3044 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3045 					   &rx_ring->dma, GFP_KERNEL);
3046 	if (!rx_ring->desc)
3047 		goto err;
3048 
3049 	rx_ring->next_to_alloc = 0;
3050 	rx_ring->next_to_clean = 0;
3051 	rx_ring->next_to_use = 0;
3052 
3053 	return 0;
3054 
3055 err:
3056 	vfree(rx_ring->rx_buffer_info);
3057 	rx_ring->rx_buffer_info = NULL;
3058 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3059 	return -ENOMEM;
3060 }
3061 
3062 /**
3063  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3064  *				 (Descriptors) for all queues
3065  *  @adapter: board private structure
3066  *
3067  *  Return 0 on success, negative on failure
3068  **/
3069 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3070 {
3071 	struct pci_dev *pdev = adapter->pdev;
3072 	int i, err = 0;
3073 
3074 	for (i = 0; i < adapter->num_rx_queues; i++) {
3075 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3076 		if (err) {
3077 			dev_err(&pdev->dev,
3078 				"Allocation for Rx Queue %u failed\n", i);
3079 			for (i--; i >= 0; i--)
3080 				igb_free_rx_resources(adapter->rx_ring[i]);
3081 			break;
3082 		}
3083 	}
3084 
3085 	return err;
3086 }
3087 
3088 /**
3089  *  igb_setup_mrqc - configure the multiple receive queue control registers
3090  *  @adapter: Board private structure
3091  **/
3092 static void igb_setup_mrqc(struct igb_adapter *adapter)
3093 {
3094 	struct e1000_hw *hw = &adapter->hw;
3095 	u32 mrqc, rxcsum;
3096 	u32 j, num_rx_queues, shift = 0;
3097 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3098 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3099 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3100 					0xFA01ACBE };
3101 
3102 	/* Fill out hash function seeds */
3103 	for (j = 0; j < 10; j++)
3104 		wr32(E1000_RSSRK(j), rsskey[j]);
3105 
3106 	num_rx_queues = adapter->rss_queues;
3107 
3108 	switch (hw->mac.type) {
3109 	case e1000_82575:
3110 		shift = 6;
3111 		break;
3112 	case e1000_82576:
3113 		/* 82576 supports 2 RSS queues for SR-IOV */
3114 		if (adapter->vfs_allocated_count) {
3115 			shift = 3;
3116 			num_rx_queues = 2;
3117 		}
3118 		break;
3119 	default:
3120 		break;
3121 	}
3122 
3123 	/* Populate the indirection table 4 entries at a time.  To do this
3124 	 * we are generating the results for n and n+2 and then interleaving
3125 	 * those with the results with n+1 and n+3.
3126 	 */
3127 	for (j = 0; j < 32; j++) {
3128 		/* first pass generates n and n+2 */
3129 		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3130 		u32 reta = (base & 0x07800780) >> (7 - shift);
3131 
3132 		/* second pass generates n+1 and n+3 */
3133 		base += 0x00010001 * num_rx_queues;
3134 		reta |= (base & 0x07800780) << (1 + shift);
3135 
3136 		wr32(E1000_RETA(j), reta);
3137 	}
3138 
3139 	/* Disable raw packet checksumming so that RSS hash is placed in
3140 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3141 	 * offloads as they are enabled by default
3142 	 */
3143 	rxcsum = rd32(E1000_RXCSUM);
3144 	rxcsum |= E1000_RXCSUM_PCSD;
3145 
3146 	if (adapter->hw.mac.type >= e1000_82576)
3147 		/* Enable Receive Checksum Offload for SCTP */
3148 		rxcsum |= E1000_RXCSUM_CRCOFL;
3149 
3150 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3151 	wr32(E1000_RXCSUM, rxcsum);
3152 
3153 	/* Generate RSS hash based on packet types, TCP/UDP
3154 	 * port numbers and/or IPv4/v6 src and dst addresses
3155 	 */
3156 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3157 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3158 	       E1000_MRQC_RSS_FIELD_IPV6 |
3159 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3160 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3161 
3162 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3163 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3164 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3165 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3166 
3167 	/* If VMDq is enabled then we set the appropriate mode for that, else
3168 	 * we default to RSS so that an RSS hash is calculated per packet even
3169 	 * if we are only using one queue
3170 	 */
3171 	if (adapter->vfs_allocated_count) {
3172 		if (hw->mac.type > e1000_82575) {
3173 			/* Set the default pool for the PF's first queue */
3174 			u32 vtctl = rd32(E1000_VT_CTL);
3175 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3176 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3177 			vtctl |= adapter->vfs_allocated_count <<
3178 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3179 			wr32(E1000_VT_CTL, vtctl);
3180 		}
3181 		if (adapter->rss_queues > 1)
3182 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3183 		else
3184 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3185 	} else {
3186 		if (hw->mac.type != e1000_i211)
3187 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3188 	}
3189 	igb_vmm_control(adapter);
3190 
3191 	wr32(E1000_MRQC, mrqc);
3192 }
3193 
3194 /**
3195  *  igb_setup_rctl - configure the receive control registers
3196  *  @adapter: Board private structure
3197  **/
3198 void igb_setup_rctl(struct igb_adapter *adapter)
3199 {
3200 	struct e1000_hw *hw = &adapter->hw;
3201 	u32 rctl;
3202 
3203 	rctl = rd32(E1000_RCTL);
3204 
3205 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3206 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3207 
3208 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3209 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3210 
3211 	/* enable stripping of CRC. It's unlikely this will break BMC
3212 	 * redirection as it did with e1000. Newer features require
3213 	 * that the HW strips the CRC.
3214 	 */
3215 	rctl |= E1000_RCTL_SECRC;
3216 
3217 	/* disable store bad packets and clear size bits. */
3218 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3219 
3220 	/* enable LPE to prevent packets larger than max_frame_size */
3221 	rctl |= E1000_RCTL_LPE;
3222 
3223 	/* disable queue 0 to prevent tail write w/o re-config */
3224 	wr32(E1000_RXDCTL(0), 0);
3225 
3226 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3227 	 * queue drop for all VF and PF queues to prevent head of line blocking
3228 	 * if an un-trusted VF does not provide descriptors to hardware.
3229 	 */
3230 	if (adapter->vfs_allocated_count) {
3231 		/* set all queue drop enable bits */
3232 		wr32(E1000_QDE, ALL_QUEUES);
3233 	}
3234 
3235 	/* This is useful for sniffing bad packets. */
3236 	if (adapter->netdev->features & NETIF_F_RXALL) {
3237 		/* UPE and MPE will be handled by normal PROMISC logic
3238 		 * in e1000e_set_rx_mode
3239 		 */
3240 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3241 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3242 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3243 
3244 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3245 			  E1000_RCTL_DPF | /* Allow filtered pause */
3246 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3247 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3248 		 * and that breaks VLANs.
3249 		 */
3250 	}
3251 
3252 	wr32(E1000_RCTL, rctl);
3253 }
3254 
3255 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3256                                    int vfn)
3257 {
3258 	struct e1000_hw *hw = &adapter->hw;
3259 	u32 vmolr;
3260 
3261 	/* if it isn't the PF check to see if VFs are enabled and
3262 	 * increase the size to support vlan tags
3263 	 */
3264 	if (vfn < adapter->vfs_allocated_count &&
3265 	    adapter->vf_data[vfn].vlans_enabled)
3266 		size += VLAN_TAG_SIZE;
3267 
3268 	vmolr = rd32(E1000_VMOLR(vfn));
3269 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3270 	vmolr |= size | E1000_VMOLR_LPE;
3271 	wr32(E1000_VMOLR(vfn), vmolr);
3272 
3273 	return 0;
3274 }
3275 
3276 /**
3277  *  igb_rlpml_set - set maximum receive packet size
3278  *  @adapter: board private structure
3279  *
3280  *  Configure maximum receivable packet size.
3281  **/
3282 static void igb_rlpml_set(struct igb_adapter *adapter)
3283 {
3284 	u32 max_frame_size = adapter->max_frame_size;
3285 	struct e1000_hw *hw = &adapter->hw;
3286 	u16 pf_id = adapter->vfs_allocated_count;
3287 
3288 	if (pf_id) {
3289 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3290 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3291 		 * to our max jumbo frame size, in case we need to enable
3292 		 * jumbo frames on one of the rings later.
3293 		 * This will not pass over-length frames into the default
3294 		 * queue because it's gated by the VMOLR.RLPML.
3295 		 */
3296 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3297 	}
3298 
3299 	wr32(E1000_RLPML, max_frame_size);
3300 }
3301 
3302 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3303 				 int vfn, bool aupe)
3304 {
3305 	struct e1000_hw *hw = &adapter->hw;
3306 	u32 vmolr;
3307 
3308 	/* This register exists only on 82576 and newer so if we are older then
3309 	 * we should exit and do nothing
3310 	 */
3311 	if (hw->mac.type < e1000_82576)
3312 		return;
3313 
3314 	vmolr = rd32(E1000_VMOLR(vfn));
3315 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3316 	if (aupe)
3317 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3318 	else
3319 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3320 
3321 	/* clear all bits that might not be set */
3322 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3323 
3324 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3325 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3326 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3327 	 * multicast packets
3328 	 */
3329 	if (vfn <= adapter->vfs_allocated_count)
3330 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3331 
3332 	wr32(E1000_VMOLR(vfn), vmolr);
3333 }
3334 
3335 /**
3336  *  igb_configure_rx_ring - Configure a receive ring after Reset
3337  *  @adapter: board private structure
3338  *  @ring: receive ring to be configured
3339  *
3340  *  Configure the Rx unit of the MAC after a reset.
3341  **/
3342 void igb_configure_rx_ring(struct igb_adapter *adapter,
3343 			   struct igb_ring *ring)
3344 {
3345 	struct e1000_hw *hw = &adapter->hw;
3346 	u64 rdba = ring->dma;
3347 	int reg_idx = ring->reg_idx;
3348 	u32 srrctl = 0, rxdctl = 0;
3349 
3350 	/* disable the queue */
3351 	wr32(E1000_RXDCTL(reg_idx), 0);
3352 
3353 	/* Set DMA base address registers */
3354 	wr32(E1000_RDBAL(reg_idx),
3355 	     rdba & 0x00000000ffffffffULL);
3356 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3357 	wr32(E1000_RDLEN(reg_idx),
3358 	     ring->count * sizeof(union e1000_adv_rx_desc));
3359 
3360 	/* initialize head and tail */
3361 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3362 	wr32(E1000_RDH(reg_idx), 0);
3363 	writel(0, ring->tail);
3364 
3365 	/* set descriptor configuration */
3366 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3367 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3368 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3369 	if (hw->mac.type >= e1000_82580)
3370 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3371 	/* Only set Drop Enable if we are supporting multiple queues */
3372 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3373 		srrctl |= E1000_SRRCTL_DROP_EN;
3374 
3375 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3376 
3377 	/* set filtering for VMDQ pools */
3378 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3379 
3380 	rxdctl |= IGB_RX_PTHRESH;
3381 	rxdctl |= IGB_RX_HTHRESH << 8;
3382 	rxdctl |= IGB_RX_WTHRESH << 16;
3383 
3384 	/* enable receive descriptor fetching */
3385 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3386 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3387 }
3388 
3389 /**
3390  *  igb_configure_rx - Configure receive Unit after Reset
3391  *  @adapter: board private structure
3392  *
3393  *  Configure the Rx unit of the MAC after a reset.
3394  **/
3395 static void igb_configure_rx(struct igb_adapter *adapter)
3396 {
3397 	int i;
3398 
3399 	/* set UTA to appropriate mode */
3400 	igb_set_uta(adapter);
3401 
3402 	/* set the correct pool for the PF default MAC address in entry 0 */
3403 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3404 			 adapter->vfs_allocated_count);
3405 
3406 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3407 	 * the Base and Length of the Rx Descriptor Ring
3408 	 */
3409 	for (i = 0; i < adapter->num_rx_queues; i++)
3410 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3411 }
3412 
3413 /**
3414  *  igb_free_tx_resources - Free Tx Resources per Queue
3415  *  @tx_ring: Tx descriptor ring for a specific queue
3416  *
3417  *  Free all transmit software resources
3418  **/
3419 void igb_free_tx_resources(struct igb_ring *tx_ring)
3420 {
3421 	igb_clean_tx_ring(tx_ring);
3422 
3423 	vfree(tx_ring->tx_buffer_info);
3424 	tx_ring->tx_buffer_info = NULL;
3425 
3426 	/* if not set, then don't free */
3427 	if (!tx_ring->desc)
3428 		return;
3429 
3430 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3431 			  tx_ring->desc, tx_ring->dma);
3432 
3433 	tx_ring->desc = NULL;
3434 }
3435 
3436 /**
3437  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3438  *  @adapter: board private structure
3439  *
3440  *  Free all transmit software resources
3441  **/
3442 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3443 {
3444 	int i;
3445 
3446 	for (i = 0; i < adapter->num_tx_queues; i++)
3447 		igb_free_tx_resources(adapter->tx_ring[i]);
3448 }
3449 
3450 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3451 				    struct igb_tx_buffer *tx_buffer)
3452 {
3453 	if (tx_buffer->skb) {
3454 		dev_kfree_skb_any(tx_buffer->skb);
3455 		if (dma_unmap_len(tx_buffer, len))
3456 			dma_unmap_single(ring->dev,
3457 					 dma_unmap_addr(tx_buffer, dma),
3458 					 dma_unmap_len(tx_buffer, len),
3459 					 DMA_TO_DEVICE);
3460 	} else if (dma_unmap_len(tx_buffer, len)) {
3461 		dma_unmap_page(ring->dev,
3462 			       dma_unmap_addr(tx_buffer, dma),
3463 			       dma_unmap_len(tx_buffer, len),
3464 			       DMA_TO_DEVICE);
3465 	}
3466 	tx_buffer->next_to_watch = NULL;
3467 	tx_buffer->skb = NULL;
3468 	dma_unmap_len_set(tx_buffer, len, 0);
3469 	/* buffer_info must be completely set up in the transmit path */
3470 }
3471 
3472 /**
3473  *  igb_clean_tx_ring - Free Tx Buffers
3474  *  @tx_ring: ring to be cleaned
3475  **/
3476 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3477 {
3478 	struct igb_tx_buffer *buffer_info;
3479 	unsigned long size;
3480 	u16 i;
3481 
3482 	if (!tx_ring->tx_buffer_info)
3483 		return;
3484 	/* Free all the Tx ring sk_buffs */
3485 
3486 	for (i = 0; i < tx_ring->count; i++) {
3487 		buffer_info = &tx_ring->tx_buffer_info[i];
3488 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3489 	}
3490 
3491 	netdev_tx_reset_queue(txring_txq(tx_ring));
3492 
3493 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3494 	memset(tx_ring->tx_buffer_info, 0, size);
3495 
3496 	/* Zero out the descriptor ring */
3497 	memset(tx_ring->desc, 0, tx_ring->size);
3498 
3499 	tx_ring->next_to_use = 0;
3500 	tx_ring->next_to_clean = 0;
3501 }
3502 
3503 /**
3504  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3505  *  @adapter: board private structure
3506  **/
3507 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3508 {
3509 	int i;
3510 
3511 	for (i = 0; i < adapter->num_tx_queues; i++)
3512 		igb_clean_tx_ring(adapter->tx_ring[i]);
3513 }
3514 
3515 /**
3516  *  igb_free_rx_resources - Free Rx Resources
3517  *  @rx_ring: ring to clean the resources from
3518  *
3519  *  Free all receive software resources
3520  **/
3521 void igb_free_rx_resources(struct igb_ring *rx_ring)
3522 {
3523 	igb_clean_rx_ring(rx_ring);
3524 
3525 	vfree(rx_ring->rx_buffer_info);
3526 	rx_ring->rx_buffer_info = NULL;
3527 
3528 	/* if not set, then don't free */
3529 	if (!rx_ring->desc)
3530 		return;
3531 
3532 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3533 			  rx_ring->desc, rx_ring->dma);
3534 
3535 	rx_ring->desc = NULL;
3536 }
3537 
3538 /**
3539  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3540  *  @adapter: board private structure
3541  *
3542  *  Free all receive software resources
3543  **/
3544 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3545 {
3546 	int i;
3547 
3548 	for (i = 0; i < adapter->num_rx_queues; i++)
3549 		igb_free_rx_resources(adapter->rx_ring[i]);
3550 }
3551 
3552 /**
3553  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3554  *  @rx_ring: ring to free buffers from
3555  **/
3556 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3557 {
3558 	unsigned long size;
3559 	u16 i;
3560 
3561 	if (rx_ring->skb)
3562 		dev_kfree_skb(rx_ring->skb);
3563 	rx_ring->skb = NULL;
3564 
3565 	if (!rx_ring->rx_buffer_info)
3566 		return;
3567 
3568 	/* Free all the Rx ring sk_buffs */
3569 	for (i = 0; i < rx_ring->count; i++) {
3570 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3571 
3572 		if (!buffer_info->page)
3573 			continue;
3574 
3575 		dma_unmap_page(rx_ring->dev,
3576 			       buffer_info->dma,
3577 			       PAGE_SIZE,
3578 			       DMA_FROM_DEVICE);
3579 		__free_page(buffer_info->page);
3580 
3581 		buffer_info->page = NULL;
3582 	}
3583 
3584 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3585 	memset(rx_ring->rx_buffer_info, 0, size);
3586 
3587 	/* Zero out the descriptor ring */
3588 	memset(rx_ring->desc, 0, rx_ring->size);
3589 
3590 	rx_ring->next_to_alloc = 0;
3591 	rx_ring->next_to_clean = 0;
3592 	rx_ring->next_to_use = 0;
3593 }
3594 
3595 /**
3596  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3597  *  @adapter: board private structure
3598  **/
3599 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3600 {
3601 	int i;
3602 
3603 	for (i = 0; i < adapter->num_rx_queues; i++)
3604 		igb_clean_rx_ring(adapter->rx_ring[i]);
3605 }
3606 
3607 /**
3608  *  igb_set_mac - Change the Ethernet Address of the NIC
3609  *  @netdev: network interface device structure
3610  *  @p: pointer to an address structure
3611  *
3612  *  Returns 0 on success, negative on failure
3613  **/
3614 static int igb_set_mac(struct net_device *netdev, void *p)
3615 {
3616 	struct igb_adapter *adapter = netdev_priv(netdev);
3617 	struct e1000_hw *hw = &adapter->hw;
3618 	struct sockaddr *addr = p;
3619 
3620 	if (!is_valid_ether_addr(addr->sa_data))
3621 		return -EADDRNOTAVAIL;
3622 
3623 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3624 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3625 
3626 	/* set the correct pool for the new PF MAC address in entry 0 */
3627 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3628 			 adapter->vfs_allocated_count);
3629 
3630 	return 0;
3631 }
3632 
3633 /**
3634  *  igb_write_mc_addr_list - write multicast addresses to MTA
3635  *  @netdev: network interface device structure
3636  *
3637  *  Writes multicast address list to the MTA hash table.
3638  *  Returns: -ENOMEM on failure
3639  *           0 on no addresses written
3640  *           X on writing X addresses to MTA
3641  **/
3642 static int igb_write_mc_addr_list(struct net_device *netdev)
3643 {
3644 	struct igb_adapter *adapter = netdev_priv(netdev);
3645 	struct e1000_hw *hw = &adapter->hw;
3646 	struct netdev_hw_addr *ha;
3647 	u8  *mta_list;
3648 	int i;
3649 
3650 	if (netdev_mc_empty(netdev)) {
3651 		/* nothing to program, so clear mc list */
3652 		igb_update_mc_addr_list(hw, NULL, 0);
3653 		igb_restore_vf_multicasts(adapter);
3654 		return 0;
3655 	}
3656 
3657 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3658 	if (!mta_list)
3659 		return -ENOMEM;
3660 
3661 	/* The shared function expects a packed array of only addresses. */
3662 	i = 0;
3663 	netdev_for_each_mc_addr(ha, netdev)
3664 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3665 
3666 	igb_update_mc_addr_list(hw, mta_list, i);
3667 	kfree(mta_list);
3668 
3669 	return netdev_mc_count(netdev);
3670 }
3671 
3672 /**
3673  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3674  *  @netdev: network interface device structure
3675  *
3676  *  Writes unicast address list to the RAR table.
3677  *  Returns: -ENOMEM on failure/insufficient address space
3678  *           0 on no addresses written
3679  *           X on writing X addresses to the RAR table
3680  **/
3681 static int igb_write_uc_addr_list(struct net_device *netdev)
3682 {
3683 	struct igb_adapter *adapter = netdev_priv(netdev);
3684 	struct e1000_hw *hw = &adapter->hw;
3685 	unsigned int vfn = adapter->vfs_allocated_count;
3686 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3687 	int count = 0;
3688 
3689 	/* return ENOMEM indicating insufficient memory for addresses */
3690 	if (netdev_uc_count(netdev) > rar_entries)
3691 		return -ENOMEM;
3692 
3693 	if (!netdev_uc_empty(netdev) && rar_entries) {
3694 		struct netdev_hw_addr *ha;
3695 
3696 		netdev_for_each_uc_addr(ha, netdev) {
3697 			if (!rar_entries)
3698 				break;
3699 			igb_rar_set_qsel(adapter, ha->addr,
3700 					 rar_entries--,
3701 					 vfn);
3702 			count++;
3703 		}
3704 	}
3705 	/* write the addresses in reverse order to avoid write combining */
3706 	for (; rar_entries > 0 ; rar_entries--) {
3707 		wr32(E1000_RAH(rar_entries), 0);
3708 		wr32(E1000_RAL(rar_entries), 0);
3709 	}
3710 	wrfl();
3711 
3712 	return count;
3713 }
3714 
3715 /**
3716  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3717  *  @netdev: network interface device structure
3718  *
3719  *  The set_rx_mode entry point is called whenever the unicast or multicast
3720  *  address lists or the network interface flags are updated.  This routine is
3721  *  responsible for configuring the hardware for proper unicast, multicast,
3722  *  promiscuous mode, and all-multi behavior.
3723  **/
3724 static void igb_set_rx_mode(struct net_device *netdev)
3725 {
3726 	struct igb_adapter *adapter = netdev_priv(netdev);
3727 	struct e1000_hw *hw = &adapter->hw;
3728 	unsigned int vfn = adapter->vfs_allocated_count;
3729 	u32 rctl, vmolr = 0;
3730 	int count;
3731 
3732 	/* Check for Promiscuous and All Multicast modes */
3733 	rctl = rd32(E1000_RCTL);
3734 
3735 	/* clear the effected bits */
3736 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3737 
3738 	if (netdev->flags & IFF_PROMISC) {
3739 		u32 mrqc = rd32(E1000_MRQC);
3740 		/* retain VLAN HW filtering if in VT mode */
3741 		if (mrqc & E1000_MRQC_ENABLE_VMDQ)
3742 			rctl |= E1000_RCTL_VFE;
3743 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3744 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3745 	} else {
3746 		if (netdev->flags & IFF_ALLMULTI) {
3747 			rctl |= E1000_RCTL_MPE;
3748 			vmolr |= E1000_VMOLR_MPME;
3749 		} else {
3750 			/* Write addresses to the MTA, if the attempt fails
3751 			 * then we should just turn on promiscuous mode so
3752 			 * that we can at least receive multicast traffic
3753 			 */
3754 			count = igb_write_mc_addr_list(netdev);
3755 			if (count < 0) {
3756 				rctl |= E1000_RCTL_MPE;
3757 				vmolr |= E1000_VMOLR_MPME;
3758 			} else if (count) {
3759 				vmolr |= E1000_VMOLR_ROMPE;
3760 			}
3761 		}
3762 		/* Write addresses to available RAR registers, if there is not
3763 		 * sufficient space to store all the addresses then enable
3764 		 * unicast promiscuous mode
3765 		 */
3766 		count = igb_write_uc_addr_list(netdev);
3767 		if (count < 0) {
3768 			rctl |= E1000_RCTL_UPE;
3769 			vmolr |= E1000_VMOLR_ROPE;
3770 		}
3771 		rctl |= E1000_RCTL_VFE;
3772 	}
3773 	wr32(E1000_RCTL, rctl);
3774 
3775 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3776 	 * the VMOLR to enable the appropriate modes.  Without this workaround
3777 	 * we will have issues with VLAN tag stripping not being done for frames
3778 	 * that are only arriving because we are the default pool
3779 	 */
3780 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3781 		return;
3782 
3783 	vmolr |= rd32(E1000_VMOLR(vfn)) &
3784 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3785 	wr32(E1000_VMOLR(vfn), vmolr);
3786 	igb_restore_vf_multicasts(adapter);
3787 }
3788 
3789 static void igb_check_wvbr(struct igb_adapter *adapter)
3790 {
3791 	struct e1000_hw *hw = &adapter->hw;
3792 	u32 wvbr = 0;
3793 
3794 	switch (hw->mac.type) {
3795 	case e1000_82576:
3796 	case e1000_i350:
3797 		if (!(wvbr = rd32(E1000_WVBR)))
3798 			return;
3799 		break;
3800 	default:
3801 		break;
3802 	}
3803 
3804 	adapter->wvbr |= wvbr;
3805 }
3806 
3807 #define IGB_STAGGERED_QUEUE_OFFSET 8
3808 
3809 static void igb_spoof_check(struct igb_adapter *adapter)
3810 {
3811 	int j;
3812 
3813 	if (!adapter->wvbr)
3814 		return;
3815 
3816 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3817 		if (adapter->wvbr & (1 << j) ||
3818 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3819 			dev_warn(&adapter->pdev->dev,
3820 				"Spoof event(s) detected on VF %d\n", j);
3821 			adapter->wvbr &=
3822 				~((1 << j) |
3823 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3824 		}
3825 	}
3826 }
3827 
3828 /* Need to wait a few seconds after link up to get diagnostic information from
3829  * the phy
3830  */
3831 static void igb_update_phy_info(unsigned long data)
3832 {
3833 	struct igb_adapter *adapter = (struct igb_adapter *) data;
3834 	igb_get_phy_info(&adapter->hw);
3835 }
3836 
3837 /**
3838  *  igb_has_link - check shared code for link and determine up/down
3839  *  @adapter: pointer to driver private info
3840  **/
3841 bool igb_has_link(struct igb_adapter *adapter)
3842 {
3843 	struct e1000_hw *hw = &adapter->hw;
3844 	bool link_active = false;
3845 	s32 ret_val = 0;
3846 
3847 	/* get_link_status is set on LSC (link status) interrupt or
3848 	 * rx sequence error interrupt.  get_link_status will stay
3849 	 * false until the e1000_check_for_link establishes link
3850 	 * for copper adapters ONLY
3851 	 */
3852 	switch (hw->phy.media_type) {
3853 	case e1000_media_type_copper:
3854 		if (hw->mac.get_link_status) {
3855 			ret_val = hw->mac.ops.check_for_link(hw);
3856 			link_active = !hw->mac.get_link_status;
3857 		} else {
3858 			link_active = true;
3859 		}
3860 		break;
3861 	case e1000_media_type_internal_serdes:
3862 		ret_val = hw->mac.ops.check_for_link(hw);
3863 		link_active = hw->mac.serdes_has_link;
3864 		break;
3865 	default:
3866 	case e1000_media_type_unknown:
3867 		break;
3868 	}
3869 
3870 	return link_active;
3871 }
3872 
3873 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3874 {
3875 	bool ret = false;
3876 	u32 ctrl_ext, thstat;
3877 
3878 	/* check for thermal sensor event on i350 copper only */
3879 	if (hw->mac.type == e1000_i350) {
3880 		thstat = rd32(E1000_THSTAT);
3881 		ctrl_ext = rd32(E1000_CTRL_EXT);
3882 
3883 		if ((hw->phy.media_type == e1000_media_type_copper) &&
3884 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3885 			ret = !!(thstat & event);
3886 	}
3887 
3888 	return ret;
3889 }
3890 
3891 /**
3892  *  igb_watchdog - Timer Call-back
3893  *  @data: pointer to adapter cast into an unsigned long
3894  **/
3895 static void igb_watchdog(unsigned long data)
3896 {
3897 	struct igb_adapter *adapter = (struct igb_adapter *)data;
3898 	/* Do the rest outside of interrupt context */
3899 	schedule_work(&adapter->watchdog_task);
3900 }
3901 
3902 static void igb_watchdog_task(struct work_struct *work)
3903 {
3904 	struct igb_adapter *adapter = container_of(work,
3905 						   struct igb_adapter,
3906 						   watchdog_task);
3907 	struct e1000_hw *hw = &adapter->hw;
3908 	struct e1000_phy_info *phy = &hw->phy;
3909 	struct net_device *netdev = adapter->netdev;
3910 	u32 link;
3911 	int i;
3912 
3913 	link = igb_has_link(adapter);
3914 	if (link) {
3915 		/* Cancel scheduled suspend requests. */
3916 		pm_runtime_resume(netdev->dev.parent);
3917 
3918 		if (!netif_carrier_ok(netdev)) {
3919 			u32 ctrl;
3920 			hw->mac.ops.get_speed_and_duplex(hw,
3921 							 &adapter->link_speed,
3922 							 &adapter->link_duplex);
3923 
3924 			ctrl = rd32(E1000_CTRL);
3925 			/* Links status message must follow this format */
3926 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3927 			       "Duplex, Flow Control: %s\n",
3928 			       netdev->name,
3929 			       adapter->link_speed,
3930 			       adapter->link_duplex == FULL_DUPLEX ?
3931 			       "Full" : "Half",
3932 			       (ctrl & E1000_CTRL_TFCE) &&
3933 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3934 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3935 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3936 
3937 			/* check if SmartSpeed worked */
3938 			igb_check_downshift(hw);
3939 			if (phy->speed_downgraded)
3940 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3941 
3942 			/* check for thermal sensor event */
3943 			if (igb_thermal_sensor_event(hw,
3944 			    E1000_THSTAT_LINK_THROTTLE)) {
3945 				netdev_info(netdev, "The network adapter link "
3946 					    "speed was downshifted because it "
3947 					    "overheated\n");
3948 			}
3949 
3950 			/* adjust timeout factor according to speed/duplex */
3951 			adapter->tx_timeout_factor = 1;
3952 			switch (adapter->link_speed) {
3953 			case SPEED_10:
3954 				adapter->tx_timeout_factor = 14;
3955 				break;
3956 			case SPEED_100:
3957 				/* maybe add some timeout factor ? */
3958 				break;
3959 			}
3960 
3961 			netif_carrier_on(netdev);
3962 
3963 			igb_ping_all_vfs(adapter);
3964 			igb_check_vf_rate_limit(adapter);
3965 
3966 			/* link state has changed, schedule phy info update */
3967 			if (!test_bit(__IGB_DOWN, &adapter->state))
3968 				mod_timer(&adapter->phy_info_timer,
3969 					  round_jiffies(jiffies + 2 * HZ));
3970 		}
3971 	} else {
3972 		if (netif_carrier_ok(netdev)) {
3973 			adapter->link_speed = 0;
3974 			adapter->link_duplex = 0;
3975 
3976 			/* check for thermal sensor event */
3977 			if (igb_thermal_sensor_event(hw,
3978 			    E1000_THSTAT_PWR_DOWN)) {
3979 				netdev_err(netdev, "The network adapter was "
3980 					   "stopped because it overheated\n");
3981 			}
3982 
3983 			/* Links status message must follow this format */
3984 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3985 			       netdev->name);
3986 			netif_carrier_off(netdev);
3987 
3988 			igb_ping_all_vfs(adapter);
3989 
3990 			/* link state has changed, schedule phy info update */
3991 			if (!test_bit(__IGB_DOWN, &adapter->state))
3992 				mod_timer(&adapter->phy_info_timer,
3993 					  round_jiffies(jiffies + 2 * HZ));
3994 
3995 			pm_schedule_suspend(netdev->dev.parent,
3996 					    MSEC_PER_SEC * 5);
3997 		}
3998 	}
3999 
4000 	spin_lock(&adapter->stats64_lock);
4001 	igb_update_stats(adapter, &adapter->stats64);
4002 	spin_unlock(&adapter->stats64_lock);
4003 
4004 	for (i = 0; i < adapter->num_tx_queues; i++) {
4005 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4006 		if (!netif_carrier_ok(netdev)) {
4007 			/* We've lost link, so the controller stops DMA,
4008 			 * but we've got queued Tx work that's never going
4009 			 * to get done, so reset controller to flush Tx.
4010 			 * (Do the reset outside of interrupt context).
4011 			 */
4012 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4013 				adapter->tx_timeout_count++;
4014 				schedule_work(&adapter->reset_task);
4015 				/* return immediately since reset is imminent */
4016 				return;
4017 			}
4018 		}
4019 
4020 		/* Force detection of hung controller every watchdog period */
4021 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4022 	}
4023 
4024 	/* Cause software interrupt to ensure Rx ring is cleaned */
4025 	if (adapter->msix_entries) {
4026 		u32 eics = 0;
4027 		for (i = 0; i < adapter->num_q_vectors; i++)
4028 			eics |= adapter->q_vector[i]->eims_value;
4029 		wr32(E1000_EICS, eics);
4030 	} else {
4031 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4032 	}
4033 
4034 	igb_spoof_check(adapter);
4035 	igb_ptp_rx_hang(adapter);
4036 
4037 	/* Reset the timer */
4038 	if (!test_bit(__IGB_DOWN, &adapter->state))
4039 		mod_timer(&adapter->watchdog_timer,
4040 			  round_jiffies(jiffies + 2 * HZ));
4041 }
4042 
4043 enum latency_range {
4044 	lowest_latency = 0,
4045 	low_latency = 1,
4046 	bulk_latency = 2,
4047 	latency_invalid = 255
4048 };
4049 
4050 /**
4051  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4052  *  @q_vector: pointer to q_vector
4053  *
4054  *  Stores a new ITR value based on strictly on packet size.  This
4055  *  algorithm is less sophisticated than that used in igb_update_itr,
4056  *  due to the difficulty of synchronizing statistics across multiple
4057  *  receive rings.  The divisors and thresholds used by this function
4058  *  were determined based on theoretical maximum wire speed and testing
4059  *  data, in order to minimize response time while increasing bulk
4060  *  throughput.
4061  *  This functionality is controlled by the InterruptThrottleRate module
4062  *  parameter (see igb_param.c)
4063  *  NOTE:  This function is called only when operating in a multiqueue
4064  *         receive environment.
4065  **/
4066 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4067 {
4068 	int new_val = q_vector->itr_val;
4069 	int avg_wire_size = 0;
4070 	struct igb_adapter *adapter = q_vector->adapter;
4071 	unsigned int packets;
4072 
4073 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4074 	 * ints/sec - ITR timer value of 120 ticks.
4075 	 */
4076 	if (adapter->link_speed != SPEED_1000) {
4077 		new_val = IGB_4K_ITR;
4078 		goto set_itr_val;
4079 	}
4080 
4081 	packets = q_vector->rx.total_packets;
4082 	if (packets)
4083 		avg_wire_size = q_vector->rx.total_bytes / packets;
4084 
4085 	packets = q_vector->tx.total_packets;
4086 	if (packets)
4087 		avg_wire_size = max_t(u32, avg_wire_size,
4088 				      q_vector->tx.total_bytes / packets);
4089 
4090 	/* if avg_wire_size isn't set no work was done */
4091 	if (!avg_wire_size)
4092 		goto clear_counts;
4093 
4094 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4095 	avg_wire_size += 24;
4096 
4097 	/* Don't starve jumbo frames */
4098 	avg_wire_size = min(avg_wire_size, 3000);
4099 
4100 	/* Give a little boost to mid-size frames */
4101 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4102 		new_val = avg_wire_size / 3;
4103 	else
4104 		new_val = avg_wire_size / 2;
4105 
4106 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4107 	if (new_val < IGB_20K_ITR &&
4108 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4109 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4110 		new_val = IGB_20K_ITR;
4111 
4112 set_itr_val:
4113 	if (new_val != q_vector->itr_val) {
4114 		q_vector->itr_val = new_val;
4115 		q_vector->set_itr = 1;
4116 	}
4117 clear_counts:
4118 	q_vector->rx.total_bytes = 0;
4119 	q_vector->rx.total_packets = 0;
4120 	q_vector->tx.total_bytes = 0;
4121 	q_vector->tx.total_packets = 0;
4122 }
4123 
4124 /**
4125  *  igb_update_itr - update the dynamic ITR value based on statistics
4126  *  @q_vector: pointer to q_vector
4127  *  @ring_container: ring info to update the itr for
4128  *
4129  *  Stores a new ITR value based on packets and byte
4130  *  counts during the last interrupt.  The advantage of per interrupt
4131  *  computation is faster updates and more accurate ITR for the current
4132  *  traffic pattern.  Constants in this function were computed
4133  *  based on theoretical maximum wire speed and thresholds were set based
4134  *  on testing data as well as attempting to minimize response time
4135  *  while increasing bulk throughput.
4136  *  this functionality is controlled by the InterruptThrottleRate module
4137  *  parameter (see igb_param.c)
4138  *  NOTE:  These calculations are only valid when operating in a single-
4139  *         queue environment.
4140  **/
4141 static void igb_update_itr(struct igb_q_vector *q_vector,
4142 			   struct igb_ring_container *ring_container)
4143 {
4144 	unsigned int packets = ring_container->total_packets;
4145 	unsigned int bytes = ring_container->total_bytes;
4146 	u8 itrval = ring_container->itr;
4147 
4148 	/* no packets, exit with status unchanged */
4149 	if (packets == 0)
4150 		return;
4151 
4152 	switch (itrval) {
4153 	case lowest_latency:
4154 		/* handle TSO and jumbo frames */
4155 		if (bytes/packets > 8000)
4156 			itrval = bulk_latency;
4157 		else if ((packets < 5) && (bytes > 512))
4158 			itrval = low_latency;
4159 		break;
4160 	case low_latency:  /* 50 usec aka 20000 ints/s */
4161 		if (bytes > 10000) {
4162 			/* this if handles the TSO accounting */
4163 			if (bytes/packets > 8000) {
4164 				itrval = bulk_latency;
4165 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4166 				itrval = bulk_latency;
4167 			} else if ((packets > 35)) {
4168 				itrval = lowest_latency;
4169 			}
4170 		} else if (bytes/packets > 2000) {
4171 			itrval = bulk_latency;
4172 		} else if (packets <= 2 && bytes < 512) {
4173 			itrval = lowest_latency;
4174 		}
4175 		break;
4176 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4177 		if (bytes > 25000) {
4178 			if (packets > 35)
4179 				itrval = low_latency;
4180 		} else if (bytes < 1500) {
4181 			itrval = low_latency;
4182 		}
4183 		break;
4184 	}
4185 
4186 	/* clear work counters since we have the values we need */
4187 	ring_container->total_bytes = 0;
4188 	ring_container->total_packets = 0;
4189 
4190 	/* write updated itr to ring container */
4191 	ring_container->itr = itrval;
4192 }
4193 
4194 static void igb_set_itr(struct igb_q_vector *q_vector)
4195 {
4196 	struct igb_adapter *adapter = q_vector->adapter;
4197 	u32 new_itr = q_vector->itr_val;
4198 	u8 current_itr = 0;
4199 
4200 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4201 	if (adapter->link_speed != SPEED_1000) {
4202 		current_itr = 0;
4203 		new_itr = IGB_4K_ITR;
4204 		goto set_itr_now;
4205 	}
4206 
4207 	igb_update_itr(q_vector, &q_vector->tx);
4208 	igb_update_itr(q_vector, &q_vector->rx);
4209 
4210 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4211 
4212 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4213 	if (current_itr == lowest_latency &&
4214 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4215 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4216 		current_itr = low_latency;
4217 
4218 	switch (current_itr) {
4219 	/* counts and packets in update_itr are dependent on these numbers */
4220 	case lowest_latency:
4221 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4222 		break;
4223 	case low_latency:
4224 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4225 		break;
4226 	case bulk_latency:
4227 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4228 		break;
4229 	default:
4230 		break;
4231 	}
4232 
4233 set_itr_now:
4234 	if (new_itr != q_vector->itr_val) {
4235 		/* this attempts to bias the interrupt rate towards Bulk
4236 		 * by adding intermediate steps when interrupt rate is
4237 		 * increasing
4238 		 */
4239 		new_itr = new_itr > q_vector->itr_val ?
4240 			  max((new_itr * q_vector->itr_val) /
4241 			  (new_itr + (q_vector->itr_val >> 2)),
4242 			  new_itr) : new_itr;
4243 		/* Don't write the value here; it resets the adapter's
4244 		 * internal timer, and causes us to delay far longer than
4245 		 * we should between interrupts.  Instead, we write the ITR
4246 		 * value at the beginning of the next interrupt so the timing
4247 		 * ends up being correct.
4248 		 */
4249 		q_vector->itr_val = new_itr;
4250 		q_vector->set_itr = 1;
4251 	}
4252 }
4253 
4254 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4255 			    u32 type_tucmd, u32 mss_l4len_idx)
4256 {
4257 	struct e1000_adv_tx_context_desc *context_desc;
4258 	u16 i = tx_ring->next_to_use;
4259 
4260 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4261 
4262 	i++;
4263 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4264 
4265 	/* set bits to identify this as an advanced context descriptor */
4266 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4267 
4268 	/* For 82575, context index must be unique per ring. */
4269 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4270 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4271 
4272 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4273 	context_desc->seqnum_seed	= 0;
4274 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4275 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4276 }
4277 
4278 static int igb_tso(struct igb_ring *tx_ring,
4279 		   struct igb_tx_buffer *first,
4280 		   u8 *hdr_len)
4281 {
4282 	struct sk_buff *skb = first->skb;
4283 	u32 vlan_macip_lens, type_tucmd;
4284 	u32 mss_l4len_idx, l4len;
4285 
4286 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4287 		return 0;
4288 
4289 	if (!skb_is_gso(skb))
4290 		return 0;
4291 
4292 	if (skb_header_cloned(skb)) {
4293 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4294 		if (err)
4295 			return err;
4296 	}
4297 
4298 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4299 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4300 
4301 	if (first->protocol == __constant_htons(ETH_P_IP)) {
4302 		struct iphdr *iph = ip_hdr(skb);
4303 		iph->tot_len = 0;
4304 		iph->check = 0;
4305 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4306 							 iph->daddr, 0,
4307 							 IPPROTO_TCP,
4308 							 0);
4309 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4310 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4311 				   IGB_TX_FLAGS_CSUM |
4312 				   IGB_TX_FLAGS_IPV4;
4313 	} else if (skb_is_gso_v6(skb)) {
4314 		ipv6_hdr(skb)->payload_len = 0;
4315 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4316 						       &ipv6_hdr(skb)->daddr,
4317 						       0, IPPROTO_TCP, 0);
4318 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4319 				   IGB_TX_FLAGS_CSUM;
4320 	}
4321 
4322 	/* compute header lengths */
4323 	l4len = tcp_hdrlen(skb);
4324 	*hdr_len = skb_transport_offset(skb) + l4len;
4325 
4326 	/* update gso size and bytecount with header size */
4327 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4328 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4329 
4330 	/* MSS L4LEN IDX */
4331 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4332 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4333 
4334 	/* VLAN MACLEN IPLEN */
4335 	vlan_macip_lens = skb_network_header_len(skb);
4336 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4337 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4338 
4339 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4340 
4341 	return 1;
4342 }
4343 
4344 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4345 {
4346 	struct sk_buff *skb = first->skb;
4347 	u32 vlan_macip_lens = 0;
4348 	u32 mss_l4len_idx = 0;
4349 	u32 type_tucmd = 0;
4350 
4351 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4352 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4353 			return;
4354 	} else {
4355 		u8 l4_hdr = 0;
4356 		switch (first->protocol) {
4357 		case __constant_htons(ETH_P_IP):
4358 			vlan_macip_lens |= skb_network_header_len(skb);
4359 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4360 			l4_hdr = ip_hdr(skb)->protocol;
4361 			break;
4362 		case __constant_htons(ETH_P_IPV6):
4363 			vlan_macip_lens |= skb_network_header_len(skb);
4364 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4365 			break;
4366 		default:
4367 			if (unlikely(net_ratelimit())) {
4368 				dev_warn(tx_ring->dev,
4369 					 "partial checksum but proto=%x!\n",
4370 					 first->protocol);
4371 			}
4372 			break;
4373 		}
4374 
4375 		switch (l4_hdr) {
4376 		case IPPROTO_TCP:
4377 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4378 			mss_l4len_idx = tcp_hdrlen(skb) <<
4379 					E1000_ADVTXD_L4LEN_SHIFT;
4380 			break;
4381 		case IPPROTO_SCTP:
4382 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4383 			mss_l4len_idx = sizeof(struct sctphdr) <<
4384 					E1000_ADVTXD_L4LEN_SHIFT;
4385 			break;
4386 		case IPPROTO_UDP:
4387 			mss_l4len_idx = sizeof(struct udphdr) <<
4388 					E1000_ADVTXD_L4LEN_SHIFT;
4389 			break;
4390 		default:
4391 			if (unlikely(net_ratelimit())) {
4392 				dev_warn(tx_ring->dev,
4393 					 "partial checksum but l4 proto=%x!\n",
4394 					 l4_hdr);
4395 			}
4396 			break;
4397 		}
4398 
4399 		/* update TX checksum flag */
4400 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4401 	}
4402 
4403 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4404 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4405 
4406 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4407 }
4408 
4409 #define IGB_SET_FLAG(_input, _flag, _result) \
4410 	((_flag <= _result) ? \
4411 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4412 	 ((u32)(_input & _flag) / (_flag / _result)))
4413 
4414 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4415 {
4416 	/* set type for advanced descriptor with frame checksum insertion */
4417 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4418 		       E1000_ADVTXD_DCMD_DEXT |
4419 		       E1000_ADVTXD_DCMD_IFCS;
4420 
4421 	/* set HW vlan bit if vlan is present */
4422 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4423 				 (E1000_ADVTXD_DCMD_VLE));
4424 
4425 	/* set segmentation bits for TSO */
4426 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4427 				 (E1000_ADVTXD_DCMD_TSE));
4428 
4429 	/* set timestamp bit if present */
4430 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4431 				 (E1000_ADVTXD_MAC_TSTAMP));
4432 
4433 	/* insert frame checksum */
4434 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4435 
4436 	return cmd_type;
4437 }
4438 
4439 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4440 				 union e1000_adv_tx_desc *tx_desc,
4441 				 u32 tx_flags, unsigned int paylen)
4442 {
4443 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4444 
4445 	/* 82575 requires a unique index per ring */
4446 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4447 		olinfo_status |= tx_ring->reg_idx << 4;
4448 
4449 	/* insert L4 checksum */
4450 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4451 				      IGB_TX_FLAGS_CSUM,
4452 				      (E1000_TXD_POPTS_TXSM << 8));
4453 
4454 	/* insert IPv4 checksum */
4455 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4456 				      IGB_TX_FLAGS_IPV4,
4457 				      (E1000_TXD_POPTS_IXSM << 8));
4458 
4459 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4460 }
4461 
4462 static void igb_tx_map(struct igb_ring *tx_ring,
4463 		       struct igb_tx_buffer *first,
4464 		       const u8 hdr_len)
4465 {
4466 	struct sk_buff *skb = first->skb;
4467 	struct igb_tx_buffer *tx_buffer;
4468 	union e1000_adv_tx_desc *tx_desc;
4469 	struct skb_frag_struct *frag;
4470 	dma_addr_t dma;
4471 	unsigned int data_len, size;
4472 	u32 tx_flags = first->tx_flags;
4473 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4474 	u16 i = tx_ring->next_to_use;
4475 
4476 	tx_desc = IGB_TX_DESC(tx_ring, i);
4477 
4478 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4479 
4480 	size = skb_headlen(skb);
4481 	data_len = skb->data_len;
4482 
4483 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4484 
4485 	tx_buffer = first;
4486 
4487 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4488 		if (dma_mapping_error(tx_ring->dev, dma))
4489 			goto dma_error;
4490 
4491 		/* record length, and DMA address */
4492 		dma_unmap_len_set(tx_buffer, len, size);
4493 		dma_unmap_addr_set(tx_buffer, dma, dma);
4494 
4495 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4496 
4497 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4498 			tx_desc->read.cmd_type_len =
4499 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4500 
4501 			i++;
4502 			tx_desc++;
4503 			if (i == tx_ring->count) {
4504 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4505 				i = 0;
4506 			}
4507 			tx_desc->read.olinfo_status = 0;
4508 
4509 			dma += IGB_MAX_DATA_PER_TXD;
4510 			size -= IGB_MAX_DATA_PER_TXD;
4511 
4512 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4513 		}
4514 
4515 		if (likely(!data_len))
4516 			break;
4517 
4518 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4519 
4520 		i++;
4521 		tx_desc++;
4522 		if (i == tx_ring->count) {
4523 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4524 			i = 0;
4525 		}
4526 		tx_desc->read.olinfo_status = 0;
4527 
4528 		size = skb_frag_size(frag);
4529 		data_len -= size;
4530 
4531 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4532 				       size, DMA_TO_DEVICE);
4533 
4534 		tx_buffer = &tx_ring->tx_buffer_info[i];
4535 	}
4536 
4537 	/* write last descriptor with RS and EOP bits */
4538 	cmd_type |= size | IGB_TXD_DCMD;
4539 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4540 
4541 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4542 
4543 	/* set the timestamp */
4544 	first->time_stamp = jiffies;
4545 
4546 	/* Force memory writes to complete before letting h/w know there
4547 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4548 	 * memory model archs, such as IA-64).
4549 	 *
4550 	 * We also need this memory barrier to make certain all of the
4551 	 * status bits have been updated before next_to_watch is written.
4552 	 */
4553 	wmb();
4554 
4555 	/* set next_to_watch value indicating a packet is present */
4556 	first->next_to_watch = tx_desc;
4557 
4558 	i++;
4559 	if (i == tx_ring->count)
4560 		i = 0;
4561 
4562 	tx_ring->next_to_use = i;
4563 
4564 	writel(i, tx_ring->tail);
4565 
4566 	/* we need this if more than one processor can write to our tail
4567 	 * at a time, it synchronizes IO on IA64/Altix systems
4568 	 */
4569 	mmiowb();
4570 
4571 	return;
4572 
4573 dma_error:
4574 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4575 
4576 	/* clear dma mappings for failed tx_buffer_info map */
4577 	for (;;) {
4578 		tx_buffer = &tx_ring->tx_buffer_info[i];
4579 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4580 		if (tx_buffer == first)
4581 			break;
4582 		if (i == 0)
4583 			i = tx_ring->count;
4584 		i--;
4585 	}
4586 
4587 	tx_ring->next_to_use = i;
4588 }
4589 
4590 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4591 {
4592 	struct net_device *netdev = tx_ring->netdev;
4593 
4594 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4595 
4596 	/* Herbert's original patch had:
4597 	 *  smp_mb__after_netif_stop_queue();
4598 	 * but since that doesn't exist yet, just open code it.
4599 	 */
4600 	smp_mb();
4601 
4602 	/* We need to check again in a case another CPU has just
4603 	 * made room available.
4604 	 */
4605 	if (igb_desc_unused(tx_ring) < size)
4606 		return -EBUSY;
4607 
4608 	/* A reprieve! */
4609 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4610 
4611 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4612 	tx_ring->tx_stats.restart_queue2++;
4613 	u64_stats_update_end(&tx_ring->tx_syncp2);
4614 
4615 	return 0;
4616 }
4617 
4618 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4619 {
4620 	if (igb_desc_unused(tx_ring) >= size)
4621 		return 0;
4622 	return __igb_maybe_stop_tx(tx_ring, size);
4623 }
4624 
4625 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4626 				struct igb_ring *tx_ring)
4627 {
4628 	struct igb_tx_buffer *first;
4629 	int tso;
4630 	u32 tx_flags = 0;
4631 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4632 	__be16 protocol = vlan_get_protocol(skb);
4633 	u8 hdr_len = 0;
4634 
4635 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4636 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4637 	 *       + 2 desc gap to keep tail from touching head,
4638 	 *       + 1 desc for context descriptor,
4639 	 * otherwise try next time
4640 	 */
4641 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4642 		unsigned short f;
4643 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4644 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4645 	} else {
4646 		count += skb_shinfo(skb)->nr_frags;
4647 	}
4648 
4649 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4650 		/* this is a hard error */
4651 		return NETDEV_TX_BUSY;
4652 	}
4653 
4654 	/* record the location of the first descriptor for this packet */
4655 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4656 	first->skb = skb;
4657 	first->bytecount = skb->len;
4658 	first->gso_segs = 1;
4659 
4660 	skb_tx_timestamp(skb);
4661 
4662 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4663 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4664 
4665 		if (!(adapter->ptp_tx_skb)) {
4666 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4667 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4668 
4669 			adapter->ptp_tx_skb = skb_get(skb);
4670 			adapter->ptp_tx_start = jiffies;
4671 			if (adapter->hw.mac.type == e1000_82576)
4672 				schedule_work(&adapter->ptp_tx_work);
4673 		}
4674 	}
4675 
4676 	if (vlan_tx_tag_present(skb)) {
4677 		tx_flags |= IGB_TX_FLAGS_VLAN;
4678 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4679 	}
4680 
4681 	/* record initial flags and protocol */
4682 	first->tx_flags = tx_flags;
4683 	first->protocol = protocol;
4684 
4685 	tso = igb_tso(tx_ring, first, &hdr_len);
4686 	if (tso < 0)
4687 		goto out_drop;
4688 	else if (!tso)
4689 		igb_tx_csum(tx_ring, first);
4690 
4691 	igb_tx_map(tx_ring, first, hdr_len);
4692 
4693 	/* Make sure there is space in the ring for the next send. */
4694 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4695 
4696 	return NETDEV_TX_OK;
4697 
4698 out_drop:
4699 	igb_unmap_and_free_tx_resource(tx_ring, first);
4700 
4701 	return NETDEV_TX_OK;
4702 }
4703 
4704 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4705 						    struct sk_buff *skb)
4706 {
4707 	unsigned int r_idx = skb->queue_mapping;
4708 
4709 	if (r_idx >= adapter->num_tx_queues)
4710 		r_idx = r_idx % adapter->num_tx_queues;
4711 
4712 	return adapter->tx_ring[r_idx];
4713 }
4714 
4715 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4716 				  struct net_device *netdev)
4717 {
4718 	struct igb_adapter *adapter = netdev_priv(netdev);
4719 
4720 	if (test_bit(__IGB_DOWN, &adapter->state)) {
4721 		dev_kfree_skb_any(skb);
4722 		return NETDEV_TX_OK;
4723 	}
4724 
4725 	if (skb->len <= 0) {
4726 		dev_kfree_skb_any(skb);
4727 		return NETDEV_TX_OK;
4728 	}
4729 
4730 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4731 	 * in order to meet this minimum size requirement.
4732 	 */
4733 	if (unlikely(skb->len < 17)) {
4734 		if (skb_pad(skb, 17 - skb->len))
4735 			return NETDEV_TX_OK;
4736 		skb->len = 17;
4737 		skb_set_tail_pointer(skb, 17);
4738 	}
4739 
4740 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4741 }
4742 
4743 /**
4744  *  igb_tx_timeout - Respond to a Tx Hang
4745  *  @netdev: network interface device structure
4746  **/
4747 static void igb_tx_timeout(struct net_device *netdev)
4748 {
4749 	struct igb_adapter *adapter = netdev_priv(netdev);
4750 	struct e1000_hw *hw = &adapter->hw;
4751 
4752 	/* Do the reset outside of interrupt context */
4753 	adapter->tx_timeout_count++;
4754 
4755 	if (hw->mac.type >= e1000_82580)
4756 		hw->dev_spec._82575.global_device_reset = true;
4757 
4758 	schedule_work(&adapter->reset_task);
4759 	wr32(E1000_EICS,
4760 	     (adapter->eims_enable_mask & ~adapter->eims_other));
4761 }
4762 
4763 static void igb_reset_task(struct work_struct *work)
4764 {
4765 	struct igb_adapter *adapter;
4766 	adapter = container_of(work, struct igb_adapter, reset_task);
4767 
4768 	igb_dump(adapter);
4769 	netdev_err(adapter->netdev, "Reset adapter\n");
4770 	igb_reinit_locked(adapter);
4771 }
4772 
4773 /**
4774  *  igb_get_stats64 - Get System Network Statistics
4775  *  @netdev: network interface device structure
4776  *  @stats: rtnl_link_stats64 pointer
4777  **/
4778 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4779 						struct rtnl_link_stats64 *stats)
4780 {
4781 	struct igb_adapter *adapter = netdev_priv(netdev);
4782 
4783 	spin_lock(&adapter->stats64_lock);
4784 	igb_update_stats(adapter, &adapter->stats64);
4785 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4786 	spin_unlock(&adapter->stats64_lock);
4787 
4788 	return stats;
4789 }
4790 
4791 /**
4792  *  igb_change_mtu - Change the Maximum Transfer Unit
4793  *  @netdev: network interface device structure
4794  *  @new_mtu: new value for maximum frame size
4795  *
4796  *  Returns 0 on success, negative on failure
4797  **/
4798 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4799 {
4800 	struct igb_adapter *adapter = netdev_priv(netdev);
4801 	struct pci_dev *pdev = adapter->pdev;
4802 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4803 
4804 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4805 		dev_err(&pdev->dev, "Invalid MTU setting\n");
4806 		return -EINVAL;
4807 	}
4808 
4809 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4810 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4811 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4812 		return -EINVAL;
4813 	}
4814 
4815 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4816 		msleep(1);
4817 
4818 	/* igb_down has a dependency on max_frame_size */
4819 	adapter->max_frame_size = max_frame;
4820 
4821 	if (netif_running(netdev))
4822 		igb_down(adapter);
4823 
4824 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4825 		 netdev->mtu, new_mtu);
4826 	netdev->mtu = new_mtu;
4827 
4828 	if (netif_running(netdev))
4829 		igb_up(adapter);
4830 	else
4831 		igb_reset(adapter);
4832 
4833 	clear_bit(__IGB_RESETTING, &adapter->state);
4834 
4835 	return 0;
4836 }
4837 
4838 /**
4839  *  igb_update_stats - Update the board statistics counters
4840  *  @adapter: board private structure
4841  **/
4842 void igb_update_stats(struct igb_adapter *adapter,
4843 		      struct rtnl_link_stats64 *net_stats)
4844 {
4845 	struct e1000_hw *hw = &adapter->hw;
4846 	struct pci_dev *pdev = adapter->pdev;
4847 	u32 reg, mpc;
4848 	u16 phy_tmp;
4849 	int i;
4850 	u64 bytes, packets;
4851 	unsigned int start;
4852 	u64 _bytes, _packets;
4853 
4854 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4855 
4856 	/* Prevent stats update while adapter is being reset, or if the pci
4857 	 * connection is down.
4858 	 */
4859 	if (adapter->link_speed == 0)
4860 		return;
4861 	if (pci_channel_offline(pdev))
4862 		return;
4863 
4864 	bytes = 0;
4865 	packets = 0;
4866 	for (i = 0; i < adapter->num_rx_queues; i++) {
4867 		u32 rqdpc = rd32(E1000_RQDPC(i));
4868 		struct igb_ring *ring = adapter->rx_ring[i];
4869 
4870 		if (rqdpc) {
4871 			ring->rx_stats.drops += rqdpc;
4872 			net_stats->rx_fifo_errors += rqdpc;
4873 		}
4874 
4875 		do {
4876 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4877 			_bytes = ring->rx_stats.bytes;
4878 			_packets = ring->rx_stats.packets;
4879 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4880 		bytes += _bytes;
4881 		packets += _packets;
4882 	}
4883 
4884 	net_stats->rx_bytes = bytes;
4885 	net_stats->rx_packets = packets;
4886 
4887 	bytes = 0;
4888 	packets = 0;
4889 	for (i = 0; i < adapter->num_tx_queues; i++) {
4890 		struct igb_ring *ring = adapter->tx_ring[i];
4891 		do {
4892 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4893 			_bytes = ring->tx_stats.bytes;
4894 			_packets = ring->tx_stats.packets;
4895 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4896 		bytes += _bytes;
4897 		packets += _packets;
4898 	}
4899 	net_stats->tx_bytes = bytes;
4900 	net_stats->tx_packets = packets;
4901 
4902 	/* read stats registers */
4903 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4904 	adapter->stats.gprc += rd32(E1000_GPRC);
4905 	adapter->stats.gorc += rd32(E1000_GORCL);
4906 	rd32(E1000_GORCH); /* clear GORCL */
4907 	adapter->stats.bprc += rd32(E1000_BPRC);
4908 	adapter->stats.mprc += rd32(E1000_MPRC);
4909 	adapter->stats.roc += rd32(E1000_ROC);
4910 
4911 	adapter->stats.prc64 += rd32(E1000_PRC64);
4912 	adapter->stats.prc127 += rd32(E1000_PRC127);
4913 	adapter->stats.prc255 += rd32(E1000_PRC255);
4914 	adapter->stats.prc511 += rd32(E1000_PRC511);
4915 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4916 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4917 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4918 	adapter->stats.sec += rd32(E1000_SEC);
4919 
4920 	mpc = rd32(E1000_MPC);
4921 	adapter->stats.mpc += mpc;
4922 	net_stats->rx_fifo_errors += mpc;
4923 	adapter->stats.scc += rd32(E1000_SCC);
4924 	adapter->stats.ecol += rd32(E1000_ECOL);
4925 	adapter->stats.mcc += rd32(E1000_MCC);
4926 	adapter->stats.latecol += rd32(E1000_LATECOL);
4927 	adapter->stats.dc += rd32(E1000_DC);
4928 	adapter->stats.rlec += rd32(E1000_RLEC);
4929 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4930 	adapter->stats.xontxc += rd32(E1000_XONTXC);
4931 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4932 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4933 	adapter->stats.fcruc += rd32(E1000_FCRUC);
4934 	adapter->stats.gptc += rd32(E1000_GPTC);
4935 	adapter->stats.gotc += rd32(E1000_GOTCL);
4936 	rd32(E1000_GOTCH); /* clear GOTCL */
4937 	adapter->stats.rnbc += rd32(E1000_RNBC);
4938 	adapter->stats.ruc += rd32(E1000_RUC);
4939 	adapter->stats.rfc += rd32(E1000_RFC);
4940 	adapter->stats.rjc += rd32(E1000_RJC);
4941 	adapter->stats.tor += rd32(E1000_TORH);
4942 	adapter->stats.tot += rd32(E1000_TOTH);
4943 	adapter->stats.tpr += rd32(E1000_TPR);
4944 
4945 	adapter->stats.ptc64 += rd32(E1000_PTC64);
4946 	adapter->stats.ptc127 += rd32(E1000_PTC127);
4947 	adapter->stats.ptc255 += rd32(E1000_PTC255);
4948 	adapter->stats.ptc511 += rd32(E1000_PTC511);
4949 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4950 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4951 
4952 	adapter->stats.mptc += rd32(E1000_MPTC);
4953 	adapter->stats.bptc += rd32(E1000_BPTC);
4954 
4955 	adapter->stats.tpt += rd32(E1000_TPT);
4956 	adapter->stats.colc += rd32(E1000_COLC);
4957 
4958 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4959 	/* read internal phy specific stats */
4960 	reg = rd32(E1000_CTRL_EXT);
4961 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4962 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4963 
4964 		/* this stat has invalid values on i210/i211 */
4965 		if ((hw->mac.type != e1000_i210) &&
4966 		    (hw->mac.type != e1000_i211))
4967 			adapter->stats.tncrs += rd32(E1000_TNCRS);
4968 	}
4969 
4970 	adapter->stats.tsctc += rd32(E1000_TSCTC);
4971 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4972 
4973 	adapter->stats.iac += rd32(E1000_IAC);
4974 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4975 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4976 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4977 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4978 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4979 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4980 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4981 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4982 
4983 	/* Fill out the OS statistics structure */
4984 	net_stats->multicast = adapter->stats.mprc;
4985 	net_stats->collisions = adapter->stats.colc;
4986 
4987 	/* Rx Errors */
4988 
4989 	/* RLEC on some newer hardware can be incorrect so build
4990 	 * our own version based on RUC and ROC
4991 	 */
4992 	net_stats->rx_errors = adapter->stats.rxerrc +
4993 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4994 		adapter->stats.ruc + adapter->stats.roc +
4995 		adapter->stats.cexterr;
4996 	net_stats->rx_length_errors = adapter->stats.ruc +
4997 				      adapter->stats.roc;
4998 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4999 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5000 	net_stats->rx_missed_errors = adapter->stats.mpc;
5001 
5002 	/* Tx Errors */
5003 	net_stats->tx_errors = adapter->stats.ecol +
5004 			       adapter->stats.latecol;
5005 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5006 	net_stats->tx_window_errors = adapter->stats.latecol;
5007 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5008 
5009 	/* Tx Dropped needs to be maintained elsewhere */
5010 
5011 	/* Phy Stats */
5012 	if (hw->phy.media_type == e1000_media_type_copper) {
5013 		if ((adapter->link_speed == SPEED_1000) &&
5014 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5015 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5016 			adapter->phy_stats.idle_errors += phy_tmp;
5017 		}
5018 	}
5019 
5020 	/* Management Stats */
5021 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5022 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5023 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5024 
5025 	/* OS2BMC Stats */
5026 	reg = rd32(E1000_MANC);
5027 	if (reg & E1000_MANC_EN_BMC2OS) {
5028 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5029 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5030 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5031 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5032 	}
5033 }
5034 
5035 static irqreturn_t igb_msix_other(int irq, void *data)
5036 {
5037 	struct igb_adapter *adapter = data;
5038 	struct e1000_hw *hw = &adapter->hw;
5039 	u32 icr = rd32(E1000_ICR);
5040 	/* reading ICR causes bit 31 of EICR to be cleared */
5041 
5042 	if (icr & E1000_ICR_DRSTA)
5043 		schedule_work(&adapter->reset_task);
5044 
5045 	if (icr & E1000_ICR_DOUTSYNC) {
5046 		/* HW is reporting DMA is out of sync */
5047 		adapter->stats.doosync++;
5048 		/* The DMA Out of Sync is also indication of a spoof event
5049 		 * in IOV mode. Check the Wrong VM Behavior register to
5050 		 * see if it is really a spoof event.
5051 		 */
5052 		igb_check_wvbr(adapter);
5053 	}
5054 
5055 	/* Check for a mailbox event */
5056 	if (icr & E1000_ICR_VMMB)
5057 		igb_msg_task(adapter);
5058 
5059 	if (icr & E1000_ICR_LSC) {
5060 		hw->mac.get_link_status = 1;
5061 		/* guard against interrupt when we're going down */
5062 		if (!test_bit(__IGB_DOWN, &adapter->state))
5063 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5064 	}
5065 
5066 	if (icr & E1000_ICR_TS) {
5067 		u32 tsicr = rd32(E1000_TSICR);
5068 
5069 		if (tsicr & E1000_TSICR_TXTS) {
5070 			/* acknowledge the interrupt */
5071 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5072 			/* retrieve hardware timestamp */
5073 			schedule_work(&adapter->ptp_tx_work);
5074 		}
5075 	}
5076 
5077 	wr32(E1000_EIMS, adapter->eims_other);
5078 
5079 	return IRQ_HANDLED;
5080 }
5081 
5082 static void igb_write_itr(struct igb_q_vector *q_vector)
5083 {
5084 	struct igb_adapter *adapter = q_vector->adapter;
5085 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5086 
5087 	if (!q_vector->set_itr)
5088 		return;
5089 
5090 	if (!itr_val)
5091 		itr_val = 0x4;
5092 
5093 	if (adapter->hw.mac.type == e1000_82575)
5094 		itr_val |= itr_val << 16;
5095 	else
5096 		itr_val |= E1000_EITR_CNT_IGNR;
5097 
5098 	writel(itr_val, q_vector->itr_register);
5099 	q_vector->set_itr = 0;
5100 }
5101 
5102 static irqreturn_t igb_msix_ring(int irq, void *data)
5103 {
5104 	struct igb_q_vector *q_vector = data;
5105 
5106 	/* Write the ITR value calculated from the previous interrupt. */
5107 	igb_write_itr(q_vector);
5108 
5109 	napi_schedule(&q_vector->napi);
5110 
5111 	return IRQ_HANDLED;
5112 }
5113 
5114 #ifdef CONFIG_IGB_DCA
5115 static void igb_update_tx_dca(struct igb_adapter *adapter,
5116 			      struct igb_ring *tx_ring,
5117 			      int cpu)
5118 {
5119 	struct e1000_hw *hw = &adapter->hw;
5120 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5121 
5122 	if (hw->mac.type != e1000_82575)
5123 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5124 
5125 	/* We can enable relaxed ordering for reads, but not writes when
5126 	 * DCA is enabled.  This is due to a known issue in some chipsets
5127 	 * which will cause the DCA tag to be cleared.
5128 	 */
5129 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5130 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5131 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5132 
5133 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5134 }
5135 
5136 static void igb_update_rx_dca(struct igb_adapter *adapter,
5137 			      struct igb_ring *rx_ring,
5138 			      int cpu)
5139 {
5140 	struct e1000_hw *hw = &adapter->hw;
5141 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5142 
5143 	if (hw->mac.type != e1000_82575)
5144 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5145 
5146 	/* We can enable relaxed ordering for reads, but not writes when
5147 	 * DCA is enabled.  This is due to a known issue in some chipsets
5148 	 * which will cause the DCA tag to be cleared.
5149 	 */
5150 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5151 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5152 
5153 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5154 }
5155 
5156 static void igb_update_dca(struct igb_q_vector *q_vector)
5157 {
5158 	struct igb_adapter *adapter = q_vector->adapter;
5159 	int cpu = get_cpu();
5160 
5161 	if (q_vector->cpu == cpu)
5162 		goto out_no_update;
5163 
5164 	if (q_vector->tx.ring)
5165 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5166 
5167 	if (q_vector->rx.ring)
5168 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5169 
5170 	q_vector->cpu = cpu;
5171 out_no_update:
5172 	put_cpu();
5173 }
5174 
5175 static void igb_setup_dca(struct igb_adapter *adapter)
5176 {
5177 	struct e1000_hw *hw = &adapter->hw;
5178 	int i;
5179 
5180 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5181 		return;
5182 
5183 	/* Always use CB2 mode, difference is masked in the CB driver. */
5184 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5185 
5186 	for (i = 0; i < adapter->num_q_vectors; i++) {
5187 		adapter->q_vector[i]->cpu = -1;
5188 		igb_update_dca(adapter->q_vector[i]);
5189 	}
5190 }
5191 
5192 static int __igb_notify_dca(struct device *dev, void *data)
5193 {
5194 	struct net_device *netdev = dev_get_drvdata(dev);
5195 	struct igb_adapter *adapter = netdev_priv(netdev);
5196 	struct pci_dev *pdev = adapter->pdev;
5197 	struct e1000_hw *hw = &adapter->hw;
5198 	unsigned long event = *(unsigned long *)data;
5199 
5200 	switch (event) {
5201 	case DCA_PROVIDER_ADD:
5202 		/* if already enabled, don't do it again */
5203 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5204 			break;
5205 		if (dca_add_requester(dev) == 0) {
5206 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5207 			dev_info(&pdev->dev, "DCA enabled\n");
5208 			igb_setup_dca(adapter);
5209 			break;
5210 		}
5211 		/* Fall Through since DCA is disabled. */
5212 	case DCA_PROVIDER_REMOVE:
5213 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5214 			/* without this a class_device is left
5215 			 * hanging around in the sysfs model
5216 			 */
5217 			dca_remove_requester(dev);
5218 			dev_info(&pdev->dev, "DCA disabled\n");
5219 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5220 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5221 		}
5222 		break;
5223 	}
5224 
5225 	return 0;
5226 }
5227 
5228 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5229 			  void *p)
5230 {
5231 	int ret_val;
5232 
5233 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5234 					 __igb_notify_dca);
5235 
5236 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5237 }
5238 #endif /* CONFIG_IGB_DCA */
5239 
5240 #ifdef CONFIG_PCI_IOV
5241 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5242 {
5243 	unsigned char mac_addr[ETH_ALEN];
5244 
5245 	eth_zero_addr(mac_addr);
5246 	igb_set_vf_mac(adapter, vf, mac_addr);
5247 
5248 	/* By default spoof check is enabled for all VFs */
5249 	adapter->vf_data[vf].spoofchk_enabled = true;
5250 
5251 	return 0;
5252 }
5253 
5254 #endif
5255 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5256 {
5257 	struct e1000_hw *hw = &adapter->hw;
5258 	u32 ping;
5259 	int i;
5260 
5261 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5262 		ping = E1000_PF_CONTROL_MSG;
5263 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5264 			ping |= E1000_VT_MSGTYPE_CTS;
5265 		igb_write_mbx(hw, &ping, 1, i);
5266 	}
5267 }
5268 
5269 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5270 {
5271 	struct e1000_hw *hw = &adapter->hw;
5272 	u32 vmolr = rd32(E1000_VMOLR(vf));
5273 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5274 
5275 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5276 			    IGB_VF_FLAG_MULTI_PROMISC);
5277 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5278 
5279 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5280 		vmolr |= E1000_VMOLR_MPME;
5281 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5282 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5283 	} else {
5284 		/* if we have hashes and we are clearing a multicast promisc
5285 		 * flag we need to write the hashes to the MTA as this step
5286 		 * was previously skipped
5287 		 */
5288 		if (vf_data->num_vf_mc_hashes > 30) {
5289 			vmolr |= E1000_VMOLR_MPME;
5290 		} else if (vf_data->num_vf_mc_hashes) {
5291 			int j;
5292 			vmolr |= E1000_VMOLR_ROMPE;
5293 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5294 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5295 		}
5296 	}
5297 
5298 	wr32(E1000_VMOLR(vf), vmolr);
5299 
5300 	/* there are flags left unprocessed, likely not supported */
5301 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5302 		return -EINVAL;
5303 
5304 	return 0;
5305 }
5306 
5307 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5308 				  u32 *msgbuf, u32 vf)
5309 {
5310 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5311 	u16 *hash_list = (u16 *)&msgbuf[1];
5312 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5313 	int i;
5314 
5315 	/* salt away the number of multicast addresses assigned
5316 	 * to this VF for later use to restore when the PF multi cast
5317 	 * list changes
5318 	 */
5319 	vf_data->num_vf_mc_hashes = n;
5320 
5321 	/* only up to 30 hash values supported */
5322 	if (n > 30)
5323 		n = 30;
5324 
5325 	/* store the hashes for later use */
5326 	for (i = 0; i < n; i++)
5327 		vf_data->vf_mc_hashes[i] = hash_list[i];
5328 
5329 	/* Flush and reset the mta with the new values */
5330 	igb_set_rx_mode(adapter->netdev);
5331 
5332 	return 0;
5333 }
5334 
5335 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5336 {
5337 	struct e1000_hw *hw = &adapter->hw;
5338 	struct vf_data_storage *vf_data;
5339 	int i, j;
5340 
5341 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5342 		u32 vmolr = rd32(E1000_VMOLR(i));
5343 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5344 
5345 		vf_data = &adapter->vf_data[i];
5346 
5347 		if ((vf_data->num_vf_mc_hashes > 30) ||
5348 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5349 			vmolr |= E1000_VMOLR_MPME;
5350 		} else if (vf_data->num_vf_mc_hashes) {
5351 			vmolr |= E1000_VMOLR_ROMPE;
5352 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5353 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5354 		}
5355 		wr32(E1000_VMOLR(i), vmolr);
5356 	}
5357 }
5358 
5359 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5360 {
5361 	struct e1000_hw *hw = &adapter->hw;
5362 	u32 pool_mask, reg, vid;
5363 	int i;
5364 
5365 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5366 
5367 	/* Find the vlan filter for this id */
5368 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5369 		reg = rd32(E1000_VLVF(i));
5370 
5371 		/* remove the vf from the pool */
5372 		reg &= ~pool_mask;
5373 
5374 		/* if pool is empty then remove entry from vfta */
5375 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5376 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5377 			reg = 0;
5378 			vid = reg & E1000_VLVF_VLANID_MASK;
5379 			igb_vfta_set(hw, vid, false);
5380 		}
5381 
5382 		wr32(E1000_VLVF(i), reg);
5383 	}
5384 
5385 	adapter->vf_data[vf].vlans_enabled = 0;
5386 }
5387 
5388 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5389 {
5390 	struct e1000_hw *hw = &adapter->hw;
5391 	u32 reg, i;
5392 
5393 	/* The vlvf table only exists on 82576 hardware and newer */
5394 	if (hw->mac.type < e1000_82576)
5395 		return -1;
5396 
5397 	/* we only need to do this if VMDq is enabled */
5398 	if (!adapter->vfs_allocated_count)
5399 		return -1;
5400 
5401 	/* Find the vlan filter for this id */
5402 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5403 		reg = rd32(E1000_VLVF(i));
5404 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5405 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5406 			break;
5407 	}
5408 
5409 	if (add) {
5410 		if (i == E1000_VLVF_ARRAY_SIZE) {
5411 			/* Did not find a matching VLAN ID entry that was
5412 			 * enabled.  Search for a free filter entry, i.e.
5413 			 * one without the enable bit set
5414 			 */
5415 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5416 				reg = rd32(E1000_VLVF(i));
5417 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5418 					break;
5419 			}
5420 		}
5421 		if (i < E1000_VLVF_ARRAY_SIZE) {
5422 			/* Found an enabled/available entry */
5423 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5424 
5425 			/* if !enabled we need to set this up in vfta */
5426 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5427 				/* add VID to filter table */
5428 				igb_vfta_set(hw, vid, true);
5429 				reg |= E1000_VLVF_VLANID_ENABLE;
5430 			}
5431 			reg &= ~E1000_VLVF_VLANID_MASK;
5432 			reg |= vid;
5433 			wr32(E1000_VLVF(i), reg);
5434 
5435 			/* do not modify RLPML for PF devices */
5436 			if (vf >= adapter->vfs_allocated_count)
5437 				return 0;
5438 
5439 			if (!adapter->vf_data[vf].vlans_enabled) {
5440 				u32 size;
5441 				reg = rd32(E1000_VMOLR(vf));
5442 				size = reg & E1000_VMOLR_RLPML_MASK;
5443 				size += 4;
5444 				reg &= ~E1000_VMOLR_RLPML_MASK;
5445 				reg |= size;
5446 				wr32(E1000_VMOLR(vf), reg);
5447 			}
5448 
5449 			adapter->vf_data[vf].vlans_enabled++;
5450 		}
5451 	} else {
5452 		if (i < E1000_VLVF_ARRAY_SIZE) {
5453 			/* remove vf from the pool */
5454 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5455 			/* if pool is empty then remove entry from vfta */
5456 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5457 				reg = 0;
5458 				igb_vfta_set(hw, vid, false);
5459 			}
5460 			wr32(E1000_VLVF(i), reg);
5461 
5462 			/* do not modify RLPML for PF devices */
5463 			if (vf >= adapter->vfs_allocated_count)
5464 				return 0;
5465 
5466 			adapter->vf_data[vf].vlans_enabled--;
5467 			if (!adapter->vf_data[vf].vlans_enabled) {
5468 				u32 size;
5469 				reg = rd32(E1000_VMOLR(vf));
5470 				size = reg & E1000_VMOLR_RLPML_MASK;
5471 				size -= 4;
5472 				reg &= ~E1000_VMOLR_RLPML_MASK;
5473 				reg |= size;
5474 				wr32(E1000_VMOLR(vf), reg);
5475 			}
5476 		}
5477 	}
5478 	return 0;
5479 }
5480 
5481 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5482 {
5483 	struct e1000_hw *hw = &adapter->hw;
5484 
5485 	if (vid)
5486 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5487 	else
5488 		wr32(E1000_VMVIR(vf), 0);
5489 }
5490 
5491 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5492 			       int vf, u16 vlan, u8 qos)
5493 {
5494 	int err = 0;
5495 	struct igb_adapter *adapter = netdev_priv(netdev);
5496 
5497 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5498 		return -EINVAL;
5499 	if (vlan || qos) {
5500 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5501 		if (err)
5502 			goto out;
5503 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5504 		igb_set_vmolr(adapter, vf, !vlan);
5505 		adapter->vf_data[vf].pf_vlan = vlan;
5506 		adapter->vf_data[vf].pf_qos = qos;
5507 		dev_info(&adapter->pdev->dev,
5508 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5509 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5510 			dev_warn(&adapter->pdev->dev,
5511 				 "The VF VLAN has been set, but the PF device is not up.\n");
5512 			dev_warn(&adapter->pdev->dev,
5513 				 "Bring the PF device up before attempting to use the VF device.\n");
5514 		}
5515 	} else {
5516 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5517 			     false, vf);
5518 		igb_set_vmvir(adapter, vlan, vf);
5519 		igb_set_vmolr(adapter, vf, true);
5520 		adapter->vf_data[vf].pf_vlan = 0;
5521 		adapter->vf_data[vf].pf_qos = 0;
5522 	}
5523 out:
5524 	return err;
5525 }
5526 
5527 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5528 {
5529 	struct e1000_hw *hw = &adapter->hw;
5530 	int i;
5531 	u32 reg;
5532 
5533 	/* Find the vlan filter for this id */
5534 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5535 		reg = rd32(E1000_VLVF(i));
5536 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5537 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5538 			break;
5539 	}
5540 
5541 	if (i >= E1000_VLVF_ARRAY_SIZE)
5542 		i = -1;
5543 
5544 	return i;
5545 }
5546 
5547 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5548 {
5549 	struct e1000_hw *hw = &adapter->hw;
5550 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5551 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5552 	int err = 0;
5553 
5554 	/* If in promiscuous mode we need to make sure the PF also has
5555 	 * the VLAN filter set.
5556 	 */
5557 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5558 		err = igb_vlvf_set(adapter, vid, add,
5559 				   adapter->vfs_allocated_count);
5560 	if (err)
5561 		goto out;
5562 
5563 	err = igb_vlvf_set(adapter, vid, add, vf);
5564 
5565 	if (err)
5566 		goto out;
5567 
5568 	/* Go through all the checks to see if the VLAN filter should
5569 	 * be wiped completely.
5570 	 */
5571 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5572 		u32 vlvf, bits;
5573 
5574 		int regndx = igb_find_vlvf_entry(adapter, vid);
5575 		if (regndx < 0)
5576 			goto out;
5577 		/* See if any other pools are set for this VLAN filter
5578 		 * entry other than the PF.
5579 		 */
5580 		vlvf = bits = rd32(E1000_VLVF(regndx));
5581 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5582 			      adapter->vfs_allocated_count);
5583 		/* If the filter was removed then ensure PF pool bit
5584 		 * is cleared if the PF only added itself to the pool
5585 		 * because the PF is in promiscuous mode.
5586 		 */
5587 		if ((vlvf & VLAN_VID_MASK) == vid &&
5588 		    !test_bit(vid, adapter->active_vlans) &&
5589 		    !bits)
5590 			igb_vlvf_set(adapter, vid, add,
5591 				     adapter->vfs_allocated_count);
5592 	}
5593 
5594 out:
5595 	return err;
5596 }
5597 
5598 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5599 {
5600 	/* clear flags - except flag that indicates PF has set the MAC */
5601 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5602 	adapter->vf_data[vf].last_nack = jiffies;
5603 
5604 	/* reset offloads to defaults */
5605 	igb_set_vmolr(adapter, vf, true);
5606 
5607 	/* reset vlans for device */
5608 	igb_clear_vf_vfta(adapter, vf);
5609 	if (adapter->vf_data[vf].pf_vlan)
5610 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5611 				    adapter->vf_data[vf].pf_vlan,
5612 				    adapter->vf_data[vf].pf_qos);
5613 	else
5614 		igb_clear_vf_vfta(adapter, vf);
5615 
5616 	/* reset multicast table array for vf */
5617 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5618 
5619 	/* Flush and reset the mta with the new values */
5620 	igb_set_rx_mode(adapter->netdev);
5621 }
5622 
5623 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5624 {
5625 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5626 
5627 	/* clear mac address as we were hotplug removed/added */
5628 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5629 		eth_zero_addr(vf_mac);
5630 
5631 	/* process remaining reset events */
5632 	igb_vf_reset(adapter, vf);
5633 }
5634 
5635 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5636 {
5637 	struct e1000_hw *hw = &adapter->hw;
5638 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5639 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5640 	u32 reg, msgbuf[3];
5641 	u8 *addr = (u8 *)(&msgbuf[1]);
5642 
5643 	/* process all the same items cleared in a function level reset */
5644 	igb_vf_reset(adapter, vf);
5645 
5646 	/* set vf mac address */
5647 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5648 
5649 	/* enable transmit and receive for vf */
5650 	reg = rd32(E1000_VFTE);
5651 	wr32(E1000_VFTE, reg | (1 << vf));
5652 	reg = rd32(E1000_VFRE);
5653 	wr32(E1000_VFRE, reg | (1 << vf));
5654 
5655 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5656 
5657 	/* reply to reset with ack and vf mac address */
5658 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5659 	memcpy(addr, vf_mac, 6);
5660 	igb_write_mbx(hw, msgbuf, 3, vf);
5661 }
5662 
5663 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5664 {
5665 	/* The VF MAC Address is stored in a packed array of bytes
5666 	 * starting at the second 32 bit word of the msg array
5667 	 */
5668 	unsigned char *addr = (char *)&msg[1];
5669 	int err = -1;
5670 
5671 	if (is_valid_ether_addr(addr))
5672 		err = igb_set_vf_mac(adapter, vf, addr);
5673 
5674 	return err;
5675 }
5676 
5677 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5678 {
5679 	struct e1000_hw *hw = &adapter->hw;
5680 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5681 	u32 msg = E1000_VT_MSGTYPE_NACK;
5682 
5683 	/* if device isn't clear to send it shouldn't be reading either */
5684 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5685 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5686 		igb_write_mbx(hw, &msg, 1, vf);
5687 		vf_data->last_nack = jiffies;
5688 	}
5689 }
5690 
5691 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5692 {
5693 	struct pci_dev *pdev = adapter->pdev;
5694 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5695 	struct e1000_hw *hw = &adapter->hw;
5696 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5697 	s32 retval;
5698 
5699 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5700 
5701 	if (retval) {
5702 		/* if receive failed revoke VF CTS stats and restart init */
5703 		dev_err(&pdev->dev, "Error receiving message from VF\n");
5704 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5705 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5706 			return;
5707 		goto out;
5708 	}
5709 
5710 	/* this is a message we already processed, do nothing */
5711 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5712 		return;
5713 
5714 	/* until the vf completes a reset it should not be
5715 	 * allowed to start any configuration.
5716 	 */
5717 	if (msgbuf[0] == E1000_VF_RESET) {
5718 		igb_vf_reset_msg(adapter, vf);
5719 		return;
5720 	}
5721 
5722 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5723 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5724 			return;
5725 		retval = -1;
5726 		goto out;
5727 	}
5728 
5729 	switch ((msgbuf[0] & 0xFFFF)) {
5730 	case E1000_VF_SET_MAC_ADDR:
5731 		retval = -EINVAL;
5732 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5733 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5734 		else
5735 			dev_warn(&pdev->dev,
5736 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5737 				 vf);
5738 		break;
5739 	case E1000_VF_SET_PROMISC:
5740 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5741 		break;
5742 	case E1000_VF_SET_MULTICAST:
5743 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5744 		break;
5745 	case E1000_VF_SET_LPE:
5746 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5747 		break;
5748 	case E1000_VF_SET_VLAN:
5749 		retval = -1;
5750 		if (vf_data->pf_vlan)
5751 			dev_warn(&pdev->dev,
5752 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5753 				 vf);
5754 		else
5755 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5756 		break;
5757 	default:
5758 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5759 		retval = -1;
5760 		break;
5761 	}
5762 
5763 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5764 out:
5765 	/* notify the VF of the results of what it sent us */
5766 	if (retval)
5767 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5768 	else
5769 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5770 
5771 	igb_write_mbx(hw, msgbuf, 1, vf);
5772 }
5773 
5774 static void igb_msg_task(struct igb_adapter *adapter)
5775 {
5776 	struct e1000_hw *hw = &adapter->hw;
5777 	u32 vf;
5778 
5779 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5780 		/* process any reset requests */
5781 		if (!igb_check_for_rst(hw, vf))
5782 			igb_vf_reset_event(adapter, vf);
5783 
5784 		/* process any messages pending */
5785 		if (!igb_check_for_msg(hw, vf))
5786 			igb_rcv_msg_from_vf(adapter, vf);
5787 
5788 		/* process any acks */
5789 		if (!igb_check_for_ack(hw, vf))
5790 			igb_rcv_ack_from_vf(adapter, vf);
5791 	}
5792 }
5793 
5794 /**
5795  *  igb_set_uta - Set unicast filter table address
5796  *  @adapter: board private structure
5797  *
5798  *  The unicast table address is a register array of 32-bit registers.
5799  *  The table is meant to be used in a way similar to how the MTA is used
5800  *  however due to certain limitations in the hardware it is necessary to
5801  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5802  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5803  **/
5804 static void igb_set_uta(struct igb_adapter *adapter)
5805 {
5806 	struct e1000_hw *hw = &adapter->hw;
5807 	int i;
5808 
5809 	/* The UTA table only exists on 82576 hardware and newer */
5810 	if (hw->mac.type < e1000_82576)
5811 		return;
5812 
5813 	/* we only need to do this if VMDq is enabled */
5814 	if (!adapter->vfs_allocated_count)
5815 		return;
5816 
5817 	for (i = 0; i < hw->mac.uta_reg_count; i++)
5818 		array_wr32(E1000_UTA, i, ~0);
5819 }
5820 
5821 /**
5822  *  igb_intr_msi - Interrupt Handler
5823  *  @irq: interrupt number
5824  *  @data: pointer to a network interface device structure
5825  **/
5826 static irqreturn_t igb_intr_msi(int irq, void *data)
5827 {
5828 	struct igb_adapter *adapter = data;
5829 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5830 	struct e1000_hw *hw = &adapter->hw;
5831 	/* read ICR disables interrupts using IAM */
5832 	u32 icr = rd32(E1000_ICR);
5833 
5834 	igb_write_itr(q_vector);
5835 
5836 	if (icr & E1000_ICR_DRSTA)
5837 		schedule_work(&adapter->reset_task);
5838 
5839 	if (icr & E1000_ICR_DOUTSYNC) {
5840 		/* HW is reporting DMA is out of sync */
5841 		adapter->stats.doosync++;
5842 	}
5843 
5844 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5845 		hw->mac.get_link_status = 1;
5846 		if (!test_bit(__IGB_DOWN, &adapter->state))
5847 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5848 	}
5849 
5850 	if (icr & E1000_ICR_TS) {
5851 		u32 tsicr = rd32(E1000_TSICR);
5852 
5853 		if (tsicr & E1000_TSICR_TXTS) {
5854 			/* acknowledge the interrupt */
5855 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5856 			/* retrieve hardware timestamp */
5857 			schedule_work(&adapter->ptp_tx_work);
5858 		}
5859 	}
5860 
5861 	napi_schedule(&q_vector->napi);
5862 
5863 	return IRQ_HANDLED;
5864 }
5865 
5866 /**
5867  *  igb_intr - Legacy Interrupt Handler
5868  *  @irq: interrupt number
5869  *  @data: pointer to a network interface device structure
5870  **/
5871 static irqreturn_t igb_intr(int irq, void *data)
5872 {
5873 	struct igb_adapter *adapter = data;
5874 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5875 	struct e1000_hw *hw = &adapter->hw;
5876 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5877 	 * need for the IMC write
5878 	 */
5879 	u32 icr = rd32(E1000_ICR);
5880 
5881 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5882 	 * not set, then the adapter didn't send an interrupt
5883 	 */
5884 	if (!(icr & E1000_ICR_INT_ASSERTED))
5885 		return IRQ_NONE;
5886 
5887 	igb_write_itr(q_vector);
5888 
5889 	if (icr & E1000_ICR_DRSTA)
5890 		schedule_work(&adapter->reset_task);
5891 
5892 	if (icr & E1000_ICR_DOUTSYNC) {
5893 		/* HW is reporting DMA is out of sync */
5894 		adapter->stats.doosync++;
5895 	}
5896 
5897 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5898 		hw->mac.get_link_status = 1;
5899 		/* guard against interrupt when we're going down */
5900 		if (!test_bit(__IGB_DOWN, &adapter->state))
5901 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5902 	}
5903 
5904 	if (icr & E1000_ICR_TS) {
5905 		u32 tsicr = rd32(E1000_TSICR);
5906 
5907 		if (tsicr & E1000_TSICR_TXTS) {
5908 			/* acknowledge the interrupt */
5909 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5910 			/* retrieve hardware timestamp */
5911 			schedule_work(&adapter->ptp_tx_work);
5912 		}
5913 	}
5914 
5915 	napi_schedule(&q_vector->napi);
5916 
5917 	return IRQ_HANDLED;
5918 }
5919 
5920 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5921 {
5922 	struct igb_adapter *adapter = q_vector->adapter;
5923 	struct e1000_hw *hw = &adapter->hw;
5924 
5925 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5926 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5927 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5928 			igb_set_itr(q_vector);
5929 		else
5930 			igb_update_ring_itr(q_vector);
5931 	}
5932 
5933 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5934 		if (adapter->msix_entries)
5935 			wr32(E1000_EIMS, q_vector->eims_value);
5936 		else
5937 			igb_irq_enable(adapter);
5938 	}
5939 }
5940 
5941 /**
5942  *  igb_poll - NAPI Rx polling callback
5943  *  @napi: napi polling structure
5944  *  @budget: count of how many packets we should handle
5945  **/
5946 static int igb_poll(struct napi_struct *napi, int budget)
5947 {
5948 	struct igb_q_vector *q_vector = container_of(napi,
5949 						     struct igb_q_vector,
5950 						     napi);
5951 	bool clean_complete = true;
5952 
5953 #ifdef CONFIG_IGB_DCA
5954 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5955 		igb_update_dca(q_vector);
5956 #endif
5957 	if (q_vector->tx.ring)
5958 		clean_complete = igb_clean_tx_irq(q_vector);
5959 
5960 	if (q_vector->rx.ring)
5961 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5962 
5963 	/* If all work not completed, return budget and keep polling */
5964 	if (!clean_complete)
5965 		return budget;
5966 
5967 	/* If not enough Rx work done, exit the polling mode */
5968 	napi_complete(napi);
5969 	igb_ring_irq_enable(q_vector);
5970 
5971 	return 0;
5972 }
5973 
5974 /**
5975  *  igb_clean_tx_irq - Reclaim resources after transmit completes
5976  *  @q_vector: pointer to q_vector containing needed info
5977  *
5978  *  returns true if ring is completely cleaned
5979  **/
5980 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5981 {
5982 	struct igb_adapter *adapter = q_vector->adapter;
5983 	struct igb_ring *tx_ring = q_vector->tx.ring;
5984 	struct igb_tx_buffer *tx_buffer;
5985 	union e1000_adv_tx_desc *tx_desc;
5986 	unsigned int total_bytes = 0, total_packets = 0;
5987 	unsigned int budget = q_vector->tx.work_limit;
5988 	unsigned int i = tx_ring->next_to_clean;
5989 
5990 	if (test_bit(__IGB_DOWN, &adapter->state))
5991 		return true;
5992 
5993 	tx_buffer = &tx_ring->tx_buffer_info[i];
5994 	tx_desc = IGB_TX_DESC(tx_ring, i);
5995 	i -= tx_ring->count;
5996 
5997 	do {
5998 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5999 
6000 		/* if next_to_watch is not set then there is no work pending */
6001 		if (!eop_desc)
6002 			break;
6003 
6004 		/* prevent any other reads prior to eop_desc */
6005 		read_barrier_depends();
6006 
6007 		/* if DD is not set pending work has not been completed */
6008 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6009 			break;
6010 
6011 		/* clear next_to_watch to prevent false hangs */
6012 		tx_buffer->next_to_watch = NULL;
6013 
6014 		/* update the statistics for this packet */
6015 		total_bytes += tx_buffer->bytecount;
6016 		total_packets += tx_buffer->gso_segs;
6017 
6018 		/* free the skb */
6019 		dev_kfree_skb_any(tx_buffer->skb);
6020 
6021 		/* unmap skb header data */
6022 		dma_unmap_single(tx_ring->dev,
6023 				 dma_unmap_addr(tx_buffer, dma),
6024 				 dma_unmap_len(tx_buffer, len),
6025 				 DMA_TO_DEVICE);
6026 
6027 		/* clear tx_buffer data */
6028 		tx_buffer->skb = NULL;
6029 		dma_unmap_len_set(tx_buffer, len, 0);
6030 
6031 		/* clear last DMA location and unmap remaining buffers */
6032 		while (tx_desc != eop_desc) {
6033 			tx_buffer++;
6034 			tx_desc++;
6035 			i++;
6036 			if (unlikely(!i)) {
6037 				i -= tx_ring->count;
6038 				tx_buffer = tx_ring->tx_buffer_info;
6039 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6040 			}
6041 
6042 			/* unmap any remaining paged data */
6043 			if (dma_unmap_len(tx_buffer, len)) {
6044 				dma_unmap_page(tx_ring->dev,
6045 					       dma_unmap_addr(tx_buffer, dma),
6046 					       dma_unmap_len(tx_buffer, len),
6047 					       DMA_TO_DEVICE);
6048 				dma_unmap_len_set(tx_buffer, len, 0);
6049 			}
6050 		}
6051 
6052 		/* move us one more past the eop_desc for start of next pkt */
6053 		tx_buffer++;
6054 		tx_desc++;
6055 		i++;
6056 		if (unlikely(!i)) {
6057 			i -= tx_ring->count;
6058 			tx_buffer = tx_ring->tx_buffer_info;
6059 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6060 		}
6061 
6062 		/* issue prefetch for next Tx descriptor */
6063 		prefetch(tx_desc);
6064 
6065 		/* update budget accounting */
6066 		budget--;
6067 	} while (likely(budget));
6068 
6069 	netdev_tx_completed_queue(txring_txq(tx_ring),
6070 				  total_packets, total_bytes);
6071 	i += tx_ring->count;
6072 	tx_ring->next_to_clean = i;
6073 	u64_stats_update_begin(&tx_ring->tx_syncp);
6074 	tx_ring->tx_stats.bytes += total_bytes;
6075 	tx_ring->tx_stats.packets += total_packets;
6076 	u64_stats_update_end(&tx_ring->tx_syncp);
6077 	q_vector->tx.total_bytes += total_bytes;
6078 	q_vector->tx.total_packets += total_packets;
6079 
6080 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6081 		struct e1000_hw *hw = &adapter->hw;
6082 
6083 		/* Detect a transmit hang in hardware, this serializes the
6084 		 * check with the clearing of time_stamp and movement of i
6085 		 */
6086 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6087 		if (tx_buffer->next_to_watch &&
6088 		    time_after(jiffies, tx_buffer->time_stamp +
6089 			       (adapter->tx_timeout_factor * HZ)) &&
6090 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6091 
6092 			/* detected Tx unit hang */
6093 			dev_err(tx_ring->dev,
6094 				"Detected Tx Unit Hang\n"
6095 				"  Tx Queue             <%d>\n"
6096 				"  TDH                  <%x>\n"
6097 				"  TDT                  <%x>\n"
6098 				"  next_to_use          <%x>\n"
6099 				"  next_to_clean        <%x>\n"
6100 				"buffer_info[next_to_clean]\n"
6101 				"  time_stamp           <%lx>\n"
6102 				"  next_to_watch        <%p>\n"
6103 				"  jiffies              <%lx>\n"
6104 				"  desc.status          <%x>\n",
6105 				tx_ring->queue_index,
6106 				rd32(E1000_TDH(tx_ring->reg_idx)),
6107 				readl(tx_ring->tail),
6108 				tx_ring->next_to_use,
6109 				tx_ring->next_to_clean,
6110 				tx_buffer->time_stamp,
6111 				tx_buffer->next_to_watch,
6112 				jiffies,
6113 				tx_buffer->next_to_watch->wb.status);
6114 			netif_stop_subqueue(tx_ring->netdev,
6115 					    tx_ring->queue_index);
6116 
6117 			/* we are about to reset, no point in enabling stuff */
6118 			return true;
6119 		}
6120 	}
6121 
6122 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6123 	if (unlikely(total_packets &&
6124 	    netif_carrier_ok(tx_ring->netdev) &&
6125 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6126 		/* Make sure that anybody stopping the queue after this
6127 		 * sees the new next_to_clean.
6128 		 */
6129 		smp_mb();
6130 		if (__netif_subqueue_stopped(tx_ring->netdev,
6131 					     tx_ring->queue_index) &&
6132 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6133 			netif_wake_subqueue(tx_ring->netdev,
6134 					    tx_ring->queue_index);
6135 
6136 			u64_stats_update_begin(&tx_ring->tx_syncp);
6137 			tx_ring->tx_stats.restart_queue++;
6138 			u64_stats_update_end(&tx_ring->tx_syncp);
6139 		}
6140 	}
6141 
6142 	return !!budget;
6143 }
6144 
6145 /**
6146  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6147  *  @rx_ring: rx descriptor ring to store buffers on
6148  *  @old_buff: donor buffer to have page reused
6149  *
6150  *  Synchronizes page for reuse by the adapter
6151  **/
6152 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6153 			      struct igb_rx_buffer *old_buff)
6154 {
6155 	struct igb_rx_buffer *new_buff;
6156 	u16 nta = rx_ring->next_to_alloc;
6157 
6158 	new_buff = &rx_ring->rx_buffer_info[nta];
6159 
6160 	/* update, and store next to alloc */
6161 	nta++;
6162 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6163 
6164 	/* transfer page from old buffer to new buffer */
6165 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6166 
6167 	/* sync the buffer for use by the device */
6168 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6169 					 old_buff->page_offset,
6170 					 IGB_RX_BUFSZ,
6171 					 DMA_FROM_DEVICE);
6172 }
6173 
6174 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6175 				  struct page *page,
6176 				  unsigned int truesize)
6177 {
6178 	/* avoid re-using remote pages */
6179 	if (unlikely(page_to_nid(page) != numa_node_id()))
6180 		return false;
6181 
6182 #if (PAGE_SIZE < 8192)
6183 	/* if we are only owner of page we can reuse it */
6184 	if (unlikely(page_count(page) != 1))
6185 		return false;
6186 
6187 	/* flip page offset to other buffer */
6188 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6189 
6190 	/* since we are the only owner of the page and we need to
6191 	 * increment it, just set the value to 2 in order to avoid
6192 	 * an unnecessary locked operation
6193 	 */
6194 	atomic_set(&page->_count, 2);
6195 #else
6196 	/* move offset up to the next cache line */
6197 	rx_buffer->page_offset += truesize;
6198 
6199 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6200 		return false;
6201 
6202 	/* bump ref count on page before it is given to the stack */
6203 	get_page(page);
6204 #endif
6205 
6206 	return true;
6207 }
6208 
6209 /**
6210  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6211  *  @rx_ring: rx descriptor ring to transact packets on
6212  *  @rx_buffer: buffer containing page to add
6213  *  @rx_desc: descriptor containing length of buffer written by hardware
6214  *  @skb: sk_buff to place the data into
6215  *
6216  *  This function will add the data contained in rx_buffer->page to the skb.
6217  *  This is done either through a direct copy if the data in the buffer is
6218  *  less than the skb header size, otherwise it will just attach the page as
6219  *  a frag to the skb.
6220  *
6221  *  The function will then update the page offset if necessary and return
6222  *  true if the buffer can be reused by the adapter.
6223  **/
6224 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6225 			    struct igb_rx_buffer *rx_buffer,
6226 			    union e1000_adv_rx_desc *rx_desc,
6227 			    struct sk_buff *skb)
6228 {
6229 	struct page *page = rx_buffer->page;
6230 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6231 #if (PAGE_SIZE < 8192)
6232 	unsigned int truesize = IGB_RX_BUFSZ;
6233 #else
6234 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6235 #endif
6236 
6237 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6238 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6239 
6240 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6241 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6242 			va += IGB_TS_HDR_LEN;
6243 			size -= IGB_TS_HDR_LEN;
6244 		}
6245 
6246 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6247 
6248 		/* we can reuse buffer as-is, just make sure it is local */
6249 		if (likely(page_to_nid(page) == numa_node_id()))
6250 			return true;
6251 
6252 		/* this page cannot be reused so discard it */
6253 		put_page(page);
6254 		return false;
6255 	}
6256 
6257 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6258 			rx_buffer->page_offset, size, truesize);
6259 
6260 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6261 }
6262 
6263 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6264 					   union e1000_adv_rx_desc *rx_desc,
6265 					   struct sk_buff *skb)
6266 {
6267 	struct igb_rx_buffer *rx_buffer;
6268 	struct page *page;
6269 
6270 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6271 
6272 	page = rx_buffer->page;
6273 	prefetchw(page);
6274 
6275 	if (likely(!skb)) {
6276 		void *page_addr = page_address(page) +
6277 				  rx_buffer->page_offset;
6278 
6279 		/* prefetch first cache line of first page */
6280 		prefetch(page_addr);
6281 #if L1_CACHE_BYTES < 128
6282 		prefetch(page_addr + L1_CACHE_BYTES);
6283 #endif
6284 
6285 		/* allocate a skb to store the frags */
6286 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6287 						IGB_RX_HDR_LEN);
6288 		if (unlikely(!skb)) {
6289 			rx_ring->rx_stats.alloc_failed++;
6290 			return NULL;
6291 		}
6292 
6293 		/* we will be copying header into skb->data in
6294 		 * pskb_may_pull so it is in our interest to prefetch
6295 		 * it now to avoid a possible cache miss
6296 		 */
6297 		prefetchw(skb->data);
6298 	}
6299 
6300 	/* we are reusing so sync this buffer for CPU use */
6301 	dma_sync_single_range_for_cpu(rx_ring->dev,
6302 				      rx_buffer->dma,
6303 				      rx_buffer->page_offset,
6304 				      IGB_RX_BUFSZ,
6305 				      DMA_FROM_DEVICE);
6306 
6307 	/* pull page into skb */
6308 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6309 		/* hand second half of page back to the ring */
6310 		igb_reuse_rx_page(rx_ring, rx_buffer);
6311 	} else {
6312 		/* we are not reusing the buffer so unmap it */
6313 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6314 			       PAGE_SIZE, DMA_FROM_DEVICE);
6315 	}
6316 
6317 	/* clear contents of rx_buffer */
6318 	rx_buffer->page = NULL;
6319 
6320 	return skb;
6321 }
6322 
6323 static inline void igb_rx_checksum(struct igb_ring *ring,
6324 				   union e1000_adv_rx_desc *rx_desc,
6325 				   struct sk_buff *skb)
6326 {
6327 	skb_checksum_none_assert(skb);
6328 
6329 	/* Ignore Checksum bit is set */
6330 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6331 		return;
6332 
6333 	/* Rx checksum disabled via ethtool */
6334 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6335 		return;
6336 
6337 	/* TCP/UDP checksum error bit is set */
6338 	if (igb_test_staterr(rx_desc,
6339 			     E1000_RXDEXT_STATERR_TCPE |
6340 			     E1000_RXDEXT_STATERR_IPE)) {
6341 		/* work around errata with sctp packets where the TCPE aka
6342 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6343 		 * packets, (aka let the stack check the crc32c)
6344 		 */
6345 		if (!((skb->len == 60) &&
6346 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6347 			u64_stats_update_begin(&ring->rx_syncp);
6348 			ring->rx_stats.csum_err++;
6349 			u64_stats_update_end(&ring->rx_syncp);
6350 		}
6351 		/* let the stack verify checksum errors */
6352 		return;
6353 	}
6354 	/* It must be a TCP or UDP packet with a valid checksum */
6355 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6356 				      E1000_RXD_STAT_UDPCS))
6357 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6358 
6359 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6360 		le32_to_cpu(rx_desc->wb.upper.status_error));
6361 }
6362 
6363 static inline void igb_rx_hash(struct igb_ring *ring,
6364 			       union e1000_adv_rx_desc *rx_desc,
6365 			       struct sk_buff *skb)
6366 {
6367 	if (ring->netdev->features & NETIF_F_RXHASH)
6368 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6369 }
6370 
6371 /**
6372  *  igb_is_non_eop - process handling of non-EOP buffers
6373  *  @rx_ring: Rx ring being processed
6374  *  @rx_desc: Rx descriptor for current buffer
6375  *  @skb: current socket buffer containing buffer in progress
6376  *
6377  *  This function updates next to clean.  If the buffer is an EOP buffer
6378  *  this function exits returning false, otherwise it will place the
6379  *  sk_buff in the next buffer to be chained and return true indicating
6380  *  that this is in fact a non-EOP buffer.
6381  **/
6382 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6383 			   union e1000_adv_rx_desc *rx_desc)
6384 {
6385 	u32 ntc = rx_ring->next_to_clean + 1;
6386 
6387 	/* fetch, update, and store next to clean */
6388 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6389 	rx_ring->next_to_clean = ntc;
6390 
6391 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6392 
6393 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6394 		return false;
6395 
6396 	return true;
6397 }
6398 
6399 /**
6400  *  igb_get_headlen - determine size of header for LRO/GRO
6401  *  @data: pointer to the start of the headers
6402  *  @max_len: total length of section to find headers in
6403  *
6404  *  This function is meant to determine the length of headers that will
6405  *  be recognized by hardware for LRO, and GRO offloads.  The main
6406  *  motivation of doing this is to only perform one pull for IPv4 TCP
6407  *  packets so that we can do basic things like calculating the gso_size
6408  *  based on the average data per packet.
6409  **/
6410 static unsigned int igb_get_headlen(unsigned char *data,
6411 				    unsigned int max_len)
6412 {
6413 	union {
6414 		unsigned char *network;
6415 		/* l2 headers */
6416 		struct ethhdr *eth;
6417 		struct vlan_hdr *vlan;
6418 		/* l3 headers */
6419 		struct iphdr *ipv4;
6420 		struct ipv6hdr *ipv6;
6421 	} hdr;
6422 	__be16 protocol;
6423 	u8 nexthdr = 0;	/* default to not TCP */
6424 	u8 hlen;
6425 
6426 	/* this should never happen, but better safe than sorry */
6427 	if (max_len < ETH_HLEN)
6428 		return max_len;
6429 
6430 	/* initialize network frame pointer */
6431 	hdr.network = data;
6432 
6433 	/* set first protocol and move network header forward */
6434 	protocol = hdr.eth->h_proto;
6435 	hdr.network += ETH_HLEN;
6436 
6437 	/* handle any vlan tag if present */
6438 	if (protocol == __constant_htons(ETH_P_8021Q)) {
6439 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6440 			return max_len;
6441 
6442 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6443 		hdr.network += VLAN_HLEN;
6444 	}
6445 
6446 	/* handle L3 protocols */
6447 	if (protocol == __constant_htons(ETH_P_IP)) {
6448 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6449 			return max_len;
6450 
6451 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6452 		hlen = (hdr.network[0] & 0x0F) << 2;
6453 
6454 		/* verify hlen meets minimum size requirements */
6455 		if (hlen < sizeof(struct iphdr))
6456 			return hdr.network - data;
6457 
6458 		/* record next protocol if header is present */
6459 		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6460 			nexthdr = hdr.ipv4->protocol;
6461 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6462 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6463 			return max_len;
6464 
6465 		/* record next protocol */
6466 		nexthdr = hdr.ipv6->nexthdr;
6467 		hlen = sizeof(struct ipv6hdr);
6468 	} else {
6469 		return hdr.network - data;
6470 	}
6471 
6472 	/* relocate pointer to start of L4 header */
6473 	hdr.network += hlen;
6474 
6475 	/* finally sort out TCP */
6476 	if (nexthdr == IPPROTO_TCP) {
6477 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6478 			return max_len;
6479 
6480 		/* access doff as a u8 to avoid unaligned access on ia64 */
6481 		hlen = (hdr.network[12] & 0xF0) >> 2;
6482 
6483 		/* verify hlen meets minimum size requirements */
6484 		if (hlen < sizeof(struct tcphdr))
6485 			return hdr.network - data;
6486 
6487 		hdr.network += hlen;
6488 	} else if (nexthdr == IPPROTO_UDP) {
6489 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6490 			return max_len;
6491 
6492 		hdr.network += sizeof(struct udphdr);
6493 	}
6494 
6495 	/* If everything has gone correctly hdr.network should be the
6496 	 * data section of the packet and will be the end of the header.
6497 	 * If not then it probably represents the end of the last recognized
6498 	 * header.
6499 	 */
6500 	if ((hdr.network - data) < max_len)
6501 		return hdr.network - data;
6502 	else
6503 		return max_len;
6504 }
6505 
6506 /**
6507  *  igb_pull_tail - igb specific version of skb_pull_tail
6508  *  @rx_ring: rx descriptor ring packet is being transacted on
6509  *  @rx_desc: pointer to the EOP Rx descriptor
6510  *  @skb: pointer to current skb being adjusted
6511  *
6512  *  This function is an igb specific version of __pskb_pull_tail.  The
6513  *  main difference between this version and the original function is that
6514  *  this function can make several assumptions about the state of things
6515  *  that allow for significant optimizations versus the standard function.
6516  *  As a result we can do things like drop a frag and maintain an accurate
6517  *  truesize for the skb.
6518  */
6519 static void igb_pull_tail(struct igb_ring *rx_ring,
6520 			  union e1000_adv_rx_desc *rx_desc,
6521 			  struct sk_buff *skb)
6522 {
6523 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6524 	unsigned char *va;
6525 	unsigned int pull_len;
6526 
6527 	/* it is valid to use page_address instead of kmap since we are
6528 	 * working with pages allocated out of the lomem pool per
6529 	 * alloc_page(GFP_ATOMIC)
6530 	 */
6531 	va = skb_frag_address(frag);
6532 
6533 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6534 		/* retrieve timestamp from buffer */
6535 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6536 
6537 		/* update pointers to remove timestamp header */
6538 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6539 		frag->page_offset += IGB_TS_HDR_LEN;
6540 		skb->data_len -= IGB_TS_HDR_LEN;
6541 		skb->len -= IGB_TS_HDR_LEN;
6542 
6543 		/* move va to start of packet data */
6544 		va += IGB_TS_HDR_LEN;
6545 	}
6546 
6547 	/* we need the header to contain the greater of either ETH_HLEN or
6548 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6549 	 */
6550 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6551 
6552 	/* align pull length to size of long to optimize memcpy performance */
6553 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6554 
6555 	/* update all of the pointers */
6556 	skb_frag_size_sub(frag, pull_len);
6557 	frag->page_offset += pull_len;
6558 	skb->data_len -= pull_len;
6559 	skb->tail += pull_len;
6560 }
6561 
6562 /**
6563  *  igb_cleanup_headers - Correct corrupted or empty headers
6564  *  @rx_ring: rx descriptor ring packet is being transacted on
6565  *  @rx_desc: pointer to the EOP Rx descriptor
6566  *  @skb: pointer to current skb being fixed
6567  *
6568  *  Address the case where we are pulling data in on pages only
6569  *  and as such no data is present in the skb header.
6570  *
6571  *  In addition if skb is not at least 60 bytes we need to pad it so that
6572  *  it is large enough to qualify as a valid Ethernet frame.
6573  *
6574  *  Returns true if an error was encountered and skb was freed.
6575  **/
6576 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6577 				union e1000_adv_rx_desc *rx_desc,
6578 				struct sk_buff *skb)
6579 {
6580 	if (unlikely((igb_test_staterr(rx_desc,
6581 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6582 		struct net_device *netdev = rx_ring->netdev;
6583 		if (!(netdev->features & NETIF_F_RXALL)) {
6584 			dev_kfree_skb_any(skb);
6585 			return true;
6586 		}
6587 	}
6588 
6589 	/* place header in linear portion of buffer */
6590 	if (skb_is_nonlinear(skb))
6591 		igb_pull_tail(rx_ring, rx_desc, skb);
6592 
6593 	/* if skb_pad returns an error the skb was freed */
6594 	if (unlikely(skb->len < 60)) {
6595 		int pad_len = 60 - skb->len;
6596 
6597 		if (skb_pad(skb, pad_len))
6598 			return true;
6599 		__skb_put(skb, pad_len);
6600 	}
6601 
6602 	return false;
6603 }
6604 
6605 /**
6606  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6607  *  @rx_ring: rx descriptor ring packet is being transacted on
6608  *  @rx_desc: pointer to the EOP Rx descriptor
6609  *  @skb: pointer to current skb being populated
6610  *
6611  *  This function checks the ring, descriptor, and packet information in
6612  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6613  *  other fields within the skb.
6614  **/
6615 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6616 				   union e1000_adv_rx_desc *rx_desc,
6617 				   struct sk_buff *skb)
6618 {
6619 	struct net_device *dev = rx_ring->netdev;
6620 
6621 	igb_rx_hash(rx_ring, rx_desc, skb);
6622 
6623 	igb_rx_checksum(rx_ring, rx_desc, skb);
6624 
6625 	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6626 
6627 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6628 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6629 		u16 vid;
6630 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6631 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6632 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6633 		else
6634 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6635 
6636 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6637 	}
6638 
6639 	skb_record_rx_queue(skb, rx_ring->queue_index);
6640 
6641 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6642 }
6643 
6644 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6645 {
6646 	struct igb_ring *rx_ring = q_vector->rx.ring;
6647 	struct sk_buff *skb = rx_ring->skb;
6648 	unsigned int total_bytes = 0, total_packets = 0;
6649 	u16 cleaned_count = igb_desc_unused(rx_ring);
6650 
6651 	do {
6652 		union e1000_adv_rx_desc *rx_desc;
6653 
6654 		/* return some buffers to hardware, one at a time is too slow */
6655 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6656 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6657 			cleaned_count = 0;
6658 		}
6659 
6660 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6661 
6662 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6663 			break;
6664 
6665 		/* This memory barrier is needed to keep us from reading
6666 		 * any other fields out of the rx_desc until we know the
6667 		 * RXD_STAT_DD bit is set
6668 		 */
6669 		rmb();
6670 
6671 		/* retrieve a buffer from the ring */
6672 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6673 
6674 		/* exit if we failed to retrieve a buffer */
6675 		if (!skb)
6676 			break;
6677 
6678 		cleaned_count++;
6679 
6680 		/* fetch next buffer in frame if non-eop */
6681 		if (igb_is_non_eop(rx_ring, rx_desc))
6682 			continue;
6683 
6684 		/* verify the packet layout is correct */
6685 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6686 			skb = NULL;
6687 			continue;
6688 		}
6689 
6690 		/* probably a little skewed due to removing CRC */
6691 		total_bytes += skb->len;
6692 
6693 		/* populate checksum, timestamp, VLAN, and protocol */
6694 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6695 
6696 		napi_gro_receive(&q_vector->napi, skb);
6697 
6698 		/* reset skb pointer */
6699 		skb = NULL;
6700 
6701 		/* update budget accounting */
6702 		total_packets++;
6703 	} while (likely(total_packets < budget));
6704 
6705 	/* place incomplete frames back on ring for completion */
6706 	rx_ring->skb = skb;
6707 
6708 	u64_stats_update_begin(&rx_ring->rx_syncp);
6709 	rx_ring->rx_stats.packets += total_packets;
6710 	rx_ring->rx_stats.bytes += total_bytes;
6711 	u64_stats_update_end(&rx_ring->rx_syncp);
6712 	q_vector->rx.total_packets += total_packets;
6713 	q_vector->rx.total_bytes += total_bytes;
6714 
6715 	if (cleaned_count)
6716 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6717 
6718 	return (total_packets < budget);
6719 }
6720 
6721 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6722 				  struct igb_rx_buffer *bi)
6723 {
6724 	struct page *page = bi->page;
6725 	dma_addr_t dma;
6726 
6727 	/* since we are recycling buffers we should seldom need to alloc */
6728 	if (likely(page))
6729 		return true;
6730 
6731 	/* alloc new page for storage */
6732 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6733 	if (unlikely(!page)) {
6734 		rx_ring->rx_stats.alloc_failed++;
6735 		return false;
6736 	}
6737 
6738 	/* map page for use */
6739 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6740 
6741 	/* if mapping failed free memory back to system since
6742 	 * there isn't much point in holding memory we can't use
6743 	 */
6744 	if (dma_mapping_error(rx_ring->dev, dma)) {
6745 		__free_page(page);
6746 
6747 		rx_ring->rx_stats.alloc_failed++;
6748 		return false;
6749 	}
6750 
6751 	bi->dma = dma;
6752 	bi->page = page;
6753 	bi->page_offset = 0;
6754 
6755 	return true;
6756 }
6757 
6758 /**
6759  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6760  *  @adapter: address of board private structure
6761  **/
6762 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6763 {
6764 	union e1000_adv_rx_desc *rx_desc;
6765 	struct igb_rx_buffer *bi;
6766 	u16 i = rx_ring->next_to_use;
6767 
6768 	/* nothing to do */
6769 	if (!cleaned_count)
6770 		return;
6771 
6772 	rx_desc = IGB_RX_DESC(rx_ring, i);
6773 	bi = &rx_ring->rx_buffer_info[i];
6774 	i -= rx_ring->count;
6775 
6776 	do {
6777 		if (!igb_alloc_mapped_page(rx_ring, bi))
6778 			break;
6779 
6780 		/* Refresh the desc even if buffer_addrs didn't change
6781 		 * because each write-back erases this info.
6782 		 */
6783 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6784 
6785 		rx_desc++;
6786 		bi++;
6787 		i++;
6788 		if (unlikely(!i)) {
6789 			rx_desc = IGB_RX_DESC(rx_ring, 0);
6790 			bi = rx_ring->rx_buffer_info;
6791 			i -= rx_ring->count;
6792 		}
6793 
6794 		/* clear the hdr_addr for the next_to_use descriptor */
6795 		rx_desc->read.hdr_addr = 0;
6796 
6797 		cleaned_count--;
6798 	} while (cleaned_count);
6799 
6800 	i += rx_ring->count;
6801 
6802 	if (rx_ring->next_to_use != i) {
6803 		/* record the next descriptor to use */
6804 		rx_ring->next_to_use = i;
6805 
6806 		/* update next to alloc since we have filled the ring */
6807 		rx_ring->next_to_alloc = i;
6808 
6809 		/* Force memory writes to complete before letting h/w
6810 		 * know there are new descriptors to fetch.  (Only
6811 		 * applicable for weak-ordered memory model archs,
6812 		 * such as IA-64).
6813 		 */
6814 		wmb();
6815 		writel(i, rx_ring->tail);
6816 	}
6817 }
6818 
6819 /**
6820  * igb_mii_ioctl -
6821  * @netdev:
6822  * @ifreq:
6823  * @cmd:
6824  **/
6825 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6826 {
6827 	struct igb_adapter *adapter = netdev_priv(netdev);
6828 	struct mii_ioctl_data *data = if_mii(ifr);
6829 
6830 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6831 		return -EOPNOTSUPP;
6832 
6833 	switch (cmd) {
6834 	case SIOCGMIIPHY:
6835 		data->phy_id = adapter->hw.phy.addr;
6836 		break;
6837 	case SIOCGMIIREG:
6838 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6839 		                     &data->val_out))
6840 			return -EIO;
6841 		break;
6842 	case SIOCSMIIREG:
6843 	default:
6844 		return -EOPNOTSUPP;
6845 	}
6846 	return 0;
6847 }
6848 
6849 /**
6850  * igb_ioctl -
6851  * @netdev:
6852  * @ifreq:
6853  * @cmd:
6854  **/
6855 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6856 {
6857 	switch (cmd) {
6858 	case SIOCGMIIPHY:
6859 	case SIOCGMIIREG:
6860 	case SIOCSMIIREG:
6861 		return igb_mii_ioctl(netdev, ifr, cmd);
6862 	case SIOCSHWTSTAMP:
6863 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6864 	default:
6865 		return -EOPNOTSUPP;
6866 	}
6867 }
6868 
6869 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6870 {
6871 	struct igb_adapter *adapter = hw->back;
6872 
6873 	if (pcie_capability_read_word(adapter->pdev, reg, value))
6874 		return -E1000_ERR_CONFIG;
6875 
6876 	return 0;
6877 }
6878 
6879 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6880 {
6881 	struct igb_adapter *adapter = hw->back;
6882 
6883 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6884 		return -E1000_ERR_CONFIG;
6885 
6886 	return 0;
6887 }
6888 
6889 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6890 {
6891 	struct igb_adapter *adapter = netdev_priv(netdev);
6892 	struct e1000_hw *hw = &adapter->hw;
6893 	u32 ctrl, rctl;
6894 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6895 
6896 	if (enable) {
6897 		/* enable VLAN tag insert/strip */
6898 		ctrl = rd32(E1000_CTRL);
6899 		ctrl |= E1000_CTRL_VME;
6900 		wr32(E1000_CTRL, ctrl);
6901 
6902 		/* Disable CFI check */
6903 		rctl = rd32(E1000_RCTL);
6904 		rctl &= ~E1000_RCTL_CFIEN;
6905 		wr32(E1000_RCTL, rctl);
6906 	} else {
6907 		/* disable VLAN tag insert/strip */
6908 		ctrl = rd32(E1000_CTRL);
6909 		ctrl &= ~E1000_CTRL_VME;
6910 		wr32(E1000_CTRL, ctrl);
6911 	}
6912 
6913 	igb_rlpml_set(adapter);
6914 }
6915 
6916 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6917 			       __be16 proto, u16 vid)
6918 {
6919 	struct igb_adapter *adapter = netdev_priv(netdev);
6920 	struct e1000_hw *hw = &adapter->hw;
6921 	int pf_id = adapter->vfs_allocated_count;
6922 
6923 	/* attempt to add filter to vlvf array */
6924 	igb_vlvf_set(adapter, vid, true, pf_id);
6925 
6926 	/* add the filter since PF can receive vlans w/o entry in vlvf */
6927 	igb_vfta_set(hw, vid, true);
6928 
6929 	set_bit(vid, adapter->active_vlans);
6930 
6931 	return 0;
6932 }
6933 
6934 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6935 				__be16 proto, u16 vid)
6936 {
6937 	struct igb_adapter *adapter = netdev_priv(netdev);
6938 	struct e1000_hw *hw = &adapter->hw;
6939 	int pf_id = adapter->vfs_allocated_count;
6940 	s32 err;
6941 
6942 	/* remove vlan from VLVF table array */
6943 	err = igb_vlvf_set(adapter, vid, false, pf_id);
6944 
6945 	/* if vid was not present in VLVF just remove it from table */
6946 	if (err)
6947 		igb_vfta_set(hw, vid, false);
6948 
6949 	clear_bit(vid, adapter->active_vlans);
6950 
6951 	return 0;
6952 }
6953 
6954 static void igb_restore_vlan(struct igb_adapter *adapter)
6955 {
6956 	u16 vid;
6957 
6958 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6959 
6960 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6961 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6962 }
6963 
6964 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6965 {
6966 	struct pci_dev *pdev = adapter->pdev;
6967 	struct e1000_mac_info *mac = &adapter->hw.mac;
6968 
6969 	mac->autoneg = 0;
6970 
6971 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6972 	 * for the switch() below to work
6973 	 */
6974 	if ((spd & 1) || (dplx & ~1))
6975 		goto err_inval;
6976 
6977 	/* Fiber NIC's only allow 1000 gbps Full duplex
6978 	 * and 100Mbps Full duplex for 100baseFx sfp
6979 	 */
6980 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6981 		switch (spd + dplx) {
6982 		case SPEED_10 + DUPLEX_HALF:
6983 		case SPEED_10 + DUPLEX_FULL:
6984 		case SPEED_100 + DUPLEX_HALF:
6985 			goto err_inval;
6986 		default:
6987 			break;
6988 		}
6989 	}
6990 
6991 	switch (spd + dplx) {
6992 	case SPEED_10 + DUPLEX_HALF:
6993 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6994 		break;
6995 	case SPEED_10 + DUPLEX_FULL:
6996 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6997 		break;
6998 	case SPEED_100 + DUPLEX_HALF:
6999 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7000 		break;
7001 	case SPEED_100 + DUPLEX_FULL:
7002 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7003 		break;
7004 	case SPEED_1000 + DUPLEX_FULL:
7005 		mac->autoneg = 1;
7006 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7007 		break;
7008 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7009 	default:
7010 		goto err_inval;
7011 	}
7012 
7013 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7014 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7015 
7016 	return 0;
7017 
7018 err_inval:
7019 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7020 	return -EINVAL;
7021 }
7022 
7023 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7024 			  bool runtime)
7025 {
7026 	struct net_device *netdev = pci_get_drvdata(pdev);
7027 	struct igb_adapter *adapter = netdev_priv(netdev);
7028 	struct e1000_hw *hw = &adapter->hw;
7029 	u32 ctrl, rctl, status;
7030 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7031 #ifdef CONFIG_PM
7032 	int retval = 0;
7033 #endif
7034 
7035 	netif_device_detach(netdev);
7036 
7037 	if (netif_running(netdev))
7038 		__igb_close(netdev, true);
7039 
7040 	igb_clear_interrupt_scheme(adapter);
7041 
7042 #ifdef CONFIG_PM
7043 	retval = pci_save_state(pdev);
7044 	if (retval)
7045 		return retval;
7046 #endif
7047 
7048 	status = rd32(E1000_STATUS);
7049 	if (status & E1000_STATUS_LU)
7050 		wufc &= ~E1000_WUFC_LNKC;
7051 
7052 	if (wufc) {
7053 		igb_setup_rctl(adapter);
7054 		igb_set_rx_mode(netdev);
7055 
7056 		/* turn on all-multi mode if wake on multicast is enabled */
7057 		if (wufc & E1000_WUFC_MC) {
7058 			rctl = rd32(E1000_RCTL);
7059 			rctl |= E1000_RCTL_MPE;
7060 			wr32(E1000_RCTL, rctl);
7061 		}
7062 
7063 		ctrl = rd32(E1000_CTRL);
7064 		/* advertise wake from D3Cold */
7065 		#define E1000_CTRL_ADVD3WUC 0x00100000
7066 		/* phy power management enable */
7067 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7068 		ctrl |= E1000_CTRL_ADVD3WUC;
7069 		wr32(E1000_CTRL, ctrl);
7070 
7071 		/* Allow time for pending master requests to run */
7072 		igb_disable_pcie_master(hw);
7073 
7074 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7075 		wr32(E1000_WUFC, wufc);
7076 	} else {
7077 		wr32(E1000_WUC, 0);
7078 		wr32(E1000_WUFC, 0);
7079 	}
7080 
7081 	*enable_wake = wufc || adapter->en_mng_pt;
7082 	if (!*enable_wake)
7083 		igb_power_down_link(adapter);
7084 	else
7085 		igb_power_up_link(adapter);
7086 
7087 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7088 	 * would have already happened in close and is redundant.
7089 	 */
7090 	igb_release_hw_control(adapter);
7091 
7092 	pci_disable_device(pdev);
7093 
7094 	return 0;
7095 }
7096 
7097 #ifdef CONFIG_PM
7098 #ifdef CONFIG_PM_SLEEP
7099 static int igb_suspend(struct device *dev)
7100 {
7101 	int retval;
7102 	bool wake;
7103 	struct pci_dev *pdev = to_pci_dev(dev);
7104 
7105 	retval = __igb_shutdown(pdev, &wake, 0);
7106 	if (retval)
7107 		return retval;
7108 
7109 	if (wake) {
7110 		pci_prepare_to_sleep(pdev);
7111 	} else {
7112 		pci_wake_from_d3(pdev, false);
7113 		pci_set_power_state(pdev, PCI_D3hot);
7114 	}
7115 
7116 	return 0;
7117 }
7118 #endif /* CONFIG_PM_SLEEP */
7119 
7120 static int igb_resume(struct device *dev)
7121 {
7122 	struct pci_dev *pdev = to_pci_dev(dev);
7123 	struct net_device *netdev = pci_get_drvdata(pdev);
7124 	struct igb_adapter *adapter = netdev_priv(netdev);
7125 	struct e1000_hw *hw = &adapter->hw;
7126 	u32 err;
7127 
7128 	pci_set_power_state(pdev, PCI_D0);
7129 	pci_restore_state(pdev);
7130 	pci_save_state(pdev);
7131 
7132 	err = pci_enable_device_mem(pdev);
7133 	if (err) {
7134 		dev_err(&pdev->dev,
7135 			"igb: Cannot enable PCI device from suspend\n");
7136 		return err;
7137 	}
7138 	pci_set_master(pdev);
7139 
7140 	pci_enable_wake(pdev, PCI_D3hot, 0);
7141 	pci_enable_wake(pdev, PCI_D3cold, 0);
7142 
7143 	if (igb_init_interrupt_scheme(adapter, true)) {
7144 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7145 		return -ENOMEM;
7146 	}
7147 
7148 	igb_reset(adapter);
7149 
7150 	/* let the f/w know that the h/w is now under the control of the
7151 	 * driver.
7152 	 */
7153 	igb_get_hw_control(adapter);
7154 
7155 	wr32(E1000_WUS, ~0);
7156 
7157 	if (netdev->flags & IFF_UP) {
7158 		rtnl_lock();
7159 		err = __igb_open(netdev, true);
7160 		rtnl_unlock();
7161 		if (err)
7162 			return err;
7163 	}
7164 
7165 	netif_device_attach(netdev);
7166 	return 0;
7167 }
7168 
7169 #ifdef CONFIG_PM_RUNTIME
7170 static int igb_runtime_idle(struct device *dev)
7171 {
7172 	struct pci_dev *pdev = to_pci_dev(dev);
7173 	struct net_device *netdev = pci_get_drvdata(pdev);
7174 	struct igb_adapter *adapter = netdev_priv(netdev);
7175 
7176 	if (!igb_has_link(adapter))
7177 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7178 
7179 	return -EBUSY;
7180 }
7181 
7182 static int igb_runtime_suspend(struct device *dev)
7183 {
7184 	struct pci_dev *pdev = to_pci_dev(dev);
7185 	int retval;
7186 	bool wake;
7187 
7188 	retval = __igb_shutdown(pdev, &wake, 1);
7189 	if (retval)
7190 		return retval;
7191 
7192 	if (wake) {
7193 		pci_prepare_to_sleep(pdev);
7194 	} else {
7195 		pci_wake_from_d3(pdev, false);
7196 		pci_set_power_state(pdev, PCI_D3hot);
7197 	}
7198 
7199 	return 0;
7200 }
7201 
7202 static int igb_runtime_resume(struct device *dev)
7203 {
7204 	return igb_resume(dev);
7205 }
7206 #endif /* CONFIG_PM_RUNTIME */
7207 #endif
7208 
7209 static void igb_shutdown(struct pci_dev *pdev)
7210 {
7211 	bool wake;
7212 
7213 	__igb_shutdown(pdev, &wake, 0);
7214 
7215 	if (system_state == SYSTEM_POWER_OFF) {
7216 		pci_wake_from_d3(pdev, wake);
7217 		pci_set_power_state(pdev, PCI_D3hot);
7218 	}
7219 }
7220 
7221 #ifdef CONFIG_PCI_IOV
7222 static int igb_sriov_reinit(struct pci_dev *dev)
7223 {
7224 	struct net_device *netdev = pci_get_drvdata(dev);
7225 	struct igb_adapter *adapter = netdev_priv(netdev);
7226 	struct pci_dev *pdev = adapter->pdev;
7227 
7228 	rtnl_lock();
7229 
7230 	if (netif_running(netdev))
7231 		igb_close(netdev);
7232 
7233 	igb_clear_interrupt_scheme(adapter);
7234 
7235 	igb_init_queue_configuration(adapter);
7236 
7237 	if (igb_init_interrupt_scheme(adapter, true)) {
7238 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7239 		return -ENOMEM;
7240 	}
7241 
7242 	if (netif_running(netdev))
7243 		igb_open(netdev);
7244 
7245 	rtnl_unlock();
7246 
7247 	return 0;
7248 }
7249 
7250 static int igb_pci_disable_sriov(struct pci_dev *dev)
7251 {
7252 	int err = igb_disable_sriov(dev);
7253 
7254 	if (!err)
7255 		err = igb_sriov_reinit(dev);
7256 
7257 	return err;
7258 }
7259 
7260 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7261 {
7262 	int err = igb_enable_sriov(dev, num_vfs);
7263 
7264 	if (err)
7265 		goto out;
7266 
7267 	err = igb_sriov_reinit(dev);
7268 	if (!err)
7269 		return num_vfs;
7270 
7271 out:
7272 	return err;
7273 }
7274 
7275 #endif
7276 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7277 {
7278 #ifdef CONFIG_PCI_IOV
7279 	if (num_vfs == 0)
7280 		return igb_pci_disable_sriov(dev);
7281 	else
7282 		return igb_pci_enable_sriov(dev, num_vfs);
7283 #endif
7284 	return 0;
7285 }
7286 
7287 #ifdef CONFIG_NET_POLL_CONTROLLER
7288 /* Polling 'interrupt' - used by things like netconsole to send skbs
7289  * without having to re-enable interrupts. It's not called while
7290  * the interrupt routine is executing.
7291  */
7292 static void igb_netpoll(struct net_device *netdev)
7293 {
7294 	struct igb_adapter *adapter = netdev_priv(netdev);
7295 	struct e1000_hw *hw = &adapter->hw;
7296 	struct igb_q_vector *q_vector;
7297 	int i;
7298 
7299 	for (i = 0; i < adapter->num_q_vectors; i++) {
7300 		q_vector = adapter->q_vector[i];
7301 		if (adapter->msix_entries)
7302 			wr32(E1000_EIMC, q_vector->eims_value);
7303 		else
7304 			igb_irq_disable(adapter);
7305 		napi_schedule(&q_vector->napi);
7306 	}
7307 }
7308 #endif /* CONFIG_NET_POLL_CONTROLLER */
7309 
7310 /**
7311  *  igb_io_error_detected - called when PCI error is detected
7312  *  @pdev: Pointer to PCI device
7313  *  @state: The current pci connection state
7314  *
7315  *  This function is called after a PCI bus error affecting
7316  *  this device has been detected.
7317  **/
7318 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7319 					      pci_channel_state_t state)
7320 {
7321 	struct net_device *netdev = pci_get_drvdata(pdev);
7322 	struct igb_adapter *adapter = netdev_priv(netdev);
7323 
7324 	netif_device_detach(netdev);
7325 
7326 	if (state == pci_channel_io_perm_failure)
7327 		return PCI_ERS_RESULT_DISCONNECT;
7328 
7329 	if (netif_running(netdev))
7330 		igb_down(adapter);
7331 	pci_disable_device(pdev);
7332 
7333 	/* Request a slot slot reset. */
7334 	return PCI_ERS_RESULT_NEED_RESET;
7335 }
7336 
7337 /**
7338  *  igb_io_slot_reset - called after the pci bus has been reset.
7339  *  @pdev: Pointer to PCI device
7340  *
7341  *  Restart the card from scratch, as if from a cold-boot. Implementation
7342  *  resembles the first-half of the igb_resume routine.
7343  **/
7344 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7345 {
7346 	struct net_device *netdev = pci_get_drvdata(pdev);
7347 	struct igb_adapter *adapter = netdev_priv(netdev);
7348 	struct e1000_hw *hw = &adapter->hw;
7349 	pci_ers_result_t result;
7350 	int err;
7351 
7352 	if (pci_enable_device_mem(pdev)) {
7353 		dev_err(&pdev->dev,
7354 			"Cannot re-enable PCI device after reset.\n");
7355 		result = PCI_ERS_RESULT_DISCONNECT;
7356 	} else {
7357 		pci_set_master(pdev);
7358 		pci_restore_state(pdev);
7359 		pci_save_state(pdev);
7360 
7361 		pci_enable_wake(pdev, PCI_D3hot, 0);
7362 		pci_enable_wake(pdev, PCI_D3cold, 0);
7363 
7364 		igb_reset(adapter);
7365 		wr32(E1000_WUS, ~0);
7366 		result = PCI_ERS_RESULT_RECOVERED;
7367 	}
7368 
7369 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7370 	if (err) {
7371 		dev_err(&pdev->dev,
7372 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7373 			err);
7374 		/* non-fatal, continue */
7375 	}
7376 
7377 	return result;
7378 }
7379 
7380 /**
7381  *  igb_io_resume - called when traffic can start flowing again.
7382  *  @pdev: Pointer to PCI device
7383  *
7384  *  This callback is called when the error recovery driver tells us that
7385  *  its OK to resume normal operation. Implementation resembles the
7386  *  second-half of the igb_resume routine.
7387  */
7388 static void igb_io_resume(struct pci_dev *pdev)
7389 {
7390 	struct net_device *netdev = pci_get_drvdata(pdev);
7391 	struct igb_adapter *adapter = netdev_priv(netdev);
7392 
7393 	if (netif_running(netdev)) {
7394 		if (igb_up(adapter)) {
7395 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7396 			return;
7397 		}
7398 	}
7399 
7400 	netif_device_attach(netdev);
7401 
7402 	/* let the f/w know that the h/w is now under the control of the
7403 	 * driver.
7404 	 */
7405 	igb_get_hw_control(adapter);
7406 }
7407 
7408 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7409 			     u8 qsel)
7410 {
7411 	u32 rar_low, rar_high;
7412 	struct e1000_hw *hw = &adapter->hw;
7413 
7414 	/* HW expects these in little endian so we reverse the byte order
7415 	 * from network order (big endian) to little endian
7416 	 */
7417 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7418 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7419 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7420 
7421 	/* Indicate to hardware the Address is Valid. */
7422 	rar_high |= E1000_RAH_AV;
7423 
7424 	if (hw->mac.type == e1000_82575)
7425 		rar_high |= E1000_RAH_POOL_1 * qsel;
7426 	else
7427 		rar_high |= E1000_RAH_POOL_1 << qsel;
7428 
7429 	wr32(E1000_RAL(index), rar_low);
7430 	wrfl();
7431 	wr32(E1000_RAH(index), rar_high);
7432 	wrfl();
7433 }
7434 
7435 static int igb_set_vf_mac(struct igb_adapter *adapter,
7436 			  int vf, unsigned char *mac_addr)
7437 {
7438 	struct e1000_hw *hw = &adapter->hw;
7439 	/* VF MAC addresses start at end of receive addresses and moves
7440 	 * towards the first, as a result a collision should not be possible
7441 	 */
7442 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7443 
7444 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7445 
7446 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7447 
7448 	return 0;
7449 }
7450 
7451 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7452 {
7453 	struct igb_adapter *adapter = netdev_priv(netdev);
7454 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7455 		return -EINVAL;
7456 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7457 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7458 	dev_info(&adapter->pdev->dev,
7459 		 "Reload the VF driver to make this change effective.");
7460 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7461 		dev_warn(&adapter->pdev->dev,
7462 			 "The VF MAC address has been set, but the PF device is not up.\n");
7463 		dev_warn(&adapter->pdev->dev,
7464 			 "Bring the PF device up before attempting to use the VF device.\n");
7465 	}
7466 	return igb_set_vf_mac(adapter, vf, mac);
7467 }
7468 
7469 static int igb_link_mbps(int internal_link_speed)
7470 {
7471 	switch (internal_link_speed) {
7472 	case SPEED_100:
7473 		return 100;
7474 	case SPEED_1000:
7475 		return 1000;
7476 	default:
7477 		return 0;
7478 	}
7479 }
7480 
7481 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7482 				  int link_speed)
7483 {
7484 	int rf_dec, rf_int;
7485 	u32 bcnrc_val;
7486 
7487 	if (tx_rate != 0) {
7488 		/* Calculate the rate factor values to set */
7489 		rf_int = link_speed / tx_rate;
7490 		rf_dec = (link_speed - (rf_int * tx_rate));
7491 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7492 			 tx_rate;
7493 
7494 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7495 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7496 			      E1000_RTTBCNRC_RF_INT_MASK);
7497 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7498 	} else {
7499 		bcnrc_val = 0;
7500 	}
7501 
7502 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7503 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7504 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7505 	 */
7506 	wr32(E1000_RTTBCNRM, 0x14);
7507 	wr32(E1000_RTTBCNRC, bcnrc_val);
7508 }
7509 
7510 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7511 {
7512 	int actual_link_speed, i;
7513 	bool reset_rate = false;
7514 
7515 	/* VF TX rate limit was not set or not supported */
7516 	if ((adapter->vf_rate_link_speed == 0) ||
7517 	    (adapter->hw.mac.type != e1000_82576))
7518 		return;
7519 
7520 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7521 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7522 		reset_rate = true;
7523 		adapter->vf_rate_link_speed = 0;
7524 		dev_info(&adapter->pdev->dev,
7525 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7526 	}
7527 
7528 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7529 		if (reset_rate)
7530 			adapter->vf_data[i].tx_rate = 0;
7531 
7532 		igb_set_vf_rate_limit(&adapter->hw, i,
7533 				      adapter->vf_data[i].tx_rate,
7534 				      actual_link_speed);
7535 	}
7536 }
7537 
7538 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7539 {
7540 	struct igb_adapter *adapter = netdev_priv(netdev);
7541 	struct e1000_hw *hw = &adapter->hw;
7542 	int actual_link_speed;
7543 
7544 	if (hw->mac.type != e1000_82576)
7545 		return -EOPNOTSUPP;
7546 
7547 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7548 	if ((vf >= adapter->vfs_allocated_count) ||
7549 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7550 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7551 		return -EINVAL;
7552 
7553 	adapter->vf_rate_link_speed = actual_link_speed;
7554 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7555 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7556 
7557 	return 0;
7558 }
7559 
7560 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7561 				   bool setting)
7562 {
7563 	struct igb_adapter *adapter = netdev_priv(netdev);
7564 	struct e1000_hw *hw = &adapter->hw;
7565 	u32 reg_val, reg_offset;
7566 
7567 	if (!adapter->vfs_allocated_count)
7568 		return -EOPNOTSUPP;
7569 
7570 	if (vf >= adapter->vfs_allocated_count)
7571 		return -EINVAL;
7572 
7573 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7574 	reg_val = rd32(reg_offset);
7575 	if (setting)
7576 		reg_val |= ((1 << vf) |
7577 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7578 	else
7579 		reg_val &= ~((1 << vf) |
7580 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7581 	wr32(reg_offset, reg_val);
7582 
7583 	adapter->vf_data[vf].spoofchk_enabled = setting;
7584 	return E1000_SUCCESS;
7585 }
7586 
7587 static int igb_ndo_get_vf_config(struct net_device *netdev,
7588 				 int vf, struct ifla_vf_info *ivi)
7589 {
7590 	struct igb_adapter *adapter = netdev_priv(netdev);
7591 	if (vf >= adapter->vfs_allocated_count)
7592 		return -EINVAL;
7593 	ivi->vf = vf;
7594 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7595 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7596 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7597 	ivi->qos = adapter->vf_data[vf].pf_qos;
7598 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7599 	return 0;
7600 }
7601 
7602 static void igb_vmm_control(struct igb_adapter *adapter)
7603 {
7604 	struct e1000_hw *hw = &adapter->hw;
7605 	u32 reg;
7606 
7607 	switch (hw->mac.type) {
7608 	case e1000_82575:
7609 	case e1000_i210:
7610 	case e1000_i211:
7611 	case e1000_i354:
7612 	default:
7613 		/* replication is not supported for 82575 */
7614 		return;
7615 	case e1000_82576:
7616 		/* notify HW that the MAC is adding vlan tags */
7617 		reg = rd32(E1000_DTXCTL);
7618 		reg |= E1000_DTXCTL_VLAN_ADDED;
7619 		wr32(E1000_DTXCTL, reg);
7620 	case e1000_82580:
7621 		/* enable replication vlan tag stripping */
7622 		reg = rd32(E1000_RPLOLR);
7623 		reg |= E1000_RPLOLR_STRVLAN;
7624 		wr32(E1000_RPLOLR, reg);
7625 	case e1000_i350:
7626 		/* none of the above registers are supported by i350 */
7627 		break;
7628 	}
7629 
7630 	if (adapter->vfs_allocated_count) {
7631 		igb_vmdq_set_loopback_pf(hw, true);
7632 		igb_vmdq_set_replication_pf(hw, true);
7633 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7634 					      adapter->vfs_allocated_count);
7635 	} else {
7636 		igb_vmdq_set_loopback_pf(hw, false);
7637 		igb_vmdq_set_replication_pf(hw, false);
7638 	}
7639 }
7640 
7641 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7642 {
7643 	struct e1000_hw *hw = &adapter->hw;
7644 	u32 dmac_thr;
7645 	u16 hwm;
7646 
7647 	if (hw->mac.type > e1000_82580) {
7648 		if (adapter->flags & IGB_FLAG_DMAC) {
7649 			u32 reg;
7650 
7651 			/* force threshold to 0. */
7652 			wr32(E1000_DMCTXTH, 0);
7653 
7654 			/* DMA Coalescing high water mark needs to be greater
7655 			 * than the Rx threshold. Set hwm to PBA - max frame
7656 			 * size in 16B units, capping it at PBA - 6KB.
7657 			 */
7658 			hwm = 64 * pba - adapter->max_frame_size / 16;
7659 			if (hwm < 64 * (pba - 6))
7660 				hwm = 64 * (pba - 6);
7661 			reg = rd32(E1000_FCRTC);
7662 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7663 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7664 				& E1000_FCRTC_RTH_COAL_MASK);
7665 			wr32(E1000_FCRTC, reg);
7666 
7667 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7668 			 * frame size, capping it at PBA - 10KB.
7669 			 */
7670 			dmac_thr = pba - adapter->max_frame_size / 512;
7671 			if (dmac_thr < pba - 10)
7672 				dmac_thr = pba - 10;
7673 			reg = rd32(E1000_DMACR);
7674 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7675 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7676 				& E1000_DMACR_DMACTHR_MASK);
7677 
7678 			/* transition to L0x or L1 if available..*/
7679 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7680 
7681 			/* watchdog timer= +-1000 usec in 32usec intervals */
7682 			reg |= (1000 >> 5);
7683 
7684 			/* Disable BMC-to-OS Watchdog Enable */
7685 			if (hw->mac.type != e1000_i354)
7686 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7687 
7688 			wr32(E1000_DMACR, reg);
7689 
7690 			/* no lower threshold to disable
7691 			 * coalescing(smart fifb)-UTRESH=0
7692 			 */
7693 			wr32(E1000_DMCRTRH, 0);
7694 
7695 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7696 
7697 			wr32(E1000_DMCTLX, reg);
7698 
7699 			/* free space in tx packet buffer to wake from
7700 			 * DMA coal
7701 			 */
7702 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7703 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7704 
7705 			/* make low power state decision controlled
7706 			 * by DMA coal
7707 			 */
7708 			reg = rd32(E1000_PCIEMISC);
7709 			reg &= ~E1000_PCIEMISC_LX_DECISION;
7710 			wr32(E1000_PCIEMISC, reg);
7711 		} /* endif adapter->dmac is not disabled */
7712 	} else if (hw->mac.type == e1000_82580) {
7713 		u32 reg = rd32(E1000_PCIEMISC);
7714 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7715 		wr32(E1000_DMACR, 0);
7716 	}
7717 }
7718 
7719 /**
7720  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7721  *  @hw: pointer to hardware structure
7722  *  @byte_offset: byte offset to read
7723  *  @dev_addr: device address
7724  *  @data: value read
7725  *
7726  *  Performs byte read operation over I2C interface at
7727  *  a specified device address.
7728  **/
7729 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7730 		      u8 dev_addr, u8 *data)
7731 {
7732 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7733 	struct i2c_client *this_client = adapter->i2c_client;
7734 	s32 status;
7735 	u16 swfw_mask = 0;
7736 
7737 	if (!this_client)
7738 		return E1000_ERR_I2C;
7739 
7740 	swfw_mask = E1000_SWFW_PHY0_SM;
7741 
7742 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7743 	    != E1000_SUCCESS)
7744 		return E1000_ERR_SWFW_SYNC;
7745 
7746 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7747 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7748 
7749 	if (status < 0)
7750 		return E1000_ERR_I2C;
7751 	else {
7752 		*data = status;
7753 		return E1000_SUCCESS;
7754 	}
7755 }
7756 
7757 /**
7758  *  igb_write_i2c_byte - Writes 8 bit word over I2C
7759  *  @hw: pointer to hardware structure
7760  *  @byte_offset: byte offset to write
7761  *  @dev_addr: device address
7762  *  @data: value to write
7763  *
7764  *  Performs byte write operation over I2C interface at
7765  *  a specified device address.
7766  **/
7767 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7768 		       u8 dev_addr, u8 data)
7769 {
7770 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7771 	struct i2c_client *this_client = adapter->i2c_client;
7772 	s32 status;
7773 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7774 
7775 	if (!this_client)
7776 		return E1000_ERR_I2C;
7777 
7778 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7779 		return E1000_ERR_SWFW_SYNC;
7780 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7781 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7782 
7783 	if (status)
7784 		return E1000_ERR_I2C;
7785 	else
7786 		return E1000_SUCCESS;
7787 
7788 }
7789 /* igb_main.c */
7790