1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/module.h> 31 #include <linux/types.h> 32 #include <linux/init.h> 33 #include <linux/bitops.h> 34 #include <linux/vmalloc.h> 35 #include <linux/pagemap.h> 36 #include <linux/netdevice.h> 37 #include <linux/ipv6.h> 38 #include <linux/slab.h> 39 #include <net/checksum.h> 40 #include <net/ip6_checksum.h> 41 #include <linux/net_tstamp.h> 42 #include <linux/mii.h> 43 #include <linux/ethtool.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/pci.h> 47 #include <linux/pci-aspm.h> 48 #include <linux/delay.h> 49 #include <linux/interrupt.h> 50 #include <linux/ip.h> 51 #include <linux/tcp.h> 52 #include <linux/sctp.h> 53 #include <linux/if_ether.h> 54 #include <linux/aer.h> 55 #include <linux/prefetch.h> 56 #include <linux/pm_runtime.h> 57 #ifdef CONFIG_IGB_DCA 58 #include <linux/dca.h> 59 #endif 60 #include <linux/i2c.h> 61 #include "igb.h" 62 63 #define MAJ 5 64 #define MIN 0 65 #define BUILD 3 66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ 67 __stringify(BUILD) "-k" 68 char igb_driver_name[] = "igb"; 69 char igb_driver_version[] = DRV_VERSION; 70 static const char igb_driver_string[] = 71 "Intel(R) Gigabit Ethernet Network Driver"; 72 static const char igb_copyright[] = 73 "Copyright (c) 2007-2013 Intel Corporation."; 74 75 static const struct e1000_info *igb_info_tbl[] = { 76 [board_82575] = &e1000_82575_info, 77 }; 78 79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 113 /* required last entry */ 114 {0, } 115 }; 116 117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 118 119 void igb_reset(struct igb_adapter *); 120 static int igb_setup_all_tx_resources(struct igb_adapter *); 121 static int igb_setup_all_rx_resources(struct igb_adapter *); 122 static void igb_free_all_tx_resources(struct igb_adapter *); 123 static void igb_free_all_rx_resources(struct igb_adapter *); 124 static void igb_setup_mrqc(struct igb_adapter *); 125 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 126 static void igb_remove(struct pci_dev *pdev); 127 static int igb_sw_init(struct igb_adapter *); 128 static int igb_open(struct net_device *); 129 static int igb_close(struct net_device *); 130 static void igb_configure(struct igb_adapter *); 131 static void igb_configure_tx(struct igb_adapter *); 132 static void igb_configure_rx(struct igb_adapter *); 133 static void igb_clean_all_tx_rings(struct igb_adapter *); 134 static void igb_clean_all_rx_rings(struct igb_adapter *); 135 static void igb_clean_tx_ring(struct igb_ring *); 136 static void igb_clean_rx_ring(struct igb_ring *); 137 static void igb_set_rx_mode(struct net_device *); 138 static void igb_update_phy_info(unsigned long); 139 static void igb_watchdog(unsigned long); 140 static void igb_watchdog_task(struct work_struct *); 141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, 143 struct rtnl_link_stats64 *stats); 144 static int igb_change_mtu(struct net_device *, int); 145 static int igb_set_mac(struct net_device *, void *); 146 static void igb_set_uta(struct igb_adapter *adapter); 147 static irqreturn_t igb_intr(int irq, void *); 148 static irqreturn_t igb_intr_msi(int irq, void *); 149 static irqreturn_t igb_msix_other(int irq, void *); 150 static irqreturn_t igb_msix_ring(int irq, void *); 151 #ifdef CONFIG_IGB_DCA 152 static void igb_update_dca(struct igb_q_vector *); 153 static void igb_setup_dca(struct igb_adapter *); 154 #endif /* CONFIG_IGB_DCA */ 155 static int igb_poll(struct napi_struct *, int); 156 static bool igb_clean_tx_irq(struct igb_q_vector *); 157 static bool igb_clean_rx_irq(struct igb_q_vector *, int); 158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 159 static void igb_tx_timeout(struct net_device *); 160 static void igb_reset_task(struct work_struct *); 161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features); 162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 164 static void igb_restore_vlan(struct igb_adapter *); 165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); 166 static void igb_ping_all_vfs(struct igb_adapter *); 167 static void igb_msg_task(struct igb_adapter *); 168 static void igb_vmm_control(struct igb_adapter *); 169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 172 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 173 int vf, u16 vlan, u8 qos); 174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); 175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 176 bool setting); 177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 178 struct ifla_vf_info *ivi); 179 static void igb_check_vf_rate_limit(struct igb_adapter *); 180 181 #ifdef CONFIG_PCI_IOV 182 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 183 #endif 184 185 #ifdef CONFIG_PM 186 #ifdef CONFIG_PM_SLEEP 187 static int igb_suspend(struct device *); 188 #endif 189 static int igb_resume(struct device *); 190 #ifdef CONFIG_PM_RUNTIME 191 static int igb_runtime_suspend(struct device *dev); 192 static int igb_runtime_resume(struct device *dev); 193 static int igb_runtime_idle(struct device *dev); 194 #endif 195 static const struct dev_pm_ops igb_pm_ops = { 196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 198 igb_runtime_idle) 199 }; 200 #endif 201 static void igb_shutdown(struct pci_dev *); 202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 203 #ifdef CONFIG_IGB_DCA 204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 205 static struct notifier_block dca_notifier = { 206 .notifier_call = igb_notify_dca, 207 .next = NULL, 208 .priority = 0 209 }; 210 #endif 211 #ifdef CONFIG_NET_POLL_CONTROLLER 212 /* for netdump / net console */ 213 static void igb_netpoll(struct net_device *); 214 #endif 215 #ifdef CONFIG_PCI_IOV 216 static unsigned int max_vfs = 0; 217 module_param(max_vfs, uint, 0); 218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " 219 "per physical function"); 220 #endif /* CONFIG_PCI_IOV */ 221 222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 223 pci_channel_state_t); 224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 225 static void igb_io_resume(struct pci_dev *); 226 227 static const struct pci_error_handlers igb_err_handler = { 228 .error_detected = igb_io_error_detected, 229 .slot_reset = igb_io_slot_reset, 230 .resume = igb_io_resume, 231 }; 232 233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 234 235 static struct pci_driver igb_driver = { 236 .name = igb_driver_name, 237 .id_table = igb_pci_tbl, 238 .probe = igb_probe, 239 .remove = igb_remove, 240 #ifdef CONFIG_PM 241 .driver.pm = &igb_pm_ops, 242 #endif 243 .shutdown = igb_shutdown, 244 .sriov_configure = igb_pci_sriov_configure, 245 .err_handler = &igb_err_handler 246 }; 247 248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 250 MODULE_LICENSE("GPL"); 251 MODULE_VERSION(DRV_VERSION); 252 253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 254 static int debug = -1; 255 module_param(debug, int, 0); 256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 257 258 struct igb_reg_info { 259 u32 ofs; 260 char *name; 261 }; 262 263 static const struct igb_reg_info igb_reg_info_tbl[] = { 264 265 /* General Registers */ 266 {E1000_CTRL, "CTRL"}, 267 {E1000_STATUS, "STATUS"}, 268 {E1000_CTRL_EXT, "CTRL_EXT"}, 269 270 /* Interrupt Registers */ 271 {E1000_ICR, "ICR"}, 272 273 /* RX Registers */ 274 {E1000_RCTL, "RCTL"}, 275 {E1000_RDLEN(0), "RDLEN"}, 276 {E1000_RDH(0), "RDH"}, 277 {E1000_RDT(0), "RDT"}, 278 {E1000_RXDCTL(0), "RXDCTL"}, 279 {E1000_RDBAL(0), "RDBAL"}, 280 {E1000_RDBAH(0), "RDBAH"}, 281 282 /* TX Registers */ 283 {E1000_TCTL, "TCTL"}, 284 {E1000_TDBAL(0), "TDBAL"}, 285 {E1000_TDBAH(0), "TDBAH"}, 286 {E1000_TDLEN(0), "TDLEN"}, 287 {E1000_TDH(0), "TDH"}, 288 {E1000_TDT(0), "TDT"}, 289 {E1000_TXDCTL(0), "TXDCTL"}, 290 {E1000_TDFH, "TDFH"}, 291 {E1000_TDFT, "TDFT"}, 292 {E1000_TDFHS, "TDFHS"}, 293 {E1000_TDFPC, "TDFPC"}, 294 295 /* List Terminator */ 296 {} 297 }; 298 299 /* igb_regdump - register printout routine */ 300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 301 { 302 int n = 0; 303 char rname[16]; 304 u32 regs[8]; 305 306 switch (reginfo->ofs) { 307 case E1000_RDLEN(0): 308 for (n = 0; n < 4; n++) 309 regs[n] = rd32(E1000_RDLEN(n)); 310 break; 311 case E1000_RDH(0): 312 for (n = 0; n < 4; n++) 313 regs[n] = rd32(E1000_RDH(n)); 314 break; 315 case E1000_RDT(0): 316 for (n = 0; n < 4; n++) 317 regs[n] = rd32(E1000_RDT(n)); 318 break; 319 case E1000_RXDCTL(0): 320 for (n = 0; n < 4; n++) 321 regs[n] = rd32(E1000_RXDCTL(n)); 322 break; 323 case E1000_RDBAL(0): 324 for (n = 0; n < 4; n++) 325 regs[n] = rd32(E1000_RDBAL(n)); 326 break; 327 case E1000_RDBAH(0): 328 for (n = 0; n < 4; n++) 329 regs[n] = rd32(E1000_RDBAH(n)); 330 break; 331 case E1000_TDBAL(0): 332 for (n = 0; n < 4; n++) 333 regs[n] = rd32(E1000_RDBAL(n)); 334 break; 335 case E1000_TDBAH(0): 336 for (n = 0; n < 4; n++) 337 regs[n] = rd32(E1000_TDBAH(n)); 338 break; 339 case E1000_TDLEN(0): 340 for (n = 0; n < 4; n++) 341 regs[n] = rd32(E1000_TDLEN(n)); 342 break; 343 case E1000_TDH(0): 344 for (n = 0; n < 4; n++) 345 regs[n] = rd32(E1000_TDH(n)); 346 break; 347 case E1000_TDT(0): 348 for (n = 0; n < 4; n++) 349 regs[n] = rd32(E1000_TDT(n)); 350 break; 351 case E1000_TXDCTL(0): 352 for (n = 0; n < 4; n++) 353 regs[n] = rd32(E1000_TXDCTL(n)); 354 break; 355 default: 356 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 357 return; 358 } 359 360 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 361 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 362 regs[2], regs[3]); 363 } 364 365 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 366 static void igb_dump(struct igb_adapter *adapter) 367 { 368 struct net_device *netdev = adapter->netdev; 369 struct e1000_hw *hw = &adapter->hw; 370 struct igb_reg_info *reginfo; 371 struct igb_ring *tx_ring; 372 union e1000_adv_tx_desc *tx_desc; 373 struct my_u0 { u64 a; u64 b; } *u0; 374 struct igb_ring *rx_ring; 375 union e1000_adv_rx_desc *rx_desc; 376 u32 staterr; 377 u16 i, n; 378 379 if (!netif_msg_hw(adapter)) 380 return; 381 382 /* Print netdevice Info */ 383 if (netdev) { 384 dev_info(&adapter->pdev->dev, "Net device Info\n"); 385 pr_info("Device Name state trans_start " 386 "last_rx\n"); 387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 388 netdev->state, netdev->trans_start, netdev->last_rx); 389 } 390 391 /* Print Registers */ 392 dev_info(&adapter->pdev->dev, "Register Dump\n"); 393 pr_info(" Register Name Value\n"); 394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 395 reginfo->name; reginfo++) { 396 igb_regdump(hw, reginfo); 397 } 398 399 /* Print TX Ring Summary */ 400 if (!netdev || !netif_running(netdev)) 401 goto exit; 402 403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 405 for (n = 0; n < adapter->num_tx_queues; n++) { 406 struct igb_tx_buffer *buffer_info; 407 tx_ring = adapter->tx_ring[n]; 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 410 n, tx_ring->next_to_use, tx_ring->next_to_clean, 411 (u64)dma_unmap_addr(buffer_info, dma), 412 dma_unmap_len(buffer_info, len), 413 buffer_info->next_to_watch, 414 (u64)buffer_info->time_stamp); 415 } 416 417 /* Print TX Rings */ 418 if (!netif_msg_tx_done(adapter)) 419 goto rx_ring_summary; 420 421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 422 423 /* Transmit Descriptor Formats 424 * 425 * Advanced Transmit Descriptor 426 * +--------------------------------------------------------------+ 427 * 0 | Buffer Address [63:0] | 428 * +--------------------------------------------------------------+ 429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 430 * +--------------------------------------------------------------+ 431 * 63 46 45 40 39 38 36 35 32 31 24 15 0 432 */ 433 434 for (n = 0; n < adapter->num_tx_queues; n++) { 435 tx_ring = adapter->tx_ring[n]; 436 pr_info("------------------------------------\n"); 437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 438 pr_info("------------------------------------\n"); 439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] " 440 "[bi->dma ] leng ntw timestamp " 441 "bi->skb\n"); 442 443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 444 const char *next_desc; 445 struct igb_tx_buffer *buffer_info; 446 tx_desc = IGB_TX_DESC(tx_ring, i); 447 buffer_info = &tx_ring->tx_buffer_info[i]; 448 u0 = (struct my_u0 *)tx_desc; 449 if (i == tx_ring->next_to_use && 450 i == tx_ring->next_to_clean) 451 next_desc = " NTC/U"; 452 else if (i == tx_ring->next_to_use) 453 next_desc = " NTU"; 454 else if (i == tx_ring->next_to_clean) 455 next_desc = " NTC"; 456 else 457 next_desc = ""; 458 459 pr_info("T [0x%03X] %016llX %016llX %016llX" 460 " %04X %p %016llX %p%s\n", i, 461 le64_to_cpu(u0->a), 462 le64_to_cpu(u0->b), 463 (u64)dma_unmap_addr(buffer_info, dma), 464 dma_unmap_len(buffer_info, len), 465 buffer_info->next_to_watch, 466 (u64)buffer_info->time_stamp, 467 buffer_info->skb, next_desc); 468 469 if (netif_msg_pktdata(adapter) && buffer_info->skb) 470 print_hex_dump(KERN_INFO, "", 471 DUMP_PREFIX_ADDRESS, 472 16, 1, buffer_info->skb->data, 473 dma_unmap_len(buffer_info, len), 474 true); 475 } 476 } 477 478 /* Print RX Rings Summary */ 479 rx_ring_summary: 480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 481 pr_info("Queue [NTU] [NTC]\n"); 482 for (n = 0; n < adapter->num_rx_queues; n++) { 483 rx_ring = adapter->rx_ring[n]; 484 pr_info(" %5d %5X %5X\n", 485 n, rx_ring->next_to_use, rx_ring->next_to_clean); 486 } 487 488 /* Print RX Rings */ 489 if (!netif_msg_rx_status(adapter)) 490 goto exit; 491 492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 493 494 /* Advanced Receive Descriptor (Read) Format 495 * 63 1 0 496 * +-----------------------------------------------------+ 497 * 0 | Packet Buffer Address [63:1] |A0/NSE| 498 * +----------------------------------------------+------+ 499 * 8 | Header Buffer Address [63:1] | DD | 500 * +-----------------------------------------------------+ 501 * 502 * 503 * Advanced Receive Descriptor (Write-Back) Format 504 * 505 * 63 48 47 32 31 30 21 20 17 16 4 3 0 506 * +------------------------------------------------------+ 507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 508 * | Checksum Ident | | | | Type | Type | 509 * +------------------------------------------------------+ 510 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 511 * +------------------------------------------------------+ 512 * 63 48 47 32 31 20 19 0 513 */ 514 515 for (n = 0; n < adapter->num_rx_queues; n++) { 516 rx_ring = adapter->rx_ring[n]; 517 pr_info("------------------------------------\n"); 518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 519 pr_info("------------------------------------\n"); 520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] " 521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----" 523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n"); 524 525 for (i = 0; i < rx_ring->count; i++) { 526 const char *next_desc; 527 struct igb_rx_buffer *buffer_info; 528 buffer_info = &rx_ring->rx_buffer_info[i]; 529 rx_desc = IGB_RX_DESC(rx_ring, i); 530 u0 = (struct my_u0 *)rx_desc; 531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 532 533 if (i == rx_ring->next_to_use) 534 next_desc = " NTU"; 535 else if (i == rx_ring->next_to_clean) 536 next_desc = " NTC"; 537 else 538 next_desc = ""; 539 540 if (staterr & E1000_RXD_STAT_DD) { 541 /* Descriptor Done */ 542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 543 "RWB", i, 544 le64_to_cpu(u0->a), 545 le64_to_cpu(u0->b), 546 next_desc); 547 } else { 548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 549 "R ", i, 550 le64_to_cpu(u0->a), 551 le64_to_cpu(u0->b), 552 (u64)buffer_info->dma, 553 next_desc); 554 555 if (netif_msg_pktdata(adapter) && 556 buffer_info->dma && buffer_info->page) { 557 print_hex_dump(KERN_INFO, "", 558 DUMP_PREFIX_ADDRESS, 559 16, 1, 560 page_address(buffer_info->page) + 561 buffer_info->page_offset, 562 IGB_RX_BUFSZ, true); 563 } 564 } 565 } 566 } 567 568 exit: 569 return; 570 } 571 572 /** 573 * igb_get_i2c_data - Reads the I2C SDA data bit 574 * @hw: pointer to hardware structure 575 * @i2cctl: Current value of I2CCTL register 576 * 577 * Returns the I2C data bit value 578 **/ 579 static int igb_get_i2c_data(void *data) 580 { 581 struct igb_adapter *adapter = (struct igb_adapter *)data; 582 struct e1000_hw *hw = &adapter->hw; 583 s32 i2cctl = rd32(E1000_I2CPARAMS); 584 585 return ((i2cctl & E1000_I2C_DATA_IN) != 0); 586 } 587 588 /** 589 * igb_set_i2c_data - Sets the I2C data bit 590 * @data: pointer to hardware structure 591 * @state: I2C data value (0 or 1) to set 592 * 593 * Sets the I2C data bit 594 **/ 595 static void igb_set_i2c_data(void *data, int state) 596 { 597 struct igb_adapter *adapter = (struct igb_adapter *)data; 598 struct e1000_hw *hw = &adapter->hw; 599 s32 i2cctl = rd32(E1000_I2CPARAMS); 600 601 if (state) 602 i2cctl |= E1000_I2C_DATA_OUT; 603 else 604 i2cctl &= ~E1000_I2C_DATA_OUT; 605 606 i2cctl &= ~E1000_I2C_DATA_OE_N; 607 i2cctl |= E1000_I2C_CLK_OE_N; 608 wr32(E1000_I2CPARAMS, i2cctl); 609 wrfl(); 610 611 } 612 613 /** 614 * igb_set_i2c_clk - Sets the I2C SCL clock 615 * @data: pointer to hardware structure 616 * @state: state to set clock 617 * 618 * Sets the I2C clock line to state 619 **/ 620 static void igb_set_i2c_clk(void *data, int state) 621 { 622 struct igb_adapter *adapter = (struct igb_adapter *)data; 623 struct e1000_hw *hw = &adapter->hw; 624 s32 i2cctl = rd32(E1000_I2CPARAMS); 625 626 if (state) { 627 i2cctl |= E1000_I2C_CLK_OUT; 628 i2cctl &= ~E1000_I2C_CLK_OE_N; 629 } else { 630 i2cctl &= ~E1000_I2C_CLK_OUT; 631 i2cctl &= ~E1000_I2C_CLK_OE_N; 632 } 633 wr32(E1000_I2CPARAMS, i2cctl); 634 wrfl(); 635 } 636 637 /** 638 * igb_get_i2c_clk - Gets the I2C SCL clock state 639 * @data: pointer to hardware structure 640 * 641 * Gets the I2C clock state 642 **/ 643 static int igb_get_i2c_clk(void *data) 644 { 645 struct igb_adapter *adapter = (struct igb_adapter *)data; 646 struct e1000_hw *hw = &adapter->hw; 647 s32 i2cctl = rd32(E1000_I2CPARAMS); 648 649 return ((i2cctl & E1000_I2C_CLK_IN) != 0); 650 } 651 652 static const struct i2c_algo_bit_data igb_i2c_algo = { 653 .setsda = igb_set_i2c_data, 654 .setscl = igb_set_i2c_clk, 655 .getsda = igb_get_i2c_data, 656 .getscl = igb_get_i2c_clk, 657 .udelay = 5, 658 .timeout = 20, 659 }; 660 661 /** 662 * igb_get_hw_dev - return device 663 * @hw: pointer to hardware structure 664 * 665 * used by hardware layer to print debugging information 666 **/ 667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 668 { 669 struct igb_adapter *adapter = hw->back; 670 return adapter->netdev; 671 } 672 673 /** 674 * igb_init_module - Driver Registration Routine 675 * 676 * igb_init_module is the first routine called when the driver is 677 * loaded. All it does is register with the PCI subsystem. 678 **/ 679 static int __init igb_init_module(void) 680 { 681 int ret; 682 pr_info("%s - version %s\n", 683 igb_driver_string, igb_driver_version); 684 685 pr_info("%s\n", igb_copyright); 686 687 #ifdef CONFIG_IGB_DCA 688 dca_register_notify(&dca_notifier); 689 #endif 690 ret = pci_register_driver(&igb_driver); 691 return ret; 692 } 693 694 module_init(igb_init_module); 695 696 /** 697 * igb_exit_module - Driver Exit Cleanup Routine 698 * 699 * igb_exit_module is called just before the driver is removed 700 * from memory. 701 **/ 702 static void __exit igb_exit_module(void) 703 { 704 #ifdef CONFIG_IGB_DCA 705 dca_unregister_notify(&dca_notifier); 706 #endif 707 pci_unregister_driver(&igb_driver); 708 } 709 710 module_exit(igb_exit_module); 711 712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 713 /** 714 * igb_cache_ring_register - Descriptor ring to register mapping 715 * @adapter: board private structure to initialize 716 * 717 * Once we know the feature-set enabled for the device, we'll cache 718 * the register offset the descriptor ring is assigned to. 719 **/ 720 static void igb_cache_ring_register(struct igb_adapter *adapter) 721 { 722 int i = 0, j = 0; 723 u32 rbase_offset = adapter->vfs_allocated_count; 724 725 switch (adapter->hw.mac.type) { 726 case e1000_82576: 727 /* The queues are allocated for virtualization such that VF 0 728 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 729 * In order to avoid collision we start at the first free queue 730 * and continue consuming queues in the same sequence 731 */ 732 if (adapter->vfs_allocated_count) { 733 for (; i < adapter->rss_queues; i++) 734 adapter->rx_ring[i]->reg_idx = rbase_offset + 735 Q_IDX_82576(i); 736 } 737 case e1000_82575: 738 case e1000_82580: 739 case e1000_i350: 740 case e1000_i354: 741 case e1000_i210: 742 case e1000_i211: 743 default: 744 for (; i < adapter->num_rx_queues; i++) 745 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 746 for (; j < adapter->num_tx_queues; j++) 747 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 748 break; 749 } 750 } 751 752 /** 753 * igb_write_ivar - configure ivar for given MSI-X vector 754 * @hw: pointer to the HW structure 755 * @msix_vector: vector number we are allocating to a given ring 756 * @index: row index of IVAR register to write within IVAR table 757 * @offset: column offset of in IVAR, should be multiple of 8 758 * 759 * This function is intended to handle the writing of the IVAR register 760 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 761 * each containing an cause allocation for an Rx and Tx ring, and a 762 * variable number of rows depending on the number of queues supported. 763 **/ 764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 765 int index, int offset) 766 { 767 u32 ivar = array_rd32(E1000_IVAR0, index); 768 769 /* clear any bits that are currently set */ 770 ivar &= ~((u32)0xFF << offset); 771 772 /* write vector and valid bit */ 773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 774 775 array_wr32(E1000_IVAR0, index, ivar); 776 } 777 778 #define IGB_N0_QUEUE -1 779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 780 { 781 struct igb_adapter *adapter = q_vector->adapter; 782 struct e1000_hw *hw = &adapter->hw; 783 int rx_queue = IGB_N0_QUEUE; 784 int tx_queue = IGB_N0_QUEUE; 785 u32 msixbm = 0; 786 787 if (q_vector->rx.ring) 788 rx_queue = q_vector->rx.ring->reg_idx; 789 if (q_vector->tx.ring) 790 tx_queue = q_vector->tx.ring->reg_idx; 791 792 switch (hw->mac.type) { 793 case e1000_82575: 794 /* The 82575 assigns vectors using a bitmask, which matches the 795 * bitmask for the EICR/EIMS/EIMC registers. To assign one 796 * or more queues to a vector, we write the appropriate bits 797 * into the MSIXBM register for that vector. 798 */ 799 if (rx_queue > IGB_N0_QUEUE) 800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 801 if (tx_queue > IGB_N0_QUEUE) 802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 803 if (!adapter->msix_entries && msix_vector == 0) 804 msixbm |= E1000_EIMS_OTHER; 805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 806 q_vector->eims_value = msixbm; 807 break; 808 case e1000_82576: 809 /* 82576 uses a table that essentially consists of 2 columns 810 * with 8 rows. The ordering is column-major so we use the 811 * lower 3 bits as the row index, and the 4th bit as the 812 * column offset. 813 */ 814 if (rx_queue > IGB_N0_QUEUE) 815 igb_write_ivar(hw, msix_vector, 816 rx_queue & 0x7, 817 (rx_queue & 0x8) << 1); 818 if (tx_queue > IGB_N0_QUEUE) 819 igb_write_ivar(hw, msix_vector, 820 tx_queue & 0x7, 821 ((tx_queue & 0x8) << 1) + 8); 822 q_vector->eims_value = 1 << msix_vector; 823 break; 824 case e1000_82580: 825 case e1000_i350: 826 case e1000_i354: 827 case e1000_i210: 828 case e1000_i211: 829 /* On 82580 and newer adapters the scheme is similar to 82576 830 * however instead of ordering column-major we have things 831 * ordered row-major. So we traverse the table by using 832 * bit 0 as the column offset, and the remaining bits as the 833 * row index. 834 */ 835 if (rx_queue > IGB_N0_QUEUE) 836 igb_write_ivar(hw, msix_vector, 837 rx_queue >> 1, 838 (rx_queue & 0x1) << 4); 839 if (tx_queue > IGB_N0_QUEUE) 840 igb_write_ivar(hw, msix_vector, 841 tx_queue >> 1, 842 ((tx_queue & 0x1) << 4) + 8); 843 q_vector->eims_value = 1 << msix_vector; 844 break; 845 default: 846 BUG(); 847 break; 848 } 849 850 /* add q_vector eims value to global eims_enable_mask */ 851 adapter->eims_enable_mask |= q_vector->eims_value; 852 853 /* configure q_vector to set itr on first interrupt */ 854 q_vector->set_itr = 1; 855 } 856 857 /** 858 * igb_configure_msix - Configure MSI-X hardware 859 * @adapter: board private structure to initialize 860 * 861 * igb_configure_msix sets up the hardware to properly 862 * generate MSI-X interrupts. 863 **/ 864 static void igb_configure_msix(struct igb_adapter *adapter) 865 { 866 u32 tmp; 867 int i, vector = 0; 868 struct e1000_hw *hw = &adapter->hw; 869 870 adapter->eims_enable_mask = 0; 871 872 /* set vector for other causes, i.e. link changes */ 873 switch (hw->mac.type) { 874 case e1000_82575: 875 tmp = rd32(E1000_CTRL_EXT); 876 /* enable MSI-X PBA support*/ 877 tmp |= E1000_CTRL_EXT_PBA_CLR; 878 879 /* Auto-Mask interrupts upon ICR read. */ 880 tmp |= E1000_CTRL_EXT_EIAME; 881 tmp |= E1000_CTRL_EXT_IRCA; 882 883 wr32(E1000_CTRL_EXT, tmp); 884 885 /* enable msix_other interrupt */ 886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 887 adapter->eims_other = E1000_EIMS_OTHER; 888 889 break; 890 891 case e1000_82576: 892 case e1000_82580: 893 case e1000_i350: 894 case e1000_i354: 895 case e1000_i210: 896 case e1000_i211: 897 /* Turn on MSI-X capability first, or our settings 898 * won't stick. And it will take days to debug. 899 */ 900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 901 E1000_GPIE_PBA | E1000_GPIE_EIAME | 902 E1000_GPIE_NSICR); 903 904 /* enable msix_other interrupt */ 905 adapter->eims_other = 1 << vector; 906 tmp = (vector++ | E1000_IVAR_VALID) << 8; 907 908 wr32(E1000_IVAR_MISC, tmp); 909 break; 910 default: 911 /* do nothing, since nothing else supports MSI-X */ 912 break; 913 } /* switch (hw->mac.type) */ 914 915 adapter->eims_enable_mask |= adapter->eims_other; 916 917 for (i = 0; i < adapter->num_q_vectors; i++) 918 igb_assign_vector(adapter->q_vector[i], vector++); 919 920 wrfl(); 921 } 922 923 /** 924 * igb_request_msix - Initialize MSI-X interrupts 925 * @adapter: board private structure to initialize 926 * 927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 928 * kernel. 929 **/ 930 static int igb_request_msix(struct igb_adapter *adapter) 931 { 932 struct net_device *netdev = adapter->netdev; 933 struct e1000_hw *hw = &adapter->hw; 934 int i, err = 0, vector = 0, free_vector = 0; 935 936 err = request_irq(adapter->msix_entries[vector].vector, 937 igb_msix_other, 0, netdev->name, adapter); 938 if (err) 939 goto err_out; 940 941 for (i = 0; i < adapter->num_q_vectors; i++) { 942 struct igb_q_vector *q_vector = adapter->q_vector[i]; 943 944 vector++; 945 946 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); 947 948 if (q_vector->rx.ring && q_vector->tx.ring) 949 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 950 q_vector->rx.ring->queue_index); 951 else if (q_vector->tx.ring) 952 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 953 q_vector->tx.ring->queue_index); 954 else if (q_vector->rx.ring) 955 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 956 q_vector->rx.ring->queue_index); 957 else 958 sprintf(q_vector->name, "%s-unused", netdev->name); 959 960 err = request_irq(adapter->msix_entries[vector].vector, 961 igb_msix_ring, 0, q_vector->name, 962 q_vector); 963 if (err) 964 goto err_free; 965 } 966 967 igb_configure_msix(adapter); 968 return 0; 969 970 err_free: 971 /* free already assigned IRQs */ 972 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 973 974 vector--; 975 for (i = 0; i < vector; i++) { 976 free_irq(adapter->msix_entries[free_vector++].vector, 977 adapter->q_vector[i]); 978 } 979 err_out: 980 return err; 981 } 982 983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 984 { 985 if (adapter->msix_entries) { 986 pci_disable_msix(adapter->pdev); 987 kfree(adapter->msix_entries); 988 adapter->msix_entries = NULL; 989 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 990 pci_disable_msi(adapter->pdev); 991 } 992 } 993 994 /** 995 * igb_free_q_vector - Free memory allocated for specific interrupt vector 996 * @adapter: board private structure to initialize 997 * @v_idx: Index of vector to be freed 998 * 999 * This function frees the memory allocated to the q_vector. In addition if 1000 * NAPI is enabled it will delete any references to the NAPI struct prior 1001 * to freeing the q_vector. 1002 **/ 1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 1004 { 1005 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1006 1007 if (q_vector->tx.ring) 1008 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1009 1010 if (q_vector->rx.ring) 1011 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; 1012 1013 adapter->q_vector[v_idx] = NULL; 1014 netif_napi_del(&q_vector->napi); 1015 1016 /* ixgbe_get_stats64() might access the rings on this vector, 1017 * we must wait a grace period before freeing it. 1018 */ 1019 kfree_rcu(q_vector, rcu); 1020 } 1021 1022 /** 1023 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1024 * @adapter: board private structure to initialize 1025 * 1026 * This function frees the memory allocated to the q_vectors. In addition if 1027 * NAPI is enabled it will delete any references to the NAPI struct prior 1028 * to freeing the q_vector. 1029 **/ 1030 static void igb_free_q_vectors(struct igb_adapter *adapter) 1031 { 1032 int v_idx = adapter->num_q_vectors; 1033 1034 adapter->num_tx_queues = 0; 1035 adapter->num_rx_queues = 0; 1036 adapter->num_q_vectors = 0; 1037 1038 while (v_idx--) 1039 igb_free_q_vector(adapter, v_idx); 1040 } 1041 1042 /** 1043 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1044 * @adapter: board private structure to initialize 1045 * 1046 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1047 * MSI-X interrupts allocated. 1048 */ 1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1050 { 1051 igb_free_q_vectors(adapter); 1052 igb_reset_interrupt_capability(adapter); 1053 } 1054 1055 /** 1056 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1057 * @adapter: board private structure to initialize 1058 * @msix: boolean value of MSIX capability 1059 * 1060 * Attempt to configure interrupts using the best available 1061 * capabilities of the hardware and kernel. 1062 **/ 1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1064 { 1065 int err; 1066 int numvecs, i; 1067 1068 if (!msix) 1069 goto msi_only; 1070 1071 /* Number of supported queues. */ 1072 adapter->num_rx_queues = adapter->rss_queues; 1073 if (adapter->vfs_allocated_count) 1074 adapter->num_tx_queues = 1; 1075 else 1076 adapter->num_tx_queues = adapter->rss_queues; 1077 1078 /* start with one vector for every Rx queue */ 1079 numvecs = adapter->num_rx_queues; 1080 1081 /* if Tx handler is separate add 1 for every Tx queue */ 1082 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1083 numvecs += adapter->num_tx_queues; 1084 1085 /* store the number of vectors reserved for queues */ 1086 adapter->num_q_vectors = numvecs; 1087 1088 /* add 1 vector for link status interrupts */ 1089 numvecs++; 1090 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 1091 GFP_KERNEL); 1092 1093 if (!adapter->msix_entries) 1094 goto msi_only; 1095 1096 for (i = 0; i < numvecs; i++) 1097 adapter->msix_entries[i].entry = i; 1098 1099 err = pci_enable_msix(adapter->pdev, 1100 adapter->msix_entries, 1101 numvecs); 1102 if (err == 0) 1103 return; 1104 1105 igb_reset_interrupt_capability(adapter); 1106 1107 /* If we can't do MSI-X, try MSI */ 1108 msi_only: 1109 #ifdef CONFIG_PCI_IOV 1110 /* disable SR-IOV for non MSI-X configurations */ 1111 if (adapter->vf_data) { 1112 struct e1000_hw *hw = &adapter->hw; 1113 /* disable iov and allow time for transactions to clear */ 1114 pci_disable_sriov(adapter->pdev); 1115 msleep(500); 1116 1117 kfree(adapter->vf_data); 1118 adapter->vf_data = NULL; 1119 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1120 wrfl(); 1121 msleep(100); 1122 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1123 } 1124 #endif 1125 adapter->vfs_allocated_count = 0; 1126 adapter->rss_queues = 1; 1127 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1128 adapter->num_rx_queues = 1; 1129 adapter->num_tx_queues = 1; 1130 adapter->num_q_vectors = 1; 1131 if (!pci_enable_msi(adapter->pdev)) 1132 adapter->flags |= IGB_FLAG_HAS_MSI; 1133 } 1134 1135 static void igb_add_ring(struct igb_ring *ring, 1136 struct igb_ring_container *head) 1137 { 1138 head->ring = ring; 1139 head->count++; 1140 } 1141 1142 /** 1143 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1144 * @adapter: board private structure to initialize 1145 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1146 * @v_idx: index of vector in adapter struct 1147 * @txr_count: total number of Tx rings to allocate 1148 * @txr_idx: index of first Tx ring to allocate 1149 * @rxr_count: total number of Rx rings to allocate 1150 * @rxr_idx: index of first Rx ring to allocate 1151 * 1152 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1153 **/ 1154 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1155 int v_count, int v_idx, 1156 int txr_count, int txr_idx, 1157 int rxr_count, int rxr_idx) 1158 { 1159 struct igb_q_vector *q_vector; 1160 struct igb_ring *ring; 1161 int ring_count, size; 1162 1163 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1164 if (txr_count > 1 || rxr_count > 1) 1165 return -ENOMEM; 1166 1167 ring_count = txr_count + rxr_count; 1168 size = sizeof(struct igb_q_vector) + 1169 (sizeof(struct igb_ring) * ring_count); 1170 1171 /* allocate q_vector and rings */ 1172 q_vector = kzalloc(size, GFP_KERNEL); 1173 if (!q_vector) 1174 return -ENOMEM; 1175 1176 /* initialize NAPI */ 1177 netif_napi_add(adapter->netdev, &q_vector->napi, 1178 igb_poll, 64); 1179 1180 /* tie q_vector and adapter together */ 1181 adapter->q_vector[v_idx] = q_vector; 1182 q_vector->adapter = adapter; 1183 1184 /* initialize work limits */ 1185 q_vector->tx.work_limit = adapter->tx_work_limit; 1186 1187 /* initialize ITR configuration */ 1188 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); 1189 q_vector->itr_val = IGB_START_ITR; 1190 1191 /* initialize pointer to rings */ 1192 ring = q_vector->ring; 1193 1194 /* intialize ITR */ 1195 if (rxr_count) { 1196 /* rx or rx/tx vector */ 1197 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1198 q_vector->itr_val = adapter->rx_itr_setting; 1199 } else { 1200 /* tx only vector */ 1201 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1202 q_vector->itr_val = adapter->tx_itr_setting; 1203 } 1204 1205 if (txr_count) { 1206 /* assign generic ring traits */ 1207 ring->dev = &adapter->pdev->dev; 1208 ring->netdev = adapter->netdev; 1209 1210 /* configure backlink on ring */ 1211 ring->q_vector = q_vector; 1212 1213 /* update q_vector Tx values */ 1214 igb_add_ring(ring, &q_vector->tx); 1215 1216 /* For 82575, context index must be unique per ring. */ 1217 if (adapter->hw.mac.type == e1000_82575) 1218 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1219 1220 /* apply Tx specific ring traits */ 1221 ring->count = adapter->tx_ring_count; 1222 ring->queue_index = txr_idx; 1223 1224 /* assign ring to adapter */ 1225 adapter->tx_ring[txr_idx] = ring; 1226 1227 /* push pointer to next ring */ 1228 ring++; 1229 } 1230 1231 if (rxr_count) { 1232 /* assign generic ring traits */ 1233 ring->dev = &adapter->pdev->dev; 1234 ring->netdev = adapter->netdev; 1235 1236 /* configure backlink on ring */ 1237 ring->q_vector = q_vector; 1238 1239 /* update q_vector Rx values */ 1240 igb_add_ring(ring, &q_vector->rx); 1241 1242 /* set flag indicating ring supports SCTP checksum offload */ 1243 if (adapter->hw.mac.type >= e1000_82576) 1244 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1245 1246 /* 1247 * On i350, i354, i210, and i211, loopback VLAN packets 1248 * have the tag byte-swapped. 1249 */ 1250 if (adapter->hw.mac.type >= e1000_i350) 1251 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1252 1253 /* apply Rx specific ring traits */ 1254 ring->count = adapter->rx_ring_count; 1255 ring->queue_index = rxr_idx; 1256 1257 /* assign ring to adapter */ 1258 adapter->rx_ring[rxr_idx] = ring; 1259 } 1260 1261 return 0; 1262 } 1263 1264 1265 /** 1266 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1267 * @adapter: board private structure to initialize 1268 * 1269 * We allocate one q_vector per queue interrupt. If allocation fails we 1270 * return -ENOMEM. 1271 **/ 1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1273 { 1274 int q_vectors = adapter->num_q_vectors; 1275 int rxr_remaining = adapter->num_rx_queues; 1276 int txr_remaining = adapter->num_tx_queues; 1277 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1278 int err; 1279 1280 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1281 for (; rxr_remaining; v_idx++) { 1282 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1283 0, 0, 1, rxr_idx); 1284 1285 if (err) 1286 goto err_out; 1287 1288 /* update counts and index */ 1289 rxr_remaining--; 1290 rxr_idx++; 1291 } 1292 } 1293 1294 for (; v_idx < q_vectors; v_idx++) { 1295 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1296 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1297 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1298 tqpv, txr_idx, rqpv, rxr_idx); 1299 1300 if (err) 1301 goto err_out; 1302 1303 /* update counts and index */ 1304 rxr_remaining -= rqpv; 1305 txr_remaining -= tqpv; 1306 rxr_idx++; 1307 txr_idx++; 1308 } 1309 1310 return 0; 1311 1312 err_out: 1313 adapter->num_tx_queues = 0; 1314 adapter->num_rx_queues = 0; 1315 adapter->num_q_vectors = 0; 1316 1317 while (v_idx--) 1318 igb_free_q_vector(adapter, v_idx); 1319 1320 return -ENOMEM; 1321 } 1322 1323 /** 1324 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1325 * @adapter: board private structure to initialize 1326 * @msix: boolean value of MSIX capability 1327 * 1328 * This function initializes the interrupts and allocates all of the queues. 1329 **/ 1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1331 { 1332 struct pci_dev *pdev = adapter->pdev; 1333 int err; 1334 1335 igb_set_interrupt_capability(adapter, msix); 1336 1337 err = igb_alloc_q_vectors(adapter); 1338 if (err) { 1339 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1340 goto err_alloc_q_vectors; 1341 } 1342 1343 igb_cache_ring_register(adapter); 1344 1345 return 0; 1346 1347 err_alloc_q_vectors: 1348 igb_reset_interrupt_capability(adapter); 1349 return err; 1350 } 1351 1352 /** 1353 * igb_request_irq - initialize interrupts 1354 * @adapter: board private structure to initialize 1355 * 1356 * Attempts to configure interrupts using the best available 1357 * capabilities of the hardware and kernel. 1358 **/ 1359 static int igb_request_irq(struct igb_adapter *adapter) 1360 { 1361 struct net_device *netdev = adapter->netdev; 1362 struct pci_dev *pdev = adapter->pdev; 1363 int err = 0; 1364 1365 if (adapter->msix_entries) { 1366 err = igb_request_msix(adapter); 1367 if (!err) 1368 goto request_done; 1369 /* fall back to MSI */ 1370 igb_free_all_tx_resources(adapter); 1371 igb_free_all_rx_resources(adapter); 1372 1373 igb_clear_interrupt_scheme(adapter); 1374 err = igb_init_interrupt_scheme(adapter, false); 1375 if (err) 1376 goto request_done; 1377 1378 igb_setup_all_tx_resources(adapter); 1379 igb_setup_all_rx_resources(adapter); 1380 igb_configure(adapter); 1381 } 1382 1383 igb_assign_vector(adapter->q_vector[0], 0); 1384 1385 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1386 err = request_irq(pdev->irq, igb_intr_msi, 0, 1387 netdev->name, adapter); 1388 if (!err) 1389 goto request_done; 1390 1391 /* fall back to legacy interrupts */ 1392 igb_reset_interrupt_capability(adapter); 1393 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1394 } 1395 1396 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1397 netdev->name, adapter); 1398 1399 if (err) 1400 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1401 err); 1402 1403 request_done: 1404 return err; 1405 } 1406 1407 static void igb_free_irq(struct igb_adapter *adapter) 1408 { 1409 if (adapter->msix_entries) { 1410 int vector = 0, i; 1411 1412 free_irq(adapter->msix_entries[vector++].vector, adapter); 1413 1414 for (i = 0; i < adapter->num_q_vectors; i++) 1415 free_irq(adapter->msix_entries[vector++].vector, 1416 adapter->q_vector[i]); 1417 } else { 1418 free_irq(adapter->pdev->irq, adapter); 1419 } 1420 } 1421 1422 /** 1423 * igb_irq_disable - Mask off interrupt generation on the NIC 1424 * @adapter: board private structure 1425 **/ 1426 static void igb_irq_disable(struct igb_adapter *adapter) 1427 { 1428 struct e1000_hw *hw = &adapter->hw; 1429 1430 /* we need to be careful when disabling interrupts. The VFs are also 1431 * mapped into these registers and so clearing the bits can cause 1432 * issues on the VF drivers so we only need to clear what we set 1433 */ 1434 if (adapter->msix_entries) { 1435 u32 regval = rd32(E1000_EIAM); 1436 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1437 wr32(E1000_EIMC, adapter->eims_enable_mask); 1438 regval = rd32(E1000_EIAC); 1439 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1440 } 1441 1442 wr32(E1000_IAM, 0); 1443 wr32(E1000_IMC, ~0); 1444 wrfl(); 1445 if (adapter->msix_entries) { 1446 int i; 1447 for (i = 0; i < adapter->num_q_vectors; i++) 1448 synchronize_irq(adapter->msix_entries[i].vector); 1449 } else { 1450 synchronize_irq(adapter->pdev->irq); 1451 } 1452 } 1453 1454 /** 1455 * igb_irq_enable - Enable default interrupt generation settings 1456 * @adapter: board private structure 1457 **/ 1458 static void igb_irq_enable(struct igb_adapter *adapter) 1459 { 1460 struct e1000_hw *hw = &adapter->hw; 1461 1462 if (adapter->msix_entries) { 1463 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1464 u32 regval = rd32(E1000_EIAC); 1465 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1466 regval = rd32(E1000_EIAM); 1467 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1468 wr32(E1000_EIMS, adapter->eims_enable_mask); 1469 if (adapter->vfs_allocated_count) { 1470 wr32(E1000_MBVFIMR, 0xFF); 1471 ims |= E1000_IMS_VMMB; 1472 } 1473 wr32(E1000_IMS, ims); 1474 } else { 1475 wr32(E1000_IMS, IMS_ENABLE_MASK | 1476 E1000_IMS_DRSTA); 1477 wr32(E1000_IAM, IMS_ENABLE_MASK | 1478 E1000_IMS_DRSTA); 1479 } 1480 } 1481 1482 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1483 { 1484 struct e1000_hw *hw = &adapter->hw; 1485 u16 vid = adapter->hw.mng_cookie.vlan_id; 1486 u16 old_vid = adapter->mng_vlan_id; 1487 1488 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1489 /* add VID to filter table */ 1490 igb_vfta_set(hw, vid, true); 1491 adapter->mng_vlan_id = vid; 1492 } else { 1493 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1494 } 1495 1496 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1497 (vid != old_vid) && 1498 !test_bit(old_vid, adapter->active_vlans)) { 1499 /* remove VID from filter table */ 1500 igb_vfta_set(hw, old_vid, false); 1501 } 1502 } 1503 1504 /** 1505 * igb_release_hw_control - release control of the h/w to f/w 1506 * @adapter: address of board private structure 1507 * 1508 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1509 * For ASF and Pass Through versions of f/w this means that the 1510 * driver is no longer loaded. 1511 **/ 1512 static void igb_release_hw_control(struct igb_adapter *adapter) 1513 { 1514 struct e1000_hw *hw = &adapter->hw; 1515 u32 ctrl_ext; 1516 1517 /* Let firmware take over control of h/w */ 1518 ctrl_ext = rd32(E1000_CTRL_EXT); 1519 wr32(E1000_CTRL_EXT, 1520 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1521 } 1522 1523 /** 1524 * igb_get_hw_control - get control of the h/w from f/w 1525 * @adapter: address of board private structure 1526 * 1527 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1528 * For ASF and Pass Through versions of f/w this means that 1529 * the driver is loaded. 1530 **/ 1531 static void igb_get_hw_control(struct igb_adapter *adapter) 1532 { 1533 struct e1000_hw *hw = &adapter->hw; 1534 u32 ctrl_ext; 1535 1536 /* Let firmware know the driver has taken over */ 1537 ctrl_ext = rd32(E1000_CTRL_EXT); 1538 wr32(E1000_CTRL_EXT, 1539 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1540 } 1541 1542 /** 1543 * igb_configure - configure the hardware for RX and TX 1544 * @adapter: private board structure 1545 **/ 1546 static void igb_configure(struct igb_adapter *adapter) 1547 { 1548 struct net_device *netdev = adapter->netdev; 1549 int i; 1550 1551 igb_get_hw_control(adapter); 1552 igb_set_rx_mode(netdev); 1553 1554 igb_restore_vlan(adapter); 1555 1556 igb_setup_tctl(adapter); 1557 igb_setup_mrqc(adapter); 1558 igb_setup_rctl(adapter); 1559 1560 igb_configure_tx(adapter); 1561 igb_configure_rx(adapter); 1562 1563 igb_rx_fifo_flush_82575(&adapter->hw); 1564 1565 /* call igb_desc_unused which always leaves 1566 * at least 1 descriptor unused to make sure 1567 * next_to_use != next_to_clean 1568 */ 1569 for (i = 0; i < adapter->num_rx_queues; i++) { 1570 struct igb_ring *ring = adapter->rx_ring[i]; 1571 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 1572 } 1573 } 1574 1575 /** 1576 * igb_power_up_link - Power up the phy/serdes link 1577 * @adapter: address of board private structure 1578 **/ 1579 void igb_power_up_link(struct igb_adapter *adapter) 1580 { 1581 igb_reset_phy(&adapter->hw); 1582 1583 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1584 igb_power_up_phy_copper(&adapter->hw); 1585 else 1586 igb_power_up_serdes_link_82575(&adapter->hw); 1587 } 1588 1589 /** 1590 * igb_power_down_link - Power down the phy/serdes link 1591 * @adapter: address of board private structure 1592 */ 1593 static void igb_power_down_link(struct igb_adapter *adapter) 1594 { 1595 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1596 igb_power_down_phy_copper_82575(&adapter->hw); 1597 else 1598 igb_shutdown_serdes_link_82575(&adapter->hw); 1599 } 1600 1601 /** 1602 * igb_up - Open the interface and prepare it to handle traffic 1603 * @adapter: board private structure 1604 **/ 1605 int igb_up(struct igb_adapter *adapter) 1606 { 1607 struct e1000_hw *hw = &adapter->hw; 1608 int i; 1609 1610 /* hardware has been reset, we need to reload some things */ 1611 igb_configure(adapter); 1612 1613 clear_bit(__IGB_DOWN, &adapter->state); 1614 1615 for (i = 0; i < adapter->num_q_vectors; i++) 1616 napi_enable(&(adapter->q_vector[i]->napi)); 1617 1618 if (adapter->msix_entries) 1619 igb_configure_msix(adapter); 1620 else 1621 igb_assign_vector(adapter->q_vector[0], 0); 1622 1623 /* Clear any pending interrupts. */ 1624 rd32(E1000_ICR); 1625 igb_irq_enable(adapter); 1626 1627 /* notify VFs that reset has been completed */ 1628 if (adapter->vfs_allocated_count) { 1629 u32 reg_data = rd32(E1000_CTRL_EXT); 1630 reg_data |= E1000_CTRL_EXT_PFRSTD; 1631 wr32(E1000_CTRL_EXT, reg_data); 1632 } 1633 1634 netif_tx_start_all_queues(adapter->netdev); 1635 1636 /* start the watchdog. */ 1637 hw->mac.get_link_status = 1; 1638 schedule_work(&adapter->watchdog_task); 1639 1640 return 0; 1641 } 1642 1643 void igb_down(struct igb_adapter *adapter) 1644 { 1645 struct net_device *netdev = adapter->netdev; 1646 struct e1000_hw *hw = &adapter->hw; 1647 u32 tctl, rctl; 1648 int i; 1649 1650 /* signal that we're down so the interrupt handler does not 1651 * reschedule our watchdog timer 1652 */ 1653 set_bit(__IGB_DOWN, &adapter->state); 1654 1655 /* disable receives in the hardware */ 1656 rctl = rd32(E1000_RCTL); 1657 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 1658 /* flush and sleep below */ 1659 1660 netif_tx_stop_all_queues(netdev); 1661 1662 /* disable transmits in the hardware */ 1663 tctl = rd32(E1000_TCTL); 1664 tctl &= ~E1000_TCTL_EN; 1665 wr32(E1000_TCTL, tctl); 1666 /* flush both disables and wait for them to finish */ 1667 wrfl(); 1668 msleep(10); 1669 1670 for (i = 0; i < adapter->num_q_vectors; i++) 1671 napi_disable(&(adapter->q_vector[i]->napi)); 1672 1673 igb_irq_disable(adapter); 1674 1675 del_timer_sync(&adapter->watchdog_timer); 1676 del_timer_sync(&adapter->phy_info_timer); 1677 1678 netif_carrier_off(netdev); 1679 1680 /* record the stats before reset*/ 1681 spin_lock(&adapter->stats64_lock); 1682 igb_update_stats(adapter, &adapter->stats64); 1683 spin_unlock(&adapter->stats64_lock); 1684 1685 adapter->link_speed = 0; 1686 adapter->link_duplex = 0; 1687 1688 if (!pci_channel_offline(adapter->pdev)) 1689 igb_reset(adapter); 1690 igb_clean_all_tx_rings(adapter); 1691 igb_clean_all_rx_rings(adapter); 1692 #ifdef CONFIG_IGB_DCA 1693 1694 /* since we reset the hardware DCA settings were cleared */ 1695 igb_setup_dca(adapter); 1696 #endif 1697 } 1698 1699 void igb_reinit_locked(struct igb_adapter *adapter) 1700 { 1701 WARN_ON(in_interrupt()); 1702 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 1703 msleep(1); 1704 igb_down(adapter); 1705 igb_up(adapter); 1706 clear_bit(__IGB_RESETTING, &adapter->state); 1707 } 1708 1709 void igb_reset(struct igb_adapter *adapter) 1710 { 1711 struct pci_dev *pdev = adapter->pdev; 1712 struct e1000_hw *hw = &adapter->hw; 1713 struct e1000_mac_info *mac = &hw->mac; 1714 struct e1000_fc_info *fc = &hw->fc; 1715 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; 1716 1717 /* Repartition Pba for greater than 9k mtu 1718 * To take effect CTRL.RST is required. 1719 */ 1720 switch (mac->type) { 1721 case e1000_i350: 1722 case e1000_i354: 1723 case e1000_82580: 1724 pba = rd32(E1000_RXPBS); 1725 pba = igb_rxpbs_adjust_82580(pba); 1726 break; 1727 case e1000_82576: 1728 pba = rd32(E1000_RXPBS); 1729 pba &= E1000_RXPBS_SIZE_MASK_82576; 1730 break; 1731 case e1000_82575: 1732 case e1000_i210: 1733 case e1000_i211: 1734 default: 1735 pba = E1000_PBA_34K; 1736 break; 1737 } 1738 1739 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && 1740 (mac->type < e1000_82576)) { 1741 /* adjust PBA for jumbo frames */ 1742 wr32(E1000_PBA, pba); 1743 1744 /* To maintain wire speed transmits, the Tx FIFO should be 1745 * large enough to accommodate two full transmit packets, 1746 * rounded up to the next 1KB and expressed in KB. Likewise, 1747 * the Rx FIFO should be large enough to accommodate at least 1748 * one full receive packet and is similarly rounded up and 1749 * expressed in KB. 1750 */ 1751 pba = rd32(E1000_PBA); 1752 /* upper 16 bits has Tx packet buffer allocation size in KB */ 1753 tx_space = pba >> 16; 1754 /* lower 16 bits has Rx packet buffer allocation size in KB */ 1755 pba &= 0xffff; 1756 /* the Tx fifo also stores 16 bytes of information about the Tx 1757 * but don't include ethernet FCS because hardware appends it 1758 */ 1759 min_tx_space = (adapter->max_frame_size + 1760 sizeof(union e1000_adv_tx_desc) - 1761 ETH_FCS_LEN) * 2; 1762 min_tx_space = ALIGN(min_tx_space, 1024); 1763 min_tx_space >>= 10; 1764 /* software strips receive CRC, so leave room for it */ 1765 min_rx_space = adapter->max_frame_size; 1766 min_rx_space = ALIGN(min_rx_space, 1024); 1767 min_rx_space >>= 10; 1768 1769 /* If current Tx allocation is less than the min Tx FIFO size, 1770 * and the min Tx FIFO size is less than the current Rx FIFO 1771 * allocation, take space away from current Rx allocation 1772 */ 1773 if (tx_space < min_tx_space && 1774 ((min_tx_space - tx_space) < pba)) { 1775 pba = pba - (min_tx_space - tx_space); 1776 1777 /* if short on Rx space, Rx wins and must trump Tx 1778 * adjustment 1779 */ 1780 if (pba < min_rx_space) 1781 pba = min_rx_space; 1782 } 1783 wr32(E1000_PBA, pba); 1784 } 1785 1786 /* flow control settings */ 1787 /* The high water mark must be low enough to fit one full frame 1788 * (or the size used for early receive) above it in the Rx FIFO. 1789 * Set it to the lower of: 1790 * - 90% of the Rx FIFO size, or 1791 * - the full Rx FIFO size minus one full frame 1792 */ 1793 hwm = min(((pba << 10) * 9 / 10), 1794 ((pba << 10) - 2 * adapter->max_frame_size)); 1795 1796 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 1797 fc->low_water = fc->high_water - 16; 1798 fc->pause_time = 0xFFFF; 1799 fc->send_xon = 1; 1800 fc->current_mode = fc->requested_mode; 1801 1802 /* disable receive for all VFs and wait one second */ 1803 if (adapter->vfs_allocated_count) { 1804 int i; 1805 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 1806 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 1807 1808 /* ping all the active vfs to let them know we are going down */ 1809 igb_ping_all_vfs(adapter); 1810 1811 /* disable transmits and receives */ 1812 wr32(E1000_VFRE, 0); 1813 wr32(E1000_VFTE, 0); 1814 } 1815 1816 /* Allow time for pending master requests to run */ 1817 hw->mac.ops.reset_hw(hw); 1818 wr32(E1000_WUC, 0); 1819 1820 if (hw->mac.ops.init_hw(hw)) 1821 dev_err(&pdev->dev, "Hardware Error\n"); 1822 1823 /* Flow control settings reset on hardware reset, so guarantee flow 1824 * control is off when forcing speed. 1825 */ 1826 if (!hw->mac.autoneg) 1827 igb_force_mac_fc(hw); 1828 1829 igb_init_dmac(adapter, pba); 1830 #ifdef CONFIG_IGB_HWMON 1831 /* Re-initialize the thermal sensor on i350 devices. */ 1832 if (!test_bit(__IGB_DOWN, &adapter->state)) { 1833 if (mac->type == e1000_i350 && hw->bus.func == 0) { 1834 /* If present, re-initialize the external thermal sensor 1835 * interface. 1836 */ 1837 if (adapter->ets) 1838 mac->ops.init_thermal_sensor_thresh(hw); 1839 } 1840 } 1841 #endif 1842 if (!netif_running(adapter->netdev)) 1843 igb_power_down_link(adapter); 1844 1845 igb_update_mng_vlan(adapter); 1846 1847 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 1848 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 1849 1850 /* Re-enable PTP, where applicable. */ 1851 igb_ptp_reset(adapter); 1852 1853 igb_get_phy_info(hw); 1854 } 1855 1856 static netdev_features_t igb_fix_features(struct net_device *netdev, 1857 netdev_features_t features) 1858 { 1859 /* Since there is no support for separate Rx/Tx vlan accel 1860 * enable/disable make sure Tx flag is always in same state as Rx. 1861 */ 1862 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1863 features |= NETIF_F_HW_VLAN_CTAG_TX; 1864 else 1865 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1866 1867 return features; 1868 } 1869 1870 static int igb_set_features(struct net_device *netdev, 1871 netdev_features_t features) 1872 { 1873 netdev_features_t changed = netdev->features ^ features; 1874 struct igb_adapter *adapter = netdev_priv(netdev); 1875 1876 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1877 igb_vlan_mode(netdev, features); 1878 1879 if (!(changed & NETIF_F_RXALL)) 1880 return 0; 1881 1882 netdev->features = features; 1883 1884 if (netif_running(netdev)) 1885 igb_reinit_locked(adapter); 1886 else 1887 igb_reset(adapter); 1888 1889 return 0; 1890 } 1891 1892 static const struct net_device_ops igb_netdev_ops = { 1893 .ndo_open = igb_open, 1894 .ndo_stop = igb_close, 1895 .ndo_start_xmit = igb_xmit_frame, 1896 .ndo_get_stats64 = igb_get_stats64, 1897 .ndo_set_rx_mode = igb_set_rx_mode, 1898 .ndo_set_mac_address = igb_set_mac, 1899 .ndo_change_mtu = igb_change_mtu, 1900 .ndo_do_ioctl = igb_ioctl, 1901 .ndo_tx_timeout = igb_tx_timeout, 1902 .ndo_validate_addr = eth_validate_addr, 1903 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 1904 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 1905 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 1906 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 1907 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, 1908 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 1909 .ndo_get_vf_config = igb_ndo_get_vf_config, 1910 #ifdef CONFIG_NET_POLL_CONTROLLER 1911 .ndo_poll_controller = igb_netpoll, 1912 #endif 1913 .ndo_fix_features = igb_fix_features, 1914 .ndo_set_features = igb_set_features, 1915 }; 1916 1917 /** 1918 * igb_set_fw_version - Configure version string for ethtool 1919 * @adapter: adapter struct 1920 **/ 1921 void igb_set_fw_version(struct igb_adapter *adapter) 1922 { 1923 struct e1000_hw *hw = &adapter->hw; 1924 struct e1000_fw_version fw; 1925 1926 igb_get_fw_version(hw, &fw); 1927 1928 switch (hw->mac.type) { 1929 case e1000_i211: 1930 snprintf(adapter->fw_version, sizeof(adapter->fw_version), 1931 "%2d.%2d-%d", 1932 fw.invm_major, fw.invm_minor, fw.invm_img_type); 1933 break; 1934 1935 default: 1936 /* if option is rom valid, display its version too */ 1937 if (fw.or_valid) { 1938 snprintf(adapter->fw_version, 1939 sizeof(adapter->fw_version), 1940 "%d.%d, 0x%08x, %d.%d.%d", 1941 fw.eep_major, fw.eep_minor, fw.etrack_id, 1942 fw.or_major, fw.or_build, fw.or_patch); 1943 /* no option rom */ 1944 } else { 1945 snprintf(adapter->fw_version, 1946 sizeof(adapter->fw_version), 1947 "%d.%d, 0x%08x", 1948 fw.eep_major, fw.eep_minor, fw.etrack_id); 1949 } 1950 break; 1951 } 1952 return; 1953 } 1954 1955 /** 1956 * igb_init_i2c - Init I2C interface 1957 * @adapter: pointer to adapter structure 1958 **/ 1959 static s32 igb_init_i2c(struct igb_adapter *adapter) 1960 { 1961 s32 status = E1000_SUCCESS; 1962 1963 /* I2C interface supported on i350 devices */ 1964 if (adapter->hw.mac.type != e1000_i350) 1965 return E1000_SUCCESS; 1966 1967 /* Initialize the i2c bus which is controlled by the registers. 1968 * This bus will use the i2c_algo_bit structue that implements 1969 * the protocol through toggling of the 4 bits in the register. 1970 */ 1971 adapter->i2c_adap.owner = THIS_MODULE; 1972 adapter->i2c_algo = igb_i2c_algo; 1973 adapter->i2c_algo.data = adapter; 1974 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 1975 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 1976 strlcpy(adapter->i2c_adap.name, "igb BB", 1977 sizeof(adapter->i2c_adap.name)); 1978 status = i2c_bit_add_bus(&adapter->i2c_adap); 1979 return status; 1980 } 1981 1982 /** 1983 * igb_probe - Device Initialization Routine 1984 * @pdev: PCI device information struct 1985 * @ent: entry in igb_pci_tbl 1986 * 1987 * Returns 0 on success, negative on failure 1988 * 1989 * igb_probe initializes an adapter identified by a pci_dev structure. 1990 * The OS initialization, configuring of the adapter private structure, 1991 * and a hardware reset occur. 1992 **/ 1993 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1994 { 1995 struct net_device *netdev; 1996 struct igb_adapter *adapter; 1997 struct e1000_hw *hw; 1998 u16 eeprom_data = 0; 1999 s32 ret_val; 2000 static int global_quad_port_a; /* global quad port a indication */ 2001 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 2002 unsigned long mmio_start, mmio_len; 2003 int err, pci_using_dac; 2004 u8 part_str[E1000_PBANUM_LENGTH]; 2005 2006 /* Catch broken hardware that put the wrong VF device ID in 2007 * the PCIe SR-IOV capability. 2008 */ 2009 if (pdev->is_virtfn) { 2010 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", 2011 pci_name(pdev), pdev->vendor, pdev->device); 2012 return -EINVAL; 2013 } 2014 2015 err = pci_enable_device_mem(pdev); 2016 if (err) 2017 return err; 2018 2019 pci_using_dac = 0; 2020 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 2021 if (!err) { 2022 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 2023 if (!err) 2024 pci_using_dac = 1; 2025 } else { 2026 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2027 if (err) { 2028 err = dma_set_coherent_mask(&pdev->dev, 2029 DMA_BIT_MASK(32)); 2030 if (err) { 2031 dev_err(&pdev->dev, 2032 "No usable DMA configuration, aborting\n"); 2033 goto err_dma; 2034 } 2035 } 2036 } 2037 2038 err = pci_request_selected_regions(pdev, pci_select_bars(pdev, 2039 IORESOURCE_MEM), 2040 igb_driver_name); 2041 if (err) 2042 goto err_pci_reg; 2043 2044 pci_enable_pcie_error_reporting(pdev); 2045 2046 pci_set_master(pdev); 2047 pci_save_state(pdev); 2048 2049 err = -ENOMEM; 2050 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 2051 IGB_MAX_TX_QUEUES); 2052 if (!netdev) 2053 goto err_alloc_etherdev; 2054 2055 SET_NETDEV_DEV(netdev, &pdev->dev); 2056 2057 pci_set_drvdata(pdev, netdev); 2058 adapter = netdev_priv(netdev); 2059 adapter->netdev = netdev; 2060 adapter->pdev = pdev; 2061 hw = &adapter->hw; 2062 hw->back = adapter; 2063 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2064 2065 mmio_start = pci_resource_start(pdev, 0); 2066 mmio_len = pci_resource_len(pdev, 0); 2067 2068 err = -EIO; 2069 hw->hw_addr = ioremap(mmio_start, mmio_len); 2070 if (!hw->hw_addr) 2071 goto err_ioremap; 2072 2073 netdev->netdev_ops = &igb_netdev_ops; 2074 igb_set_ethtool_ops(netdev); 2075 netdev->watchdog_timeo = 5 * HZ; 2076 2077 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2078 2079 netdev->mem_start = mmio_start; 2080 netdev->mem_end = mmio_start + mmio_len; 2081 2082 /* PCI config space info */ 2083 hw->vendor_id = pdev->vendor; 2084 hw->device_id = pdev->device; 2085 hw->revision_id = pdev->revision; 2086 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2087 hw->subsystem_device_id = pdev->subsystem_device; 2088 2089 /* Copy the default MAC, PHY and NVM function pointers */ 2090 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 2091 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 2092 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 2093 /* Initialize skew-specific constants */ 2094 err = ei->get_invariants(hw); 2095 if (err) 2096 goto err_sw_init; 2097 2098 /* setup the private structure */ 2099 err = igb_sw_init(adapter); 2100 if (err) 2101 goto err_sw_init; 2102 2103 igb_get_bus_info_pcie(hw); 2104 2105 hw->phy.autoneg_wait_to_complete = false; 2106 2107 /* Copper options */ 2108 if (hw->phy.media_type == e1000_media_type_copper) { 2109 hw->phy.mdix = AUTO_ALL_MODES; 2110 hw->phy.disable_polarity_correction = false; 2111 hw->phy.ms_type = e1000_ms_hw_default; 2112 } 2113 2114 if (igb_check_reset_block(hw)) 2115 dev_info(&pdev->dev, 2116 "PHY reset is blocked due to SOL/IDER session.\n"); 2117 2118 /* features is initialized to 0 in allocation, it might have bits 2119 * set by igb_sw_init so we should use an or instead of an 2120 * assignment. 2121 */ 2122 netdev->features |= NETIF_F_SG | 2123 NETIF_F_IP_CSUM | 2124 NETIF_F_IPV6_CSUM | 2125 NETIF_F_TSO | 2126 NETIF_F_TSO6 | 2127 NETIF_F_RXHASH | 2128 NETIF_F_RXCSUM | 2129 NETIF_F_HW_VLAN_CTAG_RX | 2130 NETIF_F_HW_VLAN_CTAG_TX; 2131 2132 /* copy netdev features into list of user selectable features */ 2133 netdev->hw_features |= netdev->features; 2134 netdev->hw_features |= NETIF_F_RXALL; 2135 2136 /* set this bit last since it cannot be part of hw_features */ 2137 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2138 2139 netdev->vlan_features |= NETIF_F_TSO | 2140 NETIF_F_TSO6 | 2141 NETIF_F_IP_CSUM | 2142 NETIF_F_IPV6_CSUM | 2143 NETIF_F_SG; 2144 2145 netdev->priv_flags |= IFF_SUPP_NOFCS; 2146 2147 if (pci_using_dac) { 2148 netdev->features |= NETIF_F_HIGHDMA; 2149 netdev->vlan_features |= NETIF_F_HIGHDMA; 2150 } 2151 2152 if (hw->mac.type >= e1000_82576) { 2153 netdev->hw_features |= NETIF_F_SCTP_CSUM; 2154 netdev->features |= NETIF_F_SCTP_CSUM; 2155 } 2156 2157 netdev->priv_flags |= IFF_UNICAST_FLT; 2158 2159 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 2160 2161 /* before reading the NVM, reset the controller to put the device in a 2162 * known good starting state 2163 */ 2164 hw->mac.ops.reset_hw(hw); 2165 2166 /* make sure the NVM is good , i211 parts have special NVM that 2167 * doesn't contain a checksum 2168 */ 2169 if (hw->mac.type != e1000_i211) { 2170 if (hw->nvm.ops.validate(hw) < 0) { 2171 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 2172 err = -EIO; 2173 goto err_eeprom; 2174 } 2175 } 2176 2177 /* copy the MAC address out of the NVM */ 2178 if (hw->mac.ops.read_mac_addr(hw)) 2179 dev_err(&pdev->dev, "NVM Read Error\n"); 2180 2181 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2182 2183 if (!is_valid_ether_addr(netdev->dev_addr)) { 2184 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2185 err = -EIO; 2186 goto err_eeprom; 2187 } 2188 2189 /* get firmware version for ethtool -i */ 2190 igb_set_fw_version(adapter); 2191 2192 setup_timer(&adapter->watchdog_timer, igb_watchdog, 2193 (unsigned long) adapter); 2194 setup_timer(&adapter->phy_info_timer, igb_update_phy_info, 2195 (unsigned long) adapter); 2196 2197 INIT_WORK(&adapter->reset_task, igb_reset_task); 2198 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 2199 2200 /* Initialize link properties that are user-changeable */ 2201 adapter->fc_autoneg = true; 2202 hw->mac.autoneg = true; 2203 hw->phy.autoneg_advertised = 0x2f; 2204 2205 hw->fc.requested_mode = e1000_fc_default; 2206 hw->fc.current_mode = e1000_fc_default; 2207 2208 igb_validate_mdi_setting(hw); 2209 2210 /* By default, support wake on port A */ 2211 if (hw->bus.func == 0) 2212 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2213 2214 /* Check the NVM for wake support on non-port A ports */ 2215 if (hw->mac.type >= e1000_82580) 2216 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2217 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2218 &eeprom_data); 2219 else if (hw->bus.func == 1) 2220 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 2221 2222 if (eeprom_data & IGB_EEPROM_APME) 2223 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2224 2225 /* now that we have the eeprom settings, apply the special cases where 2226 * the eeprom may be wrong or the board simply won't support wake on 2227 * lan on a particular port 2228 */ 2229 switch (pdev->device) { 2230 case E1000_DEV_ID_82575GB_QUAD_COPPER: 2231 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2232 break; 2233 case E1000_DEV_ID_82575EB_FIBER_SERDES: 2234 case E1000_DEV_ID_82576_FIBER: 2235 case E1000_DEV_ID_82576_SERDES: 2236 /* Wake events only supported on port A for dual fiber 2237 * regardless of eeprom setting 2238 */ 2239 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 2240 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2241 break; 2242 case E1000_DEV_ID_82576_QUAD_COPPER: 2243 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 2244 /* if quad port adapter, disable WoL on all but port A */ 2245 if (global_quad_port_a != 0) 2246 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2247 else 2248 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 2249 /* Reset for multiple quad port adapters */ 2250 if (++global_quad_port_a == 4) 2251 global_quad_port_a = 0; 2252 break; 2253 default: 2254 /* If the device can't wake, don't set software support */ 2255 if (!device_can_wakeup(&adapter->pdev->dev)) 2256 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2257 } 2258 2259 /* initialize the wol settings based on the eeprom settings */ 2260 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 2261 adapter->wol |= E1000_WUFC_MAG; 2262 2263 /* Some vendors want WoL disabled by default, but still supported */ 2264 if ((hw->mac.type == e1000_i350) && 2265 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 2266 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2267 adapter->wol = 0; 2268 } 2269 2270 device_set_wakeup_enable(&adapter->pdev->dev, 2271 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 2272 2273 /* reset the hardware with the new settings */ 2274 igb_reset(adapter); 2275 2276 /* Init the I2C interface */ 2277 err = igb_init_i2c(adapter); 2278 if (err) { 2279 dev_err(&pdev->dev, "failed to init i2c interface\n"); 2280 goto err_eeprom; 2281 } 2282 2283 /* let the f/w know that the h/w is now under the control of the 2284 * driver. */ 2285 igb_get_hw_control(adapter); 2286 2287 strcpy(netdev->name, "eth%d"); 2288 err = register_netdev(netdev); 2289 if (err) 2290 goto err_register; 2291 2292 /* carrier off reporting is important to ethtool even BEFORE open */ 2293 netif_carrier_off(netdev); 2294 2295 #ifdef CONFIG_IGB_DCA 2296 if (dca_add_requester(&pdev->dev) == 0) { 2297 adapter->flags |= IGB_FLAG_DCA_ENABLED; 2298 dev_info(&pdev->dev, "DCA enabled\n"); 2299 igb_setup_dca(adapter); 2300 } 2301 2302 #endif 2303 #ifdef CONFIG_IGB_HWMON 2304 /* Initialize the thermal sensor on i350 devices. */ 2305 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 2306 u16 ets_word; 2307 2308 /* Read the NVM to determine if this i350 device supports an 2309 * external thermal sensor. 2310 */ 2311 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 2312 if (ets_word != 0x0000 && ets_word != 0xFFFF) 2313 adapter->ets = true; 2314 else 2315 adapter->ets = false; 2316 if (igb_sysfs_init(adapter)) 2317 dev_err(&pdev->dev, 2318 "failed to allocate sysfs resources\n"); 2319 } else { 2320 adapter->ets = false; 2321 } 2322 #endif 2323 /* do hw tstamp init after resetting */ 2324 igb_ptp_init(adapter); 2325 2326 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 2327 /* print bus type/speed/width info, not applicable to i354 */ 2328 if (hw->mac.type != e1000_i354) { 2329 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 2330 netdev->name, 2331 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 2332 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 2333 "unknown"), 2334 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 2335 "Width x4" : 2336 (hw->bus.width == e1000_bus_width_pcie_x2) ? 2337 "Width x2" : 2338 (hw->bus.width == e1000_bus_width_pcie_x1) ? 2339 "Width x1" : "unknown"), netdev->dev_addr); 2340 } 2341 2342 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); 2343 if (ret_val) 2344 strcpy(part_str, "Unknown"); 2345 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 2346 dev_info(&pdev->dev, 2347 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 2348 adapter->msix_entries ? "MSI-X" : 2349 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 2350 adapter->num_rx_queues, adapter->num_tx_queues); 2351 switch (hw->mac.type) { 2352 case e1000_i350: 2353 case e1000_i210: 2354 case e1000_i211: 2355 igb_set_eee_i350(hw); 2356 break; 2357 case e1000_i354: 2358 if (hw->phy.media_type == e1000_media_type_copper) { 2359 if ((rd32(E1000_CTRL_EXT) & 2360 E1000_CTRL_EXT_LINK_MODE_SGMII)) 2361 igb_set_eee_i354(hw); 2362 } 2363 break; 2364 default: 2365 break; 2366 } 2367 2368 pm_runtime_put_noidle(&pdev->dev); 2369 return 0; 2370 2371 err_register: 2372 igb_release_hw_control(adapter); 2373 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 2374 err_eeprom: 2375 if (!igb_check_reset_block(hw)) 2376 igb_reset_phy(hw); 2377 2378 if (hw->flash_address) 2379 iounmap(hw->flash_address); 2380 err_sw_init: 2381 igb_clear_interrupt_scheme(adapter); 2382 iounmap(hw->hw_addr); 2383 err_ioremap: 2384 free_netdev(netdev); 2385 err_alloc_etherdev: 2386 pci_release_selected_regions(pdev, 2387 pci_select_bars(pdev, IORESOURCE_MEM)); 2388 err_pci_reg: 2389 err_dma: 2390 pci_disable_device(pdev); 2391 return err; 2392 } 2393 2394 #ifdef CONFIG_PCI_IOV 2395 static int igb_disable_sriov(struct pci_dev *pdev) 2396 { 2397 struct net_device *netdev = pci_get_drvdata(pdev); 2398 struct igb_adapter *adapter = netdev_priv(netdev); 2399 struct e1000_hw *hw = &adapter->hw; 2400 2401 /* reclaim resources allocated to VFs */ 2402 if (adapter->vf_data) { 2403 /* disable iov and allow time for transactions to clear */ 2404 if (pci_vfs_assigned(pdev)) { 2405 dev_warn(&pdev->dev, 2406 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 2407 return -EPERM; 2408 } else { 2409 pci_disable_sriov(pdev); 2410 msleep(500); 2411 } 2412 2413 kfree(adapter->vf_data); 2414 adapter->vf_data = NULL; 2415 adapter->vfs_allocated_count = 0; 2416 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 2417 wrfl(); 2418 msleep(100); 2419 dev_info(&pdev->dev, "IOV Disabled\n"); 2420 2421 /* Re-enable DMA Coalescing flag since IOV is turned off */ 2422 adapter->flags |= IGB_FLAG_DMAC; 2423 } 2424 2425 return 0; 2426 } 2427 2428 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 2429 { 2430 struct net_device *netdev = pci_get_drvdata(pdev); 2431 struct igb_adapter *adapter = netdev_priv(netdev); 2432 int old_vfs = pci_num_vf(pdev); 2433 int err = 0; 2434 int i; 2435 2436 if (!num_vfs) 2437 goto out; 2438 else if (old_vfs && old_vfs == num_vfs) 2439 goto out; 2440 else if (old_vfs && old_vfs != num_vfs) 2441 err = igb_disable_sriov(pdev); 2442 2443 if (err) 2444 goto out; 2445 2446 if (num_vfs > 7) { 2447 err = -EPERM; 2448 goto out; 2449 } 2450 2451 adapter->vfs_allocated_count = num_vfs; 2452 2453 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 2454 sizeof(struct vf_data_storage), GFP_KERNEL); 2455 2456 /* if allocation failed then we do not support SR-IOV */ 2457 if (!adapter->vf_data) { 2458 adapter->vfs_allocated_count = 0; 2459 dev_err(&pdev->dev, 2460 "Unable to allocate memory for VF Data Storage\n"); 2461 err = -ENOMEM; 2462 goto out; 2463 } 2464 2465 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 2466 if (err) 2467 goto err_out; 2468 2469 dev_info(&pdev->dev, "%d VFs allocated\n", 2470 adapter->vfs_allocated_count); 2471 for (i = 0; i < adapter->vfs_allocated_count; i++) 2472 igb_vf_configure(adapter, i); 2473 2474 /* DMA Coalescing is not supported in IOV mode. */ 2475 adapter->flags &= ~IGB_FLAG_DMAC; 2476 goto out; 2477 2478 err_out: 2479 kfree(adapter->vf_data); 2480 adapter->vf_data = NULL; 2481 adapter->vfs_allocated_count = 0; 2482 out: 2483 return err; 2484 } 2485 2486 #endif 2487 /** 2488 * igb_remove_i2c - Cleanup I2C interface 2489 * @adapter: pointer to adapter structure 2490 **/ 2491 static void igb_remove_i2c(struct igb_adapter *adapter) 2492 { 2493 /* free the adapter bus structure */ 2494 i2c_del_adapter(&adapter->i2c_adap); 2495 } 2496 2497 /** 2498 * igb_remove - Device Removal Routine 2499 * @pdev: PCI device information struct 2500 * 2501 * igb_remove is called by the PCI subsystem to alert the driver 2502 * that it should release a PCI device. The could be caused by a 2503 * Hot-Plug event, or because the driver is going to be removed from 2504 * memory. 2505 **/ 2506 static void igb_remove(struct pci_dev *pdev) 2507 { 2508 struct net_device *netdev = pci_get_drvdata(pdev); 2509 struct igb_adapter *adapter = netdev_priv(netdev); 2510 struct e1000_hw *hw = &adapter->hw; 2511 2512 pm_runtime_get_noresume(&pdev->dev); 2513 #ifdef CONFIG_IGB_HWMON 2514 igb_sysfs_exit(adapter); 2515 #endif 2516 igb_remove_i2c(adapter); 2517 igb_ptp_stop(adapter); 2518 /* The watchdog timer may be rescheduled, so explicitly 2519 * disable watchdog from being rescheduled. 2520 */ 2521 set_bit(__IGB_DOWN, &adapter->state); 2522 del_timer_sync(&adapter->watchdog_timer); 2523 del_timer_sync(&adapter->phy_info_timer); 2524 2525 cancel_work_sync(&adapter->reset_task); 2526 cancel_work_sync(&adapter->watchdog_task); 2527 2528 #ifdef CONFIG_IGB_DCA 2529 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 2530 dev_info(&pdev->dev, "DCA disabled\n"); 2531 dca_remove_requester(&pdev->dev); 2532 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 2533 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 2534 } 2535 #endif 2536 2537 /* Release control of h/w to f/w. If f/w is AMT enabled, this 2538 * would have already happened in close and is redundant. 2539 */ 2540 igb_release_hw_control(adapter); 2541 2542 unregister_netdev(netdev); 2543 2544 igb_clear_interrupt_scheme(adapter); 2545 2546 #ifdef CONFIG_PCI_IOV 2547 igb_disable_sriov(pdev); 2548 #endif 2549 2550 iounmap(hw->hw_addr); 2551 if (hw->flash_address) 2552 iounmap(hw->flash_address); 2553 pci_release_selected_regions(pdev, 2554 pci_select_bars(pdev, IORESOURCE_MEM)); 2555 2556 kfree(adapter->shadow_vfta); 2557 free_netdev(netdev); 2558 2559 pci_disable_pcie_error_reporting(pdev); 2560 2561 pci_disable_device(pdev); 2562 } 2563 2564 /** 2565 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 2566 * @adapter: board private structure to initialize 2567 * 2568 * This function initializes the vf specific data storage and then attempts to 2569 * allocate the VFs. The reason for ordering it this way is because it is much 2570 * mor expensive time wise to disable SR-IOV than it is to allocate and free 2571 * the memory for the VFs. 2572 **/ 2573 static void igb_probe_vfs(struct igb_adapter *adapter) 2574 { 2575 #ifdef CONFIG_PCI_IOV 2576 struct pci_dev *pdev = adapter->pdev; 2577 struct e1000_hw *hw = &adapter->hw; 2578 2579 /* Virtualization features not supported on i210 family. */ 2580 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 2581 return; 2582 2583 pci_sriov_set_totalvfs(pdev, 7); 2584 igb_enable_sriov(pdev, max_vfs); 2585 2586 #endif /* CONFIG_PCI_IOV */ 2587 } 2588 2589 static void igb_init_queue_configuration(struct igb_adapter *adapter) 2590 { 2591 struct e1000_hw *hw = &adapter->hw; 2592 u32 max_rss_queues; 2593 2594 /* Determine the maximum number of RSS queues supported. */ 2595 switch (hw->mac.type) { 2596 case e1000_i211: 2597 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 2598 break; 2599 case e1000_82575: 2600 case e1000_i210: 2601 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 2602 break; 2603 case e1000_i350: 2604 /* I350 cannot do RSS and SR-IOV at the same time */ 2605 if (!!adapter->vfs_allocated_count) { 2606 max_rss_queues = 1; 2607 break; 2608 } 2609 /* fall through */ 2610 case e1000_82576: 2611 if (!!adapter->vfs_allocated_count) { 2612 max_rss_queues = 2; 2613 break; 2614 } 2615 /* fall through */ 2616 case e1000_82580: 2617 case e1000_i354: 2618 default: 2619 max_rss_queues = IGB_MAX_RX_QUEUES; 2620 break; 2621 } 2622 2623 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 2624 2625 /* Determine if we need to pair queues. */ 2626 switch (hw->mac.type) { 2627 case e1000_82575: 2628 case e1000_i211: 2629 /* Device supports enough interrupts without queue pairing. */ 2630 break; 2631 case e1000_82576: 2632 /* If VFs are going to be allocated with RSS queues then we 2633 * should pair the queues in order to conserve interrupts due 2634 * to limited supply. 2635 */ 2636 if ((adapter->rss_queues > 1) && 2637 (adapter->vfs_allocated_count > 6)) 2638 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2639 /* fall through */ 2640 case e1000_82580: 2641 case e1000_i350: 2642 case e1000_i354: 2643 case e1000_i210: 2644 default: 2645 /* If rss_queues > half of max_rss_queues, pair the queues in 2646 * order to conserve interrupts due to limited supply. 2647 */ 2648 if (adapter->rss_queues > (max_rss_queues / 2)) 2649 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2650 break; 2651 } 2652 } 2653 2654 /** 2655 * igb_sw_init - Initialize general software structures (struct igb_adapter) 2656 * @adapter: board private structure to initialize 2657 * 2658 * igb_sw_init initializes the Adapter private data structure. 2659 * Fields are initialized based on PCI device information and 2660 * OS network device settings (MTU size). 2661 **/ 2662 static int igb_sw_init(struct igb_adapter *adapter) 2663 { 2664 struct e1000_hw *hw = &adapter->hw; 2665 struct net_device *netdev = adapter->netdev; 2666 struct pci_dev *pdev = adapter->pdev; 2667 2668 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 2669 2670 /* set default ring sizes */ 2671 adapter->tx_ring_count = IGB_DEFAULT_TXD; 2672 adapter->rx_ring_count = IGB_DEFAULT_RXD; 2673 2674 /* set default ITR values */ 2675 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 2676 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 2677 2678 /* set default work limits */ 2679 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 2680 2681 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 2682 VLAN_HLEN; 2683 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2684 2685 spin_lock_init(&adapter->stats64_lock); 2686 #ifdef CONFIG_PCI_IOV 2687 switch (hw->mac.type) { 2688 case e1000_82576: 2689 case e1000_i350: 2690 if (max_vfs > 7) { 2691 dev_warn(&pdev->dev, 2692 "Maximum of 7 VFs per PF, using max\n"); 2693 max_vfs = adapter->vfs_allocated_count = 7; 2694 } else 2695 adapter->vfs_allocated_count = max_vfs; 2696 if (adapter->vfs_allocated_count) 2697 dev_warn(&pdev->dev, 2698 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 2699 break; 2700 default: 2701 break; 2702 } 2703 #endif /* CONFIG_PCI_IOV */ 2704 2705 igb_init_queue_configuration(adapter); 2706 2707 /* Setup and initialize a copy of the hw vlan table array */ 2708 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 2709 GFP_ATOMIC); 2710 2711 /* This call may decrease the number of queues */ 2712 if (igb_init_interrupt_scheme(adapter, true)) { 2713 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 2714 return -ENOMEM; 2715 } 2716 2717 igb_probe_vfs(adapter); 2718 2719 /* Explicitly disable IRQ since the NIC can be in any state. */ 2720 igb_irq_disable(adapter); 2721 2722 if (hw->mac.type >= e1000_i350) 2723 adapter->flags &= ~IGB_FLAG_DMAC; 2724 2725 set_bit(__IGB_DOWN, &adapter->state); 2726 return 0; 2727 } 2728 2729 /** 2730 * igb_open - Called when a network interface is made active 2731 * @netdev: network interface device structure 2732 * 2733 * Returns 0 on success, negative value on failure 2734 * 2735 * The open entry point is called when a network interface is made 2736 * active by the system (IFF_UP). At this point all resources needed 2737 * for transmit and receive operations are allocated, the interrupt 2738 * handler is registered with the OS, the watchdog timer is started, 2739 * and the stack is notified that the interface is ready. 2740 **/ 2741 static int __igb_open(struct net_device *netdev, bool resuming) 2742 { 2743 struct igb_adapter *adapter = netdev_priv(netdev); 2744 struct e1000_hw *hw = &adapter->hw; 2745 struct pci_dev *pdev = adapter->pdev; 2746 int err; 2747 int i; 2748 2749 /* disallow open during test */ 2750 if (test_bit(__IGB_TESTING, &adapter->state)) { 2751 WARN_ON(resuming); 2752 return -EBUSY; 2753 } 2754 2755 if (!resuming) 2756 pm_runtime_get_sync(&pdev->dev); 2757 2758 netif_carrier_off(netdev); 2759 2760 /* allocate transmit descriptors */ 2761 err = igb_setup_all_tx_resources(adapter); 2762 if (err) 2763 goto err_setup_tx; 2764 2765 /* allocate receive descriptors */ 2766 err = igb_setup_all_rx_resources(adapter); 2767 if (err) 2768 goto err_setup_rx; 2769 2770 igb_power_up_link(adapter); 2771 2772 /* before we allocate an interrupt, we must be ready to handle it. 2773 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 2774 * as soon as we call pci_request_irq, so we have to setup our 2775 * clean_rx handler before we do so. 2776 */ 2777 igb_configure(adapter); 2778 2779 err = igb_request_irq(adapter); 2780 if (err) 2781 goto err_req_irq; 2782 2783 /* Notify the stack of the actual queue counts. */ 2784 err = netif_set_real_num_tx_queues(adapter->netdev, 2785 adapter->num_tx_queues); 2786 if (err) 2787 goto err_set_queues; 2788 2789 err = netif_set_real_num_rx_queues(adapter->netdev, 2790 adapter->num_rx_queues); 2791 if (err) 2792 goto err_set_queues; 2793 2794 /* From here on the code is the same as igb_up() */ 2795 clear_bit(__IGB_DOWN, &adapter->state); 2796 2797 for (i = 0; i < adapter->num_q_vectors; i++) 2798 napi_enable(&(adapter->q_vector[i]->napi)); 2799 2800 /* Clear any pending interrupts. */ 2801 rd32(E1000_ICR); 2802 2803 igb_irq_enable(adapter); 2804 2805 /* notify VFs that reset has been completed */ 2806 if (adapter->vfs_allocated_count) { 2807 u32 reg_data = rd32(E1000_CTRL_EXT); 2808 reg_data |= E1000_CTRL_EXT_PFRSTD; 2809 wr32(E1000_CTRL_EXT, reg_data); 2810 } 2811 2812 netif_tx_start_all_queues(netdev); 2813 2814 if (!resuming) 2815 pm_runtime_put(&pdev->dev); 2816 2817 /* start the watchdog. */ 2818 hw->mac.get_link_status = 1; 2819 schedule_work(&adapter->watchdog_task); 2820 2821 return 0; 2822 2823 err_set_queues: 2824 igb_free_irq(adapter); 2825 err_req_irq: 2826 igb_release_hw_control(adapter); 2827 igb_power_down_link(adapter); 2828 igb_free_all_rx_resources(adapter); 2829 err_setup_rx: 2830 igb_free_all_tx_resources(adapter); 2831 err_setup_tx: 2832 igb_reset(adapter); 2833 if (!resuming) 2834 pm_runtime_put(&pdev->dev); 2835 2836 return err; 2837 } 2838 2839 static int igb_open(struct net_device *netdev) 2840 { 2841 return __igb_open(netdev, false); 2842 } 2843 2844 /** 2845 * igb_close - Disables a network interface 2846 * @netdev: network interface device structure 2847 * 2848 * Returns 0, this is not allowed to fail 2849 * 2850 * The close entry point is called when an interface is de-activated 2851 * by the OS. The hardware is still under the driver's control, but 2852 * needs to be disabled. A global MAC reset is issued to stop the 2853 * hardware, and all transmit and receive resources are freed. 2854 **/ 2855 static int __igb_close(struct net_device *netdev, bool suspending) 2856 { 2857 struct igb_adapter *adapter = netdev_priv(netdev); 2858 struct pci_dev *pdev = adapter->pdev; 2859 2860 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 2861 2862 if (!suspending) 2863 pm_runtime_get_sync(&pdev->dev); 2864 2865 igb_down(adapter); 2866 igb_free_irq(adapter); 2867 2868 igb_free_all_tx_resources(adapter); 2869 igb_free_all_rx_resources(adapter); 2870 2871 if (!suspending) 2872 pm_runtime_put_sync(&pdev->dev); 2873 return 0; 2874 } 2875 2876 static int igb_close(struct net_device *netdev) 2877 { 2878 return __igb_close(netdev, false); 2879 } 2880 2881 /** 2882 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 2883 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2884 * 2885 * Return 0 on success, negative on failure 2886 **/ 2887 int igb_setup_tx_resources(struct igb_ring *tx_ring) 2888 { 2889 struct device *dev = tx_ring->dev; 2890 int size; 2891 2892 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 2893 2894 tx_ring->tx_buffer_info = vzalloc(size); 2895 if (!tx_ring->tx_buffer_info) 2896 goto err; 2897 2898 /* round up to nearest 4K */ 2899 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 2900 tx_ring->size = ALIGN(tx_ring->size, 4096); 2901 2902 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2903 &tx_ring->dma, GFP_KERNEL); 2904 if (!tx_ring->desc) 2905 goto err; 2906 2907 tx_ring->next_to_use = 0; 2908 tx_ring->next_to_clean = 0; 2909 2910 return 0; 2911 2912 err: 2913 vfree(tx_ring->tx_buffer_info); 2914 tx_ring->tx_buffer_info = NULL; 2915 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2916 return -ENOMEM; 2917 } 2918 2919 /** 2920 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 2921 * (Descriptors) for all queues 2922 * @adapter: board private structure 2923 * 2924 * Return 0 on success, negative on failure 2925 **/ 2926 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 2927 { 2928 struct pci_dev *pdev = adapter->pdev; 2929 int i, err = 0; 2930 2931 for (i = 0; i < adapter->num_tx_queues; i++) { 2932 err = igb_setup_tx_resources(adapter->tx_ring[i]); 2933 if (err) { 2934 dev_err(&pdev->dev, 2935 "Allocation for Tx Queue %u failed\n", i); 2936 for (i--; i >= 0; i--) 2937 igb_free_tx_resources(adapter->tx_ring[i]); 2938 break; 2939 } 2940 } 2941 2942 return err; 2943 } 2944 2945 /** 2946 * igb_setup_tctl - configure the transmit control registers 2947 * @adapter: Board private structure 2948 **/ 2949 void igb_setup_tctl(struct igb_adapter *adapter) 2950 { 2951 struct e1000_hw *hw = &adapter->hw; 2952 u32 tctl; 2953 2954 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 2955 wr32(E1000_TXDCTL(0), 0); 2956 2957 /* Program the Transmit Control Register */ 2958 tctl = rd32(E1000_TCTL); 2959 tctl &= ~E1000_TCTL_CT; 2960 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2961 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2962 2963 igb_config_collision_dist(hw); 2964 2965 /* Enable transmits */ 2966 tctl |= E1000_TCTL_EN; 2967 2968 wr32(E1000_TCTL, tctl); 2969 } 2970 2971 /** 2972 * igb_configure_tx_ring - Configure transmit ring after Reset 2973 * @adapter: board private structure 2974 * @ring: tx ring to configure 2975 * 2976 * Configure a transmit ring after a reset. 2977 **/ 2978 void igb_configure_tx_ring(struct igb_adapter *adapter, 2979 struct igb_ring *ring) 2980 { 2981 struct e1000_hw *hw = &adapter->hw; 2982 u32 txdctl = 0; 2983 u64 tdba = ring->dma; 2984 int reg_idx = ring->reg_idx; 2985 2986 /* disable the queue */ 2987 wr32(E1000_TXDCTL(reg_idx), 0); 2988 wrfl(); 2989 mdelay(10); 2990 2991 wr32(E1000_TDLEN(reg_idx), 2992 ring->count * sizeof(union e1000_adv_tx_desc)); 2993 wr32(E1000_TDBAL(reg_idx), 2994 tdba & 0x00000000ffffffffULL); 2995 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 2996 2997 ring->tail = hw->hw_addr + E1000_TDT(reg_idx); 2998 wr32(E1000_TDH(reg_idx), 0); 2999 writel(0, ring->tail); 3000 3001 txdctl |= IGB_TX_PTHRESH; 3002 txdctl |= IGB_TX_HTHRESH << 8; 3003 txdctl |= IGB_TX_WTHRESH << 16; 3004 3005 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 3006 wr32(E1000_TXDCTL(reg_idx), txdctl); 3007 } 3008 3009 /** 3010 * igb_configure_tx - Configure transmit Unit after Reset 3011 * @adapter: board private structure 3012 * 3013 * Configure the Tx unit of the MAC after a reset. 3014 **/ 3015 static void igb_configure_tx(struct igb_adapter *adapter) 3016 { 3017 int i; 3018 3019 for (i = 0; i < adapter->num_tx_queues; i++) 3020 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 3021 } 3022 3023 /** 3024 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 3025 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3026 * 3027 * Returns 0 on success, negative on failure 3028 **/ 3029 int igb_setup_rx_resources(struct igb_ring *rx_ring) 3030 { 3031 struct device *dev = rx_ring->dev; 3032 int size; 3033 3034 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3035 3036 rx_ring->rx_buffer_info = vzalloc(size); 3037 if (!rx_ring->rx_buffer_info) 3038 goto err; 3039 3040 /* Round up to nearest 4K */ 3041 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 3042 rx_ring->size = ALIGN(rx_ring->size, 4096); 3043 3044 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 3045 &rx_ring->dma, GFP_KERNEL); 3046 if (!rx_ring->desc) 3047 goto err; 3048 3049 rx_ring->next_to_alloc = 0; 3050 rx_ring->next_to_clean = 0; 3051 rx_ring->next_to_use = 0; 3052 3053 return 0; 3054 3055 err: 3056 vfree(rx_ring->rx_buffer_info); 3057 rx_ring->rx_buffer_info = NULL; 3058 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3059 return -ENOMEM; 3060 } 3061 3062 /** 3063 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 3064 * (Descriptors) for all queues 3065 * @adapter: board private structure 3066 * 3067 * Return 0 on success, negative on failure 3068 **/ 3069 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 3070 { 3071 struct pci_dev *pdev = adapter->pdev; 3072 int i, err = 0; 3073 3074 for (i = 0; i < adapter->num_rx_queues; i++) { 3075 err = igb_setup_rx_resources(adapter->rx_ring[i]); 3076 if (err) { 3077 dev_err(&pdev->dev, 3078 "Allocation for Rx Queue %u failed\n", i); 3079 for (i--; i >= 0; i--) 3080 igb_free_rx_resources(adapter->rx_ring[i]); 3081 break; 3082 } 3083 } 3084 3085 return err; 3086 } 3087 3088 /** 3089 * igb_setup_mrqc - configure the multiple receive queue control registers 3090 * @adapter: Board private structure 3091 **/ 3092 static void igb_setup_mrqc(struct igb_adapter *adapter) 3093 { 3094 struct e1000_hw *hw = &adapter->hw; 3095 u32 mrqc, rxcsum; 3096 u32 j, num_rx_queues, shift = 0; 3097 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741, 3098 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE, 3099 0xA32DCB77, 0x0CF23080, 0x3BB7426A, 3100 0xFA01ACBE }; 3101 3102 /* Fill out hash function seeds */ 3103 for (j = 0; j < 10; j++) 3104 wr32(E1000_RSSRK(j), rsskey[j]); 3105 3106 num_rx_queues = adapter->rss_queues; 3107 3108 switch (hw->mac.type) { 3109 case e1000_82575: 3110 shift = 6; 3111 break; 3112 case e1000_82576: 3113 /* 82576 supports 2 RSS queues for SR-IOV */ 3114 if (adapter->vfs_allocated_count) { 3115 shift = 3; 3116 num_rx_queues = 2; 3117 } 3118 break; 3119 default: 3120 break; 3121 } 3122 3123 /* Populate the indirection table 4 entries at a time. To do this 3124 * we are generating the results for n and n+2 and then interleaving 3125 * those with the results with n+1 and n+3. 3126 */ 3127 for (j = 0; j < 32; j++) { 3128 /* first pass generates n and n+2 */ 3129 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues; 3130 u32 reta = (base & 0x07800780) >> (7 - shift); 3131 3132 /* second pass generates n+1 and n+3 */ 3133 base += 0x00010001 * num_rx_queues; 3134 reta |= (base & 0x07800780) << (1 + shift); 3135 3136 wr32(E1000_RETA(j), reta); 3137 } 3138 3139 /* Disable raw packet checksumming so that RSS hash is placed in 3140 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 3141 * offloads as they are enabled by default 3142 */ 3143 rxcsum = rd32(E1000_RXCSUM); 3144 rxcsum |= E1000_RXCSUM_PCSD; 3145 3146 if (adapter->hw.mac.type >= e1000_82576) 3147 /* Enable Receive Checksum Offload for SCTP */ 3148 rxcsum |= E1000_RXCSUM_CRCOFL; 3149 3150 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 3151 wr32(E1000_RXCSUM, rxcsum); 3152 3153 /* Generate RSS hash based on packet types, TCP/UDP 3154 * port numbers and/or IPv4/v6 src and dst addresses 3155 */ 3156 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 3157 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3158 E1000_MRQC_RSS_FIELD_IPV6 | 3159 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3160 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 3161 3162 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 3163 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 3164 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 3165 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 3166 3167 /* If VMDq is enabled then we set the appropriate mode for that, else 3168 * we default to RSS so that an RSS hash is calculated per packet even 3169 * if we are only using one queue 3170 */ 3171 if (adapter->vfs_allocated_count) { 3172 if (hw->mac.type > e1000_82575) { 3173 /* Set the default pool for the PF's first queue */ 3174 u32 vtctl = rd32(E1000_VT_CTL); 3175 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 3176 E1000_VT_CTL_DISABLE_DEF_POOL); 3177 vtctl |= adapter->vfs_allocated_count << 3178 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 3179 wr32(E1000_VT_CTL, vtctl); 3180 } 3181 if (adapter->rss_queues > 1) 3182 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; 3183 else 3184 mrqc |= E1000_MRQC_ENABLE_VMDQ; 3185 } else { 3186 if (hw->mac.type != e1000_i211) 3187 mrqc |= E1000_MRQC_ENABLE_RSS_4Q; 3188 } 3189 igb_vmm_control(adapter); 3190 3191 wr32(E1000_MRQC, mrqc); 3192 } 3193 3194 /** 3195 * igb_setup_rctl - configure the receive control registers 3196 * @adapter: Board private structure 3197 **/ 3198 void igb_setup_rctl(struct igb_adapter *adapter) 3199 { 3200 struct e1000_hw *hw = &adapter->hw; 3201 u32 rctl; 3202 3203 rctl = rd32(E1000_RCTL); 3204 3205 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3206 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 3207 3208 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 3209 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3210 3211 /* enable stripping of CRC. It's unlikely this will break BMC 3212 * redirection as it did with e1000. Newer features require 3213 * that the HW strips the CRC. 3214 */ 3215 rctl |= E1000_RCTL_SECRC; 3216 3217 /* disable store bad packets and clear size bits. */ 3218 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 3219 3220 /* enable LPE to prevent packets larger than max_frame_size */ 3221 rctl |= E1000_RCTL_LPE; 3222 3223 /* disable queue 0 to prevent tail write w/o re-config */ 3224 wr32(E1000_RXDCTL(0), 0); 3225 3226 /* Attention!!! For SR-IOV PF driver operations you must enable 3227 * queue drop for all VF and PF queues to prevent head of line blocking 3228 * if an un-trusted VF does not provide descriptors to hardware. 3229 */ 3230 if (adapter->vfs_allocated_count) { 3231 /* set all queue drop enable bits */ 3232 wr32(E1000_QDE, ALL_QUEUES); 3233 } 3234 3235 /* This is useful for sniffing bad packets. */ 3236 if (adapter->netdev->features & NETIF_F_RXALL) { 3237 /* UPE and MPE will be handled by normal PROMISC logic 3238 * in e1000e_set_rx_mode 3239 */ 3240 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3241 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3242 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3243 3244 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3245 E1000_RCTL_DPF | /* Allow filtered pause */ 3246 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3247 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3248 * and that breaks VLANs. 3249 */ 3250 } 3251 3252 wr32(E1000_RCTL, rctl); 3253 } 3254 3255 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 3256 int vfn) 3257 { 3258 struct e1000_hw *hw = &adapter->hw; 3259 u32 vmolr; 3260 3261 /* if it isn't the PF check to see if VFs are enabled and 3262 * increase the size to support vlan tags 3263 */ 3264 if (vfn < adapter->vfs_allocated_count && 3265 adapter->vf_data[vfn].vlans_enabled) 3266 size += VLAN_TAG_SIZE; 3267 3268 vmolr = rd32(E1000_VMOLR(vfn)); 3269 vmolr &= ~E1000_VMOLR_RLPML_MASK; 3270 vmolr |= size | E1000_VMOLR_LPE; 3271 wr32(E1000_VMOLR(vfn), vmolr); 3272 3273 return 0; 3274 } 3275 3276 /** 3277 * igb_rlpml_set - set maximum receive packet size 3278 * @adapter: board private structure 3279 * 3280 * Configure maximum receivable packet size. 3281 **/ 3282 static void igb_rlpml_set(struct igb_adapter *adapter) 3283 { 3284 u32 max_frame_size = adapter->max_frame_size; 3285 struct e1000_hw *hw = &adapter->hw; 3286 u16 pf_id = adapter->vfs_allocated_count; 3287 3288 if (pf_id) { 3289 igb_set_vf_rlpml(adapter, max_frame_size, pf_id); 3290 /* If we're in VMDQ or SR-IOV mode, then set global RLPML 3291 * to our max jumbo frame size, in case we need to enable 3292 * jumbo frames on one of the rings later. 3293 * This will not pass over-length frames into the default 3294 * queue because it's gated by the VMOLR.RLPML. 3295 */ 3296 max_frame_size = MAX_JUMBO_FRAME_SIZE; 3297 } 3298 3299 wr32(E1000_RLPML, max_frame_size); 3300 } 3301 3302 static inline void igb_set_vmolr(struct igb_adapter *adapter, 3303 int vfn, bool aupe) 3304 { 3305 struct e1000_hw *hw = &adapter->hw; 3306 u32 vmolr; 3307 3308 /* This register exists only on 82576 and newer so if we are older then 3309 * we should exit and do nothing 3310 */ 3311 if (hw->mac.type < e1000_82576) 3312 return; 3313 3314 vmolr = rd32(E1000_VMOLR(vfn)); 3315 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ 3316 if (aupe) 3317 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 3318 else 3319 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 3320 3321 /* clear all bits that might not be set */ 3322 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 3323 3324 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 3325 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 3326 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 3327 * multicast packets 3328 */ 3329 if (vfn <= adapter->vfs_allocated_count) 3330 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 3331 3332 wr32(E1000_VMOLR(vfn), vmolr); 3333 } 3334 3335 /** 3336 * igb_configure_rx_ring - Configure a receive ring after Reset 3337 * @adapter: board private structure 3338 * @ring: receive ring to be configured 3339 * 3340 * Configure the Rx unit of the MAC after a reset. 3341 **/ 3342 void igb_configure_rx_ring(struct igb_adapter *adapter, 3343 struct igb_ring *ring) 3344 { 3345 struct e1000_hw *hw = &adapter->hw; 3346 u64 rdba = ring->dma; 3347 int reg_idx = ring->reg_idx; 3348 u32 srrctl = 0, rxdctl = 0; 3349 3350 /* disable the queue */ 3351 wr32(E1000_RXDCTL(reg_idx), 0); 3352 3353 /* Set DMA base address registers */ 3354 wr32(E1000_RDBAL(reg_idx), 3355 rdba & 0x00000000ffffffffULL); 3356 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 3357 wr32(E1000_RDLEN(reg_idx), 3358 ring->count * sizeof(union e1000_adv_rx_desc)); 3359 3360 /* initialize head and tail */ 3361 ring->tail = hw->hw_addr + E1000_RDT(reg_idx); 3362 wr32(E1000_RDH(reg_idx), 0); 3363 writel(0, ring->tail); 3364 3365 /* set descriptor configuration */ 3366 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 3367 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3368 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3369 if (hw->mac.type >= e1000_82580) 3370 srrctl |= E1000_SRRCTL_TIMESTAMP; 3371 /* Only set Drop Enable if we are supporting multiple queues */ 3372 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) 3373 srrctl |= E1000_SRRCTL_DROP_EN; 3374 3375 wr32(E1000_SRRCTL(reg_idx), srrctl); 3376 3377 /* set filtering for VMDQ pools */ 3378 igb_set_vmolr(adapter, reg_idx & 0x7, true); 3379 3380 rxdctl |= IGB_RX_PTHRESH; 3381 rxdctl |= IGB_RX_HTHRESH << 8; 3382 rxdctl |= IGB_RX_WTHRESH << 16; 3383 3384 /* enable receive descriptor fetching */ 3385 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3386 wr32(E1000_RXDCTL(reg_idx), rxdctl); 3387 } 3388 3389 /** 3390 * igb_configure_rx - Configure receive Unit after Reset 3391 * @adapter: board private structure 3392 * 3393 * Configure the Rx unit of the MAC after a reset. 3394 **/ 3395 static void igb_configure_rx(struct igb_adapter *adapter) 3396 { 3397 int i; 3398 3399 /* set UTA to appropriate mode */ 3400 igb_set_uta(adapter); 3401 3402 /* set the correct pool for the PF default MAC address in entry 0 */ 3403 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 3404 adapter->vfs_allocated_count); 3405 3406 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3407 * the Base and Length of the Rx Descriptor Ring 3408 */ 3409 for (i = 0; i < adapter->num_rx_queues; i++) 3410 igb_configure_rx_ring(adapter, adapter->rx_ring[i]); 3411 } 3412 3413 /** 3414 * igb_free_tx_resources - Free Tx Resources per Queue 3415 * @tx_ring: Tx descriptor ring for a specific queue 3416 * 3417 * Free all transmit software resources 3418 **/ 3419 void igb_free_tx_resources(struct igb_ring *tx_ring) 3420 { 3421 igb_clean_tx_ring(tx_ring); 3422 3423 vfree(tx_ring->tx_buffer_info); 3424 tx_ring->tx_buffer_info = NULL; 3425 3426 /* if not set, then don't free */ 3427 if (!tx_ring->desc) 3428 return; 3429 3430 dma_free_coherent(tx_ring->dev, tx_ring->size, 3431 tx_ring->desc, tx_ring->dma); 3432 3433 tx_ring->desc = NULL; 3434 } 3435 3436 /** 3437 * igb_free_all_tx_resources - Free Tx Resources for All Queues 3438 * @adapter: board private structure 3439 * 3440 * Free all transmit software resources 3441 **/ 3442 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 3443 { 3444 int i; 3445 3446 for (i = 0; i < adapter->num_tx_queues; i++) 3447 igb_free_tx_resources(adapter->tx_ring[i]); 3448 } 3449 3450 void igb_unmap_and_free_tx_resource(struct igb_ring *ring, 3451 struct igb_tx_buffer *tx_buffer) 3452 { 3453 if (tx_buffer->skb) { 3454 dev_kfree_skb_any(tx_buffer->skb); 3455 if (dma_unmap_len(tx_buffer, len)) 3456 dma_unmap_single(ring->dev, 3457 dma_unmap_addr(tx_buffer, dma), 3458 dma_unmap_len(tx_buffer, len), 3459 DMA_TO_DEVICE); 3460 } else if (dma_unmap_len(tx_buffer, len)) { 3461 dma_unmap_page(ring->dev, 3462 dma_unmap_addr(tx_buffer, dma), 3463 dma_unmap_len(tx_buffer, len), 3464 DMA_TO_DEVICE); 3465 } 3466 tx_buffer->next_to_watch = NULL; 3467 tx_buffer->skb = NULL; 3468 dma_unmap_len_set(tx_buffer, len, 0); 3469 /* buffer_info must be completely set up in the transmit path */ 3470 } 3471 3472 /** 3473 * igb_clean_tx_ring - Free Tx Buffers 3474 * @tx_ring: ring to be cleaned 3475 **/ 3476 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 3477 { 3478 struct igb_tx_buffer *buffer_info; 3479 unsigned long size; 3480 u16 i; 3481 3482 if (!tx_ring->tx_buffer_info) 3483 return; 3484 /* Free all the Tx ring sk_buffs */ 3485 3486 for (i = 0; i < tx_ring->count; i++) { 3487 buffer_info = &tx_ring->tx_buffer_info[i]; 3488 igb_unmap_and_free_tx_resource(tx_ring, buffer_info); 3489 } 3490 3491 netdev_tx_reset_queue(txring_txq(tx_ring)); 3492 3493 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3494 memset(tx_ring->tx_buffer_info, 0, size); 3495 3496 /* Zero out the descriptor ring */ 3497 memset(tx_ring->desc, 0, tx_ring->size); 3498 3499 tx_ring->next_to_use = 0; 3500 tx_ring->next_to_clean = 0; 3501 } 3502 3503 /** 3504 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 3505 * @adapter: board private structure 3506 **/ 3507 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 3508 { 3509 int i; 3510 3511 for (i = 0; i < adapter->num_tx_queues; i++) 3512 igb_clean_tx_ring(adapter->tx_ring[i]); 3513 } 3514 3515 /** 3516 * igb_free_rx_resources - Free Rx Resources 3517 * @rx_ring: ring to clean the resources from 3518 * 3519 * Free all receive software resources 3520 **/ 3521 void igb_free_rx_resources(struct igb_ring *rx_ring) 3522 { 3523 igb_clean_rx_ring(rx_ring); 3524 3525 vfree(rx_ring->rx_buffer_info); 3526 rx_ring->rx_buffer_info = NULL; 3527 3528 /* if not set, then don't free */ 3529 if (!rx_ring->desc) 3530 return; 3531 3532 dma_free_coherent(rx_ring->dev, rx_ring->size, 3533 rx_ring->desc, rx_ring->dma); 3534 3535 rx_ring->desc = NULL; 3536 } 3537 3538 /** 3539 * igb_free_all_rx_resources - Free Rx Resources for All Queues 3540 * @adapter: board private structure 3541 * 3542 * Free all receive software resources 3543 **/ 3544 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 3545 { 3546 int i; 3547 3548 for (i = 0; i < adapter->num_rx_queues; i++) 3549 igb_free_rx_resources(adapter->rx_ring[i]); 3550 } 3551 3552 /** 3553 * igb_clean_rx_ring - Free Rx Buffers per Queue 3554 * @rx_ring: ring to free buffers from 3555 **/ 3556 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 3557 { 3558 unsigned long size; 3559 u16 i; 3560 3561 if (rx_ring->skb) 3562 dev_kfree_skb(rx_ring->skb); 3563 rx_ring->skb = NULL; 3564 3565 if (!rx_ring->rx_buffer_info) 3566 return; 3567 3568 /* Free all the Rx ring sk_buffs */ 3569 for (i = 0; i < rx_ring->count; i++) { 3570 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 3571 3572 if (!buffer_info->page) 3573 continue; 3574 3575 dma_unmap_page(rx_ring->dev, 3576 buffer_info->dma, 3577 PAGE_SIZE, 3578 DMA_FROM_DEVICE); 3579 __free_page(buffer_info->page); 3580 3581 buffer_info->page = NULL; 3582 } 3583 3584 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3585 memset(rx_ring->rx_buffer_info, 0, size); 3586 3587 /* Zero out the descriptor ring */ 3588 memset(rx_ring->desc, 0, rx_ring->size); 3589 3590 rx_ring->next_to_alloc = 0; 3591 rx_ring->next_to_clean = 0; 3592 rx_ring->next_to_use = 0; 3593 } 3594 3595 /** 3596 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 3597 * @adapter: board private structure 3598 **/ 3599 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 3600 { 3601 int i; 3602 3603 for (i = 0; i < adapter->num_rx_queues; i++) 3604 igb_clean_rx_ring(adapter->rx_ring[i]); 3605 } 3606 3607 /** 3608 * igb_set_mac - Change the Ethernet Address of the NIC 3609 * @netdev: network interface device structure 3610 * @p: pointer to an address structure 3611 * 3612 * Returns 0 on success, negative on failure 3613 **/ 3614 static int igb_set_mac(struct net_device *netdev, void *p) 3615 { 3616 struct igb_adapter *adapter = netdev_priv(netdev); 3617 struct e1000_hw *hw = &adapter->hw; 3618 struct sockaddr *addr = p; 3619 3620 if (!is_valid_ether_addr(addr->sa_data)) 3621 return -EADDRNOTAVAIL; 3622 3623 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3624 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3625 3626 /* set the correct pool for the new PF MAC address in entry 0 */ 3627 igb_rar_set_qsel(adapter, hw->mac.addr, 0, 3628 adapter->vfs_allocated_count); 3629 3630 return 0; 3631 } 3632 3633 /** 3634 * igb_write_mc_addr_list - write multicast addresses to MTA 3635 * @netdev: network interface device structure 3636 * 3637 * Writes multicast address list to the MTA hash table. 3638 * Returns: -ENOMEM on failure 3639 * 0 on no addresses written 3640 * X on writing X addresses to MTA 3641 **/ 3642 static int igb_write_mc_addr_list(struct net_device *netdev) 3643 { 3644 struct igb_adapter *adapter = netdev_priv(netdev); 3645 struct e1000_hw *hw = &adapter->hw; 3646 struct netdev_hw_addr *ha; 3647 u8 *mta_list; 3648 int i; 3649 3650 if (netdev_mc_empty(netdev)) { 3651 /* nothing to program, so clear mc list */ 3652 igb_update_mc_addr_list(hw, NULL, 0); 3653 igb_restore_vf_multicasts(adapter); 3654 return 0; 3655 } 3656 3657 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3658 if (!mta_list) 3659 return -ENOMEM; 3660 3661 /* The shared function expects a packed array of only addresses. */ 3662 i = 0; 3663 netdev_for_each_mc_addr(ha, netdev) 3664 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3665 3666 igb_update_mc_addr_list(hw, mta_list, i); 3667 kfree(mta_list); 3668 3669 return netdev_mc_count(netdev); 3670 } 3671 3672 /** 3673 * igb_write_uc_addr_list - write unicast addresses to RAR table 3674 * @netdev: network interface device structure 3675 * 3676 * Writes unicast address list to the RAR table. 3677 * Returns: -ENOMEM on failure/insufficient address space 3678 * 0 on no addresses written 3679 * X on writing X addresses to the RAR table 3680 **/ 3681 static int igb_write_uc_addr_list(struct net_device *netdev) 3682 { 3683 struct igb_adapter *adapter = netdev_priv(netdev); 3684 struct e1000_hw *hw = &adapter->hw; 3685 unsigned int vfn = adapter->vfs_allocated_count; 3686 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 3687 int count = 0; 3688 3689 /* return ENOMEM indicating insufficient memory for addresses */ 3690 if (netdev_uc_count(netdev) > rar_entries) 3691 return -ENOMEM; 3692 3693 if (!netdev_uc_empty(netdev) && rar_entries) { 3694 struct netdev_hw_addr *ha; 3695 3696 netdev_for_each_uc_addr(ha, netdev) { 3697 if (!rar_entries) 3698 break; 3699 igb_rar_set_qsel(adapter, ha->addr, 3700 rar_entries--, 3701 vfn); 3702 count++; 3703 } 3704 } 3705 /* write the addresses in reverse order to avoid write combining */ 3706 for (; rar_entries > 0 ; rar_entries--) { 3707 wr32(E1000_RAH(rar_entries), 0); 3708 wr32(E1000_RAL(rar_entries), 0); 3709 } 3710 wrfl(); 3711 3712 return count; 3713 } 3714 3715 /** 3716 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3717 * @netdev: network interface device structure 3718 * 3719 * The set_rx_mode entry point is called whenever the unicast or multicast 3720 * address lists or the network interface flags are updated. This routine is 3721 * responsible for configuring the hardware for proper unicast, multicast, 3722 * promiscuous mode, and all-multi behavior. 3723 **/ 3724 static void igb_set_rx_mode(struct net_device *netdev) 3725 { 3726 struct igb_adapter *adapter = netdev_priv(netdev); 3727 struct e1000_hw *hw = &adapter->hw; 3728 unsigned int vfn = adapter->vfs_allocated_count; 3729 u32 rctl, vmolr = 0; 3730 int count; 3731 3732 /* Check for Promiscuous and All Multicast modes */ 3733 rctl = rd32(E1000_RCTL); 3734 3735 /* clear the effected bits */ 3736 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); 3737 3738 if (netdev->flags & IFF_PROMISC) { 3739 u32 mrqc = rd32(E1000_MRQC); 3740 /* retain VLAN HW filtering if in VT mode */ 3741 if (mrqc & E1000_MRQC_ENABLE_VMDQ) 3742 rctl |= E1000_RCTL_VFE; 3743 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3744 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); 3745 } else { 3746 if (netdev->flags & IFF_ALLMULTI) { 3747 rctl |= E1000_RCTL_MPE; 3748 vmolr |= E1000_VMOLR_MPME; 3749 } else { 3750 /* Write addresses to the MTA, if the attempt fails 3751 * then we should just turn on promiscuous mode so 3752 * that we can at least receive multicast traffic 3753 */ 3754 count = igb_write_mc_addr_list(netdev); 3755 if (count < 0) { 3756 rctl |= E1000_RCTL_MPE; 3757 vmolr |= E1000_VMOLR_MPME; 3758 } else if (count) { 3759 vmolr |= E1000_VMOLR_ROMPE; 3760 } 3761 } 3762 /* Write addresses to available RAR registers, if there is not 3763 * sufficient space to store all the addresses then enable 3764 * unicast promiscuous mode 3765 */ 3766 count = igb_write_uc_addr_list(netdev); 3767 if (count < 0) { 3768 rctl |= E1000_RCTL_UPE; 3769 vmolr |= E1000_VMOLR_ROPE; 3770 } 3771 rctl |= E1000_RCTL_VFE; 3772 } 3773 wr32(E1000_RCTL, rctl); 3774 3775 /* In order to support SR-IOV and eventually VMDq it is necessary to set 3776 * the VMOLR to enable the appropriate modes. Without this workaround 3777 * we will have issues with VLAN tag stripping not being done for frames 3778 * that are only arriving because we are the default pool 3779 */ 3780 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 3781 return; 3782 3783 vmolr |= rd32(E1000_VMOLR(vfn)) & 3784 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 3785 wr32(E1000_VMOLR(vfn), vmolr); 3786 igb_restore_vf_multicasts(adapter); 3787 } 3788 3789 static void igb_check_wvbr(struct igb_adapter *adapter) 3790 { 3791 struct e1000_hw *hw = &adapter->hw; 3792 u32 wvbr = 0; 3793 3794 switch (hw->mac.type) { 3795 case e1000_82576: 3796 case e1000_i350: 3797 if (!(wvbr = rd32(E1000_WVBR))) 3798 return; 3799 break; 3800 default: 3801 break; 3802 } 3803 3804 adapter->wvbr |= wvbr; 3805 } 3806 3807 #define IGB_STAGGERED_QUEUE_OFFSET 8 3808 3809 static void igb_spoof_check(struct igb_adapter *adapter) 3810 { 3811 int j; 3812 3813 if (!adapter->wvbr) 3814 return; 3815 3816 for(j = 0; j < adapter->vfs_allocated_count; j++) { 3817 if (adapter->wvbr & (1 << j) || 3818 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { 3819 dev_warn(&adapter->pdev->dev, 3820 "Spoof event(s) detected on VF %d\n", j); 3821 adapter->wvbr &= 3822 ~((1 << j) | 3823 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); 3824 } 3825 } 3826 } 3827 3828 /* Need to wait a few seconds after link up to get diagnostic information from 3829 * the phy 3830 */ 3831 static void igb_update_phy_info(unsigned long data) 3832 { 3833 struct igb_adapter *adapter = (struct igb_adapter *) data; 3834 igb_get_phy_info(&adapter->hw); 3835 } 3836 3837 /** 3838 * igb_has_link - check shared code for link and determine up/down 3839 * @adapter: pointer to driver private info 3840 **/ 3841 bool igb_has_link(struct igb_adapter *adapter) 3842 { 3843 struct e1000_hw *hw = &adapter->hw; 3844 bool link_active = false; 3845 s32 ret_val = 0; 3846 3847 /* get_link_status is set on LSC (link status) interrupt or 3848 * rx sequence error interrupt. get_link_status will stay 3849 * false until the e1000_check_for_link establishes link 3850 * for copper adapters ONLY 3851 */ 3852 switch (hw->phy.media_type) { 3853 case e1000_media_type_copper: 3854 if (hw->mac.get_link_status) { 3855 ret_val = hw->mac.ops.check_for_link(hw); 3856 link_active = !hw->mac.get_link_status; 3857 } else { 3858 link_active = true; 3859 } 3860 break; 3861 case e1000_media_type_internal_serdes: 3862 ret_val = hw->mac.ops.check_for_link(hw); 3863 link_active = hw->mac.serdes_has_link; 3864 break; 3865 default: 3866 case e1000_media_type_unknown: 3867 break; 3868 } 3869 3870 return link_active; 3871 } 3872 3873 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 3874 { 3875 bool ret = false; 3876 u32 ctrl_ext, thstat; 3877 3878 /* check for thermal sensor event on i350 copper only */ 3879 if (hw->mac.type == e1000_i350) { 3880 thstat = rd32(E1000_THSTAT); 3881 ctrl_ext = rd32(E1000_CTRL_EXT); 3882 3883 if ((hw->phy.media_type == e1000_media_type_copper) && 3884 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 3885 ret = !!(thstat & event); 3886 } 3887 3888 return ret; 3889 } 3890 3891 /** 3892 * igb_watchdog - Timer Call-back 3893 * @data: pointer to adapter cast into an unsigned long 3894 **/ 3895 static void igb_watchdog(unsigned long data) 3896 { 3897 struct igb_adapter *adapter = (struct igb_adapter *)data; 3898 /* Do the rest outside of interrupt context */ 3899 schedule_work(&adapter->watchdog_task); 3900 } 3901 3902 static void igb_watchdog_task(struct work_struct *work) 3903 { 3904 struct igb_adapter *adapter = container_of(work, 3905 struct igb_adapter, 3906 watchdog_task); 3907 struct e1000_hw *hw = &adapter->hw; 3908 struct e1000_phy_info *phy = &hw->phy; 3909 struct net_device *netdev = adapter->netdev; 3910 u32 link; 3911 int i; 3912 3913 link = igb_has_link(adapter); 3914 if (link) { 3915 /* Cancel scheduled suspend requests. */ 3916 pm_runtime_resume(netdev->dev.parent); 3917 3918 if (!netif_carrier_ok(netdev)) { 3919 u32 ctrl; 3920 hw->mac.ops.get_speed_and_duplex(hw, 3921 &adapter->link_speed, 3922 &adapter->link_duplex); 3923 3924 ctrl = rd32(E1000_CTRL); 3925 /* Links status message must follow this format */ 3926 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s " 3927 "Duplex, Flow Control: %s\n", 3928 netdev->name, 3929 adapter->link_speed, 3930 adapter->link_duplex == FULL_DUPLEX ? 3931 "Full" : "Half", 3932 (ctrl & E1000_CTRL_TFCE) && 3933 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 3934 (ctrl & E1000_CTRL_RFCE) ? "RX" : 3935 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 3936 3937 /* check if SmartSpeed worked */ 3938 igb_check_downshift(hw); 3939 if (phy->speed_downgraded) 3940 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 3941 3942 /* check for thermal sensor event */ 3943 if (igb_thermal_sensor_event(hw, 3944 E1000_THSTAT_LINK_THROTTLE)) { 3945 netdev_info(netdev, "The network adapter link " 3946 "speed was downshifted because it " 3947 "overheated\n"); 3948 } 3949 3950 /* adjust timeout factor according to speed/duplex */ 3951 adapter->tx_timeout_factor = 1; 3952 switch (adapter->link_speed) { 3953 case SPEED_10: 3954 adapter->tx_timeout_factor = 14; 3955 break; 3956 case SPEED_100: 3957 /* maybe add some timeout factor ? */ 3958 break; 3959 } 3960 3961 netif_carrier_on(netdev); 3962 3963 igb_ping_all_vfs(adapter); 3964 igb_check_vf_rate_limit(adapter); 3965 3966 /* link state has changed, schedule phy info update */ 3967 if (!test_bit(__IGB_DOWN, &adapter->state)) 3968 mod_timer(&adapter->phy_info_timer, 3969 round_jiffies(jiffies + 2 * HZ)); 3970 } 3971 } else { 3972 if (netif_carrier_ok(netdev)) { 3973 adapter->link_speed = 0; 3974 adapter->link_duplex = 0; 3975 3976 /* check for thermal sensor event */ 3977 if (igb_thermal_sensor_event(hw, 3978 E1000_THSTAT_PWR_DOWN)) { 3979 netdev_err(netdev, "The network adapter was " 3980 "stopped because it overheated\n"); 3981 } 3982 3983 /* Links status message must follow this format */ 3984 printk(KERN_INFO "igb: %s NIC Link is Down\n", 3985 netdev->name); 3986 netif_carrier_off(netdev); 3987 3988 igb_ping_all_vfs(adapter); 3989 3990 /* link state has changed, schedule phy info update */ 3991 if (!test_bit(__IGB_DOWN, &adapter->state)) 3992 mod_timer(&adapter->phy_info_timer, 3993 round_jiffies(jiffies + 2 * HZ)); 3994 3995 pm_schedule_suspend(netdev->dev.parent, 3996 MSEC_PER_SEC * 5); 3997 } 3998 } 3999 4000 spin_lock(&adapter->stats64_lock); 4001 igb_update_stats(adapter, &adapter->stats64); 4002 spin_unlock(&adapter->stats64_lock); 4003 4004 for (i = 0; i < adapter->num_tx_queues; i++) { 4005 struct igb_ring *tx_ring = adapter->tx_ring[i]; 4006 if (!netif_carrier_ok(netdev)) { 4007 /* We've lost link, so the controller stops DMA, 4008 * but we've got queued Tx work that's never going 4009 * to get done, so reset controller to flush Tx. 4010 * (Do the reset outside of interrupt context). 4011 */ 4012 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 4013 adapter->tx_timeout_count++; 4014 schedule_work(&adapter->reset_task); 4015 /* return immediately since reset is imminent */ 4016 return; 4017 } 4018 } 4019 4020 /* Force detection of hung controller every watchdog period */ 4021 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 4022 } 4023 4024 /* Cause software interrupt to ensure Rx ring is cleaned */ 4025 if (adapter->msix_entries) { 4026 u32 eics = 0; 4027 for (i = 0; i < adapter->num_q_vectors; i++) 4028 eics |= adapter->q_vector[i]->eims_value; 4029 wr32(E1000_EICS, eics); 4030 } else { 4031 wr32(E1000_ICS, E1000_ICS_RXDMT0); 4032 } 4033 4034 igb_spoof_check(adapter); 4035 igb_ptp_rx_hang(adapter); 4036 4037 /* Reset the timer */ 4038 if (!test_bit(__IGB_DOWN, &adapter->state)) 4039 mod_timer(&adapter->watchdog_timer, 4040 round_jiffies(jiffies + 2 * HZ)); 4041 } 4042 4043 enum latency_range { 4044 lowest_latency = 0, 4045 low_latency = 1, 4046 bulk_latency = 2, 4047 latency_invalid = 255 4048 }; 4049 4050 /** 4051 * igb_update_ring_itr - update the dynamic ITR value based on packet size 4052 * @q_vector: pointer to q_vector 4053 * 4054 * Stores a new ITR value based on strictly on packet size. This 4055 * algorithm is less sophisticated than that used in igb_update_itr, 4056 * due to the difficulty of synchronizing statistics across multiple 4057 * receive rings. The divisors and thresholds used by this function 4058 * were determined based on theoretical maximum wire speed and testing 4059 * data, in order to minimize response time while increasing bulk 4060 * throughput. 4061 * This functionality is controlled by the InterruptThrottleRate module 4062 * parameter (see igb_param.c) 4063 * NOTE: This function is called only when operating in a multiqueue 4064 * receive environment. 4065 **/ 4066 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 4067 { 4068 int new_val = q_vector->itr_val; 4069 int avg_wire_size = 0; 4070 struct igb_adapter *adapter = q_vector->adapter; 4071 unsigned int packets; 4072 4073 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4074 * ints/sec - ITR timer value of 120 ticks. 4075 */ 4076 if (adapter->link_speed != SPEED_1000) { 4077 new_val = IGB_4K_ITR; 4078 goto set_itr_val; 4079 } 4080 4081 packets = q_vector->rx.total_packets; 4082 if (packets) 4083 avg_wire_size = q_vector->rx.total_bytes / packets; 4084 4085 packets = q_vector->tx.total_packets; 4086 if (packets) 4087 avg_wire_size = max_t(u32, avg_wire_size, 4088 q_vector->tx.total_bytes / packets); 4089 4090 /* if avg_wire_size isn't set no work was done */ 4091 if (!avg_wire_size) 4092 goto clear_counts; 4093 4094 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4095 avg_wire_size += 24; 4096 4097 /* Don't starve jumbo frames */ 4098 avg_wire_size = min(avg_wire_size, 3000); 4099 4100 /* Give a little boost to mid-size frames */ 4101 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 4102 new_val = avg_wire_size / 3; 4103 else 4104 new_val = avg_wire_size / 2; 4105 4106 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4107 if (new_val < IGB_20K_ITR && 4108 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4109 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4110 new_val = IGB_20K_ITR; 4111 4112 set_itr_val: 4113 if (new_val != q_vector->itr_val) { 4114 q_vector->itr_val = new_val; 4115 q_vector->set_itr = 1; 4116 } 4117 clear_counts: 4118 q_vector->rx.total_bytes = 0; 4119 q_vector->rx.total_packets = 0; 4120 q_vector->tx.total_bytes = 0; 4121 q_vector->tx.total_packets = 0; 4122 } 4123 4124 /** 4125 * igb_update_itr - update the dynamic ITR value based on statistics 4126 * @q_vector: pointer to q_vector 4127 * @ring_container: ring info to update the itr for 4128 * 4129 * Stores a new ITR value based on packets and byte 4130 * counts during the last interrupt. The advantage of per interrupt 4131 * computation is faster updates and more accurate ITR for the current 4132 * traffic pattern. Constants in this function were computed 4133 * based on theoretical maximum wire speed and thresholds were set based 4134 * on testing data as well as attempting to minimize response time 4135 * while increasing bulk throughput. 4136 * this functionality is controlled by the InterruptThrottleRate module 4137 * parameter (see igb_param.c) 4138 * NOTE: These calculations are only valid when operating in a single- 4139 * queue environment. 4140 **/ 4141 static void igb_update_itr(struct igb_q_vector *q_vector, 4142 struct igb_ring_container *ring_container) 4143 { 4144 unsigned int packets = ring_container->total_packets; 4145 unsigned int bytes = ring_container->total_bytes; 4146 u8 itrval = ring_container->itr; 4147 4148 /* no packets, exit with status unchanged */ 4149 if (packets == 0) 4150 return; 4151 4152 switch (itrval) { 4153 case lowest_latency: 4154 /* handle TSO and jumbo frames */ 4155 if (bytes/packets > 8000) 4156 itrval = bulk_latency; 4157 else if ((packets < 5) && (bytes > 512)) 4158 itrval = low_latency; 4159 break; 4160 case low_latency: /* 50 usec aka 20000 ints/s */ 4161 if (bytes > 10000) { 4162 /* this if handles the TSO accounting */ 4163 if (bytes/packets > 8000) { 4164 itrval = bulk_latency; 4165 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 4166 itrval = bulk_latency; 4167 } else if ((packets > 35)) { 4168 itrval = lowest_latency; 4169 } 4170 } else if (bytes/packets > 2000) { 4171 itrval = bulk_latency; 4172 } else if (packets <= 2 && bytes < 512) { 4173 itrval = lowest_latency; 4174 } 4175 break; 4176 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4177 if (bytes > 25000) { 4178 if (packets > 35) 4179 itrval = low_latency; 4180 } else if (bytes < 1500) { 4181 itrval = low_latency; 4182 } 4183 break; 4184 } 4185 4186 /* clear work counters since we have the values we need */ 4187 ring_container->total_bytes = 0; 4188 ring_container->total_packets = 0; 4189 4190 /* write updated itr to ring container */ 4191 ring_container->itr = itrval; 4192 } 4193 4194 static void igb_set_itr(struct igb_q_vector *q_vector) 4195 { 4196 struct igb_adapter *adapter = q_vector->adapter; 4197 u32 new_itr = q_vector->itr_val; 4198 u8 current_itr = 0; 4199 4200 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4201 if (adapter->link_speed != SPEED_1000) { 4202 current_itr = 0; 4203 new_itr = IGB_4K_ITR; 4204 goto set_itr_now; 4205 } 4206 4207 igb_update_itr(q_vector, &q_vector->tx); 4208 igb_update_itr(q_vector, &q_vector->rx); 4209 4210 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4211 4212 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4213 if (current_itr == lowest_latency && 4214 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4215 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4216 current_itr = low_latency; 4217 4218 switch (current_itr) { 4219 /* counts and packets in update_itr are dependent on these numbers */ 4220 case lowest_latency: 4221 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 4222 break; 4223 case low_latency: 4224 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 4225 break; 4226 case bulk_latency: 4227 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 4228 break; 4229 default: 4230 break; 4231 } 4232 4233 set_itr_now: 4234 if (new_itr != q_vector->itr_val) { 4235 /* this attempts to bias the interrupt rate towards Bulk 4236 * by adding intermediate steps when interrupt rate is 4237 * increasing 4238 */ 4239 new_itr = new_itr > q_vector->itr_val ? 4240 max((new_itr * q_vector->itr_val) / 4241 (new_itr + (q_vector->itr_val >> 2)), 4242 new_itr) : new_itr; 4243 /* Don't write the value here; it resets the adapter's 4244 * internal timer, and causes us to delay far longer than 4245 * we should between interrupts. Instead, we write the ITR 4246 * value at the beginning of the next interrupt so the timing 4247 * ends up being correct. 4248 */ 4249 q_vector->itr_val = new_itr; 4250 q_vector->set_itr = 1; 4251 } 4252 } 4253 4254 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, 4255 u32 type_tucmd, u32 mss_l4len_idx) 4256 { 4257 struct e1000_adv_tx_context_desc *context_desc; 4258 u16 i = tx_ring->next_to_use; 4259 4260 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 4261 4262 i++; 4263 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 4264 4265 /* set bits to identify this as an advanced context descriptor */ 4266 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 4267 4268 /* For 82575, context index must be unique per ring. */ 4269 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4270 mss_l4len_idx |= tx_ring->reg_idx << 4; 4271 4272 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 4273 context_desc->seqnum_seed = 0; 4274 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 4275 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 4276 } 4277 4278 static int igb_tso(struct igb_ring *tx_ring, 4279 struct igb_tx_buffer *first, 4280 u8 *hdr_len) 4281 { 4282 struct sk_buff *skb = first->skb; 4283 u32 vlan_macip_lens, type_tucmd; 4284 u32 mss_l4len_idx, l4len; 4285 4286 if (skb->ip_summed != CHECKSUM_PARTIAL) 4287 return 0; 4288 4289 if (!skb_is_gso(skb)) 4290 return 0; 4291 4292 if (skb_header_cloned(skb)) { 4293 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4294 if (err) 4295 return err; 4296 } 4297 4298 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 4299 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 4300 4301 if (first->protocol == __constant_htons(ETH_P_IP)) { 4302 struct iphdr *iph = ip_hdr(skb); 4303 iph->tot_len = 0; 4304 iph->check = 0; 4305 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 4306 iph->daddr, 0, 4307 IPPROTO_TCP, 4308 0); 4309 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4310 first->tx_flags |= IGB_TX_FLAGS_TSO | 4311 IGB_TX_FLAGS_CSUM | 4312 IGB_TX_FLAGS_IPV4; 4313 } else if (skb_is_gso_v6(skb)) { 4314 ipv6_hdr(skb)->payload_len = 0; 4315 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4316 &ipv6_hdr(skb)->daddr, 4317 0, IPPROTO_TCP, 0); 4318 first->tx_flags |= IGB_TX_FLAGS_TSO | 4319 IGB_TX_FLAGS_CSUM; 4320 } 4321 4322 /* compute header lengths */ 4323 l4len = tcp_hdrlen(skb); 4324 *hdr_len = skb_transport_offset(skb) + l4len; 4325 4326 /* update gso size and bytecount with header size */ 4327 first->gso_segs = skb_shinfo(skb)->gso_segs; 4328 first->bytecount += (first->gso_segs - 1) * *hdr_len; 4329 4330 /* MSS L4LEN IDX */ 4331 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; 4332 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 4333 4334 /* VLAN MACLEN IPLEN */ 4335 vlan_macip_lens = skb_network_header_len(skb); 4336 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4337 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4338 4339 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4340 4341 return 1; 4342 } 4343 4344 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 4345 { 4346 struct sk_buff *skb = first->skb; 4347 u32 vlan_macip_lens = 0; 4348 u32 mss_l4len_idx = 0; 4349 u32 type_tucmd = 0; 4350 4351 if (skb->ip_summed != CHECKSUM_PARTIAL) { 4352 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) 4353 return; 4354 } else { 4355 u8 l4_hdr = 0; 4356 switch (first->protocol) { 4357 case __constant_htons(ETH_P_IP): 4358 vlan_macip_lens |= skb_network_header_len(skb); 4359 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4360 l4_hdr = ip_hdr(skb)->protocol; 4361 break; 4362 case __constant_htons(ETH_P_IPV6): 4363 vlan_macip_lens |= skb_network_header_len(skb); 4364 l4_hdr = ipv6_hdr(skb)->nexthdr; 4365 break; 4366 default: 4367 if (unlikely(net_ratelimit())) { 4368 dev_warn(tx_ring->dev, 4369 "partial checksum but proto=%x!\n", 4370 first->protocol); 4371 } 4372 break; 4373 } 4374 4375 switch (l4_hdr) { 4376 case IPPROTO_TCP: 4377 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 4378 mss_l4len_idx = tcp_hdrlen(skb) << 4379 E1000_ADVTXD_L4LEN_SHIFT; 4380 break; 4381 case IPPROTO_SCTP: 4382 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; 4383 mss_l4len_idx = sizeof(struct sctphdr) << 4384 E1000_ADVTXD_L4LEN_SHIFT; 4385 break; 4386 case IPPROTO_UDP: 4387 mss_l4len_idx = sizeof(struct udphdr) << 4388 E1000_ADVTXD_L4LEN_SHIFT; 4389 break; 4390 default: 4391 if (unlikely(net_ratelimit())) { 4392 dev_warn(tx_ring->dev, 4393 "partial checksum but l4 proto=%x!\n", 4394 l4_hdr); 4395 } 4396 break; 4397 } 4398 4399 /* update TX checksum flag */ 4400 first->tx_flags |= IGB_TX_FLAGS_CSUM; 4401 } 4402 4403 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4404 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4405 4406 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4407 } 4408 4409 #define IGB_SET_FLAG(_input, _flag, _result) \ 4410 ((_flag <= _result) ? \ 4411 ((u32)(_input & _flag) * (_result / _flag)) : \ 4412 ((u32)(_input & _flag) / (_flag / _result))) 4413 4414 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 4415 { 4416 /* set type for advanced descriptor with frame checksum insertion */ 4417 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 4418 E1000_ADVTXD_DCMD_DEXT | 4419 E1000_ADVTXD_DCMD_IFCS; 4420 4421 /* set HW vlan bit if vlan is present */ 4422 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 4423 (E1000_ADVTXD_DCMD_VLE)); 4424 4425 /* set segmentation bits for TSO */ 4426 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 4427 (E1000_ADVTXD_DCMD_TSE)); 4428 4429 /* set timestamp bit if present */ 4430 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 4431 (E1000_ADVTXD_MAC_TSTAMP)); 4432 4433 /* insert frame checksum */ 4434 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 4435 4436 return cmd_type; 4437 } 4438 4439 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 4440 union e1000_adv_tx_desc *tx_desc, 4441 u32 tx_flags, unsigned int paylen) 4442 { 4443 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 4444 4445 /* 82575 requires a unique index per ring */ 4446 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4447 olinfo_status |= tx_ring->reg_idx << 4; 4448 4449 /* insert L4 checksum */ 4450 olinfo_status |= IGB_SET_FLAG(tx_flags, 4451 IGB_TX_FLAGS_CSUM, 4452 (E1000_TXD_POPTS_TXSM << 8)); 4453 4454 /* insert IPv4 checksum */ 4455 olinfo_status |= IGB_SET_FLAG(tx_flags, 4456 IGB_TX_FLAGS_IPV4, 4457 (E1000_TXD_POPTS_IXSM << 8)); 4458 4459 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 4460 } 4461 4462 static void igb_tx_map(struct igb_ring *tx_ring, 4463 struct igb_tx_buffer *first, 4464 const u8 hdr_len) 4465 { 4466 struct sk_buff *skb = first->skb; 4467 struct igb_tx_buffer *tx_buffer; 4468 union e1000_adv_tx_desc *tx_desc; 4469 struct skb_frag_struct *frag; 4470 dma_addr_t dma; 4471 unsigned int data_len, size; 4472 u32 tx_flags = first->tx_flags; 4473 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 4474 u16 i = tx_ring->next_to_use; 4475 4476 tx_desc = IGB_TX_DESC(tx_ring, i); 4477 4478 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 4479 4480 size = skb_headlen(skb); 4481 data_len = skb->data_len; 4482 4483 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 4484 4485 tx_buffer = first; 4486 4487 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 4488 if (dma_mapping_error(tx_ring->dev, dma)) 4489 goto dma_error; 4490 4491 /* record length, and DMA address */ 4492 dma_unmap_len_set(tx_buffer, len, size); 4493 dma_unmap_addr_set(tx_buffer, dma, dma); 4494 4495 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4496 4497 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 4498 tx_desc->read.cmd_type_len = 4499 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 4500 4501 i++; 4502 tx_desc++; 4503 if (i == tx_ring->count) { 4504 tx_desc = IGB_TX_DESC(tx_ring, 0); 4505 i = 0; 4506 } 4507 tx_desc->read.olinfo_status = 0; 4508 4509 dma += IGB_MAX_DATA_PER_TXD; 4510 size -= IGB_MAX_DATA_PER_TXD; 4511 4512 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4513 } 4514 4515 if (likely(!data_len)) 4516 break; 4517 4518 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 4519 4520 i++; 4521 tx_desc++; 4522 if (i == tx_ring->count) { 4523 tx_desc = IGB_TX_DESC(tx_ring, 0); 4524 i = 0; 4525 } 4526 tx_desc->read.olinfo_status = 0; 4527 4528 size = skb_frag_size(frag); 4529 data_len -= size; 4530 4531 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 4532 size, DMA_TO_DEVICE); 4533 4534 tx_buffer = &tx_ring->tx_buffer_info[i]; 4535 } 4536 4537 /* write last descriptor with RS and EOP bits */ 4538 cmd_type |= size | IGB_TXD_DCMD; 4539 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 4540 4541 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 4542 4543 /* set the timestamp */ 4544 first->time_stamp = jiffies; 4545 4546 /* Force memory writes to complete before letting h/w know there 4547 * are new descriptors to fetch. (Only applicable for weak-ordered 4548 * memory model archs, such as IA-64). 4549 * 4550 * We also need this memory barrier to make certain all of the 4551 * status bits have been updated before next_to_watch is written. 4552 */ 4553 wmb(); 4554 4555 /* set next_to_watch value indicating a packet is present */ 4556 first->next_to_watch = tx_desc; 4557 4558 i++; 4559 if (i == tx_ring->count) 4560 i = 0; 4561 4562 tx_ring->next_to_use = i; 4563 4564 writel(i, tx_ring->tail); 4565 4566 /* we need this if more than one processor can write to our tail 4567 * at a time, it synchronizes IO on IA64/Altix systems 4568 */ 4569 mmiowb(); 4570 4571 return; 4572 4573 dma_error: 4574 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4575 4576 /* clear dma mappings for failed tx_buffer_info map */ 4577 for (;;) { 4578 tx_buffer = &tx_ring->tx_buffer_info[i]; 4579 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); 4580 if (tx_buffer == first) 4581 break; 4582 if (i == 0) 4583 i = tx_ring->count; 4584 i--; 4585 } 4586 4587 tx_ring->next_to_use = i; 4588 } 4589 4590 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4591 { 4592 struct net_device *netdev = tx_ring->netdev; 4593 4594 netif_stop_subqueue(netdev, tx_ring->queue_index); 4595 4596 /* Herbert's original patch had: 4597 * smp_mb__after_netif_stop_queue(); 4598 * but since that doesn't exist yet, just open code it. 4599 */ 4600 smp_mb(); 4601 4602 /* We need to check again in a case another CPU has just 4603 * made room available. 4604 */ 4605 if (igb_desc_unused(tx_ring) < size) 4606 return -EBUSY; 4607 4608 /* A reprieve! */ 4609 netif_wake_subqueue(netdev, tx_ring->queue_index); 4610 4611 u64_stats_update_begin(&tx_ring->tx_syncp2); 4612 tx_ring->tx_stats.restart_queue2++; 4613 u64_stats_update_end(&tx_ring->tx_syncp2); 4614 4615 return 0; 4616 } 4617 4618 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4619 { 4620 if (igb_desc_unused(tx_ring) >= size) 4621 return 0; 4622 return __igb_maybe_stop_tx(tx_ring, size); 4623 } 4624 4625 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 4626 struct igb_ring *tx_ring) 4627 { 4628 struct igb_tx_buffer *first; 4629 int tso; 4630 u32 tx_flags = 0; 4631 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4632 __be16 protocol = vlan_get_protocol(skb); 4633 u8 hdr_len = 0; 4634 4635 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 4636 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 4637 * + 2 desc gap to keep tail from touching head, 4638 * + 1 desc for context descriptor, 4639 * otherwise try next time 4640 */ 4641 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { 4642 unsigned short f; 4643 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4644 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4645 } else { 4646 count += skb_shinfo(skb)->nr_frags; 4647 } 4648 4649 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 4650 /* this is a hard error */ 4651 return NETDEV_TX_BUSY; 4652 } 4653 4654 /* record the location of the first descriptor for this packet */ 4655 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4656 first->skb = skb; 4657 first->bytecount = skb->len; 4658 first->gso_segs = 1; 4659 4660 skb_tx_timestamp(skb); 4661 4662 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 4663 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 4664 4665 if (!(adapter->ptp_tx_skb)) { 4666 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4667 tx_flags |= IGB_TX_FLAGS_TSTAMP; 4668 4669 adapter->ptp_tx_skb = skb_get(skb); 4670 adapter->ptp_tx_start = jiffies; 4671 if (adapter->hw.mac.type == e1000_82576) 4672 schedule_work(&adapter->ptp_tx_work); 4673 } 4674 } 4675 4676 if (vlan_tx_tag_present(skb)) { 4677 tx_flags |= IGB_TX_FLAGS_VLAN; 4678 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 4679 } 4680 4681 /* record initial flags and protocol */ 4682 first->tx_flags = tx_flags; 4683 first->protocol = protocol; 4684 4685 tso = igb_tso(tx_ring, first, &hdr_len); 4686 if (tso < 0) 4687 goto out_drop; 4688 else if (!tso) 4689 igb_tx_csum(tx_ring, first); 4690 4691 igb_tx_map(tx_ring, first, hdr_len); 4692 4693 /* Make sure there is space in the ring for the next send. */ 4694 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 4695 4696 return NETDEV_TX_OK; 4697 4698 out_drop: 4699 igb_unmap_and_free_tx_resource(tx_ring, first); 4700 4701 return NETDEV_TX_OK; 4702 } 4703 4704 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 4705 struct sk_buff *skb) 4706 { 4707 unsigned int r_idx = skb->queue_mapping; 4708 4709 if (r_idx >= adapter->num_tx_queues) 4710 r_idx = r_idx % adapter->num_tx_queues; 4711 4712 return adapter->tx_ring[r_idx]; 4713 } 4714 4715 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 4716 struct net_device *netdev) 4717 { 4718 struct igb_adapter *adapter = netdev_priv(netdev); 4719 4720 if (test_bit(__IGB_DOWN, &adapter->state)) { 4721 dev_kfree_skb_any(skb); 4722 return NETDEV_TX_OK; 4723 } 4724 4725 if (skb->len <= 0) { 4726 dev_kfree_skb_any(skb); 4727 return NETDEV_TX_OK; 4728 } 4729 4730 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 4731 * in order to meet this minimum size requirement. 4732 */ 4733 if (unlikely(skb->len < 17)) { 4734 if (skb_pad(skb, 17 - skb->len)) 4735 return NETDEV_TX_OK; 4736 skb->len = 17; 4737 skb_set_tail_pointer(skb, 17); 4738 } 4739 4740 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 4741 } 4742 4743 /** 4744 * igb_tx_timeout - Respond to a Tx Hang 4745 * @netdev: network interface device structure 4746 **/ 4747 static void igb_tx_timeout(struct net_device *netdev) 4748 { 4749 struct igb_adapter *adapter = netdev_priv(netdev); 4750 struct e1000_hw *hw = &adapter->hw; 4751 4752 /* Do the reset outside of interrupt context */ 4753 adapter->tx_timeout_count++; 4754 4755 if (hw->mac.type >= e1000_82580) 4756 hw->dev_spec._82575.global_device_reset = true; 4757 4758 schedule_work(&adapter->reset_task); 4759 wr32(E1000_EICS, 4760 (adapter->eims_enable_mask & ~adapter->eims_other)); 4761 } 4762 4763 static void igb_reset_task(struct work_struct *work) 4764 { 4765 struct igb_adapter *adapter; 4766 adapter = container_of(work, struct igb_adapter, reset_task); 4767 4768 igb_dump(adapter); 4769 netdev_err(adapter->netdev, "Reset adapter\n"); 4770 igb_reinit_locked(adapter); 4771 } 4772 4773 /** 4774 * igb_get_stats64 - Get System Network Statistics 4775 * @netdev: network interface device structure 4776 * @stats: rtnl_link_stats64 pointer 4777 **/ 4778 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, 4779 struct rtnl_link_stats64 *stats) 4780 { 4781 struct igb_adapter *adapter = netdev_priv(netdev); 4782 4783 spin_lock(&adapter->stats64_lock); 4784 igb_update_stats(adapter, &adapter->stats64); 4785 memcpy(stats, &adapter->stats64, sizeof(*stats)); 4786 spin_unlock(&adapter->stats64_lock); 4787 4788 return stats; 4789 } 4790 4791 /** 4792 * igb_change_mtu - Change the Maximum Transfer Unit 4793 * @netdev: network interface device structure 4794 * @new_mtu: new value for maximum frame size 4795 * 4796 * Returns 0 on success, negative on failure 4797 **/ 4798 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 4799 { 4800 struct igb_adapter *adapter = netdev_priv(netdev); 4801 struct pci_dev *pdev = adapter->pdev; 4802 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4803 4804 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 4805 dev_err(&pdev->dev, "Invalid MTU setting\n"); 4806 return -EINVAL; 4807 } 4808 4809 #define MAX_STD_JUMBO_FRAME_SIZE 9238 4810 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 4811 dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); 4812 return -EINVAL; 4813 } 4814 4815 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 4816 msleep(1); 4817 4818 /* igb_down has a dependency on max_frame_size */ 4819 adapter->max_frame_size = max_frame; 4820 4821 if (netif_running(netdev)) 4822 igb_down(adapter); 4823 4824 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 4825 netdev->mtu, new_mtu); 4826 netdev->mtu = new_mtu; 4827 4828 if (netif_running(netdev)) 4829 igb_up(adapter); 4830 else 4831 igb_reset(adapter); 4832 4833 clear_bit(__IGB_RESETTING, &adapter->state); 4834 4835 return 0; 4836 } 4837 4838 /** 4839 * igb_update_stats - Update the board statistics counters 4840 * @adapter: board private structure 4841 **/ 4842 void igb_update_stats(struct igb_adapter *adapter, 4843 struct rtnl_link_stats64 *net_stats) 4844 { 4845 struct e1000_hw *hw = &adapter->hw; 4846 struct pci_dev *pdev = adapter->pdev; 4847 u32 reg, mpc; 4848 u16 phy_tmp; 4849 int i; 4850 u64 bytes, packets; 4851 unsigned int start; 4852 u64 _bytes, _packets; 4853 4854 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 4855 4856 /* Prevent stats update while adapter is being reset, or if the pci 4857 * connection is down. 4858 */ 4859 if (adapter->link_speed == 0) 4860 return; 4861 if (pci_channel_offline(pdev)) 4862 return; 4863 4864 bytes = 0; 4865 packets = 0; 4866 for (i = 0; i < adapter->num_rx_queues; i++) { 4867 u32 rqdpc = rd32(E1000_RQDPC(i)); 4868 struct igb_ring *ring = adapter->rx_ring[i]; 4869 4870 if (rqdpc) { 4871 ring->rx_stats.drops += rqdpc; 4872 net_stats->rx_fifo_errors += rqdpc; 4873 } 4874 4875 do { 4876 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 4877 _bytes = ring->rx_stats.bytes; 4878 _packets = ring->rx_stats.packets; 4879 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 4880 bytes += _bytes; 4881 packets += _packets; 4882 } 4883 4884 net_stats->rx_bytes = bytes; 4885 net_stats->rx_packets = packets; 4886 4887 bytes = 0; 4888 packets = 0; 4889 for (i = 0; i < adapter->num_tx_queues; i++) { 4890 struct igb_ring *ring = adapter->tx_ring[i]; 4891 do { 4892 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 4893 _bytes = ring->tx_stats.bytes; 4894 _packets = ring->tx_stats.packets; 4895 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 4896 bytes += _bytes; 4897 packets += _packets; 4898 } 4899 net_stats->tx_bytes = bytes; 4900 net_stats->tx_packets = packets; 4901 4902 /* read stats registers */ 4903 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 4904 adapter->stats.gprc += rd32(E1000_GPRC); 4905 adapter->stats.gorc += rd32(E1000_GORCL); 4906 rd32(E1000_GORCH); /* clear GORCL */ 4907 adapter->stats.bprc += rd32(E1000_BPRC); 4908 adapter->stats.mprc += rd32(E1000_MPRC); 4909 adapter->stats.roc += rd32(E1000_ROC); 4910 4911 adapter->stats.prc64 += rd32(E1000_PRC64); 4912 adapter->stats.prc127 += rd32(E1000_PRC127); 4913 adapter->stats.prc255 += rd32(E1000_PRC255); 4914 adapter->stats.prc511 += rd32(E1000_PRC511); 4915 adapter->stats.prc1023 += rd32(E1000_PRC1023); 4916 adapter->stats.prc1522 += rd32(E1000_PRC1522); 4917 adapter->stats.symerrs += rd32(E1000_SYMERRS); 4918 adapter->stats.sec += rd32(E1000_SEC); 4919 4920 mpc = rd32(E1000_MPC); 4921 adapter->stats.mpc += mpc; 4922 net_stats->rx_fifo_errors += mpc; 4923 adapter->stats.scc += rd32(E1000_SCC); 4924 adapter->stats.ecol += rd32(E1000_ECOL); 4925 adapter->stats.mcc += rd32(E1000_MCC); 4926 adapter->stats.latecol += rd32(E1000_LATECOL); 4927 adapter->stats.dc += rd32(E1000_DC); 4928 adapter->stats.rlec += rd32(E1000_RLEC); 4929 adapter->stats.xonrxc += rd32(E1000_XONRXC); 4930 adapter->stats.xontxc += rd32(E1000_XONTXC); 4931 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 4932 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 4933 adapter->stats.fcruc += rd32(E1000_FCRUC); 4934 adapter->stats.gptc += rd32(E1000_GPTC); 4935 adapter->stats.gotc += rd32(E1000_GOTCL); 4936 rd32(E1000_GOTCH); /* clear GOTCL */ 4937 adapter->stats.rnbc += rd32(E1000_RNBC); 4938 adapter->stats.ruc += rd32(E1000_RUC); 4939 adapter->stats.rfc += rd32(E1000_RFC); 4940 adapter->stats.rjc += rd32(E1000_RJC); 4941 adapter->stats.tor += rd32(E1000_TORH); 4942 adapter->stats.tot += rd32(E1000_TOTH); 4943 adapter->stats.tpr += rd32(E1000_TPR); 4944 4945 adapter->stats.ptc64 += rd32(E1000_PTC64); 4946 adapter->stats.ptc127 += rd32(E1000_PTC127); 4947 adapter->stats.ptc255 += rd32(E1000_PTC255); 4948 adapter->stats.ptc511 += rd32(E1000_PTC511); 4949 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 4950 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 4951 4952 adapter->stats.mptc += rd32(E1000_MPTC); 4953 adapter->stats.bptc += rd32(E1000_BPTC); 4954 4955 adapter->stats.tpt += rd32(E1000_TPT); 4956 adapter->stats.colc += rd32(E1000_COLC); 4957 4958 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 4959 /* read internal phy specific stats */ 4960 reg = rd32(E1000_CTRL_EXT); 4961 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 4962 adapter->stats.rxerrc += rd32(E1000_RXERRC); 4963 4964 /* this stat has invalid values on i210/i211 */ 4965 if ((hw->mac.type != e1000_i210) && 4966 (hw->mac.type != e1000_i211)) 4967 adapter->stats.tncrs += rd32(E1000_TNCRS); 4968 } 4969 4970 adapter->stats.tsctc += rd32(E1000_TSCTC); 4971 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 4972 4973 adapter->stats.iac += rd32(E1000_IAC); 4974 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 4975 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 4976 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 4977 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 4978 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 4979 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 4980 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 4981 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 4982 4983 /* Fill out the OS statistics structure */ 4984 net_stats->multicast = adapter->stats.mprc; 4985 net_stats->collisions = adapter->stats.colc; 4986 4987 /* Rx Errors */ 4988 4989 /* RLEC on some newer hardware can be incorrect so build 4990 * our own version based on RUC and ROC 4991 */ 4992 net_stats->rx_errors = adapter->stats.rxerrc + 4993 adapter->stats.crcerrs + adapter->stats.algnerrc + 4994 adapter->stats.ruc + adapter->stats.roc + 4995 adapter->stats.cexterr; 4996 net_stats->rx_length_errors = adapter->stats.ruc + 4997 adapter->stats.roc; 4998 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4999 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5000 net_stats->rx_missed_errors = adapter->stats.mpc; 5001 5002 /* Tx Errors */ 5003 net_stats->tx_errors = adapter->stats.ecol + 5004 adapter->stats.latecol; 5005 net_stats->tx_aborted_errors = adapter->stats.ecol; 5006 net_stats->tx_window_errors = adapter->stats.latecol; 5007 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5008 5009 /* Tx Dropped needs to be maintained elsewhere */ 5010 5011 /* Phy Stats */ 5012 if (hw->phy.media_type == e1000_media_type_copper) { 5013 if ((adapter->link_speed == SPEED_1000) && 5014 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 5015 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 5016 adapter->phy_stats.idle_errors += phy_tmp; 5017 } 5018 } 5019 5020 /* Management Stats */ 5021 adapter->stats.mgptc += rd32(E1000_MGTPTC); 5022 adapter->stats.mgprc += rd32(E1000_MGTPRC); 5023 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 5024 5025 /* OS2BMC Stats */ 5026 reg = rd32(E1000_MANC); 5027 if (reg & E1000_MANC_EN_BMC2OS) { 5028 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 5029 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 5030 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 5031 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 5032 } 5033 } 5034 5035 static irqreturn_t igb_msix_other(int irq, void *data) 5036 { 5037 struct igb_adapter *adapter = data; 5038 struct e1000_hw *hw = &adapter->hw; 5039 u32 icr = rd32(E1000_ICR); 5040 /* reading ICR causes bit 31 of EICR to be cleared */ 5041 5042 if (icr & E1000_ICR_DRSTA) 5043 schedule_work(&adapter->reset_task); 5044 5045 if (icr & E1000_ICR_DOUTSYNC) { 5046 /* HW is reporting DMA is out of sync */ 5047 adapter->stats.doosync++; 5048 /* The DMA Out of Sync is also indication of a spoof event 5049 * in IOV mode. Check the Wrong VM Behavior register to 5050 * see if it is really a spoof event. 5051 */ 5052 igb_check_wvbr(adapter); 5053 } 5054 5055 /* Check for a mailbox event */ 5056 if (icr & E1000_ICR_VMMB) 5057 igb_msg_task(adapter); 5058 5059 if (icr & E1000_ICR_LSC) { 5060 hw->mac.get_link_status = 1; 5061 /* guard against interrupt when we're going down */ 5062 if (!test_bit(__IGB_DOWN, &adapter->state)) 5063 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5064 } 5065 5066 if (icr & E1000_ICR_TS) { 5067 u32 tsicr = rd32(E1000_TSICR); 5068 5069 if (tsicr & E1000_TSICR_TXTS) { 5070 /* acknowledge the interrupt */ 5071 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5072 /* retrieve hardware timestamp */ 5073 schedule_work(&adapter->ptp_tx_work); 5074 } 5075 } 5076 5077 wr32(E1000_EIMS, adapter->eims_other); 5078 5079 return IRQ_HANDLED; 5080 } 5081 5082 static void igb_write_itr(struct igb_q_vector *q_vector) 5083 { 5084 struct igb_adapter *adapter = q_vector->adapter; 5085 u32 itr_val = q_vector->itr_val & 0x7FFC; 5086 5087 if (!q_vector->set_itr) 5088 return; 5089 5090 if (!itr_val) 5091 itr_val = 0x4; 5092 5093 if (adapter->hw.mac.type == e1000_82575) 5094 itr_val |= itr_val << 16; 5095 else 5096 itr_val |= E1000_EITR_CNT_IGNR; 5097 5098 writel(itr_val, q_vector->itr_register); 5099 q_vector->set_itr = 0; 5100 } 5101 5102 static irqreturn_t igb_msix_ring(int irq, void *data) 5103 { 5104 struct igb_q_vector *q_vector = data; 5105 5106 /* Write the ITR value calculated from the previous interrupt. */ 5107 igb_write_itr(q_vector); 5108 5109 napi_schedule(&q_vector->napi); 5110 5111 return IRQ_HANDLED; 5112 } 5113 5114 #ifdef CONFIG_IGB_DCA 5115 static void igb_update_tx_dca(struct igb_adapter *adapter, 5116 struct igb_ring *tx_ring, 5117 int cpu) 5118 { 5119 struct e1000_hw *hw = &adapter->hw; 5120 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 5121 5122 if (hw->mac.type != e1000_82575) 5123 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 5124 5125 /* We can enable relaxed ordering for reads, but not writes when 5126 * DCA is enabled. This is due to a known issue in some chipsets 5127 * which will cause the DCA tag to be cleared. 5128 */ 5129 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 5130 E1000_DCA_TXCTRL_DATA_RRO_EN | 5131 E1000_DCA_TXCTRL_DESC_DCA_EN; 5132 5133 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 5134 } 5135 5136 static void igb_update_rx_dca(struct igb_adapter *adapter, 5137 struct igb_ring *rx_ring, 5138 int cpu) 5139 { 5140 struct e1000_hw *hw = &adapter->hw; 5141 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 5142 5143 if (hw->mac.type != e1000_82575) 5144 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 5145 5146 /* We can enable relaxed ordering for reads, but not writes when 5147 * DCA is enabled. This is due to a known issue in some chipsets 5148 * which will cause the DCA tag to be cleared. 5149 */ 5150 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 5151 E1000_DCA_RXCTRL_DESC_DCA_EN; 5152 5153 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 5154 } 5155 5156 static void igb_update_dca(struct igb_q_vector *q_vector) 5157 { 5158 struct igb_adapter *adapter = q_vector->adapter; 5159 int cpu = get_cpu(); 5160 5161 if (q_vector->cpu == cpu) 5162 goto out_no_update; 5163 5164 if (q_vector->tx.ring) 5165 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 5166 5167 if (q_vector->rx.ring) 5168 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 5169 5170 q_vector->cpu = cpu; 5171 out_no_update: 5172 put_cpu(); 5173 } 5174 5175 static void igb_setup_dca(struct igb_adapter *adapter) 5176 { 5177 struct e1000_hw *hw = &adapter->hw; 5178 int i; 5179 5180 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 5181 return; 5182 5183 /* Always use CB2 mode, difference is masked in the CB driver. */ 5184 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 5185 5186 for (i = 0; i < adapter->num_q_vectors; i++) { 5187 adapter->q_vector[i]->cpu = -1; 5188 igb_update_dca(adapter->q_vector[i]); 5189 } 5190 } 5191 5192 static int __igb_notify_dca(struct device *dev, void *data) 5193 { 5194 struct net_device *netdev = dev_get_drvdata(dev); 5195 struct igb_adapter *adapter = netdev_priv(netdev); 5196 struct pci_dev *pdev = adapter->pdev; 5197 struct e1000_hw *hw = &adapter->hw; 5198 unsigned long event = *(unsigned long *)data; 5199 5200 switch (event) { 5201 case DCA_PROVIDER_ADD: 5202 /* if already enabled, don't do it again */ 5203 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 5204 break; 5205 if (dca_add_requester(dev) == 0) { 5206 adapter->flags |= IGB_FLAG_DCA_ENABLED; 5207 dev_info(&pdev->dev, "DCA enabled\n"); 5208 igb_setup_dca(adapter); 5209 break; 5210 } 5211 /* Fall Through since DCA is disabled. */ 5212 case DCA_PROVIDER_REMOVE: 5213 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 5214 /* without this a class_device is left 5215 * hanging around in the sysfs model 5216 */ 5217 dca_remove_requester(dev); 5218 dev_info(&pdev->dev, "DCA disabled\n"); 5219 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 5220 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 5221 } 5222 break; 5223 } 5224 5225 return 0; 5226 } 5227 5228 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 5229 void *p) 5230 { 5231 int ret_val; 5232 5233 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 5234 __igb_notify_dca); 5235 5236 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 5237 } 5238 #endif /* CONFIG_IGB_DCA */ 5239 5240 #ifdef CONFIG_PCI_IOV 5241 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 5242 { 5243 unsigned char mac_addr[ETH_ALEN]; 5244 5245 eth_zero_addr(mac_addr); 5246 igb_set_vf_mac(adapter, vf, mac_addr); 5247 5248 /* By default spoof check is enabled for all VFs */ 5249 adapter->vf_data[vf].spoofchk_enabled = true; 5250 5251 return 0; 5252 } 5253 5254 #endif 5255 static void igb_ping_all_vfs(struct igb_adapter *adapter) 5256 { 5257 struct e1000_hw *hw = &adapter->hw; 5258 u32 ping; 5259 int i; 5260 5261 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 5262 ping = E1000_PF_CONTROL_MSG; 5263 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 5264 ping |= E1000_VT_MSGTYPE_CTS; 5265 igb_write_mbx(hw, &ping, 1, i); 5266 } 5267 } 5268 5269 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5270 { 5271 struct e1000_hw *hw = &adapter->hw; 5272 u32 vmolr = rd32(E1000_VMOLR(vf)); 5273 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5274 5275 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 5276 IGB_VF_FLAG_MULTI_PROMISC); 5277 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5278 5279 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 5280 vmolr |= E1000_VMOLR_MPME; 5281 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 5282 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 5283 } else { 5284 /* if we have hashes and we are clearing a multicast promisc 5285 * flag we need to write the hashes to the MTA as this step 5286 * was previously skipped 5287 */ 5288 if (vf_data->num_vf_mc_hashes > 30) { 5289 vmolr |= E1000_VMOLR_MPME; 5290 } else if (vf_data->num_vf_mc_hashes) { 5291 int j; 5292 vmolr |= E1000_VMOLR_ROMPE; 5293 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5294 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5295 } 5296 } 5297 5298 wr32(E1000_VMOLR(vf), vmolr); 5299 5300 /* there are flags left unprocessed, likely not supported */ 5301 if (*msgbuf & E1000_VT_MSGINFO_MASK) 5302 return -EINVAL; 5303 5304 return 0; 5305 } 5306 5307 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 5308 u32 *msgbuf, u32 vf) 5309 { 5310 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5311 u16 *hash_list = (u16 *)&msgbuf[1]; 5312 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5313 int i; 5314 5315 /* salt away the number of multicast addresses assigned 5316 * to this VF for later use to restore when the PF multi cast 5317 * list changes 5318 */ 5319 vf_data->num_vf_mc_hashes = n; 5320 5321 /* only up to 30 hash values supported */ 5322 if (n > 30) 5323 n = 30; 5324 5325 /* store the hashes for later use */ 5326 for (i = 0; i < n; i++) 5327 vf_data->vf_mc_hashes[i] = hash_list[i]; 5328 5329 /* Flush and reset the mta with the new values */ 5330 igb_set_rx_mode(adapter->netdev); 5331 5332 return 0; 5333 } 5334 5335 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 5336 { 5337 struct e1000_hw *hw = &adapter->hw; 5338 struct vf_data_storage *vf_data; 5339 int i, j; 5340 5341 for (i = 0; i < adapter->vfs_allocated_count; i++) { 5342 u32 vmolr = rd32(E1000_VMOLR(i)); 5343 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5344 5345 vf_data = &adapter->vf_data[i]; 5346 5347 if ((vf_data->num_vf_mc_hashes > 30) || 5348 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 5349 vmolr |= E1000_VMOLR_MPME; 5350 } else if (vf_data->num_vf_mc_hashes) { 5351 vmolr |= E1000_VMOLR_ROMPE; 5352 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5353 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5354 } 5355 wr32(E1000_VMOLR(i), vmolr); 5356 } 5357 } 5358 5359 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 5360 { 5361 struct e1000_hw *hw = &adapter->hw; 5362 u32 pool_mask, reg, vid; 5363 int i; 5364 5365 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5366 5367 /* Find the vlan filter for this id */ 5368 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5369 reg = rd32(E1000_VLVF(i)); 5370 5371 /* remove the vf from the pool */ 5372 reg &= ~pool_mask; 5373 5374 /* if pool is empty then remove entry from vfta */ 5375 if (!(reg & E1000_VLVF_POOLSEL_MASK) && 5376 (reg & E1000_VLVF_VLANID_ENABLE)) { 5377 reg = 0; 5378 vid = reg & E1000_VLVF_VLANID_MASK; 5379 igb_vfta_set(hw, vid, false); 5380 } 5381 5382 wr32(E1000_VLVF(i), reg); 5383 } 5384 5385 adapter->vf_data[vf].vlans_enabled = 0; 5386 } 5387 5388 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) 5389 { 5390 struct e1000_hw *hw = &adapter->hw; 5391 u32 reg, i; 5392 5393 /* The vlvf table only exists on 82576 hardware and newer */ 5394 if (hw->mac.type < e1000_82576) 5395 return -1; 5396 5397 /* we only need to do this if VMDq is enabled */ 5398 if (!adapter->vfs_allocated_count) 5399 return -1; 5400 5401 /* Find the vlan filter for this id */ 5402 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5403 reg = rd32(E1000_VLVF(i)); 5404 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5405 vid == (reg & E1000_VLVF_VLANID_MASK)) 5406 break; 5407 } 5408 5409 if (add) { 5410 if (i == E1000_VLVF_ARRAY_SIZE) { 5411 /* Did not find a matching VLAN ID entry that was 5412 * enabled. Search for a free filter entry, i.e. 5413 * one without the enable bit set 5414 */ 5415 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5416 reg = rd32(E1000_VLVF(i)); 5417 if (!(reg & E1000_VLVF_VLANID_ENABLE)) 5418 break; 5419 } 5420 } 5421 if (i < E1000_VLVF_ARRAY_SIZE) { 5422 /* Found an enabled/available entry */ 5423 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5424 5425 /* if !enabled we need to set this up in vfta */ 5426 if (!(reg & E1000_VLVF_VLANID_ENABLE)) { 5427 /* add VID to filter table */ 5428 igb_vfta_set(hw, vid, true); 5429 reg |= E1000_VLVF_VLANID_ENABLE; 5430 } 5431 reg &= ~E1000_VLVF_VLANID_MASK; 5432 reg |= vid; 5433 wr32(E1000_VLVF(i), reg); 5434 5435 /* do not modify RLPML for PF devices */ 5436 if (vf >= adapter->vfs_allocated_count) 5437 return 0; 5438 5439 if (!adapter->vf_data[vf].vlans_enabled) { 5440 u32 size; 5441 reg = rd32(E1000_VMOLR(vf)); 5442 size = reg & E1000_VMOLR_RLPML_MASK; 5443 size += 4; 5444 reg &= ~E1000_VMOLR_RLPML_MASK; 5445 reg |= size; 5446 wr32(E1000_VMOLR(vf), reg); 5447 } 5448 5449 adapter->vf_data[vf].vlans_enabled++; 5450 } 5451 } else { 5452 if (i < E1000_VLVF_ARRAY_SIZE) { 5453 /* remove vf from the pool */ 5454 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); 5455 /* if pool is empty then remove entry from vfta */ 5456 if (!(reg & E1000_VLVF_POOLSEL_MASK)) { 5457 reg = 0; 5458 igb_vfta_set(hw, vid, false); 5459 } 5460 wr32(E1000_VLVF(i), reg); 5461 5462 /* do not modify RLPML for PF devices */ 5463 if (vf >= adapter->vfs_allocated_count) 5464 return 0; 5465 5466 adapter->vf_data[vf].vlans_enabled--; 5467 if (!adapter->vf_data[vf].vlans_enabled) { 5468 u32 size; 5469 reg = rd32(E1000_VMOLR(vf)); 5470 size = reg & E1000_VMOLR_RLPML_MASK; 5471 size -= 4; 5472 reg &= ~E1000_VMOLR_RLPML_MASK; 5473 reg |= size; 5474 wr32(E1000_VMOLR(vf), reg); 5475 } 5476 } 5477 } 5478 return 0; 5479 } 5480 5481 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 5482 { 5483 struct e1000_hw *hw = &adapter->hw; 5484 5485 if (vid) 5486 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 5487 else 5488 wr32(E1000_VMVIR(vf), 0); 5489 } 5490 5491 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 5492 int vf, u16 vlan, u8 qos) 5493 { 5494 int err = 0; 5495 struct igb_adapter *adapter = netdev_priv(netdev); 5496 5497 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 5498 return -EINVAL; 5499 if (vlan || qos) { 5500 err = igb_vlvf_set(adapter, vlan, !!vlan, vf); 5501 if (err) 5502 goto out; 5503 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 5504 igb_set_vmolr(adapter, vf, !vlan); 5505 adapter->vf_data[vf].pf_vlan = vlan; 5506 adapter->vf_data[vf].pf_qos = qos; 5507 dev_info(&adapter->pdev->dev, 5508 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 5509 if (test_bit(__IGB_DOWN, &adapter->state)) { 5510 dev_warn(&adapter->pdev->dev, 5511 "The VF VLAN has been set, but the PF device is not up.\n"); 5512 dev_warn(&adapter->pdev->dev, 5513 "Bring the PF device up before attempting to use the VF device.\n"); 5514 } 5515 } else { 5516 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, 5517 false, vf); 5518 igb_set_vmvir(adapter, vlan, vf); 5519 igb_set_vmolr(adapter, vf, true); 5520 adapter->vf_data[vf].pf_vlan = 0; 5521 adapter->vf_data[vf].pf_qos = 0; 5522 } 5523 out: 5524 return err; 5525 } 5526 5527 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid) 5528 { 5529 struct e1000_hw *hw = &adapter->hw; 5530 int i; 5531 u32 reg; 5532 5533 /* Find the vlan filter for this id */ 5534 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5535 reg = rd32(E1000_VLVF(i)); 5536 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5537 vid == (reg & E1000_VLVF_VLANID_MASK)) 5538 break; 5539 } 5540 5541 if (i >= E1000_VLVF_ARRAY_SIZE) 5542 i = -1; 5543 5544 return i; 5545 } 5546 5547 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5548 { 5549 struct e1000_hw *hw = &adapter->hw; 5550 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5551 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 5552 int err = 0; 5553 5554 /* If in promiscuous mode we need to make sure the PF also has 5555 * the VLAN filter set. 5556 */ 5557 if (add && (adapter->netdev->flags & IFF_PROMISC)) 5558 err = igb_vlvf_set(adapter, vid, add, 5559 adapter->vfs_allocated_count); 5560 if (err) 5561 goto out; 5562 5563 err = igb_vlvf_set(adapter, vid, add, vf); 5564 5565 if (err) 5566 goto out; 5567 5568 /* Go through all the checks to see if the VLAN filter should 5569 * be wiped completely. 5570 */ 5571 if (!add && (adapter->netdev->flags & IFF_PROMISC)) { 5572 u32 vlvf, bits; 5573 5574 int regndx = igb_find_vlvf_entry(adapter, vid); 5575 if (regndx < 0) 5576 goto out; 5577 /* See if any other pools are set for this VLAN filter 5578 * entry other than the PF. 5579 */ 5580 vlvf = bits = rd32(E1000_VLVF(regndx)); 5581 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT + 5582 adapter->vfs_allocated_count); 5583 /* If the filter was removed then ensure PF pool bit 5584 * is cleared if the PF only added itself to the pool 5585 * because the PF is in promiscuous mode. 5586 */ 5587 if ((vlvf & VLAN_VID_MASK) == vid && 5588 !test_bit(vid, adapter->active_vlans) && 5589 !bits) 5590 igb_vlvf_set(adapter, vid, add, 5591 adapter->vfs_allocated_count); 5592 } 5593 5594 out: 5595 return err; 5596 } 5597 5598 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 5599 { 5600 /* clear flags - except flag that indicates PF has set the MAC */ 5601 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; 5602 adapter->vf_data[vf].last_nack = jiffies; 5603 5604 /* reset offloads to defaults */ 5605 igb_set_vmolr(adapter, vf, true); 5606 5607 /* reset vlans for device */ 5608 igb_clear_vf_vfta(adapter, vf); 5609 if (adapter->vf_data[vf].pf_vlan) 5610 igb_ndo_set_vf_vlan(adapter->netdev, vf, 5611 adapter->vf_data[vf].pf_vlan, 5612 adapter->vf_data[vf].pf_qos); 5613 else 5614 igb_clear_vf_vfta(adapter, vf); 5615 5616 /* reset multicast table array for vf */ 5617 adapter->vf_data[vf].num_vf_mc_hashes = 0; 5618 5619 /* Flush and reset the mta with the new values */ 5620 igb_set_rx_mode(adapter->netdev); 5621 } 5622 5623 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 5624 { 5625 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5626 5627 /* clear mac address as we were hotplug removed/added */ 5628 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 5629 eth_zero_addr(vf_mac); 5630 5631 /* process remaining reset events */ 5632 igb_vf_reset(adapter, vf); 5633 } 5634 5635 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 5636 { 5637 struct e1000_hw *hw = &adapter->hw; 5638 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5639 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 5640 u32 reg, msgbuf[3]; 5641 u8 *addr = (u8 *)(&msgbuf[1]); 5642 5643 /* process all the same items cleared in a function level reset */ 5644 igb_vf_reset(adapter, vf); 5645 5646 /* set vf mac address */ 5647 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); 5648 5649 /* enable transmit and receive for vf */ 5650 reg = rd32(E1000_VFTE); 5651 wr32(E1000_VFTE, reg | (1 << vf)); 5652 reg = rd32(E1000_VFRE); 5653 wr32(E1000_VFRE, reg | (1 << vf)); 5654 5655 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 5656 5657 /* reply to reset with ack and vf mac address */ 5658 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 5659 memcpy(addr, vf_mac, 6); 5660 igb_write_mbx(hw, msgbuf, 3, vf); 5661 } 5662 5663 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 5664 { 5665 /* The VF MAC Address is stored in a packed array of bytes 5666 * starting at the second 32 bit word of the msg array 5667 */ 5668 unsigned char *addr = (char *)&msg[1]; 5669 int err = -1; 5670 5671 if (is_valid_ether_addr(addr)) 5672 err = igb_set_vf_mac(adapter, vf, addr); 5673 5674 return err; 5675 } 5676 5677 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 5678 { 5679 struct e1000_hw *hw = &adapter->hw; 5680 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5681 u32 msg = E1000_VT_MSGTYPE_NACK; 5682 5683 /* if device isn't clear to send it shouldn't be reading either */ 5684 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 5685 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 5686 igb_write_mbx(hw, &msg, 1, vf); 5687 vf_data->last_nack = jiffies; 5688 } 5689 } 5690 5691 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 5692 { 5693 struct pci_dev *pdev = adapter->pdev; 5694 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 5695 struct e1000_hw *hw = &adapter->hw; 5696 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5697 s32 retval; 5698 5699 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); 5700 5701 if (retval) { 5702 /* if receive failed revoke VF CTS stats and restart init */ 5703 dev_err(&pdev->dev, "Error receiving message from VF\n"); 5704 vf_data->flags &= ~IGB_VF_FLAG_CTS; 5705 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 5706 return; 5707 goto out; 5708 } 5709 5710 /* this is a message we already processed, do nothing */ 5711 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 5712 return; 5713 5714 /* until the vf completes a reset it should not be 5715 * allowed to start any configuration. 5716 */ 5717 if (msgbuf[0] == E1000_VF_RESET) { 5718 igb_vf_reset_msg(adapter, vf); 5719 return; 5720 } 5721 5722 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 5723 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 5724 return; 5725 retval = -1; 5726 goto out; 5727 } 5728 5729 switch ((msgbuf[0] & 0xFFFF)) { 5730 case E1000_VF_SET_MAC_ADDR: 5731 retval = -EINVAL; 5732 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) 5733 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 5734 else 5735 dev_warn(&pdev->dev, 5736 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 5737 vf); 5738 break; 5739 case E1000_VF_SET_PROMISC: 5740 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 5741 break; 5742 case E1000_VF_SET_MULTICAST: 5743 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 5744 break; 5745 case E1000_VF_SET_LPE: 5746 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 5747 break; 5748 case E1000_VF_SET_VLAN: 5749 retval = -1; 5750 if (vf_data->pf_vlan) 5751 dev_warn(&pdev->dev, 5752 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 5753 vf); 5754 else 5755 retval = igb_set_vf_vlan(adapter, msgbuf, vf); 5756 break; 5757 default: 5758 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 5759 retval = -1; 5760 break; 5761 } 5762 5763 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 5764 out: 5765 /* notify the VF of the results of what it sent us */ 5766 if (retval) 5767 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 5768 else 5769 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 5770 5771 igb_write_mbx(hw, msgbuf, 1, vf); 5772 } 5773 5774 static void igb_msg_task(struct igb_adapter *adapter) 5775 { 5776 struct e1000_hw *hw = &adapter->hw; 5777 u32 vf; 5778 5779 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 5780 /* process any reset requests */ 5781 if (!igb_check_for_rst(hw, vf)) 5782 igb_vf_reset_event(adapter, vf); 5783 5784 /* process any messages pending */ 5785 if (!igb_check_for_msg(hw, vf)) 5786 igb_rcv_msg_from_vf(adapter, vf); 5787 5788 /* process any acks */ 5789 if (!igb_check_for_ack(hw, vf)) 5790 igb_rcv_ack_from_vf(adapter, vf); 5791 } 5792 } 5793 5794 /** 5795 * igb_set_uta - Set unicast filter table address 5796 * @adapter: board private structure 5797 * 5798 * The unicast table address is a register array of 32-bit registers. 5799 * The table is meant to be used in a way similar to how the MTA is used 5800 * however due to certain limitations in the hardware it is necessary to 5801 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 5802 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 5803 **/ 5804 static void igb_set_uta(struct igb_adapter *adapter) 5805 { 5806 struct e1000_hw *hw = &adapter->hw; 5807 int i; 5808 5809 /* The UTA table only exists on 82576 hardware and newer */ 5810 if (hw->mac.type < e1000_82576) 5811 return; 5812 5813 /* we only need to do this if VMDq is enabled */ 5814 if (!adapter->vfs_allocated_count) 5815 return; 5816 5817 for (i = 0; i < hw->mac.uta_reg_count; i++) 5818 array_wr32(E1000_UTA, i, ~0); 5819 } 5820 5821 /** 5822 * igb_intr_msi - Interrupt Handler 5823 * @irq: interrupt number 5824 * @data: pointer to a network interface device structure 5825 **/ 5826 static irqreturn_t igb_intr_msi(int irq, void *data) 5827 { 5828 struct igb_adapter *adapter = data; 5829 struct igb_q_vector *q_vector = adapter->q_vector[0]; 5830 struct e1000_hw *hw = &adapter->hw; 5831 /* read ICR disables interrupts using IAM */ 5832 u32 icr = rd32(E1000_ICR); 5833 5834 igb_write_itr(q_vector); 5835 5836 if (icr & E1000_ICR_DRSTA) 5837 schedule_work(&adapter->reset_task); 5838 5839 if (icr & E1000_ICR_DOUTSYNC) { 5840 /* HW is reporting DMA is out of sync */ 5841 adapter->stats.doosync++; 5842 } 5843 5844 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 5845 hw->mac.get_link_status = 1; 5846 if (!test_bit(__IGB_DOWN, &adapter->state)) 5847 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5848 } 5849 5850 if (icr & E1000_ICR_TS) { 5851 u32 tsicr = rd32(E1000_TSICR); 5852 5853 if (tsicr & E1000_TSICR_TXTS) { 5854 /* acknowledge the interrupt */ 5855 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5856 /* retrieve hardware timestamp */ 5857 schedule_work(&adapter->ptp_tx_work); 5858 } 5859 } 5860 5861 napi_schedule(&q_vector->napi); 5862 5863 return IRQ_HANDLED; 5864 } 5865 5866 /** 5867 * igb_intr - Legacy Interrupt Handler 5868 * @irq: interrupt number 5869 * @data: pointer to a network interface device structure 5870 **/ 5871 static irqreturn_t igb_intr(int irq, void *data) 5872 { 5873 struct igb_adapter *adapter = data; 5874 struct igb_q_vector *q_vector = adapter->q_vector[0]; 5875 struct e1000_hw *hw = &adapter->hw; 5876 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5877 * need for the IMC write 5878 */ 5879 u32 icr = rd32(E1000_ICR); 5880 5881 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5882 * not set, then the adapter didn't send an interrupt 5883 */ 5884 if (!(icr & E1000_ICR_INT_ASSERTED)) 5885 return IRQ_NONE; 5886 5887 igb_write_itr(q_vector); 5888 5889 if (icr & E1000_ICR_DRSTA) 5890 schedule_work(&adapter->reset_task); 5891 5892 if (icr & E1000_ICR_DOUTSYNC) { 5893 /* HW is reporting DMA is out of sync */ 5894 adapter->stats.doosync++; 5895 } 5896 5897 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 5898 hw->mac.get_link_status = 1; 5899 /* guard against interrupt when we're going down */ 5900 if (!test_bit(__IGB_DOWN, &adapter->state)) 5901 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5902 } 5903 5904 if (icr & E1000_ICR_TS) { 5905 u32 tsicr = rd32(E1000_TSICR); 5906 5907 if (tsicr & E1000_TSICR_TXTS) { 5908 /* acknowledge the interrupt */ 5909 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5910 /* retrieve hardware timestamp */ 5911 schedule_work(&adapter->ptp_tx_work); 5912 } 5913 } 5914 5915 napi_schedule(&q_vector->napi); 5916 5917 return IRQ_HANDLED; 5918 } 5919 5920 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 5921 { 5922 struct igb_adapter *adapter = q_vector->adapter; 5923 struct e1000_hw *hw = &adapter->hw; 5924 5925 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 5926 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 5927 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 5928 igb_set_itr(q_vector); 5929 else 5930 igb_update_ring_itr(q_vector); 5931 } 5932 5933 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5934 if (adapter->msix_entries) 5935 wr32(E1000_EIMS, q_vector->eims_value); 5936 else 5937 igb_irq_enable(adapter); 5938 } 5939 } 5940 5941 /** 5942 * igb_poll - NAPI Rx polling callback 5943 * @napi: napi polling structure 5944 * @budget: count of how many packets we should handle 5945 **/ 5946 static int igb_poll(struct napi_struct *napi, int budget) 5947 { 5948 struct igb_q_vector *q_vector = container_of(napi, 5949 struct igb_q_vector, 5950 napi); 5951 bool clean_complete = true; 5952 5953 #ifdef CONFIG_IGB_DCA 5954 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 5955 igb_update_dca(q_vector); 5956 #endif 5957 if (q_vector->tx.ring) 5958 clean_complete = igb_clean_tx_irq(q_vector); 5959 5960 if (q_vector->rx.ring) 5961 clean_complete &= igb_clean_rx_irq(q_vector, budget); 5962 5963 /* If all work not completed, return budget and keep polling */ 5964 if (!clean_complete) 5965 return budget; 5966 5967 /* If not enough Rx work done, exit the polling mode */ 5968 napi_complete(napi); 5969 igb_ring_irq_enable(q_vector); 5970 5971 return 0; 5972 } 5973 5974 /** 5975 * igb_clean_tx_irq - Reclaim resources after transmit completes 5976 * @q_vector: pointer to q_vector containing needed info 5977 * 5978 * returns true if ring is completely cleaned 5979 **/ 5980 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) 5981 { 5982 struct igb_adapter *adapter = q_vector->adapter; 5983 struct igb_ring *tx_ring = q_vector->tx.ring; 5984 struct igb_tx_buffer *tx_buffer; 5985 union e1000_adv_tx_desc *tx_desc; 5986 unsigned int total_bytes = 0, total_packets = 0; 5987 unsigned int budget = q_vector->tx.work_limit; 5988 unsigned int i = tx_ring->next_to_clean; 5989 5990 if (test_bit(__IGB_DOWN, &adapter->state)) 5991 return true; 5992 5993 tx_buffer = &tx_ring->tx_buffer_info[i]; 5994 tx_desc = IGB_TX_DESC(tx_ring, i); 5995 i -= tx_ring->count; 5996 5997 do { 5998 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 5999 6000 /* if next_to_watch is not set then there is no work pending */ 6001 if (!eop_desc) 6002 break; 6003 6004 /* prevent any other reads prior to eop_desc */ 6005 read_barrier_depends(); 6006 6007 /* if DD is not set pending work has not been completed */ 6008 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 6009 break; 6010 6011 /* clear next_to_watch to prevent false hangs */ 6012 tx_buffer->next_to_watch = NULL; 6013 6014 /* update the statistics for this packet */ 6015 total_bytes += tx_buffer->bytecount; 6016 total_packets += tx_buffer->gso_segs; 6017 6018 /* free the skb */ 6019 dev_kfree_skb_any(tx_buffer->skb); 6020 6021 /* unmap skb header data */ 6022 dma_unmap_single(tx_ring->dev, 6023 dma_unmap_addr(tx_buffer, dma), 6024 dma_unmap_len(tx_buffer, len), 6025 DMA_TO_DEVICE); 6026 6027 /* clear tx_buffer data */ 6028 tx_buffer->skb = NULL; 6029 dma_unmap_len_set(tx_buffer, len, 0); 6030 6031 /* clear last DMA location and unmap remaining buffers */ 6032 while (tx_desc != eop_desc) { 6033 tx_buffer++; 6034 tx_desc++; 6035 i++; 6036 if (unlikely(!i)) { 6037 i -= tx_ring->count; 6038 tx_buffer = tx_ring->tx_buffer_info; 6039 tx_desc = IGB_TX_DESC(tx_ring, 0); 6040 } 6041 6042 /* unmap any remaining paged data */ 6043 if (dma_unmap_len(tx_buffer, len)) { 6044 dma_unmap_page(tx_ring->dev, 6045 dma_unmap_addr(tx_buffer, dma), 6046 dma_unmap_len(tx_buffer, len), 6047 DMA_TO_DEVICE); 6048 dma_unmap_len_set(tx_buffer, len, 0); 6049 } 6050 } 6051 6052 /* move us one more past the eop_desc for start of next pkt */ 6053 tx_buffer++; 6054 tx_desc++; 6055 i++; 6056 if (unlikely(!i)) { 6057 i -= tx_ring->count; 6058 tx_buffer = tx_ring->tx_buffer_info; 6059 tx_desc = IGB_TX_DESC(tx_ring, 0); 6060 } 6061 6062 /* issue prefetch for next Tx descriptor */ 6063 prefetch(tx_desc); 6064 6065 /* update budget accounting */ 6066 budget--; 6067 } while (likely(budget)); 6068 6069 netdev_tx_completed_queue(txring_txq(tx_ring), 6070 total_packets, total_bytes); 6071 i += tx_ring->count; 6072 tx_ring->next_to_clean = i; 6073 u64_stats_update_begin(&tx_ring->tx_syncp); 6074 tx_ring->tx_stats.bytes += total_bytes; 6075 tx_ring->tx_stats.packets += total_packets; 6076 u64_stats_update_end(&tx_ring->tx_syncp); 6077 q_vector->tx.total_bytes += total_bytes; 6078 q_vector->tx.total_packets += total_packets; 6079 6080 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 6081 struct e1000_hw *hw = &adapter->hw; 6082 6083 /* Detect a transmit hang in hardware, this serializes the 6084 * check with the clearing of time_stamp and movement of i 6085 */ 6086 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 6087 if (tx_buffer->next_to_watch && 6088 time_after(jiffies, tx_buffer->time_stamp + 6089 (adapter->tx_timeout_factor * HZ)) && 6090 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 6091 6092 /* detected Tx unit hang */ 6093 dev_err(tx_ring->dev, 6094 "Detected Tx Unit Hang\n" 6095 " Tx Queue <%d>\n" 6096 " TDH <%x>\n" 6097 " TDT <%x>\n" 6098 " next_to_use <%x>\n" 6099 " next_to_clean <%x>\n" 6100 "buffer_info[next_to_clean]\n" 6101 " time_stamp <%lx>\n" 6102 " next_to_watch <%p>\n" 6103 " jiffies <%lx>\n" 6104 " desc.status <%x>\n", 6105 tx_ring->queue_index, 6106 rd32(E1000_TDH(tx_ring->reg_idx)), 6107 readl(tx_ring->tail), 6108 tx_ring->next_to_use, 6109 tx_ring->next_to_clean, 6110 tx_buffer->time_stamp, 6111 tx_buffer->next_to_watch, 6112 jiffies, 6113 tx_buffer->next_to_watch->wb.status); 6114 netif_stop_subqueue(tx_ring->netdev, 6115 tx_ring->queue_index); 6116 6117 /* we are about to reset, no point in enabling stuff */ 6118 return true; 6119 } 6120 } 6121 6122 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 6123 if (unlikely(total_packets && 6124 netif_carrier_ok(tx_ring->netdev) && 6125 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 6126 /* Make sure that anybody stopping the queue after this 6127 * sees the new next_to_clean. 6128 */ 6129 smp_mb(); 6130 if (__netif_subqueue_stopped(tx_ring->netdev, 6131 tx_ring->queue_index) && 6132 !(test_bit(__IGB_DOWN, &adapter->state))) { 6133 netif_wake_subqueue(tx_ring->netdev, 6134 tx_ring->queue_index); 6135 6136 u64_stats_update_begin(&tx_ring->tx_syncp); 6137 tx_ring->tx_stats.restart_queue++; 6138 u64_stats_update_end(&tx_ring->tx_syncp); 6139 } 6140 } 6141 6142 return !!budget; 6143 } 6144 6145 /** 6146 * igb_reuse_rx_page - page flip buffer and store it back on the ring 6147 * @rx_ring: rx descriptor ring to store buffers on 6148 * @old_buff: donor buffer to have page reused 6149 * 6150 * Synchronizes page for reuse by the adapter 6151 **/ 6152 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 6153 struct igb_rx_buffer *old_buff) 6154 { 6155 struct igb_rx_buffer *new_buff; 6156 u16 nta = rx_ring->next_to_alloc; 6157 6158 new_buff = &rx_ring->rx_buffer_info[nta]; 6159 6160 /* update, and store next to alloc */ 6161 nta++; 6162 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 6163 6164 /* transfer page from old buffer to new buffer */ 6165 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer)); 6166 6167 /* sync the buffer for use by the device */ 6168 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 6169 old_buff->page_offset, 6170 IGB_RX_BUFSZ, 6171 DMA_FROM_DEVICE); 6172 } 6173 6174 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 6175 struct page *page, 6176 unsigned int truesize) 6177 { 6178 /* avoid re-using remote pages */ 6179 if (unlikely(page_to_nid(page) != numa_node_id())) 6180 return false; 6181 6182 #if (PAGE_SIZE < 8192) 6183 /* if we are only owner of page we can reuse it */ 6184 if (unlikely(page_count(page) != 1)) 6185 return false; 6186 6187 /* flip page offset to other buffer */ 6188 rx_buffer->page_offset ^= IGB_RX_BUFSZ; 6189 6190 /* since we are the only owner of the page and we need to 6191 * increment it, just set the value to 2 in order to avoid 6192 * an unnecessary locked operation 6193 */ 6194 atomic_set(&page->_count, 2); 6195 #else 6196 /* move offset up to the next cache line */ 6197 rx_buffer->page_offset += truesize; 6198 6199 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) 6200 return false; 6201 6202 /* bump ref count on page before it is given to the stack */ 6203 get_page(page); 6204 #endif 6205 6206 return true; 6207 } 6208 6209 /** 6210 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 6211 * @rx_ring: rx descriptor ring to transact packets on 6212 * @rx_buffer: buffer containing page to add 6213 * @rx_desc: descriptor containing length of buffer written by hardware 6214 * @skb: sk_buff to place the data into 6215 * 6216 * This function will add the data contained in rx_buffer->page to the skb. 6217 * This is done either through a direct copy if the data in the buffer is 6218 * less than the skb header size, otherwise it will just attach the page as 6219 * a frag to the skb. 6220 * 6221 * The function will then update the page offset if necessary and return 6222 * true if the buffer can be reused by the adapter. 6223 **/ 6224 static bool igb_add_rx_frag(struct igb_ring *rx_ring, 6225 struct igb_rx_buffer *rx_buffer, 6226 union e1000_adv_rx_desc *rx_desc, 6227 struct sk_buff *skb) 6228 { 6229 struct page *page = rx_buffer->page; 6230 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6231 #if (PAGE_SIZE < 8192) 6232 unsigned int truesize = IGB_RX_BUFSZ; 6233 #else 6234 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 6235 #endif 6236 6237 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 6238 unsigned char *va = page_address(page) + rx_buffer->page_offset; 6239 6240 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6241 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6242 va += IGB_TS_HDR_LEN; 6243 size -= IGB_TS_HDR_LEN; 6244 } 6245 6246 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 6247 6248 /* we can reuse buffer as-is, just make sure it is local */ 6249 if (likely(page_to_nid(page) == numa_node_id())) 6250 return true; 6251 6252 /* this page cannot be reused so discard it */ 6253 put_page(page); 6254 return false; 6255 } 6256 6257 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 6258 rx_buffer->page_offset, size, truesize); 6259 6260 return igb_can_reuse_rx_page(rx_buffer, page, truesize); 6261 } 6262 6263 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, 6264 union e1000_adv_rx_desc *rx_desc, 6265 struct sk_buff *skb) 6266 { 6267 struct igb_rx_buffer *rx_buffer; 6268 struct page *page; 6269 6270 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6271 6272 page = rx_buffer->page; 6273 prefetchw(page); 6274 6275 if (likely(!skb)) { 6276 void *page_addr = page_address(page) + 6277 rx_buffer->page_offset; 6278 6279 /* prefetch first cache line of first page */ 6280 prefetch(page_addr); 6281 #if L1_CACHE_BYTES < 128 6282 prefetch(page_addr + L1_CACHE_BYTES); 6283 #endif 6284 6285 /* allocate a skb to store the frags */ 6286 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 6287 IGB_RX_HDR_LEN); 6288 if (unlikely(!skb)) { 6289 rx_ring->rx_stats.alloc_failed++; 6290 return NULL; 6291 } 6292 6293 /* we will be copying header into skb->data in 6294 * pskb_may_pull so it is in our interest to prefetch 6295 * it now to avoid a possible cache miss 6296 */ 6297 prefetchw(skb->data); 6298 } 6299 6300 /* we are reusing so sync this buffer for CPU use */ 6301 dma_sync_single_range_for_cpu(rx_ring->dev, 6302 rx_buffer->dma, 6303 rx_buffer->page_offset, 6304 IGB_RX_BUFSZ, 6305 DMA_FROM_DEVICE); 6306 6307 /* pull page into skb */ 6308 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 6309 /* hand second half of page back to the ring */ 6310 igb_reuse_rx_page(rx_ring, rx_buffer); 6311 } else { 6312 /* we are not reusing the buffer so unmap it */ 6313 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6314 PAGE_SIZE, DMA_FROM_DEVICE); 6315 } 6316 6317 /* clear contents of rx_buffer */ 6318 rx_buffer->page = NULL; 6319 6320 return skb; 6321 } 6322 6323 static inline void igb_rx_checksum(struct igb_ring *ring, 6324 union e1000_adv_rx_desc *rx_desc, 6325 struct sk_buff *skb) 6326 { 6327 skb_checksum_none_assert(skb); 6328 6329 /* Ignore Checksum bit is set */ 6330 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 6331 return; 6332 6333 /* Rx checksum disabled via ethtool */ 6334 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 6335 return; 6336 6337 /* TCP/UDP checksum error bit is set */ 6338 if (igb_test_staterr(rx_desc, 6339 E1000_RXDEXT_STATERR_TCPE | 6340 E1000_RXDEXT_STATERR_IPE)) { 6341 /* work around errata with sctp packets where the TCPE aka 6342 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 6343 * packets, (aka let the stack check the crc32c) 6344 */ 6345 if (!((skb->len == 60) && 6346 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 6347 u64_stats_update_begin(&ring->rx_syncp); 6348 ring->rx_stats.csum_err++; 6349 u64_stats_update_end(&ring->rx_syncp); 6350 } 6351 /* let the stack verify checksum errors */ 6352 return; 6353 } 6354 /* It must be a TCP or UDP packet with a valid checksum */ 6355 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 6356 E1000_RXD_STAT_UDPCS)) 6357 skb->ip_summed = CHECKSUM_UNNECESSARY; 6358 6359 dev_dbg(ring->dev, "cksum success: bits %08X\n", 6360 le32_to_cpu(rx_desc->wb.upper.status_error)); 6361 } 6362 6363 static inline void igb_rx_hash(struct igb_ring *ring, 6364 union e1000_adv_rx_desc *rx_desc, 6365 struct sk_buff *skb) 6366 { 6367 if (ring->netdev->features & NETIF_F_RXHASH) 6368 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 6369 } 6370 6371 /** 6372 * igb_is_non_eop - process handling of non-EOP buffers 6373 * @rx_ring: Rx ring being processed 6374 * @rx_desc: Rx descriptor for current buffer 6375 * @skb: current socket buffer containing buffer in progress 6376 * 6377 * This function updates next to clean. If the buffer is an EOP buffer 6378 * this function exits returning false, otherwise it will place the 6379 * sk_buff in the next buffer to be chained and return true indicating 6380 * that this is in fact a non-EOP buffer. 6381 **/ 6382 static bool igb_is_non_eop(struct igb_ring *rx_ring, 6383 union e1000_adv_rx_desc *rx_desc) 6384 { 6385 u32 ntc = rx_ring->next_to_clean + 1; 6386 6387 /* fetch, update, and store next to clean */ 6388 ntc = (ntc < rx_ring->count) ? ntc : 0; 6389 rx_ring->next_to_clean = ntc; 6390 6391 prefetch(IGB_RX_DESC(rx_ring, ntc)); 6392 6393 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 6394 return false; 6395 6396 return true; 6397 } 6398 6399 /** 6400 * igb_get_headlen - determine size of header for LRO/GRO 6401 * @data: pointer to the start of the headers 6402 * @max_len: total length of section to find headers in 6403 * 6404 * This function is meant to determine the length of headers that will 6405 * be recognized by hardware for LRO, and GRO offloads. The main 6406 * motivation of doing this is to only perform one pull for IPv4 TCP 6407 * packets so that we can do basic things like calculating the gso_size 6408 * based on the average data per packet. 6409 **/ 6410 static unsigned int igb_get_headlen(unsigned char *data, 6411 unsigned int max_len) 6412 { 6413 union { 6414 unsigned char *network; 6415 /* l2 headers */ 6416 struct ethhdr *eth; 6417 struct vlan_hdr *vlan; 6418 /* l3 headers */ 6419 struct iphdr *ipv4; 6420 struct ipv6hdr *ipv6; 6421 } hdr; 6422 __be16 protocol; 6423 u8 nexthdr = 0; /* default to not TCP */ 6424 u8 hlen; 6425 6426 /* this should never happen, but better safe than sorry */ 6427 if (max_len < ETH_HLEN) 6428 return max_len; 6429 6430 /* initialize network frame pointer */ 6431 hdr.network = data; 6432 6433 /* set first protocol and move network header forward */ 6434 protocol = hdr.eth->h_proto; 6435 hdr.network += ETH_HLEN; 6436 6437 /* handle any vlan tag if present */ 6438 if (protocol == __constant_htons(ETH_P_8021Q)) { 6439 if ((hdr.network - data) > (max_len - VLAN_HLEN)) 6440 return max_len; 6441 6442 protocol = hdr.vlan->h_vlan_encapsulated_proto; 6443 hdr.network += VLAN_HLEN; 6444 } 6445 6446 /* handle L3 protocols */ 6447 if (protocol == __constant_htons(ETH_P_IP)) { 6448 if ((hdr.network - data) > (max_len - sizeof(struct iphdr))) 6449 return max_len; 6450 6451 /* access ihl as a u8 to avoid unaligned access on ia64 */ 6452 hlen = (hdr.network[0] & 0x0F) << 2; 6453 6454 /* verify hlen meets minimum size requirements */ 6455 if (hlen < sizeof(struct iphdr)) 6456 return hdr.network - data; 6457 6458 /* record next protocol if header is present */ 6459 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET))) 6460 nexthdr = hdr.ipv4->protocol; 6461 } else if (protocol == __constant_htons(ETH_P_IPV6)) { 6462 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr))) 6463 return max_len; 6464 6465 /* record next protocol */ 6466 nexthdr = hdr.ipv6->nexthdr; 6467 hlen = sizeof(struct ipv6hdr); 6468 } else { 6469 return hdr.network - data; 6470 } 6471 6472 /* relocate pointer to start of L4 header */ 6473 hdr.network += hlen; 6474 6475 /* finally sort out TCP */ 6476 if (nexthdr == IPPROTO_TCP) { 6477 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr))) 6478 return max_len; 6479 6480 /* access doff as a u8 to avoid unaligned access on ia64 */ 6481 hlen = (hdr.network[12] & 0xF0) >> 2; 6482 6483 /* verify hlen meets minimum size requirements */ 6484 if (hlen < sizeof(struct tcphdr)) 6485 return hdr.network - data; 6486 6487 hdr.network += hlen; 6488 } else if (nexthdr == IPPROTO_UDP) { 6489 if ((hdr.network - data) > (max_len - sizeof(struct udphdr))) 6490 return max_len; 6491 6492 hdr.network += sizeof(struct udphdr); 6493 } 6494 6495 /* If everything has gone correctly hdr.network should be the 6496 * data section of the packet and will be the end of the header. 6497 * If not then it probably represents the end of the last recognized 6498 * header. 6499 */ 6500 if ((hdr.network - data) < max_len) 6501 return hdr.network - data; 6502 else 6503 return max_len; 6504 } 6505 6506 /** 6507 * igb_pull_tail - igb specific version of skb_pull_tail 6508 * @rx_ring: rx descriptor ring packet is being transacted on 6509 * @rx_desc: pointer to the EOP Rx descriptor 6510 * @skb: pointer to current skb being adjusted 6511 * 6512 * This function is an igb specific version of __pskb_pull_tail. The 6513 * main difference between this version and the original function is that 6514 * this function can make several assumptions about the state of things 6515 * that allow for significant optimizations versus the standard function. 6516 * As a result we can do things like drop a frag and maintain an accurate 6517 * truesize for the skb. 6518 */ 6519 static void igb_pull_tail(struct igb_ring *rx_ring, 6520 union e1000_adv_rx_desc *rx_desc, 6521 struct sk_buff *skb) 6522 { 6523 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 6524 unsigned char *va; 6525 unsigned int pull_len; 6526 6527 /* it is valid to use page_address instead of kmap since we are 6528 * working with pages allocated out of the lomem pool per 6529 * alloc_page(GFP_ATOMIC) 6530 */ 6531 va = skb_frag_address(frag); 6532 6533 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6534 /* retrieve timestamp from buffer */ 6535 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6536 6537 /* update pointers to remove timestamp header */ 6538 skb_frag_size_sub(frag, IGB_TS_HDR_LEN); 6539 frag->page_offset += IGB_TS_HDR_LEN; 6540 skb->data_len -= IGB_TS_HDR_LEN; 6541 skb->len -= IGB_TS_HDR_LEN; 6542 6543 /* move va to start of packet data */ 6544 va += IGB_TS_HDR_LEN; 6545 } 6546 6547 /* we need the header to contain the greater of either ETH_HLEN or 6548 * 60 bytes if the skb->len is less than 60 for skb_pad. 6549 */ 6550 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN); 6551 6552 /* align pull length to size of long to optimize memcpy performance */ 6553 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 6554 6555 /* update all of the pointers */ 6556 skb_frag_size_sub(frag, pull_len); 6557 frag->page_offset += pull_len; 6558 skb->data_len -= pull_len; 6559 skb->tail += pull_len; 6560 } 6561 6562 /** 6563 * igb_cleanup_headers - Correct corrupted or empty headers 6564 * @rx_ring: rx descriptor ring packet is being transacted on 6565 * @rx_desc: pointer to the EOP Rx descriptor 6566 * @skb: pointer to current skb being fixed 6567 * 6568 * Address the case where we are pulling data in on pages only 6569 * and as such no data is present in the skb header. 6570 * 6571 * In addition if skb is not at least 60 bytes we need to pad it so that 6572 * it is large enough to qualify as a valid Ethernet frame. 6573 * 6574 * Returns true if an error was encountered and skb was freed. 6575 **/ 6576 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 6577 union e1000_adv_rx_desc *rx_desc, 6578 struct sk_buff *skb) 6579 { 6580 if (unlikely((igb_test_staterr(rx_desc, 6581 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 6582 struct net_device *netdev = rx_ring->netdev; 6583 if (!(netdev->features & NETIF_F_RXALL)) { 6584 dev_kfree_skb_any(skb); 6585 return true; 6586 } 6587 } 6588 6589 /* place header in linear portion of buffer */ 6590 if (skb_is_nonlinear(skb)) 6591 igb_pull_tail(rx_ring, rx_desc, skb); 6592 6593 /* if skb_pad returns an error the skb was freed */ 6594 if (unlikely(skb->len < 60)) { 6595 int pad_len = 60 - skb->len; 6596 6597 if (skb_pad(skb, pad_len)) 6598 return true; 6599 __skb_put(skb, pad_len); 6600 } 6601 6602 return false; 6603 } 6604 6605 /** 6606 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 6607 * @rx_ring: rx descriptor ring packet is being transacted on 6608 * @rx_desc: pointer to the EOP Rx descriptor 6609 * @skb: pointer to current skb being populated 6610 * 6611 * This function checks the ring, descriptor, and packet information in 6612 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 6613 * other fields within the skb. 6614 **/ 6615 static void igb_process_skb_fields(struct igb_ring *rx_ring, 6616 union e1000_adv_rx_desc *rx_desc, 6617 struct sk_buff *skb) 6618 { 6619 struct net_device *dev = rx_ring->netdev; 6620 6621 igb_rx_hash(rx_ring, rx_desc, skb); 6622 6623 igb_rx_checksum(rx_ring, rx_desc, skb); 6624 6625 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb); 6626 6627 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 6628 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 6629 u16 vid; 6630 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 6631 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 6632 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 6633 else 6634 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 6635 6636 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 6637 } 6638 6639 skb_record_rx_queue(skb, rx_ring->queue_index); 6640 6641 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 6642 } 6643 6644 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 6645 { 6646 struct igb_ring *rx_ring = q_vector->rx.ring; 6647 struct sk_buff *skb = rx_ring->skb; 6648 unsigned int total_bytes = 0, total_packets = 0; 6649 u16 cleaned_count = igb_desc_unused(rx_ring); 6650 6651 do { 6652 union e1000_adv_rx_desc *rx_desc; 6653 6654 /* return some buffers to hardware, one at a time is too slow */ 6655 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 6656 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6657 cleaned_count = 0; 6658 } 6659 6660 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 6661 6662 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) 6663 break; 6664 6665 /* This memory barrier is needed to keep us from reading 6666 * any other fields out of the rx_desc until we know the 6667 * RXD_STAT_DD bit is set 6668 */ 6669 rmb(); 6670 6671 /* retrieve a buffer from the ring */ 6672 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); 6673 6674 /* exit if we failed to retrieve a buffer */ 6675 if (!skb) 6676 break; 6677 6678 cleaned_count++; 6679 6680 /* fetch next buffer in frame if non-eop */ 6681 if (igb_is_non_eop(rx_ring, rx_desc)) 6682 continue; 6683 6684 /* verify the packet layout is correct */ 6685 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 6686 skb = NULL; 6687 continue; 6688 } 6689 6690 /* probably a little skewed due to removing CRC */ 6691 total_bytes += skb->len; 6692 6693 /* populate checksum, timestamp, VLAN, and protocol */ 6694 igb_process_skb_fields(rx_ring, rx_desc, skb); 6695 6696 napi_gro_receive(&q_vector->napi, skb); 6697 6698 /* reset skb pointer */ 6699 skb = NULL; 6700 6701 /* update budget accounting */ 6702 total_packets++; 6703 } while (likely(total_packets < budget)); 6704 6705 /* place incomplete frames back on ring for completion */ 6706 rx_ring->skb = skb; 6707 6708 u64_stats_update_begin(&rx_ring->rx_syncp); 6709 rx_ring->rx_stats.packets += total_packets; 6710 rx_ring->rx_stats.bytes += total_bytes; 6711 u64_stats_update_end(&rx_ring->rx_syncp); 6712 q_vector->rx.total_packets += total_packets; 6713 q_vector->rx.total_bytes += total_bytes; 6714 6715 if (cleaned_count) 6716 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6717 6718 return (total_packets < budget); 6719 } 6720 6721 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 6722 struct igb_rx_buffer *bi) 6723 { 6724 struct page *page = bi->page; 6725 dma_addr_t dma; 6726 6727 /* since we are recycling buffers we should seldom need to alloc */ 6728 if (likely(page)) 6729 return true; 6730 6731 /* alloc new page for storage */ 6732 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL); 6733 if (unlikely(!page)) { 6734 rx_ring->rx_stats.alloc_failed++; 6735 return false; 6736 } 6737 6738 /* map page for use */ 6739 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 6740 6741 /* if mapping failed free memory back to system since 6742 * there isn't much point in holding memory we can't use 6743 */ 6744 if (dma_mapping_error(rx_ring->dev, dma)) { 6745 __free_page(page); 6746 6747 rx_ring->rx_stats.alloc_failed++; 6748 return false; 6749 } 6750 6751 bi->dma = dma; 6752 bi->page = page; 6753 bi->page_offset = 0; 6754 6755 return true; 6756 } 6757 6758 /** 6759 * igb_alloc_rx_buffers - Replace used receive buffers; packet split 6760 * @adapter: address of board private structure 6761 **/ 6762 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 6763 { 6764 union e1000_adv_rx_desc *rx_desc; 6765 struct igb_rx_buffer *bi; 6766 u16 i = rx_ring->next_to_use; 6767 6768 /* nothing to do */ 6769 if (!cleaned_count) 6770 return; 6771 6772 rx_desc = IGB_RX_DESC(rx_ring, i); 6773 bi = &rx_ring->rx_buffer_info[i]; 6774 i -= rx_ring->count; 6775 6776 do { 6777 if (!igb_alloc_mapped_page(rx_ring, bi)) 6778 break; 6779 6780 /* Refresh the desc even if buffer_addrs didn't change 6781 * because each write-back erases this info. 6782 */ 6783 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 6784 6785 rx_desc++; 6786 bi++; 6787 i++; 6788 if (unlikely(!i)) { 6789 rx_desc = IGB_RX_DESC(rx_ring, 0); 6790 bi = rx_ring->rx_buffer_info; 6791 i -= rx_ring->count; 6792 } 6793 6794 /* clear the hdr_addr for the next_to_use descriptor */ 6795 rx_desc->read.hdr_addr = 0; 6796 6797 cleaned_count--; 6798 } while (cleaned_count); 6799 6800 i += rx_ring->count; 6801 6802 if (rx_ring->next_to_use != i) { 6803 /* record the next descriptor to use */ 6804 rx_ring->next_to_use = i; 6805 6806 /* update next to alloc since we have filled the ring */ 6807 rx_ring->next_to_alloc = i; 6808 6809 /* Force memory writes to complete before letting h/w 6810 * know there are new descriptors to fetch. (Only 6811 * applicable for weak-ordered memory model archs, 6812 * such as IA-64). 6813 */ 6814 wmb(); 6815 writel(i, rx_ring->tail); 6816 } 6817 } 6818 6819 /** 6820 * igb_mii_ioctl - 6821 * @netdev: 6822 * @ifreq: 6823 * @cmd: 6824 **/ 6825 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6826 { 6827 struct igb_adapter *adapter = netdev_priv(netdev); 6828 struct mii_ioctl_data *data = if_mii(ifr); 6829 6830 if (adapter->hw.phy.media_type != e1000_media_type_copper) 6831 return -EOPNOTSUPP; 6832 6833 switch (cmd) { 6834 case SIOCGMIIPHY: 6835 data->phy_id = adapter->hw.phy.addr; 6836 break; 6837 case SIOCGMIIREG: 6838 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 6839 &data->val_out)) 6840 return -EIO; 6841 break; 6842 case SIOCSMIIREG: 6843 default: 6844 return -EOPNOTSUPP; 6845 } 6846 return 0; 6847 } 6848 6849 /** 6850 * igb_ioctl - 6851 * @netdev: 6852 * @ifreq: 6853 * @cmd: 6854 **/ 6855 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6856 { 6857 switch (cmd) { 6858 case SIOCGMIIPHY: 6859 case SIOCGMIIREG: 6860 case SIOCSMIIREG: 6861 return igb_mii_ioctl(netdev, ifr, cmd); 6862 case SIOCSHWTSTAMP: 6863 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd); 6864 default: 6865 return -EOPNOTSUPP; 6866 } 6867 } 6868 6869 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 6870 { 6871 struct igb_adapter *adapter = hw->back; 6872 6873 if (pcie_capability_read_word(adapter->pdev, reg, value)) 6874 return -E1000_ERR_CONFIG; 6875 6876 return 0; 6877 } 6878 6879 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 6880 { 6881 struct igb_adapter *adapter = hw->back; 6882 6883 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 6884 return -E1000_ERR_CONFIG; 6885 6886 return 0; 6887 } 6888 6889 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 6890 { 6891 struct igb_adapter *adapter = netdev_priv(netdev); 6892 struct e1000_hw *hw = &adapter->hw; 6893 u32 ctrl, rctl; 6894 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 6895 6896 if (enable) { 6897 /* enable VLAN tag insert/strip */ 6898 ctrl = rd32(E1000_CTRL); 6899 ctrl |= E1000_CTRL_VME; 6900 wr32(E1000_CTRL, ctrl); 6901 6902 /* Disable CFI check */ 6903 rctl = rd32(E1000_RCTL); 6904 rctl &= ~E1000_RCTL_CFIEN; 6905 wr32(E1000_RCTL, rctl); 6906 } else { 6907 /* disable VLAN tag insert/strip */ 6908 ctrl = rd32(E1000_CTRL); 6909 ctrl &= ~E1000_CTRL_VME; 6910 wr32(E1000_CTRL, ctrl); 6911 } 6912 6913 igb_rlpml_set(adapter); 6914 } 6915 6916 static int igb_vlan_rx_add_vid(struct net_device *netdev, 6917 __be16 proto, u16 vid) 6918 { 6919 struct igb_adapter *adapter = netdev_priv(netdev); 6920 struct e1000_hw *hw = &adapter->hw; 6921 int pf_id = adapter->vfs_allocated_count; 6922 6923 /* attempt to add filter to vlvf array */ 6924 igb_vlvf_set(adapter, vid, true, pf_id); 6925 6926 /* add the filter since PF can receive vlans w/o entry in vlvf */ 6927 igb_vfta_set(hw, vid, true); 6928 6929 set_bit(vid, adapter->active_vlans); 6930 6931 return 0; 6932 } 6933 6934 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 6935 __be16 proto, u16 vid) 6936 { 6937 struct igb_adapter *adapter = netdev_priv(netdev); 6938 struct e1000_hw *hw = &adapter->hw; 6939 int pf_id = adapter->vfs_allocated_count; 6940 s32 err; 6941 6942 /* remove vlan from VLVF table array */ 6943 err = igb_vlvf_set(adapter, vid, false, pf_id); 6944 6945 /* if vid was not present in VLVF just remove it from table */ 6946 if (err) 6947 igb_vfta_set(hw, vid, false); 6948 6949 clear_bit(vid, adapter->active_vlans); 6950 6951 return 0; 6952 } 6953 6954 static void igb_restore_vlan(struct igb_adapter *adapter) 6955 { 6956 u16 vid; 6957 6958 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 6959 6960 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 6961 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 6962 } 6963 6964 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 6965 { 6966 struct pci_dev *pdev = adapter->pdev; 6967 struct e1000_mac_info *mac = &adapter->hw.mac; 6968 6969 mac->autoneg = 0; 6970 6971 /* Make sure dplx is at most 1 bit and lsb of speed is not set 6972 * for the switch() below to work 6973 */ 6974 if ((spd & 1) || (dplx & ~1)) 6975 goto err_inval; 6976 6977 /* Fiber NIC's only allow 1000 gbps Full duplex 6978 * and 100Mbps Full duplex for 100baseFx sfp 6979 */ 6980 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 6981 switch (spd + dplx) { 6982 case SPEED_10 + DUPLEX_HALF: 6983 case SPEED_10 + DUPLEX_FULL: 6984 case SPEED_100 + DUPLEX_HALF: 6985 goto err_inval; 6986 default: 6987 break; 6988 } 6989 } 6990 6991 switch (spd + dplx) { 6992 case SPEED_10 + DUPLEX_HALF: 6993 mac->forced_speed_duplex = ADVERTISE_10_HALF; 6994 break; 6995 case SPEED_10 + DUPLEX_FULL: 6996 mac->forced_speed_duplex = ADVERTISE_10_FULL; 6997 break; 6998 case SPEED_100 + DUPLEX_HALF: 6999 mac->forced_speed_duplex = ADVERTISE_100_HALF; 7000 break; 7001 case SPEED_100 + DUPLEX_FULL: 7002 mac->forced_speed_duplex = ADVERTISE_100_FULL; 7003 break; 7004 case SPEED_1000 + DUPLEX_FULL: 7005 mac->autoneg = 1; 7006 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 7007 break; 7008 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 7009 default: 7010 goto err_inval; 7011 } 7012 7013 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 7014 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7015 7016 return 0; 7017 7018 err_inval: 7019 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 7020 return -EINVAL; 7021 } 7022 7023 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 7024 bool runtime) 7025 { 7026 struct net_device *netdev = pci_get_drvdata(pdev); 7027 struct igb_adapter *adapter = netdev_priv(netdev); 7028 struct e1000_hw *hw = &adapter->hw; 7029 u32 ctrl, rctl, status; 7030 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 7031 #ifdef CONFIG_PM 7032 int retval = 0; 7033 #endif 7034 7035 netif_device_detach(netdev); 7036 7037 if (netif_running(netdev)) 7038 __igb_close(netdev, true); 7039 7040 igb_clear_interrupt_scheme(adapter); 7041 7042 #ifdef CONFIG_PM 7043 retval = pci_save_state(pdev); 7044 if (retval) 7045 return retval; 7046 #endif 7047 7048 status = rd32(E1000_STATUS); 7049 if (status & E1000_STATUS_LU) 7050 wufc &= ~E1000_WUFC_LNKC; 7051 7052 if (wufc) { 7053 igb_setup_rctl(adapter); 7054 igb_set_rx_mode(netdev); 7055 7056 /* turn on all-multi mode if wake on multicast is enabled */ 7057 if (wufc & E1000_WUFC_MC) { 7058 rctl = rd32(E1000_RCTL); 7059 rctl |= E1000_RCTL_MPE; 7060 wr32(E1000_RCTL, rctl); 7061 } 7062 7063 ctrl = rd32(E1000_CTRL); 7064 /* advertise wake from D3Cold */ 7065 #define E1000_CTRL_ADVD3WUC 0x00100000 7066 /* phy power management enable */ 7067 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 7068 ctrl |= E1000_CTRL_ADVD3WUC; 7069 wr32(E1000_CTRL, ctrl); 7070 7071 /* Allow time for pending master requests to run */ 7072 igb_disable_pcie_master(hw); 7073 7074 wr32(E1000_WUC, E1000_WUC_PME_EN); 7075 wr32(E1000_WUFC, wufc); 7076 } else { 7077 wr32(E1000_WUC, 0); 7078 wr32(E1000_WUFC, 0); 7079 } 7080 7081 *enable_wake = wufc || adapter->en_mng_pt; 7082 if (!*enable_wake) 7083 igb_power_down_link(adapter); 7084 else 7085 igb_power_up_link(adapter); 7086 7087 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7088 * would have already happened in close and is redundant. 7089 */ 7090 igb_release_hw_control(adapter); 7091 7092 pci_disable_device(pdev); 7093 7094 return 0; 7095 } 7096 7097 #ifdef CONFIG_PM 7098 #ifdef CONFIG_PM_SLEEP 7099 static int igb_suspend(struct device *dev) 7100 { 7101 int retval; 7102 bool wake; 7103 struct pci_dev *pdev = to_pci_dev(dev); 7104 7105 retval = __igb_shutdown(pdev, &wake, 0); 7106 if (retval) 7107 return retval; 7108 7109 if (wake) { 7110 pci_prepare_to_sleep(pdev); 7111 } else { 7112 pci_wake_from_d3(pdev, false); 7113 pci_set_power_state(pdev, PCI_D3hot); 7114 } 7115 7116 return 0; 7117 } 7118 #endif /* CONFIG_PM_SLEEP */ 7119 7120 static int igb_resume(struct device *dev) 7121 { 7122 struct pci_dev *pdev = to_pci_dev(dev); 7123 struct net_device *netdev = pci_get_drvdata(pdev); 7124 struct igb_adapter *adapter = netdev_priv(netdev); 7125 struct e1000_hw *hw = &adapter->hw; 7126 u32 err; 7127 7128 pci_set_power_state(pdev, PCI_D0); 7129 pci_restore_state(pdev); 7130 pci_save_state(pdev); 7131 7132 err = pci_enable_device_mem(pdev); 7133 if (err) { 7134 dev_err(&pdev->dev, 7135 "igb: Cannot enable PCI device from suspend\n"); 7136 return err; 7137 } 7138 pci_set_master(pdev); 7139 7140 pci_enable_wake(pdev, PCI_D3hot, 0); 7141 pci_enable_wake(pdev, PCI_D3cold, 0); 7142 7143 if (igb_init_interrupt_scheme(adapter, true)) { 7144 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7145 return -ENOMEM; 7146 } 7147 7148 igb_reset(adapter); 7149 7150 /* let the f/w know that the h/w is now under the control of the 7151 * driver. 7152 */ 7153 igb_get_hw_control(adapter); 7154 7155 wr32(E1000_WUS, ~0); 7156 7157 if (netdev->flags & IFF_UP) { 7158 rtnl_lock(); 7159 err = __igb_open(netdev, true); 7160 rtnl_unlock(); 7161 if (err) 7162 return err; 7163 } 7164 7165 netif_device_attach(netdev); 7166 return 0; 7167 } 7168 7169 #ifdef CONFIG_PM_RUNTIME 7170 static int igb_runtime_idle(struct device *dev) 7171 { 7172 struct pci_dev *pdev = to_pci_dev(dev); 7173 struct net_device *netdev = pci_get_drvdata(pdev); 7174 struct igb_adapter *adapter = netdev_priv(netdev); 7175 7176 if (!igb_has_link(adapter)) 7177 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7178 7179 return -EBUSY; 7180 } 7181 7182 static int igb_runtime_suspend(struct device *dev) 7183 { 7184 struct pci_dev *pdev = to_pci_dev(dev); 7185 int retval; 7186 bool wake; 7187 7188 retval = __igb_shutdown(pdev, &wake, 1); 7189 if (retval) 7190 return retval; 7191 7192 if (wake) { 7193 pci_prepare_to_sleep(pdev); 7194 } else { 7195 pci_wake_from_d3(pdev, false); 7196 pci_set_power_state(pdev, PCI_D3hot); 7197 } 7198 7199 return 0; 7200 } 7201 7202 static int igb_runtime_resume(struct device *dev) 7203 { 7204 return igb_resume(dev); 7205 } 7206 #endif /* CONFIG_PM_RUNTIME */ 7207 #endif 7208 7209 static void igb_shutdown(struct pci_dev *pdev) 7210 { 7211 bool wake; 7212 7213 __igb_shutdown(pdev, &wake, 0); 7214 7215 if (system_state == SYSTEM_POWER_OFF) { 7216 pci_wake_from_d3(pdev, wake); 7217 pci_set_power_state(pdev, PCI_D3hot); 7218 } 7219 } 7220 7221 #ifdef CONFIG_PCI_IOV 7222 static int igb_sriov_reinit(struct pci_dev *dev) 7223 { 7224 struct net_device *netdev = pci_get_drvdata(dev); 7225 struct igb_adapter *adapter = netdev_priv(netdev); 7226 struct pci_dev *pdev = adapter->pdev; 7227 7228 rtnl_lock(); 7229 7230 if (netif_running(netdev)) 7231 igb_close(netdev); 7232 7233 igb_clear_interrupt_scheme(adapter); 7234 7235 igb_init_queue_configuration(adapter); 7236 7237 if (igb_init_interrupt_scheme(adapter, true)) { 7238 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7239 return -ENOMEM; 7240 } 7241 7242 if (netif_running(netdev)) 7243 igb_open(netdev); 7244 7245 rtnl_unlock(); 7246 7247 return 0; 7248 } 7249 7250 static int igb_pci_disable_sriov(struct pci_dev *dev) 7251 { 7252 int err = igb_disable_sriov(dev); 7253 7254 if (!err) 7255 err = igb_sriov_reinit(dev); 7256 7257 return err; 7258 } 7259 7260 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 7261 { 7262 int err = igb_enable_sriov(dev, num_vfs); 7263 7264 if (err) 7265 goto out; 7266 7267 err = igb_sriov_reinit(dev); 7268 if (!err) 7269 return num_vfs; 7270 7271 out: 7272 return err; 7273 } 7274 7275 #endif 7276 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 7277 { 7278 #ifdef CONFIG_PCI_IOV 7279 if (num_vfs == 0) 7280 return igb_pci_disable_sriov(dev); 7281 else 7282 return igb_pci_enable_sriov(dev, num_vfs); 7283 #endif 7284 return 0; 7285 } 7286 7287 #ifdef CONFIG_NET_POLL_CONTROLLER 7288 /* Polling 'interrupt' - used by things like netconsole to send skbs 7289 * without having to re-enable interrupts. It's not called while 7290 * the interrupt routine is executing. 7291 */ 7292 static void igb_netpoll(struct net_device *netdev) 7293 { 7294 struct igb_adapter *adapter = netdev_priv(netdev); 7295 struct e1000_hw *hw = &adapter->hw; 7296 struct igb_q_vector *q_vector; 7297 int i; 7298 7299 for (i = 0; i < adapter->num_q_vectors; i++) { 7300 q_vector = adapter->q_vector[i]; 7301 if (adapter->msix_entries) 7302 wr32(E1000_EIMC, q_vector->eims_value); 7303 else 7304 igb_irq_disable(adapter); 7305 napi_schedule(&q_vector->napi); 7306 } 7307 } 7308 #endif /* CONFIG_NET_POLL_CONTROLLER */ 7309 7310 /** 7311 * igb_io_error_detected - called when PCI error is detected 7312 * @pdev: Pointer to PCI device 7313 * @state: The current pci connection state 7314 * 7315 * This function is called after a PCI bus error affecting 7316 * this device has been detected. 7317 **/ 7318 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 7319 pci_channel_state_t state) 7320 { 7321 struct net_device *netdev = pci_get_drvdata(pdev); 7322 struct igb_adapter *adapter = netdev_priv(netdev); 7323 7324 netif_device_detach(netdev); 7325 7326 if (state == pci_channel_io_perm_failure) 7327 return PCI_ERS_RESULT_DISCONNECT; 7328 7329 if (netif_running(netdev)) 7330 igb_down(adapter); 7331 pci_disable_device(pdev); 7332 7333 /* Request a slot slot reset. */ 7334 return PCI_ERS_RESULT_NEED_RESET; 7335 } 7336 7337 /** 7338 * igb_io_slot_reset - called after the pci bus has been reset. 7339 * @pdev: Pointer to PCI device 7340 * 7341 * Restart the card from scratch, as if from a cold-boot. Implementation 7342 * resembles the first-half of the igb_resume routine. 7343 **/ 7344 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 7345 { 7346 struct net_device *netdev = pci_get_drvdata(pdev); 7347 struct igb_adapter *adapter = netdev_priv(netdev); 7348 struct e1000_hw *hw = &adapter->hw; 7349 pci_ers_result_t result; 7350 int err; 7351 7352 if (pci_enable_device_mem(pdev)) { 7353 dev_err(&pdev->dev, 7354 "Cannot re-enable PCI device after reset.\n"); 7355 result = PCI_ERS_RESULT_DISCONNECT; 7356 } else { 7357 pci_set_master(pdev); 7358 pci_restore_state(pdev); 7359 pci_save_state(pdev); 7360 7361 pci_enable_wake(pdev, PCI_D3hot, 0); 7362 pci_enable_wake(pdev, PCI_D3cold, 0); 7363 7364 igb_reset(adapter); 7365 wr32(E1000_WUS, ~0); 7366 result = PCI_ERS_RESULT_RECOVERED; 7367 } 7368 7369 err = pci_cleanup_aer_uncorrect_error_status(pdev); 7370 if (err) { 7371 dev_err(&pdev->dev, 7372 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 7373 err); 7374 /* non-fatal, continue */ 7375 } 7376 7377 return result; 7378 } 7379 7380 /** 7381 * igb_io_resume - called when traffic can start flowing again. 7382 * @pdev: Pointer to PCI device 7383 * 7384 * This callback is called when the error recovery driver tells us that 7385 * its OK to resume normal operation. Implementation resembles the 7386 * second-half of the igb_resume routine. 7387 */ 7388 static void igb_io_resume(struct pci_dev *pdev) 7389 { 7390 struct net_device *netdev = pci_get_drvdata(pdev); 7391 struct igb_adapter *adapter = netdev_priv(netdev); 7392 7393 if (netif_running(netdev)) { 7394 if (igb_up(adapter)) { 7395 dev_err(&pdev->dev, "igb_up failed after reset\n"); 7396 return; 7397 } 7398 } 7399 7400 netif_device_attach(netdev); 7401 7402 /* let the f/w know that the h/w is now under the control of the 7403 * driver. 7404 */ 7405 igb_get_hw_control(adapter); 7406 } 7407 7408 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, 7409 u8 qsel) 7410 { 7411 u32 rar_low, rar_high; 7412 struct e1000_hw *hw = &adapter->hw; 7413 7414 /* HW expects these in little endian so we reverse the byte order 7415 * from network order (big endian) to little endian 7416 */ 7417 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 7418 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 7419 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 7420 7421 /* Indicate to hardware the Address is Valid. */ 7422 rar_high |= E1000_RAH_AV; 7423 7424 if (hw->mac.type == e1000_82575) 7425 rar_high |= E1000_RAH_POOL_1 * qsel; 7426 else 7427 rar_high |= E1000_RAH_POOL_1 << qsel; 7428 7429 wr32(E1000_RAL(index), rar_low); 7430 wrfl(); 7431 wr32(E1000_RAH(index), rar_high); 7432 wrfl(); 7433 } 7434 7435 static int igb_set_vf_mac(struct igb_adapter *adapter, 7436 int vf, unsigned char *mac_addr) 7437 { 7438 struct e1000_hw *hw = &adapter->hw; 7439 /* VF MAC addresses start at end of receive addresses and moves 7440 * towards the first, as a result a collision should not be possible 7441 */ 7442 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 7443 7444 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); 7445 7446 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); 7447 7448 return 0; 7449 } 7450 7451 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 7452 { 7453 struct igb_adapter *adapter = netdev_priv(netdev); 7454 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) 7455 return -EINVAL; 7456 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 7457 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); 7458 dev_info(&adapter->pdev->dev, 7459 "Reload the VF driver to make this change effective."); 7460 if (test_bit(__IGB_DOWN, &adapter->state)) { 7461 dev_warn(&adapter->pdev->dev, 7462 "The VF MAC address has been set, but the PF device is not up.\n"); 7463 dev_warn(&adapter->pdev->dev, 7464 "Bring the PF device up before attempting to use the VF device.\n"); 7465 } 7466 return igb_set_vf_mac(adapter, vf, mac); 7467 } 7468 7469 static int igb_link_mbps(int internal_link_speed) 7470 { 7471 switch (internal_link_speed) { 7472 case SPEED_100: 7473 return 100; 7474 case SPEED_1000: 7475 return 1000; 7476 default: 7477 return 0; 7478 } 7479 } 7480 7481 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 7482 int link_speed) 7483 { 7484 int rf_dec, rf_int; 7485 u32 bcnrc_val; 7486 7487 if (tx_rate != 0) { 7488 /* Calculate the rate factor values to set */ 7489 rf_int = link_speed / tx_rate; 7490 rf_dec = (link_speed - (rf_int * tx_rate)); 7491 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) / 7492 tx_rate; 7493 7494 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 7495 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 7496 E1000_RTTBCNRC_RF_INT_MASK); 7497 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 7498 } else { 7499 bcnrc_val = 0; 7500 } 7501 7502 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 7503 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 7504 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 7505 */ 7506 wr32(E1000_RTTBCNRM, 0x14); 7507 wr32(E1000_RTTBCNRC, bcnrc_val); 7508 } 7509 7510 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 7511 { 7512 int actual_link_speed, i; 7513 bool reset_rate = false; 7514 7515 /* VF TX rate limit was not set or not supported */ 7516 if ((adapter->vf_rate_link_speed == 0) || 7517 (adapter->hw.mac.type != e1000_82576)) 7518 return; 7519 7520 actual_link_speed = igb_link_mbps(adapter->link_speed); 7521 if (actual_link_speed != adapter->vf_rate_link_speed) { 7522 reset_rate = true; 7523 adapter->vf_rate_link_speed = 0; 7524 dev_info(&adapter->pdev->dev, 7525 "Link speed has been changed. VF Transmit rate is disabled\n"); 7526 } 7527 7528 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7529 if (reset_rate) 7530 adapter->vf_data[i].tx_rate = 0; 7531 7532 igb_set_vf_rate_limit(&adapter->hw, i, 7533 adapter->vf_data[i].tx_rate, 7534 actual_link_speed); 7535 } 7536 } 7537 7538 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) 7539 { 7540 struct igb_adapter *adapter = netdev_priv(netdev); 7541 struct e1000_hw *hw = &adapter->hw; 7542 int actual_link_speed; 7543 7544 if (hw->mac.type != e1000_82576) 7545 return -EOPNOTSUPP; 7546 7547 actual_link_speed = igb_link_mbps(adapter->link_speed); 7548 if ((vf >= adapter->vfs_allocated_count) || 7549 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 7550 (tx_rate < 0) || (tx_rate > actual_link_speed)) 7551 return -EINVAL; 7552 7553 adapter->vf_rate_link_speed = actual_link_speed; 7554 adapter->vf_data[vf].tx_rate = (u16)tx_rate; 7555 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); 7556 7557 return 0; 7558 } 7559 7560 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 7561 bool setting) 7562 { 7563 struct igb_adapter *adapter = netdev_priv(netdev); 7564 struct e1000_hw *hw = &adapter->hw; 7565 u32 reg_val, reg_offset; 7566 7567 if (!adapter->vfs_allocated_count) 7568 return -EOPNOTSUPP; 7569 7570 if (vf >= adapter->vfs_allocated_count) 7571 return -EINVAL; 7572 7573 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 7574 reg_val = rd32(reg_offset); 7575 if (setting) 7576 reg_val |= ((1 << vf) | 7577 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7578 else 7579 reg_val &= ~((1 << vf) | 7580 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7581 wr32(reg_offset, reg_val); 7582 7583 adapter->vf_data[vf].spoofchk_enabled = setting; 7584 return E1000_SUCCESS; 7585 } 7586 7587 static int igb_ndo_get_vf_config(struct net_device *netdev, 7588 int vf, struct ifla_vf_info *ivi) 7589 { 7590 struct igb_adapter *adapter = netdev_priv(netdev); 7591 if (vf >= adapter->vfs_allocated_count) 7592 return -EINVAL; 7593 ivi->vf = vf; 7594 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 7595 ivi->tx_rate = adapter->vf_data[vf].tx_rate; 7596 ivi->vlan = adapter->vf_data[vf].pf_vlan; 7597 ivi->qos = adapter->vf_data[vf].pf_qos; 7598 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 7599 return 0; 7600 } 7601 7602 static void igb_vmm_control(struct igb_adapter *adapter) 7603 { 7604 struct e1000_hw *hw = &adapter->hw; 7605 u32 reg; 7606 7607 switch (hw->mac.type) { 7608 case e1000_82575: 7609 case e1000_i210: 7610 case e1000_i211: 7611 case e1000_i354: 7612 default: 7613 /* replication is not supported for 82575 */ 7614 return; 7615 case e1000_82576: 7616 /* notify HW that the MAC is adding vlan tags */ 7617 reg = rd32(E1000_DTXCTL); 7618 reg |= E1000_DTXCTL_VLAN_ADDED; 7619 wr32(E1000_DTXCTL, reg); 7620 case e1000_82580: 7621 /* enable replication vlan tag stripping */ 7622 reg = rd32(E1000_RPLOLR); 7623 reg |= E1000_RPLOLR_STRVLAN; 7624 wr32(E1000_RPLOLR, reg); 7625 case e1000_i350: 7626 /* none of the above registers are supported by i350 */ 7627 break; 7628 } 7629 7630 if (adapter->vfs_allocated_count) { 7631 igb_vmdq_set_loopback_pf(hw, true); 7632 igb_vmdq_set_replication_pf(hw, true); 7633 igb_vmdq_set_anti_spoofing_pf(hw, true, 7634 adapter->vfs_allocated_count); 7635 } else { 7636 igb_vmdq_set_loopback_pf(hw, false); 7637 igb_vmdq_set_replication_pf(hw, false); 7638 } 7639 } 7640 7641 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 7642 { 7643 struct e1000_hw *hw = &adapter->hw; 7644 u32 dmac_thr; 7645 u16 hwm; 7646 7647 if (hw->mac.type > e1000_82580) { 7648 if (adapter->flags & IGB_FLAG_DMAC) { 7649 u32 reg; 7650 7651 /* force threshold to 0. */ 7652 wr32(E1000_DMCTXTH, 0); 7653 7654 /* DMA Coalescing high water mark needs to be greater 7655 * than the Rx threshold. Set hwm to PBA - max frame 7656 * size in 16B units, capping it at PBA - 6KB. 7657 */ 7658 hwm = 64 * pba - adapter->max_frame_size / 16; 7659 if (hwm < 64 * (pba - 6)) 7660 hwm = 64 * (pba - 6); 7661 reg = rd32(E1000_FCRTC); 7662 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 7663 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 7664 & E1000_FCRTC_RTH_COAL_MASK); 7665 wr32(E1000_FCRTC, reg); 7666 7667 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 7668 * frame size, capping it at PBA - 10KB. 7669 */ 7670 dmac_thr = pba - adapter->max_frame_size / 512; 7671 if (dmac_thr < pba - 10) 7672 dmac_thr = pba - 10; 7673 reg = rd32(E1000_DMACR); 7674 reg &= ~E1000_DMACR_DMACTHR_MASK; 7675 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 7676 & E1000_DMACR_DMACTHR_MASK); 7677 7678 /* transition to L0x or L1 if available..*/ 7679 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 7680 7681 /* watchdog timer= +-1000 usec in 32usec intervals */ 7682 reg |= (1000 >> 5); 7683 7684 /* Disable BMC-to-OS Watchdog Enable */ 7685 if (hw->mac.type != e1000_i354) 7686 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 7687 7688 wr32(E1000_DMACR, reg); 7689 7690 /* no lower threshold to disable 7691 * coalescing(smart fifb)-UTRESH=0 7692 */ 7693 wr32(E1000_DMCRTRH, 0); 7694 7695 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 7696 7697 wr32(E1000_DMCTLX, reg); 7698 7699 /* free space in tx packet buffer to wake from 7700 * DMA coal 7701 */ 7702 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 7703 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 7704 7705 /* make low power state decision controlled 7706 * by DMA coal 7707 */ 7708 reg = rd32(E1000_PCIEMISC); 7709 reg &= ~E1000_PCIEMISC_LX_DECISION; 7710 wr32(E1000_PCIEMISC, reg); 7711 } /* endif adapter->dmac is not disabled */ 7712 } else if (hw->mac.type == e1000_82580) { 7713 u32 reg = rd32(E1000_PCIEMISC); 7714 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 7715 wr32(E1000_DMACR, 0); 7716 } 7717 } 7718 7719 /** 7720 * igb_read_i2c_byte - Reads 8 bit word over I2C 7721 * @hw: pointer to hardware structure 7722 * @byte_offset: byte offset to read 7723 * @dev_addr: device address 7724 * @data: value read 7725 * 7726 * Performs byte read operation over I2C interface at 7727 * a specified device address. 7728 **/ 7729 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 7730 u8 dev_addr, u8 *data) 7731 { 7732 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 7733 struct i2c_client *this_client = adapter->i2c_client; 7734 s32 status; 7735 u16 swfw_mask = 0; 7736 7737 if (!this_client) 7738 return E1000_ERR_I2C; 7739 7740 swfw_mask = E1000_SWFW_PHY0_SM; 7741 7742 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) 7743 != E1000_SUCCESS) 7744 return E1000_ERR_SWFW_SYNC; 7745 7746 status = i2c_smbus_read_byte_data(this_client, byte_offset); 7747 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 7748 7749 if (status < 0) 7750 return E1000_ERR_I2C; 7751 else { 7752 *data = status; 7753 return E1000_SUCCESS; 7754 } 7755 } 7756 7757 /** 7758 * igb_write_i2c_byte - Writes 8 bit word over I2C 7759 * @hw: pointer to hardware structure 7760 * @byte_offset: byte offset to write 7761 * @dev_addr: device address 7762 * @data: value to write 7763 * 7764 * Performs byte write operation over I2C interface at 7765 * a specified device address. 7766 **/ 7767 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 7768 u8 dev_addr, u8 data) 7769 { 7770 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 7771 struct i2c_client *this_client = adapter->i2c_client; 7772 s32 status; 7773 u16 swfw_mask = E1000_SWFW_PHY0_SM; 7774 7775 if (!this_client) 7776 return E1000_ERR_I2C; 7777 7778 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) 7779 return E1000_ERR_SWFW_SYNC; 7780 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 7781 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 7782 7783 if (status) 7784 return E1000_ERR_I2C; 7785 else 7786 return E1000_SUCCESS; 7787 7788 } 7789 /* igb_main.c */ 7790