1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/bitops.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/netdevice.h> 13 #include <linux/ipv6.h> 14 #include <linux/slab.h> 15 #include <net/checksum.h> 16 #include <net/ip6_checksum.h> 17 #include <net/pkt_sched.h> 18 #include <net/pkt_cls.h> 19 #include <linux/net_tstamp.h> 20 #include <linux/mii.h> 21 #include <linux/ethtool.h> 22 #include <linux/if.h> 23 #include <linux/if_vlan.h> 24 #include <linux/pci.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/ip.h> 28 #include <linux/tcp.h> 29 #include <linux/sctp.h> 30 #include <linux/if_ether.h> 31 #include <linux/aer.h> 32 #include <linux/prefetch.h> 33 #include <linux/bpf.h> 34 #include <linux/bpf_trace.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/etherdevice.h> 37 #ifdef CONFIG_IGB_DCA 38 #include <linux/dca.h> 39 #endif 40 #include <linux/i2c.h> 41 #include "igb.h" 42 43 enum queue_mode { 44 QUEUE_MODE_STRICT_PRIORITY, 45 QUEUE_MODE_STREAM_RESERVATION, 46 }; 47 48 enum tx_queue_prio { 49 TX_QUEUE_PRIO_HIGH, 50 TX_QUEUE_PRIO_LOW, 51 }; 52 53 char igb_driver_name[] = "igb"; 54 static const char igb_driver_string[] = 55 "Intel(R) Gigabit Ethernet Network Driver"; 56 static const char igb_copyright[] = 57 "Copyright (c) 2007-2014 Intel Corporation."; 58 59 static const struct e1000_info *igb_info_tbl[] = { 60 [board_82575] = &e1000_82575_info, 61 }; 62 63 static const struct pci_device_id igb_pci_tbl[] = { 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 99 /* required last entry */ 100 {0, } 101 }; 102 103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 104 105 static int igb_setup_all_tx_resources(struct igb_adapter *); 106 static int igb_setup_all_rx_resources(struct igb_adapter *); 107 static void igb_free_all_tx_resources(struct igb_adapter *); 108 static void igb_free_all_rx_resources(struct igb_adapter *); 109 static void igb_setup_mrqc(struct igb_adapter *); 110 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 111 static void igb_remove(struct pci_dev *pdev); 112 static int igb_sw_init(struct igb_adapter *); 113 int igb_open(struct net_device *); 114 int igb_close(struct net_device *); 115 static void igb_configure(struct igb_adapter *); 116 static void igb_configure_tx(struct igb_adapter *); 117 static void igb_configure_rx(struct igb_adapter *); 118 static void igb_clean_all_tx_rings(struct igb_adapter *); 119 static void igb_clean_all_rx_rings(struct igb_adapter *); 120 static void igb_clean_tx_ring(struct igb_ring *); 121 static void igb_clean_rx_ring(struct igb_ring *); 122 static void igb_set_rx_mode(struct net_device *); 123 static void igb_update_phy_info(struct timer_list *); 124 static void igb_watchdog(struct timer_list *); 125 static void igb_watchdog_task(struct work_struct *); 126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 127 static void igb_get_stats64(struct net_device *dev, 128 struct rtnl_link_stats64 *stats); 129 static int igb_change_mtu(struct net_device *, int); 130 static int igb_set_mac(struct net_device *, void *); 131 static void igb_set_uta(struct igb_adapter *adapter, bool set); 132 static irqreturn_t igb_intr(int irq, void *); 133 static irqreturn_t igb_intr_msi(int irq, void *); 134 static irqreturn_t igb_msix_other(int irq, void *); 135 static irqreturn_t igb_msix_ring(int irq, void *); 136 #ifdef CONFIG_IGB_DCA 137 static void igb_update_dca(struct igb_q_vector *); 138 static void igb_setup_dca(struct igb_adapter *); 139 #endif /* CONFIG_IGB_DCA */ 140 static int igb_poll(struct napi_struct *, int); 141 static bool igb_clean_tx_irq(struct igb_q_vector *, int); 142 static int igb_clean_rx_irq(struct igb_q_vector *, int); 143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue); 145 static void igb_reset_task(struct work_struct *); 146 static void igb_vlan_mode(struct net_device *netdev, 147 netdev_features_t features); 148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 150 static void igb_restore_vlan(struct igb_adapter *); 151 static void igb_rar_set_index(struct igb_adapter *, u32); 152 static void igb_ping_all_vfs(struct igb_adapter *); 153 static void igb_msg_task(struct igb_adapter *); 154 static void igb_vmm_control(struct igb_adapter *); 155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 156 static void igb_flush_mac_table(struct igb_adapter *); 157 static int igb_available_rars(struct igb_adapter *, u8); 158 static void igb_set_default_mac_filter(struct igb_adapter *); 159 static int igb_uc_sync(struct net_device *, const unsigned char *); 160 static int igb_uc_unsync(struct net_device *, const unsigned char *); 161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 163 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 164 int vf, u16 vlan, u8 qos, __be16 vlan_proto); 165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 167 bool setting); 168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, 169 bool setting); 170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 171 struct ifla_vf_info *ivi); 172 static void igb_check_vf_rate_limit(struct igb_adapter *); 173 static void igb_nfc_filter_exit(struct igb_adapter *adapter); 174 static void igb_nfc_filter_restore(struct igb_adapter *adapter); 175 176 #ifdef CONFIG_PCI_IOV 177 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 179 static int igb_disable_sriov(struct pci_dev *dev); 180 static int igb_pci_disable_sriov(struct pci_dev *dev); 181 #endif 182 183 static int igb_suspend(struct device *); 184 static int igb_resume(struct device *); 185 static int igb_runtime_suspend(struct device *dev); 186 static int igb_runtime_resume(struct device *dev); 187 static int igb_runtime_idle(struct device *dev); 188 static const struct dev_pm_ops igb_pm_ops = { 189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 191 igb_runtime_idle) 192 }; 193 static void igb_shutdown(struct pci_dev *); 194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 195 #ifdef CONFIG_IGB_DCA 196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 197 static struct notifier_block dca_notifier = { 198 .notifier_call = igb_notify_dca, 199 .next = NULL, 200 .priority = 0 201 }; 202 #endif 203 #ifdef CONFIG_PCI_IOV 204 static unsigned int max_vfs; 205 module_param(max_vfs, uint, 0); 206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 207 #endif /* CONFIG_PCI_IOV */ 208 209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 210 pci_channel_state_t); 211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 212 static void igb_io_resume(struct pci_dev *); 213 214 static const struct pci_error_handlers igb_err_handler = { 215 .error_detected = igb_io_error_detected, 216 .slot_reset = igb_io_slot_reset, 217 .resume = igb_io_resume, 218 }; 219 220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 221 222 static struct pci_driver igb_driver = { 223 .name = igb_driver_name, 224 .id_table = igb_pci_tbl, 225 .probe = igb_probe, 226 .remove = igb_remove, 227 #ifdef CONFIG_PM 228 .driver.pm = &igb_pm_ops, 229 #endif 230 .shutdown = igb_shutdown, 231 .sriov_configure = igb_pci_sriov_configure, 232 .err_handler = &igb_err_handler 233 }; 234 235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 237 MODULE_LICENSE("GPL v2"); 238 239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 240 static int debug = -1; 241 module_param(debug, int, 0); 242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 243 244 struct igb_reg_info { 245 u32 ofs; 246 char *name; 247 }; 248 249 static const struct igb_reg_info igb_reg_info_tbl[] = { 250 251 /* General Registers */ 252 {E1000_CTRL, "CTRL"}, 253 {E1000_STATUS, "STATUS"}, 254 {E1000_CTRL_EXT, "CTRL_EXT"}, 255 256 /* Interrupt Registers */ 257 {E1000_ICR, "ICR"}, 258 259 /* RX Registers */ 260 {E1000_RCTL, "RCTL"}, 261 {E1000_RDLEN(0), "RDLEN"}, 262 {E1000_RDH(0), "RDH"}, 263 {E1000_RDT(0), "RDT"}, 264 {E1000_RXDCTL(0), "RXDCTL"}, 265 {E1000_RDBAL(0), "RDBAL"}, 266 {E1000_RDBAH(0), "RDBAH"}, 267 268 /* TX Registers */ 269 {E1000_TCTL, "TCTL"}, 270 {E1000_TDBAL(0), "TDBAL"}, 271 {E1000_TDBAH(0), "TDBAH"}, 272 {E1000_TDLEN(0), "TDLEN"}, 273 {E1000_TDH(0), "TDH"}, 274 {E1000_TDT(0), "TDT"}, 275 {E1000_TXDCTL(0), "TXDCTL"}, 276 {E1000_TDFH, "TDFH"}, 277 {E1000_TDFT, "TDFT"}, 278 {E1000_TDFHS, "TDFHS"}, 279 {E1000_TDFPC, "TDFPC"}, 280 281 /* List Terminator */ 282 {} 283 }; 284 285 /* igb_regdump - register printout routine */ 286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 287 { 288 int n = 0; 289 char rname[16]; 290 u32 regs[8]; 291 292 switch (reginfo->ofs) { 293 case E1000_RDLEN(0): 294 for (n = 0; n < 4; n++) 295 regs[n] = rd32(E1000_RDLEN(n)); 296 break; 297 case E1000_RDH(0): 298 for (n = 0; n < 4; n++) 299 regs[n] = rd32(E1000_RDH(n)); 300 break; 301 case E1000_RDT(0): 302 for (n = 0; n < 4; n++) 303 regs[n] = rd32(E1000_RDT(n)); 304 break; 305 case E1000_RXDCTL(0): 306 for (n = 0; n < 4; n++) 307 regs[n] = rd32(E1000_RXDCTL(n)); 308 break; 309 case E1000_RDBAL(0): 310 for (n = 0; n < 4; n++) 311 regs[n] = rd32(E1000_RDBAL(n)); 312 break; 313 case E1000_RDBAH(0): 314 for (n = 0; n < 4; n++) 315 regs[n] = rd32(E1000_RDBAH(n)); 316 break; 317 case E1000_TDBAL(0): 318 for (n = 0; n < 4; n++) 319 regs[n] = rd32(E1000_TDBAL(n)); 320 break; 321 case E1000_TDBAH(0): 322 for (n = 0; n < 4; n++) 323 regs[n] = rd32(E1000_TDBAH(n)); 324 break; 325 case E1000_TDLEN(0): 326 for (n = 0; n < 4; n++) 327 regs[n] = rd32(E1000_TDLEN(n)); 328 break; 329 case E1000_TDH(0): 330 for (n = 0; n < 4; n++) 331 regs[n] = rd32(E1000_TDH(n)); 332 break; 333 case E1000_TDT(0): 334 for (n = 0; n < 4; n++) 335 regs[n] = rd32(E1000_TDT(n)); 336 break; 337 case E1000_TXDCTL(0): 338 for (n = 0; n < 4; n++) 339 regs[n] = rd32(E1000_TXDCTL(n)); 340 break; 341 default: 342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 343 return; 344 } 345 346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 348 regs[2], regs[3]); 349 } 350 351 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 352 static void igb_dump(struct igb_adapter *adapter) 353 { 354 struct net_device *netdev = adapter->netdev; 355 struct e1000_hw *hw = &adapter->hw; 356 struct igb_reg_info *reginfo; 357 struct igb_ring *tx_ring; 358 union e1000_adv_tx_desc *tx_desc; 359 struct my_u0 { __le64 a; __le64 b; } *u0; 360 struct igb_ring *rx_ring; 361 union e1000_adv_rx_desc *rx_desc; 362 u32 staterr; 363 u16 i, n; 364 365 if (!netif_msg_hw(adapter)) 366 return; 367 368 /* Print netdevice Info */ 369 if (netdev) { 370 dev_info(&adapter->pdev->dev, "Net device Info\n"); 371 pr_info("Device Name state trans_start\n"); 372 pr_info("%-15s %016lX %016lX\n", netdev->name, 373 netdev->state, dev_trans_start(netdev)); 374 } 375 376 /* Print Registers */ 377 dev_info(&adapter->pdev->dev, "Register Dump\n"); 378 pr_info(" Register Name Value\n"); 379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 380 reginfo->name; reginfo++) { 381 igb_regdump(hw, reginfo); 382 } 383 384 /* Print TX Ring Summary */ 385 if (!netdev || !netif_running(netdev)) 386 goto exit; 387 388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 390 for (n = 0; n < adapter->num_tx_queues; n++) { 391 struct igb_tx_buffer *buffer_info; 392 tx_ring = adapter->tx_ring[n]; 393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 395 n, tx_ring->next_to_use, tx_ring->next_to_clean, 396 (u64)dma_unmap_addr(buffer_info, dma), 397 dma_unmap_len(buffer_info, len), 398 buffer_info->next_to_watch, 399 (u64)buffer_info->time_stamp); 400 } 401 402 /* Print TX Rings */ 403 if (!netif_msg_tx_done(adapter)) 404 goto rx_ring_summary; 405 406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 407 408 /* Transmit Descriptor Formats 409 * 410 * Advanced Transmit Descriptor 411 * +--------------------------------------------------------------+ 412 * 0 | Buffer Address [63:0] | 413 * +--------------------------------------------------------------+ 414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 415 * +--------------------------------------------------------------+ 416 * 63 46 45 40 39 38 36 35 32 31 24 15 0 417 */ 418 419 for (n = 0; n < adapter->num_tx_queues; n++) { 420 tx_ring = adapter->tx_ring[n]; 421 pr_info("------------------------------------\n"); 422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 423 pr_info("------------------------------------\n"); 424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 425 426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 427 const char *next_desc; 428 struct igb_tx_buffer *buffer_info; 429 tx_desc = IGB_TX_DESC(tx_ring, i); 430 buffer_info = &tx_ring->tx_buffer_info[i]; 431 u0 = (struct my_u0 *)tx_desc; 432 if (i == tx_ring->next_to_use && 433 i == tx_ring->next_to_clean) 434 next_desc = " NTC/U"; 435 else if (i == tx_ring->next_to_use) 436 next_desc = " NTU"; 437 else if (i == tx_ring->next_to_clean) 438 next_desc = " NTC"; 439 else 440 next_desc = ""; 441 442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 443 i, le64_to_cpu(u0->a), 444 le64_to_cpu(u0->b), 445 (u64)dma_unmap_addr(buffer_info, dma), 446 dma_unmap_len(buffer_info, len), 447 buffer_info->next_to_watch, 448 (u64)buffer_info->time_stamp, 449 buffer_info->skb, next_desc); 450 451 if (netif_msg_pktdata(adapter) && buffer_info->skb) 452 print_hex_dump(KERN_INFO, "", 453 DUMP_PREFIX_ADDRESS, 454 16, 1, buffer_info->skb->data, 455 dma_unmap_len(buffer_info, len), 456 true); 457 } 458 } 459 460 /* Print RX Rings Summary */ 461 rx_ring_summary: 462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 463 pr_info("Queue [NTU] [NTC]\n"); 464 for (n = 0; n < adapter->num_rx_queues; n++) { 465 rx_ring = adapter->rx_ring[n]; 466 pr_info(" %5d %5X %5X\n", 467 n, rx_ring->next_to_use, rx_ring->next_to_clean); 468 } 469 470 /* Print RX Rings */ 471 if (!netif_msg_rx_status(adapter)) 472 goto exit; 473 474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 475 476 /* Advanced Receive Descriptor (Read) Format 477 * 63 1 0 478 * +-----------------------------------------------------+ 479 * 0 | Packet Buffer Address [63:1] |A0/NSE| 480 * +----------------------------------------------+------+ 481 * 8 | Header Buffer Address [63:1] | DD | 482 * +-----------------------------------------------------+ 483 * 484 * 485 * Advanced Receive Descriptor (Write-Back) Format 486 * 487 * 63 48 47 32 31 30 21 20 17 16 4 3 0 488 * +------------------------------------------------------+ 489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 490 * | Checksum Ident | | | | Type | Type | 491 * +------------------------------------------------------+ 492 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 493 * +------------------------------------------------------+ 494 * 63 48 47 32 31 20 19 0 495 */ 496 497 for (n = 0; n < adapter->num_rx_queues; n++) { 498 rx_ring = adapter->rx_ring[n]; 499 pr_info("------------------------------------\n"); 500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 501 pr_info("------------------------------------\n"); 502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 504 505 for (i = 0; i < rx_ring->count; i++) { 506 const char *next_desc; 507 struct igb_rx_buffer *buffer_info; 508 buffer_info = &rx_ring->rx_buffer_info[i]; 509 rx_desc = IGB_RX_DESC(rx_ring, i); 510 u0 = (struct my_u0 *)rx_desc; 511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 512 513 if (i == rx_ring->next_to_use) 514 next_desc = " NTU"; 515 else if (i == rx_ring->next_to_clean) 516 next_desc = " NTC"; 517 else 518 next_desc = ""; 519 520 if (staterr & E1000_RXD_STAT_DD) { 521 /* Descriptor Done */ 522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 523 "RWB", i, 524 le64_to_cpu(u0->a), 525 le64_to_cpu(u0->b), 526 next_desc); 527 } else { 528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 529 "R ", i, 530 le64_to_cpu(u0->a), 531 le64_to_cpu(u0->b), 532 (u64)buffer_info->dma, 533 next_desc); 534 535 if (netif_msg_pktdata(adapter) && 536 buffer_info->dma && buffer_info->page) { 537 print_hex_dump(KERN_INFO, "", 538 DUMP_PREFIX_ADDRESS, 539 16, 1, 540 page_address(buffer_info->page) + 541 buffer_info->page_offset, 542 igb_rx_bufsz(rx_ring), true); 543 } 544 } 545 } 546 } 547 548 exit: 549 return; 550 } 551 552 /** 553 * igb_get_i2c_data - Reads the I2C SDA data bit 554 * @data: opaque pointer to adapter struct 555 * 556 * Returns the I2C data bit value 557 **/ 558 static int igb_get_i2c_data(void *data) 559 { 560 struct igb_adapter *adapter = (struct igb_adapter *)data; 561 struct e1000_hw *hw = &adapter->hw; 562 s32 i2cctl = rd32(E1000_I2CPARAMS); 563 564 return !!(i2cctl & E1000_I2C_DATA_IN); 565 } 566 567 /** 568 * igb_set_i2c_data - Sets the I2C data bit 569 * @data: pointer to hardware structure 570 * @state: I2C data value (0 or 1) to set 571 * 572 * Sets the I2C data bit 573 **/ 574 static void igb_set_i2c_data(void *data, int state) 575 { 576 struct igb_adapter *adapter = (struct igb_adapter *)data; 577 struct e1000_hw *hw = &adapter->hw; 578 s32 i2cctl = rd32(E1000_I2CPARAMS); 579 580 if (state) 581 i2cctl |= E1000_I2C_DATA_OUT; 582 else 583 i2cctl &= ~E1000_I2C_DATA_OUT; 584 585 i2cctl &= ~E1000_I2C_DATA_OE_N; 586 i2cctl |= E1000_I2C_CLK_OE_N; 587 wr32(E1000_I2CPARAMS, i2cctl); 588 wrfl(); 589 590 } 591 592 /** 593 * igb_set_i2c_clk - Sets the I2C SCL clock 594 * @data: pointer to hardware structure 595 * @state: state to set clock 596 * 597 * Sets the I2C clock line to state 598 **/ 599 static void igb_set_i2c_clk(void *data, int state) 600 { 601 struct igb_adapter *adapter = (struct igb_adapter *)data; 602 struct e1000_hw *hw = &adapter->hw; 603 s32 i2cctl = rd32(E1000_I2CPARAMS); 604 605 if (state) { 606 i2cctl |= E1000_I2C_CLK_OUT; 607 i2cctl &= ~E1000_I2C_CLK_OE_N; 608 } else { 609 i2cctl &= ~E1000_I2C_CLK_OUT; 610 i2cctl &= ~E1000_I2C_CLK_OE_N; 611 } 612 wr32(E1000_I2CPARAMS, i2cctl); 613 wrfl(); 614 } 615 616 /** 617 * igb_get_i2c_clk - Gets the I2C SCL clock state 618 * @data: pointer to hardware structure 619 * 620 * Gets the I2C clock state 621 **/ 622 static int igb_get_i2c_clk(void *data) 623 { 624 struct igb_adapter *adapter = (struct igb_adapter *)data; 625 struct e1000_hw *hw = &adapter->hw; 626 s32 i2cctl = rd32(E1000_I2CPARAMS); 627 628 return !!(i2cctl & E1000_I2C_CLK_IN); 629 } 630 631 static const struct i2c_algo_bit_data igb_i2c_algo = { 632 .setsda = igb_set_i2c_data, 633 .setscl = igb_set_i2c_clk, 634 .getsda = igb_get_i2c_data, 635 .getscl = igb_get_i2c_clk, 636 .udelay = 5, 637 .timeout = 20, 638 }; 639 640 /** 641 * igb_get_hw_dev - return device 642 * @hw: pointer to hardware structure 643 * 644 * used by hardware layer to print debugging information 645 **/ 646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 647 { 648 struct igb_adapter *adapter = hw->back; 649 return adapter->netdev; 650 } 651 652 /** 653 * igb_init_module - Driver Registration Routine 654 * 655 * igb_init_module is the first routine called when the driver is 656 * loaded. All it does is register with the PCI subsystem. 657 **/ 658 static int __init igb_init_module(void) 659 { 660 int ret; 661 662 pr_info("%s\n", igb_driver_string); 663 pr_info("%s\n", igb_copyright); 664 665 #ifdef CONFIG_IGB_DCA 666 dca_register_notify(&dca_notifier); 667 #endif 668 ret = pci_register_driver(&igb_driver); 669 return ret; 670 } 671 672 module_init(igb_init_module); 673 674 /** 675 * igb_exit_module - Driver Exit Cleanup Routine 676 * 677 * igb_exit_module is called just before the driver is removed 678 * from memory. 679 **/ 680 static void __exit igb_exit_module(void) 681 { 682 #ifdef CONFIG_IGB_DCA 683 dca_unregister_notify(&dca_notifier); 684 #endif 685 pci_unregister_driver(&igb_driver); 686 } 687 688 module_exit(igb_exit_module); 689 690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 691 /** 692 * igb_cache_ring_register - Descriptor ring to register mapping 693 * @adapter: board private structure to initialize 694 * 695 * Once we know the feature-set enabled for the device, we'll cache 696 * the register offset the descriptor ring is assigned to. 697 **/ 698 static void igb_cache_ring_register(struct igb_adapter *adapter) 699 { 700 int i = 0, j = 0; 701 u32 rbase_offset = adapter->vfs_allocated_count; 702 703 switch (adapter->hw.mac.type) { 704 case e1000_82576: 705 /* The queues are allocated for virtualization such that VF 0 706 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 707 * In order to avoid collision we start at the first free queue 708 * and continue consuming queues in the same sequence 709 */ 710 if (adapter->vfs_allocated_count) { 711 for (; i < adapter->rss_queues; i++) 712 adapter->rx_ring[i]->reg_idx = rbase_offset + 713 Q_IDX_82576(i); 714 } 715 fallthrough; 716 case e1000_82575: 717 case e1000_82580: 718 case e1000_i350: 719 case e1000_i354: 720 case e1000_i210: 721 case e1000_i211: 722 default: 723 for (; i < adapter->num_rx_queues; i++) 724 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 725 for (; j < adapter->num_tx_queues; j++) 726 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 727 break; 728 } 729 } 730 731 u32 igb_rd32(struct e1000_hw *hw, u32 reg) 732 { 733 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 734 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 735 u32 value = 0; 736 737 if (E1000_REMOVED(hw_addr)) 738 return ~value; 739 740 value = readl(&hw_addr[reg]); 741 742 /* reads should not return all F's */ 743 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 744 struct net_device *netdev = igb->netdev; 745 hw->hw_addr = NULL; 746 netdev_err(netdev, "PCIe link lost\n"); 747 WARN(pci_device_is_present(igb->pdev), 748 "igb: Failed to read reg 0x%x!\n", reg); 749 } 750 751 return value; 752 } 753 754 /** 755 * igb_write_ivar - configure ivar for given MSI-X vector 756 * @hw: pointer to the HW structure 757 * @msix_vector: vector number we are allocating to a given ring 758 * @index: row index of IVAR register to write within IVAR table 759 * @offset: column offset of in IVAR, should be multiple of 8 760 * 761 * This function is intended to handle the writing of the IVAR register 762 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 763 * each containing an cause allocation for an Rx and Tx ring, and a 764 * variable number of rows depending on the number of queues supported. 765 **/ 766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 767 int index, int offset) 768 { 769 u32 ivar = array_rd32(E1000_IVAR0, index); 770 771 /* clear any bits that are currently set */ 772 ivar &= ~((u32)0xFF << offset); 773 774 /* write vector and valid bit */ 775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 776 777 array_wr32(E1000_IVAR0, index, ivar); 778 } 779 780 #define IGB_N0_QUEUE -1 781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 782 { 783 struct igb_adapter *adapter = q_vector->adapter; 784 struct e1000_hw *hw = &adapter->hw; 785 int rx_queue = IGB_N0_QUEUE; 786 int tx_queue = IGB_N0_QUEUE; 787 u32 msixbm = 0; 788 789 if (q_vector->rx.ring) 790 rx_queue = q_vector->rx.ring->reg_idx; 791 if (q_vector->tx.ring) 792 tx_queue = q_vector->tx.ring->reg_idx; 793 794 switch (hw->mac.type) { 795 case e1000_82575: 796 /* The 82575 assigns vectors using a bitmask, which matches the 797 * bitmask for the EICR/EIMS/EIMC registers. To assign one 798 * or more queues to a vector, we write the appropriate bits 799 * into the MSIXBM register for that vector. 800 */ 801 if (rx_queue > IGB_N0_QUEUE) 802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 803 if (tx_queue > IGB_N0_QUEUE) 804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 805 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 806 msixbm |= E1000_EIMS_OTHER; 807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 808 q_vector->eims_value = msixbm; 809 break; 810 case e1000_82576: 811 /* 82576 uses a table that essentially consists of 2 columns 812 * with 8 rows. The ordering is column-major so we use the 813 * lower 3 bits as the row index, and the 4th bit as the 814 * column offset. 815 */ 816 if (rx_queue > IGB_N0_QUEUE) 817 igb_write_ivar(hw, msix_vector, 818 rx_queue & 0x7, 819 (rx_queue & 0x8) << 1); 820 if (tx_queue > IGB_N0_QUEUE) 821 igb_write_ivar(hw, msix_vector, 822 tx_queue & 0x7, 823 ((tx_queue & 0x8) << 1) + 8); 824 q_vector->eims_value = BIT(msix_vector); 825 break; 826 case e1000_82580: 827 case e1000_i350: 828 case e1000_i354: 829 case e1000_i210: 830 case e1000_i211: 831 /* On 82580 and newer adapters the scheme is similar to 82576 832 * however instead of ordering column-major we have things 833 * ordered row-major. So we traverse the table by using 834 * bit 0 as the column offset, and the remaining bits as the 835 * row index. 836 */ 837 if (rx_queue > IGB_N0_QUEUE) 838 igb_write_ivar(hw, msix_vector, 839 rx_queue >> 1, 840 (rx_queue & 0x1) << 4); 841 if (tx_queue > IGB_N0_QUEUE) 842 igb_write_ivar(hw, msix_vector, 843 tx_queue >> 1, 844 ((tx_queue & 0x1) << 4) + 8); 845 q_vector->eims_value = BIT(msix_vector); 846 break; 847 default: 848 BUG(); 849 break; 850 } 851 852 /* add q_vector eims value to global eims_enable_mask */ 853 adapter->eims_enable_mask |= q_vector->eims_value; 854 855 /* configure q_vector to set itr on first interrupt */ 856 q_vector->set_itr = 1; 857 } 858 859 /** 860 * igb_configure_msix - Configure MSI-X hardware 861 * @adapter: board private structure to initialize 862 * 863 * igb_configure_msix sets up the hardware to properly 864 * generate MSI-X interrupts. 865 **/ 866 static void igb_configure_msix(struct igb_adapter *adapter) 867 { 868 u32 tmp; 869 int i, vector = 0; 870 struct e1000_hw *hw = &adapter->hw; 871 872 adapter->eims_enable_mask = 0; 873 874 /* set vector for other causes, i.e. link changes */ 875 switch (hw->mac.type) { 876 case e1000_82575: 877 tmp = rd32(E1000_CTRL_EXT); 878 /* enable MSI-X PBA support*/ 879 tmp |= E1000_CTRL_EXT_PBA_CLR; 880 881 /* Auto-Mask interrupts upon ICR read. */ 882 tmp |= E1000_CTRL_EXT_EIAME; 883 tmp |= E1000_CTRL_EXT_IRCA; 884 885 wr32(E1000_CTRL_EXT, tmp); 886 887 /* enable msix_other interrupt */ 888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 889 adapter->eims_other = E1000_EIMS_OTHER; 890 891 break; 892 893 case e1000_82576: 894 case e1000_82580: 895 case e1000_i350: 896 case e1000_i354: 897 case e1000_i210: 898 case e1000_i211: 899 /* Turn on MSI-X capability first, or our settings 900 * won't stick. And it will take days to debug. 901 */ 902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 903 E1000_GPIE_PBA | E1000_GPIE_EIAME | 904 E1000_GPIE_NSICR); 905 906 /* enable msix_other interrupt */ 907 adapter->eims_other = BIT(vector); 908 tmp = (vector++ | E1000_IVAR_VALID) << 8; 909 910 wr32(E1000_IVAR_MISC, tmp); 911 break; 912 default: 913 /* do nothing, since nothing else supports MSI-X */ 914 break; 915 } /* switch (hw->mac.type) */ 916 917 adapter->eims_enable_mask |= adapter->eims_other; 918 919 for (i = 0; i < adapter->num_q_vectors; i++) 920 igb_assign_vector(adapter->q_vector[i], vector++); 921 922 wrfl(); 923 } 924 925 /** 926 * igb_request_msix - Initialize MSI-X interrupts 927 * @adapter: board private structure to initialize 928 * 929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 930 * kernel. 931 **/ 932 static int igb_request_msix(struct igb_adapter *adapter) 933 { 934 unsigned int num_q_vectors = adapter->num_q_vectors; 935 struct net_device *netdev = adapter->netdev; 936 int i, err = 0, vector = 0, free_vector = 0; 937 938 err = request_irq(adapter->msix_entries[vector].vector, 939 igb_msix_other, 0, netdev->name, adapter); 940 if (err) 941 goto err_out; 942 943 if (num_q_vectors > MAX_Q_VECTORS) { 944 num_q_vectors = MAX_Q_VECTORS; 945 dev_warn(&adapter->pdev->dev, 946 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 947 adapter->num_q_vectors, MAX_Q_VECTORS); 948 } 949 for (i = 0; i < num_q_vectors; i++) { 950 struct igb_q_vector *q_vector = adapter->q_vector[i]; 951 952 vector++; 953 954 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector); 955 956 if (q_vector->rx.ring && q_vector->tx.ring) 957 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 958 q_vector->rx.ring->queue_index); 959 else if (q_vector->tx.ring) 960 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 961 q_vector->tx.ring->queue_index); 962 else if (q_vector->rx.ring) 963 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 964 q_vector->rx.ring->queue_index); 965 else 966 sprintf(q_vector->name, "%s-unused", netdev->name); 967 968 err = request_irq(adapter->msix_entries[vector].vector, 969 igb_msix_ring, 0, q_vector->name, 970 q_vector); 971 if (err) 972 goto err_free; 973 } 974 975 igb_configure_msix(adapter); 976 return 0; 977 978 err_free: 979 /* free already assigned IRQs */ 980 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 981 982 vector--; 983 for (i = 0; i < vector; i++) { 984 free_irq(adapter->msix_entries[free_vector++].vector, 985 adapter->q_vector[i]); 986 } 987 err_out: 988 return err; 989 } 990 991 /** 992 * igb_free_q_vector - Free memory allocated for specific interrupt vector 993 * @adapter: board private structure to initialize 994 * @v_idx: Index of vector to be freed 995 * 996 * This function frees the memory allocated to the q_vector. 997 **/ 998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 999 { 1000 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1001 1002 adapter->q_vector[v_idx] = NULL; 1003 1004 /* igb_get_stats64() might access the rings on this vector, 1005 * we must wait a grace period before freeing it. 1006 */ 1007 if (q_vector) 1008 kfree_rcu(q_vector, rcu); 1009 } 1010 1011 /** 1012 * igb_reset_q_vector - Reset config for interrupt vector 1013 * @adapter: board private structure to initialize 1014 * @v_idx: Index of vector to be reset 1015 * 1016 * If NAPI is enabled it will delete any references to the 1017 * NAPI struct. This is preparation for igb_free_q_vector. 1018 **/ 1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1020 { 1021 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1022 1023 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1024 * allocated. So, q_vector is NULL so we should stop here. 1025 */ 1026 if (!q_vector) 1027 return; 1028 1029 if (q_vector->tx.ring) 1030 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1031 1032 if (q_vector->rx.ring) 1033 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 1034 1035 netif_napi_del(&q_vector->napi); 1036 1037 } 1038 1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1040 { 1041 int v_idx = adapter->num_q_vectors; 1042 1043 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1044 pci_disable_msix(adapter->pdev); 1045 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1046 pci_disable_msi(adapter->pdev); 1047 1048 while (v_idx--) 1049 igb_reset_q_vector(adapter, v_idx); 1050 } 1051 1052 /** 1053 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1054 * @adapter: board private structure to initialize 1055 * 1056 * This function frees the memory allocated to the q_vectors. In addition if 1057 * NAPI is enabled it will delete any references to the NAPI struct prior 1058 * to freeing the q_vector. 1059 **/ 1060 static void igb_free_q_vectors(struct igb_adapter *adapter) 1061 { 1062 int v_idx = adapter->num_q_vectors; 1063 1064 adapter->num_tx_queues = 0; 1065 adapter->num_rx_queues = 0; 1066 adapter->num_q_vectors = 0; 1067 1068 while (v_idx--) { 1069 igb_reset_q_vector(adapter, v_idx); 1070 igb_free_q_vector(adapter, v_idx); 1071 } 1072 } 1073 1074 /** 1075 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1076 * @adapter: board private structure to initialize 1077 * 1078 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1079 * MSI-X interrupts allocated. 1080 */ 1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1082 { 1083 igb_free_q_vectors(adapter); 1084 igb_reset_interrupt_capability(adapter); 1085 } 1086 1087 /** 1088 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1089 * @adapter: board private structure to initialize 1090 * @msix: boolean value of MSIX capability 1091 * 1092 * Attempt to configure interrupts using the best available 1093 * capabilities of the hardware and kernel. 1094 **/ 1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1096 { 1097 int err; 1098 int numvecs, i; 1099 1100 if (!msix) 1101 goto msi_only; 1102 adapter->flags |= IGB_FLAG_HAS_MSIX; 1103 1104 /* Number of supported queues. */ 1105 adapter->num_rx_queues = adapter->rss_queues; 1106 if (adapter->vfs_allocated_count) 1107 adapter->num_tx_queues = 1; 1108 else 1109 adapter->num_tx_queues = adapter->rss_queues; 1110 1111 /* start with one vector for every Rx queue */ 1112 numvecs = adapter->num_rx_queues; 1113 1114 /* if Tx handler is separate add 1 for every Tx queue */ 1115 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1116 numvecs += adapter->num_tx_queues; 1117 1118 /* store the number of vectors reserved for queues */ 1119 adapter->num_q_vectors = numvecs; 1120 1121 /* add 1 vector for link status interrupts */ 1122 numvecs++; 1123 for (i = 0; i < numvecs; i++) 1124 adapter->msix_entries[i].entry = i; 1125 1126 err = pci_enable_msix_range(adapter->pdev, 1127 adapter->msix_entries, 1128 numvecs, 1129 numvecs); 1130 if (err > 0) 1131 return; 1132 1133 igb_reset_interrupt_capability(adapter); 1134 1135 /* If we can't do MSI-X, try MSI */ 1136 msi_only: 1137 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1138 #ifdef CONFIG_PCI_IOV 1139 /* disable SR-IOV for non MSI-X configurations */ 1140 if (adapter->vf_data) { 1141 struct e1000_hw *hw = &adapter->hw; 1142 /* disable iov and allow time for transactions to clear */ 1143 pci_disable_sriov(adapter->pdev); 1144 msleep(500); 1145 1146 kfree(adapter->vf_mac_list); 1147 adapter->vf_mac_list = NULL; 1148 kfree(adapter->vf_data); 1149 adapter->vf_data = NULL; 1150 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1151 wrfl(); 1152 msleep(100); 1153 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1154 } 1155 #endif 1156 adapter->vfs_allocated_count = 0; 1157 adapter->rss_queues = 1; 1158 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1159 adapter->num_rx_queues = 1; 1160 adapter->num_tx_queues = 1; 1161 adapter->num_q_vectors = 1; 1162 if (!pci_enable_msi(adapter->pdev)) 1163 adapter->flags |= IGB_FLAG_HAS_MSI; 1164 } 1165 1166 static void igb_add_ring(struct igb_ring *ring, 1167 struct igb_ring_container *head) 1168 { 1169 head->ring = ring; 1170 head->count++; 1171 } 1172 1173 /** 1174 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1175 * @adapter: board private structure to initialize 1176 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1177 * @v_idx: index of vector in adapter struct 1178 * @txr_count: total number of Tx rings to allocate 1179 * @txr_idx: index of first Tx ring to allocate 1180 * @rxr_count: total number of Rx rings to allocate 1181 * @rxr_idx: index of first Rx ring to allocate 1182 * 1183 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1184 **/ 1185 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1186 int v_count, int v_idx, 1187 int txr_count, int txr_idx, 1188 int rxr_count, int rxr_idx) 1189 { 1190 struct igb_q_vector *q_vector; 1191 struct igb_ring *ring; 1192 int ring_count; 1193 size_t size; 1194 1195 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1196 if (txr_count > 1 || rxr_count > 1) 1197 return -ENOMEM; 1198 1199 ring_count = txr_count + rxr_count; 1200 size = struct_size(q_vector, ring, ring_count); 1201 1202 /* allocate q_vector and rings */ 1203 q_vector = adapter->q_vector[v_idx]; 1204 if (!q_vector) { 1205 q_vector = kzalloc(size, GFP_KERNEL); 1206 } else if (size > ksize(q_vector)) { 1207 kfree_rcu(q_vector, rcu); 1208 q_vector = kzalloc(size, GFP_KERNEL); 1209 } else { 1210 memset(q_vector, 0, size); 1211 } 1212 if (!q_vector) 1213 return -ENOMEM; 1214 1215 /* initialize NAPI */ 1216 netif_napi_add(adapter->netdev, &q_vector->napi, 1217 igb_poll, 64); 1218 1219 /* tie q_vector and adapter together */ 1220 adapter->q_vector[v_idx] = q_vector; 1221 q_vector->adapter = adapter; 1222 1223 /* initialize work limits */ 1224 q_vector->tx.work_limit = adapter->tx_work_limit; 1225 1226 /* initialize ITR configuration */ 1227 q_vector->itr_register = adapter->io_addr + E1000_EITR(0); 1228 q_vector->itr_val = IGB_START_ITR; 1229 1230 /* initialize pointer to rings */ 1231 ring = q_vector->ring; 1232 1233 /* intialize ITR */ 1234 if (rxr_count) { 1235 /* rx or rx/tx vector */ 1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1237 q_vector->itr_val = adapter->rx_itr_setting; 1238 } else { 1239 /* tx only vector */ 1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1241 q_vector->itr_val = adapter->tx_itr_setting; 1242 } 1243 1244 if (txr_count) { 1245 /* assign generic ring traits */ 1246 ring->dev = &adapter->pdev->dev; 1247 ring->netdev = adapter->netdev; 1248 1249 /* configure backlink on ring */ 1250 ring->q_vector = q_vector; 1251 1252 /* update q_vector Tx values */ 1253 igb_add_ring(ring, &q_vector->tx); 1254 1255 /* For 82575, context index must be unique per ring. */ 1256 if (adapter->hw.mac.type == e1000_82575) 1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1258 1259 /* apply Tx specific ring traits */ 1260 ring->count = adapter->tx_ring_count; 1261 ring->queue_index = txr_idx; 1262 1263 ring->cbs_enable = false; 1264 ring->idleslope = 0; 1265 ring->sendslope = 0; 1266 ring->hicredit = 0; 1267 ring->locredit = 0; 1268 1269 u64_stats_init(&ring->tx_syncp); 1270 u64_stats_init(&ring->tx_syncp2); 1271 1272 /* assign ring to adapter */ 1273 adapter->tx_ring[txr_idx] = ring; 1274 1275 /* push pointer to next ring */ 1276 ring++; 1277 } 1278 1279 if (rxr_count) { 1280 /* assign generic ring traits */ 1281 ring->dev = &adapter->pdev->dev; 1282 ring->netdev = adapter->netdev; 1283 1284 /* configure backlink on ring */ 1285 ring->q_vector = q_vector; 1286 1287 /* update q_vector Rx values */ 1288 igb_add_ring(ring, &q_vector->rx); 1289 1290 /* set flag indicating ring supports SCTP checksum offload */ 1291 if (adapter->hw.mac.type >= e1000_82576) 1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1293 1294 /* On i350, i354, i210, and i211, loopback VLAN packets 1295 * have the tag byte-swapped. 1296 */ 1297 if (adapter->hw.mac.type >= e1000_i350) 1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1299 1300 /* apply Rx specific ring traits */ 1301 ring->count = adapter->rx_ring_count; 1302 ring->queue_index = rxr_idx; 1303 1304 u64_stats_init(&ring->rx_syncp); 1305 1306 /* assign ring to adapter */ 1307 adapter->rx_ring[rxr_idx] = ring; 1308 } 1309 1310 return 0; 1311 } 1312 1313 1314 /** 1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1316 * @adapter: board private structure to initialize 1317 * 1318 * We allocate one q_vector per queue interrupt. If allocation fails we 1319 * return -ENOMEM. 1320 **/ 1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1322 { 1323 int q_vectors = adapter->num_q_vectors; 1324 int rxr_remaining = adapter->num_rx_queues; 1325 int txr_remaining = adapter->num_tx_queues; 1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1327 int err; 1328 1329 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1330 for (; rxr_remaining; v_idx++) { 1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1332 0, 0, 1, rxr_idx); 1333 1334 if (err) 1335 goto err_out; 1336 1337 /* update counts and index */ 1338 rxr_remaining--; 1339 rxr_idx++; 1340 } 1341 } 1342 1343 for (; v_idx < q_vectors; v_idx++) { 1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1346 1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1348 tqpv, txr_idx, rqpv, rxr_idx); 1349 1350 if (err) 1351 goto err_out; 1352 1353 /* update counts and index */ 1354 rxr_remaining -= rqpv; 1355 txr_remaining -= tqpv; 1356 rxr_idx++; 1357 txr_idx++; 1358 } 1359 1360 return 0; 1361 1362 err_out: 1363 adapter->num_tx_queues = 0; 1364 adapter->num_rx_queues = 0; 1365 adapter->num_q_vectors = 0; 1366 1367 while (v_idx--) 1368 igb_free_q_vector(adapter, v_idx); 1369 1370 return -ENOMEM; 1371 } 1372 1373 /** 1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1375 * @adapter: board private structure to initialize 1376 * @msix: boolean value of MSIX capability 1377 * 1378 * This function initializes the interrupts and allocates all of the queues. 1379 **/ 1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1381 { 1382 struct pci_dev *pdev = adapter->pdev; 1383 int err; 1384 1385 igb_set_interrupt_capability(adapter, msix); 1386 1387 err = igb_alloc_q_vectors(adapter); 1388 if (err) { 1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1390 goto err_alloc_q_vectors; 1391 } 1392 1393 igb_cache_ring_register(adapter); 1394 1395 return 0; 1396 1397 err_alloc_q_vectors: 1398 igb_reset_interrupt_capability(adapter); 1399 return err; 1400 } 1401 1402 /** 1403 * igb_request_irq - initialize interrupts 1404 * @adapter: board private structure to initialize 1405 * 1406 * Attempts to configure interrupts using the best available 1407 * capabilities of the hardware and kernel. 1408 **/ 1409 static int igb_request_irq(struct igb_adapter *adapter) 1410 { 1411 struct net_device *netdev = adapter->netdev; 1412 struct pci_dev *pdev = adapter->pdev; 1413 int err = 0; 1414 1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1416 err = igb_request_msix(adapter); 1417 if (!err) 1418 goto request_done; 1419 /* fall back to MSI */ 1420 igb_free_all_tx_resources(adapter); 1421 igb_free_all_rx_resources(adapter); 1422 1423 igb_clear_interrupt_scheme(adapter); 1424 err = igb_init_interrupt_scheme(adapter, false); 1425 if (err) 1426 goto request_done; 1427 1428 igb_setup_all_tx_resources(adapter); 1429 igb_setup_all_rx_resources(adapter); 1430 igb_configure(adapter); 1431 } 1432 1433 igb_assign_vector(adapter->q_vector[0], 0); 1434 1435 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1436 err = request_irq(pdev->irq, igb_intr_msi, 0, 1437 netdev->name, adapter); 1438 if (!err) 1439 goto request_done; 1440 1441 /* fall back to legacy interrupts */ 1442 igb_reset_interrupt_capability(adapter); 1443 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1444 } 1445 1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1447 netdev->name, adapter); 1448 1449 if (err) 1450 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1451 err); 1452 1453 request_done: 1454 return err; 1455 } 1456 1457 static void igb_free_irq(struct igb_adapter *adapter) 1458 { 1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1460 int vector = 0, i; 1461 1462 free_irq(adapter->msix_entries[vector++].vector, adapter); 1463 1464 for (i = 0; i < adapter->num_q_vectors; i++) 1465 free_irq(adapter->msix_entries[vector++].vector, 1466 adapter->q_vector[i]); 1467 } else { 1468 free_irq(adapter->pdev->irq, adapter); 1469 } 1470 } 1471 1472 /** 1473 * igb_irq_disable - Mask off interrupt generation on the NIC 1474 * @adapter: board private structure 1475 **/ 1476 static void igb_irq_disable(struct igb_adapter *adapter) 1477 { 1478 struct e1000_hw *hw = &adapter->hw; 1479 1480 /* we need to be careful when disabling interrupts. The VFs are also 1481 * mapped into these registers and so clearing the bits can cause 1482 * issues on the VF drivers so we only need to clear what we set 1483 */ 1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1485 u32 regval = rd32(E1000_EIAM); 1486 1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1488 wr32(E1000_EIMC, adapter->eims_enable_mask); 1489 regval = rd32(E1000_EIAC); 1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1491 } 1492 1493 wr32(E1000_IAM, 0); 1494 wr32(E1000_IMC, ~0); 1495 wrfl(); 1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1497 int i; 1498 1499 for (i = 0; i < adapter->num_q_vectors; i++) 1500 synchronize_irq(adapter->msix_entries[i].vector); 1501 } else { 1502 synchronize_irq(adapter->pdev->irq); 1503 } 1504 } 1505 1506 /** 1507 * igb_irq_enable - Enable default interrupt generation settings 1508 * @adapter: board private structure 1509 **/ 1510 static void igb_irq_enable(struct igb_adapter *adapter) 1511 { 1512 struct e1000_hw *hw = &adapter->hw; 1513 1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1516 u32 regval = rd32(E1000_EIAC); 1517 1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1519 regval = rd32(E1000_EIAM); 1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1521 wr32(E1000_EIMS, adapter->eims_enable_mask); 1522 if (adapter->vfs_allocated_count) { 1523 wr32(E1000_MBVFIMR, 0xFF); 1524 ims |= E1000_IMS_VMMB; 1525 } 1526 wr32(E1000_IMS, ims); 1527 } else { 1528 wr32(E1000_IMS, IMS_ENABLE_MASK | 1529 E1000_IMS_DRSTA); 1530 wr32(E1000_IAM, IMS_ENABLE_MASK | 1531 E1000_IMS_DRSTA); 1532 } 1533 } 1534 1535 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1536 { 1537 struct e1000_hw *hw = &adapter->hw; 1538 u16 pf_id = adapter->vfs_allocated_count; 1539 u16 vid = adapter->hw.mng_cookie.vlan_id; 1540 u16 old_vid = adapter->mng_vlan_id; 1541 1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1543 /* add VID to filter table */ 1544 igb_vfta_set(hw, vid, pf_id, true, true); 1545 adapter->mng_vlan_id = vid; 1546 } else { 1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1548 } 1549 1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1551 (vid != old_vid) && 1552 !test_bit(old_vid, adapter->active_vlans)) { 1553 /* remove VID from filter table */ 1554 igb_vfta_set(hw, vid, pf_id, false, true); 1555 } 1556 } 1557 1558 /** 1559 * igb_release_hw_control - release control of the h/w to f/w 1560 * @adapter: address of board private structure 1561 * 1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1563 * For ASF and Pass Through versions of f/w this means that the 1564 * driver is no longer loaded. 1565 **/ 1566 static void igb_release_hw_control(struct igb_adapter *adapter) 1567 { 1568 struct e1000_hw *hw = &adapter->hw; 1569 u32 ctrl_ext; 1570 1571 /* Let firmware take over control of h/w */ 1572 ctrl_ext = rd32(E1000_CTRL_EXT); 1573 wr32(E1000_CTRL_EXT, 1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1575 } 1576 1577 /** 1578 * igb_get_hw_control - get control of the h/w from f/w 1579 * @adapter: address of board private structure 1580 * 1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1582 * For ASF and Pass Through versions of f/w this means that 1583 * the driver is loaded. 1584 **/ 1585 static void igb_get_hw_control(struct igb_adapter *adapter) 1586 { 1587 struct e1000_hw *hw = &adapter->hw; 1588 u32 ctrl_ext; 1589 1590 /* Let firmware know the driver has taken over */ 1591 ctrl_ext = rd32(E1000_CTRL_EXT); 1592 wr32(E1000_CTRL_EXT, 1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1594 } 1595 1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable) 1597 { 1598 struct net_device *netdev = adapter->netdev; 1599 struct e1000_hw *hw = &adapter->hw; 1600 1601 WARN_ON(hw->mac.type != e1000_i210); 1602 1603 if (enable) 1604 adapter->flags |= IGB_FLAG_FQTSS; 1605 else 1606 adapter->flags &= ~IGB_FLAG_FQTSS; 1607 1608 if (netif_running(netdev)) 1609 schedule_work(&adapter->reset_task); 1610 } 1611 1612 static bool is_fqtss_enabled(struct igb_adapter *adapter) 1613 { 1614 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false; 1615 } 1616 1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue, 1618 enum tx_queue_prio prio) 1619 { 1620 u32 val; 1621 1622 WARN_ON(hw->mac.type != e1000_i210); 1623 WARN_ON(queue < 0 || queue > 4); 1624 1625 val = rd32(E1000_I210_TXDCTL(queue)); 1626 1627 if (prio == TX_QUEUE_PRIO_HIGH) 1628 val |= E1000_TXDCTL_PRIORITY; 1629 else 1630 val &= ~E1000_TXDCTL_PRIORITY; 1631 1632 wr32(E1000_I210_TXDCTL(queue), val); 1633 } 1634 1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode) 1636 { 1637 u32 val; 1638 1639 WARN_ON(hw->mac.type != e1000_i210); 1640 WARN_ON(queue < 0 || queue > 1); 1641 1642 val = rd32(E1000_I210_TQAVCC(queue)); 1643 1644 if (mode == QUEUE_MODE_STREAM_RESERVATION) 1645 val |= E1000_TQAVCC_QUEUEMODE; 1646 else 1647 val &= ~E1000_TQAVCC_QUEUEMODE; 1648 1649 wr32(E1000_I210_TQAVCC(queue), val); 1650 } 1651 1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter) 1653 { 1654 int i; 1655 1656 for (i = 0; i < adapter->num_tx_queues; i++) { 1657 if (adapter->tx_ring[i]->cbs_enable) 1658 return true; 1659 } 1660 1661 return false; 1662 } 1663 1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter) 1665 { 1666 int i; 1667 1668 for (i = 0; i < adapter->num_tx_queues; i++) { 1669 if (adapter->tx_ring[i]->launchtime_enable) 1670 return true; 1671 } 1672 1673 return false; 1674 } 1675 1676 /** 1677 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb 1678 * @adapter: pointer to adapter struct 1679 * @queue: queue number 1680 * 1681 * Configure CBS and Launchtime for a given hardware queue. 1682 * Parameters are retrieved from the correct Tx ring, so 1683 * igb_save_cbs_params() and igb_save_txtime_params() should be used 1684 * for setting those correctly prior to this function being called. 1685 **/ 1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue) 1687 { 1688 struct net_device *netdev = adapter->netdev; 1689 struct e1000_hw *hw = &adapter->hw; 1690 struct igb_ring *ring; 1691 u32 tqavcc, tqavctrl; 1692 u16 value; 1693 1694 WARN_ON(hw->mac.type != e1000_i210); 1695 WARN_ON(queue < 0 || queue > 1); 1696 ring = adapter->tx_ring[queue]; 1697 1698 /* If any of the Qav features is enabled, configure queues as SR and 1699 * with HIGH PRIO. If none is, then configure them with LOW PRIO and 1700 * as SP. 1701 */ 1702 if (ring->cbs_enable || ring->launchtime_enable) { 1703 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH); 1704 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION); 1705 } else { 1706 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW); 1707 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY); 1708 } 1709 1710 /* If CBS is enabled, set DataTranARB and config its parameters. */ 1711 if (ring->cbs_enable || queue == 0) { 1712 /* i210 does not allow the queue 0 to be in the Strict 1713 * Priority mode while the Qav mode is enabled, so, 1714 * instead of disabling strict priority mode, we give 1715 * queue 0 the maximum of credits possible. 1716 * 1717 * See section 8.12.19 of the i210 datasheet, "Note: 1718 * Queue0 QueueMode must be set to 1b when 1719 * TransmitMode is set to Qav." 1720 */ 1721 if (queue == 0 && !ring->cbs_enable) { 1722 /* max "linkspeed" idleslope in kbps */ 1723 ring->idleslope = 1000000; 1724 ring->hicredit = ETH_FRAME_LEN; 1725 } 1726 1727 /* Always set data transfer arbitration to credit-based 1728 * shaper algorithm on TQAVCTRL if CBS is enabled for any of 1729 * the queues. 1730 */ 1731 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1732 tqavctrl |= E1000_TQAVCTRL_DATATRANARB; 1733 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1734 1735 /* According to i210 datasheet section 7.2.7.7, we should set 1736 * the 'idleSlope' field from TQAVCC register following the 1737 * equation: 1738 * 1739 * For 100 Mbps link speed: 1740 * 1741 * value = BW * 0x7735 * 0.2 (E1) 1742 * 1743 * For 1000Mbps link speed: 1744 * 1745 * value = BW * 0x7735 * 2 (E2) 1746 * 1747 * E1 and E2 can be merged into one equation as shown below. 1748 * Note that 'link-speed' is in Mbps. 1749 * 1750 * value = BW * 0x7735 * 2 * link-speed 1751 * -------------- (E3) 1752 * 1000 1753 * 1754 * 'BW' is the percentage bandwidth out of full link speed 1755 * which can be found with the following equation. Note that 1756 * idleSlope here is the parameter from this function which 1757 * is in kbps. 1758 * 1759 * BW = idleSlope 1760 * ----------------- (E4) 1761 * link-speed * 1000 1762 * 1763 * That said, we can come up with a generic equation to 1764 * calculate the value we should set it TQAVCC register by 1765 * replacing 'BW' in E3 by E4. The resulting equation is: 1766 * 1767 * value = idleSlope * 0x7735 * 2 * link-speed 1768 * ----------------- -------------- (E5) 1769 * link-speed * 1000 1000 1770 * 1771 * 'link-speed' is present in both sides of the fraction so 1772 * it is canceled out. The final equation is the following: 1773 * 1774 * value = idleSlope * 61034 1775 * ----------------- (E6) 1776 * 1000000 1777 * 1778 * NOTE: For i210, given the above, we can see that idleslope 1779 * is represented in 16.38431 kbps units by the value at 1780 * the TQAVCC register (1Gbps / 61034), which reduces 1781 * the granularity for idleslope increments. 1782 * For instance, if you want to configure a 2576kbps 1783 * idleslope, the value to be written on the register 1784 * would have to be 157.23. If rounded down, you end 1785 * up with less bandwidth available than originally 1786 * required (~2572 kbps). If rounded up, you end up 1787 * with a higher bandwidth (~2589 kbps). Below the 1788 * approach we take is to always round up the 1789 * calculated value, so the resulting bandwidth might 1790 * be slightly higher for some configurations. 1791 */ 1792 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000); 1793 1794 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1795 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1796 tqavcc |= value; 1797 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1798 1799 wr32(E1000_I210_TQAVHC(queue), 1800 0x80000000 + ring->hicredit * 0x7735); 1801 } else { 1802 1803 /* Set idleSlope to zero. */ 1804 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1805 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1806 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1807 1808 /* Set hiCredit to zero. */ 1809 wr32(E1000_I210_TQAVHC(queue), 0); 1810 1811 /* If CBS is not enabled for any queues anymore, then return to 1812 * the default state of Data Transmission Arbitration on 1813 * TQAVCTRL. 1814 */ 1815 if (!is_any_cbs_enabled(adapter)) { 1816 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1817 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB; 1818 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1819 } 1820 } 1821 1822 /* If LaunchTime is enabled, set DataTranTIM. */ 1823 if (ring->launchtime_enable) { 1824 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled 1825 * for any of the SR queues, and configure fetchtime delta. 1826 * XXX NOTE: 1827 * - LaunchTime will be enabled for all SR queues. 1828 * - A fixed offset can be added relative to the launch 1829 * time of all packets if configured at reg LAUNCH_OS0. 1830 * We are keeping it as 0 for now (default value). 1831 */ 1832 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1833 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM | 1834 E1000_TQAVCTRL_FETCHTIME_DELTA; 1835 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1836 } else { 1837 /* If Launchtime is not enabled for any SR queues anymore, 1838 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta, 1839 * effectively disabling Launchtime. 1840 */ 1841 if (!is_any_txtime_enabled(adapter)) { 1842 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1843 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM; 1844 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA; 1845 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1846 } 1847 } 1848 1849 /* XXX: In i210 controller the sendSlope and loCredit parameters from 1850 * CBS are not configurable by software so we don't do any 'controller 1851 * configuration' in respect to these parameters. 1852 */ 1853 1854 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n", 1855 ring->cbs_enable ? "enabled" : "disabled", 1856 ring->launchtime_enable ? "enabled" : "disabled", 1857 queue, 1858 ring->idleslope, ring->sendslope, 1859 ring->hicredit, ring->locredit); 1860 } 1861 1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue, 1863 bool enable) 1864 { 1865 struct igb_ring *ring; 1866 1867 if (queue < 0 || queue > adapter->num_tx_queues) 1868 return -EINVAL; 1869 1870 ring = adapter->tx_ring[queue]; 1871 ring->launchtime_enable = enable; 1872 1873 return 0; 1874 } 1875 1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue, 1877 bool enable, int idleslope, int sendslope, 1878 int hicredit, int locredit) 1879 { 1880 struct igb_ring *ring; 1881 1882 if (queue < 0 || queue > adapter->num_tx_queues) 1883 return -EINVAL; 1884 1885 ring = adapter->tx_ring[queue]; 1886 1887 ring->cbs_enable = enable; 1888 ring->idleslope = idleslope; 1889 ring->sendslope = sendslope; 1890 ring->hicredit = hicredit; 1891 ring->locredit = locredit; 1892 1893 return 0; 1894 } 1895 1896 /** 1897 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable 1898 * @adapter: pointer to adapter struct 1899 * 1900 * Configure TQAVCTRL register switching the controller's Tx mode 1901 * if FQTSS mode is enabled or disabled. Additionally, will issue 1902 * a call to igb_config_tx_modes() per queue so any previously saved 1903 * Tx parameters are applied. 1904 **/ 1905 static void igb_setup_tx_mode(struct igb_adapter *adapter) 1906 { 1907 struct net_device *netdev = adapter->netdev; 1908 struct e1000_hw *hw = &adapter->hw; 1909 u32 val; 1910 1911 /* Only i210 controller supports changing the transmission mode. */ 1912 if (hw->mac.type != e1000_i210) 1913 return; 1914 1915 if (is_fqtss_enabled(adapter)) { 1916 int i, max_queue; 1917 1918 /* Configure TQAVCTRL register: set transmit mode to 'Qav', 1919 * set data fetch arbitration to 'round robin', set SP_WAIT_SR 1920 * so SP queues wait for SR ones. 1921 */ 1922 val = rd32(E1000_I210_TQAVCTRL); 1923 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR; 1924 val &= ~E1000_TQAVCTRL_DATAFETCHARB; 1925 wr32(E1000_I210_TQAVCTRL, val); 1926 1927 /* Configure Tx and Rx packet buffers sizes as described in 1928 * i210 datasheet section 7.2.7.7. 1929 */ 1930 val = rd32(E1000_TXPBS); 1931 val &= ~I210_TXPBSIZE_MASK; 1932 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB | 1933 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB; 1934 wr32(E1000_TXPBS, val); 1935 1936 val = rd32(E1000_RXPBS); 1937 val &= ~I210_RXPBSIZE_MASK; 1938 val |= I210_RXPBSIZE_PB_30KB; 1939 wr32(E1000_RXPBS, val); 1940 1941 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ 1942 * register should not exceed the buffer size programmed in 1943 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB 1944 * so according to the datasheet we should set MAX_TPKT_SIZE to 1945 * 4kB / 64. 1946 * 1947 * However, when we do so, no frame from queue 2 and 3 are 1948 * transmitted. It seems the MAX_TPKT_SIZE should not be great 1949 * or _equal_ to the buffer size programmed in TXPBS. For this 1950 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64. 1951 */ 1952 val = (4096 - 1) / 64; 1953 wr32(E1000_I210_DTXMXPKTSZ, val); 1954 1955 /* Since FQTSS mode is enabled, apply any CBS configuration 1956 * previously set. If no previous CBS configuration has been 1957 * done, then the initial configuration is applied, which means 1958 * CBS is disabled. 1959 */ 1960 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ? 1961 adapter->num_tx_queues : I210_SR_QUEUES_NUM; 1962 1963 for (i = 0; i < max_queue; i++) { 1964 igb_config_tx_modes(adapter, i); 1965 } 1966 } else { 1967 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 1968 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 1969 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT); 1970 1971 val = rd32(E1000_I210_TQAVCTRL); 1972 /* According to Section 8.12.21, the other flags we've set when 1973 * enabling FQTSS are not relevant when disabling FQTSS so we 1974 * don't set they here. 1975 */ 1976 val &= ~E1000_TQAVCTRL_XMIT_MODE; 1977 wr32(E1000_I210_TQAVCTRL, val); 1978 } 1979 1980 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ? 1981 "enabled" : "disabled"); 1982 } 1983 1984 /** 1985 * igb_configure - configure the hardware for RX and TX 1986 * @adapter: private board structure 1987 **/ 1988 static void igb_configure(struct igb_adapter *adapter) 1989 { 1990 struct net_device *netdev = adapter->netdev; 1991 int i; 1992 1993 igb_get_hw_control(adapter); 1994 igb_set_rx_mode(netdev); 1995 igb_setup_tx_mode(adapter); 1996 1997 igb_restore_vlan(adapter); 1998 1999 igb_setup_tctl(adapter); 2000 igb_setup_mrqc(adapter); 2001 igb_setup_rctl(adapter); 2002 2003 igb_nfc_filter_restore(adapter); 2004 igb_configure_tx(adapter); 2005 igb_configure_rx(adapter); 2006 2007 igb_rx_fifo_flush_82575(&adapter->hw); 2008 2009 /* call igb_desc_unused which always leaves 2010 * at least 1 descriptor unused to make sure 2011 * next_to_use != next_to_clean 2012 */ 2013 for (i = 0; i < adapter->num_rx_queues; i++) { 2014 struct igb_ring *ring = adapter->rx_ring[i]; 2015 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 2016 } 2017 } 2018 2019 /** 2020 * igb_power_up_link - Power up the phy/serdes link 2021 * @adapter: address of board private structure 2022 **/ 2023 void igb_power_up_link(struct igb_adapter *adapter) 2024 { 2025 igb_reset_phy(&adapter->hw); 2026 2027 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2028 igb_power_up_phy_copper(&adapter->hw); 2029 else 2030 igb_power_up_serdes_link_82575(&adapter->hw); 2031 2032 igb_setup_link(&adapter->hw); 2033 } 2034 2035 /** 2036 * igb_power_down_link - Power down the phy/serdes link 2037 * @adapter: address of board private structure 2038 */ 2039 static void igb_power_down_link(struct igb_adapter *adapter) 2040 { 2041 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2042 igb_power_down_phy_copper_82575(&adapter->hw); 2043 else 2044 igb_shutdown_serdes_link_82575(&adapter->hw); 2045 } 2046 2047 /** 2048 * igb_check_swap_media - Detect and switch function for Media Auto Sense 2049 * @adapter: address of the board private structure 2050 **/ 2051 static void igb_check_swap_media(struct igb_adapter *adapter) 2052 { 2053 struct e1000_hw *hw = &adapter->hw; 2054 u32 ctrl_ext, connsw; 2055 bool swap_now = false; 2056 2057 ctrl_ext = rd32(E1000_CTRL_EXT); 2058 connsw = rd32(E1000_CONNSW); 2059 2060 /* need to live swap if current media is copper and we have fiber/serdes 2061 * to go to. 2062 */ 2063 2064 if ((hw->phy.media_type == e1000_media_type_copper) && 2065 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 2066 swap_now = true; 2067 } else if ((hw->phy.media_type != e1000_media_type_copper) && 2068 !(connsw & E1000_CONNSW_SERDESD)) { 2069 /* copper signal takes time to appear */ 2070 if (adapter->copper_tries < 4) { 2071 adapter->copper_tries++; 2072 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 2073 wr32(E1000_CONNSW, connsw); 2074 return; 2075 } else { 2076 adapter->copper_tries = 0; 2077 if ((connsw & E1000_CONNSW_PHYSD) && 2078 (!(connsw & E1000_CONNSW_PHY_PDN))) { 2079 swap_now = true; 2080 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 2081 wr32(E1000_CONNSW, connsw); 2082 } 2083 } 2084 } 2085 2086 if (!swap_now) 2087 return; 2088 2089 switch (hw->phy.media_type) { 2090 case e1000_media_type_copper: 2091 netdev_info(adapter->netdev, 2092 "MAS: changing media to fiber/serdes\n"); 2093 ctrl_ext |= 2094 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2095 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2096 adapter->copper_tries = 0; 2097 break; 2098 case e1000_media_type_internal_serdes: 2099 case e1000_media_type_fiber: 2100 netdev_info(adapter->netdev, 2101 "MAS: changing media to copper\n"); 2102 ctrl_ext &= 2103 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2104 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2105 break; 2106 default: 2107 /* shouldn't get here during regular operation */ 2108 netdev_err(adapter->netdev, 2109 "AMS: Invalid media type found, returning\n"); 2110 break; 2111 } 2112 wr32(E1000_CTRL_EXT, ctrl_ext); 2113 } 2114 2115 /** 2116 * igb_up - Open the interface and prepare it to handle traffic 2117 * @adapter: board private structure 2118 **/ 2119 int igb_up(struct igb_adapter *adapter) 2120 { 2121 struct e1000_hw *hw = &adapter->hw; 2122 int i; 2123 2124 /* hardware has been reset, we need to reload some things */ 2125 igb_configure(adapter); 2126 2127 clear_bit(__IGB_DOWN, &adapter->state); 2128 2129 for (i = 0; i < adapter->num_q_vectors; i++) 2130 napi_enable(&(adapter->q_vector[i]->napi)); 2131 2132 if (adapter->flags & IGB_FLAG_HAS_MSIX) 2133 igb_configure_msix(adapter); 2134 else 2135 igb_assign_vector(adapter->q_vector[0], 0); 2136 2137 /* Clear any pending interrupts. */ 2138 rd32(E1000_TSICR); 2139 rd32(E1000_ICR); 2140 igb_irq_enable(adapter); 2141 2142 /* notify VFs that reset has been completed */ 2143 if (adapter->vfs_allocated_count) { 2144 u32 reg_data = rd32(E1000_CTRL_EXT); 2145 2146 reg_data |= E1000_CTRL_EXT_PFRSTD; 2147 wr32(E1000_CTRL_EXT, reg_data); 2148 } 2149 2150 netif_tx_start_all_queues(adapter->netdev); 2151 2152 /* start the watchdog. */ 2153 hw->mac.get_link_status = 1; 2154 schedule_work(&adapter->watchdog_task); 2155 2156 if ((adapter->flags & IGB_FLAG_EEE) && 2157 (!hw->dev_spec._82575.eee_disable)) 2158 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 2159 2160 return 0; 2161 } 2162 2163 void igb_down(struct igb_adapter *adapter) 2164 { 2165 struct net_device *netdev = adapter->netdev; 2166 struct e1000_hw *hw = &adapter->hw; 2167 u32 tctl, rctl; 2168 int i; 2169 2170 /* signal that we're down so the interrupt handler does not 2171 * reschedule our watchdog timer 2172 */ 2173 set_bit(__IGB_DOWN, &adapter->state); 2174 2175 /* disable receives in the hardware */ 2176 rctl = rd32(E1000_RCTL); 2177 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 2178 /* flush and sleep below */ 2179 2180 igb_nfc_filter_exit(adapter); 2181 2182 netif_carrier_off(netdev); 2183 netif_tx_stop_all_queues(netdev); 2184 2185 /* disable transmits in the hardware */ 2186 tctl = rd32(E1000_TCTL); 2187 tctl &= ~E1000_TCTL_EN; 2188 wr32(E1000_TCTL, tctl); 2189 /* flush both disables and wait for them to finish */ 2190 wrfl(); 2191 usleep_range(10000, 11000); 2192 2193 igb_irq_disable(adapter); 2194 2195 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 2196 2197 for (i = 0; i < adapter->num_q_vectors; i++) { 2198 if (adapter->q_vector[i]) { 2199 napi_synchronize(&adapter->q_vector[i]->napi); 2200 napi_disable(&adapter->q_vector[i]->napi); 2201 } 2202 } 2203 2204 del_timer_sync(&adapter->watchdog_timer); 2205 del_timer_sync(&adapter->phy_info_timer); 2206 2207 /* record the stats before reset*/ 2208 spin_lock(&adapter->stats64_lock); 2209 igb_update_stats(adapter); 2210 spin_unlock(&adapter->stats64_lock); 2211 2212 adapter->link_speed = 0; 2213 adapter->link_duplex = 0; 2214 2215 if (!pci_channel_offline(adapter->pdev)) 2216 igb_reset(adapter); 2217 2218 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 2219 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 2220 2221 igb_clean_all_tx_rings(adapter); 2222 igb_clean_all_rx_rings(adapter); 2223 #ifdef CONFIG_IGB_DCA 2224 2225 /* since we reset the hardware DCA settings were cleared */ 2226 igb_setup_dca(adapter); 2227 #endif 2228 } 2229 2230 void igb_reinit_locked(struct igb_adapter *adapter) 2231 { 2232 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 2233 usleep_range(1000, 2000); 2234 igb_down(adapter); 2235 igb_up(adapter); 2236 clear_bit(__IGB_RESETTING, &adapter->state); 2237 } 2238 2239 /** igb_enable_mas - Media Autosense re-enable after swap 2240 * 2241 * @adapter: adapter struct 2242 **/ 2243 static void igb_enable_mas(struct igb_adapter *adapter) 2244 { 2245 struct e1000_hw *hw = &adapter->hw; 2246 u32 connsw = rd32(E1000_CONNSW); 2247 2248 /* configure for SerDes media detect */ 2249 if ((hw->phy.media_type == e1000_media_type_copper) && 2250 (!(connsw & E1000_CONNSW_SERDESD))) { 2251 connsw |= E1000_CONNSW_ENRGSRC; 2252 connsw |= E1000_CONNSW_AUTOSENSE_EN; 2253 wr32(E1000_CONNSW, connsw); 2254 wrfl(); 2255 } 2256 } 2257 2258 void igb_reset(struct igb_adapter *adapter) 2259 { 2260 struct pci_dev *pdev = adapter->pdev; 2261 struct e1000_hw *hw = &adapter->hw; 2262 struct e1000_mac_info *mac = &hw->mac; 2263 struct e1000_fc_info *fc = &hw->fc; 2264 u32 pba, hwm; 2265 2266 /* Repartition Pba for greater than 9k mtu 2267 * To take effect CTRL.RST is required. 2268 */ 2269 switch (mac->type) { 2270 case e1000_i350: 2271 case e1000_i354: 2272 case e1000_82580: 2273 pba = rd32(E1000_RXPBS); 2274 pba = igb_rxpbs_adjust_82580(pba); 2275 break; 2276 case e1000_82576: 2277 pba = rd32(E1000_RXPBS); 2278 pba &= E1000_RXPBS_SIZE_MASK_82576; 2279 break; 2280 case e1000_82575: 2281 case e1000_i210: 2282 case e1000_i211: 2283 default: 2284 pba = E1000_PBA_34K; 2285 break; 2286 } 2287 2288 if (mac->type == e1000_82575) { 2289 u32 min_rx_space, min_tx_space, needed_tx_space; 2290 2291 /* write Rx PBA so that hardware can report correct Tx PBA */ 2292 wr32(E1000_PBA, pba); 2293 2294 /* To maintain wire speed transmits, the Tx FIFO should be 2295 * large enough to accommodate two full transmit packets, 2296 * rounded up to the next 1KB and expressed in KB. Likewise, 2297 * the Rx FIFO should be large enough to accommodate at least 2298 * one full receive packet and is similarly rounded up and 2299 * expressed in KB. 2300 */ 2301 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024); 2302 2303 /* The Tx FIFO also stores 16 bytes of information about the Tx 2304 * but don't include Ethernet FCS because hardware appends it. 2305 * We only need to round down to the nearest 512 byte block 2306 * count since the value we care about is 2 frames, not 1. 2307 */ 2308 min_tx_space = adapter->max_frame_size; 2309 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN; 2310 min_tx_space = DIV_ROUND_UP(min_tx_space, 512); 2311 2312 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2313 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16); 2314 2315 /* If current Tx allocation is less than the min Tx FIFO size, 2316 * and the min Tx FIFO size is less than the current Rx FIFO 2317 * allocation, take space away from current Rx allocation. 2318 */ 2319 if (needed_tx_space < pba) { 2320 pba -= needed_tx_space; 2321 2322 /* if short on Rx space, Rx wins and must trump Tx 2323 * adjustment 2324 */ 2325 if (pba < min_rx_space) 2326 pba = min_rx_space; 2327 } 2328 2329 /* adjust PBA for jumbo frames */ 2330 wr32(E1000_PBA, pba); 2331 } 2332 2333 /* flow control settings 2334 * The high water mark must be low enough to fit one full frame 2335 * after transmitting the pause frame. As such we must have enough 2336 * space to allow for us to complete our current transmit and then 2337 * receive the frame that is in progress from the link partner. 2338 * Set it to: 2339 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 2340 */ 2341 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 2342 2343 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 2344 fc->low_water = fc->high_water - 16; 2345 fc->pause_time = 0xFFFF; 2346 fc->send_xon = 1; 2347 fc->current_mode = fc->requested_mode; 2348 2349 /* disable receive for all VFs and wait one second */ 2350 if (adapter->vfs_allocated_count) { 2351 int i; 2352 2353 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 2354 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 2355 2356 /* ping all the active vfs to let them know we are going down */ 2357 igb_ping_all_vfs(adapter); 2358 2359 /* disable transmits and receives */ 2360 wr32(E1000_VFRE, 0); 2361 wr32(E1000_VFTE, 0); 2362 } 2363 2364 /* Allow time for pending master requests to run */ 2365 hw->mac.ops.reset_hw(hw); 2366 wr32(E1000_WUC, 0); 2367 2368 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 2369 /* need to resetup here after media swap */ 2370 adapter->ei.get_invariants(hw); 2371 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 2372 } 2373 if ((mac->type == e1000_82575 || mac->type == e1000_i350) && 2374 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 2375 igb_enable_mas(adapter); 2376 } 2377 if (hw->mac.ops.init_hw(hw)) 2378 dev_err(&pdev->dev, "Hardware Error\n"); 2379 2380 /* RAR registers were cleared during init_hw, clear mac table */ 2381 igb_flush_mac_table(adapter); 2382 __dev_uc_unsync(adapter->netdev, NULL); 2383 2384 /* Recover default RAR entry */ 2385 igb_set_default_mac_filter(adapter); 2386 2387 /* Flow control settings reset on hardware reset, so guarantee flow 2388 * control is off when forcing speed. 2389 */ 2390 if (!hw->mac.autoneg) 2391 igb_force_mac_fc(hw); 2392 2393 igb_init_dmac(adapter, pba); 2394 #ifdef CONFIG_IGB_HWMON 2395 /* Re-initialize the thermal sensor on i350 devices. */ 2396 if (!test_bit(__IGB_DOWN, &adapter->state)) { 2397 if (mac->type == e1000_i350 && hw->bus.func == 0) { 2398 /* If present, re-initialize the external thermal sensor 2399 * interface. 2400 */ 2401 if (adapter->ets) 2402 mac->ops.init_thermal_sensor_thresh(hw); 2403 } 2404 } 2405 #endif 2406 /* Re-establish EEE setting */ 2407 if (hw->phy.media_type == e1000_media_type_copper) { 2408 switch (mac->type) { 2409 case e1000_i350: 2410 case e1000_i210: 2411 case e1000_i211: 2412 igb_set_eee_i350(hw, true, true); 2413 break; 2414 case e1000_i354: 2415 igb_set_eee_i354(hw, true, true); 2416 break; 2417 default: 2418 break; 2419 } 2420 } 2421 if (!netif_running(adapter->netdev)) 2422 igb_power_down_link(adapter); 2423 2424 igb_update_mng_vlan(adapter); 2425 2426 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2427 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2428 2429 /* Re-enable PTP, where applicable. */ 2430 if (adapter->ptp_flags & IGB_PTP_ENABLED) 2431 igb_ptp_reset(adapter); 2432 2433 igb_get_phy_info(hw); 2434 } 2435 2436 static netdev_features_t igb_fix_features(struct net_device *netdev, 2437 netdev_features_t features) 2438 { 2439 /* Since there is no support for separate Rx/Tx vlan accel 2440 * enable/disable make sure Tx flag is always in same state as Rx. 2441 */ 2442 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2443 features |= NETIF_F_HW_VLAN_CTAG_TX; 2444 else 2445 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2446 2447 return features; 2448 } 2449 2450 static int igb_set_features(struct net_device *netdev, 2451 netdev_features_t features) 2452 { 2453 netdev_features_t changed = netdev->features ^ features; 2454 struct igb_adapter *adapter = netdev_priv(netdev); 2455 2456 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2457 igb_vlan_mode(netdev, features); 2458 2459 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 2460 return 0; 2461 2462 if (!(features & NETIF_F_NTUPLE)) { 2463 struct hlist_node *node2; 2464 struct igb_nfc_filter *rule; 2465 2466 spin_lock(&adapter->nfc_lock); 2467 hlist_for_each_entry_safe(rule, node2, 2468 &adapter->nfc_filter_list, nfc_node) { 2469 igb_erase_filter(adapter, rule); 2470 hlist_del(&rule->nfc_node); 2471 kfree(rule); 2472 } 2473 spin_unlock(&adapter->nfc_lock); 2474 adapter->nfc_filter_count = 0; 2475 } 2476 2477 netdev->features = features; 2478 2479 if (netif_running(netdev)) 2480 igb_reinit_locked(adapter); 2481 else 2482 igb_reset(adapter); 2483 2484 return 1; 2485 } 2486 2487 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 2488 struct net_device *dev, 2489 const unsigned char *addr, u16 vid, 2490 u16 flags, 2491 struct netlink_ext_ack *extack) 2492 { 2493 /* guarantee we can provide a unique filter for the unicast address */ 2494 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) { 2495 struct igb_adapter *adapter = netdev_priv(dev); 2496 int vfn = adapter->vfs_allocated_count; 2497 2498 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn)) 2499 return -ENOMEM; 2500 } 2501 2502 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags); 2503 } 2504 2505 #define IGB_MAX_MAC_HDR_LEN 127 2506 #define IGB_MAX_NETWORK_HDR_LEN 511 2507 2508 static netdev_features_t 2509 igb_features_check(struct sk_buff *skb, struct net_device *dev, 2510 netdev_features_t features) 2511 { 2512 unsigned int network_hdr_len, mac_hdr_len; 2513 2514 /* Make certain the headers can be described by a context descriptor */ 2515 mac_hdr_len = skb_network_header(skb) - skb->data; 2516 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN)) 2517 return features & ~(NETIF_F_HW_CSUM | 2518 NETIF_F_SCTP_CRC | 2519 NETIF_F_GSO_UDP_L4 | 2520 NETIF_F_HW_VLAN_CTAG_TX | 2521 NETIF_F_TSO | 2522 NETIF_F_TSO6); 2523 2524 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2525 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN)) 2526 return features & ~(NETIF_F_HW_CSUM | 2527 NETIF_F_SCTP_CRC | 2528 NETIF_F_GSO_UDP_L4 | 2529 NETIF_F_TSO | 2530 NETIF_F_TSO6); 2531 2532 /* We can only support IPV4 TSO in tunnels if we can mangle the 2533 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2534 */ 2535 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2536 features &= ~NETIF_F_TSO; 2537 2538 return features; 2539 } 2540 2541 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue) 2542 { 2543 if (!is_fqtss_enabled(adapter)) { 2544 enable_fqtss(adapter, true); 2545 return; 2546 } 2547 2548 igb_config_tx_modes(adapter, queue); 2549 2550 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter)) 2551 enable_fqtss(adapter, false); 2552 } 2553 2554 static int igb_offload_cbs(struct igb_adapter *adapter, 2555 struct tc_cbs_qopt_offload *qopt) 2556 { 2557 struct e1000_hw *hw = &adapter->hw; 2558 int err; 2559 2560 /* CBS offloading is only supported by i210 controller. */ 2561 if (hw->mac.type != e1000_i210) 2562 return -EOPNOTSUPP; 2563 2564 /* CBS offloading is only supported by queue 0 and queue 1. */ 2565 if (qopt->queue < 0 || qopt->queue > 1) 2566 return -EINVAL; 2567 2568 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable, 2569 qopt->idleslope, qopt->sendslope, 2570 qopt->hicredit, qopt->locredit); 2571 if (err) 2572 return err; 2573 2574 igb_offload_apply(adapter, qopt->queue); 2575 2576 return 0; 2577 } 2578 2579 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) 2580 #define VLAN_PRIO_FULL_MASK (0x07) 2581 2582 static int igb_parse_cls_flower(struct igb_adapter *adapter, 2583 struct flow_cls_offload *f, 2584 int traffic_class, 2585 struct igb_nfc_filter *input) 2586 { 2587 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2588 struct flow_dissector *dissector = rule->match.dissector; 2589 struct netlink_ext_ack *extack = f->common.extack; 2590 2591 if (dissector->used_keys & 2592 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) | 2593 BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2594 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2595 BIT(FLOW_DISSECTOR_KEY_VLAN))) { 2596 NL_SET_ERR_MSG_MOD(extack, 2597 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported"); 2598 return -EOPNOTSUPP; 2599 } 2600 2601 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2602 struct flow_match_eth_addrs match; 2603 2604 flow_rule_match_eth_addrs(rule, &match); 2605 if (!is_zero_ether_addr(match.mask->dst)) { 2606 if (!is_broadcast_ether_addr(match.mask->dst)) { 2607 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address"); 2608 return -EINVAL; 2609 } 2610 2611 input->filter.match_flags |= 2612 IGB_FILTER_FLAG_DST_MAC_ADDR; 2613 ether_addr_copy(input->filter.dst_addr, match.key->dst); 2614 } 2615 2616 if (!is_zero_ether_addr(match.mask->src)) { 2617 if (!is_broadcast_ether_addr(match.mask->src)) { 2618 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address"); 2619 return -EINVAL; 2620 } 2621 2622 input->filter.match_flags |= 2623 IGB_FILTER_FLAG_SRC_MAC_ADDR; 2624 ether_addr_copy(input->filter.src_addr, match.key->src); 2625 } 2626 } 2627 2628 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2629 struct flow_match_basic match; 2630 2631 flow_rule_match_basic(rule, &match); 2632 if (match.mask->n_proto) { 2633 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) { 2634 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter"); 2635 return -EINVAL; 2636 } 2637 2638 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE; 2639 input->filter.etype = match.key->n_proto; 2640 } 2641 } 2642 2643 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2644 struct flow_match_vlan match; 2645 2646 flow_rule_match_vlan(rule, &match); 2647 if (match.mask->vlan_priority) { 2648 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) { 2649 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority"); 2650 return -EINVAL; 2651 } 2652 2653 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2654 input->filter.vlan_tci = 2655 (__force __be16)match.key->vlan_priority; 2656 } 2657 } 2658 2659 input->action = traffic_class; 2660 input->cookie = f->cookie; 2661 2662 return 0; 2663 } 2664 2665 static int igb_configure_clsflower(struct igb_adapter *adapter, 2666 struct flow_cls_offload *cls_flower) 2667 { 2668 struct netlink_ext_ack *extack = cls_flower->common.extack; 2669 struct igb_nfc_filter *filter, *f; 2670 int err, tc; 2671 2672 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2673 if (tc < 0) { 2674 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class"); 2675 return -EINVAL; 2676 } 2677 2678 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2679 if (!filter) 2680 return -ENOMEM; 2681 2682 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter); 2683 if (err < 0) 2684 goto err_parse; 2685 2686 spin_lock(&adapter->nfc_lock); 2687 2688 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) { 2689 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2690 err = -EEXIST; 2691 NL_SET_ERR_MSG_MOD(extack, 2692 "This filter is already set in ethtool"); 2693 goto err_locked; 2694 } 2695 } 2696 2697 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) { 2698 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2699 err = -EEXIST; 2700 NL_SET_ERR_MSG_MOD(extack, 2701 "This filter is already set in cls_flower"); 2702 goto err_locked; 2703 } 2704 } 2705 2706 err = igb_add_filter(adapter, filter); 2707 if (err < 0) { 2708 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter"); 2709 goto err_locked; 2710 } 2711 2712 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list); 2713 2714 spin_unlock(&adapter->nfc_lock); 2715 2716 return 0; 2717 2718 err_locked: 2719 spin_unlock(&adapter->nfc_lock); 2720 2721 err_parse: 2722 kfree(filter); 2723 2724 return err; 2725 } 2726 2727 static int igb_delete_clsflower(struct igb_adapter *adapter, 2728 struct flow_cls_offload *cls_flower) 2729 { 2730 struct igb_nfc_filter *filter; 2731 int err; 2732 2733 spin_lock(&adapter->nfc_lock); 2734 2735 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node) 2736 if (filter->cookie == cls_flower->cookie) 2737 break; 2738 2739 if (!filter) { 2740 err = -ENOENT; 2741 goto out; 2742 } 2743 2744 err = igb_erase_filter(adapter, filter); 2745 if (err < 0) 2746 goto out; 2747 2748 hlist_del(&filter->nfc_node); 2749 kfree(filter); 2750 2751 out: 2752 spin_unlock(&adapter->nfc_lock); 2753 2754 return err; 2755 } 2756 2757 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter, 2758 struct flow_cls_offload *cls_flower) 2759 { 2760 switch (cls_flower->command) { 2761 case FLOW_CLS_REPLACE: 2762 return igb_configure_clsflower(adapter, cls_flower); 2763 case FLOW_CLS_DESTROY: 2764 return igb_delete_clsflower(adapter, cls_flower); 2765 case FLOW_CLS_STATS: 2766 return -EOPNOTSUPP; 2767 default: 2768 return -EOPNOTSUPP; 2769 } 2770 } 2771 2772 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2773 void *cb_priv) 2774 { 2775 struct igb_adapter *adapter = cb_priv; 2776 2777 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 2778 return -EOPNOTSUPP; 2779 2780 switch (type) { 2781 case TC_SETUP_CLSFLOWER: 2782 return igb_setup_tc_cls_flower(adapter, type_data); 2783 2784 default: 2785 return -EOPNOTSUPP; 2786 } 2787 } 2788 2789 static int igb_offload_txtime(struct igb_adapter *adapter, 2790 struct tc_etf_qopt_offload *qopt) 2791 { 2792 struct e1000_hw *hw = &adapter->hw; 2793 int err; 2794 2795 /* Launchtime offloading is only supported by i210 controller. */ 2796 if (hw->mac.type != e1000_i210) 2797 return -EOPNOTSUPP; 2798 2799 /* Launchtime offloading is only supported by queues 0 and 1. */ 2800 if (qopt->queue < 0 || qopt->queue > 1) 2801 return -EINVAL; 2802 2803 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable); 2804 if (err) 2805 return err; 2806 2807 igb_offload_apply(adapter, qopt->queue); 2808 2809 return 0; 2810 } 2811 2812 static LIST_HEAD(igb_block_cb_list); 2813 2814 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type, 2815 void *type_data) 2816 { 2817 struct igb_adapter *adapter = netdev_priv(dev); 2818 2819 switch (type) { 2820 case TC_SETUP_QDISC_CBS: 2821 return igb_offload_cbs(adapter, type_data); 2822 case TC_SETUP_BLOCK: 2823 return flow_block_cb_setup_simple(type_data, 2824 &igb_block_cb_list, 2825 igb_setup_tc_block_cb, 2826 adapter, adapter, true); 2827 2828 case TC_SETUP_QDISC_ETF: 2829 return igb_offload_txtime(adapter, type_data); 2830 2831 default: 2832 return -EOPNOTSUPP; 2833 } 2834 } 2835 2836 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf) 2837 { 2838 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD; 2839 struct igb_adapter *adapter = netdev_priv(dev); 2840 struct bpf_prog *prog = bpf->prog, *old_prog; 2841 bool running = netif_running(dev); 2842 bool need_reset; 2843 2844 /* verify igb ring attributes are sufficient for XDP */ 2845 for (i = 0; i < adapter->num_rx_queues; i++) { 2846 struct igb_ring *ring = adapter->rx_ring[i]; 2847 2848 if (frame_size > igb_rx_bufsz(ring)) { 2849 NL_SET_ERR_MSG_MOD(bpf->extack, 2850 "The RX buffer size is too small for the frame size"); 2851 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n", 2852 igb_rx_bufsz(ring), frame_size); 2853 return -EINVAL; 2854 } 2855 } 2856 2857 old_prog = xchg(&adapter->xdp_prog, prog); 2858 need_reset = (!!prog != !!old_prog); 2859 2860 /* device is up and bpf is added/removed, must setup the RX queues */ 2861 if (need_reset && running) { 2862 igb_close(dev); 2863 } else { 2864 for (i = 0; i < adapter->num_rx_queues; i++) 2865 (void)xchg(&adapter->rx_ring[i]->xdp_prog, 2866 adapter->xdp_prog); 2867 } 2868 2869 if (old_prog) 2870 bpf_prog_put(old_prog); 2871 2872 /* bpf is just replaced, RXQ and MTU are already setup */ 2873 if (!need_reset) 2874 return 0; 2875 2876 if (running) 2877 igb_open(dev); 2878 2879 return 0; 2880 } 2881 2882 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2883 { 2884 switch (xdp->command) { 2885 case XDP_SETUP_PROG: 2886 return igb_xdp_setup(dev, xdp); 2887 default: 2888 return -EINVAL; 2889 } 2890 } 2891 2892 static void igb_xdp_ring_update_tail(struct igb_ring *ring) 2893 { 2894 /* Force memory writes to complete before letting h/w know there 2895 * are new descriptors to fetch. 2896 */ 2897 wmb(); 2898 writel(ring->next_to_use, ring->tail); 2899 } 2900 2901 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter) 2902 { 2903 unsigned int r_idx = smp_processor_id(); 2904 2905 if (r_idx >= adapter->num_tx_queues) 2906 r_idx = r_idx % adapter->num_tx_queues; 2907 2908 return adapter->tx_ring[r_idx]; 2909 } 2910 2911 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp) 2912 { 2913 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2914 int cpu = smp_processor_id(); 2915 struct igb_ring *tx_ring; 2916 struct netdev_queue *nq; 2917 u32 ret; 2918 2919 if (unlikely(!xdpf)) 2920 return IGB_XDP_CONSUMED; 2921 2922 /* During program transitions its possible adapter->xdp_prog is assigned 2923 * but ring has not been configured yet. In this case simply abort xmit. 2924 */ 2925 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2926 if (unlikely(!tx_ring)) 2927 return IGB_XDP_CONSUMED; 2928 2929 nq = txring_txq(tx_ring); 2930 __netif_tx_lock(nq, cpu); 2931 /* Avoid transmit queue timeout since we share it with the slow path */ 2932 nq->trans_start = jiffies; 2933 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2934 __netif_tx_unlock(nq); 2935 2936 return ret; 2937 } 2938 2939 static int igb_xdp_xmit(struct net_device *dev, int n, 2940 struct xdp_frame **frames, u32 flags) 2941 { 2942 struct igb_adapter *adapter = netdev_priv(dev); 2943 int cpu = smp_processor_id(); 2944 struct igb_ring *tx_ring; 2945 struct netdev_queue *nq; 2946 int nxmit = 0; 2947 int i; 2948 2949 if (unlikely(test_bit(__IGB_DOWN, &adapter->state))) 2950 return -ENETDOWN; 2951 2952 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2953 return -EINVAL; 2954 2955 /* During program transitions its possible adapter->xdp_prog is assigned 2956 * but ring has not been configured yet. In this case simply abort xmit. 2957 */ 2958 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2959 if (unlikely(!tx_ring)) 2960 return -ENXIO; 2961 2962 nq = txring_txq(tx_ring); 2963 __netif_tx_lock(nq, cpu); 2964 2965 /* Avoid transmit queue timeout since we share it with the slow path */ 2966 nq->trans_start = jiffies; 2967 2968 for (i = 0; i < n; i++) { 2969 struct xdp_frame *xdpf = frames[i]; 2970 int err; 2971 2972 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2973 if (err != IGB_XDP_TX) 2974 break; 2975 nxmit++; 2976 } 2977 2978 __netif_tx_unlock(nq); 2979 2980 if (unlikely(flags & XDP_XMIT_FLUSH)) 2981 igb_xdp_ring_update_tail(tx_ring); 2982 2983 return nxmit; 2984 } 2985 2986 static const struct net_device_ops igb_netdev_ops = { 2987 .ndo_open = igb_open, 2988 .ndo_stop = igb_close, 2989 .ndo_start_xmit = igb_xmit_frame, 2990 .ndo_get_stats64 = igb_get_stats64, 2991 .ndo_set_rx_mode = igb_set_rx_mode, 2992 .ndo_set_mac_address = igb_set_mac, 2993 .ndo_change_mtu = igb_change_mtu, 2994 .ndo_eth_ioctl = igb_ioctl, 2995 .ndo_tx_timeout = igb_tx_timeout, 2996 .ndo_validate_addr = eth_validate_addr, 2997 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2998 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 2999 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 3000 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 3001 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 3002 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 3003 .ndo_set_vf_trust = igb_ndo_set_vf_trust, 3004 .ndo_get_vf_config = igb_ndo_get_vf_config, 3005 .ndo_fix_features = igb_fix_features, 3006 .ndo_set_features = igb_set_features, 3007 .ndo_fdb_add = igb_ndo_fdb_add, 3008 .ndo_features_check = igb_features_check, 3009 .ndo_setup_tc = igb_setup_tc, 3010 .ndo_bpf = igb_xdp, 3011 .ndo_xdp_xmit = igb_xdp_xmit, 3012 }; 3013 3014 /** 3015 * igb_set_fw_version - Configure version string for ethtool 3016 * @adapter: adapter struct 3017 **/ 3018 void igb_set_fw_version(struct igb_adapter *adapter) 3019 { 3020 struct e1000_hw *hw = &adapter->hw; 3021 struct e1000_fw_version fw; 3022 3023 igb_get_fw_version(hw, &fw); 3024 3025 switch (hw->mac.type) { 3026 case e1000_i210: 3027 case e1000_i211: 3028 if (!(igb_get_flash_presence_i210(hw))) { 3029 snprintf(adapter->fw_version, 3030 sizeof(adapter->fw_version), 3031 "%2d.%2d-%d", 3032 fw.invm_major, fw.invm_minor, 3033 fw.invm_img_type); 3034 break; 3035 } 3036 fallthrough; 3037 default: 3038 /* if option is rom valid, display its version too */ 3039 if (fw.or_valid) { 3040 snprintf(adapter->fw_version, 3041 sizeof(adapter->fw_version), 3042 "%d.%d, 0x%08x, %d.%d.%d", 3043 fw.eep_major, fw.eep_minor, fw.etrack_id, 3044 fw.or_major, fw.or_build, fw.or_patch); 3045 /* no option rom */ 3046 } else if (fw.etrack_id != 0X0000) { 3047 snprintf(adapter->fw_version, 3048 sizeof(adapter->fw_version), 3049 "%d.%d, 0x%08x", 3050 fw.eep_major, fw.eep_minor, fw.etrack_id); 3051 } else { 3052 snprintf(adapter->fw_version, 3053 sizeof(adapter->fw_version), 3054 "%d.%d.%d", 3055 fw.eep_major, fw.eep_minor, fw.eep_build); 3056 } 3057 break; 3058 } 3059 } 3060 3061 /** 3062 * igb_init_mas - init Media Autosense feature if enabled in the NVM 3063 * 3064 * @adapter: adapter struct 3065 **/ 3066 static void igb_init_mas(struct igb_adapter *adapter) 3067 { 3068 struct e1000_hw *hw = &adapter->hw; 3069 u16 eeprom_data; 3070 3071 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 3072 switch (hw->bus.func) { 3073 case E1000_FUNC_0: 3074 if (eeprom_data & IGB_MAS_ENABLE_0) { 3075 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3076 netdev_info(adapter->netdev, 3077 "MAS: Enabling Media Autosense for port %d\n", 3078 hw->bus.func); 3079 } 3080 break; 3081 case E1000_FUNC_1: 3082 if (eeprom_data & IGB_MAS_ENABLE_1) { 3083 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3084 netdev_info(adapter->netdev, 3085 "MAS: Enabling Media Autosense for port %d\n", 3086 hw->bus.func); 3087 } 3088 break; 3089 case E1000_FUNC_2: 3090 if (eeprom_data & IGB_MAS_ENABLE_2) { 3091 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3092 netdev_info(adapter->netdev, 3093 "MAS: Enabling Media Autosense for port %d\n", 3094 hw->bus.func); 3095 } 3096 break; 3097 case E1000_FUNC_3: 3098 if (eeprom_data & IGB_MAS_ENABLE_3) { 3099 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3100 netdev_info(adapter->netdev, 3101 "MAS: Enabling Media Autosense for port %d\n", 3102 hw->bus.func); 3103 } 3104 break; 3105 default: 3106 /* Shouldn't get here */ 3107 netdev_err(adapter->netdev, 3108 "MAS: Invalid port configuration, returning\n"); 3109 break; 3110 } 3111 } 3112 3113 /** 3114 * igb_init_i2c - Init I2C interface 3115 * @adapter: pointer to adapter structure 3116 **/ 3117 static s32 igb_init_i2c(struct igb_adapter *adapter) 3118 { 3119 s32 status = 0; 3120 3121 /* I2C interface supported on i350 devices */ 3122 if (adapter->hw.mac.type != e1000_i350) 3123 return 0; 3124 3125 /* Initialize the i2c bus which is controlled by the registers. 3126 * This bus will use the i2c_algo_bit structure that implements 3127 * the protocol through toggling of the 4 bits in the register. 3128 */ 3129 adapter->i2c_adap.owner = THIS_MODULE; 3130 adapter->i2c_algo = igb_i2c_algo; 3131 adapter->i2c_algo.data = adapter; 3132 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 3133 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 3134 strlcpy(adapter->i2c_adap.name, "igb BB", 3135 sizeof(adapter->i2c_adap.name)); 3136 status = i2c_bit_add_bus(&adapter->i2c_adap); 3137 return status; 3138 } 3139 3140 /** 3141 * igb_probe - Device Initialization Routine 3142 * @pdev: PCI device information struct 3143 * @ent: entry in igb_pci_tbl 3144 * 3145 * Returns 0 on success, negative on failure 3146 * 3147 * igb_probe initializes an adapter identified by a pci_dev structure. 3148 * The OS initialization, configuring of the adapter private structure, 3149 * and a hardware reset occur. 3150 **/ 3151 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3152 { 3153 struct net_device *netdev; 3154 struct igb_adapter *adapter; 3155 struct e1000_hw *hw; 3156 u16 eeprom_data = 0; 3157 s32 ret_val; 3158 static int global_quad_port_a; /* global quad port a indication */ 3159 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 3160 int err, pci_using_dac; 3161 u8 part_str[E1000_PBANUM_LENGTH]; 3162 3163 /* Catch broken hardware that put the wrong VF device ID in 3164 * the PCIe SR-IOV capability. 3165 */ 3166 if (pdev->is_virtfn) { 3167 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n", 3168 pci_name(pdev), pdev->vendor, pdev->device); 3169 return -EINVAL; 3170 } 3171 3172 err = pci_enable_device_mem(pdev); 3173 if (err) 3174 return err; 3175 3176 pci_using_dac = 0; 3177 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3178 if (!err) { 3179 pci_using_dac = 1; 3180 } else { 3181 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3182 if (err) { 3183 dev_err(&pdev->dev, 3184 "No usable DMA configuration, aborting\n"); 3185 goto err_dma; 3186 } 3187 } 3188 3189 err = pci_request_mem_regions(pdev, igb_driver_name); 3190 if (err) 3191 goto err_pci_reg; 3192 3193 pci_enable_pcie_error_reporting(pdev); 3194 3195 pci_set_master(pdev); 3196 pci_save_state(pdev); 3197 3198 err = -ENOMEM; 3199 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 3200 IGB_MAX_TX_QUEUES); 3201 if (!netdev) 3202 goto err_alloc_etherdev; 3203 3204 SET_NETDEV_DEV(netdev, &pdev->dev); 3205 3206 pci_set_drvdata(pdev, netdev); 3207 adapter = netdev_priv(netdev); 3208 adapter->netdev = netdev; 3209 adapter->pdev = pdev; 3210 hw = &adapter->hw; 3211 hw->back = adapter; 3212 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3213 3214 err = -EIO; 3215 adapter->io_addr = pci_iomap(pdev, 0, 0); 3216 if (!adapter->io_addr) 3217 goto err_ioremap; 3218 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */ 3219 hw->hw_addr = adapter->io_addr; 3220 3221 netdev->netdev_ops = &igb_netdev_ops; 3222 igb_set_ethtool_ops(netdev); 3223 netdev->watchdog_timeo = 5 * HZ; 3224 3225 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 3226 3227 netdev->mem_start = pci_resource_start(pdev, 0); 3228 netdev->mem_end = pci_resource_end(pdev, 0); 3229 3230 /* PCI config space info */ 3231 hw->vendor_id = pdev->vendor; 3232 hw->device_id = pdev->device; 3233 hw->revision_id = pdev->revision; 3234 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3235 hw->subsystem_device_id = pdev->subsystem_device; 3236 3237 /* Copy the default MAC, PHY and NVM function pointers */ 3238 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3239 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3240 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 3241 /* Initialize skew-specific constants */ 3242 err = ei->get_invariants(hw); 3243 if (err) 3244 goto err_sw_init; 3245 3246 /* setup the private structure */ 3247 err = igb_sw_init(adapter); 3248 if (err) 3249 goto err_sw_init; 3250 3251 igb_get_bus_info_pcie(hw); 3252 3253 hw->phy.autoneg_wait_to_complete = false; 3254 3255 /* Copper options */ 3256 if (hw->phy.media_type == e1000_media_type_copper) { 3257 hw->phy.mdix = AUTO_ALL_MODES; 3258 hw->phy.disable_polarity_correction = false; 3259 hw->phy.ms_type = e1000_ms_hw_default; 3260 } 3261 3262 if (igb_check_reset_block(hw)) 3263 dev_info(&pdev->dev, 3264 "PHY reset is blocked due to SOL/IDER session.\n"); 3265 3266 /* features is initialized to 0 in allocation, it might have bits 3267 * set by igb_sw_init so we should use an or instead of an 3268 * assignment. 3269 */ 3270 netdev->features |= NETIF_F_SG | 3271 NETIF_F_TSO | 3272 NETIF_F_TSO6 | 3273 NETIF_F_RXHASH | 3274 NETIF_F_RXCSUM | 3275 NETIF_F_HW_CSUM; 3276 3277 if (hw->mac.type >= e1000_82576) 3278 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4; 3279 3280 if (hw->mac.type >= e1000_i350) 3281 netdev->features |= NETIF_F_HW_TC; 3282 3283 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 3284 NETIF_F_GSO_GRE_CSUM | \ 3285 NETIF_F_GSO_IPXIP4 | \ 3286 NETIF_F_GSO_IPXIP6 | \ 3287 NETIF_F_GSO_UDP_TUNNEL | \ 3288 NETIF_F_GSO_UDP_TUNNEL_CSUM) 3289 3290 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES; 3291 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES; 3292 3293 /* copy netdev features into list of user selectable features */ 3294 netdev->hw_features |= netdev->features | 3295 NETIF_F_HW_VLAN_CTAG_RX | 3296 NETIF_F_HW_VLAN_CTAG_TX | 3297 NETIF_F_RXALL; 3298 3299 if (hw->mac.type >= e1000_i350) 3300 netdev->hw_features |= NETIF_F_NTUPLE; 3301 3302 if (pci_using_dac) 3303 netdev->features |= NETIF_F_HIGHDMA; 3304 3305 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 3306 netdev->mpls_features |= NETIF_F_HW_CSUM; 3307 netdev->hw_enc_features |= netdev->vlan_features; 3308 3309 /* set this bit last since it cannot be part of vlan_features */ 3310 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 3311 NETIF_F_HW_VLAN_CTAG_RX | 3312 NETIF_F_HW_VLAN_CTAG_TX; 3313 3314 netdev->priv_flags |= IFF_SUPP_NOFCS; 3315 3316 netdev->priv_flags |= IFF_UNICAST_FLT; 3317 3318 /* MTU range: 68 - 9216 */ 3319 netdev->min_mtu = ETH_MIN_MTU; 3320 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 3321 3322 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 3323 3324 /* before reading the NVM, reset the controller to put the device in a 3325 * known good starting state 3326 */ 3327 hw->mac.ops.reset_hw(hw); 3328 3329 /* make sure the NVM is good , i211/i210 parts can have special NVM 3330 * that doesn't contain a checksum 3331 */ 3332 switch (hw->mac.type) { 3333 case e1000_i210: 3334 case e1000_i211: 3335 if (igb_get_flash_presence_i210(hw)) { 3336 if (hw->nvm.ops.validate(hw) < 0) { 3337 dev_err(&pdev->dev, 3338 "The NVM Checksum Is Not Valid\n"); 3339 err = -EIO; 3340 goto err_eeprom; 3341 } 3342 } 3343 break; 3344 default: 3345 if (hw->nvm.ops.validate(hw) < 0) { 3346 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 3347 err = -EIO; 3348 goto err_eeprom; 3349 } 3350 break; 3351 } 3352 3353 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 3354 /* copy the MAC address out of the NVM */ 3355 if (hw->mac.ops.read_mac_addr(hw)) 3356 dev_err(&pdev->dev, "NVM Read Error\n"); 3357 } 3358 3359 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 3360 3361 if (!is_valid_ether_addr(netdev->dev_addr)) { 3362 dev_err(&pdev->dev, "Invalid MAC Address\n"); 3363 err = -EIO; 3364 goto err_eeprom; 3365 } 3366 3367 igb_set_default_mac_filter(adapter); 3368 3369 /* get firmware version for ethtool -i */ 3370 igb_set_fw_version(adapter); 3371 3372 /* configure RXPBSIZE and TXPBSIZE */ 3373 if (hw->mac.type == e1000_i210) { 3374 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 3375 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 3376 } 3377 3378 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0); 3379 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0); 3380 3381 INIT_WORK(&adapter->reset_task, igb_reset_task); 3382 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 3383 3384 /* Initialize link properties that are user-changeable */ 3385 adapter->fc_autoneg = true; 3386 hw->mac.autoneg = true; 3387 hw->phy.autoneg_advertised = 0x2f; 3388 3389 hw->fc.requested_mode = e1000_fc_default; 3390 hw->fc.current_mode = e1000_fc_default; 3391 3392 igb_validate_mdi_setting(hw); 3393 3394 /* By default, support wake on port A */ 3395 if (hw->bus.func == 0) 3396 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3397 3398 /* Check the NVM for wake support on non-port A ports */ 3399 if (hw->mac.type >= e1000_82580) 3400 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 3401 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 3402 &eeprom_data); 3403 else if (hw->bus.func == 1) 3404 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3405 3406 if (eeprom_data & IGB_EEPROM_APME) 3407 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3408 3409 /* now that we have the eeprom settings, apply the special cases where 3410 * the eeprom may be wrong or the board simply won't support wake on 3411 * lan on a particular port 3412 */ 3413 switch (pdev->device) { 3414 case E1000_DEV_ID_82575GB_QUAD_COPPER: 3415 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3416 break; 3417 case E1000_DEV_ID_82575EB_FIBER_SERDES: 3418 case E1000_DEV_ID_82576_FIBER: 3419 case E1000_DEV_ID_82576_SERDES: 3420 /* Wake events only supported on port A for dual fiber 3421 * regardless of eeprom setting 3422 */ 3423 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 3424 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3425 break; 3426 case E1000_DEV_ID_82576_QUAD_COPPER: 3427 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 3428 /* if quad port adapter, disable WoL on all but port A */ 3429 if (global_quad_port_a != 0) 3430 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3431 else 3432 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 3433 /* Reset for multiple quad port adapters */ 3434 if (++global_quad_port_a == 4) 3435 global_quad_port_a = 0; 3436 break; 3437 default: 3438 /* If the device can't wake, don't set software support */ 3439 if (!device_can_wakeup(&adapter->pdev->dev)) 3440 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3441 } 3442 3443 /* initialize the wol settings based on the eeprom settings */ 3444 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 3445 adapter->wol |= E1000_WUFC_MAG; 3446 3447 /* Some vendors want WoL disabled by default, but still supported */ 3448 if ((hw->mac.type == e1000_i350) && 3449 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 3450 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3451 adapter->wol = 0; 3452 } 3453 3454 /* Some vendors want the ability to Use the EEPROM setting as 3455 * enable/disable only, and not for capability 3456 */ 3457 if (((hw->mac.type == e1000_i350) || 3458 (hw->mac.type == e1000_i354)) && 3459 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) { 3460 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3461 adapter->wol = 0; 3462 } 3463 if (hw->mac.type == e1000_i350) { 3464 if (((pdev->subsystem_device == 0x5001) || 3465 (pdev->subsystem_device == 0x5002)) && 3466 (hw->bus.func == 0)) { 3467 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3468 adapter->wol = 0; 3469 } 3470 if (pdev->subsystem_device == 0x1F52) 3471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3472 } 3473 3474 device_set_wakeup_enable(&adapter->pdev->dev, 3475 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 3476 3477 /* reset the hardware with the new settings */ 3478 igb_reset(adapter); 3479 3480 /* Init the I2C interface */ 3481 err = igb_init_i2c(adapter); 3482 if (err) { 3483 dev_err(&pdev->dev, "failed to init i2c interface\n"); 3484 goto err_eeprom; 3485 } 3486 3487 /* let the f/w know that the h/w is now under the control of the 3488 * driver. 3489 */ 3490 igb_get_hw_control(adapter); 3491 3492 strcpy(netdev->name, "eth%d"); 3493 err = register_netdev(netdev); 3494 if (err) 3495 goto err_register; 3496 3497 /* carrier off reporting is important to ethtool even BEFORE open */ 3498 netif_carrier_off(netdev); 3499 3500 #ifdef CONFIG_IGB_DCA 3501 if (dca_add_requester(&pdev->dev) == 0) { 3502 adapter->flags |= IGB_FLAG_DCA_ENABLED; 3503 dev_info(&pdev->dev, "DCA enabled\n"); 3504 igb_setup_dca(adapter); 3505 } 3506 3507 #endif 3508 #ifdef CONFIG_IGB_HWMON 3509 /* Initialize the thermal sensor on i350 devices. */ 3510 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 3511 u16 ets_word; 3512 3513 /* Read the NVM to determine if this i350 device supports an 3514 * external thermal sensor. 3515 */ 3516 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 3517 if (ets_word != 0x0000 && ets_word != 0xFFFF) 3518 adapter->ets = true; 3519 else 3520 adapter->ets = false; 3521 if (igb_sysfs_init(adapter)) 3522 dev_err(&pdev->dev, 3523 "failed to allocate sysfs resources\n"); 3524 } else { 3525 adapter->ets = false; 3526 } 3527 #endif 3528 /* Check if Media Autosense is enabled */ 3529 adapter->ei = *ei; 3530 if (hw->dev_spec._82575.mas_capable) 3531 igb_init_mas(adapter); 3532 3533 /* do hw tstamp init after resetting */ 3534 igb_ptp_init(adapter); 3535 3536 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 3537 /* print bus type/speed/width info, not applicable to i354 */ 3538 if (hw->mac.type != e1000_i354) { 3539 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 3540 netdev->name, 3541 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 3542 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 3543 "unknown"), 3544 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 3545 "Width x4" : 3546 (hw->bus.width == e1000_bus_width_pcie_x2) ? 3547 "Width x2" : 3548 (hw->bus.width == e1000_bus_width_pcie_x1) ? 3549 "Width x1" : "unknown"), netdev->dev_addr); 3550 } 3551 3552 if ((hw->mac.type == e1000_82576 && 3553 rd32(E1000_EECD) & E1000_EECD_PRES) || 3554 (hw->mac.type >= e1000_i210 || 3555 igb_get_flash_presence_i210(hw))) { 3556 ret_val = igb_read_part_string(hw, part_str, 3557 E1000_PBANUM_LENGTH); 3558 } else { 3559 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 3560 } 3561 3562 if (ret_val) 3563 strcpy(part_str, "Unknown"); 3564 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 3565 dev_info(&pdev->dev, 3566 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 3567 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 3568 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 3569 adapter->num_rx_queues, adapter->num_tx_queues); 3570 if (hw->phy.media_type == e1000_media_type_copper) { 3571 switch (hw->mac.type) { 3572 case e1000_i350: 3573 case e1000_i210: 3574 case e1000_i211: 3575 /* Enable EEE for internal copper PHY devices */ 3576 err = igb_set_eee_i350(hw, true, true); 3577 if ((!err) && 3578 (!hw->dev_spec._82575.eee_disable)) { 3579 adapter->eee_advert = 3580 MDIO_EEE_100TX | MDIO_EEE_1000T; 3581 adapter->flags |= IGB_FLAG_EEE; 3582 } 3583 break; 3584 case e1000_i354: 3585 if ((rd32(E1000_CTRL_EXT) & 3586 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 3587 err = igb_set_eee_i354(hw, true, true); 3588 if ((!err) && 3589 (!hw->dev_spec._82575.eee_disable)) { 3590 adapter->eee_advert = 3591 MDIO_EEE_100TX | MDIO_EEE_1000T; 3592 adapter->flags |= IGB_FLAG_EEE; 3593 } 3594 } 3595 break; 3596 default: 3597 break; 3598 } 3599 } 3600 3601 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 3602 3603 pm_runtime_put_noidle(&pdev->dev); 3604 return 0; 3605 3606 err_register: 3607 igb_release_hw_control(adapter); 3608 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 3609 err_eeprom: 3610 if (!igb_check_reset_block(hw)) 3611 igb_reset_phy(hw); 3612 3613 if (hw->flash_address) 3614 iounmap(hw->flash_address); 3615 err_sw_init: 3616 kfree(adapter->mac_table); 3617 kfree(adapter->shadow_vfta); 3618 igb_clear_interrupt_scheme(adapter); 3619 #ifdef CONFIG_PCI_IOV 3620 igb_disable_sriov(pdev); 3621 #endif 3622 pci_iounmap(pdev, adapter->io_addr); 3623 err_ioremap: 3624 free_netdev(netdev); 3625 err_alloc_etherdev: 3626 pci_disable_pcie_error_reporting(pdev); 3627 pci_release_mem_regions(pdev); 3628 err_pci_reg: 3629 err_dma: 3630 pci_disable_device(pdev); 3631 return err; 3632 } 3633 3634 #ifdef CONFIG_PCI_IOV 3635 static int igb_disable_sriov(struct pci_dev *pdev) 3636 { 3637 struct net_device *netdev = pci_get_drvdata(pdev); 3638 struct igb_adapter *adapter = netdev_priv(netdev); 3639 struct e1000_hw *hw = &adapter->hw; 3640 3641 /* reclaim resources allocated to VFs */ 3642 if (adapter->vf_data) { 3643 /* disable iov and allow time for transactions to clear */ 3644 if (pci_vfs_assigned(pdev)) { 3645 dev_warn(&pdev->dev, 3646 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 3647 return -EPERM; 3648 } else { 3649 pci_disable_sriov(pdev); 3650 msleep(500); 3651 } 3652 3653 kfree(adapter->vf_mac_list); 3654 adapter->vf_mac_list = NULL; 3655 kfree(adapter->vf_data); 3656 adapter->vf_data = NULL; 3657 adapter->vfs_allocated_count = 0; 3658 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 3659 wrfl(); 3660 msleep(100); 3661 dev_info(&pdev->dev, "IOV Disabled\n"); 3662 3663 /* Re-enable DMA Coalescing flag since IOV is turned off */ 3664 adapter->flags |= IGB_FLAG_DMAC; 3665 } 3666 3667 return 0; 3668 } 3669 3670 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 3671 { 3672 struct net_device *netdev = pci_get_drvdata(pdev); 3673 struct igb_adapter *adapter = netdev_priv(netdev); 3674 int old_vfs = pci_num_vf(pdev); 3675 struct vf_mac_filter *mac_list; 3676 int err = 0; 3677 int num_vf_mac_filters, i; 3678 3679 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 3680 err = -EPERM; 3681 goto out; 3682 } 3683 if (!num_vfs) 3684 goto out; 3685 3686 if (old_vfs) { 3687 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 3688 old_vfs, max_vfs); 3689 adapter->vfs_allocated_count = old_vfs; 3690 } else 3691 adapter->vfs_allocated_count = num_vfs; 3692 3693 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 3694 sizeof(struct vf_data_storage), GFP_KERNEL); 3695 3696 /* if allocation failed then we do not support SR-IOV */ 3697 if (!adapter->vf_data) { 3698 adapter->vfs_allocated_count = 0; 3699 err = -ENOMEM; 3700 goto out; 3701 } 3702 3703 /* Due to the limited number of RAR entries calculate potential 3704 * number of MAC filters available for the VFs. Reserve entries 3705 * for PF default MAC, PF MAC filters and at least one RAR entry 3706 * for each VF for VF MAC. 3707 */ 3708 num_vf_mac_filters = adapter->hw.mac.rar_entry_count - 3709 (1 + IGB_PF_MAC_FILTERS_RESERVED + 3710 adapter->vfs_allocated_count); 3711 3712 adapter->vf_mac_list = kcalloc(num_vf_mac_filters, 3713 sizeof(struct vf_mac_filter), 3714 GFP_KERNEL); 3715 3716 mac_list = adapter->vf_mac_list; 3717 INIT_LIST_HEAD(&adapter->vf_macs.l); 3718 3719 if (adapter->vf_mac_list) { 3720 /* Initialize list of VF MAC filters */ 3721 for (i = 0; i < num_vf_mac_filters; i++) { 3722 mac_list->vf = -1; 3723 mac_list->free = true; 3724 list_add(&mac_list->l, &adapter->vf_macs.l); 3725 mac_list++; 3726 } 3727 } else { 3728 /* If we could not allocate memory for the VF MAC filters 3729 * we can continue without this feature but warn user. 3730 */ 3731 dev_err(&pdev->dev, 3732 "Unable to allocate memory for VF MAC filter list\n"); 3733 } 3734 3735 /* only call pci_enable_sriov() if no VFs are allocated already */ 3736 if (!old_vfs) { 3737 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 3738 if (err) 3739 goto err_out; 3740 } 3741 dev_info(&pdev->dev, "%d VFs allocated\n", 3742 adapter->vfs_allocated_count); 3743 for (i = 0; i < adapter->vfs_allocated_count; i++) 3744 igb_vf_configure(adapter, i); 3745 3746 /* DMA Coalescing is not supported in IOV mode. */ 3747 adapter->flags &= ~IGB_FLAG_DMAC; 3748 goto out; 3749 3750 err_out: 3751 kfree(adapter->vf_mac_list); 3752 adapter->vf_mac_list = NULL; 3753 kfree(adapter->vf_data); 3754 adapter->vf_data = NULL; 3755 adapter->vfs_allocated_count = 0; 3756 out: 3757 return err; 3758 } 3759 3760 #endif 3761 /** 3762 * igb_remove_i2c - Cleanup I2C interface 3763 * @adapter: pointer to adapter structure 3764 **/ 3765 static void igb_remove_i2c(struct igb_adapter *adapter) 3766 { 3767 /* free the adapter bus structure */ 3768 i2c_del_adapter(&adapter->i2c_adap); 3769 } 3770 3771 /** 3772 * igb_remove - Device Removal Routine 3773 * @pdev: PCI device information struct 3774 * 3775 * igb_remove is called by the PCI subsystem to alert the driver 3776 * that it should release a PCI device. The could be caused by a 3777 * Hot-Plug event, or because the driver is going to be removed from 3778 * memory. 3779 **/ 3780 static void igb_remove(struct pci_dev *pdev) 3781 { 3782 struct net_device *netdev = pci_get_drvdata(pdev); 3783 struct igb_adapter *adapter = netdev_priv(netdev); 3784 struct e1000_hw *hw = &adapter->hw; 3785 3786 pm_runtime_get_noresume(&pdev->dev); 3787 #ifdef CONFIG_IGB_HWMON 3788 igb_sysfs_exit(adapter); 3789 #endif 3790 igb_remove_i2c(adapter); 3791 igb_ptp_stop(adapter); 3792 /* The watchdog timer may be rescheduled, so explicitly 3793 * disable watchdog from being rescheduled. 3794 */ 3795 set_bit(__IGB_DOWN, &adapter->state); 3796 del_timer_sync(&adapter->watchdog_timer); 3797 del_timer_sync(&adapter->phy_info_timer); 3798 3799 cancel_work_sync(&adapter->reset_task); 3800 cancel_work_sync(&adapter->watchdog_task); 3801 3802 #ifdef CONFIG_IGB_DCA 3803 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 3804 dev_info(&pdev->dev, "DCA disabled\n"); 3805 dca_remove_requester(&pdev->dev); 3806 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 3807 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 3808 } 3809 #endif 3810 3811 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3812 * would have already happened in close and is redundant. 3813 */ 3814 igb_release_hw_control(adapter); 3815 3816 #ifdef CONFIG_PCI_IOV 3817 igb_disable_sriov(pdev); 3818 #endif 3819 3820 unregister_netdev(netdev); 3821 3822 igb_clear_interrupt_scheme(adapter); 3823 3824 pci_iounmap(pdev, adapter->io_addr); 3825 if (hw->flash_address) 3826 iounmap(hw->flash_address); 3827 pci_release_mem_regions(pdev); 3828 3829 kfree(adapter->mac_table); 3830 kfree(adapter->shadow_vfta); 3831 free_netdev(netdev); 3832 3833 pci_disable_pcie_error_reporting(pdev); 3834 3835 pci_disable_device(pdev); 3836 } 3837 3838 /** 3839 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 3840 * @adapter: board private structure to initialize 3841 * 3842 * This function initializes the vf specific data storage and then attempts to 3843 * allocate the VFs. The reason for ordering it this way is because it is much 3844 * mor expensive time wise to disable SR-IOV than it is to allocate and free 3845 * the memory for the VFs. 3846 **/ 3847 static void igb_probe_vfs(struct igb_adapter *adapter) 3848 { 3849 #ifdef CONFIG_PCI_IOV 3850 struct pci_dev *pdev = adapter->pdev; 3851 struct e1000_hw *hw = &adapter->hw; 3852 3853 /* Virtualization features not supported on i210 family. */ 3854 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 3855 return; 3856 3857 /* Of the below we really only want the effect of getting 3858 * IGB_FLAG_HAS_MSIX set (if available), without which 3859 * igb_enable_sriov() has no effect. 3860 */ 3861 igb_set_interrupt_capability(adapter, true); 3862 igb_reset_interrupt_capability(adapter); 3863 3864 pci_sriov_set_totalvfs(pdev, 7); 3865 igb_enable_sriov(pdev, max_vfs); 3866 3867 #endif /* CONFIG_PCI_IOV */ 3868 } 3869 3870 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter) 3871 { 3872 struct e1000_hw *hw = &adapter->hw; 3873 unsigned int max_rss_queues; 3874 3875 /* Determine the maximum number of RSS queues supported. */ 3876 switch (hw->mac.type) { 3877 case e1000_i211: 3878 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 3879 break; 3880 case e1000_82575: 3881 case e1000_i210: 3882 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 3883 break; 3884 case e1000_i350: 3885 /* I350 cannot do RSS and SR-IOV at the same time */ 3886 if (!!adapter->vfs_allocated_count) { 3887 max_rss_queues = 1; 3888 break; 3889 } 3890 fallthrough; 3891 case e1000_82576: 3892 if (!!adapter->vfs_allocated_count) { 3893 max_rss_queues = 2; 3894 break; 3895 } 3896 fallthrough; 3897 case e1000_82580: 3898 case e1000_i354: 3899 default: 3900 max_rss_queues = IGB_MAX_RX_QUEUES; 3901 break; 3902 } 3903 3904 return max_rss_queues; 3905 } 3906 3907 static void igb_init_queue_configuration(struct igb_adapter *adapter) 3908 { 3909 u32 max_rss_queues; 3910 3911 max_rss_queues = igb_get_max_rss_queues(adapter); 3912 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3913 3914 igb_set_flag_queue_pairs(adapter, max_rss_queues); 3915 } 3916 3917 void igb_set_flag_queue_pairs(struct igb_adapter *adapter, 3918 const u32 max_rss_queues) 3919 { 3920 struct e1000_hw *hw = &adapter->hw; 3921 3922 /* Determine if we need to pair queues. */ 3923 switch (hw->mac.type) { 3924 case e1000_82575: 3925 case e1000_i211: 3926 /* Device supports enough interrupts without queue pairing. */ 3927 break; 3928 case e1000_82576: 3929 case e1000_82580: 3930 case e1000_i350: 3931 case e1000_i354: 3932 case e1000_i210: 3933 default: 3934 /* If rss_queues > half of max_rss_queues, pair the queues in 3935 * order to conserve interrupts due to limited supply. 3936 */ 3937 if (adapter->rss_queues > (max_rss_queues / 2)) 3938 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 3939 else 3940 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS; 3941 break; 3942 } 3943 } 3944 3945 /** 3946 * igb_sw_init - Initialize general software structures (struct igb_adapter) 3947 * @adapter: board private structure to initialize 3948 * 3949 * igb_sw_init initializes the Adapter private data structure. 3950 * Fields are initialized based on PCI device information and 3951 * OS network device settings (MTU size). 3952 **/ 3953 static int igb_sw_init(struct igb_adapter *adapter) 3954 { 3955 struct e1000_hw *hw = &adapter->hw; 3956 struct net_device *netdev = adapter->netdev; 3957 struct pci_dev *pdev = adapter->pdev; 3958 3959 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3960 3961 /* set default ring sizes */ 3962 adapter->tx_ring_count = IGB_DEFAULT_TXD; 3963 adapter->rx_ring_count = IGB_DEFAULT_RXD; 3964 3965 /* set default ITR values */ 3966 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 3967 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 3968 3969 /* set default work limits */ 3970 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 3971 3972 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD; 3973 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3974 3975 spin_lock_init(&adapter->nfc_lock); 3976 spin_lock_init(&adapter->stats64_lock); 3977 #ifdef CONFIG_PCI_IOV 3978 switch (hw->mac.type) { 3979 case e1000_82576: 3980 case e1000_i350: 3981 if (max_vfs > 7) { 3982 dev_warn(&pdev->dev, 3983 "Maximum of 7 VFs per PF, using max\n"); 3984 max_vfs = adapter->vfs_allocated_count = 7; 3985 } else 3986 adapter->vfs_allocated_count = max_vfs; 3987 if (adapter->vfs_allocated_count) 3988 dev_warn(&pdev->dev, 3989 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 3990 break; 3991 default: 3992 break; 3993 } 3994 #endif /* CONFIG_PCI_IOV */ 3995 3996 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 3997 adapter->flags |= IGB_FLAG_HAS_MSIX; 3998 3999 adapter->mac_table = kcalloc(hw->mac.rar_entry_count, 4000 sizeof(struct igb_mac_addr), 4001 GFP_KERNEL); 4002 if (!adapter->mac_table) 4003 return -ENOMEM; 4004 4005 igb_probe_vfs(adapter); 4006 4007 igb_init_queue_configuration(adapter); 4008 4009 /* Setup and initialize a copy of the hw vlan table array */ 4010 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 4011 GFP_KERNEL); 4012 if (!adapter->shadow_vfta) 4013 return -ENOMEM; 4014 4015 /* This call may decrease the number of queues */ 4016 if (igb_init_interrupt_scheme(adapter, true)) { 4017 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4018 return -ENOMEM; 4019 } 4020 4021 /* Explicitly disable IRQ since the NIC can be in any state. */ 4022 igb_irq_disable(adapter); 4023 4024 if (hw->mac.type >= e1000_i350) 4025 adapter->flags &= ~IGB_FLAG_DMAC; 4026 4027 set_bit(__IGB_DOWN, &adapter->state); 4028 return 0; 4029 } 4030 4031 /** 4032 * __igb_open - Called when a network interface is made active 4033 * @netdev: network interface device structure 4034 * @resuming: indicates whether we are in a resume call 4035 * 4036 * Returns 0 on success, negative value on failure 4037 * 4038 * The open entry point is called when a network interface is made 4039 * active by the system (IFF_UP). At this point all resources needed 4040 * for transmit and receive operations are allocated, the interrupt 4041 * handler is registered with the OS, the watchdog timer is started, 4042 * and the stack is notified that the interface is ready. 4043 **/ 4044 static int __igb_open(struct net_device *netdev, bool resuming) 4045 { 4046 struct igb_adapter *adapter = netdev_priv(netdev); 4047 struct e1000_hw *hw = &adapter->hw; 4048 struct pci_dev *pdev = adapter->pdev; 4049 int err; 4050 int i; 4051 4052 /* disallow open during test */ 4053 if (test_bit(__IGB_TESTING, &adapter->state)) { 4054 WARN_ON(resuming); 4055 return -EBUSY; 4056 } 4057 4058 if (!resuming) 4059 pm_runtime_get_sync(&pdev->dev); 4060 4061 netif_carrier_off(netdev); 4062 4063 /* allocate transmit descriptors */ 4064 err = igb_setup_all_tx_resources(adapter); 4065 if (err) 4066 goto err_setup_tx; 4067 4068 /* allocate receive descriptors */ 4069 err = igb_setup_all_rx_resources(adapter); 4070 if (err) 4071 goto err_setup_rx; 4072 4073 igb_power_up_link(adapter); 4074 4075 /* before we allocate an interrupt, we must be ready to handle it. 4076 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4077 * as soon as we call pci_request_irq, so we have to setup our 4078 * clean_rx handler before we do so. 4079 */ 4080 igb_configure(adapter); 4081 4082 err = igb_request_irq(adapter); 4083 if (err) 4084 goto err_req_irq; 4085 4086 /* Notify the stack of the actual queue counts. */ 4087 err = netif_set_real_num_tx_queues(adapter->netdev, 4088 adapter->num_tx_queues); 4089 if (err) 4090 goto err_set_queues; 4091 4092 err = netif_set_real_num_rx_queues(adapter->netdev, 4093 adapter->num_rx_queues); 4094 if (err) 4095 goto err_set_queues; 4096 4097 /* From here on the code is the same as igb_up() */ 4098 clear_bit(__IGB_DOWN, &adapter->state); 4099 4100 for (i = 0; i < adapter->num_q_vectors; i++) 4101 napi_enable(&(adapter->q_vector[i]->napi)); 4102 4103 /* Clear any pending interrupts. */ 4104 rd32(E1000_TSICR); 4105 rd32(E1000_ICR); 4106 4107 igb_irq_enable(adapter); 4108 4109 /* notify VFs that reset has been completed */ 4110 if (adapter->vfs_allocated_count) { 4111 u32 reg_data = rd32(E1000_CTRL_EXT); 4112 4113 reg_data |= E1000_CTRL_EXT_PFRSTD; 4114 wr32(E1000_CTRL_EXT, reg_data); 4115 } 4116 4117 netif_tx_start_all_queues(netdev); 4118 4119 if (!resuming) 4120 pm_runtime_put(&pdev->dev); 4121 4122 /* start the watchdog. */ 4123 hw->mac.get_link_status = 1; 4124 schedule_work(&adapter->watchdog_task); 4125 4126 return 0; 4127 4128 err_set_queues: 4129 igb_free_irq(adapter); 4130 err_req_irq: 4131 igb_release_hw_control(adapter); 4132 igb_power_down_link(adapter); 4133 igb_free_all_rx_resources(adapter); 4134 err_setup_rx: 4135 igb_free_all_tx_resources(adapter); 4136 err_setup_tx: 4137 igb_reset(adapter); 4138 if (!resuming) 4139 pm_runtime_put(&pdev->dev); 4140 4141 return err; 4142 } 4143 4144 int igb_open(struct net_device *netdev) 4145 { 4146 return __igb_open(netdev, false); 4147 } 4148 4149 /** 4150 * __igb_close - Disables a network interface 4151 * @netdev: network interface device structure 4152 * @suspending: indicates we are in a suspend call 4153 * 4154 * Returns 0, this is not allowed to fail 4155 * 4156 * The close entry point is called when an interface is de-activated 4157 * by the OS. The hardware is still under the driver's control, but 4158 * needs to be disabled. A global MAC reset is issued to stop the 4159 * hardware, and all transmit and receive resources are freed. 4160 **/ 4161 static int __igb_close(struct net_device *netdev, bool suspending) 4162 { 4163 struct igb_adapter *adapter = netdev_priv(netdev); 4164 struct pci_dev *pdev = adapter->pdev; 4165 4166 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 4167 4168 if (!suspending) 4169 pm_runtime_get_sync(&pdev->dev); 4170 4171 igb_down(adapter); 4172 igb_free_irq(adapter); 4173 4174 igb_free_all_tx_resources(adapter); 4175 igb_free_all_rx_resources(adapter); 4176 4177 if (!suspending) 4178 pm_runtime_put_sync(&pdev->dev); 4179 return 0; 4180 } 4181 4182 int igb_close(struct net_device *netdev) 4183 { 4184 if (netif_device_present(netdev) || netdev->dismantle) 4185 return __igb_close(netdev, false); 4186 return 0; 4187 } 4188 4189 /** 4190 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 4191 * @tx_ring: tx descriptor ring (for a specific queue) to setup 4192 * 4193 * Return 0 on success, negative on failure 4194 **/ 4195 int igb_setup_tx_resources(struct igb_ring *tx_ring) 4196 { 4197 struct device *dev = tx_ring->dev; 4198 int size; 4199 4200 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 4201 4202 tx_ring->tx_buffer_info = vmalloc(size); 4203 if (!tx_ring->tx_buffer_info) 4204 goto err; 4205 4206 /* round up to nearest 4K */ 4207 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 4208 tx_ring->size = ALIGN(tx_ring->size, 4096); 4209 4210 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 4211 &tx_ring->dma, GFP_KERNEL); 4212 if (!tx_ring->desc) 4213 goto err; 4214 4215 tx_ring->next_to_use = 0; 4216 tx_ring->next_to_clean = 0; 4217 4218 return 0; 4219 4220 err: 4221 vfree(tx_ring->tx_buffer_info); 4222 tx_ring->tx_buffer_info = NULL; 4223 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 4224 return -ENOMEM; 4225 } 4226 4227 /** 4228 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 4229 * (Descriptors) for all queues 4230 * @adapter: board private structure 4231 * 4232 * Return 0 on success, negative on failure 4233 **/ 4234 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 4235 { 4236 struct pci_dev *pdev = adapter->pdev; 4237 int i, err = 0; 4238 4239 for (i = 0; i < adapter->num_tx_queues; i++) { 4240 err = igb_setup_tx_resources(adapter->tx_ring[i]); 4241 if (err) { 4242 dev_err(&pdev->dev, 4243 "Allocation for Tx Queue %u failed\n", i); 4244 for (i--; i >= 0; i--) 4245 igb_free_tx_resources(adapter->tx_ring[i]); 4246 break; 4247 } 4248 } 4249 4250 return err; 4251 } 4252 4253 /** 4254 * igb_setup_tctl - configure the transmit control registers 4255 * @adapter: Board private structure 4256 **/ 4257 void igb_setup_tctl(struct igb_adapter *adapter) 4258 { 4259 struct e1000_hw *hw = &adapter->hw; 4260 u32 tctl; 4261 4262 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 4263 wr32(E1000_TXDCTL(0), 0); 4264 4265 /* Program the Transmit Control Register */ 4266 tctl = rd32(E1000_TCTL); 4267 tctl &= ~E1000_TCTL_CT; 4268 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 4269 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 4270 4271 igb_config_collision_dist(hw); 4272 4273 /* Enable transmits */ 4274 tctl |= E1000_TCTL_EN; 4275 4276 wr32(E1000_TCTL, tctl); 4277 } 4278 4279 /** 4280 * igb_configure_tx_ring - Configure transmit ring after Reset 4281 * @adapter: board private structure 4282 * @ring: tx ring to configure 4283 * 4284 * Configure a transmit ring after a reset. 4285 **/ 4286 void igb_configure_tx_ring(struct igb_adapter *adapter, 4287 struct igb_ring *ring) 4288 { 4289 struct e1000_hw *hw = &adapter->hw; 4290 u32 txdctl = 0; 4291 u64 tdba = ring->dma; 4292 int reg_idx = ring->reg_idx; 4293 4294 wr32(E1000_TDLEN(reg_idx), 4295 ring->count * sizeof(union e1000_adv_tx_desc)); 4296 wr32(E1000_TDBAL(reg_idx), 4297 tdba & 0x00000000ffffffffULL); 4298 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 4299 4300 ring->tail = adapter->io_addr + E1000_TDT(reg_idx); 4301 wr32(E1000_TDH(reg_idx), 0); 4302 writel(0, ring->tail); 4303 4304 txdctl |= IGB_TX_PTHRESH; 4305 txdctl |= IGB_TX_HTHRESH << 8; 4306 txdctl |= IGB_TX_WTHRESH << 16; 4307 4308 /* reinitialize tx_buffer_info */ 4309 memset(ring->tx_buffer_info, 0, 4310 sizeof(struct igb_tx_buffer) * ring->count); 4311 4312 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 4313 wr32(E1000_TXDCTL(reg_idx), txdctl); 4314 } 4315 4316 /** 4317 * igb_configure_tx - Configure transmit Unit after Reset 4318 * @adapter: board private structure 4319 * 4320 * Configure the Tx unit of the MAC after a reset. 4321 **/ 4322 static void igb_configure_tx(struct igb_adapter *adapter) 4323 { 4324 struct e1000_hw *hw = &adapter->hw; 4325 int i; 4326 4327 /* disable the queues */ 4328 for (i = 0; i < adapter->num_tx_queues; i++) 4329 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0); 4330 4331 wrfl(); 4332 usleep_range(10000, 20000); 4333 4334 for (i = 0; i < adapter->num_tx_queues; i++) 4335 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 4336 } 4337 4338 /** 4339 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 4340 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 4341 * 4342 * Returns 0 on success, negative on failure 4343 **/ 4344 int igb_setup_rx_resources(struct igb_ring *rx_ring) 4345 { 4346 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev); 4347 struct device *dev = rx_ring->dev; 4348 int size; 4349 4350 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 4351 4352 rx_ring->rx_buffer_info = vmalloc(size); 4353 if (!rx_ring->rx_buffer_info) 4354 goto err; 4355 4356 /* Round up to nearest 4K */ 4357 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 4358 rx_ring->size = ALIGN(rx_ring->size, 4096); 4359 4360 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 4361 &rx_ring->dma, GFP_KERNEL); 4362 if (!rx_ring->desc) 4363 goto err; 4364 4365 rx_ring->next_to_alloc = 0; 4366 rx_ring->next_to_clean = 0; 4367 rx_ring->next_to_use = 0; 4368 4369 rx_ring->xdp_prog = adapter->xdp_prog; 4370 4371 /* XDP RX-queue info */ 4372 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 4373 rx_ring->queue_index, 0) < 0) 4374 goto err; 4375 4376 return 0; 4377 4378 err: 4379 vfree(rx_ring->rx_buffer_info); 4380 rx_ring->rx_buffer_info = NULL; 4381 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 4382 return -ENOMEM; 4383 } 4384 4385 /** 4386 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 4387 * (Descriptors) for all queues 4388 * @adapter: board private structure 4389 * 4390 * Return 0 on success, negative on failure 4391 **/ 4392 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 4393 { 4394 struct pci_dev *pdev = adapter->pdev; 4395 int i, err = 0; 4396 4397 for (i = 0; i < adapter->num_rx_queues; i++) { 4398 err = igb_setup_rx_resources(adapter->rx_ring[i]); 4399 if (err) { 4400 dev_err(&pdev->dev, 4401 "Allocation for Rx Queue %u failed\n", i); 4402 for (i--; i >= 0; i--) 4403 igb_free_rx_resources(adapter->rx_ring[i]); 4404 break; 4405 } 4406 } 4407 4408 return err; 4409 } 4410 4411 /** 4412 * igb_setup_mrqc - configure the multiple receive queue control registers 4413 * @adapter: Board private structure 4414 **/ 4415 static void igb_setup_mrqc(struct igb_adapter *adapter) 4416 { 4417 struct e1000_hw *hw = &adapter->hw; 4418 u32 mrqc, rxcsum; 4419 u32 j, num_rx_queues; 4420 u32 rss_key[10]; 4421 4422 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 4423 for (j = 0; j < 10; j++) 4424 wr32(E1000_RSSRK(j), rss_key[j]); 4425 4426 num_rx_queues = adapter->rss_queues; 4427 4428 switch (hw->mac.type) { 4429 case e1000_82576: 4430 /* 82576 supports 2 RSS queues for SR-IOV */ 4431 if (adapter->vfs_allocated_count) 4432 num_rx_queues = 2; 4433 break; 4434 default: 4435 break; 4436 } 4437 4438 if (adapter->rss_indir_tbl_init != num_rx_queues) { 4439 for (j = 0; j < IGB_RETA_SIZE; j++) 4440 adapter->rss_indir_tbl[j] = 4441 (j * num_rx_queues) / IGB_RETA_SIZE; 4442 adapter->rss_indir_tbl_init = num_rx_queues; 4443 } 4444 igb_write_rss_indir_tbl(adapter); 4445 4446 /* Disable raw packet checksumming so that RSS hash is placed in 4447 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 4448 * offloads as they are enabled by default 4449 */ 4450 rxcsum = rd32(E1000_RXCSUM); 4451 rxcsum |= E1000_RXCSUM_PCSD; 4452 4453 if (adapter->hw.mac.type >= e1000_82576) 4454 /* Enable Receive Checksum Offload for SCTP */ 4455 rxcsum |= E1000_RXCSUM_CRCOFL; 4456 4457 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 4458 wr32(E1000_RXCSUM, rxcsum); 4459 4460 /* Generate RSS hash based on packet types, TCP/UDP 4461 * port numbers and/or IPv4/v6 src and dst addresses 4462 */ 4463 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 4464 E1000_MRQC_RSS_FIELD_IPV4_TCP | 4465 E1000_MRQC_RSS_FIELD_IPV6 | 4466 E1000_MRQC_RSS_FIELD_IPV6_TCP | 4467 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 4468 4469 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 4470 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 4471 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 4472 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 4473 4474 /* If VMDq is enabled then we set the appropriate mode for that, else 4475 * we default to RSS so that an RSS hash is calculated per packet even 4476 * if we are only using one queue 4477 */ 4478 if (adapter->vfs_allocated_count) { 4479 if (hw->mac.type > e1000_82575) { 4480 /* Set the default pool for the PF's first queue */ 4481 u32 vtctl = rd32(E1000_VT_CTL); 4482 4483 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 4484 E1000_VT_CTL_DISABLE_DEF_POOL); 4485 vtctl |= adapter->vfs_allocated_count << 4486 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 4487 wr32(E1000_VT_CTL, vtctl); 4488 } 4489 if (adapter->rss_queues > 1) 4490 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ; 4491 else 4492 mrqc |= E1000_MRQC_ENABLE_VMDQ; 4493 } else { 4494 mrqc |= E1000_MRQC_ENABLE_RSS_MQ; 4495 } 4496 igb_vmm_control(adapter); 4497 4498 wr32(E1000_MRQC, mrqc); 4499 } 4500 4501 /** 4502 * igb_setup_rctl - configure the receive control registers 4503 * @adapter: Board private structure 4504 **/ 4505 void igb_setup_rctl(struct igb_adapter *adapter) 4506 { 4507 struct e1000_hw *hw = &adapter->hw; 4508 u32 rctl; 4509 4510 rctl = rd32(E1000_RCTL); 4511 4512 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 4513 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 4514 4515 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 4516 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 4517 4518 /* enable stripping of CRC. It's unlikely this will break BMC 4519 * redirection as it did with e1000. Newer features require 4520 * that the HW strips the CRC. 4521 */ 4522 rctl |= E1000_RCTL_SECRC; 4523 4524 /* disable store bad packets and clear size bits. */ 4525 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 4526 4527 /* enable LPE to allow for reception of jumbo frames */ 4528 rctl |= E1000_RCTL_LPE; 4529 4530 /* disable queue 0 to prevent tail write w/o re-config */ 4531 wr32(E1000_RXDCTL(0), 0); 4532 4533 /* Attention!!! For SR-IOV PF driver operations you must enable 4534 * queue drop for all VF and PF queues to prevent head of line blocking 4535 * if an un-trusted VF does not provide descriptors to hardware. 4536 */ 4537 if (adapter->vfs_allocated_count) { 4538 /* set all queue drop enable bits */ 4539 wr32(E1000_QDE, ALL_QUEUES); 4540 } 4541 4542 /* This is useful for sniffing bad packets. */ 4543 if (adapter->netdev->features & NETIF_F_RXALL) { 4544 /* UPE and MPE will be handled by normal PROMISC logic 4545 * in e1000e_set_rx_mode 4546 */ 4547 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 4548 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 4549 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 4550 4551 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */ 4552 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 4553 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 4554 * and that breaks VLANs. 4555 */ 4556 } 4557 4558 wr32(E1000_RCTL, rctl); 4559 } 4560 4561 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 4562 int vfn) 4563 { 4564 struct e1000_hw *hw = &adapter->hw; 4565 u32 vmolr; 4566 4567 if (size > MAX_JUMBO_FRAME_SIZE) 4568 size = MAX_JUMBO_FRAME_SIZE; 4569 4570 vmolr = rd32(E1000_VMOLR(vfn)); 4571 vmolr &= ~E1000_VMOLR_RLPML_MASK; 4572 vmolr |= size | E1000_VMOLR_LPE; 4573 wr32(E1000_VMOLR(vfn), vmolr); 4574 4575 return 0; 4576 } 4577 4578 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter, 4579 int vfn, bool enable) 4580 { 4581 struct e1000_hw *hw = &adapter->hw; 4582 u32 val, reg; 4583 4584 if (hw->mac.type < e1000_82576) 4585 return; 4586 4587 if (hw->mac.type == e1000_i350) 4588 reg = E1000_DVMOLR(vfn); 4589 else 4590 reg = E1000_VMOLR(vfn); 4591 4592 val = rd32(reg); 4593 if (enable) 4594 val |= E1000_VMOLR_STRVLAN; 4595 else 4596 val &= ~(E1000_VMOLR_STRVLAN); 4597 wr32(reg, val); 4598 } 4599 4600 static inline void igb_set_vmolr(struct igb_adapter *adapter, 4601 int vfn, bool aupe) 4602 { 4603 struct e1000_hw *hw = &adapter->hw; 4604 u32 vmolr; 4605 4606 /* This register exists only on 82576 and newer so if we are older then 4607 * we should exit and do nothing 4608 */ 4609 if (hw->mac.type < e1000_82576) 4610 return; 4611 4612 vmolr = rd32(E1000_VMOLR(vfn)); 4613 if (aupe) 4614 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 4615 else 4616 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 4617 4618 /* clear all bits that might not be set */ 4619 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 4620 4621 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 4622 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 4623 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 4624 * multicast packets 4625 */ 4626 if (vfn <= adapter->vfs_allocated_count) 4627 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 4628 4629 wr32(E1000_VMOLR(vfn), vmolr); 4630 } 4631 4632 /** 4633 * igb_setup_srrctl - configure the split and replication receive control 4634 * registers 4635 * @adapter: Board private structure 4636 * @ring: receive ring to be configured 4637 **/ 4638 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring) 4639 { 4640 struct e1000_hw *hw = &adapter->hw; 4641 int reg_idx = ring->reg_idx; 4642 u32 srrctl = 0; 4643 4644 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 4645 if (ring_uses_large_buffer(ring)) 4646 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4647 else 4648 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4649 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 4650 if (hw->mac.type >= e1000_82580) 4651 srrctl |= E1000_SRRCTL_TIMESTAMP; 4652 /* Only set Drop Enable if VFs allocated, or we are supporting multiple 4653 * queues and rx flow control is disabled 4654 */ 4655 if (adapter->vfs_allocated_count || 4656 (!(hw->fc.current_mode & e1000_fc_rx_pause) && 4657 adapter->num_rx_queues > 1)) 4658 srrctl |= E1000_SRRCTL_DROP_EN; 4659 4660 wr32(E1000_SRRCTL(reg_idx), srrctl); 4661 } 4662 4663 /** 4664 * igb_configure_rx_ring - Configure a receive ring after Reset 4665 * @adapter: board private structure 4666 * @ring: receive ring to be configured 4667 * 4668 * Configure the Rx unit of the MAC after a reset. 4669 **/ 4670 void igb_configure_rx_ring(struct igb_adapter *adapter, 4671 struct igb_ring *ring) 4672 { 4673 struct e1000_hw *hw = &adapter->hw; 4674 union e1000_adv_rx_desc *rx_desc; 4675 u64 rdba = ring->dma; 4676 int reg_idx = ring->reg_idx; 4677 u32 rxdctl = 0; 4678 4679 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 4680 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 4681 MEM_TYPE_PAGE_SHARED, NULL)); 4682 4683 /* disable the queue */ 4684 wr32(E1000_RXDCTL(reg_idx), 0); 4685 4686 /* Set DMA base address registers */ 4687 wr32(E1000_RDBAL(reg_idx), 4688 rdba & 0x00000000ffffffffULL); 4689 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 4690 wr32(E1000_RDLEN(reg_idx), 4691 ring->count * sizeof(union e1000_adv_rx_desc)); 4692 4693 /* initialize head and tail */ 4694 ring->tail = adapter->io_addr + E1000_RDT(reg_idx); 4695 wr32(E1000_RDH(reg_idx), 0); 4696 writel(0, ring->tail); 4697 4698 /* set descriptor configuration */ 4699 igb_setup_srrctl(adapter, ring); 4700 4701 /* set filtering for VMDQ pools */ 4702 igb_set_vmolr(adapter, reg_idx & 0x7, true); 4703 4704 rxdctl |= IGB_RX_PTHRESH; 4705 rxdctl |= IGB_RX_HTHRESH << 8; 4706 rxdctl |= IGB_RX_WTHRESH << 16; 4707 4708 /* initialize rx_buffer_info */ 4709 memset(ring->rx_buffer_info, 0, 4710 sizeof(struct igb_rx_buffer) * ring->count); 4711 4712 /* initialize Rx descriptor 0 */ 4713 rx_desc = IGB_RX_DESC(ring, 0); 4714 rx_desc->wb.upper.length = 0; 4715 4716 /* enable receive descriptor fetching */ 4717 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 4718 wr32(E1000_RXDCTL(reg_idx), rxdctl); 4719 } 4720 4721 static void igb_set_rx_buffer_len(struct igb_adapter *adapter, 4722 struct igb_ring *rx_ring) 4723 { 4724 /* set build_skb and buffer size flags */ 4725 clear_ring_build_skb_enabled(rx_ring); 4726 clear_ring_uses_large_buffer(rx_ring); 4727 4728 if (adapter->flags & IGB_FLAG_RX_LEGACY) 4729 return; 4730 4731 set_ring_build_skb_enabled(rx_ring); 4732 4733 #if (PAGE_SIZE < 8192) 4734 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 4735 return; 4736 4737 set_ring_uses_large_buffer(rx_ring); 4738 #endif 4739 } 4740 4741 /** 4742 * igb_configure_rx - Configure receive Unit after Reset 4743 * @adapter: board private structure 4744 * 4745 * Configure the Rx unit of the MAC after a reset. 4746 **/ 4747 static void igb_configure_rx(struct igb_adapter *adapter) 4748 { 4749 int i; 4750 4751 /* set the correct pool for the PF default MAC address in entry 0 */ 4752 igb_set_default_mac_filter(adapter); 4753 4754 /* Setup the HW Rx Head and Tail Descriptor Pointers and 4755 * the Base and Length of the Rx Descriptor Ring 4756 */ 4757 for (i = 0; i < adapter->num_rx_queues; i++) { 4758 struct igb_ring *rx_ring = adapter->rx_ring[i]; 4759 4760 igb_set_rx_buffer_len(adapter, rx_ring); 4761 igb_configure_rx_ring(adapter, rx_ring); 4762 } 4763 } 4764 4765 /** 4766 * igb_free_tx_resources - Free Tx Resources per Queue 4767 * @tx_ring: Tx descriptor ring for a specific queue 4768 * 4769 * Free all transmit software resources 4770 **/ 4771 void igb_free_tx_resources(struct igb_ring *tx_ring) 4772 { 4773 igb_clean_tx_ring(tx_ring); 4774 4775 vfree(tx_ring->tx_buffer_info); 4776 tx_ring->tx_buffer_info = NULL; 4777 4778 /* if not set, then don't free */ 4779 if (!tx_ring->desc) 4780 return; 4781 4782 dma_free_coherent(tx_ring->dev, tx_ring->size, 4783 tx_ring->desc, tx_ring->dma); 4784 4785 tx_ring->desc = NULL; 4786 } 4787 4788 /** 4789 * igb_free_all_tx_resources - Free Tx Resources for All Queues 4790 * @adapter: board private structure 4791 * 4792 * Free all transmit software resources 4793 **/ 4794 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 4795 { 4796 int i; 4797 4798 for (i = 0; i < adapter->num_tx_queues; i++) 4799 if (adapter->tx_ring[i]) 4800 igb_free_tx_resources(adapter->tx_ring[i]); 4801 } 4802 4803 /** 4804 * igb_clean_tx_ring - Free Tx Buffers 4805 * @tx_ring: ring to be cleaned 4806 **/ 4807 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 4808 { 4809 u16 i = tx_ring->next_to_clean; 4810 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 4811 4812 while (i != tx_ring->next_to_use) { 4813 union e1000_adv_tx_desc *eop_desc, *tx_desc; 4814 4815 /* Free all the Tx ring sk_buffs */ 4816 dev_kfree_skb_any(tx_buffer->skb); 4817 4818 /* unmap skb header data */ 4819 dma_unmap_single(tx_ring->dev, 4820 dma_unmap_addr(tx_buffer, dma), 4821 dma_unmap_len(tx_buffer, len), 4822 DMA_TO_DEVICE); 4823 4824 /* check for eop_desc to determine the end of the packet */ 4825 eop_desc = tx_buffer->next_to_watch; 4826 tx_desc = IGB_TX_DESC(tx_ring, i); 4827 4828 /* unmap remaining buffers */ 4829 while (tx_desc != eop_desc) { 4830 tx_buffer++; 4831 tx_desc++; 4832 i++; 4833 if (unlikely(i == tx_ring->count)) { 4834 i = 0; 4835 tx_buffer = tx_ring->tx_buffer_info; 4836 tx_desc = IGB_TX_DESC(tx_ring, 0); 4837 } 4838 4839 /* unmap any remaining paged data */ 4840 if (dma_unmap_len(tx_buffer, len)) 4841 dma_unmap_page(tx_ring->dev, 4842 dma_unmap_addr(tx_buffer, dma), 4843 dma_unmap_len(tx_buffer, len), 4844 DMA_TO_DEVICE); 4845 } 4846 4847 tx_buffer->next_to_watch = NULL; 4848 4849 /* move us one more past the eop_desc for start of next pkt */ 4850 tx_buffer++; 4851 i++; 4852 if (unlikely(i == tx_ring->count)) { 4853 i = 0; 4854 tx_buffer = tx_ring->tx_buffer_info; 4855 } 4856 } 4857 4858 /* reset BQL for queue */ 4859 netdev_tx_reset_queue(txring_txq(tx_ring)); 4860 4861 /* reset next_to_use and next_to_clean */ 4862 tx_ring->next_to_use = 0; 4863 tx_ring->next_to_clean = 0; 4864 } 4865 4866 /** 4867 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 4868 * @adapter: board private structure 4869 **/ 4870 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 4871 { 4872 int i; 4873 4874 for (i = 0; i < adapter->num_tx_queues; i++) 4875 if (adapter->tx_ring[i]) 4876 igb_clean_tx_ring(adapter->tx_ring[i]); 4877 } 4878 4879 /** 4880 * igb_free_rx_resources - Free Rx Resources 4881 * @rx_ring: ring to clean the resources from 4882 * 4883 * Free all receive software resources 4884 **/ 4885 void igb_free_rx_resources(struct igb_ring *rx_ring) 4886 { 4887 igb_clean_rx_ring(rx_ring); 4888 4889 rx_ring->xdp_prog = NULL; 4890 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4891 vfree(rx_ring->rx_buffer_info); 4892 rx_ring->rx_buffer_info = NULL; 4893 4894 /* if not set, then don't free */ 4895 if (!rx_ring->desc) 4896 return; 4897 4898 dma_free_coherent(rx_ring->dev, rx_ring->size, 4899 rx_ring->desc, rx_ring->dma); 4900 4901 rx_ring->desc = NULL; 4902 } 4903 4904 /** 4905 * igb_free_all_rx_resources - Free Rx Resources for All Queues 4906 * @adapter: board private structure 4907 * 4908 * Free all receive software resources 4909 **/ 4910 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 4911 { 4912 int i; 4913 4914 for (i = 0; i < adapter->num_rx_queues; i++) 4915 if (adapter->rx_ring[i]) 4916 igb_free_rx_resources(adapter->rx_ring[i]); 4917 } 4918 4919 /** 4920 * igb_clean_rx_ring - Free Rx Buffers per Queue 4921 * @rx_ring: ring to free buffers from 4922 **/ 4923 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 4924 { 4925 u16 i = rx_ring->next_to_clean; 4926 4927 dev_kfree_skb(rx_ring->skb); 4928 rx_ring->skb = NULL; 4929 4930 /* Free all the Rx ring sk_buffs */ 4931 while (i != rx_ring->next_to_alloc) { 4932 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 4933 4934 /* Invalidate cache lines that may have been written to by 4935 * device so that we avoid corrupting memory. 4936 */ 4937 dma_sync_single_range_for_cpu(rx_ring->dev, 4938 buffer_info->dma, 4939 buffer_info->page_offset, 4940 igb_rx_bufsz(rx_ring), 4941 DMA_FROM_DEVICE); 4942 4943 /* free resources associated with mapping */ 4944 dma_unmap_page_attrs(rx_ring->dev, 4945 buffer_info->dma, 4946 igb_rx_pg_size(rx_ring), 4947 DMA_FROM_DEVICE, 4948 IGB_RX_DMA_ATTR); 4949 __page_frag_cache_drain(buffer_info->page, 4950 buffer_info->pagecnt_bias); 4951 4952 i++; 4953 if (i == rx_ring->count) 4954 i = 0; 4955 } 4956 4957 rx_ring->next_to_alloc = 0; 4958 rx_ring->next_to_clean = 0; 4959 rx_ring->next_to_use = 0; 4960 } 4961 4962 /** 4963 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 4964 * @adapter: board private structure 4965 **/ 4966 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 4967 { 4968 int i; 4969 4970 for (i = 0; i < adapter->num_rx_queues; i++) 4971 if (adapter->rx_ring[i]) 4972 igb_clean_rx_ring(adapter->rx_ring[i]); 4973 } 4974 4975 /** 4976 * igb_set_mac - Change the Ethernet Address of the NIC 4977 * @netdev: network interface device structure 4978 * @p: pointer to an address structure 4979 * 4980 * Returns 0 on success, negative on failure 4981 **/ 4982 static int igb_set_mac(struct net_device *netdev, void *p) 4983 { 4984 struct igb_adapter *adapter = netdev_priv(netdev); 4985 struct e1000_hw *hw = &adapter->hw; 4986 struct sockaddr *addr = p; 4987 4988 if (!is_valid_ether_addr(addr->sa_data)) 4989 return -EADDRNOTAVAIL; 4990 4991 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 4992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 4993 4994 /* set the correct pool for the new PF MAC address in entry 0 */ 4995 igb_set_default_mac_filter(adapter); 4996 4997 return 0; 4998 } 4999 5000 /** 5001 * igb_write_mc_addr_list - write multicast addresses to MTA 5002 * @netdev: network interface device structure 5003 * 5004 * Writes multicast address list to the MTA hash table. 5005 * Returns: -ENOMEM on failure 5006 * 0 on no addresses written 5007 * X on writing X addresses to MTA 5008 **/ 5009 static int igb_write_mc_addr_list(struct net_device *netdev) 5010 { 5011 struct igb_adapter *adapter = netdev_priv(netdev); 5012 struct e1000_hw *hw = &adapter->hw; 5013 struct netdev_hw_addr *ha; 5014 u8 *mta_list; 5015 int i; 5016 5017 if (netdev_mc_empty(netdev)) { 5018 /* nothing to program, so clear mc list */ 5019 igb_update_mc_addr_list(hw, NULL, 0); 5020 igb_restore_vf_multicasts(adapter); 5021 return 0; 5022 } 5023 5024 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 5025 if (!mta_list) 5026 return -ENOMEM; 5027 5028 /* The shared function expects a packed array of only addresses. */ 5029 i = 0; 5030 netdev_for_each_mc_addr(ha, netdev) 5031 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 5032 5033 igb_update_mc_addr_list(hw, mta_list, i); 5034 kfree(mta_list); 5035 5036 return netdev_mc_count(netdev); 5037 } 5038 5039 static int igb_vlan_promisc_enable(struct igb_adapter *adapter) 5040 { 5041 struct e1000_hw *hw = &adapter->hw; 5042 u32 i, pf_id; 5043 5044 switch (hw->mac.type) { 5045 case e1000_i210: 5046 case e1000_i211: 5047 case e1000_i350: 5048 /* VLAN filtering needed for VLAN prio filter */ 5049 if (adapter->netdev->features & NETIF_F_NTUPLE) 5050 break; 5051 fallthrough; 5052 case e1000_82576: 5053 case e1000_82580: 5054 case e1000_i354: 5055 /* VLAN filtering needed for pool filtering */ 5056 if (adapter->vfs_allocated_count) 5057 break; 5058 fallthrough; 5059 default: 5060 return 1; 5061 } 5062 5063 /* We are already in VLAN promisc, nothing to do */ 5064 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 5065 return 0; 5066 5067 if (!adapter->vfs_allocated_count) 5068 goto set_vfta; 5069 5070 /* Add PF to all active pools */ 5071 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5072 5073 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5074 u32 vlvf = rd32(E1000_VLVF(i)); 5075 5076 vlvf |= BIT(pf_id); 5077 wr32(E1000_VLVF(i), vlvf); 5078 } 5079 5080 set_vfta: 5081 /* Set all bits in the VLAN filter table array */ 5082 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;) 5083 hw->mac.ops.write_vfta(hw, i, ~0U); 5084 5085 /* Set flag so we don't redo unnecessary work */ 5086 adapter->flags |= IGB_FLAG_VLAN_PROMISC; 5087 5088 return 0; 5089 } 5090 5091 #define VFTA_BLOCK_SIZE 8 5092 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset) 5093 { 5094 struct e1000_hw *hw = &adapter->hw; 5095 u32 vfta[VFTA_BLOCK_SIZE] = { 0 }; 5096 u32 vid_start = vfta_offset * 32; 5097 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32); 5098 u32 i, vid, word, bits, pf_id; 5099 5100 /* guarantee that we don't scrub out management VLAN */ 5101 vid = adapter->mng_vlan_id; 5102 if (vid >= vid_start && vid < vid_end) 5103 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5104 5105 if (!adapter->vfs_allocated_count) 5106 goto set_vfta; 5107 5108 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5109 5110 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5111 u32 vlvf = rd32(E1000_VLVF(i)); 5112 5113 /* pull VLAN ID from VLVF */ 5114 vid = vlvf & VLAN_VID_MASK; 5115 5116 /* only concern ourselves with a certain range */ 5117 if (vid < vid_start || vid >= vid_end) 5118 continue; 5119 5120 if (vlvf & E1000_VLVF_VLANID_ENABLE) { 5121 /* record VLAN ID in VFTA */ 5122 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5123 5124 /* if PF is part of this then continue */ 5125 if (test_bit(vid, adapter->active_vlans)) 5126 continue; 5127 } 5128 5129 /* remove PF from the pool */ 5130 bits = ~BIT(pf_id); 5131 bits &= rd32(E1000_VLVF(i)); 5132 wr32(E1000_VLVF(i), bits); 5133 } 5134 5135 set_vfta: 5136 /* extract values from active_vlans and write back to VFTA */ 5137 for (i = VFTA_BLOCK_SIZE; i--;) { 5138 vid = (vfta_offset + i) * 32; 5139 word = vid / BITS_PER_LONG; 5140 bits = vid % BITS_PER_LONG; 5141 5142 vfta[i] |= adapter->active_vlans[word] >> bits; 5143 5144 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]); 5145 } 5146 } 5147 5148 static void igb_vlan_promisc_disable(struct igb_adapter *adapter) 5149 { 5150 u32 i; 5151 5152 /* We are not in VLAN promisc, nothing to do */ 5153 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 5154 return; 5155 5156 /* Set flag so we don't redo unnecessary work */ 5157 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 5158 5159 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE) 5160 igb_scrub_vfta(adapter, i); 5161 } 5162 5163 /** 5164 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 5165 * @netdev: network interface device structure 5166 * 5167 * The set_rx_mode entry point is called whenever the unicast or multicast 5168 * address lists or the network interface flags are updated. This routine is 5169 * responsible for configuring the hardware for proper unicast, multicast, 5170 * promiscuous mode, and all-multi behavior. 5171 **/ 5172 static void igb_set_rx_mode(struct net_device *netdev) 5173 { 5174 struct igb_adapter *adapter = netdev_priv(netdev); 5175 struct e1000_hw *hw = &adapter->hw; 5176 unsigned int vfn = adapter->vfs_allocated_count; 5177 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 5178 int count; 5179 5180 /* Check for Promiscuous and All Multicast modes */ 5181 if (netdev->flags & IFF_PROMISC) { 5182 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE; 5183 vmolr |= E1000_VMOLR_MPME; 5184 5185 /* enable use of UTA filter to force packets to default pool */ 5186 if (hw->mac.type == e1000_82576) 5187 vmolr |= E1000_VMOLR_ROPE; 5188 } else { 5189 if (netdev->flags & IFF_ALLMULTI) { 5190 rctl |= E1000_RCTL_MPE; 5191 vmolr |= E1000_VMOLR_MPME; 5192 } else { 5193 /* Write addresses to the MTA, if the attempt fails 5194 * then we should just turn on promiscuous mode so 5195 * that we can at least receive multicast traffic 5196 */ 5197 count = igb_write_mc_addr_list(netdev); 5198 if (count < 0) { 5199 rctl |= E1000_RCTL_MPE; 5200 vmolr |= E1000_VMOLR_MPME; 5201 } else if (count) { 5202 vmolr |= E1000_VMOLR_ROMPE; 5203 } 5204 } 5205 } 5206 5207 /* Write addresses to available RAR registers, if there is not 5208 * sufficient space to store all the addresses then enable 5209 * unicast promiscuous mode 5210 */ 5211 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) { 5212 rctl |= E1000_RCTL_UPE; 5213 vmolr |= E1000_VMOLR_ROPE; 5214 } 5215 5216 /* enable VLAN filtering by default */ 5217 rctl |= E1000_RCTL_VFE; 5218 5219 /* disable VLAN filtering for modes that require it */ 5220 if ((netdev->flags & IFF_PROMISC) || 5221 (netdev->features & NETIF_F_RXALL)) { 5222 /* if we fail to set all rules then just clear VFE */ 5223 if (igb_vlan_promisc_enable(adapter)) 5224 rctl &= ~E1000_RCTL_VFE; 5225 } else { 5226 igb_vlan_promisc_disable(adapter); 5227 } 5228 5229 /* update state of unicast, multicast, and VLAN filtering modes */ 5230 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE | 5231 E1000_RCTL_VFE); 5232 wr32(E1000_RCTL, rctl); 5233 5234 #if (PAGE_SIZE < 8192) 5235 if (!adapter->vfs_allocated_count) { 5236 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5237 rlpml = IGB_MAX_FRAME_BUILD_SKB; 5238 } 5239 #endif 5240 wr32(E1000_RLPML, rlpml); 5241 5242 /* In order to support SR-IOV and eventually VMDq it is necessary to set 5243 * the VMOLR to enable the appropriate modes. Without this workaround 5244 * we will have issues with VLAN tag stripping not being done for frames 5245 * that are only arriving because we are the default pool 5246 */ 5247 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 5248 return; 5249 5250 /* set UTA to appropriate mode */ 5251 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE)); 5252 5253 vmolr |= rd32(E1000_VMOLR(vfn)) & 5254 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 5255 5256 /* enable Rx jumbo frames, restrict as needed to support build_skb */ 5257 vmolr &= ~E1000_VMOLR_RLPML_MASK; 5258 #if (PAGE_SIZE < 8192) 5259 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5260 vmolr |= IGB_MAX_FRAME_BUILD_SKB; 5261 else 5262 #endif 5263 vmolr |= MAX_JUMBO_FRAME_SIZE; 5264 vmolr |= E1000_VMOLR_LPE; 5265 5266 wr32(E1000_VMOLR(vfn), vmolr); 5267 5268 igb_restore_vf_multicasts(adapter); 5269 } 5270 5271 static void igb_check_wvbr(struct igb_adapter *adapter) 5272 { 5273 struct e1000_hw *hw = &adapter->hw; 5274 u32 wvbr = 0; 5275 5276 switch (hw->mac.type) { 5277 case e1000_82576: 5278 case e1000_i350: 5279 wvbr = rd32(E1000_WVBR); 5280 if (!wvbr) 5281 return; 5282 break; 5283 default: 5284 break; 5285 } 5286 5287 adapter->wvbr |= wvbr; 5288 } 5289 5290 #define IGB_STAGGERED_QUEUE_OFFSET 8 5291 5292 static void igb_spoof_check(struct igb_adapter *adapter) 5293 { 5294 int j; 5295 5296 if (!adapter->wvbr) 5297 return; 5298 5299 for (j = 0; j < adapter->vfs_allocated_count; j++) { 5300 if (adapter->wvbr & BIT(j) || 5301 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) { 5302 dev_warn(&adapter->pdev->dev, 5303 "Spoof event(s) detected on VF %d\n", j); 5304 adapter->wvbr &= 5305 ~(BIT(j) | 5306 BIT(j + IGB_STAGGERED_QUEUE_OFFSET)); 5307 } 5308 } 5309 } 5310 5311 /* Need to wait a few seconds after link up to get diagnostic information from 5312 * the phy 5313 */ 5314 static void igb_update_phy_info(struct timer_list *t) 5315 { 5316 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5317 igb_get_phy_info(&adapter->hw); 5318 } 5319 5320 /** 5321 * igb_has_link - check shared code for link and determine up/down 5322 * @adapter: pointer to driver private info 5323 **/ 5324 bool igb_has_link(struct igb_adapter *adapter) 5325 { 5326 struct e1000_hw *hw = &adapter->hw; 5327 bool link_active = false; 5328 5329 /* get_link_status is set on LSC (link status) interrupt or 5330 * rx sequence error interrupt. get_link_status will stay 5331 * false until the e1000_check_for_link establishes link 5332 * for copper adapters ONLY 5333 */ 5334 switch (hw->phy.media_type) { 5335 case e1000_media_type_copper: 5336 if (!hw->mac.get_link_status) 5337 return true; 5338 fallthrough; 5339 case e1000_media_type_internal_serdes: 5340 hw->mac.ops.check_for_link(hw); 5341 link_active = !hw->mac.get_link_status; 5342 break; 5343 default: 5344 case e1000_media_type_unknown: 5345 break; 5346 } 5347 5348 if (((hw->mac.type == e1000_i210) || 5349 (hw->mac.type == e1000_i211)) && 5350 (hw->phy.id == I210_I_PHY_ID)) { 5351 if (!netif_carrier_ok(adapter->netdev)) { 5352 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5353 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 5354 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 5355 adapter->link_check_timeout = jiffies; 5356 } 5357 } 5358 5359 return link_active; 5360 } 5361 5362 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 5363 { 5364 bool ret = false; 5365 u32 ctrl_ext, thstat; 5366 5367 /* check for thermal sensor event on i350 copper only */ 5368 if (hw->mac.type == e1000_i350) { 5369 thstat = rd32(E1000_THSTAT); 5370 ctrl_ext = rd32(E1000_CTRL_EXT); 5371 5372 if ((hw->phy.media_type == e1000_media_type_copper) && 5373 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 5374 ret = !!(thstat & event); 5375 } 5376 5377 return ret; 5378 } 5379 5380 /** 5381 * igb_check_lvmmc - check for malformed packets received 5382 * and indicated in LVMMC register 5383 * @adapter: pointer to adapter 5384 **/ 5385 static void igb_check_lvmmc(struct igb_adapter *adapter) 5386 { 5387 struct e1000_hw *hw = &adapter->hw; 5388 u32 lvmmc; 5389 5390 lvmmc = rd32(E1000_LVMMC); 5391 if (lvmmc) { 5392 if (unlikely(net_ratelimit())) { 5393 netdev_warn(adapter->netdev, 5394 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", 5395 lvmmc); 5396 } 5397 } 5398 } 5399 5400 /** 5401 * igb_watchdog - Timer Call-back 5402 * @t: pointer to timer_list containing our private info pointer 5403 **/ 5404 static void igb_watchdog(struct timer_list *t) 5405 { 5406 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5407 /* Do the rest outside of interrupt context */ 5408 schedule_work(&adapter->watchdog_task); 5409 } 5410 5411 static void igb_watchdog_task(struct work_struct *work) 5412 { 5413 struct igb_adapter *adapter = container_of(work, 5414 struct igb_adapter, 5415 watchdog_task); 5416 struct e1000_hw *hw = &adapter->hw; 5417 struct e1000_phy_info *phy = &hw->phy; 5418 struct net_device *netdev = adapter->netdev; 5419 u32 link; 5420 int i; 5421 u32 connsw; 5422 u16 phy_data, retry_count = 20; 5423 5424 link = igb_has_link(adapter); 5425 5426 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 5427 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5428 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5429 else 5430 link = false; 5431 } 5432 5433 /* Force link down if we have fiber to swap to */ 5434 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5435 if (hw->phy.media_type == e1000_media_type_copper) { 5436 connsw = rd32(E1000_CONNSW); 5437 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 5438 link = 0; 5439 } 5440 } 5441 if (link) { 5442 /* Perform a reset if the media type changed. */ 5443 if (hw->dev_spec._82575.media_changed) { 5444 hw->dev_spec._82575.media_changed = false; 5445 adapter->flags |= IGB_FLAG_MEDIA_RESET; 5446 igb_reset(adapter); 5447 } 5448 /* Cancel scheduled suspend requests. */ 5449 pm_runtime_resume(netdev->dev.parent); 5450 5451 if (!netif_carrier_ok(netdev)) { 5452 u32 ctrl; 5453 5454 hw->mac.ops.get_speed_and_duplex(hw, 5455 &adapter->link_speed, 5456 &adapter->link_duplex); 5457 5458 ctrl = rd32(E1000_CTRL); 5459 /* Links status message must follow this format */ 5460 netdev_info(netdev, 5461 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5462 netdev->name, 5463 adapter->link_speed, 5464 adapter->link_duplex == FULL_DUPLEX ? 5465 "Full" : "Half", 5466 (ctrl & E1000_CTRL_TFCE) && 5467 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 5468 (ctrl & E1000_CTRL_RFCE) ? "RX" : 5469 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 5470 5471 /* disable EEE if enabled */ 5472 if ((adapter->flags & IGB_FLAG_EEE) && 5473 (adapter->link_duplex == HALF_DUPLEX)) { 5474 dev_info(&adapter->pdev->dev, 5475 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 5476 adapter->hw.dev_spec._82575.eee_disable = true; 5477 adapter->flags &= ~IGB_FLAG_EEE; 5478 } 5479 5480 /* check if SmartSpeed worked */ 5481 igb_check_downshift(hw); 5482 if (phy->speed_downgraded) 5483 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5484 5485 /* check for thermal sensor event */ 5486 if (igb_thermal_sensor_event(hw, 5487 E1000_THSTAT_LINK_THROTTLE)) 5488 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 5489 5490 /* adjust timeout factor according to speed/duplex */ 5491 adapter->tx_timeout_factor = 1; 5492 switch (adapter->link_speed) { 5493 case SPEED_10: 5494 adapter->tx_timeout_factor = 14; 5495 break; 5496 case SPEED_100: 5497 /* maybe add some timeout factor ? */ 5498 break; 5499 } 5500 5501 if (adapter->link_speed != SPEED_1000) 5502 goto no_wait; 5503 5504 /* wait for Remote receiver status OK */ 5505 retry_read_status: 5506 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS, 5507 &phy_data)) { 5508 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5509 retry_count) { 5510 msleep(100); 5511 retry_count--; 5512 goto retry_read_status; 5513 } else if (!retry_count) { 5514 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 5515 } 5516 } else { 5517 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 5518 } 5519 no_wait: 5520 netif_carrier_on(netdev); 5521 5522 igb_ping_all_vfs(adapter); 5523 igb_check_vf_rate_limit(adapter); 5524 5525 /* link state has changed, schedule phy info update */ 5526 if (!test_bit(__IGB_DOWN, &adapter->state)) 5527 mod_timer(&adapter->phy_info_timer, 5528 round_jiffies(jiffies + 2 * HZ)); 5529 } 5530 } else { 5531 if (netif_carrier_ok(netdev)) { 5532 adapter->link_speed = 0; 5533 adapter->link_duplex = 0; 5534 5535 /* check for thermal sensor event */ 5536 if (igb_thermal_sensor_event(hw, 5537 E1000_THSTAT_PWR_DOWN)) { 5538 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 5539 } 5540 5541 /* Links status message must follow this format */ 5542 netdev_info(netdev, "igb: %s NIC Link is Down\n", 5543 netdev->name); 5544 netif_carrier_off(netdev); 5545 5546 igb_ping_all_vfs(adapter); 5547 5548 /* link state has changed, schedule phy info update */ 5549 if (!test_bit(__IGB_DOWN, &adapter->state)) 5550 mod_timer(&adapter->phy_info_timer, 5551 round_jiffies(jiffies + 2 * HZ)); 5552 5553 /* link is down, time to check for alternate media */ 5554 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5555 igb_check_swap_media(adapter); 5556 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5557 schedule_work(&adapter->reset_task); 5558 /* return immediately */ 5559 return; 5560 } 5561 } 5562 pm_schedule_suspend(netdev->dev.parent, 5563 MSEC_PER_SEC * 5); 5564 5565 /* also check for alternate media here */ 5566 } else if (!netif_carrier_ok(netdev) && 5567 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 5568 igb_check_swap_media(adapter); 5569 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5570 schedule_work(&adapter->reset_task); 5571 /* return immediately */ 5572 return; 5573 } 5574 } 5575 } 5576 5577 spin_lock(&adapter->stats64_lock); 5578 igb_update_stats(adapter); 5579 spin_unlock(&adapter->stats64_lock); 5580 5581 for (i = 0; i < adapter->num_tx_queues; i++) { 5582 struct igb_ring *tx_ring = adapter->tx_ring[i]; 5583 if (!netif_carrier_ok(netdev)) { 5584 /* We've lost link, so the controller stops DMA, 5585 * but we've got queued Tx work that's never going 5586 * to get done, so reset controller to flush Tx. 5587 * (Do the reset outside of interrupt context). 5588 */ 5589 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 5590 adapter->tx_timeout_count++; 5591 schedule_work(&adapter->reset_task); 5592 /* return immediately since reset is imminent */ 5593 return; 5594 } 5595 } 5596 5597 /* Force detection of hung controller every watchdog period */ 5598 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5599 } 5600 5601 /* Cause software interrupt to ensure Rx ring is cleaned */ 5602 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 5603 u32 eics = 0; 5604 5605 for (i = 0; i < adapter->num_q_vectors; i++) 5606 eics |= adapter->q_vector[i]->eims_value; 5607 wr32(E1000_EICS, eics); 5608 } else { 5609 wr32(E1000_ICS, E1000_ICS_RXDMT0); 5610 } 5611 5612 igb_spoof_check(adapter); 5613 igb_ptp_rx_hang(adapter); 5614 igb_ptp_tx_hang(adapter); 5615 5616 /* Check LVMMC register on i350/i354 only */ 5617 if ((adapter->hw.mac.type == e1000_i350) || 5618 (adapter->hw.mac.type == e1000_i354)) 5619 igb_check_lvmmc(adapter); 5620 5621 /* Reset the timer */ 5622 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5623 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 5624 mod_timer(&adapter->watchdog_timer, 5625 round_jiffies(jiffies + HZ)); 5626 else 5627 mod_timer(&adapter->watchdog_timer, 5628 round_jiffies(jiffies + 2 * HZ)); 5629 } 5630 } 5631 5632 enum latency_range { 5633 lowest_latency = 0, 5634 low_latency = 1, 5635 bulk_latency = 2, 5636 latency_invalid = 255 5637 }; 5638 5639 /** 5640 * igb_update_ring_itr - update the dynamic ITR value based on packet size 5641 * @q_vector: pointer to q_vector 5642 * 5643 * Stores a new ITR value based on strictly on packet size. This 5644 * algorithm is less sophisticated than that used in igb_update_itr, 5645 * due to the difficulty of synchronizing statistics across multiple 5646 * receive rings. The divisors and thresholds used by this function 5647 * were determined based on theoretical maximum wire speed and testing 5648 * data, in order to minimize response time while increasing bulk 5649 * throughput. 5650 * This functionality is controlled by ethtool's coalescing settings. 5651 * NOTE: This function is called only when operating in a multiqueue 5652 * receive environment. 5653 **/ 5654 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 5655 { 5656 int new_val = q_vector->itr_val; 5657 int avg_wire_size = 0; 5658 struct igb_adapter *adapter = q_vector->adapter; 5659 unsigned int packets; 5660 5661 /* For non-gigabit speeds, just fix the interrupt rate at 4000 5662 * ints/sec - ITR timer value of 120 ticks. 5663 */ 5664 if (adapter->link_speed != SPEED_1000) { 5665 new_val = IGB_4K_ITR; 5666 goto set_itr_val; 5667 } 5668 5669 packets = q_vector->rx.total_packets; 5670 if (packets) 5671 avg_wire_size = q_vector->rx.total_bytes / packets; 5672 5673 packets = q_vector->tx.total_packets; 5674 if (packets) 5675 avg_wire_size = max_t(u32, avg_wire_size, 5676 q_vector->tx.total_bytes / packets); 5677 5678 /* if avg_wire_size isn't set no work was done */ 5679 if (!avg_wire_size) 5680 goto clear_counts; 5681 5682 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 5683 avg_wire_size += 24; 5684 5685 /* Don't starve jumbo frames */ 5686 avg_wire_size = min(avg_wire_size, 3000); 5687 5688 /* Give a little boost to mid-size frames */ 5689 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 5690 new_val = avg_wire_size / 3; 5691 else 5692 new_val = avg_wire_size / 2; 5693 5694 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5695 if (new_val < IGB_20K_ITR && 5696 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5697 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5698 new_val = IGB_20K_ITR; 5699 5700 set_itr_val: 5701 if (new_val != q_vector->itr_val) { 5702 q_vector->itr_val = new_val; 5703 q_vector->set_itr = 1; 5704 } 5705 clear_counts: 5706 q_vector->rx.total_bytes = 0; 5707 q_vector->rx.total_packets = 0; 5708 q_vector->tx.total_bytes = 0; 5709 q_vector->tx.total_packets = 0; 5710 } 5711 5712 /** 5713 * igb_update_itr - update the dynamic ITR value based on statistics 5714 * @q_vector: pointer to q_vector 5715 * @ring_container: ring info to update the itr for 5716 * 5717 * Stores a new ITR value based on packets and byte 5718 * counts during the last interrupt. The advantage of per interrupt 5719 * computation is faster updates and more accurate ITR for the current 5720 * traffic pattern. Constants in this function were computed 5721 * based on theoretical maximum wire speed and thresholds were set based 5722 * on testing data as well as attempting to minimize response time 5723 * while increasing bulk throughput. 5724 * This functionality is controlled by ethtool's coalescing settings. 5725 * NOTE: These calculations are only valid when operating in a single- 5726 * queue environment. 5727 **/ 5728 static void igb_update_itr(struct igb_q_vector *q_vector, 5729 struct igb_ring_container *ring_container) 5730 { 5731 unsigned int packets = ring_container->total_packets; 5732 unsigned int bytes = ring_container->total_bytes; 5733 u8 itrval = ring_container->itr; 5734 5735 /* no packets, exit with status unchanged */ 5736 if (packets == 0) 5737 return; 5738 5739 switch (itrval) { 5740 case lowest_latency: 5741 /* handle TSO and jumbo frames */ 5742 if (bytes/packets > 8000) 5743 itrval = bulk_latency; 5744 else if ((packets < 5) && (bytes > 512)) 5745 itrval = low_latency; 5746 break; 5747 case low_latency: /* 50 usec aka 20000 ints/s */ 5748 if (bytes > 10000) { 5749 /* this if handles the TSO accounting */ 5750 if (bytes/packets > 8000) 5751 itrval = bulk_latency; 5752 else if ((packets < 10) || ((bytes/packets) > 1200)) 5753 itrval = bulk_latency; 5754 else if ((packets > 35)) 5755 itrval = lowest_latency; 5756 } else if (bytes/packets > 2000) { 5757 itrval = bulk_latency; 5758 } else if (packets <= 2 && bytes < 512) { 5759 itrval = lowest_latency; 5760 } 5761 break; 5762 case bulk_latency: /* 250 usec aka 4000 ints/s */ 5763 if (bytes > 25000) { 5764 if (packets > 35) 5765 itrval = low_latency; 5766 } else if (bytes < 1500) { 5767 itrval = low_latency; 5768 } 5769 break; 5770 } 5771 5772 /* clear work counters since we have the values we need */ 5773 ring_container->total_bytes = 0; 5774 ring_container->total_packets = 0; 5775 5776 /* write updated itr to ring container */ 5777 ring_container->itr = itrval; 5778 } 5779 5780 static void igb_set_itr(struct igb_q_vector *q_vector) 5781 { 5782 struct igb_adapter *adapter = q_vector->adapter; 5783 u32 new_itr = q_vector->itr_val; 5784 u8 current_itr = 0; 5785 5786 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 5787 if (adapter->link_speed != SPEED_1000) { 5788 current_itr = 0; 5789 new_itr = IGB_4K_ITR; 5790 goto set_itr_now; 5791 } 5792 5793 igb_update_itr(q_vector, &q_vector->tx); 5794 igb_update_itr(q_vector, &q_vector->rx); 5795 5796 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 5797 5798 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5799 if (current_itr == lowest_latency && 5800 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5801 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5802 current_itr = low_latency; 5803 5804 switch (current_itr) { 5805 /* counts and packets in update_itr are dependent on these numbers */ 5806 case lowest_latency: 5807 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 5808 break; 5809 case low_latency: 5810 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 5811 break; 5812 case bulk_latency: 5813 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 5814 break; 5815 default: 5816 break; 5817 } 5818 5819 set_itr_now: 5820 if (new_itr != q_vector->itr_val) { 5821 /* this attempts to bias the interrupt rate towards Bulk 5822 * by adding intermediate steps when interrupt rate is 5823 * increasing 5824 */ 5825 new_itr = new_itr > q_vector->itr_val ? 5826 max((new_itr * q_vector->itr_val) / 5827 (new_itr + (q_vector->itr_val >> 2)), 5828 new_itr) : new_itr; 5829 /* Don't write the value here; it resets the adapter's 5830 * internal timer, and causes us to delay far longer than 5831 * we should between interrupts. Instead, we write the ITR 5832 * value at the beginning of the next interrupt so the timing 5833 * ends up being correct. 5834 */ 5835 q_vector->itr_val = new_itr; 5836 q_vector->set_itr = 1; 5837 } 5838 } 5839 5840 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, 5841 struct igb_tx_buffer *first, 5842 u32 vlan_macip_lens, u32 type_tucmd, 5843 u32 mss_l4len_idx) 5844 { 5845 struct e1000_adv_tx_context_desc *context_desc; 5846 u16 i = tx_ring->next_to_use; 5847 struct timespec64 ts; 5848 5849 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 5850 5851 i++; 5852 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 5853 5854 /* set bits to identify this as an advanced context descriptor */ 5855 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 5856 5857 /* For 82575, context index must be unique per ring. */ 5858 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 5859 mss_l4len_idx |= tx_ring->reg_idx << 4; 5860 5861 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 5862 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 5863 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 5864 5865 /* We assume there is always a valid tx time available. Invalid times 5866 * should have been handled by the upper layers. 5867 */ 5868 if (tx_ring->launchtime_enable) { 5869 ts = ktime_to_timespec64(first->skb->tstamp); 5870 skb_txtime_consumed(first->skb); 5871 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32); 5872 } else { 5873 context_desc->seqnum_seed = 0; 5874 } 5875 } 5876 5877 static int igb_tso(struct igb_ring *tx_ring, 5878 struct igb_tx_buffer *first, 5879 u8 *hdr_len) 5880 { 5881 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 5882 struct sk_buff *skb = first->skb; 5883 union { 5884 struct iphdr *v4; 5885 struct ipv6hdr *v6; 5886 unsigned char *hdr; 5887 } ip; 5888 union { 5889 struct tcphdr *tcp; 5890 struct udphdr *udp; 5891 unsigned char *hdr; 5892 } l4; 5893 u32 paylen, l4_offset; 5894 int err; 5895 5896 if (skb->ip_summed != CHECKSUM_PARTIAL) 5897 return 0; 5898 5899 if (!skb_is_gso(skb)) 5900 return 0; 5901 5902 err = skb_cow_head(skb, 0); 5903 if (err < 0) 5904 return err; 5905 5906 ip.hdr = skb_network_header(skb); 5907 l4.hdr = skb_checksum_start(skb); 5908 5909 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 5910 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ? 5911 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP; 5912 5913 /* initialize outer IP header fields */ 5914 if (ip.v4->version == 4) { 5915 unsigned char *csum_start = skb_checksum_start(skb); 5916 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 5917 5918 /* IP header will have to cancel out any data that 5919 * is not a part of the outer IP header 5920 */ 5921 ip.v4->check = csum_fold(csum_partial(trans_start, 5922 csum_start - trans_start, 5923 0)); 5924 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 5925 5926 ip.v4->tot_len = 0; 5927 first->tx_flags |= IGB_TX_FLAGS_TSO | 5928 IGB_TX_FLAGS_CSUM | 5929 IGB_TX_FLAGS_IPV4; 5930 } else { 5931 ip.v6->payload_len = 0; 5932 first->tx_flags |= IGB_TX_FLAGS_TSO | 5933 IGB_TX_FLAGS_CSUM; 5934 } 5935 5936 /* determine offset of inner transport header */ 5937 l4_offset = l4.hdr - skb->data; 5938 5939 /* remove payload length from inner checksum */ 5940 paylen = skb->len - l4_offset; 5941 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) { 5942 /* compute length of segmentation header */ 5943 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 5944 csum_replace_by_diff(&l4.tcp->check, 5945 (__force __wsum)htonl(paylen)); 5946 } else { 5947 /* compute length of segmentation header */ 5948 *hdr_len = sizeof(*l4.udp) + l4_offset; 5949 csum_replace_by_diff(&l4.udp->check, 5950 (__force __wsum)htonl(paylen)); 5951 } 5952 5953 /* update gso size and bytecount with header size */ 5954 first->gso_segs = skb_shinfo(skb)->gso_segs; 5955 first->bytecount += (first->gso_segs - 1) * *hdr_len; 5956 5957 /* MSS L4LEN IDX */ 5958 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 5959 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 5960 5961 /* VLAN MACLEN IPLEN */ 5962 vlan_macip_lens = l4.hdr - ip.hdr; 5963 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 5964 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 5965 5966 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 5967 type_tucmd, mss_l4len_idx); 5968 5969 return 1; 5970 } 5971 5972 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 5973 { 5974 struct sk_buff *skb = first->skb; 5975 u32 vlan_macip_lens = 0; 5976 u32 type_tucmd = 0; 5977 5978 if (skb->ip_summed != CHECKSUM_PARTIAL) { 5979 csum_failed: 5980 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) && 5981 !tx_ring->launchtime_enable) 5982 return; 5983 goto no_csum; 5984 } 5985 5986 switch (skb->csum_offset) { 5987 case offsetof(struct tcphdr, check): 5988 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 5989 fallthrough; 5990 case offsetof(struct udphdr, check): 5991 break; 5992 case offsetof(struct sctphdr, checksum): 5993 /* validate that this is actually an SCTP request */ 5994 if (skb_csum_is_sctp(skb)) { 5995 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 5996 break; 5997 } 5998 fallthrough; 5999 default: 6000 skb_checksum_help(skb); 6001 goto csum_failed; 6002 } 6003 6004 /* update TX checksum flag */ 6005 first->tx_flags |= IGB_TX_FLAGS_CSUM; 6006 vlan_macip_lens = skb_checksum_start_offset(skb) - 6007 skb_network_offset(skb); 6008 no_csum: 6009 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 6010 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 6011 6012 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 6013 } 6014 6015 #define IGB_SET_FLAG(_input, _flag, _result) \ 6016 ((_flag <= _result) ? \ 6017 ((u32)(_input & _flag) * (_result / _flag)) : \ 6018 ((u32)(_input & _flag) / (_flag / _result))) 6019 6020 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 6021 { 6022 /* set type for advanced descriptor with frame checksum insertion */ 6023 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 6024 E1000_ADVTXD_DCMD_DEXT | 6025 E1000_ADVTXD_DCMD_IFCS; 6026 6027 /* set HW vlan bit if vlan is present */ 6028 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 6029 (E1000_ADVTXD_DCMD_VLE)); 6030 6031 /* set segmentation bits for TSO */ 6032 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 6033 (E1000_ADVTXD_DCMD_TSE)); 6034 6035 /* set timestamp bit if present */ 6036 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 6037 (E1000_ADVTXD_MAC_TSTAMP)); 6038 6039 /* insert frame checksum */ 6040 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 6041 6042 return cmd_type; 6043 } 6044 6045 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 6046 union e1000_adv_tx_desc *tx_desc, 6047 u32 tx_flags, unsigned int paylen) 6048 { 6049 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 6050 6051 /* 82575 requires a unique index per ring */ 6052 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6053 olinfo_status |= tx_ring->reg_idx << 4; 6054 6055 /* insert L4 checksum */ 6056 olinfo_status |= IGB_SET_FLAG(tx_flags, 6057 IGB_TX_FLAGS_CSUM, 6058 (E1000_TXD_POPTS_TXSM << 8)); 6059 6060 /* insert IPv4 checksum */ 6061 olinfo_status |= IGB_SET_FLAG(tx_flags, 6062 IGB_TX_FLAGS_IPV4, 6063 (E1000_TXD_POPTS_IXSM << 8)); 6064 6065 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6066 } 6067 6068 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6069 { 6070 struct net_device *netdev = tx_ring->netdev; 6071 6072 netif_stop_subqueue(netdev, tx_ring->queue_index); 6073 6074 /* Herbert's original patch had: 6075 * smp_mb__after_netif_stop_queue(); 6076 * but since that doesn't exist yet, just open code it. 6077 */ 6078 smp_mb(); 6079 6080 /* We need to check again in a case another CPU has just 6081 * made room available. 6082 */ 6083 if (igb_desc_unused(tx_ring) < size) 6084 return -EBUSY; 6085 6086 /* A reprieve! */ 6087 netif_wake_subqueue(netdev, tx_ring->queue_index); 6088 6089 u64_stats_update_begin(&tx_ring->tx_syncp2); 6090 tx_ring->tx_stats.restart_queue2++; 6091 u64_stats_update_end(&tx_ring->tx_syncp2); 6092 6093 return 0; 6094 } 6095 6096 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6097 { 6098 if (igb_desc_unused(tx_ring) >= size) 6099 return 0; 6100 return __igb_maybe_stop_tx(tx_ring, size); 6101 } 6102 6103 static int igb_tx_map(struct igb_ring *tx_ring, 6104 struct igb_tx_buffer *first, 6105 const u8 hdr_len) 6106 { 6107 struct sk_buff *skb = first->skb; 6108 struct igb_tx_buffer *tx_buffer; 6109 union e1000_adv_tx_desc *tx_desc; 6110 skb_frag_t *frag; 6111 dma_addr_t dma; 6112 unsigned int data_len, size; 6113 u32 tx_flags = first->tx_flags; 6114 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 6115 u16 i = tx_ring->next_to_use; 6116 6117 tx_desc = IGB_TX_DESC(tx_ring, i); 6118 6119 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 6120 6121 size = skb_headlen(skb); 6122 data_len = skb->data_len; 6123 6124 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 6125 6126 tx_buffer = first; 6127 6128 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 6129 if (dma_mapping_error(tx_ring->dev, dma)) 6130 goto dma_error; 6131 6132 /* record length, and DMA address */ 6133 dma_unmap_len_set(tx_buffer, len, size); 6134 dma_unmap_addr_set(tx_buffer, dma, dma); 6135 6136 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6137 6138 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 6139 tx_desc->read.cmd_type_len = 6140 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 6141 6142 i++; 6143 tx_desc++; 6144 if (i == tx_ring->count) { 6145 tx_desc = IGB_TX_DESC(tx_ring, 0); 6146 i = 0; 6147 } 6148 tx_desc->read.olinfo_status = 0; 6149 6150 dma += IGB_MAX_DATA_PER_TXD; 6151 size -= IGB_MAX_DATA_PER_TXD; 6152 6153 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6154 } 6155 6156 if (likely(!data_len)) 6157 break; 6158 6159 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 6160 6161 i++; 6162 tx_desc++; 6163 if (i == tx_ring->count) { 6164 tx_desc = IGB_TX_DESC(tx_ring, 0); 6165 i = 0; 6166 } 6167 tx_desc->read.olinfo_status = 0; 6168 6169 size = skb_frag_size(frag); 6170 data_len -= size; 6171 6172 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 6173 size, DMA_TO_DEVICE); 6174 6175 tx_buffer = &tx_ring->tx_buffer_info[i]; 6176 } 6177 6178 /* write last descriptor with RS and EOP bits */ 6179 cmd_type |= size | IGB_TXD_DCMD; 6180 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6181 6182 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 6183 6184 /* set the timestamp */ 6185 first->time_stamp = jiffies; 6186 6187 skb_tx_timestamp(skb); 6188 6189 /* Force memory writes to complete before letting h/w know there 6190 * are new descriptors to fetch. (Only applicable for weak-ordered 6191 * memory model archs, such as IA-64). 6192 * 6193 * We also need this memory barrier to make certain all of the 6194 * status bits have been updated before next_to_watch is written. 6195 */ 6196 dma_wmb(); 6197 6198 /* set next_to_watch value indicating a packet is present */ 6199 first->next_to_watch = tx_desc; 6200 6201 i++; 6202 if (i == tx_ring->count) 6203 i = 0; 6204 6205 tx_ring->next_to_use = i; 6206 6207 /* Make sure there is space in the ring for the next send. */ 6208 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6209 6210 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 6211 writel(i, tx_ring->tail); 6212 } 6213 return 0; 6214 6215 dma_error: 6216 dev_err(tx_ring->dev, "TX DMA map failed\n"); 6217 tx_buffer = &tx_ring->tx_buffer_info[i]; 6218 6219 /* clear dma mappings for failed tx_buffer_info map */ 6220 while (tx_buffer != first) { 6221 if (dma_unmap_len(tx_buffer, len)) 6222 dma_unmap_page(tx_ring->dev, 6223 dma_unmap_addr(tx_buffer, dma), 6224 dma_unmap_len(tx_buffer, len), 6225 DMA_TO_DEVICE); 6226 dma_unmap_len_set(tx_buffer, len, 0); 6227 6228 if (i-- == 0) 6229 i += tx_ring->count; 6230 tx_buffer = &tx_ring->tx_buffer_info[i]; 6231 } 6232 6233 if (dma_unmap_len(tx_buffer, len)) 6234 dma_unmap_single(tx_ring->dev, 6235 dma_unmap_addr(tx_buffer, dma), 6236 dma_unmap_len(tx_buffer, len), 6237 DMA_TO_DEVICE); 6238 dma_unmap_len_set(tx_buffer, len, 0); 6239 6240 dev_kfree_skb_any(tx_buffer->skb); 6241 tx_buffer->skb = NULL; 6242 6243 tx_ring->next_to_use = i; 6244 6245 return -1; 6246 } 6247 6248 int igb_xmit_xdp_ring(struct igb_adapter *adapter, 6249 struct igb_ring *tx_ring, 6250 struct xdp_frame *xdpf) 6251 { 6252 union e1000_adv_tx_desc *tx_desc; 6253 u32 len, cmd_type, olinfo_status; 6254 struct igb_tx_buffer *tx_buffer; 6255 dma_addr_t dma; 6256 u16 i; 6257 6258 len = xdpf->len; 6259 6260 if (unlikely(!igb_desc_unused(tx_ring))) 6261 return IGB_XDP_CONSUMED; 6262 6263 dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE); 6264 if (dma_mapping_error(tx_ring->dev, dma)) 6265 return IGB_XDP_CONSUMED; 6266 6267 /* record the location of the first descriptor for this packet */ 6268 tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 6269 tx_buffer->bytecount = len; 6270 tx_buffer->gso_segs = 1; 6271 tx_buffer->protocol = 0; 6272 6273 i = tx_ring->next_to_use; 6274 tx_desc = IGB_TX_DESC(tx_ring, i); 6275 6276 dma_unmap_len_set(tx_buffer, len, len); 6277 dma_unmap_addr_set(tx_buffer, dma, dma); 6278 tx_buffer->type = IGB_TYPE_XDP; 6279 tx_buffer->xdpf = xdpf; 6280 6281 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6282 6283 /* put descriptor type bits */ 6284 cmd_type = E1000_ADVTXD_DTYP_DATA | 6285 E1000_ADVTXD_DCMD_DEXT | 6286 E1000_ADVTXD_DCMD_IFCS; 6287 cmd_type |= len | IGB_TXD_DCMD; 6288 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6289 6290 olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT; 6291 /* 82575 requires a unique index per ring */ 6292 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6293 olinfo_status |= tx_ring->reg_idx << 4; 6294 6295 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6296 6297 netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount); 6298 6299 /* set the timestamp */ 6300 tx_buffer->time_stamp = jiffies; 6301 6302 /* Avoid any potential race with xdp_xmit and cleanup */ 6303 smp_wmb(); 6304 6305 /* set next_to_watch value indicating a packet is present */ 6306 i++; 6307 if (i == tx_ring->count) 6308 i = 0; 6309 6310 tx_buffer->next_to_watch = tx_desc; 6311 tx_ring->next_to_use = i; 6312 6313 /* Make sure there is space in the ring for the next send. */ 6314 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6315 6316 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 6317 writel(i, tx_ring->tail); 6318 6319 return IGB_XDP_TX; 6320 } 6321 6322 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 6323 struct igb_ring *tx_ring) 6324 { 6325 struct igb_tx_buffer *first; 6326 int tso; 6327 u32 tx_flags = 0; 6328 unsigned short f; 6329 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 6330 __be16 protocol = vlan_get_protocol(skb); 6331 u8 hdr_len = 0; 6332 6333 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 6334 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 6335 * + 2 desc gap to keep tail from touching head, 6336 * + 1 desc for context descriptor, 6337 * otherwise try next time 6338 */ 6339 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 6340 count += TXD_USE_COUNT(skb_frag_size( 6341 &skb_shinfo(skb)->frags[f])); 6342 6343 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 6344 /* this is a hard error */ 6345 return NETDEV_TX_BUSY; 6346 } 6347 6348 /* record the location of the first descriptor for this packet */ 6349 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 6350 first->type = IGB_TYPE_SKB; 6351 first->skb = skb; 6352 first->bytecount = skb->len; 6353 first->gso_segs = 1; 6354 6355 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 6356 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6357 6358 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 6359 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 6360 &adapter->state)) { 6361 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 6362 tx_flags |= IGB_TX_FLAGS_TSTAMP; 6363 6364 adapter->ptp_tx_skb = skb_get(skb); 6365 adapter->ptp_tx_start = jiffies; 6366 if (adapter->hw.mac.type == e1000_82576) 6367 schedule_work(&adapter->ptp_tx_work); 6368 } else { 6369 adapter->tx_hwtstamp_skipped++; 6370 } 6371 } 6372 6373 if (skb_vlan_tag_present(skb)) { 6374 tx_flags |= IGB_TX_FLAGS_VLAN; 6375 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 6376 } 6377 6378 /* record initial flags and protocol */ 6379 first->tx_flags = tx_flags; 6380 first->protocol = protocol; 6381 6382 tso = igb_tso(tx_ring, first, &hdr_len); 6383 if (tso < 0) 6384 goto out_drop; 6385 else if (!tso) 6386 igb_tx_csum(tx_ring, first); 6387 6388 if (igb_tx_map(tx_ring, first, hdr_len)) 6389 goto cleanup_tx_tstamp; 6390 6391 return NETDEV_TX_OK; 6392 6393 out_drop: 6394 dev_kfree_skb_any(first->skb); 6395 first->skb = NULL; 6396 cleanup_tx_tstamp: 6397 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) { 6398 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6399 6400 dev_kfree_skb_any(adapter->ptp_tx_skb); 6401 adapter->ptp_tx_skb = NULL; 6402 if (adapter->hw.mac.type == e1000_82576) 6403 cancel_work_sync(&adapter->ptp_tx_work); 6404 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 6405 } 6406 6407 return NETDEV_TX_OK; 6408 } 6409 6410 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 6411 struct sk_buff *skb) 6412 { 6413 unsigned int r_idx = skb->queue_mapping; 6414 6415 if (r_idx >= adapter->num_tx_queues) 6416 r_idx = r_idx % adapter->num_tx_queues; 6417 6418 return adapter->tx_ring[r_idx]; 6419 } 6420 6421 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 6422 struct net_device *netdev) 6423 { 6424 struct igb_adapter *adapter = netdev_priv(netdev); 6425 6426 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 6427 * in order to meet this minimum size requirement. 6428 */ 6429 if (skb_put_padto(skb, 17)) 6430 return NETDEV_TX_OK; 6431 6432 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 6433 } 6434 6435 /** 6436 * igb_tx_timeout - Respond to a Tx Hang 6437 * @netdev: network interface device structure 6438 * @txqueue: number of the Tx queue that hung (unused) 6439 **/ 6440 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 6441 { 6442 struct igb_adapter *adapter = netdev_priv(netdev); 6443 struct e1000_hw *hw = &adapter->hw; 6444 6445 /* Do the reset outside of interrupt context */ 6446 adapter->tx_timeout_count++; 6447 6448 if (hw->mac.type >= e1000_82580) 6449 hw->dev_spec._82575.global_device_reset = true; 6450 6451 schedule_work(&adapter->reset_task); 6452 wr32(E1000_EICS, 6453 (adapter->eims_enable_mask & ~adapter->eims_other)); 6454 } 6455 6456 static void igb_reset_task(struct work_struct *work) 6457 { 6458 struct igb_adapter *adapter; 6459 adapter = container_of(work, struct igb_adapter, reset_task); 6460 6461 rtnl_lock(); 6462 /* If we're already down or resetting, just bail */ 6463 if (test_bit(__IGB_DOWN, &adapter->state) || 6464 test_bit(__IGB_RESETTING, &adapter->state)) { 6465 rtnl_unlock(); 6466 return; 6467 } 6468 6469 igb_dump(adapter); 6470 netdev_err(adapter->netdev, "Reset adapter\n"); 6471 igb_reinit_locked(adapter); 6472 rtnl_unlock(); 6473 } 6474 6475 /** 6476 * igb_get_stats64 - Get System Network Statistics 6477 * @netdev: network interface device structure 6478 * @stats: rtnl_link_stats64 pointer 6479 **/ 6480 static void igb_get_stats64(struct net_device *netdev, 6481 struct rtnl_link_stats64 *stats) 6482 { 6483 struct igb_adapter *adapter = netdev_priv(netdev); 6484 6485 spin_lock(&adapter->stats64_lock); 6486 igb_update_stats(adapter); 6487 memcpy(stats, &adapter->stats64, sizeof(*stats)); 6488 spin_unlock(&adapter->stats64_lock); 6489 } 6490 6491 /** 6492 * igb_change_mtu - Change the Maximum Transfer Unit 6493 * @netdev: network interface device structure 6494 * @new_mtu: new value for maximum frame size 6495 * 6496 * Returns 0 on success, negative on failure 6497 **/ 6498 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 6499 { 6500 struct igb_adapter *adapter = netdev_priv(netdev); 6501 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD; 6502 6503 if (adapter->xdp_prog) { 6504 int i; 6505 6506 for (i = 0; i < adapter->num_rx_queues; i++) { 6507 struct igb_ring *ring = adapter->rx_ring[i]; 6508 6509 if (max_frame > igb_rx_bufsz(ring)) { 6510 netdev_warn(adapter->netdev, 6511 "Requested MTU size is not supported with XDP. Max frame size is %d\n", 6512 max_frame); 6513 return -EINVAL; 6514 } 6515 } 6516 } 6517 6518 /* adjust max frame to be at least the size of a standard frame */ 6519 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 6520 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 6521 6522 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 6523 usleep_range(1000, 2000); 6524 6525 /* igb_down has a dependency on max_frame_size */ 6526 adapter->max_frame_size = max_frame; 6527 6528 if (netif_running(netdev)) 6529 igb_down(adapter); 6530 6531 netdev_dbg(netdev, "changing MTU from %d to %d\n", 6532 netdev->mtu, new_mtu); 6533 netdev->mtu = new_mtu; 6534 6535 if (netif_running(netdev)) 6536 igb_up(adapter); 6537 else 6538 igb_reset(adapter); 6539 6540 clear_bit(__IGB_RESETTING, &adapter->state); 6541 6542 return 0; 6543 } 6544 6545 /** 6546 * igb_update_stats - Update the board statistics counters 6547 * @adapter: board private structure 6548 **/ 6549 void igb_update_stats(struct igb_adapter *adapter) 6550 { 6551 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 6552 struct e1000_hw *hw = &adapter->hw; 6553 struct pci_dev *pdev = adapter->pdev; 6554 u32 reg, mpc; 6555 int i; 6556 u64 bytes, packets; 6557 unsigned int start; 6558 u64 _bytes, _packets; 6559 6560 /* Prevent stats update while adapter is being reset, or if the pci 6561 * connection is down. 6562 */ 6563 if (adapter->link_speed == 0) 6564 return; 6565 if (pci_channel_offline(pdev)) 6566 return; 6567 6568 bytes = 0; 6569 packets = 0; 6570 6571 rcu_read_lock(); 6572 for (i = 0; i < adapter->num_rx_queues; i++) { 6573 struct igb_ring *ring = adapter->rx_ring[i]; 6574 u32 rqdpc = rd32(E1000_RQDPC(i)); 6575 if (hw->mac.type >= e1000_i210) 6576 wr32(E1000_RQDPC(i), 0); 6577 6578 if (rqdpc) { 6579 ring->rx_stats.drops += rqdpc; 6580 net_stats->rx_fifo_errors += rqdpc; 6581 } 6582 6583 do { 6584 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 6585 _bytes = ring->rx_stats.bytes; 6586 _packets = ring->rx_stats.packets; 6587 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 6588 bytes += _bytes; 6589 packets += _packets; 6590 } 6591 6592 net_stats->rx_bytes = bytes; 6593 net_stats->rx_packets = packets; 6594 6595 bytes = 0; 6596 packets = 0; 6597 for (i = 0; i < adapter->num_tx_queues; i++) { 6598 struct igb_ring *ring = adapter->tx_ring[i]; 6599 do { 6600 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 6601 _bytes = ring->tx_stats.bytes; 6602 _packets = ring->tx_stats.packets; 6603 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 6604 bytes += _bytes; 6605 packets += _packets; 6606 } 6607 net_stats->tx_bytes = bytes; 6608 net_stats->tx_packets = packets; 6609 rcu_read_unlock(); 6610 6611 /* read stats registers */ 6612 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 6613 adapter->stats.gprc += rd32(E1000_GPRC); 6614 adapter->stats.gorc += rd32(E1000_GORCL); 6615 rd32(E1000_GORCH); /* clear GORCL */ 6616 adapter->stats.bprc += rd32(E1000_BPRC); 6617 adapter->stats.mprc += rd32(E1000_MPRC); 6618 adapter->stats.roc += rd32(E1000_ROC); 6619 6620 adapter->stats.prc64 += rd32(E1000_PRC64); 6621 adapter->stats.prc127 += rd32(E1000_PRC127); 6622 adapter->stats.prc255 += rd32(E1000_PRC255); 6623 adapter->stats.prc511 += rd32(E1000_PRC511); 6624 adapter->stats.prc1023 += rd32(E1000_PRC1023); 6625 adapter->stats.prc1522 += rd32(E1000_PRC1522); 6626 adapter->stats.symerrs += rd32(E1000_SYMERRS); 6627 adapter->stats.sec += rd32(E1000_SEC); 6628 6629 mpc = rd32(E1000_MPC); 6630 adapter->stats.mpc += mpc; 6631 net_stats->rx_fifo_errors += mpc; 6632 adapter->stats.scc += rd32(E1000_SCC); 6633 adapter->stats.ecol += rd32(E1000_ECOL); 6634 adapter->stats.mcc += rd32(E1000_MCC); 6635 adapter->stats.latecol += rd32(E1000_LATECOL); 6636 adapter->stats.dc += rd32(E1000_DC); 6637 adapter->stats.rlec += rd32(E1000_RLEC); 6638 adapter->stats.xonrxc += rd32(E1000_XONRXC); 6639 adapter->stats.xontxc += rd32(E1000_XONTXC); 6640 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 6641 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 6642 adapter->stats.fcruc += rd32(E1000_FCRUC); 6643 adapter->stats.gptc += rd32(E1000_GPTC); 6644 adapter->stats.gotc += rd32(E1000_GOTCL); 6645 rd32(E1000_GOTCH); /* clear GOTCL */ 6646 adapter->stats.rnbc += rd32(E1000_RNBC); 6647 adapter->stats.ruc += rd32(E1000_RUC); 6648 adapter->stats.rfc += rd32(E1000_RFC); 6649 adapter->stats.rjc += rd32(E1000_RJC); 6650 adapter->stats.tor += rd32(E1000_TORH); 6651 adapter->stats.tot += rd32(E1000_TOTH); 6652 adapter->stats.tpr += rd32(E1000_TPR); 6653 6654 adapter->stats.ptc64 += rd32(E1000_PTC64); 6655 adapter->stats.ptc127 += rd32(E1000_PTC127); 6656 adapter->stats.ptc255 += rd32(E1000_PTC255); 6657 adapter->stats.ptc511 += rd32(E1000_PTC511); 6658 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 6659 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 6660 6661 adapter->stats.mptc += rd32(E1000_MPTC); 6662 adapter->stats.bptc += rd32(E1000_BPTC); 6663 6664 adapter->stats.tpt += rd32(E1000_TPT); 6665 adapter->stats.colc += rd32(E1000_COLC); 6666 6667 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 6668 /* read internal phy specific stats */ 6669 reg = rd32(E1000_CTRL_EXT); 6670 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 6671 adapter->stats.rxerrc += rd32(E1000_RXERRC); 6672 6673 /* this stat has invalid values on i210/i211 */ 6674 if ((hw->mac.type != e1000_i210) && 6675 (hw->mac.type != e1000_i211)) 6676 adapter->stats.tncrs += rd32(E1000_TNCRS); 6677 } 6678 6679 adapter->stats.tsctc += rd32(E1000_TSCTC); 6680 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 6681 6682 adapter->stats.iac += rd32(E1000_IAC); 6683 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 6684 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 6685 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 6686 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 6687 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 6688 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 6689 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 6690 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 6691 6692 /* Fill out the OS statistics structure */ 6693 net_stats->multicast = adapter->stats.mprc; 6694 net_stats->collisions = adapter->stats.colc; 6695 6696 /* Rx Errors */ 6697 6698 /* RLEC on some newer hardware can be incorrect so build 6699 * our own version based on RUC and ROC 6700 */ 6701 net_stats->rx_errors = adapter->stats.rxerrc + 6702 adapter->stats.crcerrs + adapter->stats.algnerrc + 6703 adapter->stats.ruc + adapter->stats.roc + 6704 adapter->stats.cexterr; 6705 net_stats->rx_length_errors = adapter->stats.ruc + 6706 adapter->stats.roc; 6707 net_stats->rx_crc_errors = adapter->stats.crcerrs; 6708 net_stats->rx_frame_errors = adapter->stats.algnerrc; 6709 net_stats->rx_missed_errors = adapter->stats.mpc; 6710 6711 /* Tx Errors */ 6712 net_stats->tx_errors = adapter->stats.ecol + 6713 adapter->stats.latecol; 6714 net_stats->tx_aborted_errors = adapter->stats.ecol; 6715 net_stats->tx_window_errors = adapter->stats.latecol; 6716 net_stats->tx_carrier_errors = adapter->stats.tncrs; 6717 6718 /* Tx Dropped needs to be maintained elsewhere */ 6719 6720 /* Management Stats */ 6721 adapter->stats.mgptc += rd32(E1000_MGTPTC); 6722 adapter->stats.mgprc += rd32(E1000_MGTPRC); 6723 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 6724 6725 /* OS2BMC Stats */ 6726 reg = rd32(E1000_MANC); 6727 if (reg & E1000_MANC_EN_BMC2OS) { 6728 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 6729 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 6730 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 6731 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 6732 } 6733 } 6734 6735 static void igb_tsync_interrupt(struct igb_adapter *adapter) 6736 { 6737 struct e1000_hw *hw = &adapter->hw; 6738 struct ptp_clock_event event; 6739 struct timespec64 ts; 6740 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR); 6741 6742 if (tsicr & TSINTR_SYS_WRAP) { 6743 event.type = PTP_CLOCK_PPS; 6744 if (adapter->ptp_caps.pps) 6745 ptp_clock_event(adapter->ptp_clock, &event); 6746 ack |= TSINTR_SYS_WRAP; 6747 } 6748 6749 if (tsicr & E1000_TSICR_TXTS) { 6750 /* retrieve hardware timestamp */ 6751 schedule_work(&adapter->ptp_tx_work); 6752 ack |= E1000_TSICR_TXTS; 6753 } 6754 6755 if (tsicr & TSINTR_TT0) { 6756 spin_lock(&adapter->tmreg_lock); 6757 ts = timespec64_add(adapter->perout[0].start, 6758 adapter->perout[0].period); 6759 /* u32 conversion of tv_sec is safe until y2106 */ 6760 wr32(E1000_TRGTTIML0, ts.tv_nsec); 6761 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec); 6762 tsauxc = rd32(E1000_TSAUXC); 6763 tsauxc |= TSAUXC_EN_TT0; 6764 wr32(E1000_TSAUXC, tsauxc); 6765 adapter->perout[0].start = ts; 6766 spin_unlock(&adapter->tmreg_lock); 6767 ack |= TSINTR_TT0; 6768 } 6769 6770 if (tsicr & TSINTR_TT1) { 6771 spin_lock(&adapter->tmreg_lock); 6772 ts = timespec64_add(adapter->perout[1].start, 6773 adapter->perout[1].period); 6774 wr32(E1000_TRGTTIML1, ts.tv_nsec); 6775 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec); 6776 tsauxc = rd32(E1000_TSAUXC); 6777 tsauxc |= TSAUXC_EN_TT1; 6778 wr32(E1000_TSAUXC, tsauxc); 6779 adapter->perout[1].start = ts; 6780 spin_unlock(&adapter->tmreg_lock); 6781 ack |= TSINTR_TT1; 6782 } 6783 6784 if (tsicr & TSINTR_AUTT0) { 6785 nsec = rd32(E1000_AUXSTMPL0); 6786 sec = rd32(E1000_AUXSTMPH0); 6787 event.type = PTP_CLOCK_EXTTS; 6788 event.index = 0; 6789 event.timestamp = sec * 1000000000ULL + nsec; 6790 ptp_clock_event(adapter->ptp_clock, &event); 6791 ack |= TSINTR_AUTT0; 6792 } 6793 6794 if (tsicr & TSINTR_AUTT1) { 6795 nsec = rd32(E1000_AUXSTMPL1); 6796 sec = rd32(E1000_AUXSTMPH1); 6797 event.type = PTP_CLOCK_EXTTS; 6798 event.index = 1; 6799 event.timestamp = sec * 1000000000ULL + nsec; 6800 ptp_clock_event(adapter->ptp_clock, &event); 6801 ack |= TSINTR_AUTT1; 6802 } 6803 6804 /* acknowledge the interrupts */ 6805 wr32(E1000_TSICR, ack); 6806 } 6807 6808 static irqreturn_t igb_msix_other(int irq, void *data) 6809 { 6810 struct igb_adapter *adapter = data; 6811 struct e1000_hw *hw = &adapter->hw; 6812 u32 icr = rd32(E1000_ICR); 6813 /* reading ICR causes bit 31 of EICR to be cleared */ 6814 6815 if (icr & E1000_ICR_DRSTA) 6816 schedule_work(&adapter->reset_task); 6817 6818 if (icr & E1000_ICR_DOUTSYNC) { 6819 /* HW is reporting DMA is out of sync */ 6820 adapter->stats.doosync++; 6821 /* The DMA Out of Sync is also indication of a spoof event 6822 * in IOV mode. Check the Wrong VM Behavior register to 6823 * see if it is really a spoof event. 6824 */ 6825 igb_check_wvbr(adapter); 6826 } 6827 6828 /* Check for a mailbox event */ 6829 if (icr & E1000_ICR_VMMB) 6830 igb_msg_task(adapter); 6831 6832 if (icr & E1000_ICR_LSC) { 6833 hw->mac.get_link_status = 1; 6834 /* guard against interrupt when we're going down */ 6835 if (!test_bit(__IGB_DOWN, &adapter->state)) 6836 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6837 } 6838 6839 if (icr & E1000_ICR_TS) 6840 igb_tsync_interrupt(adapter); 6841 6842 wr32(E1000_EIMS, adapter->eims_other); 6843 6844 return IRQ_HANDLED; 6845 } 6846 6847 static void igb_write_itr(struct igb_q_vector *q_vector) 6848 { 6849 struct igb_adapter *adapter = q_vector->adapter; 6850 u32 itr_val = q_vector->itr_val & 0x7FFC; 6851 6852 if (!q_vector->set_itr) 6853 return; 6854 6855 if (!itr_val) 6856 itr_val = 0x4; 6857 6858 if (adapter->hw.mac.type == e1000_82575) 6859 itr_val |= itr_val << 16; 6860 else 6861 itr_val |= E1000_EITR_CNT_IGNR; 6862 6863 writel(itr_val, q_vector->itr_register); 6864 q_vector->set_itr = 0; 6865 } 6866 6867 static irqreturn_t igb_msix_ring(int irq, void *data) 6868 { 6869 struct igb_q_vector *q_vector = data; 6870 6871 /* Write the ITR value calculated from the previous interrupt. */ 6872 igb_write_itr(q_vector); 6873 6874 napi_schedule(&q_vector->napi); 6875 6876 return IRQ_HANDLED; 6877 } 6878 6879 #ifdef CONFIG_IGB_DCA 6880 static void igb_update_tx_dca(struct igb_adapter *adapter, 6881 struct igb_ring *tx_ring, 6882 int cpu) 6883 { 6884 struct e1000_hw *hw = &adapter->hw; 6885 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 6886 6887 if (hw->mac.type != e1000_82575) 6888 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 6889 6890 /* We can enable relaxed ordering for reads, but not writes when 6891 * DCA is enabled. This is due to a known issue in some chipsets 6892 * which will cause the DCA tag to be cleared. 6893 */ 6894 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 6895 E1000_DCA_TXCTRL_DATA_RRO_EN | 6896 E1000_DCA_TXCTRL_DESC_DCA_EN; 6897 6898 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 6899 } 6900 6901 static void igb_update_rx_dca(struct igb_adapter *adapter, 6902 struct igb_ring *rx_ring, 6903 int cpu) 6904 { 6905 struct e1000_hw *hw = &adapter->hw; 6906 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 6907 6908 if (hw->mac.type != e1000_82575) 6909 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 6910 6911 /* We can enable relaxed ordering for reads, but not writes when 6912 * DCA is enabled. This is due to a known issue in some chipsets 6913 * which will cause the DCA tag to be cleared. 6914 */ 6915 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 6916 E1000_DCA_RXCTRL_DESC_DCA_EN; 6917 6918 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 6919 } 6920 6921 static void igb_update_dca(struct igb_q_vector *q_vector) 6922 { 6923 struct igb_adapter *adapter = q_vector->adapter; 6924 int cpu = get_cpu(); 6925 6926 if (q_vector->cpu == cpu) 6927 goto out_no_update; 6928 6929 if (q_vector->tx.ring) 6930 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 6931 6932 if (q_vector->rx.ring) 6933 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 6934 6935 q_vector->cpu = cpu; 6936 out_no_update: 6937 put_cpu(); 6938 } 6939 6940 static void igb_setup_dca(struct igb_adapter *adapter) 6941 { 6942 struct e1000_hw *hw = &adapter->hw; 6943 int i; 6944 6945 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 6946 return; 6947 6948 /* Always use CB2 mode, difference is masked in the CB driver. */ 6949 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 6950 6951 for (i = 0; i < adapter->num_q_vectors; i++) { 6952 adapter->q_vector[i]->cpu = -1; 6953 igb_update_dca(adapter->q_vector[i]); 6954 } 6955 } 6956 6957 static int __igb_notify_dca(struct device *dev, void *data) 6958 { 6959 struct net_device *netdev = dev_get_drvdata(dev); 6960 struct igb_adapter *adapter = netdev_priv(netdev); 6961 struct pci_dev *pdev = adapter->pdev; 6962 struct e1000_hw *hw = &adapter->hw; 6963 unsigned long event = *(unsigned long *)data; 6964 6965 switch (event) { 6966 case DCA_PROVIDER_ADD: 6967 /* if already enabled, don't do it again */ 6968 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 6969 break; 6970 if (dca_add_requester(dev) == 0) { 6971 adapter->flags |= IGB_FLAG_DCA_ENABLED; 6972 dev_info(&pdev->dev, "DCA enabled\n"); 6973 igb_setup_dca(adapter); 6974 break; 6975 } 6976 fallthrough; /* since DCA is disabled. */ 6977 case DCA_PROVIDER_REMOVE: 6978 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 6979 /* without this a class_device is left 6980 * hanging around in the sysfs model 6981 */ 6982 dca_remove_requester(dev); 6983 dev_info(&pdev->dev, "DCA disabled\n"); 6984 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 6985 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 6986 } 6987 break; 6988 } 6989 6990 return 0; 6991 } 6992 6993 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 6994 void *p) 6995 { 6996 int ret_val; 6997 6998 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 6999 __igb_notify_dca); 7000 7001 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 7002 } 7003 #endif /* CONFIG_IGB_DCA */ 7004 7005 #ifdef CONFIG_PCI_IOV 7006 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 7007 { 7008 unsigned char mac_addr[ETH_ALEN]; 7009 7010 eth_zero_addr(mac_addr); 7011 igb_set_vf_mac(adapter, vf, mac_addr); 7012 7013 /* By default spoof check is enabled for all VFs */ 7014 adapter->vf_data[vf].spoofchk_enabled = true; 7015 7016 /* By default VFs are not trusted */ 7017 adapter->vf_data[vf].trusted = false; 7018 7019 return 0; 7020 } 7021 7022 #endif 7023 static void igb_ping_all_vfs(struct igb_adapter *adapter) 7024 { 7025 struct e1000_hw *hw = &adapter->hw; 7026 u32 ping; 7027 int i; 7028 7029 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 7030 ping = E1000_PF_CONTROL_MSG; 7031 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 7032 ping |= E1000_VT_MSGTYPE_CTS; 7033 igb_write_mbx(hw, &ping, 1, i); 7034 } 7035 } 7036 7037 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7038 { 7039 struct e1000_hw *hw = &adapter->hw; 7040 u32 vmolr = rd32(E1000_VMOLR(vf)); 7041 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7042 7043 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 7044 IGB_VF_FLAG_MULTI_PROMISC); 7045 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7046 7047 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 7048 vmolr |= E1000_VMOLR_MPME; 7049 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 7050 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 7051 } else { 7052 /* if we have hashes and we are clearing a multicast promisc 7053 * flag we need to write the hashes to the MTA as this step 7054 * was previously skipped 7055 */ 7056 if (vf_data->num_vf_mc_hashes > 30) { 7057 vmolr |= E1000_VMOLR_MPME; 7058 } else if (vf_data->num_vf_mc_hashes) { 7059 int j; 7060 7061 vmolr |= E1000_VMOLR_ROMPE; 7062 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7063 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7064 } 7065 } 7066 7067 wr32(E1000_VMOLR(vf), vmolr); 7068 7069 /* there are flags left unprocessed, likely not supported */ 7070 if (*msgbuf & E1000_VT_MSGINFO_MASK) 7071 return -EINVAL; 7072 7073 return 0; 7074 } 7075 7076 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 7077 u32 *msgbuf, u32 vf) 7078 { 7079 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7080 u16 *hash_list = (u16 *)&msgbuf[1]; 7081 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7082 int i; 7083 7084 /* salt away the number of multicast addresses assigned 7085 * to this VF for later use to restore when the PF multi cast 7086 * list changes 7087 */ 7088 vf_data->num_vf_mc_hashes = n; 7089 7090 /* only up to 30 hash values supported */ 7091 if (n > 30) 7092 n = 30; 7093 7094 /* store the hashes for later use */ 7095 for (i = 0; i < n; i++) 7096 vf_data->vf_mc_hashes[i] = hash_list[i]; 7097 7098 /* Flush and reset the mta with the new values */ 7099 igb_set_rx_mode(adapter->netdev); 7100 7101 return 0; 7102 } 7103 7104 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 7105 { 7106 struct e1000_hw *hw = &adapter->hw; 7107 struct vf_data_storage *vf_data; 7108 int i, j; 7109 7110 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7111 u32 vmolr = rd32(E1000_VMOLR(i)); 7112 7113 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7114 7115 vf_data = &adapter->vf_data[i]; 7116 7117 if ((vf_data->num_vf_mc_hashes > 30) || 7118 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 7119 vmolr |= E1000_VMOLR_MPME; 7120 } else if (vf_data->num_vf_mc_hashes) { 7121 vmolr |= E1000_VMOLR_ROMPE; 7122 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7123 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7124 } 7125 wr32(E1000_VMOLR(i), vmolr); 7126 } 7127 } 7128 7129 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 7130 { 7131 struct e1000_hw *hw = &adapter->hw; 7132 u32 pool_mask, vlvf_mask, i; 7133 7134 /* create mask for VF and other pools */ 7135 pool_mask = E1000_VLVF_POOLSEL_MASK; 7136 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf); 7137 7138 /* drop PF from pool bits */ 7139 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT + 7140 adapter->vfs_allocated_count); 7141 7142 /* Find the vlan filter for this id */ 7143 for (i = E1000_VLVF_ARRAY_SIZE; i--;) { 7144 u32 vlvf = rd32(E1000_VLVF(i)); 7145 u32 vfta_mask, vid, vfta; 7146 7147 /* remove the vf from the pool */ 7148 if (!(vlvf & vlvf_mask)) 7149 continue; 7150 7151 /* clear out bit from VLVF */ 7152 vlvf ^= vlvf_mask; 7153 7154 /* if other pools are present, just remove ourselves */ 7155 if (vlvf & pool_mask) 7156 goto update_vlvfb; 7157 7158 /* if PF is present, leave VFTA */ 7159 if (vlvf & E1000_VLVF_POOLSEL_MASK) 7160 goto update_vlvf; 7161 7162 vid = vlvf & E1000_VLVF_VLANID_MASK; 7163 vfta_mask = BIT(vid % 32); 7164 7165 /* clear bit from VFTA */ 7166 vfta = adapter->shadow_vfta[vid / 32]; 7167 if (vfta & vfta_mask) 7168 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask); 7169 update_vlvf: 7170 /* clear pool selection enable */ 7171 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7172 vlvf &= E1000_VLVF_POOLSEL_MASK; 7173 else 7174 vlvf = 0; 7175 update_vlvfb: 7176 /* clear pool bits */ 7177 wr32(E1000_VLVF(i), vlvf); 7178 } 7179 } 7180 7181 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan) 7182 { 7183 u32 vlvf; 7184 int idx; 7185 7186 /* short cut the special case */ 7187 if (vlan == 0) 7188 return 0; 7189 7190 /* Search for the VLAN id in the VLVF entries */ 7191 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) { 7192 vlvf = rd32(E1000_VLVF(idx)); 7193 if ((vlvf & VLAN_VID_MASK) == vlan) 7194 break; 7195 } 7196 7197 return idx; 7198 } 7199 7200 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid) 7201 { 7202 struct e1000_hw *hw = &adapter->hw; 7203 u32 bits, pf_id; 7204 int idx; 7205 7206 idx = igb_find_vlvf_entry(hw, vid); 7207 if (!idx) 7208 return; 7209 7210 /* See if any other pools are set for this VLAN filter 7211 * entry other than the PF. 7212 */ 7213 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 7214 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK; 7215 bits &= rd32(E1000_VLVF(idx)); 7216 7217 /* Disable the filter so this falls into the default pool. */ 7218 if (!bits) { 7219 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7220 wr32(E1000_VLVF(idx), BIT(pf_id)); 7221 else 7222 wr32(E1000_VLVF(idx), 0); 7223 } 7224 } 7225 7226 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid, 7227 bool add, u32 vf) 7228 { 7229 int pf_id = adapter->vfs_allocated_count; 7230 struct e1000_hw *hw = &adapter->hw; 7231 int err; 7232 7233 /* If VLAN overlaps with one the PF is currently monitoring make 7234 * sure that we are able to allocate a VLVF entry. This may be 7235 * redundant but it guarantees PF will maintain visibility to 7236 * the VLAN. 7237 */ 7238 if (add && test_bit(vid, adapter->active_vlans)) { 7239 err = igb_vfta_set(hw, vid, pf_id, true, false); 7240 if (err) 7241 return err; 7242 } 7243 7244 err = igb_vfta_set(hw, vid, vf, add, false); 7245 7246 if (add && !err) 7247 return err; 7248 7249 /* If we failed to add the VF VLAN or we are removing the VF VLAN 7250 * we may need to drop the PF pool bit in order to allow us to free 7251 * up the VLVF resources. 7252 */ 7253 if (test_bit(vid, adapter->active_vlans) || 7254 (adapter->flags & IGB_FLAG_VLAN_PROMISC)) 7255 igb_update_pf_vlvf(adapter, vid); 7256 7257 return err; 7258 } 7259 7260 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 7261 { 7262 struct e1000_hw *hw = &adapter->hw; 7263 7264 if (vid) 7265 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 7266 else 7267 wr32(E1000_VMVIR(vf), 0); 7268 } 7269 7270 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf, 7271 u16 vlan, u8 qos) 7272 { 7273 int err; 7274 7275 err = igb_set_vf_vlan(adapter, vlan, true, vf); 7276 if (err) 7277 return err; 7278 7279 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 7280 igb_set_vmolr(adapter, vf, !vlan); 7281 7282 /* revoke access to previous VLAN */ 7283 if (vlan != adapter->vf_data[vf].pf_vlan) 7284 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7285 false, vf); 7286 7287 adapter->vf_data[vf].pf_vlan = vlan; 7288 adapter->vf_data[vf].pf_qos = qos; 7289 igb_set_vf_vlan_strip(adapter, vf, true); 7290 dev_info(&adapter->pdev->dev, 7291 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 7292 if (test_bit(__IGB_DOWN, &adapter->state)) { 7293 dev_warn(&adapter->pdev->dev, 7294 "The VF VLAN has been set, but the PF device is not up.\n"); 7295 dev_warn(&adapter->pdev->dev, 7296 "Bring the PF device up before attempting to use the VF device.\n"); 7297 } 7298 7299 return err; 7300 } 7301 7302 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf) 7303 { 7304 /* Restore tagless access via VLAN 0 */ 7305 igb_set_vf_vlan(adapter, 0, true, vf); 7306 7307 igb_set_vmvir(adapter, 0, vf); 7308 igb_set_vmolr(adapter, vf, true); 7309 7310 /* Remove any PF assigned VLAN */ 7311 if (adapter->vf_data[vf].pf_vlan) 7312 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7313 false, vf); 7314 7315 adapter->vf_data[vf].pf_vlan = 0; 7316 adapter->vf_data[vf].pf_qos = 0; 7317 igb_set_vf_vlan_strip(adapter, vf, false); 7318 7319 return 0; 7320 } 7321 7322 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, 7323 u16 vlan, u8 qos, __be16 vlan_proto) 7324 { 7325 struct igb_adapter *adapter = netdev_priv(netdev); 7326 7327 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 7328 return -EINVAL; 7329 7330 if (vlan_proto != htons(ETH_P_8021Q)) 7331 return -EPROTONOSUPPORT; 7332 7333 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) : 7334 igb_disable_port_vlan(adapter, vf); 7335 } 7336 7337 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7338 { 7339 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7340 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 7341 int ret; 7342 7343 if (adapter->vf_data[vf].pf_vlan) 7344 return -1; 7345 7346 /* VLAN 0 is a special case, don't allow it to be removed */ 7347 if (!vid && !add) 7348 return 0; 7349 7350 ret = igb_set_vf_vlan(adapter, vid, !!add, vf); 7351 if (!ret) 7352 igb_set_vf_vlan_strip(adapter, vf, !!vid); 7353 return ret; 7354 } 7355 7356 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 7357 { 7358 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7359 7360 /* clear flags - except flag that indicates PF has set the MAC */ 7361 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC; 7362 vf_data->last_nack = jiffies; 7363 7364 /* reset vlans for device */ 7365 igb_clear_vf_vfta(adapter, vf); 7366 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf); 7367 igb_set_vmvir(adapter, vf_data->pf_vlan | 7368 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf); 7369 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan); 7370 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan)); 7371 7372 /* reset multicast table array for vf */ 7373 adapter->vf_data[vf].num_vf_mc_hashes = 0; 7374 7375 /* Flush and reset the mta with the new values */ 7376 igb_set_rx_mode(adapter->netdev); 7377 } 7378 7379 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 7380 { 7381 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7382 7383 /* clear mac address as we were hotplug removed/added */ 7384 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 7385 eth_zero_addr(vf_mac); 7386 7387 /* process remaining reset events */ 7388 igb_vf_reset(adapter, vf); 7389 } 7390 7391 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 7392 { 7393 struct e1000_hw *hw = &adapter->hw; 7394 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7395 u32 reg, msgbuf[3]; 7396 u8 *addr = (u8 *)(&msgbuf[1]); 7397 7398 /* process all the same items cleared in a function level reset */ 7399 igb_vf_reset(adapter, vf); 7400 7401 /* set vf mac address */ 7402 igb_set_vf_mac(adapter, vf, vf_mac); 7403 7404 /* enable transmit and receive for vf */ 7405 reg = rd32(E1000_VFTE); 7406 wr32(E1000_VFTE, reg | BIT(vf)); 7407 reg = rd32(E1000_VFRE); 7408 wr32(E1000_VFRE, reg | BIT(vf)); 7409 7410 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 7411 7412 /* reply to reset with ack and vf mac address */ 7413 if (!is_zero_ether_addr(vf_mac)) { 7414 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 7415 memcpy(addr, vf_mac, ETH_ALEN); 7416 } else { 7417 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; 7418 } 7419 igb_write_mbx(hw, msgbuf, 3, vf); 7420 } 7421 7422 static void igb_flush_mac_table(struct igb_adapter *adapter) 7423 { 7424 struct e1000_hw *hw = &adapter->hw; 7425 int i; 7426 7427 for (i = 0; i < hw->mac.rar_entry_count; i++) { 7428 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE; 7429 eth_zero_addr(adapter->mac_table[i].addr); 7430 adapter->mac_table[i].queue = 0; 7431 igb_rar_set_index(adapter, i); 7432 } 7433 } 7434 7435 static int igb_available_rars(struct igb_adapter *adapter, u8 queue) 7436 { 7437 struct e1000_hw *hw = &adapter->hw; 7438 /* do not count rar entries reserved for VFs MAC addresses */ 7439 int rar_entries = hw->mac.rar_entry_count - 7440 adapter->vfs_allocated_count; 7441 int i, count = 0; 7442 7443 for (i = 0; i < rar_entries; i++) { 7444 /* do not count default entries */ 7445 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) 7446 continue; 7447 7448 /* do not count "in use" entries for different queues */ 7449 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) && 7450 (adapter->mac_table[i].queue != queue)) 7451 continue; 7452 7453 count++; 7454 } 7455 7456 return count; 7457 } 7458 7459 /* Set default MAC address for the PF in the first RAR entry */ 7460 static void igb_set_default_mac_filter(struct igb_adapter *adapter) 7461 { 7462 struct igb_mac_addr *mac_table = &adapter->mac_table[0]; 7463 7464 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 7465 mac_table->queue = adapter->vfs_allocated_count; 7466 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7467 7468 igb_rar_set_index(adapter, 0); 7469 } 7470 7471 /* If the filter to be added and an already existing filter express 7472 * the same address and address type, it should be possible to only 7473 * override the other configurations, for example the queue to steer 7474 * traffic. 7475 */ 7476 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry, 7477 const u8 *addr, const u8 flags) 7478 { 7479 if (!(entry->state & IGB_MAC_STATE_IN_USE)) 7480 return true; 7481 7482 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) != 7483 (flags & IGB_MAC_STATE_SRC_ADDR)) 7484 return false; 7485 7486 if (!ether_addr_equal(addr, entry->addr)) 7487 return false; 7488 7489 return true; 7490 } 7491 7492 /* Add a MAC filter for 'addr' directing matching traffic to 'queue', 7493 * 'flags' is used to indicate what kind of match is made, match is by 7494 * default for the destination address, if matching by source address 7495 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used. 7496 */ 7497 static int igb_add_mac_filter_flags(struct igb_adapter *adapter, 7498 const u8 *addr, const u8 queue, 7499 const u8 flags) 7500 { 7501 struct e1000_hw *hw = &adapter->hw; 7502 int rar_entries = hw->mac.rar_entry_count - 7503 adapter->vfs_allocated_count; 7504 int i; 7505 7506 if (is_zero_ether_addr(addr)) 7507 return -EINVAL; 7508 7509 /* Search for the first empty entry in the MAC table. 7510 * Do not touch entries at the end of the table reserved for the VF MAC 7511 * addresses. 7512 */ 7513 for (i = 0; i < rar_entries; i++) { 7514 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i], 7515 addr, flags)) 7516 continue; 7517 7518 ether_addr_copy(adapter->mac_table[i].addr, addr); 7519 adapter->mac_table[i].queue = queue; 7520 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags; 7521 7522 igb_rar_set_index(adapter, i); 7523 return i; 7524 } 7525 7526 return -ENOSPC; 7527 } 7528 7529 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7530 const u8 queue) 7531 { 7532 return igb_add_mac_filter_flags(adapter, addr, queue, 0); 7533 } 7534 7535 /* Remove a MAC filter for 'addr' directing matching traffic to 7536 * 'queue', 'flags' is used to indicate what kind of match need to be 7537 * removed, match is by default for the destination address, if 7538 * matching by source address is to be removed the flag 7539 * IGB_MAC_STATE_SRC_ADDR can be used. 7540 */ 7541 static int igb_del_mac_filter_flags(struct igb_adapter *adapter, 7542 const u8 *addr, const u8 queue, 7543 const u8 flags) 7544 { 7545 struct e1000_hw *hw = &adapter->hw; 7546 int rar_entries = hw->mac.rar_entry_count - 7547 adapter->vfs_allocated_count; 7548 int i; 7549 7550 if (is_zero_ether_addr(addr)) 7551 return -EINVAL; 7552 7553 /* Search for matching entry in the MAC table based on given address 7554 * and queue. Do not touch entries at the end of the table reserved 7555 * for the VF MAC addresses. 7556 */ 7557 for (i = 0; i < rar_entries; i++) { 7558 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)) 7559 continue; 7560 if ((adapter->mac_table[i].state & flags) != flags) 7561 continue; 7562 if (adapter->mac_table[i].queue != queue) 7563 continue; 7564 if (!ether_addr_equal(adapter->mac_table[i].addr, addr)) 7565 continue; 7566 7567 /* When a filter for the default address is "deleted", 7568 * we return it to its initial configuration 7569 */ 7570 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) { 7571 adapter->mac_table[i].state = 7572 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7573 adapter->mac_table[i].queue = 7574 adapter->vfs_allocated_count; 7575 } else { 7576 adapter->mac_table[i].state = 0; 7577 adapter->mac_table[i].queue = 0; 7578 eth_zero_addr(adapter->mac_table[i].addr); 7579 } 7580 7581 igb_rar_set_index(adapter, i); 7582 return 0; 7583 } 7584 7585 return -ENOENT; 7586 } 7587 7588 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7589 const u8 queue) 7590 { 7591 return igb_del_mac_filter_flags(adapter, addr, queue, 0); 7592 } 7593 7594 int igb_add_mac_steering_filter(struct igb_adapter *adapter, 7595 const u8 *addr, u8 queue, u8 flags) 7596 { 7597 struct e1000_hw *hw = &adapter->hw; 7598 7599 /* In theory, this should be supported on 82575 as well, but 7600 * that part wasn't easily accessible during development. 7601 */ 7602 if (hw->mac.type != e1000_i210) 7603 return -EOPNOTSUPP; 7604 7605 return igb_add_mac_filter_flags(adapter, addr, queue, 7606 IGB_MAC_STATE_QUEUE_STEERING | flags); 7607 } 7608 7609 int igb_del_mac_steering_filter(struct igb_adapter *adapter, 7610 const u8 *addr, u8 queue, u8 flags) 7611 { 7612 return igb_del_mac_filter_flags(adapter, addr, queue, 7613 IGB_MAC_STATE_QUEUE_STEERING | flags); 7614 } 7615 7616 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr) 7617 { 7618 struct igb_adapter *adapter = netdev_priv(netdev); 7619 int ret; 7620 7621 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7622 7623 return min_t(int, ret, 0); 7624 } 7625 7626 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr) 7627 { 7628 struct igb_adapter *adapter = netdev_priv(netdev); 7629 7630 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7631 7632 return 0; 7633 } 7634 7635 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf, 7636 const u32 info, const u8 *addr) 7637 { 7638 struct pci_dev *pdev = adapter->pdev; 7639 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7640 struct list_head *pos; 7641 struct vf_mac_filter *entry = NULL; 7642 int ret = 0; 7643 7644 switch (info) { 7645 case E1000_VF_MAC_FILTER_CLR: 7646 /* remove all unicast MAC filters related to the current VF */ 7647 list_for_each(pos, &adapter->vf_macs.l) { 7648 entry = list_entry(pos, struct vf_mac_filter, l); 7649 if (entry->vf == vf) { 7650 entry->vf = -1; 7651 entry->free = true; 7652 igb_del_mac_filter(adapter, entry->vf_mac, vf); 7653 } 7654 } 7655 break; 7656 case E1000_VF_MAC_FILTER_ADD: 7657 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7658 !vf_data->trusted) { 7659 dev_warn(&pdev->dev, 7660 "VF %d requested MAC filter but is administratively denied\n", 7661 vf); 7662 return -EINVAL; 7663 } 7664 if (!is_valid_ether_addr(addr)) { 7665 dev_warn(&pdev->dev, 7666 "VF %d attempted to set invalid MAC filter\n", 7667 vf); 7668 return -EINVAL; 7669 } 7670 7671 /* try to find empty slot in the list */ 7672 list_for_each(pos, &adapter->vf_macs.l) { 7673 entry = list_entry(pos, struct vf_mac_filter, l); 7674 if (entry->free) 7675 break; 7676 } 7677 7678 if (entry && entry->free) { 7679 entry->free = false; 7680 entry->vf = vf; 7681 ether_addr_copy(entry->vf_mac, addr); 7682 7683 ret = igb_add_mac_filter(adapter, addr, vf); 7684 ret = min_t(int, ret, 0); 7685 } else { 7686 ret = -ENOSPC; 7687 } 7688 7689 if (ret == -ENOSPC) 7690 dev_warn(&pdev->dev, 7691 "VF %d has requested MAC filter but there is no space for it\n", 7692 vf); 7693 break; 7694 default: 7695 ret = -EINVAL; 7696 break; 7697 } 7698 7699 return ret; 7700 } 7701 7702 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 7703 { 7704 struct pci_dev *pdev = adapter->pdev; 7705 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7706 u32 info = msg[0] & E1000_VT_MSGINFO_MASK; 7707 7708 /* The VF MAC Address is stored in a packed array of bytes 7709 * starting at the second 32 bit word of the msg array 7710 */ 7711 unsigned char *addr = (unsigned char *)&msg[1]; 7712 int ret = 0; 7713 7714 if (!info) { 7715 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7716 !vf_data->trusted) { 7717 dev_warn(&pdev->dev, 7718 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 7719 vf); 7720 return -EINVAL; 7721 } 7722 7723 if (!is_valid_ether_addr(addr)) { 7724 dev_warn(&pdev->dev, 7725 "VF %d attempted to set invalid MAC\n", 7726 vf); 7727 return -EINVAL; 7728 } 7729 7730 ret = igb_set_vf_mac(adapter, vf, addr); 7731 } else { 7732 ret = igb_set_vf_mac_filter(adapter, vf, info, addr); 7733 } 7734 7735 return ret; 7736 } 7737 7738 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 7739 { 7740 struct e1000_hw *hw = &adapter->hw; 7741 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7742 u32 msg = E1000_VT_MSGTYPE_NACK; 7743 7744 /* if device isn't clear to send it shouldn't be reading either */ 7745 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 7746 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 7747 igb_write_mbx(hw, &msg, 1, vf); 7748 vf_data->last_nack = jiffies; 7749 } 7750 } 7751 7752 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 7753 { 7754 struct pci_dev *pdev = adapter->pdev; 7755 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 7756 struct e1000_hw *hw = &adapter->hw; 7757 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7758 s32 retval; 7759 7760 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false); 7761 7762 if (retval) { 7763 /* if receive failed revoke VF CTS stats and restart init */ 7764 dev_err(&pdev->dev, "Error receiving message from VF\n"); 7765 vf_data->flags &= ~IGB_VF_FLAG_CTS; 7766 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7767 goto unlock; 7768 goto out; 7769 } 7770 7771 /* this is a message we already processed, do nothing */ 7772 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 7773 goto unlock; 7774 7775 /* until the vf completes a reset it should not be 7776 * allowed to start any configuration. 7777 */ 7778 if (msgbuf[0] == E1000_VF_RESET) { 7779 /* unlocks mailbox */ 7780 igb_vf_reset_msg(adapter, vf); 7781 return; 7782 } 7783 7784 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 7785 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7786 goto unlock; 7787 retval = -1; 7788 goto out; 7789 } 7790 7791 switch ((msgbuf[0] & 0xFFFF)) { 7792 case E1000_VF_SET_MAC_ADDR: 7793 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 7794 break; 7795 case E1000_VF_SET_PROMISC: 7796 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 7797 break; 7798 case E1000_VF_SET_MULTICAST: 7799 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 7800 break; 7801 case E1000_VF_SET_LPE: 7802 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 7803 break; 7804 case E1000_VF_SET_VLAN: 7805 retval = -1; 7806 if (vf_data->pf_vlan) 7807 dev_warn(&pdev->dev, 7808 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 7809 vf); 7810 else 7811 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf); 7812 break; 7813 default: 7814 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 7815 retval = -1; 7816 break; 7817 } 7818 7819 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 7820 out: 7821 /* notify the VF of the results of what it sent us */ 7822 if (retval) 7823 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 7824 else 7825 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 7826 7827 /* unlocks mailbox */ 7828 igb_write_mbx(hw, msgbuf, 1, vf); 7829 return; 7830 7831 unlock: 7832 igb_unlock_mbx(hw, vf); 7833 } 7834 7835 static void igb_msg_task(struct igb_adapter *adapter) 7836 { 7837 struct e1000_hw *hw = &adapter->hw; 7838 u32 vf; 7839 7840 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 7841 /* process any reset requests */ 7842 if (!igb_check_for_rst(hw, vf)) 7843 igb_vf_reset_event(adapter, vf); 7844 7845 /* process any messages pending */ 7846 if (!igb_check_for_msg(hw, vf)) 7847 igb_rcv_msg_from_vf(adapter, vf); 7848 7849 /* process any acks */ 7850 if (!igb_check_for_ack(hw, vf)) 7851 igb_rcv_ack_from_vf(adapter, vf); 7852 } 7853 } 7854 7855 /** 7856 * igb_set_uta - Set unicast filter table address 7857 * @adapter: board private structure 7858 * @set: boolean indicating if we are setting or clearing bits 7859 * 7860 * The unicast table address is a register array of 32-bit registers. 7861 * The table is meant to be used in a way similar to how the MTA is used 7862 * however due to certain limitations in the hardware it is necessary to 7863 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 7864 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 7865 **/ 7866 static void igb_set_uta(struct igb_adapter *adapter, bool set) 7867 { 7868 struct e1000_hw *hw = &adapter->hw; 7869 u32 uta = set ? ~0 : 0; 7870 int i; 7871 7872 /* we only need to do this if VMDq is enabled */ 7873 if (!adapter->vfs_allocated_count) 7874 return; 7875 7876 for (i = hw->mac.uta_reg_count; i--;) 7877 array_wr32(E1000_UTA, i, uta); 7878 } 7879 7880 /** 7881 * igb_intr_msi - Interrupt Handler 7882 * @irq: interrupt number 7883 * @data: pointer to a network interface device structure 7884 **/ 7885 static irqreturn_t igb_intr_msi(int irq, void *data) 7886 { 7887 struct igb_adapter *adapter = data; 7888 struct igb_q_vector *q_vector = adapter->q_vector[0]; 7889 struct e1000_hw *hw = &adapter->hw; 7890 /* read ICR disables interrupts using IAM */ 7891 u32 icr = rd32(E1000_ICR); 7892 7893 igb_write_itr(q_vector); 7894 7895 if (icr & E1000_ICR_DRSTA) 7896 schedule_work(&adapter->reset_task); 7897 7898 if (icr & E1000_ICR_DOUTSYNC) { 7899 /* HW is reporting DMA is out of sync */ 7900 adapter->stats.doosync++; 7901 } 7902 7903 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 7904 hw->mac.get_link_status = 1; 7905 if (!test_bit(__IGB_DOWN, &adapter->state)) 7906 mod_timer(&adapter->watchdog_timer, jiffies + 1); 7907 } 7908 7909 if (icr & E1000_ICR_TS) 7910 igb_tsync_interrupt(adapter); 7911 7912 napi_schedule(&q_vector->napi); 7913 7914 return IRQ_HANDLED; 7915 } 7916 7917 /** 7918 * igb_intr - Legacy Interrupt Handler 7919 * @irq: interrupt number 7920 * @data: pointer to a network interface device structure 7921 **/ 7922 static irqreturn_t igb_intr(int irq, void *data) 7923 { 7924 struct igb_adapter *adapter = data; 7925 struct igb_q_vector *q_vector = adapter->q_vector[0]; 7926 struct e1000_hw *hw = &adapter->hw; 7927 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 7928 * need for the IMC write 7929 */ 7930 u32 icr = rd32(E1000_ICR); 7931 7932 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 7933 * not set, then the adapter didn't send an interrupt 7934 */ 7935 if (!(icr & E1000_ICR_INT_ASSERTED)) 7936 return IRQ_NONE; 7937 7938 igb_write_itr(q_vector); 7939 7940 if (icr & E1000_ICR_DRSTA) 7941 schedule_work(&adapter->reset_task); 7942 7943 if (icr & E1000_ICR_DOUTSYNC) { 7944 /* HW is reporting DMA is out of sync */ 7945 adapter->stats.doosync++; 7946 } 7947 7948 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 7949 hw->mac.get_link_status = 1; 7950 /* guard against interrupt when we're going down */ 7951 if (!test_bit(__IGB_DOWN, &adapter->state)) 7952 mod_timer(&adapter->watchdog_timer, jiffies + 1); 7953 } 7954 7955 if (icr & E1000_ICR_TS) 7956 igb_tsync_interrupt(adapter); 7957 7958 napi_schedule(&q_vector->napi); 7959 7960 return IRQ_HANDLED; 7961 } 7962 7963 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 7964 { 7965 struct igb_adapter *adapter = q_vector->adapter; 7966 struct e1000_hw *hw = &adapter->hw; 7967 7968 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 7969 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 7970 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 7971 igb_set_itr(q_vector); 7972 else 7973 igb_update_ring_itr(q_vector); 7974 } 7975 7976 if (!test_bit(__IGB_DOWN, &adapter->state)) { 7977 if (adapter->flags & IGB_FLAG_HAS_MSIX) 7978 wr32(E1000_EIMS, q_vector->eims_value); 7979 else 7980 igb_irq_enable(adapter); 7981 } 7982 } 7983 7984 /** 7985 * igb_poll - NAPI Rx polling callback 7986 * @napi: napi polling structure 7987 * @budget: count of how many packets we should handle 7988 **/ 7989 static int igb_poll(struct napi_struct *napi, int budget) 7990 { 7991 struct igb_q_vector *q_vector = container_of(napi, 7992 struct igb_q_vector, 7993 napi); 7994 bool clean_complete = true; 7995 int work_done = 0; 7996 7997 #ifdef CONFIG_IGB_DCA 7998 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 7999 igb_update_dca(q_vector); 8000 #endif 8001 if (q_vector->tx.ring) 8002 clean_complete = igb_clean_tx_irq(q_vector, budget); 8003 8004 if (q_vector->rx.ring) { 8005 int cleaned = igb_clean_rx_irq(q_vector, budget); 8006 8007 work_done += cleaned; 8008 if (cleaned >= budget) 8009 clean_complete = false; 8010 } 8011 8012 /* If all work not completed, return budget and keep polling */ 8013 if (!clean_complete) 8014 return budget; 8015 8016 /* Exit the polling mode, but don't re-enable interrupts if stack might 8017 * poll us due to busy-polling 8018 */ 8019 if (likely(napi_complete_done(napi, work_done))) 8020 igb_ring_irq_enable(q_vector); 8021 8022 return min(work_done, budget - 1); 8023 } 8024 8025 /** 8026 * igb_clean_tx_irq - Reclaim resources after transmit completes 8027 * @q_vector: pointer to q_vector containing needed info 8028 * @napi_budget: Used to determine if we are in netpoll 8029 * 8030 * returns true if ring is completely cleaned 8031 **/ 8032 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget) 8033 { 8034 struct igb_adapter *adapter = q_vector->adapter; 8035 struct igb_ring *tx_ring = q_vector->tx.ring; 8036 struct igb_tx_buffer *tx_buffer; 8037 union e1000_adv_tx_desc *tx_desc; 8038 unsigned int total_bytes = 0, total_packets = 0; 8039 unsigned int budget = q_vector->tx.work_limit; 8040 unsigned int i = tx_ring->next_to_clean; 8041 8042 if (test_bit(__IGB_DOWN, &adapter->state)) 8043 return true; 8044 8045 tx_buffer = &tx_ring->tx_buffer_info[i]; 8046 tx_desc = IGB_TX_DESC(tx_ring, i); 8047 i -= tx_ring->count; 8048 8049 do { 8050 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 8051 8052 /* if next_to_watch is not set then there is no work pending */ 8053 if (!eop_desc) 8054 break; 8055 8056 /* prevent any other reads prior to eop_desc */ 8057 smp_rmb(); 8058 8059 /* if DD is not set pending work has not been completed */ 8060 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 8061 break; 8062 8063 /* clear next_to_watch to prevent false hangs */ 8064 tx_buffer->next_to_watch = NULL; 8065 8066 /* update the statistics for this packet */ 8067 total_bytes += tx_buffer->bytecount; 8068 total_packets += tx_buffer->gso_segs; 8069 8070 /* free the skb */ 8071 if (tx_buffer->type == IGB_TYPE_SKB) 8072 napi_consume_skb(tx_buffer->skb, napi_budget); 8073 else 8074 xdp_return_frame(tx_buffer->xdpf); 8075 8076 /* unmap skb header data */ 8077 dma_unmap_single(tx_ring->dev, 8078 dma_unmap_addr(tx_buffer, dma), 8079 dma_unmap_len(tx_buffer, len), 8080 DMA_TO_DEVICE); 8081 8082 /* clear tx_buffer data */ 8083 dma_unmap_len_set(tx_buffer, len, 0); 8084 8085 /* clear last DMA location and unmap remaining buffers */ 8086 while (tx_desc != eop_desc) { 8087 tx_buffer++; 8088 tx_desc++; 8089 i++; 8090 if (unlikely(!i)) { 8091 i -= tx_ring->count; 8092 tx_buffer = tx_ring->tx_buffer_info; 8093 tx_desc = IGB_TX_DESC(tx_ring, 0); 8094 } 8095 8096 /* unmap any remaining paged data */ 8097 if (dma_unmap_len(tx_buffer, len)) { 8098 dma_unmap_page(tx_ring->dev, 8099 dma_unmap_addr(tx_buffer, dma), 8100 dma_unmap_len(tx_buffer, len), 8101 DMA_TO_DEVICE); 8102 dma_unmap_len_set(tx_buffer, len, 0); 8103 } 8104 } 8105 8106 /* move us one more past the eop_desc for start of next pkt */ 8107 tx_buffer++; 8108 tx_desc++; 8109 i++; 8110 if (unlikely(!i)) { 8111 i -= tx_ring->count; 8112 tx_buffer = tx_ring->tx_buffer_info; 8113 tx_desc = IGB_TX_DESC(tx_ring, 0); 8114 } 8115 8116 /* issue prefetch for next Tx descriptor */ 8117 prefetch(tx_desc); 8118 8119 /* update budget accounting */ 8120 budget--; 8121 } while (likely(budget)); 8122 8123 netdev_tx_completed_queue(txring_txq(tx_ring), 8124 total_packets, total_bytes); 8125 i += tx_ring->count; 8126 tx_ring->next_to_clean = i; 8127 u64_stats_update_begin(&tx_ring->tx_syncp); 8128 tx_ring->tx_stats.bytes += total_bytes; 8129 tx_ring->tx_stats.packets += total_packets; 8130 u64_stats_update_end(&tx_ring->tx_syncp); 8131 q_vector->tx.total_bytes += total_bytes; 8132 q_vector->tx.total_packets += total_packets; 8133 8134 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 8135 struct e1000_hw *hw = &adapter->hw; 8136 8137 /* Detect a transmit hang in hardware, this serializes the 8138 * check with the clearing of time_stamp and movement of i 8139 */ 8140 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 8141 if (tx_buffer->next_to_watch && 8142 time_after(jiffies, tx_buffer->time_stamp + 8143 (adapter->tx_timeout_factor * HZ)) && 8144 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 8145 8146 /* detected Tx unit hang */ 8147 dev_err(tx_ring->dev, 8148 "Detected Tx Unit Hang\n" 8149 " Tx Queue <%d>\n" 8150 " TDH <%x>\n" 8151 " TDT <%x>\n" 8152 " next_to_use <%x>\n" 8153 " next_to_clean <%x>\n" 8154 "buffer_info[next_to_clean]\n" 8155 " time_stamp <%lx>\n" 8156 " next_to_watch <%p>\n" 8157 " jiffies <%lx>\n" 8158 " desc.status <%x>\n", 8159 tx_ring->queue_index, 8160 rd32(E1000_TDH(tx_ring->reg_idx)), 8161 readl(tx_ring->tail), 8162 tx_ring->next_to_use, 8163 tx_ring->next_to_clean, 8164 tx_buffer->time_stamp, 8165 tx_buffer->next_to_watch, 8166 jiffies, 8167 tx_buffer->next_to_watch->wb.status); 8168 netif_stop_subqueue(tx_ring->netdev, 8169 tx_ring->queue_index); 8170 8171 /* we are about to reset, no point in enabling stuff */ 8172 return true; 8173 } 8174 } 8175 8176 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 8177 if (unlikely(total_packets && 8178 netif_carrier_ok(tx_ring->netdev) && 8179 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 8180 /* Make sure that anybody stopping the queue after this 8181 * sees the new next_to_clean. 8182 */ 8183 smp_mb(); 8184 if (__netif_subqueue_stopped(tx_ring->netdev, 8185 tx_ring->queue_index) && 8186 !(test_bit(__IGB_DOWN, &adapter->state))) { 8187 netif_wake_subqueue(tx_ring->netdev, 8188 tx_ring->queue_index); 8189 8190 u64_stats_update_begin(&tx_ring->tx_syncp); 8191 tx_ring->tx_stats.restart_queue++; 8192 u64_stats_update_end(&tx_ring->tx_syncp); 8193 } 8194 } 8195 8196 return !!budget; 8197 } 8198 8199 /** 8200 * igb_reuse_rx_page - page flip buffer and store it back on the ring 8201 * @rx_ring: rx descriptor ring to store buffers on 8202 * @old_buff: donor buffer to have page reused 8203 * 8204 * Synchronizes page for reuse by the adapter 8205 **/ 8206 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 8207 struct igb_rx_buffer *old_buff) 8208 { 8209 struct igb_rx_buffer *new_buff; 8210 u16 nta = rx_ring->next_to_alloc; 8211 8212 new_buff = &rx_ring->rx_buffer_info[nta]; 8213 8214 /* update, and store next to alloc */ 8215 nta++; 8216 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 8217 8218 /* Transfer page from old buffer to new buffer. 8219 * Move each member individually to avoid possible store 8220 * forwarding stalls. 8221 */ 8222 new_buff->dma = old_buff->dma; 8223 new_buff->page = old_buff->page; 8224 new_buff->page_offset = old_buff->page_offset; 8225 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 8226 } 8227 8228 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 8229 int rx_buf_pgcnt) 8230 { 8231 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 8232 struct page *page = rx_buffer->page; 8233 8234 /* avoid re-using remote and pfmemalloc pages */ 8235 if (!dev_page_is_reusable(page)) 8236 return false; 8237 8238 #if (PAGE_SIZE < 8192) 8239 /* if we are only owner of page we can reuse it */ 8240 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 8241 return false; 8242 #else 8243 #define IGB_LAST_OFFSET \ 8244 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048) 8245 8246 if (rx_buffer->page_offset > IGB_LAST_OFFSET) 8247 return false; 8248 #endif 8249 8250 /* If we have drained the page fragment pool we need to update 8251 * the pagecnt_bias and page count so that we fully restock the 8252 * number of references the driver holds. 8253 */ 8254 if (unlikely(pagecnt_bias == 1)) { 8255 page_ref_add(page, USHRT_MAX - 1); 8256 rx_buffer->pagecnt_bias = USHRT_MAX; 8257 } 8258 8259 return true; 8260 } 8261 8262 /** 8263 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 8264 * @rx_ring: rx descriptor ring to transact packets on 8265 * @rx_buffer: buffer containing page to add 8266 * @skb: sk_buff to place the data into 8267 * @size: size of buffer to be added 8268 * 8269 * This function will add the data contained in rx_buffer->page to the skb. 8270 **/ 8271 static void igb_add_rx_frag(struct igb_ring *rx_ring, 8272 struct igb_rx_buffer *rx_buffer, 8273 struct sk_buff *skb, 8274 unsigned int size) 8275 { 8276 #if (PAGE_SIZE < 8192) 8277 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8278 #else 8279 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 8280 SKB_DATA_ALIGN(IGB_SKB_PAD + size) : 8281 SKB_DATA_ALIGN(size); 8282 #endif 8283 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 8284 rx_buffer->page_offset, size, truesize); 8285 #if (PAGE_SIZE < 8192) 8286 rx_buffer->page_offset ^= truesize; 8287 #else 8288 rx_buffer->page_offset += truesize; 8289 #endif 8290 } 8291 8292 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring, 8293 struct igb_rx_buffer *rx_buffer, 8294 struct xdp_buff *xdp, 8295 ktime_t timestamp) 8296 { 8297 #if (PAGE_SIZE < 8192) 8298 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8299 #else 8300 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 8301 xdp->data_hard_start); 8302 #endif 8303 unsigned int size = xdp->data_end - xdp->data; 8304 unsigned int headlen; 8305 struct sk_buff *skb; 8306 8307 /* prefetch first cache line of first page */ 8308 net_prefetch(xdp->data); 8309 8310 /* allocate a skb to store the frags */ 8311 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); 8312 if (unlikely(!skb)) 8313 return NULL; 8314 8315 if (timestamp) 8316 skb_hwtstamps(skb)->hwtstamp = timestamp; 8317 8318 /* Determine available headroom for copy */ 8319 headlen = size; 8320 if (headlen > IGB_RX_HDR_LEN) 8321 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN); 8322 8323 /* align pull length to size of long to optimize memcpy performance */ 8324 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long))); 8325 8326 /* update all of the pointers */ 8327 size -= headlen; 8328 if (size) { 8329 skb_add_rx_frag(skb, 0, rx_buffer->page, 8330 (xdp->data + headlen) - page_address(rx_buffer->page), 8331 size, truesize); 8332 #if (PAGE_SIZE < 8192) 8333 rx_buffer->page_offset ^= truesize; 8334 #else 8335 rx_buffer->page_offset += truesize; 8336 #endif 8337 } else { 8338 rx_buffer->pagecnt_bias++; 8339 } 8340 8341 return skb; 8342 } 8343 8344 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring, 8345 struct igb_rx_buffer *rx_buffer, 8346 struct xdp_buff *xdp, 8347 ktime_t timestamp) 8348 { 8349 #if (PAGE_SIZE < 8192) 8350 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8351 #else 8352 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 8353 SKB_DATA_ALIGN(xdp->data_end - 8354 xdp->data_hard_start); 8355 #endif 8356 unsigned int metasize = xdp->data - xdp->data_meta; 8357 struct sk_buff *skb; 8358 8359 /* prefetch first cache line of first page */ 8360 net_prefetch(xdp->data_meta); 8361 8362 /* build an skb around the page buffer */ 8363 skb = build_skb(xdp->data_hard_start, truesize); 8364 if (unlikely(!skb)) 8365 return NULL; 8366 8367 /* update pointers within the skb to store the data */ 8368 skb_reserve(skb, xdp->data - xdp->data_hard_start); 8369 __skb_put(skb, xdp->data_end - xdp->data); 8370 8371 if (metasize) 8372 skb_metadata_set(skb, metasize); 8373 8374 if (timestamp) 8375 skb_hwtstamps(skb)->hwtstamp = timestamp; 8376 8377 /* update buffer offset */ 8378 #if (PAGE_SIZE < 8192) 8379 rx_buffer->page_offset ^= truesize; 8380 #else 8381 rx_buffer->page_offset += truesize; 8382 #endif 8383 8384 return skb; 8385 } 8386 8387 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter, 8388 struct igb_ring *rx_ring, 8389 struct xdp_buff *xdp) 8390 { 8391 int err, result = IGB_XDP_PASS; 8392 struct bpf_prog *xdp_prog; 8393 u32 act; 8394 8395 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 8396 8397 if (!xdp_prog) 8398 goto xdp_out; 8399 8400 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 8401 8402 act = bpf_prog_run_xdp(xdp_prog, xdp); 8403 switch (act) { 8404 case XDP_PASS: 8405 break; 8406 case XDP_TX: 8407 result = igb_xdp_xmit_back(adapter, xdp); 8408 if (result == IGB_XDP_CONSUMED) 8409 goto out_failure; 8410 break; 8411 case XDP_REDIRECT: 8412 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog); 8413 if (err) 8414 goto out_failure; 8415 result = IGB_XDP_REDIR; 8416 break; 8417 default: 8418 bpf_warn_invalid_xdp_action(act); 8419 fallthrough; 8420 case XDP_ABORTED: 8421 out_failure: 8422 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 8423 fallthrough; 8424 case XDP_DROP: 8425 result = IGB_XDP_CONSUMED; 8426 break; 8427 } 8428 xdp_out: 8429 return ERR_PTR(-result); 8430 } 8431 8432 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring, 8433 unsigned int size) 8434 { 8435 unsigned int truesize; 8436 8437 #if (PAGE_SIZE < 8192) 8438 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 8439 #else 8440 truesize = ring_uses_build_skb(rx_ring) ? 8441 SKB_DATA_ALIGN(IGB_SKB_PAD + size) + 8442 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 8443 SKB_DATA_ALIGN(size); 8444 #endif 8445 return truesize; 8446 } 8447 8448 static void igb_rx_buffer_flip(struct igb_ring *rx_ring, 8449 struct igb_rx_buffer *rx_buffer, 8450 unsigned int size) 8451 { 8452 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size); 8453 #if (PAGE_SIZE < 8192) 8454 rx_buffer->page_offset ^= truesize; 8455 #else 8456 rx_buffer->page_offset += truesize; 8457 #endif 8458 } 8459 8460 static inline void igb_rx_checksum(struct igb_ring *ring, 8461 union e1000_adv_rx_desc *rx_desc, 8462 struct sk_buff *skb) 8463 { 8464 skb_checksum_none_assert(skb); 8465 8466 /* Ignore Checksum bit is set */ 8467 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 8468 return; 8469 8470 /* Rx checksum disabled via ethtool */ 8471 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 8472 return; 8473 8474 /* TCP/UDP checksum error bit is set */ 8475 if (igb_test_staterr(rx_desc, 8476 E1000_RXDEXT_STATERR_TCPE | 8477 E1000_RXDEXT_STATERR_IPE)) { 8478 /* work around errata with sctp packets where the TCPE aka 8479 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 8480 * packets, (aka let the stack check the crc32c) 8481 */ 8482 if (!((skb->len == 60) && 8483 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 8484 u64_stats_update_begin(&ring->rx_syncp); 8485 ring->rx_stats.csum_err++; 8486 u64_stats_update_end(&ring->rx_syncp); 8487 } 8488 /* let the stack verify checksum errors */ 8489 return; 8490 } 8491 /* It must be a TCP or UDP packet with a valid checksum */ 8492 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 8493 E1000_RXD_STAT_UDPCS)) 8494 skb->ip_summed = CHECKSUM_UNNECESSARY; 8495 8496 dev_dbg(ring->dev, "cksum success: bits %08X\n", 8497 le32_to_cpu(rx_desc->wb.upper.status_error)); 8498 } 8499 8500 static inline void igb_rx_hash(struct igb_ring *ring, 8501 union e1000_adv_rx_desc *rx_desc, 8502 struct sk_buff *skb) 8503 { 8504 if (ring->netdev->features & NETIF_F_RXHASH) 8505 skb_set_hash(skb, 8506 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 8507 PKT_HASH_TYPE_L3); 8508 } 8509 8510 /** 8511 * igb_is_non_eop - process handling of non-EOP buffers 8512 * @rx_ring: Rx ring being processed 8513 * @rx_desc: Rx descriptor for current buffer 8514 * 8515 * This function updates next to clean. If the buffer is an EOP buffer 8516 * this function exits returning false, otherwise it will place the 8517 * sk_buff in the next buffer to be chained and return true indicating 8518 * that this is in fact a non-EOP buffer. 8519 **/ 8520 static bool igb_is_non_eop(struct igb_ring *rx_ring, 8521 union e1000_adv_rx_desc *rx_desc) 8522 { 8523 u32 ntc = rx_ring->next_to_clean + 1; 8524 8525 /* fetch, update, and store next to clean */ 8526 ntc = (ntc < rx_ring->count) ? ntc : 0; 8527 rx_ring->next_to_clean = ntc; 8528 8529 prefetch(IGB_RX_DESC(rx_ring, ntc)); 8530 8531 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 8532 return false; 8533 8534 return true; 8535 } 8536 8537 /** 8538 * igb_cleanup_headers - Correct corrupted or empty headers 8539 * @rx_ring: rx descriptor ring packet is being transacted on 8540 * @rx_desc: pointer to the EOP Rx descriptor 8541 * @skb: pointer to current skb being fixed 8542 * 8543 * Address the case where we are pulling data in on pages only 8544 * and as such no data is present in the skb header. 8545 * 8546 * In addition if skb is not at least 60 bytes we need to pad it so that 8547 * it is large enough to qualify as a valid Ethernet frame. 8548 * 8549 * Returns true if an error was encountered and skb was freed. 8550 **/ 8551 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 8552 union e1000_adv_rx_desc *rx_desc, 8553 struct sk_buff *skb) 8554 { 8555 /* XDP packets use error pointer so abort at this point */ 8556 if (IS_ERR(skb)) 8557 return true; 8558 8559 if (unlikely((igb_test_staterr(rx_desc, 8560 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 8561 struct net_device *netdev = rx_ring->netdev; 8562 if (!(netdev->features & NETIF_F_RXALL)) { 8563 dev_kfree_skb_any(skb); 8564 return true; 8565 } 8566 } 8567 8568 /* if eth_skb_pad returns an error the skb was freed */ 8569 if (eth_skb_pad(skb)) 8570 return true; 8571 8572 return false; 8573 } 8574 8575 /** 8576 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 8577 * @rx_ring: rx descriptor ring packet is being transacted on 8578 * @rx_desc: pointer to the EOP Rx descriptor 8579 * @skb: pointer to current skb being populated 8580 * 8581 * This function checks the ring, descriptor, and packet information in 8582 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 8583 * other fields within the skb. 8584 **/ 8585 static void igb_process_skb_fields(struct igb_ring *rx_ring, 8586 union e1000_adv_rx_desc *rx_desc, 8587 struct sk_buff *skb) 8588 { 8589 struct net_device *dev = rx_ring->netdev; 8590 8591 igb_rx_hash(rx_ring, rx_desc, skb); 8592 8593 igb_rx_checksum(rx_ring, rx_desc, skb); 8594 8595 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 8596 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 8597 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 8598 8599 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 8600 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 8601 u16 vid; 8602 8603 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 8604 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 8605 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 8606 else 8607 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 8608 8609 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 8610 } 8611 8612 skb_record_rx_queue(skb, rx_ring->queue_index); 8613 8614 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 8615 } 8616 8617 static unsigned int igb_rx_offset(struct igb_ring *rx_ring) 8618 { 8619 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0; 8620 } 8621 8622 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring, 8623 const unsigned int size, int *rx_buf_pgcnt) 8624 { 8625 struct igb_rx_buffer *rx_buffer; 8626 8627 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 8628 *rx_buf_pgcnt = 8629 #if (PAGE_SIZE < 8192) 8630 page_count(rx_buffer->page); 8631 #else 8632 0; 8633 #endif 8634 prefetchw(rx_buffer->page); 8635 8636 /* we are reusing so sync this buffer for CPU use */ 8637 dma_sync_single_range_for_cpu(rx_ring->dev, 8638 rx_buffer->dma, 8639 rx_buffer->page_offset, 8640 size, 8641 DMA_FROM_DEVICE); 8642 8643 rx_buffer->pagecnt_bias--; 8644 8645 return rx_buffer; 8646 } 8647 8648 static void igb_put_rx_buffer(struct igb_ring *rx_ring, 8649 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt) 8650 { 8651 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) { 8652 /* hand second half of page back to the ring */ 8653 igb_reuse_rx_page(rx_ring, rx_buffer); 8654 } else { 8655 /* We are not reusing the buffer so unmap it and free 8656 * any references we are holding to it 8657 */ 8658 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 8659 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 8660 IGB_RX_DMA_ATTR); 8661 __page_frag_cache_drain(rx_buffer->page, 8662 rx_buffer->pagecnt_bias); 8663 } 8664 8665 /* clear contents of rx_buffer */ 8666 rx_buffer->page = NULL; 8667 } 8668 8669 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 8670 { 8671 struct igb_adapter *adapter = q_vector->adapter; 8672 struct igb_ring *rx_ring = q_vector->rx.ring; 8673 struct sk_buff *skb = rx_ring->skb; 8674 unsigned int total_bytes = 0, total_packets = 0; 8675 u16 cleaned_count = igb_desc_unused(rx_ring); 8676 unsigned int xdp_xmit = 0; 8677 struct xdp_buff xdp; 8678 u32 frame_sz = 0; 8679 int rx_buf_pgcnt; 8680 8681 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 8682 #if (PAGE_SIZE < 8192) 8683 frame_sz = igb_rx_frame_truesize(rx_ring, 0); 8684 #endif 8685 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 8686 8687 while (likely(total_packets < budget)) { 8688 union e1000_adv_rx_desc *rx_desc; 8689 struct igb_rx_buffer *rx_buffer; 8690 ktime_t timestamp = 0; 8691 int pkt_offset = 0; 8692 unsigned int size; 8693 void *pktbuf; 8694 8695 /* return some buffers to hardware, one at a time is too slow */ 8696 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 8697 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8698 cleaned_count = 0; 8699 } 8700 8701 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 8702 size = le16_to_cpu(rx_desc->wb.upper.length); 8703 if (!size) 8704 break; 8705 8706 /* This memory barrier is needed to keep us from reading 8707 * any other fields out of the rx_desc until we know the 8708 * descriptor has been written back 8709 */ 8710 dma_rmb(); 8711 8712 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt); 8713 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 8714 8715 /* pull rx packet timestamp if available and valid */ 8716 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 8717 int ts_hdr_len; 8718 8719 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector, 8720 pktbuf, ×tamp); 8721 8722 pkt_offset += ts_hdr_len; 8723 size -= ts_hdr_len; 8724 } 8725 8726 /* retrieve a buffer from the ring */ 8727 if (!skb) { 8728 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring); 8729 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring); 8730 8731 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 8732 #if (PAGE_SIZE > 4096) 8733 /* At larger PAGE_SIZE, frame_sz depend on len size */ 8734 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size); 8735 #endif 8736 skb = igb_run_xdp(adapter, rx_ring, &xdp); 8737 } 8738 8739 if (IS_ERR(skb)) { 8740 unsigned int xdp_res = -PTR_ERR(skb); 8741 8742 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) { 8743 xdp_xmit |= xdp_res; 8744 igb_rx_buffer_flip(rx_ring, rx_buffer, size); 8745 } else { 8746 rx_buffer->pagecnt_bias++; 8747 } 8748 total_packets++; 8749 total_bytes += size; 8750 } else if (skb) 8751 igb_add_rx_frag(rx_ring, rx_buffer, skb, size); 8752 else if (ring_uses_build_skb(rx_ring)) 8753 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, 8754 timestamp); 8755 else 8756 skb = igb_construct_skb(rx_ring, rx_buffer, 8757 &xdp, timestamp); 8758 8759 /* exit if we failed to retrieve a buffer */ 8760 if (!skb) { 8761 rx_ring->rx_stats.alloc_failed++; 8762 rx_buffer->pagecnt_bias++; 8763 break; 8764 } 8765 8766 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt); 8767 cleaned_count++; 8768 8769 /* fetch next buffer in frame if non-eop */ 8770 if (igb_is_non_eop(rx_ring, rx_desc)) 8771 continue; 8772 8773 /* verify the packet layout is correct */ 8774 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 8775 skb = NULL; 8776 continue; 8777 } 8778 8779 /* probably a little skewed due to removing CRC */ 8780 total_bytes += skb->len; 8781 8782 /* populate checksum, timestamp, VLAN, and protocol */ 8783 igb_process_skb_fields(rx_ring, rx_desc, skb); 8784 8785 napi_gro_receive(&q_vector->napi, skb); 8786 8787 /* reset skb pointer */ 8788 skb = NULL; 8789 8790 /* update budget accounting */ 8791 total_packets++; 8792 } 8793 8794 /* place incomplete frames back on ring for completion */ 8795 rx_ring->skb = skb; 8796 8797 if (xdp_xmit & IGB_XDP_REDIR) 8798 xdp_do_flush(); 8799 8800 if (xdp_xmit & IGB_XDP_TX) { 8801 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter); 8802 8803 igb_xdp_ring_update_tail(tx_ring); 8804 } 8805 8806 u64_stats_update_begin(&rx_ring->rx_syncp); 8807 rx_ring->rx_stats.packets += total_packets; 8808 rx_ring->rx_stats.bytes += total_bytes; 8809 u64_stats_update_end(&rx_ring->rx_syncp); 8810 q_vector->rx.total_packets += total_packets; 8811 q_vector->rx.total_bytes += total_bytes; 8812 8813 if (cleaned_count) 8814 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8815 8816 return total_packets; 8817 } 8818 8819 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 8820 struct igb_rx_buffer *bi) 8821 { 8822 struct page *page = bi->page; 8823 dma_addr_t dma; 8824 8825 /* since we are recycling buffers we should seldom need to alloc */ 8826 if (likely(page)) 8827 return true; 8828 8829 /* alloc new page for storage */ 8830 page = dev_alloc_pages(igb_rx_pg_order(rx_ring)); 8831 if (unlikely(!page)) { 8832 rx_ring->rx_stats.alloc_failed++; 8833 return false; 8834 } 8835 8836 /* map page for use */ 8837 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 8838 igb_rx_pg_size(rx_ring), 8839 DMA_FROM_DEVICE, 8840 IGB_RX_DMA_ATTR); 8841 8842 /* if mapping failed free memory back to system since 8843 * there isn't much point in holding memory we can't use 8844 */ 8845 if (dma_mapping_error(rx_ring->dev, dma)) { 8846 __free_pages(page, igb_rx_pg_order(rx_ring)); 8847 8848 rx_ring->rx_stats.alloc_failed++; 8849 return false; 8850 } 8851 8852 bi->dma = dma; 8853 bi->page = page; 8854 bi->page_offset = igb_rx_offset(rx_ring); 8855 page_ref_add(page, USHRT_MAX - 1); 8856 bi->pagecnt_bias = USHRT_MAX; 8857 8858 return true; 8859 } 8860 8861 /** 8862 * igb_alloc_rx_buffers - Replace used receive buffers 8863 * @rx_ring: rx descriptor ring to allocate new receive buffers 8864 * @cleaned_count: count of buffers to allocate 8865 **/ 8866 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 8867 { 8868 union e1000_adv_rx_desc *rx_desc; 8869 struct igb_rx_buffer *bi; 8870 u16 i = rx_ring->next_to_use; 8871 u16 bufsz; 8872 8873 /* nothing to do */ 8874 if (!cleaned_count) 8875 return; 8876 8877 rx_desc = IGB_RX_DESC(rx_ring, i); 8878 bi = &rx_ring->rx_buffer_info[i]; 8879 i -= rx_ring->count; 8880 8881 bufsz = igb_rx_bufsz(rx_ring); 8882 8883 do { 8884 if (!igb_alloc_mapped_page(rx_ring, bi)) 8885 break; 8886 8887 /* sync the buffer for use by the device */ 8888 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 8889 bi->page_offset, bufsz, 8890 DMA_FROM_DEVICE); 8891 8892 /* Refresh the desc even if buffer_addrs didn't change 8893 * because each write-back erases this info. 8894 */ 8895 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 8896 8897 rx_desc++; 8898 bi++; 8899 i++; 8900 if (unlikely(!i)) { 8901 rx_desc = IGB_RX_DESC(rx_ring, 0); 8902 bi = rx_ring->rx_buffer_info; 8903 i -= rx_ring->count; 8904 } 8905 8906 /* clear the length for the next_to_use descriptor */ 8907 rx_desc->wb.upper.length = 0; 8908 8909 cleaned_count--; 8910 } while (cleaned_count); 8911 8912 i += rx_ring->count; 8913 8914 if (rx_ring->next_to_use != i) { 8915 /* record the next descriptor to use */ 8916 rx_ring->next_to_use = i; 8917 8918 /* update next to alloc since we have filled the ring */ 8919 rx_ring->next_to_alloc = i; 8920 8921 /* Force memory writes to complete before letting h/w 8922 * know there are new descriptors to fetch. (Only 8923 * applicable for weak-ordered memory model archs, 8924 * such as IA-64). 8925 */ 8926 dma_wmb(); 8927 writel(i, rx_ring->tail); 8928 } 8929 } 8930 8931 /** 8932 * igb_mii_ioctl - 8933 * @netdev: pointer to netdev struct 8934 * @ifr: interface structure 8935 * @cmd: ioctl command to execute 8936 **/ 8937 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 8938 { 8939 struct igb_adapter *adapter = netdev_priv(netdev); 8940 struct mii_ioctl_data *data = if_mii(ifr); 8941 8942 if (adapter->hw.phy.media_type != e1000_media_type_copper) 8943 return -EOPNOTSUPP; 8944 8945 switch (cmd) { 8946 case SIOCGMIIPHY: 8947 data->phy_id = adapter->hw.phy.addr; 8948 break; 8949 case SIOCGMIIREG: 8950 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 8951 &data->val_out)) 8952 return -EIO; 8953 break; 8954 case SIOCSMIIREG: 8955 default: 8956 return -EOPNOTSUPP; 8957 } 8958 return 0; 8959 } 8960 8961 /** 8962 * igb_ioctl - 8963 * @netdev: pointer to netdev struct 8964 * @ifr: interface structure 8965 * @cmd: ioctl command to execute 8966 **/ 8967 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 8968 { 8969 switch (cmd) { 8970 case SIOCGMIIPHY: 8971 case SIOCGMIIREG: 8972 case SIOCSMIIREG: 8973 return igb_mii_ioctl(netdev, ifr, cmd); 8974 case SIOCGHWTSTAMP: 8975 return igb_ptp_get_ts_config(netdev, ifr); 8976 case SIOCSHWTSTAMP: 8977 return igb_ptp_set_ts_config(netdev, ifr); 8978 default: 8979 return -EOPNOTSUPP; 8980 } 8981 } 8982 8983 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 8984 { 8985 struct igb_adapter *adapter = hw->back; 8986 8987 pci_read_config_word(adapter->pdev, reg, value); 8988 } 8989 8990 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 8991 { 8992 struct igb_adapter *adapter = hw->back; 8993 8994 pci_write_config_word(adapter->pdev, reg, *value); 8995 } 8996 8997 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 8998 { 8999 struct igb_adapter *adapter = hw->back; 9000 9001 if (pcie_capability_read_word(adapter->pdev, reg, value)) 9002 return -E1000_ERR_CONFIG; 9003 9004 return 0; 9005 } 9006 9007 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 9008 { 9009 struct igb_adapter *adapter = hw->back; 9010 9011 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 9012 return -E1000_ERR_CONFIG; 9013 9014 return 0; 9015 } 9016 9017 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 9018 { 9019 struct igb_adapter *adapter = netdev_priv(netdev); 9020 struct e1000_hw *hw = &adapter->hw; 9021 u32 ctrl, rctl; 9022 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 9023 9024 if (enable) { 9025 /* enable VLAN tag insert/strip */ 9026 ctrl = rd32(E1000_CTRL); 9027 ctrl |= E1000_CTRL_VME; 9028 wr32(E1000_CTRL, ctrl); 9029 9030 /* Disable CFI check */ 9031 rctl = rd32(E1000_RCTL); 9032 rctl &= ~E1000_RCTL_CFIEN; 9033 wr32(E1000_RCTL, rctl); 9034 } else { 9035 /* disable VLAN tag insert/strip */ 9036 ctrl = rd32(E1000_CTRL); 9037 ctrl &= ~E1000_CTRL_VME; 9038 wr32(E1000_CTRL, ctrl); 9039 } 9040 9041 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable); 9042 } 9043 9044 static int igb_vlan_rx_add_vid(struct net_device *netdev, 9045 __be16 proto, u16 vid) 9046 { 9047 struct igb_adapter *adapter = netdev_priv(netdev); 9048 struct e1000_hw *hw = &adapter->hw; 9049 int pf_id = adapter->vfs_allocated_count; 9050 9051 /* add the filter since PF can receive vlans w/o entry in vlvf */ 9052 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9053 igb_vfta_set(hw, vid, pf_id, true, !!vid); 9054 9055 set_bit(vid, adapter->active_vlans); 9056 9057 return 0; 9058 } 9059 9060 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 9061 __be16 proto, u16 vid) 9062 { 9063 struct igb_adapter *adapter = netdev_priv(netdev); 9064 int pf_id = adapter->vfs_allocated_count; 9065 struct e1000_hw *hw = &adapter->hw; 9066 9067 /* remove VID from filter table */ 9068 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9069 igb_vfta_set(hw, vid, pf_id, false, true); 9070 9071 clear_bit(vid, adapter->active_vlans); 9072 9073 return 0; 9074 } 9075 9076 static void igb_restore_vlan(struct igb_adapter *adapter) 9077 { 9078 u16 vid = 1; 9079 9080 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 9081 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 9082 9083 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID) 9084 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 9085 } 9086 9087 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 9088 { 9089 struct pci_dev *pdev = adapter->pdev; 9090 struct e1000_mac_info *mac = &adapter->hw.mac; 9091 9092 mac->autoneg = 0; 9093 9094 /* Make sure dplx is at most 1 bit and lsb of speed is not set 9095 * for the switch() below to work 9096 */ 9097 if ((spd & 1) || (dplx & ~1)) 9098 goto err_inval; 9099 9100 /* Fiber NIC's only allow 1000 gbps Full duplex 9101 * and 100Mbps Full duplex for 100baseFx sfp 9102 */ 9103 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 9104 switch (spd + dplx) { 9105 case SPEED_10 + DUPLEX_HALF: 9106 case SPEED_10 + DUPLEX_FULL: 9107 case SPEED_100 + DUPLEX_HALF: 9108 goto err_inval; 9109 default: 9110 break; 9111 } 9112 } 9113 9114 switch (spd + dplx) { 9115 case SPEED_10 + DUPLEX_HALF: 9116 mac->forced_speed_duplex = ADVERTISE_10_HALF; 9117 break; 9118 case SPEED_10 + DUPLEX_FULL: 9119 mac->forced_speed_duplex = ADVERTISE_10_FULL; 9120 break; 9121 case SPEED_100 + DUPLEX_HALF: 9122 mac->forced_speed_duplex = ADVERTISE_100_HALF; 9123 break; 9124 case SPEED_100 + DUPLEX_FULL: 9125 mac->forced_speed_duplex = ADVERTISE_100_FULL; 9126 break; 9127 case SPEED_1000 + DUPLEX_FULL: 9128 mac->autoneg = 1; 9129 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 9130 break; 9131 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 9132 default: 9133 goto err_inval; 9134 } 9135 9136 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 9137 adapter->hw.phy.mdix = AUTO_ALL_MODES; 9138 9139 return 0; 9140 9141 err_inval: 9142 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 9143 return -EINVAL; 9144 } 9145 9146 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 9147 bool runtime) 9148 { 9149 struct net_device *netdev = pci_get_drvdata(pdev); 9150 struct igb_adapter *adapter = netdev_priv(netdev); 9151 struct e1000_hw *hw = &adapter->hw; 9152 u32 ctrl, rctl, status; 9153 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 9154 bool wake; 9155 9156 rtnl_lock(); 9157 netif_device_detach(netdev); 9158 9159 if (netif_running(netdev)) 9160 __igb_close(netdev, true); 9161 9162 igb_ptp_suspend(adapter); 9163 9164 igb_clear_interrupt_scheme(adapter); 9165 rtnl_unlock(); 9166 9167 status = rd32(E1000_STATUS); 9168 if (status & E1000_STATUS_LU) 9169 wufc &= ~E1000_WUFC_LNKC; 9170 9171 if (wufc) { 9172 igb_setup_rctl(adapter); 9173 igb_set_rx_mode(netdev); 9174 9175 /* turn on all-multi mode if wake on multicast is enabled */ 9176 if (wufc & E1000_WUFC_MC) { 9177 rctl = rd32(E1000_RCTL); 9178 rctl |= E1000_RCTL_MPE; 9179 wr32(E1000_RCTL, rctl); 9180 } 9181 9182 ctrl = rd32(E1000_CTRL); 9183 ctrl |= E1000_CTRL_ADVD3WUC; 9184 wr32(E1000_CTRL, ctrl); 9185 9186 /* Allow time for pending master requests to run */ 9187 igb_disable_pcie_master(hw); 9188 9189 wr32(E1000_WUC, E1000_WUC_PME_EN); 9190 wr32(E1000_WUFC, wufc); 9191 } else { 9192 wr32(E1000_WUC, 0); 9193 wr32(E1000_WUFC, 0); 9194 } 9195 9196 wake = wufc || adapter->en_mng_pt; 9197 if (!wake) 9198 igb_power_down_link(adapter); 9199 else 9200 igb_power_up_link(adapter); 9201 9202 if (enable_wake) 9203 *enable_wake = wake; 9204 9205 /* Release control of h/w to f/w. If f/w is AMT enabled, this 9206 * would have already happened in close and is redundant. 9207 */ 9208 igb_release_hw_control(adapter); 9209 9210 pci_disable_device(pdev); 9211 9212 return 0; 9213 } 9214 9215 static void igb_deliver_wake_packet(struct net_device *netdev) 9216 { 9217 struct igb_adapter *adapter = netdev_priv(netdev); 9218 struct e1000_hw *hw = &adapter->hw; 9219 struct sk_buff *skb; 9220 u32 wupl; 9221 9222 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK; 9223 9224 /* WUPM stores only the first 128 bytes of the wake packet. 9225 * Read the packet only if we have the whole thing. 9226 */ 9227 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES)) 9228 return; 9229 9230 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES); 9231 if (!skb) 9232 return; 9233 9234 skb_put(skb, wupl); 9235 9236 /* Ensure reads are 32-bit aligned */ 9237 wupl = roundup(wupl, 4); 9238 9239 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl); 9240 9241 skb->protocol = eth_type_trans(skb, netdev); 9242 netif_rx(skb); 9243 } 9244 9245 static int __maybe_unused igb_suspend(struct device *dev) 9246 { 9247 return __igb_shutdown(to_pci_dev(dev), NULL, 0); 9248 } 9249 9250 static int __maybe_unused igb_resume(struct device *dev) 9251 { 9252 struct pci_dev *pdev = to_pci_dev(dev); 9253 struct net_device *netdev = pci_get_drvdata(pdev); 9254 struct igb_adapter *adapter = netdev_priv(netdev); 9255 struct e1000_hw *hw = &adapter->hw; 9256 u32 err, val; 9257 9258 pci_set_power_state(pdev, PCI_D0); 9259 pci_restore_state(pdev); 9260 pci_save_state(pdev); 9261 9262 if (!pci_device_is_present(pdev)) 9263 return -ENODEV; 9264 err = pci_enable_device_mem(pdev); 9265 if (err) { 9266 dev_err(&pdev->dev, 9267 "igb: Cannot enable PCI device from suspend\n"); 9268 return err; 9269 } 9270 pci_set_master(pdev); 9271 9272 pci_enable_wake(pdev, PCI_D3hot, 0); 9273 pci_enable_wake(pdev, PCI_D3cold, 0); 9274 9275 if (igb_init_interrupt_scheme(adapter, true)) { 9276 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9277 return -ENOMEM; 9278 } 9279 9280 igb_reset(adapter); 9281 9282 /* let the f/w know that the h/w is now under the control of the 9283 * driver. 9284 */ 9285 igb_get_hw_control(adapter); 9286 9287 val = rd32(E1000_WUS); 9288 if (val & WAKE_PKT_WUS) 9289 igb_deliver_wake_packet(netdev); 9290 9291 wr32(E1000_WUS, ~0); 9292 9293 rtnl_lock(); 9294 if (!err && netif_running(netdev)) 9295 err = __igb_open(netdev, true); 9296 9297 if (!err) 9298 netif_device_attach(netdev); 9299 rtnl_unlock(); 9300 9301 return err; 9302 } 9303 9304 static int __maybe_unused igb_runtime_idle(struct device *dev) 9305 { 9306 struct net_device *netdev = dev_get_drvdata(dev); 9307 struct igb_adapter *adapter = netdev_priv(netdev); 9308 9309 if (!igb_has_link(adapter)) 9310 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 9311 9312 return -EBUSY; 9313 } 9314 9315 static int __maybe_unused igb_runtime_suspend(struct device *dev) 9316 { 9317 return __igb_shutdown(to_pci_dev(dev), NULL, 1); 9318 } 9319 9320 static int __maybe_unused igb_runtime_resume(struct device *dev) 9321 { 9322 return igb_resume(dev); 9323 } 9324 9325 static void igb_shutdown(struct pci_dev *pdev) 9326 { 9327 bool wake; 9328 9329 __igb_shutdown(pdev, &wake, 0); 9330 9331 if (system_state == SYSTEM_POWER_OFF) { 9332 pci_wake_from_d3(pdev, wake); 9333 pci_set_power_state(pdev, PCI_D3hot); 9334 } 9335 } 9336 9337 #ifdef CONFIG_PCI_IOV 9338 static int igb_sriov_reinit(struct pci_dev *dev) 9339 { 9340 struct net_device *netdev = pci_get_drvdata(dev); 9341 struct igb_adapter *adapter = netdev_priv(netdev); 9342 struct pci_dev *pdev = adapter->pdev; 9343 9344 rtnl_lock(); 9345 9346 if (netif_running(netdev)) 9347 igb_close(netdev); 9348 else 9349 igb_reset(adapter); 9350 9351 igb_clear_interrupt_scheme(adapter); 9352 9353 igb_init_queue_configuration(adapter); 9354 9355 if (igb_init_interrupt_scheme(adapter, true)) { 9356 rtnl_unlock(); 9357 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9358 return -ENOMEM; 9359 } 9360 9361 if (netif_running(netdev)) 9362 igb_open(netdev); 9363 9364 rtnl_unlock(); 9365 9366 return 0; 9367 } 9368 9369 static int igb_pci_disable_sriov(struct pci_dev *dev) 9370 { 9371 int err = igb_disable_sriov(dev); 9372 9373 if (!err) 9374 err = igb_sriov_reinit(dev); 9375 9376 return err; 9377 } 9378 9379 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 9380 { 9381 int err = igb_enable_sriov(dev, num_vfs); 9382 9383 if (err) 9384 goto out; 9385 9386 err = igb_sriov_reinit(dev); 9387 if (!err) 9388 return num_vfs; 9389 9390 out: 9391 return err; 9392 } 9393 9394 #endif 9395 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 9396 { 9397 #ifdef CONFIG_PCI_IOV 9398 if (num_vfs == 0) 9399 return igb_pci_disable_sriov(dev); 9400 else 9401 return igb_pci_enable_sriov(dev, num_vfs); 9402 #endif 9403 return 0; 9404 } 9405 9406 /** 9407 * igb_io_error_detected - called when PCI error is detected 9408 * @pdev: Pointer to PCI device 9409 * @state: The current pci connection state 9410 * 9411 * This function is called after a PCI bus error affecting 9412 * this device has been detected. 9413 **/ 9414 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 9415 pci_channel_state_t state) 9416 { 9417 struct net_device *netdev = pci_get_drvdata(pdev); 9418 struct igb_adapter *adapter = netdev_priv(netdev); 9419 9420 netif_device_detach(netdev); 9421 9422 if (state == pci_channel_io_perm_failure) 9423 return PCI_ERS_RESULT_DISCONNECT; 9424 9425 if (netif_running(netdev)) 9426 igb_down(adapter); 9427 pci_disable_device(pdev); 9428 9429 /* Request a slot slot reset. */ 9430 return PCI_ERS_RESULT_NEED_RESET; 9431 } 9432 9433 /** 9434 * igb_io_slot_reset - called after the pci bus has been reset. 9435 * @pdev: Pointer to PCI device 9436 * 9437 * Restart the card from scratch, as if from a cold-boot. Implementation 9438 * resembles the first-half of the igb_resume routine. 9439 **/ 9440 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 9441 { 9442 struct net_device *netdev = pci_get_drvdata(pdev); 9443 struct igb_adapter *adapter = netdev_priv(netdev); 9444 struct e1000_hw *hw = &adapter->hw; 9445 pci_ers_result_t result; 9446 9447 if (pci_enable_device_mem(pdev)) { 9448 dev_err(&pdev->dev, 9449 "Cannot re-enable PCI device after reset.\n"); 9450 result = PCI_ERS_RESULT_DISCONNECT; 9451 } else { 9452 pci_set_master(pdev); 9453 pci_restore_state(pdev); 9454 pci_save_state(pdev); 9455 9456 pci_enable_wake(pdev, PCI_D3hot, 0); 9457 pci_enable_wake(pdev, PCI_D3cold, 0); 9458 9459 /* In case of PCI error, adapter lose its HW address 9460 * so we should re-assign it here. 9461 */ 9462 hw->hw_addr = adapter->io_addr; 9463 9464 igb_reset(adapter); 9465 wr32(E1000_WUS, ~0); 9466 result = PCI_ERS_RESULT_RECOVERED; 9467 } 9468 9469 return result; 9470 } 9471 9472 /** 9473 * igb_io_resume - called when traffic can start flowing again. 9474 * @pdev: Pointer to PCI device 9475 * 9476 * This callback is called when the error recovery driver tells us that 9477 * its OK to resume normal operation. Implementation resembles the 9478 * second-half of the igb_resume routine. 9479 */ 9480 static void igb_io_resume(struct pci_dev *pdev) 9481 { 9482 struct net_device *netdev = pci_get_drvdata(pdev); 9483 struct igb_adapter *adapter = netdev_priv(netdev); 9484 9485 if (netif_running(netdev)) { 9486 if (igb_up(adapter)) { 9487 dev_err(&pdev->dev, "igb_up failed after reset\n"); 9488 return; 9489 } 9490 } 9491 9492 netif_device_attach(netdev); 9493 9494 /* let the f/w know that the h/w is now under the control of the 9495 * driver. 9496 */ 9497 igb_get_hw_control(adapter); 9498 } 9499 9500 /** 9501 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 9502 * @adapter: Pointer to adapter structure 9503 * @index: Index of the RAR entry which need to be synced with MAC table 9504 **/ 9505 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index) 9506 { 9507 struct e1000_hw *hw = &adapter->hw; 9508 u32 rar_low, rar_high; 9509 u8 *addr = adapter->mac_table[index].addr; 9510 9511 /* HW expects these to be in network order when they are plugged 9512 * into the registers which are little endian. In order to guarantee 9513 * that ordering we need to do an leXX_to_cpup here in order to be 9514 * ready for the byteswap that occurs with writel 9515 */ 9516 rar_low = le32_to_cpup((__le32 *)(addr)); 9517 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 9518 9519 /* Indicate to hardware the Address is Valid. */ 9520 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) { 9521 if (is_valid_ether_addr(addr)) 9522 rar_high |= E1000_RAH_AV; 9523 9524 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR) 9525 rar_high |= E1000_RAH_ASEL_SRC_ADDR; 9526 9527 switch (hw->mac.type) { 9528 case e1000_82575: 9529 case e1000_i210: 9530 if (adapter->mac_table[index].state & 9531 IGB_MAC_STATE_QUEUE_STEERING) 9532 rar_high |= E1000_RAH_QSEL_ENABLE; 9533 9534 rar_high |= E1000_RAH_POOL_1 * 9535 adapter->mac_table[index].queue; 9536 break; 9537 default: 9538 rar_high |= E1000_RAH_POOL_1 << 9539 adapter->mac_table[index].queue; 9540 break; 9541 } 9542 } 9543 9544 wr32(E1000_RAL(index), rar_low); 9545 wrfl(); 9546 wr32(E1000_RAH(index), rar_high); 9547 wrfl(); 9548 } 9549 9550 static int igb_set_vf_mac(struct igb_adapter *adapter, 9551 int vf, unsigned char *mac_addr) 9552 { 9553 struct e1000_hw *hw = &adapter->hw; 9554 /* VF MAC addresses start at end of receive addresses and moves 9555 * towards the first, as a result a collision should not be possible 9556 */ 9557 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 9558 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses; 9559 9560 ether_addr_copy(vf_mac_addr, mac_addr); 9561 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr); 9562 adapter->mac_table[rar_entry].queue = vf; 9563 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE; 9564 igb_rar_set_index(adapter, rar_entry); 9565 9566 return 0; 9567 } 9568 9569 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 9570 { 9571 struct igb_adapter *adapter = netdev_priv(netdev); 9572 9573 if (vf >= adapter->vfs_allocated_count) 9574 return -EINVAL; 9575 9576 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC 9577 * flag and allows to overwrite the MAC via VF netdev. This 9578 * is necessary to allow libvirt a way to restore the original 9579 * MAC after unbinding vfio-pci and reloading igbvf after shutting 9580 * down a VM. 9581 */ 9582 if (is_zero_ether_addr(mac)) { 9583 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC; 9584 dev_info(&adapter->pdev->dev, 9585 "remove administratively set MAC on VF %d\n", 9586 vf); 9587 } else if (is_valid_ether_addr(mac)) { 9588 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 9589 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", 9590 mac, vf); 9591 dev_info(&adapter->pdev->dev, 9592 "Reload the VF driver to make this change effective."); 9593 /* Generate additional warning if PF is down */ 9594 if (test_bit(__IGB_DOWN, &adapter->state)) { 9595 dev_warn(&adapter->pdev->dev, 9596 "The VF MAC address has been set, but the PF device is not up.\n"); 9597 dev_warn(&adapter->pdev->dev, 9598 "Bring the PF device up before attempting to use the VF device.\n"); 9599 } 9600 } else { 9601 return -EINVAL; 9602 } 9603 return igb_set_vf_mac(adapter, vf, mac); 9604 } 9605 9606 static int igb_link_mbps(int internal_link_speed) 9607 { 9608 switch (internal_link_speed) { 9609 case SPEED_100: 9610 return 100; 9611 case SPEED_1000: 9612 return 1000; 9613 default: 9614 return 0; 9615 } 9616 } 9617 9618 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 9619 int link_speed) 9620 { 9621 int rf_dec, rf_int; 9622 u32 bcnrc_val; 9623 9624 if (tx_rate != 0) { 9625 /* Calculate the rate factor values to set */ 9626 rf_int = link_speed / tx_rate; 9627 rf_dec = (link_speed - (rf_int * tx_rate)); 9628 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) / 9629 tx_rate; 9630 9631 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 9632 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 9633 E1000_RTTBCNRC_RF_INT_MASK); 9634 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 9635 } else { 9636 bcnrc_val = 0; 9637 } 9638 9639 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 9640 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 9641 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 9642 */ 9643 wr32(E1000_RTTBCNRM, 0x14); 9644 wr32(E1000_RTTBCNRC, bcnrc_val); 9645 } 9646 9647 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 9648 { 9649 int actual_link_speed, i; 9650 bool reset_rate = false; 9651 9652 /* VF TX rate limit was not set or not supported */ 9653 if ((adapter->vf_rate_link_speed == 0) || 9654 (adapter->hw.mac.type != e1000_82576)) 9655 return; 9656 9657 actual_link_speed = igb_link_mbps(adapter->link_speed); 9658 if (actual_link_speed != adapter->vf_rate_link_speed) { 9659 reset_rate = true; 9660 adapter->vf_rate_link_speed = 0; 9661 dev_info(&adapter->pdev->dev, 9662 "Link speed has been changed. VF Transmit rate is disabled\n"); 9663 } 9664 9665 for (i = 0; i < adapter->vfs_allocated_count; i++) { 9666 if (reset_rate) 9667 adapter->vf_data[i].tx_rate = 0; 9668 9669 igb_set_vf_rate_limit(&adapter->hw, i, 9670 adapter->vf_data[i].tx_rate, 9671 actual_link_speed); 9672 } 9673 } 9674 9675 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 9676 int min_tx_rate, int max_tx_rate) 9677 { 9678 struct igb_adapter *adapter = netdev_priv(netdev); 9679 struct e1000_hw *hw = &adapter->hw; 9680 int actual_link_speed; 9681 9682 if (hw->mac.type != e1000_82576) 9683 return -EOPNOTSUPP; 9684 9685 if (min_tx_rate) 9686 return -EINVAL; 9687 9688 actual_link_speed = igb_link_mbps(adapter->link_speed); 9689 if ((vf >= adapter->vfs_allocated_count) || 9690 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 9691 (max_tx_rate < 0) || 9692 (max_tx_rate > actual_link_speed)) 9693 return -EINVAL; 9694 9695 adapter->vf_rate_link_speed = actual_link_speed; 9696 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 9697 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 9698 9699 return 0; 9700 } 9701 9702 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 9703 bool setting) 9704 { 9705 struct igb_adapter *adapter = netdev_priv(netdev); 9706 struct e1000_hw *hw = &adapter->hw; 9707 u32 reg_val, reg_offset; 9708 9709 if (!adapter->vfs_allocated_count) 9710 return -EOPNOTSUPP; 9711 9712 if (vf >= adapter->vfs_allocated_count) 9713 return -EINVAL; 9714 9715 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 9716 reg_val = rd32(reg_offset); 9717 if (setting) 9718 reg_val |= (BIT(vf) | 9719 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9720 else 9721 reg_val &= ~(BIT(vf) | 9722 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9723 wr32(reg_offset, reg_val); 9724 9725 adapter->vf_data[vf].spoofchk_enabled = setting; 9726 return 0; 9727 } 9728 9729 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting) 9730 { 9731 struct igb_adapter *adapter = netdev_priv(netdev); 9732 9733 if (vf >= adapter->vfs_allocated_count) 9734 return -EINVAL; 9735 if (adapter->vf_data[vf].trusted == setting) 9736 return 0; 9737 9738 adapter->vf_data[vf].trusted = setting; 9739 9740 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n", 9741 vf, setting ? "" : "not "); 9742 return 0; 9743 } 9744 9745 static int igb_ndo_get_vf_config(struct net_device *netdev, 9746 int vf, struct ifla_vf_info *ivi) 9747 { 9748 struct igb_adapter *adapter = netdev_priv(netdev); 9749 if (vf >= adapter->vfs_allocated_count) 9750 return -EINVAL; 9751 ivi->vf = vf; 9752 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 9753 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 9754 ivi->min_tx_rate = 0; 9755 ivi->vlan = adapter->vf_data[vf].pf_vlan; 9756 ivi->qos = adapter->vf_data[vf].pf_qos; 9757 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 9758 ivi->trusted = adapter->vf_data[vf].trusted; 9759 return 0; 9760 } 9761 9762 static void igb_vmm_control(struct igb_adapter *adapter) 9763 { 9764 struct e1000_hw *hw = &adapter->hw; 9765 u32 reg; 9766 9767 switch (hw->mac.type) { 9768 case e1000_82575: 9769 case e1000_i210: 9770 case e1000_i211: 9771 case e1000_i354: 9772 default: 9773 /* replication is not supported for 82575 */ 9774 return; 9775 case e1000_82576: 9776 /* notify HW that the MAC is adding vlan tags */ 9777 reg = rd32(E1000_DTXCTL); 9778 reg |= E1000_DTXCTL_VLAN_ADDED; 9779 wr32(E1000_DTXCTL, reg); 9780 fallthrough; 9781 case e1000_82580: 9782 /* enable replication vlan tag stripping */ 9783 reg = rd32(E1000_RPLOLR); 9784 reg |= E1000_RPLOLR_STRVLAN; 9785 wr32(E1000_RPLOLR, reg); 9786 fallthrough; 9787 case e1000_i350: 9788 /* none of the above registers are supported by i350 */ 9789 break; 9790 } 9791 9792 if (adapter->vfs_allocated_count) { 9793 igb_vmdq_set_loopback_pf(hw, true); 9794 igb_vmdq_set_replication_pf(hw, true); 9795 igb_vmdq_set_anti_spoofing_pf(hw, true, 9796 adapter->vfs_allocated_count); 9797 } else { 9798 igb_vmdq_set_loopback_pf(hw, false); 9799 igb_vmdq_set_replication_pf(hw, false); 9800 } 9801 } 9802 9803 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 9804 { 9805 struct e1000_hw *hw = &adapter->hw; 9806 u32 dmac_thr; 9807 u16 hwm; 9808 9809 if (hw->mac.type > e1000_82580) { 9810 if (adapter->flags & IGB_FLAG_DMAC) { 9811 u32 reg; 9812 9813 /* force threshold to 0. */ 9814 wr32(E1000_DMCTXTH, 0); 9815 9816 /* DMA Coalescing high water mark needs to be greater 9817 * than the Rx threshold. Set hwm to PBA - max frame 9818 * size in 16B units, capping it at PBA - 6KB. 9819 */ 9820 hwm = 64 * (pba - 6); 9821 reg = rd32(E1000_FCRTC); 9822 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 9823 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 9824 & E1000_FCRTC_RTH_COAL_MASK); 9825 wr32(E1000_FCRTC, reg); 9826 9827 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 9828 * frame size, capping it at PBA - 10KB. 9829 */ 9830 dmac_thr = pba - 10; 9831 reg = rd32(E1000_DMACR); 9832 reg &= ~E1000_DMACR_DMACTHR_MASK; 9833 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 9834 & E1000_DMACR_DMACTHR_MASK); 9835 9836 /* transition to L0x or L1 if available..*/ 9837 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 9838 9839 /* watchdog timer= +-1000 usec in 32usec intervals */ 9840 reg |= (1000 >> 5); 9841 9842 /* Disable BMC-to-OS Watchdog Enable */ 9843 if (hw->mac.type != e1000_i354) 9844 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 9845 9846 wr32(E1000_DMACR, reg); 9847 9848 /* no lower threshold to disable 9849 * coalescing(smart fifb)-UTRESH=0 9850 */ 9851 wr32(E1000_DMCRTRH, 0); 9852 9853 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 9854 9855 wr32(E1000_DMCTLX, reg); 9856 9857 /* free space in tx packet buffer to wake from 9858 * DMA coal 9859 */ 9860 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 9861 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 9862 9863 /* make low power state decision controlled 9864 * by DMA coal 9865 */ 9866 reg = rd32(E1000_PCIEMISC); 9867 reg &= ~E1000_PCIEMISC_LX_DECISION; 9868 wr32(E1000_PCIEMISC, reg); 9869 } /* endif adapter->dmac is not disabled */ 9870 } else if (hw->mac.type == e1000_82580) { 9871 u32 reg = rd32(E1000_PCIEMISC); 9872 9873 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 9874 wr32(E1000_DMACR, 0); 9875 } 9876 } 9877 9878 /** 9879 * igb_read_i2c_byte - Reads 8 bit word over I2C 9880 * @hw: pointer to hardware structure 9881 * @byte_offset: byte offset to read 9882 * @dev_addr: device address 9883 * @data: value read 9884 * 9885 * Performs byte read operation over I2C interface at 9886 * a specified device address. 9887 **/ 9888 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 9889 u8 dev_addr, u8 *data) 9890 { 9891 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 9892 struct i2c_client *this_client = adapter->i2c_client; 9893 s32 status; 9894 u16 swfw_mask = 0; 9895 9896 if (!this_client) 9897 return E1000_ERR_I2C; 9898 9899 swfw_mask = E1000_SWFW_PHY0_SM; 9900 9901 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 9902 return E1000_ERR_SWFW_SYNC; 9903 9904 status = i2c_smbus_read_byte_data(this_client, byte_offset); 9905 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 9906 9907 if (status < 0) 9908 return E1000_ERR_I2C; 9909 else { 9910 *data = status; 9911 return 0; 9912 } 9913 } 9914 9915 /** 9916 * igb_write_i2c_byte - Writes 8 bit word over I2C 9917 * @hw: pointer to hardware structure 9918 * @byte_offset: byte offset to write 9919 * @dev_addr: device address 9920 * @data: value to write 9921 * 9922 * Performs byte write operation over I2C interface at 9923 * a specified device address. 9924 **/ 9925 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 9926 u8 dev_addr, u8 data) 9927 { 9928 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 9929 struct i2c_client *this_client = adapter->i2c_client; 9930 s32 status; 9931 u16 swfw_mask = E1000_SWFW_PHY0_SM; 9932 9933 if (!this_client) 9934 return E1000_ERR_I2C; 9935 9936 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 9937 return E1000_ERR_SWFW_SYNC; 9938 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 9939 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 9940 9941 if (status) 9942 return E1000_ERR_I2C; 9943 else 9944 return 0; 9945 9946 } 9947 9948 int igb_reinit_queues(struct igb_adapter *adapter) 9949 { 9950 struct net_device *netdev = adapter->netdev; 9951 struct pci_dev *pdev = adapter->pdev; 9952 int err = 0; 9953 9954 if (netif_running(netdev)) 9955 igb_close(netdev); 9956 9957 igb_reset_interrupt_capability(adapter); 9958 9959 if (igb_init_interrupt_scheme(adapter, true)) { 9960 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9961 return -ENOMEM; 9962 } 9963 9964 if (netif_running(netdev)) 9965 err = igb_open(netdev); 9966 9967 return err; 9968 } 9969 9970 static void igb_nfc_filter_exit(struct igb_adapter *adapter) 9971 { 9972 struct igb_nfc_filter *rule; 9973 9974 spin_lock(&adapter->nfc_lock); 9975 9976 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 9977 igb_erase_filter(adapter, rule); 9978 9979 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node) 9980 igb_erase_filter(adapter, rule); 9981 9982 spin_unlock(&adapter->nfc_lock); 9983 } 9984 9985 static void igb_nfc_filter_restore(struct igb_adapter *adapter) 9986 { 9987 struct igb_nfc_filter *rule; 9988 9989 spin_lock(&adapter->nfc_lock); 9990 9991 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 9992 igb_add_filter(adapter, rule); 9993 9994 spin_unlock(&adapter->nfc_lock); 9995 } 9996 /* igb_main.c */ 9997