1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182 
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 			igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_TDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { __le64 a; __le64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state)
581 		i2cctl |= E1000_I2C_DATA_OUT;
582 	else
583 		i2cctl &= ~E1000_I2C_DATA_OUT;
584 
585 	i2cctl &= ~E1000_I2C_DATA_OE_N;
586 	i2cctl |= E1000_I2C_CLK_OE_N;
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 
590 }
591 
592 /**
593  *  igb_set_i2c_clk - Sets the I2C SCL clock
594  *  @data: pointer to hardware structure
595  *  @state: state to set clock
596  *
597  *  Sets the I2C clock line to state
598  **/
599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 	struct igb_adapter *adapter = (struct igb_adapter *)data;
602 	struct e1000_hw *hw = &adapter->hw;
603 	s32 i2cctl = rd32(E1000_I2CPARAMS);
604 
605 	if (state) {
606 		i2cctl |= E1000_I2C_CLK_OUT;
607 		i2cctl &= ~E1000_I2C_CLK_OE_N;
608 	} else {
609 		i2cctl &= ~E1000_I2C_CLK_OUT;
610 		i2cctl &= ~E1000_I2C_CLK_OE_N;
611 	}
612 	wr32(E1000_I2CPARAMS, i2cctl);
613 	wrfl();
614 }
615 
616 /**
617  *  igb_get_i2c_clk - Gets the I2C SCL clock state
618  *  @data: pointer to hardware structure
619  *
620  *  Gets the I2C clock state
621  **/
622 static int igb_get_i2c_clk(void *data)
623 {
624 	struct igb_adapter *adapter = (struct igb_adapter *)data;
625 	struct e1000_hw *hw = &adapter->hw;
626 	s32 i2cctl = rd32(E1000_I2CPARAMS);
627 
628 	return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630 
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632 	.setsda		= igb_set_i2c_data,
633 	.setscl		= igb_set_i2c_clk,
634 	.getsda		= igb_get_i2c_data,
635 	.getscl		= igb_get_i2c_clk,
636 	.udelay		= 5,
637 	.timeout	= 20,
638 };
639 
640 /**
641  *  igb_get_hw_dev - return device
642  *  @hw: pointer to hardware structure
643  *
644  *  used by hardware layer to print debugging information
645  **/
646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648 	struct igb_adapter *adapter = hw->back;
649 	return adapter->netdev;
650 }
651 
652 /**
653  *  igb_init_module - Driver Registration Routine
654  *
655  *  igb_init_module is the first routine called when the driver is
656  *  loaded. All it does is register with the PCI subsystem.
657  **/
658 static int __init igb_init_module(void)
659 {
660 	int ret;
661 
662 	pr_info("%s\n", igb_driver_string);
663 	pr_info("%s\n", igb_copyright);
664 
665 #ifdef CONFIG_IGB_DCA
666 	dca_register_notify(&dca_notifier);
667 #endif
668 	ret = pci_register_driver(&igb_driver);
669 	return ret;
670 }
671 
672 module_init(igb_init_module);
673 
674 /**
675  *  igb_exit_module - Driver Exit Cleanup Routine
676  *
677  *  igb_exit_module is called just before the driver is removed
678  *  from memory.
679  **/
680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683 	dca_unregister_notify(&dca_notifier);
684 #endif
685 	pci_unregister_driver(&igb_driver);
686 }
687 
688 module_exit(igb_exit_module);
689 
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692  *  igb_cache_ring_register - Descriptor ring to register mapping
693  *  @adapter: board private structure to initialize
694  *
695  *  Once we know the feature-set enabled for the device, we'll cache
696  *  the register offset the descriptor ring is assigned to.
697  **/
698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700 	int i = 0, j = 0;
701 	u32 rbase_offset = adapter->vfs_allocated_count;
702 
703 	switch (adapter->hw.mac.type) {
704 	case e1000_82576:
705 		/* The queues are allocated for virtualization such that VF 0
706 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 		 * In order to avoid collision we start at the first free queue
708 		 * and continue consuming queues in the same sequence
709 		 */
710 		if (adapter->vfs_allocated_count) {
711 			for (; i < adapter->rss_queues; i++)
712 				adapter->rx_ring[i]->reg_idx = rbase_offset +
713 							       Q_IDX_82576(i);
714 		}
715 		fallthrough;
716 	case e1000_82575:
717 	case e1000_82580:
718 	case e1000_i350:
719 	case e1000_i354:
720 	case e1000_i210:
721 	case e1000_i211:
722 	default:
723 		for (; i < adapter->num_rx_queues; i++)
724 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 		for (; j < adapter->num_tx_queues; j++)
726 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 		break;
728 	}
729 }
730 
731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 	u32 value = 0;
736 
737 	if (E1000_REMOVED(hw_addr))
738 		return ~value;
739 
740 	value = readl(&hw_addr[reg]);
741 
742 	/* reads should not return all F's */
743 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 		struct net_device *netdev = igb->netdev;
745 		hw->hw_addr = NULL;
746 		netdev_err(netdev, "PCIe link lost\n");
747 		WARN(pci_device_is_present(igb->pdev),
748 		     "igb: Failed to read reg 0x%x!\n", reg);
749 	}
750 
751 	return value;
752 }
753 
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 			   int index, int offset)
768 {
769 	u32 ivar = array_rd32(E1000_IVAR0, index);
770 
771 	/* clear any bits that are currently set */
772 	ivar &= ~((u32)0xFF << offset);
773 
774 	/* write vector and valid bit */
775 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776 
777 	array_wr32(E1000_IVAR0, index, ivar);
778 }
779 
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 	struct igb_adapter *adapter = q_vector->adapter;
784 	struct e1000_hw *hw = &adapter->hw;
785 	int rx_queue = IGB_N0_QUEUE;
786 	int tx_queue = IGB_N0_QUEUE;
787 	u32 msixbm = 0;
788 
789 	if (q_vector->rx.ring)
790 		rx_queue = q_vector->rx.ring->reg_idx;
791 	if (q_vector->tx.ring)
792 		tx_queue = q_vector->tx.ring->reg_idx;
793 
794 	switch (hw->mac.type) {
795 	case e1000_82575:
796 		/* The 82575 assigns vectors using a bitmask, which matches the
797 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798 		 * or more queues to a vector, we write the appropriate bits
799 		 * into the MSIXBM register for that vector.
800 		 */
801 		if (rx_queue > IGB_N0_QUEUE)
802 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 		if (tx_queue > IGB_N0_QUEUE)
804 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 			msixbm |= E1000_EIMS_OTHER;
807 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 		q_vector->eims_value = msixbm;
809 		break;
810 	case e1000_82576:
811 		/* 82576 uses a table that essentially consists of 2 columns
812 		 * with 8 rows.  The ordering is column-major so we use the
813 		 * lower 3 bits as the row index, and the 4th bit as the
814 		 * column offset.
815 		 */
816 		if (rx_queue > IGB_N0_QUEUE)
817 			igb_write_ivar(hw, msix_vector,
818 				       rx_queue & 0x7,
819 				       (rx_queue & 0x8) << 1);
820 		if (tx_queue > IGB_N0_QUEUE)
821 			igb_write_ivar(hw, msix_vector,
822 				       tx_queue & 0x7,
823 				       ((tx_queue & 0x8) << 1) + 8);
824 		q_vector->eims_value = BIT(msix_vector);
825 		break;
826 	case e1000_82580:
827 	case e1000_i350:
828 	case e1000_i354:
829 	case e1000_i210:
830 	case e1000_i211:
831 		/* On 82580 and newer adapters the scheme is similar to 82576
832 		 * however instead of ordering column-major we have things
833 		 * ordered row-major.  So we traverse the table by using
834 		 * bit 0 as the column offset, and the remaining bits as the
835 		 * row index.
836 		 */
837 		if (rx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       rx_queue >> 1,
840 				       (rx_queue & 0x1) << 4);
841 		if (tx_queue > IGB_N0_QUEUE)
842 			igb_write_ivar(hw, msix_vector,
843 				       tx_queue >> 1,
844 				       ((tx_queue & 0x1) << 4) + 8);
845 		q_vector->eims_value = BIT(msix_vector);
846 		break;
847 	default:
848 		BUG();
849 		break;
850 	}
851 
852 	/* add q_vector eims value to global eims_enable_mask */
853 	adapter->eims_enable_mask |= q_vector->eims_value;
854 
855 	/* configure q_vector to set itr on first interrupt */
856 	q_vector->set_itr = 1;
857 }
858 
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 	u32 tmp;
869 	int i, vector = 0;
870 	struct e1000_hw *hw = &adapter->hw;
871 
872 	adapter->eims_enable_mask = 0;
873 
874 	/* set vector for other causes, i.e. link changes */
875 	switch (hw->mac.type) {
876 	case e1000_82575:
877 		tmp = rd32(E1000_CTRL_EXT);
878 		/* enable MSI-X PBA support*/
879 		tmp |= E1000_CTRL_EXT_PBA_CLR;
880 
881 		/* Auto-Mask interrupts upon ICR read. */
882 		tmp |= E1000_CTRL_EXT_EIAME;
883 		tmp |= E1000_CTRL_EXT_IRCA;
884 
885 		wr32(E1000_CTRL_EXT, tmp);
886 
887 		/* enable msix_other interrupt */
888 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 		adapter->eims_other = E1000_EIMS_OTHER;
890 
891 		break;
892 
893 	case e1000_82576:
894 	case e1000_82580:
895 	case e1000_i350:
896 	case e1000_i354:
897 	case e1000_i210:
898 	case e1000_i211:
899 		/* Turn on MSI-X capability first, or our settings
900 		 * won't stick.  And it will take days to debug.
901 		 */
902 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 		     E1000_GPIE_NSICR);
905 
906 		/* enable msix_other interrupt */
907 		adapter->eims_other = BIT(vector);
908 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909 
910 		wr32(E1000_IVAR_MISC, tmp);
911 		break;
912 	default:
913 		/* do nothing, since nothing else supports MSI-X */
914 		break;
915 	} /* switch (hw->mac.type) */
916 
917 	adapter->eims_enable_mask |= adapter->eims_other;
918 
919 	for (i = 0; i < adapter->num_q_vectors; i++)
920 		igb_assign_vector(adapter->q_vector[i], vector++);
921 
922 	wrfl();
923 }
924 
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 	unsigned int num_q_vectors = adapter->num_q_vectors;
935 	struct net_device *netdev = adapter->netdev;
936 	int i, err = 0, vector = 0, free_vector = 0;
937 
938 	err = request_irq(adapter->msix_entries[vector].vector,
939 			  igb_msix_other, 0, netdev->name, adapter);
940 	if (err)
941 		goto err_out;
942 
943 	if (num_q_vectors > MAX_Q_VECTORS) {
944 		num_q_vectors = MAX_Q_VECTORS;
945 		dev_warn(&adapter->pdev->dev,
946 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
947 			 adapter->num_q_vectors, MAX_Q_VECTORS);
948 	}
949 	for (i = 0; i < num_q_vectors; i++) {
950 		struct igb_q_vector *q_vector = adapter->q_vector[i];
951 
952 		vector++;
953 
954 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955 
956 		if (q_vector->rx.ring && q_vector->tx.ring)
957 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 				q_vector->rx.ring->queue_index);
959 		else if (q_vector->tx.ring)
960 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 				q_vector->tx.ring->queue_index);
962 		else if (q_vector->rx.ring)
963 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 				q_vector->rx.ring->queue_index);
965 		else
966 			sprintf(q_vector->name, "%s-unused", netdev->name);
967 
968 		err = request_irq(adapter->msix_entries[vector].vector,
969 				  igb_msix_ring, 0, q_vector->name,
970 				  q_vector);
971 		if (err)
972 			goto err_free;
973 	}
974 
975 	igb_configure_msix(adapter);
976 	return 0;
977 
978 err_free:
979 	/* free already assigned IRQs */
980 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981 
982 	vector--;
983 	for (i = 0; i < vector; i++) {
984 		free_irq(adapter->msix_entries[free_vector++].vector,
985 			 adapter->q_vector[i]);
986 	}
987 err_out:
988 	return err;
989 }
990 
991 /**
992  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be freed
995  *
996  *  This function frees the memory allocated to the q_vector.
997  **/
998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001 
1002 	adapter->q_vector[v_idx] = NULL;
1003 
1004 	/* igb_get_stats64() might access the rings on this vector,
1005 	 * we must wait a grace period before freeing it.
1006 	 */
1007 	if (q_vector)
1008 		kfree_rcu(q_vector, rcu);
1009 }
1010 
1011 /**
1012  *  igb_reset_q_vector - Reset config for interrupt vector
1013  *  @adapter: board private structure to initialize
1014  *  @v_idx: Index of vector to be reset
1015  *
1016  *  If NAPI is enabled it will delete any references to the
1017  *  NAPI struct. This is preparation for igb_free_q_vector.
1018  **/
1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022 
1023 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 	 * allocated. So, q_vector is NULL so we should stop here.
1025 	 */
1026 	if (!q_vector)
1027 		return;
1028 
1029 	if (q_vector->tx.ring)
1030 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031 
1032 	if (q_vector->rx.ring)
1033 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034 
1035 	netif_napi_del(&q_vector->napi);
1036 
1037 }
1038 
1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 	int v_idx = adapter->num_q_vectors;
1042 
1043 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 		pci_disable_msix(adapter->pdev);
1045 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 		pci_disable_msi(adapter->pdev);
1047 
1048 	while (v_idx--)
1049 		igb_reset_q_vector(adapter, v_idx);
1050 }
1051 
1052 /**
1053  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054  *  @adapter: board private structure to initialize
1055  *
1056  *  This function frees the memory allocated to the q_vectors.  In addition if
1057  *  NAPI is enabled it will delete any references to the NAPI struct prior
1058  *  to freeing the q_vector.
1059  **/
1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 	int v_idx = adapter->num_q_vectors;
1063 
1064 	adapter->num_tx_queues = 0;
1065 	adapter->num_rx_queues = 0;
1066 	adapter->num_q_vectors = 0;
1067 
1068 	while (v_idx--) {
1069 		igb_reset_q_vector(adapter, v_idx);
1070 		igb_free_q_vector(adapter, v_idx);
1071 	}
1072 }
1073 
1074 /**
1075  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076  *  @adapter: board private structure to initialize
1077  *
1078  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079  *  MSI-X interrupts allocated.
1080  */
1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 	igb_free_q_vectors(adapter);
1084 	igb_reset_interrupt_capability(adapter);
1085 }
1086 
1087 /**
1088  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089  *  @adapter: board private structure to initialize
1090  *  @msix: boolean value of MSIX capability
1091  *
1092  *  Attempt to configure interrupts using the best available
1093  *  capabilities of the hardware and kernel.
1094  **/
1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 	int err;
1098 	int numvecs, i;
1099 
1100 	if (!msix)
1101 		goto msi_only;
1102 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1103 
1104 	/* Number of supported queues. */
1105 	adapter->num_rx_queues = adapter->rss_queues;
1106 	if (adapter->vfs_allocated_count)
1107 		adapter->num_tx_queues = 1;
1108 	else
1109 		adapter->num_tx_queues = adapter->rss_queues;
1110 
1111 	/* start with one vector for every Rx queue */
1112 	numvecs = adapter->num_rx_queues;
1113 
1114 	/* if Tx handler is separate add 1 for every Tx queue */
1115 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 		numvecs += adapter->num_tx_queues;
1117 
1118 	/* store the number of vectors reserved for queues */
1119 	adapter->num_q_vectors = numvecs;
1120 
1121 	/* add 1 vector for link status interrupts */
1122 	numvecs++;
1123 	for (i = 0; i < numvecs; i++)
1124 		adapter->msix_entries[i].entry = i;
1125 
1126 	err = pci_enable_msix_range(adapter->pdev,
1127 				    adapter->msix_entries,
1128 				    numvecs,
1129 				    numvecs);
1130 	if (err > 0)
1131 		return;
1132 
1133 	igb_reset_interrupt_capability(adapter);
1134 
1135 	/* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 	/* disable SR-IOV for non MSI-X configurations */
1140 	if (adapter->vf_data) {
1141 		struct e1000_hw *hw = &adapter->hw;
1142 		/* disable iov and allow time for transactions to clear */
1143 		pci_disable_sriov(adapter->pdev);
1144 		msleep(500);
1145 
1146 		kfree(adapter->vf_mac_list);
1147 		adapter->vf_mac_list = NULL;
1148 		kfree(adapter->vf_data);
1149 		adapter->vf_data = NULL;
1150 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 		wrfl();
1152 		msleep(100);
1153 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 	}
1155 #endif
1156 	adapter->vfs_allocated_count = 0;
1157 	adapter->rss_queues = 1;
1158 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 	adapter->num_rx_queues = 1;
1160 	adapter->num_tx_queues = 1;
1161 	adapter->num_q_vectors = 1;
1162 	if (!pci_enable_msi(adapter->pdev))
1163 		adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165 
1166 static void igb_add_ring(struct igb_ring *ring,
1167 			 struct igb_ring_container *head)
1168 {
1169 	head->ring = ring;
1170 	head->count++;
1171 }
1172 
1173 /**
1174  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175  *  @adapter: board private structure to initialize
1176  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177  *  @v_idx: index of vector in adapter struct
1178  *  @txr_count: total number of Tx rings to allocate
1179  *  @txr_idx: index of first Tx ring to allocate
1180  *  @rxr_count: total number of Rx rings to allocate
1181  *  @rxr_idx: index of first Rx ring to allocate
1182  *
1183  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184  **/
1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 			      int v_count, int v_idx,
1187 			      int txr_count, int txr_idx,
1188 			      int rxr_count, int rxr_idx)
1189 {
1190 	struct igb_q_vector *q_vector;
1191 	struct igb_ring *ring;
1192 	int ring_count;
1193 	size_t size;
1194 
1195 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196 	if (txr_count > 1 || rxr_count > 1)
1197 		return -ENOMEM;
1198 
1199 	ring_count = txr_count + rxr_count;
1200 	size = struct_size(q_vector, ring, ring_count);
1201 
1202 	/* allocate q_vector and rings */
1203 	q_vector = adapter->q_vector[v_idx];
1204 	if (!q_vector) {
1205 		q_vector = kzalloc(size, GFP_KERNEL);
1206 	} else if (size > ksize(q_vector)) {
1207 		kfree_rcu(q_vector, rcu);
1208 		q_vector = kzalloc(size, GFP_KERNEL);
1209 	} else {
1210 		memset(q_vector, 0, size);
1211 	}
1212 	if (!q_vector)
1213 		return -ENOMEM;
1214 
1215 	/* initialize NAPI */
1216 	netif_napi_add(adapter->netdev, &q_vector->napi,
1217 		       igb_poll, 64);
1218 
1219 	/* tie q_vector and adapter together */
1220 	adapter->q_vector[v_idx] = q_vector;
1221 	q_vector->adapter = adapter;
1222 
1223 	/* initialize work limits */
1224 	q_vector->tx.work_limit = adapter->tx_work_limit;
1225 
1226 	/* initialize ITR configuration */
1227 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 	q_vector->itr_val = IGB_START_ITR;
1229 
1230 	/* initialize pointer to rings */
1231 	ring = q_vector->ring;
1232 
1233 	/* intialize ITR */
1234 	if (rxr_count) {
1235 		/* rx or rx/tx vector */
1236 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 			q_vector->itr_val = adapter->rx_itr_setting;
1238 	} else {
1239 		/* tx only vector */
1240 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 			q_vector->itr_val = adapter->tx_itr_setting;
1242 	}
1243 
1244 	if (txr_count) {
1245 		/* assign generic ring traits */
1246 		ring->dev = &adapter->pdev->dev;
1247 		ring->netdev = adapter->netdev;
1248 
1249 		/* configure backlink on ring */
1250 		ring->q_vector = q_vector;
1251 
1252 		/* update q_vector Tx values */
1253 		igb_add_ring(ring, &q_vector->tx);
1254 
1255 		/* For 82575, context index must be unique per ring. */
1256 		if (adapter->hw.mac.type == e1000_82575)
1257 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258 
1259 		/* apply Tx specific ring traits */
1260 		ring->count = adapter->tx_ring_count;
1261 		ring->queue_index = txr_idx;
1262 
1263 		ring->cbs_enable = false;
1264 		ring->idleslope = 0;
1265 		ring->sendslope = 0;
1266 		ring->hicredit = 0;
1267 		ring->locredit = 0;
1268 
1269 		u64_stats_init(&ring->tx_syncp);
1270 		u64_stats_init(&ring->tx_syncp2);
1271 
1272 		/* assign ring to adapter */
1273 		adapter->tx_ring[txr_idx] = ring;
1274 
1275 		/* push pointer to next ring */
1276 		ring++;
1277 	}
1278 
1279 	if (rxr_count) {
1280 		/* assign generic ring traits */
1281 		ring->dev = &adapter->pdev->dev;
1282 		ring->netdev = adapter->netdev;
1283 
1284 		/* configure backlink on ring */
1285 		ring->q_vector = q_vector;
1286 
1287 		/* update q_vector Rx values */
1288 		igb_add_ring(ring, &q_vector->rx);
1289 
1290 		/* set flag indicating ring supports SCTP checksum offload */
1291 		if (adapter->hw.mac.type >= e1000_82576)
1292 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293 
1294 		/* On i350, i354, i210, and i211, loopback VLAN packets
1295 		 * have the tag byte-swapped.
1296 		 */
1297 		if (adapter->hw.mac.type >= e1000_i350)
1298 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299 
1300 		/* apply Rx specific ring traits */
1301 		ring->count = adapter->rx_ring_count;
1302 		ring->queue_index = rxr_idx;
1303 
1304 		u64_stats_init(&ring->rx_syncp);
1305 
1306 		/* assign ring to adapter */
1307 		adapter->rx_ring[rxr_idx] = ring;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 	int q_vectors = adapter->num_q_vectors;
1324 	int rxr_remaining = adapter->num_rx_queues;
1325 	int txr_remaining = adapter->num_tx_queues;
1326 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 	int err;
1328 
1329 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 		for (; rxr_remaining; v_idx++) {
1331 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 						 0, 0, 1, rxr_idx);
1333 
1334 			if (err)
1335 				goto err_out;
1336 
1337 			/* update counts and index */
1338 			rxr_remaining--;
1339 			rxr_idx++;
1340 		}
1341 	}
1342 
1343 	for (; v_idx < q_vectors; v_idx++) {
1344 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346 
1347 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 					 tqpv, txr_idx, rqpv, rxr_idx);
1349 
1350 		if (err)
1351 			goto err_out;
1352 
1353 		/* update counts and index */
1354 		rxr_remaining -= rqpv;
1355 		txr_remaining -= tqpv;
1356 		rxr_idx++;
1357 		txr_idx++;
1358 	}
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	adapter->num_tx_queues = 0;
1364 	adapter->num_rx_queues = 0;
1365 	adapter->num_q_vectors = 0;
1366 
1367 	while (v_idx--)
1368 		igb_free_q_vector(adapter, v_idx);
1369 
1370 	return -ENOMEM;
1371 }
1372 
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 	struct pci_dev *pdev = adapter->pdev;
1383 	int err;
1384 
1385 	igb_set_interrupt_capability(adapter, msix);
1386 
1387 	err = igb_alloc_q_vectors(adapter);
1388 	if (err) {
1389 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 		goto err_alloc_q_vectors;
1391 	}
1392 
1393 	igb_cache_ring_register(adapter);
1394 
1395 	return 0;
1396 
1397 err_alloc_q_vectors:
1398 	igb_reset_interrupt_capability(adapter);
1399 	return err;
1400 }
1401 
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 	struct net_device *netdev = adapter->netdev;
1412 	struct pci_dev *pdev = adapter->pdev;
1413 	int err = 0;
1414 
1415 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 		err = igb_request_msix(adapter);
1417 		if (!err)
1418 			goto request_done;
1419 		/* fall back to MSI */
1420 		igb_free_all_tx_resources(adapter);
1421 		igb_free_all_rx_resources(adapter);
1422 
1423 		igb_clear_interrupt_scheme(adapter);
1424 		err = igb_init_interrupt_scheme(adapter, false);
1425 		if (err)
1426 			goto request_done;
1427 
1428 		igb_setup_all_tx_resources(adapter);
1429 		igb_setup_all_rx_resources(adapter);
1430 		igb_configure(adapter);
1431 	}
1432 
1433 	igb_assign_vector(adapter->q_vector[0], 0);
1434 
1435 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 				  netdev->name, adapter);
1438 		if (!err)
1439 			goto request_done;
1440 
1441 		/* fall back to legacy interrupts */
1442 		igb_reset_interrupt_capability(adapter);
1443 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 	}
1445 
1446 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 			  netdev->name, adapter);
1448 
1449 	if (err)
1450 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 			err);
1452 
1453 request_done:
1454 	return err;
1455 }
1456 
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 		int vector = 0, i;
1461 
1462 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1463 
1464 		for (i = 0; i < adapter->num_q_vectors; i++)
1465 			free_irq(adapter->msix_entries[vector++].vector,
1466 				 adapter->q_vector[i]);
1467 	} else {
1468 		free_irq(adapter->pdev->irq, adapter);
1469 	}
1470 }
1471 
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 	struct e1000_hw *hw = &adapter->hw;
1479 
1480 	/* we need to be careful when disabling interrupts.  The VFs are also
1481 	 * mapped into these registers and so clearing the bits can cause
1482 	 * issues on the VF drivers so we only need to clear what we set
1483 	 */
1484 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 		u32 regval = rd32(E1000_EIAM);
1486 
1487 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 		regval = rd32(E1000_EIAC);
1490 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 	}
1492 
1493 	wr32(E1000_IAM, 0);
1494 	wr32(E1000_IMC, ~0);
1495 	wrfl();
1496 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 		int i;
1498 
1499 		for (i = 0; i < adapter->num_q_vectors; i++)
1500 			synchronize_irq(adapter->msix_entries[i].vector);
1501 	} else {
1502 		synchronize_irq(adapter->pdev->irq);
1503 	}
1504 }
1505 
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 	struct e1000_hw *hw = &adapter->hw;
1513 
1514 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 		u32 regval = rd32(E1000_EIAC);
1517 
1518 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 		regval = rd32(E1000_EIAM);
1520 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 		if (adapter->vfs_allocated_count) {
1523 			wr32(E1000_MBVFIMR, 0xFF);
1524 			ims |= E1000_IMS_VMMB;
1525 		}
1526 		wr32(E1000_IMS, ims);
1527 	} else {
1528 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 				E1000_IMS_DRSTA);
1530 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 	}
1533 }
1534 
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 	struct e1000_hw *hw = &adapter->hw;
1538 	u16 pf_id = adapter->vfs_allocated_count;
1539 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 	u16 old_vid = adapter->mng_vlan_id;
1541 
1542 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 		/* add VID to filter table */
1544 		igb_vfta_set(hw, vid, pf_id, true, true);
1545 		adapter->mng_vlan_id = vid;
1546 	} else {
1547 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 	}
1549 
1550 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 	    (vid != old_vid) &&
1552 	    !test_bit(old_vid, adapter->active_vlans)) {
1553 		/* remove VID from filter table */
1554 		igb_vfta_set(hw, vid, pf_id, false, true);
1555 	}
1556 }
1557 
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 	struct e1000_hw *hw = &adapter->hw;
1569 	u32 ctrl_ext;
1570 
1571 	/* Let firmware take over control of h/w */
1572 	ctrl_ext = rd32(E1000_CTRL_EXT);
1573 	wr32(E1000_CTRL_EXT,
1574 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576 
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 	struct e1000_hw *hw = &adapter->hw;
1588 	u32 ctrl_ext;
1589 
1590 	/* Let firmware know the driver has taken over */
1591 	ctrl_ext = rd32(E1000_CTRL_EXT);
1592 	wr32(E1000_CTRL_EXT,
1593 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595 
1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 	struct net_device *netdev = adapter->netdev;
1599 	struct e1000_hw *hw = &adapter->hw;
1600 
1601 	WARN_ON(hw->mac.type != e1000_i210);
1602 
1603 	if (enable)
1604 		adapter->flags |= IGB_FLAG_FQTSS;
1605 	else
1606 		adapter->flags &= ~IGB_FLAG_FQTSS;
1607 
1608 	if (netif_running(netdev))
1609 		schedule_work(&adapter->reset_task);
1610 }
1611 
1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616 
1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 				   enum tx_queue_prio prio)
1619 {
1620 	u32 val;
1621 
1622 	WARN_ON(hw->mac.type != e1000_i210);
1623 	WARN_ON(queue < 0 || queue > 4);
1624 
1625 	val = rd32(E1000_I210_TXDCTL(queue));
1626 
1627 	if (prio == TX_QUEUE_PRIO_HIGH)
1628 		val |= E1000_TXDCTL_PRIORITY;
1629 	else
1630 		val &= ~E1000_TXDCTL_PRIORITY;
1631 
1632 	wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634 
1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 	u32 val;
1638 
1639 	WARN_ON(hw->mac.type != e1000_i210);
1640 	WARN_ON(queue < 0 || queue > 1);
1641 
1642 	val = rd32(E1000_I210_TQAVCC(queue));
1643 
1644 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 		val |= E1000_TQAVCC_QUEUEMODE;
1646 	else
1647 		val &= ~E1000_TQAVCC_QUEUEMODE;
1648 
1649 	wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651 
1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 	int i;
1655 
1656 	for (i = 0; i < adapter->num_tx_queues; i++) {
1657 		if (adapter->tx_ring[i]->cbs_enable)
1658 			return true;
1659 	}
1660 
1661 	return false;
1662 }
1663 
1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 	int i;
1667 
1668 	for (i = 0; i < adapter->num_tx_queues; i++) {
1669 		if (adapter->tx_ring[i]->launchtime_enable)
1670 			return true;
1671 	}
1672 
1673 	return false;
1674 }
1675 
1676 /**
1677  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678  *  @adapter: pointer to adapter struct
1679  *  @queue: queue number
1680  *
1681  *  Configure CBS and Launchtime for a given hardware queue.
1682  *  Parameters are retrieved from the correct Tx ring, so
1683  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1684  *  for setting those correctly prior to this function being called.
1685  **/
1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 	struct net_device *netdev = adapter->netdev;
1689 	struct e1000_hw *hw = &adapter->hw;
1690 	struct igb_ring *ring;
1691 	u32 tqavcc, tqavctrl;
1692 	u16 value;
1693 
1694 	WARN_ON(hw->mac.type != e1000_i210);
1695 	WARN_ON(queue < 0 || queue > 1);
1696 	ring = adapter->tx_ring[queue];
1697 
1698 	/* If any of the Qav features is enabled, configure queues as SR and
1699 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1700 	 * as SP.
1701 	 */
1702 	if (ring->cbs_enable || ring->launchtime_enable) {
1703 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1704 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1705 	} else {
1706 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1707 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1708 	}
1709 
1710 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1711 	if (ring->cbs_enable || queue == 0) {
1712 		/* i210 does not allow the queue 0 to be in the Strict
1713 		 * Priority mode while the Qav mode is enabled, so,
1714 		 * instead of disabling strict priority mode, we give
1715 		 * queue 0 the maximum of credits possible.
1716 		 *
1717 		 * See section 8.12.19 of the i210 datasheet, "Note:
1718 		 * Queue0 QueueMode must be set to 1b when
1719 		 * TransmitMode is set to Qav."
1720 		 */
1721 		if (queue == 0 && !ring->cbs_enable) {
1722 			/* max "linkspeed" idleslope in kbps */
1723 			ring->idleslope = 1000000;
1724 			ring->hicredit = ETH_FRAME_LEN;
1725 		}
1726 
1727 		/* Always set data transfer arbitration to credit-based
1728 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1729 		 * the queues.
1730 		 */
1731 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1732 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1733 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1734 
1735 		/* According to i210 datasheet section 7.2.7.7, we should set
1736 		 * the 'idleSlope' field from TQAVCC register following the
1737 		 * equation:
1738 		 *
1739 		 * For 100 Mbps link speed:
1740 		 *
1741 		 *     value = BW * 0x7735 * 0.2                          (E1)
1742 		 *
1743 		 * For 1000Mbps link speed:
1744 		 *
1745 		 *     value = BW * 0x7735 * 2                            (E2)
1746 		 *
1747 		 * E1 and E2 can be merged into one equation as shown below.
1748 		 * Note that 'link-speed' is in Mbps.
1749 		 *
1750 		 *     value = BW * 0x7735 * 2 * link-speed
1751 		 *                           --------------               (E3)
1752 		 *                                1000
1753 		 *
1754 		 * 'BW' is the percentage bandwidth out of full link speed
1755 		 * which can be found with the following equation. Note that
1756 		 * idleSlope here is the parameter from this function which
1757 		 * is in kbps.
1758 		 *
1759 		 *     BW =     idleSlope
1760 		 *          -----------------                             (E4)
1761 		 *          link-speed * 1000
1762 		 *
1763 		 * That said, we can come up with a generic equation to
1764 		 * calculate the value we should set it TQAVCC register by
1765 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1766 		 *
1767 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1768 		 *         -----------------            --------------    (E5)
1769 		 *         link-speed * 1000                 1000
1770 		 *
1771 		 * 'link-speed' is present in both sides of the fraction so
1772 		 * it is canceled out. The final equation is the following:
1773 		 *
1774 		 *     value = idleSlope * 61034
1775 		 *             -----------------                          (E6)
1776 		 *                  1000000
1777 		 *
1778 		 * NOTE: For i210, given the above, we can see that idleslope
1779 		 *       is represented in 16.38431 kbps units by the value at
1780 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1781 		 *       the granularity for idleslope increments.
1782 		 *       For instance, if you want to configure a 2576kbps
1783 		 *       idleslope, the value to be written on the register
1784 		 *       would have to be 157.23. If rounded down, you end
1785 		 *       up with less bandwidth available than originally
1786 		 *       required (~2572 kbps). If rounded up, you end up
1787 		 *       with a higher bandwidth (~2589 kbps). Below the
1788 		 *       approach we take is to always round up the
1789 		 *       calculated value, so the resulting bandwidth might
1790 		 *       be slightly higher for some configurations.
1791 		 */
1792 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1793 
1794 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1795 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1796 		tqavcc |= value;
1797 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798 
1799 		wr32(E1000_I210_TQAVHC(queue),
1800 		     0x80000000 + ring->hicredit * 0x7735);
1801 	} else {
1802 
1803 		/* Set idleSlope to zero. */
1804 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1805 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1806 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1807 
1808 		/* Set hiCredit to zero. */
1809 		wr32(E1000_I210_TQAVHC(queue), 0);
1810 
1811 		/* If CBS is not enabled for any queues anymore, then return to
1812 		 * the default state of Data Transmission Arbitration on
1813 		 * TQAVCTRL.
1814 		 */
1815 		if (!is_any_cbs_enabled(adapter)) {
1816 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1818 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1819 		}
1820 	}
1821 
1822 	/* If LaunchTime is enabled, set DataTranTIM. */
1823 	if (ring->launchtime_enable) {
1824 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1825 		 * for any of the SR queues, and configure fetchtime delta.
1826 		 * XXX NOTE:
1827 		 *     - LaunchTime will be enabled for all SR queues.
1828 		 *     - A fixed offset can be added relative to the launch
1829 		 *       time of all packets if configured at reg LAUNCH_OS0.
1830 		 *       We are keeping it as 0 for now (default value).
1831 		 */
1832 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1833 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1834 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1835 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1836 	} else {
1837 		/* If Launchtime is not enabled for any SR queues anymore,
1838 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1839 		 * effectively disabling Launchtime.
1840 		 */
1841 		if (!is_any_txtime_enabled(adapter)) {
1842 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1843 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1844 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1845 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1846 		}
1847 	}
1848 
1849 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1850 	 * CBS are not configurable by software so we don't do any 'controller
1851 	 * configuration' in respect to these parameters.
1852 	 */
1853 
1854 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1855 		   ring->cbs_enable ? "enabled" : "disabled",
1856 		   ring->launchtime_enable ? "enabled" : "disabled",
1857 		   queue,
1858 		   ring->idleslope, ring->sendslope,
1859 		   ring->hicredit, ring->locredit);
1860 }
1861 
1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863 				  bool enable)
1864 {
1865 	struct igb_ring *ring;
1866 
1867 	if (queue < 0 || queue > adapter->num_tx_queues)
1868 		return -EINVAL;
1869 
1870 	ring = adapter->tx_ring[queue];
1871 	ring->launchtime_enable = enable;
1872 
1873 	return 0;
1874 }
1875 
1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877 			       bool enable, int idleslope, int sendslope,
1878 			       int hicredit, int locredit)
1879 {
1880 	struct igb_ring *ring;
1881 
1882 	if (queue < 0 || queue > adapter->num_tx_queues)
1883 		return -EINVAL;
1884 
1885 	ring = adapter->tx_ring[queue];
1886 
1887 	ring->cbs_enable = enable;
1888 	ring->idleslope = idleslope;
1889 	ring->sendslope = sendslope;
1890 	ring->hicredit = hicredit;
1891 	ring->locredit = locredit;
1892 
1893 	return 0;
1894 }
1895 
1896 /**
1897  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898  *  @adapter: pointer to adapter struct
1899  *
1900  *  Configure TQAVCTRL register switching the controller's Tx mode
1901  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1902  *  a call to igb_config_tx_modes() per queue so any previously saved
1903  *  Tx parameters are applied.
1904  **/
1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907 	struct net_device *netdev = adapter->netdev;
1908 	struct e1000_hw *hw = &adapter->hw;
1909 	u32 val;
1910 
1911 	/* Only i210 controller supports changing the transmission mode. */
1912 	if (hw->mac.type != e1000_i210)
1913 		return;
1914 
1915 	if (is_fqtss_enabled(adapter)) {
1916 		int i, max_queue;
1917 
1918 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920 		 * so SP queues wait for SR ones.
1921 		 */
1922 		val = rd32(E1000_I210_TQAVCTRL);
1923 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925 		wr32(E1000_I210_TQAVCTRL, val);
1926 
1927 		/* Configure Tx and Rx packet buffers sizes as described in
1928 		 * i210 datasheet section 7.2.7.7.
1929 		 */
1930 		val = rd32(E1000_TXPBS);
1931 		val &= ~I210_TXPBSIZE_MASK;
1932 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1933 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1934 		wr32(E1000_TXPBS, val);
1935 
1936 		val = rd32(E1000_RXPBS);
1937 		val &= ~I210_RXPBSIZE_MASK;
1938 		val |= I210_RXPBSIZE_PB_30KB;
1939 		wr32(E1000_RXPBS, val);
1940 
1941 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942 		 * register should not exceed the buffer size programmed in
1943 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945 		 * 4kB / 64.
1946 		 *
1947 		 * However, when we do so, no frame from queue 2 and 3 are
1948 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1949 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1950 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 		 */
1952 		val = (4096 - 1) / 64;
1953 		wr32(E1000_I210_DTXMXPKTSZ, val);
1954 
1955 		/* Since FQTSS mode is enabled, apply any CBS configuration
1956 		 * previously set. If no previous CBS configuration has been
1957 		 * done, then the initial configuration is applied, which means
1958 		 * CBS is disabled.
1959 		 */
1960 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962 
1963 		for (i = 0; i < max_queue; i++) {
1964 			igb_config_tx_modes(adapter, i);
1965 		}
1966 	} else {
1967 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970 
1971 		val = rd32(E1000_I210_TQAVCTRL);
1972 		/* According to Section 8.12.21, the other flags we've set when
1973 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1974 		 * don't set they here.
1975 		 */
1976 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977 		wr32(E1000_I210_TQAVCTRL, val);
1978 	}
1979 
1980 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981 		   "enabled" : "disabled");
1982 }
1983 
1984 /**
1985  *  igb_configure - configure the hardware for RX and TX
1986  *  @adapter: private board structure
1987  **/
1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990 	struct net_device *netdev = adapter->netdev;
1991 	int i;
1992 
1993 	igb_get_hw_control(adapter);
1994 	igb_set_rx_mode(netdev);
1995 	igb_setup_tx_mode(adapter);
1996 
1997 	igb_restore_vlan(adapter);
1998 
1999 	igb_setup_tctl(adapter);
2000 	igb_setup_mrqc(adapter);
2001 	igb_setup_rctl(adapter);
2002 
2003 	igb_nfc_filter_restore(adapter);
2004 	igb_configure_tx(adapter);
2005 	igb_configure_rx(adapter);
2006 
2007 	igb_rx_fifo_flush_82575(&adapter->hw);
2008 
2009 	/* call igb_desc_unused which always leaves
2010 	 * at least 1 descriptor unused to make sure
2011 	 * next_to_use != next_to_clean
2012 	 */
2013 	for (i = 0; i < adapter->num_rx_queues; i++) {
2014 		struct igb_ring *ring = adapter->rx_ring[i];
2015 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016 	}
2017 }
2018 
2019 /**
2020  *  igb_power_up_link - Power up the phy/serdes link
2021  *  @adapter: address of board private structure
2022  **/
2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025 	igb_reset_phy(&adapter->hw);
2026 
2027 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028 		igb_power_up_phy_copper(&adapter->hw);
2029 	else
2030 		igb_power_up_serdes_link_82575(&adapter->hw);
2031 
2032 	igb_setup_link(&adapter->hw);
2033 }
2034 
2035 /**
2036  *  igb_power_down_link - Power down the phy/serdes link
2037  *  @adapter: address of board private structure
2038  */
2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042 		igb_power_down_phy_copper_82575(&adapter->hw);
2043 	else
2044 		igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046 
2047 /**
2048  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2049  * @adapter: address of the board private structure
2050  **/
2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053 	struct e1000_hw *hw = &adapter->hw;
2054 	u32 ctrl_ext, connsw;
2055 	bool swap_now = false;
2056 
2057 	ctrl_ext = rd32(E1000_CTRL_EXT);
2058 	connsw = rd32(E1000_CONNSW);
2059 
2060 	/* need to live swap if current media is copper and we have fiber/serdes
2061 	 * to go to.
2062 	 */
2063 
2064 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2065 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 		swap_now = true;
2067 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2068 		   !(connsw & E1000_CONNSW_SERDESD)) {
2069 		/* copper signal takes time to appear */
2070 		if (adapter->copper_tries < 4) {
2071 			adapter->copper_tries++;
2072 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2073 			wr32(E1000_CONNSW, connsw);
2074 			return;
2075 		} else {
2076 			adapter->copper_tries = 0;
2077 			if ((connsw & E1000_CONNSW_PHYSD) &&
2078 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2079 				swap_now = true;
2080 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2081 				wr32(E1000_CONNSW, connsw);
2082 			}
2083 		}
2084 	}
2085 
2086 	if (!swap_now)
2087 		return;
2088 
2089 	switch (hw->phy.media_type) {
2090 	case e1000_media_type_copper:
2091 		netdev_info(adapter->netdev,
2092 			"MAS: changing media to fiber/serdes\n");
2093 		ctrl_ext |=
2094 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096 		adapter->copper_tries = 0;
2097 		break;
2098 	case e1000_media_type_internal_serdes:
2099 	case e1000_media_type_fiber:
2100 		netdev_info(adapter->netdev,
2101 			"MAS: changing media to copper\n");
2102 		ctrl_ext &=
2103 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2104 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2105 		break;
2106 	default:
2107 		/* shouldn't get here during regular operation */
2108 		netdev_err(adapter->netdev,
2109 			"AMS: Invalid media type found, returning\n");
2110 		break;
2111 	}
2112 	wr32(E1000_CTRL_EXT, ctrl_ext);
2113 }
2114 
2115 /**
2116  *  igb_up - Open the interface and prepare it to handle traffic
2117  *  @adapter: board private structure
2118  **/
2119 int igb_up(struct igb_adapter *adapter)
2120 {
2121 	struct e1000_hw *hw = &adapter->hw;
2122 	int i;
2123 
2124 	/* hardware has been reset, we need to reload some things */
2125 	igb_configure(adapter);
2126 
2127 	clear_bit(__IGB_DOWN, &adapter->state);
2128 
2129 	for (i = 0; i < adapter->num_q_vectors; i++)
2130 		napi_enable(&(adapter->q_vector[i]->napi));
2131 
2132 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2133 		igb_configure_msix(adapter);
2134 	else
2135 		igb_assign_vector(adapter->q_vector[0], 0);
2136 
2137 	/* Clear any pending interrupts. */
2138 	rd32(E1000_TSICR);
2139 	rd32(E1000_ICR);
2140 	igb_irq_enable(adapter);
2141 
2142 	/* notify VFs that reset has been completed */
2143 	if (adapter->vfs_allocated_count) {
2144 		u32 reg_data = rd32(E1000_CTRL_EXT);
2145 
2146 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2147 		wr32(E1000_CTRL_EXT, reg_data);
2148 	}
2149 
2150 	netif_tx_start_all_queues(adapter->netdev);
2151 
2152 	/* start the watchdog. */
2153 	hw->mac.get_link_status = 1;
2154 	schedule_work(&adapter->watchdog_task);
2155 
2156 	if ((adapter->flags & IGB_FLAG_EEE) &&
2157 	    (!hw->dev_spec._82575.eee_disable))
2158 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2159 
2160 	return 0;
2161 }
2162 
2163 void igb_down(struct igb_adapter *adapter)
2164 {
2165 	struct net_device *netdev = adapter->netdev;
2166 	struct e1000_hw *hw = &adapter->hw;
2167 	u32 tctl, rctl;
2168 	int i;
2169 
2170 	/* signal that we're down so the interrupt handler does not
2171 	 * reschedule our watchdog timer
2172 	 */
2173 	set_bit(__IGB_DOWN, &adapter->state);
2174 
2175 	/* disable receives in the hardware */
2176 	rctl = rd32(E1000_RCTL);
2177 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2178 	/* flush and sleep below */
2179 
2180 	igb_nfc_filter_exit(adapter);
2181 
2182 	netif_carrier_off(netdev);
2183 	netif_tx_stop_all_queues(netdev);
2184 
2185 	/* disable transmits in the hardware */
2186 	tctl = rd32(E1000_TCTL);
2187 	tctl &= ~E1000_TCTL_EN;
2188 	wr32(E1000_TCTL, tctl);
2189 	/* flush both disables and wait for them to finish */
2190 	wrfl();
2191 	usleep_range(10000, 11000);
2192 
2193 	igb_irq_disable(adapter);
2194 
2195 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2196 
2197 	for (i = 0; i < adapter->num_q_vectors; i++) {
2198 		if (adapter->q_vector[i]) {
2199 			napi_synchronize(&adapter->q_vector[i]->napi);
2200 			napi_disable(&adapter->q_vector[i]->napi);
2201 		}
2202 	}
2203 
2204 	del_timer_sync(&adapter->watchdog_timer);
2205 	del_timer_sync(&adapter->phy_info_timer);
2206 
2207 	/* record the stats before reset*/
2208 	spin_lock(&adapter->stats64_lock);
2209 	igb_update_stats(adapter);
2210 	spin_unlock(&adapter->stats64_lock);
2211 
2212 	adapter->link_speed = 0;
2213 	adapter->link_duplex = 0;
2214 
2215 	if (!pci_channel_offline(adapter->pdev))
2216 		igb_reset(adapter);
2217 
2218 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2219 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2220 
2221 	igb_clean_all_tx_rings(adapter);
2222 	igb_clean_all_rx_rings(adapter);
2223 #ifdef CONFIG_IGB_DCA
2224 
2225 	/* since we reset the hardware DCA settings were cleared */
2226 	igb_setup_dca(adapter);
2227 #endif
2228 }
2229 
2230 void igb_reinit_locked(struct igb_adapter *adapter)
2231 {
2232 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2233 		usleep_range(1000, 2000);
2234 	igb_down(adapter);
2235 	igb_up(adapter);
2236 	clear_bit(__IGB_RESETTING, &adapter->state);
2237 }
2238 
2239 /** igb_enable_mas - Media Autosense re-enable after swap
2240  *
2241  * @adapter: adapter struct
2242  **/
2243 static void igb_enable_mas(struct igb_adapter *adapter)
2244 {
2245 	struct e1000_hw *hw = &adapter->hw;
2246 	u32 connsw = rd32(E1000_CONNSW);
2247 
2248 	/* configure for SerDes media detect */
2249 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2250 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2251 		connsw |= E1000_CONNSW_ENRGSRC;
2252 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2253 		wr32(E1000_CONNSW, connsw);
2254 		wrfl();
2255 	}
2256 }
2257 
2258 void igb_reset(struct igb_adapter *adapter)
2259 {
2260 	struct pci_dev *pdev = adapter->pdev;
2261 	struct e1000_hw *hw = &adapter->hw;
2262 	struct e1000_mac_info *mac = &hw->mac;
2263 	struct e1000_fc_info *fc = &hw->fc;
2264 	u32 pba, hwm;
2265 
2266 	/* Repartition Pba for greater than 9k mtu
2267 	 * To take effect CTRL.RST is required.
2268 	 */
2269 	switch (mac->type) {
2270 	case e1000_i350:
2271 	case e1000_i354:
2272 	case e1000_82580:
2273 		pba = rd32(E1000_RXPBS);
2274 		pba = igb_rxpbs_adjust_82580(pba);
2275 		break;
2276 	case e1000_82576:
2277 		pba = rd32(E1000_RXPBS);
2278 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2279 		break;
2280 	case e1000_82575:
2281 	case e1000_i210:
2282 	case e1000_i211:
2283 	default:
2284 		pba = E1000_PBA_34K;
2285 		break;
2286 	}
2287 
2288 	if (mac->type == e1000_82575) {
2289 		u32 min_rx_space, min_tx_space, needed_tx_space;
2290 
2291 		/* write Rx PBA so that hardware can report correct Tx PBA */
2292 		wr32(E1000_PBA, pba);
2293 
2294 		/* To maintain wire speed transmits, the Tx FIFO should be
2295 		 * large enough to accommodate two full transmit packets,
2296 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2297 		 * the Rx FIFO should be large enough to accommodate at least
2298 		 * one full receive packet and is similarly rounded up and
2299 		 * expressed in KB.
2300 		 */
2301 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302 
2303 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2304 		 * but don't include Ethernet FCS because hardware appends it.
2305 		 * We only need to round down to the nearest 512 byte block
2306 		 * count since the value we care about is 2 frames, not 1.
2307 		 */
2308 		min_tx_space = adapter->max_frame_size;
2309 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2310 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311 
2312 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2313 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314 
2315 		/* If current Tx allocation is less than the min Tx FIFO size,
2316 		 * and the min Tx FIFO size is less than the current Rx FIFO
2317 		 * allocation, take space away from current Rx allocation.
2318 		 */
2319 		if (needed_tx_space < pba) {
2320 			pba -= needed_tx_space;
2321 
2322 			/* if short on Rx space, Rx wins and must trump Tx
2323 			 * adjustment
2324 			 */
2325 			if (pba < min_rx_space)
2326 				pba = min_rx_space;
2327 		}
2328 
2329 		/* adjust PBA for jumbo frames */
2330 		wr32(E1000_PBA, pba);
2331 	}
2332 
2333 	/* flow control settings
2334 	 * The high water mark must be low enough to fit one full frame
2335 	 * after transmitting the pause frame.  As such we must have enough
2336 	 * space to allow for us to complete our current transmit and then
2337 	 * receive the frame that is in progress from the link partner.
2338 	 * Set it to:
2339 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340 	 */
2341 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342 
2343 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2344 	fc->low_water = fc->high_water - 16;
2345 	fc->pause_time = 0xFFFF;
2346 	fc->send_xon = 1;
2347 	fc->current_mode = fc->requested_mode;
2348 
2349 	/* disable receive for all VFs and wait one second */
2350 	if (adapter->vfs_allocated_count) {
2351 		int i;
2352 
2353 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2354 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355 
2356 		/* ping all the active vfs to let them know we are going down */
2357 		igb_ping_all_vfs(adapter);
2358 
2359 		/* disable transmits and receives */
2360 		wr32(E1000_VFRE, 0);
2361 		wr32(E1000_VFTE, 0);
2362 	}
2363 
2364 	/* Allow time for pending master requests to run */
2365 	hw->mac.ops.reset_hw(hw);
2366 	wr32(E1000_WUC, 0);
2367 
2368 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2369 		/* need to resetup here after media swap */
2370 		adapter->ei.get_invariants(hw);
2371 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372 	}
2373 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2374 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2375 		igb_enable_mas(adapter);
2376 	}
2377 	if (hw->mac.ops.init_hw(hw))
2378 		dev_err(&pdev->dev, "Hardware Error\n");
2379 
2380 	/* RAR registers were cleared during init_hw, clear mac table */
2381 	igb_flush_mac_table(adapter);
2382 	__dev_uc_unsync(adapter->netdev, NULL);
2383 
2384 	/* Recover default RAR entry */
2385 	igb_set_default_mac_filter(adapter);
2386 
2387 	/* Flow control settings reset on hardware reset, so guarantee flow
2388 	 * control is off when forcing speed.
2389 	 */
2390 	if (!hw->mac.autoneg)
2391 		igb_force_mac_fc(hw);
2392 
2393 	igb_init_dmac(adapter, pba);
2394 #ifdef CONFIG_IGB_HWMON
2395 	/* Re-initialize the thermal sensor on i350 devices. */
2396 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2397 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2398 			/* If present, re-initialize the external thermal sensor
2399 			 * interface.
2400 			 */
2401 			if (adapter->ets)
2402 				mac->ops.init_thermal_sensor_thresh(hw);
2403 		}
2404 	}
2405 #endif
2406 	/* Re-establish EEE setting */
2407 	if (hw->phy.media_type == e1000_media_type_copper) {
2408 		switch (mac->type) {
2409 		case e1000_i350:
2410 		case e1000_i210:
2411 		case e1000_i211:
2412 			igb_set_eee_i350(hw, true, true);
2413 			break;
2414 		case e1000_i354:
2415 			igb_set_eee_i354(hw, true, true);
2416 			break;
2417 		default:
2418 			break;
2419 		}
2420 	}
2421 	if (!netif_running(adapter->netdev))
2422 		igb_power_down_link(adapter);
2423 
2424 	igb_update_mng_vlan(adapter);
2425 
2426 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2427 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428 
2429 	/* Re-enable PTP, where applicable. */
2430 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2431 		igb_ptp_reset(adapter);
2432 
2433 	igb_get_phy_info(hw);
2434 }
2435 
2436 static netdev_features_t igb_fix_features(struct net_device *netdev,
2437 	netdev_features_t features)
2438 {
2439 	/* Since there is no support for separate Rx/Tx vlan accel
2440 	 * enable/disable make sure Tx flag is always in same state as Rx.
2441 	 */
2442 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2443 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2444 	else
2445 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2446 
2447 	return features;
2448 }
2449 
2450 static int igb_set_features(struct net_device *netdev,
2451 	netdev_features_t features)
2452 {
2453 	netdev_features_t changed = netdev->features ^ features;
2454 	struct igb_adapter *adapter = netdev_priv(netdev);
2455 
2456 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2457 		igb_vlan_mode(netdev, features);
2458 
2459 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2460 		return 0;
2461 
2462 	if (!(features & NETIF_F_NTUPLE)) {
2463 		struct hlist_node *node2;
2464 		struct igb_nfc_filter *rule;
2465 
2466 		spin_lock(&adapter->nfc_lock);
2467 		hlist_for_each_entry_safe(rule, node2,
2468 					  &adapter->nfc_filter_list, nfc_node) {
2469 			igb_erase_filter(adapter, rule);
2470 			hlist_del(&rule->nfc_node);
2471 			kfree(rule);
2472 		}
2473 		spin_unlock(&adapter->nfc_lock);
2474 		adapter->nfc_filter_count = 0;
2475 	}
2476 
2477 	netdev->features = features;
2478 
2479 	if (netif_running(netdev))
2480 		igb_reinit_locked(adapter);
2481 	else
2482 		igb_reset(adapter);
2483 
2484 	return 1;
2485 }
2486 
2487 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2488 			   struct net_device *dev,
2489 			   const unsigned char *addr, u16 vid,
2490 			   u16 flags,
2491 			   struct netlink_ext_ack *extack)
2492 {
2493 	/* guarantee we can provide a unique filter for the unicast address */
2494 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2495 		struct igb_adapter *adapter = netdev_priv(dev);
2496 		int vfn = adapter->vfs_allocated_count;
2497 
2498 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2499 			return -ENOMEM;
2500 	}
2501 
2502 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2503 }
2504 
2505 #define IGB_MAX_MAC_HDR_LEN	127
2506 #define IGB_MAX_NETWORK_HDR_LEN	511
2507 
2508 static netdev_features_t
2509 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2510 		   netdev_features_t features)
2511 {
2512 	unsigned int network_hdr_len, mac_hdr_len;
2513 
2514 	/* Make certain the headers can be described by a context descriptor */
2515 	mac_hdr_len = skb_network_header(skb) - skb->data;
2516 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2517 		return features & ~(NETIF_F_HW_CSUM |
2518 				    NETIF_F_SCTP_CRC |
2519 				    NETIF_F_GSO_UDP_L4 |
2520 				    NETIF_F_HW_VLAN_CTAG_TX |
2521 				    NETIF_F_TSO |
2522 				    NETIF_F_TSO6);
2523 
2524 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2525 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2526 		return features & ~(NETIF_F_HW_CSUM |
2527 				    NETIF_F_SCTP_CRC |
2528 				    NETIF_F_GSO_UDP_L4 |
2529 				    NETIF_F_TSO |
2530 				    NETIF_F_TSO6);
2531 
2532 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2533 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2534 	 */
2535 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2536 		features &= ~NETIF_F_TSO;
2537 
2538 	return features;
2539 }
2540 
2541 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2542 {
2543 	if (!is_fqtss_enabled(adapter)) {
2544 		enable_fqtss(adapter, true);
2545 		return;
2546 	}
2547 
2548 	igb_config_tx_modes(adapter, queue);
2549 
2550 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2551 		enable_fqtss(adapter, false);
2552 }
2553 
2554 static int igb_offload_cbs(struct igb_adapter *adapter,
2555 			   struct tc_cbs_qopt_offload *qopt)
2556 {
2557 	struct e1000_hw *hw = &adapter->hw;
2558 	int err;
2559 
2560 	/* CBS offloading is only supported by i210 controller. */
2561 	if (hw->mac.type != e1000_i210)
2562 		return -EOPNOTSUPP;
2563 
2564 	/* CBS offloading is only supported by queue 0 and queue 1. */
2565 	if (qopt->queue < 0 || qopt->queue > 1)
2566 		return -EINVAL;
2567 
2568 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2569 				  qopt->idleslope, qopt->sendslope,
2570 				  qopt->hicredit, qopt->locredit);
2571 	if (err)
2572 		return err;
2573 
2574 	igb_offload_apply(adapter, qopt->queue);
2575 
2576 	return 0;
2577 }
2578 
2579 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2580 #define VLAN_PRIO_FULL_MASK (0x07)
2581 
2582 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2583 				struct flow_cls_offload *f,
2584 				int traffic_class,
2585 				struct igb_nfc_filter *input)
2586 {
2587 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2588 	struct flow_dissector *dissector = rule->match.dissector;
2589 	struct netlink_ext_ack *extack = f->common.extack;
2590 
2591 	if (dissector->used_keys &
2592 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2593 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2594 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2595 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2596 		NL_SET_ERR_MSG_MOD(extack,
2597 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598 		return -EOPNOTSUPP;
2599 	}
2600 
2601 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2602 		struct flow_match_eth_addrs match;
2603 
2604 		flow_rule_match_eth_addrs(rule, &match);
2605 		if (!is_zero_ether_addr(match.mask->dst)) {
2606 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2607 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608 				return -EINVAL;
2609 			}
2610 
2611 			input->filter.match_flags |=
2612 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2613 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2614 		}
2615 
2616 		if (!is_zero_ether_addr(match.mask->src)) {
2617 			if (!is_broadcast_ether_addr(match.mask->src)) {
2618 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619 				return -EINVAL;
2620 			}
2621 
2622 			input->filter.match_flags |=
2623 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624 			ether_addr_copy(input->filter.src_addr, match.key->src);
2625 		}
2626 	}
2627 
2628 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2629 		struct flow_match_basic match;
2630 
2631 		flow_rule_match_basic(rule, &match);
2632 		if (match.mask->n_proto) {
2633 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2634 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635 				return -EINVAL;
2636 			}
2637 
2638 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2639 			input->filter.etype = match.key->n_proto;
2640 		}
2641 	}
2642 
2643 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2644 		struct flow_match_vlan match;
2645 
2646 		flow_rule_match_vlan(rule, &match);
2647 		if (match.mask->vlan_priority) {
2648 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2649 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650 				return -EINVAL;
2651 			}
2652 
2653 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2654 			input->filter.vlan_tci =
2655 				(__force __be16)match.key->vlan_priority;
2656 		}
2657 	}
2658 
2659 	input->action = traffic_class;
2660 	input->cookie = f->cookie;
2661 
2662 	return 0;
2663 }
2664 
2665 static int igb_configure_clsflower(struct igb_adapter *adapter,
2666 				   struct flow_cls_offload *cls_flower)
2667 {
2668 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2669 	struct igb_nfc_filter *filter, *f;
2670 	int err, tc;
2671 
2672 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2673 	if (tc < 0) {
2674 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2675 		return -EINVAL;
2676 	}
2677 
2678 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2679 	if (!filter)
2680 		return -ENOMEM;
2681 
2682 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2683 	if (err < 0)
2684 		goto err_parse;
2685 
2686 	spin_lock(&adapter->nfc_lock);
2687 
2688 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2689 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690 			err = -EEXIST;
2691 			NL_SET_ERR_MSG_MOD(extack,
2692 					   "This filter is already set in ethtool");
2693 			goto err_locked;
2694 		}
2695 	}
2696 
2697 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2698 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2699 			err = -EEXIST;
2700 			NL_SET_ERR_MSG_MOD(extack,
2701 					   "This filter is already set in cls_flower");
2702 			goto err_locked;
2703 		}
2704 	}
2705 
2706 	err = igb_add_filter(adapter, filter);
2707 	if (err < 0) {
2708 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2709 		goto err_locked;
2710 	}
2711 
2712 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2713 
2714 	spin_unlock(&adapter->nfc_lock);
2715 
2716 	return 0;
2717 
2718 err_locked:
2719 	spin_unlock(&adapter->nfc_lock);
2720 
2721 err_parse:
2722 	kfree(filter);
2723 
2724 	return err;
2725 }
2726 
2727 static int igb_delete_clsflower(struct igb_adapter *adapter,
2728 				struct flow_cls_offload *cls_flower)
2729 {
2730 	struct igb_nfc_filter *filter;
2731 	int err;
2732 
2733 	spin_lock(&adapter->nfc_lock);
2734 
2735 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2736 		if (filter->cookie == cls_flower->cookie)
2737 			break;
2738 
2739 	if (!filter) {
2740 		err = -ENOENT;
2741 		goto out;
2742 	}
2743 
2744 	err = igb_erase_filter(adapter, filter);
2745 	if (err < 0)
2746 		goto out;
2747 
2748 	hlist_del(&filter->nfc_node);
2749 	kfree(filter);
2750 
2751 out:
2752 	spin_unlock(&adapter->nfc_lock);
2753 
2754 	return err;
2755 }
2756 
2757 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2758 				   struct flow_cls_offload *cls_flower)
2759 {
2760 	switch (cls_flower->command) {
2761 	case FLOW_CLS_REPLACE:
2762 		return igb_configure_clsflower(adapter, cls_flower);
2763 	case FLOW_CLS_DESTROY:
2764 		return igb_delete_clsflower(adapter, cls_flower);
2765 	case FLOW_CLS_STATS:
2766 		return -EOPNOTSUPP;
2767 	default:
2768 		return -EOPNOTSUPP;
2769 	}
2770 }
2771 
2772 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2773 				 void *cb_priv)
2774 {
2775 	struct igb_adapter *adapter = cb_priv;
2776 
2777 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2778 		return -EOPNOTSUPP;
2779 
2780 	switch (type) {
2781 	case TC_SETUP_CLSFLOWER:
2782 		return igb_setup_tc_cls_flower(adapter, type_data);
2783 
2784 	default:
2785 		return -EOPNOTSUPP;
2786 	}
2787 }
2788 
2789 static int igb_offload_txtime(struct igb_adapter *adapter,
2790 			      struct tc_etf_qopt_offload *qopt)
2791 {
2792 	struct e1000_hw *hw = &adapter->hw;
2793 	int err;
2794 
2795 	/* Launchtime offloading is only supported by i210 controller. */
2796 	if (hw->mac.type != e1000_i210)
2797 		return -EOPNOTSUPP;
2798 
2799 	/* Launchtime offloading is only supported by queues 0 and 1. */
2800 	if (qopt->queue < 0 || qopt->queue > 1)
2801 		return -EINVAL;
2802 
2803 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2804 	if (err)
2805 		return err;
2806 
2807 	igb_offload_apply(adapter, qopt->queue);
2808 
2809 	return 0;
2810 }
2811 
2812 static LIST_HEAD(igb_block_cb_list);
2813 
2814 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2815 			void *type_data)
2816 {
2817 	struct igb_adapter *adapter = netdev_priv(dev);
2818 
2819 	switch (type) {
2820 	case TC_SETUP_QDISC_CBS:
2821 		return igb_offload_cbs(adapter, type_data);
2822 	case TC_SETUP_BLOCK:
2823 		return flow_block_cb_setup_simple(type_data,
2824 						  &igb_block_cb_list,
2825 						  igb_setup_tc_block_cb,
2826 						  adapter, adapter, true);
2827 
2828 	case TC_SETUP_QDISC_ETF:
2829 		return igb_offload_txtime(adapter, type_data);
2830 
2831 	default:
2832 		return -EOPNOTSUPP;
2833 	}
2834 }
2835 
2836 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2837 {
2838 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2839 	struct igb_adapter *adapter = netdev_priv(dev);
2840 	struct bpf_prog *prog = bpf->prog, *old_prog;
2841 	bool running = netif_running(dev);
2842 	bool need_reset;
2843 
2844 	/* verify igb ring attributes are sufficient for XDP */
2845 	for (i = 0; i < adapter->num_rx_queues; i++) {
2846 		struct igb_ring *ring = adapter->rx_ring[i];
2847 
2848 		if (frame_size > igb_rx_bufsz(ring)) {
2849 			NL_SET_ERR_MSG_MOD(bpf->extack,
2850 					   "The RX buffer size is too small for the frame size");
2851 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2852 				    igb_rx_bufsz(ring), frame_size);
2853 			return -EINVAL;
2854 		}
2855 	}
2856 
2857 	old_prog = xchg(&adapter->xdp_prog, prog);
2858 	need_reset = (!!prog != !!old_prog);
2859 
2860 	/* device is up and bpf is added/removed, must setup the RX queues */
2861 	if (need_reset && running) {
2862 		igb_close(dev);
2863 	} else {
2864 		for (i = 0; i < adapter->num_rx_queues; i++)
2865 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2866 			    adapter->xdp_prog);
2867 	}
2868 
2869 	if (old_prog)
2870 		bpf_prog_put(old_prog);
2871 
2872 	/* bpf is just replaced, RXQ and MTU are already setup */
2873 	if (!need_reset)
2874 		return 0;
2875 
2876 	if (running)
2877 		igb_open(dev);
2878 
2879 	return 0;
2880 }
2881 
2882 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2883 {
2884 	switch (xdp->command) {
2885 	case XDP_SETUP_PROG:
2886 		return igb_xdp_setup(dev, xdp);
2887 	default:
2888 		return -EINVAL;
2889 	}
2890 }
2891 
2892 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2893 {
2894 	/* Force memory writes to complete before letting h/w know there
2895 	 * are new descriptors to fetch.
2896 	 */
2897 	wmb();
2898 	writel(ring->next_to_use, ring->tail);
2899 }
2900 
2901 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2902 {
2903 	unsigned int r_idx = smp_processor_id();
2904 
2905 	if (r_idx >= adapter->num_tx_queues)
2906 		r_idx = r_idx % adapter->num_tx_queues;
2907 
2908 	return adapter->tx_ring[r_idx];
2909 }
2910 
2911 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2912 {
2913 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2914 	int cpu = smp_processor_id();
2915 	struct igb_ring *tx_ring;
2916 	struct netdev_queue *nq;
2917 	u32 ret;
2918 
2919 	if (unlikely(!xdpf))
2920 		return IGB_XDP_CONSUMED;
2921 
2922 	/* During program transitions its possible adapter->xdp_prog is assigned
2923 	 * but ring has not been configured yet. In this case simply abort xmit.
2924 	 */
2925 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2926 	if (unlikely(!tx_ring))
2927 		return IGB_XDP_CONSUMED;
2928 
2929 	nq = txring_txq(tx_ring);
2930 	__netif_tx_lock(nq, cpu);
2931 	/* Avoid transmit queue timeout since we share it with the slow path */
2932 	nq->trans_start = jiffies;
2933 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2934 	__netif_tx_unlock(nq);
2935 
2936 	return ret;
2937 }
2938 
2939 static int igb_xdp_xmit(struct net_device *dev, int n,
2940 			struct xdp_frame **frames, u32 flags)
2941 {
2942 	struct igb_adapter *adapter = netdev_priv(dev);
2943 	int cpu = smp_processor_id();
2944 	struct igb_ring *tx_ring;
2945 	struct netdev_queue *nq;
2946 	int nxmit = 0;
2947 	int i;
2948 
2949 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2950 		return -ENETDOWN;
2951 
2952 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2953 		return -EINVAL;
2954 
2955 	/* During program transitions its possible adapter->xdp_prog is assigned
2956 	 * but ring has not been configured yet. In this case simply abort xmit.
2957 	 */
2958 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2959 	if (unlikely(!tx_ring))
2960 		return -ENXIO;
2961 
2962 	nq = txring_txq(tx_ring);
2963 	__netif_tx_lock(nq, cpu);
2964 
2965 	/* Avoid transmit queue timeout since we share it with the slow path */
2966 	nq->trans_start = jiffies;
2967 
2968 	for (i = 0; i < n; i++) {
2969 		struct xdp_frame *xdpf = frames[i];
2970 		int err;
2971 
2972 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2973 		if (err != IGB_XDP_TX)
2974 			break;
2975 		nxmit++;
2976 	}
2977 
2978 	__netif_tx_unlock(nq);
2979 
2980 	if (unlikely(flags & XDP_XMIT_FLUSH))
2981 		igb_xdp_ring_update_tail(tx_ring);
2982 
2983 	return nxmit;
2984 }
2985 
2986 static const struct net_device_ops igb_netdev_ops = {
2987 	.ndo_open		= igb_open,
2988 	.ndo_stop		= igb_close,
2989 	.ndo_start_xmit		= igb_xmit_frame,
2990 	.ndo_get_stats64	= igb_get_stats64,
2991 	.ndo_set_rx_mode	= igb_set_rx_mode,
2992 	.ndo_set_mac_address	= igb_set_mac,
2993 	.ndo_change_mtu		= igb_change_mtu,
2994 	.ndo_eth_ioctl		= igb_ioctl,
2995 	.ndo_tx_timeout		= igb_tx_timeout,
2996 	.ndo_validate_addr	= eth_validate_addr,
2997 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2998 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2999 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3000 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3001 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3002 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3003 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3004 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3005 	.ndo_fix_features	= igb_fix_features,
3006 	.ndo_set_features	= igb_set_features,
3007 	.ndo_fdb_add		= igb_ndo_fdb_add,
3008 	.ndo_features_check	= igb_features_check,
3009 	.ndo_setup_tc		= igb_setup_tc,
3010 	.ndo_bpf		= igb_xdp,
3011 	.ndo_xdp_xmit		= igb_xdp_xmit,
3012 };
3013 
3014 /**
3015  * igb_set_fw_version - Configure version string for ethtool
3016  * @adapter: adapter struct
3017  **/
3018 void igb_set_fw_version(struct igb_adapter *adapter)
3019 {
3020 	struct e1000_hw *hw = &adapter->hw;
3021 	struct e1000_fw_version fw;
3022 
3023 	igb_get_fw_version(hw, &fw);
3024 
3025 	switch (hw->mac.type) {
3026 	case e1000_i210:
3027 	case e1000_i211:
3028 		if (!(igb_get_flash_presence_i210(hw))) {
3029 			snprintf(adapter->fw_version,
3030 				 sizeof(adapter->fw_version),
3031 				 "%2d.%2d-%d",
3032 				 fw.invm_major, fw.invm_minor,
3033 				 fw.invm_img_type);
3034 			break;
3035 		}
3036 		fallthrough;
3037 	default:
3038 		/* if option is rom valid, display its version too */
3039 		if (fw.or_valid) {
3040 			snprintf(adapter->fw_version,
3041 				 sizeof(adapter->fw_version),
3042 				 "%d.%d, 0x%08x, %d.%d.%d",
3043 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3044 				 fw.or_major, fw.or_build, fw.or_patch);
3045 		/* no option rom */
3046 		} else if (fw.etrack_id != 0X0000) {
3047 			snprintf(adapter->fw_version,
3048 			    sizeof(adapter->fw_version),
3049 			    "%d.%d, 0x%08x",
3050 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3051 		} else {
3052 		snprintf(adapter->fw_version,
3053 		    sizeof(adapter->fw_version),
3054 		    "%d.%d.%d",
3055 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3056 		}
3057 		break;
3058 	}
3059 }
3060 
3061 /**
3062  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3063  *
3064  * @adapter: adapter struct
3065  **/
3066 static void igb_init_mas(struct igb_adapter *adapter)
3067 {
3068 	struct e1000_hw *hw = &adapter->hw;
3069 	u16 eeprom_data;
3070 
3071 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3072 	switch (hw->bus.func) {
3073 	case E1000_FUNC_0:
3074 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3075 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3076 			netdev_info(adapter->netdev,
3077 				"MAS: Enabling Media Autosense for port %d\n",
3078 				hw->bus.func);
3079 		}
3080 		break;
3081 	case E1000_FUNC_1:
3082 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3083 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3084 			netdev_info(adapter->netdev,
3085 				"MAS: Enabling Media Autosense for port %d\n",
3086 				hw->bus.func);
3087 		}
3088 		break;
3089 	case E1000_FUNC_2:
3090 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3091 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3092 			netdev_info(adapter->netdev,
3093 				"MAS: Enabling Media Autosense for port %d\n",
3094 				hw->bus.func);
3095 		}
3096 		break;
3097 	case E1000_FUNC_3:
3098 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3099 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3100 			netdev_info(adapter->netdev,
3101 				"MAS: Enabling Media Autosense for port %d\n",
3102 				hw->bus.func);
3103 		}
3104 		break;
3105 	default:
3106 		/* Shouldn't get here */
3107 		netdev_err(adapter->netdev,
3108 			"MAS: Invalid port configuration, returning\n");
3109 		break;
3110 	}
3111 }
3112 
3113 /**
3114  *  igb_init_i2c - Init I2C interface
3115  *  @adapter: pointer to adapter structure
3116  **/
3117 static s32 igb_init_i2c(struct igb_adapter *adapter)
3118 {
3119 	s32 status = 0;
3120 
3121 	/* I2C interface supported on i350 devices */
3122 	if (adapter->hw.mac.type != e1000_i350)
3123 		return 0;
3124 
3125 	/* Initialize the i2c bus which is controlled by the registers.
3126 	 * This bus will use the i2c_algo_bit structure that implements
3127 	 * the protocol through toggling of the 4 bits in the register.
3128 	 */
3129 	adapter->i2c_adap.owner = THIS_MODULE;
3130 	adapter->i2c_algo = igb_i2c_algo;
3131 	adapter->i2c_algo.data = adapter;
3132 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3133 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3134 	strlcpy(adapter->i2c_adap.name, "igb BB",
3135 		sizeof(adapter->i2c_adap.name));
3136 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3137 	return status;
3138 }
3139 
3140 /**
3141  *  igb_probe - Device Initialization Routine
3142  *  @pdev: PCI device information struct
3143  *  @ent: entry in igb_pci_tbl
3144  *
3145  *  Returns 0 on success, negative on failure
3146  *
3147  *  igb_probe initializes an adapter identified by a pci_dev structure.
3148  *  The OS initialization, configuring of the adapter private structure,
3149  *  and a hardware reset occur.
3150  **/
3151 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3152 {
3153 	struct net_device *netdev;
3154 	struct igb_adapter *adapter;
3155 	struct e1000_hw *hw;
3156 	u16 eeprom_data = 0;
3157 	s32 ret_val;
3158 	static int global_quad_port_a; /* global quad port a indication */
3159 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3160 	int err, pci_using_dac;
3161 	u8 part_str[E1000_PBANUM_LENGTH];
3162 
3163 	/* Catch broken hardware that put the wrong VF device ID in
3164 	 * the PCIe SR-IOV capability.
3165 	 */
3166 	if (pdev->is_virtfn) {
3167 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3168 			pci_name(pdev), pdev->vendor, pdev->device);
3169 		return -EINVAL;
3170 	}
3171 
3172 	err = pci_enable_device_mem(pdev);
3173 	if (err)
3174 		return err;
3175 
3176 	pci_using_dac = 0;
3177 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3178 	if (!err) {
3179 		pci_using_dac = 1;
3180 	} else {
3181 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3182 		if (err) {
3183 			dev_err(&pdev->dev,
3184 				"No usable DMA configuration, aborting\n");
3185 			goto err_dma;
3186 		}
3187 	}
3188 
3189 	err = pci_request_mem_regions(pdev, igb_driver_name);
3190 	if (err)
3191 		goto err_pci_reg;
3192 
3193 	pci_enable_pcie_error_reporting(pdev);
3194 
3195 	pci_set_master(pdev);
3196 	pci_save_state(pdev);
3197 
3198 	err = -ENOMEM;
3199 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3200 				   IGB_MAX_TX_QUEUES);
3201 	if (!netdev)
3202 		goto err_alloc_etherdev;
3203 
3204 	SET_NETDEV_DEV(netdev, &pdev->dev);
3205 
3206 	pci_set_drvdata(pdev, netdev);
3207 	adapter = netdev_priv(netdev);
3208 	adapter->netdev = netdev;
3209 	adapter->pdev = pdev;
3210 	hw = &adapter->hw;
3211 	hw->back = adapter;
3212 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3213 
3214 	err = -EIO;
3215 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3216 	if (!adapter->io_addr)
3217 		goto err_ioremap;
3218 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3219 	hw->hw_addr = adapter->io_addr;
3220 
3221 	netdev->netdev_ops = &igb_netdev_ops;
3222 	igb_set_ethtool_ops(netdev);
3223 	netdev->watchdog_timeo = 5 * HZ;
3224 
3225 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3226 
3227 	netdev->mem_start = pci_resource_start(pdev, 0);
3228 	netdev->mem_end = pci_resource_end(pdev, 0);
3229 
3230 	/* PCI config space info */
3231 	hw->vendor_id = pdev->vendor;
3232 	hw->device_id = pdev->device;
3233 	hw->revision_id = pdev->revision;
3234 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3235 	hw->subsystem_device_id = pdev->subsystem_device;
3236 
3237 	/* Copy the default MAC, PHY and NVM function pointers */
3238 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3239 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3240 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3241 	/* Initialize skew-specific constants */
3242 	err = ei->get_invariants(hw);
3243 	if (err)
3244 		goto err_sw_init;
3245 
3246 	/* setup the private structure */
3247 	err = igb_sw_init(adapter);
3248 	if (err)
3249 		goto err_sw_init;
3250 
3251 	igb_get_bus_info_pcie(hw);
3252 
3253 	hw->phy.autoneg_wait_to_complete = false;
3254 
3255 	/* Copper options */
3256 	if (hw->phy.media_type == e1000_media_type_copper) {
3257 		hw->phy.mdix = AUTO_ALL_MODES;
3258 		hw->phy.disable_polarity_correction = false;
3259 		hw->phy.ms_type = e1000_ms_hw_default;
3260 	}
3261 
3262 	if (igb_check_reset_block(hw))
3263 		dev_info(&pdev->dev,
3264 			"PHY reset is blocked due to SOL/IDER session.\n");
3265 
3266 	/* features is initialized to 0 in allocation, it might have bits
3267 	 * set by igb_sw_init so we should use an or instead of an
3268 	 * assignment.
3269 	 */
3270 	netdev->features |= NETIF_F_SG |
3271 			    NETIF_F_TSO |
3272 			    NETIF_F_TSO6 |
3273 			    NETIF_F_RXHASH |
3274 			    NETIF_F_RXCSUM |
3275 			    NETIF_F_HW_CSUM;
3276 
3277 	if (hw->mac.type >= e1000_82576)
3278 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3279 
3280 	if (hw->mac.type >= e1000_i350)
3281 		netdev->features |= NETIF_F_HW_TC;
3282 
3283 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3284 				  NETIF_F_GSO_GRE_CSUM | \
3285 				  NETIF_F_GSO_IPXIP4 | \
3286 				  NETIF_F_GSO_IPXIP6 | \
3287 				  NETIF_F_GSO_UDP_TUNNEL | \
3288 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3289 
3290 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3291 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3292 
3293 	/* copy netdev features into list of user selectable features */
3294 	netdev->hw_features |= netdev->features |
3295 			       NETIF_F_HW_VLAN_CTAG_RX |
3296 			       NETIF_F_HW_VLAN_CTAG_TX |
3297 			       NETIF_F_RXALL;
3298 
3299 	if (hw->mac.type >= e1000_i350)
3300 		netdev->hw_features |= NETIF_F_NTUPLE;
3301 
3302 	if (pci_using_dac)
3303 		netdev->features |= NETIF_F_HIGHDMA;
3304 
3305 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3306 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3307 	netdev->hw_enc_features |= netdev->vlan_features;
3308 
3309 	/* set this bit last since it cannot be part of vlan_features */
3310 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3311 			    NETIF_F_HW_VLAN_CTAG_RX |
3312 			    NETIF_F_HW_VLAN_CTAG_TX;
3313 
3314 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3315 
3316 	netdev->priv_flags |= IFF_UNICAST_FLT;
3317 
3318 	/* MTU range: 68 - 9216 */
3319 	netdev->min_mtu = ETH_MIN_MTU;
3320 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3321 
3322 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3323 
3324 	/* before reading the NVM, reset the controller to put the device in a
3325 	 * known good starting state
3326 	 */
3327 	hw->mac.ops.reset_hw(hw);
3328 
3329 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3330 	 * that doesn't contain a checksum
3331 	 */
3332 	switch (hw->mac.type) {
3333 	case e1000_i210:
3334 	case e1000_i211:
3335 		if (igb_get_flash_presence_i210(hw)) {
3336 			if (hw->nvm.ops.validate(hw) < 0) {
3337 				dev_err(&pdev->dev,
3338 					"The NVM Checksum Is Not Valid\n");
3339 				err = -EIO;
3340 				goto err_eeprom;
3341 			}
3342 		}
3343 		break;
3344 	default:
3345 		if (hw->nvm.ops.validate(hw) < 0) {
3346 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3347 			err = -EIO;
3348 			goto err_eeprom;
3349 		}
3350 		break;
3351 	}
3352 
3353 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3354 		/* copy the MAC address out of the NVM */
3355 		if (hw->mac.ops.read_mac_addr(hw))
3356 			dev_err(&pdev->dev, "NVM Read Error\n");
3357 	}
3358 
3359 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3360 
3361 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3362 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3363 		err = -EIO;
3364 		goto err_eeprom;
3365 	}
3366 
3367 	igb_set_default_mac_filter(adapter);
3368 
3369 	/* get firmware version for ethtool -i */
3370 	igb_set_fw_version(adapter);
3371 
3372 	/* configure RXPBSIZE and TXPBSIZE */
3373 	if (hw->mac.type == e1000_i210) {
3374 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3375 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3376 	}
3377 
3378 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3379 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3380 
3381 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3382 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3383 
3384 	/* Initialize link properties that are user-changeable */
3385 	adapter->fc_autoneg = true;
3386 	hw->mac.autoneg = true;
3387 	hw->phy.autoneg_advertised = 0x2f;
3388 
3389 	hw->fc.requested_mode = e1000_fc_default;
3390 	hw->fc.current_mode = e1000_fc_default;
3391 
3392 	igb_validate_mdi_setting(hw);
3393 
3394 	/* By default, support wake on port A */
3395 	if (hw->bus.func == 0)
3396 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3397 
3398 	/* Check the NVM for wake support on non-port A ports */
3399 	if (hw->mac.type >= e1000_82580)
3400 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3401 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3402 				 &eeprom_data);
3403 	else if (hw->bus.func == 1)
3404 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3405 
3406 	if (eeprom_data & IGB_EEPROM_APME)
3407 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3408 
3409 	/* now that we have the eeprom settings, apply the special cases where
3410 	 * the eeprom may be wrong or the board simply won't support wake on
3411 	 * lan on a particular port
3412 	 */
3413 	switch (pdev->device) {
3414 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3415 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3416 		break;
3417 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3418 	case E1000_DEV_ID_82576_FIBER:
3419 	case E1000_DEV_ID_82576_SERDES:
3420 		/* Wake events only supported on port A for dual fiber
3421 		 * regardless of eeprom setting
3422 		 */
3423 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3424 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3425 		break;
3426 	case E1000_DEV_ID_82576_QUAD_COPPER:
3427 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3428 		/* if quad port adapter, disable WoL on all but port A */
3429 		if (global_quad_port_a != 0)
3430 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3431 		else
3432 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3433 		/* Reset for multiple quad port adapters */
3434 		if (++global_quad_port_a == 4)
3435 			global_quad_port_a = 0;
3436 		break;
3437 	default:
3438 		/* If the device can't wake, don't set software support */
3439 		if (!device_can_wakeup(&adapter->pdev->dev))
3440 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3441 	}
3442 
3443 	/* initialize the wol settings based on the eeprom settings */
3444 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3445 		adapter->wol |= E1000_WUFC_MAG;
3446 
3447 	/* Some vendors want WoL disabled by default, but still supported */
3448 	if ((hw->mac.type == e1000_i350) &&
3449 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3450 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3451 		adapter->wol = 0;
3452 	}
3453 
3454 	/* Some vendors want the ability to Use the EEPROM setting as
3455 	 * enable/disable only, and not for capability
3456 	 */
3457 	if (((hw->mac.type == e1000_i350) ||
3458 	     (hw->mac.type == e1000_i354)) &&
3459 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3460 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3461 		adapter->wol = 0;
3462 	}
3463 	if (hw->mac.type == e1000_i350) {
3464 		if (((pdev->subsystem_device == 0x5001) ||
3465 		     (pdev->subsystem_device == 0x5002)) &&
3466 				(hw->bus.func == 0)) {
3467 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3468 			adapter->wol = 0;
3469 		}
3470 		if (pdev->subsystem_device == 0x1F52)
3471 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472 	}
3473 
3474 	device_set_wakeup_enable(&adapter->pdev->dev,
3475 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3476 
3477 	/* reset the hardware with the new settings */
3478 	igb_reset(adapter);
3479 
3480 	/* Init the I2C interface */
3481 	err = igb_init_i2c(adapter);
3482 	if (err) {
3483 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3484 		goto err_eeprom;
3485 	}
3486 
3487 	/* let the f/w know that the h/w is now under the control of the
3488 	 * driver.
3489 	 */
3490 	igb_get_hw_control(adapter);
3491 
3492 	strcpy(netdev->name, "eth%d");
3493 	err = register_netdev(netdev);
3494 	if (err)
3495 		goto err_register;
3496 
3497 	/* carrier off reporting is important to ethtool even BEFORE open */
3498 	netif_carrier_off(netdev);
3499 
3500 #ifdef CONFIG_IGB_DCA
3501 	if (dca_add_requester(&pdev->dev) == 0) {
3502 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3503 		dev_info(&pdev->dev, "DCA enabled\n");
3504 		igb_setup_dca(adapter);
3505 	}
3506 
3507 #endif
3508 #ifdef CONFIG_IGB_HWMON
3509 	/* Initialize the thermal sensor on i350 devices. */
3510 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3511 		u16 ets_word;
3512 
3513 		/* Read the NVM to determine if this i350 device supports an
3514 		 * external thermal sensor.
3515 		 */
3516 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3517 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3518 			adapter->ets = true;
3519 		else
3520 			adapter->ets = false;
3521 		if (igb_sysfs_init(adapter))
3522 			dev_err(&pdev->dev,
3523 				"failed to allocate sysfs resources\n");
3524 	} else {
3525 		adapter->ets = false;
3526 	}
3527 #endif
3528 	/* Check if Media Autosense is enabled */
3529 	adapter->ei = *ei;
3530 	if (hw->dev_spec._82575.mas_capable)
3531 		igb_init_mas(adapter);
3532 
3533 	/* do hw tstamp init after resetting */
3534 	igb_ptp_init(adapter);
3535 
3536 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3537 	/* print bus type/speed/width info, not applicable to i354 */
3538 	if (hw->mac.type != e1000_i354) {
3539 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3540 			 netdev->name,
3541 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3542 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3543 			   "unknown"),
3544 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3545 			  "Width x4" :
3546 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3547 			  "Width x2" :
3548 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3549 			  "Width x1" : "unknown"), netdev->dev_addr);
3550 	}
3551 
3552 	if ((hw->mac.type == e1000_82576 &&
3553 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3554 	    (hw->mac.type >= e1000_i210 ||
3555 	     igb_get_flash_presence_i210(hw))) {
3556 		ret_val = igb_read_part_string(hw, part_str,
3557 					       E1000_PBANUM_LENGTH);
3558 	} else {
3559 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3560 	}
3561 
3562 	if (ret_val)
3563 		strcpy(part_str, "Unknown");
3564 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3565 	dev_info(&pdev->dev,
3566 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3567 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3568 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3569 		adapter->num_rx_queues, adapter->num_tx_queues);
3570 	if (hw->phy.media_type == e1000_media_type_copper) {
3571 		switch (hw->mac.type) {
3572 		case e1000_i350:
3573 		case e1000_i210:
3574 		case e1000_i211:
3575 			/* Enable EEE for internal copper PHY devices */
3576 			err = igb_set_eee_i350(hw, true, true);
3577 			if ((!err) &&
3578 			    (!hw->dev_spec._82575.eee_disable)) {
3579 				adapter->eee_advert =
3580 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3581 				adapter->flags |= IGB_FLAG_EEE;
3582 			}
3583 			break;
3584 		case e1000_i354:
3585 			if ((rd32(E1000_CTRL_EXT) &
3586 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3587 				err = igb_set_eee_i354(hw, true, true);
3588 				if ((!err) &&
3589 					(!hw->dev_spec._82575.eee_disable)) {
3590 					adapter->eee_advert =
3591 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3592 					adapter->flags |= IGB_FLAG_EEE;
3593 				}
3594 			}
3595 			break;
3596 		default:
3597 			break;
3598 		}
3599 	}
3600 
3601 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3602 
3603 	pm_runtime_put_noidle(&pdev->dev);
3604 	return 0;
3605 
3606 err_register:
3607 	igb_release_hw_control(adapter);
3608 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3609 err_eeprom:
3610 	if (!igb_check_reset_block(hw))
3611 		igb_reset_phy(hw);
3612 
3613 	if (hw->flash_address)
3614 		iounmap(hw->flash_address);
3615 err_sw_init:
3616 	kfree(adapter->mac_table);
3617 	kfree(adapter->shadow_vfta);
3618 	igb_clear_interrupt_scheme(adapter);
3619 #ifdef CONFIG_PCI_IOV
3620 	igb_disable_sriov(pdev);
3621 #endif
3622 	pci_iounmap(pdev, adapter->io_addr);
3623 err_ioremap:
3624 	free_netdev(netdev);
3625 err_alloc_etherdev:
3626 	pci_disable_pcie_error_reporting(pdev);
3627 	pci_release_mem_regions(pdev);
3628 err_pci_reg:
3629 err_dma:
3630 	pci_disable_device(pdev);
3631 	return err;
3632 }
3633 
3634 #ifdef CONFIG_PCI_IOV
3635 static int igb_disable_sriov(struct pci_dev *pdev)
3636 {
3637 	struct net_device *netdev = pci_get_drvdata(pdev);
3638 	struct igb_adapter *adapter = netdev_priv(netdev);
3639 	struct e1000_hw *hw = &adapter->hw;
3640 
3641 	/* reclaim resources allocated to VFs */
3642 	if (adapter->vf_data) {
3643 		/* disable iov and allow time for transactions to clear */
3644 		if (pci_vfs_assigned(pdev)) {
3645 			dev_warn(&pdev->dev,
3646 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3647 			return -EPERM;
3648 		} else {
3649 			pci_disable_sriov(pdev);
3650 			msleep(500);
3651 		}
3652 
3653 		kfree(adapter->vf_mac_list);
3654 		adapter->vf_mac_list = NULL;
3655 		kfree(adapter->vf_data);
3656 		adapter->vf_data = NULL;
3657 		adapter->vfs_allocated_count = 0;
3658 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3659 		wrfl();
3660 		msleep(100);
3661 		dev_info(&pdev->dev, "IOV Disabled\n");
3662 
3663 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3664 		adapter->flags |= IGB_FLAG_DMAC;
3665 	}
3666 
3667 	return 0;
3668 }
3669 
3670 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3671 {
3672 	struct net_device *netdev = pci_get_drvdata(pdev);
3673 	struct igb_adapter *adapter = netdev_priv(netdev);
3674 	int old_vfs = pci_num_vf(pdev);
3675 	struct vf_mac_filter *mac_list;
3676 	int err = 0;
3677 	int num_vf_mac_filters, i;
3678 
3679 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3680 		err = -EPERM;
3681 		goto out;
3682 	}
3683 	if (!num_vfs)
3684 		goto out;
3685 
3686 	if (old_vfs) {
3687 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3688 			 old_vfs, max_vfs);
3689 		adapter->vfs_allocated_count = old_vfs;
3690 	} else
3691 		adapter->vfs_allocated_count = num_vfs;
3692 
3693 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3694 				sizeof(struct vf_data_storage), GFP_KERNEL);
3695 
3696 	/* if allocation failed then we do not support SR-IOV */
3697 	if (!adapter->vf_data) {
3698 		adapter->vfs_allocated_count = 0;
3699 		err = -ENOMEM;
3700 		goto out;
3701 	}
3702 
3703 	/* Due to the limited number of RAR entries calculate potential
3704 	 * number of MAC filters available for the VFs. Reserve entries
3705 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3706 	 * for each VF for VF MAC.
3707 	 */
3708 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3709 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3710 			      adapter->vfs_allocated_count);
3711 
3712 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3713 				       sizeof(struct vf_mac_filter),
3714 				       GFP_KERNEL);
3715 
3716 	mac_list = adapter->vf_mac_list;
3717 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3718 
3719 	if (adapter->vf_mac_list) {
3720 		/* Initialize list of VF MAC filters */
3721 		for (i = 0; i < num_vf_mac_filters; i++) {
3722 			mac_list->vf = -1;
3723 			mac_list->free = true;
3724 			list_add(&mac_list->l, &adapter->vf_macs.l);
3725 			mac_list++;
3726 		}
3727 	} else {
3728 		/* If we could not allocate memory for the VF MAC filters
3729 		 * we can continue without this feature but warn user.
3730 		 */
3731 		dev_err(&pdev->dev,
3732 			"Unable to allocate memory for VF MAC filter list\n");
3733 	}
3734 
3735 	/* only call pci_enable_sriov() if no VFs are allocated already */
3736 	if (!old_vfs) {
3737 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3738 		if (err)
3739 			goto err_out;
3740 	}
3741 	dev_info(&pdev->dev, "%d VFs allocated\n",
3742 		 adapter->vfs_allocated_count);
3743 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3744 		igb_vf_configure(adapter, i);
3745 
3746 	/* DMA Coalescing is not supported in IOV mode. */
3747 	adapter->flags &= ~IGB_FLAG_DMAC;
3748 	goto out;
3749 
3750 err_out:
3751 	kfree(adapter->vf_mac_list);
3752 	adapter->vf_mac_list = NULL;
3753 	kfree(adapter->vf_data);
3754 	adapter->vf_data = NULL;
3755 	adapter->vfs_allocated_count = 0;
3756 out:
3757 	return err;
3758 }
3759 
3760 #endif
3761 /**
3762  *  igb_remove_i2c - Cleanup  I2C interface
3763  *  @adapter: pointer to adapter structure
3764  **/
3765 static void igb_remove_i2c(struct igb_adapter *adapter)
3766 {
3767 	/* free the adapter bus structure */
3768 	i2c_del_adapter(&adapter->i2c_adap);
3769 }
3770 
3771 /**
3772  *  igb_remove - Device Removal Routine
3773  *  @pdev: PCI device information struct
3774  *
3775  *  igb_remove is called by the PCI subsystem to alert the driver
3776  *  that it should release a PCI device.  The could be caused by a
3777  *  Hot-Plug event, or because the driver is going to be removed from
3778  *  memory.
3779  **/
3780 static void igb_remove(struct pci_dev *pdev)
3781 {
3782 	struct net_device *netdev = pci_get_drvdata(pdev);
3783 	struct igb_adapter *adapter = netdev_priv(netdev);
3784 	struct e1000_hw *hw = &adapter->hw;
3785 
3786 	pm_runtime_get_noresume(&pdev->dev);
3787 #ifdef CONFIG_IGB_HWMON
3788 	igb_sysfs_exit(adapter);
3789 #endif
3790 	igb_remove_i2c(adapter);
3791 	igb_ptp_stop(adapter);
3792 	/* The watchdog timer may be rescheduled, so explicitly
3793 	 * disable watchdog from being rescheduled.
3794 	 */
3795 	set_bit(__IGB_DOWN, &adapter->state);
3796 	del_timer_sync(&adapter->watchdog_timer);
3797 	del_timer_sync(&adapter->phy_info_timer);
3798 
3799 	cancel_work_sync(&adapter->reset_task);
3800 	cancel_work_sync(&adapter->watchdog_task);
3801 
3802 #ifdef CONFIG_IGB_DCA
3803 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3804 		dev_info(&pdev->dev, "DCA disabled\n");
3805 		dca_remove_requester(&pdev->dev);
3806 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3807 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3808 	}
3809 #endif
3810 
3811 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3812 	 * would have already happened in close and is redundant.
3813 	 */
3814 	igb_release_hw_control(adapter);
3815 
3816 #ifdef CONFIG_PCI_IOV
3817 	igb_disable_sriov(pdev);
3818 #endif
3819 
3820 	unregister_netdev(netdev);
3821 
3822 	igb_clear_interrupt_scheme(adapter);
3823 
3824 	pci_iounmap(pdev, adapter->io_addr);
3825 	if (hw->flash_address)
3826 		iounmap(hw->flash_address);
3827 	pci_release_mem_regions(pdev);
3828 
3829 	kfree(adapter->mac_table);
3830 	kfree(adapter->shadow_vfta);
3831 	free_netdev(netdev);
3832 
3833 	pci_disable_pcie_error_reporting(pdev);
3834 
3835 	pci_disable_device(pdev);
3836 }
3837 
3838 /**
3839  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3840  *  @adapter: board private structure to initialize
3841  *
3842  *  This function initializes the vf specific data storage and then attempts to
3843  *  allocate the VFs.  The reason for ordering it this way is because it is much
3844  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3845  *  the memory for the VFs.
3846  **/
3847 static void igb_probe_vfs(struct igb_adapter *adapter)
3848 {
3849 #ifdef CONFIG_PCI_IOV
3850 	struct pci_dev *pdev = adapter->pdev;
3851 	struct e1000_hw *hw = &adapter->hw;
3852 
3853 	/* Virtualization features not supported on i210 family. */
3854 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3855 		return;
3856 
3857 	/* Of the below we really only want the effect of getting
3858 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3859 	 * igb_enable_sriov() has no effect.
3860 	 */
3861 	igb_set_interrupt_capability(adapter, true);
3862 	igb_reset_interrupt_capability(adapter);
3863 
3864 	pci_sriov_set_totalvfs(pdev, 7);
3865 	igb_enable_sriov(pdev, max_vfs);
3866 
3867 #endif /* CONFIG_PCI_IOV */
3868 }
3869 
3870 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3871 {
3872 	struct e1000_hw *hw = &adapter->hw;
3873 	unsigned int max_rss_queues;
3874 
3875 	/* Determine the maximum number of RSS queues supported. */
3876 	switch (hw->mac.type) {
3877 	case e1000_i211:
3878 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3879 		break;
3880 	case e1000_82575:
3881 	case e1000_i210:
3882 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3883 		break;
3884 	case e1000_i350:
3885 		/* I350 cannot do RSS and SR-IOV at the same time */
3886 		if (!!adapter->vfs_allocated_count) {
3887 			max_rss_queues = 1;
3888 			break;
3889 		}
3890 		fallthrough;
3891 	case e1000_82576:
3892 		if (!!adapter->vfs_allocated_count) {
3893 			max_rss_queues = 2;
3894 			break;
3895 		}
3896 		fallthrough;
3897 	case e1000_82580:
3898 	case e1000_i354:
3899 	default:
3900 		max_rss_queues = IGB_MAX_RX_QUEUES;
3901 		break;
3902 	}
3903 
3904 	return max_rss_queues;
3905 }
3906 
3907 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3908 {
3909 	u32 max_rss_queues;
3910 
3911 	max_rss_queues = igb_get_max_rss_queues(adapter);
3912 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3913 
3914 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3915 }
3916 
3917 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3918 			      const u32 max_rss_queues)
3919 {
3920 	struct e1000_hw *hw = &adapter->hw;
3921 
3922 	/* Determine if we need to pair queues. */
3923 	switch (hw->mac.type) {
3924 	case e1000_82575:
3925 	case e1000_i211:
3926 		/* Device supports enough interrupts without queue pairing. */
3927 		break;
3928 	case e1000_82576:
3929 	case e1000_82580:
3930 	case e1000_i350:
3931 	case e1000_i354:
3932 	case e1000_i210:
3933 	default:
3934 		/* If rss_queues > half of max_rss_queues, pair the queues in
3935 		 * order to conserve interrupts due to limited supply.
3936 		 */
3937 		if (adapter->rss_queues > (max_rss_queues / 2))
3938 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3939 		else
3940 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3941 		break;
3942 	}
3943 }
3944 
3945 /**
3946  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3947  *  @adapter: board private structure to initialize
3948  *
3949  *  igb_sw_init initializes the Adapter private data structure.
3950  *  Fields are initialized based on PCI device information and
3951  *  OS network device settings (MTU size).
3952  **/
3953 static int igb_sw_init(struct igb_adapter *adapter)
3954 {
3955 	struct e1000_hw *hw = &adapter->hw;
3956 	struct net_device *netdev = adapter->netdev;
3957 	struct pci_dev *pdev = adapter->pdev;
3958 
3959 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3960 
3961 	/* set default ring sizes */
3962 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3963 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3964 
3965 	/* set default ITR values */
3966 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3967 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3968 
3969 	/* set default work limits */
3970 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3971 
3972 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3973 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3974 
3975 	spin_lock_init(&adapter->nfc_lock);
3976 	spin_lock_init(&adapter->stats64_lock);
3977 #ifdef CONFIG_PCI_IOV
3978 	switch (hw->mac.type) {
3979 	case e1000_82576:
3980 	case e1000_i350:
3981 		if (max_vfs > 7) {
3982 			dev_warn(&pdev->dev,
3983 				 "Maximum of 7 VFs per PF, using max\n");
3984 			max_vfs = adapter->vfs_allocated_count = 7;
3985 		} else
3986 			adapter->vfs_allocated_count = max_vfs;
3987 		if (adapter->vfs_allocated_count)
3988 			dev_warn(&pdev->dev,
3989 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3990 		break;
3991 	default:
3992 		break;
3993 	}
3994 #endif /* CONFIG_PCI_IOV */
3995 
3996 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3997 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3998 
3999 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4000 				     sizeof(struct igb_mac_addr),
4001 				     GFP_KERNEL);
4002 	if (!adapter->mac_table)
4003 		return -ENOMEM;
4004 
4005 	igb_probe_vfs(adapter);
4006 
4007 	igb_init_queue_configuration(adapter);
4008 
4009 	/* Setup and initialize a copy of the hw vlan table array */
4010 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4011 				       GFP_KERNEL);
4012 	if (!adapter->shadow_vfta)
4013 		return -ENOMEM;
4014 
4015 	/* This call may decrease the number of queues */
4016 	if (igb_init_interrupt_scheme(adapter, true)) {
4017 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4018 		return -ENOMEM;
4019 	}
4020 
4021 	/* Explicitly disable IRQ since the NIC can be in any state. */
4022 	igb_irq_disable(adapter);
4023 
4024 	if (hw->mac.type >= e1000_i350)
4025 		adapter->flags &= ~IGB_FLAG_DMAC;
4026 
4027 	set_bit(__IGB_DOWN, &adapter->state);
4028 	return 0;
4029 }
4030 
4031 /**
4032  *  __igb_open - Called when a network interface is made active
4033  *  @netdev: network interface device structure
4034  *  @resuming: indicates whether we are in a resume call
4035  *
4036  *  Returns 0 on success, negative value on failure
4037  *
4038  *  The open entry point is called when a network interface is made
4039  *  active by the system (IFF_UP).  At this point all resources needed
4040  *  for transmit and receive operations are allocated, the interrupt
4041  *  handler is registered with the OS, the watchdog timer is started,
4042  *  and the stack is notified that the interface is ready.
4043  **/
4044 static int __igb_open(struct net_device *netdev, bool resuming)
4045 {
4046 	struct igb_adapter *adapter = netdev_priv(netdev);
4047 	struct e1000_hw *hw = &adapter->hw;
4048 	struct pci_dev *pdev = adapter->pdev;
4049 	int err;
4050 	int i;
4051 
4052 	/* disallow open during test */
4053 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4054 		WARN_ON(resuming);
4055 		return -EBUSY;
4056 	}
4057 
4058 	if (!resuming)
4059 		pm_runtime_get_sync(&pdev->dev);
4060 
4061 	netif_carrier_off(netdev);
4062 
4063 	/* allocate transmit descriptors */
4064 	err = igb_setup_all_tx_resources(adapter);
4065 	if (err)
4066 		goto err_setup_tx;
4067 
4068 	/* allocate receive descriptors */
4069 	err = igb_setup_all_rx_resources(adapter);
4070 	if (err)
4071 		goto err_setup_rx;
4072 
4073 	igb_power_up_link(adapter);
4074 
4075 	/* before we allocate an interrupt, we must be ready to handle it.
4076 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4077 	 * as soon as we call pci_request_irq, so we have to setup our
4078 	 * clean_rx handler before we do so.
4079 	 */
4080 	igb_configure(adapter);
4081 
4082 	err = igb_request_irq(adapter);
4083 	if (err)
4084 		goto err_req_irq;
4085 
4086 	/* Notify the stack of the actual queue counts. */
4087 	err = netif_set_real_num_tx_queues(adapter->netdev,
4088 					   adapter->num_tx_queues);
4089 	if (err)
4090 		goto err_set_queues;
4091 
4092 	err = netif_set_real_num_rx_queues(adapter->netdev,
4093 					   adapter->num_rx_queues);
4094 	if (err)
4095 		goto err_set_queues;
4096 
4097 	/* From here on the code is the same as igb_up() */
4098 	clear_bit(__IGB_DOWN, &adapter->state);
4099 
4100 	for (i = 0; i < adapter->num_q_vectors; i++)
4101 		napi_enable(&(adapter->q_vector[i]->napi));
4102 
4103 	/* Clear any pending interrupts. */
4104 	rd32(E1000_TSICR);
4105 	rd32(E1000_ICR);
4106 
4107 	igb_irq_enable(adapter);
4108 
4109 	/* notify VFs that reset has been completed */
4110 	if (adapter->vfs_allocated_count) {
4111 		u32 reg_data = rd32(E1000_CTRL_EXT);
4112 
4113 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4114 		wr32(E1000_CTRL_EXT, reg_data);
4115 	}
4116 
4117 	netif_tx_start_all_queues(netdev);
4118 
4119 	if (!resuming)
4120 		pm_runtime_put(&pdev->dev);
4121 
4122 	/* start the watchdog. */
4123 	hw->mac.get_link_status = 1;
4124 	schedule_work(&adapter->watchdog_task);
4125 
4126 	return 0;
4127 
4128 err_set_queues:
4129 	igb_free_irq(adapter);
4130 err_req_irq:
4131 	igb_release_hw_control(adapter);
4132 	igb_power_down_link(adapter);
4133 	igb_free_all_rx_resources(adapter);
4134 err_setup_rx:
4135 	igb_free_all_tx_resources(adapter);
4136 err_setup_tx:
4137 	igb_reset(adapter);
4138 	if (!resuming)
4139 		pm_runtime_put(&pdev->dev);
4140 
4141 	return err;
4142 }
4143 
4144 int igb_open(struct net_device *netdev)
4145 {
4146 	return __igb_open(netdev, false);
4147 }
4148 
4149 /**
4150  *  __igb_close - Disables a network interface
4151  *  @netdev: network interface device structure
4152  *  @suspending: indicates we are in a suspend call
4153  *
4154  *  Returns 0, this is not allowed to fail
4155  *
4156  *  The close entry point is called when an interface is de-activated
4157  *  by the OS.  The hardware is still under the driver's control, but
4158  *  needs to be disabled.  A global MAC reset is issued to stop the
4159  *  hardware, and all transmit and receive resources are freed.
4160  **/
4161 static int __igb_close(struct net_device *netdev, bool suspending)
4162 {
4163 	struct igb_adapter *adapter = netdev_priv(netdev);
4164 	struct pci_dev *pdev = adapter->pdev;
4165 
4166 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4167 
4168 	if (!suspending)
4169 		pm_runtime_get_sync(&pdev->dev);
4170 
4171 	igb_down(adapter);
4172 	igb_free_irq(adapter);
4173 
4174 	igb_free_all_tx_resources(adapter);
4175 	igb_free_all_rx_resources(adapter);
4176 
4177 	if (!suspending)
4178 		pm_runtime_put_sync(&pdev->dev);
4179 	return 0;
4180 }
4181 
4182 int igb_close(struct net_device *netdev)
4183 {
4184 	if (netif_device_present(netdev) || netdev->dismantle)
4185 		return __igb_close(netdev, false);
4186 	return 0;
4187 }
4188 
4189 /**
4190  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4191  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4192  *
4193  *  Return 0 on success, negative on failure
4194  **/
4195 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4196 {
4197 	struct device *dev = tx_ring->dev;
4198 	int size;
4199 
4200 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4201 
4202 	tx_ring->tx_buffer_info = vmalloc(size);
4203 	if (!tx_ring->tx_buffer_info)
4204 		goto err;
4205 
4206 	/* round up to nearest 4K */
4207 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4208 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4209 
4210 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4211 					   &tx_ring->dma, GFP_KERNEL);
4212 	if (!tx_ring->desc)
4213 		goto err;
4214 
4215 	tx_ring->next_to_use = 0;
4216 	tx_ring->next_to_clean = 0;
4217 
4218 	return 0;
4219 
4220 err:
4221 	vfree(tx_ring->tx_buffer_info);
4222 	tx_ring->tx_buffer_info = NULL;
4223 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4224 	return -ENOMEM;
4225 }
4226 
4227 /**
4228  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4229  *				 (Descriptors) for all queues
4230  *  @adapter: board private structure
4231  *
4232  *  Return 0 on success, negative on failure
4233  **/
4234 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4235 {
4236 	struct pci_dev *pdev = adapter->pdev;
4237 	int i, err = 0;
4238 
4239 	for (i = 0; i < adapter->num_tx_queues; i++) {
4240 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4241 		if (err) {
4242 			dev_err(&pdev->dev,
4243 				"Allocation for Tx Queue %u failed\n", i);
4244 			for (i--; i >= 0; i--)
4245 				igb_free_tx_resources(adapter->tx_ring[i]);
4246 			break;
4247 		}
4248 	}
4249 
4250 	return err;
4251 }
4252 
4253 /**
4254  *  igb_setup_tctl - configure the transmit control registers
4255  *  @adapter: Board private structure
4256  **/
4257 void igb_setup_tctl(struct igb_adapter *adapter)
4258 {
4259 	struct e1000_hw *hw = &adapter->hw;
4260 	u32 tctl;
4261 
4262 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4263 	wr32(E1000_TXDCTL(0), 0);
4264 
4265 	/* Program the Transmit Control Register */
4266 	tctl = rd32(E1000_TCTL);
4267 	tctl &= ~E1000_TCTL_CT;
4268 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4269 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4270 
4271 	igb_config_collision_dist(hw);
4272 
4273 	/* Enable transmits */
4274 	tctl |= E1000_TCTL_EN;
4275 
4276 	wr32(E1000_TCTL, tctl);
4277 }
4278 
4279 /**
4280  *  igb_configure_tx_ring - Configure transmit ring after Reset
4281  *  @adapter: board private structure
4282  *  @ring: tx ring to configure
4283  *
4284  *  Configure a transmit ring after a reset.
4285  **/
4286 void igb_configure_tx_ring(struct igb_adapter *adapter,
4287 			   struct igb_ring *ring)
4288 {
4289 	struct e1000_hw *hw = &adapter->hw;
4290 	u32 txdctl = 0;
4291 	u64 tdba = ring->dma;
4292 	int reg_idx = ring->reg_idx;
4293 
4294 	wr32(E1000_TDLEN(reg_idx),
4295 	     ring->count * sizeof(union e1000_adv_tx_desc));
4296 	wr32(E1000_TDBAL(reg_idx),
4297 	     tdba & 0x00000000ffffffffULL);
4298 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4299 
4300 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4301 	wr32(E1000_TDH(reg_idx), 0);
4302 	writel(0, ring->tail);
4303 
4304 	txdctl |= IGB_TX_PTHRESH;
4305 	txdctl |= IGB_TX_HTHRESH << 8;
4306 	txdctl |= IGB_TX_WTHRESH << 16;
4307 
4308 	/* reinitialize tx_buffer_info */
4309 	memset(ring->tx_buffer_info, 0,
4310 	       sizeof(struct igb_tx_buffer) * ring->count);
4311 
4312 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4313 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4314 }
4315 
4316 /**
4317  *  igb_configure_tx - Configure transmit Unit after Reset
4318  *  @adapter: board private structure
4319  *
4320  *  Configure the Tx unit of the MAC after a reset.
4321  **/
4322 static void igb_configure_tx(struct igb_adapter *adapter)
4323 {
4324 	struct e1000_hw *hw = &adapter->hw;
4325 	int i;
4326 
4327 	/* disable the queues */
4328 	for (i = 0; i < adapter->num_tx_queues; i++)
4329 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4330 
4331 	wrfl();
4332 	usleep_range(10000, 20000);
4333 
4334 	for (i = 0; i < adapter->num_tx_queues; i++)
4335 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4336 }
4337 
4338 /**
4339  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4340  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4341  *
4342  *  Returns 0 on success, negative on failure
4343  **/
4344 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4345 {
4346 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4347 	struct device *dev = rx_ring->dev;
4348 	int size;
4349 
4350 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4351 
4352 	rx_ring->rx_buffer_info = vmalloc(size);
4353 	if (!rx_ring->rx_buffer_info)
4354 		goto err;
4355 
4356 	/* Round up to nearest 4K */
4357 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4358 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4359 
4360 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4361 					   &rx_ring->dma, GFP_KERNEL);
4362 	if (!rx_ring->desc)
4363 		goto err;
4364 
4365 	rx_ring->next_to_alloc = 0;
4366 	rx_ring->next_to_clean = 0;
4367 	rx_ring->next_to_use = 0;
4368 
4369 	rx_ring->xdp_prog = adapter->xdp_prog;
4370 
4371 	/* XDP RX-queue info */
4372 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4373 			     rx_ring->queue_index, 0) < 0)
4374 		goto err;
4375 
4376 	return 0;
4377 
4378 err:
4379 	vfree(rx_ring->rx_buffer_info);
4380 	rx_ring->rx_buffer_info = NULL;
4381 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4382 	return -ENOMEM;
4383 }
4384 
4385 /**
4386  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4387  *				 (Descriptors) for all queues
4388  *  @adapter: board private structure
4389  *
4390  *  Return 0 on success, negative on failure
4391  **/
4392 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4393 {
4394 	struct pci_dev *pdev = adapter->pdev;
4395 	int i, err = 0;
4396 
4397 	for (i = 0; i < adapter->num_rx_queues; i++) {
4398 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4399 		if (err) {
4400 			dev_err(&pdev->dev,
4401 				"Allocation for Rx Queue %u failed\n", i);
4402 			for (i--; i >= 0; i--)
4403 				igb_free_rx_resources(adapter->rx_ring[i]);
4404 			break;
4405 		}
4406 	}
4407 
4408 	return err;
4409 }
4410 
4411 /**
4412  *  igb_setup_mrqc - configure the multiple receive queue control registers
4413  *  @adapter: Board private structure
4414  **/
4415 static void igb_setup_mrqc(struct igb_adapter *adapter)
4416 {
4417 	struct e1000_hw *hw = &adapter->hw;
4418 	u32 mrqc, rxcsum;
4419 	u32 j, num_rx_queues;
4420 	u32 rss_key[10];
4421 
4422 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4423 	for (j = 0; j < 10; j++)
4424 		wr32(E1000_RSSRK(j), rss_key[j]);
4425 
4426 	num_rx_queues = adapter->rss_queues;
4427 
4428 	switch (hw->mac.type) {
4429 	case e1000_82576:
4430 		/* 82576 supports 2 RSS queues for SR-IOV */
4431 		if (adapter->vfs_allocated_count)
4432 			num_rx_queues = 2;
4433 		break;
4434 	default:
4435 		break;
4436 	}
4437 
4438 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4439 		for (j = 0; j < IGB_RETA_SIZE; j++)
4440 			adapter->rss_indir_tbl[j] =
4441 			(j * num_rx_queues) / IGB_RETA_SIZE;
4442 		adapter->rss_indir_tbl_init = num_rx_queues;
4443 	}
4444 	igb_write_rss_indir_tbl(adapter);
4445 
4446 	/* Disable raw packet checksumming so that RSS hash is placed in
4447 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4448 	 * offloads as they are enabled by default
4449 	 */
4450 	rxcsum = rd32(E1000_RXCSUM);
4451 	rxcsum |= E1000_RXCSUM_PCSD;
4452 
4453 	if (adapter->hw.mac.type >= e1000_82576)
4454 		/* Enable Receive Checksum Offload for SCTP */
4455 		rxcsum |= E1000_RXCSUM_CRCOFL;
4456 
4457 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4458 	wr32(E1000_RXCSUM, rxcsum);
4459 
4460 	/* Generate RSS hash based on packet types, TCP/UDP
4461 	 * port numbers and/or IPv4/v6 src and dst addresses
4462 	 */
4463 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4464 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4465 	       E1000_MRQC_RSS_FIELD_IPV6 |
4466 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4467 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4468 
4469 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4470 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4471 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4472 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4473 
4474 	/* If VMDq is enabled then we set the appropriate mode for that, else
4475 	 * we default to RSS so that an RSS hash is calculated per packet even
4476 	 * if we are only using one queue
4477 	 */
4478 	if (adapter->vfs_allocated_count) {
4479 		if (hw->mac.type > e1000_82575) {
4480 			/* Set the default pool for the PF's first queue */
4481 			u32 vtctl = rd32(E1000_VT_CTL);
4482 
4483 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4484 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4485 			vtctl |= adapter->vfs_allocated_count <<
4486 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4487 			wr32(E1000_VT_CTL, vtctl);
4488 		}
4489 		if (adapter->rss_queues > 1)
4490 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4491 		else
4492 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4493 	} else {
4494 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4495 	}
4496 	igb_vmm_control(adapter);
4497 
4498 	wr32(E1000_MRQC, mrqc);
4499 }
4500 
4501 /**
4502  *  igb_setup_rctl - configure the receive control registers
4503  *  @adapter: Board private structure
4504  **/
4505 void igb_setup_rctl(struct igb_adapter *adapter)
4506 {
4507 	struct e1000_hw *hw = &adapter->hw;
4508 	u32 rctl;
4509 
4510 	rctl = rd32(E1000_RCTL);
4511 
4512 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4513 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4514 
4515 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4516 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4517 
4518 	/* enable stripping of CRC. It's unlikely this will break BMC
4519 	 * redirection as it did with e1000. Newer features require
4520 	 * that the HW strips the CRC.
4521 	 */
4522 	rctl |= E1000_RCTL_SECRC;
4523 
4524 	/* disable store bad packets and clear size bits. */
4525 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4526 
4527 	/* enable LPE to allow for reception of jumbo frames */
4528 	rctl |= E1000_RCTL_LPE;
4529 
4530 	/* disable queue 0 to prevent tail write w/o re-config */
4531 	wr32(E1000_RXDCTL(0), 0);
4532 
4533 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4534 	 * queue drop for all VF and PF queues to prevent head of line blocking
4535 	 * if an un-trusted VF does not provide descriptors to hardware.
4536 	 */
4537 	if (adapter->vfs_allocated_count) {
4538 		/* set all queue drop enable bits */
4539 		wr32(E1000_QDE, ALL_QUEUES);
4540 	}
4541 
4542 	/* This is useful for sniffing bad packets. */
4543 	if (adapter->netdev->features & NETIF_F_RXALL) {
4544 		/* UPE and MPE will be handled by normal PROMISC logic
4545 		 * in e1000e_set_rx_mode
4546 		 */
4547 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4548 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4549 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4550 
4551 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4552 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4553 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4554 		 * and that breaks VLANs.
4555 		 */
4556 	}
4557 
4558 	wr32(E1000_RCTL, rctl);
4559 }
4560 
4561 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4562 				   int vfn)
4563 {
4564 	struct e1000_hw *hw = &adapter->hw;
4565 	u32 vmolr;
4566 
4567 	if (size > MAX_JUMBO_FRAME_SIZE)
4568 		size = MAX_JUMBO_FRAME_SIZE;
4569 
4570 	vmolr = rd32(E1000_VMOLR(vfn));
4571 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4572 	vmolr |= size | E1000_VMOLR_LPE;
4573 	wr32(E1000_VMOLR(vfn), vmolr);
4574 
4575 	return 0;
4576 }
4577 
4578 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4579 					 int vfn, bool enable)
4580 {
4581 	struct e1000_hw *hw = &adapter->hw;
4582 	u32 val, reg;
4583 
4584 	if (hw->mac.type < e1000_82576)
4585 		return;
4586 
4587 	if (hw->mac.type == e1000_i350)
4588 		reg = E1000_DVMOLR(vfn);
4589 	else
4590 		reg = E1000_VMOLR(vfn);
4591 
4592 	val = rd32(reg);
4593 	if (enable)
4594 		val |= E1000_VMOLR_STRVLAN;
4595 	else
4596 		val &= ~(E1000_VMOLR_STRVLAN);
4597 	wr32(reg, val);
4598 }
4599 
4600 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4601 				 int vfn, bool aupe)
4602 {
4603 	struct e1000_hw *hw = &adapter->hw;
4604 	u32 vmolr;
4605 
4606 	/* This register exists only on 82576 and newer so if we are older then
4607 	 * we should exit and do nothing
4608 	 */
4609 	if (hw->mac.type < e1000_82576)
4610 		return;
4611 
4612 	vmolr = rd32(E1000_VMOLR(vfn));
4613 	if (aupe)
4614 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4615 	else
4616 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4617 
4618 	/* clear all bits that might not be set */
4619 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4620 
4621 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4622 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4623 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4624 	 * multicast packets
4625 	 */
4626 	if (vfn <= adapter->vfs_allocated_count)
4627 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4628 
4629 	wr32(E1000_VMOLR(vfn), vmolr);
4630 }
4631 
4632 /**
4633  *  igb_setup_srrctl - configure the split and replication receive control
4634  *                     registers
4635  *  @adapter: Board private structure
4636  *  @ring: receive ring to be configured
4637  **/
4638 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4639 {
4640 	struct e1000_hw *hw = &adapter->hw;
4641 	int reg_idx = ring->reg_idx;
4642 	u32 srrctl = 0;
4643 
4644 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4645 	if (ring_uses_large_buffer(ring))
4646 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4647 	else
4648 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4649 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4650 	if (hw->mac.type >= e1000_82580)
4651 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4652 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4653 	 * queues and rx flow control is disabled
4654 	 */
4655 	if (adapter->vfs_allocated_count ||
4656 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4657 	     adapter->num_rx_queues > 1))
4658 		srrctl |= E1000_SRRCTL_DROP_EN;
4659 
4660 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4661 }
4662 
4663 /**
4664  *  igb_configure_rx_ring - Configure a receive ring after Reset
4665  *  @adapter: board private structure
4666  *  @ring: receive ring to be configured
4667  *
4668  *  Configure the Rx unit of the MAC after a reset.
4669  **/
4670 void igb_configure_rx_ring(struct igb_adapter *adapter,
4671 			   struct igb_ring *ring)
4672 {
4673 	struct e1000_hw *hw = &adapter->hw;
4674 	union e1000_adv_rx_desc *rx_desc;
4675 	u64 rdba = ring->dma;
4676 	int reg_idx = ring->reg_idx;
4677 	u32 rxdctl = 0;
4678 
4679 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4680 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4681 					   MEM_TYPE_PAGE_SHARED, NULL));
4682 
4683 	/* disable the queue */
4684 	wr32(E1000_RXDCTL(reg_idx), 0);
4685 
4686 	/* Set DMA base address registers */
4687 	wr32(E1000_RDBAL(reg_idx),
4688 	     rdba & 0x00000000ffffffffULL);
4689 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4690 	wr32(E1000_RDLEN(reg_idx),
4691 	     ring->count * sizeof(union e1000_adv_rx_desc));
4692 
4693 	/* initialize head and tail */
4694 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4695 	wr32(E1000_RDH(reg_idx), 0);
4696 	writel(0, ring->tail);
4697 
4698 	/* set descriptor configuration */
4699 	igb_setup_srrctl(adapter, ring);
4700 
4701 	/* set filtering for VMDQ pools */
4702 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4703 
4704 	rxdctl |= IGB_RX_PTHRESH;
4705 	rxdctl |= IGB_RX_HTHRESH << 8;
4706 	rxdctl |= IGB_RX_WTHRESH << 16;
4707 
4708 	/* initialize rx_buffer_info */
4709 	memset(ring->rx_buffer_info, 0,
4710 	       sizeof(struct igb_rx_buffer) * ring->count);
4711 
4712 	/* initialize Rx descriptor 0 */
4713 	rx_desc = IGB_RX_DESC(ring, 0);
4714 	rx_desc->wb.upper.length = 0;
4715 
4716 	/* enable receive descriptor fetching */
4717 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4718 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4719 }
4720 
4721 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4722 				  struct igb_ring *rx_ring)
4723 {
4724 	/* set build_skb and buffer size flags */
4725 	clear_ring_build_skb_enabled(rx_ring);
4726 	clear_ring_uses_large_buffer(rx_ring);
4727 
4728 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4729 		return;
4730 
4731 	set_ring_build_skb_enabled(rx_ring);
4732 
4733 #if (PAGE_SIZE < 8192)
4734 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4735 		return;
4736 
4737 	set_ring_uses_large_buffer(rx_ring);
4738 #endif
4739 }
4740 
4741 /**
4742  *  igb_configure_rx - Configure receive Unit after Reset
4743  *  @adapter: board private structure
4744  *
4745  *  Configure the Rx unit of the MAC after a reset.
4746  **/
4747 static void igb_configure_rx(struct igb_adapter *adapter)
4748 {
4749 	int i;
4750 
4751 	/* set the correct pool for the PF default MAC address in entry 0 */
4752 	igb_set_default_mac_filter(adapter);
4753 
4754 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4755 	 * the Base and Length of the Rx Descriptor Ring
4756 	 */
4757 	for (i = 0; i < adapter->num_rx_queues; i++) {
4758 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4759 
4760 		igb_set_rx_buffer_len(adapter, rx_ring);
4761 		igb_configure_rx_ring(adapter, rx_ring);
4762 	}
4763 }
4764 
4765 /**
4766  *  igb_free_tx_resources - Free Tx Resources per Queue
4767  *  @tx_ring: Tx descriptor ring for a specific queue
4768  *
4769  *  Free all transmit software resources
4770  **/
4771 void igb_free_tx_resources(struct igb_ring *tx_ring)
4772 {
4773 	igb_clean_tx_ring(tx_ring);
4774 
4775 	vfree(tx_ring->tx_buffer_info);
4776 	tx_ring->tx_buffer_info = NULL;
4777 
4778 	/* if not set, then don't free */
4779 	if (!tx_ring->desc)
4780 		return;
4781 
4782 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4783 			  tx_ring->desc, tx_ring->dma);
4784 
4785 	tx_ring->desc = NULL;
4786 }
4787 
4788 /**
4789  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4790  *  @adapter: board private structure
4791  *
4792  *  Free all transmit software resources
4793  **/
4794 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4795 {
4796 	int i;
4797 
4798 	for (i = 0; i < adapter->num_tx_queues; i++)
4799 		if (adapter->tx_ring[i])
4800 			igb_free_tx_resources(adapter->tx_ring[i]);
4801 }
4802 
4803 /**
4804  *  igb_clean_tx_ring - Free Tx Buffers
4805  *  @tx_ring: ring to be cleaned
4806  **/
4807 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4808 {
4809 	u16 i = tx_ring->next_to_clean;
4810 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4811 
4812 	while (i != tx_ring->next_to_use) {
4813 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4814 
4815 		/* Free all the Tx ring sk_buffs */
4816 		dev_kfree_skb_any(tx_buffer->skb);
4817 
4818 		/* unmap skb header data */
4819 		dma_unmap_single(tx_ring->dev,
4820 				 dma_unmap_addr(tx_buffer, dma),
4821 				 dma_unmap_len(tx_buffer, len),
4822 				 DMA_TO_DEVICE);
4823 
4824 		/* check for eop_desc to determine the end of the packet */
4825 		eop_desc = tx_buffer->next_to_watch;
4826 		tx_desc = IGB_TX_DESC(tx_ring, i);
4827 
4828 		/* unmap remaining buffers */
4829 		while (tx_desc != eop_desc) {
4830 			tx_buffer++;
4831 			tx_desc++;
4832 			i++;
4833 			if (unlikely(i == tx_ring->count)) {
4834 				i = 0;
4835 				tx_buffer = tx_ring->tx_buffer_info;
4836 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4837 			}
4838 
4839 			/* unmap any remaining paged data */
4840 			if (dma_unmap_len(tx_buffer, len))
4841 				dma_unmap_page(tx_ring->dev,
4842 					       dma_unmap_addr(tx_buffer, dma),
4843 					       dma_unmap_len(tx_buffer, len),
4844 					       DMA_TO_DEVICE);
4845 		}
4846 
4847 		tx_buffer->next_to_watch = NULL;
4848 
4849 		/* move us one more past the eop_desc for start of next pkt */
4850 		tx_buffer++;
4851 		i++;
4852 		if (unlikely(i == tx_ring->count)) {
4853 			i = 0;
4854 			tx_buffer = tx_ring->tx_buffer_info;
4855 		}
4856 	}
4857 
4858 	/* reset BQL for queue */
4859 	netdev_tx_reset_queue(txring_txq(tx_ring));
4860 
4861 	/* reset next_to_use and next_to_clean */
4862 	tx_ring->next_to_use = 0;
4863 	tx_ring->next_to_clean = 0;
4864 }
4865 
4866 /**
4867  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4868  *  @adapter: board private structure
4869  **/
4870 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4871 {
4872 	int i;
4873 
4874 	for (i = 0; i < adapter->num_tx_queues; i++)
4875 		if (adapter->tx_ring[i])
4876 			igb_clean_tx_ring(adapter->tx_ring[i]);
4877 }
4878 
4879 /**
4880  *  igb_free_rx_resources - Free Rx Resources
4881  *  @rx_ring: ring to clean the resources from
4882  *
4883  *  Free all receive software resources
4884  **/
4885 void igb_free_rx_resources(struct igb_ring *rx_ring)
4886 {
4887 	igb_clean_rx_ring(rx_ring);
4888 
4889 	rx_ring->xdp_prog = NULL;
4890 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4891 	vfree(rx_ring->rx_buffer_info);
4892 	rx_ring->rx_buffer_info = NULL;
4893 
4894 	/* if not set, then don't free */
4895 	if (!rx_ring->desc)
4896 		return;
4897 
4898 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4899 			  rx_ring->desc, rx_ring->dma);
4900 
4901 	rx_ring->desc = NULL;
4902 }
4903 
4904 /**
4905  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4906  *  @adapter: board private structure
4907  *
4908  *  Free all receive software resources
4909  **/
4910 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4911 {
4912 	int i;
4913 
4914 	for (i = 0; i < adapter->num_rx_queues; i++)
4915 		if (adapter->rx_ring[i])
4916 			igb_free_rx_resources(adapter->rx_ring[i]);
4917 }
4918 
4919 /**
4920  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4921  *  @rx_ring: ring to free buffers from
4922  **/
4923 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4924 {
4925 	u16 i = rx_ring->next_to_clean;
4926 
4927 	dev_kfree_skb(rx_ring->skb);
4928 	rx_ring->skb = NULL;
4929 
4930 	/* Free all the Rx ring sk_buffs */
4931 	while (i != rx_ring->next_to_alloc) {
4932 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4933 
4934 		/* Invalidate cache lines that may have been written to by
4935 		 * device so that we avoid corrupting memory.
4936 		 */
4937 		dma_sync_single_range_for_cpu(rx_ring->dev,
4938 					      buffer_info->dma,
4939 					      buffer_info->page_offset,
4940 					      igb_rx_bufsz(rx_ring),
4941 					      DMA_FROM_DEVICE);
4942 
4943 		/* free resources associated with mapping */
4944 		dma_unmap_page_attrs(rx_ring->dev,
4945 				     buffer_info->dma,
4946 				     igb_rx_pg_size(rx_ring),
4947 				     DMA_FROM_DEVICE,
4948 				     IGB_RX_DMA_ATTR);
4949 		__page_frag_cache_drain(buffer_info->page,
4950 					buffer_info->pagecnt_bias);
4951 
4952 		i++;
4953 		if (i == rx_ring->count)
4954 			i = 0;
4955 	}
4956 
4957 	rx_ring->next_to_alloc = 0;
4958 	rx_ring->next_to_clean = 0;
4959 	rx_ring->next_to_use = 0;
4960 }
4961 
4962 /**
4963  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4964  *  @adapter: board private structure
4965  **/
4966 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4967 {
4968 	int i;
4969 
4970 	for (i = 0; i < adapter->num_rx_queues; i++)
4971 		if (adapter->rx_ring[i])
4972 			igb_clean_rx_ring(adapter->rx_ring[i]);
4973 }
4974 
4975 /**
4976  *  igb_set_mac - Change the Ethernet Address of the NIC
4977  *  @netdev: network interface device structure
4978  *  @p: pointer to an address structure
4979  *
4980  *  Returns 0 on success, negative on failure
4981  **/
4982 static int igb_set_mac(struct net_device *netdev, void *p)
4983 {
4984 	struct igb_adapter *adapter = netdev_priv(netdev);
4985 	struct e1000_hw *hw = &adapter->hw;
4986 	struct sockaddr *addr = p;
4987 
4988 	if (!is_valid_ether_addr(addr->sa_data))
4989 		return -EADDRNOTAVAIL;
4990 
4991 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4992 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4993 
4994 	/* set the correct pool for the new PF MAC address in entry 0 */
4995 	igb_set_default_mac_filter(adapter);
4996 
4997 	return 0;
4998 }
4999 
5000 /**
5001  *  igb_write_mc_addr_list - write multicast addresses to MTA
5002  *  @netdev: network interface device structure
5003  *
5004  *  Writes multicast address list to the MTA hash table.
5005  *  Returns: -ENOMEM on failure
5006  *           0 on no addresses written
5007  *           X on writing X addresses to MTA
5008  **/
5009 static int igb_write_mc_addr_list(struct net_device *netdev)
5010 {
5011 	struct igb_adapter *adapter = netdev_priv(netdev);
5012 	struct e1000_hw *hw = &adapter->hw;
5013 	struct netdev_hw_addr *ha;
5014 	u8  *mta_list;
5015 	int i;
5016 
5017 	if (netdev_mc_empty(netdev)) {
5018 		/* nothing to program, so clear mc list */
5019 		igb_update_mc_addr_list(hw, NULL, 0);
5020 		igb_restore_vf_multicasts(adapter);
5021 		return 0;
5022 	}
5023 
5024 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5025 	if (!mta_list)
5026 		return -ENOMEM;
5027 
5028 	/* The shared function expects a packed array of only addresses. */
5029 	i = 0;
5030 	netdev_for_each_mc_addr(ha, netdev)
5031 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5032 
5033 	igb_update_mc_addr_list(hw, mta_list, i);
5034 	kfree(mta_list);
5035 
5036 	return netdev_mc_count(netdev);
5037 }
5038 
5039 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5040 {
5041 	struct e1000_hw *hw = &adapter->hw;
5042 	u32 i, pf_id;
5043 
5044 	switch (hw->mac.type) {
5045 	case e1000_i210:
5046 	case e1000_i211:
5047 	case e1000_i350:
5048 		/* VLAN filtering needed for VLAN prio filter */
5049 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5050 			break;
5051 		fallthrough;
5052 	case e1000_82576:
5053 	case e1000_82580:
5054 	case e1000_i354:
5055 		/* VLAN filtering needed for pool filtering */
5056 		if (adapter->vfs_allocated_count)
5057 			break;
5058 		fallthrough;
5059 	default:
5060 		return 1;
5061 	}
5062 
5063 	/* We are already in VLAN promisc, nothing to do */
5064 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5065 		return 0;
5066 
5067 	if (!adapter->vfs_allocated_count)
5068 		goto set_vfta;
5069 
5070 	/* Add PF to all active pools */
5071 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5072 
5073 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5074 		u32 vlvf = rd32(E1000_VLVF(i));
5075 
5076 		vlvf |= BIT(pf_id);
5077 		wr32(E1000_VLVF(i), vlvf);
5078 	}
5079 
5080 set_vfta:
5081 	/* Set all bits in the VLAN filter table array */
5082 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5083 		hw->mac.ops.write_vfta(hw, i, ~0U);
5084 
5085 	/* Set flag so we don't redo unnecessary work */
5086 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5087 
5088 	return 0;
5089 }
5090 
5091 #define VFTA_BLOCK_SIZE 8
5092 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5093 {
5094 	struct e1000_hw *hw = &adapter->hw;
5095 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5096 	u32 vid_start = vfta_offset * 32;
5097 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5098 	u32 i, vid, word, bits, pf_id;
5099 
5100 	/* guarantee that we don't scrub out management VLAN */
5101 	vid = adapter->mng_vlan_id;
5102 	if (vid >= vid_start && vid < vid_end)
5103 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5104 
5105 	if (!adapter->vfs_allocated_count)
5106 		goto set_vfta;
5107 
5108 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5109 
5110 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5111 		u32 vlvf = rd32(E1000_VLVF(i));
5112 
5113 		/* pull VLAN ID from VLVF */
5114 		vid = vlvf & VLAN_VID_MASK;
5115 
5116 		/* only concern ourselves with a certain range */
5117 		if (vid < vid_start || vid >= vid_end)
5118 			continue;
5119 
5120 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5121 			/* record VLAN ID in VFTA */
5122 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5123 
5124 			/* if PF is part of this then continue */
5125 			if (test_bit(vid, adapter->active_vlans))
5126 				continue;
5127 		}
5128 
5129 		/* remove PF from the pool */
5130 		bits = ~BIT(pf_id);
5131 		bits &= rd32(E1000_VLVF(i));
5132 		wr32(E1000_VLVF(i), bits);
5133 	}
5134 
5135 set_vfta:
5136 	/* extract values from active_vlans and write back to VFTA */
5137 	for (i = VFTA_BLOCK_SIZE; i--;) {
5138 		vid = (vfta_offset + i) * 32;
5139 		word = vid / BITS_PER_LONG;
5140 		bits = vid % BITS_PER_LONG;
5141 
5142 		vfta[i] |= adapter->active_vlans[word] >> bits;
5143 
5144 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5145 	}
5146 }
5147 
5148 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5149 {
5150 	u32 i;
5151 
5152 	/* We are not in VLAN promisc, nothing to do */
5153 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5154 		return;
5155 
5156 	/* Set flag so we don't redo unnecessary work */
5157 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5158 
5159 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5160 		igb_scrub_vfta(adapter, i);
5161 }
5162 
5163 /**
5164  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5165  *  @netdev: network interface device structure
5166  *
5167  *  The set_rx_mode entry point is called whenever the unicast or multicast
5168  *  address lists or the network interface flags are updated.  This routine is
5169  *  responsible for configuring the hardware for proper unicast, multicast,
5170  *  promiscuous mode, and all-multi behavior.
5171  **/
5172 static void igb_set_rx_mode(struct net_device *netdev)
5173 {
5174 	struct igb_adapter *adapter = netdev_priv(netdev);
5175 	struct e1000_hw *hw = &adapter->hw;
5176 	unsigned int vfn = adapter->vfs_allocated_count;
5177 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5178 	int count;
5179 
5180 	/* Check for Promiscuous and All Multicast modes */
5181 	if (netdev->flags & IFF_PROMISC) {
5182 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5183 		vmolr |= E1000_VMOLR_MPME;
5184 
5185 		/* enable use of UTA filter to force packets to default pool */
5186 		if (hw->mac.type == e1000_82576)
5187 			vmolr |= E1000_VMOLR_ROPE;
5188 	} else {
5189 		if (netdev->flags & IFF_ALLMULTI) {
5190 			rctl |= E1000_RCTL_MPE;
5191 			vmolr |= E1000_VMOLR_MPME;
5192 		} else {
5193 			/* Write addresses to the MTA, if the attempt fails
5194 			 * then we should just turn on promiscuous mode so
5195 			 * that we can at least receive multicast traffic
5196 			 */
5197 			count = igb_write_mc_addr_list(netdev);
5198 			if (count < 0) {
5199 				rctl |= E1000_RCTL_MPE;
5200 				vmolr |= E1000_VMOLR_MPME;
5201 			} else if (count) {
5202 				vmolr |= E1000_VMOLR_ROMPE;
5203 			}
5204 		}
5205 	}
5206 
5207 	/* Write addresses to available RAR registers, if there is not
5208 	 * sufficient space to store all the addresses then enable
5209 	 * unicast promiscuous mode
5210 	 */
5211 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5212 		rctl |= E1000_RCTL_UPE;
5213 		vmolr |= E1000_VMOLR_ROPE;
5214 	}
5215 
5216 	/* enable VLAN filtering by default */
5217 	rctl |= E1000_RCTL_VFE;
5218 
5219 	/* disable VLAN filtering for modes that require it */
5220 	if ((netdev->flags & IFF_PROMISC) ||
5221 	    (netdev->features & NETIF_F_RXALL)) {
5222 		/* if we fail to set all rules then just clear VFE */
5223 		if (igb_vlan_promisc_enable(adapter))
5224 			rctl &= ~E1000_RCTL_VFE;
5225 	} else {
5226 		igb_vlan_promisc_disable(adapter);
5227 	}
5228 
5229 	/* update state of unicast, multicast, and VLAN filtering modes */
5230 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5231 				     E1000_RCTL_VFE);
5232 	wr32(E1000_RCTL, rctl);
5233 
5234 #if (PAGE_SIZE < 8192)
5235 	if (!adapter->vfs_allocated_count) {
5236 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5237 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5238 	}
5239 #endif
5240 	wr32(E1000_RLPML, rlpml);
5241 
5242 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5243 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5244 	 * we will have issues with VLAN tag stripping not being done for frames
5245 	 * that are only arriving because we are the default pool
5246 	 */
5247 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5248 		return;
5249 
5250 	/* set UTA to appropriate mode */
5251 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5252 
5253 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5254 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5255 
5256 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5257 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5258 #if (PAGE_SIZE < 8192)
5259 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5260 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5261 	else
5262 #endif
5263 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5264 	vmolr |= E1000_VMOLR_LPE;
5265 
5266 	wr32(E1000_VMOLR(vfn), vmolr);
5267 
5268 	igb_restore_vf_multicasts(adapter);
5269 }
5270 
5271 static void igb_check_wvbr(struct igb_adapter *adapter)
5272 {
5273 	struct e1000_hw *hw = &adapter->hw;
5274 	u32 wvbr = 0;
5275 
5276 	switch (hw->mac.type) {
5277 	case e1000_82576:
5278 	case e1000_i350:
5279 		wvbr = rd32(E1000_WVBR);
5280 		if (!wvbr)
5281 			return;
5282 		break;
5283 	default:
5284 		break;
5285 	}
5286 
5287 	adapter->wvbr |= wvbr;
5288 }
5289 
5290 #define IGB_STAGGERED_QUEUE_OFFSET 8
5291 
5292 static void igb_spoof_check(struct igb_adapter *adapter)
5293 {
5294 	int j;
5295 
5296 	if (!adapter->wvbr)
5297 		return;
5298 
5299 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5300 		if (adapter->wvbr & BIT(j) ||
5301 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5302 			dev_warn(&adapter->pdev->dev,
5303 				"Spoof event(s) detected on VF %d\n", j);
5304 			adapter->wvbr &=
5305 				~(BIT(j) |
5306 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5307 		}
5308 	}
5309 }
5310 
5311 /* Need to wait a few seconds after link up to get diagnostic information from
5312  * the phy
5313  */
5314 static void igb_update_phy_info(struct timer_list *t)
5315 {
5316 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5317 	igb_get_phy_info(&adapter->hw);
5318 }
5319 
5320 /**
5321  *  igb_has_link - check shared code for link and determine up/down
5322  *  @adapter: pointer to driver private info
5323  **/
5324 bool igb_has_link(struct igb_adapter *adapter)
5325 {
5326 	struct e1000_hw *hw = &adapter->hw;
5327 	bool link_active = false;
5328 
5329 	/* get_link_status is set on LSC (link status) interrupt or
5330 	 * rx sequence error interrupt.  get_link_status will stay
5331 	 * false until the e1000_check_for_link establishes link
5332 	 * for copper adapters ONLY
5333 	 */
5334 	switch (hw->phy.media_type) {
5335 	case e1000_media_type_copper:
5336 		if (!hw->mac.get_link_status)
5337 			return true;
5338 		fallthrough;
5339 	case e1000_media_type_internal_serdes:
5340 		hw->mac.ops.check_for_link(hw);
5341 		link_active = !hw->mac.get_link_status;
5342 		break;
5343 	default:
5344 	case e1000_media_type_unknown:
5345 		break;
5346 	}
5347 
5348 	if (((hw->mac.type == e1000_i210) ||
5349 	     (hw->mac.type == e1000_i211)) &&
5350 	     (hw->phy.id == I210_I_PHY_ID)) {
5351 		if (!netif_carrier_ok(adapter->netdev)) {
5352 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5353 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5354 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5355 			adapter->link_check_timeout = jiffies;
5356 		}
5357 	}
5358 
5359 	return link_active;
5360 }
5361 
5362 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5363 {
5364 	bool ret = false;
5365 	u32 ctrl_ext, thstat;
5366 
5367 	/* check for thermal sensor event on i350 copper only */
5368 	if (hw->mac.type == e1000_i350) {
5369 		thstat = rd32(E1000_THSTAT);
5370 		ctrl_ext = rd32(E1000_CTRL_EXT);
5371 
5372 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5373 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5374 			ret = !!(thstat & event);
5375 	}
5376 
5377 	return ret;
5378 }
5379 
5380 /**
5381  *  igb_check_lvmmc - check for malformed packets received
5382  *  and indicated in LVMMC register
5383  *  @adapter: pointer to adapter
5384  **/
5385 static void igb_check_lvmmc(struct igb_adapter *adapter)
5386 {
5387 	struct e1000_hw *hw = &adapter->hw;
5388 	u32 lvmmc;
5389 
5390 	lvmmc = rd32(E1000_LVMMC);
5391 	if (lvmmc) {
5392 		if (unlikely(net_ratelimit())) {
5393 			netdev_warn(adapter->netdev,
5394 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5395 				    lvmmc);
5396 		}
5397 	}
5398 }
5399 
5400 /**
5401  *  igb_watchdog - Timer Call-back
5402  *  @t: pointer to timer_list containing our private info pointer
5403  **/
5404 static void igb_watchdog(struct timer_list *t)
5405 {
5406 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5407 	/* Do the rest outside of interrupt context */
5408 	schedule_work(&adapter->watchdog_task);
5409 }
5410 
5411 static void igb_watchdog_task(struct work_struct *work)
5412 {
5413 	struct igb_adapter *adapter = container_of(work,
5414 						   struct igb_adapter,
5415 						   watchdog_task);
5416 	struct e1000_hw *hw = &adapter->hw;
5417 	struct e1000_phy_info *phy = &hw->phy;
5418 	struct net_device *netdev = adapter->netdev;
5419 	u32 link;
5420 	int i;
5421 	u32 connsw;
5422 	u16 phy_data, retry_count = 20;
5423 
5424 	link = igb_has_link(adapter);
5425 
5426 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5427 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5428 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5429 		else
5430 			link = false;
5431 	}
5432 
5433 	/* Force link down if we have fiber to swap to */
5434 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5435 		if (hw->phy.media_type == e1000_media_type_copper) {
5436 			connsw = rd32(E1000_CONNSW);
5437 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5438 				link = 0;
5439 		}
5440 	}
5441 	if (link) {
5442 		/* Perform a reset if the media type changed. */
5443 		if (hw->dev_spec._82575.media_changed) {
5444 			hw->dev_spec._82575.media_changed = false;
5445 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5446 			igb_reset(adapter);
5447 		}
5448 		/* Cancel scheduled suspend requests. */
5449 		pm_runtime_resume(netdev->dev.parent);
5450 
5451 		if (!netif_carrier_ok(netdev)) {
5452 			u32 ctrl;
5453 
5454 			hw->mac.ops.get_speed_and_duplex(hw,
5455 							 &adapter->link_speed,
5456 							 &adapter->link_duplex);
5457 
5458 			ctrl = rd32(E1000_CTRL);
5459 			/* Links status message must follow this format */
5460 			netdev_info(netdev,
5461 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5462 			       netdev->name,
5463 			       adapter->link_speed,
5464 			       adapter->link_duplex == FULL_DUPLEX ?
5465 			       "Full" : "Half",
5466 			       (ctrl & E1000_CTRL_TFCE) &&
5467 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5468 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5469 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5470 
5471 			/* disable EEE if enabled */
5472 			if ((adapter->flags & IGB_FLAG_EEE) &&
5473 				(adapter->link_duplex == HALF_DUPLEX)) {
5474 				dev_info(&adapter->pdev->dev,
5475 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5476 				adapter->hw.dev_spec._82575.eee_disable = true;
5477 				adapter->flags &= ~IGB_FLAG_EEE;
5478 			}
5479 
5480 			/* check if SmartSpeed worked */
5481 			igb_check_downshift(hw);
5482 			if (phy->speed_downgraded)
5483 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5484 
5485 			/* check for thermal sensor event */
5486 			if (igb_thermal_sensor_event(hw,
5487 			    E1000_THSTAT_LINK_THROTTLE))
5488 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5489 
5490 			/* adjust timeout factor according to speed/duplex */
5491 			adapter->tx_timeout_factor = 1;
5492 			switch (adapter->link_speed) {
5493 			case SPEED_10:
5494 				adapter->tx_timeout_factor = 14;
5495 				break;
5496 			case SPEED_100:
5497 				/* maybe add some timeout factor ? */
5498 				break;
5499 			}
5500 
5501 			if (adapter->link_speed != SPEED_1000)
5502 				goto no_wait;
5503 
5504 			/* wait for Remote receiver status OK */
5505 retry_read_status:
5506 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5507 					      &phy_data)) {
5508 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5509 				    retry_count) {
5510 					msleep(100);
5511 					retry_count--;
5512 					goto retry_read_status;
5513 				} else if (!retry_count) {
5514 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5515 				}
5516 			} else {
5517 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5518 			}
5519 no_wait:
5520 			netif_carrier_on(netdev);
5521 
5522 			igb_ping_all_vfs(adapter);
5523 			igb_check_vf_rate_limit(adapter);
5524 
5525 			/* link state has changed, schedule phy info update */
5526 			if (!test_bit(__IGB_DOWN, &adapter->state))
5527 				mod_timer(&adapter->phy_info_timer,
5528 					  round_jiffies(jiffies + 2 * HZ));
5529 		}
5530 	} else {
5531 		if (netif_carrier_ok(netdev)) {
5532 			adapter->link_speed = 0;
5533 			adapter->link_duplex = 0;
5534 
5535 			/* check for thermal sensor event */
5536 			if (igb_thermal_sensor_event(hw,
5537 			    E1000_THSTAT_PWR_DOWN)) {
5538 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5539 			}
5540 
5541 			/* Links status message must follow this format */
5542 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5543 			       netdev->name);
5544 			netif_carrier_off(netdev);
5545 
5546 			igb_ping_all_vfs(adapter);
5547 
5548 			/* link state has changed, schedule phy info update */
5549 			if (!test_bit(__IGB_DOWN, &adapter->state))
5550 				mod_timer(&adapter->phy_info_timer,
5551 					  round_jiffies(jiffies + 2 * HZ));
5552 
5553 			/* link is down, time to check for alternate media */
5554 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5555 				igb_check_swap_media(adapter);
5556 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5557 					schedule_work(&adapter->reset_task);
5558 					/* return immediately */
5559 					return;
5560 				}
5561 			}
5562 			pm_schedule_suspend(netdev->dev.parent,
5563 					    MSEC_PER_SEC * 5);
5564 
5565 		/* also check for alternate media here */
5566 		} else if (!netif_carrier_ok(netdev) &&
5567 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5568 			igb_check_swap_media(adapter);
5569 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5570 				schedule_work(&adapter->reset_task);
5571 				/* return immediately */
5572 				return;
5573 			}
5574 		}
5575 	}
5576 
5577 	spin_lock(&adapter->stats64_lock);
5578 	igb_update_stats(adapter);
5579 	spin_unlock(&adapter->stats64_lock);
5580 
5581 	for (i = 0; i < adapter->num_tx_queues; i++) {
5582 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5583 		if (!netif_carrier_ok(netdev)) {
5584 			/* We've lost link, so the controller stops DMA,
5585 			 * but we've got queued Tx work that's never going
5586 			 * to get done, so reset controller to flush Tx.
5587 			 * (Do the reset outside of interrupt context).
5588 			 */
5589 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5590 				adapter->tx_timeout_count++;
5591 				schedule_work(&adapter->reset_task);
5592 				/* return immediately since reset is imminent */
5593 				return;
5594 			}
5595 		}
5596 
5597 		/* Force detection of hung controller every watchdog period */
5598 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5599 	}
5600 
5601 	/* Cause software interrupt to ensure Rx ring is cleaned */
5602 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5603 		u32 eics = 0;
5604 
5605 		for (i = 0; i < adapter->num_q_vectors; i++)
5606 			eics |= adapter->q_vector[i]->eims_value;
5607 		wr32(E1000_EICS, eics);
5608 	} else {
5609 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5610 	}
5611 
5612 	igb_spoof_check(adapter);
5613 	igb_ptp_rx_hang(adapter);
5614 	igb_ptp_tx_hang(adapter);
5615 
5616 	/* Check LVMMC register on i350/i354 only */
5617 	if ((adapter->hw.mac.type == e1000_i350) ||
5618 	    (adapter->hw.mac.type == e1000_i354))
5619 		igb_check_lvmmc(adapter);
5620 
5621 	/* Reset the timer */
5622 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5623 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5624 			mod_timer(&adapter->watchdog_timer,
5625 				  round_jiffies(jiffies +  HZ));
5626 		else
5627 			mod_timer(&adapter->watchdog_timer,
5628 				  round_jiffies(jiffies + 2 * HZ));
5629 	}
5630 }
5631 
5632 enum latency_range {
5633 	lowest_latency = 0,
5634 	low_latency = 1,
5635 	bulk_latency = 2,
5636 	latency_invalid = 255
5637 };
5638 
5639 /**
5640  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5641  *  @q_vector: pointer to q_vector
5642  *
5643  *  Stores a new ITR value based on strictly on packet size.  This
5644  *  algorithm is less sophisticated than that used in igb_update_itr,
5645  *  due to the difficulty of synchronizing statistics across multiple
5646  *  receive rings.  The divisors and thresholds used by this function
5647  *  were determined based on theoretical maximum wire speed and testing
5648  *  data, in order to minimize response time while increasing bulk
5649  *  throughput.
5650  *  This functionality is controlled by ethtool's coalescing settings.
5651  *  NOTE:  This function is called only when operating in a multiqueue
5652  *         receive environment.
5653  **/
5654 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5655 {
5656 	int new_val = q_vector->itr_val;
5657 	int avg_wire_size = 0;
5658 	struct igb_adapter *adapter = q_vector->adapter;
5659 	unsigned int packets;
5660 
5661 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5662 	 * ints/sec - ITR timer value of 120 ticks.
5663 	 */
5664 	if (adapter->link_speed != SPEED_1000) {
5665 		new_val = IGB_4K_ITR;
5666 		goto set_itr_val;
5667 	}
5668 
5669 	packets = q_vector->rx.total_packets;
5670 	if (packets)
5671 		avg_wire_size = q_vector->rx.total_bytes / packets;
5672 
5673 	packets = q_vector->tx.total_packets;
5674 	if (packets)
5675 		avg_wire_size = max_t(u32, avg_wire_size,
5676 				      q_vector->tx.total_bytes / packets);
5677 
5678 	/* if avg_wire_size isn't set no work was done */
5679 	if (!avg_wire_size)
5680 		goto clear_counts;
5681 
5682 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5683 	avg_wire_size += 24;
5684 
5685 	/* Don't starve jumbo frames */
5686 	avg_wire_size = min(avg_wire_size, 3000);
5687 
5688 	/* Give a little boost to mid-size frames */
5689 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5690 		new_val = avg_wire_size / 3;
5691 	else
5692 		new_val = avg_wire_size / 2;
5693 
5694 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5695 	if (new_val < IGB_20K_ITR &&
5696 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5697 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5698 		new_val = IGB_20K_ITR;
5699 
5700 set_itr_val:
5701 	if (new_val != q_vector->itr_val) {
5702 		q_vector->itr_val = new_val;
5703 		q_vector->set_itr = 1;
5704 	}
5705 clear_counts:
5706 	q_vector->rx.total_bytes = 0;
5707 	q_vector->rx.total_packets = 0;
5708 	q_vector->tx.total_bytes = 0;
5709 	q_vector->tx.total_packets = 0;
5710 }
5711 
5712 /**
5713  *  igb_update_itr - update the dynamic ITR value based on statistics
5714  *  @q_vector: pointer to q_vector
5715  *  @ring_container: ring info to update the itr for
5716  *
5717  *  Stores a new ITR value based on packets and byte
5718  *  counts during the last interrupt.  The advantage of per interrupt
5719  *  computation is faster updates and more accurate ITR for the current
5720  *  traffic pattern.  Constants in this function were computed
5721  *  based on theoretical maximum wire speed and thresholds were set based
5722  *  on testing data as well as attempting to minimize response time
5723  *  while increasing bulk throughput.
5724  *  This functionality is controlled by ethtool's coalescing settings.
5725  *  NOTE:  These calculations are only valid when operating in a single-
5726  *         queue environment.
5727  **/
5728 static void igb_update_itr(struct igb_q_vector *q_vector,
5729 			   struct igb_ring_container *ring_container)
5730 {
5731 	unsigned int packets = ring_container->total_packets;
5732 	unsigned int bytes = ring_container->total_bytes;
5733 	u8 itrval = ring_container->itr;
5734 
5735 	/* no packets, exit with status unchanged */
5736 	if (packets == 0)
5737 		return;
5738 
5739 	switch (itrval) {
5740 	case lowest_latency:
5741 		/* handle TSO and jumbo frames */
5742 		if (bytes/packets > 8000)
5743 			itrval = bulk_latency;
5744 		else if ((packets < 5) && (bytes > 512))
5745 			itrval = low_latency;
5746 		break;
5747 	case low_latency:  /* 50 usec aka 20000 ints/s */
5748 		if (bytes > 10000) {
5749 			/* this if handles the TSO accounting */
5750 			if (bytes/packets > 8000)
5751 				itrval = bulk_latency;
5752 			else if ((packets < 10) || ((bytes/packets) > 1200))
5753 				itrval = bulk_latency;
5754 			else if ((packets > 35))
5755 				itrval = lowest_latency;
5756 		} else if (bytes/packets > 2000) {
5757 			itrval = bulk_latency;
5758 		} else if (packets <= 2 && bytes < 512) {
5759 			itrval = lowest_latency;
5760 		}
5761 		break;
5762 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5763 		if (bytes > 25000) {
5764 			if (packets > 35)
5765 				itrval = low_latency;
5766 		} else if (bytes < 1500) {
5767 			itrval = low_latency;
5768 		}
5769 		break;
5770 	}
5771 
5772 	/* clear work counters since we have the values we need */
5773 	ring_container->total_bytes = 0;
5774 	ring_container->total_packets = 0;
5775 
5776 	/* write updated itr to ring container */
5777 	ring_container->itr = itrval;
5778 }
5779 
5780 static void igb_set_itr(struct igb_q_vector *q_vector)
5781 {
5782 	struct igb_adapter *adapter = q_vector->adapter;
5783 	u32 new_itr = q_vector->itr_val;
5784 	u8 current_itr = 0;
5785 
5786 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5787 	if (adapter->link_speed != SPEED_1000) {
5788 		current_itr = 0;
5789 		new_itr = IGB_4K_ITR;
5790 		goto set_itr_now;
5791 	}
5792 
5793 	igb_update_itr(q_vector, &q_vector->tx);
5794 	igb_update_itr(q_vector, &q_vector->rx);
5795 
5796 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5797 
5798 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5799 	if (current_itr == lowest_latency &&
5800 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5801 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5802 		current_itr = low_latency;
5803 
5804 	switch (current_itr) {
5805 	/* counts and packets in update_itr are dependent on these numbers */
5806 	case lowest_latency:
5807 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5808 		break;
5809 	case low_latency:
5810 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5811 		break;
5812 	case bulk_latency:
5813 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5814 		break;
5815 	default:
5816 		break;
5817 	}
5818 
5819 set_itr_now:
5820 	if (new_itr != q_vector->itr_val) {
5821 		/* this attempts to bias the interrupt rate towards Bulk
5822 		 * by adding intermediate steps when interrupt rate is
5823 		 * increasing
5824 		 */
5825 		new_itr = new_itr > q_vector->itr_val ?
5826 			  max((new_itr * q_vector->itr_val) /
5827 			  (new_itr + (q_vector->itr_val >> 2)),
5828 			  new_itr) : new_itr;
5829 		/* Don't write the value here; it resets the adapter's
5830 		 * internal timer, and causes us to delay far longer than
5831 		 * we should between interrupts.  Instead, we write the ITR
5832 		 * value at the beginning of the next interrupt so the timing
5833 		 * ends up being correct.
5834 		 */
5835 		q_vector->itr_val = new_itr;
5836 		q_vector->set_itr = 1;
5837 	}
5838 }
5839 
5840 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5841 			    struct igb_tx_buffer *first,
5842 			    u32 vlan_macip_lens, u32 type_tucmd,
5843 			    u32 mss_l4len_idx)
5844 {
5845 	struct e1000_adv_tx_context_desc *context_desc;
5846 	u16 i = tx_ring->next_to_use;
5847 	struct timespec64 ts;
5848 
5849 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5850 
5851 	i++;
5852 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5853 
5854 	/* set bits to identify this as an advanced context descriptor */
5855 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5856 
5857 	/* For 82575, context index must be unique per ring. */
5858 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5859 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5860 
5861 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5862 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5863 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5864 
5865 	/* We assume there is always a valid tx time available. Invalid times
5866 	 * should have been handled by the upper layers.
5867 	 */
5868 	if (tx_ring->launchtime_enable) {
5869 		ts = ktime_to_timespec64(first->skb->tstamp);
5870 		skb_txtime_consumed(first->skb);
5871 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5872 	} else {
5873 		context_desc->seqnum_seed = 0;
5874 	}
5875 }
5876 
5877 static int igb_tso(struct igb_ring *tx_ring,
5878 		   struct igb_tx_buffer *first,
5879 		   u8 *hdr_len)
5880 {
5881 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5882 	struct sk_buff *skb = first->skb;
5883 	union {
5884 		struct iphdr *v4;
5885 		struct ipv6hdr *v6;
5886 		unsigned char *hdr;
5887 	} ip;
5888 	union {
5889 		struct tcphdr *tcp;
5890 		struct udphdr *udp;
5891 		unsigned char *hdr;
5892 	} l4;
5893 	u32 paylen, l4_offset;
5894 	int err;
5895 
5896 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5897 		return 0;
5898 
5899 	if (!skb_is_gso(skb))
5900 		return 0;
5901 
5902 	err = skb_cow_head(skb, 0);
5903 	if (err < 0)
5904 		return err;
5905 
5906 	ip.hdr = skb_network_header(skb);
5907 	l4.hdr = skb_checksum_start(skb);
5908 
5909 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5910 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5911 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5912 
5913 	/* initialize outer IP header fields */
5914 	if (ip.v4->version == 4) {
5915 		unsigned char *csum_start = skb_checksum_start(skb);
5916 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5917 
5918 		/* IP header will have to cancel out any data that
5919 		 * is not a part of the outer IP header
5920 		 */
5921 		ip.v4->check = csum_fold(csum_partial(trans_start,
5922 						      csum_start - trans_start,
5923 						      0));
5924 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5925 
5926 		ip.v4->tot_len = 0;
5927 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5928 				   IGB_TX_FLAGS_CSUM |
5929 				   IGB_TX_FLAGS_IPV4;
5930 	} else {
5931 		ip.v6->payload_len = 0;
5932 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5933 				   IGB_TX_FLAGS_CSUM;
5934 	}
5935 
5936 	/* determine offset of inner transport header */
5937 	l4_offset = l4.hdr - skb->data;
5938 
5939 	/* remove payload length from inner checksum */
5940 	paylen = skb->len - l4_offset;
5941 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5942 		/* compute length of segmentation header */
5943 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5944 		csum_replace_by_diff(&l4.tcp->check,
5945 			(__force __wsum)htonl(paylen));
5946 	} else {
5947 		/* compute length of segmentation header */
5948 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5949 		csum_replace_by_diff(&l4.udp->check,
5950 				     (__force __wsum)htonl(paylen));
5951 	}
5952 
5953 	/* update gso size and bytecount with header size */
5954 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5955 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5956 
5957 	/* MSS L4LEN IDX */
5958 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5959 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5960 
5961 	/* VLAN MACLEN IPLEN */
5962 	vlan_macip_lens = l4.hdr - ip.hdr;
5963 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5964 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5965 
5966 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5967 			type_tucmd, mss_l4len_idx);
5968 
5969 	return 1;
5970 }
5971 
5972 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5973 {
5974 	struct sk_buff *skb = first->skb;
5975 	u32 vlan_macip_lens = 0;
5976 	u32 type_tucmd = 0;
5977 
5978 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5979 csum_failed:
5980 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5981 		    !tx_ring->launchtime_enable)
5982 			return;
5983 		goto no_csum;
5984 	}
5985 
5986 	switch (skb->csum_offset) {
5987 	case offsetof(struct tcphdr, check):
5988 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5989 		fallthrough;
5990 	case offsetof(struct udphdr, check):
5991 		break;
5992 	case offsetof(struct sctphdr, checksum):
5993 		/* validate that this is actually an SCTP request */
5994 		if (skb_csum_is_sctp(skb)) {
5995 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5996 			break;
5997 		}
5998 		fallthrough;
5999 	default:
6000 		skb_checksum_help(skb);
6001 		goto csum_failed;
6002 	}
6003 
6004 	/* update TX checksum flag */
6005 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6006 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6007 			  skb_network_offset(skb);
6008 no_csum:
6009 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6010 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6011 
6012 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6013 }
6014 
6015 #define IGB_SET_FLAG(_input, _flag, _result) \
6016 	((_flag <= _result) ? \
6017 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6018 	 ((u32)(_input & _flag) / (_flag / _result)))
6019 
6020 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6021 {
6022 	/* set type for advanced descriptor with frame checksum insertion */
6023 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6024 		       E1000_ADVTXD_DCMD_DEXT |
6025 		       E1000_ADVTXD_DCMD_IFCS;
6026 
6027 	/* set HW vlan bit if vlan is present */
6028 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6029 				 (E1000_ADVTXD_DCMD_VLE));
6030 
6031 	/* set segmentation bits for TSO */
6032 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6033 				 (E1000_ADVTXD_DCMD_TSE));
6034 
6035 	/* set timestamp bit if present */
6036 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6037 				 (E1000_ADVTXD_MAC_TSTAMP));
6038 
6039 	/* insert frame checksum */
6040 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6041 
6042 	return cmd_type;
6043 }
6044 
6045 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6046 				 union e1000_adv_tx_desc *tx_desc,
6047 				 u32 tx_flags, unsigned int paylen)
6048 {
6049 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6050 
6051 	/* 82575 requires a unique index per ring */
6052 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6053 		olinfo_status |= tx_ring->reg_idx << 4;
6054 
6055 	/* insert L4 checksum */
6056 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6057 				      IGB_TX_FLAGS_CSUM,
6058 				      (E1000_TXD_POPTS_TXSM << 8));
6059 
6060 	/* insert IPv4 checksum */
6061 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6062 				      IGB_TX_FLAGS_IPV4,
6063 				      (E1000_TXD_POPTS_IXSM << 8));
6064 
6065 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6066 }
6067 
6068 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6069 {
6070 	struct net_device *netdev = tx_ring->netdev;
6071 
6072 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6073 
6074 	/* Herbert's original patch had:
6075 	 *  smp_mb__after_netif_stop_queue();
6076 	 * but since that doesn't exist yet, just open code it.
6077 	 */
6078 	smp_mb();
6079 
6080 	/* We need to check again in a case another CPU has just
6081 	 * made room available.
6082 	 */
6083 	if (igb_desc_unused(tx_ring) < size)
6084 		return -EBUSY;
6085 
6086 	/* A reprieve! */
6087 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6088 
6089 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6090 	tx_ring->tx_stats.restart_queue2++;
6091 	u64_stats_update_end(&tx_ring->tx_syncp2);
6092 
6093 	return 0;
6094 }
6095 
6096 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6097 {
6098 	if (igb_desc_unused(tx_ring) >= size)
6099 		return 0;
6100 	return __igb_maybe_stop_tx(tx_ring, size);
6101 }
6102 
6103 static int igb_tx_map(struct igb_ring *tx_ring,
6104 		      struct igb_tx_buffer *first,
6105 		      const u8 hdr_len)
6106 {
6107 	struct sk_buff *skb = first->skb;
6108 	struct igb_tx_buffer *tx_buffer;
6109 	union e1000_adv_tx_desc *tx_desc;
6110 	skb_frag_t *frag;
6111 	dma_addr_t dma;
6112 	unsigned int data_len, size;
6113 	u32 tx_flags = first->tx_flags;
6114 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6115 	u16 i = tx_ring->next_to_use;
6116 
6117 	tx_desc = IGB_TX_DESC(tx_ring, i);
6118 
6119 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6120 
6121 	size = skb_headlen(skb);
6122 	data_len = skb->data_len;
6123 
6124 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6125 
6126 	tx_buffer = first;
6127 
6128 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6129 		if (dma_mapping_error(tx_ring->dev, dma))
6130 			goto dma_error;
6131 
6132 		/* record length, and DMA address */
6133 		dma_unmap_len_set(tx_buffer, len, size);
6134 		dma_unmap_addr_set(tx_buffer, dma, dma);
6135 
6136 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6137 
6138 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6139 			tx_desc->read.cmd_type_len =
6140 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6141 
6142 			i++;
6143 			tx_desc++;
6144 			if (i == tx_ring->count) {
6145 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6146 				i = 0;
6147 			}
6148 			tx_desc->read.olinfo_status = 0;
6149 
6150 			dma += IGB_MAX_DATA_PER_TXD;
6151 			size -= IGB_MAX_DATA_PER_TXD;
6152 
6153 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6154 		}
6155 
6156 		if (likely(!data_len))
6157 			break;
6158 
6159 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6160 
6161 		i++;
6162 		tx_desc++;
6163 		if (i == tx_ring->count) {
6164 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6165 			i = 0;
6166 		}
6167 		tx_desc->read.olinfo_status = 0;
6168 
6169 		size = skb_frag_size(frag);
6170 		data_len -= size;
6171 
6172 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6173 				       size, DMA_TO_DEVICE);
6174 
6175 		tx_buffer = &tx_ring->tx_buffer_info[i];
6176 	}
6177 
6178 	/* write last descriptor with RS and EOP bits */
6179 	cmd_type |= size | IGB_TXD_DCMD;
6180 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6181 
6182 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6183 
6184 	/* set the timestamp */
6185 	first->time_stamp = jiffies;
6186 
6187 	skb_tx_timestamp(skb);
6188 
6189 	/* Force memory writes to complete before letting h/w know there
6190 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6191 	 * memory model archs, such as IA-64).
6192 	 *
6193 	 * We also need this memory barrier to make certain all of the
6194 	 * status bits have been updated before next_to_watch is written.
6195 	 */
6196 	dma_wmb();
6197 
6198 	/* set next_to_watch value indicating a packet is present */
6199 	first->next_to_watch = tx_desc;
6200 
6201 	i++;
6202 	if (i == tx_ring->count)
6203 		i = 0;
6204 
6205 	tx_ring->next_to_use = i;
6206 
6207 	/* Make sure there is space in the ring for the next send. */
6208 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6209 
6210 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6211 		writel(i, tx_ring->tail);
6212 	}
6213 	return 0;
6214 
6215 dma_error:
6216 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6217 	tx_buffer = &tx_ring->tx_buffer_info[i];
6218 
6219 	/* clear dma mappings for failed tx_buffer_info map */
6220 	while (tx_buffer != first) {
6221 		if (dma_unmap_len(tx_buffer, len))
6222 			dma_unmap_page(tx_ring->dev,
6223 				       dma_unmap_addr(tx_buffer, dma),
6224 				       dma_unmap_len(tx_buffer, len),
6225 				       DMA_TO_DEVICE);
6226 		dma_unmap_len_set(tx_buffer, len, 0);
6227 
6228 		if (i-- == 0)
6229 			i += tx_ring->count;
6230 		tx_buffer = &tx_ring->tx_buffer_info[i];
6231 	}
6232 
6233 	if (dma_unmap_len(tx_buffer, len))
6234 		dma_unmap_single(tx_ring->dev,
6235 				 dma_unmap_addr(tx_buffer, dma),
6236 				 dma_unmap_len(tx_buffer, len),
6237 				 DMA_TO_DEVICE);
6238 	dma_unmap_len_set(tx_buffer, len, 0);
6239 
6240 	dev_kfree_skb_any(tx_buffer->skb);
6241 	tx_buffer->skb = NULL;
6242 
6243 	tx_ring->next_to_use = i;
6244 
6245 	return -1;
6246 }
6247 
6248 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6249 		      struct igb_ring *tx_ring,
6250 		      struct xdp_frame *xdpf)
6251 {
6252 	union e1000_adv_tx_desc *tx_desc;
6253 	u32 len, cmd_type, olinfo_status;
6254 	struct igb_tx_buffer *tx_buffer;
6255 	dma_addr_t dma;
6256 	u16 i;
6257 
6258 	len = xdpf->len;
6259 
6260 	if (unlikely(!igb_desc_unused(tx_ring)))
6261 		return IGB_XDP_CONSUMED;
6262 
6263 	dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6264 	if (dma_mapping_error(tx_ring->dev, dma))
6265 		return IGB_XDP_CONSUMED;
6266 
6267 	/* record the location of the first descriptor for this packet */
6268 	tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6269 	tx_buffer->bytecount = len;
6270 	tx_buffer->gso_segs = 1;
6271 	tx_buffer->protocol = 0;
6272 
6273 	i = tx_ring->next_to_use;
6274 	tx_desc = IGB_TX_DESC(tx_ring, i);
6275 
6276 	dma_unmap_len_set(tx_buffer, len, len);
6277 	dma_unmap_addr_set(tx_buffer, dma, dma);
6278 	tx_buffer->type = IGB_TYPE_XDP;
6279 	tx_buffer->xdpf = xdpf;
6280 
6281 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
6282 
6283 	/* put descriptor type bits */
6284 	cmd_type = E1000_ADVTXD_DTYP_DATA |
6285 		   E1000_ADVTXD_DCMD_DEXT |
6286 		   E1000_ADVTXD_DCMD_IFCS;
6287 	cmd_type |= len | IGB_TXD_DCMD;
6288 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6289 
6290 	olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6291 	/* 82575 requires a unique index per ring */
6292 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6293 		olinfo_status |= tx_ring->reg_idx << 4;
6294 
6295 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6296 
6297 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6298 
6299 	/* set the timestamp */
6300 	tx_buffer->time_stamp = jiffies;
6301 
6302 	/* Avoid any potential race with xdp_xmit and cleanup */
6303 	smp_wmb();
6304 
6305 	/* set next_to_watch value indicating a packet is present */
6306 	i++;
6307 	if (i == tx_ring->count)
6308 		i = 0;
6309 
6310 	tx_buffer->next_to_watch = tx_desc;
6311 	tx_ring->next_to_use = i;
6312 
6313 	/* Make sure there is space in the ring for the next send. */
6314 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6315 
6316 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6317 		writel(i, tx_ring->tail);
6318 
6319 	return IGB_XDP_TX;
6320 }
6321 
6322 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6323 				struct igb_ring *tx_ring)
6324 {
6325 	struct igb_tx_buffer *first;
6326 	int tso;
6327 	u32 tx_flags = 0;
6328 	unsigned short f;
6329 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6330 	__be16 protocol = vlan_get_protocol(skb);
6331 	u8 hdr_len = 0;
6332 
6333 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6334 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6335 	 *       + 2 desc gap to keep tail from touching head,
6336 	 *       + 1 desc for context descriptor,
6337 	 * otherwise try next time
6338 	 */
6339 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6340 		count += TXD_USE_COUNT(skb_frag_size(
6341 						&skb_shinfo(skb)->frags[f]));
6342 
6343 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6344 		/* this is a hard error */
6345 		return NETDEV_TX_BUSY;
6346 	}
6347 
6348 	/* record the location of the first descriptor for this packet */
6349 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6350 	first->type = IGB_TYPE_SKB;
6351 	first->skb = skb;
6352 	first->bytecount = skb->len;
6353 	first->gso_segs = 1;
6354 
6355 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6356 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6357 
6358 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6359 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6360 					   &adapter->state)) {
6361 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6362 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6363 
6364 			adapter->ptp_tx_skb = skb_get(skb);
6365 			adapter->ptp_tx_start = jiffies;
6366 			if (adapter->hw.mac.type == e1000_82576)
6367 				schedule_work(&adapter->ptp_tx_work);
6368 		} else {
6369 			adapter->tx_hwtstamp_skipped++;
6370 		}
6371 	}
6372 
6373 	if (skb_vlan_tag_present(skb)) {
6374 		tx_flags |= IGB_TX_FLAGS_VLAN;
6375 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6376 	}
6377 
6378 	/* record initial flags and protocol */
6379 	first->tx_flags = tx_flags;
6380 	first->protocol = protocol;
6381 
6382 	tso = igb_tso(tx_ring, first, &hdr_len);
6383 	if (tso < 0)
6384 		goto out_drop;
6385 	else if (!tso)
6386 		igb_tx_csum(tx_ring, first);
6387 
6388 	if (igb_tx_map(tx_ring, first, hdr_len))
6389 		goto cleanup_tx_tstamp;
6390 
6391 	return NETDEV_TX_OK;
6392 
6393 out_drop:
6394 	dev_kfree_skb_any(first->skb);
6395 	first->skb = NULL;
6396 cleanup_tx_tstamp:
6397 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6398 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6399 
6400 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6401 		adapter->ptp_tx_skb = NULL;
6402 		if (adapter->hw.mac.type == e1000_82576)
6403 			cancel_work_sync(&adapter->ptp_tx_work);
6404 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6405 	}
6406 
6407 	return NETDEV_TX_OK;
6408 }
6409 
6410 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6411 						    struct sk_buff *skb)
6412 {
6413 	unsigned int r_idx = skb->queue_mapping;
6414 
6415 	if (r_idx >= adapter->num_tx_queues)
6416 		r_idx = r_idx % adapter->num_tx_queues;
6417 
6418 	return adapter->tx_ring[r_idx];
6419 }
6420 
6421 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6422 				  struct net_device *netdev)
6423 {
6424 	struct igb_adapter *adapter = netdev_priv(netdev);
6425 
6426 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6427 	 * in order to meet this minimum size requirement.
6428 	 */
6429 	if (skb_put_padto(skb, 17))
6430 		return NETDEV_TX_OK;
6431 
6432 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6433 }
6434 
6435 /**
6436  *  igb_tx_timeout - Respond to a Tx Hang
6437  *  @netdev: network interface device structure
6438  *  @txqueue: number of the Tx queue that hung (unused)
6439  **/
6440 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6441 {
6442 	struct igb_adapter *adapter = netdev_priv(netdev);
6443 	struct e1000_hw *hw = &adapter->hw;
6444 
6445 	/* Do the reset outside of interrupt context */
6446 	adapter->tx_timeout_count++;
6447 
6448 	if (hw->mac.type >= e1000_82580)
6449 		hw->dev_spec._82575.global_device_reset = true;
6450 
6451 	schedule_work(&adapter->reset_task);
6452 	wr32(E1000_EICS,
6453 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6454 }
6455 
6456 static void igb_reset_task(struct work_struct *work)
6457 {
6458 	struct igb_adapter *adapter;
6459 	adapter = container_of(work, struct igb_adapter, reset_task);
6460 
6461 	rtnl_lock();
6462 	/* If we're already down or resetting, just bail */
6463 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6464 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6465 		rtnl_unlock();
6466 		return;
6467 	}
6468 
6469 	igb_dump(adapter);
6470 	netdev_err(adapter->netdev, "Reset adapter\n");
6471 	igb_reinit_locked(adapter);
6472 	rtnl_unlock();
6473 }
6474 
6475 /**
6476  *  igb_get_stats64 - Get System Network Statistics
6477  *  @netdev: network interface device structure
6478  *  @stats: rtnl_link_stats64 pointer
6479  **/
6480 static void igb_get_stats64(struct net_device *netdev,
6481 			    struct rtnl_link_stats64 *stats)
6482 {
6483 	struct igb_adapter *adapter = netdev_priv(netdev);
6484 
6485 	spin_lock(&adapter->stats64_lock);
6486 	igb_update_stats(adapter);
6487 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6488 	spin_unlock(&adapter->stats64_lock);
6489 }
6490 
6491 /**
6492  *  igb_change_mtu - Change the Maximum Transfer Unit
6493  *  @netdev: network interface device structure
6494  *  @new_mtu: new value for maximum frame size
6495  *
6496  *  Returns 0 on success, negative on failure
6497  **/
6498 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6499 {
6500 	struct igb_adapter *adapter = netdev_priv(netdev);
6501 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6502 
6503 	if (adapter->xdp_prog) {
6504 		int i;
6505 
6506 		for (i = 0; i < adapter->num_rx_queues; i++) {
6507 			struct igb_ring *ring = adapter->rx_ring[i];
6508 
6509 			if (max_frame > igb_rx_bufsz(ring)) {
6510 				netdev_warn(adapter->netdev,
6511 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6512 					    max_frame);
6513 				return -EINVAL;
6514 			}
6515 		}
6516 	}
6517 
6518 	/* adjust max frame to be at least the size of a standard frame */
6519 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6520 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6521 
6522 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6523 		usleep_range(1000, 2000);
6524 
6525 	/* igb_down has a dependency on max_frame_size */
6526 	adapter->max_frame_size = max_frame;
6527 
6528 	if (netif_running(netdev))
6529 		igb_down(adapter);
6530 
6531 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6532 		   netdev->mtu, new_mtu);
6533 	netdev->mtu = new_mtu;
6534 
6535 	if (netif_running(netdev))
6536 		igb_up(adapter);
6537 	else
6538 		igb_reset(adapter);
6539 
6540 	clear_bit(__IGB_RESETTING, &adapter->state);
6541 
6542 	return 0;
6543 }
6544 
6545 /**
6546  *  igb_update_stats - Update the board statistics counters
6547  *  @adapter: board private structure
6548  **/
6549 void igb_update_stats(struct igb_adapter *adapter)
6550 {
6551 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6552 	struct e1000_hw *hw = &adapter->hw;
6553 	struct pci_dev *pdev = adapter->pdev;
6554 	u32 reg, mpc;
6555 	int i;
6556 	u64 bytes, packets;
6557 	unsigned int start;
6558 	u64 _bytes, _packets;
6559 
6560 	/* Prevent stats update while adapter is being reset, or if the pci
6561 	 * connection is down.
6562 	 */
6563 	if (adapter->link_speed == 0)
6564 		return;
6565 	if (pci_channel_offline(pdev))
6566 		return;
6567 
6568 	bytes = 0;
6569 	packets = 0;
6570 
6571 	rcu_read_lock();
6572 	for (i = 0; i < adapter->num_rx_queues; i++) {
6573 		struct igb_ring *ring = adapter->rx_ring[i];
6574 		u32 rqdpc = rd32(E1000_RQDPC(i));
6575 		if (hw->mac.type >= e1000_i210)
6576 			wr32(E1000_RQDPC(i), 0);
6577 
6578 		if (rqdpc) {
6579 			ring->rx_stats.drops += rqdpc;
6580 			net_stats->rx_fifo_errors += rqdpc;
6581 		}
6582 
6583 		do {
6584 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6585 			_bytes = ring->rx_stats.bytes;
6586 			_packets = ring->rx_stats.packets;
6587 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6588 		bytes += _bytes;
6589 		packets += _packets;
6590 	}
6591 
6592 	net_stats->rx_bytes = bytes;
6593 	net_stats->rx_packets = packets;
6594 
6595 	bytes = 0;
6596 	packets = 0;
6597 	for (i = 0; i < adapter->num_tx_queues; i++) {
6598 		struct igb_ring *ring = adapter->tx_ring[i];
6599 		do {
6600 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6601 			_bytes = ring->tx_stats.bytes;
6602 			_packets = ring->tx_stats.packets;
6603 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6604 		bytes += _bytes;
6605 		packets += _packets;
6606 	}
6607 	net_stats->tx_bytes = bytes;
6608 	net_stats->tx_packets = packets;
6609 	rcu_read_unlock();
6610 
6611 	/* read stats registers */
6612 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6613 	adapter->stats.gprc += rd32(E1000_GPRC);
6614 	adapter->stats.gorc += rd32(E1000_GORCL);
6615 	rd32(E1000_GORCH); /* clear GORCL */
6616 	adapter->stats.bprc += rd32(E1000_BPRC);
6617 	adapter->stats.mprc += rd32(E1000_MPRC);
6618 	adapter->stats.roc += rd32(E1000_ROC);
6619 
6620 	adapter->stats.prc64 += rd32(E1000_PRC64);
6621 	adapter->stats.prc127 += rd32(E1000_PRC127);
6622 	adapter->stats.prc255 += rd32(E1000_PRC255);
6623 	adapter->stats.prc511 += rd32(E1000_PRC511);
6624 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6625 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6626 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6627 	adapter->stats.sec += rd32(E1000_SEC);
6628 
6629 	mpc = rd32(E1000_MPC);
6630 	adapter->stats.mpc += mpc;
6631 	net_stats->rx_fifo_errors += mpc;
6632 	adapter->stats.scc += rd32(E1000_SCC);
6633 	adapter->stats.ecol += rd32(E1000_ECOL);
6634 	adapter->stats.mcc += rd32(E1000_MCC);
6635 	adapter->stats.latecol += rd32(E1000_LATECOL);
6636 	adapter->stats.dc += rd32(E1000_DC);
6637 	adapter->stats.rlec += rd32(E1000_RLEC);
6638 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6639 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6640 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6641 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6642 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6643 	adapter->stats.gptc += rd32(E1000_GPTC);
6644 	adapter->stats.gotc += rd32(E1000_GOTCL);
6645 	rd32(E1000_GOTCH); /* clear GOTCL */
6646 	adapter->stats.rnbc += rd32(E1000_RNBC);
6647 	adapter->stats.ruc += rd32(E1000_RUC);
6648 	adapter->stats.rfc += rd32(E1000_RFC);
6649 	adapter->stats.rjc += rd32(E1000_RJC);
6650 	adapter->stats.tor += rd32(E1000_TORH);
6651 	adapter->stats.tot += rd32(E1000_TOTH);
6652 	adapter->stats.tpr += rd32(E1000_TPR);
6653 
6654 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6655 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6656 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6657 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6658 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6659 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6660 
6661 	adapter->stats.mptc += rd32(E1000_MPTC);
6662 	adapter->stats.bptc += rd32(E1000_BPTC);
6663 
6664 	adapter->stats.tpt += rd32(E1000_TPT);
6665 	adapter->stats.colc += rd32(E1000_COLC);
6666 
6667 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6668 	/* read internal phy specific stats */
6669 	reg = rd32(E1000_CTRL_EXT);
6670 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6671 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6672 
6673 		/* this stat has invalid values on i210/i211 */
6674 		if ((hw->mac.type != e1000_i210) &&
6675 		    (hw->mac.type != e1000_i211))
6676 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6677 	}
6678 
6679 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6680 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6681 
6682 	adapter->stats.iac += rd32(E1000_IAC);
6683 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6684 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6685 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6686 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6687 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6688 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6689 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6690 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6691 
6692 	/* Fill out the OS statistics structure */
6693 	net_stats->multicast = adapter->stats.mprc;
6694 	net_stats->collisions = adapter->stats.colc;
6695 
6696 	/* Rx Errors */
6697 
6698 	/* RLEC on some newer hardware can be incorrect so build
6699 	 * our own version based on RUC and ROC
6700 	 */
6701 	net_stats->rx_errors = adapter->stats.rxerrc +
6702 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6703 		adapter->stats.ruc + adapter->stats.roc +
6704 		adapter->stats.cexterr;
6705 	net_stats->rx_length_errors = adapter->stats.ruc +
6706 				      adapter->stats.roc;
6707 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6708 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6709 	net_stats->rx_missed_errors = adapter->stats.mpc;
6710 
6711 	/* Tx Errors */
6712 	net_stats->tx_errors = adapter->stats.ecol +
6713 			       adapter->stats.latecol;
6714 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6715 	net_stats->tx_window_errors = adapter->stats.latecol;
6716 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6717 
6718 	/* Tx Dropped needs to be maintained elsewhere */
6719 
6720 	/* Management Stats */
6721 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6722 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6723 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6724 
6725 	/* OS2BMC Stats */
6726 	reg = rd32(E1000_MANC);
6727 	if (reg & E1000_MANC_EN_BMC2OS) {
6728 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6729 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6730 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6731 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6732 	}
6733 }
6734 
6735 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6736 {
6737 	struct e1000_hw *hw = &adapter->hw;
6738 	struct ptp_clock_event event;
6739 	struct timespec64 ts;
6740 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6741 
6742 	if (tsicr & TSINTR_SYS_WRAP) {
6743 		event.type = PTP_CLOCK_PPS;
6744 		if (adapter->ptp_caps.pps)
6745 			ptp_clock_event(adapter->ptp_clock, &event);
6746 		ack |= TSINTR_SYS_WRAP;
6747 	}
6748 
6749 	if (tsicr & E1000_TSICR_TXTS) {
6750 		/* retrieve hardware timestamp */
6751 		schedule_work(&adapter->ptp_tx_work);
6752 		ack |= E1000_TSICR_TXTS;
6753 	}
6754 
6755 	if (tsicr & TSINTR_TT0) {
6756 		spin_lock(&adapter->tmreg_lock);
6757 		ts = timespec64_add(adapter->perout[0].start,
6758 				    adapter->perout[0].period);
6759 		/* u32 conversion of tv_sec is safe until y2106 */
6760 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6761 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6762 		tsauxc = rd32(E1000_TSAUXC);
6763 		tsauxc |= TSAUXC_EN_TT0;
6764 		wr32(E1000_TSAUXC, tsauxc);
6765 		adapter->perout[0].start = ts;
6766 		spin_unlock(&adapter->tmreg_lock);
6767 		ack |= TSINTR_TT0;
6768 	}
6769 
6770 	if (tsicr & TSINTR_TT1) {
6771 		spin_lock(&adapter->tmreg_lock);
6772 		ts = timespec64_add(adapter->perout[1].start,
6773 				    adapter->perout[1].period);
6774 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6775 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6776 		tsauxc = rd32(E1000_TSAUXC);
6777 		tsauxc |= TSAUXC_EN_TT1;
6778 		wr32(E1000_TSAUXC, tsauxc);
6779 		adapter->perout[1].start = ts;
6780 		spin_unlock(&adapter->tmreg_lock);
6781 		ack |= TSINTR_TT1;
6782 	}
6783 
6784 	if (tsicr & TSINTR_AUTT0) {
6785 		nsec = rd32(E1000_AUXSTMPL0);
6786 		sec  = rd32(E1000_AUXSTMPH0);
6787 		event.type = PTP_CLOCK_EXTTS;
6788 		event.index = 0;
6789 		event.timestamp = sec * 1000000000ULL + nsec;
6790 		ptp_clock_event(adapter->ptp_clock, &event);
6791 		ack |= TSINTR_AUTT0;
6792 	}
6793 
6794 	if (tsicr & TSINTR_AUTT1) {
6795 		nsec = rd32(E1000_AUXSTMPL1);
6796 		sec  = rd32(E1000_AUXSTMPH1);
6797 		event.type = PTP_CLOCK_EXTTS;
6798 		event.index = 1;
6799 		event.timestamp = sec * 1000000000ULL + nsec;
6800 		ptp_clock_event(adapter->ptp_clock, &event);
6801 		ack |= TSINTR_AUTT1;
6802 	}
6803 
6804 	/* acknowledge the interrupts */
6805 	wr32(E1000_TSICR, ack);
6806 }
6807 
6808 static irqreturn_t igb_msix_other(int irq, void *data)
6809 {
6810 	struct igb_adapter *adapter = data;
6811 	struct e1000_hw *hw = &adapter->hw;
6812 	u32 icr = rd32(E1000_ICR);
6813 	/* reading ICR causes bit 31 of EICR to be cleared */
6814 
6815 	if (icr & E1000_ICR_DRSTA)
6816 		schedule_work(&adapter->reset_task);
6817 
6818 	if (icr & E1000_ICR_DOUTSYNC) {
6819 		/* HW is reporting DMA is out of sync */
6820 		adapter->stats.doosync++;
6821 		/* The DMA Out of Sync is also indication of a spoof event
6822 		 * in IOV mode. Check the Wrong VM Behavior register to
6823 		 * see if it is really a spoof event.
6824 		 */
6825 		igb_check_wvbr(adapter);
6826 	}
6827 
6828 	/* Check for a mailbox event */
6829 	if (icr & E1000_ICR_VMMB)
6830 		igb_msg_task(adapter);
6831 
6832 	if (icr & E1000_ICR_LSC) {
6833 		hw->mac.get_link_status = 1;
6834 		/* guard against interrupt when we're going down */
6835 		if (!test_bit(__IGB_DOWN, &adapter->state))
6836 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6837 	}
6838 
6839 	if (icr & E1000_ICR_TS)
6840 		igb_tsync_interrupt(adapter);
6841 
6842 	wr32(E1000_EIMS, adapter->eims_other);
6843 
6844 	return IRQ_HANDLED;
6845 }
6846 
6847 static void igb_write_itr(struct igb_q_vector *q_vector)
6848 {
6849 	struct igb_adapter *adapter = q_vector->adapter;
6850 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6851 
6852 	if (!q_vector->set_itr)
6853 		return;
6854 
6855 	if (!itr_val)
6856 		itr_val = 0x4;
6857 
6858 	if (adapter->hw.mac.type == e1000_82575)
6859 		itr_val |= itr_val << 16;
6860 	else
6861 		itr_val |= E1000_EITR_CNT_IGNR;
6862 
6863 	writel(itr_val, q_vector->itr_register);
6864 	q_vector->set_itr = 0;
6865 }
6866 
6867 static irqreturn_t igb_msix_ring(int irq, void *data)
6868 {
6869 	struct igb_q_vector *q_vector = data;
6870 
6871 	/* Write the ITR value calculated from the previous interrupt. */
6872 	igb_write_itr(q_vector);
6873 
6874 	napi_schedule(&q_vector->napi);
6875 
6876 	return IRQ_HANDLED;
6877 }
6878 
6879 #ifdef CONFIG_IGB_DCA
6880 static void igb_update_tx_dca(struct igb_adapter *adapter,
6881 			      struct igb_ring *tx_ring,
6882 			      int cpu)
6883 {
6884 	struct e1000_hw *hw = &adapter->hw;
6885 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6886 
6887 	if (hw->mac.type != e1000_82575)
6888 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6889 
6890 	/* We can enable relaxed ordering for reads, but not writes when
6891 	 * DCA is enabled.  This is due to a known issue in some chipsets
6892 	 * which will cause the DCA tag to be cleared.
6893 	 */
6894 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6895 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6896 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6897 
6898 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6899 }
6900 
6901 static void igb_update_rx_dca(struct igb_adapter *adapter,
6902 			      struct igb_ring *rx_ring,
6903 			      int cpu)
6904 {
6905 	struct e1000_hw *hw = &adapter->hw;
6906 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6907 
6908 	if (hw->mac.type != e1000_82575)
6909 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6910 
6911 	/* We can enable relaxed ordering for reads, but not writes when
6912 	 * DCA is enabled.  This is due to a known issue in some chipsets
6913 	 * which will cause the DCA tag to be cleared.
6914 	 */
6915 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6916 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6917 
6918 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6919 }
6920 
6921 static void igb_update_dca(struct igb_q_vector *q_vector)
6922 {
6923 	struct igb_adapter *adapter = q_vector->adapter;
6924 	int cpu = get_cpu();
6925 
6926 	if (q_vector->cpu == cpu)
6927 		goto out_no_update;
6928 
6929 	if (q_vector->tx.ring)
6930 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6931 
6932 	if (q_vector->rx.ring)
6933 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6934 
6935 	q_vector->cpu = cpu;
6936 out_no_update:
6937 	put_cpu();
6938 }
6939 
6940 static void igb_setup_dca(struct igb_adapter *adapter)
6941 {
6942 	struct e1000_hw *hw = &adapter->hw;
6943 	int i;
6944 
6945 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6946 		return;
6947 
6948 	/* Always use CB2 mode, difference is masked in the CB driver. */
6949 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6950 
6951 	for (i = 0; i < adapter->num_q_vectors; i++) {
6952 		adapter->q_vector[i]->cpu = -1;
6953 		igb_update_dca(adapter->q_vector[i]);
6954 	}
6955 }
6956 
6957 static int __igb_notify_dca(struct device *dev, void *data)
6958 {
6959 	struct net_device *netdev = dev_get_drvdata(dev);
6960 	struct igb_adapter *adapter = netdev_priv(netdev);
6961 	struct pci_dev *pdev = adapter->pdev;
6962 	struct e1000_hw *hw = &adapter->hw;
6963 	unsigned long event = *(unsigned long *)data;
6964 
6965 	switch (event) {
6966 	case DCA_PROVIDER_ADD:
6967 		/* if already enabled, don't do it again */
6968 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6969 			break;
6970 		if (dca_add_requester(dev) == 0) {
6971 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6972 			dev_info(&pdev->dev, "DCA enabled\n");
6973 			igb_setup_dca(adapter);
6974 			break;
6975 		}
6976 		fallthrough; /* since DCA is disabled. */
6977 	case DCA_PROVIDER_REMOVE:
6978 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6979 			/* without this a class_device is left
6980 			 * hanging around in the sysfs model
6981 			 */
6982 			dca_remove_requester(dev);
6983 			dev_info(&pdev->dev, "DCA disabled\n");
6984 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6985 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6986 		}
6987 		break;
6988 	}
6989 
6990 	return 0;
6991 }
6992 
6993 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6994 			  void *p)
6995 {
6996 	int ret_val;
6997 
6998 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6999 					 __igb_notify_dca);
7000 
7001 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7002 }
7003 #endif /* CONFIG_IGB_DCA */
7004 
7005 #ifdef CONFIG_PCI_IOV
7006 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7007 {
7008 	unsigned char mac_addr[ETH_ALEN];
7009 
7010 	eth_zero_addr(mac_addr);
7011 	igb_set_vf_mac(adapter, vf, mac_addr);
7012 
7013 	/* By default spoof check is enabled for all VFs */
7014 	adapter->vf_data[vf].spoofchk_enabled = true;
7015 
7016 	/* By default VFs are not trusted */
7017 	adapter->vf_data[vf].trusted = false;
7018 
7019 	return 0;
7020 }
7021 
7022 #endif
7023 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7024 {
7025 	struct e1000_hw *hw = &adapter->hw;
7026 	u32 ping;
7027 	int i;
7028 
7029 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7030 		ping = E1000_PF_CONTROL_MSG;
7031 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7032 			ping |= E1000_VT_MSGTYPE_CTS;
7033 		igb_write_mbx(hw, &ping, 1, i);
7034 	}
7035 }
7036 
7037 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7038 {
7039 	struct e1000_hw *hw = &adapter->hw;
7040 	u32 vmolr = rd32(E1000_VMOLR(vf));
7041 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7042 
7043 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7044 			    IGB_VF_FLAG_MULTI_PROMISC);
7045 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7046 
7047 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7048 		vmolr |= E1000_VMOLR_MPME;
7049 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7050 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7051 	} else {
7052 		/* if we have hashes and we are clearing a multicast promisc
7053 		 * flag we need to write the hashes to the MTA as this step
7054 		 * was previously skipped
7055 		 */
7056 		if (vf_data->num_vf_mc_hashes > 30) {
7057 			vmolr |= E1000_VMOLR_MPME;
7058 		} else if (vf_data->num_vf_mc_hashes) {
7059 			int j;
7060 
7061 			vmolr |= E1000_VMOLR_ROMPE;
7062 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7063 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7064 		}
7065 	}
7066 
7067 	wr32(E1000_VMOLR(vf), vmolr);
7068 
7069 	/* there are flags left unprocessed, likely not supported */
7070 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7071 		return -EINVAL;
7072 
7073 	return 0;
7074 }
7075 
7076 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7077 				  u32 *msgbuf, u32 vf)
7078 {
7079 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7080 	u16 *hash_list = (u16 *)&msgbuf[1];
7081 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7082 	int i;
7083 
7084 	/* salt away the number of multicast addresses assigned
7085 	 * to this VF for later use to restore when the PF multi cast
7086 	 * list changes
7087 	 */
7088 	vf_data->num_vf_mc_hashes = n;
7089 
7090 	/* only up to 30 hash values supported */
7091 	if (n > 30)
7092 		n = 30;
7093 
7094 	/* store the hashes for later use */
7095 	for (i = 0; i < n; i++)
7096 		vf_data->vf_mc_hashes[i] = hash_list[i];
7097 
7098 	/* Flush and reset the mta with the new values */
7099 	igb_set_rx_mode(adapter->netdev);
7100 
7101 	return 0;
7102 }
7103 
7104 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7105 {
7106 	struct e1000_hw *hw = &adapter->hw;
7107 	struct vf_data_storage *vf_data;
7108 	int i, j;
7109 
7110 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7111 		u32 vmolr = rd32(E1000_VMOLR(i));
7112 
7113 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7114 
7115 		vf_data = &adapter->vf_data[i];
7116 
7117 		if ((vf_data->num_vf_mc_hashes > 30) ||
7118 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7119 			vmolr |= E1000_VMOLR_MPME;
7120 		} else if (vf_data->num_vf_mc_hashes) {
7121 			vmolr |= E1000_VMOLR_ROMPE;
7122 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7123 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7124 		}
7125 		wr32(E1000_VMOLR(i), vmolr);
7126 	}
7127 }
7128 
7129 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7130 {
7131 	struct e1000_hw *hw = &adapter->hw;
7132 	u32 pool_mask, vlvf_mask, i;
7133 
7134 	/* create mask for VF and other pools */
7135 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7136 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7137 
7138 	/* drop PF from pool bits */
7139 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7140 			     adapter->vfs_allocated_count);
7141 
7142 	/* Find the vlan filter for this id */
7143 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7144 		u32 vlvf = rd32(E1000_VLVF(i));
7145 		u32 vfta_mask, vid, vfta;
7146 
7147 		/* remove the vf from the pool */
7148 		if (!(vlvf & vlvf_mask))
7149 			continue;
7150 
7151 		/* clear out bit from VLVF */
7152 		vlvf ^= vlvf_mask;
7153 
7154 		/* if other pools are present, just remove ourselves */
7155 		if (vlvf & pool_mask)
7156 			goto update_vlvfb;
7157 
7158 		/* if PF is present, leave VFTA */
7159 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7160 			goto update_vlvf;
7161 
7162 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7163 		vfta_mask = BIT(vid % 32);
7164 
7165 		/* clear bit from VFTA */
7166 		vfta = adapter->shadow_vfta[vid / 32];
7167 		if (vfta & vfta_mask)
7168 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7169 update_vlvf:
7170 		/* clear pool selection enable */
7171 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7172 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7173 		else
7174 			vlvf = 0;
7175 update_vlvfb:
7176 		/* clear pool bits */
7177 		wr32(E1000_VLVF(i), vlvf);
7178 	}
7179 }
7180 
7181 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7182 {
7183 	u32 vlvf;
7184 	int idx;
7185 
7186 	/* short cut the special case */
7187 	if (vlan == 0)
7188 		return 0;
7189 
7190 	/* Search for the VLAN id in the VLVF entries */
7191 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7192 		vlvf = rd32(E1000_VLVF(idx));
7193 		if ((vlvf & VLAN_VID_MASK) == vlan)
7194 			break;
7195 	}
7196 
7197 	return idx;
7198 }
7199 
7200 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7201 {
7202 	struct e1000_hw *hw = &adapter->hw;
7203 	u32 bits, pf_id;
7204 	int idx;
7205 
7206 	idx = igb_find_vlvf_entry(hw, vid);
7207 	if (!idx)
7208 		return;
7209 
7210 	/* See if any other pools are set for this VLAN filter
7211 	 * entry other than the PF.
7212 	 */
7213 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7214 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7215 	bits &= rd32(E1000_VLVF(idx));
7216 
7217 	/* Disable the filter so this falls into the default pool. */
7218 	if (!bits) {
7219 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7220 			wr32(E1000_VLVF(idx), BIT(pf_id));
7221 		else
7222 			wr32(E1000_VLVF(idx), 0);
7223 	}
7224 }
7225 
7226 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7227 			   bool add, u32 vf)
7228 {
7229 	int pf_id = adapter->vfs_allocated_count;
7230 	struct e1000_hw *hw = &adapter->hw;
7231 	int err;
7232 
7233 	/* If VLAN overlaps with one the PF is currently monitoring make
7234 	 * sure that we are able to allocate a VLVF entry.  This may be
7235 	 * redundant but it guarantees PF will maintain visibility to
7236 	 * the VLAN.
7237 	 */
7238 	if (add && test_bit(vid, adapter->active_vlans)) {
7239 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7240 		if (err)
7241 			return err;
7242 	}
7243 
7244 	err = igb_vfta_set(hw, vid, vf, add, false);
7245 
7246 	if (add && !err)
7247 		return err;
7248 
7249 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7250 	 * we may need to drop the PF pool bit in order to allow us to free
7251 	 * up the VLVF resources.
7252 	 */
7253 	if (test_bit(vid, adapter->active_vlans) ||
7254 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7255 		igb_update_pf_vlvf(adapter, vid);
7256 
7257 	return err;
7258 }
7259 
7260 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7261 {
7262 	struct e1000_hw *hw = &adapter->hw;
7263 
7264 	if (vid)
7265 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7266 	else
7267 		wr32(E1000_VMVIR(vf), 0);
7268 }
7269 
7270 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7271 				u16 vlan, u8 qos)
7272 {
7273 	int err;
7274 
7275 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7276 	if (err)
7277 		return err;
7278 
7279 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7280 	igb_set_vmolr(adapter, vf, !vlan);
7281 
7282 	/* revoke access to previous VLAN */
7283 	if (vlan != adapter->vf_data[vf].pf_vlan)
7284 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7285 				false, vf);
7286 
7287 	adapter->vf_data[vf].pf_vlan = vlan;
7288 	adapter->vf_data[vf].pf_qos = qos;
7289 	igb_set_vf_vlan_strip(adapter, vf, true);
7290 	dev_info(&adapter->pdev->dev,
7291 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7292 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7293 		dev_warn(&adapter->pdev->dev,
7294 			 "The VF VLAN has been set, but the PF device is not up.\n");
7295 		dev_warn(&adapter->pdev->dev,
7296 			 "Bring the PF device up before attempting to use the VF device.\n");
7297 	}
7298 
7299 	return err;
7300 }
7301 
7302 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7303 {
7304 	/* Restore tagless access via VLAN 0 */
7305 	igb_set_vf_vlan(adapter, 0, true, vf);
7306 
7307 	igb_set_vmvir(adapter, 0, vf);
7308 	igb_set_vmolr(adapter, vf, true);
7309 
7310 	/* Remove any PF assigned VLAN */
7311 	if (adapter->vf_data[vf].pf_vlan)
7312 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7313 				false, vf);
7314 
7315 	adapter->vf_data[vf].pf_vlan = 0;
7316 	adapter->vf_data[vf].pf_qos = 0;
7317 	igb_set_vf_vlan_strip(adapter, vf, false);
7318 
7319 	return 0;
7320 }
7321 
7322 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7323 			       u16 vlan, u8 qos, __be16 vlan_proto)
7324 {
7325 	struct igb_adapter *adapter = netdev_priv(netdev);
7326 
7327 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7328 		return -EINVAL;
7329 
7330 	if (vlan_proto != htons(ETH_P_8021Q))
7331 		return -EPROTONOSUPPORT;
7332 
7333 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7334 			       igb_disable_port_vlan(adapter, vf);
7335 }
7336 
7337 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7338 {
7339 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7340 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7341 	int ret;
7342 
7343 	if (adapter->vf_data[vf].pf_vlan)
7344 		return -1;
7345 
7346 	/* VLAN 0 is a special case, don't allow it to be removed */
7347 	if (!vid && !add)
7348 		return 0;
7349 
7350 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7351 	if (!ret)
7352 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7353 	return ret;
7354 }
7355 
7356 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7357 {
7358 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7359 
7360 	/* clear flags - except flag that indicates PF has set the MAC */
7361 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7362 	vf_data->last_nack = jiffies;
7363 
7364 	/* reset vlans for device */
7365 	igb_clear_vf_vfta(adapter, vf);
7366 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7367 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7368 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7369 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7370 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7371 
7372 	/* reset multicast table array for vf */
7373 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7374 
7375 	/* Flush and reset the mta with the new values */
7376 	igb_set_rx_mode(adapter->netdev);
7377 }
7378 
7379 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7380 {
7381 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7382 
7383 	/* clear mac address as we were hotplug removed/added */
7384 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7385 		eth_zero_addr(vf_mac);
7386 
7387 	/* process remaining reset events */
7388 	igb_vf_reset(adapter, vf);
7389 }
7390 
7391 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7392 {
7393 	struct e1000_hw *hw = &adapter->hw;
7394 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7395 	u32 reg, msgbuf[3];
7396 	u8 *addr = (u8 *)(&msgbuf[1]);
7397 
7398 	/* process all the same items cleared in a function level reset */
7399 	igb_vf_reset(adapter, vf);
7400 
7401 	/* set vf mac address */
7402 	igb_set_vf_mac(adapter, vf, vf_mac);
7403 
7404 	/* enable transmit and receive for vf */
7405 	reg = rd32(E1000_VFTE);
7406 	wr32(E1000_VFTE, reg | BIT(vf));
7407 	reg = rd32(E1000_VFRE);
7408 	wr32(E1000_VFRE, reg | BIT(vf));
7409 
7410 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7411 
7412 	/* reply to reset with ack and vf mac address */
7413 	if (!is_zero_ether_addr(vf_mac)) {
7414 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7415 		memcpy(addr, vf_mac, ETH_ALEN);
7416 	} else {
7417 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7418 	}
7419 	igb_write_mbx(hw, msgbuf, 3, vf);
7420 }
7421 
7422 static void igb_flush_mac_table(struct igb_adapter *adapter)
7423 {
7424 	struct e1000_hw *hw = &adapter->hw;
7425 	int i;
7426 
7427 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7428 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7429 		eth_zero_addr(adapter->mac_table[i].addr);
7430 		adapter->mac_table[i].queue = 0;
7431 		igb_rar_set_index(adapter, i);
7432 	}
7433 }
7434 
7435 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7436 {
7437 	struct e1000_hw *hw = &adapter->hw;
7438 	/* do not count rar entries reserved for VFs MAC addresses */
7439 	int rar_entries = hw->mac.rar_entry_count -
7440 			  adapter->vfs_allocated_count;
7441 	int i, count = 0;
7442 
7443 	for (i = 0; i < rar_entries; i++) {
7444 		/* do not count default entries */
7445 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7446 			continue;
7447 
7448 		/* do not count "in use" entries for different queues */
7449 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7450 		    (adapter->mac_table[i].queue != queue))
7451 			continue;
7452 
7453 		count++;
7454 	}
7455 
7456 	return count;
7457 }
7458 
7459 /* Set default MAC address for the PF in the first RAR entry */
7460 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7461 {
7462 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7463 
7464 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7465 	mac_table->queue = adapter->vfs_allocated_count;
7466 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7467 
7468 	igb_rar_set_index(adapter, 0);
7469 }
7470 
7471 /* If the filter to be added and an already existing filter express
7472  * the same address and address type, it should be possible to only
7473  * override the other configurations, for example the queue to steer
7474  * traffic.
7475  */
7476 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7477 				      const u8 *addr, const u8 flags)
7478 {
7479 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7480 		return true;
7481 
7482 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7483 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7484 		return false;
7485 
7486 	if (!ether_addr_equal(addr, entry->addr))
7487 		return false;
7488 
7489 	return true;
7490 }
7491 
7492 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7493  * 'flags' is used to indicate what kind of match is made, match is by
7494  * default for the destination address, if matching by source address
7495  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7496  */
7497 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7498 				    const u8 *addr, const u8 queue,
7499 				    const u8 flags)
7500 {
7501 	struct e1000_hw *hw = &adapter->hw;
7502 	int rar_entries = hw->mac.rar_entry_count -
7503 			  adapter->vfs_allocated_count;
7504 	int i;
7505 
7506 	if (is_zero_ether_addr(addr))
7507 		return -EINVAL;
7508 
7509 	/* Search for the first empty entry in the MAC table.
7510 	 * Do not touch entries at the end of the table reserved for the VF MAC
7511 	 * addresses.
7512 	 */
7513 	for (i = 0; i < rar_entries; i++) {
7514 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7515 					       addr, flags))
7516 			continue;
7517 
7518 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7519 		adapter->mac_table[i].queue = queue;
7520 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7521 
7522 		igb_rar_set_index(adapter, i);
7523 		return i;
7524 	}
7525 
7526 	return -ENOSPC;
7527 }
7528 
7529 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7530 			      const u8 queue)
7531 {
7532 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7533 }
7534 
7535 /* Remove a MAC filter for 'addr' directing matching traffic to
7536  * 'queue', 'flags' is used to indicate what kind of match need to be
7537  * removed, match is by default for the destination address, if
7538  * matching by source address is to be removed the flag
7539  * IGB_MAC_STATE_SRC_ADDR can be used.
7540  */
7541 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7542 				    const u8 *addr, const u8 queue,
7543 				    const u8 flags)
7544 {
7545 	struct e1000_hw *hw = &adapter->hw;
7546 	int rar_entries = hw->mac.rar_entry_count -
7547 			  adapter->vfs_allocated_count;
7548 	int i;
7549 
7550 	if (is_zero_ether_addr(addr))
7551 		return -EINVAL;
7552 
7553 	/* Search for matching entry in the MAC table based on given address
7554 	 * and queue. Do not touch entries at the end of the table reserved
7555 	 * for the VF MAC addresses.
7556 	 */
7557 	for (i = 0; i < rar_entries; i++) {
7558 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7559 			continue;
7560 		if ((adapter->mac_table[i].state & flags) != flags)
7561 			continue;
7562 		if (adapter->mac_table[i].queue != queue)
7563 			continue;
7564 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7565 			continue;
7566 
7567 		/* When a filter for the default address is "deleted",
7568 		 * we return it to its initial configuration
7569 		 */
7570 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7571 			adapter->mac_table[i].state =
7572 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7573 			adapter->mac_table[i].queue =
7574 				adapter->vfs_allocated_count;
7575 		} else {
7576 			adapter->mac_table[i].state = 0;
7577 			adapter->mac_table[i].queue = 0;
7578 			eth_zero_addr(adapter->mac_table[i].addr);
7579 		}
7580 
7581 		igb_rar_set_index(adapter, i);
7582 		return 0;
7583 	}
7584 
7585 	return -ENOENT;
7586 }
7587 
7588 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7589 			      const u8 queue)
7590 {
7591 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7592 }
7593 
7594 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7595 				const u8 *addr, u8 queue, u8 flags)
7596 {
7597 	struct e1000_hw *hw = &adapter->hw;
7598 
7599 	/* In theory, this should be supported on 82575 as well, but
7600 	 * that part wasn't easily accessible during development.
7601 	 */
7602 	if (hw->mac.type != e1000_i210)
7603 		return -EOPNOTSUPP;
7604 
7605 	return igb_add_mac_filter_flags(adapter, addr, queue,
7606 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7607 }
7608 
7609 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7610 				const u8 *addr, u8 queue, u8 flags)
7611 {
7612 	return igb_del_mac_filter_flags(adapter, addr, queue,
7613 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7614 }
7615 
7616 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7617 {
7618 	struct igb_adapter *adapter = netdev_priv(netdev);
7619 	int ret;
7620 
7621 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7622 
7623 	return min_t(int, ret, 0);
7624 }
7625 
7626 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7627 {
7628 	struct igb_adapter *adapter = netdev_priv(netdev);
7629 
7630 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7631 
7632 	return 0;
7633 }
7634 
7635 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7636 				 const u32 info, const u8 *addr)
7637 {
7638 	struct pci_dev *pdev = adapter->pdev;
7639 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7640 	struct list_head *pos;
7641 	struct vf_mac_filter *entry = NULL;
7642 	int ret = 0;
7643 
7644 	switch (info) {
7645 	case E1000_VF_MAC_FILTER_CLR:
7646 		/* remove all unicast MAC filters related to the current VF */
7647 		list_for_each(pos, &adapter->vf_macs.l) {
7648 			entry = list_entry(pos, struct vf_mac_filter, l);
7649 			if (entry->vf == vf) {
7650 				entry->vf = -1;
7651 				entry->free = true;
7652 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7653 			}
7654 		}
7655 		break;
7656 	case E1000_VF_MAC_FILTER_ADD:
7657 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7658 		    !vf_data->trusted) {
7659 			dev_warn(&pdev->dev,
7660 				 "VF %d requested MAC filter but is administratively denied\n",
7661 				 vf);
7662 			return -EINVAL;
7663 		}
7664 		if (!is_valid_ether_addr(addr)) {
7665 			dev_warn(&pdev->dev,
7666 				 "VF %d attempted to set invalid MAC filter\n",
7667 				 vf);
7668 			return -EINVAL;
7669 		}
7670 
7671 		/* try to find empty slot in the list */
7672 		list_for_each(pos, &adapter->vf_macs.l) {
7673 			entry = list_entry(pos, struct vf_mac_filter, l);
7674 			if (entry->free)
7675 				break;
7676 		}
7677 
7678 		if (entry && entry->free) {
7679 			entry->free = false;
7680 			entry->vf = vf;
7681 			ether_addr_copy(entry->vf_mac, addr);
7682 
7683 			ret = igb_add_mac_filter(adapter, addr, vf);
7684 			ret = min_t(int, ret, 0);
7685 		} else {
7686 			ret = -ENOSPC;
7687 		}
7688 
7689 		if (ret == -ENOSPC)
7690 			dev_warn(&pdev->dev,
7691 				 "VF %d has requested MAC filter but there is no space for it\n",
7692 				 vf);
7693 		break;
7694 	default:
7695 		ret = -EINVAL;
7696 		break;
7697 	}
7698 
7699 	return ret;
7700 }
7701 
7702 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7703 {
7704 	struct pci_dev *pdev = adapter->pdev;
7705 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7706 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7707 
7708 	/* The VF MAC Address is stored in a packed array of bytes
7709 	 * starting at the second 32 bit word of the msg array
7710 	 */
7711 	unsigned char *addr = (unsigned char *)&msg[1];
7712 	int ret = 0;
7713 
7714 	if (!info) {
7715 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7716 		    !vf_data->trusted) {
7717 			dev_warn(&pdev->dev,
7718 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7719 				 vf);
7720 			return -EINVAL;
7721 		}
7722 
7723 		if (!is_valid_ether_addr(addr)) {
7724 			dev_warn(&pdev->dev,
7725 				 "VF %d attempted to set invalid MAC\n",
7726 				 vf);
7727 			return -EINVAL;
7728 		}
7729 
7730 		ret = igb_set_vf_mac(adapter, vf, addr);
7731 	} else {
7732 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7733 	}
7734 
7735 	return ret;
7736 }
7737 
7738 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7739 {
7740 	struct e1000_hw *hw = &adapter->hw;
7741 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7742 	u32 msg = E1000_VT_MSGTYPE_NACK;
7743 
7744 	/* if device isn't clear to send it shouldn't be reading either */
7745 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7746 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7747 		igb_write_mbx(hw, &msg, 1, vf);
7748 		vf_data->last_nack = jiffies;
7749 	}
7750 }
7751 
7752 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7753 {
7754 	struct pci_dev *pdev = adapter->pdev;
7755 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7756 	struct e1000_hw *hw = &adapter->hw;
7757 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7758 	s32 retval;
7759 
7760 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7761 
7762 	if (retval) {
7763 		/* if receive failed revoke VF CTS stats and restart init */
7764 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7765 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7766 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7767 			goto unlock;
7768 		goto out;
7769 	}
7770 
7771 	/* this is a message we already processed, do nothing */
7772 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7773 		goto unlock;
7774 
7775 	/* until the vf completes a reset it should not be
7776 	 * allowed to start any configuration.
7777 	 */
7778 	if (msgbuf[0] == E1000_VF_RESET) {
7779 		/* unlocks mailbox */
7780 		igb_vf_reset_msg(adapter, vf);
7781 		return;
7782 	}
7783 
7784 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7785 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7786 			goto unlock;
7787 		retval = -1;
7788 		goto out;
7789 	}
7790 
7791 	switch ((msgbuf[0] & 0xFFFF)) {
7792 	case E1000_VF_SET_MAC_ADDR:
7793 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7794 		break;
7795 	case E1000_VF_SET_PROMISC:
7796 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7797 		break;
7798 	case E1000_VF_SET_MULTICAST:
7799 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7800 		break;
7801 	case E1000_VF_SET_LPE:
7802 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7803 		break;
7804 	case E1000_VF_SET_VLAN:
7805 		retval = -1;
7806 		if (vf_data->pf_vlan)
7807 			dev_warn(&pdev->dev,
7808 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7809 				 vf);
7810 		else
7811 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7812 		break;
7813 	default:
7814 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7815 		retval = -1;
7816 		break;
7817 	}
7818 
7819 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7820 out:
7821 	/* notify the VF of the results of what it sent us */
7822 	if (retval)
7823 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7824 	else
7825 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7826 
7827 	/* unlocks mailbox */
7828 	igb_write_mbx(hw, msgbuf, 1, vf);
7829 	return;
7830 
7831 unlock:
7832 	igb_unlock_mbx(hw, vf);
7833 }
7834 
7835 static void igb_msg_task(struct igb_adapter *adapter)
7836 {
7837 	struct e1000_hw *hw = &adapter->hw;
7838 	u32 vf;
7839 
7840 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7841 		/* process any reset requests */
7842 		if (!igb_check_for_rst(hw, vf))
7843 			igb_vf_reset_event(adapter, vf);
7844 
7845 		/* process any messages pending */
7846 		if (!igb_check_for_msg(hw, vf))
7847 			igb_rcv_msg_from_vf(adapter, vf);
7848 
7849 		/* process any acks */
7850 		if (!igb_check_for_ack(hw, vf))
7851 			igb_rcv_ack_from_vf(adapter, vf);
7852 	}
7853 }
7854 
7855 /**
7856  *  igb_set_uta - Set unicast filter table address
7857  *  @adapter: board private structure
7858  *  @set: boolean indicating if we are setting or clearing bits
7859  *
7860  *  The unicast table address is a register array of 32-bit registers.
7861  *  The table is meant to be used in a way similar to how the MTA is used
7862  *  however due to certain limitations in the hardware it is necessary to
7863  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7864  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7865  **/
7866 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7867 {
7868 	struct e1000_hw *hw = &adapter->hw;
7869 	u32 uta = set ? ~0 : 0;
7870 	int i;
7871 
7872 	/* we only need to do this if VMDq is enabled */
7873 	if (!adapter->vfs_allocated_count)
7874 		return;
7875 
7876 	for (i = hw->mac.uta_reg_count; i--;)
7877 		array_wr32(E1000_UTA, i, uta);
7878 }
7879 
7880 /**
7881  *  igb_intr_msi - Interrupt Handler
7882  *  @irq: interrupt number
7883  *  @data: pointer to a network interface device structure
7884  **/
7885 static irqreturn_t igb_intr_msi(int irq, void *data)
7886 {
7887 	struct igb_adapter *adapter = data;
7888 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7889 	struct e1000_hw *hw = &adapter->hw;
7890 	/* read ICR disables interrupts using IAM */
7891 	u32 icr = rd32(E1000_ICR);
7892 
7893 	igb_write_itr(q_vector);
7894 
7895 	if (icr & E1000_ICR_DRSTA)
7896 		schedule_work(&adapter->reset_task);
7897 
7898 	if (icr & E1000_ICR_DOUTSYNC) {
7899 		/* HW is reporting DMA is out of sync */
7900 		adapter->stats.doosync++;
7901 	}
7902 
7903 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7904 		hw->mac.get_link_status = 1;
7905 		if (!test_bit(__IGB_DOWN, &adapter->state))
7906 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7907 	}
7908 
7909 	if (icr & E1000_ICR_TS)
7910 		igb_tsync_interrupt(adapter);
7911 
7912 	napi_schedule(&q_vector->napi);
7913 
7914 	return IRQ_HANDLED;
7915 }
7916 
7917 /**
7918  *  igb_intr - Legacy Interrupt Handler
7919  *  @irq: interrupt number
7920  *  @data: pointer to a network interface device structure
7921  **/
7922 static irqreturn_t igb_intr(int irq, void *data)
7923 {
7924 	struct igb_adapter *adapter = data;
7925 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7926 	struct e1000_hw *hw = &adapter->hw;
7927 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7928 	 * need for the IMC write
7929 	 */
7930 	u32 icr = rd32(E1000_ICR);
7931 
7932 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7933 	 * not set, then the adapter didn't send an interrupt
7934 	 */
7935 	if (!(icr & E1000_ICR_INT_ASSERTED))
7936 		return IRQ_NONE;
7937 
7938 	igb_write_itr(q_vector);
7939 
7940 	if (icr & E1000_ICR_DRSTA)
7941 		schedule_work(&adapter->reset_task);
7942 
7943 	if (icr & E1000_ICR_DOUTSYNC) {
7944 		/* HW is reporting DMA is out of sync */
7945 		adapter->stats.doosync++;
7946 	}
7947 
7948 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7949 		hw->mac.get_link_status = 1;
7950 		/* guard against interrupt when we're going down */
7951 		if (!test_bit(__IGB_DOWN, &adapter->state))
7952 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7953 	}
7954 
7955 	if (icr & E1000_ICR_TS)
7956 		igb_tsync_interrupt(adapter);
7957 
7958 	napi_schedule(&q_vector->napi);
7959 
7960 	return IRQ_HANDLED;
7961 }
7962 
7963 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7964 {
7965 	struct igb_adapter *adapter = q_vector->adapter;
7966 	struct e1000_hw *hw = &adapter->hw;
7967 
7968 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7969 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7970 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7971 			igb_set_itr(q_vector);
7972 		else
7973 			igb_update_ring_itr(q_vector);
7974 	}
7975 
7976 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7977 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7978 			wr32(E1000_EIMS, q_vector->eims_value);
7979 		else
7980 			igb_irq_enable(adapter);
7981 	}
7982 }
7983 
7984 /**
7985  *  igb_poll - NAPI Rx polling callback
7986  *  @napi: napi polling structure
7987  *  @budget: count of how many packets we should handle
7988  **/
7989 static int igb_poll(struct napi_struct *napi, int budget)
7990 {
7991 	struct igb_q_vector *q_vector = container_of(napi,
7992 						     struct igb_q_vector,
7993 						     napi);
7994 	bool clean_complete = true;
7995 	int work_done = 0;
7996 
7997 #ifdef CONFIG_IGB_DCA
7998 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7999 		igb_update_dca(q_vector);
8000 #endif
8001 	if (q_vector->tx.ring)
8002 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8003 
8004 	if (q_vector->rx.ring) {
8005 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8006 
8007 		work_done += cleaned;
8008 		if (cleaned >= budget)
8009 			clean_complete = false;
8010 	}
8011 
8012 	/* If all work not completed, return budget and keep polling */
8013 	if (!clean_complete)
8014 		return budget;
8015 
8016 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8017 	 * poll us due to busy-polling
8018 	 */
8019 	if (likely(napi_complete_done(napi, work_done)))
8020 		igb_ring_irq_enable(q_vector);
8021 
8022 	return min(work_done, budget - 1);
8023 }
8024 
8025 /**
8026  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8027  *  @q_vector: pointer to q_vector containing needed info
8028  *  @napi_budget: Used to determine if we are in netpoll
8029  *
8030  *  returns true if ring is completely cleaned
8031  **/
8032 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8033 {
8034 	struct igb_adapter *adapter = q_vector->adapter;
8035 	struct igb_ring *tx_ring = q_vector->tx.ring;
8036 	struct igb_tx_buffer *tx_buffer;
8037 	union e1000_adv_tx_desc *tx_desc;
8038 	unsigned int total_bytes = 0, total_packets = 0;
8039 	unsigned int budget = q_vector->tx.work_limit;
8040 	unsigned int i = tx_ring->next_to_clean;
8041 
8042 	if (test_bit(__IGB_DOWN, &adapter->state))
8043 		return true;
8044 
8045 	tx_buffer = &tx_ring->tx_buffer_info[i];
8046 	tx_desc = IGB_TX_DESC(tx_ring, i);
8047 	i -= tx_ring->count;
8048 
8049 	do {
8050 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8051 
8052 		/* if next_to_watch is not set then there is no work pending */
8053 		if (!eop_desc)
8054 			break;
8055 
8056 		/* prevent any other reads prior to eop_desc */
8057 		smp_rmb();
8058 
8059 		/* if DD is not set pending work has not been completed */
8060 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8061 			break;
8062 
8063 		/* clear next_to_watch to prevent false hangs */
8064 		tx_buffer->next_to_watch = NULL;
8065 
8066 		/* update the statistics for this packet */
8067 		total_bytes += tx_buffer->bytecount;
8068 		total_packets += tx_buffer->gso_segs;
8069 
8070 		/* free the skb */
8071 		if (tx_buffer->type == IGB_TYPE_SKB)
8072 			napi_consume_skb(tx_buffer->skb, napi_budget);
8073 		else
8074 			xdp_return_frame(tx_buffer->xdpf);
8075 
8076 		/* unmap skb header data */
8077 		dma_unmap_single(tx_ring->dev,
8078 				 dma_unmap_addr(tx_buffer, dma),
8079 				 dma_unmap_len(tx_buffer, len),
8080 				 DMA_TO_DEVICE);
8081 
8082 		/* clear tx_buffer data */
8083 		dma_unmap_len_set(tx_buffer, len, 0);
8084 
8085 		/* clear last DMA location and unmap remaining buffers */
8086 		while (tx_desc != eop_desc) {
8087 			tx_buffer++;
8088 			tx_desc++;
8089 			i++;
8090 			if (unlikely(!i)) {
8091 				i -= tx_ring->count;
8092 				tx_buffer = tx_ring->tx_buffer_info;
8093 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8094 			}
8095 
8096 			/* unmap any remaining paged data */
8097 			if (dma_unmap_len(tx_buffer, len)) {
8098 				dma_unmap_page(tx_ring->dev,
8099 					       dma_unmap_addr(tx_buffer, dma),
8100 					       dma_unmap_len(tx_buffer, len),
8101 					       DMA_TO_DEVICE);
8102 				dma_unmap_len_set(tx_buffer, len, 0);
8103 			}
8104 		}
8105 
8106 		/* move us one more past the eop_desc for start of next pkt */
8107 		tx_buffer++;
8108 		tx_desc++;
8109 		i++;
8110 		if (unlikely(!i)) {
8111 			i -= tx_ring->count;
8112 			tx_buffer = tx_ring->tx_buffer_info;
8113 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8114 		}
8115 
8116 		/* issue prefetch for next Tx descriptor */
8117 		prefetch(tx_desc);
8118 
8119 		/* update budget accounting */
8120 		budget--;
8121 	} while (likely(budget));
8122 
8123 	netdev_tx_completed_queue(txring_txq(tx_ring),
8124 				  total_packets, total_bytes);
8125 	i += tx_ring->count;
8126 	tx_ring->next_to_clean = i;
8127 	u64_stats_update_begin(&tx_ring->tx_syncp);
8128 	tx_ring->tx_stats.bytes += total_bytes;
8129 	tx_ring->tx_stats.packets += total_packets;
8130 	u64_stats_update_end(&tx_ring->tx_syncp);
8131 	q_vector->tx.total_bytes += total_bytes;
8132 	q_vector->tx.total_packets += total_packets;
8133 
8134 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8135 		struct e1000_hw *hw = &adapter->hw;
8136 
8137 		/* Detect a transmit hang in hardware, this serializes the
8138 		 * check with the clearing of time_stamp and movement of i
8139 		 */
8140 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8141 		if (tx_buffer->next_to_watch &&
8142 		    time_after(jiffies, tx_buffer->time_stamp +
8143 			       (adapter->tx_timeout_factor * HZ)) &&
8144 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8145 
8146 			/* detected Tx unit hang */
8147 			dev_err(tx_ring->dev,
8148 				"Detected Tx Unit Hang\n"
8149 				"  Tx Queue             <%d>\n"
8150 				"  TDH                  <%x>\n"
8151 				"  TDT                  <%x>\n"
8152 				"  next_to_use          <%x>\n"
8153 				"  next_to_clean        <%x>\n"
8154 				"buffer_info[next_to_clean]\n"
8155 				"  time_stamp           <%lx>\n"
8156 				"  next_to_watch        <%p>\n"
8157 				"  jiffies              <%lx>\n"
8158 				"  desc.status          <%x>\n",
8159 				tx_ring->queue_index,
8160 				rd32(E1000_TDH(tx_ring->reg_idx)),
8161 				readl(tx_ring->tail),
8162 				tx_ring->next_to_use,
8163 				tx_ring->next_to_clean,
8164 				tx_buffer->time_stamp,
8165 				tx_buffer->next_to_watch,
8166 				jiffies,
8167 				tx_buffer->next_to_watch->wb.status);
8168 			netif_stop_subqueue(tx_ring->netdev,
8169 					    tx_ring->queue_index);
8170 
8171 			/* we are about to reset, no point in enabling stuff */
8172 			return true;
8173 		}
8174 	}
8175 
8176 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8177 	if (unlikely(total_packets &&
8178 	    netif_carrier_ok(tx_ring->netdev) &&
8179 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8180 		/* Make sure that anybody stopping the queue after this
8181 		 * sees the new next_to_clean.
8182 		 */
8183 		smp_mb();
8184 		if (__netif_subqueue_stopped(tx_ring->netdev,
8185 					     tx_ring->queue_index) &&
8186 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8187 			netif_wake_subqueue(tx_ring->netdev,
8188 					    tx_ring->queue_index);
8189 
8190 			u64_stats_update_begin(&tx_ring->tx_syncp);
8191 			tx_ring->tx_stats.restart_queue++;
8192 			u64_stats_update_end(&tx_ring->tx_syncp);
8193 		}
8194 	}
8195 
8196 	return !!budget;
8197 }
8198 
8199 /**
8200  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8201  *  @rx_ring: rx descriptor ring to store buffers on
8202  *  @old_buff: donor buffer to have page reused
8203  *
8204  *  Synchronizes page for reuse by the adapter
8205  **/
8206 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8207 			      struct igb_rx_buffer *old_buff)
8208 {
8209 	struct igb_rx_buffer *new_buff;
8210 	u16 nta = rx_ring->next_to_alloc;
8211 
8212 	new_buff = &rx_ring->rx_buffer_info[nta];
8213 
8214 	/* update, and store next to alloc */
8215 	nta++;
8216 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8217 
8218 	/* Transfer page from old buffer to new buffer.
8219 	 * Move each member individually to avoid possible store
8220 	 * forwarding stalls.
8221 	 */
8222 	new_buff->dma		= old_buff->dma;
8223 	new_buff->page		= old_buff->page;
8224 	new_buff->page_offset	= old_buff->page_offset;
8225 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8226 }
8227 
8228 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8229 				  int rx_buf_pgcnt)
8230 {
8231 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8232 	struct page *page = rx_buffer->page;
8233 
8234 	/* avoid re-using remote and pfmemalloc pages */
8235 	if (!dev_page_is_reusable(page))
8236 		return false;
8237 
8238 #if (PAGE_SIZE < 8192)
8239 	/* if we are only owner of page we can reuse it */
8240 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8241 		return false;
8242 #else
8243 #define IGB_LAST_OFFSET \
8244 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8245 
8246 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8247 		return false;
8248 #endif
8249 
8250 	/* If we have drained the page fragment pool we need to update
8251 	 * the pagecnt_bias and page count so that we fully restock the
8252 	 * number of references the driver holds.
8253 	 */
8254 	if (unlikely(pagecnt_bias == 1)) {
8255 		page_ref_add(page, USHRT_MAX - 1);
8256 		rx_buffer->pagecnt_bias = USHRT_MAX;
8257 	}
8258 
8259 	return true;
8260 }
8261 
8262 /**
8263  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8264  *  @rx_ring: rx descriptor ring to transact packets on
8265  *  @rx_buffer: buffer containing page to add
8266  *  @skb: sk_buff to place the data into
8267  *  @size: size of buffer to be added
8268  *
8269  *  This function will add the data contained in rx_buffer->page to the skb.
8270  **/
8271 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8272 			    struct igb_rx_buffer *rx_buffer,
8273 			    struct sk_buff *skb,
8274 			    unsigned int size)
8275 {
8276 #if (PAGE_SIZE < 8192)
8277 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8278 #else
8279 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8280 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8281 				SKB_DATA_ALIGN(size);
8282 #endif
8283 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8284 			rx_buffer->page_offset, size, truesize);
8285 #if (PAGE_SIZE < 8192)
8286 	rx_buffer->page_offset ^= truesize;
8287 #else
8288 	rx_buffer->page_offset += truesize;
8289 #endif
8290 }
8291 
8292 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8293 					 struct igb_rx_buffer *rx_buffer,
8294 					 struct xdp_buff *xdp,
8295 					 ktime_t timestamp)
8296 {
8297 #if (PAGE_SIZE < 8192)
8298 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8299 #else
8300 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8301 					       xdp->data_hard_start);
8302 #endif
8303 	unsigned int size = xdp->data_end - xdp->data;
8304 	unsigned int headlen;
8305 	struct sk_buff *skb;
8306 
8307 	/* prefetch first cache line of first page */
8308 	net_prefetch(xdp->data);
8309 
8310 	/* allocate a skb to store the frags */
8311 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8312 	if (unlikely(!skb))
8313 		return NULL;
8314 
8315 	if (timestamp)
8316 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8317 
8318 	/* Determine available headroom for copy */
8319 	headlen = size;
8320 	if (headlen > IGB_RX_HDR_LEN)
8321 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8322 
8323 	/* align pull length to size of long to optimize memcpy performance */
8324 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8325 
8326 	/* update all of the pointers */
8327 	size -= headlen;
8328 	if (size) {
8329 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8330 				(xdp->data + headlen) - page_address(rx_buffer->page),
8331 				size, truesize);
8332 #if (PAGE_SIZE < 8192)
8333 		rx_buffer->page_offset ^= truesize;
8334 #else
8335 		rx_buffer->page_offset += truesize;
8336 #endif
8337 	} else {
8338 		rx_buffer->pagecnt_bias++;
8339 	}
8340 
8341 	return skb;
8342 }
8343 
8344 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8345 				     struct igb_rx_buffer *rx_buffer,
8346 				     struct xdp_buff *xdp,
8347 				     ktime_t timestamp)
8348 {
8349 #if (PAGE_SIZE < 8192)
8350 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8351 #else
8352 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8353 				SKB_DATA_ALIGN(xdp->data_end -
8354 					       xdp->data_hard_start);
8355 #endif
8356 	unsigned int metasize = xdp->data - xdp->data_meta;
8357 	struct sk_buff *skb;
8358 
8359 	/* prefetch first cache line of first page */
8360 	net_prefetch(xdp->data_meta);
8361 
8362 	/* build an skb around the page buffer */
8363 	skb = build_skb(xdp->data_hard_start, truesize);
8364 	if (unlikely(!skb))
8365 		return NULL;
8366 
8367 	/* update pointers within the skb to store the data */
8368 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8369 	__skb_put(skb, xdp->data_end - xdp->data);
8370 
8371 	if (metasize)
8372 		skb_metadata_set(skb, metasize);
8373 
8374 	if (timestamp)
8375 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8376 
8377 	/* update buffer offset */
8378 #if (PAGE_SIZE < 8192)
8379 	rx_buffer->page_offset ^= truesize;
8380 #else
8381 	rx_buffer->page_offset += truesize;
8382 #endif
8383 
8384 	return skb;
8385 }
8386 
8387 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8388 				   struct igb_ring *rx_ring,
8389 				   struct xdp_buff *xdp)
8390 {
8391 	int err, result = IGB_XDP_PASS;
8392 	struct bpf_prog *xdp_prog;
8393 	u32 act;
8394 
8395 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8396 
8397 	if (!xdp_prog)
8398 		goto xdp_out;
8399 
8400 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8401 
8402 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8403 	switch (act) {
8404 	case XDP_PASS:
8405 		break;
8406 	case XDP_TX:
8407 		result = igb_xdp_xmit_back(adapter, xdp);
8408 		if (result == IGB_XDP_CONSUMED)
8409 			goto out_failure;
8410 		break;
8411 	case XDP_REDIRECT:
8412 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8413 		if (err)
8414 			goto out_failure;
8415 		result = IGB_XDP_REDIR;
8416 		break;
8417 	default:
8418 		bpf_warn_invalid_xdp_action(act);
8419 		fallthrough;
8420 	case XDP_ABORTED:
8421 out_failure:
8422 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8423 		fallthrough;
8424 	case XDP_DROP:
8425 		result = IGB_XDP_CONSUMED;
8426 		break;
8427 	}
8428 xdp_out:
8429 	return ERR_PTR(-result);
8430 }
8431 
8432 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8433 					  unsigned int size)
8434 {
8435 	unsigned int truesize;
8436 
8437 #if (PAGE_SIZE < 8192)
8438 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8439 #else
8440 	truesize = ring_uses_build_skb(rx_ring) ?
8441 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8442 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8443 		SKB_DATA_ALIGN(size);
8444 #endif
8445 	return truesize;
8446 }
8447 
8448 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8449 			       struct igb_rx_buffer *rx_buffer,
8450 			       unsigned int size)
8451 {
8452 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8453 #if (PAGE_SIZE < 8192)
8454 	rx_buffer->page_offset ^= truesize;
8455 #else
8456 	rx_buffer->page_offset += truesize;
8457 #endif
8458 }
8459 
8460 static inline void igb_rx_checksum(struct igb_ring *ring,
8461 				   union e1000_adv_rx_desc *rx_desc,
8462 				   struct sk_buff *skb)
8463 {
8464 	skb_checksum_none_assert(skb);
8465 
8466 	/* Ignore Checksum bit is set */
8467 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8468 		return;
8469 
8470 	/* Rx checksum disabled via ethtool */
8471 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8472 		return;
8473 
8474 	/* TCP/UDP checksum error bit is set */
8475 	if (igb_test_staterr(rx_desc,
8476 			     E1000_RXDEXT_STATERR_TCPE |
8477 			     E1000_RXDEXT_STATERR_IPE)) {
8478 		/* work around errata with sctp packets where the TCPE aka
8479 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8480 		 * packets, (aka let the stack check the crc32c)
8481 		 */
8482 		if (!((skb->len == 60) &&
8483 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8484 			u64_stats_update_begin(&ring->rx_syncp);
8485 			ring->rx_stats.csum_err++;
8486 			u64_stats_update_end(&ring->rx_syncp);
8487 		}
8488 		/* let the stack verify checksum errors */
8489 		return;
8490 	}
8491 	/* It must be a TCP or UDP packet with a valid checksum */
8492 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8493 				      E1000_RXD_STAT_UDPCS))
8494 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8495 
8496 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8497 		le32_to_cpu(rx_desc->wb.upper.status_error));
8498 }
8499 
8500 static inline void igb_rx_hash(struct igb_ring *ring,
8501 			       union e1000_adv_rx_desc *rx_desc,
8502 			       struct sk_buff *skb)
8503 {
8504 	if (ring->netdev->features & NETIF_F_RXHASH)
8505 		skb_set_hash(skb,
8506 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8507 			     PKT_HASH_TYPE_L3);
8508 }
8509 
8510 /**
8511  *  igb_is_non_eop - process handling of non-EOP buffers
8512  *  @rx_ring: Rx ring being processed
8513  *  @rx_desc: Rx descriptor for current buffer
8514  *
8515  *  This function updates next to clean.  If the buffer is an EOP buffer
8516  *  this function exits returning false, otherwise it will place the
8517  *  sk_buff in the next buffer to be chained and return true indicating
8518  *  that this is in fact a non-EOP buffer.
8519  **/
8520 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8521 			   union e1000_adv_rx_desc *rx_desc)
8522 {
8523 	u32 ntc = rx_ring->next_to_clean + 1;
8524 
8525 	/* fetch, update, and store next to clean */
8526 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8527 	rx_ring->next_to_clean = ntc;
8528 
8529 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8530 
8531 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8532 		return false;
8533 
8534 	return true;
8535 }
8536 
8537 /**
8538  *  igb_cleanup_headers - Correct corrupted or empty headers
8539  *  @rx_ring: rx descriptor ring packet is being transacted on
8540  *  @rx_desc: pointer to the EOP Rx descriptor
8541  *  @skb: pointer to current skb being fixed
8542  *
8543  *  Address the case where we are pulling data in on pages only
8544  *  and as such no data is present in the skb header.
8545  *
8546  *  In addition if skb is not at least 60 bytes we need to pad it so that
8547  *  it is large enough to qualify as a valid Ethernet frame.
8548  *
8549  *  Returns true if an error was encountered and skb was freed.
8550  **/
8551 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8552 				union e1000_adv_rx_desc *rx_desc,
8553 				struct sk_buff *skb)
8554 {
8555 	/* XDP packets use error pointer so abort at this point */
8556 	if (IS_ERR(skb))
8557 		return true;
8558 
8559 	if (unlikely((igb_test_staterr(rx_desc,
8560 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8561 		struct net_device *netdev = rx_ring->netdev;
8562 		if (!(netdev->features & NETIF_F_RXALL)) {
8563 			dev_kfree_skb_any(skb);
8564 			return true;
8565 		}
8566 	}
8567 
8568 	/* if eth_skb_pad returns an error the skb was freed */
8569 	if (eth_skb_pad(skb))
8570 		return true;
8571 
8572 	return false;
8573 }
8574 
8575 /**
8576  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8577  *  @rx_ring: rx descriptor ring packet is being transacted on
8578  *  @rx_desc: pointer to the EOP Rx descriptor
8579  *  @skb: pointer to current skb being populated
8580  *
8581  *  This function checks the ring, descriptor, and packet information in
8582  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8583  *  other fields within the skb.
8584  **/
8585 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8586 				   union e1000_adv_rx_desc *rx_desc,
8587 				   struct sk_buff *skb)
8588 {
8589 	struct net_device *dev = rx_ring->netdev;
8590 
8591 	igb_rx_hash(rx_ring, rx_desc, skb);
8592 
8593 	igb_rx_checksum(rx_ring, rx_desc, skb);
8594 
8595 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8596 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8597 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8598 
8599 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8600 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8601 		u16 vid;
8602 
8603 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8604 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8605 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8606 		else
8607 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8608 
8609 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8610 	}
8611 
8612 	skb_record_rx_queue(skb, rx_ring->queue_index);
8613 
8614 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8615 }
8616 
8617 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8618 {
8619 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8620 }
8621 
8622 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8623 					       const unsigned int size, int *rx_buf_pgcnt)
8624 {
8625 	struct igb_rx_buffer *rx_buffer;
8626 
8627 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8628 	*rx_buf_pgcnt =
8629 #if (PAGE_SIZE < 8192)
8630 		page_count(rx_buffer->page);
8631 #else
8632 		0;
8633 #endif
8634 	prefetchw(rx_buffer->page);
8635 
8636 	/* we are reusing so sync this buffer for CPU use */
8637 	dma_sync_single_range_for_cpu(rx_ring->dev,
8638 				      rx_buffer->dma,
8639 				      rx_buffer->page_offset,
8640 				      size,
8641 				      DMA_FROM_DEVICE);
8642 
8643 	rx_buffer->pagecnt_bias--;
8644 
8645 	return rx_buffer;
8646 }
8647 
8648 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8649 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8650 {
8651 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8652 		/* hand second half of page back to the ring */
8653 		igb_reuse_rx_page(rx_ring, rx_buffer);
8654 	} else {
8655 		/* We are not reusing the buffer so unmap it and free
8656 		 * any references we are holding to it
8657 		 */
8658 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8659 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8660 				     IGB_RX_DMA_ATTR);
8661 		__page_frag_cache_drain(rx_buffer->page,
8662 					rx_buffer->pagecnt_bias);
8663 	}
8664 
8665 	/* clear contents of rx_buffer */
8666 	rx_buffer->page = NULL;
8667 }
8668 
8669 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8670 {
8671 	struct igb_adapter *adapter = q_vector->adapter;
8672 	struct igb_ring *rx_ring = q_vector->rx.ring;
8673 	struct sk_buff *skb = rx_ring->skb;
8674 	unsigned int total_bytes = 0, total_packets = 0;
8675 	u16 cleaned_count = igb_desc_unused(rx_ring);
8676 	unsigned int xdp_xmit = 0;
8677 	struct xdp_buff xdp;
8678 	u32 frame_sz = 0;
8679 	int rx_buf_pgcnt;
8680 
8681 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8682 #if (PAGE_SIZE < 8192)
8683 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8684 #endif
8685 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8686 
8687 	while (likely(total_packets < budget)) {
8688 		union e1000_adv_rx_desc *rx_desc;
8689 		struct igb_rx_buffer *rx_buffer;
8690 		ktime_t timestamp = 0;
8691 		int pkt_offset = 0;
8692 		unsigned int size;
8693 		void *pktbuf;
8694 
8695 		/* return some buffers to hardware, one at a time is too slow */
8696 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8697 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8698 			cleaned_count = 0;
8699 		}
8700 
8701 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8702 		size = le16_to_cpu(rx_desc->wb.upper.length);
8703 		if (!size)
8704 			break;
8705 
8706 		/* This memory barrier is needed to keep us from reading
8707 		 * any other fields out of the rx_desc until we know the
8708 		 * descriptor has been written back
8709 		 */
8710 		dma_rmb();
8711 
8712 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8713 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8714 
8715 		/* pull rx packet timestamp if available and valid */
8716 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8717 			int ts_hdr_len;
8718 
8719 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8720 							 pktbuf, &timestamp);
8721 
8722 			pkt_offset += ts_hdr_len;
8723 			size -= ts_hdr_len;
8724 		}
8725 
8726 		/* retrieve a buffer from the ring */
8727 		if (!skb) {
8728 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8729 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8730 
8731 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8732 #if (PAGE_SIZE > 4096)
8733 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8734 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8735 #endif
8736 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8737 		}
8738 
8739 		if (IS_ERR(skb)) {
8740 			unsigned int xdp_res = -PTR_ERR(skb);
8741 
8742 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8743 				xdp_xmit |= xdp_res;
8744 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8745 			} else {
8746 				rx_buffer->pagecnt_bias++;
8747 			}
8748 			total_packets++;
8749 			total_bytes += size;
8750 		} else if (skb)
8751 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8752 		else if (ring_uses_build_skb(rx_ring))
8753 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8754 					    timestamp);
8755 		else
8756 			skb = igb_construct_skb(rx_ring, rx_buffer,
8757 						&xdp, timestamp);
8758 
8759 		/* exit if we failed to retrieve a buffer */
8760 		if (!skb) {
8761 			rx_ring->rx_stats.alloc_failed++;
8762 			rx_buffer->pagecnt_bias++;
8763 			break;
8764 		}
8765 
8766 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8767 		cleaned_count++;
8768 
8769 		/* fetch next buffer in frame if non-eop */
8770 		if (igb_is_non_eop(rx_ring, rx_desc))
8771 			continue;
8772 
8773 		/* verify the packet layout is correct */
8774 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8775 			skb = NULL;
8776 			continue;
8777 		}
8778 
8779 		/* probably a little skewed due to removing CRC */
8780 		total_bytes += skb->len;
8781 
8782 		/* populate checksum, timestamp, VLAN, and protocol */
8783 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8784 
8785 		napi_gro_receive(&q_vector->napi, skb);
8786 
8787 		/* reset skb pointer */
8788 		skb = NULL;
8789 
8790 		/* update budget accounting */
8791 		total_packets++;
8792 	}
8793 
8794 	/* place incomplete frames back on ring for completion */
8795 	rx_ring->skb = skb;
8796 
8797 	if (xdp_xmit & IGB_XDP_REDIR)
8798 		xdp_do_flush();
8799 
8800 	if (xdp_xmit & IGB_XDP_TX) {
8801 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8802 
8803 		igb_xdp_ring_update_tail(tx_ring);
8804 	}
8805 
8806 	u64_stats_update_begin(&rx_ring->rx_syncp);
8807 	rx_ring->rx_stats.packets += total_packets;
8808 	rx_ring->rx_stats.bytes += total_bytes;
8809 	u64_stats_update_end(&rx_ring->rx_syncp);
8810 	q_vector->rx.total_packets += total_packets;
8811 	q_vector->rx.total_bytes += total_bytes;
8812 
8813 	if (cleaned_count)
8814 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8815 
8816 	return total_packets;
8817 }
8818 
8819 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8820 				  struct igb_rx_buffer *bi)
8821 {
8822 	struct page *page = bi->page;
8823 	dma_addr_t dma;
8824 
8825 	/* since we are recycling buffers we should seldom need to alloc */
8826 	if (likely(page))
8827 		return true;
8828 
8829 	/* alloc new page for storage */
8830 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8831 	if (unlikely(!page)) {
8832 		rx_ring->rx_stats.alloc_failed++;
8833 		return false;
8834 	}
8835 
8836 	/* map page for use */
8837 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8838 				 igb_rx_pg_size(rx_ring),
8839 				 DMA_FROM_DEVICE,
8840 				 IGB_RX_DMA_ATTR);
8841 
8842 	/* if mapping failed free memory back to system since
8843 	 * there isn't much point in holding memory we can't use
8844 	 */
8845 	if (dma_mapping_error(rx_ring->dev, dma)) {
8846 		__free_pages(page, igb_rx_pg_order(rx_ring));
8847 
8848 		rx_ring->rx_stats.alloc_failed++;
8849 		return false;
8850 	}
8851 
8852 	bi->dma = dma;
8853 	bi->page = page;
8854 	bi->page_offset = igb_rx_offset(rx_ring);
8855 	page_ref_add(page, USHRT_MAX - 1);
8856 	bi->pagecnt_bias = USHRT_MAX;
8857 
8858 	return true;
8859 }
8860 
8861 /**
8862  *  igb_alloc_rx_buffers - Replace used receive buffers
8863  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8864  *  @cleaned_count: count of buffers to allocate
8865  **/
8866 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8867 {
8868 	union e1000_adv_rx_desc *rx_desc;
8869 	struct igb_rx_buffer *bi;
8870 	u16 i = rx_ring->next_to_use;
8871 	u16 bufsz;
8872 
8873 	/* nothing to do */
8874 	if (!cleaned_count)
8875 		return;
8876 
8877 	rx_desc = IGB_RX_DESC(rx_ring, i);
8878 	bi = &rx_ring->rx_buffer_info[i];
8879 	i -= rx_ring->count;
8880 
8881 	bufsz = igb_rx_bufsz(rx_ring);
8882 
8883 	do {
8884 		if (!igb_alloc_mapped_page(rx_ring, bi))
8885 			break;
8886 
8887 		/* sync the buffer for use by the device */
8888 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8889 						 bi->page_offset, bufsz,
8890 						 DMA_FROM_DEVICE);
8891 
8892 		/* Refresh the desc even if buffer_addrs didn't change
8893 		 * because each write-back erases this info.
8894 		 */
8895 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8896 
8897 		rx_desc++;
8898 		bi++;
8899 		i++;
8900 		if (unlikely(!i)) {
8901 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8902 			bi = rx_ring->rx_buffer_info;
8903 			i -= rx_ring->count;
8904 		}
8905 
8906 		/* clear the length for the next_to_use descriptor */
8907 		rx_desc->wb.upper.length = 0;
8908 
8909 		cleaned_count--;
8910 	} while (cleaned_count);
8911 
8912 	i += rx_ring->count;
8913 
8914 	if (rx_ring->next_to_use != i) {
8915 		/* record the next descriptor to use */
8916 		rx_ring->next_to_use = i;
8917 
8918 		/* update next to alloc since we have filled the ring */
8919 		rx_ring->next_to_alloc = i;
8920 
8921 		/* Force memory writes to complete before letting h/w
8922 		 * know there are new descriptors to fetch.  (Only
8923 		 * applicable for weak-ordered memory model archs,
8924 		 * such as IA-64).
8925 		 */
8926 		dma_wmb();
8927 		writel(i, rx_ring->tail);
8928 	}
8929 }
8930 
8931 /**
8932  * igb_mii_ioctl -
8933  * @netdev: pointer to netdev struct
8934  * @ifr: interface structure
8935  * @cmd: ioctl command to execute
8936  **/
8937 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8938 {
8939 	struct igb_adapter *adapter = netdev_priv(netdev);
8940 	struct mii_ioctl_data *data = if_mii(ifr);
8941 
8942 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8943 		return -EOPNOTSUPP;
8944 
8945 	switch (cmd) {
8946 	case SIOCGMIIPHY:
8947 		data->phy_id = adapter->hw.phy.addr;
8948 		break;
8949 	case SIOCGMIIREG:
8950 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8951 				     &data->val_out))
8952 			return -EIO;
8953 		break;
8954 	case SIOCSMIIREG:
8955 	default:
8956 		return -EOPNOTSUPP;
8957 	}
8958 	return 0;
8959 }
8960 
8961 /**
8962  * igb_ioctl -
8963  * @netdev: pointer to netdev struct
8964  * @ifr: interface structure
8965  * @cmd: ioctl command to execute
8966  **/
8967 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8968 {
8969 	switch (cmd) {
8970 	case SIOCGMIIPHY:
8971 	case SIOCGMIIREG:
8972 	case SIOCSMIIREG:
8973 		return igb_mii_ioctl(netdev, ifr, cmd);
8974 	case SIOCGHWTSTAMP:
8975 		return igb_ptp_get_ts_config(netdev, ifr);
8976 	case SIOCSHWTSTAMP:
8977 		return igb_ptp_set_ts_config(netdev, ifr);
8978 	default:
8979 		return -EOPNOTSUPP;
8980 	}
8981 }
8982 
8983 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8984 {
8985 	struct igb_adapter *adapter = hw->back;
8986 
8987 	pci_read_config_word(adapter->pdev, reg, value);
8988 }
8989 
8990 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8991 {
8992 	struct igb_adapter *adapter = hw->back;
8993 
8994 	pci_write_config_word(adapter->pdev, reg, *value);
8995 }
8996 
8997 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8998 {
8999 	struct igb_adapter *adapter = hw->back;
9000 
9001 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9002 		return -E1000_ERR_CONFIG;
9003 
9004 	return 0;
9005 }
9006 
9007 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9008 {
9009 	struct igb_adapter *adapter = hw->back;
9010 
9011 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9012 		return -E1000_ERR_CONFIG;
9013 
9014 	return 0;
9015 }
9016 
9017 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9018 {
9019 	struct igb_adapter *adapter = netdev_priv(netdev);
9020 	struct e1000_hw *hw = &adapter->hw;
9021 	u32 ctrl, rctl;
9022 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9023 
9024 	if (enable) {
9025 		/* enable VLAN tag insert/strip */
9026 		ctrl = rd32(E1000_CTRL);
9027 		ctrl |= E1000_CTRL_VME;
9028 		wr32(E1000_CTRL, ctrl);
9029 
9030 		/* Disable CFI check */
9031 		rctl = rd32(E1000_RCTL);
9032 		rctl &= ~E1000_RCTL_CFIEN;
9033 		wr32(E1000_RCTL, rctl);
9034 	} else {
9035 		/* disable VLAN tag insert/strip */
9036 		ctrl = rd32(E1000_CTRL);
9037 		ctrl &= ~E1000_CTRL_VME;
9038 		wr32(E1000_CTRL, ctrl);
9039 	}
9040 
9041 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9042 }
9043 
9044 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9045 			       __be16 proto, u16 vid)
9046 {
9047 	struct igb_adapter *adapter = netdev_priv(netdev);
9048 	struct e1000_hw *hw = &adapter->hw;
9049 	int pf_id = adapter->vfs_allocated_count;
9050 
9051 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9052 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9053 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9054 
9055 	set_bit(vid, adapter->active_vlans);
9056 
9057 	return 0;
9058 }
9059 
9060 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9061 				__be16 proto, u16 vid)
9062 {
9063 	struct igb_adapter *adapter = netdev_priv(netdev);
9064 	int pf_id = adapter->vfs_allocated_count;
9065 	struct e1000_hw *hw = &adapter->hw;
9066 
9067 	/* remove VID from filter table */
9068 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9069 		igb_vfta_set(hw, vid, pf_id, false, true);
9070 
9071 	clear_bit(vid, adapter->active_vlans);
9072 
9073 	return 0;
9074 }
9075 
9076 static void igb_restore_vlan(struct igb_adapter *adapter)
9077 {
9078 	u16 vid = 1;
9079 
9080 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9081 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9082 
9083 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9084 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9085 }
9086 
9087 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9088 {
9089 	struct pci_dev *pdev = adapter->pdev;
9090 	struct e1000_mac_info *mac = &adapter->hw.mac;
9091 
9092 	mac->autoneg = 0;
9093 
9094 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9095 	 * for the switch() below to work
9096 	 */
9097 	if ((spd & 1) || (dplx & ~1))
9098 		goto err_inval;
9099 
9100 	/* Fiber NIC's only allow 1000 gbps Full duplex
9101 	 * and 100Mbps Full duplex for 100baseFx sfp
9102 	 */
9103 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9104 		switch (spd + dplx) {
9105 		case SPEED_10 + DUPLEX_HALF:
9106 		case SPEED_10 + DUPLEX_FULL:
9107 		case SPEED_100 + DUPLEX_HALF:
9108 			goto err_inval;
9109 		default:
9110 			break;
9111 		}
9112 	}
9113 
9114 	switch (spd + dplx) {
9115 	case SPEED_10 + DUPLEX_HALF:
9116 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9117 		break;
9118 	case SPEED_10 + DUPLEX_FULL:
9119 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9120 		break;
9121 	case SPEED_100 + DUPLEX_HALF:
9122 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9123 		break;
9124 	case SPEED_100 + DUPLEX_FULL:
9125 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9126 		break;
9127 	case SPEED_1000 + DUPLEX_FULL:
9128 		mac->autoneg = 1;
9129 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9130 		break;
9131 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9132 	default:
9133 		goto err_inval;
9134 	}
9135 
9136 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9137 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9138 
9139 	return 0;
9140 
9141 err_inval:
9142 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9143 	return -EINVAL;
9144 }
9145 
9146 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9147 			  bool runtime)
9148 {
9149 	struct net_device *netdev = pci_get_drvdata(pdev);
9150 	struct igb_adapter *adapter = netdev_priv(netdev);
9151 	struct e1000_hw *hw = &adapter->hw;
9152 	u32 ctrl, rctl, status;
9153 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9154 	bool wake;
9155 
9156 	rtnl_lock();
9157 	netif_device_detach(netdev);
9158 
9159 	if (netif_running(netdev))
9160 		__igb_close(netdev, true);
9161 
9162 	igb_ptp_suspend(adapter);
9163 
9164 	igb_clear_interrupt_scheme(adapter);
9165 	rtnl_unlock();
9166 
9167 	status = rd32(E1000_STATUS);
9168 	if (status & E1000_STATUS_LU)
9169 		wufc &= ~E1000_WUFC_LNKC;
9170 
9171 	if (wufc) {
9172 		igb_setup_rctl(adapter);
9173 		igb_set_rx_mode(netdev);
9174 
9175 		/* turn on all-multi mode if wake on multicast is enabled */
9176 		if (wufc & E1000_WUFC_MC) {
9177 			rctl = rd32(E1000_RCTL);
9178 			rctl |= E1000_RCTL_MPE;
9179 			wr32(E1000_RCTL, rctl);
9180 		}
9181 
9182 		ctrl = rd32(E1000_CTRL);
9183 		ctrl |= E1000_CTRL_ADVD3WUC;
9184 		wr32(E1000_CTRL, ctrl);
9185 
9186 		/* Allow time for pending master requests to run */
9187 		igb_disable_pcie_master(hw);
9188 
9189 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9190 		wr32(E1000_WUFC, wufc);
9191 	} else {
9192 		wr32(E1000_WUC, 0);
9193 		wr32(E1000_WUFC, 0);
9194 	}
9195 
9196 	wake = wufc || adapter->en_mng_pt;
9197 	if (!wake)
9198 		igb_power_down_link(adapter);
9199 	else
9200 		igb_power_up_link(adapter);
9201 
9202 	if (enable_wake)
9203 		*enable_wake = wake;
9204 
9205 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9206 	 * would have already happened in close and is redundant.
9207 	 */
9208 	igb_release_hw_control(adapter);
9209 
9210 	pci_disable_device(pdev);
9211 
9212 	return 0;
9213 }
9214 
9215 static void igb_deliver_wake_packet(struct net_device *netdev)
9216 {
9217 	struct igb_adapter *adapter = netdev_priv(netdev);
9218 	struct e1000_hw *hw = &adapter->hw;
9219 	struct sk_buff *skb;
9220 	u32 wupl;
9221 
9222 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9223 
9224 	/* WUPM stores only the first 128 bytes of the wake packet.
9225 	 * Read the packet only if we have the whole thing.
9226 	 */
9227 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9228 		return;
9229 
9230 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9231 	if (!skb)
9232 		return;
9233 
9234 	skb_put(skb, wupl);
9235 
9236 	/* Ensure reads are 32-bit aligned */
9237 	wupl = roundup(wupl, 4);
9238 
9239 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9240 
9241 	skb->protocol = eth_type_trans(skb, netdev);
9242 	netif_rx(skb);
9243 }
9244 
9245 static int __maybe_unused igb_suspend(struct device *dev)
9246 {
9247 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9248 }
9249 
9250 static int __maybe_unused igb_resume(struct device *dev)
9251 {
9252 	struct pci_dev *pdev = to_pci_dev(dev);
9253 	struct net_device *netdev = pci_get_drvdata(pdev);
9254 	struct igb_adapter *adapter = netdev_priv(netdev);
9255 	struct e1000_hw *hw = &adapter->hw;
9256 	u32 err, val;
9257 
9258 	pci_set_power_state(pdev, PCI_D0);
9259 	pci_restore_state(pdev);
9260 	pci_save_state(pdev);
9261 
9262 	if (!pci_device_is_present(pdev))
9263 		return -ENODEV;
9264 	err = pci_enable_device_mem(pdev);
9265 	if (err) {
9266 		dev_err(&pdev->dev,
9267 			"igb: Cannot enable PCI device from suspend\n");
9268 		return err;
9269 	}
9270 	pci_set_master(pdev);
9271 
9272 	pci_enable_wake(pdev, PCI_D3hot, 0);
9273 	pci_enable_wake(pdev, PCI_D3cold, 0);
9274 
9275 	if (igb_init_interrupt_scheme(adapter, true)) {
9276 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9277 		return -ENOMEM;
9278 	}
9279 
9280 	igb_reset(adapter);
9281 
9282 	/* let the f/w know that the h/w is now under the control of the
9283 	 * driver.
9284 	 */
9285 	igb_get_hw_control(adapter);
9286 
9287 	val = rd32(E1000_WUS);
9288 	if (val & WAKE_PKT_WUS)
9289 		igb_deliver_wake_packet(netdev);
9290 
9291 	wr32(E1000_WUS, ~0);
9292 
9293 	rtnl_lock();
9294 	if (!err && netif_running(netdev))
9295 		err = __igb_open(netdev, true);
9296 
9297 	if (!err)
9298 		netif_device_attach(netdev);
9299 	rtnl_unlock();
9300 
9301 	return err;
9302 }
9303 
9304 static int __maybe_unused igb_runtime_idle(struct device *dev)
9305 {
9306 	struct net_device *netdev = dev_get_drvdata(dev);
9307 	struct igb_adapter *adapter = netdev_priv(netdev);
9308 
9309 	if (!igb_has_link(adapter))
9310 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9311 
9312 	return -EBUSY;
9313 }
9314 
9315 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9316 {
9317 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9318 }
9319 
9320 static int __maybe_unused igb_runtime_resume(struct device *dev)
9321 {
9322 	return igb_resume(dev);
9323 }
9324 
9325 static void igb_shutdown(struct pci_dev *pdev)
9326 {
9327 	bool wake;
9328 
9329 	__igb_shutdown(pdev, &wake, 0);
9330 
9331 	if (system_state == SYSTEM_POWER_OFF) {
9332 		pci_wake_from_d3(pdev, wake);
9333 		pci_set_power_state(pdev, PCI_D3hot);
9334 	}
9335 }
9336 
9337 #ifdef CONFIG_PCI_IOV
9338 static int igb_sriov_reinit(struct pci_dev *dev)
9339 {
9340 	struct net_device *netdev = pci_get_drvdata(dev);
9341 	struct igb_adapter *adapter = netdev_priv(netdev);
9342 	struct pci_dev *pdev = adapter->pdev;
9343 
9344 	rtnl_lock();
9345 
9346 	if (netif_running(netdev))
9347 		igb_close(netdev);
9348 	else
9349 		igb_reset(adapter);
9350 
9351 	igb_clear_interrupt_scheme(adapter);
9352 
9353 	igb_init_queue_configuration(adapter);
9354 
9355 	if (igb_init_interrupt_scheme(adapter, true)) {
9356 		rtnl_unlock();
9357 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9358 		return -ENOMEM;
9359 	}
9360 
9361 	if (netif_running(netdev))
9362 		igb_open(netdev);
9363 
9364 	rtnl_unlock();
9365 
9366 	return 0;
9367 }
9368 
9369 static int igb_pci_disable_sriov(struct pci_dev *dev)
9370 {
9371 	int err = igb_disable_sriov(dev);
9372 
9373 	if (!err)
9374 		err = igb_sriov_reinit(dev);
9375 
9376 	return err;
9377 }
9378 
9379 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9380 {
9381 	int err = igb_enable_sriov(dev, num_vfs);
9382 
9383 	if (err)
9384 		goto out;
9385 
9386 	err = igb_sriov_reinit(dev);
9387 	if (!err)
9388 		return num_vfs;
9389 
9390 out:
9391 	return err;
9392 }
9393 
9394 #endif
9395 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9396 {
9397 #ifdef CONFIG_PCI_IOV
9398 	if (num_vfs == 0)
9399 		return igb_pci_disable_sriov(dev);
9400 	else
9401 		return igb_pci_enable_sriov(dev, num_vfs);
9402 #endif
9403 	return 0;
9404 }
9405 
9406 /**
9407  *  igb_io_error_detected - called when PCI error is detected
9408  *  @pdev: Pointer to PCI device
9409  *  @state: The current pci connection state
9410  *
9411  *  This function is called after a PCI bus error affecting
9412  *  this device has been detected.
9413  **/
9414 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9415 					      pci_channel_state_t state)
9416 {
9417 	struct net_device *netdev = pci_get_drvdata(pdev);
9418 	struct igb_adapter *adapter = netdev_priv(netdev);
9419 
9420 	netif_device_detach(netdev);
9421 
9422 	if (state == pci_channel_io_perm_failure)
9423 		return PCI_ERS_RESULT_DISCONNECT;
9424 
9425 	if (netif_running(netdev))
9426 		igb_down(adapter);
9427 	pci_disable_device(pdev);
9428 
9429 	/* Request a slot slot reset. */
9430 	return PCI_ERS_RESULT_NEED_RESET;
9431 }
9432 
9433 /**
9434  *  igb_io_slot_reset - called after the pci bus has been reset.
9435  *  @pdev: Pointer to PCI device
9436  *
9437  *  Restart the card from scratch, as if from a cold-boot. Implementation
9438  *  resembles the first-half of the igb_resume routine.
9439  **/
9440 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9441 {
9442 	struct net_device *netdev = pci_get_drvdata(pdev);
9443 	struct igb_adapter *adapter = netdev_priv(netdev);
9444 	struct e1000_hw *hw = &adapter->hw;
9445 	pci_ers_result_t result;
9446 
9447 	if (pci_enable_device_mem(pdev)) {
9448 		dev_err(&pdev->dev,
9449 			"Cannot re-enable PCI device after reset.\n");
9450 		result = PCI_ERS_RESULT_DISCONNECT;
9451 	} else {
9452 		pci_set_master(pdev);
9453 		pci_restore_state(pdev);
9454 		pci_save_state(pdev);
9455 
9456 		pci_enable_wake(pdev, PCI_D3hot, 0);
9457 		pci_enable_wake(pdev, PCI_D3cold, 0);
9458 
9459 		/* In case of PCI error, adapter lose its HW address
9460 		 * so we should re-assign it here.
9461 		 */
9462 		hw->hw_addr = adapter->io_addr;
9463 
9464 		igb_reset(adapter);
9465 		wr32(E1000_WUS, ~0);
9466 		result = PCI_ERS_RESULT_RECOVERED;
9467 	}
9468 
9469 	return result;
9470 }
9471 
9472 /**
9473  *  igb_io_resume - called when traffic can start flowing again.
9474  *  @pdev: Pointer to PCI device
9475  *
9476  *  This callback is called when the error recovery driver tells us that
9477  *  its OK to resume normal operation. Implementation resembles the
9478  *  second-half of the igb_resume routine.
9479  */
9480 static void igb_io_resume(struct pci_dev *pdev)
9481 {
9482 	struct net_device *netdev = pci_get_drvdata(pdev);
9483 	struct igb_adapter *adapter = netdev_priv(netdev);
9484 
9485 	if (netif_running(netdev)) {
9486 		if (igb_up(adapter)) {
9487 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9488 			return;
9489 		}
9490 	}
9491 
9492 	netif_device_attach(netdev);
9493 
9494 	/* let the f/w know that the h/w is now under the control of the
9495 	 * driver.
9496 	 */
9497 	igb_get_hw_control(adapter);
9498 }
9499 
9500 /**
9501  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9502  *  @adapter: Pointer to adapter structure
9503  *  @index: Index of the RAR entry which need to be synced with MAC table
9504  **/
9505 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9506 {
9507 	struct e1000_hw *hw = &adapter->hw;
9508 	u32 rar_low, rar_high;
9509 	u8 *addr = adapter->mac_table[index].addr;
9510 
9511 	/* HW expects these to be in network order when they are plugged
9512 	 * into the registers which are little endian.  In order to guarantee
9513 	 * that ordering we need to do an leXX_to_cpup here in order to be
9514 	 * ready for the byteswap that occurs with writel
9515 	 */
9516 	rar_low = le32_to_cpup((__le32 *)(addr));
9517 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9518 
9519 	/* Indicate to hardware the Address is Valid. */
9520 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9521 		if (is_valid_ether_addr(addr))
9522 			rar_high |= E1000_RAH_AV;
9523 
9524 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9525 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9526 
9527 		switch (hw->mac.type) {
9528 		case e1000_82575:
9529 		case e1000_i210:
9530 			if (adapter->mac_table[index].state &
9531 			    IGB_MAC_STATE_QUEUE_STEERING)
9532 				rar_high |= E1000_RAH_QSEL_ENABLE;
9533 
9534 			rar_high |= E1000_RAH_POOL_1 *
9535 				    adapter->mac_table[index].queue;
9536 			break;
9537 		default:
9538 			rar_high |= E1000_RAH_POOL_1 <<
9539 				    adapter->mac_table[index].queue;
9540 			break;
9541 		}
9542 	}
9543 
9544 	wr32(E1000_RAL(index), rar_low);
9545 	wrfl();
9546 	wr32(E1000_RAH(index), rar_high);
9547 	wrfl();
9548 }
9549 
9550 static int igb_set_vf_mac(struct igb_adapter *adapter,
9551 			  int vf, unsigned char *mac_addr)
9552 {
9553 	struct e1000_hw *hw = &adapter->hw;
9554 	/* VF MAC addresses start at end of receive addresses and moves
9555 	 * towards the first, as a result a collision should not be possible
9556 	 */
9557 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9558 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9559 
9560 	ether_addr_copy(vf_mac_addr, mac_addr);
9561 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9562 	adapter->mac_table[rar_entry].queue = vf;
9563 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9564 	igb_rar_set_index(adapter, rar_entry);
9565 
9566 	return 0;
9567 }
9568 
9569 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9570 {
9571 	struct igb_adapter *adapter = netdev_priv(netdev);
9572 
9573 	if (vf >= adapter->vfs_allocated_count)
9574 		return -EINVAL;
9575 
9576 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9577 	 * flag and allows to overwrite the MAC via VF netdev.  This
9578 	 * is necessary to allow libvirt a way to restore the original
9579 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9580 	 * down a VM.
9581 	 */
9582 	if (is_zero_ether_addr(mac)) {
9583 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9584 		dev_info(&adapter->pdev->dev,
9585 			 "remove administratively set MAC on VF %d\n",
9586 			 vf);
9587 	} else if (is_valid_ether_addr(mac)) {
9588 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9589 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9590 			 mac, vf);
9591 		dev_info(&adapter->pdev->dev,
9592 			 "Reload the VF driver to make this change effective.");
9593 		/* Generate additional warning if PF is down */
9594 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9595 			dev_warn(&adapter->pdev->dev,
9596 				 "The VF MAC address has been set, but the PF device is not up.\n");
9597 			dev_warn(&adapter->pdev->dev,
9598 				 "Bring the PF device up before attempting to use the VF device.\n");
9599 		}
9600 	} else {
9601 		return -EINVAL;
9602 	}
9603 	return igb_set_vf_mac(adapter, vf, mac);
9604 }
9605 
9606 static int igb_link_mbps(int internal_link_speed)
9607 {
9608 	switch (internal_link_speed) {
9609 	case SPEED_100:
9610 		return 100;
9611 	case SPEED_1000:
9612 		return 1000;
9613 	default:
9614 		return 0;
9615 	}
9616 }
9617 
9618 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9619 				  int link_speed)
9620 {
9621 	int rf_dec, rf_int;
9622 	u32 bcnrc_val;
9623 
9624 	if (tx_rate != 0) {
9625 		/* Calculate the rate factor values to set */
9626 		rf_int = link_speed / tx_rate;
9627 		rf_dec = (link_speed - (rf_int * tx_rate));
9628 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9629 			 tx_rate;
9630 
9631 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9632 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9633 			      E1000_RTTBCNRC_RF_INT_MASK);
9634 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9635 	} else {
9636 		bcnrc_val = 0;
9637 	}
9638 
9639 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9640 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9641 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9642 	 */
9643 	wr32(E1000_RTTBCNRM, 0x14);
9644 	wr32(E1000_RTTBCNRC, bcnrc_val);
9645 }
9646 
9647 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9648 {
9649 	int actual_link_speed, i;
9650 	bool reset_rate = false;
9651 
9652 	/* VF TX rate limit was not set or not supported */
9653 	if ((adapter->vf_rate_link_speed == 0) ||
9654 	    (adapter->hw.mac.type != e1000_82576))
9655 		return;
9656 
9657 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9658 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9659 		reset_rate = true;
9660 		adapter->vf_rate_link_speed = 0;
9661 		dev_info(&adapter->pdev->dev,
9662 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9663 	}
9664 
9665 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9666 		if (reset_rate)
9667 			adapter->vf_data[i].tx_rate = 0;
9668 
9669 		igb_set_vf_rate_limit(&adapter->hw, i,
9670 				      adapter->vf_data[i].tx_rate,
9671 				      actual_link_speed);
9672 	}
9673 }
9674 
9675 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9676 			     int min_tx_rate, int max_tx_rate)
9677 {
9678 	struct igb_adapter *adapter = netdev_priv(netdev);
9679 	struct e1000_hw *hw = &adapter->hw;
9680 	int actual_link_speed;
9681 
9682 	if (hw->mac.type != e1000_82576)
9683 		return -EOPNOTSUPP;
9684 
9685 	if (min_tx_rate)
9686 		return -EINVAL;
9687 
9688 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9689 	if ((vf >= adapter->vfs_allocated_count) ||
9690 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9691 	    (max_tx_rate < 0) ||
9692 	    (max_tx_rate > actual_link_speed))
9693 		return -EINVAL;
9694 
9695 	adapter->vf_rate_link_speed = actual_link_speed;
9696 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9697 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9698 
9699 	return 0;
9700 }
9701 
9702 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9703 				   bool setting)
9704 {
9705 	struct igb_adapter *adapter = netdev_priv(netdev);
9706 	struct e1000_hw *hw = &adapter->hw;
9707 	u32 reg_val, reg_offset;
9708 
9709 	if (!adapter->vfs_allocated_count)
9710 		return -EOPNOTSUPP;
9711 
9712 	if (vf >= adapter->vfs_allocated_count)
9713 		return -EINVAL;
9714 
9715 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9716 	reg_val = rd32(reg_offset);
9717 	if (setting)
9718 		reg_val |= (BIT(vf) |
9719 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9720 	else
9721 		reg_val &= ~(BIT(vf) |
9722 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9723 	wr32(reg_offset, reg_val);
9724 
9725 	adapter->vf_data[vf].spoofchk_enabled = setting;
9726 	return 0;
9727 }
9728 
9729 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9730 {
9731 	struct igb_adapter *adapter = netdev_priv(netdev);
9732 
9733 	if (vf >= adapter->vfs_allocated_count)
9734 		return -EINVAL;
9735 	if (adapter->vf_data[vf].trusted == setting)
9736 		return 0;
9737 
9738 	adapter->vf_data[vf].trusted = setting;
9739 
9740 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9741 		 vf, setting ? "" : "not ");
9742 	return 0;
9743 }
9744 
9745 static int igb_ndo_get_vf_config(struct net_device *netdev,
9746 				 int vf, struct ifla_vf_info *ivi)
9747 {
9748 	struct igb_adapter *adapter = netdev_priv(netdev);
9749 	if (vf >= adapter->vfs_allocated_count)
9750 		return -EINVAL;
9751 	ivi->vf = vf;
9752 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9753 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9754 	ivi->min_tx_rate = 0;
9755 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9756 	ivi->qos = adapter->vf_data[vf].pf_qos;
9757 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9758 	ivi->trusted = adapter->vf_data[vf].trusted;
9759 	return 0;
9760 }
9761 
9762 static void igb_vmm_control(struct igb_adapter *adapter)
9763 {
9764 	struct e1000_hw *hw = &adapter->hw;
9765 	u32 reg;
9766 
9767 	switch (hw->mac.type) {
9768 	case e1000_82575:
9769 	case e1000_i210:
9770 	case e1000_i211:
9771 	case e1000_i354:
9772 	default:
9773 		/* replication is not supported for 82575 */
9774 		return;
9775 	case e1000_82576:
9776 		/* notify HW that the MAC is adding vlan tags */
9777 		reg = rd32(E1000_DTXCTL);
9778 		reg |= E1000_DTXCTL_VLAN_ADDED;
9779 		wr32(E1000_DTXCTL, reg);
9780 		fallthrough;
9781 	case e1000_82580:
9782 		/* enable replication vlan tag stripping */
9783 		reg = rd32(E1000_RPLOLR);
9784 		reg |= E1000_RPLOLR_STRVLAN;
9785 		wr32(E1000_RPLOLR, reg);
9786 		fallthrough;
9787 	case e1000_i350:
9788 		/* none of the above registers are supported by i350 */
9789 		break;
9790 	}
9791 
9792 	if (adapter->vfs_allocated_count) {
9793 		igb_vmdq_set_loopback_pf(hw, true);
9794 		igb_vmdq_set_replication_pf(hw, true);
9795 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9796 					      adapter->vfs_allocated_count);
9797 	} else {
9798 		igb_vmdq_set_loopback_pf(hw, false);
9799 		igb_vmdq_set_replication_pf(hw, false);
9800 	}
9801 }
9802 
9803 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9804 {
9805 	struct e1000_hw *hw = &adapter->hw;
9806 	u32 dmac_thr;
9807 	u16 hwm;
9808 
9809 	if (hw->mac.type > e1000_82580) {
9810 		if (adapter->flags & IGB_FLAG_DMAC) {
9811 			u32 reg;
9812 
9813 			/* force threshold to 0. */
9814 			wr32(E1000_DMCTXTH, 0);
9815 
9816 			/* DMA Coalescing high water mark needs to be greater
9817 			 * than the Rx threshold. Set hwm to PBA - max frame
9818 			 * size in 16B units, capping it at PBA - 6KB.
9819 			 */
9820 			hwm = 64 * (pba - 6);
9821 			reg = rd32(E1000_FCRTC);
9822 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9823 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9824 				& E1000_FCRTC_RTH_COAL_MASK);
9825 			wr32(E1000_FCRTC, reg);
9826 
9827 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9828 			 * frame size, capping it at PBA - 10KB.
9829 			 */
9830 			dmac_thr = pba - 10;
9831 			reg = rd32(E1000_DMACR);
9832 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9833 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9834 				& E1000_DMACR_DMACTHR_MASK);
9835 
9836 			/* transition to L0x or L1 if available..*/
9837 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9838 
9839 			/* watchdog timer= +-1000 usec in 32usec intervals */
9840 			reg |= (1000 >> 5);
9841 
9842 			/* Disable BMC-to-OS Watchdog Enable */
9843 			if (hw->mac.type != e1000_i354)
9844 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9845 
9846 			wr32(E1000_DMACR, reg);
9847 
9848 			/* no lower threshold to disable
9849 			 * coalescing(smart fifb)-UTRESH=0
9850 			 */
9851 			wr32(E1000_DMCRTRH, 0);
9852 
9853 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9854 
9855 			wr32(E1000_DMCTLX, reg);
9856 
9857 			/* free space in tx packet buffer to wake from
9858 			 * DMA coal
9859 			 */
9860 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9861 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9862 
9863 			/* make low power state decision controlled
9864 			 * by DMA coal
9865 			 */
9866 			reg = rd32(E1000_PCIEMISC);
9867 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9868 			wr32(E1000_PCIEMISC, reg);
9869 		} /* endif adapter->dmac is not disabled */
9870 	} else if (hw->mac.type == e1000_82580) {
9871 		u32 reg = rd32(E1000_PCIEMISC);
9872 
9873 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9874 		wr32(E1000_DMACR, 0);
9875 	}
9876 }
9877 
9878 /**
9879  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9880  *  @hw: pointer to hardware structure
9881  *  @byte_offset: byte offset to read
9882  *  @dev_addr: device address
9883  *  @data: value read
9884  *
9885  *  Performs byte read operation over I2C interface at
9886  *  a specified device address.
9887  **/
9888 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9889 		      u8 dev_addr, u8 *data)
9890 {
9891 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9892 	struct i2c_client *this_client = adapter->i2c_client;
9893 	s32 status;
9894 	u16 swfw_mask = 0;
9895 
9896 	if (!this_client)
9897 		return E1000_ERR_I2C;
9898 
9899 	swfw_mask = E1000_SWFW_PHY0_SM;
9900 
9901 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9902 		return E1000_ERR_SWFW_SYNC;
9903 
9904 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9905 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9906 
9907 	if (status < 0)
9908 		return E1000_ERR_I2C;
9909 	else {
9910 		*data = status;
9911 		return 0;
9912 	}
9913 }
9914 
9915 /**
9916  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9917  *  @hw: pointer to hardware structure
9918  *  @byte_offset: byte offset to write
9919  *  @dev_addr: device address
9920  *  @data: value to write
9921  *
9922  *  Performs byte write operation over I2C interface at
9923  *  a specified device address.
9924  **/
9925 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9926 		       u8 dev_addr, u8 data)
9927 {
9928 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9929 	struct i2c_client *this_client = adapter->i2c_client;
9930 	s32 status;
9931 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9932 
9933 	if (!this_client)
9934 		return E1000_ERR_I2C;
9935 
9936 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9937 		return E1000_ERR_SWFW_SYNC;
9938 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9939 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9940 
9941 	if (status)
9942 		return E1000_ERR_I2C;
9943 	else
9944 		return 0;
9945 
9946 }
9947 
9948 int igb_reinit_queues(struct igb_adapter *adapter)
9949 {
9950 	struct net_device *netdev = adapter->netdev;
9951 	struct pci_dev *pdev = adapter->pdev;
9952 	int err = 0;
9953 
9954 	if (netif_running(netdev))
9955 		igb_close(netdev);
9956 
9957 	igb_reset_interrupt_capability(adapter);
9958 
9959 	if (igb_init_interrupt_scheme(adapter, true)) {
9960 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9961 		return -ENOMEM;
9962 	}
9963 
9964 	if (netif_running(netdev))
9965 		err = igb_open(netdev);
9966 
9967 	return err;
9968 }
9969 
9970 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9971 {
9972 	struct igb_nfc_filter *rule;
9973 
9974 	spin_lock(&adapter->nfc_lock);
9975 
9976 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9977 		igb_erase_filter(adapter, rule);
9978 
9979 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9980 		igb_erase_filter(adapter, rule);
9981 
9982 	spin_unlock(&adapter->nfc_lock);
9983 }
9984 
9985 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9986 {
9987 	struct igb_nfc_filter *rule;
9988 
9989 	spin_lock(&adapter->nfc_lock);
9990 
9991 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9992 		igb_add_filter(adapter, rule);
9993 
9994 	spin_unlock(&adapter->nfc_lock);
9995 }
9996 /* igb_main.c */
9997