1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62 
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 5
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 				"Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 				"Copyright (c) 2007-2013 Intel Corporation.";
74 
75 static const struct e1000_info *igb_info_tbl[] = {
76 	[board_82575] = &e1000_82575_info,
77 };
78 
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115 	/* required last entry */
116 	{0, }
117 };
118 
119 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120 
121 void igb_reset(struct igb_adapter *);
122 static int igb_setup_all_tx_resources(struct igb_adapter *);
123 static int igb_setup_all_rx_resources(struct igb_adapter *);
124 static void igb_free_all_tx_resources(struct igb_adapter *);
125 static void igb_free_all_rx_resources(struct igb_adapter *);
126 static void igb_setup_mrqc(struct igb_adapter *);
127 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128 static void igb_remove(struct pci_dev *pdev);
129 static int igb_sw_init(struct igb_adapter *);
130 static int igb_open(struct net_device *);
131 static int igb_close(struct net_device *);
132 static void igb_configure(struct igb_adapter *);
133 static void igb_configure_tx(struct igb_adapter *);
134 static void igb_configure_rx(struct igb_adapter *);
135 static void igb_clean_all_tx_rings(struct igb_adapter *);
136 static void igb_clean_all_rx_rings(struct igb_adapter *);
137 static void igb_clean_tx_ring(struct igb_ring *);
138 static void igb_clean_rx_ring(struct igb_ring *);
139 static void igb_set_rx_mode(struct net_device *);
140 static void igb_update_phy_info(unsigned long);
141 static void igb_watchdog(unsigned long);
142 static void igb_watchdog_task(struct work_struct *);
143 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145 						 struct rtnl_link_stats64 *stats);
146 static int igb_change_mtu(struct net_device *, int);
147 static int igb_set_mac(struct net_device *, void *);
148 static void igb_set_uta(struct igb_adapter *adapter);
149 static irqreturn_t igb_intr(int irq, void *);
150 static irqreturn_t igb_intr_msi(int irq, void *);
151 static irqreturn_t igb_msix_other(int irq, void *);
152 static irqreturn_t igb_msix_ring(int irq, void *);
153 #ifdef CONFIG_IGB_DCA
154 static void igb_update_dca(struct igb_q_vector *);
155 static void igb_setup_dca(struct igb_adapter *);
156 #endif /* CONFIG_IGB_DCA */
157 static int igb_poll(struct napi_struct *, int);
158 static bool igb_clean_tx_irq(struct igb_q_vector *);
159 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161 static void igb_tx_timeout(struct net_device *);
162 static void igb_reset_task(struct work_struct *);
163 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166 static void igb_restore_vlan(struct igb_adapter *);
167 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 static void igb_ping_all_vfs(struct igb_adapter *);
169 static void igb_msg_task(struct igb_adapter *);
170 static void igb_vmm_control(struct igb_adapter *);
171 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175 			       int vf, u16 vlan, u8 qos);
176 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178 				   bool setting);
179 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180 				 struct ifla_vf_info *ivi);
181 static void igb_check_vf_rate_limit(struct igb_adapter *);
182 
183 #ifdef CONFIG_PCI_IOV
184 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185 #endif
186 
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 			igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 	.notifier_call	= igb_notify_dca,
209 	.next		= NULL,
210 	.priority	= 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                  "per physical function");
222 #endif /* CONFIG_PCI_IOV */
223 
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225 		     pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228 
229 static const struct pci_error_handlers igb_err_handler = {
230 	.error_detected = igb_io_error_detected,
231 	.slot_reset = igb_io_slot_reset,
232 	.resume = igb_io_resume,
233 };
234 
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236 
237 static struct pci_driver igb_driver = {
238 	.name     = igb_driver_name,
239 	.id_table = igb_pci_tbl,
240 	.probe    = igb_probe,
241 	.remove   = igb_remove,
242 #ifdef CONFIG_PM
243 	.driver.pm = &igb_pm_ops,
244 #endif
245 	.shutdown = igb_shutdown,
246 	.sriov_configure = igb_pci_sriov_configure,
247 	.err_handler = &igb_err_handler
248 };
249 
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254 
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259 
260 struct igb_reg_info {
261 	u32 ofs;
262 	char *name;
263 };
264 
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266 
267 	/* General Registers */
268 	{E1000_CTRL, "CTRL"},
269 	{E1000_STATUS, "STATUS"},
270 	{E1000_CTRL_EXT, "CTRL_EXT"},
271 
272 	/* Interrupt Registers */
273 	{E1000_ICR, "ICR"},
274 
275 	/* RX Registers */
276 	{E1000_RCTL, "RCTL"},
277 	{E1000_RDLEN(0), "RDLEN"},
278 	{E1000_RDH(0), "RDH"},
279 	{E1000_RDT(0), "RDT"},
280 	{E1000_RXDCTL(0), "RXDCTL"},
281 	{E1000_RDBAL(0), "RDBAL"},
282 	{E1000_RDBAH(0), "RDBAH"},
283 
284 	/* TX Registers */
285 	{E1000_TCTL, "TCTL"},
286 	{E1000_TDBAL(0), "TDBAL"},
287 	{E1000_TDBAH(0), "TDBAH"},
288 	{E1000_TDLEN(0), "TDLEN"},
289 	{E1000_TDH(0), "TDH"},
290 	{E1000_TDT(0), "TDT"},
291 	{E1000_TXDCTL(0), "TXDCTL"},
292 	{E1000_TDFH, "TDFH"},
293 	{E1000_TDFT, "TDFT"},
294 	{E1000_TDFHS, "TDFHS"},
295 	{E1000_TDFPC, "TDFPC"},
296 
297 	/* List Terminator */
298 	{}
299 };
300 
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304 	int n = 0;
305 	char rname[16];
306 	u32 regs[8];
307 
308 	switch (reginfo->ofs) {
309 	case E1000_RDLEN(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDLEN(n));
312 		break;
313 	case E1000_RDH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDH(n));
316 		break;
317 	case E1000_RDT(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RDT(n));
320 		break;
321 	case E1000_RXDCTL(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_RXDCTL(n));
324 		break;
325 	case E1000_RDBAL(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_RDBAL(n));
328 		break;
329 	case E1000_RDBAH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_RDBAH(n));
332 		break;
333 	case E1000_TDBAL(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_RDBAL(n));
336 		break;
337 	case E1000_TDBAH(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TDBAH(n));
340 		break;
341 	case E1000_TDLEN(0):
342 		for (n = 0; n < 4; n++)
343 			regs[n] = rd32(E1000_TDLEN(n));
344 		break;
345 	case E1000_TDH(0):
346 		for (n = 0; n < 4; n++)
347 			regs[n] = rd32(E1000_TDH(n));
348 		break;
349 	case E1000_TDT(0):
350 		for (n = 0; n < 4; n++)
351 			regs[n] = rd32(E1000_TDT(n));
352 		break;
353 	case E1000_TXDCTL(0):
354 		for (n = 0; n < 4; n++)
355 			regs[n] = rd32(E1000_TXDCTL(n));
356 		break;
357 	default:
358 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 		return;
360 	}
361 
362 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364 		regs[2], regs[3]);
365 }
366 
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370 	struct net_device *netdev = adapter->netdev;
371 	struct e1000_hw *hw = &adapter->hw;
372 	struct igb_reg_info *reginfo;
373 	struct igb_ring *tx_ring;
374 	union e1000_adv_tx_desc *tx_desc;
375 	struct my_u0 { u64 a; u64 b; } *u0;
376 	struct igb_ring *rx_ring;
377 	union e1000_adv_rx_desc *rx_desc;
378 	u32 staterr;
379 	u16 i, n;
380 
381 	if (!netif_msg_hw(adapter))
382 		return;
383 
384 	/* Print netdevice Info */
385 	if (netdev) {
386 		dev_info(&adapter->pdev->dev, "Net device Info\n");
387 		pr_info("Device Name     state            trans_start      "
388 			"last_rx\n");
389 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390 			netdev->state, netdev->trans_start, netdev->last_rx);
391 	}
392 
393 	/* Print Registers */
394 	dev_info(&adapter->pdev->dev, "Register Dump\n");
395 	pr_info(" Register Name   Value\n");
396 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397 	     reginfo->name; reginfo++) {
398 		igb_regdump(hw, reginfo);
399 	}
400 
401 	/* Print TX Ring Summary */
402 	if (!netdev || !netif_running(netdev))
403 		goto exit;
404 
405 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407 	for (n = 0; n < adapter->num_tx_queues; n++) {
408 		struct igb_tx_buffer *buffer_info;
409 		tx_ring = adapter->tx_ring[n];
410 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413 			(u64)dma_unmap_addr(buffer_info, dma),
414 			dma_unmap_len(buffer_info, len),
415 			buffer_info->next_to_watch,
416 			(u64)buffer_info->time_stamp);
417 	}
418 
419 	/* Print TX Rings */
420 	if (!netif_msg_tx_done(adapter))
421 		goto rx_ring_summary;
422 
423 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424 
425 	/* Transmit Descriptor Formats
426 	 *
427 	 * Advanced Transmit Descriptor
428 	 *   +--------------------------------------------------------------+
429 	 * 0 |         Buffer Address [63:0]                                |
430 	 *   +--------------------------------------------------------------+
431 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432 	 *   +--------------------------------------------------------------+
433 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
434 	 */
435 
436 	for (n = 0; n < adapter->num_tx_queues; n++) {
437 		tx_ring = adapter->tx_ring[n];
438 		pr_info("------------------------------------\n");
439 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440 		pr_info("------------------------------------\n");
441 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442 			"[bi->dma       ] leng  ntw timestamp        "
443 			"bi->skb\n");
444 
445 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446 			const char *next_desc;
447 			struct igb_tx_buffer *buffer_info;
448 			tx_desc = IGB_TX_DESC(tx_ring, i);
449 			buffer_info = &tx_ring->tx_buffer_info[i];
450 			u0 = (struct my_u0 *)tx_desc;
451 			if (i == tx_ring->next_to_use &&
452 			    i == tx_ring->next_to_clean)
453 				next_desc = " NTC/U";
454 			else if (i == tx_ring->next_to_use)
455 				next_desc = " NTU";
456 			else if (i == tx_ring->next_to_clean)
457 				next_desc = " NTC";
458 			else
459 				next_desc = "";
460 
461 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
462 				" %04X  %p %016llX %p%s\n", i,
463 				le64_to_cpu(u0->a),
464 				le64_to_cpu(u0->b),
465 				(u64)dma_unmap_addr(buffer_info, dma),
466 				dma_unmap_len(buffer_info, len),
467 				buffer_info->next_to_watch,
468 				(u64)buffer_info->time_stamp,
469 				buffer_info->skb, next_desc);
470 
471 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472 				print_hex_dump(KERN_INFO, "",
473 					DUMP_PREFIX_ADDRESS,
474 					16, 1, buffer_info->skb->data,
475 					dma_unmap_len(buffer_info, len),
476 					true);
477 		}
478 	}
479 
480 	/* Print RX Rings Summary */
481 rx_ring_summary:
482 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483 	pr_info("Queue [NTU] [NTC]\n");
484 	for (n = 0; n < adapter->num_rx_queues; n++) {
485 		rx_ring = adapter->rx_ring[n];
486 		pr_info(" %5d %5X %5X\n",
487 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488 	}
489 
490 	/* Print RX Rings */
491 	if (!netif_msg_rx_status(adapter))
492 		goto exit;
493 
494 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495 
496 	/* Advanced Receive Descriptor (Read) Format
497 	 *    63                                           1        0
498 	 *    +-----------------------------------------------------+
499 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500 	 *    +----------------------------------------------+------+
501 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
502 	 *    +-----------------------------------------------------+
503 	 *
504 	 *
505 	 * Advanced Receive Descriptor (Write-Back) Format
506 	 *
507 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
508 	 *   +------------------------------------------------------+
509 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510 	 *   | Checksum   Ident  |   |           |    | Type | Type |
511 	 *   +------------------------------------------------------+
512 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513 	 *   +------------------------------------------------------+
514 	 *   63       48 47    32 31            20 19               0
515 	 */
516 
517 	for (n = 0; n < adapter->num_rx_queues; n++) {
518 		rx_ring = adapter->rx_ring[n];
519 		pr_info("------------------------------------\n");
520 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521 		pr_info("------------------------------------\n");
522 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526 
527 		for (i = 0; i < rx_ring->count; i++) {
528 			const char *next_desc;
529 			struct igb_rx_buffer *buffer_info;
530 			buffer_info = &rx_ring->rx_buffer_info[i];
531 			rx_desc = IGB_RX_DESC(rx_ring, i);
532 			u0 = (struct my_u0 *)rx_desc;
533 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534 
535 			if (i == rx_ring->next_to_use)
536 				next_desc = " NTU";
537 			else if (i == rx_ring->next_to_clean)
538 				next_desc = " NTC";
539 			else
540 				next_desc = "";
541 
542 			if (staterr & E1000_RXD_STAT_DD) {
543 				/* Descriptor Done */
544 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545 					"RWB", i,
546 					le64_to_cpu(u0->a),
547 					le64_to_cpu(u0->b),
548 					next_desc);
549 			} else {
550 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551 					"R  ", i,
552 					le64_to_cpu(u0->a),
553 					le64_to_cpu(u0->b),
554 					(u64)buffer_info->dma,
555 					next_desc);
556 
557 				if (netif_msg_pktdata(adapter) &&
558 				    buffer_info->dma && buffer_info->page) {
559 					print_hex_dump(KERN_INFO, "",
560 					  DUMP_PREFIX_ADDRESS,
561 					  16, 1,
562 					  page_address(buffer_info->page) +
563 						      buffer_info->page_offset,
564 					  IGB_RX_BUFSZ, true);
565 				}
566 			}
567 		}
568 	}
569 
570 exit:
571 	return;
572 }
573 
574 /**
575  *  igb_get_i2c_data - Reads the I2C SDA data bit
576  *  @hw: pointer to hardware structure
577  *  @i2cctl: Current value of I2CCTL register
578  *
579  *  Returns the I2C data bit value
580  **/
581 static int igb_get_i2c_data(void *data)
582 {
583 	struct igb_adapter *adapter = (struct igb_adapter *)data;
584 	struct e1000_hw *hw = &adapter->hw;
585 	s32 i2cctl = rd32(E1000_I2CPARAMS);
586 
587 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588 }
589 
590 /**
591  *  igb_set_i2c_data - Sets the I2C data bit
592  *  @data: pointer to hardware structure
593  *  @state: I2C data value (0 or 1) to set
594  *
595  *  Sets the I2C data bit
596  **/
597 static void igb_set_i2c_data(void *data, int state)
598 {
599 	struct igb_adapter *adapter = (struct igb_adapter *)data;
600 	struct e1000_hw *hw = &adapter->hw;
601 	s32 i2cctl = rd32(E1000_I2CPARAMS);
602 
603 	if (state)
604 		i2cctl |= E1000_I2C_DATA_OUT;
605 	else
606 		i2cctl &= ~E1000_I2C_DATA_OUT;
607 
608 	i2cctl &= ~E1000_I2C_DATA_OE_N;
609 	i2cctl |= E1000_I2C_CLK_OE_N;
610 	wr32(E1000_I2CPARAMS, i2cctl);
611 	wrfl();
612 
613 }
614 
615 /**
616  *  igb_set_i2c_clk - Sets the I2C SCL clock
617  *  @data: pointer to hardware structure
618  *  @state: state to set clock
619  *
620  *  Sets the I2C clock line to state
621  **/
622 static void igb_set_i2c_clk(void *data, int state)
623 {
624 	struct igb_adapter *adapter = (struct igb_adapter *)data;
625 	struct e1000_hw *hw = &adapter->hw;
626 	s32 i2cctl = rd32(E1000_I2CPARAMS);
627 
628 	if (state) {
629 		i2cctl |= E1000_I2C_CLK_OUT;
630 		i2cctl &= ~E1000_I2C_CLK_OE_N;
631 	} else {
632 		i2cctl &= ~E1000_I2C_CLK_OUT;
633 		i2cctl &= ~E1000_I2C_CLK_OE_N;
634 	}
635 	wr32(E1000_I2CPARAMS, i2cctl);
636 	wrfl();
637 }
638 
639 /**
640  *  igb_get_i2c_clk - Gets the I2C SCL clock state
641  *  @data: pointer to hardware structure
642  *
643  *  Gets the I2C clock state
644  **/
645 static int igb_get_i2c_clk(void *data)
646 {
647 	struct igb_adapter *adapter = (struct igb_adapter *)data;
648 	struct e1000_hw *hw = &adapter->hw;
649 	s32 i2cctl = rd32(E1000_I2CPARAMS);
650 
651 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652 }
653 
654 static const struct i2c_algo_bit_data igb_i2c_algo = {
655 	.setsda		= igb_set_i2c_data,
656 	.setscl		= igb_set_i2c_clk,
657 	.getsda		= igb_get_i2c_data,
658 	.getscl		= igb_get_i2c_clk,
659 	.udelay		= 5,
660 	.timeout	= 20,
661 };
662 
663 /**
664  *  igb_get_hw_dev - return device
665  *  @hw: pointer to hardware structure
666  *
667  *  used by hardware layer to print debugging information
668  **/
669 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 {
671 	struct igb_adapter *adapter = hw->back;
672 	return adapter->netdev;
673 }
674 
675 /**
676  *  igb_init_module - Driver Registration Routine
677  *
678  *  igb_init_module is the first routine called when the driver is
679  *  loaded. All it does is register with the PCI subsystem.
680  **/
681 static int __init igb_init_module(void)
682 {
683 	int ret;
684 	pr_info("%s - version %s\n",
685 	       igb_driver_string, igb_driver_version);
686 
687 	pr_info("%s\n", igb_copyright);
688 
689 #ifdef CONFIG_IGB_DCA
690 	dca_register_notify(&dca_notifier);
691 #endif
692 	ret = pci_register_driver(&igb_driver);
693 	return ret;
694 }
695 
696 module_init(igb_init_module);
697 
698 /**
699  *  igb_exit_module - Driver Exit Cleanup Routine
700  *
701  *  igb_exit_module is called just before the driver is removed
702  *  from memory.
703  **/
704 static void __exit igb_exit_module(void)
705 {
706 #ifdef CONFIG_IGB_DCA
707 	dca_unregister_notify(&dca_notifier);
708 #endif
709 	pci_unregister_driver(&igb_driver);
710 }
711 
712 module_exit(igb_exit_module);
713 
714 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715 /**
716  *  igb_cache_ring_register - Descriptor ring to register mapping
717  *  @adapter: board private structure to initialize
718  *
719  *  Once we know the feature-set enabled for the device, we'll cache
720  *  the register offset the descriptor ring is assigned to.
721  **/
722 static void igb_cache_ring_register(struct igb_adapter *adapter)
723 {
724 	int i = 0, j = 0;
725 	u32 rbase_offset = adapter->vfs_allocated_count;
726 
727 	switch (adapter->hw.mac.type) {
728 	case e1000_82576:
729 		/* The queues are allocated for virtualization such that VF 0
730 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731 		 * In order to avoid collision we start at the first free queue
732 		 * and continue consuming queues in the same sequence
733 		 */
734 		if (adapter->vfs_allocated_count) {
735 			for (; i < adapter->rss_queues; i++)
736 				adapter->rx_ring[i]->reg_idx = rbase_offset +
737 							       Q_IDX_82576(i);
738 		}
739 	case e1000_82575:
740 	case e1000_82580:
741 	case e1000_i350:
742 	case e1000_i354:
743 	case e1000_i210:
744 	case e1000_i211:
745 	default:
746 		for (; i < adapter->num_rx_queues; i++)
747 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748 		for (; j < adapter->num_tx_queues; j++)
749 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750 		break;
751 	}
752 }
753 
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 			   int index, int offset)
768 {
769 	u32 ivar = array_rd32(E1000_IVAR0, index);
770 
771 	/* clear any bits that are currently set */
772 	ivar &= ~((u32)0xFF << offset);
773 
774 	/* write vector and valid bit */
775 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776 
777 	array_wr32(E1000_IVAR0, index, ivar);
778 }
779 
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 	struct igb_adapter *adapter = q_vector->adapter;
784 	struct e1000_hw *hw = &adapter->hw;
785 	int rx_queue = IGB_N0_QUEUE;
786 	int tx_queue = IGB_N0_QUEUE;
787 	u32 msixbm = 0;
788 
789 	if (q_vector->rx.ring)
790 		rx_queue = q_vector->rx.ring->reg_idx;
791 	if (q_vector->tx.ring)
792 		tx_queue = q_vector->tx.ring->reg_idx;
793 
794 	switch (hw->mac.type) {
795 	case e1000_82575:
796 		/* The 82575 assigns vectors using a bitmask, which matches the
797 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798 		 * or more queues to a vector, we write the appropriate bits
799 		 * into the MSIXBM register for that vector.
800 		 */
801 		if (rx_queue > IGB_N0_QUEUE)
802 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 		if (tx_queue > IGB_N0_QUEUE)
804 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 		if (!adapter->msix_entries && msix_vector == 0)
806 			msixbm |= E1000_EIMS_OTHER;
807 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 		q_vector->eims_value = msixbm;
809 		break;
810 	case e1000_82576:
811 		/* 82576 uses a table that essentially consists of 2 columns
812 		 * with 8 rows.  The ordering is column-major so we use the
813 		 * lower 3 bits as the row index, and the 4th bit as the
814 		 * column offset.
815 		 */
816 		if (rx_queue > IGB_N0_QUEUE)
817 			igb_write_ivar(hw, msix_vector,
818 				       rx_queue & 0x7,
819 				       (rx_queue & 0x8) << 1);
820 		if (tx_queue > IGB_N0_QUEUE)
821 			igb_write_ivar(hw, msix_vector,
822 				       tx_queue & 0x7,
823 				       ((tx_queue & 0x8) << 1) + 8);
824 		q_vector->eims_value = 1 << msix_vector;
825 		break;
826 	case e1000_82580:
827 	case e1000_i350:
828 	case e1000_i354:
829 	case e1000_i210:
830 	case e1000_i211:
831 		/* On 82580 and newer adapters the scheme is similar to 82576
832 		 * however instead of ordering column-major we have things
833 		 * ordered row-major.  So we traverse the table by using
834 		 * bit 0 as the column offset, and the remaining bits as the
835 		 * row index.
836 		 */
837 		if (rx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       rx_queue >> 1,
840 				       (rx_queue & 0x1) << 4);
841 		if (tx_queue > IGB_N0_QUEUE)
842 			igb_write_ivar(hw, msix_vector,
843 				       tx_queue >> 1,
844 				       ((tx_queue & 0x1) << 4) + 8);
845 		q_vector->eims_value = 1 << msix_vector;
846 		break;
847 	default:
848 		BUG();
849 		break;
850 	}
851 
852 	/* add q_vector eims value to global eims_enable_mask */
853 	adapter->eims_enable_mask |= q_vector->eims_value;
854 
855 	/* configure q_vector to set itr on first interrupt */
856 	q_vector->set_itr = 1;
857 }
858 
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 	u32 tmp;
869 	int i, vector = 0;
870 	struct e1000_hw *hw = &adapter->hw;
871 
872 	adapter->eims_enable_mask = 0;
873 
874 	/* set vector for other causes, i.e. link changes */
875 	switch (hw->mac.type) {
876 	case e1000_82575:
877 		tmp = rd32(E1000_CTRL_EXT);
878 		/* enable MSI-X PBA support*/
879 		tmp |= E1000_CTRL_EXT_PBA_CLR;
880 
881 		/* Auto-Mask interrupts upon ICR read. */
882 		tmp |= E1000_CTRL_EXT_EIAME;
883 		tmp |= E1000_CTRL_EXT_IRCA;
884 
885 		wr32(E1000_CTRL_EXT, tmp);
886 
887 		/* enable msix_other interrupt */
888 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 		adapter->eims_other = E1000_EIMS_OTHER;
890 
891 		break;
892 
893 	case e1000_82576:
894 	case e1000_82580:
895 	case e1000_i350:
896 	case e1000_i354:
897 	case e1000_i210:
898 	case e1000_i211:
899 		/* Turn on MSI-X capability first, or our settings
900 		 * won't stick.  And it will take days to debug.
901 		 */
902 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 		     E1000_GPIE_NSICR);
905 
906 		/* enable msix_other interrupt */
907 		adapter->eims_other = 1 << vector;
908 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909 
910 		wr32(E1000_IVAR_MISC, tmp);
911 		break;
912 	default:
913 		/* do nothing, since nothing else supports MSI-X */
914 		break;
915 	} /* switch (hw->mac.type) */
916 
917 	adapter->eims_enable_mask |= adapter->eims_other;
918 
919 	for (i = 0; i < adapter->num_q_vectors; i++)
920 		igb_assign_vector(adapter->q_vector[i], vector++);
921 
922 	wrfl();
923 }
924 
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 	struct net_device *netdev = adapter->netdev;
935 	struct e1000_hw *hw = &adapter->hw;
936 	int i, err = 0, vector = 0, free_vector = 0;
937 
938 	err = request_irq(adapter->msix_entries[vector].vector,
939 			  igb_msix_other, 0, netdev->name, adapter);
940 	if (err)
941 		goto err_out;
942 
943 	for (i = 0; i < adapter->num_q_vectors; i++) {
944 		struct igb_q_vector *q_vector = adapter->q_vector[i];
945 
946 		vector++;
947 
948 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
949 
950 		if (q_vector->rx.ring && q_vector->tx.ring)
951 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952 				q_vector->rx.ring->queue_index);
953 		else if (q_vector->tx.ring)
954 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955 				q_vector->tx.ring->queue_index);
956 		else if (q_vector->rx.ring)
957 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958 				q_vector->rx.ring->queue_index);
959 		else
960 			sprintf(q_vector->name, "%s-unused", netdev->name);
961 
962 		err = request_irq(adapter->msix_entries[vector].vector,
963 				  igb_msix_ring, 0, q_vector->name,
964 				  q_vector);
965 		if (err)
966 			goto err_free;
967 	}
968 
969 	igb_configure_msix(adapter);
970 	return 0;
971 
972 err_free:
973 	/* free already assigned IRQs */
974 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
975 
976 	vector--;
977 	for (i = 0; i < vector; i++) {
978 		free_irq(adapter->msix_entries[free_vector++].vector,
979 			 adapter->q_vector[i]);
980 	}
981 err_out:
982 	return err;
983 }
984 
985 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
986 {
987 	if (adapter->msix_entries) {
988 		pci_disable_msix(adapter->pdev);
989 		kfree(adapter->msix_entries);
990 		adapter->msix_entries = NULL;
991 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
992 		pci_disable_msi(adapter->pdev);
993 	}
994 }
995 
996 /**
997  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
998  *  @adapter: board private structure to initialize
999  *  @v_idx: Index of vector to be freed
1000  *
1001  *  This function frees the memory allocated to the q_vector.  In addition if
1002  *  NAPI is enabled it will delete any references to the NAPI struct prior
1003  *  to freeing the q_vector.
1004  **/
1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006 {
1007 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008 
1009 	if (q_vector->tx.ring)
1010 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011 
1012 	if (q_vector->rx.ring)
1013 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1014 
1015 	adapter->q_vector[v_idx] = NULL;
1016 	netif_napi_del(&q_vector->napi);
1017 
1018 	/* igb_get_stats64() might access the rings on this vector,
1019 	 * we must wait a grace period before freeing it.
1020 	 */
1021 	kfree_rcu(q_vector, rcu);
1022 }
1023 
1024 /**
1025  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1026  *  @adapter: board private structure to initialize
1027  *
1028  *  This function frees the memory allocated to the q_vectors.  In addition if
1029  *  NAPI is enabled it will delete any references to the NAPI struct prior
1030  *  to freeing the q_vector.
1031  **/
1032 static void igb_free_q_vectors(struct igb_adapter *adapter)
1033 {
1034 	int v_idx = adapter->num_q_vectors;
1035 
1036 	adapter->num_tx_queues = 0;
1037 	adapter->num_rx_queues = 0;
1038 	adapter->num_q_vectors = 0;
1039 
1040 	while (v_idx--)
1041 		igb_free_q_vector(adapter, v_idx);
1042 }
1043 
1044 /**
1045  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1046  *  @adapter: board private structure to initialize
1047  *
1048  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1049  *  MSI-X interrupts allocated.
1050  */
1051 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1052 {
1053 	igb_free_q_vectors(adapter);
1054 	igb_reset_interrupt_capability(adapter);
1055 }
1056 
1057 /**
1058  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1059  *  @adapter: board private structure to initialize
1060  *  @msix: boolean value of MSIX capability
1061  *
1062  *  Attempt to configure interrupts using the best available
1063  *  capabilities of the hardware and kernel.
1064  **/
1065 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1066 {
1067 	int err;
1068 	int numvecs, i;
1069 
1070 	if (!msix)
1071 		goto msi_only;
1072 
1073 	/* Number of supported queues. */
1074 	adapter->num_rx_queues = adapter->rss_queues;
1075 	if (adapter->vfs_allocated_count)
1076 		adapter->num_tx_queues = 1;
1077 	else
1078 		adapter->num_tx_queues = adapter->rss_queues;
1079 
1080 	/* start with one vector for every Rx queue */
1081 	numvecs = adapter->num_rx_queues;
1082 
1083 	/* if Tx handler is separate add 1 for every Tx queue */
1084 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1085 		numvecs += adapter->num_tx_queues;
1086 
1087 	/* store the number of vectors reserved for queues */
1088 	adapter->num_q_vectors = numvecs;
1089 
1090 	/* add 1 vector for link status interrupts */
1091 	numvecs++;
1092 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1093 					GFP_KERNEL);
1094 
1095 	if (!adapter->msix_entries)
1096 		goto msi_only;
1097 
1098 	for (i = 0; i < numvecs; i++)
1099 		adapter->msix_entries[i].entry = i;
1100 
1101 	err = pci_enable_msix(adapter->pdev,
1102 			      adapter->msix_entries,
1103 			      numvecs);
1104 	if (err == 0)
1105 		return;
1106 
1107 	igb_reset_interrupt_capability(adapter);
1108 
1109 	/* If we can't do MSI-X, try MSI */
1110 msi_only:
1111 #ifdef CONFIG_PCI_IOV
1112 	/* disable SR-IOV for non MSI-X configurations */
1113 	if (adapter->vf_data) {
1114 		struct e1000_hw *hw = &adapter->hw;
1115 		/* disable iov and allow time for transactions to clear */
1116 		pci_disable_sriov(adapter->pdev);
1117 		msleep(500);
1118 
1119 		kfree(adapter->vf_data);
1120 		adapter->vf_data = NULL;
1121 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122 		wrfl();
1123 		msleep(100);
1124 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1125 	}
1126 #endif
1127 	adapter->vfs_allocated_count = 0;
1128 	adapter->rss_queues = 1;
1129 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130 	adapter->num_rx_queues = 1;
1131 	adapter->num_tx_queues = 1;
1132 	adapter->num_q_vectors = 1;
1133 	if (!pci_enable_msi(adapter->pdev))
1134 		adapter->flags |= IGB_FLAG_HAS_MSI;
1135 }
1136 
1137 static void igb_add_ring(struct igb_ring *ring,
1138 			 struct igb_ring_container *head)
1139 {
1140 	head->ring = ring;
1141 	head->count++;
1142 }
1143 
1144 /**
1145  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1146  *  @adapter: board private structure to initialize
1147  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1148  *  @v_idx: index of vector in adapter struct
1149  *  @txr_count: total number of Tx rings to allocate
1150  *  @txr_idx: index of first Tx ring to allocate
1151  *  @rxr_count: total number of Rx rings to allocate
1152  *  @rxr_idx: index of first Rx ring to allocate
1153  *
1154  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1155  **/
1156 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1157 			      int v_count, int v_idx,
1158 			      int txr_count, int txr_idx,
1159 			      int rxr_count, int rxr_idx)
1160 {
1161 	struct igb_q_vector *q_vector;
1162 	struct igb_ring *ring;
1163 	int ring_count, size;
1164 
1165 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1166 	if (txr_count > 1 || rxr_count > 1)
1167 		return -ENOMEM;
1168 
1169 	ring_count = txr_count + rxr_count;
1170 	size = sizeof(struct igb_q_vector) +
1171 	       (sizeof(struct igb_ring) * ring_count);
1172 
1173 	/* allocate q_vector and rings */
1174 	q_vector = kzalloc(size, GFP_KERNEL);
1175 	if (!q_vector)
1176 		return -ENOMEM;
1177 
1178 	/* initialize NAPI */
1179 	netif_napi_add(adapter->netdev, &q_vector->napi,
1180 		       igb_poll, 64);
1181 
1182 	/* tie q_vector and adapter together */
1183 	adapter->q_vector[v_idx] = q_vector;
1184 	q_vector->adapter = adapter;
1185 
1186 	/* initialize work limits */
1187 	q_vector->tx.work_limit = adapter->tx_work_limit;
1188 
1189 	/* initialize ITR configuration */
1190 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1191 	q_vector->itr_val = IGB_START_ITR;
1192 
1193 	/* initialize pointer to rings */
1194 	ring = q_vector->ring;
1195 
1196 	/* intialize ITR */
1197 	if (rxr_count) {
1198 		/* rx or rx/tx vector */
1199 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1200 			q_vector->itr_val = adapter->rx_itr_setting;
1201 	} else {
1202 		/* tx only vector */
1203 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1204 			q_vector->itr_val = adapter->tx_itr_setting;
1205 	}
1206 
1207 	if (txr_count) {
1208 		/* assign generic ring traits */
1209 		ring->dev = &adapter->pdev->dev;
1210 		ring->netdev = adapter->netdev;
1211 
1212 		/* configure backlink on ring */
1213 		ring->q_vector = q_vector;
1214 
1215 		/* update q_vector Tx values */
1216 		igb_add_ring(ring, &q_vector->tx);
1217 
1218 		/* For 82575, context index must be unique per ring. */
1219 		if (adapter->hw.mac.type == e1000_82575)
1220 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1221 
1222 		/* apply Tx specific ring traits */
1223 		ring->count = adapter->tx_ring_count;
1224 		ring->queue_index = txr_idx;
1225 
1226 		/* assign ring to adapter */
1227 		adapter->tx_ring[txr_idx] = ring;
1228 
1229 		/* push pointer to next ring */
1230 		ring++;
1231 	}
1232 
1233 	if (rxr_count) {
1234 		/* assign generic ring traits */
1235 		ring->dev = &adapter->pdev->dev;
1236 		ring->netdev = adapter->netdev;
1237 
1238 		/* configure backlink on ring */
1239 		ring->q_vector = q_vector;
1240 
1241 		/* update q_vector Rx values */
1242 		igb_add_ring(ring, &q_vector->rx);
1243 
1244 		/* set flag indicating ring supports SCTP checksum offload */
1245 		if (adapter->hw.mac.type >= e1000_82576)
1246 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1247 
1248 		/*
1249 		 * On i350, i354, i210, and i211, loopback VLAN packets
1250 		 * have the tag byte-swapped.
1251 		 */
1252 		if (adapter->hw.mac.type >= e1000_i350)
1253 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1254 
1255 		/* apply Rx specific ring traits */
1256 		ring->count = adapter->rx_ring_count;
1257 		ring->queue_index = rxr_idx;
1258 
1259 		/* assign ring to adapter */
1260 		adapter->rx_ring[rxr_idx] = ring;
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 
1267 /**
1268  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1269  *  @adapter: board private structure to initialize
1270  *
1271  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1272  *  return -ENOMEM.
1273  **/
1274 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1275 {
1276 	int q_vectors = adapter->num_q_vectors;
1277 	int rxr_remaining = adapter->num_rx_queues;
1278 	int txr_remaining = adapter->num_tx_queues;
1279 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1280 	int err;
1281 
1282 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1283 		for (; rxr_remaining; v_idx++) {
1284 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1285 						 0, 0, 1, rxr_idx);
1286 
1287 			if (err)
1288 				goto err_out;
1289 
1290 			/* update counts and index */
1291 			rxr_remaining--;
1292 			rxr_idx++;
1293 		}
1294 	}
1295 
1296 	for (; v_idx < q_vectors; v_idx++) {
1297 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1298 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1299 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1300 					 tqpv, txr_idx, rqpv, rxr_idx);
1301 
1302 		if (err)
1303 			goto err_out;
1304 
1305 		/* update counts and index */
1306 		rxr_remaining -= rqpv;
1307 		txr_remaining -= tqpv;
1308 		rxr_idx++;
1309 		txr_idx++;
1310 	}
1311 
1312 	return 0;
1313 
1314 err_out:
1315 	adapter->num_tx_queues = 0;
1316 	adapter->num_rx_queues = 0;
1317 	adapter->num_q_vectors = 0;
1318 
1319 	while (v_idx--)
1320 		igb_free_q_vector(adapter, v_idx);
1321 
1322 	return -ENOMEM;
1323 }
1324 
1325 /**
1326  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1327  *  @adapter: board private structure to initialize
1328  *  @msix: boolean value of MSIX capability
1329  *
1330  *  This function initializes the interrupts and allocates all of the queues.
1331  **/
1332 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1333 {
1334 	struct pci_dev *pdev = adapter->pdev;
1335 	int err;
1336 
1337 	igb_set_interrupt_capability(adapter, msix);
1338 
1339 	err = igb_alloc_q_vectors(adapter);
1340 	if (err) {
1341 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1342 		goto err_alloc_q_vectors;
1343 	}
1344 
1345 	igb_cache_ring_register(adapter);
1346 
1347 	return 0;
1348 
1349 err_alloc_q_vectors:
1350 	igb_reset_interrupt_capability(adapter);
1351 	return err;
1352 }
1353 
1354 /**
1355  *  igb_request_irq - initialize interrupts
1356  *  @adapter: board private structure to initialize
1357  *
1358  *  Attempts to configure interrupts using the best available
1359  *  capabilities of the hardware and kernel.
1360  **/
1361 static int igb_request_irq(struct igb_adapter *adapter)
1362 {
1363 	struct net_device *netdev = adapter->netdev;
1364 	struct pci_dev *pdev = adapter->pdev;
1365 	int err = 0;
1366 
1367 	if (adapter->msix_entries) {
1368 		err = igb_request_msix(adapter);
1369 		if (!err)
1370 			goto request_done;
1371 		/* fall back to MSI */
1372 		igb_free_all_tx_resources(adapter);
1373 		igb_free_all_rx_resources(adapter);
1374 
1375 		igb_clear_interrupt_scheme(adapter);
1376 		err = igb_init_interrupt_scheme(adapter, false);
1377 		if (err)
1378 			goto request_done;
1379 
1380 		igb_setup_all_tx_resources(adapter);
1381 		igb_setup_all_rx_resources(adapter);
1382 		igb_configure(adapter);
1383 	}
1384 
1385 	igb_assign_vector(adapter->q_vector[0], 0);
1386 
1387 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1388 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1389 				  netdev->name, adapter);
1390 		if (!err)
1391 			goto request_done;
1392 
1393 		/* fall back to legacy interrupts */
1394 		igb_reset_interrupt_capability(adapter);
1395 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1396 	}
1397 
1398 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1399 			  netdev->name, adapter);
1400 
1401 	if (err)
1402 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1403 			err);
1404 
1405 request_done:
1406 	return err;
1407 }
1408 
1409 static void igb_free_irq(struct igb_adapter *adapter)
1410 {
1411 	if (adapter->msix_entries) {
1412 		int vector = 0, i;
1413 
1414 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1415 
1416 		for (i = 0; i < adapter->num_q_vectors; i++)
1417 			free_irq(adapter->msix_entries[vector++].vector,
1418 				 adapter->q_vector[i]);
1419 	} else {
1420 		free_irq(adapter->pdev->irq, adapter);
1421 	}
1422 }
1423 
1424 /**
1425  *  igb_irq_disable - Mask off interrupt generation on the NIC
1426  *  @adapter: board private structure
1427  **/
1428 static void igb_irq_disable(struct igb_adapter *adapter)
1429 {
1430 	struct e1000_hw *hw = &adapter->hw;
1431 
1432 	/* we need to be careful when disabling interrupts.  The VFs are also
1433 	 * mapped into these registers and so clearing the bits can cause
1434 	 * issues on the VF drivers so we only need to clear what we set
1435 	 */
1436 	if (adapter->msix_entries) {
1437 		u32 regval = rd32(E1000_EIAM);
1438 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1439 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1440 		regval = rd32(E1000_EIAC);
1441 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1442 	}
1443 
1444 	wr32(E1000_IAM, 0);
1445 	wr32(E1000_IMC, ~0);
1446 	wrfl();
1447 	if (adapter->msix_entries) {
1448 		int i;
1449 		for (i = 0; i < adapter->num_q_vectors; i++)
1450 			synchronize_irq(adapter->msix_entries[i].vector);
1451 	} else {
1452 		synchronize_irq(adapter->pdev->irq);
1453 	}
1454 }
1455 
1456 /**
1457  *  igb_irq_enable - Enable default interrupt generation settings
1458  *  @adapter: board private structure
1459  **/
1460 static void igb_irq_enable(struct igb_adapter *adapter)
1461 {
1462 	struct e1000_hw *hw = &adapter->hw;
1463 
1464 	if (adapter->msix_entries) {
1465 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1466 		u32 regval = rd32(E1000_EIAC);
1467 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1468 		regval = rd32(E1000_EIAM);
1469 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1470 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1471 		if (adapter->vfs_allocated_count) {
1472 			wr32(E1000_MBVFIMR, 0xFF);
1473 			ims |= E1000_IMS_VMMB;
1474 		}
1475 		wr32(E1000_IMS, ims);
1476 	} else {
1477 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1478 				E1000_IMS_DRSTA);
1479 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1480 				E1000_IMS_DRSTA);
1481 	}
1482 }
1483 
1484 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1485 {
1486 	struct e1000_hw *hw = &adapter->hw;
1487 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1488 	u16 old_vid = adapter->mng_vlan_id;
1489 
1490 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1491 		/* add VID to filter table */
1492 		igb_vfta_set(hw, vid, true);
1493 		adapter->mng_vlan_id = vid;
1494 	} else {
1495 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1496 	}
1497 
1498 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1499 	    (vid != old_vid) &&
1500 	    !test_bit(old_vid, adapter->active_vlans)) {
1501 		/* remove VID from filter table */
1502 		igb_vfta_set(hw, old_vid, false);
1503 	}
1504 }
1505 
1506 /**
1507  *  igb_release_hw_control - release control of the h/w to f/w
1508  *  @adapter: address of board private structure
1509  *
1510  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1511  *  For ASF and Pass Through versions of f/w this means that the
1512  *  driver is no longer loaded.
1513  **/
1514 static void igb_release_hw_control(struct igb_adapter *adapter)
1515 {
1516 	struct e1000_hw *hw = &adapter->hw;
1517 	u32 ctrl_ext;
1518 
1519 	/* Let firmware take over control of h/w */
1520 	ctrl_ext = rd32(E1000_CTRL_EXT);
1521 	wr32(E1000_CTRL_EXT,
1522 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1523 }
1524 
1525 /**
1526  *  igb_get_hw_control - get control of the h/w from f/w
1527  *  @adapter: address of board private structure
1528  *
1529  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1530  *  For ASF and Pass Through versions of f/w this means that
1531  *  the driver is loaded.
1532  **/
1533 static void igb_get_hw_control(struct igb_adapter *adapter)
1534 {
1535 	struct e1000_hw *hw = &adapter->hw;
1536 	u32 ctrl_ext;
1537 
1538 	/* Let firmware know the driver has taken over */
1539 	ctrl_ext = rd32(E1000_CTRL_EXT);
1540 	wr32(E1000_CTRL_EXT,
1541 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1542 }
1543 
1544 /**
1545  *  igb_configure - configure the hardware for RX and TX
1546  *  @adapter: private board structure
1547  **/
1548 static void igb_configure(struct igb_adapter *adapter)
1549 {
1550 	struct net_device *netdev = adapter->netdev;
1551 	int i;
1552 
1553 	igb_get_hw_control(adapter);
1554 	igb_set_rx_mode(netdev);
1555 
1556 	igb_restore_vlan(adapter);
1557 
1558 	igb_setup_tctl(adapter);
1559 	igb_setup_mrqc(adapter);
1560 	igb_setup_rctl(adapter);
1561 
1562 	igb_configure_tx(adapter);
1563 	igb_configure_rx(adapter);
1564 
1565 	igb_rx_fifo_flush_82575(&adapter->hw);
1566 
1567 	/* call igb_desc_unused which always leaves
1568 	 * at least 1 descriptor unused to make sure
1569 	 * next_to_use != next_to_clean
1570 	 */
1571 	for (i = 0; i < adapter->num_rx_queues; i++) {
1572 		struct igb_ring *ring = adapter->rx_ring[i];
1573 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1574 	}
1575 }
1576 
1577 /**
1578  *  igb_power_up_link - Power up the phy/serdes link
1579  *  @adapter: address of board private structure
1580  **/
1581 void igb_power_up_link(struct igb_adapter *adapter)
1582 {
1583 	igb_reset_phy(&adapter->hw);
1584 
1585 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1586 		igb_power_up_phy_copper(&adapter->hw);
1587 	else
1588 		igb_power_up_serdes_link_82575(&adapter->hw);
1589 }
1590 
1591 /**
1592  *  igb_power_down_link - Power down the phy/serdes link
1593  *  @adapter: address of board private structure
1594  */
1595 static void igb_power_down_link(struct igb_adapter *adapter)
1596 {
1597 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1598 		igb_power_down_phy_copper_82575(&adapter->hw);
1599 	else
1600 		igb_shutdown_serdes_link_82575(&adapter->hw);
1601 }
1602 
1603 /**
1604  *  igb_up - Open the interface and prepare it to handle traffic
1605  *  @adapter: board private structure
1606  **/
1607 int igb_up(struct igb_adapter *adapter)
1608 {
1609 	struct e1000_hw *hw = &adapter->hw;
1610 	int i;
1611 
1612 	/* hardware has been reset, we need to reload some things */
1613 	igb_configure(adapter);
1614 
1615 	clear_bit(__IGB_DOWN, &adapter->state);
1616 
1617 	for (i = 0; i < adapter->num_q_vectors; i++)
1618 		napi_enable(&(adapter->q_vector[i]->napi));
1619 
1620 	if (adapter->msix_entries)
1621 		igb_configure_msix(adapter);
1622 	else
1623 		igb_assign_vector(adapter->q_vector[0], 0);
1624 
1625 	/* Clear any pending interrupts. */
1626 	rd32(E1000_ICR);
1627 	igb_irq_enable(adapter);
1628 
1629 	/* notify VFs that reset has been completed */
1630 	if (adapter->vfs_allocated_count) {
1631 		u32 reg_data = rd32(E1000_CTRL_EXT);
1632 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1633 		wr32(E1000_CTRL_EXT, reg_data);
1634 	}
1635 
1636 	netif_tx_start_all_queues(adapter->netdev);
1637 
1638 	/* start the watchdog. */
1639 	hw->mac.get_link_status = 1;
1640 	schedule_work(&adapter->watchdog_task);
1641 
1642 	return 0;
1643 }
1644 
1645 void igb_down(struct igb_adapter *adapter)
1646 {
1647 	struct net_device *netdev = adapter->netdev;
1648 	struct e1000_hw *hw = &adapter->hw;
1649 	u32 tctl, rctl;
1650 	int i;
1651 
1652 	/* signal that we're down so the interrupt handler does not
1653 	 * reschedule our watchdog timer
1654 	 */
1655 	set_bit(__IGB_DOWN, &adapter->state);
1656 
1657 	/* disable receives in the hardware */
1658 	rctl = rd32(E1000_RCTL);
1659 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1660 	/* flush and sleep below */
1661 
1662 	netif_tx_stop_all_queues(netdev);
1663 
1664 	/* disable transmits in the hardware */
1665 	tctl = rd32(E1000_TCTL);
1666 	tctl &= ~E1000_TCTL_EN;
1667 	wr32(E1000_TCTL, tctl);
1668 	/* flush both disables and wait for them to finish */
1669 	wrfl();
1670 	msleep(10);
1671 
1672 	igb_irq_disable(adapter);
1673 
1674 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1675 
1676 	for (i = 0; i < adapter->num_q_vectors; i++) {
1677 		napi_synchronize(&(adapter->q_vector[i]->napi));
1678 		napi_disable(&(adapter->q_vector[i]->napi));
1679 	}
1680 
1681 
1682 	del_timer_sync(&adapter->watchdog_timer);
1683 	del_timer_sync(&adapter->phy_info_timer);
1684 
1685 	netif_carrier_off(netdev);
1686 
1687 	/* record the stats before reset*/
1688 	spin_lock(&adapter->stats64_lock);
1689 	igb_update_stats(adapter, &adapter->stats64);
1690 	spin_unlock(&adapter->stats64_lock);
1691 
1692 	adapter->link_speed = 0;
1693 	adapter->link_duplex = 0;
1694 
1695 	if (!pci_channel_offline(adapter->pdev))
1696 		igb_reset(adapter);
1697 	igb_clean_all_tx_rings(adapter);
1698 	igb_clean_all_rx_rings(adapter);
1699 #ifdef CONFIG_IGB_DCA
1700 
1701 	/* since we reset the hardware DCA settings were cleared */
1702 	igb_setup_dca(adapter);
1703 #endif
1704 }
1705 
1706 void igb_reinit_locked(struct igb_adapter *adapter)
1707 {
1708 	WARN_ON(in_interrupt());
1709 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1710 		msleep(1);
1711 	igb_down(adapter);
1712 	igb_up(adapter);
1713 	clear_bit(__IGB_RESETTING, &adapter->state);
1714 }
1715 
1716 void igb_reset(struct igb_adapter *adapter)
1717 {
1718 	struct pci_dev *pdev = adapter->pdev;
1719 	struct e1000_hw *hw = &adapter->hw;
1720 	struct e1000_mac_info *mac = &hw->mac;
1721 	struct e1000_fc_info *fc = &hw->fc;
1722 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1723 
1724 	/* Repartition Pba for greater than 9k mtu
1725 	 * To take effect CTRL.RST is required.
1726 	 */
1727 	switch (mac->type) {
1728 	case e1000_i350:
1729 	case e1000_i354:
1730 	case e1000_82580:
1731 		pba = rd32(E1000_RXPBS);
1732 		pba = igb_rxpbs_adjust_82580(pba);
1733 		break;
1734 	case e1000_82576:
1735 		pba = rd32(E1000_RXPBS);
1736 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1737 		break;
1738 	case e1000_82575:
1739 	case e1000_i210:
1740 	case e1000_i211:
1741 	default:
1742 		pba = E1000_PBA_34K;
1743 		break;
1744 	}
1745 
1746 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1747 	    (mac->type < e1000_82576)) {
1748 		/* adjust PBA for jumbo frames */
1749 		wr32(E1000_PBA, pba);
1750 
1751 		/* To maintain wire speed transmits, the Tx FIFO should be
1752 		 * large enough to accommodate two full transmit packets,
1753 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1754 		 * the Rx FIFO should be large enough to accommodate at least
1755 		 * one full receive packet and is similarly rounded up and
1756 		 * expressed in KB.
1757 		 */
1758 		pba = rd32(E1000_PBA);
1759 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1760 		tx_space = pba >> 16;
1761 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1762 		pba &= 0xffff;
1763 		/* the Tx fifo also stores 16 bytes of information about the Tx
1764 		 * but don't include ethernet FCS because hardware appends it
1765 		 */
1766 		min_tx_space = (adapter->max_frame_size +
1767 				sizeof(union e1000_adv_tx_desc) -
1768 				ETH_FCS_LEN) * 2;
1769 		min_tx_space = ALIGN(min_tx_space, 1024);
1770 		min_tx_space >>= 10;
1771 		/* software strips receive CRC, so leave room for it */
1772 		min_rx_space = adapter->max_frame_size;
1773 		min_rx_space = ALIGN(min_rx_space, 1024);
1774 		min_rx_space >>= 10;
1775 
1776 		/* If current Tx allocation is less than the min Tx FIFO size,
1777 		 * and the min Tx FIFO size is less than the current Rx FIFO
1778 		 * allocation, take space away from current Rx allocation
1779 		 */
1780 		if (tx_space < min_tx_space &&
1781 		    ((min_tx_space - tx_space) < pba)) {
1782 			pba = pba - (min_tx_space - tx_space);
1783 
1784 			/* if short on Rx space, Rx wins and must trump Tx
1785 			 * adjustment
1786 			 */
1787 			if (pba < min_rx_space)
1788 				pba = min_rx_space;
1789 		}
1790 		wr32(E1000_PBA, pba);
1791 	}
1792 
1793 	/* flow control settings */
1794 	/* The high water mark must be low enough to fit one full frame
1795 	 * (or the size used for early receive) above it in the Rx FIFO.
1796 	 * Set it to the lower of:
1797 	 * - 90% of the Rx FIFO size, or
1798 	 * - the full Rx FIFO size minus one full frame
1799 	 */
1800 	hwm = min(((pba << 10) * 9 / 10),
1801 			((pba << 10) - 2 * adapter->max_frame_size));
1802 
1803 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1804 	fc->low_water = fc->high_water - 16;
1805 	fc->pause_time = 0xFFFF;
1806 	fc->send_xon = 1;
1807 	fc->current_mode = fc->requested_mode;
1808 
1809 	/* disable receive for all VFs and wait one second */
1810 	if (adapter->vfs_allocated_count) {
1811 		int i;
1812 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1813 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1814 
1815 		/* ping all the active vfs to let them know we are going down */
1816 		igb_ping_all_vfs(adapter);
1817 
1818 		/* disable transmits and receives */
1819 		wr32(E1000_VFRE, 0);
1820 		wr32(E1000_VFTE, 0);
1821 	}
1822 
1823 	/* Allow time for pending master requests to run */
1824 	hw->mac.ops.reset_hw(hw);
1825 	wr32(E1000_WUC, 0);
1826 
1827 	if (hw->mac.ops.init_hw(hw))
1828 		dev_err(&pdev->dev, "Hardware Error\n");
1829 
1830 	/* Flow control settings reset on hardware reset, so guarantee flow
1831 	 * control is off when forcing speed.
1832 	 */
1833 	if (!hw->mac.autoneg)
1834 		igb_force_mac_fc(hw);
1835 
1836 	igb_init_dmac(adapter, pba);
1837 #ifdef CONFIG_IGB_HWMON
1838 	/* Re-initialize the thermal sensor on i350 devices. */
1839 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1840 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1841 			/* If present, re-initialize the external thermal sensor
1842 			 * interface.
1843 			 */
1844 			if (adapter->ets)
1845 				mac->ops.init_thermal_sensor_thresh(hw);
1846 		}
1847 	}
1848 #endif
1849 	if (!netif_running(adapter->netdev))
1850 		igb_power_down_link(adapter);
1851 
1852 	igb_update_mng_vlan(adapter);
1853 
1854 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1855 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1856 
1857 	/* Re-enable PTP, where applicable. */
1858 	igb_ptp_reset(adapter);
1859 
1860 	igb_get_phy_info(hw);
1861 }
1862 
1863 static netdev_features_t igb_fix_features(struct net_device *netdev,
1864 	netdev_features_t features)
1865 {
1866 	/* Since there is no support for separate Rx/Tx vlan accel
1867 	 * enable/disable make sure Tx flag is always in same state as Rx.
1868 	 */
1869 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1870 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1871 	else
1872 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1873 
1874 	return features;
1875 }
1876 
1877 static int igb_set_features(struct net_device *netdev,
1878 	netdev_features_t features)
1879 {
1880 	netdev_features_t changed = netdev->features ^ features;
1881 	struct igb_adapter *adapter = netdev_priv(netdev);
1882 
1883 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1884 		igb_vlan_mode(netdev, features);
1885 
1886 	if (!(changed & NETIF_F_RXALL))
1887 		return 0;
1888 
1889 	netdev->features = features;
1890 
1891 	if (netif_running(netdev))
1892 		igb_reinit_locked(adapter);
1893 	else
1894 		igb_reset(adapter);
1895 
1896 	return 0;
1897 }
1898 
1899 static const struct net_device_ops igb_netdev_ops = {
1900 	.ndo_open		= igb_open,
1901 	.ndo_stop		= igb_close,
1902 	.ndo_start_xmit		= igb_xmit_frame,
1903 	.ndo_get_stats64	= igb_get_stats64,
1904 	.ndo_set_rx_mode	= igb_set_rx_mode,
1905 	.ndo_set_mac_address	= igb_set_mac,
1906 	.ndo_change_mtu		= igb_change_mtu,
1907 	.ndo_do_ioctl		= igb_ioctl,
1908 	.ndo_tx_timeout		= igb_tx_timeout,
1909 	.ndo_validate_addr	= eth_validate_addr,
1910 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1911 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1912 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1913 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1914 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1915 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1916 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1917 #ifdef CONFIG_NET_POLL_CONTROLLER
1918 	.ndo_poll_controller	= igb_netpoll,
1919 #endif
1920 	.ndo_fix_features	= igb_fix_features,
1921 	.ndo_set_features	= igb_set_features,
1922 };
1923 
1924 /**
1925  * igb_set_fw_version - Configure version string for ethtool
1926  * @adapter: adapter struct
1927  **/
1928 void igb_set_fw_version(struct igb_adapter *adapter)
1929 {
1930 	struct e1000_hw *hw = &adapter->hw;
1931 	struct e1000_fw_version fw;
1932 
1933 	igb_get_fw_version(hw, &fw);
1934 
1935 	switch (hw->mac.type) {
1936 	case e1000_i210:
1937 	case e1000_i211:
1938 		if (!(igb_get_flash_presence_i210(hw))) {
1939 			snprintf(adapter->fw_version,
1940 				 sizeof(adapter->fw_version),
1941 				 "%2d.%2d-%d",
1942 				 fw.invm_major, fw.invm_minor,
1943 				 fw.invm_img_type);
1944 			break;
1945 		}
1946 		/* fall through */
1947 	default:
1948 		/* if option is rom valid, display its version too */
1949 		if (fw.or_valid) {
1950 			snprintf(adapter->fw_version,
1951 				 sizeof(adapter->fw_version),
1952 				 "%d.%d, 0x%08x, %d.%d.%d",
1953 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1954 				 fw.or_major, fw.or_build, fw.or_patch);
1955 		/* no option rom */
1956 		} else if (fw.etrack_id != 0X0000) {
1957 			snprintf(adapter->fw_version,
1958 			    sizeof(adapter->fw_version),
1959 			    "%d.%d, 0x%08x",
1960 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
1961 		} else {
1962 		snprintf(adapter->fw_version,
1963 		    sizeof(adapter->fw_version),
1964 		    "%d.%d.%d",
1965 		    fw.eep_major, fw.eep_minor, fw.eep_build);
1966 		}
1967 		break;
1968 	}
1969 	return;
1970 }
1971 
1972 /**
1973  *  igb_init_i2c - Init I2C interface
1974  *  @adapter: pointer to adapter structure
1975  **/
1976 static s32 igb_init_i2c(struct igb_adapter *adapter)
1977 {
1978 	s32 status = E1000_SUCCESS;
1979 
1980 	/* I2C interface supported on i350 devices */
1981 	if (adapter->hw.mac.type != e1000_i350)
1982 		return E1000_SUCCESS;
1983 
1984 	/* Initialize the i2c bus which is controlled by the registers.
1985 	 * This bus will use the i2c_algo_bit structue that implements
1986 	 * the protocol through toggling of the 4 bits in the register.
1987 	 */
1988 	adapter->i2c_adap.owner = THIS_MODULE;
1989 	adapter->i2c_algo = igb_i2c_algo;
1990 	adapter->i2c_algo.data = adapter;
1991 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1992 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1993 	strlcpy(adapter->i2c_adap.name, "igb BB",
1994 		sizeof(adapter->i2c_adap.name));
1995 	status = i2c_bit_add_bus(&adapter->i2c_adap);
1996 	return status;
1997 }
1998 
1999 /**
2000  *  igb_probe - Device Initialization Routine
2001  *  @pdev: PCI device information struct
2002  *  @ent: entry in igb_pci_tbl
2003  *
2004  *  Returns 0 on success, negative on failure
2005  *
2006  *  igb_probe initializes an adapter identified by a pci_dev structure.
2007  *  The OS initialization, configuring of the adapter private structure,
2008  *  and a hardware reset occur.
2009  **/
2010 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2011 {
2012 	struct net_device *netdev;
2013 	struct igb_adapter *adapter;
2014 	struct e1000_hw *hw;
2015 	u16 eeprom_data = 0;
2016 	s32 ret_val;
2017 	static int global_quad_port_a; /* global quad port a indication */
2018 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2019 	unsigned long mmio_start, mmio_len;
2020 	int err, pci_using_dac;
2021 	u8 part_str[E1000_PBANUM_LENGTH];
2022 
2023 	/* Catch broken hardware that put the wrong VF device ID in
2024 	 * the PCIe SR-IOV capability.
2025 	 */
2026 	if (pdev->is_virtfn) {
2027 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2028 			pci_name(pdev), pdev->vendor, pdev->device);
2029 		return -EINVAL;
2030 	}
2031 
2032 	err = pci_enable_device_mem(pdev);
2033 	if (err)
2034 		return err;
2035 
2036 	pci_using_dac = 0;
2037 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2038 	if (!err) {
2039 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2040 		if (!err)
2041 			pci_using_dac = 1;
2042 	} else {
2043 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2044 		if (err) {
2045 			err = dma_set_coherent_mask(&pdev->dev,
2046 						    DMA_BIT_MASK(32));
2047 			if (err) {
2048 				dev_err(&pdev->dev,
2049 					"No usable DMA configuration, aborting\n");
2050 				goto err_dma;
2051 			}
2052 		}
2053 	}
2054 
2055 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2056 					   IORESOURCE_MEM),
2057 					   igb_driver_name);
2058 	if (err)
2059 		goto err_pci_reg;
2060 
2061 	pci_enable_pcie_error_reporting(pdev);
2062 
2063 	pci_set_master(pdev);
2064 	pci_save_state(pdev);
2065 
2066 	err = -ENOMEM;
2067 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2068 				   IGB_MAX_TX_QUEUES);
2069 	if (!netdev)
2070 		goto err_alloc_etherdev;
2071 
2072 	SET_NETDEV_DEV(netdev, &pdev->dev);
2073 
2074 	pci_set_drvdata(pdev, netdev);
2075 	adapter = netdev_priv(netdev);
2076 	adapter->netdev = netdev;
2077 	adapter->pdev = pdev;
2078 	hw = &adapter->hw;
2079 	hw->back = adapter;
2080 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2081 
2082 	mmio_start = pci_resource_start(pdev, 0);
2083 	mmio_len = pci_resource_len(pdev, 0);
2084 
2085 	err = -EIO;
2086 	hw->hw_addr = ioremap(mmio_start, mmio_len);
2087 	if (!hw->hw_addr)
2088 		goto err_ioremap;
2089 
2090 	netdev->netdev_ops = &igb_netdev_ops;
2091 	igb_set_ethtool_ops(netdev);
2092 	netdev->watchdog_timeo = 5 * HZ;
2093 
2094 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2095 
2096 	netdev->mem_start = mmio_start;
2097 	netdev->mem_end = mmio_start + mmio_len;
2098 
2099 	/* PCI config space info */
2100 	hw->vendor_id = pdev->vendor;
2101 	hw->device_id = pdev->device;
2102 	hw->revision_id = pdev->revision;
2103 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2104 	hw->subsystem_device_id = pdev->subsystem_device;
2105 
2106 	/* Copy the default MAC, PHY and NVM function pointers */
2107 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2108 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2109 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2110 	/* Initialize skew-specific constants */
2111 	err = ei->get_invariants(hw);
2112 	if (err)
2113 		goto err_sw_init;
2114 
2115 	/* setup the private structure */
2116 	err = igb_sw_init(adapter);
2117 	if (err)
2118 		goto err_sw_init;
2119 
2120 	igb_get_bus_info_pcie(hw);
2121 
2122 	hw->phy.autoneg_wait_to_complete = false;
2123 
2124 	/* Copper options */
2125 	if (hw->phy.media_type == e1000_media_type_copper) {
2126 		hw->phy.mdix = AUTO_ALL_MODES;
2127 		hw->phy.disable_polarity_correction = false;
2128 		hw->phy.ms_type = e1000_ms_hw_default;
2129 	}
2130 
2131 	if (igb_check_reset_block(hw))
2132 		dev_info(&pdev->dev,
2133 			"PHY reset is blocked due to SOL/IDER session.\n");
2134 
2135 	/* features is initialized to 0 in allocation, it might have bits
2136 	 * set by igb_sw_init so we should use an or instead of an
2137 	 * assignment.
2138 	 */
2139 	netdev->features |= NETIF_F_SG |
2140 			    NETIF_F_IP_CSUM |
2141 			    NETIF_F_IPV6_CSUM |
2142 			    NETIF_F_TSO |
2143 			    NETIF_F_TSO6 |
2144 			    NETIF_F_RXHASH |
2145 			    NETIF_F_RXCSUM |
2146 			    NETIF_F_HW_VLAN_CTAG_RX |
2147 			    NETIF_F_HW_VLAN_CTAG_TX;
2148 
2149 	/* copy netdev features into list of user selectable features */
2150 	netdev->hw_features |= netdev->features;
2151 	netdev->hw_features |= NETIF_F_RXALL;
2152 
2153 	/* set this bit last since it cannot be part of hw_features */
2154 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2155 
2156 	netdev->vlan_features |= NETIF_F_TSO |
2157 				 NETIF_F_TSO6 |
2158 				 NETIF_F_IP_CSUM |
2159 				 NETIF_F_IPV6_CSUM |
2160 				 NETIF_F_SG;
2161 
2162 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2163 
2164 	if (pci_using_dac) {
2165 		netdev->features |= NETIF_F_HIGHDMA;
2166 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2167 	}
2168 
2169 	if (hw->mac.type >= e1000_82576) {
2170 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2171 		netdev->features |= NETIF_F_SCTP_CSUM;
2172 	}
2173 
2174 	netdev->priv_flags |= IFF_UNICAST_FLT;
2175 
2176 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2177 
2178 	/* before reading the NVM, reset the controller to put the device in a
2179 	 * known good starting state
2180 	 */
2181 	hw->mac.ops.reset_hw(hw);
2182 
2183 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2184 	 * that doesn't contain a checksum
2185 	 */
2186 	switch (hw->mac.type) {
2187 	case e1000_i210:
2188 	case e1000_i211:
2189 		if (igb_get_flash_presence_i210(hw)) {
2190 			if (hw->nvm.ops.validate(hw) < 0) {
2191 				dev_err(&pdev->dev,
2192 					"The NVM Checksum Is Not Valid\n");
2193 				err = -EIO;
2194 				goto err_eeprom;
2195 			}
2196 		}
2197 		break;
2198 	default:
2199 		if (hw->nvm.ops.validate(hw) < 0) {
2200 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2201 			err = -EIO;
2202 			goto err_eeprom;
2203 		}
2204 		break;
2205 	}
2206 
2207 	/* copy the MAC address out of the NVM */
2208 	if (hw->mac.ops.read_mac_addr(hw))
2209 		dev_err(&pdev->dev, "NVM Read Error\n");
2210 
2211 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2212 
2213 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2214 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2215 		err = -EIO;
2216 		goto err_eeprom;
2217 	}
2218 
2219 	/* get firmware version for ethtool -i */
2220 	igb_set_fw_version(adapter);
2221 
2222 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2223 		    (unsigned long) adapter);
2224 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2225 		    (unsigned long) adapter);
2226 
2227 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2228 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2229 
2230 	/* Initialize link properties that are user-changeable */
2231 	adapter->fc_autoneg = true;
2232 	hw->mac.autoneg = true;
2233 	hw->phy.autoneg_advertised = 0x2f;
2234 
2235 	hw->fc.requested_mode = e1000_fc_default;
2236 	hw->fc.current_mode = e1000_fc_default;
2237 
2238 	igb_validate_mdi_setting(hw);
2239 
2240 	/* By default, support wake on port A */
2241 	if (hw->bus.func == 0)
2242 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2243 
2244 	/* Check the NVM for wake support on non-port A ports */
2245 	if (hw->mac.type >= e1000_82580)
2246 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2247 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2248 				 &eeprom_data);
2249 	else if (hw->bus.func == 1)
2250 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2251 
2252 	if (eeprom_data & IGB_EEPROM_APME)
2253 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2254 
2255 	/* now that we have the eeprom settings, apply the special cases where
2256 	 * the eeprom may be wrong or the board simply won't support wake on
2257 	 * lan on a particular port
2258 	 */
2259 	switch (pdev->device) {
2260 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2261 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2262 		break;
2263 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2264 	case E1000_DEV_ID_82576_FIBER:
2265 	case E1000_DEV_ID_82576_SERDES:
2266 		/* Wake events only supported on port A for dual fiber
2267 		 * regardless of eeprom setting
2268 		 */
2269 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2270 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2271 		break;
2272 	case E1000_DEV_ID_82576_QUAD_COPPER:
2273 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2274 		/* if quad port adapter, disable WoL on all but port A */
2275 		if (global_quad_port_a != 0)
2276 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2277 		else
2278 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2279 		/* Reset for multiple quad port adapters */
2280 		if (++global_quad_port_a == 4)
2281 			global_quad_port_a = 0;
2282 		break;
2283 	default:
2284 		/* If the device can't wake, don't set software support */
2285 		if (!device_can_wakeup(&adapter->pdev->dev))
2286 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2287 	}
2288 
2289 	/* initialize the wol settings based on the eeprom settings */
2290 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2291 		adapter->wol |= E1000_WUFC_MAG;
2292 
2293 	/* Some vendors want WoL disabled by default, but still supported */
2294 	if ((hw->mac.type == e1000_i350) &&
2295 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2296 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2297 		adapter->wol = 0;
2298 	}
2299 
2300 	device_set_wakeup_enable(&adapter->pdev->dev,
2301 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2302 
2303 	/* reset the hardware with the new settings */
2304 	igb_reset(adapter);
2305 
2306 	/* Init the I2C interface */
2307 	err = igb_init_i2c(adapter);
2308 	if (err) {
2309 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2310 		goto err_eeprom;
2311 	}
2312 
2313 	/* let the f/w know that the h/w is now under the control of the
2314 	 * driver. */
2315 	igb_get_hw_control(adapter);
2316 
2317 	strcpy(netdev->name, "eth%d");
2318 	err = register_netdev(netdev);
2319 	if (err)
2320 		goto err_register;
2321 
2322 	/* carrier off reporting is important to ethtool even BEFORE open */
2323 	netif_carrier_off(netdev);
2324 
2325 #ifdef CONFIG_IGB_DCA
2326 	if (dca_add_requester(&pdev->dev) == 0) {
2327 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2328 		dev_info(&pdev->dev, "DCA enabled\n");
2329 		igb_setup_dca(adapter);
2330 	}
2331 
2332 #endif
2333 #ifdef CONFIG_IGB_HWMON
2334 	/* Initialize the thermal sensor on i350 devices. */
2335 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2336 		u16 ets_word;
2337 
2338 		/* Read the NVM to determine if this i350 device supports an
2339 		 * external thermal sensor.
2340 		 */
2341 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2342 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2343 			adapter->ets = true;
2344 		else
2345 			adapter->ets = false;
2346 		if (igb_sysfs_init(adapter))
2347 			dev_err(&pdev->dev,
2348 				"failed to allocate sysfs resources\n");
2349 	} else {
2350 		adapter->ets = false;
2351 	}
2352 #endif
2353 	/* do hw tstamp init after resetting */
2354 	igb_ptp_init(adapter);
2355 
2356 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2357 	/* print bus type/speed/width info, not applicable to i354 */
2358 	if (hw->mac.type != e1000_i354) {
2359 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2360 			 netdev->name,
2361 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2362 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2363 			   "unknown"),
2364 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2365 			  "Width x4" :
2366 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2367 			  "Width x2" :
2368 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2369 			  "Width x1" : "unknown"), netdev->dev_addr);
2370 	}
2371 
2372 	if ((hw->mac.type >= e1000_i210 ||
2373 	     igb_get_flash_presence_i210(hw))) {
2374 		ret_val = igb_read_part_string(hw, part_str,
2375 					       E1000_PBANUM_LENGTH);
2376 	} else {
2377 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2378 	}
2379 
2380 	if (ret_val)
2381 		strcpy(part_str, "Unknown");
2382 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2383 	dev_info(&pdev->dev,
2384 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2385 		adapter->msix_entries ? "MSI-X" :
2386 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2387 		adapter->num_rx_queues, adapter->num_tx_queues);
2388 	switch (hw->mac.type) {
2389 	case e1000_i350:
2390 	case e1000_i210:
2391 	case e1000_i211:
2392 		igb_set_eee_i350(hw);
2393 		break;
2394 	case e1000_i354:
2395 		if (hw->phy.media_type == e1000_media_type_copper) {
2396 			if ((rd32(E1000_CTRL_EXT) &
2397 			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2398 				igb_set_eee_i354(hw);
2399 		}
2400 		break;
2401 	default:
2402 		break;
2403 	}
2404 
2405 	pm_runtime_put_noidle(&pdev->dev);
2406 	return 0;
2407 
2408 err_register:
2409 	igb_release_hw_control(adapter);
2410 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2411 err_eeprom:
2412 	if (!igb_check_reset_block(hw))
2413 		igb_reset_phy(hw);
2414 
2415 	if (hw->flash_address)
2416 		iounmap(hw->flash_address);
2417 err_sw_init:
2418 	igb_clear_interrupt_scheme(adapter);
2419 	iounmap(hw->hw_addr);
2420 err_ioremap:
2421 	free_netdev(netdev);
2422 err_alloc_etherdev:
2423 	pci_release_selected_regions(pdev,
2424 				     pci_select_bars(pdev, IORESOURCE_MEM));
2425 err_pci_reg:
2426 err_dma:
2427 	pci_disable_device(pdev);
2428 	return err;
2429 }
2430 
2431 #ifdef CONFIG_PCI_IOV
2432 static int  igb_disable_sriov(struct pci_dev *pdev)
2433 {
2434 	struct net_device *netdev = pci_get_drvdata(pdev);
2435 	struct igb_adapter *adapter = netdev_priv(netdev);
2436 	struct e1000_hw *hw = &adapter->hw;
2437 
2438 	/* reclaim resources allocated to VFs */
2439 	if (adapter->vf_data) {
2440 		/* disable iov and allow time for transactions to clear */
2441 		if (pci_vfs_assigned(pdev)) {
2442 			dev_warn(&pdev->dev,
2443 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2444 			return -EPERM;
2445 		} else {
2446 			pci_disable_sriov(pdev);
2447 			msleep(500);
2448 		}
2449 
2450 		kfree(adapter->vf_data);
2451 		adapter->vf_data = NULL;
2452 		adapter->vfs_allocated_count = 0;
2453 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2454 		wrfl();
2455 		msleep(100);
2456 		dev_info(&pdev->dev, "IOV Disabled\n");
2457 
2458 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2459 		adapter->flags |= IGB_FLAG_DMAC;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2466 {
2467 	struct net_device *netdev = pci_get_drvdata(pdev);
2468 	struct igb_adapter *adapter = netdev_priv(netdev);
2469 	int old_vfs = pci_num_vf(pdev);
2470 	int err = 0;
2471 	int i;
2472 
2473 	if (!adapter->msix_entries) {
2474 		err = -EPERM;
2475 		goto out;
2476 	}
2477 
2478 	if (!num_vfs)
2479 		goto out;
2480 	else if (old_vfs && old_vfs == num_vfs)
2481 		goto out;
2482 	else if (old_vfs && old_vfs != num_vfs)
2483 		err = igb_disable_sriov(pdev);
2484 
2485 	if (err)
2486 		goto out;
2487 
2488 	if (num_vfs > 7) {
2489 		err = -EPERM;
2490 		goto out;
2491 	}
2492 
2493 	adapter->vfs_allocated_count = num_vfs;
2494 
2495 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2496 				sizeof(struct vf_data_storage), GFP_KERNEL);
2497 
2498 	/* if allocation failed then we do not support SR-IOV */
2499 	if (!adapter->vf_data) {
2500 		adapter->vfs_allocated_count = 0;
2501 		dev_err(&pdev->dev,
2502 			"Unable to allocate memory for VF Data Storage\n");
2503 		err = -ENOMEM;
2504 		goto out;
2505 	}
2506 
2507 	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2508 	if (err)
2509 		goto err_out;
2510 
2511 	dev_info(&pdev->dev, "%d VFs allocated\n",
2512 		 adapter->vfs_allocated_count);
2513 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2514 		igb_vf_configure(adapter, i);
2515 
2516 	/* DMA Coalescing is not supported in IOV mode. */
2517 	adapter->flags &= ~IGB_FLAG_DMAC;
2518 	goto out;
2519 
2520 err_out:
2521 	kfree(adapter->vf_data);
2522 	adapter->vf_data = NULL;
2523 	adapter->vfs_allocated_count = 0;
2524 out:
2525 	return err;
2526 }
2527 
2528 #endif
2529 /**
2530  *  igb_remove_i2c - Cleanup  I2C interface
2531  *  @adapter: pointer to adapter structure
2532  **/
2533 static void igb_remove_i2c(struct igb_adapter *adapter)
2534 {
2535 	/* free the adapter bus structure */
2536 	i2c_del_adapter(&adapter->i2c_adap);
2537 }
2538 
2539 /**
2540  *  igb_remove - Device Removal Routine
2541  *  @pdev: PCI device information struct
2542  *
2543  *  igb_remove is called by the PCI subsystem to alert the driver
2544  *  that it should release a PCI device.  The could be caused by a
2545  *  Hot-Plug event, or because the driver is going to be removed from
2546  *  memory.
2547  **/
2548 static void igb_remove(struct pci_dev *pdev)
2549 {
2550 	struct net_device *netdev = pci_get_drvdata(pdev);
2551 	struct igb_adapter *adapter = netdev_priv(netdev);
2552 	struct e1000_hw *hw = &adapter->hw;
2553 
2554 	pm_runtime_get_noresume(&pdev->dev);
2555 #ifdef CONFIG_IGB_HWMON
2556 	igb_sysfs_exit(adapter);
2557 #endif
2558 	igb_remove_i2c(adapter);
2559 	igb_ptp_stop(adapter);
2560 	/* The watchdog timer may be rescheduled, so explicitly
2561 	 * disable watchdog from being rescheduled.
2562 	 */
2563 	set_bit(__IGB_DOWN, &adapter->state);
2564 	del_timer_sync(&adapter->watchdog_timer);
2565 	del_timer_sync(&adapter->phy_info_timer);
2566 
2567 	cancel_work_sync(&adapter->reset_task);
2568 	cancel_work_sync(&adapter->watchdog_task);
2569 
2570 #ifdef CONFIG_IGB_DCA
2571 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2572 		dev_info(&pdev->dev, "DCA disabled\n");
2573 		dca_remove_requester(&pdev->dev);
2574 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2575 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2576 	}
2577 #endif
2578 
2579 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2580 	 * would have already happened in close and is redundant.
2581 	 */
2582 	igb_release_hw_control(adapter);
2583 
2584 	unregister_netdev(netdev);
2585 
2586 	igb_clear_interrupt_scheme(adapter);
2587 
2588 #ifdef CONFIG_PCI_IOV
2589 	igb_disable_sriov(pdev);
2590 #endif
2591 
2592 	iounmap(hw->hw_addr);
2593 	if (hw->flash_address)
2594 		iounmap(hw->flash_address);
2595 	pci_release_selected_regions(pdev,
2596 				     pci_select_bars(pdev, IORESOURCE_MEM));
2597 
2598 	kfree(adapter->shadow_vfta);
2599 	free_netdev(netdev);
2600 
2601 	pci_disable_pcie_error_reporting(pdev);
2602 
2603 	pci_disable_device(pdev);
2604 }
2605 
2606 /**
2607  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2608  *  @adapter: board private structure to initialize
2609  *
2610  *  This function initializes the vf specific data storage and then attempts to
2611  *  allocate the VFs.  The reason for ordering it this way is because it is much
2612  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2613  *  the memory for the VFs.
2614  **/
2615 static void igb_probe_vfs(struct igb_adapter *adapter)
2616 {
2617 #ifdef CONFIG_PCI_IOV
2618 	struct pci_dev *pdev = adapter->pdev;
2619 	struct e1000_hw *hw = &adapter->hw;
2620 
2621 	/* Virtualization features not supported on i210 family. */
2622 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2623 		return;
2624 
2625 	pci_sriov_set_totalvfs(pdev, 7);
2626 	igb_enable_sriov(pdev, max_vfs);
2627 
2628 #endif /* CONFIG_PCI_IOV */
2629 }
2630 
2631 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2632 {
2633 	struct e1000_hw *hw = &adapter->hw;
2634 	u32 max_rss_queues;
2635 
2636 	/* Determine the maximum number of RSS queues supported. */
2637 	switch (hw->mac.type) {
2638 	case e1000_i211:
2639 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2640 		break;
2641 	case e1000_82575:
2642 	case e1000_i210:
2643 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2644 		break;
2645 	case e1000_i350:
2646 		/* I350 cannot do RSS and SR-IOV at the same time */
2647 		if (!!adapter->vfs_allocated_count) {
2648 			max_rss_queues = 1;
2649 			break;
2650 		}
2651 		/* fall through */
2652 	case e1000_82576:
2653 		if (!!adapter->vfs_allocated_count) {
2654 			max_rss_queues = 2;
2655 			break;
2656 		}
2657 		/* fall through */
2658 	case e1000_82580:
2659 	case e1000_i354:
2660 	default:
2661 		max_rss_queues = IGB_MAX_RX_QUEUES;
2662 		break;
2663 	}
2664 
2665 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2666 
2667 	/* Determine if we need to pair queues. */
2668 	switch (hw->mac.type) {
2669 	case e1000_82575:
2670 	case e1000_i211:
2671 		/* Device supports enough interrupts without queue pairing. */
2672 		break;
2673 	case e1000_82576:
2674 		/* If VFs are going to be allocated with RSS queues then we
2675 		 * should pair the queues in order to conserve interrupts due
2676 		 * to limited supply.
2677 		 */
2678 		if ((adapter->rss_queues > 1) &&
2679 		    (adapter->vfs_allocated_count > 6))
2680 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2681 		/* fall through */
2682 	case e1000_82580:
2683 	case e1000_i350:
2684 	case e1000_i354:
2685 	case e1000_i210:
2686 	default:
2687 		/* If rss_queues > half of max_rss_queues, pair the queues in
2688 		 * order to conserve interrupts due to limited supply.
2689 		 */
2690 		if (adapter->rss_queues > (max_rss_queues / 2))
2691 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2692 		break;
2693 	}
2694 }
2695 
2696 /**
2697  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2698  *  @adapter: board private structure to initialize
2699  *
2700  *  igb_sw_init initializes the Adapter private data structure.
2701  *  Fields are initialized based on PCI device information and
2702  *  OS network device settings (MTU size).
2703  **/
2704 static int igb_sw_init(struct igb_adapter *adapter)
2705 {
2706 	struct e1000_hw *hw = &adapter->hw;
2707 	struct net_device *netdev = adapter->netdev;
2708 	struct pci_dev *pdev = adapter->pdev;
2709 
2710 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2711 
2712 	/* set default ring sizes */
2713 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2714 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2715 
2716 	/* set default ITR values */
2717 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2718 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2719 
2720 	/* set default work limits */
2721 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2722 
2723 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2724 				  VLAN_HLEN;
2725 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2726 
2727 	spin_lock_init(&adapter->stats64_lock);
2728 #ifdef CONFIG_PCI_IOV
2729 	switch (hw->mac.type) {
2730 	case e1000_82576:
2731 	case e1000_i350:
2732 		if (max_vfs > 7) {
2733 			dev_warn(&pdev->dev,
2734 				 "Maximum of 7 VFs per PF, using max\n");
2735 			max_vfs = adapter->vfs_allocated_count = 7;
2736 		} else
2737 			adapter->vfs_allocated_count = max_vfs;
2738 		if (adapter->vfs_allocated_count)
2739 			dev_warn(&pdev->dev,
2740 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2741 		break;
2742 	default:
2743 		break;
2744 	}
2745 #endif /* CONFIG_PCI_IOV */
2746 
2747 	igb_init_queue_configuration(adapter);
2748 
2749 	/* Setup and initialize a copy of the hw vlan table array */
2750 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2751 				       GFP_ATOMIC);
2752 
2753 	/* This call may decrease the number of queues */
2754 	if (igb_init_interrupt_scheme(adapter, true)) {
2755 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2756 		return -ENOMEM;
2757 	}
2758 
2759 	igb_probe_vfs(adapter);
2760 
2761 	/* Explicitly disable IRQ since the NIC can be in any state. */
2762 	igb_irq_disable(adapter);
2763 
2764 	if (hw->mac.type >= e1000_i350)
2765 		adapter->flags &= ~IGB_FLAG_DMAC;
2766 
2767 	set_bit(__IGB_DOWN, &adapter->state);
2768 	return 0;
2769 }
2770 
2771 /**
2772  *  igb_open - Called when a network interface is made active
2773  *  @netdev: network interface device structure
2774  *
2775  *  Returns 0 on success, negative value on failure
2776  *
2777  *  The open entry point is called when a network interface is made
2778  *  active by the system (IFF_UP).  At this point all resources needed
2779  *  for transmit and receive operations are allocated, the interrupt
2780  *  handler is registered with the OS, the watchdog timer is started,
2781  *  and the stack is notified that the interface is ready.
2782  **/
2783 static int __igb_open(struct net_device *netdev, bool resuming)
2784 {
2785 	struct igb_adapter *adapter = netdev_priv(netdev);
2786 	struct e1000_hw *hw = &adapter->hw;
2787 	struct pci_dev *pdev = adapter->pdev;
2788 	int err;
2789 	int i;
2790 
2791 	/* disallow open during test */
2792 	if (test_bit(__IGB_TESTING, &adapter->state)) {
2793 		WARN_ON(resuming);
2794 		return -EBUSY;
2795 	}
2796 
2797 	if (!resuming)
2798 		pm_runtime_get_sync(&pdev->dev);
2799 
2800 	netif_carrier_off(netdev);
2801 
2802 	/* allocate transmit descriptors */
2803 	err = igb_setup_all_tx_resources(adapter);
2804 	if (err)
2805 		goto err_setup_tx;
2806 
2807 	/* allocate receive descriptors */
2808 	err = igb_setup_all_rx_resources(adapter);
2809 	if (err)
2810 		goto err_setup_rx;
2811 
2812 	igb_power_up_link(adapter);
2813 
2814 	/* before we allocate an interrupt, we must be ready to handle it.
2815 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2816 	 * as soon as we call pci_request_irq, so we have to setup our
2817 	 * clean_rx handler before we do so.
2818 	 */
2819 	igb_configure(adapter);
2820 
2821 	err = igb_request_irq(adapter);
2822 	if (err)
2823 		goto err_req_irq;
2824 
2825 	/* Notify the stack of the actual queue counts. */
2826 	err = netif_set_real_num_tx_queues(adapter->netdev,
2827 					   adapter->num_tx_queues);
2828 	if (err)
2829 		goto err_set_queues;
2830 
2831 	err = netif_set_real_num_rx_queues(adapter->netdev,
2832 					   adapter->num_rx_queues);
2833 	if (err)
2834 		goto err_set_queues;
2835 
2836 	/* From here on the code is the same as igb_up() */
2837 	clear_bit(__IGB_DOWN, &adapter->state);
2838 
2839 	for (i = 0; i < adapter->num_q_vectors; i++)
2840 		napi_enable(&(adapter->q_vector[i]->napi));
2841 
2842 	/* Clear any pending interrupts. */
2843 	rd32(E1000_ICR);
2844 
2845 	igb_irq_enable(adapter);
2846 
2847 	/* notify VFs that reset has been completed */
2848 	if (adapter->vfs_allocated_count) {
2849 		u32 reg_data = rd32(E1000_CTRL_EXT);
2850 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2851 		wr32(E1000_CTRL_EXT, reg_data);
2852 	}
2853 
2854 	netif_tx_start_all_queues(netdev);
2855 
2856 	if (!resuming)
2857 		pm_runtime_put(&pdev->dev);
2858 
2859 	/* start the watchdog. */
2860 	hw->mac.get_link_status = 1;
2861 	schedule_work(&adapter->watchdog_task);
2862 
2863 	return 0;
2864 
2865 err_set_queues:
2866 	igb_free_irq(adapter);
2867 err_req_irq:
2868 	igb_release_hw_control(adapter);
2869 	igb_power_down_link(adapter);
2870 	igb_free_all_rx_resources(adapter);
2871 err_setup_rx:
2872 	igb_free_all_tx_resources(adapter);
2873 err_setup_tx:
2874 	igb_reset(adapter);
2875 	if (!resuming)
2876 		pm_runtime_put(&pdev->dev);
2877 
2878 	return err;
2879 }
2880 
2881 static int igb_open(struct net_device *netdev)
2882 {
2883 	return __igb_open(netdev, false);
2884 }
2885 
2886 /**
2887  *  igb_close - Disables a network interface
2888  *  @netdev: network interface device structure
2889  *
2890  *  Returns 0, this is not allowed to fail
2891  *
2892  *  The close entry point is called when an interface is de-activated
2893  *  by the OS.  The hardware is still under the driver's control, but
2894  *  needs to be disabled.  A global MAC reset is issued to stop the
2895  *  hardware, and all transmit and receive resources are freed.
2896  **/
2897 static int __igb_close(struct net_device *netdev, bool suspending)
2898 {
2899 	struct igb_adapter *adapter = netdev_priv(netdev);
2900 	struct pci_dev *pdev = adapter->pdev;
2901 
2902 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2903 
2904 	if (!suspending)
2905 		pm_runtime_get_sync(&pdev->dev);
2906 
2907 	igb_down(adapter);
2908 	igb_free_irq(adapter);
2909 
2910 	igb_free_all_tx_resources(adapter);
2911 	igb_free_all_rx_resources(adapter);
2912 
2913 	if (!suspending)
2914 		pm_runtime_put_sync(&pdev->dev);
2915 	return 0;
2916 }
2917 
2918 static int igb_close(struct net_device *netdev)
2919 {
2920 	return __igb_close(netdev, false);
2921 }
2922 
2923 /**
2924  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2925  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2926  *
2927  *  Return 0 on success, negative on failure
2928  **/
2929 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2930 {
2931 	struct device *dev = tx_ring->dev;
2932 	int size;
2933 
2934 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2935 
2936 	tx_ring->tx_buffer_info = vzalloc(size);
2937 	if (!tx_ring->tx_buffer_info)
2938 		goto err;
2939 
2940 	/* round up to nearest 4K */
2941 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2942 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2943 
2944 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2945 					   &tx_ring->dma, GFP_KERNEL);
2946 	if (!tx_ring->desc)
2947 		goto err;
2948 
2949 	tx_ring->next_to_use = 0;
2950 	tx_ring->next_to_clean = 0;
2951 
2952 	return 0;
2953 
2954 err:
2955 	vfree(tx_ring->tx_buffer_info);
2956 	tx_ring->tx_buffer_info = NULL;
2957 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2958 	return -ENOMEM;
2959 }
2960 
2961 /**
2962  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2963  *				 (Descriptors) for all queues
2964  *  @adapter: board private structure
2965  *
2966  *  Return 0 on success, negative on failure
2967  **/
2968 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2969 {
2970 	struct pci_dev *pdev = adapter->pdev;
2971 	int i, err = 0;
2972 
2973 	for (i = 0; i < adapter->num_tx_queues; i++) {
2974 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2975 		if (err) {
2976 			dev_err(&pdev->dev,
2977 				"Allocation for Tx Queue %u failed\n", i);
2978 			for (i--; i >= 0; i--)
2979 				igb_free_tx_resources(adapter->tx_ring[i]);
2980 			break;
2981 		}
2982 	}
2983 
2984 	return err;
2985 }
2986 
2987 /**
2988  *  igb_setup_tctl - configure the transmit control registers
2989  *  @adapter: Board private structure
2990  **/
2991 void igb_setup_tctl(struct igb_adapter *adapter)
2992 {
2993 	struct e1000_hw *hw = &adapter->hw;
2994 	u32 tctl;
2995 
2996 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2997 	wr32(E1000_TXDCTL(0), 0);
2998 
2999 	/* Program the Transmit Control Register */
3000 	tctl = rd32(E1000_TCTL);
3001 	tctl &= ~E1000_TCTL_CT;
3002 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3003 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3004 
3005 	igb_config_collision_dist(hw);
3006 
3007 	/* Enable transmits */
3008 	tctl |= E1000_TCTL_EN;
3009 
3010 	wr32(E1000_TCTL, tctl);
3011 }
3012 
3013 /**
3014  *  igb_configure_tx_ring - Configure transmit ring after Reset
3015  *  @adapter: board private structure
3016  *  @ring: tx ring to configure
3017  *
3018  *  Configure a transmit ring after a reset.
3019  **/
3020 void igb_configure_tx_ring(struct igb_adapter *adapter,
3021                            struct igb_ring *ring)
3022 {
3023 	struct e1000_hw *hw = &adapter->hw;
3024 	u32 txdctl = 0;
3025 	u64 tdba = ring->dma;
3026 	int reg_idx = ring->reg_idx;
3027 
3028 	/* disable the queue */
3029 	wr32(E1000_TXDCTL(reg_idx), 0);
3030 	wrfl();
3031 	mdelay(10);
3032 
3033 	wr32(E1000_TDLEN(reg_idx),
3034 	     ring->count * sizeof(union e1000_adv_tx_desc));
3035 	wr32(E1000_TDBAL(reg_idx),
3036 	     tdba & 0x00000000ffffffffULL);
3037 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3038 
3039 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3040 	wr32(E1000_TDH(reg_idx), 0);
3041 	writel(0, ring->tail);
3042 
3043 	txdctl |= IGB_TX_PTHRESH;
3044 	txdctl |= IGB_TX_HTHRESH << 8;
3045 	txdctl |= IGB_TX_WTHRESH << 16;
3046 
3047 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3048 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3049 }
3050 
3051 /**
3052  *  igb_configure_tx - Configure transmit Unit after Reset
3053  *  @adapter: board private structure
3054  *
3055  *  Configure the Tx unit of the MAC after a reset.
3056  **/
3057 static void igb_configure_tx(struct igb_adapter *adapter)
3058 {
3059 	int i;
3060 
3061 	for (i = 0; i < adapter->num_tx_queues; i++)
3062 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3063 }
3064 
3065 /**
3066  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3067  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3068  *
3069  *  Returns 0 on success, negative on failure
3070  **/
3071 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3072 {
3073 	struct device *dev = rx_ring->dev;
3074 	int size;
3075 
3076 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3077 
3078 	rx_ring->rx_buffer_info = vzalloc(size);
3079 	if (!rx_ring->rx_buffer_info)
3080 		goto err;
3081 
3082 	/* Round up to nearest 4K */
3083 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3084 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3085 
3086 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3087 					   &rx_ring->dma, GFP_KERNEL);
3088 	if (!rx_ring->desc)
3089 		goto err;
3090 
3091 	rx_ring->next_to_alloc = 0;
3092 	rx_ring->next_to_clean = 0;
3093 	rx_ring->next_to_use = 0;
3094 
3095 	return 0;
3096 
3097 err:
3098 	vfree(rx_ring->rx_buffer_info);
3099 	rx_ring->rx_buffer_info = NULL;
3100 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3101 	return -ENOMEM;
3102 }
3103 
3104 /**
3105  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3106  *				 (Descriptors) for all queues
3107  *  @adapter: board private structure
3108  *
3109  *  Return 0 on success, negative on failure
3110  **/
3111 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3112 {
3113 	struct pci_dev *pdev = adapter->pdev;
3114 	int i, err = 0;
3115 
3116 	for (i = 0; i < adapter->num_rx_queues; i++) {
3117 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3118 		if (err) {
3119 			dev_err(&pdev->dev,
3120 				"Allocation for Rx Queue %u failed\n", i);
3121 			for (i--; i >= 0; i--)
3122 				igb_free_rx_resources(adapter->rx_ring[i]);
3123 			break;
3124 		}
3125 	}
3126 
3127 	return err;
3128 }
3129 
3130 /**
3131  *  igb_setup_mrqc - configure the multiple receive queue control registers
3132  *  @adapter: Board private structure
3133  **/
3134 static void igb_setup_mrqc(struct igb_adapter *adapter)
3135 {
3136 	struct e1000_hw *hw = &adapter->hw;
3137 	u32 mrqc, rxcsum;
3138 	u32 j, num_rx_queues;
3139 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3140 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3141 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3142 					0xFA01ACBE };
3143 
3144 	/* Fill out hash function seeds */
3145 	for (j = 0; j < 10; j++)
3146 		wr32(E1000_RSSRK(j), rsskey[j]);
3147 
3148 	num_rx_queues = adapter->rss_queues;
3149 
3150 	switch (hw->mac.type) {
3151 	case e1000_82576:
3152 		/* 82576 supports 2 RSS queues for SR-IOV */
3153 		if (adapter->vfs_allocated_count)
3154 			num_rx_queues = 2;
3155 		break;
3156 	default:
3157 		break;
3158 	}
3159 
3160 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3161 		for (j = 0; j < IGB_RETA_SIZE; j++)
3162 			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3163 		adapter->rss_indir_tbl_init = num_rx_queues;
3164 	}
3165 	igb_write_rss_indir_tbl(adapter);
3166 
3167 	/* Disable raw packet checksumming so that RSS hash is placed in
3168 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3169 	 * offloads as they are enabled by default
3170 	 */
3171 	rxcsum = rd32(E1000_RXCSUM);
3172 	rxcsum |= E1000_RXCSUM_PCSD;
3173 
3174 	if (adapter->hw.mac.type >= e1000_82576)
3175 		/* Enable Receive Checksum Offload for SCTP */
3176 		rxcsum |= E1000_RXCSUM_CRCOFL;
3177 
3178 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3179 	wr32(E1000_RXCSUM, rxcsum);
3180 
3181 	/* Generate RSS hash based on packet types, TCP/UDP
3182 	 * port numbers and/or IPv4/v6 src and dst addresses
3183 	 */
3184 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3185 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3186 	       E1000_MRQC_RSS_FIELD_IPV6 |
3187 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3188 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3189 
3190 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3191 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3192 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3193 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3194 
3195 	/* If VMDq is enabled then we set the appropriate mode for that, else
3196 	 * we default to RSS so that an RSS hash is calculated per packet even
3197 	 * if we are only using one queue
3198 	 */
3199 	if (adapter->vfs_allocated_count) {
3200 		if (hw->mac.type > e1000_82575) {
3201 			/* Set the default pool for the PF's first queue */
3202 			u32 vtctl = rd32(E1000_VT_CTL);
3203 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3204 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3205 			vtctl |= adapter->vfs_allocated_count <<
3206 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3207 			wr32(E1000_VT_CTL, vtctl);
3208 		}
3209 		if (adapter->rss_queues > 1)
3210 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3211 		else
3212 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3213 	} else {
3214 		if (hw->mac.type != e1000_i211)
3215 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3216 	}
3217 	igb_vmm_control(adapter);
3218 
3219 	wr32(E1000_MRQC, mrqc);
3220 }
3221 
3222 /**
3223  *  igb_setup_rctl - configure the receive control registers
3224  *  @adapter: Board private structure
3225  **/
3226 void igb_setup_rctl(struct igb_adapter *adapter)
3227 {
3228 	struct e1000_hw *hw = &adapter->hw;
3229 	u32 rctl;
3230 
3231 	rctl = rd32(E1000_RCTL);
3232 
3233 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3234 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3235 
3236 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3237 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3238 
3239 	/* enable stripping of CRC. It's unlikely this will break BMC
3240 	 * redirection as it did with e1000. Newer features require
3241 	 * that the HW strips the CRC.
3242 	 */
3243 	rctl |= E1000_RCTL_SECRC;
3244 
3245 	/* disable store bad packets and clear size bits. */
3246 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3247 
3248 	/* enable LPE to prevent packets larger than max_frame_size */
3249 	rctl |= E1000_RCTL_LPE;
3250 
3251 	/* disable queue 0 to prevent tail write w/o re-config */
3252 	wr32(E1000_RXDCTL(0), 0);
3253 
3254 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3255 	 * queue drop for all VF and PF queues to prevent head of line blocking
3256 	 * if an un-trusted VF does not provide descriptors to hardware.
3257 	 */
3258 	if (adapter->vfs_allocated_count) {
3259 		/* set all queue drop enable bits */
3260 		wr32(E1000_QDE, ALL_QUEUES);
3261 	}
3262 
3263 	/* This is useful for sniffing bad packets. */
3264 	if (adapter->netdev->features & NETIF_F_RXALL) {
3265 		/* UPE and MPE will be handled by normal PROMISC logic
3266 		 * in e1000e_set_rx_mode
3267 		 */
3268 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3269 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3270 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3271 
3272 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3273 			  E1000_RCTL_DPF | /* Allow filtered pause */
3274 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3275 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3276 		 * and that breaks VLANs.
3277 		 */
3278 	}
3279 
3280 	wr32(E1000_RCTL, rctl);
3281 }
3282 
3283 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3284                                    int vfn)
3285 {
3286 	struct e1000_hw *hw = &adapter->hw;
3287 	u32 vmolr;
3288 
3289 	/* if it isn't the PF check to see if VFs are enabled and
3290 	 * increase the size to support vlan tags
3291 	 */
3292 	if (vfn < adapter->vfs_allocated_count &&
3293 	    adapter->vf_data[vfn].vlans_enabled)
3294 		size += VLAN_TAG_SIZE;
3295 
3296 	vmolr = rd32(E1000_VMOLR(vfn));
3297 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3298 	vmolr |= size | E1000_VMOLR_LPE;
3299 	wr32(E1000_VMOLR(vfn), vmolr);
3300 
3301 	return 0;
3302 }
3303 
3304 /**
3305  *  igb_rlpml_set - set maximum receive packet size
3306  *  @adapter: board private structure
3307  *
3308  *  Configure maximum receivable packet size.
3309  **/
3310 static void igb_rlpml_set(struct igb_adapter *adapter)
3311 {
3312 	u32 max_frame_size = adapter->max_frame_size;
3313 	struct e1000_hw *hw = &adapter->hw;
3314 	u16 pf_id = adapter->vfs_allocated_count;
3315 
3316 	if (pf_id) {
3317 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3318 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3319 		 * to our max jumbo frame size, in case we need to enable
3320 		 * jumbo frames on one of the rings later.
3321 		 * This will not pass over-length frames into the default
3322 		 * queue because it's gated by the VMOLR.RLPML.
3323 		 */
3324 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3325 	}
3326 
3327 	wr32(E1000_RLPML, max_frame_size);
3328 }
3329 
3330 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3331 				 int vfn, bool aupe)
3332 {
3333 	struct e1000_hw *hw = &adapter->hw;
3334 	u32 vmolr;
3335 
3336 	/* This register exists only on 82576 and newer so if we are older then
3337 	 * we should exit and do nothing
3338 	 */
3339 	if (hw->mac.type < e1000_82576)
3340 		return;
3341 
3342 	vmolr = rd32(E1000_VMOLR(vfn));
3343 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3344 	if (aupe)
3345 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3346 	else
3347 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3348 
3349 	/* clear all bits that might not be set */
3350 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3351 
3352 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3353 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3354 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3355 	 * multicast packets
3356 	 */
3357 	if (vfn <= adapter->vfs_allocated_count)
3358 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3359 
3360 	wr32(E1000_VMOLR(vfn), vmolr);
3361 }
3362 
3363 /**
3364  *  igb_configure_rx_ring - Configure a receive ring after Reset
3365  *  @adapter: board private structure
3366  *  @ring: receive ring to be configured
3367  *
3368  *  Configure the Rx unit of the MAC after a reset.
3369  **/
3370 void igb_configure_rx_ring(struct igb_adapter *adapter,
3371 			   struct igb_ring *ring)
3372 {
3373 	struct e1000_hw *hw = &adapter->hw;
3374 	u64 rdba = ring->dma;
3375 	int reg_idx = ring->reg_idx;
3376 	u32 srrctl = 0, rxdctl = 0;
3377 
3378 	/* disable the queue */
3379 	wr32(E1000_RXDCTL(reg_idx), 0);
3380 
3381 	/* Set DMA base address registers */
3382 	wr32(E1000_RDBAL(reg_idx),
3383 	     rdba & 0x00000000ffffffffULL);
3384 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3385 	wr32(E1000_RDLEN(reg_idx),
3386 	     ring->count * sizeof(union e1000_adv_rx_desc));
3387 
3388 	/* initialize head and tail */
3389 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3390 	wr32(E1000_RDH(reg_idx), 0);
3391 	writel(0, ring->tail);
3392 
3393 	/* set descriptor configuration */
3394 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3395 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3396 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3397 	if (hw->mac.type >= e1000_82580)
3398 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3399 	/* Only set Drop Enable if we are supporting multiple queues */
3400 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3401 		srrctl |= E1000_SRRCTL_DROP_EN;
3402 
3403 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3404 
3405 	/* set filtering for VMDQ pools */
3406 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3407 
3408 	rxdctl |= IGB_RX_PTHRESH;
3409 	rxdctl |= IGB_RX_HTHRESH << 8;
3410 	rxdctl |= IGB_RX_WTHRESH << 16;
3411 
3412 	/* enable receive descriptor fetching */
3413 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3414 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3415 }
3416 
3417 /**
3418  *  igb_configure_rx - Configure receive Unit after Reset
3419  *  @adapter: board private structure
3420  *
3421  *  Configure the Rx unit of the MAC after a reset.
3422  **/
3423 static void igb_configure_rx(struct igb_adapter *adapter)
3424 {
3425 	int i;
3426 
3427 	/* set UTA to appropriate mode */
3428 	igb_set_uta(adapter);
3429 
3430 	/* set the correct pool for the PF default MAC address in entry 0 */
3431 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3432 			 adapter->vfs_allocated_count);
3433 
3434 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3435 	 * the Base and Length of the Rx Descriptor Ring
3436 	 */
3437 	for (i = 0; i < adapter->num_rx_queues; i++)
3438 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3439 }
3440 
3441 /**
3442  *  igb_free_tx_resources - Free Tx Resources per Queue
3443  *  @tx_ring: Tx descriptor ring for a specific queue
3444  *
3445  *  Free all transmit software resources
3446  **/
3447 void igb_free_tx_resources(struct igb_ring *tx_ring)
3448 {
3449 	igb_clean_tx_ring(tx_ring);
3450 
3451 	vfree(tx_ring->tx_buffer_info);
3452 	tx_ring->tx_buffer_info = NULL;
3453 
3454 	/* if not set, then don't free */
3455 	if (!tx_ring->desc)
3456 		return;
3457 
3458 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3459 			  tx_ring->desc, tx_ring->dma);
3460 
3461 	tx_ring->desc = NULL;
3462 }
3463 
3464 /**
3465  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3466  *  @adapter: board private structure
3467  *
3468  *  Free all transmit software resources
3469  **/
3470 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3471 {
3472 	int i;
3473 
3474 	for (i = 0; i < adapter->num_tx_queues; i++)
3475 		igb_free_tx_resources(adapter->tx_ring[i]);
3476 }
3477 
3478 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3479 				    struct igb_tx_buffer *tx_buffer)
3480 {
3481 	if (tx_buffer->skb) {
3482 		dev_kfree_skb_any(tx_buffer->skb);
3483 		if (dma_unmap_len(tx_buffer, len))
3484 			dma_unmap_single(ring->dev,
3485 					 dma_unmap_addr(tx_buffer, dma),
3486 					 dma_unmap_len(tx_buffer, len),
3487 					 DMA_TO_DEVICE);
3488 	} else if (dma_unmap_len(tx_buffer, len)) {
3489 		dma_unmap_page(ring->dev,
3490 			       dma_unmap_addr(tx_buffer, dma),
3491 			       dma_unmap_len(tx_buffer, len),
3492 			       DMA_TO_DEVICE);
3493 	}
3494 	tx_buffer->next_to_watch = NULL;
3495 	tx_buffer->skb = NULL;
3496 	dma_unmap_len_set(tx_buffer, len, 0);
3497 	/* buffer_info must be completely set up in the transmit path */
3498 }
3499 
3500 /**
3501  *  igb_clean_tx_ring - Free Tx Buffers
3502  *  @tx_ring: ring to be cleaned
3503  **/
3504 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3505 {
3506 	struct igb_tx_buffer *buffer_info;
3507 	unsigned long size;
3508 	u16 i;
3509 
3510 	if (!tx_ring->tx_buffer_info)
3511 		return;
3512 	/* Free all the Tx ring sk_buffs */
3513 
3514 	for (i = 0; i < tx_ring->count; i++) {
3515 		buffer_info = &tx_ring->tx_buffer_info[i];
3516 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3517 	}
3518 
3519 	netdev_tx_reset_queue(txring_txq(tx_ring));
3520 
3521 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3522 	memset(tx_ring->tx_buffer_info, 0, size);
3523 
3524 	/* Zero out the descriptor ring */
3525 	memset(tx_ring->desc, 0, tx_ring->size);
3526 
3527 	tx_ring->next_to_use = 0;
3528 	tx_ring->next_to_clean = 0;
3529 }
3530 
3531 /**
3532  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3533  *  @adapter: board private structure
3534  **/
3535 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3536 {
3537 	int i;
3538 
3539 	for (i = 0; i < adapter->num_tx_queues; i++)
3540 		igb_clean_tx_ring(adapter->tx_ring[i]);
3541 }
3542 
3543 /**
3544  *  igb_free_rx_resources - Free Rx Resources
3545  *  @rx_ring: ring to clean the resources from
3546  *
3547  *  Free all receive software resources
3548  **/
3549 void igb_free_rx_resources(struct igb_ring *rx_ring)
3550 {
3551 	igb_clean_rx_ring(rx_ring);
3552 
3553 	vfree(rx_ring->rx_buffer_info);
3554 	rx_ring->rx_buffer_info = NULL;
3555 
3556 	/* if not set, then don't free */
3557 	if (!rx_ring->desc)
3558 		return;
3559 
3560 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3561 			  rx_ring->desc, rx_ring->dma);
3562 
3563 	rx_ring->desc = NULL;
3564 }
3565 
3566 /**
3567  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3568  *  @adapter: board private structure
3569  *
3570  *  Free all receive software resources
3571  **/
3572 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3573 {
3574 	int i;
3575 
3576 	for (i = 0; i < adapter->num_rx_queues; i++)
3577 		igb_free_rx_resources(adapter->rx_ring[i]);
3578 }
3579 
3580 /**
3581  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3582  *  @rx_ring: ring to free buffers from
3583  **/
3584 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3585 {
3586 	unsigned long size;
3587 	u16 i;
3588 
3589 	if (rx_ring->skb)
3590 		dev_kfree_skb(rx_ring->skb);
3591 	rx_ring->skb = NULL;
3592 
3593 	if (!rx_ring->rx_buffer_info)
3594 		return;
3595 
3596 	/* Free all the Rx ring sk_buffs */
3597 	for (i = 0; i < rx_ring->count; i++) {
3598 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3599 
3600 		if (!buffer_info->page)
3601 			continue;
3602 
3603 		dma_unmap_page(rx_ring->dev,
3604 			       buffer_info->dma,
3605 			       PAGE_SIZE,
3606 			       DMA_FROM_DEVICE);
3607 		__free_page(buffer_info->page);
3608 
3609 		buffer_info->page = NULL;
3610 	}
3611 
3612 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3613 	memset(rx_ring->rx_buffer_info, 0, size);
3614 
3615 	/* Zero out the descriptor ring */
3616 	memset(rx_ring->desc, 0, rx_ring->size);
3617 
3618 	rx_ring->next_to_alloc = 0;
3619 	rx_ring->next_to_clean = 0;
3620 	rx_ring->next_to_use = 0;
3621 }
3622 
3623 /**
3624  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3625  *  @adapter: board private structure
3626  **/
3627 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3628 {
3629 	int i;
3630 
3631 	for (i = 0; i < adapter->num_rx_queues; i++)
3632 		igb_clean_rx_ring(adapter->rx_ring[i]);
3633 }
3634 
3635 /**
3636  *  igb_set_mac - Change the Ethernet Address of the NIC
3637  *  @netdev: network interface device structure
3638  *  @p: pointer to an address structure
3639  *
3640  *  Returns 0 on success, negative on failure
3641  **/
3642 static int igb_set_mac(struct net_device *netdev, void *p)
3643 {
3644 	struct igb_adapter *adapter = netdev_priv(netdev);
3645 	struct e1000_hw *hw = &adapter->hw;
3646 	struct sockaddr *addr = p;
3647 
3648 	if (!is_valid_ether_addr(addr->sa_data))
3649 		return -EADDRNOTAVAIL;
3650 
3651 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3652 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3653 
3654 	/* set the correct pool for the new PF MAC address in entry 0 */
3655 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3656 			 adapter->vfs_allocated_count);
3657 
3658 	return 0;
3659 }
3660 
3661 /**
3662  *  igb_write_mc_addr_list - write multicast addresses to MTA
3663  *  @netdev: network interface device structure
3664  *
3665  *  Writes multicast address list to the MTA hash table.
3666  *  Returns: -ENOMEM on failure
3667  *           0 on no addresses written
3668  *           X on writing X addresses to MTA
3669  **/
3670 static int igb_write_mc_addr_list(struct net_device *netdev)
3671 {
3672 	struct igb_adapter *adapter = netdev_priv(netdev);
3673 	struct e1000_hw *hw = &adapter->hw;
3674 	struct netdev_hw_addr *ha;
3675 	u8  *mta_list;
3676 	int i;
3677 
3678 	if (netdev_mc_empty(netdev)) {
3679 		/* nothing to program, so clear mc list */
3680 		igb_update_mc_addr_list(hw, NULL, 0);
3681 		igb_restore_vf_multicasts(adapter);
3682 		return 0;
3683 	}
3684 
3685 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3686 	if (!mta_list)
3687 		return -ENOMEM;
3688 
3689 	/* The shared function expects a packed array of only addresses. */
3690 	i = 0;
3691 	netdev_for_each_mc_addr(ha, netdev)
3692 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3693 
3694 	igb_update_mc_addr_list(hw, mta_list, i);
3695 	kfree(mta_list);
3696 
3697 	return netdev_mc_count(netdev);
3698 }
3699 
3700 /**
3701  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3702  *  @netdev: network interface device structure
3703  *
3704  *  Writes unicast address list to the RAR table.
3705  *  Returns: -ENOMEM on failure/insufficient address space
3706  *           0 on no addresses written
3707  *           X on writing X addresses to the RAR table
3708  **/
3709 static int igb_write_uc_addr_list(struct net_device *netdev)
3710 {
3711 	struct igb_adapter *adapter = netdev_priv(netdev);
3712 	struct e1000_hw *hw = &adapter->hw;
3713 	unsigned int vfn = adapter->vfs_allocated_count;
3714 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3715 	int count = 0;
3716 
3717 	/* return ENOMEM indicating insufficient memory for addresses */
3718 	if (netdev_uc_count(netdev) > rar_entries)
3719 		return -ENOMEM;
3720 
3721 	if (!netdev_uc_empty(netdev) && rar_entries) {
3722 		struct netdev_hw_addr *ha;
3723 
3724 		netdev_for_each_uc_addr(ha, netdev) {
3725 			if (!rar_entries)
3726 				break;
3727 			igb_rar_set_qsel(adapter, ha->addr,
3728 					 rar_entries--,
3729 					 vfn);
3730 			count++;
3731 		}
3732 	}
3733 	/* write the addresses in reverse order to avoid write combining */
3734 	for (; rar_entries > 0 ; rar_entries--) {
3735 		wr32(E1000_RAH(rar_entries), 0);
3736 		wr32(E1000_RAL(rar_entries), 0);
3737 	}
3738 	wrfl();
3739 
3740 	return count;
3741 }
3742 
3743 /**
3744  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3745  *  @netdev: network interface device structure
3746  *
3747  *  The set_rx_mode entry point is called whenever the unicast or multicast
3748  *  address lists or the network interface flags are updated.  This routine is
3749  *  responsible for configuring the hardware for proper unicast, multicast,
3750  *  promiscuous mode, and all-multi behavior.
3751  **/
3752 static void igb_set_rx_mode(struct net_device *netdev)
3753 {
3754 	struct igb_adapter *adapter = netdev_priv(netdev);
3755 	struct e1000_hw *hw = &adapter->hw;
3756 	unsigned int vfn = adapter->vfs_allocated_count;
3757 	u32 rctl, vmolr = 0;
3758 	int count;
3759 
3760 	/* Check for Promiscuous and All Multicast modes */
3761 	rctl = rd32(E1000_RCTL);
3762 
3763 	/* clear the effected bits */
3764 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3765 
3766 	if (netdev->flags & IFF_PROMISC) {
3767 		/* retain VLAN HW filtering if in VT mode */
3768 		if (adapter->vfs_allocated_count)
3769 			rctl |= E1000_RCTL_VFE;
3770 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3771 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3772 	} else {
3773 		if (netdev->flags & IFF_ALLMULTI) {
3774 			rctl |= E1000_RCTL_MPE;
3775 			vmolr |= E1000_VMOLR_MPME;
3776 		} else {
3777 			/* Write addresses to the MTA, if the attempt fails
3778 			 * then we should just turn on promiscuous mode so
3779 			 * that we can at least receive multicast traffic
3780 			 */
3781 			count = igb_write_mc_addr_list(netdev);
3782 			if (count < 0) {
3783 				rctl |= E1000_RCTL_MPE;
3784 				vmolr |= E1000_VMOLR_MPME;
3785 			} else if (count) {
3786 				vmolr |= E1000_VMOLR_ROMPE;
3787 			}
3788 		}
3789 		/* Write addresses to available RAR registers, if there is not
3790 		 * sufficient space to store all the addresses then enable
3791 		 * unicast promiscuous mode
3792 		 */
3793 		count = igb_write_uc_addr_list(netdev);
3794 		if (count < 0) {
3795 			rctl |= E1000_RCTL_UPE;
3796 			vmolr |= E1000_VMOLR_ROPE;
3797 		}
3798 		rctl |= E1000_RCTL_VFE;
3799 	}
3800 	wr32(E1000_RCTL, rctl);
3801 
3802 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3803 	 * the VMOLR to enable the appropriate modes.  Without this workaround
3804 	 * we will have issues with VLAN tag stripping not being done for frames
3805 	 * that are only arriving because we are the default pool
3806 	 */
3807 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3808 		return;
3809 
3810 	vmolr |= rd32(E1000_VMOLR(vfn)) &
3811 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3812 	wr32(E1000_VMOLR(vfn), vmolr);
3813 	igb_restore_vf_multicasts(adapter);
3814 }
3815 
3816 static void igb_check_wvbr(struct igb_adapter *adapter)
3817 {
3818 	struct e1000_hw *hw = &adapter->hw;
3819 	u32 wvbr = 0;
3820 
3821 	switch (hw->mac.type) {
3822 	case e1000_82576:
3823 	case e1000_i350:
3824 		if (!(wvbr = rd32(E1000_WVBR)))
3825 			return;
3826 		break;
3827 	default:
3828 		break;
3829 	}
3830 
3831 	adapter->wvbr |= wvbr;
3832 }
3833 
3834 #define IGB_STAGGERED_QUEUE_OFFSET 8
3835 
3836 static void igb_spoof_check(struct igb_adapter *adapter)
3837 {
3838 	int j;
3839 
3840 	if (!adapter->wvbr)
3841 		return;
3842 
3843 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3844 		if (adapter->wvbr & (1 << j) ||
3845 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3846 			dev_warn(&adapter->pdev->dev,
3847 				"Spoof event(s) detected on VF %d\n", j);
3848 			adapter->wvbr &=
3849 				~((1 << j) |
3850 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3851 		}
3852 	}
3853 }
3854 
3855 /* Need to wait a few seconds after link up to get diagnostic information from
3856  * the phy
3857  */
3858 static void igb_update_phy_info(unsigned long data)
3859 {
3860 	struct igb_adapter *adapter = (struct igb_adapter *) data;
3861 	igb_get_phy_info(&adapter->hw);
3862 }
3863 
3864 /**
3865  *  igb_has_link - check shared code for link and determine up/down
3866  *  @adapter: pointer to driver private info
3867  **/
3868 bool igb_has_link(struct igb_adapter *adapter)
3869 {
3870 	struct e1000_hw *hw = &adapter->hw;
3871 	bool link_active = false;
3872 
3873 	/* get_link_status is set on LSC (link status) interrupt or
3874 	 * rx sequence error interrupt.  get_link_status will stay
3875 	 * false until the e1000_check_for_link establishes link
3876 	 * for copper adapters ONLY
3877 	 */
3878 	switch (hw->phy.media_type) {
3879 	case e1000_media_type_copper:
3880 		if (!hw->mac.get_link_status)
3881 			return true;
3882 	case e1000_media_type_internal_serdes:
3883 		hw->mac.ops.check_for_link(hw);
3884 		link_active = !hw->mac.get_link_status;
3885 		break;
3886 	default:
3887 	case e1000_media_type_unknown:
3888 		break;
3889 	}
3890 
3891 	if (((hw->mac.type == e1000_i210) ||
3892 	     (hw->mac.type == e1000_i211)) &&
3893 	     (hw->phy.id == I210_I_PHY_ID)) {
3894 		if (!netif_carrier_ok(adapter->netdev)) {
3895 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3896 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
3897 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
3898 			adapter->link_check_timeout = jiffies;
3899 		}
3900 	}
3901 
3902 	return link_active;
3903 }
3904 
3905 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3906 {
3907 	bool ret = false;
3908 	u32 ctrl_ext, thstat;
3909 
3910 	/* check for thermal sensor event on i350 copper only */
3911 	if (hw->mac.type == e1000_i350) {
3912 		thstat = rd32(E1000_THSTAT);
3913 		ctrl_ext = rd32(E1000_CTRL_EXT);
3914 
3915 		if ((hw->phy.media_type == e1000_media_type_copper) &&
3916 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3917 			ret = !!(thstat & event);
3918 	}
3919 
3920 	return ret;
3921 }
3922 
3923 /**
3924  *  igb_watchdog - Timer Call-back
3925  *  @data: pointer to adapter cast into an unsigned long
3926  **/
3927 static void igb_watchdog(unsigned long data)
3928 {
3929 	struct igb_adapter *adapter = (struct igb_adapter *)data;
3930 	/* Do the rest outside of interrupt context */
3931 	schedule_work(&adapter->watchdog_task);
3932 }
3933 
3934 static void igb_watchdog_task(struct work_struct *work)
3935 {
3936 	struct igb_adapter *adapter = container_of(work,
3937 						   struct igb_adapter,
3938 						   watchdog_task);
3939 	struct e1000_hw *hw = &adapter->hw;
3940 	struct e1000_phy_info *phy = &hw->phy;
3941 	struct net_device *netdev = adapter->netdev;
3942 	u32 link;
3943 	int i;
3944 
3945 	link = igb_has_link(adapter);
3946 
3947 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
3948 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
3949 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3950 		else
3951 			link = false;
3952 	}
3953 
3954 	if (link) {
3955 		/* Cancel scheduled suspend requests. */
3956 		pm_runtime_resume(netdev->dev.parent);
3957 
3958 		if (!netif_carrier_ok(netdev)) {
3959 			u32 ctrl;
3960 			hw->mac.ops.get_speed_and_duplex(hw,
3961 							 &adapter->link_speed,
3962 							 &adapter->link_duplex);
3963 
3964 			ctrl = rd32(E1000_CTRL);
3965 			/* Links status message must follow this format */
3966 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3967 			       "Duplex, Flow Control: %s\n",
3968 			       netdev->name,
3969 			       adapter->link_speed,
3970 			       adapter->link_duplex == FULL_DUPLEX ?
3971 			       "Full" : "Half",
3972 			       (ctrl & E1000_CTRL_TFCE) &&
3973 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3974 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3975 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3976 
3977 			/* check if SmartSpeed worked */
3978 			igb_check_downshift(hw);
3979 			if (phy->speed_downgraded)
3980 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3981 
3982 			/* check for thermal sensor event */
3983 			if (igb_thermal_sensor_event(hw,
3984 			    E1000_THSTAT_LINK_THROTTLE)) {
3985 				netdev_info(netdev, "The network adapter link "
3986 					    "speed was downshifted because it "
3987 					    "overheated\n");
3988 			}
3989 
3990 			/* adjust timeout factor according to speed/duplex */
3991 			adapter->tx_timeout_factor = 1;
3992 			switch (adapter->link_speed) {
3993 			case SPEED_10:
3994 				adapter->tx_timeout_factor = 14;
3995 				break;
3996 			case SPEED_100:
3997 				/* maybe add some timeout factor ? */
3998 				break;
3999 			}
4000 
4001 			netif_carrier_on(netdev);
4002 
4003 			igb_ping_all_vfs(adapter);
4004 			igb_check_vf_rate_limit(adapter);
4005 
4006 			/* link state has changed, schedule phy info update */
4007 			if (!test_bit(__IGB_DOWN, &adapter->state))
4008 				mod_timer(&adapter->phy_info_timer,
4009 					  round_jiffies(jiffies + 2 * HZ));
4010 		}
4011 	} else {
4012 		if (netif_carrier_ok(netdev)) {
4013 			adapter->link_speed = 0;
4014 			adapter->link_duplex = 0;
4015 
4016 			/* check for thermal sensor event */
4017 			if (igb_thermal_sensor_event(hw,
4018 			    E1000_THSTAT_PWR_DOWN)) {
4019 				netdev_err(netdev, "The network adapter was "
4020 					   "stopped because it overheated\n");
4021 			}
4022 
4023 			/* Links status message must follow this format */
4024 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4025 			       netdev->name);
4026 			netif_carrier_off(netdev);
4027 
4028 			igb_ping_all_vfs(adapter);
4029 
4030 			/* link state has changed, schedule phy info update */
4031 			if (!test_bit(__IGB_DOWN, &adapter->state))
4032 				mod_timer(&adapter->phy_info_timer,
4033 					  round_jiffies(jiffies + 2 * HZ));
4034 
4035 			pm_schedule_suspend(netdev->dev.parent,
4036 					    MSEC_PER_SEC * 5);
4037 		}
4038 	}
4039 
4040 	spin_lock(&adapter->stats64_lock);
4041 	igb_update_stats(adapter, &adapter->stats64);
4042 	spin_unlock(&adapter->stats64_lock);
4043 
4044 	for (i = 0; i < adapter->num_tx_queues; i++) {
4045 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4046 		if (!netif_carrier_ok(netdev)) {
4047 			/* We've lost link, so the controller stops DMA,
4048 			 * but we've got queued Tx work that's never going
4049 			 * to get done, so reset controller to flush Tx.
4050 			 * (Do the reset outside of interrupt context).
4051 			 */
4052 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4053 				adapter->tx_timeout_count++;
4054 				schedule_work(&adapter->reset_task);
4055 				/* return immediately since reset is imminent */
4056 				return;
4057 			}
4058 		}
4059 
4060 		/* Force detection of hung controller every watchdog period */
4061 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4062 	}
4063 
4064 	/* Cause software interrupt to ensure Rx ring is cleaned */
4065 	if (adapter->msix_entries) {
4066 		u32 eics = 0;
4067 		for (i = 0; i < adapter->num_q_vectors; i++)
4068 			eics |= adapter->q_vector[i]->eims_value;
4069 		wr32(E1000_EICS, eics);
4070 	} else {
4071 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4072 	}
4073 
4074 	igb_spoof_check(adapter);
4075 	igb_ptp_rx_hang(adapter);
4076 
4077 	/* Reset the timer */
4078 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4079 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4080 			mod_timer(&adapter->watchdog_timer,
4081 				  round_jiffies(jiffies +  HZ));
4082 		else
4083 			mod_timer(&adapter->watchdog_timer,
4084 				  round_jiffies(jiffies + 2 * HZ));
4085 	}
4086 }
4087 
4088 enum latency_range {
4089 	lowest_latency = 0,
4090 	low_latency = 1,
4091 	bulk_latency = 2,
4092 	latency_invalid = 255
4093 };
4094 
4095 /**
4096  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4097  *  @q_vector: pointer to q_vector
4098  *
4099  *  Stores a new ITR value based on strictly on packet size.  This
4100  *  algorithm is less sophisticated than that used in igb_update_itr,
4101  *  due to the difficulty of synchronizing statistics across multiple
4102  *  receive rings.  The divisors and thresholds used by this function
4103  *  were determined based on theoretical maximum wire speed and testing
4104  *  data, in order to minimize response time while increasing bulk
4105  *  throughput.
4106  *  This functionality is controlled by the InterruptThrottleRate module
4107  *  parameter (see igb_param.c)
4108  *  NOTE:  This function is called only when operating in a multiqueue
4109  *         receive environment.
4110  **/
4111 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4112 {
4113 	int new_val = q_vector->itr_val;
4114 	int avg_wire_size = 0;
4115 	struct igb_adapter *adapter = q_vector->adapter;
4116 	unsigned int packets;
4117 
4118 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4119 	 * ints/sec - ITR timer value of 120 ticks.
4120 	 */
4121 	if (adapter->link_speed != SPEED_1000) {
4122 		new_val = IGB_4K_ITR;
4123 		goto set_itr_val;
4124 	}
4125 
4126 	packets = q_vector->rx.total_packets;
4127 	if (packets)
4128 		avg_wire_size = q_vector->rx.total_bytes / packets;
4129 
4130 	packets = q_vector->tx.total_packets;
4131 	if (packets)
4132 		avg_wire_size = max_t(u32, avg_wire_size,
4133 				      q_vector->tx.total_bytes / packets);
4134 
4135 	/* if avg_wire_size isn't set no work was done */
4136 	if (!avg_wire_size)
4137 		goto clear_counts;
4138 
4139 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4140 	avg_wire_size += 24;
4141 
4142 	/* Don't starve jumbo frames */
4143 	avg_wire_size = min(avg_wire_size, 3000);
4144 
4145 	/* Give a little boost to mid-size frames */
4146 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4147 		new_val = avg_wire_size / 3;
4148 	else
4149 		new_val = avg_wire_size / 2;
4150 
4151 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4152 	if (new_val < IGB_20K_ITR &&
4153 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4154 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4155 		new_val = IGB_20K_ITR;
4156 
4157 set_itr_val:
4158 	if (new_val != q_vector->itr_val) {
4159 		q_vector->itr_val = new_val;
4160 		q_vector->set_itr = 1;
4161 	}
4162 clear_counts:
4163 	q_vector->rx.total_bytes = 0;
4164 	q_vector->rx.total_packets = 0;
4165 	q_vector->tx.total_bytes = 0;
4166 	q_vector->tx.total_packets = 0;
4167 }
4168 
4169 /**
4170  *  igb_update_itr - update the dynamic ITR value based on statistics
4171  *  @q_vector: pointer to q_vector
4172  *  @ring_container: ring info to update the itr for
4173  *
4174  *  Stores a new ITR value based on packets and byte
4175  *  counts during the last interrupt.  The advantage of per interrupt
4176  *  computation is faster updates and more accurate ITR for the current
4177  *  traffic pattern.  Constants in this function were computed
4178  *  based on theoretical maximum wire speed and thresholds were set based
4179  *  on testing data as well as attempting to minimize response time
4180  *  while increasing bulk throughput.
4181  *  this functionality is controlled by the InterruptThrottleRate module
4182  *  parameter (see igb_param.c)
4183  *  NOTE:  These calculations are only valid when operating in a single-
4184  *         queue environment.
4185  **/
4186 static void igb_update_itr(struct igb_q_vector *q_vector,
4187 			   struct igb_ring_container *ring_container)
4188 {
4189 	unsigned int packets = ring_container->total_packets;
4190 	unsigned int bytes = ring_container->total_bytes;
4191 	u8 itrval = ring_container->itr;
4192 
4193 	/* no packets, exit with status unchanged */
4194 	if (packets == 0)
4195 		return;
4196 
4197 	switch (itrval) {
4198 	case lowest_latency:
4199 		/* handle TSO and jumbo frames */
4200 		if (bytes/packets > 8000)
4201 			itrval = bulk_latency;
4202 		else if ((packets < 5) && (bytes > 512))
4203 			itrval = low_latency;
4204 		break;
4205 	case low_latency:  /* 50 usec aka 20000 ints/s */
4206 		if (bytes > 10000) {
4207 			/* this if handles the TSO accounting */
4208 			if (bytes/packets > 8000) {
4209 				itrval = bulk_latency;
4210 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4211 				itrval = bulk_latency;
4212 			} else if ((packets > 35)) {
4213 				itrval = lowest_latency;
4214 			}
4215 		} else if (bytes/packets > 2000) {
4216 			itrval = bulk_latency;
4217 		} else if (packets <= 2 && bytes < 512) {
4218 			itrval = lowest_latency;
4219 		}
4220 		break;
4221 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4222 		if (bytes > 25000) {
4223 			if (packets > 35)
4224 				itrval = low_latency;
4225 		} else if (bytes < 1500) {
4226 			itrval = low_latency;
4227 		}
4228 		break;
4229 	}
4230 
4231 	/* clear work counters since we have the values we need */
4232 	ring_container->total_bytes = 0;
4233 	ring_container->total_packets = 0;
4234 
4235 	/* write updated itr to ring container */
4236 	ring_container->itr = itrval;
4237 }
4238 
4239 static void igb_set_itr(struct igb_q_vector *q_vector)
4240 {
4241 	struct igb_adapter *adapter = q_vector->adapter;
4242 	u32 new_itr = q_vector->itr_val;
4243 	u8 current_itr = 0;
4244 
4245 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4246 	if (adapter->link_speed != SPEED_1000) {
4247 		current_itr = 0;
4248 		new_itr = IGB_4K_ITR;
4249 		goto set_itr_now;
4250 	}
4251 
4252 	igb_update_itr(q_vector, &q_vector->tx);
4253 	igb_update_itr(q_vector, &q_vector->rx);
4254 
4255 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4256 
4257 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4258 	if (current_itr == lowest_latency &&
4259 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4260 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4261 		current_itr = low_latency;
4262 
4263 	switch (current_itr) {
4264 	/* counts and packets in update_itr are dependent on these numbers */
4265 	case lowest_latency:
4266 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4267 		break;
4268 	case low_latency:
4269 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4270 		break;
4271 	case bulk_latency:
4272 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4273 		break;
4274 	default:
4275 		break;
4276 	}
4277 
4278 set_itr_now:
4279 	if (new_itr != q_vector->itr_val) {
4280 		/* this attempts to bias the interrupt rate towards Bulk
4281 		 * by adding intermediate steps when interrupt rate is
4282 		 * increasing
4283 		 */
4284 		new_itr = new_itr > q_vector->itr_val ?
4285 			  max((new_itr * q_vector->itr_val) /
4286 			  (new_itr + (q_vector->itr_val >> 2)),
4287 			  new_itr) : new_itr;
4288 		/* Don't write the value here; it resets the adapter's
4289 		 * internal timer, and causes us to delay far longer than
4290 		 * we should between interrupts.  Instead, we write the ITR
4291 		 * value at the beginning of the next interrupt so the timing
4292 		 * ends up being correct.
4293 		 */
4294 		q_vector->itr_val = new_itr;
4295 		q_vector->set_itr = 1;
4296 	}
4297 }
4298 
4299 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4300 			    u32 type_tucmd, u32 mss_l4len_idx)
4301 {
4302 	struct e1000_adv_tx_context_desc *context_desc;
4303 	u16 i = tx_ring->next_to_use;
4304 
4305 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4306 
4307 	i++;
4308 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4309 
4310 	/* set bits to identify this as an advanced context descriptor */
4311 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4312 
4313 	/* For 82575, context index must be unique per ring. */
4314 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4315 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4316 
4317 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4318 	context_desc->seqnum_seed	= 0;
4319 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4320 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4321 }
4322 
4323 static int igb_tso(struct igb_ring *tx_ring,
4324 		   struct igb_tx_buffer *first,
4325 		   u8 *hdr_len)
4326 {
4327 	struct sk_buff *skb = first->skb;
4328 	u32 vlan_macip_lens, type_tucmd;
4329 	u32 mss_l4len_idx, l4len;
4330 
4331 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4332 		return 0;
4333 
4334 	if (!skb_is_gso(skb))
4335 		return 0;
4336 
4337 	if (skb_header_cloned(skb)) {
4338 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4339 		if (err)
4340 			return err;
4341 	}
4342 
4343 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4344 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4345 
4346 	if (first->protocol == __constant_htons(ETH_P_IP)) {
4347 		struct iphdr *iph = ip_hdr(skb);
4348 		iph->tot_len = 0;
4349 		iph->check = 0;
4350 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4351 							 iph->daddr, 0,
4352 							 IPPROTO_TCP,
4353 							 0);
4354 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4355 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4356 				   IGB_TX_FLAGS_CSUM |
4357 				   IGB_TX_FLAGS_IPV4;
4358 	} else if (skb_is_gso_v6(skb)) {
4359 		ipv6_hdr(skb)->payload_len = 0;
4360 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4361 						       &ipv6_hdr(skb)->daddr,
4362 						       0, IPPROTO_TCP, 0);
4363 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4364 				   IGB_TX_FLAGS_CSUM;
4365 	}
4366 
4367 	/* compute header lengths */
4368 	l4len = tcp_hdrlen(skb);
4369 	*hdr_len = skb_transport_offset(skb) + l4len;
4370 
4371 	/* update gso size and bytecount with header size */
4372 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4373 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4374 
4375 	/* MSS L4LEN IDX */
4376 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4377 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4378 
4379 	/* VLAN MACLEN IPLEN */
4380 	vlan_macip_lens = skb_network_header_len(skb);
4381 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4382 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4383 
4384 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4385 
4386 	return 1;
4387 }
4388 
4389 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4390 {
4391 	struct sk_buff *skb = first->skb;
4392 	u32 vlan_macip_lens = 0;
4393 	u32 mss_l4len_idx = 0;
4394 	u32 type_tucmd = 0;
4395 
4396 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4397 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4398 			return;
4399 	} else {
4400 		u8 l4_hdr = 0;
4401 		switch (first->protocol) {
4402 		case __constant_htons(ETH_P_IP):
4403 			vlan_macip_lens |= skb_network_header_len(skb);
4404 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4405 			l4_hdr = ip_hdr(skb)->protocol;
4406 			break;
4407 		case __constant_htons(ETH_P_IPV6):
4408 			vlan_macip_lens |= skb_network_header_len(skb);
4409 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4410 			break;
4411 		default:
4412 			if (unlikely(net_ratelimit())) {
4413 				dev_warn(tx_ring->dev,
4414 					 "partial checksum but proto=%x!\n",
4415 					 first->protocol);
4416 			}
4417 			break;
4418 		}
4419 
4420 		switch (l4_hdr) {
4421 		case IPPROTO_TCP:
4422 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4423 			mss_l4len_idx = tcp_hdrlen(skb) <<
4424 					E1000_ADVTXD_L4LEN_SHIFT;
4425 			break;
4426 		case IPPROTO_SCTP:
4427 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4428 			mss_l4len_idx = sizeof(struct sctphdr) <<
4429 					E1000_ADVTXD_L4LEN_SHIFT;
4430 			break;
4431 		case IPPROTO_UDP:
4432 			mss_l4len_idx = sizeof(struct udphdr) <<
4433 					E1000_ADVTXD_L4LEN_SHIFT;
4434 			break;
4435 		default:
4436 			if (unlikely(net_ratelimit())) {
4437 				dev_warn(tx_ring->dev,
4438 					 "partial checksum but l4 proto=%x!\n",
4439 					 l4_hdr);
4440 			}
4441 			break;
4442 		}
4443 
4444 		/* update TX checksum flag */
4445 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4446 	}
4447 
4448 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4449 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4450 
4451 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4452 }
4453 
4454 #define IGB_SET_FLAG(_input, _flag, _result) \
4455 	((_flag <= _result) ? \
4456 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4457 	 ((u32)(_input & _flag) / (_flag / _result)))
4458 
4459 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4460 {
4461 	/* set type for advanced descriptor with frame checksum insertion */
4462 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4463 		       E1000_ADVTXD_DCMD_DEXT |
4464 		       E1000_ADVTXD_DCMD_IFCS;
4465 
4466 	/* set HW vlan bit if vlan is present */
4467 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4468 				 (E1000_ADVTXD_DCMD_VLE));
4469 
4470 	/* set segmentation bits for TSO */
4471 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4472 				 (E1000_ADVTXD_DCMD_TSE));
4473 
4474 	/* set timestamp bit if present */
4475 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4476 				 (E1000_ADVTXD_MAC_TSTAMP));
4477 
4478 	/* insert frame checksum */
4479 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4480 
4481 	return cmd_type;
4482 }
4483 
4484 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4485 				 union e1000_adv_tx_desc *tx_desc,
4486 				 u32 tx_flags, unsigned int paylen)
4487 {
4488 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4489 
4490 	/* 82575 requires a unique index per ring */
4491 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4492 		olinfo_status |= tx_ring->reg_idx << 4;
4493 
4494 	/* insert L4 checksum */
4495 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4496 				      IGB_TX_FLAGS_CSUM,
4497 				      (E1000_TXD_POPTS_TXSM << 8));
4498 
4499 	/* insert IPv4 checksum */
4500 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4501 				      IGB_TX_FLAGS_IPV4,
4502 				      (E1000_TXD_POPTS_IXSM << 8));
4503 
4504 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4505 }
4506 
4507 static void igb_tx_map(struct igb_ring *tx_ring,
4508 		       struct igb_tx_buffer *first,
4509 		       const u8 hdr_len)
4510 {
4511 	struct sk_buff *skb = first->skb;
4512 	struct igb_tx_buffer *tx_buffer;
4513 	union e1000_adv_tx_desc *tx_desc;
4514 	struct skb_frag_struct *frag;
4515 	dma_addr_t dma;
4516 	unsigned int data_len, size;
4517 	u32 tx_flags = first->tx_flags;
4518 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4519 	u16 i = tx_ring->next_to_use;
4520 
4521 	tx_desc = IGB_TX_DESC(tx_ring, i);
4522 
4523 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4524 
4525 	size = skb_headlen(skb);
4526 	data_len = skb->data_len;
4527 
4528 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4529 
4530 	tx_buffer = first;
4531 
4532 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4533 		if (dma_mapping_error(tx_ring->dev, dma))
4534 			goto dma_error;
4535 
4536 		/* record length, and DMA address */
4537 		dma_unmap_len_set(tx_buffer, len, size);
4538 		dma_unmap_addr_set(tx_buffer, dma, dma);
4539 
4540 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4541 
4542 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4543 			tx_desc->read.cmd_type_len =
4544 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4545 
4546 			i++;
4547 			tx_desc++;
4548 			if (i == tx_ring->count) {
4549 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4550 				i = 0;
4551 			}
4552 			tx_desc->read.olinfo_status = 0;
4553 
4554 			dma += IGB_MAX_DATA_PER_TXD;
4555 			size -= IGB_MAX_DATA_PER_TXD;
4556 
4557 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4558 		}
4559 
4560 		if (likely(!data_len))
4561 			break;
4562 
4563 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4564 
4565 		i++;
4566 		tx_desc++;
4567 		if (i == tx_ring->count) {
4568 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4569 			i = 0;
4570 		}
4571 		tx_desc->read.olinfo_status = 0;
4572 
4573 		size = skb_frag_size(frag);
4574 		data_len -= size;
4575 
4576 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4577 				       size, DMA_TO_DEVICE);
4578 
4579 		tx_buffer = &tx_ring->tx_buffer_info[i];
4580 	}
4581 
4582 	/* write last descriptor with RS and EOP bits */
4583 	cmd_type |= size | IGB_TXD_DCMD;
4584 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4585 
4586 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4587 
4588 	/* set the timestamp */
4589 	first->time_stamp = jiffies;
4590 
4591 	/* Force memory writes to complete before letting h/w know there
4592 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4593 	 * memory model archs, such as IA-64).
4594 	 *
4595 	 * We also need this memory barrier to make certain all of the
4596 	 * status bits have been updated before next_to_watch is written.
4597 	 */
4598 	wmb();
4599 
4600 	/* set next_to_watch value indicating a packet is present */
4601 	first->next_to_watch = tx_desc;
4602 
4603 	i++;
4604 	if (i == tx_ring->count)
4605 		i = 0;
4606 
4607 	tx_ring->next_to_use = i;
4608 
4609 	writel(i, tx_ring->tail);
4610 
4611 	/* we need this if more than one processor can write to our tail
4612 	 * at a time, it synchronizes IO on IA64/Altix systems
4613 	 */
4614 	mmiowb();
4615 
4616 	return;
4617 
4618 dma_error:
4619 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4620 
4621 	/* clear dma mappings for failed tx_buffer_info map */
4622 	for (;;) {
4623 		tx_buffer = &tx_ring->tx_buffer_info[i];
4624 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4625 		if (tx_buffer == first)
4626 			break;
4627 		if (i == 0)
4628 			i = tx_ring->count;
4629 		i--;
4630 	}
4631 
4632 	tx_ring->next_to_use = i;
4633 }
4634 
4635 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4636 {
4637 	struct net_device *netdev = tx_ring->netdev;
4638 
4639 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4640 
4641 	/* Herbert's original patch had:
4642 	 *  smp_mb__after_netif_stop_queue();
4643 	 * but since that doesn't exist yet, just open code it.
4644 	 */
4645 	smp_mb();
4646 
4647 	/* We need to check again in a case another CPU has just
4648 	 * made room available.
4649 	 */
4650 	if (igb_desc_unused(tx_ring) < size)
4651 		return -EBUSY;
4652 
4653 	/* A reprieve! */
4654 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4655 
4656 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4657 	tx_ring->tx_stats.restart_queue2++;
4658 	u64_stats_update_end(&tx_ring->tx_syncp2);
4659 
4660 	return 0;
4661 }
4662 
4663 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4664 {
4665 	if (igb_desc_unused(tx_ring) >= size)
4666 		return 0;
4667 	return __igb_maybe_stop_tx(tx_ring, size);
4668 }
4669 
4670 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4671 				struct igb_ring *tx_ring)
4672 {
4673 	struct igb_tx_buffer *first;
4674 	int tso;
4675 	u32 tx_flags = 0;
4676 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4677 	__be16 protocol = vlan_get_protocol(skb);
4678 	u8 hdr_len = 0;
4679 
4680 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4681 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4682 	 *       + 2 desc gap to keep tail from touching head,
4683 	 *       + 1 desc for context descriptor,
4684 	 * otherwise try next time
4685 	 */
4686 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4687 		unsigned short f;
4688 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4689 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4690 	} else {
4691 		count += skb_shinfo(skb)->nr_frags;
4692 	}
4693 
4694 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4695 		/* this is a hard error */
4696 		return NETDEV_TX_BUSY;
4697 	}
4698 
4699 	/* record the location of the first descriptor for this packet */
4700 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4701 	first->skb = skb;
4702 	first->bytecount = skb->len;
4703 	first->gso_segs = 1;
4704 
4705 	skb_tx_timestamp(skb);
4706 
4707 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4708 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4709 
4710 		if (!(adapter->ptp_tx_skb)) {
4711 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4712 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4713 
4714 			adapter->ptp_tx_skb = skb_get(skb);
4715 			adapter->ptp_tx_start = jiffies;
4716 			if (adapter->hw.mac.type == e1000_82576)
4717 				schedule_work(&adapter->ptp_tx_work);
4718 		}
4719 	}
4720 
4721 	if (vlan_tx_tag_present(skb)) {
4722 		tx_flags |= IGB_TX_FLAGS_VLAN;
4723 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4724 	}
4725 
4726 	/* record initial flags and protocol */
4727 	first->tx_flags = tx_flags;
4728 	first->protocol = protocol;
4729 
4730 	tso = igb_tso(tx_ring, first, &hdr_len);
4731 	if (tso < 0)
4732 		goto out_drop;
4733 	else if (!tso)
4734 		igb_tx_csum(tx_ring, first);
4735 
4736 	igb_tx_map(tx_ring, first, hdr_len);
4737 
4738 	/* Make sure there is space in the ring for the next send. */
4739 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4740 
4741 	return NETDEV_TX_OK;
4742 
4743 out_drop:
4744 	igb_unmap_and_free_tx_resource(tx_ring, first);
4745 
4746 	return NETDEV_TX_OK;
4747 }
4748 
4749 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4750 						    struct sk_buff *skb)
4751 {
4752 	unsigned int r_idx = skb->queue_mapping;
4753 
4754 	if (r_idx >= adapter->num_tx_queues)
4755 		r_idx = r_idx % adapter->num_tx_queues;
4756 
4757 	return adapter->tx_ring[r_idx];
4758 }
4759 
4760 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4761 				  struct net_device *netdev)
4762 {
4763 	struct igb_adapter *adapter = netdev_priv(netdev);
4764 
4765 	if (test_bit(__IGB_DOWN, &adapter->state)) {
4766 		dev_kfree_skb_any(skb);
4767 		return NETDEV_TX_OK;
4768 	}
4769 
4770 	if (skb->len <= 0) {
4771 		dev_kfree_skb_any(skb);
4772 		return NETDEV_TX_OK;
4773 	}
4774 
4775 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4776 	 * in order to meet this minimum size requirement.
4777 	 */
4778 	if (unlikely(skb->len < 17)) {
4779 		if (skb_pad(skb, 17 - skb->len))
4780 			return NETDEV_TX_OK;
4781 		skb->len = 17;
4782 		skb_set_tail_pointer(skb, 17);
4783 	}
4784 
4785 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4786 }
4787 
4788 /**
4789  *  igb_tx_timeout - Respond to a Tx Hang
4790  *  @netdev: network interface device structure
4791  **/
4792 static void igb_tx_timeout(struct net_device *netdev)
4793 {
4794 	struct igb_adapter *adapter = netdev_priv(netdev);
4795 	struct e1000_hw *hw = &adapter->hw;
4796 
4797 	/* Do the reset outside of interrupt context */
4798 	adapter->tx_timeout_count++;
4799 
4800 	if (hw->mac.type >= e1000_82580)
4801 		hw->dev_spec._82575.global_device_reset = true;
4802 
4803 	schedule_work(&adapter->reset_task);
4804 	wr32(E1000_EICS,
4805 	     (adapter->eims_enable_mask & ~adapter->eims_other));
4806 }
4807 
4808 static void igb_reset_task(struct work_struct *work)
4809 {
4810 	struct igb_adapter *adapter;
4811 	adapter = container_of(work, struct igb_adapter, reset_task);
4812 
4813 	igb_dump(adapter);
4814 	netdev_err(adapter->netdev, "Reset adapter\n");
4815 	igb_reinit_locked(adapter);
4816 }
4817 
4818 /**
4819  *  igb_get_stats64 - Get System Network Statistics
4820  *  @netdev: network interface device structure
4821  *  @stats: rtnl_link_stats64 pointer
4822  **/
4823 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4824 						struct rtnl_link_stats64 *stats)
4825 {
4826 	struct igb_adapter *adapter = netdev_priv(netdev);
4827 
4828 	spin_lock(&adapter->stats64_lock);
4829 	igb_update_stats(adapter, &adapter->stats64);
4830 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4831 	spin_unlock(&adapter->stats64_lock);
4832 
4833 	return stats;
4834 }
4835 
4836 /**
4837  *  igb_change_mtu - Change the Maximum Transfer Unit
4838  *  @netdev: network interface device structure
4839  *  @new_mtu: new value for maximum frame size
4840  *
4841  *  Returns 0 on success, negative on failure
4842  **/
4843 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4844 {
4845 	struct igb_adapter *adapter = netdev_priv(netdev);
4846 	struct pci_dev *pdev = adapter->pdev;
4847 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4848 
4849 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4850 		dev_err(&pdev->dev, "Invalid MTU setting\n");
4851 		return -EINVAL;
4852 	}
4853 
4854 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4855 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4856 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4857 		return -EINVAL;
4858 	}
4859 
4860 	/* adjust max frame to be at least the size of a standard frame */
4861 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4862 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4863 
4864 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4865 		msleep(1);
4866 
4867 	/* igb_down has a dependency on max_frame_size */
4868 	adapter->max_frame_size = max_frame;
4869 
4870 	if (netif_running(netdev))
4871 		igb_down(adapter);
4872 
4873 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4874 		 netdev->mtu, new_mtu);
4875 	netdev->mtu = new_mtu;
4876 
4877 	if (netif_running(netdev))
4878 		igb_up(adapter);
4879 	else
4880 		igb_reset(adapter);
4881 
4882 	clear_bit(__IGB_RESETTING, &adapter->state);
4883 
4884 	return 0;
4885 }
4886 
4887 /**
4888  *  igb_update_stats - Update the board statistics counters
4889  *  @adapter: board private structure
4890  **/
4891 void igb_update_stats(struct igb_adapter *adapter,
4892 		      struct rtnl_link_stats64 *net_stats)
4893 {
4894 	struct e1000_hw *hw = &adapter->hw;
4895 	struct pci_dev *pdev = adapter->pdev;
4896 	u32 reg, mpc;
4897 	u16 phy_tmp;
4898 	int i;
4899 	u64 bytes, packets;
4900 	unsigned int start;
4901 	u64 _bytes, _packets;
4902 
4903 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4904 
4905 	/* Prevent stats update while adapter is being reset, or if the pci
4906 	 * connection is down.
4907 	 */
4908 	if (adapter->link_speed == 0)
4909 		return;
4910 	if (pci_channel_offline(pdev))
4911 		return;
4912 
4913 	bytes = 0;
4914 	packets = 0;
4915 
4916 	rcu_read_lock();
4917 	for (i = 0; i < adapter->num_rx_queues; i++) {
4918 		u32 rqdpc = rd32(E1000_RQDPC(i));
4919 		struct igb_ring *ring = adapter->rx_ring[i];
4920 
4921 		if (rqdpc) {
4922 			ring->rx_stats.drops += rqdpc;
4923 			net_stats->rx_fifo_errors += rqdpc;
4924 		}
4925 
4926 		do {
4927 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4928 			_bytes = ring->rx_stats.bytes;
4929 			_packets = ring->rx_stats.packets;
4930 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4931 		bytes += _bytes;
4932 		packets += _packets;
4933 	}
4934 
4935 	net_stats->rx_bytes = bytes;
4936 	net_stats->rx_packets = packets;
4937 
4938 	bytes = 0;
4939 	packets = 0;
4940 	for (i = 0; i < adapter->num_tx_queues; i++) {
4941 		struct igb_ring *ring = adapter->tx_ring[i];
4942 		do {
4943 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4944 			_bytes = ring->tx_stats.bytes;
4945 			_packets = ring->tx_stats.packets;
4946 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4947 		bytes += _bytes;
4948 		packets += _packets;
4949 	}
4950 	net_stats->tx_bytes = bytes;
4951 	net_stats->tx_packets = packets;
4952 	rcu_read_unlock();
4953 
4954 	/* read stats registers */
4955 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4956 	adapter->stats.gprc += rd32(E1000_GPRC);
4957 	adapter->stats.gorc += rd32(E1000_GORCL);
4958 	rd32(E1000_GORCH); /* clear GORCL */
4959 	adapter->stats.bprc += rd32(E1000_BPRC);
4960 	adapter->stats.mprc += rd32(E1000_MPRC);
4961 	adapter->stats.roc += rd32(E1000_ROC);
4962 
4963 	adapter->stats.prc64 += rd32(E1000_PRC64);
4964 	adapter->stats.prc127 += rd32(E1000_PRC127);
4965 	adapter->stats.prc255 += rd32(E1000_PRC255);
4966 	adapter->stats.prc511 += rd32(E1000_PRC511);
4967 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4968 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4969 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4970 	adapter->stats.sec += rd32(E1000_SEC);
4971 
4972 	mpc = rd32(E1000_MPC);
4973 	adapter->stats.mpc += mpc;
4974 	net_stats->rx_fifo_errors += mpc;
4975 	adapter->stats.scc += rd32(E1000_SCC);
4976 	adapter->stats.ecol += rd32(E1000_ECOL);
4977 	adapter->stats.mcc += rd32(E1000_MCC);
4978 	adapter->stats.latecol += rd32(E1000_LATECOL);
4979 	adapter->stats.dc += rd32(E1000_DC);
4980 	adapter->stats.rlec += rd32(E1000_RLEC);
4981 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4982 	adapter->stats.xontxc += rd32(E1000_XONTXC);
4983 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4984 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4985 	adapter->stats.fcruc += rd32(E1000_FCRUC);
4986 	adapter->stats.gptc += rd32(E1000_GPTC);
4987 	adapter->stats.gotc += rd32(E1000_GOTCL);
4988 	rd32(E1000_GOTCH); /* clear GOTCL */
4989 	adapter->stats.rnbc += rd32(E1000_RNBC);
4990 	adapter->stats.ruc += rd32(E1000_RUC);
4991 	adapter->stats.rfc += rd32(E1000_RFC);
4992 	adapter->stats.rjc += rd32(E1000_RJC);
4993 	adapter->stats.tor += rd32(E1000_TORH);
4994 	adapter->stats.tot += rd32(E1000_TOTH);
4995 	adapter->stats.tpr += rd32(E1000_TPR);
4996 
4997 	adapter->stats.ptc64 += rd32(E1000_PTC64);
4998 	adapter->stats.ptc127 += rd32(E1000_PTC127);
4999 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5000 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5001 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5002 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5003 
5004 	adapter->stats.mptc += rd32(E1000_MPTC);
5005 	adapter->stats.bptc += rd32(E1000_BPTC);
5006 
5007 	adapter->stats.tpt += rd32(E1000_TPT);
5008 	adapter->stats.colc += rd32(E1000_COLC);
5009 
5010 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5011 	/* read internal phy specific stats */
5012 	reg = rd32(E1000_CTRL_EXT);
5013 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5014 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5015 
5016 		/* this stat has invalid values on i210/i211 */
5017 		if ((hw->mac.type != e1000_i210) &&
5018 		    (hw->mac.type != e1000_i211))
5019 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5020 	}
5021 
5022 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5023 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5024 
5025 	adapter->stats.iac += rd32(E1000_IAC);
5026 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5027 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5028 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5029 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5030 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5031 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5032 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5033 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5034 
5035 	/* Fill out the OS statistics structure */
5036 	net_stats->multicast = adapter->stats.mprc;
5037 	net_stats->collisions = adapter->stats.colc;
5038 
5039 	/* Rx Errors */
5040 
5041 	/* RLEC on some newer hardware can be incorrect so build
5042 	 * our own version based on RUC and ROC
5043 	 */
5044 	net_stats->rx_errors = adapter->stats.rxerrc +
5045 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5046 		adapter->stats.ruc + adapter->stats.roc +
5047 		adapter->stats.cexterr;
5048 	net_stats->rx_length_errors = adapter->stats.ruc +
5049 				      adapter->stats.roc;
5050 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5051 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5052 	net_stats->rx_missed_errors = adapter->stats.mpc;
5053 
5054 	/* Tx Errors */
5055 	net_stats->tx_errors = adapter->stats.ecol +
5056 			       adapter->stats.latecol;
5057 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5058 	net_stats->tx_window_errors = adapter->stats.latecol;
5059 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5060 
5061 	/* Tx Dropped needs to be maintained elsewhere */
5062 
5063 	/* Phy Stats */
5064 	if (hw->phy.media_type == e1000_media_type_copper) {
5065 		if ((adapter->link_speed == SPEED_1000) &&
5066 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5067 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5068 			adapter->phy_stats.idle_errors += phy_tmp;
5069 		}
5070 	}
5071 
5072 	/* Management Stats */
5073 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5074 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5075 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5076 
5077 	/* OS2BMC Stats */
5078 	reg = rd32(E1000_MANC);
5079 	if (reg & E1000_MANC_EN_BMC2OS) {
5080 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5081 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5082 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5083 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5084 	}
5085 }
5086 
5087 static irqreturn_t igb_msix_other(int irq, void *data)
5088 {
5089 	struct igb_adapter *adapter = data;
5090 	struct e1000_hw *hw = &adapter->hw;
5091 	u32 icr = rd32(E1000_ICR);
5092 	/* reading ICR causes bit 31 of EICR to be cleared */
5093 
5094 	if (icr & E1000_ICR_DRSTA)
5095 		schedule_work(&adapter->reset_task);
5096 
5097 	if (icr & E1000_ICR_DOUTSYNC) {
5098 		/* HW is reporting DMA is out of sync */
5099 		adapter->stats.doosync++;
5100 		/* The DMA Out of Sync is also indication of a spoof event
5101 		 * in IOV mode. Check the Wrong VM Behavior register to
5102 		 * see if it is really a spoof event.
5103 		 */
5104 		igb_check_wvbr(adapter);
5105 	}
5106 
5107 	/* Check for a mailbox event */
5108 	if (icr & E1000_ICR_VMMB)
5109 		igb_msg_task(adapter);
5110 
5111 	if (icr & E1000_ICR_LSC) {
5112 		hw->mac.get_link_status = 1;
5113 		/* guard against interrupt when we're going down */
5114 		if (!test_bit(__IGB_DOWN, &adapter->state))
5115 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5116 	}
5117 
5118 	if (icr & E1000_ICR_TS) {
5119 		u32 tsicr = rd32(E1000_TSICR);
5120 
5121 		if (tsicr & E1000_TSICR_TXTS) {
5122 			/* acknowledge the interrupt */
5123 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5124 			/* retrieve hardware timestamp */
5125 			schedule_work(&adapter->ptp_tx_work);
5126 		}
5127 	}
5128 
5129 	wr32(E1000_EIMS, adapter->eims_other);
5130 
5131 	return IRQ_HANDLED;
5132 }
5133 
5134 static void igb_write_itr(struct igb_q_vector *q_vector)
5135 {
5136 	struct igb_adapter *adapter = q_vector->adapter;
5137 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5138 
5139 	if (!q_vector->set_itr)
5140 		return;
5141 
5142 	if (!itr_val)
5143 		itr_val = 0x4;
5144 
5145 	if (adapter->hw.mac.type == e1000_82575)
5146 		itr_val |= itr_val << 16;
5147 	else
5148 		itr_val |= E1000_EITR_CNT_IGNR;
5149 
5150 	writel(itr_val, q_vector->itr_register);
5151 	q_vector->set_itr = 0;
5152 }
5153 
5154 static irqreturn_t igb_msix_ring(int irq, void *data)
5155 {
5156 	struct igb_q_vector *q_vector = data;
5157 
5158 	/* Write the ITR value calculated from the previous interrupt. */
5159 	igb_write_itr(q_vector);
5160 
5161 	napi_schedule(&q_vector->napi);
5162 
5163 	return IRQ_HANDLED;
5164 }
5165 
5166 #ifdef CONFIG_IGB_DCA
5167 static void igb_update_tx_dca(struct igb_adapter *adapter,
5168 			      struct igb_ring *tx_ring,
5169 			      int cpu)
5170 {
5171 	struct e1000_hw *hw = &adapter->hw;
5172 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5173 
5174 	if (hw->mac.type != e1000_82575)
5175 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5176 
5177 	/* We can enable relaxed ordering for reads, but not writes when
5178 	 * DCA is enabled.  This is due to a known issue in some chipsets
5179 	 * which will cause the DCA tag to be cleared.
5180 	 */
5181 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5182 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5183 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5184 
5185 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5186 }
5187 
5188 static void igb_update_rx_dca(struct igb_adapter *adapter,
5189 			      struct igb_ring *rx_ring,
5190 			      int cpu)
5191 {
5192 	struct e1000_hw *hw = &adapter->hw;
5193 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5194 
5195 	if (hw->mac.type != e1000_82575)
5196 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5197 
5198 	/* We can enable relaxed ordering for reads, but not writes when
5199 	 * DCA is enabled.  This is due to a known issue in some chipsets
5200 	 * which will cause the DCA tag to be cleared.
5201 	 */
5202 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5203 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5204 
5205 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5206 }
5207 
5208 static void igb_update_dca(struct igb_q_vector *q_vector)
5209 {
5210 	struct igb_adapter *adapter = q_vector->adapter;
5211 	int cpu = get_cpu();
5212 
5213 	if (q_vector->cpu == cpu)
5214 		goto out_no_update;
5215 
5216 	if (q_vector->tx.ring)
5217 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5218 
5219 	if (q_vector->rx.ring)
5220 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5221 
5222 	q_vector->cpu = cpu;
5223 out_no_update:
5224 	put_cpu();
5225 }
5226 
5227 static void igb_setup_dca(struct igb_adapter *adapter)
5228 {
5229 	struct e1000_hw *hw = &adapter->hw;
5230 	int i;
5231 
5232 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5233 		return;
5234 
5235 	/* Always use CB2 mode, difference is masked in the CB driver. */
5236 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5237 
5238 	for (i = 0; i < adapter->num_q_vectors; i++) {
5239 		adapter->q_vector[i]->cpu = -1;
5240 		igb_update_dca(adapter->q_vector[i]);
5241 	}
5242 }
5243 
5244 static int __igb_notify_dca(struct device *dev, void *data)
5245 {
5246 	struct net_device *netdev = dev_get_drvdata(dev);
5247 	struct igb_adapter *adapter = netdev_priv(netdev);
5248 	struct pci_dev *pdev = adapter->pdev;
5249 	struct e1000_hw *hw = &adapter->hw;
5250 	unsigned long event = *(unsigned long *)data;
5251 
5252 	switch (event) {
5253 	case DCA_PROVIDER_ADD:
5254 		/* if already enabled, don't do it again */
5255 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5256 			break;
5257 		if (dca_add_requester(dev) == 0) {
5258 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5259 			dev_info(&pdev->dev, "DCA enabled\n");
5260 			igb_setup_dca(adapter);
5261 			break;
5262 		}
5263 		/* Fall Through since DCA is disabled. */
5264 	case DCA_PROVIDER_REMOVE:
5265 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5266 			/* without this a class_device is left
5267 			 * hanging around in the sysfs model
5268 			 */
5269 			dca_remove_requester(dev);
5270 			dev_info(&pdev->dev, "DCA disabled\n");
5271 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5272 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5273 		}
5274 		break;
5275 	}
5276 
5277 	return 0;
5278 }
5279 
5280 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5281 			  void *p)
5282 {
5283 	int ret_val;
5284 
5285 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5286 					 __igb_notify_dca);
5287 
5288 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5289 }
5290 #endif /* CONFIG_IGB_DCA */
5291 
5292 #ifdef CONFIG_PCI_IOV
5293 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5294 {
5295 	unsigned char mac_addr[ETH_ALEN];
5296 
5297 	eth_zero_addr(mac_addr);
5298 	igb_set_vf_mac(adapter, vf, mac_addr);
5299 
5300 	/* By default spoof check is enabled for all VFs */
5301 	adapter->vf_data[vf].spoofchk_enabled = true;
5302 
5303 	return 0;
5304 }
5305 
5306 #endif
5307 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5308 {
5309 	struct e1000_hw *hw = &adapter->hw;
5310 	u32 ping;
5311 	int i;
5312 
5313 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5314 		ping = E1000_PF_CONTROL_MSG;
5315 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5316 			ping |= E1000_VT_MSGTYPE_CTS;
5317 		igb_write_mbx(hw, &ping, 1, i);
5318 	}
5319 }
5320 
5321 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5322 {
5323 	struct e1000_hw *hw = &adapter->hw;
5324 	u32 vmolr = rd32(E1000_VMOLR(vf));
5325 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5326 
5327 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5328 			    IGB_VF_FLAG_MULTI_PROMISC);
5329 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5330 
5331 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5332 		vmolr |= E1000_VMOLR_MPME;
5333 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5334 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5335 	} else {
5336 		/* if we have hashes and we are clearing a multicast promisc
5337 		 * flag we need to write the hashes to the MTA as this step
5338 		 * was previously skipped
5339 		 */
5340 		if (vf_data->num_vf_mc_hashes > 30) {
5341 			vmolr |= E1000_VMOLR_MPME;
5342 		} else if (vf_data->num_vf_mc_hashes) {
5343 			int j;
5344 			vmolr |= E1000_VMOLR_ROMPE;
5345 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5346 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5347 		}
5348 	}
5349 
5350 	wr32(E1000_VMOLR(vf), vmolr);
5351 
5352 	/* there are flags left unprocessed, likely not supported */
5353 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5354 		return -EINVAL;
5355 
5356 	return 0;
5357 }
5358 
5359 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5360 				  u32 *msgbuf, u32 vf)
5361 {
5362 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5363 	u16 *hash_list = (u16 *)&msgbuf[1];
5364 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5365 	int i;
5366 
5367 	/* salt away the number of multicast addresses assigned
5368 	 * to this VF for later use to restore when the PF multi cast
5369 	 * list changes
5370 	 */
5371 	vf_data->num_vf_mc_hashes = n;
5372 
5373 	/* only up to 30 hash values supported */
5374 	if (n > 30)
5375 		n = 30;
5376 
5377 	/* store the hashes for later use */
5378 	for (i = 0; i < n; i++)
5379 		vf_data->vf_mc_hashes[i] = hash_list[i];
5380 
5381 	/* Flush and reset the mta with the new values */
5382 	igb_set_rx_mode(adapter->netdev);
5383 
5384 	return 0;
5385 }
5386 
5387 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5388 {
5389 	struct e1000_hw *hw = &adapter->hw;
5390 	struct vf_data_storage *vf_data;
5391 	int i, j;
5392 
5393 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5394 		u32 vmolr = rd32(E1000_VMOLR(i));
5395 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5396 
5397 		vf_data = &adapter->vf_data[i];
5398 
5399 		if ((vf_data->num_vf_mc_hashes > 30) ||
5400 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5401 			vmolr |= E1000_VMOLR_MPME;
5402 		} else if (vf_data->num_vf_mc_hashes) {
5403 			vmolr |= E1000_VMOLR_ROMPE;
5404 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5405 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5406 		}
5407 		wr32(E1000_VMOLR(i), vmolr);
5408 	}
5409 }
5410 
5411 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5412 {
5413 	struct e1000_hw *hw = &adapter->hw;
5414 	u32 pool_mask, reg, vid;
5415 	int i;
5416 
5417 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5418 
5419 	/* Find the vlan filter for this id */
5420 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5421 		reg = rd32(E1000_VLVF(i));
5422 
5423 		/* remove the vf from the pool */
5424 		reg &= ~pool_mask;
5425 
5426 		/* if pool is empty then remove entry from vfta */
5427 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5428 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5429 			reg = 0;
5430 			vid = reg & E1000_VLVF_VLANID_MASK;
5431 			igb_vfta_set(hw, vid, false);
5432 		}
5433 
5434 		wr32(E1000_VLVF(i), reg);
5435 	}
5436 
5437 	adapter->vf_data[vf].vlans_enabled = 0;
5438 }
5439 
5440 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5441 {
5442 	struct e1000_hw *hw = &adapter->hw;
5443 	u32 reg, i;
5444 
5445 	/* The vlvf table only exists on 82576 hardware and newer */
5446 	if (hw->mac.type < e1000_82576)
5447 		return -1;
5448 
5449 	/* we only need to do this if VMDq is enabled */
5450 	if (!adapter->vfs_allocated_count)
5451 		return -1;
5452 
5453 	/* Find the vlan filter for this id */
5454 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5455 		reg = rd32(E1000_VLVF(i));
5456 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5457 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5458 			break;
5459 	}
5460 
5461 	if (add) {
5462 		if (i == E1000_VLVF_ARRAY_SIZE) {
5463 			/* Did not find a matching VLAN ID entry that was
5464 			 * enabled.  Search for a free filter entry, i.e.
5465 			 * one without the enable bit set
5466 			 */
5467 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5468 				reg = rd32(E1000_VLVF(i));
5469 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5470 					break;
5471 			}
5472 		}
5473 		if (i < E1000_VLVF_ARRAY_SIZE) {
5474 			/* Found an enabled/available entry */
5475 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5476 
5477 			/* if !enabled we need to set this up in vfta */
5478 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5479 				/* add VID to filter table */
5480 				igb_vfta_set(hw, vid, true);
5481 				reg |= E1000_VLVF_VLANID_ENABLE;
5482 			}
5483 			reg &= ~E1000_VLVF_VLANID_MASK;
5484 			reg |= vid;
5485 			wr32(E1000_VLVF(i), reg);
5486 
5487 			/* do not modify RLPML for PF devices */
5488 			if (vf >= adapter->vfs_allocated_count)
5489 				return 0;
5490 
5491 			if (!adapter->vf_data[vf].vlans_enabled) {
5492 				u32 size;
5493 				reg = rd32(E1000_VMOLR(vf));
5494 				size = reg & E1000_VMOLR_RLPML_MASK;
5495 				size += 4;
5496 				reg &= ~E1000_VMOLR_RLPML_MASK;
5497 				reg |= size;
5498 				wr32(E1000_VMOLR(vf), reg);
5499 			}
5500 
5501 			adapter->vf_data[vf].vlans_enabled++;
5502 		}
5503 	} else {
5504 		if (i < E1000_VLVF_ARRAY_SIZE) {
5505 			/* remove vf from the pool */
5506 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5507 			/* if pool is empty then remove entry from vfta */
5508 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5509 				reg = 0;
5510 				igb_vfta_set(hw, vid, false);
5511 			}
5512 			wr32(E1000_VLVF(i), reg);
5513 
5514 			/* do not modify RLPML for PF devices */
5515 			if (vf >= adapter->vfs_allocated_count)
5516 				return 0;
5517 
5518 			adapter->vf_data[vf].vlans_enabled--;
5519 			if (!adapter->vf_data[vf].vlans_enabled) {
5520 				u32 size;
5521 				reg = rd32(E1000_VMOLR(vf));
5522 				size = reg & E1000_VMOLR_RLPML_MASK;
5523 				size -= 4;
5524 				reg &= ~E1000_VMOLR_RLPML_MASK;
5525 				reg |= size;
5526 				wr32(E1000_VMOLR(vf), reg);
5527 			}
5528 		}
5529 	}
5530 	return 0;
5531 }
5532 
5533 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5534 {
5535 	struct e1000_hw *hw = &adapter->hw;
5536 
5537 	if (vid)
5538 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5539 	else
5540 		wr32(E1000_VMVIR(vf), 0);
5541 }
5542 
5543 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5544 			       int vf, u16 vlan, u8 qos)
5545 {
5546 	int err = 0;
5547 	struct igb_adapter *adapter = netdev_priv(netdev);
5548 
5549 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5550 		return -EINVAL;
5551 	if (vlan || qos) {
5552 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5553 		if (err)
5554 			goto out;
5555 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5556 		igb_set_vmolr(adapter, vf, !vlan);
5557 		adapter->vf_data[vf].pf_vlan = vlan;
5558 		adapter->vf_data[vf].pf_qos = qos;
5559 		dev_info(&adapter->pdev->dev,
5560 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5561 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5562 			dev_warn(&adapter->pdev->dev,
5563 				 "The VF VLAN has been set, but the PF device is not up.\n");
5564 			dev_warn(&adapter->pdev->dev,
5565 				 "Bring the PF device up before attempting to use the VF device.\n");
5566 		}
5567 	} else {
5568 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5569 			     false, vf);
5570 		igb_set_vmvir(adapter, vlan, vf);
5571 		igb_set_vmolr(adapter, vf, true);
5572 		adapter->vf_data[vf].pf_vlan = 0;
5573 		adapter->vf_data[vf].pf_qos = 0;
5574 	}
5575 out:
5576 	return err;
5577 }
5578 
5579 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5580 {
5581 	struct e1000_hw *hw = &adapter->hw;
5582 	int i;
5583 	u32 reg;
5584 
5585 	/* Find the vlan filter for this id */
5586 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5587 		reg = rd32(E1000_VLVF(i));
5588 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5589 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5590 			break;
5591 	}
5592 
5593 	if (i >= E1000_VLVF_ARRAY_SIZE)
5594 		i = -1;
5595 
5596 	return i;
5597 }
5598 
5599 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600 {
5601 	struct e1000_hw *hw = &adapter->hw;
5602 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5603 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5604 	int err = 0;
5605 
5606 	/* If in promiscuous mode we need to make sure the PF also has
5607 	 * the VLAN filter set.
5608 	 */
5609 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5610 		err = igb_vlvf_set(adapter, vid, add,
5611 				   adapter->vfs_allocated_count);
5612 	if (err)
5613 		goto out;
5614 
5615 	err = igb_vlvf_set(adapter, vid, add, vf);
5616 
5617 	if (err)
5618 		goto out;
5619 
5620 	/* Go through all the checks to see if the VLAN filter should
5621 	 * be wiped completely.
5622 	 */
5623 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5624 		u32 vlvf, bits;
5625 
5626 		int regndx = igb_find_vlvf_entry(adapter, vid);
5627 		if (regndx < 0)
5628 			goto out;
5629 		/* See if any other pools are set for this VLAN filter
5630 		 * entry other than the PF.
5631 		 */
5632 		vlvf = bits = rd32(E1000_VLVF(regndx));
5633 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5634 			      adapter->vfs_allocated_count);
5635 		/* If the filter was removed then ensure PF pool bit
5636 		 * is cleared if the PF only added itself to the pool
5637 		 * because the PF is in promiscuous mode.
5638 		 */
5639 		if ((vlvf & VLAN_VID_MASK) == vid &&
5640 		    !test_bit(vid, adapter->active_vlans) &&
5641 		    !bits)
5642 			igb_vlvf_set(adapter, vid, add,
5643 				     adapter->vfs_allocated_count);
5644 	}
5645 
5646 out:
5647 	return err;
5648 }
5649 
5650 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5651 {
5652 	/* clear flags - except flag that indicates PF has set the MAC */
5653 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5654 	adapter->vf_data[vf].last_nack = jiffies;
5655 
5656 	/* reset offloads to defaults */
5657 	igb_set_vmolr(adapter, vf, true);
5658 
5659 	/* reset vlans for device */
5660 	igb_clear_vf_vfta(adapter, vf);
5661 	if (adapter->vf_data[vf].pf_vlan)
5662 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5663 				    adapter->vf_data[vf].pf_vlan,
5664 				    adapter->vf_data[vf].pf_qos);
5665 	else
5666 		igb_clear_vf_vfta(adapter, vf);
5667 
5668 	/* reset multicast table array for vf */
5669 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5670 
5671 	/* Flush and reset the mta with the new values */
5672 	igb_set_rx_mode(adapter->netdev);
5673 }
5674 
5675 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5676 {
5677 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5678 
5679 	/* clear mac address as we were hotplug removed/added */
5680 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5681 		eth_zero_addr(vf_mac);
5682 
5683 	/* process remaining reset events */
5684 	igb_vf_reset(adapter, vf);
5685 }
5686 
5687 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5688 {
5689 	struct e1000_hw *hw = &adapter->hw;
5690 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5691 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5692 	u32 reg, msgbuf[3];
5693 	u8 *addr = (u8 *)(&msgbuf[1]);
5694 
5695 	/* process all the same items cleared in a function level reset */
5696 	igb_vf_reset(adapter, vf);
5697 
5698 	/* set vf mac address */
5699 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5700 
5701 	/* enable transmit and receive for vf */
5702 	reg = rd32(E1000_VFTE);
5703 	wr32(E1000_VFTE, reg | (1 << vf));
5704 	reg = rd32(E1000_VFRE);
5705 	wr32(E1000_VFRE, reg | (1 << vf));
5706 
5707 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5708 
5709 	/* reply to reset with ack and vf mac address */
5710 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5711 	memcpy(addr, vf_mac, 6);
5712 	igb_write_mbx(hw, msgbuf, 3, vf);
5713 }
5714 
5715 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5716 {
5717 	/* The VF MAC Address is stored in a packed array of bytes
5718 	 * starting at the second 32 bit word of the msg array
5719 	 */
5720 	unsigned char *addr = (char *)&msg[1];
5721 	int err = -1;
5722 
5723 	if (is_valid_ether_addr(addr))
5724 		err = igb_set_vf_mac(adapter, vf, addr);
5725 
5726 	return err;
5727 }
5728 
5729 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5730 {
5731 	struct e1000_hw *hw = &adapter->hw;
5732 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5733 	u32 msg = E1000_VT_MSGTYPE_NACK;
5734 
5735 	/* if device isn't clear to send it shouldn't be reading either */
5736 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5737 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5738 		igb_write_mbx(hw, &msg, 1, vf);
5739 		vf_data->last_nack = jiffies;
5740 	}
5741 }
5742 
5743 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5744 {
5745 	struct pci_dev *pdev = adapter->pdev;
5746 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5747 	struct e1000_hw *hw = &adapter->hw;
5748 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5749 	s32 retval;
5750 
5751 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5752 
5753 	if (retval) {
5754 		/* if receive failed revoke VF CTS stats and restart init */
5755 		dev_err(&pdev->dev, "Error receiving message from VF\n");
5756 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5757 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5758 			return;
5759 		goto out;
5760 	}
5761 
5762 	/* this is a message we already processed, do nothing */
5763 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5764 		return;
5765 
5766 	/* until the vf completes a reset it should not be
5767 	 * allowed to start any configuration.
5768 	 */
5769 	if (msgbuf[0] == E1000_VF_RESET) {
5770 		igb_vf_reset_msg(adapter, vf);
5771 		return;
5772 	}
5773 
5774 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5775 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5776 			return;
5777 		retval = -1;
5778 		goto out;
5779 	}
5780 
5781 	switch ((msgbuf[0] & 0xFFFF)) {
5782 	case E1000_VF_SET_MAC_ADDR:
5783 		retval = -EINVAL;
5784 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5785 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5786 		else
5787 			dev_warn(&pdev->dev,
5788 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5789 				 vf);
5790 		break;
5791 	case E1000_VF_SET_PROMISC:
5792 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5793 		break;
5794 	case E1000_VF_SET_MULTICAST:
5795 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5796 		break;
5797 	case E1000_VF_SET_LPE:
5798 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5799 		break;
5800 	case E1000_VF_SET_VLAN:
5801 		retval = -1;
5802 		if (vf_data->pf_vlan)
5803 			dev_warn(&pdev->dev,
5804 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5805 				 vf);
5806 		else
5807 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5808 		break;
5809 	default:
5810 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5811 		retval = -1;
5812 		break;
5813 	}
5814 
5815 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5816 out:
5817 	/* notify the VF of the results of what it sent us */
5818 	if (retval)
5819 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5820 	else
5821 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5822 
5823 	igb_write_mbx(hw, msgbuf, 1, vf);
5824 }
5825 
5826 static void igb_msg_task(struct igb_adapter *adapter)
5827 {
5828 	struct e1000_hw *hw = &adapter->hw;
5829 	u32 vf;
5830 
5831 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5832 		/* process any reset requests */
5833 		if (!igb_check_for_rst(hw, vf))
5834 			igb_vf_reset_event(adapter, vf);
5835 
5836 		/* process any messages pending */
5837 		if (!igb_check_for_msg(hw, vf))
5838 			igb_rcv_msg_from_vf(adapter, vf);
5839 
5840 		/* process any acks */
5841 		if (!igb_check_for_ack(hw, vf))
5842 			igb_rcv_ack_from_vf(adapter, vf);
5843 	}
5844 }
5845 
5846 /**
5847  *  igb_set_uta - Set unicast filter table address
5848  *  @adapter: board private structure
5849  *
5850  *  The unicast table address is a register array of 32-bit registers.
5851  *  The table is meant to be used in a way similar to how the MTA is used
5852  *  however due to certain limitations in the hardware it is necessary to
5853  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5854  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5855  **/
5856 static void igb_set_uta(struct igb_adapter *adapter)
5857 {
5858 	struct e1000_hw *hw = &adapter->hw;
5859 	int i;
5860 
5861 	/* The UTA table only exists on 82576 hardware and newer */
5862 	if (hw->mac.type < e1000_82576)
5863 		return;
5864 
5865 	/* we only need to do this if VMDq is enabled */
5866 	if (!adapter->vfs_allocated_count)
5867 		return;
5868 
5869 	for (i = 0; i < hw->mac.uta_reg_count; i++)
5870 		array_wr32(E1000_UTA, i, ~0);
5871 }
5872 
5873 /**
5874  *  igb_intr_msi - Interrupt Handler
5875  *  @irq: interrupt number
5876  *  @data: pointer to a network interface device structure
5877  **/
5878 static irqreturn_t igb_intr_msi(int irq, void *data)
5879 {
5880 	struct igb_adapter *adapter = data;
5881 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5882 	struct e1000_hw *hw = &adapter->hw;
5883 	/* read ICR disables interrupts using IAM */
5884 	u32 icr = rd32(E1000_ICR);
5885 
5886 	igb_write_itr(q_vector);
5887 
5888 	if (icr & E1000_ICR_DRSTA)
5889 		schedule_work(&adapter->reset_task);
5890 
5891 	if (icr & E1000_ICR_DOUTSYNC) {
5892 		/* HW is reporting DMA is out of sync */
5893 		adapter->stats.doosync++;
5894 	}
5895 
5896 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5897 		hw->mac.get_link_status = 1;
5898 		if (!test_bit(__IGB_DOWN, &adapter->state))
5899 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5900 	}
5901 
5902 	if (icr & E1000_ICR_TS) {
5903 		u32 tsicr = rd32(E1000_TSICR);
5904 
5905 		if (tsicr & E1000_TSICR_TXTS) {
5906 			/* acknowledge the interrupt */
5907 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5908 			/* retrieve hardware timestamp */
5909 			schedule_work(&adapter->ptp_tx_work);
5910 		}
5911 	}
5912 
5913 	napi_schedule(&q_vector->napi);
5914 
5915 	return IRQ_HANDLED;
5916 }
5917 
5918 /**
5919  *  igb_intr - Legacy Interrupt Handler
5920  *  @irq: interrupt number
5921  *  @data: pointer to a network interface device structure
5922  **/
5923 static irqreturn_t igb_intr(int irq, void *data)
5924 {
5925 	struct igb_adapter *adapter = data;
5926 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5927 	struct e1000_hw *hw = &adapter->hw;
5928 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5929 	 * need for the IMC write
5930 	 */
5931 	u32 icr = rd32(E1000_ICR);
5932 
5933 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5934 	 * not set, then the adapter didn't send an interrupt
5935 	 */
5936 	if (!(icr & E1000_ICR_INT_ASSERTED))
5937 		return IRQ_NONE;
5938 
5939 	igb_write_itr(q_vector);
5940 
5941 	if (icr & E1000_ICR_DRSTA)
5942 		schedule_work(&adapter->reset_task);
5943 
5944 	if (icr & E1000_ICR_DOUTSYNC) {
5945 		/* HW is reporting DMA is out of sync */
5946 		adapter->stats.doosync++;
5947 	}
5948 
5949 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5950 		hw->mac.get_link_status = 1;
5951 		/* guard against interrupt when we're going down */
5952 		if (!test_bit(__IGB_DOWN, &adapter->state))
5953 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5954 	}
5955 
5956 	if (icr & E1000_ICR_TS) {
5957 		u32 tsicr = rd32(E1000_TSICR);
5958 
5959 		if (tsicr & E1000_TSICR_TXTS) {
5960 			/* acknowledge the interrupt */
5961 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5962 			/* retrieve hardware timestamp */
5963 			schedule_work(&adapter->ptp_tx_work);
5964 		}
5965 	}
5966 
5967 	napi_schedule(&q_vector->napi);
5968 
5969 	return IRQ_HANDLED;
5970 }
5971 
5972 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5973 {
5974 	struct igb_adapter *adapter = q_vector->adapter;
5975 	struct e1000_hw *hw = &adapter->hw;
5976 
5977 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5978 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5979 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5980 			igb_set_itr(q_vector);
5981 		else
5982 			igb_update_ring_itr(q_vector);
5983 	}
5984 
5985 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5986 		if (adapter->msix_entries)
5987 			wr32(E1000_EIMS, q_vector->eims_value);
5988 		else
5989 			igb_irq_enable(adapter);
5990 	}
5991 }
5992 
5993 /**
5994  *  igb_poll - NAPI Rx polling callback
5995  *  @napi: napi polling structure
5996  *  @budget: count of how many packets we should handle
5997  **/
5998 static int igb_poll(struct napi_struct *napi, int budget)
5999 {
6000 	struct igb_q_vector *q_vector = container_of(napi,
6001 						     struct igb_q_vector,
6002 						     napi);
6003 	bool clean_complete = true;
6004 
6005 #ifdef CONFIG_IGB_DCA
6006 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6007 		igb_update_dca(q_vector);
6008 #endif
6009 	if (q_vector->tx.ring)
6010 		clean_complete = igb_clean_tx_irq(q_vector);
6011 
6012 	if (q_vector->rx.ring)
6013 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6014 
6015 	/* If all work not completed, return budget and keep polling */
6016 	if (!clean_complete)
6017 		return budget;
6018 
6019 	/* If not enough Rx work done, exit the polling mode */
6020 	napi_complete(napi);
6021 	igb_ring_irq_enable(q_vector);
6022 
6023 	return 0;
6024 }
6025 
6026 /**
6027  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6028  *  @q_vector: pointer to q_vector containing needed info
6029  *
6030  *  returns true if ring is completely cleaned
6031  **/
6032 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6033 {
6034 	struct igb_adapter *adapter = q_vector->adapter;
6035 	struct igb_ring *tx_ring = q_vector->tx.ring;
6036 	struct igb_tx_buffer *tx_buffer;
6037 	union e1000_adv_tx_desc *tx_desc;
6038 	unsigned int total_bytes = 0, total_packets = 0;
6039 	unsigned int budget = q_vector->tx.work_limit;
6040 	unsigned int i = tx_ring->next_to_clean;
6041 
6042 	if (test_bit(__IGB_DOWN, &adapter->state))
6043 		return true;
6044 
6045 	tx_buffer = &tx_ring->tx_buffer_info[i];
6046 	tx_desc = IGB_TX_DESC(tx_ring, i);
6047 	i -= tx_ring->count;
6048 
6049 	do {
6050 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6051 
6052 		/* if next_to_watch is not set then there is no work pending */
6053 		if (!eop_desc)
6054 			break;
6055 
6056 		/* prevent any other reads prior to eop_desc */
6057 		read_barrier_depends();
6058 
6059 		/* if DD is not set pending work has not been completed */
6060 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6061 			break;
6062 
6063 		/* clear next_to_watch to prevent false hangs */
6064 		tx_buffer->next_to_watch = NULL;
6065 
6066 		/* update the statistics for this packet */
6067 		total_bytes += tx_buffer->bytecount;
6068 		total_packets += tx_buffer->gso_segs;
6069 
6070 		/* free the skb */
6071 		dev_kfree_skb_any(tx_buffer->skb);
6072 
6073 		/* unmap skb header data */
6074 		dma_unmap_single(tx_ring->dev,
6075 				 dma_unmap_addr(tx_buffer, dma),
6076 				 dma_unmap_len(tx_buffer, len),
6077 				 DMA_TO_DEVICE);
6078 
6079 		/* clear tx_buffer data */
6080 		tx_buffer->skb = NULL;
6081 		dma_unmap_len_set(tx_buffer, len, 0);
6082 
6083 		/* clear last DMA location and unmap remaining buffers */
6084 		while (tx_desc != eop_desc) {
6085 			tx_buffer++;
6086 			tx_desc++;
6087 			i++;
6088 			if (unlikely(!i)) {
6089 				i -= tx_ring->count;
6090 				tx_buffer = tx_ring->tx_buffer_info;
6091 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6092 			}
6093 
6094 			/* unmap any remaining paged data */
6095 			if (dma_unmap_len(tx_buffer, len)) {
6096 				dma_unmap_page(tx_ring->dev,
6097 					       dma_unmap_addr(tx_buffer, dma),
6098 					       dma_unmap_len(tx_buffer, len),
6099 					       DMA_TO_DEVICE);
6100 				dma_unmap_len_set(tx_buffer, len, 0);
6101 			}
6102 		}
6103 
6104 		/* move us one more past the eop_desc for start of next pkt */
6105 		tx_buffer++;
6106 		tx_desc++;
6107 		i++;
6108 		if (unlikely(!i)) {
6109 			i -= tx_ring->count;
6110 			tx_buffer = tx_ring->tx_buffer_info;
6111 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6112 		}
6113 
6114 		/* issue prefetch for next Tx descriptor */
6115 		prefetch(tx_desc);
6116 
6117 		/* update budget accounting */
6118 		budget--;
6119 	} while (likely(budget));
6120 
6121 	netdev_tx_completed_queue(txring_txq(tx_ring),
6122 				  total_packets, total_bytes);
6123 	i += tx_ring->count;
6124 	tx_ring->next_to_clean = i;
6125 	u64_stats_update_begin(&tx_ring->tx_syncp);
6126 	tx_ring->tx_stats.bytes += total_bytes;
6127 	tx_ring->tx_stats.packets += total_packets;
6128 	u64_stats_update_end(&tx_ring->tx_syncp);
6129 	q_vector->tx.total_bytes += total_bytes;
6130 	q_vector->tx.total_packets += total_packets;
6131 
6132 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6133 		struct e1000_hw *hw = &adapter->hw;
6134 
6135 		/* Detect a transmit hang in hardware, this serializes the
6136 		 * check with the clearing of time_stamp and movement of i
6137 		 */
6138 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6139 		if (tx_buffer->next_to_watch &&
6140 		    time_after(jiffies, tx_buffer->time_stamp +
6141 			       (adapter->tx_timeout_factor * HZ)) &&
6142 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6143 
6144 			/* detected Tx unit hang */
6145 			dev_err(tx_ring->dev,
6146 				"Detected Tx Unit Hang\n"
6147 				"  Tx Queue             <%d>\n"
6148 				"  TDH                  <%x>\n"
6149 				"  TDT                  <%x>\n"
6150 				"  next_to_use          <%x>\n"
6151 				"  next_to_clean        <%x>\n"
6152 				"buffer_info[next_to_clean]\n"
6153 				"  time_stamp           <%lx>\n"
6154 				"  next_to_watch        <%p>\n"
6155 				"  jiffies              <%lx>\n"
6156 				"  desc.status          <%x>\n",
6157 				tx_ring->queue_index,
6158 				rd32(E1000_TDH(tx_ring->reg_idx)),
6159 				readl(tx_ring->tail),
6160 				tx_ring->next_to_use,
6161 				tx_ring->next_to_clean,
6162 				tx_buffer->time_stamp,
6163 				tx_buffer->next_to_watch,
6164 				jiffies,
6165 				tx_buffer->next_to_watch->wb.status);
6166 			netif_stop_subqueue(tx_ring->netdev,
6167 					    tx_ring->queue_index);
6168 
6169 			/* we are about to reset, no point in enabling stuff */
6170 			return true;
6171 		}
6172 	}
6173 
6174 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6175 	if (unlikely(total_packets &&
6176 	    netif_carrier_ok(tx_ring->netdev) &&
6177 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6178 		/* Make sure that anybody stopping the queue after this
6179 		 * sees the new next_to_clean.
6180 		 */
6181 		smp_mb();
6182 		if (__netif_subqueue_stopped(tx_ring->netdev,
6183 					     tx_ring->queue_index) &&
6184 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6185 			netif_wake_subqueue(tx_ring->netdev,
6186 					    tx_ring->queue_index);
6187 
6188 			u64_stats_update_begin(&tx_ring->tx_syncp);
6189 			tx_ring->tx_stats.restart_queue++;
6190 			u64_stats_update_end(&tx_ring->tx_syncp);
6191 		}
6192 	}
6193 
6194 	return !!budget;
6195 }
6196 
6197 /**
6198  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6199  *  @rx_ring: rx descriptor ring to store buffers on
6200  *  @old_buff: donor buffer to have page reused
6201  *
6202  *  Synchronizes page for reuse by the adapter
6203  **/
6204 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6205 			      struct igb_rx_buffer *old_buff)
6206 {
6207 	struct igb_rx_buffer *new_buff;
6208 	u16 nta = rx_ring->next_to_alloc;
6209 
6210 	new_buff = &rx_ring->rx_buffer_info[nta];
6211 
6212 	/* update, and store next to alloc */
6213 	nta++;
6214 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6215 
6216 	/* transfer page from old buffer to new buffer */
6217 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6218 
6219 	/* sync the buffer for use by the device */
6220 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6221 					 old_buff->page_offset,
6222 					 IGB_RX_BUFSZ,
6223 					 DMA_FROM_DEVICE);
6224 }
6225 
6226 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6227 				  struct page *page,
6228 				  unsigned int truesize)
6229 {
6230 	/* avoid re-using remote pages */
6231 	if (unlikely(page_to_nid(page) != numa_node_id()))
6232 		return false;
6233 
6234 #if (PAGE_SIZE < 8192)
6235 	/* if we are only owner of page we can reuse it */
6236 	if (unlikely(page_count(page) != 1))
6237 		return false;
6238 
6239 	/* flip page offset to other buffer */
6240 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6241 
6242 	/* since we are the only owner of the page and we need to
6243 	 * increment it, just set the value to 2 in order to avoid
6244 	 * an unnecessary locked operation
6245 	 */
6246 	atomic_set(&page->_count, 2);
6247 #else
6248 	/* move offset up to the next cache line */
6249 	rx_buffer->page_offset += truesize;
6250 
6251 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6252 		return false;
6253 
6254 	/* bump ref count on page before it is given to the stack */
6255 	get_page(page);
6256 #endif
6257 
6258 	return true;
6259 }
6260 
6261 /**
6262  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6263  *  @rx_ring: rx descriptor ring to transact packets on
6264  *  @rx_buffer: buffer containing page to add
6265  *  @rx_desc: descriptor containing length of buffer written by hardware
6266  *  @skb: sk_buff to place the data into
6267  *
6268  *  This function will add the data contained in rx_buffer->page to the skb.
6269  *  This is done either through a direct copy if the data in the buffer is
6270  *  less than the skb header size, otherwise it will just attach the page as
6271  *  a frag to the skb.
6272  *
6273  *  The function will then update the page offset if necessary and return
6274  *  true if the buffer can be reused by the adapter.
6275  **/
6276 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6277 			    struct igb_rx_buffer *rx_buffer,
6278 			    union e1000_adv_rx_desc *rx_desc,
6279 			    struct sk_buff *skb)
6280 {
6281 	struct page *page = rx_buffer->page;
6282 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6283 #if (PAGE_SIZE < 8192)
6284 	unsigned int truesize = IGB_RX_BUFSZ;
6285 #else
6286 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6287 #endif
6288 
6289 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6290 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6291 
6292 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6293 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6294 			va += IGB_TS_HDR_LEN;
6295 			size -= IGB_TS_HDR_LEN;
6296 		}
6297 
6298 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6299 
6300 		/* we can reuse buffer as-is, just make sure it is local */
6301 		if (likely(page_to_nid(page) == numa_node_id()))
6302 			return true;
6303 
6304 		/* this page cannot be reused so discard it */
6305 		put_page(page);
6306 		return false;
6307 	}
6308 
6309 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6310 			rx_buffer->page_offset, size, truesize);
6311 
6312 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6313 }
6314 
6315 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6316 					   union e1000_adv_rx_desc *rx_desc,
6317 					   struct sk_buff *skb)
6318 {
6319 	struct igb_rx_buffer *rx_buffer;
6320 	struct page *page;
6321 
6322 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6323 
6324 	page = rx_buffer->page;
6325 	prefetchw(page);
6326 
6327 	if (likely(!skb)) {
6328 		void *page_addr = page_address(page) +
6329 				  rx_buffer->page_offset;
6330 
6331 		/* prefetch first cache line of first page */
6332 		prefetch(page_addr);
6333 #if L1_CACHE_BYTES < 128
6334 		prefetch(page_addr + L1_CACHE_BYTES);
6335 #endif
6336 
6337 		/* allocate a skb to store the frags */
6338 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6339 						IGB_RX_HDR_LEN);
6340 		if (unlikely(!skb)) {
6341 			rx_ring->rx_stats.alloc_failed++;
6342 			return NULL;
6343 		}
6344 
6345 		/* we will be copying header into skb->data in
6346 		 * pskb_may_pull so it is in our interest to prefetch
6347 		 * it now to avoid a possible cache miss
6348 		 */
6349 		prefetchw(skb->data);
6350 	}
6351 
6352 	/* we are reusing so sync this buffer for CPU use */
6353 	dma_sync_single_range_for_cpu(rx_ring->dev,
6354 				      rx_buffer->dma,
6355 				      rx_buffer->page_offset,
6356 				      IGB_RX_BUFSZ,
6357 				      DMA_FROM_DEVICE);
6358 
6359 	/* pull page into skb */
6360 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6361 		/* hand second half of page back to the ring */
6362 		igb_reuse_rx_page(rx_ring, rx_buffer);
6363 	} else {
6364 		/* we are not reusing the buffer so unmap it */
6365 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6366 			       PAGE_SIZE, DMA_FROM_DEVICE);
6367 	}
6368 
6369 	/* clear contents of rx_buffer */
6370 	rx_buffer->page = NULL;
6371 
6372 	return skb;
6373 }
6374 
6375 static inline void igb_rx_checksum(struct igb_ring *ring,
6376 				   union e1000_adv_rx_desc *rx_desc,
6377 				   struct sk_buff *skb)
6378 {
6379 	skb_checksum_none_assert(skb);
6380 
6381 	/* Ignore Checksum bit is set */
6382 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6383 		return;
6384 
6385 	/* Rx checksum disabled via ethtool */
6386 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6387 		return;
6388 
6389 	/* TCP/UDP checksum error bit is set */
6390 	if (igb_test_staterr(rx_desc,
6391 			     E1000_RXDEXT_STATERR_TCPE |
6392 			     E1000_RXDEXT_STATERR_IPE)) {
6393 		/* work around errata with sctp packets where the TCPE aka
6394 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6395 		 * packets, (aka let the stack check the crc32c)
6396 		 */
6397 		if (!((skb->len == 60) &&
6398 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6399 			u64_stats_update_begin(&ring->rx_syncp);
6400 			ring->rx_stats.csum_err++;
6401 			u64_stats_update_end(&ring->rx_syncp);
6402 		}
6403 		/* let the stack verify checksum errors */
6404 		return;
6405 	}
6406 	/* It must be a TCP or UDP packet with a valid checksum */
6407 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6408 				      E1000_RXD_STAT_UDPCS))
6409 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6410 
6411 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6412 		le32_to_cpu(rx_desc->wb.upper.status_error));
6413 }
6414 
6415 static inline void igb_rx_hash(struct igb_ring *ring,
6416 			       union e1000_adv_rx_desc *rx_desc,
6417 			       struct sk_buff *skb)
6418 {
6419 	if (ring->netdev->features & NETIF_F_RXHASH)
6420 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6421 }
6422 
6423 /**
6424  *  igb_is_non_eop - process handling of non-EOP buffers
6425  *  @rx_ring: Rx ring being processed
6426  *  @rx_desc: Rx descriptor for current buffer
6427  *  @skb: current socket buffer containing buffer in progress
6428  *
6429  *  This function updates next to clean.  If the buffer is an EOP buffer
6430  *  this function exits returning false, otherwise it will place the
6431  *  sk_buff in the next buffer to be chained and return true indicating
6432  *  that this is in fact a non-EOP buffer.
6433  **/
6434 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6435 			   union e1000_adv_rx_desc *rx_desc)
6436 {
6437 	u32 ntc = rx_ring->next_to_clean + 1;
6438 
6439 	/* fetch, update, and store next to clean */
6440 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6441 	rx_ring->next_to_clean = ntc;
6442 
6443 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6444 
6445 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6446 		return false;
6447 
6448 	return true;
6449 }
6450 
6451 /**
6452  *  igb_get_headlen - determine size of header for LRO/GRO
6453  *  @data: pointer to the start of the headers
6454  *  @max_len: total length of section to find headers in
6455  *
6456  *  This function is meant to determine the length of headers that will
6457  *  be recognized by hardware for LRO, and GRO offloads.  The main
6458  *  motivation of doing this is to only perform one pull for IPv4 TCP
6459  *  packets so that we can do basic things like calculating the gso_size
6460  *  based on the average data per packet.
6461  **/
6462 static unsigned int igb_get_headlen(unsigned char *data,
6463 				    unsigned int max_len)
6464 {
6465 	union {
6466 		unsigned char *network;
6467 		/* l2 headers */
6468 		struct ethhdr *eth;
6469 		struct vlan_hdr *vlan;
6470 		/* l3 headers */
6471 		struct iphdr *ipv4;
6472 		struct ipv6hdr *ipv6;
6473 	} hdr;
6474 	__be16 protocol;
6475 	u8 nexthdr = 0;	/* default to not TCP */
6476 	u8 hlen;
6477 
6478 	/* this should never happen, but better safe than sorry */
6479 	if (max_len < ETH_HLEN)
6480 		return max_len;
6481 
6482 	/* initialize network frame pointer */
6483 	hdr.network = data;
6484 
6485 	/* set first protocol and move network header forward */
6486 	protocol = hdr.eth->h_proto;
6487 	hdr.network += ETH_HLEN;
6488 
6489 	/* handle any vlan tag if present */
6490 	if (protocol == __constant_htons(ETH_P_8021Q)) {
6491 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6492 			return max_len;
6493 
6494 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6495 		hdr.network += VLAN_HLEN;
6496 	}
6497 
6498 	/* handle L3 protocols */
6499 	if (protocol == __constant_htons(ETH_P_IP)) {
6500 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6501 			return max_len;
6502 
6503 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6504 		hlen = (hdr.network[0] & 0x0F) << 2;
6505 
6506 		/* verify hlen meets minimum size requirements */
6507 		if (hlen < sizeof(struct iphdr))
6508 			return hdr.network - data;
6509 
6510 		/* record next protocol if header is present */
6511 		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6512 			nexthdr = hdr.ipv4->protocol;
6513 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6514 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6515 			return max_len;
6516 
6517 		/* record next protocol */
6518 		nexthdr = hdr.ipv6->nexthdr;
6519 		hlen = sizeof(struct ipv6hdr);
6520 	} else {
6521 		return hdr.network - data;
6522 	}
6523 
6524 	/* relocate pointer to start of L4 header */
6525 	hdr.network += hlen;
6526 
6527 	/* finally sort out TCP */
6528 	if (nexthdr == IPPROTO_TCP) {
6529 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6530 			return max_len;
6531 
6532 		/* access doff as a u8 to avoid unaligned access on ia64 */
6533 		hlen = (hdr.network[12] & 0xF0) >> 2;
6534 
6535 		/* verify hlen meets minimum size requirements */
6536 		if (hlen < sizeof(struct tcphdr))
6537 			return hdr.network - data;
6538 
6539 		hdr.network += hlen;
6540 	} else if (nexthdr == IPPROTO_UDP) {
6541 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6542 			return max_len;
6543 
6544 		hdr.network += sizeof(struct udphdr);
6545 	}
6546 
6547 	/* If everything has gone correctly hdr.network should be the
6548 	 * data section of the packet and will be the end of the header.
6549 	 * If not then it probably represents the end of the last recognized
6550 	 * header.
6551 	 */
6552 	if ((hdr.network - data) < max_len)
6553 		return hdr.network - data;
6554 	else
6555 		return max_len;
6556 }
6557 
6558 /**
6559  *  igb_pull_tail - igb specific version of skb_pull_tail
6560  *  @rx_ring: rx descriptor ring packet is being transacted on
6561  *  @rx_desc: pointer to the EOP Rx descriptor
6562  *  @skb: pointer to current skb being adjusted
6563  *
6564  *  This function is an igb specific version of __pskb_pull_tail.  The
6565  *  main difference between this version and the original function is that
6566  *  this function can make several assumptions about the state of things
6567  *  that allow for significant optimizations versus the standard function.
6568  *  As a result we can do things like drop a frag and maintain an accurate
6569  *  truesize for the skb.
6570  */
6571 static void igb_pull_tail(struct igb_ring *rx_ring,
6572 			  union e1000_adv_rx_desc *rx_desc,
6573 			  struct sk_buff *skb)
6574 {
6575 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6576 	unsigned char *va;
6577 	unsigned int pull_len;
6578 
6579 	/* it is valid to use page_address instead of kmap since we are
6580 	 * working with pages allocated out of the lomem pool per
6581 	 * alloc_page(GFP_ATOMIC)
6582 	 */
6583 	va = skb_frag_address(frag);
6584 
6585 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6586 		/* retrieve timestamp from buffer */
6587 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6588 
6589 		/* update pointers to remove timestamp header */
6590 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6591 		frag->page_offset += IGB_TS_HDR_LEN;
6592 		skb->data_len -= IGB_TS_HDR_LEN;
6593 		skb->len -= IGB_TS_HDR_LEN;
6594 
6595 		/* move va to start of packet data */
6596 		va += IGB_TS_HDR_LEN;
6597 	}
6598 
6599 	/* we need the header to contain the greater of either ETH_HLEN or
6600 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6601 	 */
6602 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6603 
6604 	/* align pull length to size of long to optimize memcpy performance */
6605 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6606 
6607 	/* update all of the pointers */
6608 	skb_frag_size_sub(frag, pull_len);
6609 	frag->page_offset += pull_len;
6610 	skb->data_len -= pull_len;
6611 	skb->tail += pull_len;
6612 }
6613 
6614 /**
6615  *  igb_cleanup_headers - Correct corrupted or empty headers
6616  *  @rx_ring: rx descriptor ring packet is being transacted on
6617  *  @rx_desc: pointer to the EOP Rx descriptor
6618  *  @skb: pointer to current skb being fixed
6619  *
6620  *  Address the case where we are pulling data in on pages only
6621  *  and as such no data is present in the skb header.
6622  *
6623  *  In addition if skb is not at least 60 bytes we need to pad it so that
6624  *  it is large enough to qualify as a valid Ethernet frame.
6625  *
6626  *  Returns true if an error was encountered and skb was freed.
6627  **/
6628 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6629 				union e1000_adv_rx_desc *rx_desc,
6630 				struct sk_buff *skb)
6631 {
6632 	if (unlikely((igb_test_staterr(rx_desc,
6633 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6634 		struct net_device *netdev = rx_ring->netdev;
6635 		if (!(netdev->features & NETIF_F_RXALL)) {
6636 			dev_kfree_skb_any(skb);
6637 			return true;
6638 		}
6639 	}
6640 
6641 	/* place header in linear portion of buffer */
6642 	if (skb_is_nonlinear(skb))
6643 		igb_pull_tail(rx_ring, rx_desc, skb);
6644 
6645 	/* if skb_pad returns an error the skb was freed */
6646 	if (unlikely(skb->len < 60)) {
6647 		int pad_len = 60 - skb->len;
6648 
6649 		if (skb_pad(skb, pad_len))
6650 			return true;
6651 		__skb_put(skb, pad_len);
6652 	}
6653 
6654 	return false;
6655 }
6656 
6657 /**
6658  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6659  *  @rx_ring: rx descriptor ring packet is being transacted on
6660  *  @rx_desc: pointer to the EOP Rx descriptor
6661  *  @skb: pointer to current skb being populated
6662  *
6663  *  This function checks the ring, descriptor, and packet information in
6664  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6665  *  other fields within the skb.
6666  **/
6667 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6668 				   union e1000_adv_rx_desc *rx_desc,
6669 				   struct sk_buff *skb)
6670 {
6671 	struct net_device *dev = rx_ring->netdev;
6672 
6673 	igb_rx_hash(rx_ring, rx_desc, skb);
6674 
6675 	igb_rx_checksum(rx_ring, rx_desc, skb);
6676 
6677 	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6678 
6679 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6680 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6681 		u16 vid;
6682 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6683 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6684 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6685 		else
6686 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6687 
6688 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6689 	}
6690 
6691 	skb_record_rx_queue(skb, rx_ring->queue_index);
6692 
6693 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6694 }
6695 
6696 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6697 {
6698 	struct igb_ring *rx_ring = q_vector->rx.ring;
6699 	struct sk_buff *skb = rx_ring->skb;
6700 	unsigned int total_bytes = 0, total_packets = 0;
6701 	u16 cleaned_count = igb_desc_unused(rx_ring);
6702 
6703 	do {
6704 		union e1000_adv_rx_desc *rx_desc;
6705 
6706 		/* return some buffers to hardware, one at a time is too slow */
6707 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6708 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6709 			cleaned_count = 0;
6710 		}
6711 
6712 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6713 
6714 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6715 			break;
6716 
6717 		/* This memory barrier is needed to keep us from reading
6718 		 * any other fields out of the rx_desc until we know the
6719 		 * RXD_STAT_DD bit is set
6720 		 */
6721 		rmb();
6722 
6723 		/* retrieve a buffer from the ring */
6724 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6725 
6726 		/* exit if we failed to retrieve a buffer */
6727 		if (!skb)
6728 			break;
6729 
6730 		cleaned_count++;
6731 
6732 		/* fetch next buffer in frame if non-eop */
6733 		if (igb_is_non_eop(rx_ring, rx_desc))
6734 			continue;
6735 
6736 		/* verify the packet layout is correct */
6737 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6738 			skb = NULL;
6739 			continue;
6740 		}
6741 
6742 		/* probably a little skewed due to removing CRC */
6743 		total_bytes += skb->len;
6744 
6745 		/* populate checksum, timestamp, VLAN, and protocol */
6746 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6747 
6748 		napi_gro_receive(&q_vector->napi, skb);
6749 
6750 		/* reset skb pointer */
6751 		skb = NULL;
6752 
6753 		/* update budget accounting */
6754 		total_packets++;
6755 	} while (likely(total_packets < budget));
6756 
6757 	/* place incomplete frames back on ring for completion */
6758 	rx_ring->skb = skb;
6759 
6760 	u64_stats_update_begin(&rx_ring->rx_syncp);
6761 	rx_ring->rx_stats.packets += total_packets;
6762 	rx_ring->rx_stats.bytes += total_bytes;
6763 	u64_stats_update_end(&rx_ring->rx_syncp);
6764 	q_vector->rx.total_packets += total_packets;
6765 	q_vector->rx.total_bytes += total_bytes;
6766 
6767 	if (cleaned_count)
6768 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6769 
6770 	return (total_packets < budget);
6771 }
6772 
6773 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6774 				  struct igb_rx_buffer *bi)
6775 {
6776 	struct page *page = bi->page;
6777 	dma_addr_t dma;
6778 
6779 	/* since we are recycling buffers we should seldom need to alloc */
6780 	if (likely(page))
6781 		return true;
6782 
6783 	/* alloc new page for storage */
6784 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6785 	if (unlikely(!page)) {
6786 		rx_ring->rx_stats.alloc_failed++;
6787 		return false;
6788 	}
6789 
6790 	/* map page for use */
6791 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6792 
6793 	/* if mapping failed free memory back to system since
6794 	 * there isn't much point in holding memory we can't use
6795 	 */
6796 	if (dma_mapping_error(rx_ring->dev, dma)) {
6797 		__free_page(page);
6798 
6799 		rx_ring->rx_stats.alloc_failed++;
6800 		return false;
6801 	}
6802 
6803 	bi->dma = dma;
6804 	bi->page = page;
6805 	bi->page_offset = 0;
6806 
6807 	return true;
6808 }
6809 
6810 /**
6811  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6812  *  @adapter: address of board private structure
6813  **/
6814 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6815 {
6816 	union e1000_adv_rx_desc *rx_desc;
6817 	struct igb_rx_buffer *bi;
6818 	u16 i = rx_ring->next_to_use;
6819 
6820 	/* nothing to do */
6821 	if (!cleaned_count)
6822 		return;
6823 
6824 	rx_desc = IGB_RX_DESC(rx_ring, i);
6825 	bi = &rx_ring->rx_buffer_info[i];
6826 	i -= rx_ring->count;
6827 
6828 	do {
6829 		if (!igb_alloc_mapped_page(rx_ring, bi))
6830 			break;
6831 
6832 		/* Refresh the desc even if buffer_addrs didn't change
6833 		 * because each write-back erases this info.
6834 		 */
6835 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6836 
6837 		rx_desc++;
6838 		bi++;
6839 		i++;
6840 		if (unlikely(!i)) {
6841 			rx_desc = IGB_RX_DESC(rx_ring, 0);
6842 			bi = rx_ring->rx_buffer_info;
6843 			i -= rx_ring->count;
6844 		}
6845 
6846 		/* clear the hdr_addr for the next_to_use descriptor */
6847 		rx_desc->read.hdr_addr = 0;
6848 
6849 		cleaned_count--;
6850 	} while (cleaned_count);
6851 
6852 	i += rx_ring->count;
6853 
6854 	if (rx_ring->next_to_use != i) {
6855 		/* record the next descriptor to use */
6856 		rx_ring->next_to_use = i;
6857 
6858 		/* update next to alloc since we have filled the ring */
6859 		rx_ring->next_to_alloc = i;
6860 
6861 		/* Force memory writes to complete before letting h/w
6862 		 * know there are new descriptors to fetch.  (Only
6863 		 * applicable for weak-ordered memory model archs,
6864 		 * such as IA-64).
6865 		 */
6866 		wmb();
6867 		writel(i, rx_ring->tail);
6868 	}
6869 }
6870 
6871 /**
6872  * igb_mii_ioctl -
6873  * @netdev:
6874  * @ifreq:
6875  * @cmd:
6876  **/
6877 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6878 {
6879 	struct igb_adapter *adapter = netdev_priv(netdev);
6880 	struct mii_ioctl_data *data = if_mii(ifr);
6881 
6882 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6883 		return -EOPNOTSUPP;
6884 
6885 	switch (cmd) {
6886 	case SIOCGMIIPHY:
6887 		data->phy_id = adapter->hw.phy.addr;
6888 		break;
6889 	case SIOCGMIIREG:
6890 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6891 		                     &data->val_out))
6892 			return -EIO;
6893 		break;
6894 	case SIOCSMIIREG:
6895 	default:
6896 		return -EOPNOTSUPP;
6897 	}
6898 	return 0;
6899 }
6900 
6901 /**
6902  * igb_ioctl -
6903  * @netdev:
6904  * @ifreq:
6905  * @cmd:
6906  **/
6907 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6908 {
6909 	switch (cmd) {
6910 	case SIOCGMIIPHY:
6911 	case SIOCGMIIREG:
6912 	case SIOCSMIIREG:
6913 		return igb_mii_ioctl(netdev, ifr, cmd);
6914 	case SIOCSHWTSTAMP:
6915 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6916 	default:
6917 		return -EOPNOTSUPP;
6918 	}
6919 }
6920 
6921 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6922 {
6923 	struct igb_adapter *adapter = hw->back;
6924 
6925 	if (pcie_capability_read_word(adapter->pdev, reg, value))
6926 		return -E1000_ERR_CONFIG;
6927 
6928 	return 0;
6929 }
6930 
6931 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6932 {
6933 	struct igb_adapter *adapter = hw->back;
6934 
6935 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6936 		return -E1000_ERR_CONFIG;
6937 
6938 	return 0;
6939 }
6940 
6941 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6942 {
6943 	struct igb_adapter *adapter = netdev_priv(netdev);
6944 	struct e1000_hw *hw = &adapter->hw;
6945 	u32 ctrl, rctl;
6946 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6947 
6948 	if (enable) {
6949 		/* enable VLAN tag insert/strip */
6950 		ctrl = rd32(E1000_CTRL);
6951 		ctrl |= E1000_CTRL_VME;
6952 		wr32(E1000_CTRL, ctrl);
6953 
6954 		/* Disable CFI check */
6955 		rctl = rd32(E1000_RCTL);
6956 		rctl &= ~E1000_RCTL_CFIEN;
6957 		wr32(E1000_RCTL, rctl);
6958 	} else {
6959 		/* disable VLAN tag insert/strip */
6960 		ctrl = rd32(E1000_CTRL);
6961 		ctrl &= ~E1000_CTRL_VME;
6962 		wr32(E1000_CTRL, ctrl);
6963 	}
6964 
6965 	igb_rlpml_set(adapter);
6966 }
6967 
6968 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6969 			       __be16 proto, u16 vid)
6970 {
6971 	struct igb_adapter *adapter = netdev_priv(netdev);
6972 	struct e1000_hw *hw = &adapter->hw;
6973 	int pf_id = adapter->vfs_allocated_count;
6974 
6975 	/* attempt to add filter to vlvf array */
6976 	igb_vlvf_set(adapter, vid, true, pf_id);
6977 
6978 	/* add the filter since PF can receive vlans w/o entry in vlvf */
6979 	igb_vfta_set(hw, vid, true);
6980 
6981 	set_bit(vid, adapter->active_vlans);
6982 
6983 	return 0;
6984 }
6985 
6986 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6987 				__be16 proto, u16 vid)
6988 {
6989 	struct igb_adapter *adapter = netdev_priv(netdev);
6990 	struct e1000_hw *hw = &adapter->hw;
6991 	int pf_id = adapter->vfs_allocated_count;
6992 	s32 err;
6993 
6994 	/* remove vlan from VLVF table array */
6995 	err = igb_vlvf_set(adapter, vid, false, pf_id);
6996 
6997 	/* if vid was not present in VLVF just remove it from table */
6998 	if (err)
6999 		igb_vfta_set(hw, vid, false);
7000 
7001 	clear_bit(vid, adapter->active_vlans);
7002 
7003 	return 0;
7004 }
7005 
7006 static void igb_restore_vlan(struct igb_adapter *adapter)
7007 {
7008 	u16 vid;
7009 
7010 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7011 
7012 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7013 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7014 }
7015 
7016 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7017 {
7018 	struct pci_dev *pdev = adapter->pdev;
7019 	struct e1000_mac_info *mac = &adapter->hw.mac;
7020 
7021 	mac->autoneg = 0;
7022 
7023 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7024 	 * for the switch() below to work
7025 	 */
7026 	if ((spd & 1) || (dplx & ~1))
7027 		goto err_inval;
7028 
7029 	/* Fiber NIC's only allow 1000 gbps Full duplex
7030 	 * and 100Mbps Full duplex for 100baseFx sfp
7031 	 */
7032 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7033 		switch (spd + dplx) {
7034 		case SPEED_10 + DUPLEX_HALF:
7035 		case SPEED_10 + DUPLEX_FULL:
7036 		case SPEED_100 + DUPLEX_HALF:
7037 			goto err_inval;
7038 		default:
7039 			break;
7040 		}
7041 	}
7042 
7043 	switch (spd + dplx) {
7044 	case SPEED_10 + DUPLEX_HALF:
7045 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7046 		break;
7047 	case SPEED_10 + DUPLEX_FULL:
7048 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7049 		break;
7050 	case SPEED_100 + DUPLEX_HALF:
7051 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7052 		break;
7053 	case SPEED_100 + DUPLEX_FULL:
7054 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7055 		break;
7056 	case SPEED_1000 + DUPLEX_FULL:
7057 		mac->autoneg = 1;
7058 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7059 		break;
7060 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7061 	default:
7062 		goto err_inval;
7063 	}
7064 
7065 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7066 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7067 
7068 	return 0;
7069 
7070 err_inval:
7071 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7072 	return -EINVAL;
7073 }
7074 
7075 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7076 			  bool runtime)
7077 {
7078 	struct net_device *netdev = pci_get_drvdata(pdev);
7079 	struct igb_adapter *adapter = netdev_priv(netdev);
7080 	struct e1000_hw *hw = &adapter->hw;
7081 	u32 ctrl, rctl, status;
7082 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7083 #ifdef CONFIG_PM
7084 	int retval = 0;
7085 #endif
7086 
7087 	netif_device_detach(netdev);
7088 
7089 	if (netif_running(netdev))
7090 		__igb_close(netdev, true);
7091 
7092 	igb_clear_interrupt_scheme(adapter);
7093 
7094 #ifdef CONFIG_PM
7095 	retval = pci_save_state(pdev);
7096 	if (retval)
7097 		return retval;
7098 #endif
7099 
7100 	status = rd32(E1000_STATUS);
7101 	if (status & E1000_STATUS_LU)
7102 		wufc &= ~E1000_WUFC_LNKC;
7103 
7104 	if (wufc) {
7105 		igb_setup_rctl(adapter);
7106 		igb_set_rx_mode(netdev);
7107 
7108 		/* turn on all-multi mode if wake on multicast is enabled */
7109 		if (wufc & E1000_WUFC_MC) {
7110 			rctl = rd32(E1000_RCTL);
7111 			rctl |= E1000_RCTL_MPE;
7112 			wr32(E1000_RCTL, rctl);
7113 		}
7114 
7115 		ctrl = rd32(E1000_CTRL);
7116 		/* advertise wake from D3Cold */
7117 		#define E1000_CTRL_ADVD3WUC 0x00100000
7118 		/* phy power management enable */
7119 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7120 		ctrl |= E1000_CTRL_ADVD3WUC;
7121 		wr32(E1000_CTRL, ctrl);
7122 
7123 		/* Allow time for pending master requests to run */
7124 		igb_disable_pcie_master(hw);
7125 
7126 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7127 		wr32(E1000_WUFC, wufc);
7128 	} else {
7129 		wr32(E1000_WUC, 0);
7130 		wr32(E1000_WUFC, 0);
7131 	}
7132 
7133 	*enable_wake = wufc || adapter->en_mng_pt;
7134 	if (!*enable_wake)
7135 		igb_power_down_link(adapter);
7136 	else
7137 		igb_power_up_link(adapter);
7138 
7139 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7140 	 * would have already happened in close and is redundant.
7141 	 */
7142 	igb_release_hw_control(adapter);
7143 
7144 	pci_disable_device(pdev);
7145 
7146 	return 0;
7147 }
7148 
7149 #ifdef CONFIG_PM
7150 #ifdef CONFIG_PM_SLEEP
7151 static int igb_suspend(struct device *dev)
7152 {
7153 	int retval;
7154 	bool wake;
7155 	struct pci_dev *pdev = to_pci_dev(dev);
7156 
7157 	retval = __igb_shutdown(pdev, &wake, 0);
7158 	if (retval)
7159 		return retval;
7160 
7161 	if (wake) {
7162 		pci_prepare_to_sleep(pdev);
7163 	} else {
7164 		pci_wake_from_d3(pdev, false);
7165 		pci_set_power_state(pdev, PCI_D3hot);
7166 	}
7167 
7168 	return 0;
7169 }
7170 #endif /* CONFIG_PM_SLEEP */
7171 
7172 static int igb_resume(struct device *dev)
7173 {
7174 	struct pci_dev *pdev = to_pci_dev(dev);
7175 	struct net_device *netdev = pci_get_drvdata(pdev);
7176 	struct igb_adapter *adapter = netdev_priv(netdev);
7177 	struct e1000_hw *hw = &adapter->hw;
7178 	u32 err;
7179 
7180 	pci_set_power_state(pdev, PCI_D0);
7181 	pci_restore_state(pdev);
7182 	pci_save_state(pdev);
7183 
7184 	err = pci_enable_device_mem(pdev);
7185 	if (err) {
7186 		dev_err(&pdev->dev,
7187 			"igb: Cannot enable PCI device from suspend\n");
7188 		return err;
7189 	}
7190 	pci_set_master(pdev);
7191 
7192 	pci_enable_wake(pdev, PCI_D3hot, 0);
7193 	pci_enable_wake(pdev, PCI_D3cold, 0);
7194 
7195 	if (igb_init_interrupt_scheme(adapter, true)) {
7196 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7197 		return -ENOMEM;
7198 	}
7199 
7200 	igb_reset(adapter);
7201 
7202 	/* let the f/w know that the h/w is now under the control of the
7203 	 * driver.
7204 	 */
7205 	igb_get_hw_control(adapter);
7206 
7207 	wr32(E1000_WUS, ~0);
7208 
7209 	if (netdev->flags & IFF_UP) {
7210 		rtnl_lock();
7211 		err = __igb_open(netdev, true);
7212 		rtnl_unlock();
7213 		if (err)
7214 			return err;
7215 	}
7216 
7217 	netif_device_attach(netdev);
7218 	return 0;
7219 }
7220 
7221 #ifdef CONFIG_PM_RUNTIME
7222 static int igb_runtime_idle(struct device *dev)
7223 {
7224 	struct pci_dev *pdev = to_pci_dev(dev);
7225 	struct net_device *netdev = pci_get_drvdata(pdev);
7226 	struct igb_adapter *adapter = netdev_priv(netdev);
7227 
7228 	if (!igb_has_link(adapter))
7229 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7230 
7231 	return -EBUSY;
7232 }
7233 
7234 static int igb_runtime_suspend(struct device *dev)
7235 {
7236 	struct pci_dev *pdev = to_pci_dev(dev);
7237 	int retval;
7238 	bool wake;
7239 
7240 	retval = __igb_shutdown(pdev, &wake, 1);
7241 	if (retval)
7242 		return retval;
7243 
7244 	if (wake) {
7245 		pci_prepare_to_sleep(pdev);
7246 	} else {
7247 		pci_wake_from_d3(pdev, false);
7248 		pci_set_power_state(pdev, PCI_D3hot);
7249 	}
7250 
7251 	return 0;
7252 }
7253 
7254 static int igb_runtime_resume(struct device *dev)
7255 {
7256 	return igb_resume(dev);
7257 }
7258 #endif /* CONFIG_PM_RUNTIME */
7259 #endif
7260 
7261 static void igb_shutdown(struct pci_dev *pdev)
7262 {
7263 	bool wake;
7264 
7265 	__igb_shutdown(pdev, &wake, 0);
7266 
7267 	if (system_state == SYSTEM_POWER_OFF) {
7268 		pci_wake_from_d3(pdev, wake);
7269 		pci_set_power_state(pdev, PCI_D3hot);
7270 	}
7271 }
7272 
7273 #ifdef CONFIG_PCI_IOV
7274 static int igb_sriov_reinit(struct pci_dev *dev)
7275 {
7276 	struct net_device *netdev = pci_get_drvdata(dev);
7277 	struct igb_adapter *adapter = netdev_priv(netdev);
7278 	struct pci_dev *pdev = adapter->pdev;
7279 
7280 	rtnl_lock();
7281 
7282 	if (netif_running(netdev))
7283 		igb_close(netdev);
7284 
7285 	igb_clear_interrupt_scheme(adapter);
7286 
7287 	igb_init_queue_configuration(adapter);
7288 
7289 	if (igb_init_interrupt_scheme(adapter, true)) {
7290 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7291 		return -ENOMEM;
7292 	}
7293 
7294 	if (netif_running(netdev))
7295 		igb_open(netdev);
7296 
7297 	rtnl_unlock();
7298 
7299 	return 0;
7300 }
7301 
7302 static int igb_pci_disable_sriov(struct pci_dev *dev)
7303 {
7304 	int err = igb_disable_sriov(dev);
7305 
7306 	if (!err)
7307 		err = igb_sriov_reinit(dev);
7308 
7309 	return err;
7310 }
7311 
7312 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7313 {
7314 	int err = igb_enable_sriov(dev, num_vfs);
7315 
7316 	if (err)
7317 		goto out;
7318 
7319 	err = igb_sriov_reinit(dev);
7320 	if (!err)
7321 		return num_vfs;
7322 
7323 out:
7324 	return err;
7325 }
7326 
7327 #endif
7328 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7329 {
7330 #ifdef CONFIG_PCI_IOV
7331 	if (num_vfs == 0)
7332 		return igb_pci_disable_sriov(dev);
7333 	else
7334 		return igb_pci_enable_sriov(dev, num_vfs);
7335 #endif
7336 	return 0;
7337 }
7338 
7339 #ifdef CONFIG_NET_POLL_CONTROLLER
7340 /* Polling 'interrupt' - used by things like netconsole to send skbs
7341  * without having to re-enable interrupts. It's not called while
7342  * the interrupt routine is executing.
7343  */
7344 static void igb_netpoll(struct net_device *netdev)
7345 {
7346 	struct igb_adapter *adapter = netdev_priv(netdev);
7347 	struct e1000_hw *hw = &adapter->hw;
7348 	struct igb_q_vector *q_vector;
7349 	int i;
7350 
7351 	for (i = 0; i < adapter->num_q_vectors; i++) {
7352 		q_vector = adapter->q_vector[i];
7353 		if (adapter->msix_entries)
7354 			wr32(E1000_EIMC, q_vector->eims_value);
7355 		else
7356 			igb_irq_disable(adapter);
7357 		napi_schedule(&q_vector->napi);
7358 	}
7359 }
7360 #endif /* CONFIG_NET_POLL_CONTROLLER */
7361 
7362 /**
7363  *  igb_io_error_detected - called when PCI error is detected
7364  *  @pdev: Pointer to PCI device
7365  *  @state: The current pci connection state
7366  *
7367  *  This function is called after a PCI bus error affecting
7368  *  this device has been detected.
7369  **/
7370 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7371 					      pci_channel_state_t state)
7372 {
7373 	struct net_device *netdev = pci_get_drvdata(pdev);
7374 	struct igb_adapter *adapter = netdev_priv(netdev);
7375 
7376 	netif_device_detach(netdev);
7377 
7378 	if (state == pci_channel_io_perm_failure)
7379 		return PCI_ERS_RESULT_DISCONNECT;
7380 
7381 	if (netif_running(netdev))
7382 		igb_down(adapter);
7383 	pci_disable_device(pdev);
7384 
7385 	/* Request a slot slot reset. */
7386 	return PCI_ERS_RESULT_NEED_RESET;
7387 }
7388 
7389 /**
7390  *  igb_io_slot_reset - called after the pci bus has been reset.
7391  *  @pdev: Pointer to PCI device
7392  *
7393  *  Restart the card from scratch, as if from a cold-boot. Implementation
7394  *  resembles the first-half of the igb_resume routine.
7395  **/
7396 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7397 {
7398 	struct net_device *netdev = pci_get_drvdata(pdev);
7399 	struct igb_adapter *adapter = netdev_priv(netdev);
7400 	struct e1000_hw *hw = &adapter->hw;
7401 	pci_ers_result_t result;
7402 	int err;
7403 
7404 	if (pci_enable_device_mem(pdev)) {
7405 		dev_err(&pdev->dev,
7406 			"Cannot re-enable PCI device after reset.\n");
7407 		result = PCI_ERS_RESULT_DISCONNECT;
7408 	} else {
7409 		pci_set_master(pdev);
7410 		pci_restore_state(pdev);
7411 		pci_save_state(pdev);
7412 
7413 		pci_enable_wake(pdev, PCI_D3hot, 0);
7414 		pci_enable_wake(pdev, PCI_D3cold, 0);
7415 
7416 		igb_reset(adapter);
7417 		wr32(E1000_WUS, ~0);
7418 		result = PCI_ERS_RESULT_RECOVERED;
7419 	}
7420 
7421 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7422 	if (err) {
7423 		dev_err(&pdev->dev,
7424 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7425 			err);
7426 		/* non-fatal, continue */
7427 	}
7428 
7429 	return result;
7430 }
7431 
7432 /**
7433  *  igb_io_resume - called when traffic can start flowing again.
7434  *  @pdev: Pointer to PCI device
7435  *
7436  *  This callback is called when the error recovery driver tells us that
7437  *  its OK to resume normal operation. Implementation resembles the
7438  *  second-half of the igb_resume routine.
7439  */
7440 static void igb_io_resume(struct pci_dev *pdev)
7441 {
7442 	struct net_device *netdev = pci_get_drvdata(pdev);
7443 	struct igb_adapter *adapter = netdev_priv(netdev);
7444 
7445 	if (netif_running(netdev)) {
7446 		if (igb_up(adapter)) {
7447 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7448 			return;
7449 		}
7450 	}
7451 
7452 	netif_device_attach(netdev);
7453 
7454 	/* let the f/w know that the h/w is now under the control of the
7455 	 * driver.
7456 	 */
7457 	igb_get_hw_control(adapter);
7458 }
7459 
7460 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7461 			     u8 qsel)
7462 {
7463 	u32 rar_low, rar_high;
7464 	struct e1000_hw *hw = &adapter->hw;
7465 
7466 	/* HW expects these in little endian so we reverse the byte order
7467 	 * from network order (big endian) to little endian
7468 	 */
7469 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7470 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7471 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7472 
7473 	/* Indicate to hardware the Address is Valid. */
7474 	rar_high |= E1000_RAH_AV;
7475 
7476 	if (hw->mac.type == e1000_82575)
7477 		rar_high |= E1000_RAH_POOL_1 * qsel;
7478 	else
7479 		rar_high |= E1000_RAH_POOL_1 << qsel;
7480 
7481 	wr32(E1000_RAL(index), rar_low);
7482 	wrfl();
7483 	wr32(E1000_RAH(index), rar_high);
7484 	wrfl();
7485 }
7486 
7487 static int igb_set_vf_mac(struct igb_adapter *adapter,
7488 			  int vf, unsigned char *mac_addr)
7489 {
7490 	struct e1000_hw *hw = &adapter->hw;
7491 	/* VF MAC addresses start at end of receive addresses and moves
7492 	 * towards the first, as a result a collision should not be possible
7493 	 */
7494 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7495 
7496 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7497 
7498 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7499 
7500 	return 0;
7501 }
7502 
7503 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7504 {
7505 	struct igb_adapter *adapter = netdev_priv(netdev);
7506 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7507 		return -EINVAL;
7508 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7509 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7510 	dev_info(&adapter->pdev->dev,
7511 		 "Reload the VF driver to make this change effective.");
7512 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7513 		dev_warn(&adapter->pdev->dev,
7514 			 "The VF MAC address has been set, but the PF device is not up.\n");
7515 		dev_warn(&adapter->pdev->dev,
7516 			 "Bring the PF device up before attempting to use the VF device.\n");
7517 	}
7518 	return igb_set_vf_mac(adapter, vf, mac);
7519 }
7520 
7521 static int igb_link_mbps(int internal_link_speed)
7522 {
7523 	switch (internal_link_speed) {
7524 	case SPEED_100:
7525 		return 100;
7526 	case SPEED_1000:
7527 		return 1000;
7528 	default:
7529 		return 0;
7530 	}
7531 }
7532 
7533 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7534 				  int link_speed)
7535 {
7536 	int rf_dec, rf_int;
7537 	u32 bcnrc_val;
7538 
7539 	if (tx_rate != 0) {
7540 		/* Calculate the rate factor values to set */
7541 		rf_int = link_speed / tx_rate;
7542 		rf_dec = (link_speed - (rf_int * tx_rate));
7543 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7544 			 tx_rate;
7545 
7546 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7547 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7548 			      E1000_RTTBCNRC_RF_INT_MASK);
7549 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7550 	} else {
7551 		bcnrc_val = 0;
7552 	}
7553 
7554 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7555 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7556 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7557 	 */
7558 	wr32(E1000_RTTBCNRM, 0x14);
7559 	wr32(E1000_RTTBCNRC, bcnrc_val);
7560 }
7561 
7562 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7563 {
7564 	int actual_link_speed, i;
7565 	bool reset_rate = false;
7566 
7567 	/* VF TX rate limit was not set or not supported */
7568 	if ((adapter->vf_rate_link_speed == 0) ||
7569 	    (adapter->hw.mac.type != e1000_82576))
7570 		return;
7571 
7572 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7573 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7574 		reset_rate = true;
7575 		adapter->vf_rate_link_speed = 0;
7576 		dev_info(&adapter->pdev->dev,
7577 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7578 	}
7579 
7580 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7581 		if (reset_rate)
7582 			adapter->vf_data[i].tx_rate = 0;
7583 
7584 		igb_set_vf_rate_limit(&adapter->hw, i,
7585 				      adapter->vf_data[i].tx_rate,
7586 				      actual_link_speed);
7587 	}
7588 }
7589 
7590 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7591 {
7592 	struct igb_adapter *adapter = netdev_priv(netdev);
7593 	struct e1000_hw *hw = &adapter->hw;
7594 	int actual_link_speed;
7595 
7596 	if (hw->mac.type != e1000_82576)
7597 		return -EOPNOTSUPP;
7598 
7599 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7600 	if ((vf >= adapter->vfs_allocated_count) ||
7601 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7602 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7603 		return -EINVAL;
7604 
7605 	adapter->vf_rate_link_speed = actual_link_speed;
7606 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7607 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7608 
7609 	return 0;
7610 }
7611 
7612 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7613 				   bool setting)
7614 {
7615 	struct igb_adapter *adapter = netdev_priv(netdev);
7616 	struct e1000_hw *hw = &adapter->hw;
7617 	u32 reg_val, reg_offset;
7618 
7619 	if (!adapter->vfs_allocated_count)
7620 		return -EOPNOTSUPP;
7621 
7622 	if (vf >= adapter->vfs_allocated_count)
7623 		return -EINVAL;
7624 
7625 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7626 	reg_val = rd32(reg_offset);
7627 	if (setting)
7628 		reg_val |= ((1 << vf) |
7629 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7630 	else
7631 		reg_val &= ~((1 << vf) |
7632 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7633 	wr32(reg_offset, reg_val);
7634 
7635 	adapter->vf_data[vf].spoofchk_enabled = setting;
7636 	return E1000_SUCCESS;
7637 }
7638 
7639 static int igb_ndo_get_vf_config(struct net_device *netdev,
7640 				 int vf, struct ifla_vf_info *ivi)
7641 {
7642 	struct igb_adapter *adapter = netdev_priv(netdev);
7643 	if (vf >= adapter->vfs_allocated_count)
7644 		return -EINVAL;
7645 	ivi->vf = vf;
7646 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7647 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7648 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7649 	ivi->qos = adapter->vf_data[vf].pf_qos;
7650 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7651 	return 0;
7652 }
7653 
7654 static void igb_vmm_control(struct igb_adapter *adapter)
7655 {
7656 	struct e1000_hw *hw = &adapter->hw;
7657 	u32 reg;
7658 
7659 	switch (hw->mac.type) {
7660 	case e1000_82575:
7661 	case e1000_i210:
7662 	case e1000_i211:
7663 	case e1000_i354:
7664 	default:
7665 		/* replication is not supported for 82575 */
7666 		return;
7667 	case e1000_82576:
7668 		/* notify HW that the MAC is adding vlan tags */
7669 		reg = rd32(E1000_DTXCTL);
7670 		reg |= E1000_DTXCTL_VLAN_ADDED;
7671 		wr32(E1000_DTXCTL, reg);
7672 	case e1000_82580:
7673 		/* enable replication vlan tag stripping */
7674 		reg = rd32(E1000_RPLOLR);
7675 		reg |= E1000_RPLOLR_STRVLAN;
7676 		wr32(E1000_RPLOLR, reg);
7677 	case e1000_i350:
7678 		/* none of the above registers are supported by i350 */
7679 		break;
7680 	}
7681 
7682 	if (adapter->vfs_allocated_count) {
7683 		igb_vmdq_set_loopback_pf(hw, true);
7684 		igb_vmdq_set_replication_pf(hw, true);
7685 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7686 					      adapter->vfs_allocated_count);
7687 	} else {
7688 		igb_vmdq_set_loopback_pf(hw, false);
7689 		igb_vmdq_set_replication_pf(hw, false);
7690 	}
7691 }
7692 
7693 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7694 {
7695 	struct e1000_hw *hw = &adapter->hw;
7696 	u32 dmac_thr;
7697 	u16 hwm;
7698 
7699 	if (hw->mac.type > e1000_82580) {
7700 		if (adapter->flags & IGB_FLAG_DMAC) {
7701 			u32 reg;
7702 
7703 			/* force threshold to 0. */
7704 			wr32(E1000_DMCTXTH, 0);
7705 
7706 			/* DMA Coalescing high water mark needs to be greater
7707 			 * than the Rx threshold. Set hwm to PBA - max frame
7708 			 * size in 16B units, capping it at PBA - 6KB.
7709 			 */
7710 			hwm = 64 * pba - adapter->max_frame_size / 16;
7711 			if (hwm < 64 * (pba - 6))
7712 				hwm = 64 * (pba - 6);
7713 			reg = rd32(E1000_FCRTC);
7714 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7715 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7716 				& E1000_FCRTC_RTH_COAL_MASK);
7717 			wr32(E1000_FCRTC, reg);
7718 
7719 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7720 			 * frame size, capping it at PBA - 10KB.
7721 			 */
7722 			dmac_thr = pba - adapter->max_frame_size / 512;
7723 			if (dmac_thr < pba - 10)
7724 				dmac_thr = pba - 10;
7725 			reg = rd32(E1000_DMACR);
7726 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7727 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7728 				& E1000_DMACR_DMACTHR_MASK);
7729 
7730 			/* transition to L0x or L1 if available..*/
7731 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7732 
7733 			/* watchdog timer= +-1000 usec in 32usec intervals */
7734 			reg |= (1000 >> 5);
7735 
7736 			/* Disable BMC-to-OS Watchdog Enable */
7737 			if (hw->mac.type != e1000_i354)
7738 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7739 
7740 			wr32(E1000_DMACR, reg);
7741 
7742 			/* no lower threshold to disable
7743 			 * coalescing(smart fifb)-UTRESH=0
7744 			 */
7745 			wr32(E1000_DMCRTRH, 0);
7746 
7747 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7748 
7749 			wr32(E1000_DMCTLX, reg);
7750 
7751 			/* free space in tx packet buffer to wake from
7752 			 * DMA coal
7753 			 */
7754 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7755 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7756 
7757 			/* make low power state decision controlled
7758 			 * by DMA coal
7759 			 */
7760 			reg = rd32(E1000_PCIEMISC);
7761 			reg &= ~E1000_PCIEMISC_LX_DECISION;
7762 			wr32(E1000_PCIEMISC, reg);
7763 		} /* endif adapter->dmac is not disabled */
7764 	} else if (hw->mac.type == e1000_82580) {
7765 		u32 reg = rd32(E1000_PCIEMISC);
7766 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7767 		wr32(E1000_DMACR, 0);
7768 	}
7769 }
7770 
7771 /**
7772  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7773  *  @hw: pointer to hardware structure
7774  *  @byte_offset: byte offset to read
7775  *  @dev_addr: device address
7776  *  @data: value read
7777  *
7778  *  Performs byte read operation over I2C interface at
7779  *  a specified device address.
7780  **/
7781 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7782 		      u8 dev_addr, u8 *data)
7783 {
7784 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7785 	struct i2c_client *this_client = adapter->i2c_client;
7786 	s32 status;
7787 	u16 swfw_mask = 0;
7788 
7789 	if (!this_client)
7790 		return E1000_ERR_I2C;
7791 
7792 	swfw_mask = E1000_SWFW_PHY0_SM;
7793 
7794 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7795 	    != E1000_SUCCESS)
7796 		return E1000_ERR_SWFW_SYNC;
7797 
7798 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7799 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7800 
7801 	if (status < 0)
7802 		return E1000_ERR_I2C;
7803 	else {
7804 		*data = status;
7805 		return E1000_SUCCESS;
7806 	}
7807 }
7808 
7809 /**
7810  *  igb_write_i2c_byte - Writes 8 bit word over I2C
7811  *  @hw: pointer to hardware structure
7812  *  @byte_offset: byte offset to write
7813  *  @dev_addr: device address
7814  *  @data: value to write
7815  *
7816  *  Performs byte write operation over I2C interface at
7817  *  a specified device address.
7818  **/
7819 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7820 		       u8 dev_addr, u8 data)
7821 {
7822 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7823 	struct i2c_client *this_client = adapter->i2c_client;
7824 	s32 status;
7825 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7826 
7827 	if (!this_client)
7828 		return E1000_ERR_I2C;
7829 
7830 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7831 		return E1000_ERR_SWFW_SYNC;
7832 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7833 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7834 
7835 	if (status)
7836 		return E1000_ERR_I2C;
7837 	else
7838 		return E1000_SUCCESS;
7839 
7840 }
7841 /* igb_main.c */
7842