1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/module.h> 31 #include <linux/types.h> 32 #include <linux/init.h> 33 #include <linux/bitops.h> 34 #include <linux/vmalloc.h> 35 #include <linux/pagemap.h> 36 #include <linux/netdevice.h> 37 #include <linux/ipv6.h> 38 #include <linux/slab.h> 39 #include <net/checksum.h> 40 #include <net/ip6_checksum.h> 41 #include <linux/net_tstamp.h> 42 #include <linux/mii.h> 43 #include <linux/ethtool.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/pci.h> 47 #include <linux/pci-aspm.h> 48 #include <linux/delay.h> 49 #include <linux/interrupt.h> 50 #include <linux/ip.h> 51 #include <linux/tcp.h> 52 #include <linux/sctp.h> 53 #include <linux/if_ether.h> 54 #include <linux/aer.h> 55 #include <linux/prefetch.h> 56 #include <linux/pm_runtime.h> 57 #ifdef CONFIG_IGB_DCA 58 #include <linux/dca.h> 59 #endif 60 #include <linux/i2c.h> 61 #include "igb.h" 62 63 #define MAJ 5 64 #define MIN 0 65 #define BUILD 5 66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ 67 __stringify(BUILD) "-k" 68 char igb_driver_name[] = "igb"; 69 char igb_driver_version[] = DRV_VERSION; 70 static const char igb_driver_string[] = 71 "Intel(R) Gigabit Ethernet Network Driver"; 72 static const char igb_copyright[] = 73 "Copyright (c) 2007-2013 Intel Corporation."; 74 75 static const struct e1000_info *igb_info_tbl[] = { 76 [board_82575] = &e1000_82575_info, 77 }; 78 79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 115 /* required last entry */ 116 {0, } 117 }; 118 119 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 120 121 void igb_reset(struct igb_adapter *); 122 static int igb_setup_all_tx_resources(struct igb_adapter *); 123 static int igb_setup_all_rx_resources(struct igb_adapter *); 124 static void igb_free_all_tx_resources(struct igb_adapter *); 125 static void igb_free_all_rx_resources(struct igb_adapter *); 126 static void igb_setup_mrqc(struct igb_adapter *); 127 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 128 static void igb_remove(struct pci_dev *pdev); 129 static int igb_sw_init(struct igb_adapter *); 130 static int igb_open(struct net_device *); 131 static int igb_close(struct net_device *); 132 static void igb_configure(struct igb_adapter *); 133 static void igb_configure_tx(struct igb_adapter *); 134 static void igb_configure_rx(struct igb_adapter *); 135 static void igb_clean_all_tx_rings(struct igb_adapter *); 136 static void igb_clean_all_rx_rings(struct igb_adapter *); 137 static void igb_clean_tx_ring(struct igb_ring *); 138 static void igb_clean_rx_ring(struct igb_ring *); 139 static void igb_set_rx_mode(struct net_device *); 140 static void igb_update_phy_info(unsigned long); 141 static void igb_watchdog(unsigned long); 142 static void igb_watchdog_task(struct work_struct *); 143 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 144 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, 145 struct rtnl_link_stats64 *stats); 146 static int igb_change_mtu(struct net_device *, int); 147 static int igb_set_mac(struct net_device *, void *); 148 static void igb_set_uta(struct igb_adapter *adapter); 149 static irqreturn_t igb_intr(int irq, void *); 150 static irqreturn_t igb_intr_msi(int irq, void *); 151 static irqreturn_t igb_msix_other(int irq, void *); 152 static irqreturn_t igb_msix_ring(int irq, void *); 153 #ifdef CONFIG_IGB_DCA 154 static void igb_update_dca(struct igb_q_vector *); 155 static void igb_setup_dca(struct igb_adapter *); 156 #endif /* CONFIG_IGB_DCA */ 157 static int igb_poll(struct napi_struct *, int); 158 static bool igb_clean_tx_irq(struct igb_q_vector *); 159 static bool igb_clean_rx_irq(struct igb_q_vector *, int); 160 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 161 static void igb_tx_timeout(struct net_device *); 162 static void igb_reset_task(struct work_struct *); 163 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features); 164 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 165 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 166 static void igb_restore_vlan(struct igb_adapter *); 167 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); 168 static void igb_ping_all_vfs(struct igb_adapter *); 169 static void igb_msg_task(struct igb_adapter *); 170 static void igb_vmm_control(struct igb_adapter *); 171 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 172 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 173 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 174 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 175 int vf, u16 vlan, u8 qos); 176 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); 177 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 178 bool setting); 179 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 180 struct ifla_vf_info *ivi); 181 static void igb_check_vf_rate_limit(struct igb_adapter *); 182 183 #ifdef CONFIG_PCI_IOV 184 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 185 #endif 186 187 #ifdef CONFIG_PM 188 #ifdef CONFIG_PM_SLEEP 189 static int igb_suspend(struct device *); 190 #endif 191 static int igb_resume(struct device *); 192 #ifdef CONFIG_PM_RUNTIME 193 static int igb_runtime_suspend(struct device *dev); 194 static int igb_runtime_resume(struct device *dev); 195 static int igb_runtime_idle(struct device *dev); 196 #endif 197 static const struct dev_pm_ops igb_pm_ops = { 198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 200 igb_runtime_idle) 201 }; 202 #endif 203 static void igb_shutdown(struct pci_dev *); 204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 205 #ifdef CONFIG_IGB_DCA 206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 207 static struct notifier_block dca_notifier = { 208 .notifier_call = igb_notify_dca, 209 .next = NULL, 210 .priority = 0 211 }; 212 #endif 213 #ifdef CONFIG_NET_POLL_CONTROLLER 214 /* for netdump / net console */ 215 static void igb_netpoll(struct net_device *); 216 #endif 217 #ifdef CONFIG_PCI_IOV 218 static unsigned int max_vfs = 0; 219 module_param(max_vfs, uint, 0); 220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " 221 "per physical function"); 222 #endif /* CONFIG_PCI_IOV */ 223 224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 225 pci_channel_state_t); 226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 227 static void igb_io_resume(struct pci_dev *); 228 229 static const struct pci_error_handlers igb_err_handler = { 230 .error_detected = igb_io_error_detected, 231 .slot_reset = igb_io_slot_reset, 232 .resume = igb_io_resume, 233 }; 234 235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 236 237 static struct pci_driver igb_driver = { 238 .name = igb_driver_name, 239 .id_table = igb_pci_tbl, 240 .probe = igb_probe, 241 .remove = igb_remove, 242 #ifdef CONFIG_PM 243 .driver.pm = &igb_pm_ops, 244 #endif 245 .shutdown = igb_shutdown, 246 .sriov_configure = igb_pci_sriov_configure, 247 .err_handler = &igb_err_handler 248 }; 249 250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 252 MODULE_LICENSE("GPL"); 253 MODULE_VERSION(DRV_VERSION); 254 255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 256 static int debug = -1; 257 module_param(debug, int, 0); 258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 259 260 struct igb_reg_info { 261 u32 ofs; 262 char *name; 263 }; 264 265 static const struct igb_reg_info igb_reg_info_tbl[] = { 266 267 /* General Registers */ 268 {E1000_CTRL, "CTRL"}, 269 {E1000_STATUS, "STATUS"}, 270 {E1000_CTRL_EXT, "CTRL_EXT"}, 271 272 /* Interrupt Registers */ 273 {E1000_ICR, "ICR"}, 274 275 /* RX Registers */ 276 {E1000_RCTL, "RCTL"}, 277 {E1000_RDLEN(0), "RDLEN"}, 278 {E1000_RDH(0), "RDH"}, 279 {E1000_RDT(0), "RDT"}, 280 {E1000_RXDCTL(0), "RXDCTL"}, 281 {E1000_RDBAL(0), "RDBAL"}, 282 {E1000_RDBAH(0), "RDBAH"}, 283 284 /* TX Registers */ 285 {E1000_TCTL, "TCTL"}, 286 {E1000_TDBAL(0), "TDBAL"}, 287 {E1000_TDBAH(0), "TDBAH"}, 288 {E1000_TDLEN(0), "TDLEN"}, 289 {E1000_TDH(0), "TDH"}, 290 {E1000_TDT(0), "TDT"}, 291 {E1000_TXDCTL(0), "TXDCTL"}, 292 {E1000_TDFH, "TDFH"}, 293 {E1000_TDFT, "TDFT"}, 294 {E1000_TDFHS, "TDFHS"}, 295 {E1000_TDFPC, "TDFPC"}, 296 297 /* List Terminator */ 298 {} 299 }; 300 301 /* igb_regdump - register printout routine */ 302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 303 { 304 int n = 0; 305 char rname[16]; 306 u32 regs[8]; 307 308 switch (reginfo->ofs) { 309 case E1000_RDLEN(0): 310 for (n = 0; n < 4; n++) 311 regs[n] = rd32(E1000_RDLEN(n)); 312 break; 313 case E1000_RDH(0): 314 for (n = 0; n < 4; n++) 315 regs[n] = rd32(E1000_RDH(n)); 316 break; 317 case E1000_RDT(0): 318 for (n = 0; n < 4; n++) 319 regs[n] = rd32(E1000_RDT(n)); 320 break; 321 case E1000_RXDCTL(0): 322 for (n = 0; n < 4; n++) 323 regs[n] = rd32(E1000_RXDCTL(n)); 324 break; 325 case E1000_RDBAL(0): 326 for (n = 0; n < 4; n++) 327 regs[n] = rd32(E1000_RDBAL(n)); 328 break; 329 case E1000_RDBAH(0): 330 for (n = 0; n < 4; n++) 331 regs[n] = rd32(E1000_RDBAH(n)); 332 break; 333 case E1000_TDBAL(0): 334 for (n = 0; n < 4; n++) 335 regs[n] = rd32(E1000_RDBAL(n)); 336 break; 337 case E1000_TDBAH(0): 338 for (n = 0; n < 4; n++) 339 regs[n] = rd32(E1000_TDBAH(n)); 340 break; 341 case E1000_TDLEN(0): 342 for (n = 0; n < 4; n++) 343 regs[n] = rd32(E1000_TDLEN(n)); 344 break; 345 case E1000_TDH(0): 346 for (n = 0; n < 4; n++) 347 regs[n] = rd32(E1000_TDH(n)); 348 break; 349 case E1000_TDT(0): 350 for (n = 0; n < 4; n++) 351 regs[n] = rd32(E1000_TDT(n)); 352 break; 353 case E1000_TXDCTL(0): 354 for (n = 0; n < 4; n++) 355 regs[n] = rd32(E1000_TXDCTL(n)); 356 break; 357 default: 358 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 359 return; 360 } 361 362 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 363 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 364 regs[2], regs[3]); 365 } 366 367 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 368 static void igb_dump(struct igb_adapter *adapter) 369 { 370 struct net_device *netdev = adapter->netdev; 371 struct e1000_hw *hw = &adapter->hw; 372 struct igb_reg_info *reginfo; 373 struct igb_ring *tx_ring; 374 union e1000_adv_tx_desc *tx_desc; 375 struct my_u0 { u64 a; u64 b; } *u0; 376 struct igb_ring *rx_ring; 377 union e1000_adv_rx_desc *rx_desc; 378 u32 staterr; 379 u16 i, n; 380 381 if (!netif_msg_hw(adapter)) 382 return; 383 384 /* Print netdevice Info */ 385 if (netdev) { 386 dev_info(&adapter->pdev->dev, "Net device Info\n"); 387 pr_info("Device Name state trans_start " 388 "last_rx\n"); 389 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 390 netdev->state, netdev->trans_start, netdev->last_rx); 391 } 392 393 /* Print Registers */ 394 dev_info(&adapter->pdev->dev, "Register Dump\n"); 395 pr_info(" Register Name Value\n"); 396 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 397 reginfo->name; reginfo++) { 398 igb_regdump(hw, reginfo); 399 } 400 401 /* Print TX Ring Summary */ 402 if (!netdev || !netif_running(netdev)) 403 goto exit; 404 405 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 406 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 407 for (n = 0; n < adapter->num_tx_queues; n++) { 408 struct igb_tx_buffer *buffer_info; 409 tx_ring = adapter->tx_ring[n]; 410 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 411 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 412 n, tx_ring->next_to_use, tx_ring->next_to_clean, 413 (u64)dma_unmap_addr(buffer_info, dma), 414 dma_unmap_len(buffer_info, len), 415 buffer_info->next_to_watch, 416 (u64)buffer_info->time_stamp); 417 } 418 419 /* Print TX Rings */ 420 if (!netif_msg_tx_done(adapter)) 421 goto rx_ring_summary; 422 423 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 424 425 /* Transmit Descriptor Formats 426 * 427 * Advanced Transmit Descriptor 428 * +--------------------------------------------------------------+ 429 * 0 | Buffer Address [63:0] | 430 * +--------------------------------------------------------------+ 431 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 432 * +--------------------------------------------------------------+ 433 * 63 46 45 40 39 38 36 35 32 31 24 15 0 434 */ 435 436 for (n = 0; n < adapter->num_tx_queues; n++) { 437 tx_ring = adapter->tx_ring[n]; 438 pr_info("------------------------------------\n"); 439 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 440 pr_info("------------------------------------\n"); 441 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] " 442 "[bi->dma ] leng ntw timestamp " 443 "bi->skb\n"); 444 445 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 446 const char *next_desc; 447 struct igb_tx_buffer *buffer_info; 448 tx_desc = IGB_TX_DESC(tx_ring, i); 449 buffer_info = &tx_ring->tx_buffer_info[i]; 450 u0 = (struct my_u0 *)tx_desc; 451 if (i == tx_ring->next_to_use && 452 i == tx_ring->next_to_clean) 453 next_desc = " NTC/U"; 454 else if (i == tx_ring->next_to_use) 455 next_desc = " NTU"; 456 else if (i == tx_ring->next_to_clean) 457 next_desc = " NTC"; 458 else 459 next_desc = ""; 460 461 pr_info("T [0x%03X] %016llX %016llX %016llX" 462 " %04X %p %016llX %p%s\n", i, 463 le64_to_cpu(u0->a), 464 le64_to_cpu(u0->b), 465 (u64)dma_unmap_addr(buffer_info, dma), 466 dma_unmap_len(buffer_info, len), 467 buffer_info->next_to_watch, 468 (u64)buffer_info->time_stamp, 469 buffer_info->skb, next_desc); 470 471 if (netif_msg_pktdata(adapter) && buffer_info->skb) 472 print_hex_dump(KERN_INFO, "", 473 DUMP_PREFIX_ADDRESS, 474 16, 1, buffer_info->skb->data, 475 dma_unmap_len(buffer_info, len), 476 true); 477 } 478 } 479 480 /* Print RX Rings Summary */ 481 rx_ring_summary: 482 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 483 pr_info("Queue [NTU] [NTC]\n"); 484 for (n = 0; n < adapter->num_rx_queues; n++) { 485 rx_ring = adapter->rx_ring[n]; 486 pr_info(" %5d %5X %5X\n", 487 n, rx_ring->next_to_use, rx_ring->next_to_clean); 488 } 489 490 /* Print RX Rings */ 491 if (!netif_msg_rx_status(adapter)) 492 goto exit; 493 494 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 495 496 /* Advanced Receive Descriptor (Read) Format 497 * 63 1 0 498 * +-----------------------------------------------------+ 499 * 0 | Packet Buffer Address [63:1] |A0/NSE| 500 * +----------------------------------------------+------+ 501 * 8 | Header Buffer Address [63:1] | DD | 502 * +-----------------------------------------------------+ 503 * 504 * 505 * Advanced Receive Descriptor (Write-Back) Format 506 * 507 * 63 48 47 32 31 30 21 20 17 16 4 3 0 508 * +------------------------------------------------------+ 509 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 510 * | Checksum Ident | | | | Type | Type | 511 * +------------------------------------------------------+ 512 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 513 * +------------------------------------------------------+ 514 * 63 48 47 32 31 20 19 0 515 */ 516 517 for (n = 0; n < adapter->num_rx_queues; n++) { 518 rx_ring = adapter->rx_ring[n]; 519 pr_info("------------------------------------\n"); 520 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 521 pr_info("------------------------------------\n"); 522 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] " 523 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 524 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----" 525 "----------- [bi->skb] <-- Adv Rx Write-Back format\n"); 526 527 for (i = 0; i < rx_ring->count; i++) { 528 const char *next_desc; 529 struct igb_rx_buffer *buffer_info; 530 buffer_info = &rx_ring->rx_buffer_info[i]; 531 rx_desc = IGB_RX_DESC(rx_ring, i); 532 u0 = (struct my_u0 *)rx_desc; 533 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 534 535 if (i == rx_ring->next_to_use) 536 next_desc = " NTU"; 537 else if (i == rx_ring->next_to_clean) 538 next_desc = " NTC"; 539 else 540 next_desc = ""; 541 542 if (staterr & E1000_RXD_STAT_DD) { 543 /* Descriptor Done */ 544 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 545 "RWB", i, 546 le64_to_cpu(u0->a), 547 le64_to_cpu(u0->b), 548 next_desc); 549 } else { 550 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 551 "R ", i, 552 le64_to_cpu(u0->a), 553 le64_to_cpu(u0->b), 554 (u64)buffer_info->dma, 555 next_desc); 556 557 if (netif_msg_pktdata(adapter) && 558 buffer_info->dma && buffer_info->page) { 559 print_hex_dump(KERN_INFO, "", 560 DUMP_PREFIX_ADDRESS, 561 16, 1, 562 page_address(buffer_info->page) + 563 buffer_info->page_offset, 564 IGB_RX_BUFSZ, true); 565 } 566 } 567 } 568 } 569 570 exit: 571 return; 572 } 573 574 /** 575 * igb_get_i2c_data - Reads the I2C SDA data bit 576 * @hw: pointer to hardware structure 577 * @i2cctl: Current value of I2CCTL register 578 * 579 * Returns the I2C data bit value 580 **/ 581 static int igb_get_i2c_data(void *data) 582 { 583 struct igb_adapter *adapter = (struct igb_adapter *)data; 584 struct e1000_hw *hw = &adapter->hw; 585 s32 i2cctl = rd32(E1000_I2CPARAMS); 586 587 return ((i2cctl & E1000_I2C_DATA_IN) != 0); 588 } 589 590 /** 591 * igb_set_i2c_data - Sets the I2C data bit 592 * @data: pointer to hardware structure 593 * @state: I2C data value (0 or 1) to set 594 * 595 * Sets the I2C data bit 596 **/ 597 static void igb_set_i2c_data(void *data, int state) 598 { 599 struct igb_adapter *adapter = (struct igb_adapter *)data; 600 struct e1000_hw *hw = &adapter->hw; 601 s32 i2cctl = rd32(E1000_I2CPARAMS); 602 603 if (state) 604 i2cctl |= E1000_I2C_DATA_OUT; 605 else 606 i2cctl &= ~E1000_I2C_DATA_OUT; 607 608 i2cctl &= ~E1000_I2C_DATA_OE_N; 609 i2cctl |= E1000_I2C_CLK_OE_N; 610 wr32(E1000_I2CPARAMS, i2cctl); 611 wrfl(); 612 613 } 614 615 /** 616 * igb_set_i2c_clk - Sets the I2C SCL clock 617 * @data: pointer to hardware structure 618 * @state: state to set clock 619 * 620 * Sets the I2C clock line to state 621 **/ 622 static void igb_set_i2c_clk(void *data, int state) 623 { 624 struct igb_adapter *adapter = (struct igb_adapter *)data; 625 struct e1000_hw *hw = &adapter->hw; 626 s32 i2cctl = rd32(E1000_I2CPARAMS); 627 628 if (state) { 629 i2cctl |= E1000_I2C_CLK_OUT; 630 i2cctl &= ~E1000_I2C_CLK_OE_N; 631 } else { 632 i2cctl &= ~E1000_I2C_CLK_OUT; 633 i2cctl &= ~E1000_I2C_CLK_OE_N; 634 } 635 wr32(E1000_I2CPARAMS, i2cctl); 636 wrfl(); 637 } 638 639 /** 640 * igb_get_i2c_clk - Gets the I2C SCL clock state 641 * @data: pointer to hardware structure 642 * 643 * Gets the I2C clock state 644 **/ 645 static int igb_get_i2c_clk(void *data) 646 { 647 struct igb_adapter *adapter = (struct igb_adapter *)data; 648 struct e1000_hw *hw = &adapter->hw; 649 s32 i2cctl = rd32(E1000_I2CPARAMS); 650 651 return ((i2cctl & E1000_I2C_CLK_IN) != 0); 652 } 653 654 static const struct i2c_algo_bit_data igb_i2c_algo = { 655 .setsda = igb_set_i2c_data, 656 .setscl = igb_set_i2c_clk, 657 .getsda = igb_get_i2c_data, 658 .getscl = igb_get_i2c_clk, 659 .udelay = 5, 660 .timeout = 20, 661 }; 662 663 /** 664 * igb_get_hw_dev - return device 665 * @hw: pointer to hardware structure 666 * 667 * used by hardware layer to print debugging information 668 **/ 669 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 670 { 671 struct igb_adapter *adapter = hw->back; 672 return adapter->netdev; 673 } 674 675 /** 676 * igb_init_module - Driver Registration Routine 677 * 678 * igb_init_module is the first routine called when the driver is 679 * loaded. All it does is register with the PCI subsystem. 680 **/ 681 static int __init igb_init_module(void) 682 { 683 int ret; 684 pr_info("%s - version %s\n", 685 igb_driver_string, igb_driver_version); 686 687 pr_info("%s\n", igb_copyright); 688 689 #ifdef CONFIG_IGB_DCA 690 dca_register_notify(&dca_notifier); 691 #endif 692 ret = pci_register_driver(&igb_driver); 693 return ret; 694 } 695 696 module_init(igb_init_module); 697 698 /** 699 * igb_exit_module - Driver Exit Cleanup Routine 700 * 701 * igb_exit_module is called just before the driver is removed 702 * from memory. 703 **/ 704 static void __exit igb_exit_module(void) 705 { 706 #ifdef CONFIG_IGB_DCA 707 dca_unregister_notify(&dca_notifier); 708 #endif 709 pci_unregister_driver(&igb_driver); 710 } 711 712 module_exit(igb_exit_module); 713 714 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 715 /** 716 * igb_cache_ring_register - Descriptor ring to register mapping 717 * @adapter: board private structure to initialize 718 * 719 * Once we know the feature-set enabled for the device, we'll cache 720 * the register offset the descriptor ring is assigned to. 721 **/ 722 static void igb_cache_ring_register(struct igb_adapter *adapter) 723 { 724 int i = 0, j = 0; 725 u32 rbase_offset = adapter->vfs_allocated_count; 726 727 switch (adapter->hw.mac.type) { 728 case e1000_82576: 729 /* The queues are allocated for virtualization such that VF 0 730 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 731 * In order to avoid collision we start at the first free queue 732 * and continue consuming queues in the same sequence 733 */ 734 if (adapter->vfs_allocated_count) { 735 for (; i < adapter->rss_queues; i++) 736 adapter->rx_ring[i]->reg_idx = rbase_offset + 737 Q_IDX_82576(i); 738 } 739 case e1000_82575: 740 case e1000_82580: 741 case e1000_i350: 742 case e1000_i354: 743 case e1000_i210: 744 case e1000_i211: 745 default: 746 for (; i < adapter->num_rx_queues; i++) 747 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 748 for (; j < adapter->num_tx_queues; j++) 749 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 750 break; 751 } 752 } 753 754 /** 755 * igb_write_ivar - configure ivar for given MSI-X vector 756 * @hw: pointer to the HW structure 757 * @msix_vector: vector number we are allocating to a given ring 758 * @index: row index of IVAR register to write within IVAR table 759 * @offset: column offset of in IVAR, should be multiple of 8 760 * 761 * This function is intended to handle the writing of the IVAR register 762 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 763 * each containing an cause allocation for an Rx and Tx ring, and a 764 * variable number of rows depending on the number of queues supported. 765 **/ 766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 767 int index, int offset) 768 { 769 u32 ivar = array_rd32(E1000_IVAR0, index); 770 771 /* clear any bits that are currently set */ 772 ivar &= ~((u32)0xFF << offset); 773 774 /* write vector and valid bit */ 775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 776 777 array_wr32(E1000_IVAR0, index, ivar); 778 } 779 780 #define IGB_N0_QUEUE -1 781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 782 { 783 struct igb_adapter *adapter = q_vector->adapter; 784 struct e1000_hw *hw = &adapter->hw; 785 int rx_queue = IGB_N0_QUEUE; 786 int tx_queue = IGB_N0_QUEUE; 787 u32 msixbm = 0; 788 789 if (q_vector->rx.ring) 790 rx_queue = q_vector->rx.ring->reg_idx; 791 if (q_vector->tx.ring) 792 tx_queue = q_vector->tx.ring->reg_idx; 793 794 switch (hw->mac.type) { 795 case e1000_82575: 796 /* The 82575 assigns vectors using a bitmask, which matches the 797 * bitmask for the EICR/EIMS/EIMC registers. To assign one 798 * or more queues to a vector, we write the appropriate bits 799 * into the MSIXBM register for that vector. 800 */ 801 if (rx_queue > IGB_N0_QUEUE) 802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 803 if (tx_queue > IGB_N0_QUEUE) 804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 805 if (!adapter->msix_entries && msix_vector == 0) 806 msixbm |= E1000_EIMS_OTHER; 807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 808 q_vector->eims_value = msixbm; 809 break; 810 case e1000_82576: 811 /* 82576 uses a table that essentially consists of 2 columns 812 * with 8 rows. The ordering is column-major so we use the 813 * lower 3 bits as the row index, and the 4th bit as the 814 * column offset. 815 */ 816 if (rx_queue > IGB_N0_QUEUE) 817 igb_write_ivar(hw, msix_vector, 818 rx_queue & 0x7, 819 (rx_queue & 0x8) << 1); 820 if (tx_queue > IGB_N0_QUEUE) 821 igb_write_ivar(hw, msix_vector, 822 tx_queue & 0x7, 823 ((tx_queue & 0x8) << 1) + 8); 824 q_vector->eims_value = 1 << msix_vector; 825 break; 826 case e1000_82580: 827 case e1000_i350: 828 case e1000_i354: 829 case e1000_i210: 830 case e1000_i211: 831 /* On 82580 and newer adapters the scheme is similar to 82576 832 * however instead of ordering column-major we have things 833 * ordered row-major. So we traverse the table by using 834 * bit 0 as the column offset, and the remaining bits as the 835 * row index. 836 */ 837 if (rx_queue > IGB_N0_QUEUE) 838 igb_write_ivar(hw, msix_vector, 839 rx_queue >> 1, 840 (rx_queue & 0x1) << 4); 841 if (tx_queue > IGB_N0_QUEUE) 842 igb_write_ivar(hw, msix_vector, 843 tx_queue >> 1, 844 ((tx_queue & 0x1) << 4) + 8); 845 q_vector->eims_value = 1 << msix_vector; 846 break; 847 default: 848 BUG(); 849 break; 850 } 851 852 /* add q_vector eims value to global eims_enable_mask */ 853 adapter->eims_enable_mask |= q_vector->eims_value; 854 855 /* configure q_vector to set itr on first interrupt */ 856 q_vector->set_itr = 1; 857 } 858 859 /** 860 * igb_configure_msix - Configure MSI-X hardware 861 * @adapter: board private structure to initialize 862 * 863 * igb_configure_msix sets up the hardware to properly 864 * generate MSI-X interrupts. 865 **/ 866 static void igb_configure_msix(struct igb_adapter *adapter) 867 { 868 u32 tmp; 869 int i, vector = 0; 870 struct e1000_hw *hw = &adapter->hw; 871 872 adapter->eims_enable_mask = 0; 873 874 /* set vector for other causes, i.e. link changes */ 875 switch (hw->mac.type) { 876 case e1000_82575: 877 tmp = rd32(E1000_CTRL_EXT); 878 /* enable MSI-X PBA support*/ 879 tmp |= E1000_CTRL_EXT_PBA_CLR; 880 881 /* Auto-Mask interrupts upon ICR read. */ 882 tmp |= E1000_CTRL_EXT_EIAME; 883 tmp |= E1000_CTRL_EXT_IRCA; 884 885 wr32(E1000_CTRL_EXT, tmp); 886 887 /* enable msix_other interrupt */ 888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 889 adapter->eims_other = E1000_EIMS_OTHER; 890 891 break; 892 893 case e1000_82576: 894 case e1000_82580: 895 case e1000_i350: 896 case e1000_i354: 897 case e1000_i210: 898 case e1000_i211: 899 /* Turn on MSI-X capability first, or our settings 900 * won't stick. And it will take days to debug. 901 */ 902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 903 E1000_GPIE_PBA | E1000_GPIE_EIAME | 904 E1000_GPIE_NSICR); 905 906 /* enable msix_other interrupt */ 907 adapter->eims_other = 1 << vector; 908 tmp = (vector++ | E1000_IVAR_VALID) << 8; 909 910 wr32(E1000_IVAR_MISC, tmp); 911 break; 912 default: 913 /* do nothing, since nothing else supports MSI-X */ 914 break; 915 } /* switch (hw->mac.type) */ 916 917 adapter->eims_enable_mask |= adapter->eims_other; 918 919 for (i = 0; i < adapter->num_q_vectors; i++) 920 igb_assign_vector(adapter->q_vector[i], vector++); 921 922 wrfl(); 923 } 924 925 /** 926 * igb_request_msix - Initialize MSI-X interrupts 927 * @adapter: board private structure to initialize 928 * 929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 930 * kernel. 931 **/ 932 static int igb_request_msix(struct igb_adapter *adapter) 933 { 934 struct net_device *netdev = adapter->netdev; 935 struct e1000_hw *hw = &adapter->hw; 936 int i, err = 0, vector = 0, free_vector = 0; 937 938 err = request_irq(adapter->msix_entries[vector].vector, 939 igb_msix_other, 0, netdev->name, adapter); 940 if (err) 941 goto err_out; 942 943 for (i = 0; i < adapter->num_q_vectors; i++) { 944 struct igb_q_vector *q_vector = adapter->q_vector[i]; 945 946 vector++; 947 948 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); 949 950 if (q_vector->rx.ring && q_vector->tx.ring) 951 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 952 q_vector->rx.ring->queue_index); 953 else if (q_vector->tx.ring) 954 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 955 q_vector->tx.ring->queue_index); 956 else if (q_vector->rx.ring) 957 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 958 q_vector->rx.ring->queue_index); 959 else 960 sprintf(q_vector->name, "%s-unused", netdev->name); 961 962 err = request_irq(adapter->msix_entries[vector].vector, 963 igb_msix_ring, 0, q_vector->name, 964 q_vector); 965 if (err) 966 goto err_free; 967 } 968 969 igb_configure_msix(adapter); 970 return 0; 971 972 err_free: 973 /* free already assigned IRQs */ 974 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 975 976 vector--; 977 for (i = 0; i < vector; i++) { 978 free_irq(adapter->msix_entries[free_vector++].vector, 979 adapter->q_vector[i]); 980 } 981 err_out: 982 return err; 983 } 984 985 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 986 { 987 if (adapter->msix_entries) { 988 pci_disable_msix(adapter->pdev); 989 kfree(adapter->msix_entries); 990 adapter->msix_entries = NULL; 991 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 992 pci_disable_msi(adapter->pdev); 993 } 994 } 995 996 /** 997 * igb_free_q_vector - Free memory allocated for specific interrupt vector 998 * @adapter: board private structure to initialize 999 * @v_idx: Index of vector to be freed 1000 * 1001 * This function frees the memory allocated to the q_vector. In addition if 1002 * NAPI is enabled it will delete any references to the NAPI struct prior 1003 * to freeing the q_vector. 1004 **/ 1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 1006 { 1007 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1008 1009 if (q_vector->tx.ring) 1010 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1011 1012 if (q_vector->rx.ring) 1013 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; 1014 1015 adapter->q_vector[v_idx] = NULL; 1016 netif_napi_del(&q_vector->napi); 1017 1018 /* igb_get_stats64() might access the rings on this vector, 1019 * we must wait a grace period before freeing it. 1020 */ 1021 kfree_rcu(q_vector, rcu); 1022 } 1023 1024 /** 1025 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1026 * @adapter: board private structure to initialize 1027 * 1028 * This function frees the memory allocated to the q_vectors. In addition if 1029 * NAPI is enabled it will delete any references to the NAPI struct prior 1030 * to freeing the q_vector. 1031 **/ 1032 static void igb_free_q_vectors(struct igb_adapter *adapter) 1033 { 1034 int v_idx = adapter->num_q_vectors; 1035 1036 adapter->num_tx_queues = 0; 1037 adapter->num_rx_queues = 0; 1038 adapter->num_q_vectors = 0; 1039 1040 while (v_idx--) 1041 igb_free_q_vector(adapter, v_idx); 1042 } 1043 1044 /** 1045 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1046 * @adapter: board private structure to initialize 1047 * 1048 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1049 * MSI-X interrupts allocated. 1050 */ 1051 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1052 { 1053 igb_free_q_vectors(adapter); 1054 igb_reset_interrupt_capability(adapter); 1055 } 1056 1057 /** 1058 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1059 * @adapter: board private structure to initialize 1060 * @msix: boolean value of MSIX capability 1061 * 1062 * Attempt to configure interrupts using the best available 1063 * capabilities of the hardware and kernel. 1064 **/ 1065 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1066 { 1067 int err; 1068 int numvecs, i; 1069 1070 if (!msix) 1071 goto msi_only; 1072 1073 /* Number of supported queues. */ 1074 adapter->num_rx_queues = adapter->rss_queues; 1075 if (adapter->vfs_allocated_count) 1076 adapter->num_tx_queues = 1; 1077 else 1078 adapter->num_tx_queues = adapter->rss_queues; 1079 1080 /* start with one vector for every Rx queue */ 1081 numvecs = adapter->num_rx_queues; 1082 1083 /* if Tx handler is separate add 1 for every Tx queue */ 1084 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1085 numvecs += adapter->num_tx_queues; 1086 1087 /* store the number of vectors reserved for queues */ 1088 adapter->num_q_vectors = numvecs; 1089 1090 /* add 1 vector for link status interrupts */ 1091 numvecs++; 1092 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 1093 GFP_KERNEL); 1094 1095 if (!adapter->msix_entries) 1096 goto msi_only; 1097 1098 for (i = 0; i < numvecs; i++) 1099 adapter->msix_entries[i].entry = i; 1100 1101 err = pci_enable_msix(adapter->pdev, 1102 adapter->msix_entries, 1103 numvecs); 1104 if (err == 0) 1105 return; 1106 1107 igb_reset_interrupt_capability(adapter); 1108 1109 /* If we can't do MSI-X, try MSI */ 1110 msi_only: 1111 #ifdef CONFIG_PCI_IOV 1112 /* disable SR-IOV for non MSI-X configurations */ 1113 if (adapter->vf_data) { 1114 struct e1000_hw *hw = &adapter->hw; 1115 /* disable iov and allow time for transactions to clear */ 1116 pci_disable_sriov(adapter->pdev); 1117 msleep(500); 1118 1119 kfree(adapter->vf_data); 1120 adapter->vf_data = NULL; 1121 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1122 wrfl(); 1123 msleep(100); 1124 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1125 } 1126 #endif 1127 adapter->vfs_allocated_count = 0; 1128 adapter->rss_queues = 1; 1129 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1130 adapter->num_rx_queues = 1; 1131 adapter->num_tx_queues = 1; 1132 adapter->num_q_vectors = 1; 1133 if (!pci_enable_msi(adapter->pdev)) 1134 adapter->flags |= IGB_FLAG_HAS_MSI; 1135 } 1136 1137 static void igb_add_ring(struct igb_ring *ring, 1138 struct igb_ring_container *head) 1139 { 1140 head->ring = ring; 1141 head->count++; 1142 } 1143 1144 /** 1145 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1146 * @adapter: board private structure to initialize 1147 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1148 * @v_idx: index of vector in adapter struct 1149 * @txr_count: total number of Tx rings to allocate 1150 * @txr_idx: index of first Tx ring to allocate 1151 * @rxr_count: total number of Rx rings to allocate 1152 * @rxr_idx: index of first Rx ring to allocate 1153 * 1154 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1155 **/ 1156 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1157 int v_count, int v_idx, 1158 int txr_count, int txr_idx, 1159 int rxr_count, int rxr_idx) 1160 { 1161 struct igb_q_vector *q_vector; 1162 struct igb_ring *ring; 1163 int ring_count, size; 1164 1165 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1166 if (txr_count > 1 || rxr_count > 1) 1167 return -ENOMEM; 1168 1169 ring_count = txr_count + rxr_count; 1170 size = sizeof(struct igb_q_vector) + 1171 (sizeof(struct igb_ring) * ring_count); 1172 1173 /* allocate q_vector and rings */ 1174 q_vector = kzalloc(size, GFP_KERNEL); 1175 if (!q_vector) 1176 return -ENOMEM; 1177 1178 /* initialize NAPI */ 1179 netif_napi_add(adapter->netdev, &q_vector->napi, 1180 igb_poll, 64); 1181 1182 /* tie q_vector and adapter together */ 1183 adapter->q_vector[v_idx] = q_vector; 1184 q_vector->adapter = adapter; 1185 1186 /* initialize work limits */ 1187 q_vector->tx.work_limit = adapter->tx_work_limit; 1188 1189 /* initialize ITR configuration */ 1190 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); 1191 q_vector->itr_val = IGB_START_ITR; 1192 1193 /* initialize pointer to rings */ 1194 ring = q_vector->ring; 1195 1196 /* intialize ITR */ 1197 if (rxr_count) { 1198 /* rx or rx/tx vector */ 1199 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1200 q_vector->itr_val = adapter->rx_itr_setting; 1201 } else { 1202 /* tx only vector */ 1203 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1204 q_vector->itr_val = adapter->tx_itr_setting; 1205 } 1206 1207 if (txr_count) { 1208 /* assign generic ring traits */ 1209 ring->dev = &adapter->pdev->dev; 1210 ring->netdev = adapter->netdev; 1211 1212 /* configure backlink on ring */ 1213 ring->q_vector = q_vector; 1214 1215 /* update q_vector Tx values */ 1216 igb_add_ring(ring, &q_vector->tx); 1217 1218 /* For 82575, context index must be unique per ring. */ 1219 if (adapter->hw.mac.type == e1000_82575) 1220 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1221 1222 /* apply Tx specific ring traits */ 1223 ring->count = adapter->tx_ring_count; 1224 ring->queue_index = txr_idx; 1225 1226 /* assign ring to adapter */ 1227 adapter->tx_ring[txr_idx] = ring; 1228 1229 /* push pointer to next ring */ 1230 ring++; 1231 } 1232 1233 if (rxr_count) { 1234 /* assign generic ring traits */ 1235 ring->dev = &adapter->pdev->dev; 1236 ring->netdev = adapter->netdev; 1237 1238 /* configure backlink on ring */ 1239 ring->q_vector = q_vector; 1240 1241 /* update q_vector Rx values */ 1242 igb_add_ring(ring, &q_vector->rx); 1243 1244 /* set flag indicating ring supports SCTP checksum offload */ 1245 if (adapter->hw.mac.type >= e1000_82576) 1246 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1247 1248 /* 1249 * On i350, i354, i210, and i211, loopback VLAN packets 1250 * have the tag byte-swapped. 1251 */ 1252 if (adapter->hw.mac.type >= e1000_i350) 1253 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1254 1255 /* apply Rx specific ring traits */ 1256 ring->count = adapter->rx_ring_count; 1257 ring->queue_index = rxr_idx; 1258 1259 /* assign ring to adapter */ 1260 adapter->rx_ring[rxr_idx] = ring; 1261 } 1262 1263 return 0; 1264 } 1265 1266 1267 /** 1268 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1269 * @adapter: board private structure to initialize 1270 * 1271 * We allocate one q_vector per queue interrupt. If allocation fails we 1272 * return -ENOMEM. 1273 **/ 1274 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1275 { 1276 int q_vectors = adapter->num_q_vectors; 1277 int rxr_remaining = adapter->num_rx_queues; 1278 int txr_remaining = adapter->num_tx_queues; 1279 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1280 int err; 1281 1282 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1283 for (; rxr_remaining; v_idx++) { 1284 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1285 0, 0, 1, rxr_idx); 1286 1287 if (err) 1288 goto err_out; 1289 1290 /* update counts and index */ 1291 rxr_remaining--; 1292 rxr_idx++; 1293 } 1294 } 1295 1296 for (; v_idx < q_vectors; v_idx++) { 1297 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1298 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1299 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1300 tqpv, txr_idx, rqpv, rxr_idx); 1301 1302 if (err) 1303 goto err_out; 1304 1305 /* update counts and index */ 1306 rxr_remaining -= rqpv; 1307 txr_remaining -= tqpv; 1308 rxr_idx++; 1309 txr_idx++; 1310 } 1311 1312 return 0; 1313 1314 err_out: 1315 adapter->num_tx_queues = 0; 1316 adapter->num_rx_queues = 0; 1317 adapter->num_q_vectors = 0; 1318 1319 while (v_idx--) 1320 igb_free_q_vector(adapter, v_idx); 1321 1322 return -ENOMEM; 1323 } 1324 1325 /** 1326 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1327 * @adapter: board private structure to initialize 1328 * @msix: boolean value of MSIX capability 1329 * 1330 * This function initializes the interrupts and allocates all of the queues. 1331 **/ 1332 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1333 { 1334 struct pci_dev *pdev = adapter->pdev; 1335 int err; 1336 1337 igb_set_interrupt_capability(adapter, msix); 1338 1339 err = igb_alloc_q_vectors(adapter); 1340 if (err) { 1341 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1342 goto err_alloc_q_vectors; 1343 } 1344 1345 igb_cache_ring_register(adapter); 1346 1347 return 0; 1348 1349 err_alloc_q_vectors: 1350 igb_reset_interrupt_capability(adapter); 1351 return err; 1352 } 1353 1354 /** 1355 * igb_request_irq - initialize interrupts 1356 * @adapter: board private structure to initialize 1357 * 1358 * Attempts to configure interrupts using the best available 1359 * capabilities of the hardware and kernel. 1360 **/ 1361 static int igb_request_irq(struct igb_adapter *adapter) 1362 { 1363 struct net_device *netdev = adapter->netdev; 1364 struct pci_dev *pdev = adapter->pdev; 1365 int err = 0; 1366 1367 if (adapter->msix_entries) { 1368 err = igb_request_msix(adapter); 1369 if (!err) 1370 goto request_done; 1371 /* fall back to MSI */ 1372 igb_free_all_tx_resources(adapter); 1373 igb_free_all_rx_resources(adapter); 1374 1375 igb_clear_interrupt_scheme(adapter); 1376 err = igb_init_interrupt_scheme(adapter, false); 1377 if (err) 1378 goto request_done; 1379 1380 igb_setup_all_tx_resources(adapter); 1381 igb_setup_all_rx_resources(adapter); 1382 igb_configure(adapter); 1383 } 1384 1385 igb_assign_vector(adapter->q_vector[0], 0); 1386 1387 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1388 err = request_irq(pdev->irq, igb_intr_msi, 0, 1389 netdev->name, adapter); 1390 if (!err) 1391 goto request_done; 1392 1393 /* fall back to legacy interrupts */ 1394 igb_reset_interrupt_capability(adapter); 1395 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1396 } 1397 1398 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1399 netdev->name, adapter); 1400 1401 if (err) 1402 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1403 err); 1404 1405 request_done: 1406 return err; 1407 } 1408 1409 static void igb_free_irq(struct igb_adapter *adapter) 1410 { 1411 if (adapter->msix_entries) { 1412 int vector = 0, i; 1413 1414 free_irq(adapter->msix_entries[vector++].vector, adapter); 1415 1416 for (i = 0; i < adapter->num_q_vectors; i++) 1417 free_irq(adapter->msix_entries[vector++].vector, 1418 adapter->q_vector[i]); 1419 } else { 1420 free_irq(adapter->pdev->irq, adapter); 1421 } 1422 } 1423 1424 /** 1425 * igb_irq_disable - Mask off interrupt generation on the NIC 1426 * @adapter: board private structure 1427 **/ 1428 static void igb_irq_disable(struct igb_adapter *adapter) 1429 { 1430 struct e1000_hw *hw = &adapter->hw; 1431 1432 /* we need to be careful when disabling interrupts. The VFs are also 1433 * mapped into these registers and so clearing the bits can cause 1434 * issues on the VF drivers so we only need to clear what we set 1435 */ 1436 if (adapter->msix_entries) { 1437 u32 regval = rd32(E1000_EIAM); 1438 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1439 wr32(E1000_EIMC, adapter->eims_enable_mask); 1440 regval = rd32(E1000_EIAC); 1441 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1442 } 1443 1444 wr32(E1000_IAM, 0); 1445 wr32(E1000_IMC, ~0); 1446 wrfl(); 1447 if (adapter->msix_entries) { 1448 int i; 1449 for (i = 0; i < adapter->num_q_vectors; i++) 1450 synchronize_irq(adapter->msix_entries[i].vector); 1451 } else { 1452 synchronize_irq(adapter->pdev->irq); 1453 } 1454 } 1455 1456 /** 1457 * igb_irq_enable - Enable default interrupt generation settings 1458 * @adapter: board private structure 1459 **/ 1460 static void igb_irq_enable(struct igb_adapter *adapter) 1461 { 1462 struct e1000_hw *hw = &adapter->hw; 1463 1464 if (adapter->msix_entries) { 1465 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1466 u32 regval = rd32(E1000_EIAC); 1467 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1468 regval = rd32(E1000_EIAM); 1469 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1470 wr32(E1000_EIMS, adapter->eims_enable_mask); 1471 if (adapter->vfs_allocated_count) { 1472 wr32(E1000_MBVFIMR, 0xFF); 1473 ims |= E1000_IMS_VMMB; 1474 } 1475 wr32(E1000_IMS, ims); 1476 } else { 1477 wr32(E1000_IMS, IMS_ENABLE_MASK | 1478 E1000_IMS_DRSTA); 1479 wr32(E1000_IAM, IMS_ENABLE_MASK | 1480 E1000_IMS_DRSTA); 1481 } 1482 } 1483 1484 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1485 { 1486 struct e1000_hw *hw = &adapter->hw; 1487 u16 vid = adapter->hw.mng_cookie.vlan_id; 1488 u16 old_vid = adapter->mng_vlan_id; 1489 1490 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1491 /* add VID to filter table */ 1492 igb_vfta_set(hw, vid, true); 1493 adapter->mng_vlan_id = vid; 1494 } else { 1495 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1496 } 1497 1498 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1499 (vid != old_vid) && 1500 !test_bit(old_vid, adapter->active_vlans)) { 1501 /* remove VID from filter table */ 1502 igb_vfta_set(hw, old_vid, false); 1503 } 1504 } 1505 1506 /** 1507 * igb_release_hw_control - release control of the h/w to f/w 1508 * @adapter: address of board private structure 1509 * 1510 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1511 * For ASF and Pass Through versions of f/w this means that the 1512 * driver is no longer loaded. 1513 **/ 1514 static void igb_release_hw_control(struct igb_adapter *adapter) 1515 { 1516 struct e1000_hw *hw = &adapter->hw; 1517 u32 ctrl_ext; 1518 1519 /* Let firmware take over control of h/w */ 1520 ctrl_ext = rd32(E1000_CTRL_EXT); 1521 wr32(E1000_CTRL_EXT, 1522 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1523 } 1524 1525 /** 1526 * igb_get_hw_control - get control of the h/w from f/w 1527 * @adapter: address of board private structure 1528 * 1529 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1530 * For ASF and Pass Through versions of f/w this means that 1531 * the driver is loaded. 1532 **/ 1533 static void igb_get_hw_control(struct igb_adapter *adapter) 1534 { 1535 struct e1000_hw *hw = &adapter->hw; 1536 u32 ctrl_ext; 1537 1538 /* Let firmware know the driver has taken over */ 1539 ctrl_ext = rd32(E1000_CTRL_EXT); 1540 wr32(E1000_CTRL_EXT, 1541 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1542 } 1543 1544 /** 1545 * igb_configure - configure the hardware for RX and TX 1546 * @adapter: private board structure 1547 **/ 1548 static void igb_configure(struct igb_adapter *adapter) 1549 { 1550 struct net_device *netdev = adapter->netdev; 1551 int i; 1552 1553 igb_get_hw_control(adapter); 1554 igb_set_rx_mode(netdev); 1555 1556 igb_restore_vlan(adapter); 1557 1558 igb_setup_tctl(adapter); 1559 igb_setup_mrqc(adapter); 1560 igb_setup_rctl(adapter); 1561 1562 igb_configure_tx(adapter); 1563 igb_configure_rx(adapter); 1564 1565 igb_rx_fifo_flush_82575(&adapter->hw); 1566 1567 /* call igb_desc_unused which always leaves 1568 * at least 1 descriptor unused to make sure 1569 * next_to_use != next_to_clean 1570 */ 1571 for (i = 0; i < adapter->num_rx_queues; i++) { 1572 struct igb_ring *ring = adapter->rx_ring[i]; 1573 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 1574 } 1575 } 1576 1577 /** 1578 * igb_power_up_link - Power up the phy/serdes link 1579 * @adapter: address of board private structure 1580 **/ 1581 void igb_power_up_link(struct igb_adapter *adapter) 1582 { 1583 igb_reset_phy(&adapter->hw); 1584 1585 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1586 igb_power_up_phy_copper(&adapter->hw); 1587 else 1588 igb_power_up_serdes_link_82575(&adapter->hw); 1589 } 1590 1591 /** 1592 * igb_power_down_link - Power down the phy/serdes link 1593 * @adapter: address of board private structure 1594 */ 1595 static void igb_power_down_link(struct igb_adapter *adapter) 1596 { 1597 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1598 igb_power_down_phy_copper_82575(&adapter->hw); 1599 else 1600 igb_shutdown_serdes_link_82575(&adapter->hw); 1601 } 1602 1603 /** 1604 * igb_up - Open the interface and prepare it to handle traffic 1605 * @adapter: board private structure 1606 **/ 1607 int igb_up(struct igb_adapter *adapter) 1608 { 1609 struct e1000_hw *hw = &adapter->hw; 1610 int i; 1611 1612 /* hardware has been reset, we need to reload some things */ 1613 igb_configure(adapter); 1614 1615 clear_bit(__IGB_DOWN, &adapter->state); 1616 1617 for (i = 0; i < adapter->num_q_vectors; i++) 1618 napi_enable(&(adapter->q_vector[i]->napi)); 1619 1620 if (adapter->msix_entries) 1621 igb_configure_msix(adapter); 1622 else 1623 igb_assign_vector(adapter->q_vector[0], 0); 1624 1625 /* Clear any pending interrupts. */ 1626 rd32(E1000_ICR); 1627 igb_irq_enable(adapter); 1628 1629 /* notify VFs that reset has been completed */ 1630 if (adapter->vfs_allocated_count) { 1631 u32 reg_data = rd32(E1000_CTRL_EXT); 1632 reg_data |= E1000_CTRL_EXT_PFRSTD; 1633 wr32(E1000_CTRL_EXT, reg_data); 1634 } 1635 1636 netif_tx_start_all_queues(adapter->netdev); 1637 1638 /* start the watchdog. */ 1639 hw->mac.get_link_status = 1; 1640 schedule_work(&adapter->watchdog_task); 1641 1642 return 0; 1643 } 1644 1645 void igb_down(struct igb_adapter *adapter) 1646 { 1647 struct net_device *netdev = adapter->netdev; 1648 struct e1000_hw *hw = &adapter->hw; 1649 u32 tctl, rctl; 1650 int i; 1651 1652 /* signal that we're down so the interrupt handler does not 1653 * reschedule our watchdog timer 1654 */ 1655 set_bit(__IGB_DOWN, &adapter->state); 1656 1657 /* disable receives in the hardware */ 1658 rctl = rd32(E1000_RCTL); 1659 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 1660 /* flush and sleep below */ 1661 1662 netif_tx_stop_all_queues(netdev); 1663 1664 /* disable transmits in the hardware */ 1665 tctl = rd32(E1000_TCTL); 1666 tctl &= ~E1000_TCTL_EN; 1667 wr32(E1000_TCTL, tctl); 1668 /* flush both disables and wait for them to finish */ 1669 wrfl(); 1670 msleep(10); 1671 1672 igb_irq_disable(adapter); 1673 1674 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 1675 1676 for (i = 0; i < adapter->num_q_vectors; i++) { 1677 napi_synchronize(&(adapter->q_vector[i]->napi)); 1678 napi_disable(&(adapter->q_vector[i]->napi)); 1679 } 1680 1681 1682 del_timer_sync(&adapter->watchdog_timer); 1683 del_timer_sync(&adapter->phy_info_timer); 1684 1685 netif_carrier_off(netdev); 1686 1687 /* record the stats before reset*/ 1688 spin_lock(&adapter->stats64_lock); 1689 igb_update_stats(adapter, &adapter->stats64); 1690 spin_unlock(&adapter->stats64_lock); 1691 1692 adapter->link_speed = 0; 1693 adapter->link_duplex = 0; 1694 1695 if (!pci_channel_offline(adapter->pdev)) 1696 igb_reset(adapter); 1697 igb_clean_all_tx_rings(adapter); 1698 igb_clean_all_rx_rings(adapter); 1699 #ifdef CONFIG_IGB_DCA 1700 1701 /* since we reset the hardware DCA settings were cleared */ 1702 igb_setup_dca(adapter); 1703 #endif 1704 } 1705 1706 void igb_reinit_locked(struct igb_adapter *adapter) 1707 { 1708 WARN_ON(in_interrupt()); 1709 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 1710 msleep(1); 1711 igb_down(adapter); 1712 igb_up(adapter); 1713 clear_bit(__IGB_RESETTING, &adapter->state); 1714 } 1715 1716 void igb_reset(struct igb_adapter *adapter) 1717 { 1718 struct pci_dev *pdev = adapter->pdev; 1719 struct e1000_hw *hw = &adapter->hw; 1720 struct e1000_mac_info *mac = &hw->mac; 1721 struct e1000_fc_info *fc = &hw->fc; 1722 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; 1723 1724 /* Repartition Pba for greater than 9k mtu 1725 * To take effect CTRL.RST is required. 1726 */ 1727 switch (mac->type) { 1728 case e1000_i350: 1729 case e1000_i354: 1730 case e1000_82580: 1731 pba = rd32(E1000_RXPBS); 1732 pba = igb_rxpbs_adjust_82580(pba); 1733 break; 1734 case e1000_82576: 1735 pba = rd32(E1000_RXPBS); 1736 pba &= E1000_RXPBS_SIZE_MASK_82576; 1737 break; 1738 case e1000_82575: 1739 case e1000_i210: 1740 case e1000_i211: 1741 default: 1742 pba = E1000_PBA_34K; 1743 break; 1744 } 1745 1746 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && 1747 (mac->type < e1000_82576)) { 1748 /* adjust PBA for jumbo frames */ 1749 wr32(E1000_PBA, pba); 1750 1751 /* To maintain wire speed transmits, the Tx FIFO should be 1752 * large enough to accommodate two full transmit packets, 1753 * rounded up to the next 1KB and expressed in KB. Likewise, 1754 * the Rx FIFO should be large enough to accommodate at least 1755 * one full receive packet and is similarly rounded up and 1756 * expressed in KB. 1757 */ 1758 pba = rd32(E1000_PBA); 1759 /* upper 16 bits has Tx packet buffer allocation size in KB */ 1760 tx_space = pba >> 16; 1761 /* lower 16 bits has Rx packet buffer allocation size in KB */ 1762 pba &= 0xffff; 1763 /* the Tx fifo also stores 16 bytes of information about the Tx 1764 * but don't include ethernet FCS because hardware appends it 1765 */ 1766 min_tx_space = (adapter->max_frame_size + 1767 sizeof(union e1000_adv_tx_desc) - 1768 ETH_FCS_LEN) * 2; 1769 min_tx_space = ALIGN(min_tx_space, 1024); 1770 min_tx_space >>= 10; 1771 /* software strips receive CRC, so leave room for it */ 1772 min_rx_space = adapter->max_frame_size; 1773 min_rx_space = ALIGN(min_rx_space, 1024); 1774 min_rx_space >>= 10; 1775 1776 /* If current Tx allocation is less than the min Tx FIFO size, 1777 * and the min Tx FIFO size is less than the current Rx FIFO 1778 * allocation, take space away from current Rx allocation 1779 */ 1780 if (tx_space < min_tx_space && 1781 ((min_tx_space - tx_space) < pba)) { 1782 pba = pba - (min_tx_space - tx_space); 1783 1784 /* if short on Rx space, Rx wins and must trump Tx 1785 * adjustment 1786 */ 1787 if (pba < min_rx_space) 1788 pba = min_rx_space; 1789 } 1790 wr32(E1000_PBA, pba); 1791 } 1792 1793 /* flow control settings */ 1794 /* The high water mark must be low enough to fit one full frame 1795 * (or the size used for early receive) above it in the Rx FIFO. 1796 * Set it to the lower of: 1797 * - 90% of the Rx FIFO size, or 1798 * - the full Rx FIFO size minus one full frame 1799 */ 1800 hwm = min(((pba << 10) * 9 / 10), 1801 ((pba << 10) - 2 * adapter->max_frame_size)); 1802 1803 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 1804 fc->low_water = fc->high_water - 16; 1805 fc->pause_time = 0xFFFF; 1806 fc->send_xon = 1; 1807 fc->current_mode = fc->requested_mode; 1808 1809 /* disable receive for all VFs and wait one second */ 1810 if (adapter->vfs_allocated_count) { 1811 int i; 1812 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 1813 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 1814 1815 /* ping all the active vfs to let them know we are going down */ 1816 igb_ping_all_vfs(adapter); 1817 1818 /* disable transmits and receives */ 1819 wr32(E1000_VFRE, 0); 1820 wr32(E1000_VFTE, 0); 1821 } 1822 1823 /* Allow time for pending master requests to run */ 1824 hw->mac.ops.reset_hw(hw); 1825 wr32(E1000_WUC, 0); 1826 1827 if (hw->mac.ops.init_hw(hw)) 1828 dev_err(&pdev->dev, "Hardware Error\n"); 1829 1830 /* Flow control settings reset on hardware reset, so guarantee flow 1831 * control is off when forcing speed. 1832 */ 1833 if (!hw->mac.autoneg) 1834 igb_force_mac_fc(hw); 1835 1836 igb_init_dmac(adapter, pba); 1837 #ifdef CONFIG_IGB_HWMON 1838 /* Re-initialize the thermal sensor on i350 devices. */ 1839 if (!test_bit(__IGB_DOWN, &adapter->state)) { 1840 if (mac->type == e1000_i350 && hw->bus.func == 0) { 1841 /* If present, re-initialize the external thermal sensor 1842 * interface. 1843 */ 1844 if (adapter->ets) 1845 mac->ops.init_thermal_sensor_thresh(hw); 1846 } 1847 } 1848 #endif 1849 if (!netif_running(adapter->netdev)) 1850 igb_power_down_link(adapter); 1851 1852 igb_update_mng_vlan(adapter); 1853 1854 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 1855 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 1856 1857 /* Re-enable PTP, where applicable. */ 1858 igb_ptp_reset(adapter); 1859 1860 igb_get_phy_info(hw); 1861 } 1862 1863 static netdev_features_t igb_fix_features(struct net_device *netdev, 1864 netdev_features_t features) 1865 { 1866 /* Since there is no support for separate Rx/Tx vlan accel 1867 * enable/disable make sure Tx flag is always in same state as Rx. 1868 */ 1869 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1870 features |= NETIF_F_HW_VLAN_CTAG_TX; 1871 else 1872 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1873 1874 return features; 1875 } 1876 1877 static int igb_set_features(struct net_device *netdev, 1878 netdev_features_t features) 1879 { 1880 netdev_features_t changed = netdev->features ^ features; 1881 struct igb_adapter *adapter = netdev_priv(netdev); 1882 1883 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1884 igb_vlan_mode(netdev, features); 1885 1886 if (!(changed & NETIF_F_RXALL)) 1887 return 0; 1888 1889 netdev->features = features; 1890 1891 if (netif_running(netdev)) 1892 igb_reinit_locked(adapter); 1893 else 1894 igb_reset(adapter); 1895 1896 return 0; 1897 } 1898 1899 static const struct net_device_ops igb_netdev_ops = { 1900 .ndo_open = igb_open, 1901 .ndo_stop = igb_close, 1902 .ndo_start_xmit = igb_xmit_frame, 1903 .ndo_get_stats64 = igb_get_stats64, 1904 .ndo_set_rx_mode = igb_set_rx_mode, 1905 .ndo_set_mac_address = igb_set_mac, 1906 .ndo_change_mtu = igb_change_mtu, 1907 .ndo_do_ioctl = igb_ioctl, 1908 .ndo_tx_timeout = igb_tx_timeout, 1909 .ndo_validate_addr = eth_validate_addr, 1910 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 1911 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 1912 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 1913 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 1914 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, 1915 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 1916 .ndo_get_vf_config = igb_ndo_get_vf_config, 1917 #ifdef CONFIG_NET_POLL_CONTROLLER 1918 .ndo_poll_controller = igb_netpoll, 1919 #endif 1920 .ndo_fix_features = igb_fix_features, 1921 .ndo_set_features = igb_set_features, 1922 }; 1923 1924 /** 1925 * igb_set_fw_version - Configure version string for ethtool 1926 * @adapter: adapter struct 1927 **/ 1928 void igb_set_fw_version(struct igb_adapter *adapter) 1929 { 1930 struct e1000_hw *hw = &adapter->hw; 1931 struct e1000_fw_version fw; 1932 1933 igb_get_fw_version(hw, &fw); 1934 1935 switch (hw->mac.type) { 1936 case e1000_i210: 1937 case e1000_i211: 1938 if (!(igb_get_flash_presence_i210(hw))) { 1939 snprintf(adapter->fw_version, 1940 sizeof(adapter->fw_version), 1941 "%2d.%2d-%d", 1942 fw.invm_major, fw.invm_minor, 1943 fw.invm_img_type); 1944 break; 1945 } 1946 /* fall through */ 1947 default: 1948 /* if option is rom valid, display its version too */ 1949 if (fw.or_valid) { 1950 snprintf(adapter->fw_version, 1951 sizeof(adapter->fw_version), 1952 "%d.%d, 0x%08x, %d.%d.%d", 1953 fw.eep_major, fw.eep_minor, fw.etrack_id, 1954 fw.or_major, fw.or_build, fw.or_patch); 1955 /* no option rom */ 1956 } else if (fw.etrack_id != 0X0000) { 1957 snprintf(adapter->fw_version, 1958 sizeof(adapter->fw_version), 1959 "%d.%d, 0x%08x", 1960 fw.eep_major, fw.eep_minor, fw.etrack_id); 1961 } else { 1962 snprintf(adapter->fw_version, 1963 sizeof(adapter->fw_version), 1964 "%d.%d.%d", 1965 fw.eep_major, fw.eep_minor, fw.eep_build); 1966 } 1967 break; 1968 } 1969 return; 1970 } 1971 1972 /** 1973 * igb_init_i2c - Init I2C interface 1974 * @adapter: pointer to adapter structure 1975 **/ 1976 static s32 igb_init_i2c(struct igb_adapter *adapter) 1977 { 1978 s32 status = E1000_SUCCESS; 1979 1980 /* I2C interface supported on i350 devices */ 1981 if (adapter->hw.mac.type != e1000_i350) 1982 return E1000_SUCCESS; 1983 1984 /* Initialize the i2c bus which is controlled by the registers. 1985 * This bus will use the i2c_algo_bit structue that implements 1986 * the protocol through toggling of the 4 bits in the register. 1987 */ 1988 adapter->i2c_adap.owner = THIS_MODULE; 1989 adapter->i2c_algo = igb_i2c_algo; 1990 adapter->i2c_algo.data = adapter; 1991 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 1992 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 1993 strlcpy(adapter->i2c_adap.name, "igb BB", 1994 sizeof(adapter->i2c_adap.name)); 1995 status = i2c_bit_add_bus(&adapter->i2c_adap); 1996 return status; 1997 } 1998 1999 /** 2000 * igb_probe - Device Initialization Routine 2001 * @pdev: PCI device information struct 2002 * @ent: entry in igb_pci_tbl 2003 * 2004 * Returns 0 on success, negative on failure 2005 * 2006 * igb_probe initializes an adapter identified by a pci_dev structure. 2007 * The OS initialization, configuring of the adapter private structure, 2008 * and a hardware reset occur. 2009 **/ 2010 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2011 { 2012 struct net_device *netdev; 2013 struct igb_adapter *adapter; 2014 struct e1000_hw *hw; 2015 u16 eeprom_data = 0; 2016 s32 ret_val; 2017 static int global_quad_port_a; /* global quad port a indication */ 2018 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 2019 unsigned long mmio_start, mmio_len; 2020 int err, pci_using_dac; 2021 u8 part_str[E1000_PBANUM_LENGTH]; 2022 2023 /* Catch broken hardware that put the wrong VF device ID in 2024 * the PCIe SR-IOV capability. 2025 */ 2026 if (pdev->is_virtfn) { 2027 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", 2028 pci_name(pdev), pdev->vendor, pdev->device); 2029 return -EINVAL; 2030 } 2031 2032 err = pci_enable_device_mem(pdev); 2033 if (err) 2034 return err; 2035 2036 pci_using_dac = 0; 2037 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 2038 if (!err) { 2039 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 2040 if (!err) 2041 pci_using_dac = 1; 2042 } else { 2043 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2044 if (err) { 2045 err = dma_set_coherent_mask(&pdev->dev, 2046 DMA_BIT_MASK(32)); 2047 if (err) { 2048 dev_err(&pdev->dev, 2049 "No usable DMA configuration, aborting\n"); 2050 goto err_dma; 2051 } 2052 } 2053 } 2054 2055 err = pci_request_selected_regions(pdev, pci_select_bars(pdev, 2056 IORESOURCE_MEM), 2057 igb_driver_name); 2058 if (err) 2059 goto err_pci_reg; 2060 2061 pci_enable_pcie_error_reporting(pdev); 2062 2063 pci_set_master(pdev); 2064 pci_save_state(pdev); 2065 2066 err = -ENOMEM; 2067 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 2068 IGB_MAX_TX_QUEUES); 2069 if (!netdev) 2070 goto err_alloc_etherdev; 2071 2072 SET_NETDEV_DEV(netdev, &pdev->dev); 2073 2074 pci_set_drvdata(pdev, netdev); 2075 adapter = netdev_priv(netdev); 2076 adapter->netdev = netdev; 2077 adapter->pdev = pdev; 2078 hw = &adapter->hw; 2079 hw->back = adapter; 2080 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2081 2082 mmio_start = pci_resource_start(pdev, 0); 2083 mmio_len = pci_resource_len(pdev, 0); 2084 2085 err = -EIO; 2086 hw->hw_addr = ioremap(mmio_start, mmio_len); 2087 if (!hw->hw_addr) 2088 goto err_ioremap; 2089 2090 netdev->netdev_ops = &igb_netdev_ops; 2091 igb_set_ethtool_ops(netdev); 2092 netdev->watchdog_timeo = 5 * HZ; 2093 2094 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2095 2096 netdev->mem_start = mmio_start; 2097 netdev->mem_end = mmio_start + mmio_len; 2098 2099 /* PCI config space info */ 2100 hw->vendor_id = pdev->vendor; 2101 hw->device_id = pdev->device; 2102 hw->revision_id = pdev->revision; 2103 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2104 hw->subsystem_device_id = pdev->subsystem_device; 2105 2106 /* Copy the default MAC, PHY and NVM function pointers */ 2107 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 2108 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 2109 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 2110 /* Initialize skew-specific constants */ 2111 err = ei->get_invariants(hw); 2112 if (err) 2113 goto err_sw_init; 2114 2115 /* setup the private structure */ 2116 err = igb_sw_init(adapter); 2117 if (err) 2118 goto err_sw_init; 2119 2120 igb_get_bus_info_pcie(hw); 2121 2122 hw->phy.autoneg_wait_to_complete = false; 2123 2124 /* Copper options */ 2125 if (hw->phy.media_type == e1000_media_type_copper) { 2126 hw->phy.mdix = AUTO_ALL_MODES; 2127 hw->phy.disable_polarity_correction = false; 2128 hw->phy.ms_type = e1000_ms_hw_default; 2129 } 2130 2131 if (igb_check_reset_block(hw)) 2132 dev_info(&pdev->dev, 2133 "PHY reset is blocked due to SOL/IDER session.\n"); 2134 2135 /* features is initialized to 0 in allocation, it might have bits 2136 * set by igb_sw_init so we should use an or instead of an 2137 * assignment. 2138 */ 2139 netdev->features |= NETIF_F_SG | 2140 NETIF_F_IP_CSUM | 2141 NETIF_F_IPV6_CSUM | 2142 NETIF_F_TSO | 2143 NETIF_F_TSO6 | 2144 NETIF_F_RXHASH | 2145 NETIF_F_RXCSUM | 2146 NETIF_F_HW_VLAN_CTAG_RX | 2147 NETIF_F_HW_VLAN_CTAG_TX; 2148 2149 /* copy netdev features into list of user selectable features */ 2150 netdev->hw_features |= netdev->features; 2151 netdev->hw_features |= NETIF_F_RXALL; 2152 2153 /* set this bit last since it cannot be part of hw_features */ 2154 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2155 2156 netdev->vlan_features |= NETIF_F_TSO | 2157 NETIF_F_TSO6 | 2158 NETIF_F_IP_CSUM | 2159 NETIF_F_IPV6_CSUM | 2160 NETIF_F_SG; 2161 2162 netdev->priv_flags |= IFF_SUPP_NOFCS; 2163 2164 if (pci_using_dac) { 2165 netdev->features |= NETIF_F_HIGHDMA; 2166 netdev->vlan_features |= NETIF_F_HIGHDMA; 2167 } 2168 2169 if (hw->mac.type >= e1000_82576) { 2170 netdev->hw_features |= NETIF_F_SCTP_CSUM; 2171 netdev->features |= NETIF_F_SCTP_CSUM; 2172 } 2173 2174 netdev->priv_flags |= IFF_UNICAST_FLT; 2175 2176 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 2177 2178 /* before reading the NVM, reset the controller to put the device in a 2179 * known good starting state 2180 */ 2181 hw->mac.ops.reset_hw(hw); 2182 2183 /* make sure the NVM is good , i211/i210 parts can have special NVM 2184 * that doesn't contain a checksum 2185 */ 2186 switch (hw->mac.type) { 2187 case e1000_i210: 2188 case e1000_i211: 2189 if (igb_get_flash_presence_i210(hw)) { 2190 if (hw->nvm.ops.validate(hw) < 0) { 2191 dev_err(&pdev->dev, 2192 "The NVM Checksum Is Not Valid\n"); 2193 err = -EIO; 2194 goto err_eeprom; 2195 } 2196 } 2197 break; 2198 default: 2199 if (hw->nvm.ops.validate(hw) < 0) { 2200 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 2201 err = -EIO; 2202 goto err_eeprom; 2203 } 2204 break; 2205 } 2206 2207 /* copy the MAC address out of the NVM */ 2208 if (hw->mac.ops.read_mac_addr(hw)) 2209 dev_err(&pdev->dev, "NVM Read Error\n"); 2210 2211 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2212 2213 if (!is_valid_ether_addr(netdev->dev_addr)) { 2214 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2215 err = -EIO; 2216 goto err_eeprom; 2217 } 2218 2219 /* get firmware version for ethtool -i */ 2220 igb_set_fw_version(adapter); 2221 2222 setup_timer(&adapter->watchdog_timer, igb_watchdog, 2223 (unsigned long) adapter); 2224 setup_timer(&adapter->phy_info_timer, igb_update_phy_info, 2225 (unsigned long) adapter); 2226 2227 INIT_WORK(&adapter->reset_task, igb_reset_task); 2228 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 2229 2230 /* Initialize link properties that are user-changeable */ 2231 adapter->fc_autoneg = true; 2232 hw->mac.autoneg = true; 2233 hw->phy.autoneg_advertised = 0x2f; 2234 2235 hw->fc.requested_mode = e1000_fc_default; 2236 hw->fc.current_mode = e1000_fc_default; 2237 2238 igb_validate_mdi_setting(hw); 2239 2240 /* By default, support wake on port A */ 2241 if (hw->bus.func == 0) 2242 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2243 2244 /* Check the NVM for wake support on non-port A ports */ 2245 if (hw->mac.type >= e1000_82580) 2246 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2247 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2248 &eeprom_data); 2249 else if (hw->bus.func == 1) 2250 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 2251 2252 if (eeprom_data & IGB_EEPROM_APME) 2253 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2254 2255 /* now that we have the eeprom settings, apply the special cases where 2256 * the eeprom may be wrong or the board simply won't support wake on 2257 * lan on a particular port 2258 */ 2259 switch (pdev->device) { 2260 case E1000_DEV_ID_82575GB_QUAD_COPPER: 2261 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2262 break; 2263 case E1000_DEV_ID_82575EB_FIBER_SERDES: 2264 case E1000_DEV_ID_82576_FIBER: 2265 case E1000_DEV_ID_82576_SERDES: 2266 /* Wake events only supported on port A for dual fiber 2267 * regardless of eeprom setting 2268 */ 2269 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 2270 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2271 break; 2272 case E1000_DEV_ID_82576_QUAD_COPPER: 2273 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 2274 /* if quad port adapter, disable WoL on all but port A */ 2275 if (global_quad_port_a != 0) 2276 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2277 else 2278 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 2279 /* Reset for multiple quad port adapters */ 2280 if (++global_quad_port_a == 4) 2281 global_quad_port_a = 0; 2282 break; 2283 default: 2284 /* If the device can't wake, don't set software support */ 2285 if (!device_can_wakeup(&adapter->pdev->dev)) 2286 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2287 } 2288 2289 /* initialize the wol settings based on the eeprom settings */ 2290 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 2291 adapter->wol |= E1000_WUFC_MAG; 2292 2293 /* Some vendors want WoL disabled by default, but still supported */ 2294 if ((hw->mac.type == e1000_i350) && 2295 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 2296 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2297 adapter->wol = 0; 2298 } 2299 2300 device_set_wakeup_enable(&adapter->pdev->dev, 2301 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 2302 2303 /* reset the hardware with the new settings */ 2304 igb_reset(adapter); 2305 2306 /* Init the I2C interface */ 2307 err = igb_init_i2c(adapter); 2308 if (err) { 2309 dev_err(&pdev->dev, "failed to init i2c interface\n"); 2310 goto err_eeprom; 2311 } 2312 2313 /* let the f/w know that the h/w is now under the control of the 2314 * driver. */ 2315 igb_get_hw_control(adapter); 2316 2317 strcpy(netdev->name, "eth%d"); 2318 err = register_netdev(netdev); 2319 if (err) 2320 goto err_register; 2321 2322 /* carrier off reporting is important to ethtool even BEFORE open */ 2323 netif_carrier_off(netdev); 2324 2325 #ifdef CONFIG_IGB_DCA 2326 if (dca_add_requester(&pdev->dev) == 0) { 2327 adapter->flags |= IGB_FLAG_DCA_ENABLED; 2328 dev_info(&pdev->dev, "DCA enabled\n"); 2329 igb_setup_dca(adapter); 2330 } 2331 2332 #endif 2333 #ifdef CONFIG_IGB_HWMON 2334 /* Initialize the thermal sensor on i350 devices. */ 2335 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 2336 u16 ets_word; 2337 2338 /* Read the NVM to determine if this i350 device supports an 2339 * external thermal sensor. 2340 */ 2341 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 2342 if (ets_word != 0x0000 && ets_word != 0xFFFF) 2343 adapter->ets = true; 2344 else 2345 adapter->ets = false; 2346 if (igb_sysfs_init(adapter)) 2347 dev_err(&pdev->dev, 2348 "failed to allocate sysfs resources\n"); 2349 } else { 2350 adapter->ets = false; 2351 } 2352 #endif 2353 /* do hw tstamp init after resetting */ 2354 igb_ptp_init(adapter); 2355 2356 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 2357 /* print bus type/speed/width info, not applicable to i354 */ 2358 if (hw->mac.type != e1000_i354) { 2359 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 2360 netdev->name, 2361 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 2362 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 2363 "unknown"), 2364 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 2365 "Width x4" : 2366 (hw->bus.width == e1000_bus_width_pcie_x2) ? 2367 "Width x2" : 2368 (hw->bus.width == e1000_bus_width_pcie_x1) ? 2369 "Width x1" : "unknown"), netdev->dev_addr); 2370 } 2371 2372 if ((hw->mac.type >= e1000_i210 || 2373 igb_get_flash_presence_i210(hw))) { 2374 ret_val = igb_read_part_string(hw, part_str, 2375 E1000_PBANUM_LENGTH); 2376 } else { 2377 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 2378 } 2379 2380 if (ret_val) 2381 strcpy(part_str, "Unknown"); 2382 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 2383 dev_info(&pdev->dev, 2384 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 2385 adapter->msix_entries ? "MSI-X" : 2386 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 2387 adapter->num_rx_queues, adapter->num_tx_queues); 2388 switch (hw->mac.type) { 2389 case e1000_i350: 2390 case e1000_i210: 2391 case e1000_i211: 2392 igb_set_eee_i350(hw); 2393 break; 2394 case e1000_i354: 2395 if (hw->phy.media_type == e1000_media_type_copper) { 2396 if ((rd32(E1000_CTRL_EXT) & 2397 E1000_CTRL_EXT_LINK_MODE_SGMII)) 2398 igb_set_eee_i354(hw); 2399 } 2400 break; 2401 default: 2402 break; 2403 } 2404 2405 pm_runtime_put_noidle(&pdev->dev); 2406 return 0; 2407 2408 err_register: 2409 igb_release_hw_control(adapter); 2410 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 2411 err_eeprom: 2412 if (!igb_check_reset_block(hw)) 2413 igb_reset_phy(hw); 2414 2415 if (hw->flash_address) 2416 iounmap(hw->flash_address); 2417 err_sw_init: 2418 igb_clear_interrupt_scheme(adapter); 2419 iounmap(hw->hw_addr); 2420 err_ioremap: 2421 free_netdev(netdev); 2422 err_alloc_etherdev: 2423 pci_release_selected_regions(pdev, 2424 pci_select_bars(pdev, IORESOURCE_MEM)); 2425 err_pci_reg: 2426 err_dma: 2427 pci_disable_device(pdev); 2428 return err; 2429 } 2430 2431 #ifdef CONFIG_PCI_IOV 2432 static int igb_disable_sriov(struct pci_dev *pdev) 2433 { 2434 struct net_device *netdev = pci_get_drvdata(pdev); 2435 struct igb_adapter *adapter = netdev_priv(netdev); 2436 struct e1000_hw *hw = &adapter->hw; 2437 2438 /* reclaim resources allocated to VFs */ 2439 if (adapter->vf_data) { 2440 /* disable iov and allow time for transactions to clear */ 2441 if (pci_vfs_assigned(pdev)) { 2442 dev_warn(&pdev->dev, 2443 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 2444 return -EPERM; 2445 } else { 2446 pci_disable_sriov(pdev); 2447 msleep(500); 2448 } 2449 2450 kfree(adapter->vf_data); 2451 adapter->vf_data = NULL; 2452 adapter->vfs_allocated_count = 0; 2453 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 2454 wrfl(); 2455 msleep(100); 2456 dev_info(&pdev->dev, "IOV Disabled\n"); 2457 2458 /* Re-enable DMA Coalescing flag since IOV is turned off */ 2459 adapter->flags |= IGB_FLAG_DMAC; 2460 } 2461 2462 return 0; 2463 } 2464 2465 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 2466 { 2467 struct net_device *netdev = pci_get_drvdata(pdev); 2468 struct igb_adapter *adapter = netdev_priv(netdev); 2469 int old_vfs = pci_num_vf(pdev); 2470 int err = 0; 2471 int i; 2472 2473 if (!adapter->msix_entries) { 2474 err = -EPERM; 2475 goto out; 2476 } 2477 2478 if (!num_vfs) 2479 goto out; 2480 else if (old_vfs && old_vfs == num_vfs) 2481 goto out; 2482 else if (old_vfs && old_vfs != num_vfs) 2483 err = igb_disable_sriov(pdev); 2484 2485 if (err) 2486 goto out; 2487 2488 if (num_vfs > 7) { 2489 err = -EPERM; 2490 goto out; 2491 } 2492 2493 adapter->vfs_allocated_count = num_vfs; 2494 2495 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 2496 sizeof(struct vf_data_storage), GFP_KERNEL); 2497 2498 /* if allocation failed then we do not support SR-IOV */ 2499 if (!adapter->vf_data) { 2500 adapter->vfs_allocated_count = 0; 2501 dev_err(&pdev->dev, 2502 "Unable to allocate memory for VF Data Storage\n"); 2503 err = -ENOMEM; 2504 goto out; 2505 } 2506 2507 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 2508 if (err) 2509 goto err_out; 2510 2511 dev_info(&pdev->dev, "%d VFs allocated\n", 2512 adapter->vfs_allocated_count); 2513 for (i = 0; i < adapter->vfs_allocated_count; i++) 2514 igb_vf_configure(adapter, i); 2515 2516 /* DMA Coalescing is not supported in IOV mode. */ 2517 adapter->flags &= ~IGB_FLAG_DMAC; 2518 goto out; 2519 2520 err_out: 2521 kfree(adapter->vf_data); 2522 adapter->vf_data = NULL; 2523 adapter->vfs_allocated_count = 0; 2524 out: 2525 return err; 2526 } 2527 2528 #endif 2529 /** 2530 * igb_remove_i2c - Cleanup I2C interface 2531 * @adapter: pointer to adapter structure 2532 **/ 2533 static void igb_remove_i2c(struct igb_adapter *adapter) 2534 { 2535 /* free the adapter bus structure */ 2536 i2c_del_adapter(&adapter->i2c_adap); 2537 } 2538 2539 /** 2540 * igb_remove - Device Removal Routine 2541 * @pdev: PCI device information struct 2542 * 2543 * igb_remove is called by the PCI subsystem to alert the driver 2544 * that it should release a PCI device. The could be caused by a 2545 * Hot-Plug event, or because the driver is going to be removed from 2546 * memory. 2547 **/ 2548 static void igb_remove(struct pci_dev *pdev) 2549 { 2550 struct net_device *netdev = pci_get_drvdata(pdev); 2551 struct igb_adapter *adapter = netdev_priv(netdev); 2552 struct e1000_hw *hw = &adapter->hw; 2553 2554 pm_runtime_get_noresume(&pdev->dev); 2555 #ifdef CONFIG_IGB_HWMON 2556 igb_sysfs_exit(adapter); 2557 #endif 2558 igb_remove_i2c(adapter); 2559 igb_ptp_stop(adapter); 2560 /* The watchdog timer may be rescheduled, so explicitly 2561 * disable watchdog from being rescheduled. 2562 */ 2563 set_bit(__IGB_DOWN, &adapter->state); 2564 del_timer_sync(&adapter->watchdog_timer); 2565 del_timer_sync(&adapter->phy_info_timer); 2566 2567 cancel_work_sync(&adapter->reset_task); 2568 cancel_work_sync(&adapter->watchdog_task); 2569 2570 #ifdef CONFIG_IGB_DCA 2571 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 2572 dev_info(&pdev->dev, "DCA disabled\n"); 2573 dca_remove_requester(&pdev->dev); 2574 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 2575 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 2576 } 2577 #endif 2578 2579 /* Release control of h/w to f/w. If f/w is AMT enabled, this 2580 * would have already happened in close and is redundant. 2581 */ 2582 igb_release_hw_control(adapter); 2583 2584 unregister_netdev(netdev); 2585 2586 igb_clear_interrupt_scheme(adapter); 2587 2588 #ifdef CONFIG_PCI_IOV 2589 igb_disable_sriov(pdev); 2590 #endif 2591 2592 iounmap(hw->hw_addr); 2593 if (hw->flash_address) 2594 iounmap(hw->flash_address); 2595 pci_release_selected_regions(pdev, 2596 pci_select_bars(pdev, IORESOURCE_MEM)); 2597 2598 kfree(adapter->shadow_vfta); 2599 free_netdev(netdev); 2600 2601 pci_disable_pcie_error_reporting(pdev); 2602 2603 pci_disable_device(pdev); 2604 } 2605 2606 /** 2607 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 2608 * @adapter: board private structure to initialize 2609 * 2610 * This function initializes the vf specific data storage and then attempts to 2611 * allocate the VFs. The reason for ordering it this way is because it is much 2612 * mor expensive time wise to disable SR-IOV than it is to allocate and free 2613 * the memory for the VFs. 2614 **/ 2615 static void igb_probe_vfs(struct igb_adapter *adapter) 2616 { 2617 #ifdef CONFIG_PCI_IOV 2618 struct pci_dev *pdev = adapter->pdev; 2619 struct e1000_hw *hw = &adapter->hw; 2620 2621 /* Virtualization features not supported on i210 family. */ 2622 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 2623 return; 2624 2625 pci_sriov_set_totalvfs(pdev, 7); 2626 igb_enable_sriov(pdev, max_vfs); 2627 2628 #endif /* CONFIG_PCI_IOV */ 2629 } 2630 2631 static void igb_init_queue_configuration(struct igb_adapter *adapter) 2632 { 2633 struct e1000_hw *hw = &adapter->hw; 2634 u32 max_rss_queues; 2635 2636 /* Determine the maximum number of RSS queues supported. */ 2637 switch (hw->mac.type) { 2638 case e1000_i211: 2639 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 2640 break; 2641 case e1000_82575: 2642 case e1000_i210: 2643 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 2644 break; 2645 case e1000_i350: 2646 /* I350 cannot do RSS and SR-IOV at the same time */ 2647 if (!!adapter->vfs_allocated_count) { 2648 max_rss_queues = 1; 2649 break; 2650 } 2651 /* fall through */ 2652 case e1000_82576: 2653 if (!!adapter->vfs_allocated_count) { 2654 max_rss_queues = 2; 2655 break; 2656 } 2657 /* fall through */ 2658 case e1000_82580: 2659 case e1000_i354: 2660 default: 2661 max_rss_queues = IGB_MAX_RX_QUEUES; 2662 break; 2663 } 2664 2665 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 2666 2667 /* Determine if we need to pair queues. */ 2668 switch (hw->mac.type) { 2669 case e1000_82575: 2670 case e1000_i211: 2671 /* Device supports enough interrupts without queue pairing. */ 2672 break; 2673 case e1000_82576: 2674 /* If VFs are going to be allocated with RSS queues then we 2675 * should pair the queues in order to conserve interrupts due 2676 * to limited supply. 2677 */ 2678 if ((adapter->rss_queues > 1) && 2679 (adapter->vfs_allocated_count > 6)) 2680 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2681 /* fall through */ 2682 case e1000_82580: 2683 case e1000_i350: 2684 case e1000_i354: 2685 case e1000_i210: 2686 default: 2687 /* If rss_queues > half of max_rss_queues, pair the queues in 2688 * order to conserve interrupts due to limited supply. 2689 */ 2690 if (adapter->rss_queues > (max_rss_queues / 2)) 2691 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2692 break; 2693 } 2694 } 2695 2696 /** 2697 * igb_sw_init - Initialize general software structures (struct igb_adapter) 2698 * @adapter: board private structure to initialize 2699 * 2700 * igb_sw_init initializes the Adapter private data structure. 2701 * Fields are initialized based on PCI device information and 2702 * OS network device settings (MTU size). 2703 **/ 2704 static int igb_sw_init(struct igb_adapter *adapter) 2705 { 2706 struct e1000_hw *hw = &adapter->hw; 2707 struct net_device *netdev = adapter->netdev; 2708 struct pci_dev *pdev = adapter->pdev; 2709 2710 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 2711 2712 /* set default ring sizes */ 2713 adapter->tx_ring_count = IGB_DEFAULT_TXD; 2714 adapter->rx_ring_count = IGB_DEFAULT_RXD; 2715 2716 /* set default ITR values */ 2717 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 2718 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 2719 2720 /* set default work limits */ 2721 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 2722 2723 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 2724 VLAN_HLEN; 2725 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2726 2727 spin_lock_init(&adapter->stats64_lock); 2728 #ifdef CONFIG_PCI_IOV 2729 switch (hw->mac.type) { 2730 case e1000_82576: 2731 case e1000_i350: 2732 if (max_vfs > 7) { 2733 dev_warn(&pdev->dev, 2734 "Maximum of 7 VFs per PF, using max\n"); 2735 max_vfs = adapter->vfs_allocated_count = 7; 2736 } else 2737 adapter->vfs_allocated_count = max_vfs; 2738 if (adapter->vfs_allocated_count) 2739 dev_warn(&pdev->dev, 2740 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 2741 break; 2742 default: 2743 break; 2744 } 2745 #endif /* CONFIG_PCI_IOV */ 2746 2747 igb_init_queue_configuration(adapter); 2748 2749 /* Setup and initialize a copy of the hw vlan table array */ 2750 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 2751 GFP_ATOMIC); 2752 2753 /* This call may decrease the number of queues */ 2754 if (igb_init_interrupt_scheme(adapter, true)) { 2755 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 2756 return -ENOMEM; 2757 } 2758 2759 igb_probe_vfs(adapter); 2760 2761 /* Explicitly disable IRQ since the NIC can be in any state. */ 2762 igb_irq_disable(adapter); 2763 2764 if (hw->mac.type >= e1000_i350) 2765 adapter->flags &= ~IGB_FLAG_DMAC; 2766 2767 set_bit(__IGB_DOWN, &adapter->state); 2768 return 0; 2769 } 2770 2771 /** 2772 * igb_open - Called when a network interface is made active 2773 * @netdev: network interface device structure 2774 * 2775 * Returns 0 on success, negative value on failure 2776 * 2777 * The open entry point is called when a network interface is made 2778 * active by the system (IFF_UP). At this point all resources needed 2779 * for transmit and receive operations are allocated, the interrupt 2780 * handler is registered with the OS, the watchdog timer is started, 2781 * and the stack is notified that the interface is ready. 2782 **/ 2783 static int __igb_open(struct net_device *netdev, bool resuming) 2784 { 2785 struct igb_adapter *adapter = netdev_priv(netdev); 2786 struct e1000_hw *hw = &adapter->hw; 2787 struct pci_dev *pdev = adapter->pdev; 2788 int err; 2789 int i; 2790 2791 /* disallow open during test */ 2792 if (test_bit(__IGB_TESTING, &adapter->state)) { 2793 WARN_ON(resuming); 2794 return -EBUSY; 2795 } 2796 2797 if (!resuming) 2798 pm_runtime_get_sync(&pdev->dev); 2799 2800 netif_carrier_off(netdev); 2801 2802 /* allocate transmit descriptors */ 2803 err = igb_setup_all_tx_resources(adapter); 2804 if (err) 2805 goto err_setup_tx; 2806 2807 /* allocate receive descriptors */ 2808 err = igb_setup_all_rx_resources(adapter); 2809 if (err) 2810 goto err_setup_rx; 2811 2812 igb_power_up_link(adapter); 2813 2814 /* before we allocate an interrupt, we must be ready to handle it. 2815 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 2816 * as soon as we call pci_request_irq, so we have to setup our 2817 * clean_rx handler before we do so. 2818 */ 2819 igb_configure(adapter); 2820 2821 err = igb_request_irq(adapter); 2822 if (err) 2823 goto err_req_irq; 2824 2825 /* Notify the stack of the actual queue counts. */ 2826 err = netif_set_real_num_tx_queues(adapter->netdev, 2827 adapter->num_tx_queues); 2828 if (err) 2829 goto err_set_queues; 2830 2831 err = netif_set_real_num_rx_queues(adapter->netdev, 2832 adapter->num_rx_queues); 2833 if (err) 2834 goto err_set_queues; 2835 2836 /* From here on the code is the same as igb_up() */ 2837 clear_bit(__IGB_DOWN, &adapter->state); 2838 2839 for (i = 0; i < adapter->num_q_vectors; i++) 2840 napi_enable(&(adapter->q_vector[i]->napi)); 2841 2842 /* Clear any pending interrupts. */ 2843 rd32(E1000_ICR); 2844 2845 igb_irq_enable(adapter); 2846 2847 /* notify VFs that reset has been completed */ 2848 if (adapter->vfs_allocated_count) { 2849 u32 reg_data = rd32(E1000_CTRL_EXT); 2850 reg_data |= E1000_CTRL_EXT_PFRSTD; 2851 wr32(E1000_CTRL_EXT, reg_data); 2852 } 2853 2854 netif_tx_start_all_queues(netdev); 2855 2856 if (!resuming) 2857 pm_runtime_put(&pdev->dev); 2858 2859 /* start the watchdog. */ 2860 hw->mac.get_link_status = 1; 2861 schedule_work(&adapter->watchdog_task); 2862 2863 return 0; 2864 2865 err_set_queues: 2866 igb_free_irq(adapter); 2867 err_req_irq: 2868 igb_release_hw_control(adapter); 2869 igb_power_down_link(adapter); 2870 igb_free_all_rx_resources(adapter); 2871 err_setup_rx: 2872 igb_free_all_tx_resources(adapter); 2873 err_setup_tx: 2874 igb_reset(adapter); 2875 if (!resuming) 2876 pm_runtime_put(&pdev->dev); 2877 2878 return err; 2879 } 2880 2881 static int igb_open(struct net_device *netdev) 2882 { 2883 return __igb_open(netdev, false); 2884 } 2885 2886 /** 2887 * igb_close - Disables a network interface 2888 * @netdev: network interface device structure 2889 * 2890 * Returns 0, this is not allowed to fail 2891 * 2892 * The close entry point is called when an interface is de-activated 2893 * by the OS. The hardware is still under the driver's control, but 2894 * needs to be disabled. A global MAC reset is issued to stop the 2895 * hardware, and all transmit and receive resources are freed. 2896 **/ 2897 static int __igb_close(struct net_device *netdev, bool suspending) 2898 { 2899 struct igb_adapter *adapter = netdev_priv(netdev); 2900 struct pci_dev *pdev = adapter->pdev; 2901 2902 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 2903 2904 if (!suspending) 2905 pm_runtime_get_sync(&pdev->dev); 2906 2907 igb_down(adapter); 2908 igb_free_irq(adapter); 2909 2910 igb_free_all_tx_resources(adapter); 2911 igb_free_all_rx_resources(adapter); 2912 2913 if (!suspending) 2914 pm_runtime_put_sync(&pdev->dev); 2915 return 0; 2916 } 2917 2918 static int igb_close(struct net_device *netdev) 2919 { 2920 return __igb_close(netdev, false); 2921 } 2922 2923 /** 2924 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 2925 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2926 * 2927 * Return 0 on success, negative on failure 2928 **/ 2929 int igb_setup_tx_resources(struct igb_ring *tx_ring) 2930 { 2931 struct device *dev = tx_ring->dev; 2932 int size; 2933 2934 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 2935 2936 tx_ring->tx_buffer_info = vzalloc(size); 2937 if (!tx_ring->tx_buffer_info) 2938 goto err; 2939 2940 /* round up to nearest 4K */ 2941 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 2942 tx_ring->size = ALIGN(tx_ring->size, 4096); 2943 2944 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2945 &tx_ring->dma, GFP_KERNEL); 2946 if (!tx_ring->desc) 2947 goto err; 2948 2949 tx_ring->next_to_use = 0; 2950 tx_ring->next_to_clean = 0; 2951 2952 return 0; 2953 2954 err: 2955 vfree(tx_ring->tx_buffer_info); 2956 tx_ring->tx_buffer_info = NULL; 2957 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2958 return -ENOMEM; 2959 } 2960 2961 /** 2962 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 2963 * (Descriptors) for all queues 2964 * @adapter: board private structure 2965 * 2966 * Return 0 on success, negative on failure 2967 **/ 2968 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 2969 { 2970 struct pci_dev *pdev = adapter->pdev; 2971 int i, err = 0; 2972 2973 for (i = 0; i < adapter->num_tx_queues; i++) { 2974 err = igb_setup_tx_resources(adapter->tx_ring[i]); 2975 if (err) { 2976 dev_err(&pdev->dev, 2977 "Allocation for Tx Queue %u failed\n", i); 2978 for (i--; i >= 0; i--) 2979 igb_free_tx_resources(adapter->tx_ring[i]); 2980 break; 2981 } 2982 } 2983 2984 return err; 2985 } 2986 2987 /** 2988 * igb_setup_tctl - configure the transmit control registers 2989 * @adapter: Board private structure 2990 **/ 2991 void igb_setup_tctl(struct igb_adapter *adapter) 2992 { 2993 struct e1000_hw *hw = &adapter->hw; 2994 u32 tctl; 2995 2996 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 2997 wr32(E1000_TXDCTL(0), 0); 2998 2999 /* Program the Transmit Control Register */ 3000 tctl = rd32(E1000_TCTL); 3001 tctl &= ~E1000_TCTL_CT; 3002 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 3003 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 3004 3005 igb_config_collision_dist(hw); 3006 3007 /* Enable transmits */ 3008 tctl |= E1000_TCTL_EN; 3009 3010 wr32(E1000_TCTL, tctl); 3011 } 3012 3013 /** 3014 * igb_configure_tx_ring - Configure transmit ring after Reset 3015 * @adapter: board private structure 3016 * @ring: tx ring to configure 3017 * 3018 * Configure a transmit ring after a reset. 3019 **/ 3020 void igb_configure_tx_ring(struct igb_adapter *adapter, 3021 struct igb_ring *ring) 3022 { 3023 struct e1000_hw *hw = &adapter->hw; 3024 u32 txdctl = 0; 3025 u64 tdba = ring->dma; 3026 int reg_idx = ring->reg_idx; 3027 3028 /* disable the queue */ 3029 wr32(E1000_TXDCTL(reg_idx), 0); 3030 wrfl(); 3031 mdelay(10); 3032 3033 wr32(E1000_TDLEN(reg_idx), 3034 ring->count * sizeof(union e1000_adv_tx_desc)); 3035 wr32(E1000_TDBAL(reg_idx), 3036 tdba & 0x00000000ffffffffULL); 3037 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 3038 3039 ring->tail = hw->hw_addr + E1000_TDT(reg_idx); 3040 wr32(E1000_TDH(reg_idx), 0); 3041 writel(0, ring->tail); 3042 3043 txdctl |= IGB_TX_PTHRESH; 3044 txdctl |= IGB_TX_HTHRESH << 8; 3045 txdctl |= IGB_TX_WTHRESH << 16; 3046 3047 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 3048 wr32(E1000_TXDCTL(reg_idx), txdctl); 3049 } 3050 3051 /** 3052 * igb_configure_tx - Configure transmit Unit after Reset 3053 * @adapter: board private structure 3054 * 3055 * Configure the Tx unit of the MAC after a reset. 3056 **/ 3057 static void igb_configure_tx(struct igb_adapter *adapter) 3058 { 3059 int i; 3060 3061 for (i = 0; i < adapter->num_tx_queues; i++) 3062 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 3063 } 3064 3065 /** 3066 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 3067 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3068 * 3069 * Returns 0 on success, negative on failure 3070 **/ 3071 int igb_setup_rx_resources(struct igb_ring *rx_ring) 3072 { 3073 struct device *dev = rx_ring->dev; 3074 int size; 3075 3076 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3077 3078 rx_ring->rx_buffer_info = vzalloc(size); 3079 if (!rx_ring->rx_buffer_info) 3080 goto err; 3081 3082 /* Round up to nearest 4K */ 3083 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 3084 rx_ring->size = ALIGN(rx_ring->size, 4096); 3085 3086 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 3087 &rx_ring->dma, GFP_KERNEL); 3088 if (!rx_ring->desc) 3089 goto err; 3090 3091 rx_ring->next_to_alloc = 0; 3092 rx_ring->next_to_clean = 0; 3093 rx_ring->next_to_use = 0; 3094 3095 return 0; 3096 3097 err: 3098 vfree(rx_ring->rx_buffer_info); 3099 rx_ring->rx_buffer_info = NULL; 3100 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3101 return -ENOMEM; 3102 } 3103 3104 /** 3105 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 3106 * (Descriptors) for all queues 3107 * @adapter: board private structure 3108 * 3109 * Return 0 on success, negative on failure 3110 **/ 3111 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 3112 { 3113 struct pci_dev *pdev = adapter->pdev; 3114 int i, err = 0; 3115 3116 for (i = 0; i < adapter->num_rx_queues; i++) { 3117 err = igb_setup_rx_resources(adapter->rx_ring[i]); 3118 if (err) { 3119 dev_err(&pdev->dev, 3120 "Allocation for Rx Queue %u failed\n", i); 3121 for (i--; i >= 0; i--) 3122 igb_free_rx_resources(adapter->rx_ring[i]); 3123 break; 3124 } 3125 } 3126 3127 return err; 3128 } 3129 3130 /** 3131 * igb_setup_mrqc - configure the multiple receive queue control registers 3132 * @adapter: Board private structure 3133 **/ 3134 static void igb_setup_mrqc(struct igb_adapter *adapter) 3135 { 3136 struct e1000_hw *hw = &adapter->hw; 3137 u32 mrqc, rxcsum; 3138 u32 j, num_rx_queues; 3139 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741, 3140 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE, 3141 0xA32DCB77, 0x0CF23080, 0x3BB7426A, 3142 0xFA01ACBE }; 3143 3144 /* Fill out hash function seeds */ 3145 for (j = 0; j < 10; j++) 3146 wr32(E1000_RSSRK(j), rsskey[j]); 3147 3148 num_rx_queues = adapter->rss_queues; 3149 3150 switch (hw->mac.type) { 3151 case e1000_82576: 3152 /* 82576 supports 2 RSS queues for SR-IOV */ 3153 if (adapter->vfs_allocated_count) 3154 num_rx_queues = 2; 3155 break; 3156 default: 3157 break; 3158 } 3159 3160 if (adapter->rss_indir_tbl_init != num_rx_queues) { 3161 for (j = 0; j < IGB_RETA_SIZE; j++) 3162 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE; 3163 adapter->rss_indir_tbl_init = num_rx_queues; 3164 } 3165 igb_write_rss_indir_tbl(adapter); 3166 3167 /* Disable raw packet checksumming so that RSS hash is placed in 3168 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 3169 * offloads as they are enabled by default 3170 */ 3171 rxcsum = rd32(E1000_RXCSUM); 3172 rxcsum |= E1000_RXCSUM_PCSD; 3173 3174 if (adapter->hw.mac.type >= e1000_82576) 3175 /* Enable Receive Checksum Offload for SCTP */ 3176 rxcsum |= E1000_RXCSUM_CRCOFL; 3177 3178 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 3179 wr32(E1000_RXCSUM, rxcsum); 3180 3181 /* Generate RSS hash based on packet types, TCP/UDP 3182 * port numbers and/or IPv4/v6 src and dst addresses 3183 */ 3184 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 3185 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3186 E1000_MRQC_RSS_FIELD_IPV6 | 3187 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3188 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 3189 3190 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 3191 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 3192 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 3193 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 3194 3195 /* If VMDq is enabled then we set the appropriate mode for that, else 3196 * we default to RSS so that an RSS hash is calculated per packet even 3197 * if we are only using one queue 3198 */ 3199 if (adapter->vfs_allocated_count) { 3200 if (hw->mac.type > e1000_82575) { 3201 /* Set the default pool for the PF's first queue */ 3202 u32 vtctl = rd32(E1000_VT_CTL); 3203 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 3204 E1000_VT_CTL_DISABLE_DEF_POOL); 3205 vtctl |= adapter->vfs_allocated_count << 3206 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 3207 wr32(E1000_VT_CTL, vtctl); 3208 } 3209 if (adapter->rss_queues > 1) 3210 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; 3211 else 3212 mrqc |= E1000_MRQC_ENABLE_VMDQ; 3213 } else { 3214 if (hw->mac.type != e1000_i211) 3215 mrqc |= E1000_MRQC_ENABLE_RSS_4Q; 3216 } 3217 igb_vmm_control(adapter); 3218 3219 wr32(E1000_MRQC, mrqc); 3220 } 3221 3222 /** 3223 * igb_setup_rctl - configure the receive control registers 3224 * @adapter: Board private structure 3225 **/ 3226 void igb_setup_rctl(struct igb_adapter *adapter) 3227 { 3228 struct e1000_hw *hw = &adapter->hw; 3229 u32 rctl; 3230 3231 rctl = rd32(E1000_RCTL); 3232 3233 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3234 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 3235 3236 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 3237 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3238 3239 /* enable stripping of CRC. It's unlikely this will break BMC 3240 * redirection as it did with e1000. Newer features require 3241 * that the HW strips the CRC. 3242 */ 3243 rctl |= E1000_RCTL_SECRC; 3244 3245 /* disable store bad packets and clear size bits. */ 3246 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 3247 3248 /* enable LPE to prevent packets larger than max_frame_size */ 3249 rctl |= E1000_RCTL_LPE; 3250 3251 /* disable queue 0 to prevent tail write w/o re-config */ 3252 wr32(E1000_RXDCTL(0), 0); 3253 3254 /* Attention!!! For SR-IOV PF driver operations you must enable 3255 * queue drop for all VF and PF queues to prevent head of line blocking 3256 * if an un-trusted VF does not provide descriptors to hardware. 3257 */ 3258 if (adapter->vfs_allocated_count) { 3259 /* set all queue drop enable bits */ 3260 wr32(E1000_QDE, ALL_QUEUES); 3261 } 3262 3263 /* This is useful for sniffing bad packets. */ 3264 if (adapter->netdev->features & NETIF_F_RXALL) { 3265 /* UPE and MPE will be handled by normal PROMISC logic 3266 * in e1000e_set_rx_mode 3267 */ 3268 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3269 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3270 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3271 3272 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3273 E1000_RCTL_DPF | /* Allow filtered pause */ 3274 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3275 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3276 * and that breaks VLANs. 3277 */ 3278 } 3279 3280 wr32(E1000_RCTL, rctl); 3281 } 3282 3283 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 3284 int vfn) 3285 { 3286 struct e1000_hw *hw = &adapter->hw; 3287 u32 vmolr; 3288 3289 /* if it isn't the PF check to see if VFs are enabled and 3290 * increase the size to support vlan tags 3291 */ 3292 if (vfn < adapter->vfs_allocated_count && 3293 adapter->vf_data[vfn].vlans_enabled) 3294 size += VLAN_TAG_SIZE; 3295 3296 vmolr = rd32(E1000_VMOLR(vfn)); 3297 vmolr &= ~E1000_VMOLR_RLPML_MASK; 3298 vmolr |= size | E1000_VMOLR_LPE; 3299 wr32(E1000_VMOLR(vfn), vmolr); 3300 3301 return 0; 3302 } 3303 3304 /** 3305 * igb_rlpml_set - set maximum receive packet size 3306 * @adapter: board private structure 3307 * 3308 * Configure maximum receivable packet size. 3309 **/ 3310 static void igb_rlpml_set(struct igb_adapter *adapter) 3311 { 3312 u32 max_frame_size = adapter->max_frame_size; 3313 struct e1000_hw *hw = &adapter->hw; 3314 u16 pf_id = adapter->vfs_allocated_count; 3315 3316 if (pf_id) { 3317 igb_set_vf_rlpml(adapter, max_frame_size, pf_id); 3318 /* If we're in VMDQ or SR-IOV mode, then set global RLPML 3319 * to our max jumbo frame size, in case we need to enable 3320 * jumbo frames on one of the rings later. 3321 * This will not pass over-length frames into the default 3322 * queue because it's gated by the VMOLR.RLPML. 3323 */ 3324 max_frame_size = MAX_JUMBO_FRAME_SIZE; 3325 } 3326 3327 wr32(E1000_RLPML, max_frame_size); 3328 } 3329 3330 static inline void igb_set_vmolr(struct igb_adapter *adapter, 3331 int vfn, bool aupe) 3332 { 3333 struct e1000_hw *hw = &adapter->hw; 3334 u32 vmolr; 3335 3336 /* This register exists only on 82576 and newer so if we are older then 3337 * we should exit and do nothing 3338 */ 3339 if (hw->mac.type < e1000_82576) 3340 return; 3341 3342 vmolr = rd32(E1000_VMOLR(vfn)); 3343 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ 3344 if (aupe) 3345 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 3346 else 3347 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 3348 3349 /* clear all bits that might not be set */ 3350 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 3351 3352 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 3353 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 3354 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 3355 * multicast packets 3356 */ 3357 if (vfn <= adapter->vfs_allocated_count) 3358 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 3359 3360 wr32(E1000_VMOLR(vfn), vmolr); 3361 } 3362 3363 /** 3364 * igb_configure_rx_ring - Configure a receive ring after Reset 3365 * @adapter: board private structure 3366 * @ring: receive ring to be configured 3367 * 3368 * Configure the Rx unit of the MAC after a reset. 3369 **/ 3370 void igb_configure_rx_ring(struct igb_adapter *adapter, 3371 struct igb_ring *ring) 3372 { 3373 struct e1000_hw *hw = &adapter->hw; 3374 u64 rdba = ring->dma; 3375 int reg_idx = ring->reg_idx; 3376 u32 srrctl = 0, rxdctl = 0; 3377 3378 /* disable the queue */ 3379 wr32(E1000_RXDCTL(reg_idx), 0); 3380 3381 /* Set DMA base address registers */ 3382 wr32(E1000_RDBAL(reg_idx), 3383 rdba & 0x00000000ffffffffULL); 3384 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 3385 wr32(E1000_RDLEN(reg_idx), 3386 ring->count * sizeof(union e1000_adv_rx_desc)); 3387 3388 /* initialize head and tail */ 3389 ring->tail = hw->hw_addr + E1000_RDT(reg_idx); 3390 wr32(E1000_RDH(reg_idx), 0); 3391 writel(0, ring->tail); 3392 3393 /* set descriptor configuration */ 3394 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 3395 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3396 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3397 if (hw->mac.type >= e1000_82580) 3398 srrctl |= E1000_SRRCTL_TIMESTAMP; 3399 /* Only set Drop Enable if we are supporting multiple queues */ 3400 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) 3401 srrctl |= E1000_SRRCTL_DROP_EN; 3402 3403 wr32(E1000_SRRCTL(reg_idx), srrctl); 3404 3405 /* set filtering for VMDQ pools */ 3406 igb_set_vmolr(adapter, reg_idx & 0x7, true); 3407 3408 rxdctl |= IGB_RX_PTHRESH; 3409 rxdctl |= IGB_RX_HTHRESH << 8; 3410 rxdctl |= IGB_RX_WTHRESH << 16; 3411 3412 /* enable receive descriptor fetching */ 3413 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3414 wr32(E1000_RXDCTL(reg_idx), rxdctl); 3415 } 3416 3417 /** 3418 * igb_configure_rx - Configure receive Unit after Reset 3419 * @adapter: board private structure 3420 * 3421 * Configure the Rx unit of the MAC after a reset. 3422 **/ 3423 static void igb_configure_rx(struct igb_adapter *adapter) 3424 { 3425 int i; 3426 3427 /* set UTA to appropriate mode */ 3428 igb_set_uta(adapter); 3429 3430 /* set the correct pool for the PF default MAC address in entry 0 */ 3431 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 3432 adapter->vfs_allocated_count); 3433 3434 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3435 * the Base and Length of the Rx Descriptor Ring 3436 */ 3437 for (i = 0; i < adapter->num_rx_queues; i++) 3438 igb_configure_rx_ring(adapter, adapter->rx_ring[i]); 3439 } 3440 3441 /** 3442 * igb_free_tx_resources - Free Tx Resources per Queue 3443 * @tx_ring: Tx descriptor ring for a specific queue 3444 * 3445 * Free all transmit software resources 3446 **/ 3447 void igb_free_tx_resources(struct igb_ring *tx_ring) 3448 { 3449 igb_clean_tx_ring(tx_ring); 3450 3451 vfree(tx_ring->tx_buffer_info); 3452 tx_ring->tx_buffer_info = NULL; 3453 3454 /* if not set, then don't free */ 3455 if (!tx_ring->desc) 3456 return; 3457 3458 dma_free_coherent(tx_ring->dev, tx_ring->size, 3459 tx_ring->desc, tx_ring->dma); 3460 3461 tx_ring->desc = NULL; 3462 } 3463 3464 /** 3465 * igb_free_all_tx_resources - Free Tx Resources for All Queues 3466 * @adapter: board private structure 3467 * 3468 * Free all transmit software resources 3469 **/ 3470 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 3471 { 3472 int i; 3473 3474 for (i = 0; i < adapter->num_tx_queues; i++) 3475 igb_free_tx_resources(adapter->tx_ring[i]); 3476 } 3477 3478 void igb_unmap_and_free_tx_resource(struct igb_ring *ring, 3479 struct igb_tx_buffer *tx_buffer) 3480 { 3481 if (tx_buffer->skb) { 3482 dev_kfree_skb_any(tx_buffer->skb); 3483 if (dma_unmap_len(tx_buffer, len)) 3484 dma_unmap_single(ring->dev, 3485 dma_unmap_addr(tx_buffer, dma), 3486 dma_unmap_len(tx_buffer, len), 3487 DMA_TO_DEVICE); 3488 } else if (dma_unmap_len(tx_buffer, len)) { 3489 dma_unmap_page(ring->dev, 3490 dma_unmap_addr(tx_buffer, dma), 3491 dma_unmap_len(tx_buffer, len), 3492 DMA_TO_DEVICE); 3493 } 3494 tx_buffer->next_to_watch = NULL; 3495 tx_buffer->skb = NULL; 3496 dma_unmap_len_set(tx_buffer, len, 0); 3497 /* buffer_info must be completely set up in the transmit path */ 3498 } 3499 3500 /** 3501 * igb_clean_tx_ring - Free Tx Buffers 3502 * @tx_ring: ring to be cleaned 3503 **/ 3504 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 3505 { 3506 struct igb_tx_buffer *buffer_info; 3507 unsigned long size; 3508 u16 i; 3509 3510 if (!tx_ring->tx_buffer_info) 3511 return; 3512 /* Free all the Tx ring sk_buffs */ 3513 3514 for (i = 0; i < tx_ring->count; i++) { 3515 buffer_info = &tx_ring->tx_buffer_info[i]; 3516 igb_unmap_and_free_tx_resource(tx_ring, buffer_info); 3517 } 3518 3519 netdev_tx_reset_queue(txring_txq(tx_ring)); 3520 3521 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3522 memset(tx_ring->tx_buffer_info, 0, size); 3523 3524 /* Zero out the descriptor ring */ 3525 memset(tx_ring->desc, 0, tx_ring->size); 3526 3527 tx_ring->next_to_use = 0; 3528 tx_ring->next_to_clean = 0; 3529 } 3530 3531 /** 3532 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 3533 * @adapter: board private structure 3534 **/ 3535 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 3536 { 3537 int i; 3538 3539 for (i = 0; i < adapter->num_tx_queues; i++) 3540 igb_clean_tx_ring(adapter->tx_ring[i]); 3541 } 3542 3543 /** 3544 * igb_free_rx_resources - Free Rx Resources 3545 * @rx_ring: ring to clean the resources from 3546 * 3547 * Free all receive software resources 3548 **/ 3549 void igb_free_rx_resources(struct igb_ring *rx_ring) 3550 { 3551 igb_clean_rx_ring(rx_ring); 3552 3553 vfree(rx_ring->rx_buffer_info); 3554 rx_ring->rx_buffer_info = NULL; 3555 3556 /* if not set, then don't free */ 3557 if (!rx_ring->desc) 3558 return; 3559 3560 dma_free_coherent(rx_ring->dev, rx_ring->size, 3561 rx_ring->desc, rx_ring->dma); 3562 3563 rx_ring->desc = NULL; 3564 } 3565 3566 /** 3567 * igb_free_all_rx_resources - Free Rx Resources for All Queues 3568 * @adapter: board private structure 3569 * 3570 * Free all receive software resources 3571 **/ 3572 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 3573 { 3574 int i; 3575 3576 for (i = 0; i < adapter->num_rx_queues; i++) 3577 igb_free_rx_resources(adapter->rx_ring[i]); 3578 } 3579 3580 /** 3581 * igb_clean_rx_ring - Free Rx Buffers per Queue 3582 * @rx_ring: ring to free buffers from 3583 **/ 3584 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 3585 { 3586 unsigned long size; 3587 u16 i; 3588 3589 if (rx_ring->skb) 3590 dev_kfree_skb(rx_ring->skb); 3591 rx_ring->skb = NULL; 3592 3593 if (!rx_ring->rx_buffer_info) 3594 return; 3595 3596 /* Free all the Rx ring sk_buffs */ 3597 for (i = 0; i < rx_ring->count; i++) { 3598 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 3599 3600 if (!buffer_info->page) 3601 continue; 3602 3603 dma_unmap_page(rx_ring->dev, 3604 buffer_info->dma, 3605 PAGE_SIZE, 3606 DMA_FROM_DEVICE); 3607 __free_page(buffer_info->page); 3608 3609 buffer_info->page = NULL; 3610 } 3611 3612 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3613 memset(rx_ring->rx_buffer_info, 0, size); 3614 3615 /* Zero out the descriptor ring */ 3616 memset(rx_ring->desc, 0, rx_ring->size); 3617 3618 rx_ring->next_to_alloc = 0; 3619 rx_ring->next_to_clean = 0; 3620 rx_ring->next_to_use = 0; 3621 } 3622 3623 /** 3624 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 3625 * @adapter: board private structure 3626 **/ 3627 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 3628 { 3629 int i; 3630 3631 for (i = 0; i < adapter->num_rx_queues; i++) 3632 igb_clean_rx_ring(adapter->rx_ring[i]); 3633 } 3634 3635 /** 3636 * igb_set_mac - Change the Ethernet Address of the NIC 3637 * @netdev: network interface device structure 3638 * @p: pointer to an address structure 3639 * 3640 * Returns 0 on success, negative on failure 3641 **/ 3642 static int igb_set_mac(struct net_device *netdev, void *p) 3643 { 3644 struct igb_adapter *adapter = netdev_priv(netdev); 3645 struct e1000_hw *hw = &adapter->hw; 3646 struct sockaddr *addr = p; 3647 3648 if (!is_valid_ether_addr(addr->sa_data)) 3649 return -EADDRNOTAVAIL; 3650 3651 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3652 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3653 3654 /* set the correct pool for the new PF MAC address in entry 0 */ 3655 igb_rar_set_qsel(adapter, hw->mac.addr, 0, 3656 adapter->vfs_allocated_count); 3657 3658 return 0; 3659 } 3660 3661 /** 3662 * igb_write_mc_addr_list - write multicast addresses to MTA 3663 * @netdev: network interface device structure 3664 * 3665 * Writes multicast address list to the MTA hash table. 3666 * Returns: -ENOMEM on failure 3667 * 0 on no addresses written 3668 * X on writing X addresses to MTA 3669 **/ 3670 static int igb_write_mc_addr_list(struct net_device *netdev) 3671 { 3672 struct igb_adapter *adapter = netdev_priv(netdev); 3673 struct e1000_hw *hw = &adapter->hw; 3674 struct netdev_hw_addr *ha; 3675 u8 *mta_list; 3676 int i; 3677 3678 if (netdev_mc_empty(netdev)) { 3679 /* nothing to program, so clear mc list */ 3680 igb_update_mc_addr_list(hw, NULL, 0); 3681 igb_restore_vf_multicasts(adapter); 3682 return 0; 3683 } 3684 3685 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3686 if (!mta_list) 3687 return -ENOMEM; 3688 3689 /* The shared function expects a packed array of only addresses. */ 3690 i = 0; 3691 netdev_for_each_mc_addr(ha, netdev) 3692 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3693 3694 igb_update_mc_addr_list(hw, mta_list, i); 3695 kfree(mta_list); 3696 3697 return netdev_mc_count(netdev); 3698 } 3699 3700 /** 3701 * igb_write_uc_addr_list - write unicast addresses to RAR table 3702 * @netdev: network interface device structure 3703 * 3704 * Writes unicast address list to the RAR table. 3705 * Returns: -ENOMEM on failure/insufficient address space 3706 * 0 on no addresses written 3707 * X on writing X addresses to the RAR table 3708 **/ 3709 static int igb_write_uc_addr_list(struct net_device *netdev) 3710 { 3711 struct igb_adapter *adapter = netdev_priv(netdev); 3712 struct e1000_hw *hw = &adapter->hw; 3713 unsigned int vfn = adapter->vfs_allocated_count; 3714 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 3715 int count = 0; 3716 3717 /* return ENOMEM indicating insufficient memory for addresses */ 3718 if (netdev_uc_count(netdev) > rar_entries) 3719 return -ENOMEM; 3720 3721 if (!netdev_uc_empty(netdev) && rar_entries) { 3722 struct netdev_hw_addr *ha; 3723 3724 netdev_for_each_uc_addr(ha, netdev) { 3725 if (!rar_entries) 3726 break; 3727 igb_rar_set_qsel(adapter, ha->addr, 3728 rar_entries--, 3729 vfn); 3730 count++; 3731 } 3732 } 3733 /* write the addresses in reverse order to avoid write combining */ 3734 for (; rar_entries > 0 ; rar_entries--) { 3735 wr32(E1000_RAH(rar_entries), 0); 3736 wr32(E1000_RAL(rar_entries), 0); 3737 } 3738 wrfl(); 3739 3740 return count; 3741 } 3742 3743 /** 3744 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3745 * @netdev: network interface device structure 3746 * 3747 * The set_rx_mode entry point is called whenever the unicast or multicast 3748 * address lists or the network interface flags are updated. This routine is 3749 * responsible for configuring the hardware for proper unicast, multicast, 3750 * promiscuous mode, and all-multi behavior. 3751 **/ 3752 static void igb_set_rx_mode(struct net_device *netdev) 3753 { 3754 struct igb_adapter *adapter = netdev_priv(netdev); 3755 struct e1000_hw *hw = &adapter->hw; 3756 unsigned int vfn = adapter->vfs_allocated_count; 3757 u32 rctl, vmolr = 0; 3758 int count; 3759 3760 /* Check for Promiscuous and All Multicast modes */ 3761 rctl = rd32(E1000_RCTL); 3762 3763 /* clear the effected bits */ 3764 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); 3765 3766 if (netdev->flags & IFF_PROMISC) { 3767 /* retain VLAN HW filtering if in VT mode */ 3768 if (adapter->vfs_allocated_count) 3769 rctl |= E1000_RCTL_VFE; 3770 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3771 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); 3772 } else { 3773 if (netdev->flags & IFF_ALLMULTI) { 3774 rctl |= E1000_RCTL_MPE; 3775 vmolr |= E1000_VMOLR_MPME; 3776 } else { 3777 /* Write addresses to the MTA, if the attempt fails 3778 * then we should just turn on promiscuous mode so 3779 * that we can at least receive multicast traffic 3780 */ 3781 count = igb_write_mc_addr_list(netdev); 3782 if (count < 0) { 3783 rctl |= E1000_RCTL_MPE; 3784 vmolr |= E1000_VMOLR_MPME; 3785 } else if (count) { 3786 vmolr |= E1000_VMOLR_ROMPE; 3787 } 3788 } 3789 /* Write addresses to available RAR registers, if there is not 3790 * sufficient space to store all the addresses then enable 3791 * unicast promiscuous mode 3792 */ 3793 count = igb_write_uc_addr_list(netdev); 3794 if (count < 0) { 3795 rctl |= E1000_RCTL_UPE; 3796 vmolr |= E1000_VMOLR_ROPE; 3797 } 3798 rctl |= E1000_RCTL_VFE; 3799 } 3800 wr32(E1000_RCTL, rctl); 3801 3802 /* In order to support SR-IOV and eventually VMDq it is necessary to set 3803 * the VMOLR to enable the appropriate modes. Without this workaround 3804 * we will have issues with VLAN tag stripping not being done for frames 3805 * that are only arriving because we are the default pool 3806 */ 3807 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 3808 return; 3809 3810 vmolr |= rd32(E1000_VMOLR(vfn)) & 3811 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 3812 wr32(E1000_VMOLR(vfn), vmolr); 3813 igb_restore_vf_multicasts(adapter); 3814 } 3815 3816 static void igb_check_wvbr(struct igb_adapter *adapter) 3817 { 3818 struct e1000_hw *hw = &adapter->hw; 3819 u32 wvbr = 0; 3820 3821 switch (hw->mac.type) { 3822 case e1000_82576: 3823 case e1000_i350: 3824 if (!(wvbr = rd32(E1000_WVBR))) 3825 return; 3826 break; 3827 default: 3828 break; 3829 } 3830 3831 adapter->wvbr |= wvbr; 3832 } 3833 3834 #define IGB_STAGGERED_QUEUE_OFFSET 8 3835 3836 static void igb_spoof_check(struct igb_adapter *adapter) 3837 { 3838 int j; 3839 3840 if (!adapter->wvbr) 3841 return; 3842 3843 for(j = 0; j < adapter->vfs_allocated_count; j++) { 3844 if (adapter->wvbr & (1 << j) || 3845 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { 3846 dev_warn(&adapter->pdev->dev, 3847 "Spoof event(s) detected on VF %d\n", j); 3848 adapter->wvbr &= 3849 ~((1 << j) | 3850 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); 3851 } 3852 } 3853 } 3854 3855 /* Need to wait a few seconds after link up to get diagnostic information from 3856 * the phy 3857 */ 3858 static void igb_update_phy_info(unsigned long data) 3859 { 3860 struct igb_adapter *adapter = (struct igb_adapter *) data; 3861 igb_get_phy_info(&adapter->hw); 3862 } 3863 3864 /** 3865 * igb_has_link - check shared code for link and determine up/down 3866 * @adapter: pointer to driver private info 3867 **/ 3868 bool igb_has_link(struct igb_adapter *adapter) 3869 { 3870 struct e1000_hw *hw = &adapter->hw; 3871 bool link_active = false; 3872 3873 /* get_link_status is set on LSC (link status) interrupt or 3874 * rx sequence error interrupt. get_link_status will stay 3875 * false until the e1000_check_for_link establishes link 3876 * for copper adapters ONLY 3877 */ 3878 switch (hw->phy.media_type) { 3879 case e1000_media_type_copper: 3880 if (!hw->mac.get_link_status) 3881 return true; 3882 case e1000_media_type_internal_serdes: 3883 hw->mac.ops.check_for_link(hw); 3884 link_active = !hw->mac.get_link_status; 3885 break; 3886 default: 3887 case e1000_media_type_unknown: 3888 break; 3889 } 3890 3891 if (((hw->mac.type == e1000_i210) || 3892 (hw->mac.type == e1000_i211)) && 3893 (hw->phy.id == I210_I_PHY_ID)) { 3894 if (!netif_carrier_ok(adapter->netdev)) { 3895 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 3896 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 3897 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 3898 adapter->link_check_timeout = jiffies; 3899 } 3900 } 3901 3902 return link_active; 3903 } 3904 3905 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 3906 { 3907 bool ret = false; 3908 u32 ctrl_ext, thstat; 3909 3910 /* check for thermal sensor event on i350 copper only */ 3911 if (hw->mac.type == e1000_i350) { 3912 thstat = rd32(E1000_THSTAT); 3913 ctrl_ext = rd32(E1000_CTRL_EXT); 3914 3915 if ((hw->phy.media_type == e1000_media_type_copper) && 3916 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 3917 ret = !!(thstat & event); 3918 } 3919 3920 return ret; 3921 } 3922 3923 /** 3924 * igb_watchdog - Timer Call-back 3925 * @data: pointer to adapter cast into an unsigned long 3926 **/ 3927 static void igb_watchdog(unsigned long data) 3928 { 3929 struct igb_adapter *adapter = (struct igb_adapter *)data; 3930 /* Do the rest outside of interrupt context */ 3931 schedule_work(&adapter->watchdog_task); 3932 } 3933 3934 static void igb_watchdog_task(struct work_struct *work) 3935 { 3936 struct igb_adapter *adapter = container_of(work, 3937 struct igb_adapter, 3938 watchdog_task); 3939 struct e1000_hw *hw = &adapter->hw; 3940 struct e1000_phy_info *phy = &hw->phy; 3941 struct net_device *netdev = adapter->netdev; 3942 u32 link; 3943 int i; 3944 3945 link = igb_has_link(adapter); 3946 3947 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 3948 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 3949 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 3950 else 3951 link = false; 3952 } 3953 3954 if (link) { 3955 /* Cancel scheduled suspend requests. */ 3956 pm_runtime_resume(netdev->dev.parent); 3957 3958 if (!netif_carrier_ok(netdev)) { 3959 u32 ctrl; 3960 hw->mac.ops.get_speed_and_duplex(hw, 3961 &adapter->link_speed, 3962 &adapter->link_duplex); 3963 3964 ctrl = rd32(E1000_CTRL); 3965 /* Links status message must follow this format */ 3966 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s " 3967 "Duplex, Flow Control: %s\n", 3968 netdev->name, 3969 adapter->link_speed, 3970 adapter->link_duplex == FULL_DUPLEX ? 3971 "Full" : "Half", 3972 (ctrl & E1000_CTRL_TFCE) && 3973 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 3974 (ctrl & E1000_CTRL_RFCE) ? "RX" : 3975 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 3976 3977 /* check if SmartSpeed worked */ 3978 igb_check_downshift(hw); 3979 if (phy->speed_downgraded) 3980 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 3981 3982 /* check for thermal sensor event */ 3983 if (igb_thermal_sensor_event(hw, 3984 E1000_THSTAT_LINK_THROTTLE)) { 3985 netdev_info(netdev, "The network adapter link " 3986 "speed was downshifted because it " 3987 "overheated\n"); 3988 } 3989 3990 /* adjust timeout factor according to speed/duplex */ 3991 adapter->tx_timeout_factor = 1; 3992 switch (adapter->link_speed) { 3993 case SPEED_10: 3994 adapter->tx_timeout_factor = 14; 3995 break; 3996 case SPEED_100: 3997 /* maybe add some timeout factor ? */ 3998 break; 3999 } 4000 4001 netif_carrier_on(netdev); 4002 4003 igb_ping_all_vfs(adapter); 4004 igb_check_vf_rate_limit(adapter); 4005 4006 /* link state has changed, schedule phy info update */ 4007 if (!test_bit(__IGB_DOWN, &adapter->state)) 4008 mod_timer(&adapter->phy_info_timer, 4009 round_jiffies(jiffies + 2 * HZ)); 4010 } 4011 } else { 4012 if (netif_carrier_ok(netdev)) { 4013 adapter->link_speed = 0; 4014 adapter->link_duplex = 0; 4015 4016 /* check for thermal sensor event */ 4017 if (igb_thermal_sensor_event(hw, 4018 E1000_THSTAT_PWR_DOWN)) { 4019 netdev_err(netdev, "The network adapter was " 4020 "stopped because it overheated\n"); 4021 } 4022 4023 /* Links status message must follow this format */ 4024 printk(KERN_INFO "igb: %s NIC Link is Down\n", 4025 netdev->name); 4026 netif_carrier_off(netdev); 4027 4028 igb_ping_all_vfs(adapter); 4029 4030 /* link state has changed, schedule phy info update */ 4031 if (!test_bit(__IGB_DOWN, &adapter->state)) 4032 mod_timer(&adapter->phy_info_timer, 4033 round_jiffies(jiffies + 2 * HZ)); 4034 4035 pm_schedule_suspend(netdev->dev.parent, 4036 MSEC_PER_SEC * 5); 4037 } 4038 } 4039 4040 spin_lock(&adapter->stats64_lock); 4041 igb_update_stats(adapter, &adapter->stats64); 4042 spin_unlock(&adapter->stats64_lock); 4043 4044 for (i = 0; i < adapter->num_tx_queues; i++) { 4045 struct igb_ring *tx_ring = adapter->tx_ring[i]; 4046 if (!netif_carrier_ok(netdev)) { 4047 /* We've lost link, so the controller stops DMA, 4048 * but we've got queued Tx work that's never going 4049 * to get done, so reset controller to flush Tx. 4050 * (Do the reset outside of interrupt context). 4051 */ 4052 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 4053 adapter->tx_timeout_count++; 4054 schedule_work(&adapter->reset_task); 4055 /* return immediately since reset is imminent */ 4056 return; 4057 } 4058 } 4059 4060 /* Force detection of hung controller every watchdog period */ 4061 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 4062 } 4063 4064 /* Cause software interrupt to ensure Rx ring is cleaned */ 4065 if (adapter->msix_entries) { 4066 u32 eics = 0; 4067 for (i = 0; i < adapter->num_q_vectors; i++) 4068 eics |= adapter->q_vector[i]->eims_value; 4069 wr32(E1000_EICS, eics); 4070 } else { 4071 wr32(E1000_ICS, E1000_ICS_RXDMT0); 4072 } 4073 4074 igb_spoof_check(adapter); 4075 igb_ptp_rx_hang(adapter); 4076 4077 /* Reset the timer */ 4078 if (!test_bit(__IGB_DOWN, &adapter->state)) { 4079 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 4080 mod_timer(&adapter->watchdog_timer, 4081 round_jiffies(jiffies + HZ)); 4082 else 4083 mod_timer(&adapter->watchdog_timer, 4084 round_jiffies(jiffies + 2 * HZ)); 4085 } 4086 } 4087 4088 enum latency_range { 4089 lowest_latency = 0, 4090 low_latency = 1, 4091 bulk_latency = 2, 4092 latency_invalid = 255 4093 }; 4094 4095 /** 4096 * igb_update_ring_itr - update the dynamic ITR value based on packet size 4097 * @q_vector: pointer to q_vector 4098 * 4099 * Stores a new ITR value based on strictly on packet size. This 4100 * algorithm is less sophisticated than that used in igb_update_itr, 4101 * due to the difficulty of synchronizing statistics across multiple 4102 * receive rings. The divisors and thresholds used by this function 4103 * were determined based on theoretical maximum wire speed and testing 4104 * data, in order to minimize response time while increasing bulk 4105 * throughput. 4106 * This functionality is controlled by the InterruptThrottleRate module 4107 * parameter (see igb_param.c) 4108 * NOTE: This function is called only when operating in a multiqueue 4109 * receive environment. 4110 **/ 4111 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 4112 { 4113 int new_val = q_vector->itr_val; 4114 int avg_wire_size = 0; 4115 struct igb_adapter *adapter = q_vector->adapter; 4116 unsigned int packets; 4117 4118 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4119 * ints/sec - ITR timer value of 120 ticks. 4120 */ 4121 if (adapter->link_speed != SPEED_1000) { 4122 new_val = IGB_4K_ITR; 4123 goto set_itr_val; 4124 } 4125 4126 packets = q_vector->rx.total_packets; 4127 if (packets) 4128 avg_wire_size = q_vector->rx.total_bytes / packets; 4129 4130 packets = q_vector->tx.total_packets; 4131 if (packets) 4132 avg_wire_size = max_t(u32, avg_wire_size, 4133 q_vector->tx.total_bytes / packets); 4134 4135 /* if avg_wire_size isn't set no work was done */ 4136 if (!avg_wire_size) 4137 goto clear_counts; 4138 4139 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4140 avg_wire_size += 24; 4141 4142 /* Don't starve jumbo frames */ 4143 avg_wire_size = min(avg_wire_size, 3000); 4144 4145 /* Give a little boost to mid-size frames */ 4146 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 4147 new_val = avg_wire_size / 3; 4148 else 4149 new_val = avg_wire_size / 2; 4150 4151 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4152 if (new_val < IGB_20K_ITR && 4153 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4154 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4155 new_val = IGB_20K_ITR; 4156 4157 set_itr_val: 4158 if (new_val != q_vector->itr_val) { 4159 q_vector->itr_val = new_val; 4160 q_vector->set_itr = 1; 4161 } 4162 clear_counts: 4163 q_vector->rx.total_bytes = 0; 4164 q_vector->rx.total_packets = 0; 4165 q_vector->tx.total_bytes = 0; 4166 q_vector->tx.total_packets = 0; 4167 } 4168 4169 /** 4170 * igb_update_itr - update the dynamic ITR value based on statistics 4171 * @q_vector: pointer to q_vector 4172 * @ring_container: ring info to update the itr for 4173 * 4174 * Stores a new ITR value based on packets and byte 4175 * counts during the last interrupt. The advantage of per interrupt 4176 * computation is faster updates and more accurate ITR for the current 4177 * traffic pattern. Constants in this function were computed 4178 * based on theoretical maximum wire speed and thresholds were set based 4179 * on testing data as well as attempting to minimize response time 4180 * while increasing bulk throughput. 4181 * this functionality is controlled by the InterruptThrottleRate module 4182 * parameter (see igb_param.c) 4183 * NOTE: These calculations are only valid when operating in a single- 4184 * queue environment. 4185 **/ 4186 static void igb_update_itr(struct igb_q_vector *q_vector, 4187 struct igb_ring_container *ring_container) 4188 { 4189 unsigned int packets = ring_container->total_packets; 4190 unsigned int bytes = ring_container->total_bytes; 4191 u8 itrval = ring_container->itr; 4192 4193 /* no packets, exit with status unchanged */ 4194 if (packets == 0) 4195 return; 4196 4197 switch (itrval) { 4198 case lowest_latency: 4199 /* handle TSO and jumbo frames */ 4200 if (bytes/packets > 8000) 4201 itrval = bulk_latency; 4202 else if ((packets < 5) && (bytes > 512)) 4203 itrval = low_latency; 4204 break; 4205 case low_latency: /* 50 usec aka 20000 ints/s */ 4206 if (bytes > 10000) { 4207 /* this if handles the TSO accounting */ 4208 if (bytes/packets > 8000) { 4209 itrval = bulk_latency; 4210 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 4211 itrval = bulk_latency; 4212 } else if ((packets > 35)) { 4213 itrval = lowest_latency; 4214 } 4215 } else if (bytes/packets > 2000) { 4216 itrval = bulk_latency; 4217 } else if (packets <= 2 && bytes < 512) { 4218 itrval = lowest_latency; 4219 } 4220 break; 4221 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4222 if (bytes > 25000) { 4223 if (packets > 35) 4224 itrval = low_latency; 4225 } else if (bytes < 1500) { 4226 itrval = low_latency; 4227 } 4228 break; 4229 } 4230 4231 /* clear work counters since we have the values we need */ 4232 ring_container->total_bytes = 0; 4233 ring_container->total_packets = 0; 4234 4235 /* write updated itr to ring container */ 4236 ring_container->itr = itrval; 4237 } 4238 4239 static void igb_set_itr(struct igb_q_vector *q_vector) 4240 { 4241 struct igb_adapter *adapter = q_vector->adapter; 4242 u32 new_itr = q_vector->itr_val; 4243 u8 current_itr = 0; 4244 4245 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4246 if (adapter->link_speed != SPEED_1000) { 4247 current_itr = 0; 4248 new_itr = IGB_4K_ITR; 4249 goto set_itr_now; 4250 } 4251 4252 igb_update_itr(q_vector, &q_vector->tx); 4253 igb_update_itr(q_vector, &q_vector->rx); 4254 4255 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4256 4257 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4258 if (current_itr == lowest_latency && 4259 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4260 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4261 current_itr = low_latency; 4262 4263 switch (current_itr) { 4264 /* counts and packets in update_itr are dependent on these numbers */ 4265 case lowest_latency: 4266 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 4267 break; 4268 case low_latency: 4269 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 4270 break; 4271 case bulk_latency: 4272 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 4273 break; 4274 default: 4275 break; 4276 } 4277 4278 set_itr_now: 4279 if (new_itr != q_vector->itr_val) { 4280 /* this attempts to bias the interrupt rate towards Bulk 4281 * by adding intermediate steps when interrupt rate is 4282 * increasing 4283 */ 4284 new_itr = new_itr > q_vector->itr_val ? 4285 max((new_itr * q_vector->itr_val) / 4286 (new_itr + (q_vector->itr_val >> 2)), 4287 new_itr) : new_itr; 4288 /* Don't write the value here; it resets the adapter's 4289 * internal timer, and causes us to delay far longer than 4290 * we should between interrupts. Instead, we write the ITR 4291 * value at the beginning of the next interrupt so the timing 4292 * ends up being correct. 4293 */ 4294 q_vector->itr_val = new_itr; 4295 q_vector->set_itr = 1; 4296 } 4297 } 4298 4299 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, 4300 u32 type_tucmd, u32 mss_l4len_idx) 4301 { 4302 struct e1000_adv_tx_context_desc *context_desc; 4303 u16 i = tx_ring->next_to_use; 4304 4305 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 4306 4307 i++; 4308 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 4309 4310 /* set bits to identify this as an advanced context descriptor */ 4311 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 4312 4313 /* For 82575, context index must be unique per ring. */ 4314 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4315 mss_l4len_idx |= tx_ring->reg_idx << 4; 4316 4317 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 4318 context_desc->seqnum_seed = 0; 4319 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 4320 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 4321 } 4322 4323 static int igb_tso(struct igb_ring *tx_ring, 4324 struct igb_tx_buffer *first, 4325 u8 *hdr_len) 4326 { 4327 struct sk_buff *skb = first->skb; 4328 u32 vlan_macip_lens, type_tucmd; 4329 u32 mss_l4len_idx, l4len; 4330 4331 if (skb->ip_summed != CHECKSUM_PARTIAL) 4332 return 0; 4333 4334 if (!skb_is_gso(skb)) 4335 return 0; 4336 4337 if (skb_header_cloned(skb)) { 4338 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4339 if (err) 4340 return err; 4341 } 4342 4343 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 4344 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 4345 4346 if (first->protocol == __constant_htons(ETH_P_IP)) { 4347 struct iphdr *iph = ip_hdr(skb); 4348 iph->tot_len = 0; 4349 iph->check = 0; 4350 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 4351 iph->daddr, 0, 4352 IPPROTO_TCP, 4353 0); 4354 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4355 first->tx_flags |= IGB_TX_FLAGS_TSO | 4356 IGB_TX_FLAGS_CSUM | 4357 IGB_TX_FLAGS_IPV4; 4358 } else if (skb_is_gso_v6(skb)) { 4359 ipv6_hdr(skb)->payload_len = 0; 4360 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4361 &ipv6_hdr(skb)->daddr, 4362 0, IPPROTO_TCP, 0); 4363 first->tx_flags |= IGB_TX_FLAGS_TSO | 4364 IGB_TX_FLAGS_CSUM; 4365 } 4366 4367 /* compute header lengths */ 4368 l4len = tcp_hdrlen(skb); 4369 *hdr_len = skb_transport_offset(skb) + l4len; 4370 4371 /* update gso size and bytecount with header size */ 4372 first->gso_segs = skb_shinfo(skb)->gso_segs; 4373 first->bytecount += (first->gso_segs - 1) * *hdr_len; 4374 4375 /* MSS L4LEN IDX */ 4376 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; 4377 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 4378 4379 /* VLAN MACLEN IPLEN */ 4380 vlan_macip_lens = skb_network_header_len(skb); 4381 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4382 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4383 4384 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4385 4386 return 1; 4387 } 4388 4389 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 4390 { 4391 struct sk_buff *skb = first->skb; 4392 u32 vlan_macip_lens = 0; 4393 u32 mss_l4len_idx = 0; 4394 u32 type_tucmd = 0; 4395 4396 if (skb->ip_summed != CHECKSUM_PARTIAL) { 4397 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) 4398 return; 4399 } else { 4400 u8 l4_hdr = 0; 4401 switch (first->protocol) { 4402 case __constant_htons(ETH_P_IP): 4403 vlan_macip_lens |= skb_network_header_len(skb); 4404 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4405 l4_hdr = ip_hdr(skb)->protocol; 4406 break; 4407 case __constant_htons(ETH_P_IPV6): 4408 vlan_macip_lens |= skb_network_header_len(skb); 4409 l4_hdr = ipv6_hdr(skb)->nexthdr; 4410 break; 4411 default: 4412 if (unlikely(net_ratelimit())) { 4413 dev_warn(tx_ring->dev, 4414 "partial checksum but proto=%x!\n", 4415 first->protocol); 4416 } 4417 break; 4418 } 4419 4420 switch (l4_hdr) { 4421 case IPPROTO_TCP: 4422 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 4423 mss_l4len_idx = tcp_hdrlen(skb) << 4424 E1000_ADVTXD_L4LEN_SHIFT; 4425 break; 4426 case IPPROTO_SCTP: 4427 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; 4428 mss_l4len_idx = sizeof(struct sctphdr) << 4429 E1000_ADVTXD_L4LEN_SHIFT; 4430 break; 4431 case IPPROTO_UDP: 4432 mss_l4len_idx = sizeof(struct udphdr) << 4433 E1000_ADVTXD_L4LEN_SHIFT; 4434 break; 4435 default: 4436 if (unlikely(net_ratelimit())) { 4437 dev_warn(tx_ring->dev, 4438 "partial checksum but l4 proto=%x!\n", 4439 l4_hdr); 4440 } 4441 break; 4442 } 4443 4444 /* update TX checksum flag */ 4445 first->tx_flags |= IGB_TX_FLAGS_CSUM; 4446 } 4447 4448 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4449 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4450 4451 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4452 } 4453 4454 #define IGB_SET_FLAG(_input, _flag, _result) \ 4455 ((_flag <= _result) ? \ 4456 ((u32)(_input & _flag) * (_result / _flag)) : \ 4457 ((u32)(_input & _flag) / (_flag / _result))) 4458 4459 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 4460 { 4461 /* set type for advanced descriptor with frame checksum insertion */ 4462 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 4463 E1000_ADVTXD_DCMD_DEXT | 4464 E1000_ADVTXD_DCMD_IFCS; 4465 4466 /* set HW vlan bit if vlan is present */ 4467 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 4468 (E1000_ADVTXD_DCMD_VLE)); 4469 4470 /* set segmentation bits for TSO */ 4471 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 4472 (E1000_ADVTXD_DCMD_TSE)); 4473 4474 /* set timestamp bit if present */ 4475 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 4476 (E1000_ADVTXD_MAC_TSTAMP)); 4477 4478 /* insert frame checksum */ 4479 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 4480 4481 return cmd_type; 4482 } 4483 4484 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 4485 union e1000_adv_tx_desc *tx_desc, 4486 u32 tx_flags, unsigned int paylen) 4487 { 4488 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 4489 4490 /* 82575 requires a unique index per ring */ 4491 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4492 olinfo_status |= tx_ring->reg_idx << 4; 4493 4494 /* insert L4 checksum */ 4495 olinfo_status |= IGB_SET_FLAG(tx_flags, 4496 IGB_TX_FLAGS_CSUM, 4497 (E1000_TXD_POPTS_TXSM << 8)); 4498 4499 /* insert IPv4 checksum */ 4500 olinfo_status |= IGB_SET_FLAG(tx_flags, 4501 IGB_TX_FLAGS_IPV4, 4502 (E1000_TXD_POPTS_IXSM << 8)); 4503 4504 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 4505 } 4506 4507 static void igb_tx_map(struct igb_ring *tx_ring, 4508 struct igb_tx_buffer *first, 4509 const u8 hdr_len) 4510 { 4511 struct sk_buff *skb = first->skb; 4512 struct igb_tx_buffer *tx_buffer; 4513 union e1000_adv_tx_desc *tx_desc; 4514 struct skb_frag_struct *frag; 4515 dma_addr_t dma; 4516 unsigned int data_len, size; 4517 u32 tx_flags = first->tx_flags; 4518 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 4519 u16 i = tx_ring->next_to_use; 4520 4521 tx_desc = IGB_TX_DESC(tx_ring, i); 4522 4523 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 4524 4525 size = skb_headlen(skb); 4526 data_len = skb->data_len; 4527 4528 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 4529 4530 tx_buffer = first; 4531 4532 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 4533 if (dma_mapping_error(tx_ring->dev, dma)) 4534 goto dma_error; 4535 4536 /* record length, and DMA address */ 4537 dma_unmap_len_set(tx_buffer, len, size); 4538 dma_unmap_addr_set(tx_buffer, dma, dma); 4539 4540 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4541 4542 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 4543 tx_desc->read.cmd_type_len = 4544 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 4545 4546 i++; 4547 tx_desc++; 4548 if (i == tx_ring->count) { 4549 tx_desc = IGB_TX_DESC(tx_ring, 0); 4550 i = 0; 4551 } 4552 tx_desc->read.olinfo_status = 0; 4553 4554 dma += IGB_MAX_DATA_PER_TXD; 4555 size -= IGB_MAX_DATA_PER_TXD; 4556 4557 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4558 } 4559 4560 if (likely(!data_len)) 4561 break; 4562 4563 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 4564 4565 i++; 4566 tx_desc++; 4567 if (i == tx_ring->count) { 4568 tx_desc = IGB_TX_DESC(tx_ring, 0); 4569 i = 0; 4570 } 4571 tx_desc->read.olinfo_status = 0; 4572 4573 size = skb_frag_size(frag); 4574 data_len -= size; 4575 4576 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 4577 size, DMA_TO_DEVICE); 4578 4579 tx_buffer = &tx_ring->tx_buffer_info[i]; 4580 } 4581 4582 /* write last descriptor with RS and EOP bits */ 4583 cmd_type |= size | IGB_TXD_DCMD; 4584 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 4585 4586 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 4587 4588 /* set the timestamp */ 4589 first->time_stamp = jiffies; 4590 4591 /* Force memory writes to complete before letting h/w know there 4592 * are new descriptors to fetch. (Only applicable for weak-ordered 4593 * memory model archs, such as IA-64). 4594 * 4595 * We also need this memory barrier to make certain all of the 4596 * status bits have been updated before next_to_watch is written. 4597 */ 4598 wmb(); 4599 4600 /* set next_to_watch value indicating a packet is present */ 4601 first->next_to_watch = tx_desc; 4602 4603 i++; 4604 if (i == tx_ring->count) 4605 i = 0; 4606 4607 tx_ring->next_to_use = i; 4608 4609 writel(i, tx_ring->tail); 4610 4611 /* we need this if more than one processor can write to our tail 4612 * at a time, it synchronizes IO on IA64/Altix systems 4613 */ 4614 mmiowb(); 4615 4616 return; 4617 4618 dma_error: 4619 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4620 4621 /* clear dma mappings for failed tx_buffer_info map */ 4622 for (;;) { 4623 tx_buffer = &tx_ring->tx_buffer_info[i]; 4624 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); 4625 if (tx_buffer == first) 4626 break; 4627 if (i == 0) 4628 i = tx_ring->count; 4629 i--; 4630 } 4631 4632 tx_ring->next_to_use = i; 4633 } 4634 4635 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4636 { 4637 struct net_device *netdev = tx_ring->netdev; 4638 4639 netif_stop_subqueue(netdev, tx_ring->queue_index); 4640 4641 /* Herbert's original patch had: 4642 * smp_mb__after_netif_stop_queue(); 4643 * but since that doesn't exist yet, just open code it. 4644 */ 4645 smp_mb(); 4646 4647 /* We need to check again in a case another CPU has just 4648 * made room available. 4649 */ 4650 if (igb_desc_unused(tx_ring) < size) 4651 return -EBUSY; 4652 4653 /* A reprieve! */ 4654 netif_wake_subqueue(netdev, tx_ring->queue_index); 4655 4656 u64_stats_update_begin(&tx_ring->tx_syncp2); 4657 tx_ring->tx_stats.restart_queue2++; 4658 u64_stats_update_end(&tx_ring->tx_syncp2); 4659 4660 return 0; 4661 } 4662 4663 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4664 { 4665 if (igb_desc_unused(tx_ring) >= size) 4666 return 0; 4667 return __igb_maybe_stop_tx(tx_ring, size); 4668 } 4669 4670 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 4671 struct igb_ring *tx_ring) 4672 { 4673 struct igb_tx_buffer *first; 4674 int tso; 4675 u32 tx_flags = 0; 4676 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4677 __be16 protocol = vlan_get_protocol(skb); 4678 u8 hdr_len = 0; 4679 4680 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 4681 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 4682 * + 2 desc gap to keep tail from touching head, 4683 * + 1 desc for context descriptor, 4684 * otherwise try next time 4685 */ 4686 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { 4687 unsigned short f; 4688 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4689 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4690 } else { 4691 count += skb_shinfo(skb)->nr_frags; 4692 } 4693 4694 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 4695 /* this is a hard error */ 4696 return NETDEV_TX_BUSY; 4697 } 4698 4699 /* record the location of the first descriptor for this packet */ 4700 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4701 first->skb = skb; 4702 first->bytecount = skb->len; 4703 first->gso_segs = 1; 4704 4705 skb_tx_timestamp(skb); 4706 4707 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 4708 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 4709 4710 if (!(adapter->ptp_tx_skb)) { 4711 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4712 tx_flags |= IGB_TX_FLAGS_TSTAMP; 4713 4714 adapter->ptp_tx_skb = skb_get(skb); 4715 adapter->ptp_tx_start = jiffies; 4716 if (adapter->hw.mac.type == e1000_82576) 4717 schedule_work(&adapter->ptp_tx_work); 4718 } 4719 } 4720 4721 if (vlan_tx_tag_present(skb)) { 4722 tx_flags |= IGB_TX_FLAGS_VLAN; 4723 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 4724 } 4725 4726 /* record initial flags and protocol */ 4727 first->tx_flags = tx_flags; 4728 first->protocol = protocol; 4729 4730 tso = igb_tso(tx_ring, first, &hdr_len); 4731 if (tso < 0) 4732 goto out_drop; 4733 else if (!tso) 4734 igb_tx_csum(tx_ring, first); 4735 4736 igb_tx_map(tx_ring, first, hdr_len); 4737 4738 /* Make sure there is space in the ring for the next send. */ 4739 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 4740 4741 return NETDEV_TX_OK; 4742 4743 out_drop: 4744 igb_unmap_and_free_tx_resource(tx_ring, first); 4745 4746 return NETDEV_TX_OK; 4747 } 4748 4749 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 4750 struct sk_buff *skb) 4751 { 4752 unsigned int r_idx = skb->queue_mapping; 4753 4754 if (r_idx >= adapter->num_tx_queues) 4755 r_idx = r_idx % adapter->num_tx_queues; 4756 4757 return adapter->tx_ring[r_idx]; 4758 } 4759 4760 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 4761 struct net_device *netdev) 4762 { 4763 struct igb_adapter *adapter = netdev_priv(netdev); 4764 4765 if (test_bit(__IGB_DOWN, &adapter->state)) { 4766 dev_kfree_skb_any(skb); 4767 return NETDEV_TX_OK; 4768 } 4769 4770 if (skb->len <= 0) { 4771 dev_kfree_skb_any(skb); 4772 return NETDEV_TX_OK; 4773 } 4774 4775 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 4776 * in order to meet this minimum size requirement. 4777 */ 4778 if (unlikely(skb->len < 17)) { 4779 if (skb_pad(skb, 17 - skb->len)) 4780 return NETDEV_TX_OK; 4781 skb->len = 17; 4782 skb_set_tail_pointer(skb, 17); 4783 } 4784 4785 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 4786 } 4787 4788 /** 4789 * igb_tx_timeout - Respond to a Tx Hang 4790 * @netdev: network interface device structure 4791 **/ 4792 static void igb_tx_timeout(struct net_device *netdev) 4793 { 4794 struct igb_adapter *adapter = netdev_priv(netdev); 4795 struct e1000_hw *hw = &adapter->hw; 4796 4797 /* Do the reset outside of interrupt context */ 4798 adapter->tx_timeout_count++; 4799 4800 if (hw->mac.type >= e1000_82580) 4801 hw->dev_spec._82575.global_device_reset = true; 4802 4803 schedule_work(&adapter->reset_task); 4804 wr32(E1000_EICS, 4805 (adapter->eims_enable_mask & ~adapter->eims_other)); 4806 } 4807 4808 static void igb_reset_task(struct work_struct *work) 4809 { 4810 struct igb_adapter *adapter; 4811 adapter = container_of(work, struct igb_adapter, reset_task); 4812 4813 igb_dump(adapter); 4814 netdev_err(adapter->netdev, "Reset adapter\n"); 4815 igb_reinit_locked(adapter); 4816 } 4817 4818 /** 4819 * igb_get_stats64 - Get System Network Statistics 4820 * @netdev: network interface device structure 4821 * @stats: rtnl_link_stats64 pointer 4822 **/ 4823 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, 4824 struct rtnl_link_stats64 *stats) 4825 { 4826 struct igb_adapter *adapter = netdev_priv(netdev); 4827 4828 spin_lock(&adapter->stats64_lock); 4829 igb_update_stats(adapter, &adapter->stats64); 4830 memcpy(stats, &adapter->stats64, sizeof(*stats)); 4831 spin_unlock(&adapter->stats64_lock); 4832 4833 return stats; 4834 } 4835 4836 /** 4837 * igb_change_mtu - Change the Maximum Transfer Unit 4838 * @netdev: network interface device structure 4839 * @new_mtu: new value for maximum frame size 4840 * 4841 * Returns 0 on success, negative on failure 4842 **/ 4843 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 4844 { 4845 struct igb_adapter *adapter = netdev_priv(netdev); 4846 struct pci_dev *pdev = adapter->pdev; 4847 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4848 4849 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 4850 dev_err(&pdev->dev, "Invalid MTU setting\n"); 4851 return -EINVAL; 4852 } 4853 4854 #define MAX_STD_JUMBO_FRAME_SIZE 9238 4855 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 4856 dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); 4857 return -EINVAL; 4858 } 4859 4860 /* adjust max frame to be at least the size of a standard frame */ 4861 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 4862 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 4863 4864 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 4865 msleep(1); 4866 4867 /* igb_down has a dependency on max_frame_size */ 4868 adapter->max_frame_size = max_frame; 4869 4870 if (netif_running(netdev)) 4871 igb_down(adapter); 4872 4873 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 4874 netdev->mtu, new_mtu); 4875 netdev->mtu = new_mtu; 4876 4877 if (netif_running(netdev)) 4878 igb_up(adapter); 4879 else 4880 igb_reset(adapter); 4881 4882 clear_bit(__IGB_RESETTING, &adapter->state); 4883 4884 return 0; 4885 } 4886 4887 /** 4888 * igb_update_stats - Update the board statistics counters 4889 * @adapter: board private structure 4890 **/ 4891 void igb_update_stats(struct igb_adapter *adapter, 4892 struct rtnl_link_stats64 *net_stats) 4893 { 4894 struct e1000_hw *hw = &adapter->hw; 4895 struct pci_dev *pdev = adapter->pdev; 4896 u32 reg, mpc; 4897 u16 phy_tmp; 4898 int i; 4899 u64 bytes, packets; 4900 unsigned int start; 4901 u64 _bytes, _packets; 4902 4903 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 4904 4905 /* Prevent stats update while adapter is being reset, or if the pci 4906 * connection is down. 4907 */ 4908 if (adapter->link_speed == 0) 4909 return; 4910 if (pci_channel_offline(pdev)) 4911 return; 4912 4913 bytes = 0; 4914 packets = 0; 4915 4916 rcu_read_lock(); 4917 for (i = 0; i < adapter->num_rx_queues; i++) { 4918 u32 rqdpc = rd32(E1000_RQDPC(i)); 4919 struct igb_ring *ring = adapter->rx_ring[i]; 4920 4921 if (rqdpc) { 4922 ring->rx_stats.drops += rqdpc; 4923 net_stats->rx_fifo_errors += rqdpc; 4924 } 4925 4926 do { 4927 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 4928 _bytes = ring->rx_stats.bytes; 4929 _packets = ring->rx_stats.packets; 4930 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 4931 bytes += _bytes; 4932 packets += _packets; 4933 } 4934 4935 net_stats->rx_bytes = bytes; 4936 net_stats->rx_packets = packets; 4937 4938 bytes = 0; 4939 packets = 0; 4940 for (i = 0; i < adapter->num_tx_queues; i++) { 4941 struct igb_ring *ring = adapter->tx_ring[i]; 4942 do { 4943 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 4944 _bytes = ring->tx_stats.bytes; 4945 _packets = ring->tx_stats.packets; 4946 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 4947 bytes += _bytes; 4948 packets += _packets; 4949 } 4950 net_stats->tx_bytes = bytes; 4951 net_stats->tx_packets = packets; 4952 rcu_read_unlock(); 4953 4954 /* read stats registers */ 4955 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 4956 adapter->stats.gprc += rd32(E1000_GPRC); 4957 adapter->stats.gorc += rd32(E1000_GORCL); 4958 rd32(E1000_GORCH); /* clear GORCL */ 4959 adapter->stats.bprc += rd32(E1000_BPRC); 4960 adapter->stats.mprc += rd32(E1000_MPRC); 4961 adapter->stats.roc += rd32(E1000_ROC); 4962 4963 adapter->stats.prc64 += rd32(E1000_PRC64); 4964 adapter->stats.prc127 += rd32(E1000_PRC127); 4965 adapter->stats.prc255 += rd32(E1000_PRC255); 4966 adapter->stats.prc511 += rd32(E1000_PRC511); 4967 adapter->stats.prc1023 += rd32(E1000_PRC1023); 4968 adapter->stats.prc1522 += rd32(E1000_PRC1522); 4969 adapter->stats.symerrs += rd32(E1000_SYMERRS); 4970 adapter->stats.sec += rd32(E1000_SEC); 4971 4972 mpc = rd32(E1000_MPC); 4973 adapter->stats.mpc += mpc; 4974 net_stats->rx_fifo_errors += mpc; 4975 adapter->stats.scc += rd32(E1000_SCC); 4976 adapter->stats.ecol += rd32(E1000_ECOL); 4977 adapter->stats.mcc += rd32(E1000_MCC); 4978 adapter->stats.latecol += rd32(E1000_LATECOL); 4979 adapter->stats.dc += rd32(E1000_DC); 4980 adapter->stats.rlec += rd32(E1000_RLEC); 4981 adapter->stats.xonrxc += rd32(E1000_XONRXC); 4982 adapter->stats.xontxc += rd32(E1000_XONTXC); 4983 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 4984 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 4985 adapter->stats.fcruc += rd32(E1000_FCRUC); 4986 adapter->stats.gptc += rd32(E1000_GPTC); 4987 adapter->stats.gotc += rd32(E1000_GOTCL); 4988 rd32(E1000_GOTCH); /* clear GOTCL */ 4989 adapter->stats.rnbc += rd32(E1000_RNBC); 4990 adapter->stats.ruc += rd32(E1000_RUC); 4991 adapter->stats.rfc += rd32(E1000_RFC); 4992 adapter->stats.rjc += rd32(E1000_RJC); 4993 adapter->stats.tor += rd32(E1000_TORH); 4994 adapter->stats.tot += rd32(E1000_TOTH); 4995 adapter->stats.tpr += rd32(E1000_TPR); 4996 4997 adapter->stats.ptc64 += rd32(E1000_PTC64); 4998 adapter->stats.ptc127 += rd32(E1000_PTC127); 4999 adapter->stats.ptc255 += rd32(E1000_PTC255); 5000 adapter->stats.ptc511 += rd32(E1000_PTC511); 5001 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 5002 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 5003 5004 adapter->stats.mptc += rd32(E1000_MPTC); 5005 adapter->stats.bptc += rd32(E1000_BPTC); 5006 5007 adapter->stats.tpt += rd32(E1000_TPT); 5008 adapter->stats.colc += rd32(E1000_COLC); 5009 5010 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 5011 /* read internal phy specific stats */ 5012 reg = rd32(E1000_CTRL_EXT); 5013 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 5014 adapter->stats.rxerrc += rd32(E1000_RXERRC); 5015 5016 /* this stat has invalid values on i210/i211 */ 5017 if ((hw->mac.type != e1000_i210) && 5018 (hw->mac.type != e1000_i211)) 5019 adapter->stats.tncrs += rd32(E1000_TNCRS); 5020 } 5021 5022 adapter->stats.tsctc += rd32(E1000_TSCTC); 5023 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 5024 5025 adapter->stats.iac += rd32(E1000_IAC); 5026 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 5027 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 5028 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 5029 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 5030 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 5031 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 5032 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 5033 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 5034 5035 /* Fill out the OS statistics structure */ 5036 net_stats->multicast = adapter->stats.mprc; 5037 net_stats->collisions = adapter->stats.colc; 5038 5039 /* Rx Errors */ 5040 5041 /* RLEC on some newer hardware can be incorrect so build 5042 * our own version based on RUC and ROC 5043 */ 5044 net_stats->rx_errors = adapter->stats.rxerrc + 5045 adapter->stats.crcerrs + adapter->stats.algnerrc + 5046 adapter->stats.ruc + adapter->stats.roc + 5047 adapter->stats.cexterr; 5048 net_stats->rx_length_errors = adapter->stats.ruc + 5049 adapter->stats.roc; 5050 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5051 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5052 net_stats->rx_missed_errors = adapter->stats.mpc; 5053 5054 /* Tx Errors */ 5055 net_stats->tx_errors = adapter->stats.ecol + 5056 adapter->stats.latecol; 5057 net_stats->tx_aborted_errors = adapter->stats.ecol; 5058 net_stats->tx_window_errors = adapter->stats.latecol; 5059 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5060 5061 /* Tx Dropped needs to be maintained elsewhere */ 5062 5063 /* Phy Stats */ 5064 if (hw->phy.media_type == e1000_media_type_copper) { 5065 if ((adapter->link_speed == SPEED_1000) && 5066 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 5067 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 5068 adapter->phy_stats.idle_errors += phy_tmp; 5069 } 5070 } 5071 5072 /* Management Stats */ 5073 adapter->stats.mgptc += rd32(E1000_MGTPTC); 5074 adapter->stats.mgprc += rd32(E1000_MGTPRC); 5075 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 5076 5077 /* OS2BMC Stats */ 5078 reg = rd32(E1000_MANC); 5079 if (reg & E1000_MANC_EN_BMC2OS) { 5080 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 5081 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 5082 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 5083 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 5084 } 5085 } 5086 5087 static irqreturn_t igb_msix_other(int irq, void *data) 5088 { 5089 struct igb_adapter *adapter = data; 5090 struct e1000_hw *hw = &adapter->hw; 5091 u32 icr = rd32(E1000_ICR); 5092 /* reading ICR causes bit 31 of EICR to be cleared */ 5093 5094 if (icr & E1000_ICR_DRSTA) 5095 schedule_work(&adapter->reset_task); 5096 5097 if (icr & E1000_ICR_DOUTSYNC) { 5098 /* HW is reporting DMA is out of sync */ 5099 adapter->stats.doosync++; 5100 /* The DMA Out of Sync is also indication of a spoof event 5101 * in IOV mode. Check the Wrong VM Behavior register to 5102 * see if it is really a spoof event. 5103 */ 5104 igb_check_wvbr(adapter); 5105 } 5106 5107 /* Check for a mailbox event */ 5108 if (icr & E1000_ICR_VMMB) 5109 igb_msg_task(adapter); 5110 5111 if (icr & E1000_ICR_LSC) { 5112 hw->mac.get_link_status = 1; 5113 /* guard against interrupt when we're going down */ 5114 if (!test_bit(__IGB_DOWN, &adapter->state)) 5115 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5116 } 5117 5118 if (icr & E1000_ICR_TS) { 5119 u32 tsicr = rd32(E1000_TSICR); 5120 5121 if (tsicr & E1000_TSICR_TXTS) { 5122 /* acknowledge the interrupt */ 5123 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5124 /* retrieve hardware timestamp */ 5125 schedule_work(&adapter->ptp_tx_work); 5126 } 5127 } 5128 5129 wr32(E1000_EIMS, adapter->eims_other); 5130 5131 return IRQ_HANDLED; 5132 } 5133 5134 static void igb_write_itr(struct igb_q_vector *q_vector) 5135 { 5136 struct igb_adapter *adapter = q_vector->adapter; 5137 u32 itr_val = q_vector->itr_val & 0x7FFC; 5138 5139 if (!q_vector->set_itr) 5140 return; 5141 5142 if (!itr_val) 5143 itr_val = 0x4; 5144 5145 if (adapter->hw.mac.type == e1000_82575) 5146 itr_val |= itr_val << 16; 5147 else 5148 itr_val |= E1000_EITR_CNT_IGNR; 5149 5150 writel(itr_val, q_vector->itr_register); 5151 q_vector->set_itr = 0; 5152 } 5153 5154 static irqreturn_t igb_msix_ring(int irq, void *data) 5155 { 5156 struct igb_q_vector *q_vector = data; 5157 5158 /* Write the ITR value calculated from the previous interrupt. */ 5159 igb_write_itr(q_vector); 5160 5161 napi_schedule(&q_vector->napi); 5162 5163 return IRQ_HANDLED; 5164 } 5165 5166 #ifdef CONFIG_IGB_DCA 5167 static void igb_update_tx_dca(struct igb_adapter *adapter, 5168 struct igb_ring *tx_ring, 5169 int cpu) 5170 { 5171 struct e1000_hw *hw = &adapter->hw; 5172 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 5173 5174 if (hw->mac.type != e1000_82575) 5175 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 5176 5177 /* We can enable relaxed ordering for reads, but not writes when 5178 * DCA is enabled. This is due to a known issue in some chipsets 5179 * which will cause the DCA tag to be cleared. 5180 */ 5181 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 5182 E1000_DCA_TXCTRL_DATA_RRO_EN | 5183 E1000_DCA_TXCTRL_DESC_DCA_EN; 5184 5185 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 5186 } 5187 5188 static void igb_update_rx_dca(struct igb_adapter *adapter, 5189 struct igb_ring *rx_ring, 5190 int cpu) 5191 { 5192 struct e1000_hw *hw = &adapter->hw; 5193 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 5194 5195 if (hw->mac.type != e1000_82575) 5196 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 5197 5198 /* We can enable relaxed ordering for reads, but not writes when 5199 * DCA is enabled. This is due to a known issue in some chipsets 5200 * which will cause the DCA tag to be cleared. 5201 */ 5202 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 5203 E1000_DCA_RXCTRL_DESC_DCA_EN; 5204 5205 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 5206 } 5207 5208 static void igb_update_dca(struct igb_q_vector *q_vector) 5209 { 5210 struct igb_adapter *adapter = q_vector->adapter; 5211 int cpu = get_cpu(); 5212 5213 if (q_vector->cpu == cpu) 5214 goto out_no_update; 5215 5216 if (q_vector->tx.ring) 5217 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 5218 5219 if (q_vector->rx.ring) 5220 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 5221 5222 q_vector->cpu = cpu; 5223 out_no_update: 5224 put_cpu(); 5225 } 5226 5227 static void igb_setup_dca(struct igb_adapter *adapter) 5228 { 5229 struct e1000_hw *hw = &adapter->hw; 5230 int i; 5231 5232 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 5233 return; 5234 5235 /* Always use CB2 mode, difference is masked in the CB driver. */ 5236 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 5237 5238 for (i = 0; i < adapter->num_q_vectors; i++) { 5239 adapter->q_vector[i]->cpu = -1; 5240 igb_update_dca(adapter->q_vector[i]); 5241 } 5242 } 5243 5244 static int __igb_notify_dca(struct device *dev, void *data) 5245 { 5246 struct net_device *netdev = dev_get_drvdata(dev); 5247 struct igb_adapter *adapter = netdev_priv(netdev); 5248 struct pci_dev *pdev = adapter->pdev; 5249 struct e1000_hw *hw = &adapter->hw; 5250 unsigned long event = *(unsigned long *)data; 5251 5252 switch (event) { 5253 case DCA_PROVIDER_ADD: 5254 /* if already enabled, don't do it again */ 5255 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 5256 break; 5257 if (dca_add_requester(dev) == 0) { 5258 adapter->flags |= IGB_FLAG_DCA_ENABLED; 5259 dev_info(&pdev->dev, "DCA enabled\n"); 5260 igb_setup_dca(adapter); 5261 break; 5262 } 5263 /* Fall Through since DCA is disabled. */ 5264 case DCA_PROVIDER_REMOVE: 5265 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 5266 /* without this a class_device is left 5267 * hanging around in the sysfs model 5268 */ 5269 dca_remove_requester(dev); 5270 dev_info(&pdev->dev, "DCA disabled\n"); 5271 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 5272 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 5273 } 5274 break; 5275 } 5276 5277 return 0; 5278 } 5279 5280 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 5281 void *p) 5282 { 5283 int ret_val; 5284 5285 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 5286 __igb_notify_dca); 5287 5288 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 5289 } 5290 #endif /* CONFIG_IGB_DCA */ 5291 5292 #ifdef CONFIG_PCI_IOV 5293 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 5294 { 5295 unsigned char mac_addr[ETH_ALEN]; 5296 5297 eth_zero_addr(mac_addr); 5298 igb_set_vf_mac(adapter, vf, mac_addr); 5299 5300 /* By default spoof check is enabled for all VFs */ 5301 adapter->vf_data[vf].spoofchk_enabled = true; 5302 5303 return 0; 5304 } 5305 5306 #endif 5307 static void igb_ping_all_vfs(struct igb_adapter *adapter) 5308 { 5309 struct e1000_hw *hw = &adapter->hw; 5310 u32 ping; 5311 int i; 5312 5313 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 5314 ping = E1000_PF_CONTROL_MSG; 5315 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 5316 ping |= E1000_VT_MSGTYPE_CTS; 5317 igb_write_mbx(hw, &ping, 1, i); 5318 } 5319 } 5320 5321 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5322 { 5323 struct e1000_hw *hw = &adapter->hw; 5324 u32 vmolr = rd32(E1000_VMOLR(vf)); 5325 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5326 5327 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 5328 IGB_VF_FLAG_MULTI_PROMISC); 5329 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5330 5331 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 5332 vmolr |= E1000_VMOLR_MPME; 5333 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 5334 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 5335 } else { 5336 /* if we have hashes and we are clearing a multicast promisc 5337 * flag we need to write the hashes to the MTA as this step 5338 * was previously skipped 5339 */ 5340 if (vf_data->num_vf_mc_hashes > 30) { 5341 vmolr |= E1000_VMOLR_MPME; 5342 } else if (vf_data->num_vf_mc_hashes) { 5343 int j; 5344 vmolr |= E1000_VMOLR_ROMPE; 5345 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5346 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5347 } 5348 } 5349 5350 wr32(E1000_VMOLR(vf), vmolr); 5351 5352 /* there are flags left unprocessed, likely not supported */ 5353 if (*msgbuf & E1000_VT_MSGINFO_MASK) 5354 return -EINVAL; 5355 5356 return 0; 5357 } 5358 5359 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 5360 u32 *msgbuf, u32 vf) 5361 { 5362 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5363 u16 *hash_list = (u16 *)&msgbuf[1]; 5364 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5365 int i; 5366 5367 /* salt away the number of multicast addresses assigned 5368 * to this VF for later use to restore when the PF multi cast 5369 * list changes 5370 */ 5371 vf_data->num_vf_mc_hashes = n; 5372 5373 /* only up to 30 hash values supported */ 5374 if (n > 30) 5375 n = 30; 5376 5377 /* store the hashes for later use */ 5378 for (i = 0; i < n; i++) 5379 vf_data->vf_mc_hashes[i] = hash_list[i]; 5380 5381 /* Flush and reset the mta with the new values */ 5382 igb_set_rx_mode(adapter->netdev); 5383 5384 return 0; 5385 } 5386 5387 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 5388 { 5389 struct e1000_hw *hw = &adapter->hw; 5390 struct vf_data_storage *vf_data; 5391 int i, j; 5392 5393 for (i = 0; i < adapter->vfs_allocated_count; i++) { 5394 u32 vmolr = rd32(E1000_VMOLR(i)); 5395 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5396 5397 vf_data = &adapter->vf_data[i]; 5398 5399 if ((vf_data->num_vf_mc_hashes > 30) || 5400 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 5401 vmolr |= E1000_VMOLR_MPME; 5402 } else if (vf_data->num_vf_mc_hashes) { 5403 vmolr |= E1000_VMOLR_ROMPE; 5404 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5405 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5406 } 5407 wr32(E1000_VMOLR(i), vmolr); 5408 } 5409 } 5410 5411 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 5412 { 5413 struct e1000_hw *hw = &adapter->hw; 5414 u32 pool_mask, reg, vid; 5415 int i; 5416 5417 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5418 5419 /* Find the vlan filter for this id */ 5420 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5421 reg = rd32(E1000_VLVF(i)); 5422 5423 /* remove the vf from the pool */ 5424 reg &= ~pool_mask; 5425 5426 /* if pool is empty then remove entry from vfta */ 5427 if (!(reg & E1000_VLVF_POOLSEL_MASK) && 5428 (reg & E1000_VLVF_VLANID_ENABLE)) { 5429 reg = 0; 5430 vid = reg & E1000_VLVF_VLANID_MASK; 5431 igb_vfta_set(hw, vid, false); 5432 } 5433 5434 wr32(E1000_VLVF(i), reg); 5435 } 5436 5437 adapter->vf_data[vf].vlans_enabled = 0; 5438 } 5439 5440 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) 5441 { 5442 struct e1000_hw *hw = &adapter->hw; 5443 u32 reg, i; 5444 5445 /* The vlvf table only exists on 82576 hardware and newer */ 5446 if (hw->mac.type < e1000_82576) 5447 return -1; 5448 5449 /* we only need to do this if VMDq is enabled */ 5450 if (!adapter->vfs_allocated_count) 5451 return -1; 5452 5453 /* Find the vlan filter for this id */ 5454 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5455 reg = rd32(E1000_VLVF(i)); 5456 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5457 vid == (reg & E1000_VLVF_VLANID_MASK)) 5458 break; 5459 } 5460 5461 if (add) { 5462 if (i == E1000_VLVF_ARRAY_SIZE) { 5463 /* Did not find a matching VLAN ID entry that was 5464 * enabled. Search for a free filter entry, i.e. 5465 * one without the enable bit set 5466 */ 5467 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5468 reg = rd32(E1000_VLVF(i)); 5469 if (!(reg & E1000_VLVF_VLANID_ENABLE)) 5470 break; 5471 } 5472 } 5473 if (i < E1000_VLVF_ARRAY_SIZE) { 5474 /* Found an enabled/available entry */ 5475 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5476 5477 /* if !enabled we need to set this up in vfta */ 5478 if (!(reg & E1000_VLVF_VLANID_ENABLE)) { 5479 /* add VID to filter table */ 5480 igb_vfta_set(hw, vid, true); 5481 reg |= E1000_VLVF_VLANID_ENABLE; 5482 } 5483 reg &= ~E1000_VLVF_VLANID_MASK; 5484 reg |= vid; 5485 wr32(E1000_VLVF(i), reg); 5486 5487 /* do not modify RLPML for PF devices */ 5488 if (vf >= adapter->vfs_allocated_count) 5489 return 0; 5490 5491 if (!adapter->vf_data[vf].vlans_enabled) { 5492 u32 size; 5493 reg = rd32(E1000_VMOLR(vf)); 5494 size = reg & E1000_VMOLR_RLPML_MASK; 5495 size += 4; 5496 reg &= ~E1000_VMOLR_RLPML_MASK; 5497 reg |= size; 5498 wr32(E1000_VMOLR(vf), reg); 5499 } 5500 5501 adapter->vf_data[vf].vlans_enabled++; 5502 } 5503 } else { 5504 if (i < E1000_VLVF_ARRAY_SIZE) { 5505 /* remove vf from the pool */ 5506 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); 5507 /* if pool is empty then remove entry from vfta */ 5508 if (!(reg & E1000_VLVF_POOLSEL_MASK)) { 5509 reg = 0; 5510 igb_vfta_set(hw, vid, false); 5511 } 5512 wr32(E1000_VLVF(i), reg); 5513 5514 /* do not modify RLPML for PF devices */ 5515 if (vf >= adapter->vfs_allocated_count) 5516 return 0; 5517 5518 adapter->vf_data[vf].vlans_enabled--; 5519 if (!adapter->vf_data[vf].vlans_enabled) { 5520 u32 size; 5521 reg = rd32(E1000_VMOLR(vf)); 5522 size = reg & E1000_VMOLR_RLPML_MASK; 5523 size -= 4; 5524 reg &= ~E1000_VMOLR_RLPML_MASK; 5525 reg |= size; 5526 wr32(E1000_VMOLR(vf), reg); 5527 } 5528 } 5529 } 5530 return 0; 5531 } 5532 5533 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 5534 { 5535 struct e1000_hw *hw = &adapter->hw; 5536 5537 if (vid) 5538 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 5539 else 5540 wr32(E1000_VMVIR(vf), 0); 5541 } 5542 5543 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 5544 int vf, u16 vlan, u8 qos) 5545 { 5546 int err = 0; 5547 struct igb_adapter *adapter = netdev_priv(netdev); 5548 5549 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 5550 return -EINVAL; 5551 if (vlan || qos) { 5552 err = igb_vlvf_set(adapter, vlan, !!vlan, vf); 5553 if (err) 5554 goto out; 5555 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 5556 igb_set_vmolr(adapter, vf, !vlan); 5557 adapter->vf_data[vf].pf_vlan = vlan; 5558 adapter->vf_data[vf].pf_qos = qos; 5559 dev_info(&adapter->pdev->dev, 5560 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 5561 if (test_bit(__IGB_DOWN, &adapter->state)) { 5562 dev_warn(&adapter->pdev->dev, 5563 "The VF VLAN has been set, but the PF device is not up.\n"); 5564 dev_warn(&adapter->pdev->dev, 5565 "Bring the PF device up before attempting to use the VF device.\n"); 5566 } 5567 } else { 5568 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, 5569 false, vf); 5570 igb_set_vmvir(adapter, vlan, vf); 5571 igb_set_vmolr(adapter, vf, true); 5572 adapter->vf_data[vf].pf_vlan = 0; 5573 adapter->vf_data[vf].pf_qos = 0; 5574 } 5575 out: 5576 return err; 5577 } 5578 5579 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid) 5580 { 5581 struct e1000_hw *hw = &adapter->hw; 5582 int i; 5583 u32 reg; 5584 5585 /* Find the vlan filter for this id */ 5586 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5587 reg = rd32(E1000_VLVF(i)); 5588 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5589 vid == (reg & E1000_VLVF_VLANID_MASK)) 5590 break; 5591 } 5592 5593 if (i >= E1000_VLVF_ARRAY_SIZE) 5594 i = -1; 5595 5596 return i; 5597 } 5598 5599 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5600 { 5601 struct e1000_hw *hw = &adapter->hw; 5602 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5603 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 5604 int err = 0; 5605 5606 /* If in promiscuous mode we need to make sure the PF also has 5607 * the VLAN filter set. 5608 */ 5609 if (add && (adapter->netdev->flags & IFF_PROMISC)) 5610 err = igb_vlvf_set(adapter, vid, add, 5611 adapter->vfs_allocated_count); 5612 if (err) 5613 goto out; 5614 5615 err = igb_vlvf_set(adapter, vid, add, vf); 5616 5617 if (err) 5618 goto out; 5619 5620 /* Go through all the checks to see if the VLAN filter should 5621 * be wiped completely. 5622 */ 5623 if (!add && (adapter->netdev->flags & IFF_PROMISC)) { 5624 u32 vlvf, bits; 5625 5626 int regndx = igb_find_vlvf_entry(adapter, vid); 5627 if (regndx < 0) 5628 goto out; 5629 /* See if any other pools are set for this VLAN filter 5630 * entry other than the PF. 5631 */ 5632 vlvf = bits = rd32(E1000_VLVF(regndx)); 5633 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT + 5634 adapter->vfs_allocated_count); 5635 /* If the filter was removed then ensure PF pool bit 5636 * is cleared if the PF only added itself to the pool 5637 * because the PF is in promiscuous mode. 5638 */ 5639 if ((vlvf & VLAN_VID_MASK) == vid && 5640 !test_bit(vid, adapter->active_vlans) && 5641 !bits) 5642 igb_vlvf_set(adapter, vid, add, 5643 adapter->vfs_allocated_count); 5644 } 5645 5646 out: 5647 return err; 5648 } 5649 5650 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 5651 { 5652 /* clear flags - except flag that indicates PF has set the MAC */ 5653 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; 5654 adapter->vf_data[vf].last_nack = jiffies; 5655 5656 /* reset offloads to defaults */ 5657 igb_set_vmolr(adapter, vf, true); 5658 5659 /* reset vlans for device */ 5660 igb_clear_vf_vfta(adapter, vf); 5661 if (adapter->vf_data[vf].pf_vlan) 5662 igb_ndo_set_vf_vlan(adapter->netdev, vf, 5663 adapter->vf_data[vf].pf_vlan, 5664 adapter->vf_data[vf].pf_qos); 5665 else 5666 igb_clear_vf_vfta(adapter, vf); 5667 5668 /* reset multicast table array for vf */ 5669 adapter->vf_data[vf].num_vf_mc_hashes = 0; 5670 5671 /* Flush and reset the mta with the new values */ 5672 igb_set_rx_mode(adapter->netdev); 5673 } 5674 5675 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 5676 { 5677 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5678 5679 /* clear mac address as we were hotplug removed/added */ 5680 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 5681 eth_zero_addr(vf_mac); 5682 5683 /* process remaining reset events */ 5684 igb_vf_reset(adapter, vf); 5685 } 5686 5687 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 5688 { 5689 struct e1000_hw *hw = &adapter->hw; 5690 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5691 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 5692 u32 reg, msgbuf[3]; 5693 u8 *addr = (u8 *)(&msgbuf[1]); 5694 5695 /* process all the same items cleared in a function level reset */ 5696 igb_vf_reset(adapter, vf); 5697 5698 /* set vf mac address */ 5699 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); 5700 5701 /* enable transmit and receive for vf */ 5702 reg = rd32(E1000_VFTE); 5703 wr32(E1000_VFTE, reg | (1 << vf)); 5704 reg = rd32(E1000_VFRE); 5705 wr32(E1000_VFRE, reg | (1 << vf)); 5706 5707 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 5708 5709 /* reply to reset with ack and vf mac address */ 5710 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 5711 memcpy(addr, vf_mac, 6); 5712 igb_write_mbx(hw, msgbuf, 3, vf); 5713 } 5714 5715 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 5716 { 5717 /* The VF MAC Address is stored in a packed array of bytes 5718 * starting at the second 32 bit word of the msg array 5719 */ 5720 unsigned char *addr = (char *)&msg[1]; 5721 int err = -1; 5722 5723 if (is_valid_ether_addr(addr)) 5724 err = igb_set_vf_mac(adapter, vf, addr); 5725 5726 return err; 5727 } 5728 5729 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 5730 { 5731 struct e1000_hw *hw = &adapter->hw; 5732 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5733 u32 msg = E1000_VT_MSGTYPE_NACK; 5734 5735 /* if device isn't clear to send it shouldn't be reading either */ 5736 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 5737 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 5738 igb_write_mbx(hw, &msg, 1, vf); 5739 vf_data->last_nack = jiffies; 5740 } 5741 } 5742 5743 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 5744 { 5745 struct pci_dev *pdev = adapter->pdev; 5746 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 5747 struct e1000_hw *hw = &adapter->hw; 5748 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5749 s32 retval; 5750 5751 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); 5752 5753 if (retval) { 5754 /* if receive failed revoke VF CTS stats and restart init */ 5755 dev_err(&pdev->dev, "Error receiving message from VF\n"); 5756 vf_data->flags &= ~IGB_VF_FLAG_CTS; 5757 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 5758 return; 5759 goto out; 5760 } 5761 5762 /* this is a message we already processed, do nothing */ 5763 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 5764 return; 5765 5766 /* until the vf completes a reset it should not be 5767 * allowed to start any configuration. 5768 */ 5769 if (msgbuf[0] == E1000_VF_RESET) { 5770 igb_vf_reset_msg(adapter, vf); 5771 return; 5772 } 5773 5774 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 5775 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 5776 return; 5777 retval = -1; 5778 goto out; 5779 } 5780 5781 switch ((msgbuf[0] & 0xFFFF)) { 5782 case E1000_VF_SET_MAC_ADDR: 5783 retval = -EINVAL; 5784 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) 5785 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 5786 else 5787 dev_warn(&pdev->dev, 5788 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 5789 vf); 5790 break; 5791 case E1000_VF_SET_PROMISC: 5792 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 5793 break; 5794 case E1000_VF_SET_MULTICAST: 5795 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 5796 break; 5797 case E1000_VF_SET_LPE: 5798 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 5799 break; 5800 case E1000_VF_SET_VLAN: 5801 retval = -1; 5802 if (vf_data->pf_vlan) 5803 dev_warn(&pdev->dev, 5804 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 5805 vf); 5806 else 5807 retval = igb_set_vf_vlan(adapter, msgbuf, vf); 5808 break; 5809 default: 5810 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 5811 retval = -1; 5812 break; 5813 } 5814 5815 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 5816 out: 5817 /* notify the VF of the results of what it sent us */ 5818 if (retval) 5819 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 5820 else 5821 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 5822 5823 igb_write_mbx(hw, msgbuf, 1, vf); 5824 } 5825 5826 static void igb_msg_task(struct igb_adapter *adapter) 5827 { 5828 struct e1000_hw *hw = &adapter->hw; 5829 u32 vf; 5830 5831 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 5832 /* process any reset requests */ 5833 if (!igb_check_for_rst(hw, vf)) 5834 igb_vf_reset_event(adapter, vf); 5835 5836 /* process any messages pending */ 5837 if (!igb_check_for_msg(hw, vf)) 5838 igb_rcv_msg_from_vf(adapter, vf); 5839 5840 /* process any acks */ 5841 if (!igb_check_for_ack(hw, vf)) 5842 igb_rcv_ack_from_vf(adapter, vf); 5843 } 5844 } 5845 5846 /** 5847 * igb_set_uta - Set unicast filter table address 5848 * @adapter: board private structure 5849 * 5850 * The unicast table address is a register array of 32-bit registers. 5851 * The table is meant to be used in a way similar to how the MTA is used 5852 * however due to certain limitations in the hardware it is necessary to 5853 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 5854 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 5855 **/ 5856 static void igb_set_uta(struct igb_adapter *adapter) 5857 { 5858 struct e1000_hw *hw = &adapter->hw; 5859 int i; 5860 5861 /* The UTA table only exists on 82576 hardware and newer */ 5862 if (hw->mac.type < e1000_82576) 5863 return; 5864 5865 /* we only need to do this if VMDq is enabled */ 5866 if (!adapter->vfs_allocated_count) 5867 return; 5868 5869 for (i = 0; i < hw->mac.uta_reg_count; i++) 5870 array_wr32(E1000_UTA, i, ~0); 5871 } 5872 5873 /** 5874 * igb_intr_msi - Interrupt Handler 5875 * @irq: interrupt number 5876 * @data: pointer to a network interface device structure 5877 **/ 5878 static irqreturn_t igb_intr_msi(int irq, void *data) 5879 { 5880 struct igb_adapter *adapter = data; 5881 struct igb_q_vector *q_vector = adapter->q_vector[0]; 5882 struct e1000_hw *hw = &adapter->hw; 5883 /* read ICR disables interrupts using IAM */ 5884 u32 icr = rd32(E1000_ICR); 5885 5886 igb_write_itr(q_vector); 5887 5888 if (icr & E1000_ICR_DRSTA) 5889 schedule_work(&adapter->reset_task); 5890 5891 if (icr & E1000_ICR_DOUTSYNC) { 5892 /* HW is reporting DMA is out of sync */ 5893 adapter->stats.doosync++; 5894 } 5895 5896 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 5897 hw->mac.get_link_status = 1; 5898 if (!test_bit(__IGB_DOWN, &adapter->state)) 5899 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5900 } 5901 5902 if (icr & E1000_ICR_TS) { 5903 u32 tsicr = rd32(E1000_TSICR); 5904 5905 if (tsicr & E1000_TSICR_TXTS) { 5906 /* acknowledge the interrupt */ 5907 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5908 /* retrieve hardware timestamp */ 5909 schedule_work(&adapter->ptp_tx_work); 5910 } 5911 } 5912 5913 napi_schedule(&q_vector->napi); 5914 5915 return IRQ_HANDLED; 5916 } 5917 5918 /** 5919 * igb_intr - Legacy Interrupt Handler 5920 * @irq: interrupt number 5921 * @data: pointer to a network interface device structure 5922 **/ 5923 static irqreturn_t igb_intr(int irq, void *data) 5924 { 5925 struct igb_adapter *adapter = data; 5926 struct igb_q_vector *q_vector = adapter->q_vector[0]; 5927 struct e1000_hw *hw = &adapter->hw; 5928 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5929 * need for the IMC write 5930 */ 5931 u32 icr = rd32(E1000_ICR); 5932 5933 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5934 * not set, then the adapter didn't send an interrupt 5935 */ 5936 if (!(icr & E1000_ICR_INT_ASSERTED)) 5937 return IRQ_NONE; 5938 5939 igb_write_itr(q_vector); 5940 5941 if (icr & E1000_ICR_DRSTA) 5942 schedule_work(&adapter->reset_task); 5943 5944 if (icr & E1000_ICR_DOUTSYNC) { 5945 /* HW is reporting DMA is out of sync */ 5946 adapter->stats.doosync++; 5947 } 5948 5949 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 5950 hw->mac.get_link_status = 1; 5951 /* guard against interrupt when we're going down */ 5952 if (!test_bit(__IGB_DOWN, &adapter->state)) 5953 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5954 } 5955 5956 if (icr & E1000_ICR_TS) { 5957 u32 tsicr = rd32(E1000_TSICR); 5958 5959 if (tsicr & E1000_TSICR_TXTS) { 5960 /* acknowledge the interrupt */ 5961 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5962 /* retrieve hardware timestamp */ 5963 schedule_work(&adapter->ptp_tx_work); 5964 } 5965 } 5966 5967 napi_schedule(&q_vector->napi); 5968 5969 return IRQ_HANDLED; 5970 } 5971 5972 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 5973 { 5974 struct igb_adapter *adapter = q_vector->adapter; 5975 struct e1000_hw *hw = &adapter->hw; 5976 5977 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 5978 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 5979 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 5980 igb_set_itr(q_vector); 5981 else 5982 igb_update_ring_itr(q_vector); 5983 } 5984 5985 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5986 if (adapter->msix_entries) 5987 wr32(E1000_EIMS, q_vector->eims_value); 5988 else 5989 igb_irq_enable(adapter); 5990 } 5991 } 5992 5993 /** 5994 * igb_poll - NAPI Rx polling callback 5995 * @napi: napi polling structure 5996 * @budget: count of how many packets we should handle 5997 **/ 5998 static int igb_poll(struct napi_struct *napi, int budget) 5999 { 6000 struct igb_q_vector *q_vector = container_of(napi, 6001 struct igb_q_vector, 6002 napi); 6003 bool clean_complete = true; 6004 6005 #ifdef CONFIG_IGB_DCA 6006 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 6007 igb_update_dca(q_vector); 6008 #endif 6009 if (q_vector->tx.ring) 6010 clean_complete = igb_clean_tx_irq(q_vector); 6011 6012 if (q_vector->rx.ring) 6013 clean_complete &= igb_clean_rx_irq(q_vector, budget); 6014 6015 /* If all work not completed, return budget and keep polling */ 6016 if (!clean_complete) 6017 return budget; 6018 6019 /* If not enough Rx work done, exit the polling mode */ 6020 napi_complete(napi); 6021 igb_ring_irq_enable(q_vector); 6022 6023 return 0; 6024 } 6025 6026 /** 6027 * igb_clean_tx_irq - Reclaim resources after transmit completes 6028 * @q_vector: pointer to q_vector containing needed info 6029 * 6030 * returns true if ring is completely cleaned 6031 **/ 6032 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) 6033 { 6034 struct igb_adapter *adapter = q_vector->adapter; 6035 struct igb_ring *tx_ring = q_vector->tx.ring; 6036 struct igb_tx_buffer *tx_buffer; 6037 union e1000_adv_tx_desc *tx_desc; 6038 unsigned int total_bytes = 0, total_packets = 0; 6039 unsigned int budget = q_vector->tx.work_limit; 6040 unsigned int i = tx_ring->next_to_clean; 6041 6042 if (test_bit(__IGB_DOWN, &adapter->state)) 6043 return true; 6044 6045 tx_buffer = &tx_ring->tx_buffer_info[i]; 6046 tx_desc = IGB_TX_DESC(tx_ring, i); 6047 i -= tx_ring->count; 6048 6049 do { 6050 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 6051 6052 /* if next_to_watch is not set then there is no work pending */ 6053 if (!eop_desc) 6054 break; 6055 6056 /* prevent any other reads prior to eop_desc */ 6057 read_barrier_depends(); 6058 6059 /* if DD is not set pending work has not been completed */ 6060 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 6061 break; 6062 6063 /* clear next_to_watch to prevent false hangs */ 6064 tx_buffer->next_to_watch = NULL; 6065 6066 /* update the statistics for this packet */ 6067 total_bytes += tx_buffer->bytecount; 6068 total_packets += tx_buffer->gso_segs; 6069 6070 /* free the skb */ 6071 dev_kfree_skb_any(tx_buffer->skb); 6072 6073 /* unmap skb header data */ 6074 dma_unmap_single(tx_ring->dev, 6075 dma_unmap_addr(tx_buffer, dma), 6076 dma_unmap_len(tx_buffer, len), 6077 DMA_TO_DEVICE); 6078 6079 /* clear tx_buffer data */ 6080 tx_buffer->skb = NULL; 6081 dma_unmap_len_set(tx_buffer, len, 0); 6082 6083 /* clear last DMA location and unmap remaining buffers */ 6084 while (tx_desc != eop_desc) { 6085 tx_buffer++; 6086 tx_desc++; 6087 i++; 6088 if (unlikely(!i)) { 6089 i -= tx_ring->count; 6090 tx_buffer = tx_ring->tx_buffer_info; 6091 tx_desc = IGB_TX_DESC(tx_ring, 0); 6092 } 6093 6094 /* unmap any remaining paged data */ 6095 if (dma_unmap_len(tx_buffer, len)) { 6096 dma_unmap_page(tx_ring->dev, 6097 dma_unmap_addr(tx_buffer, dma), 6098 dma_unmap_len(tx_buffer, len), 6099 DMA_TO_DEVICE); 6100 dma_unmap_len_set(tx_buffer, len, 0); 6101 } 6102 } 6103 6104 /* move us one more past the eop_desc for start of next pkt */ 6105 tx_buffer++; 6106 tx_desc++; 6107 i++; 6108 if (unlikely(!i)) { 6109 i -= tx_ring->count; 6110 tx_buffer = tx_ring->tx_buffer_info; 6111 tx_desc = IGB_TX_DESC(tx_ring, 0); 6112 } 6113 6114 /* issue prefetch for next Tx descriptor */ 6115 prefetch(tx_desc); 6116 6117 /* update budget accounting */ 6118 budget--; 6119 } while (likely(budget)); 6120 6121 netdev_tx_completed_queue(txring_txq(tx_ring), 6122 total_packets, total_bytes); 6123 i += tx_ring->count; 6124 tx_ring->next_to_clean = i; 6125 u64_stats_update_begin(&tx_ring->tx_syncp); 6126 tx_ring->tx_stats.bytes += total_bytes; 6127 tx_ring->tx_stats.packets += total_packets; 6128 u64_stats_update_end(&tx_ring->tx_syncp); 6129 q_vector->tx.total_bytes += total_bytes; 6130 q_vector->tx.total_packets += total_packets; 6131 6132 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 6133 struct e1000_hw *hw = &adapter->hw; 6134 6135 /* Detect a transmit hang in hardware, this serializes the 6136 * check with the clearing of time_stamp and movement of i 6137 */ 6138 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 6139 if (tx_buffer->next_to_watch && 6140 time_after(jiffies, tx_buffer->time_stamp + 6141 (adapter->tx_timeout_factor * HZ)) && 6142 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 6143 6144 /* detected Tx unit hang */ 6145 dev_err(tx_ring->dev, 6146 "Detected Tx Unit Hang\n" 6147 " Tx Queue <%d>\n" 6148 " TDH <%x>\n" 6149 " TDT <%x>\n" 6150 " next_to_use <%x>\n" 6151 " next_to_clean <%x>\n" 6152 "buffer_info[next_to_clean]\n" 6153 " time_stamp <%lx>\n" 6154 " next_to_watch <%p>\n" 6155 " jiffies <%lx>\n" 6156 " desc.status <%x>\n", 6157 tx_ring->queue_index, 6158 rd32(E1000_TDH(tx_ring->reg_idx)), 6159 readl(tx_ring->tail), 6160 tx_ring->next_to_use, 6161 tx_ring->next_to_clean, 6162 tx_buffer->time_stamp, 6163 tx_buffer->next_to_watch, 6164 jiffies, 6165 tx_buffer->next_to_watch->wb.status); 6166 netif_stop_subqueue(tx_ring->netdev, 6167 tx_ring->queue_index); 6168 6169 /* we are about to reset, no point in enabling stuff */ 6170 return true; 6171 } 6172 } 6173 6174 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 6175 if (unlikely(total_packets && 6176 netif_carrier_ok(tx_ring->netdev) && 6177 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 6178 /* Make sure that anybody stopping the queue after this 6179 * sees the new next_to_clean. 6180 */ 6181 smp_mb(); 6182 if (__netif_subqueue_stopped(tx_ring->netdev, 6183 tx_ring->queue_index) && 6184 !(test_bit(__IGB_DOWN, &adapter->state))) { 6185 netif_wake_subqueue(tx_ring->netdev, 6186 tx_ring->queue_index); 6187 6188 u64_stats_update_begin(&tx_ring->tx_syncp); 6189 tx_ring->tx_stats.restart_queue++; 6190 u64_stats_update_end(&tx_ring->tx_syncp); 6191 } 6192 } 6193 6194 return !!budget; 6195 } 6196 6197 /** 6198 * igb_reuse_rx_page - page flip buffer and store it back on the ring 6199 * @rx_ring: rx descriptor ring to store buffers on 6200 * @old_buff: donor buffer to have page reused 6201 * 6202 * Synchronizes page for reuse by the adapter 6203 **/ 6204 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 6205 struct igb_rx_buffer *old_buff) 6206 { 6207 struct igb_rx_buffer *new_buff; 6208 u16 nta = rx_ring->next_to_alloc; 6209 6210 new_buff = &rx_ring->rx_buffer_info[nta]; 6211 6212 /* update, and store next to alloc */ 6213 nta++; 6214 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 6215 6216 /* transfer page from old buffer to new buffer */ 6217 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer)); 6218 6219 /* sync the buffer for use by the device */ 6220 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 6221 old_buff->page_offset, 6222 IGB_RX_BUFSZ, 6223 DMA_FROM_DEVICE); 6224 } 6225 6226 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 6227 struct page *page, 6228 unsigned int truesize) 6229 { 6230 /* avoid re-using remote pages */ 6231 if (unlikely(page_to_nid(page) != numa_node_id())) 6232 return false; 6233 6234 #if (PAGE_SIZE < 8192) 6235 /* if we are only owner of page we can reuse it */ 6236 if (unlikely(page_count(page) != 1)) 6237 return false; 6238 6239 /* flip page offset to other buffer */ 6240 rx_buffer->page_offset ^= IGB_RX_BUFSZ; 6241 6242 /* since we are the only owner of the page and we need to 6243 * increment it, just set the value to 2 in order to avoid 6244 * an unnecessary locked operation 6245 */ 6246 atomic_set(&page->_count, 2); 6247 #else 6248 /* move offset up to the next cache line */ 6249 rx_buffer->page_offset += truesize; 6250 6251 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) 6252 return false; 6253 6254 /* bump ref count on page before it is given to the stack */ 6255 get_page(page); 6256 #endif 6257 6258 return true; 6259 } 6260 6261 /** 6262 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 6263 * @rx_ring: rx descriptor ring to transact packets on 6264 * @rx_buffer: buffer containing page to add 6265 * @rx_desc: descriptor containing length of buffer written by hardware 6266 * @skb: sk_buff to place the data into 6267 * 6268 * This function will add the data contained in rx_buffer->page to the skb. 6269 * This is done either through a direct copy if the data in the buffer is 6270 * less than the skb header size, otherwise it will just attach the page as 6271 * a frag to the skb. 6272 * 6273 * The function will then update the page offset if necessary and return 6274 * true if the buffer can be reused by the adapter. 6275 **/ 6276 static bool igb_add_rx_frag(struct igb_ring *rx_ring, 6277 struct igb_rx_buffer *rx_buffer, 6278 union e1000_adv_rx_desc *rx_desc, 6279 struct sk_buff *skb) 6280 { 6281 struct page *page = rx_buffer->page; 6282 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6283 #if (PAGE_SIZE < 8192) 6284 unsigned int truesize = IGB_RX_BUFSZ; 6285 #else 6286 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 6287 #endif 6288 6289 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 6290 unsigned char *va = page_address(page) + rx_buffer->page_offset; 6291 6292 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6293 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6294 va += IGB_TS_HDR_LEN; 6295 size -= IGB_TS_HDR_LEN; 6296 } 6297 6298 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 6299 6300 /* we can reuse buffer as-is, just make sure it is local */ 6301 if (likely(page_to_nid(page) == numa_node_id())) 6302 return true; 6303 6304 /* this page cannot be reused so discard it */ 6305 put_page(page); 6306 return false; 6307 } 6308 6309 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 6310 rx_buffer->page_offset, size, truesize); 6311 6312 return igb_can_reuse_rx_page(rx_buffer, page, truesize); 6313 } 6314 6315 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, 6316 union e1000_adv_rx_desc *rx_desc, 6317 struct sk_buff *skb) 6318 { 6319 struct igb_rx_buffer *rx_buffer; 6320 struct page *page; 6321 6322 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6323 6324 page = rx_buffer->page; 6325 prefetchw(page); 6326 6327 if (likely(!skb)) { 6328 void *page_addr = page_address(page) + 6329 rx_buffer->page_offset; 6330 6331 /* prefetch first cache line of first page */ 6332 prefetch(page_addr); 6333 #if L1_CACHE_BYTES < 128 6334 prefetch(page_addr + L1_CACHE_BYTES); 6335 #endif 6336 6337 /* allocate a skb to store the frags */ 6338 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 6339 IGB_RX_HDR_LEN); 6340 if (unlikely(!skb)) { 6341 rx_ring->rx_stats.alloc_failed++; 6342 return NULL; 6343 } 6344 6345 /* we will be copying header into skb->data in 6346 * pskb_may_pull so it is in our interest to prefetch 6347 * it now to avoid a possible cache miss 6348 */ 6349 prefetchw(skb->data); 6350 } 6351 6352 /* we are reusing so sync this buffer for CPU use */ 6353 dma_sync_single_range_for_cpu(rx_ring->dev, 6354 rx_buffer->dma, 6355 rx_buffer->page_offset, 6356 IGB_RX_BUFSZ, 6357 DMA_FROM_DEVICE); 6358 6359 /* pull page into skb */ 6360 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 6361 /* hand second half of page back to the ring */ 6362 igb_reuse_rx_page(rx_ring, rx_buffer); 6363 } else { 6364 /* we are not reusing the buffer so unmap it */ 6365 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6366 PAGE_SIZE, DMA_FROM_DEVICE); 6367 } 6368 6369 /* clear contents of rx_buffer */ 6370 rx_buffer->page = NULL; 6371 6372 return skb; 6373 } 6374 6375 static inline void igb_rx_checksum(struct igb_ring *ring, 6376 union e1000_adv_rx_desc *rx_desc, 6377 struct sk_buff *skb) 6378 { 6379 skb_checksum_none_assert(skb); 6380 6381 /* Ignore Checksum bit is set */ 6382 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 6383 return; 6384 6385 /* Rx checksum disabled via ethtool */ 6386 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 6387 return; 6388 6389 /* TCP/UDP checksum error bit is set */ 6390 if (igb_test_staterr(rx_desc, 6391 E1000_RXDEXT_STATERR_TCPE | 6392 E1000_RXDEXT_STATERR_IPE)) { 6393 /* work around errata with sctp packets where the TCPE aka 6394 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 6395 * packets, (aka let the stack check the crc32c) 6396 */ 6397 if (!((skb->len == 60) && 6398 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 6399 u64_stats_update_begin(&ring->rx_syncp); 6400 ring->rx_stats.csum_err++; 6401 u64_stats_update_end(&ring->rx_syncp); 6402 } 6403 /* let the stack verify checksum errors */ 6404 return; 6405 } 6406 /* It must be a TCP or UDP packet with a valid checksum */ 6407 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 6408 E1000_RXD_STAT_UDPCS)) 6409 skb->ip_summed = CHECKSUM_UNNECESSARY; 6410 6411 dev_dbg(ring->dev, "cksum success: bits %08X\n", 6412 le32_to_cpu(rx_desc->wb.upper.status_error)); 6413 } 6414 6415 static inline void igb_rx_hash(struct igb_ring *ring, 6416 union e1000_adv_rx_desc *rx_desc, 6417 struct sk_buff *skb) 6418 { 6419 if (ring->netdev->features & NETIF_F_RXHASH) 6420 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 6421 } 6422 6423 /** 6424 * igb_is_non_eop - process handling of non-EOP buffers 6425 * @rx_ring: Rx ring being processed 6426 * @rx_desc: Rx descriptor for current buffer 6427 * @skb: current socket buffer containing buffer in progress 6428 * 6429 * This function updates next to clean. If the buffer is an EOP buffer 6430 * this function exits returning false, otherwise it will place the 6431 * sk_buff in the next buffer to be chained and return true indicating 6432 * that this is in fact a non-EOP buffer. 6433 **/ 6434 static bool igb_is_non_eop(struct igb_ring *rx_ring, 6435 union e1000_adv_rx_desc *rx_desc) 6436 { 6437 u32 ntc = rx_ring->next_to_clean + 1; 6438 6439 /* fetch, update, and store next to clean */ 6440 ntc = (ntc < rx_ring->count) ? ntc : 0; 6441 rx_ring->next_to_clean = ntc; 6442 6443 prefetch(IGB_RX_DESC(rx_ring, ntc)); 6444 6445 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 6446 return false; 6447 6448 return true; 6449 } 6450 6451 /** 6452 * igb_get_headlen - determine size of header for LRO/GRO 6453 * @data: pointer to the start of the headers 6454 * @max_len: total length of section to find headers in 6455 * 6456 * This function is meant to determine the length of headers that will 6457 * be recognized by hardware for LRO, and GRO offloads. The main 6458 * motivation of doing this is to only perform one pull for IPv4 TCP 6459 * packets so that we can do basic things like calculating the gso_size 6460 * based on the average data per packet. 6461 **/ 6462 static unsigned int igb_get_headlen(unsigned char *data, 6463 unsigned int max_len) 6464 { 6465 union { 6466 unsigned char *network; 6467 /* l2 headers */ 6468 struct ethhdr *eth; 6469 struct vlan_hdr *vlan; 6470 /* l3 headers */ 6471 struct iphdr *ipv4; 6472 struct ipv6hdr *ipv6; 6473 } hdr; 6474 __be16 protocol; 6475 u8 nexthdr = 0; /* default to not TCP */ 6476 u8 hlen; 6477 6478 /* this should never happen, but better safe than sorry */ 6479 if (max_len < ETH_HLEN) 6480 return max_len; 6481 6482 /* initialize network frame pointer */ 6483 hdr.network = data; 6484 6485 /* set first protocol and move network header forward */ 6486 protocol = hdr.eth->h_proto; 6487 hdr.network += ETH_HLEN; 6488 6489 /* handle any vlan tag if present */ 6490 if (protocol == __constant_htons(ETH_P_8021Q)) { 6491 if ((hdr.network - data) > (max_len - VLAN_HLEN)) 6492 return max_len; 6493 6494 protocol = hdr.vlan->h_vlan_encapsulated_proto; 6495 hdr.network += VLAN_HLEN; 6496 } 6497 6498 /* handle L3 protocols */ 6499 if (protocol == __constant_htons(ETH_P_IP)) { 6500 if ((hdr.network - data) > (max_len - sizeof(struct iphdr))) 6501 return max_len; 6502 6503 /* access ihl as a u8 to avoid unaligned access on ia64 */ 6504 hlen = (hdr.network[0] & 0x0F) << 2; 6505 6506 /* verify hlen meets minimum size requirements */ 6507 if (hlen < sizeof(struct iphdr)) 6508 return hdr.network - data; 6509 6510 /* record next protocol if header is present */ 6511 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET))) 6512 nexthdr = hdr.ipv4->protocol; 6513 } else if (protocol == __constant_htons(ETH_P_IPV6)) { 6514 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr))) 6515 return max_len; 6516 6517 /* record next protocol */ 6518 nexthdr = hdr.ipv6->nexthdr; 6519 hlen = sizeof(struct ipv6hdr); 6520 } else { 6521 return hdr.network - data; 6522 } 6523 6524 /* relocate pointer to start of L4 header */ 6525 hdr.network += hlen; 6526 6527 /* finally sort out TCP */ 6528 if (nexthdr == IPPROTO_TCP) { 6529 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr))) 6530 return max_len; 6531 6532 /* access doff as a u8 to avoid unaligned access on ia64 */ 6533 hlen = (hdr.network[12] & 0xF0) >> 2; 6534 6535 /* verify hlen meets minimum size requirements */ 6536 if (hlen < sizeof(struct tcphdr)) 6537 return hdr.network - data; 6538 6539 hdr.network += hlen; 6540 } else if (nexthdr == IPPROTO_UDP) { 6541 if ((hdr.network - data) > (max_len - sizeof(struct udphdr))) 6542 return max_len; 6543 6544 hdr.network += sizeof(struct udphdr); 6545 } 6546 6547 /* If everything has gone correctly hdr.network should be the 6548 * data section of the packet and will be the end of the header. 6549 * If not then it probably represents the end of the last recognized 6550 * header. 6551 */ 6552 if ((hdr.network - data) < max_len) 6553 return hdr.network - data; 6554 else 6555 return max_len; 6556 } 6557 6558 /** 6559 * igb_pull_tail - igb specific version of skb_pull_tail 6560 * @rx_ring: rx descriptor ring packet is being transacted on 6561 * @rx_desc: pointer to the EOP Rx descriptor 6562 * @skb: pointer to current skb being adjusted 6563 * 6564 * This function is an igb specific version of __pskb_pull_tail. The 6565 * main difference between this version and the original function is that 6566 * this function can make several assumptions about the state of things 6567 * that allow for significant optimizations versus the standard function. 6568 * As a result we can do things like drop a frag and maintain an accurate 6569 * truesize for the skb. 6570 */ 6571 static void igb_pull_tail(struct igb_ring *rx_ring, 6572 union e1000_adv_rx_desc *rx_desc, 6573 struct sk_buff *skb) 6574 { 6575 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 6576 unsigned char *va; 6577 unsigned int pull_len; 6578 6579 /* it is valid to use page_address instead of kmap since we are 6580 * working with pages allocated out of the lomem pool per 6581 * alloc_page(GFP_ATOMIC) 6582 */ 6583 va = skb_frag_address(frag); 6584 6585 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6586 /* retrieve timestamp from buffer */ 6587 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6588 6589 /* update pointers to remove timestamp header */ 6590 skb_frag_size_sub(frag, IGB_TS_HDR_LEN); 6591 frag->page_offset += IGB_TS_HDR_LEN; 6592 skb->data_len -= IGB_TS_HDR_LEN; 6593 skb->len -= IGB_TS_HDR_LEN; 6594 6595 /* move va to start of packet data */ 6596 va += IGB_TS_HDR_LEN; 6597 } 6598 6599 /* we need the header to contain the greater of either ETH_HLEN or 6600 * 60 bytes if the skb->len is less than 60 for skb_pad. 6601 */ 6602 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN); 6603 6604 /* align pull length to size of long to optimize memcpy performance */ 6605 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 6606 6607 /* update all of the pointers */ 6608 skb_frag_size_sub(frag, pull_len); 6609 frag->page_offset += pull_len; 6610 skb->data_len -= pull_len; 6611 skb->tail += pull_len; 6612 } 6613 6614 /** 6615 * igb_cleanup_headers - Correct corrupted or empty headers 6616 * @rx_ring: rx descriptor ring packet is being transacted on 6617 * @rx_desc: pointer to the EOP Rx descriptor 6618 * @skb: pointer to current skb being fixed 6619 * 6620 * Address the case where we are pulling data in on pages only 6621 * and as such no data is present in the skb header. 6622 * 6623 * In addition if skb is not at least 60 bytes we need to pad it so that 6624 * it is large enough to qualify as a valid Ethernet frame. 6625 * 6626 * Returns true if an error was encountered and skb was freed. 6627 **/ 6628 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 6629 union e1000_adv_rx_desc *rx_desc, 6630 struct sk_buff *skb) 6631 { 6632 if (unlikely((igb_test_staterr(rx_desc, 6633 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 6634 struct net_device *netdev = rx_ring->netdev; 6635 if (!(netdev->features & NETIF_F_RXALL)) { 6636 dev_kfree_skb_any(skb); 6637 return true; 6638 } 6639 } 6640 6641 /* place header in linear portion of buffer */ 6642 if (skb_is_nonlinear(skb)) 6643 igb_pull_tail(rx_ring, rx_desc, skb); 6644 6645 /* if skb_pad returns an error the skb was freed */ 6646 if (unlikely(skb->len < 60)) { 6647 int pad_len = 60 - skb->len; 6648 6649 if (skb_pad(skb, pad_len)) 6650 return true; 6651 __skb_put(skb, pad_len); 6652 } 6653 6654 return false; 6655 } 6656 6657 /** 6658 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 6659 * @rx_ring: rx descriptor ring packet is being transacted on 6660 * @rx_desc: pointer to the EOP Rx descriptor 6661 * @skb: pointer to current skb being populated 6662 * 6663 * This function checks the ring, descriptor, and packet information in 6664 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 6665 * other fields within the skb. 6666 **/ 6667 static void igb_process_skb_fields(struct igb_ring *rx_ring, 6668 union e1000_adv_rx_desc *rx_desc, 6669 struct sk_buff *skb) 6670 { 6671 struct net_device *dev = rx_ring->netdev; 6672 6673 igb_rx_hash(rx_ring, rx_desc, skb); 6674 6675 igb_rx_checksum(rx_ring, rx_desc, skb); 6676 6677 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb); 6678 6679 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 6680 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 6681 u16 vid; 6682 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 6683 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 6684 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 6685 else 6686 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 6687 6688 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 6689 } 6690 6691 skb_record_rx_queue(skb, rx_ring->queue_index); 6692 6693 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 6694 } 6695 6696 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 6697 { 6698 struct igb_ring *rx_ring = q_vector->rx.ring; 6699 struct sk_buff *skb = rx_ring->skb; 6700 unsigned int total_bytes = 0, total_packets = 0; 6701 u16 cleaned_count = igb_desc_unused(rx_ring); 6702 6703 do { 6704 union e1000_adv_rx_desc *rx_desc; 6705 6706 /* return some buffers to hardware, one at a time is too slow */ 6707 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 6708 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6709 cleaned_count = 0; 6710 } 6711 6712 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 6713 6714 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) 6715 break; 6716 6717 /* This memory barrier is needed to keep us from reading 6718 * any other fields out of the rx_desc until we know the 6719 * RXD_STAT_DD bit is set 6720 */ 6721 rmb(); 6722 6723 /* retrieve a buffer from the ring */ 6724 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); 6725 6726 /* exit if we failed to retrieve a buffer */ 6727 if (!skb) 6728 break; 6729 6730 cleaned_count++; 6731 6732 /* fetch next buffer in frame if non-eop */ 6733 if (igb_is_non_eop(rx_ring, rx_desc)) 6734 continue; 6735 6736 /* verify the packet layout is correct */ 6737 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 6738 skb = NULL; 6739 continue; 6740 } 6741 6742 /* probably a little skewed due to removing CRC */ 6743 total_bytes += skb->len; 6744 6745 /* populate checksum, timestamp, VLAN, and protocol */ 6746 igb_process_skb_fields(rx_ring, rx_desc, skb); 6747 6748 napi_gro_receive(&q_vector->napi, skb); 6749 6750 /* reset skb pointer */ 6751 skb = NULL; 6752 6753 /* update budget accounting */ 6754 total_packets++; 6755 } while (likely(total_packets < budget)); 6756 6757 /* place incomplete frames back on ring for completion */ 6758 rx_ring->skb = skb; 6759 6760 u64_stats_update_begin(&rx_ring->rx_syncp); 6761 rx_ring->rx_stats.packets += total_packets; 6762 rx_ring->rx_stats.bytes += total_bytes; 6763 u64_stats_update_end(&rx_ring->rx_syncp); 6764 q_vector->rx.total_packets += total_packets; 6765 q_vector->rx.total_bytes += total_bytes; 6766 6767 if (cleaned_count) 6768 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6769 6770 return (total_packets < budget); 6771 } 6772 6773 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 6774 struct igb_rx_buffer *bi) 6775 { 6776 struct page *page = bi->page; 6777 dma_addr_t dma; 6778 6779 /* since we are recycling buffers we should seldom need to alloc */ 6780 if (likely(page)) 6781 return true; 6782 6783 /* alloc new page for storage */ 6784 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL); 6785 if (unlikely(!page)) { 6786 rx_ring->rx_stats.alloc_failed++; 6787 return false; 6788 } 6789 6790 /* map page for use */ 6791 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 6792 6793 /* if mapping failed free memory back to system since 6794 * there isn't much point in holding memory we can't use 6795 */ 6796 if (dma_mapping_error(rx_ring->dev, dma)) { 6797 __free_page(page); 6798 6799 rx_ring->rx_stats.alloc_failed++; 6800 return false; 6801 } 6802 6803 bi->dma = dma; 6804 bi->page = page; 6805 bi->page_offset = 0; 6806 6807 return true; 6808 } 6809 6810 /** 6811 * igb_alloc_rx_buffers - Replace used receive buffers; packet split 6812 * @adapter: address of board private structure 6813 **/ 6814 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 6815 { 6816 union e1000_adv_rx_desc *rx_desc; 6817 struct igb_rx_buffer *bi; 6818 u16 i = rx_ring->next_to_use; 6819 6820 /* nothing to do */ 6821 if (!cleaned_count) 6822 return; 6823 6824 rx_desc = IGB_RX_DESC(rx_ring, i); 6825 bi = &rx_ring->rx_buffer_info[i]; 6826 i -= rx_ring->count; 6827 6828 do { 6829 if (!igb_alloc_mapped_page(rx_ring, bi)) 6830 break; 6831 6832 /* Refresh the desc even if buffer_addrs didn't change 6833 * because each write-back erases this info. 6834 */ 6835 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 6836 6837 rx_desc++; 6838 bi++; 6839 i++; 6840 if (unlikely(!i)) { 6841 rx_desc = IGB_RX_DESC(rx_ring, 0); 6842 bi = rx_ring->rx_buffer_info; 6843 i -= rx_ring->count; 6844 } 6845 6846 /* clear the hdr_addr for the next_to_use descriptor */ 6847 rx_desc->read.hdr_addr = 0; 6848 6849 cleaned_count--; 6850 } while (cleaned_count); 6851 6852 i += rx_ring->count; 6853 6854 if (rx_ring->next_to_use != i) { 6855 /* record the next descriptor to use */ 6856 rx_ring->next_to_use = i; 6857 6858 /* update next to alloc since we have filled the ring */ 6859 rx_ring->next_to_alloc = i; 6860 6861 /* Force memory writes to complete before letting h/w 6862 * know there are new descriptors to fetch. (Only 6863 * applicable for weak-ordered memory model archs, 6864 * such as IA-64). 6865 */ 6866 wmb(); 6867 writel(i, rx_ring->tail); 6868 } 6869 } 6870 6871 /** 6872 * igb_mii_ioctl - 6873 * @netdev: 6874 * @ifreq: 6875 * @cmd: 6876 **/ 6877 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6878 { 6879 struct igb_adapter *adapter = netdev_priv(netdev); 6880 struct mii_ioctl_data *data = if_mii(ifr); 6881 6882 if (adapter->hw.phy.media_type != e1000_media_type_copper) 6883 return -EOPNOTSUPP; 6884 6885 switch (cmd) { 6886 case SIOCGMIIPHY: 6887 data->phy_id = adapter->hw.phy.addr; 6888 break; 6889 case SIOCGMIIREG: 6890 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 6891 &data->val_out)) 6892 return -EIO; 6893 break; 6894 case SIOCSMIIREG: 6895 default: 6896 return -EOPNOTSUPP; 6897 } 6898 return 0; 6899 } 6900 6901 /** 6902 * igb_ioctl - 6903 * @netdev: 6904 * @ifreq: 6905 * @cmd: 6906 **/ 6907 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6908 { 6909 switch (cmd) { 6910 case SIOCGMIIPHY: 6911 case SIOCGMIIREG: 6912 case SIOCSMIIREG: 6913 return igb_mii_ioctl(netdev, ifr, cmd); 6914 case SIOCSHWTSTAMP: 6915 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd); 6916 default: 6917 return -EOPNOTSUPP; 6918 } 6919 } 6920 6921 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 6922 { 6923 struct igb_adapter *adapter = hw->back; 6924 6925 if (pcie_capability_read_word(adapter->pdev, reg, value)) 6926 return -E1000_ERR_CONFIG; 6927 6928 return 0; 6929 } 6930 6931 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 6932 { 6933 struct igb_adapter *adapter = hw->back; 6934 6935 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 6936 return -E1000_ERR_CONFIG; 6937 6938 return 0; 6939 } 6940 6941 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 6942 { 6943 struct igb_adapter *adapter = netdev_priv(netdev); 6944 struct e1000_hw *hw = &adapter->hw; 6945 u32 ctrl, rctl; 6946 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 6947 6948 if (enable) { 6949 /* enable VLAN tag insert/strip */ 6950 ctrl = rd32(E1000_CTRL); 6951 ctrl |= E1000_CTRL_VME; 6952 wr32(E1000_CTRL, ctrl); 6953 6954 /* Disable CFI check */ 6955 rctl = rd32(E1000_RCTL); 6956 rctl &= ~E1000_RCTL_CFIEN; 6957 wr32(E1000_RCTL, rctl); 6958 } else { 6959 /* disable VLAN tag insert/strip */ 6960 ctrl = rd32(E1000_CTRL); 6961 ctrl &= ~E1000_CTRL_VME; 6962 wr32(E1000_CTRL, ctrl); 6963 } 6964 6965 igb_rlpml_set(adapter); 6966 } 6967 6968 static int igb_vlan_rx_add_vid(struct net_device *netdev, 6969 __be16 proto, u16 vid) 6970 { 6971 struct igb_adapter *adapter = netdev_priv(netdev); 6972 struct e1000_hw *hw = &adapter->hw; 6973 int pf_id = adapter->vfs_allocated_count; 6974 6975 /* attempt to add filter to vlvf array */ 6976 igb_vlvf_set(adapter, vid, true, pf_id); 6977 6978 /* add the filter since PF can receive vlans w/o entry in vlvf */ 6979 igb_vfta_set(hw, vid, true); 6980 6981 set_bit(vid, adapter->active_vlans); 6982 6983 return 0; 6984 } 6985 6986 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 6987 __be16 proto, u16 vid) 6988 { 6989 struct igb_adapter *adapter = netdev_priv(netdev); 6990 struct e1000_hw *hw = &adapter->hw; 6991 int pf_id = adapter->vfs_allocated_count; 6992 s32 err; 6993 6994 /* remove vlan from VLVF table array */ 6995 err = igb_vlvf_set(adapter, vid, false, pf_id); 6996 6997 /* if vid was not present in VLVF just remove it from table */ 6998 if (err) 6999 igb_vfta_set(hw, vid, false); 7000 7001 clear_bit(vid, adapter->active_vlans); 7002 7003 return 0; 7004 } 7005 7006 static void igb_restore_vlan(struct igb_adapter *adapter) 7007 { 7008 u16 vid; 7009 7010 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 7011 7012 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 7013 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 7014 } 7015 7016 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 7017 { 7018 struct pci_dev *pdev = adapter->pdev; 7019 struct e1000_mac_info *mac = &adapter->hw.mac; 7020 7021 mac->autoneg = 0; 7022 7023 /* Make sure dplx is at most 1 bit and lsb of speed is not set 7024 * for the switch() below to work 7025 */ 7026 if ((spd & 1) || (dplx & ~1)) 7027 goto err_inval; 7028 7029 /* Fiber NIC's only allow 1000 gbps Full duplex 7030 * and 100Mbps Full duplex for 100baseFx sfp 7031 */ 7032 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 7033 switch (spd + dplx) { 7034 case SPEED_10 + DUPLEX_HALF: 7035 case SPEED_10 + DUPLEX_FULL: 7036 case SPEED_100 + DUPLEX_HALF: 7037 goto err_inval; 7038 default: 7039 break; 7040 } 7041 } 7042 7043 switch (spd + dplx) { 7044 case SPEED_10 + DUPLEX_HALF: 7045 mac->forced_speed_duplex = ADVERTISE_10_HALF; 7046 break; 7047 case SPEED_10 + DUPLEX_FULL: 7048 mac->forced_speed_duplex = ADVERTISE_10_FULL; 7049 break; 7050 case SPEED_100 + DUPLEX_HALF: 7051 mac->forced_speed_duplex = ADVERTISE_100_HALF; 7052 break; 7053 case SPEED_100 + DUPLEX_FULL: 7054 mac->forced_speed_duplex = ADVERTISE_100_FULL; 7055 break; 7056 case SPEED_1000 + DUPLEX_FULL: 7057 mac->autoneg = 1; 7058 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 7059 break; 7060 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 7061 default: 7062 goto err_inval; 7063 } 7064 7065 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 7066 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7067 7068 return 0; 7069 7070 err_inval: 7071 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 7072 return -EINVAL; 7073 } 7074 7075 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 7076 bool runtime) 7077 { 7078 struct net_device *netdev = pci_get_drvdata(pdev); 7079 struct igb_adapter *adapter = netdev_priv(netdev); 7080 struct e1000_hw *hw = &adapter->hw; 7081 u32 ctrl, rctl, status; 7082 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 7083 #ifdef CONFIG_PM 7084 int retval = 0; 7085 #endif 7086 7087 netif_device_detach(netdev); 7088 7089 if (netif_running(netdev)) 7090 __igb_close(netdev, true); 7091 7092 igb_clear_interrupt_scheme(adapter); 7093 7094 #ifdef CONFIG_PM 7095 retval = pci_save_state(pdev); 7096 if (retval) 7097 return retval; 7098 #endif 7099 7100 status = rd32(E1000_STATUS); 7101 if (status & E1000_STATUS_LU) 7102 wufc &= ~E1000_WUFC_LNKC; 7103 7104 if (wufc) { 7105 igb_setup_rctl(adapter); 7106 igb_set_rx_mode(netdev); 7107 7108 /* turn on all-multi mode if wake on multicast is enabled */ 7109 if (wufc & E1000_WUFC_MC) { 7110 rctl = rd32(E1000_RCTL); 7111 rctl |= E1000_RCTL_MPE; 7112 wr32(E1000_RCTL, rctl); 7113 } 7114 7115 ctrl = rd32(E1000_CTRL); 7116 /* advertise wake from D3Cold */ 7117 #define E1000_CTRL_ADVD3WUC 0x00100000 7118 /* phy power management enable */ 7119 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 7120 ctrl |= E1000_CTRL_ADVD3WUC; 7121 wr32(E1000_CTRL, ctrl); 7122 7123 /* Allow time for pending master requests to run */ 7124 igb_disable_pcie_master(hw); 7125 7126 wr32(E1000_WUC, E1000_WUC_PME_EN); 7127 wr32(E1000_WUFC, wufc); 7128 } else { 7129 wr32(E1000_WUC, 0); 7130 wr32(E1000_WUFC, 0); 7131 } 7132 7133 *enable_wake = wufc || adapter->en_mng_pt; 7134 if (!*enable_wake) 7135 igb_power_down_link(adapter); 7136 else 7137 igb_power_up_link(adapter); 7138 7139 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7140 * would have already happened in close and is redundant. 7141 */ 7142 igb_release_hw_control(adapter); 7143 7144 pci_disable_device(pdev); 7145 7146 return 0; 7147 } 7148 7149 #ifdef CONFIG_PM 7150 #ifdef CONFIG_PM_SLEEP 7151 static int igb_suspend(struct device *dev) 7152 { 7153 int retval; 7154 bool wake; 7155 struct pci_dev *pdev = to_pci_dev(dev); 7156 7157 retval = __igb_shutdown(pdev, &wake, 0); 7158 if (retval) 7159 return retval; 7160 7161 if (wake) { 7162 pci_prepare_to_sleep(pdev); 7163 } else { 7164 pci_wake_from_d3(pdev, false); 7165 pci_set_power_state(pdev, PCI_D3hot); 7166 } 7167 7168 return 0; 7169 } 7170 #endif /* CONFIG_PM_SLEEP */ 7171 7172 static int igb_resume(struct device *dev) 7173 { 7174 struct pci_dev *pdev = to_pci_dev(dev); 7175 struct net_device *netdev = pci_get_drvdata(pdev); 7176 struct igb_adapter *adapter = netdev_priv(netdev); 7177 struct e1000_hw *hw = &adapter->hw; 7178 u32 err; 7179 7180 pci_set_power_state(pdev, PCI_D0); 7181 pci_restore_state(pdev); 7182 pci_save_state(pdev); 7183 7184 err = pci_enable_device_mem(pdev); 7185 if (err) { 7186 dev_err(&pdev->dev, 7187 "igb: Cannot enable PCI device from suspend\n"); 7188 return err; 7189 } 7190 pci_set_master(pdev); 7191 7192 pci_enable_wake(pdev, PCI_D3hot, 0); 7193 pci_enable_wake(pdev, PCI_D3cold, 0); 7194 7195 if (igb_init_interrupt_scheme(adapter, true)) { 7196 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7197 return -ENOMEM; 7198 } 7199 7200 igb_reset(adapter); 7201 7202 /* let the f/w know that the h/w is now under the control of the 7203 * driver. 7204 */ 7205 igb_get_hw_control(adapter); 7206 7207 wr32(E1000_WUS, ~0); 7208 7209 if (netdev->flags & IFF_UP) { 7210 rtnl_lock(); 7211 err = __igb_open(netdev, true); 7212 rtnl_unlock(); 7213 if (err) 7214 return err; 7215 } 7216 7217 netif_device_attach(netdev); 7218 return 0; 7219 } 7220 7221 #ifdef CONFIG_PM_RUNTIME 7222 static int igb_runtime_idle(struct device *dev) 7223 { 7224 struct pci_dev *pdev = to_pci_dev(dev); 7225 struct net_device *netdev = pci_get_drvdata(pdev); 7226 struct igb_adapter *adapter = netdev_priv(netdev); 7227 7228 if (!igb_has_link(adapter)) 7229 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7230 7231 return -EBUSY; 7232 } 7233 7234 static int igb_runtime_suspend(struct device *dev) 7235 { 7236 struct pci_dev *pdev = to_pci_dev(dev); 7237 int retval; 7238 bool wake; 7239 7240 retval = __igb_shutdown(pdev, &wake, 1); 7241 if (retval) 7242 return retval; 7243 7244 if (wake) { 7245 pci_prepare_to_sleep(pdev); 7246 } else { 7247 pci_wake_from_d3(pdev, false); 7248 pci_set_power_state(pdev, PCI_D3hot); 7249 } 7250 7251 return 0; 7252 } 7253 7254 static int igb_runtime_resume(struct device *dev) 7255 { 7256 return igb_resume(dev); 7257 } 7258 #endif /* CONFIG_PM_RUNTIME */ 7259 #endif 7260 7261 static void igb_shutdown(struct pci_dev *pdev) 7262 { 7263 bool wake; 7264 7265 __igb_shutdown(pdev, &wake, 0); 7266 7267 if (system_state == SYSTEM_POWER_OFF) { 7268 pci_wake_from_d3(pdev, wake); 7269 pci_set_power_state(pdev, PCI_D3hot); 7270 } 7271 } 7272 7273 #ifdef CONFIG_PCI_IOV 7274 static int igb_sriov_reinit(struct pci_dev *dev) 7275 { 7276 struct net_device *netdev = pci_get_drvdata(dev); 7277 struct igb_adapter *adapter = netdev_priv(netdev); 7278 struct pci_dev *pdev = adapter->pdev; 7279 7280 rtnl_lock(); 7281 7282 if (netif_running(netdev)) 7283 igb_close(netdev); 7284 7285 igb_clear_interrupt_scheme(adapter); 7286 7287 igb_init_queue_configuration(adapter); 7288 7289 if (igb_init_interrupt_scheme(adapter, true)) { 7290 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7291 return -ENOMEM; 7292 } 7293 7294 if (netif_running(netdev)) 7295 igb_open(netdev); 7296 7297 rtnl_unlock(); 7298 7299 return 0; 7300 } 7301 7302 static int igb_pci_disable_sriov(struct pci_dev *dev) 7303 { 7304 int err = igb_disable_sriov(dev); 7305 7306 if (!err) 7307 err = igb_sriov_reinit(dev); 7308 7309 return err; 7310 } 7311 7312 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 7313 { 7314 int err = igb_enable_sriov(dev, num_vfs); 7315 7316 if (err) 7317 goto out; 7318 7319 err = igb_sriov_reinit(dev); 7320 if (!err) 7321 return num_vfs; 7322 7323 out: 7324 return err; 7325 } 7326 7327 #endif 7328 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 7329 { 7330 #ifdef CONFIG_PCI_IOV 7331 if (num_vfs == 0) 7332 return igb_pci_disable_sriov(dev); 7333 else 7334 return igb_pci_enable_sriov(dev, num_vfs); 7335 #endif 7336 return 0; 7337 } 7338 7339 #ifdef CONFIG_NET_POLL_CONTROLLER 7340 /* Polling 'interrupt' - used by things like netconsole to send skbs 7341 * without having to re-enable interrupts. It's not called while 7342 * the interrupt routine is executing. 7343 */ 7344 static void igb_netpoll(struct net_device *netdev) 7345 { 7346 struct igb_adapter *adapter = netdev_priv(netdev); 7347 struct e1000_hw *hw = &adapter->hw; 7348 struct igb_q_vector *q_vector; 7349 int i; 7350 7351 for (i = 0; i < adapter->num_q_vectors; i++) { 7352 q_vector = adapter->q_vector[i]; 7353 if (adapter->msix_entries) 7354 wr32(E1000_EIMC, q_vector->eims_value); 7355 else 7356 igb_irq_disable(adapter); 7357 napi_schedule(&q_vector->napi); 7358 } 7359 } 7360 #endif /* CONFIG_NET_POLL_CONTROLLER */ 7361 7362 /** 7363 * igb_io_error_detected - called when PCI error is detected 7364 * @pdev: Pointer to PCI device 7365 * @state: The current pci connection state 7366 * 7367 * This function is called after a PCI bus error affecting 7368 * this device has been detected. 7369 **/ 7370 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 7371 pci_channel_state_t state) 7372 { 7373 struct net_device *netdev = pci_get_drvdata(pdev); 7374 struct igb_adapter *adapter = netdev_priv(netdev); 7375 7376 netif_device_detach(netdev); 7377 7378 if (state == pci_channel_io_perm_failure) 7379 return PCI_ERS_RESULT_DISCONNECT; 7380 7381 if (netif_running(netdev)) 7382 igb_down(adapter); 7383 pci_disable_device(pdev); 7384 7385 /* Request a slot slot reset. */ 7386 return PCI_ERS_RESULT_NEED_RESET; 7387 } 7388 7389 /** 7390 * igb_io_slot_reset - called after the pci bus has been reset. 7391 * @pdev: Pointer to PCI device 7392 * 7393 * Restart the card from scratch, as if from a cold-boot. Implementation 7394 * resembles the first-half of the igb_resume routine. 7395 **/ 7396 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 7397 { 7398 struct net_device *netdev = pci_get_drvdata(pdev); 7399 struct igb_adapter *adapter = netdev_priv(netdev); 7400 struct e1000_hw *hw = &adapter->hw; 7401 pci_ers_result_t result; 7402 int err; 7403 7404 if (pci_enable_device_mem(pdev)) { 7405 dev_err(&pdev->dev, 7406 "Cannot re-enable PCI device after reset.\n"); 7407 result = PCI_ERS_RESULT_DISCONNECT; 7408 } else { 7409 pci_set_master(pdev); 7410 pci_restore_state(pdev); 7411 pci_save_state(pdev); 7412 7413 pci_enable_wake(pdev, PCI_D3hot, 0); 7414 pci_enable_wake(pdev, PCI_D3cold, 0); 7415 7416 igb_reset(adapter); 7417 wr32(E1000_WUS, ~0); 7418 result = PCI_ERS_RESULT_RECOVERED; 7419 } 7420 7421 err = pci_cleanup_aer_uncorrect_error_status(pdev); 7422 if (err) { 7423 dev_err(&pdev->dev, 7424 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 7425 err); 7426 /* non-fatal, continue */ 7427 } 7428 7429 return result; 7430 } 7431 7432 /** 7433 * igb_io_resume - called when traffic can start flowing again. 7434 * @pdev: Pointer to PCI device 7435 * 7436 * This callback is called when the error recovery driver tells us that 7437 * its OK to resume normal operation. Implementation resembles the 7438 * second-half of the igb_resume routine. 7439 */ 7440 static void igb_io_resume(struct pci_dev *pdev) 7441 { 7442 struct net_device *netdev = pci_get_drvdata(pdev); 7443 struct igb_adapter *adapter = netdev_priv(netdev); 7444 7445 if (netif_running(netdev)) { 7446 if (igb_up(adapter)) { 7447 dev_err(&pdev->dev, "igb_up failed after reset\n"); 7448 return; 7449 } 7450 } 7451 7452 netif_device_attach(netdev); 7453 7454 /* let the f/w know that the h/w is now under the control of the 7455 * driver. 7456 */ 7457 igb_get_hw_control(adapter); 7458 } 7459 7460 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, 7461 u8 qsel) 7462 { 7463 u32 rar_low, rar_high; 7464 struct e1000_hw *hw = &adapter->hw; 7465 7466 /* HW expects these in little endian so we reverse the byte order 7467 * from network order (big endian) to little endian 7468 */ 7469 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 7470 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 7471 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 7472 7473 /* Indicate to hardware the Address is Valid. */ 7474 rar_high |= E1000_RAH_AV; 7475 7476 if (hw->mac.type == e1000_82575) 7477 rar_high |= E1000_RAH_POOL_1 * qsel; 7478 else 7479 rar_high |= E1000_RAH_POOL_1 << qsel; 7480 7481 wr32(E1000_RAL(index), rar_low); 7482 wrfl(); 7483 wr32(E1000_RAH(index), rar_high); 7484 wrfl(); 7485 } 7486 7487 static int igb_set_vf_mac(struct igb_adapter *adapter, 7488 int vf, unsigned char *mac_addr) 7489 { 7490 struct e1000_hw *hw = &adapter->hw; 7491 /* VF MAC addresses start at end of receive addresses and moves 7492 * towards the first, as a result a collision should not be possible 7493 */ 7494 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 7495 7496 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); 7497 7498 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); 7499 7500 return 0; 7501 } 7502 7503 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 7504 { 7505 struct igb_adapter *adapter = netdev_priv(netdev); 7506 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) 7507 return -EINVAL; 7508 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 7509 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); 7510 dev_info(&adapter->pdev->dev, 7511 "Reload the VF driver to make this change effective."); 7512 if (test_bit(__IGB_DOWN, &adapter->state)) { 7513 dev_warn(&adapter->pdev->dev, 7514 "The VF MAC address has been set, but the PF device is not up.\n"); 7515 dev_warn(&adapter->pdev->dev, 7516 "Bring the PF device up before attempting to use the VF device.\n"); 7517 } 7518 return igb_set_vf_mac(adapter, vf, mac); 7519 } 7520 7521 static int igb_link_mbps(int internal_link_speed) 7522 { 7523 switch (internal_link_speed) { 7524 case SPEED_100: 7525 return 100; 7526 case SPEED_1000: 7527 return 1000; 7528 default: 7529 return 0; 7530 } 7531 } 7532 7533 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 7534 int link_speed) 7535 { 7536 int rf_dec, rf_int; 7537 u32 bcnrc_val; 7538 7539 if (tx_rate != 0) { 7540 /* Calculate the rate factor values to set */ 7541 rf_int = link_speed / tx_rate; 7542 rf_dec = (link_speed - (rf_int * tx_rate)); 7543 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) / 7544 tx_rate; 7545 7546 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 7547 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 7548 E1000_RTTBCNRC_RF_INT_MASK); 7549 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 7550 } else { 7551 bcnrc_val = 0; 7552 } 7553 7554 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 7555 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 7556 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 7557 */ 7558 wr32(E1000_RTTBCNRM, 0x14); 7559 wr32(E1000_RTTBCNRC, bcnrc_val); 7560 } 7561 7562 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 7563 { 7564 int actual_link_speed, i; 7565 bool reset_rate = false; 7566 7567 /* VF TX rate limit was not set or not supported */ 7568 if ((adapter->vf_rate_link_speed == 0) || 7569 (adapter->hw.mac.type != e1000_82576)) 7570 return; 7571 7572 actual_link_speed = igb_link_mbps(adapter->link_speed); 7573 if (actual_link_speed != adapter->vf_rate_link_speed) { 7574 reset_rate = true; 7575 adapter->vf_rate_link_speed = 0; 7576 dev_info(&adapter->pdev->dev, 7577 "Link speed has been changed. VF Transmit rate is disabled\n"); 7578 } 7579 7580 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7581 if (reset_rate) 7582 adapter->vf_data[i].tx_rate = 0; 7583 7584 igb_set_vf_rate_limit(&adapter->hw, i, 7585 adapter->vf_data[i].tx_rate, 7586 actual_link_speed); 7587 } 7588 } 7589 7590 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) 7591 { 7592 struct igb_adapter *adapter = netdev_priv(netdev); 7593 struct e1000_hw *hw = &adapter->hw; 7594 int actual_link_speed; 7595 7596 if (hw->mac.type != e1000_82576) 7597 return -EOPNOTSUPP; 7598 7599 actual_link_speed = igb_link_mbps(adapter->link_speed); 7600 if ((vf >= adapter->vfs_allocated_count) || 7601 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 7602 (tx_rate < 0) || (tx_rate > actual_link_speed)) 7603 return -EINVAL; 7604 7605 adapter->vf_rate_link_speed = actual_link_speed; 7606 adapter->vf_data[vf].tx_rate = (u16)tx_rate; 7607 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); 7608 7609 return 0; 7610 } 7611 7612 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 7613 bool setting) 7614 { 7615 struct igb_adapter *adapter = netdev_priv(netdev); 7616 struct e1000_hw *hw = &adapter->hw; 7617 u32 reg_val, reg_offset; 7618 7619 if (!adapter->vfs_allocated_count) 7620 return -EOPNOTSUPP; 7621 7622 if (vf >= adapter->vfs_allocated_count) 7623 return -EINVAL; 7624 7625 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 7626 reg_val = rd32(reg_offset); 7627 if (setting) 7628 reg_val |= ((1 << vf) | 7629 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7630 else 7631 reg_val &= ~((1 << vf) | 7632 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7633 wr32(reg_offset, reg_val); 7634 7635 adapter->vf_data[vf].spoofchk_enabled = setting; 7636 return E1000_SUCCESS; 7637 } 7638 7639 static int igb_ndo_get_vf_config(struct net_device *netdev, 7640 int vf, struct ifla_vf_info *ivi) 7641 { 7642 struct igb_adapter *adapter = netdev_priv(netdev); 7643 if (vf >= adapter->vfs_allocated_count) 7644 return -EINVAL; 7645 ivi->vf = vf; 7646 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 7647 ivi->tx_rate = adapter->vf_data[vf].tx_rate; 7648 ivi->vlan = adapter->vf_data[vf].pf_vlan; 7649 ivi->qos = adapter->vf_data[vf].pf_qos; 7650 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 7651 return 0; 7652 } 7653 7654 static void igb_vmm_control(struct igb_adapter *adapter) 7655 { 7656 struct e1000_hw *hw = &adapter->hw; 7657 u32 reg; 7658 7659 switch (hw->mac.type) { 7660 case e1000_82575: 7661 case e1000_i210: 7662 case e1000_i211: 7663 case e1000_i354: 7664 default: 7665 /* replication is not supported for 82575 */ 7666 return; 7667 case e1000_82576: 7668 /* notify HW that the MAC is adding vlan tags */ 7669 reg = rd32(E1000_DTXCTL); 7670 reg |= E1000_DTXCTL_VLAN_ADDED; 7671 wr32(E1000_DTXCTL, reg); 7672 case e1000_82580: 7673 /* enable replication vlan tag stripping */ 7674 reg = rd32(E1000_RPLOLR); 7675 reg |= E1000_RPLOLR_STRVLAN; 7676 wr32(E1000_RPLOLR, reg); 7677 case e1000_i350: 7678 /* none of the above registers are supported by i350 */ 7679 break; 7680 } 7681 7682 if (adapter->vfs_allocated_count) { 7683 igb_vmdq_set_loopback_pf(hw, true); 7684 igb_vmdq_set_replication_pf(hw, true); 7685 igb_vmdq_set_anti_spoofing_pf(hw, true, 7686 adapter->vfs_allocated_count); 7687 } else { 7688 igb_vmdq_set_loopback_pf(hw, false); 7689 igb_vmdq_set_replication_pf(hw, false); 7690 } 7691 } 7692 7693 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 7694 { 7695 struct e1000_hw *hw = &adapter->hw; 7696 u32 dmac_thr; 7697 u16 hwm; 7698 7699 if (hw->mac.type > e1000_82580) { 7700 if (adapter->flags & IGB_FLAG_DMAC) { 7701 u32 reg; 7702 7703 /* force threshold to 0. */ 7704 wr32(E1000_DMCTXTH, 0); 7705 7706 /* DMA Coalescing high water mark needs to be greater 7707 * than the Rx threshold. Set hwm to PBA - max frame 7708 * size in 16B units, capping it at PBA - 6KB. 7709 */ 7710 hwm = 64 * pba - adapter->max_frame_size / 16; 7711 if (hwm < 64 * (pba - 6)) 7712 hwm = 64 * (pba - 6); 7713 reg = rd32(E1000_FCRTC); 7714 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 7715 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 7716 & E1000_FCRTC_RTH_COAL_MASK); 7717 wr32(E1000_FCRTC, reg); 7718 7719 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 7720 * frame size, capping it at PBA - 10KB. 7721 */ 7722 dmac_thr = pba - adapter->max_frame_size / 512; 7723 if (dmac_thr < pba - 10) 7724 dmac_thr = pba - 10; 7725 reg = rd32(E1000_DMACR); 7726 reg &= ~E1000_DMACR_DMACTHR_MASK; 7727 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 7728 & E1000_DMACR_DMACTHR_MASK); 7729 7730 /* transition to L0x or L1 if available..*/ 7731 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 7732 7733 /* watchdog timer= +-1000 usec in 32usec intervals */ 7734 reg |= (1000 >> 5); 7735 7736 /* Disable BMC-to-OS Watchdog Enable */ 7737 if (hw->mac.type != e1000_i354) 7738 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 7739 7740 wr32(E1000_DMACR, reg); 7741 7742 /* no lower threshold to disable 7743 * coalescing(smart fifb)-UTRESH=0 7744 */ 7745 wr32(E1000_DMCRTRH, 0); 7746 7747 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 7748 7749 wr32(E1000_DMCTLX, reg); 7750 7751 /* free space in tx packet buffer to wake from 7752 * DMA coal 7753 */ 7754 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 7755 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 7756 7757 /* make low power state decision controlled 7758 * by DMA coal 7759 */ 7760 reg = rd32(E1000_PCIEMISC); 7761 reg &= ~E1000_PCIEMISC_LX_DECISION; 7762 wr32(E1000_PCIEMISC, reg); 7763 } /* endif adapter->dmac is not disabled */ 7764 } else if (hw->mac.type == e1000_82580) { 7765 u32 reg = rd32(E1000_PCIEMISC); 7766 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 7767 wr32(E1000_DMACR, 0); 7768 } 7769 } 7770 7771 /** 7772 * igb_read_i2c_byte - Reads 8 bit word over I2C 7773 * @hw: pointer to hardware structure 7774 * @byte_offset: byte offset to read 7775 * @dev_addr: device address 7776 * @data: value read 7777 * 7778 * Performs byte read operation over I2C interface at 7779 * a specified device address. 7780 **/ 7781 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 7782 u8 dev_addr, u8 *data) 7783 { 7784 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 7785 struct i2c_client *this_client = adapter->i2c_client; 7786 s32 status; 7787 u16 swfw_mask = 0; 7788 7789 if (!this_client) 7790 return E1000_ERR_I2C; 7791 7792 swfw_mask = E1000_SWFW_PHY0_SM; 7793 7794 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) 7795 != E1000_SUCCESS) 7796 return E1000_ERR_SWFW_SYNC; 7797 7798 status = i2c_smbus_read_byte_data(this_client, byte_offset); 7799 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 7800 7801 if (status < 0) 7802 return E1000_ERR_I2C; 7803 else { 7804 *data = status; 7805 return E1000_SUCCESS; 7806 } 7807 } 7808 7809 /** 7810 * igb_write_i2c_byte - Writes 8 bit word over I2C 7811 * @hw: pointer to hardware structure 7812 * @byte_offset: byte offset to write 7813 * @dev_addr: device address 7814 * @data: value to write 7815 * 7816 * Performs byte write operation over I2C interface at 7817 * a specified device address. 7818 **/ 7819 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 7820 u8 dev_addr, u8 data) 7821 { 7822 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 7823 struct i2c_client *this_client = adapter->i2c_client; 7824 s32 status; 7825 u16 swfw_mask = E1000_SWFW_PHY0_SM; 7826 7827 if (!this_client) 7828 return E1000_ERR_I2C; 7829 7830 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) 7831 return E1000_ERR_SWFW_SYNC; 7832 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 7833 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 7834 7835 if (status) 7836 return E1000_ERR_I2C; 7837 else 7838 return E1000_SUCCESS; 7839 7840 } 7841 /* igb_main.c */ 7842