1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40 
41 #define MAJ 5
42 #define MIN 6
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46 
47 enum queue_mode {
48 	QUEUE_MODE_STRICT_PRIORITY,
49 	QUEUE_MODE_STREAM_RESERVATION,
50 };
51 
52 enum tx_queue_prio {
53 	TX_QUEUE_PRIO_HIGH,
54 	TX_QUEUE_PRIO_LOW,
55 };
56 
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 				"Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 				"Copyright (c) 2007-2014 Intel Corporation.";
63 
64 static const struct e1000_info *igb_info_tbl[] = {
65 	[board_82575] = &e1000_82575_info,
66 };
67 
68 static const struct pci_device_id igb_pci_tbl[] = {
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 	/* required last entry */
105 	{0, }
106 };
107 
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109 
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 			    struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 			  netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 				   bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 				bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180 
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187 
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 			igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 	.notifier_call	= igb_notify_dca,
204 	.next		= NULL,
205 	.priority	= 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213 
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 		     pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218 
219 static const struct pci_error_handlers igb_err_handler = {
220 	.error_detected = igb_io_error_detected,
221 	.slot_reset = igb_io_slot_reset,
222 	.resume = igb_io_resume,
223 };
224 
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 
227 static struct pci_driver igb_driver = {
228 	.name     = igb_driver_name,
229 	.id_table = igb_pci_tbl,
230 	.probe    = igb_probe,
231 	.remove   = igb_remove,
232 #ifdef CONFIG_PM
233 	.driver.pm = &igb_pm_ops,
234 #endif
235 	.shutdown = igb_shutdown,
236 	.sriov_configure = igb_pci_sriov_configure,
237 	.err_handler = &igb_err_handler
238 };
239 
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244 
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249 
250 struct igb_reg_info {
251 	u32 ofs;
252 	char *name;
253 };
254 
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256 
257 	/* General Registers */
258 	{E1000_CTRL, "CTRL"},
259 	{E1000_STATUS, "STATUS"},
260 	{E1000_CTRL_EXT, "CTRL_EXT"},
261 
262 	/* Interrupt Registers */
263 	{E1000_ICR, "ICR"},
264 
265 	/* RX Registers */
266 	{E1000_RCTL, "RCTL"},
267 	{E1000_RDLEN(0), "RDLEN"},
268 	{E1000_RDH(0), "RDH"},
269 	{E1000_RDT(0), "RDT"},
270 	{E1000_RXDCTL(0), "RXDCTL"},
271 	{E1000_RDBAL(0), "RDBAL"},
272 	{E1000_RDBAH(0), "RDBAH"},
273 
274 	/* TX Registers */
275 	{E1000_TCTL, "TCTL"},
276 	{E1000_TDBAL(0), "TDBAL"},
277 	{E1000_TDBAH(0), "TDBAH"},
278 	{E1000_TDLEN(0), "TDLEN"},
279 	{E1000_TDH(0), "TDH"},
280 	{E1000_TDT(0), "TDT"},
281 	{E1000_TXDCTL(0), "TXDCTL"},
282 	{E1000_TDFH, "TDFH"},
283 	{E1000_TDFT, "TDFT"},
284 	{E1000_TDFHS, "TDFHS"},
285 	{E1000_TDFPC, "TDFPC"},
286 
287 	/* List Terminator */
288 	{}
289 };
290 
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 	int n = 0;
295 	char rname[16];
296 	u32 regs[8];
297 
298 	switch (reginfo->ofs) {
299 	case E1000_RDLEN(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDLEN(n));
302 		break;
303 	case E1000_RDH(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RDH(n));
306 		break;
307 	case E1000_RDT(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDT(n));
310 		break;
311 	case E1000_RXDCTL(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RXDCTL(n));
314 		break;
315 	case E1000_RDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDBAL(n));
318 		break;
319 	case E1000_RDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RDBAH(n));
322 		break;
323 	case E1000_TDBAL(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAL(n));
326 		break;
327 	case E1000_TDBAH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDBAH(n));
330 		break;
331 	case E1000_TDLEN(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDLEN(n));
334 		break;
335 	case E1000_TDH(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDH(n));
338 		break;
339 	case E1000_TDT(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDT(n));
342 		break;
343 	case E1000_TXDCTL(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TXDCTL(n));
346 		break;
347 	default:
348 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 		return;
350 	}
351 
352 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 		regs[2], regs[3]);
355 }
356 
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 	struct net_device *netdev = adapter->netdev;
361 	struct e1000_hw *hw = &adapter->hw;
362 	struct igb_reg_info *reginfo;
363 	struct igb_ring *tx_ring;
364 	union e1000_adv_tx_desc *tx_desc;
365 	struct my_u0 { u64 a; u64 b; } *u0;
366 	struct igb_ring *rx_ring;
367 	union e1000_adv_rx_desc *rx_desc;
368 	u32 staterr;
369 	u16 i, n;
370 
371 	if (!netif_msg_hw(adapter))
372 		return;
373 
374 	/* Print netdevice Info */
375 	if (netdev) {
376 		dev_info(&adapter->pdev->dev, "Net device Info\n");
377 		pr_info("Device Name     state            trans_start\n");
378 		pr_info("%-15s %016lX %016lX\n", netdev->name,
379 			netdev->state, dev_trans_start(netdev));
380 	}
381 
382 	/* Print Registers */
383 	dev_info(&adapter->pdev->dev, "Register Dump\n");
384 	pr_info(" Register Name   Value\n");
385 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 	     reginfo->name; reginfo++) {
387 		igb_regdump(hw, reginfo);
388 	}
389 
390 	/* Print TX Ring Summary */
391 	if (!netdev || !netif_running(netdev))
392 		goto exit;
393 
394 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396 	for (n = 0; n < adapter->num_tx_queues; n++) {
397 		struct igb_tx_buffer *buffer_info;
398 		tx_ring = adapter->tx_ring[n];
399 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 			(u64)dma_unmap_addr(buffer_info, dma),
403 			dma_unmap_len(buffer_info, len),
404 			buffer_info->next_to_watch,
405 			(u64)buffer_info->time_stamp);
406 	}
407 
408 	/* Print TX Rings */
409 	if (!netif_msg_tx_done(adapter))
410 		goto rx_ring_summary;
411 
412 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413 
414 	/* Transmit Descriptor Formats
415 	 *
416 	 * Advanced Transmit Descriptor
417 	 *   +--------------------------------------------------------------+
418 	 * 0 |         Buffer Address [63:0]                                |
419 	 *   +--------------------------------------------------------------+
420 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421 	 *   +--------------------------------------------------------------+
422 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
423 	 */
424 
425 	for (n = 0; n < adapter->num_tx_queues; n++) {
426 		tx_ring = adapter->tx_ring[n];
427 		pr_info("------------------------------------\n");
428 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 		pr_info("------------------------------------\n");
430 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431 
432 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 			const char *next_desc;
434 			struct igb_tx_buffer *buffer_info;
435 			tx_desc = IGB_TX_DESC(tx_ring, i);
436 			buffer_info = &tx_ring->tx_buffer_info[i];
437 			u0 = (struct my_u0 *)tx_desc;
438 			if (i == tx_ring->next_to_use &&
439 			    i == tx_ring->next_to_clean)
440 				next_desc = " NTC/U";
441 			else if (i == tx_ring->next_to_use)
442 				next_desc = " NTU";
443 			else if (i == tx_ring->next_to_clean)
444 				next_desc = " NTC";
445 			else
446 				next_desc = "";
447 
448 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449 				i, le64_to_cpu(u0->a),
450 				le64_to_cpu(u0->b),
451 				(u64)dma_unmap_addr(buffer_info, dma),
452 				dma_unmap_len(buffer_info, len),
453 				buffer_info->next_to_watch,
454 				(u64)buffer_info->time_stamp,
455 				buffer_info->skb, next_desc);
456 
457 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 				print_hex_dump(KERN_INFO, "",
459 					DUMP_PREFIX_ADDRESS,
460 					16, 1, buffer_info->skb->data,
461 					dma_unmap_len(buffer_info, len),
462 					true);
463 		}
464 	}
465 
466 	/* Print RX Rings Summary */
467 rx_ring_summary:
468 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 	pr_info("Queue [NTU] [NTC]\n");
470 	for (n = 0; n < adapter->num_rx_queues; n++) {
471 		rx_ring = adapter->rx_ring[n];
472 		pr_info(" %5d %5X %5X\n",
473 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 	}
475 
476 	/* Print RX Rings */
477 	if (!netif_msg_rx_status(adapter))
478 		goto exit;
479 
480 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481 
482 	/* Advanced Receive Descriptor (Read) Format
483 	 *    63                                           1        0
484 	 *    +-----------------------------------------------------+
485 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486 	 *    +----------------------------------------------+------+
487 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
488 	 *    +-----------------------------------------------------+
489 	 *
490 	 *
491 	 * Advanced Receive Descriptor (Write-Back) Format
492 	 *
493 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
494 	 *   +------------------------------------------------------+
495 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496 	 *   | Checksum   Ident  |   |           |    | Type | Type |
497 	 *   +------------------------------------------------------+
498 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 	 *   +------------------------------------------------------+
500 	 *   63       48 47    32 31            20 19               0
501 	 */
502 
503 	for (n = 0; n < adapter->num_rx_queues; n++) {
504 		rx_ring = adapter->rx_ring[n];
505 		pr_info("------------------------------------\n");
506 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 		pr_info("------------------------------------\n");
508 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510 
511 		for (i = 0; i < rx_ring->count; i++) {
512 			const char *next_desc;
513 			struct igb_rx_buffer *buffer_info;
514 			buffer_info = &rx_ring->rx_buffer_info[i];
515 			rx_desc = IGB_RX_DESC(rx_ring, i);
516 			u0 = (struct my_u0 *)rx_desc;
517 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518 
519 			if (i == rx_ring->next_to_use)
520 				next_desc = " NTU";
521 			else if (i == rx_ring->next_to_clean)
522 				next_desc = " NTC";
523 			else
524 				next_desc = "";
525 
526 			if (staterr & E1000_RXD_STAT_DD) {
527 				/* Descriptor Done */
528 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529 					"RWB", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					next_desc);
533 			} else {
534 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535 					"R  ", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					(u64)buffer_info->dma,
539 					next_desc);
540 
541 				if (netif_msg_pktdata(adapter) &&
542 				    buffer_info->dma && buffer_info->page) {
543 					print_hex_dump(KERN_INFO, "",
544 					  DUMP_PREFIX_ADDRESS,
545 					  16, 1,
546 					  page_address(buffer_info->page) +
547 						      buffer_info->page_offset,
548 					  igb_rx_bufsz(rx_ring), true);
549 				}
550 			}
551 		}
552 	}
553 
554 exit:
555 	return;
556 }
557 
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
565 static int igb_get_i2c_data(void *data)
566 {
567 	struct igb_adapter *adapter = (struct igb_adapter *)data;
568 	struct e1000_hw *hw = &adapter->hw;
569 	s32 i2cctl = rd32(E1000_I2CPARAMS);
570 
571 	return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573 
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
581 static void igb_set_i2c_data(void *data, int state)
582 {
583 	struct igb_adapter *adapter = (struct igb_adapter *)data;
584 	struct e1000_hw *hw = &adapter->hw;
585 	s32 i2cctl = rd32(E1000_I2CPARAMS);
586 
587 	if (state)
588 		i2cctl |= E1000_I2C_DATA_OUT;
589 	else
590 		i2cctl &= ~E1000_I2C_DATA_OUT;
591 
592 	i2cctl &= ~E1000_I2C_DATA_OE_N;
593 	i2cctl |= E1000_I2C_CLK_OE_N;
594 	wr32(E1000_I2CPARAMS, i2cctl);
595 	wrfl();
596 
597 }
598 
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 	struct igb_adapter *adapter = (struct igb_adapter *)data;
609 	struct e1000_hw *hw = &adapter->hw;
610 	s32 i2cctl = rd32(E1000_I2CPARAMS);
611 
612 	if (state) {
613 		i2cctl |= E1000_I2C_CLK_OUT;
614 		i2cctl &= ~E1000_I2C_CLK_OE_N;
615 	} else {
616 		i2cctl &= ~E1000_I2C_CLK_OUT;
617 		i2cctl &= ~E1000_I2C_CLK_OE_N;
618 	}
619 	wr32(E1000_I2CPARAMS, i2cctl);
620 	wrfl();
621 }
622 
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
629 static int igb_get_i2c_clk(void *data)
630 {
631 	struct igb_adapter *adapter = (struct igb_adapter *)data;
632 	struct e1000_hw *hw = &adapter->hw;
633 	s32 i2cctl = rd32(E1000_I2CPARAMS);
634 
635 	return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637 
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 	.setsda		= igb_set_i2c_data,
640 	.setscl		= igb_set_i2c_clk,
641 	.getsda		= igb_get_i2c_data,
642 	.getscl		= igb_get_i2c_clk,
643 	.udelay		= 5,
644 	.timeout	= 20,
645 };
646 
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 	struct igb_adapter *adapter = hw->back;
656 	return adapter->netdev;
657 }
658 
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
665 static int __init igb_init_module(void)
666 {
667 	int ret;
668 
669 	pr_info("%s - version %s\n",
670 	       igb_driver_string, igb_driver_version);
671 	pr_info("%s\n", igb_copyright);
672 
673 #ifdef CONFIG_IGB_DCA
674 	dca_register_notify(&dca_notifier);
675 #endif
676 	ret = pci_register_driver(&igb_driver);
677 	return ret;
678 }
679 
680 module_init(igb_init_module);
681 
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 	dca_unregister_notify(&dca_notifier);
692 #endif
693 	pci_unregister_driver(&igb_driver);
694 }
695 
696 module_exit(igb_exit_module);
697 
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 	int i = 0, j = 0;
709 	u32 rbase_offset = adapter->vfs_allocated_count;
710 
711 	switch (adapter->hw.mac.type) {
712 	case e1000_82576:
713 		/* The queues are allocated for virtualization such that VF 0
714 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 		 * In order to avoid collision we start at the first free queue
716 		 * and continue consuming queues in the same sequence
717 		 */
718 		if (adapter->vfs_allocated_count) {
719 			for (; i < adapter->rss_queues; i++)
720 				adapter->rx_ring[i]->reg_idx = rbase_offset +
721 							       Q_IDX_82576(i);
722 		}
723 		/* Fall through */
724 	case e1000_82575:
725 	case e1000_82580:
726 	case e1000_i350:
727 	case e1000_i354:
728 	case e1000_i210:
729 	case e1000_i211:
730 		/* Fall through */
731 	default:
732 		for (; i < adapter->num_rx_queues; i++)
733 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 		for (; j < adapter->num_tx_queues; j++)
735 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 		break;
737 	}
738 }
739 
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 	u32 value = 0;
745 
746 	if (E1000_REMOVED(hw_addr))
747 		return ~value;
748 
749 	value = readl(&hw_addr[reg]);
750 
751 	/* reads should not return all F's */
752 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 		struct net_device *netdev = igb->netdev;
754 		hw->hw_addr = NULL;
755 		netdev_err(netdev, "PCIe link lost\n");
756 		WARN(1, "igb: Failed to read reg 0x%x!\n", reg);
757 	}
758 
759 	return value;
760 }
761 
762 /**
763  *  igb_write_ivar - configure ivar for given MSI-X vector
764  *  @hw: pointer to the HW structure
765  *  @msix_vector: vector number we are allocating to a given ring
766  *  @index: row index of IVAR register to write within IVAR table
767  *  @offset: column offset of in IVAR, should be multiple of 8
768  *
769  *  This function is intended to handle the writing of the IVAR register
770  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
771  *  each containing an cause allocation for an Rx and Tx ring, and a
772  *  variable number of rows depending on the number of queues supported.
773  **/
774 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
775 			   int index, int offset)
776 {
777 	u32 ivar = array_rd32(E1000_IVAR0, index);
778 
779 	/* clear any bits that are currently set */
780 	ivar &= ~((u32)0xFF << offset);
781 
782 	/* write vector and valid bit */
783 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
784 
785 	array_wr32(E1000_IVAR0, index, ivar);
786 }
787 
788 #define IGB_N0_QUEUE -1
789 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
790 {
791 	struct igb_adapter *adapter = q_vector->adapter;
792 	struct e1000_hw *hw = &adapter->hw;
793 	int rx_queue = IGB_N0_QUEUE;
794 	int tx_queue = IGB_N0_QUEUE;
795 	u32 msixbm = 0;
796 
797 	if (q_vector->rx.ring)
798 		rx_queue = q_vector->rx.ring->reg_idx;
799 	if (q_vector->tx.ring)
800 		tx_queue = q_vector->tx.ring->reg_idx;
801 
802 	switch (hw->mac.type) {
803 	case e1000_82575:
804 		/* The 82575 assigns vectors using a bitmask, which matches the
805 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
806 		 * or more queues to a vector, we write the appropriate bits
807 		 * into the MSIXBM register for that vector.
808 		 */
809 		if (rx_queue > IGB_N0_QUEUE)
810 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
811 		if (tx_queue > IGB_N0_QUEUE)
812 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
813 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
814 			msixbm |= E1000_EIMS_OTHER;
815 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
816 		q_vector->eims_value = msixbm;
817 		break;
818 	case e1000_82576:
819 		/* 82576 uses a table that essentially consists of 2 columns
820 		 * with 8 rows.  The ordering is column-major so we use the
821 		 * lower 3 bits as the row index, and the 4th bit as the
822 		 * column offset.
823 		 */
824 		if (rx_queue > IGB_N0_QUEUE)
825 			igb_write_ivar(hw, msix_vector,
826 				       rx_queue & 0x7,
827 				       (rx_queue & 0x8) << 1);
828 		if (tx_queue > IGB_N0_QUEUE)
829 			igb_write_ivar(hw, msix_vector,
830 				       tx_queue & 0x7,
831 				       ((tx_queue & 0x8) << 1) + 8);
832 		q_vector->eims_value = BIT(msix_vector);
833 		break;
834 	case e1000_82580:
835 	case e1000_i350:
836 	case e1000_i354:
837 	case e1000_i210:
838 	case e1000_i211:
839 		/* On 82580 and newer adapters the scheme is similar to 82576
840 		 * however instead of ordering column-major we have things
841 		 * ordered row-major.  So we traverse the table by using
842 		 * bit 0 as the column offset, and the remaining bits as the
843 		 * row index.
844 		 */
845 		if (rx_queue > IGB_N0_QUEUE)
846 			igb_write_ivar(hw, msix_vector,
847 				       rx_queue >> 1,
848 				       (rx_queue & 0x1) << 4);
849 		if (tx_queue > IGB_N0_QUEUE)
850 			igb_write_ivar(hw, msix_vector,
851 				       tx_queue >> 1,
852 				       ((tx_queue & 0x1) << 4) + 8);
853 		q_vector->eims_value = BIT(msix_vector);
854 		break;
855 	default:
856 		BUG();
857 		break;
858 	}
859 
860 	/* add q_vector eims value to global eims_enable_mask */
861 	adapter->eims_enable_mask |= q_vector->eims_value;
862 
863 	/* configure q_vector to set itr on first interrupt */
864 	q_vector->set_itr = 1;
865 }
866 
867 /**
868  *  igb_configure_msix - Configure MSI-X hardware
869  *  @adapter: board private structure to initialize
870  *
871  *  igb_configure_msix sets up the hardware to properly
872  *  generate MSI-X interrupts.
873  **/
874 static void igb_configure_msix(struct igb_adapter *adapter)
875 {
876 	u32 tmp;
877 	int i, vector = 0;
878 	struct e1000_hw *hw = &adapter->hw;
879 
880 	adapter->eims_enable_mask = 0;
881 
882 	/* set vector for other causes, i.e. link changes */
883 	switch (hw->mac.type) {
884 	case e1000_82575:
885 		tmp = rd32(E1000_CTRL_EXT);
886 		/* enable MSI-X PBA support*/
887 		tmp |= E1000_CTRL_EXT_PBA_CLR;
888 
889 		/* Auto-Mask interrupts upon ICR read. */
890 		tmp |= E1000_CTRL_EXT_EIAME;
891 		tmp |= E1000_CTRL_EXT_IRCA;
892 
893 		wr32(E1000_CTRL_EXT, tmp);
894 
895 		/* enable msix_other interrupt */
896 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
897 		adapter->eims_other = E1000_EIMS_OTHER;
898 
899 		break;
900 
901 	case e1000_82576:
902 	case e1000_82580:
903 	case e1000_i350:
904 	case e1000_i354:
905 	case e1000_i210:
906 	case e1000_i211:
907 		/* Turn on MSI-X capability first, or our settings
908 		 * won't stick.  And it will take days to debug.
909 		 */
910 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
911 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
912 		     E1000_GPIE_NSICR);
913 
914 		/* enable msix_other interrupt */
915 		adapter->eims_other = BIT(vector);
916 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
917 
918 		wr32(E1000_IVAR_MISC, tmp);
919 		break;
920 	default:
921 		/* do nothing, since nothing else supports MSI-X */
922 		break;
923 	} /* switch (hw->mac.type) */
924 
925 	adapter->eims_enable_mask |= adapter->eims_other;
926 
927 	for (i = 0; i < adapter->num_q_vectors; i++)
928 		igb_assign_vector(adapter->q_vector[i], vector++);
929 
930 	wrfl();
931 }
932 
933 /**
934  *  igb_request_msix - Initialize MSI-X interrupts
935  *  @adapter: board private structure to initialize
936  *
937  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
938  *  kernel.
939  **/
940 static int igb_request_msix(struct igb_adapter *adapter)
941 {
942 	struct net_device *netdev = adapter->netdev;
943 	int i, err = 0, vector = 0, free_vector = 0;
944 
945 	err = request_irq(adapter->msix_entries[vector].vector,
946 			  igb_msix_other, 0, netdev->name, adapter);
947 	if (err)
948 		goto err_out;
949 
950 	for (i = 0; i < adapter->num_q_vectors; i++) {
951 		struct igb_q_vector *q_vector = adapter->q_vector[i];
952 
953 		vector++;
954 
955 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
956 
957 		if (q_vector->rx.ring && q_vector->tx.ring)
958 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
959 				q_vector->rx.ring->queue_index);
960 		else if (q_vector->tx.ring)
961 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
962 				q_vector->tx.ring->queue_index);
963 		else if (q_vector->rx.ring)
964 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
965 				q_vector->rx.ring->queue_index);
966 		else
967 			sprintf(q_vector->name, "%s-unused", netdev->name);
968 
969 		err = request_irq(adapter->msix_entries[vector].vector,
970 				  igb_msix_ring, 0, q_vector->name,
971 				  q_vector);
972 		if (err)
973 			goto err_free;
974 	}
975 
976 	igb_configure_msix(adapter);
977 	return 0;
978 
979 err_free:
980 	/* free already assigned IRQs */
981 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
982 
983 	vector--;
984 	for (i = 0; i < vector; i++) {
985 		free_irq(adapter->msix_entries[free_vector++].vector,
986 			 adapter->q_vector[i]);
987 	}
988 err_out:
989 	return err;
990 }
991 
992 /**
993  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
994  *  @adapter: board private structure to initialize
995  *  @v_idx: Index of vector to be freed
996  *
997  *  This function frees the memory allocated to the q_vector.
998  **/
999 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1000 {
1001 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002 
1003 	adapter->q_vector[v_idx] = NULL;
1004 
1005 	/* igb_get_stats64() might access the rings on this vector,
1006 	 * we must wait a grace period before freeing it.
1007 	 */
1008 	if (q_vector)
1009 		kfree_rcu(q_vector, rcu);
1010 }
1011 
1012 /**
1013  *  igb_reset_q_vector - Reset config for interrupt vector
1014  *  @adapter: board private structure to initialize
1015  *  @v_idx: Index of vector to be reset
1016  *
1017  *  If NAPI is enabled it will delete any references to the
1018  *  NAPI struct. This is preparation for igb_free_q_vector.
1019  **/
1020 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1021 {
1022 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1023 
1024 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1025 	 * allocated. So, q_vector is NULL so we should stop here.
1026 	 */
1027 	if (!q_vector)
1028 		return;
1029 
1030 	if (q_vector->tx.ring)
1031 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1032 
1033 	if (q_vector->rx.ring)
1034 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1035 
1036 	netif_napi_del(&q_vector->napi);
1037 
1038 }
1039 
1040 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1041 {
1042 	int v_idx = adapter->num_q_vectors;
1043 
1044 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1045 		pci_disable_msix(adapter->pdev);
1046 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1047 		pci_disable_msi(adapter->pdev);
1048 
1049 	while (v_idx--)
1050 		igb_reset_q_vector(adapter, v_idx);
1051 }
1052 
1053 /**
1054  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1055  *  @adapter: board private structure to initialize
1056  *
1057  *  This function frees the memory allocated to the q_vectors.  In addition if
1058  *  NAPI is enabled it will delete any references to the NAPI struct prior
1059  *  to freeing the q_vector.
1060  **/
1061 static void igb_free_q_vectors(struct igb_adapter *adapter)
1062 {
1063 	int v_idx = adapter->num_q_vectors;
1064 
1065 	adapter->num_tx_queues = 0;
1066 	adapter->num_rx_queues = 0;
1067 	adapter->num_q_vectors = 0;
1068 
1069 	while (v_idx--) {
1070 		igb_reset_q_vector(adapter, v_idx);
1071 		igb_free_q_vector(adapter, v_idx);
1072 	}
1073 }
1074 
1075 /**
1076  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1077  *  @adapter: board private structure to initialize
1078  *
1079  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1080  *  MSI-X interrupts allocated.
1081  */
1082 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1083 {
1084 	igb_free_q_vectors(adapter);
1085 	igb_reset_interrupt_capability(adapter);
1086 }
1087 
1088 /**
1089  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1090  *  @adapter: board private structure to initialize
1091  *  @msix: boolean value of MSIX capability
1092  *
1093  *  Attempt to configure interrupts using the best available
1094  *  capabilities of the hardware and kernel.
1095  **/
1096 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1097 {
1098 	int err;
1099 	int numvecs, i;
1100 
1101 	if (!msix)
1102 		goto msi_only;
1103 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1104 
1105 	/* Number of supported queues. */
1106 	adapter->num_rx_queues = adapter->rss_queues;
1107 	if (adapter->vfs_allocated_count)
1108 		adapter->num_tx_queues = 1;
1109 	else
1110 		adapter->num_tx_queues = adapter->rss_queues;
1111 
1112 	/* start with one vector for every Rx queue */
1113 	numvecs = adapter->num_rx_queues;
1114 
1115 	/* if Tx handler is separate add 1 for every Tx queue */
1116 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1117 		numvecs += adapter->num_tx_queues;
1118 
1119 	/* store the number of vectors reserved for queues */
1120 	adapter->num_q_vectors = numvecs;
1121 
1122 	/* add 1 vector for link status interrupts */
1123 	numvecs++;
1124 	for (i = 0; i < numvecs; i++)
1125 		adapter->msix_entries[i].entry = i;
1126 
1127 	err = pci_enable_msix_range(adapter->pdev,
1128 				    adapter->msix_entries,
1129 				    numvecs,
1130 				    numvecs);
1131 	if (err > 0)
1132 		return;
1133 
1134 	igb_reset_interrupt_capability(adapter);
1135 
1136 	/* If we can't do MSI-X, try MSI */
1137 msi_only:
1138 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1139 #ifdef CONFIG_PCI_IOV
1140 	/* disable SR-IOV for non MSI-X configurations */
1141 	if (adapter->vf_data) {
1142 		struct e1000_hw *hw = &adapter->hw;
1143 		/* disable iov and allow time for transactions to clear */
1144 		pci_disable_sriov(adapter->pdev);
1145 		msleep(500);
1146 
1147 		kfree(adapter->vf_mac_list);
1148 		adapter->vf_mac_list = NULL;
1149 		kfree(adapter->vf_data);
1150 		adapter->vf_data = NULL;
1151 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1152 		wrfl();
1153 		msleep(100);
1154 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1155 	}
1156 #endif
1157 	adapter->vfs_allocated_count = 0;
1158 	adapter->rss_queues = 1;
1159 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1160 	adapter->num_rx_queues = 1;
1161 	adapter->num_tx_queues = 1;
1162 	adapter->num_q_vectors = 1;
1163 	if (!pci_enable_msi(adapter->pdev))
1164 		adapter->flags |= IGB_FLAG_HAS_MSI;
1165 }
1166 
1167 static void igb_add_ring(struct igb_ring *ring,
1168 			 struct igb_ring_container *head)
1169 {
1170 	head->ring = ring;
1171 	head->count++;
1172 }
1173 
1174 /**
1175  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1176  *  @adapter: board private structure to initialize
1177  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1178  *  @v_idx: index of vector in adapter struct
1179  *  @txr_count: total number of Tx rings to allocate
1180  *  @txr_idx: index of first Tx ring to allocate
1181  *  @rxr_count: total number of Rx rings to allocate
1182  *  @rxr_idx: index of first Rx ring to allocate
1183  *
1184  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1185  **/
1186 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1187 			      int v_count, int v_idx,
1188 			      int txr_count, int txr_idx,
1189 			      int rxr_count, int rxr_idx)
1190 {
1191 	struct igb_q_vector *q_vector;
1192 	struct igb_ring *ring;
1193 	int ring_count;
1194 	size_t size;
1195 
1196 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1197 	if (txr_count > 1 || rxr_count > 1)
1198 		return -ENOMEM;
1199 
1200 	ring_count = txr_count + rxr_count;
1201 	size = struct_size(q_vector, ring, ring_count);
1202 
1203 	/* allocate q_vector and rings */
1204 	q_vector = adapter->q_vector[v_idx];
1205 	if (!q_vector) {
1206 		q_vector = kzalloc(size, GFP_KERNEL);
1207 	} else if (size > ksize(q_vector)) {
1208 		kfree_rcu(q_vector, rcu);
1209 		q_vector = kzalloc(size, GFP_KERNEL);
1210 	} else {
1211 		memset(q_vector, 0, size);
1212 	}
1213 	if (!q_vector)
1214 		return -ENOMEM;
1215 
1216 	/* initialize NAPI */
1217 	netif_napi_add(adapter->netdev, &q_vector->napi,
1218 		       igb_poll, 64);
1219 
1220 	/* tie q_vector and adapter together */
1221 	adapter->q_vector[v_idx] = q_vector;
1222 	q_vector->adapter = adapter;
1223 
1224 	/* initialize work limits */
1225 	q_vector->tx.work_limit = adapter->tx_work_limit;
1226 
1227 	/* initialize ITR configuration */
1228 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 	q_vector->itr_val = IGB_START_ITR;
1230 
1231 	/* initialize pointer to rings */
1232 	ring = q_vector->ring;
1233 
1234 	/* intialize ITR */
1235 	if (rxr_count) {
1236 		/* rx or rx/tx vector */
1237 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 			q_vector->itr_val = adapter->rx_itr_setting;
1239 	} else {
1240 		/* tx only vector */
1241 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 			q_vector->itr_val = adapter->tx_itr_setting;
1243 	}
1244 
1245 	if (txr_count) {
1246 		/* assign generic ring traits */
1247 		ring->dev = &adapter->pdev->dev;
1248 		ring->netdev = adapter->netdev;
1249 
1250 		/* configure backlink on ring */
1251 		ring->q_vector = q_vector;
1252 
1253 		/* update q_vector Tx values */
1254 		igb_add_ring(ring, &q_vector->tx);
1255 
1256 		/* For 82575, context index must be unique per ring. */
1257 		if (adapter->hw.mac.type == e1000_82575)
1258 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259 
1260 		/* apply Tx specific ring traits */
1261 		ring->count = adapter->tx_ring_count;
1262 		ring->queue_index = txr_idx;
1263 
1264 		ring->cbs_enable = false;
1265 		ring->idleslope = 0;
1266 		ring->sendslope = 0;
1267 		ring->hicredit = 0;
1268 		ring->locredit = 0;
1269 
1270 		u64_stats_init(&ring->tx_syncp);
1271 		u64_stats_init(&ring->tx_syncp2);
1272 
1273 		/* assign ring to adapter */
1274 		adapter->tx_ring[txr_idx] = ring;
1275 
1276 		/* push pointer to next ring */
1277 		ring++;
1278 	}
1279 
1280 	if (rxr_count) {
1281 		/* assign generic ring traits */
1282 		ring->dev = &adapter->pdev->dev;
1283 		ring->netdev = adapter->netdev;
1284 
1285 		/* configure backlink on ring */
1286 		ring->q_vector = q_vector;
1287 
1288 		/* update q_vector Rx values */
1289 		igb_add_ring(ring, &q_vector->rx);
1290 
1291 		/* set flag indicating ring supports SCTP checksum offload */
1292 		if (adapter->hw.mac.type >= e1000_82576)
1293 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294 
1295 		/* On i350, i354, i210, and i211, loopback VLAN packets
1296 		 * have the tag byte-swapped.
1297 		 */
1298 		if (adapter->hw.mac.type >= e1000_i350)
1299 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300 
1301 		/* apply Rx specific ring traits */
1302 		ring->count = adapter->rx_ring_count;
1303 		ring->queue_index = rxr_idx;
1304 
1305 		u64_stats_init(&ring->rx_syncp);
1306 
1307 		/* assign ring to adapter */
1308 		adapter->rx_ring[rxr_idx] = ring;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 
1315 /**
1316  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317  *  @adapter: board private structure to initialize
1318  *
1319  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1320  *  return -ENOMEM.
1321  **/
1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 {
1324 	int q_vectors = adapter->num_q_vectors;
1325 	int rxr_remaining = adapter->num_rx_queues;
1326 	int txr_remaining = adapter->num_tx_queues;
1327 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 	int err;
1329 
1330 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 		for (; rxr_remaining; v_idx++) {
1332 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333 						 0, 0, 1, rxr_idx);
1334 
1335 			if (err)
1336 				goto err_out;
1337 
1338 			/* update counts and index */
1339 			rxr_remaining--;
1340 			rxr_idx++;
1341 		}
1342 	}
1343 
1344 	for (; v_idx < q_vectors; v_idx++) {
1345 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347 
1348 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 					 tqpv, txr_idx, rqpv, rxr_idx);
1350 
1351 		if (err)
1352 			goto err_out;
1353 
1354 		/* update counts and index */
1355 		rxr_remaining -= rqpv;
1356 		txr_remaining -= tqpv;
1357 		rxr_idx++;
1358 		txr_idx++;
1359 	}
1360 
1361 	return 0;
1362 
1363 err_out:
1364 	adapter->num_tx_queues = 0;
1365 	adapter->num_rx_queues = 0;
1366 	adapter->num_q_vectors = 0;
1367 
1368 	while (v_idx--)
1369 		igb_free_q_vector(adapter, v_idx);
1370 
1371 	return -ENOMEM;
1372 }
1373 
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 	struct pci_dev *pdev = adapter->pdev;
1384 	int err;
1385 
1386 	igb_set_interrupt_capability(adapter, msix);
1387 
1388 	err = igb_alloc_q_vectors(adapter);
1389 	if (err) {
1390 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 		goto err_alloc_q_vectors;
1392 	}
1393 
1394 	igb_cache_ring_register(adapter);
1395 
1396 	return 0;
1397 
1398 err_alloc_q_vectors:
1399 	igb_reset_interrupt_capability(adapter);
1400 	return err;
1401 }
1402 
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 	struct net_device *netdev = adapter->netdev;
1413 	struct pci_dev *pdev = adapter->pdev;
1414 	int err = 0;
1415 
1416 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 		err = igb_request_msix(adapter);
1418 		if (!err)
1419 			goto request_done;
1420 		/* fall back to MSI */
1421 		igb_free_all_tx_resources(adapter);
1422 		igb_free_all_rx_resources(adapter);
1423 
1424 		igb_clear_interrupt_scheme(adapter);
1425 		err = igb_init_interrupt_scheme(adapter, false);
1426 		if (err)
1427 			goto request_done;
1428 
1429 		igb_setup_all_tx_resources(adapter);
1430 		igb_setup_all_rx_resources(adapter);
1431 		igb_configure(adapter);
1432 	}
1433 
1434 	igb_assign_vector(adapter->q_vector[0], 0);
1435 
1436 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 				  netdev->name, adapter);
1439 		if (!err)
1440 			goto request_done;
1441 
1442 		/* fall back to legacy interrupts */
1443 		igb_reset_interrupt_capability(adapter);
1444 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 	}
1446 
1447 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 			  netdev->name, adapter);
1449 
1450 	if (err)
1451 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 			err);
1453 
1454 request_done:
1455 	return err;
1456 }
1457 
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 		int vector = 0, i;
1462 
1463 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1464 
1465 		for (i = 0; i < adapter->num_q_vectors; i++)
1466 			free_irq(adapter->msix_entries[vector++].vector,
1467 				 adapter->q_vector[i]);
1468 	} else {
1469 		free_irq(adapter->pdev->irq, adapter);
1470 	}
1471 }
1472 
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 
1481 	/* we need to be careful when disabling interrupts.  The VFs are also
1482 	 * mapped into these registers and so clearing the bits can cause
1483 	 * issues on the VF drivers so we only need to clear what we set
1484 	 */
1485 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 		u32 regval = rd32(E1000_EIAM);
1487 
1488 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 		regval = rd32(E1000_EIAC);
1491 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 	}
1493 
1494 	wr32(E1000_IAM, 0);
1495 	wr32(E1000_IMC, ~0);
1496 	wrfl();
1497 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 		int i;
1499 
1500 		for (i = 0; i < adapter->num_q_vectors; i++)
1501 			synchronize_irq(adapter->msix_entries[i].vector);
1502 	} else {
1503 		synchronize_irq(adapter->pdev->irq);
1504 	}
1505 }
1506 
1507 /**
1508  *  igb_irq_enable - Enable default interrupt generation settings
1509  *  @adapter: board private structure
1510  **/
1511 static void igb_irq_enable(struct igb_adapter *adapter)
1512 {
1513 	struct e1000_hw *hw = &adapter->hw;
1514 
1515 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 		u32 regval = rd32(E1000_EIAC);
1518 
1519 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 		regval = rd32(E1000_EIAM);
1521 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 		if (adapter->vfs_allocated_count) {
1524 			wr32(E1000_MBVFIMR, 0xFF);
1525 			ims |= E1000_IMS_VMMB;
1526 		}
1527 		wr32(E1000_IMS, ims);
1528 	} else {
1529 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 				E1000_IMS_DRSTA);
1533 	}
1534 }
1535 
1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 {
1538 	struct e1000_hw *hw = &adapter->hw;
1539 	u16 pf_id = adapter->vfs_allocated_count;
1540 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 	u16 old_vid = adapter->mng_vlan_id;
1542 
1543 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 		/* add VID to filter table */
1545 		igb_vfta_set(hw, vid, pf_id, true, true);
1546 		adapter->mng_vlan_id = vid;
1547 	} else {
1548 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 	}
1550 
1551 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 	    (vid != old_vid) &&
1553 	    !test_bit(old_vid, adapter->active_vlans)) {
1554 		/* remove VID from filter table */
1555 		igb_vfta_set(hw, vid, pf_id, false, true);
1556 	}
1557 }
1558 
1559 /**
1560  *  igb_release_hw_control - release control of the h/w to f/w
1561  *  @adapter: address of board private structure
1562  *
1563  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564  *  For ASF and Pass Through versions of f/w this means that the
1565  *  driver is no longer loaded.
1566  **/
1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 {
1569 	struct e1000_hw *hw = &adapter->hw;
1570 	u32 ctrl_ext;
1571 
1572 	/* Let firmware take over control of h/w */
1573 	ctrl_ext = rd32(E1000_CTRL_EXT);
1574 	wr32(E1000_CTRL_EXT,
1575 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576 }
1577 
1578 /**
1579  *  igb_get_hw_control - get control of the h/w from f/w
1580  *  @adapter: address of board private structure
1581  *
1582  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583  *  For ASF and Pass Through versions of f/w this means that
1584  *  the driver is loaded.
1585  **/
1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 {
1588 	struct e1000_hw *hw = &adapter->hw;
1589 	u32 ctrl_ext;
1590 
1591 	/* Let firmware know the driver has taken over */
1592 	ctrl_ext = rd32(E1000_CTRL_EXT);
1593 	wr32(E1000_CTRL_EXT,
1594 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595 }
1596 
1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 {
1599 	struct net_device *netdev = adapter->netdev;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 
1602 	WARN_ON(hw->mac.type != e1000_i210);
1603 
1604 	if (enable)
1605 		adapter->flags |= IGB_FLAG_FQTSS;
1606 	else
1607 		adapter->flags &= ~IGB_FLAG_FQTSS;
1608 
1609 	if (netif_running(netdev))
1610 		schedule_work(&adapter->reset_task);
1611 }
1612 
1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 {
1615 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616 }
1617 
1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 				   enum tx_queue_prio prio)
1620 {
1621 	u32 val;
1622 
1623 	WARN_ON(hw->mac.type != e1000_i210);
1624 	WARN_ON(queue < 0 || queue > 4);
1625 
1626 	val = rd32(E1000_I210_TXDCTL(queue));
1627 
1628 	if (prio == TX_QUEUE_PRIO_HIGH)
1629 		val |= E1000_TXDCTL_PRIORITY;
1630 	else
1631 		val &= ~E1000_TXDCTL_PRIORITY;
1632 
1633 	wr32(E1000_I210_TXDCTL(queue), val);
1634 }
1635 
1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637 {
1638 	u32 val;
1639 
1640 	WARN_ON(hw->mac.type != e1000_i210);
1641 	WARN_ON(queue < 0 || queue > 1);
1642 
1643 	val = rd32(E1000_I210_TQAVCC(queue));
1644 
1645 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 		val |= E1000_TQAVCC_QUEUEMODE;
1647 	else
1648 		val &= ~E1000_TQAVCC_QUEUEMODE;
1649 
1650 	wr32(E1000_I210_TQAVCC(queue), val);
1651 }
1652 
1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654 {
1655 	int i;
1656 
1657 	for (i = 0; i < adapter->num_tx_queues; i++) {
1658 		if (adapter->tx_ring[i]->cbs_enable)
1659 			return true;
1660 	}
1661 
1662 	return false;
1663 }
1664 
1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666 {
1667 	int i;
1668 
1669 	for (i = 0; i < adapter->num_tx_queues; i++) {
1670 		if (adapter->tx_ring[i]->launchtime_enable)
1671 			return true;
1672 	}
1673 
1674 	return false;
1675 }
1676 
1677 /**
1678  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679  *  @adapter: pointer to adapter struct
1680  *  @queue: queue number
1681  *
1682  *  Configure CBS and Launchtime for a given hardware queue.
1683  *  Parameters are retrieved from the correct Tx ring, so
1684  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1685  *  for setting those correctly prior to this function being called.
1686  **/
1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 {
1689 	struct igb_ring *ring = adapter->tx_ring[queue];
1690 	struct net_device *netdev = adapter->netdev;
1691 	struct e1000_hw *hw = &adapter->hw;
1692 	u32 tqavcc, tqavctrl;
1693 	u16 value;
1694 
1695 	WARN_ON(hw->mac.type != e1000_i210);
1696 	WARN_ON(queue < 0 || queue > 1);
1697 
1698 	/* If any of the Qav features is enabled, configure queues as SR and
1699 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1700 	 * as SP.
1701 	 */
1702 	if (ring->cbs_enable || ring->launchtime_enable) {
1703 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1704 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1705 	} else {
1706 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1707 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1708 	}
1709 
1710 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1711 	if (ring->cbs_enable || queue == 0) {
1712 		/* i210 does not allow the queue 0 to be in the Strict
1713 		 * Priority mode while the Qav mode is enabled, so,
1714 		 * instead of disabling strict priority mode, we give
1715 		 * queue 0 the maximum of credits possible.
1716 		 *
1717 		 * See section 8.12.19 of the i210 datasheet, "Note:
1718 		 * Queue0 QueueMode must be set to 1b when
1719 		 * TransmitMode is set to Qav."
1720 		 */
1721 		if (queue == 0 && !ring->cbs_enable) {
1722 			/* max "linkspeed" idleslope in kbps */
1723 			ring->idleslope = 1000000;
1724 			ring->hicredit = ETH_FRAME_LEN;
1725 		}
1726 
1727 		/* Always set data transfer arbitration to credit-based
1728 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1729 		 * the queues.
1730 		 */
1731 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1732 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1733 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1734 
1735 		/* According to i210 datasheet section 7.2.7.7, we should set
1736 		 * the 'idleSlope' field from TQAVCC register following the
1737 		 * equation:
1738 		 *
1739 		 * For 100 Mbps link speed:
1740 		 *
1741 		 *     value = BW * 0x7735 * 0.2                          (E1)
1742 		 *
1743 		 * For 1000Mbps link speed:
1744 		 *
1745 		 *     value = BW * 0x7735 * 2                            (E2)
1746 		 *
1747 		 * E1 and E2 can be merged into one equation as shown below.
1748 		 * Note that 'link-speed' is in Mbps.
1749 		 *
1750 		 *     value = BW * 0x7735 * 2 * link-speed
1751 		 *                           --------------               (E3)
1752 		 *                                1000
1753 		 *
1754 		 * 'BW' is the percentage bandwidth out of full link speed
1755 		 * which can be found with the following equation. Note that
1756 		 * idleSlope here is the parameter from this function which
1757 		 * is in kbps.
1758 		 *
1759 		 *     BW =     idleSlope
1760 		 *          -----------------                             (E4)
1761 		 *          link-speed * 1000
1762 		 *
1763 		 * That said, we can come up with a generic equation to
1764 		 * calculate the value we should set it TQAVCC register by
1765 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1766 		 *
1767 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1768 		 *         -----------------            --------------    (E5)
1769 		 *         link-speed * 1000                 1000
1770 		 *
1771 		 * 'link-speed' is present in both sides of the fraction so
1772 		 * it is canceled out. The final equation is the following:
1773 		 *
1774 		 *     value = idleSlope * 61034
1775 		 *             -----------------                          (E6)
1776 		 *                  1000000
1777 		 *
1778 		 * NOTE: For i210, given the above, we can see that idleslope
1779 		 *       is represented in 16.38431 kbps units by the value at
1780 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1781 		 *       the granularity for idleslope increments.
1782 		 *       For instance, if you want to configure a 2576kbps
1783 		 *       idleslope, the value to be written on the register
1784 		 *       would have to be 157.23. If rounded down, you end
1785 		 *       up with less bandwidth available than originally
1786 		 *       required (~2572 kbps). If rounded up, you end up
1787 		 *       with a higher bandwidth (~2589 kbps). Below the
1788 		 *       approach we take is to always round up the
1789 		 *       calculated value, so the resulting bandwidth might
1790 		 *       be slightly higher for some configurations.
1791 		 */
1792 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1793 
1794 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1795 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1796 		tqavcc |= value;
1797 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798 
1799 		wr32(E1000_I210_TQAVHC(queue),
1800 		     0x80000000 + ring->hicredit * 0x7735);
1801 	} else {
1802 
1803 		/* Set idleSlope to zero. */
1804 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1805 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1806 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1807 
1808 		/* Set hiCredit to zero. */
1809 		wr32(E1000_I210_TQAVHC(queue), 0);
1810 
1811 		/* If CBS is not enabled for any queues anymore, then return to
1812 		 * the default state of Data Transmission Arbitration on
1813 		 * TQAVCTRL.
1814 		 */
1815 		if (!is_any_cbs_enabled(adapter)) {
1816 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1818 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1819 		}
1820 	}
1821 
1822 	/* If LaunchTime is enabled, set DataTranTIM. */
1823 	if (ring->launchtime_enable) {
1824 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1825 		 * for any of the SR queues, and configure fetchtime delta.
1826 		 * XXX NOTE:
1827 		 *     - LaunchTime will be enabled for all SR queues.
1828 		 *     - A fixed offset can be added relative to the launch
1829 		 *       time of all packets if configured at reg LAUNCH_OS0.
1830 		 *       We are keeping it as 0 for now (default value).
1831 		 */
1832 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1833 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1834 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1835 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1836 	} else {
1837 		/* If Launchtime is not enabled for any SR queues anymore,
1838 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1839 		 * effectively disabling Launchtime.
1840 		 */
1841 		if (!is_any_txtime_enabled(adapter)) {
1842 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1843 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1844 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1845 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1846 		}
1847 	}
1848 
1849 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1850 	 * CBS are not configurable by software so we don't do any 'controller
1851 	 * configuration' in respect to these parameters.
1852 	 */
1853 
1854 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1855 		   ring->cbs_enable ? "enabled" : "disabled",
1856 		   ring->launchtime_enable ? "enabled" : "disabled",
1857 		   queue,
1858 		   ring->idleslope, ring->sendslope,
1859 		   ring->hicredit, ring->locredit);
1860 }
1861 
1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863 				  bool enable)
1864 {
1865 	struct igb_ring *ring;
1866 
1867 	if (queue < 0 || queue > adapter->num_tx_queues)
1868 		return -EINVAL;
1869 
1870 	ring = adapter->tx_ring[queue];
1871 	ring->launchtime_enable = enable;
1872 
1873 	return 0;
1874 }
1875 
1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877 			       bool enable, int idleslope, int sendslope,
1878 			       int hicredit, int locredit)
1879 {
1880 	struct igb_ring *ring;
1881 
1882 	if (queue < 0 || queue > adapter->num_tx_queues)
1883 		return -EINVAL;
1884 
1885 	ring = adapter->tx_ring[queue];
1886 
1887 	ring->cbs_enable = enable;
1888 	ring->idleslope = idleslope;
1889 	ring->sendslope = sendslope;
1890 	ring->hicredit = hicredit;
1891 	ring->locredit = locredit;
1892 
1893 	return 0;
1894 }
1895 
1896 /**
1897  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898  *  @adapter: pointer to adapter struct
1899  *
1900  *  Configure TQAVCTRL register switching the controller's Tx mode
1901  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1902  *  a call to igb_config_tx_modes() per queue so any previously saved
1903  *  Tx parameters are applied.
1904  **/
1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907 	struct net_device *netdev = adapter->netdev;
1908 	struct e1000_hw *hw = &adapter->hw;
1909 	u32 val;
1910 
1911 	/* Only i210 controller supports changing the transmission mode. */
1912 	if (hw->mac.type != e1000_i210)
1913 		return;
1914 
1915 	if (is_fqtss_enabled(adapter)) {
1916 		int i, max_queue;
1917 
1918 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920 		 * so SP queues wait for SR ones.
1921 		 */
1922 		val = rd32(E1000_I210_TQAVCTRL);
1923 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925 		wr32(E1000_I210_TQAVCTRL, val);
1926 
1927 		/* Configure Tx and Rx packet buffers sizes as described in
1928 		 * i210 datasheet section 7.2.7.7.
1929 		 */
1930 		val = rd32(E1000_TXPBS);
1931 		val &= ~I210_TXPBSIZE_MASK;
1932 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1933 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1934 		wr32(E1000_TXPBS, val);
1935 
1936 		val = rd32(E1000_RXPBS);
1937 		val &= ~I210_RXPBSIZE_MASK;
1938 		val |= I210_RXPBSIZE_PB_30KB;
1939 		wr32(E1000_RXPBS, val);
1940 
1941 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942 		 * register should not exceed the buffer size programmed in
1943 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945 		 * 4kB / 64.
1946 		 *
1947 		 * However, when we do so, no frame from queue 2 and 3 are
1948 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1949 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1950 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 		 */
1952 		val = (4096 - 1) / 64;
1953 		wr32(E1000_I210_DTXMXPKTSZ, val);
1954 
1955 		/* Since FQTSS mode is enabled, apply any CBS configuration
1956 		 * previously set. If no previous CBS configuration has been
1957 		 * done, then the initial configuration is applied, which means
1958 		 * CBS is disabled.
1959 		 */
1960 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962 
1963 		for (i = 0; i < max_queue; i++) {
1964 			igb_config_tx_modes(adapter, i);
1965 		}
1966 	} else {
1967 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970 
1971 		val = rd32(E1000_I210_TQAVCTRL);
1972 		/* According to Section 8.12.21, the other flags we've set when
1973 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1974 		 * don't set they here.
1975 		 */
1976 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977 		wr32(E1000_I210_TQAVCTRL, val);
1978 	}
1979 
1980 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981 		   "enabled" : "disabled");
1982 }
1983 
1984 /**
1985  *  igb_configure - configure the hardware for RX and TX
1986  *  @adapter: private board structure
1987  **/
1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990 	struct net_device *netdev = adapter->netdev;
1991 	int i;
1992 
1993 	igb_get_hw_control(adapter);
1994 	igb_set_rx_mode(netdev);
1995 	igb_setup_tx_mode(adapter);
1996 
1997 	igb_restore_vlan(adapter);
1998 
1999 	igb_setup_tctl(adapter);
2000 	igb_setup_mrqc(adapter);
2001 	igb_setup_rctl(adapter);
2002 
2003 	igb_nfc_filter_restore(adapter);
2004 	igb_configure_tx(adapter);
2005 	igb_configure_rx(adapter);
2006 
2007 	igb_rx_fifo_flush_82575(&adapter->hw);
2008 
2009 	/* call igb_desc_unused which always leaves
2010 	 * at least 1 descriptor unused to make sure
2011 	 * next_to_use != next_to_clean
2012 	 */
2013 	for (i = 0; i < adapter->num_rx_queues; i++) {
2014 		struct igb_ring *ring = adapter->rx_ring[i];
2015 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016 	}
2017 }
2018 
2019 /**
2020  *  igb_power_up_link - Power up the phy/serdes link
2021  *  @adapter: address of board private structure
2022  **/
2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025 	igb_reset_phy(&adapter->hw);
2026 
2027 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028 		igb_power_up_phy_copper(&adapter->hw);
2029 	else
2030 		igb_power_up_serdes_link_82575(&adapter->hw);
2031 
2032 	igb_setup_link(&adapter->hw);
2033 }
2034 
2035 /**
2036  *  igb_power_down_link - Power down the phy/serdes link
2037  *  @adapter: address of board private structure
2038  */
2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042 		igb_power_down_phy_copper_82575(&adapter->hw);
2043 	else
2044 		igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046 
2047 /**
2048  * Detect and switch function for Media Auto Sense
2049  * @adapter: address of the board private structure
2050  **/
2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053 	struct e1000_hw *hw = &adapter->hw;
2054 	u32 ctrl_ext, connsw;
2055 	bool swap_now = false;
2056 
2057 	ctrl_ext = rd32(E1000_CTRL_EXT);
2058 	connsw = rd32(E1000_CONNSW);
2059 
2060 	/* need to live swap if current media is copper and we have fiber/serdes
2061 	 * to go to.
2062 	 */
2063 
2064 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2065 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 		swap_now = true;
2067 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
2068 		/* copper signal takes time to appear */
2069 		if (adapter->copper_tries < 4) {
2070 			adapter->copper_tries++;
2071 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2072 			wr32(E1000_CONNSW, connsw);
2073 			return;
2074 		} else {
2075 			adapter->copper_tries = 0;
2076 			if ((connsw & E1000_CONNSW_PHYSD) &&
2077 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2078 				swap_now = true;
2079 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2080 				wr32(E1000_CONNSW, connsw);
2081 			}
2082 		}
2083 	}
2084 
2085 	if (!swap_now)
2086 		return;
2087 
2088 	switch (hw->phy.media_type) {
2089 	case e1000_media_type_copper:
2090 		netdev_info(adapter->netdev,
2091 			"MAS: changing media to fiber/serdes\n");
2092 		ctrl_ext |=
2093 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2094 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2095 		adapter->copper_tries = 0;
2096 		break;
2097 	case e1000_media_type_internal_serdes:
2098 	case e1000_media_type_fiber:
2099 		netdev_info(adapter->netdev,
2100 			"MAS: changing media to copper\n");
2101 		ctrl_ext &=
2102 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2103 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2104 		break;
2105 	default:
2106 		/* shouldn't get here during regular operation */
2107 		netdev_err(adapter->netdev,
2108 			"AMS: Invalid media type found, returning\n");
2109 		break;
2110 	}
2111 	wr32(E1000_CTRL_EXT, ctrl_ext);
2112 }
2113 
2114 /**
2115  *  igb_up - Open the interface and prepare it to handle traffic
2116  *  @adapter: board private structure
2117  **/
2118 int igb_up(struct igb_adapter *adapter)
2119 {
2120 	struct e1000_hw *hw = &adapter->hw;
2121 	int i;
2122 
2123 	/* hardware has been reset, we need to reload some things */
2124 	igb_configure(adapter);
2125 
2126 	clear_bit(__IGB_DOWN, &adapter->state);
2127 
2128 	for (i = 0; i < adapter->num_q_vectors; i++)
2129 		napi_enable(&(adapter->q_vector[i]->napi));
2130 
2131 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2132 		igb_configure_msix(adapter);
2133 	else
2134 		igb_assign_vector(adapter->q_vector[0], 0);
2135 
2136 	/* Clear any pending interrupts. */
2137 	rd32(E1000_TSICR);
2138 	rd32(E1000_ICR);
2139 	igb_irq_enable(adapter);
2140 
2141 	/* notify VFs that reset has been completed */
2142 	if (adapter->vfs_allocated_count) {
2143 		u32 reg_data = rd32(E1000_CTRL_EXT);
2144 
2145 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2146 		wr32(E1000_CTRL_EXT, reg_data);
2147 	}
2148 
2149 	netif_tx_start_all_queues(adapter->netdev);
2150 
2151 	/* start the watchdog. */
2152 	hw->mac.get_link_status = 1;
2153 	schedule_work(&adapter->watchdog_task);
2154 
2155 	if ((adapter->flags & IGB_FLAG_EEE) &&
2156 	    (!hw->dev_spec._82575.eee_disable))
2157 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2158 
2159 	return 0;
2160 }
2161 
2162 void igb_down(struct igb_adapter *adapter)
2163 {
2164 	struct net_device *netdev = adapter->netdev;
2165 	struct e1000_hw *hw = &adapter->hw;
2166 	u32 tctl, rctl;
2167 	int i;
2168 
2169 	/* signal that we're down so the interrupt handler does not
2170 	 * reschedule our watchdog timer
2171 	 */
2172 	set_bit(__IGB_DOWN, &adapter->state);
2173 
2174 	/* disable receives in the hardware */
2175 	rctl = rd32(E1000_RCTL);
2176 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2177 	/* flush and sleep below */
2178 
2179 	igb_nfc_filter_exit(adapter);
2180 
2181 	netif_carrier_off(netdev);
2182 	netif_tx_stop_all_queues(netdev);
2183 
2184 	/* disable transmits in the hardware */
2185 	tctl = rd32(E1000_TCTL);
2186 	tctl &= ~E1000_TCTL_EN;
2187 	wr32(E1000_TCTL, tctl);
2188 	/* flush both disables and wait for them to finish */
2189 	wrfl();
2190 	usleep_range(10000, 11000);
2191 
2192 	igb_irq_disable(adapter);
2193 
2194 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2195 
2196 	for (i = 0; i < adapter->num_q_vectors; i++) {
2197 		if (adapter->q_vector[i]) {
2198 			napi_synchronize(&adapter->q_vector[i]->napi);
2199 			napi_disable(&adapter->q_vector[i]->napi);
2200 		}
2201 	}
2202 
2203 	del_timer_sync(&adapter->watchdog_timer);
2204 	del_timer_sync(&adapter->phy_info_timer);
2205 
2206 	/* record the stats before reset*/
2207 	spin_lock(&adapter->stats64_lock);
2208 	igb_update_stats(adapter);
2209 	spin_unlock(&adapter->stats64_lock);
2210 
2211 	adapter->link_speed = 0;
2212 	adapter->link_duplex = 0;
2213 
2214 	if (!pci_channel_offline(adapter->pdev))
2215 		igb_reset(adapter);
2216 
2217 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2218 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2219 
2220 	igb_clean_all_tx_rings(adapter);
2221 	igb_clean_all_rx_rings(adapter);
2222 #ifdef CONFIG_IGB_DCA
2223 
2224 	/* since we reset the hardware DCA settings were cleared */
2225 	igb_setup_dca(adapter);
2226 #endif
2227 }
2228 
2229 void igb_reinit_locked(struct igb_adapter *adapter)
2230 {
2231 	WARN_ON(in_interrupt());
2232 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2233 		usleep_range(1000, 2000);
2234 	igb_down(adapter);
2235 	igb_up(adapter);
2236 	clear_bit(__IGB_RESETTING, &adapter->state);
2237 }
2238 
2239 /** igb_enable_mas - Media Autosense re-enable after swap
2240  *
2241  * @adapter: adapter struct
2242  **/
2243 static void igb_enable_mas(struct igb_adapter *adapter)
2244 {
2245 	struct e1000_hw *hw = &adapter->hw;
2246 	u32 connsw = rd32(E1000_CONNSW);
2247 
2248 	/* configure for SerDes media detect */
2249 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2250 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2251 		connsw |= E1000_CONNSW_ENRGSRC;
2252 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2253 		wr32(E1000_CONNSW, connsw);
2254 		wrfl();
2255 	}
2256 }
2257 
2258 void igb_reset(struct igb_adapter *adapter)
2259 {
2260 	struct pci_dev *pdev = adapter->pdev;
2261 	struct e1000_hw *hw = &adapter->hw;
2262 	struct e1000_mac_info *mac = &hw->mac;
2263 	struct e1000_fc_info *fc = &hw->fc;
2264 	u32 pba, hwm;
2265 
2266 	/* Repartition Pba for greater than 9k mtu
2267 	 * To take effect CTRL.RST is required.
2268 	 */
2269 	switch (mac->type) {
2270 	case e1000_i350:
2271 	case e1000_i354:
2272 	case e1000_82580:
2273 		pba = rd32(E1000_RXPBS);
2274 		pba = igb_rxpbs_adjust_82580(pba);
2275 		break;
2276 	case e1000_82576:
2277 		pba = rd32(E1000_RXPBS);
2278 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2279 		break;
2280 	case e1000_82575:
2281 	case e1000_i210:
2282 	case e1000_i211:
2283 	default:
2284 		pba = E1000_PBA_34K;
2285 		break;
2286 	}
2287 
2288 	if (mac->type == e1000_82575) {
2289 		u32 min_rx_space, min_tx_space, needed_tx_space;
2290 
2291 		/* write Rx PBA so that hardware can report correct Tx PBA */
2292 		wr32(E1000_PBA, pba);
2293 
2294 		/* To maintain wire speed transmits, the Tx FIFO should be
2295 		 * large enough to accommodate two full transmit packets,
2296 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2297 		 * the Rx FIFO should be large enough to accommodate at least
2298 		 * one full receive packet and is similarly rounded up and
2299 		 * expressed in KB.
2300 		 */
2301 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302 
2303 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2304 		 * but don't include Ethernet FCS because hardware appends it.
2305 		 * We only need to round down to the nearest 512 byte block
2306 		 * count since the value we care about is 2 frames, not 1.
2307 		 */
2308 		min_tx_space = adapter->max_frame_size;
2309 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2310 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311 
2312 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2313 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314 
2315 		/* If current Tx allocation is less than the min Tx FIFO size,
2316 		 * and the min Tx FIFO size is less than the current Rx FIFO
2317 		 * allocation, take space away from current Rx allocation.
2318 		 */
2319 		if (needed_tx_space < pba) {
2320 			pba -= needed_tx_space;
2321 
2322 			/* if short on Rx space, Rx wins and must trump Tx
2323 			 * adjustment
2324 			 */
2325 			if (pba < min_rx_space)
2326 				pba = min_rx_space;
2327 		}
2328 
2329 		/* adjust PBA for jumbo frames */
2330 		wr32(E1000_PBA, pba);
2331 	}
2332 
2333 	/* flow control settings
2334 	 * The high water mark must be low enough to fit one full frame
2335 	 * after transmitting the pause frame.  As such we must have enough
2336 	 * space to allow for us to complete our current transmit and then
2337 	 * receive the frame that is in progress from the link partner.
2338 	 * Set it to:
2339 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340 	 */
2341 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342 
2343 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2344 	fc->low_water = fc->high_water - 16;
2345 	fc->pause_time = 0xFFFF;
2346 	fc->send_xon = 1;
2347 	fc->current_mode = fc->requested_mode;
2348 
2349 	/* disable receive for all VFs and wait one second */
2350 	if (adapter->vfs_allocated_count) {
2351 		int i;
2352 
2353 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2354 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355 
2356 		/* ping all the active vfs to let them know we are going down */
2357 		igb_ping_all_vfs(adapter);
2358 
2359 		/* disable transmits and receives */
2360 		wr32(E1000_VFRE, 0);
2361 		wr32(E1000_VFTE, 0);
2362 	}
2363 
2364 	/* Allow time for pending master requests to run */
2365 	hw->mac.ops.reset_hw(hw);
2366 	wr32(E1000_WUC, 0);
2367 
2368 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2369 		/* need to resetup here after media swap */
2370 		adapter->ei.get_invariants(hw);
2371 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372 	}
2373 	if ((mac->type == e1000_82575) &&
2374 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2375 		igb_enable_mas(adapter);
2376 	}
2377 	if (hw->mac.ops.init_hw(hw))
2378 		dev_err(&pdev->dev, "Hardware Error\n");
2379 
2380 	/* RAR registers were cleared during init_hw, clear mac table */
2381 	igb_flush_mac_table(adapter);
2382 	__dev_uc_unsync(adapter->netdev, NULL);
2383 
2384 	/* Recover default RAR entry */
2385 	igb_set_default_mac_filter(adapter);
2386 
2387 	/* Flow control settings reset on hardware reset, so guarantee flow
2388 	 * control is off when forcing speed.
2389 	 */
2390 	if (!hw->mac.autoneg)
2391 		igb_force_mac_fc(hw);
2392 
2393 	igb_init_dmac(adapter, pba);
2394 #ifdef CONFIG_IGB_HWMON
2395 	/* Re-initialize the thermal sensor on i350 devices. */
2396 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2397 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2398 			/* If present, re-initialize the external thermal sensor
2399 			 * interface.
2400 			 */
2401 			if (adapter->ets)
2402 				mac->ops.init_thermal_sensor_thresh(hw);
2403 		}
2404 	}
2405 #endif
2406 	/* Re-establish EEE setting */
2407 	if (hw->phy.media_type == e1000_media_type_copper) {
2408 		switch (mac->type) {
2409 		case e1000_i350:
2410 		case e1000_i210:
2411 		case e1000_i211:
2412 			igb_set_eee_i350(hw, true, true);
2413 			break;
2414 		case e1000_i354:
2415 			igb_set_eee_i354(hw, true, true);
2416 			break;
2417 		default:
2418 			break;
2419 		}
2420 	}
2421 	if (!netif_running(adapter->netdev))
2422 		igb_power_down_link(adapter);
2423 
2424 	igb_update_mng_vlan(adapter);
2425 
2426 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2427 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428 
2429 	/* Re-enable PTP, where applicable. */
2430 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2431 		igb_ptp_reset(adapter);
2432 
2433 	igb_get_phy_info(hw);
2434 }
2435 
2436 static netdev_features_t igb_fix_features(struct net_device *netdev,
2437 	netdev_features_t features)
2438 {
2439 	/* Since there is no support for separate Rx/Tx vlan accel
2440 	 * enable/disable make sure Tx flag is always in same state as Rx.
2441 	 */
2442 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2443 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2444 	else
2445 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2446 
2447 	return features;
2448 }
2449 
2450 static int igb_set_features(struct net_device *netdev,
2451 	netdev_features_t features)
2452 {
2453 	netdev_features_t changed = netdev->features ^ features;
2454 	struct igb_adapter *adapter = netdev_priv(netdev);
2455 
2456 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2457 		igb_vlan_mode(netdev, features);
2458 
2459 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2460 		return 0;
2461 
2462 	if (!(features & NETIF_F_NTUPLE)) {
2463 		struct hlist_node *node2;
2464 		struct igb_nfc_filter *rule;
2465 
2466 		spin_lock(&adapter->nfc_lock);
2467 		hlist_for_each_entry_safe(rule, node2,
2468 					  &adapter->nfc_filter_list, nfc_node) {
2469 			igb_erase_filter(adapter, rule);
2470 			hlist_del(&rule->nfc_node);
2471 			kfree(rule);
2472 		}
2473 		spin_unlock(&adapter->nfc_lock);
2474 		adapter->nfc_filter_count = 0;
2475 	}
2476 
2477 	netdev->features = features;
2478 
2479 	if (netif_running(netdev))
2480 		igb_reinit_locked(adapter);
2481 	else
2482 		igb_reset(adapter);
2483 
2484 	return 1;
2485 }
2486 
2487 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2488 			   struct net_device *dev,
2489 			   const unsigned char *addr, u16 vid,
2490 			   u16 flags,
2491 			   struct netlink_ext_ack *extack)
2492 {
2493 	/* guarantee we can provide a unique filter for the unicast address */
2494 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2495 		struct igb_adapter *adapter = netdev_priv(dev);
2496 		int vfn = adapter->vfs_allocated_count;
2497 
2498 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2499 			return -ENOMEM;
2500 	}
2501 
2502 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2503 }
2504 
2505 #define IGB_MAX_MAC_HDR_LEN	127
2506 #define IGB_MAX_NETWORK_HDR_LEN	511
2507 
2508 static netdev_features_t
2509 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2510 		   netdev_features_t features)
2511 {
2512 	unsigned int network_hdr_len, mac_hdr_len;
2513 
2514 	/* Make certain the headers can be described by a context descriptor */
2515 	mac_hdr_len = skb_network_header(skb) - skb->data;
2516 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2517 		return features & ~(NETIF_F_HW_CSUM |
2518 				    NETIF_F_SCTP_CRC |
2519 				    NETIF_F_HW_VLAN_CTAG_TX |
2520 				    NETIF_F_TSO |
2521 				    NETIF_F_TSO6);
2522 
2523 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2524 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2525 		return features & ~(NETIF_F_HW_CSUM |
2526 				    NETIF_F_SCTP_CRC |
2527 				    NETIF_F_TSO |
2528 				    NETIF_F_TSO6);
2529 
2530 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2531 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532 	 */
2533 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2534 		features &= ~NETIF_F_TSO;
2535 
2536 	return features;
2537 }
2538 
2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 {
2541 	if (!is_fqtss_enabled(adapter)) {
2542 		enable_fqtss(adapter, true);
2543 		return;
2544 	}
2545 
2546 	igb_config_tx_modes(adapter, queue);
2547 
2548 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2549 		enable_fqtss(adapter, false);
2550 }
2551 
2552 static int igb_offload_cbs(struct igb_adapter *adapter,
2553 			   struct tc_cbs_qopt_offload *qopt)
2554 {
2555 	struct e1000_hw *hw = &adapter->hw;
2556 	int err;
2557 
2558 	/* CBS offloading is only supported by i210 controller. */
2559 	if (hw->mac.type != e1000_i210)
2560 		return -EOPNOTSUPP;
2561 
2562 	/* CBS offloading is only supported by queue 0 and queue 1. */
2563 	if (qopt->queue < 0 || qopt->queue > 1)
2564 		return -EINVAL;
2565 
2566 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2567 				  qopt->idleslope, qopt->sendslope,
2568 				  qopt->hicredit, qopt->locredit);
2569 	if (err)
2570 		return err;
2571 
2572 	igb_offload_apply(adapter, qopt->queue);
2573 
2574 	return 0;
2575 }
2576 
2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2578 #define VLAN_PRIO_FULL_MASK (0x07)
2579 
2580 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2581 				struct flow_cls_offload *f,
2582 				int traffic_class,
2583 				struct igb_nfc_filter *input)
2584 {
2585 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2586 	struct flow_dissector *dissector = rule->match.dissector;
2587 	struct netlink_ext_ack *extack = f->common.extack;
2588 
2589 	if (dissector->used_keys &
2590 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2591 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2592 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2593 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2594 		NL_SET_ERR_MSG_MOD(extack,
2595 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2596 		return -EOPNOTSUPP;
2597 	}
2598 
2599 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2600 		struct flow_match_eth_addrs match;
2601 
2602 		flow_rule_match_eth_addrs(rule, &match);
2603 		if (!is_zero_ether_addr(match.mask->dst)) {
2604 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2605 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2606 				return -EINVAL;
2607 			}
2608 
2609 			input->filter.match_flags |=
2610 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2611 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2612 		}
2613 
2614 		if (!is_zero_ether_addr(match.mask->src)) {
2615 			if (!is_broadcast_ether_addr(match.mask->src)) {
2616 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2617 				return -EINVAL;
2618 			}
2619 
2620 			input->filter.match_flags |=
2621 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2622 			ether_addr_copy(input->filter.src_addr, match.key->src);
2623 		}
2624 	}
2625 
2626 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2627 		struct flow_match_basic match;
2628 
2629 		flow_rule_match_basic(rule, &match);
2630 		if (match.mask->n_proto) {
2631 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2632 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2633 				return -EINVAL;
2634 			}
2635 
2636 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2637 			input->filter.etype = match.key->n_proto;
2638 		}
2639 	}
2640 
2641 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2642 		struct flow_match_vlan match;
2643 
2644 		flow_rule_match_vlan(rule, &match);
2645 		if (match.mask->vlan_priority) {
2646 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2647 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2648 				return -EINVAL;
2649 			}
2650 
2651 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2652 			input->filter.vlan_tci = match.key->vlan_priority;
2653 		}
2654 	}
2655 
2656 	input->action = traffic_class;
2657 	input->cookie = f->cookie;
2658 
2659 	return 0;
2660 }
2661 
2662 static int igb_configure_clsflower(struct igb_adapter *adapter,
2663 				   struct flow_cls_offload *cls_flower)
2664 {
2665 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2666 	struct igb_nfc_filter *filter, *f;
2667 	int err, tc;
2668 
2669 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2670 	if (tc < 0) {
2671 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2672 		return -EINVAL;
2673 	}
2674 
2675 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2676 	if (!filter)
2677 		return -ENOMEM;
2678 
2679 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2680 	if (err < 0)
2681 		goto err_parse;
2682 
2683 	spin_lock(&adapter->nfc_lock);
2684 
2685 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2686 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2687 			err = -EEXIST;
2688 			NL_SET_ERR_MSG_MOD(extack,
2689 					   "This filter is already set in ethtool");
2690 			goto err_locked;
2691 		}
2692 	}
2693 
2694 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2695 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2696 			err = -EEXIST;
2697 			NL_SET_ERR_MSG_MOD(extack,
2698 					   "This filter is already set in cls_flower");
2699 			goto err_locked;
2700 		}
2701 	}
2702 
2703 	err = igb_add_filter(adapter, filter);
2704 	if (err < 0) {
2705 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2706 		goto err_locked;
2707 	}
2708 
2709 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2710 
2711 	spin_unlock(&adapter->nfc_lock);
2712 
2713 	return 0;
2714 
2715 err_locked:
2716 	spin_unlock(&adapter->nfc_lock);
2717 
2718 err_parse:
2719 	kfree(filter);
2720 
2721 	return err;
2722 }
2723 
2724 static int igb_delete_clsflower(struct igb_adapter *adapter,
2725 				struct flow_cls_offload *cls_flower)
2726 {
2727 	struct igb_nfc_filter *filter;
2728 	int err;
2729 
2730 	spin_lock(&adapter->nfc_lock);
2731 
2732 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2733 		if (filter->cookie == cls_flower->cookie)
2734 			break;
2735 
2736 	if (!filter) {
2737 		err = -ENOENT;
2738 		goto out;
2739 	}
2740 
2741 	err = igb_erase_filter(adapter, filter);
2742 	if (err < 0)
2743 		goto out;
2744 
2745 	hlist_del(&filter->nfc_node);
2746 	kfree(filter);
2747 
2748 out:
2749 	spin_unlock(&adapter->nfc_lock);
2750 
2751 	return err;
2752 }
2753 
2754 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2755 				   struct flow_cls_offload *cls_flower)
2756 {
2757 	switch (cls_flower->command) {
2758 	case FLOW_CLS_REPLACE:
2759 		return igb_configure_clsflower(adapter, cls_flower);
2760 	case FLOW_CLS_DESTROY:
2761 		return igb_delete_clsflower(adapter, cls_flower);
2762 	case FLOW_CLS_STATS:
2763 		return -EOPNOTSUPP;
2764 	default:
2765 		return -EOPNOTSUPP;
2766 	}
2767 }
2768 
2769 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2770 				 void *cb_priv)
2771 {
2772 	struct igb_adapter *adapter = cb_priv;
2773 
2774 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2775 		return -EOPNOTSUPP;
2776 
2777 	switch (type) {
2778 	case TC_SETUP_CLSFLOWER:
2779 		return igb_setup_tc_cls_flower(adapter, type_data);
2780 
2781 	default:
2782 		return -EOPNOTSUPP;
2783 	}
2784 }
2785 
2786 static int igb_offload_txtime(struct igb_adapter *adapter,
2787 			      struct tc_etf_qopt_offload *qopt)
2788 {
2789 	struct e1000_hw *hw = &adapter->hw;
2790 	int err;
2791 
2792 	/* Launchtime offloading is only supported by i210 controller. */
2793 	if (hw->mac.type != e1000_i210)
2794 		return -EOPNOTSUPP;
2795 
2796 	/* Launchtime offloading is only supported by queues 0 and 1. */
2797 	if (qopt->queue < 0 || qopt->queue > 1)
2798 		return -EINVAL;
2799 
2800 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2801 	if (err)
2802 		return err;
2803 
2804 	igb_offload_apply(adapter, qopt->queue);
2805 
2806 	return 0;
2807 }
2808 
2809 static LIST_HEAD(igb_block_cb_list);
2810 
2811 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2812 			void *type_data)
2813 {
2814 	struct igb_adapter *adapter = netdev_priv(dev);
2815 
2816 	switch (type) {
2817 	case TC_SETUP_QDISC_CBS:
2818 		return igb_offload_cbs(adapter, type_data);
2819 	case TC_SETUP_BLOCK:
2820 		return flow_block_cb_setup_simple(type_data,
2821 						  &igb_block_cb_list,
2822 						  igb_setup_tc_block_cb,
2823 						  adapter, adapter, true);
2824 
2825 	case TC_SETUP_QDISC_ETF:
2826 		return igb_offload_txtime(adapter, type_data);
2827 
2828 	default:
2829 		return -EOPNOTSUPP;
2830 	}
2831 }
2832 
2833 static const struct net_device_ops igb_netdev_ops = {
2834 	.ndo_open		= igb_open,
2835 	.ndo_stop		= igb_close,
2836 	.ndo_start_xmit		= igb_xmit_frame,
2837 	.ndo_get_stats64	= igb_get_stats64,
2838 	.ndo_set_rx_mode	= igb_set_rx_mode,
2839 	.ndo_set_mac_address	= igb_set_mac,
2840 	.ndo_change_mtu		= igb_change_mtu,
2841 	.ndo_do_ioctl		= igb_ioctl,
2842 	.ndo_tx_timeout		= igb_tx_timeout,
2843 	.ndo_validate_addr	= eth_validate_addr,
2844 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2845 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2846 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2847 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2848 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2849 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2850 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2851 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2852 	.ndo_fix_features	= igb_fix_features,
2853 	.ndo_set_features	= igb_set_features,
2854 	.ndo_fdb_add		= igb_ndo_fdb_add,
2855 	.ndo_features_check	= igb_features_check,
2856 	.ndo_setup_tc		= igb_setup_tc,
2857 };
2858 
2859 /**
2860  * igb_set_fw_version - Configure version string for ethtool
2861  * @adapter: adapter struct
2862  **/
2863 void igb_set_fw_version(struct igb_adapter *adapter)
2864 {
2865 	struct e1000_hw *hw = &adapter->hw;
2866 	struct e1000_fw_version fw;
2867 
2868 	igb_get_fw_version(hw, &fw);
2869 
2870 	switch (hw->mac.type) {
2871 	case e1000_i210:
2872 	case e1000_i211:
2873 		if (!(igb_get_flash_presence_i210(hw))) {
2874 			snprintf(adapter->fw_version,
2875 				 sizeof(adapter->fw_version),
2876 				 "%2d.%2d-%d",
2877 				 fw.invm_major, fw.invm_minor,
2878 				 fw.invm_img_type);
2879 			break;
2880 		}
2881 		/* fall through */
2882 	default:
2883 		/* if option is rom valid, display its version too */
2884 		if (fw.or_valid) {
2885 			snprintf(adapter->fw_version,
2886 				 sizeof(adapter->fw_version),
2887 				 "%d.%d, 0x%08x, %d.%d.%d",
2888 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2889 				 fw.or_major, fw.or_build, fw.or_patch);
2890 		/* no option rom */
2891 		} else if (fw.etrack_id != 0X0000) {
2892 			snprintf(adapter->fw_version,
2893 			    sizeof(adapter->fw_version),
2894 			    "%d.%d, 0x%08x",
2895 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2896 		} else {
2897 		snprintf(adapter->fw_version,
2898 		    sizeof(adapter->fw_version),
2899 		    "%d.%d.%d",
2900 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2901 		}
2902 		break;
2903 	}
2904 }
2905 
2906 /**
2907  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2908  *
2909  * @adapter: adapter struct
2910  **/
2911 static void igb_init_mas(struct igb_adapter *adapter)
2912 {
2913 	struct e1000_hw *hw = &adapter->hw;
2914 	u16 eeprom_data;
2915 
2916 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2917 	switch (hw->bus.func) {
2918 	case E1000_FUNC_0:
2919 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2920 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2921 			netdev_info(adapter->netdev,
2922 				"MAS: Enabling Media Autosense for port %d\n",
2923 				hw->bus.func);
2924 		}
2925 		break;
2926 	case E1000_FUNC_1:
2927 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2928 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2929 			netdev_info(adapter->netdev,
2930 				"MAS: Enabling Media Autosense for port %d\n",
2931 				hw->bus.func);
2932 		}
2933 		break;
2934 	case E1000_FUNC_2:
2935 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2936 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2937 			netdev_info(adapter->netdev,
2938 				"MAS: Enabling Media Autosense for port %d\n",
2939 				hw->bus.func);
2940 		}
2941 		break;
2942 	case E1000_FUNC_3:
2943 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2944 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2945 			netdev_info(adapter->netdev,
2946 				"MAS: Enabling Media Autosense for port %d\n",
2947 				hw->bus.func);
2948 		}
2949 		break;
2950 	default:
2951 		/* Shouldn't get here */
2952 		netdev_err(adapter->netdev,
2953 			"MAS: Invalid port configuration, returning\n");
2954 		break;
2955 	}
2956 }
2957 
2958 /**
2959  *  igb_init_i2c - Init I2C interface
2960  *  @adapter: pointer to adapter structure
2961  **/
2962 static s32 igb_init_i2c(struct igb_adapter *adapter)
2963 {
2964 	s32 status = 0;
2965 
2966 	/* I2C interface supported on i350 devices */
2967 	if (adapter->hw.mac.type != e1000_i350)
2968 		return 0;
2969 
2970 	/* Initialize the i2c bus which is controlled by the registers.
2971 	 * This bus will use the i2c_algo_bit structue that implements
2972 	 * the protocol through toggling of the 4 bits in the register.
2973 	 */
2974 	adapter->i2c_adap.owner = THIS_MODULE;
2975 	adapter->i2c_algo = igb_i2c_algo;
2976 	adapter->i2c_algo.data = adapter;
2977 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2978 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2979 	strlcpy(adapter->i2c_adap.name, "igb BB",
2980 		sizeof(adapter->i2c_adap.name));
2981 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2982 	return status;
2983 }
2984 
2985 /**
2986  *  igb_probe - Device Initialization Routine
2987  *  @pdev: PCI device information struct
2988  *  @ent: entry in igb_pci_tbl
2989  *
2990  *  Returns 0 on success, negative on failure
2991  *
2992  *  igb_probe initializes an adapter identified by a pci_dev structure.
2993  *  The OS initialization, configuring of the adapter private structure,
2994  *  and a hardware reset occur.
2995  **/
2996 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2997 {
2998 	struct net_device *netdev;
2999 	struct igb_adapter *adapter;
3000 	struct e1000_hw *hw;
3001 	u16 eeprom_data = 0;
3002 	s32 ret_val;
3003 	static int global_quad_port_a; /* global quad port a indication */
3004 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3005 	int err, pci_using_dac;
3006 	u8 part_str[E1000_PBANUM_LENGTH];
3007 
3008 	/* Catch broken hardware that put the wrong VF device ID in
3009 	 * the PCIe SR-IOV capability.
3010 	 */
3011 	if (pdev->is_virtfn) {
3012 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3013 			pci_name(pdev), pdev->vendor, pdev->device);
3014 		return -EINVAL;
3015 	}
3016 
3017 	err = pci_enable_device_mem(pdev);
3018 	if (err)
3019 		return err;
3020 
3021 	pci_using_dac = 0;
3022 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3023 	if (!err) {
3024 		pci_using_dac = 1;
3025 	} else {
3026 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3027 		if (err) {
3028 			dev_err(&pdev->dev,
3029 				"No usable DMA configuration, aborting\n");
3030 			goto err_dma;
3031 		}
3032 	}
3033 
3034 	err = pci_request_mem_regions(pdev, igb_driver_name);
3035 	if (err)
3036 		goto err_pci_reg;
3037 
3038 	pci_enable_pcie_error_reporting(pdev);
3039 
3040 	pci_set_master(pdev);
3041 	pci_save_state(pdev);
3042 
3043 	err = -ENOMEM;
3044 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3045 				   IGB_MAX_TX_QUEUES);
3046 	if (!netdev)
3047 		goto err_alloc_etherdev;
3048 
3049 	SET_NETDEV_DEV(netdev, &pdev->dev);
3050 
3051 	pci_set_drvdata(pdev, netdev);
3052 	adapter = netdev_priv(netdev);
3053 	adapter->netdev = netdev;
3054 	adapter->pdev = pdev;
3055 	hw = &adapter->hw;
3056 	hw->back = adapter;
3057 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3058 
3059 	err = -EIO;
3060 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3061 	if (!adapter->io_addr)
3062 		goto err_ioremap;
3063 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3064 	hw->hw_addr = adapter->io_addr;
3065 
3066 	netdev->netdev_ops = &igb_netdev_ops;
3067 	igb_set_ethtool_ops(netdev);
3068 	netdev->watchdog_timeo = 5 * HZ;
3069 
3070 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3071 
3072 	netdev->mem_start = pci_resource_start(pdev, 0);
3073 	netdev->mem_end = pci_resource_end(pdev, 0);
3074 
3075 	/* PCI config space info */
3076 	hw->vendor_id = pdev->vendor;
3077 	hw->device_id = pdev->device;
3078 	hw->revision_id = pdev->revision;
3079 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3080 	hw->subsystem_device_id = pdev->subsystem_device;
3081 
3082 	/* Copy the default MAC, PHY and NVM function pointers */
3083 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3084 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3085 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3086 	/* Initialize skew-specific constants */
3087 	err = ei->get_invariants(hw);
3088 	if (err)
3089 		goto err_sw_init;
3090 
3091 	/* setup the private structure */
3092 	err = igb_sw_init(adapter);
3093 	if (err)
3094 		goto err_sw_init;
3095 
3096 	igb_get_bus_info_pcie(hw);
3097 
3098 	hw->phy.autoneg_wait_to_complete = false;
3099 
3100 	/* Copper options */
3101 	if (hw->phy.media_type == e1000_media_type_copper) {
3102 		hw->phy.mdix = AUTO_ALL_MODES;
3103 		hw->phy.disable_polarity_correction = false;
3104 		hw->phy.ms_type = e1000_ms_hw_default;
3105 	}
3106 
3107 	if (igb_check_reset_block(hw))
3108 		dev_info(&pdev->dev,
3109 			"PHY reset is blocked due to SOL/IDER session.\n");
3110 
3111 	/* features is initialized to 0 in allocation, it might have bits
3112 	 * set by igb_sw_init so we should use an or instead of an
3113 	 * assignment.
3114 	 */
3115 	netdev->features |= NETIF_F_SG |
3116 			    NETIF_F_TSO |
3117 			    NETIF_F_TSO6 |
3118 			    NETIF_F_RXHASH |
3119 			    NETIF_F_RXCSUM |
3120 			    NETIF_F_HW_CSUM;
3121 
3122 	if (hw->mac.type >= e1000_82576)
3123 		netdev->features |= NETIF_F_SCTP_CRC;
3124 
3125 	if (hw->mac.type >= e1000_i350)
3126 		netdev->features |= NETIF_F_HW_TC;
3127 
3128 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3129 				  NETIF_F_GSO_GRE_CSUM | \
3130 				  NETIF_F_GSO_IPXIP4 | \
3131 				  NETIF_F_GSO_IPXIP6 | \
3132 				  NETIF_F_GSO_UDP_TUNNEL | \
3133 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3134 
3135 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3136 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3137 
3138 	/* copy netdev features into list of user selectable features */
3139 	netdev->hw_features |= netdev->features |
3140 			       NETIF_F_HW_VLAN_CTAG_RX |
3141 			       NETIF_F_HW_VLAN_CTAG_TX |
3142 			       NETIF_F_RXALL;
3143 
3144 	if (hw->mac.type >= e1000_i350)
3145 		netdev->hw_features |= NETIF_F_NTUPLE;
3146 
3147 	if (pci_using_dac)
3148 		netdev->features |= NETIF_F_HIGHDMA;
3149 
3150 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3151 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3152 	netdev->hw_enc_features |= netdev->vlan_features;
3153 
3154 	/* set this bit last since it cannot be part of vlan_features */
3155 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3156 			    NETIF_F_HW_VLAN_CTAG_RX |
3157 			    NETIF_F_HW_VLAN_CTAG_TX;
3158 
3159 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3160 
3161 	netdev->priv_flags |= IFF_UNICAST_FLT;
3162 
3163 	/* MTU range: 68 - 9216 */
3164 	netdev->min_mtu = ETH_MIN_MTU;
3165 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3166 
3167 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3168 
3169 	/* before reading the NVM, reset the controller to put the device in a
3170 	 * known good starting state
3171 	 */
3172 	hw->mac.ops.reset_hw(hw);
3173 
3174 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3175 	 * that doesn't contain a checksum
3176 	 */
3177 	switch (hw->mac.type) {
3178 	case e1000_i210:
3179 	case e1000_i211:
3180 		if (igb_get_flash_presence_i210(hw)) {
3181 			if (hw->nvm.ops.validate(hw) < 0) {
3182 				dev_err(&pdev->dev,
3183 					"The NVM Checksum Is Not Valid\n");
3184 				err = -EIO;
3185 				goto err_eeprom;
3186 			}
3187 		}
3188 		break;
3189 	default:
3190 		if (hw->nvm.ops.validate(hw) < 0) {
3191 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3192 			err = -EIO;
3193 			goto err_eeprom;
3194 		}
3195 		break;
3196 	}
3197 
3198 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3199 		/* copy the MAC address out of the NVM */
3200 		if (hw->mac.ops.read_mac_addr(hw))
3201 			dev_err(&pdev->dev, "NVM Read Error\n");
3202 	}
3203 
3204 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3205 
3206 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3207 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3208 		err = -EIO;
3209 		goto err_eeprom;
3210 	}
3211 
3212 	igb_set_default_mac_filter(adapter);
3213 
3214 	/* get firmware version for ethtool -i */
3215 	igb_set_fw_version(adapter);
3216 
3217 	/* configure RXPBSIZE and TXPBSIZE */
3218 	if (hw->mac.type == e1000_i210) {
3219 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3220 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3221 	}
3222 
3223 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3224 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3225 
3226 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3227 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3228 
3229 	/* Initialize link properties that are user-changeable */
3230 	adapter->fc_autoneg = true;
3231 	hw->mac.autoneg = true;
3232 	hw->phy.autoneg_advertised = 0x2f;
3233 
3234 	hw->fc.requested_mode = e1000_fc_default;
3235 	hw->fc.current_mode = e1000_fc_default;
3236 
3237 	igb_validate_mdi_setting(hw);
3238 
3239 	/* By default, support wake on port A */
3240 	if (hw->bus.func == 0)
3241 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3242 
3243 	/* Check the NVM for wake support on non-port A ports */
3244 	if (hw->mac.type >= e1000_82580)
3245 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3246 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3247 				 &eeprom_data);
3248 	else if (hw->bus.func == 1)
3249 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3250 
3251 	if (eeprom_data & IGB_EEPROM_APME)
3252 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3253 
3254 	/* now that we have the eeprom settings, apply the special cases where
3255 	 * the eeprom may be wrong or the board simply won't support wake on
3256 	 * lan on a particular port
3257 	 */
3258 	switch (pdev->device) {
3259 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3260 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3261 		break;
3262 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3263 	case E1000_DEV_ID_82576_FIBER:
3264 	case E1000_DEV_ID_82576_SERDES:
3265 		/* Wake events only supported on port A for dual fiber
3266 		 * regardless of eeprom setting
3267 		 */
3268 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3269 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3270 		break;
3271 	case E1000_DEV_ID_82576_QUAD_COPPER:
3272 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3273 		/* if quad port adapter, disable WoL on all but port A */
3274 		if (global_quad_port_a != 0)
3275 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3276 		else
3277 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3278 		/* Reset for multiple quad port adapters */
3279 		if (++global_quad_port_a == 4)
3280 			global_quad_port_a = 0;
3281 		break;
3282 	default:
3283 		/* If the device can't wake, don't set software support */
3284 		if (!device_can_wakeup(&adapter->pdev->dev))
3285 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3286 	}
3287 
3288 	/* initialize the wol settings based on the eeprom settings */
3289 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3290 		adapter->wol |= E1000_WUFC_MAG;
3291 
3292 	/* Some vendors want WoL disabled by default, but still supported */
3293 	if ((hw->mac.type == e1000_i350) &&
3294 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3295 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3296 		adapter->wol = 0;
3297 	}
3298 
3299 	/* Some vendors want the ability to Use the EEPROM setting as
3300 	 * enable/disable only, and not for capability
3301 	 */
3302 	if (((hw->mac.type == e1000_i350) ||
3303 	     (hw->mac.type == e1000_i354)) &&
3304 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3305 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3306 		adapter->wol = 0;
3307 	}
3308 	if (hw->mac.type == e1000_i350) {
3309 		if (((pdev->subsystem_device == 0x5001) ||
3310 		     (pdev->subsystem_device == 0x5002)) &&
3311 				(hw->bus.func == 0)) {
3312 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3313 			adapter->wol = 0;
3314 		}
3315 		if (pdev->subsystem_device == 0x1F52)
3316 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3317 	}
3318 
3319 	device_set_wakeup_enable(&adapter->pdev->dev,
3320 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3321 
3322 	/* reset the hardware with the new settings */
3323 	igb_reset(adapter);
3324 
3325 	/* Init the I2C interface */
3326 	err = igb_init_i2c(adapter);
3327 	if (err) {
3328 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3329 		goto err_eeprom;
3330 	}
3331 
3332 	/* let the f/w know that the h/w is now under the control of the
3333 	 * driver.
3334 	 */
3335 	igb_get_hw_control(adapter);
3336 
3337 	strcpy(netdev->name, "eth%d");
3338 	err = register_netdev(netdev);
3339 	if (err)
3340 		goto err_register;
3341 
3342 	/* carrier off reporting is important to ethtool even BEFORE open */
3343 	netif_carrier_off(netdev);
3344 
3345 #ifdef CONFIG_IGB_DCA
3346 	if (dca_add_requester(&pdev->dev) == 0) {
3347 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3348 		dev_info(&pdev->dev, "DCA enabled\n");
3349 		igb_setup_dca(adapter);
3350 	}
3351 
3352 #endif
3353 #ifdef CONFIG_IGB_HWMON
3354 	/* Initialize the thermal sensor on i350 devices. */
3355 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3356 		u16 ets_word;
3357 
3358 		/* Read the NVM to determine if this i350 device supports an
3359 		 * external thermal sensor.
3360 		 */
3361 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3362 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3363 			adapter->ets = true;
3364 		else
3365 			adapter->ets = false;
3366 		if (igb_sysfs_init(adapter))
3367 			dev_err(&pdev->dev,
3368 				"failed to allocate sysfs resources\n");
3369 	} else {
3370 		adapter->ets = false;
3371 	}
3372 #endif
3373 	/* Check if Media Autosense is enabled */
3374 	adapter->ei = *ei;
3375 	if (hw->dev_spec._82575.mas_capable)
3376 		igb_init_mas(adapter);
3377 
3378 	/* do hw tstamp init after resetting */
3379 	igb_ptp_init(adapter);
3380 
3381 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3382 	/* print bus type/speed/width info, not applicable to i354 */
3383 	if (hw->mac.type != e1000_i354) {
3384 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3385 			 netdev->name,
3386 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3387 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3388 			   "unknown"),
3389 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3390 			  "Width x4" :
3391 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3392 			  "Width x2" :
3393 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3394 			  "Width x1" : "unknown"), netdev->dev_addr);
3395 	}
3396 
3397 	if ((hw->mac.type >= e1000_i210 ||
3398 	     igb_get_flash_presence_i210(hw))) {
3399 		ret_val = igb_read_part_string(hw, part_str,
3400 					       E1000_PBANUM_LENGTH);
3401 	} else {
3402 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3403 	}
3404 
3405 	if (ret_val)
3406 		strcpy(part_str, "Unknown");
3407 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3408 	dev_info(&pdev->dev,
3409 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3410 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3411 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3412 		adapter->num_rx_queues, adapter->num_tx_queues);
3413 	if (hw->phy.media_type == e1000_media_type_copper) {
3414 		switch (hw->mac.type) {
3415 		case e1000_i350:
3416 		case e1000_i210:
3417 		case e1000_i211:
3418 			/* Enable EEE for internal copper PHY devices */
3419 			err = igb_set_eee_i350(hw, true, true);
3420 			if ((!err) &&
3421 			    (!hw->dev_spec._82575.eee_disable)) {
3422 				adapter->eee_advert =
3423 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3424 				adapter->flags |= IGB_FLAG_EEE;
3425 			}
3426 			break;
3427 		case e1000_i354:
3428 			if ((rd32(E1000_CTRL_EXT) &
3429 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3430 				err = igb_set_eee_i354(hw, true, true);
3431 				if ((!err) &&
3432 					(!hw->dev_spec._82575.eee_disable)) {
3433 					adapter->eee_advert =
3434 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3435 					adapter->flags |= IGB_FLAG_EEE;
3436 				}
3437 			}
3438 			break;
3439 		default:
3440 			break;
3441 		}
3442 	}
3443 
3444 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3445 
3446 	pm_runtime_put_noidle(&pdev->dev);
3447 	return 0;
3448 
3449 err_register:
3450 	igb_release_hw_control(adapter);
3451 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3452 err_eeprom:
3453 	if (!igb_check_reset_block(hw))
3454 		igb_reset_phy(hw);
3455 
3456 	if (hw->flash_address)
3457 		iounmap(hw->flash_address);
3458 err_sw_init:
3459 	kfree(adapter->mac_table);
3460 	kfree(adapter->shadow_vfta);
3461 	igb_clear_interrupt_scheme(adapter);
3462 #ifdef CONFIG_PCI_IOV
3463 	igb_disable_sriov(pdev);
3464 #endif
3465 	pci_iounmap(pdev, adapter->io_addr);
3466 err_ioremap:
3467 	free_netdev(netdev);
3468 err_alloc_etherdev:
3469 	pci_release_mem_regions(pdev);
3470 err_pci_reg:
3471 err_dma:
3472 	pci_disable_device(pdev);
3473 	return err;
3474 }
3475 
3476 #ifdef CONFIG_PCI_IOV
3477 static int igb_disable_sriov(struct pci_dev *pdev)
3478 {
3479 	struct net_device *netdev = pci_get_drvdata(pdev);
3480 	struct igb_adapter *adapter = netdev_priv(netdev);
3481 	struct e1000_hw *hw = &adapter->hw;
3482 
3483 	/* reclaim resources allocated to VFs */
3484 	if (adapter->vf_data) {
3485 		/* disable iov and allow time for transactions to clear */
3486 		if (pci_vfs_assigned(pdev)) {
3487 			dev_warn(&pdev->dev,
3488 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3489 			return -EPERM;
3490 		} else {
3491 			pci_disable_sriov(pdev);
3492 			msleep(500);
3493 		}
3494 
3495 		kfree(adapter->vf_mac_list);
3496 		adapter->vf_mac_list = NULL;
3497 		kfree(adapter->vf_data);
3498 		adapter->vf_data = NULL;
3499 		adapter->vfs_allocated_count = 0;
3500 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3501 		wrfl();
3502 		msleep(100);
3503 		dev_info(&pdev->dev, "IOV Disabled\n");
3504 
3505 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3506 		adapter->flags |= IGB_FLAG_DMAC;
3507 	}
3508 
3509 	return 0;
3510 }
3511 
3512 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3513 {
3514 	struct net_device *netdev = pci_get_drvdata(pdev);
3515 	struct igb_adapter *adapter = netdev_priv(netdev);
3516 	int old_vfs = pci_num_vf(pdev);
3517 	struct vf_mac_filter *mac_list;
3518 	int err = 0;
3519 	int num_vf_mac_filters, i;
3520 
3521 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3522 		err = -EPERM;
3523 		goto out;
3524 	}
3525 	if (!num_vfs)
3526 		goto out;
3527 
3528 	if (old_vfs) {
3529 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3530 			 old_vfs, max_vfs);
3531 		adapter->vfs_allocated_count = old_vfs;
3532 	} else
3533 		adapter->vfs_allocated_count = num_vfs;
3534 
3535 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3536 				sizeof(struct vf_data_storage), GFP_KERNEL);
3537 
3538 	/* if allocation failed then we do not support SR-IOV */
3539 	if (!adapter->vf_data) {
3540 		adapter->vfs_allocated_count = 0;
3541 		err = -ENOMEM;
3542 		goto out;
3543 	}
3544 
3545 	/* Due to the limited number of RAR entries calculate potential
3546 	 * number of MAC filters available for the VFs. Reserve entries
3547 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3548 	 * for each VF for VF MAC.
3549 	 */
3550 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3551 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3552 			      adapter->vfs_allocated_count);
3553 
3554 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3555 				       sizeof(struct vf_mac_filter),
3556 				       GFP_KERNEL);
3557 
3558 	mac_list = adapter->vf_mac_list;
3559 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3560 
3561 	if (adapter->vf_mac_list) {
3562 		/* Initialize list of VF MAC filters */
3563 		for (i = 0; i < num_vf_mac_filters; i++) {
3564 			mac_list->vf = -1;
3565 			mac_list->free = true;
3566 			list_add(&mac_list->l, &adapter->vf_macs.l);
3567 			mac_list++;
3568 		}
3569 	} else {
3570 		/* If we could not allocate memory for the VF MAC filters
3571 		 * we can continue without this feature but warn user.
3572 		 */
3573 		dev_err(&pdev->dev,
3574 			"Unable to allocate memory for VF MAC filter list\n");
3575 	}
3576 
3577 	/* only call pci_enable_sriov() if no VFs are allocated already */
3578 	if (!old_vfs) {
3579 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3580 		if (err)
3581 			goto err_out;
3582 	}
3583 	dev_info(&pdev->dev, "%d VFs allocated\n",
3584 		 adapter->vfs_allocated_count);
3585 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3586 		igb_vf_configure(adapter, i);
3587 
3588 	/* DMA Coalescing is not supported in IOV mode. */
3589 	adapter->flags &= ~IGB_FLAG_DMAC;
3590 	goto out;
3591 
3592 err_out:
3593 	kfree(adapter->vf_mac_list);
3594 	adapter->vf_mac_list = NULL;
3595 	kfree(adapter->vf_data);
3596 	adapter->vf_data = NULL;
3597 	adapter->vfs_allocated_count = 0;
3598 out:
3599 	return err;
3600 }
3601 
3602 #endif
3603 /**
3604  *  igb_remove_i2c - Cleanup  I2C interface
3605  *  @adapter: pointer to adapter structure
3606  **/
3607 static void igb_remove_i2c(struct igb_adapter *adapter)
3608 {
3609 	/* free the adapter bus structure */
3610 	i2c_del_adapter(&adapter->i2c_adap);
3611 }
3612 
3613 /**
3614  *  igb_remove - Device Removal Routine
3615  *  @pdev: PCI device information struct
3616  *
3617  *  igb_remove is called by the PCI subsystem to alert the driver
3618  *  that it should release a PCI device.  The could be caused by a
3619  *  Hot-Plug event, or because the driver is going to be removed from
3620  *  memory.
3621  **/
3622 static void igb_remove(struct pci_dev *pdev)
3623 {
3624 	struct net_device *netdev = pci_get_drvdata(pdev);
3625 	struct igb_adapter *adapter = netdev_priv(netdev);
3626 	struct e1000_hw *hw = &adapter->hw;
3627 
3628 	pm_runtime_get_noresume(&pdev->dev);
3629 #ifdef CONFIG_IGB_HWMON
3630 	igb_sysfs_exit(adapter);
3631 #endif
3632 	igb_remove_i2c(adapter);
3633 	igb_ptp_stop(adapter);
3634 	/* The watchdog timer may be rescheduled, so explicitly
3635 	 * disable watchdog from being rescheduled.
3636 	 */
3637 	set_bit(__IGB_DOWN, &adapter->state);
3638 	del_timer_sync(&adapter->watchdog_timer);
3639 	del_timer_sync(&adapter->phy_info_timer);
3640 
3641 	cancel_work_sync(&adapter->reset_task);
3642 	cancel_work_sync(&adapter->watchdog_task);
3643 
3644 #ifdef CONFIG_IGB_DCA
3645 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3646 		dev_info(&pdev->dev, "DCA disabled\n");
3647 		dca_remove_requester(&pdev->dev);
3648 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3649 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3650 	}
3651 #endif
3652 
3653 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3654 	 * would have already happened in close and is redundant.
3655 	 */
3656 	igb_release_hw_control(adapter);
3657 
3658 #ifdef CONFIG_PCI_IOV
3659 	igb_disable_sriov(pdev);
3660 #endif
3661 
3662 	unregister_netdev(netdev);
3663 
3664 	igb_clear_interrupt_scheme(adapter);
3665 
3666 	pci_iounmap(pdev, adapter->io_addr);
3667 	if (hw->flash_address)
3668 		iounmap(hw->flash_address);
3669 	pci_release_mem_regions(pdev);
3670 
3671 	kfree(adapter->mac_table);
3672 	kfree(adapter->shadow_vfta);
3673 	free_netdev(netdev);
3674 
3675 	pci_disable_pcie_error_reporting(pdev);
3676 
3677 	pci_disable_device(pdev);
3678 }
3679 
3680 /**
3681  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3682  *  @adapter: board private structure to initialize
3683  *
3684  *  This function initializes the vf specific data storage and then attempts to
3685  *  allocate the VFs.  The reason for ordering it this way is because it is much
3686  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3687  *  the memory for the VFs.
3688  **/
3689 static void igb_probe_vfs(struct igb_adapter *adapter)
3690 {
3691 #ifdef CONFIG_PCI_IOV
3692 	struct pci_dev *pdev = adapter->pdev;
3693 	struct e1000_hw *hw = &adapter->hw;
3694 
3695 	/* Virtualization features not supported on i210 family. */
3696 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3697 		return;
3698 
3699 	/* Of the below we really only want the effect of getting
3700 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3701 	 * igb_enable_sriov() has no effect.
3702 	 */
3703 	igb_set_interrupt_capability(adapter, true);
3704 	igb_reset_interrupt_capability(adapter);
3705 
3706 	pci_sriov_set_totalvfs(pdev, 7);
3707 	igb_enable_sriov(pdev, max_vfs);
3708 
3709 #endif /* CONFIG_PCI_IOV */
3710 }
3711 
3712 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3713 {
3714 	struct e1000_hw *hw = &adapter->hw;
3715 	unsigned int max_rss_queues;
3716 
3717 	/* Determine the maximum number of RSS queues supported. */
3718 	switch (hw->mac.type) {
3719 	case e1000_i211:
3720 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3721 		break;
3722 	case e1000_82575:
3723 	case e1000_i210:
3724 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3725 		break;
3726 	case e1000_i350:
3727 		/* I350 cannot do RSS and SR-IOV at the same time */
3728 		if (!!adapter->vfs_allocated_count) {
3729 			max_rss_queues = 1;
3730 			break;
3731 		}
3732 		/* fall through */
3733 	case e1000_82576:
3734 		if (!!adapter->vfs_allocated_count) {
3735 			max_rss_queues = 2;
3736 			break;
3737 		}
3738 		/* fall through */
3739 	case e1000_82580:
3740 	case e1000_i354:
3741 	default:
3742 		max_rss_queues = IGB_MAX_RX_QUEUES;
3743 		break;
3744 	}
3745 
3746 	return max_rss_queues;
3747 }
3748 
3749 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3750 {
3751 	u32 max_rss_queues;
3752 
3753 	max_rss_queues = igb_get_max_rss_queues(adapter);
3754 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3755 
3756 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3757 }
3758 
3759 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3760 			      const u32 max_rss_queues)
3761 {
3762 	struct e1000_hw *hw = &adapter->hw;
3763 
3764 	/* Determine if we need to pair queues. */
3765 	switch (hw->mac.type) {
3766 	case e1000_82575:
3767 	case e1000_i211:
3768 		/* Device supports enough interrupts without queue pairing. */
3769 		break;
3770 	case e1000_82576:
3771 	case e1000_82580:
3772 	case e1000_i350:
3773 	case e1000_i354:
3774 	case e1000_i210:
3775 	default:
3776 		/* If rss_queues > half of max_rss_queues, pair the queues in
3777 		 * order to conserve interrupts due to limited supply.
3778 		 */
3779 		if (adapter->rss_queues > (max_rss_queues / 2))
3780 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3781 		else
3782 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3783 		break;
3784 	}
3785 }
3786 
3787 /**
3788  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3789  *  @adapter: board private structure to initialize
3790  *
3791  *  igb_sw_init initializes the Adapter private data structure.
3792  *  Fields are initialized based on PCI device information and
3793  *  OS network device settings (MTU size).
3794  **/
3795 static int igb_sw_init(struct igb_adapter *adapter)
3796 {
3797 	struct e1000_hw *hw = &adapter->hw;
3798 	struct net_device *netdev = adapter->netdev;
3799 	struct pci_dev *pdev = adapter->pdev;
3800 
3801 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3802 
3803 	/* set default ring sizes */
3804 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3805 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3806 
3807 	/* set default ITR values */
3808 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3809 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3810 
3811 	/* set default work limits */
3812 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3813 
3814 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3815 				  VLAN_HLEN;
3816 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3817 
3818 	spin_lock_init(&adapter->nfc_lock);
3819 	spin_lock_init(&adapter->stats64_lock);
3820 #ifdef CONFIG_PCI_IOV
3821 	switch (hw->mac.type) {
3822 	case e1000_82576:
3823 	case e1000_i350:
3824 		if (max_vfs > 7) {
3825 			dev_warn(&pdev->dev,
3826 				 "Maximum of 7 VFs per PF, using max\n");
3827 			max_vfs = adapter->vfs_allocated_count = 7;
3828 		} else
3829 			adapter->vfs_allocated_count = max_vfs;
3830 		if (adapter->vfs_allocated_count)
3831 			dev_warn(&pdev->dev,
3832 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3833 		break;
3834 	default:
3835 		break;
3836 	}
3837 #endif /* CONFIG_PCI_IOV */
3838 
3839 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3840 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3841 
3842 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3843 				     sizeof(struct igb_mac_addr),
3844 				     GFP_KERNEL);
3845 	if (!adapter->mac_table)
3846 		return -ENOMEM;
3847 
3848 	igb_probe_vfs(adapter);
3849 
3850 	igb_init_queue_configuration(adapter);
3851 
3852 	/* Setup and initialize a copy of the hw vlan table array */
3853 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3854 				       GFP_KERNEL);
3855 	if (!adapter->shadow_vfta)
3856 		return -ENOMEM;
3857 
3858 	/* This call may decrease the number of queues */
3859 	if (igb_init_interrupt_scheme(adapter, true)) {
3860 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3861 		return -ENOMEM;
3862 	}
3863 
3864 	/* Explicitly disable IRQ since the NIC can be in any state. */
3865 	igb_irq_disable(adapter);
3866 
3867 	if (hw->mac.type >= e1000_i350)
3868 		adapter->flags &= ~IGB_FLAG_DMAC;
3869 
3870 	set_bit(__IGB_DOWN, &adapter->state);
3871 	return 0;
3872 }
3873 
3874 /**
3875  *  igb_open - Called when a network interface is made active
3876  *  @netdev: network interface device structure
3877  *
3878  *  Returns 0 on success, negative value on failure
3879  *
3880  *  The open entry point is called when a network interface is made
3881  *  active by the system (IFF_UP).  At this point all resources needed
3882  *  for transmit and receive operations are allocated, the interrupt
3883  *  handler is registered with the OS, the watchdog timer is started,
3884  *  and the stack is notified that the interface is ready.
3885  **/
3886 static int __igb_open(struct net_device *netdev, bool resuming)
3887 {
3888 	struct igb_adapter *adapter = netdev_priv(netdev);
3889 	struct e1000_hw *hw = &adapter->hw;
3890 	struct pci_dev *pdev = adapter->pdev;
3891 	int err;
3892 	int i;
3893 
3894 	/* disallow open during test */
3895 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3896 		WARN_ON(resuming);
3897 		return -EBUSY;
3898 	}
3899 
3900 	if (!resuming)
3901 		pm_runtime_get_sync(&pdev->dev);
3902 
3903 	netif_carrier_off(netdev);
3904 
3905 	/* allocate transmit descriptors */
3906 	err = igb_setup_all_tx_resources(adapter);
3907 	if (err)
3908 		goto err_setup_tx;
3909 
3910 	/* allocate receive descriptors */
3911 	err = igb_setup_all_rx_resources(adapter);
3912 	if (err)
3913 		goto err_setup_rx;
3914 
3915 	igb_power_up_link(adapter);
3916 
3917 	/* before we allocate an interrupt, we must be ready to handle it.
3918 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3919 	 * as soon as we call pci_request_irq, so we have to setup our
3920 	 * clean_rx handler before we do so.
3921 	 */
3922 	igb_configure(adapter);
3923 
3924 	err = igb_request_irq(adapter);
3925 	if (err)
3926 		goto err_req_irq;
3927 
3928 	/* Notify the stack of the actual queue counts. */
3929 	err = netif_set_real_num_tx_queues(adapter->netdev,
3930 					   adapter->num_tx_queues);
3931 	if (err)
3932 		goto err_set_queues;
3933 
3934 	err = netif_set_real_num_rx_queues(adapter->netdev,
3935 					   adapter->num_rx_queues);
3936 	if (err)
3937 		goto err_set_queues;
3938 
3939 	/* From here on the code is the same as igb_up() */
3940 	clear_bit(__IGB_DOWN, &adapter->state);
3941 
3942 	for (i = 0; i < adapter->num_q_vectors; i++)
3943 		napi_enable(&(adapter->q_vector[i]->napi));
3944 
3945 	/* Clear any pending interrupts. */
3946 	rd32(E1000_TSICR);
3947 	rd32(E1000_ICR);
3948 
3949 	igb_irq_enable(adapter);
3950 
3951 	/* notify VFs that reset has been completed */
3952 	if (adapter->vfs_allocated_count) {
3953 		u32 reg_data = rd32(E1000_CTRL_EXT);
3954 
3955 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3956 		wr32(E1000_CTRL_EXT, reg_data);
3957 	}
3958 
3959 	netif_tx_start_all_queues(netdev);
3960 
3961 	if (!resuming)
3962 		pm_runtime_put(&pdev->dev);
3963 
3964 	/* start the watchdog. */
3965 	hw->mac.get_link_status = 1;
3966 	schedule_work(&adapter->watchdog_task);
3967 
3968 	return 0;
3969 
3970 err_set_queues:
3971 	igb_free_irq(adapter);
3972 err_req_irq:
3973 	igb_release_hw_control(adapter);
3974 	igb_power_down_link(adapter);
3975 	igb_free_all_rx_resources(adapter);
3976 err_setup_rx:
3977 	igb_free_all_tx_resources(adapter);
3978 err_setup_tx:
3979 	igb_reset(adapter);
3980 	if (!resuming)
3981 		pm_runtime_put(&pdev->dev);
3982 
3983 	return err;
3984 }
3985 
3986 int igb_open(struct net_device *netdev)
3987 {
3988 	return __igb_open(netdev, false);
3989 }
3990 
3991 /**
3992  *  igb_close - Disables a network interface
3993  *  @netdev: network interface device structure
3994  *
3995  *  Returns 0, this is not allowed to fail
3996  *
3997  *  The close entry point is called when an interface is de-activated
3998  *  by the OS.  The hardware is still under the driver's control, but
3999  *  needs to be disabled.  A global MAC reset is issued to stop the
4000  *  hardware, and all transmit and receive resources are freed.
4001  **/
4002 static int __igb_close(struct net_device *netdev, bool suspending)
4003 {
4004 	struct igb_adapter *adapter = netdev_priv(netdev);
4005 	struct pci_dev *pdev = adapter->pdev;
4006 
4007 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4008 
4009 	if (!suspending)
4010 		pm_runtime_get_sync(&pdev->dev);
4011 
4012 	igb_down(adapter);
4013 	igb_free_irq(adapter);
4014 
4015 	igb_free_all_tx_resources(adapter);
4016 	igb_free_all_rx_resources(adapter);
4017 
4018 	if (!suspending)
4019 		pm_runtime_put_sync(&pdev->dev);
4020 	return 0;
4021 }
4022 
4023 int igb_close(struct net_device *netdev)
4024 {
4025 	if (netif_device_present(netdev) || netdev->dismantle)
4026 		return __igb_close(netdev, false);
4027 	return 0;
4028 }
4029 
4030 /**
4031  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4032  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4033  *
4034  *  Return 0 on success, negative on failure
4035  **/
4036 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4037 {
4038 	struct device *dev = tx_ring->dev;
4039 	int size;
4040 
4041 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4042 
4043 	tx_ring->tx_buffer_info = vmalloc(size);
4044 	if (!tx_ring->tx_buffer_info)
4045 		goto err;
4046 
4047 	/* round up to nearest 4K */
4048 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4049 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4050 
4051 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4052 					   &tx_ring->dma, GFP_KERNEL);
4053 	if (!tx_ring->desc)
4054 		goto err;
4055 
4056 	tx_ring->next_to_use = 0;
4057 	tx_ring->next_to_clean = 0;
4058 
4059 	return 0;
4060 
4061 err:
4062 	vfree(tx_ring->tx_buffer_info);
4063 	tx_ring->tx_buffer_info = NULL;
4064 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4065 	return -ENOMEM;
4066 }
4067 
4068 /**
4069  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4070  *				 (Descriptors) for all queues
4071  *  @adapter: board private structure
4072  *
4073  *  Return 0 on success, negative on failure
4074  **/
4075 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4076 {
4077 	struct pci_dev *pdev = adapter->pdev;
4078 	int i, err = 0;
4079 
4080 	for (i = 0; i < adapter->num_tx_queues; i++) {
4081 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4082 		if (err) {
4083 			dev_err(&pdev->dev,
4084 				"Allocation for Tx Queue %u failed\n", i);
4085 			for (i--; i >= 0; i--)
4086 				igb_free_tx_resources(adapter->tx_ring[i]);
4087 			break;
4088 		}
4089 	}
4090 
4091 	return err;
4092 }
4093 
4094 /**
4095  *  igb_setup_tctl - configure the transmit control registers
4096  *  @adapter: Board private structure
4097  **/
4098 void igb_setup_tctl(struct igb_adapter *adapter)
4099 {
4100 	struct e1000_hw *hw = &adapter->hw;
4101 	u32 tctl;
4102 
4103 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4104 	wr32(E1000_TXDCTL(0), 0);
4105 
4106 	/* Program the Transmit Control Register */
4107 	tctl = rd32(E1000_TCTL);
4108 	tctl &= ~E1000_TCTL_CT;
4109 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4110 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4111 
4112 	igb_config_collision_dist(hw);
4113 
4114 	/* Enable transmits */
4115 	tctl |= E1000_TCTL_EN;
4116 
4117 	wr32(E1000_TCTL, tctl);
4118 }
4119 
4120 /**
4121  *  igb_configure_tx_ring - Configure transmit ring after Reset
4122  *  @adapter: board private structure
4123  *  @ring: tx ring to configure
4124  *
4125  *  Configure a transmit ring after a reset.
4126  **/
4127 void igb_configure_tx_ring(struct igb_adapter *adapter,
4128 			   struct igb_ring *ring)
4129 {
4130 	struct e1000_hw *hw = &adapter->hw;
4131 	u32 txdctl = 0;
4132 	u64 tdba = ring->dma;
4133 	int reg_idx = ring->reg_idx;
4134 
4135 	wr32(E1000_TDLEN(reg_idx),
4136 	     ring->count * sizeof(union e1000_adv_tx_desc));
4137 	wr32(E1000_TDBAL(reg_idx),
4138 	     tdba & 0x00000000ffffffffULL);
4139 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4140 
4141 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4142 	wr32(E1000_TDH(reg_idx), 0);
4143 	writel(0, ring->tail);
4144 
4145 	txdctl |= IGB_TX_PTHRESH;
4146 	txdctl |= IGB_TX_HTHRESH << 8;
4147 	txdctl |= IGB_TX_WTHRESH << 16;
4148 
4149 	/* reinitialize tx_buffer_info */
4150 	memset(ring->tx_buffer_info, 0,
4151 	       sizeof(struct igb_tx_buffer) * ring->count);
4152 
4153 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4154 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4155 }
4156 
4157 /**
4158  *  igb_configure_tx - Configure transmit Unit after Reset
4159  *  @adapter: board private structure
4160  *
4161  *  Configure the Tx unit of the MAC after a reset.
4162  **/
4163 static void igb_configure_tx(struct igb_adapter *adapter)
4164 {
4165 	struct e1000_hw *hw = &adapter->hw;
4166 	int i;
4167 
4168 	/* disable the queues */
4169 	for (i = 0; i < adapter->num_tx_queues; i++)
4170 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4171 
4172 	wrfl();
4173 	usleep_range(10000, 20000);
4174 
4175 	for (i = 0; i < adapter->num_tx_queues; i++)
4176 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4177 }
4178 
4179 /**
4180  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4181  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4182  *
4183  *  Returns 0 on success, negative on failure
4184  **/
4185 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4186 {
4187 	struct device *dev = rx_ring->dev;
4188 	int size;
4189 
4190 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4191 
4192 	rx_ring->rx_buffer_info = vmalloc(size);
4193 	if (!rx_ring->rx_buffer_info)
4194 		goto err;
4195 
4196 	/* Round up to nearest 4K */
4197 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4198 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4199 
4200 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4201 					   &rx_ring->dma, GFP_KERNEL);
4202 	if (!rx_ring->desc)
4203 		goto err;
4204 
4205 	rx_ring->next_to_alloc = 0;
4206 	rx_ring->next_to_clean = 0;
4207 	rx_ring->next_to_use = 0;
4208 
4209 	return 0;
4210 
4211 err:
4212 	vfree(rx_ring->rx_buffer_info);
4213 	rx_ring->rx_buffer_info = NULL;
4214 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4215 	return -ENOMEM;
4216 }
4217 
4218 /**
4219  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4220  *				 (Descriptors) for all queues
4221  *  @adapter: board private structure
4222  *
4223  *  Return 0 on success, negative on failure
4224  **/
4225 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4226 {
4227 	struct pci_dev *pdev = adapter->pdev;
4228 	int i, err = 0;
4229 
4230 	for (i = 0; i < adapter->num_rx_queues; i++) {
4231 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4232 		if (err) {
4233 			dev_err(&pdev->dev,
4234 				"Allocation for Rx Queue %u failed\n", i);
4235 			for (i--; i >= 0; i--)
4236 				igb_free_rx_resources(adapter->rx_ring[i]);
4237 			break;
4238 		}
4239 	}
4240 
4241 	return err;
4242 }
4243 
4244 /**
4245  *  igb_setup_mrqc - configure the multiple receive queue control registers
4246  *  @adapter: Board private structure
4247  **/
4248 static void igb_setup_mrqc(struct igb_adapter *adapter)
4249 {
4250 	struct e1000_hw *hw = &adapter->hw;
4251 	u32 mrqc, rxcsum;
4252 	u32 j, num_rx_queues;
4253 	u32 rss_key[10];
4254 
4255 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4256 	for (j = 0; j < 10; j++)
4257 		wr32(E1000_RSSRK(j), rss_key[j]);
4258 
4259 	num_rx_queues = adapter->rss_queues;
4260 
4261 	switch (hw->mac.type) {
4262 	case e1000_82576:
4263 		/* 82576 supports 2 RSS queues for SR-IOV */
4264 		if (adapter->vfs_allocated_count)
4265 			num_rx_queues = 2;
4266 		break;
4267 	default:
4268 		break;
4269 	}
4270 
4271 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4272 		for (j = 0; j < IGB_RETA_SIZE; j++)
4273 			adapter->rss_indir_tbl[j] =
4274 			(j * num_rx_queues) / IGB_RETA_SIZE;
4275 		adapter->rss_indir_tbl_init = num_rx_queues;
4276 	}
4277 	igb_write_rss_indir_tbl(adapter);
4278 
4279 	/* Disable raw packet checksumming so that RSS hash is placed in
4280 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4281 	 * offloads as they are enabled by default
4282 	 */
4283 	rxcsum = rd32(E1000_RXCSUM);
4284 	rxcsum |= E1000_RXCSUM_PCSD;
4285 
4286 	if (adapter->hw.mac.type >= e1000_82576)
4287 		/* Enable Receive Checksum Offload for SCTP */
4288 		rxcsum |= E1000_RXCSUM_CRCOFL;
4289 
4290 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4291 	wr32(E1000_RXCSUM, rxcsum);
4292 
4293 	/* Generate RSS hash based on packet types, TCP/UDP
4294 	 * port numbers and/or IPv4/v6 src and dst addresses
4295 	 */
4296 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4297 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4298 	       E1000_MRQC_RSS_FIELD_IPV6 |
4299 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4300 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4301 
4302 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4303 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4304 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4305 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4306 
4307 	/* If VMDq is enabled then we set the appropriate mode for that, else
4308 	 * we default to RSS so that an RSS hash is calculated per packet even
4309 	 * if we are only using one queue
4310 	 */
4311 	if (adapter->vfs_allocated_count) {
4312 		if (hw->mac.type > e1000_82575) {
4313 			/* Set the default pool for the PF's first queue */
4314 			u32 vtctl = rd32(E1000_VT_CTL);
4315 
4316 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4317 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4318 			vtctl |= adapter->vfs_allocated_count <<
4319 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4320 			wr32(E1000_VT_CTL, vtctl);
4321 		}
4322 		if (adapter->rss_queues > 1)
4323 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4324 		else
4325 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4326 	} else {
4327 		if (hw->mac.type != e1000_i211)
4328 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4329 	}
4330 	igb_vmm_control(adapter);
4331 
4332 	wr32(E1000_MRQC, mrqc);
4333 }
4334 
4335 /**
4336  *  igb_setup_rctl - configure the receive control registers
4337  *  @adapter: Board private structure
4338  **/
4339 void igb_setup_rctl(struct igb_adapter *adapter)
4340 {
4341 	struct e1000_hw *hw = &adapter->hw;
4342 	u32 rctl;
4343 
4344 	rctl = rd32(E1000_RCTL);
4345 
4346 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4347 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4348 
4349 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4350 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4351 
4352 	/* enable stripping of CRC. It's unlikely this will break BMC
4353 	 * redirection as it did with e1000. Newer features require
4354 	 * that the HW strips the CRC.
4355 	 */
4356 	rctl |= E1000_RCTL_SECRC;
4357 
4358 	/* disable store bad packets and clear size bits. */
4359 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4360 
4361 	/* enable LPE to allow for reception of jumbo frames */
4362 	rctl |= E1000_RCTL_LPE;
4363 
4364 	/* disable queue 0 to prevent tail write w/o re-config */
4365 	wr32(E1000_RXDCTL(0), 0);
4366 
4367 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4368 	 * queue drop for all VF and PF queues to prevent head of line blocking
4369 	 * if an un-trusted VF does not provide descriptors to hardware.
4370 	 */
4371 	if (adapter->vfs_allocated_count) {
4372 		/* set all queue drop enable bits */
4373 		wr32(E1000_QDE, ALL_QUEUES);
4374 	}
4375 
4376 	/* This is useful for sniffing bad packets. */
4377 	if (adapter->netdev->features & NETIF_F_RXALL) {
4378 		/* UPE and MPE will be handled by normal PROMISC logic
4379 		 * in e1000e_set_rx_mode
4380 		 */
4381 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4382 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4383 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4384 
4385 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4386 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4387 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4388 		 * and that breaks VLANs.
4389 		 */
4390 	}
4391 
4392 	wr32(E1000_RCTL, rctl);
4393 }
4394 
4395 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4396 				   int vfn)
4397 {
4398 	struct e1000_hw *hw = &adapter->hw;
4399 	u32 vmolr;
4400 
4401 	if (size > MAX_JUMBO_FRAME_SIZE)
4402 		size = MAX_JUMBO_FRAME_SIZE;
4403 
4404 	vmolr = rd32(E1000_VMOLR(vfn));
4405 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4406 	vmolr |= size | E1000_VMOLR_LPE;
4407 	wr32(E1000_VMOLR(vfn), vmolr);
4408 
4409 	return 0;
4410 }
4411 
4412 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4413 					 int vfn, bool enable)
4414 {
4415 	struct e1000_hw *hw = &adapter->hw;
4416 	u32 val, reg;
4417 
4418 	if (hw->mac.type < e1000_82576)
4419 		return;
4420 
4421 	if (hw->mac.type == e1000_i350)
4422 		reg = E1000_DVMOLR(vfn);
4423 	else
4424 		reg = E1000_VMOLR(vfn);
4425 
4426 	val = rd32(reg);
4427 	if (enable)
4428 		val |= E1000_VMOLR_STRVLAN;
4429 	else
4430 		val &= ~(E1000_VMOLR_STRVLAN);
4431 	wr32(reg, val);
4432 }
4433 
4434 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4435 				 int vfn, bool aupe)
4436 {
4437 	struct e1000_hw *hw = &adapter->hw;
4438 	u32 vmolr;
4439 
4440 	/* This register exists only on 82576 and newer so if we are older then
4441 	 * we should exit and do nothing
4442 	 */
4443 	if (hw->mac.type < e1000_82576)
4444 		return;
4445 
4446 	vmolr = rd32(E1000_VMOLR(vfn));
4447 	if (aupe)
4448 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4449 	else
4450 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4451 
4452 	/* clear all bits that might not be set */
4453 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4454 
4455 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4456 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4457 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4458 	 * multicast packets
4459 	 */
4460 	if (vfn <= adapter->vfs_allocated_count)
4461 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4462 
4463 	wr32(E1000_VMOLR(vfn), vmolr);
4464 }
4465 
4466 /**
4467  *  igb_configure_rx_ring - Configure a receive ring after Reset
4468  *  @adapter: board private structure
4469  *  @ring: receive ring to be configured
4470  *
4471  *  Configure the Rx unit of the MAC after a reset.
4472  **/
4473 void igb_configure_rx_ring(struct igb_adapter *adapter,
4474 			   struct igb_ring *ring)
4475 {
4476 	struct e1000_hw *hw = &adapter->hw;
4477 	union e1000_adv_rx_desc *rx_desc;
4478 	u64 rdba = ring->dma;
4479 	int reg_idx = ring->reg_idx;
4480 	u32 srrctl = 0, rxdctl = 0;
4481 
4482 	/* disable the queue */
4483 	wr32(E1000_RXDCTL(reg_idx), 0);
4484 
4485 	/* Set DMA base address registers */
4486 	wr32(E1000_RDBAL(reg_idx),
4487 	     rdba & 0x00000000ffffffffULL);
4488 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4489 	wr32(E1000_RDLEN(reg_idx),
4490 	     ring->count * sizeof(union e1000_adv_rx_desc));
4491 
4492 	/* initialize head and tail */
4493 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4494 	wr32(E1000_RDH(reg_idx), 0);
4495 	writel(0, ring->tail);
4496 
4497 	/* set descriptor configuration */
4498 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4499 	if (ring_uses_large_buffer(ring))
4500 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4501 	else
4502 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4503 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4504 	if (hw->mac.type >= e1000_82580)
4505 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4506 	/* Only set Drop Enable if we are supporting multiple queues */
4507 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4508 		srrctl |= E1000_SRRCTL_DROP_EN;
4509 
4510 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4511 
4512 	/* set filtering for VMDQ pools */
4513 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4514 
4515 	rxdctl |= IGB_RX_PTHRESH;
4516 	rxdctl |= IGB_RX_HTHRESH << 8;
4517 	rxdctl |= IGB_RX_WTHRESH << 16;
4518 
4519 	/* initialize rx_buffer_info */
4520 	memset(ring->rx_buffer_info, 0,
4521 	       sizeof(struct igb_rx_buffer) * ring->count);
4522 
4523 	/* initialize Rx descriptor 0 */
4524 	rx_desc = IGB_RX_DESC(ring, 0);
4525 	rx_desc->wb.upper.length = 0;
4526 
4527 	/* enable receive descriptor fetching */
4528 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4529 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4530 }
4531 
4532 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4533 				  struct igb_ring *rx_ring)
4534 {
4535 	/* set build_skb and buffer size flags */
4536 	clear_ring_build_skb_enabled(rx_ring);
4537 	clear_ring_uses_large_buffer(rx_ring);
4538 
4539 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4540 		return;
4541 
4542 	set_ring_build_skb_enabled(rx_ring);
4543 
4544 #if (PAGE_SIZE < 8192)
4545 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4546 		return;
4547 
4548 	set_ring_uses_large_buffer(rx_ring);
4549 #endif
4550 }
4551 
4552 /**
4553  *  igb_configure_rx - Configure receive Unit after Reset
4554  *  @adapter: board private structure
4555  *
4556  *  Configure the Rx unit of the MAC after a reset.
4557  **/
4558 static void igb_configure_rx(struct igb_adapter *adapter)
4559 {
4560 	int i;
4561 
4562 	/* set the correct pool for the PF default MAC address in entry 0 */
4563 	igb_set_default_mac_filter(adapter);
4564 
4565 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4566 	 * the Base and Length of the Rx Descriptor Ring
4567 	 */
4568 	for (i = 0; i < adapter->num_rx_queues; i++) {
4569 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4570 
4571 		igb_set_rx_buffer_len(adapter, rx_ring);
4572 		igb_configure_rx_ring(adapter, rx_ring);
4573 	}
4574 }
4575 
4576 /**
4577  *  igb_free_tx_resources - Free Tx Resources per Queue
4578  *  @tx_ring: Tx descriptor ring for a specific queue
4579  *
4580  *  Free all transmit software resources
4581  **/
4582 void igb_free_tx_resources(struct igb_ring *tx_ring)
4583 {
4584 	igb_clean_tx_ring(tx_ring);
4585 
4586 	vfree(tx_ring->tx_buffer_info);
4587 	tx_ring->tx_buffer_info = NULL;
4588 
4589 	/* if not set, then don't free */
4590 	if (!tx_ring->desc)
4591 		return;
4592 
4593 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4594 			  tx_ring->desc, tx_ring->dma);
4595 
4596 	tx_ring->desc = NULL;
4597 }
4598 
4599 /**
4600  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4601  *  @adapter: board private structure
4602  *
4603  *  Free all transmit software resources
4604  **/
4605 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4606 {
4607 	int i;
4608 
4609 	for (i = 0; i < adapter->num_tx_queues; i++)
4610 		if (adapter->tx_ring[i])
4611 			igb_free_tx_resources(adapter->tx_ring[i]);
4612 }
4613 
4614 /**
4615  *  igb_clean_tx_ring - Free Tx Buffers
4616  *  @tx_ring: ring to be cleaned
4617  **/
4618 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4619 {
4620 	u16 i = tx_ring->next_to_clean;
4621 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4622 
4623 	while (i != tx_ring->next_to_use) {
4624 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4625 
4626 		/* Free all the Tx ring sk_buffs */
4627 		dev_kfree_skb_any(tx_buffer->skb);
4628 
4629 		/* unmap skb header data */
4630 		dma_unmap_single(tx_ring->dev,
4631 				 dma_unmap_addr(tx_buffer, dma),
4632 				 dma_unmap_len(tx_buffer, len),
4633 				 DMA_TO_DEVICE);
4634 
4635 		/* check for eop_desc to determine the end of the packet */
4636 		eop_desc = tx_buffer->next_to_watch;
4637 		tx_desc = IGB_TX_DESC(tx_ring, i);
4638 
4639 		/* unmap remaining buffers */
4640 		while (tx_desc != eop_desc) {
4641 			tx_buffer++;
4642 			tx_desc++;
4643 			i++;
4644 			if (unlikely(i == tx_ring->count)) {
4645 				i = 0;
4646 				tx_buffer = tx_ring->tx_buffer_info;
4647 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4648 			}
4649 
4650 			/* unmap any remaining paged data */
4651 			if (dma_unmap_len(tx_buffer, len))
4652 				dma_unmap_page(tx_ring->dev,
4653 					       dma_unmap_addr(tx_buffer, dma),
4654 					       dma_unmap_len(tx_buffer, len),
4655 					       DMA_TO_DEVICE);
4656 		}
4657 
4658 		/* move us one more past the eop_desc for start of next pkt */
4659 		tx_buffer++;
4660 		i++;
4661 		if (unlikely(i == tx_ring->count)) {
4662 			i = 0;
4663 			tx_buffer = tx_ring->tx_buffer_info;
4664 		}
4665 	}
4666 
4667 	/* reset BQL for queue */
4668 	netdev_tx_reset_queue(txring_txq(tx_ring));
4669 
4670 	/* reset next_to_use and next_to_clean */
4671 	tx_ring->next_to_use = 0;
4672 	tx_ring->next_to_clean = 0;
4673 }
4674 
4675 /**
4676  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4677  *  @adapter: board private structure
4678  **/
4679 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4680 {
4681 	int i;
4682 
4683 	for (i = 0; i < adapter->num_tx_queues; i++)
4684 		if (adapter->tx_ring[i])
4685 			igb_clean_tx_ring(adapter->tx_ring[i]);
4686 }
4687 
4688 /**
4689  *  igb_free_rx_resources - Free Rx Resources
4690  *  @rx_ring: ring to clean the resources from
4691  *
4692  *  Free all receive software resources
4693  **/
4694 void igb_free_rx_resources(struct igb_ring *rx_ring)
4695 {
4696 	igb_clean_rx_ring(rx_ring);
4697 
4698 	vfree(rx_ring->rx_buffer_info);
4699 	rx_ring->rx_buffer_info = NULL;
4700 
4701 	/* if not set, then don't free */
4702 	if (!rx_ring->desc)
4703 		return;
4704 
4705 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4706 			  rx_ring->desc, rx_ring->dma);
4707 
4708 	rx_ring->desc = NULL;
4709 }
4710 
4711 /**
4712  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4713  *  @adapter: board private structure
4714  *
4715  *  Free all receive software resources
4716  **/
4717 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4718 {
4719 	int i;
4720 
4721 	for (i = 0; i < adapter->num_rx_queues; i++)
4722 		if (adapter->rx_ring[i])
4723 			igb_free_rx_resources(adapter->rx_ring[i]);
4724 }
4725 
4726 /**
4727  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4728  *  @rx_ring: ring to free buffers from
4729  **/
4730 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4731 {
4732 	u16 i = rx_ring->next_to_clean;
4733 
4734 	if (rx_ring->skb)
4735 		dev_kfree_skb(rx_ring->skb);
4736 	rx_ring->skb = NULL;
4737 
4738 	/* Free all the Rx ring sk_buffs */
4739 	while (i != rx_ring->next_to_alloc) {
4740 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4741 
4742 		/* Invalidate cache lines that may have been written to by
4743 		 * device so that we avoid corrupting memory.
4744 		 */
4745 		dma_sync_single_range_for_cpu(rx_ring->dev,
4746 					      buffer_info->dma,
4747 					      buffer_info->page_offset,
4748 					      igb_rx_bufsz(rx_ring),
4749 					      DMA_FROM_DEVICE);
4750 
4751 		/* free resources associated with mapping */
4752 		dma_unmap_page_attrs(rx_ring->dev,
4753 				     buffer_info->dma,
4754 				     igb_rx_pg_size(rx_ring),
4755 				     DMA_FROM_DEVICE,
4756 				     IGB_RX_DMA_ATTR);
4757 		__page_frag_cache_drain(buffer_info->page,
4758 					buffer_info->pagecnt_bias);
4759 
4760 		i++;
4761 		if (i == rx_ring->count)
4762 			i = 0;
4763 	}
4764 
4765 	rx_ring->next_to_alloc = 0;
4766 	rx_ring->next_to_clean = 0;
4767 	rx_ring->next_to_use = 0;
4768 }
4769 
4770 /**
4771  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4772  *  @adapter: board private structure
4773  **/
4774 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4775 {
4776 	int i;
4777 
4778 	for (i = 0; i < adapter->num_rx_queues; i++)
4779 		if (adapter->rx_ring[i])
4780 			igb_clean_rx_ring(adapter->rx_ring[i]);
4781 }
4782 
4783 /**
4784  *  igb_set_mac - Change the Ethernet Address of the NIC
4785  *  @netdev: network interface device structure
4786  *  @p: pointer to an address structure
4787  *
4788  *  Returns 0 on success, negative on failure
4789  **/
4790 static int igb_set_mac(struct net_device *netdev, void *p)
4791 {
4792 	struct igb_adapter *adapter = netdev_priv(netdev);
4793 	struct e1000_hw *hw = &adapter->hw;
4794 	struct sockaddr *addr = p;
4795 
4796 	if (!is_valid_ether_addr(addr->sa_data))
4797 		return -EADDRNOTAVAIL;
4798 
4799 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4800 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4801 
4802 	/* set the correct pool for the new PF MAC address in entry 0 */
4803 	igb_set_default_mac_filter(adapter);
4804 
4805 	return 0;
4806 }
4807 
4808 /**
4809  *  igb_write_mc_addr_list - write multicast addresses to MTA
4810  *  @netdev: network interface device structure
4811  *
4812  *  Writes multicast address list to the MTA hash table.
4813  *  Returns: -ENOMEM on failure
4814  *           0 on no addresses written
4815  *           X on writing X addresses to MTA
4816  **/
4817 static int igb_write_mc_addr_list(struct net_device *netdev)
4818 {
4819 	struct igb_adapter *adapter = netdev_priv(netdev);
4820 	struct e1000_hw *hw = &adapter->hw;
4821 	struct netdev_hw_addr *ha;
4822 	u8  *mta_list;
4823 	int i;
4824 
4825 	if (netdev_mc_empty(netdev)) {
4826 		/* nothing to program, so clear mc list */
4827 		igb_update_mc_addr_list(hw, NULL, 0);
4828 		igb_restore_vf_multicasts(adapter);
4829 		return 0;
4830 	}
4831 
4832 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4833 	if (!mta_list)
4834 		return -ENOMEM;
4835 
4836 	/* The shared function expects a packed array of only addresses. */
4837 	i = 0;
4838 	netdev_for_each_mc_addr(ha, netdev)
4839 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4840 
4841 	igb_update_mc_addr_list(hw, mta_list, i);
4842 	kfree(mta_list);
4843 
4844 	return netdev_mc_count(netdev);
4845 }
4846 
4847 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4848 {
4849 	struct e1000_hw *hw = &adapter->hw;
4850 	u32 i, pf_id;
4851 
4852 	switch (hw->mac.type) {
4853 	case e1000_i210:
4854 	case e1000_i211:
4855 	case e1000_i350:
4856 		/* VLAN filtering needed for VLAN prio filter */
4857 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4858 			break;
4859 		/* fall through */
4860 	case e1000_82576:
4861 	case e1000_82580:
4862 	case e1000_i354:
4863 		/* VLAN filtering needed for pool filtering */
4864 		if (adapter->vfs_allocated_count)
4865 			break;
4866 		/* fall through */
4867 	default:
4868 		return 1;
4869 	}
4870 
4871 	/* We are already in VLAN promisc, nothing to do */
4872 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4873 		return 0;
4874 
4875 	if (!adapter->vfs_allocated_count)
4876 		goto set_vfta;
4877 
4878 	/* Add PF to all active pools */
4879 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4880 
4881 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4882 		u32 vlvf = rd32(E1000_VLVF(i));
4883 
4884 		vlvf |= BIT(pf_id);
4885 		wr32(E1000_VLVF(i), vlvf);
4886 	}
4887 
4888 set_vfta:
4889 	/* Set all bits in the VLAN filter table array */
4890 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4891 		hw->mac.ops.write_vfta(hw, i, ~0U);
4892 
4893 	/* Set flag so we don't redo unnecessary work */
4894 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4895 
4896 	return 0;
4897 }
4898 
4899 #define VFTA_BLOCK_SIZE 8
4900 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4901 {
4902 	struct e1000_hw *hw = &adapter->hw;
4903 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4904 	u32 vid_start = vfta_offset * 32;
4905 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4906 	u32 i, vid, word, bits, pf_id;
4907 
4908 	/* guarantee that we don't scrub out management VLAN */
4909 	vid = adapter->mng_vlan_id;
4910 	if (vid >= vid_start && vid < vid_end)
4911 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4912 
4913 	if (!adapter->vfs_allocated_count)
4914 		goto set_vfta;
4915 
4916 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4917 
4918 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4919 		u32 vlvf = rd32(E1000_VLVF(i));
4920 
4921 		/* pull VLAN ID from VLVF */
4922 		vid = vlvf & VLAN_VID_MASK;
4923 
4924 		/* only concern ourselves with a certain range */
4925 		if (vid < vid_start || vid >= vid_end)
4926 			continue;
4927 
4928 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4929 			/* record VLAN ID in VFTA */
4930 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4931 
4932 			/* if PF is part of this then continue */
4933 			if (test_bit(vid, adapter->active_vlans))
4934 				continue;
4935 		}
4936 
4937 		/* remove PF from the pool */
4938 		bits = ~BIT(pf_id);
4939 		bits &= rd32(E1000_VLVF(i));
4940 		wr32(E1000_VLVF(i), bits);
4941 	}
4942 
4943 set_vfta:
4944 	/* extract values from active_vlans and write back to VFTA */
4945 	for (i = VFTA_BLOCK_SIZE; i--;) {
4946 		vid = (vfta_offset + i) * 32;
4947 		word = vid / BITS_PER_LONG;
4948 		bits = vid % BITS_PER_LONG;
4949 
4950 		vfta[i] |= adapter->active_vlans[word] >> bits;
4951 
4952 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4953 	}
4954 }
4955 
4956 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4957 {
4958 	u32 i;
4959 
4960 	/* We are not in VLAN promisc, nothing to do */
4961 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4962 		return;
4963 
4964 	/* Set flag so we don't redo unnecessary work */
4965 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4966 
4967 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4968 		igb_scrub_vfta(adapter, i);
4969 }
4970 
4971 /**
4972  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4973  *  @netdev: network interface device structure
4974  *
4975  *  The set_rx_mode entry point is called whenever the unicast or multicast
4976  *  address lists or the network interface flags are updated.  This routine is
4977  *  responsible for configuring the hardware for proper unicast, multicast,
4978  *  promiscuous mode, and all-multi behavior.
4979  **/
4980 static void igb_set_rx_mode(struct net_device *netdev)
4981 {
4982 	struct igb_adapter *adapter = netdev_priv(netdev);
4983 	struct e1000_hw *hw = &adapter->hw;
4984 	unsigned int vfn = adapter->vfs_allocated_count;
4985 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4986 	int count;
4987 
4988 	/* Check for Promiscuous and All Multicast modes */
4989 	if (netdev->flags & IFF_PROMISC) {
4990 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4991 		vmolr |= E1000_VMOLR_MPME;
4992 
4993 		/* enable use of UTA filter to force packets to default pool */
4994 		if (hw->mac.type == e1000_82576)
4995 			vmolr |= E1000_VMOLR_ROPE;
4996 	} else {
4997 		if (netdev->flags & IFF_ALLMULTI) {
4998 			rctl |= E1000_RCTL_MPE;
4999 			vmolr |= E1000_VMOLR_MPME;
5000 		} else {
5001 			/* Write addresses to the MTA, if the attempt fails
5002 			 * then we should just turn on promiscuous mode so
5003 			 * that we can at least receive multicast traffic
5004 			 */
5005 			count = igb_write_mc_addr_list(netdev);
5006 			if (count < 0) {
5007 				rctl |= E1000_RCTL_MPE;
5008 				vmolr |= E1000_VMOLR_MPME;
5009 			} else if (count) {
5010 				vmolr |= E1000_VMOLR_ROMPE;
5011 			}
5012 		}
5013 	}
5014 
5015 	/* Write addresses to available RAR registers, if there is not
5016 	 * sufficient space to store all the addresses then enable
5017 	 * unicast promiscuous mode
5018 	 */
5019 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5020 		rctl |= E1000_RCTL_UPE;
5021 		vmolr |= E1000_VMOLR_ROPE;
5022 	}
5023 
5024 	/* enable VLAN filtering by default */
5025 	rctl |= E1000_RCTL_VFE;
5026 
5027 	/* disable VLAN filtering for modes that require it */
5028 	if ((netdev->flags & IFF_PROMISC) ||
5029 	    (netdev->features & NETIF_F_RXALL)) {
5030 		/* if we fail to set all rules then just clear VFE */
5031 		if (igb_vlan_promisc_enable(adapter))
5032 			rctl &= ~E1000_RCTL_VFE;
5033 	} else {
5034 		igb_vlan_promisc_disable(adapter);
5035 	}
5036 
5037 	/* update state of unicast, multicast, and VLAN filtering modes */
5038 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5039 				     E1000_RCTL_VFE);
5040 	wr32(E1000_RCTL, rctl);
5041 
5042 #if (PAGE_SIZE < 8192)
5043 	if (!adapter->vfs_allocated_count) {
5044 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5045 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5046 	}
5047 #endif
5048 	wr32(E1000_RLPML, rlpml);
5049 
5050 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5051 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5052 	 * we will have issues with VLAN tag stripping not being done for frames
5053 	 * that are only arriving because we are the default pool
5054 	 */
5055 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5056 		return;
5057 
5058 	/* set UTA to appropriate mode */
5059 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5060 
5061 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5062 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5063 
5064 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5065 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5066 #if (PAGE_SIZE < 8192)
5067 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5068 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5069 	else
5070 #endif
5071 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5072 	vmolr |= E1000_VMOLR_LPE;
5073 
5074 	wr32(E1000_VMOLR(vfn), vmolr);
5075 
5076 	igb_restore_vf_multicasts(adapter);
5077 }
5078 
5079 static void igb_check_wvbr(struct igb_adapter *adapter)
5080 {
5081 	struct e1000_hw *hw = &adapter->hw;
5082 	u32 wvbr = 0;
5083 
5084 	switch (hw->mac.type) {
5085 	case e1000_82576:
5086 	case e1000_i350:
5087 		wvbr = rd32(E1000_WVBR);
5088 		if (!wvbr)
5089 			return;
5090 		break;
5091 	default:
5092 		break;
5093 	}
5094 
5095 	adapter->wvbr |= wvbr;
5096 }
5097 
5098 #define IGB_STAGGERED_QUEUE_OFFSET 8
5099 
5100 static void igb_spoof_check(struct igb_adapter *adapter)
5101 {
5102 	int j;
5103 
5104 	if (!adapter->wvbr)
5105 		return;
5106 
5107 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5108 		if (adapter->wvbr & BIT(j) ||
5109 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5110 			dev_warn(&adapter->pdev->dev,
5111 				"Spoof event(s) detected on VF %d\n", j);
5112 			adapter->wvbr &=
5113 				~(BIT(j) |
5114 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5115 		}
5116 	}
5117 }
5118 
5119 /* Need to wait a few seconds after link up to get diagnostic information from
5120  * the phy
5121  */
5122 static void igb_update_phy_info(struct timer_list *t)
5123 {
5124 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5125 	igb_get_phy_info(&adapter->hw);
5126 }
5127 
5128 /**
5129  *  igb_has_link - check shared code for link and determine up/down
5130  *  @adapter: pointer to driver private info
5131  **/
5132 bool igb_has_link(struct igb_adapter *adapter)
5133 {
5134 	struct e1000_hw *hw = &adapter->hw;
5135 	bool link_active = false;
5136 
5137 	/* get_link_status is set on LSC (link status) interrupt or
5138 	 * rx sequence error interrupt.  get_link_status will stay
5139 	 * false until the e1000_check_for_link establishes link
5140 	 * for copper adapters ONLY
5141 	 */
5142 	switch (hw->phy.media_type) {
5143 	case e1000_media_type_copper:
5144 		if (!hw->mac.get_link_status)
5145 			return true;
5146 		/* fall through */
5147 	case e1000_media_type_internal_serdes:
5148 		hw->mac.ops.check_for_link(hw);
5149 		link_active = !hw->mac.get_link_status;
5150 		break;
5151 	default:
5152 	case e1000_media_type_unknown:
5153 		break;
5154 	}
5155 
5156 	if (((hw->mac.type == e1000_i210) ||
5157 	     (hw->mac.type == e1000_i211)) &&
5158 	     (hw->phy.id == I210_I_PHY_ID)) {
5159 		if (!netif_carrier_ok(adapter->netdev)) {
5160 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5161 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5162 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5163 			adapter->link_check_timeout = jiffies;
5164 		}
5165 	}
5166 
5167 	return link_active;
5168 }
5169 
5170 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5171 {
5172 	bool ret = false;
5173 	u32 ctrl_ext, thstat;
5174 
5175 	/* check for thermal sensor event on i350 copper only */
5176 	if (hw->mac.type == e1000_i350) {
5177 		thstat = rd32(E1000_THSTAT);
5178 		ctrl_ext = rd32(E1000_CTRL_EXT);
5179 
5180 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5181 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5182 			ret = !!(thstat & event);
5183 	}
5184 
5185 	return ret;
5186 }
5187 
5188 /**
5189  *  igb_check_lvmmc - check for malformed packets received
5190  *  and indicated in LVMMC register
5191  *  @adapter: pointer to adapter
5192  **/
5193 static void igb_check_lvmmc(struct igb_adapter *adapter)
5194 {
5195 	struct e1000_hw *hw = &adapter->hw;
5196 	u32 lvmmc;
5197 
5198 	lvmmc = rd32(E1000_LVMMC);
5199 	if (lvmmc) {
5200 		if (unlikely(net_ratelimit())) {
5201 			netdev_warn(adapter->netdev,
5202 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5203 				    lvmmc);
5204 		}
5205 	}
5206 }
5207 
5208 /**
5209  *  igb_watchdog - Timer Call-back
5210  *  @data: pointer to adapter cast into an unsigned long
5211  **/
5212 static void igb_watchdog(struct timer_list *t)
5213 {
5214 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5215 	/* Do the rest outside of interrupt context */
5216 	schedule_work(&adapter->watchdog_task);
5217 }
5218 
5219 static void igb_watchdog_task(struct work_struct *work)
5220 {
5221 	struct igb_adapter *adapter = container_of(work,
5222 						   struct igb_adapter,
5223 						   watchdog_task);
5224 	struct e1000_hw *hw = &adapter->hw;
5225 	struct e1000_phy_info *phy = &hw->phy;
5226 	struct net_device *netdev = adapter->netdev;
5227 	u32 link;
5228 	int i;
5229 	u32 connsw;
5230 	u16 phy_data, retry_count = 20;
5231 
5232 	link = igb_has_link(adapter);
5233 
5234 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5235 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5236 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5237 		else
5238 			link = false;
5239 	}
5240 
5241 	/* Force link down if we have fiber to swap to */
5242 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5243 		if (hw->phy.media_type == e1000_media_type_copper) {
5244 			connsw = rd32(E1000_CONNSW);
5245 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5246 				link = 0;
5247 		}
5248 	}
5249 	if (link) {
5250 		/* Perform a reset if the media type changed. */
5251 		if (hw->dev_spec._82575.media_changed) {
5252 			hw->dev_spec._82575.media_changed = false;
5253 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5254 			igb_reset(adapter);
5255 		}
5256 		/* Cancel scheduled suspend requests. */
5257 		pm_runtime_resume(netdev->dev.parent);
5258 
5259 		if (!netif_carrier_ok(netdev)) {
5260 			u32 ctrl;
5261 
5262 			hw->mac.ops.get_speed_and_duplex(hw,
5263 							 &adapter->link_speed,
5264 							 &adapter->link_duplex);
5265 
5266 			ctrl = rd32(E1000_CTRL);
5267 			/* Links status message must follow this format */
5268 			netdev_info(netdev,
5269 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5270 			       netdev->name,
5271 			       adapter->link_speed,
5272 			       adapter->link_duplex == FULL_DUPLEX ?
5273 			       "Full" : "Half",
5274 			       (ctrl & E1000_CTRL_TFCE) &&
5275 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5276 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5277 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5278 
5279 			/* disable EEE if enabled */
5280 			if ((adapter->flags & IGB_FLAG_EEE) &&
5281 				(adapter->link_duplex == HALF_DUPLEX)) {
5282 				dev_info(&adapter->pdev->dev,
5283 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5284 				adapter->hw.dev_spec._82575.eee_disable = true;
5285 				adapter->flags &= ~IGB_FLAG_EEE;
5286 			}
5287 
5288 			/* check if SmartSpeed worked */
5289 			igb_check_downshift(hw);
5290 			if (phy->speed_downgraded)
5291 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5292 
5293 			/* check for thermal sensor event */
5294 			if (igb_thermal_sensor_event(hw,
5295 			    E1000_THSTAT_LINK_THROTTLE))
5296 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5297 
5298 			/* adjust timeout factor according to speed/duplex */
5299 			adapter->tx_timeout_factor = 1;
5300 			switch (adapter->link_speed) {
5301 			case SPEED_10:
5302 				adapter->tx_timeout_factor = 14;
5303 				break;
5304 			case SPEED_100:
5305 				/* maybe add some timeout factor ? */
5306 				break;
5307 			}
5308 
5309 			if (adapter->link_speed != SPEED_1000)
5310 				goto no_wait;
5311 
5312 			/* wait for Remote receiver status OK */
5313 retry_read_status:
5314 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5315 					      &phy_data)) {
5316 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5317 				    retry_count) {
5318 					msleep(100);
5319 					retry_count--;
5320 					goto retry_read_status;
5321 				} else if (!retry_count) {
5322 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5323 				}
5324 			} else {
5325 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5326 			}
5327 no_wait:
5328 			netif_carrier_on(netdev);
5329 
5330 			igb_ping_all_vfs(adapter);
5331 			igb_check_vf_rate_limit(adapter);
5332 
5333 			/* link state has changed, schedule phy info update */
5334 			if (!test_bit(__IGB_DOWN, &adapter->state))
5335 				mod_timer(&adapter->phy_info_timer,
5336 					  round_jiffies(jiffies + 2 * HZ));
5337 		}
5338 	} else {
5339 		if (netif_carrier_ok(netdev)) {
5340 			adapter->link_speed = 0;
5341 			adapter->link_duplex = 0;
5342 
5343 			/* check for thermal sensor event */
5344 			if (igb_thermal_sensor_event(hw,
5345 			    E1000_THSTAT_PWR_DOWN)) {
5346 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5347 			}
5348 
5349 			/* Links status message must follow this format */
5350 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5351 			       netdev->name);
5352 			netif_carrier_off(netdev);
5353 
5354 			igb_ping_all_vfs(adapter);
5355 
5356 			/* link state has changed, schedule phy info update */
5357 			if (!test_bit(__IGB_DOWN, &adapter->state))
5358 				mod_timer(&adapter->phy_info_timer,
5359 					  round_jiffies(jiffies + 2 * HZ));
5360 
5361 			/* link is down, time to check for alternate media */
5362 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5363 				igb_check_swap_media(adapter);
5364 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5365 					schedule_work(&adapter->reset_task);
5366 					/* return immediately */
5367 					return;
5368 				}
5369 			}
5370 			pm_schedule_suspend(netdev->dev.parent,
5371 					    MSEC_PER_SEC * 5);
5372 
5373 		/* also check for alternate media here */
5374 		} else if (!netif_carrier_ok(netdev) &&
5375 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5376 			igb_check_swap_media(adapter);
5377 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5378 				schedule_work(&adapter->reset_task);
5379 				/* return immediately */
5380 				return;
5381 			}
5382 		}
5383 	}
5384 
5385 	spin_lock(&adapter->stats64_lock);
5386 	igb_update_stats(adapter);
5387 	spin_unlock(&adapter->stats64_lock);
5388 
5389 	for (i = 0; i < adapter->num_tx_queues; i++) {
5390 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5391 		if (!netif_carrier_ok(netdev)) {
5392 			/* We've lost link, so the controller stops DMA,
5393 			 * but we've got queued Tx work that's never going
5394 			 * to get done, so reset controller to flush Tx.
5395 			 * (Do the reset outside of interrupt context).
5396 			 */
5397 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5398 				adapter->tx_timeout_count++;
5399 				schedule_work(&adapter->reset_task);
5400 				/* return immediately since reset is imminent */
5401 				return;
5402 			}
5403 		}
5404 
5405 		/* Force detection of hung controller every watchdog period */
5406 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5407 	}
5408 
5409 	/* Cause software interrupt to ensure Rx ring is cleaned */
5410 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5411 		u32 eics = 0;
5412 
5413 		for (i = 0; i < adapter->num_q_vectors; i++)
5414 			eics |= adapter->q_vector[i]->eims_value;
5415 		wr32(E1000_EICS, eics);
5416 	} else {
5417 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5418 	}
5419 
5420 	igb_spoof_check(adapter);
5421 	igb_ptp_rx_hang(adapter);
5422 	igb_ptp_tx_hang(adapter);
5423 
5424 	/* Check LVMMC register on i350/i354 only */
5425 	if ((adapter->hw.mac.type == e1000_i350) ||
5426 	    (adapter->hw.mac.type == e1000_i354))
5427 		igb_check_lvmmc(adapter);
5428 
5429 	/* Reset the timer */
5430 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5431 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5432 			mod_timer(&adapter->watchdog_timer,
5433 				  round_jiffies(jiffies +  HZ));
5434 		else
5435 			mod_timer(&adapter->watchdog_timer,
5436 				  round_jiffies(jiffies + 2 * HZ));
5437 	}
5438 }
5439 
5440 enum latency_range {
5441 	lowest_latency = 0,
5442 	low_latency = 1,
5443 	bulk_latency = 2,
5444 	latency_invalid = 255
5445 };
5446 
5447 /**
5448  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5449  *  @q_vector: pointer to q_vector
5450  *
5451  *  Stores a new ITR value based on strictly on packet size.  This
5452  *  algorithm is less sophisticated than that used in igb_update_itr,
5453  *  due to the difficulty of synchronizing statistics across multiple
5454  *  receive rings.  The divisors and thresholds used by this function
5455  *  were determined based on theoretical maximum wire speed and testing
5456  *  data, in order to minimize response time while increasing bulk
5457  *  throughput.
5458  *  This functionality is controlled by ethtool's coalescing settings.
5459  *  NOTE:  This function is called only when operating in a multiqueue
5460  *         receive environment.
5461  **/
5462 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5463 {
5464 	int new_val = q_vector->itr_val;
5465 	int avg_wire_size = 0;
5466 	struct igb_adapter *adapter = q_vector->adapter;
5467 	unsigned int packets;
5468 
5469 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5470 	 * ints/sec - ITR timer value of 120 ticks.
5471 	 */
5472 	if (adapter->link_speed != SPEED_1000) {
5473 		new_val = IGB_4K_ITR;
5474 		goto set_itr_val;
5475 	}
5476 
5477 	packets = q_vector->rx.total_packets;
5478 	if (packets)
5479 		avg_wire_size = q_vector->rx.total_bytes / packets;
5480 
5481 	packets = q_vector->tx.total_packets;
5482 	if (packets)
5483 		avg_wire_size = max_t(u32, avg_wire_size,
5484 				      q_vector->tx.total_bytes / packets);
5485 
5486 	/* if avg_wire_size isn't set no work was done */
5487 	if (!avg_wire_size)
5488 		goto clear_counts;
5489 
5490 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5491 	avg_wire_size += 24;
5492 
5493 	/* Don't starve jumbo frames */
5494 	avg_wire_size = min(avg_wire_size, 3000);
5495 
5496 	/* Give a little boost to mid-size frames */
5497 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5498 		new_val = avg_wire_size / 3;
5499 	else
5500 		new_val = avg_wire_size / 2;
5501 
5502 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5503 	if (new_val < IGB_20K_ITR &&
5504 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5505 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5506 		new_val = IGB_20K_ITR;
5507 
5508 set_itr_val:
5509 	if (new_val != q_vector->itr_val) {
5510 		q_vector->itr_val = new_val;
5511 		q_vector->set_itr = 1;
5512 	}
5513 clear_counts:
5514 	q_vector->rx.total_bytes = 0;
5515 	q_vector->rx.total_packets = 0;
5516 	q_vector->tx.total_bytes = 0;
5517 	q_vector->tx.total_packets = 0;
5518 }
5519 
5520 /**
5521  *  igb_update_itr - update the dynamic ITR value based on statistics
5522  *  @q_vector: pointer to q_vector
5523  *  @ring_container: ring info to update the itr for
5524  *
5525  *  Stores a new ITR value based on packets and byte
5526  *  counts during the last interrupt.  The advantage of per interrupt
5527  *  computation is faster updates and more accurate ITR for the current
5528  *  traffic pattern.  Constants in this function were computed
5529  *  based on theoretical maximum wire speed and thresholds were set based
5530  *  on testing data as well as attempting to minimize response time
5531  *  while increasing bulk throughput.
5532  *  This functionality is controlled by ethtool's coalescing settings.
5533  *  NOTE:  These calculations are only valid when operating in a single-
5534  *         queue environment.
5535  **/
5536 static void igb_update_itr(struct igb_q_vector *q_vector,
5537 			   struct igb_ring_container *ring_container)
5538 {
5539 	unsigned int packets = ring_container->total_packets;
5540 	unsigned int bytes = ring_container->total_bytes;
5541 	u8 itrval = ring_container->itr;
5542 
5543 	/* no packets, exit with status unchanged */
5544 	if (packets == 0)
5545 		return;
5546 
5547 	switch (itrval) {
5548 	case lowest_latency:
5549 		/* handle TSO and jumbo frames */
5550 		if (bytes/packets > 8000)
5551 			itrval = bulk_latency;
5552 		else if ((packets < 5) && (bytes > 512))
5553 			itrval = low_latency;
5554 		break;
5555 	case low_latency:  /* 50 usec aka 20000 ints/s */
5556 		if (bytes > 10000) {
5557 			/* this if handles the TSO accounting */
5558 			if (bytes/packets > 8000)
5559 				itrval = bulk_latency;
5560 			else if ((packets < 10) || ((bytes/packets) > 1200))
5561 				itrval = bulk_latency;
5562 			else if ((packets > 35))
5563 				itrval = lowest_latency;
5564 		} else if (bytes/packets > 2000) {
5565 			itrval = bulk_latency;
5566 		} else if (packets <= 2 && bytes < 512) {
5567 			itrval = lowest_latency;
5568 		}
5569 		break;
5570 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5571 		if (bytes > 25000) {
5572 			if (packets > 35)
5573 				itrval = low_latency;
5574 		} else if (bytes < 1500) {
5575 			itrval = low_latency;
5576 		}
5577 		break;
5578 	}
5579 
5580 	/* clear work counters since we have the values we need */
5581 	ring_container->total_bytes = 0;
5582 	ring_container->total_packets = 0;
5583 
5584 	/* write updated itr to ring container */
5585 	ring_container->itr = itrval;
5586 }
5587 
5588 static void igb_set_itr(struct igb_q_vector *q_vector)
5589 {
5590 	struct igb_adapter *adapter = q_vector->adapter;
5591 	u32 new_itr = q_vector->itr_val;
5592 	u8 current_itr = 0;
5593 
5594 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5595 	if (adapter->link_speed != SPEED_1000) {
5596 		current_itr = 0;
5597 		new_itr = IGB_4K_ITR;
5598 		goto set_itr_now;
5599 	}
5600 
5601 	igb_update_itr(q_vector, &q_vector->tx);
5602 	igb_update_itr(q_vector, &q_vector->rx);
5603 
5604 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5605 
5606 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5607 	if (current_itr == lowest_latency &&
5608 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5609 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5610 		current_itr = low_latency;
5611 
5612 	switch (current_itr) {
5613 	/* counts and packets in update_itr are dependent on these numbers */
5614 	case lowest_latency:
5615 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5616 		break;
5617 	case low_latency:
5618 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5619 		break;
5620 	case bulk_latency:
5621 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5622 		break;
5623 	default:
5624 		break;
5625 	}
5626 
5627 set_itr_now:
5628 	if (new_itr != q_vector->itr_val) {
5629 		/* this attempts to bias the interrupt rate towards Bulk
5630 		 * by adding intermediate steps when interrupt rate is
5631 		 * increasing
5632 		 */
5633 		new_itr = new_itr > q_vector->itr_val ?
5634 			  max((new_itr * q_vector->itr_val) /
5635 			  (new_itr + (q_vector->itr_val >> 2)),
5636 			  new_itr) : new_itr;
5637 		/* Don't write the value here; it resets the adapter's
5638 		 * internal timer, and causes us to delay far longer than
5639 		 * we should between interrupts.  Instead, we write the ITR
5640 		 * value at the beginning of the next interrupt so the timing
5641 		 * ends up being correct.
5642 		 */
5643 		q_vector->itr_val = new_itr;
5644 		q_vector->set_itr = 1;
5645 	}
5646 }
5647 
5648 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5649 			    struct igb_tx_buffer *first,
5650 			    u32 vlan_macip_lens, u32 type_tucmd,
5651 			    u32 mss_l4len_idx)
5652 {
5653 	struct e1000_adv_tx_context_desc *context_desc;
5654 	u16 i = tx_ring->next_to_use;
5655 	struct timespec64 ts;
5656 
5657 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5658 
5659 	i++;
5660 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5661 
5662 	/* set bits to identify this as an advanced context descriptor */
5663 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5664 
5665 	/* For 82575, context index must be unique per ring. */
5666 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5667 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5668 
5669 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5670 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5671 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5672 
5673 	/* We assume there is always a valid tx time available. Invalid times
5674 	 * should have been handled by the upper layers.
5675 	 */
5676 	if (tx_ring->launchtime_enable) {
5677 		ts = ns_to_timespec64(first->skb->tstamp);
5678 		first->skb->tstamp = 0;
5679 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5680 	} else {
5681 		context_desc->seqnum_seed = 0;
5682 	}
5683 }
5684 
5685 static int igb_tso(struct igb_ring *tx_ring,
5686 		   struct igb_tx_buffer *first,
5687 		   u8 *hdr_len)
5688 {
5689 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5690 	struct sk_buff *skb = first->skb;
5691 	union {
5692 		struct iphdr *v4;
5693 		struct ipv6hdr *v6;
5694 		unsigned char *hdr;
5695 	} ip;
5696 	union {
5697 		struct tcphdr *tcp;
5698 		unsigned char *hdr;
5699 	} l4;
5700 	u32 paylen, l4_offset;
5701 	int err;
5702 
5703 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5704 		return 0;
5705 
5706 	if (!skb_is_gso(skb))
5707 		return 0;
5708 
5709 	err = skb_cow_head(skb, 0);
5710 	if (err < 0)
5711 		return err;
5712 
5713 	ip.hdr = skb_network_header(skb);
5714 	l4.hdr = skb_checksum_start(skb);
5715 
5716 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5717 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5718 
5719 	/* initialize outer IP header fields */
5720 	if (ip.v4->version == 4) {
5721 		unsigned char *csum_start = skb_checksum_start(skb);
5722 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5723 
5724 		/* IP header will have to cancel out any data that
5725 		 * is not a part of the outer IP header
5726 		 */
5727 		ip.v4->check = csum_fold(csum_partial(trans_start,
5728 						      csum_start - trans_start,
5729 						      0));
5730 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5731 
5732 		ip.v4->tot_len = 0;
5733 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5734 				   IGB_TX_FLAGS_CSUM |
5735 				   IGB_TX_FLAGS_IPV4;
5736 	} else {
5737 		ip.v6->payload_len = 0;
5738 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5739 				   IGB_TX_FLAGS_CSUM;
5740 	}
5741 
5742 	/* determine offset of inner transport header */
5743 	l4_offset = l4.hdr - skb->data;
5744 
5745 	/* compute length of segmentation header */
5746 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5747 
5748 	/* remove payload length from inner checksum */
5749 	paylen = skb->len - l4_offset;
5750 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5751 
5752 	/* update gso size and bytecount with header size */
5753 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5754 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5755 
5756 	/* MSS L4LEN IDX */
5757 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5758 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5759 
5760 	/* VLAN MACLEN IPLEN */
5761 	vlan_macip_lens = l4.hdr - ip.hdr;
5762 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5763 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5764 
5765 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5766 			type_tucmd, mss_l4len_idx);
5767 
5768 	return 1;
5769 }
5770 
5771 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5772 {
5773 	unsigned int offset = 0;
5774 
5775 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5776 
5777 	return offset == skb_checksum_start_offset(skb);
5778 }
5779 
5780 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5781 {
5782 	struct sk_buff *skb = first->skb;
5783 	u32 vlan_macip_lens = 0;
5784 	u32 type_tucmd = 0;
5785 
5786 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5787 csum_failed:
5788 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5789 		    !tx_ring->launchtime_enable)
5790 			return;
5791 		goto no_csum;
5792 	}
5793 
5794 	switch (skb->csum_offset) {
5795 	case offsetof(struct tcphdr, check):
5796 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5797 		/* fall through */
5798 	case offsetof(struct udphdr, check):
5799 		break;
5800 	case offsetof(struct sctphdr, checksum):
5801 		/* validate that this is actually an SCTP request */
5802 		if (((first->protocol == htons(ETH_P_IP)) &&
5803 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5804 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5805 		     igb_ipv6_csum_is_sctp(skb))) {
5806 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5807 			break;
5808 		}
5809 		/* fall through */
5810 	default:
5811 		skb_checksum_help(skb);
5812 		goto csum_failed;
5813 	}
5814 
5815 	/* update TX checksum flag */
5816 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5817 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5818 			  skb_network_offset(skb);
5819 no_csum:
5820 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5821 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5822 
5823 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5824 }
5825 
5826 #define IGB_SET_FLAG(_input, _flag, _result) \
5827 	((_flag <= _result) ? \
5828 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5829 	 ((u32)(_input & _flag) / (_flag / _result)))
5830 
5831 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5832 {
5833 	/* set type for advanced descriptor with frame checksum insertion */
5834 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5835 		       E1000_ADVTXD_DCMD_DEXT |
5836 		       E1000_ADVTXD_DCMD_IFCS;
5837 
5838 	/* set HW vlan bit if vlan is present */
5839 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5840 				 (E1000_ADVTXD_DCMD_VLE));
5841 
5842 	/* set segmentation bits for TSO */
5843 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5844 				 (E1000_ADVTXD_DCMD_TSE));
5845 
5846 	/* set timestamp bit if present */
5847 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5848 				 (E1000_ADVTXD_MAC_TSTAMP));
5849 
5850 	/* insert frame checksum */
5851 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5852 
5853 	return cmd_type;
5854 }
5855 
5856 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5857 				 union e1000_adv_tx_desc *tx_desc,
5858 				 u32 tx_flags, unsigned int paylen)
5859 {
5860 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5861 
5862 	/* 82575 requires a unique index per ring */
5863 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5864 		olinfo_status |= tx_ring->reg_idx << 4;
5865 
5866 	/* insert L4 checksum */
5867 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5868 				      IGB_TX_FLAGS_CSUM,
5869 				      (E1000_TXD_POPTS_TXSM << 8));
5870 
5871 	/* insert IPv4 checksum */
5872 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5873 				      IGB_TX_FLAGS_IPV4,
5874 				      (E1000_TXD_POPTS_IXSM << 8));
5875 
5876 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5877 }
5878 
5879 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5880 {
5881 	struct net_device *netdev = tx_ring->netdev;
5882 
5883 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5884 
5885 	/* Herbert's original patch had:
5886 	 *  smp_mb__after_netif_stop_queue();
5887 	 * but since that doesn't exist yet, just open code it.
5888 	 */
5889 	smp_mb();
5890 
5891 	/* We need to check again in a case another CPU has just
5892 	 * made room available.
5893 	 */
5894 	if (igb_desc_unused(tx_ring) < size)
5895 		return -EBUSY;
5896 
5897 	/* A reprieve! */
5898 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5899 
5900 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5901 	tx_ring->tx_stats.restart_queue2++;
5902 	u64_stats_update_end(&tx_ring->tx_syncp2);
5903 
5904 	return 0;
5905 }
5906 
5907 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5908 {
5909 	if (igb_desc_unused(tx_ring) >= size)
5910 		return 0;
5911 	return __igb_maybe_stop_tx(tx_ring, size);
5912 }
5913 
5914 static int igb_tx_map(struct igb_ring *tx_ring,
5915 		      struct igb_tx_buffer *first,
5916 		      const u8 hdr_len)
5917 {
5918 	struct sk_buff *skb = first->skb;
5919 	struct igb_tx_buffer *tx_buffer;
5920 	union e1000_adv_tx_desc *tx_desc;
5921 	struct skb_frag_struct *frag;
5922 	dma_addr_t dma;
5923 	unsigned int data_len, size;
5924 	u32 tx_flags = first->tx_flags;
5925 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5926 	u16 i = tx_ring->next_to_use;
5927 
5928 	tx_desc = IGB_TX_DESC(tx_ring, i);
5929 
5930 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5931 
5932 	size = skb_headlen(skb);
5933 	data_len = skb->data_len;
5934 
5935 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5936 
5937 	tx_buffer = first;
5938 
5939 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5940 		if (dma_mapping_error(tx_ring->dev, dma))
5941 			goto dma_error;
5942 
5943 		/* record length, and DMA address */
5944 		dma_unmap_len_set(tx_buffer, len, size);
5945 		dma_unmap_addr_set(tx_buffer, dma, dma);
5946 
5947 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5948 
5949 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5950 			tx_desc->read.cmd_type_len =
5951 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5952 
5953 			i++;
5954 			tx_desc++;
5955 			if (i == tx_ring->count) {
5956 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5957 				i = 0;
5958 			}
5959 			tx_desc->read.olinfo_status = 0;
5960 
5961 			dma += IGB_MAX_DATA_PER_TXD;
5962 			size -= IGB_MAX_DATA_PER_TXD;
5963 
5964 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5965 		}
5966 
5967 		if (likely(!data_len))
5968 			break;
5969 
5970 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5971 
5972 		i++;
5973 		tx_desc++;
5974 		if (i == tx_ring->count) {
5975 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5976 			i = 0;
5977 		}
5978 		tx_desc->read.olinfo_status = 0;
5979 
5980 		size = skb_frag_size(frag);
5981 		data_len -= size;
5982 
5983 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5984 				       size, DMA_TO_DEVICE);
5985 
5986 		tx_buffer = &tx_ring->tx_buffer_info[i];
5987 	}
5988 
5989 	/* write last descriptor with RS and EOP bits */
5990 	cmd_type |= size | IGB_TXD_DCMD;
5991 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5992 
5993 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5994 
5995 	/* set the timestamp */
5996 	first->time_stamp = jiffies;
5997 
5998 	skb_tx_timestamp(skb);
5999 
6000 	/* Force memory writes to complete before letting h/w know there
6001 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6002 	 * memory model archs, such as IA-64).
6003 	 *
6004 	 * We also need this memory barrier to make certain all of the
6005 	 * status bits have been updated before next_to_watch is written.
6006 	 */
6007 	dma_wmb();
6008 
6009 	/* set next_to_watch value indicating a packet is present */
6010 	first->next_to_watch = tx_desc;
6011 
6012 	i++;
6013 	if (i == tx_ring->count)
6014 		i = 0;
6015 
6016 	tx_ring->next_to_use = i;
6017 
6018 	/* Make sure there is space in the ring for the next send. */
6019 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6020 
6021 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6022 		writel(i, tx_ring->tail);
6023 	}
6024 	return 0;
6025 
6026 dma_error:
6027 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6028 	tx_buffer = &tx_ring->tx_buffer_info[i];
6029 
6030 	/* clear dma mappings for failed tx_buffer_info map */
6031 	while (tx_buffer != first) {
6032 		if (dma_unmap_len(tx_buffer, len))
6033 			dma_unmap_page(tx_ring->dev,
6034 				       dma_unmap_addr(tx_buffer, dma),
6035 				       dma_unmap_len(tx_buffer, len),
6036 				       DMA_TO_DEVICE);
6037 		dma_unmap_len_set(tx_buffer, len, 0);
6038 
6039 		if (i-- == 0)
6040 			i += tx_ring->count;
6041 		tx_buffer = &tx_ring->tx_buffer_info[i];
6042 	}
6043 
6044 	if (dma_unmap_len(tx_buffer, len))
6045 		dma_unmap_single(tx_ring->dev,
6046 				 dma_unmap_addr(tx_buffer, dma),
6047 				 dma_unmap_len(tx_buffer, len),
6048 				 DMA_TO_DEVICE);
6049 	dma_unmap_len_set(tx_buffer, len, 0);
6050 
6051 	dev_kfree_skb_any(tx_buffer->skb);
6052 	tx_buffer->skb = NULL;
6053 
6054 	tx_ring->next_to_use = i;
6055 
6056 	return -1;
6057 }
6058 
6059 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6060 				struct igb_ring *tx_ring)
6061 {
6062 	struct igb_tx_buffer *first;
6063 	int tso;
6064 	u32 tx_flags = 0;
6065 	unsigned short f;
6066 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6067 	__be16 protocol = vlan_get_protocol(skb);
6068 	u8 hdr_len = 0;
6069 
6070 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6071 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6072 	 *       + 2 desc gap to keep tail from touching head,
6073 	 *       + 1 desc for context descriptor,
6074 	 * otherwise try next time
6075 	 */
6076 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6077 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6078 
6079 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6080 		/* this is a hard error */
6081 		return NETDEV_TX_BUSY;
6082 	}
6083 
6084 	/* record the location of the first descriptor for this packet */
6085 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6086 	first->skb = skb;
6087 	first->bytecount = skb->len;
6088 	first->gso_segs = 1;
6089 
6090 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6091 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6092 
6093 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6094 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6095 					   &adapter->state)) {
6096 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6097 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6098 
6099 			adapter->ptp_tx_skb = skb_get(skb);
6100 			adapter->ptp_tx_start = jiffies;
6101 			if (adapter->hw.mac.type == e1000_82576)
6102 				schedule_work(&adapter->ptp_tx_work);
6103 		} else {
6104 			adapter->tx_hwtstamp_skipped++;
6105 		}
6106 	}
6107 
6108 	if (skb_vlan_tag_present(skb)) {
6109 		tx_flags |= IGB_TX_FLAGS_VLAN;
6110 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6111 	}
6112 
6113 	/* record initial flags and protocol */
6114 	first->tx_flags = tx_flags;
6115 	first->protocol = protocol;
6116 
6117 	tso = igb_tso(tx_ring, first, &hdr_len);
6118 	if (tso < 0)
6119 		goto out_drop;
6120 	else if (!tso)
6121 		igb_tx_csum(tx_ring, first);
6122 
6123 	if (igb_tx_map(tx_ring, first, hdr_len))
6124 		goto cleanup_tx_tstamp;
6125 
6126 	return NETDEV_TX_OK;
6127 
6128 out_drop:
6129 	dev_kfree_skb_any(first->skb);
6130 	first->skb = NULL;
6131 cleanup_tx_tstamp:
6132 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6133 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6134 
6135 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6136 		adapter->ptp_tx_skb = NULL;
6137 		if (adapter->hw.mac.type == e1000_82576)
6138 			cancel_work_sync(&adapter->ptp_tx_work);
6139 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6140 	}
6141 
6142 	return NETDEV_TX_OK;
6143 }
6144 
6145 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6146 						    struct sk_buff *skb)
6147 {
6148 	unsigned int r_idx = skb->queue_mapping;
6149 
6150 	if (r_idx >= adapter->num_tx_queues)
6151 		r_idx = r_idx % adapter->num_tx_queues;
6152 
6153 	return adapter->tx_ring[r_idx];
6154 }
6155 
6156 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6157 				  struct net_device *netdev)
6158 {
6159 	struct igb_adapter *adapter = netdev_priv(netdev);
6160 
6161 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6162 	 * in order to meet this minimum size requirement.
6163 	 */
6164 	if (skb_put_padto(skb, 17))
6165 		return NETDEV_TX_OK;
6166 
6167 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6168 }
6169 
6170 /**
6171  *  igb_tx_timeout - Respond to a Tx Hang
6172  *  @netdev: network interface device structure
6173  **/
6174 static void igb_tx_timeout(struct net_device *netdev)
6175 {
6176 	struct igb_adapter *adapter = netdev_priv(netdev);
6177 	struct e1000_hw *hw = &adapter->hw;
6178 
6179 	/* Do the reset outside of interrupt context */
6180 	adapter->tx_timeout_count++;
6181 
6182 	if (hw->mac.type >= e1000_82580)
6183 		hw->dev_spec._82575.global_device_reset = true;
6184 
6185 	schedule_work(&adapter->reset_task);
6186 	wr32(E1000_EICS,
6187 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6188 }
6189 
6190 static void igb_reset_task(struct work_struct *work)
6191 {
6192 	struct igb_adapter *adapter;
6193 	adapter = container_of(work, struct igb_adapter, reset_task);
6194 
6195 	igb_dump(adapter);
6196 	netdev_err(adapter->netdev, "Reset adapter\n");
6197 	igb_reinit_locked(adapter);
6198 }
6199 
6200 /**
6201  *  igb_get_stats64 - Get System Network Statistics
6202  *  @netdev: network interface device structure
6203  *  @stats: rtnl_link_stats64 pointer
6204  **/
6205 static void igb_get_stats64(struct net_device *netdev,
6206 			    struct rtnl_link_stats64 *stats)
6207 {
6208 	struct igb_adapter *adapter = netdev_priv(netdev);
6209 
6210 	spin_lock(&adapter->stats64_lock);
6211 	igb_update_stats(adapter);
6212 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6213 	spin_unlock(&adapter->stats64_lock);
6214 }
6215 
6216 /**
6217  *  igb_change_mtu - Change the Maximum Transfer Unit
6218  *  @netdev: network interface device structure
6219  *  @new_mtu: new value for maximum frame size
6220  *
6221  *  Returns 0 on success, negative on failure
6222  **/
6223 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6224 {
6225 	struct igb_adapter *adapter = netdev_priv(netdev);
6226 	struct pci_dev *pdev = adapter->pdev;
6227 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6228 
6229 	/* adjust max frame to be at least the size of a standard frame */
6230 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6231 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6232 
6233 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6234 		usleep_range(1000, 2000);
6235 
6236 	/* igb_down has a dependency on max_frame_size */
6237 	adapter->max_frame_size = max_frame;
6238 
6239 	if (netif_running(netdev))
6240 		igb_down(adapter);
6241 
6242 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6243 		 netdev->mtu, new_mtu);
6244 	netdev->mtu = new_mtu;
6245 
6246 	if (netif_running(netdev))
6247 		igb_up(adapter);
6248 	else
6249 		igb_reset(adapter);
6250 
6251 	clear_bit(__IGB_RESETTING, &adapter->state);
6252 
6253 	return 0;
6254 }
6255 
6256 /**
6257  *  igb_update_stats - Update the board statistics counters
6258  *  @adapter: board private structure
6259  **/
6260 void igb_update_stats(struct igb_adapter *adapter)
6261 {
6262 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6263 	struct e1000_hw *hw = &adapter->hw;
6264 	struct pci_dev *pdev = adapter->pdev;
6265 	u32 reg, mpc;
6266 	int i;
6267 	u64 bytes, packets;
6268 	unsigned int start;
6269 	u64 _bytes, _packets;
6270 
6271 	/* Prevent stats update while adapter is being reset, or if the pci
6272 	 * connection is down.
6273 	 */
6274 	if (adapter->link_speed == 0)
6275 		return;
6276 	if (pci_channel_offline(pdev))
6277 		return;
6278 
6279 	bytes = 0;
6280 	packets = 0;
6281 
6282 	rcu_read_lock();
6283 	for (i = 0; i < adapter->num_rx_queues; i++) {
6284 		struct igb_ring *ring = adapter->rx_ring[i];
6285 		u32 rqdpc = rd32(E1000_RQDPC(i));
6286 		if (hw->mac.type >= e1000_i210)
6287 			wr32(E1000_RQDPC(i), 0);
6288 
6289 		if (rqdpc) {
6290 			ring->rx_stats.drops += rqdpc;
6291 			net_stats->rx_fifo_errors += rqdpc;
6292 		}
6293 
6294 		do {
6295 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6296 			_bytes = ring->rx_stats.bytes;
6297 			_packets = ring->rx_stats.packets;
6298 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6299 		bytes += _bytes;
6300 		packets += _packets;
6301 	}
6302 
6303 	net_stats->rx_bytes = bytes;
6304 	net_stats->rx_packets = packets;
6305 
6306 	bytes = 0;
6307 	packets = 0;
6308 	for (i = 0; i < adapter->num_tx_queues; i++) {
6309 		struct igb_ring *ring = adapter->tx_ring[i];
6310 		do {
6311 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6312 			_bytes = ring->tx_stats.bytes;
6313 			_packets = ring->tx_stats.packets;
6314 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6315 		bytes += _bytes;
6316 		packets += _packets;
6317 	}
6318 	net_stats->tx_bytes = bytes;
6319 	net_stats->tx_packets = packets;
6320 	rcu_read_unlock();
6321 
6322 	/* read stats registers */
6323 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6324 	adapter->stats.gprc += rd32(E1000_GPRC);
6325 	adapter->stats.gorc += rd32(E1000_GORCL);
6326 	rd32(E1000_GORCH); /* clear GORCL */
6327 	adapter->stats.bprc += rd32(E1000_BPRC);
6328 	adapter->stats.mprc += rd32(E1000_MPRC);
6329 	adapter->stats.roc += rd32(E1000_ROC);
6330 
6331 	adapter->stats.prc64 += rd32(E1000_PRC64);
6332 	adapter->stats.prc127 += rd32(E1000_PRC127);
6333 	adapter->stats.prc255 += rd32(E1000_PRC255);
6334 	adapter->stats.prc511 += rd32(E1000_PRC511);
6335 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6336 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6337 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6338 	adapter->stats.sec += rd32(E1000_SEC);
6339 
6340 	mpc = rd32(E1000_MPC);
6341 	adapter->stats.mpc += mpc;
6342 	net_stats->rx_fifo_errors += mpc;
6343 	adapter->stats.scc += rd32(E1000_SCC);
6344 	adapter->stats.ecol += rd32(E1000_ECOL);
6345 	adapter->stats.mcc += rd32(E1000_MCC);
6346 	adapter->stats.latecol += rd32(E1000_LATECOL);
6347 	adapter->stats.dc += rd32(E1000_DC);
6348 	adapter->stats.rlec += rd32(E1000_RLEC);
6349 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6350 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6351 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6352 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6353 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6354 	adapter->stats.gptc += rd32(E1000_GPTC);
6355 	adapter->stats.gotc += rd32(E1000_GOTCL);
6356 	rd32(E1000_GOTCH); /* clear GOTCL */
6357 	adapter->stats.rnbc += rd32(E1000_RNBC);
6358 	adapter->stats.ruc += rd32(E1000_RUC);
6359 	adapter->stats.rfc += rd32(E1000_RFC);
6360 	adapter->stats.rjc += rd32(E1000_RJC);
6361 	adapter->stats.tor += rd32(E1000_TORH);
6362 	adapter->stats.tot += rd32(E1000_TOTH);
6363 	adapter->stats.tpr += rd32(E1000_TPR);
6364 
6365 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6366 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6367 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6368 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6369 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6370 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6371 
6372 	adapter->stats.mptc += rd32(E1000_MPTC);
6373 	adapter->stats.bptc += rd32(E1000_BPTC);
6374 
6375 	adapter->stats.tpt += rd32(E1000_TPT);
6376 	adapter->stats.colc += rd32(E1000_COLC);
6377 
6378 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6379 	/* read internal phy specific stats */
6380 	reg = rd32(E1000_CTRL_EXT);
6381 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6382 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6383 
6384 		/* this stat has invalid values on i210/i211 */
6385 		if ((hw->mac.type != e1000_i210) &&
6386 		    (hw->mac.type != e1000_i211))
6387 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6388 	}
6389 
6390 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6391 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6392 
6393 	adapter->stats.iac += rd32(E1000_IAC);
6394 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6395 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6396 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6397 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6398 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6399 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6400 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6401 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6402 
6403 	/* Fill out the OS statistics structure */
6404 	net_stats->multicast = adapter->stats.mprc;
6405 	net_stats->collisions = adapter->stats.colc;
6406 
6407 	/* Rx Errors */
6408 
6409 	/* RLEC on some newer hardware can be incorrect so build
6410 	 * our own version based on RUC and ROC
6411 	 */
6412 	net_stats->rx_errors = adapter->stats.rxerrc +
6413 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6414 		adapter->stats.ruc + adapter->stats.roc +
6415 		adapter->stats.cexterr;
6416 	net_stats->rx_length_errors = adapter->stats.ruc +
6417 				      adapter->stats.roc;
6418 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6419 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6420 	net_stats->rx_missed_errors = adapter->stats.mpc;
6421 
6422 	/* Tx Errors */
6423 	net_stats->tx_errors = adapter->stats.ecol +
6424 			       adapter->stats.latecol;
6425 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6426 	net_stats->tx_window_errors = adapter->stats.latecol;
6427 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6428 
6429 	/* Tx Dropped needs to be maintained elsewhere */
6430 
6431 	/* Management Stats */
6432 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6433 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6434 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6435 
6436 	/* OS2BMC Stats */
6437 	reg = rd32(E1000_MANC);
6438 	if (reg & E1000_MANC_EN_BMC2OS) {
6439 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6440 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6441 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6442 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6443 	}
6444 }
6445 
6446 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6447 {
6448 	struct e1000_hw *hw = &adapter->hw;
6449 	struct ptp_clock_event event;
6450 	struct timespec64 ts;
6451 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6452 
6453 	if (tsicr & TSINTR_SYS_WRAP) {
6454 		event.type = PTP_CLOCK_PPS;
6455 		if (adapter->ptp_caps.pps)
6456 			ptp_clock_event(adapter->ptp_clock, &event);
6457 		ack |= TSINTR_SYS_WRAP;
6458 	}
6459 
6460 	if (tsicr & E1000_TSICR_TXTS) {
6461 		/* retrieve hardware timestamp */
6462 		schedule_work(&adapter->ptp_tx_work);
6463 		ack |= E1000_TSICR_TXTS;
6464 	}
6465 
6466 	if (tsicr & TSINTR_TT0) {
6467 		spin_lock(&adapter->tmreg_lock);
6468 		ts = timespec64_add(adapter->perout[0].start,
6469 				    adapter->perout[0].period);
6470 		/* u32 conversion of tv_sec is safe until y2106 */
6471 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6472 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6473 		tsauxc = rd32(E1000_TSAUXC);
6474 		tsauxc |= TSAUXC_EN_TT0;
6475 		wr32(E1000_TSAUXC, tsauxc);
6476 		adapter->perout[0].start = ts;
6477 		spin_unlock(&adapter->tmreg_lock);
6478 		ack |= TSINTR_TT0;
6479 	}
6480 
6481 	if (tsicr & TSINTR_TT1) {
6482 		spin_lock(&adapter->tmreg_lock);
6483 		ts = timespec64_add(adapter->perout[1].start,
6484 				    adapter->perout[1].period);
6485 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6486 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6487 		tsauxc = rd32(E1000_TSAUXC);
6488 		tsauxc |= TSAUXC_EN_TT1;
6489 		wr32(E1000_TSAUXC, tsauxc);
6490 		adapter->perout[1].start = ts;
6491 		spin_unlock(&adapter->tmreg_lock);
6492 		ack |= TSINTR_TT1;
6493 	}
6494 
6495 	if (tsicr & TSINTR_AUTT0) {
6496 		nsec = rd32(E1000_AUXSTMPL0);
6497 		sec  = rd32(E1000_AUXSTMPH0);
6498 		event.type = PTP_CLOCK_EXTTS;
6499 		event.index = 0;
6500 		event.timestamp = sec * 1000000000ULL + nsec;
6501 		ptp_clock_event(adapter->ptp_clock, &event);
6502 		ack |= TSINTR_AUTT0;
6503 	}
6504 
6505 	if (tsicr & TSINTR_AUTT1) {
6506 		nsec = rd32(E1000_AUXSTMPL1);
6507 		sec  = rd32(E1000_AUXSTMPH1);
6508 		event.type = PTP_CLOCK_EXTTS;
6509 		event.index = 1;
6510 		event.timestamp = sec * 1000000000ULL + nsec;
6511 		ptp_clock_event(adapter->ptp_clock, &event);
6512 		ack |= TSINTR_AUTT1;
6513 	}
6514 
6515 	/* acknowledge the interrupts */
6516 	wr32(E1000_TSICR, ack);
6517 }
6518 
6519 static irqreturn_t igb_msix_other(int irq, void *data)
6520 {
6521 	struct igb_adapter *adapter = data;
6522 	struct e1000_hw *hw = &adapter->hw;
6523 	u32 icr = rd32(E1000_ICR);
6524 	/* reading ICR causes bit 31 of EICR to be cleared */
6525 
6526 	if (icr & E1000_ICR_DRSTA)
6527 		schedule_work(&adapter->reset_task);
6528 
6529 	if (icr & E1000_ICR_DOUTSYNC) {
6530 		/* HW is reporting DMA is out of sync */
6531 		adapter->stats.doosync++;
6532 		/* The DMA Out of Sync is also indication of a spoof event
6533 		 * in IOV mode. Check the Wrong VM Behavior register to
6534 		 * see if it is really a spoof event.
6535 		 */
6536 		igb_check_wvbr(adapter);
6537 	}
6538 
6539 	/* Check for a mailbox event */
6540 	if (icr & E1000_ICR_VMMB)
6541 		igb_msg_task(adapter);
6542 
6543 	if (icr & E1000_ICR_LSC) {
6544 		hw->mac.get_link_status = 1;
6545 		/* guard against interrupt when we're going down */
6546 		if (!test_bit(__IGB_DOWN, &adapter->state))
6547 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6548 	}
6549 
6550 	if (icr & E1000_ICR_TS)
6551 		igb_tsync_interrupt(adapter);
6552 
6553 	wr32(E1000_EIMS, adapter->eims_other);
6554 
6555 	return IRQ_HANDLED;
6556 }
6557 
6558 static void igb_write_itr(struct igb_q_vector *q_vector)
6559 {
6560 	struct igb_adapter *adapter = q_vector->adapter;
6561 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6562 
6563 	if (!q_vector->set_itr)
6564 		return;
6565 
6566 	if (!itr_val)
6567 		itr_val = 0x4;
6568 
6569 	if (adapter->hw.mac.type == e1000_82575)
6570 		itr_val |= itr_val << 16;
6571 	else
6572 		itr_val |= E1000_EITR_CNT_IGNR;
6573 
6574 	writel(itr_val, q_vector->itr_register);
6575 	q_vector->set_itr = 0;
6576 }
6577 
6578 static irqreturn_t igb_msix_ring(int irq, void *data)
6579 {
6580 	struct igb_q_vector *q_vector = data;
6581 
6582 	/* Write the ITR value calculated from the previous interrupt. */
6583 	igb_write_itr(q_vector);
6584 
6585 	napi_schedule(&q_vector->napi);
6586 
6587 	return IRQ_HANDLED;
6588 }
6589 
6590 #ifdef CONFIG_IGB_DCA
6591 static void igb_update_tx_dca(struct igb_adapter *adapter,
6592 			      struct igb_ring *tx_ring,
6593 			      int cpu)
6594 {
6595 	struct e1000_hw *hw = &adapter->hw;
6596 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6597 
6598 	if (hw->mac.type != e1000_82575)
6599 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6600 
6601 	/* We can enable relaxed ordering for reads, but not writes when
6602 	 * DCA is enabled.  This is due to a known issue in some chipsets
6603 	 * which will cause the DCA tag to be cleared.
6604 	 */
6605 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6606 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6607 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6608 
6609 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6610 }
6611 
6612 static void igb_update_rx_dca(struct igb_adapter *adapter,
6613 			      struct igb_ring *rx_ring,
6614 			      int cpu)
6615 {
6616 	struct e1000_hw *hw = &adapter->hw;
6617 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6618 
6619 	if (hw->mac.type != e1000_82575)
6620 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6621 
6622 	/* We can enable relaxed ordering for reads, but not writes when
6623 	 * DCA is enabled.  This is due to a known issue in some chipsets
6624 	 * which will cause the DCA tag to be cleared.
6625 	 */
6626 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6627 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6628 
6629 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6630 }
6631 
6632 static void igb_update_dca(struct igb_q_vector *q_vector)
6633 {
6634 	struct igb_adapter *adapter = q_vector->adapter;
6635 	int cpu = get_cpu();
6636 
6637 	if (q_vector->cpu == cpu)
6638 		goto out_no_update;
6639 
6640 	if (q_vector->tx.ring)
6641 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6642 
6643 	if (q_vector->rx.ring)
6644 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6645 
6646 	q_vector->cpu = cpu;
6647 out_no_update:
6648 	put_cpu();
6649 }
6650 
6651 static void igb_setup_dca(struct igb_adapter *adapter)
6652 {
6653 	struct e1000_hw *hw = &adapter->hw;
6654 	int i;
6655 
6656 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6657 		return;
6658 
6659 	/* Always use CB2 mode, difference is masked in the CB driver. */
6660 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6661 
6662 	for (i = 0; i < adapter->num_q_vectors; i++) {
6663 		adapter->q_vector[i]->cpu = -1;
6664 		igb_update_dca(adapter->q_vector[i]);
6665 	}
6666 }
6667 
6668 static int __igb_notify_dca(struct device *dev, void *data)
6669 {
6670 	struct net_device *netdev = dev_get_drvdata(dev);
6671 	struct igb_adapter *adapter = netdev_priv(netdev);
6672 	struct pci_dev *pdev = adapter->pdev;
6673 	struct e1000_hw *hw = &adapter->hw;
6674 	unsigned long event = *(unsigned long *)data;
6675 
6676 	switch (event) {
6677 	case DCA_PROVIDER_ADD:
6678 		/* if already enabled, don't do it again */
6679 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6680 			break;
6681 		if (dca_add_requester(dev) == 0) {
6682 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6683 			dev_info(&pdev->dev, "DCA enabled\n");
6684 			igb_setup_dca(adapter);
6685 			break;
6686 		}
6687 		/* Fall Through - since DCA is disabled. */
6688 	case DCA_PROVIDER_REMOVE:
6689 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6690 			/* without this a class_device is left
6691 			 * hanging around in the sysfs model
6692 			 */
6693 			dca_remove_requester(dev);
6694 			dev_info(&pdev->dev, "DCA disabled\n");
6695 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6696 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6697 		}
6698 		break;
6699 	}
6700 
6701 	return 0;
6702 }
6703 
6704 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6705 			  void *p)
6706 {
6707 	int ret_val;
6708 
6709 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6710 					 __igb_notify_dca);
6711 
6712 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6713 }
6714 #endif /* CONFIG_IGB_DCA */
6715 
6716 #ifdef CONFIG_PCI_IOV
6717 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6718 {
6719 	unsigned char mac_addr[ETH_ALEN];
6720 
6721 	eth_zero_addr(mac_addr);
6722 	igb_set_vf_mac(adapter, vf, mac_addr);
6723 
6724 	/* By default spoof check is enabled for all VFs */
6725 	adapter->vf_data[vf].spoofchk_enabled = true;
6726 
6727 	/* By default VFs are not trusted */
6728 	adapter->vf_data[vf].trusted = false;
6729 
6730 	return 0;
6731 }
6732 
6733 #endif
6734 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6735 {
6736 	struct e1000_hw *hw = &adapter->hw;
6737 	u32 ping;
6738 	int i;
6739 
6740 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6741 		ping = E1000_PF_CONTROL_MSG;
6742 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6743 			ping |= E1000_VT_MSGTYPE_CTS;
6744 		igb_write_mbx(hw, &ping, 1, i);
6745 	}
6746 }
6747 
6748 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6749 {
6750 	struct e1000_hw *hw = &adapter->hw;
6751 	u32 vmolr = rd32(E1000_VMOLR(vf));
6752 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6753 
6754 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6755 			    IGB_VF_FLAG_MULTI_PROMISC);
6756 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6757 
6758 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6759 		vmolr |= E1000_VMOLR_MPME;
6760 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6761 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6762 	} else {
6763 		/* if we have hashes and we are clearing a multicast promisc
6764 		 * flag we need to write the hashes to the MTA as this step
6765 		 * was previously skipped
6766 		 */
6767 		if (vf_data->num_vf_mc_hashes > 30) {
6768 			vmolr |= E1000_VMOLR_MPME;
6769 		} else if (vf_data->num_vf_mc_hashes) {
6770 			int j;
6771 
6772 			vmolr |= E1000_VMOLR_ROMPE;
6773 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6774 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6775 		}
6776 	}
6777 
6778 	wr32(E1000_VMOLR(vf), vmolr);
6779 
6780 	/* there are flags left unprocessed, likely not supported */
6781 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6782 		return -EINVAL;
6783 
6784 	return 0;
6785 }
6786 
6787 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6788 				  u32 *msgbuf, u32 vf)
6789 {
6790 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6791 	u16 *hash_list = (u16 *)&msgbuf[1];
6792 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6793 	int i;
6794 
6795 	/* salt away the number of multicast addresses assigned
6796 	 * to this VF for later use to restore when the PF multi cast
6797 	 * list changes
6798 	 */
6799 	vf_data->num_vf_mc_hashes = n;
6800 
6801 	/* only up to 30 hash values supported */
6802 	if (n > 30)
6803 		n = 30;
6804 
6805 	/* store the hashes for later use */
6806 	for (i = 0; i < n; i++)
6807 		vf_data->vf_mc_hashes[i] = hash_list[i];
6808 
6809 	/* Flush and reset the mta with the new values */
6810 	igb_set_rx_mode(adapter->netdev);
6811 
6812 	return 0;
6813 }
6814 
6815 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6816 {
6817 	struct e1000_hw *hw = &adapter->hw;
6818 	struct vf_data_storage *vf_data;
6819 	int i, j;
6820 
6821 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6822 		u32 vmolr = rd32(E1000_VMOLR(i));
6823 
6824 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6825 
6826 		vf_data = &adapter->vf_data[i];
6827 
6828 		if ((vf_data->num_vf_mc_hashes > 30) ||
6829 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6830 			vmolr |= E1000_VMOLR_MPME;
6831 		} else if (vf_data->num_vf_mc_hashes) {
6832 			vmolr |= E1000_VMOLR_ROMPE;
6833 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6834 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6835 		}
6836 		wr32(E1000_VMOLR(i), vmolr);
6837 	}
6838 }
6839 
6840 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6841 {
6842 	struct e1000_hw *hw = &adapter->hw;
6843 	u32 pool_mask, vlvf_mask, i;
6844 
6845 	/* create mask for VF and other pools */
6846 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6847 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6848 
6849 	/* drop PF from pool bits */
6850 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6851 			     adapter->vfs_allocated_count);
6852 
6853 	/* Find the vlan filter for this id */
6854 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6855 		u32 vlvf = rd32(E1000_VLVF(i));
6856 		u32 vfta_mask, vid, vfta;
6857 
6858 		/* remove the vf from the pool */
6859 		if (!(vlvf & vlvf_mask))
6860 			continue;
6861 
6862 		/* clear out bit from VLVF */
6863 		vlvf ^= vlvf_mask;
6864 
6865 		/* if other pools are present, just remove ourselves */
6866 		if (vlvf & pool_mask)
6867 			goto update_vlvfb;
6868 
6869 		/* if PF is present, leave VFTA */
6870 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6871 			goto update_vlvf;
6872 
6873 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6874 		vfta_mask = BIT(vid % 32);
6875 
6876 		/* clear bit from VFTA */
6877 		vfta = adapter->shadow_vfta[vid / 32];
6878 		if (vfta & vfta_mask)
6879 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6880 update_vlvf:
6881 		/* clear pool selection enable */
6882 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6883 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6884 		else
6885 			vlvf = 0;
6886 update_vlvfb:
6887 		/* clear pool bits */
6888 		wr32(E1000_VLVF(i), vlvf);
6889 	}
6890 }
6891 
6892 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6893 {
6894 	u32 vlvf;
6895 	int idx;
6896 
6897 	/* short cut the special case */
6898 	if (vlan == 0)
6899 		return 0;
6900 
6901 	/* Search for the VLAN id in the VLVF entries */
6902 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6903 		vlvf = rd32(E1000_VLVF(idx));
6904 		if ((vlvf & VLAN_VID_MASK) == vlan)
6905 			break;
6906 	}
6907 
6908 	return idx;
6909 }
6910 
6911 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6912 {
6913 	struct e1000_hw *hw = &adapter->hw;
6914 	u32 bits, pf_id;
6915 	int idx;
6916 
6917 	idx = igb_find_vlvf_entry(hw, vid);
6918 	if (!idx)
6919 		return;
6920 
6921 	/* See if any other pools are set for this VLAN filter
6922 	 * entry other than the PF.
6923 	 */
6924 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6925 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6926 	bits &= rd32(E1000_VLVF(idx));
6927 
6928 	/* Disable the filter so this falls into the default pool. */
6929 	if (!bits) {
6930 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6931 			wr32(E1000_VLVF(idx), BIT(pf_id));
6932 		else
6933 			wr32(E1000_VLVF(idx), 0);
6934 	}
6935 }
6936 
6937 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6938 			   bool add, u32 vf)
6939 {
6940 	int pf_id = adapter->vfs_allocated_count;
6941 	struct e1000_hw *hw = &adapter->hw;
6942 	int err;
6943 
6944 	/* If VLAN overlaps with one the PF is currently monitoring make
6945 	 * sure that we are able to allocate a VLVF entry.  This may be
6946 	 * redundant but it guarantees PF will maintain visibility to
6947 	 * the VLAN.
6948 	 */
6949 	if (add && test_bit(vid, adapter->active_vlans)) {
6950 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6951 		if (err)
6952 			return err;
6953 	}
6954 
6955 	err = igb_vfta_set(hw, vid, vf, add, false);
6956 
6957 	if (add && !err)
6958 		return err;
6959 
6960 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6961 	 * we may need to drop the PF pool bit in order to allow us to free
6962 	 * up the VLVF resources.
6963 	 */
6964 	if (test_bit(vid, adapter->active_vlans) ||
6965 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6966 		igb_update_pf_vlvf(adapter, vid);
6967 
6968 	return err;
6969 }
6970 
6971 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6972 {
6973 	struct e1000_hw *hw = &adapter->hw;
6974 
6975 	if (vid)
6976 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6977 	else
6978 		wr32(E1000_VMVIR(vf), 0);
6979 }
6980 
6981 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6982 				u16 vlan, u8 qos)
6983 {
6984 	int err;
6985 
6986 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6987 	if (err)
6988 		return err;
6989 
6990 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6991 	igb_set_vmolr(adapter, vf, !vlan);
6992 
6993 	/* revoke access to previous VLAN */
6994 	if (vlan != adapter->vf_data[vf].pf_vlan)
6995 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6996 				false, vf);
6997 
6998 	adapter->vf_data[vf].pf_vlan = vlan;
6999 	adapter->vf_data[vf].pf_qos = qos;
7000 	igb_set_vf_vlan_strip(adapter, vf, true);
7001 	dev_info(&adapter->pdev->dev,
7002 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7003 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7004 		dev_warn(&adapter->pdev->dev,
7005 			 "The VF VLAN has been set, but the PF device is not up.\n");
7006 		dev_warn(&adapter->pdev->dev,
7007 			 "Bring the PF device up before attempting to use the VF device.\n");
7008 	}
7009 
7010 	return err;
7011 }
7012 
7013 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7014 {
7015 	/* Restore tagless access via VLAN 0 */
7016 	igb_set_vf_vlan(adapter, 0, true, vf);
7017 
7018 	igb_set_vmvir(adapter, 0, vf);
7019 	igb_set_vmolr(adapter, vf, true);
7020 
7021 	/* Remove any PF assigned VLAN */
7022 	if (adapter->vf_data[vf].pf_vlan)
7023 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7024 				false, vf);
7025 
7026 	adapter->vf_data[vf].pf_vlan = 0;
7027 	adapter->vf_data[vf].pf_qos = 0;
7028 	igb_set_vf_vlan_strip(adapter, vf, false);
7029 
7030 	return 0;
7031 }
7032 
7033 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7034 			       u16 vlan, u8 qos, __be16 vlan_proto)
7035 {
7036 	struct igb_adapter *adapter = netdev_priv(netdev);
7037 
7038 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7039 		return -EINVAL;
7040 
7041 	if (vlan_proto != htons(ETH_P_8021Q))
7042 		return -EPROTONOSUPPORT;
7043 
7044 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7045 			       igb_disable_port_vlan(adapter, vf);
7046 }
7047 
7048 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7049 {
7050 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7051 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7052 	int ret;
7053 
7054 	if (adapter->vf_data[vf].pf_vlan)
7055 		return -1;
7056 
7057 	/* VLAN 0 is a special case, don't allow it to be removed */
7058 	if (!vid && !add)
7059 		return 0;
7060 
7061 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7062 	if (!ret)
7063 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7064 	return ret;
7065 }
7066 
7067 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7068 {
7069 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7070 
7071 	/* clear flags - except flag that indicates PF has set the MAC */
7072 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7073 	vf_data->last_nack = jiffies;
7074 
7075 	/* reset vlans for device */
7076 	igb_clear_vf_vfta(adapter, vf);
7077 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7078 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7079 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7080 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7081 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7082 
7083 	/* reset multicast table array for vf */
7084 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7085 
7086 	/* Flush and reset the mta with the new values */
7087 	igb_set_rx_mode(adapter->netdev);
7088 }
7089 
7090 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7091 {
7092 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7093 
7094 	/* clear mac address as we were hotplug removed/added */
7095 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7096 		eth_zero_addr(vf_mac);
7097 
7098 	/* process remaining reset events */
7099 	igb_vf_reset(adapter, vf);
7100 }
7101 
7102 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7103 {
7104 	struct e1000_hw *hw = &adapter->hw;
7105 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7106 	u32 reg, msgbuf[3];
7107 	u8 *addr = (u8 *)(&msgbuf[1]);
7108 
7109 	/* process all the same items cleared in a function level reset */
7110 	igb_vf_reset(adapter, vf);
7111 
7112 	/* set vf mac address */
7113 	igb_set_vf_mac(adapter, vf, vf_mac);
7114 
7115 	/* enable transmit and receive for vf */
7116 	reg = rd32(E1000_VFTE);
7117 	wr32(E1000_VFTE, reg | BIT(vf));
7118 	reg = rd32(E1000_VFRE);
7119 	wr32(E1000_VFRE, reg | BIT(vf));
7120 
7121 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7122 
7123 	/* reply to reset with ack and vf mac address */
7124 	if (!is_zero_ether_addr(vf_mac)) {
7125 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7126 		memcpy(addr, vf_mac, ETH_ALEN);
7127 	} else {
7128 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7129 	}
7130 	igb_write_mbx(hw, msgbuf, 3, vf);
7131 }
7132 
7133 static void igb_flush_mac_table(struct igb_adapter *adapter)
7134 {
7135 	struct e1000_hw *hw = &adapter->hw;
7136 	int i;
7137 
7138 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7139 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7140 		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7141 		adapter->mac_table[i].queue = 0;
7142 		igb_rar_set_index(adapter, i);
7143 	}
7144 }
7145 
7146 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7147 {
7148 	struct e1000_hw *hw = &adapter->hw;
7149 	/* do not count rar entries reserved for VFs MAC addresses */
7150 	int rar_entries = hw->mac.rar_entry_count -
7151 			  adapter->vfs_allocated_count;
7152 	int i, count = 0;
7153 
7154 	for (i = 0; i < rar_entries; i++) {
7155 		/* do not count default entries */
7156 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7157 			continue;
7158 
7159 		/* do not count "in use" entries for different queues */
7160 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7161 		    (adapter->mac_table[i].queue != queue))
7162 			continue;
7163 
7164 		count++;
7165 	}
7166 
7167 	return count;
7168 }
7169 
7170 /* Set default MAC address for the PF in the first RAR entry */
7171 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7172 {
7173 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7174 
7175 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7176 	mac_table->queue = adapter->vfs_allocated_count;
7177 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7178 
7179 	igb_rar_set_index(adapter, 0);
7180 }
7181 
7182 /* If the filter to be added and an already existing filter express
7183  * the same address and address type, it should be possible to only
7184  * override the other configurations, for example the queue to steer
7185  * traffic.
7186  */
7187 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7188 				      const u8 *addr, const u8 flags)
7189 {
7190 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7191 		return true;
7192 
7193 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7194 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7195 		return false;
7196 
7197 	if (!ether_addr_equal(addr, entry->addr))
7198 		return false;
7199 
7200 	return true;
7201 }
7202 
7203 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7204  * 'flags' is used to indicate what kind of match is made, match is by
7205  * default for the destination address, if matching by source address
7206  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7207  */
7208 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7209 				    const u8 *addr, const u8 queue,
7210 				    const u8 flags)
7211 {
7212 	struct e1000_hw *hw = &adapter->hw;
7213 	int rar_entries = hw->mac.rar_entry_count -
7214 			  adapter->vfs_allocated_count;
7215 	int i;
7216 
7217 	if (is_zero_ether_addr(addr))
7218 		return -EINVAL;
7219 
7220 	/* Search for the first empty entry in the MAC table.
7221 	 * Do not touch entries at the end of the table reserved for the VF MAC
7222 	 * addresses.
7223 	 */
7224 	for (i = 0; i < rar_entries; i++) {
7225 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7226 					       addr, flags))
7227 			continue;
7228 
7229 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7230 		adapter->mac_table[i].queue = queue;
7231 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7232 
7233 		igb_rar_set_index(adapter, i);
7234 		return i;
7235 	}
7236 
7237 	return -ENOSPC;
7238 }
7239 
7240 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7241 			      const u8 queue)
7242 {
7243 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7244 }
7245 
7246 /* Remove a MAC filter for 'addr' directing matching traffic to
7247  * 'queue', 'flags' is used to indicate what kind of match need to be
7248  * removed, match is by default for the destination address, if
7249  * matching by source address is to be removed the flag
7250  * IGB_MAC_STATE_SRC_ADDR can be used.
7251  */
7252 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7253 				    const u8 *addr, const u8 queue,
7254 				    const u8 flags)
7255 {
7256 	struct e1000_hw *hw = &adapter->hw;
7257 	int rar_entries = hw->mac.rar_entry_count -
7258 			  adapter->vfs_allocated_count;
7259 	int i;
7260 
7261 	if (is_zero_ether_addr(addr))
7262 		return -EINVAL;
7263 
7264 	/* Search for matching entry in the MAC table based on given address
7265 	 * and queue. Do not touch entries at the end of the table reserved
7266 	 * for the VF MAC addresses.
7267 	 */
7268 	for (i = 0; i < rar_entries; i++) {
7269 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7270 			continue;
7271 		if ((adapter->mac_table[i].state & flags) != flags)
7272 			continue;
7273 		if (adapter->mac_table[i].queue != queue)
7274 			continue;
7275 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7276 			continue;
7277 
7278 		/* When a filter for the default address is "deleted",
7279 		 * we return it to its initial configuration
7280 		 */
7281 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7282 			adapter->mac_table[i].state =
7283 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7284 			adapter->mac_table[i].queue =
7285 				adapter->vfs_allocated_count;
7286 		} else {
7287 			adapter->mac_table[i].state = 0;
7288 			adapter->mac_table[i].queue = 0;
7289 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7290 		}
7291 
7292 		igb_rar_set_index(adapter, i);
7293 		return 0;
7294 	}
7295 
7296 	return -ENOENT;
7297 }
7298 
7299 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7300 			      const u8 queue)
7301 {
7302 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7303 }
7304 
7305 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7306 				const u8 *addr, u8 queue, u8 flags)
7307 {
7308 	struct e1000_hw *hw = &adapter->hw;
7309 
7310 	/* In theory, this should be supported on 82575 as well, but
7311 	 * that part wasn't easily accessible during development.
7312 	 */
7313 	if (hw->mac.type != e1000_i210)
7314 		return -EOPNOTSUPP;
7315 
7316 	return igb_add_mac_filter_flags(adapter, addr, queue,
7317 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7318 }
7319 
7320 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7321 				const u8 *addr, u8 queue, u8 flags)
7322 {
7323 	return igb_del_mac_filter_flags(adapter, addr, queue,
7324 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7325 }
7326 
7327 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7328 {
7329 	struct igb_adapter *adapter = netdev_priv(netdev);
7330 	int ret;
7331 
7332 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7333 
7334 	return min_t(int, ret, 0);
7335 }
7336 
7337 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7338 {
7339 	struct igb_adapter *adapter = netdev_priv(netdev);
7340 
7341 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7342 
7343 	return 0;
7344 }
7345 
7346 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7347 				 const u32 info, const u8 *addr)
7348 {
7349 	struct pci_dev *pdev = adapter->pdev;
7350 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7351 	struct list_head *pos;
7352 	struct vf_mac_filter *entry = NULL;
7353 	int ret = 0;
7354 
7355 	switch (info) {
7356 	case E1000_VF_MAC_FILTER_CLR:
7357 		/* remove all unicast MAC filters related to the current VF */
7358 		list_for_each(pos, &adapter->vf_macs.l) {
7359 			entry = list_entry(pos, struct vf_mac_filter, l);
7360 			if (entry->vf == vf) {
7361 				entry->vf = -1;
7362 				entry->free = true;
7363 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7364 			}
7365 		}
7366 		break;
7367 	case E1000_VF_MAC_FILTER_ADD:
7368 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7369 		    !vf_data->trusted) {
7370 			dev_warn(&pdev->dev,
7371 				 "VF %d requested MAC filter but is administratively denied\n",
7372 				 vf);
7373 			return -EINVAL;
7374 		}
7375 		if (!is_valid_ether_addr(addr)) {
7376 			dev_warn(&pdev->dev,
7377 				 "VF %d attempted to set invalid MAC filter\n",
7378 				 vf);
7379 			return -EINVAL;
7380 		}
7381 
7382 		/* try to find empty slot in the list */
7383 		list_for_each(pos, &adapter->vf_macs.l) {
7384 			entry = list_entry(pos, struct vf_mac_filter, l);
7385 			if (entry->free)
7386 				break;
7387 		}
7388 
7389 		if (entry && entry->free) {
7390 			entry->free = false;
7391 			entry->vf = vf;
7392 			ether_addr_copy(entry->vf_mac, addr);
7393 
7394 			ret = igb_add_mac_filter(adapter, addr, vf);
7395 			ret = min_t(int, ret, 0);
7396 		} else {
7397 			ret = -ENOSPC;
7398 		}
7399 
7400 		if (ret == -ENOSPC)
7401 			dev_warn(&pdev->dev,
7402 				 "VF %d has requested MAC filter but there is no space for it\n",
7403 				 vf);
7404 		break;
7405 	default:
7406 		ret = -EINVAL;
7407 		break;
7408 	}
7409 
7410 	return ret;
7411 }
7412 
7413 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7414 {
7415 	struct pci_dev *pdev = adapter->pdev;
7416 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7417 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7418 
7419 	/* The VF MAC Address is stored in a packed array of bytes
7420 	 * starting at the second 32 bit word of the msg array
7421 	 */
7422 	unsigned char *addr = (unsigned char *)&msg[1];
7423 	int ret = 0;
7424 
7425 	if (!info) {
7426 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7427 		    !vf_data->trusted) {
7428 			dev_warn(&pdev->dev,
7429 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7430 				 vf);
7431 			return -EINVAL;
7432 		}
7433 
7434 		if (!is_valid_ether_addr(addr)) {
7435 			dev_warn(&pdev->dev,
7436 				 "VF %d attempted to set invalid MAC\n",
7437 				 vf);
7438 			return -EINVAL;
7439 		}
7440 
7441 		ret = igb_set_vf_mac(adapter, vf, addr);
7442 	} else {
7443 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7444 	}
7445 
7446 	return ret;
7447 }
7448 
7449 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7450 {
7451 	struct e1000_hw *hw = &adapter->hw;
7452 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7453 	u32 msg = E1000_VT_MSGTYPE_NACK;
7454 
7455 	/* if device isn't clear to send it shouldn't be reading either */
7456 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7457 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7458 		igb_write_mbx(hw, &msg, 1, vf);
7459 		vf_data->last_nack = jiffies;
7460 	}
7461 }
7462 
7463 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7464 {
7465 	struct pci_dev *pdev = adapter->pdev;
7466 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7467 	struct e1000_hw *hw = &adapter->hw;
7468 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7469 	s32 retval;
7470 
7471 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7472 
7473 	if (retval) {
7474 		/* if receive failed revoke VF CTS stats and restart init */
7475 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7476 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7477 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7478 			goto unlock;
7479 		goto out;
7480 	}
7481 
7482 	/* this is a message we already processed, do nothing */
7483 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7484 		goto unlock;
7485 
7486 	/* until the vf completes a reset it should not be
7487 	 * allowed to start any configuration.
7488 	 */
7489 	if (msgbuf[0] == E1000_VF_RESET) {
7490 		/* unlocks mailbox */
7491 		igb_vf_reset_msg(adapter, vf);
7492 		return;
7493 	}
7494 
7495 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7496 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7497 			goto unlock;
7498 		retval = -1;
7499 		goto out;
7500 	}
7501 
7502 	switch ((msgbuf[0] & 0xFFFF)) {
7503 	case E1000_VF_SET_MAC_ADDR:
7504 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7505 		break;
7506 	case E1000_VF_SET_PROMISC:
7507 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7508 		break;
7509 	case E1000_VF_SET_MULTICAST:
7510 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7511 		break;
7512 	case E1000_VF_SET_LPE:
7513 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7514 		break;
7515 	case E1000_VF_SET_VLAN:
7516 		retval = -1;
7517 		if (vf_data->pf_vlan)
7518 			dev_warn(&pdev->dev,
7519 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7520 				 vf);
7521 		else
7522 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7523 		break;
7524 	default:
7525 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7526 		retval = -1;
7527 		break;
7528 	}
7529 
7530 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7531 out:
7532 	/* notify the VF of the results of what it sent us */
7533 	if (retval)
7534 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7535 	else
7536 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7537 
7538 	/* unlocks mailbox */
7539 	igb_write_mbx(hw, msgbuf, 1, vf);
7540 	return;
7541 
7542 unlock:
7543 	igb_unlock_mbx(hw, vf);
7544 }
7545 
7546 static void igb_msg_task(struct igb_adapter *adapter)
7547 {
7548 	struct e1000_hw *hw = &adapter->hw;
7549 	u32 vf;
7550 
7551 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7552 		/* process any reset requests */
7553 		if (!igb_check_for_rst(hw, vf))
7554 			igb_vf_reset_event(adapter, vf);
7555 
7556 		/* process any messages pending */
7557 		if (!igb_check_for_msg(hw, vf))
7558 			igb_rcv_msg_from_vf(adapter, vf);
7559 
7560 		/* process any acks */
7561 		if (!igb_check_for_ack(hw, vf))
7562 			igb_rcv_ack_from_vf(adapter, vf);
7563 	}
7564 }
7565 
7566 /**
7567  *  igb_set_uta - Set unicast filter table address
7568  *  @adapter: board private structure
7569  *  @set: boolean indicating if we are setting or clearing bits
7570  *
7571  *  The unicast table address is a register array of 32-bit registers.
7572  *  The table is meant to be used in a way similar to how the MTA is used
7573  *  however due to certain limitations in the hardware it is necessary to
7574  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7575  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7576  **/
7577 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7578 {
7579 	struct e1000_hw *hw = &adapter->hw;
7580 	u32 uta = set ? ~0 : 0;
7581 	int i;
7582 
7583 	/* we only need to do this if VMDq is enabled */
7584 	if (!adapter->vfs_allocated_count)
7585 		return;
7586 
7587 	for (i = hw->mac.uta_reg_count; i--;)
7588 		array_wr32(E1000_UTA, i, uta);
7589 }
7590 
7591 /**
7592  *  igb_intr_msi - Interrupt Handler
7593  *  @irq: interrupt number
7594  *  @data: pointer to a network interface device structure
7595  **/
7596 static irqreturn_t igb_intr_msi(int irq, void *data)
7597 {
7598 	struct igb_adapter *adapter = data;
7599 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7600 	struct e1000_hw *hw = &adapter->hw;
7601 	/* read ICR disables interrupts using IAM */
7602 	u32 icr = rd32(E1000_ICR);
7603 
7604 	igb_write_itr(q_vector);
7605 
7606 	if (icr & E1000_ICR_DRSTA)
7607 		schedule_work(&adapter->reset_task);
7608 
7609 	if (icr & E1000_ICR_DOUTSYNC) {
7610 		/* HW is reporting DMA is out of sync */
7611 		adapter->stats.doosync++;
7612 	}
7613 
7614 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7615 		hw->mac.get_link_status = 1;
7616 		if (!test_bit(__IGB_DOWN, &adapter->state))
7617 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7618 	}
7619 
7620 	if (icr & E1000_ICR_TS)
7621 		igb_tsync_interrupt(adapter);
7622 
7623 	napi_schedule(&q_vector->napi);
7624 
7625 	return IRQ_HANDLED;
7626 }
7627 
7628 /**
7629  *  igb_intr - Legacy Interrupt Handler
7630  *  @irq: interrupt number
7631  *  @data: pointer to a network interface device structure
7632  **/
7633 static irqreturn_t igb_intr(int irq, void *data)
7634 {
7635 	struct igb_adapter *adapter = data;
7636 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7637 	struct e1000_hw *hw = &adapter->hw;
7638 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7639 	 * need for the IMC write
7640 	 */
7641 	u32 icr = rd32(E1000_ICR);
7642 
7643 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7644 	 * not set, then the adapter didn't send an interrupt
7645 	 */
7646 	if (!(icr & E1000_ICR_INT_ASSERTED))
7647 		return IRQ_NONE;
7648 
7649 	igb_write_itr(q_vector);
7650 
7651 	if (icr & E1000_ICR_DRSTA)
7652 		schedule_work(&adapter->reset_task);
7653 
7654 	if (icr & E1000_ICR_DOUTSYNC) {
7655 		/* HW is reporting DMA is out of sync */
7656 		adapter->stats.doosync++;
7657 	}
7658 
7659 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7660 		hw->mac.get_link_status = 1;
7661 		/* guard against interrupt when we're going down */
7662 		if (!test_bit(__IGB_DOWN, &adapter->state))
7663 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7664 	}
7665 
7666 	if (icr & E1000_ICR_TS)
7667 		igb_tsync_interrupt(adapter);
7668 
7669 	napi_schedule(&q_vector->napi);
7670 
7671 	return IRQ_HANDLED;
7672 }
7673 
7674 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7675 {
7676 	struct igb_adapter *adapter = q_vector->adapter;
7677 	struct e1000_hw *hw = &adapter->hw;
7678 
7679 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7680 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7681 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7682 			igb_set_itr(q_vector);
7683 		else
7684 			igb_update_ring_itr(q_vector);
7685 	}
7686 
7687 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7688 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7689 			wr32(E1000_EIMS, q_vector->eims_value);
7690 		else
7691 			igb_irq_enable(adapter);
7692 	}
7693 }
7694 
7695 /**
7696  *  igb_poll - NAPI Rx polling callback
7697  *  @napi: napi polling structure
7698  *  @budget: count of how many packets we should handle
7699  **/
7700 static int igb_poll(struct napi_struct *napi, int budget)
7701 {
7702 	struct igb_q_vector *q_vector = container_of(napi,
7703 						     struct igb_q_vector,
7704 						     napi);
7705 	bool clean_complete = true;
7706 	int work_done = 0;
7707 
7708 #ifdef CONFIG_IGB_DCA
7709 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7710 		igb_update_dca(q_vector);
7711 #endif
7712 	if (q_vector->tx.ring)
7713 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7714 
7715 	if (q_vector->rx.ring) {
7716 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7717 
7718 		work_done += cleaned;
7719 		if (cleaned >= budget)
7720 			clean_complete = false;
7721 	}
7722 
7723 	/* If all work not completed, return budget and keep polling */
7724 	if (!clean_complete)
7725 		return budget;
7726 
7727 	/* Exit the polling mode, but don't re-enable interrupts if stack might
7728 	 * poll us due to busy-polling
7729 	 */
7730 	if (likely(napi_complete_done(napi, work_done)))
7731 		igb_ring_irq_enable(q_vector);
7732 
7733 	return min(work_done, budget - 1);
7734 }
7735 
7736 /**
7737  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7738  *  @q_vector: pointer to q_vector containing needed info
7739  *  @napi_budget: Used to determine if we are in netpoll
7740  *
7741  *  returns true if ring is completely cleaned
7742  **/
7743 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7744 {
7745 	struct igb_adapter *adapter = q_vector->adapter;
7746 	struct igb_ring *tx_ring = q_vector->tx.ring;
7747 	struct igb_tx_buffer *tx_buffer;
7748 	union e1000_adv_tx_desc *tx_desc;
7749 	unsigned int total_bytes = 0, total_packets = 0;
7750 	unsigned int budget = q_vector->tx.work_limit;
7751 	unsigned int i = tx_ring->next_to_clean;
7752 
7753 	if (test_bit(__IGB_DOWN, &adapter->state))
7754 		return true;
7755 
7756 	tx_buffer = &tx_ring->tx_buffer_info[i];
7757 	tx_desc = IGB_TX_DESC(tx_ring, i);
7758 	i -= tx_ring->count;
7759 
7760 	do {
7761 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7762 
7763 		/* if next_to_watch is not set then there is no work pending */
7764 		if (!eop_desc)
7765 			break;
7766 
7767 		/* prevent any other reads prior to eop_desc */
7768 		smp_rmb();
7769 
7770 		/* if DD is not set pending work has not been completed */
7771 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7772 			break;
7773 
7774 		/* clear next_to_watch to prevent false hangs */
7775 		tx_buffer->next_to_watch = NULL;
7776 
7777 		/* update the statistics for this packet */
7778 		total_bytes += tx_buffer->bytecount;
7779 		total_packets += tx_buffer->gso_segs;
7780 
7781 		/* free the skb */
7782 		napi_consume_skb(tx_buffer->skb, napi_budget);
7783 
7784 		/* unmap skb header data */
7785 		dma_unmap_single(tx_ring->dev,
7786 				 dma_unmap_addr(tx_buffer, dma),
7787 				 dma_unmap_len(tx_buffer, len),
7788 				 DMA_TO_DEVICE);
7789 
7790 		/* clear tx_buffer data */
7791 		dma_unmap_len_set(tx_buffer, len, 0);
7792 
7793 		/* clear last DMA location and unmap remaining buffers */
7794 		while (tx_desc != eop_desc) {
7795 			tx_buffer++;
7796 			tx_desc++;
7797 			i++;
7798 			if (unlikely(!i)) {
7799 				i -= tx_ring->count;
7800 				tx_buffer = tx_ring->tx_buffer_info;
7801 				tx_desc = IGB_TX_DESC(tx_ring, 0);
7802 			}
7803 
7804 			/* unmap any remaining paged data */
7805 			if (dma_unmap_len(tx_buffer, len)) {
7806 				dma_unmap_page(tx_ring->dev,
7807 					       dma_unmap_addr(tx_buffer, dma),
7808 					       dma_unmap_len(tx_buffer, len),
7809 					       DMA_TO_DEVICE);
7810 				dma_unmap_len_set(tx_buffer, len, 0);
7811 			}
7812 		}
7813 
7814 		/* move us one more past the eop_desc for start of next pkt */
7815 		tx_buffer++;
7816 		tx_desc++;
7817 		i++;
7818 		if (unlikely(!i)) {
7819 			i -= tx_ring->count;
7820 			tx_buffer = tx_ring->tx_buffer_info;
7821 			tx_desc = IGB_TX_DESC(tx_ring, 0);
7822 		}
7823 
7824 		/* issue prefetch for next Tx descriptor */
7825 		prefetch(tx_desc);
7826 
7827 		/* update budget accounting */
7828 		budget--;
7829 	} while (likely(budget));
7830 
7831 	netdev_tx_completed_queue(txring_txq(tx_ring),
7832 				  total_packets, total_bytes);
7833 	i += tx_ring->count;
7834 	tx_ring->next_to_clean = i;
7835 	u64_stats_update_begin(&tx_ring->tx_syncp);
7836 	tx_ring->tx_stats.bytes += total_bytes;
7837 	tx_ring->tx_stats.packets += total_packets;
7838 	u64_stats_update_end(&tx_ring->tx_syncp);
7839 	q_vector->tx.total_bytes += total_bytes;
7840 	q_vector->tx.total_packets += total_packets;
7841 
7842 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7843 		struct e1000_hw *hw = &adapter->hw;
7844 
7845 		/* Detect a transmit hang in hardware, this serializes the
7846 		 * check with the clearing of time_stamp and movement of i
7847 		 */
7848 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7849 		if (tx_buffer->next_to_watch &&
7850 		    time_after(jiffies, tx_buffer->time_stamp +
7851 			       (adapter->tx_timeout_factor * HZ)) &&
7852 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7853 
7854 			/* detected Tx unit hang */
7855 			dev_err(tx_ring->dev,
7856 				"Detected Tx Unit Hang\n"
7857 				"  Tx Queue             <%d>\n"
7858 				"  TDH                  <%x>\n"
7859 				"  TDT                  <%x>\n"
7860 				"  next_to_use          <%x>\n"
7861 				"  next_to_clean        <%x>\n"
7862 				"buffer_info[next_to_clean]\n"
7863 				"  time_stamp           <%lx>\n"
7864 				"  next_to_watch        <%p>\n"
7865 				"  jiffies              <%lx>\n"
7866 				"  desc.status          <%x>\n",
7867 				tx_ring->queue_index,
7868 				rd32(E1000_TDH(tx_ring->reg_idx)),
7869 				readl(tx_ring->tail),
7870 				tx_ring->next_to_use,
7871 				tx_ring->next_to_clean,
7872 				tx_buffer->time_stamp,
7873 				tx_buffer->next_to_watch,
7874 				jiffies,
7875 				tx_buffer->next_to_watch->wb.status);
7876 			netif_stop_subqueue(tx_ring->netdev,
7877 					    tx_ring->queue_index);
7878 
7879 			/* we are about to reset, no point in enabling stuff */
7880 			return true;
7881 		}
7882 	}
7883 
7884 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7885 	if (unlikely(total_packets &&
7886 	    netif_carrier_ok(tx_ring->netdev) &&
7887 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7888 		/* Make sure that anybody stopping the queue after this
7889 		 * sees the new next_to_clean.
7890 		 */
7891 		smp_mb();
7892 		if (__netif_subqueue_stopped(tx_ring->netdev,
7893 					     tx_ring->queue_index) &&
7894 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7895 			netif_wake_subqueue(tx_ring->netdev,
7896 					    tx_ring->queue_index);
7897 
7898 			u64_stats_update_begin(&tx_ring->tx_syncp);
7899 			tx_ring->tx_stats.restart_queue++;
7900 			u64_stats_update_end(&tx_ring->tx_syncp);
7901 		}
7902 	}
7903 
7904 	return !!budget;
7905 }
7906 
7907 /**
7908  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7909  *  @rx_ring: rx descriptor ring to store buffers on
7910  *  @old_buff: donor buffer to have page reused
7911  *
7912  *  Synchronizes page for reuse by the adapter
7913  **/
7914 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7915 			      struct igb_rx_buffer *old_buff)
7916 {
7917 	struct igb_rx_buffer *new_buff;
7918 	u16 nta = rx_ring->next_to_alloc;
7919 
7920 	new_buff = &rx_ring->rx_buffer_info[nta];
7921 
7922 	/* update, and store next to alloc */
7923 	nta++;
7924 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7925 
7926 	/* Transfer page from old buffer to new buffer.
7927 	 * Move each member individually to avoid possible store
7928 	 * forwarding stalls.
7929 	 */
7930 	new_buff->dma		= old_buff->dma;
7931 	new_buff->page		= old_buff->page;
7932 	new_buff->page_offset	= old_buff->page_offset;
7933 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7934 }
7935 
7936 static inline bool igb_page_is_reserved(struct page *page)
7937 {
7938 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7939 }
7940 
7941 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7942 {
7943 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7944 	struct page *page = rx_buffer->page;
7945 
7946 	/* avoid re-using remote pages */
7947 	if (unlikely(igb_page_is_reserved(page)))
7948 		return false;
7949 
7950 #if (PAGE_SIZE < 8192)
7951 	/* if we are only owner of page we can reuse it */
7952 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7953 		return false;
7954 #else
7955 #define IGB_LAST_OFFSET \
7956 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7957 
7958 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7959 		return false;
7960 #endif
7961 
7962 	/* If we have drained the page fragment pool we need to update
7963 	 * the pagecnt_bias and page count so that we fully restock the
7964 	 * number of references the driver holds.
7965 	 */
7966 	if (unlikely(!pagecnt_bias)) {
7967 		page_ref_add(page, USHRT_MAX);
7968 		rx_buffer->pagecnt_bias = USHRT_MAX;
7969 	}
7970 
7971 	return true;
7972 }
7973 
7974 /**
7975  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7976  *  @rx_ring: rx descriptor ring to transact packets on
7977  *  @rx_buffer: buffer containing page to add
7978  *  @skb: sk_buff to place the data into
7979  *  @size: size of buffer to be added
7980  *
7981  *  This function will add the data contained in rx_buffer->page to the skb.
7982  **/
7983 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7984 			    struct igb_rx_buffer *rx_buffer,
7985 			    struct sk_buff *skb,
7986 			    unsigned int size)
7987 {
7988 #if (PAGE_SIZE < 8192)
7989 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7990 #else
7991 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7992 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7993 				SKB_DATA_ALIGN(size);
7994 #endif
7995 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7996 			rx_buffer->page_offset, size, truesize);
7997 #if (PAGE_SIZE < 8192)
7998 	rx_buffer->page_offset ^= truesize;
7999 #else
8000 	rx_buffer->page_offset += truesize;
8001 #endif
8002 }
8003 
8004 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8005 					 struct igb_rx_buffer *rx_buffer,
8006 					 union e1000_adv_rx_desc *rx_desc,
8007 					 unsigned int size)
8008 {
8009 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8010 #if (PAGE_SIZE < 8192)
8011 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8012 #else
8013 	unsigned int truesize = SKB_DATA_ALIGN(size);
8014 #endif
8015 	unsigned int headlen;
8016 	struct sk_buff *skb;
8017 
8018 	/* prefetch first cache line of first page */
8019 	prefetch(va);
8020 #if L1_CACHE_BYTES < 128
8021 	prefetch(va + L1_CACHE_BYTES);
8022 #endif
8023 
8024 	/* allocate a skb to store the frags */
8025 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8026 	if (unlikely(!skb))
8027 		return NULL;
8028 
8029 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8030 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8031 		va += IGB_TS_HDR_LEN;
8032 		size -= IGB_TS_HDR_LEN;
8033 	}
8034 
8035 	/* Determine available headroom for copy */
8036 	headlen = size;
8037 	if (headlen > IGB_RX_HDR_LEN)
8038 		headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8039 
8040 	/* align pull length to size of long to optimize memcpy performance */
8041 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8042 
8043 	/* update all of the pointers */
8044 	size -= headlen;
8045 	if (size) {
8046 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8047 				(va + headlen) - page_address(rx_buffer->page),
8048 				size, truesize);
8049 #if (PAGE_SIZE < 8192)
8050 		rx_buffer->page_offset ^= truesize;
8051 #else
8052 		rx_buffer->page_offset += truesize;
8053 #endif
8054 	} else {
8055 		rx_buffer->pagecnt_bias++;
8056 	}
8057 
8058 	return skb;
8059 }
8060 
8061 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8062 				     struct igb_rx_buffer *rx_buffer,
8063 				     union e1000_adv_rx_desc *rx_desc,
8064 				     unsigned int size)
8065 {
8066 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8067 #if (PAGE_SIZE < 8192)
8068 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8069 #else
8070 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8071 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8072 #endif
8073 	struct sk_buff *skb;
8074 
8075 	/* prefetch first cache line of first page */
8076 	prefetch(va);
8077 #if L1_CACHE_BYTES < 128
8078 	prefetch(va + L1_CACHE_BYTES);
8079 #endif
8080 
8081 	/* build an skb around the page buffer */
8082 	skb = build_skb(va - IGB_SKB_PAD, truesize);
8083 	if (unlikely(!skb))
8084 		return NULL;
8085 
8086 	/* update pointers within the skb to store the data */
8087 	skb_reserve(skb, IGB_SKB_PAD);
8088 	__skb_put(skb, size);
8089 
8090 	/* pull timestamp out of packet data */
8091 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8092 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8093 		__skb_pull(skb, IGB_TS_HDR_LEN);
8094 	}
8095 
8096 	/* update buffer offset */
8097 #if (PAGE_SIZE < 8192)
8098 	rx_buffer->page_offset ^= truesize;
8099 #else
8100 	rx_buffer->page_offset += truesize;
8101 #endif
8102 
8103 	return skb;
8104 }
8105 
8106 static inline void igb_rx_checksum(struct igb_ring *ring,
8107 				   union e1000_adv_rx_desc *rx_desc,
8108 				   struct sk_buff *skb)
8109 {
8110 	skb_checksum_none_assert(skb);
8111 
8112 	/* Ignore Checksum bit is set */
8113 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8114 		return;
8115 
8116 	/* Rx checksum disabled via ethtool */
8117 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8118 		return;
8119 
8120 	/* TCP/UDP checksum error bit is set */
8121 	if (igb_test_staterr(rx_desc,
8122 			     E1000_RXDEXT_STATERR_TCPE |
8123 			     E1000_RXDEXT_STATERR_IPE)) {
8124 		/* work around errata with sctp packets where the TCPE aka
8125 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8126 		 * packets, (aka let the stack check the crc32c)
8127 		 */
8128 		if (!((skb->len == 60) &&
8129 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8130 			u64_stats_update_begin(&ring->rx_syncp);
8131 			ring->rx_stats.csum_err++;
8132 			u64_stats_update_end(&ring->rx_syncp);
8133 		}
8134 		/* let the stack verify checksum errors */
8135 		return;
8136 	}
8137 	/* It must be a TCP or UDP packet with a valid checksum */
8138 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8139 				      E1000_RXD_STAT_UDPCS))
8140 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8141 
8142 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8143 		le32_to_cpu(rx_desc->wb.upper.status_error));
8144 }
8145 
8146 static inline void igb_rx_hash(struct igb_ring *ring,
8147 			       union e1000_adv_rx_desc *rx_desc,
8148 			       struct sk_buff *skb)
8149 {
8150 	if (ring->netdev->features & NETIF_F_RXHASH)
8151 		skb_set_hash(skb,
8152 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8153 			     PKT_HASH_TYPE_L3);
8154 }
8155 
8156 /**
8157  *  igb_is_non_eop - process handling of non-EOP buffers
8158  *  @rx_ring: Rx ring being processed
8159  *  @rx_desc: Rx descriptor for current buffer
8160  *  @skb: current socket buffer containing buffer in progress
8161  *
8162  *  This function updates next to clean.  If the buffer is an EOP buffer
8163  *  this function exits returning false, otherwise it will place the
8164  *  sk_buff in the next buffer to be chained and return true indicating
8165  *  that this is in fact a non-EOP buffer.
8166  **/
8167 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8168 			   union e1000_adv_rx_desc *rx_desc)
8169 {
8170 	u32 ntc = rx_ring->next_to_clean + 1;
8171 
8172 	/* fetch, update, and store next to clean */
8173 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8174 	rx_ring->next_to_clean = ntc;
8175 
8176 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8177 
8178 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8179 		return false;
8180 
8181 	return true;
8182 }
8183 
8184 /**
8185  *  igb_cleanup_headers - Correct corrupted or empty headers
8186  *  @rx_ring: rx descriptor ring packet is being transacted on
8187  *  @rx_desc: pointer to the EOP Rx descriptor
8188  *  @skb: pointer to current skb being fixed
8189  *
8190  *  Address the case where we are pulling data in on pages only
8191  *  and as such no data is present in the skb header.
8192  *
8193  *  In addition if skb is not at least 60 bytes we need to pad it so that
8194  *  it is large enough to qualify as a valid Ethernet frame.
8195  *
8196  *  Returns true if an error was encountered and skb was freed.
8197  **/
8198 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8199 				union e1000_adv_rx_desc *rx_desc,
8200 				struct sk_buff *skb)
8201 {
8202 	if (unlikely((igb_test_staterr(rx_desc,
8203 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8204 		struct net_device *netdev = rx_ring->netdev;
8205 		if (!(netdev->features & NETIF_F_RXALL)) {
8206 			dev_kfree_skb_any(skb);
8207 			return true;
8208 		}
8209 	}
8210 
8211 	/* if eth_skb_pad returns an error the skb was freed */
8212 	if (eth_skb_pad(skb))
8213 		return true;
8214 
8215 	return false;
8216 }
8217 
8218 /**
8219  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8220  *  @rx_ring: rx descriptor ring packet is being transacted on
8221  *  @rx_desc: pointer to the EOP Rx descriptor
8222  *  @skb: pointer to current skb being populated
8223  *
8224  *  This function checks the ring, descriptor, and packet information in
8225  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8226  *  other fields within the skb.
8227  **/
8228 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8229 				   union e1000_adv_rx_desc *rx_desc,
8230 				   struct sk_buff *skb)
8231 {
8232 	struct net_device *dev = rx_ring->netdev;
8233 
8234 	igb_rx_hash(rx_ring, rx_desc, skb);
8235 
8236 	igb_rx_checksum(rx_ring, rx_desc, skb);
8237 
8238 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8239 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8240 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8241 
8242 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8243 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8244 		u16 vid;
8245 
8246 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8247 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8248 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8249 		else
8250 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8251 
8252 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8253 	}
8254 
8255 	skb_record_rx_queue(skb, rx_ring->queue_index);
8256 
8257 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8258 }
8259 
8260 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8261 					       const unsigned int size)
8262 {
8263 	struct igb_rx_buffer *rx_buffer;
8264 
8265 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8266 	prefetchw(rx_buffer->page);
8267 
8268 	/* we are reusing so sync this buffer for CPU use */
8269 	dma_sync_single_range_for_cpu(rx_ring->dev,
8270 				      rx_buffer->dma,
8271 				      rx_buffer->page_offset,
8272 				      size,
8273 				      DMA_FROM_DEVICE);
8274 
8275 	rx_buffer->pagecnt_bias--;
8276 
8277 	return rx_buffer;
8278 }
8279 
8280 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8281 			      struct igb_rx_buffer *rx_buffer)
8282 {
8283 	if (igb_can_reuse_rx_page(rx_buffer)) {
8284 		/* hand second half of page back to the ring */
8285 		igb_reuse_rx_page(rx_ring, rx_buffer);
8286 	} else {
8287 		/* We are not reusing the buffer so unmap it and free
8288 		 * any references we are holding to it
8289 		 */
8290 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8291 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8292 				     IGB_RX_DMA_ATTR);
8293 		__page_frag_cache_drain(rx_buffer->page,
8294 					rx_buffer->pagecnt_bias);
8295 	}
8296 
8297 	/* clear contents of rx_buffer */
8298 	rx_buffer->page = NULL;
8299 }
8300 
8301 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8302 {
8303 	struct igb_ring *rx_ring = q_vector->rx.ring;
8304 	struct sk_buff *skb = rx_ring->skb;
8305 	unsigned int total_bytes = 0, total_packets = 0;
8306 	u16 cleaned_count = igb_desc_unused(rx_ring);
8307 
8308 	while (likely(total_packets < budget)) {
8309 		union e1000_adv_rx_desc *rx_desc;
8310 		struct igb_rx_buffer *rx_buffer;
8311 		unsigned int size;
8312 
8313 		/* return some buffers to hardware, one at a time is too slow */
8314 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8315 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8316 			cleaned_count = 0;
8317 		}
8318 
8319 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8320 		size = le16_to_cpu(rx_desc->wb.upper.length);
8321 		if (!size)
8322 			break;
8323 
8324 		/* This memory barrier is needed to keep us from reading
8325 		 * any other fields out of the rx_desc until we know the
8326 		 * descriptor has been written back
8327 		 */
8328 		dma_rmb();
8329 
8330 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8331 
8332 		/* retrieve a buffer from the ring */
8333 		if (skb)
8334 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8335 		else if (ring_uses_build_skb(rx_ring))
8336 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8337 		else
8338 			skb = igb_construct_skb(rx_ring, rx_buffer,
8339 						rx_desc, size);
8340 
8341 		/* exit if we failed to retrieve a buffer */
8342 		if (!skb) {
8343 			rx_ring->rx_stats.alloc_failed++;
8344 			rx_buffer->pagecnt_bias++;
8345 			break;
8346 		}
8347 
8348 		igb_put_rx_buffer(rx_ring, rx_buffer);
8349 		cleaned_count++;
8350 
8351 		/* fetch next buffer in frame if non-eop */
8352 		if (igb_is_non_eop(rx_ring, rx_desc))
8353 			continue;
8354 
8355 		/* verify the packet layout is correct */
8356 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8357 			skb = NULL;
8358 			continue;
8359 		}
8360 
8361 		/* probably a little skewed due to removing CRC */
8362 		total_bytes += skb->len;
8363 
8364 		/* populate checksum, timestamp, VLAN, and protocol */
8365 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8366 
8367 		napi_gro_receive(&q_vector->napi, skb);
8368 
8369 		/* reset skb pointer */
8370 		skb = NULL;
8371 
8372 		/* update budget accounting */
8373 		total_packets++;
8374 	}
8375 
8376 	/* place incomplete frames back on ring for completion */
8377 	rx_ring->skb = skb;
8378 
8379 	u64_stats_update_begin(&rx_ring->rx_syncp);
8380 	rx_ring->rx_stats.packets += total_packets;
8381 	rx_ring->rx_stats.bytes += total_bytes;
8382 	u64_stats_update_end(&rx_ring->rx_syncp);
8383 	q_vector->rx.total_packets += total_packets;
8384 	q_vector->rx.total_bytes += total_bytes;
8385 
8386 	if (cleaned_count)
8387 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8388 
8389 	return total_packets;
8390 }
8391 
8392 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8393 {
8394 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8395 }
8396 
8397 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8398 				  struct igb_rx_buffer *bi)
8399 {
8400 	struct page *page = bi->page;
8401 	dma_addr_t dma;
8402 
8403 	/* since we are recycling buffers we should seldom need to alloc */
8404 	if (likely(page))
8405 		return true;
8406 
8407 	/* alloc new page for storage */
8408 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8409 	if (unlikely(!page)) {
8410 		rx_ring->rx_stats.alloc_failed++;
8411 		return false;
8412 	}
8413 
8414 	/* map page for use */
8415 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8416 				 igb_rx_pg_size(rx_ring),
8417 				 DMA_FROM_DEVICE,
8418 				 IGB_RX_DMA_ATTR);
8419 
8420 	/* if mapping failed free memory back to system since
8421 	 * there isn't much point in holding memory we can't use
8422 	 */
8423 	if (dma_mapping_error(rx_ring->dev, dma)) {
8424 		__free_pages(page, igb_rx_pg_order(rx_ring));
8425 
8426 		rx_ring->rx_stats.alloc_failed++;
8427 		return false;
8428 	}
8429 
8430 	bi->dma = dma;
8431 	bi->page = page;
8432 	bi->page_offset = igb_rx_offset(rx_ring);
8433 	bi->pagecnt_bias = 1;
8434 
8435 	return true;
8436 }
8437 
8438 /**
8439  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8440  *  @adapter: address of board private structure
8441  **/
8442 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8443 {
8444 	union e1000_adv_rx_desc *rx_desc;
8445 	struct igb_rx_buffer *bi;
8446 	u16 i = rx_ring->next_to_use;
8447 	u16 bufsz;
8448 
8449 	/* nothing to do */
8450 	if (!cleaned_count)
8451 		return;
8452 
8453 	rx_desc = IGB_RX_DESC(rx_ring, i);
8454 	bi = &rx_ring->rx_buffer_info[i];
8455 	i -= rx_ring->count;
8456 
8457 	bufsz = igb_rx_bufsz(rx_ring);
8458 
8459 	do {
8460 		if (!igb_alloc_mapped_page(rx_ring, bi))
8461 			break;
8462 
8463 		/* sync the buffer for use by the device */
8464 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8465 						 bi->page_offset, bufsz,
8466 						 DMA_FROM_DEVICE);
8467 
8468 		/* Refresh the desc even if buffer_addrs didn't change
8469 		 * because each write-back erases this info.
8470 		 */
8471 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8472 
8473 		rx_desc++;
8474 		bi++;
8475 		i++;
8476 		if (unlikely(!i)) {
8477 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8478 			bi = rx_ring->rx_buffer_info;
8479 			i -= rx_ring->count;
8480 		}
8481 
8482 		/* clear the length for the next_to_use descriptor */
8483 		rx_desc->wb.upper.length = 0;
8484 
8485 		cleaned_count--;
8486 	} while (cleaned_count);
8487 
8488 	i += rx_ring->count;
8489 
8490 	if (rx_ring->next_to_use != i) {
8491 		/* record the next descriptor to use */
8492 		rx_ring->next_to_use = i;
8493 
8494 		/* update next to alloc since we have filled the ring */
8495 		rx_ring->next_to_alloc = i;
8496 
8497 		/* Force memory writes to complete before letting h/w
8498 		 * know there are new descriptors to fetch.  (Only
8499 		 * applicable for weak-ordered memory model archs,
8500 		 * such as IA-64).
8501 		 */
8502 		dma_wmb();
8503 		writel(i, rx_ring->tail);
8504 	}
8505 }
8506 
8507 /**
8508  * igb_mii_ioctl -
8509  * @netdev:
8510  * @ifreq:
8511  * @cmd:
8512  **/
8513 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8514 {
8515 	struct igb_adapter *adapter = netdev_priv(netdev);
8516 	struct mii_ioctl_data *data = if_mii(ifr);
8517 
8518 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8519 		return -EOPNOTSUPP;
8520 
8521 	switch (cmd) {
8522 	case SIOCGMIIPHY:
8523 		data->phy_id = adapter->hw.phy.addr;
8524 		break;
8525 	case SIOCGMIIREG:
8526 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8527 				     &data->val_out))
8528 			return -EIO;
8529 		break;
8530 	case SIOCSMIIREG:
8531 	default:
8532 		return -EOPNOTSUPP;
8533 	}
8534 	return 0;
8535 }
8536 
8537 /**
8538  * igb_ioctl -
8539  * @netdev:
8540  * @ifreq:
8541  * @cmd:
8542  **/
8543 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8544 {
8545 	switch (cmd) {
8546 	case SIOCGMIIPHY:
8547 	case SIOCGMIIREG:
8548 	case SIOCSMIIREG:
8549 		return igb_mii_ioctl(netdev, ifr, cmd);
8550 	case SIOCGHWTSTAMP:
8551 		return igb_ptp_get_ts_config(netdev, ifr);
8552 	case SIOCSHWTSTAMP:
8553 		return igb_ptp_set_ts_config(netdev, ifr);
8554 	default:
8555 		return -EOPNOTSUPP;
8556 	}
8557 }
8558 
8559 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8560 {
8561 	struct igb_adapter *adapter = hw->back;
8562 
8563 	pci_read_config_word(adapter->pdev, reg, value);
8564 }
8565 
8566 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8567 {
8568 	struct igb_adapter *adapter = hw->back;
8569 
8570 	pci_write_config_word(adapter->pdev, reg, *value);
8571 }
8572 
8573 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8574 {
8575 	struct igb_adapter *adapter = hw->back;
8576 
8577 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8578 		return -E1000_ERR_CONFIG;
8579 
8580 	return 0;
8581 }
8582 
8583 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8584 {
8585 	struct igb_adapter *adapter = hw->back;
8586 
8587 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8588 		return -E1000_ERR_CONFIG;
8589 
8590 	return 0;
8591 }
8592 
8593 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8594 {
8595 	struct igb_adapter *adapter = netdev_priv(netdev);
8596 	struct e1000_hw *hw = &adapter->hw;
8597 	u32 ctrl, rctl;
8598 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8599 
8600 	if (enable) {
8601 		/* enable VLAN tag insert/strip */
8602 		ctrl = rd32(E1000_CTRL);
8603 		ctrl |= E1000_CTRL_VME;
8604 		wr32(E1000_CTRL, ctrl);
8605 
8606 		/* Disable CFI check */
8607 		rctl = rd32(E1000_RCTL);
8608 		rctl &= ~E1000_RCTL_CFIEN;
8609 		wr32(E1000_RCTL, rctl);
8610 	} else {
8611 		/* disable VLAN tag insert/strip */
8612 		ctrl = rd32(E1000_CTRL);
8613 		ctrl &= ~E1000_CTRL_VME;
8614 		wr32(E1000_CTRL, ctrl);
8615 	}
8616 
8617 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8618 }
8619 
8620 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8621 			       __be16 proto, u16 vid)
8622 {
8623 	struct igb_adapter *adapter = netdev_priv(netdev);
8624 	struct e1000_hw *hw = &adapter->hw;
8625 	int pf_id = adapter->vfs_allocated_count;
8626 
8627 	/* add the filter since PF can receive vlans w/o entry in vlvf */
8628 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8629 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8630 
8631 	set_bit(vid, adapter->active_vlans);
8632 
8633 	return 0;
8634 }
8635 
8636 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8637 				__be16 proto, u16 vid)
8638 {
8639 	struct igb_adapter *adapter = netdev_priv(netdev);
8640 	int pf_id = adapter->vfs_allocated_count;
8641 	struct e1000_hw *hw = &adapter->hw;
8642 
8643 	/* remove VID from filter table */
8644 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8645 		igb_vfta_set(hw, vid, pf_id, false, true);
8646 
8647 	clear_bit(vid, adapter->active_vlans);
8648 
8649 	return 0;
8650 }
8651 
8652 static void igb_restore_vlan(struct igb_adapter *adapter)
8653 {
8654 	u16 vid = 1;
8655 
8656 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8657 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8658 
8659 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8660 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8661 }
8662 
8663 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8664 {
8665 	struct pci_dev *pdev = adapter->pdev;
8666 	struct e1000_mac_info *mac = &adapter->hw.mac;
8667 
8668 	mac->autoneg = 0;
8669 
8670 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8671 	 * for the switch() below to work
8672 	 */
8673 	if ((spd & 1) || (dplx & ~1))
8674 		goto err_inval;
8675 
8676 	/* Fiber NIC's only allow 1000 gbps Full duplex
8677 	 * and 100Mbps Full duplex for 100baseFx sfp
8678 	 */
8679 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8680 		switch (spd + dplx) {
8681 		case SPEED_10 + DUPLEX_HALF:
8682 		case SPEED_10 + DUPLEX_FULL:
8683 		case SPEED_100 + DUPLEX_HALF:
8684 			goto err_inval;
8685 		default:
8686 			break;
8687 		}
8688 	}
8689 
8690 	switch (spd + dplx) {
8691 	case SPEED_10 + DUPLEX_HALF:
8692 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8693 		break;
8694 	case SPEED_10 + DUPLEX_FULL:
8695 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8696 		break;
8697 	case SPEED_100 + DUPLEX_HALF:
8698 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8699 		break;
8700 	case SPEED_100 + DUPLEX_FULL:
8701 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8702 		break;
8703 	case SPEED_1000 + DUPLEX_FULL:
8704 		mac->autoneg = 1;
8705 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8706 		break;
8707 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8708 	default:
8709 		goto err_inval;
8710 	}
8711 
8712 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8713 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8714 
8715 	return 0;
8716 
8717 err_inval:
8718 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8719 	return -EINVAL;
8720 }
8721 
8722 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8723 			  bool runtime)
8724 {
8725 	struct net_device *netdev = pci_get_drvdata(pdev);
8726 	struct igb_adapter *adapter = netdev_priv(netdev);
8727 	struct e1000_hw *hw = &adapter->hw;
8728 	u32 ctrl, rctl, status;
8729 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8730 	bool wake;
8731 
8732 	rtnl_lock();
8733 	netif_device_detach(netdev);
8734 
8735 	if (netif_running(netdev))
8736 		__igb_close(netdev, true);
8737 
8738 	igb_ptp_suspend(adapter);
8739 
8740 	igb_clear_interrupt_scheme(adapter);
8741 	rtnl_unlock();
8742 
8743 	status = rd32(E1000_STATUS);
8744 	if (status & E1000_STATUS_LU)
8745 		wufc &= ~E1000_WUFC_LNKC;
8746 
8747 	if (wufc) {
8748 		igb_setup_rctl(adapter);
8749 		igb_set_rx_mode(netdev);
8750 
8751 		/* turn on all-multi mode if wake on multicast is enabled */
8752 		if (wufc & E1000_WUFC_MC) {
8753 			rctl = rd32(E1000_RCTL);
8754 			rctl |= E1000_RCTL_MPE;
8755 			wr32(E1000_RCTL, rctl);
8756 		}
8757 
8758 		ctrl = rd32(E1000_CTRL);
8759 		ctrl |= E1000_CTRL_ADVD3WUC;
8760 		wr32(E1000_CTRL, ctrl);
8761 
8762 		/* Allow time for pending master requests to run */
8763 		igb_disable_pcie_master(hw);
8764 
8765 		wr32(E1000_WUC, E1000_WUC_PME_EN);
8766 		wr32(E1000_WUFC, wufc);
8767 	} else {
8768 		wr32(E1000_WUC, 0);
8769 		wr32(E1000_WUFC, 0);
8770 	}
8771 
8772 	wake = wufc || adapter->en_mng_pt;
8773 	if (!wake)
8774 		igb_power_down_link(adapter);
8775 	else
8776 		igb_power_up_link(adapter);
8777 
8778 	if (enable_wake)
8779 		*enable_wake = wake;
8780 
8781 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8782 	 * would have already happened in close and is redundant.
8783 	 */
8784 	igb_release_hw_control(adapter);
8785 
8786 	pci_disable_device(pdev);
8787 
8788 	return 0;
8789 }
8790 
8791 static void igb_deliver_wake_packet(struct net_device *netdev)
8792 {
8793 	struct igb_adapter *adapter = netdev_priv(netdev);
8794 	struct e1000_hw *hw = &adapter->hw;
8795 	struct sk_buff *skb;
8796 	u32 wupl;
8797 
8798 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8799 
8800 	/* WUPM stores only the first 128 bytes of the wake packet.
8801 	 * Read the packet only if we have the whole thing.
8802 	 */
8803 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8804 		return;
8805 
8806 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8807 	if (!skb)
8808 		return;
8809 
8810 	skb_put(skb, wupl);
8811 
8812 	/* Ensure reads are 32-bit aligned */
8813 	wupl = roundup(wupl, 4);
8814 
8815 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8816 
8817 	skb->protocol = eth_type_trans(skb, netdev);
8818 	netif_rx(skb);
8819 }
8820 
8821 static int __maybe_unused igb_suspend(struct device *dev)
8822 {
8823 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8824 }
8825 
8826 static int __maybe_unused igb_resume(struct device *dev)
8827 {
8828 	struct pci_dev *pdev = to_pci_dev(dev);
8829 	struct net_device *netdev = pci_get_drvdata(pdev);
8830 	struct igb_adapter *adapter = netdev_priv(netdev);
8831 	struct e1000_hw *hw = &adapter->hw;
8832 	u32 err, val;
8833 
8834 	pci_set_power_state(pdev, PCI_D0);
8835 	pci_restore_state(pdev);
8836 	pci_save_state(pdev);
8837 
8838 	if (!pci_device_is_present(pdev))
8839 		return -ENODEV;
8840 	err = pci_enable_device_mem(pdev);
8841 	if (err) {
8842 		dev_err(&pdev->dev,
8843 			"igb: Cannot enable PCI device from suspend\n");
8844 		return err;
8845 	}
8846 	pci_set_master(pdev);
8847 
8848 	pci_enable_wake(pdev, PCI_D3hot, 0);
8849 	pci_enable_wake(pdev, PCI_D3cold, 0);
8850 
8851 	if (igb_init_interrupt_scheme(adapter, true)) {
8852 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8853 		return -ENOMEM;
8854 	}
8855 
8856 	igb_reset(adapter);
8857 
8858 	/* let the f/w know that the h/w is now under the control of the
8859 	 * driver.
8860 	 */
8861 	igb_get_hw_control(adapter);
8862 
8863 	val = rd32(E1000_WUS);
8864 	if (val & WAKE_PKT_WUS)
8865 		igb_deliver_wake_packet(netdev);
8866 
8867 	wr32(E1000_WUS, ~0);
8868 
8869 	rtnl_lock();
8870 	if (!err && netif_running(netdev))
8871 		err = __igb_open(netdev, true);
8872 
8873 	if (!err)
8874 		netif_device_attach(netdev);
8875 	rtnl_unlock();
8876 
8877 	return err;
8878 }
8879 
8880 static int __maybe_unused igb_runtime_idle(struct device *dev)
8881 {
8882 	struct pci_dev *pdev = to_pci_dev(dev);
8883 	struct net_device *netdev = pci_get_drvdata(pdev);
8884 	struct igb_adapter *adapter = netdev_priv(netdev);
8885 
8886 	if (!igb_has_link(adapter))
8887 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8888 
8889 	return -EBUSY;
8890 }
8891 
8892 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8893 {
8894 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8895 }
8896 
8897 static int __maybe_unused igb_runtime_resume(struct device *dev)
8898 {
8899 	return igb_resume(dev);
8900 }
8901 
8902 static void igb_shutdown(struct pci_dev *pdev)
8903 {
8904 	bool wake;
8905 
8906 	__igb_shutdown(pdev, &wake, 0);
8907 
8908 	if (system_state == SYSTEM_POWER_OFF) {
8909 		pci_wake_from_d3(pdev, wake);
8910 		pci_set_power_state(pdev, PCI_D3hot);
8911 	}
8912 }
8913 
8914 #ifdef CONFIG_PCI_IOV
8915 static int igb_sriov_reinit(struct pci_dev *dev)
8916 {
8917 	struct net_device *netdev = pci_get_drvdata(dev);
8918 	struct igb_adapter *adapter = netdev_priv(netdev);
8919 	struct pci_dev *pdev = adapter->pdev;
8920 
8921 	rtnl_lock();
8922 
8923 	if (netif_running(netdev))
8924 		igb_close(netdev);
8925 	else
8926 		igb_reset(adapter);
8927 
8928 	igb_clear_interrupt_scheme(adapter);
8929 
8930 	igb_init_queue_configuration(adapter);
8931 
8932 	if (igb_init_interrupt_scheme(adapter, true)) {
8933 		rtnl_unlock();
8934 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8935 		return -ENOMEM;
8936 	}
8937 
8938 	if (netif_running(netdev))
8939 		igb_open(netdev);
8940 
8941 	rtnl_unlock();
8942 
8943 	return 0;
8944 }
8945 
8946 static int igb_pci_disable_sriov(struct pci_dev *dev)
8947 {
8948 	int err = igb_disable_sriov(dev);
8949 
8950 	if (!err)
8951 		err = igb_sriov_reinit(dev);
8952 
8953 	return err;
8954 }
8955 
8956 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8957 {
8958 	int err = igb_enable_sriov(dev, num_vfs);
8959 
8960 	if (err)
8961 		goto out;
8962 
8963 	err = igb_sriov_reinit(dev);
8964 	if (!err)
8965 		return num_vfs;
8966 
8967 out:
8968 	return err;
8969 }
8970 
8971 #endif
8972 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8973 {
8974 #ifdef CONFIG_PCI_IOV
8975 	if (num_vfs == 0)
8976 		return igb_pci_disable_sriov(dev);
8977 	else
8978 		return igb_pci_enable_sriov(dev, num_vfs);
8979 #endif
8980 	return 0;
8981 }
8982 
8983 /**
8984  *  igb_io_error_detected - called when PCI error is detected
8985  *  @pdev: Pointer to PCI device
8986  *  @state: The current pci connection state
8987  *
8988  *  This function is called after a PCI bus error affecting
8989  *  this device has been detected.
8990  **/
8991 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8992 					      pci_channel_state_t state)
8993 {
8994 	struct net_device *netdev = pci_get_drvdata(pdev);
8995 	struct igb_adapter *adapter = netdev_priv(netdev);
8996 
8997 	netif_device_detach(netdev);
8998 
8999 	if (state == pci_channel_io_perm_failure)
9000 		return PCI_ERS_RESULT_DISCONNECT;
9001 
9002 	if (netif_running(netdev))
9003 		igb_down(adapter);
9004 	pci_disable_device(pdev);
9005 
9006 	/* Request a slot slot reset. */
9007 	return PCI_ERS_RESULT_NEED_RESET;
9008 }
9009 
9010 /**
9011  *  igb_io_slot_reset - called after the pci bus has been reset.
9012  *  @pdev: Pointer to PCI device
9013  *
9014  *  Restart the card from scratch, as if from a cold-boot. Implementation
9015  *  resembles the first-half of the igb_resume routine.
9016  **/
9017 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9018 {
9019 	struct net_device *netdev = pci_get_drvdata(pdev);
9020 	struct igb_adapter *adapter = netdev_priv(netdev);
9021 	struct e1000_hw *hw = &adapter->hw;
9022 	pci_ers_result_t result;
9023 
9024 	if (pci_enable_device_mem(pdev)) {
9025 		dev_err(&pdev->dev,
9026 			"Cannot re-enable PCI device after reset.\n");
9027 		result = PCI_ERS_RESULT_DISCONNECT;
9028 	} else {
9029 		pci_set_master(pdev);
9030 		pci_restore_state(pdev);
9031 		pci_save_state(pdev);
9032 
9033 		pci_enable_wake(pdev, PCI_D3hot, 0);
9034 		pci_enable_wake(pdev, PCI_D3cold, 0);
9035 
9036 		/* In case of PCI error, adapter lose its HW address
9037 		 * so we should re-assign it here.
9038 		 */
9039 		hw->hw_addr = adapter->io_addr;
9040 
9041 		igb_reset(adapter);
9042 		wr32(E1000_WUS, ~0);
9043 		result = PCI_ERS_RESULT_RECOVERED;
9044 	}
9045 
9046 	return result;
9047 }
9048 
9049 /**
9050  *  igb_io_resume - called when traffic can start flowing again.
9051  *  @pdev: Pointer to PCI device
9052  *
9053  *  This callback is called when the error recovery driver tells us that
9054  *  its OK to resume normal operation. Implementation resembles the
9055  *  second-half of the igb_resume routine.
9056  */
9057 static void igb_io_resume(struct pci_dev *pdev)
9058 {
9059 	struct net_device *netdev = pci_get_drvdata(pdev);
9060 	struct igb_adapter *adapter = netdev_priv(netdev);
9061 
9062 	if (netif_running(netdev)) {
9063 		if (igb_up(adapter)) {
9064 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9065 			return;
9066 		}
9067 	}
9068 
9069 	netif_device_attach(netdev);
9070 
9071 	/* let the f/w know that the h/w is now under the control of the
9072 	 * driver.
9073 	 */
9074 	igb_get_hw_control(adapter);
9075 }
9076 
9077 /**
9078  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9079  *  @adapter: Pointer to adapter structure
9080  *  @index: Index of the RAR entry which need to be synced with MAC table
9081  **/
9082 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9083 {
9084 	struct e1000_hw *hw = &adapter->hw;
9085 	u32 rar_low, rar_high;
9086 	u8 *addr = adapter->mac_table[index].addr;
9087 
9088 	/* HW expects these to be in network order when they are plugged
9089 	 * into the registers which are little endian.  In order to guarantee
9090 	 * that ordering we need to do an leXX_to_cpup here in order to be
9091 	 * ready for the byteswap that occurs with writel
9092 	 */
9093 	rar_low = le32_to_cpup((__le32 *)(addr));
9094 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9095 
9096 	/* Indicate to hardware the Address is Valid. */
9097 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9098 		if (is_valid_ether_addr(addr))
9099 			rar_high |= E1000_RAH_AV;
9100 
9101 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9102 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9103 
9104 		switch (hw->mac.type) {
9105 		case e1000_82575:
9106 		case e1000_i210:
9107 			if (adapter->mac_table[index].state &
9108 			    IGB_MAC_STATE_QUEUE_STEERING)
9109 				rar_high |= E1000_RAH_QSEL_ENABLE;
9110 
9111 			rar_high |= E1000_RAH_POOL_1 *
9112 				    adapter->mac_table[index].queue;
9113 			break;
9114 		default:
9115 			rar_high |= E1000_RAH_POOL_1 <<
9116 				    adapter->mac_table[index].queue;
9117 			break;
9118 		}
9119 	}
9120 
9121 	wr32(E1000_RAL(index), rar_low);
9122 	wrfl();
9123 	wr32(E1000_RAH(index), rar_high);
9124 	wrfl();
9125 }
9126 
9127 static int igb_set_vf_mac(struct igb_adapter *adapter,
9128 			  int vf, unsigned char *mac_addr)
9129 {
9130 	struct e1000_hw *hw = &adapter->hw;
9131 	/* VF MAC addresses start at end of receive addresses and moves
9132 	 * towards the first, as a result a collision should not be possible
9133 	 */
9134 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9135 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9136 
9137 	ether_addr_copy(vf_mac_addr, mac_addr);
9138 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9139 	adapter->mac_table[rar_entry].queue = vf;
9140 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9141 	igb_rar_set_index(adapter, rar_entry);
9142 
9143 	return 0;
9144 }
9145 
9146 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9147 {
9148 	struct igb_adapter *adapter = netdev_priv(netdev);
9149 
9150 	if (vf >= adapter->vfs_allocated_count)
9151 		return -EINVAL;
9152 
9153 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9154 	 * flag and allows to overwrite the MAC via VF netdev.  This
9155 	 * is necessary to allow libvirt a way to restore the original
9156 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9157 	 * down a VM.
9158 	 */
9159 	if (is_zero_ether_addr(mac)) {
9160 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9161 		dev_info(&adapter->pdev->dev,
9162 			 "remove administratively set MAC on VF %d\n",
9163 			 vf);
9164 	} else if (is_valid_ether_addr(mac)) {
9165 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9166 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9167 			 mac, vf);
9168 		dev_info(&adapter->pdev->dev,
9169 			 "Reload the VF driver to make this change effective.");
9170 		/* Generate additional warning if PF is down */
9171 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9172 			dev_warn(&adapter->pdev->dev,
9173 				 "The VF MAC address has been set, but the PF device is not up.\n");
9174 			dev_warn(&adapter->pdev->dev,
9175 				 "Bring the PF device up before attempting to use the VF device.\n");
9176 		}
9177 	} else {
9178 		return -EINVAL;
9179 	}
9180 	return igb_set_vf_mac(adapter, vf, mac);
9181 }
9182 
9183 static int igb_link_mbps(int internal_link_speed)
9184 {
9185 	switch (internal_link_speed) {
9186 	case SPEED_100:
9187 		return 100;
9188 	case SPEED_1000:
9189 		return 1000;
9190 	default:
9191 		return 0;
9192 	}
9193 }
9194 
9195 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9196 				  int link_speed)
9197 {
9198 	int rf_dec, rf_int;
9199 	u32 bcnrc_val;
9200 
9201 	if (tx_rate != 0) {
9202 		/* Calculate the rate factor values to set */
9203 		rf_int = link_speed / tx_rate;
9204 		rf_dec = (link_speed - (rf_int * tx_rate));
9205 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9206 			 tx_rate;
9207 
9208 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9209 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9210 			      E1000_RTTBCNRC_RF_INT_MASK);
9211 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9212 	} else {
9213 		bcnrc_val = 0;
9214 	}
9215 
9216 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9217 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9218 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9219 	 */
9220 	wr32(E1000_RTTBCNRM, 0x14);
9221 	wr32(E1000_RTTBCNRC, bcnrc_val);
9222 }
9223 
9224 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9225 {
9226 	int actual_link_speed, i;
9227 	bool reset_rate = false;
9228 
9229 	/* VF TX rate limit was not set or not supported */
9230 	if ((adapter->vf_rate_link_speed == 0) ||
9231 	    (adapter->hw.mac.type != e1000_82576))
9232 		return;
9233 
9234 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9235 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9236 		reset_rate = true;
9237 		adapter->vf_rate_link_speed = 0;
9238 		dev_info(&adapter->pdev->dev,
9239 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9240 	}
9241 
9242 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9243 		if (reset_rate)
9244 			adapter->vf_data[i].tx_rate = 0;
9245 
9246 		igb_set_vf_rate_limit(&adapter->hw, i,
9247 				      adapter->vf_data[i].tx_rate,
9248 				      actual_link_speed);
9249 	}
9250 }
9251 
9252 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9253 			     int min_tx_rate, int max_tx_rate)
9254 {
9255 	struct igb_adapter *adapter = netdev_priv(netdev);
9256 	struct e1000_hw *hw = &adapter->hw;
9257 	int actual_link_speed;
9258 
9259 	if (hw->mac.type != e1000_82576)
9260 		return -EOPNOTSUPP;
9261 
9262 	if (min_tx_rate)
9263 		return -EINVAL;
9264 
9265 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9266 	if ((vf >= adapter->vfs_allocated_count) ||
9267 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9268 	    (max_tx_rate < 0) ||
9269 	    (max_tx_rate > actual_link_speed))
9270 		return -EINVAL;
9271 
9272 	adapter->vf_rate_link_speed = actual_link_speed;
9273 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9274 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9275 
9276 	return 0;
9277 }
9278 
9279 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9280 				   bool setting)
9281 {
9282 	struct igb_adapter *adapter = netdev_priv(netdev);
9283 	struct e1000_hw *hw = &adapter->hw;
9284 	u32 reg_val, reg_offset;
9285 
9286 	if (!adapter->vfs_allocated_count)
9287 		return -EOPNOTSUPP;
9288 
9289 	if (vf >= adapter->vfs_allocated_count)
9290 		return -EINVAL;
9291 
9292 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9293 	reg_val = rd32(reg_offset);
9294 	if (setting)
9295 		reg_val |= (BIT(vf) |
9296 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9297 	else
9298 		reg_val &= ~(BIT(vf) |
9299 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9300 	wr32(reg_offset, reg_val);
9301 
9302 	adapter->vf_data[vf].spoofchk_enabled = setting;
9303 	return 0;
9304 }
9305 
9306 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9307 {
9308 	struct igb_adapter *adapter = netdev_priv(netdev);
9309 
9310 	if (vf >= adapter->vfs_allocated_count)
9311 		return -EINVAL;
9312 	if (adapter->vf_data[vf].trusted == setting)
9313 		return 0;
9314 
9315 	adapter->vf_data[vf].trusted = setting;
9316 
9317 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9318 		 vf, setting ? "" : "not ");
9319 	return 0;
9320 }
9321 
9322 static int igb_ndo_get_vf_config(struct net_device *netdev,
9323 				 int vf, struct ifla_vf_info *ivi)
9324 {
9325 	struct igb_adapter *adapter = netdev_priv(netdev);
9326 	if (vf >= adapter->vfs_allocated_count)
9327 		return -EINVAL;
9328 	ivi->vf = vf;
9329 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9330 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9331 	ivi->min_tx_rate = 0;
9332 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9333 	ivi->qos = adapter->vf_data[vf].pf_qos;
9334 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9335 	ivi->trusted = adapter->vf_data[vf].trusted;
9336 	return 0;
9337 }
9338 
9339 static void igb_vmm_control(struct igb_adapter *adapter)
9340 {
9341 	struct e1000_hw *hw = &adapter->hw;
9342 	u32 reg;
9343 
9344 	switch (hw->mac.type) {
9345 	case e1000_82575:
9346 	case e1000_i210:
9347 	case e1000_i211:
9348 	case e1000_i354:
9349 	default:
9350 		/* replication is not supported for 82575 */
9351 		return;
9352 	case e1000_82576:
9353 		/* notify HW that the MAC is adding vlan tags */
9354 		reg = rd32(E1000_DTXCTL);
9355 		reg |= E1000_DTXCTL_VLAN_ADDED;
9356 		wr32(E1000_DTXCTL, reg);
9357 		/* Fall through */
9358 	case e1000_82580:
9359 		/* enable replication vlan tag stripping */
9360 		reg = rd32(E1000_RPLOLR);
9361 		reg |= E1000_RPLOLR_STRVLAN;
9362 		wr32(E1000_RPLOLR, reg);
9363 		/* Fall through */
9364 	case e1000_i350:
9365 		/* none of the above registers are supported by i350 */
9366 		break;
9367 	}
9368 
9369 	if (adapter->vfs_allocated_count) {
9370 		igb_vmdq_set_loopback_pf(hw, true);
9371 		igb_vmdq_set_replication_pf(hw, true);
9372 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9373 					      adapter->vfs_allocated_count);
9374 	} else {
9375 		igb_vmdq_set_loopback_pf(hw, false);
9376 		igb_vmdq_set_replication_pf(hw, false);
9377 	}
9378 }
9379 
9380 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9381 {
9382 	struct e1000_hw *hw = &adapter->hw;
9383 	u32 dmac_thr;
9384 	u16 hwm;
9385 
9386 	if (hw->mac.type > e1000_82580) {
9387 		if (adapter->flags & IGB_FLAG_DMAC) {
9388 			u32 reg;
9389 
9390 			/* force threshold to 0. */
9391 			wr32(E1000_DMCTXTH, 0);
9392 
9393 			/* DMA Coalescing high water mark needs to be greater
9394 			 * than the Rx threshold. Set hwm to PBA - max frame
9395 			 * size in 16B units, capping it at PBA - 6KB.
9396 			 */
9397 			hwm = 64 * (pba - 6);
9398 			reg = rd32(E1000_FCRTC);
9399 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9400 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9401 				& E1000_FCRTC_RTH_COAL_MASK);
9402 			wr32(E1000_FCRTC, reg);
9403 
9404 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9405 			 * frame size, capping it at PBA - 10KB.
9406 			 */
9407 			dmac_thr = pba - 10;
9408 			reg = rd32(E1000_DMACR);
9409 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9410 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9411 				& E1000_DMACR_DMACTHR_MASK);
9412 
9413 			/* transition to L0x or L1 if available..*/
9414 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9415 
9416 			/* watchdog timer= +-1000 usec in 32usec intervals */
9417 			reg |= (1000 >> 5);
9418 
9419 			/* Disable BMC-to-OS Watchdog Enable */
9420 			if (hw->mac.type != e1000_i354)
9421 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9422 
9423 			wr32(E1000_DMACR, reg);
9424 
9425 			/* no lower threshold to disable
9426 			 * coalescing(smart fifb)-UTRESH=0
9427 			 */
9428 			wr32(E1000_DMCRTRH, 0);
9429 
9430 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9431 
9432 			wr32(E1000_DMCTLX, reg);
9433 
9434 			/* free space in tx packet buffer to wake from
9435 			 * DMA coal
9436 			 */
9437 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9438 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9439 
9440 			/* make low power state decision controlled
9441 			 * by DMA coal
9442 			 */
9443 			reg = rd32(E1000_PCIEMISC);
9444 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9445 			wr32(E1000_PCIEMISC, reg);
9446 		} /* endif adapter->dmac is not disabled */
9447 	} else if (hw->mac.type == e1000_82580) {
9448 		u32 reg = rd32(E1000_PCIEMISC);
9449 
9450 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9451 		wr32(E1000_DMACR, 0);
9452 	}
9453 }
9454 
9455 /**
9456  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9457  *  @hw: pointer to hardware structure
9458  *  @byte_offset: byte offset to read
9459  *  @dev_addr: device address
9460  *  @data: value read
9461  *
9462  *  Performs byte read operation over I2C interface at
9463  *  a specified device address.
9464  **/
9465 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9466 		      u8 dev_addr, u8 *data)
9467 {
9468 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9469 	struct i2c_client *this_client = adapter->i2c_client;
9470 	s32 status;
9471 	u16 swfw_mask = 0;
9472 
9473 	if (!this_client)
9474 		return E1000_ERR_I2C;
9475 
9476 	swfw_mask = E1000_SWFW_PHY0_SM;
9477 
9478 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9479 		return E1000_ERR_SWFW_SYNC;
9480 
9481 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9482 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9483 
9484 	if (status < 0)
9485 		return E1000_ERR_I2C;
9486 	else {
9487 		*data = status;
9488 		return 0;
9489 	}
9490 }
9491 
9492 /**
9493  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9494  *  @hw: pointer to hardware structure
9495  *  @byte_offset: byte offset to write
9496  *  @dev_addr: device address
9497  *  @data: value to write
9498  *
9499  *  Performs byte write operation over I2C interface at
9500  *  a specified device address.
9501  **/
9502 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9503 		       u8 dev_addr, u8 data)
9504 {
9505 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9506 	struct i2c_client *this_client = adapter->i2c_client;
9507 	s32 status;
9508 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9509 
9510 	if (!this_client)
9511 		return E1000_ERR_I2C;
9512 
9513 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9514 		return E1000_ERR_SWFW_SYNC;
9515 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9516 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9517 
9518 	if (status)
9519 		return E1000_ERR_I2C;
9520 	else
9521 		return 0;
9522 
9523 }
9524 
9525 int igb_reinit_queues(struct igb_adapter *adapter)
9526 {
9527 	struct net_device *netdev = adapter->netdev;
9528 	struct pci_dev *pdev = adapter->pdev;
9529 	int err = 0;
9530 
9531 	if (netif_running(netdev))
9532 		igb_close(netdev);
9533 
9534 	igb_reset_interrupt_capability(adapter);
9535 
9536 	if (igb_init_interrupt_scheme(adapter, true)) {
9537 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9538 		return -ENOMEM;
9539 	}
9540 
9541 	if (netif_running(netdev))
9542 		err = igb_open(netdev);
9543 
9544 	return err;
9545 }
9546 
9547 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9548 {
9549 	struct igb_nfc_filter *rule;
9550 
9551 	spin_lock(&adapter->nfc_lock);
9552 
9553 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9554 		igb_erase_filter(adapter, rule);
9555 
9556 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9557 		igb_erase_filter(adapter, rule);
9558 
9559 	spin_unlock(&adapter->nfc_lock);
9560 }
9561 
9562 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9563 {
9564 	struct igb_nfc_filter *rule;
9565 
9566 	spin_lock(&adapter->nfc_lock);
9567 
9568 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9569 		igb_add_filter(adapter, rule);
9570 
9571 	spin_unlock(&adapter->nfc_lock);
9572 }
9573 /* igb_main.c */
9574