1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include "igb.h"
61 
62 #define MAJ 4
63 #define MIN 1
64 #define BUILD 2
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70 				"Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72 
73 static const struct e1000_info *igb_info_tbl[] = {
74 	[board_82575] = &e1000_82575_info,
75 };
76 
77 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
108 	/* required last entry */
109 	{0, }
110 };
111 
112 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113 
114 void igb_reset(struct igb_adapter *);
115 static int igb_setup_all_tx_resources(struct igb_adapter *);
116 static int igb_setup_all_rx_resources(struct igb_adapter *);
117 static void igb_free_all_tx_resources(struct igb_adapter *);
118 static void igb_free_all_rx_resources(struct igb_adapter *);
119 static void igb_setup_mrqc(struct igb_adapter *);
120 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121 static void igb_remove(struct pci_dev *pdev);
122 static int igb_sw_init(struct igb_adapter *);
123 static int igb_open(struct net_device *);
124 static int igb_close(struct net_device *);
125 static void igb_configure(struct igb_adapter *);
126 static void igb_configure_tx(struct igb_adapter *);
127 static void igb_configure_rx(struct igb_adapter *);
128 static void igb_clean_all_tx_rings(struct igb_adapter *);
129 static void igb_clean_all_rx_rings(struct igb_adapter *);
130 static void igb_clean_tx_ring(struct igb_ring *);
131 static void igb_clean_rx_ring(struct igb_ring *);
132 static void igb_set_rx_mode(struct net_device *);
133 static void igb_update_phy_info(unsigned long);
134 static void igb_watchdog(unsigned long);
135 static void igb_watchdog_task(struct work_struct *);
136 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
137 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
138 						 struct rtnl_link_stats64 *stats);
139 static int igb_change_mtu(struct net_device *, int);
140 static int igb_set_mac(struct net_device *, void *);
141 static void igb_set_uta(struct igb_adapter *adapter);
142 static irqreturn_t igb_intr(int irq, void *);
143 static irqreturn_t igb_intr_msi(int irq, void *);
144 static irqreturn_t igb_msix_other(int irq, void *);
145 static irqreturn_t igb_msix_ring(int irq, void *);
146 #ifdef CONFIG_IGB_DCA
147 static void igb_update_dca(struct igb_q_vector *);
148 static void igb_setup_dca(struct igb_adapter *);
149 #endif /* CONFIG_IGB_DCA */
150 static int igb_poll(struct napi_struct *, int);
151 static bool igb_clean_tx_irq(struct igb_q_vector *);
152 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
153 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
154 static void igb_tx_timeout(struct net_device *);
155 static void igb_reset_task(struct work_struct *);
156 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
157 static int igb_vlan_rx_add_vid(struct net_device *, u16);
158 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
159 static void igb_restore_vlan(struct igb_adapter *);
160 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
161 static void igb_ping_all_vfs(struct igb_adapter *);
162 static void igb_msg_task(struct igb_adapter *);
163 static void igb_vmm_control(struct igb_adapter *);
164 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
165 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
166 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
167 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
168 			       int vf, u16 vlan, u8 qos);
169 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 
174 #ifdef CONFIG_PCI_IOV
175 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
176 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
177 #endif
178 
179 #ifdef CONFIG_PM
180 #ifdef CONFIG_PM_SLEEP
181 static int igb_suspend(struct device *);
182 #endif
183 static int igb_resume(struct device *);
184 #ifdef CONFIG_PM_RUNTIME
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 #endif
189 static const struct dev_pm_ops igb_pm_ops = {
190 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
191 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
192 			igb_runtime_idle)
193 };
194 #endif
195 static void igb_shutdown(struct pci_dev *);
196 #ifdef CONFIG_IGB_DCA
197 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
198 static struct notifier_block dca_notifier = {
199 	.notifier_call	= igb_notify_dca,
200 	.next		= NULL,
201 	.priority	= 0
202 };
203 #endif
204 #ifdef CONFIG_NET_POLL_CONTROLLER
205 /* for netdump / net console */
206 static void igb_netpoll(struct net_device *);
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs = 0;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
212                  "per physical function");
213 #endif /* CONFIG_PCI_IOV */
214 
215 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
216 		     pci_channel_state_t);
217 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
218 static void igb_io_resume(struct pci_dev *);
219 
220 static const struct pci_error_handlers igb_err_handler = {
221 	.error_detected = igb_io_error_detected,
222 	.slot_reset = igb_io_slot_reset,
223 	.resume = igb_io_resume,
224 };
225 
226 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
227 
228 static struct pci_driver igb_driver = {
229 	.name     = igb_driver_name,
230 	.id_table = igb_pci_tbl,
231 	.probe    = igb_probe,
232 	.remove   = igb_remove,
233 #ifdef CONFIG_PM
234 	.driver.pm = &igb_pm_ops,
235 #endif
236 	.shutdown = igb_shutdown,
237 	.err_handler = &igb_err_handler
238 };
239 
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL");
243 MODULE_VERSION(DRV_VERSION);
244 
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249 
250 struct igb_reg_info {
251 	u32 ofs;
252 	char *name;
253 };
254 
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256 
257 	/* General Registers */
258 	{E1000_CTRL, "CTRL"},
259 	{E1000_STATUS, "STATUS"},
260 	{E1000_CTRL_EXT, "CTRL_EXT"},
261 
262 	/* Interrupt Registers */
263 	{E1000_ICR, "ICR"},
264 
265 	/* RX Registers */
266 	{E1000_RCTL, "RCTL"},
267 	{E1000_RDLEN(0), "RDLEN"},
268 	{E1000_RDH(0), "RDH"},
269 	{E1000_RDT(0), "RDT"},
270 	{E1000_RXDCTL(0), "RXDCTL"},
271 	{E1000_RDBAL(0), "RDBAL"},
272 	{E1000_RDBAH(0), "RDBAH"},
273 
274 	/* TX Registers */
275 	{E1000_TCTL, "TCTL"},
276 	{E1000_TDBAL(0), "TDBAL"},
277 	{E1000_TDBAH(0), "TDBAH"},
278 	{E1000_TDLEN(0), "TDLEN"},
279 	{E1000_TDH(0), "TDH"},
280 	{E1000_TDT(0), "TDT"},
281 	{E1000_TXDCTL(0), "TXDCTL"},
282 	{E1000_TDFH, "TDFH"},
283 	{E1000_TDFT, "TDFT"},
284 	{E1000_TDFHS, "TDFHS"},
285 	{E1000_TDFPC, "TDFPC"},
286 
287 	/* List Terminator */
288 	{}
289 };
290 
291 /*
292  * igb_regdump - register printout routine
293  */
294 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
295 {
296 	int n = 0;
297 	char rname[16];
298 	u32 regs[8];
299 
300 	switch (reginfo->ofs) {
301 	case E1000_RDLEN(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDLEN(n));
304 		break;
305 	case E1000_RDH(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RDH(n));
308 		break;
309 	case E1000_RDT(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDT(n));
312 		break;
313 	case E1000_RXDCTL(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RXDCTL(n));
316 		break;
317 	case E1000_RDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RDBAL(n));
320 		break;
321 	case E1000_RDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_RDBAH(n));
324 		break;
325 	case E1000_TDBAL(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_RDBAL(n));
328 		break;
329 	case E1000_TDBAH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDBAH(n));
332 		break;
333 	case E1000_TDLEN(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDLEN(n));
336 		break;
337 	case E1000_TDH(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TDH(n));
340 		break;
341 	case E1000_TDT(0):
342 		for (n = 0; n < 4; n++)
343 			regs[n] = rd32(E1000_TDT(n));
344 		break;
345 	case E1000_TXDCTL(0):
346 		for (n = 0; n < 4; n++)
347 			regs[n] = rd32(E1000_TXDCTL(n));
348 		break;
349 	default:
350 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
351 		return;
352 	}
353 
354 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
355 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
356 		regs[2], regs[3]);
357 }
358 
359 /*
360  * igb_dump - Print registers, tx-rings and rx-rings
361  */
362 static void igb_dump(struct igb_adapter *adapter)
363 {
364 	struct net_device *netdev = adapter->netdev;
365 	struct e1000_hw *hw = &adapter->hw;
366 	struct igb_reg_info *reginfo;
367 	struct igb_ring *tx_ring;
368 	union e1000_adv_tx_desc *tx_desc;
369 	struct my_u0 { u64 a; u64 b; } *u0;
370 	struct igb_ring *rx_ring;
371 	union e1000_adv_rx_desc *rx_desc;
372 	u32 staterr;
373 	u16 i, n;
374 
375 	if (!netif_msg_hw(adapter))
376 		return;
377 
378 	/* Print netdevice Info */
379 	if (netdev) {
380 		dev_info(&adapter->pdev->dev, "Net device Info\n");
381 		pr_info("Device Name     state            trans_start      "
382 			"last_rx\n");
383 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
384 			netdev->state, netdev->trans_start, netdev->last_rx);
385 	}
386 
387 	/* Print Registers */
388 	dev_info(&adapter->pdev->dev, "Register Dump\n");
389 	pr_info(" Register Name   Value\n");
390 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
391 	     reginfo->name; reginfo++) {
392 		igb_regdump(hw, reginfo);
393 	}
394 
395 	/* Print TX Ring Summary */
396 	if (!netdev || !netif_running(netdev))
397 		goto exit;
398 
399 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
400 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
401 	for (n = 0; n < adapter->num_tx_queues; n++) {
402 		struct igb_tx_buffer *buffer_info;
403 		tx_ring = adapter->tx_ring[n];
404 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
405 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
406 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
407 			(u64)dma_unmap_addr(buffer_info, dma),
408 			dma_unmap_len(buffer_info, len),
409 			buffer_info->next_to_watch,
410 			(u64)buffer_info->time_stamp);
411 	}
412 
413 	/* Print TX Rings */
414 	if (!netif_msg_tx_done(adapter))
415 		goto rx_ring_summary;
416 
417 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
418 
419 	/* Transmit Descriptor Formats
420 	 *
421 	 * Advanced Transmit Descriptor
422 	 *   +--------------------------------------------------------------+
423 	 * 0 |         Buffer Address [63:0]                                |
424 	 *   +--------------------------------------------------------------+
425 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
426 	 *   +--------------------------------------------------------------+
427 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
428 	 */
429 
430 	for (n = 0; n < adapter->num_tx_queues; n++) {
431 		tx_ring = adapter->tx_ring[n];
432 		pr_info("------------------------------------\n");
433 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
434 		pr_info("------------------------------------\n");
435 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
436 			"[bi->dma       ] leng  ntw timestamp        "
437 			"bi->skb\n");
438 
439 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440 			const char *next_desc;
441 			struct igb_tx_buffer *buffer_info;
442 			tx_desc = IGB_TX_DESC(tx_ring, i);
443 			buffer_info = &tx_ring->tx_buffer_info[i];
444 			u0 = (struct my_u0 *)tx_desc;
445 			if (i == tx_ring->next_to_use &&
446 			    i == tx_ring->next_to_clean)
447 				next_desc = " NTC/U";
448 			else if (i == tx_ring->next_to_use)
449 				next_desc = " NTU";
450 			else if (i == tx_ring->next_to_clean)
451 				next_desc = " NTC";
452 			else
453 				next_desc = "";
454 
455 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
456 				" %04X  %p %016llX %p%s\n", i,
457 				le64_to_cpu(u0->a),
458 				le64_to_cpu(u0->b),
459 				(u64)dma_unmap_addr(buffer_info, dma),
460 				dma_unmap_len(buffer_info, len),
461 				buffer_info->next_to_watch,
462 				(u64)buffer_info->time_stamp,
463 				buffer_info->skb, next_desc);
464 
465 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
466 				print_hex_dump(KERN_INFO, "",
467 					DUMP_PREFIX_ADDRESS,
468 					16, 1, buffer_info->skb->data,
469 					dma_unmap_len(buffer_info, len),
470 					true);
471 		}
472 	}
473 
474 	/* Print RX Rings Summary */
475 rx_ring_summary:
476 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
477 	pr_info("Queue [NTU] [NTC]\n");
478 	for (n = 0; n < adapter->num_rx_queues; n++) {
479 		rx_ring = adapter->rx_ring[n];
480 		pr_info(" %5d %5X %5X\n",
481 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
482 	}
483 
484 	/* Print RX Rings */
485 	if (!netif_msg_rx_status(adapter))
486 		goto exit;
487 
488 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
489 
490 	/* Advanced Receive Descriptor (Read) Format
491 	 *    63                                           1        0
492 	 *    +-----------------------------------------------------+
493 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
494 	 *    +----------------------------------------------+------+
495 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
496 	 *    +-----------------------------------------------------+
497 	 *
498 	 *
499 	 * Advanced Receive Descriptor (Write-Back) Format
500 	 *
501 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
502 	 *   +------------------------------------------------------+
503 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
504 	 *   | Checksum   Ident  |   |           |    | Type | Type |
505 	 *   +------------------------------------------------------+
506 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
507 	 *   +------------------------------------------------------+
508 	 *   63       48 47    32 31            20 19               0
509 	 */
510 
511 	for (n = 0; n < adapter->num_rx_queues; n++) {
512 		rx_ring = adapter->rx_ring[n];
513 		pr_info("------------------------------------\n");
514 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
515 		pr_info("------------------------------------\n");
516 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
517 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
519 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
520 
521 		for (i = 0; i < rx_ring->count; i++) {
522 			const char *next_desc;
523 			struct igb_rx_buffer *buffer_info;
524 			buffer_info = &rx_ring->rx_buffer_info[i];
525 			rx_desc = IGB_RX_DESC(rx_ring, i);
526 			u0 = (struct my_u0 *)rx_desc;
527 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
528 
529 			if (i == rx_ring->next_to_use)
530 				next_desc = " NTU";
531 			else if (i == rx_ring->next_to_clean)
532 				next_desc = " NTC";
533 			else
534 				next_desc = "";
535 
536 			if (staterr & E1000_RXD_STAT_DD) {
537 				/* Descriptor Done */
538 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
539 					"RWB", i,
540 					le64_to_cpu(u0->a),
541 					le64_to_cpu(u0->b),
542 					next_desc);
543 			} else {
544 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
545 					"R  ", i,
546 					le64_to_cpu(u0->a),
547 					le64_to_cpu(u0->b),
548 					(u64)buffer_info->dma,
549 					next_desc);
550 
551 				if (netif_msg_pktdata(adapter) &&
552 				    buffer_info->dma && buffer_info->page) {
553 					print_hex_dump(KERN_INFO, "",
554 					  DUMP_PREFIX_ADDRESS,
555 					  16, 1,
556 					  page_address(buffer_info->page) +
557 						      buffer_info->page_offset,
558 					  IGB_RX_BUFSZ, true);
559 				}
560 			}
561 		}
562 	}
563 
564 exit:
565 	return;
566 }
567 
568 /**
569  * igb_get_hw_dev - return device
570  * used by hardware layer to print debugging information
571  **/
572 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
573 {
574 	struct igb_adapter *adapter = hw->back;
575 	return adapter->netdev;
576 }
577 
578 /**
579  * igb_init_module - Driver Registration Routine
580  *
581  * igb_init_module is the first routine called when the driver is
582  * loaded. All it does is register with the PCI subsystem.
583  **/
584 static int __init igb_init_module(void)
585 {
586 	int ret;
587 	pr_info("%s - version %s\n",
588 	       igb_driver_string, igb_driver_version);
589 
590 	pr_info("%s\n", igb_copyright);
591 
592 #ifdef CONFIG_IGB_DCA
593 	dca_register_notify(&dca_notifier);
594 #endif
595 	ret = pci_register_driver(&igb_driver);
596 	return ret;
597 }
598 
599 module_init(igb_init_module);
600 
601 /**
602  * igb_exit_module - Driver Exit Cleanup Routine
603  *
604  * igb_exit_module is called just before the driver is removed
605  * from memory.
606  **/
607 static void __exit igb_exit_module(void)
608 {
609 #ifdef CONFIG_IGB_DCA
610 	dca_unregister_notify(&dca_notifier);
611 #endif
612 	pci_unregister_driver(&igb_driver);
613 }
614 
615 module_exit(igb_exit_module);
616 
617 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
618 /**
619  * igb_cache_ring_register - Descriptor ring to register mapping
620  * @adapter: board private structure to initialize
621  *
622  * Once we know the feature-set enabled for the device, we'll cache
623  * the register offset the descriptor ring is assigned to.
624  **/
625 static void igb_cache_ring_register(struct igb_adapter *adapter)
626 {
627 	int i = 0, j = 0;
628 	u32 rbase_offset = adapter->vfs_allocated_count;
629 
630 	switch (adapter->hw.mac.type) {
631 	case e1000_82576:
632 		/* The queues are allocated for virtualization such that VF 0
633 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
634 		 * In order to avoid collision we start at the first free queue
635 		 * and continue consuming queues in the same sequence
636 		 */
637 		if (adapter->vfs_allocated_count) {
638 			for (; i < adapter->rss_queues; i++)
639 				adapter->rx_ring[i]->reg_idx = rbase_offset +
640 				                               Q_IDX_82576(i);
641 		}
642 	case e1000_82575:
643 	case e1000_82580:
644 	case e1000_i350:
645 	case e1000_i210:
646 	case e1000_i211:
647 	default:
648 		for (; i < adapter->num_rx_queues; i++)
649 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
650 		for (; j < adapter->num_tx_queues; j++)
651 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
652 		break;
653 	}
654 }
655 
656 /**
657  *  igb_write_ivar - configure ivar for given MSI-X vector
658  *  @hw: pointer to the HW structure
659  *  @msix_vector: vector number we are allocating to a given ring
660  *  @index: row index of IVAR register to write within IVAR table
661  *  @offset: column offset of in IVAR, should be multiple of 8
662  *
663  *  This function is intended to handle the writing of the IVAR register
664  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
665  *  each containing an cause allocation for an Rx and Tx ring, and a
666  *  variable number of rows depending on the number of queues supported.
667  **/
668 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
669 			   int index, int offset)
670 {
671 	u32 ivar = array_rd32(E1000_IVAR0, index);
672 
673 	/* clear any bits that are currently set */
674 	ivar &= ~((u32)0xFF << offset);
675 
676 	/* write vector and valid bit */
677 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
678 
679 	array_wr32(E1000_IVAR0, index, ivar);
680 }
681 
682 #define IGB_N0_QUEUE -1
683 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
684 {
685 	struct igb_adapter *adapter = q_vector->adapter;
686 	struct e1000_hw *hw = &adapter->hw;
687 	int rx_queue = IGB_N0_QUEUE;
688 	int tx_queue = IGB_N0_QUEUE;
689 	u32 msixbm = 0;
690 
691 	if (q_vector->rx.ring)
692 		rx_queue = q_vector->rx.ring->reg_idx;
693 	if (q_vector->tx.ring)
694 		tx_queue = q_vector->tx.ring->reg_idx;
695 
696 	switch (hw->mac.type) {
697 	case e1000_82575:
698 		/* The 82575 assigns vectors using a bitmask, which matches the
699 		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
700 		   or more queues to a vector, we write the appropriate bits
701 		   into the MSIXBM register for that vector. */
702 		if (rx_queue > IGB_N0_QUEUE)
703 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
704 		if (tx_queue > IGB_N0_QUEUE)
705 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
706 		if (!adapter->msix_entries && msix_vector == 0)
707 			msixbm |= E1000_EIMS_OTHER;
708 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
709 		q_vector->eims_value = msixbm;
710 		break;
711 	case e1000_82576:
712 		/*
713 		 * 82576 uses a table that essentially consists of 2 columns
714 		 * with 8 rows.  The ordering is column-major so we use the
715 		 * lower 3 bits as the row index, and the 4th bit as the
716 		 * column offset.
717 		 */
718 		if (rx_queue > IGB_N0_QUEUE)
719 			igb_write_ivar(hw, msix_vector,
720 				       rx_queue & 0x7,
721 				       (rx_queue & 0x8) << 1);
722 		if (tx_queue > IGB_N0_QUEUE)
723 			igb_write_ivar(hw, msix_vector,
724 				       tx_queue & 0x7,
725 				       ((tx_queue & 0x8) << 1) + 8);
726 		q_vector->eims_value = 1 << msix_vector;
727 		break;
728 	case e1000_82580:
729 	case e1000_i350:
730 	case e1000_i210:
731 	case e1000_i211:
732 		/*
733 		 * On 82580 and newer adapters the scheme is similar to 82576
734 		 * however instead of ordering column-major we have things
735 		 * ordered row-major.  So we traverse the table by using
736 		 * bit 0 as the column offset, and the remaining bits as the
737 		 * row index.
738 		 */
739 		if (rx_queue > IGB_N0_QUEUE)
740 			igb_write_ivar(hw, msix_vector,
741 				       rx_queue >> 1,
742 				       (rx_queue & 0x1) << 4);
743 		if (tx_queue > IGB_N0_QUEUE)
744 			igb_write_ivar(hw, msix_vector,
745 				       tx_queue >> 1,
746 				       ((tx_queue & 0x1) << 4) + 8);
747 		q_vector->eims_value = 1 << msix_vector;
748 		break;
749 	default:
750 		BUG();
751 		break;
752 	}
753 
754 	/* add q_vector eims value to global eims_enable_mask */
755 	adapter->eims_enable_mask |= q_vector->eims_value;
756 
757 	/* configure q_vector to set itr on first interrupt */
758 	q_vector->set_itr = 1;
759 }
760 
761 /**
762  * igb_configure_msix - Configure MSI-X hardware
763  *
764  * igb_configure_msix sets up the hardware to properly
765  * generate MSI-X interrupts.
766  **/
767 static void igb_configure_msix(struct igb_adapter *adapter)
768 {
769 	u32 tmp;
770 	int i, vector = 0;
771 	struct e1000_hw *hw = &adapter->hw;
772 
773 	adapter->eims_enable_mask = 0;
774 
775 	/* set vector for other causes, i.e. link changes */
776 	switch (hw->mac.type) {
777 	case e1000_82575:
778 		tmp = rd32(E1000_CTRL_EXT);
779 		/* enable MSI-X PBA support*/
780 		tmp |= E1000_CTRL_EXT_PBA_CLR;
781 
782 		/* Auto-Mask interrupts upon ICR read. */
783 		tmp |= E1000_CTRL_EXT_EIAME;
784 		tmp |= E1000_CTRL_EXT_IRCA;
785 
786 		wr32(E1000_CTRL_EXT, tmp);
787 
788 		/* enable msix_other interrupt */
789 		array_wr32(E1000_MSIXBM(0), vector++,
790 		                      E1000_EIMS_OTHER);
791 		adapter->eims_other = E1000_EIMS_OTHER;
792 
793 		break;
794 
795 	case e1000_82576:
796 	case e1000_82580:
797 	case e1000_i350:
798 	case e1000_i210:
799 	case e1000_i211:
800 		/* Turn on MSI-X capability first, or our settings
801 		 * won't stick.  And it will take days to debug. */
802 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
803 		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
804 		                E1000_GPIE_NSICR);
805 
806 		/* enable msix_other interrupt */
807 		adapter->eims_other = 1 << vector;
808 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
809 
810 		wr32(E1000_IVAR_MISC, tmp);
811 		break;
812 	default:
813 		/* do nothing, since nothing else supports MSI-X */
814 		break;
815 	} /* switch (hw->mac.type) */
816 
817 	adapter->eims_enable_mask |= adapter->eims_other;
818 
819 	for (i = 0; i < adapter->num_q_vectors; i++)
820 		igb_assign_vector(adapter->q_vector[i], vector++);
821 
822 	wrfl();
823 }
824 
825 /**
826  * igb_request_msix - Initialize MSI-X interrupts
827  *
828  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
829  * kernel.
830  **/
831 static int igb_request_msix(struct igb_adapter *adapter)
832 {
833 	struct net_device *netdev = adapter->netdev;
834 	struct e1000_hw *hw = &adapter->hw;
835 	int i, err = 0, vector = 0, free_vector = 0;
836 
837 	err = request_irq(adapter->msix_entries[vector].vector,
838 	                  igb_msix_other, 0, netdev->name, adapter);
839 	if (err)
840 		goto err_out;
841 
842 	for (i = 0; i < adapter->num_q_vectors; i++) {
843 		struct igb_q_vector *q_vector = adapter->q_vector[i];
844 
845 		vector++;
846 
847 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
848 
849 		if (q_vector->rx.ring && q_vector->tx.ring)
850 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
851 				q_vector->rx.ring->queue_index);
852 		else if (q_vector->tx.ring)
853 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
854 				q_vector->tx.ring->queue_index);
855 		else if (q_vector->rx.ring)
856 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
857 				q_vector->rx.ring->queue_index);
858 		else
859 			sprintf(q_vector->name, "%s-unused", netdev->name);
860 
861 		err = request_irq(adapter->msix_entries[vector].vector,
862 		                  igb_msix_ring, 0, q_vector->name,
863 		                  q_vector);
864 		if (err)
865 			goto err_free;
866 	}
867 
868 	igb_configure_msix(adapter);
869 	return 0;
870 
871 err_free:
872 	/* free already assigned IRQs */
873 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
874 
875 	vector--;
876 	for (i = 0; i < vector; i++) {
877 		free_irq(adapter->msix_entries[free_vector++].vector,
878 			 adapter->q_vector[i]);
879 	}
880 err_out:
881 	return err;
882 }
883 
884 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
885 {
886 	if (adapter->msix_entries) {
887 		pci_disable_msix(adapter->pdev);
888 		kfree(adapter->msix_entries);
889 		adapter->msix_entries = NULL;
890 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
891 		pci_disable_msi(adapter->pdev);
892 	}
893 }
894 
895 /**
896  * igb_free_q_vector - Free memory allocated for specific interrupt vector
897  * @adapter: board private structure to initialize
898  * @v_idx: Index of vector to be freed
899  *
900  * This function frees the memory allocated to the q_vector.  In addition if
901  * NAPI is enabled it will delete any references to the NAPI struct prior
902  * to freeing the q_vector.
903  **/
904 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
905 {
906 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
907 
908 	if (q_vector->tx.ring)
909 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
910 
911 	if (q_vector->rx.ring)
912 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
913 
914 	adapter->q_vector[v_idx] = NULL;
915 	netif_napi_del(&q_vector->napi);
916 
917 	/*
918 	 * ixgbe_get_stats64() might access the rings on this vector,
919 	 * we must wait a grace period before freeing it.
920 	 */
921 	kfree_rcu(q_vector, rcu);
922 }
923 
924 /**
925  * igb_free_q_vectors - Free memory allocated for interrupt vectors
926  * @adapter: board private structure to initialize
927  *
928  * This function frees the memory allocated to the q_vectors.  In addition if
929  * NAPI is enabled it will delete any references to the NAPI struct prior
930  * to freeing the q_vector.
931  **/
932 static void igb_free_q_vectors(struct igb_adapter *adapter)
933 {
934 	int v_idx = adapter->num_q_vectors;
935 
936 	adapter->num_tx_queues = 0;
937 	adapter->num_rx_queues = 0;
938 	adapter->num_q_vectors = 0;
939 
940 	while (v_idx--)
941 		igb_free_q_vector(adapter, v_idx);
942 }
943 
944 /**
945  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
946  *
947  * This function resets the device so that it has 0 rx queues, tx queues, and
948  * MSI-X interrupts allocated.
949  */
950 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
951 {
952 	igb_free_q_vectors(adapter);
953 	igb_reset_interrupt_capability(adapter);
954 }
955 
956 /**
957  * igb_set_interrupt_capability - set MSI or MSI-X if supported
958  *
959  * Attempt to configure interrupts using the best available
960  * capabilities of the hardware and kernel.
961  **/
962 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
963 {
964 	int err;
965 	int numvecs, i;
966 
967 	if (!msix)
968 		goto msi_only;
969 
970 	/* Number of supported queues. */
971 	adapter->num_rx_queues = adapter->rss_queues;
972 	if (adapter->vfs_allocated_count)
973 		adapter->num_tx_queues = 1;
974 	else
975 		adapter->num_tx_queues = adapter->rss_queues;
976 
977 	/* start with one vector for every rx queue */
978 	numvecs = adapter->num_rx_queues;
979 
980 	/* if tx handler is separate add 1 for every tx queue */
981 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
982 		numvecs += adapter->num_tx_queues;
983 
984 	/* store the number of vectors reserved for queues */
985 	adapter->num_q_vectors = numvecs;
986 
987 	/* add 1 vector for link status interrupts */
988 	numvecs++;
989 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
990 					GFP_KERNEL);
991 
992 	if (!adapter->msix_entries)
993 		goto msi_only;
994 
995 	for (i = 0; i < numvecs; i++)
996 		adapter->msix_entries[i].entry = i;
997 
998 	err = pci_enable_msix(adapter->pdev,
999 			      adapter->msix_entries,
1000 			      numvecs);
1001 	if (err == 0)
1002 		return;
1003 
1004 	igb_reset_interrupt_capability(adapter);
1005 
1006 	/* If we can't do MSI-X, try MSI */
1007 msi_only:
1008 #ifdef CONFIG_PCI_IOV
1009 	/* disable SR-IOV for non MSI-X configurations */
1010 	if (adapter->vf_data) {
1011 		struct e1000_hw *hw = &adapter->hw;
1012 		/* disable iov and allow time for transactions to clear */
1013 		pci_disable_sriov(adapter->pdev);
1014 		msleep(500);
1015 
1016 		kfree(adapter->vf_data);
1017 		adapter->vf_data = NULL;
1018 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1019 		wrfl();
1020 		msleep(100);
1021 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1022 	}
1023 #endif
1024 	adapter->vfs_allocated_count = 0;
1025 	adapter->rss_queues = 1;
1026 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1027 	adapter->num_rx_queues = 1;
1028 	adapter->num_tx_queues = 1;
1029 	adapter->num_q_vectors = 1;
1030 	if (!pci_enable_msi(adapter->pdev))
1031 		adapter->flags |= IGB_FLAG_HAS_MSI;
1032 }
1033 
1034 static void igb_add_ring(struct igb_ring *ring,
1035 			 struct igb_ring_container *head)
1036 {
1037 	head->ring = ring;
1038 	head->count++;
1039 }
1040 
1041 /**
1042  * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1043  * @adapter: board private structure to initialize
1044  * @v_count: q_vectors allocated on adapter, used for ring interleaving
1045  * @v_idx: index of vector in adapter struct
1046  * @txr_count: total number of Tx rings to allocate
1047  * @txr_idx: index of first Tx ring to allocate
1048  * @rxr_count: total number of Rx rings to allocate
1049  * @rxr_idx: index of first Rx ring to allocate
1050  *
1051  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1052  **/
1053 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1054 			      int v_count, int v_idx,
1055 			      int txr_count, int txr_idx,
1056 			      int rxr_count, int rxr_idx)
1057 {
1058 	struct igb_q_vector *q_vector;
1059 	struct igb_ring *ring;
1060 	int ring_count, size;
1061 
1062 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1063 	if (txr_count > 1 || rxr_count > 1)
1064 		return -ENOMEM;
1065 
1066 	ring_count = txr_count + rxr_count;
1067 	size = sizeof(struct igb_q_vector) +
1068 	       (sizeof(struct igb_ring) * ring_count);
1069 
1070 	/* allocate q_vector and rings */
1071 	q_vector = kzalloc(size, GFP_KERNEL);
1072 	if (!q_vector)
1073 		return -ENOMEM;
1074 
1075 	/* initialize NAPI */
1076 	netif_napi_add(adapter->netdev, &q_vector->napi,
1077 		       igb_poll, 64);
1078 
1079 	/* tie q_vector and adapter together */
1080 	adapter->q_vector[v_idx] = q_vector;
1081 	q_vector->adapter = adapter;
1082 
1083 	/* initialize work limits */
1084 	q_vector->tx.work_limit = adapter->tx_work_limit;
1085 
1086 	/* initialize ITR configuration */
1087 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1088 	q_vector->itr_val = IGB_START_ITR;
1089 
1090 	/* initialize pointer to rings */
1091 	ring = q_vector->ring;
1092 
1093 	if (txr_count) {
1094 		/* assign generic ring traits */
1095 		ring->dev = &adapter->pdev->dev;
1096 		ring->netdev = adapter->netdev;
1097 
1098 		/* configure backlink on ring */
1099 		ring->q_vector = q_vector;
1100 
1101 		/* update q_vector Tx values */
1102 		igb_add_ring(ring, &q_vector->tx);
1103 
1104 		/* For 82575, context index must be unique per ring. */
1105 		if (adapter->hw.mac.type == e1000_82575)
1106 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1107 
1108 		/* apply Tx specific ring traits */
1109 		ring->count = adapter->tx_ring_count;
1110 		ring->queue_index = txr_idx;
1111 
1112 		/* assign ring to adapter */
1113 		adapter->tx_ring[txr_idx] = ring;
1114 
1115 		/* push pointer to next ring */
1116 		ring++;
1117 	}
1118 
1119 	if (rxr_count) {
1120 		/* assign generic ring traits */
1121 		ring->dev = &adapter->pdev->dev;
1122 		ring->netdev = adapter->netdev;
1123 
1124 		/* configure backlink on ring */
1125 		ring->q_vector = q_vector;
1126 
1127 		/* update q_vector Rx values */
1128 		igb_add_ring(ring, &q_vector->rx);
1129 
1130 		/* set flag indicating ring supports SCTP checksum offload */
1131 		if (adapter->hw.mac.type >= e1000_82576)
1132 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1133 
1134 		/*
1135 		 * On i350, i210, and i211, loopback VLAN packets
1136 		 * have the tag byte-swapped.
1137 		 * */
1138 		if (adapter->hw.mac.type >= e1000_i350)
1139 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1140 
1141 		/* apply Rx specific ring traits */
1142 		ring->count = adapter->rx_ring_count;
1143 		ring->queue_index = rxr_idx;
1144 
1145 		/* assign ring to adapter */
1146 		adapter->rx_ring[rxr_idx] = ring;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 
1153 /**
1154  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1155  * @adapter: board private structure to initialize
1156  *
1157  * We allocate one q_vector per queue interrupt.  If allocation fails we
1158  * return -ENOMEM.
1159  **/
1160 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1161 {
1162 	int q_vectors = adapter->num_q_vectors;
1163 	int rxr_remaining = adapter->num_rx_queues;
1164 	int txr_remaining = adapter->num_tx_queues;
1165 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1166 	int err;
1167 
1168 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1169 		for (; rxr_remaining; v_idx++) {
1170 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1171 						 0, 0, 1, rxr_idx);
1172 
1173 			if (err)
1174 				goto err_out;
1175 
1176 			/* update counts and index */
1177 			rxr_remaining--;
1178 			rxr_idx++;
1179 		}
1180 	}
1181 
1182 	for (; v_idx < q_vectors; v_idx++) {
1183 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1184 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1185 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1186 					 tqpv, txr_idx, rqpv, rxr_idx);
1187 
1188 		if (err)
1189 			goto err_out;
1190 
1191 		/* update counts and index */
1192 		rxr_remaining -= rqpv;
1193 		txr_remaining -= tqpv;
1194 		rxr_idx++;
1195 		txr_idx++;
1196 	}
1197 
1198 	return 0;
1199 
1200 err_out:
1201 	adapter->num_tx_queues = 0;
1202 	adapter->num_rx_queues = 0;
1203 	adapter->num_q_vectors = 0;
1204 
1205 	while (v_idx--)
1206 		igb_free_q_vector(adapter, v_idx);
1207 
1208 	return -ENOMEM;
1209 }
1210 
1211 /**
1212  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1213  *
1214  * This function initializes the interrupts and allocates all of the queues.
1215  **/
1216 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1217 {
1218 	struct pci_dev *pdev = adapter->pdev;
1219 	int err;
1220 
1221 	igb_set_interrupt_capability(adapter, msix);
1222 
1223 	err = igb_alloc_q_vectors(adapter);
1224 	if (err) {
1225 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1226 		goto err_alloc_q_vectors;
1227 	}
1228 
1229 	igb_cache_ring_register(adapter);
1230 
1231 	return 0;
1232 
1233 err_alloc_q_vectors:
1234 	igb_reset_interrupt_capability(adapter);
1235 	return err;
1236 }
1237 
1238 /**
1239  * igb_request_irq - initialize interrupts
1240  *
1241  * Attempts to configure interrupts using the best available
1242  * capabilities of the hardware and kernel.
1243  **/
1244 static int igb_request_irq(struct igb_adapter *adapter)
1245 {
1246 	struct net_device *netdev = adapter->netdev;
1247 	struct pci_dev *pdev = adapter->pdev;
1248 	int err = 0;
1249 
1250 	if (adapter->msix_entries) {
1251 		err = igb_request_msix(adapter);
1252 		if (!err)
1253 			goto request_done;
1254 		/* fall back to MSI */
1255 		igb_free_all_tx_resources(adapter);
1256 		igb_free_all_rx_resources(adapter);
1257 
1258 		igb_clear_interrupt_scheme(adapter);
1259 		err = igb_init_interrupt_scheme(adapter, false);
1260 		if (err)
1261 			goto request_done;
1262 
1263 		igb_setup_all_tx_resources(adapter);
1264 		igb_setup_all_rx_resources(adapter);
1265 		igb_configure(adapter);
1266 	}
1267 
1268 	igb_assign_vector(adapter->q_vector[0], 0);
1269 
1270 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1271 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1272 				  netdev->name, adapter);
1273 		if (!err)
1274 			goto request_done;
1275 
1276 		/* fall back to legacy interrupts */
1277 		igb_reset_interrupt_capability(adapter);
1278 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1279 	}
1280 
1281 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1282 			  netdev->name, adapter);
1283 
1284 	if (err)
1285 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1286 			err);
1287 
1288 request_done:
1289 	return err;
1290 }
1291 
1292 static void igb_free_irq(struct igb_adapter *adapter)
1293 {
1294 	if (adapter->msix_entries) {
1295 		int vector = 0, i;
1296 
1297 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1298 
1299 		for (i = 0; i < adapter->num_q_vectors; i++)
1300 			free_irq(adapter->msix_entries[vector++].vector,
1301 				 adapter->q_vector[i]);
1302 	} else {
1303 		free_irq(adapter->pdev->irq, adapter);
1304 	}
1305 }
1306 
1307 /**
1308  * igb_irq_disable - Mask off interrupt generation on the NIC
1309  * @adapter: board private structure
1310  **/
1311 static void igb_irq_disable(struct igb_adapter *adapter)
1312 {
1313 	struct e1000_hw *hw = &adapter->hw;
1314 
1315 	/*
1316 	 * we need to be careful when disabling interrupts.  The VFs are also
1317 	 * mapped into these registers and so clearing the bits can cause
1318 	 * issues on the VF drivers so we only need to clear what we set
1319 	 */
1320 	if (adapter->msix_entries) {
1321 		u32 regval = rd32(E1000_EIAM);
1322 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1323 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1324 		regval = rd32(E1000_EIAC);
1325 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1326 	}
1327 
1328 	wr32(E1000_IAM, 0);
1329 	wr32(E1000_IMC, ~0);
1330 	wrfl();
1331 	if (adapter->msix_entries) {
1332 		int i;
1333 		for (i = 0; i < adapter->num_q_vectors; i++)
1334 			synchronize_irq(adapter->msix_entries[i].vector);
1335 	} else {
1336 		synchronize_irq(adapter->pdev->irq);
1337 	}
1338 }
1339 
1340 /**
1341  * igb_irq_enable - Enable default interrupt generation settings
1342  * @adapter: board private structure
1343  **/
1344 static void igb_irq_enable(struct igb_adapter *adapter)
1345 {
1346 	struct e1000_hw *hw = &adapter->hw;
1347 
1348 	if (adapter->msix_entries) {
1349 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1350 		u32 regval = rd32(E1000_EIAC);
1351 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1352 		regval = rd32(E1000_EIAM);
1353 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1354 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1355 		if (adapter->vfs_allocated_count) {
1356 			wr32(E1000_MBVFIMR, 0xFF);
1357 			ims |= E1000_IMS_VMMB;
1358 		}
1359 		wr32(E1000_IMS, ims);
1360 	} else {
1361 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1362 				E1000_IMS_DRSTA);
1363 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1364 				E1000_IMS_DRSTA);
1365 	}
1366 }
1367 
1368 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1369 {
1370 	struct e1000_hw *hw = &adapter->hw;
1371 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1372 	u16 old_vid = adapter->mng_vlan_id;
1373 
1374 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1375 		/* add VID to filter table */
1376 		igb_vfta_set(hw, vid, true);
1377 		adapter->mng_vlan_id = vid;
1378 	} else {
1379 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1380 	}
1381 
1382 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1383 	    (vid != old_vid) &&
1384 	    !test_bit(old_vid, adapter->active_vlans)) {
1385 		/* remove VID from filter table */
1386 		igb_vfta_set(hw, old_vid, false);
1387 	}
1388 }
1389 
1390 /**
1391  * igb_release_hw_control - release control of the h/w to f/w
1392  * @adapter: address of board private structure
1393  *
1394  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1395  * For ASF and Pass Through versions of f/w this means that the
1396  * driver is no longer loaded.
1397  *
1398  **/
1399 static void igb_release_hw_control(struct igb_adapter *adapter)
1400 {
1401 	struct e1000_hw *hw = &adapter->hw;
1402 	u32 ctrl_ext;
1403 
1404 	/* Let firmware take over control of h/w */
1405 	ctrl_ext = rd32(E1000_CTRL_EXT);
1406 	wr32(E1000_CTRL_EXT,
1407 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1408 }
1409 
1410 /**
1411  * igb_get_hw_control - get control of the h/w from f/w
1412  * @adapter: address of board private structure
1413  *
1414  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1415  * For ASF and Pass Through versions of f/w this means that
1416  * the driver is loaded.
1417  *
1418  **/
1419 static void igb_get_hw_control(struct igb_adapter *adapter)
1420 {
1421 	struct e1000_hw *hw = &adapter->hw;
1422 	u32 ctrl_ext;
1423 
1424 	/* Let firmware know the driver has taken over */
1425 	ctrl_ext = rd32(E1000_CTRL_EXT);
1426 	wr32(E1000_CTRL_EXT,
1427 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1428 }
1429 
1430 /**
1431  * igb_configure - configure the hardware for RX and TX
1432  * @adapter: private board structure
1433  **/
1434 static void igb_configure(struct igb_adapter *adapter)
1435 {
1436 	struct net_device *netdev = adapter->netdev;
1437 	int i;
1438 
1439 	igb_get_hw_control(adapter);
1440 	igb_set_rx_mode(netdev);
1441 
1442 	igb_restore_vlan(adapter);
1443 
1444 	igb_setup_tctl(adapter);
1445 	igb_setup_mrqc(adapter);
1446 	igb_setup_rctl(adapter);
1447 
1448 	igb_configure_tx(adapter);
1449 	igb_configure_rx(adapter);
1450 
1451 	igb_rx_fifo_flush_82575(&adapter->hw);
1452 
1453 	/* call igb_desc_unused which always leaves
1454 	 * at least 1 descriptor unused to make sure
1455 	 * next_to_use != next_to_clean */
1456 	for (i = 0; i < adapter->num_rx_queues; i++) {
1457 		struct igb_ring *ring = adapter->rx_ring[i];
1458 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1459 	}
1460 }
1461 
1462 /**
1463  * igb_power_up_link - Power up the phy/serdes link
1464  * @adapter: address of board private structure
1465  **/
1466 void igb_power_up_link(struct igb_adapter *adapter)
1467 {
1468 	igb_reset_phy(&adapter->hw);
1469 
1470 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1471 		igb_power_up_phy_copper(&adapter->hw);
1472 	else
1473 		igb_power_up_serdes_link_82575(&adapter->hw);
1474 }
1475 
1476 /**
1477  * igb_power_down_link - Power down the phy/serdes link
1478  * @adapter: address of board private structure
1479  */
1480 static void igb_power_down_link(struct igb_adapter *adapter)
1481 {
1482 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1483 		igb_power_down_phy_copper_82575(&adapter->hw);
1484 	else
1485 		igb_shutdown_serdes_link_82575(&adapter->hw);
1486 }
1487 
1488 /**
1489  * igb_up - Open the interface and prepare it to handle traffic
1490  * @adapter: board private structure
1491  **/
1492 int igb_up(struct igb_adapter *adapter)
1493 {
1494 	struct e1000_hw *hw = &adapter->hw;
1495 	int i;
1496 
1497 	/* hardware has been reset, we need to reload some things */
1498 	igb_configure(adapter);
1499 
1500 	clear_bit(__IGB_DOWN, &adapter->state);
1501 
1502 	for (i = 0; i < adapter->num_q_vectors; i++)
1503 		napi_enable(&(adapter->q_vector[i]->napi));
1504 
1505 	if (adapter->msix_entries)
1506 		igb_configure_msix(adapter);
1507 	else
1508 		igb_assign_vector(adapter->q_vector[0], 0);
1509 
1510 	/* Clear any pending interrupts. */
1511 	rd32(E1000_ICR);
1512 	igb_irq_enable(adapter);
1513 
1514 	/* notify VFs that reset has been completed */
1515 	if (adapter->vfs_allocated_count) {
1516 		u32 reg_data = rd32(E1000_CTRL_EXT);
1517 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1518 		wr32(E1000_CTRL_EXT, reg_data);
1519 	}
1520 
1521 	netif_tx_start_all_queues(adapter->netdev);
1522 
1523 	/* start the watchdog. */
1524 	hw->mac.get_link_status = 1;
1525 	schedule_work(&adapter->watchdog_task);
1526 
1527 	return 0;
1528 }
1529 
1530 void igb_down(struct igb_adapter *adapter)
1531 {
1532 	struct net_device *netdev = adapter->netdev;
1533 	struct e1000_hw *hw = &adapter->hw;
1534 	u32 tctl, rctl;
1535 	int i;
1536 
1537 	/* signal that we're down so the interrupt handler does not
1538 	 * reschedule our watchdog timer */
1539 	set_bit(__IGB_DOWN, &adapter->state);
1540 
1541 	/* disable receives in the hardware */
1542 	rctl = rd32(E1000_RCTL);
1543 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1544 	/* flush and sleep below */
1545 
1546 	netif_tx_stop_all_queues(netdev);
1547 
1548 	/* disable transmits in the hardware */
1549 	tctl = rd32(E1000_TCTL);
1550 	tctl &= ~E1000_TCTL_EN;
1551 	wr32(E1000_TCTL, tctl);
1552 	/* flush both disables and wait for them to finish */
1553 	wrfl();
1554 	msleep(10);
1555 
1556 	for (i = 0; i < adapter->num_q_vectors; i++)
1557 		napi_disable(&(adapter->q_vector[i]->napi));
1558 
1559 	igb_irq_disable(adapter);
1560 
1561 	del_timer_sync(&adapter->watchdog_timer);
1562 	del_timer_sync(&adapter->phy_info_timer);
1563 
1564 	netif_carrier_off(netdev);
1565 
1566 	/* record the stats before reset*/
1567 	spin_lock(&adapter->stats64_lock);
1568 	igb_update_stats(adapter, &adapter->stats64);
1569 	spin_unlock(&adapter->stats64_lock);
1570 
1571 	adapter->link_speed = 0;
1572 	adapter->link_duplex = 0;
1573 
1574 	if (!pci_channel_offline(adapter->pdev))
1575 		igb_reset(adapter);
1576 	igb_clean_all_tx_rings(adapter);
1577 	igb_clean_all_rx_rings(adapter);
1578 #ifdef CONFIG_IGB_DCA
1579 
1580 	/* since we reset the hardware DCA settings were cleared */
1581 	igb_setup_dca(adapter);
1582 #endif
1583 }
1584 
1585 void igb_reinit_locked(struct igb_adapter *adapter)
1586 {
1587 	WARN_ON(in_interrupt());
1588 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1589 		msleep(1);
1590 	igb_down(adapter);
1591 	igb_up(adapter);
1592 	clear_bit(__IGB_RESETTING, &adapter->state);
1593 }
1594 
1595 void igb_reset(struct igb_adapter *adapter)
1596 {
1597 	struct pci_dev *pdev = adapter->pdev;
1598 	struct e1000_hw *hw = &adapter->hw;
1599 	struct e1000_mac_info *mac = &hw->mac;
1600 	struct e1000_fc_info *fc = &hw->fc;
1601 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1602 
1603 	/* Repartition Pba for greater than 9k mtu
1604 	 * To take effect CTRL.RST is required.
1605 	 */
1606 	switch (mac->type) {
1607 	case e1000_i350:
1608 	case e1000_82580:
1609 		pba = rd32(E1000_RXPBS);
1610 		pba = igb_rxpbs_adjust_82580(pba);
1611 		break;
1612 	case e1000_82576:
1613 		pba = rd32(E1000_RXPBS);
1614 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1615 		break;
1616 	case e1000_82575:
1617 	case e1000_i210:
1618 	case e1000_i211:
1619 	default:
1620 		pba = E1000_PBA_34K;
1621 		break;
1622 	}
1623 
1624 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1625 	    (mac->type < e1000_82576)) {
1626 		/* adjust PBA for jumbo frames */
1627 		wr32(E1000_PBA, pba);
1628 
1629 		/* To maintain wire speed transmits, the Tx FIFO should be
1630 		 * large enough to accommodate two full transmit packets,
1631 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1632 		 * the Rx FIFO should be large enough to accommodate at least
1633 		 * one full receive packet and is similarly rounded up and
1634 		 * expressed in KB. */
1635 		pba = rd32(E1000_PBA);
1636 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1637 		tx_space = pba >> 16;
1638 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1639 		pba &= 0xffff;
1640 		/* the tx fifo also stores 16 bytes of information about the tx
1641 		 * but don't include ethernet FCS because hardware appends it */
1642 		min_tx_space = (adapter->max_frame_size +
1643 				sizeof(union e1000_adv_tx_desc) -
1644 				ETH_FCS_LEN) * 2;
1645 		min_tx_space = ALIGN(min_tx_space, 1024);
1646 		min_tx_space >>= 10;
1647 		/* software strips receive CRC, so leave room for it */
1648 		min_rx_space = adapter->max_frame_size;
1649 		min_rx_space = ALIGN(min_rx_space, 1024);
1650 		min_rx_space >>= 10;
1651 
1652 		/* If current Tx allocation is less than the min Tx FIFO size,
1653 		 * and the min Tx FIFO size is less than the current Rx FIFO
1654 		 * allocation, take space away from current Rx allocation */
1655 		if (tx_space < min_tx_space &&
1656 		    ((min_tx_space - tx_space) < pba)) {
1657 			pba = pba - (min_tx_space - tx_space);
1658 
1659 			/* if short on rx space, rx wins and must trump tx
1660 			 * adjustment */
1661 			if (pba < min_rx_space)
1662 				pba = min_rx_space;
1663 		}
1664 		wr32(E1000_PBA, pba);
1665 	}
1666 
1667 	/* flow control settings */
1668 	/* The high water mark must be low enough to fit one full frame
1669 	 * (or the size used for early receive) above it in the Rx FIFO.
1670 	 * Set it to the lower of:
1671 	 * - 90% of the Rx FIFO size, or
1672 	 * - the full Rx FIFO size minus one full frame */
1673 	hwm = min(((pba << 10) * 9 / 10),
1674 			((pba << 10) - 2 * adapter->max_frame_size));
1675 
1676 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1677 	fc->low_water = fc->high_water - 16;
1678 	fc->pause_time = 0xFFFF;
1679 	fc->send_xon = 1;
1680 	fc->current_mode = fc->requested_mode;
1681 
1682 	/* disable receive for all VFs and wait one second */
1683 	if (adapter->vfs_allocated_count) {
1684 		int i;
1685 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1686 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1687 
1688 		/* ping all the active vfs to let them know we are going down */
1689 		igb_ping_all_vfs(adapter);
1690 
1691 		/* disable transmits and receives */
1692 		wr32(E1000_VFRE, 0);
1693 		wr32(E1000_VFTE, 0);
1694 	}
1695 
1696 	/* Allow time for pending master requests to run */
1697 	hw->mac.ops.reset_hw(hw);
1698 	wr32(E1000_WUC, 0);
1699 
1700 	if (hw->mac.ops.init_hw(hw))
1701 		dev_err(&pdev->dev, "Hardware Error\n");
1702 
1703 	/*
1704 	 * Flow control settings reset on hardware reset, so guarantee flow
1705 	 * control is off when forcing speed.
1706 	 */
1707 	if (!hw->mac.autoneg)
1708 		igb_force_mac_fc(hw);
1709 
1710 	igb_init_dmac(adapter, pba);
1711 	if (!netif_running(adapter->netdev))
1712 		igb_power_down_link(adapter);
1713 
1714 	igb_update_mng_vlan(adapter);
1715 
1716 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1717 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1718 
1719 	/* Re-enable PTP, where applicable. */
1720 	igb_ptp_reset(adapter);
1721 
1722 	igb_get_phy_info(hw);
1723 }
1724 
1725 static netdev_features_t igb_fix_features(struct net_device *netdev,
1726 	netdev_features_t features)
1727 {
1728 	/*
1729 	 * Since there is no support for separate rx/tx vlan accel
1730 	 * enable/disable make sure tx flag is always in same state as rx.
1731 	 */
1732 	if (features & NETIF_F_HW_VLAN_RX)
1733 		features |= NETIF_F_HW_VLAN_TX;
1734 	else
1735 		features &= ~NETIF_F_HW_VLAN_TX;
1736 
1737 	return features;
1738 }
1739 
1740 static int igb_set_features(struct net_device *netdev,
1741 	netdev_features_t features)
1742 {
1743 	netdev_features_t changed = netdev->features ^ features;
1744 	struct igb_adapter *adapter = netdev_priv(netdev);
1745 
1746 	if (changed & NETIF_F_HW_VLAN_RX)
1747 		igb_vlan_mode(netdev, features);
1748 
1749 	if (!(changed & NETIF_F_RXALL))
1750 		return 0;
1751 
1752 	netdev->features = features;
1753 
1754 	if (netif_running(netdev))
1755 		igb_reinit_locked(adapter);
1756 	else
1757 		igb_reset(adapter);
1758 
1759 	return 0;
1760 }
1761 
1762 static const struct net_device_ops igb_netdev_ops = {
1763 	.ndo_open		= igb_open,
1764 	.ndo_stop		= igb_close,
1765 	.ndo_start_xmit		= igb_xmit_frame,
1766 	.ndo_get_stats64	= igb_get_stats64,
1767 	.ndo_set_rx_mode	= igb_set_rx_mode,
1768 	.ndo_set_mac_address	= igb_set_mac,
1769 	.ndo_change_mtu		= igb_change_mtu,
1770 	.ndo_do_ioctl		= igb_ioctl,
1771 	.ndo_tx_timeout		= igb_tx_timeout,
1772 	.ndo_validate_addr	= eth_validate_addr,
1773 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1774 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1775 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1776 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1777 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1778 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1779 #ifdef CONFIG_NET_POLL_CONTROLLER
1780 	.ndo_poll_controller	= igb_netpoll,
1781 #endif
1782 	.ndo_fix_features	= igb_fix_features,
1783 	.ndo_set_features	= igb_set_features,
1784 };
1785 
1786 /**
1787  * igb_set_fw_version - Configure version string for ethtool
1788  * @adapter: adapter struct
1789  *
1790  **/
1791 void igb_set_fw_version(struct igb_adapter *adapter)
1792 {
1793 	struct e1000_hw *hw = &adapter->hw;
1794 	struct e1000_fw_version fw;
1795 
1796 	igb_get_fw_version(hw, &fw);
1797 
1798 	switch (hw->mac.type) {
1799 	case e1000_i211:
1800 		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1801 			 "%2d.%2d-%d",
1802 			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1803 		break;
1804 
1805 	default:
1806 		/* if option is rom valid, display its version too */
1807 		if (fw.or_valid) {
1808 			snprintf(adapter->fw_version,
1809 				 sizeof(adapter->fw_version),
1810 				 "%d.%d, 0x%08x, %d.%d.%d",
1811 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1812 				 fw.or_major, fw.or_build, fw.or_patch);
1813 		/* no option rom */
1814 		} else {
1815 			snprintf(adapter->fw_version,
1816 				 sizeof(adapter->fw_version),
1817 				 "%d.%d, 0x%08x",
1818 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1819 		}
1820 		break;
1821 	}
1822 	return;
1823 }
1824 
1825 /**
1826  * igb_probe - Device Initialization Routine
1827  * @pdev: PCI device information struct
1828  * @ent: entry in igb_pci_tbl
1829  *
1830  * Returns 0 on success, negative on failure
1831  *
1832  * igb_probe initializes an adapter identified by a pci_dev structure.
1833  * The OS initialization, configuring of the adapter private structure,
1834  * and a hardware reset occur.
1835  **/
1836 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1837 {
1838 	struct net_device *netdev;
1839 	struct igb_adapter *adapter;
1840 	struct e1000_hw *hw;
1841 	u16 eeprom_data = 0;
1842 	s32 ret_val;
1843 	static int global_quad_port_a; /* global quad port a indication */
1844 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1845 	unsigned long mmio_start, mmio_len;
1846 	int err, pci_using_dac;
1847 	u8 part_str[E1000_PBANUM_LENGTH];
1848 
1849 	/* Catch broken hardware that put the wrong VF device ID in
1850 	 * the PCIe SR-IOV capability.
1851 	 */
1852 	if (pdev->is_virtfn) {
1853 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1854 			pci_name(pdev), pdev->vendor, pdev->device);
1855 		return -EINVAL;
1856 	}
1857 
1858 	err = pci_enable_device_mem(pdev);
1859 	if (err)
1860 		return err;
1861 
1862 	pci_using_dac = 0;
1863 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1864 	if (!err) {
1865 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1866 		if (!err)
1867 			pci_using_dac = 1;
1868 	} else {
1869 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1870 		if (err) {
1871 			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1872 			if (err) {
1873 				dev_err(&pdev->dev, "No usable DMA "
1874 					"configuration, aborting\n");
1875 				goto err_dma;
1876 			}
1877 		}
1878 	}
1879 
1880 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1881 	                                   IORESOURCE_MEM),
1882 	                                   igb_driver_name);
1883 	if (err)
1884 		goto err_pci_reg;
1885 
1886 	pci_enable_pcie_error_reporting(pdev);
1887 
1888 	pci_set_master(pdev);
1889 	pci_save_state(pdev);
1890 
1891 	err = -ENOMEM;
1892 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1893 				   IGB_MAX_TX_QUEUES);
1894 	if (!netdev)
1895 		goto err_alloc_etherdev;
1896 
1897 	SET_NETDEV_DEV(netdev, &pdev->dev);
1898 
1899 	pci_set_drvdata(pdev, netdev);
1900 	adapter = netdev_priv(netdev);
1901 	adapter->netdev = netdev;
1902 	adapter->pdev = pdev;
1903 	hw = &adapter->hw;
1904 	hw->back = adapter;
1905 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1906 
1907 	mmio_start = pci_resource_start(pdev, 0);
1908 	mmio_len = pci_resource_len(pdev, 0);
1909 
1910 	err = -EIO;
1911 	hw->hw_addr = ioremap(mmio_start, mmio_len);
1912 	if (!hw->hw_addr)
1913 		goto err_ioremap;
1914 
1915 	netdev->netdev_ops = &igb_netdev_ops;
1916 	igb_set_ethtool_ops(netdev);
1917 	netdev->watchdog_timeo = 5 * HZ;
1918 
1919 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1920 
1921 	netdev->mem_start = mmio_start;
1922 	netdev->mem_end = mmio_start + mmio_len;
1923 
1924 	/* PCI config space info */
1925 	hw->vendor_id = pdev->vendor;
1926 	hw->device_id = pdev->device;
1927 	hw->revision_id = pdev->revision;
1928 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1929 	hw->subsystem_device_id = pdev->subsystem_device;
1930 
1931 	/* Copy the default MAC, PHY and NVM function pointers */
1932 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1933 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1934 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1935 	/* Initialize skew-specific constants */
1936 	err = ei->get_invariants(hw);
1937 	if (err)
1938 		goto err_sw_init;
1939 
1940 	/* setup the private structure */
1941 	err = igb_sw_init(adapter);
1942 	if (err)
1943 		goto err_sw_init;
1944 
1945 	igb_get_bus_info_pcie(hw);
1946 
1947 	hw->phy.autoneg_wait_to_complete = false;
1948 
1949 	/* Copper options */
1950 	if (hw->phy.media_type == e1000_media_type_copper) {
1951 		hw->phy.mdix = AUTO_ALL_MODES;
1952 		hw->phy.disable_polarity_correction = false;
1953 		hw->phy.ms_type = e1000_ms_hw_default;
1954 	}
1955 
1956 	if (igb_check_reset_block(hw))
1957 		dev_info(&pdev->dev,
1958 			"PHY reset is blocked due to SOL/IDER session.\n");
1959 
1960 	/*
1961 	 * features is initialized to 0 in allocation, it might have bits
1962 	 * set by igb_sw_init so we should use an or instead of an
1963 	 * assignment.
1964 	 */
1965 	netdev->features |= NETIF_F_SG |
1966 			    NETIF_F_IP_CSUM |
1967 			    NETIF_F_IPV6_CSUM |
1968 			    NETIF_F_TSO |
1969 			    NETIF_F_TSO6 |
1970 			    NETIF_F_RXHASH |
1971 			    NETIF_F_RXCSUM |
1972 			    NETIF_F_HW_VLAN_RX |
1973 			    NETIF_F_HW_VLAN_TX;
1974 
1975 	/* copy netdev features into list of user selectable features */
1976 	netdev->hw_features |= netdev->features;
1977 	netdev->hw_features |= NETIF_F_RXALL;
1978 
1979 	/* set this bit last since it cannot be part of hw_features */
1980 	netdev->features |= NETIF_F_HW_VLAN_FILTER;
1981 
1982 	netdev->vlan_features |= NETIF_F_TSO |
1983 				 NETIF_F_TSO6 |
1984 				 NETIF_F_IP_CSUM |
1985 				 NETIF_F_IPV6_CSUM |
1986 				 NETIF_F_SG;
1987 
1988 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1989 
1990 	if (pci_using_dac) {
1991 		netdev->features |= NETIF_F_HIGHDMA;
1992 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1993 	}
1994 
1995 	if (hw->mac.type >= e1000_82576) {
1996 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
1997 		netdev->features |= NETIF_F_SCTP_CSUM;
1998 	}
1999 
2000 	netdev->priv_flags |= IFF_UNICAST_FLT;
2001 
2002 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2003 
2004 	/* before reading the NVM, reset the controller to put the device in a
2005 	 * known good starting state */
2006 	hw->mac.ops.reset_hw(hw);
2007 
2008 	/*
2009 	 * make sure the NVM is good , i211 parts have special NVM that
2010 	 * doesn't contain a checksum
2011 	 */
2012 	if (hw->mac.type != e1000_i211) {
2013 		if (hw->nvm.ops.validate(hw) < 0) {
2014 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2015 			err = -EIO;
2016 			goto err_eeprom;
2017 		}
2018 	}
2019 
2020 	/* copy the MAC address out of the NVM */
2021 	if (hw->mac.ops.read_mac_addr(hw))
2022 		dev_err(&pdev->dev, "NVM Read Error\n");
2023 
2024 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2025 	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2026 
2027 	if (!is_valid_ether_addr(netdev->perm_addr)) {
2028 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2029 		err = -EIO;
2030 		goto err_eeprom;
2031 	}
2032 
2033 	/* get firmware version for ethtool -i */
2034 	igb_set_fw_version(adapter);
2035 
2036 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2037 	            (unsigned long) adapter);
2038 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2039 	            (unsigned long) adapter);
2040 
2041 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2042 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2043 
2044 	/* Initialize link properties that are user-changeable */
2045 	adapter->fc_autoneg = true;
2046 	hw->mac.autoneg = true;
2047 	hw->phy.autoneg_advertised = 0x2f;
2048 
2049 	hw->fc.requested_mode = e1000_fc_default;
2050 	hw->fc.current_mode = e1000_fc_default;
2051 
2052 	igb_validate_mdi_setting(hw);
2053 
2054 	/* By default, support wake on port A */
2055 	if (hw->bus.func == 0)
2056 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2057 
2058 	/* Check the NVM for wake support on non-port A ports */
2059 	if (hw->mac.type >= e1000_82580)
2060 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2061 		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2062 		                 &eeprom_data);
2063 	else if (hw->bus.func == 1)
2064 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2065 
2066 	if (eeprom_data & IGB_EEPROM_APME)
2067 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2068 
2069 	/* now that we have the eeprom settings, apply the special cases where
2070 	 * the eeprom may be wrong or the board simply won't support wake on
2071 	 * lan on a particular port */
2072 	switch (pdev->device) {
2073 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2074 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2075 		break;
2076 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2077 	case E1000_DEV_ID_82576_FIBER:
2078 	case E1000_DEV_ID_82576_SERDES:
2079 		/* Wake events only supported on port A for dual fiber
2080 		 * regardless of eeprom setting */
2081 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2082 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2083 		break;
2084 	case E1000_DEV_ID_82576_QUAD_COPPER:
2085 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2086 		/* if quad port adapter, disable WoL on all but port A */
2087 		if (global_quad_port_a != 0)
2088 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2089 		else
2090 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2091 		/* Reset for multiple quad port adapters */
2092 		if (++global_quad_port_a == 4)
2093 			global_quad_port_a = 0;
2094 		break;
2095 	default:
2096 		/* If the device can't wake, don't set software support */
2097 		if (!device_can_wakeup(&adapter->pdev->dev))
2098 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2099 	}
2100 
2101 	/* initialize the wol settings based on the eeprom settings */
2102 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2103 		adapter->wol |= E1000_WUFC_MAG;
2104 
2105 	/* Some vendors want WoL disabled by default, but still supported */
2106 	if ((hw->mac.type == e1000_i350) &&
2107 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2108 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2109 		adapter->wol = 0;
2110 	}
2111 
2112 	device_set_wakeup_enable(&adapter->pdev->dev,
2113 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2114 
2115 	/* reset the hardware with the new settings */
2116 	igb_reset(adapter);
2117 
2118 	/* let the f/w know that the h/w is now under the control of the
2119 	 * driver. */
2120 	igb_get_hw_control(adapter);
2121 
2122 	strcpy(netdev->name, "eth%d");
2123 	err = register_netdev(netdev);
2124 	if (err)
2125 		goto err_register;
2126 
2127 	/* carrier off reporting is important to ethtool even BEFORE open */
2128 	netif_carrier_off(netdev);
2129 
2130 #ifdef CONFIG_IGB_DCA
2131 	if (dca_add_requester(&pdev->dev) == 0) {
2132 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2133 		dev_info(&pdev->dev, "DCA enabled\n");
2134 		igb_setup_dca(adapter);
2135 	}
2136 
2137 #endif
2138 
2139 	/* do hw tstamp init after resetting */
2140 	igb_ptp_init(adapter);
2141 
2142 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2143 	/* print bus type/speed/width info */
2144 	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2145 		 netdev->name,
2146 		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2147 		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2148 		                                            "unknown"),
2149 		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2150 		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2151 		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2152 		   "unknown"),
2153 		 netdev->dev_addr);
2154 
2155 	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2156 	if (ret_val)
2157 		strcpy(part_str, "Unknown");
2158 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2159 	dev_info(&pdev->dev,
2160 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2161 		adapter->msix_entries ? "MSI-X" :
2162 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2163 		adapter->num_rx_queues, adapter->num_tx_queues);
2164 	switch (hw->mac.type) {
2165 	case e1000_i350:
2166 	case e1000_i210:
2167 	case e1000_i211:
2168 		igb_set_eee_i350(hw);
2169 		break;
2170 	default:
2171 		break;
2172 	}
2173 
2174 	pm_runtime_put_noidle(&pdev->dev);
2175 	return 0;
2176 
2177 err_register:
2178 	igb_release_hw_control(adapter);
2179 err_eeprom:
2180 	if (!igb_check_reset_block(hw))
2181 		igb_reset_phy(hw);
2182 
2183 	if (hw->flash_address)
2184 		iounmap(hw->flash_address);
2185 err_sw_init:
2186 	igb_clear_interrupt_scheme(adapter);
2187 	iounmap(hw->hw_addr);
2188 err_ioremap:
2189 	free_netdev(netdev);
2190 err_alloc_etherdev:
2191 	pci_release_selected_regions(pdev,
2192 	                             pci_select_bars(pdev, IORESOURCE_MEM));
2193 err_pci_reg:
2194 err_dma:
2195 	pci_disable_device(pdev);
2196 	return err;
2197 }
2198 
2199 /**
2200  * igb_remove - Device Removal Routine
2201  * @pdev: PCI device information struct
2202  *
2203  * igb_remove is called by the PCI subsystem to alert the driver
2204  * that it should release a PCI device.  The could be caused by a
2205  * Hot-Plug event, or because the driver is going to be removed from
2206  * memory.
2207  **/
2208 static void igb_remove(struct pci_dev *pdev)
2209 {
2210 	struct net_device *netdev = pci_get_drvdata(pdev);
2211 	struct igb_adapter *adapter = netdev_priv(netdev);
2212 	struct e1000_hw *hw = &adapter->hw;
2213 
2214 	pm_runtime_get_noresume(&pdev->dev);
2215 	igb_ptp_stop(adapter);
2216 
2217 	/*
2218 	 * The watchdog timer may be rescheduled, so explicitly
2219 	 * disable watchdog from being rescheduled.
2220 	 */
2221 	set_bit(__IGB_DOWN, &adapter->state);
2222 	del_timer_sync(&adapter->watchdog_timer);
2223 	del_timer_sync(&adapter->phy_info_timer);
2224 
2225 	cancel_work_sync(&adapter->reset_task);
2226 	cancel_work_sync(&adapter->watchdog_task);
2227 
2228 #ifdef CONFIG_IGB_DCA
2229 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2230 		dev_info(&pdev->dev, "DCA disabled\n");
2231 		dca_remove_requester(&pdev->dev);
2232 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2233 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2234 	}
2235 #endif
2236 
2237 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2238 	 * would have already happened in close and is redundant. */
2239 	igb_release_hw_control(adapter);
2240 
2241 	unregister_netdev(netdev);
2242 
2243 	igb_clear_interrupt_scheme(adapter);
2244 
2245 #ifdef CONFIG_PCI_IOV
2246 	/* reclaim resources allocated to VFs */
2247 	if (adapter->vf_data) {
2248 		/* disable iov and allow time for transactions to clear */
2249 		if (igb_vfs_are_assigned(adapter)) {
2250 			dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2251 		} else {
2252 			pci_disable_sriov(pdev);
2253 			msleep(500);
2254 		}
2255 
2256 		kfree(adapter->vf_data);
2257 		adapter->vf_data = NULL;
2258 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2259 		wrfl();
2260 		msleep(100);
2261 		dev_info(&pdev->dev, "IOV Disabled\n");
2262 	}
2263 #endif
2264 
2265 	iounmap(hw->hw_addr);
2266 	if (hw->flash_address)
2267 		iounmap(hw->flash_address);
2268 	pci_release_selected_regions(pdev,
2269 	                             pci_select_bars(pdev, IORESOURCE_MEM));
2270 
2271 	kfree(adapter->shadow_vfta);
2272 	free_netdev(netdev);
2273 
2274 	pci_disable_pcie_error_reporting(pdev);
2275 
2276 	pci_disable_device(pdev);
2277 }
2278 
2279 /**
2280  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2281  * @adapter: board private structure to initialize
2282  *
2283  * This function initializes the vf specific data storage and then attempts to
2284  * allocate the VFs.  The reason for ordering it this way is because it is much
2285  * mor expensive time wise to disable SR-IOV than it is to allocate and free
2286  * the memory for the VFs.
2287  **/
2288 static void igb_probe_vfs(struct igb_adapter *adapter)
2289 {
2290 #ifdef CONFIG_PCI_IOV
2291 	struct pci_dev *pdev = adapter->pdev;
2292 	struct e1000_hw *hw = &adapter->hw;
2293 	int old_vfs = pci_num_vf(adapter->pdev);
2294 	int i;
2295 
2296 	/* Virtualization features not supported on i210 family. */
2297 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2298 		return;
2299 
2300 	if (old_vfs) {
2301 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2302 			 "max_vfs setting of %d\n", old_vfs, max_vfs);
2303 		adapter->vfs_allocated_count = old_vfs;
2304 	}
2305 
2306 	if (!adapter->vfs_allocated_count)
2307 		return;
2308 
2309 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2310 				sizeof(struct vf_data_storage), GFP_KERNEL);
2311 
2312 	/* if allocation failed then we do not support SR-IOV */
2313 	if (!adapter->vf_data) {
2314 		adapter->vfs_allocated_count = 0;
2315 		dev_err(&pdev->dev, "Unable to allocate memory for VF "
2316 			"Data Storage\n");
2317 		goto out;
2318 	}
2319 
2320 	if (!old_vfs) {
2321 		if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2322 			goto err_out;
2323 	}
2324 	dev_info(&pdev->dev, "%d VFs allocated\n",
2325 		 adapter->vfs_allocated_count);
2326 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2327 		igb_vf_configure(adapter, i);
2328 
2329 	/* DMA Coalescing is not supported in IOV mode. */
2330 	adapter->flags &= ~IGB_FLAG_DMAC;
2331 	goto out;
2332 err_out:
2333 	kfree(adapter->vf_data);
2334 	adapter->vf_data = NULL;
2335 	adapter->vfs_allocated_count = 0;
2336 out:
2337 	return;
2338 #endif /* CONFIG_PCI_IOV */
2339 }
2340 
2341 /**
2342  * igb_sw_init - Initialize general software structures (struct igb_adapter)
2343  * @adapter: board private structure to initialize
2344  *
2345  * igb_sw_init initializes the Adapter private data structure.
2346  * Fields are initialized based on PCI device information and
2347  * OS network device settings (MTU size).
2348  **/
2349 static int igb_sw_init(struct igb_adapter *adapter)
2350 {
2351 	struct e1000_hw *hw = &adapter->hw;
2352 	struct net_device *netdev = adapter->netdev;
2353 	struct pci_dev *pdev = adapter->pdev;
2354 	u32 max_rss_queues;
2355 
2356 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2357 
2358 	/* set default ring sizes */
2359 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2360 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2361 
2362 	/* set default ITR values */
2363 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2364 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2365 
2366 	/* set default work limits */
2367 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2368 
2369 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2370 				  VLAN_HLEN;
2371 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2372 
2373 	spin_lock_init(&adapter->stats64_lock);
2374 #ifdef CONFIG_PCI_IOV
2375 	switch (hw->mac.type) {
2376 	case e1000_82576:
2377 	case e1000_i350:
2378 		if (max_vfs > 7) {
2379 			dev_warn(&pdev->dev,
2380 				 "Maximum of 7 VFs per PF, using max\n");
2381 			adapter->vfs_allocated_count = 7;
2382 		} else
2383 			adapter->vfs_allocated_count = max_vfs;
2384 		break;
2385 	default:
2386 		break;
2387 	}
2388 #endif /* CONFIG_PCI_IOV */
2389 
2390 	/* Determine the maximum number of RSS queues supported. */
2391 	switch (hw->mac.type) {
2392 	case e1000_i211:
2393 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2394 		break;
2395 	case e1000_82575:
2396 	case e1000_i210:
2397 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2398 		break;
2399 	case e1000_i350:
2400 		/* I350 cannot do RSS and SR-IOV at the same time */
2401 		if (!!adapter->vfs_allocated_count) {
2402 			max_rss_queues = 1;
2403 			break;
2404 		}
2405 		/* fall through */
2406 	case e1000_82576:
2407 		if (!!adapter->vfs_allocated_count) {
2408 			max_rss_queues = 2;
2409 			break;
2410 		}
2411 		/* fall through */
2412 	case e1000_82580:
2413 	default:
2414 		max_rss_queues = IGB_MAX_RX_QUEUES;
2415 		break;
2416 	}
2417 
2418 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2419 
2420 	/* Determine if we need to pair queues. */
2421 	switch (hw->mac.type) {
2422 	case e1000_82575:
2423 	case e1000_i211:
2424 		/* Device supports enough interrupts without queue pairing. */
2425 		break;
2426 	case e1000_82576:
2427 		/*
2428 		 * If VFs are going to be allocated with RSS queues then we
2429 		 * should pair the queues in order to conserve interrupts due
2430 		 * to limited supply.
2431 		 */
2432 		if ((adapter->rss_queues > 1) &&
2433 		    (adapter->vfs_allocated_count > 6))
2434 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2435 		/* fall through */
2436 	case e1000_82580:
2437 	case e1000_i350:
2438 	case e1000_i210:
2439 	default:
2440 		/*
2441 		 * If rss_queues > half of max_rss_queues, pair the queues in
2442 		 * order to conserve interrupts due to limited supply.
2443 		 */
2444 		if (adapter->rss_queues > (max_rss_queues / 2))
2445 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2446 		break;
2447 	}
2448 
2449 	/* Setup and initialize a copy of the hw vlan table array */
2450 	adapter->shadow_vfta = kzalloc(sizeof(u32) *
2451 				E1000_VLAN_FILTER_TBL_SIZE,
2452 				GFP_ATOMIC);
2453 
2454 	/* This call may decrease the number of queues */
2455 	if (igb_init_interrupt_scheme(adapter, true)) {
2456 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2457 		return -ENOMEM;
2458 	}
2459 
2460 	igb_probe_vfs(adapter);
2461 
2462 	/* Explicitly disable IRQ since the NIC can be in any state. */
2463 	igb_irq_disable(adapter);
2464 
2465 	if (hw->mac.type >= e1000_i350)
2466 		adapter->flags &= ~IGB_FLAG_DMAC;
2467 
2468 	set_bit(__IGB_DOWN, &adapter->state);
2469 	return 0;
2470 }
2471 
2472 /**
2473  * igb_open - Called when a network interface is made active
2474  * @netdev: network interface device structure
2475  *
2476  * Returns 0 on success, negative value on failure
2477  *
2478  * The open entry point is called when a network interface is made
2479  * active by the system (IFF_UP).  At this point all resources needed
2480  * for transmit and receive operations are allocated, the interrupt
2481  * handler is registered with the OS, the watchdog timer is started,
2482  * and the stack is notified that the interface is ready.
2483  **/
2484 static int __igb_open(struct net_device *netdev, bool resuming)
2485 {
2486 	struct igb_adapter *adapter = netdev_priv(netdev);
2487 	struct e1000_hw *hw = &adapter->hw;
2488 	struct pci_dev *pdev = adapter->pdev;
2489 	int err;
2490 	int i;
2491 
2492 	/* disallow open during test */
2493 	if (test_bit(__IGB_TESTING, &adapter->state)) {
2494 		WARN_ON(resuming);
2495 		return -EBUSY;
2496 	}
2497 
2498 	if (!resuming)
2499 		pm_runtime_get_sync(&pdev->dev);
2500 
2501 	netif_carrier_off(netdev);
2502 
2503 	/* allocate transmit descriptors */
2504 	err = igb_setup_all_tx_resources(adapter);
2505 	if (err)
2506 		goto err_setup_tx;
2507 
2508 	/* allocate receive descriptors */
2509 	err = igb_setup_all_rx_resources(adapter);
2510 	if (err)
2511 		goto err_setup_rx;
2512 
2513 	igb_power_up_link(adapter);
2514 
2515 	/* before we allocate an interrupt, we must be ready to handle it.
2516 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2517 	 * as soon as we call pci_request_irq, so we have to setup our
2518 	 * clean_rx handler before we do so.  */
2519 	igb_configure(adapter);
2520 
2521 	err = igb_request_irq(adapter);
2522 	if (err)
2523 		goto err_req_irq;
2524 
2525 	/* Notify the stack of the actual queue counts. */
2526 	err = netif_set_real_num_tx_queues(adapter->netdev,
2527 					   adapter->num_tx_queues);
2528 	if (err)
2529 		goto err_set_queues;
2530 
2531 	err = netif_set_real_num_rx_queues(adapter->netdev,
2532 					   adapter->num_rx_queues);
2533 	if (err)
2534 		goto err_set_queues;
2535 
2536 	/* From here on the code is the same as igb_up() */
2537 	clear_bit(__IGB_DOWN, &adapter->state);
2538 
2539 	for (i = 0; i < adapter->num_q_vectors; i++)
2540 		napi_enable(&(adapter->q_vector[i]->napi));
2541 
2542 	/* Clear any pending interrupts. */
2543 	rd32(E1000_ICR);
2544 
2545 	igb_irq_enable(adapter);
2546 
2547 	/* notify VFs that reset has been completed */
2548 	if (adapter->vfs_allocated_count) {
2549 		u32 reg_data = rd32(E1000_CTRL_EXT);
2550 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2551 		wr32(E1000_CTRL_EXT, reg_data);
2552 	}
2553 
2554 	netif_tx_start_all_queues(netdev);
2555 
2556 	if (!resuming)
2557 		pm_runtime_put(&pdev->dev);
2558 
2559 	/* start the watchdog. */
2560 	hw->mac.get_link_status = 1;
2561 	schedule_work(&adapter->watchdog_task);
2562 
2563 	return 0;
2564 
2565 err_set_queues:
2566 	igb_free_irq(adapter);
2567 err_req_irq:
2568 	igb_release_hw_control(adapter);
2569 	igb_power_down_link(adapter);
2570 	igb_free_all_rx_resources(adapter);
2571 err_setup_rx:
2572 	igb_free_all_tx_resources(adapter);
2573 err_setup_tx:
2574 	igb_reset(adapter);
2575 	if (!resuming)
2576 		pm_runtime_put(&pdev->dev);
2577 
2578 	return err;
2579 }
2580 
2581 static int igb_open(struct net_device *netdev)
2582 {
2583 	return __igb_open(netdev, false);
2584 }
2585 
2586 /**
2587  * igb_close - Disables a network interface
2588  * @netdev: network interface device structure
2589  *
2590  * Returns 0, this is not allowed to fail
2591  *
2592  * The close entry point is called when an interface is de-activated
2593  * by the OS.  The hardware is still under the driver's control, but
2594  * needs to be disabled.  A global MAC reset is issued to stop the
2595  * hardware, and all transmit and receive resources are freed.
2596  **/
2597 static int __igb_close(struct net_device *netdev, bool suspending)
2598 {
2599 	struct igb_adapter *adapter = netdev_priv(netdev);
2600 	struct pci_dev *pdev = adapter->pdev;
2601 
2602 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2603 
2604 	if (!suspending)
2605 		pm_runtime_get_sync(&pdev->dev);
2606 
2607 	igb_down(adapter);
2608 	igb_free_irq(adapter);
2609 
2610 	igb_free_all_tx_resources(adapter);
2611 	igb_free_all_rx_resources(adapter);
2612 
2613 	if (!suspending)
2614 		pm_runtime_put_sync(&pdev->dev);
2615 	return 0;
2616 }
2617 
2618 static int igb_close(struct net_device *netdev)
2619 {
2620 	return __igb_close(netdev, false);
2621 }
2622 
2623 /**
2624  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2625  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2626  *
2627  * Return 0 on success, negative on failure
2628  **/
2629 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2630 {
2631 	struct device *dev = tx_ring->dev;
2632 	int size;
2633 
2634 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2635 
2636 	tx_ring->tx_buffer_info = vzalloc(size);
2637 	if (!tx_ring->tx_buffer_info)
2638 		goto err;
2639 
2640 	/* round up to nearest 4K */
2641 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2642 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2643 
2644 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2645 					   &tx_ring->dma, GFP_KERNEL);
2646 	if (!tx_ring->desc)
2647 		goto err;
2648 
2649 	tx_ring->next_to_use = 0;
2650 	tx_ring->next_to_clean = 0;
2651 
2652 	return 0;
2653 
2654 err:
2655 	vfree(tx_ring->tx_buffer_info);
2656 	tx_ring->tx_buffer_info = NULL;
2657 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2658 	return -ENOMEM;
2659 }
2660 
2661 /**
2662  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2663  *				  (Descriptors) for all queues
2664  * @adapter: board private structure
2665  *
2666  * Return 0 on success, negative on failure
2667  **/
2668 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2669 {
2670 	struct pci_dev *pdev = adapter->pdev;
2671 	int i, err = 0;
2672 
2673 	for (i = 0; i < adapter->num_tx_queues; i++) {
2674 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2675 		if (err) {
2676 			dev_err(&pdev->dev,
2677 				"Allocation for Tx Queue %u failed\n", i);
2678 			for (i--; i >= 0; i--)
2679 				igb_free_tx_resources(adapter->tx_ring[i]);
2680 			break;
2681 		}
2682 	}
2683 
2684 	return err;
2685 }
2686 
2687 /**
2688  * igb_setup_tctl - configure the transmit control registers
2689  * @adapter: Board private structure
2690  **/
2691 void igb_setup_tctl(struct igb_adapter *adapter)
2692 {
2693 	struct e1000_hw *hw = &adapter->hw;
2694 	u32 tctl;
2695 
2696 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2697 	wr32(E1000_TXDCTL(0), 0);
2698 
2699 	/* Program the Transmit Control Register */
2700 	tctl = rd32(E1000_TCTL);
2701 	tctl &= ~E1000_TCTL_CT;
2702 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2703 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2704 
2705 	igb_config_collision_dist(hw);
2706 
2707 	/* Enable transmits */
2708 	tctl |= E1000_TCTL_EN;
2709 
2710 	wr32(E1000_TCTL, tctl);
2711 }
2712 
2713 /**
2714  * igb_configure_tx_ring - Configure transmit ring after Reset
2715  * @adapter: board private structure
2716  * @ring: tx ring to configure
2717  *
2718  * Configure a transmit ring after a reset.
2719  **/
2720 void igb_configure_tx_ring(struct igb_adapter *adapter,
2721                            struct igb_ring *ring)
2722 {
2723 	struct e1000_hw *hw = &adapter->hw;
2724 	u32 txdctl = 0;
2725 	u64 tdba = ring->dma;
2726 	int reg_idx = ring->reg_idx;
2727 
2728 	/* disable the queue */
2729 	wr32(E1000_TXDCTL(reg_idx), 0);
2730 	wrfl();
2731 	mdelay(10);
2732 
2733 	wr32(E1000_TDLEN(reg_idx),
2734 	                ring->count * sizeof(union e1000_adv_tx_desc));
2735 	wr32(E1000_TDBAL(reg_idx),
2736 	                tdba & 0x00000000ffffffffULL);
2737 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2738 
2739 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2740 	wr32(E1000_TDH(reg_idx), 0);
2741 	writel(0, ring->tail);
2742 
2743 	txdctl |= IGB_TX_PTHRESH;
2744 	txdctl |= IGB_TX_HTHRESH << 8;
2745 	txdctl |= IGB_TX_WTHRESH << 16;
2746 
2747 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2748 	wr32(E1000_TXDCTL(reg_idx), txdctl);
2749 }
2750 
2751 /**
2752  * igb_configure_tx - Configure transmit Unit after Reset
2753  * @adapter: board private structure
2754  *
2755  * Configure the Tx unit of the MAC after a reset.
2756  **/
2757 static void igb_configure_tx(struct igb_adapter *adapter)
2758 {
2759 	int i;
2760 
2761 	for (i = 0; i < adapter->num_tx_queues; i++)
2762 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2763 }
2764 
2765 /**
2766  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2767  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2768  *
2769  * Returns 0 on success, negative on failure
2770  **/
2771 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2772 {
2773 	struct device *dev = rx_ring->dev;
2774 	int size;
2775 
2776 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2777 
2778 	rx_ring->rx_buffer_info = vzalloc(size);
2779 	if (!rx_ring->rx_buffer_info)
2780 		goto err;
2781 
2782 	/* Round up to nearest 4K */
2783 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2784 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2785 
2786 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2787 					   &rx_ring->dma, GFP_KERNEL);
2788 	if (!rx_ring->desc)
2789 		goto err;
2790 
2791 	rx_ring->next_to_alloc = 0;
2792 	rx_ring->next_to_clean = 0;
2793 	rx_ring->next_to_use = 0;
2794 
2795 	return 0;
2796 
2797 err:
2798 	vfree(rx_ring->rx_buffer_info);
2799 	rx_ring->rx_buffer_info = NULL;
2800 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2801 	return -ENOMEM;
2802 }
2803 
2804 /**
2805  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2806  *				  (Descriptors) for all queues
2807  * @adapter: board private structure
2808  *
2809  * Return 0 on success, negative on failure
2810  **/
2811 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2812 {
2813 	struct pci_dev *pdev = adapter->pdev;
2814 	int i, err = 0;
2815 
2816 	for (i = 0; i < adapter->num_rx_queues; i++) {
2817 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2818 		if (err) {
2819 			dev_err(&pdev->dev,
2820 				"Allocation for Rx Queue %u failed\n", i);
2821 			for (i--; i >= 0; i--)
2822 				igb_free_rx_resources(adapter->rx_ring[i]);
2823 			break;
2824 		}
2825 	}
2826 
2827 	return err;
2828 }
2829 
2830 /**
2831  * igb_setup_mrqc - configure the multiple receive queue control registers
2832  * @adapter: Board private structure
2833  **/
2834 static void igb_setup_mrqc(struct igb_adapter *adapter)
2835 {
2836 	struct e1000_hw *hw = &adapter->hw;
2837 	u32 mrqc, rxcsum;
2838 	u32 j, num_rx_queues, shift = 0;
2839 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2840 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2841 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2842 					0xFA01ACBE };
2843 
2844 	/* Fill out hash function seeds */
2845 	for (j = 0; j < 10; j++)
2846 		wr32(E1000_RSSRK(j), rsskey[j]);
2847 
2848 	num_rx_queues = adapter->rss_queues;
2849 
2850 	switch (hw->mac.type) {
2851 	case e1000_82575:
2852 		shift = 6;
2853 		break;
2854 	case e1000_82576:
2855 		/* 82576 supports 2 RSS queues for SR-IOV */
2856 		if (adapter->vfs_allocated_count) {
2857 			shift = 3;
2858 			num_rx_queues = 2;
2859 		}
2860 		break;
2861 	default:
2862 		break;
2863 	}
2864 
2865 	/*
2866 	 * Populate the indirection table 4 entries at a time.  To do this
2867 	 * we are generating the results for n and n+2 and then interleaving
2868 	 * those with the results with n+1 and n+3.
2869 	 */
2870 	for (j = 0; j < 32; j++) {
2871 		/* first pass generates n and n+2 */
2872 		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2873 		u32 reta = (base & 0x07800780) >> (7 - shift);
2874 
2875 		/* second pass generates n+1 and n+3 */
2876 		base += 0x00010001 * num_rx_queues;
2877 		reta |= (base & 0x07800780) << (1 + shift);
2878 
2879 		wr32(E1000_RETA(j), reta);
2880 	}
2881 
2882 	/*
2883 	 * Disable raw packet checksumming so that RSS hash is placed in
2884 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2885 	 * offloads as they are enabled by default
2886 	 */
2887 	rxcsum = rd32(E1000_RXCSUM);
2888 	rxcsum |= E1000_RXCSUM_PCSD;
2889 
2890 	if (adapter->hw.mac.type >= e1000_82576)
2891 		/* Enable Receive Checksum Offload for SCTP */
2892 		rxcsum |= E1000_RXCSUM_CRCOFL;
2893 
2894 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
2895 	wr32(E1000_RXCSUM, rxcsum);
2896 
2897 	/* Generate RSS hash based on packet types, TCP/UDP
2898 	 * port numbers and/or IPv4/v6 src and dst addresses
2899 	 */
2900 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2901 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
2902 	       E1000_MRQC_RSS_FIELD_IPV6 |
2903 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
2904 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2905 
2906 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2907 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2908 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2909 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2910 
2911 	/* If VMDq is enabled then we set the appropriate mode for that, else
2912 	 * we default to RSS so that an RSS hash is calculated per packet even
2913 	 * if we are only using one queue */
2914 	if (adapter->vfs_allocated_count) {
2915 		if (hw->mac.type > e1000_82575) {
2916 			/* Set the default pool for the PF's first queue */
2917 			u32 vtctl = rd32(E1000_VT_CTL);
2918 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2919 				   E1000_VT_CTL_DISABLE_DEF_POOL);
2920 			vtctl |= adapter->vfs_allocated_count <<
2921 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2922 			wr32(E1000_VT_CTL, vtctl);
2923 		}
2924 		if (adapter->rss_queues > 1)
2925 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2926 		else
2927 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
2928 	} else {
2929 		if (hw->mac.type != e1000_i211)
2930 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2931 	}
2932 	igb_vmm_control(adapter);
2933 
2934 	wr32(E1000_MRQC, mrqc);
2935 }
2936 
2937 /**
2938  * igb_setup_rctl - configure the receive control registers
2939  * @adapter: Board private structure
2940  **/
2941 void igb_setup_rctl(struct igb_adapter *adapter)
2942 {
2943 	struct e1000_hw *hw = &adapter->hw;
2944 	u32 rctl;
2945 
2946 	rctl = rd32(E1000_RCTL);
2947 
2948 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2949 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2950 
2951 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2952 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2953 
2954 	/*
2955 	 * enable stripping of CRC. It's unlikely this will break BMC
2956 	 * redirection as it did with e1000. Newer features require
2957 	 * that the HW strips the CRC.
2958 	 */
2959 	rctl |= E1000_RCTL_SECRC;
2960 
2961 	/* disable store bad packets and clear size bits. */
2962 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2963 
2964 	/* enable LPE to prevent packets larger than max_frame_size */
2965 	rctl |= E1000_RCTL_LPE;
2966 
2967 	/* disable queue 0 to prevent tail write w/o re-config */
2968 	wr32(E1000_RXDCTL(0), 0);
2969 
2970 	/* Attention!!!  For SR-IOV PF driver operations you must enable
2971 	 * queue drop for all VF and PF queues to prevent head of line blocking
2972 	 * if an un-trusted VF does not provide descriptors to hardware.
2973 	 */
2974 	if (adapter->vfs_allocated_count) {
2975 		/* set all queue drop enable bits */
2976 		wr32(E1000_QDE, ALL_QUEUES);
2977 	}
2978 
2979 	/* This is useful for sniffing bad packets. */
2980 	if (adapter->netdev->features & NETIF_F_RXALL) {
2981 		/* UPE and MPE will be handled by normal PROMISC logic
2982 		 * in e1000e_set_rx_mode */
2983 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2984 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2985 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2986 
2987 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2988 			  E1000_RCTL_DPF | /* Allow filtered pause */
2989 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2990 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2991 		 * and that breaks VLANs.
2992 		 */
2993 	}
2994 
2995 	wr32(E1000_RCTL, rctl);
2996 }
2997 
2998 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2999                                    int vfn)
3000 {
3001 	struct e1000_hw *hw = &adapter->hw;
3002 	u32 vmolr;
3003 
3004 	/* if it isn't the PF check to see if VFs are enabled and
3005 	 * increase the size to support vlan tags */
3006 	if (vfn < adapter->vfs_allocated_count &&
3007 	    adapter->vf_data[vfn].vlans_enabled)
3008 		size += VLAN_TAG_SIZE;
3009 
3010 	vmolr = rd32(E1000_VMOLR(vfn));
3011 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3012 	vmolr |= size | E1000_VMOLR_LPE;
3013 	wr32(E1000_VMOLR(vfn), vmolr);
3014 
3015 	return 0;
3016 }
3017 
3018 /**
3019  * igb_rlpml_set - set maximum receive packet size
3020  * @adapter: board private structure
3021  *
3022  * Configure maximum receivable packet size.
3023  **/
3024 static void igb_rlpml_set(struct igb_adapter *adapter)
3025 {
3026 	u32 max_frame_size = adapter->max_frame_size;
3027 	struct e1000_hw *hw = &adapter->hw;
3028 	u16 pf_id = adapter->vfs_allocated_count;
3029 
3030 	if (pf_id) {
3031 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3032 		/*
3033 		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3034 		 * to our max jumbo frame size, in case we need to enable
3035 		 * jumbo frames on one of the rings later.
3036 		 * This will not pass over-length frames into the default
3037 		 * queue because it's gated by the VMOLR.RLPML.
3038 		 */
3039 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3040 	}
3041 
3042 	wr32(E1000_RLPML, max_frame_size);
3043 }
3044 
3045 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3046 				 int vfn, bool aupe)
3047 {
3048 	struct e1000_hw *hw = &adapter->hw;
3049 	u32 vmolr;
3050 
3051 	/*
3052 	 * This register exists only on 82576 and newer so if we are older then
3053 	 * we should exit and do nothing
3054 	 */
3055 	if (hw->mac.type < e1000_82576)
3056 		return;
3057 
3058 	vmolr = rd32(E1000_VMOLR(vfn));
3059 	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3060 	if (aupe)
3061 		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3062 	else
3063 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3064 
3065 	/* clear all bits that might not be set */
3066 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3067 
3068 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3069 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3070 	/*
3071 	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3072 	 * multicast packets
3073 	 */
3074 	if (vfn <= adapter->vfs_allocated_count)
3075 		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3076 
3077 	wr32(E1000_VMOLR(vfn), vmolr);
3078 }
3079 
3080 /**
3081  * igb_configure_rx_ring - Configure a receive ring after Reset
3082  * @adapter: board private structure
3083  * @ring: receive ring to be configured
3084  *
3085  * Configure the Rx unit of the MAC after a reset.
3086  **/
3087 void igb_configure_rx_ring(struct igb_adapter *adapter,
3088                            struct igb_ring *ring)
3089 {
3090 	struct e1000_hw *hw = &adapter->hw;
3091 	u64 rdba = ring->dma;
3092 	int reg_idx = ring->reg_idx;
3093 	u32 srrctl = 0, rxdctl = 0;
3094 
3095 	/* disable the queue */
3096 	wr32(E1000_RXDCTL(reg_idx), 0);
3097 
3098 	/* Set DMA base address registers */
3099 	wr32(E1000_RDBAL(reg_idx),
3100 	     rdba & 0x00000000ffffffffULL);
3101 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3102 	wr32(E1000_RDLEN(reg_idx),
3103 	               ring->count * sizeof(union e1000_adv_rx_desc));
3104 
3105 	/* initialize head and tail */
3106 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3107 	wr32(E1000_RDH(reg_idx), 0);
3108 	writel(0, ring->tail);
3109 
3110 	/* set descriptor configuration */
3111 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3112 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3113 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3114 	if (hw->mac.type >= e1000_82580)
3115 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3116 	/* Only set Drop Enable if we are supporting multiple queues */
3117 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3118 		srrctl |= E1000_SRRCTL_DROP_EN;
3119 
3120 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3121 
3122 	/* set filtering for VMDQ pools */
3123 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3124 
3125 	rxdctl |= IGB_RX_PTHRESH;
3126 	rxdctl |= IGB_RX_HTHRESH << 8;
3127 	rxdctl |= IGB_RX_WTHRESH << 16;
3128 
3129 	/* enable receive descriptor fetching */
3130 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3131 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3132 }
3133 
3134 /**
3135  * igb_configure_rx - Configure receive Unit after Reset
3136  * @adapter: board private structure
3137  *
3138  * Configure the Rx unit of the MAC after a reset.
3139  **/
3140 static void igb_configure_rx(struct igb_adapter *adapter)
3141 {
3142 	int i;
3143 
3144 	/* set UTA to appropriate mode */
3145 	igb_set_uta(adapter);
3146 
3147 	/* set the correct pool for the PF default MAC address in entry 0 */
3148 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3149 	                 adapter->vfs_allocated_count);
3150 
3151 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3152 	 * the Base and Length of the Rx Descriptor Ring */
3153 	for (i = 0; i < adapter->num_rx_queues; i++)
3154 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3155 }
3156 
3157 /**
3158  * igb_free_tx_resources - Free Tx Resources per Queue
3159  * @tx_ring: Tx descriptor ring for a specific queue
3160  *
3161  * Free all transmit software resources
3162  **/
3163 void igb_free_tx_resources(struct igb_ring *tx_ring)
3164 {
3165 	igb_clean_tx_ring(tx_ring);
3166 
3167 	vfree(tx_ring->tx_buffer_info);
3168 	tx_ring->tx_buffer_info = NULL;
3169 
3170 	/* if not set, then don't free */
3171 	if (!tx_ring->desc)
3172 		return;
3173 
3174 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3175 			  tx_ring->desc, tx_ring->dma);
3176 
3177 	tx_ring->desc = NULL;
3178 }
3179 
3180 /**
3181  * igb_free_all_tx_resources - Free Tx Resources for All Queues
3182  * @adapter: board private structure
3183  *
3184  * Free all transmit software resources
3185  **/
3186 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3187 {
3188 	int i;
3189 
3190 	for (i = 0; i < adapter->num_tx_queues; i++)
3191 		igb_free_tx_resources(adapter->tx_ring[i]);
3192 }
3193 
3194 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3195 				    struct igb_tx_buffer *tx_buffer)
3196 {
3197 	if (tx_buffer->skb) {
3198 		dev_kfree_skb_any(tx_buffer->skb);
3199 		if (dma_unmap_len(tx_buffer, len))
3200 			dma_unmap_single(ring->dev,
3201 					 dma_unmap_addr(tx_buffer, dma),
3202 					 dma_unmap_len(tx_buffer, len),
3203 					 DMA_TO_DEVICE);
3204 	} else if (dma_unmap_len(tx_buffer, len)) {
3205 		dma_unmap_page(ring->dev,
3206 			       dma_unmap_addr(tx_buffer, dma),
3207 			       dma_unmap_len(tx_buffer, len),
3208 			       DMA_TO_DEVICE);
3209 	}
3210 	tx_buffer->next_to_watch = NULL;
3211 	tx_buffer->skb = NULL;
3212 	dma_unmap_len_set(tx_buffer, len, 0);
3213 	/* buffer_info must be completely set up in the transmit path */
3214 }
3215 
3216 /**
3217  * igb_clean_tx_ring - Free Tx Buffers
3218  * @tx_ring: ring to be cleaned
3219  **/
3220 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3221 {
3222 	struct igb_tx_buffer *buffer_info;
3223 	unsigned long size;
3224 	u16 i;
3225 
3226 	if (!tx_ring->tx_buffer_info)
3227 		return;
3228 	/* Free all the Tx ring sk_buffs */
3229 
3230 	for (i = 0; i < tx_ring->count; i++) {
3231 		buffer_info = &tx_ring->tx_buffer_info[i];
3232 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3233 	}
3234 
3235 	netdev_tx_reset_queue(txring_txq(tx_ring));
3236 
3237 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3238 	memset(tx_ring->tx_buffer_info, 0, size);
3239 
3240 	/* Zero out the descriptor ring */
3241 	memset(tx_ring->desc, 0, tx_ring->size);
3242 
3243 	tx_ring->next_to_use = 0;
3244 	tx_ring->next_to_clean = 0;
3245 }
3246 
3247 /**
3248  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3249  * @adapter: board private structure
3250  **/
3251 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3252 {
3253 	int i;
3254 
3255 	for (i = 0; i < adapter->num_tx_queues; i++)
3256 		igb_clean_tx_ring(adapter->tx_ring[i]);
3257 }
3258 
3259 /**
3260  * igb_free_rx_resources - Free Rx Resources
3261  * @rx_ring: ring to clean the resources from
3262  *
3263  * Free all receive software resources
3264  **/
3265 void igb_free_rx_resources(struct igb_ring *rx_ring)
3266 {
3267 	igb_clean_rx_ring(rx_ring);
3268 
3269 	vfree(rx_ring->rx_buffer_info);
3270 	rx_ring->rx_buffer_info = NULL;
3271 
3272 	/* if not set, then don't free */
3273 	if (!rx_ring->desc)
3274 		return;
3275 
3276 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3277 			  rx_ring->desc, rx_ring->dma);
3278 
3279 	rx_ring->desc = NULL;
3280 }
3281 
3282 /**
3283  * igb_free_all_rx_resources - Free Rx Resources for All Queues
3284  * @adapter: board private structure
3285  *
3286  * Free all receive software resources
3287  **/
3288 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3289 {
3290 	int i;
3291 
3292 	for (i = 0; i < adapter->num_rx_queues; i++)
3293 		igb_free_rx_resources(adapter->rx_ring[i]);
3294 }
3295 
3296 /**
3297  * igb_clean_rx_ring - Free Rx Buffers per Queue
3298  * @rx_ring: ring to free buffers from
3299  **/
3300 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3301 {
3302 	unsigned long size;
3303 	u16 i;
3304 
3305 	if (rx_ring->skb)
3306 		dev_kfree_skb(rx_ring->skb);
3307 	rx_ring->skb = NULL;
3308 
3309 	if (!rx_ring->rx_buffer_info)
3310 		return;
3311 
3312 	/* Free all the Rx ring sk_buffs */
3313 	for (i = 0; i < rx_ring->count; i++) {
3314 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3315 
3316 		if (!buffer_info->page)
3317 			continue;
3318 
3319 		dma_unmap_page(rx_ring->dev,
3320 			       buffer_info->dma,
3321 			       PAGE_SIZE,
3322 			       DMA_FROM_DEVICE);
3323 		__free_page(buffer_info->page);
3324 
3325 		buffer_info->page = NULL;
3326 	}
3327 
3328 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3329 	memset(rx_ring->rx_buffer_info, 0, size);
3330 
3331 	/* Zero out the descriptor ring */
3332 	memset(rx_ring->desc, 0, rx_ring->size);
3333 
3334 	rx_ring->next_to_alloc = 0;
3335 	rx_ring->next_to_clean = 0;
3336 	rx_ring->next_to_use = 0;
3337 }
3338 
3339 /**
3340  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3341  * @adapter: board private structure
3342  **/
3343 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3344 {
3345 	int i;
3346 
3347 	for (i = 0; i < adapter->num_rx_queues; i++)
3348 		igb_clean_rx_ring(adapter->rx_ring[i]);
3349 }
3350 
3351 /**
3352  * igb_set_mac - Change the Ethernet Address of the NIC
3353  * @netdev: network interface device structure
3354  * @p: pointer to an address structure
3355  *
3356  * Returns 0 on success, negative on failure
3357  **/
3358 static int igb_set_mac(struct net_device *netdev, void *p)
3359 {
3360 	struct igb_adapter *adapter = netdev_priv(netdev);
3361 	struct e1000_hw *hw = &adapter->hw;
3362 	struct sockaddr *addr = p;
3363 
3364 	if (!is_valid_ether_addr(addr->sa_data))
3365 		return -EADDRNOTAVAIL;
3366 
3367 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3368 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3369 
3370 	/* set the correct pool for the new PF MAC address in entry 0 */
3371 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3372 	                 adapter->vfs_allocated_count);
3373 
3374 	return 0;
3375 }
3376 
3377 /**
3378  * igb_write_mc_addr_list - write multicast addresses to MTA
3379  * @netdev: network interface device structure
3380  *
3381  * Writes multicast address list to the MTA hash table.
3382  * Returns: -ENOMEM on failure
3383  *                0 on no addresses written
3384  *                X on writing X addresses to MTA
3385  **/
3386 static int igb_write_mc_addr_list(struct net_device *netdev)
3387 {
3388 	struct igb_adapter *adapter = netdev_priv(netdev);
3389 	struct e1000_hw *hw = &adapter->hw;
3390 	struct netdev_hw_addr *ha;
3391 	u8  *mta_list;
3392 	int i;
3393 
3394 	if (netdev_mc_empty(netdev)) {
3395 		/* nothing to program, so clear mc list */
3396 		igb_update_mc_addr_list(hw, NULL, 0);
3397 		igb_restore_vf_multicasts(adapter);
3398 		return 0;
3399 	}
3400 
3401 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3402 	if (!mta_list)
3403 		return -ENOMEM;
3404 
3405 	/* The shared function expects a packed array of only addresses. */
3406 	i = 0;
3407 	netdev_for_each_mc_addr(ha, netdev)
3408 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3409 
3410 	igb_update_mc_addr_list(hw, mta_list, i);
3411 	kfree(mta_list);
3412 
3413 	return netdev_mc_count(netdev);
3414 }
3415 
3416 /**
3417  * igb_write_uc_addr_list - write unicast addresses to RAR table
3418  * @netdev: network interface device structure
3419  *
3420  * Writes unicast address list to the RAR table.
3421  * Returns: -ENOMEM on failure/insufficient address space
3422  *                0 on no addresses written
3423  *                X on writing X addresses to the RAR table
3424  **/
3425 static int igb_write_uc_addr_list(struct net_device *netdev)
3426 {
3427 	struct igb_adapter *adapter = netdev_priv(netdev);
3428 	struct e1000_hw *hw = &adapter->hw;
3429 	unsigned int vfn = adapter->vfs_allocated_count;
3430 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3431 	int count = 0;
3432 
3433 	/* return ENOMEM indicating insufficient memory for addresses */
3434 	if (netdev_uc_count(netdev) > rar_entries)
3435 		return -ENOMEM;
3436 
3437 	if (!netdev_uc_empty(netdev) && rar_entries) {
3438 		struct netdev_hw_addr *ha;
3439 
3440 		netdev_for_each_uc_addr(ha, netdev) {
3441 			if (!rar_entries)
3442 				break;
3443 			igb_rar_set_qsel(adapter, ha->addr,
3444 			                 rar_entries--,
3445 			                 vfn);
3446 			count++;
3447 		}
3448 	}
3449 	/* write the addresses in reverse order to avoid write combining */
3450 	for (; rar_entries > 0 ; rar_entries--) {
3451 		wr32(E1000_RAH(rar_entries), 0);
3452 		wr32(E1000_RAL(rar_entries), 0);
3453 	}
3454 	wrfl();
3455 
3456 	return count;
3457 }
3458 
3459 /**
3460  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3461  * @netdev: network interface device structure
3462  *
3463  * The set_rx_mode entry point is called whenever the unicast or multicast
3464  * address lists or the network interface flags are updated.  This routine is
3465  * responsible for configuring the hardware for proper unicast, multicast,
3466  * promiscuous mode, and all-multi behavior.
3467  **/
3468 static void igb_set_rx_mode(struct net_device *netdev)
3469 {
3470 	struct igb_adapter *adapter = netdev_priv(netdev);
3471 	struct e1000_hw *hw = &adapter->hw;
3472 	unsigned int vfn = adapter->vfs_allocated_count;
3473 	u32 rctl, vmolr = 0;
3474 	int count;
3475 
3476 	/* Check for Promiscuous and All Multicast modes */
3477 	rctl = rd32(E1000_RCTL);
3478 
3479 	/* clear the effected bits */
3480 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3481 
3482 	if (netdev->flags & IFF_PROMISC) {
3483 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3484 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3485 	} else {
3486 		if (netdev->flags & IFF_ALLMULTI) {
3487 			rctl |= E1000_RCTL_MPE;
3488 			vmolr |= E1000_VMOLR_MPME;
3489 		} else {
3490 			/*
3491 			 * Write addresses to the MTA, if the attempt fails
3492 			 * then we should just turn on promiscuous mode so
3493 			 * that we can at least receive multicast traffic
3494 			 */
3495 			count = igb_write_mc_addr_list(netdev);
3496 			if (count < 0) {
3497 				rctl |= E1000_RCTL_MPE;
3498 				vmolr |= E1000_VMOLR_MPME;
3499 			} else if (count) {
3500 				vmolr |= E1000_VMOLR_ROMPE;
3501 			}
3502 		}
3503 		/*
3504 		 * Write addresses to available RAR registers, if there is not
3505 		 * sufficient space to store all the addresses then enable
3506 		 * unicast promiscuous mode
3507 		 */
3508 		count = igb_write_uc_addr_list(netdev);
3509 		if (count < 0) {
3510 			rctl |= E1000_RCTL_UPE;
3511 			vmolr |= E1000_VMOLR_ROPE;
3512 		}
3513 		rctl |= E1000_RCTL_VFE;
3514 	}
3515 	wr32(E1000_RCTL, rctl);
3516 
3517 	/*
3518 	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3519 	 * the VMOLR to enable the appropriate modes.  Without this workaround
3520 	 * we will have issues with VLAN tag stripping not being done for frames
3521 	 * that are only arriving because we are the default pool
3522 	 */
3523 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3524 		return;
3525 
3526 	vmolr |= rd32(E1000_VMOLR(vfn)) &
3527 	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3528 	wr32(E1000_VMOLR(vfn), vmolr);
3529 	igb_restore_vf_multicasts(adapter);
3530 }
3531 
3532 static void igb_check_wvbr(struct igb_adapter *adapter)
3533 {
3534 	struct e1000_hw *hw = &adapter->hw;
3535 	u32 wvbr = 0;
3536 
3537 	switch (hw->mac.type) {
3538 	case e1000_82576:
3539 	case e1000_i350:
3540 		if (!(wvbr = rd32(E1000_WVBR)))
3541 			return;
3542 		break;
3543 	default:
3544 		break;
3545 	}
3546 
3547 	adapter->wvbr |= wvbr;
3548 }
3549 
3550 #define IGB_STAGGERED_QUEUE_OFFSET 8
3551 
3552 static void igb_spoof_check(struct igb_adapter *adapter)
3553 {
3554 	int j;
3555 
3556 	if (!adapter->wvbr)
3557 		return;
3558 
3559 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3560 		if (adapter->wvbr & (1 << j) ||
3561 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3562 			dev_warn(&adapter->pdev->dev,
3563 				"Spoof event(s) detected on VF %d\n", j);
3564 			adapter->wvbr &=
3565 				~((1 << j) |
3566 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3567 		}
3568 	}
3569 }
3570 
3571 /* Need to wait a few seconds after link up to get diagnostic information from
3572  * the phy */
3573 static void igb_update_phy_info(unsigned long data)
3574 {
3575 	struct igb_adapter *adapter = (struct igb_adapter *) data;
3576 	igb_get_phy_info(&adapter->hw);
3577 }
3578 
3579 /**
3580  * igb_has_link - check shared code for link and determine up/down
3581  * @adapter: pointer to driver private info
3582  **/
3583 bool igb_has_link(struct igb_adapter *adapter)
3584 {
3585 	struct e1000_hw *hw = &adapter->hw;
3586 	bool link_active = false;
3587 	s32 ret_val = 0;
3588 
3589 	/* get_link_status is set on LSC (link status) interrupt or
3590 	 * rx sequence error interrupt.  get_link_status will stay
3591 	 * false until the e1000_check_for_link establishes link
3592 	 * for copper adapters ONLY
3593 	 */
3594 	switch (hw->phy.media_type) {
3595 	case e1000_media_type_copper:
3596 		if (hw->mac.get_link_status) {
3597 			ret_val = hw->mac.ops.check_for_link(hw);
3598 			link_active = !hw->mac.get_link_status;
3599 		} else {
3600 			link_active = true;
3601 		}
3602 		break;
3603 	case e1000_media_type_internal_serdes:
3604 		ret_val = hw->mac.ops.check_for_link(hw);
3605 		link_active = hw->mac.serdes_has_link;
3606 		break;
3607 	default:
3608 	case e1000_media_type_unknown:
3609 		break;
3610 	}
3611 
3612 	return link_active;
3613 }
3614 
3615 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3616 {
3617 	bool ret = false;
3618 	u32 ctrl_ext, thstat;
3619 
3620 	/* check for thermal sensor event on i350 copper only */
3621 	if (hw->mac.type == e1000_i350) {
3622 		thstat = rd32(E1000_THSTAT);
3623 		ctrl_ext = rd32(E1000_CTRL_EXT);
3624 
3625 		if ((hw->phy.media_type == e1000_media_type_copper) &&
3626 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3627 			ret = !!(thstat & event);
3628 		}
3629 	}
3630 
3631 	return ret;
3632 }
3633 
3634 /**
3635  * igb_watchdog - Timer Call-back
3636  * @data: pointer to adapter cast into an unsigned long
3637  **/
3638 static void igb_watchdog(unsigned long data)
3639 {
3640 	struct igb_adapter *adapter = (struct igb_adapter *)data;
3641 	/* Do the rest outside of interrupt context */
3642 	schedule_work(&adapter->watchdog_task);
3643 }
3644 
3645 static void igb_watchdog_task(struct work_struct *work)
3646 {
3647 	struct igb_adapter *adapter = container_of(work,
3648 	                                           struct igb_adapter,
3649                                                    watchdog_task);
3650 	struct e1000_hw *hw = &adapter->hw;
3651 	struct net_device *netdev = adapter->netdev;
3652 	u32 link;
3653 	int i;
3654 
3655 	link = igb_has_link(adapter);
3656 	if (link) {
3657 		/* Cancel scheduled suspend requests. */
3658 		pm_runtime_resume(netdev->dev.parent);
3659 
3660 		if (!netif_carrier_ok(netdev)) {
3661 			u32 ctrl;
3662 			hw->mac.ops.get_speed_and_duplex(hw,
3663 			                                 &adapter->link_speed,
3664 			                                 &adapter->link_duplex);
3665 
3666 			ctrl = rd32(E1000_CTRL);
3667 			/* Links status message must follow this format */
3668 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3669 			       "Duplex, Flow Control: %s\n",
3670 			       netdev->name,
3671 			       adapter->link_speed,
3672 			       adapter->link_duplex == FULL_DUPLEX ?
3673 			       "Full" : "Half",
3674 			       (ctrl & E1000_CTRL_TFCE) &&
3675 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3676 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3677 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3678 
3679 			/* check for thermal sensor event */
3680 			if (igb_thermal_sensor_event(hw,
3681 			    E1000_THSTAT_LINK_THROTTLE)) {
3682 				netdev_info(netdev, "The network adapter link "
3683 					    "speed was downshifted because it "
3684 					    "overheated\n");
3685 			}
3686 
3687 			/* adjust timeout factor according to speed/duplex */
3688 			adapter->tx_timeout_factor = 1;
3689 			switch (adapter->link_speed) {
3690 			case SPEED_10:
3691 				adapter->tx_timeout_factor = 14;
3692 				break;
3693 			case SPEED_100:
3694 				/* maybe add some timeout factor ? */
3695 				break;
3696 			}
3697 
3698 			netif_carrier_on(netdev);
3699 
3700 			igb_ping_all_vfs(adapter);
3701 			igb_check_vf_rate_limit(adapter);
3702 
3703 			/* link state has changed, schedule phy info update */
3704 			if (!test_bit(__IGB_DOWN, &adapter->state))
3705 				mod_timer(&adapter->phy_info_timer,
3706 					  round_jiffies(jiffies + 2 * HZ));
3707 		}
3708 	} else {
3709 		if (netif_carrier_ok(netdev)) {
3710 			adapter->link_speed = 0;
3711 			adapter->link_duplex = 0;
3712 
3713 			/* check for thermal sensor event */
3714 			if (igb_thermal_sensor_event(hw,
3715 			    E1000_THSTAT_PWR_DOWN)) {
3716 				netdev_err(netdev, "The network adapter was "
3717 					   "stopped because it overheated\n");
3718 			}
3719 
3720 			/* Links status message must follow this format */
3721 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3722 			       netdev->name);
3723 			netif_carrier_off(netdev);
3724 
3725 			igb_ping_all_vfs(adapter);
3726 
3727 			/* link state has changed, schedule phy info update */
3728 			if (!test_bit(__IGB_DOWN, &adapter->state))
3729 				mod_timer(&adapter->phy_info_timer,
3730 					  round_jiffies(jiffies + 2 * HZ));
3731 
3732 			pm_schedule_suspend(netdev->dev.parent,
3733 					    MSEC_PER_SEC * 5);
3734 		}
3735 	}
3736 
3737 	spin_lock(&adapter->stats64_lock);
3738 	igb_update_stats(adapter, &adapter->stats64);
3739 	spin_unlock(&adapter->stats64_lock);
3740 
3741 	for (i = 0; i < adapter->num_tx_queues; i++) {
3742 		struct igb_ring *tx_ring = adapter->tx_ring[i];
3743 		if (!netif_carrier_ok(netdev)) {
3744 			/* We've lost link, so the controller stops DMA,
3745 			 * but we've got queued Tx work that's never going
3746 			 * to get done, so reset controller to flush Tx.
3747 			 * (Do the reset outside of interrupt context). */
3748 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3749 				adapter->tx_timeout_count++;
3750 				schedule_work(&adapter->reset_task);
3751 				/* return immediately since reset is imminent */
3752 				return;
3753 			}
3754 		}
3755 
3756 		/* Force detection of hung controller every watchdog period */
3757 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3758 	}
3759 
3760 	/* Cause software interrupt to ensure rx ring is cleaned */
3761 	if (adapter->msix_entries) {
3762 		u32 eics = 0;
3763 		for (i = 0; i < adapter->num_q_vectors; i++)
3764 			eics |= adapter->q_vector[i]->eims_value;
3765 		wr32(E1000_EICS, eics);
3766 	} else {
3767 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
3768 	}
3769 
3770 	igb_spoof_check(adapter);
3771 
3772 	/* Reset the timer */
3773 	if (!test_bit(__IGB_DOWN, &adapter->state))
3774 		mod_timer(&adapter->watchdog_timer,
3775 			  round_jiffies(jiffies + 2 * HZ));
3776 }
3777 
3778 enum latency_range {
3779 	lowest_latency = 0,
3780 	low_latency = 1,
3781 	bulk_latency = 2,
3782 	latency_invalid = 255
3783 };
3784 
3785 /**
3786  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3787  *
3788  *      Stores a new ITR value based on strictly on packet size.  This
3789  *      algorithm is less sophisticated than that used in igb_update_itr,
3790  *      due to the difficulty of synchronizing statistics across multiple
3791  *      receive rings.  The divisors and thresholds used by this function
3792  *      were determined based on theoretical maximum wire speed and testing
3793  *      data, in order to minimize response time while increasing bulk
3794  *      throughput.
3795  *      This functionality is controlled by the InterruptThrottleRate module
3796  *      parameter (see igb_param.c)
3797  *      NOTE:  This function is called only when operating in a multiqueue
3798  *             receive environment.
3799  * @q_vector: pointer to q_vector
3800  **/
3801 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3802 {
3803 	int new_val = q_vector->itr_val;
3804 	int avg_wire_size = 0;
3805 	struct igb_adapter *adapter = q_vector->adapter;
3806 	unsigned int packets;
3807 
3808 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3809 	 * ints/sec - ITR timer value of 120 ticks.
3810 	 */
3811 	if (adapter->link_speed != SPEED_1000) {
3812 		new_val = IGB_4K_ITR;
3813 		goto set_itr_val;
3814 	}
3815 
3816 	packets = q_vector->rx.total_packets;
3817 	if (packets)
3818 		avg_wire_size = q_vector->rx.total_bytes / packets;
3819 
3820 	packets = q_vector->tx.total_packets;
3821 	if (packets)
3822 		avg_wire_size = max_t(u32, avg_wire_size,
3823 				      q_vector->tx.total_bytes / packets);
3824 
3825 	/* if avg_wire_size isn't set no work was done */
3826 	if (!avg_wire_size)
3827 		goto clear_counts;
3828 
3829 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3830 	avg_wire_size += 24;
3831 
3832 	/* Don't starve jumbo frames */
3833 	avg_wire_size = min(avg_wire_size, 3000);
3834 
3835 	/* Give a little boost to mid-size frames */
3836 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3837 		new_val = avg_wire_size / 3;
3838 	else
3839 		new_val = avg_wire_size / 2;
3840 
3841 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3842 	if (new_val < IGB_20K_ITR &&
3843 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3844 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3845 		new_val = IGB_20K_ITR;
3846 
3847 set_itr_val:
3848 	if (new_val != q_vector->itr_val) {
3849 		q_vector->itr_val = new_val;
3850 		q_vector->set_itr = 1;
3851 	}
3852 clear_counts:
3853 	q_vector->rx.total_bytes = 0;
3854 	q_vector->rx.total_packets = 0;
3855 	q_vector->tx.total_bytes = 0;
3856 	q_vector->tx.total_packets = 0;
3857 }
3858 
3859 /**
3860  * igb_update_itr - update the dynamic ITR value based on statistics
3861  *      Stores a new ITR value based on packets and byte
3862  *      counts during the last interrupt.  The advantage of per interrupt
3863  *      computation is faster updates and more accurate ITR for the current
3864  *      traffic pattern.  Constants in this function were computed
3865  *      based on theoretical maximum wire speed and thresholds were set based
3866  *      on testing data as well as attempting to minimize response time
3867  *      while increasing bulk throughput.
3868  *      this functionality is controlled by the InterruptThrottleRate module
3869  *      parameter (see igb_param.c)
3870  *      NOTE:  These calculations are only valid when operating in a single-
3871  *             queue environment.
3872  * @q_vector: pointer to q_vector
3873  * @ring_container: ring info to update the itr for
3874  **/
3875 static void igb_update_itr(struct igb_q_vector *q_vector,
3876 			   struct igb_ring_container *ring_container)
3877 {
3878 	unsigned int packets = ring_container->total_packets;
3879 	unsigned int bytes = ring_container->total_bytes;
3880 	u8 itrval = ring_container->itr;
3881 
3882 	/* no packets, exit with status unchanged */
3883 	if (packets == 0)
3884 		return;
3885 
3886 	switch (itrval) {
3887 	case lowest_latency:
3888 		/* handle TSO and jumbo frames */
3889 		if (bytes/packets > 8000)
3890 			itrval = bulk_latency;
3891 		else if ((packets < 5) && (bytes > 512))
3892 			itrval = low_latency;
3893 		break;
3894 	case low_latency:  /* 50 usec aka 20000 ints/s */
3895 		if (bytes > 10000) {
3896 			/* this if handles the TSO accounting */
3897 			if (bytes/packets > 8000) {
3898 				itrval = bulk_latency;
3899 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3900 				itrval = bulk_latency;
3901 			} else if ((packets > 35)) {
3902 				itrval = lowest_latency;
3903 			}
3904 		} else if (bytes/packets > 2000) {
3905 			itrval = bulk_latency;
3906 		} else if (packets <= 2 && bytes < 512) {
3907 			itrval = lowest_latency;
3908 		}
3909 		break;
3910 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3911 		if (bytes > 25000) {
3912 			if (packets > 35)
3913 				itrval = low_latency;
3914 		} else if (bytes < 1500) {
3915 			itrval = low_latency;
3916 		}
3917 		break;
3918 	}
3919 
3920 	/* clear work counters since we have the values we need */
3921 	ring_container->total_bytes = 0;
3922 	ring_container->total_packets = 0;
3923 
3924 	/* write updated itr to ring container */
3925 	ring_container->itr = itrval;
3926 }
3927 
3928 static void igb_set_itr(struct igb_q_vector *q_vector)
3929 {
3930 	struct igb_adapter *adapter = q_vector->adapter;
3931 	u32 new_itr = q_vector->itr_val;
3932 	u8 current_itr = 0;
3933 
3934 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3935 	if (adapter->link_speed != SPEED_1000) {
3936 		current_itr = 0;
3937 		new_itr = IGB_4K_ITR;
3938 		goto set_itr_now;
3939 	}
3940 
3941 	igb_update_itr(q_vector, &q_vector->tx);
3942 	igb_update_itr(q_vector, &q_vector->rx);
3943 
3944 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3945 
3946 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3947 	if (current_itr == lowest_latency &&
3948 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3949 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3950 		current_itr = low_latency;
3951 
3952 	switch (current_itr) {
3953 	/* counts and packets in update_itr are dependent on these numbers */
3954 	case lowest_latency:
3955 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3956 		break;
3957 	case low_latency:
3958 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3959 		break;
3960 	case bulk_latency:
3961 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3962 		break;
3963 	default:
3964 		break;
3965 	}
3966 
3967 set_itr_now:
3968 	if (new_itr != q_vector->itr_val) {
3969 		/* this attempts to bias the interrupt rate towards Bulk
3970 		 * by adding intermediate steps when interrupt rate is
3971 		 * increasing */
3972 		new_itr = new_itr > q_vector->itr_val ?
3973 		             max((new_itr * q_vector->itr_val) /
3974 		                 (new_itr + (q_vector->itr_val >> 2)),
3975 				 new_itr) :
3976 			     new_itr;
3977 		/* Don't write the value here; it resets the adapter's
3978 		 * internal timer, and causes us to delay far longer than
3979 		 * we should between interrupts.  Instead, we write the ITR
3980 		 * value at the beginning of the next interrupt so the timing
3981 		 * ends up being correct.
3982 		 */
3983 		q_vector->itr_val = new_itr;
3984 		q_vector->set_itr = 1;
3985 	}
3986 }
3987 
3988 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3989 			    u32 type_tucmd, u32 mss_l4len_idx)
3990 {
3991 	struct e1000_adv_tx_context_desc *context_desc;
3992 	u16 i = tx_ring->next_to_use;
3993 
3994 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3995 
3996 	i++;
3997 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3998 
3999 	/* set bits to identify this as an advanced context descriptor */
4000 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4001 
4002 	/* For 82575, context index must be unique per ring. */
4003 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4004 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4005 
4006 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4007 	context_desc->seqnum_seed	= 0;
4008 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4009 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4010 }
4011 
4012 static int igb_tso(struct igb_ring *tx_ring,
4013 		   struct igb_tx_buffer *first,
4014 		   u8 *hdr_len)
4015 {
4016 	struct sk_buff *skb = first->skb;
4017 	u32 vlan_macip_lens, type_tucmd;
4018 	u32 mss_l4len_idx, l4len;
4019 
4020 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4021 		return 0;
4022 
4023 	if (!skb_is_gso(skb))
4024 		return 0;
4025 
4026 	if (skb_header_cloned(skb)) {
4027 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4028 		if (err)
4029 			return err;
4030 	}
4031 
4032 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4033 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4034 
4035 	if (first->protocol == __constant_htons(ETH_P_IP)) {
4036 		struct iphdr *iph = ip_hdr(skb);
4037 		iph->tot_len = 0;
4038 		iph->check = 0;
4039 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4040 							 iph->daddr, 0,
4041 							 IPPROTO_TCP,
4042 							 0);
4043 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4044 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4045 				   IGB_TX_FLAGS_CSUM |
4046 				   IGB_TX_FLAGS_IPV4;
4047 	} else if (skb_is_gso_v6(skb)) {
4048 		ipv6_hdr(skb)->payload_len = 0;
4049 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4050 						       &ipv6_hdr(skb)->daddr,
4051 						       0, IPPROTO_TCP, 0);
4052 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4053 				   IGB_TX_FLAGS_CSUM;
4054 	}
4055 
4056 	/* compute header lengths */
4057 	l4len = tcp_hdrlen(skb);
4058 	*hdr_len = skb_transport_offset(skb) + l4len;
4059 
4060 	/* update gso size and bytecount with header size */
4061 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4062 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4063 
4064 	/* MSS L4LEN IDX */
4065 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4066 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4067 
4068 	/* VLAN MACLEN IPLEN */
4069 	vlan_macip_lens = skb_network_header_len(skb);
4070 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4071 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4072 
4073 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4074 
4075 	return 1;
4076 }
4077 
4078 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4079 {
4080 	struct sk_buff *skb = first->skb;
4081 	u32 vlan_macip_lens = 0;
4082 	u32 mss_l4len_idx = 0;
4083 	u32 type_tucmd = 0;
4084 
4085 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4086 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4087 			return;
4088 	} else {
4089 		u8 l4_hdr = 0;
4090 		switch (first->protocol) {
4091 		case __constant_htons(ETH_P_IP):
4092 			vlan_macip_lens |= skb_network_header_len(skb);
4093 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4094 			l4_hdr = ip_hdr(skb)->protocol;
4095 			break;
4096 		case __constant_htons(ETH_P_IPV6):
4097 			vlan_macip_lens |= skb_network_header_len(skb);
4098 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4099 			break;
4100 		default:
4101 			if (unlikely(net_ratelimit())) {
4102 				dev_warn(tx_ring->dev,
4103 				 "partial checksum but proto=%x!\n",
4104 				 first->protocol);
4105 			}
4106 			break;
4107 		}
4108 
4109 		switch (l4_hdr) {
4110 		case IPPROTO_TCP:
4111 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4112 			mss_l4len_idx = tcp_hdrlen(skb) <<
4113 					E1000_ADVTXD_L4LEN_SHIFT;
4114 			break;
4115 		case IPPROTO_SCTP:
4116 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4117 			mss_l4len_idx = sizeof(struct sctphdr) <<
4118 					E1000_ADVTXD_L4LEN_SHIFT;
4119 			break;
4120 		case IPPROTO_UDP:
4121 			mss_l4len_idx = sizeof(struct udphdr) <<
4122 					E1000_ADVTXD_L4LEN_SHIFT;
4123 			break;
4124 		default:
4125 			if (unlikely(net_ratelimit())) {
4126 				dev_warn(tx_ring->dev,
4127 				 "partial checksum but l4 proto=%x!\n",
4128 				 l4_hdr);
4129 			}
4130 			break;
4131 		}
4132 
4133 		/* update TX checksum flag */
4134 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4135 	}
4136 
4137 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4138 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4139 
4140 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4141 }
4142 
4143 #define IGB_SET_FLAG(_input, _flag, _result) \
4144 	((_flag <= _result) ? \
4145 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4146 	 ((u32)(_input & _flag) / (_flag / _result)))
4147 
4148 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4149 {
4150 	/* set type for advanced descriptor with frame checksum insertion */
4151 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4152 		       E1000_ADVTXD_DCMD_DEXT |
4153 		       E1000_ADVTXD_DCMD_IFCS;
4154 
4155 	/* set HW vlan bit if vlan is present */
4156 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4157 				 (E1000_ADVTXD_DCMD_VLE));
4158 
4159 	/* set segmentation bits for TSO */
4160 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4161 				 (E1000_ADVTXD_DCMD_TSE));
4162 
4163 	/* set timestamp bit if present */
4164 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4165 				 (E1000_ADVTXD_MAC_TSTAMP));
4166 
4167 	/* insert frame checksum */
4168 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4169 
4170 	return cmd_type;
4171 }
4172 
4173 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4174 				 union e1000_adv_tx_desc *tx_desc,
4175 				 u32 tx_flags, unsigned int paylen)
4176 {
4177 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4178 
4179 	/* 82575 requires a unique index per ring */
4180 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4181 		olinfo_status |= tx_ring->reg_idx << 4;
4182 
4183 	/* insert L4 checksum */
4184 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4185 				      IGB_TX_FLAGS_CSUM,
4186 				      (E1000_TXD_POPTS_TXSM << 8));
4187 
4188 	/* insert IPv4 checksum */
4189 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4190 				      IGB_TX_FLAGS_IPV4,
4191 				      (E1000_TXD_POPTS_IXSM << 8));
4192 
4193 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4194 }
4195 
4196 /*
4197  * The largest size we can write to the descriptor is 65535.  In order to
4198  * maintain a power of two alignment we have to limit ourselves to 32K.
4199  */
4200 #define IGB_MAX_TXD_PWR	15
4201 #define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4202 
4203 static void igb_tx_map(struct igb_ring *tx_ring,
4204 		       struct igb_tx_buffer *first,
4205 		       const u8 hdr_len)
4206 {
4207 	struct sk_buff *skb = first->skb;
4208 	struct igb_tx_buffer *tx_buffer;
4209 	union e1000_adv_tx_desc *tx_desc;
4210 	struct skb_frag_struct *frag;
4211 	dma_addr_t dma;
4212 	unsigned int data_len, size;
4213 	u32 tx_flags = first->tx_flags;
4214 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4215 	u16 i = tx_ring->next_to_use;
4216 
4217 	tx_desc = IGB_TX_DESC(tx_ring, i);
4218 
4219 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4220 
4221 	size = skb_headlen(skb);
4222 	data_len = skb->data_len;
4223 
4224 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4225 
4226 	tx_buffer = first;
4227 
4228 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4229 		if (dma_mapping_error(tx_ring->dev, dma))
4230 			goto dma_error;
4231 
4232 		/* record length, and DMA address */
4233 		dma_unmap_len_set(tx_buffer, len, size);
4234 		dma_unmap_addr_set(tx_buffer, dma, dma);
4235 
4236 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4237 
4238 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4239 			tx_desc->read.cmd_type_len =
4240 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4241 
4242 			i++;
4243 			tx_desc++;
4244 			if (i == tx_ring->count) {
4245 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4246 				i = 0;
4247 			}
4248 			tx_desc->read.olinfo_status = 0;
4249 
4250 			dma += IGB_MAX_DATA_PER_TXD;
4251 			size -= IGB_MAX_DATA_PER_TXD;
4252 
4253 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4254 		}
4255 
4256 		if (likely(!data_len))
4257 			break;
4258 
4259 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4260 
4261 		i++;
4262 		tx_desc++;
4263 		if (i == tx_ring->count) {
4264 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4265 			i = 0;
4266 		}
4267 		tx_desc->read.olinfo_status = 0;
4268 
4269 		size = skb_frag_size(frag);
4270 		data_len -= size;
4271 
4272 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4273 				       size, DMA_TO_DEVICE);
4274 
4275 		tx_buffer = &tx_ring->tx_buffer_info[i];
4276 	}
4277 
4278 	/* write last descriptor with RS and EOP bits */
4279 	cmd_type |= size | IGB_TXD_DCMD;
4280 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4281 
4282 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4283 
4284 	/* set the timestamp */
4285 	first->time_stamp = jiffies;
4286 
4287 	/*
4288 	 * Force memory writes to complete before letting h/w know there
4289 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4290 	 * memory model archs, such as IA-64).
4291 	 *
4292 	 * We also need this memory barrier to make certain all of the
4293 	 * status bits have been updated before next_to_watch is written.
4294 	 */
4295 	wmb();
4296 
4297 	/* set next_to_watch value indicating a packet is present */
4298 	first->next_to_watch = tx_desc;
4299 
4300 	i++;
4301 	if (i == tx_ring->count)
4302 		i = 0;
4303 
4304 	tx_ring->next_to_use = i;
4305 
4306 	writel(i, tx_ring->tail);
4307 
4308 	/* we need this if more than one processor can write to our tail
4309 	 * at a time, it syncronizes IO on IA64/Altix systems */
4310 	mmiowb();
4311 
4312 	return;
4313 
4314 dma_error:
4315 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4316 
4317 	/* clear dma mappings for failed tx_buffer_info map */
4318 	for (;;) {
4319 		tx_buffer = &tx_ring->tx_buffer_info[i];
4320 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4321 		if (tx_buffer == first)
4322 			break;
4323 		if (i == 0)
4324 			i = tx_ring->count;
4325 		i--;
4326 	}
4327 
4328 	tx_ring->next_to_use = i;
4329 }
4330 
4331 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4332 {
4333 	struct net_device *netdev = tx_ring->netdev;
4334 
4335 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4336 
4337 	/* Herbert's original patch had:
4338 	 *  smp_mb__after_netif_stop_queue();
4339 	 * but since that doesn't exist yet, just open code it. */
4340 	smp_mb();
4341 
4342 	/* We need to check again in a case another CPU has just
4343 	 * made room available. */
4344 	if (igb_desc_unused(tx_ring) < size)
4345 		return -EBUSY;
4346 
4347 	/* A reprieve! */
4348 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4349 
4350 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4351 	tx_ring->tx_stats.restart_queue2++;
4352 	u64_stats_update_end(&tx_ring->tx_syncp2);
4353 
4354 	return 0;
4355 }
4356 
4357 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4358 {
4359 	if (igb_desc_unused(tx_ring) >= size)
4360 		return 0;
4361 	return __igb_maybe_stop_tx(tx_ring, size);
4362 }
4363 
4364 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4365 				struct igb_ring *tx_ring)
4366 {
4367 	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4368 	struct igb_tx_buffer *first;
4369 	int tso;
4370 	u32 tx_flags = 0;
4371 	__be16 protocol = vlan_get_protocol(skb);
4372 	u8 hdr_len = 0;
4373 
4374 	/* need: 1 descriptor per page,
4375 	 *       + 2 desc gap to keep tail from touching head,
4376 	 *       + 1 desc for skb->data,
4377 	 *       + 1 desc for context descriptor,
4378 	 * otherwise try next time */
4379 	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4380 		/* this is a hard error */
4381 		return NETDEV_TX_BUSY;
4382 	}
4383 
4384 	/* record the location of the first descriptor for this packet */
4385 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4386 	first->skb = skb;
4387 	first->bytecount = skb->len;
4388 	first->gso_segs = 1;
4389 
4390 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4391 		     !(adapter->ptp_tx_skb))) {
4392 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4393 		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4394 
4395 		adapter->ptp_tx_skb = skb_get(skb);
4396 		if (adapter->hw.mac.type == e1000_82576)
4397 			schedule_work(&adapter->ptp_tx_work);
4398 	}
4399 
4400 	if (vlan_tx_tag_present(skb)) {
4401 		tx_flags |= IGB_TX_FLAGS_VLAN;
4402 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4403 	}
4404 
4405 	/* record initial flags and protocol */
4406 	first->tx_flags = tx_flags;
4407 	first->protocol = protocol;
4408 
4409 	tso = igb_tso(tx_ring, first, &hdr_len);
4410 	if (tso < 0)
4411 		goto out_drop;
4412 	else if (!tso)
4413 		igb_tx_csum(tx_ring, first);
4414 
4415 	igb_tx_map(tx_ring, first, hdr_len);
4416 
4417 	/* Make sure there is space in the ring for the next send. */
4418 	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4419 
4420 	return NETDEV_TX_OK;
4421 
4422 out_drop:
4423 	igb_unmap_and_free_tx_resource(tx_ring, first);
4424 
4425 	return NETDEV_TX_OK;
4426 }
4427 
4428 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4429 						    struct sk_buff *skb)
4430 {
4431 	unsigned int r_idx = skb->queue_mapping;
4432 
4433 	if (r_idx >= adapter->num_tx_queues)
4434 		r_idx = r_idx % adapter->num_tx_queues;
4435 
4436 	return adapter->tx_ring[r_idx];
4437 }
4438 
4439 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4440 				  struct net_device *netdev)
4441 {
4442 	struct igb_adapter *adapter = netdev_priv(netdev);
4443 
4444 	if (test_bit(__IGB_DOWN, &adapter->state)) {
4445 		dev_kfree_skb_any(skb);
4446 		return NETDEV_TX_OK;
4447 	}
4448 
4449 	if (skb->len <= 0) {
4450 		dev_kfree_skb_any(skb);
4451 		return NETDEV_TX_OK;
4452 	}
4453 
4454 	/*
4455 	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4456 	 * in order to meet this minimum size requirement.
4457 	 */
4458 	if (unlikely(skb->len < 17)) {
4459 		if (skb_pad(skb, 17 - skb->len))
4460 			return NETDEV_TX_OK;
4461 		skb->len = 17;
4462 		skb_set_tail_pointer(skb, 17);
4463 	}
4464 
4465 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4466 }
4467 
4468 /**
4469  * igb_tx_timeout - Respond to a Tx Hang
4470  * @netdev: network interface device structure
4471  **/
4472 static void igb_tx_timeout(struct net_device *netdev)
4473 {
4474 	struct igb_adapter *adapter = netdev_priv(netdev);
4475 	struct e1000_hw *hw = &adapter->hw;
4476 
4477 	/* Do the reset outside of interrupt context */
4478 	adapter->tx_timeout_count++;
4479 
4480 	if (hw->mac.type >= e1000_82580)
4481 		hw->dev_spec._82575.global_device_reset = true;
4482 
4483 	schedule_work(&adapter->reset_task);
4484 	wr32(E1000_EICS,
4485 	     (adapter->eims_enable_mask & ~adapter->eims_other));
4486 }
4487 
4488 static void igb_reset_task(struct work_struct *work)
4489 {
4490 	struct igb_adapter *adapter;
4491 	adapter = container_of(work, struct igb_adapter, reset_task);
4492 
4493 	igb_dump(adapter);
4494 	netdev_err(adapter->netdev, "Reset adapter\n");
4495 	igb_reinit_locked(adapter);
4496 }
4497 
4498 /**
4499  * igb_get_stats64 - Get System Network Statistics
4500  * @netdev: network interface device structure
4501  * @stats: rtnl_link_stats64 pointer
4502  *
4503  **/
4504 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4505 						 struct rtnl_link_stats64 *stats)
4506 {
4507 	struct igb_adapter *adapter = netdev_priv(netdev);
4508 
4509 	spin_lock(&adapter->stats64_lock);
4510 	igb_update_stats(adapter, &adapter->stats64);
4511 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4512 	spin_unlock(&adapter->stats64_lock);
4513 
4514 	return stats;
4515 }
4516 
4517 /**
4518  * igb_change_mtu - Change the Maximum Transfer Unit
4519  * @netdev: network interface device structure
4520  * @new_mtu: new value for maximum frame size
4521  *
4522  * Returns 0 on success, negative on failure
4523  **/
4524 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4525 {
4526 	struct igb_adapter *adapter = netdev_priv(netdev);
4527 	struct pci_dev *pdev = adapter->pdev;
4528 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4529 
4530 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4531 		dev_err(&pdev->dev, "Invalid MTU setting\n");
4532 		return -EINVAL;
4533 	}
4534 
4535 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4536 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4537 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4538 		return -EINVAL;
4539 	}
4540 
4541 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4542 		msleep(1);
4543 
4544 	/* igb_down has a dependency on max_frame_size */
4545 	adapter->max_frame_size = max_frame;
4546 
4547 	if (netif_running(netdev))
4548 		igb_down(adapter);
4549 
4550 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4551 		 netdev->mtu, new_mtu);
4552 	netdev->mtu = new_mtu;
4553 
4554 	if (netif_running(netdev))
4555 		igb_up(adapter);
4556 	else
4557 		igb_reset(adapter);
4558 
4559 	clear_bit(__IGB_RESETTING, &adapter->state);
4560 
4561 	return 0;
4562 }
4563 
4564 /**
4565  * igb_update_stats - Update the board statistics counters
4566  * @adapter: board private structure
4567  **/
4568 
4569 void igb_update_stats(struct igb_adapter *adapter,
4570 		      struct rtnl_link_stats64 *net_stats)
4571 {
4572 	struct e1000_hw *hw = &adapter->hw;
4573 	struct pci_dev *pdev = adapter->pdev;
4574 	u32 reg, mpc;
4575 	u16 phy_tmp;
4576 	int i;
4577 	u64 bytes, packets;
4578 	unsigned int start;
4579 	u64 _bytes, _packets;
4580 
4581 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4582 
4583 	/*
4584 	 * Prevent stats update while adapter is being reset, or if the pci
4585 	 * connection is down.
4586 	 */
4587 	if (adapter->link_speed == 0)
4588 		return;
4589 	if (pci_channel_offline(pdev))
4590 		return;
4591 
4592 	bytes = 0;
4593 	packets = 0;
4594 	for (i = 0; i < adapter->num_rx_queues; i++) {
4595 		u32 rqdpc = rd32(E1000_RQDPC(i));
4596 		struct igb_ring *ring = adapter->rx_ring[i];
4597 
4598 		if (rqdpc) {
4599 			ring->rx_stats.drops += rqdpc;
4600 			net_stats->rx_fifo_errors += rqdpc;
4601 		}
4602 
4603 		do {
4604 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4605 			_bytes = ring->rx_stats.bytes;
4606 			_packets = ring->rx_stats.packets;
4607 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4608 		bytes += _bytes;
4609 		packets += _packets;
4610 	}
4611 
4612 	net_stats->rx_bytes = bytes;
4613 	net_stats->rx_packets = packets;
4614 
4615 	bytes = 0;
4616 	packets = 0;
4617 	for (i = 0; i < adapter->num_tx_queues; i++) {
4618 		struct igb_ring *ring = adapter->tx_ring[i];
4619 		do {
4620 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4621 			_bytes = ring->tx_stats.bytes;
4622 			_packets = ring->tx_stats.packets;
4623 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4624 		bytes += _bytes;
4625 		packets += _packets;
4626 	}
4627 	net_stats->tx_bytes = bytes;
4628 	net_stats->tx_packets = packets;
4629 
4630 	/* read stats registers */
4631 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4632 	adapter->stats.gprc += rd32(E1000_GPRC);
4633 	adapter->stats.gorc += rd32(E1000_GORCL);
4634 	rd32(E1000_GORCH); /* clear GORCL */
4635 	adapter->stats.bprc += rd32(E1000_BPRC);
4636 	adapter->stats.mprc += rd32(E1000_MPRC);
4637 	adapter->stats.roc += rd32(E1000_ROC);
4638 
4639 	adapter->stats.prc64 += rd32(E1000_PRC64);
4640 	adapter->stats.prc127 += rd32(E1000_PRC127);
4641 	adapter->stats.prc255 += rd32(E1000_PRC255);
4642 	adapter->stats.prc511 += rd32(E1000_PRC511);
4643 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4644 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4645 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4646 	adapter->stats.sec += rd32(E1000_SEC);
4647 
4648 	mpc = rd32(E1000_MPC);
4649 	adapter->stats.mpc += mpc;
4650 	net_stats->rx_fifo_errors += mpc;
4651 	adapter->stats.scc += rd32(E1000_SCC);
4652 	adapter->stats.ecol += rd32(E1000_ECOL);
4653 	adapter->stats.mcc += rd32(E1000_MCC);
4654 	adapter->stats.latecol += rd32(E1000_LATECOL);
4655 	adapter->stats.dc += rd32(E1000_DC);
4656 	adapter->stats.rlec += rd32(E1000_RLEC);
4657 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4658 	adapter->stats.xontxc += rd32(E1000_XONTXC);
4659 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4660 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4661 	adapter->stats.fcruc += rd32(E1000_FCRUC);
4662 	adapter->stats.gptc += rd32(E1000_GPTC);
4663 	adapter->stats.gotc += rd32(E1000_GOTCL);
4664 	rd32(E1000_GOTCH); /* clear GOTCL */
4665 	adapter->stats.rnbc += rd32(E1000_RNBC);
4666 	adapter->stats.ruc += rd32(E1000_RUC);
4667 	adapter->stats.rfc += rd32(E1000_RFC);
4668 	adapter->stats.rjc += rd32(E1000_RJC);
4669 	adapter->stats.tor += rd32(E1000_TORH);
4670 	adapter->stats.tot += rd32(E1000_TOTH);
4671 	adapter->stats.tpr += rd32(E1000_TPR);
4672 
4673 	adapter->stats.ptc64 += rd32(E1000_PTC64);
4674 	adapter->stats.ptc127 += rd32(E1000_PTC127);
4675 	adapter->stats.ptc255 += rd32(E1000_PTC255);
4676 	adapter->stats.ptc511 += rd32(E1000_PTC511);
4677 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4678 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4679 
4680 	adapter->stats.mptc += rd32(E1000_MPTC);
4681 	adapter->stats.bptc += rd32(E1000_BPTC);
4682 
4683 	adapter->stats.tpt += rd32(E1000_TPT);
4684 	adapter->stats.colc += rd32(E1000_COLC);
4685 
4686 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4687 	/* read internal phy specific stats */
4688 	reg = rd32(E1000_CTRL_EXT);
4689 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4690 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4691 
4692 		/* this stat has invalid values on i210/i211 */
4693 		if ((hw->mac.type != e1000_i210) &&
4694 		    (hw->mac.type != e1000_i211))
4695 			adapter->stats.tncrs += rd32(E1000_TNCRS);
4696 	}
4697 
4698 	adapter->stats.tsctc += rd32(E1000_TSCTC);
4699 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4700 
4701 	adapter->stats.iac += rd32(E1000_IAC);
4702 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4703 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4704 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4705 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4706 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4707 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4708 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4709 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4710 
4711 	/* Fill out the OS statistics structure */
4712 	net_stats->multicast = adapter->stats.mprc;
4713 	net_stats->collisions = adapter->stats.colc;
4714 
4715 	/* Rx Errors */
4716 
4717 	/* RLEC on some newer hardware can be incorrect so build
4718 	 * our own version based on RUC and ROC */
4719 	net_stats->rx_errors = adapter->stats.rxerrc +
4720 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4721 		adapter->stats.ruc + adapter->stats.roc +
4722 		adapter->stats.cexterr;
4723 	net_stats->rx_length_errors = adapter->stats.ruc +
4724 				      adapter->stats.roc;
4725 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4726 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4727 	net_stats->rx_missed_errors = adapter->stats.mpc;
4728 
4729 	/* Tx Errors */
4730 	net_stats->tx_errors = adapter->stats.ecol +
4731 			       adapter->stats.latecol;
4732 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4733 	net_stats->tx_window_errors = adapter->stats.latecol;
4734 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4735 
4736 	/* Tx Dropped needs to be maintained elsewhere */
4737 
4738 	/* Phy Stats */
4739 	if (hw->phy.media_type == e1000_media_type_copper) {
4740 		if ((adapter->link_speed == SPEED_1000) &&
4741 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4742 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4743 			adapter->phy_stats.idle_errors += phy_tmp;
4744 		}
4745 	}
4746 
4747 	/* Management Stats */
4748 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4749 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4750 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4751 
4752 	/* OS2BMC Stats */
4753 	reg = rd32(E1000_MANC);
4754 	if (reg & E1000_MANC_EN_BMC2OS) {
4755 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4756 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4757 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4758 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4759 	}
4760 }
4761 
4762 static irqreturn_t igb_msix_other(int irq, void *data)
4763 {
4764 	struct igb_adapter *adapter = data;
4765 	struct e1000_hw *hw = &adapter->hw;
4766 	u32 icr = rd32(E1000_ICR);
4767 	/* reading ICR causes bit 31 of EICR to be cleared */
4768 
4769 	if (icr & E1000_ICR_DRSTA)
4770 		schedule_work(&adapter->reset_task);
4771 
4772 	if (icr & E1000_ICR_DOUTSYNC) {
4773 		/* HW is reporting DMA is out of sync */
4774 		adapter->stats.doosync++;
4775 		/* The DMA Out of Sync is also indication of a spoof event
4776 		 * in IOV mode. Check the Wrong VM Behavior register to
4777 		 * see if it is really a spoof event. */
4778 		igb_check_wvbr(adapter);
4779 	}
4780 
4781 	/* Check for a mailbox event */
4782 	if (icr & E1000_ICR_VMMB)
4783 		igb_msg_task(adapter);
4784 
4785 	if (icr & E1000_ICR_LSC) {
4786 		hw->mac.get_link_status = 1;
4787 		/* guard against interrupt when we're going down */
4788 		if (!test_bit(__IGB_DOWN, &adapter->state))
4789 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4790 	}
4791 
4792 	if (icr & E1000_ICR_TS) {
4793 		u32 tsicr = rd32(E1000_TSICR);
4794 
4795 		if (tsicr & E1000_TSICR_TXTS) {
4796 			/* acknowledge the interrupt */
4797 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
4798 			/* retrieve hardware timestamp */
4799 			schedule_work(&adapter->ptp_tx_work);
4800 		}
4801 	}
4802 
4803 	wr32(E1000_EIMS, adapter->eims_other);
4804 
4805 	return IRQ_HANDLED;
4806 }
4807 
4808 static void igb_write_itr(struct igb_q_vector *q_vector)
4809 {
4810 	struct igb_adapter *adapter = q_vector->adapter;
4811 	u32 itr_val = q_vector->itr_val & 0x7FFC;
4812 
4813 	if (!q_vector->set_itr)
4814 		return;
4815 
4816 	if (!itr_val)
4817 		itr_val = 0x4;
4818 
4819 	if (adapter->hw.mac.type == e1000_82575)
4820 		itr_val |= itr_val << 16;
4821 	else
4822 		itr_val |= E1000_EITR_CNT_IGNR;
4823 
4824 	writel(itr_val, q_vector->itr_register);
4825 	q_vector->set_itr = 0;
4826 }
4827 
4828 static irqreturn_t igb_msix_ring(int irq, void *data)
4829 {
4830 	struct igb_q_vector *q_vector = data;
4831 
4832 	/* Write the ITR value calculated from the previous interrupt. */
4833 	igb_write_itr(q_vector);
4834 
4835 	napi_schedule(&q_vector->napi);
4836 
4837 	return IRQ_HANDLED;
4838 }
4839 
4840 #ifdef CONFIG_IGB_DCA
4841 static void igb_update_tx_dca(struct igb_adapter *adapter,
4842 			      struct igb_ring *tx_ring,
4843 			      int cpu)
4844 {
4845 	struct e1000_hw *hw = &adapter->hw;
4846 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
4847 
4848 	if (hw->mac.type != e1000_82575)
4849 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
4850 
4851 	/*
4852 	 * We can enable relaxed ordering for reads, but not writes when
4853 	 * DCA is enabled.  This is due to a known issue in some chipsets
4854 	 * which will cause the DCA tag to be cleared.
4855 	 */
4856 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
4857 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
4858 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
4859 
4860 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
4861 }
4862 
4863 static void igb_update_rx_dca(struct igb_adapter *adapter,
4864 			      struct igb_ring *rx_ring,
4865 			      int cpu)
4866 {
4867 	struct e1000_hw *hw = &adapter->hw;
4868 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
4869 
4870 	if (hw->mac.type != e1000_82575)
4871 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
4872 
4873 	/*
4874 	 * We can enable relaxed ordering for reads, but not writes when
4875 	 * DCA is enabled.  This is due to a known issue in some chipsets
4876 	 * which will cause the DCA tag to be cleared.
4877 	 */
4878 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
4879 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
4880 
4881 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
4882 }
4883 
4884 static void igb_update_dca(struct igb_q_vector *q_vector)
4885 {
4886 	struct igb_adapter *adapter = q_vector->adapter;
4887 	int cpu = get_cpu();
4888 
4889 	if (q_vector->cpu == cpu)
4890 		goto out_no_update;
4891 
4892 	if (q_vector->tx.ring)
4893 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
4894 
4895 	if (q_vector->rx.ring)
4896 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
4897 
4898 	q_vector->cpu = cpu;
4899 out_no_update:
4900 	put_cpu();
4901 }
4902 
4903 static void igb_setup_dca(struct igb_adapter *adapter)
4904 {
4905 	struct e1000_hw *hw = &adapter->hw;
4906 	int i;
4907 
4908 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4909 		return;
4910 
4911 	/* Always use CB2 mode, difference is masked in the CB driver. */
4912 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4913 
4914 	for (i = 0; i < adapter->num_q_vectors; i++) {
4915 		adapter->q_vector[i]->cpu = -1;
4916 		igb_update_dca(adapter->q_vector[i]);
4917 	}
4918 }
4919 
4920 static int __igb_notify_dca(struct device *dev, void *data)
4921 {
4922 	struct net_device *netdev = dev_get_drvdata(dev);
4923 	struct igb_adapter *adapter = netdev_priv(netdev);
4924 	struct pci_dev *pdev = adapter->pdev;
4925 	struct e1000_hw *hw = &adapter->hw;
4926 	unsigned long event = *(unsigned long *)data;
4927 
4928 	switch (event) {
4929 	case DCA_PROVIDER_ADD:
4930 		/* if already enabled, don't do it again */
4931 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4932 			break;
4933 		if (dca_add_requester(dev) == 0) {
4934 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4935 			dev_info(&pdev->dev, "DCA enabled\n");
4936 			igb_setup_dca(adapter);
4937 			break;
4938 		}
4939 		/* Fall Through since DCA is disabled. */
4940 	case DCA_PROVIDER_REMOVE:
4941 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4942 			/* without this a class_device is left
4943 			 * hanging around in the sysfs model */
4944 			dca_remove_requester(dev);
4945 			dev_info(&pdev->dev, "DCA disabled\n");
4946 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4947 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4948 		}
4949 		break;
4950 	}
4951 
4952 	return 0;
4953 }
4954 
4955 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4956                           void *p)
4957 {
4958 	int ret_val;
4959 
4960 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4961 	                                 __igb_notify_dca);
4962 
4963 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4964 }
4965 #endif /* CONFIG_IGB_DCA */
4966 
4967 #ifdef CONFIG_PCI_IOV
4968 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4969 {
4970 	unsigned char mac_addr[ETH_ALEN];
4971 
4972 	eth_random_addr(mac_addr);
4973 	igb_set_vf_mac(adapter, vf, mac_addr);
4974 
4975 	return 0;
4976 }
4977 
4978 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4979 {
4980 	struct pci_dev *pdev = adapter->pdev;
4981 	struct pci_dev *vfdev;
4982 	int dev_id;
4983 
4984 	switch (adapter->hw.mac.type) {
4985 	case e1000_82576:
4986 		dev_id = IGB_82576_VF_DEV_ID;
4987 		break;
4988 	case e1000_i350:
4989 		dev_id = IGB_I350_VF_DEV_ID;
4990 		break;
4991 	default:
4992 		return false;
4993 	}
4994 
4995 	/* loop through all the VFs to see if we own any that are assigned */
4996 	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
4997 	while (vfdev) {
4998 		/* if we don't own it we don't care */
4999 		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5000 			/* if it is assigned we cannot release it */
5001 			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5002 				return true;
5003 		}
5004 
5005 		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5006 	}
5007 
5008 	return false;
5009 }
5010 
5011 #endif
5012 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5013 {
5014 	struct e1000_hw *hw = &adapter->hw;
5015 	u32 ping;
5016 	int i;
5017 
5018 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5019 		ping = E1000_PF_CONTROL_MSG;
5020 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5021 			ping |= E1000_VT_MSGTYPE_CTS;
5022 		igb_write_mbx(hw, &ping, 1, i);
5023 	}
5024 }
5025 
5026 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5027 {
5028 	struct e1000_hw *hw = &adapter->hw;
5029 	u32 vmolr = rd32(E1000_VMOLR(vf));
5030 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5031 
5032 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5033 	                    IGB_VF_FLAG_MULTI_PROMISC);
5034 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5035 
5036 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5037 		vmolr |= E1000_VMOLR_MPME;
5038 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5039 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5040 	} else {
5041 		/*
5042 		 * if we have hashes and we are clearing a multicast promisc
5043 		 * flag we need to write the hashes to the MTA as this step
5044 		 * was previously skipped
5045 		 */
5046 		if (vf_data->num_vf_mc_hashes > 30) {
5047 			vmolr |= E1000_VMOLR_MPME;
5048 		} else if (vf_data->num_vf_mc_hashes) {
5049 			int j;
5050 			vmolr |= E1000_VMOLR_ROMPE;
5051 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5052 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5053 		}
5054 	}
5055 
5056 	wr32(E1000_VMOLR(vf), vmolr);
5057 
5058 	/* there are flags left unprocessed, likely not supported */
5059 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5060 		return -EINVAL;
5061 
5062 	return 0;
5063 
5064 }
5065 
5066 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5067 				  u32 *msgbuf, u32 vf)
5068 {
5069 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5070 	u16 *hash_list = (u16 *)&msgbuf[1];
5071 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5072 	int i;
5073 
5074 	/* salt away the number of multicast addresses assigned
5075 	 * to this VF for later use to restore when the PF multi cast
5076 	 * list changes
5077 	 */
5078 	vf_data->num_vf_mc_hashes = n;
5079 
5080 	/* only up to 30 hash values supported */
5081 	if (n > 30)
5082 		n = 30;
5083 
5084 	/* store the hashes for later use */
5085 	for (i = 0; i < n; i++)
5086 		vf_data->vf_mc_hashes[i] = hash_list[i];
5087 
5088 	/* Flush and reset the mta with the new values */
5089 	igb_set_rx_mode(adapter->netdev);
5090 
5091 	return 0;
5092 }
5093 
5094 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5095 {
5096 	struct e1000_hw *hw = &adapter->hw;
5097 	struct vf_data_storage *vf_data;
5098 	int i, j;
5099 
5100 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5101 		u32 vmolr = rd32(E1000_VMOLR(i));
5102 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5103 
5104 		vf_data = &adapter->vf_data[i];
5105 
5106 		if ((vf_data->num_vf_mc_hashes > 30) ||
5107 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5108 			vmolr |= E1000_VMOLR_MPME;
5109 		} else if (vf_data->num_vf_mc_hashes) {
5110 			vmolr |= E1000_VMOLR_ROMPE;
5111 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5112 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5113 		}
5114 		wr32(E1000_VMOLR(i), vmolr);
5115 	}
5116 }
5117 
5118 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5119 {
5120 	struct e1000_hw *hw = &adapter->hw;
5121 	u32 pool_mask, reg, vid;
5122 	int i;
5123 
5124 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5125 
5126 	/* Find the vlan filter for this id */
5127 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5128 		reg = rd32(E1000_VLVF(i));
5129 
5130 		/* remove the vf from the pool */
5131 		reg &= ~pool_mask;
5132 
5133 		/* if pool is empty then remove entry from vfta */
5134 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5135 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5136 			reg = 0;
5137 			vid = reg & E1000_VLVF_VLANID_MASK;
5138 			igb_vfta_set(hw, vid, false);
5139 		}
5140 
5141 		wr32(E1000_VLVF(i), reg);
5142 	}
5143 
5144 	adapter->vf_data[vf].vlans_enabled = 0;
5145 }
5146 
5147 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5148 {
5149 	struct e1000_hw *hw = &adapter->hw;
5150 	u32 reg, i;
5151 
5152 	/* The vlvf table only exists on 82576 hardware and newer */
5153 	if (hw->mac.type < e1000_82576)
5154 		return -1;
5155 
5156 	/* we only need to do this if VMDq is enabled */
5157 	if (!adapter->vfs_allocated_count)
5158 		return -1;
5159 
5160 	/* Find the vlan filter for this id */
5161 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5162 		reg = rd32(E1000_VLVF(i));
5163 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5164 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5165 			break;
5166 	}
5167 
5168 	if (add) {
5169 		if (i == E1000_VLVF_ARRAY_SIZE) {
5170 			/* Did not find a matching VLAN ID entry that was
5171 			 * enabled.  Search for a free filter entry, i.e.
5172 			 * one without the enable bit set
5173 			 */
5174 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5175 				reg = rd32(E1000_VLVF(i));
5176 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5177 					break;
5178 			}
5179 		}
5180 		if (i < E1000_VLVF_ARRAY_SIZE) {
5181 			/* Found an enabled/available entry */
5182 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5183 
5184 			/* if !enabled we need to set this up in vfta */
5185 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5186 				/* add VID to filter table */
5187 				igb_vfta_set(hw, vid, true);
5188 				reg |= E1000_VLVF_VLANID_ENABLE;
5189 			}
5190 			reg &= ~E1000_VLVF_VLANID_MASK;
5191 			reg |= vid;
5192 			wr32(E1000_VLVF(i), reg);
5193 
5194 			/* do not modify RLPML for PF devices */
5195 			if (vf >= adapter->vfs_allocated_count)
5196 				return 0;
5197 
5198 			if (!adapter->vf_data[vf].vlans_enabled) {
5199 				u32 size;
5200 				reg = rd32(E1000_VMOLR(vf));
5201 				size = reg & E1000_VMOLR_RLPML_MASK;
5202 				size += 4;
5203 				reg &= ~E1000_VMOLR_RLPML_MASK;
5204 				reg |= size;
5205 				wr32(E1000_VMOLR(vf), reg);
5206 			}
5207 
5208 			adapter->vf_data[vf].vlans_enabled++;
5209 		}
5210 	} else {
5211 		if (i < E1000_VLVF_ARRAY_SIZE) {
5212 			/* remove vf from the pool */
5213 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5214 			/* if pool is empty then remove entry from vfta */
5215 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5216 				reg = 0;
5217 				igb_vfta_set(hw, vid, false);
5218 			}
5219 			wr32(E1000_VLVF(i), reg);
5220 
5221 			/* do not modify RLPML for PF devices */
5222 			if (vf >= adapter->vfs_allocated_count)
5223 				return 0;
5224 
5225 			adapter->vf_data[vf].vlans_enabled--;
5226 			if (!adapter->vf_data[vf].vlans_enabled) {
5227 				u32 size;
5228 				reg = rd32(E1000_VMOLR(vf));
5229 				size = reg & E1000_VMOLR_RLPML_MASK;
5230 				size -= 4;
5231 				reg &= ~E1000_VMOLR_RLPML_MASK;
5232 				reg |= size;
5233 				wr32(E1000_VMOLR(vf), reg);
5234 			}
5235 		}
5236 	}
5237 	return 0;
5238 }
5239 
5240 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5241 {
5242 	struct e1000_hw *hw = &adapter->hw;
5243 
5244 	if (vid)
5245 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5246 	else
5247 		wr32(E1000_VMVIR(vf), 0);
5248 }
5249 
5250 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5251 			       int vf, u16 vlan, u8 qos)
5252 {
5253 	int err = 0;
5254 	struct igb_adapter *adapter = netdev_priv(netdev);
5255 
5256 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5257 		return -EINVAL;
5258 	if (vlan || qos) {
5259 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5260 		if (err)
5261 			goto out;
5262 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5263 		igb_set_vmolr(adapter, vf, !vlan);
5264 		adapter->vf_data[vf].pf_vlan = vlan;
5265 		adapter->vf_data[vf].pf_qos = qos;
5266 		dev_info(&adapter->pdev->dev,
5267 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5268 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5269 			dev_warn(&adapter->pdev->dev,
5270 				 "The VF VLAN has been set,"
5271 				 " but the PF device is not up.\n");
5272 			dev_warn(&adapter->pdev->dev,
5273 				 "Bring the PF device up before"
5274 				 " attempting to use the VF device.\n");
5275 		}
5276 	} else {
5277 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5278 				   false, vf);
5279 		igb_set_vmvir(adapter, vlan, vf);
5280 		igb_set_vmolr(adapter, vf, true);
5281 		adapter->vf_data[vf].pf_vlan = 0;
5282 		adapter->vf_data[vf].pf_qos = 0;
5283        }
5284 out:
5285        return err;
5286 }
5287 
5288 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5289 {
5290 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5291 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5292 
5293 	return igb_vlvf_set(adapter, vid, add, vf);
5294 }
5295 
5296 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5297 {
5298 	/* clear flags - except flag that indicates PF has set the MAC */
5299 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5300 	adapter->vf_data[vf].last_nack = jiffies;
5301 
5302 	/* reset offloads to defaults */
5303 	igb_set_vmolr(adapter, vf, true);
5304 
5305 	/* reset vlans for device */
5306 	igb_clear_vf_vfta(adapter, vf);
5307 	if (adapter->vf_data[vf].pf_vlan)
5308 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5309 				    adapter->vf_data[vf].pf_vlan,
5310 				    adapter->vf_data[vf].pf_qos);
5311 	else
5312 		igb_clear_vf_vfta(adapter, vf);
5313 
5314 	/* reset multicast table array for vf */
5315 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5316 
5317 	/* Flush and reset the mta with the new values */
5318 	igb_set_rx_mode(adapter->netdev);
5319 }
5320 
5321 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5322 {
5323 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5324 
5325 	/* generate a new mac address as we were hotplug removed/added */
5326 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5327 		eth_random_addr(vf_mac);
5328 
5329 	/* process remaining reset events */
5330 	igb_vf_reset(adapter, vf);
5331 }
5332 
5333 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5334 {
5335 	struct e1000_hw *hw = &adapter->hw;
5336 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5337 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5338 	u32 reg, msgbuf[3];
5339 	u8 *addr = (u8 *)(&msgbuf[1]);
5340 
5341 	/* process all the same items cleared in a function level reset */
5342 	igb_vf_reset(adapter, vf);
5343 
5344 	/* set vf mac address */
5345 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5346 
5347 	/* enable transmit and receive for vf */
5348 	reg = rd32(E1000_VFTE);
5349 	wr32(E1000_VFTE, reg | (1 << vf));
5350 	reg = rd32(E1000_VFRE);
5351 	wr32(E1000_VFRE, reg | (1 << vf));
5352 
5353 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5354 
5355 	/* reply to reset with ack and vf mac address */
5356 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5357 	memcpy(addr, vf_mac, 6);
5358 	igb_write_mbx(hw, msgbuf, 3, vf);
5359 }
5360 
5361 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5362 {
5363 	/*
5364 	 * The VF MAC Address is stored in a packed array of bytes
5365 	 * starting at the second 32 bit word of the msg array
5366 	 */
5367 	unsigned char *addr = (char *)&msg[1];
5368 	int err = -1;
5369 
5370 	if (is_valid_ether_addr(addr))
5371 		err = igb_set_vf_mac(adapter, vf, addr);
5372 
5373 	return err;
5374 }
5375 
5376 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5377 {
5378 	struct e1000_hw *hw = &adapter->hw;
5379 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5380 	u32 msg = E1000_VT_MSGTYPE_NACK;
5381 
5382 	/* if device isn't clear to send it shouldn't be reading either */
5383 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5384 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5385 		igb_write_mbx(hw, &msg, 1, vf);
5386 		vf_data->last_nack = jiffies;
5387 	}
5388 }
5389 
5390 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5391 {
5392 	struct pci_dev *pdev = adapter->pdev;
5393 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5394 	struct e1000_hw *hw = &adapter->hw;
5395 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5396 	s32 retval;
5397 
5398 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5399 
5400 	if (retval) {
5401 		/* if receive failed revoke VF CTS stats and restart init */
5402 		dev_err(&pdev->dev, "Error receiving message from VF\n");
5403 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5404 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5405 			return;
5406 		goto out;
5407 	}
5408 
5409 	/* this is a message we already processed, do nothing */
5410 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5411 		return;
5412 
5413 	/*
5414 	 * until the vf completes a reset it should not be
5415 	 * allowed to start any configuration.
5416 	 */
5417 
5418 	if (msgbuf[0] == E1000_VF_RESET) {
5419 		igb_vf_reset_msg(adapter, vf);
5420 		return;
5421 	}
5422 
5423 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5424 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5425 			return;
5426 		retval = -1;
5427 		goto out;
5428 	}
5429 
5430 	switch ((msgbuf[0] & 0xFFFF)) {
5431 	case E1000_VF_SET_MAC_ADDR:
5432 		retval = -EINVAL;
5433 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5434 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5435 		else
5436 			dev_warn(&pdev->dev,
5437 				 "VF %d attempted to override administratively "
5438 				 "set MAC address\nReload the VF driver to "
5439 				 "resume operations\n", vf);
5440 		break;
5441 	case E1000_VF_SET_PROMISC:
5442 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5443 		break;
5444 	case E1000_VF_SET_MULTICAST:
5445 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5446 		break;
5447 	case E1000_VF_SET_LPE:
5448 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5449 		break;
5450 	case E1000_VF_SET_VLAN:
5451 		retval = -1;
5452 		if (vf_data->pf_vlan)
5453 			dev_warn(&pdev->dev,
5454 				 "VF %d attempted to override administratively "
5455 				 "set VLAN tag\nReload the VF driver to "
5456 				 "resume operations\n", vf);
5457 		else
5458 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5459 		break;
5460 	default:
5461 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5462 		retval = -1;
5463 		break;
5464 	}
5465 
5466 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5467 out:
5468 	/* notify the VF of the results of what it sent us */
5469 	if (retval)
5470 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5471 	else
5472 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5473 
5474 	igb_write_mbx(hw, msgbuf, 1, vf);
5475 }
5476 
5477 static void igb_msg_task(struct igb_adapter *adapter)
5478 {
5479 	struct e1000_hw *hw = &adapter->hw;
5480 	u32 vf;
5481 
5482 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5483 		/* process any reset requests */
5484 		if (!igb_check_for_rst(hw, vf))
5485 			igb_vf_reset_event(adapter, vf);
5486 
5487 		/* process any messages pending */
5488 		if (!igb_check_for_msg(hw, vf))
5489 			igb_rcv_msg_from_vf(adapter, vf);
5490 
5491 		/* process any acks */
5492 		if (!igb_check_for_ack(hw, vf))
5493 			igb_rcv_ack_from_vf(adapter, vf);
5494 	}
5495 }
5496 
5497 /**
5498  *  igb_set_uta - Set unicast filter table address
5499  *  @adapter: board private structure
5500  *
5501  *  The unicast table address is a register array of 32-bit registers.
5502  *  The table is meant to be used in a way similar to how the MTA is used
5503  *  however due to certain limitations in the hardware it is necessary to
5504  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5505  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5506  **/
5507 static void igb_set_uta(struct igb_adapter *adapter)
5508 {
5509 	struct e1000_hw *hw = &adapter->hw;
5510 	int i;
5511 
5512 	/* The UTA table only exists on 82576 hardware and newer */
5513 	if (hw->mac.type < e1000_82576)
5514 		return;
5515 
5516 	/* we only need to do this if VMDq is enabled */
5517 	if (!adapter->vfs_allocated_count)
5518 		return;
5519 
5520 	for (i = 0; i < hw->mac.uta_reg_count; i++)
5521 		array_wr32(E1000_UTA, i, ~0);
5522 }
5523 
5524 /**
5525  * igb_intr_msi - Interrupt Handler
5526  * @irq: interrupt number
5527  * @data: pointer to a network interface device structure
5528  **/
5529 static irqreturn_t igb_intr_msi(int irq, void *data)
5530 {
5531 	struct igb_adapter *adapter = data;
5532 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5533 	struct e1000_hw *hw = &adapter->hw;
5534 	/* read ICR disables interrupts using IAM */
5535 	u32 icr = rd32(E1000_ICR);
5536 
5537 	igb_write_itr(q_vector);
5538 
5539 	if (icr & E1000_ICR_DRSTA)
5540 		schedule_work(&adapter->reset_task);
5541 
5542 	if (icr & E1000_ICR_DOUTSYNC) {
5543 		/* HW is reporting DMA is out of sync */
5544 		adapter->stats.doosync++;
5545 	}
5546 
5547 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5548 		hw->mac.get_link_status = 1;
5549 		if (!test_bit(__IGB_DOWN, &adapter->state))
5550 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5551 	}
5552 
5553 	if (icr & E1000_ICR_TS) {
5554 		u32 tsicr = rd32(E1000_TSICR);
5555 
5556 		if (tsicr & E1000_TSICR_TXTS) {
5557 			/* acknowledge the interrupt */
5558 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5559 			/* retrieve hardware timestamp */
5560 			schedule_work(&adapter->ptp_tx_work);
5561 		}
5562 	}
5563 
5564 	napi_schedule(&q_vector->napi);
5565 
5566 	return IRQ_HANDLED;
5567 }
5568 
5569 /**
5570  * igb_intr - Legacy Interrupt Handler
5571  * @irq: interrupt number
5572  * @data: pointer to a network interface device structure
5573  **/
5574 static irqreturn_t igb_intr(int irq, void *data)
5575 {
5576 	struct igb_adapter *adapter = data;
5577 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5578 	struct e1000_hw *hw = &adapter->hw;
5579 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5580 	 * need for the IMC write */
5581 	u32 icr = rd32(E1000_ICR);
5582 
5583 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5584 	 * not set, then the adapter didn't send an interrupt */
5585 	if (!(icr & E1000_ICR_INT_ASSERTED))
5586 		return IRQ_NONE;
5587 
5588 	igb_write_itr(q_vector);
5589 
5590 	if (icr & E1000_ICR_DRSTA)
5591 		schedule_work(&adapter->reset_task);
5592 
5593 	if (icr & E1000_ICR_DOUTSYNC) {
5594 		/* HW is reporting DMA is out of sync */
5595 		adapter->stats.doosync++;
5596 	}
5597 
5598 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5599 		hw->mac.get_link_status = 1;
5600 		/* guard against interrupt when we're going down */
5601 		if (!test_bit(__IGB_DOWN, &adapter->state))
5602 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5603 	}
5604 
5605 	if (icr & E1000_ICR_TS) {
5606 		u32 tsicr = rd32(E1000_TSICR);
5607 
5608 		if (tsicr & E1000_TSICR_TXTS) {
5609 			/* acknowledge the interrupt */
5610 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5611 			/* retrieve hardware timestamp */
5612 			schedule_work(&adapter->ptp_tx_work);
5613 		}
5614 	}
5615 
5616 	napi_schedule(&q_vector->napi);
5617 
5618 	return IRQ_HANDLED;
5619 }
5620 
5621 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5622 {
5623 	struct igb_adapter *adapter = q_vector->adapter;
5624 	struct e1000_hw *hw = &adapter->hw;
5625 
5626 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5627 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5628 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5629 			igb_set_itr(q_vector);
5630 		else
5631 			igb_update_ring_itr(q_vector);
5632 	}
5633 
5634 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5635 		if (adapter->msix_entries)
5636 			wr32(E1000_EIMS, q_vector->eims_value);
5637 		else
5638 			igb_irq_enable(adapter);
5639 	}
5640 }
5641 
5642 /**
5643  * igb_poll - NAPI Rx polling callback
5644  * @napi: napi polling structure
5645  * @budget: count of how many packets we should handle
5646  **/
5647 static int igb_poll(struct napi_struct *napi, int budget)
5648 {
5649 	struct igb_q_vector *q_vector = container_of(napi,
5650 	                                             struct igb_q_vector,
5651 	                                             napi);
5652 	bool clean_complete = true;
5653 
5654 #ifdef CONFIG_IGB_DCA
5655 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5656 		igb_update_dca(q_vector);
5657 #endif
5658 	if (q_vector->tx.ring)
5659 		clean_complete = igb_clean_tx_irq(q_vector);
5660 
5661 	if (q_vector->rx.ring)
5662 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5663 
5664 	/* If all work not completed, return budget and keep polling */
5665 	if (!clean_complete)
5666 		return budget;
5667 
5668 	/* If not enough Rx work done, exit the polling mode */
5669 	napi_complete(napi);
5670 	igb_ring_irq_enable(q_vector);
5671 
5672 	return 0;
5673 }
5674 
5675 /**
5676  * igb_clean_tx_irq - Reclaim resources after transmit completes
5677  * @q_vector: pointer to q_vector containing needed info
5678  *
5679  * returns true if ring is completely cleaned
5680  **/
5681 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5682 {
5683 	struct igb_adapter *adapter = q_vector->adapter;
5684 	struct igb_ring *tx_ring = q_vector->tx.ring;
5685 	struct igb_tx_buffer *tx_buffer;
5686 	union e1000_adv_tx_desc *tx_desc;
5687 	unsigned int total_bytes = 0, total_packets = 0;
5688 	unsigned int budget = q_vector->tx.work_limit;
5689 	unsigned int i = tx_ring->next_to_clean;
5690 
5691 	if (test_bit(__IGB_DOWN, &adapter->state))
5692 		return true;
5693 
5694 	tx_buffer = &tx_ring->tx_buffer_info[i];
5695 	tx_desc = IGB_TX_DESC(tx_ring, i);
5696 	i -= tx_ring->count;
5697 
5698 	do {
5699 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5700 
5701 		/* if next_to_watch is not set then there is no work pending */
5702 		if (!eop_desc)
5703 			break;
5704 
5705 		/* prevent any other reads prior to eop_desc */
5706 		rmb();
5707 
5708 		/* if DD is not set pending work has not been completed */
5709 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5710 			break;
5711 
5712 		/* clear next_to_watch to prevent false hangs */
5713 		tx_buffer->next_to_watch = NULL;
5714 
5715 		/* update the statistics for this packet */
5716 		total_bytes += tx_buffer->bytecount;
5717 		total_packets += tx_buffer->gso_segs;
5718 
5719 		/* free the skb */
5720 		dev_kfree_skb_any(tx_buffer->skb);
5721 
5722 		/* unmap skb header data */
5723 		dma_unmap_single(tx_ring->dev,
5724 				 dma_unmap_addr(tx_buffer, dma),
5725 				 dma_unmap_len(tx_buffer, len),
5726 				 DMA_TO_DEVICE);
5727 
5728 		/* clear tx_buffer data */
5729 		tx_buffer->skb = NULL;
5730 		dma_unmap_len_set(tx_buffer, len, 0);
5731 
5732 		/* clear last DMA location and unmap remaining buffers */
5733 		while (tx_desc != eop_desc) {
5734 			tx_buffer++;
5735 			tx_desc++;
5736 			i++;
5737 			if (unlikely(!i)) {
5738 				i -= tx_ring->count;
5739 				tx_buffer = tx_ring->tx_buffer_info;
5740 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5741 			}
5742 
5743 			/* unmap any remaining paged data */
5744 			if (dma_unmap_len(tx_buffer, len)) {
5745 				dma_unmap_page(tx_ring->dev,
5746 					       dma_unmap_addr(tx_buffer, dma),
5747 					       dma_unmap_len(tx_buffer, len),
5748 					       DMA_TO_DEVICE);
5749 				dma_unmap_len_set(tx_buffer, len, 0);
5750 			}
5751 		}
5752 
5753 		/* move us one more past the eop_desc for start of next pkt */
5754 		tx_buffer++;
5755 		tx_desc++;
5756 		i++;
5757 		if (unlikely(!i)) {
5758 			i -= tx_ring->count;
5759 			tx_buffer = tx_ring->tx_buffer_info;
5760 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5761 		}
5762 
5763 		/* issue prefetch for next Tx descriptor */
5764 		prefetch(tx_desc);
5765 
5766 		/* update budget accounting */
5767 		budget--;
5768 	} while (likely(budget));
5769 
5770 	netdev_tx_completed_queue(txring_txq(tx_ring),
5771 				  total_packets, total_bytes);
5772 	i += tx_ring->count;
5773 	tx_ring->next_to_clean = i;
5774 	u64_stats_update_begin(&tx_ring->tx_syncp);
5775 	tx_ring->tx_stats.bytes += total_bytes;
5776 	tx_ring->tx_stats.packets += total_packets;
5777 	u64_stats_update_end(&tx_ring->tx_syncp);
5778 	q_vector->tx.total_bytes += total_bytes;
5779 	q_vector->tx.total_packets += total_packets;
5780 
5781 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5782 		struct e1000_hw *hw = &adapter->hw;
5783 
5784 		/* Detect a transmit hang in hardware, this serializes the
5785 		 * check with the clearing of time_stamp and movement of i */
5786 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5787 		if (tx_buffer->next_to_watch &&
5788 		    time_after(jiffies, tx_buffer->time_stamp +
5789 			       (adapter->tx_timeout_factor * HZ)) &&
5790 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5791 
5792 			/* detected Tx unit hang */
5793 			dev_err(tx_ring->dev,
5794 				"Detected Tx Unit Hang\n"
5795 				"  Tx Queue             <%d>\n"
5796 				"  TDH                  <%x>\n"
5797 				"  TDT                  <%x>\n"
5798 				"  next_to_use          <%x>\n"
5799 				"  next_to_clean        <%x>\n"
5800 				"buffer_info[next_to_clean]\n"
5801 				"  time_stamp           <%lx>\n"
5802 				"  next_to_watch        <%p>\n"
5803 				"  jiffies              <%lx>\n"
5804 				"  desc.status          <%x>\n",
5805 				tx_ring->queue_index,
5806 				rd32(E1000_TDH(tx_ring->reg_idx)),
5807 				readl(tx_ring->tail),
5808 				tx_ring->next_to_use,
5809 				tx_ring->next_to_clean,
5810 				tx_buffer->time_stamp,
5811 				tx_buffer->next_to_watch,
5812 				jiffies,
5813 				tx_buffer->next_to_watch->wb.status);
5814 			netif_stop_subqueue(tx_ring->netdev,
5815 					    tx_ring->queue_index);
5816 
5817 			/* we are about to reset, no point in enabling stuff */
5818 			return true;
5819 		}
5820 	}
5821 
5822 	if (unlikely(total_packets &&
5823 		     netif_carrier_ok(tx_ring->netdev) &&
5824 		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5825 		/* Make sure that anybody stopping the queue after this
5826 		 * sees the new next_to_clean.
5827 		 */
5828 		smp_mb();
5829 		if (__netif_subqueue_stopped(tx_ring->netdev,
5830 					     tx_ring->queue_index) &&
5831 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
5832 			netif_wake_subqueue(tx_ring->netdev,
5833 					    tx_ring->queue_index);
5834 
5835 			u64_stats_update_begin(&tx_ring->tx_syncp);
5836 			tx_ring->tx_stats.restart_queue++;
5837 			u64_stats_update_end(&tx_ring->tx_syncp);
5838 		}
5839 	}
5840 
5841 	return !!budget;
5842 }
5843 
5844 /**
5845  * igb_reuse_rx_page - page flip buffer and store it back on the ring
5846  * @rx_ring: rx descriptor ring to store buffers on
5847  * @old_buff: donor buffer to have page reused
5848  *
5849  * Synchronizes page for reuse by the adapter
5850  **/
5851 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
5852 			      struct igb_rx_buffer *old_buff)
5853 {
5854 	struct igb_rx_buffer *new_buff;
5855 	u16 nta = rx_ring->next_to_alloc;
5856 
5857 	new_buff = &rx_ring->rx_buffer_info[nta];
5858 
5859 	/* update, and store next to alloc */
5860 	nta++;
5861 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
5862 
5863 	/* transfer page from old buffer to new buffer */
5864 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
5865 
5866 	/* sync the buffer for use by the device */
5867 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
5868 					 old_buff->page_offset,
5869 					 IGB_RX_BUFSZ,
5870 					 DMA_FROM_DEVICE);
5871 }
5872 
5873 /**
5874  * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
5875  * @rx_ring: rx descriptor ring to transact packets on
5876  * @rx_buffer: buffer containing page to add
5877  * @rx_desc: descriptor containing length of buffer written by hardware
5878  * @skb: sk_buff to place the data into
5879  *
5880  * This function will add the data contained in rx_buffer->page to the skb.
5881  * This is done either through a direct copy if the data in the buffer is
5882  * less than the skb header size, otherwise it will just attach the page as
5883  * a frag to the skb.
5884  *
5885  * The function will then update the page offset if necessary and return
5886  * true if the buffer can be reused by the adapter.
5887  **/
5888 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
5889 			    struct igb_rx_buffer *rx_buffer,
5890 			    union e1000_adv_rx_desc *rx_desc,
5891 			    struct sk_buff *skb)
5892 {
5893 	struct page *page = rx_buffer->page;
5894 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
5895 
5896 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
5897 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
5898 
5899 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
5900 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
5901 			va += IGB_TS_HDR_LEN;
5902 			size -= IGB_TS_HDR_LEN;
5903 		}
5904 
5905 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
5906 
5907 		/* we can reuse buffer as-is, just make sure it is local */
5908 		if (likely(page_to_nid(page) == numa_node_id()))
5909 			return true;
5910 
5911 		/* this page cannot be reused so discard it */
5912 		put_page(page);
5913 		return false;
5914 	}
5915 
5916 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
5917 			rx_buffer->page_offset, size, IGB_RX_BUFSZ);
5918 
5919 	/* avoid re-using remote pages */
5920 	if (unlikely(page_to_nid(page) != numa_node_id()))
5921 		return false;
5922 
5923 #if (PAGE_SIZE < 8192)
5924 	/* if we are only owner of page we can reuse it */
5925 	if (unlikely(page_count(page) != 1))
5926 		return false;
5927 
5928 	/* flip page offset to other buffer */
5929 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
5930 
5931 	/*
5932 	 * since we are the only owner of the page and we need to
5933 	 * increment it, just set the value to 2 in order to avoid
5934 	 * an unnecessary locked operation
5935 	 */
5936 	atomic_set(&page->_count, 2);
5937 #else
5938 	/* move offset up to the next cache line */
5939 	rx_buffer->page_offset += SKB_DATA_ALIGN(size);
5940 
5941 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
5942 		return false;
5943 
5944 	/* bump ref count on page before it is given to the stack */
5945 	get_page(page);
5946 #endif
5947 
5948 	return true;
5949 }
5950 
5951 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
5952 					   union e1000_adv_rx_desc *rx_desc,
5953 					   struct sk_buff *skb)
5954 {
5955 	struct igb_rx_buffer *rx_buffer;
5956 	struct page *page;
5957 
5958 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
5959 
5960 	/*
5961 	 * This memory barrier is needed to keep us from reading
5962 	 * any other fields out of the rx_desc until we know the
5963 	 * RXD_STAT_DD bit is set
5964 	 */
5965 	rmb();
5966 
5967 	page = rx_buffer->page;
5968 	prefetchw(page);
5969 
5970 	if (likely(!skb)) {
5971 		void *page_addr = page_address(page) +
5972 				  rx_buffer->page_offset;
5973 
5974 		/* prefetch first cache line of first page */
5975 		prefetch(page_addr);
5976 #if L1_CACHE_BYTES < 128
5977 		prefetch(page_addr + L1_CACHE_BYTES);
5978 #endif
5979 
5980 		/* allocate a skb to store the frags */
5981 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
5982 						IGB_RX_HDR_LEN);
5983 		if (unlikely(!skb)) {
5984 			rx_ring->rx_stats.alloc_failed++;
5985 			return NULL;
5986 		}
5987 
5988 		/*
5989 		 * we will be copying header into skb->data in
5990 		 * pskb_may_pull so it is in our interest to prefetch
5991 		 * it now to avoid a possible cache miss
5992 		 */
5993 		prefetchw(skb->data);
5994 	}
5995 
5996 	/* we are reusing so sync this buffer for CPU use */
5997 	dma_sync_single_range_for_cpu(rx_ring->dev,
5998 				      rx_buffer->dma,
5999 				      rx_buffer->page_offset,
6000 				      IGB_RX_BUFSZ,
6001 				      DMA_FROM_DEVICE);
6002 
6003 	/* pull page into skb */
6004 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6005 		/* hand second half of page back to the ring */
6006 		igb_reuse_rx_page(rx_ring, rx_buffer);
6007 	} else {
6008 		/* we are not reusing the buffer so unmap it */
6009 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6010 			       PAGE_SIZE, DMA_FROM_DEVICE);
6011 	}
6012 
6013 	/* clear contents of rx_buffer */
6014 	rx_buffer->page = NULL;
6015 
6016 	return skb;
6017 }
6018 
6019 static inline void igb_rx_checksum(struct igb_ring *ring,
6020 				   union e1000_adv_rx_desc *rx_desc,
6021 				   struct sk_buff *skb)
6022 {
6023 	skb_checksum_none_assert(skb);
6024 
6025 	/* Ignore Checksum bit is set */
6026 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6027 		return;
6028 
6029 	/* Rx checksum disabled via ethtool */
6030 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6031 		return;
6032 
6033 	/* TCP/UDP checksum error bit is set */
6034 	if (igb_test_staterr(rx_desc,
6035 			     E1000_RXDEXT_STATERR_TCPE |
6036 			     E1000_RXDEXT_STATERR_IPE)) {
6037 		/*
6038 		 * work around errata with sctp packets where the TCPE aka
6039 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6040 		 * packets, (aka let the stack check the crc32c)
6041 		 */
6042 		if (!((skb->len == 60) &&
6043 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6044 			u64_stats_update_begin(&ring->rx_syncp);
6045 			ring->rx_stats.csum_err++;
6046 			u64_stats_update_end(&ring->rx_syncp);
6047 		}
6048 		/* let the stack verify checksum errors */
6049 		return;
6050 	}
6051 	/* It must be a TCP or UDP packet with a valid checksum */
6052 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6053 				      E1000_RXD_STAT_UDPCS))
6054 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6055 
6056 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6057 		le32_to_cpu(rx_desc->wb.upper.status_error));
6058 }
6059 
6060 static inline void igb_rx_hash(struct igb_ring *ring,
6061 			       union e1000_adv_rx_desc *rx_desc,
6062 			       struct sk_buff *skb)
6063 {
6064 	if (ring->netdev->features & NETIF_F_RXHASH)
6065 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6066 }
6067 
6068 /**
6069  * igb_is_non_eop - process handling of non-EOP buffers
6070  * @rx_ring: Rx ring being processed
6071  * @rx_desc: Rx descriptor for current buffer
6072  * @skb: current socket buffer containing buffer in progress
6073  *
6074  * This function updates next to clean.  If the buffer is an EOP buffer
6075  * this function exits returning false, otherwise it will place the
6076  * sk_buff in the next buffer to be chained and return true indicating
6077  * that this is in fact a non-EOP buffer.
6078  **/
6079 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6080 			   union e1000_adv_rx_desc *rx_desc)
6081 {
6082 	u32 ntc = rx_ring->next_to_clean + 1;
6083 
6084 	/* fetch, update, and store next to clean */
6085 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6086 	rx_ring->next_to_clean = ntc;
6087 
6088 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6089 
6090 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6091 		return false;
6092 
6093 	return true;
6094 }
6095 
6096 /**
6097  * igb_get_headlen - determine size of header for LRO/GRO
6098  * @data: pointer to the start of the headers
6099  * @max_len: total length of section to find headers in
6100  *
6101  * This function is meant to determine the length of headers that will
6102  * be recognized by hardware for LRO, and GRO offloads.  The main
6103  * motivation of doing this is to only perform one pull for IPv4 TCP
6104  * packets so that we can do basic things like calculating the gso_size
6105  * based on the average data per packet.
6106  **/
6107 static unsigned int igb_get_headlen(unsigned char *data,
6108 				    unsigned int max_len)
6109 {
6110 	union {
6111 		unsigned char *network;
6112 		/* l2 headers */
6113 		struct ethhdr *eth;
6114 		struct vlan_hdr *vlan;
6115 		/* l3 headers */
6116 		struct iphdr *ipv4;
6117 		struct ipv6hdr *ipv6;
6118 	} hdr;
6119 	__be16 protocol;
6120 	u8 nexthdr = 0;	/* default to not TCP */
6121 	u8 hlen;
6122 
6123 	/* this should never happen, but better safe than sorry */
6124 	if (max_len < ETH_HLEN)
6125 		return max_len;
6126 
6127 	/* initialize network frame pointer */
6128 	hdr.network = data;
6129 
6130 	/* set first protocol and move network header forward */
6131 	protocol = hdr.eth->h_proto;
6132 	hdr.network += ETH_HLEN;
6133 
6134 	/* handle any vlan tag if present */
6135 	if (protocol == __constant_htons(ETH_P_8021Q)) {
6136 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6137 			return max_len;
6138 
6139 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6140 		hdr.network += VLAN_HLEN;
6141 	}
6142 
6143 	/* handle L3 protocols */
6144 	if (protocol == __constant_htons(ETH_P_IP)) {
6145 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6146 			return max_len;
6147 
6148 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6149 		hlen = (hdr.network[0] & 0x0F) << 2;
6150 
6151 		/* verify hlen meets minimum size requirements */
6152 		if (hlen < sizeof(struct iphdr))
6153 			return hdr.network - data;
6154 
6155 		/* record next protocol if header is present */
6156 		if (!hdr.ipv4->frag_off)
6157 			nexthdr = hdr.ipv4->protocol;
6158 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6159 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6160 			return max_len;
6161 
6162 		/* record next protocol */
6163 		nexthdr = hdr.ipv6->nexthdr;
6164 		hlen = sizeof(struct ipv6hdr);
6165 	} else {
6166 		return hdr.network - data;
6167 	}
6168 
6169 	/* relocate pointer to start of L4 header */
6170 	hdr.network += hlen;
6171 
6172 	/* finally sort out TCP */
6173 	if (nexthdr == IPPROTO_TCP) {
6174 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6175 			return max_len;
6176 
6177 		/* access doff as a u8 to avoid unaligned access on ia64 */
6178 		hlen = (hdr.network[12] & 0xF0) >> 2;
6179 
6180 		/* verify hlen meets minimum size requirements */
6181 		if (hlen < sizeof(struct tcphdr))
6182 			return hdr.network - data;
6183 
6184 		hdr.network += hlen;
6185 	} else if (nexthdr == IPPROTO_UDP) {
6186 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6187 			return max_len;
6188 
6189 		hdr.network += sizeof(struct udphdr);
6190 	}
6191 
6192 	/*
6193 	 * If everything has gone correctly hdr.network should be the
6194 	 * data section of the packet and will be the end of the header.
6195 	 * If not then it probably represents the end of the last recognized
6196 	 * header.
6197 	 */
6198 	if ((hdr.network - data) < max_len)
6199 		return hdr.network - data;
6200 	else
6201 		return max_len;
6202 }
6203 
6204 /**
6205  * igb_pull_tail - igb specific version of skb_pull_tail
6206  * @rx_ring: rx descriptor ring packet is being transacted on
6207  * @rx_desc: pointer to the EOP Rx descriptor
6208  * @skb: pointer to current skb being adjusted
6209  *
6210  * This function is an igb specific version of __pskb_pull_tail.  The
6211  * main difference between this version and the original function is that
6212  * this function can make several assumptions about the state of things
6213  * that allow for significant optimizations versus the standard function.
6214  * As a result we can do things like drop a frag and maintain an accurate
6215  * truesize for the skb.
6216  */
6217 static void igb_pull_tail(struct igb_ring *rx_ring,
6218 			  union e1000_adv_rx_desc *rx_desc,
6219 			  struct sk_buff *skb)
6220 {
6221 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6222 	unsigned char *va;
6223 	unsigned int pull_len;
6224 
6225 	/*
6226 	 * it is valid to use page_address instead of kmap since we are
6227 	 * working with pages allocated out of the lomem pool per
6228 	 * alloc_page(GFP_ATOMIC)
6229 	 */
6230 	va = skb_frag_address(frag);
6231 
6232 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6233 		/* retrieve timestamp from buffer */
6234 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6235 
6236 		/* update pointers to remove timestamp header */
6237 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6238 		frag->page_offset += IGB_TS_HDR_LEN;
6239 		skb->data_len -= IGB_TS_HDR_LEN;
6240 		skb->len -= IGB_TS_HDR_LEN;
6241 
6242 		/* move va to start of packet data */
6243 		va += IGB_TS_HDR_LEN;
6244 	}
6245 
6246 	/*
6247 	 * we need the header to contain the greater of either ETH_HLEN or
6248 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6249 	 */
6250 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6251 
6252 	/* align pull length to size of long to optimize memcpy performance */
6253 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6254 
6255 	/* update all of the pointers */
6256 	skb_frag_size_sub(frag, pull_len);
6257 	frag->page_offset += pull_len;
6258 	skb->data_len -= pull_len;
6259 	skb->tail += pull_len;
6260 }
6261 
6262 /**
6263  * igb_cleanup_headers - Correct corrupted or empty headers
6264  * @rx_ring: rx descriptor ring packet is being transacted on
6265  * @rx_desc: pointer to the EOP Rx descriptor
6266  * @skb: pointer to current skb being fixed
6267  *
6268  * Address the case where we are pulling data in on pages only
6269  * and as such no data is present in the skb header.
6270  *
6271  * In addition if skb is not at least 60 bytes we need to pad it so that
6272  * it is large enough to qualify as a valid Ethernet frame.
6273  *
6274  * Returns true if an error was encountered and skb was freed.
6275  **/
6276 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6277 				union e1000_adv_rx_desc *rx_desc,
6278 				struct sk_buff *skb)
6279 {
6280 
6281 	if (unlikely((igb_test_staterr(rx_desc,
6282 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6283 		struct net_device *netdev = rx_ring->netdev;
6284 		if (!(netdev->features & NETIF_F_RXALL)) {
6285 			dev_kfree_skb_any(skb);
6286 			return true;
6287 		}
6288 	}
6289 
6290 	/* place header in linear portion of buffer */
6291 	if (skb_is_nonlinear(skb))
6292 		igb_pull_tail(rx_ring, rx_desc, skb);
6293 
6294 	/* if skb_pad returns an error the skb was freed */
6295 	if (unlikely(skb->len < 60)) {
6296 		int pad_len = 60 - skb->len;
6297 
6298 		if (skb_pad(skb, pad_len))
6299 			return true;
6300 		__skb_put(skb, pad_len);
6301 	}
6302 
6303 	return false;
6304 }
6305 
6306 /**
6307  * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6308  * @rx_ring: rx descriptor ring packet is being transacted on
6309  * @rx_desc: pointer to the EOP Rx descriptor
6310  * @skb: pointer to current skb being populated
6311  *
6312  * This function checks the ring, descriptor, and packet information in
6313  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6314  * other fields within the skb.
6315  **/
6316 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6317 				   union e1000_adv_rx_desc *rx_desc,
6318 				   struct sk_buff *skb)
6319 {
6320 	struct net_device *dev = rx_ring->netdev;
6321 
6322 	igb_rx_hash(rx_ring, rx_desc, skb);
6323 
6324 	igb_rx_checksum(rx_ring, rx_desc, skb);
6325 
6326 	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6327 
6328 	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6329 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6330 		u16 vid;
6331 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6332 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6333 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6334 		else
6335 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6336 
6337 		__vlan_hwaccel_put_tag(skb, vid);
6338 	}
6339 
6340 	skb_record_rx_queue(skb, rx_ring->queue_index);
6341 
6342 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6343 }
6344 
6345 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6346 {
6347 	struct igb_ring *rx_ring = q_vector->rx.ring;
6348 	struct sk_buff *skb = rx_ring->skb;
6349 	unsigned int total_bytes = 0, total_packets = 0;
6350 	u16 cleaned_count = igb_desc_unused(rx_ring);
6351 
6352 	do {
6353 		union e1000_adv_rx_desc *rx_desc;
6354 
6355 		/* return some buffers to hardware, one at a time is too slow */
6356 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6357 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6358 			cleaned_count = 0;
6359 		}
6360 
6361 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6362 
6363 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6364 			break;
6365 
6366 		/* retrieve a buffer from the ring */
6367 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6368 
6369 		/* exit if we failed to retrieve a buffer */
6370 		if (!skb)
6371 			break;
6372 
6373 		cleaned_count++;
6374 
6375 		/* fetch next buffer in frame if non-eop */
6376 		if (igb_is_non_eop(rx_ring, rx_desc))
6377 			continue;
6378 
6379 		/* verify the packet layout is correct */
6380 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6381 			skb = NULL;
6382 			continue;
6383 		}
6384 
6385 		/* probably a little skewed due to removing CRC */
6386 		total_bytes += skb->len;
6387 
6388 		/* populate checksum, timestamp, VLAN, and protocol */
6389 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6390 
6391 		napi_gro_receive(&q_vector->napi, skb);
6392 
6393 		/* reset skb pointer */
6394 		skb = NULL;
6395 
6396 		/* update budget accounting */
6397 		total_packets++;
6398 	} while (likely(total_packets < budget));
6399 
6400 	/* place incomplete frames back on ring for completion */
6401 	rx_ring->skb = skb;
6402 
6403 	u64_stats_update_begin(&rx_ring->rx_syncp);
6404 	rx_ring->rx_stats.packets += total_packets;
6405 	rx_ring->rx_stats.bytes += total_bytes;
6406 	u64_stats_update_end(&rx_ring->rx_syncp);
6407 	q_vector->rx.total_packets += total_packets;
6408 	q_vector->rx.total_bytes += total_bytes;
6409 
6410 	if (cleaned_count)
6411 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6412 
6413 	return (total_packets < budget);
6414 }
6415 
6416 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6417 				  struct igb_rx_buffer *bi)
6418 {
6419 	struct page *page = bi->page;
6420 	dma_addr_t dma;
6421 
6422 	/* since we are recycling buffers we should seldom need to alloc */
6423 	if (likely(page))
6424 		return true;
6425 
6426 	/* alloc new page for storage */
6427 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6428 	if (unlikely(!page)) {
6429 		rx_ring->rx_stats.alloc_failed++;
6430 		return false;
6431 	}
6432 
6433 	/* map page for use */
6434 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6435 
6436 	/*
6437 	 * if mapping failed free memory back to system since
6438 	 * there isn't much point in holding memory we can't use
6439 	 */
6440 	if (dma_mapping_error(rx_ring->dev, dma)) {
6441 		__free_page(page);
6442 
6443 		rx_ring->rx_stats.alloc_failed++;
6444 		return false;
6445 	}
6446 
6447 	bi->dma = dma;
6448 	bi->page = page;
6449 	bi->page_offset = 0;
6450 
6451 	return true;
6452 }
6453 
6454 /**
6455  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6456  * @adapter: address of board private structure
6457  **/
6458 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6459 {
6460 	union e1000_adv_rx_desc *rx_desc;
6461 	struct igb_rx_buffer *bi;
6462 	u16 i = rx_ring->next_to_use;
6463 
6464 	/* nothing to do */
6465 	if (!cleaned_count)
6466 		return;
6467 
6468 	rx_desc = IGB_RX_DESC(rx_ring, i);
6469 	bi = &rx_ring->rx_buffer_info[i];
6470 	i -= rx_ring->count;
6471 
6472 	do {
6473 		if (!igb_alloc_mapped_page(rx_ring, bi))
6474 			break;
6475 
6476 		/*
6477 		 * Refresh the desc even if buffer_addrs didn't change
6478 		 * because each write-back erases this info.
6479 		 */
6480 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6481 
6482 		rx_desc++;
6483 		bi++;
6484 		i++;
6485 		if (unlikely(!i)) {
6486 			rx_desc = IGB_RX_DESC(rx_ring, 0);
6487 			bi = rx_ring->rx_buffer_info;
6488 			i -= rx_ring->count;
6489 		}
6490 
6491 		/* clear the hdr_addr for the next_to_use descriptor */
6492 		rx_desc->read.hdr_addr = 0;
6493 
6494 		cleaned_count--;
6495 	} while (cleaned_count);
6496 
6497 	i += rx_ring->count;
6498 
6499 	if (rx_ring->next_to_use != i) {
6500 		/* record the next descriptor to use */
6501 		rx_ring->next_to_use = i;
6502 
6503 		/* update next to alloc since we have filled the ring */
6504 		rx_ring->next_to_alloc = i;
6505 
6506 		/*
6507 		 * Force memory writes to complete before letting h/w
6508 		 * know there are new descriptors to fetch.  (Only
6509 		 * applicable for weak-ordered memory model archs,
6510 		 * such as IA-64).
6511 		 */
6512 		wmb();
6513 		writel(i, rx_ring->tail);
6514 	}
6515 }
6516 
6517 /**
6518  * igb_mii_ioctl -
6519  * @netdev:
6520  * @ifreq:
6521  * @cmd:
6522  **/
6523 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6524 {
6525 	struct igb_adapter *adapter = netdev_priv(netdev);
6526 	struct mii_ioctl_data *data = if_mii(ifr);
6527 
6528 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6529 		return -EOPNOTSUPP;
6530 
6531 	switch (cmd) {
6532 	case SIOCGMIIPHY:
6533 		data->phy_id = adapter->hw.phy.addr;
6534 		break;
6535 	case SIOCGMIIREG:
6536 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6537 		                     &data->val_out))
6538 			return -EIO;
6539 		break;
6540 	case SIOCSMIIREG:
6541 	default:
6542 		return -EOPNOTSUPP;
6543 	}
6544 	return 0;
6545 }
6546 
6547 /**
6548  * igb_ioctl -
6549  * @netdev:
6550  * @ifreq:
6551  * @cmd:
6552  **/
6553 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6554 {
6555 	switch (cmd) {
6556 	case SIOCGMIIPHY:
6557 	case SIOCGMIIREG:
6558 	case SIOCSMIIREG:
6559 		return igb_mii_ioctl(netdev, ifr, cmd);
6560 	case SIOCSHWTSTAMP:
6561 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6562 	default:
6563 		return -EOPNOTSUPP;
6564 	}
6565 }
6566 
6567 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6568 {
6569 	struct igb_adapter *adapter = hw->back;
6570 
6571 	if (pcie_capability_read_word(adapter->pdev, reg, value))
6572 		return -E1000_ERR_CONFIG;
6573 
6574 	return 0;
6575 }
6576 
6577 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6578 {
6579 	struct igb_adapter *adapter = hw->back;
6580 
6581 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6582 		return -E1000_ERR_CONFIG;
6583 
6584 	return 0;
6585 }
6586 
6587 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6588 {
6589 	struct igb_adapter *adapter = netdev_priv(netdev);
6590 	struct e1000_hw *hw = &adapter->hw;
6591 	u32 ctrl, rctl;
6592 	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6593 
6594 	if (enable) {
6595 		/* enable VLAN tag insert/strip */
6596 		ctrl = rd32(E1000_CTRL);
6597 		ctrl |= E1000_CTRL_VME;
6598 		wr32(E1000_CTRL, ctrl);
6599 
6600 		/* Disable CFI check */
6601 		rctl = rd32(E1000_RCTL);
6602 		rctl &= ~E1000_RCTL_CFIEN;
6603 		wr32(E1000_RCTL, rctl);
6604 	} else {
6605 		/* disable VLAN tag insert/strip */
6606 		ctrl = rd32(E1000_CTRL);
6607 		ctrl &= ~E1000_CTRL_VME;
6608 		wr32(E1000_CTRL, ctrl);
6609 	}
6610 
6611 	igb_rlpml_set(adapter);
6612 }
6613 
6614 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6615 {
6616 	struct igb_adapter *adapter = netdev_priv(netdev);
6617 	struct e1000_hw *hw = &adapter->hw;
6618 	int pf_id = adapter->vfs_allocated_count;
6619 
6620 	/* attempt to add filter to vlvf array */
6621 	igb_vlvf_set(adapter, vid, true, pf_id);
6622 
6623 	/* add the filter since PF can receive vlans w/o entry in vlvf */
6624 	igb_vfta_set(hw, vid, true);
6625 
6626 	set_bit(vid, adapter->active_vlans);
6627 
6628 	return 0;
6629 }
6630 
6631 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6632 {
6633 	struct igb_adapter *adapter = netdev_priv(netdev);
6634 	struct e1000_hw *hw = &adapter->hw;
6635 	int pf_id = adapter->vfs_allocated_count;
6636 	s32 err;
6637 
6638 	/* remove vlan from VLVF table array */
6639 	err = igb_vlvf_set(adapter, vid, false, pf_id);
6640 
6641 	/* if vid was not present in VLVF just remove it from table */
6642 	if (err)
6643 		igb_vfta_set(hw, vid, false);
6644 
6645 	clear_bit(vid, adapter->active_vlans);
6646 
6647 	return 0;
6648 }
6649 
6650 static void igb_restore_vlan(struct igb_adapter *adapter)
6651 {
6652 	u16 vid;
6653 
6654 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6655 
6656 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6657 		igb_vlan_rx_add_vid(adapter->netdev, vid);
6658 }
6659 
6660 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6661 {
6662 	struct pci_dev *pdev = adapter->pdev;
6663 	struct e1000_mac_info *mac = &adapter->hw.mac;
6664 
6665 	mac->autoneg = 0;
6666 
6667 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6668 	 * for the switch() below to work */
6669 	if ((spd & 1) || (dplx & ~1))
6670 		goto err_inval;
6671 
6672 	/* Fiber NIC's only allow 1000 Gbps Full duplex */
6673 	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6674 	    spd != SPEED_1000 &&
6675 	    dplx != DUPLEX_FULL)
6676 		goto err_inval;
6677 
6678 	switch (spd + dplx) {
6679 	case SPEED_10 + DUPLEX_HALF:
6680 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
6681 		break;
6682 	case SPEED_10 + DUPLEX_FULL:
6683 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
6684 		break;
6685 	case SPEED_100 + DUPLEX_HALF:
6686 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
6687 		break;
6688 	case SPEED_100 + DUPLEX_FULL:
6689 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
6690 		break;
6691 	case SPEED_1000 + DUPLEX_FULL:
6692 		mac->autoneg = 1;
6693 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6694 		break;
6695 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
6696 	default:
6697 		goto err_inval;
6698 	}
6699 
6700 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6701 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
6702 
6703 	return 0;
6704 
6705 err_inval:
6706 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6707 	return -EINVAL;
6708 }
6709 
6710 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6711 			  bool runtime)
6712 {
6713 	struct net_device *netdev = pci_get_drvdata(pdev);
6714 	struct igb_adapter *adapter = netdev_priv(netdev);
6715 	struct e1000_hw *hw = &adapter->hw;
6716 	u32 ctrl, rctl, status;
6717 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6718 #ifdef CONFIG_PM
6719 	int retval = 0;
6720 #endif
6721 
6722 	netif_device_detach(netdev);
6723 
6724 	if (netif_running(netdev))
6725 		__igb_close(netdev, true);
6726 
6727 	igb_clear_interrupt_scheme(adapter);
6728 
6729 #ifdef CONFIG_PM
6730 	retval = pci_save_state(pdev);
6731 	if (retval)
6732 		return retval;
6733 #endif
6734 
6735 	status = rd32(E1000_STATUS);
6736 	if (status & E1000_STATUS_LU)
6737 		wufc &= ~E1000_WUFC_LNKC;
6738 
6739 	if (wufc) {
6740 		igb_setup_rctl(adapter);
6741 		igb_set_rx_mode(netdev);
6742 
6743 		/* turn on all-multi mode if wake on multicast is enabled */
6744 		if (wufc & E1000_WUFC_MC) {
6745 			rctl = rd32(E1000_RCTL);
6746 			rctl |= E1000_RCTL_MPE;
6747 			wr32(E1000_RCTL, rctl);
6748 		}
6749 
6750 		ctrl = rd32(E1000_CTRL);
6751 		/* advertise wake from D3Cold */
6752 		#define E1000_CTRL_ADVD3WUC 0x00100000
6753 		/* phy power management enable */
6754 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6755 		ctrl |= E1000_CTRL_ADVD3WUC;
6756 		wr32(E1000_CTRL, ctrl);
6757 
6758 		/* Allow time for pending master requests to run */
6759 		igb_disable_pcie_master(hw);
6760 
6761 		wr32(E1000_WUC, E1000_WUC_PME_EN);
6762 		wr32(E1000_WUFC, wufc);
6763 	} else {
6764 		wr32(E1000_WUC, 0);
6765 		wr32(E1000_WUFC, 0);
6766 	}
6767 
6768 	*enable_wake = wufc || adapter->en_mng_pt;
6769 	if (!*enable_wake)
6770 		igb_power_down_link(adapter);
6771 	else
6772 		igb_power_up_link(adapter);
6773 
6774 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6775 	 * would have already happened in close and is redundant. */
6776 	igb_release_hw_control(adapter);
6777 
6778 	pci_disable_device(pdev);
6779 
6780 	return 0;
6781 }
6782 
6783 #ifdef CONFIG_PM
6784 #ifdef CONFIG_PM_SLEEP
6785 static int igb_suspend(struct device *dev)
6786 {
6787 	int retval;
6788 	bool wake;
6789 	struct pci_dev *pdev = to_pci_dev(dev);
6790 
6791 	retval = __igb_shutdown(pdev, &wake, 0);
6792 	if (retval)
6793 		return retval;
6794 
6795 	if (wake) {
6796 		pci_prepare_to_sleep(pdev);
6797 	} else {
6798 		pci_wake_from_d3(pdev, false);
6799 		pci_set_power_state(pdev, PCI_D3hot);
6800 	}
6801 
6802 	return 0;
6803 }
6804 #endif /* CONFIG_PM_SLEEP */
6805 
6806 static int igb_resume(struct device *dev)
6807 {
6808 	struct pci_dev *pdev = to_pci_dev(dev);
6809 	struct net_device *netdev = pci_get_drvdata(pdev);
6810 	struct igb_adapter *adapter = netdev_priv(netdev);
6811 	struct e1000_hw *hw = &adapter->hw;
6812 	u32 err;
6813 
6814 	pci_set_power_state(pdev, PCI_D0);
6815 	pci_restore_state(pdev);
6816 	pci_save_state(pdev);
6817 
6818 	err = pci_enable_device_mem(pdev);
6819 	if (err) {
6820 		dev_err(&pdev->dev,
6821 			"igb: Cannot enable PCI device from suspend\n");
6822 		return err;
6823 	}
6824 	pci_set_master(pdev);
6825 
6826 	pci_enable_wake(pdev, PCI_D3hot, 0);
6827 	pci_enable_wake(pdev, PCI_D3cold, 0);
6828 
6829 	if (igb_init_interrupt_scheme(adapter, true)) {
6830 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6831 		return -ENOMEM;
6832 	}
6833 
6834 	igb_reset(adapter);
6835 
6836 	/* let the f/w know that the h/w is now under the control of the
6837 	 * driver. */
6838 	igb_get_hw_control(adapter);
6839 
6840 	wr32(E1000_WUS, ~0);
6841 
6842 	if (netdev->flags & IFF_UP) {
6843 		rtnl_lock();
6844 		err = __igb_open(netdev, true);
6845 		rtnl_unlock();
6846 		if (err)
6847 			return err;
6848 	}
6849 
6850 	netif_device_attach(netdev);
6851 	return 0;
6852 }
6853 
6854 #ifdef CONFIG_PM_RUNTIME
6855 static int igb_runtime_idle(struct device *dev)
6856 {
6857 	struct pci_dev *pdev = to_pci_dev(dev);
6858 	struct net_device *netdev = pci_get_drvdata(pdev);
6859 	struct igb_adapter *adapter = netdev_priv(netdev);
6860 
6861 	if (!igb_has_link(adapter))
6862 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6863 
6864 	return -EBUSY;
6865 }
6866 
6867 static int igb_runtime_suspend(struct device *dev)
6868 {
6869 	struct pci_dev *pdev = to_pci_dev(dev);
6870 	int retval;
6871 	bool wake;
6872 
6873 	retval = __igb_shutdown(pdev, &wake, 1);
6874 	if (retval)
6875 		return retval;
6876 
6877 	if (wake) {
6878 		pci_prepare_to_sleep(pdev);
6879 	} else {
6880 		pci_wake_from_d3(pdev, false);
6881 		pci_set_power_state(pdev, PCI_D3hot);
6882 	}
6883 
6884 	return 0;
6885 }
6886 
6887 static int igb_runtime_resume(struct device *dev)
6888 {
6889 	return igb_resume(dev);
6890 }
6891 #endif /* CONFIG_PM_RUNTIME */
6892 #endif
6893 
6894 static void igb_shutdown(struct pci_dev *pdev)
6895 {
6896 	bool wake;
6897 
6898 	__igb_shutdown(pdev, &wake, 0);
6899 
6900 	if (system_state == SYSTEM_POWER_OFF) {
6901 		pci_wake_from_d3(pdev, wake);
6902 		pci_set_power_state(pdev, PCI_D3hot);
6903 	}
6904 }
6905 
6906 #ifdef CONFIG_NET_POLL_CONTROLLER
6907 /*
6908  * Polling 'interrupt' - used by things like netconsole to send skbs
6909  * without having to re-enable interrupts. It's not called while
6910  * the interrupt routine is executing.
6911  */
6912 static void igb_netpoll(struct net_device *netdev)
6913 {
6914 	struct igb_adapter *adapter = netdev_priv(netdev);
6915 	struct e1000_hw *hw = &adapter->hw;
6916 	struct igb_q_vector *q_vector;
6917 	int i;
6918 
6919 	for (i = 0; i < adapter->num_q_vectors; i++) {
6920 		q_vector = adapter->q_vector[i];
6921 		if (adapter->msix_entries)
6922 			wr32(E1000_EIMC, q_vector->eims_value);
6923 		else
6924 			igb_irq_disable(adapter);
6925 		napi_schedule(&q_vector->napi);
6926 	}
6927 }
6928 #endif /* CONFIG_NET_POLL_CONTROLLER */
6929 
6930 /**
6931  * igb_io_error_detected - called when PCI error is detected
6932  * @pdev: Pointer to PCI device
6933  * @state: The current pci connection state
6934  *
6935  * This function is called after a PCI bus error affecting
6936  * this device has been detected.
6937  */
6938 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6939 					      pci_channel_state_t state)
6940 {
6941 	struct net_device *netdev = pci_get_drvdata(pdev);
6942 	struct igb_adapter *adapter = netdev_priv(netdev);
6943 
6944 	netif_device_detach(netdev);
6945 
6946 	if (state == pci_channel_io_perm_failure)
6947 		return PCI_ERS_RESULT_DISCONNECT;
6948 
6949 	if (netif_running(netdev))
6950 		igb_down(adapter);
6951 	pci_disable_device(pdev);
6952 
6953 	/* Request a slot slot reset. */
6954 	return PCI_ERS_RESULT_NEED_RESET;
6955 }
6956 
6957 /**
6958  * igb_io_slot_reset - called after the pci bus has been reset.
6959  * @pdev: Pointer to PCI device
6960  *
6961  * Restart the card from scratch, as if from a cold-boot. Implementation
6962  * resembles the first-half of the igb_resume routine.
6963  */
6964 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6965 {
6966 	struct net_device *netdev = pci_get_drvdata(pdev);
6967 	struct igb_adapter *adapter = netdev_priv(netdev);
6968 	struct e1000_hw *hw = &adapter->hw;
6969 	pci_ers_result_t result;
6970 	int err;
6971 
6972 	if (pci_enable_device_mem(pdev)) {
6973 		dev_err(&pdev->dev,
6974 			"Cannot re-enable PCI device after reset.\n");
6975 		result = PCI_ERS_RESULT_DISCONNECT;
6976 	} else {
6977 		pci_set_master(pdev);
6978 		pci_restore_state(pdev);
6979 		pci_save_state(pdev);
6980 
6981 		pci_enable_wake(pdev, PCI_D3hot, 0);
6982 		pci_enable_wake(pdev, PCI_D3cold, 0);
6983 
6984 		igb_reset(adapter);
6985 		wr32(E1000_WUS, ~0);
6986 		result = PCI_ERS_RESULT_RECOVERED;
6987 	}
6988 
6989 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
6990 	if (err) {
6991 		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6992 		        "failed 0x%0x\n", err);
6993 		/* non-fatal, continue */
6994 	}
6995 
6996 	return result;
6997 }
6998 
6999 /**
7000  * igb_io_resume - called when traffic can start flowing again.
7001  * @pdev: Pointer to PCI device
7002  *
7003  * This callback is called when the error recovery driver tells us that
7004  * its OK to resume normal operation. Implementation resembles the
7005  * second-half of the igb_resume routine.
7006  */
7007 static void igb_io_resume(struct pci_dev *pdev)
7008 {
7009 	struct net_device *netdev = pci_get_drvdata(pdev);
7010 	struct igb_adapter *adapter = netdev_priv(netdev);
7011 
7012 	if (netif_running(netdev)) {
7013 		if (igb_up(adapter)) {
7014 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7015 			return;
7016 		}
7017 	}
7018 
7019 	netif_device_attach(netdev);
7020 
7021 	/* let the f/w know that the h/w is now under the control of the
7022 	 * driver. */
7023 	igb_get_hw_control(adapter);
7024 }
7025 
7026 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7027                              u8 qsel)
7028 {
7029 	u32 rar_low, rar_high;
7030 	struct e1000_hw *hw = &adapter->hw;
7031 
7032 	/* HW expects these in little endian so we reverse the byte order
7033 	 * from network order (big endian) to little endian
7034 	 */
7035 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7036 	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7037 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7038 
7039 	/* Indicate to hardware the Address is Valid. */
7040 	rar_high |= E1000_RAH_AV;
7041 
7042 	if (hw->mac.type == e1000_82575)
7043 		rar_high |= E1000_RAH_POOL_1 * qsel;
7044 	else
7045 		rar_high |= E1000_RAH_POOL_1 << qsel;
7046 
7047 	wr32(E1000_RAL(index), rar_low);
7048 	wrfl();
7049 	wr32(E1000_RAH(index), rar_high);
7050 	wrfl();
7051 }
7052 
7053 static int igb_set_vf_mac(struct igb_adapter *adapter,
7054                           int vf, unsigned char *mac_addr)
7055 {
7056 	struct e1000_hw *hw = &adapter->hw;
7057 	/* VF MAC addresses start at end of receive addresses and moves
7058 	 * torwards the first, as a result a collision should not be possible */
7059 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7060 
7061 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7062 
7063 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7064 
7065 	return 0;
7066 }
7067 
7068 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7069 {
7070 	struct igb_adapter *adapter = netdev_priv(netdev);
7071 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7072 		return -EINVAL;
7073 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7074 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7075 	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7076 				      " change effective.");
7077 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7078 		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7079 			 " but the PF device is not up.\n");
7080 		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7081 			 " attempting to use the VF device.\n");
7082 	}
7083 	return igb_set_vf_mac(adapter, vf, mac);
7084 }
7085 
7086 static int igb_link_mbps(int internal_link_speed)
7087 {
7088 	switch (internal_link_speed) {
7089 	case SPEED_100:
7090 		return 100;
7091 	case SPEED_1000:
7092 		return 1000;
7093 	default:
7094 		return 0;
7095 	}
7096 }
7097 
7098 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7099 				  int link_speed)
7100 {
7101 	int rf_dec, rf_int;
7102 	u32 bcnrc_val;
7103 
7104 	if (tx_rate != 0) {
7105 		/* Calculate the rate factor values to set */
7106 		rf_int = link_speed / tx_rate;
7107 		rf_dec = (link_speed - (rf_int * tx_rate));
7108 		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7109 
7110 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7111 		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7112 		               E1000_RTTBCNRC_RF_INT_MASK);
7113 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7114 	} else {
7115 		bcnrc_val = 0;
7116 	}
7117 
7118 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7119 	/*
7120 	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7121 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7122 	 */
7123 	wr32(E1000_RTTBCNRM, 0x14);
7124 	wr32(E1000_RTTBCNRC, bcnrc_val);
7125 }
7126 
7127 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7128 {
7129 	int actual_link_speed, i;
7130 	bool reset_rate = false;
7131 
7132 	/* VF TX rate limit was not set or not supported */
7133 	if ((adapter->vf_rate_link_speed == 0) ||
7134 	    (adapter->hw.mac.type != e1000_82576))
7135 		return;
7136 
7137 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7138 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7139 		reset_rate = true;
7140 		adapter->vf_rate_link_speed = 0;
7141 		dev_info(&adapter->pdev->dev,
7142 		         "Link speed has been changed. VF Transmit "
7143 		         "rate is disabled\n");
7144 	}
7145 
7146 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7147 		if (reset_rate)
7148 			adapter->vf_data[i].tx_rate = 0;
7149 
7150 		igb_set_vf_rate_limit(&adapter->hw, i,
7151 		                      adapter->vf_data[i].tx_rate,
7152 		                      actual_link_speed);
7153 	}
7154 }
7155 
7156 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7157 {
7158 	struct igb_adapter *adapter = netdev_priv(netdev);
7159 	struct e1000_hw *hw = &adapter->hw;
7160 	int actual_link_speed;
7161 
7162 	if (hw->mac.type != e1000_82576)
7163 		return -EOPNOTSUPP;
7164 
7165 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7166 	if ((vf >= adapter->vfs_allocated_count) ||
7167 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7168 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7169 		return -EINVAL;
7170 
7171 	adapter->vf_rate_link_speed = actual_link_speed;
7172 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7173 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7174 
7175 	return 0;
7176 }
7177 
7178 static int igb_ndo_get_vf_config(struct net_device *netdev,
7179 				 int vf, struct ifla_vf_info *ivi)
7180 {
7181 	struct igb_adapter *adapter = netdev_priv(netdev);
7182 	if (vf >= adapter->vfs_allocated_count)
7183 		return -EINVAL;
7184 	ivi->vf = vf;
7185 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7186 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7187 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7188 	ivi->qos = adapter->vf_data[vf].pf_qos;
7189 	return 0;
7190 }
7191 
7192 static void igb_vmm_control(struct igb_adapter *adapter)
7193 {
7194 	struct e1000_hw *hw = &adapter->hw;
7195 	u32 reg;
7196 
7197 	switch (hw->mac.type) {
7198 	case e1000_82575:
7199 	case e1000_i210:
7200 	case e1000_i211:
7201 	default:
7202 		/* replication is not supported for 82575 */
7203 		return;
7204 	case e1000_82576:
7205 		/* notify HW that the MAC is adding vlan tags */
7206 		reg = rd32(E1000_DTXCTL);
7207 		reg |= E1000_DTXCTL_VLAN_ADDED;
7208 		wr32(E1000_DTXCTL, reg);
7209 	case e1000_82580:
7210 		/* enable replication vlan tag stripping */
7211 		reg = rd32(E1000_RPLOLR);
7212 		reg |= E1000_RPLOLR_STRVLAN;
7213 		wr32(E1000_RPLOLR, reg);
7214 	case e1000_i350:
7215 		/* none of the above registers are supported by i350 */
7216 		break;
7217 	}
7218 
7219 	if (adapter->vfs_allocated_count) {
7220 		igb_vmdq_set_loopback_pf(hw, true);
7221 		igb_vmdq_set_replication_pf(hw, true);
7222 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7223 						adapter->vfs_allocated_count);
7224 	} else {
7225 		igb_vmdq_set_loopback_pf(hw, false);
7226 		igb_vmdq_set_replication_pf(hw, false);
7227 	}
7228 }
7229 
7230 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7231 {
7232 	struct e1000_hw *hw = &adapter->hw;
7233 	u32 dmac_thr;
7234 	u16 hwm;
7235 
7236 	if (hw->mac.type > e1000_82580) {
7237 		if (adapter->flags & IGB_FLAG_DMAC) {
7238 			u32 reg;
7239 
7240 			/* force threshold to 0. */
7241 			wr32(E1000_DMCTXTH, 0);
7242 
7243 			/*
7244 			 * DMA Coalescing high water mark needs to be greater
7245 			 * than the Rx threshold. Set hwm to PBA - max frame
7246 			 * size in 16B units, capping it at PBA - 6KB.
7247 			 */
7248 			hwm = 64 * pba - adapter->max_frame_size / 16;
7249 			if (hwm < 64 * (pba - 6))
7250 				hwm = 64 * (pba - 6);
7251 			reg = rd32(E1000_FCRTC);
7252 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7253 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7254 				& E1000_FCRTC_RTH_COAL_MASK);
7255 			wr32(E1000_FCRTC, reg);
7256 
7257 			/*
7258 			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7259 			 * frame size, capping it at PBA - 10KB.
7260 			 */
7261 			dmac_thr = pba - adapter->max_frame_size / 512;
7262 			if (dmac_thr < pba - 10)
7263 				dmac_thr = pba - 10;
7264 			reg = rd32(E1000_DMACR);
7265 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7266 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7267 				& E1000_DMACR_DMACTHR_MASK);
7268 
7269 			/* transition to L0x or L1 if available..*/
7270 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7271 
7272 			/* watchdog timer= +-1000 usec in 32usec intervals */
7273 			reg |= (1000 >> 5);
7274 
7275 			/* Disable BMC-to-OS Watchdog Enable */
7276 			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7277 			wr32(E1000_DMACR, reg);
7278 
7279 			/*
7280 			 * no lower threshold to disable
7281 			 * coalescing(smart fifb)-UTRESH=0
7282 			 */
7283 			wr32(E1000_DMCRTRH, 0);
7284 
7285 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7286 
7287 			wr32(E1000_DMCTLX, reg);
7288 
7289 			/*
7290 			 * free space in tx packet buffer to wake from
7291 			 * DMA coal
7292 			 */
7293 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7294 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7295 
7296 			/*
7297 			 * make low power state decision controlled
7298 			 * by DMA coal
7299 			 */
7300 			reg = rd32(E1000_PCIEMISC);
7301 			reg &= ~E1000_PCIEMISC_LX_DECISION;
7302 			wr32(E1000_PCIEMISC, reg);
7303 		} /* endif adapter->dmac is not disabled */
7304 	} else if (hw->mac.type == e1000_82580) {
7305 		u32 reg = rd32(E1000_PCIEMISC);
7306 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7307 		wr32(E1000_DMACR, 0);
7308 	}
7309 }
7310 
7311 /* igb_main.c */
7312