1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/bitops.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/netdevice.h>
36 #include <linux/ipv6.h>
37 #include <linux/slab.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/net_tstamp.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if.h>
44 #include <linux/if_vlan.h>
45 #include <linux/pci.h>
46 #include <linux/pci-aspm.h>
47 #include <linux/delay.h>
48 #include <linux/interrupt.h>
49 #include <linux/ip.h>
50 #include <linux/tcp.h>
51 #include <linux/sctp.h>
52 #include <linux/if_ether.h>
53 #include <linux/aer.h>
54 #include <linux/prefetch.h>
55 #include <linux/pm_runtime.h>
56 #ifdef CONFIG_IGB_DCA
57 #include <linux/dca.h>
58 #endif
59 #include <linux/i2c.h>
60 #include "igb.h"
61 
62 #define MAJ 5
63 #define MIN 0
64 #define BUILD 5
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70 				"Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] =
72 				"Copyright (c) 2007-2014 Intel Corporation.";
73 
74 static const struct e1000_info *igb_info_tbl[] = {
75 	[board_82575] = &e1000_82575_info,
76 };
77 
78 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114 	/* required last entry */
115 	{0, }
116 };
117 
118 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119 
120 void igb_reset(struct igb_adapter *);
121 static int igb_setup_all_tx_resources(struct igb_adapter *);
122 static int igb_setup_all_rx_resources(struct igb_adapter *);
123 static void igb_free_all_tx_resources(struct igb_adapter *);
124 static void igb_free_all_rx_resources(struct igb_adapter *);
125 static void igb_setup_mrqc(struct igb_adapter *);
126 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127 static void igb_remove(struct pci_dev *pdev);
128 static int igb_sw_init(struct igb_adapter *);
129 static int igb_open(struct net_device *);
130 static int igb_close(struct net_device *);
131 static void igb_configure(struct igb_adapter *);
132 static void igb_configure_tx(struct igb_adapter *);
133 static void igb_configure_rx(struct igb_adapter *);
134 static void igb_clean_all_tx_rings(struct igb_adapter *);
135 static void igb_clean_all_rx_rings(struct igb_adapter *);
136 static void igb_clean_tx_ring(struct igb_ring *);
137 static void igb_clean_rx_ring(struct igb_ring *);
138 static void igb_set_rx_mode(struct net_device *);
139 static void igb_update_phy_info(unsigned long);
140 static void igb_watchdog(unsigned long);
141 static void igb_watchdog_task(struct work_struct *);
142 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144 						 struct rtnl_link_stats64 *stats);
145 static int igb_change_mtu(struct net_device *, int);
146 static int igb_set_mac(struct net_device *, void *);
147 static void igb_set_uta(struct igb_adapter *adapter);
148 static irqreturn_t igb_intr(int irq, void *);
149 static irqreturn_t igb_intr_msi(int irq, void *);
150 static irqreturn_t igb_msix_other(int irq, void *);
151 static irqreturn_t igb_msix_ring(int irq, void *);
152 #ifdef CONFIG_IGB_DCA
153 static void igb_update_dca(struct igb_q_vector *);
154 static void igb_setup_dca(struct igb_adapter *);
155 #endif /* CONFIG_IGB_DCA */
156 static int igb_poll(struct napi_struct *, int);
157 static bool igb_clean_tx_irq(struct igb_q_vector *);
158 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160 static void igb_tx_timeout(struct net_device *);
161 static void igb_reset_task(struct work_struct *);
162 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165 static void igb_restore_vlan(struct igb_adapter *);
166 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167 static void igb_ping_all_vfs(struct igb_adapter *);
168 static void igb_msg_task(struct igb_adapter *);
169 static void igb_vmm_control(struct igb_adapter *);
170 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174 			       int vf, u16 vlan, u8 qos);
175 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177 				   bool setting);
178 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179 				 struct ifla_vf_info *ivi);
180 static void igb_check_vf_rate_limit(struct igb_adapter *);
181 
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 #endif
186 
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 			igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 	.notifier_call	= igb_notify_dca,
209 	.next		= NULL,
210 	.priority	= 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221                  "per physical function");
222 #endif /* CONFIG_PCI_IOV */
223 
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225 		     pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228 
229 static const struct pci_error_handlers igb_err_handler = {
230 	.error_detected = igb_io_error_detected,
231 	.slot_reset = igb_io_slot_reset,
232 	.resume = igb_io_resume,
233 };
234 
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236 
237 static struct pci_driver igb_driver = {
238 	.name     = igb_driver_name,
239 	.id_table = igb_pci_tbl,
240 	.probe    = igb_probe,
241 	.remove   = igb_remove,
242 #ifdef CONFIG_PM
243 	.driver.pm = &igb_pm_ops,
244 #endif
245 	.shutdown = igb_shutdown,
246 	.sriov_configure = igb_pci_sriov_configure,
247 	.err_handler = &igb_err_handler
248 };
249 
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254 
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259 
260 struct igb_reg_info {
261 	u32 ofs;
262 	char *name;
263 };
264 
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266 
267 	/* General Registers */
268 	{E1000_CTRL, "CTRL"},
269 	{E1000_STATUS, "STATUS"},
270 	{E1000_CTRL_EXT, "CTRL_EXT"},
271 
272 	/* Interrupt Registers */
273 	{E1000_ICR, "ICR"},
274 
275 	/* RX Registers */
276 	{E1000_RCTL, "RCTL"},
277 	{E1000_RDLEN(0), "RDLEN"},
278 	{E1000_RDH(0), "RDH"},
279 	{E1000_RDT(0), "RDT"},
280 	{E1000_RXDCTL(0), "RXDCTL"},
281 	{E1000_RDBAL(0), "RDBAL"},
282 	{E1000_RDBAH(0), "RDBAH"},
283 
284 	/* TX Registers */
285 	{E1000_TCTL, "TCTL"},
286 	{E1000_TDBAL(0), "TDBAL"},
287 	{E1000_TDBAH(0), "TDBAH"},
288 	{E1000_TDLEN(0), "TDLEN"},
289 	{E1000_TDH(0), "TDH"},
290 	{E1000_TDT(0), "TDT"},
291 	{E1000_TXDCTL(0), "TXDCTL"},
292 	{E1000_TDFH, "TDFH"},
293 	{E1000_TDFT, "TDFT"},
294 	{E1000_TDFHS, "TDFHS"},
295 	{E1000_TDFPC, "TDFPC"},
296 
297 	/* List Terminator */
298 	{}
299 };
300 
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304 	int n = 0;
305 	char rname[16];
306 	u32 regs[8];
307 
308 	switch (reginfo->ofs) {
309 	case E1000_RDLEN(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDLEN(n));
312 		break;
313 	case E1000_RDH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDH(n));
316 		break;
317 	case E1000_RDT(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RDT(n));
320 		break;
321 	case E1000_RXDCTL(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_RXDCTL(n));
324 		break;
325 	case E1000_RDBAL(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_RDBAL(n));
328 		break;
329 	case E1000_RDBAH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_RDBAH(n));
332 		break;
333 	case E1000_TDBAL(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_RDBAL(n));
336 		break;
337 	case E1000_TDBAH(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TDBAH(n));
340 		break;
341 	case E1000_TDLEN(0):
342 		for (n = 0; n < 4; n++)
343 			regs[n] = rd32(E1000_TDLEN(n));
344 		break;
345 	case E1000_TDH(0):
346 		for (n = 0; n < 4; n++)
347 			regs[n] = rd32(E1000_TDH(n));
348 		break;
349 	case E1000_TDT(0):
350 		for (n = 0; n < 4; n++)
351 			regs[n] = rd32(E1000_TDT(n));
352 		break;
353 	case E1000_TXDCTL(0):
354 		for (n = 0; n < 4; n++)
355 			regs[n] = rd32(E1000_TXDCTL(n));
356 		break;
357 	default:
358 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 		return;
360 	}
361 
362 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364 		regs[2], regs[3]);
365 }
366 
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370 	struct net_device *netdev = adapter->netdev;
371 	struct e1000_hw *hw = &adapter->hw;
372 	struct igb_reg_info *reginfo;
373 	struct igb_ring *tx_ring;
374 	union e1000_adv_tx_desc *tx_desc;
375 	struct my_u0 { u64 a; u64 b; } *u0;
376 	struct igb_ring *rx_ring;
377 	union e1000_adv_rx_desc *rx_desc;
378 	u32 staterr;
379 	u16 i, n;
380 
381 	if (!netif_msg_hw(adapter))
382 		return;
383 
384 	/* Print netdevice Info */
385 	if (netdev) {
386 		dev_info(&adapter->pdev->dev, "Net device Info\n");
387 		pr_info("Device Name     state            trans_start      "
388 			"last_rx\n");
389 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390 			netdev->state, netdev->trans_start, netdev->last_rx);
391 	}
392 
393 	/* Print Registers */
394 	dev_info(&adapter->pdev->dev, "Register Dump\n");
395 	pr_info(" Register Name   Value\n");
396 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397 	     reginfo->name; reginfo++) {
398 		igb_regdump(hw, reginfo);
399 	}
400 
401 	/* Print TX Ring Summary */
402 	if (!netdev || !netif_running(netdev))
403 		goto exit;
404 
405 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407 	for (n = 0; n < adapter->num_tx_queues; n++) {
408 		struct igb_tx_buffer *buffer_info;
409 		tx_ring = adapter->tx_ring[n];
410 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413 			(u64)dma_unmap_addr(buffer_info, dma),
414 			dma_unmap_len(buffer_info, len),
415 			buffer_info->next_to_watch,
416 			(u64)buffer_info->time_stamp);
417 	}
418 
419 	/* Print TX Rings */
420 	if (!netif_msg_tx_done(adapter))
421 		goto rx_ring_summary;
422 
423 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424 
425 	/* Transmit Descriptor Formats
426 	 *
427 	 * Advanced Transmit Descriptor
428 	 *   +--------------------------------------------------------------+
429 	 * 0 |         Buffer Address [63:0]                                |
430 	 *   +--------------------------------------------------------------+
431 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
432 	 *   +--------------------------------------------------------------+
433 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
434 	 */
435 
436 	for (n = 0; n < adapter->num_tx_queues; n++) {
437 		tx_ring = adapter->tx_ring[n];
438 		pr_info("------------------------------------\n");
439 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440 		pr_info("------------------------------------\n");
441 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
442 			"[bi->dma       ] leng  ntw timestamp        "
443 			"bi->skb\n");
444 
445 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446 			const char *next_desc;
447 			struct igb_tx_buffer *buffer_info;
448 			tx_desc = IGB_TX_DESC(tx_ring, i);
449 			buffer_info = &tx_ring->tx_buffer_info[i];
450 			u0 = (struct my_u0 *)tx_desc;
451 			if (i == tx_ring->next_to_use &&
452 			    i == tx_ring->next_to_clean)
453 				next_desc = " NTC/U";
454 			else if (i == tx_ring->next_to_use)
455 				next_desc = " NTU";
456 			else if (i == tx_ring->next_to_clean)
457 				next_desc = " NTC";
458 			else
459 				next_desc = "";
460 
461 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
462 				" %04X  %p %016llX %p%s\n", i,
463 				le64_to_cpu(u0->a),
464 				le64_to_cpu(u0->b),
465 				(u64)dma_unmap_addr(buffer_info, dma),
466 				dma_unmap_len(buffer_info, len),
467 				buffer_info->next_to_watch,
468 				(u64)buffer_info->time_stamp,
469 				buffer_info->skb, next_desc);
470 
471 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472 				print_hex_dump(KERN_INFO, "",
473 					DUMP_PREFIX_ADDRESS,
474 					16, 1, buffer_info->skb->data,
475 					dma_unmap_len(buffer_info, len),
476 					true);
477 		}
478 	}
479 
480 	/* Print RX Rings Summary */
481 rx_ring_summary:
482 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483 	pr_info("Queue [NTU] [NTC]\n");
484 	for (n = 0; n < adapter->num_rx_queues; n++) {
485 		rx_ring = adapter->rx_ring[n];
486 		pr_info(" %5d %5X %5X\n",
487 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488 	}
489 
490 	/* Print RX Rings */
491 	if (!netif_msg_rx_status(adapter))
492 		goto exit;
493 
494 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495 
496 	/* Advanced Receive Descriptor (Read) Format
497 	 *    63                                           1        0
498 	 *    +-----------------------------------------------------+
499 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
500 	 *    +----------------------------------------------+------+
501 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
502 	 *    +-----------------------------------------------------+
503 	 *
504 	 *
505 	 * Advanced Receive Descriptor (Write-Back) Format
506 	 *
507 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
508 	 *   +------------------------------------------------------+
509 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
510 	 *   | Checksum   Ident  |   |           |    | Type | Type |
511 	 *   +------------------------------------------------------+
512 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513 	 *   +------------------------------------------------------+
514 	 *   63       48 47    32 31            20 19               0
515 	 */
516 
517 	for (n = 0; n < adapter->num_rx_queues; n++) {
518 		rx_ring = adapter->rx_ring[n];
519 		pr_info("------------------------------------\n");
520 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521 		pr_info("------------------------------------\n");
522 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
523 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
524 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526 
527 		for (i = 0; i < rx_ring->count; i++) {
528 			const char *next_desc;
529 			struct igb_rx_buffer *buffer_info;
530 			buffer_info = &rx_ring->rx_buffer_info[i];
531 			rx_desc = IGB_RX_DESC(rx_ring, i);
532 			u0 = (struct my_u0 *)rx_desc;
533 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534 
535 			if (i == rx_ring->next_to_use)
536 				next_desc = " NTU";
537 			else if (i == rx_ring->next_to_clean)
538 				next_desc = " NTC";
539 			else
540 				next_desc = "";
541 
542 			if (staterr & E1000_RXD_STAT_DD) {
543 				/* Descriptor Done */
544 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
545 					"RWB", i,
546 					le64_to_cpu(u0->a),
547 					le64_to_cpu(u0->b),
548 					next_desc);
549 			} else {
550 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
551 					"R  ", i,
552 					le64_to_cpu(u0->a),
553 					le64_to_cpu(u0->b),
554 					(u64)buffer_info->dma,
555 					next_desc);
556 
557 				if (netif_msg_pktdata(adapter) &&
558 				    buffer_info->dma && buffer_info->page) {
559 					print_hex_dump(KERN_INFO, "",
560 					  DUMP_PREFIX_ADDRESS,
561 					  16, 1,
562 					  page_address(buffer_info->page) +
563 						      buffer_info->page_offset,
564 					  IGB_RX_BUFSZ, true);
565 				}
566 			}
567 		}
568 	}
569 
570 exit:
571 	return;
572 }
573 
574 /**
575  *  igb_get_i2c_data - Reads the I2C SDA data bit
576  *  @hw: pointer to hardware structure
577  *  @i2cctl: Current value of I2CCTL register
578  *
579  *  Returns the I2C data bit value
580  **/
581 static int igb_get_i2c_data(void *data)
582 {
583 	struct igb_adapter *adapter = (struct igb_adapter *)data;
584 	struct e1000_hw *hw = &adapter->hw;
585 	s32 i2cctl = rd32(E1000_I2CPARAMS);
586 
587 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588 }
589 
590 /**
591  *  igb_set_i2c_data - Sets the I2C data bit
592  *  @data: pointer to hardware structure
593  *  @state: I2C data value (0 or 1) to set
594  *
595  *  Sets the I2C data bit
596  **/
597 static void igb_set_i2c_data(void *data, int state)
598 {
599 	struct igb_adapter *adapter = (struct igb_adapter *)data;
600 	struct e1000_hw *hw = &adapter->hw;
601 	s32 i2cctl = rd32(E1000_I2CPARAMS);
602 
603 	if (state)
604 		i2cctl |= E1000_I2C_DATA_OUT;
605 	else
606 		i2cctl &= ~E1000_I2C_DATA_OUT;
607 
608 	i2cctl &= ~E1000_I2C_DATA_OE_N;
609 	i2cctl |= E1000_I2C_CLK_OE_N;
610 	wr32(E1000_I2CPARAMS, i2cctl);
611 	wrfl();
612 
613 }
614 
615 /**
616  *  igb_set_i2c_clk - Sets the I2C SCL clock
617  *  @data: pointer to hardware structure
618  *  @state: state to set clock
619  *
620  *  Sets the I2C clock line to state
621  **/
622 static void igb_set_i2c_clk(void *data, int state)
623 {
624 	struct igb_adapter *adapter = (struct igb_adapter *)data;
625 	struct e1000_hw *hw = &adapter->hw;
626 	s32 i2cctl = rd32(E1000_I2CPARAMS);
627 
628 	if (state) {
629 		i2cctl |= E1000_I2C_CLK_OUT;
630 		i2cctl &= ~E1000_I2C_CLK_OE_N;
631 	} else {
632 		i2cctl &= ~E1000_I2C_CLK_OUT;
633 		i2cctl &= ~E1000_I2C_CLK_OE_N;
634 	}
635 	wr32(E1000_I2CPARAMS, i2cctl);
636 	wrfl();
637 }
638 
639 /**
640  *  igb_get_i2c_clk - Gets the I2C SCL clock state
641  *  @data: pointer to hardware structure
642  *
643  *  Gets the I2C clock state
644  **/
645 static int igb_get_i2c_clk(void *data)
646 {
647 	struct igb_adapter *adapter = (struct igb_adapter *)data;
648 	struct e1000_hw *hw = &adapter->hw;
649 	s32 i2cctl = rd32(E1000_I2CPARAMS);
650 
651 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652 }
653 
654 static const struct i2c_algo_bit_data igb_i2c_algo = {
655 	.setsda		= igb_set_i2c_data,
656 	.setscl		= igb_set_i2c_clk,
657 	.getsda		= igb_get_i2c_data,
658 	.getscl		= igb_get_i2c_clk,
659 	.udelay		= 5,
660 	.timeout	= 20,
661 };
662 
663 /**
664  *  igb_get_hw_dev - return device
665  *  @hw: pointer to hardware structure
666  *
667  *  used by hardware layer to print debugging information
668  **/
669 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 {
671 	struct igb_adapter *adapter = hw->back;
672 	return adapter->netdev;
673 }
674 
675 /**
676  *  igb_init_module - Driver Registration Routine
677  *
678  *  igb_init_module is the first routine called when the driver is
679  *  loaded. All it does is register with the PCI subsystem.
680  **/
681 static int __init igb_init_module(void)
682 {
683 	int ret;
684 	pr_info("%s - version %s\n",
685 	       igb_driver_string, igb_driver_version);
686 
687 	pr_info("%s\n", igb_copyright);
688 
689 #ifdef CONFIG_IGB_DCA
690 	dca_register_notify(&dca_notifier);
691 #endif
692 	ret = pci_register_driver(&igb_driver);
693 	return ret;
694 }
695 
696 module_init(igb_init_module);
697 
698 /**
699  *  igb_exit_module - Driver Exit Cleanup Routine
700  *
701  *  igb_exit_module is called just before the driver is removed
702  *  from memory.
703  **/
704 static void __exit igb_exit_module(void)
705 {
706 #ifdef CONFIG_IGB_DCA
707 	dca_unregister_notify(&dca_notifier);
708 #endif
709 	pci_unregister_driver(&igb_driver);
710 }
711 
712 module_exit(igb_exit_module);
713 
714 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715 /**
716  *  igb_cache_ring_register - Descriptor ring to register mapping
717  *  @adapter: board private structure to initialize
718  *
719  *  Once we know the feature-set enabled for the device, we'll cache
720  *  the register offset the descriptor ring is assigned to.
721  **/
722 static void igb_cache_ring_register(struct igb_adapter *adapter)
723 {
724 	int i = 0, j = 0;
725 	u32 rbase_offset = adapter->vfs_allocated_count;
726 
727 	switch (adapter->hw.mac.type) {
728 	case e1000_82576:
729 		/* The queues are allocated for virtualization such that VF 0
730 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731 		 * In order to avoid collision we start at the first free queue
732 		 * and continue consuming queues in the same sequence
733 		 */
734 		if (adapter->vfs_allocated_count) {
735 			for (; i < adapter->rss_queues; i++)
736 				adapter->rx_ring[i]->reg_idx = rbase_offset +
737 							       Q_IDX_82576(i);
738 		}
739 	case e1000_82575:
740 	case e1000_82580:
741 	case e1000_i350:
742 	case e1000_i354:
743 	case e1000_i210:
744 	case e1000_i211:
745 	default:
746 		for (; i < adapter->num_rx_queues; i++)
747 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748 		for (; j < adapter->num_tx_queues; j++)
749 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750 		break;
751 	}
752 }
753 
754 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
755 {
756 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
757 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
758 	u32 value = 0;
759 
760 	if (E1000_REMOVED(hw_addr))
761 		return ~value;
762 
763 	value = readl(&hw_addr[reg]);
764 
765 	/* reads should not return all F's */
766 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
767 		struct net_device *netdev = igb->netdev;
768 		hw->hw_addr = NULL;
769 		netif_device_detach(netdev);
770 		netdev_err(netdev, "PCIe link lost, device now detached\n");
771 	}
772 
773 	return value;
774 }
775 
776 /**
777  *  igb_write_ivar - configure ivar for given MSI-X vector
778  *  @hw: pointer to the HW structure
779  *  @msix_vector: vector number we are allocating to a given ring
780  *  @index: row index of IVAR register to write within IVAR table
781  *  @offset: column offset of in IVAR, should be multiple of 8
782  *
783  *  This function is intended to handle the writing of the IVAR register
784  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
785  *  each containing an cause allocation for an Rx and Tx ring, and a
786  *  variable number of rows depending on the number of queues supported.
787  **/
788 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
789 			   int index, int offset)
790 {
791 	u32 ivar = array_rd32(E1000_IVAR0, index);
792 
793 	/* clear any bits that are currently set */
794 	ivar &= ~((u32)0xFF << offset);
795 
796 	/* write vector and valid bit */
797 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
798 
799 	array_wr32(E1000_IVAR0, index, ivar);
800 }
801 
802 #define IGB_N0_QUEUE -1
803 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
804 {
805 	struct igb_adapter *adapter = q_vector->adapter;
806 	struct e1000_hw *hw = &adapter->hw;
807 	int rx_queue = IGB_N0_QUEUE;
808 	int tx_queue = IGB_N0_QUEUE;
809 	u32 msixbm = 0;
810 
811 	if (q_vector->rx.ring)
812 		rx_queue = q_vector->rx.ring->reg_idx;
813 	if (q_vector->tx.ring)
814 		tx_queue = q_vector->tx.ring->reg_idx;
815 
816 	switch (hw->mac.type) {
817 	case e1000_82575:
818 		/* The 82575 assigns vectors using a bitmask, which matches the
819 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
820 		 * or more queues to a vector, we write the appropriate bits
821 		 * into the MSIXBM register for that vector.
822 		 */
823 		if (rx_queue > IGB_N0_QUEUE)
824 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
825 		if (tx_queue > IGB_N0_QUEUE)
826 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
827 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
828 			msixbm |= E1000_EIMS_OTHER;
829 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
830 		q_vector->eims_value = msixbm;
831 		break;
832 	case e1000_82576:
833 		/* 82576 uses a table that essentially consists of 2 columns
834 		 * with 8 rows.  The ordering is column-major so we use the
835 		 * lower 3 bits as the row index, and the 4th bit as the
836 		 * column offset.
837 		 */
838 		if (rx_queue > IGB_N0_QUEUE)
839 			igb_write_ivar(hw, msix_vector,
840 				       rx_queue & 0x7,
841 				       (rx_queue & 0x8) << 1);
842 		if (tx_queue > IGB_N0_QUEUE)
843 			igb_write_ivar(hw, msix_vector,
844 				       tx_queue & 0x7,
845 				       ((tx_queue & 0x8) << 1) + 8);
846 		q_vector->eims_value = 1 << msix_vector;
847 		break;
848 	case e1000_82580:
849 	case e1000_i350:
850 	case e1000_i354:
851 	case e1000_i210:
852 	case e1000_i211:
853 		/* On 82580 and newer adapters the scheme is similar to 82576
854 		 * however instead of ordering column-major we have things
855 		 * ordered row-major.  So we traverse the table by using
856 		 * bit 0 as the column offset, and the remaining bits as the
857 		 * row index.
858 		 */
859 		if (rx_queue > IGB_N0_QUEUE)
860 			igb_write_ivar(hw, msix_vector,
861 				       rx_queue >> 1,
862 				       (rx_queue & 0x1) << 4);
863 		if (tx_queue > IGB_N0_QUEUE)
864 			igb_write_ivar(hw, msix_vector,
865 				       tx_queue >> 1,
866 				       ((tx_queue & 0x1) << 4) + 8);
867 		q_vector->eims_value = 1 << msix_vector;
868 		break;
869 	default:
870 		BUG();
871 		break;
872 	}
873 
874 	/* add q_vector eims value to global eims_enable_mask */
875 	adapter->eims_enable_mask |= q_vector->eims_value;
876 
877 	/* configure q_vector to set itr on first interrupt */
878 	q_vector->set_itr = 1;
879 }
880 
881 /**
882  *  igb_configure_msix - Configure MSI-X hardware
883  *  @adapter: board private structure to initialize
884  *
885  *  igb_configure_msix sets up the hardware to properly
886  *  generate MSI-X interrupts.
887  **/
888 static void igb_configure_msix(struct igb_adapter *adapter)
889 {
890 	u32 tmp;
891 	int i, vector = 0;
892 	struct e1000_hw *hw = &adapter->hw;
893 
894 	adapter->eims_enable_mask = 0;
895 
896 	/* set vector for other causes, i.e. link changes */
897 	switch (hw->mac.type) {
898 	case e1000_82575:
899 		tmp = rd32(E1000_CTRL_EXT);
900 		/* enable MSI-X PBA support*/
901 		tmp |= E1000_CTRL_EXT_PBA_CLR;
902 
903 		/* Auto-Mask interrupts upon ICR read. */
904 		tmp |= E1000_CTRL_EXT_EIAME;
905 		tmp |= E1000_CTRL_EXT_IRCA;
906 
907 		wr32(E1000_CTRL_EXT, tmp);
908 
909 		/* enable msix_other interrupt */
910 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
911 		adapter->eims_other = E1000_EIMS_OTHER;
912 
913 		break;
914 
915 	case e1000_82576:
916 	case e1000_82580:
917 	case e1000_i350:
918 	case e1000_i354:
919 	case e1000_i210:
920 	case e1000_i211:
921 		/* Turn on MSI-X capability first, or our settings
922 		 * won't stick.  And it will take days to debug.
923 		 */
924 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
925 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
926 		     E1000_GPIE_NSICR);
927 
928 		/* enable msix_other interrupt */
929 		adapter->eims_other = 1 << vector;
930 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
931 
932 		wr32(E1000_IVAR_MISC, tmp);
933 		break;
934 	default:
935 		/* do nothing, since nothing else supports MSI-X */
936 		break;
937 	} /* switch (hw->mac.type) */
938 
939 	adapter->eims_enable_mask |= adapter->eims_other;
940 
941 	for (i = 0; i < adapter->num_q_vectors; i++)
942 		igb_assign_vector(adapter->q_vector[i], vector++);
943 
944 	wrfl();
945 }
946 
947 /**
948  *  igb_request_msix - Initialize MSI-X interrupts
949  *  @adapter: board private structure to initialize
950  *
951  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
952  *  kernel.
953  **/
954 static int igb_request_msix(struct igb_adapter *adapter)
955 {
956 	struct net_device *netdev = adapter->netdev;
957 	struct e1000_hw *hw = &adapter->hw;
958 	int i, err = 0, vector = 0, free_vector = 0;
959 
960 	err = request_irq(adapter->msix_entries[vector].vector,
961 			  igb_msix_other, 0, netdev->name, adapter);
962 	if (err)
963 		goto err_out;
964 
965 	for (i = 0; i < adapter->num_q_vectors; i++) {
966 		struct igb_q_vector *q_vector = adapter->q_vector[i];
967 
968 		vector++;
969 
970 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
971 
972 		if (q_vector->rx.ring && q_vector->tx.ring)
973 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
974 				q_vector->rx.ring->queue_index);
975 		else if (q_vector->tx.ring)
976 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
977 				q_vector->tx.ring->queue_index);
978 		else if (q_vector->rx.ring)
979 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
980 				q_vector->rx.ring->queue_index);
981 		else
982 			sprintf(q_vector->name, "%s-unused", netdev->name);
983 
984 		err = request_irq(adapter->msix_entries[vector].vector,
985 				  igb_msix_ring, 0, q_vector->name,
986 				  q_vector);
987 		if (err)
988 			goto err_free;
989 	}
990 
991 	igb_configure_msix(adapter);
992 	return 0;
993 
994 err_free:
995 	/* free already assigned IRQs */
996 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
997 
998 	vector--;
999 	for (i = 0; i < vector; i++) {
1000 		free_irq(adapter->msix_entries[free_vector++].vector,
1001 			 adapter->q_vector[i]);
1002 	}
1003 err_out:
1004 	return err;
1005 }
1006 
1007 /**
1008  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1009  *  @adapter: board private structure to initialize
1010  *  @v_idx: Index of vector to be freed
1011  *
1012  *  This function frees the memory allocated to the q_vector.
1013  **/
1014 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1015 {
1016 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1017 
1018 	adapter->q_vector[v_idx] = NULL;
1019 
1020 	/* igb_get_stats64() might access the rings on this vector,
1021 	 * we must wait a grace period before freeing it.
1022 	 */
1023 	kfree_rcu(q_vector, rcu);
1024 }
1025 
1026 /**
1027  *  igb_reset_q_vector - Reset config for interrupt vector
1028  *  @adapter: board private structure to initialize
1029  *  @v_idx: Index of vector to be reset
1030  *
1031  *  If NAPI is enabled it will delete any references to the
1032  *  NAPI struct. This is preparation for igb_free_q_vector.
1033  **/
1034 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1035 {
1036 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1037 
1038 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1039 	 * allocated. So, q_vector is NULL so we should stop here.
1040 	 */
1041 	if (!q_vector)
1042 		return;
1043 
1044 	if (q_vector->tx.ring)
1045 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1046 
1047 	if (q_vector->rx.ring)
1048 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1049 
1050 	netif_napi_del(&q_vector->napi);
1051 
1052 }
1053 
1054 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1055 {
1056 	int v_idx = adapter->num_q_vectors;
1057 
1058 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1059 		pci_disable_msix(adapter->pdev);
1060 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1061 		pci_disable_msi(adapter->pdev);
1062 
1063 	while (v_idx--)
1064 		igb_reset_q_vector(adapter, v_idx);
1065 }
1066 
1067 /**
1068  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1069  *  @adapter: board private structure to initialize
1070  *
1071  *  This function frees the memory allocated to the q_vectors.  In addition if
1072  *  NAPI is enabled it will delete any references to the NAPI struct prior
1073  *  to freeing the q_vector.
1074  **/
1075 static void igb_free_q_vectors(struct igb_adapter *adapter)
1076 {
1077 	int v_idx = adapter->num_q_vectors;
1078 
1079 	adapter->num_tx_queues = 0;
1080 	adapter->num_rx_queues = 0;
1081 	adapter->num_q_vectors = 0;
1082 
1083 	while (v_idx--) {
1084 		igb_reset_q_vector(adapter, v_idx);
1085 		igb_free_q_vector(adapter, v_idx);
1086 	}
1087 }
1088 
1089 /**
1090  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1091  *  @adapter: board private structure to initialize
1092  *
1093  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1094  *  MSI-X interrupts allocated.
1095  */
1096 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1097 {
1098 	igb_free_q_vectors(adapter);
1099 	igb_reset_interrupt_capability(adapter);
1100 }
1101 
1102 /**
1103  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1104  *  @adapter: board private structure to initialize
1105  *  @msix: boolean value of MSIX capability
1106  *
1107  *  Attempt to configure interrupts using the best available
1108  *  capabilities of the hardware and kernel.
1109  **/
1110 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1111 {
1112 	int err;
1113 	int numvecs, i;
1114 
1115 	if (!msix)
1116 		goto msi_only;
1117 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1118 
1119 	/* Number of supported queues. */
1120 	adapter->num_rx_queues = adapter->rss_queues;
1121 	if (adapter->vfs_allocated_count)
1122 		adapter->num_tx_queues = 1;
1123 	else
1124 		adapter->num_tx_queues = adapter->rss_queues;
1125 
1126 	/* start with one vector for every Rx queue */
1127 	numvecs = adapter->num_rx_queues;
1128 
1129 	/* if Tx handler is separate add 1 for every Tx queue */
1130 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1131 		numvecs += adapter->num_tx_queues;
1132 
1133 	/* store the number of vectors reserved for queues */
1134 	adapter->num_q_vectors = numvecs;
1135 
1136 	/* add 1 vector for link status interrupts */
1137 	numvecs++;
1138 	for (i = 0; i < numvecs; i++)
1139 		adapter->msix_entries[i].entry = i;
1140 
1141 	err = pci_enable_msix_range(adapter->pdev,
1142 				    adapter->msix_entries,
1143 				    numvecs,
1144 				    numvecs);
1145 	if (err > 0)
1146 		return;
1147 
1148 	igb_reset_interrupt_capability(adapter);
1149 
1150 	/* If we can't do MSI-X, try MSI */
1151 msi_only:
1152 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1153 #ifdef CONFIG_PCI_IOV
1154 	/* disable SR-IOV for non MSI-X configurations */
1155 	if (adapter->vf_data) {
1156 		struct e1000_hw *hw = &adapter->hw;
1157 		/* disable iov and allow time for transactions to clear */
1158 		pci_disable_sriov(adapter->pdev);
1159 		msleep(500);
1160 
1161 		kfree(adapter->vf_data);
1162 		adapter->vf_data = NULL;
1163 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1164 		wrfl();
1165 		msleep(100);
1166 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1167 	}
1168 #endif
1169 	adapter->vfs_allocated_count = 0;
1170 	adapter->rss_queues = 1;
1171 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1172 	adapter->num_rx_queues = 1;
1173 	adapter->num_tx_queues = 1;
1174 	adapter->num_q_vectors = 1;
1175 	if (!pci_enable_msi(adapter->pdev))
1176 		adapter->flags |= IGB_FLAG_HAS_MSI;
1177 }
1178 
1179 static void igb_add_ring(struct igb_ring *ring,
1180 			 struct igb_ring_container *head)
1181 {
1182 	head->ring = ring;
1183 	head->count++;
1184 }
1185 
1186 /**
1187  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1188  *  @adapter: board private structure to initialize
1189  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1190  *  @v_idx: index of vector in adapter struct
1191  *  @txr_count: total number of Tx rings to allocate
1192  *  @txr_idx: index of first Tx ring to allocate
1193  *  @rxr_count: total number of Rx rings to allocate
1194  *  @rxr_idx: index of first Rx ring to allocate
1195  *
1196  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1197  **/
1198 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1199 			      int v_count, int v_idx,
1200 			      int txr_count, int txr_idx,
1201 			      int rxr_count, int rxr_idx)
1202 {
1203 	struct igb_q_vector *q_vector;
1204 	struct igb_ring *ring;
1205 	int ring_count, size;
1206 
1207 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1208 	if (txr_count > 1 || rxr_count > 1)
1209 		return -ENOMEM;
1210 
1211 	ring_count = txr_count + rxr_count;
1212 	size = sizeof(struct igb_q_vector) +
1213 	       (sizeof(struct igb_ring) * ring_count);
1214 
1215 	/* allocate q_vector and rings */
1216 	q_vector = adapter->q_vector[v_idx];
1217 	if (!q_vector)
1218 		q_vector = kzalloc(size, GFP_KERNEL);
1219 	if (!q_vector)
1220 		return -ENOMEM;
1221 
1222 	/* initialize NAPI */
1223 	netif_napi_add(adapter->netdev, &q_vector->napi,
1224 		       igb_poll, 64);
1225 
1226 	/* tie q_vector and adapter together */
1227 	adapter->q_vector[v_idx] = q_vector;
1228 	q_vector->adapter = adapter;
1229 
1230 	/* initialize work limits */
1231 	q_vector->tx.work_limit = adapter->tx_work_limit;
1232 
1233 	/* initialize ITR configuration */
1234 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1235 	q_vector->itr_val = IGB_START_ITR;
1236 
1237 	/* initialize pointer to rings */
1238 	ring = q_vector->ring;
1239 
1240 	/* intialize ITR */
1241 	if (rxr_count) {
1242 		/* rx or rx/tx vector */
1243 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1244 			q_vector->itr_val = adapter->rx_itr_setting;
1245 	} else {
1246 		/* tx only vector */
1247 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1248 			q_vector->itr_val = adapter->tx_itr_setting;
1249 	}
1250 
1251 	if (txr_count) {
1252 		/* assign generic ring traits */
1253 		ring->dev = &adapter->pdev->dev;
1254 		ring->netdev = adapter->netdev;
1255 
1256 		/* configure backlink on ring */
1257 		ring->q_vector = q_vector;
1258 
1259 		/* update q_vector Tx values */
1260 		igb_add_ring(ring, &q_vector->tx);
1261 
1262 		/* For 82575, context index must be unique per ring. */
1263 		if (adapter->hw.mac.type == e1000_82575)
1264 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1265 
1266 		/* apply Tx specific ring traits */
1267 		ring->count = adapter->tx_ring_count;
1268 		ring->queue_index = txr_idx;
1269 
1270 		u64_stats_init(&ring->tx_syncp);
1271 		u64_stats_init(&ring->tx_syncp2);
1272 
1273 		/* assign ring to adapter */
1274 		adapter->tx_ring[txr_idx] = ring;
1275 
1276 		/* push pointer to next ring */
1277 		ring++;
1278 	}
1279 
1280 	if (rxr_count) {
1281 		/* assign generic ring traits */
1282 		ring->dev = &adapter->pdev->dev;
1283 		ring->netdev = adapter->netdev;
1284 
1285 		/* configure backlink on ring */
1286 		ring->q_vector = q_vector;
1287 
1288 		/* update q_vector Rx values */
1289 		igb_add_ring(ring, &q_vector->rx);
1290 
1291 		/* set flag indicating ring supports SCTP checksum offload */
1292 		if (adapter->hw.mac.type >= e1000_82576)
1293 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294 
1295 		/*
1296 		 * On i350, i354, i210, and i211, loopback VLAN packets
1297 		 * have the tag byte-swapped.
1298 		 */
1299 		if (adapter->hw.mac.type >= e1000_i350)
1300 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301 
1302 		/* apply Rx specific ring traits */
1303 		ring->count = adapter->rx_ring_count;
1304 		ring->queue_index = rxr_idx;
1305 
1306 		u64_stats_init(&ring->rx_syncp);
1307 
1308 		/* assign ring to adapter */
1309 		adapter->rx_ring[rxr_idx] = ring;
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 
1316 /**
1317  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318  *  @adapter: board private structure to initialize
1319  *
1320  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321  *  return -ENOMEM.
1322  **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 	int q_vectors = adapter->num_q_vectors;
1326 	int rxr_remaining = adapter->num_rx_queues;
1327 	int txr_remaining = adapter->num_tx_queues;
1328 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 	int err;
1330 
1331 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 		for (; rxr_remaining; v_idx++) {
1333 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 						 0, 0, 1, rxr_idx);
1335 
1336 			if (err)
1337 				goto err_out;
1338 
1339 			/* update counts and index */
1340 			rxr_remaining--;
1341 			rxr_idx++;
1342 		}
1343 	}
1344 
1345 	for (; v_idx < q_vectors; v_idx++) {
1346 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 					 tqpv, txr_idx, rqpv, rxr_idx);
1350 
1351 		if (err)
1352 			goto err_out;
1353 
1354 		/* update counts and index */
1355 		rxr_remaining -= rqpv;
1356 		txr_remaining -= tqpv;
1357 		rxr_idx++;
1358 		txr_idx++;
1359 	}
1360 
1361 	return 0;
1362 
1363 err_out:
1364 	adapter->num_tx_queues = 0;
1365 	adapter->num_rx_queues = 0;
1366 	adapter->num_q_vectors = 0;
1367 
1368 	while (v_idx--)
1369 		igb_free_q_vector(adapter, v_idx);
1370 
1371 	return -ENOMEM;
1372 }
1373 
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 	struct pci_dev *pdev = adapter->pdev;
1384 	int err;
1385 
1386 	igb_set_interrupt_capability(adapter, msix);
1387 
1388 	err = igb_alloc_q_vectors(adapter);
1389 	if (err) {
1390 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 		goto err_alloc_q_vectors;
1392 	}
1393 
1394 	igb_cache_ring_register(adapter);
1395 
1396 	return 0;
1397 
1398 err_alloc_q_vectors:
1399 	igb_reset_interrupt_capability(adapter);
1400 	return err;
1401 }
1402 
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 	struct net_device *netdev = adapter->netdev;
1413 	struct pci_dev *pdev = adapter->pdev;
1414 	int err = 0;
1415 
1416 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 		err = igb_request_msix(adapter);
1418 		if (!err)
1419 			goto request_done;
1420 		/* fall back to MSI */
1421 		igb_free_all_tx_resources(adapter);
1422 		igb_free_all_rx_resources(adapter);
1423 
1424 		igb_clear_interrupt_scheme(adapter);
1425 		err = igb_init_interrupt_scheme(adapter, false);
1426 		if (err)
1427 			goto request_done;
1428 
1429 		igb_setup_all_tx_resources(adapter);
1430 		igb_setup_all_rx_resources(adapter);
1431 		igb_configure(adapter);
1432 	}
1433 
1434 	igb_assign_vector(adapter->q_vector[0], 0);
1435 
1436 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 				  netdev->name, adapter);
1439 		if (!err)
1440 			goto request_done;
1441 
1442 		/* fall back to legacy interrupts */
1443 		igb_reset_interrupt_capability(adapter);
1444 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 	}
1446 
1447 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 			  netdev->name, adapter);
1449 
1450 	if (err)
1451 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 			err);
1453 
1454 request_done:
1455 	return err;
1456 }
1457 
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 		int vector = 0, i;
1462 
1463 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1464 
1465 		for (i = 0; i < adapter->num_q_vectors; i++)
1466 			free_irq(adapter->msix_entries[vector++].vector,
1467 				 adapter->q_vector[i]);
1468 	} else {
1469 		free_irq(adapter->pdev->irq, adapter);
1470 	}
1471 }
1472 
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 
1481 	/* we need to be careful when disabling interrupts.  The VFs are also
1482 	 * mapped into these registers and so clearing the bits can cause
1483 	 * issues on the VF drivers so we only need to clear what we set
1484 	 */
1485 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 		u32 regval = rd32(E1000_EIAM);
1487 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 		regval = rd32(E1000_EIAC);
1490 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 	}
1492 
1493 	wr32(E1000_IAM, 0);
1494 	wr32(E1000_IMC, ~0);
1495 	wrfl();
1496 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 		int i;
1498 		for (i = 0; i < adapter->num_q_vectors; i++)
1499 			synchronize_irq(adapter->msix_entries[i].vector);
1500 	} else {
1501 		synchronize_irq(adapter->pdev->irq);
1502 	}
1503 }
1504 
1505 /**
1506  *  igb_irq_enable - Enable default interrupt generation settings
1507  *  @adapter: board private structure
1508  **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511 	struct e1000_hw *hw = &adapter->hw;
1512 
1513 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515 		u32 regval = rd32(E1000_EIAC);
1516 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517 		regval = rd32(E1000_EIAM);
1518 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1520 		if (adapter->vfs_allocated_count) {
1521 			wr32(E1000_MBVFIMR, 0xFF);
1522 			ims |= E1000_IMS_VMMB;
1523 		}
1524 		wr32(E1000_IMS, ims);
1525 	} else {
1526 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1527 				E1000_IMS_DRSTA);
1528 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1529 				E1000_IMS_DRSTA);
1530 	}
1531 }
1532 
1533 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534 {
1535 	struct e1000_hw *hw = &adapter->hw;
1536 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1537 	u16 old_vid = adapter->mng_vlan_id;
1538 
1539 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1540 		/* add VID to filter table */
1541 		igb_vfta_set(hw, vid, true);
1542 		adapter->mng_vlan_id = vid;
1543 	} else {
1544 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1545 	}
1546 
1547 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1548 	    (vid != old_vid) &&
1549 	    !test_bit(old_vid, adapter->active_vlans)) {
1550 		/* remove VID from filter table */
1551 		igb_vfta_set(hw, old_vid, false);
1552 	}
1553 }
1554 
1555 /**
1556  *  igb_release_hw_control - release control of the h/w to f/w
1557  *  @adapter: address of board private structure
1558  *
1559  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1560  *  For ASF and Pass Through versions of f/w this means that the
1561  *  driver is no longer loaded.
1562  **/
1563 static void igb_release_hw_control(struct igb_adapter *adapter)
1564 {
1565 	struct e1000_hw *hw = &adapter->hw;
1566 	u32 ctrl_ext;
1567 
1568 	/* Let firmware take over control of h/w */
1569 	ctrl_ext = rd32(E1000_CTRL_EXT);
1570 	wr32(E1000_CTRL_EXT,
1571 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1572 }
1573 
1574 /**
1575  *  igb_get_hw_control - get control of the h/w from f/w
1576  *  @adapter: address of board private structure
1577  *
1578  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1579  *  For ASF and Pass Through versions of f/w this means that
1580  *  the driver is loaded.
1581  **/
1582 static void igb_get_hw_control(struct igb_adapter *adapter)
1583 {
1584 	struct e1000_hw *hw = &adapter->hw;
1585 	u32 ctrl_ext;
1586 
1587 	/* Let firmware know the driver has taken over */
1588 	ctrl_ext = rd32(E1000_CTRL_EXT);
1589 	wr32(E1000_CTRL_EXT,
1590 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1591 }
1592 
1593 /**
1594  *  igb_configure - configure the hardware for RX and TX
1595  *  @adapter: private board structure
1596  **/
1597 static void igb_configure(struct igb_adapter *adapter)
1598 {
1599 	struct net_device *netdev = adapter->netdev;
1600 	int i;
1601 
1602 	igb_get_hw_control(adapter);
1603 	igb_set_rx_mode(netdev);
1604 
1605 	igb_restore_vlan(adapter);
1606 
1607 	igb_setup_tctl(adapter);
1608 	igb_setup_mrqc(adapter);
1609 	igb_setup_rctl(adapter);
1610 
1611 	igb_configure_tx(adapter);
1612 	igb_configure_rx(adapter);
1613 
1614 	igb_rx_fifo_flush_82575(&adapter->hw);
1615 
1616 	/* call igb_desc_unused which always leaves
1617 	 * at least 1 descriptor unused to make sure
1618 	 * next_to_use != next_to_clean
1619 	 */
1620 	for (i = 0; i < adapter->num_rx_queues; i++) {
1621 		struct igb_ring *ring = adapter->rx_ring[i];
1622 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1623 	}
1624 }
1625 
1626 /**
1627  *  igb_power_up_link - Power up the phy/serdes link
1628  *  @adapter: address of board private structure
1629  **/
1630 void igb_power_up_link(struct igb_adapter *adapter)
1631 {
1632 	igb_reset_phy(&adapter->hw);
1633 
1634 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1635 		igb_power_up_phy_copper(&adapter->hw);
1636 	else
1637 		igb_power_up_serdes_link_82575(&adapter->hw);
1638 }
1639 
1640 /**
1641  *  igb_power_down_link - Power down the phy/serdes link
1642  *  @adapter: address of board private structure
1643  */
1644 static void igb_power_down_link(struct igb_adapter *adapter)
1645 {
1646 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1647 		igb_power_down_phy_copper_82575(&adapter->hw);
1648 	else
1649 		igb_shutdown_serdes_link_82575(&adapter->hw);
1650 }
1651 
1652 /**
1653  * Detect and switch function for Media Auto Sense
1654  * @adapter: address of the board private structure
1655  **/
1656 static void igb_check_swap_media(struct igb_adapter *adapter)
1657 {
1658 	struct e1000_hw *hw = &adapter->hw;
1659 	u32 ctrl_ext, connsw;
1660 	bool swap_now = false;
1661 
1662 	ctrl_ext = rd32(E1000_CTRL_EXT);
1663 	connsw = rd32(E1000_CONNSW);
1664 
1665 	/* need to live swap if current media is copper and we have fiber/serdes
1666 	 * to go to.
1667 	 */
1668 
1669 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1670 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1671 		swap_now = true;
1672 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1673 		/* copper signal takes time to appear */
1674 		if (adapter->copper_tries < 4) {
1675 			adapter->copper_tries++;
1676 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1677 			wr32(E1000_CONNSW, connsw);
1678 			return;
1679 		} else {
1680 			adapter->copper_tries = 0;
1681 			if ((connsw & E1000_CONNSW_PHYSD) &&
1682 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1683 				swap_now = true;
1684 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1685 				wr32(E1000_CONNSW, connsw);
1686 			}
1687 		}
1688 	}
1689 
1690 	if (!swap_now)
1691 		return;
1692 
1693 	switch (hw->phy.media_type) {
1694 	case e1000_media_type_copper:
1695 		netdev_info(adapter->netdev,
1696 			"MAS: changing media to fiber/serdes\n");
1697 		ctrl_ext |=
1698 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1699 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1700 		adapter->copper_tries = 0;
1701 		break;
1702 	case e1000_media_type_internal_serdes:
1703 	case e1000_media_type_fiber:
1704 		netdev_info(adapter->netdev,
1705 			"MAS: changing media to copper\n");
1706 		ctrl_ext &=
1707 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1708 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1709 		break;
1710 	default:
1711 		/* shouldn't get here during regular operation */
1712 		netdev_err(adapter->netdev,
1713 			"AMS: Invalid media type found, returning\n");
1714 		break;
1715 	}
1716 	wr32(E1000_CTRL_EXT, ctrl_ext);
1717 }
1718 
1719 /**
1720  *  igb_up - Open the interface and prepare it to handle traffic
1721  *  @adapter: board private structure
1722  **/
1723 int igb_up(struct igb_adapter *adapter)
1724 {
1725 	struct e1000_hw *hw = &adapter->hw;
1726 	int i;
1727 
1728 	/* hardware has been reset, we need to reload some things */
1729 	igb_configure(adapter);
1730 
1731 	clear_bit(__IGB_DOWN, &adapter->state);
1732 
1733 	for (i = 0; i < adapter->num_q_vectors; i++)
1734 		napi_enable(&(adapter->q_vector[i]->napi));
1735 
1736 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1737 		igb_configure_msix(adapter);
1738 	else
1739 		igb_assign_vector(adapter->q_vector[0], 0);
1740 
1741 	/* Clear any pending interrupts. */
1742 	rd32(E1000_ICR);
1743 	igb_irq_enable(adapter);
1744 
1745 	/* notify VFs that reset has been completed */
1746 	if (adapter->vfs_allocated_count) {
1747 		u32 reg_data = rd32(E1000_CTRL_EXT);
1748 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1749 		wr32(E1000_CTRL_EXT, reg_data);
1750 	}
1751 
1752 	netif_tx_start_all_queues(adapter->netdev);
1753 
1754 	/* start the watchdog. */
1755 	hw->mac.get_link_status = 1;
1756 	schedule_work(&adapter->watchdog_task);
1757 
1758 	if ((adapter->flags & IGB_FLAG_EEE) &&
1759 	    (!hw->dev_spec._82575.eee_disable))
1760 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1761 
1762 	return 0;
1763 }
1764 
1765 void igb_down(struct igb_adapter *adapter)
1766 {
1767 	struct net_device *netdev = adapter->netdev;
1768 	struct e1000_hw *hw = &adapter->hw;
1769 	u32 tctl, rctl;
1770 	int i;
1771 
1772 	/* signal that we're down so the interrupt handler does not
1773 	 * reschedule our watchdog timer
1774 	 */
1775 	set_bit(__IGB_DOWN, &adapter->state);
1776 
1777 	/* disable receives in the hardware */
1778 	rctl = rd32(E1000_RCTL);
1779 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1780 	/* flush and sleep below */
1781 
1782 	netif_tx_stop_all_queues(netdev);
1783 
1784 	/* disable transmits in the hardware */
1785 	tctl = rd32(E1000_TCTL);
1786 	tctl &= ~E1000_TCTL_EN;
1787 	wr32(E1000_TCTL, tctl);
1788 	/* flush both disables and wait for them to finish */
1789 	wrfl();
1790 	msleep(10);
1791 
1792 	igb_irq_disable(adapter);
1793 
1794 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795 
1796 	for (i = 0; i < adapter->num_q_vectors; i++) {
1797 		napi_synchronize(&(adapter->q_vector[i]->napi));
1798 		napi_disable(&(adapter->q_vector[i]->napi));
1799 	}
1800 
1801 
1802 	del_timer_sync(&adapter->watchdog_timer);
1803 	del_timer_sync(&adapter->phy_info_timer);
1804 
1805 	netif_carrier_off(netdev);
1806 
1807 	/* record the stats before reset*/
1808 	spin_lock(&adapter->stats64_lock);
1809 	igb_update_stats(adapter, &adapter->stats64);
1810 	spin_unlock(&adapter->stats64_lock);
1811 
1812 	adapter->link_speed = 0;
1813 	adapter->link_duplex = 0;
1814 
1815 	if (!pci_channel_offline(adapter->pdev))
1816 		igb_reset(adapter);
1817 	igb_clean_all_tx_rings(adapter);
1818 	igb_clean_all_rx_rings(adapter);
1819 #ifdef CONFIG_IGB_DCA
1820 
1821 	/* since we reset the hardware DCA settings were cleared */
1822 	igb_setup_dca(adapter);
1823 #endif
1824 }
1825 
1826 void igb_reinit_locked(struct igb_adapter *adapter)
1827 {
1828 	WARN_ON(in_interrupt());
1829 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1830 		msleep(1);
1831 	igb_down(adapter);
1832 	igb_up(adapter);
1833 	clear_bit(__IGB_RESETTING, &adapter->state);
1834 }
1835 
1836 /** igb_enable_mas - Media Autosense re-enable after swap
1837  *
1838  * @adapter: adapter struct
1839  **/
1840 static s32 igb_enable_mas(struct igb_adapter *adapter)
1841 {
1842 	struct e1000_hw *hw = &adapter->hw;
1843 	u32 connsw;
1844 	s32 ret_val = 0;
1845 
1846 	connsw = rd32(E1000_CONNSW);
1847 	if (!(hw->phy.media_type == e1000_media_type_copper))
1848 		return ret_val;
1849 
1850 	/* configure for SerDes media detect */
1851 	if (!(connsw & E1000_CONNSW_SERDESD)) {
1852 		connsw |= E1000_CONNSW_ENRGSRC;
1853 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1854 		wr32(E1000_CONNSW, connsw);
1855 		wrfl();
1856 	} else if (connsw & E1000_CONNSW_SERDESD) {
1857 		/* already SerDes, no need to enable anything */
1858 		return ret_val;
1859 	} else {
1860 		netdev_info(adapter->netdev,
1861 			"MAS: Unable to configure feature, disabling..\n");
1862 		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1863 	}
1864 	return ret_val;
1865 }
1866 
1867 void igb_reset(struct igb_adapter *adapter)
1868 {
1869 	struct pci_dev *pdev = adapter->pdev;
1870 	struct e1000_hw *hw = &adapter->hw;
1871 	struct e1000_mac_info *mac = &hw->mac;
1872 	struct e1000_fc_info *fc = &hw->fc;
1873 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1874 
1875 	/* Repartition Pba for greater than 9k mtu
1876 	 * To take effect CTRL.RST is required.
1877 	 */
1878 	switch (mac->type) {
1879 	case e1000_i350:
1880 	case e1000_i354:
1881 	case e1000_82580:
1882 		pba = rd32(E1000_RXPBS);
1883 		pba = igb_rxpbs_adjust_82580(pba);
1884 		break;
1885 	case e1000_82576:
1886 		pba = rd32(E1000_RXPBS);
1887 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1888 		break;
1889 	case e1000_82575:
1890 	case e1000_i210:
1891 	case e1000_i211:
1892 	default:
1893 		pba = E1000_PBA_34K;
1894 		break;
1895 	}
1896 
1897 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1898 	    (mac->type < e1000_82576)) {
1899 		/* adjust PBA for jumbo frames */
1900 		wr32(E1000_PBA, pba);
1901 
1902 		/* To maintain wire speed transmits, the Tx FIFO should be
1903 		 * large enough to accommodate two full transmit packets,
1904 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1905 		 * the Rx FIFO should be large enough to accommodate at least
1906 		 * one full receive packet and is similarly rounded up and
1907 		 * expressed in KB.
1908 		 */
1909 		pba = rd32(E1000_PBA);
1910 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1911 		tx_space = pba >> 16;
1912 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1913 		pba &= 0xffff;
1914 		/* the Tx fifo also stores 16 bytes of information about the Tx
1915 		 * but don't include ethernet FCS because hardware appends it
1916 		 */
1917 		min_tx_space = (adapter->max_frame_size +
1918 				sizeof(union e1000_adv_tx_desc) -
1919 				ETH_FCS_LEN) * 2;
1920 		min_tx_space = ALIGN(min_tx_space, 1024);
1921 		min_tx_space >>= 10;
1922 		/* software strips receive CRC, so leave room for it */
1923 		min_rx_space = adapter->max_frame_size;
1924 		min_rx_space = ALIGN(min_rx_space, 1024);
1925 		min_rx_space >>= 10;
1926 
1927 		/* If current Tx allocation is less than the min Tx FIFO size,
1928 		 * and the min Tx FIFO size is less than the current Rx FIFO
1929 		 * allocation, take space away from current Rx allocation
1930 		 */
1931 		if (tx_space < min_tx_space &&
1932 		    ((min_tx_space - tx_space) < pba)) {
1933 			pba = pba - (min_tx_space - tx_space);
1934 
1935 			/* if short on Rx space, Rx wins and must trump Tx
1936 			 * adjustment
1937 			 */
1938 			if (pba < min_rx_space)
1939 				pba = min_rx_space;
1940 		}
1941 		wr32(E1000_PBA, pba);
1942 	}
1943 
1944 	/* flow control settings */
1945 	/* The high water mark must be low enough to fit one full frame
1946 	 * (or the size used for early receive) above it in the Rx FIFO.
1947 	 * Set it to the lower of:
1948 	 * - 90% of the Rx FIFO size, or
1949 	 * - the full Rx FIFO size minus one full frame
1950 	 */
1951 	hwm = min(((pba << 10) * 9 / 10),
1952 			((pba << 10) - 2 * adapter->max_frame_size));
1953 
1954 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1955 	fc->low_water = fc->high_water - 16;
1956 	fc->pause_time = 0xFFFF;
1957 	fc->send_xon = 1;
1958 	fc->current_mode = fc->requested_mode;
1959 
1960 	/* disable receive for all VFs and wait one second */
1961 	if (adapter->vfs_allocated_count) {
1962 		int i;
1963 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965 
1966 		/* ping all the active vfs to let them know we are going down */
1967 		igb_ping_all_vfs(adapter);
1968 
1969 		/* disable transmits and receives */
1970 		wr32(E1000_VFRE, 0);
1971 		wr32(E1000_VFTE, 0);
1972 	}
1973 
1974 	/* Allow time for pending master requests to run */
1975 	hw->mac.ops.reset_hw(hw);
1976 	wr32(E1000_WUC, 0);
1977 
1978 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 		/* need to resetup here after media swap */
1980 		adapter->ei.get_invariants(hw);
1981 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 	}
1983 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1984 		if (igb_enable_mas(adapter))
1985 			dev_err(&pdev->dev,
1986 				"Error enabling Media Auto Sense\n");
1987 	}
1988 	if (hw->mac.ops.init_hw(hw))
1989 		dev_err(&pdev->dev, "Hardware Error\n");
1990 
1991 	/* Flow control settings reset on hardware reset, so guarantee flow
1992 	 * control is off when forcing speed.
1993 	 */
1994 	if (!hw->mac.autoneg)
1995 		igb_force_mac_fc(hw);
1996 
1997 	igb_init_dmac(adapter, pba);
1998 #ifdef CONFIG_IGB_HWMON
1999 	/* Re-initialize the thermal sensor on i350 devices. */
2000 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2001 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2002 			/* If present, re-initialize the external thermal sensor
2003 			 * interface.
2004 			 */
2005 			if (adapter->ets)
2006 				mac->ops.init_thermal_sensor_thresh(hw);
2007 		}
2008 	}
2009 #endif
2010 	/* Re-establish EEE setting */
2011 	if (hw->phy.media_type == e1000_media_type_copper) {
2012 		switch (mac->type) {
2013 		case e1000_i350:
2014 		case e1000_i210:
2015 		case e1000_i211:
2016 			igb_set_eee_i350(hw);
2017 			break;
2018 		case e1000_i354:
2019 			igb_set_eee_i354(hw);
2020 			break;
2021 		default:
2022 			break;
2023 		}
2024 	}
2025 	if (!netif_running(adapter->netdev))
2026 		igb_power_down_link(adapter);
2027 
2028 	igb_update_mng_vlan(adapter);
2029 
2030 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2031 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2032 
2033 	/* Re-enable PTP, where applicable. */
2034 	igb_ptp_reset(adapter);
2035 
2036 	igb_get_phy_info(hw);
2037 }
2038 
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 	netdev_features_t features)
2041 {
2042 	/* Since there is no support for separate Rx/Tx vlan accel
2043 	 * enable/disable make sure Tx flag is always in same state as Rx.
2044 	 */
2045 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2047 	else
2048 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049 
2050 	return features;
2051 }
2052 
2053 static int igb_set_features(struct net_device *netdev,
2054 	netdev_features_t features)
2055 {
2056 	netdev_features_t changed = netdev->features ^ features;
2057 	struct igb_adapter *adapter = netdev_priv(netdev);
2058 
2059 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060 		igb_vlan_mode(netdev, features);
2061 
2062 	if (!(changed & NETIF_F_RXALL))
2063 		return 0;
2064 
2065 	netdev->features = features;
2066 
2067 	if (netif_running(netdev))
2068 		igb_reinit_locked(adapter);
2069 	else
2070 		igb_reset(adapter);
2071 
2072 	return 0;
2073 }
2074 
2075 static const struct net_device_ops igb_netdev_ops = {
2076 	.ndo_open		= igb_open,
2077 	.ndo_stop		= igb_close,
2078 	.ndo_start_xmit		= igb_xmit_frame,
2079 	.ndo_get_stats64	= igb_get_stats64,
2080 	.ndo_set_rx_mode	= igb_set_rx_mode,
2081 	.ndo_set_mac_address	= igb_set_mac,
2082 	.ndo_change_mtu		= igb_change_mtu,
2083 	.ndo_do_ioctl		= igb_ioctl,
2084 	.ndo_tx_timeout		= igb_tx_timeout,
2085 	.ndo_validate_addr	= eth_validate_addr,
2086 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2087 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2088 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2089 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2090 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2091 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2092 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2093 #ifdef CONFIG_NET_POLL_CONTROLLER
2094 	.ndo_poll_controller	= igb_netpoll,
2095 #endif
2096 	.ndo_fix_features	= igb_fix_features,
2097 	.ndo_set_features	= igb_set_features,
2098 };
2099 
2100 /**
2101  * igb_set_fw_version - Configure version string for ethtool
2102  * @adapter: adapter struct
2103  **/
2104 void igb_set_fw_version(struct igb_adapter *adapter)
2105 {
2106 	struct e1000_hw *hw = &adapter->hw;
2107 	struct e1000_fw_version fw;
2108 
2109 	igb_get_fw_version(hw, &fw);
2110 
2111 	switch (hw->mac.type) {
2112 	case e1000_i210:
2113 	case e1000_i211:
2114 		if (!(igb_get_flash_presence_i210(hw))) {
2115 			snprintf(adapter->fw_version,
2116 				 sizeof(adapter->fw_version),
2117 				 "%2d.%2d-%d",
2118 				 fw.invm_major, fw.invm_minor,
2119 				 fw.invm_img_type);
2120 			break;
2121 		}
2122 		/* fall through */
2123 	default:
2124 		/* if option is rom valid, display its version too */
2125 		if (fw.or_valid) {
2126 			snprintf(adapter->fw_version,
2127 				 sizeof(adapter->fw_version),
2128 				 "%d.%d, 0x%08x, %d.%d.%d",
2129 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2130 				 fw.or_major, fw.or_build, fw.or_patch);
2131 		/* no option rom */
2132 		} else if (fw.etrack_id != 0X0000) {
2133 			snprintf(adapter->fw_version,
2134 			    sizeof(adapter->fw_version),
2135 			    "%d.%d, 0x%08x",
2136 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2137 		} else {
2138 		snprintf(adapter->fw_version,
2139 		    sizeof(adapter->fw_version),
2140 		    "%d.%d.%d",
2141 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2142 		}
2143 		break;
2144 	}
2145 	return;
2146 }
2147 
2148 /**
2149  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2150  *
2151  * @adapter: adapter struct
2152  **/
2153 static void igb_init_mas(struct igb_adapter *adapter)
2154 {
2155 	struct e1000_hw *hw = &adapter->hw;
2156 	u16 eeprom_data;
2157 
2158 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2159 	switch (hw->bus.func) {
2160 	case E1000_FUNC_0:
2161 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2162 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163 			netdev_info(adapter->netdev,
2164 				"MAS: Enabling Media Autosense for port %d\n",
2165 				hw->bus.func);
2166 		}
2167 		break;
2168 	case E1000_FUNC_1:
2169 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2170 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171 			netdev_info(adapter->netdev,
2172 				"MAS: Enabling Media Autosense for port %d\n",
2173 				hw->bus.func);
2174 		}
2175 		break;
2176 	case E1000_FUNC_2:
2177 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2178 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179 			netdev_info(adapter->netdev,
2180 				"MAS: Enabling Media Autosense for port %d\n",
2181 				hw->bus.func);
2182 		}
2183 		break;
2184 	case E1000_FUNC_3:
2185 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2186 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2187 			netdev_info(adapter->netdev,
2188 				"MAS: Enabling Media Autosense for port %d\n",
2189 				hw->bus.func);
2190 		}
2191 		break;
2192 	default:
2193 		/* Shouldn't get here */
2194 		netdev_err(adapter->netdev,
2195 			"MAS: Invalid port configuration, returning\n");
2196 		break;
2197 	}
2198 }
2199 
2200 /**
2201  *  igb_init_i2c - Init I2C interface
2202  *  @adapter: pointer to adapter structure
2203  **/
2204 static s32 igb_init_i2c(struct igb_adapter *adapter)
2205 {
2206 	s32 status = E1000_SUCCESS;
2207 
2208 	/* I2C interface supported on i350 devices */
2209 	if (adapter->hw.mac.type != e1000_i350)
2210 		return E1000_SUCCESS;
2211 
2212 	/* Initialize the i2c bus which is controlled by the registers.
2213 	 * This bus will use the i2c_algo_bit structue that implements
2214 	 * the protocol through toggling of the 4 bits in the register.
2215 	 */
2216 	adapter->i2c_adap.owner = THIS_MODULE;
2217 	adapter->i2c_algo = igb_i2c_algo;
2218 	adapter->i2c_algo.data = adapter;
2219 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2220 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2221 	strlcpy(adapter->i2c_adap.name, "igb BB",
2222 		sizeof(adapter->i2c_adap.name));
2223 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2224 	return status;
2225 }
2226 
2227 /**
2228  *  igb_probe - Device Initialization Routine
2229  *  @pdev: PCI device information struct
2230  *  @ent: entry in igb_pci_tbl
2231  *
2232  *  Returns 0 on success, negative on failure
2233  *
2234  *  igb_probe initializes an adapter identified by a pci_dev structure.
2235  *  The OS initialization, configuring of the adapter private structure,
2236  *  and a hardware reset occur.
2237  **/
2238 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2239 {
2240 	struct net_device *netdev;
2241 	struct igb_adapter *adapter;
2242 	struct e1000_hw *hw;
2243 	u16 eeprom_data = 0;
2244 	s32 ret_val;
2245 	static int global_quad_port_a; /* global quad port a indication */
2246 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2247 	int err, pci_using_dac;
2248 	u8 part_str[E1000_PBANUM_LENGTH];
2249 
2250 	/* Catch broken hardware that put the wrong VF device ID in
2251 	 * the PCIe SR-IOV capability.
2252 	 */
2253 	if (pdev->is_virtfn) {
2254 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2255 			pci_name(pdev), pdev->vendor, pdev->device);
2256 		return -EINVAL;
2257 	}
2258 
2259 	err = pci_enable_device_mem(pdev);
2260 	if (err)
2261 		return err;
2262 
2263 	pci_using_dac = 0;
2264 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2265 	if (!err) {
2266 		pci_using_dac = 1;
2267 	} else {
2268 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2269 		if (err) {
2270 			dev_err(&pdev->dev,
2271 				"No usable DMA configuration, aborting\n");
2272 			goto err_dma;
2273 		}
2274 	}
2275 
2276 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2277 					   IORESOURCE_MEM),
2278 					   igb_driver_name);
2279 	if (err)
2280 		goto err_pci_reg;
2281 
2282 	pci_enable_pcie_error_reporting(pdev);
2283 
2284 	pci_set_master(pdev);
2285 	pci_save_state(pdev);
2286 
2287 	err = -ENOMEM;
2288 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2289 				   IGB_MAX_TX_QUEUES);
2290 	if (!netdev)
2291 		goto err_alloc_etherdev;
2292 
2293 	SET_NETDEV_DEV(netdev, &pdev->dev);
2294 
2295 	pci_set_drvdata(pdev, netdev);
2296 	adapter = netdev_priv(netdev);
2297 	adapter->netdev = netdev;
2298 	adapter->pdev = pdev;
2299 	hw = &adapter->hw;
2300 	hw->back = adapter;
2301 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2302 
2303 	err = -EIO;
2304 	hw->hw_addr = pci_iomap(pdev, 0, 0);
2305 	if (!hw->hw_addr)
2306 		goto err_ioremap;
2307 
2308 	netdev->netdev_ops = &igb_netdev_ops;
2309 	igb_set_ethtool_ops(netdev);
2310 	netdev->watchdog_timeo = 5 * HZ;
2311 
2312 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2313 
2314 	netdev->mem_start = pci_resource_start(pdev, 0);
2315 	netdev->mem_end = pci_resource_end(pdev, 0);
2316 
2317 	/* PCI config space info */
2318 	hw->vendor_id = pdev->vendor;
2319 	hw->device_id = pdev->device;
2320 	hw->revision_id = pdev->revision;
2321 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2322 	hw->subsystem_device_id = pdev->subsystem_device;
2323 
2324 	/* Copy the default MAC, PHY and NVM function pointers */
2325 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2326 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2327 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2328 	/* Initialize skew-specific constants */
2329 	err = ei->get_invariants(hw);
2330 	if (err)
2331 		goto err_sw_init;
2332 
2333 	/* setup the private structure */
2334 	err = igb_sw_init(adapter);
2335 	if (err)
2336 		goto err_sw_init;
2337 
2338 	igb_get_bus_info_pcie(hw);
2339 
2340 	hw->phy.autoneg_wait_to_complete = false;
2341 
2342 	/* Copper options */
2343 	if (hw->phy.media_type == e1000_media_type_copper) {
2344 		hw->phy.mdix = AUTO_ALL_MODES;
2345 		hw->phy.disable_polarity_correction = false;
2346 		hw->phy.ms_type = e1000_ms_hw_default;
2347 	}
2348 
2349 	if (igb_check_reset_block(hw))
2350 		dev_info(&pdev->dev,
2351 			"PHY reset is blocked due to SOL/IDER session.\n");
2352 
2353 	/* features is initialized to 0 in allocation, it might have bits
2354 	 * set by igb_sw_init so we should use an or instead of an
2355 	 * assignment.
2356 	 */
2357 	netdev->features |= NETIF_F_SG |
2358 			    NETIF_F_IP_CSUM |
2359 			    NETIF_F_IPV6_CSUM |
2360 			    NETIF_F_TSO |
2361 			    NETIF_F_TSO6 |
2362 			    NETIF_F_RXHASH |
2363 			    NETIF_F_RXCSUM |
2364 			    NETIF_F_HW_VLAN_CTAG_RX |
2365 			    NETIF_F_HW_VLAN_CTAG_TX;
2366 
2367 	/* copy netdev features into list of user selectable features */
2368 	netdev->hw_features |= netdev->features;
2369 	netdev->hw_features |= NETIF_F_RXALL;
2370 
2371 	/* set this bit last since it cannot be part of hw_features */
2372 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2373 
2374 	netdev->vlan_features |= NETIF_F_TSO |
2375 				 NETIF_F_TSO6 |
2376 				 NETIF_F_IP_CSUM |
2377 				 NETIF_F_IPV6_CSUM |
2378 				 NETIF_F_SG;
2379 
2380 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2381 
2382 	if (pci_using_dac) {
2383 		netdev->features |= NETIF_F_HIGHDMA;
2384 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2385 	}
2386 
2387 	if (hw->mac.type >= e1000_82576) {
2388 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2389 		netdev->features |= NETIF_F_SCTP_CSUM;
2390 	}
2391 
2392 	netdev->priv_flags |= IFF_UNICAST_FLT;
2393 
2394 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2395 
2396 	/* before reading the NVM, reset the controller to put the device in a
2397 	 * known good starting state
2398 	 */
2399 	hw->mac.ops.reset_hw(hw);
2400 
2401 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2402 	 * that doesn't contain a checksum
2403 	 */
2404 	switch (hw->mac.type) {
2405 	case e1000_i210:
2406 	case e1000_i211:
2407 		if (igb_get_flash_presence_i210(hw)) {
2408 			if (hw->nvm.ops.validate(hw) < 0) {
2409 				dev_err(&pdev->dev,
2410 					"The NVM Checksum Is Not Valid\n");
2411 				err = -EIO;
2412 				goto err_eeprom;
2413 			}
2414 		}
2415 		break;
2416 	default:
2417 		if (hw->nvm.ops.validate(hw) < 0) {
2418 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2419 			err = -EIO;
2420 			goto err_eeprom;
2421 		}
2422 		break;
2423 	}
2424 
2425 	/* copy the MAC address out of the NVM */
2426 	if (hw->mac.ops.read_mac_addr(hw))
2427 		dev_err(&pdev->dev, "NVM Read Error\n");
2428 
2429 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2430 
2431 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2432 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2433 		err = -EIO;
2434 		goto err_eeprom;
2435 	}
2436 
2437 	/* get firmware version for ethtool -i */
2438 	igb_set_fw_version(adapter);
2439 
2440 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2441 		    (unsigned long) adapter);
2442 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2443 		    (unsigned long) adapter);
2444 
2445 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2446 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2447 
2448 	/* Initialize link properties that are user-changeable */
2449 	adapter->fc_autoneg = true;
2450 	hw->mac.autoneg = true;
2451 	hw->phy.autoneg_advertised = 0x2f;
2452 
2453 	hw->fc.requested_mode = e1000_fc_default;
2454 	hw->fc.current_mode = e1000_fc_default;
2455 
2456 	igb_validate_mdi_setting(hw);
2457 
2458 	/* By default, support wake on port A */
2459 	if (hw->bus.func == 0)
2460 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2461 
2462 	/* Check the NVM for wake support on non-port A ports */
2463 	if (hw->mac.type >= e1000_82580)
2464 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2465 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2466 				 &eeprom_data);
2467 	else if (hw->bus.func == 1)
2468 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2469 
2470 	if (eeprom_data & IGB_EEPROM_APME)
2471 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2472 
2473 	/* now that we have the eeprom settings, apply the special cases where
2474 	 * the eeprom may be wrong or the board simply won't support wake on
2475 	 * lan on a particular port
2476 	 */
2477 	switch (pdev->device) {
2478 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2479 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2480 		break;
2481 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2482 	case E1000_DEV_ID_82576_FIBER:
2483 	case E1000_DEV_ID_82576_SERDES:
2484 		/* Wake events only supported on port A for dual fiber
2485 		 * regardless of eeprom setting
2486 		 */
2487 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2488 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2489 		break;
2490 	case E1000_DEV_ID_82576_QUAD_COPPER:
2491 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2492 		/* if quad port adapter, disable WoL on all but port A */
2493 		if (global_quad_port_a != 0)
2494 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495 		else
2496 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2497 		/* Reset for multiple quad port adapters */
2498 		if (++global_quad_port_a == 4)
2499 			global_quad_port_a = 0;
2500 		break;
2501 	default:
2502 		/* If the device can't wake, don't set software support */
2503 		if (!device_can_wakeup(&adapter->pdev->dev))
2504 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2505 	}
2506 
2507 	/* initialize the wol settings based on the eeprom settings */
2508 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2509 		adapter->wol |= E1000_WUFC_MAG;
2510 
2511 	/* Some vendors want WoL disabled by default, but still supported */
2512 	if ((hw->mac.type == e1000_i350) &&
2513 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2514 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2515 		adapter->wol = 0;
2516 	}
2517 
2518 	device_set_wakeup_enable(&adapter->pdev->dev,
2519 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2520 
2521 	/* reset the hardware with the new settings */
2522 	igb_reset(adapter);
2523 
2524 	/* Init the I2C interface */
2525 	err = igb_init_i2c(adapter);
2526 	if (err) {
2527 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2528 		goto err_eeprom;
2529 	}
2530 
2531 	/* let the f/w know that the h/w is now under the control of the
2532 	 * driver. */
2533 	igb_get_hw_control(adapter);
2534 
2535 	strcpy(netdev->name, "eth%d");
2536 	err = register_netdev(netdev);
2537 	if (err)
2538 		goto err_register;
2539 
2540 	/* carrier off reporting is important to ethtool even BEFORE open */
2541 	netif_carrier_off(netdev);
2542 
2543 #ifdef CONFIG_IGB_DCA
2544 	if (dca_add_requester(&pdev->dev) == 0) {
2545 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2546 		dev_info(&pdev->dev, "DCA enabled\n");
2547 		igb_setup_dca(adapter);
2548 	}
2549 
2550 #endif
2551 #ifdef CONFIG_IGB_HWMON
2552 	/* Initialize the thermal sensor on i350 devices. */
2553 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2554 		u16 ets_word;
2555 
2556 		/* Read the NVM to determine if this i350 device supports an
2557 		 * external thermal sensor.
2558 		 */
2559 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2560 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2561 			adapter->ets = true;
2562 		else
2563 			adapter->ets = false;
2564 		if (igb_sysfs_init(adapter))
2565 			dev_err(&pdev->dev,
2566 				"failed to allocate sysfs resources\n");
2567 	} else {
2568 		adapter->ets = false;
2569 	}
2570 #endif
2571 	/* Check if Media Autosense is enabled */
2572 	adapter->ei = *ei;
2573 	if (hw->dev_spec._82575.mas_capable)
2574 		igb_init_mas(adapter);
2575 
2576 	/* do hw tstamp init after resetting */
2577 	igb_ptp_init(adapter);
2578 
2579 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2580 	/* print bus type/speed/width info, not applicable to i354 */
2581 	if (hw->mac.type != e1000_i354) {
2582 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2583 			 netdev->name,
2584 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2585 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2586 			   "unknown"),
2587 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2588 			  "Width x4" :
2589 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2590 			  "Width x2" :
2591 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2592 			  "Width x1" : "unknown"), netdev->dev_addr);
2593 	}
2594 
2595 	if ((hw->mac.type >= e1000_i210 ||
2596 	     igb_get_flash_presence_i210(hw))) {
2597 		ret_val = igb_read_part_string(hw, part_str,
2598 					       E1000_PBANUM_LENGTH);
2599 	} else {
2600 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2601 	}
2602 
2603 	if (ret_val)
2604 		strcpy(part_str, "Unknown");
2605 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2606 	dev_info(&pdev->dev,
2607 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2608 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2609 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2610 		adapter->num_rx_queues, adapter->num_tx_queues);
2611 	if (hw->phy.media_type == e1000_media_type_copper) {
2612 		switch (hw->mac.type) {
2613 		case e1000_i350:
2614 		case e1000_i210:
2615 		case e1000_i211:
2616 			/* Enable EEE for internal copper PHY devices */
2617 			err = igb_set_eee_i350(hw);
2618 			if ((!err) &&
2619 			    (!hw->dev_spec._82575.eee_disable)) {
2620 				adapter->eee_advert =
2621 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2622 				adapter->flags |= IGB_FLAG_EEE;
2623 			}
2624 			break;
2625 		case e1000_i354:
2626 			if ((rd32(E1000_CTRL_EXT) &
2627 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2628 				err = igb_set_eee_i354(hw);
2629 				if ((!err) &&
2630 					(!hw->dev_spec._82575.eee_disable)) {
2631 					adapter->eee_advert =
2632 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2633 					adapter->flags |= IGB_FLAG_EEE;
2634 				}
2635 			}
2636 			break;
2637 		default:
2638 			break;
2639 		}
2640 	}
2641 	pm_runtime_put_noidle(&pdev->dev);
2642 	return 0;
2643 
2644 err_register:
2645 	igb_release_hw_control(adapter);
2646 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2647 err_eeprom:
2648 	if (!igb_check_reset_block(hw))
2649 		igb_reset_phy(hw);
2650 
2651 	if (hw->flash_address)
2652 		iounmap(hw->flash_address);
2653 err_sw_init:
2654 	igb_clear_interrupt_scheme(adapter);
2655 	pci_iounmap(pdev, hw->hw_addr);
2656 err_ioremap:
2657 	free_netdev(netdev);
2658 err_alloc_etherdev:
2659 	pci_release_selected_regions(pdev,
2660 				     pci_select_bars(pdev, IORESOURCE_MEM));
2661 err_pci_reg:
2662 err_dma:
2663 	pci_disable_device(pdev);
2664 	return err;
2665 }
2666 
2667 #ifdef CONFIG_PCI_IOV
2668 static int igb_disable_sriov(struct pci_dev *pdev)
2669 {
2670 	struct net_device *netdev = pci_get_drvdata(pdev);
2671 	struct igb_adapter *adapter = netdev_priv(netdev);
2672 	struct e1000_hw *hw = &adapter->hw;
2673 
2674 	/* reclaim resources allocated to VFs */
2675 	if (adapter->vf_data) {
2676 		/* disable iov and allow time for transactions to clear */
2677 		if (pci_vfs_assigned(pdev)) {
2678 			dev_warn(&pdev->dev,
2679 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2680 			return -EPERM;
2681 		} else {
2682 			pci_disable_sriov(pdev);
2683 			msleep(500);
2684 		}
2685 
2686 		kfree(adapter->vf_data);
2687 		adapter->vf_data = NULL;
2688 		adapter->vfs_allocated_count = 0;
2689 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2690 		wrfl();
2691 		msleep(100);
2692 		dev_info(&pdev->dev, "IOV Disabled\n");
2693 
2694 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2695 		adapter->flags |= IGB_FLAG_DMAC;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2702 {
2703 	struct net_device *netdev = pci_get_drvdata(pdev);
2704 	struct igb_adapter *adapter = netdev_priv(netdev);
2705 	int old_vfs = pci_num_vf(pdev);
2706 	int err = 0;
2707 	int i;
2708 
2709 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2710 		err = -EPERM;
2711 		goto out;
2712 	}
2713 	if (!num_vfs)
2714 		goto out;
2715 
2716 	if (old_vfs) {
2717 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2718 			 old_vfs, max_vfs);
2719 		adapter->vfs_allocated_count = old_vfs;
2720 	} else
2721 		adapter->vfs_allocated_count = num_vfs;
2722 
2723 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2724 				sizeof(struct vf_data_storage), GFP_KERNEL);
2725 
2726 	/* if allocation failed then we do not support SR-IOV */
2727 	if (!adapter->vf_data) {
2728 		adapter->vfs_allocated_count = 0;
2729 		dev_err(&pdev->dev,
2730 			"Unable to allocate memory for VF Data Storage\n");
2731 		err = -ENOMEM;
2732 		goto out;
2733 	}
2734 
2735 	/* only call pci_enable_sriov() if no VFs are allocated already */
2736 	if (!old_vfs) {
2737 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2738 		if (err)
2739 			goto err_out;
2740 	}
2741 	dev_info(&pdev->dev, "%d VFs allocated\n",
2742 		 adapter->vfs_allocated_count);
2743 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2744 		igb_vf_configure(adapter, i);
2745 
2746 	/* DMA Coalescing is not supported in IOV mode. */
2747 	adapter->flags &= ~IGB_FLAG_DMAC;
2748 	goto out;
2749 
2750 err_out:
2751 	kfree(adapter->vf_data);
2752 	adapter->vf_data = NULL;
2753 	adapter->vfs_allocated_count = 0;
2754 out:
2755 	return err;
2756 }
2757 
2758 #endif
2759 /**
2760  *  igb_remove_i2c - Cleanup  I2C interface
2761  *  @adapter: pointer to adapter structure
2762  **/
2763 static void igb_remove_i2c(struct igb_adapter *adapter)
2764 {
2765 	/* free the adapter bus structure */
2766 	i2c_del_adapter(&adapter->i2c_adap);
2767 }
2768 
2769 /**
2770  *  igb_remove - Device Removal Routine
2771  *  @pdev: PCI device information struct
2772  *
2773  *  igb_remove is called by the PCI subsystem to alert the driver
2774  *  that it should release a PCI device.  The could be caused by a
2775  *  Hot-Plug event, or because the driver is going to be removed from
2776  *  memory.
2777  **/
2778 static void igb_remove(struct pci_dev *pdev)
2779 {
2780 	struct net_device *netdev = pci_get_drvdata(pdev);
2781 	struct igb_adapter *adapter = netdev_priv(netdev);
2782 	struct e1000_hw *hw = &adapter->hw;
2783 
2784 	pm_runtime_get_noresume(&pdev->dev);
2785 #ifdef CONFIG_IGB_HWMON
2786 	igb_sysfs_exit(adapter);
2787 #endif
2788 	igb_remove_i2c(adapter);
2789 	igb_ptp_stop(adapter);
2790 	/* The watchdog timer may be rescheduled, so explicitly
2791 	 * disable watchdog from being rescheduled.
2792 	 */
2793 	set_bit(__IGB_DOWN, &adapter->state);
2794 	del_timer_sync(&adapter->watchdog_timer);
2795 	del_timer_sync(&adapter->phy_info_timer);
2796 
2797 	cancel_work_sync(&adapter->reset_task);
2798 	cancel_work_sync(&adapter->watchdog_task);
2799 
2800 #ifdef CONFIG_IGB_DCA
2801 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2802 		dev_info(&pdev->dev, "DCA disabled\n");
2803 		dca_remove_requester(&pdev->dev);
2804 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2805 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2806 	}
2807 #endif
2808 
2809 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2810 	 * would have already happened in close and is redundant.
2811 	 */
2812 	igb_release_hw_control(adapter);
2813 
2814 	unregister_netdev(netdev);
2815 
2816 	igb_clear_interrupt_scheme(adapter);
2817 
2818 #ifdef CONFIG_PCI_IOV
2819 	igb_disable_sriov(pdev);
2820 #endif
2821 
2822 	pci_iounmap(pdev, hw->hw_addr);
2823 	if (hw->flash_address)
2824 		iounmap(hw->flash_address);
2825 	pci_release_selected_regions(pdev,
2826 				     pci_select_bars(pdev, IORESOURCE_MEM));
2827 
2828 	kfree(adapter->shadow_vfta);
2829 	free_netdev(netdev);
2830 
2831 	pci_disable_pcie_error_reporting(pdev);
2832 
2833 	pci_disable_device(pdev);
2834 }
2835 
2836 /**
2837  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2838  *  @adapter: board private structure to initialize
2839  *
2840  *  This function initializes the vf specific data storage and then attempts to
2841  *  allocate the VFs.  The reason for ordering it this way is because it is much
2842  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2843  *  the memory for the VFs.
2844  **/
2845 static void igb_probe_vfs(struct igb_adapter *adapter)
2846 {
2847 #ifdef CONFIG_PCI_IOV
2848 	struct pci_dev *pdev = adapter->pdev;
2849 	struct e1000_hw *hw = &adapter->hw;
2850 
2851 	/* Virtualization features not supported on i210 family. */
2852 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2853 		return;
2854 
2855 	pci_sriov_set_totalvfs(pdev, 7);
2856 	igb_pci_enable_sriov(pdev, max_vfs);
2857 
2858 #endif /* CONFIG_PCI_IOV */
2859 }
2860 
2861 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2862 {
2863 	struct e1000_hw *hw = &adapter->hw;
2864 	u32 max_rss_queues;
2865 
2866 	/* Determine the maximum number of RSS queues supported. */
2867 	switch (hw->mac.type) {
2868 	case e1000_i211:
2869 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2870 		break;
2871 	case e1000_82575:
2872 	case e1000_i210:
2873 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2874 		break;
2875 	case e1000_i350:
2876 		/* I350 cannot do RSS and SR-IOV at the same time */
2877 		if (!!adapter->vfs_allocated_count) {
2878 			max_rss_queues = 1;
2879 			break;
2880 		}
2881 		/* fall through */
2882 	case e1000_82576:
2883 		if (!!adapter->vfs_allocated_count) {
2884 			max_rss_queues = 2;
2885 			break;
2886 		}
2887 		/* fall through */
2888 	case e1000_82580:
2889 	case e1000_i354:
2890 	default:
2891 		max_rss_queues = IGB_MAX_RX_QUEUES;
2892 		break;
2893 	}
2894 
2895 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2896 
2897 	/* Determine if we need to pair queues. */
2898 	switch (hw->mac.type) {
2899 	case e1000_82575:
2900 	case e1000_i211:
2901 		/* Device supports enough interrupts without queue pairing. */
2902 		break;
2903 	case e1000_82576:
2904 		/* If VFs are going to be allocated with RSS queues then we
2905 		 * should pair the queues in order to conserve interrupts due
2906 		 * to limited supply.
2907 		 */
2908 		if ((adapter->rss_queues > 1) &&
2909 		    (adapter->vfs_allocated_count > 6))
2910 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2911 		/* fall through */
2912 	case e1000_82580:
2913 	case e1000_i350:
2914 	case e1000_i354:
2915 	case e1000_i210:
2916 	default:
2917 		/* If rss_queues > half of max_rss_queues, pair the queues in
2918 		 * order to conserve interrupts due to limited supply.
2919 		 */
2920 		if (adapter->rss_queues > (max_rss_queues / 2))
2921 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2922 		break;
2923 	}
2924 }
2925 
2926 /**
2927  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2928  *  @adapter: board private structure to initialize
2929  *
2930  *  igb_sw_init initializes the Adapter private data structure.
2931  *  Fields are initialized based on PCI device information and
2932  *  OS network device settings (MTU size).
2933  **/
2934 static int igb_sw_init(struct igb_adapter *adapter)
2935 {
2936 	struct e1000_hw *hw = &adapter->hw;
2937 	struct net_device *netdev = adapter->netdev;
2938 	struct pci_dev *pdev = adapter->pdev;
2939 
2940 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2941 
2942 	/* set default ring sizes */
2943 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2944 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2945 
2946 	/* set default ITR values */
2947 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2948 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2949 
2950 	/* set default work limits */
2951 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2952 
2953 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2954 				  VLAN_HLEN;
2955 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2956 
2957 	spin_lock_init(&adapter->stats64_lock);
2958 #ifdef CONFIG_PCI_IOV
2959 	switch (hw->mac.type) {
2960 	case e1000_82576:
2961 	case e1000_i350:
2962 		if (max_vfs > 7) {
2963 			dev_warn(&pdev->dev,
2964 				 "Maximum of 7 VFs per PF, using max\n");
2965 			max_vfs = adapter->vfs_allocated_count = 7;
2966 		} else
2967 			adapter->vfs_allocated_count = max_vfs;
2968 		if (adapter->vfs_allocated_count)
2969 			dev_warn(&pdev->dev,
2970 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2971 		break;
2972 	default:
2973 		break;
2974 	}
2975 #endif /* CONFIG_PCI_IOV */
2976 
2977 	igb_init_queue_configuration(adapter);
2978 
2979 	/* Setup and initialize a copy of the hw vlan table array */
2980 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2981 				       GFP_ATOMIC);
2982 
2983 	/* This call may decrease the number of queues */
2984 	if (igb_init_interrupt_scheme(adapter, true)) {
2985 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2986 		return -ENOMEM;
2987 	}
2988 
2989 	igb_probe_vfs(adapter);
2990 
2991 	/* Explicitly disable IRQ since the NIC can be in any state. */
2992 	igb_irq_disable(adapter);
2993 
2994 	if (hw->mac.type >= e1000_i350)
2995 		adapter->flags &= ~IGB_FLAG_DMAC;
2996 
2997 	set_bit(__IGB_DOWN, &adapter->state);
2998 	return 0;
2999 }
3000 
3001 /**
3002  *  igb_open - Called when a network interface is made active
3003  *  @netdev: network interface device structure
3004  *
3005  *  Returns 0 on success, negative value on failure
3006  *
3007  *  The open entry point is called when a network interface is made
3008  *  active by the system (IFF_UP).  At this point all resources needed
3009  *  for transmit and receive operations are allocated, the interrupt
3010  *  handler is registered with the OS, the watchdog timer is started,
3011  *  and the stack is notified that the interface is ready.
3012  **/
3013 static int __igb_open(struct net_device *netdev, bool resuming)
3014 {
3015 	struct igb_adapter *adapter = netdev_priv(netdev);
3016 	struct e1000_hw *hw = &adapter->hw;
3017 	struct pci_dev *pdev = adapter->pdev;
3018 	int err;
3019 	int i;
3020 
3021 	/* disallow open during test */
3022 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3023 		WARN_ON(resuming);
3024 		return -EBUSY;
3025 	}
3026 
3027 	if (!resuming)
3028 		pm_runtime_get_sync(&pdev->dev);
3029 
3030 	netif_carrier_off(netdev);
3031 
3032 	/* allocate transmit descriptors */
3033 	err = igb_setup_all_tx_resources(adapter);
3034 	if (err)
3035 		goto err_setup_tx;
3036 
3037 	/* allocate receive descriptors */
3038 	err = igb_setup_all_rx_resources(adapter);
3039 	if (err)
3040 		goto err_setup_rx;
3041 
3042 	igb_power_up_link(adapter);
3043 
3044 	/* before we allocate an interrupt, we must be ready to handle it.
3045 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3046 	 * as soon as we call pci_request_irq, so we have to setup our
3047 	 * clean_rx handler before we do so.
3048 	 */
3049 	igb_configure(adapter);
3050 
3051 	err = igb_request_irq(adapter);
3052 	if (err)
3053 		goto err_req_irq;
3054 
3055 	/* Notify the stack of the actual queue counts. */
3056 	err = netif_set_real_num_tx_queues(adapter->netdev,
3057 					   adapter->num_tx_queues);
3058 	if (err)
3059 		goto err_set_queues;
3060 
3061 	err = netif_set_real_num_rx_queues(adapter->netdev,
3062 					   adapter->num_rx_queues);
3063 	if (err)
3064 		goto err_set_queues;
3065 
3066 	/* From here on the code is the same as igb_up() */
3067 	clear_bit(__IGB_DOWN, &adapter->state);
3068 
3069 	for (i = 0; i < adapter->num_q_vectors; i++)
3070 		napi_enable(&(adapter->q_vector[i]->napi));
3071 
3072 	/* Clear any pending interrupts. */
3073 	rd32(E1000_ICR);
3074 
3075 	igb_irq_enable(adapter);
3076 
3077 	/* notify VFs that reset has been completed */
3078 	if (adapter->vfs_allocated_count) {
3079 		u32 reg_data = rd32(E1000_CTRL_EXT);
3080 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3081 		wr32(E1000_CTRL_EXT, reg_data);
3082 	}
3083 
3084 	netif_tx_start_all_queues(netdev);
3085 
3086 	if (!resuming)
3087 		pm_runtime_put(&pdev->dev);
3088 
3089 	/* start the watchdog. */
3090 	hw->mac.get_link_status = 1;
3091 	schedule_work(&adapter->watchdog_task);
3092 
3093 	return 0;
3094 
3095 err_set_queues:
3096 	igb_free_irq(adapter);
3097 err_req_irq:
3098 	igb_release_hw_control(adapter);
3099 	igb_power_down_link(adapter);
3100 	igb_free_all_rx_resources(adapter);
3101 err_setup_rx:
3102 	igb_free_all_tx_resources(adapter);
3103 err_setup_tx:
3104 	igb_reset(adapter);
3105 	if (!resuming)
3106 		pm_runtime_put(&pdev->dev);
3107 
3108 	return err;
3109 }
3110 
3111 static int igb_open(struct net_device *netdev)
3112 {
3113 	return __igb_open(netdev, false);
3114 }
3115 
3116 /**
3117  *  igb_close - Disables a network interface
3118  *  @netdev: network interface device structure
3119  *
3120  *  Returns 0, this is not allowed to fail
3121  *
3122  *  The close entry point is called when an interface is de-activated
3123  *  by the OS.  The hardware is still under the driver's control, but
3124  *  needs to be disabled.  A global MAC reset is issued to stop the
3125  *  hardware, and all transmit and receive resources are freed.
3126  **/
3127 static int __igb_close(struct net_device *netdev, bool suspending)
3128 {
3129 	struct igb_adapter *adapter = netdev_priv(netdev);
3130 	struct pci_dev *pdev = adapter->pdev;
3131 
3132 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3133 
3134 	if (!suspending)
3135 		pm_runtime_get_sync(&pdev->dev);
3136 
3137 	igb_down(adapter);
3138 	igb_free_irq(adapter);
3139 
3140 	igb_free_all_tx_resources(adapter);
3141 	igb_free_all_rx_resources(adapter);
3142 
3143 	if (!suspending)
3144 		pm_runtime_put_sync(&pdev->dev);
3145 	return 0;
3146 }
3147 
3148 static int igb_close(struct net_device *netdev)
3149 {
3150 	return __igb_close(netdev, false);
3151 }
3152 
3153 /**
3154  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3155  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3156  *
3157  *  Return 0 on success, negative on failure
3158  **/
3159 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3160 {
3161 	struct device *dev = tx_ring->dev;
3162 	int size;
3163 
3164 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3165 
3166 	tx_ring->tx_buffer_info = vzalloc(size);
3167 	if (!tx_ring->tx_buffer_info)
3168 		goto err;
3169 
3170 	/* round up to nearest 4K */
3171 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3172 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3173 
3174 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3175 					   &tx_ring->dma, GFP_KERNEL);
3176 	if (!tx_ring->desc)
3177 		goto err;
3178 
3179 	tx_ring->next_to_use = 0;
3180 	tx_ring->next_to_clean = 0;
3181 
3182 	return 0;
3183 
3184 err:
3185 	vfree(tx_ring->tx_buffer_info);
3186 	tx_ring->tx_buffer_info = NULL;
3187 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3188 	return -ENOMEM;
3189 }
3190 
3191 /**
3192  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3193  *				 (Descriptors) for all queues
3194  *  @adapter: board private structure
3195  *
3196  *  Return 0 on success, negative on failure
3197  **/
3198 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3199 {
3200 	struct pci_dev *pdev = adapter->pdev;
3201 	int i, err = 0;
3202 
3203 	for (i = 0; i < adapter->num_tx_queues; i++) {
3204 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3205 		if (err) {
3206 			dev_err(&pdev->dev,
3207 				"Allocation for Tx Queue %u failed\n", i);
3208 			for (i--; i >= 0; i--)
3209 				igb_free_tx_resources(adapter->tx_ring[i]);
3210 			break;
3211 		}
3212 	}
3213 
3214 	return err;
3215 }
3216 
3217 /**
3218  *  igb_setup_tctl - configure the transmit control registers
3219  *  @adapter: Board private structure
3220  **/
3221 void igb_setup_tctl(struct igb_adapter *adapter)
3222 {
3223 	struct e1000_hw *hw = &adapter->hw;
3224 	u32 tctl;
3225 
3226 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3227 	wr32(E1000_TXDCTL(0), 0);
3228 
3229 	/* Program the Transmit Control Register */
3230 	tctl = rd32(E1000_TCTL);
3231 	tctl &= ~E1000_TCTL_CT;
3232 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3233 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3234 
3235 	igb_config_collision_dist(hw);
3236 
3237 	/* Enable transmits */
3238 	tctl |= E1000_TCTL_EN;
3239 
3240 	wr32(E1000_TCTL, tctl);
3241 }
3242 
3243 /**
3244  *  igb_configure_tx_ring - Configure transmit ring after Reset
3245  *  @adapter: board private structure
3246  *  @ring: tx ring to configure
3247  *
3248  *  Configure a transmit ring after a reset.
3249  **/
3250 void igb_configure_tx_ring(struct igb_adapter *adapter,
3251                            struct igb_ring *ring)
3252 {
3253 	struct e1000_hw *hw = &adapter->hw;
3254 	u32 txdctl = 0;
3255 	u64 tdba = ring->dma;
3256 	int reg_idx = ring->reg_idx;
3257 
3258 	/* disable the queue */
3259 	wr32(E1000_TXDCTL(reg_idx), 0);
3260 	wrfl();
3261 	mdelay(10);
3262 
3263 	wr32(E1000_TDLEN(reg_idx),
3264 	     ring->count * sizeof(union e1000_adv_tx_desc));
3265 	wr32(E1000_TDBAL(reg_idx),
3266 	     tdba & 0x00000000ffffffffULL);
3267 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3268 
3269 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3270 	wr32(E1000_TDH(reg_idx), 0);
3271 	writel(0, ring->tail);
3272 
3273 	txdctl |= IGB_TX_PTHRESH;
3274 	txdctl |= IGB_TX_HTHRESH << 8;
3275 	txdctl |= IGB_TX_WTHRESH << 16;
3276 
3277 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3278 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3279 }
3280 
3281 /**
3282  *  igb_configure_tx - Configure transmit Unit after Reset
3283  *  @adapter: board private structure
3284  *
3285  *  Configure the Tx unit of the MAC after a reset.
3286  **/
3287 static void igb_configure_tx(struct igb_adapter *adapter)
3288 {
3289 	int i;
3290 
3291 	for (i = 0; i < adapter->num_tx_queues; i++)
3292 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3293 }
3294 
3295 /**
3296  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3297  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3298  *
3299  *  Returns 0 on success, negative on failure
3300  **/
3301 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3302 {
3303 	struct device *dev = rx_ring->dev;
3304 	int size;
3305 
3306 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3307 
3308 	rx_ring->rx_buffer_info = vzalloc(size);
3309 	if (!rx_ring->rx_buffer_info)
3310 		goto err;
3311 
3312 	/* Round up to nearest 4K */
3313 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3314 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3315 
3316 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3317 					   &rx_ring->dma, GFP_KERNEL);
3318 	if (!rx_ring->desc)
3319 		goto err;
3320 
3321 	rx_ring->next_to_alloc = 0;
3322 	rx_ring->next_to_clean = 0;
3323 	rx_ring->next_to_use = 0;
3324 
3325 	return 0;
3326 
3327 err:
3328 	vfree(rx_ring->rx_buffer_info);
3329 	rx_ring->rx_buffer_info = NULL;
3330 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3331 	return -ENOMEM;
3332 }
3333 
3334 /**
3335  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3336  *				 (Descriptors) for all queues
3337  *  @adapter: board private structure
3338  *
3339  *  Return 0 on success, negative on failure
3340  **/
3341 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3342 {
3343 	struct pci_dev *pdev = adapter->pdev;
3344 	int i, err = 0;
3345 
3346 	for (i = 0; i < adapter->num_rx_queues; i++) {
3347 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3348 		if (err) {
3349 			dev_err(&pdev->dev,
3350 				"Allocation for Rx Queue %u failed\n", i);
3351 			for (i--; i >= 0; i--)
3352 				igb_free_rx_resources(adapter->rx_ring[i]);
3353 			break;
3354 		}
3355 	}
3356 
3357 	return err;
3358 }
3359 
3360 /**
3361  *  igb_setup_mrqc - configure the multiple receive queue control registers
3362  *  @adapter: Board private structure
3363  **/
3364 static void igb_setup_mrqc(struct igb_adapter *adapter)
3365 {
3366 	struct e1000_hw *hw = &adapter->hw;
3367 	u32 mrqc, rxcsum;
3368 	u32 j, num_rx_queues;
3369 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3370 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3371 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3372 					0xFA01ACBE };
3373 
3374 	/* Fill out hash function seeds */
3375 	for (j = 0; j < 10; j++)
3376 		wr32(E1000_RSSRK(j), rsskey[j]);
3377 
3378 	num_rx_queues = adapter->rss_queues;
3379 
3380 	switch (hw->mac.type) {
3381 	case e1000_82576:
3382 		/* 82576 supports 2 RSS queues for SR-IOV */
3383 		if (adapter->vfs_allocated_count)
3384 			num_rx_queues = 2;
3385 		break;
3386 	default:
3387 		break;
3388 	}
3389 
3390 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3391 		for (j = 0; j < IGB_RETA_SIZE; j++)
3392 			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3393 		adapter->rss_indir_tbl_init = num_rx_queues;
3394 	}
3395 	igb_write_rss_indir_tbl(adapter);
3396 
3397 	/* Disable raw packet checksumming so that RSS hash is placed in
3398 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3399 	 * offloads as they are enabled by default
3400 	 */
3401 	rxcsum = rd32(E1000_RXCSUM);
3402 	rxcsum |= E1000_RXCSUM_PCSD;
3403 
3404 	if (adapter->hw.mac.type >= e1000_82576)
3405 		/* Enable Receive Checksum Offload for SCTP */
3406 		rxcsum |= E1000_RXCSUM_CRCOFL;
3407 
3408 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3409 	wr32(E1000_RXCSUM, rxcsum);
3410 
3411 	/* Generate RSS hash based on packet types, TCP/UDP
3412 	 * port numbers and/or IPv4/v6 src and dst addresses
3413 	 */
3414 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416 	       E1000_MRQC_RSS_FIELD_IPV6 |
3417 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419 
3420 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424 
3425 	/* If VMDq is enabled then we set the appropriate mode for that, else
3426 	 * we default to RSS so that an RSS hash is calculated per packet even
3427 	 * if we are only using one queue
3428 	 */
3429 	if (adapter->vfs_allocated_count) {
3430 		if (hw->mac.type > e1000_82575) {
3431 			/* Set the default pool for the PF's first queue */
3432 			u32 vtctl = rd32(E1000_VT_CTL);
3433 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3434 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3435 			vtctl |= adapter->vfs_allocated_count <<
3436 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3437 			wr32(E1000_VT_CTL, vtctl);
3438 		}
3439 		if (adapter->rss_queues > 1)
3440 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3441 		else
3442 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3443 	} else {
3444 		if (hw->mac.type != e1000_i211)
3445 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3446 	}
3447 	igb_vmm_control(adapter);
3448 
3449 	wr32(E1000_MRQC, mrqc);
3450 }
3451 
3452 /**
3453  *  igb_setup_rctl - configure the receive control registers
3454  *  @adapter: Board private structure
3455  **/
3456 void igb_setup_rctl(struct igb_adapter *adapter)
3457 {
3458 	struct e1000_hw *hw = &adapter->hw;
3459 	u32 rctl;
3460 
3461 	rctl = rd32(E1000_RCTL);
3462 
3463 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3464 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3465 
3466 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3467 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3468 
3469 	/* enable stripping of CRC. It's unlikely this will break BMC
3470 	 * redirection as it did with e1000. Newer features require
3471 	 * that the HW strips the CRC.
3472 	 */
3473 	rctl |= E1000_RCTL_SECRC;
3474 
3475 	/* disable store bad packets and clear size bits. */
3476 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3477 
3478 	/* enable LPE to prevent packets larger than max_frame_size */
3479 	rctl |= E1000_RCTL_LPE;
3480 
3481 	/* disable queue 0 to prevent tail write w/o re-config */
3482 	wr32(E1000_RXDCTL(0), 0);
3483 
3484 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3485 	 * queue drop for all VF and PF queues to prevent head of line blocking
3486 	 * if an un-trusted VF does not provide descriptors to hardware.
3487 	 */
3488 	if (adapter->vfs_allocated_count) {
3489 		/* set all queue drop enable bits */
3490 		wr32(E1000_QDE, ALL_QUEUES);
3491 	}
3492 
3493 	/* This is useful for sniffing bad packets. */
3494 	if (adapter->netdev->features & NETIF_F_RXALL) {
3495 		/* UPE and MPE will be handled by normal PROMISC logic
3496 		 * in e1000e_set_rx_mode
3497 		 */
3498 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3499 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3500 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3501 
3502 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3503 			  E1000_RCTL_DPF | /* Allow filtered pause */
3504 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3505 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3506 		 * and that breaks VLANs.
3507 		 */
3508 	}
3509 
3510 	wr32(E1000_RCTL, rctl);
3511 }
3512 
3513 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3514                                    int vfn)
3515 {
3516 	struct e1000_hw *hw = &adapter->hw;
3517 	u32 vmolr;
3518 
3519 	/* if it isn't the PF check to see if VFs are enabled and
3520 	 * increase the size to support vlan tags
3521 	 */
3522 	if (vfn < adapter->vfs_allocated_count &&
3523 	    adapter->vf_data[vfn].vlans_enabled)
3524 		size += VLAN_TAG_SIZE;
3525 
3526 	vmolr = rd32(E1000_VMOLR(vfn));
3527 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3528 	vmolr |= size | E1000_VMOLR_LPE;
3529 	wr32(E1000_VMOLR(vfn), vmolr);
3530 
3531 	return 0;
3532 }
3533 
3534 /**
3535  *  igb_rlpml_set - set maximum receive packet size
3536  *  @adapter: board private structure
3537  *
3538  *  Configure maximum receivable packet size.
3539  **/
3540 static void igb_rlpml_set(struct igb_adapter *adapter)
3541 {
3542 	u32 max_frame_size = adapter->max_frame_size;
3543 	struct e1000_hw *hw = &adapter->hw;
3544 	u16 pf_id = adapter->vfs_allocated_count;
3545 
3546 	if (pf_id) {
3547 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3548 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3549 		 * to our max jumbo frame size, in case we need to enable
3550 		 * jumbo frames on one of the rings later.
3551 		 * This will not pass over-length frames into the default
3552 		 * queue because it's gated by the VMOLR.RLPML.
3553 		 */
3554 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3555 	}
3556 
3557 	wr32(E1000_RLPML, max_frame_size);
3558 }
3559 
3560 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3561 				 int vfn, bool aupe)
3562 {
3563 	struct e1000_hw *hw = &adapter->hw;
3564 	u32 vmolr;
3565 
3566 	/* This register exists only on 82576 and newer so if we are older then
3567 	 * we should exit and do nothing
3568 	 */
3569 	if (hw->mac.type < e1000_82576)
3570 		return;
3571 
3572 	vmolr = rd32(E1000_VMOLR(vfn));
3573 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3574 	if (hw->mac.type == e1000_i350) {
3575 		u32 dvmolr;
3576 
3577 		dvmolr = rd32(E1000_DVMOLR(vfn));
3578 		dvmolr |= E1000_DVMOLR_STRVLAN;
3579 		wr32(E1000_DVMOLR(vfn), dvmolr);
3580 	}
3581 	if (aupe)
3582 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3583 	else
3584 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3585 
3586 	/* clear all bits that might not be set */
3587 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3588 
3589 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3590 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3591 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3592 	 * multicast packets
3593 	 */
3594 	if (vfn <= adapter->vfs_allocated_count)
3595 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3596 
3597 	wr32(E1000_VMOLR(vfn), vmolr);
3598 }
3599 
3600 /**
3601  *  igb_configure_rx_ring - Configure a receive ring after Reset
3602  *  @adapter: board private structure
3603  *  @ring: receive ring to be configured
3604  *
3605  *  Configure the Rx unit of the MAC after a reset.
3606  **/
3607 void igb_configure_rx_ring(struct igb_adapter *adapter,
3608 			   struct igb_ring *ring)
3609 {
3610 	struct e1000_hw *hw = &adapter->hw;
3611 	u64 rdba = ring->dma;
3612 	int reg_idx = ring->reg_idx;
3613 	u32 srrctl = 0, rxdctl = 0;
3614 
3615 	/* disable the queue */
3616 	wr32(E1000_RXDCTL(reg_idx), 0);
3617 
3618 	/* Set DMA base address registers */
3619 	wr32(E1000_RDBAL(reg_idx),
3620 	     rdba & 0x00000000ffffffffULL);
3621 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3622 	wr32(E1000_RDLEN(reg_idx),
3623 	     ring->count * sizeof(union e1000_adv_rx_desc));
3624 
3625 	/* initialize head and tail */
3626 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3627 	wr32(E1000_RDH(reg_idx), 0);
3628 	writel(0, ring->tail);
3629 
3630 	/* set descriptor configuration */
3631 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3632 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3633 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3634 	if (hw->mac.type >= e1000_82580)
3635 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3636 	/* Only set Drop Enable if we are supporting multiple queues */
3637 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3638 		srrctl |= E1000_SRRCTL_DROP_EN;
3639 
3640 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3641 
3642 	/* set filtering for VMDQ pools */
3643 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3644 
3645 	rxdctl |= IGB_RX_PTHRESH;
3646 	rxdctl |= IGB_RX_HTHRESH << 8;
3647 	rxdctl |= IGB_RX_WTHRESH << 16;
3648 
3649 	/* enable receive descriptor fetching */
3650 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3651 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3652 }
3653 
3654 /**
3655  *  igb_configure_rx - Configure receive Unit after Reset
3656  *  @adapter: board private structure
3657  *
3658  *  Configure the Rx unit of the MAC after a reset.
3659  **/
3660 static void igb_configure_rx(struct igb_adapter *adapter)
3661 {
3662 	int i;
3663 
3664 	/* set UTA to appropriate mode */
3665 	igb_set_uta(adapter);
3666 
3667 	/* set the correct pool for the PF default MAC address in entry 0 */
3668 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3669 			 adapter->vfs_allocated_count);
3670 
3671 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3672 	 * the Base and Length of the Rx Descriptor Ring
3673 	 */
3674 	for (i = 0; i < adapter->num_rx_queues; i++)
3675 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3676 }
3677 
3678 /**
3679  *  igb_free_tx_resources - Free Tx Resources per Queue
3680  *  @tx_ring: Tx descriptor ring for a specific queue
3681  *
3682  *  Free all transmit software resources
3683  **/
3684 void igb_free_tx_resources(struct igb_ring *tx_ring)
3685 {
3686 	igb_clean_tx_ring(tx_ring);
3687 
3688 	vfree(tx_ring->tx_buffer_info);
3689 	tx_ring->tx_buffer_info = NULL;
3690 
3691 	/* if not set, then don't free */
3692 	if (!tx_ring->desc)
3693 		return;
3694 
3695 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3696 			  tx_ring->desc, tx_ring->dma);
3697 
3698 	tx_ring->desc = NULL;
3699 }
3700 
3701 /**
3702  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3703  *  @adapter: board private structure
3704  *
3705  *  Free all transmit software resources
3706  **/
3707 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3708 {
3709 	int i;
3710 
3711 	for (i = 0; i < adapter->num_tx_queues; i++)
3712 		igb_free_tx_resources(adapter->tx_ring[i]);
3713 }
3714 
3715 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3716 				    struct igb_tx_buffer *tx_buffer)
3717 {
3718 	if (tx_buffer->skb) {
3719 		dev_kfree_skb_any(tx_buffer->skb);
3720 		if (dma_unmap_len(tx_buffer, len))
3721 			dma_unmap_single(ring->dev,
3722 					 dma_unmap_addr(tx_buffer, dma),
3723 					 dma_unmap_len(tx_buffer, len),
3724 					 DMA_TO_DEVICE);
3725 	} else if (dma_unmap_len(tx_buffer, len)) {
3726 		dma_unmap_page(ring->dev,
3727 			       dma_unmap_addr(tx_buffer, dma),
3728 			       dma_unmap_len(tx_buffer, len),
3729 			       DMA_TO_DEVICE);
3730 	}
3731 	tx_buffer->next_to_watch = NULL;
3732 	tx_buffer->skb = NULL;
3733 	dma_unmap_len_set(tx_buffer, len, 0);
3734 	/* buffer_info must be completely set up in the transmit path */
3735 }
3736 
3737 /**
3738  *  igb_clean_tx_ring - Free Tx Buffers
3739  *  @tx_ring: ring to be cleaned
3740  **/
3741 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3742 {
3743 	struct igb_tx_buffer *buffer_info;
3744 	unsigned long size;
3745 	u16 i;
3746 
3747 	if (!tx_ring->tx_buffer_info)
3748 		return;
3749 	/* Free all the Tx ring sk_buffs */
3750 
3751 	for (i = 0; i < tx_ring->count; i++) {
3752 		buffer_info = &tx_ring->tx_buffer_info[i];
3753 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3754 	}
3755 
3756 	netdev_tx_reset_queue(txring_txq(tx_ring));
3757 
3758 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3759 	memset(tx_ring->tx_buffer_info, 0, size);
3760 
3761 	/* Zero out the descriptor ring */
3762 	memset(tx_ring->desc, 0, tx_ring->size);
3763 
3764 	tx_ring->next_to_use = 0;
3765 	tx_ring->next_to_clean = 0;
3766 }
3767 
3768 /**
3769  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3770  *  @adapter: board private structure
3771  **/
3772 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3773 {
3774 	int i;
3775 
3776 	for (i = 0; i < adapter->num_tx_queues; i++)
3777 		igb_clean_tx_ring(adapter->tx_ring[i]);
3778 }
3779 
3780 /**
3781  *  igb_free_rx_resources - Free Rx Resources
3782  *  @rx_ring: ring to clean the resources from
3783  *
3784  *  Free all receive software resources
3785  **/
3786 void igb_free_rx_resources(struct igb_ring *rx_ring)
3787 {
3788 	igb_clean_rx_ring(rx_ring);
3789 
3790 	vfree(rx_ring->rx_buffer_info);
3791 	rx_ring->rx_buffer_info = NULL;
3792 
3793 	/* if not set, then don't free */
3794 	if (!rx_ring->desc)
3795 		return;
3796 
3797 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3798 			  rx_ring->desc, rx_ring->dma);
3799 
3800 	rx_ring->desc = NULL;
3801 }
3802 
3803 /**
3804  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3805  *  @adapter: board private structure
3806  *
3807  *  Free all receive software resources
3808  **/
3809 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3810 {
3811 	int i;
3812 
3813 	for (i = 0; i < adapter->num_rx_queues; i++)
3814 		igb_free_rx_resources(adapter->rx_ring[i]);
3815 }
3816 
3817 /**
3818  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3819  *  @rx_ring: ring to free buffers from
3820  **/
3821 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3822 {
3823 	unsigned long size;
3824 	u16 i;
3825 
3826 	if (rx_ring->skb)
3827 		dev_kfree_skb(rx_ring->skb);
3828 	rx_ring->skb = NULL;
3829 
3830 	if (!rx_ring->rx_buffer_info)
3831 		return;
3832 
3833 	/* Free all the Rx ring sk_buffs */
3834 	for (i = 0; i < rx_ring->count; i++) {
3835 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3836 
3837 		if (!buffer_info->page)
3838 			continue;
3839 
3840 		dma_unmap_page(rx_ring->dev,
3841 			       buffer_info->dma,
3842 			       PAGE_SIZE,
3843 			       DMA_FROM_DEVICE);
3844 		__free_page(buffer_info->page);
3845 
3846 		buffer_info->page = NULL;
3847 	}
3848 
3849 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3850 	memset(rx_ring->rx_buffer_info, 0, size);
3851 
3852 	/* Zero out the descriptor ring */
3853 	memset(rx_ring->desc, 0, rx_ring->size);
3854 
3855 	rx_ring->next_to_alloc = 0;
3856 	rx_ring->next_to_clean = 0;
3857 	rx_ring->next_to_use = 0;
3858 }
3859 
3860 /**
3861  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3862  *  @adapter: board private structure
3863  **/
3864 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3865 {
3866 	int i;
3867 
3868 	for (i = 0; i < adapter->num_rx_queues; i++)
3869 		igb_clean_rx_ring(adapter->rx_ring[i]);
3870 }
3871 
3872 /**
3873  *  igb_set_mac - Change the Ethernet Address of the NIC
3874  *  @netdev: network interface device structure
3875  *  @p: pointer to an address structure
3876  *
3877  *  Returns 0 on success, negative on failure
3878  **/
3879 static int igb_set_mac(struct net_device *netdev, void *p)
3880 {
3881 	struct igb_adapter *adapter = netdev_priv(netdev);
3882 	struct e1000_hw *hw = &adapter->hw;
3883 	struct sockaddr *addr = p;
3884 
3885 	if (!is_valid_ether_addr(addr->sa_data))
3886 		return -EADDRNOTAVAIL;
3887 
3888 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3889 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3890 
3891 	/* set the correct pool for the new PF MAC address in entry 0 */
3892 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3893 			 adapter->vfs_allocated_count);
3894 
3895 	return 0;
3896 }
3897 
3898 /**
3899  *  igb_write_mc_addr_list - write multicast addresses to MTA
3900  *  @netdev: network interface device structure
3901  *
3902  *  Writes multicast address list to the MTA hash table.
3903  *  Returns: -ENOMEM on failure
3904  *           0 on no addresses written
3905  *           X on writing X addresses to MTA
3906  **/
3907 static int igb_write_mc_addr_list(struct net_device *netdev)
3908 {
3909 	struct igb_adapter *adapter = netdev_priv(netdev);
3910 	struct e1000_hw *hw = &adapter->hw;
3911 	struct netdev_hw_addr *ha;
3912 	u8  *mta_list;
3913 	int i;
3914 
3915 	if (netdev_mc_empty(netdev)) {
3916 		/* nothing to program, so clear mc list */
3917 		igb_update_mc_addr_list(hw, NULL, 0);
3918 		igb_restore_vf_multicasts(adapter);
3919 		return 0;
3920 	}
3921 
3922 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3923 	if (!mta_list)
3924 		return -ENOMEM;
3925 
3926 	/* The shared function expects a packed array of only addresses. */
3927 	i = 0;
3928 	netdev_for_each_mc_addr(ha, netdev)
3929 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3930 
3931 	igb_update_mc_addr_list(hw, mta_list, i);
3932 	kfree(mta_list);
3933 
3934 	return netdev_mc_count(netdev);
3935 }
3936 
3937 /**
3938  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3939  *  @netdev: network interface device structure
3940  *
3941  *  Writes unicast address list to the RAR table.
3942  *  Returns: -ENOMEM on failure/insufficient address space
3943  *           0 on no addresses written
3944  *           X on writing X addresses to the RAR table
3945  **/
3946 static int igb_write_uc_addr_list(struct net_device *netdev)
3947 {
3948 	struct igb_adapter *adapter = netdev_priv(netdev);
3949 	struct e1000_hw *hw = &adapter->hw;
3950 	unsigned int vfn = adapter->vfs_allocated_count;
3951 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3952 	int count = 0;
3953 
3954 	/* return ENOMEM indicating insufficient memory for addresses */
3955 	if (netdev_uc_count(netdev) > rar_entries)
3956 		return -ENOMEM;
3957 
3958 	if (!netdev_uc_empty(netdev) && rar_entries) {
3959 		struct netdev_hw_addr *ha;
3960 
3961 		netdev_for_each_uc_addr(ha, netdev) {
3962 			if (!rar_entries)
3963 				break;
3964 			igb_rar_set_qsel(adapter, ha->addr,
3965 					 rar_entries--,
3966 					 vfn);
3967 			count++;
3968 		}
3969 	}
3970 	/* write the addresses in reverse order to avoid write combining */
3971 	for (; rar_entries > 0 ; rar_entries--) {
3972 		wr32(E1000_RAH(rar_entries), 0);
3973 		wr32(E1000_RAL(rar_entries), 0);
3974 	}
3975 	wrfl();
3976 
3977 	return count;
3978 }
3979 
3980 /**
3981  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3982  *  @netdev: network interface device structure
3983  *
3984  *  The set_rx_mode entry point is called whenever the unicast or multicast
3985  *  address lists or the network interface flags are updated.  This routine is
3986  *  responsible for configuring the hardware for proper unicast, multicast,
3987  *  promiscuous mode, and all-multi behavior.
3988  **/
3989 static void igb_set_rx_mode(struct net_device *netdev)
3990 {
3991 	struct igb_adapter *adapter = netdev_priv(netdev);
3992 	struct e1000_hw *hw = &adapter->hw;
3993 	unsigned int vfn = adapter->vfs_allocated_count;
3994 	u32 rctl, vmolr = 0;
3995 	int count;
3996 
3997 	/* Check for Promiscuous and All Multicast modes */
3998 	rctl = rd32(E1000_RCTL);
3999 
4000 	/* clear the effected bits */
4001 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4002 
4003 	if (netdev->flags & IFF_PROMISC) {
4004 		/* retain VLAN HW filtering if in VT mode */
4005 		if (adapter->vfs_allocated_count)
4006 			rctl |= E1000_RCTL_VFE;
4007 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4008 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4009 	} else {
4010 		if (netdev->flags & IFF_ALLMULTI) {
4011 			rctl |= E1000_RCTL_MPE;
4012 			vmolr |= E1000_VMOLR_MPME;
4013 		} else {
4014 			/* Write addresses to the MTA, if the attempt fails
4015 			 * then we should just turn on promiscuous mode so
4016 			 * that we can at least receive multicast traffic
4017 			 */
4018 			count = igb_write_mc_addr_list(netdev);
4019 			if (count < 0) {
4020 				rctl |= E1000_RCTL_MPE;
4021 				vmolr |= E1000_VMOLR_MPME;
4022 			} else if (count) {
4023 				vmolr |= E1000_VMOLR_ROMPE;
4024 			}
4025 		}
4026 		/* Write addresses to available RAR registers, if there is not
4027 		 * sufficient space to store all the addresses then enable
4028 		 * unicast promiscuous mode
4029 		 */
4030 		count = igb_write_uc_addr_list(netdev);
4031 		if (count < 0) {
4032 			rctl |= E1000_RCTL_UPE;
4033 			vmolr |= E1000_VMOLR_ROPE;
4034 		}
4035 		rctl |= E1000_RCTL_VFE;
4036 	}
4037 	wr32(E1000_RCTL, rctl);
4038 
4039 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4040 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4041 	 * we will have issues with VLAN tag stripping not being done for frames
4042 	 * that are only arriving because we are the default pool
4043 	 */
4044 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4045 		return;
4046 
4047 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4048 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4049 	wr32(E1000_VMOLR(vfn), vmolr);
4050 	igb_restore_vf_multicasts(adapter);
4051 }
4052 
4053 static void igb_check_wvbr(struct igb_adapter *adapter)
4054 {
4055 	struct e1000_hw *hw = &adapter->hw;
4056 	u32 wvbr = 0;
4057 
4058 	switch (hw->mac.type) {
4059 	case e1000_82576:
4060 	case e1000_i350:
4061 		if (!(wvbr = rd32(E1000_WVBR)))
4062 			return;
4063 		break;
4064 	default:
4065 		break;
4066 	}
4067 
4068 	adapter->wvbr |= wvbr;
4069 }
4070 
4071 #define IGB_STAGGERED_QUEUE_OFFSET 8
4072 
4073 static void igb_spoof_check(struct igb_adapter *adapter)
4074 {
4075 	int j;
4076 
4077 	if (!adapter->wvbr)
4078 		return;
4079 
4080 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
4081 		if (adapter->wvbr & (1 << j) ||
4082 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4083 			dev_warn(&adapter->pdev->dev,
4084 				"Spoof event(s) detected on VF %d\n", j);
4085 			adapter->wvbr &=
4086 				~((1 << j) |
4087 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4088 		}
4089 	}
4090 }
4091 
4092 /* Need to wait a few seconds after link up to get diagnostic information from
4093  * the phy
4094  */
4095 static void igb_update_phy_info(unsigned long data)
4096 {
4097 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4098 	igb_get_phy_info(&adapter->hw);
4099 }
4100 
4101 /**
4102  *  igb_has_link - check shared code for link and determine up/down
4103  *  @adapter: pointer to driver private info
4104  **/
4105 bool igb_has_link(struct igb_adapter *adapter)
4106 {
4107 	struct e1000_hw *hw = &adapter->hw;
4108 	bool link_active = false;
4109 
4110 	/* get_link_status is set on LSC (link status) interrupt or
4111 	 * rx sequence error interrupt.  get_link_status will stay
4112 	 * false until the e1000_check_for_link establishes link
4113 	 * for copper adapters ONLY
4114 	 */
4115 	switch (hw->phy.media_type) {
4116 	case e1000_media_type_copper:
4117 		if (!hw->mac.get_link_status)
4118 			return true;
4119 	case e1000_media_type_internal_serdes:
4120 		hw->mac.ops.check_for_link(hw);
4121 		link_active = !hw->mac.get_link_status;
4122 		break;
4123 	default:
4124 	case e1000_media_type_unknown:
4125 		break;
4126 	}
4127 
4128 	if (((hw->mac.type == e1000_i210) ||
4129 	     (hw->mac.type == e1000_i211)) &&
4130 	     (hw->phy.id == I210_I_PHY_ID)) {
4131 		if (!netif_carrier_ok(adapter->netdev)) {
4132 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4133 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4134 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4135 			adapter->link_check_timeout = jiffies;
4136 		}
4137 	}
4138 
4139 	return link_active;
4140 }
4141 
4142 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4143 {
4144 	bool ret = false;
4145 	u32 ctrl_ext, thstat;
4146 
4147 	/* check for thermal sensor event on i350 copper only */
4148 	if (hw->mac.type == e1000_i350) {
4149 		thstat = rd32(E1000_THSTAT);
4150 		ctrl_ext = rd32(E1000_CTRL_EXT);
4151 
4152 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4153 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4154 			ret = !!(thstat & event);
4155 	}
4156 
4157 	return ret;
4158 }
4159 
4160 /**
4161  *  igb_watchdog - Timer Call-back
4162  *  @data: pointer to adapter cast into an unsigned long
4163  **/
4164 static void igb_watchdog(unsigned long data)
4165 {
4166 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4167 	/* Do the rest outside of interrupt context */
4168 	schedule_work(&adapter->watchdog_task);
4169 }
4170 
4171 static void igb_watchdog_task(struct work_struct *work)
4172 {
4173 	struct igb_adapter *adapter = container_of(work,
4174 						   struct igb_adapter,
4175 						   watchdog_task);
4176 	struct e1000_hw *hw = &adapter->hw;
4177 	struct e1000_phy_info *phy = &hw->phy;
4178 	struct net_device *netdev = adapter->netdev;
4179 	u32 link;
4180 	int i;
4181 	u32 connsw;
4182 
4183 	link = igb_has_link(adapter);
4184 
4185 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4186 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4187 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4188 		else
4189 			link = false;
4190 	}
4191 
4192 	/* Force link down if we have fiber to swap to */
4193 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4194 		if (hw->phy.media_type == e1000_media_type_copper) {
4195 			connsw = rd32(E1000_CONNSW);
4196 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4197 				link = 0;
4198 		}
4199 	}
4200 	if (link) {
4201 		/* Perform a reset if the media type changed. */
4202 		if (hw->dev_spec._82575.media_changed) {
4203 			hw->dev_spec._82575.media_changed = false;
4204 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4205 			igb_reset(adapter);
4206 		}
4207 		/* Cancel scheduled suspend requests. */
4208 		pm_runtime_resume(netdev->dev.parent);
4209 
4210 		if (!netif_carrier_ok(netdev)) {
4211 			u32 ctrl;
4212 			hw->mac.ops.get_speed_and_duplex(hw,
4213 							 &adapter->link_speed,
4214 							 &adapter->link_duplex);
4215 
4216 			ctrl = rd32(E1000_CTRL);
4217 			/* Links status message must follow this format */
4218 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4219 			       "Duplex, Flow Control: %s\n",
4220 			       netdev->name,
4221 			       adapter->link_speed,
4222 			       adapter->link_duplex == FULL_DUPLEX ?
4223 			       "Full" : "Half",
4224 			       (ctrl & E1000_CTRL_TFCE) &&
4225 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4226 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4227 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4228 
4229 			/* disable EEE if enabled */
4230 			if ((adapter->flags & IGB_FLAG_EEE) &&
4231 				(adapter->link_duplex == HALF_DUPLEX)) {
4232 				dev_info(&adapter->pdev->dev,
4233 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4234 				adapter->hw.dev_spec._82575.eee_disable = true;
4235 				adapter->flags &= ~IGB_FLAG_EEE;
4236 			}
4237 
4238 			/* check if SmartSpeed worked */
4239 			igb_check_downshift(hw);
4240 			if (phy->speed_downgraded)
4241 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4242 
4243 			/* check for thermal sensor event */
4244 			if (igb_thermal_sensor_event(hw,
4245 			    E1000_THSTAT_LINK_THROTTLE)) {
4246 				netdev_info(netdev, "The network adapter link "
4247 					    "speed was downshifted because it "
4248 					    "overheated\n");
4249 			}
4250 
4251 			/* adjust timeout factor according to speed/duplex */
4252 			adapter->tx_timeout_factor = 1;
4253 			switch (adapter->link_speed) {
4254 			case SPEED_10:
4255 				adapter->tx_timeout_factor = 14;
4256 				break;
4257 			case SPEED_100:
4258 				/* maybe add some timeout factor ? */
4259 				break;
4260 			}
4261 
4262 			netif_carrier_on(netdev);
4263 
4264 			igb_ping_all_vfs(adapter);
4265 			igb_check_vf_rate_limit(adapter);
4266 
4267 			/* link state has changed, schedule phy info update */
4268 			if (!test_bit(__IGB_DOWN, &adapter->state))
4269 				mod_timer(&adapter->phy_info_timer,
4270 					  round_jiffies(jiffies + 2 * HZ));
4271 		}
4272 	} else {
4273 		if (netif_carrier_ok(netdev)) {
4274 			adapter->link_speed = 0;
4275 			adapter->link_duplex = 0;
4276 
4277 			/* check for thermal sensor event */
4278 			if (igb_thermal_sensor_event(hw,
4279 			    E1000_THSTAT_PWR_DOWN)) {
4280 				netdev_err(netdev, "The network adapter was "
4281 					   "stopped because it overheated\n");
4282 			}
4283 
4284 			/* Links status message must follow this format */
4285 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4286 			       netdev->name);
4287 			netif_carrier_off(netdev);
4288 
4289 			igb_ping_all_vfs(adapter);
4290 
4291 			/* link state has changed, schedule phy info update */
4292 			if (!test_bit(__IGB_DOWN, &adapter->state))
4293 				mod_timer(&adapter->phy_info_timer,
4294 					  round_jiffies(jiffies + 2 * HZ));
4295 
4296 			/* link is down, time to check for alternate media */
4297 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4298 				igb_check_swap_media(adapter);
4299 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4300 					schedule_work(&adapter->reset_task);
4301 					/* return immediately */
4302 					return;
4303 				}
4304 			}
4305 			pm_schedule_suspend(netdev->dev.parent,
4306 					    MSEC_PER_SEC * 5);
4307 
4308 		/* also check for alternate media here */
4309 		} else if (!netif_carrier_ok(netdev) &&
4310 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4311 			igb_check_swap_media(adapter);
4312 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4313 				schedule_work(&adapter->reset_task);
4314 				/* return immediately */
4315 				return;
4316 			}
4317 		}
4318 	}
4319 
4320 	spin_lock(&adapter->stats64_lock);
4321 	igb_update_stats(adapter, &adapter->stats64);
4322 	spin_unlock(&adapter->stats64_lock);
4323 
4324 	for (i = 0; i < adapter->num_tx_queues; i++) {
4325 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4326 		if (!netif_carrier_ok(netdev)) {
4327 			/* We've lost link, so the controller stops DMA,
4328 			 * but we've got queued Tx work that's never going
4329 			 * to get done, so reset controller to flush Tx.
4330 			 * (Do the reset outside of interrupt context).
4331 			 */
4332 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4333 				adapter->tx_timeout_count++;
4334 				schedule_work(&adapter->reset_task);
4335 				/* return immediately since reset is imminent */
4336 				return;
4337 			}
4338 		}
4339 
4340 		/* Force detection of hung controller every watchdog period */
4341 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4342 	}
4343 
4344 	/* Cause software interrupt to ensure Rx ring is cleaned */
4345 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4346 		u32 eics = 0;
4347 		for (i = 0; i < adapter->num_q_vectors; i++)
4348 			eics |= adapter->q_vector[i]->eims_value;
4349 		wr32(E1000_EICS, eics);
4350 	} else {
4351 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4352 	}
4353 
4354 	igb_spoof_check(adapter);
4355 	igb_ptp_rx_hang(adapter);
4356 
4357 	/* Reset the timer */
4358 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4359 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4360 			mod_timer(&adapter->watchdog_timer,
4361 				  round_jiffies(jiffies +  HZ));
4362 		else
4363 			mod_timer(&adapter->watchdog_timer,
4364 				  round_jiffies(jiffies + 2 * HZ));
4365 	}
4366 }
4367 
4368 enum latency_range {
4369 	lowest_latency = 0,
4370 	low_latency = 1,
4371 	bulk_latency = 2,
4372 	latency_invalid = 255
4373 };
4374 
4375 /**
4376  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4377  *  @q_vector: pointer to q_vector
4378  *
4379  *  Stores a new ITR value based on strictly on packet size.  This
4380  *  algorithm is less sophisticated than that used in igb_update_itr,
4381  *  due to the difficulty of synchronizing statistics across multiple
4382  *  receive rings.  The divisors and thresholds used by this function
4383  *  were determined based on theoretical maximum wire speed and testing
4384  *  data, in order to minimize response time while increasing bulk
4385  *  throughput.
4386  *  This functionality is controlled by ethtool's coalescing settings.
4387  *  NOTE:  This function is called only when operating in a multiqueue
4388  *         receive environment.
4389  **/
4390 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4391 {
4392 	int new_val = q_vector->itr_val;
4393 	int avg_wire_size = 0;
4394 	struct igb_adapter *adapter = q_vector->adapter;
4395 	unsigned int packets;
4396 
4397 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4398 	 * ints/sec - ITR timer value of 120 ticks.
4399 	 */
4400 	if (adapter->link_speed != SPEED_1000) {
4401 		new_val = IGB_4K_ITR;
4402 		goto set_itr_val;
4403 	}
4404 
4405 	packets = q_vector->rx.total_packets;
4406 	if (packets)
4407 		avg_wire_size = q_vector->rx.total_bytes / packets;
4408 
4409 	packets = q_vector->tx.total_packets;
4410 	if (packets)
4411 		avg_wire_size = max_t(u32, avg_wire_size,
4412 				      q_vector->tx.total_bytes / packets);
4413 
4414 	/* if avg_wire_size isn't set no work was done */
4415 	if (!avg_wire_size)
4416 		goto clear_counts;
4417 
4418 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4419 	avg_wire_size += 24;
4420 
4421 	/* Don't starve jumbo frames */
4422 	avg_wire_size = min(avg_wire_size, 3000);
4423 
4424 	/* Give a little boost to mid-size frames */
4425 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4426 		new_val = avg_wire_size / 3;
4427 	else
4428 		new_val = avg_wire_size / 2;
4429 
4430 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4431 	if (new_val < IGB_20K_ITR &&
4432 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4433 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4434 		new_val = IGB_20K_ITR;
4435 
4436 set_itr_val:
4437 	if (new_val != q_vector->itr_val) {
4438 		q_vector->itr_val = new_val;
4439 		q_vector->set_itr = 1;
4440 	}
4441 clear_counts:
4442 	q_vector->rx.total_bytes = 0;
4443 	q_vector->rx.total_packets = 0;
4444 	q_vector->tx.total_bytes = 0;
4445 	q_vector->tx.total_packets = 0;
4446 }
4447 
4448 /**
4449  *  igb_update_itr - update the dynamic ITR value based on statistics
4450  *  @q_vector: pointer to q_vector
4451  *  @ring_container: ring info to update the itr for
4452  *
4453  *  Stores a new ITR value based on packets and byte
4454  *  counts during the last interrupt.  The advantage of per interrupt
4455  *  computation is faster updates and more accurate ITR for the current
4456  *  traffic pattern.  Constants in this function were computed
4457  *  based on theoretical maximum wire speed and thresholds were set based
4458  *  on testing data as well as attempting to minimize response time
4459  *  while increasing bulk throughput.
4460  *  This functionality is controlled by ethtool's coalescing settings.
4461  *  NOTE:  These calculations are only valid when operating in a single-
4462  *         queue environment.
4463  **/
4464 static void igb_update_itr(struct igb_q_vector *q_vector,
4465 			   struct igb_ring_container *ring_container)
4466 {
4467 	unsigned int packets = ring_container->total_packets;
4468 	unsigned int bytes = ring_container->total_bytes;
4469 	u8 itrval = ring_container->itr;
4470 
4471 	/* no packets, exit with status unchanged */
4472 	if (packets == 0)
4473 		return;
4474 
4475 	switch (itrval) {
4476 	case lowest_latency:
4477 		/* handle TSO and jumbo frames */
4478 		if (bytes/packets > 8000)
4479 			itrval = bulk_latency;
4480 		else if ((packets < 5) && (bytes > 512))
4481 			itrval = low_latency;
4482 		break;
4483 	case low_latency:  /* 50 usec aka 20000 ints/s */
4484 		if (bytes > 10000) {
4485 			/* this if handles the TSO accounting */
4486 			if (bytes/packets > 8000) {
4487 				itrval = bulk_latency;
4488 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4489 				itrval = bulk_latency;
4490 			} else if ((packets > 35)) {
4491 				itrval = lowest_latency;
4492 			}
4493 		} else if (bytes/packets > 2000) {
4494 			itrval = bulk_latency;
4495 		} else if (packets <= 2 && bytes < 512) {
4496 			itrval = lowest_latency;
4497 		}
4498 		break;
4499 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4500 		if (bytes > 25000) {
4501 			if (packets > 35)
4502 				itrval = low_latency;
4503 		} else if (bytes < 1500) {
4504 			itrval = low_latency;
4505 		}
4506 		break;
4507 	}
4508 
4509 	/* clear work counters since we have the values we need */
4510 	ring_container->total_bytes = 0;
4511 	ring_container->total_packets = 0;
4512 
4513 	/* write updated itr to ring container */
4514 	ring_container->itr = itrval;
4515 }
4516 
4517 static void igb_set_itr(struct igb_q_vector *q_vector)
4518 {
4519 	struct igb_adapter *adapter = q_vector->adapter;
4520 	u32 new_itr = q_vector->itr_val;
4521 	u8 current_itr = 0;
4522 
4523 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4524 	if (adapter->link_speed != SPEED_1000) {
4525 		current_itr = 0;
4526 		new_itr = IGB_4K_ITR;
4527 		goto set_itr_now;
4528 	}
4529 
4530 	igb_update_itr(q_vector, &q_vector->tx);
4531 	igb_update_itr(q_vector, &q_vector->rx);
4532 
4533 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4534 
4535 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4536 	if (current_itr == lowest_latency &&
4537 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4538 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4539 		current_itr = low_latency;
4540 
4541 	switch (current_itr) {
4542 	/* counts and packets in update_itr are dependent on these numbers */
4543 	case lowest_latency:
4544 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4545 		break;
4546 	case low_latency:
4547 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4548 		break;
4549 	case bulk_latency:
4550 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4551 		break;
4552 	default:
4553 		break;
4554 	}
4555 
4556 set_itr_now:
4557 	if (new_itr != q_vector->itr_val) {
4558 		/* this attempts to bias the interrupt rate towards Bulk
4559 		 * by adding intermediate steps when interrupt rate is
4560 		 * increasing
4561 		 */
4562 		new_itr = new_itr > q_vector->itr_val ?
4563 			  max((new_itr * q_vector->itr_val) /
4564 			  (new_itr + (q_vector->itr_val >> 2)),
4565 			  new_itr) : new_itr;
4566 		/* Don't write the value here; it resets the adapter's
4567 		 * internal timer, and causes us to delay far longer than
4568 		 * we should between interrupts.  Instead, we write the ITR
4569 		 * value at the beginning of the next interrupt so the timing
4570 		 * ends up being correct.
4571 		 */
4572 		q_vector->itr_val = new_itr;
4573 		q_vector->set_itr = 1;
4574 	}
4575 }
4576 
4577 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4578 			    u32 type_tucmd, u32 mss_l4len_idx)
4579 {
4580 	struct e1000_adv_tx_context_desc *context_desc;
4581 	u16 i = tx_ring->next_to_use;
4582 
4583 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4584 
4585 	i++;
4586 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4587 
4588 	/* set bits to identify this as an advanced context descriptor */
4589 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4590 
4591 	/* For 82575, context index must be unique per ring. */
4592 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4593 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4594 
4595 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4596 	context_desc->seqnum_seed	= 0;
4597 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4598 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4599 }
4600 
4601 static int igb_tso(struct igb_ring *tx_ring,
4602 		   struct igb_tx_buffer *first,
4603 		   u8 *hdr_len)
4604 {
4605 	struct sk_buff *skb = first->skb;
4606 	u32 vlan_macip_lens, type_tucmd;
4607 	u32 mss_l4len_idx, l4len;
4608 	int err;
4609 
4610 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4611 		return 0;
4612 
4613 	if (!skb_is_gso(skb))
4614 		return 0;
4615 
4616 	err = skb_cow_head(skb, 0);
4617 	if (err < 0)
4618 		return err;
4619 
4620 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4621 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4622 
4623 	if (first->protocol == htons(ETH_P_IP)) {
4624 		struct iphdr *iph = ip_hdr(skb);
4625 		iph->tot_len = 0;
4626 		iph->check = 0;
4627 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4628 							 iph->daddr, 0,
4629 							 IPPROTO_TCP,
4630 							 0);
4631 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4632 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4633 				   IGB_TX_FLAGS_CSUM |
4634 				   IGB_TX_FLAGS_IPV4;
4635 	} else if (skb_is_gso_v6(skb)) {
4636 		ipv6_hdr(skb)->payload_len = 0;
4637 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4638 						       &ipv6_hdr(skb)->daddr,
4639 						       0, IPPROTO_TCP, 0);
4640 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4641 				   IGB_TX_FLAGS_CSUM;
4642 	}
4643 
4644 	/* compute header lengths */
4645 	l4len = tcp_hdrlen(skb);
4646 	*hdr_len = skb_transport_offset(skb) + l4len;
4647 
4648 	/* update gso size and bytecount with header size */
4649 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4650 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4651 
4652 	/* MSS L4LEN IDX */
4653 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4654 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4655 
4656 	/* VLAN MACLEN IPLEN */
4657 	vlan_macip_lens = skb_network_header_len(skb);
4658 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4659 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4660 
4661 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4662 
4663 	return 1;
4664 }
4665 
4666 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4667 {
4668 	struct sk_buff *skb = first->skb;
4669 	u32 vlan_macip_lens = 0;
4670 	u32 mss_l4len_idx = 0;
4671 	u32 type_tucmd = 0;
4672 
4673 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4674 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4675 			return;
4676 	} else {
4677 		u8 l4_hdr = 0;
4678 		switch (first->protocol) {
4679 		case htons(ETH_P_IP):
4680 			vlan_macip_lens |= skb_network_header_len(skb);
4681 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4682 			l4_hdr = ip_hdr(skb)->protocol;
4683 			break;
4684 		case htons(ETH_P_IPV6):
4685 			vlan_macip_lens |= skb_network_header_len(skb);
4686 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4687 			break;
4688 		default:
4689 			if (unlikely(net_ratelimit())) {
4690 				dev_warn(tx_ring->dev,
4691 					 "partial checksum but proto=%x!\n",
4692 					 first->protocol);
4693 			}
4694 			break;
4695 		}
4696 
4697 		switch (l4_hdr) {
4698 		case IPPROTO_TCP:
4699 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4700 			mss_l4len_idx = tcp_hdrlen(skb) <<
4701 					E1000_ADVTXD_L4LEN_SHIFT;
4702 			break;
4703 		case IPPROTO_SCTP:
4704 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4705 			mss_l4len_idx = sizeof(struct sctphdr) <<
4706 					E1000_ADVTXD_L4LEN_SHIFT;
4707 			break;
4708 		case IPPROTO_UDP:
4709 			mss_l4len_idx = sizeof(struct udphdr) <<
4710 					E1000_ADVTXD_L4LEN_SHIFT;
4711 			break;
4712 		default:
4713 			if (unlikely(net_ratelimit())) {
4714 				dev_warn(tx_ring->dev,
4715 					 "partial checksum but l4 proto=%x!\n",
4716 					 l4_hdr);
4717 			}
4718 			break;
4719 		}
4720 
4721 		/* update TX checksum flag */
4722 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4723 	}
4724 
4725 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4726 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4727 
4728 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4729 }
4730 
4731 #define IGB_SET_FLAG(_input, _flag, _result) \
4732 	((_flag <= _result) ? \
4733 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4734 	 ((u32)(_input & _flag) / (_flag / _result)))
4735 
4736 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4737 {
4738 	/* set type for advanced descriptor with frame checksum insertion */
4739 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4740 		       E1000_ADVTXD_DCMD_DEXT |
4741 		       E1000_ADVTXD_DCMD_IFCS;
4742 
4743 	/* set HW vlan bit if vlan is present */
4744 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4745 				 (E1000_ADVTXD_DCMD_VLE));
4746 
4747 	/* set segmentation bits for TSO */
4748 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4749 				 (E1000_ADVTXD_DCMD_TSE));
4750 
4751 	/* set timestamp bit if present */
4752 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4753 				 (E1000_ADVTXD_MAC_TSTAMP));
4754 
4755 	/* insert frame checksum */
4756 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4757 
4758 	return cmd_type;
4759 }
4760 
4761 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4762 				 union e1000_adv_tx_desc *tx_desc,
4763 				 u32 tx_flags, unsigned int paylen)
4764 {
4765 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4766 
4767 	/* 82575 requires a unique index per ring */
4768 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4769 		olinfo_status |= tx_ring->reg_idx << 4;
4770 
4771 	/* insert L4 checksum */
4772 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4773 				      IGB_TX_FLAGS_CSUM,
4774 				      (E1000_TXD_POPTS_TXSM << 8));
4775 
4776 	/* insert IPv4 checksum */
4777 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4778 				      IGB_TX_FLAGS_IPV4,
4779 				      (E1000_TXD_POPTS_IXSM << 8));
4780 
4781 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4782 }
4783 
4784 static void igb_tx_map(struct igb_ring *tx_ring,
4785 		       struct igb_tx_buffer *first,
4786 		       const u8 hdr_len)
4787 {
4788 	struct sk_buff *skb = first->skb;
4789 	struct igb_tx_buffer *tx_buffer;
4790 	union e1000_adv_tx_desc *tx_desc;
4791 	struct skb_frag_struct *frag;
4792 	dma_addr_t dma;
4793 	unsigned int data_len, size;
4794 	u32 tx_flags = first->tx_flags;
4795 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4796 	u16 i = tx_ring->next_to_use;
4797 
4798 	tx_desc = IGB_TX_DESC(tx_ring, i);
4799 
4800 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4801 
4802 	size = skb_headlen(skb);
4803 	data_len = skb->data_len;
4804 
4805 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4806 
4807 	tx_buffer = first;
4808 
4809 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4810 		if (dma_mapping_error(tx_ring->dev, dma))
4811 			goto dma_error;
4812 
4813 		/* record length, and DMA address */
4814 		dma_unmap_len_set(tx_buffer, len, size);
4815 		dma_unmap_addr_set(tx_buffer, dma, dma);
4816 
4817 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4818 
4819 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4820 			tx_desc->read.cmd_type_len =
4821 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4822 
4823 			i++;
4824 			tx_desc++;
4825 			if (i == tx_ring->count) {
4826 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4827 				i = 0;
4828 			}
4829 			tx_desc->read.olinfo_status = 0;
4830 
4831 			dma += IGB_MAX_DATA_PER_TXD;
4832 			size -= IGB_MAX_DATA_PER_TXD;
4833 
4834 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4835 		}
4836 
4837 		if (likely(!data_len))
4838 			break;
4839 
4840 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4841 
4842 		i++;
4843 		tx_desc++;
4844 		if (i == tx_ring->count) {
4845 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4846 			i = 0;
4847 		}
4848 		tx_desc->read.olinfo_status = 0;
4849 
4850 		size = skb_frag_size(frag);
4851 		data_len -= size;
4852 
4853 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4854 				       size, DMA_TO_DEVICE);
4855 
4856 		tx_buffer = &tx_ring->tx_buffer_info[i];
4857 	}
4858 
4859 	/* write last descriptor with RS and EOP bits */
4860 	cmd_type |= size | IGB_TXD_DCMD;
4861 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4862 
4863 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4864 
4865 	/* set the timestamp */
4866 	first->time_stamp = jiffies;
4867 
4868 	/* Force memory writes to complete before letting h/w know there
4869 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4870 	 * memory model archs, such as IA-64).
4871 	 *
4872 	 * We also need this memory barrier to make certain all of the
4873 	 * status bits have been updated before next_to_watch is written.
4874 	 */
4875 	wmb();
4876 
4877 	/* set next_to_watch value indicating a packet is present */
4878 	first->next_to_watch = tx_desc;
4879 
4880 	i++;
4881 	if (i == tx_ring->count)
4882 		i = 0;
4883 
4884 	tx_ring->next_to_use = i;
4885 
4886 	writel(i, tx_ring->tail);
4887 
4888 	/* we need this if more than one processor can write to our tail
4889 	 * at a time, it synchronizes IO on IA64/Altix systems
4890 	 */
4891 	mmiowb();
4892 
4893 	return;
4894 
4895 dma_error:
4896 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4897 
4898 	/* clear dma mappings for failed tx_buffer_info map */
4899 	for (;;) {
4900 		tx_buffer = &tx_ring->tx_buffer_info[i];
4901 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4902 		if (tx_buffer == first)
4903 			break;
4904 		if (i == 0)
4905 			i = tx_ring->count;
4906 		i--;
4907 	}
4908 
4909 	tx_ring->next_to_use = i;
4910 }
4911 
4912 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4913 {
4914 	struct net_device *netdev = tx_ring->netdev;
4915 
4916 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4917 
4918 	/* Herbert's original patch had:
4919 	 *  smp_mb__after_netif_stop_queue();
4920 	 * but since that doesn't exist yet, just open code it.
4921 	 */
4922 	smp_mb();
4923 
4924 	/* We need to check again in a case another CPU has just
4925 	 * made room available.
4926 	 */
4927 	if (igb_desc_unused(tx_ring) < size)
4928 		return -EBUSY;
4929 
4930 	/* A reprieve! */
4931 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4932 
4933 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4934 	tx_ring->tx_stats.restart_queue2++;
4935 	u64_stats_update_end(&tx_ring->tx_syncp2);
4936 
4937 	return 0;
4938 }
4939 
4940 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4941 {
4942 	if (igb_desc_unused(tx_ring) >= size)
4943 		return 0;
4944 	return __igb_maybe_stop_tx(tx_ring, size);
4945 }
4946 
4947 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4948 				struct igb_ring *tx_ring)
4949 {
4950 	struct igb_tx_buffer *first;
4951 	int tso;
4952 	u32 tx_flags = 0;
4953 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4954 	__be16 protocol = vlan_get_protocol(skb);
4955 	u8 hdr_len = 0;
4956 
4957 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4958 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4959 	 *       + 2 desc gap to keep tail from touching head,
4960 	 *       + 1 desc for context descriptor,
4961 	 * otherwise try next time
4962 	 */
4963 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4964 		unsigned short f;
4965 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4966 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4967 	} else {
4968 		count += skb_shinfo(skb)->nr_frags;
4969 	}
4970 
4971 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4972 		/* this is a hard error */
4973 		return NETDEV_TX_BUSY;
4974 	}
4975 
4976 	/* record the location of the first descriptor for this packet */
4977 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4978 	first->skb = skb;
4979 	first->bytecount = skb->len;
4980 	first->gso_segs = 1;
4981 
4982 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4983 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4984 
4985 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4986 					   &adapter->state)) {
4987 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4988 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4989 
4990 			adapter->ptp_tx_skb = skb_get(skb);
4991 			adapter->ptp_tx_start = jiffies;
4992 			if (adapter->hw.mac.type == e1000_82576)
4993 				schedule_work(&adapter->ptp_tx_work);
4994 		}
4995 	}
4996 
4997 	skb_tx_timestamp(skb);
4998 
4999 	if (vlan_tx_tag_present(skb)) {
5000 		tx_flags |= IGB_TX_FLAGS_VLAN;
5001 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5002 	}
5003 
5004 	/* record initial flags and protocol */
5005 	first->tx_flags = tx_flags;
5006 	first->protocol = protocol;
5007 
5008 	tso = igb_tso(tx_ring, first, &hdr_len);
5009 	if (tso < 0)
5010 		goto out_drop;
5011 	else if (!tso)
5012 		igb_tx_csum(tx_ring, first);
5013 
5014 	igb_tx_map(tx_ring, first, hdr_len);
5015 
5016 	/* Make sure there is space in the ring for the next send. */
5017 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5018 
5019 	return NETDEV_TX_OK;
5020 
5021 out_drop:
5022 	igb_unmap_and_free_tx_resource(tx_ring, first);
5023 
5024 	return NETDEV_TX_OK;
5025 }
5026 
5027 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5028 						    struct sk_buff *skb)
5029 {
5030 	unsigned int r_idx = skb->queue_mapping;
5031 
5032 	if (r_idx >= adapter->num_tx_queues)
5033 		r_idx = r_idx % adapter->num_tx_queues;
5034 
5035 	return adapter->tx_ring[r_idx];
5036 }
5037 
5038 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5039 				  struct net_device *netdev)
5040 {
5041 	struct igb_adapter *adapter = netdev_priv(netdev);
5042 
5043 	if (test_bit(__IGB_DOWN, &adapter->state)) {
5044 		dev_kfree_skb_any(skb);
5045 		return NETDEV_TX_OK;
5046 	}
5047 
5048 	if (skb->len <= 0) {
5049 		dev_kfree_skb_any(skb);
5050 		return NETDEV_TX_OK;
5051 	}
5052 
5053 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5054 	 * in order to meet this minimum size requirement.
5055 	 */
5056 	if (unlikely(skb->len < 17)) {
5057 		if (skb_pad(skb, 17 - skb->len))
5058 			return NETDEV_TX_OK;
5059 		skb->len = 17;
5060 		skb_set_tail_pointer(skb, 17);
5061 	}
5062 
5063 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5064 }
5065 
5066 /**
5067  *  igb_tx_timeout - Respond to a Tx Hang
5068  *  @netdev: network interface device structure
5069  **/
5070 static void igb_tx_timeout(struct net_device *netdev)
5071 {
5072 	struct igb_adapter *adapter = netdev_priv(netdev);
5073 	struct e1000_hw *hw = &adapter->hw;
5074 
5075 	/* Do the reset outside of interrupt context */
5076 	adapter->tx_timeout_count++;
5077 
5078 	if (hw->mac.type >= e1000_82580)
5079 		hw->dev_spec._82575.global_device_reset = true;
5080 
5081 	schedule_work(&adapter->reset_task);
5082 	wr32(E1000_EICS,
5083 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5084 }
5085 
5086 static void igb_reset_task(struct work_struct *work)
5087 {
5088 	struct igb_adapter *adapter;
5089 	adapter = container_of(work, struct igb_adapter, reset_task);
5090 
5091 	igb_dump(adapter);
5092 	netdev_err(adapter->netdev, "Reset adapter\n");
5093 	igb_reinit_locked(adapter);
5094 }
5095 
5096 /**
5097  *  igb_get_stats64 - Get System Network Statistics
5098  *  @netdev: network interface device structure
5099  *  @stats: rtnl_link_stats64 pointer
5100  **/
5101 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5102 						struct rtnl_link_stats64 *stats)
5103 {
5104 	struct igb_adapter *adapter = netdev_priv(netdev);
5105 
5106 	spin_lock(&adapter->stats64_lock);
5107 	igb_update_stats(adapter, &adapter->stats64);
5108 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5109 	spin_unlock(&adapter->stats64_lock);
5110 
5111 	return stats;
5112 }
5113 
5114 /**
5115  *  igb_change_mtu - Change the Maximum Transfer Unit
5116  *  @netdev: network interface device structure
5117  *  @new_mtu: new value for maximum frame size
5118  *
5119  *  Returns 0 on success, negative on failure
5120  **/
5121 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5122 {
5123 	struct igb_adapter *adapter = netdev_priv(netdev);
5124 	struct pci_dev *pdev = adapter->pdev;
5125 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5126 
5127 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5128 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5129 		return -EINVAL;
5130 	}
5131 
5132 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5133 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5134 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5135 		return -EINVAL;
5136 	}
5137 
5138 	/* adjust max frame to be at least the size of a standard frame */
5139 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5140 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5141 
5142 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5143 		msleep(1);
5144 
5145 	/* igb_down has a dependency on max_frame_size */
5146 	adapter->max_frame_size = max_frame;
5147 
5148 	if (netif_running(netdev))
5149 		igb_down(adapter);
5150 
5151 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5152 		 netdev->mtu, new_mtu);
5153 	netdev->mtu = new_mtu;
5154 
5155 	if (netif_running(netdev))
5156 		igb_up(adapter);
5157 	else
5158 		igb_reset(adapter);
5159 
5160 	clear_bit(__IGB_RESETTING, &adapter->state);
5161 
5162 	return 0;
5163 }
5164 
5165 /**
5166  *  igb_update_stats - Update the board statistics counters
5167  *  @adapter: board private structure
5168  **/
5169 void igb_update_stats(struct igb_adapter *adapter,
5170 		      struct rtnl_link_stats64 *net_stats)
5171 {
5172 	struct e1000_hw *hw = &adapter->hw;
5173 	struct pci_dev *pdev = adapter->pdev;
5174 	u32 reg, mpc;
5175 	u16 phy_tmp;
5176 	int i;
5177 	u64 bytes, packets;
5178 	unsigned int start;
5179 	u64 _bytes, _packets;
5180 
5181 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5182 
5183 	/* Prevent stats update while adapter is being reset, or if the pci
5184 	 * connection is down.
5185 	 */
5186 	if (adapter->link_speed == 0)
5187 		return;
5188 	if (pci_channel_offline(pdev))
5189 		return;
5190 
5191 	bytes = 0;
5192 	packets = 0;
5193 
5194 	rcu_read_lock();
5195 	for (i = 0; i < adapter->num_rx_queues; i++) {
5196 		u32 rqdpc = rd32(E1000_RQDPC(i));
5197 		struct igb_ring *ring = adapter->rx_ring[i];
5198 
5199 		if (rqdpc) {
5200 			ring->rx_stats.drops += rqdpc;
5201 			net_stats->rx_fifo_errors += rqdpc;
5202 		}
5203 
5204 		do {
5205 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5206 			_bytes = ring->rx_stats.bytes;
5207 			_packets = ring->rx_stats.packets;
5208 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5209 		bytes += _bytes;
5210 		packets += _packets;
5211 	}
5212 
5213 	net_stats->rx_bytes = bytes;
5214 	net_stats->rx_packets = packets;
5215 
5216 	bytes = 0;
5217 	packets = 0;
5218 	for (i = 0; i < adapter->num_tx_queues; i++) {
5219 		struct igb_ring *ring = adapter->tx_ring[i];
5220 		do {
5221 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5222 			_bytes = ring->tx_stats.bytes;
5223 			_packets = ring->tx_stats.packets;
5224 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5225 		bytes += _bytes;
5226 		packets += _packets;
5227 	}
5228 	net_stats->tx_bytes = bytes;
5229 	net_stats->tx_packets = packets;
5230 	rcu_read_unlock();
5231 
5232 	/* read stats registers */
5233 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5234 	adapter->stats.gprc += rd32(E1000_GPRC);
5235 	adapter->stats.gorc += rd32(E1000_GORCL);
5236 	rd32(E1000_GORCH); /* clear GORCL */
5237 	adapter->stats.bprc += rd32(E1000_BPRC);
5238 	adapter->stats.mprc += rd32(E1000_MPRC);
5239 	adapter->stats.roc += rd32(E1000_ROC);
5240 
5241 	adapter->stats.prc64 += rd32(E1000_PRC64);
5242 	adapter->stats.prc127 += rd32(E1000_PRC127);
5243 	adapter->stats.prc255 += rd32(E1000_PRC255);
5244 	adapter->stats.prc511 += rd32(E1000_PRC511);
5245 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5246 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5247 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5248 	adapter->stats.sec += rd32(E1000_SEC);
5249 
5250 	mpc = rd32(E1000_MPC);
5251 	adapter->stats.mpc += mpc;
5252 	net_stats->rx_fifo_errors += mpc;
5253 	adapter->stats.scc += rd32(E1000_SCC);
5254 	adapter->stats.ecol += rd32(E1000_ECOL);
5255 	adapter->stats.mcc += rd32(E1000_MCC);
5256 	adapter->stats.latecol += rd32(E1000_LATECOL);
5257 	adapter->stats.dc += rd32(E1000_DC);
5258 	adapter->stats.rlec += rd32(E1000_RLEC);
5259 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5260 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5261 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5262 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5263 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5264 	adapter->stats.gptc += rd32(E1000_GPTC);
5265 	adapter->stats.gotc += rd32(E1000_GOTCL);
5266 	rd32(E1000_GOTCH); /* clear GOTCL */
5267 	adapter->stats.rnbc += rd32(E1000_RNBC);
5268 	adapter->stats.ruc += rd32(E1000_RUC);
5269 	adapter->stats.rfc += rd32(E1000_RFC);
5270 	adapter->stats.rjc += rd32(E1000_RJC);
5271 	adapter->stats.tor += rd32(E1000_TORH);
5272 	adapter->stats.tot += rd32(E1000_TOTH);
5273 	adapter->stats.tpr += rd32(E1000_TPR);
5274 
5275 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5276 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5277 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5278 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5279 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5280 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5281 
5282 	adapter->stats.mptc += rd32(E1000_MPTC);
5283 	adapter->stats.bptc += rd32(E1000_BPTC);
5284 
5285 	adapter->stats.tpt += rd32(E1000_TPT);
5286 	adapter->stats.colc += rd32(E1000_COLC);
5287 
5288 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5289 	/* read internal phy specific stats */
5290 	reg = rd32(E1000_CTRL_EXT);
5291 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5292 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5293 
5294 		/* this stat has invalid values on i210/i211 */
5295 		if ((hw->mac.type != e1000_i210) &&
5296 		    (hw->mac.type != e1000_i211))
5297 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5298 	}
5299 
5300 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5301 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5302 
5303 	adapter->stats.iac += rd32(E1000_IAC);
5304 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5305 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5306 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5307 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5308 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5309 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5310 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5311 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5312 
5313 	/* Fill out the OS statistics structure */
5314 	net_stats->multicast = adapter->stats.mprc;
5315 	net_stats->collisions = adapter->stats.colc;
5316 
5317 	/* Rx Errors */
5318 
5319 	/* RLEC on some newer hardware can be incorrect so build
5320 	 * our own version based on RUC and ROC
5321 	 */
5322 	net_stats->rx_errors = adapter->stats.rxerrc +
5323 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5324 		adapter->stats.ruc + adapter->stats.roc +
5325 		adapter->stats.cexterr;
5326 	net_stats->rx_length_errors = adapter->stats.ruc +
5327 				      adapter->stats.roc;
5328 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5329 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5330 	net_stats->rx_missed_errors = adapter->stats.mpc;
5331 
5332 	/* Tx Errors */
5333 	net_stats->tx_errors = adapter->stats.ecol +
5334 			       adapter->stats.latecol;
5335 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5336 	net_stats->tx_window_errors = adapter->stats.latecol;
5337 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5338 
5339 	/* Tx Dropped needs to be maintained elsewhere */
5340 
5341 	/* Phy Stats */
5342 	if (hw->phy.media_type == e1000_media_type_copper) {
5343 		if ((adapter->link_speed == SPEED_1000) &&
5344 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5345 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5346 			adapter->phy_stats.idle_errors += phy_tmp;
5347 		}
5348 	}
5349 
5350 	/* Management Stats */
5351 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5352 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5353 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5354 
5355 	/* OS2BMC Stats */
5356 	reg = rd32(E1000_MANC);
5357 	if (reg & E1000_MANC_EN_BMC2OS) {
5358 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5359 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5360 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5361 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5362 	}
5363 }
5364 
5365 static irqreturn_t igb_msix_other(int irq, void *data)
5366 {
5367 	struct igb_adapter *adapter = data;
5368 	struct e1000_hw *hw = &adapter->hw;
5369 	u32 icr = rd32(E1000_ICR);
5370 	/* reading ICR causes bit 31 of EICR to be cleared */
5371 
5372 	if (icr & E1000_ICR_DRSTA)
5373 		schedule_work(&adapter->reset_task);
5374 
5375 	if (icr & E1000_ICR_DOUTSYNC) {
5376 		/* HW is reporting DMA is out of sync */
5377 		adapter->stats.doosync++;
5378 		/* The DMA Out of Sync is also indication of a spoof event
5379 		 * in IOV mode. Check the Wrong VM Behavior register to
5380 		 * see if it is really a spoof event.
5381 		 */
5382 		igb_check_wvbr(adapter);
5383 	}
5384 
5385 	/* Check for a mailbox event */
5386 	if (icr & E1000_ICR_VMMB)
5387 		igb_msg_task(adapter);
5388 
5389 	if (icr & E1000_ICR_LSC) {
5390 		hw->mac.get_link_status = 1;
5391 		/* guard against interrupt when we're going down */
5392 		if (!test_bit(__IGB_DOWN, &adapter->state))
5393 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5394 	}
5395 
5396 	if (icr & E1000_ICR_TS) {
5397 		u32 tsicr = rd32(E1000_TSICR);
5398 
5399 		if (tsicr & E1000_TSICR_TXTS) {
5400 			/* acknowledge the interrupt */
5401 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5402 			/* retrieve hardware timestamp */
5403 			schedule_work(&adapter->ptp_tx_work);
5404 		}
5405 	}
5406 
5407 	wr32(E1000_EIMS, adapter->eims_other);
5408 
5409 	return IRQ_HANDLED;
5410 }
5411 
5412 static void igb_write_itr(struct igb_q_vector *q_vector)
5413 {
5414 	struct igb_adapter *adapter = q_vector->adapter;
5415 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5416 
5417 	if (!q_vector->set_itr)
5418 		return;
5419 
5420 	if (!itr_val)
5421 		itr_val = 0x4;
5422 
5423 	if (adapter->hw.mac.type == e1000_82575)
5424 		itr_val |= itr_val << 16;
5425 	else
5426 		itr_val |= E1000_EITR_CNT_IGNR;
5427 
5428 	writel(itr_val, q_vector->itr_register);
5429 	q_vector->set_itr = 0;
5430 }
5431 
5432 static irqreturn_t igb_msix_ring(int irq, void *data)
5433 {
5434 	struct igb_q_vector *q_vector = data;
5435 
5436 	/* Write the ITR value calculated from the previous interrupt. */
5437 	igb_write_itr(q_vector);
5438 
5439 	napi_schedule(&q_vector->napi);
5440 
5441 	return IRQ_HANDLED;
5442 }
5443 
5444 #ifdef CONFIG_IGB_DCA
5445 static void igb_update_tx_dca(struct igb_adapter *adapter,
5446 			      struct igb_ring *tx_ring,
5447 			      int cpu)
5448 {
5449 	struct e1000_hw *hw = &adapter->hw;
5450 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5451 
5452 	if (hw->mac.type != e1000_82575)
5453 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5454 
5455 	/* We can enable relaxed ordering for reads, but not writes when
5456 	 * DCA is enabled.  This is due to a known issue in some chipsets
5457 	 * which will cause the DCA tag to be cleared.
5458 	 */
5459 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5460 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5461 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5462 
5463 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5464 }
5465 
5466 static void igb_update_rx_dca(struct igb_adapter *adapter,
5467 			      struct igb_ring *rx_ring,
5468 			      int cpu)
5469 {
5470 	struct e1000_hw *hw = &adapter->hw;
5471 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5472 
5473 	if (hw->mac.type != e1000_82575)
5474 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5475 
5476 	/* We can enable relaxed ordering for reads, but not writes when
5477 	 * DCA is enabled.  This is due to a known issue in some chipsets
5478 	 * which will cause the DCA tag to be cleared.
5479 	 */
5480 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5481 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5482 
5483 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5484 }
5485 
5486 static void igb_update_dca(struct igb_q_vector *q_vector)
5487 {
5488 	struct igb_adapter *adapter = q_vector->adapter;
5489 	int cpu = get_cpu();
5490 
5491 	if (q_vector->cpu == cpu)
5492 		goto out_no_update;
5493 
5494 	if (q_vector->tx.ring)
5495 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5496 
5497 	if (q_vector->rx.ring)
5498 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5499 
5500 	q_vector->cpu = cpu;
5501 out_no_update:
5502 	put_cpu();
5503 }
5504 
5505 static void igb_setup_dca(struct igb_adapter *adapter)
5506 {
5507 	struct e1000_hw *hw = &adapter->hw;
5508 	int i;
5509 
5510 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5511 		return;
5512 
5513 	/* Always use CB2 mode, difference is masked in the CB driver. */
5514 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5515 
5516 	for (i = 0; i < adapter->num_q_vectors; i++) {
5517 		adapter->q_vector[i]->cpu = -1;
5518 		igb_update_dca(adapter->q_vector[i]);
5519 	}
5520 }
5521 
5522 static int __igb_notify_dca(struct device *dev, void *data)
5523 {
5524 	struct net_device *netdev = dev_get_drvdata(dev);
5525 	struct igb_adapter *adapter = netdev_priv(netdev);
5526 	struct pci_dev *pdev = adapter->pdev;
5527 	struct e1000_hw *hw = &adapter->hw;
5528 	unsigned long event = *(unsigned long *)data;
5529 
5530 	switch (event) {
5531 	case DCA_PROVIDER_ADD:
5532 		/* if already enabled, don't do it again */
5533 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5534 			break;
5535 		if (dca_add_requester(dev) == 0) {
5536 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5537 			dev_info(&pdev->dev, "DCA enabled\n");
5538 			igb_setup_dca(adapter);
5539 			break;
5540 		}
5541 		/* Fall Through since DCA is disabled. */
5542 	case DCA_PROVIDER_REMOVE:
5543 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5544 			/* without this a class_device is left
5545 			 * hanging around in the sysfs model
5546 			 */
5547 			dca_remove_requester(dev);
5548 			dev_info(&pdev->dev, "DCA disabled\n");
5549 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5550 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5551 		}
5552 		break;
5553 	}
5554 
5555 	return 0;
5556 }
5557 
5558 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5559 			  void *p)
5560 {
5561 	int ret_val;
5562 
5563 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5564 					 __igb_notify_dca);
5565 
5566 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5567 }
5568 #endif /* CONFIG_IGB_DCA */
5569 
5570 #ifdef CONFIG_PCI_IOV
5571 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5572 {
5573 	unsigned char mac_addr[ETH_ALEN];
5574 
5575 	eth_zero_addr(mac_addr);
5576 	igb_set_vf_mac(adapter, vf, mac_addr);
5577 
5578 	/* By default spoof check is enabled for all VFs */
5579 	adapter->vf_data[vf].spoofchk_enabled = true;
5580 
5581 	return 0;
5582 }
5583 
5584 #endif
5585 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5586 {
5587 	struct e1000_hw *hw = &adapter->hw;
5588 	u32 ping;
5589 	int i;
5590 
5591 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5592 		ping = E1000_PF_CONTROL_MSG;
5593 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5594 			ping |= E1000_VT_MSGTYPE_CTS;
5595 		igb_write_mbx(hw, &ping, 1, i);
5596 	}
5597 }
5598 
5599 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600 {
5601 	struct e1000_hw *hw = &adapter->hw;
5602 	u32 vmolr = rd32(E1000_VMOLR(vf));
5603 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5604 
5605 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5606 			    IGB_VF_FLAG_MULTI_PROMISC);
5607 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5608 
5609 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5610 		vmolr |= E1000_VMOLR_MPME;
5611 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5612 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5613 	} else {
5614 		/* if we have hashes and we are clearing a multicast promisc
5615 		 * flag we need to write the hashes to the MTA as this step
5616 		 * was previously skipped
5617 		 */
5618 		if (vf_data->num_vf_mc_hashes > 30) {
5619 			vmolr |= E1000_VMOLR_MPME;
5620 		} else if (vf_data->num_vf_mc_hashes) {
5621 			int j;
5622 			vmolr |= E1000_VMOLR_ROMPE;
5623 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5624 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5625 		}
5626 	}
5627 
5628 	wr32(E1000_VMOLR(vf), vmolr);
5629 
5630 	/* there are flags left unprocessed, likely not supported */
5631 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5632 		return -EINVAL;
5633 
5634 	return 0;
5635 }
5636 
5637 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5638 				  u32 *msgbuf, u32 vf)
5639 {
5640 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5641 	u16 *hash_list = (u16 *)&msgbuf[1];
5642 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5643 	int i;
5644 
5645 	/* salt away the number of multicast addresses assigned
5646 	 * to this VF for later use to restore when the PF multi cast
5647 	 * list changes
5648 	 */
5649 	vf_data->num_vf_mc_hashes = n;
5650 
5651 	/* only up to 30 hash values supported */
5652 	if (n > 30)
5653 		n = 30;
5654 
5655 	/* store the hashes for later use */
5656 	for (i = 0; i < n; i++)
5657 		vf_data->vf_mc_hashes[i] = hash_list[i];
5658 
5659 	/* Flush and reset the mta with the new values */
5660 	igb_set_rx_mode(adapter->netdev);
5661 
5662 	return 0;
5663 }
5664 
5665 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5666 {
5667 	struct e1000_hw *hw = &adapter->hw;
5668 	struct vf_data_storage *vf_data;
5669 	int i, j;
5670 
5671 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5672 		u32 vmolr = rd32(E1000_VMOLR(i));
5673 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5674 
5675 		vf_data = &adapter->vf_data[i];
5676 
5677 		if ((vf_data->num_vf_mc_hashes > 30) ||
5678 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5679 			vmolr |= E1000_VMOLR_MPME;
5680 		} else if (vf_data->num_vf_mc_hashes) {
5681 			vmolr |= E1000_VMOLR_ROMPE;
5682 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5683 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5684 		}
5685 		wr32(E1000_VMOLR(i), vmolr);
5686 	}
5687 }
5688 
5689 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5690 {
5691 	struct e1000_hw *hw = &adapter->hw;
5692 	u32 pool_mask, reg, vid;
5693 	int i;
5694 
5695 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5696 
5697 	/* Find the vlan filter for this id */
5698 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5699 		reg = rd32(E1000_VLVF(i));
5700 
5701 		/* remove the vf from the pool */
5702 		reg &= ~pool_mask;
5703 
5704 		/* if pool is empty then remove entry from vfta */
5705 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5706 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5707 			reg = 0;
5708 			vid = reg & E1000_VLVF_VLANID_MASK;
5709 			igb_vfta_set(hw, vid, false);
5710 		}
5711 
5712 		wr32(E1000_VLVF(i), reg);
5713 	}
5714 
5715 	adapter->vf_data[vf].vlans_enabled = 0;
5716 }
5717 
5718 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5719 {
5720 	struct e1000_hw *hw = &adapter->hw;
5721 	u32 reg, i;
5722 
5723 	/* The vlvf table only exists on 82576 hardware and newer */
5724 	if (hw->mac.type < e1000_82576)
5725 		return -1;
5726 
5727 	/* we only need to do this if VMDq is enabled */
5728 	if (!adapter->vfs_allocated_count)
5729 		return -1;
5730 
5731 	/* Find the vlan filter for this id */
5732 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5733 		reg = rd32(E1000_VLVF(i));
5734 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5735 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5736 			break;
5737 	}
5738 
5739 	if (add) {
5740 		if (i == E1000_VLVF_ARRAY_SIZE) {
5741 			/* Did not find a matching VLAN ID entry that was
5742 			 * enabled.  Search for a free filter entry, i.e.
5743 			 * one without the enable bit set
5744 			 */
5745 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5746 				reg = rd32(E1000_VLVF(i));
5747 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5748 					break;
5749 			}
5750 		}
5751 		if (i < E1000_VLVF_ARRAY_SIZE) {
5752 			/* Found an enabled/available entry */
5753 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5754 
5755 			/* if !enabled we need to set this up in vfta */
5756 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5757 				/* add VID to filter table */
5758 				igb_vfta_set(hw, vid, true);
5759 				reg |= E1000_VLVF_VLANID_ENABLE;
5760 			}
5761 			reg &= ~E1000_VLVF_VLANID_MASK;
5762 			reg |= vid;
5763 			wr32(E1000_VLVF(i), reg);
5764 
5765 			/* do not modify RLPML for PF devices */
5766 			if (vf >= adapter->vfs_allocated_count)
5767 				return 0;
5768 
5769 			if (!adapter->vf_data[vf].vlans_enabled) {
5770 				u32 size;
5771 				reg = rd32(E1000_VMOLR(vf));
5772 				size = reg & E1000_VMOLR_RLPML_MASK;
5773 				size += 4;
5774 				reg &= ~E1000_VMOLR_RLPML_MASK;
5775 				reg |= size;
5776 				wr32(E1000_VMOLR(vf), reg);
5777 			}
5778 
5779 			adapter->vf_data[vf].vlans_enabled++;
5780 		}
5781 	} else {
5782 		if (i < E1000_VLVF_ARRAY_SIZE) {
5783 			/* remove vf from the pool */
5784 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5785 			/* if pool is empty then remove entry from vfta */
5786 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5787 				reg = 0;
5788 				igb_vfta_set(hw, vid, false);
5789 			}
5790 			wr32(E1000_VLVF(i), reg);
5791 
5792 			/* do not modify RLPML for PF devices */
5793 			if (vf >= adapter->vfs_allocated_count)
5794 				return 0;
5795 
5796 			adapter->vf_data[vf].vlans_enabled--;
5797 			if (!adapter->vf_data[vf].vlans_enabled) {
5798 				u32 size;
5799 				reg = rd32(E1000_VMOLR(vf));
5800 				size = reg & E1000_VMOLR_RLPML_MASK;
5801 				size -= 4;
5802 				reg &= ~E1000_VMOLR_RLPML_MASK;
5803 				reg |= size;
5804 				wr32(E1000_VMOLR(vf), reg);
5805 			}
5806 		}
5807 	}
5808 	return 0;
5809 }
5810 
5811 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5812 {
5813 	struct e1000_hw *hw = &adapter->hw;
5814 
5815 	if (vid)
5816 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5817 	else
5818 		wr32(E1000_VMVIR(vf), 0);
5819 }
5820 
5821 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5822 			       int vf, u16 vlan, u8 qos)
5823 {
5824 	int err = 0;
5825 	struct igb_adapter *adapter = netdev_priv(netdev);
5826 
5827 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5828 		return -EINVAL;
5829 	if (vlan || qos) {
5830 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5831 		if (err)
5832 			goto out;
5833 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5834 		igb_set_vmolr(adapter, vf, !vlan);
5835 		adapter->vf_data[vf].pf_vlan = vlan;
5836 		adapter->vf_data[vf].pf_qos = qos;
5837 		dev_info(&adapter->pdev->dev,
5838 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5839 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5840 			dev_warn(&adapter->pdev->dev,
5841 				 "The VF VLAN has been set, but the PF device is not up.\n");
5842 			dev_warn(&adapter->pdev->dev,
5843 				 "Bring the PF device up before attempting to use the VF device.\n");
5844 		}
5845 	} else {
5846 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5847 			     false, vf);
5848 		igb_set_vmvir(adapter, vlan, vf);
5849 		igb_set_vmolr(adapter, vf, true);
5850 		adapter->vf_data[vf].pf_vlan = 0;
5851 		adapter->vf_data[vf].pf_qos = 0;
5852 	}
5853 out:
5854 	return err;
5855 }
5856 
5857 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5858 {
5859 	struct e1000_hw *hw = &adapter->hw;
5860 	int i;
5861 	u32 reg;
5862 
5863 	/* Find the vlan filter for this id */
5864 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5865 		reg = rd32(E1000_VLVF(i));
5866 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5867 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5868 			break;
5869 	}
5870 
5871 	if (i >= E1000_VLVF_ARRAY_SIZE)
5872 		i = -1;
5873 
5874 	return i;
5875 }
5876 
5877 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5878 {
5879 	struct e1000_hw *hw = &adapter->hw;
5880 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5881 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5882 	int err = 0;
5883 
5884 	/* If in promiscuous mode we need to make sure the PF also has
5885 	 * the VLAN filter set.
5886 	 */
5887 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5888 		err = igb_vlvf_set(adapter, vid, add,
5889 				   adapter->vfs_allocated_count);
5890 	if (err)
5891 		goto out;
5892 
5893 	err = igb_vlvf_set(adapter, vid, add, vf);
5894 
5895 	if (err)
5896 		goto out;
5897 
5898 	/* Go through all the checks to see if the VLAN filter should
5899 	 * be wiped completely.
5900 	 */
5901 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5902 		u32 vlvf, bits;
5903 
5904 		int regndx = igb_find_vlvf_entry(adapter, vid);
5905 		if (regndx < 0)
5906 			goto out;
5907 		/* See if any other pools are set for this VLAN filter
5908 		 * entry other than the PF.
5909 		 */
5910 		vlvf = bits = rd32(E1000_VLVF(regndx));
5911 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5912 			      adapter->vfs_allocated_count);
5913 		/* If the filter was removed then ensure PF pool bit
5914 		 * is cleared if the PF only added itself to the pool
5915 		 * because the PF is in promiscuous mode.
5916 		 */
5917 		if ((vlvf & VLAN_VID_MASK) == vid &&
5918 		    !test_bit(vid, adapter->active_vlans) &&
5919 		    !bits)
5920 			igb_vlvf_set(adapter, vid, add,
5921 				     adapter->vfs_allocated_count);
5922 	}
5923 
5924 out:
5925 	return err;
5926 }
5927 
5928 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5929 {
5930 	/* clear flags - except flag that indicates PF has set the MAC */
5931 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5932 	adapter->vf_data[vf].last_nack = jiffies;
5933 
5934 	/* reset offloads to defaults */
5935 	igb_set_vmolr(adapter, vf, true);
5936 
5937 	/* reset vlans for device */
5938 	igb_clear_vf_vfta(adapter, vf);
5939 	if (adapter->vf_data[vf].pf_vlan)
5940 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5941 				    adapter->vf_data[vf].pf_vlan,
5942 				    adapter->vf_data[vf].pf_qos);
5943 	else
5944 		igb_clear_vf_vfta(adapter, vf);
5945 
5946 	/* reset multicast table array for vf */
5947 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5948 
5949 	/* Flush and reset the mta with the new values */
5950 	igb_set_rx_mode(adapter->netdev);
5951 }
5952 
5953 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5954 {
5955 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5956 
5957 	/* clear mac address as we were hotplug removed/added */
5958 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5959 		eth_zero_addr(vf_mac);
5960 
5961 	/* process remaining reset events */
5962 	igb_vf_reset(adapter, vf);
5963 }
5964 
5965 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5966 {
5967 	struct e1000_hw *hw = &adapter->hw;
5968 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5969 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5970 	u32 reg, msgbuf[3];
5971 	u8 *addr = (u8 *)(&msgbuf[1]);
5972 
5973 	/* process all the same items cleared in a function level reset */
5974 	igb_vf_reset(adapter, vf);
5975 
5976 	/* set vf mac address */
5977 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5978 
5979 	/* enable transmit and receive for vf */
5980 	reg = rd32(E1000_VFTE);
5981 	wr32(E1000_VFTE, reg | (1 << vf));
5982 	reg = rd32(E1000_VFRE);
5983 	wr32(E1000_VFRE, reg | (1 << vf));
5984 
5985 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5986 
5987 	/* reply to reset with ack and vf mac address */
5988 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5989 	memcpy(addr, vf_mac, ETH_ALEN);
5990 	igb_write_mbx(hw, msgbuf, 3, vf);
5991 }
5992 
5993 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5994 {
5995 	/* The VF MAC Address is stored in a packed array of bytes
5996 	 * starting at the second 32 bit word of the msg array
5997 	 */
5998 	unsigned char *addr = (char *)&msg[1];
5999 	int err = -1;
6000 
6001 	if (is_valid_ether_addr(addr))
6002 		err = igb_set_vf_mac(adapter, vf, addr);
6003 
6004 	return err;
6005 }
6006 
6007 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6008 {
6009 	struct e1000_hw *hw = &adapter->hw;
6010 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6011 	u32 msg = E1000_VT_MSGTYPE_NACK;
6012 
6013 	/* if device isn't clear to send it shouldn't be reading either */
6014 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6015 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6016 		igb_write_mbx(hw, &msg, 1, vf);
6017 		vf_data->last_nack = jiffies;
6018 	}
6019 }
6020 
6021 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6022 {
6023 	struct pci_dev *pdev = adapter->pdev;
6024 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6025 	struct e1000_hw *hw = &adapter->hw;
6026 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6027 	s32 retval;
6028 
6029 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6030 
6031 	if (retval) {
6032 		/* if receive failed revoke VF CTS stats and restart init */
6033 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6034 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6035 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6036 			return;
6037 		goto out;
6038 	}
6039 
6040 	/* this is a message we already processed, do nothing */
6041 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6042 		return;
6043 
6044 	/* until the vf completes a reset it should not be
6045 	 * allowed to start any configuration.
6046 	 */
6047 	if (msgbuf[0] == E1000_VF_RESET) {
6048 		igb_vf_reset_msg(adapter, vf);
6049 		return;
6050 	}
6051 
6052 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6053 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6054 			return;
6055 		retval = -1;
6056 		goto out;
6057 	}
6058 
6059 	switch ((msgbuf[0] & 0xFFFF)) {
6060 	case E1000_VF_SET_MAC_ADDR:
6061 		retval = -EINVAL;
6062 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6063 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6064 		else
6065 			dev_warn(&pdev->dev,
6066 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6067 				 vf);
6068 		break;
6069 	case E1000_VF_SET_PROMISC:
6070 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6071 		break;
6072 	case E1000_VF_SET_MULTICAST:
6073 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6074 		break;
6075 	case E1000_VF_SET_LPE:
6076 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6077 		break;
6078 	case E1000_VF_SET_VLAN:
6079 		retval = -1;
6080 		if (vf_data->pf_vlan)
6081 			dev_warn(&pdev->dev,
6082 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6083 				 vf);
6084 		else
6085 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6086 		break;
6087 	default:
6088 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6089 		retval = -1;
6090 		break;
6091 	}
6092 
6093 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6094 out:
6095 	/* notify the VF of the results of what it sent us */
6096 	if (retval)
6097 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6098 	else
6099 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6100 
6101 	igb_write_mbx(hw, msgbuf, 1, vf);
6102 }
6103 
6104 static void igb_msg_task(struct igb_adapter *adapter)
6105 {
6106 	struct e1000_hw *hw = &adapter->hw;
6107 	u32 vf;
6108 
6109 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6110 		/* process any reset requests */
6111 		if (!igb_check_for_rst(hw, vf))
6112 			igb_vf_reset_event(adapter, vf);
6113 
6114 		/* process any messages pending */
6115 		if (!igb_check_for_msg(hw, vf))
6116 			igb_rcv_msg_from_vf(adapter, vf);
6117 
6118 		/* process any acks */
6119 		if (!igb_check_for_ack(hw, vf))
6120 			igb_rcv_ack_from_vf(adapter, vf);
6121 	}
6122 }
6123 
6124 /**
6125  *  igb_set_uta - Set unicast filter table address
6126  *  @adapter: board private structure
6127  *
6128  *  The unicast table address is a register array of 32-bit registers.
6129  *  The table is meant to be used in a way similar to how the MTA is used
6130  *  however due to certain limitations in the hardware it is necessary to
6131  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6132  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6133  **/
6134 static void igb_set_uta(struct igb_adapter *adapter)
6135 {
6136 	struct e1000_hw *hw = &adapter->hw;
6137 	int i;
6138 
6139 	/* The UTA table only exists on 82576 hardware and newer */
6140 	if (hw->mac.type < e1000_82576)
6141 		return;
6142 
6143 	/* we only need to do this if VMDq is enabled */
6144 	if (!adapter->vfs_allocated_count)
6145 		return;
6146 
6147 	for (i = 0; i < hw->mac.uta_reg_count; i++)
6148 		array_wr32(E1000_UTA, i, ~0);
6149 }
6150 
6151 /**
6152  *  igb_intr_msi - Interrupt Handler
6153  *  @irq: interrupt number
6154  *  @data: pointer to a network interface device structure
6155  **/
6156 static irqreturn_t igb_intr_msi(int irq, void *data)
6157 {
6158 	struct igb_adapter *adapter = data;
6159 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6160 	struct e1000_hw *hw = &adapter->hw;
6161 	/* read ICR disables interrupts using IAM */
6162 	u32 icr = rd32(E1000_ICR);
6163 
6164 	igb_write_itr(q_vector);
6165 
6166 	if (icr & E1000_ICR_DRSTA)
6167 		schedule_work(&adapter->reset_task);
6168 
6169 	if (icr & E1000_ICR_DOUTSYNC) {
6170 		/* HW is reporting DMA is out of sync */
6171 		adapter->stats.doosync++;
6172 	}
6173 
6174 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6175 		hw->mac.get_link_status = 1;
6176 		if (!test_bit(__IGB_DOWN, &adapter->state))
6177 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6178 	}
6179 
6180 	if (icr & E1000_ICR_TS) {
6181 		u32 tsicr = rd32(E1000_TSICR);
6182 
6183 		if (tsicr & E1000_TSICR_TXTS) {
6184 			/* acknowledge the interrupt */
6185 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6186 			/* retrieve hardware timestamp */
6187 			schedule_work(&adapter->ptp_tx_work);
6188 		}
6189 	}
6190 
6191 	napi_schedule(&q_vector->napi);
6192 
6193 	return IRQ_HANDLED;
6194 }
6195 
6196 /**
6197  *  igb_intr - Legacy Interrupt Handler
6198  *  @irq: interrupt number
6199  *  @data: pointer to a network interface device structure
6200  **/
6201 static irqreturn_t igb_intr(int irq, void *data)
6202 {
6203 	struct igb_adapter *adapter = data;
6204 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6205 	struct e1000_hw *hw = &adapter->hw;
6206 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6207 	 * need for the IMC write
6208 	 */
6209 	u32 icr = rd32(E1000_ICR);
6210 
6211 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6212 	 * not set, then the adapter didn't send an interrupt
6213 	 */
6214 	if (!(icr & E1000_ICR_INT_ASSERTED))
6215 		return IRQ_NONE;
6216 
6217 	igb_write_itr(q_vector);
6218 
6219 	if (icr & E1000_ICR_DRSTA)
6220 		schedule_work(&adapter->reset_task);
6221 
6222 	if (icr & E1000_ICR_DOUTSYNC) {
6223 		/* HW is reporting DMA is out of sync */
6224 		adapter->stats.doosync++;
6225 	}
6226 
6227 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6228 		hw->mac.get_link_status = 1;
6229 		/* guard against interrupt when we're going down */
6230 		if (!test_bit(__IGB_DOWN, &adapter->state))
6231 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6232 	}
6233 
6234 	if (icr & E1000_ICR_TS) {
6235 		u32 tsicr = rd32(E1000_TSICR);
6236 
6237 		if (tsicr & E1000_TSICR_TXTS) {
6238 			/* acknowledge the interrupt */
6239 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6240 			/* retrieve hardware timestamp */
6241 			schedule_work(&adapter->ptp_tx_work);
6242 		}
6243 	}
6244 
6245 	napi_schedule(&q_vector->napi);
6246 
6247 	return IRQ_HANDLED;
6248 }
6249 
6250 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6251 {
6252 	struct igb_adapter *adapter = q_vector->adapter;
6253 	struct e1000_hw *hw = &adapter->hw;
6254 
6255 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6256 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6257 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6258 			igb_set_itr(q_vector);
6259 		else
6260 			igb_update_ring_itr(q_vector);
6261 	}
6262 
6263 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6264 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6265 			wr32(E1000_EIMS, q_vector->eims_value);
6266 		else
6267 			igb_irq_enable(adapter);
6268 	}
6269 }
6270 
6271 /**
6272  *  igb_poll - NAPI Rx polling callback
6273  *  @napi: napi polling structure
6274  *  @budget: count of how many packets we should handle
6275  **/
6276 static int igb_poll(struct napi_struct *napi, int budget)
6277 {
6278 	struct igb_q_vector *q_vector = container_of(napi,
6279 						     struct igb_q_vector,
6280 						     napi);
6281 	bool clean_complete = true;
6282 
6283 #ifdef CONFIG_IGB_DCA
6284 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6285 		igb_update_dca(q_vector);
6286 #endif
6287 	if (q_vector->tx.ring)
6288 		clean_complete = igb_clean_tx_irq(q_vector);
6289 
6290 	if (q_vector->rx.ring)
6291 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6292 
6293 	/* If all work not completed, return budget and keep polling */
6294 	if (!clean_complete)
6295 		return budget;
6296 
6297 	/* If not enough Rx work done, exit the polling mode */
6298 	napi_complete(napi);
6299 	igb_ring_irq_enable(q_vector);
6300 
6301 	return 0;
6302 }
6303 
6304 /**
6305  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6306  *  @q_vector: pointer to q_vector containing needed info
6307  *
6308  *  returns true if ring is completely cleaned
6309  **/
6310 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6311 {
6312 	struct igb_adapter *adapter = q_vector->adapter;
6313 	struct igb_ring *tx_ring = q_vector->tx.ring;
6314 	struct igb_tx_buffer *tx_buffer;
6315 	union e1000_adv_tx_desc *tx_desc;
6316 	unsigned int total_bytes = 0, total_packets = 0;
6317 	unsigned int budget = q_vector->tx.work_limit;
6318 	unsigned int i = tx_ring->next_to_clean;
6319 
6320 	if (test_bit(__IGB_DOWN, &adapter->state))
6321 		return true;
6322 
6323 	tx_buffer = &tx_ring->tx_buffer_info[i];
6324 	tx_desc = IGB_TX_DESC(tx_ring, i);
6325 	i -= tx_ring->count;
6326 
6327 	do {
6328 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6329 
6330 		/* if next_to_watch is not set then there is no work pending */
6331 		if (!eop_desc)
6332 			break;
6333 
6334 		/* prevent any other reads prior to eop_desc */
6335 		read_barrier_depends();
6336 
6337 		/* if DD is not set pending work has not been completed */
6338 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6339 			break;
6340 
6341 		/* clear next_to_watch to prevent false hangs */
6342 		tx_buffer->next_to_watch = NULL;
6343 
6344 		/* update the statistics for this packet */
6345 		total_bytes += tx_buffer->bytecount;
6346 		total_packets += tx_buffer->gso_segs;
6347 
6348 		/* free the skb */
6349 		dev_kfree_skb_any(tx_buffer->skb);
6350 
6351 		/* unmap skb header data */
6352 		dma_unmap_single(tx_ring->dev,
6353 				 dma_unmap_addr(tx_buffer, dma),
6354 				 dma_unmap_len(tx_buffer, len),
6355 				 DMA_TO_DEVICE);
6356 
6357 		/* clear tx_buffer data */
6358 		tx_buffer->skb = NULL;
6359 		dma_unmap_len_set(tx_buffer, len, 0);
6360 
6361 		/* clear last DMA location and unmap remaining buffers */
6362 		while (tx_desc != eop_desc) {
6363 			tx_buffer++;
6364 			tx_desc++;
6365 			i++;
6366 			if (unlikely(!i)) {
6367 				i -= tx_ring->count;
6368 				tx_buffer = tx_ring->tx_buffer_info;
6369 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6370 			}
6371 
6372 			/* unmap any remaining paged data */
6373 			if (dma_unmap_len(tx_buffer, len)) {
6374 				dma_unmap_page(tx_ring->dev,
6375 					       dma_unmap_addr(tx_buffer, dma),
6376 					       dma_unmap_len(tx_buffer, len),
6377 					       DMA_TO_DEVICE);
6378 				dma_unmap_len_set(tx_buffer, len, 0);
6379 			}
6380 		}
6381 
6382 		/* move us one more past the eop_desc for start of next pkt */
6383 		tx_buffer++;
6384 		tx_desc++;
6385 		i++;
6386 		if (unlikely(!i)) {
6387 			i -= tx_ring->count;
6388 			tx_buffer = tx_ring->tx_buffer_info;
6389 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6390 		}
6391 
6392 		/* issue prefetch for next Tx descriptor */
6393 		prefetch(tx_desc);
6394 
6395 		/* update budget accounting */
6396 		budget--;
6397 	} while (likely(budget));
6398 
6399 	netdev_tx_completed_queue(txring_txq(tx_ring),
6400 				  total_packets, total_bytes);
6401 	i += tx_ring->count;
6402 	tx_ring->next_to_clean = i;
6403 	u64_stats_update_begin(&tx_ring->tx_syncp);
6404 	tx_ring->tx_stats.bytes += total_bytes;
6405 	tx_ring->tx_stats.packets += total_packets;
6406 	u64_stats_update_end(&tx_ring->tx_syncp);
6407 	q_vector->tx.total_bytes += total_bytes;
6408 	q_vector->tx.total_packets += total_packets;
6409 
6410 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6411 		struct e1000_hw *hw = &adapter->hw;
6412 
6413 		/* Detect a transmit hang in hardware, this serializes the
6414 		 * check with the clearing of time_stamp and movement of i
6415 		 */
6416 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6417 		if (tx_buffer->next_to_watch &&
6418 		    time_after(jiffies, tx_buffer->time_stamp +
6419 			       (adapter->tx_timeout_factor * HZ)) &&
6420 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6421 
6422 			/* detected Tx unit hang */
6423 			dev_err(tx_ring->dev,
6424 				"Detected Tx Unit Hang\n"
6425 				"  Tx Queue             <%d>\n"
6426 				"  TDH                  <%x>\n"
6427 				"  TDT                  <%x>\n"
6428 				"  next_to_use          <%x>\n"
6429 				"  next_to_clean        <%x>\n"
6430 				"buffer_info[next_to_clean]\n"
6431 				"  time_stamp           <%lx>\n"
6432 				"  next_to_watch        <%p>\n"
6433 				"  jiffies              <%lx>\n"
6434 				"  desc.status          <%x>\n",
6435 				tx_ring->queue_index,
6436 				rd32(E1000_TDH(tx_ring->reg_idx)),
6437 				readl(tx_ring->tail),
6438 				tx_ring->next_to_use,
6439 				tx_ring->next_to_clean,
6440 				tx_buffer->time_stamp,
6441 				tx_buffer->next_to_watch,
6442 				jiffies,
6443 				tx_buffer->next_to_watch->wb.status);
6444 			netif_stop_subqueue(tx_ring->netdev,
6445 					    tx_ring->queue_index);
6446 
6447 			/* we are about to reset, no point in enabling stuff */
6448 			return true;
6449 		}
6450 	}
6451 
6452 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6453 	if (unlikely(total_packets &&
6454 	    netif_carrier_ok(tx_ring->netdev) &&
6455 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6456 		/* Make sure that anybody stopping the queue after this
6457 		 * sees the new next_to_clean.
6458 		 */
6459 		smp_mb();
6460 		if (__netif_subqueue_stopped(tx_ring->netdev,
6461 					     tx_ring->queue_index) &&
6462 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6463 			netif_wake_subqueue(tx_ring->netdev,
6464 					    tx_ring->queue_index);
6465 
6466 			u64_stats_update_begin(&tx_ring->tx_syncp);
6467 			tx_ring->tx_stats.restart_queue++;
6468 			u64_stats_update_end(&tx_ring->tx_syncp);
6469 		}
6470 	}
6471 
6472 	return !!budget;
6473 }
6474 
6475 /**
6476  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6477  *  @rx_ring: rx descriptor ring to store buffers on
6478  *  @old_buff: donor buffer to have page reused
6479  *
6480  *  Synchronizes page for reuse by the adapter
6481  **/
6482 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6483 			      struct igb_rx_buffer *old_buff)
6484 {
6485 	struct igb_rx_buffer *new_buff;
6486 	u16 nta = rx_ring->next_to_alloc;
6487 
6488 	new_buff = &rx_ring->rx_buffer_info[nta];
6489 
6490 	/* update, and store next to alloc */
6491 	nta++;
6492 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6493 
6494 	/* transfer page from old buffer to new buffer */
6495 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6496 
6497 	/* sync the buffer for use by the device */
6498 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6499 					 old_buff->page_offset,
6500 					 IGB_RX_BUFSZ,
6501 					 DMA_FROM_DEVICE);
6502 }
6503 
6504 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6505 				  struct page *page,
6506 				  unsigned int truesize)
6507 {
6508 	/* avoid re-using remote pages */
6509 	if (unlikely(page_to_nid(page) != numa_node_id()))
6510 		return false;
6511 
6512 #if (PAGE_SIZE < 8192)
6513 	/* if we are only owner of page we can reuse it */
6514 	if (unlikely(page_count(page) != 1))
6515 		return false;
6516 
6517 	/* flip page offset to other buffer */
6518 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6519 
6520 	/* since we are the only owner of the page and we need to
6521 	 * increment it, just set the value to 2 in order to avoid
6522 	 * an unnecessary locked operation
6523 	 */
6524 	atomic_set(&page->_count, 2);
6525 #else
6526 	/* move offset up to the next cache line */
6527 	rx_buffer->page_offset += truesize;
6528 
6529 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6530 		return false;
6531 
6532 	/* bump ref count on page before it is given to the stack */
6533 	get_page(page);
6534 #endif
6535 
6536 	return true;
6537 }
6538 
6539 /**
6540  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6541  *  @rx_ring: rx descriptor ring to transact packets on
6542  *  @rx_buffer: buffer containing page to add
6543  *  @rx_desc: descriptor containing length of buffer written by hardware
6544  *  @skb: sk_buff to place the data into
6545  *
6546  *  This function will add the data contained in rx_buffer->page to the skb.
6547  *  This is done either through a direct copy if the data in the buffer is
6548  *  less than the skb header size, otherwise it will just attach the page as
6549  *  a frag to the skb.
6550  *
6551  *  The function will then update the page offset if necessary and return
6552  *  true if the buffer can be reused by the adapter.
6553  **/
6554 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6555 			    struct igb_rx_buffer *rx_buffer,
6556 			    union e1000_adv_rx_desc *rx_desc,
6557 			    struct sk_buff *skb)
6558 {
6559 	struct page *page = rx_buffer->page;
6560 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6561 #if (PAGE_SIZE < 8192)
6562 	unsigned int truesize = IGB_RX_BUFSZ;
6563 #else
6564 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6565 #endif
6566 
6567 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6568 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6569 
6570 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6571 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6572 			va += IGB_TS_HDR_LEN;
6573 			size -= IGB_TS_HDR_LEN;
6574 		}
6575 
6576 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6577 
6578 		/* we can reuse buffer as-is, just make sure it is local */
6579 		if (likely(page_to_nid(page) == numa_node_id()))
6580 			return true;
6581 
6582 		/* this page cannot be reused so discard it */
6583 		put_page(page);
6584 		return false;
6585 	}
6586 
6587 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6588 			rx_buffer->page_offset, size, truesize);
6589 
6590 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6591 }
6592 
6593 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6594 					   union e1000_adv_rx_desc *rx_desc,
6595 					   struct sk_buff *skb)
6596 {
6597 	struct igb_rx_buffer *rx_buffer;
6598 	struct page *page;
6599 
6600 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6601 
6602 	page = rx_buffer->page;
6603 	prefetchw(page);
6604 
6605 	if (likely(!skb)) {
6606 		void *page_addr = page_address(page) +
6607 				  rx_buffer->page_offset;
6608 
6609 		/* prefetch first cache line of first page */
6610 		prefetch(page_addr);
6611 #if L1_CACHE_BYTES < 128
6612 		prefetch(page_addr + L1_CACHE_BYTES);
6613 #endif
6614 
6615 		/* allocate a skb to store the frags */
6616 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6617 						IGB_RX_HDR_LEN);
6618 		if (unlikely(!skb)) {
6619 			rx_ring->rx_stats.alloc_failed++;
6620 			return NULL;
6621 		}
6622 
6623 		/* we will be copying header into skb->data in
6624 		 * pskb_may_pull so it is in our interest to prefetch
6625 		 * it now to avoid a possible cache miss
6626 		 */
6627 		prefetchw(skb->data);
6628 	}
6629 
6630 	/* we are reusing so sync this buffer for CPU use */
6631 	dma_sync_single_range_for_cpu(rx_ring->dev,
6632 				      rx_buffer->dma,
6633 				      rx_buffer->page_offset,
6634 				      IGB_RX_BUFSZ,
6635 				      DMA_FROM_DEVICE);
6636 
6637 	/* pull page into skb */
6638 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6639 		/* hand second half of page back to the ring */
6640 		igb_reuse_rx_page(rx_ring, rx_buffer);
6641 	} else {
6642 		/* we are not reusing the buffer so unmap it */
6643 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6644 			       PAGE_SIZE, DMA_FROM_DEVICE);
6645 	}
6646 
6647 	/* clear contents of rx_buffer */
6648 	rx_buffer->page = NULL;
6649 
6650 	return skb;
6651 }
6652 
6653 static inline void igb_rx_checksum(struct igb_ring *ring,
6654 				   union e1000_adv_rx_desc *rx_desc,
6655 				   struct sk_buff *skb)
6656 {
6657 	skb_checksum_none_assert(skb);
6658 
6659 	/* Ignore Checksum bit is set */
6660 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6661 		return;
6662 
6663 	/* Rx checksum disabled via ethtool */
6664 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6665 		return;
6666 
6667 	/* TCP/UDP checksum error bit is set */
6668 	if (igb_test_staterr(rx_desc,
6669 			     E1000_RXDEXT_STATERR_TCPE |
6670 			     E1000_RXDEXT_STATERR_IPE)) {
6671 		/* work around errata with sctp packets where the TCPE aka
6672 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6673 		 * packets, (aka let the stack check the crc32c)
6674 		 */
6675 		if (!((skb->len == 60) &&
6676 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6677 			u64_stats_update_begin(&ring->rx_syncp);
6678 			ring->rx_stats.csum_err++;
6679 			u64_stats_update_end(&ring->rx_syncp);
6680 		}
6681 		/* let the stack verify checksum errors */
6682 		return;
6683 	}
6684 	/* It must be a TCP or UDP packet with a valid checksum */
6685 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6686 				      E1000_RXD_STAT_UDPCS))
6687 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6688 
6689 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6690 		le32_to_cpu(rx_desc->wb.upper.status_error));
6691 }
6692 
6693 static inline void igb_rx_hash(struct igb_ring *ring,
6694 			       union e1000_adv_rx_desc *rx_desc,
6695 			       struct sk_buff *skb)
6696 {
6697 	if (ring->netdev->features & NETIF_F_RXHASH)
6698 		skb_set_hash(skb,
6699 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6700 			     PKT_HASH_TYPE_L3);
6701 }
6702 
6703 /**
6704  *  igb_is_non_eop - process handling of non-EOP buffers
6705  *  @rx_ring: Rx ring being processed
6706  *  @rx_desc: Rx descriptor for current buffer
6707  *  @skb: current socket buffer containing buffer in progress
6708  *
6709  *  This function updates next to clean.  If the buffer is an EOP buffer
6710  *  this function exits returning false, otherwise it will place the
6711  *  sk_buff in the next buffer to be chained and return true indicating
6712  *  that this is in fact a non-EOP buffer.
6713  **/
6714 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6715 			   union e1000_adv_rx_desc *rx_desc)
6716 {
6717 	u32 ntc = rx_ring->next_to_clean + 1;
6718 
6719 	/* fetch, update, and store next to clean */
6720 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6721 	rx_ring->next_to_clean = ntc;
6722 
6723 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6724 
6725 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6726 		return false;
6727 
6728 	return true;
6729 }
6730 
6731 /**
6732  *  igb_get_headlen - determine size of header for LRO/GRO
6733  *  @data: pointer to the start of the headers
6734  *  @max_len: total length of section to find headers in
6735  *
6736  *  This function is meant to determine the length of headers that will
6737  *  be recognized by hardware for LRO, and GRO offloads.  The main
6738  *  motivation of doing this is to only perform one pull for IPv4 TCP
6739  *  packets so that we can do basic things like calculating the gso_size
6740  *  based on the average data per packet.
6741  **/
6742 static unsigned int igb_get_headlen(unsigned char *data,
6743 				    unsigned int max_len)
6744 {
6745 	union {
6746 		unsigned char *network;
6747 		/* l2 headers */
6748 		struct ethhdr *eth;
6749 		struct vlan_hdr *vlan;
6750 		/* l3 headers */
6751 		struct iphdr *ipv4;
6752 		struct ipv6hdr *ipv6;
6753 	} hdr;
6754 	__be16 protocol;
6755 	u8 nexthdr = 0;	/* default to not TCP */
6756 	u8 hlen;
6757 
6758 	/* this should never happen, but better safe than sorry */
6759 	if (max_len < ETH_HLEN)
6760 		return max_len;
6761 
6762 	/* initialize network frame pointer */
6763 	hdr.network = data;
6764 
6765 	/* set first protocol and move network header forward */
6766 	protocol = hdr.eth->h_proto;
6767 	hdr.network += ETH_HLEN;
6768 
6769 	/* handle any vlan tag if present */
6770 	if (protocol == htons(ETH_P_8021Q)) {
6771 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6772 			return max_len;
6773 
6774 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6775 		hdr.network += VLAN_HLEN;
6776 	}
6777 
6778 	/* handle L3 protocols */
6779 	if (protocol == htons(ETH_P_IP)) {
6780 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6781 			return max_len;
6782 
6783 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6784 		hlen = (hdr.network[0] & 0x0F) << 2;
6785 
6786 		/* verify hlen meets minimum size requirements */
6787 		if (hlen < sizeof(struct iphdr))
6788 			return hdr.network - data;
6789 
6790 		/* record next protocol if header is present */
6791 		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6792 			nexthdr = hdr.ipv4->protocol;
6793 	} else if (protocol == htons(ETH_P_IPV6)) {
6794 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6795 			return max_len;
6796 
6797 		/* record next protocol */
6798 		nexthdr = hdr.ipv6->nexthdr;
6799 		hlen = sizeof(struct ipv6hdr);
6800 	} else {
6801 		return hdr.network - data;
6802 	}
6803 
6804 	/* relocate pointer to start of L4 header */
6805 	hdr.network += hlen;
6806 
6807 	/* finally sort out TCP */
6808 	if (nexthdr == IPPROTO_TCP) {
6809 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6810 			return max_len;
6811 
6812 		/* access doff as a u8 to avoid unaligned access on ia64 */
6813 		hlen = (hdr.network[12] & 0xF0) >> 2;
6814 
6815 		/* verify hlen meets minimum size requirements */
6816 		if (hlen < sizeof(struct tcphdr))
6817 			return hdr.network - data;
6818 
6819 		hdr.network += hlen;
6820 	} else if (nexthdr == IPPROTO_UDP) {
6821 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6822 			return max_len;
6823 
6824 		hdr.network += sizeof(struct udphdr);
6825 	}
6826 
6827 	/* If everything has gone correctly hdr.network should be the
6828 	 * data section of the packet and will be the end of the header.
6829 	 * If not then it probably represents the end of the last recognized
6830 	 * header.
6831 	 */
6832 	if ((hdr.network - data) < max_len)
6833 		return hdr.network - data;
6834 	else
6835 		return max_len;
6836 }
6837 
6838 /**
6839  *  igb_pull_tail - igb specific version of skb_pull_tail
6840  *  @rx_ring: rx descriptor ring packet is being transacted on
6841  *  @rx_desc: pointer to the EOP Rx descriptor
6842  *  @skb: pointer to current skb being adjusted
6843  *
6844  *  This function is an igb specific version of __pskb_pull_tail.  The
6845  *  main difference between this version and the original function is that
6846  *  this function can make several assumptions about the state of things
6847  *  that allow for significant optimizations versus the standard function.
6848  *  As a result we can do things like drop a frag and maintain an accurate
6849  *  truesize for the skb.
6850  */
6851 static void igb_pull_tail(struct igb_ring *rx_ring,
6852 			  union e1000_adv_rx_desc *rx_desc,
6853 			  struct sk_buff *skb)
6854 {
6855 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6856 	unsigned char *va;
6857 	unsigned int pull_len;
6858 
6859 	/* it is valid to use page_address instead of kmap since we are
6860 	 * working with pages allocated out of the lomem pool per
6861 	 * alloc_page(GFP_ATOMIC)
6862 	 */
6863 	va = skb_frag_address(frag);
6864 
6865 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6866 		/* retrieve timestamp from buffer */
6867 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6868 
6869 		/* update pointers to remove timestamp header */
6870 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6871 		frag->page_offset += IGB_TS_HDR_LEN;
6872 		skb->data_len -= IGB_TS_HDR_LEN;
6873 		skb->len -= IGB_TS_HDR_LEN;
6874 
6875 		/* move va to start of packet data */
6876 		va += IGB_TS_HDR_LEN;
6877 	}
6878 
6879 	/* we need the header to contain the greater of either ETH_HLEN or
6880 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6881 	 */
6882 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6883 
6884 	/* align pull length to size of long to optimize memcpy performance */
6885 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6886 
6887 	/* update all of the pointers */
6888 	skb_frag_size_sub(frag, pull_len);
6889 	frag->page_offset += pull_len;
6890 	skb->data_len -= pull_len;
6891 	skb->tail += pull_len;
6892 }
6893 
6894 /**
6895  *  igb_cleanup_headers - Correct corrupted or empty headers
6896  *  @rx_ring: rx descriptor ring packet is being transacted on
6897  *  @rx_desc: pointer to the EOP Rx descriptor
6898  *  @skb: pointer to current skb being fixed
6899  *
6900  *  Address the case where we are pulling data in on pages only
6901  *  and as such no data is present in the skb header.
6902  *
6903  *  In addition if skb is not at least 60 bytes we need to pad it so that
6904  *  it is large enough to qualify as a valid Ethernet frame.
6905  *
6906  *  Returns true if an error was encountered and skb was freed.
6907  **/
6908 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6909 				union e1000_adv_rx_desc *rx_desc,
6910 				struct sk_buff *skb)
6911 {
6912 	if (unlikely((igb_test_staterr(rx_desc,
6913 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6914 		struct net_device *netdev = rx_ring->netdev;
6915 		if (!(netdev->features & NETIF_F_RXALL)) {
6916 			dev_kfree_skb_any(skb);
6917 			return true;
6918 		}
6919 	}
6920 
6921 	/* place header in linear portion of buffer */
6922 	if (skb_is_nonlinear(skb))
6923 		igb_pull_tail(rx_ring, rx_desc, skb);
6924 
6925 	/* if skb_pad returns an error the skb was freed */
6926 	if (unlikely(skb->len < 60)) {
6927 		int pad_len = 60 - skb->len;
6928 
6929 		if (skb_pad(skb, pad_len))
6930 			return true;
6931 		__skb_put(skb, pad_len);
6932 	}
6933 
6934 	return false;
6935 }
6936 
6937 /**
6938  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6939  *  @rx_ring: rx descriptor ring packet is being transacted on
6940  *  @rx_desc: pointer to the EOP Rx descriptor
6941  *  @skb: pointer to current skb being populated
6942  *
6943  *  This function checks the ring, descriptor, and packet information in
6944  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6945  *  other fields within the skb.
6946  **/
6947 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6948 				   union e1000_adv_rx_desc *rx_desc,
6949 				   struct sk_buff *skb)
6950 {
6951 	struct net_device *dev = rx_ring->netdev;
6952 
6953 	igb_rx_hash(rx_ring, rx_desc, skb);
6954 
6955 	igb_rx_checksum(rx_ring, rx_desc, skb);
6956 
6957 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6958 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6959 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6960 
6961 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6962 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6963 		u16 vid;
6964 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6965 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6966 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6967 		else
6968 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6969 
6970 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6971 	}
6972 
6973 	skb_record_rx_queue(skb, rx_ring->queue_index);
6974 
6975 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6976 }
6977 
6978 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6979 {
6980 	struct igb_ring *rx_ring = q_vector->rx.ring;
6981 	struct sk_buff *skb = rx_ring->skb;
6982 	unsigned int total_bytes = 0, total_packets = 0;
6983 	u16 cleaned_count = igb_desc_unused(rx_ring);
6984 
6985 	while (likely(total_packets < budget)) {
6986 		union e1000_adv_rx_desc *rx_desc;
6987 
6988 		/* return some buffers to hardware, one at a time is too slow */
6989 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6990 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6991 			cleaned_count = 0;
6992 		}
6993 
6994 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6995 
6996 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6997 			break;
6998 
6999 		/* This memory barrier is needed to keep us from reading
7000 		 * any other fields out of the rx_desc until we know the
7001 		 * RXD_STAT_DD bit is set
7002 		 */
7003 		rmb();
7004 
7005 		/* retrieve a buffer from the ring */
7006 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7007 
7008 		/* exit if we failed to retrieve a buffer */
7009 		if (!skb)
7010 			break;
7011 
7012 		cleaned_count++;
7013 
7014 		/* fetch next buffer in frame if non-eop */
7015 		if (igb_is_non_eop(rx_ring, rx_desc))
7016 			continue;
7017 
7018 		/* verify the packet layout is correct */
7019 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7020 			skb = NULL;
7021 			continue;
7022 		}
7023 
7024 		/* probably a little skewed due to removing CRC */
7025 		total_bytes += skb->len;
7026 
7027 		/* populate checksum, timestamp, VLAN, and protocol */
7028 		igb_process_skb_fields(rx_ring, rx_desc, skb);
7029 
7030 		napi_gro_receive(&q_vector->napi, skb);
7031 
7032 		/* reset skb pointer */
7033 		skb = NULL;
7034 
7035 		/* update budget accounting */
7036 		total_packets++;
7037 	}
7038 
7039 	/* place incomplete frames back on ring for completion */
7040 	rx_ring->skb = skb;
7041 
7042 	u64_stats_update_begin(&rx_ring->rx_syncp);
7043 	rx_ring->rx_stats.packets += total_packets;
7044 	rx_ring->rx_stats.bytes += total_bytes;
7045 	u64_stats_update_end(&rx_ring->rx_syncp);
7046 	q_vector->rx.total_packets += total_packets;
7047 	q_vector->rx.total_bytes += total_bytes;
7048 
7049 	if (cleaned_count)
7050 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7051 
7052 	return (total_packets < budget);
7053 }
7054 
7055 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7056 				  struct igb_rx_buffer *bi)
7057 {
7058 	struct page *page = bi->page;
7059 	dma_addr_t dma;
7060 
7061 	/* since we are recycling buffers we should seldom need to alloc */
7062 	if (likely(page))
7063 		return true;
7064 
7065 	/* alloc new page for storage */
7066 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7067 	if (unlikely(!page)) {
7068 		rx_ring->rx_stats.alloc_failed++;
7069 		return false;
7070 	}
7071 
7072 	/* map page for use */
7073 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7074 
7075 	/* if mapping failed free memory back to system since
7076 	 * there isn't much point in holding memory we can't use
7077 	 */
7078 	if (dma_mapping_error(rx_ring->dev, dma)) {
7079 		__free_page(page);
7080 
7081 		rx_ring->rx_stats.alloc_failed++;
7082 		return false;
7083 	}
7084 
7085 	bi->dma = dma;
7086 	bi->page = page;
7087 	bi->page_offset = 0;
7088 
7089 	return true;
7090 }
7091 
7092 /**
7093  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7094  *  @adapter: address of board private structure
7095  **/
7096 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7097 {
7098 	union e1000_adv_rx_desc *rx_desc;
7099 	struct igb_rx_buffer *bi;
7100 	u16 i = rx_ring->next_to_use;
7101 
7102 	/* nothing to do */
7103 	if (!cleaned_count)
7104 		return;
7105 
7106 	rx_desc = IGB_RX_DESC(rx_ring, i);
7107 	bi = &rx_ring->rx_buffer_info[i];
7108 	i -= rx_ring->count;
7109 
7110 	do {
7111 		if (!igb_alloc_mapped_page(rx_ring, bi))
7112 			break;
7113 
7114 		/* Refresh the desc even if buffer_addrs didn't change
7115 		 * because each write-back erases this info.
7116 		 */
7117 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7118 
7119 		rx_desc++;
7120 		bi++;
7121 		i++;
7122 		if (unlikely(!i)) {
7123 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7124 			bi = rx_ring->rx_buffer_info;
7125 			i -= rx_ring->count;
7126 		}
7127 
7128 		/* clear the hdr_addr for the next_to_use descriptor */
7129 		rx_desc->read.hdr_addr = 0;
7130 
7131 		cleaned_count--;
7132 	} while (cleaned_count);
7133 
7134 	i += rx_ring->count;
7135 
7136 	if (rx_ring->next_to_use != i) {
7137 		/* record the next descriptor to use */
7138 		rx_ring->next_to_use = i;
7139 
7140 		/* update next to alloc since we have filled the ring */
7141 		rx_ring->next_to_alloc = i;
7142 
7143 		/* Force memory writes to complete before letting h/w
7144 		 * know there are new descriptors to fetch.  (Only
7145 		 * applicable for weak-ordered memory model archs,
7146 		 * such as IA-64).
7147 		 */
7148 		wmb();
7149 		writel(i, rx_ring->tail);
7150 	}
7151 }
7152 
7153 /**
7154  * igb_mii_ioctl -
7155  * @netdev:
7156  * @ifreq:
7157  * @cmd:
7158  **/
7159 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7160 {
7161 	struct igb_adapter *adapter = netdev_priv(netdev);
7162 	struct mii_ioctl_data *data = if_mii(ifr);
7163 
7164 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7165 		return -EOPNOTSUPP;
7166 
7167 	switch (cmd) {
7168 	case SIOCGMIIPHY:
7169 		data->phy_id = adapter->hw.phy.addr;
7170 		break;
7171 	case SIOCGMIIREG:
7172 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7173 		                     &data->val_out))
7174 			return -EIO;
7175 		break;
7176 	case SIOCSMIIREG:
7177 	default:
7178 		return -EOPNOTSUPP;
7179 	}
7180 	return 0;
7181 }
7182 
7183 /**
7184  * igb_ioctl -
7185  * @netdev:
7186  * @ifreq:
7187  * @cmd:
7188  **/
7189 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7190 {
7191 	switch (cmd) {
7192 	case SIOCGMIIPHY:
7193 	case SIOCGMIIREG:
7194 	case SIOCSMIIREG:
7195 		return igb_mii_ioctl(netdev, ifr, cmd);
7196 	case SIOCGHWTSTAMP:
7197 		return igb_ptp_get_ts_config(netdev, ifr);
7198 	case SIOCSHWTSTAMP:
7199 		return igb_ptp_set_ts_config(netdev, ifr);
7200 	default:
7201 		return -EOPNOTSUPP;
7202 	}
7203 }
7204 
7205 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7206 {
7207 	struct igb_adapter *adapter = hw->back;
7208 
7209 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7210 		return -E1000_ERR_CONFIG;
7211 
7212 	return 0;
7213 }
7214 
7215 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7216 {
7217 	struct igb_adapter *adapter = hw->back;
7218 
7219 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7220 		return -E1000_ERR_CONFIG;
7221 
7222 	return 0;
7223 }
7224 
7225 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7226 {
7227 	struct igb_adapter *adapter = netdev_priv(netdev);
7228 	struct e1000_hw *hw = &adapter->hw;
7229 	u32 ctrl, rctl;
7230 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7231 
7232 	if (enable) {
7233 		/* enable VLAN tag insert/strip */
7234 		ctrl = rd32(E1000_CTRL);
7235 		ctrl |= E1000_CTRL_VME;
7236 		wr32(E1000_CTRL, ctrl);
7237 
7238 		/* Disable CFI check */
7239 		rctl = rd32(E1000_RCTL);
7240 		rctl &= ~E1000_RCTL_CFIEN;
7241 		wr32(E1000_RCTL, rctl);
7242 	} else {
7243 		/* disable VLAN tag insert/strip */
7244 		ctrl = rd32(E1000_CTRL);
7245 		ctrl &= ~E1000_CTRL_VME;
7246 		wr32(E1000_CTRL, ctrl);
7247 	}
7248 
7249 	igb_rlpml_set(adapter);
7250 }
7251 
7252 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7253 			       __be16 proto, u16 vid)
7254 {
7255 	struct igb_adapter *adapter = netdev_priv(netdev);
7256 	struct e1000_hw *hw = &adapter->hw;
7257 	int pf_id = adapter->vfs_allocated_count;
7258 
7259 	/* attempt to add filter to vlvf array */
7260 	igb_vlvf_set(adapter, vid, true, pf_id);
7261 
7262 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7263 	igb_vfta_set(hw, vid, true);
7264 
7265 	set_bit(vid, adapter->active_vlans);
7266 
7267 	return 0;
7268 }
7269 
7270 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7271 				__be16 proto, u16 vid)
7272 {
7273 	struct igb_adapter *adapter = netdev_priv(netdev);
7274 	struct e1000_hw *hw = &adapter->hw;
7275 	int pf_id = adapter->vfs_allocated_count;
7276 	s32 err;
7277 
7278 	/* remove vlan from VLVF table array */
7279 	err = igb_vlvf_set(adapter, vid, false, pf_id);
7280 
7281 	/* if vid was not present in VLVF just remove it from table */
7282 	if (err)
7283 		igb_vfta_set(hw, vid, false);
7284 
7285 	clear_bit(vid, adapter->active_vlans);
7286 
7287 	return 0;
7288 }
7289 
7290 static void igb_restore_vlan(struct igb_adapter *adapter)
7291 {
7292 	u16 vid;
7293 
7294 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7295 
7296 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7297 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7298 }
7299 
7300 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7301 {
7302 	struct pci_dev *pdev = adapter->pdev;
7303 	struct e1000_mac_info *mac = &adapter->hw.mac;
7304 
7305 	mac->autoneg = 0;
7306 
7307 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7308 	 * for the switch() below to work
7309 	 */
7310 	if ((spd & 1) || (dplx & ~1))
7311 		goto err_inval;
7312 
7313 	/* Fiber NIC's only allow 1000 gbps Full duplex
7314 	 * and 100Mbps Full duplex for 100baseFx sfp
7315 	 */
7316 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7317 		switch (spd + dplx) {
7318 		case SPEED_10 + DUPLEX_HALF:
7319 		case SPEED_10 + DUPLEX_FULL:
7320 		case SPEED_100 + DUPLEX_HALF:
7321 			goto err_inval;
7322 		default:
7323 			break;
7324 		}
7325 	}
7326 
7327 	switch (spd + dplx) {
7328 	case SPEED_10 + DUPLEX_HALF:
7329 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7330 		break;
7331 	case SPEED_10 + DUPLEX_FULL:
7332 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7333 		break;
7334 	case SPEED_100 + DUPLEX_HALF:
7335 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7336 		break;
7337 	case SPEED_100 + DUPLEX_FULL:
7338 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7339 		break;
7340 	case SPEED_1000 + DUPLEX_FULL:
7341 		mac->autoneg = 1;
7342 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7343 		break;
7344 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7345 	default:
7346 		goto err_inval;
7347 	}
7348 
7349 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7350 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7351 
7352 	return 0;
7353 
7354 err_inval:
7355 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7356 	return -EINVAL;
7357 }
7358 
7359 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7360 			  bool runtime)
7361 {
7362 	struct net_device *netdev = pci_get_drvdata(pdev);
7363 	struct igb_adapter *adapter = netdev_priv(netdev);
7364 	struct e1000_hw *hw = &adapter->hw;
7365 	u32 ctrl, rctl, status;
7366 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7367 #ifdef CONFIG_PM
7368 	int retval = 0;
7369 #endif
7370 
7371 	netif_device_detach(netdev);
7372 
7373 	if (netif_running(netdev))
7374 		__igb_close(netdev, true);
7375 
7376 	igb_clear_interrupt_scheme(adapter);
7377 
7378 #ifdef CONFIG_PM
7379 	retval = pci_save_state(pdev);
7380 	if (retval)
7381 		return retval;
7382 #endif
7383 
7384 	status = rd32(E1000_STATUS);
7385 	if (status & E1000_STATUS_LU)
7386 		wufc &= ~E1000_WUFC_LNKC;
7387 
7388 	if (wufc) {
7389 		igb_setup_rctl(adapter);
7390 		igb_set_rx_mode(netdev);
7391 
7392 		/* turn on all-multi mode if wake on multicast is enabled */
7393 		if (wufc & E1000_WUFC_MC) {
7394 			rctl = rd32(E1000_RCTL);
7395 			rctl |= E1000_RCTL_MPE;
7396 			wr32(E1000_RCTL, rctl);
7397 		}
7398 
7399 		ctrl = rd32(E1000_CTRL);
7400 		/* advertise wake from D3Cold */
7401 		#define E1000_CTRL_ADVD3WUC 0x00100000
7402 		/* phy power management enable */
7403 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7404 		ctrl |= E1000_CTRL_ADVD3WUC;
7405 		wr32(E1000_CTRL, ctrl);
7406 
7407 		/* Allow time for pending master requests to run */
7408 		igb_disable_pcie_master(hw);
7409 
7410 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7411 		wr32(E1000_WUFC, wufc);
7412 	} else {
7413 		wr32(E1000_WUC, 0);
7414 		wr32(E1000_WUFC, 0);
7415 	}
7416 
7417 	*enable_wake = wufc || adapter->en_mng_pt;
7418 	if (!*enable_wake)
7419 		igb_power_down_link(adapter);
7420 	else
7421 		igb_power_up_link(adapter);
7422 
7423 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7424 	 * would have already happened in close and is redundant.
7425 	 */
7426 	igb_release_hw_control(adapter);
7427 
7428 	pci_disable_device(pdev);
7429 
7430 	return 0;
7431 }
7432 
7433 #ifdef CONFIG_PM
7434 #ifdef CONFIG_PM_SLEEP
7435 static int igb_suspend(struct device *dev)
7436 {
7437 	int retval;
7438 	bool wake;
7439 	struct pci_dev *pdev = to_pci_dev(dev);
7440 
7441 	retval = __igb_shutdown(pdev, &wake, 0);
7442 	if (retval)
7443 		return retval;
7444 
7445 	if (wake) {
7446 		pci_prepare_to_sleep(pdev);
7447 	} else {
7448 		pci_wake_from_d3(pdev, false);
7449 		pci_set_power_state(pdev, PCI_D3hot);
7450 	}
7451 
7452 	return 0;
7453 }
7454 #endif /* CONFIG_PM_SLEEP */
7455 
7456 static int igb_resume(struct device *dev)
7457 {
7458 	struct pci_dev *pdev = to_pci_dev(dev);
7459 	struct net_device *netdev = pci_get_drvdata(pdev);
7460 	struct igb_adapter *adapter = netdev_priv(netdev);
7461 	struct e1000_hw *hw = &adapter->hw;
7462 	u32 err;
7463 
7464 	pci_set_power_state(pdev, PCI_D0);
7465 	pci_restore_state(pdev);
7466 	pci_save_state(pdev);
7467 
7468 	err = pci_enable_device_mem(pdev);
7469 	if (err) {
7470 		dev_err(&pdev->dev,
7471 			"igb: Cannot enable PCI device from suspend\n");
7472 		return err;
7473 	}
7474 	pci_set_master(pdev);
7475 
7476 	pci_enable_wake(pdev, PCI_D3hot, 0);
7477 	pci_enable_wake(pdev, PCI_D3cold, 0);
7478 
7479 	if (igb_init_interrupt_scheme(adapter, true)) {
7480 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7481 		return -ENOMEM;
7482 	}
7483 
7484 	igb_reset(adapter);
7485 
7486 	/* let the f/w know that the h/w is now under the control of the
7487 	 * driver.
7488 	 */
7489 	igb_get_hw_control(adapter);
7490 
7491 	wr32(E1000_WUS, ~0);
7492 
7493 	if (netdev->flags & IFF_UP) {
7494 		rtnl_lock();
7495 		err = __igb_open(netdev, true);
7496 		rtnl_unlock();
7497 		if (err)
7498 			return err;
7499 	}
7500 
7501 	netif_device_attach(netdev);
7502 	return 0;
7503 }
7504 
7505 #ifdef CONFIG_PM_RUNTIME
7506 static int igb_runtime_idle(struct device *dev)
7507 {
7508 	struct pci_dev *pdev = to_pci_dev(dev);
7509 	struct net_device *netdev = pci_get_drvdata(pdev);
7510 	struct igb_adapter *adapter = netdev_priv(netdev);
7511 
7512 	if (!igb_has_link(adapter))
7513 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7514 
7515 	return -EBUSY;
7516 }
7517 
7518 static int igb_runtime_suspend(struct device *dev)
7519 {
7520 	struct pci_dev *pdev = to_pci_dev(dev);
7521 	int retval;
7522 	bool wake;
7523 
7524 	retval = __igb_shutdown(pdev, &wake, 1);
7525 	if (retval)
7526 		return retval;
7527 
7528 	if (wake) {
7529 		pci_prepare_to_sleep(pdev);
7530 	} else {
7531 		pci_wake_from_d3(pdev, false);
7532 		pci_set_power_state(pdev, PCI_D3hot);
7533 	}
7534 
7535 	return 0;
7536 }
7537 
7538 static int igb_runtime_resume(struct device *dev)
7539 {
7540 	return igb_resume(dev);
7541 }
7542 #endif /* CONFIG_PM_RUNTIME */
7543 #endif
7544 
7545 static void igb_shutdown(struct pci_dev *pdev)
7546 {
7547 	bool wake;
7548 
7549 	__igb_shutdown(pdev, &wake, 0);
7550 
7551 	if (system_state == SYSTEM_POWER_OFF) {
7552 		pci_wake_from_d3(pdev, wake);
7553 		pci_set_power_state(pdev, PCI_D3hot);
7554 	}
7555 }
7556 
7557 #ifdef CONFIG_PCI_IOV
7558 static int igb_sriov_reinit(struct pci_dev *dev)
7559 {
7560 	struct net_device *netdev = pci_get_drvdata(dev);
7561 	struct igb_adapter *adapter = netdev_priv(netdev);
7562 	struct pci_dev *pdev = adapter->pdev;
7563 
7564 	rtnl_lock();
7565 
7566 	if (netif_running(netdev))
7567 		igb_close(netdev);
7568 
7569 	igb_clear_interrupt_scheme(adapter);
7570 
7571 	igb_init_queue_configuration(adapter);
7572 
7573 	if (igb_init_interrupt_scheme(adapter, true)) {
7574 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7575 		return -ENOMEM;
7576 	}
7577 
7578 	if (netif_running(netdev))
7579 		igb_open(netdev);
7580 
7581 	rtnl_unlock();
7582 
7583 	return 0;
7584 }
7585 
7586 static int igb_pci_disable_sriov(struct pci_dev *dev)
7587 {
7588 	int err = igb_disable_sriov(dev);
7589 
7590 	if (!err)
7591 		err = igb_sriov_reinit(dev);
7592 
7593 	return err;
7594 }
7595 
7596 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7597 {
7598 	int err = igb_enable_sriov(dev, num_vfs);
7599 
7600 	if (err)
7601 		goto out;
7602 
7603 	err = igb_sriov_reinit(dev);
7604 	if (!err)
7605 		return num_vfs;
7606 
7607 out:
7608 	return err;
7609 }
7610 
7611 #endif
7612 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7613 {
7614 #ifdef CONFIG_PCI_IOV
7615 	if (num_vfs == 0)
7616 		return igb_pci_disable_sriov(dev);
7617 	else
7618 		return igb_pci_enable_sriov(dev, num_vfs);
7619 #endif
7620 	return 0;
7621 }
7622 
7623 #ifdef CONFIG_NET_POLL_CONTROLLER
7624 /* Polling 'interrupt' - used by things like netconsole to send skbs
7625  * without having to re-enable interrupts. It's not called while
7626  * the interrupt routine is executing.
7627  */
7628 static void igb_netpoll(struct net_device *netdev)
7629 {
7630 	struct igb_adapter *adapter = netdev_priv(netdev);
7631 	struct e1000_hw *hw = &adapter->hw;
7632 	struct igb_q_vector *q_vector;
7633 	int i;
7634 
7635 	for (i = 0; i < adapter->num_q_vectors; i++) {
7636 		q_vector = adapter->q_vector[i];
7637 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7638 			wr32(E1000_EIMC, q_vector->eims_value);
7639 		else
7640 			igb_irq_disable(adapter);
7641 		napi_schedule(&q_vector->napi);
7642 	}
7643 }
7644 #endif /* CONFIG_NET_POLL_CONTROLLER */
7645 
7646 /**
7647  *  igb_io_error_detected - called when PCI error is detected
7648  *  @pdev: Pointer to PCI device
7649  *  @state: The current pci connection state
7650  *
7651  *  This function is called after a PCI bus error affecting
7652  *  this device has been detected.
7653  **/
7654 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7655 					      pci_channel_state_t state)
7656 {
7657 	struct net_device *netdev = pci_get_drvdata(pdev);
7658 	struct igb_adapter *adapter = netdev_priv(netdev);
7659 
7660 	netif_device_detach(netdev);
7661 
7662 	if (state == pci_channel_io_perm_failure)
7663 		return PCI_ERS_RESULT_DISCONNECT;
7664 
7665 	if (netif_running(netdev))
7666 		igb_down(adapter);
7667 	pci_disable_device(pdev);
7668 
7669 	/* Request a slot slot reset. */
7670 	return PCI_ERS_RESULT_NEED_RESET;
7671 }
7672 
7673 /**
7674  *  igb_io_slot_reset - called after the pci bus has been reset.
7675  *  @pdev: Pointer to PCI device
7676  *
7677  *  Restart the card from scratch, as if from a cold-boot. Implementation
7678  *  resembles the first-half of the igb_resume routine.
7679  **/
7680 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7681 {
7682 	struct net_device *netdev = pci_get_drvdata(pdev);
7683 	struct igb_adapter *adapter = netdev_priv(netdev);
7684 	struct e1000_hw *hw = &adapter->hw;
7685 	pci_ers_result_t result;
7686 	int err;
7687 
7688 	if (pci_enable_device_mem(pdev)) {
7689 		dev_err(&pdev->dev,
7690 			"Cannot re-enable PCI device after reset.\n");
7691 		result = PCI_ERS_RESULT_DISCONNECT;
7692 	} else {
7693 		pci_set_master(pdev);
7694 		pci_restore_state(pdev);
7695 		pci_save_state(pdev);
7696 
7697 		pci_enable_wake(pdev, PCI_D3hot, 0);
7698 		pci_enable_wake(pdev, PCI_D3cold, 0);
7699 
7700 		igb_reset(adapter);
7701 		wr32(E1000_WUS, ~0);
7702 		result = PCI_ERS_RESULT_RECOVERED;
7703 	}
7704 
7705 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7706 	if (err) {
7707 		dev_err(&pdev->dev,
7708 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7709 			err);
7710 		/* non-fatal, continue */
7711 	}
7712 
7713 	return result;
7714 }
7715 
7716 /**
7717  *  igb_io_resume - called when traffic can start flowing again.
7718  *  @pdev: Pointer to PCI device
7719  *
7720  *  This callback is called when the error recovery driver tells us that
7721  *  its OK to resume normal operation. Implementation resembles the
7722  *  second-half of the igb_resume routine.
7723  */
7724 static void igb_io_resume(struct pci_dev *pdev)
7725 {
7726 	struct net_device *netdev = pci_get_drvdata(pdev);
7727 	struct igb_adapter *adapter = netdev_priv(netdev);
7728 
7729 	if (netif_running(netdev)) {
7730 		if (igb_up(adapter)) {
7731 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7732 			return;
7733 		}
7734 	}
7735 
7736 	netif_device_attach(netdev);
7737 
7738 	/* let the f/w know that the h/w is now under the control of the
7739 	 * driver.
7740 	 */
7741 	igb_get_hw_control(adapter);
7742 }
7743 
7744 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7745 			     u8 qsel)
7746 {
7747 	u32 rar_low, rar_high;
7748 	struct e1000_hw *hw = &adapter->hw;
7749 
7750 	/* HW expects these in little endian so we reverse the byte order
7751 	 * from network order (big endian) to little endian
7752 	 */
7753 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7754 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7755 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7756 
7757 	/* Indicate to hardware the Address is Valid. */
7758 	rar_high |= E1000_RAH_AV;
7759 
7760 	if (hw->mac.type == e1000_82575)
7761 		rar_high |= E1000_RAH_POOL_1 * qsel;
7762 	else
7763 		rar_high |= E1000_RAH_POOL_1 << qsel;
7764 
7765 	wr32(E1000_RAL(index), rar_low);
7766 	wrfl();
7767 	wr32(E1000_RAH(index), rar_high);
7768 	wrfl();
7769 }
7770 
7771 static int igb_set_vf_mac(struct igb_adapter *adapter,
7772 			  int vf, unsigned char *mac_addr)
7773 {
7774 	struct e1000_hw *hw = &adapter->hw;
7775 	/* VF MAC addresses start at end of receive addresses and moves
7776 	 * towards the first, as a result a collision should not be possible
7777 	 */
7778 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7779 
7780 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7781 
7782 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7783 
7784 	return 0;
7785 }
7786 
7787 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7788 {
7789 	struct igb_adapter *adapter = netdev_priv(netdev);
7790 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7791 		return -EINVAL;
7792 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7793 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7794 	dev_info(&adapter->pdev->dev,
7795 		 "Reload the VF driver to make this change effective.");
7796 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7797 		dev_warn(&adapter->pdev->dev,
7798 			 "The VF MAC address has been set, but the PF device is not up.\n");
7799 		dev_warn(&adapter->pdev->dev,
7800 			 "Bring the PF device up before attempting to use the VF device.\n");
7801 	}
7802 	return igb_set_vf_mac(adapter, vf, mac);
7803 }
7804 
7805 static int igb_link_mbps(int internal_link_speed)
7806 {
7807 	switch (internal_link_speed) {
7808 	case SPEED_100:
7809 		return 100;
7810 	case SPEED_1000:
7811 		return 1000;
7812 	default:
7813 		return 0;
7814 	}
7815 }
7816 
7817 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7818 				  int link_speed)
7819 {
7820 	int rf_dec, rf_int;
7821 	u32 bcnrc_val;
7822 
7823 	if (tx_rate != 0) {
7824 		/* Calculate the rate factor values to set */
7825 		rf_int = link_speed / tx_rate;
7826 		rf_dec = (link_speed - (rf_int * tx_rate));
7827 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7828 			 tx_rate;
7829 
7830 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7831 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7832 			      E1000_RTTBCNRC_RF_INT_MASK);
7833 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7834 	} else {
7835 		bcnrc_val = 0;
7836 	}
7837 
7838 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7839 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7840 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7841 	 */
7842 	wr32(E1000_RTTBCNRM, 0x14);
7843 	wr32(E1000_RTTBCNRC, bcnrc_val);
7844 }
7845 
7846 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7847 {
7848 	int actual_link_speed, i;
7849 	bool reset_rate = false;
7850 
7851 	/* VF TX rate limit was not set or not supported */
7852 	if ((adapter->vf_rate_link_speed == 0) ||
7853 	    (adapter->hw.mac.type != e1000_82576))
7854 		return;
7855 
7856 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7857 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7858 		reset_rate = true;
7859 		adapter->vf_rate_link_speed = 0;
7860 		dev_info(&adapter->pdev->dev,
7861 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7862 	}
7863 
7864 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7865 		if (reset_rate)
7866 			adapter->vf_data[i].tx_rate = 0;
7867 
7868 		igb_set_vf_rate_limit(&adapter->hw, i,
7869 				      adapter->vf_data[i].tx_rate,
7870 				      actual_link_speed);
7871 	}
7872 }
7873 
7874 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7875 {
7876 	struct igb_adapter *adapter = netdev_priv(netdev);
7877 	struct e1000_hw *hw = &adapter->hw;
7878 	int actual_link_speed;
7879 
7880 	if (hw->mac.type != e1000_82576)
7881 		return -EOPNOTSUPP;
7882 
7883 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7884 	if ((vf >= adapter->vfs_allocated_count) ||
7885 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7886 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7887 		return -EINVAL;
7888 
7889 	adapter->vf_rate_link_speed = actual_link_speed;
7890 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7891 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7892 
7893 	return 0;
7894 }
7895 
7896 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7897 				   bool setting)
7898 {
7899 	struct igb_adapter *adapter = netdev_priv(netdev);
7900 	struct e1000_hw *hw = &adapter->hw;
7901 	u32 reg_val, reg_offset;
7902 
7903 	if (!adapter->vfs_allocated_count)
7904 		return -EOPNOTSUPP;
7905 
7906 	if (vf >= adapter->vfs_allocated_count)
7907 		return -EINVAL;
7908 
7909 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7910 	reg_val = rd32(reg_offset);
7911 	if (setting)
7912 		reg_val |= ((1 << vf) |
7913 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7914 	else
7915 		reg_val &= ~((1 << vf) |
7916 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7917 	wr32(reg_offset, reg_val);
7918 
7919 	adapter->vf_data[vf].spoofchk_enabled = setting;
7920 	return E1000_SUCCESS;
7921 }
7922 
7923 static int igb_ndo_get_vf_config(struct net_device *netdev,
7924 				 int vf, struct ifla_vf_info *ivi)
7925 {
7926 	struct igb_adapter *adapter = netdev_priv(netdev);
7927 	if (vf >= adapter->vfs_allocated_count)
7928 		return -EINVAL;
7929 	ivi->vf = vf;
7930 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7931 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7932 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7933 	ivi->qos = adapter->vf_data[vf].pf_qos;
7934 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7935 	return 0;
7936 }
7937 
7938 static void igb_vmm_control(struct igb_adapter *adapter)
7939 {
7940 	struct e1000_hw *hw = &adapter->hw;
7941 	u32 reg;
7942 
7943 	switch (hw->mac.type) {
7944 	case e1000_82575:
7945 	case e1000_i210:
7946 	case e1000_i211:
7947 	case e1000_i354:
7948 	default:
7949 		/* replication is not supported for 82575 */
7950 		return;
7951 	case e1000_82576:
7952 		/* notify HW that the MAC is adding vlan tags */
7953 		reg = rd32(E1000_DTXCTL);
7954 		reg |= E1000_DTXCTL_VLAN_ADDED;
7955 		wr32(E1000_DTXCTL, reg);
7956 	case e1000_82580:
7957 		/* enable replication vlan tag stripping */
7958 		reg = rd32(E1000_RPLOLR);
7959 		reg |= E1000_RPLOLR_STRVLAN;
7960 		wr32(E1000_RPLOLR, reg);
7961 	case e1000_i350:
7962 		/* none of the above registers are supported by i350 */
7963 		break;
7964 	}
7965 
7966 	if (adapter->vfs_allocated_count) {
7967 		igb_vmdq_set_loopback_pf(hw, true);
7968 		igb_vmdq_set_replication_pf(hw, true);
7969 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7970 					      adapter->vfs_allocated_count);
7971 	} else {
7972 		igb_vmdq_set_loopback_pf(hw, false);
7973 		igb_vmdq_set_replication_pf(hw, false);
7974 	}
7975 }
7976 
7977 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7978 {
7979 	struct e1000_hw *hw = &adapter->hw;
7980 	u32 dmac_thr;
7981 	u16 hwm;
7982 
7983 	if (hw->mac.type > e1000_82580) {
7984 		if (adapter->flags & IGB_FLAG_DMAC) {
7985 			u32 reg;
7986 
7987 			/* force threshold to 0. */
7988 			wr32(E1000_DMCTXTH, 0);
7989 
7990 			/* DMA Coalescing high water mark needs to be greater
7991 			 * than the Rx threshold. Set hwm to PBA - max frame
7992 			 * size in 16B units, capping it at PBA - 6KB.
7993 			 */
7994 			hwm = 64 * pba - adapter->max_frame_size / 16;
7995 			if (hwm < 64 * (pba - 6))
7996 				hwm = 64 * (pba - 6);
7997 			reg = rd32(E1000_FCRTC);
7998 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7999 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8000 				& E1000_FCRTC_RTH_COAL_MASK);
8001 			wr32(E1000_FCRTC, reg);
8002 
8003 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8004 			 * frame size, capping it at PBA - 10KB.
8005 			 */
8006 			dmac_thr = pba - adapter->max_frame_size / 512;
8007 			if (dmac_thr < pba - 10)
8008 				dmac_thr = pba - 10;
8009 			reg = rd32(E1000_DMACR);
8010 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8011 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8012 				& E1000_DMACR_DMACTHR_MASK);
8013 
8014 			/* transition to L0x or L1 if available..*/
8015 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8016 
8017 			/* watchdog timer= +-1000 usec in 32usec intervals */
8018 			reg |= (1000 >> 5);
8019 
8020 			/* Disable BMC-to-OS Watchdog Enable */
8021 			if (hw->mac.type != e1000_i354)
8022 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8023 
8024 			wr32(E1000_DMACR, reg);
8025 
8026 			/* no lower threshold to disable
8027 			 * coalescing(smart fifb)-UTRESH=0
8028 			 */
8029 			wr32(E1000_DMCRTRH, 0);
8030 
8031 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8032 
8033 			wr32(E1000_DMCTLX, reg);
8034 
8035 			/* free space in tx packet buffer to wake from
8036 			 * DMA coal
8037 			 */
8038 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8039 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8040 
8041 			/* make low power state decision controlled
8042 			 * by DMA coal
8043 			 */
8044 			reg = rd32(E1000_PCIEMISC);
8045 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8046 			wr32(E1000_PCIEMISC, reg);
8047 		} /* endif adapter->dmac is not disabled */
8048 	} else if (hw->mac.type == e1000_82580) {
8049 		u32 reg = rd32(E1000_PCIEMISC);
8050 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8051 		wr32(E1000_DMACR, 0);
8052 	}
8053 }
8054 
8055 /**
8056  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8057  *  @hw: pointer to hardware structure
8058  *  @byte_offset: byte offset to read
8059  *  @dev_addr: device address
8060  *  @data: value read
8061  *
8062  *  Performs byte read operation over I2C interface at
8063  *  a specified device address.
8064  **/
8065 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8066 		      u8 dev_addr, u8 *data)
8067 {
8068 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8069 	struct i2c_client *this_client = adapter->i2c_client;
8070 	s32 status;
8071 	u16 swfw_mask = 0;
8072 
8073 	if (!this_client)
8074 		return E1000_ERR_I2C;
8075 
8076 	swfw_mask = E1000_SWFW_PHY0_SM;
8077 
8078 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8079 	    != E1000_SUCCESS)
8080 		return E1000_ERR_SWFW_SYNC;
8081 
8082 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8083 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8084 
8085 	if (status < 0)
8086 		return E1000_ERR_I2C;
8087 	else {
8088 		*data = status;
8089 		return E1000_SUCCESS;
8090 	}
8091 }
8092 
8093 /**
8094  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8095  *  @hw: pointer to hardware structure
8096  *  @byte_offset: byte offset to write
8097  *  @dev_addr: device address
8098  *  @data: value to write
8099  *
8100  *  Performs byte write operation over I2C interface at
8101  *  a specified device address.
8102  **/
8103 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8104 		       u8 dev_addr, u8 data)
8105 {
8106 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8107 	struct i2c_client *this_client = adapter->i2c_client;
8108 	s32 status;
8109 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8110 
8111 	if (!this_client)
8112 		return E1000_ERR_I2C;
8113 
8114 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8115 		return E1000_ERR_SWFW_SYNC;
8116 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8117 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8118 
8119 	if (status)
8120 		return E1000_ERR_I2C;
8121 	else
8122 		return E1000_SUCCESS;
8123 
8124 }
8125 
8126 int igb_reinit_queues(struct igb_adapter *adapter)
8127 {
8128 	struct net_device *netdev = adapter->netdev;
8129 	struct pci_dev *pdev = adapter->pdev;
8130 	int err = 0;
8131 
8132 	if (netif_running(netdev))
8133 		igb_close(netdev);
8134 
8135 	igb_reset_interrupt_capability(adapter);
8136 
8137 	if (igb_init_interrupt_scheme(adapter, true)) {
8138 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8139 		return -ENOMEM;
8140 	}
8141 
8142 	if (netif_running(netdev))
8143 		err = igb_open(netdev);
8144 
8145 	return err;
8146 }
8147 /* igb_main.c */
8148