1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/bitops.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/netdevice.h> 13 #include <linux/ipv6.h> 14 #include <linux/slab.h> 15 #include <net/checksum.h> 16 #include <net/ip6_checksum.h> 17 #include <net/pkt_sched.h> 18 #include <net/pkt_cls.h> 19 #include <linux/net_tstamp.h> 20 #include <linux/mii.h> 21 #include <linux/ethtool.h> 22 #include <linux/if.h> 23 #include <linux/if_vlan.h> 24 #include <linux/pci.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/ip.h> 28 #include <linux/tcp.h> 29 #include <linux/sctp.h> 30 #include <linux/if_ether.h> 31 #include <linux/aer.h> 32 #include <linux/prefetch.h> 33 #include <linux/bpf.h> 34 #include <linux/bpf_trace.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/etherdevice.h> 37 #ifdef CONFIG_IGB_DCA 38 #include <linux/dca.h> 39 #endif 40 #include <linux/i2c.h> 41 #include "igb.h" 42 43 enum queue_mode { 44 QUEUE_MODE_STRICT_PRIORITY, 45 QUEUE_MODE_STREAM_RESERVATION, 46 }; 47 48 enum tx_queue_prio { 49 TX_QUEUE_PRIO_HIGH, 50 TX_QUEUE_PRIO_LOW, 51 }; 52 53 char igb_driver_name[] = "igb"; 54 static const char igb_driver_string[] = 55 "Intel(R) Gigabit Ethernet Network Driver"; 56 static const char igb_copyright[] = 57 "Copyright (c) 2007-2014 Intel Corporation."; 58 59 static const struct e1000_info *igb_info_tbl[] = { 60 [board_82575] = &e1000_82575_info, 61 }; 62 63 static const struct pci_device_id igb_pci_tbl[] = { 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 99 /* required last entry */ 100 {0, } 101 }; 102 103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 104 105 static int igb_setup_all_tx_resources(struct igb_adapter *); 106 static int igb_setup_all_rx_resources(struct igb_adapter *); 107 static void igb_free_all_tx_resources(struct igb_adapter *); 108 static void igb_free_all_rx_resources(struct igb_adapter *); 109 static void igb_setup_mrqc(struct igb_adapter *); 110 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 111 static void igb_remove(struct pci_dev *pdev); 112 static int igb_sw_init(struct igb_adapter *); 113 int igb_open(struct net_device *); 114 int igb_close(struct net_device *); 115 static void igb_configure(struct igb_adapter *); 116 static void igb_configure_tx(struct igb_adapter *); 117 static void igb_configure_rx(struct igb_adapter *); 118 static void igb_clean_all_tx_rings(struct igb_adapter *); 119 static void igb_clean_all_rx_rings(struct igb_adapter *); 120 static void igb_clean_tx_ring(struct igb_ring *); 121 static void igb_clean_rx_ring(struct igb_ring *); 122 static void igb_set_rx_mode(struct net_device *); 123 static void igb_update_phy_info(struct timer_list *); 124 static void igb_watchdog(struct timer_list *); 125 static void igb_watchdog_task(struct work_struct *); 126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 127 static void igb_get_stats64(struct net_device *dev, 128 struct rtnl_link_stats64 *stats); 129 static int igb_change_mtu(struct net_device *, int); 130 static int igb_set_mac(struct net_device *, void *); 131 static void igb_set_uta(struct igb_adapter *adapter, bool set); 132 static irqreturn_t igb_intr(int irq, void *); 133 static irqreturn_t igb_intr_msi(int irq, void *); 134 static irqreturn_t igb_msix_other(int irq, void *); 135 static irqreturn_t igb_msix_ring(int irq, void *); 136 #ifdef CONFIG_IGB_DCA 137 static void igb_update_dca(struct igb_q_vector *); 138 static void igb_setup_dca(struct igb_adapter *); 139 #endif /* CONFIG_IGB_DCA */ 140 static int igb_poll(struct napi_struct *, int); 141 static bool igb_clean_tx_irq(struct igb_q_vector *, int); 142 static int igb_clean_rx_irq(struct igb_q_vector *, int); 143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue); 145 static void igb_reset_task(struct work_struct *); 146 static void igb_vlan_mode(struct net_device *netdev, 147 netdev_features_t features); 148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 150 static void igb_restore_vlan(struct igb_adapter *); 151 static void igb_rar_set_index(struct igb_adapter *, u32); 152 static void igb_ping_all_vfs(struct igb_adapter *); 153 static void igb_msg_task(struct igb_adapter *); 154 static void igb_vmm_control(struct igb_adapter *); 155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 156 static void igb_flush_mac_table(struct igb_adapter *); 157 static int igb_available_rars(struct igb_adapter *, u8); 158 static void igb_set_default_mac_filter(struct igb_adapter *); 159 static int igb_uc_sync(struct net_device *, const unsigned char *); 160 static int igb_uc_unsync(struct net_device *, const unsigned char *); 161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 163 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 164 int vf, u16 vlan, u8 qos, __be16 vlan_proto); 165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 167 bool setting); 168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, 169 bool setting); 170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 171 struct ifla_vf_info *ivi); 172 static void igb_check_vf_rate_limit(struct igb_adapter *); 173 static void igb_nfc_filter_exit(struct igb_adapter *adapter); 174 static void igb_nfc_filter_restore(struct igb_adapter *adapter); 175 176 #ifdef CONFIG_PCI_IOV 177 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 179 static int igb_disable_sriov(struct pci_dev *dev); 180 static int igb_pci_disable_sriov(struct pci_dev *dev); 181 #endif 182 183 static int igb_suspend(struct device *); 184 static int igb_resume(struct device *); 185 static int igb_runtime_suspend(struct device *dev); 186 static int igb_runtime_resume(struct device *dev); 187 static int igb_runtime_idle(struct device *dev); 188 static const struct dev_pm_ops igb_pm_ops = { 189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 191 igb_runtime_idle) 192 }; 193 static void igb_shutdown(struct pci_dev *); 194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 195 #ifdef CONFIG_IGB_DCA 196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 197 static struct notifier_block dca_notifier = { 198 .notifier_call = igb_notify_dca, 199 .next = NULL, 200 .priority = 0 201 }; 202 #endif 203 #ifdef CONFIG_PCI_IOV 204 static unsigned int max_vfs; 205 module_param(max_vfs, uint, 0); 206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 207 #endif /* CONFIG_PCI_IOV */ 208 209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 210 pci_channel_state_t); 211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 212 static void igb_io_resume(struct pci_dev *); 213 214 static const struct pci_error_handlers igb_err_handler = { 215 .error_detected = igb_io_error_detected, 216 .slot_reset = igb_io_slot_reset, 217 .resume = igb_io_resume, 218 }; 219 220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 221 222 static struct pci_driver igb_driver = { 223 .name = igb_driver_name, 224 .id_table = igb_pci_tbl, 225 .probe = igb_probe, 226 .remove = igb_remove, 227 #ifdef CONFIG_PM 228 .driver.pm = &igb_pm_ops, 229 #endif 230 .shutdown = igb_shutdown, 231 .sriov_configure = igb_pci_sriov_configure, 232 .err_handler = &igb_err_handler 233 }; 234 235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 237 MODULE_LICENSE("GPL v2"); 238 239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 240 static int debug = -1; 241 module_param(debug, int, 0); 242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 243 244 struct igb_reg_info { 245 u32 ofs; 246 char *name; 247 }; 248 249 static const struct igb_reg_info igb_reg_info_tbl[] = { 250 251 /* General Registers */ 252 {E1000_CTRL, "CTRL"}, 253 {E1000_STATUS, "STATUS"}, 254 {E1000_CTRL_EXT, "CTRL_EXT"}, 255 256 /* Interrupt Registers */ 257 {E1000_ICR, "ICR"}, 258 259 /* RX Registers */ 260 {E1000_RCTL, "RCTL"}, 261 {E1000_RDLEN(0), "RDLEN"}, 262 {E1000_RDH(0), "RDH"}, 263 {E1000_RDT(0), "RDT"}, 264 {E1000_RXDCTL(0), "RXDCTL"}, 265 {E1000_RDBAL(0), "RDBAL"}, 266 {E1000_RDBAH(0), "RDBAH"}, 267 268 /* TX Registers */ 269 {E1000_TCTL, "TCTL"}, 270 {E1000_TDBAL(0), "TDBAL"}, 271 {E1000_TDBAH(0), "TDBAH"}, 272 {E1000_TDLEN(0), "TDLEN"}, 273 {E1000_TDH(0), "TDH"}, 274 {E1000_TDT(0), "TDT"}, 275 {E1000_TXDCTL(0), "TXDCTL"}, 276 {E1000_TDFH, "TDFH"}, 277 {E1000_TDFT, "TDFT"}, 278 {E1000_TDFHS, "TDFHS"}, 279 {E1000_TDFPC, "TDFPC"}, 280 281 /* List Terminator */ 282 {} 283 }; 284 285 /* igb_regdump - register printout routine */ 286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 287 { 288 int n = 0; 289 char rname[16]; 290 u32 regs[8]; 291 292 switch (reginfo->ofs) { 293 case E1000_RDLEN(0): 294 for (n = 0; n < 4; n++) 295 regs[n] = rd32(E1000_RDLEN(n)); 296 break; 297 case E1000_RDH(0): 298 for (n = 0; n < 4; n++) 299 regs[n] = rd32(E1000_RDH(n)); 300 break; 301 case E1000_RDT(0): 302 for (n = 0; n < 4; n++) 303 regs[n] = rd32(E1000_RDT(n)); 304 break; 305 case E1000_RXDCTL(0): 306 for (n = 0; n < 4; n++) 307 regs[n] = rd32(E1000_RXDCTL(n)); 308 break; 309 case E1000_RDBAL(0): 310 for (n = 0; n < 4; n++) 311 regs[n] = rd32(E1000_RDBAL(n)); 312 break; 313 case E1000_RDBAH(0): 314 for (n = 0; n < 4; n++) 315 regs[n] = rd32(E1000_RDBAH(n)); 316 break; 317 case E1000_TDBAL(0): 318 for (n = 0; n < 4; n++) 319 regs[n] = rd32(E1000_TDBAL(n)); 320 break; 321 case E1000_TDBAH(0): 322 for (n = 0; n < 4; n++) 323 regs[n] = rd32(E1000_TDBAH(n)); 324 break; 325 case E1000_TDLEN(0): 326 for (n = 0; n < 4; n++) 327 regs[n] = rd32(E1000_TDLEN(n)); 328 break; 329 case E1000_TDH(0): 330 for (n = 0; n < 4; n++) 331 regs[n] = rd32(E1000_TDH(n)); 332 break; 333 case E1000_TDT(0): 334 for (n = 0; n < 4; n++) 335 regs[n] = rd32(E1000_TDT(n)); 336 break; 337 case E1000_TXDCTL(0): 338 for (n = 0; n < 4; n++) 339 regs[n] = rd32(E1000_TXDCTL(n)); 340 break; 341 default: 342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 343 return; 344 } 345 346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 348 regs[2], regs[3]); 349 } 350 351 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 352 static void igb_dump(struct igb_adapter *adapter) 353 { 354 struct net_device *netdev = adapter->netdev; 355 struct e1000_hw *hw = &adapter->hw; 356 struct igb_reg_info *reginfo; 357 struct igb_ring *tx_ring; 358 union e1000_adv_tx_desc *tx_desc; 359 struct my_u0 { __le64 a; __le64 b; } *u0; 360 struct igb_ring *rx_ring; 361 union e1000_adv_rx_desc *rx_desc; 362 u32 staterr; 363 u16 i, n; 364 365 if (!netif_msg_hw(adapter)) 366 return; 367 368 /* Print netdevice Info */ 369 if (netdev) { 370 dev_info(&adapter->pdev->dev, "Net device Info\n"); 371 pr_info("Device Name state trans_start\n"); 372 pr_info("%-15s %016lX %016lX\n", netdev->name, 373 netdev->state, dev_trans_start(netdev)); 374 } 375 376 /* Print Registers */ 377 dev_info(&adapter->pdev->dev, "Register Dump\n"); 378 pr_info(" Register Name Value\n"); 379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 380 reginfo->name; reginfo++) { 381 igb_regdump(hw, reginfo); 382 } 383 384 /* Print TX Ring Summary */ 385 if (!netdev || !netif_running(netdev)) 386 goto exit; 387 388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 390 for (n = 0; n < adapter->num_tx_queues; n++) { 391 struct igb_tx_buffer *buffer_info; 392 tx_ring = adapter->tx_ring[n]; 393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 395 n, tx_ring->next_to_use, tx_ring->next_to_clean, 396 (u64)dma_unmap_addr(buffer_info, dma), 397 dma_unmap_len(buffer_info, len), 398 buffer_info->next_to_watch, 399 (u64)buffer_info->time_stamp); 400 } 401 402 /* Print TX Rings */ 403 if (!netif_msg_tx_done(adapter)) 404 goto rx_ring_summary; 405 406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 407 408 /* Transmit Descriptor Formats 409 * 410 * Advanced Transmit Descriptor 411 * +--------------------------------------------------------------+ 412 * 0 | Buffer Address [63:0] | 413 * +--------------------------------------------------------------+ 414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 415 * +--------------------------------------------------------------+ 416 * 63 46 45 40 39 38 36 35 32 31 24 15 0 417 */ 418 419 for (n = 0; n < adapter->num_tx_queues; n++) { 420 tx_ring = adapter->tx_ring[n]; 421 pr_info("------------------------------------\n"); 422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 423 pr_info("------------------------------------\n"); 424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 425 426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 427 const char *next_desc; 428 struct igb_tx_buffer *buffer_info; 429 tx_desc = IGB_TX_DESC(tx_ring, i); 430 buffer_info = &tx_ring->tx_buffer_info[i]; 431 u0 = (struct my_u0 *)tx_desc; 432 if (i == tx_ring->next_to_use && 433 i == tx_ring->next_to_clean) 434 next_desc = " NTC/U"; 435 else if (i == tx_ring->next_to_use) 436 next_desc = " NTU"; 437 else if (i == tx_ring->next_to_clean) 438 next_desc = " NTC"; 439 else 440 next_desc = ""; 441 442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 443 i, le64_to_cpu(u0->a), 444 le64_to_cpu(u0->b), 445 (u64)dma_unmap_addr(buffer_info, dma), 446 dma_unmap_len(buffer_info, len), 447 buffer_info->next_to_watch, 448 (u64)buffer_info->time_stamp, 449 buffer_info->skb, next_desc); 450 451 if (netif_msg_pktdata(adapter) && buffer_info->skb) 452 print_hex_dump(KERN_INFO, "", 453 DUMP_PREFIX_ADDRESS, 454 16, 1, buffer_info->skb->data, 455 dma_unmap_len(buffer_info, len), 456 true); 457 } 458 } 459 460 /* Print RX Rings Summary */ 461 rx_ring_summary: 462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 463 pr_info("Queue [NTU] [NTC]\n"); 464 for (n = 0; n < adapter->num_rx_queues; n++) { 465 rx_ring = adapter->rx_ring[n]; 466 pr_info(" %5d %5X %5X\n", 467 n, rx_ring->next_to_use, rx_ring->next_to_clean); 468 } 469 470 /* Print RX Rings */ 471 if (!netif_msg_rx_status(adapter)) 472 goto exit; 473 474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 475 476 /* Advanced Receive Descriptor (Read) Format 477 * 63 1 0 478 * +-----------------------------------------------------+ 479 * 0 | Packet Buffer Address [63:1] |A0/NSE| 480 * +----------------------------------------------+------+ 481 * 8 | Header Buffer Address [63:1] | DD | 482 * +-----------------------------------------------------+ 483 * 484 * 485 * Advanced Receive Descriptor (Write-Back) Format 486 * 487 * 63 48 47 32 31 30 21 20 17 16 4 3 0 488 * +------------------------------------------------------+ 489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 490 * | Checksum Ident | | | | Type | Type | 491 * +------------------------------------------------------+ 492 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 493 * +------------------------------------------------------+ 494 * 63 48 47 32 31 20 19 0 495 */ 496 497 for (n = 0; n < adapter->num_rx_queues; n++) { 498 rx_ring = adapter->rx_ring[n]; 499 pr_info("------------------------------------\n"); 500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 501 pr_info("------------------------------------\n"); 502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 504 505 for (i = 0; i < rx_ring->count; i++) { 506 const char *next_desc; 507 struct igb_rx_buffer *buffer_info; 508 buffer_info = &rx_ring->rx_buffer_info[i]; 509 rx_desc = IGB_RX_DESC(rx_ring, i); 510 u0 = (struct my_u0 *)rx_desc; 511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 512 513 if (i == rx_ring->next_to_use) 514 next_desc = " NTU"; 515 else if (i == rx_ring->next_to_clean) 516 next_desc = " NTC"; 517 else 518 next_desc = ""; 519 520 if (staterr & E1000_RXD_STAT_DD) { 521 /* Descriptor Done */ 522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 523 "RWB", i, 524 le64_to_cpu(u0->a), 525 le64_to_cpu(u0->b), 526 next_desc); 527 } else { 528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 529 "R ", i, 530 le64_to_cpu(u0->a), 531 le64_to_cpu(u0->b), 532 (u64)buffer_info->dma, 533 next_desc); 534 535 if (netif_msg_pktdata(adapter) && 536 buffer_info->dma && buffer_info->page) { 537 print_hex_dump(KERN_INFO, "", 538 DUMP_PREFIX_ADDRESS, 539 16, 1, 540 page_address(buffer_info->page) + 541 buffer_info->page_offset, 542 igb_rx_bufsz(rx_ring), true); 543 } 544 } 545 } 546 } 547 548 exit: 549 return; 550 } 551 552 /** 553 * igb_get_i2c_data - Reads the I2C SDA data bit 554 * @data: opaque pointer to adapter struct 555 * 556 * Returns the I2C data bit value 557 **/ 558 static int igb_get_i2c_data(void *data) 559 { 560 struct igb_adapter *adapter = (struct igb_adapter *)data; 561 struct e1000_hw *hw = &adapter->hw; 562 s32 i2cctl = rd32(E1000_I2CPARAMS); 563 564 return !!(i2cctl & E1000_I2C_DATA_IN); 565 } 566 567 /** 568 * igb_set_i2c_data - Sets the I2C data bit 569 * @data: pointer to hardware structure 570 * @state: I2C data value (0 or 1) to set 571 * 572 * Sets the I2C data bit 573 **/ 574 static void igb_set_i2c_data(void *data, int state) 575 { 576 struct igb_adapter *adapter = (struct igb_adapter *)data; 577 struct e1000_hw *hw = &adapter->hw; 578 s32 i2cctl = rd32(E1000_I2CPARAMS); 579 580 if (state) { 581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N; 582 } else { 583 i2cctl &= ~E1000_I2C_DATA_OE_N; 584 i2cctl &= ~E1000_I2C_DATA_OUT; 585 } 586 587 wr32(E1000_I2CPARAMS, i2cctl); 588 wrfl(); 589 } 590 591 /** 592 * igb_set_i2c_clk - Sets the I2C SCL clock 593 * @data: pointer to hardware structure 594 * @state: state to set clock 595 * 596 * Sets the I2C clock line to state 597 **/ 598 static void igb_set_i2c_clk(void *data, int state) 599 { 600 struct igb_adapter *adapter = (struct igb_adapter *)data; 601 struct e1000_hw *hw = &adapter->hw; 602 s32 i2cctl = rd32(E1000_I2CPARAMS); 603 604 if (state) { 605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N; 606 } else { 607 i2cctl &= ~E1000_I2C_CLK_OUT; 608 i2cctl &= ~E1000_I2C_CLK_OE_N; 609 } 610 wr32(E1000_I2CPARAMS, i2cctl); 611 wrfl(); 612 } 613 614 /** 615 * igb_get_i2c_clk - Gets the I2C SCL clock state 616 * @data: pointer to hardware structure 617 * 618 * Gets the I2C clock state 619 **/ 620 static int igb_get_i2c_clk(void *data) 621 { 622 struct igb_adapter *adapter = (struct igb_adapter *)data; 623 struct e1000_hw *hw = &adapter->hw; 624 s32 i2cctl = rd32(E1000_I2CPARAMS); 625 626 return !!(i2cctl & E1000_I2C_CLK_IN); 627 } 628 629 static const struct i2c_algo_bit_data igb_i2c_algo = { 630 .setsda = igb_set_i2c_data, 631 .setscl = igb_set_i2c_clk, 632 .getsda = igb_get_i2c_data, 633 .getscl = igb_get_i2c_clk, 634 .udelay = 5, 635 .timeout = 20, 636 }; 637 638 /** 639 * igb_get_hw_dev - return device 640 * @hw: pointer to hardware structure 641 * 642 * used by hardware layer to print debugging information 643 **/ 644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 645 { 646 struct igb_adapter *adapter = hw->back; 647 return adapter->netdev; 648 } 649 650 /** 651 * igb_init_module - Driver Registration Routine 652 * 653 * igb_init_module is the first routine called when the driver is 654 * loaded. All it does is register with the PCI subsystem. 655 **/ 656 static int __init igb_init_module(void) 657 { 658 int ret; 659 660 pr_info("%s\n", igb_driver_string); 661 pr_info("%s\n", igb_copyright); 662 663 #ifdef CONFIG_IGB_DCA 664 dca_register_notify(&dca_notifier); 665 #endif 666 ret = pci_register_driver(&igb_driver); 667 return ret; 668 } 669 670 module_init(igb_init_module); 671 672 /** 673 * igb_exit_module - Driver Exit Cleanup Routine 674 * 675 * igb_exit_module is called just before the driver is removed 676 * from memory. 677 **/ 678 static void __exit igb_exit_module(void) 679 { 680 #ifdef CONFIG_IGB_DCA 681 dca_unregister_notify(&dca_notifier); 682 #endif 683 pci_unregister_driver(&igb_driver); 684 } 685 686 module_exit(igb_exit_module); 687 688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 689 /** 690 * igb_cache_ring_register - Descriptor ring to register mapping 691 * @adapter: board private structure to initialize 692 * 693 * Once we know the feature-set enabled for the device, we'll cache 694 * the register offset the descriptor ring is assigned to. 695 **/ 696 static void igb_cache_ring_register(struct igb_adapter *adapter) 697 { 698 int i = 0, j = 0; 699 u32 rbase_offset = adapter->vfs_allocated_count; 700 701 switch (adapter->hw.mac.type) { 702 case e1000_82576: 703 /* The queues are allocated for virtualization such that VF 0 704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 705 * In order to avoid collision we start at the first free queue 706 * and continue consuming queues in the same sequence 707 */ 708 if (adapter->vfs_allocated_count) { 709 for (; i < adapter->rss_queues; i++) 710 adapter->rx_ring[i]->reg_idx = rbase_offset + 711 Q_IDX_82576(i); 712 } 713 fallthrough; 714 case e1000_82575: 715 case e1000_82580: 716 case e1000_i350: 717 case e1000_i354: 718 case e1000_i210: 719 case e1000_i211: 720 default: 721 for (; i < adapter->num_rx_queues; i++) 722 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 723 for (; j < adapter->num_tx_queues; j++) 724 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 725 break; 726 } 727 } 728 729 u32 igb_rd32(struct e1000_hw *hw, u32 reg) 730 { 731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 733 u32 value = 0; 734 735 if (E1000_REMOVED(hw_addr)) 736 return ~value; 737 738 value = readl(&hw_addr[reg]); 739 740 /* reads should not return all F's */ 741 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 742 struct net_device *netdev = igb->netdev; 743 hw->hw_addr = NULL; 744 netdev_err(netdev, "PCIe link lost\n"); 745 WARN(pci_device_is_present(igb->pdev), 746 "igb: Failed to read reg 0x%x!\n", reg); 747 } 748 749 return value; 750 } 751 752 /** 753 * igb_write_ivar - configure ivar for given MSI-X vector 754 * @hw: pointer to the HW structure 755 * @msix_vector: vector number we are allocating to a given ring 756 * @index: row index of IVAR register to write within IVAR table 757 * @offset: column offset of in IVAR, should be multiple of 8 758 * 759 * This function is intended to handle the writing of the IVAR register 760 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 761 * each containing an cause allocation for an Rx and Tx ring, and a 762 * variable number of rows depending on the number of queues supported. 763 **/ 764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 765 int index, int offset) 766 { 767 u32 ivar = array_rd32(E1000_IVAR0, index); 768 769 /* clear any bits that are currently set */ 770 ivar &= ~((u32)0xFF << offset); 771 772 /* write vector and valid bit */ 773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 774 775 array_wr32(E1000_IVAR0, index, ivar); 776 } 777 778 #define IGB_N0_QUEUE -1 779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 780 { 781 struct igb_adapter *adapter = q_vector->adapter; 782 struct e1000_hw *hw = &adapter->hw; 783 int rx_queue = IGB_N0_QUEUE; 784 int tx_queue = IGB_N0_QUEUE; 785 u32 msixbm = 0; 786 787 if (q_vector->rx.ring) 788 rx_queue = q_vector->rx.ring->reg_idx; 789 if (q_vector->tx.ring) 790 tx_queue = q_vector->tx.ring->reg_idx; 791 792 switch (hw->mac.type) { 793 case e1000_82575: 794 /* The 82575 assigns vectors using a bitmask, which matches the 795 * bitmask for the EICR/EIMS/EIMC registers. To assign one 796 * or more queues to a vector, we write the appropriate bits 797 * into the MSIXBM register for that vector. 798 */ 799 if (rx_queue > IGB_N0_QUEUE) 800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 801 if (tx_queue > IGB_N0_QUEUE) 802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 804 msixbm |= E1000_EIMS_OTHER; 805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 806 q_vector->eims_value = msixbm; 807 break; 808 case e1000_82576: 809 /* 82576 uses a table that essentially consists of 2 columns 810 * with 8 rows. The ordering is column-major so we use the 811 * lower 3 bits as the row index, and the 4th bit as the 812 * column offset. 813 */ 814 if (rx_queue > IGB_N0_QUEUE) 815 igb_write_ivar(hw, msix_vector, 816 rx_queue & 0x7, 817 (rx_queue & 0x8) << 1); 818 if (tx_queue > IGB_N0_QUEUE) 819 igb_write_ivar(hw, msix_vector, 820 tx_queue & 0x7, 821 ((tx_queue & 0x8) << 1) + 8); 822 q_vector->eims_value = BIT(msix_vector); 823 break; 824 case e1000_82580: 825 case e1000_i350: 826 case e1000_i354: 827 case e1000_i210: 828 case e1000_i211: 829 /* On 82580 and newer adapters the scheme is similar to 82576 830 * however instead of ordering column-major we have things 831 * ordered row-major. So we traverse the table by using 832 * bit 0 as the column offset, and the remaining bits as the 833 * row index. 834 */ 835 if (rx_queue > IGB_N0_QUEUE) 836 igb_write_ivar(hw, msix_vector, 837 rx_queue >> 1, 838 (rx_queue & 0x1) << 4); 839 if (tx_queue > IGB_N0_QUEUE) 840 igb_write_ivar(hw, msix_vector, 841 tx_queue >> 1, 842 ((tx_queue & 0x1) << 4) + 8); 843 q_vector->eims_value = BIT(msix_vector); 844 break; 845 default: 846 BUG(); 847 break; 848 } 849 850 /* add q_vector eims value to global eims_enable_mask */ 851 adapter->eims_enable_mask |= q_vector->eims_value; 852 853 /* configure q_vector to set itr on first interrupt */ 854 q_vector->set_itr = 1; 855 } 856 857 /** 858 * igb_configure_msix - Configure MSI-X hardware 859 * @adapter: board private structure to initialize 860 * 861 * igb_configure_msix sets up the hardware to properly 862 * generate MSI-X interrupts. 863 **/ 864 static void igb_configure_msix(struct igb_adapter *adapter) 865 { 866 u32 tmp; 867 int i, vector = 0; 868 struct e1000_hw *hw = &adapter->hw; 869 870 adapter->eims_enable_mask = 0; 871 872 /* set vector for other causes, i.e. link changes */ 873 switch (hw->mac.type) { 874 case e1000_82575: 875 tmp = rd32(E1000_CTRL_EXT); 876 /* enable MSI-X PBA support*/ 877 tmp |= E1000_CTRL_EXT_PBA_CLR; 878 879 /* Auto-Mask interrupts upon ICR read. */ 880 tmp |= E1000_CTRL_EXT_EIAME; 881 tmp |= E1000_CTRL_EXT_IRCA; 882 883 wr32(E1000_CTRL_EXT, tmp); 884 885 /* enable msix_other interrupt */ 886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 887 adapter->eims_other = E1000_EIMS_OTHER; 888 889 break; 890 891 case e1000_82576: 892 case e1000_82580: 893 case e1000_i350: 894 case e1000_i354: 895 case e1000_i210: 896 case e1000_i211: 897 /* Turn on MSI-X capability first, or our settings 898 * won't stick. And it will take days to debug. 899 */ 900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 901 E1000_GPIE_PBA | E1000_GPIE_EIAME | 902 E1000_GPIE_NSICR); 903 904 /* enable msix_other interrupt */ 905 adapter->eims_other = BIT(vector); 906 tmp = (vector++ | E1000_IVAR_VALID) << 8; 907 908 wr32(E1000_IVAR_MISC, tmp); 909 break; 910 default: 911 /* do nothing, since nothing else supports MSI-X */ 912 break; 913 } /* switch (hw->mac.type) */ 914 915 adapter->eims_enable_mask |= adapter->eims_other; 916 917 for (i = 0; i < adapter->num_q_vectors; i++) 918 igb_assign_vector(adapter->q_vector[i], vector++); 919 920 wrfl(); 921 } 922 923 /** 924 * igb_request_msix - Initialize MSI-X interrupts 925 * @adapter: board private structure to initialize 926 * 927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 928 * kernel. 929 **/ 930 static int igb_request_msix(struct igb_adapter *adapter) 931 { 932 unsigned int num_q_vectors = adapter->num_q_vectors; 933 struct net_device *netdev = adapter->netdev; 934 int i, err = 0, vector = 0, free_vector = 0; 935 936 err = request_irq(adapter->msix_entries[vector].vector, 937 igb_msix_other, 0, netdev->name, adapter); 938 if (err) 939 goto err_out; 940 941 if (num_q_vectors > MAX_Q_VECTORS) { 942 num_q_vectors = MAX_Q_VECTORS; 943 dev_warn(&adapter->pdev->dev, 944 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 945 adapter->num_q_vectors, MAX_Q_VECTORS); 946 } 947 for (i = 0; i < num_q_vectors; i++) { 948 struct igb_q_vector *q_vector = adapter->q_vector[i]; 949 950 vector++; 951 952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector); 953 954 if (q_vector->rx.ring && q_vector->tx.ring) 955 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 956 q_vector->rx.ring->queue_index); 957 else if (q_vector->tx.ring) 958 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 959 q_vector->tx.ring->queue_index); 960 else if (q_vector->rx.ring) 961 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 962 q_vector->rx.ring->queue_index); 963 else 964 sprintf(q_vector->name, "%s-unused", netdev->name); 965 966 err = request_irq(adapter->msix_entries[vector].vector, 967 igb_msix_ring, 0, q_vector->name, 968 q_vector); 969 if (err) 970 goto err_free; 971 } 972 973 igb_configure_msix(adapter); 974 return 0; 975 976 err_free: 977 /* free already assigned IRQs */ 978 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 979 980 vector--; 981 for (i = 0; i < vector; i++) { 982 free_irq(adapter->msix_entries[free_vector++].vector, 983 adapter->q_vector[i]); 984 } 985 err_out: 986 return err; 987 } 988 989 /** 990 * igb_free_q_vector - Free memory allocated for specific interrupt vector 991 * @adapter: board private structure to initialize 992 * @v_idx: Index of vector to be freed 993 * 994 * This function frees the memory allocated to the q_vector. 995 **/ 996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 997 { 998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 999 1000 adapter->q_vector[v_idx] = NULL; 1001 1002 /* igb_get_stats64() might access the rings on this vector, 1003 * we must wait a grace period before freeing it. 1004 */ 1005 if (q_vector) 1006 kfree_rcu(q_vector, rcu); 1007 } 1008 1009 /** 1010 * igb_reset_q_vector - Reset config for interrupt vector 1011 * @adapter: board private structure to initialize 1012 * @v_idx: Index of vector to be reset 1013 * 1014 * If NAPI is enabled it will delete any references to the 1015 * NAPI struct. This is preparation for igb_free_q_vector. 1016 **/ 1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1018 { 1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1020 1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1022 * allocated. So, q_vector is NULL so we should stop here. 1023 */ 1024 if (!q_vector) 1025 return; 1026 1027 if (q_vector->tx.ring) 1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1029 1030 if (q_vector->rx.ring) 1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 1032 1033 netif_napi_del(&q_vector->napi); 1034 1035 } 1036 1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1038 { 1039 int v_idx = adapter->num_q_vectors; 1040 1041 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1042 pci_disable_msix(adapter->pdev); 1043 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1044 pci_disable_msi(adapter->pdev); 1045 1046 while (v_idx--) 1047 igb_reset_q_vector(adapter, v_idx); 1048 } 1049 1050 /** 1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1052 * @adapter: board private structure to initialize 1053 * 1054 * This function frees the memory allocated to the q_vectors. In addition if 1055 * NAPI is enabled it will delete any references to the NAPI struct prior 1056 * to freeing the q_vector. 1057 **/ 1058 static void igb_free_q_vectors(struct igb_adapter *adapter) 1059 { 1060 int v_idx = adapter->num_q_vectors; 1061 1062 adapter->num_tx_queues = 0; 1063 adapter->num_rx_queues = 0; 1064 adapter->num_q_vectors = 0; 1065 1066 while (v_idx--) { 1067 igb_reset_q_vector(adapter, v_idx); 1068 igb_free_q_vector(adapter, v_idx); 1069 } 1070 } 1071 1072 /** 1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1074 * @adapter: board private structure to initialize 1075 * 1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1077 * MSI-X interrupts allocated. 1078 */ 1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1080 { 1081 igb_free_q_vectors(adapter); 1082 igb_reset_interrupt_capability(adapter); 1083 } 1084 1085 /** 1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1087 * @adapter: board private structure to initialize 1088 * @msix: boolean value of MSIX capability 1089 * 1090 * Attempt to configure interrupts using the best available 1091 * capabilities of the hardware and kernel. 1092 **/ 1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1094 { 1095 int err; 1096 int numvecs, i; 1097 1098 if (!msix) 1099 goto msi_only; 1100 adapter->flags |= IGB_FLAG_HAS_MSIX; 1101 1102 /* Number of supported queues. */ 1103 adapter->num_rx_queues = adapter->rss_queues; 1104 if (adapter->vfs_allocated_count) 1105 adapter->num_tx_queues = 1; 1106 else 1107 adapter->num_tx_queues = adapter->rss_queues; 1108 1109 /* start with one vector for every Rx queue */ 1110 numvecs = adapter->num_rx_queues; 1111 1112 /* if Tx handler is separate add 1 for every Tx queue */ 1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1114 numvecs += adapter->num_tx_queues; 1115 1116 /* store the number of vectors reserved for queues */ 1117 adapter->num_q_vectors = numvecs; 1118 1119 /* add 1 vector for link status interrupts */ 1120 numvecs++; 1121 for (i = 0; i < numvecs; i++) 1122 adapter->msix_entries[i].entry = i; 1123 1124 err = pci_enable_msix_range(adapter->pdev, 1125 adapter->msix_entries, 1126 numvecs, 1127 numvecs); 1128 if (err > 0) 1129 return; 1130 1131 igb_reset_interrupt_capability(adapter); 1132 1133 /* If we can't do MSI-X, try MSI */ 1134 msi_only: 1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1136 #ifdef CONFIG_PCI_IOV 1137 /* disable SR-IOV for non MSI-X configurations */ 1138 if (adapter->vf_data) { 1139 struct e1000_hw *hw = &adapter->hw; 1140 /* disable iov and allow time for transactions to clear */ 1141 pci_disable_sriov(adapter->pdev); 1142 msleep(500); 1143 1144 kfree(adapter->vf_mac_list); 1145 adapter->vf_mac_list = NULL; 1146 kfree(adapter->vf_data); 1147 adapter->vf_data = NULL; 1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1149 wrfl(); 1150 msleep(100); 1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1152 } 1153 #endif 1154 adapter->vfs_allocated_count = 0; 1155 adapter->rss_queues = 1; 1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1157 adapter->num_rx_queues = 1; 1158 adapter->num_tx_queues = 1; 1159 adapter->num_q_vectors = 1; 1160 if (!pci_enable_msi(adapter->pdev)) 1161 adapter->flags |= IGB_FLAG_HAS_MSI; 1162 } 1163 1164 static void igb_add_ring(struct igb_ring *ring, 1165 struct igb_ring_container *head) 1166 { 1167 head->ring = ring; 1168 head->count++; 1169 } 1170 1171 /** 1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1173 * @adapter: board private structure to initialize 1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1175 * @v_idx: index of vector in adapter struct 1176 * @txr_count: total number of Tx rings to allocate 1177 * @txr_idx: index of first Tx ring to allocate 1178 * @rxr_count: total number of Rx rings to allocate 1179 * @rxr_idx: index of first Rx ring to allocate 1180 * 1181 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1182 **/ 1183 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1184 int v_count, int v_idx, 1185 int txr_count, int txr_idx, 1186 int rxr_count, int rxr_idx) 1187 { 1188 struct igb_q_vector *q_vector; 1189 struct igb_ring *ring; 1190 int ring_count; 1191 size_t size; 1192 1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1194 if (txr_count > 1 || rxr_count > 1) 1195 return -ENOMEM; 1196 1197 ring_count = txr_count + rxr_count; 1198 size = struct_size(q_vector, ring, ring_count); 1199 1200 /* allocate q_vector and rings */ 1201 q_vector = adapter->q_vector[v_idx]; 1202 if (!q_vector) { 1203 q_vector = kzalloc(size, GFP_KERNEL); 1204 } else if (size > ksize(q_vector)) { 1205 kfree_rcu(q_vector, rcu); 1206 q_vector = kzalloc(size, GFP_KERNEL); 1207 } else { 1208 memset(q_vector, 0, size); 1209 } 1210 if (!q_vector) 1211 return -ENOMEM; 1212 1213 /* initialize NAPI */ 1214 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll); 1215 1216 /* tie q_vector and adapter together */ 1217 adapter->q_vector[v_idx] = q_vector; 1218 q_vector->adapter = adapter; 1219 1220 /* initialize work limits */ 1221 q_vector->tx.work_limit = adapter->tx_work_limit; 1222 1223 /* initialize ITR configuration */ 1224 q_vector->itr_register = adapter->io_addr + E1000_EITR(0); 1225 q_vector->itr_val = IGB_START_ITR; 1226 1227 /* initialize pointer to rings */ 1228 ring = q_vector->ring; 1229 1230 /* intialize ITR */ 1231 if (rxr_count) { 1232 /* rx or rx/tx vector */ 1233 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1234 q_vector->itr_val = adapter->rx_itr_setting; 1235 } else { 1236 /* tx only vector */ 1237 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1238 q_vector->itr_val = adapter->tx_itr_setting; 1239 } 1240 1241 if (txr_count) { 1242 /* assign generic ring traits */ 1243 ring->dev = &adapter->pdev->dev; 1244 ring->netdev = adapter->netdev; 1245 1246 /* configure backlink on ring */ 1247 ring->q_vector = q_vector; 1248 1249 /* update q_vector Tx values */ 1250 igb_add_ring(ring, &q_vector->tx); 1251 1252 /* For 82575, context index must be unique per ring. */ 1253 if (adapter->hw.mac.type == e1000_82575) 1254 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1255 1256 /* apply Tx specific ring traits */ 1257 ring->count = adapter->tx_ring_count; 1258 ring->queue_index = txr_idx; 1259 1260 ring->cbs_enable = false; 1261 ring->idleslope = 0; 1262 ring->sendslope = 0; 1263 ring->hicredit = 0; 1264 ring->locredit = 0; 1265 1266 u64_stats_init(&ring->tx_syncp); 1267 u64_stats_init(&ring->tx_syncp2); 1268 1269 /* assign ring to adapter */ 1270 adapter->tx_ring[txr_idx] = ring; 1271 1272 /* push pointer to next ring */ 1273 ring++; 1274 } 1275 1276 if (rxr_count) { 1277 /* assign generic ring traits */ 1278 ring->dev = &adapter->pdev->dev; 1279 ring->netdev = adapter->netdev; 1280 1281 /* configure backlink on ring */ 1282 ring->q_vector = q_vector; 1283 1284 /* update q_vector Rx values */ 1285 igb_add_ring(ring, &q_vector->rx); 1286 1287 /* set flag indicating ring supports SCTP checksum offload */ 1288 if (adapter->hw.mac.type >= e1000_82576) 1289 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1290 1291 /* On i350, i354, i210, and i211, loopback VLAN packets 1292 * have the tag byte-swapped. 1293 */ 1294 if (adapter->hw.mac.type >= e1000_i350) 1295 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1296 1297 /* apply Rx specific ring traits */ 1298 ring->count = adapter->rx_ring_count; 1299 ring->queue_index = rxr_idx; 1300 1301 u64_stats_init(&ring->rx_syncp); 1302 1303 /* assign ring to adapter */ 1304 adapter->rx_ring[rxr_idx] = ring; 1305 } 1306 1307 return 0; 1308 } 1309 1310 1311 /** 1312 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1313 * @adapter: board private structure to initialize 1314 * 1315 * We allocate one q_vector per queue interrupt. If allocation fails we 1316 * return -ENOMEM. 1317 **/ 1318 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1319 { 1320 int q_vectors = adapter->num_q_vectors; 1321 int rxr_remaining = adapter->num_rx_queues; 1322 int txr_remaining = adapter->num_tx_queues; 1323 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1324 int err; 1325 1326 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1327 for (; rxr_remaining; v_idx++) { 1328 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1329 0, 0, 1, rxr_idx); 1330 1331 if (err) 1332 goto err_out; 1333 1334 /* update counts and index */ 1335 rxr_remaining--; 1336 rxr_idx++; 1337 } 1338 } 1339 1340 for (; v_idx < q_vectors; v_idx++) { 1341 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1342 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1343 1344 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1345 tqpv, txr_idx, rqpv, rxr_idx); 1346 1347 if (err) 1348 goto err_out; 1349 1350 /* update counts and index */ 1351 rxr_remaining -= rqpv; 1352 txr_remaining -= tqpv; 1353 rxr_idx++; 1354 txr_idx++; 1355 } 1356 1357 return 0; 1358 1359 err_out: 1360 adapter->num_tx_queues = 0; 1361 adapter->num_rx_queues = 0; 1362 adapter->num_q_vectors = 0; 1363 1364 while (v_idx--) 1365 igb_free_q_vector(adapter, v_idx); 1366 1367 return -ENOMEM; 1368 } 1369 1370 /** 1371 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1372 * @adapter: board private structure to initialize 1373 * @msix: boolean value of MSIX capability 1374 * 1375 * This function initializes the interrupts and allocates all of the queues. 1376 **/ 1377 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1378 { 1379 struct pci_dev *pdev = adapter->pdev; 1380 int err; 1381 1382 igb_set_interrupt_capability(adapter, msix); 1383 1384 err = igb_alloc_q_vectors(adapter); 1385 if (err) { 1386 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1387 goto err_alloc_q_vectors; 1388 } 1389 1390 igb_cache_ring_register(adapter); 1391 1392 return 0; 1393 1394 err_alloc_q_vectors: 1395 igb_reset_interrupt_capability(adapter); 1396 return err; 1397 } 1398 1399 /** 1400 * igb_request_irq - initialize interrupts 1401 * @adapter: board private structure to initialize 1402 * 1403 * Attempts to configure interrupts using the best available 1404 * capabilities of the hardware and kernel. 1405 **/ 1406 static int igb_request_irq(struct igb_adapter *adapter) 1407 { 1408 struct net_device *netdev = adapter->netdev; 1409 struct pci_dev *pdev = adapter->pdev; 1410 int err = 0; 1411 1412 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1413 err = igb_request_msix(adapter); 1414 if (!err) 1415 goto request_done; 1416 /* fall back to MSI */ 1417 igb_free_all_tx_resources(adapter); 1418 igb_free_all_rx_resources(adapter); 1419 1420 igb_clear_interrupt_scheme(adapter); 1421 err = igb_init_interrupt_scheme(adapter, false); 1422 if (err) 1423 goto request_done; 1424 1425 igb_setup_all_tx_resources(adapter); 1426 igb_setup_all_rx_resources(adapter); 1427 igb_configure(adapter); 1428 } 1429 1430 igb_assign_vector(adapter->q_vector[0], 0); 1431 1432 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1433 err = request_irq(pdev->irq, igb_intr_msi, 0, 1434 netdev->name, adapter); 1435 if (!err) 1436 goto request_done; 1437 1438 /* fall back to legacy interrupts */ 1439 igb_reset_interrupt_capability(adapter); 1440 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1441 } 1442 1443 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1444 netdev->name, adapter); 1445 1446 if (err) 1447 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1448 err); 1449 1450 request_done: 1451 return err; 1452 } 1453 1454 static void igb_free_irq(struct igb_adapter *adapter) 1455 { 1456 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1457 int vector = 0, i; 1458 1459 free_irq(adapter->msix_entries[vector++].vector, adapter); 1460 1461 for (i = 0; i < adapter->num_q_vectors; i++) 1462 free_irq(adapter->msix_entries[vector++].vector, 1463 adapter->q_vector[i]); 1464 } else { 1465 free_irq(adapter->pdev->irq, adapter); 1466 } 1467 } 1468 1469 /** 1470 * igb_irq_disable - Mask off interrupt generation on the NIC 1471 * @adapter: board private structure 1472 **/ 1473 static void igb_irq_disable(struct igb_adapter *adapter) 1474 { 1475 struct e1000_hw *hw = &adapter->hw; 1476 1477 /* we need to be careful when disabling interrupts. The VFs are also 1478 * mapped into these registers and so clearing the bits can cause 1479 * issues on the VF drivers so we only need to clear what we set 1480 */ 1481 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1482 u32 regval = rd32(E1000_EIAM); 1483 1484 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1485 wr32(E1000_EIMC, adapter->eims_enable_mask); 1486 regval = rd32(E1000_EIAC); 1487 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1488 } 1489 1490 wr32(E1000_IAM, 0); 1491 wr32(E1000_IMC, ~0); 1492 wrfl(); 1493 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1494 int i; 1495 1496 for (i = 0; i < adapter->num_q_vectors; i++) 1497 synchronize_irq(adapter->msix_entries[i].vector); 1498 } else { 1499 synchronize_irq(adapter->pdev->irq); 1500 } 1501 } 1502 1503 /** 1504 * igb_irq_enable - Enable default interrupt generation settings 1505 * @adapter: board private structure 1506 **/ 1507 static void igb_irq_enable(struct igb_adapter *adapter) 1508 { 1509 struct e1000_hw *hw = &adapter->hw; 1510 1511 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1512 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1513 u32 regval = rd32(E1000_EIAC); 1514 1515 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1516 regval = rd32(E1000_EIAM); 1517 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1518 wr32(E1000_EIMS, adapter->eims_enable_mask); 1519 if (adapter->vfs_allocated_count) { 1520 wr32(E1000_MBVFIMR, 0xFF); 1521 ims |= E1000_IMS_VMMB; 1522 } 1523 wr32(E1000_IMS, ims); 1524 } else { 1525 wr32(E1000_IMS, IMS_ENABLE_MASK | 1526 E1000_IMS_DRSTA); 1527 wr32(E1000_IAM, IMS_ENABLE_MASK | 1528 E1000_IMS_DRSTA); 1529 } 1530 } 1531 1532 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1533 { 1534 struct e1000_hw *hw = &adapter->hw; 1535 u16 pf_id = adapter->vfs_allocated_count; 1536 u16 vid = adapter->hw.mng_cookie.vlan_id; 1537 u16 old_vid = adapter->mng_vlan_id; 1538 1539 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1540 /* add VID to filter table */ 1541 igb_vfta_set(hw, vid, pf_id, true, true); 1542 adapter->mng_vlan_id = vid; 1543 } else { 1544 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1545 } 1546 1547 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1548 (vid != old_vid) && 1549 !test_bit(old_vid, adapter->active_vlans)) { 1550 /* remove VID from filter table */ 1551 igb_vfta_set(hw, vid, pf_id, false, true); 1552 } 1553 } 1554 1555 /** 1556 * igb_release_hw_control - release control of the h/w to f/w 1557 * @adapter: address of board private structure 1558 * 1559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1560 * For ASF and Pass Through versions of f/w this means that the 1561 * driver is no longer loaded. 1562 **/ 1563 static void igb_release_hw_control(struct igb_adapter *adapter) 1564 { 1565 struct e1000_hw *hw = &adapter->hw; 1566 u32 ctrl_ext; 1567 1568 /* Let firmware take over control of h/w */ 1569 ctrl_ext = rd32(E1000_CTRL_EXT); 1570 wr32(E1000_CTRL_EXT, 1571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1572 } 1573 1574 /** 1575 * igb_get_hw_control - get control of the h/w from f/w 1576 * @adapter: address of board private structure 1577 * 1578 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1579 * For ASF and Pass Through versions of f/w this means that 1580 * the driver is loaded. 1581 **/ 1582 static void igb_get_hw_control(struct igb_adapter *adapter) 1583 { 1584 struct e1000_hw *hw = &adapter->hw; 1585 u32 ctrl_ext; 1586 1587 /* Let firmware know the driver has taken over */ 1588 ctrl_ext = rd32(E1000_CTRL_EXT); 1589 wr32(E1000_CTRL_EXT, 1590 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1591 } 1592 1593 static void enable_fqtss(struct igb_adapter *adapter, bool enable) 1594 { 1595 struct net_device *netdev = adapter->netdev; 1596 struct e1000_hw *hw = &adapter->hw; 1597 1598 WARN_ON(hw->mac.type != e1000_i210); 1599 1600 if (enable) 1601 adapter->flags |= IGB_FLAG_FQTSS; 1602 else 1603 adapter->flags &= ~IGB_FLAG_FQTSS; 1604 1605 if (netif_running(netdev)) 1606 schedule_work(&adapter->reset_task); 1607 } 1608 1609 static bool is_fqtss_enabled(struct igb_adapter *adapter) 1610 { 1611 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false; 1612 } 1613 1614 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue, 1615 enum tx_queue_prio prio) 1616 { 1617 u32 val; 1618 1619 WARN_ON(hw->mac.type != e1000_i210); 1620 WARN_ON(queue < 0 || queue > 4); 1621 1622 val = rd32(E1000_I210_TXDCTL(queue)); 1623 1624 if (prio == TX_QUEUE_PRIO_HIGH) 1625 val |= E1000_TXDCTL_PRIORITY; 1626 else 1627 val &= ~E1000_TXDCTL_PRIORITY; 1628 1629 wr32(E1000_I210_TXDCTL(queue), val); 1630 } 1631 1632 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode) 1633 { 1634 u32 val; 1635 1636 WARN_ON(hw->mac.type != e1000_i210); 1637 WARN_ON(queue < 0 || queue > 1); 1638 1639 val = rd32(E1000_I210_TQAVCC(queue)); 1640 1641 if (mode == QUEUE_MODE_STREAM_RESERVATION) 1642 val |= E1000_TQAVCC_QUEUEMODE; 1643 else 1644 val &= ~E1000_TQAVCC_QUEUEMODE; 1645 1646 wr32(E1000_I210_TQAVCC(queue), val); 1647 } 1648 1649 static bool is_any_cbs_enabled(struct igb_adapter *adapter) 1650 { 1651 int i; 1652 1653 for (i = 0; i < adapter->num_tx_queues; i++) { 1654 if (adapter->tx_ring[i]->cbs_enable) 1655 return true; 1656 } 1657 1658 return false; 1659 } 1660 1661 static bool is_any_txtime_enabled(struct igb_adapter *adapter) 1662 { 1663 int i; 1664 1665 for (i = 0; i < adapter->num_tx_queues; i++) { 1666 if (adapter->tx_ring[i]->launchtime_enable) 1667 return true; 1668 } 1669 1670 return false; 1671 } 1672 1673 /** 1674 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb 1675 * @adapter: pointer to adapter struct 1676 * @queue: queue number 1677 * 1678 * Configure CBS and Launchtime for a given hardware queue. 1679 * Parameters are retrieved from the correct Tx ring, so 1680 * igb_save_cbs_params() and igb_save_txtime_params() should be used 1681 * for setting those correctly prior to this function being called. 1682 **/ 1683 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue) 1684 { 1685 struct net_device *netdev = adapter->netdev; 1686 struct e1000_hw *hw = &adapter->hw; 1687 struct igb_ring *ring; 1688 u32 tqavcc, tqavctrl; 1689 u16 value; 1690 1691 WARN_ON(hw->mac.type != e1000_i210); 1692 WARN_ON(queue < 0 || queue > 1); 1693 ring = adapter->tx_ring[queue]; 1694 1695 /* If any of the Qav features is enabled, configure queues as SR and 1696 * with HIGH PRIO. If none is, then configure them with LOW PRIO and 1697 * as SP. 1698 */ 1699 if (ring->cbs_enable || ring->launchtime_enable) { 1700 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH); 1701 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION); 1702 } else { 1703 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW); 1704 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY); 1705 } 1706 1707 /* If CBS is enabled, set DataTranARB and config its parameters. */ 1708 if (ring->cbs_enable || queue == 0) { 1709 /* i210 does not allow the queue 0 to be in the Strict 1710 * Priority mode while the Qav mode is enabled, so, 1711 * instead of disabling strict priority mode, we give 1712 * queue 0 the maximum of credits possible. 1713 * 1714 * See section 8.12.19 of the i210 datasheet, "Note: 1715 * Queue0 QueueMode must be set to 1b when 1716 * TransmitMode is set to Qav." 1717 */ 1718 if (queue == 0 && !ring->cbs_enable) { 1719 /* max "linkspeed" idleslope in kbps */ 1720 ring->idleslope = 1000000; 1721 ring->hicredit = ETH_FRAME_LEN; 1722 } 1723 1724 /* Always set data transfer arbitration to credit-based 1725 * shaper algorithm on TQAVCTRL if CBS is enabled for any of 1726 * the queues. 1727 */ 1728 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1729 tqavctrl |= E1000_TQAVCTRL_DATATRANARB; 1730 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1731 1732 /* According to i210 datasheet section 7.2.7.7, we should set 1733 * the 'idleSlope' field from TQAVCC register following the 1734 * equation: 1735 * 1736 * For 100 Mbps link speed: 1737 * 1738 * value = BW * 0x7735 * 0.2 (E1) 1739 * 1740 * For 1000Mbps link speed: 1741 * 1742 * value = BW * 0x7735 * 2 (E2) 1743 * 1744 * E1 and E2 can be merged into one equation as shown below. 1745 * Note that 'link-speed' is in Mbps. 1746 * 1747 * value = BW * 0x7735 * 2 * link-speed 1748 * -------------- (E3) 1749 * 1000 1750 * 1751 * 'BW' is the percentage bandwidth out of full link speed 1752 * which can be found with the following equation. Note that 1753 * idleSlope here is the parameter from this function which 1754 * is in kbps. 1755 * 1756 * BW = idleSlope 1757 * ----------------- (E4) 1758 * link-speed * 1000 1759 * 1760 * That said, we can come up with a generic equation to 1761 * calculate the value we should set it TQAVCC register by 1762 * replacing 'BW' in E3 by E4. The resulting equation is: 1763 * 1764 * value = idleSlope * 0x7735 * 2 * link-speed 1765 * ----------------- -------------- (E5) 1766 * link-speed * 1000 1000 1767 * 1768 * 'link-speed' is present in both sides of the fraction so 1769 * it is canceled out. The final equation is the following: 1770 * 1771 * value = idleSlope * 61034 1772 * ----------------- (E6) 1773 * 1000000 1774 * 1775 * NOTE: For i210, given the above, we can see that idleslope 1776 * is represented in 16.38431 kbps units by the value at 1777 * the TQAVCC register (1Gbps / 61034), which reduces 1778 * the granularity for idleslope increments. 1779 * For instance, if you want to configure a 2576kbps 1780 * idleslope, the value to be written on the register 1781 * would have to be 157.23. If rounded down, you end 1782 * up with less bandwidth available than originally 1783 * required (~2572 kbps). If rounded up, you end up 1784 * with a higher bandwidth (~2589 kbps). Below the 1785 * approach we take is to always round up the 1786 * calculated value, so the resulting bandwidth might 1787 * be slightly higher for some configurations. 1788 */ 1789 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000); 1790 1791 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1792 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1793 tqavcc |= value; 1794 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1795 1796 wr32(E1000_I210_TQAVHC(queue), 1797 0x80000000 + ring->hicredit * 0x7735); 1798 } else { 1799 1800 /* Set idleSlope to zero. */ 1801 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1802 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1803 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1804 1805 /* Set hiCredit to zero. */ 1806 wr32(E1000_I210_TQAVHC(queue), 0); 1807 1808 /* If CBS is not enabled for any queues anymore, then return to 1809 * the default state of Data Transmission Arbitration on 1810 * TQAVCTRL. 1811 */ 1812 if (!is_any_cbs_enabled(adapter)) { 1813 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1814 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB; 1815 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1816 } 1817 } 1818 1819 /* If LaunchTime is enabled, set DataTranTIM. */ 1820 if (ring->launchtime_enable) { 1821 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled 1822 * for any of the SR queues, and configure fetchtime delta. 1823 * XXX NOTE: 1824 * - LaunchTime will be enabled for all SR queues. 1825 * - A fixed offset can be added relative to the launch 1826 * time of all packets if configured at reg LAUNCH_OS0. 1827 * We are keeping it as 0 for now (default value). 1828 */ 1829 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1830 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM | 1831 E1000_TQAVCTRL_FETCHTIME_DELTA; 1832 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1833 } else { 1834 /* If Launchtime is not enabled for any SR queues anymore, 1835 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta, 1836 * effectively disabling Launchtime. 1837 */ 1838 if (!is_any_txtime_enabled(adapter)) { 1839 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1840 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM; 1841 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA; 1842 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1843 } 1844 } 1845 1846 /* XXX: In i210 controller the sendSlope and loCredit parameters from 1847 * CBS are not configurable by software so we don't do any 'controller 1848 * configuration' in respect to these parameters. 1849 */ 1850 1851 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n", 1852 ring->cbs_enable ? "enabled" : "disabled", 1853 ring->launchtime_enable ? "enabled" : "disabled", 1854 queue, 1855 ring->idleslope, ring->sendslope, 1856 ring->hicredit, ring->locredit); 1857 } 1858 1859 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue, 1860 bool enable) 1861 { 1862 struct igb_ring *ring; 1863 1864 if (queue < 0 || queue > adapter->num_tx_queues) 1865 return -EINVAL; 1866 1867 ring = adapter->tx_ring[queue]; 1868 ring->launchtime_enable = enable; 1869 1870 return 0; 1871 } 1872 1873 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue, 1874 bool enable, int idleslope, int sendslope, 1875 int hicredit, int locredit) 1876 { 1877 struct igb_ring *ring; 1878 1879 if (queue < 0 || queue > adapter->num_tx_queues) 1880 return -EINVAL; 1881 1882 ring = adapter->tx_ring[queue]; 1883 1884 ring->cbs_enable = enable; 1885 ring->idleslope = idleslope; 1886 ring->sendslope = sendslope; 1887 ring->hicredit = hicredit; 1888 ring->locredit = locredit; 1889 1890 return 0; 1891 } 1892 1893 /** 1894 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable 1895 * @adapter: pointer to adapter struct 1896 * 1897 * Configure TQAVCTRL register switching the controller's Tx mode 1898 * if FQTSS mode is enabled or disabled. Additionally, will issue 1899 * a call to igb_config_tx_modes() per queue so any previously saved 1900 * Tx parameters are applied. 1901 **/ 1902 static void igb_setup_tx_mode(struct igb_adapter *adapter) 1903 { 1904 struct net_device *netdev = adapter->netdev; 1905 struct e1000_hw *hw = &adapter->hw; 1906 u32 val; 1907 1908 /* Only i210 controller supports changing the transmission mode. */ 1909 if (hw->mac.type != e1000_i210) 1910 return; 1911 1912 if (is_fqtss_enabled(adapter)) { 1913 int i, max_queue; 1914 1915 /* Configure TQAVCTRL register: set transmit mode to 'Qav', 1916 * set data fetch arbitration to 'round robin', set SP_WAIT_SR 1917 * so SP queues wait for SR ones. 1918 */ 1919 val = rd32(E1000_I210_TQAVCTRL); 1920 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR; 1921 val &= ~E1000_TQAVCTRL_DATAFETCHARB; 1922 wr32(E1000_I210_TQAVCTRL, val); 1923 1924 /* Configure Tx and Rx packet buffers sizes as described in 1925 * i210 datasheet section 7.2.7.7. 1926 */ 1927 val = rd32(E1000_TXPBS); 1928 val &= ~I210_TXPBSIZE_MASK; 1929 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB | 1930 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB; 1931 wr32(E1000_TXPBS, val); 1932 1933 val = rd32(E1000_RXPBS); 1934 val &= ~I210_RXPBSIZE_MASK; 1935 val |= I210_RXPBSIZE_PB_30KB; 1936 wr32(E1000_RXPBS, val); 1937 1938 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ 1939 * register should not exceed the buffer size programmed in 1940 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB 1941 * so according to the datasheet we should set MAX_TPKT_SIZE to 1942 * 4kB / 64. 1943 * 1944 * However, when we do so, no frame from queue 2 and 3 are 1945 * transmitted. It seems the MAX_TPKT_SIZE should not be great 1946 * or _equal_ to the buffer size programmed in TXPBS. For this 1947 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64. 1948 */ 1949 val = (4096 - 1) / 64; 1950 wr32(E1000_I210_DTXMXPKTSZ, val); 1951 1952 /* Since FQTSS mode is enabled, apply any CBS configuration 1953 * previously set. If no previous CBS configuration has been 1954 * done, then the initial configuration is applied, which means 1955 * CBS is disabled. 1956 */ 1957 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ? 1958 adapter->num_tx_queues : I210_SR_QUEUES_NUM; 1959 1960 for (i = 0; i < max_queue; i++) { 1961 igb_config_tx_modes(adapter, i); 1962 } 1963 } else { 1964 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 1965 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 1966 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT); 1967 1968 val = rd32(E1000_I210_TQAVCTRL); 1969 /* According to Section 8.12.21, the other flags we've set when 1970 * enabling FQTSS are not relevant when disabling FQTSS so we 1971 * don't set they here. 1972 */ 1973 val &= ~E1000_TQAVCTRL_XMIT_MODE; 1974 wr32(E1000_I210_TQAVCTRL, val); 1975 } 1976 1977 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ? 1978 "enabled" : "disabled"); 1979 } 1980 1981 /** 1982 * igb_configure - configure the hardware for RX and TX 1983 * @adapter: private board structure 1984 **/ 1985 static void igb_configure(struct igb_adapter *adapter) 1986 { 1987 struct net_device *netdev = adapter->netdev; 1988 int i; 1989 1990 igb_get_hw_control(adapter); 1991 igb_set_rx_mode(netdev); 1992 igb_setup_tx_mode(adapter); 1993 1994 igb_restore_vlan(adapter); 1995 1996 igb_setup_tctl(adapter); 1997 igb_setup_mrqc(adapter); 1998 igb_setup_rctl(adapter); 1999 2000 igb_nfc_filter_restore(adapter); 2001 igb_configure_tx(adapter); 2002 igb_configure_rx(adapter); 2003 2004 igb_rx_fifo_flush_82575(&adapter->hw); 2005 2006 /* call igb_desc_unused which always leaves 2007 * at least 1 descriptor unused to make sure 2008 * next_to_use != next_to_clean 2009 */ 2010 for (i = 0; i < adapter->num_rx_queues; i++) { 2011 struct igb_ring *ring = adapter->rx_ring[i]; 2012 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 2013 } 2014 } 2015 2016 /** 2017 * igb_power_up_link - Power up the phy/serdes link 2018 * @adapter: address of board private structure 2019 **/ 2020 void igb_power_up_link(struct igb_adapter *adapter) 2021 { 2022 igb_reset_phy(&adapter->hw); 2023 2024 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2025 igb_power_up_phy_copper(&adapter->hw); 2026 else 2027 igb_power_up_serdes_link_82575(&adapter->hw); 2028 2029 igb_setup_link(&adapter->hw); 2030 } 2031 2032 /** 2033 * igb_power_down_link - Power down the phy/serdes link 2034 * @adapter: address of board private structure 2035 */ 2036 static void igb_power_down_link(struct igb_adapter *adapter) 2037 { 2038 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2039 igb_power_down_phy_copper_82575(&adapter->hw); 2040 else 2041 igb_shutdown_serdes_link_82575(&adapter->hw); 2042 } 2043 2044 /** 2045 * igb_check_swap_media - Detect and switch function for Media Auto Sense 2046 * @adapter: address of the board private structure 2047 **/ 2048 static void igb_check_swap_media(struct igb_adapter *adapter) 2049 { 2050 struct e1000_hw *hw = &adapter->hw; 2051 u32 ctrl_ext, connsw; 2052 bool swap_now = false; 2053 2054 ctrl_ext = rd32(E1000_CTRL_EXT); 2055 connsw = rd32(E1000_CONNSW); 2056 2057 /* need to live swap if current media is copper and we have fiber/serdes 2058 * to go to. 2059 */ 2060 2061 if ((hw->phy.media_type == e1000_media_type_copper) && 2062 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 2063 swap_now = true; 2064 } else if ((hw->phy.media_type != e1000_media_type_copper) && 2065 !(connsw & E1000_CONNSW_SERDESD)) { 2066 /* copper signal takes time to appear */ 2067 if (adapter->copper_tries < 4) { 2068 adapter->copper_tries++; 2069 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 2070 wr32(E1000_CONNSW, connsw); 2071 return; 2072 } else { 2073 adapter->copper_tries = 0; 2074 if ((connsw & E1000_CONNSW_PHYSD) && 2075 (!(connsw & E1000_CONNSW_PHY_PDN))) { 2076 swap_now = true; 2077 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 2078 wr32(E1000_CONNSW, connsw); 2079 } 2080 } 2081 } 2082 2083 if (!swap_now) 2084 return; 2085 2086 switch (hw->phy.media_type) { 2087 case e1000_media_type_copper: 2088 netdev_info(adapter->netdev, 2089 "MAS: changing media to fiber/serdes\n"); 2090 ctrl_ext |= 2091 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2092 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2093 adapter->copper_tries = 0; 2094 break; 2095 case e1000_media_type_internal_serdes: 2096 case e1000_media_type_fiber: 2097 netdev_info(adapter->netdev, 2098 "MAS: changing media to copper\n"); 2099 ctrl_ext &= 2100 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2101 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2102 break; 2103 default: 2104 /* shouldn't get here during regular operation */ 2105 netdev_err(adapter->netdev, 2106 "AMS: Invalid media type found, returning\n"); 2107 break; 2108 } 2109 wr32(E1000_CTRL_EXT, ctrl_ext); 2110 } 2111 2112 /** 2113 * igb_up - Open the interface and prepare it to handle traffic 2114 * @adapter: board private structure 2115 **/ 2116 int igb_up(struct igb_adapter *adapter) 2117 { 2118 struct e1000_hw *hw = &adapter->hw; 2119 int i; 2120 2121 /* hardware has been reset, we need to reload some things */ 2122 igb_configure(adapter); 2123 2124 clear_bit(__IGB_DOWN, &adapter->state); 2125 2126 for (i = 0; i < adapter->num_q_vectors; i++) 2127 napi_enable(&(adapter->q_vector[i]->napi)); 2128 2129 if (adapter->flags & IGB_FLAG_HAS_MSIX) 2130 igb_configure_msix(adapter); 2131 else 2132 igb_assign_vector(adapter->q_vector[0], 0); 2133 2134 /* Clear any pending interrupts. */ 2135 rd32(E1000_TSICR); 2136 rd32(E1000_ICR); 2137 igb_irq_enable(adapter); 2138 2139 /* notify VFs that reset has been completed */ 2140 if (adapter->vfs_allocated_count) { 2141 u32 reg_data = rd32(E1000_CTRL_EXT); 2142 2143 reg_data |= E1000_CTRL_EXT_PFRSTD; 2144 wr32(E1000_CTRL_EXT, reg_data); 2145 } 2146 2147 netif_tx_start_all_queues(adapter->netdev); 2148 2149 /* start the watchdog. */ 2150 hw->mac.get_link_status = 1; 2151 schedule_work(&adapter->watchdog_task); 2152 2153 if ((adapter->flags & IGB_FLAG_EEE) && 2154 (!hw->dev_spec._82575.eee_disable)) 2155 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 2156 2157 return 0; 2158 } 2159 2160 void igb_down(struct igb_adapter *adapter) 2161 { 2162 struct net_device *netdev = adapter->netdev; 2163 struct e1000_hw *hw = &adapter->hw; 2164 u32 tctl, rctl; 2165 int i; 2166 2167 /* signal that we're down so the interrupt handler does not 2168 * reschedule our watchdog timer 2169 */ 2170 set_bit(__IGB_DOWN, &adapter->state); 2171 2172 /* disable receives in the hardware */ 2173 rctl = rd32(E1000_RCTL); 2174 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 2175 /* flush and sleep below */ 2176 2177 igb_nfc_filter_exit(adapter); 2178 2179 netif_carrier_off(netdev); 2180 netif_tx_stop_all_queues(netdev); 2181 2182 /* disable transmits in the hardware */ 2183 tctl = rd32(E1000_TCTL); 2184 tctl &= ~E1000_TCTL_EN; 2185 wr32(E1000_TCTL, tctl); 2186 /* flush both disables and wait for them to finish */ 2187 wrfl(); 2188 usleep_range(10000, 11000); 2189 2190 igb_irq_disable(adapter); 2191 2192 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 2193 2194 for (i = 0; i < adapter->num_q_vectors; i++) { 2195 if (adapter->q_vector[i]) { 2196 napi_synchronize(&adapter->q_vector[i]->napi); 2197 napi_disable(&adapter->q_vector[i]->napi); 2198 } 2199 } 2200 2201 del_timer_sync(&adapter->watchdog_timer); 2202 del_timer_sync(&adapter->phy_info_timer); 2203 2204 /* record the stats before reset*/ 2205 spin_lock(&adapter->stats64_lock); 2206 igb_update_stats(adapter); 2207 spin_unlock(&adapter->stats64_lock); 2208 2209 adapter->link_speed = 0; 2210 adapter->link_duplex = 0; 2211 2212 if (!pci_channel_offline(adapter->pdev)) 2213 igb_reset(adapter); 2214 2215 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 2216 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 2217 2218 igb_clean_all_tx_rings(adapter); 2219 igb_clean_all_rx_rings(adapter); 2220 #ifdef CONFIG_IGB_DCA 2221 2222 /* since we reset the hardware DCA settings were cleared */ 2223 igb_setup_dca(adapter); 2224 #endif 2225 } 2226 2227 void igb_reinit_locked(struct igb_adapter *adapter) 2228 { 2229 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 2230 usleep_range(1000, 2000); 2231 igb_down(adapter); 2232 igb_up(adapter); 2233 clear_bit(__IGB_RESETTING, &adapter->state); 2234 } 2235 2236 /** igb_enable_mas - Media Autosense re-enable after swap 2237 * 2238 * @adapter: adapter struct 2239 **/ 2240 static void igb_enable_mas(struct igb_adapter *adapter) 2241 { 2242 struct e1000_hw *hw = &adapter->hw; 2243 u32 connsw = rd32(E1000_CONNSW); 2244 2245 /* configure for SerDes media detect */ 2246 if ((hw->phy.media_type == e1000_media_type_copper) && 2247 (!(connsw & E1000_CONNSW_SERDESD))) { 2248 connsw |= E1000_CONNSW_ENRGSRC; 2249 connsw |= E1000_CONNSW_AUTOSENSE_EN; 2250 wr32(E1000_CONNSW, connsw); 2251 wrfl(); 2252 } 2253 } 2254 2255 void igb_reset(struct igb_adapter *adapter) 2256 { 2257 struct pci_dev *pdev = adapter->pdev; 2258 struct e1000_hw *hw = &adapter->hw; 2259 struct e1000_mac_info *mac = &hw->mac; 2260 struct e1000_fc_info *fc = &hw->fc; 2261 u32 pba, hwm; 2262 2263 /* Repartition Pba for greater than 9k mtu 2264 * To take effect CTRL.RST is required. 2265 */ 2266 switch (mac->type) { 2267 case e1000_i350: 2268 case e1000_i354: 2269 case e1000_82580: 2270 pba = rd32(E1000_RXPBS); 2271 pba = igb_rxpbs_adjust_82580(pba); 2272 break; 2273 case e1000_82576: 2274 pba = rd32(E1000_RXPBS); 2275 pba &= E1000_RXPBS_SIZE_MASK_82576; 2276 break; 2277 case e1000_82575: 2278 case e1000_i210: 2279 case e1000_i211: 2280 default: 2281 pba = E1000_PBA_34K; 2282 break; 2283 } 2284 2285 if (mac->type == e1000_82575) { 2286 u32 min_rx_space, min_tx_space, needed_tx_space; 2287 2288 /* write Rx PBA so that hardware can report correct Tx PBA */ 2289 wr32(E1000_PBA, pba); 2290 2291 /* To maintain wire speed transmits, the Tx FIFO should be 2292 * large enough to accommodate two full transmit packets, 2293 * rounded up to the next 1KB and expressed in KB. Likewise, 2294 * the Rx FIFO should be large enough to accommodate at least 2295 * one full receive packet and is similarly rounded up and 2296 * expressed in KB. 2297 */ 2298 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024); 2299 2300 /* The Tx FIFO also stores 16 bytes of information about the Tx 2301 * but don't include Ethernet FCS because hardware appends it. 2302 * We only need to round down to the nearest 512 byte block 2303 * count since the value we care about is 2 frames, not 1. 2304 */ 2305 min_tx_space = adapter->max_frame_size; 2306 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN; 2307 min_tx_space = DIV_ROUND_UP(min_tx_space, 512); 2308 2309 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2310 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16); 2311 2312 /* If current Tx allocation is less than the min Tx FIFO size, 2313 * and the min Tx FIFO size is less than the current Rx FIFO 2314 * allocation, take space away from current Rx allocation. 2315 */ 2316 if (needed_tx_space < pba) { 2317 pba -= needed_tx_space; 2318 2319 /* if short on Rx space, Rx wins and must trump Tx 2320 * adjustment 2321 */ 2322 if (pba < min_rx_space) 2323 pba = min_rx_space; 2324 } 2325 2326 /* adjust PBA for jumbo frames */ 2327 wr32(E1000_PBA, pba); 2328 } 2329 2330 /* flow control settings 2331 * The high water mark must be low enough to fit one full frame 2332 * after transmitting the pause frame. As such we must have enough 2333 * space to allow for us to complete our current transmit and then 2334 * receive the frame that is in progress from the link partner. 2335 * Set it to: 2336 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 2337 */ 2338 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 2339 2340 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 2341 fc->low_water = fc->high_water - 16; 2342 fc->pause_time = 0xFFFF; 2343 fc->send_xon = 1; 2344 fc->current_mode = fc->requested_mode; 2345 2346 /* disable receive for all VFs and wait one second */ 2347 if (adapter->vfs_allocated_count) { 2348 int i; 2349 2350 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 2351 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 2352 2353 /* ping all the active vfs to let them know we are going down */ 2354 igb_ping_all_vfs(adapter); 2355 2356 /* disable transmits and receives */ 2357 wr32(E1000_VFRE, 0); 2358 wr32(E1000_VFTE, 0); 2359 } 2360 2361 /* Allow time for pending master requests to run */ 2362 hw->mac.ops.reset_hw(hw); 2363 wr32(E1000_WUC, 0); 2364 2365 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 2366 /* need to resetup here after media swap */ 2367 adapter->ei.get_invariants(hw); 2368 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 2369 } 2370 if ((mac->type == e1000_82575 || mac->type == e1000_i350) && 2371 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 2372 igb_enable_mas(adapter); 2373 } 2374 if (hw->mac.ops.init_hw(hw)) 2375 dev_err(&pdev->dev, "Hardware Error\n"); 2376 2377 /* RAR registers were cleared during init_hw, clear mac table */ 2378 igb_flush_mac_table(adapter); 2379 __dev_uc_unsync(adapter->netdev, NULL); 2380 2381 /* Recover default RAR entry */ 2382 igb_set_default_mac_filter(adapter); 2383 2384 /* Flow control settings reset on hardware reset, so guarantee flow 2385 * control is off when forcing speed. 2386 */ 2387 if (!hw->mac.autoneg) 2388 igb_force_mac_fc(hw); 2389 2390 igb_init_dmac(adapter, pba); 2391 #ifdef CONFIG_IGB_HWMON 2392 /* Re-initialize the thermal sensor on i350 devices. */ 2393 if (!test_bit(__IGB_DOWN, &adapter->state)) { 2394 if (mac->type == e1000_i350 && hw->bus.func == 0) { 2395 /* If present, re-initialize the external thermal sensor 2396 * interface. 2397 */ 2398 if (adapter->ets) 2399 mac->ops.init_thermal_sensor_thresh(hw); 2400 } 2401 } 2402 #endif 2403 /* Re-establish EEE setting */ 2404 if (hw->phy.media_type == e1000_media_type_copper) { 2405 switch (mac->type) { 2406 case e1000_i350: 2407 case e1000_i210: 2408 case e1000_i211: 2409 igb_set_eee_i350(hw, true, true); 2410 break; 2411 case e1000_i354: 2412 igb_set_eee_i354(hw, true, true); 2413 break; 2414 default: 2415 break; 2416 } 2417 } 2418 if (!netif_running(adapter->netdev)) 2419 igb_power_down_link(adapter); 2420 2421 igb_update_mng_vlan(adapter); 2422 2423 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2424 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2425 2426 /* Re-enable PTP, where applicable. */ 2427 if (adapter->ptp_flags & IGB_PTP_ENABLED) 2428 igb_ptp_reset(adapter); 2429 2430 igb_get_phy_info(hw); 2431 } 2432 2433 static netdev_features_t igb_fix_features(struct net_device *netdev, 2434 netdev_features_t features) 2435 { 2436 /* Since there is no support for separate Rx/Tx vlan accel 2437 * enable/disable make sure Tx flag is always in same state as Rx. 2438 */ 2439 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2440 features |= NETIF_F_HW_VLAN_CTAG_TX; 2441 else 2442 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2443 2444 return features; 2445 } 2446 2447 static int igb_set_features(struct net_device *netdev, 2448 netdev_features_t features) 2449 { 2450 netdev_features_t changed = netdev->features ^ features; 2451 struct igb_adapter *adapter = netdev_priv(netdev); 2452 2453 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2454 igb_vlan_mode(netdev, features); 2455 2456 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 2457 return 0; 2458 2459 if (!(features & NETIF_F_NTUPLE)) { 2460 struct hlist_node *node2; 2461 struct igb_nfc_filter *rule; 2462 2463 spin_lock(&adapter->nfc_lock); 2464 hlist_for_each_entry_safe(rule, node2, 2465 &adapter->nfc_filter_list, nfc_node) { 2466 igb_erase_filter(adapter, rule); 2467 hlist_del(&rule->nfc_node); 2468 kfree(rule); 2469 } 2470 spin_unlock(&adapter->nfc_lock); 2471 adapter->nfc_filter_count = 0; 2472 } 2473 2474 netdev->features = features; 2475 2476 if (netif_running(netdev)) 2477 igb_reinit_locked(adapter); 2478 else 2479 igb_reset(adapter); 2480 2481 return 1; 2482 } 2483 2484 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 2485 struct net_device *dev, 2486 const unsigned char *addr, u16 vid, 2487 u16 flags, 2488 struct netlink_ext_ack *extack) 2489 { 2490 /* guarantee we can provide a unique filter for the unicast address */ 2491 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) { 2492 struct igb_adapter *adapter = netdev_priv(dev); 2493 int vfn = adapter->vfs_allocated_count; 2494 2495 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn)) 2496 return -ENOMEM; 2497 } 2498 2499 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags); 2500 } 2501 2502 #define IGB_MAX_MAC_HDR_LEN 127 2503 #define IGB_MAX_NETWORK_HDR_LEN 511 2504 2505 static netdev_features_t 2506 igb_features_check(struct sk_buff *skb, struct net_device *dev, 2507 netdev_features_t features) 2508 { 2509 unsigned int network_hdr_len, mac_hdr_len; 2510 2511 /* Make certain the headers can be described by a context descriptor */ 2512 mac_hdr_len = skb_network_header(skb) - skb->data; 2513 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN)) 2514 return features & ~(NETIF_F_HW_CSUM | 2515 NETIF_F_SCTP_CRC | 2516 NETIF_F_GSO_UDP_L4 | 2517 NETIF_F_HW_VLAN_CTAG_TX | 2518 NETIF_F_TSO | 2519 NETIF_F_TSO6); 2520 2521 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2522 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN)) 2523 return features & ~(NETIF_F_HW_CSUM | 2524 NETIF_F_SCTP_CRC | 2525 NETIF_F_GSO_UDP_L4 | 2526 NETIF_F_TSO | 2527 NETIF_F_TSO6); 2528 2529 /* We can only support IPV4 TSO in tunnels if we can mangle the 2530 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2531 */ 2532 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2533 features &= ~NETIF_F_TSO; 2534 2535 return features; 2536 } 2537 2538 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue) 2539 { 2540 if (!is_fqtss_enabled(adapter)) { 2541 enable_fqtss(adapter, true); 2542 return; 2543 } 2544 2545 igb_config_tx_modes(adapter, queue); 2546 2547 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter)) 2548 enable_fqtss(adapter, false); 2549 } 2550 2551 static int igb_offload_cbs(struct igb_adapter *adapter, 2552 struct tc_cbs_qopt_offload *qopt) 2553 { 2554 struct e1000_hw *hw = &adapter->hw; 2555 int err; 2556 2557 /* CBS offloading is only supported by i210 controller. */ 2558 if (hw->mac.type != e1000_i210) 2559 return -EOPNOTSUPP; 2560 2561 /* CBS offloading is only supported by queue 0 and queue 1. */ 2562 if (qopt->queue < 0 || qopt->queue > 1) 2563 return -EINVAL; 2564 2565 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable, 2566 qopt->idleslope, qopt->sendslope, 2567 qopt->hicredit, qopt->locredit); 2568 if (err) 2569 return err; 2570 2571 igb_offload_apply(adapter, qopt->queue); 2572 2573 return 0; 2574 } 2575 2576 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) 2577 #define VLAN_PRIO_FULL_MASK (0x07) 2578 2579 static int igb_parse_cls_flower(struct igb_adapter *adapter, 2580 struct flow_cls_offload *f, 2581 int traffic_class, 2582 struct igb_nfc_filter *input) 2583 { 2584 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2585 struct flow_dissector *dissector = rule->match.dissector; 2586 struct netlink_ext_ack *extack = f->common.extack; 2587 2588 if (dissector->used_keys & 2589 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) | 2590 BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2591 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2592 BIT(FLOW_DISSECTOR_KEY_VLAN))) { 2593 NL_SET_ERR_MSG_MOD(extack, 2594 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported"); 2595 return -EOPNOTSUPP; 2596 } 2597 2598 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2599 struct flow_match_eth_addrs match; 2600 2601 flow_rule_match_eth_addrs(rule, &match); 2602 if (!is_zero_ether_addr(match.mask->dst)) { 2603 if (!is_broadcast_ether_addr(match.mask->dst)) { 2604 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address"); 2605 return -EINVAL; 2606 } 2607 2608 input->filter.match_flags |= 2609 IGB_FILTER_FLAG_DST_MAC_ADDR; 2610 ether_addr_copy(input->filter.dst_addr, match.key->dst); 2611 } 2612 2613 if (!is_zero_ether_addr(match.mask->src)) { 2614 if (!is_broadcast_ether_addr(match.mask->src)) { 2615 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address"); 2616 return -EINVAL; 2617 } 2618 2619 input->filter.match_flags |= 2620 IGB_FILTER_FLAG_SRC_MAC_ADDR; 2621 ether_addr_copy(input->filter.src_addr, match.key->src); 2622 } 2623 } 2624 2625 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2626 struct flow_match_basic match; 2627 2628 flow_rule_match_basic(rule, &match); 2629 if (match.mask->n_proto) { 2630 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) { 2631 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter"); 2632 return -EINVAL; 2633 } 2634 2635 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE; 2636 input->filter.etype = match.key->n_proto; 2637 } 2638 } 2639 2640 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2641 struct flow_match_vlan match; 2642 2643 flow_rule_match_vlan(rule, &match); 2644 if (match.mask->vlan_priority) { 2645 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) { 2646 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority"); 2647 return -EINVAL; 2648 } 2649 2650 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2651 input->filter.vlan_tci = 2652 (__force __be16)match.key->vlan_priority; 2653 } 2654 } 2655 2656 input->action = traffic_class; 2657 input->cookie = f->cookie; 2658 2659 return 0; 2660 } 2661 2662 static int igb_configure_clsflower(struct igb_adapter *adapter, 2663 struct flow_cls_offload *cls_flower) 2664 { 2665 struct netlink_ext_ack *extack = cls_flower->common.extack; 2666 struct igb_nfc_filter *filter, *f; 2667 int err, tc; 2668 2669 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2670 if (tc < 0) { 2671 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class"); 2672 return -EINVAL; 2673 } 2674 2675 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2676 if (!filter) 2677 return -ENOMEM; 2678 2679 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter); 2680 if (err < 0) 2681 goto err_parse; 2682 2683 spin_lock(&adapter->nfc_lock); 2684 2685 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) { 2686 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2687 err = -EEXIST; 2688 NL_SET_ERR_MSG_MOD(extack, 2689 "This filter is already set in ethtool"); 2690 goto err_locked; 2691 } 2692 } 2693 2694 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) { 2695 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2696 err = -EEXIST; 2697 NL_SET_ERR_MSG_MOD(extack, 2698 "This filter is already set in cls_flower"); 2699 goto err_locked; 2700 } 2701 } 2702 2703 err = igb_add_filter(adapter, filter); 2704 if (err < 0) { 2705 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter"); 2706 goto err_locked; 2707 } 2708 2709 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list); 2710 2711 spin_unlock(&adapter->nfc_lock); 2712 2713 return 0; 2714 2715 err_locked: 2716 spin_unlock(&adapter->nfc_lock); 2717 2718 err_parse: 2719 kfree(filter); 2720 2721 return err; 2722 } 2723 2724 static int igb_delete_clsflower(struct igb_adapter *adapter, 2725 struct flow_cls_offload *cls_flower) 2726 { 2727 struct igb_nfc_filter *filter; 2728 int err; 2729 2730 spin_lock(&adapter->nfc_lock); 2731 2732 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node) 2733 if (filter->cookie == cls_flower->cookie) 2734 break; 2735 2736 if (!filter) { 2737 err = -ENOENT; 2738 goto out; 2739 } 2740 2741 err = igb_erase_filter(adapter, filter); 2742 if (err < 0) 2743 goto out; 2744 2745 hlist_del(&filter->nfc_node); 2746 kfree(filter); 2747 2748 out: 2749 spin_unlock(&adapter->nfc_lock); 2750 2751 return err; 2752 } 2753 2754 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter, 2755 struct flow_cls_offload *cls_flower) 2756 { 2757 switch (cls_flower->command) { 2758 case FLOW_CLS_REPLACE: 2759 return igb_configure_clsflower(adapter, cls_flower); 2760 case FLOW_CLS_DESTROY: 2761 return igb_delete_clsflower(adapter, cls_flower); 2762 case FLOW_CLS_STATS: 2763 return -EOPNOTSUPP; 2764 default: 2765 return -EOPNOTSUPP; 2766 } 2767 } 2768 2769 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2770 void *cb_priv) 2771 { 2772 struct igb_adapter *adapter = cb_priv; 2773 2774 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 2775 return -EOPNOTSUPP; 2776 2777 switch (type) { 2778 case TC_SETUP_CLSFLOWER: 2779 return igb_setup_tc_cls_flower(adapter, type_data); 2780 2781 default: 2782 return -EOPNOTSUPP; 2783 } 2784 } 2785 2786 static int igb_offload_txtime(struct igb_adapter *adapter, 2787 struct tc_etf_qopt_offload *qopt) 2788 { 2789 struct e1000_hw *hw = &adapter->hw; 2790 int err; 2791 2792 /* Launchtime offloading is only supported by i210 controller. */ 2793 if (hw->mac.type != e1000_i210) 2794 return -EOPNOTSUPP; 2795 2796 /* Launchtime offloading is only supported by queues 0 and 1. */ 2797 if (qopt->queue < 0 || qopt->queue > 1) 2798 return -EINVAL; 2799 2800 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable); 2801 if (err) 2802 return err; 2803 2804 igb_offload_apply(adapter, qopt->queue); 2805 2806 return 0; 2807 } 2808 2809 static LIST_HEAD(igb_block_cb_list); 2810 2811 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type, 2812 void *type_data) 2813 { 2814 struct igb_adapter *adapter = netdev_priv(dev); 2815 2816 switch (type) { 2817 case TC_SETUP_QDISC_CBS: 2818 return igb_offload_cbs(adapter, type_data); 2819 case TC_SETUP_BLOCK: 2820 return flow_block_cb_setup_simple(type_data, 2821 &igb_block_cb_list, 2822 igb_setup_tc_block_cb, 2823 adapter, adapter, true); 2824 2825 case TC_SETUP_QDISC_ETF: 2826 return igb_offload_txtime(adapter, type_data); 2827 2828 default: 2829 return -EOPNOTSUPP; 2830 } 2831 } 2832 2833 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf) 2834 { 2835 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD; 2836 struct igb_adapter *adapter = netdev_priv(dev); 2837 struct bpf_prog *prog = bpf->prog, *old_prog; 2838 bool running = netif_running(dev); 2839 bool need_reset; 2840 2841 /* verify igb ring attributes are sufficient for XDP */ 2842 for (i = 0; i < adapter->num_rx_queues; i++) { 2843 struct igb_ring *ring = adapter->rx_ring[i]; 2844 2845 if (frame_size > igb_rx_bufsz(ring)) { 2846 NL_SET_ERR_MSG_MOD(bpf->extack, 2847 "The RX buffer size is too small for the frame size"); 2848 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n", 2849 igb_rx_bufsz(ring), frame_size); 2850 return -EINVAL; 2851 } 2852 } 2853 2854 old_prog = xchg(&adapter->xdp_prog, prog); 2855 need_reset = (!!prog != !!old_prog); 2856 2857 /* device is up and bpf is added/removed, must setup the RX queues */ 2858 if (need_reset && running) { 2859 igb_close(dev); 2860 } else { 2861 for (i = 0; i < adapter->num_rx_queues; i++) 2862 (void)xchg(&adapter->rx_ring[i]->xdp_prog, 2863 adapter->xdp_prog); 2864 } 2865 2866 if (old_prog) 2867 bpf_prog_put(old_prog); 2868 2869 /* bpf is just replaced, RXQ and MTU are already setup */ 2870 if (!need_reset) 2871 return 0; 2872 2873 if (running) 2874 igb_open(dev); 2875 2876 return 0; 2877 } 2878 2879 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2880 { 2881 switch (xdp->command) { 2882 case XDP_SETUP_PROG: 2883 return igb_xdp_setup(dev, xdp); 2884 default: 2885 return -EINVAL; 2886 } 2887 } 2888 2889 static void igb_xdp_ring_update_tail(struct igb_ring *ring) 2890 { 2891 /* Force memory writes to complete before letting h/w know there 2892 * are new descriptors to fetch. 2893 */ 2894 wmb(); 2895 writel(ring->next_to_use, ring->tail); 2896 } 2897 2898 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter) 2899 { 2900 unsigned int r_idx = smp_processor_id(); 2901 2902 if (r_idx >= adapter->num_tx_queues) 2903 r_idx = r_idx % adapter->num_tx_queues; 2904 2905 return adapter->tx_ring[r_idx]; 2906 } 2907 2908 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp) 2909 { 2910 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2911 int cpu = smp_processor_id(); 2912 struct igb_ring *tx_ring; 2913 struct netdev_queue *nq; 2914 u32 ret; 2915 2916 if (unlikely(!xdpf)) 2917 return IGB_XDP_CONSUMED; 2918 2919 /* During program transitions its possible adapter->xdp_prog is assigned 2920 * but ring has not been configured yet. In this case simply abort xmit. 2921 */ 2922 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2923 if (unlikely(!tx_ring)) 2924 return IGB_XDP_CONSUMED; 2925 2926 nq = txring_txq(tx_ring); 2927 __netif_tx_lock(nq, cpu); 2928 /* Avoid transmit queue timeout since we share it with the slow path */ 2929 txq_trans_cond_update(nq); 2930 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2931 __netif_tx_unlock(nq); 2932 2933 return ret; 2934 } 2935 2936 static int igb_xdp_xmit(struct net_device *dev, int n, 2937 struct xdp_frame **frames, u32 flags) 2938 { 2939 struct igb_adapter *adapter = netdev_priv(dev); 2940 int cpu = smp_processor_id(); 2941 struct igb_ring *tx_ring; 2942 struct netdev_queue *nq; 2943 int nxmit = 0; 2944 int i; 2945 2946 if (unlikely(test_bit(__IGB_DOWN, &adapter->state))) 2947 return -ENETDOWN; 2948 2949 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2950 return -EINVAL; 2951 2952 /* During program transitions its possible adapter->xdp_prog is assigned 2953 * but ring has not been configured yet. In this case simply abort xmit. 2954 */ 2955 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2956 if (unlikely(!tx_ring)) 2957 return -ENXIO; 2958 2959 nq = txring_txq(tx_ring); 2960 __netif_tx_lock(nq, cpu); 2961 2962 /* Avoid transmit queue timeout since we share it with the slow path */ 2963 txq_trans_cond_update(nq); 2964 2965 for (i = 0; i < n; i++) { 2966 struct xdp_frame *xdpf = frames[i]; 2967 int err; 2968 2969 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2970 if (err != IGB_XDP_TX) 2971 break; 2972 nxmit++; 2973 } 2974 2975 __netif_tx_unlock(nq); 2976 2977 if (unlikely(flags & XDP_XMIT_FLUSH)) 2978 igb_xdp_ring_update_tail(tx_ring); 2979 2980 return nxmit; 2981 } 2982 2983 static const struct net_device_ops igb_netdev_ops = { 2984 .ndo_open = igb_open, 2985 .ndo_stop = igb_close, 2986 .ndo_start_xmit = igb_xmit_frame, 2987 .ndo_get_stats64 = igb_get_stats64, 2988 .ndo_set_rx_mode = igb_set_rx_mode, 2989 .ndo_set_mac_address = igb_set_mac, 2990 .ndo_change_mtu = igb_change_mtu, 2991 .ndo_eth_ioctl = igb_ioctl, 2992 .ndo_tx_timeout = igb_tx_timeout, 2993 .ndo_validate_addr = eth_validate_addr, 2994 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2995 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 2996 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 2997 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 2998 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 2999 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 3000 .ndo_set_vf_trust = igb_ndo_set_vf_trust, 3001 .ndo_get_vf_config = igb_ndo_get_vf_config, 3002 .ndo_fix_features = igb_fix_features, 3003 .ndo_set_features = igb_set_features, 3004 .ndo_fdb_add = igb_ndo_fdb_add, 3005 .ndo_features_check = igb_features_check, 3006 .ndo_setup_tc = igb_setup_tc, 3007 .ndo_bpf = igb_xdp, 3008 .ndo_xdp_xmit = igb_xdp_xmit, 3009 }; 3010 3011 /** 3012 * igb_set_fw_version - Configure version string for ethtool 3013 * @adapter: adapter struct 3014 **/ 3015 void igb_set_fw_version(struct igb_adapter *adapter) 3016 { 3017 struct e1000_hw *hw = &adapter->hw; 3018 struct e1000_fw_version fw; 3019 3020 igb_get_fw_version(hw, &fw); 3021 3022 switch (hw->mac.type) { 3023 case e1000_i210: 3024 case e1000_i211: 3025 if (!(igb_get_flash_presence_i210(hw))) { 3026 snprintf(adapter->fw_version, 3027 sizeof(adapter->fw_version), 3028 "%2d.%2d-%d", 3029 fw.invm_major, fw.invm_minor, 3030 fw.invm_img_type); 3031 break; 3032 } 3033 fallthrough; 3034 default: 3035 /* if option is rom valid, display its version too */ 3036 if (fw.or_valid) { 3037 snprintf(adapter->fw_version, 3038 sizeof(adapter->fw_version), 3039 "%d.%d, 0x%08x, %d.%d.%d", 3040 fw.eep_major, fw.eep_minor, fw.etrack_id, 3041 fw.or_major, fw.or_build, fw.or_patch); 3042 /* no option rom */ 3043 } else if (fw.etrack_id != 0X0000) { 3044 snprintf(adapter->fw_version, 3045 sizeof(adapter->fw_version), 3046 "%d.%d, 0x%08x", 3047 fw.eep_major, fw.eep_minor, fw.etrack_id); 3048 } else { 3049 snprintf(adapter->fw_version, 3050 sizeof(adapter->fw_version), 3051 "%d.%d.%d", 3052 fw.eep_major, fw.eep_minor, fw.eep_build); 3053 } 3054 break; 3055 } 3056 } 3057 3058 /** 3059 * igb_init_mas - init Media Autosense feature if enabled in the NVM 3060 * 3061 * @adapter: adapter struct 3062 **/ 3063 static void igb_init_mas(struct igb_adapter *adapter) 3064 { 3065 struct e1000_hw *hw = &adapter->hw; 3066 u16 eeprom_data; 3067 3068 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 3069 switch (hw->bus.func) { 3070 case E1000_FUNC_0: 3071 if (eeprom_data & IGB_MAS_ENABLE_0) { 3072 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3073 netdev_info(adapter->netdev, 3074 "MAS: Enabling Media Autosense for port %d\n", 3075 hw->bus.func); 3076 } 3077 break; 3078 case E1000_FUNC_1: 3079 if (eeprom_data & IGB_MAS_ENABLE_1) { 3080 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3081 netdev_info(adapter->netdev, 3082 "MAS: Enabling Media Autosense for port %d\n", 3083 hw->bus.func); 3084 } 3085 break; 3086 case E1000_FUNC_2: 3087 if (eeprom_data & IGB_MAS_ENABLE_2) { 3088 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3089 netdev_info(adapter->netdev, 3090 "MAS: Enabling Media Autosense for port %d\n", 3091 hw->bus.func); 3092 } 3093 break; 3094 case E1000_FUNC_3: 3095 if (eeprom_data & IGB_MAS_ENABLE_3) { 3096 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3097 netdev_info(adapter->netdev, 3098 "MAS: Enabling Media Autosense for port %d\n", 3099 hw->bus.func); 3100 } 3101 break; 3102 default: 3103 /* Shouldn't get here */ 3104 netdev_err(adapter->netdev, 3105 "MAS: Invalid port configuration, returning\n"); 3106 break; 3107 } 3108 } 3109 3110 /** 3111 * igb_init_i2c - Init I2C interface 3112 * @adapter: pointer to adapter structure 3113 **/ 3114 static s32 igb_init_i2c(struct igb_adapter *adapter) 3115 { 3116 struct e1000_hw *hw = &adapter->hw; 3117 s32 status = 0; 3118 s32 i2cctl; 3119 3120 /* I2C interface supported on i350 devices */ 3121 if (adapter->hw.mac.type != e1000_i350) 3122 return 0; 3123 3124 i2cctl = rd32(E1000_I2CPARAMS); 3125 i2cctl |= E1000_I2CBB_EN 3126 | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N 3127 | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N; 3128 wr32(E1000_I2CPARAMS, i2cctl); 3129 wrfl(); 3130 3131 /* Initialize the i2c bus which is controlled by the registers. 3132 * This bus will use the i2c_algo_bit structure that implements 3133 * the protocol through toggling of the 4 bits in the register. 3134 */ 3135 adapter->i2c_adap.owner = THIS_MODULE; 3136 adapter->i2c_algo = igb_i2c_algo; 3137 adapter->i2c_algo.data = adapter; 3138 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 3139 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 3140 strscpy(adapter->i2c_adap.name, "igb BB", 3141 sizeof(adapter->i2c_adap.name)); 3142 status = i2c_bit_add_bus(&adapter->i2c_adap); 3143 return status; 3144 } 3145 3146 /** 3147 * igb_probe - Device Initialization Routine 3148 * @pdev: PCI device information struct 3149 * @ent: entry in igb_pci_tbl 3150 * 3151 * Returns 0 on success, negative on failure 3152 * 3153 * igb_probe initializes an adapter identified by a pci_dev structure. 3154 * The OS initialization, configuring of the adapter private structure, 3155 * and a hardware reset occur. 3156 **/ 3157 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3158 { 3159 struct net_device *netdev; 3160 struct igb_adapter *adapter; 3161 struct e1000_hw *hw; 3162 u16 eeprom_data = 0; 3163 s32 ret_val; 3164 static int global_quad_port_a; /* global quad port a indication */ 3165 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 3166 u8 part_str[E1000_PBANUM_LENGTH]; 3167 int err; 3168 3169 /* Catch broken hardware that put the wrong VF device ID in 3170 * the PCIe SR-IOV capability. 3171 */ 3172 if (pdev->is_virtfn) { 3173 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n", 3174 pci_name(pdev), pdev->vendor, pdev->device); 3175 return -EINVAL; 3176 } 3177 3178 err = pci_enable_device_mem(pdev); 3179 if (err) 3180 return err; 3181 3182 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3183 if (err) { 3184 dev_err(&pdev->dev, 3185 "No usable DMA configuration, aborting\n"); 3186 goto err_dma; 3187 } 3188 3189 err = pci_request_mem_regions(pdev, igb_driver_name); 3190 if (err) 3191 goto err_pci_reg; 3192 3193 pci_enable_pcie_error_reporting(pdev); 3194 3195 pci_set_master(pdev); 3196 pci_save_state(pdev); 3197 3198 err = -ENOMEM; 3199 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 3200 IGB_MAX_TX_QUEUES); 3201 if (!netdev) 3202 goto err_alloc_etherdev; 3203 3204 SET_NETDEV_DEV(netdev, &pdev->dev); 3205 3206 pci_set_drvdata(pdev, netdev); 3207 adapter = netdev_priv(netdev); 3208 adapter->netdev = netdev; 3209 adapter->pdev = pdev; 3210 hw = &adapter->hw; 3211 hw->back = adapter; 3212 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3213 3214 err = -EIO; 3215 adapter->io_addr = pci_iomap(pdev, 0, 0); 3216 if (!adapter->io_addr) 3217 goto err_ioremap; 3218 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */ 3219 hw->hw_addr = adapter->io_addr; 3220 3221 netdev->netdev_ops = &igb_netdev_ops; 3222 igb_set_ethtool_ops(netdev); 3223 netdev->watchdog_timeo = 5 * HZ; 3224 3225 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 3226 3227 netdev->mem_start = pci_resource_start(pdev, 0); 3228 netdev->mem_end = pci_resource_end(pdev, 0); 3229 3230 /* PCI config space info */ 3231 hw->vendor_id = pdev->vendor; 3232 hw->device_id = pdev->device; 3233 hw->revision_id = pdev->revision; 3234 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3235 hw->subsystem_device_id = pdev->subsystem_device; 3236 3237 /* Copy the default MAC, PHY and NVM function pointers */ 3238 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3239 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3240 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 3241 /* Initialize skew-specific constants */ 3242 err = ei->get_invariants(hw); 3243 if (err) 3244 goto err_sw_init; 3245 3246 /* setup the private structure */ 3247 err = igb_sw_init(adapter); 3248 if (err) 3249 goto err_sw_init; 3250 3251 igb_get_bus_info_pcie(hw); 3252 3253 hw->phy.autoneg_wait_to_complete = false; 3254 3255 /* Copper options */ 3256 if (hw->phy.media_type == e1000_media_type_copper) { 3257 hw->phy.mdix = AUTO_ALL_MODES; 3258 hw->phy.disable_polarity_correction = false; 3259 hw->phy.ms_type = e1000_ms_hw_default; 3260 } 3261 3262 if (igb_check_reset_block(hw)) 3263 dev_info(&pdev->dev, 3264 "PHY reset is blocked due to SOL/IDER session.\n"); 3265 3266 /* features is initialized to 0 in allocation, it might have bits 3267 * set by igb_sw_init so we should use an or instead of an 3268 * assignment. 3269 */ 3270 netdev->features |= NETIF_F_SG | 3271 NETIF_F_TSO | 3272 NETIF_F_TSO6 | 3273 NETIF_F_RXHASH | 3274 NETIF_F_RXCSUM | 3275 NETIF_F_HW_CSUM; 3276 3277 if (hw->mac.type >= e1000_82576) 3278 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4; 3279 3280 if (hw->mac.type >= e1000_i350) 3281 netdev->features |= NETIF_F_HW_TC; 3282 3283 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 3284 NETIF_F_GSO_GRE_CSUM | \ 3285 NETIF_F_GSO_IPXIP4 | \ 3286 NETIF_F_GSO_IPXIP6 | \ 3287 NETIF_F_GSO_UDP_TUNNEL | \ 3288 NETIF_F_GSO_UDP_TUNNEL_CSUM) 3289 3290 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES; 3291 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES; 3292 3293 /* copy netdev features into list of user selectable features */ 3294 netdev->hw_features |= netdev->features | 3295 NETIF_F_HW_VLAN_CTAG_RX | 3296 NETIF_F_HW_VLAN_CTAG_TX | 3297 NETIF_F_RXALL; 3298 3299 if (hw->mac.type >= e1000_i350) 3300 netdev->hw_features |= NETIF_F_NTUPLE; 3301 3302 netdev->features |= NETIF_F_HIGHDMA; 3303 3304 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 3305 netdev->mpls_features |= NETIF_F_HW_CSUM; 3306 netdev->hw_enc_features |= netdev->vlan_features; 3307 3308 /* set this bit last since it cannot be part of vlan_features */ 3309 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 3310 NETIF_F_HW_VLAN_CTAG_RX | 3311 NETIF_F_HW_VLAN_CTAG_TX; 3312 3313 netdev->priv_flags |= IFF_SUPP_NOFCS; 3314 3315 netdev->priv_flags |= IFF_UNICAST_FLT; 3316 3317 /* MTU range: 68 - 9216 */ 3318 netdev->min_mtu = ETH_MIN_MTU; 3319 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 3320 3321 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 3322 3323 /* before reading the NVM, reset the controller to put the device in a 3324 * known good starting state 3325 */ 3326 hw->mac.ops.reset_hw(hw); 3327 3328 /* make sure the NVM is good , i211/i210 parts can have special NVM 3329 * that doesn't contain a checksum 3330 */ 3331 switch (hw->mac.type) { 3332 case e1000_i210: 3333 case e1000_i211: 3334 if (igb_get_flash_presence_i210(hw)) { 3335 if (hw->nvm.ops.validate(hw) < 0) { 3336 dev_err(&pdev->dev, 3337 "The NVM Checksum Is Not Valid\n"); 3338 err = -EIO; 3339 goto err_eeprom; 3340 } 3341 } 3342 break; 3343 default: 3344 if (hw->nvm.ops.validate(hw) < 0) { 3345 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 3346 err = -EIO; 3347 goto err_eeprom; 3348 } 3349 break; 3350 } 3351 3352 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 3353 /* copy the MAC address out of the NVM */ 3354 if (hw->mac.ops.read_mac_addr(hw)) 3355 dev_err(&pdev->dev, "NVM Read Error\n"); 3356 } 3357 3358 eth_hw_addr_set(netdev, hw->mac.addr); 3359 3360 if (!is_valid_ether_addr(netdev->dev_addr)) { 3361 dev_err(&pdev->dev, "Invalid MAC Address\n"); 3362 err = -EIO; 3363 goto err_eeprom; 3364 } 3365 3366 igb_set_default_mac_filter(adapter); 3367 3368 /* get firmware version for ethtool -i */ 3369 igb_set_fw_version(adapter); 3370 3371 /* configure RXPBSIZE and TXPBSIZE */ 3372 if (hw->mac.type == e1000_i210) { 3373 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 3374 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 3375 } 3376 3377 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0); 3378 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0); 3379 3380 INIT_WORK(&adapter->reset_task, igb_reset_task); 3381 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 3382 3383 /* Initialize link properties that are user-changeable */ 3384 adapter->fc_autoneg = true; 3385 hw->mac.autoneg = true; 3386 hw->phy.autoneg_advertised = 0x2f; 3387 3388 hw->fc.requested_mode = e1000_fc_default; 3389 hw->fc.current_mode = e1000_fc_default; 3390 3391 igb_validate_mdi_setting(hw); 3392 3393 /* By default, support wake on port A */ 3394 if (hw->bus.func == 0) 3395 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3396 3397 /* Check the NVM for wake support on non-port A ports */ 3398 if (hw->mac.type >= e1000_82580) 3399 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 3400 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 3401 &eeprom_data); 3402 else if (hw->bus.func == 1) 3403 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3404 3405 if (eeprom_data & IGB_EEPROM_APME) 3406 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3407 3408 /* now that we have the eeprom settings, apply the special cases where 3409 * the eeprom may be wrong or the board simply won't support wake on 3410 * lan on a particular port 3411 */ 3412 switch (pdev->device) { 3413 case E1000_DEV_ID_82575GB_QUAD_COPPER: 3414 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3415 break; 3416 case E1000_DEV_ID_82575EB_FIBER_SERDES: 3417 case E1000_DEV_ID_82576_FIBER: 3418 case E1000_DEV_ID_82576_SERDES: 3419 /* Wake events only supported on port A for dual fiber 3420 * regardless of eeprom setting 3421 */ 3422 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 3423 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3424 break; 3425 case E1000_DEV_ID_82576_QUAD_COPPER: 3426 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 3427 /* if quad port adapter, disable WoL on all but port A */ 3428 if (global_quad_port_a != 0) 3429 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3430 else 3431 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 3432 /* Reset for multiple quad port adapters */ 3433 if (++global_quad_port_a == 4) 3434 global_quad_port_a = 0; 3435 break; 3436 default: 3437 /* If the device can't wake, don't set software support */ 3438 if (!device_can_wakeup(&adapter->pdev->dev)) 3439 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3440 } 3441 3442 /* initialize the wol settings based on the eeprom settings */ 3443 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 3444 adapter->wol |= E1000_WUFC_MAG; 3445 3446 /* Some vendors want WoL disabled by default, but still supported */ 3447 if ((hw->mac.type == e1000_i350) && 3448 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 3449 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3450 adapter->wol = 0; 3451 } 3452 3453 /* Some vendors want the ability to Use the EEPROM setting as 3454 * enable/disable only, and not for capability 3455 */ 3456 if (((hw->mac.type == e1000_i350) || 3457 (hw->mac.type == e1000_i354)) && 3458 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) { 3459 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3460 adapter->wol = 0; 3461 } 3462 if (hw->mac.type == e1000_i350) { 3463 if (((pdev->subsystem_device == 0x5001) || 3464 (pdev->subsystem_device == 0x5002)) && 3465 (hw->bus.func == 0)) { 3466 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3467 adapter->wol = 0; 3468 } 3469 if (pdev->subsystem_device == 0x1F52) 3470 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3471 } 3472 3473 device_set_wakeup_enable(&adapter->pdev->dev, 3474 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 3475 3476 /* reset the hardware with the new settings */ 3477 igb_reset(adapter); 3478 3479 /* Init the I2C interface */ 3480 err = igb_init_i2c(adapter); 3481 if (err) { 3482 dev_err(&pdev->dev, "failed to init i2c interface\n"); 3483 goto err_eeprom; 3484 } 3485 3486 /* let the f/w know that the h/w is now under the control of the 3487 * driver. 3488 */ 3489 igb_get_hw_control(adapter); 3490 3491 strcpy(netdev->name, "eth%d"); 3492 err = register_netdev(netdev); 3493 if (err) 3494 goto err_register; 3495 3496 /* carrier off reporting is important to ethtool even BEFORE open */ 3497 netif_carrier_off(netdev); 3498 3499 #ifdef CONFIG_IGB_DCA 3500 if (dca_add_requester(&pdev->dev) == 0) { 3501 adapter->flags |= IGB_FLAG_DCA_ENABLED; 3502 dev_info(&pdev->dev, "DCA enabled\n"); 3503 igb_setup_dca(adapter); 3504 } 3505 3506 #endif 3507 #ifdef CONFIG_IGB_HWMON 3508 /* Initialize the thermal sensor on i350 devices. */ 3509 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 3510 u16 ets_word; 3511 3512 /* Read the NVM to determine if this i350 device supports an 3513 * external thermal sensor. 3514 */ 3515 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 3516 if (ets_word != 0x0000 && ets_word != 0xFFFF) 3517 adapter->ets = true; 3518 else 3519 adapter->ets = false; 3520 if (igb_sysfs_init(adapter)) 3521 dev_err(&pdev->dev, 3522 "failed to allocate sysfs resources\n"); 3523 } else { 3524 adapter->ets = false; 3525 } 3526 #endif 3527 /* Check if Media Autosense is enabled */ 3528 adapter->ei = *ei; 3529 if (hw->dev_spec._82575.mas_capable) 3530 igb_init_mas(adapter); 3531 3532 /* do hw tstamp init after resetting */ 3533 igb_ptp_init(adapter); 3534 3535 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 3536 /* print bus type/speed/width info, not applicable to i354 */ 3537 if (hw->mac.type != e1000_i354) { 3538 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 3539 netdev->name, 3540 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 3541 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 3542 "unknown"), 3543 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 3544 "Width x4" : 3545 (hw->bus.width == e1000_bus_width_pcie_x2) ? 3546 "Width x2" : 3547 (hw->bus.width == e1000_bus_width_pcie_x1) ? 3548 "Width x1" : "unknown"), netdev->dev_addr); 3549 } 3550 3551 if ((hw->mac.type == e1000_82576 && 3552 rd32(E1000_EECD) & E1000_EECD_PRES) || 3553 (hw->mac.type >= e1000_i210 || 3554 igb_get_flash_presence_i210(hw))) { 3555 ret_val = igb_read_part_string(hw, part_str, 3556 E1000_PBANUM_LENGTH); 3557 } else { 3558 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 3559 } 3560 3561 if (ret_val) 3562 strcpy(part_str, "Unknown"); 3563 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 3564 dev_info(&pdev->dev, 3565 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 3566 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 3567 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 3568 adapter->num_rx_queues, adapter->num_tx_queues); 3569 if (hw->phy.media_type == e1000_media_type_copper) { 3570 switch (hw->mac.type) { 3571 case e1000_i350: 3572 case e1000_i210: 3573 case e1000_i211: 3574 /* Enable EEE for internal copper PHY devices */ 3575 err = igb_set_eee_i350(hw, true, true); 3576 if ((!err) && 3577 (!hw->dev_spec._82575.eee_disable)) { 3578 adapter->eee_advert = 3579 MDIO_EEE_100TX | MDIO_EEE_1000T; 3580 adapter->flags |= IGB_FLAG_EEE; 3581 } 3582 break; 3583 case e1000_i354: 3584 if ((rd32(E1000_CTRL_EXT) & 3585 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 3586 err = igb_set_eee_i354(hw, true, true); 3587 if ((!err) && 3588 (!hw->dev_spec._82575.eee_disable)) { 3589 adapter->eee_advert = 3590 MDIO_EEE_100TX | MDIO_EEE_1000T; 3591 adapter->flags |= IGB_FLAG_EEE; 3592 } 3593 } 3594 break; 3595 default: 3596 break; 3597 } 3598 } 3599 3600 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 3601 3602 pm_runtime_put_noidle(&pdev->dev); 3603 return 0; 3604 3605 err_register: 3606 igb_release_hw_control(adapter); 3607 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 3608 err_eeprom: 3609 if (!igb_check_reset_block(hw)) 3610 igb_reset_phy(hw); 3611 3612 if (hw->flash_address) 3613 iounmap(hw->flash_address); 3614 err_sw_init: 3615 kfree(adapter->mac_table); 3616 kfree(adapter->shadow_vfta); 3617 igb_clear_interrupt_scheme(adapter); 3618 #ifdef CONFIG_PCI_IOV 3619 igb_disable_sriov(pdev); 3620 #endif 3621 pci_iounmap(pdev, adapter->io_addr); 3622 err_ioremap: 3623 free_netdev(netdev); 3624 err_alloc_etherdev: 3625 pci_disable_pcie_error_reporting(pdev); 3626 pci_release_mem_regions(pdev); 3627 err_pci_reg: 3628 err_dma: 3629 pci_disable_device(pdev); 3630 return err; 3631 } 3632 3633 #ifdef CONFIG_PCI_IOV 3634 static int igb_disable_sriov(struct pci_dev *pdev) 3635 { 3636 struct net_device *netdev = pci_get_drvdata(pdev); 3637 struct igb_adapter *adapter = netdev_priv(netdev); 3638 struct e1000_hw *hw = &adapter->hw; 3639 unsigned long flags; 3640 3641 /* reclaim resources allocated to VFs */ 3642 if (adapter->vf_data) { 3643 /* disable iov and allow time for transactions to clear */ 3644 if (pci_vfs_assigned(pdev)) { 3645 dev_warn(&pdev->dev, 3646 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 3647 return -EPERM; 3648 } else { 3649 pci_disable_sriov(pdev); 3650 msleep(500); 3651 } 3652 spin_lock_irqsave(&adapter->vfs_lock, flags); 3653 kfree(adapter->vf_mac_list); 3654 adapter->vf_mac_list = NULL; 3655 kfree(adapter->vf_data); 3656 adapter->vf_data = NULL; 3657 adapter->vfs_allocated_count = 0; 3658 spin_unlock_irqrestore(&adapter->vfs_lock, flags); 3659 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 3660 wrfl(); 3661 msleep(100); 3662 dev_info(&pdev->dev, "IOV Disabled\n"); 3663 3664 /* Re-enable DMA Coalescing flag since IOV is turned off */ 3665 adapter->flags |= IGB_FLAG_DMAC; 3666 } 3667 3668 return 0; 3669 } 3670 3671 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 3672 { 3673 struct net_device *netdev = pci_get_drvdata(pdev); 3674 struct igb_adapter *adapter = netdev_priv(netdev); 3675 int old_vfs = pci_num_vf(pdev); 3676 struct vf_mac_filter *mac_list; 3677 int err = 0; 3678 int num_vf_mac_filters, i; 3679 3680 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 3681 err = -EPERM; 3682 goto out; 3683 } 3684 if (!num_vfs) 3685 goto out; 3686 3687 if (old_vfs) { 3688 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 3689 old_vfs, max_vfs); 3690 adapter->vfs_allocated_count = old_vfs; 3691 } else 3692 adapter->vfs_allocated_count = num_vfs; 3693 3694 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 3695 sizeof(struct vf_data_storage), GFP_KERNEL); 3696 3697 /* if allocation failed then we do not support SR-IOV */ 3698 if (!adapter->vf_data) { 3699 adapter->vfs_allocated_count = 0; 3700 err = -ENOMEM; 3701 goto out; 3702 } 3703 3704 /* Due to the limited number of RAR entries calculate potential 3705 * number of MAC filters available for the VFs. Reserve entries 3706 * for PF default MAC, PF MAC filters and at least one RAR entry 3707 * for each VF for VF MAC. 3708 */ 3709 num_vf_mac_filters = adapter->hw.mac.rar_entry_count - 3710 (1 + IGB_PF_MAC_FILTERS_RESERVED + 3711 adapter->vfs_allocated_count); 3712 3713 adapter->vf_mac_list = kcalloc(num_vf_mac_filters, 3714 sizeof(struct vf_mac_filter), 3715 GFP_KERNEL); 3716 3717 mac_list = adapter->vf_mac_list; 3718 INIT_LIST_HEAD(&adapter->vf_macs.l); 3719 3720 if (adapter->vf_mac_list) { 3721 /* Initialize list of VF MAC filters */ 3722 for (i = 0; i < num_vf_mac_filters; i++) { 3723 mac_list->vf = -1; 3724 mac_list->free = true; 3725 list_add(&mac_list->l, &adapter->vf_macs.l); 3726 mac_list++; 3727 } 3728 } else { 3729 /* If we could not allocate memory for the VF MAC filters 3730 * we can continue without this feature but warn user. 3731 */ 3732 dev_err(&pdev->dev, 3733 "Unable to allocate memory for VF MAC filter list\n"); 3734 } 3735 3736 /* only call pci_enable_sriov() if no VFs are allocated already */ 3737 if (!old_vfs) { 3738 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 3739 if (err) 3740 goto err_out; 3741 } 3742 dev_info(&pdev->dev, "%d VFs allocated\n", 3743 adapter->vfs_allocated_count); 3744 for (i = 0; i < adapter->vfs_allocated_count; i++) 3745 igb_vf_configure(adapter, i); 3746 3747 /* DMA Coalescing is not supported in IOV mode. */ 3748 adapter->flags &= ~IGB_FLAG_DMAC; 3749 goto out; 3750 3751 err_out: 3752 kfree(adapter->vf_mac_list); 3753 adapter->vf_mac_list = NULL; 3754 kfree(adapter->vf_data); 3755 adapter->vf_data = NULL; 3756 adapter->vfs_allocated_count = 0; 3757 out: 3758 return err; 3759 } 3760 3761 #endif 3762 /** 3763 * igb_remove_i2c - Cleanup I2C interface 3764 * @adapter: pointer to adapter structure 3765 **/ 3766 static void igb_remove_i2c(struct igb_adapter *adapter) 3767 { 3768 /* free the adapter bus structure */ 3769 i2c_del_adapter(&adapter->i2c_adap); 3770 } 3771 3772 /** 3773 * igb_remove - Device Removal Routine 3774 * @pdev: PCI device information struct 3775 * 3776 * igb_remove is called by the PCI subsystem to alert the driver 3777 * that it should release a PCI device. The could be caused by a 3778 * Hot-Plug event, or because the driver is going to be removed from 3779 * memory. 3780 **/ 3781 static void igb_remove(struct pci_dev *pdev) 3782 { 3783 struct net_device *netdev = pci_get_drvdata(pdev); 3784 struct igb_adapter *adapter = netdev_priv(netdev); 3785 struct e1000_hw *hw = &adapter->hw; 3786 3787 pm_runtime_get_noresume(&pdev->dev); 3788 #ifdef CONFIG_IGB_HWMON 3789 igb_sysfs_exit(adapter); 3790 #endif 3791 igb_remove_i2c(adapter); 3792 igb_ptp_stop(adapter); 3793 /* The watchdog timer may be rescheduled, so explicitly 3794 * disable watchdog from being rescheduled. 3795 */ 3796 set_bit(__IGB_DOWN, &adapter->state); 3797 del_timer_sync(&adapter->watchdog_timer); 3798 del_timer_sync(&adapter->phy_info_timer); 3799 3800 cancel_work_sync(&adapter->reset_task); 3801 cancel_work_sync(&adapter->watchdog_task); 3802 3803 #ifdef CONFIG_IGB_DCA 3804 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 3805 dev_info(&pdev->dev, "DCA disabled\n"); 3806 dca_remove_requester(&pdev->dev); 3807 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 3808 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 3809 } 3810 #endif 3811 3812 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3813 * would have already happened in close and is redundant. 3814 */ 3815 igb_release_hw_control(adapter); 3816 3817 #ifdef CONFIG_PCI_IOV 3818 rtnl_lock(); 3819 igb_disable_sriov(pdev); 3820 rtnl_unlock(); 3821 #endif 3822 3823 unregister_netdev(netdev); 3824 3825 igb_clear_interrupt_scheme(adapter); 3826 3827 pci_iounmap(pdev, adapter->io_addr); 3828 if (hw->flash_address) 3829 iounmap(hw->flash_address); 3830 pci_release_mem_regions(pdev); 3831 3832 kfree(adapter->mac_table); 3833 kfree(adapter->shadow_vfta); 3834 free_netdev(netdev); 3835 3836 pci_disable_pcie_error_reporting(pdev); 3837 3838 pci_disable_device(pdev); 3839 } 3840 3841 /** 3842 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 3843 * @adapter: board private structure to initialize 3844 * 3845 * This function initializes the vf specific data storage and then attempts to 3846 * allocate the VFs. The reason for ordering it this way is because it is much 3847 * mor expensive time wise to disable SR-IOV than it is to allocate and free 3848 * the memory for the VFs. 3849 **/ 3850 static void igb_probe_vfs(struct igb_adapter *adapter) 3851 { 3852 #ifdef CONFIG_PCI_IOV 3853 struct pci_dev *pdev = adapter->pdev; 3854 struct e1000_hw *hw = &adapter->hw; 3855 3856 /* Virtualization features not supported on i210 family. */ 3857 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 3858 return; 3859 3860 /* Of the below we really only want the effect of getting 3861 * IGB_FLAG_HAS_MSIX set (if available), without which 3862 * igb_enable_sriov() has no effect. 3863 */ 3864 igb_set_interrupt_capability(adapter, true); 3865 igb_reset_interrupt_capability(adapter); 3866 3867 pci_sriov_set_totalvfs(pdev, 7); 3868 igb_enable_sriov(pdev, max_vfs); 3869 3870 #endif /* CONFIG_PCI_IOV */ 3871 } 3872 3873 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter) 3874 { 3875 struct e1000_hw *hw = &adapter->hw; 3876 unsigned int max_rss_queues; 3877 3878 /* Determine the maximum number of RSS queues supported. */ 3879 switch (hw->mac.type) { 3880 case e1000_i211: 3881 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 3882 break; 3883 case e1000_82575: 3884 case e1000_i210: 3885 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 3886 break; 3887 case e1000_i350: 3888 /* I350 cannot do RSS and SR-IOV at the same time */ 3889 if (!!adapter->vfs_allocated_count) { 3890 max_rss_queues = 1; 3891 break; 3892 } 3893 fallthrough; 3894 case e1000_82576: 3895 if (!!adapter->vfs_allocated_count) { 3896 max_rss_queues = 2; 3897 break; 3898 } 3899 fallthrough; 3900 case e1000_82580: 3901 case e1000_i354: 3902 default: 3903 max_rss_queues = IGB_MAX_RX_QUEUES; 3904 break; 3905 } 3906 3907 return max_rss_queues; 3908 } 3909 3910 static void igb_init_queue_configuration(struct igb_adapter *adapter) 3911 { 3912 u32 max_rss_queues; 3913 3914 max_rss_queues = igb_get_max_rss_queues(adapter); 3915 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3916 3917 igb_set_flag_queue_pairs(adapter, max_rss_queues); 3918 } 3919 3920 void igb_set_flag_queue_pairs(struct igb_adapter *adapter, 3921 const u32 max_rss_queues) 3922 { 3923 struct e1000_hw *hw = &adapter->hw; 3924 3925 /* Determine if we need to pair queues. */ 3926 switch (hw->mac.type) { 3927 case e1000_82575: 3928 case e1000_i211: 3929 /* Device supports enough interrupts without queue pairing. */ 3930 break; 3931 case e1000_82576: 3932 case e1000_82580: 3933 case e1000_i350: 3934 case e1000_i354: 3935 case e1000_i210: 3936 default: 3937 /* If rss_queues > half of max_rss_queues, pair the queues in 3938 * order to conserve interrupts due to limited supply. 3939 */ 3940 if (adapter->rss_queues > (max_rss_queues / 2)) 3941 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 3942 else 3943 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS; 3944 break; 3945 } 3946 } 3947 3948 /** 3949 * igb_sw_init - Initialize general software structures (struct igb_adapter) 3950 * @adapter: board private structure to initialize 3951 * 3952 * igb_sw_init initializes the Adapter private data structure. 3953 * Fields are initialized based on PCI device information and 3954 * OS network device settings (MTU size). 3955 **/ 3956 static int igb_sw_init(struct igb_adapter *adapter) 3957 { 3958 struct e1000_hw *hw = &adapter->hw; 3959 struct net_device *netdev = adapter->netdev; 3960 struct pci_dev *pdev = adapter->pdev; 3961 3962 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3963 3964 /* set default ring sizes */ 3965 adapter->tx_ring_count = IGB_DEFAULT_TXD; 3966 adapter->rx_ring_count = IGB_DEFAULT_RXD; 3967 3968 /* set default ITR values */ 3969 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 3970 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 3971 3972 /* set default work limits */ 3973 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 3974 3975 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD; 3976 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3977 3978 spin_lock_init(&adapter->nfc_lock); 3979 spin_lock_init(&adapter->stats64_lock); 3980 3981 /* init spinlock to avoid concurrency of VF resources */ 3982 spin_lock_init(&adapter->vfs_lock); 3983 #ifdef CONFIG_PCI_IOV 3984 switch (hw->mac.type) { 3985 case e1000_82576: 3986 case e1000_i350: 3987 if (max_vfs > 7) { 3988 dev_warn(&pdev->dev, 3989 "Maximum of 7 VFs per PF, using max\n"); 3990 max_vfs = adapter->vfs_allocated_count = 7; 3991 } else 3992 adapter->vfs_allocated_count = max_vfs; 3993 if (adapter->vfs_allocated_count) 3994 dev_warn(&pdev->dev, 3995 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 3996 break; 3997 default: 3998 break; 3999 } 4000 #endif /* CONFIG_PCI_IOV */ 4001 4002 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4003 adapter->flags |= IGB_FLAG_HAS_MSIX; 4004 4005 adapter->mac_table = kcalloc(hw->mac.rar_entry_count, 4006 sizeof(struct igb_mac_addr), 4007 GFP_KERNEL); 4008 if (!adapter->mac_table) 4009 return -ENOMEM; 4010 4011 igb_probe_vfs(adapter); 4012 4013 igb_init_queue_configuration(adapter); 4014 4015 /* Setup and initialize a copy of the hw vlan table array */ 4016 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 4017 GFP_KERNEL); 4018 if (!adapter->shadow_vfta) 4019 return -ENOMEM; 4020 4021 /* This call may decrease the number of queues */ 4022 if (igb_init_interrupt_scheme(adapter, true)) { 4023 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4024 return -ENOMEM; 4025 } 4026 4027 /* Explicitly disable IRQ since the NIC can be in any state. */ 4028 igb_irq_disable(adapter); 4029 4030 if (hw->mac.type >= e1000_i350) 4031 adapter->flags &= ~IGB_FLAG_DMAC; 4032 4033 set_bit(__IGB_DOWN, &adapter->state); 4034 return 0; 4035 } 4036 4037 /** 4038 * __igb_open - Called when a network interface is made active 4039 * @netdev: network interface device structure 4040 * @resuming: indicates whether we are in a resume call 4041 * 4042 * Returns 0 on success, negative value on failure 4043 * 4044 * The open entry point is called when a network interface is made 4045 * active by the system (IFF_UP). At this point all resources needed 4046 * for transmit and receive operations are allocated, the interrupt 4047 * handler is registered with the OS, the watchdog timer is started, 4048 * and the stack is notified that the interface is ready. 4049 **/ 4050 static int __igb_open(struct net_device *netdev, bool resuming) 4051 { 4052 struct igb_adapter *adapter = netdev_priv(netdev); 4053 struct e1000_hw *hw = &adapter->hw; 4054 struct pci_dev *pdev = adapter->pdev; 4055 int err; 4056 int i; 4057 4058 /* disallow open during test */ 4059 if (test_bit(__IGB_TESTING, &adapter->state)) { 4060 WARN_ON(resuming); 4061 return -EBUSY; 4062 } 4063 4064 if (!resuming) 4065 pm_runtime_get_sync(&pdev->dev); 4066 4067 netif_carrier_off(netdev); 4068 4069 /* allocate transmit descriptors */ 4070 err = igb_setup_all_tx_resources(adapter); 4071 if (err) 4072 goto err_setup_tx; 4073 4074 /* allocate receive descriptors */ 4075 err = igb_setup_all_rx_resources(adapter); 4076 if (err) 4077 goto err_setup_rx; 4078 4079 igb_power_up_link(adapter); 4080 4081 /* before we allocate an interrupt, we must be ready to handle it. 4082 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4083 * as soon as we call pci_request_irq, so we have to setup our 4084 * clean_rx handler before we do so. 4085 */ 4086 igb_configure(adapter); 4087 4088 err = igb_request_irq(adapter); 4089 if (err) 4090 goto err_req_irq; 4091 4092 /* Notify the stack of the actual queue counts. */ 4093 err = netif_set_real_num_tx_queues(adapter->netdev, 4094 adapter->num_tx_queues); 4095 if (err) 4096 goto err_set_queues; 4097 4098 err = netif_set_real_num_rx_queues(adapter->netdev, 4099 adapter->num_rx_queues); 4100 if (err) 4101 goto err_set_queues; 4102 4103 /* From here on the code is the same as igb_up() */ 4104 clear_bit(__IGB_DOWN, &adapter->state); 4105 4106 for (i = 0; i < adapter->num_q_vectors; i++) 4107 napi_enable(&(adapter->q_vector[i]->napi)); 4108 4109 /* Clear any pending interrupts. */ 4110 rd32(E1000_TSICR); 4111 rd32(E1000_ICR); 4112 4113 igb_irq_enable(adapter); 4114 4115 /* notify VFs that reset has been completed */ 4116 if (adapter->vfs_allocated_count) { 4117 u32 reg_data = rd32(E1000_CTRL_EXT); 4118 4119 reg_data |= E1000_CTRL_EXT_PFRSTD; 4120 wr32(E1000_CTRL_EXT, reg_data); 4121 } 4122 4123 netif_tx_start_all_queues(netdev); 4124 4125 if (!resuming) 4126 pm_runtime_put(&pdev->dev); 4127 4128 /* start the watchdog. */ 4129 hw->mac.get_link_status = 1; 4130 schedule_work(&adapter->watchdog_task); 4131 4132 return 0; 4133 4134 err_set_queues: 4135 igb_free_irq(adapter); 4136 err_req_irq: 4137 igb_release_hw_control(adapter); 4138 igb_power_down_link(adapter); 4139 igb_free_all_rx_resources(adapter); 4140 err_setup_rx: 4141 igb_free_all_tx_resources(adapter); 4142 err_setup_tx: 4143 igb_reset(adapter); 4144 if (!resuming) 4145 pm_runtime_put(&pdev->dev); 4146 4147 return err; 4148 } 4149 4150 int igb_open(struct net_device *netdev) 4151 { 4152 return __igb_open(netdev, false); 4153 } 4154 4155 /** 4156 * __igb_close - Disables a network interface 4157 * @netdev: network interface device structure 4158 * @suspending: indicates we are in a suspend call 4159 * 4160 * Returns 0, this is not allowed to fail 4161 * 4162 * The close entry point is called when an interface is de-activated 4163 * by the OS. The hardware is still under the driver's control, but 4164 * needs to be disabled. A global MAC reset is issued to stop the 4165 * hardware, and all transmit and receive resources are freed. 4166 **/ 4167 static int __igb_close(struct net_device *netdev, bool suspending) 4168 { 4169 struct igb_adapter *adapter = netdev_priv(netdev); 4170 struct pci_dev *pdev = adapter->pdev; 4171 4172 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 4173 4174 if (!suspending) 4175 pm_runtime_get_sync(&pdev->dev); 4176 4177 igb_down(adapter); 4178 igb_free_irq(adapter); 4179 4180 igb_free_all_tx_resources(adapter); 4181 igb_free_all_rx_resources(adapter); 4182 4183 if (!suspending) 4184 pm_runtime_put_sync(&pdev->dev); 4185 return 0; 4186 } 4187 4188 int igb_close(struct net_device *netdev) 4189 { 4190 if (netif_device_present(netdev) || netdev->dismantle) 4191 return __igb_close(netdev, false); 4192 return 0; 4193 } 4194 4195 /** 4196 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 4197 * @tx_ring: tx descriptor ring (for a specific queue) to setup 4198 * 4199 * Return 0 on success, negative on failure 4200 **/ 4201 int igb_setup_tx_resources(struct igb_ring *tx_ring) 4202 { 4203 struct device *dev = tx_ring->dev; 4204 int size; 4205 4206 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 4207 4208 tx_ring->tx_buffer_info = vmalloc(size); 4209 if (!tx_ring->tx_buffer_info) 4210 goto err; 4211 4212 /* round up to nearest 4K */ 4213 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 4214 tx_ring->size = ALIGN(tx_ring->size, 4096); 4215 4216 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 4217 &tx_ring->dma, GFP_KERNEL); 4218 if (!tx_ring->desc) 4219 goto err; 4220 4221 tx_ring->next_to_use = 0; 4222 tx_ring->next_to_clean = 0; 4223 4224 return 0; 4225 4226 err: 4227 vfree(tx_ring->tx_buffer_info); 4228 tx_ring->tx_buffer_info = NULL; 4229 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 4230 return -ENOMEM; 4231 } 4232 4233 /** 4234 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 4235 * (Descriptors) for all queues 4236 * @adapter: board private structure 4237 * 4238 * Return 0 on success, negative on failure 4239 **/ 4240 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 4241 { 4242 struct pci_dev *pdev = adapter->pdev; 4243 int i, err = 0; 4244 4245 for (i = 0; i < adapter->num_tx_queues; i++) { 4246 err = igb_setup_tx_resources(adapter->tx_ring[i]); 4247 if (err) { 4248 dev_err(&pdev->dev, 4249 "Allocation for Tx Queue %u failed\n", i); 4250 for (i--; i >= 0; i--) 4251 igb_free_tx_resources(adapter->tx_ring[i]); 4252 break; 4253 } 4254 } 4255 4256 return err; 4257 } 4258 4259 /** 4260 * igb_setup_tctl - configure the transmit control registers 4261 * @adapter: Board private structure 4262 **/ 4263 void igb_setup_tctl(struct igb_adapter *adapter) 4264 { 4265 struct e1000_hw *hw = &adapter->hw; 4266 u32 tctl; 4267 4268 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 4269 wr32(E1000_TXDCTL(0), 0); 4270 4271 /* Program the Transmit Control Register */ 4272 tctl = rd32(E1000_TCTL); 4273 tctl &= ~E1000_TCTL_CT; 4274 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 4275 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 4276 4277 igb_config_collision_dist(hw); 4278 4279 /* Enable transmits */ 4280 tctl |= E1000_TCTL_EN; 4281 4282 wr32(E1000_TCTL, tctl); 4283 } 4284 4285 /** 4286 * igb_configure_tx_ring - Configure transmit ring after Reset 4287 * @adapter: board private structure 4288 * @ring: tx ring to configure 4289 * 4290 * Configure a transmit ring after a reset. 4291 **/ 4292 void igb_configure_tx_ring(struct igb_adapter *adapter, 4293 struct igb_ring *ring) 4294 { 4295 struct e1000_hw *hw = &adapter->hw; 4296 u32 txdctl = 0; 4297 u64 tdba = ring->dma; 4298 int reg_idx = ring->reg_idx; 4299 4300 wr32(E1000_TDLEN(reg_idx), 4301 ring->count * sizeof(union e1000_adv_tx_desc)); 4302 wr32(E1000_TDBAL(reg_idx), 4303 tdba & 0x00000000ffffffffULL); 4304 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 4305 4306 ring->tail = adapter->io_addr + E1000_TDT(reg_idx); 4307 wr32(E1000_TDH(reg_idx), 0); 4308 writel(0, ring->tail); 4309 4310 txdctl |= IGB_TX_PTHRESH; 4311 txdctl |= IGB_TX_HTHRESH << 8; 4312 txdctl |= IGB_TX_WTHRESH << 16; 4313 4314 /* reinitialize tx_buffer_info */ 4315 memset(ring->tx_buffer_info, 0, 4316 sizeof(struct igb_tx_buffer) * ring->count); 4317 4318 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 4319 wr32(E1000_TXDCTL(reg_idx), txdctl); 4320 } 4321 4322 /** 4323 * igb_configure_tx - Configure transmit Unit after Reset 4324 * @adapter: board private structure 4325 * 4326 * Configure the Tx unit of the MAC after a reset. 4327 **/ 4328 static void igb_configure_tx(struct igb_adapter *adapter) 4329 { 4330 struct e1000_hw *hw = &adapter->hw; 4331 int i; 4332 4333 /* disable the queues */ 4334 for (i = 0; i < adapter->num_tx_queues; i++) 4335 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0); 4336 4337 wrfl(); 4338 usleep_range(10000, 20000); 4339 4340 for (i = 0; i < adapter->num_tx_queues; i++) 4341 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 4342 } 4343 4344 /** 4345 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 4346 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 4347 * 4348 * Returns 0 on success, negative on failure 4349 **/ 4350 int igb_setup_rx_resources(struct igb_ring *rx_ring) 4351 { 4352 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev); 4353 struct device *dev = rx_ring->dev; 4354 int size, res; 4355 4356 /* XDP RX-queue info */ 4357 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 4358 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4359 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 4360 rx_ring->queue_index, 0); 4361 if (res < 0) { 4362 dev_err(dev, "Failed to register xdp_rxq index %u\n", 4363 rx_ring->queue_index); 4364 return res; 4365 } 4366 4367 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 4368 4369 rx_ring->rx_buffer_info = vmalloc(size); 4370 if (!rx_ring->rx_buffer_info) 4371 goto err; 4372 4373 /* Round up to nearest 4K */ 4374 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 4375 rx_ring->size = ALIGN(rx_ring->size, 4096); 4376 4377 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 4378 &rx_ring->dma, GFP_KERNEL); 4379 if (!rx_ring->desc) 4380 goto err; 4381 4382 rx_ring->next_to_alloc = 0; 4383 rx_ring->next_to_clean = 0; 4384 rx_ring->next_to_use = 0; 4385 4386 rx_ring->xdp_prog = adapter->xdp_prog; 4387 4388 return 0; 4389 4390 err: 4391 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4392 vfree(rx_ring->rx_buffer_info); 4393 rx_ring->rx_buffer_info = NULL; 4394 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 4395 return -ENOMEM; 4396 } 4397 4398 /** 4399 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 4400 * (Descriptors) for all queues 4401 * @adapter: board private structure 4402 * 4403 * Return 0 on success, negative on failure 4404 **/ 4405 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 4406 { 4407 struct pci_dev *pdev = adapter->pdev; 4408 int i, err = 0; 4409 4410 for (i = 0; i < adapter->num_rx_queues; i++) { 4411 err = igb_setup_rx_resources(adapter->rx_ring[i]); 4412 if (err) { 4413 dev_err(&pdev->dev, 4414 "Allocation for Rx Queue %u failed\n", i); 4415 for (i--; i >= 0; i--) 4416 igb_free_rx_resources(adapter->rx_ring[i]); 4417 break; 4418 } 4419 } 4420 4421 return err; 4422 } 4423 4424 /** 4425 * igb_setup_mrqc - configure the multiple receive queue control registers 4426 * @adapter: Board private structure 4427 **/ 4428 static void igb_setup_mrqc(struct igb_adapter *adapter) 4429 { 4430 struct e1000_hw *hw = &adapter->hw; 4431 u32 mrqc, rxcsum; 4432 u32 j, num_rx_queues; 4433 u32 rss_key[10]; 4434 4435 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 4436 for (j = 0; j < 10; j++) 4437 wr32(E1000_RSSRK(j), rss_key[j]); 4438 4439 num_rx_queues = adapter->rss_queues; 4440 4441 switch (hw->mac.type) { 4442 case e1000_82576: 4443 /* 82576 supports 2 RSS queues for SR-IOV */ 4444 if (adapter->vfs_allocated_count) 4445 num_rx_queues = 2; 4446 break; 4447 default: 4448 break; 4449 } 4450 4451 if (adapter->rss_indir_tbl_init != num_rx_queues) { 4452 for (j = 0; j < IGB_RETA_SIZE; j++) 4453 adapter->rss_indir_tbl[j] = 4454 (j * num_rx_queues) / IGB_RETA_SIZE; 4455 adapter->rss_indir_tbl_init = num_rx_queues; 4456 } 4457 igb_write_rss_indir_tbl(adapter); 4458 4459 /* Disable raw packet checksumming so that RSS hash is placed in 4460 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 4461 * offloads as they are enabled by default 4462 */ 4463 rxcsum = rd32(E1000_RXCSUM); 4464 rxcsum |= E1000_RXCSUM_PCSD; 4465 4466 if (adapter->hw.mac.type >= e1000_82576) 4467 /* Enable Receive Checksum Offload for SCTP */ 4468 rxcsum |= E1000_RXCSUM_CRCOFL; 4469 4470 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 4471 wr32(E1000_RXCSUM, rxcsum); 4472 4473 /* Generate RSS hash based on packet types, TCP/UDP 4474 * port numbers and/or IPv4/v6 src and dst addresses 4475 */ 4476 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 4477 E1000_MRQC_RSS_FIELD_IPV4_TCP | 4478 E1000_MRQC_RSS_FIELD_IPV6 | 4479 E1000_MRQC_RSS_FIELD_IPV6_TCP | 4480 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 4481 4482 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 4483 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 4484 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 4485 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 4486 4487 /* If VMDq is enabled then we set the appropriate mode for that, else 4488 * we default to RSS so that an RSS hash is calculated per packet even 4489 * if we are only using one queue 4490 */ 4491 if (adapter->vfs_allocated_count) { 4492 if (hw->mac.type > e1000_82575) { 4493 /* Set the default pool for the PF's first queue */ 4494 u32 vtctl = rd32(E1000_VT_CTL); 4495 4496 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 4497 E1000_VT_CTL_DISABLE_DEF_POOL); 4498 vtctl |= adapter->vfs_allocated_count << 4499 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 4500 wr32(E1000_VT_CTL, vtctl); 4501 } 4502 if (adapter->rss_queues > 1) 4503 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ; 4504 else 4505 mrqc |= E1000_MRQC_ENABLE_VMDQ; 4506 } else { 4507 mrqc |= E1000_MRQC_ENABLE_RSS_MQ; 4508 } 4509 igb_vmm_control(adapter); 4510 4511 wr32(E1000_MRQC, mrqc); 4512 } 4513 4514 /** 4515 * igb_setup_rctl - configure the receive control registers 4516 * @adapter: Board private structure 4517 **/ 4518 void igb_setup_rctl(struct igb_adapter *adapter) 4519 { 4520 struct e1000_hw *hw = &adapter->hw; 4521 u32 rctl; 4522 4523 rctl = rd32(E1000_RCTL); 4524 4525 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 4526 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 4527 4528 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 4529 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 4530 4531 /* enable stripping of CRC. It's unlikely this will break BMC 4532 * redirection as it did with e1000. Newer features require 4533 * that the HW strips the CRC. 4534 */ 4535 rctl |= E1000_RCTL_SECRC; 4536 4537 /* disable store bad packets and clear size bits. */ 4538 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 4539 4540 /* enable LPE to allow for reception of jumbo frames */ 4541 rctl |= E1000_RCTL_LPE; 4542 4543 /* disable queue 0 to prevent tail write w/o re-config */ 4544 wr32(E1000_RXDCTL(0), 0); 4545 4546 /* Attention!!! For SR-IOV PF driver operations you must enable 4547 * queue drop for all VF and PF queues to prevent head of line blocking 4548 * if an un-trusted VF does not provide descriptors to hardware. 4549 */ 4550 if (adapter->vfs_allocated_count) { 4551 /* set all queue drop enable bits */ 4552 wr32(E1000_QDE, ALL_QUEUES); 4553 } 4554 4555 /* This is useful for sniffing bad packets. */ 4556 if (adapter->netdev->features & NETIF_F_RXALL) { 4557 /* UPE and MPE will be handled by normal PROMISC logic 4558 * in e1000e_set_rx_mode 4559 */ 4560 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 4561 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 4562 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 4563 4564 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */ 4565 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 4566 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 4567 * and that breaks VLANs. 4568 */ 4569 } 4570 4571 wr32(E1000_RCTL, rctl); 4572 } 4573 4574 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 4575 int vfn) 4576 { 4577 struct e1000_hw *hw = &adapter->hw; 4578 u32 vmolr; 4579 4580 if (size > MAX_JUMBO_FRAME_SIZE) 4581 size = MAX_JUMBO_FRAME_SIZE; 4582 4583 vmolr = rd32(E1000_VMOLR(vfn)); 4584 vmolr &= ~E1000_VMOLR_RLPML_MASK; 4585 vmolr |= size | E1000_VMOLR_LPE; 4586 wr32(E1000_VMOLR(vfn), vmolr); 4587 4588 return 0; 4589 } 4590 4591 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter, 4592 int vfn, bool enable) 4593 { 4594 struct e1000_hw *hw = &adapter->hw; 4595 u32 val, reg; 4596 4597 if (hw->mac.type < e1000_82576) 4598 return; 4599 4600 if (hw->mac.type == e1000_i350) 4601 reg = E1000_DVMOLR(vfn); 4602 else 4603 reg = E1000_VMOLR(vfn); 4604 4605 val = rd32(reg); 4606 if (enable) 4607 val |= E1000_VMOLR_STRVLAN; 4608 else 4609 val &= ~(E1000_VMOLR_STRVLAN); 4610 wr32(reg, val); 4611 } 4612 4613 static inline void igb_set_vmolr(struct igb_adapter *adapter, 4614 int vfn, bool aupe) 4615 { 4616 struct e1000_hw *hw = &adapter->hw; 4617 u32 vmolr; 4618 4619 /* This register exists only on 82576 and newer so if we are older then 4620 * we should exit and do nothing 4621 */ 4622 if (hw->mac.type < e1000_82576) 4623 return; 4624 4625 vmolr = rd32(E1000_VMOLR(vfn)); 4626 if (aupe) 4627 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 4628 else 4629 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 4630 4631 /* clear all bits that might not be set */ 4632 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 4633 4634 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 4635 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 4636 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 4637 * multicast packets 4638 */ 4639 if (vfn <= adapter->vfs_allocated_count) 4640 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 4641 4642 wr32(E1000_VMOLR(vfn), vmolr); 4643 } 4644 4645 /** 4646 * igb_setup_srrctl - configure the split and replication receive control 4647 * registers 4648 * @adapter: Board private structure 4649 * @ring: receive ring to be configured 4650 **/ 4651 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring) 4652 { 4653 struct e1000_hw *hw = &adapter->hw; 4654 int reg_idx = ring->reg_idx; 4655 u32 srrctl = 0; 4656 4657 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 4658 if (ring_uses_large_buffer(ring)) 4659 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4660 else 4661 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4662 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 4663 if (hw->mac.type >= e1000_82580) 4664 srrctl |= E1000_SRRCTL_TIMESTAMP; 4665 /* Only set Drop Enable if VFs allocated, or we are supporting multiple 4666 * queues and rx flow control is disabled 4667 */ 4668 if (adapter->vfs_allocated_count || 4669 (!(hw->fc.current_mode & e1000_fc_rx_pause) && 4670 adapter->num_rx_queues > 1)) 4671 srrctl |= E1000_SRRCTL_DROP_EN; 4672 4673 wr32(E1000_SRRCTL(reg_idx), srrctl); 4674 } 4675 4676 /** 4677 * igb_configure_rx_ring - Configure a receive ring after Reset 4678 * @adapter: board private structure 4679 * @ring: receive ring to be configured 4680 * 4681 * Configure the Rx unit of the MAC after a reset. 4682 **/ 4683 void igb_configure_rx_ring(struct igb_adapter *adapter, 4684 struct igb_ring *ring) 4685 { 4686 struct e1000_hw *hw = &adapter->hw; 4687 union e1000_adv_rx_desc *rx_desc; 4688 u64 rdba = ring->dma; 4689 int reg_idx = ring->reg_idx; 4690 u32 rxdctl = 0; 4691 4692 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 4693 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 4694 MEM_TYPE_PAGE_SHARED, NULL)); 4695 4696 /* disable the queue */ 4697 wr32(E1000_RXDCTL(reg_idx), 0); 4698 4699 /* Set DMA base address registers */ 4700 wr32(E1000_RDBAL(reg_idx), 4701 rdba & 0x00000000ffffffffULL); 4702 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 4703 wr32(E1000_RDLEN(reg_idx), 4704 ring->count * sizeof(union e1000_adv_rx_desc)); 4705 4706 /* initialize head and tail */ 4707 ring->tail = adapter->io_addr + E1000_RDT(reg_idx); 4708 wr32(E1000_RDH(reg_idx), 0); 4709 writel(0, ring->tail); 4710 4711 /* set descriptor configuration */ 4712 igb_setup_srrctl(adapter, ring); 4713 4714 /* set filtering for VMDQ pools */ 4715 igb_set_vmolr(adapter, reg_idx & 0x7, true); 4716 4717 rxdctl |= IGB_RX_PTHRESH; 4718 rxdctl |= IGB_RX_HTHRESH << 8; 4719 rxdctl |= IGB_RX_WTHRESH << 16; 4720 4721 /* initialize rx_buffer_info */ 4722 memset(ring->rx_buffer_info, 0, 4723 sizeof(struct igb_rx_buffer) * ring->count); 4724 4725 /* initialize Rx descriptor 0 */ 4726 rx_desc = IGB_RX_DESC(ring, 0); 4727 rx_desc->wb.upper.length = 0; 4728 4729 /* enable receive descriptor fetching */ 4730 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 4731 wr32(E1000_RXDCTL(reg_idx), rxdctl); 4732 } 4733 4734 static void igb_set_rx_buffer_len(struct igb_adapter *adapter, 4735 struct igb_ring *rx_ring) 4736 { 4737 /* set build_skb and buffer size flags */ 4738 clear_ring_build_skb_enabled(rx_ring); 4739 clear_ring_uses_large_buffer(rx_ring); 4740 4741 if (adapter->flags & IGB_FLAG_RX_LEGACY) 4742 return; 4743 4744 set_ring_build_skb_enabled(rx_ring); 4745 4746 #if (PAGE_SIZE < 8192) 4747 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 4748 return; 4749 4750 set_ring_uses_large_buffer(rx_ring); 4751 #endif 4752 } 4753 4754 /** 4755 * igb_configure_rx - Configure receive Unit after Reset 4756 * @adapter: board private structure 4757 * 4758 * Configure the Rx unit of the MAC after a reset. 4759 **/ 4760 static void igb_configure_rx(struct igb_adapter *adapter) 4761 { 4762 int i; 4763 4764 /* set the correct pool for the PF default MAC address in entry 0 */ 4765 igb_set_default_mac_filter(adapter); 4766 4767 /* Setup the HW Rx Head and Tail Descriptor Pointers and 4768 * the Base and Length of the Rx Descriptor Ring 4769 */ 4770 for (i = 0; i < adapter->num_rx_queues; i++) { 4771 struct igb_ring *rx_ring = adapter->rx_ring[i]; 4772 4773 igb_set_rx_buffer_len(adapter, rx_ring); 4774 igb_configure_rx_ring(adapter, rx_ring); 4775 } 4776 } 4777 4778 /** 4779 * igb_free_tx_resources - Free Tx Resources per Queue 4780 * @tx_ring: Tx descriptor ring for a specific queue 4781 * 4782 * Free all transmit software resources 4783 **/ 4784 void igb_free_tx_resources(struct igb_ring *tx_ring) 4785 { 4786 igb_clean_tx_ring(tx_ring); 4787 4788 vfree(tx_ring->tx_buffer_info); 4789 tx_ring->tx_buffer_info = NULL; 4790 4791 /* if not set, then don't free */ 4792 if (!tx_ring->desc) 4793 return; 4794 4795 dma_free_coherent(tx_ring->dev, tx_ring->size, 4796 tx_ring->desc, tx_ring->dma); 4797 4798 tx_ring->desc = NULL; 4799 } 4800 4801 /** 4802 * igb_free_all_tx_resources - Free Tx Resources for All Queues 4803 * @adapter: board private structure 4804 * 4805 * Free all transmit software resources 4806 **/ 4807 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 4808 { 4809 int i; 4810 4811 for (i = 0; i < adapter->num_tx_queues; i++) 4812 if (adapter->tx_ring[i]) 4813 igb_free_tx_resources(adapter->tx_ring[i]); 4814 } 4815 4816 /** 4817 * igb_clean_tx_ring - Free Tx Buffers 4818 * @tx_ring: ring to be cleaned 4819 **/ 4820 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 4821 { 4822 u16 i = tx_ring->next_to_clean; 4823 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 4824 4825 while (i != tx_ring->next_to_use) { 4826 union e1000_adv_tx_desc *eop_desc, *tx_desc; 4827 4828 /* Free all the Tx ring sk_buffs or xdp frames */ 4829 if (tx_buffer->type == IGB_TYPE_SKB) 4830 dev_kfree_skb_any(tx_buffer->skb); 4831 else 4832 xdp_return_frame(tx_buffer->xdpf); 4833 4834 /* unmap skb header data */ 4835 dma_unmap_single(tx_ring->dev, 4836 dma_unmap_addr(tx_buffer, dma), 4837 dma_unmap_len(tx_buffer, len), 4838 DMA_TO_DEVICE); 4839 4840 /* check for eop_desc to determine the end of the packet */ 4841 eop_desc = tx_buffer->next_to_watch; 4842 tx_desc = IGB_TX_DESC(tx_ring, i); 4843 4844 /* unmap remaining buffers */ 4845 while (tx_desc != eop_desc) { 4846 tx_buffer++; 4847 tx_desc++; 4848 i++; 4849 if (unlikely(i == tx_ring->count)) { 4850 i = 0; 4851 tx_buffer = tx_ring->tx_buffer_info; 4852 tx_desc = IGB_TX_DESC(tx_ring, 0); 4853 } 4854 4855 /* unmap any remaining paged data */ 4856 if (dma_unmap_len(tx_buffer, len)) 4857 dma_unmap_page(tx_ring->dev, 4858 dma_unmap_addr(tx_buffer, dma), 4859 dma_unmap_len(tx_buffer, len), 4860 DMA_TO_DEVICE); 4861 } 4862 4863 tx_buffer->next_to_watch = NULL; 4864 4865 /* move us one more past the eop_desc for start of next pkt */ 4866 tx_buffer++; 4867 i++; 4868 if (unlikely(i == tx_ring->count)) { 4869 i = 0; 4870 tx_buffer = tx_ring->tx_buffer_info; 4871 } 4872 } 4873 4874 /* reset BQL for queue */ 4875 netdev_tx_reset_queue(txring_txq(tx_ring)); 4876 4877 /* reset next_to_use and next_to_clean */ 4878 tx_ring->next_to_use = 0; 4879 tx_ring->next_to_clean = 0; 4880 } 4881 4882 /** 4883 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 4884 * @adapter: board private structure 4885 **/ 4886 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 4887 { 4888 int i; 4889 4890 for (i = 0; i < adapter->num_tx_queues; i++) 4891 if (adapter->tx_ring[i]) 4892 igb_clean_tx_ring(adapter->tx_ring[i]); 4893 } 4894 4895 /** 4896 * igb_free_rx_resources - Free Rx Resources 4897 * @rx_ring: ring to clean the resources from 4898 * 4899 * Free all receive software resources 4900 **/ 4901 void igb_free_rx_resources(struct igb_ring *rx_ring) 4902 { 4903 igb_clean_rx_ring(rx_ring); 4904 4905 rx_ring->xdp_prog = NULL; 4906 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4907 vfree(rx_ring->rx_buffer_info); 4908 rx_ring->rx_buffer_info = NULL; 4909 4910 /* if not set, then don't free */ 4911 if (!rx_ring->desc) 4912 return; 4913 4914 dma_free_coherent(rx_ring->dev, rx_ring->size, 4915 rx_ring->desc, rx_ring->dma); 4916 4917 rx_ring->desc = NULL; 4918 } 4919 4920 /** 4921 * igb_free_all_rx_resources - Free Rx Resources for All Queues 4922 * @adapter: board private structure 4923 * 4924 * Free all receive software resources 4925 **/ 4926 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 4927 { 4928 int i; 4929 4930 for (i = 0; i < adapter->num_rx_queues; i++) 4931 if (adapter->rx_ring[i]) 4932 igb_free_rx_resources(adapter->rx_ring[i]); 4933 } 4934 4935 /** 4936 * igb_clean_rx_ring - Free Rx Buffers per Queue 4937 * @rx_ring: ring to free buffers from 4938 **/ 4939 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 4940 { 4941 u16 i = rx_ring->next_to_clean; 4942 4943 dev_kfree_skb(rx_ring->skb); 4944 rx_ring->skb = NULL; 4945 4946 /* Free all the Rx ring sk_buffs */ 4947 while (i != rx_ring->next_to_alloc) { 4948 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 4949 4950 /* Invalidate cache lines that may have been written to by 4951 * device so that we avoid corrupting memory. 4952 */ 4953 dma_sync_single_range_for_cpu(rx_ring->dev, 4954 buffer_info->dma, 4955 buffer_info->page_offset, 4956 igb_rx_bufsz(rx_ring), 4957 DMA_FROM_DEVICE); 4958 4959 /* free resources associated with mapping */ 4960 dma_unmap_page_attrs(rx_ring->dev, 4961 buffer_info->dma, 4962 igb_rx_pg_size(rx_ring), 4963 DMA_FROM_DEVICE, 4964 IGB_RX_DMA_ATTR); 4965 __page_frag_cache_drain(buffer_info->page, 4966 buffer_info->pagecnt_bias); 4967 4968 i++; 4969 if (i == rx_ring->count) 4970 i = 0; 4971 } 4972 4973 rx_ring->next_to_alloc = 0; 4974 rx_ring->next_to_clean = 0; 4975 rx_ring->next_to_use = 0; 4976 } 4977 4978 /** 4979 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 4980 * @adapter: board private structure 4981 **/ 4982 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 4983 { 4984 int i; 4985 4986 for (i = 0; i < adapter->num_rx_queues; i++) 4987 if (adapter->rx_ring[i]) 4988 igb_clean_rx_ring(adapter->rx_ring[i]); 4989 } 4990 4991 /** 4992 * igb_set_mac - Change the Ethernet Address of the NIC 4993 * @netdev: network interface device structure 4994 * @p: pointer to an address structure 4995 * 4996 * Returns 0 on success, negative on failure 4997 **/ 4998 static int igb_set_mac(struct net_device *netdev, void *p) 4999 { 5000 struct igb_adapter *adapter = netdev_priv(netdev); 5001 struct e1000_hw *hw = &adapter->hw; 5002 struct sockaddr *addr = p; 5003 5004 if (!is_valid_ether_addr(addr->sa_data)) 5005 return -EADDRNOTAVAIL; 5006 5007 eth_hw_addr_set(netdev, addr->sa_data); 5008 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 5009 5010 /* set the correct pool for the new PF MAC address in entry 0 */ 5011 igb_set_default_mac_filter(adapter); 5012 5013 return 0; 5014 } 5015 5016 /** 5017 * igb_write_mc_addr_list - write multicast addresses to MTA 5018 * @netdev: network interface device structure 5019 * 5020 * Writes multicast address list to the MTA hash table. 5021 * Returns: -ENOMEM on failure 5022 * 0 on no addresses written 5023 * X on writing X addresses to MTA 5024 **/ 5025 static int igb_write_mc_addr_list(struct net_device *netdev) 5026 { 5027 struct igb_adapter *adapter = netdev_priv(netdev); 5028 struct e1000_hw *hw = &adapter->hw; 5029 struct netdev_hw_addr *ha; 5030 u8 *mta_list; 5031 int i; 5032 5033 if (netdev_mc_empty(netdev)) { 5034 /* nothing to program, so clear mc list */ 5035 igb_update_mc_addr_list(hw, NULL, 0); 5036 igb_restore_vf_multicasts(adapter); 5037 return 0; 5038 } 5039 5040 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 5041 if (!mta_list) 5042 return -ENOMEM; 5043 5044 /* The shared function expects a packed array of only addresses. */ 5045 i = 0; 5046 netdev_for_each_mc_addr(ha, netdev) 5047 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 5048 5049 igb_update_mc_addr_list(hw, mta_list, i); 5050 kfree(mta_list); 5051 5052 return netdev_mc_count(netdev); 5053 } 5054 5055 static int igb_vlan_promisc_enable(struct igb_adapter *adapter) 5056 { 5057 struct e1000_hw *hw = &adapter->hw; 5058 u32 i, pf_id; 5059 5060 switch (hw->mac.type) { 5061 case e1000_i210: 5062 case e1000_i211: 5063 case e1000_i350: 5064 /* VLAN filtering needed for VLAN prio filter */ 5065 if (adapter->netdev->features & NETIF_F_NTUPLE) 5066 break; 5067 fallthrough; 5068 case e1000_82576: 5069 case e1000_82580: 5070 case e1000_i354: 5071 /* VLAN filtering needed for pool filtering */ 5072 if (adapter->vfs_allocated_count) 5073 break; 5074 fallthrough; 5075 default: 5076 return 1; 5077 } 5078 5079 /* We are already in VLAN promisc, nothing to do */ 5080 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 5081 return 0; 5082 5083 if (!adapter->vfs_allocated_count) 5084 goto set_vfta; 5085 5086 /* Add PF to all active pools */ 5087 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5088 5089 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5090 u32 vlvf = rd32(E1000_VLVF(i)); 5091 5092 vlvf |= BIT(pf_id); 5093 wr32(E1000_VLVF(i), vlvf); 5094 } 5095 5096 set_vfta: 5097 /* Set all bits in the VLAN filter table array */ 5098 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;) 5099 hw->mac.ops.write_vfta(hw, i, ~0U); 5100 5101 /* Set flag so we don't redo unnecessary work */ 5102 adapter->flags |= IGB_FLAG_VLAN_PROMISC; 5103 5104 return 0; 5105 } 5106 5107 #define VFTA_BLOCK_SIZE 8 5108 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset) 5109 { 5110 struct e1000_hw *hw = &adapter->hw; 5111 u32 vfta[VFTA_BLOCK_SIZE] = { 0 }; 5112 u32 vid_start = vfta_offset * 32; 5113 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32); 5114 u32 i, vid, word, bits, pf_id; 5115 5116 /* guarantee that we don't scrub out management VLAN */ 5117 vid = adapter->mng_vlan_id; 5118 if (vid >= vid_start && vid < vid_end) 5119 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5120 5121 if (!adapter->vfs_allocated_count) 5122 goto set_vfta; 5123 5124 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5125 5126 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5127 u32 vlvf = rd32(E1000_VLVF(i)); 5128 5129 /* pull VLAN ID from VLVF */ 5130 vid = vlvf & VLAN_VID_MASK; 5131 5132 /* only concern ourselves with a certain range */ 5133 if (vid < vid_start || vid >= vid_end) 5134 continue; 5135 5136 if (vlvf & E1000_VLVF_VLANID_ENABLE) { 5137 /* record VLAN ID in VFTA */ 5138 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5139 5140 /* if PF is part of this then continue */ 5141 if (test_bit(vid, adapter->active_vlans)) 5142 continue; 5143 } 5144 5145 /* remove PF from the pool */ 5146 bits = ~BIT(pf_id); 5147 bits &= rd32(E1000_VLVF(i)); 5148 wr32(E1000_VLVF(i), bits); 5149 } 5150 5151 set_vfta: 5152 /* extract values from active_vlans and write back to VFTA */ 5153 for (i = VFTA_BLOCK_SIZE; i--;) { 5154 vid = (vfta_offset + i) * 32; 5155 word = vid / BITS_PER_LONG; 5156 bits = vid % BITS_PER_LONG; 5157 5158 vfta[i] |= adapter->active_vlans[word] >> bits; 5159 5160 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]); 5161 } 5162 } 5163 5164 static void igb_vlan_promisc_disable(struct igb_adapter *adapter) 5165 { 5166 u32 i; 5167 5168 /* We are not in VLAN promisc, nothing to do */ 5169 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 5170 return; 5171 5172 /* Set flag so we don't redo unnecessary work */ 5173 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 5174 5175 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE) 5176 igb_scrub_vfta(adapter, i); 5177 } 5178 5179 /** 5180 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 5181 * @netdev: network interface device structure 5182 * 5183 * The set_rx_mode entry point is called whenever the unicast or multicast 5184 * address lists or the network interface flags are updated. This routine is 5185 * responsible for configuring the hardware for proper unicast, multicast, 5186 * promiscuous mode, and all-multi behavior. 5187 **/ 5188 static void igb_set_rx_mode(struct net_device *netdev) 5189 { 5190 struct igb_adapter *adapter = netdev_priv(netdev); 5191 struct e1000_hw *hw = &adapter->hw; 5192 unsigned int vfn = adapter->vfs_allocated_count; 5193 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 5194 int count; 5195 5196 /* Check for Promiscuous and All Multicast modes */ 5197 if (netdev->flags & IFF_PROMISC) { 5198 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE; 5199 vmolr |= E1000_VMOLR_MPME; 5200 5201 /* enable use of UTA filter to force packets to default pool */ 5202 if (hw->mac.type == e1000_82576) 5203 vmolr |= E1000_VMOLR_ROPE; 5204 } else { 5205 if (netdev->flags & IFF_ALLMULTI) { 5206 rctl |= E1000_RCTL_MPE; 5207 vmolr |= E1000_VMOLR_MPME; 5208 } else { 5209 /* Write addresses to the MTA, if the attempt fails 5210 * then we should just turn on promiscuous mode so 5211 * that we can at least receive multicast traffic 5212 */ 5213 count = igb_write_mc_addr_list(netdev); 5214 if (count < 0) { 5215 rctl |= E1000_RCTL_MPE; 5216 vmolr |= E1000_VMOLR_MPME; 5217 } else if (count) { 5218 vmolr |= E1000_VMOLR_ROMPE; 5219 } 5220 } 5221 } 5222 5223 /* Write addresses to available RAR registers, if there is not 5224 * sufficient space to store all the addresses then enable 5225 * unicast promiscuous mode 5226 */ 5227 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) { 5228 rctl |= E1000_RCTL_UPE; 5229 vmolr |= E1000_VMOLR_ROPE; 5230 } 5231 5232 /* enable VLAN filtering by default */ 5233 rctl |= E1000_RCTL_VFE; 5234 5235 /* disable VLAN filtering for modes that require it */ 5236 if ((netdev->flags & IFF_PROMISC) || 5237 (netdev->features & NETIF_F_RXALL)) { 5238 /* if we fail to set all rules then just clear VFE */ 5239 if (igb_vlan_promisc_enable(adapter)) 5240 rctl &= ~E1000_RCTL_VFE; 5241 } else { 5242 igb_vlan_promisc_disable(adapter); 5243 } 5244 5245 /* update state of unicast, multicast, and VLAN filtering modes */ 5246 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE | 5247 E1000_RCTL_VFE); 5248 wr32(E1000_RCTL, rctl); 5249 5250 #if (PAGE_SIZE < 8192) 5251 if (!adapter->vfs_allocated_count) { 5252 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5253 rlpml = IGB_MAX_FRAME_BUILD_SKB; 5254 } 5255 #endif 5256 wr32(E1000_RLPML, rlpml); 5257 5258 /* In order to support SR-IOV and eventually VMDq it is necessary to set 5259 * the VMOLR to enable the appropriate modes. Without this workaround 5260 * we will have issues with VLAN tag stripping not being done for frames 5261 * that are only arriving because we are the default pool 5262 */ 5263 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 5264 return; 5265 5266 /* set UTA to appropriate mode */ 5267 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE)); 5268 5269 vmolr |= rd32(E1000_VMOLR(vfn)) & 5270 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 5271 5272 /* enable Rx jumbo frames, restrict as needed to support build_skb */ 5273 vmolr &= ~E1000_VMOLR_RLPML_MASK; 5274 #if (PAGE_SIZE < 8192) 5275 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5276 vmolr |= IGB_MAX_FRAME_BUILD_SKB; 5277 else 5278 #endif 5279 vmolr |= MAX_JUMBO_FRAME_SIZE; 5280 vmolr |= E1000_VMOLR_LPE; 5281 5282 wr32(E1000_VMOLR(vfn), vmolr); 5283 5284 igb_restore_vf_multicasts(adapter); 5285 } 5286 5287 static void igb_check_wvbr(struct igb_adapter *adapter) 5288 { 5289 struct e1000_hw *hw = &adapter->hw; 5290 u32 wvbr = 0; 5291 5292 switch (hw->mac.type) { 5293 case e1000_82576: 5294 case e1000_i350: 5295 wvbr = rd32(E1000_WVBR); 5296 if (!wvbr) 5297 return; 5298 break; 5299 default: 5300 break; 5301 } 5302 5303 adapter->wvbr |= wvbr; 5304 } 5305 5306 #define IGB_STAGGERED_QUEUE_OFFSET 8 5307 5308 static void igb_spoof_check(struct igb_adapter *adapter) 5309 { 5310 int j; 5311 5312 if (!adapter->wvbr) 5313 return; 5314 5315 for (j = 0; j < adapter->vfs_allocated_count; j++) { 5316 if (adapter->wvbr & BIT(j) || 5317 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) { 5318 dev_warn(&adapter->pdev->dev, 5319 "Spoof event(s) detected on VF %d\n", j); 5320 adapter->wvbr &= 5321 ~(BIT(j) | 5322 BIT(j + IGB_STAGGERED_QUEUE_OFFSET)); 5323 } 5324 } 5325 } 5326 5327 /* Need to wait a few seconds after link up to get diagnostic information from 5328 * the phy 5329 */ 5330 static void igb_update_phy_info(struct timer_list *t) 5331 { 5332 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5333 igb_get_phy_info(&adapter->hw); 5334 } 5335 5336 /** 5337 * igb_has_link - check shared code for link and determine up/down 5338 * @adapter: pointer to driver private info 5339 **/ 5340 bool igb_has_link(struct igb_adapter *adapter) 5341 { 5342 struct e1000_hw *hw = &adapter->hw; 5343 bool link_active = false; 5344 5345 /* get_link_status is set on LSC (link status) interrupt or 5346 * rx sequence error interrupt. get_link_status will stay 5347 * false until the e1000_check_for_link establishes link 5348 * for copper adapters ONLY 5349 */ 5350 switch (hw->phy.media_type) { 5351 case e1000_media_type_copper: 5352 if (!hw->mac.get_link_status) 5353 return true; 5354 fallthrough; 5355 case e1000_media_type_internal_serdes: 5356 hw->mac.ops.check_for_link(hw); 5357 link_active = !hw->mac.get_link_status; 5358 break; 5359 default: 5360 case e1000_media_type_unknown: 5361 break; 5362 } 5363 5364 if (((hw->mac.type == e1000_i210) || 5365 (hw->mac.type == e1000_i211)) && 5366 (hw->phy.id == I210_I_PHY_ID)) { 5367 if (!netif_carrier_ok(adapter->netdev)) { 5368 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5369 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 5370 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 5371 adapter->link_check_timeout = jiffies; 5372 } 5373 } 5374 5375 return link_active; 5376 } 5377 5378 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 5379 { 5380 bool ret = false; 5381 u32 ctrl_ext, thstat; 5382 5383 /* check for thermal sensor event on i350 copper only */ 5384 if (hw->mac.type == e1000_i350) { 5385 thstat = rd32(E1000_THSTAT); 5386 ctrl_ext = rd32(E1000_CTRL_EXT); 5387 5388 if ((hw->phy.media_type == e1000_media_type_copper) && 5389 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 5390 ret = !!(thstat & event); 5391 } 5392 5393 return ret; 5394 } 5395 5396 /** 5397 * igb_check_lvmmc - check for malformed packets received 5398 * and indicated in LVMMC register 5399 * @adapter: pointer to adapter 5400 **/ 5401 static void igb_check_lvmmc(struct igb_adapter *adapter) 5402 { 5403 struct e1000_hw *hw = &adapter->hw; 5404 u32 lvmmc; 5405 5406 lvmmc = rd32(E1000_LVMMC); 5407 if (lvmmc) { 5408 if (unlikely(net_ratelimit())) { 5409 netdev_warn(adapter->netdev, 5410 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", 5411 lvmmc); 5412 } 5413 } 5414 } 5415 5416 /** 5417 * igb_watchdog - Timer Call-back 5418 * @t: pointer to timer_list containing our private info pointer 5419 **/ 5420 static void igb_watchdog(struct timer_list *t) 5421 { 5422 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5423 /* Do the rest outside of interrupt context */ 5424 schedule_work(&adapter->watchdog_task); 5425 } 5426 5427 static void igb_watchdog_task(struct work_struct *work) 5428 { 5429 struct igb_adapter *adapter = container_of(work, 5430 struct igb_adapter, 5431 watchdog_task); 5432 struct e1000_hw *hw = &adapter->hw; 5433 struct e1000_phy_info *phy = &hw->phy; 5434 struct net_device *netdev = adapter->netdev; 5435 u32 link; 5436 int i; 5437 u32 connsw; 5438 u16 phy_data, retry_count = 20; 5439 5440 link = igb_has_link(adapter); 5441 5442 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 5443 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5444 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5445 else 5446 link = false; 5447 } 5448 5449 /* Force link down if we have fiber to swap to */ 5450 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5451 if (hw->phy.media_type == e1000_media_type_copper) { 5452 connsw = rd32(E1000_CONNSW); 5453 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 5454 link = 0; 5455 } 5456 } 5457 if (link) { 5458 /* Perform a reset if the media type changed. */ 5459 if (hw->dev_spec._82575.media_changed) { 5460 hw->dev_spec._82575.media_changed = false; 5461 adapter->flags |= IGB_FLAG_MEDIA_RESET; 5462 igb_reset(adapter); 5463 } 5464 /* Cancel scheduled suspend requests. */ 5465 pm_runtime_resume(netdev->dev.parent); 5466 5467 if (!netif_carrier_ok(netdev)) { 5468 u32 ctrl; 5469 5470 hw->mac.ops.get_speed_and_duplex(hw, 5471 &adapter->link_speed, 5472 &adapter->link_duplex); 5473 5474 ctrl = rd32(E1000_CTRL); 5475 /* Links status message must follow this format */ 5476 netdev_info(netdev, 5477 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5478 netdev->name, 5479 adapter->link_speed, 5480 adapter->link_duplex == FULL_DUPLEX ? 5481 "Full" : "Half", 5482 (ctrl & E1000_CTRL_TFCE) && 5483 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 5484 (ctrl & E1000_CTRL_RFCE) ? "RX" : 5485 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 5486 5487 /* disable EEE if enabled */ 5488 if ((adapter->flags & IGB_FLAG_EEE) && 5489 (adapter->link_duplex == HALF_DUPLEX)) { 5490 dev_info(&adapter->pdev->dev, 5491 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 5492 adapter->hw.dev_spec._82575.eee_disable = true; 5493 adapter->flags &= ~IGB_FLAG_EEE; 5494 } 5495 5496 /* check if SmartSpeed worked */ 5497 igb_check_downshift(hw); 5498 if (phy->speed_downgraded) 5499 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5500 5501 /* check for thermal sensor event */ 5502 if (igb_thermal_sensor_event(hw, 5503 E1000_THSTAT_LINK_THROTTLE)) 5504 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 5505 5506 /* adjust timeout factor according to speed/duplex */ 5507 adapter->tx_timeout_factor = 1; 5508 switch (adapter->link_speed) { 5509 case SPEED_10: 5510 adapter->tx_timeout_factor = 14; 5511 break; 5512 case SPEED_100: 5513 /* maybe add some timeout factor ? */ 5514 break; 5515 } 5516 5517 if (adapter->link_speed != SPEED_1000 || 5518 !hw->phy.ops.read_reg) 5519 goto no_wait; 5520 5521 /* wait for Remote receiver status OK */ 5522 retry_read_status: 5523 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS, 5524 &phy_data)) { 5525 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5526 retry_count) { 5527 msleep(100); 5528 retry_count--; 5529 goto retry_read_status; 5530 } else if (!retry_count) { 5531 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 5532 } 5533 } else { 5534 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 5535 } 5536 no_wait: 5537 netif_carrier_on(netdev); 5538 5539 igb_ping_all_vfs(adapter); 5540 igb_check_vf_rate_limit(adapter); 5541 5542 /* link state has changed, schedule phy info update */ 5543 if (!test_bit(__IGB_DOWN, &adapter->state)) 5544 mod_timer(&adapter->phy_info_timer, 5545 round_jiffies(jiffies + 2 * HZ)); 5546 } 5547 } else { 5548 if (netif_carrier_ok(netdev)) { 5549 adapter->link_speed = 0; 5550 adapter->link_duplex = 0; 5551 5552 /* check for thermal sensor event */ 5553 if (igb_thermal_sensor_event(hw, 5554 E1000_THSTAT_PWR_DOWN)) { 5555 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 5556 } 5557 5558 /* Links status message must follow this format */ 5559 netdev_info(netdev, "igb: %s NIC Link is Down\n", 5560 netdev->name); 5561 netif_carrier_off(netdev); 5562 5563 igb_ping_all_vfs(adapter); 5564 5565 /* link state has changed, schedule phy info update */ 5566 if (!test_bit(__IGB_DOWN, &adapter->state)) 5567 mod_timer(&adapter->phy_info_timer, 5568 round_jiffies(jiffies + 2 * HZ)); 5569 5570 /* link is down, time to check for alternate media */ 5571 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5572 igb_check_swap_media(adapter); 5573 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5574 schedule_work(&adapter->reset_task); 5575 /* return immediately */ 5576 return; 5577 } 5578 } 5579 pm_schedule_suspend(netdev->dev.parent, 5580 MSEC_PER_SEC * 5); 5581 5582 /* also check for alternate media here */ 5583 } else if (!netif_carrier_ok(netdev) && 5584 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 5585 igb_check_swap_media(adapter); 5586 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5587 schedule_work(&adapter->reset_task); 5588 /* return immediately */ 5589 return; 5590 } 5591 } 5592 } 5593 5594 spin_lock(&adapter->stats64_lock); 5595 igb_update_stats(adapter); 5596 spin_unlock(&adapter->stats64_lock); 5597 5598 for (i = 0; i < adapter->num_tx_queues; i++) { 5599 struct igb_ring *tx_ring = adapter->tx_ring[i]; 5600 if (!netif_carrier_ok(netdev)) { 5601 /* We've lost link, so the controller stops DMA, 5602 * but we've got queued Tx work that's never going 5603 * to get done, so reset controller to flush Tx. 5604 * (Do the reset outside of interrupt context). 5605 */ 5606 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 5607 adapter->tx_timeout_count++; 5608 schedule_work(&adapter->reset_task); 5609 /* return immediately since reset is imminent */ 5610 return; 5611 } 5612 } 5613 5614 /* Force detection of hung controller every watchdog period */ 5615 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5616 } 5617 5618 /* Cause software interrupt to ensure Rx ring is cleaned */ 5619 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 5620 u32 eics = 0; 5621 5622 for (i = 0; i < adapter->num_q_vectors; i++) 5623 eics |= adapter->q_vector[i]->eims_value; 5624 wr32(E1000_EICS, eics); 5625 } else { 5626 wr32(E1000_ICS, E1000_ICS_RXDMT0); 5627 } 5628 5629 igb_spoof_check(adapter); 5630 igb_ptp_rx_hang(adapter); 5631 igb_ptp_tx_hang(adapter); 5632 5633 /* Check LVMMC register on i350/i354 only */ 5634 if ((adapter->hw.mac.type == e1000_i350) || 5635 (adapter->hw.mac.type == e1000_i354)) 5636 igb_check_lvmmc(adapter); 5637 5638 /* Reset the timer */ 5639 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5640 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 5641 mod_timer(&adapter->watchdog_timer, 5642 round_jiffies(jiffies + HZ)); 5643 else 5644 mod_timer(&adapter->watchdog_timer, 5645 round_jiffies(jiffies + 2 * HZ)); 5646 } 5647 } 5648 5649 enum latency_range { 5650 lowest_latency = 0, 5651 low_latency = 1, 5652 bulk_latency = 2, 5653 latency_invalid = 255 5654 }; 5655 5656 /** 5657 * igb_update_ring_itr - update the dynamic ITR value based on packet size 5658 * @q_vector: pointer to q_vector 5659 * 5660 * Stores a new ITR value based on strictly on packet size. This 5661 * algorithm is less sophisticated than that used in igb_update_itr, 5662 * due to the difficulty of synchronizing statistics across multiple 5663 * receive rings. The divisors and thresholds used by this function 5664 * were determined based on theoretical maximum wire speed and testing 5665 * data, in order to minimize response time while increasing bulk 5666 * throughput. 5667 * This functionality is controlled by ethtool's coalescing settings. 5668 * NOTE: This function is called only when operating in a multiqueue 5669 * receive environment. 5670 **/ 5671 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 5672 { 5673 int new_val = q_vector->itr_val; 5674 int avg_wire_size = 0; 5675 struct igb_adapter *adapter = q_vector->adapter; 5676 unsigned int packets; 5677 5678 /* For non-gigabit speeds, just fix the interrupt rate at 4000 5679 * ints/sec - ITR timer value of 120 ticks. 5680 */ 5681 if (adapter->link_speed != SPEED_1000) { 5682 new_val = IGB_4K_ITR; 5683 goto set_itr_val; 5684 } 5685 5686 packets = q_vector->rx.total_packets; 5687 if (packets) 5688 avg_wire_size = q_vector->rx.total_bytes / packets; 5689 5690 packets = q_vector->tx.total_packets; 5691 if (packets) 5692 avg_wire_size = max_t(u32, avg_wire_size, 5693 q_vector->tx.total_bytes / packets); 5694 5695 /* if avg_wire_size isn't set no work was done */ 5696 if (!avg_wire_size) 5697 goto clear_counts; 5698 5699 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 5700 avg_wire_size += 24; 5701 5702 /* Don't starve jumbo frames */ 5703 avg_wire_size = min(avg_wire_size, 3000); 5704 5705 /* Give a little boost to mid-size frames */ 5706 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 5707 new_val = avg_wire_size / 3; 5708 else 5709 new_val = avg_wire_size / 2; 5710 5711 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5712 if (new_val < IGB_20K_ITR && 5713 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5714 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5715 new_val = IGB_20K_ITR; 5716 5717 set_itr_val: 5718 if (new_val != q_vector->itr_val) { 5719 q_vector->itr_val = new_val; 5720 q_vector->set_itr = 1; 5721 } 5722 clear_counts: 5723 q_vector->rx.total_bytes = 0; 5724 q_vector->rx.total_packets = 0; 5725 q_vector->tx.total_bytes = 0; 5726 q_vector->tx.total_packets = 0; 5727 } 5728 5729 /** 5730 * igb_update_itr - update the dynamic ITR value based on statistics 5731 * @q_vector: pointer to q_vector 5732 * @ring_container: ring info to update the itr for 5733 * 5734 * Stores a new ITR value based on packets and byte 5735 * counts during the last interrupt. The advantage of per interrupt 5736 * computation is faster updates and more accurate ITR for the current 5737 * traffic pattern. Constants in this function were computed 5738 * based on theoretical maximum wire speed and thresholds were set based 5739 * on testing data as well as attempting to minimize response time 5740 * while increasing bulk throughput. 5741 * This functionality is controlled by ethtool's coalescing settings. 5742 * NOTE: These calculations are only valid when operating in a single- 5743 * queue environment. 5744 **/ 5745 static void igb_update_itr(struct igb_q_vector *q_vector, 5746 struct igb_ring_container *ring_container) 5747 { 5748 unsigned int packets = ring_container->total_packets; 5749 unsigned int bytes = ring_container->total_bytes; 5750 u8 itrval = ring_container->itr; 5751 5752 /* no packets, exit with status unchanged */ 5753 if (packets == 0) 5754 return; 5755 5756 switch (itrval) { 5757 case lowest_latency: 5758 /* handle TSO and jumbo frames */ 5759 if (bytes/packets > 8000) 5760 itrval = bulk_latency; 5761 else if ((packets < 5) && (bytes > 512)) 5762 itrval = low_latency; 5763 break; 5764 case low_latency: /* 50 usec aka 20000 ints/s */ 5765 if (bytes > 10000) { 5766 /* this if handles the TSO accounting */ 5767 if (bytes/packets > 8000) 5768 itrval = bulk_latency; 5769 else if ((packets < 10) || ((bytes/packets) > 1200)) 5770 itrval = bulk_latency; 5771 else if ((packets > 35)) 5772 itrval = lowest_latency; 5773 } else if (bytes/packets > 2000) { 5774 itrval = bulk_latency; 5775 } else if (packets <= 2 && bytes < 512) { 5776 itrval = lowest_latency; 5777 } 5778 break; 5779 case bulk_latency: /* 250 usec aka 4000 ints/s */ 5780 if (bytes > 25000) { 5781 if (packets > 35) 5782 itrval = low_latency; 5783 } else if (bytes < 1500) { 5784 itrval = low_latency; 5785 } 5786 break; 5787 } 5788 5789 /* clear work counters since we have the values we need */ 5790 ring_container->total_bytes = 0; 5791 ring_container->total_packets = 0; 5792 5793 /* write updated itr to ring container */ 5794 ring_container->itr = itrval; 5795 } 5796 5797 static void igb_set_itr(struct igb_q_vector *q_vector) 5798 { 5799 struct igb_adapter *adapter = q_vector->adapter; 5800 u32 new_itr = q_vector->itr_val; 5801 u8 current_itr = 0; 5802 5803 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 5804 if (adapter->link_speed != SPEED_1000) { 5805 current_itr = 0; 5806 new_itr = IGB_4K_ITR; 5807 goto set_itr_now; 5808 } 5809 5810 igb_update_itr(q_vector, &q_vector->tx); 5811 igb_update_itr(q_vector, &q_vector->rx); 5812 5813 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 5814 5815 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5816 if (current_itr == lowest_latency && 5817 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5818 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5819 current_itr = low_latency; 5820 5821 switch (current_itr) { 5822 /* counts and packets in update_itr are dependent on these numbers */ 5823 case lowest_latency: 5824 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 5825 break; 5826 case low_latency: 5827 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 5828 break; 5829 case bulk_latency: 5830 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 5831 break; 5832 default: 5833 break; 5834 } 5835 5836 set_itr_now: 5837 if (new_itr != q_vector->itr_val) { 5838 /* this attempts to bias the interrupt rate towards Bulk 5839 * by adding intermediate steps when interrupt rate is 5840 * increasing 5841 */ 5842 new_itr = new_itr > q_vector->itr_val ? 5843 max((new_itr * q_vector->itr_val) / 5844 (new_itr + (q_vector->itr_val >> 2)), 5845 new_itr) : new_itr; 5846 /* Don't write the value here; it resets the adapter's 5847 * internal timer, and causes us to delay far longer than 5848 * we should between interrupts. Instead, we write the ITR 5849 * value at the beginning of the next interrupt so the timing 5850 * ends up being correct. 5851 */ 5852 q_vector->itr_val = new_itr; 5853 q_vector->set_itr = 1; 5854 } 5855 } 5856 5857 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, 5858 struct igb_tx_buffer *first, 5859 u32 vlan_macip_lens, u32 type_tucmd, 5860 u32 mss_l4len_idx) 5861 { 5862 struct e1000_adv_tx_context_desc *context_desc; 5863 u16 i = tx_ring->next_to_use; 5864 struct timespec64 ts; 5865 5866 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 5867 5868 i++; 5869 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 5870 5871 /* set bits to identify this as an advanced context descriptor */ 5872 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 5873 5874 /* For 82575, context index must be unique per ring. */ 5875 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 5876 mss_l4len_idx |= tx_ring->reg_idx << 4; 5877 5878 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 5879 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 5880 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 5881 5882 /* We assume there is always a valid tx time available. Invalid times 5883 * should have been handled by the upper layers. 5884 */ 5885 if (tx_ring->launchtime_enable) { 5886 ts = ktime_to_timespec64(first->skb->tstamp); 5887 skb_txtime_consumed(first->skb); 5888 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32); 5889 } else { 5890 context_desc->seqnum_seed = 0; 5891 } 5892 } 5893 5894 static int igb_tso(struct igb_ring *tx_ring, 5895 struct igb_tx_buffer *first, 5896 u8 *hdr_len) 5897 { 5898 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 5899 struct sk_buff *skb = first->skb; 5900 union { 5901 struct iphdr *v4; 5902 struct ipv6hdr *v6; 5903 unsigned char *hdr; 5904 } ip; 5905 union { 5906 struct tcphdr *tcp; 5907 struct udphdr *udp; 5908 unsigned char *hdr; 5909 } l4; 5910 u32 paylen, l4_offset; 5911 int err; 5912 5913 if (skb->ip_summed != CHECKSUM_PARTIAL) 5914 return 0; 5915 5916 if (!skb_is_gso(skb)) 5917 return 0; 5918 5919 err = skb_cow_head(skb, 0); 5920 if (err < 0) 5921 return err; 5922 5923 ip.hdr = skb_network_header(skb); 5924 l4.hdr = skb_checksum_start(skb); 5925 5926 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 5927 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ? 5928 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP; 5929 5930 /* initialize outer IP header fields */ 5931 if (ip.v4->version == 4) { 5932 unsigned char *csum_start = skb_checksum_start(skb); 5933 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 5934 5935 /* IP header will have to cancel out any data that 5936 * is not a part of the outer IP header 5937 */ 5938 ip.v4->check = csum_fold(csum_partial(trans_start, 5939 csum_start - trans_start, 5940 0)); 5941 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 5942 5943 ip.v4->tot_len = 0; 5944 first->tx_flags |= IGB_TX_FLAGS_TSO | 5945 IGB_TX_FLAGS_CSUM | 5946 IGB_TX_FLAGS_IPV4; 5947 } else { 5948 ip.v6->payload_len = 0; 5949 first->tx_flags |= IGB_TX_FLAGS_TSO | 5950 IGB_TX_FLAGS_CSUM; 5951 } 5952 5953 /* determine offset of inner transport header */ 5954 l4_offset = l4.hdr - skb->data; 5955 5956 /* remove payload length from inner checksum */ 5957 paylen = skb->len - l4_offset; 5958 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) { 5959 /* compute length of segmentation header */ 5960 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 5961 csum_replace_by_diff(&l4.tcp->check, 5962 (__force __wsum)htonl(paylen)); 5963 } else { 5964 /* compute length of segmentation header */ 5965 *hdr_len = sizeof(*l4.udp) + l4_offset; 5966 csum_replace_by_diff(&l4.udp->check, 5967 (__force __wsum)htonl(paylen)); 5968 } 5969 5970 /* update gso size and bytecount with header size */ 5971 first->gso_segs = skb_shinfo(skb)->gso_segs; 5972 first->bytecount += (first->gso_segs - 1) * *hdr_len; 5973 5974 /* MSS L4LEN IDX */ 5975 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 5976 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 5977 5978 /* VLAN MACLEN IPLEN */ 5979 vlan_macip_lens = l4.hdr - ip.hdr; 5980 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 5981 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 5982 5983 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 5984 type_tucmd, mss_l4len_idx); 5985 5986 return 1; 5987 } 5988 5989 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 5990 { 5991 struct sk_buff *skb = first->skb; 5992 u32 vlan_macip_lens = 0; 5993 u32 type_tucmd = 0; 5994 5995 if (skb->ip_summed != CHECKSUM_PARTIAL) { 5996 csum_failed: 5997 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) && 5998 !tx_ring->launchtime_enable) 5999 return; 6000 goto no_csum; 6001 } 6002 6003 switch (skb->csum_offset) { 6004 case offsetof(struct tcphdr, check): 6005 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 6006 fallthrough; 6007 case offsetof(struct udphdr, check): 6008 break; 6009 case offsetof(struct sctphdr, checksum): 6010 /* validate that this is actually an SCTP request */ 6011 if (skb_csum_is_sctp(skb)) { 6012 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 6013 break; 6014 } 6015 fallthrough; 6016 default: 6017 skb_checksum_help(skb); 6018 goto csum_failed; 6019 } 6020 6021 /* update TX checksum flag */ 6022 first->tx_flags |= IGB_TX_FLAGS_CSUM; 6023 vlan_macip_lens = skb_checksum_start_offset(skb) - 6024 skb_network_offset(skb); 6025 no_csum: 6026 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 6027 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 6028 6029 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 6030 } 6031 6032 #define IGB_SET_FLAG(_input, _flag, _result) \ 6033 ((_flag <= _result) ? \ 6034 ((u32)(_input & _flag) * (_result / _flag)) : \ 6035 ((u32)(_input & _flag) / (_flag / _result))) 6036 6037 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 6038 { 6039 /* set type for advanced descriptor with frame checksum insertion */ 6040 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 6041 E1000_ADVTXD_DCMD_DEXT | 6042 E1000_ADVTXD_DCMD_IFCS; 6043 6044 /* set HW vlan bit if vlan is present */ 6045 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 6046 (E1000_ADVTXD_DCMD_VLE)); 6047 6048 /* set segmentation bits for TSO */ 6049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 6050 (E1000_ADVTXD_DCMD_TSE)); 6051 6052 /* set timestamp bit if present */ 6053 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 6054 (E1000_ADVTXD_MAC_TSTAMP)); 6055 6056 /* insert frame checksum */ 6057 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 6058 6059 return cmd_type; 6060 } 6061 6062 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 6063 union e1000_adv_tx_desc *tx_desc, 6064 u32 tx_flags, unsigned int paylen) 6065 { 6066 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 6067 6068 /* 82575 requires a unique index per ring */ 6069 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6070 olinfo_status |= tx_ring->reg_idx << 4; 6071 6072 /* insert L4 checksum */ 6073 olinfo_status |= IGB_SET_FLAG(tx_flags, 6074 IGB_TX_FLAGS_CSUM, 6075 (E1000_TXD_POPTS_TXSM << 8)); 6076 6077 /* insert IPv4 checksum */ 6078 olinfo_status |= IGB_SET_FLAG(tx_flags, 6079 IGB_TX_FLAGS_IPV4, 6080 (E1000_TXD_POPTS_IXSM << 8)); 6081 6082 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6083 } 6084 6085 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6086 { 6087 struct net_device *netdev = tx_ring->netdev; 6088 6089 netif_stop_subqueue(netdev, tx_ring->queue_index); 6090 6091 /* Herbert's original patch had: 6092 * smp_mb__after_netif_stop_queue(); 6093 * but since that doesn't exist yet, just open code it. 6094 */ 6095 smp_mb(); 6096 6097 /* We need to check again in a case another CPU has just 6098 * made room available. 6099 */ 6100 if (igb_desc_unused(tx_ring) < size) 6101 return -EBUSY; 6102 6103 /* A reprieve! */ 6104 netif_wake_subqueue(netdev, tx_ring->queue_index); 6105 6106 u64_stats_update_begin(&tx_ring->tx_syncp2); 6107 tx_ring->tx_stats.restart_queue2++; 6108 u64_stats_update_end(&tx_ring->tx_syncp2); 6109 6110 return 0; 6111 } 6112 6113 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6114 { 6115 if (igb_desc_unused(tx_ring) >= size) 6116 return 0; 6117 return __igb_maybe_stop_tx(tx_ring, size); 6118 } 6119 6120 static int igb_tx_map(struct igb_ring *tx_ring, 6121 struct igb_tx_buffer *first, 6122 const u8 hdr_len) 6123 { 6124 struct sk_buff *skb = first->skb; 6125 struct igb_tx_buffer *tx_buffer; 6126 union e1000_adv_tx_desc *tx_desc; 6127 skb_frag_t *frag; 6128 dma_addr_t dma; 6129 unsigned int data_len, size; 6130 u32 tx_flags = first->tx_flags; 6131 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 6132 u16 i = tx_ring->next_to_use; 6133 6134 tx_desc = IGB_TX_DESC(tx_ring, i); 6135 6136 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 6137 6138 size = skb_headlen(skb); 6139 data_len = skb->data_len; 6140 6141 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 6142 6143 tx_buffer = first; 6144 6145 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 6146 if (dma_mapping_error(tx_ring->dev, dma)) 6147 goto dma_error; 6148 6149 /* record length, and DMA address */ 6150 dma_unmap_len_set(tx_buffer, len, size); 6151 dma_unmap_addr_set(tx_buffer, dma, dma); 6152 6153 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6154 6155 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 6156 tx_desc->read.cmd_type_len = 6157 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 6158 6159 i++; 6160 tx_desc++; 6161 if (i == tx_ring->count) { 6162 tx_desc = IGB_TX_DESC(tx_ring, 0); 6163 i = 0; 6164 } 6165 tx_desc->read.olinfo_status = 0; 6166 6167 dma += IGB_MAX_DATA_PER_TXD; 6168 size -= IGB_MAX_DATA_PER_TXD; 6169 6170 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6171 } 6172 6173 if (likely(!data_len)) 6174 break; 6175 6176 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 6177 6178 i++; 6179 tx_desc++; 6180 if (i == tx_ring->count) { 6181 tx_desc = IGB_TX_DESC(tx_ring, 0); 6182 i = 0; 6183 } 6184 tx_desc->read.olinfo_status = 0; 6185 6186 size = skb_frag_size(frag); 6187 data_len -= size; 6188 6189 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 6190 size, DMA_TO_DEVICE); 6191 6192 tx_buffer = &tx_ring->tx_buffer_info[i]; 6193 } 6194 6195 /* write last descriptor with RS and EOP bits */ 6196 cmd_type |= size | IGB_TXD_DCMD; 6197 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6198 6199 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 6200 6201 /* set the timestamp */ 6202 first->time_stamp = jiffies; 6203 6204 skb_tx_timestamp(skb); 6205 6206 /* Force memory writes to complete before letting h/w know there 6207 * are new descriptors to fetch. (Only applicable for weak-ordered 6208 * memory model archs, such as IA-64). 6209 * 6210 * We also need this memory barrier to make certain all of the 6211 * status bits have been updated before next_to_watch is written. 6212 */ 6213 dma_wmb(); 6214 6215 /* set next_to_watch value indicating a packet is present */ 6216 first->next_to_watch = tx_desc; 6217 6218 i++; 6219 if (i == tx_ring->count) 6220 i = 0; 6221 6222 tx_ring->next_to_use = i; 6223 6224 /* Make sure there is space in the ring for the next send. */ 6225 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6226 6227 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 6228 writel(i, tx_ring->tail); 6229 } 6230 return 0; 6231 6232 dma_error: 6233 dev_err(tx_ring->dev, "TX DMA map failed\n"); 6234 tx_buffer = &tx_ring->tx_buffer_info[i]; 6235 6236 /* clear dma mappings for failed tx_buffer_info map */ 6237 while (tx_buffer != first) { 6238 if (dma_unmap_len(tx_buffer, len)) 6239 dma_unmap_page(tx_ring->dev, 6240 dma_unmap_addr(tx_buffer, dma), 6241 dma_unmap_len(tx_buffer, len), 6242 DMA_TO_DEVICE); 6243 dma_unmap_len_set(tx_buffer, len, 0); 6244 6245 if (i-- == 0) 6246 i += tx_ring->count; 6247 tx_buffer = &tx_ring->tx_buffer_info[i]; 6248 } 6249 6250 if (dma_unmap_len(tx_buffer, len)) 6251 dma_unmap_single(tx_ring->dev, 6252 dma_unmap_addr(tx_buffer, dma), 6253 dma_unmap_len(tx_buffer, len), 6254 DMA_TO_DEVICE); 6255 dma_unmap_len_set(tx_buffer, len, 0); 6256 6257 dev_kfree_skb_any(tx_buffer->skb); 6258 tx_buffer->skb = NULL; 6259 6260 tx_ring->next_to_use = i; 6261 6262 return -1; 6263 } 6264 6265 int igb_xmit_xdp_ring(struct igb_adapter *adapter, 6266 struct igb_ring *tx_ring, 6267 struct xdp_frame *xdpf) 6268 { 6269 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 6270 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 6271 u16 count, i, index = tx_ring->next_to_use; 6272 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index]; 6273 struct igb_tx_buffer *tx_buffer = tx_head; 6274 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index); 6275 u32 len = xdpf->len, cmd_type, olinfo_status; 6276 void *data = xdpf->data; 6277 6278 count = TXD_USE_COUNT(len); 6279 for (i = 0; i < nr_frags; i++) 6280 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 6281 6282 if (igb_maybe_stop_tx(tx_ring, count + 3)) 6283 return IGB_XDP_CONSUMED; 6284 6285 i = 0; 6286 /* record the location of the first descriptor for this packet */ 6287 tx_head->bytecount = xdp_get_frame_len(xdpf); 6288 tx_head->type = IGB_TYPE_XDP; 6289 tx_head->gso_segs = 1; 6290 tx_head->xdpf = xdpf; 6291 6292 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT; 6293 /* 82575 requires a unique index per ring */ 6294 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6295 olinfo_status |= tx_ring->reg_idx << 4; 6296 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6297 6298 for (;;) { 6299 dma_addr_t dma; 6300 6301 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE); 6302 if (dma_mapping_error(tx_ring->dev, dma)) 6303 goto unmap; 6304 6305 /* record length, and DMA address */ 6306 dma_unmap_len_set(tx_buffer, len, len); 6307 dma_unmap_addr_set(tx_buffer, dma, dma); 6308 6309 /* put descriptor type bits */ 6310 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT | 6311 E1000_ADVTXD_DCMD_IFCS | len; 6312 6313 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6314 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6315 6316 tx_buffer->protocol = 0; 6317 6318 if (++index == tx_ring->count) 6319 index = 0; 6320 6321 if (i == nr_frags) 6322 break; 6323 6324 tx_buffer = &tx_ring->tx_buffer_info[index]; 6325 tx_desc = IGB_TX_DESC(tx_ring, index); 6326 tx_desc->read.olinfo_status = 0; 6327 6328 data = skb_frag_address(&sinfo->frags[i]); 6329 len = skb_frag_size(&sinfo->frags[i]); 6330 i++; 6331 } 6332 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD); 6333 6334 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount); 6335 /* set the timestamp */ 6336 tx_head->time_stamp = jiffies; 6337 6338 /* Avoid any potential race with xdp_xmit and cleanup */ 6339 smp_wmb(); 6340 6341 /* set next_to_watch value indicating a packet is present */ 6342 tx_head->next_to_watch = tx_desc; 6343 tx_ring->next_to_use = index; 6344 6345 /* Make sure there is space in the ring for the next send. */ 6346 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6347 6348 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 6349 writel(index, tx_ring->tail); 6350 6351 return IGB_XDP_TX; 6352 6353 unmap: 6354 for (;;) { 6355 tx_buffer = &tx_ring->tx_buffer_info[index]; 6356 if (dma_unmap_len(tx_buffer, len)) 6357 dma_unmap_page(tx_ring->dev, 6358 dma_unmap_addr(tx_buffer, dma), 6359 dma_unmap_len(tx_buffer, len), 6360 DMA_TO_DEVICE); 6361 dma_unmap_len_set(tx_buffer, len, 0); 6362 if (tx_buffer == tx_head) 6363 break; 6364 6365 if (!index) 6366 index += tx_ring->count; 6367 index--; 6368 } 6369 6370 return IGB_XDP_CONSUMED; 6371 } 6372 6373 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 6374 struct igb_ring *tx_ring) 6375 { 6376 struct igb_tx_buffer *first; 6377 int tso; 6378 u32 tx_flags = 0; 6379 unsigned short f; 6380 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 6381 __be16 protocol = vlan_get_protocol(skb); 6382 u8 hdr_len = 0; 6383 6384 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 6385 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 6386 * + 2 desc gap to keep tail from touching head, 6387 * + 1 desc for context descriptor, 6388 * otherwise try next time 6389 */ 6390 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 6391 count += TXD_USE_COUNT(skb_frag_size( 6392 &skb_shinfo(skb)->frags[f])); 6393 6394 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 6395 /* this is a hard error */ 6396 return NETDEV_TX_BUSY; 6397 } 6398 6399 /* record the location of the first descriptor for this packet */ 6400 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 6401 first->type = IGB_TYPE_SKB; 6402 first->skb = skb; 6403 first->bytecount = skb->len; 6404 first->gso_segs = 1; 6405 6406 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 6407 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6408 6409 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 6410 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 6411 &adapter->state)) { 6412 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 6413 tx_flags |= IGB_TX_FLAGS_TSTAMP; 6414 6415 adapter->ptp_tx_skb = skb_get(skb); 6416 adapter->ptp_tx_start = jiffies; 6417 if (adapter->hw.mac.type == e1000_82576) 6418 schedule_work(&adapter->ptp_tx_work); 6419 } else { 6420 adapter->tx_hwtstamp_skipped++; 6421 } 6422 } 6423 6424 if (skb_vlan_tag_present(skb)) { 6425 tx_flags |= IGB_TX_FLAGS_VLAN; 6426 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 6427 } 6428 6429 /* record initial flags and protocol */ 6430 first->tx_flags = tx_flags; 6431 first->protocol = protocol; 6432 6433 tso = igb_tso(tx_ring, first, &hdr_len); 6434 if (tso < 0) 6435 goto out_drop; 6436 else if (!tso) 6437 igb_tx_csum(tx_ring, first); 6438 6439 if (igb_tx_map(tx_ring, first, hdr_len)) 6440 goto cleanup_tx_tstamp; 6441 6442 return NETDEV_TX_OK; 6443 6444 out_drop: 6445 dev_kfree_skb_any(first->skb); 6446 first->skb = NULL; 6447 cleanup_tx_tstamp: 6448 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) { 6449 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6450 6451 dev_kfree_skb_any(adapter->ptp_tx_skb); 6452 adapter->ptp_tx_skb = NULL; 6453 if (adapter->hw.mac.type == e1000_82576) 6454 cancel_work_sync(&adapter->ptp_tx_work); 6455 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 6456 } 6457 6458 return NETDEV_TX_OK; 6459 } 6460 6461 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 6462 struct sk_buff *skb) 6463 { 6464 unsigned int r_idx = skb->queue_mapping; 6465 6466 if (r_idx >= adapter->num_tx_queues) 6467 r_idx = r_idx % adapter->num_tx_queues; 6468 6469 return adapter->tx_ring[r_idx]; 6470 } 6471 6472 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 6473 struct net_device *netdev) 6474 { 6475 struct igb_adapter *adapter = netdev_priv(netdev); 6476 6477 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 6478 * in order to meet this minimum size requirement. 6479 */ 6480 if (skb_put_padto(skb, 17)) 6481 return NETDEV_TX_OK; 6482 6483 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 6484 } 6485 6486 /** 6487 * igb_tx_timeout - Respond to a Tx Hang 6488 * @netdev: network interface device structure 6489 * @txqueue: number of the Tx queue that hung (unused) 6490 **/ 6491 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 6492 { 6493 struct igb_adapter *adapter = netdev_priv(netdev); 6494 struct e1000_hw *hw = &adapter->hw; 6495 6496 /* Do the reset outside of interrupt context */ 6497 adapter->tx_timeout_count++; 6498 6499 if (hw->mac.type >= e1000_82580) 6500 hw->dev_spec._82575.global_device_reset = true; 6501 6502 schedule_work(&adapter->reset_task); 6503 wr32(E1000_EICS, 6504 (adapter->eims_enable_mask & ~adapter->eims_other)); 6505 } 6506 6507 static void igb_reset_task(struct work_struct *work) 6508 { 6509 struct igb_adapter *adapter; 6510 adapter = container_of(work, struct igb_adapter, reset_task); 6511 6512 rtnl_lock(); 6513 /* If we're already down or resetting, just bail */ 6514 if (test_bit(__IGB_DOWN, &adapter->state) || 6515 test_bit(__IGB_RESETTING, &adapter->state)) { 6516 rtnl_unlock(); 6517 return; 6518 } 6519 6520 igb_dump(adapter); 6521 netdev_err(adapter->netdev, "Reset adapter\n"); 6522 igb_reinit_locked(adapter); 6523 rtnl_unlock(); 6524 } 6525 6526 /** 6527 * igb_get_stats64 - Get System Network Statistics 6528 * @netdev: network interface device structure 6529 * @stats: rtnl_link_stats64 pointer 6530 **/ 6531 static void igb_get_stats64(struct net_device *netdev, 6532 struct rtnl_link_stats64 *stats) 6533 { 6534 struct igb_adapter *adapter = netdev_priv(netdev); 6535 6536 spin_lock(&adapter->stats64_lock); 6537 igb_update_stats(adapter); 6538 memcpy(stats, &adapter->stats64, sizeof(*stats)); 6539 spin_unlock(&adapter->stats64_lock); 6540 } 6541 6542 /** 6543 * igb_change_mtu - Change the Maximum Transfer Unit 6544 * @netdev: network interface device structure 6545 * @new_mtu: new value for maximum frame size 6546 * 6547 * Returns 0 on success, negative on failure 6548 **/ 6549 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 6550 { 6551 struct igb_adapter *adapter = netdev_priv(netdev); 6552 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD; 6553 6554 if (adapter->xdp_prog) { 6555 int i; 6556 6557 for (i = 0; i < adapter->num_rx_queues; i++) { 6558 struct igb_ring *ring = adapter->rx_ring[i]; 6559 6560 if (max_frame > igb_rx_bufsz(ring)) { 6561 netdev_warn(adapter->netdev, 6562 "Requested MTU size is not supported with XDP. Max frame size is %d\n", 6563 max_frame); 6564 return -EINVAL; 6565 } 6566 } 6567 } 6568 6569 /* adjust max frame to be at least the size of a standard frame */ 6570 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 6571 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 6572 6573 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 6574 usleep_range(1000, 2000); 6575 6576 /* igb_down has a dependency on max_frame_size */ 6577 adapter->max_frame_size = max_frame; 6578 6579 if (netif_running(netdev)) 6580 igb_down(adapter); 6581 6582 netdev_dbg(netdev, "changing MTU from %d to %d\n", 6583 netdev->mtu, new_mtu); 6584 netdev->mtu = new_mtu; 6585 6586 if (netif_running(netdev)) 6587 igb_up(adapter); 6588 else 6589 igb_reset(adapter); 6590 6591 clear_bit(__IGB_RESETTING, &adapter->state); 6592 6593 return 0; 6594 } 6595 6596 /** 6597 * igb_update_stats - Update the board statistics counters 6598 * @adapter: board private structure 6599 **/ 6600 void igb_update_stats(struct igb_adapter *adapter) 6601 { 6602 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 6603 struct e1000_hw *hw = &adapter->hw; 6604 struct pci_dev *pdev = adapter->pdev; 6605 u32 reg, mpc; 6606 int i; 6607 u64 bytes, packets; 6608 unsigned int start; 6609 u64 _bytes, _packets; 6610 6611 /* Prevent stats update while adapter is being reset, or if the pci 6612 * connection is down. 6613 */ 6614 if (adapter->link_speed == 0) 6615 return; 6616 if (pci_channel_offline(pdev)) 6617 return; 6618 6619 bytes = 0; 6620 packets = 0; 6621 6622 rcu_read_lock(); 6623 for (i = 0; i < adapter->num_rx_queues; i++) { 6624 struct igb_ring *ring = adapter->rx_ring[i]; 6625 u32 rqdpc = rd32(E1000_RQDPC(i)); 6626 if (hw->mac.type >= e1000_i210) 6627 wr32(E1000_RQDPC(i), 0); 6628 6629 if (rqdpc) { 6630 ring->rx_stats.drops += rqdpc; 6631 net_stats->rx_fifo_errors += rqdpc; 6632 } 6633 6634 do { 6635 start = u64_stats_fetch_begin(&ring->rx_syncp); 6636 _bytes = ring->rx_stats.bytes; 6637 _packets = ring->rx_stats.packets; 6638 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 6639 bytes += _bytes; 6640 packets += _packets; 6641 } 6642 6643 net_stats->rx_bytes = bytes; 6644 net_stats->rx_packets = packets; 6645 6646 bytes = 0; 6647 packets = 0; 6648 for (i = 0; i < adapter->num_tx_queues; i++) { 6649 struct igb_ring *ring = adapter->tx_ring[i]; 6650 do { 6651 start = u64_stats_fetch_begin(&ring->tx_syncp); 6652 _bytes = ring->tx_stats.bytes; 6653 _packets = ring->tx_stats.packets; 6654 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 6655 bytes += _bytes; 6656 packets += _packets; 6657 } 6658 net_stats->tx_bytes = bytes; 6659 net_stats->tx_packets = packets; 6660 rcu_read_unlock(); 6661 6662 /* read stats registers */ 6663 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 6664 adapter->stats.gprc += rd32(E1000_GPRC); 6665 adapter->stats.gorc += rd32(E1000_GORCL); 6666 rd32(E1000_GORCH); /* clear GORCL */ 6667 adapter->stats.bprc += rd32(E1000_BPRC); 6668 adapter->stats.mprc += rd32(E1000_MPRC); 6669 adapter->stats.roc += rd32(E1000_ROC); 6670 6671 adapter->stats.prc64 += rd32(E1000_PRC64); 6672 adapter->stats.prc127 += rd32(E1000_PRC127); 6673 adapter->stats.prc255 += rd32(E1000_PRC255); 6674 adapter->stats.prc511 += rd32(E1000_PRC511); 6675 adapter->stats.prc1023 += rd32(E1000_PRC1023); 6676 adapter->stats.prc1522 += rd32(E1000_PRC1522); 6677 adapter->stats.symerrs += rd32(E1000_SYMERRS); 6678 adapter->stats.sec += rd32(E1000_SEC); 6679 6680 mpc = rd32(E1000_MPC); 6681 adapter->stats.mpc += mpc; 6682 net_stats->rx_fifo_errors += mpc; 6683 adapter->stats.scc += rd32(E1000_SCC); 6684 adapter->stats.ecol += rd32(E1000_ECOL); 6685 adapter->stats.mcc += rd32(E1000_MCC); 6686 adapter->stats.latecol += rd32(E1000_LATECOL); 6687 adapter->stats.dc += rd32(E1000_DC); 6688 adapter->stats.rlec += rd32(E1000_RLEC); 6689 adapter->stats.xonrxc += rd32(E1000_XONRXC); 6690 adapter->stats.xontxc += rd32(E1000_XONTXC); 6691 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 6692 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 6693 adapter->stats.fcruc += rd32(E1000_FCRUC); 6694 adapter->stats.gptc += rd32(E1000_GPTC); 6695 adapter->stats.gotc += rd32(E1000_GOTCL); 6696 rd32(E1000_GOTCH); /* clear GOTCL */ 6697 adapter->stats.rnbc += rd32(E1000_RNBC); 6698 adapter->stats.ruc += rd32(E1000_RUC); 6699 adapter->stats.rfc += rd32(E1000_RFC); 6700 adapter->stats.rjc += rd32(E1000_RJC); 6701 adapter->stats.tor += rd32(E1000_TORH); 6702 adapter->stats.tot += rd32(E1000_TOTH); 6703 adapter->stats.tpr += rd32(E1000_TPR); 6704 6705 adapter->stats.ptc64 += rd32(E1000_PTC64); 6706 adapter->stats.ptc127 += rd32(E1000_PTC127); 6707 adapter->stats.ptc255 += rd32(E1000_PTC255); 6708 adapter->stats.ptc511 += rd32(E1000_PTC511); 6709 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 6710 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 6711 6712 adapter->stats.mptc += rd32(E1000_MPTC); 6713 adapter->stats.bptc += rd32(E1000_BPTC); 6714 6715 adapter->stats.tpt += rd32(E1000_TPT); 6716 adapter->stats.colc += rd32(E1000_COLC); 6717 6718 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 6719 /* read internal phy specific stats */ 6720 reg = rd32(E1000_CTRL_EXT); 6721 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 6722 adapter->stats.rxerrc += rd32(E1000_RXERRC); 6723 6724 /* this stat has invalid values on i210/i211 */ 6725 if ((hw->mac.type != e1000_i210) && 6726 (hw->mac.type != e1000_i211)) 6727 adapter->stats.tncrs += rd32(E1000_TNCRS); 6728 } 6729 6730 adapter->stats.tsctc += rd32(E1000_TSCTC); 6731 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 6732 6733 adapter->stats.iac += rd32(E1000_IAC); 6734 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 6735 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 6736 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 6737 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 6738 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 6739 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 6740 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 6741 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 6742 6743 /* Fill out the OS statistics structure */ 6744 net_stats->multicast = adapter->stats.mprc; 6745 net_stats->collisions = adapter->stats.colc; 6746 6747 /* Rx Errors */ 6748 6749 /* RLEC on some newer hardware can be incorrect so build 6750 * our own version based on RUC and ROC 6751 */ 6752 net_stats->rx_errors = adapter->stats.rxerrc + 6753 adapter->stats.crcerrs + adapter->stats.algnerrc + 6754 adapter->stats.ruc + adapter->stats.roc + 6755 adapter->stats.cexterr; 6756 net_stats->rx_length_errors = adapter->stats.ruc + 6757 adapter->stats.roc; 6758 net_stats->rx_crc_errors = adapter->stats.crcerrs; 6759 net_stats->rx_frame_errors = adapter->stats.algnerrc; 6760 net_stats->rx_missed_errors = adapter->stats.mpc; 6761 6762 /* Tx Errors */ 6763 net_stats->tx_errors = adapter->stats.ecol + 6764 adapter->stats.latecol; 6765 net_stats->tx_aborted_errors = adapter->stats.ecol; 6766 net_stats->tx_window_errors = adapter->stats.latecol; 6767 net_stats->tx_carrier_errors = adapter->stats.tncrs; 6768 6769 /* Tx Dropped needs to be maintained elsewhere */ 6770 6771 /* Management Stats */ 6772 adapter->stats.mgptc += rd32(E1000_MGTPTC); 6773 adapter->stats.mgprc += rd32(E1000_MGTPRC); 6774 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 6775 6776 /* OS2BMC Stats */ 6777 reg = rd32(E1000_MANC); 6778 if (reg & E1000_MANC_EN_BMC2OS) { 6779 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 6780 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 6781 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 6782 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 6783 } 6784 } 6785 6786 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt) 6787 { 6788 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt); 6789 struct e1000_hw *hw = &adapter->hw; 6790 struct timespec64 ts; 6791 u32 tsauxc; 6792 6793 if (pin < 0 || pin >= IGB_N_PEROUT) 6794 return; 6795 6796 spin_lock(&adapter->tmreg_lock); 6797 6798 if (hw->mac.type == e1000_82580 || 6799 hw->mac.type == e1000_i354 || 6800 hw->mac.type == e1000_i350) { 6801 s64 ns = timespec64_to_ns(&adapter->perout[pin].period); 6802 u32 systiml, systimh, level_mask, level, rem; 6803 u64 systim, now; 6804 6805 /* read systim registers in sequence */ 6806 rd32(E1000_SYSTIMR); 6807 systiml = rd32(E1000_SYSTIML); 6808 systimh = rd32(E1000_SYSTIMH); 6809 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml); 6810 now = timecounter_cyc2time(&adapter->tc, systim); 6811 6812 if (pin < 2) { 6813 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000; 6814 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0; 6815 } else { 6816 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40; 6817 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0; 6818 } 6819 6820 div_u64_rem(now, ns, &rem); 6821 systim = systim + (ns - rem); 6822 6823 /* synchronize pin level with rising/falling edges */ 6824 div_u64_rem(now, ns << 1, &rem); 6825 if (rem < ns) { 6826 /* first half of period */ 6827 if (level == 0) { 6828 /* output is already low, skip this period */ 6829 systim += ns; 6830 pr_notice("igb: periodic output on %s missed falling edge\n", 6831 adapter->sdp_config[pin].name); 6832 } 6833 } else { 6834 /* second half of period */ 6835 if (level == 1) { 6836 /* output is already high, skip this period */ 6837 systim += ns; 6838 pr_notice("igb: periodic output on %s missed rising edge\n", 6839 adapter->sdp_config[pin].name); 6840 } 6841 } 6842 6843 /* for this chip family tv_sec is the upper part of the binary value, 6844 * so not seconds 6845 */ 6846 ts.tv_nsec = (u32)systim; 6847 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF; 6848 } else { 6849 ts = timespec64_add(adapter->perout[pin].start, 6850 adapter->perout[pin].period); 6851 } 6852 6853 /* u32 conversion of tv_sec is safe until y2106 */ 6854 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec); 6855 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec); 6856 tsauxc = rd32(E1000_TSAUXC); 6857 tsauxc |= TSAUXC_EN_TT0; 6858 wr32(E1000_TSAUXC, tsauxc); 6859 adapter->perout[pin].start = ts; 6860 6861 spin_unlock(&adapter->tmreg_lock); 6862 } 6863 6864 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt) 6865 { 6866 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt); 6867 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0; 6868 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0; 6869 struct e1000_hw *hw = &adapter->hw; 6870 struct ptp_clock_event event; 6871 struct timespec64 ts; 6872 6873 if (pin < 0 || pin >= IGB_N_EXTTS) 6874 return; 6875 6876 if (hw->mac.type == e1000_82580 || 6877 hw->mac.type == e1000_i354 || 6878 hw->mac.type == e1000_i350) { 6879 s64 ns = rd32(auxstmpl); 6880 6881 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32; 6882 ts = ns_to_timespec64(ns); 6883 } else { 6884 ts.tv_nsec = rd32(auxstmpl); 6885 ts.tv_sec = rd32(auxstmph); 6886 } 6887 6888 event.type = PTP_CLOCK_EXTTS; 6889 event.index = tsintr_tt; 6890 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec; 6891 ptp_clock_event(adapter->ptp_clock, &event); 6892 } 6893 6894 static void igb_tsync_interrupt(struct igb_adapter *adapter) 6895 { 6896 struct e1000_hw *hw = &adapter->hw; 6897 u32 ack = 0, tsicr = rd32(E1000_TSICR); 6898 struct ptp_clock_event event; 6899 6900 if (tsicr & TSINTR_SYS_WRAP) { 6901 event.type = PTP_CLOCK_PPS; 6902 if (adapter->ptp_caps.pps) 6903 ptp_clock_event(adapter->ptp_clock, &event); 6904 ack |= TSINTR_SYS_WRAP; 6905 } 6906 6907 if (tsicr & E1000_TSICR_TXTS) { 6908 /* retrieve hardware timestamp */ 6909 schedule_work(&adapter->ptp_tx_work); 6910 ack |= E1000_TSICR_TXTS; 6911 } 6912 6913 if (tsicr & TSINTR_TT0) { 6914 igb_perout(adapter, 0); 6915 ack |= TSINTR_TT0; 6916 } 6917 6918 if (tsicr & TSINTR_TT1) { 6919 igb_perout(adapter, 1); 6920 ack |= TSINTR_TT1; 6921 } 6922 6923 if (tsicr & TSINTR_AUTT0) { 6924 igb_extts(adapter, 0); 6925 ack |= TSINTR_AUTT0; 6926 } 6927 6928 if (tsicr & TSINTR_AUTT1) { 6929 igb_extts(adapter, 1); 6930 ack |= TSINTR_AUTT1; 6931 } 6932 6933 /* acknowledge the interrupts */ 6934 wr32(E1000_TSICR, ack); 6935 } 6936 6937 static irqreturn_t igb_msix_other(int irq, void *data) 6938 { 6939 struct igb_adapter *adapter = data; 6940 struct e1000_hw *hw = &adapter->hw; 6941 u32 icr = rd32(E1000_ICR); 6942 /* reading ICR causes bit 31 of EICR to be cleared */ 6943 6944 if (icr & E1000_ICR_DRSTA) 6945 schedule_work(&adapter->reset_task); 6946 6947 if (icr & E1000_ICR_DOUTSYNC) { 6948 /* HW is reporting DMA is out of sync */ 6949 adapter->stats.doosync++; 6950 /* The DMA Out of Sync is also indication of a spoof event 6951 * in IOV mode. Check the Wrong VM Behavior register to 6952 * see if it is really a spoof event. 6953 */ 6954 igb_check_wvbr(adapter); 6955 } 6956 6957 /* Check for a mailbox event */ 6958 if (icr & E1000_ICR_VMMB) 6959 igb_msg_task(adapter); 6960 6961 if (icr & E1000_ICR_LSC) { 6962 hw->mac.get_link_status = 1; 6963 /* guard against interrupt when we're going down */ 6964 if (!test_bit(__IGB_DOWN, &adapter->state)) 6965 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6966 } 6967 6968 if (icr & E1000_ICR_TS) 6969 igb_tsync_interrupt(adapter); 6970 6971 wr32(E1000_EIMS, adapter->eims_other); 6972 6973 return IRQ_HANDLED; 6974 } 6975 6976 static void igb_write_itr(struct igb_q_vector *q_vector) 6977 { 6978 struct igb_adapter *adapter = q_vector->adapter; 6979 u32 itr_val = q_vector->itr_val & 0x7FFC; 6980 6981 if (!q_vector->set_itr) 6982 return; 6983 6984 if (!itr_val) 6985 itr_val = 0x4; 6986 6987 if (adapter->hw.mac.type == e1000_82575) 6988 itr_val |= itr_val << 16; 6989 else 6990 itr_val |= E1000_EITR_CNT_IGNR; 6991 6992 writel(itr_val, q_vector->itr_register); 6993 q_vector->set_itr = 0; 6994 } 6995 6996 static irqreturn_t igb_msix_ring(int irq, void *data) 6997 { 6998 struct igb_q_vector *q_vector = data; 6999 7000 /* Write the ITR value calculated from the previous interrupt. */ 7001 igb_write_itr(q_vector); 7002 7003 napi_schedule(&q_vector->napi); 7004 7005 return IRQ_HANDLED; 7006 } 7007 7008 #ifdef CONFIG_IGB_DCA 7009 static void igb_update_tx_dca(struct igb_adapter *adapter, 7010 struct igb_ring *tx_ring, 7011 int cpu) 7012 { 7013 struct e1000_hw *hw = &adapter->hw; 7014 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 7015 7016 if (hw->mac.type != e1000_82575) 7017 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 7018 7019 /* We can enable relaxed ordering for reads, but not writes when 7020 * DCA is enabled. This is due to a known issue in some chipsets 7021 * which will cause the DCA tag to be cleared. 7022 */ 7023 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 7024 E1000_DCA_TXCTRL_DATA_RRO_EN | 7025 E1000_DCA_TXCTRL_DESC_DCA_EN; 7026 7027 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 7028 } 7029 7030 static void igb_update_rx_dca(struct igb_adapter *adapter, 7031 struct igb_ring *rx_ring, 7032 int cpu) 7033 { 7034 struct e1000_hw *hw = &adapter->hw; 7035 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 7036 7037 if (hw->mac.type != e1000_82575) 7038 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 7039 7040 /* We can enable relaxed ordering for reads, but not writes when 7041 * DCA is enabled. This is due to a known issue in some chipsets 7042 * which will cause the DCA tag to be cleared. 7043 */ 7044 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 7045 E1000_DCA_RXCTRL_DESC_DCA_EN; 7046 7047 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 7048 } 7049 7050 static void igb_update_dca(struct igb_q_vector *q_vector) 7051 { 7052 struct igb_adapter *adapter = q_vector->adapter; 7053 int cpu = get_cpu(); 7054 7055 if (q_vector->cpu == cpu) 7056 goto out_no_update; 7057 7058 if (q_vector->tx.ring) 7059 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 7060 7061 if (q_vector->rx.ring) 7062 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 7063 7064 q_vector->cpu = cpu; 7065 out_no_update: 7066 put_cpu(); 7067 } 7068 7069 static void igb_setup_dca(struct igb_adapter *adapter) 7070 { 7071 struct e1000_hw *hw = &adapter->hw; 7072 int i; 7073 7074 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 7075 return; 7076 7077 /* Always use CB2 mode, difference is masked in the CB driver. */ 7078 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 7079 7080 for (i = 0; i < adapter->num_q_vectors; i++) { 7081 adapter->q_vector[i]->cpu = -1; 7082 igb_update_dca(adapter->q_vector[i]); 7083 } 7084 } 7085 7086 static int __igb_notify_dca(struct device *dev, void *data) 7087 { 7088 struct net_device *netdev = dev_get_drvdata(dev); 7089 struct igb_adapter *adapter = netdev_priv(netdev); 7090 struct pci_dev *pdev = adapter->pdev; 7091 struct e1000_hw *hw = &adapter->hw; 7092 unsigned long event = *(unsigned long *)data; 7093 7094 switch (event) { 7095 case DCA_PROVIDER_ADD: 7096 /* if already enabled, don't do it again */ 7097 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 7098 break; 7099 if (dca_add_requester(dev) == 0) { 7100 adapter->flags |= IGB_FLAG_DCA_ENABLED; 7101 dev_info(&pdev->dev, "DCA enabled\n"); 7102 igb_setup_dca(adapter); 7103 break; 7104 } 7105 fallthrough; /* since DCA is disabled. */ 7106 case DCA_PROVIDER_REMOVE: 7107 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 7108 /* without this a class_device is left 7109 * hanging around in the sysfs model 7110 */ 7111 dca_remove_requester(dev); 7112 dev_info(&pdev->dev, "DCA disabled\n"); 7113 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 7114 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 7115 } 7116 break; 7117 } 7118 7119 return 0; 7120 } 7121 7122 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 7123 void *p) 7124 { 7125 int ret_val; 7126 7127 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 7128 __igb_notify_dca); 7129 7130 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 7131 } 7132 #endif /* CONFIG_IGB_DCA */ 7133 7134 #ifdef CONFIG_PCI_IOV 7135 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 7136 { 7137 unsigned char mac_addr[ETH_ALEN]; 7138 7139 eth_zero_addr(mac_addr); 7140 igb_set_vf_mac(adapter, vf, mac_addr); 7141 7142 /* By default spoof check is enabled for all VFs */ 7143 adapter->vf_data[vf].spoofchk_enabled = true; 7144 7145 /* By default VFs are not trusted */ 7146 adapter->vf_data[vf].trusted = false; 7147 7148 return 0; 7149 } 7150 7151 #endif 7152 static void igb_ping_all_vfs(struct igb_adapter *adapter) 7153 { 7154 struct e1000_hw *hw = &adapter->hw; 7155 u32 ping; 7156 int i; 7157 7158 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 7159 ping = E1000_PF_CONTROL_MSG; 7160 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 7161 ping |= E1000_VT_MSGTYPE_CTS; 7162 igb_write_mbx(hw, &ping, 1, i); 7163 } 7164 } 7165 7166 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7167 { 7168 struct e1000_hw *hw = &adapter->hw; 7169 u32 vmolr = rd32(E1000_VMOLR(vf)); 7170 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7171 7172 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 7173 IGB_VF_FLAG_MULTI_PROMISC); 7174 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7175 7176 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 7177 vmolr |= E1000_VMOLR_MPME; 7178 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 7179 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 7180 } else { 7181 /* if we have hashes and we are clearing a multicast promisc 7182 * flag we need to write the hashes to the MTA as this step 7183 * was previously skipped 7184 */ 7185 if (vf_data->num_vf_mc_hashes > 30) { 7186 vmolr |= E1000_VMOLR_MPME; 7187 } else if (vf_data->num_vf_mc_hashes) { 7188 int j; 7189 7190 vmolr |= E1000_VMOLR_ROMPE; 7191 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7192 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7193 } 7194 } 7195 7196 wr32(E1000_VMOLR(vf), vmolr); 7197 7198 /* there are flags left unprocessed, likely not supported */ 7199 if (*msgbuf & E1000_VT_MSGINFO_MASK) 7200 return -EINVAL; 7201 7202 return 0; 7203 } 7204 7205 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 7206 u32 *msgbuf, u32 vf) 7207 { 7208 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7209 u16 *hash_list = (u16 *)&msgbuf[1]; 7210 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7211 int i; 7212 7213 /* salt away the number of multicast addresses assigned 7214 * to this VF for later use to restore when the PF multi cast 7215 * list changes 7216 */ 7217 vf_data->num_vf_mc_hashes = n; 7218 7219 /* only up to 30 hash values supported */ 7220 if (n > 30) 7221 n = 30; 7222 7223 /* store the hashes for later use */ 7224 for (i = 0; i < n; i++) 7225 vf_data->vf_mc_hashes[i] = hash_list[i]; 7226 7227 /* Flush and reset the mta with the new values */ 7228 igb_set_rx_mode(adapter->netdev); 7229 7230 return 0; 7231 } 7232 7233 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 7234 { 7235 struct e1000_hw *hw = &adapter->hw; 7236 struct vf_data_storage *vf_data; 7237 int i, j; 7238 7239 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7240 u32 vmolr = rd32(E1000_VMOLR(i)); 7241 7242 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7243 7244 vf_data = &adapter->vf_data[i]; 7245 7246 if ((vf_data->num_vf_mc_hashes > 30) || 7247 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 7248 vmolr |= E1000_VMOLR_MPME; 7249 } else if (vf_data->num_vf_mc_hashes) { 7250 vmolr |= E1000_VMOLR_ROMPE; 7251 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7252 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7253 } 7254 wr32(E1000_VMOLR(i), vmolr); 7255 } 7256 } 7257 7258 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 7259 { 7260 struct e1000_hw *hw = &adapter->hw; 7261 u32 pool_mask, vlvf_mask, i; 7262 7263 /* create mask for VF and other pools */ 7264 pool_mask = E1000_VLVF_POOLSEL_MASK; 7265 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf); 7266 7267 /* drop PF from pool bits */ 7268 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT + 7269 adapter->vfs_allocated_count); 7270 7271 /* Find the vlan filter for this id */ 7272 for (i = E1000_VLVF_ARRAY_SIZE; i--;) { 7273 u32 vlvf = rd32(E1000_VLVF(i)); 7274 u32 vfta_mask, vid, vfta; 7275 7276 /* remove the vf from the pool */ 7277 if (!(vlvf & vlvf_mask)) 7278 continue; 7279 7280 /* clear out bit from VLVF */ 7281 vlvf ^= vlvf_mask; 7282 7283 /* if other pools are present, just remove ourselves */ 7284 if (vlvf & pool_mask) 7285 goto update_vlvfb; 7286 7287 /* if PF is present, leave VFTA */ 7288 if (vlvf & E1000_VLVF_POOLSEL_MASK) 7289 goto update_vlvf; 7290 7291 vid = vlvf & E1000_VLVF_VLANID_MASK; 7292 vfta_mask = BIT(vid % 32); 7293 7294 /* clear bit from VFTA */ 7295 vfta = adapter->shadow_vfta[vid / 32]; 7296 if (vfta & vfta_mask) 7297 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask); 7298 update_vlvf: 7299 /* clear pool selection enable */ 7300 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7301 vlvf &= E1000_VLVF_POOLSEL_MASK; 7302 else 7303 vlvf = 0; 7304 update_vlvfb: 7305 /* clear pool bits */ 7306 wr32(E1000_VLVF(i), vlvf); 7307 } 7308 } 7309 7310 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan) 7311 { 7312 u32 vlvf; 7313 int idx; 7314 7315 /* short cut the special case */ 7316 if (vlan == 0) 7317 return 0; 7318 7319 /* Search for the VLAN id in the VLVF entries */ 7320 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) { 7321 vlvf = rd32(E1000_VLVF(idx)); 7322 if ((vlvf & VLAN_VID_MASK) == vlan) 7323 break; 7324 } 7325 7326 return idx; 7327 } 7328 7329 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid) 7330 { 7331 struct e1000_hw *hw = &adapter->hw; 7332 u32 bits, pf_id; 7333 int idx; 7334 7335 idx = igb_find_vlvf_entry(hw, vid); 7336 if (!idx) 7337 return; 7338 7339 /* See if any other pools are set for this VLAN filter 7340 * entry other than the PF. 7341 */ 7342 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 7343 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK; 7344 bits &= rd32(E1000_VLVF(idx)); 7345 7346 /* Disable the filter so this falls into the default pool. */ 7347 if (!bits) { 7348 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7349 wr32(E1000_VLVF(idx), BIT(pf_id)); 7350 else 7351 wr32(E1000_VLVF(idx), 0); 7352 } 7353 } 7354 7355 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid, 7356 bool add, u32 vf) 7357 { 7358 int pf_id = adapter->vfs_allocated_count; 7359 struct e1000_hw *hw = &adapter->hw; 7360 int err; 7361 7362 /* If VLAN overlaps with one the PF is currently monitoring make 7363 * sure that we are able to allocate a VLVF entry. This may be 7364 * redundant but it guarantees PF will maintain visibility to 7365 * the VLAN. 7366 */ 7367 if (add && test_bit(vid, adapter->active_vlans)) { 7368 err = igb_vfta_set(hw, vid, pf_id, true, false); 7369 if (err) 7370 return err; 7371 } 7372 7373 err = igb_vfta_set(hw, vid, vf, add, false); 7374 7375 if (add && !err) 7376 return err; 7377 7378 /* If we failed to add the VF VLAN or we are removing the VF VLAN 7379 * we may need to drop the PF pool bit in order to allow us to free 7380 * up the VLVF resources. 7381 */ 7382 if (test_bit(vid, adapter->active_vlans) || 7383 (adapter->flags & IGB_FLAG_VLAN_PROMISC)) 7384 igb_update_pf_vlvf(adapter, vid); 7385 7386 return err; 7387 } 7388 7389 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 7390 { 7391 struct e1000_hw *hw = &adapter->hw; 7392 7393 if (vid) 7394 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 7395 else 7396 wr32(E1000_VMVIR(vf), 0); 7397 } 7398 7399 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf, 7400 u16 vlan, u8 qos) 7401 { 7402 int err; 7403 7404 err = igb_set_vf_vlan(adapter, vlan, true, vf); 7405 if (err) 7406 return err; 7407 7408 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 7409 igb_set_vmolr(adapter, vf, !vlan); 7410 7411 /* revoke access to previous VLAN */ 7412 if (vlan != adapter->vf_data[vf].pf_vlan) 7413 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7414 false, vf); 7415 7416 adapter->vf_data[vf].pf_vlan = vlan; 7417 adapter->vf_data[vf].pf_qos = qos; 7418 igb_set_vf_vlan_strip(adapter, vf, true); 7419 dev_info(&adapter->pdev->dev, 7420 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 7421 if (test_bit(__IGB_DOWN, &adapter->state)) { 7422 dev_warn(&adapter->pdev->dev, 7423 "The VF VLAN has been set, but the PF device is not up.\n"); 7424 dev_warn(&adapter->pdev->dev, 7425 "Bring the PF device up before attempting to use the VF device.\n"); 7426 } 7427 7428 return err; 7429 } 7430 7431 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf) 7432 { 7433 /* Restore tagless access via VLAN 0 */ 7434 igb_set_vf_vlan(adapter, 0, true, vf); 7435 7436 igb_set_vmvir(adapter, 0, vf); 7437 igb_set_vmolr(adapter, vf, true); 7438 7439 /* Remove any PF assigned VLAN */ 7440 if (adapter->vf_data[vf].pf_vlan) 7441 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7442 false, vf); 7443 7444 adapter->vf_data[vf].pf_vlan = 0; 7445 adapter->vf_data[vf].pf_qos = 0; 7446 igb_set_vf_vlan_strip(adapter, vf, false); 7447 7448 return 0; 7449 } 7450 7451 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, 7452 u16 vlan, u8 qos, __be16 vlan_proto) 7453 { 7454 struct igb_adapter *adapter = netdev_priv(netdev); 7455 7456 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 7457 return -EINVAL; 7458 7459 if (vlan_proto != htons(ETH_P_8021Q)) 7460 return -EPROTONOSUPPORT; 7461 7462 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) : 7463 igb_disable_port_vlan(adapter, vf); 7464 } 7465 7466 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7467 { 7468 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7469 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 7470 int ret; 7471 7472 if (adapter->vf_data[vf].pf_vlan) 7473 return -1; 7474 7475 /* VLAN 0 is a special case, don't allow it to be removed */ 7476 if (!vid && !add) 7477 return 0; 7478 7479 ret = igb_set_vf_vlan(adapter, vid, !!add, vf); 7480 if (!ret) 7481 igb_set_vf_vlan_strip(adapter, vf, !!vid); 7482 return ret; 7483 } 7484 7485 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 7486 { 7487 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7488 7489 /* clear flags - except flag that indicates PF has set the MAC */ 7490 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC; 7491 vf_data->last_nack = jiffies; 7492 7493 /* reset vlans for device */ 7494 igb_clear_vf_vfta(adapter, vf); 7495 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf); 7496 igb_set_vmvir(adapter, vf_data->pf_vlan | 7497 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf); 7498 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan); 7499 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan)); 7500 7501 /* reset multicast table array for vf */ 7502 adapter->vf_data[vf].num_vf_mc_hashes = 0; 7503 7504 /* Flush and reset the mta with the new values */ 7505 igb_set_rx_mode(adapter->netdev); 7506 } 7507 7508 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 7509 { 7510 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7511 7512 /* clear mac address as we were hotplug removed/added */ 7513 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 7514 eth_zero_addr(vf_mac); 7515 7516 /* process remaining reset events */ 7517 igb_vf_reset(adapter, vf); 7518 } 7519 7520 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 7521 { 7522 struct e1000_hw *hw = &adapter->hw; 7523 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7524 u32 reg, msgbuf[3]; 7525 u8 *addr = (u8 *)(&msgbuf[1]); 7526 7527 /* process all the same items cleared in a function level reset */ 7528 igb_vf_reset(adapter, vf); 7529 7530 /* set vf mac address */ 7531 igb_set_vf_mac(adapter, vf, vf_mac); 7532 7533 /* enable transmit and receive for vf */ 7534 reg = rd32(E1000_VFTE); 7535 wr32(E1000_VFTE, reg | BIT(vf)); 7536 reg = rd32(E1000_VFRE); 7537 wr32(E1000_VFRE, reg | BIT(vf)); 7538 7539 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 7540 7541 /* reply to reset with ack and vf mac address */ 7542 if (!is_zero_ether_addr(vf_mac)) { 7543 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 7544 memcpy(addr, vf_mac, ETH_ALEN); 7545 } else { 7546 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; 7547 } 7548 igb_write_mbx(hw, msgbuf, 3, vf); 7549 } 7550 7551 static void igb_flush_mac_table(struct igb_adapter *adapter) 7552 { 7553 struct e1000_hw *hw = &adapter->hw; 7554 int i; 7555 7556 for (i = 0; i < hw->mac.rar_entry_count; i++) { 7557 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE; 7558 eth_zero_addr(adapter->mac_table[i].addr); 7559 adapter->mac_table[i].queue = 0; 7560 igb_rar_set_index(adapter, i); 7561 } 7562 } 7563 7564 static int igb_available_rars(struct igb_adapter *adapter, u8 queue) 7565 { 7566 struct e1000_hw *hw = &adapter->hw; 7567 /* do not count rar entries reserved for VFs MAC addresses */ 7568 int rar_entries = hw->mac.rar_entry_count - 7569 adapter->vfs_allocated_count; 7570 int i, count = 0; 7571 7572 for (i = 0; i < rar_entries; i++) { 7573 /* do not count default entries */ 7574 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) 7575 continue; 7576 7577 /* do not count "in use" entries for different queues */ 7578 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) && 7579 (adapter->mac_table[i].queue != queue)) 7580 continue; 7581 7582 count++; 7583 } 7584 7585 return count; 7586 } 7587 7588 /* Set default MAC address for the PF in the first RAR entry */ 7589 static void igb_set_default_mac_filter(struct igb_adapter *adapter) 7590 { 7591 struct igb_mac_addr *mac_table = &adapter->mac_table[0]; 7592 7593 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 7594 mac_table->queue = adapter->vfs_allocated_count; 7595 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7596 7597 igb_rar_set_index(adapter, 0); 7598 } 7599 7600 /* If the filter to be added and an already existing filter express 7601 * the same address and address type, it should be possible to only 7602 * override the other configurations, for example the queue to steer 7603 * traffic. 7604 */ 7605 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry, 7606 const u8 *addr, const u8 flags) 7607 { 7608 if (!(entry->state & IGB_MAC_STATE_IN_USE)) 7609 return true; 7610 7611 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) != 7612 (flags & IGB_MAC_STATE_SRC_ADDR)) 7613 return false; 7614 7615 if (!ether_addr_equal(addr, entry->addr)) 7616 return false; 7617 7618 return true; 7619 } 7620 7621 /* Add a MAC filter for 'addr' directing matching traffic to 'queue', 7622 * 'flags' is used to indicate what kind of match is made, match is by 7623 * default for the destination address, if matching by source address 7624 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used. 7625 */ 7626 static int igb_add_mac_filter_flags(struct igb_adapter *adapter, 7627 const u8 *addr, const u8 queue, 7628 const u8 flags) 7629 { 7630 struct e1000_hw *hw = &adapter->hw; 7631 int rar_entries = hw->mac.rar_entry_count - 7632 adapter->vfs_allocated_count; 7633 int i; 7634 7635 if (is_zero_ether_addr(addr)) 7636 return -EINVAL; 7637 7638 /* Search for the first empty entry in the MAC table. 7639 * Do not touch entries at the end of the table reserved for the VF MAC 7640 * addresses. 7641 */ 7642 for (i = 0; i < rar_entries; i++) { 7643 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i], 7644 addr, flags)) 7645 continue; 7646 7647 ether_addr_copy(adapter->mac_table[i].addr, addr); 7648 adapter->mac_table[i].queue = queue; 7649 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags; 7650 7651 igb_rar_set_index(adapter, i); 7652 return i; 7653 } 7654 7655 return -ENOSPC; 7656 } 7657 7658 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7659 const u8 queue) 7660 { 7661 return igb_add_mac_filter_flags(adapter, addr, queue, 0); 7662 } 7663 7664 /* Remove a MAC filter for 'addr' directing matching traffic to 7665 * 'queue', 'flags' is used to indicate what kind of match need to be 7666 * removed, match is by default for the destination address, if 7667 * matching by source address is to be removed the flag 7668 * IGB_MAC_STATE_SRC_ADDR can be used. 7669 */ 7670 static int igb_del_mac_filter_flags(struct igb_adapter *adapter, 7671 const u8 *addr, const u8 queue, 7672 const u8 flags) 7673 { 7674 struct e1000_hw *hw = &adapter->hw; 7675 int rar_entries = hw->mac.rar_entry_count - 7676 adapter->vfs_allocated_count; 7677 int i; 7678 7679 if (is_zero_ether_addr(addr)) 7680 return -EINVAL; 7681 7682 /* Search for matching entry in the MAC table based on given address 7683 * and queue. Do not touch entries at the end of the table reserved 7684 * for the VF MAC addresses. 7685 */ 7686 for (i = 0; i < rar_entries; i++) { 7687 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)) 7688 continue; 7689 if ((adapter->mac_table[i].state & flags) != flags) 7690 continue; 7691 if (adapter->mac_table[i].queue != queue) 7692 continue; 7693 if (!ether_addr_equal(adapter->mac_table[i].addr, addr)) 7694 continue; 7695 7696 /* When a filter for the default address is "deleted", 7697 * we return it to its initial configuration 7698 */ 7699 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) { 7700 adapter->mac_table[i].state = 7701 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7702 adapter->mac_table[i].queue = 7703 adapter->vfs_allocated_count; 7704 } else { 7705 adapter->mac_table[i].state = 0; 7706 adapter->mac_table[i].queue = 0; 7707 eth_zero_addr(adapter->mac_table[i].addr); 7708 } 7709 7710 igb_rar_set_index(adapter, i); 7711 return 0; 7712 } 7713 7714 return -ENOENT; 7715 } 7716 7717 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7718 const u8 queue) 7719 { 7720 return igb_del_mac_filter_flags(adapter, addr, queue, 0); 7721 } 7722 7723 int igb_add_mac_steering_filter(struct igb_adapter *adapter, 7724 const u8 *addr, u8 queue, u8 flags) 7725 { 7726 struct e1000_hw *hw = &adapter->hw; 7727 7728 /* In theory, this should be supported on 82575 as well, but 7729 * that part wasn't easily accessible during development. 7730 */ 7731 if (hw->mac.type != e1000_i210) 7732 return -EOPNOTSUPP; 7733 7734 return igb_add_mac_filter_flags(adapter, addr, queue, 7735 IGB_MAC_STATE_QUEUE_STEERING | flags); 7736 } 7737 7738 int igb_del_mac_steering_filter(struct igb_adapter *adapter, 7739 const u8 *addr, u8 queue, u8 flags) 7740 { 7741 return igb_del_mac_filter_flags(adapter, addr, queue, 7742 IGB_MAC_STATE_QUEUE_STEERING | flags); 7743 } 7744 7745 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr) 7746 { 7747 struct igb_adapter *adapter = netdev_priv(netdev); 7748 int ret; 7749 7750 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7751 7752 return min_t(int, ret, 0); 7753 } 7754 7755 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr) 7756 { 7757 struct igb_adapter *adapter = netdev_priv(netdev); 7758 7759 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7760 7761 return 0; 7762 } 7763 7764 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf, 7765 const u32 info, const u8 *addr) 7766 { 7767 struct pci_dev *pdev = adapter->pdev; 7768 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7769 struct list_head *pos; 7770 struct vf_mac_filter *entry = NULL; 7771 int ret = 0; 7772 7773 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7774 !vf_data->trusted) { 7775 dev_warn(&pdev->dev, 7776 "VF %d requested MAC filter but is administratively denied\n", 7777 vf); 7778 return -EINVAL; 7779 } 7780 if (!is_valid_ether_addr(addr)) { 7781 dev_warn(&pdev->dev, 7782 "VF %d attempted to set invalid MAC filter\n", 7783 vf); 7784 return -EINVAL; 7785 } 7786 7787 switch (info) { 7788 case E1000_VF_MAC_FILTER_CLR: 7789 /* remove all unicast MAC filters related to the current VF */ 7790 list_for_each(pos, &adapter->vf_macs.l) { 7791 entry = list_entry(pos, struct vf_mac_filter, l); 7792 if (entry->vf == vf) { 7793 entry->vf = -1; 7794 entry->free = true; 7795 igb_del_mac_filter(adapter, entry->vf_mac, vf); 7796 } 7797 } 7798 break; 7799 case E1000_VF_MAC_FILTER_ADD: 7800 /* try to find empty slot in the list */ 7801 list_for_each(pos, &adapter->vf_macs.l) { 7802 entry = list_entry(pos, struct vf_mac_filter, l); 7803 if (entry->free) 7804 break; 7805 } 7806 7807 if (entry && entry->free) { 7808 entry->free = false; 7809 entry->vf = vf; 7810 ether_addr_copy(entry->vf_mac, addr); 7811 7812 ret = igb_add_mac_filter(adapter, addr, vf); 7813 ret = min_t(int, ret, 0); 7814 } else { 7815 ret = -ENOSPC; 7816 } 7817 7818 if (ret == -ENOSPC) 7819 dev_warn(&pdev->dev, 7820 "VF %d has requested MAC filter but there is no space for it\n", 7821 vf); 7822 break; 7823 default: 7824 ret = -EINVAL; 7825 break; 7826 } 7827 7828 return ret; 7829 } 7830 7831 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 7832 { 7833 struct pci_dev *pdev = adapter->pdev; 7834 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7835 u32 info = msg[0] & E1000_VT_MSGINFO_MASK; 7836 7837 /* The VF MAC Address is stored in a packed array of bytes 7838 * starting at the second 32 bit word of the msg array 7839 */ 7840 unsigned char *addr = (unsigned char *)&msg[1]; 7841 int ret = 0; 7842 7843 if (!info) { 7844 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7845 !vf_data->trusted) { 7846 dev_warn(&pdev->dev, 7847 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 7848 vf); 7849 return -EINVAL; 7850 } 7851 7852 if (!is_valid_ether_addr(addr)) { 7853 dev_warn(&pdev->dev, 7854 "VF %d attempted to set invalid MAC\n", 7855 vf); 7856 return -EINVAL; 7857 } 7858 7859 ret = igb_set_vf_mac(adapter, vf, addr); 7860 } else { 7861 ret = igb_set_vf_mac_filter(adapter, vf, info, addr); 7862 } 7863 7864 return ret; 7865 } 7866 7867 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 7868 { 7869 struct e1000_hw *hw = &adapter->hw; 7870 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7871 u32 msg = E1000_VT_MSGTYPE_NACK; 7872 7873 /* if device isn't clear to send it shouldn't be reading either */ 7874 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 7875 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 7876 igb_write_mbx(hw, &msg, 1, vf); 7877 vf_data->last_nack = jiffies; 7878 } 7879 } 7880 7881 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 7882 { 7883 struct pci_dev *pdev = adapter->pdev; 7884 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 7885 struct e1000_hw *hw = &adapter->hw; 7886 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7887 s32 retval; 7888 7889 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false); 7890 7891 if (retval) { 7892 /* if receive failed revoke VF CTS stats and restart init */ 7893 dev_err(&pdev->dev, "Error receiving message from VF\n"); 7894 vf_data->flags &= ~IGB_VF_FLAG_CTS; 7895 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7896 goto unlock; 7897 goto out; 7898 } 7899 7900 /* this is a message we already processed, do nothing */ 7901 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 7902 goto unlock; 7903 7904 /* until the vf completes a reset it should not be 7905 * allowed to start any configuration. 7906 */ 7907 if (msgbuf[0] == E1000_VF_RESET) { 7908 /* unlocks mailbox */ 7909 igb_vf_reset_msg(adapter, vf); 7910 return; 7911 } 7912 7913 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 7914 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7915 goto unlock; 7916 retval = -1; 7917 goto out; 7918 } 7919 7920 switch ((msgbuf[0] & 0xFFFF)) { 7921 case E1000_VF_SET_MAC_ADDR: 7922 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 7923 break; 7924 case E1000_VF_SET_PROMISC: 7925 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 7926 break; 7927 case E1000_VF_SET_MULTICAST: 7928 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 7929 break; 7930 case E1000_VF_SET_LPE: 7931 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 7932 break; 7933 case E1000_VF_SET_VLAN: 7934 retval = -1; 7935 if (vf_data->pf_vlan) 7936 dev_warn(&pdev->dev, 7937 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 7938 vf); 7939 else 7940 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf); 7941 break; 7942 default: 7943 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 7944 retval = -1; 7945 break; 7946 } 7947 7948 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 7949 out: 7950 /* notify the VF of the results of what it sent us */ 7951 if (retval) 7952 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 7953 else 7954 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 7955 7956 /* unlocks mailbox */ 7957 igb_write_mbx(hw, msgbuf, 1, vf); 7958 return; 7959 7960 unlock: 7961 igb_unlock_mbx(hw, vf); 7962 } 7963 7964 static void igb_msg_task(struct igb_adapter *adapter) 7965 { 7966 struct e1000_hw *hw = &adapter->hw; 7967 unsigned long flags; 7968 u32 vf; 7969 7970 spin_lock_irqsave(&adapter->vfs_lock, flags); 7971 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 7972 /* process any reset requests */ 7973 if (!igb_check_for_rst(hw, vf)) 7974 igb_vf_reset_event(adapter, vf); 7975 7976 /* process any messages pending */ 7977 if (!igb_check_for_msg(hw, vf)) 7978 igb_rcv_msg_from_vf(adapter, vf); 7979 7980 /* process any acks */ 7981 if (!igb_check_for_ack(hw, vf)) 7982 igb_rcv_ack_from_vf(adapter, vf); 7983 } 7984 spin_unlock_irqrestore(&adapter->vfs_lock, flags); 7985 } 7986 7987 /** 7988 * igb_set_uta - Set unicast filter table address 7989 * @adapter: board private structure 7990 * @set: boolean indicating if we are setting or clearing bits 7991 * 7992 * The unicast table address is a register array of 32-bit registers. 7993 * The table is meant to be used in a way similar to how the MTA is used 7994 * however due to certain limitations in the hardware it is necessary to 7995 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 7996 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 7997 **/ 7998 static void igb_set_uta(struct igb_adapter *adapter, bool set) 7999 { 8000 struct e1000_hw *hw = &adapter->hw; 8001 u32 uta = set ? ~0 : 0; 8002 int i; 8003 8004 /* we only need to do this if VMDq is enabled */ 8005 if (!adapter->vfs_allocated_count) 8006 return; 8007 8008 for (i = hw->mac.uta_reg_count; i--;) 8009 array_wr32(E1000_UTA, i, uta); 8010 } 8011 8012 /** 8013 * igb_intr_msi - Interrupt Handler 8014 * @irq: interrupt number 8015 * @data: pointer to a network interface device structure 8016 **/ 8017 static irqreturn_t igb_intr_msi(int irq, void *data) 8018 { 8019 struct igb_adapter *adapter = data; 8020 struct igb_q_vector *q_vector = adapter->q_vector[0]; 8021 struct e1000_hw *hw = &adapter->hw; 8022 /* read ICR disables interrupts using IAM */ 8023 u32 icr = rd32(E1000_ICR); 8024 8025 igb_write_itr(q_vector); 8026 8027 if (icr & E1000_ICR_DRSTA) 8028 schedule_work(&adapter->reset_task); 8029 8030 if (icr & E1000_ICR_DOUTSYNC) { 8031 /* HW is reporting DMA is out of sync */ 8032 adapter->stats.doosync++; 8033 } 8034 8035 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 8036 hw->mac.get_link_status = 1; 8037 if (!test_bit(__IGB_DOWN, &adapter->state)) 8038 mod_timer(&adapter->watchdog_timer, jiffies + 1); 8039 } 8040 8041 if (icr & E1000_ICR_TS) 8042 igb_tsync_interrupt(adapter); 8043 8044 napi_schedule(&q_vector->napi); 8045 8046 return IRQ_HANDLED; 8047 } 8048 8049 /** 8050 * igb_intr - Legacy Interrupt Handler 8051 * @irq: interrupt number 8052 * @data: pointer to a network interface device structure 8053 **/ 8054 static irqreturn_t igb_intr(int irq, void *data) 8055 { 8056 struct igb_adapter *adapter = data; 8057 struct igb_q_vector *q_vector = adapter->q_vector[0]; 8058 struct e1000_hw *hw = &adapter->hw; 8059 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 8060 * need for the IMC write 8061 */ 8062 u32 icr = rd32(E1000_ICR); 8063 8064 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 8065 * not set, then the adapter didn't send an interrupt 8066 */ 8067 if (!(icr & E1000_ICR_INT_ASSERTED)) 8068 return IRQ_NONE; 8069 8070 igb_write_itr(q_vector); 8071 8072 if (icr & E1000_ICR_DRSTA) 8073 schedule_work(&adapter->reset_task); 8074 8075 if (icr & E1000_ICR_DOUTSYNC) { 8076 /* HW is reporting DMA is out of sync */ 8077 adapter->stats.doosync++; 8078 } 8079 8080 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 8081 hw->mac.get_link_status = 1; 8082 /* guard against interrupt when we're going down */ 8083 if (!test_bit(__IGB_DOWN, &adapter->state)) 8084 mod_timer(&adapter->watchdog_timer, jiffies + 1); 8085 } 8086 8087 if (icr & E1000_ICR_TS) 8088 igb_tsync_interrupt(adapter); 8089 8090 napi_schedule(&q_vector->napi); 8091 8092 return IRQ_HANDLED; 8093 } 8094 8095 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 8096 { 8097 struct igb_adapter *adapter = q_vector->adapter; 8098 struct e1000_hw *hw = &adapter->hw; 8099 8100 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 8101 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 8102 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 8103 igb_set_itr(q_vector); 8104 else 8105 igb_update_ring_itr(q_vector); 8106 } 8107 8108 if (!test_bit(__IGB_DOWN, &adapter->state)) { 8109 if (adapter->flags & IGB_FLAG_HAS_MSIX) 8110 wr32(E1000_EIMS, q_vector->eims_value); 8111 else 8112 igb_irq_enable(adapter); 8113 } 8114 } 8115 8116 /** 8117 * igb_poll - NAPI Rx polling callback 8118 * @napi: napi polling structure 8119 * @budget: count of how many packets we should handle 8120 **/ 8121 static int igb_poll(struct napi_struct *napi, int budget) 8122 { 8123 struct igb_q_vector *q_vector = container_of(napi, 8124 struct igb_q_vector, 8125 napi); 8126 bool clean_complete = true; 8127 int work_done = 0; 8128 8129 #ifdef CONFIG_IGB_DCA 8130 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 8131 igb_update_dca(q_vector); 8132 #endif 8133 if (q_vector->tx.ring) 8134 clean_complete = igb_clean_tx_irq(q_vector, budget); 8135 8136 if (q_vector->rx.ring) { 8137 int cleaned = igb_clean_rx_irq(q_vector, budget); 8138 8139 work_done += cleaned; 8140 if (cleaned >= budget) 8141 clean_complete = false; 8142 } 8143 8144 /* If all work not completed, return budget and keep polling */ 8145 if (!clean_complete) 8146 return budget; 8147 8148 /* Exit the polling mode, but don't re-enable interrupts if stack might 8149 * poll us due to busy-polling 8150 */ 8151 if (likely(napi_complete_done(napi, work_done))) 8152 igb_ring_irq_enable(q_vector); 8153 8154 return work_done; 8155 } 8156 8157 /** 8158 * igb_clean_tx_irq - Reclaim resources after transmit completes 8159 * @q_vector: pointer to q_vector containing needed info 8160 * @napi_budget: Used to determine if we are in netpoll 8161 * 8162 * returns true if ring is completely cleaned 8163 **/ 8164 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget) 8165 { 8166 struct igb_adapter *adapter = q_vector->adapter; 8167 struct igb_ring *tx_ring = q_vector->tx.ring; 8168 struct igb_tx_buffer *tx_buffer; 8169 union e1000_adv_tx_desc *tx_desc; 8170 unsigned int total_bytes = 0, total_packets = 0; 8171 unsigned int budget = q_vector->tx.work_limit; 8172 unsigned int i = tx_ring->next_to_clean; 8173 8174 if (test_bit(__IGB_DOWN, &adapter->state)) 8175 return true; 8176 8177 tx_buffer = &tx_ring->tx_buffer_info[i]; 8178 tx_desc = IGB_TX_DESC(tx_ring, i); 8179 i -= tx_ring->count; 8180 8181 do { 8182 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 8183 8184 /* if next_to_watch is not set then there is no work pending */ 8185 if (!eop_desc) 8186 break; 8187 8188 /* prevent any other reads prior to eop_desc */ 8189 smp_rmb(); 8190 8191 /* if DD is not set pending work has not been completed */ 8192 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 8193 break; 8194 8195 /* clear next_to_watch to prevent false hangs */ 8196 tx_buffer->next_to_watch = NULL; 8197 8198 /* update the statistics for this packet */ 8199 total_bytes += tx_buffer->bytecount; 8200 total_packets += tx_buffer->gso_segs; 8201 8202 /* free the skb */ 8203 if (tx_buffer->type == IGB_TYPE_SKB) 8204 napi_consume_skb(tx_buffer->skb, napi_budget); 8205 else 8206 xdp_return_frame(tx_buffer->xdpf); 8207 8208 /* unmap skb header data */ 8209 dma_unmap_single(tx_ring->dev, 8210 dma_unmap_addr(tx_buffer, dma), 8211 dma_unmap_len(tx_buffer, len), 8212 DMA_TO_DEVICE); 8213 8214 /* clear tx_buffer data */ 8215 dma_unmap_len_set(tx_buffer, len, 0); 8216 8217 /* clear last DMA location and unmap remaining buffers */ 8218 while (tx_desc != eop_desc) { 8219 tx_buffer++; 8220 tx_desc++; 8221 i++; 8222 if (unlikely(!i)) { 8223 i -= tx_ring->count; 8224 tx_buffer = tx_ring->tx_buffer_info; 8225 tx_desc = IGB_TX_DESC(tx_ring, 0); 8226 } 8227 8228 /* unmap any remaining paged data */ 8229 if (dma_unmap_len(tx_buffer, len)) { 8230 dma_unmap_page(tx_ring->dev, 8231 dma_unmap_addr(tx_buffer, dma), 8232 dma_unmap_len(tx_buffer, len), 8233 DMA_TO_DEVICE); 8234 dma_unmap_len_set(tx_buffer, len, 0); 8235 } 8236 } 8237 8238 /* move us one more past the eop_desc for start of next pkt */ 8239 tx_buffer++; 8240 tx_desc++; 8241 i++; 8242 if (unlikely(!i)) { 8243 i -= tx_ring->count; 8244 tx_buffer = tx_ring->tx_buffer_info; 8245 tx_desc = IGB_TX_DESC(tx_ring, 0); 8246 } 8247 8248 /* issue prefetch for next Tx descriptor */ 8249 prefetch(tx_desc); 8250 8251 /* update budget accounting */ 8252 budget--; 8253 } while (likely(budget)); 8254 8255 netdev_tx_completed_queue(txring_txq(tx_ring), 8256 total_packets, total_bytes); 8257 i += tx_ring->count; 8258 tx_ring->next_to_clean = i; 8259 u64_stats_update_begin(&tx_ring->tx_syncp); 8260 tx_ring->tx_stats.bytes += total_bytes; 8261 tx_ring->tx_stats.packets += total_packets; 8262 u64_stats_update_end(&tx_ring->tx_syncp); 8263 q_vector->tx.total_bytes += total_bytes; 8264 q_vector->tx.total_packets += total_packets; 8265 8266 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 8267 struct e1000_hw *hw = &adapter->hw; 8268 8269 /* Detect a transmit hang in hardware, this serializes the 8270 * check with the clearing of time_stamp and movement of i 8271 */ 8272 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 8273 if (tx_buffer->next_to_watch && 8274 time_after(jiffies, tx_buffer->time_stamp + 8275 (adapter->tx_timeout_factor * HZ)) && 8276 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 8277 8278 /* detected Tx unit hang */ 8279 dev_err(tx_ring->dev, 8280 "Detected Tx Unit Hang\n" 8281 " Tx Queue <%d>\n" 8282 " TDH <%x>\n" 8283 " TDT <%x>\n" 8284 " next_to_use <%x>\n" 8285 " next_to_clean <%x>\n" 8286 "buffer_info[next_to_clean]\n" 8287 " time_stamp <%lx>\n" 8288 " next_to_watch <%p>\n" 8289 " jiffies <%lx>\n" 8290 " desc.status <%x>\n", 8291 tx_ring->queue_index, 8292 rd32(E1000_TDH(tx_ring->reg_idx)), 8293 readl(tx_ring->tail), 8294 tx_ring->next_to_use, 8295 tx_ring->next_to_clean, 8296 tx_buffer->time_stamp, 8297 tx_buffer->next_to_watch, 8298 jiffies, 8299 tx_buffer->next_to_watch->wb.status); 8300 netif_stop_subqueue(tx_ring->netdev, 8301 tx_ring->queue_index); 8302 8303 /* we are about to reset, no point in enabling stuff */ 8304 return true; 8305 } 8306 } 8307 8308 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 8309 if (unlikely(total_packets && 8310 netif_carrier_ok(tx_ring->netdev) && 8311 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 8312 /* Make sure that anybody stopping the queue after this 8313 * sees the new next_to_clean. 8314 */ 8315 smp_mb(); 8316 if (__netif_subqueue_stopped(tx_ring->netdev, 8317 tx_ring->queue_index) && 8318 !(test_bit(__IGB_DOWN, &adapter->state))) { 8319 netif_wake_subqueue(tx_ring->netdev, 8320 tx_ring->queue_index); 8321 8322 u64_stats_update_begin(&tx_ring->tx_syncp); 8323 tx_ring->tx_stats.restart_queue++; 8324 u64_stats_update_end(&tx_ring->tx_syncp); 8325 } 8326 } 8327 8328 return !!budget; 8329 } 8330 8331 /** 8332 * igb_reuse_rx_page - page flip buffer and store it back on the ring 8333 * @rx_ring: rx descriptor ring to store buffers on 8334 * @old_buff: donor buffer to have page reused 8335 * 8336 * Synchronizes page for reuse by the adapter 8337 **/ 8338 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 8339 struct igb_rx_buffer *old_buff) 8340 { 8341 struct igb_rx_buffer *new_buff; 8342 u16 nta = rx_ring->next_to_alloc; 8343 8344 new_buff = &rx_ring->rx_buffer_info[nta]; 8345 8346 /* update, and store next to alloc */ 8347 nta++; 8348 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 8349 8350 /* Transfer page from old buffer to new buffer. 8351 * Move each member individually to avoid possible store 8352 * forwarding stalls. 8353 */ 8354 new_buff->dma = old_buff->dma; 8355 new_buff->page = old_buff->page; 8356 new_buff->page_offset = old_buff->page_offset; 8357 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 8358 } 8359 8360 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 8361 int rx_buf_pgcnt) 8362 { 8363 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 8364 struct page *page = rx_buffer->page; 8365 8366 /* avoid re-using remote and pfmemalloc pages */ 8367 if (!dev_page_is_reusable(page)) 8368 return false; 8369 8370 #if (PAGE_SIZE < 8192) 8371 /* if we are only owner of page we can reuse it */ 8372 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 8373 return false; 8374 #else 8375 #define IGB_LAST_OFFSET \ 8376 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048) 8377 8378 if (rx_buffer->page_offset > IGB_LAST_OFFSET) 8379 return false; 8380 #endif 8381 8382 /* If we have drained the page fragment pool we need to update 8383 * the pagecnt_bias and page count so that we fully restock the 8384 * number of references the driver holds. 8385 */ 8386 if (unlikely(pagecnt_bias == 1)) { 8387 page_ref_add(page, USHRT_MAX - 1); 8388 rx_buffer->pagecnt_bias = USHRT_MAX; 8389 } 8390 8391 return true; 8392 } 8393 8394 /** 8395 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 8396 * @rx_ring: rx descriptor ring to transact packets on 8397 * @rx_buffer: buffer containing page to add 8398 * @skb: sk_buff to place the data into 8399 * @size: size of buffer to be added 8400 * 8401 * This function will add the data contained in rx_buffer->page to the skb. 8402 **/ 8403 static void igb_add_rx_frag(struct igb_ring *rx_ring, 8404 struct igb_rx_buffer *rx_buffer, 8405 struct sk_buff *skb, 8406 unsigned int size) 8407 { 8408 #if (PAGE_SIZE < 8192) 8409 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8410 #else 8411 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 8412 SKB_DATA_ALIGN(IGB_SKB_PAD + size) : 8413 SKB_DATA_ALIGN(size); 8414 #endif 8415 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 8416 rx_buffer->page_offset, size, truesize); 8417 #if (PAGE_SIZE < 8192) 8418 rx_buffer->page_offset ^= truesize; 8419 #else 8420 rx_buffer->page_offset += truesize; 8421 #endif 8422 } 8423 8424 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring, 8425 struct igb_rx_buffer *rx_buffer, 8426 struct xdp_buff *xdp, 8427 ktime_t timestamp) 8428 { 8429 #if (PAGE_SIZE < 8192) 8430 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8431 #else 8432 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 8433 xdp->data_hard_start); 8434 #endif 8435 unsigned int size = xdp->data_end - xdp->data; 8436 unsigned int headlen; 8437 struct sk_buff *skb; 8438 8439 /* prefetch first cache line of first page */ 8440 net_prefetch(xdp->data); 8441 8442 /* allocate a skb to store the frags */ 8443 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); 8444 if (unlikely(!skb)) 8445 return NULL; 8446 8447 if (timestamp) 8448 skb_hwtstamps(skb)->hwtstamp = timestamp; 8449 8450 /* Determine available headroom for copy */ 8451 headlen = size; 8452 if (headlen > IGB_RX_HDR_LEN) 8453 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN); 8454 8455 /* align pull length to size of long to optimize memcpy performance */ 8456 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long))); 8457 8458 /* update all of the pointers */ 8459 size -= headlen; 8460 if (size) { 8461 skb_add_rx_frag(skb, 0, rx_buffer->page, 8462 (xdp->data + headlen) - page_address(rx_buffer->page), 8463 size, truesize); 8464 #if (PAGE_SIZE < 8192) 8465 rx_buffer->page_offset ^= truesize; 8466 #else 8467 rx_buffer->page_offset += truesize; 8468 #endif 8469 } else { 8470 rx_buffer->pagecnt_bias++; 8471 } 8472 8473 return skb; 8474 } 8475 8476 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring, 8477 struct igb_rx_buffer *rx_buffer, 8478 struct xdp_buff *xdp, 8479 ktime_t timestamp) 8480 { 8481 #if (PAGE_SIZE < 8192) 8482 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8483 #else 8484 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 8485 SKB_DATA_ALIGN(xdp->data_end - 8486 xdp->data_hard_start); 8487 #endif 8488 unsigned int metasize = xdp->data - xdp->data_meta; 8489 struct sk_buff *skb; 8490 8491 /* prefetch first cache line of first page */ 8492 net_prefetch(xdp->data_meta); 8493 8494 /* build an skb around the page buffer */ 8495 skb = napi_build_skb(xdp->data_hard_start, truesize); 8496 if (unlikely(!skb)) 8497 return NULL; 8498 8499 /* update pointers within the skb to store the data */ 8500 skb_reserve(skb, xdp->data - xdp->data_hard_start); 8501 __skb_put(skb, xdp->data_end - xdp->data); 8502 8503 if (metasize) 8504 skb_metadata_set(skb, metasize); 8505 8506 if (timestamp) 8507 skb_hwtstamps(skb)->hwtstamp = timestamp; 8508 8509 /* update buffer offset */ 8510 #if (PAGE_SIZE < 8192) 8511 rx_buffer->page_offset ^= truesize; 8512 #else 8513 rx_buffer->page_offset += truesize; 8514 #endif 8515 8516 return skb; 8517 } 8518 8519 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter, 8520 struct igb_ring *rx_ring, 8521 struct xdp_buff *xdp) 8522 { 8523 int err, result = IGB_XDP_PASS; 8524 struct bpf_prog *xdp_prog; 8525 u32 act; 8526 8527 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 8528 8529 if (!xdp_prog) 8530 goto xdp_out; 8531 8532 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 8533 8534 act = bpf_prog_run_xdp(xdp_prog, xdp); 8535 switch (act) { 8536 case XDP_PASS: 8537 break; 8538 case XDP_TX: 8539 result = igb_xdp_xmit_back(adapter, xdp); 8540 if (result == IGB_XDP_CONSUMED) 8541 goto out_failure; 8542 break; 8543 case XDP_REDIRECT: 8544 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog); 8545 if (err) 8546 goto out_failure; 8547 result = IGB_XDP_REDIR; 8548 break; 8549 default: 8550 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act); 8551 fallthrough; 8552 case XDP_ABORTED: 8553 out_failure: 8554 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 8555 fallthrough; 8556 case XDP_DROP: 8557 result = IGB_XDP_CONSUMED; 8558 break; 8559 } 8560 xdp_out: 8561 return ERR_PTR(-result); 8562 } 8563 8564 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring, 8565 unsigned int size) 8566 { 8567 unsigned int truesize; 8568 8569 #if (PAGE_SIZE < 8192) 8570 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 8571 #else 8572 truesize = ring_uses_build_skb(rx_ring) ? 8573 SKB_DATA_ALIGN(IGB_SKB_PAD + size) + 8574 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 8575 SKB_DATA_ALIGN(size); 8576 #endif 8577 return truesize; 8578 } 8579 8580 static void igb_rx_buffer_flip(struct igb_ring *rx_ring, 8581 struct igb_rx_buffer *rx_buffer, 8582 unsigned int size) 8583 { 8584 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size); 8585 #if (PAGE_SIZE < 8192) 8586 rx_buffer->page_offset ^= truesize; 8587 #else 8588 rx_buffer->page_offset += truesize; 8589 #endif 8590 } 8591 8592 static inline void igb_rx_checksum(struct igb_ring *ring, 8593 union e1000_adv_rx_desc *rx_desc, 8594 struct sk_buff *skb) 8595 { 8596 skb_checksum_none_assert(skb); 8597 8598 /* Ignore Checksum bit is set */ 8599 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 8600 return; 8601 8602 /* Rx checksum disabled via ethtool */ 8603 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 8604 return; 8605 8606 /* TCP/UDP checksum error bit is set */ 8607 if (igb_test_staterr(rx_desc, 8608 E1000_RXDEXT_STATERR_TCPE | 8609 E1000_RXDEXT_STATERR_IPE)) { 8610 /* work around errata with sctp packets where the TCPE aka 8611 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 8612 * packets, (aka let the stack check the crc32c) 8613 */ 8614 if (!((skb->len == 60) && 8615 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 8616 u64_stats_update_begin(&ring->rx_syncp); 8617 ring->rx_stats.csum_err++; 8618 u64_stats_update_end(&ring->rx_syncp); 8619 } 8620 /* let the stack verify checksum errors */ 8621 return; 8622 } 8623 /* It must be a TCP or UDP packet with a valid checksum */ 8624 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 8625 E1000_RXD_STAT_UDPCS)) 8626 skb->ip_summed = CHECKSUM_UNNECESSARY; 8627 8628 dev_dbg(ring->dev, "cksum success: bits %08X\n", 8629 le32_to_cpu(rx_desc->wb.upper.status_error)); 8630 } 8631 8632 static inline void igb_rx_hash(struct igb_ring *ring, 8633 union e1000_adv_rx_desc *rx_desc, 8634 struct sk_buff *skb) 8635 { 8636 if (ring->netdev->features & NETIF_F_RXHASH) 8637 skb_set_hash(skb, 8638 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 8639 PKT_HASH_TYPE_L3); 8640 } 8641 8642 /** 8643 * igb_is_non_eop - process handling of non-EOP buffers 8644 * @rx_ring: Rx ring being processed 8645 * @rx_desc: Rx descriptor for current buffer 8646 * 8647 * This function updates next to clean. If the buffer is an EOP buffer 8648 * this function exits returning false, otherwise it will place the 8649 * sk_buff in the next buffer to be chained and return true indicating 8650 * that this is in fact a non-EOP buffer. 8651 **/ 8652 static bool igb_is_non_eop(struct igb_ring *rx_ring, 8653 union e1000_adv_rx_desc *rx_desc) 8654 { 8655 u32 ntc = rx_ring->next_to_clean + 1; 8656 8657 /* fetch, update, and store next to clean */ 8658 ntc = (ntc < rx_ring->count) ? ntc : 0; 8659 rx_ring->next_to_clean = ntc; 8660 8661 prefetch(IGB_RX_DESC(rx_ring, ntc)); 8662 8663 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 8664 return false; 8665 8666 return true; 8667 } 8668 8669 /** 8670 * igb_cleanup_headers - Correct corrupted or empty headers 8671 * @rx_ring: rx descriptor ring packet is being transacted on 8672 * @rx_desc: pointer to the EOP Rx descriptor 8673 * @skb: pointer to current skb being fixed 8674 * 8675 * Address the case where we are pulling data in on pages only 8676 * and as such no data is present in the skb header. 8677 * 8678 * In addition if skb is not at least 60 bytes we need to pad it so that 8679 * it is large enough to qualify as a valid Ethernet frame. 8680 * 8681 * Returns true if an error was encountered and skb was freed. 8682 **/ 8683 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 8684 union e1000_adv_rx_desc *rx_desc, 8685 struct sk_buff *skb) 8686 { 8687 /* XDP packets use error pointer so abort at this point */ 8688 if (IS_ERR(skb)) 8689 return true; 8690 8691 if (unlikely((igb_test_staterr(rx_desc, 8692 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 8693 struct net_device *netdev = rx_ring->netdev; 8694 if (!(netdev->features & NETIF_F_RXALL)) { 8695 dev_kfree_skb_any(skb); 8696 return true; 8697 } 8698 } 8699 8700 /* if eth_skb_pad returns an error the skb was freed */ 8701 if (eth_skb_pad(skb)) 8702 return true; 8703 8704 return false; 8705 } 8706 8707 /** 8708 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 8709 * @rx_ring: rx descriptor ring packet is being transacted on 8710 * @rx_desc: pointer to the EOP Rx descriptor 8711 * @skb: pointer to current skb being populated 8712 * 8713 * This function checks the ring, descriptor, and packet information in 8714 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 8715 * other fields within the skb. 8716 **/ 8717 static void igb_process_skb_fields(struct igb_ring *rx_ring, 8718 union e1000_adv_rx_desc *rx_desc, 8719 struct sk_buff *skb) 8720 { 8721 struct net_device *dev = rx_ring->netdev; 8722 8723 igb_rx_hash(rx_ring, rx_desc, skb); 8724 8725 igb_rx_checksum(rx_ring, rx_desc, skb); 8726 8727 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 8728 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 8729 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 8730 8731 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 8732 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 8733 u16 vid; 8734 8735 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 8736 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 8737 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 8738 else 8739 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 8740 8741 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 8742 } 8743 8744 skb_record_rx_queue(skb, rx_ring->queue_index); 8745 8746 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 8747 } 8748 8749 static unsigned int igb_rx_offset(struct igb_ring *rx_ring) 8750 { 8751 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0; 8752 } 8753 8754 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring, 8755 const unsigned int size, int *rx_buf_pgcnt) 8756 { 8757 struct igb_rx_buffer *rx_buffer; 8758 8759 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 8760 *rx_buf_pgcnt = 8761 #if (PAGE_SIZE < 8192) 8762 page_count(rx_buffer->page); 8763 #else 8764 0; 8765 #endif 8766 prefetchw(rx_buffer->page); 8767 8768 /* we are reusing so sync this buffer for CPU use */ 8769 dma_sync_single_range_for_cpu(rx_ring->dev, 8770 rx_buffer->dma, 8771 rx_buffer->page_offset, 8772 size, 8773 DMA_FROM_DEVICE); 8774 8775 rx_buffer->pagecnt_bias--; 8776 8777 return rx_buffer; 8778 } 8779 8780 static void igb_put_rx_buffer(struct igb_ring *rx_ring, 8781 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt) 8782 { 8783 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) { 8784 /* hand second half of page back to the ring */ 8785 igb_reuse_rx_page(rx_ring, rx_buffer); 8786 } else { 8787 /* We are not reusing the buffer so unmap it and free 8788 * any references we are holding to it 8789 */ 8790 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 8791 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 8792 IGB_RX_DMA_ATTR); 8793 __page_frag_cache_drain(rx_buffer->page, 8794 rx_buffer->pagecnt_bias); 8795 } 8796 8797 /* clear contents of rx_buffer */ 8798 rx_buffer->page = NULL; 8799 } 8800 8801 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 8802 { 8803 struct igb_adapter *adapter = q_vector->adapter; 8804 struct igb_ring *rx_ring = q_vector->rx.ring; 8805 struct sk_buff *skb = rx_ring->skb; 8806 unsigned int total_bytes = 0, total_packets = 0; 8807 u16 cleaned_count = igb_desc_unused(rx_ring); 8808 unsigned int xdp_xmit = 0; 8809 struct xdp_buff xdp; 8810 u32 frame_sz = 0; 8811 int rx_buf_pgcnt; 8812 8813 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 8814 #if (PAGE_SIZE < 8192) 8815 frame_sz = igb_rx_frame_truesize(rx_ring, 0); 8816 #endif 8817 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 8818 8819 while (likely(total_packets < budget)) { 8820 union e1000_adv_rx_desc *rx_desc; 8821 struct igb_rx_buffer *rx_buffer; 8822 ktime_t timestamp = 0; 8823 int pkt_offset = 0; 8824 unsigned int size; 8825 void *pktbuf; 8826 8827 /* return some buffers to hardware, one at a time is too slow */ 8828 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 8829 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8830 cleaned_count = 0; 8831 } 8832 8833 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 8834 size = le16_to_cpu(rx_desc->wb.upper.length); 8835 if (!size) 8836 break; 8837 8838 /* This memory barrier is needed to keep us from reading 8839 * any other fields out of the rx_desc until we know the 8840 * descriptor has been written back 8841 */ 8842 dma_rmb(); 8843 8844 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt); 8845 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 8846 8847 /* pull rx packet timestamp if available and valid */ 8848 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 8849 int ts_hdr_len; 8850 8851 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector, 8852 pktbuf, ×tamp); 8853 8854 pkt_offset += ts_hdr_len; 8855 size -= ts_hdr_len; 8856 } 8857 8858 /* retrieve a buffer from the ring */ 8859 if (!skb) { 8860 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring); 8861 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring); 8862 8863 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 8864 xdp_buff_clear_frags_flag(&xdp); 8865 #if (PAGE_SIZE > 4096) 8866 /* At larger PAGE_SIZE, frame_sz depend on len size */ 8867 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size); 8868 #endif 8869 skb = igb_run_xdp(adapter, rx_ring, &xdp); 8870 } 8871 8872 if (IS_ERR(skb)) { 8873 unsigned int xdp_res = -PTR_ERR(skb); 8874 8875 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) { 8876 xdp_xmit |= xdp_res; 8877 igb_rx_buffer_flip(rx_ring, rx_buffer, size); 8878 } else { 8879 rx_buffer->pagecnt_bias++; 8880 } 8881 total_packets++; 8882 total_bytes += size; 8883 } else if (skb) 8884 igb_add_rx_frag(rx_ring, rx_buffer, skb, size); 8885 else if (ring_uses_build_skb(rx_ring)) 8886 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, 8887 timestamp); 8888 else 8889 skb = igb_construct_skb(rx_ring, rx_buffer, 8890 &xdp, timestamp); 8891 8892 /* exit if we failed to retrieve a buffer */ 8893 if (!skb) { 8894 rx_ring->rx_stats.alloc_failed++; 8895 rx_buffer->pagecnt_bias++; 8896 break; 8897 } 8898 8899 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt); 8900 cleaned_count++; 8901 8902 /* fetch next buffer in frame if non-eop */ 8903 if (igb_is_non_eop(rx_ring, rx_desc)) 8904 continue; 8905 8906 /* verify the packet layout is correct */ 8907 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 8908 skb = NULL; 8909 continue; 8910 } 8911 8912 /* probably a little skewed due to removing CRC */ 8913 total_bytes += skb->len; 8914 8915 /* populate checksum, timestamp, VLAN, and protocol */ 8916 igb_process_skb_fields(rx_ring, rx_desc, skb); 8917 8918 napi_gro_receive(&q_vector->napi, skb); 8919 8920 /* reset skb pointer */ 8921 skb = NULL; 8922 8923 /* update budget accounting */ 8924 total_packets++; 8925 } 8926 8927 /* place incomplete frames back on ring for completion */ 8928 rx_ring->skb = skb; 8929 8930 if (xdp_xmit & IGB_XDP_REDIR) 8931 xdp_do_flush(); 8932 8933 if (xdp_xmit & IGB_XDP_TX) { 8934 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter); 8935 8936 igb_xdp_ring_update_tail(tx_ring); 8937 } 8938 8939 u64_stats_update_begin(&rx_ring->rx_syncp); 8940 rx_ring->rx_stats.packets += total_packets; 8941 rx_ring->rx_stats.bytes += total_bytes; 8942 u64_stats_update_end(&rx_ring->rx_syncp); 8943 q_vector->rx.total_packets += total_packets; 8944 q_vector->rx.total_bytes += total_bytes; 8945 8946 if (cleaned_count) 8947 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8948 8949 return total_packets; 8950 } 8951 8952 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 8953 struct igb_rx_buffer *bi) 8954 { 8955 struct page *page = bi->page; 8956 dma_addr_t dma; 8957 8958 /* since we are recycling buffers we should seldom need to alloc */ 8959 if (likely(page)) 8960 return true; 8961 8962 /* alloc new page for storage */ 8963 page = dev_alloc_pages(igb_rx_pg_order(rx_ring)); 8964 if (unlikely(!page)) { 8965 rx_ring->rx_stats.alloc_failed++; 8966 return false; 8967 } 8968 8969 /* map page for use */ 8970 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 8971 igb_rx_pg_size(rx_ring), 8972 DMA_FROM_DEVICE, 8973 IGB_RX_DMA_ATTR); 8974 8975 /* if mapping failed free memory back to system since 8976 * there isn't much point in holding memory we can't use 8977 */ 8978 if (dma_mapping_error(rx_ring->dev, dma)) { 8979 __free_pages(page, igb_rx_pg_order(rx_ring)); 8980 8981 rx_ring->rx_stats.alloc_failed++; 8982 return false; 8983 } 8984 8985 bi->dma = dma; 8986 bi->page = page; 8987 bi->page_offset = igb_rx_offset(rx_ring); 8988 page_ref_add(page, USHRT_MAX - 1); 8989 bi->pagecnt_bias = USHRT_MAX; 8990 8991 return true; 8992 } 8993 8994 /** 8995 * igb_alloc_rx_buffers - Replace used receive buffers 8996 * @rx_ring: rx descriptor ring to allocate new receive buffers 8997 * @cleaned_count: count of buffers to allocate 8998 **/ 8999 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 9000 { 9001 union e1000_adv_rx_desc *rx_desc; 9002 struct igb_rx_buffer *bi; 9003 u16 i = rx_ring->next_to_use; 9004 u16 bufsz; 9005 9006 /* nothing to do */ 9007 if (!cleaned_count) 9008 return; 9009 9010 rx_desc = IGB_RX_DESC(rx_ring, i); 9011 bi = &rx_ring->rx_buffer_info[i]; 9012 i -= rx_ring->count; 9013 9014 bufsz = igb_rx_bufsz(rx_ring); 9015 9016 do { 9017 if (!igb_alloc_mapped_page(rx_ring, bi)) 9018 break; 9019 9020 /* sync the buffer for use by the device */ 9021 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 9022 bi->page_offset, bufsz, 9023 DMA_FROM_DEVICE); 9024 9025 /* Refresh the desc even if buffer_addrs didn't change 9026 * because each write-back erases this info. 9027 */ 9028 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 9029 9030 rx_desc++; 9031 bi++; 9032 i++; 9033 if (unlikely(!i)) { 9034 rx_desc = IGB_RX_DESC(rx_ring, 0); 9035 bi = rx_ring->rx_buffer_info; 9036 i -= rx_ring->count; 9037 } 9038 9039 /* clear the length for the next_to_use descriptor */ 9040 rx_desc->wb.upper.length = 0; 9041 9042 cleaned_count--; 9043 } while (cleaned_count); 9044 9045 i += rx_ring->count; 9046 9047 if (rx_ring->next_to_use != i) { 9048 /* record the next descriptor to use */ 9049 rx_ring->next_to_use = i; 9050 9051 /* update next to alloc since we have filled the ring */ 9052 rx_ring->next_to_alloc = i; 9053 9054 /* Force memory writes to complete before letting h/w 9055 * know there are new descriptors to fetch. (Only 9056 * applicable for weak-ordered memory model archs, 9057 * such as IA-64). 9058 */ 9059 dma_wmb(); 9060 writel(i, rx_ring->tail); 9061 } 9062 } 9063 9064 /** 9065 * igb_mii_ioctl - 9066 * @netdev: pointer to netdev struct 9067 * @ifr: interface structure 9068 * @cmd: ioctl command to execute 9069 **/ 9070 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 9071 { 9072 struct igb_adapter *adapter = netdev_priv(netdev); 9073 struct mii_ioctl_data *data = if_mii(ifr); 9074 9075 if (adapter->hw.phy.media_type != e1000_media_type_copper) 9076 return -EOPNOTSUPP; 9077 9078 switch (cmd) { 9079 case SIOCGMIIPHY: 9080 data->phy_id = adapter->hw.phy.addr; 9081 break; 9082 case SIOCGMIIREG: 9083 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 9084 &data->val_out)) 9085 return -EIO; 9086 break; 9087 case SIOCSMIIREG: 9088 default: 9089 return -EOPNOTSUPP; 9090 } 9091 return 0; 9092 } 9093 9094 /** 9095 * igb_ioctl - 9096 * @netdev: pointer to netdev struct 9097 * @ifr: interface structure 9098 * @cmd: ioctl command to execute 9099 **/ 9100 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 9101 { 9102 switch (cmd) { 9103 case SIOCGMIIPHY: 9104 case SIOCGMIIREG: 9105 case SIOCSMIIREG: 9106 return igb_mii_ioctl(netdev, ifr, cmd); 9107 case SIOCGHWTSTAMP: 9108 return igb_ptp_get_ts_config(netdev, ifr); 9109 case SIOCSHWTSTAMP: 9110 return igb_ptp_set_ts_config(netdev, ifr); 9111 default: 9112 return -EOPNOTSUPP; 9113 } 9114 } 9115 9116 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 9117 { 9118 struct igb_adapter *adapter = hw->back; 9119 9120 pci_read_config_word(adapter->pdev, reg, value); 9121 } 9122 9123 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 9124 { 9125 struct igb_adapter *adapter = hw->back; 9126 9127 pci_write_config_word(adapter->pdev, reg, *value); 9128 } 9129 9130 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 9131 { 9132 struct igb_adapter *adapter = hw->back; 9133 9134 if (pcie_capability_read_word(adapter->pdev, reg, value)) 9135 return -E1000_ERR_CONFIG; 9136 9137 return 0; 9138 } 9139 9140 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 9141 { 9142 struct igb_adapter *adapter = hw->back; 9143 9144 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 9145 return -E1000_ERR_CONFIG; 9146 9147 return 0; 9148 } 9149 9150 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 9151 { 9152 struct igb_adapter *adapter = netdev_priv(netdev); 9153 struct e1000_hw *hw = &adapter->hw; 9154 u32 ctrl, rctl; 9155 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 9156 9157 if (enable) { 9158 /* enable VLAN tag insert/strip */ 9159 ctrl = rd32(E1000_CTRL); 9160 ctrl |= E1000_CTRL_VME; 9161 wr32(E1000_CTRL, ctrl); 9162 9163 /* Disable CFI check */ 9164 rctl = rd32(E1000_RCTL); 9165 rctl &= ~E1000_RCTL_CFIEN; 9166 wr32(E1000_RCTL, rctl); 9167 } else { 9168 /* disable VLAN tag insert/strip */ 9169 ctrl = rd32(E1000_CTRL); 9170 ctrl &= ~E1000_CTRL_VME; 9171 wr32(E1000_CTRL, ctrl); 9172 } 9173 9174 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable); 9175 } 9176 9177 static int igb_vlan_rx_add_vid(struct net_device *netdev, 9178 __be16 proto, u16 vid) 9179 { 9180 struct igb_adapter *adapter = netdev_priv(netdev); 9181 struct e1000_hw *hw = &adapter->hw; 9182 int pf_id = adapter->vfs_allocated_count; 9183 9184 /* add the filter since PF can receive vlans w/o entry in vlvf */ 9185 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9186 igb_vfta_set(hw, vid, pf_id, true, !!vid); 9187 9188 set_bit(vid, adapter->active_vlans); 9189 9190 return 0; 9191 } 9192 9193 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 9194 __be16 proto, u16 vid) 9195 { 9196 struct igb_adapter *adapter = netdev_priv(netdev); 9197 int pf_id = adapter->vfs_allocated_count; 9198 struct e1000_hw *hw = &adapter->hw; 9199 9200 /* remove VID from filter table */ 9201 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9202 igb_vfta_set(hw, vid, pf_id, false, true); 9203 9204 clear_bit(vid, adapter->active_vlans); 9205 9206 return 0; 9207 } 9208 9209 static void igb_restore_vlan(struct igb_adapter *adapter) 9210 { 9211 u16 vid = 1; 9212 9213 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 9214 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 9215 9216 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID) 9217 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 9218 } 9219 9220 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 9221 { 9222 struct pci_dev *pdev = adapter->pdev; 9223 struct e1000_mac_info *mac = &adapter->hw.mac; 9224 9225 mac->autoneg = 0; 9226 9227 /* Make sure dplx is at most 1 bit and lsb of speed is not set 9228 * for the switch() below to work 9229 */ 9230 if ((spd & 1) || (dplx & ~1)) 9231 goto err_inval; 9232 9233 /* Fiber NIC's only allow 1000 gbps Full duplex 9234 * and 100Mbps Full duplex for 100baseFx sfp 9235 */ 9236 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 9237 switch (spd + dplx) { 9238 case SPEED_10 + DUPLEX_HALF: 9239 case SPEED_10 + DUPLEX_FULL: 9240 case SPEED_100 + DUPLEX_HALF: 9241 goto err_inval; 9242 default: 9243 break; 9244 } 9245 } 9246 9247 switch (spd + dplx) { 9248 case SPEED_10 + DUPLEX_HALF: 9249 mac->forced_speed_duplex = ADVERTISE_10_HALF; 9250 break; 9251 case SPEED_10 + DUPLEX_FULL: 9252 mac->forced_speed_duplex = ADVERTISE_10_FULL; 9253 break; 9254 case SPEED_100 + DUPLEX_HALF: 9255 mac->forced_speed_duplex = ADVERTISE_100_HALF; 9256 break; 9257 case SPEED_100 + DUPLEX_FULL: 9258 mac->forced_speed_duplex = ADVERTISE_100_FULL; 9259 break; 9260 case SPEED_1000 + DUPLEX_FULL: 9261 mac->autoneg = 1; 9262 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 9263 break; 9264 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 9265 default: 9266 goto err_inval; 9267 } 9268 9269 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 9270 adapter->hw.phy.mdix = AUTO_ALL_MODES; 9271 9272 return 0; 9273 9274 err_inval: 9275 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 9276 return -EINVAL; 9277 } 9278 9279 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 9280 bool runtime) 9281 { 9282 struct net_device *netdev = pci_get_drvdata(pdev); 9283 struct igb_adapter *adapter = netdev_priv(netdev); 9284 struct e1000_hw *hw = &adapter->hw; 9285 u32 ctrl, rctl, status; 9286 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 9287 bool wake; 9288 9289 rtnl_lock(); 9290 netif_device_detach(netdev); 9291 9292 if (netif_running(netdev)) 9293 __igb_close(netdev, true); 9294 9295 igb_ptp_suspend(adapter); 9296 9297 igb_clear_interrupt_scheme(adapter); 9298 rtnl_unlock(); 9299 9300 status = rd32(E1000_STATUS); 9301 if (status & E1000_STATUS_LU) 9302 wufc &= ~E1000_WUFC_LNKC; 9303 9304 if (wufc) { 9305 igb_setup_rctl(adapter); 9306 igb_set_rx_mode(netdev); 9307 9308 /* turn on all-multi mode if wake on multicast is enabled */ 9309 if (wufc & E1000_WUFC_MC) { 9310 rctl = rd32(E1000_RCTL); 9311 rctl |= E1000_RCTL_MPE; 9312 wr32(E1000_RCTL, rctl); 9313 } 9314 9315 ctrl = rd32(E1000_CTRL); 9316 ctrl |= E1000_CTRL_ADVD3WUC; 9317 wr32(E1000_CTRL, ctrl); 9318 9319 /* Allow time for pending master requests to run */ 9320 igb_disable_pcie_master(hw); 9321 9322 wr32(E1000_WUC, E1000_WUC_PME_EN); 9323 wr32(E1000_WUFC, wufc); 9324 } else { 9325 wr32(E1000_WUC, 0); 9326 wr32(E1000_WUFC, 0); 9327 } 9328 9329 wake = wufc || adapter->en_mng_pt; 9330 if (!wake) 9331 igb_power_down_link(adapter); 9332 else 9333 igb_power_up_link(adapter); 9334 9335 if (enable_wake) 9336 *enable_wake = wake; 9337 9338 /* Release control of h/w to f/w. If f/w is AMT enabled, this 9339 * would have already happened in close and is redundant. 9340 */ 9341 igb_release_hw_control(adapter); 9342 9343 pci_disable_device(pdev); 9344 9345 return 0; 9346 } 9347 9348 static void igb_deliver_wake_packet(struct net_device *netdev) 9349 { 9350 struct igb_adapter *adapter = netdev_priv(netdev); 9351 struct e1000_hw *hw = &adapter->hw; 9352 struct sk_buff *skb; 9353 u32 wupl; 9354 9355 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK; 9356 9357 /* WUPM stores only the first 128 bytes of the wake packet. 9358 * Read the packet only if we have the whole thing. 9359 */ 9360 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES)) 9361 return; 9362 9363 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES); 9364 if (!skb) 9365 return; 9366 9367 skb_put(skb, wupl); 9368 9369 /* Ensure reads are 32-bit aligned */ 9370 wupl = roundup(wupl, 4); 9371 9372 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl); 9373 9374 skb->protocol = eth_type_trans(skb, netdev); 9375 netif_rx(skb); 9376 } 9377 9378 static int __maybe_unused igb_suspend(struct device *dev) 9379 { 9380 return __igb_shutdown(to_pci_dev(dev), NULL, 0); 9381 } 9382 9383 static int __maybe_unused __igb_resume(struct device *dev, bool rpm) 9384 { 9385 struct pci_dev *pdev = to_pci_dev(dev); 9386 struct net_device *netdev = pci_get_drvdata(pdev); 9387 struct igb_adapter *adapter = netdev_priv(netdev); 9388 struct e1000_hw *hw = &adapter->hw; 9389 u32 err, val; 9390 9391 pci_set_power_state(pdev, PCI_D0); 9392 pci_restore_state(pdev); 9393 pci_save_state(pdev); 9394 9395 if (!pci_device_is_present(pdev)) 9396 return -ENODEV; 9397 err = pci_enable_device_mem(pdev); 9398 if (err) { 9399 dev_err(&pdev->dev, 9400 "igb: Cannot enable PCI device from suspend\n"); 9401 return err; 9402 } 9403 pci_set_master(pdev); 9404 9405 pci_enable_wake(pdev, PCI_D3hot, 0); 9406 pci_enable_wake(pdev, PCI_D3cold, 0); 9407 9408 if (igb_init_interrupt_scheme(adapter, true)) { 9409 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9410 return -ENOMEM; 9411 } 9412 9413 igb_reset(adapter); 9414 9415 /* let the f/w know that the h/w is now under the control of the 9416 * driver. 9417 */ 9418 igb_get_hw_control(adapter); 9419 9420 val = rd32(E1000_WUS); 9421 if (val & WAKE_PKT_WUS) 9422 igb_deliver_wake_packet(netdev); 9423 9424 wr32(E1000_WUS, ~0); 9425 9426 if (!rpm) 9427 rtnl_lock(); 9428 if (!err && netif_running(netdev)) 9429 err = __igb_open(netdev, true); 9430 9431 if (!err) 9432 netif_device_attach(netdev); 9433 if (!rpm) 9434 rtnl_unlock(); 9435 9436 return err; 9437 } 9438 9439 static int __maybe_unused igb_resume(struct device *dev) 9440 { 9441 return __igb_resume(dev, false); 9442 } 9443 9444 static int __maybe_unused igb_runtime_idle(struct device *dev) 9445 { 9446 struct net_device *netdev = dev_get_drvdata(dev); 9447 struct igb_adapter *adapter = netdev_priv(netdev); 9448 9449 if (!igb_has_link(adapter)) 9450 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 9451 9452 return -EBUSY; 9453 } 9454 9455 static int __maybe_unused igb_runtime_suspend(struct device *dev) 9456 { 9457 return __igb_shutdown(to_pci_dev(dev), NULL, 1); 9458 } 9459 9460 static int __maybe_unused igb_runtime_resume(struct device *dev) 9461 { 9462 return __igb_resume(dev, true); 9463 } 9464 9465 static void igb_shutdown(struct pci_dev *pdev) 9466 { 9467 bool wake; 9468 9469 __igb_shutdown(pdev, &wake, 0); 9470 9471 if (system_state == SYSTEM_POWER_OFF) { 9472 pci_wake_from_d3(pdev, wake); 9473 pci_set_power_state(pdev, PCI_D3hot); 9474 } 9475 } 9476 9477 #ifdef CONFIG_PCI_IOV 9478 static int igb_sriov_reinit(struct pci_dev *dev) 9479 { 9480 struct net_device *netdev = pci_get_drvdata(dev); 9481 struct igb_adapter *adapter = netdev_priv(netdev); 9482 struct pci_dev *pdev = adapter->pdev; 9483 9484 rtnl_lock(); 9485 9486 if (netif_running(netdev)) 9487 igb_close(netdev); 9488 else 9489 igb_reset(adapter); 9490 9491 igb_clear_interrupt_scheme(adapter); 9492 9493 igb_init_queue_configuration(adapter); 9494 9495 if (igb_init_interrupt_scheme(adapter, true)) { 9496 rtnl_unlock(); 9497 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9498 return -ENOMEM; 9499 } 9500 9501 if (netif_running(netdev)) 9502 igb_open(netdev); 9503 9504 rtnl_unlock(); 9505 9506 return 0; 9507 } 9508 9509 static int igb_pci_disable_sriov(struct pci_dev *dev) 9510 { 9511 int err = igb_disable_sriov(dev); 9512 9513 if (!err) 9514 err = igb_sriov_reinit(dev); 9515 9516 return err; 9517 } 9518 9519 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 9520 { 9521 int err = igb_enable_sriov(dev, num_vfs); 9522 9523 if (err) 9524 goto out; 9525 9526 err = igb_sriov_reinit(dev); 9527 if (!err) 9528 return num_vfs; 9529 9530 out: 9531 return err; 9532 } 9533 9534 #endif 9535 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 9536 { 9537 #ifdef CONFIG_PCI_IOV 9538 if (num_vfs == 0) 9539 return igb_pci_disable_sriov(dev); 9540 else 9541 return igb_pci_enable_sriov(dev, num_vfs); 9542 #endif 9543 return 0; 9544 } 9545 9546 /** 9547 * igb_io_error_detected - called when PCI error is detected 9548 * @pdev: Pointer to PCI device 9549 * @state: The current pci connection state 9550 * 9551 * This function is called after a PCI bus error affecting 9552 * this device has been detected. 9553 **/ 9554 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 9555 pci_channel_state_t state) 9556 { 9557 struct net_device *netdev = pci_get_drvdata(pdev); 9558 struct igb_adapter *adapter = netdev_priv(netdev); 9559 9560 netif_device_detach(netdev); 9561 9562 if (state == pci_channel_io_perm_failure) 9563 return PCI_ERS_RESULT_DISCONNECT; 9564 9565 if (netif_running(netdev)) 9566 igb_down(adapter); 9567 pci_disable_device(pdev); 9568 9569 /* Request a slot reset. */ 9570 return PCI_ERS_RESULT_NEED_RESET; 9571 } 9572 9573 /** 9574 * igb_io_slot_reset - called after the pci bus has been reset. 9575 * @pdev: Pointer to PCI device 9576 * 9577 * Restart the card from scratch, as if from a cold-boot. Implementation 9578 * resembles the first-half of the __igb_resume routine. 9579 **/ 9580 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 9581 { 9582 struct net_device *netdev = pci_get_drvdata(pdev); 9583 struct igb_adapter *adapter = netdev_priv(netdev); 9584 struct e1000_hw *hw = &adapter->hw; 9585 pci_ers_result_t result; 9586 9587 if (pci_enable_device_mem(pdev)) { 9588 dev_err(&pdev->dev, 9589 "Cannot re-enable PCI device after reset.\n"); 9590 result = PCI_ERS_RESULT_DISCONNECT; 9591 } else { 9592 pci_set_master(pdev); 9593 pci_restore_state(pdev); 9594 pci_save_state(pdev); 9595 9596 pci_enable_wake(pdev, PCI_D3hot, 0); 9597 pci_enable_wake(pdev, PCI_D3cold, 0); 9598 9599 /* In case of PCI error, adapter lose its HW address 9600 * so we should re-assign it here. 9601 */ 9602 hw->hw_addr = adapter->io_addr; 9603 9604 igb_reset(adapter); 9605 wr32(E1000_WUS, ~0); 9606 result = PCI_ERS_RESULT_RECOVERED; 9607 } 9608 9609 return result; 9610 } 9611 9612 /** 9613 * igb_io_resume - called when traffic can start flowing again. 9614 * @pdev: Pointer to PCI device 9615 * 9616 * This callback is called when the error recovery driver tells us that 9617 * its OK to resume normal operation. Implementation resembles the 9618 * second-half of the __igb_resume routine. 9619 */ 9620 static void igb_io_resume(struct pci_dev *pdev) 9621 { 9622 struct net_device *netdev = pci_get_drvdata(pdev); 9623 struct igb_adapter *adapter = netdev_priv(netdev); 9624 9625 if (netif_running(netdev)) { 9626 if (igb_up(adapter)) { 9627 dev_err(&pdev->dev, "igb_up failed after reset\n"); 9628 return; 9629 } 9630 } 9631 9632 netif_device_attach(netdev); 9633 9634 /* let the f/w know that the h/w is now under the control of the 9635 * driver. 9636 */ 9637 igb_get_hw_control(adapter); 9638 } 9639 9640 /** 9641 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 9642 * @adapter: Pointer to adapter structure 9643 * @index: Index of the RAR entry which need to be synced with MAC table 9644 **/ 9645 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index) 9646 { 9647 struct e1000_hw *hw = &adapter->hw; 9648 u32 rar_low, rar_high; 9649 u8 *addr = adapter->mac_table[index].addr; 9650 9651 /* HW expects these to be in network order when they are plugged 9652 * into the registers which are little endian. In order to guarantee 9653 * that ordering we need to do an leXX_to_cpup here in order to be 9654 * ready for the byteswap that occurs with writel 9655 */ 9656 rar_low = le32_to_cpup((__le32 *)(addr)); 9657 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 9658 9659 /* Indicate to hardware the Address is Valid. */ 9660 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) { 9661 if (is_valid_ether_addr(addr)) 9662 rar_high |= E1000_RAH_AV; 9663 9664 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR) 9665 rar_high |= E1000_RAH_ASEL_SRC_ADDR; 9666 9667 switch (hw->mac.type) { 9668 case e1000_82575: 9669 case e1000_i210: 9670 if (adapter->mac_table[index].state & 9671 IGB_MAC_STATE_QUEUE_STEERING) 9672 rar_high |= E1000_RAH_QSEL_ENABLE; 9673 9674 rar_high |= E1000_RAH_POOL_1 * 9675 adapter->mac_table[index].queue; 9676 break; 9677 default: 9678 rar_high |= E1000_RAH_POOL_1 << 9679 adapter->mac_table[index].queue; 9680 break; 9681 } 9682 } 9683 9684 wr32(E1000_RAL(index), rar_low); 9685 wrfl(); 9686 wr32(E1000_RAH(index), rar_high); 9687 wrfl(); 9688 } 9689 9690 static int igb_set_vf_mac(struct igb_adapter *adapter, 9691 int vf, unsigned char *mac_addr) 9692 { 9693 struct e1000_hw *hw = &adapter->hw; 9694 /* VF MAC addresses start at end of receive addresses and moves 9695 * towards the first, as a result a collision should not be possible 9696 */ 9697 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 9698 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses; 9699 9700 ether_addr_copy(vf_mac_addr, mac_addr); 9701 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr); 9702 adapter->mac_table[rar_entry].queue = vf; 9703 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE; 9704 igb_rar_set_index(adapter, rar_entry); 9705 9706 return 0; 9707 } 9708 9709 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 9710 { 9711 struct igb_adapter *adapter = netdev_priv(netdev); 9712 9713 if (vf >= adapter->vfs_allocated_count) 9714 return -EINVAL; 9715 9716 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC 9717 * flag and allows to overwrite the MAC via VF netdev. This 9718 * is necessary to allow libvirt a way to restore the original 9719 * MAC after unbinding vfio-pci and reloading igbvf after shutting 9720 * down a VM. 9721 */ 9722 if (is_zero_ether_addr(mac)) { 9723 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC; 9724 dev_info(&adapter->pdev->dev, 9725 "remove administratively set MAC on VF %d\n", 9726 vf); 9727 } else if (is_valid_ether_addr(mac)) { 9728 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 9729 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", 9730 mac, vf); 9731 dev_info(&adapter->pdev->dev, 9732 "Reload the VF driver to make this change effective."); 9733 /* Generate additional warning if PF is down */ 9734 if (test_bit(__IGB_DOWN, &adapter->state)) { 9735 dev_warn(&adapter->pdev->dev, 9736 "The VF MAC address has been set, but the PF device is not up.\n"); 9737 dev_warn(&adapter->pdev->dev, 9738 "Bring the PF device up before attempting to use the VF device.\n"); 9739 } 9740 } else { 9741 return -EINVAL; 9742 } 9743 return igb_set_vf_mac(adapter, vf, mac); 9744 } 9745 9746 static int igb_link_mbps(int internal_link_speed) 9747 { 9748 switch (internal_link_speed) { 9749 case SPEED_100: 9750 return 100; 9751 case SPEED_1000: 9752 return 1000; 9753 default: 9754 return 0; 9755 } 9756 } 9757 9758 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 9759 int link_speed) 9760 { 9761 int rf_dec, rf_int; 9762 u32 bcnrc_val; 9763 9764 if (tx_rate != 0) { 9765 /* Calculate the rate factor values to set */ 9766 rf_int = link_speed / tx_rate; 9767 rf_dec = (link_speed - (rf_int * tx_rate)); 9768 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) / 9769 tx_rate; 9770 9771 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 9772 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 9773 E1000_RTTBCNRC_RF_INT_MASK); 9774 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 9775 } else { 9776 bcnrc_val = 0; 9777 } 9778 9779 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 9780 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 9781 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 9782 */ 9783 wr32(E1000_RTTBCNRM, 0x14); 9784 wr32(E1000_RTTBCNRC, bcnrc_val); 9785 } 9786 9787 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 9788 { 9789 int actual_link_speed, i; 9790 bool reset_rate = false; 9791 9792 /* VF TX rate limit was not set or not supported */ 9793 if ((adapter->vf_rate_link_speed == 0) || 9794 (adapter->hw.mac.type != e1000_82576)) 9795 return; 9796 9797 actual_link_speed = igb_link_mbps(adapter->link_speed); 9798 if (actual_link_speed != adapter->vf_rate_link_speed) { 9799 reset_rate = true; 9800 adapter->vf_rate_link_speed = 0; 9801 dev_info(&adapter->pdev->dev, 9802 "Link speed has been changed. VF Transmit rate is disabled\n"); 9803 } 9804 9805 for (i = 0; i < adapter->vfs_allocated_count; i++) { 9806 if (reset_rate) 9807 adapter->vf_data[i].tx_rate = 0; 9808 9809 igb_set_vf_rate_limit(&adapter->hw, i, 9810 adapter->vf_data[i].tx_rate, 9811 actual_link_speed); 9812 } 9813 } 9814 9815 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 9816 int min_tx_rate, int max_tx_rate) 9817 { 9818 struct igb_adapter *adapter = netdev_priv(netdev); 9819 struct e1000_hw *hw = &adapter->hw; 9820 int actual_link_speed; 9821 9822 if (hw->mac.type != e1000_82576) 9823 return -EOPNOTSUPP; 9824 9825 if (min_tx_rate) 9826 return -EINVAL; 9827 9828 actual_link_speed = igb_link_mbps(adapter->link_speed); 9829 if ((vf >= adapter->vfs_allocated_count) || 9830 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 9831 (max_tx_rate < 0) || 9832 (max_tx_rate > actual_link_speed)) 9833 return -EINVAL; 9834 9835 adapter->vf_rate_link_speed = actual_link_speed; 9836 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 9837 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 9838 9839 return 0; 9840 } 9841 9842 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 9843 bool setting) 9844 { 9845 struct igb_adapter *adapter = netdev_priv(netdev); 9846 struct e1000_hw *hw = &adapter->hw; 9847 u32 reg_val, reg_offset; 9848 9849 if (!adapter->vfs_allocated_count) 9850 return -EOPNOTSUPP; 9851 9852 if (vf >= adapter->vfs_allocated_count) 9853 return -EINVAL; 9854 9855 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 9856 reg_val = rd32(reg_offset); 9857 if (setting) 9858 reg_val |= (BIT(vf) | 9859 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9860 else 9861 reg_val &= ~(BIT(vf) | 9862 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9863 wr32(reg_offset, reg_val); 9864 9865 adapter->vf_data[vf].spoofchk_enabled = setting; 9866 return 0; 9867 } 9868 9869 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting) 9870 { 9871 struct igb_adapter *adapter = netdev_priv(netdev); 9872 9873 if (vf >= adapter->vfs_allocated_count) 9874 return -EINVAL; 9875 if (adapter->vf_data[vf].trusted == setting) 9876 return 0; 9877 9878 adapter->vf_data[vf].trusted = setting; 9879 9880 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n", 9881 vf, setting ? "" : "not "); 9882 return 0; 9883 } 9884 9885 static int igb_ndo_get_vf_config(struct net_device *netdev, 9886 int vf, struct ifla_vf_info *ivi) 9887 { 9888 struct igb_adapter *adapter = netdev_priv(netdev); 9889 if (vf >= adapter->vfs_allocated_count) 9890 return -EINVAL; 9891 ivi->vf = vf; 9892 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 9893 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 9894 ivi->min_tx_rate = 0; 9895 ivi->vlan = adapter->vf_data[vf].pf_vlan; 9896 ivi->qos = adapter->vf_data[vf].pf_qos; 9897 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 9898 ivi->trusted = adapter->vf_data[vf].trusted; 9899 return 0; 9900 } 9901 9902 static void igb_vmm_control(struct igb_adapter *adapter) 9903 { 9904 struct e1000_hw *hw = &adapter->hw; 9905 u32 reg; 9906 9907 switch (hw->mac.type) { 9908 case e1000_82575: 9909 case e1000_i210: 9910 case e1000_i211: 9911 case e1000_i354: 9912 default: 9913 /* replication is not supported for 82575 */ 9914 return; 9915 case e1000_82576: 9916 /* notify HW that the MAC is adding vlan tags */ 9917 reg = rd32(E1000_DTXCTL); 9918 reg |= E1000_DTXCTL_VLAN_ADDED; 9919 wr32(E1000_DTXCTL, reg); 9920 fallthrough; 9921 case e1000_82580: 9922 /* enable replication vlan tag stripping */ 9923 reg = rd32(E1000_RPLOLR); 9924 reg |= E1000_RPLOLR_STRVLAN; 9925 wr32(E1000_RPLOLR, reg); 9926 fallthrough; 9927 case e1000_i350: 9928 /* none of the above registers are supported by i350 */ 9929 break; 9930 } 9931 9932 if (adapter->vfs_allocated_count) { 9933 igb_vmdq_set_loopback_pf(hw, true); 9934 igb_vmdq_set_replication_pf(hw, true); 9935 igb_vmdq_set_anti_spoofing_pf(hw, true, 9936 adapter->vfs_allocated_count); 9937 } else { 9938 igb_vmdq_set_loopback_pf(hw, false); 9939 igb_vmdq_set_replication_pf(hw, false); 9940 } 9941 } 9942 9943 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 9944 { 9945 struct e1000_hw *hw = &adapter->hw; 9946 u32 dmac_thr; 9947 u16 hwm; 9948 u32 reg; 9949 9950 if (hw->mac.type > e1000_82580) { 9951 if (adapter->flags & IGB_FLAG_DMAC) { 9952 /* force threshold to 0. */ 9953 wr32(E1000_DMCTXTH, 0); 9954 9955 /* DMA Coalescing high water mark needs to be greater 9956 * than the Rx threshold. Set hwm to PBA - max frame 9957 * size in 16B units, capping it at PBA - 6KB. 9958 */ 9959 hwm = 64 * (pba - 6); 9960 reg = rd32(E1000_FCRTC); 9961 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 9962 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 9963 & E1000_FCRTC_RTH_COAL_MASK); 9964 wr32(E1000_FCRTC, reg); 9965 9966 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 9967 * frame size, capping it at PBA - 10KB. 9968 */ 9969 dmac_thr = pba - 10; 9970 reg = rd32(E1000_DMACR); 9971 reg &= ~E1000_DMACR_DMACTHR_MASK; 9972 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 9973 & E1000_DMACR_DMACTHR_MASK); 9974 9975 /* transition to L0x or L1 if available..*/ 9976 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 9977 9978 /* watchdog timer= +-1000 usec in 32usec intervals */ 9979 reg |= (1000 >> 5); 9980 9981 /* Disable BMC-to-OS Watchdog Enable */ 9982 if (hw->mac.type != e1000_i354) 9983 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 9984 wr32(E1000_DMACR, reg); 9985 9986 /* no lower threshold to disable 9987 * coalescing(smart fifb)-UTRESH=0 9988 */ 9989 wr32(E1000_DMCRTRH, 0); 9990 9991 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 9992 9993 wr32(E1000_DMCTLX, reg); 9994 9995 /* free space in tx packet buffer to wake from 9996 * DMA coal 9997 */ 9998 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 9999 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 10000 } 10001 10002 if (hw->mac.type >= e1000_i210 || 10003 (adapter->flags & IGB_FLAG_DMAC)) { 10004 reg = rd32(E1000_PCIEMISC); 10005 reg |= E1000_PCIEMISC_LX_DECISION; 10006 wr32(E1000_PCIEMISC, reg); 10007 } /* endif adapter->dmac is not disabled */ 10008 } else if (hw->mac.type == e1000_82580) { 10009 u32 reg = rd32(E1000_PCIEMISC); 10010 10011 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 10012 wr32(E1000_DMACR, 0); 10013 } 10014 } 10015 10016 /** 10017 * igb_read_i2c_byte - Reads 8 bit word over I2C 10018 * @hw: pointer to hardware structure 10019 * @byte_offset: byte offset to read 10020 * @dev_addr: device address 10021 * @data: value read 10022 * 10023 * Performs byte read operation over I2C interface at 10024 * a specified device address. 10025 **/ 10026 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 10027 u8 dev_addr, u8 *data) 10028 { 10029 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 10030 struct i2c_client *this_client = adapter->i2c_client; 10031 s32 status; 10032 u16 swfw_mask = 0; 10033 10034 if (!this_client) 10035 return E1000_ERR_I2C; 10036 10037 swfw_mask = E1000_SWFW_PHY0_SM; 10038 10039 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 10040 return E1000_ERR_SWFW_SYNC; 10041 10042 status = i2c_smbus_read_byte_data(this_client, byte_offset); 10043 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 10044 10045 if (status < 0) 10046 return E1000_ERR_I2C; 10047 else { 10048 *data = status; 10049 return 0; 10050 } 10051 } 10052 10053 /** 10054 * igb_write_i2c_byte - Writes 8 bit word over I2C 10055 * @hw: pointer to hardware structure 10056 * @byte_offset: byte offset to write 10057 * @dev_addr: device address 10058 * @data: value to write 10059 * 10060 * Performs byte write operation over I2C interface at 10061 * a specified device address. 10062 **/ 10063 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 10064 u8 dev_addr, u8 data) 10065 { 10066 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 10067 struct i2c_client *this_client = adapter->i2c_client; 10068 s32 status; 10069 u16 swfw_mask = E1000_SWFW_PHY0_SM; 10070 10071 if (!this_client) 10072 return E1000_ERR_I2C; 10073 10074 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 10075 return E1000_ERR_SWFW_SYNC; 10076 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 10077 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 10078 10079 if (status) 10080 return E1000_ERR_I2C; 10081 else 10082 return 0; 10083 10084 } 10085 10086 int igb_reinit_queues(struct igb_adapter *adapter) 10087 { 10088 struct net_device *netdev = adapter->netdev; 10089 struct pci_dev *pdev = adapter->pdev; 10090 int err = 0; 10091 10092 if (netif_running(netdev)) 10093 igb_close(netdev); 10094 10095 igb_reset_interrupt_capability(adapter); 10096 10097 if (igb_init_interrupt_scheme(adapter, true)) { 10098 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 10099 return -ENOMEM; 10100 } 10101 10102 if (netif_running(netdev)) 10103 err = igb_open(netdev); 10104 10105 return err; 10106 } 10107 10108 static void igb_nfc_filter_exit(struct igb_adapter *adapter) 10109 { 10110 struct igb_nfc_filter *rule; 10111 10112 spin_lock(&adapter->nfc_lock); 10113 10114 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 10115 igb_erase_filter(adapter, rule); 10116 10117 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node) 10118 igb_erase_filter(adapter, rule); 10119 10120 spin_unlock(&adapter->nfc_lock); 10121 } 10122 10123 static void igb_nfc_filter_restore(struct igb_adapter *adapter) 10124 { 10125 struct igb_nfc_filter *rule; 10126 10127 spin_lock(&adapter->nfc_lock); 10128 10129 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 10130 igb_add_filter(adapter, rule); 10131 10132 spin_unlock(&adapter->nfc_lock); 10133 } 10134 /* igb_main.c */ 10135