1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58 
59 #define MAJ 5
60 #define MIN 3
61 #define BUILD 0
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 				"Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 				"Copyright (c) 2007-2014 Intel Corporation.";
70 
71 static const struct e1000_info *igb_info_tbl[] = {
72 	[board_82575] = &e1000_82575_info,
73 };
74 
75 static const struct pci_device_id igb_pci_tbl[] = {
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 	/* required last entry */
112 	{0, }
113 };
114 
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116 
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 					  struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static int igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 			  netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 			       int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 				   bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 static int igb_disable_sriov(struct pci_dev *dev);
183 static int igb_pci_disable_sriov(struct pci_dev *dev);
184 #endif
185 
186 #ifdef CONFIG_PM
187 #ifdef CONFIG_PM_SLEEP
188 static int igb_suspend(struct device *);
189 #endif
190 static int igb_resume(struct device *);
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 static const struct dev_pm_ops igb_pm_ops = {
195 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 			igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 	.notifier_call	= igb_notify_dca,
206 	.next		= NULL,
207 	.priority	= 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219 
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 		     pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224 
225 static const struct pci_error_handlers igb_err_handler = {
226 	.error_detected = igb_io_error_detected,
227 	.slot_reset = igb_io_slot_reset,
228 	.resume = igb_io_resume,
229 };
230 
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232 
233 static struct pci_driver igb_driver = {
234 	.name     = igb_driver_name,
235 	.id_table = igb_pci_tbl,
236 	.probe    = igb_probe,
237 	.remove   = igb_remove,
238 #ifdef CONFIG_PM
239 	.driver.pm = &igb_pm_ops,
240 #endif
241 	.shutdown = igb_shutdown,
242 	.sriov_configure = igb_pci_sriov_configure,
243 	.err_handler = &igb_err_handler
244 };
245 
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250 
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255 
256 struct igb_reg_info {
257 	u32 ofs;
258 	char *name;
259 };
260 
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262 
263 	/* General Registers */
264 	{E1000_CTRL, "CTRL"},
265 	{E1000_STATUS, "STATUS"},
266 	{E1000_CTRL_EXT, "CTRL_EXT"},
267 
268 	/* Interrupt Registers */
269 	{E1000_ICR, "ICR"},
270 
271 	/* RX Registers */
272 	{E1000_RCTL, "RCTL"},
273 	{E1000_RDLEN(0), "RDLEN"},
274 	{E1000_RDH(0), "RDH"},
275 	{E1000_RDT(0), "RDT"},
276 	{E1000_RXDCTL(0), "RXDCTL"},
277 	{E1000_RDBAL(0), "RDBAL"},
278 	{E1000_RDBAH(0), "RDBAH"},
279 
280 	/* TX Registers */
281 	{E1000_TCTL, "TCTL"},
282 	{E1000_TDBAL(0), "TDBAL"},
283 	{E1000_TDBAH(0), "TDBAH"},
284 	{E1000_TDLEN(0), "TDLEN"},
285 	{E1000_TDH(0), "TDH"},
286 	{E1000_TDT(0), "TDT"},
287 	{E1000_TXDCTL(0), "TXDCTL"},
288 	{E1000_TDFH, "TDFH"},
289 	{E1000_TDFT, "TDFT"},
290 	{E1000_TDFHS, "TDFHS"},
291 	{E1000_TDFPC, "TDFPC"},
292 
293 	/* List Terminator */
294 	{}
295 };
296 
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 	int n = 0;
301 	char rname[16];
302 	u32 regs[8];
303 
304 	switch (reginfo->ofs) {
305 	case E1000_RDLEN(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RDLEN(n));
308 		break;
309 	case E1000_RDH(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDH(n));
312 		break;
313 	case E1000_RDT(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDT(n));
316 		break;
317 	case E1000_RXDCTL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RXDCTL(n));
320 		break;
321 	case E1000_RDBAL(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_RDBAL(n));
324 		break;
325 	case E1000_RDBAH(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_RDBAH(n));
328 		break;
329 	case E1000_TDBAL(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_RDBAL(n));
332 		break;
333 	case E1000_TDBAH(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDBAH(n));
336 		break;
337 	case E1000_TDLEN(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TDLEN(n));
340 		break;
341 	case E1000_TDH(0):
342 		for (n = 0; n < 4; n++)
343 			regs[n] = rd32(E1000_TDH(n));
344 		break;
345 	case E1000_TDT(0):
346 		for (n = 0; n < 4; n++)
347 			regs[n] = rd32(E1000_TDT(n));
348 		break;
349 	case E1000_TXDCTL(0):
350 		for (n = 0; n < 4; n++)
351 			regs[n] = rd32(E1000_TXDCTL(n));
352 		break;
353 	default:
354 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 		return;
356 	}
357 
358 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 		regs[2], regs[3]);
361 }
362 
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366 	struct net_device *netdev = adapter->netdev;
367 	struct e1000_hw *hw = &adapter->hw;
368 	struct igb_reg_info *reginfo;
369 	struct igb_ring *tx_ring;
370 	union e1000_adv_tx_desc *tx_desc;
371 	struct my_u0 { u64 a; u64 b; } *u0;
372 	struct igb_ring *rx_ring;
373 	union e1000_adv_rx_desc *rx_desc;
374 	u32 staterr;
375 	u16 i, n;
376 
377 	if (!netif_msg_hw(adapter))
378 		return;
379 
380 	/* Print netdevice Info */
381 	if (netdev) {
382 		dev_info(&adapter->pdev->dev, "Net device Info\n");
383 		pr_info("Device Name     state            trans_start      last_rx\n");
384 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 			netdev->state, netdev->trans_start, netdev->last_rx);
386 	}
387 
388 	/* Print Registers */
389 	dev_info(&adapter->pdev->dev, "Register Dump\n");
390 	pr_info(" Register Name   Value\n");
391 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 	     reginfo->name; reginfo++) {
393 		igb_regdump(hw, reginfo);
394 	}
395 
396 	/* Print TX Ring Summary */
397 	if (!netdev || !netif_running(netdev))
398 		goto exit;
399 
400 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402 	for (n = 0; n < adapter->num_tx_queues; n++) {
403 		struct igb_tx_buffer *buffer_info;
404 		tx_ring = adapter->tx_ring[n];
405 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 			(u64)dma_unmap_addr(buffer_info, dma),
409 			dma_unmap_len(buffer_info, len),
410 			buffer_info->next_to_watch,
411 			(u64)buffer_info->time_stamp);
412 	}
413 
414 	/* Print TX Rings */
415 	if (!netif_msg_tx_done(adapter))
416 		goto rx_ring_summary;
417 
418 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419 
420 	/* Transmit Descriptor Formats
421 	 *
422 	 * Advanced Transmit Descriptor
423 	 *   +--------------------------------------------------------------+
424 	 * 0 |         Buffer Address [63:0]                                |
425 	 *   +--------------------------------------------------------------+
426 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427 	 *   +--------------------------------------------------------------+
428 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
429 	 */
430 
431 	for (n = 0; n < adapter->num_tx_queues; n++) {
432 		tx_ring = adapter->tx_ring[n];
433 		pr_info("------------------------------------\n");
434 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 		pr_info("------------------------------------\n");
436 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437 
438 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 			const char *next_desc;
440 			struct igb_tx_buffer *buffer_info;
441 			tx_desc = IGB_TX_DESC(tx_ring, i);
442 			buffer_info = &tx_ring->tx_buffer_info[i];
443 			u0 = (struct my_u0 *)tx_desc;
444 			if (i == tx_ring->next_to_use &&
445 			    i == tx_ring->next_to_clean)
446 				next_desc = " NTC/U";
447 			else if (i == tx_ring->next_to_use)
448 				next_desc = " NTU";
449 			else if (i == tx_ring->next_to_clean)
450 				next_desc = " NTC";
451 			else
452 				next_desc = "";
453 
454 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455 				i, le64_to_cpu(u0->a),
456 				le64_to_cpu(u0->b),
457 				(u64)dma_unmap_addr(buffer_info, dma),
458 				dma_unmap_len(buffer_info, len),
459 				buffer_info->next_to_watch,
460 				(u64)buffer_info->time_stamp,
461 				buffer_info->skb, next_desc);
462 
463 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 				print_hex_dump(KERN_INFO, "",
465 					DUMP_PREFIX_ADDRESS,
466 					16, 1, buffer_info->skb->data,
467 					dma_unmap_len(buffer_info, len),
468 					true);
469 		}
470 	}
471 
472 	/* Print RX Rings Summary */
473 rx_ring_summary:
474 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 	pr_info("Queue [NTU] [NTC]\n");
476 	for (n = 0; n < adapter->num_rx_queues; n++) {
477 		rx_ring = adapter->rx_ring[n];
478 		pr_info(" %5d %5X %5X\n",
479 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 	}
481 
482 	/* Print RX Rings */
483 	if (!netif_msg_rx_status(adapter))
484 		goto exit;
485 
486 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487 
488 	/* Advanced Receive Descriptor (Read) Format
489 	 *    63                                           1        0
490 	 *    +-----------------------------------------------------+
491 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492 	 *    +----------------------------------------------+------+
493 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
494 	 *    +-----------------------------------------------------+
495 	 *
496 	 *
497 	 * Advanced Receive Descriptor (Write-Back) Format
498 	 *
499 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
500 	 *   +------------------------------------------------------+
501 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502 	 *   | Checksum   Ident  |   |           |    | Type | Type |
503 	 *   +------------------------------------------------------+
504 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 	 *   +------------------------------------------------------+
506 	 *   63       48 47    32 31            20 19               0
507 	 */
508 
509 	for (n = 0; n < adapter->num_rx_queues; n++) {
510 		rx_ring = adapter->rx_ring[n];
511 		pr_info("------------------------------------\n");
512 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 		pr_info("------------------------------------\n");
514 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516 
517 		for (i = 0; i < rx_ring->count; i++) {
518 			const char *next_desc;
519 			struct igb_rx_buffer *buffer_info;
520 			buffer_info = &rx_ring->rx_buffer_info[i];
521 			rx_desc = IGB_RX_DESC(rx_ring, i);
522 			u0 = (struct my_u0 *)rx_desc;
523 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524 
525 			if (i == rx_ring->next_to_use)
526 				next_desc = " NTU";
527 			else if (i == rx_ring->next_to_clean)
528 				next_desc = " NTC";
529 			else
530 				next_desc = "";
531 
532 			if (staterr & E1000_RXD_STAT_DD) {
533 				/* Descriptor Done */
534 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535 					"RWB", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					next_desc);
539 			} else {
540 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541 					"R  ", i,
542 					le64_to_cpu(u0->a),
543 					le64_to_cpu(u0->b),
544 					(u64)buffer_info->dma,
545 					next_desc);
546 
547 				if (netif_msg_pktdata(adapter) &&
548 				    buffer_info->dma && buffer_info->page) {
549 					print_hex_dump(KERN_INFO, "",
550 					  DUMP_PREFIX_ADDRESS,
551 					  16, 1,
552 					  page_address(buffer_info->page) +
553 						      buffer_info->page_offset,
554 					  IGB_RX_BUFSZ, true);
555 				}
556 			}
557 		}
558 	}
559 
560 exit:
561 	return;
562 }
563 
564 /**
565  *  igb_get_i2c_data - Reads the I2C SDA data bit
566  *  @hw: pointer to hardware structure
567  *  @i2cctl: Current value of I2CCTL register
568  *
569  *  Returns the I2C data bit value
570  **/
571 static int igb_get_i2c_data(void *data)
572 {
573 	struct igb_adapter *adapter = (struct igb_adapter *)data;
574 	struct e1000_hw *hw = &adapter->hw;
575 	s32 i2cctl = rd32(E1000_I2CPARAMS);
576 
577 	return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579 
580 /**
581  *  igb_set_i2c_data - Sets the I2C data bit
582  *  @data: pointer to hardware structure
583  *  @state: I2C data value (0 or 1) to set
584  *
585  *  Sets the I2C data bit
586  **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589 	struct igb_adapter *adapter = (struct igb_adapter *)data;
590 	struct e1000_hw *hw = &adapter->hw;
591 	s32 i2cctl = rd32(E1000_I2CPARAMS);
592 
593 	if (state)
594 		i2cctl |= E1000_I2C_DATA_OUT;
595 	else
596 		i2cctl &= ~E1000_I2C_DATA_OUT;
597 
598 	i2cctl &= ~E1000_I2C_DATA_OE_N;
599 	i2cctl |= E1000_I2C_CLK_OE_N;
600 	wr32(E1000_I2CPARAMS, i2cctl);
601 	wrfl();
602 
603 }
604 
605 /**
606  *  igb_set_i2c_clk - Sets the I2C SCL clock
607  *  @data: pointer to hardware structure
608  *  @state: state to set clock
609  *
610  *  Sets the I2C clock line to state
611  **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614 	struct igb_adapter *adapter = (struct igb_adapter *)data;
615 	struct e1000_hw *hw = &adapter->hw;
616 	s32 i2cctl = rd32(E1000_I2CPARAMS);
617 
618 	if (state) {
619 		i2cctl |= E1000_I2C_CLK_OUT;
620 		i2cctl &= ~E1000_I2C_CLK_OE_N;
621 	} else {
622 		i2cctl &= ~E1000_I2C_CLK_OUT;
623 		i2cctl &= ~E1000_I2C_CLK_OE_N;
624 	}
625 	wr32(E1000_I2CPARAMS, i2cctl);
626 	wrfl();
627 }
628 
629 /**
630  *  igb_get_i2c_clk - Gets the I2C SCL clock state
631  *  @data: pointer to hardware structure
632  *
633  *  Gets the I2C clock state
634  **/
635 static int igb_get_i2c_clk(void *data)
636 {
637 	struct igb_adapter *adapter = (struct igb_adapter *)data;
638 	struct e1000_hw *hw = &adapter->hw;
639 	s32 i2cctl = rd32(E1000_I2CPARAMS);
640 
641 	return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643 
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 	.setsda		= igb_set_i2c_data,
646 	.setscl		= igb_set_i2c_clk,
647 	.getsda		= igb_get_i2c_data,
648 	.getscl		= igb_get_i2c_clk,
649 	.udelay		= 5,
650 	.timeout	= 20,
651 };
652 
653 /**
654  *  igb_get_hw_dev - return device
655  *  @hw: pointer to hardware structure
656  *
657  *  used by hardware layer to print debugging information
658  **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661 	struct igb_adapter *adapter = hw->back;
662 	return adapter->netdev;
663 }
664 
665 /**
666  *  igb_init_module - Driver Registration Routine
667  *
668  *  igb_init_module is the first routine called when the driver is
669  *  loaded. All it does is register with the PCI subsystem.
670  **/
671 static int __init igb_init_module(void)
672 {
673 	int ret;
674 
675 	pr_info("%s - version %s\n",
676 	       igb_driver_string, igb_driver_version);
677 	pr_info("%s\n", igb_copyright);
678 
679 #ifdef CONFIG_IGB_DCA
680 	dca_register_notify(&dca_notifier);
681 #endif
682 	ret = pci_register_driver(&igb_driver);
683 	return ret;
684 }
685 
686 module_init(igb_init_module);
687 
688 /**
689  *  igb_exit_module - Driver Exit Cleanup Routine
690  *
691  *  igb_exit_module is called just before the driver is removed
692  *  from memory.
693  **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697 	dca_unregister_notify(&dca_notifier);
698 #endif
699 	pci_unregister_driver(&igb_driver);
700 }
701 
702 module_exit(igb_exit_module);
703 
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706  *  igb_cache_ring_register - Descriptor ring to register mapping
707  *  @adapter: board private structure to initialize
708  *
709  *  Once we know the feature-set enabled for the device, we'll cache
710  *  the register offset the descriptor ring is assigned to.
711  **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714 	int i = 0, j = 0;
715 	u32 rbase_offset = adapter->vfs_allocated_count;
716 
717 	switch (adapter->hw.mac.type) {
718 	case e1000_82576:
719 		/* The queues are allocated for virtualization such that VF 0
720 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 		 * In order to avoid collision we start at the first free queue
722 		 * and continue consuming queues in the same sequence
723 		 */
724 		if (adapter->vfs_allocated_count) {
725 			for (; i < adapter->rss_queues; i++)
726 				adapter->rx_ring[i]->reg_idx = rbase_offset +
727 							       Q_IDX_82576(i);
728 		}
729 		/* Fall through */
730 	case e1000_82575:
731 	case e1000_82580:
732 	case e1000_i350:
733 	case e1000_i354:
734 	case e1000_i210:
735 	case e1000_i211:
736 		/* Fall through */
737 	default:
738 		for (; i < adapter->num_rx_queues; i++)
739 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 		for (; j < adapter->num_tx_queues; j++)
741 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 		break;
743 	}
744 }
745 
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 	u32 value = 0;
751 
752 	if (E1000_REMOVED(hw_addr))
753 		return ~value;
754 
755 	value = readl(&hw_addr[reg]);
756 
757 	/* reads should not return all F's */
758 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 		struct net_device *netdev = igb->netdev;
760 		hw->hw_addr = NULL;
761 		netif_device_detach(netdev);
762 		netdev_err(netdev, "PCIe link lost, device now detached\n");
763 	}
764 
765 	return value;
766 }
767 
768 /**
769  *  igb_write_ivar - configure ivar for given MSI-X vector
770  *  @hw: pointer to the HW structure
771  *  @msix_vector: vector number we are allocating to a given ring
772  *  @index: row index of IVAR register to write within IVAR table
773  *  @offset: column offset of in IVAR, should be multiple of 8
774  *
775  *  This function is intended to handle the writing of the IVAR register
776  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777  *  each containing an cause allocation for an Rx and Tx ring, and a
778  *  variable number of rows depending on the number of queues supported.
779  **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 			   int index, int offset)
782 {
783 	u32 ivar = array_rd32(E1000_IVAR0, index);
784 
785 	/* clear any bits that are currently set */
786 	ivar &= ~((u32)0xFF << offset);
787 
788 	/* write vector and valid bit */
789 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790 
791 	array_wr32(E1000_IVAR0, index, ivar);
792 }
793 
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797 	struct igb_adapter *adapter = q_vector->adapter;
798 	struct e1000_hw *hw = &adapter->hw;
799 	int rx_queue = IGB_N0_QUEUE;
800 	int tx_queue = IGB_N0_QUEUE;
801 	u32 msixbm = 0;
802 
803 	if (q_vector->rx.ring)
804 		rx_queue = q_vector->rx.ring->reg_idx;
805 	if (q_vector->tx.ring)
806 		tx_queue = q_vector->tx.ring->reg_idx;
807 
808 	switch (hw->mac.type) {
809 	case e1000_82575:
810 		/* The 82575 assigns vectors using a bitmask, which matches the
811 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812 		 * or more queues to a vector, we write the appropriate bits
813 		 * into the MSIXBM register for that vector.
814 		 */
815 		if (rx_queue > IGB_N0_QUEUE)
816 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 		if (tx_queue > IGB_N0_QUEUE)
818 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 			msixbm |= E1000_EIMS_OTHER;
821 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 		q_vector->eims_value = msixbm;
823 		break;
824 	case e1000_82576:
825 		/* 82576 uses a table that essentially consists of 2 columns
826 		 * with 8 rows.  The ordering is column-major so we use the
827 		 * lower 3 bits as the row index, and the 4th bit as the
828 		 * column offset.
829 		 */
830 		if (rx_queue > IGB_N0_QUEUE)
831 			igb_write_ivar(hw, msix_vector,
832 				       rx_queue & 0x7,
833 				       (rx_queue & 0x8) << 1);
834 		if (tx_queue > IGB_N0_QUEUE)
835 			igb_write_ivar(hw, msix_vector,
836 				       tx_queue & 0x7,
837 				       ((tx_queue & 0x8) << 1) + 8);
838 		q_vector->eims_value = 1 << msix_vector;
839 		break;
840 	case e1000_82580:
841 	case e1000_i350:
842 	case e1000_i354:
843 	case e1000_i210:
844 	case e1000_i211:
845 		/* On 82580 and newer adapters the scheme is similar to 82576
846 		 * however instead of ordering column-major we have things
847 		 * ordered row-major.  So we traverse the table by using
848 		 * bit 0 as the column offset, and the remaining bits as the
849 		 * row index.
850 		 */
851 		if (rx_queue > IGB_N0_QUEUE)
852 			igb_write_ivar(hw, msix_vector,
853 				       rx_queue >> 1,
854 				       (rx_queue & 0x1) << 4);
855 		if (tx_queue > IGB_N0_QUEUE)
856 			igb_write_ivar(hw, msix_vector,
857 				       tx_queue >> 1,
858 				       ((tx_queue & 0x1) << 4) + 8);
859 		q_vector->eims_value = 1 << msix_vector;
860 		break;
861 	default:
862 		BUG();
863 		break;
864 	}
865 
866 	/* add q_vector eims value to global eims_enable_mask */
867 	adapter->eims_enable_mask |= q_vector->eims_value;
868 
869 	/* configure q_vector to set itr on first interrupt */
870 	q_vector->set_itr = 1;
871 }
872 
873 /**
874  *  igb_configure_msix - Configure MSI-X hardware
875  *  @adapter: board private structure to initialize
876  *
877  *  igb_configure_msix sets up the hardware to properly
878  *  generate MSI-X interrupts.
879  **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882 	u32 tmp;
883 	int i, vector = 0;
884 	struct e1000_hw *hw = &adapter->hw;
885 
886 	adapter->eims_enable_mask = 0;
887 
888 	/* set vector for other causes, i.e. link changes */
889 	switch (hw->mac.type) {
890 	case e1000_82575:
891 		tmp = rd32(E1000_CTRL_EXT);
892 		/* enable MSI-X PBA support*/
893 		tmp |= E1000_CTRL_EXT_PBA_CLR;
894 
895 		/* Auto-Mask interrupts upon ICR read. */
896 		tmp |= E1000_CTRL_EXT_EIAME;
897 		tmp |= E1000_CTRL_EXT_IRCA;
898 
899 		wr32(E1000_CTRL_EXT, tmp);
900 
901 		/* enable msix_other interrupt */
902 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 		adapter->eims_other = E1000_EIMS_OTHER;
904 
905 		break;
906 
907 	case e1000_82576:
908 	case e1000_82580:
909 	case e1000_i350:
910 	case e1000_i354:
911 	case e1000_i210:
912 	case e1000_i211:
913 		/* Turn on MSI-X capability first, or our settings
914 		 * won't stick.  And it will take days to debug.
915 		 */
916 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 		     E1000_GPIE_NSICR);
919 
920 		/* enable msix_other interrupt */
921 		adapter->eims_other = 1 << vector;
922 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
923 
924 		wr32(E1000_IVAR_MISC, tmp);
925 		break;
926 	default:
927 		/* do nothing, since nothing else supports MSI-X */
928 		break;
929 	} /* switch (hw->mac.type) */
930 
931 	adapter->eims_enable_mask |= adapter->eims_other;
932 
933 	for (i = 0; i < adapter->num_q_vectors; i++)
934 		igb_assign_vector(adapter->q_vector[i], vector++);
935 
936 	wrfl();
937 }
938 
939 /**
940  *  igb_request_msix - Initialize MSI-X interrupts
941  *  @adapter: board private structure to initialize
942  *
943  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944  *  kernel.
945  **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948 	struct net_device *netdev = adapter->netdev;
949 	int i, err = 0, vector = 0, free_vector = 0;
950 
951 	err = request_irq(adapter->msix_entries[vector].vector,
952 			  igb_msix_other, 0, netdev->name, adapter);
953 	if (err)
954 		goto err_out;
955 
956 	for (i = 0; i < adapter->num_q_vectors; i++) {
957 		struct igb_q_vector *q_vector = adapter->q_vector[i];
958 
959 		vector++;
960 
961 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
962 
963 		if (q_vector->rx.ring && q_vector->tx.ring)
964 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
965 				q_vector->rx.ring->queue_index);
966 		else if (q_vector->tx.ring)
967 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
968 				q_vector->tx.ring->queue_index);
969 		else if (q_vector->rx.ring)
970 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
971 				q_vector->rx.ring->queue_index);
972 		else
973 			sprintf(q_vector->name, "%s-unused", netdev->name);
974 
975 		err = request_irq(adapter->msix_entries[vector].vector,
976 				  igb_msix_ring, 0, q_vector->name,
977 				  q_vector);
978 		if (err)
979 			goto err_free;
980 	}
981 
982 	igb_configure_msix(adapter);
983 	return 0;
984 
985 err_free:
986 	/* free already assigned IRQs */
987 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
988 
989 	vector--;
990 	for (i = 0; i < vector; i++) {
991 		free_irq(adapter->msix_entries[free_vector++].vector,
992 			 adapter->q_vector[i]);
993 	}
994 err_out:
995 	return err;
996 }
997 
998 /**
999  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1000  *  @adapter: board private structure to initialize
1001  *  @v_idx: Index of vector to be freed
1002  *
1003  *  This function frees the memory allocated to the q_vector.
1004  **/
1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006 {
1007 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008 
1009 	adapter->q_vector[v_idx] = NULL;
1010 
1011 	/* igb_get_stats64() might access the rings on this vector,
1012 	 * we must wait a grace period before freeing it.
1013 	 */
1014 	if (q_vector)
1015 		kfree_rcu(q_vector, rcu);
1016 }
1017 
1018 /**
1019  *  igb_reset_q_vector - Reset config for interrupt vector
1020  *  @adapter: board private structure to initialize
1021  *  @v_idx: Index of vector to be reset
1022  *
1023  *  If NAPI is enabled it will delete any references to the
1024  *  NAPI struct. This is preparation for igb_free_q_vector.
1025  **/
1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027 {
1028 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029 
1030 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1031 	 * allocated. So, q_vector is NULL so we should stop here.
1032 	 */
1033 	if (!q_vector)
1034 		return;
1035 
1036 	if (q_vector->tx.ring)
1037 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038 
1039 	if (q_vector->rx.ring)
1040 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1041 
1042 	netif_napi_del(&q_vector->napi);
1043 
1044 }
1045 
1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047 {
1048 	int v_idx = adapter->num_q_vectors;
1049 
1050 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051 		pci_disable_msix(adapter->pdev);
1052 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053 		pci_disable_msi(adapter->pdev);
1054 
1055 	while (v_idx--)
1056 		igb_reset_q_vector(adapter, v_idx);
1057 }
1058 
1059 /**
1060  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061  *  @adapter: board private structure to initialize
1062  *
1063  *  This function frees the memory allocated to the q_vectors.  In addition if
1064  *  NAPI is enabled it will delete any references to the NAPI struct prior
1065  *  to freeing the q_vector.
1066  **/
1067 static void igb_free_q_vectors(struct igb_adapter *adapter)
1068 {
1069 	int v_idx = adapter->num_q_vectors;
1070 
1071 	adapter->num_tx_queues = 0;
1072 	adapter->num_rx_queues = 0;
1073 	adapter->num_q_vectors = 0;
1074 
1075 	while (v_idx--) {
1076 		igb_reset_q_vector(adapter, v_idx);
1077 		igb_free_q_vector(adapter, v_idx);
1078 	}
1079 }
1080 
1081 /**
1082  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083  *  @adapter: board private structure to initialize
1084  *
1085  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086  *  MSI-X interrupts allocated.
1087  */
1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089 {
1090 	igb_free_q_vectors(adapter);
1091 	igb_reset_interrupt_capability(adapter);
1092 }
1093 
1094 /**
1095  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096  *  @adapter: board private structure to initialize
1097  *  @msix: boolean value of MSIX capability
1098  *
1099  *  Attempt to configure interrupts using the best available
1100  *  capabilities of the hardware and kernel.
1101  **/
1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 {
1104 	int err;
1105 	int numvecs, i;
1106 
1107 	if (!msix)
1108 		goto msi_only;
1109 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1110 
1111 	/* Number of supported queues. */
1112 	adapter->num_rx_queues = adapter->rss_queues;
1113 	if (adapter->vfs_allocated_count)
1114 		adapter->num_tx_queues = 1;
1115 	else
1116 		adapter->num_tx_queues = adapter->rss_queues;
1117 
1118 	/* start with one vector for every Rx queue */
1119 	numvecs = adapter->num_rx_queues;
1120 
1121 	/* if Tx handler is separate add 1 for every Tx queue */
1122 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123 		numvecs += adapter->num_tx_queues;
1124 
1125 	/* store the number of vectors reserved for queues */
1126 	adapter->num_q_vectors = numvecs;
1127 
1128 	/* add 1 vector for link status interrupts */
1129 	numvecs++;
1130 	for (i = 0; i < numvecs; i++)
1131 		adapter->msix_entries[i].entry = i;
1132 
1133 	err = pci_enable_msix_range(adapter->pdev,
1134 				    adapter->msix_entries,
1135 				    numvecs,
1136 				    numvecs);
1137 	if (err > 0)
1138 		return;
1139 
1140 	igb_reset_interrupt_capability(adapter);
1141 
1142 	/* If we can't do MSI-X, try MSI */
1143 msi_only:
1144 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 #ifdef CONFIG_PCI_IOV
1146 	/* disable SR-IOV for non MSI-X configurations */
1147 	if (adapter->vf_data) {
1148 		struct e1000_hw *hw = &adapter->hw;
1149 		/* disable iov and allow time for transactions to clear */
1150 		pci_disable_sriov(adapter->pdev);
1151 		msleep(500);
1152 
1153 		kfree(adapter->vf_data);
1154 		adapter->vf_data = NULL;
1155 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156 		wrfl();
1157 		msleep(100);
1158 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 	}
1160 #endif
1161 	adapter->vfs_allocated_count = 0;
1162 	adapter->rss_queues = 1;
1163 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164 	adapter->num_rx_queues = 1;
1165 	adapter->num_tx_queues = 1;
1166 	adapter->num_q_vectors = 1;
1167 	if (!pci_enable_msi(adapter->pdev))
1168 		adapter->flags |= IGB_FLAG_HAS_MSI;
1169 }
1170 
1171 static void igb_add_ring(struct igb_ring *ring,
1172 			 struct igb_ring_container *head)
1173 {
1174 	head->ring = ring;
1175 	head->count++;
1176 }
1177 
1178 /**
1179  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180  *  @adapter: board private structure to initialize
1181  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182  *  @v_idx: index of vector in adapter struct
1183  *  @txr_count: total number of Tx rings to allocate
1184  *  @txr_idx: index of first Tx ring to allocate
1185  *  @rxr_count: total number of Rx rings to allocate
1186  *  @rxr_idx: index of first Rx ring to allocate
1187  *
1188  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189  **/
1190 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191 			      int v_count, int v_idx,
1192 			      int txr_count, int txr_idx,
1193 			      int rxr_count, int rxr_idx)
1194 {
1195 	struct igb_q_vector *q_vector;
1196 	struct igb_ring *ring;
1197 	int ring_count, size;
1198 
1199 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200 	if (txr_count > 1 || rxr_count > 1)
1201 		return -ENOMEM;
1202 
1203 	ring_count = txr_count + rxr_count;
1204 	size = sizeof(struct igb_q_vector) +
1205 	       (sizeof(struct igb_ring) * ring_count);
1206 
1207 	/* allocate q_vector and rings */
1208 	q_vector = adapter->q_vector[v_idx];
1209 	if (!q_vector) {
1210 		q_vector = kzalloc(size, GFP_KERNEL);
1211 	} else if (size > ksize(q_vector)) {
1212 		kfree_rcu(q_vector, rcu);
1213 		q_vector = kzalloc(size, GFP_KERNEL);
1214 	} else {
1215 		memset(q_vector, 0, size);
1216 	}
1217 	if (!q_vector)
1218 		return -ENOMEM;
1219 
1220 	/* initialize NAPI */
1221 	netif_napi_add(adapter->netdev, &q_vector->napi,
1222 		       igb_poll, 64);
1223 
1224 	/* tie q_vector and adapter together */
1225 	adapter->q_vector[v_idx] = q_vector;
1226 	q_vector->adapter = adapter;
1227 
1228 	/* initialize work limits */
1229 	q_vector->tx.work_limit = adapter->tx_work_limit;
1230 
1231 	/* initialize ITR configuration */
1232 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1233 	q_vector->itr_val = IGB_START_ITR;
1234 
1235 	/* initialize pointer to rings */
1236 	ring = q_vector->ring;
1237 
1238 	/* intialize ITR */
1239 	if (rxr_count) {
1240 		/* rx or rx/tx vector */
1241 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1242 			q_vector->itr_val = adapter->rx_itr_setting;
1243 	} else {
1244 		/* tx only vector */
1245 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1246 			q_vector->itr_val = adapter->tx_itr_setting;
1247 	}
1248 
1249 	if (txr_count) {
1250 		/* assign generic ring traits */
1251 		ring->dev = &adapter->pdev->dev;
1252 		ring->netdev = adapter->netdev;
1253 
1254 		/* configure backlink on ring */
1255 		ring->q_vector = q_vector;
1256 
1257 		/* update q_vector Tx values */
1258 		igb_add_ring(ring, &q_vector->tx);
1259 
1260 		/* For 82575, context index must be unique per ring. */
1261 		if (adapter->hw.mac.type == e1000_82575)
1262 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263 
1264 		/* apply Tx specific ring traits */
1265 		ring->count = adapter->tx_ring_count;
1266 		ring->queue_index = txr_idx;
1267 
1268 		u64_stats_init(&ring->tx_syncp);
1269 		u64_stats_init(&ring->tx_syncp2);
1270 
1271 		/* assign ring to adapter */
1272 		adapter->tx_ring[txr_idx] = ring;
1273 
1274 		/* push pointer to next ring */
1275 		ring++;
1276 	}
1277 
1278 	if (rxr_count) {
1279 		/* assign generic ring traits */
1280 		ring->dev = &adapter->pdev->dev;
1281 		ring->netdev = adapter->netdev;
1282 
1283 		/* configure backlink on ring */
1284 		ring->q_vector = q_vector;
1285 
1286 		/* update q_vector Rx values */
1287 		igb_add_ring(ring, &q_vector->rx);
1288 
1289 		/* set flag indicating ring supports SCTP checksum offload */
1290 		if (adapter->hw.mac.type >= e1000_82576)
1291 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292 
1293 		/* On i350, i354, i210, and i211, loopback VLAN packets
1294 		 * have the tag byte-swapped.
1295 		 */
1296 		if (adapter->hw.mac.type >= e1000_i350)
1297 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298 
1299 		/* apply Rx specific ring traits */
1300 		ring->count = adapter->rx_ring_count;
1301 		ring->queue_index = rxr_idx;
1302 
1303 		u64_stats_init(&ring->rx_syncp);
1304 
1305 		/* assign ring to adapter */
1306 		adapter->rx_ring[rxr_idx] = ring;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 
1313 /**
1314  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315  *  @adapter: board private structure to initialize
1316  *
1317  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1318  *  return -ENOMEM.
1319  **/
1320 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321 {
1322 	int q_vectors = adapter->num_q_vectors;
1323 	int rxr_remaining = adapter->num_rx_queues;
1324 	int txr_remaining = adapter->num_tx_queues;
1325 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326 	int err;
1327 
1328 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329 		for (; rxr_remaining; v_idx++) {
1330 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331 						 0, 0, 1, rxr_idx);
1332 
1333 			if (err)
1334 				goto err_out;
1335 
1336 			/* update counts and index */
1337 			rxr_remaining--;
1338 			rxr_idx++;
1339 		}
1340 	}
1341 
1342 	for (; v_idx < q_vectors; v_idx++) {
1343 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345 
1346 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347 					 tqpv, txr_idx, rqpv, rxr_idx);
1348 
1349 		if (err)
1350 			goto err_out;
1351 
1352 		/* update counts and index */
1353 		rxr_remaining -= rqpv;
1354 		txr_remaining -= tqpv;
1355 		rxr_idx++;
1356 		txr_idx++;
1357 	}
1358 
1359 	return 0;
1360 
1361 err_out:
1362 	adapter->num_tx_queues = 0;
1363 	adapter->num_rx_queues = 0;
1364 	adapter->num_q_vectors = 0;
1365 
1366 	while (v_idx--)
1367 		igb_free_q_vector(adapter, v_idx);
1368 
1369 	return -ENOMEM;
1370 }
1371 
1372 /**
1373  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374  *  @adapter: board private structure to initialize
1375  *  @msix: boolean value of MSIX capability
1376  *
1377  *  This function initializes the interrupts and allocates all of the queues.
1378  **/
1379 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380 {
1381 	struct pci_dev *pdev = adapter->pdev;
1382 	int err;
1383 
1384 	igb_set_interrupt_capability(adapter, msix);
1385 
1386 	err = igb_alloc_q_vectors(adapter);
1387 	if (err) {
1388 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389 		goto err_alloc_q_vectors;
1390 	}
1391 
1392 	igb_cache_ring_register(adapter);
1393 
1394 	return 0;
1395 
1396 err_alloc_q_vectors:
1397 	igb_reset_interrupt_capability(adapter);
1398 	return err;
1399 }
1400 
1401 /**
1402  *  igb_request_irq - initialize interrupts
1403  *  @adapter: board private structure to initialize
1404  *
1405  *  Attempts to configure interrupts using the best available
1406  *  capabilities of the hardware and kernel.
1407  **/
1408 static int igb_request_irq(struct igb_adapter *adapter)
1409 {
1410 	struct net_device *netdev = adapter->netdev;
1411 	struct pci_dev *pdev = adapter->pdev;
1412 	int err = 0;
1413 
1414 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415 		err = igb_request_msix(adapter);
1416 		if (!err)
1417 			goto request_done;
1418 		/* fall back to MSI */
1419 		igb_free_all_tx_resources(adapter);
1420 		igb_free_all_rx_resources(adapter);
1421 
1422 		igb_clear_interrupt_scheme(adapter);
1423 		err = igb_init_interrupt_scheme(adapter, false);
1424 		if (err)
1425 			goto request_done;
1426 
1427 		igb_setup_all_tx_resources(adapter);
1428 		igb_setup_all_rx_resources(adapter);
1429 		igb_configure(adapter);
1430 	}
1431 
1432 	igb_assign_vector(adapter->q_vector[0], 0);
1433 
1434 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1436 				  netdev->name, adapter);
1437 		if (!err)
1438 			goto request_done;
1439 
1440 		/* fall back to legacy interrupts */
1441 		igb_reset_interrupt_capability(adapter);
1442 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443 	}
1444 
1445 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446 			  netdev->name, adapter);
1447 
1448 	if (err)
1449 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450 			err);
1451 
1452 request_done:
1453 	return err;
1454 }
1455 
1456 static void igb_free_irq(struct igb_adapter *adapter)
1457 {
1458 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459 		int vector = 0, i;
1460 
1461 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1462 
1463 		for (i = 0; i < adapter->num_q_vectors; i++)
1464 			free_irq(adapter->msix_entries[vector++].vector,
1465 				 adapter->q_vector[i]);
1466 	} else {
1467 		free_irq(adapter->pdev->irq, adapter);
1468 	}
1469 }
1470 
1471 /**
1472  *  igb_irq_disable - Mask off interrupt generation on the NIC
1473  *  @adapter: board private structure
1474  **/
1475 static void igb_irq_disable(struct igb_adapter *adapter)
1476 {
1477 	struct e1000_hw *hw = &adapter->hw;
1478 
1479 	/* we need to be careful when disabling interrupts.  The VFs are also
1480 	 * mapped into these registers and so clearing the bits can cause
1481 	 * issues on the VF drivers so we only need to clear what we set
1482 	 */
1483 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484 		u32 regval = rd32(E1000_EIAM);
1485 
1486 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1488 		regval = rd32(E1000_EIAC);
1489 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490 	}
1491 
1492 	wr32(E1000_IAM, 0);
1493 	wr32(E1000_IMC, ~0);
1494 	wrfl();
1495 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496 		int i;
1497 
1498 		for (i = 0; i < adapter->num_q_vectors; i++)
1499 			synchronize_irq(adapter->msix_entries[i].vector);
1500 	} else {
1501 		synchronize_irq(adapter->pdev->irq);
1502 	}
1503 }
1504 
1505 /**
1506  *  igb_irq_enable - Enable default interrupt generation settings
1507  *  @adapter: board private structure
1508  **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511 	struct e1000_hw *hw = &adapter->hw;
1512 
1513 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515 		u32 regval = rd32(E1000_EIAC);
1516 
1517 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518 		regval = rd32(E1000_EIAM);
1519 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1521 		if (adapter->vfs_allocated_count) {
1522 			wr32(E1000_MBVFIMR, 0xFF);
1523 			ims |= E1000_IMS_VMMB;
1524 		}
1525 		wr32(E1000_IMS, ims);
1526 	} else {
1527 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1528 				E1000_IMS_DRSTA);
1529 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 	}
1532 }
1533 
1534 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535 {
1536 	struct e1000_hw *hw = &adapter->hw;
1537 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1538 	u16 old_vid = adapter->mng_vlan_id;
1539 
1540 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1541 		/* add VID to filter table */
1542 		igb_vfta_set(hw, vid, true);
1543 		adapter->mng_vlan_id = vid;
1544 	} else {
1545 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1546 	}
1547 
1548 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1549 	    (vid != old_vid) &&
1550 	    !test_bit(old_vid, adapter->active_vlans)) {
1551 		/* remove VID from filter table */
1552 		igb_vfta_set(hw, old_vid, false);
1553 	}
1554 }
1555 
1556 /**
1557  *  igb_release_hw_control - release control of the h/w to f/w
1558  *  @adapter: address of board private structure
1559  *
1560  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1561  *  For ASF and Pass Through versions of f/w this means that the
1562  *  driver is no longer loaded.
1563  **/
1564 static void igb_release_hw_control(struct igb_adapter *adapter)
1565 {
1566 	struct e1000_hw *hw = &adapter->hw;
1567 	u32 ctrl_ext;
1568 
1569 	/* Let firmware take over control of h/w */
1570 	ctrl_ext = rd32(E1000_CTRL_EXT);
1571 	wr32(E1000_CTRL_EXT,
1572 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1573 }
1574 
1575 /**
1576  *  igb_get_hw_control - get control of the h/w from f/w
1577  *  @adapter: address of board private structure
1578  *
1579  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1580  *  For ASF and Pass Through versions of f/w this means that
1581  *  the driver is loaded.
1582  **/
1583 static void igb_get_hw_control(struct igb_adapter *adapter)
1584 {
1585 	struct e1000_hw *hw = &adapter->hw;
1586 	u32 ctrl_ext;
1587 
1588 	/* Let firmware know the driver has taken over */
1589 	ctrl_ext = rd32(E1000_CTRL_EXT);
1590 	wr32(E1000_CTRL_EXT,
1591 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1592 }
1593 
1594 /**
1595  *  igb_configure - configure the hardware for RX and TX
1596  *  @adapter: private board structure
1597  **/
1598 static void igb_configure(struct igb_adapter *adapter)
1599 {
1600 	struct net_device *netdev = adapter->netdev;
1601 	int i;
1602 
1603 	igb_get_hw_control(adapter);
1604 	igb_set_rx_mode(netdev);
1605 
1606 	igb_restore_vlan(adapter);
1607 
1608 	igb_setup_tctl(adapter);
1609 	igb_setup_mrqc(adapter);
1610 	igb_setup_rctl(adapter);
1611 
1612 	igb_configure_tx(adapter);
1613 	igb_configure_rx(adapter);
1614 
1615 	igb_rx_fifo_flush_82575(&adapter->hw);
1616 
1617 	/* call igb_desc_unused which always leaves
1618 	 * at least 1 descriptor unused to make sure
1619 	 * next_to_use != next_to_clean
1620 	 */
1621 	for (i = 0; i < adapter->num_rx_queues; i++) {
1622 		struct igb_ring *ring = adapter->rx_ring[i];
1623 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1624 	}
1625 }
1626 
1627 /**
1628  *  igb_power_up_link - Power up the phy/serdes link
1629  *  @adapter: address of board private structure
1630  **/
1631 void igb_power_up_link(struct igb_adapter *adapter)
1632 {
1633 	igb_reset_phy(&adapter->hw);
1634 
1635 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1636 		igb_power_up_phy_copper(&adapter->hw);
1637 	else
1638 		igb_power_up_serdes_link_82575(&adapter->hw);
1639 
1640 	igb_setup_link(&adapter->hw);
1641 }
1642 
1643 /**
1644  *  igb_power_down_link - Power down the phy/serdes link
1645  *  @adapter: address of board private structure
1646  */
1647 static void igb_power_down_link(struct igb_adapter *adapter)
1648 {
1649 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1650 		igb_power_down_phy_copper_82575(&adapter->hw);
1651 	else
1652 		igb_shutdown_serdes_link_82575(&adapter->hw);
1653 }
1654 
1655 /**
1656  * Detect and switch function for Media Auto Sense
1657  * @adapter: address of the board private structure
1658  **/
1659 static void igb_check_swap_media(struct igb_adapter *adapter)
1660 {
1661 	struct e1000_hw *hw = &adapter->hw;
1662 	u32 ctrl_ext, connsw;
1663 	bool swap_now = false;
1664 
1665 	ctrl_ext = rd32(E1000_CTRL_EXT);
1666 	connsw = rd32(E1000_CONNSW);
1667 
1668 	/* need to live swap if current media is copper and we have fiber/serdes
1669 	 * to go to.
1670 	 */
1671 
1672 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1673 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1674 		swap_now = true;
1675 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1676 		/* copper signal takes time to appear */
1677 		if (adapter->copper_tries < 4) {
1678 			adapter->copper_tries++;
1679 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1680 			wr32(E1000_CONNSW, connsw);
1681 			return;
1682 		} else {
1683 			adapter->copper_tries = 0;
1684 			if ((connsw & E1000_CONNSW_PHYSD) &&
1685 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1686 				swap_now = true;
1687 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1688 				wr32(E1000_CONNSW, connsw);
1689 			}
1690 		}
1691 	}
1692 
1693 	if (!swap_now)
1694 		return;
1695 
1696 	switch (hw->phy.media_type) {
1697 	case e1000_media_type_copper:
1698 		netdev_info(adapter->netdev,
1699 			"MAS: changing media to fiber/serdes\n");
1700 		ctrl_ext |=
1701 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1702 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1703 		adapter->copper_tries = 0;
1704 		break;
1705 	case e1000_media_type_internal_serdes:
1706 	case e1000_media_type_fiber:
1707 		netdev_info(adapter->netdev,
1708 			"MAS: changing media to copper\n");
1709 		ctrl_ext &=
1710 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1711 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1712 		break;
1713 	default:
1714 		/* shouldn't get here during regular operation */
1715 		netdev_err(adapter->netdev,
1716 			"AMS: Invalid media type found, returning\n");
1717 		break;
1718 	}
1719 	wr32(E1000_CTRL_EXT, ctrl_ext);
1720 }
1721 
1722 /**
1723  *  igb_up - Open the interface and prepare it to handle traffic
1724  *  @adapter: board private structure
1725  **/
1726 int igb_up(struct igb_adapter *adapter)
1727 {
1728 	struct e1000_hw *hw = &adapter->hw;
1729 	int i;
1730 
1731 	/* hardware has been reset, we need to reload some things */
1732 	igb_configure(adapter);
1733 
1734 	clear_bit(__IGB_DOWN, &adapter->state);
1735 
1736 	for (i = 0; i < adapter->num_q_vectors; i++)
1737 		napi_enable(&(adapter->q_vector[i]->napi));
1738 
1739 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1740 		igb_configure_msix(adapter);
1741 	else
1742 		igb_assign_vector(adapter->q_vector[0], 0);
1743 
1744 	/* Clear any pending interrupts. */
1745 	rd32(E1000_ICR);
1746 	igb_irq_enable(adapter);
1747 
1748 	/* notify VFs that reset has been completed */
1749 	if (adapter->vfs_allocated_count) {
1750 		u32 reg_data = rd32(E1000_CTRL_EXT);
1751 
1752 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1753 		wr32(E1000_CTRL_EXT, reg_data);
1754 	}
1755 
1756 	netif_tx_start_all_queues(adapter->netdev);
1757 
1758 	/* start the watchdog. */
1759 	hw->mac.get_link_status = 1;
1760 	schedule_work(&adapter->watchdog_task);
1761 
1762 	if ((adapter->flags & IGB_FLAG_EEE) &&
1763 	    (!hw->dev_spec._82575.eee_disable))
1764 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1765 
1766 	return 0;
1767 }
1768 
1769 void igb_down(struct igb_adapter *adapter)
1770 {
1771 	struct net_device *netdev = adapter->netdev;
1772 	struct e1000_hw *hw = &adapter->hw;
1773 	u32 tctl, rctl;
1774 	int i;
1775 
1776 	/* signal that we're down so the interrupt handler does not
1777 	 * reschedule our watchdog timer
1778 	 */
1779 	set_bit(__IGB_DOWN, &adapter->state);
1780 
1781 	/* disable receives in the hardware */
1782 	rctl = rd32(E1000_RCTL);
1783 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1784 	/* flush and sleep below */
1785 
1786 	netif_carrier_off(netdev);
1787 	netif_tx_stop_all_queues(netdev);
1788 
1789 	/* disable transmits in the hardware */
1790 	tctl = rd32(E1000_TCTL);
1791 	tctl &= ~E1000_TCTL_EN;
1792 	wr32(E1000_TCTL, tctl);
1793 	/* flush both disables and wait for them to finish */
1794 	wrfl();
1795 	usleep_range(10000, 11000);
1796 
1797 	igb_irq_disable(adapter);
1798 
1799 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1800 
1801 	for (i = 0; i < adapter->num_q_vectors; i++) {
1802 		if (adapter->q_vector[i]) {
1803 			napi_synchronize(&adapter->q_vector[i]->napi);
1804 			napi_disable(&adapter->q_vector[i]->napi);
1805 		}
1806 	}
1807 
1808 	del_timer_sync(&adapter->watchdog_timer);
1809 	del_timer_sync(&adapter->phy_info_timer);
1810 
1811 	/* record the stats before reset*/
1812 	spin_lock(&adapter->stats64_lock);
1813 	igb_update_stats(adapter, &adapter->stats64);
1814 	spin_unlock(&adapter->stats64_lock);
1815 
1816 	adapter->link_speed = 0;
1817 	adapter->link_duplex = 0;
1818 
1819 	if (!pci_channel_offline(adapter->pdev))
1820 		igb_reset(adapter);
1821 	igb_clean_all_tx_rings(adapter);
1822 	igb_clean_all_rx_rings(adapter);
1823 #ifdef CONFIG_IGB_DCA
1824 
1825 	/* since we reset the hardware DCA settings were cleared */
1826 	igb_setup_dca(adapter);
1827 #endif
1828 }
1829 
1830 void igb_reinit_locked(struct igb_adapter *adapter)
1831 {
1832 	WARN_ON(in_interrupt());
1833 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1834 		usleep_range(1000, 2000);
1835 	igb_down(adapter);
1836 	igb_up(adapter);
1837 	clear_bit(__IGB_RESETTING, &adapter->state);
1838 }
1839 
1840 /** igb_enable_mas - Media Autosense re-enable after swap
1841  *
1842  * @adapter: adapter struct
1843  **/
1844 static void igb_enable_mas(struct igb_adapter *adapter)
1845 {
1846 	struct e1000_hw *hw = &adapter->hw;
1847 	u32 connsw = rd32(E1000_CONNSW);
1848 
1849 	/* configure for SerDes media detect */
1850 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1851 	    (!(connsw & E1000_CONNSW_SERDESD))) {
1852 		connsw |= E1000_CONNSW_ENRGSRC;
1853 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1854 		wr32(E1000_CONNSW, connsw);
1855 		wrfl();
1856 	}
1857 }
1858 
1859 void igb_reset(struct igb_adapter *adapter)
1860 {
1861 	struct pci_dev *pdev = adapter->pdev;
1862 	struct e1000_hw *hw = &adapter->hw;
1863 	struct e1000_mac_info *mac = &hw->mac;
1864 	struct e1000_fc_info *fc = &hw->fc;
1865 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1866 
1867 	/* Repartition Pba for greater than 9k mtu
1868 	 * To take effect CTRL.RST is required.
1869 	 */
1870 	switch (mac->type) {
1871 	case e1000_i350:
1872 	case e1000_i354:
1873 	case e1000_82580:
1874 		pba = rd32(E1000_RXPBS);
1875 		pba = igb_rxpbs_adjust_82580(pba);
1876 		break;
1877 	case e1000_82576:
1878 		pba = rd32(E1000_RXPBS);
1879 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1880 		break;
1881 	case e1000_82575:
1882 	case e1000_i210:
1883 	case e1000_i211:
1884 	default:
1885 		pba = E1000_PBA_34K;
1886 		break;
1887 	}
1888 
1889 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1890 	    (mac->type < e1000_82576)) {
1891 		/* adjust PBA for jumbo frames */
1892 		wr32(E1000_PBA, pba);
1893 
1894 		/* To maintain wire speed transmits, the Tx FIFO should be
1895 		 * large enough to accommodate two full transmit packets,
1896 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1897 		 * the Rx FIFO should be large enough to accommodate at least
1898 		 * one full receive packet and is similarly rounded up and
1899 		 * expressed in KB.
1900 		 */
1901 		pba = rd32(E1000_PBA);
1902 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1903 		tx_space = pba >> 16;
1904 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1905 		pba &= 0xffff;
1906 		/* the Tx fifo also stores 16 bytes of information about the Tx
1907 		 * but don't include ethernet FCS because hardware appends it
1908 		 */
1909 		min_tx_space = (adapter->max_frame_size +
1910 				sizeof(union e1000_adv_tx_desc) -
1911 				ETH_FCS_LEN) * 2;
1912 		min_tx_space = ALIGN(min_tx_space, 1024);
1913 		min_tx_space >>= 10;
1914 		/* software strips receive CRC, so leave room for it */
1915 		min_rx_space = adapter->max_frame_size;
1916 		min_rx_space = ALIGN(min_rx_space, 1024);
1917 		min_rx_space >>= 10;
1918 
1919 		/* If current Tx allocation is less than the min Tx FIFO size,
1920 		 * and the min Tx FIFO size is less than the current Rx FIFO
1921 		 * allocation, take space away from current Rx allocation
1922 		 */
1923 		if (tx_space < min_tx_space &&
1924 		    ((min_tx_space - tx_space) < pba)) {
1925 			pba = pba - (min_tx_space - tx_space);
1926 
1927 			/* if short on Rx space, Rx wins and must trump Tx
1928 			 * adjustment
1929 			 */
1930 			if (pba < min_rx_space)
1931 				pba = min_rx_space;
1932 		}
1933 		wr32(E1000_PBA, pba);
1934 	}
1935 
1936 	/* flow control settings */
1937 	/* The high water mark must be low enough to fit one full frame
1938 	 * (or the size used for early receive) above it in the Rx FIFO.
1939 	 * Set it to the lower of:
1940 	 * - 90% of the Rx FIFO size, or
1941 	 * - the full Rx FIFO size minus one full frame
1942 	 */
1943 	hwm = min(((pba << 10) * 9 / 10),
1944 			((pba << 10) - 2 * adapter->max_frame_size));
1945 
1946 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1947 	fc->low_water = fc->high_water - 16;
1948 	fc->pause_time = 0xFFFF;
1949 	fc->send_xon = 1;
1950 	fc->current_mode = fc->requested_mode;
1951 
1952 	/* disable receive for all VFs and wait one second */
1953 	if (adapter->vfs_allocated_count) {
1954 		int i;
1955 
1956 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1957 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1958 
1959 		/* ping all the active vfs to let them know we are going down */
1960 		igb_ping_all_vfs(adapter);
1961 
1962 		/* disable transmits and receives */
1963 		wr32(E1000_VFRE, 0);
1964 		wr32(E1000_VFTE, 0);
1965 	}
1966 
1967 	/* Allow time for pending master requests to run */
1968 	hw->mac.ops.reset_hw(hw);
1969 	wr32(E1000_WUC, 0);
1970 
1971 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1972 		/* need to resetup here after media swap */
1973 		adapter->ei.get_invariants(hw);
1974 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1975 	}
1976 	if ((mac->type == e1000_82575) &&
1977 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1978 		igb_enable_mas(adapter);
1979 	}
1980 	if (hw->mac.ops.init_hw(hw))
1981 		dev_err(&pdev->dev, "Hardware Error\n");
1982 
1983 	/* Flow control settings reset on hardware reset, so guarantee flow
1984 	 * control is off when forcing speed.
1985 	 */
1986 	if (!hw->mac.autoneg)
1987 		igb_force_mac_fc(hw);
1988 
1989 	igb_init_dmac(adapter, pba);
1990 #ifdef CONFIG_IGB_HWMON
1991 	/* Re-initialize the thermal sensor on i350 devices. */
1992 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1993 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1994 			/* If present, re-initialize the external thermal sensor
1995 			 * interface.
1996 			 */
1997 			if (adapter->ets)
1998 				mac->ops.init_thermal_sensor_thresh(hw);
1999 		}
2000 	}
2001 #endif
2002 	/* Re-establish EEE setting */
2003 	if (hw->phy.media_type == e1000_media_type_copper) {
2004 		switch (mac->type) {
2005 		case e1000_i350:
2006 		case e1000_i210:
2007 		case e1000_i211:
2008 			igb_set_eee_i350(hw, true, true);
2009 			break;
2010 		case e1000_i354:
2011 			igb_set_eee_i354(hw, true, true);
2012 			break;
2013 		default:
2014 			break;
2015 		}
2016 	}
2017 	if (!netif_running(adapter->netdev))
2018 		igb_power_down_link(adapter);
2019 
2020 	igb_update_mng_vlan(adapter);
2021 
2022 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2023 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2024 
2025 	/* Re-enable PTP, where applicable. */
2026 	igb_ptp_reset(adapter);
2027 
2028 	igb_get_phy_info(hw);
2029 }
2030 
2031 static netdev_features_t igb_fix_features(struct net_device *netdev,
2032 	netdev_features_t features)
2033 {
2034 	/* Since there is no support for separate Rx/Tx vlan accel
2035 	 * enable/disable make sure Tx flag is always in same state as Rx.
2036 	 */
2037 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2038 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2039 	else
2040 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2041 
2042 	return features;
2043 }
2044 
2045 static int igb_set_features(struct net_device *netdev,
2046 	netdev_features_t features)
2047 {
2048 	netdev_features_t changed = netdev->features ^ features;
2049 	struct igb_adapter *adapter = netdev_priv(netdev);
2050 
2051 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2052 		igb_vlan_mode(netdev, features);
2053 
2054 	if (!(changed & NETIF_F_RXALL))
2055 		return 0;
2056 
2057 	netdev->features = features;
2058 
2059 	if (netif_running(netdev))
2060 		igb_reinit_locked(adapter);
2061 	else
2062 		igb_reset(adapter);
2063 
2064 	return 0;
2065 }
2066 
2067 static const struct net_device_ops igb_netdev_ops = {
2068 	.ndo_open		= igb_open,
2069 	.ndo_stop		= igb_close,
2070 	.ndo_start_xmit		= igb_xmit_frame,
2071 	.ndo_get_stats64	= igb_get_stats64,
2072 	.ndo_set_rx_mode	= igb_set_rx_mode,
2073 	.ndo_set_mac_address	= igb_set_mac,
2074 	.ndo_change_mtu		= igb_change_mtu,
2075 	.ndo_do_ioctl		= igb_ioctl,
2076 	.ndo_tx_timeout		= igb_tx_timeout,
2077 	.ndo_validate_addr	= eth_validate_addr,
2078 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2079 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2080 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2081 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2082 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2083 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2084 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2085 #ifdef CONFIG_NET_POLL_CONTROLLER
2086 	.ndo_poll_controller	= igb_netpoll,
2087 #endif
2088 	.ndo_fix_features	= igb_fix_features,
2089 	.ndo_set_features	= igb_set_features,
2090 	.ndo_features_check	= passthru_features_check,
2091 };
2092 
2093 /**
2094  * igb_set_fw_version - Configure version string for ethtool
2095  * @adapter: adapter struct
2096  **/
2097 void igb_set_fw_version(struct igb_adapter *adapter)
2098 {
2099 	struct e1000_hw *hw = &adapter->hw;
2100 	struct e1000_fw_version fw;
2101 
2102 	igb_get_fw_version(hw, &fw);
2103 
2104 	switch (hw->mac.type) {
2105 	case e1000_i210:
2106 	case e1000_i211:
2107 		if (!(igb_get_flash_presence_i210(hw))) {
2108 			snprintf(adapter->fw_version,
2109 				 sizeof(adapter->fw_version),
2110 				 "%2d.%2d-%d",
2111 				 fw.invm_major, fw.invm_minor,
2112 				 fw.invm_img_type);
2113 			break;
2114 		}
2115 		/* fall through */
2116 	default:
2117 		/* if option is rom valid, display its version too */
2118 		if (fw.or_valid) {
2119 			snprintf(adapter->fw_version,
2120 				 sizeof(adapter->fw_version),
2121 				 "%d.%d, 0x%08x, %d.%d.%d",
2122 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2123 				 fw.or_major, fw.or_build, fw.or_patch);
2124 		/* no option rom */
2125 		} else if (fw.etrack_id != 0X0000) {
2126 			snprintf(adapter->fw_version,
2127 			    sizeof(adapter->fw_version),
2128 			    "%d.%d, 0x%08x",
2129 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2130 		} else {
2131 		snprintf(adapter->fw_version,
2132 		    sizeof(adapter->fw_version),
2133 		    "%d.%d.%d",
2134 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2135 		}
2136 		break;
2137 	}
2138 }
2139 
2140 /**
2141  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2142  *
2143  * @adapter: adapter struct
2144  **/
2145 static void igb_init_mas(struct igb_adapter *adapter)
2146 {
2147 	struct e1000_hw *hw = &adapter->hw;
2148 	u16 eeprom_data;
2149 
2150 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2151 	switch (hw->bus.func) {
2152 	case E1000_FUNC_0:
2153 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2154 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2155 			netdev_info(adapter->netdev,
2156 				"MAS: Enabling Media Autosense for port %d\n",
2157 				hw->bus.func);
2158 		}
2159 		break;
2160 	case E1000_FUNC_1:
2161 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2162 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163 			netdev_info(adapter->netdev,
2164 				"MAS: Enabling Media Autosense for port %d\n",
2165 				hw->bus.func);
2166 		}
2167 		break;
2168 	case E1000_FUNC_2:
2169 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2170 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171 			netdev_info(adapter->netdev,
2172 				"MAS: Enabling Media Autosense for port %d\n",
2173 				hw->bus.func);
2174 		}
2175 		break;
2176 	case E1000_FUNC_3:
2177 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2178 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179 			netdev_info(adapter->netdev,
2180 				"MAS: Enabling Media Autosense for port %d\n",
2181 				hw->bus.func);
2182 		}
2183 		break;
2184 	default:
2185 		/* Shouldn't get here */
2186 		netdev_err(adapter->netdev,
2187 			"MAS: Invalid port configuration, returning\n");
2188 		break;
2189 	}
2190 }
2191 
2192 /**
2193  *  igb_init_i2c - Init I2C interface
2194  *  @adapter: pointer to adapter structure
2195  **/
2196 static s32 igb_init_i2c(struct igb_adapter *adapter)
2197 {
2198 	s32 status = 0;
2199 
2200 	/* I2C interface supported on i350 devices */
2201 	if (adapter->hw.mac.type != e1000_i350)
2202 		return 0;
2203 
2204 	/* Initialize the i2c bus which is controlled by the registers.
2205 	 * This bus will use the i2c_algo_bit structue that implements
2206 	 * the protocol through toggling of the 4 bits in the register.
2207 	 */
2208 	adapter->i2c_adap.owner = THIS_MODULE;
2209 	adapter->i2c_algo = igb_i2c_algo;
2210 	adapter->i2c_algo.data = adapter;
2211 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2212 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2213 	strlcpy(adapter->i2c_adap.name, "igb BB",
2214 		sizeof(adapter->i2c_adap.name));
2215 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2216 	return status;
2217 }
2218 
2219 /**
2220  *  igb_probe - Device Initialization Routine
2221  *  @pdev: PCI device information struct
2222  *  @ent: entry in igb_pci_tbl
2223  *
2224  *  Returns 0 on success, negative on failure
2225  *
2226  *  igb_probe initializes an adapter identified by a pci_dev structure.
2227  *  The OS initialization, configuring of the adapter private structure,
2228  *  and a hardware reset occur.
2229  **/
2230 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2231 {
2232 	struct net_device *netdev;
2233 	struct igb_adapter *adapter;
2234 	struct e1000_hw *hw;
2235 	u16 eeprom_data = 0;
2236 	s32 ret_val;
2237 	static int global_quad_port_a; /* global quad port a indication */
2238 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2239 	int err, pci_using_dac;
2240 	u8 part_str[E1000_PBANUM_LENGTH];
2241 
2242 	/* Catch broken hardware that put the wrong VF device ID in
2243 	 * the PCIe SR-IOV capability.
2244 	 */
2245 	if (pdev->is_virtfn) {
2246 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2247 			pci_name(pdev), pdev->vendor, pdev->device);
2248 		return -EINVAL;
2249 	}
2250 
2251 	err = pci_enable_device_mem(pdev);
2252 	if (err)
2253 		return err;
2254 
2255 	pci_using_dac = 0;
2256 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2257 	if (!err) {
2258 		pci_using_dac = 1;
2259 	} else {
2260 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2261 		if (err) {
2262 			dev_err(&pdev->dev,
2263 				"No usable DMA configuration, aborting\n");
2264 			goto err_dma;
2265 		}
2266 	}
2267 
2268 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2269 					   IORESOURCE_MEM),
2270 					   igb_driver_name);
2271 	if (err)
2272 		goto err_pci_reg;
2273 
2274 	pci_enable_pcie_error_reporting(pdev);
2275 
2276 	pci_set_master(pdev);
2277 	pci_save_state(pdev);
2278 
2279 	err = -ENOMEM;
2280 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2281 				   IGB_MAX_TX_QUEUES);
2282 	if (!netdev)
2283 		goto err_alloc_etherdev;
2284 
2285 	SET_NETDEV_DEV(netdev, &pdev->dev);
2286 
2287 	pci_set_drvdata(pdev, netdev);
2288 	adapter = netdev_priv(netdev);
2289 	adapter->netdev = netdev;
2290 	adapter->pdev = pdev;
2291 	hw = &adapter->hw;
2292 	hw->back = adapter;
2293 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2294 
2295 	err = -EIO;
2296 	adapter->io_addr = pci_iomap(pdev, 0, 0);
2297 	if (!adapter->io_addr)
2298 		goto err_ioremap;
2299 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2300 	hw->hw_addr = adapter->io_addr;
2301 
2302 	netdev->netdev_ops = &igb_netdev_ops;
2303 	igb_set_ethtool_ops(netdev);
2304 	netdev->watchdog_timeo = 5 * HZ;
2305 
2306 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2307 
2308 	netdev->mem_start = pci_resource_start(pdev, 0);
2309 	netdev->mem_end = pci_resource_end(pdev, 0);
2310 
2311 	/* PCI config space info */
2312 	hw->vendor_id = pdev->vendor;
2313 	hw->device_id = pdev->device;
2314 	hw->revision_id = pdev->revision;
2315 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2316 	hw->subsystem_device_id = pdev->subsystem_device;
2317 
2318 	/* Copy the default MAC, PHY and NVM function pointers */
2319 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2320 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2321 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2322 	/* Initialize skew-specific constants */
2323 	err = ei->get_invariants(hw);
2324 	if (err)
2325 		goto err_sw_init;
2326 
2327 	/* setup the private structure */
2328 	err = igb_sw_init(adapter);
2329 	if (err)
2330 		goto err_sw_init;
2331 
2332 	igb_get_bus_info_pcie(hw);
2333 
2334 	hw->phy.autoneg_wait_to_complete = false;
2335 
2336 	/* Copper options */
2337 	if (hw->phy.media_type == e1000_media_type_copper) {
2338 		hw->phy.mdix = AUTO_ALL_MODES;
2339 		hw->phy.disable_polarity_correction = false;
2340 		hw->phy.ms_type = e1000_ms_hw_default;
2341 	}
2342 
2343 	if (igb_check_reset_block(hw))
2344 		dev_info(&pdev->dev,
2345 			"PHY reset is blocked due to SOL/IDER session.\n");
2346 
2347 	/* features is initialized to 0 in allocation, it might have bits
2348 	 * set by igb_sw_init so we should use an or instead of an
2349 	 * assignment.
2350 	 */
2351 	netdev->features |= NETIF_F_SG |
2352 			    NETIF_F_IP_CSUM |
2353 			    NETIF_F_IPV6_CSUM |
2354 			    NETIF_F_TSO |
2355 			    NETIF_F_TSO6 |
2356 			    NETIF_F_RXHASH |
2357 			    NETIF_F_RXCSUM |
2358 			    NETIF_F_HW_VLAN_CTAG_RX |
2359 			    NETIF_F_HW_VLAN_CTAG_TX;
2360 
2361 	/* copy netdev features into list of user selectable features */
2362 	netdev->hw_features |= netdev->features;
2363 	netdev->hw_features |= NETIF_F_RXALL;
2364 
2365 	/* set this bit last since it cannot be part of hw_features */
2366 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2367 
2368 	netdev->vlan_features |= NETIF_F_TSO |
2369 				 NETIF_F_TSO6 |
2370 				 NETIF_F_IP_CSUM |
2371 				 NETIF_F_IPV6_CSUM |
2372 				 NETIF_F_SG;
2373 
2374 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2375 
2376 	if (pci_using_dac) {
2377 		netdev->features |= NETIF_F_HIGHDMA;
2378 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2379 	}
2380 
2381 	if (hw->mac.type >= e1000_82576) {
2382 		netdev->hw_features |= NETIF_F_SCTP_CRC;
2383 		netdev->features |= NETIF_F_SCTP_CRC;
2384 	}
2385 
2386 	netdev->priv_flags |= IFF_UNICAST_FLT;
2387 
2388 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2389 
2390 	/* before reading the NVM, reset the controller to put the device in a
2391 	 * known good starting state
2392 	 */
2393 	hw->mac.ops.reset_hw(hw);
2394 
2395 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2396 	 * that doesn't contain a checksum
2397 	 */
2398 	switch (hw->mac.type) {
2399 	case e1000_i210:
2400 	case e1000_i211:
2401 		if (igb_get_flash_presence_i210(hw)) {
2402 			if (hw->nvm.ops.validate(hw) < 0) {
2403 				dev_err(&pdev->dev,
2404 					"The NVM Checksum Is Not Valid\n");
2405 				err = -EIO;
2406 				goto err_eeprom;
2407 			}
2408 		}
2409 		break;
2410 	default:
2411 		if (hw->nvm.ops.validate(hw) < 0) {
2412 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2413 			err = -EIO;
2414 			goto err_eeprom;
2415 		}
2416 		break;
2417 	}
2418 
2419 	/* copy the MAC address out of the NVM */
2420 	if (hw->mac.ops.read_mac_addr(hw))
2421 		dev_err(&pdev->dev, "NVM Read Error\n");
2422 
2423 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2424 
2425 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2426 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2427 		err = -EIO;
2428 		goto err_eeprom;
2429 	}
2430 
2431 	/* get firmware version for ethtool -i */
2432 	igb_set_fw_version(adapter);
2433 
2434 	/* configure RXPBSIZE and TXPBSIZE */
2435 	if (hw->mac.type == e1000_i210) {
2436 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2437 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2438 	}
2439 
2440 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2441 		    (unsigned long) adapter);
2442 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2443 		    (unsigned long) adapter);
2444 
2445 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2446 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2447 
2448 	/* Initialize link properties that are user-changeable */
2449 	adapter->fc_autoneg = true;
2450 	hw->mac.autoneg = true;
2451 	hw->phy.autoneg_advertised = 0x2f;
2452 
2453 	hw->fc.requested_mode = e1000_fc_default;
2454 	hw->fc.current_mode = e1000_fc_default;
2455 
2456 	igb_validate_mdi_setting(hw);
2457 
2458 	/* By default, support wake on port A */
2459 	if (hw->bus.func == 0)
2460 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2461 
2462 	/* Check the NVM for wake support on non-port A ports */
2463 	if (hw->mac.type >= e1000_82580)
2464 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2465 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2466 				 &eeprom_data);
2467 	else if (hw->bus.func == 1)
2468 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2469 
2470 	if (eeprom_data & IGB_EEPROM_APME)
2471 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2472 
2473 	/* now that we have the eeprom settings, apply the special cases where
2474 	 * the eeprom may be wrong or the board simply won't support wake on
2475 	 * lan on a particular port
2476 	 */
2477 	switch (pdev->device) {
2478 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2479 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2480 		break;
2481 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2482 	case E1000_DEV_ID_82576_FIBER:
2483 	case E1000_DEV_ID_82576_SERDES:
2484 		/* Wake events only supported on port A for dual fiber
2485 		 * regardless of eeprom setting
2486 		 */
2487 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2488 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2489 		break;
2490 	case E1000_DEV_ID_82576_QUAD_COPPER:
2491 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2492 		/* if quad port adapter, disable WoL on all but port A */
2493 		if (global_quad_port_a != 0)
2494 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495 		else
2496 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2497 		/* Reset for multiple quad port adapters */
2498 		if (++global_quad_port_a == 4)
2499 			global_quad_port_a = 0;
2500 		break;
2501 	default:
2502 		/* If the device can't wake, don't set software support */
2503 		if (!device_can_wakeup(&adapter->pdev->dev))
2504 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2505 	}
2506 
2507 	/* initialize the wol settings based on the eeprom settings */
2508 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2509 		adapter->wol |= E1000_WUFC_MAG;
2510 
2511 	/* Some vendors want WoL disabled by default, but still supported */
2512 	if ((hw->mac.type == e1000_i350) &&
2513 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2514 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2515 		adapter->wol = 0;
2516 	}
2517 
2518 	device_set_wakeup_enable(&adapter->pdev->dev,
2519 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2520 
2521 	/* reset the hardware with the new settings */
2522 	igb_reset(adapter);
2523 
2524 	/* Init the I2C interface */
2525 	err = igb_init_i2c(adapter);
2526 	if (err) {
2527 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2528 		goto err_eeprom;
2529 	}
2530 
2531 	/* let the f/w know that the h/w is now under the control of the
2532 	 * driver.
2533 	 */
2534 	igb_get_hw_control(adapter);
2535 
2536 	strcpy(netdev->name, "eth%d");
2537 	err = register_netdev(netdev);
2538 	if (err)
2539 		goto err_register;
2540 
2541 	/* carrier off reporting is important to ethtool even BEFORE open */
2542 	netif_carrier_off(netdev);
2543 
2544 #ifdef CONFIG_IGB_DCA
2545 	if (dca_add_requester(&pdev->dev) == 0) {
2546 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2547 		dev_info(&pdev->dev, "DCA enabled\n");
2548 		igb_setup_dca(adapter);
2549 	}
2550 
2551 #endif
2552 #ifdef CONFIG_IGB_HWMON
2553 	/* Initialize the thermal sensor on i350 devices. */
2554 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2555 		u16 ets_word;
2556 
2557 		/* Read the NVM to determine if this i350 device supports an
2558 		 * external thermal sensor.
2559 		 */
2560 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2561 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2562 			adapter->ets = true;
2563 		else
2564 			adapter->ets = false;
2565 		if (igb_sysfs_init(adapter))
2566 			dev_err(&pdev->dev,
2567 				"failed to allocate sysfs resources\n");
2568 	} else {
2569 		adapter->ets = false;
2570 	}
2571 #endif
2572 	/* Check if Media Autosense is enabled */
2573 	adapter->ei = *ei;
2574 	if (hw->dev_spec._82575.mas_capable)
2575 		igb_init_mas(adapter);
2576 
2577 	/* do hw tstamp init after resetting */
2578 	igb_ptp_init(adapter);
2579 
2580 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2581 	/* print bus type/speed/width info, not applicable to i354 */
2582 	if (hw->mac.type != e1000_i354) {
2583 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2584 			 netdev->name,
2585 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2586 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2587 			   "unknown"),
2588 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2589 			  "Width x4" :
2590 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2591 			  "Width x2" :
2592 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2593 			  "Width x1" : "unknown"), netdev->dev_addr);
2594 	}
2595 
2596 	if ((hw->mac.type >= e1000_i210 ||
2597 	     igb_get_flash_presence_i210(hw))) {
2598 		ret_val = igb_read_part_string(hw, part_str,
2599 					       E1000_PBANUM_LENGTH);
2600 	} else {
2601 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2602 	}
2603 
2604 	if (ret_val)
2605 		strcpy(part_str, "Unknown");
2606 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2607 	dev_info(&pdev->dev,
2608 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2609 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2610 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2611 		adapter->num_rx_queues, adapter->num_tx_queues);
2612 	if (hw->phy.media_type == e1000_media_type_copper) {
2613 		switch (hw->mac.type) {
2614 		case e1000_i350:
2615 		case e1000_i210:
2616 		case e1000_i211:
2617 			/* Enable EEE for internal copper PHY devices */
2618 			err = igb_set_eee_i350(hw, true, true);
2619 			if ((!err) &&
2620 			    (!hw->dev_spec._82575.eee_disable)) {
2621 				adapter->eee_advert =
2622 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2623 				adapter->flags |= IGB_FLAG_EEE;
2624 			}
2625 			break;
2626 		case e1000_i354:
2627 			if ((rd32(E1000_CTRL_EXT) &
2628 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2629 				err = igb_set_eee_i354(hw, true, true);
2630 				if ((!err) &&
2631 					(!hw->dev_spec._82575.eee_disable)) {
2632 					adapter->eee_advert =
2633 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2634 					adapter->flags |= IGB_FLAG_EEE;
2635 				}
2636 			}
2637 			break;
2638 		default:
2639 			break;
2640 		}
2641 	}
2642 	pm_runtime_put_noidle(&pdev->dev);
2643 	return 0;
2644 
2645 err_register:
2646 	igb_release_hw_control(adapter);
2647 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2648 err_eeprom:
2649 	if (!igb_check_reset_block(hw))
2650 		igb_reset_phy(hw);
2651 
2652 	if (hw->flash_address)
2653 		iounmap(hw->flash_address);
2654 err_sw_init:
2655 	kfree(adapter->shadow_vfta);
2656 	igb_clear_interrupt_scheme(adapter);
2657 #ifdef CONFIG_PCI_IOV
2658 	igb_disable_sriov(pdev);
2659 #endif
2660 	pci_iounmap(pdev, adapter->io_addr);
2661 err_ioremap:
2662 	free_netdev(netdev);
2663 err_alloc_etherdev:
2664 	pci_release_selected_regions(pdev,
2665 				     pci_select_bars(pdev, IORESOURCE_MEM));
2666 err_pci_reg:
2667 err_dma:
2668 	pci_disable_device(pdev);
2669 	return err;
2670 }
2671 
2672 #ifdef CONFIG_PCI_IOV
2673 static int igb_disable_sriov(struct pci_dev *pdev)
2674 {
2675 	struct net_device *netdev = pci_get_drvdata(pdev);
2676 	struct igb_adapter *adapter = netdev_priv(netdev);
2677 	struct e1000_hw *hw = &adapter->hw;
2678 
2679 	/* reclaim resources allocated to VFs */
2680 	if (adapter->vf_data) {
2681 		/* disable iov and allow time for transactions to clear */
2682 		if (pci_vfs_assigned(pdev)) {
2683 			dev_warn(&pdev->dev,
2684 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2685 			return -EPERM;
2686 		} else {
2687 			pci_disable_sriov(pdev);
2688 			msleep(500);
2689 		}
2690 
2691 		kfree(adapter->vf_data);
2692 		adapter->vf_data = NULL;
2693 		adapter->vfs_allocated_count = 0;
2694 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2695 		wrfl();
2696 		msleep(100);
2697 		dev_info(&pdev->dev, "IOV Disabled\n");
2698 
2699 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2700 		adapter->flags |= IGB_FLAG_DMAC;
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2707 {
2708 	struct net_device *netdev = pci_get_drvdata(pdev);
2709 	struct igb_adapter *adapter = netdev_priv(netdev);
2710 	int old_vfs = pci_num_vf(pdev);
2711 	int err = 0;
2712 	int i;
2713 
2714 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2715 		err = -EPERM;
2716 		goto out;
2717 	}
2718 	if (!num_vfs)
2719 		goto out;
2720 
2721 	if (old_vfs) {
2722 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2723 			 old_vfs, max_vfs);
2724 		adapter->vfs_allocated_count = old_vfs;
2725 	} else
2726 		adapter->vfs_allocated_count = num_vfs;
2727 
2728 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2729 				sizeof(struct vf_data_storage), GFP_KERNEL);
2730 
2731 	/* if allocation failed then we do not support SR-IOV */
2732 	if (!adapter->vf_data) {
2733 		adapter->vfs_allocated_count = 0;
2734 		dev_err(&pdev->dev,
2735 			"Unable to allocate memory for VF Data Storage\n");
2736 		err = -ENOMEM;
2737 		goto out;
2738 	}
2739 
2740 	/* only call pci_enable_sriov() if no VFs are allocated already */
2741 	if (!old_vfs) {
2742 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2743 		if (err)
2744 			goto err_out;
2745 	}
2746 	dev_info(&pdev->dev, "%d VFs allocated\n",
2747 		 adapter->vfs_allocated_count);
2748 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2749 		igb_vf_configure(adapter, i);
2750 
2751 	/* DMA Coalescing is not supported in IOV mode. */
2752 	adapter->flags &= ~IGB_FLAG_DMAC;
2753 	goto out;
2754 
2755 err_out:
2756 	kfree(adapter->vf_data);
2757 	adapter->vf_data = NULL;
2758 	adapter->vfs_allocated_count = 0;
2759 out:
2760 	return err;
2761 }
2762 
2763 #endif
2764 /**
2765  *  igb_remove_i2c - Cleanup  I2C interface
2766  *  @adapter: pointer to adapter structure
2767  **/
2768 static void igb_remove_i2c(struct igb_adapter *adapter)
2769 {
2770 	/* free the adapter bus structure */
2771 	i2c_del_adapter(&adapter->i2c_adap);
2772 }
2773 
2774 /**
2775  *  igb_remove - Device Removal Routine
2776  *  @pdev: PCI device information struct
2777  *
2778  *  igb_remove is called by the PCI subsystem to alert the driver
2779  *  that it should release a PCI device.  The could be caused by a
2780  *  Hot-Plug event, or because the driver is going to be removed from
2781  *  memory.
2782  **/
2783 static void igb_remove(struct pci_dev *pdev)
2784 {
2785 	struct net_device *netdev = pci_get_drvdata(pdev);
2786 	struct igb_adapter *adapter = netdev_priv(netdev);
2787 	struct e1000_hw *hw = &adapter->hw;
2788 
2789 	pm_runtime_get_noresume(&pdev->dev);
2790 #ifdef CONFIG_IGB_HWMON
2791 	igb_sysfs_exit(adapter);
2792 #endif
2793 	igb_remove_i2c(adapter);
2794 	igb_ptp_stop(adapter);
2795 	/* The watchdog timer may be rescheduled, so explicitly
2796 	 * disable watchdog from being rescheduled.
2797 	 */
2798 	set_bit(__IGB_DOWN, &adapter->state);
2799 	del_timer_sync(&adapter->watchdog_timer);
2800 	del_timer_sync(&adapter->phy_info_timer);
2801 
2802 	cancel_work_sync(&adapter->reset_task);
2803 	cancel_work_sync(&adapter->watchdog_task);
2804 
2805 #ifdef CONFIG_IGB_DCA
2806 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2807 		dev_info(&pdev->dev, "DCA disabled\n");
2808 		dca_remove_requester(&pdev->dev);
2809 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2810 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2811 	}
2812 #endif
2813 
2814 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2815 	 * would have already happened in close and is redundant.
2816 	 */
2817 	igb_release_hw_control(adapter);
2818 
2819 #ifdef CONFIG_PCI_IOV
2820 	igb_disable_sriov(pdev);
2821 #endif
2822 
2823 	unregister_netdev(netdev);
2824 
2825 	igb_clear_interrupt_scheme(adapter);
2826 
2827 	pci_iounmap(pdev, adapter->io_addr);
2828 	if (hw->flash_address)
2829 		iounmap(hw->flash_address);
2830 	pci_release_selected_regions(pdev,
2831 				     pci_select_bars(pdev, IORESOURCE_MEM));
2832 
2833 	kfree(adapter->shadow_vfta);
2834 	free_netdev(netdev);
2835 
2836 	pci_disable_pcie_error_reporting(pdev);
2837 
2838 	pci_disable_device(pdev);
2839 }
2840 
2841 /**
2842  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2843  *  @adapter: board private structure to initialize
2844  *
2845  *  This function initializes the vf specific data storage and then attempts to
2846  *  allocate the VFs.  The reason for ordering it this way is because it is much
2847  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2848  *  the memory for the VFs.
2849  **/
2850 static void igb_probe_vfs(struct igb_adapter *adapter)
2851 {
2852 #ifdef CONFIG_PCI_IOV
2853 	struct pci_dev *pdev = adapter->pdev;
2854 	struct e1000_hw *hw = &adapter->hw;
2855 
2856 	/* Virtualization features not supported on i210 family. */
2857 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2858 		return;
2859 
2860 	/* Of the below we really only want the effect of getting
2861 	 * IGB_FLAG_HAS_MSIX set (if available), without which
2862 	 * igb_enable_sriov() has no effect.
2863 	 */
2864 	igb_set_interrupt_capability(adapter, true);
2865 	igb_reset_interrupt_capability(adapter);
2866 
2867 	pci_sriov_set_totalvfs(pdev, 7);
2868 	igb_enable_sriov(pdev, max_vfs);
2869 
2870 #endif /* CONFIG_PCI_IOV */
2871 }
2872 
2873 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2874 {
2875 	struct e1000_hw *hw = &adapter->hw;
2876 	u32 max_rss_queues;
2877 
2878 	/* Determine the maximum number of RSS queues supported. */
2879 	switch (hw->mac.type) {
2880 	case e1000_i211:
2881 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2882 		break;
2883 	case e1000_82575:
2884 	case e1000_i210:
2885 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2886 		break;
2887 	case e1000_i350:
2888 		/* I350 cannot do RSS and SR-IOV at the same time */
2889 		if (!!adapter->vfs_allocated_count) {
2890 			max_rss_queues = 1;
2891 			break;
2892 		}
2893 		/* fall through */
2894 	case e1000_82576:
2895 		if (!!adapter->vfs_allocated_count) {
2896 			max_rss_queues = 2;
2897 			break;
2898 		}
2899 		/* fall through */
2900 	case e1000_82580:
2901 	case e1000_i354:
2902 	default:
2903 		max_rss_queues = IGB_MAX_RX_QUEUES;
2904 		break;
2905 	}
2906 
2907 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2908 
2909 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
2910 }
2911 
2912 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2913 			      const u32 max_rss_queues)
2914 {
2915 	struct e1000_hw *hw = &adapter->hw;
2916 
2917 	/* Determine if we need to pair queues. */
2918 	switch (hw->mac.type) {
2919 	case e1000_82575:
2920 	case e1000_i211:
2921 		/* Device supports enough interrupts without queue pairing. */
2922 		break;
2923 	case e1000_82576:
2924 		/* If VFs are going to be allocated with RSS queues then we
2925 		 * should pair the queues in order to conserve interrupts due
2926 		 * to limited supply.
2927 		 */
2928 		if ((adapter->rss_queues > 1) &&
2929 		    (adapter->vfs_allocated_count > 6))
2930 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2931 		/* fall through */
2932 	case e1000_82580:
2933 	case e1000_i350:
2934 	case e1000_i354:
2935 	case e1000_i210:
2936 	default:
2937 		/* If rss_queues > half of max_rss_queues, pair the queues in
2938 		 * order to conserve interrupts due to limited supply.
2939 		 */
2940 		if (adapter->rss_queues > (max_rss_queues / 2))
2941 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2942 		break;
2943 	}
2944 }
2945 
2946 /**
2947  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2948  *  @adapter: board private structure to initialize
2949  *
2950  *  igb_sw_init initializes the Adapter private data structure.
2951  *  Fields are initialized based on PCI device information and
2952  *  OS network device settings (MTU size).
2953  **/
2954 static int igb_sw_init(struct igb_adapter *adapter)
2955 {
2956 	struct e1000_hw *hw = &adapter->hw;
2957 	struct net_device *netdev = adapter->netdev;
2958 	struct pci_dev *pdev = adapter->pdev;
2959 
2960 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2961 
2962 	/* set default ring sizes */
2963 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2964 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2965 
2966 	/* set default ITR values */
2967 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2968 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2969 
2970 	/* set default work limits */
2971 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2972 
2973 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2974 				  VLAN_HLEN;
2975 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2976 
2977 	spin_lock_init(&adapter->stats64_lock);
2978 #ifdef CONFIG_PCI_IOV
2979 	switch (hw->mac.type) {
2980 	case e1000_82576:
2981 	case e1000_i350:
2982 		if (max_vfs > 7) {
2983 			dev_warn(&pdev->dev,
2984 				 "Maximum of 7 VFs per PF, using max\n");
2985 			max_vfs = adapter->vfs_allocated_count = 7;
2986 		} else
2987 			adapter->vfs_allocated_count = max_vfs;
2988 		if (adapter->vfs_allocated_count)
2989 			dev_warn(&pdev->dev,
2990 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2991 		break;
2992 	default:
2993 		break;
2994 	}
2995 #endif /* CONFIG_PCI_IOV */
2996 
2997 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
2998 	adapter->flags |= IGB_FLAG_HAS_MSIX;
2999 
3000 	igb_probe_vfs(adapter);
3001 
3002 	igb_init_queue_configuration(adapter);
3003 
3004 	/* Setup and initialize a copy of the hw vlan table array */
3005 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3006 				       GFP_ATOMIC);
3007 
3008 	/* This call may decrease the number of queues */
3009 	if (igb_init_interrupt_scheme(adapter, true)) {
3010 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3011 		return -ENOMEM;
3012 	}
3013 
3014 	/* Explicitly disable IRQ since the NIC can be in any state. */
3015 	igb_irq_disable(adapter);
3016 
3017 	if (hw->mac.type >= e1000_i350)
3018 		adapter->flags &= ~IGB_FLAG_DMAC;
3019 
3020 	set_bit(__IGB_DOWN, &adapter->state);
3021 	return 0;
3022 }
3023 
3024 /**
3025  *  igb_open - Called when a network interface is made active
3026  *  @netdev: network interface device structure
3027  *
3028  *  Returns 0 on success, negative value on failure
3029  *
3030  *  The open entry point is called when a network interface is made
3031  *  active by the system (IFF_UP).  At this point all resources needed
3032  *  for transmit and receive operations are allocated, the interrupt
3033  *  handler is registered with the OS, the watchdog timer is started,
3034  *  and the stack is notified that the interface is ready.
3035  **/
3036 static int __igb_open(struct net_device *netdev, bool resuming)
3037 {
3038 	struct igb_adapter *adapter = netdev_priv(netdev);
3039 	struct e1000_hw *hw = &adapter->hw;
3040 	struct pci_dev *pdev = adapter->pdev;
3041 	int err;
3042 	int i;
3043 
3044 	/* disallow open during test */
3045 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3046 		WARN_ON(resuming);
3047 		return -EBUSY;
3048 	}
3049 
3050 	if (!resuming)
3051 		pm_runtime_get_sync(&pdev->dev);
3052 
3053 	netif_carrier_off(netdev);
3054 
3055 	/* allocate transmit descriptors */
3056 	err = igb_setup_all_tx_resources(adapter);
3057 	if (err)
3058 		goto err_setup_tx;
3059 
3060 	/* allocate receive descriptors */
3061 	err = igb_setup_all_rx_resources(adapter);
3062 	if (err)
3063 		goto err_setup_rx;
3064 
3065 	igb_power_up_link(adapter);
3066 
3067 	/* before we allocate an interrupt, we must be ready to handle it.
3068 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3069 	 * as soon as we call pci_request_irq, so we have to setup our
3070 	 * clean_rx handler before we do so.
3071 	 */
3072 	igb_configure(adapter);
3073 
3074 	err = igb_request_irq(adapter);
3075 	if (err)
3076 		goto err_req_irq;
3077 
3078 	/* Notify the stack of the actual queue counts. */
3079 	err = netif_set_real_num_tx_queues(adapter->netdev,
3080 					   adapter->num_tx_queues);
3081 	if (err)
3082 		goto err_set_queues;
3083 
3084 	err = netif_set_real_num_rx_queues(adapter->netdev,
3085 					   adapter->num_rx_queues);
3086 	if (err)
3087 		goto err_set_queues;
3088 
3089 	/* From here on the code is the same as igb_up() */
3090 	clear_bit(__IGB_DOWN, &adapter->state);
3091 
3092 	for (i = 0; i < adapter->num_q_vectors; i++)
3093 		napi_enable(&(adapter->q_vector[i]->napi));
3094 
3095 	/* Clear any pending interrupts. */
3096 	rd32(E1000_ICR);
3097 
3098 	igb_irq_enable(adapter);
3099 
3100 	/* notify VFs that reset has been completed */
3101 	if (adapter->vfs_allocated_count) {
3102 		u32 reg_data = rd32(E1000_CTRL_EXT);
3103 
3104 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3105 		wr32(E1000_CTRL_EXT, reg_data);
3106 	}
3107 
3108 	netif_tx_start_all_queues(netdev);
3109 
3110 	if (!resuming)
3111 		pm_runtime_put(&pdev->dev);
3112 
3113 	/* start the watchdog. */
3114 	hw->mac.get_link_status = 1;
3115 	schedule_work(&adapter->watchdog_task);
3116 
3117 	return 0;
3118 
3119 err_set_queues:
3120 	igb_free_irq(adapter);
3121 err_req_irq:
3122 	igb_release_hw_control(adapter);
3123 	igb_power_down_link(adapter);
3124 	igb_free_all_rx_resources(adapter);
3125 err_setup_rx:
3126 	igb_free_all_tx_resources(adapter);
3127 err_setup_tx:
3128 	igb_reset(adapter);
3129 	if (!resuming)
3130 		pm_runtime_put(&pdev->dev);
3131 
3132 	return err;
3133 }
3134 
3135 static int igb_open(struct net_device *netdev)
3136 {
3137 	return __igb_open(netdev, false);
3138 }
3139 
3140 /**
3141  *  igb_close - Disables a network interface
3142  *  @netdev: network interface device structure
3143  *
3144  *  Returns 0, this is not allowed to fail
3145  *
3146  *  The close entry point is called when an interface is de-activated
3147  *  by the OS.  The hardware is still under the driver's control, but
3148  *  needs to be disabled.  A global MAC reset is issued to stop the
3149  *  hardware, and all transmit and receive resources are freed.
3150  **/
3151 static int __igb_close(struct net_device *netdev, bool suspending)
3152 {
3153 	struct igb_adapter *adapter = netdev_priv(netdev);
3154 	struct pci_dev *pdev = adapter->pdev;
3155 
3156 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3157 
3158 	if (!suspending)
3159 		pm_runtime_get_sync(&pdev->dev);
3160 
3161 	igb_down(adapter);
3162 	igb_free_irq(adapter);
3163 
3164 	igb_free_all_tx_resources(adapter);
3165 	igb_free_all_rx_resources(adapter);
3166 
3167 	if (!suspending)
3168 		pm_runtime_put_sync(&pdev->dev);
3169 	return 0;
3170 }
3171 
3172 static int igb_close(struct net_device *netdev)
3173 {
3174 	return __igb_close(netdev, false);
3175 }
3176 
3177 /**
3178  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3179  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3180  *
3181  *  Return 0 on success, negative on failure
3182  **/
3183 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3184 {
3185 	struct device *dev = tx_ring->dev;
3186 	int size;
3187 
3188 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3189 
3190 	tx_ring->tx_buffer_info = vzalloc(size);
3191 	if (!tx_ring->tx_buffer_info)
3192 		goto err;
3193 
3194 	/* round up to nearest 4K */
3195 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3196 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3197 
3198 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3199 					   &tx_ring->dma, GFP_KERNEL);
3200 	if (!tx_ring->desc)
3201 		goto err;
3202 
3203 	tx_ring->next_to_use = 0;
3204 	tx_ring->next_to_clean = 0;
3205 
3206 	return 0;
3207 
3208 err:
3209 	vfree(tx_ring->tx_buffer_info);
3210 	tx_ring->tx_buffer_info = NULL;
3211 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3212 	return -ENOMEM;
3213 }
3214 
3215 /**
3216  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3217  *				 (Descriptors) for all queues
3218  *  @adapter: board private structure
3219  *
3220  *  Return 0 on success, negative on failure
3221  **/
3222 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3223 {
3224 	struct pci_dev *pdev = adapter->pdev;
3225 	int i, err = 0;
3226 
3227 	for (i = 0; i < adapter->num_tx_queues; i++) {
3228 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3229 		if (err) {
3230 			dev_err(&pdev->dev,
3231 				"Allocation for Tx Queue %u failed\n", i);
3232 			for (i--; i >= 0; i--)
3233 				igb_free_tx_resources(adapter->tx_ring[i]);
3234 			break;
3235 		}
3236 	}
3237 
3238 	return err;
3239 }
3240 
3241 /**
3242  *  igb_setup_tctl - configure the transmit control registers
3243  *  @adapter: Board private structure
3244  **/
3245 void igb_setup_tctl(struct igb_adapter *adapter)
3246 {
3247 	struct e1000_hw *hw = &adapter->hw;
3248 	u32 tctl;
3249 
3250 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3251 	wr32(E1000_TXDCTL(0), 0);
3252 
3253 	/* Program the Transmit Control Register */
3254 	tctl = rd32(E1000_TCTL);
3255 	tctl &= ~E1000_TCTL_CT;
3256 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3257 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3258 
3259 	igb_config_collision_dist(hw);
3260 
3261 	/* Enable transmits */
3262 	tctl |= E1000_TCTL_EN;
3263 
3264 	wr32(E1000_TCTL, tctl);
3265 }
3266 
3267 /**
3268  *  igb_configure_tx_ring - Configure transmit ring after Reset
3269  *  @adapter: board private structure
3270  *  @ring: tx ring to configure
3271  *
3272  *  Configure a transmit ring after a reset.
3273  **/
3274 void igb_configure_tx_ring(struct igb_adapter *adapter,
3275 			   struct igb_ring *ring)
3276 {
3277 	struct e1000_hw *hw = &adapter->hw;
3278 	u32 txdctl = 0;
3279 	u64 tdba = ring->dma;
3280 	int reg_idx = ring->reg_idx;
3281 
3282 	/* disable the queue */
3283 	wr32(E1000_TXDCTL(reg_idx), 0);
3284 	wrfl();
3285 	mdelay(10);
3286 
3287 	wr32(E1000_TDLEN(reg_idx),
3288 	     ring->count * sizeof(union e1000_adv_tx_desc));
3289 	wr32(E1000_TDBAL(reg_idx),
3290 	     tdba & 0x00000000ffffffffULL);
3291 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3292 
3293 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3294 	wr32(E1000_TDH(reg_idx), 0);
3295 	writel(0, ring->tail);
3296 
3297 	txdctl |= IGB_TX_PTHRESH;
3298 	txdctl |= IGB_TX_HTHRESH << 8;
3299 	txdctl |= IGB_TX_WTHRESH << 16;
3300 
3301 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3302 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3303 }
3304 
3305 /**
3306  *  igb_configure_tx - Configure transmit Unit after Reset
3307  *  @adapter: board private structure
3308  *
3309  *  Configure the Tx unit of the MAC after a reset.
3310  **/
3311 static void igb_configure_tx(struct igb_adapter *adapter)
3312 {
3313 	int i;
3314 
3315 	for (i = 0; i < adapter->num_tx_queues; i++)
3316 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3317 }
3318 
3319 /**
3320  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3321  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3322  *
3323  *  Returns 0 on success, negative on failure
3324  **/
3325 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3326 {
3327 	struct device *dev = rx_ring->dev;
3328 	int size;
3329 
3330 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3331 
3332 	rx_ring->rx_buffer_info = vzalloc(size);
3333 	if (!rx_ring->rx_buffer_info)
3334 		goto err;
3335 
3336 	/* Round up to nearest 4K */
3337 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3338 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3339 
3340 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3341 					   &rx_ring->dma, GFP_KERNEL);
3342 	if (!rx_ring->desc)
3343 		goto err;
3344 
3345 	rx_ring->next_to_alloc = 0;
3346 	rx_ring->next_to_clean = 0;
3347 	rx_ring->next_to_use = 0;
3348 
3349 	return 0;
3350 
3351 err:
3352 	vfree(rx_ring->rx_buffer_info);
3353 	rx_ring->rx_buffer_info = NULL;
3354 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3355 	return -ENOMEM;
3356 }
3357 
3358 /**
3359  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3360  *				 (Descriptors) for all queues
3361  *  @adapter: board private structure
3362  *
3363  *  Return 0 on success, negative on failure
3364  **/
3365 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3366 {
3367 	struct pci_dev *pdev = adapter->pdev;
3368 	int i, err = 0;
3369 
3370 	for (i = 0; i < adapter->num_rx_queues; i++) {
3371 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3372 		if (err) {
3373 			dev_err(&pdev->dev,
3374 				"Allocation for Rx Queue %u failed\n", i);
3375 			for (i--; i >= 0; i--)
3376 				igb_free_rx_resources(adapter->rx_ring[i]);
3377 			break;
3378 		}
3379 	}
3380 
3381 	return err;
3382 }
3383 
3384 /**
3385  *  igb_setup_mrqc - configure the multiple receive queue control registers
3386  *  @adapter: Board private structure
3387  **/
3388 static void igb_setup_mrqc(struct igb_adapter *adapter)
3389 {
3390 	struct e1000_hw *hw = &adapter->hw;
3391 	u32 mrqc, rxcsum;
3392 	u32 j, num_rx_queues;
3393 	u32 rss_key[10];
3394 
3395 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3396 	for (j = 0; j < 10; j++)
3397 		wr32(E1000_RSSRK(j), rss_key[j]);
3398 
3399 	num_rx_queues = adapter->rss_queues;
3400 
3401 	switch (hw->mac.type) {
3402 	case e1000_82576:
3403 		/* 82576 supports 2 RSS queues for SR-IOV */
3404 		if (adapter->vfs_allocated_count)
3405 			num_rx_queues = 2;
3406 		break;
3407 	default:
3408 		break;
3409 	}
3410 
3411 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3412 		for (j = 0; j < IGB_RETA_SIZE; j++)
3413 			adapter->rss_indir_tbl[j] =
3414 			(j * num_rx_queues) / IGB_RETA_SIZE;
3415 		adapter->rss_indir_tbl_init = num_rx_queues;
3416 	}
3417 	igb_write_rss_indir_tbl(adapter);
3418 
3419 	/* Disable raw packet checksumming so that RSS hash is placed in
3420 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3421 	 * offloads as they are enabled by default
3422 	 */
3423 	rxcsum = rd32(E1000_RXCSUM);
3424 	rxcsum |= E1000_RXCSUM_PCSD;
3425 
3426 	if (adapter->hw.mac.type >= e1000_82576)
3427 		/* Enable Receive Checksum Offload for SCTP */
3428 		rxcsum |= E1000_RXCSUM_CRCOFL;
3429 
3430 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3431 	wr32(E1000_RXCSUM, rxcsum);
3432 
3433 	/* Generate RSS hash based on packet types, TCP/UDP
3434 	 * port numbers and/or IPv4/v6 src and dst addresses
3435 	 */
3436 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3437 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3438 	       E1000_MRQC_RSS_FIELD_IPV6 |
3439 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3440 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3441 
3442 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3443 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3444 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3445 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3446 
3447 	/* If VMDq is enabled then we set the appropriate mode for that, else
3448 	 * we default to RSS so that an RSS hash is calculated per packet even
3449 	 * if we are only using one queue
3450 	 */
3451 	if (adapter->vfs_allocated_count) {
3452 		if (hw->mac.type > e1000_82575) {
3453 			/* Set the default pool for the PF's first queue */
3454 			u32 vtctl = rd32(E1000_VT_CTL);
3455 
3456 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3457 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3458 			vtctl |= adapter->vfs_allocated_count <<
3459 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3460 			wr32(E1000_VT_CTL, vtctl);
3461 		}
3462 		if (adapter->rss_queues > 1)
3463 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3464 		else
3465 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3466 	} else {
3467 		if (hw->mac.type != e1000_i211)
3468 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3469 	}
3470 	igb_vmm_control(adapter);
3471 
3472 	wr32(E1000_MRQC, mrqc);
3473 }
3474 
3475 /**
3476  *  igb_setup_rctl - configure the receive control registers
3477  *  @adapter: Board private structure
3478  **/
3479 void igb_setup_rctl(struct igb_adapter *adapter)
3480 {
3481 	struct e1000_hw *hw = &adapter->hw;
3482 	u32 rctl;
3483 
3484 	rctl = rd32(E1000_RCTL);
3485 
3486 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3487 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3488 
3489 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3490 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3491 
3492 	/* enable stripping of CRC. It's unlikely this will break BMC
3493 	 * redirection as it did with e1000. Newer features require
3494 	 * that the HW strips the CRC.
3495 	 */
3496 	rctl |= E1000_RCTL_SECRC;
3497 
3498 	/* disable store bad packets and clear size bits. */
3499 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3500 
3501 	/* enable LPE to prevent packets larger than max_frame_size */
3502 	rctl |= E1000_RCTL_LPE;
3503 
3504 	/* disable queue 0 to prevent tail write w/o re-config */
3505 	wr32(E1000_RXDCTL(0), 0);
3506 
3507 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3508 	 * queue drop for all VF and PF queues to prevent head of line blocking
3509 	 * if an un-trusted VF does not provide descriptors to hardware.
3510 	 */
3511 	if (adapter->vfs_allocated_count) {
3512 		/* set all queue drop enable bits */
3513 		wr32(E1000_QDE, ALL_QUEUES);
3514 	}
3515 
3516 	/* This is useful for sniffing bad packets. */
3517 	if (adapter->netdev->features & NETIF_F_RXALL) {
3518 		/* UPE and MPE will be handled by normal PROMISC logic
3519 		 * in e1000e_set_rx_mode
3520 		 */
3521 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3522 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3523 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3524 
3525 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3526 			  E1000_RCTL_DPF | /* Allow filtered pause */
3527 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3528 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3529 		 * and that breaks VLANs.
3530 		 */
3531 	}
3532 
3533 	wr32(E1000_RCTL, rctl);
3534 }
3535 
3536 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3537 				   int vfn)
3538 {
3539 	struct e1000_hw *hw = &adapter->hw;
3540 	u32 vmolr;
3541 
3542 	/* if it isn't the PF check to see if VFs are enabled and
3543 	 * increase the size to support vlan tags
3544 	 */
3545 	if (vfn < adapter->vfs_allocated_count &&
3546 	    adapter->vf_data[vfn].vlans_enabled)
3547 		size += VLAN_TAG_SIZE;
3548 
3549 	vmolr = rd32(E1000_VMOLR(vfn));
3550 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3551 	vmolr |= size | E1000_VMOLR_LPE;
3552 	wr32(E1000_VMOLR(vfn), vmolr);
3553 
3554 	return 0;
3555 }
3556 
3557 /**
3558  *  igb_rlpml_set - set maximum receive packet size
3559  *  @adapter: board private structure
3560  *
3561  *  Configure maximum receivable packet size.
3562  **/
3563 static void igb_rlpml_set(struct igb_adapter *adapter)
3564 {
3565 	u32 max_frame_size = adapter->max_frame_size;
3566 	struct e1000_hw *hw = &adapter->hw;
3567 	u16 pf_id = adapter->vfs_allocated_count;
3568 
3569 	if (pf_id) {
3570 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3571 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3572 		 * to our max jumbo frame size, in case we need to enable
3573 		 * jumbo frames on one of the rings later.
3574 		 * This will not pass over-length frames into the default
3575 		 * queue because it's gated by the VMOLR.RLPML.
3576 		 */
3577 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3578 	}
3579 
3580 	wr32(E1000_RLPML, max_frame_size);
3581 }
3582 
3583 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3584 				 int vfn, bool aupe)
3585 {
3586 	struct e1000_hw *hw = &adapter->hw;
3587 	u32 vmolr;
3588 
3589 	/* This register exists only on 82576 and newer so if we are older then
3590 	 * we should exit and do nothing
3591 	 */
3592 	if (hw->mac.type < e1000_82576)
3593 		return;
3594 
3595 	vmolr = rd32(E1000_VMOLR(vfn));
3596 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3597 	if (hw->mac.type == e1000_i350) {
3598 		u32 dvmolr;
3599 
3600 		dvmolr = rd32(E1000_DVMOLR(vfn));
3601 		dvmolr |= E1000_DVMOLR_STRVLAN;
3602 		wr32(E1000_DVMOLR(vfn), dvmolr);
3603 	}
3604 	if (aupe)
3605 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3606 	else
3607 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3608 
3609 	/* clear all bits that might not be set */
3610 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3611 
3612 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3613 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3614 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3615 	 * multicast packets
3616 	 */
3617 	if (vfn <= adapter->vfs_allocated_count)
3618 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3619 
3620 	wr32(E1000_VMOLR(vfn), vmolr);
3621 }
3622 
3623 /**
3624  *  igb_configure_rx_ring - Configure a receive ring after Reset
3625  *  @adapter: board private structure
3626  *  @ring: receive ring to be configured
3627  *
3628  *  Configure the Rx unit of the MAC after a reset.
3629  **/
3630 void igb_configure_rx_ring(struct igb_adapter *adapter,
3631 			   struct igb_ring *ring)
3632 {
3633 	struct e1000_hw *hw = &adapter->hw;
3634 	u64 rdba = ring->dma;
3635 	int reg_idx = ring->reg_idx;
3636 	u32 srrctl = 0, rxdctl = 0;
3637 
3638 	/* disable the queue */
3639 	wr32(E1000_RXDCTL(reg_idx), 0);
3640 
3641 	/* Set DMA base address registers */
3642 	wr32(E1000_RDBAL(reg_idx),
3643 	     rdba & 0x00000000ffffffffULL);
3644 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3645 	wr32(E1000_RDLEN(reg_idx),
3646 	     ring->count * sizeof(union e1000_adv_rx_desc));
3647 
3648 	/* initialize head and tail */
3649 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3650 	wr32(E1000_RDH(reg_idx), 0);
3651 	writel(0, ring->tail);
3652 
3653 	/* set descriptor configuration */
3654 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3655 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3656 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3657 	if (hw->mac.type >= e1000_82580)
3658 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3659 	/* Only set Drop Enable if we are supporting multiple queues */
3660 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3661 		srrctl |= E1000_SRRCTL_DROP_EN;
3662 
3663 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3664 
3665 	/* set filtering for VMDQ pools */
3666 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3667 
3668 	rxdctl |= IGB_RX_PTHRESH;
3669 	rxdctl |= IGB_RX_HTHRESH << 8;
3670 	rxdctl |= IGB_RX_WTHRESH << 16;
3671 
3672 	/* enable receive descriptor fetching */
3673 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3674 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3675 }
3676 
3677 /**
3678  *  igb_configure_rx - Configure receive Unit after Reset
3679  *  @adapter: board private structure
3680  *
3681  *  Configure the Rx unit of the MAC after a reset.
3682  **/
3683 static void igb_configure_rx(struct igb_adapter *adapter)
3684 {
3685 	int i;
3686 
3687 	/* set UTA to appropriate mode */
3688 	igb_set_uta(adapter);
3689 
3690 	/* set the correct pool for the PF default MAC address in entry 0 */
3691 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3692 			 adapter->vfs_allocated_count);
3693 
3694 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3695 	 * the Base and Length of the Rx Descriptor Ring
3696 	 */
3697 	for (i = 0; i < adapter->num_rx_queues; i++)
3698 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3699 }
3700 
3701 /**
3702  *  igb_free_tx_resources - Free Tx Resources per Queue
3703  *  @tx_ring: Tx descriptor ring for a specific queue
3704  *
3705  *  Free all transmit software resources
3706  **/
3707 void igb_free_tx_resources(struct igb_ring *tx_ring)
3708 {
3709 	igb_clean_tx_ring(tx_ring);
3710 
3711 	vfree(tx_ring->tx_buffer_info);
3712 	tx_ring->tx_buffer_info = NULL;
3713 
3714 	/* if not set, then don't free */
3715 	if (!tx_ring->desc)
3716 		return;
3717 
3718 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3719 			  tx_ring->desc, tx_ring->dma);
3720 
3721 	tx_ring->desc = NULL;
3722 }
3723 
3724 /**
3725  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3726  *  @adapter: board private structure
3727  *
3728  *  Free all transmit software resources
3729  **/
3730 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3731 {
3732 	int i;
3733 
3734 	for (i = 0; i < adapter->num_tx_queues; i++)
3735 		if (adapter->tx_ring[i])
3736 			igb_free_tx_resources(adapter->tx_ring[i]);
3737 }
3738 
3739 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3740 				    struct igb_tx_buffer *tx_buffer)
3741 {
3742 	if (tx_buffer->skb) {
3743 		dev_kfree_skb_any(tx_buffer->skb);
3744 		if (dma_unmap_len(tx_buffer, len))
3745 			dma_unmap_single(ring->dev,
3746 					 dma_unmap_addr(tx_buffer, dma),
3747 					 dma_unmap_len(tx_buffer, len),
3748 					 DMA_TO_DEVICE);
3749 	} else if (dma_unmap_len(tx_buffer, len)) {
3750 		dma_unmap_page(ring->dev,
3751 			       dma_unmap_addr(tx_buffer, dma),
3752 			       dma_unmap_len(tx_buffer, len),
3753 			       DMA_TO_DEVICE);
3754 	}
3755 	tx_buffer->next_to_watch = NULL;
3756 	tx_buffer->skb = NULL;
3757 	dma_unmap_len_set(tx_buffer, len, 0);
3758 	/* buffer_info must be completely set up in the transmit path */
3759 }
3760 
3761 /**
3762  *  igb_clean_tx_ring - Free Tx Buffers
3763  *  @tx_ring: ring to be cleaned
3764  **/
3765 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3766 {
3767 	struct igb_tx_buffer *buffer_info;
3768 	unsigned long size;
3769 	u16 i;
3770 
3771 	if (!tx_ring->tx_buffer_info)
3772 		return;
3773 	/* Free all the Tx ring sk_buffs */
3774 
3775 	for (i = 0; i < tx_ring->count; i++) {
3776 		buffer_info = &tx_ring->tx_buffer_info[i];
3777 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3778 	}
3779 
3780 	netdev_tx_reset_queue(txring_txq(tx_ring));
3781 
3782 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3783 	memset(tx_ring->tx_buffer_info, 0, size);
3784 
3785 	/* Zero out the descriptor ring */
3786 	memset(tx_ring->desc, 0, tx_ring->size);
3787 
3788 	tx_ring->next_to_use = 0;
3789 	tx_ring->next_to_clean = 0;
3790 }
3791 
3792 /**
3793  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3794  *  @adapter: board private structure
3795  **/
3796 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3797 {
3798 	int i;
3799 
3800 	for (i = 0; i < adapter->num_tx_queues; i++)
3801 		if (adapter->tx_ring[i])
3802 			igb_clean_tx_ring(adapter->tx_ring[i]);
3803 }
3804 
3805 /**
3806  *  igb_free_rx_resources - Free Rx Resources
3807  *  @rx_ring: ring to clean the resources from
3808  *
3809  *  Free all receive software resources
3810  **/
3811 void igb_free_rx_resources(struct igb_ring *rx_ring)
3812 {
3813 	igb_clean_rx_ring(rx_ring);
3814 
3815 	vfree(rx_ring->rx_buffer_info);
3816 	rx_ring->rx_buffer_info = NULL;
3817 
3818 	/* if not set, then don't free */
3819 	if (!rx_ring->desc)
3820 		return;
3821 
3822 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3823 			  rx_ring->desc, rx_ring->dma);
3824 
3825 	rx_ring->desc = NULL;
3826 }
3827 
3828 /**
3829  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3830  *  @adapter: board private structure
3831  *
3832  *  Free all receive software resources
3833  **/
3834 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3835 {
3836 	int i;
3837 
3838 	for (i = 0; i < adapter->num_rx_queues; i++)
3839 		if (adapter->rx_ring[i])
3840 			igb_free_rx_resources(adapter->rx_ring[i]);
3841 }
3842 
3843 /**
3844  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3845  *  @rx_ring: ring to free buffers from
3846  **/
3847 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3848 {
3849 	unsigned long size;
3850 	u16 i;
3851 
3852 	if (rx_ring->skb)
3853 		dev_kfree_skb(rx_ring->skb);
3854 	rx_ring->skb = NULL;
3855 
3856 	if (!rx_ring->rx_buffer_info)
3857 		return;
3858 
3859 	/* Free all the Rx ring sk_buffs */
3860 	for (i = 0; i < rx_ring->count; i++) {
3861 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3862 
3863 		if (!buffer_info->page)
3864 			continue;
3865 
3866 		dma_unmap_page(rx_ring->dev,
3867 			       buffer_info->dma,
3868 			       PAGE_SIZE,
3869 			       DMA_FROM_DEVICE);
3870 		__free_page(buffer_info->page);
3871 
3872 		buffer_info->page = NULL;
3873 	}
3874 
3875 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3876 	memset(rx_ring->rx_buffer_info, 0, size);
3877 
3878 	/* Zero out the descriptor ring */
3879 	memset(rx_ring->desc, 0, rx_ring->size);
3880 
3881 	rx_ring->next_to_alloc = 0;
3882 	rx_ring->next_to_clean = 0;
3883 	rx_ring->next_to_use = 0;
3884 }
3885 
3886 /**
3887  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3888  *  @adapter: board private structure
3889  **/
3890 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3891 {
3892 	int i;
3893 
3894 	for (i = 0; i < adapter->num_rx_queues; i++)
3895 		if (adapter->rx_ring[i])
3896 			igb_clean_rx_ring(adapter->rx_ring[i]);
3897 }
3898 
3899 /**
3900  *  igb_set_mac - Change the Ethernet Address of the NIC
3901  *  @netdev: network interface device structure
3902  *  @p: pointer to an address structure
3903  *
3904  *  Returns 0 on success, negative on failure
3905  **/
3906 static int igb_set_mac(struct net_device *netdev, void *p)
3907 {
3908 	struct igb_adapter *adapter = netdev_priv(netdev);
3909 	struct e1000_hw *hw = &adapter->hw;
3910 	struct sockaddr *addr = p;
3911 
3912 	if (!is_valid_ether_addr(addr->sa_data))
3913 		return -EADDRNOTAVAIL;
3914 
3915 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3916 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3917 
3918 	/* set the correct pool for the new PF MAC address in entry 0 */
3919 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3920 			 adapter->vfs_allocated_count);
3921 
3922 	return 0;
3923 }
3924 
3925 /**
3926  *  igb_write_mc_addr_list - write multicast addresses to MTA
3927  *  @netdev: network interface device structure
3928  *
3929  *  Writes multicast address list to the MTA hash table.
3930  *  Returns: -ENOMEM on failure
3931  *           0 on no addresses written
3932  *           X on writing X addresses to MTA
3933  **/
3934 static int igb_write_mc_addr_list(struct net_device *netdev)
3935 {
3936 	struct igb_adapter *adapter = netdev_priv(netdev);
3937 	struct e1000_hw *hw = &adapter->hw;
3938 	struct netdev_hw_addr *ha;
3939 	u8  *mta_list;
3940 	int i;
3941 
3942 	if (netdev_mc_empty(netdev)) {
3943 		/* nothing to program, so clear mc list */
3944 		igb_update_mc_addr_list(hw, NULL, 0);
3945 		igb_restore_vf_multicasts(adapter);
3946 		return 0;
3947 	}
3948 
3949 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3950 	if (!mta_list)
3951 		return -ENOMEM;
3952 
3953 	/* The shared function expects a packed array of only addresses. */
3954 	i = 0;
3955 	netdev_for_each_mc_addr(ha, netdev)
3956 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3957 
3958 	igb_update_mc_addr_list(hw, mta_list, i);
3959 	kfree(mta_list);
3960 
3961 	return netdev_mc_count(netdev);
3962 }
3963 
3964 /**
3965  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3966  *  @netdev: network interface device structure
3967  *
3968  *  Writes unicast address list to the RAR table.
3969  *  Returns: -ENOMEM on failure/insufficient address space
3970  *           0 on no addresses written
3971  *           X on writing X addresses to the RAR table
3972  **/
3973 static int igb_write_uc_addr_list(struct net_device *netdev)
3974 {
3975 	struct igb_adapter *adapter = netdev_priv(netdev);
3976 	struct e1000_hw *hw = &adapter->hw;
3977 	unsigned int vfn = adapter->vfs_allocated_count;
3978 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3979 	int count = 0;
3980 
3981 	/* return ENOMEM indicating insufficient memory for addresses */
3982 	if (netdev_uc_count(netdev) > rar_entries)
3983 		return -ENOMEM;
3984 
3985 	if (!netdev_uc_empty(netdev) && rar_entries) {
3986 		struct netdev_hw_addr *ha;
3987 
3988 		netdev_for_each_uc_addr(ha, netdev) {
3989 			if (!rar_entries)
3990 				break;
3991 			igb_rar_set_qsel(adapter, ha->addr,
3992 					 rar_entries--,
3993 					 vfn);
3994 			count++;
3995 		}
3996 	}
3997 	/* write the addresses in reverse order to avoid write combining */
3998 	for (; rar_entries > 0 ; rar_entries--) {
3999 		wr32(E1000_RAH(rar_entries), 0);
4000 		wr32(E1000_RAL(rar_entries), 0);
4001 	}
4002 	wrfl();
4003 
4004 	return count;
4005 }
4006 
4007 /**
4008  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4009  *  @netdev: network interface device structure
4010  *
4011  *  The set_rx_mode entry point is called whenever the unicast or multicast
4012  *  address lists or the network interface flags are updated.  This routine is
4013  *  responsible for configuring the hardware for proper unicast, multicast,
4014  *  promiscuous mode, and all-multi behavior.
4015  **/
4016 static void igb_set_rx_mode(struct net_device *netdev)
4017 {
4018 	struct igb_adapter *adapter = netdev_priv(netdev);
4019 	struct e1000_hw *hw = &adapter->hw;
4020 	unsigned int vfn = adapter->vfs_allocated_count;
4021 	u32 rctl, vmolr = 0;
4022 	int count;
4023 
4024 	/* Check for Promiscuous and All Multicast modes */
4025 	rctl = rd32(E1000_RCTL);
4026 
4027 	/* clear the effected bits */
4028 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4029 
4030 	if (netdev->flags & IFF_PROMISC) {
4031 		/* retain VLAN HW filtering if in VT mode */
4032 		if (adapter->vfs_allocated_count)
4033 			rctl |= E1000_RCTL_VFE;
4034 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4035 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4036 	} else {
4037 		if (netdev->flags & IFF_ALLMULTI) {
4038 			rctl |= E1000_RCTL_MPE;
4039 			vmolr |= E1000_VMOLR_MPME;
4040 		} else {
4041 			/* Write addresses to the MTA, if the attempt fails
4042 			 * then we should just turn on promiscuous mode so
4043 			 * that we can at least receive multicast traffic
4044 			 */
4045 			count = igb_write_mc_addr_list(netdev);
4046 			if (count < 0) {
4047 				rctl |= E1000_RCTL_MPE;
4048 				vmolr |= E1000_VMOLR_MPME;
4049 			} else if (count) {
4050 				vmolr |= E1000_VMOLR_ROMPE;
4051 			}
4052 		}
4053 		/* Write addresses to available RAR registers, if there is not
4054 		 * sufficient space to store all the addresses then enable
4055 		 * unicast promiscuous mode
4056 		 */
4057 		count = igb_write_uc_addr_list(netdev);
4058 		if (count < 0) {
4059 			rctl |= E1000_RCTL_UPE;
4060 			vmolr |= E1000_VMOLR_ROPE;
4061 		}
4062 		rctl |= E1000_RCTL_VFE;
4063 	}
4064 	wr32(E1000_RCTL, rctl);
4065 
4066 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4067 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4068 	 * we will have issues with VLAN tag stripping not being done for frames
4069 	 * that are only arriving because we are the default pool
4070 	 */
4071 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4072 		return;
4073 
4074 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4075 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4076 	wr32(E1000_VMOLR(vfn), vmolr);
4077 	igb_restore_vf_multicasts(adapter);
4078 }
4079 
4080 static void igb_check_wvbr(struct igb_adapter *adapter)
4081 {
4082 	struct e1000_hw *hw = &adapter->hw;
4083 	u32 wvbr = 0;
4084 
4085 	switch (hw->mac.type) {
4086 	case e1000_82576:
4087 	case e1000_i350:
4088 		wvbr = rd32(E1000_WVBR);
4089 		if (!wvbr)
4090 			return;
4091 		break;
4092 	default:
4093 		break;
4094 	}
4095 
4096 	adapter->wvbr |= wvbr;
4097 }
4098 
4099 #define IGB_STAGGERED_QUEUE_OFFSET 8
4100 
4101 static void igb_spoof_check(struct igb_adapter *adapter)
4102 {
4103 	int j;
4104 
4105 	if (!adapter->wvbr)
4106 		return;
4107 
4108 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4109 		if (adapter->wvbr & (1 << j) ||
4110 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4111 			dev_warn(&adapter->pdev->dev,
4112 				"Spoof event(s) detected on VF %d\n", j);
4113 			adapter->wvbr &=
4114 				~((1 << j) |
4115 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4116 		}
4117 	}
4118 }
4119 
4120 /* Need to wait a few seconds after link up to get diagnostic information from
4121  * the phy
4122  */
4123 static void igb_update_phy_info(unsigned long data)
4124 {
4125 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4126 	igb_get_phy_info(&adapter->hw);
4127 }
4128 
4129 /**
4130  *  igb_has_link - check shared code for link and determine up/down
4131  *  @adapter: pointer to driver private info
4132  **/
4133 bool igb_has_link(struct igb_adapter *adapter)
4134 {
4135 	struct e1000_hw *hw = &adapter->hw;
4136 	bool link_active = false;
4137 
4138 	/* get_link_status is set on LSC (link status) interrupt or
4139 	 * rx sequence error interrupt.  get_link_status will stay
4140 	 * false until the e1000_check_for_link establishes link
4141 	 * for copper adapters ONLY
4142 	 */
4143 	switch (hw->phy.media_type) {
4144 	case e1000_media_type_copper:
4145 		if (!hw->mac.get_link_status)
4146 			return true;
4147 	case e1000_media_type_internal_serdes:
4148 		hw->mac.ops.check_for_link(hw);
4149 		link_active = !hw->mac.get_link_status;
4150 		break;
4151 	default:
4152 	case e1000_media_type_unknown:
4153 		break;
4154 	}
4155 
4156 	if (((hw->mac.type == e1000_i210) ||
4157 	     (hw->mac.type == e1000_i211)) &&
4158 	     (hw->phy.id == I210_I_PHY_ID)) {
4159 		if (!netif_carrier_ok(adapter->netdev)) {
4160 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4161 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4162 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4163 			adapter->link_check_timeout = jiffies;
4164 		}
4165 	}
4166 
4167 	return link_active;
4168 }
4169 
4170 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4171 {
4172 	bool ret = false;
4173 	u32 ctrl_ext, thstat;
4174 
4175 	/* check for thermal sensor event on i350 copper only */
4176 	if (hw->mac.type == e1000_i350) {
4177 		thstat = rd32(E1000_THSTAT);
4178 		ctrl_ext = rd32(E1000_CTRL_EXT);
4179 
4180 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4181 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4182 			ret = !!(thstat & event);
4183 	}
4184 
4185 	return ret;
4186 }
4187 
4188 /**
4189  *  igb_check_lvmmc - check for malformed packets received
4190  *  and indicated in LVMMC register
4191  *  @adapter: pointer to adapter
4192  **/
4193 static void igb_check_lvmmc(struct igb_adapter *adapter)
4194 {
4195 	struct e1000_hw *hw = &adapter->hw;
4196 	u32 lvmmc;
4197 
4198 	lvmmc = rd32(E1000_LVMMC);
4199 	if (lvmmc) {
4200 		if (unlikely(net_ratelimit())) {
4201 			netdev_warn(adapter->netdev,
4202 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4203 				    lvmmc);
4204 		}
4205 	}
4206 }
4207 
4208 /**
4209  *  igb_watchdog - Timer Call-back
4210  *  @data: pointer to adapter cast into an unsigned long
4211  **/
4212 static void igb_watchdog(unsigned long data)
4213 {
4214 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4215 	/* Do the rest outside of interrupt context */
4216 	schedule_work(&adapter->watchdog_task);
4217 }
4218 
4219 static void igb_watchdog_task(struct work_struct *work)
4220 {
4221 	struct igb_adapter *adapter = container_of(work,
4222 						   struct igb_adapter,
4223 						   watchdog_task);
4224 	struct e1000_hw *hw = &adapter->hw;
4225 	struct e1000_phy_info *phy = &hw->phy;
4226 	struct net_device *netdev = adapter->netdev;
4227 	u32 link;
4228 	int i;
4229 	u32 connsw;
4230 
4231 	link = igb_has_link(adapter);
4232 
4233 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4234 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4235 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4236 		else
4237 			link = false;
4238 	}
4239 
4240 	/* Force link down if we have fiber to swap to */
4241 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4242 		if (hw->phy.media_type == e1000_media_type_copper) {
4243 			connsw = rd32(E1000_CONNSW);
4244 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4245 				link = 0;
4246 		}
4247 	}
4248 	if (link) {
4249 		/* Perform a reset if the media type changed. */
4250 		if (hw->dev_spec._82575.media_changed) {
4251 			hw->dev_spec._82575.media_changed = false;
4252 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4253 			igb_reset(adapter);
4254 		}
4255 		/* Cancel scheduled suspend requests. */
4256 		pm_runtime_resume(netdev->dev.parent);
4257 
4258 		if (!netif_carrier_ok(netdev)) {
4259 			u32 ctrl;
4260 
4261 			hw->mac.ops.get_speed_and_duplex(hw,
4262 							 &adapter->link_speed,
4263 							 &adapter->link_duplex);
4264 
4265 			ctrl = rd32(E1000_CTRL);
4266 			/* Links status message must follow this format */
4267 			netdev_info(netdev,
4268 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4269 			       netdev->name,
4270 			       adapter->link_speed,
4271 			       adapter->link_duplex == FULL_DUPLEX ?
4272 			       "Full" : "Half",
4273 			       (ctrl & E1000_CTRL_TFCE) &&
4274 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4275 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4276 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4277 
4278 			/* disable EEE if enabled */
4279 			if ((adapter->flags & IGB_FLAG_EEE) &&
4280 				(adapter->link_duplex == HALF_DUPLEX)) {
4281 				dev_info(&adapter->pdev->dev,
4282 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4283 				adapter->hw.dev_spec._82575.eee_disable = true;
4284 				adapter->flags &= ~IGB_FLAG_EEE;
4285 			}
4286 
4287 			/* check if SmartSpeed worked */
4288 			igb_check_downshift(hw);
4289 			if (phy->speed_downgraded)
4290 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4291 
4292 			/* check for thermal sensor event */
4293 			if (igb_thermal_sensor_event(hw,
4294 			    E1000_THSTAT_LINK_THROTTLE))
4295 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4296 
4297 			/* adjust timeout factor according to speed/duplex */
4298 			adapter->tx_timeout_factor = 1;
4299 			switch (adapter->link_speed) {
4300 			case SPEED_10:
4301 				adapter->tx_timeout_factor = 14;
4302 				break;
4303 			case SPEED_100:
4304 				/* maybe add some timeout factor ? */
4305 				break;
4306 			}
4307 
4308 			netif_carrier_on(netdev);
4309 
4310 			igb_ping_all_vfs(adapter);
4311 			igb_check_vf_rate_limit(adapter);
4312 
4313 			/* link state has changed, schedule phy info update */
4314 			if (!test_bit(__IGB_DOWN, &adapter->state))
4315 				mod_timer(&adapter->phy_info_timer,
4316 					  round_jiffies(jiffies + 2 * HZ));
4317 		}
4318 	} else {
4319 		if (netif_carrier_ok(netdev)) {
4320 			adapter->link_speed = 0;
4321 			adapter->link_duplex = 0;
4322 
4323 			/* check for thermal sensor event */
4324 			if (igb_thermal_sensor_event(hw,
4325 			    E1000_THSTAT_PWR_DOWN)) {
4326 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4327 			}
4328 
4329 			/* Links status message must follow this format */
4330 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4331 			       netdev->name);
4332 			netif_carrier_off(netdev);
4333 
4334 			igb_ping_all_vfs(adapter);
4335 
4336 			/* link state has changed, schedule phy info update */
4337 			if (!test_bit(__IGB_DOWN, &adapter->state))
4338 				mod_timer(&adapter->phy_info_timer,
4339 					  round_jiffies(jiffies + 2 * HZ));
4340 
4341 			/* link is down, time to check for alternate media */
4342 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4343 				igb_check_swap_media(adapter);
4344 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4345 					schedule_work(&adapter->reset_task);
4346 					/* return immediately */
4347 					return;
4348 				}
4349 			}
4350 			pm_schedule_suspend(netdev->dev.parent,
4351 					    MSEC_PER_SEC * 5);
4352 
4353 		/* also check for alternate media here */
4354 		} else if (!netif_carrier_ok(netdev) &&
4355 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4356 			igb_check_swap_media(adapter);
4357 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4358 				schedule_work(&adapter->reset_task);
4359 				/* return immediately */
4360 				return;
4361 			}
4362 		}
4363 	}
4364 
4365 	spin_lock(&adapter->stats64_lock);
4366 	igb_update_stats(adapter, &adapter->stats64);
4367 	spin_unlock(&adapter->stats64_lock);
4368 
4369 	for (i = 0; i < adapter->num_tx_queues; i++) {
4370 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4371 		if (!netif_carrier_ok(netdev)) {
4372 			/* We've lost link, so the controller stops DMA,
4373 			 * but we've got queued Tx work that's never going
4374 			 * to get done, so reset controller to flush Tx.
4375 			 * (Do the reset outside of interrupt context).
4376 			 */
4377 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4378 				adapter->tx_timeout_count++;
4379 				schedule_work(&adapter->reset_task);
4380 				/* return immediately since reset is imminent */
4381 				return;
4382 			}
4383 		}
4384 
4385 		/* Force detection of hung controller every watchdog period */
4386 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4387 	}
4388 
4389 	/* Cause software interrupt to ensure Rx ring is cleaned */
4390 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4391 		u32 eics = 0;
4392 
4393 		for (i = 0; i < adapter->num_q_vectors; i++)
4394 			eics |= adapter->q_vector[i]->eims_value;
4395 		wr32(E1000_EICS, eics);
4396 	} else {
4397 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4398 	}
4399 
4400 	igb_spoof_check(adapter);
4401 	igb_ptp_rx_hang(adapter);
4402 
4403 	/* Check LVMMC register on i350/i354 only */
4404 	if ((adapter->hw.mac.type == e1000_i350) ||
4405 	    (adapter->hw.mac.type == e1000_i354))
4406 		igb_check_lvmmc(adapter);
4407 
4408 	/* Reset the timer */
4409 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4410 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4411 			mod_timer(&adapter->watchdog_timer,
4412 				  round_jiffies(jiffies +  HZ));
4413 		else
4414 			mod_timer(&adapter->watchdog_timer,
4415 				  round_jiffies(jiffies + 2 * HZ));
4416 	}
4417 }
4418 
4419 enum latency_range {
4420 	lowest_latency = 0,
4421 	low_latency = 1,
4422 	bulk_latency = 2,
4423 	latency_invalid = 255
4424 };
4425 
4426 /**
4427  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4428  *  @q_vector: pointer to q_vector
4429  *
4430  *  Stores a new ITR value based on strictly on packet size.  This
4431  *  algorithm is less sophisticated than that used in igb_update_itr,
4432  *  due to the difficulty of synchronizing statistics across multiple
4433  *  receive rings.  The divisors and thresholds used by this function
4434  *  were determined based on theoretical maximum wire speed and testing
4435  *  data, in order to minimize response time while increasing bulk
4436  *  throughput.
4437  *  This functionality is controlled by ethtool's coalescing settings.
4438  *  NOTE:  This function is called only when operating in a multiqueue
4439  *         receive environment.
4440  **/
4441 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4442 {
4443 	int new_val = q_vector->itr_val;
4444 	int avg_wire_size = 0;
4445 	struct igb_adapter *adapter = q_vector->adapter;
4446 	unsigned int packets;
4447 
4448 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4449 	 * ints/sec - ITR timer value of 120 ticks.
4450 	 */
4451 	if (adapter->link_speed != SPEED_1000) {
4452 		new_val = IGB_4K_ITR;
4453 		goto set_itr_val;
4454 	}
4455 
4456 	packets = q_vector->rx.total_packets;
4457 	if (packets)
4458 		avg_wire_size = q_vector->rx.total_bytes / packets;
4459 
4460 	packets = q_vector->tx.total_packets;
4461 	if (packets)
4462 		avg_wire_size = max_t(u32, avg_wire_size,
4463 				      q_vector->tx.total_bytes / packets);
4464 
4465 	/* if avg_wire_size isn't set no work was done */
4466 	if (!avg_wire_size)
4467 		goto clear_counts;
4468 
4469 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4470 	avg_wire_size += 24;
4471 
4472 	/* Don't starve jumbo frames */
4473 	avg_wire_size = min(avg_wire_size, 3000);
4474 
4475 	/* Give a little boost to mid-size frames */
4476 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4477 		new_val = avg_wire_size / 3;
4478 	else
4479 		new_val = avg_wire_size / 2;
4480 
4481 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4482 	if (new_val < IGB_20K_ITR &&
4483 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4484 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4485 		new_val = IGB_20K_ITR;
4486 
4487 set_itr_val:
4488 	if (new_val != q_vector->itr_val) {
4489 		q_vector->itr_val = new_val;
4490 		q_vector->set_itr = 1;
4491 	}
4492 clear_counts:
4493 	q_vector->rx.total_bytes = 0;
4494 	q_vector->rx.total_packets = 0;
4495 	q_vector->tx.total_bytes = 0;
4496 	q_vector->tx.total_packets = 0;
4497 }
4498 
4499 /**
4500  *  igb_update_itr - update the dynamic ITR value based on statistics
4501  *  @q_vector: pointer to q_vector
4502  *  @ring_container: ring info to update the itr for
4503  *
4504  *  Stores a new ITR value based on packets and byte
4505  *  counts during the last interrupt.  The advantage of per interrupt
4506  *  computation is faster updates and more accurate ITR for the current
4507  *  traffic pattern.  Constants in this function were computed
4508  *  based on theoretical maximum wire speed and thresholds were set based
4509  *  on testing data as well as attempting to minimize response time
4510  *  while increasing bulk throughput.
4511  *  This functionality is controlled by ethtool's coalescing settings.
4512  *  NOTE:  These calculations are only valid when operating in a single-
4513  *         queue environment.
4514  **/
4515 static void igb_update_itr(struct igb_q_vector *q_vector,
4516 			   struct igb_ring_container *ring_container)
4517 {
4518 	unsigned int packets = ring_container->total_packets;
4519 	unsigned int bytes = ring_container->total_bytes;
4520 	u8 itrval = ring_container->itr;
4521 
4522 	/* no packets, exit with status unchanged */
4523 	if (packets == 0)
4524 		return;
4525 
4526 	switch (itrval) {
4527 	case lowest_latency:
4528 		/* handle TSO and jumbo frames */
4529 		if (bytes/packets > 8000)
4530 			itrval = bulk_latency;
4531 		else if ((packets < 5) && (bytes > 512))
4532 			itrval = low_latency;
4533 		break;
4534 	case low_latency:  /* 50 usec aka 20000 ints/s */
4535 		if (bytes > 10000) {
4536 			/* this if handles the TSO accounting */
4537 			if (bytes/packets > 8000)
4538 				itrval = bulk_latency;
4539 			else if ((packets < 10) || ((bytes/packets) > 1200))
4540 				itrval = bulk_latency;
4541 			else if ((packets > 35))
4542 				itrval = lowest_latency;
4543 		} else if (bytes/packets > 2000) {
4544 			itrval = bulk_latency;
4545 		} else if (packets <= 2 && bytes < 512) {
4546 			itrval = lowest_latency;
4547 		}
4548 		break;
4549 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4550 		if (bytes > 25000) {
4551 			if (packets > 35)
4552 				itrval = low_latency;
4553 		} else if (bytes < 1500) {
4554 			itrval = low_latency;
4555 		}
4556 		break;
4557 	}
4558 
4559 	/* clear work counters since we have the values we need */
4560 	ring_container->total_bytes = 0;
4561 	ring_container->total_packets = 0;
4562 
4563 	/* write updated itr to ring container */
4564 	ring_container->itr = itrval;
4565 }
4566 
4567 static void igb_set_itr(struct igb_q_vector *q_vector)
4568 {
4569 	struct igb_adapter *adapter = q_vector->adapter;
4570 	u32 new_itr = q_vector->itr_val;
4571 	u8 current_itr = 0;
4572 
4573 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4574 	if (adapter->link_speed != SPEED_1000) {
4575 		current_itr = 0;
4576 		new_itr = IGB_4K_ITR;
4577 		goto set_itr_now;
4578 	}
4579 
4580 	igb_update_itr(q_vector, &q_vector->tx);
4581 	igb_update_itr(q_vector, &q_vector->rx);
4582 
4583 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4584 
4585 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4586 	if (current_itr == lowest_latency &&
4587 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4588 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4589 		current_itr = low_latency;
4590 
4591 	switch (current_itr) {
4592 	/* counts and packets in update_itr are dependent on these numbers */
4593 	case lowest_latency:
4594 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4595 		break;
4596 	case low_latency:
4597 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4598 		break;
4599 	case bulk_latency:
4600 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4601 		break;
4602 	default:
4603 		break;
4604 	}
4605 
4606 set_itr_now:
4607 	if (new_itr != q_vector->itr_val) {
4608 		/* this attempts to bias the interrupt rate towards Bulk
4609 		 * by adding intermediate steps when interrupt rate is
4610 		 * increasing
4611 		 */
4612 		new_itr = new_itr > q_vector->itr_val ?
4613 			  max((new_itr * q_vector->itr_val) /
4614 			  (new_itr + (q_vector->itr_val >> 2)),
4615 			  new_itr) : new_itr;
4616 		/* Don't write the value here; it resets the adapter's
4617 		 * internal timer, and causes us to delay far longer than
4618 		 * we should between interrupts.  Instead, we write the ITR
4619 		 * value at the beginning of the next interrupt so the timing
4620 		 * ends up being correct.
4621 		 */
4622 		q_vector->itr_val = new_itr;
4623 		q_vector->set_itr = 1;
4624 	}
4625 }
4626 
4627 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4628 			    u32 type_tucmd, u32 mss_l4len_idx)
4629 {
4630 	struct e1000_adv_tx_context_desc *context_desc;
4631 	u16 i = tx_ring->next_to_use;
4632 
4633 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4634 
4635 	i++;
4636 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4637 
4638 	/* set bits to identify this as an advanced context descriptor */
4639 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4640 
4641 	/* For 82575, context index must be unique per ring. */
4642 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4643 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4644 
4645 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4646 	context_desc->seqnum_seed	= 0;
4647 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4648 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4649 }
4650 
4651 static int igb_tso(struct igb_ring *tx_ring,
4652 		   struct igb_tx_buffer *first,
4653 		   u8 *hdr_len)
4654 {
4655 	struct sk_buff *skb = first->skb;
4656 	u32 vlan_macip_lens, type_tucmd;
4657 	u32 mss_l4len_idx, l4len;
4658 	int err;
4659 
4660 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4661 		return 0;
4662 
4663 	if (!skb_is_gso(skb))
4664 		return 0;
4665 
4666 	err = skb_cow_head(skb, 0);
4667 	if (err < 0)
4668 		return err;
4669 
4670 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4671 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4672 
4673 	if (first->protocol == htons(ETH_P_IP)) {
4674 		struct iphdr *iph = ip_hdr(skb);
4675 		iph->tot_len = 0;
4676 		iph->check = 0;
4677 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4678 							 iph->daddr, 0,
4679 							 IPPROTO_TCP,
4680 							 0);
4681 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4682 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4683 				   IGB_TX_FLAGS_CSUM |
4684 				   IGB_TX_FLAGS_IPV4;
4685 	} else if (skb_is_gso_v6(skb)) {
4686 		ipv6_hdr(skb)->payload_len = 0;
4687 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4688 						       &ipv6_hdr(skb)->daddr,
4689 						       0, IPPROTO_TCP, 0);
4690 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4691 				   IGB_TX_FLAGS_CSUM;
4692 	}
4693 
4694 	/* compute header lengths */
4695 	l4len = tcp_hdrlen(skb);
4696 	*hdr_len = skb_transport_offset(skb) + l4len;
4697 
4698 	/* update gso size and bytecount with header size */
4699 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4700 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4701 
4702 	/* MSS L4LEN IDX */
4703 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4704 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4705 
4706 	/* VLAN MACLEN IPLEN */
4707 	vlan_macip_lens = skb_network_header_len(skb);
4708 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4709 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4710 
4711 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4712 
4713 	return 1;
4714 }
4715 
4716 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4717 {
4718 	struct sk_buff *skb = first->skb;
4719 	u32 vlan_macip_lens = 0;
4720 	u32 mss_l4len_idx = 0;
4721 	u32 type_tucmd = 0;
4722 
4723 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4724 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4725 			return;
4726 	} else {
4727 		u8 l4_hdr = 0;
4728 
4729 		switch (first->protocol) {
4730 		case htons(ETH_P_IP):
4731 			vlan_macip_lens |= skb_network_header_len(skb);
4732 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4733 			l4_hdr = ip_hdr(skb)->protocol;
4734 			break;
4735 		case htons(ETH_P_IPV6):
4736 			vlan_macip_lens |= skb_network_header_len(skb);
4737 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4738 			break;
4739 		default:
4740 			if (unlikely(net_ratelimit())) {
4741 				dev_warn(tx_ring->dev,
4742 					 "partial checksum but proto=%x!\n",
4743 					 first->protocol);
4744 			}
4745 			break;
4746 		}
4747 
4748 		switch (l4_hdr) {
4749 		case IPPROTO_TCP:
4750 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4751 			mss_l4len_idx = tcp_hdrlen(skb) <<
4752 					E1000_ADVTXD_L4LEN_SHIFT;
4753 			break;
4754 		case IPPROTO_SCTP:
4755 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4756 			mss_l4len_idx = sizeof(struct sctphdr) <<
4757 					E1000_ADVTXD_L4LEN_SHIFT;
4758 			break;
4759 		case IPPROTO_UDP:
4760 			mss_l4len_idx = sizeof(struct udphdr) <<
4761 					E1000_ADVTXD_L4LEN_SHIFT;
4762 			break;
4763 		default:
4764 			if (unlikely(net_ratelimit())) {
4765 				dev_warn(tx_ring->dev,
4766 					 "partial checksum but l4 proto=%x!\n",
4767 					 l4_hdr);
4768 			}
4769 			break;
4770 		}
4771 
4772 		/* update TX checksum flag */
4773 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4774 	}
4775 
4776 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4777 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4778 
4779 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4780 }
4781 
4782 #define IGB_SET_FLAG(_input, _flag, _result) \
4783 	((_flag <= _result) ? \
4784 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4785 	 ((u32)(_input & _flag) / (_flag / _result)))
4786 
4787 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4788 {
4789 	/* set type for advanced descriptor with frame checksum insertion */
4790 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4791 		       E1000_ADVTXD_DCMD_DEXT |
4792 		       E1000_ADVTXD_DCMD_IFCS;
4793 
4794 	/* set HW vlan bit if vlan is present */
4795 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4796 				 (E1000_ADVTXD_DCMD_VLE));
4797 
4798 	/* set segmentation bits for TSO */
4799 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4800 				 (E1000_ADVTXD_DCMD_TSE));
4801 
4802 	/* set timestamp bit if present */
4803 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4804 				 (E1000_ADVTXD_MAC_TSTAMP));
4805 
4806 	/* insert frame checksum */
4807 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4808 
4809 	return cmd_type;
4810 }
4811 
4812 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4813 				 union e1000_adv_tx_desc *tx_desc,
4814 				 u32 tx_flags, unsigned int paylen)
4815 {
4816 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4817 
4818 	/* 82575 requires a unique index per ring */
4819 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4820 		olinfo_status |= tx_ring->reg_idx << 4;
4821 
4822 	/* insert L4 checksum */
4823 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4824 				      IGB_TX_FLAGS_CSUM,
4825 				      (E1000_TXD_POPTS_TXSM << 8));
4826 
4827 	/* insert IPv4 checksum */
4828 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4829 				      IGB_TX_FLAGS_IPV4,
4830 				      (E1000_TXD_POPTS_IXSM << 8));
4831 
4832 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4833 }
4834 
4835 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4836 {
4837 	struct net_device *netdev = tx_ring->netdev;
4838 
4839 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4840 
4841 	/* Herbert's original patch had:
4842 	 *  smp_mb__after_netif_stop_queue();
4843 	 * but since that doesn't exist yet, just open code it.
4844 	 */
4845 	smp_mb();
4846 
4847 	/* We need to check again in a case another CPU has just
4848 	 * made room available.
4849 	 */
4850 	if (igb_desc_unused(tx_ring) < size)
4851 		return -EBUSY;
4852 
4853 	/* A reprieve! */
4854 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4855 
4856 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4857 	tx_ring->tx_stats.restart_queue2++;
4858 	u64_stats_update_end(&tx_ring->tx_syncp2);
4859 
4860 	return 0;
4861 }
4862 
4863 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4864 {
4865 	if (igb_desc_unused(tx_ring) >= size)
4866 		return 0;
4867 	return __igb_maybe_stop_tx(tx_ring, size);
4868 }
4869 
4870 static void igb_tx_map(struct igb_ring *tx_ring,
4871 		       struct igb_tx_buffer *first,
4872 		       const u8 hdr_len)
4873 {
4874 	struct sk_buff *skb = first->skb;
4875 	struct igb_tx_buffer *tx_buffer;
4876 	union e1000_adv_tx_desc *tx_desc;
4877 	struct skb_frag_struct *frag;
4878 	dma_addr_t dma;
4879 	unsigned int data_len, size;
4880 	u32 tx_flags = first->tx_flags;
4881 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4882 	u16 i = tx_ring->next_to_use;
4883 
4884 	tx_desc = IGB_TX_DESC(tx_ring, i);
4885 
4886 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4887 
4888 	size = skb_headlen(skb);
4889 	data_len = skb->data_len;
4890 
4891 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4892 
4893 	tx_buffer = first;
4894 
4895 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4896 		if (dma_mapping_error(tx_ring->dev, dma))
4897 			goto dma_error;
4898 
4899 		/* record length, and DMA address */
4900 		dma_unmap_len_set(tx_buffer, len, size);
4901 		dma_unmap_addr_set(tx_buffer, dma, dma);
4902 
4903 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4904 
4905 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4906 			tx_desc->read.cmd_type_len =
4907 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4908 
4909 			i++;
4910 			tx_desc++;
4911 			if (i == tx_ring->count) {
4912 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4913 				i = 0;
4914 			}
4915 			tx_desc->read.olinfo_status = 0;
4916 
4917 			dma += IGB_MAX_DATA_PER_TXD;
4918 			size -= IGB_MAX_DATA_PER_TXD;
4919 
4920 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4921 		}
4922 
4923 		if (likely(!data_len))
4924 			break;
4925 
4926 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4927 
4928 		i++;
4929 		tx_desc++;
4930 		if (i == tx_ring->count) {
4931 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4932 			i = 0;
4933 		}
4934 		tx_desc->read.olinfo_status = 0;
4935 
4936 		size = skb_frag_size(frag);
4937 		data_len -= size;
4938 
4939 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4940 				       size, DMA_TO_DEVICE);
4941 
4942 		tx_buffer = &tx_ring->tx_buffer_info[i];
4943 	}
4944 
4945 	/* write last descriptor with RS and EOP bits */
4946 	cmd_type |= size | IGB_TXD_DCMD;
4947 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4948 
4949 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4950 
4951 	/* set the timestamp */
4952 	first->time_stamp = jiffies;
4953 
4954 	/* Force memory writes to complete before letting h/w know there
4955 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4956 	 * memory model archs, such as IA-64).
4957 	 *
4958 	 * We also need this memory barrier to make certain all of the
4959 	 * status bits have been updated before next_to_watch is written.
4960 	 */
4961 	wmb();
4962 
4963 	/* set next_to_watch value indicating a packet is present */
4964 	first->next_to_watch = tx_desc;
4965 
4966 	i++;
4967 	if (i == tx_ring->count)
4968 		i = 0;
4969 
4970 	tx_ring->next_to_use = i;
4971 
4972 	/* Make sure there is space in the ring for the next send. */
4973 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4974 
4975 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4976 		writel(i, tx_ring->tail);
4977 
4978 		/* we need this if more than one processor can write to our tail
4979 		 * at a time, it synchronizes IO on IA64/Altix systems
4980 		 */
4981 		mmiowb();
4982 	}
4983 	return;
4984 
4985 dma_error:
4986 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4987 
4988 	/* clear dma mappings for failed tx_buffer_info map */
4989 	for (;;) {
4990 		tx_buffer = &tx_ring->tx_buffer_info[i];
4991 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4992 		if (tx_buffer == first)
4993 			break;
4994 		if (i == 0)
4995 			i = tx_ring->count;
4996 		i--;
4997 	}
4998 
4999 	tx_ring->next_to_use = i;
5000 }
5001 
5002 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5003 				struct igb_ring *tx_ring)
5004 {
5005 	struct igb_tx_buffer *first;
5006 	int tso;
5007 	u32 tx_flags = 0;
5008 	unsigned short f;
5009 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5010 	__be16 protocol = vlan_get_protocol(skb);
5011 	u8 hdr_len = 0;
5012 
5013 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5014 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5015 	 *       + 2 desc gap to keep tail from touching head,
5016 	 *       + 1 desc for context descriptor,
5017 	 * otherwise try next time
5018 	 */
5019 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5020 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5021 
5022 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5023 		/* this is a hard error */
5024 		return NETDEV_TX_BUSY;
5025 	}
5026 
5027 	/* record the location of the first descriptor for this packet */
5028 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5029 	first->skb = skb;
5030 	first->bytecount = skb->len;
5031 	first->gso_segs = 1;
5032 
5033 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5034 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5035 
5036 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5037 					   &adapter->state)) {
5038 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5039 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5040 
5041 			adapter->ptp_tx_skb = skb_get(skb);
5042 			adapter->ptp_tx_start = jiffies;
5043 			if (adapter->hw.mac.type == e1000_82576)
5044 				schedule_work(&adapter->ptp_tx_work);
5045 		}
5046 	}
5047 
5048 	skb_tx_timestamp(skb);
5049 
5050 	if (skb_vlan_tag_present(skb)) {
5051 		tx_flags |= IGB_TX_FLAGS_VLAN;
5052 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5053 	}
5054 
5055 	/* record initial flags and protocol */
5056 	first->tx_flags = tx_flags;
5057 	first->protocol = protocol;
5058 
5059 	tso = igb_tso(tx_ring, first, &hdr_len);
5060 	if (tso < 0)
5061 		goto out_drop;
5062 	else if (!tso)
5063 		igb_tx_csum(tx_ring, first);
5064 
5065 	igb_tx_map(tx_ring, first, hdr_len);
5066 
5067 	return NETDEV_TX_OK;
5068 
5069 out_drop:
5070 	igb_unmap_and_free_tx_resource(tx_ring, first);
5071 
5072 	return NETDEV_TX_OK;
5073 }
5074 
5075 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5076 						    struct sk_buff *skb)
5077 {
5078 	unsigned int r_idx = skb->queue_mapping;
5079 
5080 	if (r_idx >= adapter->num_tx_queues)
5081 		r_idx = r_idx % adapter->num_tx_queues;
5082 
5083 	return adapter->tx_ring[r_idx];
5084 }
5085 
5086 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5087 				  struct net_device *netdev)
5088 {
5089 	struct igb_adapter *adapter = netdev_priv(netdev);
5090 
5091 	if (test_bit(__IGB_DOWN, &adapter->state)) {
5092 		dev_kfree_skb_any(skb);
5093 		return NETDEV_TX_OK;
5094 	}
5095 
5096 	if (skb->len <= 0) {
5097 		dev_kfree_skb_any(skb);
5098 		return NETDEV_TX_OK;
5099 	}
5100 
5101 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5102 	 * in order to meet this minimum size requirement.
5103 	 */
5104 	if (skb_put_padto(skb, 17))
5105 		return NETDEV_TX_OK;
5106 
5107 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5108 }
5109 
5110 /**
5111  *  igb_tx_timeout - Respond to a Tx Hang
5112  *  @netdev: network interface device structure
5113  **/
5114 static void igb_tx_timeout(struct net_device *netdev)
5115 {
5116 	struct igb_adapter *adapter = netdev_priv(netdev);
5117 	struct e1000_hw *hw = &adapter->hw;
5118 
5119 	/* Do the reset outside of interrupt context */
5120 	adapter->tx_timeout_count++;
5121 
5122 	if (hw->mac.type >= e1000_82580)
5123 		hw->dev_spec._82575.global_device_reset = true;
5124 
5125 	schedule_work(&adapter->reset_task);
5126 	wr32(E1000_EICS,
5127 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5128 }
5129 
5130 static void igb_reset_task(struct work_struct *work)
5131 {
5132 	struct igb_adapter *adapter;
5133 	adapter = container_of(work, struct igb_adapter, reset_task);
5134 
5135 	igb_dump(adapter);
5136 	netdev_err(adapter->netdev, "Reset adapter\n");
5137 	igb_reinit_locked(adapter);
5138 }
5139 
5140 /**
5141  *  igb_get_stats64 - Get System Network Statistics
5142  *  @netdev: network interface device structure
5143  *  @stats: rtnl_link_stats64 pointer
5144  **/
5145 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5146 						struct rtnl_link_stats64 *stats)
5147 {
5148 	struct igb_adapter *adapter = netdev_priv(netdev);
5149 
5150 	spin_lock(&adapter->stats64_lock);
5151 	igb_update_stats(adapter, &adapter->stats64);
5152 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5153 	spin_unlock(&adapter->stats64_lock);
5154 
5155 	return stats;
5156 }
5157 
5158 /**
5159  *  igb_change_mtu - Change the Maximum Transfer Unit
5160  *  @netdev: network interface device structure
5161  *  @new_mtu: new value for maximum frame size
5162  *
5163  *  Returns 0 on success, negative on failure
5164  **/
5165 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5166 {
5167 	struct igb_adapter *adapter = netdev_priv(netdev);
5168 	struct pci_dev *pdev = adapter->pdev;
5169 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5170 
5171 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5172 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5173 		return -EINVAL;
5174 	}
5175 
5176 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5177 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5178 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5179 		return -EINVAL;
5180 	}
5181 
5182 	/* adjust max frame to be at least the size of a standard frame */
5183 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5184 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5185 
5186 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5187 		usleep_range(1000, 2000);
5188 
5189 	/* igb_down has a dependency on max_frame_size */
5190 	adapter->max_frame_size = max_frame;
5191 
5192 	if (netif_running(netdev))
5193 		igb_down(adapter);
5194 
5195 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5196 		 netdev->mtu, new_mtu);
5197 	netdev->mtu = new_mtu;
5198 
5199 	if (netif_running(netdev))
5200 		igb_up(adapter);
5201 	else
5202 		igb_reset(adapter);
5203 
5204 	clear_bit(__IGB_RESETTING, &adapter->state);
5205 
5206 	return 0;
5207 }
5208 
5209 /**
5210  *  igb_update_stats - Update the board statistics counters
5211  *  @adapter: board private structure
5212  **/
5213 void igb_update_stats(struct igb_adapter *adapter,
5214 		      struct rtnl_link_stats64 *net_stats)
5215 {
5216 	struct e1000_hw *hw = &adapter->hw;
5217 	struct pci_dev *pdev = adapter->pdev;
5218 	u32 reg, mpc;
5219 	int i;
5220 	u64 bytes, packets;
5221 	unsigned int start;
5222 	u64 _bytes, _packets;
5223 
5224 	/* Prevent stats update while adapter is being reset, or if the pci
5225 	 * connection is down.
5226 	 */
5227 	if (adapter->link_speed == 0)
5228 		return;
5229 	if (pci_channel_offline(pdev))
5230 		return;
5231 
5232 	bytes = 0;
5233 	packets = 0;
5234 
5235 	rcu_read_lock();
5236 	for (i = 0; i < adapter->num_rx_queues; i++) {
5237 		struct igb_ring *ring = adapter->rx_ring[i];
5238 		u32 rqdpc = rd32(E1000_RQDPC(i));
5239 		if (hw->mac.type >= e1000_i210)
5240 			wr32(E1000_RQDPC(i), 0);
5241 
5242 		if (rqdpc) {
5243 			ring->rx_stats.drops += rqdpc;
5244 			net_stats->rx_fifo_errors += rqdpc;
5245 		}
5246 
5247 		do {
5248 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5249 			_bytes = ring->rx_stats.bytes;
5250 			_packets = ring->rx_stats.packets;
5251 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5252 		bytes += _bytes;
5253 		packets += _packets;
5254 	}
5255 
5256 	net_stats->rx_bytes = bytes;
5257 	net_stats->rx_packets = packets;
5258 
5259 	bytes = 0;
5260 	packets = 0;
5261 	for (i = 0; i < adapter->num_tx_queues; i++) {
5262 		struct igb_ring *ring = adapter->tx_ring[i];
5263 		do {
5264 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5265 			_bytes = ring->tx_stats.bytes;
5266 			_packets = ring->tx_stats.packets;
5267 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5268 		bytes += _bytes;
5269 		packets += _packets;
5270 	}
5271 	net_stats->tx_bytes = bytes;
5272 	net_stats->tx_packets = packets;
5273 	rcu_read_unlock();
5274 
5275 	/* read stats registers */
5276 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5277 	adapter->stats.gprc += rd32(E1000_GPRC);
5278 	adapter->stats.gorc += rd32(E1000_GORCL);
5279 	rd32(E1000_GORCH); /* clear GORCL */
5280 	adapter->stats.bprc += rd32(E1000_BPRC);
5281 	adapter->stats.mprc += rd32(E1000_MPRC);
5282 	adapter->stats.roc += rd32(E1000_ROC);
5283 
5284 	adapter->stats.prc64 += rd32(E1000_PRC64);
5285 	adapter->stats.prc127 += rd32(E1000_PRC127);
5286 	adapter->stats.prc255 += rd32(E1000_PRC255);
5287 	adapter->stats.prc511 += rd32(E1000_PRC511);
5288 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5289 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5290 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5291 	adapter->stats.sec += rd32(E1000_SEC);
5292 
5293 	mpc = rd32(E1000_MPC);
5294 	adapter->stats.mpc += mpc;
5295 	net_stats->rx_fifo_errors += mpc;
5296 	adapter->stats.scc += rd32(E1000_SCC);
5297 	adapter->stats.ecol += rd32(E1000_ECOL);
5298 	adapter->stats.mcc += rd32(E1000_MCC);
5299 	adapter->stats.latecol += rd32(E1000_LATECOL);
5300 	adapter->stats.dc += rd32(E1000_DC);
5301 	adapter->stats.rlec += rd32(E1000_RLEC);
5302 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5303 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5304 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5305 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5306 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5307 	adapter->stats.gptc += rd32(E1000_GPTC);
5308 	adapter->stats.gotc += rd32(E1000_GOTCL);
5309 	rd32(E1000_GOTCH); /* clear GOTCL */
5310 	adapter->stats.rnbc += rd32(E1000_RNBC);
5311 	adapter->stats.ruc += rd32(E1000_RUC);
5312 	adapter->stats.rfc += rd32(E1000_RFC);
5313 	adapter->stats.rjc += rd32(E1000_RJC);
5314 	adapter->stats.tor += rd32(E1000_TORH);
5315 	adapter->stats.tot += rd32(E1000_TOTH);
5316 	adapter->stats.tpr += rd32(E1000_TPR);
5317 
5318 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5319 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5320 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5321 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5322 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5323 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5324 
5325 	adapter->stats.mptc += rd32(E1000_MPTC);
5326 	adapter->stats.bptc += rd32(E1000_BPTC);
5327 
5328 	adapter->stats.tpt += rd32(E1000_TPT);
5329 	adapter->stats.colc += rd32(E1000_COLC);
5330 
5331 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5332 	/* read internal phy specific stats */
5333 	reg = rd32(E1000_CTRL_EXT);
5334 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5335 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5336 
5337 		/* this stat has invalid values on i210/i211 */
5338 		if ((hw->mac.type != e1000_i210) &&
5339 		    (hw->mac.type != e1000_i211))
5340 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5341 	}
5342 
5343 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5344 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5345 
5346 	adapter->stats.iac += rd32(E1000_IAC);
5347 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5348 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5349 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5350 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5351 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5352 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5353 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5354 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5355 
5356 	/* Fill out the OS statistics structure */
5357 	net_stats->multicast = adapter->stats.mprc;
5358 	net_stats->collisions = adapter->stats.colc;
5359 
5360 	/* Rx Errors */
5361 
5362 	/* RLEC on some newer hardware can be incorrect so build
5363 	 * our own version based on RUC and ROC
5364 	 */
5365 	net_stats->rx_errors = adapter->stats.rxerrc +
5366 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5367 		adapter->stats.ruc + adapter->stats.roc +
5368 		adapter->stats.cexterr;
5369 	net_stats->rx_length_errors = adapter->stats.ruc +
5370 				      adapter->stats.roc;
5371 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5372 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5373 	net_stats->rx_missed_errors = adapter->stats.mpc;
5374 
5375 	/* Tx Errors */
5376 	net_stats->tx_errors = adapter->stats.ecol +
5377 			       adapter->stats.latecol;
5378 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5379 	net_stats->tx_window_errors = adapter->stats.latecol;
5380 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5381 
5382 	/* Tx Dropped needs to be maintained elsewhere */
5383 
5384 	/* Management Stats */
5385 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5386 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5387 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5388 
5389 	/* OS2BMC Stats */
5390 	reg = rd32(E1000_MANC);
5391 	if (reg & E1000_MANC_EN_BMC2OS) {
5392 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5393 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5394 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5395 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5396 	}
5397 }
5398 
5399 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5400 {
5401 	struct e1000_hw *hw = &adapter->hw;
5402 	struct ptp_clock_event event;
5403 	struct timespec64 ts;
5404 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5405 
5406 	if (tsicr & TSINTR_SYS_WRAP) {
5407 		event.type = PTP_CLOCK_PPS;
5408 		if (adapter->ptp_caps.pps)
5409 			ptp_clock_event(adapter->ptp_clock, &event);
5410 		else
5411 			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5412 		ack |= TSINTR_SYS_WRAP;
5413 	}
5414 
5415 	if (tsicr & E1000_TSICR_TXTS) {
5416 		/* retrieve hardware timestamp */
5417 		schedule_work(&adapter->ptp_tx_work);
5418 		ack |= E1000_TSICR_TXTS;
5419 	}
5420 
5421 	if (tsicr & TSINTR_TT0) {
5422 		spin_lock(&adapter->tmreg_lock);
5423 		ts = timespec64_add(adapter->perout[0].start,
5424 				    adapter->perout[0].period);
5425 		/* u32 conversion of tv_sec is safe until y2106 */
5426 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5427 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5428 		tsauxc = rd32(E1000_TSAUXC);
5429 		tsauxc |= TSAUXC_EN_TT0;
5430 		wr32(E1000_TSAUXC, tsauxc);
5431 		adapter->perout[0].start = ts;
5432 		spin_unlock(&adapter->tmreg_lock);
5433 		ack |= TSINTR_TT0;
5434 	}
5435 
5436 	if (tsicr & TSINTR_TT1) {
5437 		spin_lock(&adapter->tmreg_lock);
5438 		ts = timespec64_add(adapter->perout[1].start,
5439 				    adapter->perout[1].period);
5440 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5441 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5442 		tsauxc = rd32(E1000_TSAUXC);
5443 		tsauxc |= TSAUXC_EN_TT1;
5444 		wr32(E1000_TSAUXC, tsauxc);
5445 		adapter->perout[1].start = ts;
5446 		spin_unlock(&adapter->tmreg_lock);
5447 		ack |= TSINTR_TT1;
5448 	}
5449 
5450 	if (tsicr & TSINTR_AUTT0) {
5451 		nsec = rd32(E1000_AUXSTMPL0);
5452 		sec  = rd32(E1000_AUXSTMPH0);
5453 		event.type = PTP_CLOCK_EXTTS;
5454 		event.index = 0;
5455 		event.timestamp = sec * 1000000000ULL + nsec;
5456 		ptp_clock_event(adapter->ptp_clock, &event);
5457 		ack |= TSINTR_AUTT0;
5458 	}
5459 
5460 	if (tsicr & TSINTR_AUTT1) {
5461 		nsec = rd32(E1000_AUXSTMPL1);
5462 		sec  = rd32(E1000_AUXSTMPH1);
5463 		event.type = PTP_CLOCK_EXTTS;
5464 		event.index = 1;
5465 		event.timestamp = sec * 1000000000ULL + nsec;
5466 		ptp_clock_event(adapter->ptp_clock, &event);
5467 		ack |= TSINTR_AUTT1;
5468 	}
5469 
5470 	/* acknowledge the interrupts */
5471 	wr32(E1000_TSICR, ack);
5472 }
5473 
5474 static irqreturn_t igb_msix_other(int irq, void *data)
5475 {
5476 	struct igb_adapter *adapter = data;
5477 	struct e1000_hw *hw = &adapter->hw;
5478 	u32 icr = rd32(E1000_ICR);
5479 	/* reading ICR causes bit 31 of EICR to be cleared */
5480 
5481 	if (icr & E1000_ICR_DRSTA)
5482 		schedule_work(&adapter->reset_task);
5483 
5484 	if (icr & E1000_ICR_DOUTSYNC) {
5485 		/* HW is reporting DMA is out of sync */
5486 		adapter->stats.doosync++;
5487 		/* The DMA Out of Sync is also indication of a spoof event
5488 		 * in IOV mode. Check the Wrong VM Behavior register to
5489 		 * see if it is really a spoof event.
5490 		 */
5491 		igb_check_wvbr(adapter);
5492 	}
5493 
5494 	/* Check for a mailbox event */
5495 	if (icr & E1000_ICR_VMMB)
5496 		igb_msg_task(adapter);
5497 
5498 	if (icr & E1000_ICR_LSC) {
5499 		hw->mac.get_link_status = 1;
5500 		/* guard against interrupt when we're going down */
5501 		if (!test_bit(__IGB_DOWN, &adapter->state))
5502 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5503 	}
5504 
5505 	if (icr & E1000_ICR_TS)
5506 		igb_tsync_interrupt(adapter);
5507 
5508 	wr32(E1000_EIMS, adapter->eims_other);
5509 
5510 	return IRQ_HANDLED;
5511 }
5512 
5513 static void igb_write_itr(struct igb_q_vector *q_vector)
5514 {
5515 	struct igb_adapter *adapter = q_vector->adapter;
5516 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5517 
5518 	if (!q_vector->set_itr)
5519 		return;
5520 
5521 	if (!itr_val)
5522 		itr_val = 0x4;
5523 
5524 	if (adapter->hw.mac.type == e1000_82575)
5525 		itr_val |= itr_val << 16;
5526 	else
5527 		itr_val |= E1000_EITR_CNT_IGNR;
5528 
5529 	writel(itr_val, q_vector->itr_register);
5530 	q_vector->set_itr = 0;
5531 }
5532 
5533 static irqreturn_t igb_msix_ring(int irq, void *data)
5534 {
5535 	struct igb_q_vector *q_vector = data;
5536 
5537 	/* Write the ITR value calculated from the previous interrupt. */
5538 	igb_write_itr(q_vector);
5539 
5540 	napi_schedule(&q_vector->napi);
5541 
5542 	return IRQ_HANDLED;
5543 }
5544 
5545 #ifdef CONFIG_IGB_DCA
5546 static void igb_update_tx_dca(struct igb_adapter *adapter,
5547 			      struct igb_ring *tx_ring,
5548 			      int cpu)
5549 {
5550 	struct e1000_hw *hw = &adapter->hw;
5551 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5552 
5553 	if (hw->mac.type != e1000_82575)
5554 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5555 
5556 	/* We can enable relaxed ordering for reads, but not writes when
5557 	 * DCA is enabled.  This is due to a known issue in some chipsets
5558 	 * which will cause the DCA tag to be cleared.
5559 	 */
5560 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5561 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5562 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5563 
5564 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5565 }
5566 
5567 static void igb_update_rx_dca(struct igb_adapter *adapter,
5568 			      struct igb_ring *rx_ring,
5569 			      int cpu)
5570 {
5571 	struct e1000_hw *hw = &adapter->hw;
5572 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5573 
5574 	if (hw->mac.type != e1000_82575)
5575 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5576 
5577 	/* We can enable relaxed ordering for reads, but not writes when
5578 	 * DCA is enabled.  This is due to a known issue in some chipsets
5579 	 * which will cause the DCA tag to be cleared.
5580 	 */
5581 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5582 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5583 
5584 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5585 }
5586 
5587 static void igb_update_dca(struct igb_q_vector *q_vector)
5588 {
5589 	struct igb_adapter *adapter = q_vector->adapter;
5590 	int cpu = get_cpu();
5591 
5592 	if (q_vector->cpu == cpu)
5593 		goto out_no_update;
5594 
5595 	if (q_vector->tx.ring)
5596 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5597 
5598 	if (q_vector->rx.ring)
5599 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5600 
5601 	q_vector->cpu = cpu;
5602 out_no_update:
5603 	put_cpu();
5604 }
5605 
5606 static void igb_setup_dca(struct igb_adapter *adapter)
5607 {
5608 	struct e1000_hw *hw = &adapter->hw;
5609 	int i;
5610 
5611 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5612 		return;
5613 
5614 	/* Always use CB2 mode, difference is masked in the CB driver. */
5615 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5616 
5617 	for (i = 0; i < adapter->num_q_vectors; i++) {
5618 		adapter->q_vector[i]->cpu = -1;
5619 		igb_update_dca(adapter->q_vector[i]);
5620 	}
5621 }
5622 
5623 static int __igb_notify_dca(struct device *dev, void *data)
5624 {
5625 	struct net_device *netdev = dev_get_drvdata(dev);
5626 	struct igb_adapter *adapter = netdev_priv(netdev);
5627 	struct pci_dev *pdev = adapter->pdev;
5628 	struct e1000_hw *hw = &adapter->hw;
5629 	unsigned long event = *(unsigned long *)data;
5630 
5631 	switch (event) {
5632 	case DCA_PROVIDER_ADD:
5633 		/* if already enabled, don't do it again */
5634 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5635 			break;
5636 		if (dca_add_requester(dev) == 0) {
5637 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5638 			dev_info(&pdev->dev, "DCA enabled\n");
5639 			igb_setup_dca(adapter);
5640 			break;
5641 		}
5642 		/* Fall Through since DCA is disabled. */
5643 	case DCA_PROVIDER_REMOVE:
5644 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5645 			/* without this a class_device is left
5646 			 * hanging around in the sysfs model
5647 			 */
5648 			dca_remove_requester(dev);
5649 			dev_info(&pdev->dev, "DCA disabled\n");
5650 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5651 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5652 		}
5653 		break;
5654 	}
5655 
5656 	return 0;
5657 }
5658 
5659 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5660 			  void *p)
5661 {
5662 	int ret_val;
5663 
5664 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5665 					 __igb_notify_dca);
5666 
5667 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5668 }
5669 #endif /* CONFIG_IGB_DCA */
5670 
5671 #ifdef CONFIG_PCI_IOV
5672 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5673 {
5674 	unsigned char mac_addr[ETH_ALEN];
5675 
5676 	eth_zero_addr(mac_addr);
5677 	igb_set_vf_mac(adapter, vf, mac_addr);
5678 
5679 	/* By default spoof check is enabled for all VFs */
5680 	adapter->vf_data[vf].spoofchk_enabled = true;
5681 
5682 	return 0;
5683 }
5684 
5685 #endif
5686 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5687 {
5688 	struct e1000_hw *hw = &adapter->hw;
5689 	u32 ping;
5690 	int i;
5691 
5692 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5693 		ping = E1000_PF_CONTROL_MSG;
5694 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5695 			ping |= E1000_VT_MSGTYPE_CTS;
5696 		igb_write_mbx(hw, &ping, 1, i);
5697 	}
5698 }
5699 
5700 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5701 {
5702 	struct e1000_hw *hw = &adapter->hw;
5703 	u32 vmolr = rd32(E1000_VMOLR(vf));
5704 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5705 
5706 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5707 			    IGB_VF_FLAG_MULTI_PROMISC);
5708 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5709 
5710 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5711 		vmolr |= E1000_VMOLR_MPME;
5712 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5713 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5714 	} else {
5715 		/* if we have hashes and we are clearing a multicast promisc
5716 		 * flag we need to write the hashes to the MTA as this step
5717 		 * was previously skipped
5718 		 */
5719 		if (vf_data->num_vf_mc_hashes > 30) {
5720 			vmolr |= E1000_VMOLR_MPME;
5721 		} else if (vf_data->num_vf_mc_hashes) {
5722 			int j;
5723 
5724 			vmolr |= E1000_VMOLR_ROMPE;
5725 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5726 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5727 		}
5728 	}
5729 
5730 	wr32(E1000_VMOLR(vf), vmolr);
5731 
5732 	/* there are flags left unprocessed, likely not supported */
5733 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5734 		return -EINVAL;
5735 
5736 	return 0;
5737 }
5738 
5739 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5740 				  u32 *msgbuf, u32 vf)
5741 {
5742 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5743 	u16 *hash_list = (u16 *)&msgbuf[1];
5744 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5745 	int i;
5746 
5747 	/* salt away the number of multicast addresses assigned
5748 	 * to this VF for later use to restore when the PF multi cast
5749 	 * list changes
5750 	 */
5751 	vf_data->num_vf_mc_hashes = n;
5752 
5753 	/* only up to 30 hash values supported */
5754 	if (n > 30)
5755 		n = 30;
5756 
5757 	/* store the hashes for later use */
5758 	for (i = 0; i < n; i++)
5759 		vf_data->vf_mc_hashes[i] = hash_list[i];
5760 
5761 	/* Flush and reset the mta with the new values */
5762 	igb_set_rx_mode(adapter->netdev);
5763 
5764 	return 0;
5765 }
5766 
5767 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5768 {
5769 	struct e1000_hw *hw = &adapter->hw;
5770 	struct vf_data_storage *vf_data;
5771 	int i, j;
5772 
5773 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5774 		u32 vmolr = rd32(E1000_VMOLR(i));
5775 
5776 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5777 
5778 		vf_data = &adapter->vf_data[i];
5779 
5780 		if ((vf_data->num_vf_mc_hashes > 30) ||
5781 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5782 			vmolr |= E1000_VMOLR_MPME;
5783 		} else if (vf_data->num_vf_mc_hashes) {
5784 			vmolr |= E1000_VMOLR_ROMPE;
5785 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5786 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5787 		}
5788 		wr32(E1000_VMOLR(i), vmolr);
5789 	}
5790 }
5791 
5792 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5793 {
5794 	struct e1000_hw *hw = &adapter->hw;
5795 	u32 pool_mask, reg, vid;
5796 	int i;
5797 
5798 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5799 
5800 	/* Find the vlan filter for this id */
5801 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5802 		reg = rd32(E1000_VLVF(i));
5803 
5804 		/* remove the vf from the pool */
5805 		reg &= ~pool_mask;
5806 
5807 		/* if pool is empty then remove entry from vfta */
5808 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5809 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5810 			reg = 0;
5811 			vid = reg & E1000_VLVF_VLANID_MASK;
5812 			igb_vfta_set(hw, vid, false);
5813 		}
5814 
5815 		wr32(E1000_VLVF(i), reg);
5816 	}
5817 
5818 	adapter->vf_data[vf].vlans_enabled = 0;
5819 }
5820 
5821 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5822 {
5823 	struct e1000_hw *hw = &adapter->hw;
5824 	u32 reg, i;
5825 
5826 	/* The vlvf table only exists on 82576 hardware and newer */
5827 	if (hw->mac.type < e1000_82576)
5828 		return -1;
5829 
5830 	/* we only need to do this if VMDq is enabled */
5831 	if (!adapter->vfs_allocated_count)
5832 		return -1;
5833 
5834 	/* Find the vlan filter for this id */
5835 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5836 		reg = rd32(E1000_VLVF(i));
5837 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5838 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5839 			break;
5840 	}
5841 
5842 	if (add) {
5843 		if (i == E1000_VLVF_ARRAY_SIZE) {
5844 			/* Did not find a matching VLAN ID entry that was
5845 			 * enabled.  Search for a free filter entry, i.e.
5846 			 * one without the enable bit set
5847 			 */
5848 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5849 				reg = rd32(E1000_VLVF(i));
5850 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5851 					break;
5852 			}
5853 		}
5854 		if (i < E1000_VLVF_ARRAY_SIZE) {
5855 			/* Found an enabled/available entry */
5856 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5857 
5858 			/* if !enabled we need to set this up in vfta */
5859 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5860 				/* add VID to filter table */
5861 				igb_vfta_set(hw, vid, true);
5862 				reg |= E1000_VLVF_VLANID_ENABLE;
5863 			}
5864 			reg &= ~E1000_VLVF_VLANID_MASK;
5865 			reg |= vid;
5866 			wr32(E1000_VLVF(i), reg);
5867 
5868 			/* do not modify RLPML for PF devices */
5869 			if (vf >= adapter->vfs_allocated_count)
5870 				return 0;
5871 
5872 			if (!adapter->vf_data[vf].vlans_enabled) {
5873 				u32 size;
5874 
5875 				reg = rd32(E1000_VMOLR(vf));
5876 				size = reg & E1000_VMOLR_RLPML_MASK;
5877 				size += 4;
5878 				reg &= ~E1000_VMOLR_RLPML_MASK;
5879 				reg |= size;
5880 				wr32(E1000_VMOLR(vf), reg);
5881 			}
5882 
5883 			adapter->vf_data[vf].vlans_enabled++;
5884 		}
5885 	} else {
5886 		if (i < E1000_VLVF_ARRAY_SIZE) {
5887 			/* remove vf from the pool */
5888 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5889 			/* if pool is empty then remove entry from vfta */
5890 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5891 				reg = 0;
5892 				igb_vfta_set(hw, vid, false);
5893 			}
5894 			wr32(E1000_VLVF(i), reg);
5895 
5896 			/* do not modify RLPML for PF devices */
5897 			if (vf >= adapter->vfs_allocated_count)
5898 				return 0;
5899 
5900 			adapter->vf_data[vf].vlans_enabled--;
5901 			if (!adapter->vf_data[vf].vlans_enabled) {
5902 				u32 size;
5903 
5904 				reg = rd32(E1000_VMOLR(vf));
5905 				size = reg & E1000_VMOLR_RLPML_MASK;
5906 				size -= 4;
5907 				reg &= ~E1000_VMOLR_RLPML_MASK;
5908 				reg |= size;
5909 				wr32(E1000_VMOLR(vf), reg);
5910 			}
5911 		}
5912 	}
5913 	return 0;
5914 }
5915 
5916 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5917 {
5918 	struct e1000_hw *hw = &adapter->hw;
5919 
5920 	if (vid)
5921 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5922 	else
5923 		wr32(E1000_VMVIR(vf), 0);
5924 }
5925 
5926 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5927 			       int vf, u16 vlan, u8 qos)
5928 {
5929 	int err = 0;
5930 	struct igb_adapter *adapter = netdev_priv(netdev);
5931 
5932 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5933 		return -EINVAL;
5934 	if (vlan || qos) {
5935 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5936 		if (err)
5937 			goto out;
5938 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5939 		igb_set_vmolr(adapter, vf, !vlan);
5940 		adapter->vf_data[vf].pf_vlan = vlan;
5941 		adapter->vf_data[vf].pf_qos = qos;
5942 		dev_info(&adapter->pdev->dev,
5943 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5944 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5945 			dev_warn(&adapter->pdev->dev,
5946 				 "The VF VLAN has been set, but the PF device is not up.\n");
5947 			dev_warn(&adapter->pdev->dev,
5948 				 "Bring the PF device up before attempting to use the VF device.\n");
5949 		}
5950 	} else {
5951 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5952 			     false, vf);
5953 		igb_set_vmvir(adapter, vlan, vf);
5954 		igb_set_vmolr(adapter, vf, true);
5955 		adapter->vf_data[vf].pf_vlan = 0;
5956 		adapter->vf_data[vf].pf_qos = 0;
5957 	}
5958 out:
5959 	return err;
5960 }
5961 
5962 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5963 {
5964 	struct e1000_hw *hw = &adapter->hw;
5965 	int i;
5966 	u32 reg;
5967 
5968 	/* Find the vlan filter for this id */
5969 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5970 		reg = rd32(E1000_VLVF(i));
5971 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5972 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5973 			break;
5974 	}
5975 
5976 	if (i >= E1000_VLVF_ARRAY_SIZE)
5977 		i = -1;
5978 
5979 	return i;
5980 }
5981 
5982 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5983 {
5984 	struct e1000_hw *hw = &adapter->hw;
5985 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5986 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5987 	int err = 0;
5988 
5989 	/* If in promiscuous mode we need to make sure the PF also has
5990 	 * the VLAN filter set.
5991 	 */
5992 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5993 		err = igb_vlvf_set(adapter, vid, add,
5994 				   adapter->vfs_allocated_count);
5995 	if (err)
5996 		goto out;
5997 
5998 	err = igb_vlvf_set(adapter, vid, add, vf);
5999 
6000 	if (err)
6001 		goto out;
6002 
6003 	/* Go through all the checks to see if the VLAN filter should
6004 	 * be wiped completely.
6005 	 */
6006 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
6007 		u32 vlvf, bits;
6008 		int regndx = igb_find_vlvf_entry(adapter, vid);
6009 
6010 		if (regndx < 0)
6011 			goto out;
6012 		/* See if any other pools are set for this VLAN filter
6013 		 * entry other than the PF.
6014 		 */
6015 		vlvf = bits = rd32(E1000_VLVF(regndx));
6016 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6017 			      adapter->vfs_allocated_count);
6018 		/* If the filter was removed then ensure PF pool bit
6019 		 * is cleared if the PF only added itself to the pool
6020 		 * because the PF is in promiscuous mode.
6021 		 */
6022 		if ((vlvf & VLAN_VID_MASK) == vid &&
6023 		    !test_bit(vid, adapter->active_vlans) &&
6024 		    !bits)
6025 			igb_vlvf_set(adapter, vid, add,
6026 				     adapter->vfs_allocated_count);
6027 	}
6028 
6029 out:
6030 	return err;
6031 }
6032 
6033 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6034 {
6035 	/* clear flags - except flag that indicates PF has set the MAC */
6036 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6037 	adapter->vf_data[vf].last_nack = jiffies;
6038 
6039 	/* reset offloads to defaults */
6040 	igb_set_vmolr(adapter, vf, true);
6041 
6042 	/* reset vlans for device */
6043 	igb_clear_vf_vfta(adapter, vf);
6044 	if (adapter->vf_data[vf].pf_vlan)
6045 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
6046 				    adapter->vf_data[vf].pf_vlan,
6047 				    adapter->vf_data[vf].pf_qos);
6048 	else
6049 		igb_clear_vf_vfta(adapter, vf);
6050 
6051 	/* reset multicast table array for vf */
6052 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6053 
6054 	/* Flush and reset the mta with the new values */
6055 	igb_set_rx_mode(adapter->netdev);
6056 }
6057 
6058 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6059 {
6060 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6061 
6062 	/* clear mac address as we were hotplug removed/added */
6063 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6064 		eth_zero_addr(vf_mac);
6065 
6066 	/* process remaining reset events */
6067 	igb_vf_reset(adapter, vf);
6068 }
6069 
6070 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6071 {
6072 	struct e1000_hw *hw = &adapter->hw;
6073 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6074 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6075 	u32 reg, msgbuf[3];
6076 	u8 *addr = (u8 *)(&msgbuf[1]);
6077 
6078 	/* process all the same items cleared in a function level reset */
6079 	igb_vf_reset(adapter, vf);
6080 
6081 	/* set vf mac address */
6082 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6083 
6084 	/* enable transmit and receive for vf */
6085 	reg = rd32(E1000_VFTE);
6086 	wr32(E1000_VFTE, reg | (1 << vf));
6087 	reg = rd32(E1000_VFRE);
6088 	wr32(E1000_VFRE, reg | (1 << vf));
6089 
6090 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6091 
6092 	/* reply to reset with ack and vf mac address */
6093 	if (!is_zero_ether_addr(vf_mac)) {
6094 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6095 		memcpy(addr, vf_mac, ETH_ALEN);
6096 	} else {
6097 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6098 	}
6099 	igb_write_mbx(hw, msgbuf, 3, vf);
6100 }
6101 
6102 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6103 {
6104 	/* The VF MAC Address is stored in a packed array of bytes
6105 	 * starting at the second 32 bit word of the msg array
6106 	 */
6107 	unsigned char *addr = (char *)&msg[1];
6108 	int err = -1;
6109 
6110 	if (is_valid_ether_addr(addr))
6111 		err = igb_set_vf_mac(adapter, vf, addr);
6112 
6113 	return err;
6114 }
6115 
6116 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6117 {
6118 	struct e1000_hw *hw = &adapter->hw;
6119 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6120 	u32 msg = E1000_VT_MSGTYPE_NACK;
6121 
6122 	/* if device isn't clear to send it shouldn't be reading either */
6123 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6124 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6125 		igb_write_mbx(hw, &msg, 1, vf);
6126 		vf_data->last_nack = jiffies;
6127 	}
6128 }
6129 
6130 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6131 {
6132 	struct pci_dev *pdev = adapter->pdev;
6133 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6134 	struct e1000_hw *hw = &adapter->hw;
6135 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6136 	s32 retval;
6137 
6138 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6139 
6140 	if (retval) {
6141 		/* if receive failed revoke VF CTS stats and restart init */
6142 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6143 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6144 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6145 			return;
6146 		goto out;
6147 	}
6148 
6149 	/* this is a message we already processed, do nothing */
6150 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6151 		return;
6152 
6153 	/* until the vf completes a reset it should not be
6154 	 * allowed to start any configuration.
6155 	 */
6156 	if (msgbuf[0] == E1000_VF_RESET) {
6157 		igb_vf_reset_msg(adapter, vf);
6158 		return;
6159 	}
6160 
6161 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6162 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6163 			return;
6164 		retval = -1;
6165 		goto out;
6166 	}
6167 
6168 	switch ((msgbuf[0] & 0xFFFF)) {
6169 	case E1000_VF_SET_MAC_ADDR:
6170 		retval = -EINVAL;
6171 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6172 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6173 		else
6174 			dev_warn(&pdev->dev,
6175 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6176 				 vf);
6177 		break;
6178 	case E1000_VF_SET_PROMISC:
6179 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6180 		break;
6181 	case E1000_VF_SET_MULTICAST:
6182 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6183 		break;
6184 	case E1000_VF_SET_LPE:
6185 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6186 		break;
6187 	case E1000_VF_SET_VLAN:
6188 		retval = -1;
6189 		if (vf_data->pf_vlan)
6190 			dev_warn(&pdev->dev,
6191 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6192 				 vf);
6193 		else
6194 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6195 		break;
6196 	default:
6197 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6198 		retval = -1;
6199 		break;
6200 	}
6201 
6202 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6203 out:
6204 	/* notify the VF of the results of what it sent us */
6205 	if (retval)
6206 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6207 	else
6208 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6209 
6210 	igb_write_mbx(hw, msgbuf, 1, vf);
6211 }
6212 
6213 static void igb_msg_task(struct igb_adapter *adapter)
6214 {
6215 	struct e1000_hw *hw = &adapter->hw;
6216 	u32 vf;
6217 
6218 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6219 		/* process any reset requests */
6220 		if (!igb_check_for_rst(hw, vf))
6221 			igb_vf_reset_event(adapter, vf);
6222 
6223 		/* process any messages pending */
6224 		if (!igb_check_for_msg(hw, vf))
6225 			igb_rcv_msg_from_vf(adapter, vf);
6226 
6227 		/* process any acks */
6228 		if (!igb_check_for_ack(hw, vf))
6229 			igb_rcv_ack_from_vf(adapter, vf);
6230 	}
6231 }
6232 
6233 /**
6234  *  igb_set_uta - Set unicast filter table address
6235  *  @adapter: board private structure
6236  *
6237  *  The unicast table address is a register array of 32-bit registers.
6238  *  The table is meant to be used in a way similar to how the MTA is used
6239  *  however due to certain limitations in the hardware it is necessary to
6240  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6241  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6242  **/
6243 static void igb_set_uta(struct igb_adapter *adapter)
6244 {
6245 	struct e1000_hw *hw = &adapter->hw;
6246 	int i;
6247 
6248 	/* The UTA table only exists on 82576 hardware and newer */
6249 	if (hw->mac.type < e1000_82576)
6250 		return;
6251 
6252 	/* we only need to do this if VMDq is enabled */
6253 	if (!adapter->vfs_allocated_count)
6254 		return;
6255 
6256 	for (i = 0; i < hw->mac.uta_reg_count; i++)
6257 		array_wr32(E1000_UTA, i, ~0);
6258 }
6259 
6260 /**
6261  *  igb_intr_msi - Interrupt Handler
6262  *  @irq: interrupt number
6263  *  @data: pointer to a network interface device structure
6264  **/
6265 static irqreturn_t igb_intr_msi(int irq, void *data)
6266 {
6267 	struct igb_adapter *adapter = data;
6268 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6269 	struct e1000_hw *hw = &adapter->hw;
6270 	/* read ICR disables interrupts using IAM */
6271 	u32 icr = rd32(E1000_ICR);
6272 
6273 	igb_write_itr(q_vector);
6274 
6275 	if (icr & E1000_ICR_DRSTA)
6276 		schedule_work(&adapter->reset_task);
6277 
6278 	if (icr & E1000_ICR_DOUTSYNC) {
6279 		/* HW is reporting DMA is out of sync */
6280 		adapter->stats.doosync++;
6281 	}
6282 
6283 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6284 		hw->mac.get_link_status = 1;
6285 		if (!test_bit(__IGB_DOWN, &adapter->state))
6286 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6287 	}
6288 
6289 	if (icr & E1000_ICR_TS)
6290 		igb_tsync_interrupt(adapter);
6291 
6292 	napi_schedule(&q_vector->napi);
6293 
6294 	return IRQ_HANDLED;
6295 }
6296 
6297 /**
6298  *  igb_intr - Legacy Interrupt Handler
6299  *  @irq: interrupt number
6300  *  @data: pointer to a network interface device structure
6301  **/
6302 static irqreturn_t igb_intr(int irq, void *data)
6303 {
6304 	struct igb_adapter *adapter = data;
6305 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6306 	struct e1000_hw *hw = &adapter->hw;
6307 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6308 	 * need for the IMC write
6309 	 */
6310 	u32 icr = rd32(E1000_ICR);
6311 
6312 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6313 	 * not set, then the adapter didn't send an interrupt
6314 	 */
6315 	if (!(icr & E1000_ICR_INT_ASSERTED))
6316 		return IRQ_NONE;
6317 
6318 	igb_write_itr(q_vector);
6319 
6320 	if (icr & E1000_ICR_DRSTA)
6321 		schedule_work(&adapter->reset_task);
6322 
6323 	if (icr & E1000_ICR_DOUTSYNC) {
6324 		/* HW is reporting DMA is out of sync */
6325 		adapter->stats.doosync++;
6326 	}
6327 
6328 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6329 		hw->mac.get_link_status = 1;
6330 		/* guard against interrupt when we're going down */
6331 		if (!test_bit(__IGB_DOWN, &adapter->state))
6332 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6333 	}
6334 
6335 	if (icr & E1000_ICR_TS)
6336 		igb_tsync_interrupt(adapter);
6337 
6338 	napi_schedule(&q_vector->napi);
6339 
6340 	return IRQ_HANDLED;
6341 }
6342 
6343 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6344 {
6345 	struct igb_adapter *adapter = q_vector->adapter;
6346 	struct e1000_hw *hw = &adapter->hw;
6347 
6348 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6349 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6350 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6351 			igb_set_itr(q_vector);
6352 		else
6353 			igb_update_ring_itr(q_vector);
6354 	}
6355 
6356 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6357 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6358 			wr32(E1000_EIMS, q_vector->eims_value);
6359 		else
6360 			igb_irq_enable(adapter);
6361 	}
6362 }
6363 
6364 /**
6365  *  igb_poll - NAPI Rx polling callback
6366  *  @napi: napi polling structure
6367  *  @budget: count of how many packets we should handle
6368  **/
6369 static int igb_poll(struct napi_struct *napi, int budget)
6370 {
6371 	struct igb_q_vector *q_vector = container_of(napi,
6372 						     struct igb_q_vector,
6373 						     napi);
6374 	bool clean_complete = true;
6375 	int work_done = 0;
6376 
6377 #ifdef CONFIG_IGB_DCA
6378 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6379 		igb_update_dca(q_vector);
6380 #endif
6381 	if (q_vector->tx.ring)
6382 		clean_complete = igb_clean_tx_irq(q_vector);
6383 
6384 	if (q_vector->rx.ring) {
6385 		int cleaned = igb_clean_rx_irq(q_vector, budget);
6386 
6387 		work_done += cleaned;
6388 		clean_complete &= (cleaned < budget);
6389 	}
6390 
6391 	/* If all work not completed, return budget and keep polling */
6392 	if (!clean_complete)
6393 		return budget;
6394 
6395 	/* If not enough Rx work done, exit the polling mode */
6396 	napi_complete_done(napi, work_done);
6397 	igb_ring_irq_enable(q_vector);
6398 
6399 	return 0;
6400 }
6401 
6402 /**
6403  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6404  *  @q_vector: pointer to q_vector containing needed info
6405  *
6406  *  returns true if ring is completely cleaned
6407  **/
6408 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6409 {
6410 	struct igb_adapter *adapter = q_vector->adapter;
6411 	struct igb_ring *tx_ring = q_vector->tx.ring;
6412 	struct igb_tx_buffer *tx_buffer;
6413 	union e1000_adv_tx_desc *tx_desc;
6414 	unsigned int total_bytes = 0, total_packets = 0;
6415 	unsigned int budget = q_vector->tx.work_limit;
6416 	unsigned int i = tx_ring->next_to_clean;
6417 
6418 	if (test_bit(__IGB_DOWN, &adapter->state))
6419 		return true;
6420 
6421 	tx_buffer = &tx_ring->tx_buffer_info[i];
6422 	tx_desc = IGB_TX_DESC(tx_ring, i);
6423 	i -= tx_ring->count;
6424 
6425 	do {
6426 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6427 
6428 		/* if next_to_watch is not set then there is no work pending */
6429 		if (!eop_desc)
6430 			break;
6431 
6432 		/* prevent any other reads prior to eop_desc */
6433 		read_barrier_depends();
6434 
6435 		/* if DD is not set pending work has not been completed */
6436 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6437 			break;
6438 
6439 		/* clear next_to_watch to prevent false hangs */
6440 		tx_buffer->next_to_watch = NULL;
6441 
6442 		/* update the statistics for this packet */
6443 		total_bytes += tx_buffer->bytecount;
6444 		total_packets += tx_buffer->gso_segs;
6445 
6446 		/* free the skb */
6447 		dev_consume_skb_any(tx_buffer->skb);
6448 
6449 		/* unmap skb header data */
6450 		dma_unmap_single(tx_ring->dev,
6451 				 dma_unmap_addr(tx_buffer, dma),
6452 				 dma_unmap_len(tx_buffer, len),
6453 				 DMA_TO_DEVICE);
6454 
6455 		/* clear tx_buffer data */
6456 		tx_buffer->skb = NULL;
6457 		dma_unmap_len_set(tx_buffer, len, 0);
6458 
6459 		/* clear last DMA location and unmap remaining buffers */
6460 		while (tx_desc != eop_desc) {
6461 			tx_buffer++;
6462 			tx_desc++;
6463 			i++;
6464 			if (unlikely(!i)) {
6465 				i -= tx_ring->count;
6466 				tx_buffer = tx_ring->tx_buffer_info;
6467 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6468 			}
6469 
6470 			/* unmap any remaining paged data */
6471 			if (dma_unmap_len(tx_buffer, len)) {
6472 				dma_unmap_page(tx_ring->dev,
6473 					       dma_unmap_addr(tx_buffer, dma),
6474 					       dma_unmap_len(tx_buffer, len),
6475 					       DMA_TO_DEVICE);
6476 				dma_unmap_len_set(tx_buffer, len, 0);
6477 			}
6478 		}
6479 
6480 		/* move us one more past the eop_desc for start of next pkt */
6481 		tx_buffer++;
6482 		tx_desc++;
6483 		i++;
6484 		if (unlikely(!i)) {
6485 			i -= tx_ring->count;
6486 			tx_buffer = tx_ring->tx_buffer_info;
6487 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6488 		}
6489 
6490 		/* issue prefetch for next Tx descriptor */
6491 		prefetch(tx_desc);
6492 
6493 		/* update budget accounting */
6494 		budget--;
6495 	} while (likely(budget));
6496 
6497 	netdev_tx_completed_queue(txring_txq(tx_ring),
6498 				  total_packets, total_bytes);
6499 	i += tx_ring->count;
6500 	tx_ring->next_to_clean = i;
6501 	u64_stats_update_begin(&tx_ring->tx_syncp);
6502 	tx_ring->tx_stats.bytes += total_bytes;
6503 	tx_ring->tx_stats.packets += total_packets;
6504 	u64_stats_update_end(&tx_ring->tx_syncp);
6505 	q_vector->tx.total_bytes += total_bytes;
6506 	q_vector->tx.total_packets += total_packets;
6507 
6508 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6509 		struct e1000_hw *hw = &adapter->hw;
6510 
6511 		/* Detect a transmit hang in hardware, this serializes the
6512 		 * check with the clearing of time_stamp and movement of i
6513 		 */
6514 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6515 		if (tx_buffer->next_to_watch &&
6516 		    time_after(jiffies, tx_buffer->time_stamp +
6517 			       (adapter->tx_timeout_factor * HZ)) &&
6518 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6519 
6520 			/* detected Tx unit hang */
6521 			dev_err(tx_ring->dev,
6522 				"Detected Tx Unit Hang\n"
6523 				"  Tx Queue             <%d>\n"
6524 				"  TDH                  <%x>\n"
6525 				"  TDT                  <%x>\n"
6526 				"  next_to_use          <%x>\n"
6527 				"  next_to_clean        <%x>\n"
6528 				"buffer_info[next_to_clean]\n"
6529 				"  time_stamp           <%lx>\n"
6530 				"  next_to_watch        <%p>\n"
6531 				"  jiffies              <%lx>\n"
6532 				"  desc.status          <%x>\n",
6533 				tx_ring->queue_index,
6534 				rd32(E1000_TDH(tx_ring->reg_idx)),
6535 				readl(tx_ring->tail),
6536 				tx_ring->next_to_use,
6537 				tx_ring->next_to_clean,
6538 				tx_buffer->time_stamp,
6539 				tx_buffer->next_to_watch,
6540 				jiffies,
6541 				tx_buffer->next_to_watch->wb.status);
6542 			netif_stop_subqueue(tx_ring->netdev,
6543 					    tx_ring->queue_index);
6544 
6545 			/* we are about to reset, no point in enabling stuff */
6546 			return true;
6547 		}
6548 	}
6549 
6550 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6551 	if (unlikely(total_packets &&
6552 	    netif_carrier_ok(tx_ring->netdev) &&
6553 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6554 		/* Make sure that anybody stopping the queue after this
6555 		 * sees the new next_to_clean.
6556 		 */
6557 		smp_mb();
6558 		if (__netif_subqueue_stopped(tx_ring->netdev,
6559 					     tx_ring->queue_index) &&
6560 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6561 			netif_wake_subqueue(tx_ring->netdev,
6562 					    tx_ring->queue_index);
6563 
6564 			u64_stats_update_begin(&tx_ring->tx_syncp);
6565 			tx_ring->tx_stats.restart_queue++;
6566 			u64_stats_update_end(&tx_ring->tx_syncp);
6567 		}
6568 	}
6569 
6570 	return !!budget;
6571 }
6572 
6573 /**
6574  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6575  *  @rx_ring: rx descriptor ring to store buffers on
6576  *  @old_buff: donor buffer to have page reused
6577  *
6578  *  Synchronizes page for reuse by the adapter
6579  **/
6580 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6581 			      struct igb_rx_buffer *old_buff)
6582 {
6583 	struct igb_rx_buffer *new_buff;
6584 	u16 nta = rx_ring->next_to_alloc;
6585 
6586 	new_buff = &rx_ring->rx_buffer_info[nta];
6587 
6588 	/* update, and store next to alloc */
6589 	nta++;
6590 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6591 
6592 	/* transfer page from old buffer to new buffer */
6593 	*new_buff = *old_buff;
6594 
6595 	/* sync the buffer for use by the device */
6596 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6597 					 old_buff->page_offset,
6598 					 IGB_RX_BUFSZ,
6599 					 DMA_FROM_DEVICE);
6600 }
6601 
6602 static inline bool igb_page_is_reserved(struct page *page)
6603 {
6604 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6605 }
6606 
6607 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6608 				  struct page *page,
6609 				  unsigned int truesize)
6610 {
6611 	/* avoid re-using remote pages */
6612 	if (unlikely(igb_page_is_reserved(page)))
6613 		return false;
6614 
6615 #if (PAGE_SIZE < 8192)
6616 	/* if we are only owner of page we can reuse it */
6617 	if (unlikely(page_count(page) != 1))
6618 		return false;
6619 
6620 	/* flip page offset to other buffer */
6621 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6622 #else
6623 	/* move offset up to the next cache line */
6624 	rx_buffer->page_offset += truesize;
6625 
6626 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6627 		return false;
6628 #endif
6629 
6630 	/* Even if we own the page, we are not allowed to use atomic_set()
6631 	 * This would break get_page_unless_zero() users.
6632 	 */
6633 	atomic_inc(&page->_count);
6634 
6635 	return true;
6636 }
6637 
6638 /**
6639  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6640  *  @rx_ring: rx descriptor ring to transact packets on
6641  *  @rx_buffer: buffer containing page to add
6642  *  @rx_desc: descriptor containing length of buffer written by hardware
6643  *  @skb: sk_buff to place the data into
6644  *
6645  *  This function will add the data contained in rx_buffer->page to the skb.
6646  *  This is done either through a direct copy if the data in the buffer is
6647  *  less than the skb header size, otherwise it will just attach the page as
6648  *  a frag to the skb.
6649  *
6650  *  The function will then update the page offset if necessary and return
6651  *  true if the buffer can be reused by the adapter.
6652  **/
6653 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6654 			    struct igb_rx_buffer *rx_buffer,
6655 			    union e1000_adv_rx_desc *rx_desc,
6656 			    struct sk_buff *skb)
6657 {
6658 	struct page *page = rx_buffer->page;
6659 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
6660 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6661 #if (PAGE_SIZE < 8192)
6662 	unsigned int truesize = IGB_RX_BUFSZ;
6663 #else
6664 	unsigned int truesize = SKB_DATA_ALIGN(size);
6665 #endif
6666 	unsigned int pull_len;
6667 
6668 	if (unlikely(skb_is_nonlinear(skb)))
6669 		goto add_tail_frag;
6670 
6671 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6672 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6673 		va += IGB_TS_HDR_LEN;
6674 		size -= IGB_TS_HDR_LEN;
6675 	}
6676 
6677 	if (likely(size <= IGB_RX_HDR_LEN)) {
6678 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6679 
6680 		/* page is not reserved, we can reuse buffer as-is */
6681 		if (likely(!igb_page_is_reserved(page)))
6682 			return true;
6683 
6684 		/* this page cannot be reused so discard it */
6685 		__free_page(page);
6686 		return false;
6687 	}
6688 
6689 	/* we need the header to contain the greater of either ETH_HLEN or
6690 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6691 	 */
6692 	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6693 
6694 	/* align pull length to size of long to optimize memcpy performance */
6695 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6696 
6697 	/* update all of the pointers */
6698 	va += pull_len;
6699 	size -= pull_len;
6700 
6701 add_tail_frag:
6702 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6703 			(unsigned long)va & ~PAGE_MASK, size, truesize);
6704 
6705 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6706 }
6707 
6708 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6709 					   union e1000_adv_rx_desc *rx_desc,
6710 					   struct sk_buff *skb)
6711 {
6712 	struct igb_rx_buffer *rx_buffer;
6713 	struct page *page;
6714 
6715 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6716 	page = rx_buffer->page;
6717 	prefetchw(page);
6718 
6719 	if (likely(!skb)) {
6720 		void *page_addr = page_address(page) +
6721 				  rx_buffer->page_offset;
6722 
6723 		/* prefetch first cache line of first page */
6724 		prefetch(page_addr);
6725 #if L1_CACHE_BYTES < 128
6726 		prefetch(page_addr + L1_CACHE_BYTES);
6727 #endif
6728 
6729 		/* allocate a skb to store the frags */
6730 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6731 		if (unlikely(!skb)) {
6732 			rx_ring->rx_stats.alloc_failed++;
6733 			return NULL;
6734 		}
6735 
6736 		/* we will be copying header into skb->data in
6737 		 * pskb_may_pull so it is in our interest to prefetch
6738 		 * it now to avoid a possible cache miss
6739 		 */
6740 		prefetchw(skb->data);
6741 	}
6742 
6743 	/* we are reusing so sync this buffer for CPU use */
6744 	dma_sync_single_range_for_cpu(rx_ring->dev,
6745 				      rx_buffer->dma,
6746 				      rx_buffer->page_offset,
6747 				      IGB_RX_BUFSZ,
6748 				      DMA_FROM_DEVICE);
6749 
6750 	/* pull page into skb */
6751 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6752 		/* hand second half of page back to the ring */
6753 		igb_reuse_rx_page(rx_ring, rx_buffer);
6754 	} else {
6755 		/* we are not reusing the buffer so unmap it */
6756 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6757 			       PAGE_SIZE, DMA_FROM_DEVICE);
6758 	}
6759 
6760 	/* clear contents of rx_buffer */
6761 	rx_buffer->page = NULL;
6762 
6763 	return skb;
6764 }
6765 
6766 static inline void igb_rx_checksum(struct igb_ring *ring,
6767 				   union e1000_adv_rx_desc *rx_desc,
6768 				   struct sk_buff *skb)
6769 {
6770 	skb_checksum_none_assert(skb);
6771 
6772 	/* Ignore Checksum bit is set */
6773 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6774 		return;
6775 
6776 	/* Rx checksum disabled via ethtool */
6777 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6778 		return;
6779 
6780 	/* TCP/UDP checksum error bit is set */
6781 	if (igb_test_staterr(rx_desc,
6782 			     E1000_RXDEXT_STATERR_TCPE |
6783 			     E1000_RXDEXT_STATERR_IPE)) {
6784 		/* work around errata with sctp packets where the TCPE aka
6785 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6786 		 * packets, (aka let the stack check the crc32c)
6787 		 */
6788 		if (!((skb->len == 60) &&
6789 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6790 			u64_stats_update_begin(&ring->rx_syncp);
6791 			ring->rx_stats.csum_err++;
6792 			u64_stats_update_end(&ring->rx_syncp);
6793 		}
6794 		/* let the stack verify checksum errors */
6795 		return;
6796 	}
6797 	/* It must be a TCP or UDP packet with a valid checksum */
6798 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6799 				      E1000_RXD_STAT_UDPCS))
6800 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6801 
6802 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6803 		le32_to_cpu(rx_desc->wb.upper.status_error));
6804 }
6805 
6806 static inline void igb_rx_hash(struct igb_ring *ring,
6807 			       union e1000_adv_rx_desc *rx_desc,
6808 			       struct sk_buff *skb)
6809 {
6810 	if (ring->netdev->features & NETIF_F_RXHASH)
6811 		skb_set_hash(skb,
6812 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6813 			     PKT_HASH_TYPE_L3);
6814 }
6815 
6816 /**
6817  *  igb_is_non_eop - process handling of non-EOP buffers
6818  *  @rx_ring: Rx ring being processed
6819  *  @rx_desc: Rx descriptor for current buffer
6820  *  @skb: current socket buffer containing buffer in progress
6821  *
6822  *  This function updates next to clean.  If the buffer is an EOP buffer
6823  *  this function exits returning false, otherwise it will place the
6824  *  sk_buff in the next buffer to be chained and return true indicating
6825  *  that this is in fact a non-EOP buffer.
6826  **/
6827 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6828 			   union e1000_adv_rx_desc *rx_desc)
6829 {
6830 	u32 ntc = rx_ring->next_to_clean + 1;
6831 
6832 	/* fetch, update, and store next to clean */
6833 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6834 	rx_ring->next_to_clean = ntc;
6835 
6836 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6837 
6838 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6839 		return false;
6840 
6841 	return true;
6842 }
6843 
6844 /**
6845  *  igb_cleanup_headers - Correct corrupted or empty headers
6846  *  @rx_ring: rx descriptor ring packet is being transacted on
6847  *  @rx_desc: pointer to the EOP Rx descriptor
6848  *  @skb: pointer to current skb being fixed
6849  *
6850  *  Address the case where we are pulling data in on pages only
6851  *  and as such no data is present in the skb header.
6852  *
6853  *  In addition if skb is not at least 60 bytes we need to pad it so that
6854  *  it is large enough to qualify as a valid Ethernet frame.
6855  *
6856  *  Returns true if an error was encountered and skb was freed.
6857  **/
6858 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6859 				union e1000_adv_rx_desc *rx_desc,
6860 				struct sk_buff *skb)
6861 {
6862 	if (unlikely((igb_test_staterr(rx_desc,
6863 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6864 		struct net_device *netdev = rx_ring->netdev;
6865 		if (!(netdev->features & NETIF_F_RXALL)) {
6866 			dev_kfree_skb_any(skb);
6867 			return true;
6868 		}
6869 	}
6870 
6871 	/* if eth_skb_pad returns an error the skb was freed */
6872 	if (eth_skb_pad(skb))
6873 		return true;
6874 
6875 	return false;
6876 }
6877 
6878 /**
6879  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6880  *  @rx_ring: rx descriptor ring packet is being transacted on
6881  *  @rx_desc: pointer to the EOP Rx descriptor
6882  *  @skb: pointer to current skb being populated
6883  *
6884  *  This function checks the ring, descriptor, and packet information in
6885  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6886  *  other fields within the skb.
6887  **/
6888 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6889 				   union e1000_adv_rx_desc *rx_desc,
6890 				   struct sk_buff *skb)
6891 {
6892 	struct net_device *dev = rx_ring->netdev;
6893 
6894 	igb_rx_hash(rx_ring, rx_desc, skb);
6895 
6896 	igb_rx_checksum(rx_ring, rx_desc, skb);
6897 
6898 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6899 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6900 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6901 
6902 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6903 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6904 		u16 vid;
6905 
6906 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6907 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6908 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6909 		else
6910 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6911 
6912 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6913 	}
6914 
6915 	skb_record_rx_queue(skb, rx_ring->queue_index);
6916 
6917 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6918 }
6919 
6920 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6921 {
6922 	struct igb_ring *rx_ring = q_vector->rx.ring;
6923 	struct sk_buff *skb = rx_ring->skb;
6924 	unsigned int total_bytes = 0, total_packets = 0;
6925 	u16 cleaned_count = igb_desc_unused(rx_ring);
6926 
6927 	while (likely(total_packets < budget)) {
6928 		union e1000_adv_rx_desc *rx_desc;
6929 
6930 		/* return some buffers to hardware, one at a time is too slow */
6931 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6932 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6933 			cleaned_count = 0;
6934 		}
6935 
6936 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6937 
6938 		if (!rx_desc->wb.upper.status_error)
6939 			break;
6940 
6941 		/* This memory barrier is needed to keep us from reading
6942 		 * any other fields out of the rx_desc until we know the
6943 		 * descriptor has been written back
6944 		 */
6945 		dma_rmb();
6946 
6947 		/* retrieve a buffer from the ring */
6948 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6949 
6950 		/* exit if we failed to retrieve a buffer */
6951 		if (!skb)
6952 			break;
6953 
6954 		cleaned_count++;
6955 
6956 		/* fetch next buffer in frame if non-eop */
6957 		if (igb_is_non_eop(rx_ring, rx_desc))
6958 			continue;
6959 
6960 		/* verify the packet layout is correct */
6961 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6962 			skb = NULL;
6963 			continue;
6964 		}
6965 
6966 		/* probably a little skewed due to removing CRC */
6967 		total_bytes += skb->len;
6968 
6969 		/* populate checksum, timestamp, VLAN, and protocol */
6970 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6971 
6972 		napi_gro_receive(&q_vector->napi, skb);
6973 
6974 		/* reset skb pointer */
6975 		skb = NULL;
6976 
6977 		/* update budget accounting */
6978 		total_packets++;
6979 	}
6980 
6981 	/* place incomplete frames back on ring for completion */
6982 	rx_ring->skb = skb;
6983 
6984 	u64_stats_update_begin(&rx_ring->rx_syncp);
6985 	rx_ring->rx_stats.packets += total_packets;
6986 	rx_ring->rx_stats.bytes += total_bytes;
6987 	u64_stats_update_end(&rx_ring->rx_syncp);
6988 	q_vector->rx.total_packets += total_packets;
6989 	q_vector->rx.total_bytes += total_bytes;
6990 
6991 	if (cleaned_count)
6992 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6993 
6994 	return total_packets;
6995 }
6996 
6997 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6998 				  struct igb_rx_buffer *bi)
6999 {
7000 	struct page *page = bi->page;
7001 	dma_addr_t dma;
7002 
7003 	/* since we are recycling buffers we should seldom need to alloc */
7004 	if (likely(page))
7005 		return true;
7006 
7007 	/* alloc new page for storage */
7008 	page = dev_alloc_page();
7009 	if (unlikely(!page)) {
7010 		rx_ring->rx_stats.alloc_failed++;
7011 		return false;
7012 	}
7013 
7014 	/* map page for use */
7015 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7016 
7017 	/* if mapping failed free memory back to system since
7018 	 * there isn't much point in holding memory we can't use
7019 	 */
7020 	if (dma_mapping_error(rx_ring->dev, dma)) {
7021 		__free_page(page);
7022 
7023 		rx_ring->rx_stats.alloc_failed++;
7024 		return false;
7025 	}
7026 
7027 	bi->dma = dma;
7028 	bi->page = page;
7029 	bi->page_offset = 0;
7030 
7031 	return true;
7032 }
7033 
7034 /**
7035  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7036  *  @adapter: address of board private structure
7037  **/
7038 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7039 {
7040 	union e1000_adv_rx_desc *rx_desc;
7041 	struct igb_rx_buffer *bi;
7042 	u16 i = rx_ring->next_to_use;
7043 
7044 	/* nothing to do */
7045 	if (!cleaned_count)
7046 		return;
7047 
7048 	rx_desc = IGB_RX_DESC(rx_ring, i);
7049 	bi = &rx_ring->rx_buffer_info[i];
7050 	i -= rx_ring->count;
7051 
7052 	do {
7053 		if (!igb_alloc_mapped_page(rx_ring, bi))
7054 			break;
7055 
7056 		/* Refresh the desc even if buffer_addrs didn't change
7057 		 * because each write-back erases this info.
7058 		 */
7059 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7060 
7061 		rx_desc++;
7062 		bi++;
7063 		i++;
7064 		if (unlikely(!i)) {
7065 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7066 			bi = rx_ring->rx_buffer_info;
7067 			i -= rx_ring->count;
7068 		}
7069 
7070 		/* clear the status bits for the next_to_use descriptor */
7071 		rx_desc->wb.upper.status_error = 0;
7072 
7073 		cleaned_count--;
7074 	} while (cleaned_count);
7075 
7076 	i += rx_ring->count;
7077 
7078 	if (rx_ring->next_to_use != i) {
7079 		/* record the next descriptor to use */
7080 		rx_ring->next_to_use = i;
7081 
7082 		/* update next to alloc since we have filled the ring */
7083 		rx_ring->next_to_alloc = i;
7084 
7085 		/* Force memory writes to complete before letting h/w
7086 		 * know there are new descriptors to fetch.  (Only
7087 		 * applicable for weak-ordered memory model archs,
7088 		 * such as IA-64).
7089 		 */
7090 		wmb();
7091 		writel(i, rx_ring->tail);
7092 	}
7093 }
7094 
7095 /**
7096  * igb_mii_ioctl -
7097  * @netdev:
7098  * @ifreq:
7099  * @cmd:
7100  **/
7101 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7102 {
7103 	struct igb_adapter *adapter = netdev_priv(netdev);
7104 	struct mii_ioctl_data *data = if_mii(ifr);
7105 
7106 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7107 		return -EOPNOTSUPP;
7108 
7109 	switch (cmd) {
7110 	case SIOCGMIIPHY:
7111 		data->phy_id = adapter->hw.phy.addr;
7112 		break;
7113 	case SIOCGMIIREG:
7114 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7115 				     &data->val_out))
7116 			return -EIO;
7117 		break;
7118 	case SIOCSMIIREG:
7119 	default:
7120 		return -EOPNOTSUPP;
7121 	}
7122 	return 0;
7123 }
7124 
7125 /**
7126  * igb_ioctl -
7127  * @netdev:
7128  * @ifreq:
7129  * @cmd:
7130  **/
7131 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7132 {
7133 	switch (cmd) {
7134 	case SIOCGMIIPHY:
7135 	case SIOCGMIIREG:
7136 	case SIOCSMIIREG:
7137 		return igb_mii_ioctl(netdev, ifr, cmd);
7138 	case SIOCGHWTSTAMP:
7139 		return igb_ptp_get_ts_config(netdev, ifr);
7140 	case SIOCSHWTSTAMP:
7141 		return igb_ptp_set_ts_config(netdev, ifr);
7142 	default:
7143 		return -EOPNOTSUPP;
7144 	}
7145 }
7146 
7147 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7148 {
7149 	struct igb_adapter *adapter = hw->back;
7150 
7151 	pci_read_config_word(adapter->pdev, reg, value);
7152 }
7153 
7154 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7155 {
7156 	struct igb_adapter *adapter = hw->back;
7157 
7158 	pci_write_config_word(adapter->pdev, reg, *value);
7159 }
7160 
7161 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7162 {
7163 	struct igb_adapter *adapter = hw->back;
7164 
7165 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7166 		return -E1000_ERR_CONFIG;
7167 
7168 	return 0;
7169 }
7170 
7171 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7172 {
7173 	struct igb_adapter *adapter = hw->back;
7174 
7175 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7176 		return -E1000_ERR_CONFIG;
7177 
7178 	return 0;
7179 }
7180 
7181 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7182 {
7183 	struct igb_adapter *adapter = netdev_priv(netdev);
7184 	struct e1000_hw *hw = &adapter->hw;
7185 	u32 ctrl, rctl;
7186 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7187 
7188 	if (enable) {
7189 		/* enable VLAN tag insert/strip */
7190 		ctrl = rd32(E1000_CTRL);
7191 		ctrl |= E1000_CTRL_VME;
7192 		wr32(E1000_CTRL, ctrl);
7193 
7194 		/* Disable CFI check */
7195 		rctl = rd32(E1000_RCTL);
7196 		rctl &= ~E1000_RCTL_CFIEN;
7197 		wr32(E1000_RCTL, rctl);
7198 	} else {
7199 		/* disable VLAN tag insert/strip */
7200 		ctrl = rd32(E1000_CTRL);
7201 		ctrl &= ~E1000_CTRL_VME;
7202 		wr32(E1000_CTRL, ctrl);
7203 	}
7204 
7205 	igb_rlpml_set(adapter);
7206 }
7207 
7208 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7209 			       __be16 proto, u16 vid)
7210 {
7211 	struct igb_adapter *adapter = netdev_priv(netdev);
7212 	struct e1000_hw *hw = &adapter->hw;
7213 	int pf_id = adapter->vfs_allocated_count;
7214 
7215 	/* attempt to add filter to vlvf array */
7216 	igb_vlvf_set(adapter, vid, true, pf_id);
7217 
7218 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7219 	igb_vfta_set(hw, vid, true);
7220 
7221 	set_bit(vid, adapter->active_vlans);
7222 
7223 	return 0;
7224 }
7225 
7226 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7227 				__be16 proto, u16 vid)
7228 {
7229 	struct igb_adapter *adapter = netdev_priv(netdev);
7230 	struct e1000_hw *hw = &adapter->hw;
7231 	int pf_id = adapter->vfs_allocated_count;
7232 	s32 err;
7233 
7234 	/* remove vlan from VLVF table array */
7235 	err = igb_vlvf_set(adapter, vid, false, pf_id);
7236 
7237 	/* if vid was not present in VLVF just remove it from table */
7238 	if (err)
7239 		igb_vfta_set(hw, vid, false);
7240 
7241 	clear_bit(vid, adapter->active_vlans);
7242 
7243 	return 0;
7244 }
7245 
7246 static void igb_restore_vlan(struct igb_adapter *adapter)
7247 {
7248 	u16 vid;
7249 
7250 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7251 
7252 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7253 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7254 }
7255 
7256 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7257 {
7258 	struct pci_dev *pdev = adapter->pdev;
7259 	struct e1000_mac_info *mac = &adapter->hw.mac;
7260 
7261 	mac->autoneg = 0;
7262 
7263 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7264 	 * for the switch() below to work
7265 	 */
7266 	if ((spd & 1) || (dplx & ~1))
7267 		goto err_inval;
7268 
7269 	/* Fiber NIC's only allow 1000 gbps Full duplex
7270 	 * and 100Mbps Full duplex for 100baseFx sfp
7271 	 */
7272 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7273 		switch (spd + dplx) {
7274 		case SPEED_10 + DUPLEX_HALF:
7275 		case SPEED_10 + DUPLEX_FULL:
7276 		case SPEED_100 + DUPLEX_HALF:
7277 			goto err_inval;
7278 		default:
7279 			break;
7280 		}
7281 	}
7282 
7283 	switch (spd + dplx) {
7284 	case SPEED_10 + DUPLEX_HALF:
7285 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7286 		break;
7287 	case SPEED_10 + DUPLEX_FULL:
7288 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7289 		break;
7290 	case SPEED_100 + DUPLEX_HALF:
7291 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7292 		break;
7293 	case SPEED_100 + DUPLEX_FULL:
7294 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7295 		break;
7296 	case SPEED_1000 + DUPLEX_FULL:
7297 		mac->autoneg = 1;
7298 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7299 		break;
7300 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7301 	default:
7302 		goto err_inval;
7303 	}
7304 
7305 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7306 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7307 
7308 	return 0;
7309 
7310 err_inval:
7311 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7312 	return -EINVAL;
7313 }
7314 
7315 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7316 			  bool runtime)
7317 {
7318 	struct net_device *netdev = pci_get_drvdata(pdev);
7319 	struct igb_adapter *adapter = netdev_priv(netdev);
7320 	struct e1000_hw *hw = &adapter->hw;
7321 	u32 ctrl, rctl, status;
7322 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7323 #ifdef CONFIG_PM
7324 	int retval = 0;
7325 #endif
7326 
7327 	netif_device_detach(netdev);
7328 
7329 	if (netif_running(netdev))
7330 		__igb_close(netdev, true);
7331 
7332 	igb_clear_interrupt_scheme(adapter);
7333 
7334 #ifdef CONFIG_PM
7335 	retval = pci_save_state(pdev);
7336 	if (retval)
7337 		return retval;
7338 #endif
7339 
7340 	status = rd32(E1000_STATUS);
7341 	if (status & E1000_STATUS_LU)
7342 		wufc &= ~E1000_WUFC_LNKC;
7343 
7344 	if (wufc) {
7345 		igb_setup_rctl(adapter);
7346 		igb_set_rx_mode(netdev);
7347 
7348 		/* turn on all-multi mode if wake on multicast is enabled */
7349 		if (wufc & E1000_WUFC_MC) {
7350 			rctl = rd32(E1000_RCTL);
7351 			rctl |= E1000_RCTL_MPE;
7352 			wr32(E1000_RCTL, rctl);
7353 		}
7354 
7355 		ctrl = rd32(E1000_CTRL);
7356 		/* advertise wake from D3Cold */
7357 		#define E1000_CTRL_ADVD3WUC 0x00100000
7358 		/* phy power management enable */
7359 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7360 		ctrl |= E1000_CTRL_ADVD3WUC;
7361 		wr32(E1000_CTRL, ctrl);
7362 
7363 		/* Allow time for pending master requests to run */
7364 		igb_disable_pcie_master(hw);
7365 
7366 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7367 		wr32(E1000_WUFC, wufc);
7368 	} else {
7369 		wr32(E1000_WUC, 0);
7370 		wr32(E1000_WUFC, 0);
7371 	}
7372 
7373 	*enable_wake = wufc || adapter->en_mng_pt;
7374 	if (!*enable_wake)
7375 		igb_power_down_link(adapter);
7376 	else
7377 		igb_power_up_link(adapter);
7378 
7379 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7380 	 * would have already happened in close and is redundant.
7381 	 */
7382 	igb_release_hw_control(adapter);
7383 
7384 	pci_disable_device(pdev);
7385 
7386 	return 0;
7387 }
7388 
7389 #ifdef CONFIG_PM
7390 #ifdef CONFIG_PM_SLEEP
7391 static int igb_suspend(struct device *dev)
7392 {
7393 	int retval;
7394 	bool wake;
7395 	struct pci_dev *pdev = to_pci_dev(dev);
7396 
7397 	retval = __igb_shutdown(pdev, &wake, 0);
7398 	if (retval)
7399 		return retval;
7400 
7401 	if (wake) {
7402 		pci_prepare_to_sleep(pdev);
7403 	} else {
7404 		pci_wake_from_d3(pdev, false);
7405 		pci_set_power_state(pdev, PCI_D3hot);
7406 	}
7407 
7408 	return 0;
7409 }
7410 #endif /* CONFIG_PM_SLEEP */
7411 
7412 static int igb_resume(struct device *dev)
7413 {
7414 	struct pci_dev *pdev = to_pci_dev(dev);
7415 	struct net_device *netdev = pci_get_drvdata(pdev);
7416 	struct igb_adapter *adapter = netdev_priv(netdev);
7417 	struct e1000_hw *hw = &adapter->hw;
7418 	u32 err;
7419 
7420 	pci_set_power_state(pdev, PCI_D0);
7421 	pci_restore_state(pdev);
7422 	pci_save_state(pdev);
7423 
7424 	if (!pci_device_is_present(pdev))
7425 		return -ENODEV;
7426 	err = pci_enable_device_mem(pdev);
7427 	if (err) {
7428 		dev_err(&pdev->dev,
7429 			"igb: Cannot enable PCI device from suspend\n");
7430 		return err;
7431 	}
7432 	pci_set_master(pdev);
7433 
7434 	pci_enable_wake(pdev, PCI_D3hot, 0);
7435 	pci_enable_wake(pdev, PCI_D3cold, 0);
7436 
7437 	if (igb_init_interrupt_scheme(adapter, true)) {
7438 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7439 		rtnl_unlock();
7440 		return -ENOMEM;
7441 	}
7442 
7443 	igb_reset(adapter);
7444 
7445 	/* let the f/w know that the h/w is now under the control of the
7446 	 * driver.
7447 	 */
7448 	igb_get_hw_control(adapter);
7449 
7450 	wr32(E1000_WUS, ~0);
7451 
7452 	if (netdev->flags & IFF_UP) {
7453 		rtnl_lock();
7454 		err = __igb_open(netdev, true);
7455 		rtnl_unlock();
7456 		if (err)
7457 			return err;
7458 	}
7459 
7460 	netif_device_attach(netdev);
7461 	return 0;
7462 }
7463 
7464 static int igb_runtime_idle(struct device *dev)
7465 {
7466 	struct pci_dev *pdev = to_pci_dev(dev);
7467 	struct net_device *netdev = pci_get_drvdata(pdev);
7468 	struct igb_adapter *adapter = netdev_priv(netdev);
7469 
7470 	if (!igb_has_link(adapter))
7471 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7472 
7473 	return -EBUSY;
7474 }
7475 
7476 static int igb_runtime_suspend(struct device *dev)
7477 {
7478 	struct pci_dev *pdev = to_pci_dev(dev);
7479 	int retval;
7480 	bool wake;
7481 
7482 	retval = __igb_shutdown(pdev, &wake, 1);
7483 	if (retval)
7484 		return retval;
7485 
7486 	if (wake) {
7487 		pci_prepare_to_sleep(pdev);
7488 	} else {
7489 		pci_wake_from_d3(pdev, false);
7490 		pci_set_power_state(pdev, PCI_D3hot);
7491 	}
7492 
7493 	return 0;
7494 }
7495 
7496 static int igb_runtime_resume(struct device *dev)
7497 {
7498 	return igb_resume(dev);
7499 }
7500 #endif /* CONFIG_PM */
7501 
7502 static void igb_shutdown(struct pci_dev *pdev)
7503 {
7504 	bool wake;
7505 
7506 	__igb_shutdown(pdev, &wake, 0);
7507 
7508 	if (system_state == SYSTEM_POWER_OFF) {
7509 		pci_wake_from_d3(pdev, wake);
7510 		pci_set_power_state(pdev, PCI_D3hot);
7511 	}
7512 }
7513 
7514 #ifdef CONFIG_PCI_IOV
7515 static int igb_sriov_reinit(struct pci_dev *dev)
7516 {
7517 	struct net_device *netdev = pci_get_drvdata(dev);
7518 	struct igb_adapter *adapter = netdev_priv(netdev);
7519 	struct pci_dev *pdev = adapter->pdev;
7520 
7521 	rtnl_lock();
7522 
7523 	if (netif_running(netdev))
7524 		igb_close(netdev);
7525 	else
7526 		igb_reset(adapter);
7527 
7528 	igb_clear_interrupt_scheme(adapter);
7529 
7530 	igb_init_queue_configuration(adapter);
7531 
7532 	if (igb_init_interrupt_scheme(adapter, true)) {
7533 		rtnl_unlock();
7534 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7535 		return -ENOMEM;
7536 	}
7537 
7538 	if (netif_running(netdev))
7539 		igb_open(netdev);
7540 
7541 	rtnl_unlock();
7542 
7543 	return 0;
7544 }
7545 
7546 static int igb_pci_disable_sriov(struct pci_dev *dev)
7547 {
7548 	int err = igb_disable_sriov(dev);
7549 
7550 	if (!err)
7551 		err = igb_sriov_reinit(dev);
7552 
7553 	return err;
7554 }
7555 
7556 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7557 {
7558 	int err = igb_enable_sriov(dev, num_vfs);
7559 
7560 	if (err)
7561 		goto out;
7562 
7563 	err = igb_sriov_reinit(dev);
7564 	if (!err)
7565 		return num_vfs;
7566 
7567 out:
7568 	return err;
7569 }
7570 
7571 #endif
7572 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7573 {
7574 #ifdef CONFIG_PCI_IOV
7575 	if (num_vfs == 0)
7576 		return igb_pci_disable_sriov(dev);
7577 	else
7578 		return igb_pci_enable_sriov(dev, num_vfs);
7579 #endif
7580 	return 0;
7581 }
7582 
7583 #ifdef CONFIG_NET_POLL_CONTROLLER
7584 /* Polling 'interrupt' - used by things like netconsole to send skbs
7585  * without having to re-enable interrupts. It's not called while
7586  * the interrupt routine is executing.
7587  */
7588 static void igb_netpoll(struct net_device *netdev)
7589 {
7590 	struct igb_adapter *adapter = netdev_priv(netdev);
7591 	struct e1000_hw *hw = &adapter->hw;
7592 	struct igb_q_vector *q_vector;
7593 	int i;
7594 
7595 	for (i = 0; i < adapter->num_q_vectors; i++) {
7596 		q_vector = adapter->q_vector[i];
7597 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7598 			wr32(E1000_EIMC, q_vector->eims_value);
7599 		else
7600 			igb_irq_disable(adapter);
7601 		napi_schedule(&q_vector->napi);
7602 	}
7603 }
7604 #endif /* CONFIG_NET_POLL_CONTROLLER */
7605 
7606 /**
7607  *  igb_io_error_detected - called when PCI error is detected
7608  *  @pdev: Pointer to PCI device
7609  *  @state: The current pci connection state
7610  *
7611  *  This function is called after a PCI bus error affecting
7612  *  this device has been detected.
7613  **/
7614 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7615 					      pci_channel_state_t state)
7616 {
7617 	struct net_device *netdev = pci_get_drvdata(pdev);
7618 	struct igb_adapter *adapter = netdev_priv(netdev);
7619 
7620 	netif_device_detach(netdev);
7621 
7622 	if (state == pci_channel_io_perm_failure)
7623 		return PCI_ERS_RESULT_DISCONNECT;
7624 
7625 	if (netif_running(netdev))
7626 		igb_down(adapter);
7627 	pci_disable_device(pdev);
7628 
7629 	/* Request a slot slot reset. */
7630 	return PCI_ERS_RESULT_NEED_RESET;
7631 }
7632 
7633 /**
7634  *  igb_io_slot_reset - called after the pci bus has been reset.
7635  *  @pdev: Pointer to PCI device
7636  *
7637  *  Restart the card from scratch, as if from a cold-boot. Implementation
7638  *  resembles the first-half of the igb_resume routine.
7639  **/
7640 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7641 {
7642 	struct net_device *netdev = pci_get_drvdata(pdev);
7643 	struct igb_adapter *adapter = netdev_priv(netdev);
7644 	struct e1000_hw *hw = &adapter->hw;
7645 	pci_ers_result_t result;
7646 	int err;
7647 
7648 	if (pci_enable_device_mem(pdev)) {
7649 		dev_err(&pdev->dev,
7650 			"Cannot re-enable PCI device after reset.\n");
7651 		result = PCI_ERS_RESULT_DISCONNECT;
7652 	} else {
7653 		pci_set_master(pdev);
7654 		pci_restore_state(pdev);
7655 		pci_save_state(pdev);
7656 
7657 		pci_enable_wake(pdev, PCI_D3hot, 0);
7658 		pci_enable_wake(pdev, PCI_D3cold, 0);
7659 
7660 		igb_reset(adapter);
7661 		wr32(E1000_WUS, ~0);
7662 		result = PCI_ERS_RESULT_RECOVERED;
7663 	}
7664 
7665 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7666 	if (err) {
7667 		dev_err(&pdev->dev,
7668 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7669 			err);
7670 		/* non-fatal, continue */
7671 	}
7672 
7673 	return result;
7674 }
7675 
7676 /**
7677  *  igb_io_resume - called when traffic can start flowing again.
7678  *  @pdev: Pointer to PCI device
7679  *
7680  *  This callback is called when the error recovery driver tells us that
7681  *  its OK to resume normal operation. Implementation resembles the
7682  *  second-half of the igb_resume routine.
7683  */
7684 static void igb_io_resume(struct pci_dev *pdev)
7685 {
7686 	struct net_device *netdev = pci_get_drvdata(pdev);
7687 	struct igb_adapter *adapter = netdev_priv(netdev);
7688 
7689 	if (netif_running(netdev)) {
7690 		if (igb_up(adapter)) {
7691 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7692 			return;
7693 		}
7694 	}
7695 
7696 	netif_device_attach(netdev);
7697 
7698 	/* let the f/w know that the h/w is now under the control of the
7699 	 * driver.
7700 	 */
7701 	igb_get_hw_control(adapter);
7702 }
7703 
7704 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7705 			     u8 qsel)
7706 {
7707 	u32 rar_low, rar_high;
7708 	struct e1000_hw *hw = &adapter->hw;
7709 
7710 	/* HW expects these in little endian so we reverse the byte order
7711 	 * from network order (big endian) to little endian
7712 	 */
7713 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7714 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7715 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7716 
7717 	/* Indicate to hardware the Address is Valid. */
7718 	rar_high |= E1000_RAH_AV;
7719 
7720 	if (hw->mac.type == e1000_82575)
7721 		rar_high |= E1000_RAH_POOL_1 * qsel;
7722 	else
7723 		rar_high |= E1000_RAH_POOL_1 << qsel;
7724 
7725 	wr32(E1000_RAL(index), rar_low);
7726 	wrfl();
7727 	wr32(E1000_RAH(index), rar_high);
7728 	wrfl();
7729 }
7730 
7731 static int igb_set_vf_mac(struct igb_adapter *adapter,
7732 			  int vf, unsigned char *mac_addr)
7733 {
7734 	struct e1000_hw *hw = &adapter->hw;
7735 	/* VF MAC addresses start at end of receive addresses and moves
7736 	 * towards the first, as a result a collision should not be possible
7737 	 */
7738 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7739 
7740 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7741 
7742 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7743 
7744 	return 0;
7745 }
7746 
7747 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7748 {
7749 	struct igb_adapter *adapter = netdev_priv(netdev);
7750 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7751 		return -EINVAL;
7752 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7753 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7754 	dev_info(&adapter->pdev->dev,
7755 		 "Reload the VF driver to make this change effective.");
7756 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7757 		dev_warn(&adapter->pdev->dev,
7758 			 "The VF MAC address has been set, but the PF device is not up.\n");
7759 		dev_warn(&adapter->pdev->dev,
7760 			 "Bring the PF device up before attempting to use the VF device.\n");
7761 	}
7762 	return igb_set_vf_mac(adapter, vf, mac);
7763 }
7764 
7765 static int igb_link_mbps(int internal_link_speed)
7766 {
7767 	switch (internal_link_speed) {
7768 	case SPEED_100:
7769 		return 100;
7770 	case SPEED_1000:
7771 		return 1000;
7772 	default:
7773 		return 0;
7774 	}
7775 }
7776 
7777 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7778 				  int link_speed)
7779 {
7780 	int rf_dec, rf_int;
7781 	u32 bcnrc_val;
7782 
7783 	if (tx_rate != 0) {
7784 		/* Calculate the rate factor values to set */
7785 		rf_int = link_speed / tx_rate;
7786 		rf_dec = (link_speed - (rf_int * tx_rate));
7787 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7788 			 tx_rate;
7789 
7790 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7791 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7792 			      E1000_RTTBCNRC_RF_INT_MASK);
7793 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7794 	} else {
7795 		bcnrc_val = 0;
7796 	}
7797 
7798 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7799 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7800 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7801 	 */
7802 	wr32(E1000_RTTBCNRM, 0x14);
7803 	wr32(E1000_RTTBCNRC, bcnrc_val);
7804 }
7805 
7806 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7807 {
7808 	int actual_link_speed, i;
7809 	bool reset_rate = false;
7810 
7811 	/* VF TX rate limit was not set or not supported */
7812 	if ((adapter->vf_rate_link_speed == 0) ||
7813 	    (adapter->hw.mac.type != e1000_82576))
7814 		return;
7815 
7816 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7817 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7818 		reset_rate = true;
7819 		adapter->vf_rate_link_speed = 0;
7820 		dev_info(&adapter->pdev->dev,
7821 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7822 	}
7823 
7824 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7825 		if (reset_rate)
7826 			adapter->vf_data[i].tx_rate = 0;
7827 
7828 		igb_set_vf_rate_limit(&adapter->hw, i,
7829 				      adapter->vf_data[i].tx_rate,
7830 				      actual_link_speed);
7831 	}
7832 }
7833 
7834 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7835 			     int min_tx_rate, int max_tx_rate)
7836 {
7837 	struct igb_adapter *adapter = netdev_priv(netdev);
7838 	struct e1000_hw *hw = &adapter->hw;
7839 	int actual_link_speed;
7840 
7841 	if (hw->mac.type != e1000_82576)
7842 		return -EOPNOTSUPP;
7843 
7844 	if (min_tx_rate)
7845 		return -EINVAL;
7846 
7847 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7848 	if ((vf >= adapter->vfs_allocated_count) ||
7849 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7850 	    (max_tx_rate < 0) ||
7851 	    (max_tx_rate > actual_link_speed))
7852 		return -EINVAL;
7853 
7854 	adapter->vf_rate_link_speed = actual_link_speed;
7855 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7856 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7857 
7858 	return 0;
7859 }
7860 
7861 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7862 				   bool setting)
7863 {
7864 	struct igb_adapter *adapter = netdev_priv(netdev);
7865 	struct e1000_hw *hw = &adapter->hw;
7866 	u32 reg_val, reg_offset;
7867 
7868 	if (!adapter->vfs_allocated_count)
7869 		return -EOPNOTSUPP;
7870 
7871 	if (vf >= adapter->vfs_allocated_count)
7872 		return -EINVAL;
7873 
7874 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7875 	reg_val = rd32(reg_offset);
7876 	if (setting)
7877 		reg_val |= ((1 << vf) |
7878 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7879 	else
7880 		reg_val &= ~((1 << vf) |
7881 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7882 	wr32(reg_offset, reg_val);
7883 
7884 	adapter->vf_data[vf].spoofchk_enabled = setting;
7885 	return 0;
7886 }
7887 
7888 static int igb_ndo_get_vf_config(struct net_device *netdev,
7889 				 int vf, struct ifla_vf_info *ivi)
7890 {
7891 	struct igb_adapter *adapter = netdev_priv(netdev);
7892 	if (vf >= adapter->vfs_allocated_count)
7893 		return -EINVAL;
7894 	ivi->vf = vf;
7895 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7896 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7897 	ivi->min_tx_rate = 0;
7898 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7899 	ivi->qos = adapter->vf_data[vf].pf_qos;
7900 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7901 	return 0;
7902 }
7903 
7904 static void igb_vmm_control(struct igb_adapter *adapter)
7905 {
7906 	struct e1000_hw *hw = &adapter->hw;
7907 	u32 reg;
7908 
7909 	switch (hw->mac.type) {
7910 	case e1000_82575:
7911 	case e1000_i210:
7912 	case e1000_i211:
7913 	case e1000_i354:
7914 	default:
7915 		/* replication is not supported for 82575 */
7916 		return;
7917 	case e1000_82576:
7918 		/* notify HW that the MAC is adding vlan tags */
7919 		reg = rd32(E1000_DTXCTL);
7920 		reg |= E1000_DTXCTL_VLAN_ADDED;
7921 		wr32(E1000_DTXCTL, reg);
7922 		/* Fall through */
7923 	case e1000_82580:
7924 		/* enable replication vlan tag stripping */
7925 		reg = rd32(E1000_RPLOLR);
7926 		reg |= E1000_RPLOLR_STRVLAN;
7927 		wr32(E1000_RPLOLR, reg);
7928 		/* Fall through */
7929 	case e1000_i350:
7930 		/* none of the above registers are supported by i350 */
7931 		break;
7932 	}
7933 
7934 	if (adapter->vfs_allocated_count) {
7935 		igb_vmdq_set_loopback_pf(hw, true);
7936 		igb_vmdq_set_replication_pf(hw, true);
7937 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7938 					      adapter->vfs_allocated_count);
7939 	} else {
7940 		igb_vmdq_set_loopback_pf(hw, false);
7941 		igb_vmdq_set_replication_pf(hw, false);
7942 	}
7943 }
7944 
7945 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7946 {
7947 	struct e1000_hw *hw = &adapter->hw;
7948 	u32 dmac_thr;
7949 	u16 hwm;
7950 
7951 	if (hw->mac.type > e1000_82580) {
7952 		if (adapter->flags & IGB_FLAG_DMAC) {
7953 			u32 reg;
7954 
7955 			/* force threshold to 0. */
7956 			wr32(E1000_DMCTXTH, 0);
7957 
7958 			/* DMA Coalescing high water mark needs to be greater
7959 			 * than the Rx threshold. Set hwm to PBA - max frame
7960 			 * size in 16B units, capping it at PBA - 6KB.
7961 			 */
7962 			hwm = 64 * pba - adapter->max_frame_size / 16;
7963 			if (hwm < 64 * (pba - 6))
7964 				hwm = 64 * (pba - 6);
7965 			reg = rd32(E1000_FCRTC);
7966 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7967 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7968 				& E1000_FCRTC_RTH_COAL_MASK);
7969 			wr32(E1000_FCRTC, reg);
7970 
7971 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7972 			 * frame size, capping it at PBA - 10KB.
7973 			 */
7974 			dmac_thr = pba - adapter->max_frame_size / 512;
7975 			if (dmac_thr < pba - 10)
7976 				dmac_thr = pba - 10;
7977 			reg = rd32(E1000_DMACR);
7978 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7979 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7980 				& E1000_DMACR_DMACTHR_MASK);
7981 
7982 			/* transition to L0x or L1 if available..*/
7983 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7984 
7985 			/* watchdog timer= +-1000 usec in 32usec intervals */
7986 			reg |= (1000 >> 5);
7987 
7988 			/* Disable BMC-to-OS Watchdog Enable */
7989 			if (hw->mac.type != e1000_i354)
7990 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7991 
7992 			wr32(E1000_DMACR, reg);
7993 
7994 			/* no lower threshold to disable
7995 			 * coalescing(smart fifb)-UTRESH=0
7996 			 */
7997 			wr32(E1000_DMCRTRH, 0);
7998 
7999 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8000 
8001 			wr32(E1000_DMCTLX, reg);
8002 
8003 			/* free space in tx packet buffer to wake from
8004 			 * DMA coal
8005 			 */
8006 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8007 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8008 
8009 			/* make low power state decision controlled
8010 			 * by DMA coal
8011 			 */
8012 			reg = rd32(E1000_PCIEMISC);
8013 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8014 			wr32(E1000_PCIEMISC, reg);
8015 		} /* endif adapter->dmac is not disabled */
8016 	} else if (hw->mac.type == e1000_82580) {
8017 		u32 reg = rd32(E1000_PCIEMISC);
8018 
8019 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8020 		wr32(E1000_DMACR, 0);
8021 	}
8022 }
8023 
8024 /**
8025  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8026  *  @hw: pointer to hardware structure
8027  *  @byte_offset: byte offset to read
8028  *  @dev_addr: device address
8029  *  @data: value read
8030  *
8031  *  Performs byte read operation over I2C interface at
8032  *  a specified device address.
8033  **/
8034 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8035 		      u8 dev_addr, u8 *data)
8036 {
8037 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8038 	struct i2c_client *this_client = adapter->i2c_client;
8039 	s32 status;
8040 	u16 swfw_mask = 0;
8041 
8042 	if (!this_client)
8043 		return E1000_ERR_I2C;
8044 
8045 	swfw_mask = E1000_SWFW_PHY0_SM;
8046 
8047 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8048 		return E1000_ERR_SWFW_SYNC;
8049 
8050 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8051 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8052 
8053 	if (status < 0)
8054 		return E1000_ERR_I2C;
8055 	else {
8056 		*data = status;
8057 		return 0;
8058 	}
8059 }
8060 
8061 /**
8062  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8063  *  @hw: pointer to hardware structure
8064  *  @byte_offset: byte offset to write
8065  *  @dev_addr: device address
8066  *  @data: value to write
8067  *
8068  *  Performs byte write operation over I2C interface at
8069  *  a specified device address.
8070  **/
8071 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8072 		       u8 dev_addr, u8 data)
8073 {
8074 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8075 	struct i2c_client *this_client = adapter->i2c_client;
8076 	s32 status;
8077 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8078 
8079 	if (!this_client)
8080 		return E1000_ERR_I2C;
8081 
8082 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8083 		return E1000_ERR_SWFW_SYNC;
8084 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8085 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8086 
8087 	if (status)
8088 		return E1000_ERR_I2C;
8089 	else
8090 		return 0;
8091 
8092 }
8093 
8094 int igb_reinit_queues(struct igb_adapter *adapter)
8095 {
8096 	struct net_device *netdev = adapter->netdev;
8097 	struct pci_dev *pdev = adapter->pdev;
8098 	int err = 0;
8099 
8100 	if (netif_running(netdev))
8101 		igb_close(netdev);
8102 
8103 	igb_reset_interrupt_capability(adapter);
8104 
8105 	if (igb_init_interrupt_scheme(adapter, true)) {
8106 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8107 		return -ENOMEM;
8108 	}
8109 
8110 	if (netif_running(netdev))
8111 		err = igb_open(netdev);
8112 
8113 	return err;
8114 }
8115 /* igb_main.c */
8116