1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62 
63 #define MAJ 4
64 #define MIN 1
65 #define BUILD 2
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 				"Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 				"Copyright (c) 2007-2013 Intel Corporation.";
74 
75 static const struct e1000_info *igb_info_tbl[] = {
76 	[board_82575] = &e1000_82575_info,
77 };
78 
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
110 	/* required last entry */
111 	{0, }
112 };
113 
114 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
115 
116 void igb_reset(struct igb_adapter *);
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 						 struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159 static int igb_vlan_rx_add_vid(struct net_device *, u16);
160 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161 static void igb_restore_vlan(struct igb_adapter *);
162 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163 static void igb_ping_all_vfs(struct igb_adapter *);
164 static void igb_msg_task(struct igb_adapter *);
165 static void igb_vmm_control(struct igb_adapter *);
166 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
169 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
170 			       int vf, u16 vlan, u8 qos);
171 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
172 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
173 				 struct ifla_vf_info *ivi);
174 static void igb_check_vf_rate_limit(struct igb_adapter *);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
179 #endif
180 
181 #ifdef CONFIG_PM
182 #ifdef CONFIG_PM_SLEEP
183 static int igb_suspend(struct device *);
184 #endif
185 static int igb_resume(struct device *);
186 #ifdef CONFIG_PM_RUNTIME
187 static int igb_runtime_suspend(struct device *dev);
188 static int igb_runtime_resume(struct device *dev);
189 static int igb_runtime_idle(struct device *dev);
190 #endif
191 static const struct dev_pm_ops igb_pm_ops = {
192 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
193 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
194 			igb_runtime_idle)
195 };
196 #endif
197 static void igb_shutdown(struct pci_dev *);
198 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199 #ifdef CONFIG_IGB_DCA
200 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
201 static struct notifier_block dca_notifier = {
202 	.notifier_call	= igb_notify_dca,
203 	.next		= NULL,
204 	.priority	= 0
205 };
206 #endif
207 #ifdef CONFIG_NET_POLL_CONTROLLER
208 /* for netdump / net console */
209 static void igb_netpoll(struct net_device *);
210 #endif
211 #ifdef CONFIG_PCI_IOV
212 static unsigned int max_vfs = 0;
213 module_param(max_vfs, uint, 0);
214 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
215                  "per physical function");
216 #endif /* CONFIG_PCI_IOV */
217 
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 		     pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222 
223 static const struct pci_error_handlers igb_err_handler = {
224 	.error_detected = igb_io_error_detected,
225 	.slot_reset = igb_io_slot_reset,
226 	.resume = igb_io_resume,
227 };
228 
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230 
231 static struct pci_driver igb_driver = {
232 	.name     = igb_driver_name,
233 	.id_table = igb_pci_tbl,
234 	.probe    = igb_probe,
235 	.remove   = igb_remove,
236 #ifdef CONFIG_PM
237 	.driver.pm = &igb_pm_ops,
238 #endif
239 	.shutdown = igb_shutdown,
240 	.sriov_configure = igb_pci_sriov_configure,
241 	.err_handler = &igb_err_handler
242 };
243 
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248 
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253 
254 struct igb_reg_info {
255 	u32 ofs;
256 	char *name;
257 };
258 
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260 
261 	/* General Registers */
262 	{E1000_CTRL, "CTRL"},
263 	{E1000_STATUS, "STATUS"},
264 	{E1000_CTRL_EXT, "CTRL_EXT"},
265 
266 	/* Interrupt Registers */
267 	{E1000_ICR, "ICR"},
268 
269 	/* RX Registers */
270 	{E1000_RCTL, "RCTL"},
271 	{E1000_RDLEN(0), "RDLEN"},
272 	{E1000_RDH(0), "RDH"},
273 	{E1000_RDT(0), "RDT"},
274 	{E1000_RXDCTL(0), "RXDCTL"},
275 	{E1000_RDBAL(0), "RDBAL"},
276 	{E1000_RDBAH(0), "RDBAH"},
277 
278 	/* TX Registers */
279 	{E1000_TCTL, "TCTL"},
280 	{E1000_TDBAL(0), "TDBAL"},
281 	{E1000_TDBAH(0), "TDBAH"},
282 	{E1000_TDLEN(0), "TDLEN"},
283 	{E1000_TDH(0), "TDH"},
284 	{E1000_TDT(0), "TDT"},
285 	{E1000_TXDCTL(0), "TXDCTL"},
286 	{E1000_TDFH, "TDFH"},
287 	{E1000_TDFT, "TDFT"},
288 	{E1000_TDFHS, "TDFHS"},
289 	{E1000_TDFPC, "TDFPC"},
290 
291 	/* List Terminator */
292 	{}
293 };
294 
295 /*
296  * igb_regdump - register printout routine
297  */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 	int n = 0;
301 	char rname[16];
302 	u32 regs[8];
303 
304 	switch (reginfo->ofs) {
305 	case E1000_RDLEN(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RDLEN(n));
308 		break;
309 	case E1000_RDH(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDH(n));
312 		break;
313 	case E1000_RDT(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDT(n));
316 		break;
317 	case E1000_RXDCTL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RXDCTL(n));
320 		break;
321 	case E1000_RDBAL(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_RDBAL(n));
324 		break;
325 	case E1000_RDBAH(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_RDBAH(n));
328 		break;
329 	case E1000_TDBAL(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_RDBAL(n));
332 		break;
333 	case E1000_TDBAH(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDBAH(n));
336 		break;
337 	case E1000_TDLEN(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TDLEN(n));
340 		break;
341 	case E1000_TDH(0):
342 		for (n = 0; n < 4; n++)
343 			regs[n] = rd32(E1000_TDH(n));
344 		break;
345 	case E1000_TDT(0):
346 		for (n = 0; n < 4; n++)
347 			regs[n] = rd32(E1000_TDT(n));
348 		break;
349 	case E1000_TXDCTL(0):
350 		for (n = 0; n < 4; n++)
351 			regs[n] = rd32(E1000_TXDCTL(n));
352 		break;
353 	default:
354 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 		return;
356 	}
357 
358 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 		regs[2], regs[3]);
361 }
362 
363 /*
364  * igb_dump - Print registers, tx-rings and rx-rings
365  */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368 	struct net_device *netdev = adapter->netdev;
369 	struct e1000_hw *hw = &adapter->hw;
370 	struct igb_reg_info *reginfo;
371 	struct igb_ring *tx_ring;
372 	union e1000_adv_tx_desc *tx_desc;
373 	struct my_u0 { u64 a; u64 b; } *u0;
374 	struct igb_ring *rx_ring;
375 	union e1000_adv_rx_desc *rx_desc;
376 	u32 staterr;
377 	u16 i, n;
378 
379 	if (!netif_msg_hw(adapter))
380 		return;
381 
382 	/* Print netdevice Info */
383 	if (netdev) {
384 		dev_info(&adapter->pdev->dev, "Net device Info\n");
385 		pr_info("Device Name     state            trans_start      "
386 			"last_rx\n");
387 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 			netdev->state, netdev->trans_start, netdev->last_rx);
389 	}
390 
391 	/* Print Registers */
392 	dev_info(&adapter->pdev->dev, "Register Dump\n");
393 	pr_info(" Register Name   Value\n");
394 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 	     reginfo->name; reginfo++) {
396 		igb_regdump(hw, reginfo);
397 	}
398 
399 	/* Print TX Ring Summary */
400 	if (!netdev || !netif_running(netdev))
401 		goto exit;
402 
403 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405 	for (n = 0; n < adapter->num_tx_queues; n++) {
406 		struct igb_tx_buffer *buffer_info;
407 		tx_ring = adapter->tx_ring[n];
408 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 			(u64)dma_unmap_addr(buffer_info, dma),
412 			dma_unmap_len(buffer_info, len),
413 			buffer_info->next_to_watch,
414 			(u64)buffer_info->time_stamp);
415 	}
416 
417 	/* Print TX Rings */
418 	if (!netif_msg_tx_done(adapter))
419 		goto rx_ring_summary;
420 
421 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422 
423 	/* Transmit Descriptor Formats
424 	 *
425 	 * Advanced Transmit Descriptor
426 	 *   +--------------------------------------------------------------+
427 	 * 0 |         Buffer Address [63:0]                                |
428 	 *   +--------------------------------------------------------------+
429 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430 	 *   +--------------------------------------------------------------+
431 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432 	 */
433 
434 	for (n = 0; n < adapter->num_tx_queues; n++) {
435 		tx_ring = adapter->tx_ring[n];
436 		pr_info("------------------------------------\n");
437 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 		pr_info("------------------------------------\n");
439 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440 			"[bi->dma       ] leng  ntw timestamp        "
441 			"bi->skb\n");
442 
443 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444 			const char *next_desc;
445 			struct igb_tx_buffer *buffer_info;
446 			tx_desc = IGB_TX_DESC(tx_ring, i);
447 			buffer_info = &tx_ring->tx_buffer_info[i];
448 			u0 = (struct my_u0 *)tx_desc;
449 			if (i == tx_ring->next_to_use &&
450 			    i == tx_ring->next_to_clean)
451 				next_desc = " NTC/U";
452 			else if (i == tx_ring->next_to_use)
453 				next_desc = " NTU";
454 			else if (i == tx_ring->next_to_clean)
455 				next_desc = " NTC";
456 			else
457 				next_desc = "";
458 
459 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460 				" %04X  %p %016llX %p%s\n", i,
461 				le64_to_cpu(u0->a),
462 				le64_to_cpu(u0->b),
463 				(u64)dma_unmap_addr(buffer_info, dma),
464 				dma_unmap_len(buffer_info, len),
465 				buffer_info->next_to_watch,
466 				(u64)buffer_info->time_stamp,
467 				buffer_info->skb, next_desc);
468 
469 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 				print_hex_dump(KERN_INFO, "",
471 					DUMP_PREFIX_ADDRESS,
472 					16, 1, buffer_info->skb->data,
473 					dma_unmap_len(buffer_info, len),
474 					true);
475 		}
476 	}
477 
478 	/* Print RX Rings Summary */
479 rx_ring_summary:
480 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481 	pr_info("Queue [NTU] [NTC]\n");
482 	for (n = 0; n < adapter->num_rx_queues; n++) {
483 		rx_ring = adapter->rx_ring[n];
484 		pr_info(" %5d %5X %5X\n",
485 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 	}
487 
488 	/* Print RX Rings */
489 	if (!netif_msg_rx_status(adapter))
490 		goto exit;
491 
492 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493 
494 	/* Advanced Receive Descriptor (Read) Format
495 	 *    63                                           1        0
496 	 *    +-----------------------------------------------------+
497 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498 	 *    +----------------------------------------------+------+
499 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500 	 *    +-----------------------------------------------------+
501 	 *
502 	 *
503 	 * Advanced Receive Descriptor (Write-Back) Format
504 	 *
505 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506 	 *   +------------------------------------------------------+
507 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508 	 *   | Checksum   Ident  |   |           |    | Type | Type |
509 	 *   +------------------------------------------------------+
510 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 	 *   +------------------------------------------------------+
512 	 *   63       48 47    32 31            20 19               0
513 	 */
514 
515 	for (n = 0; n < adapter->num_rx_queues; n++) {
516 		rx_ring = adapter->rx_ring[n];
517 		pr_info("------------------------------------\n");
518 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 		pr_info("------------------------------------\n");
520 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 
525 		for (i = 0; i < rx_ring->count; i++) {
526 			const char *next_desc;
527 			struct igb_rx_buffer *buffer_info;
528 			buffer_info = &rx_ring->rx_buffer_info[i];
529 			rx_desc = IGB_RX_DESC(rx_ring, i);
530 			u0 = (struct my_u0 *)rx_desc;
531 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532 
533 			if (i == rx_ring->next_to_use)
534 				next_desc = " NTU";
535 			else if (i == rx_ring->next_to_clean)
536 				next_desc = " NTC";
537 			else
538 				next_desc = "";
539 
540 			if (staterr & E1000_RXD_STAT_DD) {
541 				/* Descriptor Done */
542 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543 					"RWB", i,
544 					le64_to_cpu(u0->a),
545 					le64_to_cpu(u0->b),
546 					next_desc);
547 			} else {
548 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549 					"R  ", i,
550 					le64_to_cpu(u0->a),
551 					le64_to_cpu(u0->b),
552 					(u64)buffer_info->dma,
553 					next_desc);
554 
555 				if (netif_msg_pktdata(adapter) &&
556 				    buffer_info->dma && buffer_info->page) {
557 					print_hex_dump(KERN_INFO, "",
558 					  DUMP_PREFIX_ADDRESS,
559 					  16, 1,
560 					  page_address(buffer_info->page) +
561 						      buffer_info->page_offset,
562 					  IGB_RX_BUFSZ, true);
563 				}
564 			}
565 		}
566 	}
567 
568 exit:
569 	return;
570 }
571 
572 /*  igb_get_i2c_data - Reads the I2C SDA data bit
573  *  @hw: pointer to hardware structure
574  *  @i2cctl: Current value of I2CCTL register
575  *
576  *  Returns the I2C data bit value
577  */
578 static int igb_get_i2c_data(void *data)
579 {
580 	struct igb_adapter *adapter = (struct igb_adapter *)data;
581 	struct e1000_hw *hw = &adapter->hw;
582 	s32 i2cctl = rd32(E1000_I2CPARAMS);
583 
584 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
585 }
586 
587 /* igb_set_i2c_data - Sets the I2C data bit
588  *  @data: pointer to hardware structure
589  *  @state: I2C data value (0 or 1) to set
590  *
591  *  Sets the I2C data bit
592  */
593 static void igb_set_i2c_data(void *data, int state)
594 {
595 	struct igb_adapter *adapter = (struct igb_adapter *)data;
596 	struct e1000_hw *hw = &adapter->hw;
597 	s32 i2cctl = rd32(E1000_I2CPARAMS);
598 
599 	if (state)
600 		i2cctl |= E1000_I2C_DATA_OUT;
601 	else
602 		i2cctl &= ~E1000_I2C_DATA_OUT;
603 
604 	i2cctl &= ~E1000_I2C_DATA_OE_N;
605 	i2cctl |= E1000_I2C_CLK_OE_N;
606 	wr32(E1000_I2CPARAMS, i2cctl);
607 	wrfl();
608 
609 }
610 
611 /* igb_set_i2c_clk - Sets the I2C SCL clock
612  *  @data: pointer to hardware structure
613  *  @state: state to set clock
614  *
615  *  Sets the I2C clock line to state
616  */
617 static void igb_set_i2c_clk(void *data, int state)
618 {
619 	struct igb_adapter *adapter = (struct igb_adapter *)data;
620 	struct e1000_hw *hw = &adapter->hw;
621 	s32 i2cctl = rd32(E1000_I2CPARAMS);
622 
623 	if (state) {
624 		i2cctl |= E1000_I2C_CLK_OUT;
625 		i2cctl &= ~E1000_I2C_CLK_OE_N;
626 	} else {
627 		i2cctl &= ~E1000_I2C_CLK_OUT;
628 		i2cctl &= ~E1000_I2C_CLK_OE_N;
629 	}
630 	wr32(E1000_I2CPARAMS, i2cctl);
631 	wrfl();
632 }
633 
634 /* igb_get_i2c_clk - Gets the I2C SCL clock state
635  *  @data: pointer to hardware structure
636  *
637  *  Gets the I2C clock state
638  */
639 static int igb_get_i2c_clk(void *data)
640 {
641 	struct igb_adapter *adapter = (struct igb_adapter *)data;
642 	struct e1000_hw *hw = &adapter->hw;
643 	s32 i2cctl = rd32(E1000_I2CPARAMS);
644 
645 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
646 }
647 
648 static const struct i2c_algo_bit_data igb_i2c_algo = {
649 	.setsda		= igb_set_i2c_data,
650 	.setscl		= igb_set_i2c_clk,
651 	.getsda		= igb_get_i2c_data,
652 	.getscl		= igb_get_i2c_clk,
653 	.udelay		= 5,
654 	.timeout	= 20,
655 };
656 
657 /**
658  * igb_get_hw_dev - return device
659  * used by hardware layer to print debugging information
660  **/
661 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662 {
663 	struct igb_adapter *adapter = hw->back;
664 	return adapter->netdev;
665 }
666 
667 /**
668  * igb_init_module - Driver Registration Routine
669  *
670  * igb_init_module is the first routine called when the driver is
671  * loaded. All it does is register with the PCI subsystem.
672  **/
673 static int __init igb_init_module(void)
674 {
675 	int ret;
676 	pr_info("%s - version %s\n",
677 	       igb_driver_string, igb_driver_version);
678 
679 	pr_info("%s\n", igb_copyright);
680 
681 #ifdef CONFIG_IGB_DCA
682 	dca_register_notify(&dca_notifier);
683 #endif
684 	ret = pci_register_driver(&igb_driver);
685 	return ret;
686 }
687 
688 module_init(igb_init_module);
689 
690 /**
691  * igb_exit_module - Driver Exit Cleanup Routine
692  *
693  * igb_exit_module is called just before the driver is removed
694  * from memory.
695  **/
696 static void __exit igb_exit_module(void)
697 {
698 #ifdef CONFIG_IGB_DCA
699 	dca_unregister_notify(&dca_notifier);
700 #endif
701 	pci_unregister_driver(&igb_driver);
702 }
703 
704 module_exit(igb_exit_module);
705 
706 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
707 /**
708  * igb_cache_ring_register - Descriptor ring to register mapping
709  * @adapter: board private structure to initialize
710  *
711  * Once we know the feature-set enabled for the device, we'll cache
712  * the register offset the descriptor ring is assigned to.
713  **/
714 static void igb_cache_ring_register(struct igb_adapter *adapter)
715 {
716 	int i = 0, j = 0;
717 	u32 rbase_offset = adapter->vfs_allocated_count;
718 
719 	switch (adapter->hw.mac.type) {
720 	case e1000_82576:
721 		/* The queues are allocated for virtualization such that VF 0
722 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
723 		 * In order to avoid collision we start at the first free queue
724 		 * and continue consuming queues in the same sequence
725 		 */
726 		if (adapter->vfs_allocated_count) {
727 			for (; i < adapter->rss_queues; i++)
728 				adapter->rx_ring[i]->reg_idx = rbase_offset +
729 				                               Q_IDX_82576(i);
730 		}
731 	case e1000_82575:
732 	case e1000_82580:
733 	case e1000_i350:
734 	case e1000_i210:
735 	case e1000_i211:
736 	default:
737 		for (; i < adapter->num_rx_queues; i++)
738 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739 		for (; j < adapter->num_tx_queues; j++)
740 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741 		break;
742 	}
743 }
744 
745 /**
746  *  igb_write_ivar - configure ivar for given MSI-X vector
747  *  @hw: pointer to the HW structure
748  *  @msix_vector: vector number we are allocating to a given ring
749  *  @index: row index of IVAR register to write within IVAR table
750  *  @offset: column offset of in IVAR, should be multiple of 8
751  *
752  *  This function is intended to handle the writing of the IVAR register
753  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
754  *  each containing an cause allocation for an Rx and Tx ring, and a
755  *  variable number of rows depending on the number of queues supported.
756  **/
757 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
758 			   int index, int offset)
759 {
760 	u32 ivar = array_rd32(E1000_IVAR0, index);
761 
762 	/* clear any bits that are currently set */
763 	ivar &= ~((u32)0xFF << offset);
764 
765 	/* write vector and valid bit */
766 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
767 
768 	array_wr32(E1000_IVAR0, index, ivar);
769 }
770 
771 #define IGB_N0_QUEUE -1
772 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773 {
774 	struct igb_adapter *adapter = q_vector->adapter;
775 	struct e1000_hw *hw = &adapter->hw;
776 	int rx_queue = IGB_N0_QUEUE;
777 	int tx_queue = IGB_N0_QUEUE;
778 	u32 msixbm = 0;
779 
780 	if (q_vector->rx.ring)
781 		rx_queue = q_vector->rx.ring->reg_idx;
782 	if (q_vector->tx.ring)
783 		tx_queue = q_vector->tx.ring->reg_idx;
784 
785 	switch (hw->mac.type) {
786 	case e1000_82575:
787 		/* The 82575 assigns vectors using a bitmask, which matches the
788 		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
789 		   or more queues to a vector, we write the appropriate bits
790 		   into the MSIXBM register for that vector. */
791 		if (rx_queue > IGB_N0_QUEUE)
792 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793 		if (tx_queue > IGB_N0_QUEUE)
794 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795 		if (!adapter->msix_entries && msix_vector == 0)
796 			msixbm |= E1000_EIMS_OTHER;
797 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798 		q_vector->eims_value = msixbm;
799 		break;
800 	case e1000_82576:
801 		/*
802 		 * 82576 uses a table that essentially consists of 2 columns
803 		 * with 8 rows.  The ordering is column-major so we use the
804 		 * lower 3 bits as the row index, and the 4th bit as the
805 		 * column offset.
806 		 */
807 		if (rx_queue > IGB_N0_QUEUE)
808 			igb_write_ivar(hw, msix_vector,
809 				       rx_queue & 0x7,
810 				       (rx_queue & 0x8) << 1);
811 		if (tx_queue > IGB_N0_QUEUE)
812 			igb_write_ivar(hw, msix_vector,
813 				       tx_queue & 0x7,
814 				       ((tx_queue & 0x8) << 1) + 8);
815 		q_vector->eims_value = 1 << msix_vector;
816 		break;
817 	case e1000_82580:
818 	case e1000_i350:
819 	case e1000_i210:
820 	case e1000_i211:
821 		/*
822 		 * On 82580 and newer adapters the scheme is similar to 82576
823 		 * however instead of ordering column-major we have things
824 		 * ordered row-major.  So we traverse the table by using
825 		 * bit 0 as the column offset, and the remaining bits as the
826 		 * row index.
827 		 */
828 		if (rx_queue > IGB_N0_QUEUE)
829 			igb_write_ivar(hw, msix_vector,
830 				       rx_queue >> 1,
831 				       (rx_queue & 0x1) << 4);
832 		if (tx_queue > IGB_N0_QUEUE)
833 			igb_write_ivar(hw, msix_vector,
834 				       tx_queue >> 1,
835 				       ((tx_queue & 0x1) << 4) + 8);
836 		q_vector->eims_value = 1 << msix_vector;
837 		break;
838 	default:
839 		BUG();
840 		break;
841 	}
842 
843 	/* add q_vector eims value to global eims_enable_mask */
844 	adapter->eims_enable_mask |= q_vector->eims_value;
845 
846 	/* configure q_vector to set itr on first interrupt */
847 	q_vector->set_itr = 1;
848 }
849 
850 /**
851  * igb_configure_msix - Configure MSI-X hardware
852  *
853  * igb_configure_msix sets up the hardware to properly
854  * generate MSI-X interrupts.
855  **/
856 static void igb_configure_msix(struct igb_adapter *adapter)
857 {
858 	u32 tmp;
859 	int i, vector = 0;
860 	struct e1000_hw *hw = &adapter->hw;
861 
862 	adapter->eims_enable_mask = 0;
863 
864 	/* set vector for other causes, i.e. link changes */
865 	switch (hw->mac.type) {
866 	case e1000_82575:
867 		tmp = rd32(E1000_CTRL_EXT);
868 		/* enable MSI-X PBA support*/
869 		tmp |= E1000_CTRL_EXT_PBA_CLR;
870 
871 		/* Auto-Mask interrupts upon ICR read. */
872 		tmp |= E1000_CTRL_EXT_EIAME;
873 		tmp |= E1000_CTRL_EXT_IRCA;
874 
875 		wr32(E1000_CTRL_EXT, tmp);
876 
877 		/* enable msix_other interrupt */
878 		array_wr32(E1000_MSIXBM(0), vector++,
879 		                      E1000_EIMS_OTHER);
880 		adapter->eims_other = E1000_EIMS_OTHER;
881 
882 		break;
883 
884 	case e1000_82576:
885 	case e1000_82580:
886 	case e1000_i350:
887 	case e1000_i210:
888 	case e1000_i211:
889 		/* Turn on MSI-X capability first, or our settings
890 		 * won't stick.  And it will take days to debug. */
891 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
892 		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
893 		                E1000_GPIE_NSICR);
894 
895 		/* enable msix_other interrupt */
896 		adapter->eims_other = 1 << vector;
897 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
898 
899 		wr32(E1000_IVAR_MISC, tmp);
900 		break;
901 	default:
902 		/* do nothing, since nothing else supports MSI-X */
903 		break;
904 	} /* switch (hw->mac.type) */
905 
906 	adapter->eims_enable_mask |= adapter->eims_other;
907 
908 	for (i = 0; i < adapter->num_q_vectors; i++)
909 		igb_assign_vector(adapter->q_vector[i], vector++);
910 
911 	wrfl();
912 }
913 
914 /**
915  * igb_request_msix - Initialize MSI-X interrupts
916  *
917  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
918  * kernel.
919  **/
920 static int igb_request_msix(struct igb_adapter *adapter)
921 {
922 	struct net_device *netdev = adapter->netdev;
923 	struct e1000_hw *hw = &adapter->hw;
924 	int i, err = 0, vector = 0, free_vector = 0;
925 
926 	err = request_irq(adapter->msix_entries[vector].vector,
927 	                  igb_msix_other, 0, netdev->name, adapter);
928 	if (err)
929 		goto err_out;
930 
931 	for (i = 0; i < adapter->num_q_vectors; i++) {
932 		struct igb_q_vector *q_vector = adapter->q_vector[i];
933 
934 		vector++;
935 
936 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
937 
938 		if (q_vector->rx.ring && q_vector->tx.ring)
939 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940 				q_vector->rx.ring->queue_index);
941 		else if (q_vector->tx.ring)
942 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943 				q_vector->tx.ring->queue_index);
944 		else if (q_vector->rx.ring)
945 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946 				q_vector->rx.ring->queue_index);
947 		else
948 			sprintf(q_vector->name, "%s-unused", netdev->name);
949 
950 		err = request_irq(adapter->msix_entries[vector].vector,
951 		                  igb_msix_ring, 0, q_vector->name,
952 		                  q_vector);
953 		if (err)
954 			goto err_free;
955 	}
956 
957 	igb_configure_msix(adapter);
958 	return 0;
959 
960 err_free:
961 	/* free already assigned IRQs */
962 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
963 
964 	vector--;
965 	for (i = 0; i < vector; i++) {
966 		free_irq(adapter->msix_entries[free_vector++].vector,
967 			 adapter->q_vector[i]);
968 	}
969 err_out:
970 	return err;
971 }
972 
973 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
974 {
975 	if (adapter->msix_entries) {
976 		pci_disable_msix(adapter->pdev);
977 		kfree(adapter->msix_entries);
978 		adapter->msix_entries = NULL;
979 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980 		pci_disable_msi(adapter->pdev);
981 	}
982 }
983 
984 /**
985  * igb_free_q_vector - Free memory allocated for specific interrupt vector
986  * @adapter: board private structure to initialize
987  * @v_idx: Index of vector to be freed
988  *
989  * This function frees the memory allocated to the q_vector.  In addition if
990  * NAPI is enabled it will delete any references to the NAPI struct prior
991  * to freeing the q_vector.
992  **/
993 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994 {
995 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996 
997 	if (q_vector->tx.ring)
998 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
999 
1000 	if (q_vector->rx.ring)
1001 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1002 
1003 	adapter->q_vector[v_idx] = NULL;
1004 	netif_napi_del(&q_vector->napi);
1005 
1006 	/*
1007 	 * ixgbe_get_stats64() might access the rings on this vector,
1008 	 * we must wait a grace period before freeing it.
1009 	 */
1010 	kfree_rcu(q_vector, rcu);
1011 }
1012 
1013 /**
1014  * igb_free_q_vectors - Free memory allocated for interrupt vectors
1015  * @adapter: board private structure to initialize
1016  *
1017  * This function frees the memory allocated to the q_vectors.  In addition if
1018  * NAPI is enabled it will delete any references to the NAPI struct prior
1019  * to freeing the q_vector.
1020  **/
1021 static void igb_free_q_vectors(struct igb_adapter *adapter)
1022 {
1023 	int v_idx = adapter->num_q_vectors;
1024 
1025 	adapter->num_tx_queues = 0;
1026 	adapter->num_rx_queues = 0;
1027 	adapter->num_q_vectors = 0;
1028 
1029 	while (v_idx--)
1030 		igb_free_q_vector(adapter, v_idx);
1031 }
1032 
1033 /**
1034  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1035  *
1036  * This function resets the device so that it has 0 rx queues, tx queues, and
1037  * MSI-X interrupts allocated.
1038  */
1039 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1040 {
1041 	igb_free_q_vectors(adapter);
1042 	igb_reset_interrupt_capability(adapter);
1043 }
1044 
1045 /**
1046  * igb_set_interrupt_capability - set MSI or MSI-X if supported
1047  *
1048  * Attempt to configure interrupts using the best available
1049  * capabilities of the hardware and kernel.
1050  **/
1051 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052 {
1053 	int err;
1054 	int numvecs, i;
1055 
1056 	if (!msix)
1057 		goto msi_only;
1058 
1059 	/* Number of supported queues. */
1060 	adapter->num_rx_queues = adapter->rss_queues;
1061 	if (adapter->vfs_allocated_count)
1062 		adapter->num_tx_queues = 1;
1063 	else
1064 		adapter->num_tx_queues = adapter->rss_queues;
1065 
1066 	/* start with one vector for every rx queue */
1067 	numvecs = adapter->num_rx_queues;
1068 
1069 	/* if tx handler is separate add 1 for every tx queue */
1070 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1071 		numvecs += adapter->num_tx_queues;
1072 
1073 	/* store the number of vectors reserved for queues */
1074 	adapter->num_q_vectors = numvecs;
1075 
1076 	/* add 1 vector for link status interrupts */
1077 	numvecs++;
1078 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1079 					GFP_KERNEL);
1080 
1081 	if (!adapter->msix_entries)
1082 		goto msi_only;
1083 
1084 	for (i = 0; i < numvecs; i++)
1085 		adapter->msix_entries[i].entry = i;
1086 
1087 	err = pci_enable_msix(adapter->pdev,
1088 			      adapter->msix_entries,
1089 			      numvecs);
1090 	if (err == 0)
1091 		return;
1092 
1093 	igb_reset_interrupt_capability(adapter);
1094 
1095 	/* If we can't do MSI-X, try MSI */
1096 msi_only:
1097 #ifdef CONFIG_PCI_IOV
1098 	/* disable SR-IOV for non MSI-X configurations */
1099 	if (adapter->vf_data) {
1100 		struct e1000_hw *hw = &adapter->hw;
1101 		/* disable iov and allow time for transactions to clear */
1102 		pci_disable_sriov(adapter->pdev);
1103 		msleep(500);
1104 
1105 		kfree(adapter->vf_data);
1106 		adapter->vf_data = NULL;
1107 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108 		wrfl();
1109 		msleep(100);
1110 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1111 	}
1112 #endif
1113 	adapter->vfs_allocated_count = 0;
1114 	adapter->rss_queues = 1;
1115 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116 	adapter->num_rx_queues = 1;
1117 	adapter->num_tx_queues = 1;
1118 	adapter->num_q_vectors = 1;
1119 	if (!pci_enable_msi(adapter->pdev))
1120 		adapter->flags |= IGB_FLAG_HAS_MSI;
1121 }
1122 
1123 static void igb_add_ring(struct igb_ring *ring,
1124 			 struct igb_ring_container *head)
1125 {
1126 	head->ring = ring;
1127 	head->count++;
1128 }
1129 
1130 /**
1131  * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132  * @adapter: board private structure to initialize
1133  * @v_count: q_vectors allocated on adapter, used for ring interleaving
1134  * @v_idx: index of vector in adapter struct
1135  * @txr_count: total number of Tx rings to allocate
1136  * @txr_idx: index of first Tx ring to allocate
1137  * @rxr_count: total number of Rx rings to allocate
1138  * @rxr_idx: index of first Rx ring to allocate
1139  *
1140  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141  **/
1142 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1143 			      int v_count, int v_idx,
1144 			      int txr_count, int txr_idx,
1145 			      int rxr_count, int rxr_idx)
1146 {
1147 	struct igb_q_vector *q_vector;
1148 	struct igb_ring *ring;
1149 	int ring_count, size;
1150 
1151 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1152 	if (txr_count > 1 || rxr_count > 1)
1153 		return -ENOMEM;
1154 
1155 	ring_count = txr_count + rxr_count;
1156 	size = sizeof(struct igb_q_vector) +
1157 	       (sizeof(struct igb_ring) * ring_count);
1158 
1159 	/* allocate q_vector and rings */
1160 	q_vector = kzalloc(size, GFP_KERNEL);
1161 	if (!q_vector)
1162 		return -ENOMEM;
1163 
1164 	/* initialize NAPI */
1165 	netif_napi_add(adapter->netdev, &q_vector->napi,
1166 		       igb_poll, 64);
1167 
1168 	/* tie q_vector and adapter together */
1169 	adapter->q_vector[v_idx] = q_vector;
1170 	q_vector->adapter = adapter;
1171 
1172 	/* initialize work limits */
1173 	q_vector->tx.work_limit = adapter->tx_work_limit;
1174 
1175 	/* initialize ITR configuration */
1176 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1177 	q_vector->itr_val = IGB_START_ITR;
1178 
1179 	/* initialize pointer to rings */
1180 	ring = q_vector->ring;
1181 
1182 	if (txr_count) {
1183 		/* assign generic ring traits */
1184 		ring->dev = &adapter->pdev->dev;
1185 		ring->netdev = adapter->netdev;
1186 
1187 		/* configure backlink on ring */
1188 		ring->q_vector = q_vector;
1189 
1190 		/* update q_vector Tx values */
1191 		igb_add_ring(ring, &q_vector->tx);
1192 
1193 		/* For 82575, context index must be unique per ring. */
1194 		if (adapter->hw.mac.type == e1000_82575)
1195 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1196 
1197 		/* apply Tx specific ring traits */
1198 		ring->count = adapter->tx_ring_count;
1199 		ring->queue_index = txr_idx;
1200 
1201 		/* assign ring to adapter */
1202 		adapter->tx_ring[txr_idx] = ring;
1203 
1204 		/* push pointer to next ring */
1205 		ring++;
1206 	}
1207 
1208 	if (rxr_count) {
1209 		/* assign generic ring traits */
1210 		ring->dev = &adapter->pdev->dev;
1211 		ring->netdev = adapter->netdev;
1212 
1213 		/* configure backlink on ring */
1214 		ring->q_vector = q_vector;
1215 
1216 		/* update q_vector Rx values */
1217 		igb_add_ring(ring, &q_vector->rx);
1218 
1219 		/* set flag indicating ring supports SCTP checksum offload */
1220 		if (adapter->hw.mac.type >= e1000_82576)
1221 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222 
1223 		/*
1224 		 * On i350, i210, and i211, loopback VLAN packets
1225 		 * have the tag byte-swapped.
1226 		 * */
1227 		if (adapter->hw.mac.type >= e1000_i350)
1228 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229 
1230 		/* apply Rx specific ring traits */
1231 		ring->count = adapter->rx_ring_count;
1232 		ring->queue_index = rxr_idx;
1233 
1234 		/* assign ring to adapter */
1235 		adapter->rx_ring[rxr_idx] = ring;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 
1242 /**
1243  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1244  * @adapter: board private structure to initialize
1245  *
1246  * We allocate one q_vector per queue interrupt.  If allocation fails we
1247  * return -ENOMEM.
1248  **/
1249 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250 {
1251 	int q_vectors = adapter->num_q_vectors;
1252 	int rxr_remaining = adapter->num_rx_queues;
1253 	int txr_remaining = adapter->num_tx_queues;
1254 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1255 	int err;
1256 
1257 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1258 		for (; rxr_remaining; v_idx++) {
1259 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1260 						 0, 0, 1, rxr_idx);
1261 
1262 			if (err)
1263 				goto err_out;
1264 
1265 			/* update counts and index */
1266 			rxr_remaining--;
1267 			rxr_idx++;
1268 		}
1269 	}
1270 
1271 	for (; v_idx < q_vectors; v_idx++) {
1272 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1273 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1274 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1275 					 tqpv, txr_idx, rqpv, rxr_idx);
1276 
1277 		if (err)
1278 			goto err_out;
1279 
1280 		/* update counts and index */
1281 		rxr_remaining -= rqpv;
1282 		txr_remaining -= tqpv;
1283 		rxr_idx++;
1284 		txr_idx++;
1285 	}
1286 
1287 	return 0;
1288 
1289 err_out:
1290 	adapter->num_tx_queues = 0;
1291 	adapter->num_rx_queues = 0;
1292 	adapter->num_q_vectors = 0;
1293 
1294 	while (v_idx--)
1295 		igb_free_q_vector(adapter, v_idx);
1296 
1297 	return -ENOMEM;
1298 }
1299 
1300 /**
1301  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1302  *
1303  * This function initializes the interrupts and allocates all of the queues.
1304  **/
1305 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306 {
1307 	struct pci_dev *pdev = adapter->pdev;
1308 	int err;
1309 
1310 	igb_set_interrupt_capability(adapter, msix);
1311 
1312 	err = igb_alloc_q_vectors(adapter);
1313 	if (err) {
1314 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1315 		goto err_alloc_q_vectors;
1316 	}
1317 
1318 	igb_cache_ring_register(adapter);
1319 
1320 	return 0;
1321 
1322 err_alloc_q_vectors:
1323 	igb_reset_interrupt_capability(adapter);
1324 	return err;
1325 }
1326 
1327 /**
1328  * igb_request_irq - initialize interrupts
1329  *
1330  * Attempts to configure interrupts using the best available
1331  * capabilities of the hardware and kernel.
1332  **/
1333 static int igb_request_irq(struct igb_adapter *adapter)
1334 {
1335 	struct net_device *netdev = adapter->netdev;
1336 	struct pci_dev *pdev = adapter->pdev;
1337 	int err = 0;
1338 
1339 	if (adapter->msix_entries) {
1340 		err = igb_request_msix(adapter);
1341 		if (!err)
1342 			goto request_done;
1343 		/* fall back to MSI */
1344 		igb_free_all_tx_resources(adapter);
1345 		igb_free_all_rx_resources(adapter);
1346 
1347 		igb_clear_interrupt_scheme(adapter);
1348 		err = igb_init_interrupt_scheme(adapter, false);
1349 		if (err)
1350 			goto request_done;
1351 
1352 		igb_setup_all_tx_resources(adapter);
1353 		igb_setup_all_rx_resources(adapter);
1354 		igb_configure(adapter);
1355 	}
1356 
1357 	igb_assign_vector(adapter->q_vector[0], 0);
1358 
1359 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1361 				  netdev->name, adapter);
1362 		if (!err)
1363 			goto request_done;
1364 
1365 		/* fall back to legacy interrupts */
1366 		igb_reset_interrupt_capability(adapter);
1367 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368 	}
1369 
1370 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371 			  netdev->name, adapter);
1372 
1373 	if (err)
1374 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375 			err);
1376 
1377 request_done:
1378 	return err;
1379 }
1380 
1381 static void igb_free_irq(struct igb_adapter *adapter)
1382 {
1383 	if (adapter->msix_entries) {
1384 		int vector = 0, i;
1385 
1386 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1387 
1388 		for (i = 0; i < adapter->num_q_vectors; i++)
1389 			free_irq(adapter->msix_entries[vector++].vector,
1390 				 adapter->q_vector[i]);
1391 	} else {
1392 		free_irq(adapter->pdev->irq, adapter);
1393 	}
1394 }
1395 
1396 /**
1397  * igb_irq_disable - Mask off interrupt generation on the NIC
1398  * @adapter: board private structure
1399  **/
1400 static void igb_irq_disable(struct igb_adapter *adapter)
1401 {
1402 	struct e1000_hw *hw = &adapter->hw;
1403 
1404 	/*
1405 	 * we need to be careful when disabling interrupts.  The VFs are also
1406 	 * mapped into these registers and so clearing the bits can cause
1407 	 * issues on the VF drivers so we only need to clear what we set
1408 	 */
1409 	if (adapter->msix_entries) {
1410 		u32 regval = rd32(E1000_EIAM);
1411 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1412 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1413 		regval = rd32(E1000_EIAC);
1414 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415 	}
1416 
1417 	wr32(E1000_IAM, 0);
1418 	wr32(E1000_IMC, ~0);
1419 	wrfl();
1420 	if (adapter->msix_entries) {
1421 		int i;
1422 		for (i = 0; i < adapter->num_q_vectors; i++)
1423 			synchronize_irq(adapter->msix_entries[i].vector);
1424 	} else {
1425 		synchronize_irq(adapter->pdev->irq);
1426 	}
1427 }
1428 
1429 /**
1430  * igb_irq_enable - Enable default interrupt generation settings
1431  * @adapter: board private structure
1432  **/
1433 static void igb_irq_enable(struct igb_adapter *adapter)
1434 {
1435 	struct e1000_hw *hw = &adapter->hw;
1436 
1437 	if (adapter->msix_entries) {
1438 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439 		u32 regval = rd32(E1000_EIAC);
1440 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1441 		regval = rd32(E1000_EIAM);
1442 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1443 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1444 		if (adapter->vfs_allocated_count) {
1445 			wr32(E1000_MBVFIMR, 0xFF);
1446 			ims |= E1000_IMS_VMMB;
1447 		}
1448 		wr32(E1000_IMS, ims);
1449 	} else {
1450 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1451 				E1000_IMS_DRSTA);
1452 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1453 				E1000_IMS_DRSTA);
1454 	}
1455 }
1456 
1457 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1458 {
1459 	struct e1000_hw *hw = &adapter->hw;
1460 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1461 	u16 old_vid = adapter->mng_vlan_id;
1462 
1463 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1464 		/* add VID to filter table */
1465 		igb_vfta_set(hw, vid, true);
1466 		adapter->mng_vlan_id = vid;
1467 	} else {
1468 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1469 	}
1470 
1471 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1472 	    (vid != old_vid) &&
1473 	    !test_bit(old_vid, adapter->active_vlans)) {
1474 		/* remove VID from filter table */
1475 		igb_vfta_set(hw, old_vid, false);
1476 	}
1477 }
1478 
1479 /**
1480  * igb_release_hw_control - release control of the h/w to f/w
1481  * @adapter: address of board private structure
1482  *
1483  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1484  * For ASF and Pass Through versions of f/w this means that the
1485  * driver is no longer loaded.
1486  *
1487  **/
1488 static void igb_release_hw_control(struct igb_adapter *adapter)
1489 {
1490 	struct e1000_hw *hw = &adapter->hw;
1491 	u32 ctrl_ext;
1492 
1493 	/* Let firmware take over control of h/w */
1494 	ctrl_ext = rd32(E1000_CTRL_EXT);
1495 	wr32(E1000_CTRL_EXT,
1496 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1497 }
1498 
1499 /**
1500  * igb_get_hw_control - get control of the h/w from f/w
1501  * @adapter: address of board private structure
1502  *
1503  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1504  * For ASF and Pass Through versions of f/w this means that
1505  * the driver is loaded.
1506  *
1507  **/
1508 static void igb_get_hw_control(struct igb_adapter *adapter)
1509 {
1510 	struct e1000_hw *hw = &adapter->hw;
1511 	u32 ctrl_ext;
1512 
1513 	/* Let firmware know the driver has taken over */
1514 	ctrl_ext = rd32(E1000_CTRL_EXT);
1515 	wr32(E1000_CTRL_EXT,
1516 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1517 }
1518 
1519 /**
1520  * igb_configure - configure the hardware for RX and TX
1521  * @adapter: private board structure
1522  **/
1523 static void igb_configure(struct igb_adapter *adapter)
1524 {
1525 	struct net_device *netdev = adapter->netdev;
1526 	int i;
1527 
1528 	igb_get_hw_control(adapter);
1529 	igb_set_rx_mode(netdev);
1530 
1531 	igb_restore_vlan(adapter);
1532 
1533 	igb_setup_tctl(adapter);
1534 	igb_setup_mrqc(adapter);
1535 	igb_setup_rctl(adapter);
1536 
1537 	igb_configure_tx(adapter);
1538 	igb_configure_rx(adapter);
1539 
1540 	igb_rx_fifo_flush_82575(&adapter->hw);
1541 
1542 	/* call igb_desc_unused which always leaves
1543 	 * at least 1 descriptor unused to make sure
1544 	 * next_to_use != next_to_clean */
1545 	for (i = 0; i < adapter->num_rx_queues; i++) {
1546 		struct igb_ring *ring = adapter->rx_ring[i];
1547 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548 	}
1549 }
1550 
1551 /**
1552  * igb_power_up_link - Power up the phy/serdes link
1553  * @adapter: address of board private structure
1554  **/
1555 void igb_power_up_link(struct igb_adapter *adapter)
1556 {
1557 	igb_reset_phy(&adapter->hw);
1558 
1559 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1560 		igb_power_up_phy_copper(&adapter->hw);
1561 	else
1562 		igb_power_up_serdes_link_82575(&adapter->hw);
1563 }
1564 
1565 /**
1566  * igb_power_down_link - Power down the phy/serdes link
1567  * @adapter: address of board private structure
1568  */
1569 static void igb_power_down_link(struct igb_adapter *adapter)
1570 {
1571 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1572 		igb_power_down_phy_copper_82575(&adapter->hw);
1573 	else
1574 		igb_shutdown_serdes_link_82575(&adapter->hw);
1575 }
1576 
1577 /**
1578  * igb_up - Open the interface and prepare it to handle traffic
1579  * @adapter: board private structure
1580  **/
1581 int igb_up(struct igb_adapter *adapter)
1582 {
1583 	struct e1000_hw *hw = &adapter->hw;
1584 	int i;
1585 
1586 	/* hardware has been reset, we need to reload some things */
1587 	igb_configure(adapter);
1588 
1589 	clear_bit(__IGB_DOWN, &adapter->state);
1590 
1591 	for (i = 0; i < adapter->num_q_vectors; i++)
1592 		napi_enable(&(adapter->q_vector[i]->napi));
1593 
1594 	if (adapter->msix_entries)
1595 		igb_configure_msix(adapter);
1596 	else
1597 		igb_assign_vector(adapter->q_vector[0], 0);
1598 
1599 	/* Clear any pending interrupts. */
1600 	rd32(E1000_ICR);
1601 	igb_irq_enable(adapter);
1602 
1603 	/* notify VFs that reset has been completed */
1604 	if (adapter->vfs_allocated_count) {
1605 		u32 reg_data = rd32(E1000_CTRL_EXT);
1606 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1607 		wr32(E1000_CTRL_EXT, reg_data);
1608 	}
1609 
1610 	netif_tx_start_all_queues(adapter->netdev);
1611 
1612 	/* start the watchdog. */
1613 	hw->mac.get_link_status = 1;
1614 	schedule_work(&adapter->watchdog_task);
1615 
1616 	return 0;
1617 }
1618 
1619 void igb_down(struct igb_adapter *adapter)
1620 {
1621 	struct net_device *netdev = adapter->netdev;
1622 	struct e1000_hw *hw = &adapter->hw;
1623 	u32 tctl, rctl;
1624 	int i;
1625 
1626 	/* signal that we're down so the interrupt handler does not
1627 	 * reschedule our watchdog timer */
1628 	set_bit(__IGB_DOWN, &adapter->state);
1629 
1630 	/* disable receives in the hardware */
1631 	rctl = rd32(E1000_RCTL);
1632 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1633 	/* flush and sleep below */
1634 
1635 	netif_tx_stop_all_queues(netdev);
1636 
1637 	/* disable transmits in the hardware */
1638 	tctl = rd32(E1000_TCTL);
1639 	tctl &= ~E1000_TCTL_EN;
1640 	wr32(E1000_TCTL, tctl);
1641 	/* flush both disables and wait for them to finish */
1642 	wrfl();
1643 	msleep(10);
1644 
1645 	for (i = 0; i < adapter->num_q_vectors; i++)
1646 		napi_disable(&(adapter->q_vector[i]->napi));
1647 
1648 	igb_irq_disable(adapter);
1649 
1650 	del_timer_sync(&adapter->watchdog_timer);
1651 	del_timer_sync(&adapter->phy_info_timer);
1652 
1653 	netif_carrier_off(netdev);
1654 
1655 	/* record the stats before reset*/
1656 	spin_lock(&adapter->stats64_lock);
1657 	igb_update_stats(adapter, &adapter->stats64);
1658 	spin_unlock(&adapter->stats64_lock);
1659 
1660 	adapter->link_speed = 0;
1661 	adapter->link_duplex = 0;
1662 
1663 	if (!pci_channel_offline(adapter->pdev))
1664 		igb_reset(adapter);
1665 	igb_clean_all_tx_rings(adapter);
1666 	igb_clean_all_rx_rings(adapter);
1667 #ifdef CONFIG_IGB_DCA
1668 
1669 	/* since we reset the hardware DCA settings were cleared */
1670 	igb_setup_dca(adapter);
1671 #endif
1672 }
1673 
1674 void igb_reinit_locked(struct igb_adapter *adapter)
1675 {
1676 	WARN_ON(in_interrupt());
1677 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1678 		msleep(1);
1679 	igb_down(adapter);
1680 	igb_up(adapter);
1681 	clear_bit(__IGB_RESETTING, &adapter->state);
1682 }
1683 
1684 void igb_reset(struct igb_adapter *adapter)
1685 {
1686 	struct pci_dev *pdev = adapter->pdev;
1687 	struct e1000_hw *hw = &adapter->hw;
1688 	struct e1000_mac_info *mac = &hw->mac;
1689 	struct e1000_fc_info *fc = &hw->fc;
1690 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691 
1692 	/* Repartition Pba for greater than 9k mtu
1693 	 * To take effect CTRL.RST is required.
1694 	 */
1695 	switch (mac->type) {
1696 	case e1000_i350:
1697 	case e1000_82580:
1698 		pba = rd32(E1000_RXPBS);
1699 		pba = igb_rxpbs_adjust_82580(pba);
1700 		break;
1701 	case e1000_82576:
1702 		pba = rd32(E1000_RXPBS);
1703 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1704 		break;
1705 	case e1000_82575:
1706 	case e1000_i210:
1707 	case e1000_i211:
1708 	default:
1709 		pba = E1000_PBA_34K;
1710 		break;
1711 	}
1712 
1713 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1714 	    (mac->type < e1000_82576)) {
1715 		/* adjust PBA for jumbo frames */
1716 		wr32(E1000_PBA, pba);
1717 
1718 		/* To maintain wire speed transmits, the Tx FIFO should be
1719 		 * large enough to accommodate two full transmit packets,
1720 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1721 		 * the Rx FIFO should be large enough to accommodate at least
1722 		 * one full receive packet and is similarly rounded up and
1723 		 * expressed in KB. */
1724 		pba = rd32(E1000_PBA);
1725 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1726 		tx_space = pba >> 16;
1727 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1728 		pba &= 0xffff;
1729 		/* the tx fifo also stores 16 bytes of information about the tx
1730 		 * but don't include ethernet FCS because hardware appends it */
1731 		min_tx_space = (adapter->max_frame_size +
1732 				sizeof(union e1000_adv_tx_desc) -
1733 				ETH_FCS_LEN) * 2;
1734 		min_tx_space = ALIGN(min_tx_space, 1024);
1735 		min_tx_space >>= 10;
1736 		/* software strips receive CRC, so leave room for it */
1737 		min_rx_space = adapter->max_frame_size;
1738 		min_rx_space = ALIGN(min_rx_space, 1024);
1739 		min_rx_space >>= 10;
1740 
1741 		/* If current Tx allocation is less than the min Tx FIFO size,
1742 		 * and the min Tx FIFO size is less than the current Rx FIFO
1743 		 * allocation, take space away from current Rx allocation */
1744 		if (tx_space < min_tx_space &&
1745 		    ((min_tx_space - tx_space) < pba)) {
1746 			pba = pba - (min_tx_space - tx_space);
1747 
1748 			/* if short on rx space, rx wins and must trump tx
1749 			 * adjustment */
1750 			if (pba < min_rx_space)
1751 				pba = min_rx_space;
1752 		}
1753 		wr32(E1000_PBA, pba);
1754 	}
1755 
1756 	/* flow control settings */
1757 	/* The high water mark must be low enough to fit one full frame
1758 	 * (or the size used for early receive) above it in the Rx FIFO.
1759 	 * Set it to the lower of:
1760 	 * - 90% of the Rx FIFO size, or
1761 	 * - the full Rx FIFO size minus one full frame */
1762 	hwm = min(((pba << 10) * 9 / 10),
1763 			((pba << 10) - 2 * adapter->max_frame_size));
1764 
1765 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1766 	fc->low_water = fc->high_water - 16;
1767 	fc->pause_time = 0xFFFF;
1768 	fc->send_xon = 1;
1769 	fc->current_mode = fc->requested_mode;
1770 
1771 	/* disable receive for all VFs and wait one second */
1772 	if (adapter->vfs_allocated_count) {
1773 		int i;
1774 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1775 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776 
1777 		/* ping all the active vfs to let them know we are going down */
1778 		igb_ping_all_vfs(adapter);
1779 
1780 		/* disable transmits and receives */
1781 		wr32(E1000_VFRE, 0);
1782 		wr32(E1000_VFTE, 0);
1783 	}
1784 
1785 	/* Allow time for pending master requests to run */
1786 	hw->mac.ops.reset_hw(hw);
1787 	wr32(E1000_WUC, 0);
1788 
1789 	if (hw->mac.ops.init_hw(hw))
1790 		dev_err(&pdev->dev, "Hardware Error\n");
1791 
1792 	/*
1793 	 * Flow control settings reset on hardware reset, so guarantee flow
1794 	 * control is off when forcing speed.
1795 	 */
1796 	if (!hw->mac.autoneg)
1797 		igb_force_mac_fc(hw);
1798 
1799 	igb_init_dmac(adapter, pba);
1800 #ifdef CONFIG_IGB_HWMON
1801 	/* Re-initialize the thermal sensor on i350 devices. */
1802 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1803 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1804 			/* If present, re-initialize the external thermal sensor
1805 			 * interface.
1806 			 */
1807 			if (adapter->ets)
1808 				mac->ops.init_thermal_sensor_thresh(hw);
1809 		}
1810 	}
1811 #endif
1812 	if (!netif_running(adapter->netdev))
1813 		igb_power_down_link(adapter);
1814 
1815 	igb_update_mng_vlan(adapter);
1816 
1817 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1818 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1819 
1820 	/* Re-enable PTP, where applicable. */
1821 	igb_ptp_reset(adapter);
1822 
1823 	igb_get_phy_info(hw);
1824 }
1825 
1826 static netdev_features_t igb_fix_features(struct net_device *netdev,
1827 	netdev_features_t features)
1828 {
1829 	/*
1830 	 * Since there is no support for separate rx/tx vlan accel
1831 	 * enable/disable make sure tx flag is always in same state as rx.
1832 	 */
1833 	if (features & NETIF_F_HW_VLAN_RX)
1834 		features |= NETIF_F_HW_VLAN_TX;
1835 	else
1836 		features &= ~NETIF_F_HW_VLAN_TX;
1837 
1838 	return features;
1839 }
1840 
1841 static int igb_set_features(struct net_device *netdev,
1842 	netdev_features_t features)
1843 {
1844 	netdev_features_t changed = netdev->features ^ features;
1845 	struct igb_adapter *adapter = netdev_priv(netdev);
1846 
1847 	if (changed & NETIF_F_HW_VLAN_RX)
1848 		igb_vlan_mode(netdev, features);
1849 
1850 	if (!(changed & NETIF_F_RXALL))
1851 		return 0;
1852 
1853 	netdev->features = features;
1854 
1855 	if (netif_running(netdev))
1856 		igb_reinit_locked(adapter);
1857 	else
1858 		igb_reset(adapter);
1859 
1860 	return 0;
1861 }
1862 
1863 static const struct net_device_ops igb_netdev_ops = {
1864 	.ndo_open		= igb_open,
1865 	.ndo_stop		= igb_close,
1866 	.ndo_start_xmit		= igb_xmit_frame,
1867 	.ndo_get_stats64	= igb_get_stats64,
1868 	.ndo_set_rx_mode	= igb_set_rx_mode,
1869 	.ndo_set_mac_address	= igb_set_mac,
1870 	.ndo_change_mtu		= igb_change_mtu,
1871 	.ndo_do_ioctl		= igb_ioctl,
1872 	.ndo_tx_timeout		= igb_tx_timeout,
1873 	.ndo_validate_addr	= eth_validate_addr,
1874 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1875 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1876 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1877 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1878 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1879 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1880 #ifdef CONFIG_NET_POLL_CONTROLLER
1881 	.ndo_poll_controller	= igb_netpoll,
1882 #endif
1883 	.ndo_fix_features	= igb_fix_features,
1884 	.ndo_set_features	= igb_set_features,
1885 };
1886 
1887 /**
1888  * igb_set_fw_version - Configure version string for ethtool
1889  * @adapter: adapter struct
1890  *
1891  **/
1892 void igb_set_fw_version(struct igb_adapter *adapter)
1893 {
1894 	struct e1000_hw *hw = &adapter->hw;
1895 	struct e1000_fw_version fw;
1896 
1897 	igb_get_fw_version(hw, &fw);
1898 
1899 	switch (hw->mac.type) {
1900 	case e1000_i211:
1901 		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902 			 "%2d.%2d-%d",
1903 			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1904 		break;
1905 
1906 	default:
1907 		/* if option is rom valid, display its version too */
1908 		if (fw.or_valid) {
1909 			snprintf(adapter->fw_version,
1910 				 sizeof(adapter->fw_version),
1911 				 "%d.%d, 0x%08x, %d.%d.%d",
1912 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1913 				 fw.or_major, fw.or_build, fw.or_patch);
1914 		/* no option rom */
1915 		} else {
1916 			snprintf(adapter->fw_version,
1917 				 sizeof(adapter->fw_version),
1918 				 "%d.%d, 0x%08x",
1919 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1920 		}
1921 		break;
1922 	}
1923 	return;
1924 }
1925 
1926 static const struct i2c_board_info i350_sensor_info = {
1927 	I2C_BOARD_INFO("i350bb", 0Xf8),
1928 };
1929 
1930 /*  igb_init_i2c - Init I2C interface
1931  *  @adapter: pointer to adapter structure
1932  *
1933  */
1934 static s32 igb_init_i2c(struct igb_adapter *adapter)
1935 {
1936 	s32 status = E1000_SUCCESS;
1937 
1938 	/* I2C interface supported on i350 devices */
1939 	if (adapter->hw.mac.type != e1000_i350)
1940 		return E1000_SUCCESS;
1941 
1942 	/* Initialize the i2c bus which is controlled by the registers.
1943 	 * This bus will use the i2c_algo_bit structue that implements
1944 	 * the protocol through toggling of the 4 bits in the register.
1945 	 */
1946 	adapter->i2c_adap.owner = THIS_MODULE;
1947 	adapter->i2c_algo = igb_i2c_algo;
1948 	adapter->i2c_algo.data = adapter;
1949 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1950 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1951 	strlcpy(adapter->i2c_adap.name, "igb BB",
1952 		sizeof(adapter->i2c_adap.name));
1953 	status = i2c_bit_add_bus(&adapter->i2c_adap);
1954 	return status;
1955 }
1956 
1957 /**
1958  * igb_probe - Device Initialization Routine
1959  * @pdev: PCI device information struct
1960  * @ent: entry in igb_pci_tbl
1961  *
1962  * Returns 0 on success, negative on failure
1963  *
1964  * igb_probe initializes an adapter identified by a pci_dev structure.
1965  * The OS initialization, configuring of the adapter private structure,
1966  * and a hardware reset occur.
1967  **/
1968 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1969 {
1970 	struct net_device *netdev;
1971 	struct igb_adapter *adapter;
1972 	struct e1000_hw *hw;
1973 	u16 eeprom_data = 0;
1974 	s32 ret_val;
1975 	static int global_quad_port_a; /* global quad port a indication */
1976 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1977 	unsigned long mmio_start, mmio_len;
1978 	int err, pci_using_dac;
1979 	u8 part_str[E1000_PBANUM_LENGTH];
1980 
1981 	/* Catch broken hardware that put the wrong VF device ID in
1982 	 * the PCIe SR-IOV capability.
1983 	 */
1984 	if (pdev->is_virtfn) {
1985 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1986 			pci_name(pdev), pdev->vendor, pdev->device);
1987 		return -EINVAL;
1988 	}
1989 
1990 	err = pci_enable_device_mem(pdev);
1991 	if (err)
1992 		return err;
1993 
1994 	pci_using_dac = 0;
1995 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1996 	if (!err) {
1997 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1998 		if (!err)
1999 			pci_using_dac = 1;
2000 	} else {
2001 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2002 		if (err) {
2003 			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2004 			if (err) {
2005 				dev_err(&pdev->dev, "No usable DMA "
2006 					"configuration, aborting\n");
2007 				goto err_dma;
2008 			}
2009 		}
2010 	}
2011 
2012 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2013 	                                   IORESOURCE_MEM),
2014 	                                   igb_driver_name);
2015 	if (err)
2016 		goto err_pci_reg;
2017 
2018 	pci_enable_pcie_error_reporting(pdev);
2019 
2020 	pci_set_master(pdev);
2021 	pci_save_state(pdev);
2022 
2023 	err = -ENOMEM;
2024 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2025 				   IGB_MAX_TX_QUEUES);
2026 	if (!netdev)
2027 		goto err_alloc_etherdev;
2028 
2029 	SET_NETDEV_DEV(netdev, &pdev->dev);
2030 
2031 	pci_set_drvdata(pdev, netdev);
2032 	adapter = netdev_priv(netdev);
2033 	adapter->netdev = netdev;
2034 	adapter->pdev = pdev;
2035 	hw = &adapter->hw;
2036 	hw->back = adapter;
2037 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2038 
2039 	mmio_start = pci_resource_start(pdev, 0);
2040 	mmio_len = pci_resource_len(pdev, 0);
2041 
2042 	err = -EIO;
2043 	hw->hw_addr = ioremap(mmio_start, mmio_len);
2044 	if (!hw->hw_addr)
2045 		goto err_ioremap;
2046 
2047 	netdev->netdev_ops = &igb_netdev_ops;
2048 	igb_set_ethtool_ops(netdev);
2049 	netdev->watchdog_timeo = 5 * HZ;
2050 
2051 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2052 
2053 	netdev->mem_start = mmio_start;
2054 	netdev->mem_end = mmio_start + mmio_len;
2055 
2056 	/* PCI config space info */
2057 	hw->vendor_id = pdev->vendor;
2058 	hw->device_id = pdev->device;
2059 	hw->revision_id = pdev->revision;
2060 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2061 	hw->subsystem_device_id = pdev->subsystem_device;
2062 
2063 	/* Copy the default MAC, PHY and NVM function pointers */
2064 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2065 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2066 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2067 	/* Initialize skew-specific constants */
2068 	err = ei->get_invariants(hw);
2069 	if (err)
2070 		goto err_sw_init;
2071 
2072 	/* setup the private structure */
2073 	err = igb_sw_init(adapter);
2074 	if (err)
2075 		goto err_sw_init;
2076 
2077 	igb_get_bus_info_pcie(hw);
2078 
2079 	hw->phy.autoneg_wait_to_complete = false;
2080 
2081 	/* Copper options */
2082 	if (hw->phy.media_type == e1000_media_type_copper) {
2083 		hw->phy.mdix = AUTO_ALL_MODES;
2084 		hw->phy.disable_polarity_correction = false;
2085 		hw->phy.ms_type = e1000_ms_hw_default;
2086 	}
2087 
2088 	if (igb_check_reset_block(hw))
2089 		dev_info(&pdev->dev,
2090 			"PHY reset is blocked due to SOL/IDER session.\n");
2091 
2092 	/*
2093 	 * features is initialized to 0 in allocation, it might have bits
2094 	 * set by igb_sw_init so we should use an or instead of an
2095 	 * assignment.
2096 	 */
2097 	netdev->features |= NETIF_F_SG |
2098 			    NETIF_F_IP_CSUM |
2099 			    NETIF_F_IPV6_CSUM |
2100 			    NETIF_F_TSO |
2101 			    NETIF_F_TSO6 |
2102 			    NETIF_F_RXHASH |
2103 			    NETIF_F_RXCSUM |
2104 			    NETIF_F_HW_VLAN_RX |
2105 			    NETIF_F_HW_VLAN_TX;
2106 
2107 	/* copy netdev features into list of user selectable features */
2108 	netdev->hw_features |= netdev->features;
2109 	netdev->hw_features |= NETIF_F_RXALL;
2110 
2111 	/* set this bit last since it cannot be part of hw_features */
2112 	netdev->features |= NETIF_F_HW_VLAN_FILTER;
2113 
2114 	netdev->vlan_features |= NETIF_F_TSO |
2115 				 NETIF_F_TSO6 |
2116 				 NETIF_F_IP_CSUM |
2117 				 NETIF_F_IPV6_CSUM |
2118 				 NETIF_F_SG;
2119 
2120 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2121 
2122 	if (pci_using_dac) {
2123 		netdev->features |= NETIF_F_HIGHDMA;
2124 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2125 	}
2126 
2127 	if (hw->mac.type >= e1000_82576) {
2128 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2129 		netdev->features |= NETIF_F_SCTP_CSUM;
2130 	}
2131 
2132 	netdev->priv_flags |= IFF_UNICAST_FLT;
2133 
2134 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2135 
2136 	/* before reading the NVM, reset the controller to put the device in a
2137 	 * known good starting state */
2138 	hw->mac.ops.reset_hw(hw);
2139 
2140 	/*
2141 	 * make sure the NVM is good , i211 parts have special NVM that
2142 	 * doesn't contain a checksum
2143 	 */
2144 	if (hw->mac.type != e1000_i211) {
2145 		if (hw->nvm.ops.validate(hw) < 0) {
2146 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2147 			err = -EIO;
2148 			goto err_eeprom;
2149 		}
2150 	}
2151 
2152 	/* copy the MAC address out of the NVM */
2153 	if (hw->mac.ops.read_mac_addr(hw))
2154 		dev_err(&pdev->dev, "NVM Read Error\n");
2155 
2156 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2157 
2158 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2159 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2160 		err = -EIO;
2161 		goto err_eeprom;
2162 	}
2163 
2164 	/* get firmware version for ethtool -i */
2165 	igb_set_fw_version(adapter);
2166 
2167 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2168 	            (unsigned long) adapter);
2169 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2170 	            (unsigned long) adapter);
2171 
2172 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2173 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2174 
2175 	/* Initialize link properties that are user-changeable */
2176 	adapter->fc_autoneg = true;
2177 	hw->mac.autoneg = true;
2178 	hw->phy.autoneg_advertised = 0x2f;
2179 
2180 	hw->fc.requested_mode = e1000_fc_default;
2181 	hw->fc.current_mode = e1000_fc_default;
2182 
2183 	igb_validate_mdi_setting(hw);
2184 
2185 	/* By default, support wake on port A */
2186 	if (hw->bus.func == 0)
2187 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2188 
2189 	/* Check the NVM for wake support on non-port A ports */
2190 	if (hw->mac.type >= e1000_82580)
2191 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2192 		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2193 		                 &eeprom_data);
2194 	else if (hw->bus.func == 1)
2195 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2196 
2197 	if (eeprom_data & IGB_EEPROM_APME)
2198 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2199 
2200 	/* now that we have the eeprom settings, apply the special cases where
2201 	 * the eeprom may be wrong or the board simply won't support wake on
2202 	 * lan on a particular port */
2203 	switch (pdev->device) {
2204 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2205 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2206 		break;
2207 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2208 	case E1000_DEV_ID_82576_FIBER:
2209 	case E1000_DEV_ID_82576_SERDES:
2210 		/* Wake events only supported on port A for dual fiber
2211 		 * regardless of eeprom setting */
2212 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2213 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2214 		break;
2215 	case E1000_DEV_ID_82576_QUAD_COPPER:
2216 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2217 		/* if quad port adapter, disable WoL on all but port A */
2218 		if (global_quad_port_a != 0)
2219 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2220 		else
2221 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2222 		/* Reset for multiple quad port adapters */
2223 		if (++global_quad_port_a == 4)
2224 			global_quad_port_a = 0;
2225 		break;
2226 	default:
2227 		/* If the device can't wake, don't set software support */
2228 		if (!device_can_wakeup(&adapter->pdev->dev))
2229 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2230 	}
2231 
2232 	/* initialize the wol settings based on the eeprom settings */
2233 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2234 		adapter->wol |= E1000_WUFC_MAG;
2235 
2236 	/* Some vendors want WoL disabled by default, but still supported */
2237 	if ((hw->mac.type == e1000_i350) &&
2238 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2239 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2240 		adapter->wol = 0;
2241 	}
2242 
2243 	device_set_wakeup_enable(&adapter->pdev->dev,
2244 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2245 
2246 	/* reset the hardware with the new settings */
2247 	igb_reset(adapter);
2248 
2249 	/* Init the I2C interface */
2250 	err = igb_init_i2c(adapter);
2251 	if (err) {
2252 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2253 		goto err_eeprom;
2254 	}
2255 
2256 	/* let the f/w know that the h/w is now under the control of the
2257 	 * driver. */
2258 	igb_get_hw_control(adapter);
2259 
2260 	strcpy(netdev->name, "eth%d");
2261 	err = register_netdev(netdev);
2262 	if (err)
2263 		goto err_register;
2264 
2265 	/* carrier off reporting is important to ethtool even BEFORE open */
2266 	netif_carrier_off(netdev);
2267 
2268 #ifdef CONFIG_IGB_DCA
2269 	if (dca_add_requester(&pdev->dev) == 0) {
2270 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2271 		dev_info(&pdev->dev, "DCA enabled\n");
2272 		igb_setup_dca(adapter);
2273 	}
2274 
2275 #endif
2276 #ifdef CONFIG_IGB_HWMON
2277 	/* Initialize the thermal sensor on i350 devices. */
2278 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2279 		u16 ets_word;
2280 
2281 		/*
2282 		 * Read the NVM to determine if this i350 device supports an
2283 		 * external thermal sensor.
2284 		 */
2285 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2286 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2287 			adapter->ets = true;
2288 		else
2289 			adapter->ets = false;
2290 		if (igb_sysfs_init(adapter))
2291 			dev_err(&pdev->dev,
2292 				"failed to allocate sysfs resources\n");
2293 	} else {
2294 		adapter->ets = false;
2295 	}
2296 #endif
2297 	/* do hw tstamp init after resetting */
2298 	igb_ptp_init(adapter);
2299 
2300 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2301 	/* print bus type/speed/width info */
2302 	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2303 		 netdev->name,
2304 		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2305 		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2306 		                                            "unknown"),
2307 		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2308 		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2309 		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2310 		   "unknown"),
2311 		 netdev->dev_addr);
2312 
2313 	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2314 	if (ret_val)
2315 		strcpy(part_str, "Unknown");
2316 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2317 	dev_info(&pdev->dev,
2318 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2319 		adapter->msix_entries ? "MSI-X" :
2320 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2321 		adapter->num_rx_queues, adapter->num_tx_queues);
2322 	switch (hw->mac.type) {
2323 	case e1000_i350:
2324 	case e1000_i210:
2325 	case e1000_i211:
2326 		igb_set_eee_i350(hw);
2327 		break;
2328 	default:
2329 		break;
2330 	}
2331 
2332 	pm_runtime_put_noidle(&pdev->dev);
2333 	return 0;
2334 
2335 err_register:
2336 	igb_release_hw_control(adapter);
2337 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2338 err_eeprom:
2339 	if (!igb_check_reset_block(hw))
2340 		igb_reset_phy(hw);
2341 
2342 	if (hw->flash_address)
2343 		iounmap(hw->flash_address);
2344 err_sw_init:
2345 	igb_clear_interrupt_scheme(adapter);
2346 	iounmap(hw->hw_addr);
2347 err_ioremap:
2348 	free_netdev(netdev);
2349 err_alloc_etherdev:
2350 	pci_release_selected_regions(pdev,
2351 	                             pci_select_bars(pdev, IORESOURCE_MEM));
2352 err_pci_reg:
2353 err_dma:
2354 	pci_disable_device(pdev);
2355 	return err;
2356 }
2357 
2358 #ifdef CONFIG_PCI_IOV
2359 static int  igb_disable_sriov(struct pci_dev *pdev)
2360 {
2361 	struct net_device *netdev = pci_get_drvdata(pdev);
2362 	struct igb_adapter *adapter = netdev_priv(netdev);
2363 	struct e1000_hw *hw = &adapter->hw;
2364 
2365 	/* reclaim resources allocated to VFs */
2366 	if (adapter->vf_data) {
2367 		/* disable iov and allow time for transactions to clear */
2368 		if (igb_vfs_are_assigned(adapter)) {
2369 			dev_warn(&pdev->dev,
2370 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2371 			return -EPERM;
2372 		} else {
2373 			pci_disable_sriov(pdev);
2374 			msleep(500);
2375 		}
2376 
2377 		kfree(adapter->vf_data);
2378 		adapter->vf_data = NULL;
2379 		adapter->vfs_allocated_count = 0;
2380 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2381 		wrfl();
2382 		msleep(100);
2383 		dev_info(&pdev->dev, "IOV Disabled\n");
2384 
2385 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2386 		adapter->flags |= IGB_FLAG_DMAC;
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2393 {
2394 	struct net_device *netdev = pci_get_drvdata(pdev);
2395 	struct igb_adapter *adapter = netdev_priv(netdev);
2396 	int old_vfs = pci_num_vf(pdev);
2397 	int err = 0;
2398 	int i;
2399 
2400 	if (!num_vfs)
2401 		goto out;
2402 	else if (old_vfs && old_vfs == num_vfs)
2403 		goto out;
2404 	else if (old_vfs && old_vfs != num_vfs)
2405 		err = igb_disable_sriov(pdev);
2406 
2407 	if (err)
2408 		goto out;
2409 
2410 	if (num_vfs > 7) {
2411 		err = -EPERM;
2412 		goto out;
2413 	}
2414 
2415 	adapter->vfs_allocated_count = num_vfs;
2416 
2417 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2418 				sizeof(struct vf_data_storage), GFP_KERNEL);
2419 
2420 	/* if allocation failed then we do not support SR-IOV */
2421 	if (!adapter->vf_data) {
2422 		adapter->vfs_allocated_count = 0;
2423 		dev_err(&pdev->dev,
2424 			"Unable to allocate memory for VF Data Storage\n");
2425 		err = -ENOMEM;
2426 		goto out;
2427 	}
2428 
2429 	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2430 	if (err)
2431 		goto err_out;
2432 
2433 	dev_info(&pdev->dev, "%d VFs allocated\n",
2434 		 adapter->vfs_allocated_count);
2435 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2436 		igb_vf_configure(adapter, i);
2437 
2438 	/* DMA Coalescing is not supported in IOV mode. */
2439 	adapter->flags &= ~IGB_FLAG_DMAC;
2440 	goto out;
2441 
2442 err_out:
2443 	kfree(adapter->vf_data);
2444 	adapter->vf_data = NULL;
2445 	adapter->vfs_allocated_count = 0;
2446 out:
2447 	return err;
2448 }
2449 
2450 #endif
2451 /*
2452  *  igb_remove_i2c - Cleanup  I2C interface
2453  *  @adapter: pointer to adapter structure
2454  *
2455  */
2456 static void igb_remove_i2c(struct igb_adapter *adapter)
2457 {
2458 
2459 	/* free the adapter bus structure */
2460 	i2c_del_adapter(&adapter->i2c_adap);
2461 }
2462 
2463 /**
2464  * igb_remove - Device Removal Routine
2465  * @pdev: PCI device information struct
2466  *
2467  * igb_remove is called by the PCI subsystem to alert the driver
2468  * that it should release a PCI device.  The could be caused by a
2469  * Hot-Plug event, or because the driver is going to be removed from
2470  * memory.
2471  **/
2472 static void igb_remove(struct pci_dev *pdev)
2473 {
2474 	struct net_device *netdev = pci_get_drvdata(pdev);
2475 	struct igb_adapter *adapter = netdev_priv(netdev);
2476 	struct e1000_hw *hw = &adapter->hw;
2477 
2478 	pm_runtime_get_noresume(&pdev->dev);
2479 #ifdef CONFIG_IGB_HWMON
2480 	igb_sysfs_exit(adapter);
2481 #endif
2482 	igb_remove_i2c(adapter);
2483 	igb_ptp_stop(adapter);
2484 	/*
2485 	 * The watchdog timer may be rescheduled, so explicitly
2486 	 * disable watchdog from being rescheduled.
2487 	 */
2488 	set_bit(__IGB_DOWN, &adapter->state);
2489 	del_timer_sync(&adapter->watchdog_timer);
2490 	del_timer_sync(&adapter->phy_info_timer);
2491 
2492 	cancel_work_sync(&adapter->reset_task);
2493 	cancel_work_sync(&adapter->watchdog_task);
2494 
2495 #ifdef CONFIG_IGB_DCA
2496 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2497 		dev_info(&pdev->dev, "DCA disabled\n");
2498 		dca_remove_requester(&pdev->dev);
2499 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2500 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2501 	}
2502 #endif
2503 
2504 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2505 	 * would have already happened in close and is redundant. */
2506 	igb_release_hw_control(adapter);
2507 
2508 	unregister_netdev(netdev);
2509 
2510 	igb_clear_interrupt_scheme(adapter);
2511 
2512 #ifdef CONFIG_PCI_IOV
2513 	igb_disable_sriov(pdev);
2514 #endif
2515 
2516 	iounmap(hw->hw_addr);
2517 	if (hw->flash_address)
2518 		iounmap(hw->flash_address);
2519 	pci_release_selected_regions(pdev,
2520 	                             pci_select_bars(pdev, IORESOURCE_MEM));
2521 
2522 	kfree(adapter->shadow_vfta);
2523 	free_netdev(netdev);
2524 
2525 	pci_disable_pcie_error_reporting(pdev);
2526 
2527 	pci_disable_device(pdev);
2528 }
2529 
2530 /**
2531  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2532  * @adapter: board private structure to initialize
2533  *
2534  * This function initializes the vf specific data storage and then attempts to
2535  * allocate the VFs.  The reason for ordering it this way is because it is much
2536  * mor expensive time wise to disable SR-IOV than it is to allocate and free
2537  * the memory for the VFs.
2538  **/
2539 static void igb_probe_vfs(struct igb_adapter *adapter)
2540 {
2541 #ifdef CONFIG_PCI_IOV
2542 	struct pci_dev *pdev = adapter->pdev;
2543 	struct e1000_hw *hw = &adapter->hw;
2544 
2545 	/* Virtualization features not supported on i210 family. */
2546 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2547 		return;
2548 
2549 	igb_enable_sriov(pdev, max_vfs);
2550 	pci_sriov_set_totalvfs(pdev, 7);
2551 
2552 #endif /* CONFIG_PCI_IOV */
2553 }
2554 
2555 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2556 {
2557 	struct e1000_hw *hw = &adapter->hw;
2558 	u32 max_rss_queues;
2559 
2560 	/* Determine the maximum number of RSS queues supported. */
2561 	switch (hw->mac.type) {
2562 	case e1000_i211:
2563 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2564 		break;
2565 	case e1000_82575:
2566 	case e1000_i210:
2567 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2568 		break;
2569 	case e1000_i350:
2570 		/* I350 cannot do RSS and SR-IOV at the same time */
2571 		if (!!adapter->vfs_allocated_count) {
2572 			max_rss_queues = 1;
2573 			break;
2574 		}
2575 		/* fall through */
2576 	case e1000_82576:
2577 		if (!!adapter->vfs_allocated_count) {
2578 			max_rss_queues = 2;
2579 			break;
2580 		}
2581 		/* fall through */
2582 	case e1000_82580:
2583 	default:
2584 		max_rss_queues = IGB_MAX_RX_QUEUES;
2585 		break;
2586 	}
2587 
2588 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2589 
2590 	/* Determine if we need to pair queues. */
2591 	switch (hw->mac.type) {
2592 	case e1000_82575:
2593 	case e1000_i211:
2594 		/* Device supports enough interrupts without queue pairing. */
2595 		break;
2596 	case e1000_82576:
2597 		/*
2598 		 * If VFs are going to be allocated with RSS queues then we
2599 		 * should pair the queues in order to conserve interrupts due
2600 		 * to limited supply.
2601 		 */
2602 		if ((adapter->rss_queues > 1) &&
2603 		    (adapter->vfs_allocated_count > 6))
2604 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2605 		/* fall through */
2606 	case e1000_82580:
2607 	case e1000_i350:
2608 	case e1000_i210:
2609 	default:
2610 		/*
2611 		 * If rss_queues > half of max_rss_queues, pair the queues in
2612 		 * order to conserve interrupts due to limited supply.
2613 		 */
2614 		if (adapter->rss_queues > (max_rss_queues / 2))
2615 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2616 		break;
2617 	}
2618 }
2619 
2620 /**
2621  * igb_sw_init - Initialize general software structures (struct igb_adapter)
2622  * @adapter: board private structure to initialize
2623  *
2624  * igb_sw_init initializes the Adapter private data structure.
2625  * Fields are initialized based on PCI device information and
2626  * OS network device settings (MTU size).
2627  **/
2628 static int igb_sw_init(struct igb_adapter *adapter)
2629 {
2630 	struct e1000_hw *hw = &adapter->hw;
2631 	struct net_device *netdev = adapter->netdev;
2632 	struct pci_dev *pdev = adapter->pdev;
2633 
2634 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2635 
2636 	/* set default ring sizes */
2637 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2638 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2639 
2640 	/* set default ITR values */
2641 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2642 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2643 
2644 	/* set default work limits */
2645 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2646 
2647 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2648 				  VLAN_HLEN;
2649 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2650 
2651 	spin_lock_init(&adapter->stats64_lock);
2652 #ifdef CONFIG_PCI_IOV
2653 	switch (hw->mac.type) {
2654 	case e1000_82576:
2655 	case e1000_i350:
2656 		if (max_vfs > 7) {
2657 			dev_warn(&pdev->dev,
2658 				 "Maximum of 7 VFs per PF, using max\n");
2659 			adapter->vfs_allocated_count = 7;
2660 		} else
2661 			adapter->vfs_allocated_count = max_vfs;
2662 		if (adapter->vfs_allocated_count)
2663 			dev_warn(&pdev->dev,
2664 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2665 		break;
2666 	default:
2667 		break;
2668 	}
2669 #endif /* CONFIG_PCI_IOV */
2670 
2671 	igb_init_queue_configuration(adapter);
2672 
2673 	/* Setup and initialize a copy of the hw vlan table array */
2674 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2675 				       GFP_ATOMIC);
2676 
2677 	/* This call may decrease the number of queues */
2678 	if (igb_init_interrupt_scheme(adapter, true)) {
2679 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2680 		return -ENOMEM;
2681 	}
2682 
2683 	igb_probe_vfs(adapter);
2684 
2685 	/* Explicitly disable IRQ since the NIC can be in any state. */
2686 	igb_irq_disable(adapter);
2687 
2688 	if (hw->mac.type >= e1000_i350)
2689 		adapter->flags &= ~IGB_FLAG_DMAC;
2690 
2691 	set_bit(__IGB_DOWN, &adapter->state);
2692 	return 0;
2693 }
2694 
2695 /**
2696  * igb_open - Called when a network interface is made active
2697  * @netdev: network interface device structure
2698  *
2699  * Returns 0 on success, negative value on failure
2700  *
2701  * The open entry point is called when a network interface is made
2702  * active by the system (IFF_UP).  At this point all resources needed
2703  * for transmit and receive operations are allocated, the interrupt
2704  * handler is registered with the OS, the watchdog timer is started,
2705  * and the stack is notified that the interface is ready.
2706  **/
2707 static int __igb_open(struct net_device *netdev, bool resuming)
2708 {
2709 	struct igb_adapter *adapter = netdev_priv(netdev);
2710 	struct e1000_hw *hw = &adapter->hw;
2711 	struct pci_dev *pdev = adapter->pdev;
2712 	int err;
2713 	int i;
2714 
2715 	/* disallow open during test */
2716 	if (test_bit(__IGB_TESTING, &adapter->state)) {
2717 		WARN_ON(resuming);
2718 		return -EBUSY;
2719 	}
2720 
2721 	if (!resuming)
2722 		pm_runtime_get_sync(&pdev->dev);
2723 
2724 	netif_carrier_off(netdev);
2725 
2726 	/* allocate transmit descriptors */
2727 	err = igb_setup_all_tx_resources(adapter);
2728 	if (err)
2729 		goto err_setup_tx;
2730 
2731 	/* allocate receive descriptors */
2732 	err = igb_setup_all_rx_resources(adapter);
2733 	if (err)
2734 		goto err_setup_rx;
2735 
2736 	igb_power_up_link(adapter);
2737 
2738 	/* before we allocate an interrupt, we must be ready to handle it.
2739 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2740 	 * as soon as we call pci_request_irq, so we have to setup our
2741 	 * clean_rx handler before we do so.  */
2742 	igb_configure(adapter);
2743 
2744 	err = igb_request_irq(adapter);
2745 	if (err)
2746 		goto err_req_irq;
2747 
2748 	/* Notify the stack of the actual queue counts. */
2749 	err = netif_set_real_num_tx_queues(adapter->netdev,
2750 					   adapter->num_tx_queues);
2751 	if (err)
2752 		goto err_set_queues;
2753 
2754 	err = netif_set_real_num_rx_queues(adapter->netdev,
2755 					   adapter->num_rx_queues);
2756 	if (err)
2757 		goto err_set_queues;
2758 
2759 	/* From here on the code is the same as igb_up() */
2760 	clear_bit(__IGB_DOWN, &adapter->state);
2761 
2762 	for (i = 0; i < adapter->num_q_vectors; i++)
2763 		napi_enable(&(adapter->q_vector[i]->napi));
2764 
2765 	/* Clear any pending interrupts. */
2766 	rd32(E1000_ICR);
2767 
2768 	igb_irq_enable(adapter);
2769 
2770 	/* notify VFs that reset has been completed */
2771 	if (adapter->vfs_allocated_count) {
2772 		u32 reg_data = rd32(E1000_CTRL_EXT);
2773 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2774 		wr32(E1000_CTRL_EXT, reg_data);
2775 	}
2776 
2777 	netif_tx_start_all_queues(netdev);
2778 
2779 	if (!resuming)
2780 		pm_runtime_put(&pdev->dev);
2781 
2782 	/* start the watchdog. */
2783 	hw->mac.get_link_status = 1;
2784 	schedule_work(&adapter->watchdog_task);
2785 
2786 	return 0;
2787 
2788 err_set_queues:
2789 	igb_free_irq(adapter);
2790 err_req_irq:
2791 	igb_release_hw_control(adapter);
2792 	igb_power_down_link(adapter);
2793 	igb_free_all_rx_resources(adapter);
2794 err_setup_rx:
2795 	igb_free_all_tx_resources(adapter);
2796 err_setup_tx:
2797 	igb_reset(adapter);
2798 	if (!resuming)
2799 		pm_runtime_put(&pdev->dev);
2800 
2801 	return err;
2802 }
2803 
2804 static int igb_open(struct net_device *netdev)
2805 {
2806 	return __igb_open(netdev, false);
2807 }
2808 
2809 /**
2810  * igb_close - Disables a network interface
2811  * @netdev: network interface device structure
2812  *
2813  * Returns 0, this is not allowed to fail
2814  *
2815  * The close entry point is called when an interface is de-activated
2816  * by the OS.  The hardware is still under the driver's control, but
2817  * needs to be disabled.  A global MAC reset is issued to stop the
2818  * hardware, and all transmit and receive resources are freed.
2819  **/
2820 static int __igb_close(struct net_device *netdev, bool suspending)
2821 {
2822 	struct igb_adapter *adapter = netdev_priv(netdev);
2823 	struct pci_dev *pdev = adapter->pdev;
2824 
2825 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2826 
2827 	if (!suspending)
2828 		pm_runtime_get_sync(&pdev->dev);
2829 
2830 	igb_down(adapter);
2831 	igb_free_irq(adapter);
2832 
2833 	igb_free_all_tx_resources(adapter);
2834 	igb_free_all_rx_resources(adapter);
2835 
2836 	if (!suspending)
2837 		pm_runtime_put_sync(&pdev->dev);
2838 	return 0;
2839 }
2840 
2841 static int igb_close(struct net_device *netdev)
2842 {
2843 	return __igb_close(netdev, false);
2844 }
2845 
2846 /**
2847  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2848  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2849  *
2850  * Return 0 on success, negative on failure
2851  **/
2852 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2853 {
2854 	struct device *dev = tx_ring->dev;
2855 	int size;
2856 
2857 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2858 
2859 	tx_ring->tx_buffer_info = vzalloc(size);
2860 	if (!tx_ring->tx_buffer_info)
2861 		goto err;
2862 
2863 	/* round up to nearest 4K */
2864 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2865 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2866 
2867 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2868 					   &tx_ring->dma, GFP_KERNEL);
2869 	if (!tx_ring->desc)
2870 		goto err;
2871 
2872 	tx_ring->next_to_use = 0;
2873 	tx_ring->next_to_clean = 0;
2874 
2875 	return 0;
2876 
2877 err:
2878 	vfree(tx_ring->tx_buffer_info);
2879 	tx_ring->tx_buffer_info = NULL;
2880 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2881 	return -ENOMEM;
2882 }
2883 
2884 /**
2885  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2886  *				  (Descriptors) for all queues
2887  * @adapter: board private structure
2888  *
2889  * Return 0 on success, negative on failure
2890  **/
2891 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2892 {
2893 	struct pci_dev *pdev = adapter->pdev;
2894 	int i, err = 0;
2895 
2896 	for (i = 0; i < adapter->num_tx_queues; i++) {
2897 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2898 		if (err) {
2899 			dev_err(&pdev->dev,
2900 				"Allocation for Tx Queue %u failed\n", i);
2901 			for (i--; i >= 0; i--)
2902 				igb_free_tx_resources(adapter->tx_ring[i]);
2903 			break;
2904 		}
2905 	}
2906 
2907 	return err;
2908 }
2909 
2910 /**
2911  * igb_setup_tctl - configure the transmit control registers
2912  * @adapter: Board private structure
2913  **/
2914 void igb_setup_tctl(struct igb_adapter *adapter)
2915 {
2916 	struct e1000_hw *hw = &adapter->hw;
2917 	u32 tctl;
2918 
2919 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2920 	wr32(E1000_TXDCTL(0), 0);
2921 
2922 	/* Program the Transmit Control Register */
2923 	tctl = rd32(E1000_TCTL);
2924 	tctl &= ~E1000_TCTL_CT;
2925 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2926 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2927 
2928 	igb_config_collision_dist(hw);
2929 
2930 	/* Enable transmits */
2931 	tctl |= E1000_TCTL_EN;
2932 
2933 	wr32(E1000_TCTL, tctl);
2934 }
2935 
2936 /**
2937  * igb_configure_tx_ring - Configure transmit ring after Reset
2938  * @adapter: board private structure
2939  * @ring: tx ring to configure
2940  *
2941  * Configure a transmit ring after a reset.
2942  **/
2943 void igb_configure_tx_ring(struct igb_adapter *adapter,
2944                            struct igb_ring *ring)
2945 {
2946 	struct e1000_hw *hw = &adapter->hw;
2947 	u32 txdctl = 0;
2948 	u64 tdba = ring->dma;
2949 	int reg_idx = ring->reg_idx;
2950 
2951 	/* disable the queue */
2952 	wr32(E1000_TXDCTL(reg_idx), 0);
2953 	wrfl();
2954 	mdelay(10);
2955 
2956 	wr32(E1000_TDLEN(reg_idx),
2957 	                ring->count * sizeof(union e1000_adv_tx_desc));
2958 	wr32(E1000_TDBAL(reg_idx),
2959 	                tdba & 0x00000000ffffffffULL);
2960 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2961 
2962 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2963 	wr32(E1000_TDH(reg_idx), 0);
2964 	writel(0, ring->tail);
2965 
2966 	txdctl |= IGB_TX_PTHRESH;
2967 	txdctl |= IGB_TX_HTHRESH << 8;
2968 	txdctl |= IGB_TX_WTHRESH << 16;
2969 
2970 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2971 	wr32(E1000_TXDCTL(reg_idx), txdctl);
2972 }
2973 
2974 /**
2975  * igb_configure_tx - Configure transmit Unit after Reset
2976  * @adapter: board private structure
2977  *
2978  * Configure the Tx unit of the MAC after a reset.
2979  **/
2980 static void igb_configure_tx(struct igb_adapter *adapter)
2981 {
2982 	int i;
2983 
2984 	for (i = 0; i < adapter->num_tx_queues; i++)
2985 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2986 }
2987 
2988 /**
2989  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2990  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2991  *
2992  * Returns 0 on success, negative on failure
2993  **/
2994 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2995 {
2996 	struct device *dev = rx_ring->dev;
2997 	int size;
2998 
2999 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3000 
3001 	rx_ring->rx_buffer_info = vzalloc(size);
3002 	if (!rx_ring->rx_buffer_info)
3003 		goto err;
3004 
3005 	/* Round up to nearest 4K */
3006 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3007 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3008 
3009 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3010 					   &rx_ring->dma, GFP_KERNEL);
3011 	if (!rx_ring->desc)
3012 		goto err;
3013 
3014 	rx_ring->next_to_alloc = 0;
3015 	rx_ring->next_to_clean = 0;
3016 	rx_ring->next_to_use = 0;
3017 
3018 	return 0;
3019 
3020 err:
3021 	vfree(rx_ring->rx_buffer_info);
3022 	rx_ring->rx_buffer_info = NULL;
3023 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3024 	return -ENOMEM;
3025 }
3026 
3027 /**
3028  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3029  *				  (Descriptors) for all queues
3030  * @adapter: board private structure
3031  *
3032  * Return 0 on success, negative on failure
3033  **/
3034 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3035 {
3036 	struct pci_dev *pdev = adapter->pdev;
3037 	int i, err = 0;
3038 
3039 	for (i = 0; i < adapter->num_rx_queues; i++) {
3040 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3041 		if (err) {
3042 			dev_err(&pdev->dev,
3043 				"Allocation for Rx Queue %u failed\n", i);
3044 			for (i--; i >= 0; i--)
3045 				igb_free_rx_resources(adapter->rx_ring[i]);
3046 			break;
3047 		}
3048 	}
3049 
3050 	return err;
3051 }
3052 
3053 /**
3054  * igb_setup_mrqc - configure the multiple receive queue control registers
3055  * @adapter: Board private structure
3056  **/
3057 static void igb_setup_mrqc(struct igb_adapter *adapter)
3058 {
3059 	struct e1000_hw *hw = &adapter->hw;
3060 	u32 mrqc, rxcsum;
3061 	u32 j, num_rx_queues, shift = 0;
3062 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3063 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3064 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3065 					0xFA01ACBE };
3066 
3067 	/* Fill out hash function seeds */
3068 	for (j = 0; j < 10; j++)
3069 		wr32(E1000_RSSRK(j), rsskey[j]);
3070 
3071 	num_rx_queues = adapter->rss_queues;
3072 
3073 	switch (hw->mac.type) {
3074 	case e1000_82575:
3075 		shift = 6;
3076 		break;
3077 	case e1000_82576:
3078 		/* 82576 supports 2 RSS queues for SR-IOV */
3079 		if (adapter->vfs_allocated_count) {
3080 			shift = 3;
3081 			num_rx_queues = 2;
3082 		}
3083 		break;
3084 	default:
3085 		break;
3086 	}
3087 
3088 	/*
3089 	 * Populate the indirection table 4 entries at a time.  To do this
3090 	 * we are generating the results for n and n+2 and then interleaving
3091 	 * those with the results with n+1 and n+3.
3092 	 */
3093 	for (j = 0; j < 32; j++) {
3094 		/* first pass generates n and n+2 */
3095 		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3096 		u32 reta = (base & 0x07800780) >> (7 - shift);
3097 
3098 		/* second pass generates n+1 and n+3 */
3099 		base += 0x00010001 * num_rx_queues;
3100 		reta |= (base & 0x07800780) << (1 + shift);
3101 
3102 		wr32(E1000_RETA(j), reta);
3103 	}
3104 
3105 	/*
3106 	 * Disable raw packet checksumming so that RSS hash is placed in
3107 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3108 	 * offloads as they are enabled by default
3109 	 */
3110 	rxcsum = rd32(E1000_RXCSUM);
3111 	rxcsum |= E1000_RXCSUM_PCSD;
3112 
3113 	if (adapter->hw.mac.type >= e1000_82576)
3114 		/* Enable Receive Checksum Offload for SCTP */
3115 		rxcsum |= E1000_RXCSUM_CRCOFL;
3116 
3117 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3118 	wr32(E1000_RXCSUM, rxcsum);
3119 
3120 	/* Generate RSS hash based on packet types, TCP/UDP
3121 	 * port numbers and/or IPv4/v6 src and dst addresses
3122 	 */
3123 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3124 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3125 	       E1000_MRQC_RSS_FIELD_IPV6 |
3126 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3127 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3128 
3129 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3130 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3131 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3132 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3133 
3134 	/* If VMDq is enabled then we set the appropriate mode for that, else
3135 	 * we default to RSS so that an RSS hash is calculated per packet even
3136 	 * if we are only using one queue */
3137 	if (adapter->vfs_allocated_count) {
3138 		if (hw->mac.type > e1000_82575) {
3139 			/* Set the default pool for the PF's first queue */
3140 			u32 vtctl = rd32(E1000_VT_CTL);
3141 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3142 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3143 			vtctl |= adapter->vfs_allocated_count <<
3144 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3145 			wr32(E1000_VT_CTL, vtctl);
3146 		}
3147 		if (adapter->rss_queues > 1)
3148 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3149 		else
3150 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3151 	} else {
3152 		if (hw->mac.type != e1000_i211)
3153 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3154 	}
3155 	igb_vmm_control(adapter);
3156 
3157 	wr32(E1000_MRQC, mrqc);
3158 }
3159 
3160 /**
3161  * igb_setup_rctl - configure the receive control registers
3162  * @adapter: Board private structure
3163  **/
3164 void igb_setup_rctl(struct igb_adapter *adapter)
3165 {
3166 	struct e1000_hw *hw = &adapter->hw;
3167 	u32 rctl;
3168 
3169 	rctl = rd32(E1000_RCTL);
3170 
3171 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3172 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3173 
3174 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3175 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3176 
3177 	/*
3178 	 * enable stripping of CRC. It's unlikely this will break BMC
3179 	 * redirection as it did with e1000. Newer features require
3180 	 * that the HW strips the CRC.
3181 	 */
3182 	rctl |= E1000_RCTL_SECRC;
3183 
3184 	/* disable store bad packets and clear size bits. */
3185 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3186 
3187 	/* enable LPE to prevent packets larger than max_frame_size */
3188 	rctl |= E1000_RCTL_LPE;
3189 
3190 	/* disable queue 0 to prevent tail write w/o re-config */
3191 	wr32(E1000_RXDCTL(0), 0);
3192 
3193 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3194 	 * queue drop for all VF and PF queues to prevent head of line blocking
3195 	 * if an un-trusted VF does not provide descriptors to hardware.
3196 	 */
3197 	if (adapter->vfs_allocated_count) {
3198 		/* set all queue drop enable bits */
3199 		wr32(E1000_QDE, ALL_QUEUES);
3200 	}
3201 
3202 	/* This is useful for sniffing bad packets. */
3203 	if (adapter->netdev->features & NETIF_F_RXALL) {
3204 		/* UPE and MPE will be handled by normal PROMISC logic
3205 		 * in e1000e_set_rx_mode */
3206 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3207 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3208 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3209 
3210 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3211 			  E1000_RCTL_DPF | /* Allow filtered pause */
3212 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3213 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3214 		 * and that breaks VLANs.
3215 		 */
3216 	}
3217 
3218 	wr32(E1000_RCTL, rctl);
3219 }
3220 
3221 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3222                                    int vfn)
3223 {
3224 	struct e1000_hw *hw = &adapter->hw;
3225 	u32 vmolr;
3226 
3227 	/* if it isn't the PF check to see if VFs are enabled and
3228 	 * increase the size to support vlan tags */
3229 	if (vfn < adapter->vfs_allocated_count &&
3230 	    adapter->vf_data[vfn].vlans_enabled)
3231 		size += VLAN_TAG_SIZE;
3232 
3233 	vmolr = rd32(E1000_VMOLR(vfn));
3234 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3235 	vmolr |= size | E1000_VMOLR_LPE;
3236 	wr32(E1000_VMOLR(vfn), vmolr);
3237 
3238 	return 0;
3239 }
3240 
3241 /**
3242  * igb_rlpml_set - set maximum receive packet size
3243  * @adapter: board private structure
3244  *
3245  * Configure maximum receivable packet size.
3246  **/
3247 static void igb_rlpml_set(struct igb_adapter *adapter)
3248 {
3249 	u32 max_frame_size = adapter->max_frame_size;
3250 	struct e1000_hw *hw = &adapter->hw;
3251 	u16 pf_id = adapter->vfs_allocated_count;
3252 
3253 	if (pf_id) {
3254 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3255 		/*
3256 		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3257 		 * to our max jumbo frame size, in case we need to enable
3258 		 * jumbo frames on one of the rings later.
3259 		 * This will not pass over-length frames into the default
3260 		 * queue because it's gated by the VMOLR.RLPML.
3261 		 */
3262 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3263 	}
3264 
3265 	wr32(E1000_RLPML, max_frame_size);
3266 }
3267 
3268 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3269 				 int vfn, bool aupe)
3270 {
3271 	struct e1000_hw *hw = &adapter->hw;
3272 	u32 vmolr;
3273 
3274 	/*
3275 	 * This register exists only on 82576 and newer so if we are older then
3276 	 * we should exit and do nothing
3277 	 */
3278 	if (hw->mac.type < e1000_82576)
3279 		return;
3280 
3281 	vmolr = rd32(E1000_VMOLR(vfn));
3282 	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3283 	if (aupe)
3284 		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3285 	else
3286 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3287 
3288 	/* clear all bits that might not be set */
3289 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3290 
3291 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3292 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3293 	/*
3294 	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3295 	 * multicast packets
3296 	 */
3297 	if (vfn <= adapter->vfs_allocated_count)
3298 		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3299 
3300 	wr32(E1000_VMOLR(vfn), vmolr);
3301 }
3302 
3303 /**
3304  * igb_configure_rx_ring - Configure a receive ring after Reset
3305  * @adapter: board private structure
3306  * @ring: receive ring to be configured
3307  *
3308  * Configure the Rx unit of the MAC after a reset.
3309  **/
3310 void igb_configure_rx_ring(struct igb_adapter *adapter,
3311                            struct igb_ring *ring)
3312 {
3313 	struct e1000_hw *hw = &adapter->hw;
3314 	u64 rdba = ring->dma;
3315 	int reg_idx = ring->reg_idx;
3316 	u32 srrctl = 0, rxdctl = 0;
3317 
3318 	/* disable the queue */
3319 	wr32(E1000_RXDCTL(reg_idx), 0);
3320 
3321 	/* Set DMA base address registers */
3322 	wr32(E1000_RDBAL(reg_idx),
3323 	     rdba & 0x00000000ffffffffULL);
3324 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3325 	wr32(E1000_RDLEN(reg_idx),
3326 	               ring->count * sizeof(union e1000_adv_rx_desc));
3327 
3328 	/* initialize head and tail */
3329 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3330 	wr32(E1000_RDH(reg_idx), 0);
3331 	writel(0, ring->tail);
3332 
3333 	/* set descriptor configuration */
3334 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3335 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3336 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3337 	if (hw->mac.type >= e1000_82580)
3338 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3339 	/* Only set Drop Enable if we are supporting multiple queues */
3340 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3341 		srrctl |= E1000_SRRCTL_DROP_EN;
3342 
3343 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3344 
3345 	/* set filtering for VMDQ pools */
3346 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3347 
3348 	rxdctl |= IGB_RX_PTHRESH;
3349 	rxdctl |= IGB_RX_HTHRESH << 8;
3350 	rxdctl |= IGB_RX_WTHRESH << 16;
3351 
3352 	/* enable receive descriptor fetching */
3353 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3354 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3355 }
3356 
3357 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3358 				  struct igb_ring *rx_ring)
3359 {
3360 #define IGB_MAX_BUILD_SKB_SIZE \
3361 	(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
3362 	 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))
3363 
3364 	/* set build_skb flag */
3365 	if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
3366 		set_ring_build_skb_enabled(rx_ring);
3367 	else
3368 		clear_ring_build_skb_enabled(rx_ring);
3369 }
3370 
3371 /**
3372  * igb_configure_rx - Configure receive Unit after Reset
3373  * @adapter: board private structure
3374  *
3375  * Configure the Rx unit of the MAC after a reset.
3376  **/
3377 static void igb_configure_rx(struct igb_adapter *adapter)
3378 {
3379 	int i;
3380 
3381 	/* set UTA to appropriate mode */
3382 	igb_set_uta(adapter);
3383 
3384 	/* set the correct pool for the PF default MAC address in entry 0 */
3385 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3386 	                 adapter->vfs_allocated_count);
3387 
3388 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3389 	 * the Base and Length of the Rx Descriptor Ring */
3390 	for (i = 0; i < adapter->num_rx_queues; i++) {
3391 		struct igb_ring *rx_ring = adapter->rx_ring[i];
3392 		igb_set_rx_buffer_len(adapter, rx_ring);
3393 		igb_configure_rx_ring(adapter, rx_ring);
3394 	}
3395 }
3396 
3397 /**
3398  * igb_free_tx_resources - Free Tx Resources per Queue
3399  * @tx_ring: Tx descriptor ring for a specific queue
3400  *
3401  * Free all transmit software resources
3402  **/
3403 void igb_free_tx_resources(struct igb_ring *tx_ring)
3404 {
3405 	igb_clean_tx_ring(tx_ring);
3406 
3407 	vfree(tx_ring->tx_buffer_info);
3408 	tx_ring->tx_buffer_info = NULL;
3409 
3410 	/* if not set, then don't free */
3411 	if (!tx_ring->desc)
3412 		return;
3413 
3414 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3415 			  tx_ring->desc, tx_ring->dma);
3416 
3417 	tx_ring->desc = NULL;
3418 }
3419 
3420 /**
3421  * igb_free_all_tx_resources - Free Tx Resources for All Queues
3422  * @adapter: board private structure
3423  *
3424  * Free all transmit software resources
3425  **/
3426 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3427 {
3428 	int i;
3429 
3430 	for (i = 0; i < adapter->num_tx_queues; i++)
3431 		igb_free_tx_resources(adapter->tx_ring[i]);
3432 }
3433 
3434 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3435 				    struct igb_tx_buffer *tx_buffer)
3436 {
3437 	if (tx_buffer->skb) {
3438 		dev_kfree_skb_any(tx_buffer->skb);
3439 		if (dma_unmap_len(tx_buffer, len))
3440 			dma_unmap_single(ring->dev,
3441 					 dma_unmap_addr(tx_buffer, dma),
3442 					 dma_unmap_len(tx_buffer, len),
3443 					 DMA_TO_DEVICE);
3444 	} else if (dma_unmap_len(tx_buffer, len)) {
3445 		dma_unmap_page(ring->dev,
3446 			       dma_unmap_addr(tx_buffer, dma),
3447 			       dma_unmap_len(tx_buffer, len),
3448 			       DMA_TO_DEVICE);
3449 	}
3450 	tx_buffer->next_to_watch = NULL;
3451 	tx_buffer->skb = NULL;
3452 	dma_unmap_len_set(tx_buffer, len, 0);
3453 	/* buffer_info must be completely set up in the transmit path */
3454 }
3455 
3456 /**
3457  * igb_clean_tx_ring - Free Tx Buffers
3458  * @tx_ring: ring to be cleaned
3459  **/
3460 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3461 {
3462 	struct igb_tx_buffer *buffer_info;
3463 	unsigned long size;
3464 	u16 i;
3465 
3466 	if (!tx_ring->tx_buffer_info)
3467 		return;
3468 	/* Free all the Tx ring sk_buffs */
3469 
3470 	for (i = 0; i < tx_ring->count; i++) {
3471 		buffer_info = &tx_ring->tx_buffer_info[i];
3472 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3473 	}
3474 
3475 	netdev_tx_reset_queue(txring_txq(tx_ring));
3476 
3477 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3478 	memset(tx_ring->tx_buffer_info, 0, size);
3479 
3480 	/* Zero out the descriptor ring */
3481 	memset(tx_ring->desc, 0, tx_ring->size);
3482 
3483 	tx_ring->next_to_use = 0;
3484 	tx_ring->next_to_clean = 0;
3485 }
3486 
3487 /**
3488  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3489  * @adapter: board private structure
3490  **/
3491 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3492 {
3493 	int i;
3494 
3495 	for (i = 0; i < adapter->num_tx_queues; i++)
3496 		igb_clean_tx_ring(adapter->tx_ring[i]);
3497 }
3498 
3499 /**
3500  * igb_free_rx_resources - Free Rx Resources
3501  * @rx_ring: ring to clean the resources from
3502  *
3503  * Free all receive software resources
3504  **/
3505 void igb_free_rx_resources(struct igb_ring *rx_ring)
3506 {
3507 	igb_clean_rx_ring(rx_ring);
3508 
3509 	vfree(rx_ring->rx_buffer_info);
3510 	rx_ring->rx_buffer_info = NULL;
3511 
3512 	/* if not set, then don't free */
3513 	if (!rx_ring->desc)
3514 		return;
3515 
3516 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3517 			  rx_ring->desc, rx_ring->dma);
3518 
3519 	rx_ring->desc = NULL;
3520 }
3521 
3522 /**
3523  * igb_free_all_rx_resources - Free Rx Resources for All Queues
3524  * @adapter: board private structure
3525  *
3526  * Free all receive software resources
3527  **/
3528 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3529 {
3530 	int i;
3531 
3532 	for (i = 0; i < adapter->num_rx_queues; i++)
3533 		igb_free_rx_resources(adapter->rx_ring[i]);
3534 }
3535 
3536 /**
3537  * igb_clean_rx_ring - Free Rx Buffers per Queue
3538  * @rx_ring: ring to free buffers from
3539  **/
3540 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3541 {
3542 	unsigned long size;
3543 	u16 i;
3544 
3545 	if (rx_ring->skb)
3546 		dev_kfree_skb(rx_ring->skb);
3547 	rx_ring->skb = NULL;
3548 
3549 	if (!rx_ring->rx_buffer_info)
3550 		return;
3551 
3552 	/* Free all the Rx ring sk_buffs */
3553 	for (i = 0; i < rx_ring->count; i++) {
3554 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3555 
3556 		if (!buffer_info->page)
3557 			continue;
3558 
3559 		dma_unmap_page(rx_ring->dev,
3560 			       buffer_info->dma,
3561 			       PAGE_SIZE,
3562 			       DMA_FROM_DEVICE);
3563 		__free_page(buffer_info->page);
3564 
3565 		buffer_info->page = NULL;
3566 	}
3567 
3568 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3569 	memset(rx_ring->rx_buffer_info, 0, size);
3570 
3571 	/* Zero out the descriptor ring */
3572 	memset(rx_ring->desc, 0, rx_ring->size);
3573 
3574 	rx_ring->next_to_alloc = 0;
3575 	rx_ring->next_to_clean = 0;
3576 	rx_ring->next_to_use = 0;
3577 }
3578 
3579 /**
3580  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3581  * @adapter: board private structure
3582  **/
3583 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3584 {
3585 	int i;
3586 
3587 	for (i = 0; i < adapter->num_rx_queues; i++)
3588 		igb_clean_rx_ring(adapter->rx_ring[i]);
3589 }
3590 
3591 /**
3592  * igb_set_mac - Change the Ethernet Address of the NIC
3593  * @netdev: network interface device structure
3594  * @p: pointer to an address structure
3595  *
3596  * Returns 0 on success, negative on failure
3597  **/
3598 static int igb_set_mac(struct net_device *netdev, void *p)
3599 {
3600 	struct igb_adapter *adapter = netdev_priv(netdev);
3601 	struct e1000_hw *hw = &adapter->hw;
3602 	struct sockaddr *addr = p;
3603 
3604 	if (!is_valid_ether_addr(addr->sa_data))
3605 		return -EADDRNOTAVAIL;
3606 
3607 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3608 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3609 
3610 	/* set the correct pool for the new PF MAC address in entry 0 */
3611 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3612 	                 adapter->vfs_allocated_count);
3613 
3614 	return 0;
3615 }
3616 
3617 /**
3618  * igb_write_mc_addr_list - write multicast addresses to MTA
3619  * @netdev: network interface device structure
3620  *
3621  * Writes multicast address list to the MTA hash table.
3622  * Returns: -ENOMEM on failure
3623  *                0 on no addresses written
3624  *                X on writing X addresses to MTA
3625  **/
3626 static int igb_write_mc_addr_list(struct net_device *netdev)
3627 {
3628 	struct igb_adapter *adapter = netdev_priv(netdev);
3629 	struct e1000_hw *hw = &adapter->hw;
3630 	struct netdev_hw_addr *ha;
3631 	u8  *mta_list;
3632 	int i;
3633 
3634 	if (netdev_mc_empty(netdev)) {
3635 		/* nothing to program, so clear mc list */
3636 		igb_update_mc_addr_list(hw, NULL, 0);
3637 		igb_restore_vf_multicasts(adapter);
3638 		return 0;
3639 	}
3640 
3641 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3642 	if (!mta_list)
3643 		return -ENOMEM;
3644 
3645 	/* The shared function expects a packed array of only addresses. */
3646 	i = 0;
3647 	netdev_for_each_mc_addr(ha, netdev)
3648 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3649 
3650 	igb_update_mc_addr_list(hw, mta_list, i);
3651 	kfree(mta_list);
3652 
3653 	return netdev_mc_count(netdev);
3654 }
3655 
3656 /**
3657  * igb_write_uc_addr_list - write unicast addresses to RAR table
3658  * @netdev: network interface device structure
3659  *
3660  * Writes unicast address list to the RAR table.
3661  * Returns: -ENOMEM on failure/insufficient address space
3662  *                0 on no addresses written
3663  *                X on writing X addresses to the RAR table
3664  **/
3665 static int igb_write_uc_addr_list(struct net_device *netdev)
3666 {
3667 	struct igb_adapter *adapter = netdev_priv(netdev);
3668 	struct e1000_hw *hw = &adapter->hw;
3669 	unsigned int vfn = adapter->vfs_allocated_count;
3670 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3671 	int count = 0;
3672 
3673 	/* return ENOMEM indicating insufficient memory for addresses */
3674 	if (netdev_uc_count(netdev) > rar_entries)
3675 		return -ENOMEM;
3676 
3677 	if (!netdev_uc_empty(netdev) && rar_entries) {
3678 		struct netdev_hw_addr *ha;
3679 
3680 		netdev_for_each_uc_addr(ha, netdev) {
3681 			if (!rar_entries)
3682 				break;
3683 			igb_rar_set_qsel(adapter, ha->addr,
3684 			                 rar_entries--,
3685 			                 vfn);
3686 			count++;
3687 		}
3688 	}
3689 	/* write the addresses in reverse order to avoid write combining */
3690 	for (; rar_entries > 0 ; rar_entries--) {
3691 		wr32(E1000_RAH(rar_entries), 0);
3692 		wr32(E1000_RAL(rar_entries), 0);
3693 	}
3694 	wrfl();
3695 
3696 	return count;
3697 }
3698 
3699 /**
3700  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3701  * @netdev: network interface device structure
3702  *
3703  * The set_rx_mode entry point is called whenever the unicast or multicast
3704  * address lists or the network interface flags are updated.  This routine is
3705  * responsible for configuring the hardware for proper unicast, multicast,
3706  * promiscuous mode, and all-multi behavior.
3707  **/
3708 static void igb_set_rx_mode(struct net_device *netdev)
3709 {
3710 	struct igb_adapter *adapter = netdev_priv(netdev);
3711 	struct e1000_hw *hw = &adapter->hw;
3712 	unsigned int vfn = adapter->vfs_allocated_count;
3713 	u32 rctl, vmolr = 0;
3714 	int count;
3715 
3716 	/* Check for Promiscuous and All Multicast modes */
3717 	rctl = rd32(E1000_RCTL);
3718 
3719 	/* clear the effected bits */
3720 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3721 
3722 	if (netdev->flags & IFF_PROMISC) {
3723 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3724 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3725 	} else {
3726 		if (netdev->flags & IFF_ALLMULTI) {
3727 			rctl |= E1000_RCTL_MPE;
3728 			vmolr |= E1000_VMOLR_MPME;
3729 		} else {
3730 			/*
3731 			 * Write addresses to the MTA, if the attempt fails
3732 			 * then we should just turn on promiscuous mode so
3733 			 * that we can at least receive multicast traffic
3734 			 */
3735 			count = igb_write_mc_addr_list(netdev);
3736 			if (count < 0) {
3737 				rctl |= E1000_RCTL_MPE;
3738 				vmolr |= E1000_VMOLR_MPME;
3739 			} else if (count) {
3740 				vmolr |= E1000_VMOLR_ROMPE;
3741 			}
3742 		}
3743 		/*
3744 		 * Write addresses to available RAR registers, if there is not
3745 		 * sufficient space to store all the addresses then enable
3746 		 * unicast promiscuous mode
3747 		 */
3748 		count = igb_write_uc_addr_list(netdev);
3749 		if (count < 0) {
3750 			rctl |= E1000_RCTL_UPE;
3751 			vmolr |= E1000_VMOLR_ROPE;
3752 		}
3753 		rctl |= E1000_RCTL_VFE;
3754 	}
3755 	wr32(E1000_RCTL, rctl);
3756 
3757 	/*
3758 	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3759 	 * the VMOLR to enable the appropriate modes.  Without this workaround
3760 	 * we will have issues with VLAN tag stripping not being done for frames
3761 	 * that are only arriving because we are the default pool
3762 	 */
3763 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3764 		return;
3765 
3766 	vmolr |= rd32(E1000_VMOLR(vfn)) &
3767 	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3768 	wr32(E1000_VMOLR(vfn), vmolr);
3769 	igb_restore_vf_multicasts(adapter);
3770 }
3771 
3772 static void igb_check_wvbr(struct igb_adapter *adapter)
3773 {
3774 	struct e1000_hw *hw = &adapter->hw;
3775 	u32 wvbr = 0;
3776 
3777 	switch (hw->mac.type) {
3778 	case e1000_82576:
3779 	case e1000_i350:
3780 		if (!(wvbr = rd32(E1000_WVBR)))
3781 			return;
3782 		break;
3783 	default:
3784 		break;
3785 	}
3786 
3787 	adapter->wvbr |= wvbr;
3788 }
3789 
3790 #define IGB_STAGGERED_QUEUE_OFFSET 8
3791 
3792 static void igb_spoof_check(struct igb_adapter *adapter)
3793 {
3794 	int j;
3795 
3796 	if (!adapter->wvbr)
3797 		return;
3798 
3799 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3800 		if (adapter->wvbr & (1 << j) ||
3801 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3802 			dev_warn(&adapter->pdev->dev,
3803 				"Spoof event(s) detected on VF %d\n", j);
3804 			adapter->wvbr &=
3805 				~((1 << j) |
3806 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3807 		}
3808 	}
3809 }
3810 
3811 /* Need to wait a few seconds after link up to get diagnostic information from
3812  * the phy */
3813 static void igb_update_phy_info(unsigned long data)
3814 {
3815 	struct igb_adapter *adapter = (struct igb_adapter *) data;
3816 	igb_get_phy_info(&adapter->hw);
3817 }
3818 
3819 /**
3820  * igb_has_link - check shared code for link and determine up/down
3821  * @adapter: pointer to driver private info
3822  **/
3823 bool igb_has_link(struct igb_adapter *adapter)
3824 {
3825 	struct e1000_hw *hw = &adapter->hw;
3826 	bool link_active = false;
3827 	s32 ret_val = 0;
3828 
3829 	/* get_link_status is set on LSC (link status) interrupt or
3830 	 * rx sequence error interrupt.  get_link_status will stay
3831 	 * false until the e1000_check_for_link establishes link
3832 	 * for copper adapters ONLY
3833 	 */
3834 	switch (hw->phy.media_type) {
3835 	case e1000_media_type_copper:
3836 		if (hw->mac.get_link_status) {
3837 			ret_val = hw->mac.ops.check_for_link(hw);
3838 			link_active = !hw->mac.get_link_status;
3839 		} else {
3840 			link_active = true;
3841 		}
3842 		break;
3843 	case e1000_media_type_internal_serdes:
3844 		ret_val = hw->mac.ops.check_for_link(hw);
3845 		link_active = hw->mac.serdes_has_link;
3846 		break;
3847 	default:
3848 	case e1000_media_type_unknown:
3849 		break;
3850 	}
3851 
3852 	return link_active;
3853 }
3854 
3855 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3856 {
3857 	bool ret = false;
3858 	u32 ctrl_ext, thstat;
3859 
3860 	/* check for thermal sensor event on i350 copper only */
3861 	if (hw->mac.type == e1000_i350) {
3862 		thstat = rd32(E1000_THSTAT);
3863 		ctrl_ext = rd32(E1000_CTRL_EXT);
3864 
3865 		if ((hw->phy.media_type == e1000_media_type_copper) &&
3866 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3867 			ret = !!(thstat & event);
3868 		}
3869 	}
3870 
3871 	return ret;
3872 }
3873 
3874 /**
3875  * igb_watchdog - Timer Call-back
3876  * @data: pointer to adapter cast into an unsigned long
3877  **/
3878 static void igb_watchdog(unsigned long data)
3879 {
3880 	struct igb_adapter *adapter = (struct igb_adapter *)data;
3881 	/* Do the rest outside of interrupt context */
3882 	schedule_work(&adapter->watchdog_task);
3883 }
3884 
3885 static void igb_watchdog_task(struct work_struct *work)
3886 {
3887 	struct igb_adapter *adapter = container_of(work,
3888 	                                           struct igb_adapter,
3889                                                    watchdog_task);
3890 	struct e1000_hw *hw = &adapter->hw;
3891 	struct net_device *netdev = adapter->netdev;
3892 	u32 link;
3893 	int i;
3894 
3895 	link = igb_has_link(adapter);
3896 	if (link) {
3897 		/* Cancel scheduled suspend requests. */
3898 		pm_runtime_resume(netdev->dev.parent);
3899 
3900 		if (!netif_carrier_ok(netdev)) {
3901 			u32 ctrl;
3902 			hw->mac.ops.get_speed_and_duplex(hw,
3903 			                                 &adapter->link_speed,
3904 			                                 &adapter->link_duplex);
3905 
3906 			ctrl = rd32(E1000_CTRL);
3907 			/* Links status message must follow this format */
3908 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3909 			       "Duplex, Flow Control: %s\n",
3910 			       netdev->name,
3911 			       adapter->link_speed,
3912 			       adapter->link_duplex == FULL_DUPLEX ?
3913 			       "Full" : "Half",
3914 			       (ctrl & E1000_CTRL_TFCE) &&
3915 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3916 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3917 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3918 
3919 			/* check for thermal sensor event */
3920 			if (igb_thermal_sensor_event(hw,
3921 			    E1000_THSTAT_LINK_THROTTLE)) {
3922 				netdev_info(netdev, "The network adapter link "
3923 					    "speed was downshifted because it "
3924 					    "overheated\n");
3925 			}
3926 
3927 			/* adjust timeout factor according to speed/duplex */
3928 			adapter->tx_timeout_factor = 1;
3929 			switch (adapter->link_speed) {
3930 			case SPEED_10:
3931 				adapter->tx_timeout_factor = 14;
3932 				break;
3933 			case SPEED_100:
3934 				/* maybe add some timeout factor ? */
3935 				break;
3936 			}
3937 
3938 			netif_carrier_on(netdev);
3939 
3940 			igb_ping_all_vfs(adapter);
3941 			igb_check_vf_rate_limit(adapter);
3942 
3943 			/* link state has changed, schedule phy info update */
3944 			if (!test_bit(__IGB_DOWN, &adapter->state))
3945 				mod_timer(&adapter->phy_info_timer,
3946 					  round_jiffies(jiffies + 2 * HZ));
3947 		}
3948 	} else {
3949 		if (netif_carrier_ok(netdev)) {
3950 			adapter->link_speed = 0;
3951 			adapter->link_duplex = 0;
3952 
3953 			/* check for thermal sensor event */
3954 			if (igb_thermal_sensor_event(hw,
3955 			    E1000_THSTAT_PWR_DOWN)) {
3956 				netdev_err(netdev, "The network adapter was "
3957 					   "stopped because it overheated\n");
3958 			}
3959 
3960 			/* Links status message must follow this format */
3961 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3962 			       netdev->name);
3963 			netif_carrier_off(netdev);
3964 
3965 			igb_ping_all_vfs(adapter);
3966 
3967 			/* link state has changed, schedule phy info update */
3968 			if (!test_bit(__IGB_DOWN, &adapter->state))
3969 				mod_timer(&adapter->phy_info_timer,
3970 					  round_jiffies(jiffies + 2 * HZ));
3971 
3972 			pm_schedule_suspend(netdev->dev.parent,
3973 					    MSEC_PER_SEC * 5);
3974 		}
3975 	}
3976 
3977 	spin_lock(&adapter->stats64_lock);
3978 	igb_update_stats(adapter, &adapter->stats64);
3979 	spin_unlock(&adapter->stats64_lock);
3980 
3981 	for (i = 0; i < adapter->num_tx_queues; i++) {
3982 		struct igb_ring *tx_ring = adapter->tx_ring[i];
3983 		if (!netif_carrier_ok(netdev)) {
3984 			/* We've lost link, so the controller stops DMA,
3985 			 * but we've got queued Tx work that's never going
3986 			 * to get done, so reset controller to flush Tx.
3987 			 * (Do the reset outside of interrupt context). */
3988 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3989 				adapter->tx_timeout_count++;
3990 				schedule_work(&adapter->reset_task);
3991 				/* return immediately since reset is imminent */
3992 				return;
3993 			}
3994 		}
3995 
3996 		/* Force detection of hung controller every watchdog period */
3997 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3998 	}
3999 
4000 	/* Cause software interrupt to ensure rx ring is cleaned */
4001 	if (adapter->msix_entries) {
4002 		u32 eics = 0;
4003 		for (i = 0; i < adapter->num_q_vectors; i++)
4004 			eics |= adapter->q_vector[i]->eims_value;
4005 		wr32(E1000_EICS, eics);
4006 	} else {
4007 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4008 	}
4009 
4010 	igb_spoof_check(adapter);
4011 	igb_ptp_rx_hang(adapter);
4012 
4013 	/* Reset the timer */
4014 	if (!test_bit(__IGB_DOWN, &adapter->state))
4015 		mod_timer(&adapter->watchdog_timer,
4016 			  round_jiffies(jiffies + 2 * HZ));
4017 }
4018 
4019 enum latency_range {
4020 	lowest_latency = 0,
4021 	low_latency = 1,
4022 	bulk_latency = 2,
4023 	latency_invalid = 255
4024 };
4025 
4026 /**
4027  * igb_update_ring_itr - update the dynamic ITR value based on packet size
4028  *
4029  *      Stores a new ITR value based on strictly on packet size.  This
4030  *      algorithm is less sophisticated than that used in igb_update_itr,
4031  *      due to the difficulty of synchronizing statistics across multiple
4032  *      receive rings.  The divisors and thresholds used by this function
4033  *      were determined based on theoretical maximum wire speed and testing
4034  *      data, in order to minimize response time while increasing bulk
4035  *      throughput.
4036  *      This functionality is controlled by the InterruptThrottleRate module
4037  *      parameter (see igb_param.c)
4038  *      NOTE:  This function is called only when operating in a multiqueue
4039  *             receive environment.
4040  * @q_vector: pointer to q_vector
4041  **/
4042 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4043 {
4044 	int new_val = q_vector->itr_val;
4045 	int avg_wire_size = 0;
4046 	struct igb_adapter *adapter = q_vector->adapter;
4047 	unsigned int packets;
4048 
4049 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4050 	 * ints/sec - ITR timer value of 120 ticks.
4051 	 */
4052 	if (adapter->link_speed != SPEED_1000) {
4053 		new_val = IGB_4K_ITR;
4054 		goto set_itr_val;
4055 	}
4056 
4057 	packets = q_vector->rx.total_packets;
4058 	if (packets)
4059 		avg_wire_size = q_vector->rx.total_bytes / packets;
4060 
4061 	packets = q_vector->tx.total_packets;
4062 	if (packets)
4063 		avg_wire_size = max_t(u32, avg_wire_size,
4064 				      q_vector->tx.total_bytes / packets);
4065 
4066 	/* if avg_wire_size isn't set no work was done */
4067 	if (!avg_wire_size)
4068 		goto clear_counts;
4069 
4070 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4071 	avg_wire_size += 24;
4072 
4073 	/* Don't starve jumbo frames */
4074 	avg_wire_size = min(avg_wire_size, 3000);
4075 
4076 	/* Give a little boost to mid-size frames */
4077 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4078 		new_val = avg_wire_size / 3;
4079 	else
4080 		new_val = avg_wire_size / 2;
4081 
4082 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4083 	if (new_val < IGB_20K_ITR &&
4084 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4085 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4086 		new_val = IGB_20K_ITR;
4087 
4088 set_itr_val:
4089 	if (new_val != q_vector->itr_val) {
4090 		q_vector->itr_val = new_val;
4091 		q_vector->set_itr = 1;
4092 	}
4093 clear_counts:
4094 	q_vector->rx.total_bytes = 0;
4095 	q_vector->rx.total_packets = 0;
4096 	q_vector->tx.total_bytes = 0;
4097 	q_vector->tx.total_packets = 0;
4098 }
4099 
4100 /**
4101  * igb_update_itr - update the dynamic ITR value based on statistics
4102  *      Stores a new ITR value based on packets and byte
4103  *      counts during the last interrupt.  The advantage of per interrupt
4104  *      computation is faster updates and more accurate ITR for the current
4105  *      traffic pattern.  Constants in this function were computed
4106  *      based on theoretical maximum wire speed and thresholds were set based
4107  *      on testing data as well as attempting to minimize response time
4108  *      while increasing bulk throughput.
4109  *      this functionality is controlled by the InterruptThrottleRate module
4110  *      parameter (see igb_param.c)
4111  *      NOTE:  These calculations are only valid when operating in a single-
4112  *             queue environment.
4113  * @q_vector: pointer to q_vector
4114  * @ring_container: ring info to update the itr for
4115  **/
4116 static void igb_update_itr(struct igb_q_vector *q_vector,
4117 			   struct igb_ring_container *ring_container)
4118 {
4119 	unsigned int packets = ring_container->total_packets;
4120 	unsigned int bytes = ring_container->total_bytes;
4121 	u8 itrval = ring_container->itr;
4122 
4123 	/* no packets, exit with status unchanged */
4124 	if (packets == 0)
4125 		return;
4126 
4127 	switch (itrval) {
4128 	case lowest_latency:
4129 		/* handle TSO and jumbo frames */
4130 		if (bytes/packets > 8000)
4131 			itrval = bulk_latency;
4132 		else if ((packets < 5) && (bytes > 512))
4133 			itrval = low_latency;
4134 		break;
4135 	case low_latency:  /* 50 usec aka 20000 ints/s */
4136 		if (bytes > 10000) {
4137 			/* this if handles the TSO accounting */
4138 			if (bytes/packets > 8000) {
4139 				itrval = bulk_latency;
4140 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4141 				itrval = bulk_latency;
4142 			} else if ((packets > 35)) {
4143 				itrval = lowest_latency;
4144 			}
4145 		} else if (bytes/packets > 2000) {
4146 			itrval = bulk_latency;
4147 		} else if (packets <= 2 && bytes < 512) {
4148 			itrval = lowest_latency;
4149 		}
4150 		break;
4151 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4152 		if (bytes > 25000) {
4153 			if (packets > 35)
4154 				itrval = low_latency;
4155 		} else if (bytes < 1500) {
4156 			itrval = low_latency;
4157 		}
4158 		break;
4159 	}
4160 
4161 	/* clear work counters since we have the values we need */
4162 	ring_container->total_bytes = 0;
4163 	ring_container->total_packets = 0;
4164 
4165 	/* write updated itr to ring container */
4166 	ring_container->itr = itrval;
4167 }
4168 
4169 static void igb_set_itr(struct igb_q_vector *q_vector)
4170 {
4171 	struct igb_adapter *adapter = q_vector->adapter;
4172 	u32 new_itr = q_vector->itr_val;
4173 	u8 current_itr = 0;
4174 
4175 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4176 	if (adapter->link_speed != SPEED_1000) {
4177 		current_itr = 0;
4178 		new_itr = IGB_4K_ITR;
4179 		goto set_itr_now;
4180 	}
4181 
4182 	igb_update_itr(q_vector, &q_vector->tx);
4183 	igb_update_itr(q_vector, &q_vector->rx);
4184 
4185 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4186 
4187 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4188 	if (current_itr == lowest_latency &&
4189 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4190 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4191 		current_itr = low_latency;
4192 
4193 	switch (current_itr) {
4194 	/* counts and packets in update_itr are dependent on these numbers */
4195 	case lowest_latency:
4196 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4197 		break;
4198 	case low_latency:
4199 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4200 		break;
4201 	case bulk_latency:
4202 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4203 		break;
4204 	default:
4205 		break;
4206 	}
4207 
4208 set_itr_now:
4209 	if (new_itr != q_vector->itr_val) {
4210 		/* this attempts to bias the interrupt rate towards Bulk
4211 		 * by adding intermediate steps when interrupt rate is
4212 		 * increasing */
4213 		new_itr = new_itr > q_vector->itr_val ?
4214 		             max((new_itr * q_vector->itr_val) /
4215 		                 (new_itr + (q_vector->itr_val >> 2)),
4216 				 new_itr) :
4217 			     new_itr;
4218 		/* Don't write the value here; it resets the adapter's
4219 		 * internal timer, and causes us to delay far longer than
4220 		 * we should between interrupts.  Instead, we write the ITR
4221 		 * value at the beginning of the next interrupt so the timing
4222 		 * ends up being correct.
4223 		 */
4224 		q_vector->itr_val = new_itr;
4225 		q_vector->set_itr = 1;
4226 	}
4227 }
4228 
4229 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4230 			    u32 type_tucmd, u32 mss_l4len_idx)
4231 {
4232 	struct e1000_adv_tx_context_desc *context_desc;
4233 	u16 i = tx_ring->next_to_use;
4234 
4235 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4236 
4237 	i++;
4238 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4239 
4240 	/* set bits to identify this as an advanced context descriptor */
4241 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4242 
4243 	/* For 82575, context index must be unique per ring. */
4244 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4245 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4246 
4247 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4248 	context_desc->seqnum_seed	= 0;
4249 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4250 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4251 }
4252 
4253 static int igb_tso(struct igb_ring *tx_ring,
4254 		   struct igb_tx_buffer *first,
4255 		   u8 *hdr_len)
4256 {
4257 	struct sk_buff *skb = first->skb;
4258 	u32 vlan_macip_lens, type_tucmd;
4259 	u32 mss_l4len_idx, l4len;
4260 
4261 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4262 		return 0;
4263 
4264 	if (!skb_is_gso(skb))
4265 		return 0;
4266 
4267 	if (skb_header_cloned(skb)) {
4268 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4269 		if (err)
4270 			return err;
4271 	}
4272 
4273 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4274 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4275 
4276 	if (first->protocol == __constant_htons(ETH_P_IP)) {
4277 		struct iphdr *iph = ip_hdr(skb);
4278 		iph->tot_len = 0;
4279 		iph->check = 0;
4280 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4281 							 iph->daddr, 0,
4282 							 IPPROTO_TCP,
4283 							 0);
4284 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4285 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4286 				   IGB_TX_FLAGS_CSUM |
4287 				   IGB_TX_FLAGS_IPV4;
4288 	} else if (skb_is_gso_v6(skb)) {
4289 		ipv6_hdr(skb)->payload_len = 0;
4290 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4291 						       &ipv6_hdr(skb)->daddr,
4292 						       0, IPPROTO_TCP, 0);
4293 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4294 				   IGB_TX_FLAGS_CSUM;
4295 	}
4296 
4297 	/* compute header lengths */
4298 	l4len = tcp_hdrlen(skb);
4299 	*hdr_len = skb_transport_offset(skb) + l4len;
4300 
4301 	/* update gso size and bytecount with header size */
4302 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4303 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4304 
4305 	/* MSS L4LEN IDX */
4306 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4307 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4308 
4309 	/* VLAN MACLEN IPLEN */
4310 	vlan_macip_lens = skb_network_header_len(skb);
4311 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4312 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4313 
4314 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4315 
4316 	return 1;
4317 }
4318 
4319 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4320 {
4321 	struct sk_buff *skb = first->skb;
4322 	u32 vlan_macip_lens = 0;
4323 	u32 mss_l4len_idx = 0;
4324 	u32 type_tucmd = 0;
4325 
4326 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4327 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4328 			return;
4329 	} else {
4330 		u8 l4_hdr = 0;
4331 		switch (first->protocol) {
4332 		case __constant_htons(ETH_P_IP):
4333 			vlan_macip_lens |= skb_network_header_len(skb);
4334 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4335 			l4_hdr = ip_hdr(skb)->protocol;
4336 			break;
4337 		case __constant_htons(ETH_P_IPV6):
4338 			vlan_macip_lens |= skb_network_header_len(skb);
4339 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4340 			break;
4341 		default:
4342 			if (unlikely(net_ratelimit())) {
4343 				dev_warn(tx_ring->dev,
4344 				 "partial checksum but proto=%x!\n",
4345 				 first->protocol);
4346 			}
4347 			break;
4348 		}
4349 
4350 		switch (l4_hdr) {
4351 		case IPPROTO_TCP:
4352 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4353 			mss_l4len_idx = tcp_hdrlen(skb) <<
4354 					E1000_ADVTXD_L4LEN_SHIFT;
4355 			break;
4356 		case IPPROTO_SCTP:
4357 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4358 			mss_l4len_idx = sizeof(struct sctphdr) <<
4359 					E1000_ADVTXD_L4LEN_SHIFT;
4360 			break;
4361 		case IPPROTO_UDP:
4362 			mss_l4len_idx = sizeof(struct udphdr) <<
4363 					E1000_ADVTXD_L4LEN_SHIFT;
4364 			break;
4365 		default:
4366 			if (unlikely(net_ratelimit())) {
4367 				dev_warn(tx_ring->dev,
4368 				 "partial checksum but l4 proto=%x!\n",
4369 				 l4_hdr);
4370 			}
4371 			break;
4372 		}
4373 
4374 		/* update TX checksum flag */
4375 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4376 	}
4377 
4378 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4379 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4380 
4381 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4382 }
4383 
4384 #define IGB_SET_FLAG(_input, _flag, _result) \
4385 	((_flag <= _result) ? \
4386 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4387 	 ((u32)(_input & _flag) / (_flag / _result)))
4388 
4389 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4390 {
4391 	/* set type for advanced descriptor with frame checksum insertion */
4392 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4393 		       E1000_ADVTXD_DCMD_DEXT |
4394 		       E1000_ADVTXD_DCMD_IFCS;
4395 
4396 	/* set HW vlan bit if vlan is present */
4397 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4398 				 (E1000_ADVTXD_DCMD_VLE));
4399 
4400 	/* set segmentation bits for TSO */
4401 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4402 				 (E1000_ADVTXD_DCMD_TSE));
4403 
4404 	/* set timestamp bit if present */
4405 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4406 				 (E1000_ADVTXD_MAC_TSTAMP));
4407 
4408 	/* insert frame checksum */
4409 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4410 
4411 	return cmd_type;
4412 }
4413 
4414 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4415 				 union e1000_adv_tx_desc *tx_desc,
4416 				 u32 tx_flags, unsigned int paylen)
4417 {
4418 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4419 
4420 	/* 82575 requires a unique index per ring */
4421 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4422 		olinfo_status |= tx_ring->reg_idx << 4;
4423 
4424 	/* insert L4 checksum */
4425 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4426 				      IGB_TX_FLAGS_CSUM,
4427 				      (E1000_TXD_POPTS_TXSM << 8));
4428 
4429 	/* insert IPv4 checksum */
4430 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4431 				      IGB_TX_FLAGS_IPV4,
4432 				      (E1000_TXD_POPTS_IXSM << 8));
4433 
4434 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4435 }
4436 
4437 static void igb_tx_map(struct igb_ring *tx_ring,
4438 		       struct igb_tx_buffer *first,
4439 		       const u8 hdr_len)
4440 {
4441 	struct sk_buff *skb = first->skb;
4442 	struct igb_tx_buffer *tx_buffer;
4443 	union e1000_adv_tx_desc *tx_desc;
4444 	struct skb_frag_struct *frag;
4445 	dma_addr_t dma;
4446 	unsigned int data_len, size;
4447 	u32 tx_flags = first->tx_flags;
4448 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4449 	u16 i = tx_ring->next_to_use;
4450 
4451 	tx_desc = IGB_TX_DESC(tx_ring, i);
4452 
4453 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4454 
4455 	size = skb_headlen(skb);
4456 	data_len = skb->data_len;
4457 
4458 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4459 
4460 	tx_buffer = first;
4461 
4462 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4463 		if (dma_mapping_error(tx_ring->dev, dma))
4464 			goto dma_error;
4465 
4466 		/* record length, and DMA address */
4467 		dma_unmap_len_set(tx_buffer, len, size);
4468 		dma_unmap_addr_set(tx_buffer, dma, dma);
4469 
4470 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4471 
4472 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4473 			tx_desc->read.cmd_type_len =
4474 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4475 
4476 			i++;
4477 			tx_desc++;
4478 			if (i == tx_ring->count) {
4479 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4480 				i = 0;
4481 			}
4482 			tx_desc->read.olinfo_status = 0;
4483 
4484 			dma += IGB_MAX_DATA_PER_TXD;
4485 			size -= IGB_MAX_DATA_PER_TXD;
4486 
4487 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4488 		}
4489 
4490 		if (likely(!data_len))
4491 			break;
4492 
4493 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4494 
4495 		i++;
4496 		tx_desc++;
4497 		if (i == tx_ring->count) {
4498 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4499 			i = 0;
4500 		}
4501 		tx_desc->read.olinfo_status = 0;
4502 
4503 		size = skb_frag_size(frag);
4504 		data_len -= size;
4505 
4506 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4507 				       size, DMA_TO_DEVICE);
4508 
4509 		tx_buffer = &tx_ring->tx_buffer_info[i];
4510 	}
4511 
4512 	/* write last descriptor with RS and EOP bits */
4513 	cmd_type |= size | IGB_TXD_DCMD;
4514 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4515 
4516 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4517 
4518 	/* set the timestamp */
4519 	first->time_stamp = jiffies;
4520 
4521 	/*
4522 	 * Force memory writes to complete before letting h/w know there
4523 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4524 	 * memory model archs, such as IA-64).
4525 	 *
4526 	 * We also need this memory barrier to make certain all of the
4527 	 * status bits have been updated before next_to_watch is written.
4528 	 */
4529 	wmb();
4530 
4531 	/* set next_to_watch value indicating a packet is present */
4532 	first->next_to_watch = tx_desc;
4533 
4534 	i++;
4535 	if (i == tx_ring->count)
4536 		i = 0;
4537 
4538 	tx_ring->next_to_use = i;
4539 
4540 	writel(i, tx_ring->tail);
4541 
4542 	/* we need this if more than one processor can write to our tail
4543 	 * at a time, it syncronizes IO on IA64/Altix systems */
4544 	mmiowb();
4545 
4546 	return;
4547 
4548 dma_error:
4549 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4550 
4551 	/* clear dma mappings for failed tx_buffer_info map */
4552 	for (;;) {
4553 		tx_buffer = &tx_ring->tx_buffer_info[i];
4554 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4555 		if (tx_buffer == first)
4556 			break;
4557 		if (i == 0)
4558 			i = tx_ring->count;
4559 		i--;
4560 	}
4561 
4562 	tx_ring->next_to_use = i;
4563 }
4564 
4565 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4566 {
4567 	struct net_device *netdev = tx_ring->netdev;
4568 
4569 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4570 
4571 	/* Herbert's original patch had:
4572 	 *  smp_mb__after_netif_stop_queue();
4573 	 * but since that doesn't exist yet, just open code it. */
4574 	smp_mb();
4575 
4576 	/* We need to check again in a case another CPU has just
4577 	 * made room available. */
4578 	if (igb_desc_unused(tx_ring) < size)
4579 		return -EBUSY;
4580 
4581 	/* A reprieve! */
4582 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4583 
4584 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4585 	tx_ring->tx_stats.restart_queue2++;
4586 	u64_stats_update_end(&tx_ring->tx_syncp2);
4587 
4588 	return 0;
4589 }
4590 
4591 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4592 {
4593 	if (igb_desc_unused(tx_ring) >= size)
4594 		return 0;
4595 	return __igb_maybe_stop_tx(tx_ring, size);
4596 }
4597 
4598 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4599 				struct igb_ring *tx_ring)
4600 {
4601 	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4602 	struct igb_tx_buffer *first;
4603 	int tso;
4604 	u32 tx_flags = 0;
4605 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4606 	__be16 protocol = vlan_get_protocol(skb);
4607 	u8 hdr_len = 0;
4608 
4609 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4610 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4611 	 *       + 2 desc gap to keep tail from touching head,
4612 	 *       + 1 desc for context descriptor,
4613 	 * otherwise try next time
4614 	 */
4615 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4616 		unsigned short f;
4617 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4618 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4619 	} else {
4620 		count += skb_shinfo(skb)->nr_frags;
4621 	}
4622 
4623 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4624 		/* this is a hard error */
4625 		return NETDEV_TX_BUSY;
4626 	}
4627 
4628 	/* record the location of the first descriptor for this packet */
4629 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4630 	first->skb = skb;
4631 	first->bytecount = skb->len;
4632 	first->gso_segs = 1;
4633 
4634 	skb_tx_timestamp(skb);
4635 
4636 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4637 		     !(adapter->ptp_tx_skb))) {
4638 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4639 		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4640 
4641 		adapter->ptp_tx_skb = skb_get(skb);
4642 		adapter->ptp_tx_start = jiffies;
4643 		if (adapter->hw.mac.type == e1000_82576)
4644 			schedule_work(&adapter->ptp_tx_work);
4645 	}
4646 
4647 	if (vlan_tx_tag_present(skb)) {
4648 		tx_flags |= IGB_TX_FLAGS_VLAN;
4649 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4650 	}
4651 
4652 	/* record initial flags and protocol */
4653 	first->tx_flags = tx_flags;
4654 	first->protocol = protocol;
4655 
4656 	tso = igb_tso(tx_ring, first, &hdr_len);
4657 	if (tso < 0)
4658 		goto out_drop;
4659 	else if (!tso)
4660 		igb_tx_csum(tx_ring, first);
4661 
4662 	igb_tx_map(tx_ring, first, hdr_len);
4663 
4664 	/* Make sure there is space in the ring for the next send. */
4665 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4666 
4667 	return NETDEV_TX_OK;
4668 
4669 out_drop:
4670 	igb_unmap_and_free_tx_resource(tx_ring, first);
4671 
4672 	return NETDEV_TX_OK;
4673 }
4674 
4675 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4676 						    struct sk_buff *skb)
4677 {
4678 	unsigned int r_idx = skb->queue_mapping;
4679 
4680 	if (r_idx >= adapter->num_tx_queues)
4681 		r_idx = r_idx % adapter->num_tx_queues;
4682 
4683 	return adapter->tx_ring[r_idx];
4684 }
4685 
4686 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4687 				  struct net_device *netdev)
4688 {
4689 	struct igb_adapter *adapter = netdev_priv(netdev);
4690 
4691 	if (test_bit(__IGB_DOWN, &adapter->state)) {
4692 		dev_kfree_skb_any(skb);
4693 		return NETDEV_TX_OK;
4694 	}
4695 
4696 	if (skb->len <= 0) {
4697 		dev_kfree_skb_any(skb);
4698 		return NETDEV_TX_OK;
4699 	}
4700 
4701 	/*
4702 	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4703 	 * in order to meet this minimum size requirement.
4704 	 */
4705 	if (unlikely(skb->len < 17)) {
4706 		if (skb_pad(skb, 17 - skb->len))
4707 			return NETDEV_TX_OK;
4708 		skb->len = 17;
4709 		skb_set_tail_pointer(skb, 17);
4710 	}
4711 
4712 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4713 }
4714 
4715 /**
4716  * igb_tx_timeout - Respond to a Tx Hang
4717  * @netdev: network interface device structure
4718  **/
4719 static void igb_tx_timeout(struct net_device *netdev)
4720 {
4721 	struct igb_adapter *adapter = netdev_priv(netdev);
4722 	struct e1000_hw *hw = &adapter->hw;
4723 
4724 	/* Do the reset outside of interrupt context */
4725 	adapter->tx_timeout_count++;
4726 
4727 	if (hw->mac.type >= e1000_82580)
4728 		hw->dev_spec._82575.global_device_reset = true;
4729 
4730 	schedule_work(&adapter->reset_task);
4731 	wr32(E1000_EICS,
4732 	     (adapter->eims_enable_mask & ~adapter->eims_other));
4733 }
4734 
4735 static void igb_reset_task(struct work_struct *work)
4736 {
4737 	struct igb_adapter *adapter;
4738 	adapter = container_of(work, struct igb_adapter, reset_task);
4739 
4740 	igb_dump(adapter);
4741 	netdev_err(adapter->netdev, "Reset adapter\n");
4742 	igb_reinit_locked(adapter);
4743 }
4744 
4745 /**
4746  * igb_get_stats64 - Get System Network Statistics
4747  * @netdev: network interface device structure
4748  * @stats: rtnl_link_stats64 pointer
4749  *
4750  **/
4751 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4752 						 struct rtnl_link_stats64 *stats)
4753 {
4754 	struct igb_adapter *adapter = netdev_priv(netdev);
4755 
4756 	spin_lock(&adapter->stats64_lock);
4757 	igb_update_stats(adapter, &adapter->stats64);
4758 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4759 	spin_unlock(&adapter->stats64_lock);
4760 
4761 	return stats;
4762 }
4763 
4764 /**
4765  * igb_change_mtu - Change the Maximum Transfer Unit
4766  * @netdev: network interface device structure
4767  * @new_mtu: new value for maximum frame size
4768  *
4769  * Returns 0 on success, negative on failure
4770  **/
4771 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4772 {
4773 	struct igb_adapter *adapter = netdev_priv(netdev);
4774 	struct pci_dev *pdev = adapter->pdev;
4775 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4776 
4777 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4778 		dev_err(&pdev->dev, "Invalid MTU setting\n");
4779 		return -EINVAL;
4780 	}
4781 
4782 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4783 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4784 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4785 		return -EINVAL;
4786 	}
4787 
4788 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4789 		msleep(1);
4790 
4791 	/* igb_down has a dependency on max_frame_size */
4792 	adapter->max_frame_size = max_frame;
4793 
4794 	if (netif_running(netdev))
4795 		igb_down(adapter);
4796 
4797 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4798 		 netdev->mtu, new_mtu);
4799 	netdev->mtu = new_mtu;
4800 
4801 	if (netif_running(netdev))
4802 		igb_up(adapter);
4803 	else
4804 		igb_reset(adapter);
4805 
4806 	clear_bit(__IGB_RESETTING, &adapter->state);
4807 
4808 	return 0;
4809 }
4810 
4811 /**
4812  * igb_update_stats - Update the board statistics counters
4813  * @adapter: board private structure
4814  **/
4815 
4816 void igb_update_stats(struct igb_adapter *adapter,
4817 		      struct rtnl_link_stats64 *net_stats)
4818 {
4819 	struct e1000_hw *hw = &adapter->hw;
4820 	struct pci_dev *pdev = adapter->pdev;
4821 	u32 reg, mpc;
4822 	u16 phy_tmp;
4823 	int i;
4824 	u64 bytes, packets;
4825 	unsigned int start;
4826 	u64 _bytes, _packets;
4827 
4828 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4829 
4830 	/*
4831 	 * Prevent stats update while adapter is being reset, or if the pci
4832 	 * connection is down.
4833 	 */
4834 	if (adapter->link_speed == 0)
4835 		return;
4836 	if (pci_channel_offline(pdev))
4837 		return;
4838 
4839 	bytes = 0;
4840 	packets = 0;
4841 	for (i = 0; i < adapter->num_rx_queues; i++) {
4842 		u32 rqdpc = rd32(E1000_RQDPC(i));
4843 		struct igb_ring *ring = adapter->rx_ring[i];
4844 
4845 		if (rqdpc) {
4846 			ring->rx_stats.drops += rqdpc;
4847 			net_stats->rx_fifo_errors += rqdpc;
4848 		}
4849 
4850 		do {
4851 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4852 			_bytes = ring->rx_stats.bytes;
4853 			_packets = ring->rx_stats.packets;
4854 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4855 		bytes += _bytes;
4856 		packets += _packets;
4857 	}
4858 
4859 	net_stats->rx_bytes = bytes;
4860 	net_stats->rx_packets = packets;
4861 
4862 	bytes = 0;
4863 	packets = 0;
4864 	for (i = 0; i < adapter->num_tx_queues; i++) {
4865 		struct igb_ring *ring = adapter->tx_ring[i];
4866 		do {
4867 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4868 			_bytes = ring->tx_stats.bytes;
4869 			_packets = ring->tx_stats.packets;
4870 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4871 		bytes += _bytes;
4872 		packets += _packets;
4873 	}
4874 	net_stats->tx_bytes = bytes;
4875 	net_stats->tx_packets = packets;
4876 
4877 	/* read stats registers */
4878 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4879 	adapter->stats.gprc += rd32(E1000_GPRC);
4880 	adapter->stats.gorc += rd32(E1000_GORCL);
4881 	rd32(E1000_GORCH); /* clear GORCL */
4882 	adapter->stats.bprc += rd32(E1000_BPRC);
4883 	adapter->stats.mprc += rd32(E1000_MPRC);
4884 	adapter->stats.roc += rd32(E1000_ROC);
4885 
4886 	adapter->stats.prc64 += rd32(E1000_PRC64);
4887 	adapter->stats.prc127 += rd32(E1000_PRC127);
4888 	adapter->stats.prc255 += rd32(E1000_PRC255);
4889 	adapter->stats.prc511 += rd32(E1000_PRC511);
4890 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4891 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4892 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4893 	adapter->stats.sec += rd32(E1000_SEC);
4894 
4895 	mpc = rd32(E1000_MPC);
4896 	adapter->stats.mpc += mpc;
4897 	net_stats->rx_fifo_errors += mpc;
4898 	adapter->stats.scc += rd32(E1000_SCC);
4899 	adapter->stats.ecol += rd32(E1000_ECOL);
4900 	adapter->stats.mcc += rd32(E1000_MCC);
4901 	adapter->stats.latecol += rd32(E1000_LATECOL);
4902 	adapter->stats.dc += rd32(E1000_DC);
4903 	adapter->stats.rlec += rd32(E1000_RLEC);
4904 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4905 	adapter->stats.xontxc += rd32(E1000_XONTXC);
4906 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4907 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4908 	adapter->stats.fcruc += rd32(E1000_FCRUC);
4909 	adapter->stats.gptc += rd32(E1000_GPTC);
4910 	adapter->stats.gotc += rd32(E1000_GOTCL);
4911 	rd32(E1000_GOTCH); /* clear GOTCL */
4912 	adapter->stats.rnbc += rd32(E1000_RNBC);
4913 	adapter->stats.ruc += rd32(E1000_RUC);
4914 	adapter->stats.rfc += rd32(E1000_RFC);
4915 	adapter->stats.rjc += rd32(E1000_RJC);
4916 	adapter->stats.tor += rd32(E1000_TORH);
4917 	adapter->stats.tot += rd32(E1000_TOTH);
4918 	adapter->stats.tpr += rd32(E1000_TPR);
4919 
4920 	adapter->stats.ptc64 += rd32(E1000_PTC64);
4921 	adapter->stats.ptc127 += rd32(E1000_PTC127);
4922 	adapter->stats.ptc255 += rd32(E1000_PTC255);
4923 	adapter->stats.ptc511 += rd32(E1000_PTC511);
4924 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4925 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4926 
4927 	adapter->stats.mptc += rd32(E1000_MPTC);
4928 	adapter->stats.bptc += rd32(E1000_BPTC);
4929 
4930 	adapter->stats.tpt += rd32(E1000_TPT);
4931 	adapter->stats.colc += rd32(E1000_COLC);
4932 
4933 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4934 	/* read internal phy specific stats */
4935 	reg = rd32(E1000_CTRL_EXT);
4936 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4937 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4938 
4939 		/* this stat has invalid values on i210/i211 */
4940 		if ((hw->mac.type != e1000_i210) &&
4941 		    (hw->mac.type != e1000_i211))
4942 			adapter->stats.tncrs += rd32(E1000_TNCRS);
4943 	}
4944 
4945 	adapter->stats.tsctc += rd32(E1000_TSCTC);
4946 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4947 
4948 	adapter->stats.iac += rd32(E1000_IAC);
4949 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4950 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4951 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4952 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4953 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4954 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4955 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4956 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4957 
4958 	/* Fill out the OS statistics structure */
4959 	net_stats->multicast = adapter->stats.mprc;
4960 	net_stats->collisions = adapter->stats.colc;
4961 
4962 	/* Rx Errors */
4963 
4964 	/* RLEC on some newer hardware can be incorrect so build
4965 	 * our own version based on RUC and ROC */
4966 	net_stats->rx_errors = adapter->stats.rxerrc +
4967 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4968 		adapter->stats.ruc + adapter->stats.roc +
4969 		adapter->stats.cexterr;
4970 	net_stats->rx_length_errors = adapter->stats.ruc +
4971 				      adapter->stats.roc;
4972 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4973 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4974 	net_stats->rx_missed_errors = adapter->stats.mpc;
4975 
4976 	/* Tx Errors */
4977 	net_stats->tx_errors = adapter->stats.ecol +
4978 			       adapter->stats.latecol;
4979 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4980 	net_stats->tx_window_errors = adapter->stats.latecol;
4981 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4982 
4983 	/* Tx Dropped needs to be maintained elsewhere */
4984 
4985 	/* Phy Stats */
4986 	if (hw->phy.media_type == e1000_media_type_copper) {
4987 		if ((adapter->link_speed == SPEED_1000) &&
4988 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4989 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4990 			adapter->phy_stats.idle_errors += phy_tmp;
4991 		}
4992 	}
4993 
4994 	/* Management Stats */
4995 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4996 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4997 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4998 
4999 	/* OS2BMC Stats */
5000 	reg = rd32(E1000_MANC);
5001 	if (reg & E1000_MANC_EN_BMC2OS) {
5002 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5003 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5004 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5005 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5006 	}
5007 }
5008 
5009 static irqreturn_t igb_msix_other(int irq, void *data)
5010 {
5011 	struct igb_adapter *adapter = data;
5012 	struct e1000_hw *hw = &adapter->hw;
5013 	u32 icr = rd32(E1000_ICR);
5014 	/* reading ICR causes bit 31 of EICR to be cleared */
5015 
5016 	if (icr & E1000_ICR_DRSTA)
5017 		schedule_work(&adapter->reset_task);
5018 
5019 	if (icr & E1000_ICR_DOUTSYNC) {
5020 		/* HW is reporting DMA is out of sync */
5021 		adapter->stats.doosync++;
5022 		/* The DMA Out of Sync is also indication of a spoof event
5023 		 * in IOV mode. Check the Wrong VM Behavior register to
5024 		 * see if it is really a spoof event. */
5025 		igb_check_wvbr(adapter);
5026 	}
5027 
5028 	/* Check for a mailbox event */
5029 	if (icr & E1000_ICR_VMMB)
5030 		igb_msg_task(adapter);
5031 
5032 	if (icr & E1000_ICR_LSC) {
5033 		hw->mac.get_link_status = 1;
5034 		/* guard against interrupt when we're going down */
5035 		if (!test_bit(__IGB_DOWN, &adapter->state))
5036 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5037 	}
5038 
5039 	if (icr & E1000_ICR_TS) {
5040 		u32 tsicr = rd32(E1000_TSICR);
5041 
5042 		if (tsicr & E1000_TSICR_TXTS) {
5043 			/* acknowledge the interrupt */
5044 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5045 			/* retrieve hardware timestamp */
5046 			schedule_work(&adapter->ptp_tx_work);
5047 		}
5048 	}
5049 
5050 	wr32(E1000_EIMS, adapter->eims_other);
5051 
5052 	return IRQ_HANDLED;
5053 }
5054 
5055 static void igb_write_itr(struct igb_q_vector *q_vector)
5056 {
5057 	struct igb_adapter *adapter = q_vector->adapter;
5058 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5059 
5060 	if (!q_vector->set_itr)
5061 		return;
5062 
5063 	if (!itr_val)
5064 		itr_val = 0x4;
5065 
5066 	if (adapter->hw.mac.type == e1000_82575)
5067 		itr_val |= itr_val << 16;
5068 	else
5069 		itr_val |= E1000_EITR_CNT_IGNR;
5070 
5071 	writel(itr_val, q_vector->itr_register);
5072 	q_vector->set_itr = 0;
5073 }
5074 
5075 static irqreturn_t igb_msix_ring(int irq, void *data)
5076 {
5077 	struct igb_q_vector *q_vector = data;
5078 
5079 	/* Write the ITR value calculated from the previous interrupt. */
5080 	igb_write_itr(q_vector);
5081 
5082 	napi_schedule(&q_vector->napi);
5083 
5084 	return IRQ_HANDLED;
5085 }
5086 
5087 #ifdef CONFIG_IGB_DCA
5088 static void igb_update_tx_dca(struct igb_adapter *adapter,
5089 			      struct igb_ring *tx_ring,
5090 			      int cpu)
5091 {
5092 	struct e1000_hw *hw = &adapter->hw;
5093 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5094 
5095 	if (hw->mac.type != e1000_82575)
5096 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5097 
5098 	/*
5099 	 * We can enable relaxed ordering for reads, but not writes when
5100 	 * DCA is enabled.  This is due to a known issue in some chipsets
5101 	 * which will cause the DCA tag to be cleared.
5102 	 */
5103 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5104 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5105 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5106 
5107 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5108 }
5109 
5110 static void igb_update_rx_dca(struct igb_adapter *adapter,
5111 			      struct igb_ring *rx_ring,
5112 			      int cpu)
5113 {
5114 	struct e1000_hw *hw = &adapter->hw;
5115 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5116 
5117 	if (hw->mac.type != e1000_82575)
5118 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5119 
5120 	/*
5121 	 * We can enable relaxed ordering for reads, but not writes when
5122 	 * DCA is enabled.  This is due to a known issue in some chipsets
5123 	 * which will cause the DCA tag to be cleared.
5124 	 */
5125 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5126 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5127 
5128 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5129 }
5130 
5131 static void igb_update_dca(struct igb_q_vector *q_vector)
5132 {
5133 	struct igb_adapter *adapter = q_vector->adapter;
5134 	int cpu = get_cpu();
5135 
5136 	if (q_vector->cpu == cpu)
5137 		goto out_no_update;
5138 
5139 	if (q_vector->tx.ring)
5140 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5141 
5142 	if (q_vector->rx.ring)
5143 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5144 
5145 	q_vector->cpu = cpu;
5146 out_no_update:
5147 	put_cpu();
5148 }
5149 
5150 static void igb_setup_dca(struct igb_adapter *adapter)
5151 {
5152 	struct e1000_hw *hw = &adapter->hw;
5153 	int i;
5154 
5155 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5156 		return;
5157 
5158 	/* Always use CB2 mode, difference is masked in the CB driver. */
5159 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5160 
5161 	for (i = 0; i < adapter->num_q_vectors; i++) {
5162 		adapter->q_vector[i]->cpu = -1;
5163 		igb_update_dca(adapter->q_vector[i]);
5164 	}
5165 }
5166 
5167 static int __igb_notify_dca(struct device *dev, void *data)
5168 {
5169 	struct net_device *netdev = dev_get_drvdata(dev);
5170 	struct igb_adapter *adapter = netdev_priv(netdev);
5171 	struct pci_dev *pdev = adapter->pdev;
5172 	struct e1000_hw *hw = &adapter->hw;
5173 	unsigned long event = *(unsigned long *)data;
5174 
5175 	switch (event) {
5176 	case DCA_PROVIDER_ADD:
5177 		/* if already enabled, don't do it again */
5178 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5179 			break;
5180 		if (dca_add_requester(dev) == 0) {
5181 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5182 			dev_info(&pdev->dev, "DCA enabled\n");
5183 			igb_setup_dca(adapter);
5184 			break;
5185 		}
5186 		/* Fall Through since DCA is disabled. */
5187 	case DCA_PROVIDER_REMOVE:
5188 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5189 			/* without this a class_device is left
5190 			 * hanging around in the sysfs model */
5191 			dca_remove_requester(dev);
5192 			dev_info(&pdev->dev, "DCA disabled\n");
5193 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5194 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5195 		}
5196 		break;
5197 	}
5198 
5199 	return 0;
5200 }
5201 
5202 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5203                           void *p)
5204 {
5205 	int ret_val;
5206 
5207 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5208 	                                 __igb_notify_dca);
5209 
5210 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5211 }
5212 #endif /* CONFIG_IGB_DCA */
5213 
5214 #ifdef CONFIG_PCI_IOV
5215 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5216 {
5217 	unsigned char mac_addr[ETH_ALEN];
5218 
5219 	eth_zero_addr(mac_addr);
5220 	igb_set_vf_mac(adapter, vf, mac_addr);
5221 
5222 	return 0;
5223 }
5224 
5225 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5226 {
5227 	struct pci_dev *pdev = adapter->pdev;
5228 	struct pci_dev *vfdev;
5229 	int dev_id;
5230 
5231 	switch (adapter->hw.mac.type) {
5232 	case e1000_82576:
5233 		dev_id = IGB_82576_VF_DEV_ID;
5234 		break;
5235 	case e1000_i350:
5236 		dev_id = IGB_I350_VF_DEV_ID;
5237 		break;
5238 	default:
5239 		return false;
5240 	}
5241 
5242 	/* loop through all the VFs to see if we own any that are assigned */
5243 	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5244 	while (vfdev) {
5245 		/* if we don't own it we don't care */
5246 		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5247 			/* if it is assigned we cannot release it */
5248 			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5249 				return true;
5250 		}
5251 
5252 		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5253 	}
5254 
5255 	return false;
5256 }
5257 
5258 #endif
5259 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5260 {
5261 	struct e1000_hw *hw = &adapter->hw;
5262 	u32 ping;
5263 	int i;
5264 
5265 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5266 		ping = E1000_PF_CONTROL_MSG;
5267 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5268 			ping |= E1000_VT_MSGTYPE_CTS;
5269 		igb_write_mbx(hw, &ping, 1, i);
5270 	}
5271 }
5272 
5273 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5274 {
5275 	struct e1000_hw *hw = &adapter->hw;
5276 	u32 vmolr = rd32(E1000_VMOLR(vf));
5277 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5278 
5279 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5280 	                    IGB_VF_FLAG_MULTI_PROMISC);
5281 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5282 
5283 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5284 		vmolr |= E1000_VMOLR_MPME;
5285 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5286 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5287 	} else {
5288 		/*
5289 		 * if we have hashes and we are clearing a multicast promisc
5290 		 * flag we need to write the hashes to the MTA as this step
5291 		 * was previously skipped
5292 		 */
5293 		if (vf_data->num_vf_mc_hashes > 30) {
5294 			vmolr |= E1000_VMOLR_MPME;
5295 		} else if (vf_data->num_vf_mc_hashes) {
5296 			int j;
5297 			vmolr |= E1000_VMOLR_ROMPE;
5298 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5299 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5300 		}
5301 	}
5302 
5303 	wr32(E1000_VMOLR(vf), vmolr);
5304 
5305 	/* there are flags left unprocessed, likely not supported */
5306 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5307 		return -EINVAL;
5308 
5309 	return 0;
5310 
5311 }
5312 
5313 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5314 				  u32 *msgbuf, u32 vf)
5315 {
5316 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5317 	u16 *hash_list = (u16 *)&msgbuf[1];
5318 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5319 	int i;
5320 
5321 	/* salt away the number of multicast addresses assigned
5322 	 * to this VF for later use to restore when the PF multi cast
5323 	 * list changes
5324 	 */
5325 	vf_data->num_vf_mc_hashes = n;
5326 
5327 	/* only up to 30 hash values supported */
5328 	if (n > 30)
5329 		n = 30;
5330 
5331 	/* store the hashes for later use */
5332 	for (i = 0; i < n; i++)
5333 		vf_data->vf_mc_hashes[i] = hash_list[i];
5334 
5335 	/* Flush and reset the mta with the new values */
5336 	igb_set_rx_mode(adapter->netdev);
5337 
5338 	return 0;
5339 }
5340 
5341 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5342 {
5343 	struct e1000_hw *hw = &adapter->hw;
5344 	struct vf_data_storage *vf_data;
5345 	int i, j;
5346 
5347 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5348 		u32 vmolr = rd32(E1000_VMOLR(i));
5349 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5350 
5351 		vf_data = &adapter->vf_data[i];
5352 
5353 		if ((vf_data->num_vf_mc_hashes > 30) ||
5354 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5355 			vmolr |= E1000_VMOLR_MPME;
5356 		} else if (vf_data->num_vf_mc_hashes) {
5357 			vmolr |= E1000_VMOLR_ROMPE;
5358 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5359 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5360 		}
5361 		wr32(E1000_VMOLR(i), vmolr);
5362 	}
5363 }
5364 
5365 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5366 {
5367 	struct e1000_hw *hw = &adapter->hw;
5368 	u32 pool_mask, reg, vid;
5369 	int i;
5370 
5371 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5372 
5373 	/* Find the vlan filter for this id */
5374 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5375 		reg = rd32(E1000_VLVF(i));
5376 
5377 		/* remove the vf from the pool */
5378 		reg &= ~pool_mask;
5379 
5380 		/* if pool is empty then remove entry from vfta */
5381 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5382 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5383 			reg = 0;
5384 			vid = reg & E1000_VLVF_VLANID_MASK;
5385 			igb_vfta_set(hw, vid, false);
5386 		}
5387 
5388 		wr32(E1000_VLVF(i), reg);
5389 	}
5390 
5391 	adapter->vf_data[vf].vlans_enabled = 0;
5392 }
5393 
5394 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5395 {
5396 	struct e1000_hw *hw = &adapter->hw;
5397 	u32 reg, i;
5398 
5399 	/* The vlvf table only exists on 82576 hardware and newer */
5400 	if (hw->mac.type < e1000_82576)
5401 		return -1;
5402 
5403 	/* we only need to do this if VMDq is enabled */
5404 	if (!adapter->vfs_allocated_count)
5405 		return -1;
5406 
5407 	/* Find the vlan filter for this id */
5408 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5409 		reg = rd32(E1000_VLVF(i));
5410 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5411 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5412 			break;
5413 	}
5414 
5415 	if (add) {
5416 		if (i == E1000_VLVF_ARRAY_SIZE) {
5417 			/* Did not find a matching VLAN ID entry that was
5418 			 * enabled.  Search for a free filter entry, i.e.
5419 			 * one without the enable bit set
5420 			 */
5421 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5422 				reg = rd32(E1000_VLVF(i));
5423 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5424 					break;
5425 			}
5426 		}
5427 		if (i < E1000_VLVF_ARRAY_SIZE) {
5428 			/* Found an enabled/available entry */
5429 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5430 
5431 			/* if !enabled we need to set this up in vfta */
5432 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5433 				/* add VID to filter table */
5434 				igb_vfta_set(hw, vid, true);
5435 				reg |= E1000_VLVF_VLANID_ENABLE;
5436 			}
5437 			reg &= ~E1000_VLVF_VLANID_MASK;
5438 			reg |= vid;
5439 			wr32(E1000_VLVF(i), reg);
5440 
5441 			/* do not modify RLPML for PF devices */
5442 			if (vf >= adapter->vfs_allocated_count)
5443 				return 0;
5444 
5445 			if (!adapter->vf_data[vf].vlans_enabled) {
5446 				u32 size;
5447 				reg = rd32(E1000_VMOLR(vf));
5448 				size = reg & E1000_VMOLR_RLPML_MASK;
5449 				size += 4;
5450 				reg &= ~E1000_VMOLR_RLPML_MASK;
5451 				reg |= size;
5452 				wr32(E1000_VMOLR(vf), reg);
5453 			}
5454 
5455 			adapter->vf_data[vf].vlans_enabled++;
5456 		}
5457 	} else {
5458 		if (i < E1000_VLVF_ARRAY_SIZE) {
5459 			/* remove vf from the pool */
5460 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5461 			/* if pool is empty then remove entry from vfta */
5462 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5463 				reg = 0;
5464 				igb_vfta_set(hw, vid, false);
5465 			}
5466 			wr32(E1000_VLVF(i), reg);
5467 
5468 			/* do not modify RLPML for PF devices */
5469 			if (vf >= adapter->vfs_allocated_count)
5470 				return 0;
5471 
5472 			adapter->vf_data[vf].vlans_enabled--;
5473 			if (!adapter->vf_data[vf].vlans_enabled) {
5474 				u32 size;
5475 				reg = rd32(E1000_VMOLR(vf));
5476 				size = reg & E1000_VMOLR_RLPML_MASK;
5477 				size -= 4;
5478 				reg &= ~E1000_VMOLR_RLPML_MASK;
5479 				reg |= size;
5480 				wr32(E1000_VMOLR(vf), reg);
5481 			}
5482 		}
5483 	}
5484 	return 0;
5485 }
5486 
5487 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5488 {
5489 	struct e1000_hw *hw = &adapter->hw;
5490 
5491 	if (vid)
5492 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5493 	else
5494 		wr32(E1000_VMVIR(vf), 0);
5495 }
5496 
5497 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5498 			       int vf, u16 vlan, u8 qos)
5499 {
5500 	int err = 0;
5501 	struct igb_adapter *adapter = netdev_priv(netdev);
5502 
5503 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5504 		return -EINVAL;
5505 	if (vlan || qos) {
5506 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5507 		if (err)
5508 			goto out;
5509 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5510 		igb_set_vmolr(adapter, vf, !vlan);
5511 		adapter->vf_data[vf].pf_vlan = vlan;
5512 		adapter->vf_data[vf].pf_qos = qos;
5513 		dev_info(&adapter->pdev->dev,
5514 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5515 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5516 			dev_warn(&adapter->pdev->dev,
5517 				 "The VF VLAN has been set,"
5518 				 " but the PF device is not up.\n");
5519 			dev_warn(&adapter->pdev->dev,
5520 				 "Bring the PF device up before"
5521 				 " attempting to use the VF device.\n");
5522 		}
5523 	} else {
5524 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5525 				   false, vf);
5526 		igb_set_vmvir(adapter, vlan, vf);
5527 		igb_set_vmolr(adapter, vf, true);
5528 		adapter->vf_data[vf].pf_vlan = 0;
5529 		adapter->vf_data[vf].pf_qos = 0;
5530        }
5531 out:
5532        return err;
5533 }
5534 
5535 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5536 {
5537 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5538 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5539 
5540 	return igb_vlvf_set(adapter, vid, add, vf);
5541 }
5542 
5543 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5544 {
5545 	/* clear flags - except flag that indicates PF has set the MAC */
5546 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5547 	adapter->vf_data[vf].last_nack = jiffies;
5548 
5549 	/* reset offloads to defaults */
5550 	igb_set_vmolr(adapter, vf, true);
5551 
5552 	/* reset vlans for device */
5553 	igb_clear_vf_vfta(adapter, vf);
5554 	if (adapter->vf_data[vf].pf_vlan)
5555 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5556 				    adapter->vf_data[vf].pf_vlan,
5557 				    adapter->vf_data[vf].pf_qos);
5558 	else
5559 		igb_clear_vf_vfta(adapter, vf);
5560 
5561 	/* reset multicast table array for vf */
5562 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5563 
5564 	/* Flush and reset the mta with the new values */
5565 	igb_set_rx_mode(adapter->netdev);
5566 }
5567 
5568 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5569 {
5570 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5571 
5572 	/* clear mac address as we were hotplug removed/added */
5573 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5574 		eth_zero_addr(vf_mac);
5575 
5576 	/* process remaining reset events */
5577 	igb_vf_reset(adapter, vf);
5578 }
5579 
5580 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5581 {
5582 	struct e1000_hw *hw = &adapter->hw;
5583 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5584 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5585 	u32 reg, msgbuf[3];
5586 	u8 *addr = (u8 *)(&msgbuf[1]);
5587 
5588 	/* process all the same items cleared in a function level reset */
5589 	igb_vf_reset(adapter, vf);
5590 
5591 	/* set vf mac address */
5592 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5593 
5594 	/* enable transmit and receive for vf */
5595 	reg = rd32(E1000_VFTE);
5596 	wr32(E1000_VFTE, reg | (1 << vf));
5597 	reg = rd32(E1000_VFRE);
5598 	wr32(E1000_VFRE, reg | (1 << vf));
5599 
5600 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5601 
5602 	/* reply to reset with ack and vf mac address */
5603 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5604 	memcpy(addr, vf_mac, 6);
5605 	igb_write_mbx(hw, msgbuf, 3, vf);
5606 }
5607 
5608 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5609 {
5610 	/*
5611 	 * The VF MAC Address is stored in a packed array of bytes
5612 	 * starting at the second 32 bit word of the msg array
5613 	 */
5614 	unsigned char *addr = (char *)&msg[1];
5615 	int err = -1;
5616 
5617 	if (is_valid_ether_addr(addr))
5618 		err = igb_set_vf_mac(adapter, vf, addr);
5619 
5620 	return err;
5621 }
5622 
5623 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5624 {
5625 	struct e1000_hw *hw = &adapter->hw;
5626 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5627 	u32 msg = E1000_VT_MSGTYPE_NACK;
5628 
5629 	/* if device isn't clear to send it shouldn't be reading either */
5630 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5631 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5632 		igb_write_mbx(hw, &msg, 1, vf);
5633 		vf_data->last_nack = jiffies;
5634 	}
5635 }
5636 
5637 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5638 {
5639 	struct pci_dev *pdev = adapter->pdev;
5640 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5641 	struct e1000_hw *hw = &adapter->hw;
5642 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5643 	s32 retval;
5644 
5645 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5646 
5647 	if (retval) {
5648 		/* if receive failed revoke VF CTS stats and restart init */
5649 		dev_err(&pdev->dev, "Error receiving message from VF\n");
5650 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5651 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5652 			return;
5653 		goto out;
5654 	}
5655 
5656 	/* this is a message we already processed, do nothing */
5657 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5658 		return;
5659 
5660 	/*
5661 	 * until the vf completes a reset it should not be
5662 	 * allowed to start any configuration.
5663 	 */
5664 
5665 	if (msgbuf[0] == E1000_VF_RESET) {
5666 		igb_vf_reset_msg(adapter, vf);
5667 		return;
5668 	}
5669 
5670 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5671 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5672 			return;
5673 		retval = -1;
5674 		goto out;
5675 	}
5676 
5677 	switch ((msgbuf[0] & 0xFFFF)) {
5678 	case E1000_VF_SET_MAC_ADDR:
5679 		retval = -EINVAL;
5680 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5681 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5682 		else
5683 			dev_warn(&pdev->dev,
5684 				 "VF %d attempted to override administratively "
5685 				 "set MAC address\nReload the VF driver to "
5686 				 "resume operations\n", vf);
5687 		break;
5688 	case E1000_VF_SET_PROMISC:
5689 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5690 		break;
5691 	case E1000_VF_SET_MULTICAST:
5692 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5693 		break;
5694 	case E1000_VF_SET_LPE:
5695 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5696 		break;
5697 	case E1000_VF_SET_VLAN:
5698 		retval = -1;
5699 		if (vf_data->pf_vlan)
5700 			dev_warn(&pdev->dev,
5701 				 "VF %d attempted to override administratively "
5702 				 "set VLAN tag\nReload the VF driver to "
5703 				 "resume operations\n", vf);
5704 		else
5705 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5706 		break;
5707 	default:
5708 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5709 		retval = -1;
5710 		break;
5711 	}
5712 
5713 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5714 out:
5715 	/* notify the VF of the results of what it sent us */
5716 	if (retval)
5717 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5718 	else
5719 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5720 
5721 	igb_write_mbx(hw, msgbuf, 1, vf);
5722 }
5723 
5724 static void igb_msg_task(struct igb_adapter *adapter)
5725 {
5726 	struct e1000_hw *hw = &adapter->hw;
5727 	u32 vf;
5728 
5729 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5730 		/* process any reset requests */
5731 		if (!igb_check_for_rst(hw, vf))
5732 			igb_vf_reset_event(adapter, vf);
5733 
5734 		/* process any messages pending */
5735 		if (!igb_check_for_msg(hw, vf))
5736 			igb_rcv_msg_from_vf(adapter, vf);
5737 
5738 		/* process any acks */
5739 		if (!igb_check_for_ack(hw, vf))
5740 			igb_rcv_ack_from_vf(adapter, vf);
5741 	}
5742 }
5743 
5744 /**
5745  *  igb_set_uta - Set unicast filter table address
5746  *  @adapter: board private structure
5747  *
5748  *  The unicast table address is a register array of 32-bit registers.
5749  *  The table is meant to be used in a way similar to how the MTA is used
5750  *  however due to certain limitations in the hardware it is necessary to
5751  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5752  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5753  **/
5754 static void igb_set_uta(struct igb_adapter *adapter)
5755 {
5756 	struct e1000_hw *hw = &adapter->hw;
5757 	int i;
5758 
5759 	/* The UTA table only exists on 82576 hardware and newer */
5760 	if (hw->mac.type < e1000_82576)
5761 		return;
5762 
5763 	/* we only need to do this if VMDq is enabled */
5764 	if (!adapter->vfs_allocated_count)
5765 		return;
5766 
5767 	for (i = 0; i < hw->mac.uta_reg_count; i++)
5768 		array_wr32(E1000_UTA, i, ~0);
5769 }
5770 
5771 /**
5772  * igb_intr_msi - Interrupt Handler
5773  * @irq: interrupt number
5774  * @data: pointer to a network interface device structure
5775  **/
5776 static irqreturn_t igb_intr_msi(int irq, void *data)
5777 {
5778 	struct igb_adapter *adapter = data;
5779 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5780 	struct e1000_hw *hw = &adapter->hw;
5781 	/* read ICR disables interrupts using IAM */
5782 	u32 icr = rd32(E1000_ICR);
5783 
5784 	igb_write_itr(q_vector);
5785 
5786 	if (icr & E1000_ICR_DRSTA)
5787 		schedule_work(&adapter->reset_task);
5788 
5789 	if (icr & E1000_ICR_DOUTSYNC) {
5790 		/* HW is reporting DMA is out of sync */
5791 		adapter->stats.doosync++;
5792 	}
5793 
5794 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5795 		hw->mac.get_link_status = 1;
5796 		if (!test_bit(__IGB_DOWN, &adapter->state))
5797 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5798 	}
5799 
5800 	if (icr & E1000_ICR_TS) {
5801 		u32 tsicr = rd32(E1000_TSICR);
5802 
5803 		if (tsicr & E1000_TSICR_TXTS) {
5804 			/* acknowledge the interrupt */
5805 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5806 			/* retrieve hardware timestamp */
5807 			schedule_work(&adapter->ptp_tx_work);
5808 		}
5809 	}
5810 
5811 	napi_schedule(&q_vector->napi);
5812 
5813 	return IRQ_HANDLED;
5814 }
5815 
5816 /**
5817  * igb_intr - Legacy Interrupt Handler
5818  * @irq: interrupt number
5819  * @data: pointer to a network interface device structure
5820  **/
5821 static irqreturn_t igb_intr(int irq, void *data)
5822 {
5823 	struct igb_adapter *adapter = data;
5824 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5825 	struct e1000_hw *hw = &adapter->hw;
5826 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5827 	 * need for the IMC write */
5828 	u32 icr = rd32(E1000_ICR);
5829 
5830 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5831 	 * not set, then the adapter didn't send an interrupt */
5832 	if (!(icr & E1000_ICR_INT_ASSERTED))
5833 		return IRQ_NONE;
5834 
5835 	igb_write_itr(q_vector);
5836 
5837 	if (icr & E1000_ICR_DRSTA)
5838 		schedule_work(&adapter->reset_task);
5839 
5840 	if (icr & E1000_ICR_DOUTSYNC) {
5841 		/* HW is reporting DMA is out of sync */
5842 		adapter->stats.doosync++;
5843 	}
5844 
5845 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5846 		hw->mac.get_link_status = 1;
5847 		/* guard against interrupt when we're going down */
5848 		if (!test_bit(__IGB_DOWN, &adapter->state))
5849 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5850 	}
5851 
5852 	if (icr & E1000_ICR_TS) {
5853 		u32 tsicr = rd32(E1000_TSICR);
5854 
5855 		if (tsicr & E1000_TSICR_TXTS) {
5856 			/* acknowledge the interrupt */
5857 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5858 			/* retrieve hardware timestamp */
5859 			schedule_work(&adapter->ptp_tx_work);
5860 		}
5861 	}
5862 
5863 	napi_schedule(&q_vector->napi);
5864 
5865 	return IRQ_HANDLED;
5866 }
5867 
5868 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5869 {
5870 	struct igb_adapter *adapter = q_vector->adapter;
5871 	struct e1000_hw *hw = &adapter->hw;
5872 
5873 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5874 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5875 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5876 			igb_set_itr(q_vector);
5877 		else
5878 			igb_update_ring_itr(q_vector);
5879 	}
5880 
5881 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5882 		if (adapter->msix_entries)
5883 			wr32(E1000_EIMS, q_vector->eims_value);
5884 		else
5885 			igb_irq_enable(adapter);
5886 	}
5887 }
5888 
5889 /**
5890  * igb_poll - NAPI Rx polling callback
5891  * @napi: napi polling structure
5892  * @budget: count of how many packets we should handle
5893  **/
5894 static int igb_poll(struct napi_struct *napi, int budget)
5895 {
5896 	struct igb_q_vector *q_vector = container_of(napi,
5897 	                                             struct igb_q_vector,
5898 	                                             napi);
5899 	bool clean_complete = true;
5900 
5901 #ifdef CONFIG_IGB_DCA
5902 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5903 		igb_update_dca(q_vector);
5904 #endif
5905 	if (q_vector->tx.ring)
5906 		clean_complete = igb_clean_tx_irq(q_vector);
5907 
5908 	if (q_vector->rx.ring)
5909 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5910 
5911 	/* If all work not completed, return budget and keep polling */
5912 	if (!clean_complete)
5913 		return budget;
5914 
5915 	/* If not enough Rx work done, exit the polling mode */
5916 	napi_complete(napi);
5917 	igb_ring_irq_enable(q_vector);
5918 
5919 	return 0;
5920 }
5921 
5922 /**
5923  * igb_clean_tx_irq - Reclaim resources after transmit completes
5924  * @q_vector: pointer to q_vector containing needed info
5925  *
5926  * returns true if ring is completely cleaned
5927  **/
5928 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5929 {
5930 	struct igb_adapter *adapter = q_vector->adapter;
5931 	struct igb_ring *tx_ring = q_vector->tx.ring;
5932 	struct igb_tx_buffer *tx_buffer;
5933 	union e1000_adv_tx_desc *tx_desc;
5934 	unsigned int total_bytes = 0, total_packets = 0;
5935 	unsigned int budget = q_vector->tx.work_limit;
5936 	unsigned int i = tx_ring->next_to_clean;
5937 
5938 	if (test_bit(__IGB_DOWN, &adapter->state))
5939 		return true;
5940 
5941 	tx_buffer = &tx_ring->tx_buffer_info[i];
5942 	tx_desc = IGB_TX_DESC(tx_ring, i);
5943 	i -= tx_ring->count;
5944 
5945 	do {
5946 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5947 
5948 		/* if next_to_watch is not set then there is no work pending */
5949 		if (!eop_desc)
5950 			break;
5951 
5952 		/* prevent any other reads prior to eop_desc */
5953 		read_barrier_depends();
5954 
5955 		/* if DD is not set pending work has not been completed */
5956 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5957 			break;
5958 
5959 		/* clear next_to_watch to prevent false hangs */
5960 		tx_buffer->next_to_watch = NULL;
5961 
5962 		/* update the statistics for this packet */
5963 		total_bytes += tx_buffer->bytecount;
5964 		total_packets += tx_buffer->gso_segs;
5965 
5966 		/* free the skb */
5967 		dev_kfree_skb_any(tx_buffer->skb);
5968 
5969 		/* unmap skb header data */
5970 		dma_unmap_single(tx_ring->dev,
5971 				 dma_unmap_addr(tx_buffer, dma),
5972 				 dma_unmap_len(tx_buffer, len),
5973 				 DMA_TO_DEVICE);
5974 
5975 		/* clear tx_buffer data */
5976 		tx_buffer->skb = NULL;
5977 		dma_unmap_len_set(tx_buffer, len, 0);
5978 
5979 		/* clear last DMA location and unmap remaining buffers */
5980 		while (tx_desc != eop_desc) {
5981 			tx_buffer++;
5982 			tx_desc++;
5983 			i++;
5984 			if (unlikely(!i)) {
5985 				i -= tx_ring->count;
5986 				tx_buffer = tx_ring->tx_buffer_info;
5987 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5988 			}
5989 
5990 			/* unmap any remaining paged data */
5991 			if (dma_unmap_len(tx_buffer, len)) {
5992 				dma_unmap_page(tx_ring->dev,
5993 					       dma_unmap_addr(tx_buffer, dma),
5994 					       dma_unmap_len(tx_buffer, len),
5995 					       DMA_TO_DEVICE);
5996 				dma_unmap_len_set(tx_buffer, len, 0);
5997 			}
5998 		}
5999 
6000 		/* move us one more past the eop_desc for start of next pkt */
6001 		tx_buffer++;
6002 		tx_desc++;
6003 		i++;
6004 		if (unlikely(!i)) {
6005 			i -= tx_ring->count;
6006 			tx_buffer = tx_ring->tx_buffer_info;
6007 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6008 		}
6009 
6010 		/* issue prefetch for next Tx descriptor */
6011 		prefetch(tx_desc);
6012 
6013 		/* update budget accounting */
6014 		budget--;
6015 	} while (likely(budget));
6016 
6017 	netdev_tx_completed_queue(txring_txq(tx_ring),
6018 				  total_packets, total_bytes);
6019 	i += tx_ring->count;
6020 	tx_ring->next_to_clean = i;
6021 	u64_stats_update_begin(&tx_ring->tx_syncp);
6022 	tx_ring->tx_stats.bytes += total_bytes;
6023 	tx_ring->tx_stats.packets += total_packets;
6024 	u64_stats_update_end(&tx_ring->tx_syncp);
6025 	q_vector->tx.total_bytes += total_bytes;
6026 	q_vector->tx.total_packets += total_packets;
6027 
6028 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6029 		struct e1000_hw *hw = &adapter->hw;
6030 
6031 		/* Detect a transmit hang in hardware, this serializes the
6032 		 * check with the clearing of time_stamp and movement of i */
6033 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6034 		if (tx_buffer->next_to_watch &&
6035 		    time_after(jiffies, tx_buffer->time_stamp +
6036 			       (adapter->tx_timeout_factor * HZ)) &&
6037 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6038 
6039 			/* detected Tx unit hang */
6040 			dev_err(tx_ring->dev,
6041 				"Detected Tx Unit Hang\n"
6042 				"  Tx Queue             <%d>\n"
6043 				"  TDH                  <%x>\n"
6044 				"  TDT                  <%x>\n"
6045 				"  next_to_use          <%x>\n"
6046 				"  next_to_clean        <%x>\n"
6047 				"buffer_info[next_to_clean]\n"
6048 				"  time_stamp           <%lx>\n"
6049 				"  next_to_watch        <%p>\n"
6050 				"  jiffies              <%lx>\n"
6051 				"  desc.status          <%x>\n",
6052 				tx_ring->queue_index,
6053 				rd32(E1000_TDH(tx_ring->reg_idx)),
6054 				readl(tx_ring->tail),
6055 				tx_ring->next_to_use,
6056 				tx_ring->next_to_clean,
6057 				tx_buffer->time_stamp,
6058 				tx_buffer->next_to_watch,
6059 				jiffies,
6060 				tx_buffer->next_to_watch->wb.status);
6061 			netif_stop_subqueue(tx_ring->netdev,
6062 					    tx_ring->queue_index);
6063 
6064 			/* we are about to reset, no point in enabling stuff */
6065 			return true;
6066 		}
6067 	}
6068 
6069 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6070 	if (unlikely(total_packets &&
6071 		     netif_carrier_ok(tx_ring->netdev) &&
6072 		     igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6073 		/* Make sure that anybody stopping the queue after this
6074 		 * sees the new next_to_clean.
6075 		 */
6076 		smp_mb();
6077 		if (__netif_subqueue_stopped(tx_ring->netdev,
6078 					     tx_ring->queue_index) &&
6079 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6080 			netif_wake_subqueue(tx_ring->netdev,
6081 					    tx_ring->queue_index);
6082 
6083 			u64_stats_update_begin(&tx_ring->tx_syncp);
6084 			tx_ring->tx_stats.restart_queue++;
6085 			u64_stats_update_end(&tx_ring->tx_syncp);
6086 		}
6087 	}
6088 
6089 	return !!budget;
6090 }
6091 
6092 /**
6093  * igb_reuse_rx_page - page flip buffer and store it back on the ring
6094  * @rx_ring: rx descriptor ring to store buffers on
6095  * @old_buff: donor buffer to have page reused
6096  *
6097  * Synchronizes page for reuse by the adapter
6098  **/
6099 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6100 			      struct igb_rx_buffer *old_buff)
6101 {
6102 	struct igb_rx_buffer *new_buff;
6103 	u16 nta = rx_ring->next_to_alloc;
6104 
6105 	new_buff = &rx_ring->rx_buffer_info[nta];
6106 
6107 	/* update, and store next to alloc */
6108 	nta++;
6109 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6110 
6111 	/* transfer page from old buffer to new buffer */
6112 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6113 
6114 	/* sync the buffer for use by the device */
6115 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6116 					 old_buff->page_offset,
6117 					 IGB_RX_BUFSZ,
6118 					 DMA_FROM_DEVICE);
6119 }
6120 
6121 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6122 				  struct page *page,
6123 				  unsigned int truesize)
6124 {
6125 	/* avoid re-using remote pages */
6126 	if (unlikely(page_to_nid(page) != numa_node_id()))
6127 		return false;
6128 
6129 #if (PAGE_SIZE < 8192)
6130 	/* if we are only owner of page we can reuse it */
6131 	if (unlikely(page_count(page) != 1))
6132 		return false;
6133 
6134 	/* flip page offset to other buffer */
6135 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6136 
6137 	/* since we are the only owner of the page and we need to
6138 	 * increment it, just set the value to 2 in order to avoid
6139 	 * an unnecessary locked operation
6140 	 */
6141 	atomic_set(&page->_count, 2);
6142 #else
6143 	/* move offset up to the next cache line */
6144 	rx_buffer->page_offset += truesize;
6145 
6146 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6147 		return false;
6148 
6149 	/* bump ref count on page before it is given to the stack */
6150 	get_page(page);
6151 #endif
6152 
6153 	return true;
6154 }
6155 
6156 /**
6157  * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6158  * @rx_ring: rx descriptor ring to transact packets on
6159  * @rx_buffer: buffer containing page to add
6160  * @rx_desc: descriptor containing length of buffer written by hardware
6161  * @skb: sk_buff to place the data into
6162  *
6163  * This function will add the data contained in rx_buffer->page to the skb.
6164  * This is done either through a direct copy if the data in the buffer is
6165  * less than the skb header size, otherwise it will just attach the page as
6166  * a frag to the skb.
6167  *
6168  * The function will then update the page offset if necessary and return
6169  * true if the buffer can be reused by the adapter.
6170  **/
6171 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6172 			    struct igb_rx_buffer *rx_buffer,
6173 			    union e1000_adv_rx_desc *rx_desc,
6174 			    struct sk_buff *skb)
6175 {
6176 	struct page *page = rx_buffer->page;
6177 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6178 #if (PAGE_SIZE < 8192)
6179 	unsigned int truesize = IGB_RX_BUFSZ;
6180 #else
6181 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6182 #endif
6183 
6184 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6185 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6186 
6187 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6188 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6189 			va += IGB_TS_HDR_LEN;
6190 			size -= IGB_TS_HDR_LEN;
6191 		}
6192 
6193 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6194 
6195 		/* we can reuse buffer as-is, just make sure it is local */
6196 		if (likely(page_to_nid(page) == numa_node_id()))
6197 			return true;
6198 
6199 		/* this page cannot be reused so discard it */
6200 		put_page(page);
6201 		return false;
6202 	}
6203 
6204 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6205 			rx_buffer->page_offset, size, truesize);
6206 
6207 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6208 }
6209 
6210 static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
6211 					   union e1000_adv_rx_desc *rx_desc)
6212 {
6213 	struct igb_rx_buffer *rx_buffer;
6214 	struct sk_buff *skb;
6215 	struct page *page;
6216 	void *page_addr;
6217 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6218 #if (PAGE_SIZE < 8192)
6219 	unsigned int truesize = IGB_RX_BUFSZ;
6220 #else
6221 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
6222 				SKB_DATA_ALIGN(NET_SKB_PAD +
6223 					       NET_IP_ALIGN +
6224 					       size);
6225 #endif
6226 
6227 	/* If we spanned a buffer we have a huge mess so test for it */
6228 	BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6229 
6230 	/* Guarantee this function can be used by verifying buffer sizes */
6231 	BUILD_BUG_ON(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) < (NET_SKB_PAD +
6232 							NET_IP_ALIGN +
6233 							IGB_TS_HDR_LEN +
6234 							ETH_FRAME_LEN +
6235 							ETH_FCS_LEN));
6236 
6237 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6238 	page = rx_buffer->page;
6239 	prefetchw(page);
6240 
6241 	page_addr = page_address(page) + rx_buffer->page_offset;
6242 
6243 	/* prefetch first cache line of first page */
6244 	prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
6245 #if L1_CACHE_BYTES < 128
6246 	prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6247 #endif
6248 
6249 	/* build an skb to around the page buffer */
6250 	skb = build_skb(page_addr, truesize);
6251 	if (unlikely(!skb)) {
6252 		rx_ring->rx_stats.alloc_failed++;
6253 		return NULL;
6254 	}
6255 
6256 	/* we are reusing so sync this buffer for CPU use */
6257 	dma_sync_single_range_for_cpu(rx_ring->dev,
6258 				      rx_buffer->dma,
6259 				      rx_buffer->page_offset,
6260 				      IGB_RX_BUFSZ,
6261 				      DMA_FROM_DEVICE);
6262 
6263 	/* update pointers within the skb to store the data */
6264 	skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
6265 	__skb_put(skb, size);
6266 
6267 	/* pull timestamp out of packet data */
6268 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6269 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
6270 		__skb_pull(skb, IGB_TS_HDR_LEN);
6271 	}
6272 
6273 	if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
6274 		/* hand second half of page back to the ring */
6275 		igb_reuse_rx_page(rx_ring, rx_buffer);
6276 	} else {
6277 		/* we are not reusing the buffer so unmap it */
6278 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6279 			       PAGE_SIZE, DMA_FROM_DEVICE);
6280 	}
6281 
6282 	/* clear contents of buffer_info */
6283 	rx_buffer->dma = 0;
6284 	rx_buffer->page = NULL;
6285 
6286 	return skb;
6287 }
6288 
6289 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6290 					   union e1000_adv_rx_desc *rx_desc,
6291 					   struct sk_buff *skb)
6292 {
6293 	struct igb_rx_buffer *rx_buffer;
6294 	struct page *page;
6295 
6296 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6297 
6298 	page = rx_buffer->page;
6299 	prefetchw(page);
6300 
6301 	if (likely(!skb)) {
6302 		void *page_addr = page_address(page) +
6303 				  rx_buffer->page_offset;
6304 
6305 		/* prefetch first cache line of first page */
6306 		prefetch(page_addr);
6307 #if L1_CACHE_BYTES < 128
6308 		prefetch(page_addr + L1_CACHE_BYTES);
6309 #endif
6310 
6311 		/* allocate a skb to store the frags */
6312 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6313 						IGB_RX_HDR_LEN);
6314 		if (unlikely(!skb)) {
6315 			rx_ring->rx_stats.alloc_failed++;
6316 			return NULL;
6317 		}
6318 
6319 		/*
6320 		 * we will be copying header into skb->data in
6321 		 * pskb_may_pull so it is in our interest to prefetch
6322 		 * it now to avoid a possible cache miss
6323 		 */
6324 		prefetchw(skb->data);
6325 	}
6326 
6327 	/* we are reusing so sync this buffer for CPU use */
6328 	dma_sync_single_range_for_cpu(rx_ring->dev,
6329 				      rx_buffer->dma,
6330 				      rx_buffer->page_offset,
6331 				      IGB_RX_BUFSZ,
6332 				      DMA_FROM_DEVICE);
6333 
6334 	/* pull page into skb */
6335 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6336 		/* hand second half of page back to the ring */
6337 		igb_reuse_rx_page(rx_ring, rx_buffer);
6338 	} else {
6339 		/* we are not reusing the buffer so unmap it */
6340 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6341 			       PAGE_SIZE, DMA_FROM_DEVICE);
6342 	}
6343 
6344 	/* clear contents of rx_buffer */
6345 	rx_buffer->page = NULL;
6346 
6347 	return skb;
6348 }
6349 
6350 static inline void igb_rx_checksum(struct igb_ring *ring,
6351 				   union e1000_adv_rx_desc *rx_desc,
6352 				   struct sk_buff *skb)
6353 {
6354 	skb_checksum_none_assert(skb);
6355 
6356 	/* Ignore Checksum bit is set */
6357 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6358 		return;
6359 
6360 	/* Rx checksum disabled via ethtool */
6361 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6362 		return;
6363 
6364 	/* TCP/UDP checksum error bit is set */
6365 	if (igb_test_staterr(rx_desc,
6366 			     E1000_RXDEXT_STATERR_TCPE |
6367 			     E1000_RXDEXT_STATERR_IPE)) {
6368 		/*
6369 		 * work around errata with sctp packets where the TCPE aka
6370 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6371 		 * packets, (aka let the stack check the crc32c)
6372 		 */
6373 		if (!((skb->len == 60) &&
6374 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6375 			u64_stats_update_begin(&ring->rx_syncp);
6376 			ring->rx_stats.csum_err++;
6377 			u64_stats_update_end(&ring->rx_syncp);
6378 		}
6379 		/* let the stack verify checksum errors */
6380 		return;
6381 	}
6382 	/* It must be a TCP or UDP packet with a valid checksum */
6383 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6384 				      E1000_RXD_STAT_UDPCS))
6385 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6386 
6387 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6388 		le32_to_cpu(rx_desc->wb.upper.status_error));
6389 }
6390 
6391 static inline void igb_rx_hash(struct igb_ring *ring,
6392 			       union e1000_adv_rx_desc *rx_desc,
6393 			       struct sk_buff *skb)
6394 {
6395 	if (ring->netdev->features & NETIF_F_RXHASH)
6396 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6397 }
6398 
6399 /**
6400  * igb_is_non_eop - process handling of non-EOP buffers
6401  * @rx_ring: Rx ring being processed
6402  * @rx_desc: Rx descriptor for current buffer
6403  * @skb: current socket buffer containing buffer in progress
6404  *
6405  * This function updates next to clean.  If the buffer is an EOP buffer
6406  * this function exits returning false, otherwise it will place the
6407  * sk_buff in the next buffer to be chained and return true indicating
6408  * that this is in fact a non-EOP buffer.
6409  **/
6410 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6411 			   union e1000_adv_rx_desc *rx_desc)
6412 {
6413 	u32 ntc = rx_ring->next_to_clean + 1;
6414 
6415 	/* fetch, update, and store next to clean */
6416 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6417 	rx_ring->next_to_clean = ntc;
6418 
6419 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6420 
6421 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6422 		return false;
6423 
6424 	return true;
6425 }
6426 
6427 /**
6428  * igb_get_headlen - determine size of header for LRO/GRO
6429  * @data: pointer to the start of the headers
6430  * @max_len: total length of section to find headers in
6431  *
6432  * This function is meant to determine the length of headers that will
6433  * be recognized by hardware for LRO, and GRO offloads.  The main
6434  * motivation of doing this is to only perform one pull for IPv4 TCP
6435  * packets so that we can do basic things like calculating the gso_size
6436  * based on the average data per packet.
6437  **/
6438 static unsigned int igb_get_headlen(unsigned char *data,
6439 				    unsigned int max_len)
6440 {
6441 	union {
6442 		unsigned char *network;
6443 		/* l2 headers */
6444 		struct ethhdr *eth;
6445 		struct vlan_hdr *vlan;
6446 		/* l3 headers */
6447 		struct iphdr *ipv4;
6448 		struct ipv6hdr *ipv6;
6449 	} hdr;
6450 	__be16 protocol;
6451 	u8 nexthdr = 0;	/* default to not TCP */
6452 	u8 hlen;
6453 
6454 	/* this should never happen, but better safe than sorry */
6455 	if (max_len < ETH_HLEN)
6456 		return max_len;
6457 
6458 	/* initialize network frame pointer */
6459 	hdr.network = data;
6460 
6461 	/* set first protocol and move network header forward */
6462 	protocol = hdr.eth->h_proto;
6463 	hdr.network += ETH_HLEN;
6464 
6465 	/* handle any vlan tag if present */
6466 	if (protocol == __constant_htons(ETH_P_8021Q)) {
6467 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6468 			return max_len;
6469 
6470 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6471 		hdr.network += VLAN_HLEN;
6472 	}
6473 
6474 	/* handle L3 protocols */
6475 	if (protocol == __constant_htons(ETH_P_IP)) {
6476 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6477 			return max_len;
6478 
6479 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6480 		hlen = (hdr.network[0] & 0x0F) << 2;
6481 
6482 		/* verify hlen meets minimum size requirements */
6483 		if (hlen < sizeof(struct iphdr))
6484 			return hdr.network - data;
6485 
6486 		/* record next protocol if header is present */
6487 		if (!hdr.ipv4->frag_off)
6488 			nexthdr = hdr.ipv4->protocol;
6489 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6490 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6491 			return max_len;
6492 
6493 		/* record next protocol */
6494 		nexthdr = hdr.ipv6->nexthdr;
6495 		hlen = sizeof(struct ipv6hdr);
6496 	} else {
6497 		return hdr.network - data;
6498 	}
6499 
6500 	/* relocate pointer to start of L4 header */
6501 	hdr.network += hlen;
6502 
6503 	/* finally sort out TCP */
6504 	if (nexthdr == IPPROTO_TCP) {
6505 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6506 			return max_len;
6507 
6508 		/* access doff as a u8 to avoid unaligned access on ia64 */
6509 		hlen = (hdr.network[12] & 0xF0) >> 2;
6510 
6511 		/* verify hlen meets minimum size requirements */
6512 		if (hlen < sizeof(struct tcphdr))
6513 			return hdr.network - data;
6514 
6515 		hdr.network += hlen;
6516 	} else if (nexthdr == IPPROTO_UDP) {
6517 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6518 			return max_len;
6519 
6520 		hdr.network += sizeof(struct udphdr);
6521 	}
6522 
6523 	/*
6524 	 * If everything has gone correctly hdr.network should be the
6525 	 * data section of the packet and will be the end of the header.
6526 	 * If not then it probably represents the end of the last recognized
6527 	 * header.
6528 	 */
6529 	if ((hdr.network - data) < max_len)
6530 		return hdr.network - data;
6531 	else
6532 		return max_len;
6533 }
6534 
6535 /**
6536  * igb_pull_tail - igb specific version of skb_pull_tail
6537  * @rx_ring: rx descriptor ring packet is being transacted on
6538  * @rx_desc: pointer to the EOP Rx descriptor
6539  * @skb: pointer to current skb being adjusted
6540  *
6541  * This function is an igb specific version of __pskb_pull_tail.  The
6542  * main difference between this version and the original function is that
6543  * this function can make several assumptions about the state of things
6544  * that allow for significant optimizations versus the standard function.
6545  * As a result we can do things like drop a frag and maintain an accurate
6546  * truesize for the skb.
6547  */
6548 static void igb_pull_tail(struct igb_ring *rx_ring,
6549 			  union e1000_adv_rx_desc *rx_desc,
6550 			  struct sk_buff *skb)
6551 {
6552 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6553 	unsigned char *va;
6554 	unsigned int pull_len;
6555 
6556 	/*
6557 	 * it is valid to use page_address instead of kmap since we are
6558 	 * working with pages allocated out of the lomem pool per
6559 	 * alloc_page(GFP_ATOMIC)
6560 	 */
6561 	va = skb_frag_address(frag);
6562 
6563 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6564 		/* retrieve timestamp from buffer */
6565 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6566 
6567 		/* update pointers to remove timestamp header */
6568 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6569 		frag->page_offset += IGB_TS_HDR_LEN;
6570 		skb->data_len -= IGB_TS_HDR_LEN;
6571 		skb->len -= IGB_TS_HDR_LEN;
6572 
6573 		/* move va to start of packet data */
6574 		va += IGB_TS_HDR_LEN;
6575 	}
6576 
6577 	/*
6578 	 * we need the header to contain the greater of either ETH_HLEN or
6579 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6580 	 */
6581 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6582 
6583 	/* align pull length to size of long to optimize memcpy performance */
6584 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6585 
6586 	/* update all of the pointers */
6587 	skb_frag_size_sub(frag, pull_len);
6588 	frag->page_offset += pull_len;
6589 	skb->data_len -= pull_len;
6590 	skb->tail += pull_len;
6591 }
6592 
6593 /**
6594  * igb_cleanup_headers - Correct corrupted or empty headers
6595  * @rx_ring: rx descriptor ring packet is being transacted on
6596  * @rx_desc: pointer to the EOP Rx descriptor
6597  * @skb: pointer to current skb being fixed
6598  *
6599  * Address the case where we are pulling data in on pages only
6600  * and as such no data is present in the skb header.
6601  *
6602  * In addition if skb is not at least 60 bytes we need to pad it so that
6603  * it is large enough to qualify as a valid Ethernet frame.
6604  *
6605  * Returns true if an error was encountered and skb was freed.
6606  **/
6607 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6608 				union e1000_adv_rx_desc *rx_desc,
6609 				struct sk_buff *skb)
6610 {
6611 
6612 	if (unlikely((igb_test_staterr(rx_desc,
6613 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6614 		struct net_device *netdev = rx_ring->netdev;
6615 		if (!(netdev->features & NETIF_F_RXALL)) {
6616 			dev_kfree_skb_any(skb);
6617 			return true;
6618 		}
6619 	}
6620 
6621 	/* place header in linear portion of buffer */
6622 	if (skb_is_nonlinear(skb))
6623 		igb_pull_tail(rx_ring, rx_desc, skb);
6624 
6625 	/* if skb_pad returns an error the skb was freed */
6626 	if (unlikely(skb->len < 60)) {
6627 		int pad_len = 60 - skb->len;
6628 
6629 		if (skb_pad(skb, pad_len))
6630 			return true;
6631 		__skb_put(skb, pad_len);
6632 	}
6633 
6634 	return false;
6635 }
6636 
6637 /**
6638  * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6639  * @rx_ring: rx descriptor ring packet is being transacted on
6640  * @rx_desc: pointer to the EOP Rx descriptor
6641  * @skb: pointer to current skb being populated
6642  *
6643  * This function checks the ring, descriptor, and packet information in
6644  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6645  * other fields within the skb.
6646  **/
6647 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6648 				   union e1000_adv_rx_desc *rx_desc,
6649 				   struct sk_buff *skb)
6650 {
6651 	struct net_device *dev = rx_ring->netdev;
6652 
6653 	igb_rx_hash(rx_ring, rx_desc, skb);
6654 
6655 	igb_rx_checksum(rx_ring, rx_desc, skb);
6656 
6657 	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6658 
6659 	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6660 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6661 		u16 vid;
6662 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6663 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6664 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6665 		else
6666 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6667 
6668 		__vlan_hwaccel_put_tag(skb, vid);
6669 	}
6670 
6671 	skb_record_rx_queue(skb, rx_ring->queue_index);
6672 
6673 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6674 }
6675 
6676 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6677 {
6678 	struct igb_ring *rx_ring = q_vector->rx.ring;
6679 	struct sk_buff *skb = rx_ring->skb;
6680 	unsigned int total_bytes = 0, total_packets = 0;
6681 	u16 cleaned_count = igb_desc_unused(rx_ring);
6682 
6683 	do {
6684 		union e1000_adv_rx_desc *rx_desc;
6685 
6686 		/* return some buffers to hardware, one at a time is too slow */
6687 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6688 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6689 			cleaned_count = 0;
6690 		}
6691 
6692 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6693 
6694 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6695 			break;
6696 
6697 		/* This memory barrier is needed to keep us from reading
6698 		 * any other fields out of the rx_desc until we know the
6699 		 * RXD_STAT_DD bit is set
6700 		 */
6701 		rmb();
6702 
6703 		/* retrieve a buffer from the ring */
6704 		if (ring_uses_build_skb(rx_ring))
6705 			skb = igb_build_rx_buffer(rx_ring, rx_desc);
6706 		else
6707 			skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6708 
6709 		/* exit if we failed to retrieve a buffer */
6710 		if (!skb)
6711 			break;
6712 
6713 		cleaned_count++;
6714 
6715 		/* fetch next buffer in frame if non-eop */
6716 		if (igb_is_non_eop(rx_ring, rx_desc))
6717 			continue;
6718 
6719 		/* verify the packet layout is correct */
6720 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6721 			skb = NULL;
6722 			continue;
6723 		}
6724 
6725 		/* probably a little skewed due to removing CRC */
6726 		total_bytes += skb->len;
6727 
6728 		/* populate checksum, timestamp, VLAN, and protocol */
6729 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6730 
6731 		napi_gro_receive(&q_vector->napi, skb);
6732 
6733 		/* reset skb pointer */
6734 		skb = NULL;
6735 
6736 		/* update budget accounting */
6737 		total_packets++;
6738 	} while (likely(total_packets < budget));
6739 
6740 	/* place incomplete frames back on ring for completion */
6741 	rx_ring->skb = skb;
6742 
6743 	u64_stats_update_begin(&rx_ring->rx_syncp);
6744 	rx_ring->rx_stats.packets += total_packets;
6745 	rx_ring->rx_stats.bytes += total_bytes;
6746 	u64_stats_update_end(&rx_ring->rx_syncp);
6747 	q_vector->rx.total_packets += total_packets;
6748 	q_vector->rx.total_bytes += total_bytes;
6749 
6750 	if (cleaned_count)
6751 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6752 
6753 	return (total_packets < budget);
6754 }
6755 
6756 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6757 				  struct igb_rx_buffer *bi)
6758 {
6759 	struct page *page = bi->page;
6760 	dma_addr_t dma;
6761 
6762 	/* since we are recycling buffers we should seldom need to alloc */
6763 	if (likely(page))
6764 		return true;
6765 
6766 	/* alloc new page for storage */
6767 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6768 	if (unlikely(!page)) {
6769 		rx_ring->rx_stats.alloc_failed++;
6770 		return false;
6771 	}
6772 
6773 	/* map page for use */
6774 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6775 
6776 	/*
6777 	 * if mapping failed free memory back to system since
6778 	 * there isn't much point in holding memory we can't use
6779 	 */
6780 	if (dma_mapping_error(rx_ring->dev, dma)) {
6781 		__free_page(page);
6782 
6783 		rx_ring->rx_stats.alloc_failed++;
6784 		return false;
6785 	}
6786 
6787 	bi->dma = dma;
6788 	bi->page = page;
6789 	bi->page_offset = 0;
6790 
6791 	return true;
6792 }
6793 
6794 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
6795 {
6796 	if (ring_uses_build_skb(rx_ring))
6797 		return NET_SKB_PAD + NET_IP_ALIGN;
6798 	else
6799 		return 0;
6800 }
6801 
6802 /**
6803  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6804  * @adapter: address of board private structure
6805  **/
6806 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6807 {
6808 	union e1000_adv_rx_desc *rx_desc;
6809 	struct igb_rx_buffer *bi;
6810 	u16 i = rx_ring->next_to_use;
6811 
6812 	/* nothing to do */
6813 	if (!cleaned_count)
6814 		return;
6815 
6816 	rx_desc = IGB_RX_DESC(rx_ring, i);
6817 	bi = &rx_ring->rx_buffer_info[i];
6818 	i -= rx_ring->count;
6819 
6820 	do {
6821 		if (!igb_alloc_mapped_page(rx_ring, bi))
6822 			break;
6823 
6824 		/*
6825 		 * Refresh the desc even if buffer_addrs didn't change
6826 		 * because each write-back erases this info.
6827 		 */
6828 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
6829 						     bi->page_offset +
6830 						     igb_rx_offset(rx_ring));
6831 
6832 		rx_desc++;
6833 		bi++;
6834 		i++;
6835 		if (unlikely(!i)) {
6836 			rx_desc = IGB_RX_DESC(rx_ring, 0);
6837 			bi = rx_ring->rx_buffer_info;
6838 			i -= rx_ring->count;
6839 		}
6840 
6841 		/* clear the hdr_addr for the next_to_use descriptor */
6842 		rx_desc->read.hdr_addr = 0;
6843 
6844 		cleaned_count--;
6845 	} while (cleaned_count);
6846 
6847 	i += rx_ring->count;
6848 
6849 	if (rx_ring->next_to_use != i) {
6850 		/* record the next descriptor to use */
6851 		rx_ring->next_to_use = i;
6852 
6853 		/* update next to alloc since we have filled the ring */
6854 		rx_ring->next_to_alloc = i;
6855 
6856 		/*
6857 		 * Force memory writes to complete before letting h/w
6858 		 * know there are new descriptors to fetch.  (Only
6859 		 * applicable for weak-ordered memory model archs,
6860 		 * such as IA-64).
6861 		 */
6862 		wmb();
6863 		writel(i, rx_ring->tail);
6864 	}
6865 }
6866 
6867 /**
6868  * igb_mii_ioctl -
6869  * @netdev:
6870  * @ifreq:
6871  * @cmd:
6872  **/
6873 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6874 {
6875 	struct igb_adapter *adapter = netdev_priv(netdev);
6876 	struct mii_ioctl_data *data = if_mii(ifr);
6877 
6878 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6879 		return -EOPNOTSUPP;
6880 
6881 	switch (cmd) {
6882 	case SIOCGMIIPHY:
6883 		data->phy_id = adapter->hw.phy.addr;
6884 		break;
6885 	case SIOCGMIIREG:
6886 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6887 		                     &data->val_out))
6888 			return -EIO;
6889 		break;
6890 	case SIOCSMIIREG:
6891 	default:
6892 		return -EOPNOTSUPP;
6893 	}
6894 	return 0;
6895 }
6896 
6897 /**
6898  * igb_ioctl -
6899  * @netdev:
6900  * @ifreq:
6901  * @cmd:
6902  **/
6903 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6904 {
6905 	switch (cmd) {
6906 	case SIOCGMIIPHY:
6907 	case SIOCGMIIREG:
6908 	case SIOCSMIIREG:
6909 		return igb_mii_ioctl(netdev, ifr, cmd);
6910 	case SIOCSHWTSTAMP:
6911 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6912 	default:
6913 		return -EOPNOTSUPP;
6914 	}
6915 }
6916 
6917 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6918 {
6919 	struct igb_adapter *adapter = hw->back;
6920 
6921 	if (pcie_capability_read_word(adapter->pdev, reg, value))
6922 		return -E1000_ERR_CONFIG;
6923 
6924 	return 0;
6925 }
6926 
6927 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6928 {
6929 	struct igb_adapter *adapter = hw->back;
6930 
6931 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6932 		return -E1000_ERR_CONFIG;
6933 
6934 	return 0;
6935 }
6936 
6937 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6938 {
6939 	struct igb_adapter *adapter = netdev_priv(netdev);
6940 	struct e1000_hw *hw = &adapter->hw;
6941 	u32 ctrl, rctl;
6942 	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6943 
6944 	if (enable) {
6945 		/* enable VLAN tag insert/strip */
6946 		ctrl = rd32(E1000_CTRL);
6947 		ctrl |= E1000_CTRL_VME;
6948 		wr32(E1000_CTRL, ctrl);
6949 
6950 		/* Disable CFI check */
6951 		rctl = rd32(E1000_RCTL);
6952 		rctl &= ~E1000_RCTL_CFIEN;
6953 		wr32(E1000_RCTL, rctl);
6954 	} else {
6955 		/* disable VLAN tag insert/strip */
6956 		ctrl = rd32(E1000_CTRL);
6957 		ctrl &= ~E1000_CTRL_VME;
6958 		wr32(E1000_CTRL, ctrl);
6959 	}
6960 
6961 	igb_rlpml_set(adapter);
6962 }
6963 
6964 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6965 {
6966 	struct igb_adapter *adapter = netdev_priv(netdev);
6967 	struct e1000_hw *hw = &adapter->hw;
6968 	int pf_id = adapter->vfs_allocated_count;
6969 
6970 	/* attempt to add filter to vlvf array */
6971 	igb_vlvf_set(adapter, vid, true, pf_id);
6972 
6973 	/* add the filter since PF can receive vlans w/o entry in vlvf */
6974 	igb_vfta_set(hw, vid, true);
6975 
6976 	set_bit(vid, adapter->active_vlans);
6977 
6978 	return 0;
6979 }
6980 
6981 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6982 {
6983 	struct igb_adapter *adapter = netdev_priv(netdev);
6984 	struct e1000_hw *hw = &adapter->hw;
6985 	int pf_id = adapter->vfs_allocated_count;
6986 	s32 err;
6987 
6988 	/* remove vlan from VLVF table array */
6989 	err = igb_vlvf_set(adapter, vid, false, pf_id);
6990 
6991 	/* if vid was not present in VLVF just remove it from table */
6992 	if (err)
6993 		igb_vfta_set(hw, vid, false);
6994 
6995 	clear_bit(vid, adapter->active_vlans);
6996 
6997 	return 0;
6998 }
6999 
7000 static void igb_restore_vlan(struct igb_adapter *adapter)
7001 {
7002 	u16 vid;
7003 
7004 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7005 
7006 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7007 		igb_vlan_rx_add_vid(adapter->netdev, vid);
7008 }
7009 
7010 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7011 {
7012 	struct pci_dev *pdev = adapter->pdev;
7013 	struct e1000_mac_info *mac = &adapter->hw.mac;
7014 
7015 	mac->autoneg = 0;
7016 
7017 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7018 	 * for the switch() below to work */
7019 	if ((spd & 1) || (dplx & ~1))
7020 		goto err_inval;
7021 
7022 	/* Fiber NIC's only allow 1000 Gbps Full duplex */
7023 	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
7024 	    spd != SPEED_1000 &&
7025 	    dplx != DUPLEX_FULL)
7026 		goto err_inval;
7027 
7028 	switch (spd + dplx) {
7029 	case SPEED_10 + DUPLEX_HALF:
7030 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7031 		break;
7032 	case SPEED_10 + DUPLEX_FULL:
7033 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7034 		break;
7035 	case SPEED_100 + DUPLEX_HALF:
7036 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7037 		break;
7038 	case SPEED_100 + DUPLEX_FULL:
7039 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7040 		break;
7041 	case SPEED_1000 + DUPLEX_FULL:
7042 		mac->autoneg = 1;
7043 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7044 		break;
7045 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7046 	default:
7047 		goto err_inval;
7048 	}
7049 
7050 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7051 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7052 
7053 	return 0;
7054 
7055 err_inval:
7056 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7057 	return -EINVAL;
7058 }
7059 
7060 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7061 			  bool runtime)
7062 {
7063 	struct net_device *netdev = pci_get_drvdata(pdev);
7064 	struct igb_adapter *adapter = netdev_priv(netdev);
7065 	struct e1000_hw *hw = &adapter->hw;
7066 	u32 ctrl, rctl, status;
7067 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7068 #ifdef CONFIG_PM
7069 	int retval = 0;
7070 #endif
7071 
7072 	netif_device_detach(netdev);
7073 
7074 	if (netif_running(netdev))
7075 		__igb_close(netdev, true);
7076 
7077 	igb_clear_interrupt_scheme(adapter);
7078 
7079 #ifdef CONFIG_PM
7080 	retval = pci_save_state(pdev);
7081 	if (retval)
7082 		return retval;
7083 #endif
7084 
7085 	status = rd32(E1000_STATUS);
7086 	if (status & E1000_STATUS_LU)
7087 		wufc &= ~E1000_WUFC_LNKC;
7088 
7089 	if (wufc) {
7090 		igb_setup_rctl(adapter);
7091 		igb_set_rx_mode(netdev);
7092 
7093 		/* turn on all-multi mode if wake on multicast is enabled */
7094 		if (wufc & E1000_WUFC_MC) {
7095 			rctl = rd32(E1000_RCTL);
7096 			rctl |= E1000_RCTL_MPE;
7097 			wr32(E1000_RCTL, rctl);
7098 		}
7099 
7100 		ctrl = rd32(E1000_CTRL);
7101 		/* advertise wake from D3Cold */
7102 		#define E1000_CTRL_ADVD3WUC 0x00100000
7103 		/* phy power management enable */
7104 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7105 		ctrl |= E1000_CTRL_ADVD3WUC;
7106 		wr32(E1000_CTRL, ctrl);
7107 
7108 		/* Allow time for pending master requests to run */
7109 		igb_disable_pcie_master(hw);
7110 
7111 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7112 		wr32(E1000_WUFC, wufc);
7113 	} else {
7114 		wr32(E1000_WUC, 0);
7115 		wr32(E1000_WUFC, 0);
7116 	}
7117 
7118 	*enable_wake = wufc || adapter->en_mng_pt;
7119 	if (!*enable_wake)
7120 		igb_power_down_link(adapter);
7121 	else
7122 		igb_power_up_link(adapter);
7123 
7124 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7125 	 * would have already happened in close and is redundant. */
7126 	igb_release_hw_control(adapter);
7127 
7128 	pci_disable_device(pdev);
7129 
7130 	return 0;
7131 }
7132 
7133 #ifdef CONFIG_PM
7134 #ifdef CONFIG_PM_SLEEP
7135 static int igb_suspend(struct device *dev)
7136 {
7137 	int retval;
7138 	bool wake;
7139 	struct pci_dev *pdev = to_pci_dev(dev);
7140 
7141 	retval = __igb_shutdown(pdev, &wake, 0);
7142 	if (retval)
7143 		return retval;
7144 
7145 	if (wake) {
7146 		pci_prepare_to_sleep(pdev);
7147 	} else {
7148 		pci_wake_from_d3(pdev, false);
7149 		pci_set_power_state(pdev, PCI_D3hot);
7150 	}
7151 
7152 	return 0;
7153 }
7154 #endif /* CONFIG_PM_SLEEP */
7155 
7156 static int igb_resume(struct device *dev)
7157 {
7158 	struct pci_dev *pdev = to_pci_dev(dev);
7159 	struct net_device *netdev = pci_get_drvdata(pdev);
7160 	struct igb_adapter *adapter = netdev_priv(netdev);
7161 	struct e1000_hw *hw = &adapter->hw;
7162 	u32 err;
7163 
7164 	pci_set_power_state(pdev, PCI_D0);
7165 	pci_restore_state(pdev);
7166 	pci_save_state(pdev);
7167 
7168 	err = pci_enable_device_mem(pdev);
7169 	if (err) {
7170 		dev_err(&pdev->dev,
7171 			"igb: Cannot enable PCI device from suspend\n");
7172 		return err;
7173 	}
7174 	pci_set_master(pdev);
7175 
7176 	pci_enable_wake(pdev, PCI_D3hot, 0);
7177 	pci_enable_wake(pdev, PCI_D3cold, 0);
7178 
7179 	if (igb_init_interrupt_scheme(adapter, true)) {
7180 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7181 		return -ENOMEM;
7182 	}
7183 
7184 	igb_reset(adapter);
7185 
7186 	/* let the f/w know that the h/w is now under the control of the
7187 	 * driver. */
7188 	igb_get_hw_control(adapter);
7189 
7190 	wr32(E1000_WUS, ~0);
7191 
7192 	if (netdev->flags & IFF_UP) {
7193 		rtnl_lock();
7194 		err = __igb_open(netdev, true);
7195 		rtnl_unlock();
7196 		if (err)
7197 			return err;
7198 	}
7199 
7200 	netif_device_attach(netdev);
7201 	return 0;
7202 }
7203 
7204 #ifdef CONFIG_PM_RUNTIME
7205 static int igb_runtime_idle(struct device *dev)
7206 {
7207 	struct pci_dev *pdev = to_pci_dev(dev);
7208 	struct net_device *netdev = pci_get_drvdata(pdev);
7209 	struct igb_adapter *adapter = netdev_priv(netdev);
7210 
7211 	if (!igb_has_link(adapter))
7212 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7213 
7214 	return -EBUSY;
7215 }
7216 
7217 static int igb_runtime_suspend(struct device *dev)
7218 {
7219 	struct pci_dev *pdev = to_pci_dev(dev);
7220 	int retval;
7221 	bool wake;
7222 
7223 	retval = __igb_shutdown(pdev, &wake, 1);
7224 	if (retval)
7225 		return retval;
7226 
7227 	if (wake) {
7228 		pci_prepare_to_sleep(pdev);
7229 	} else {
7230 		pci_wake_from_d3(pdev, false);
7231 		pci_set_power_state(pdev, PCI_D3hot);
7232 	}
7233 
7234 	return 0;
7235 }
7236 
7237 static int igb_runtime_resume(struct device *dev)
7238 {
7239 	return igb_resume(dev);
7240 }
7241 #endif /* CONFIG_PM_RUNTIME */
7242 #endif
7243 
7244 static void igb_shutdown(struct pci_dev *pdev)
7245 {
7246 	bool wake;
7247 
7248 	__igb_shutdown(pdev, &wake, 0);
7249 
7250 	if (system_state == SYSTEM_POWER_OFF) {
7251 		pci_wake_from_d3(pdev, wake);
7252 		pci_set_power_state(pdev, PCI_D3hot);
7253 	}
7254 }
7255 
7256 #ifdef CONFIG_PCI_IOV
7257 static int igb_sriov_reinit(struct pci_dev *dev)
7258 {
7259 	struct net_device *netdev = pci_get_drvdata(dev);
7260 	struct igb_adapter *adapter = netdev_priv(netdev);
7261 	struct pci_dev *pdev = adapter->pdev;
7262 
7263 	rtnl_lock();
7264 
7265 	if (netif_running(netdev))
7266 		igb_close(netdev);
7267 
7268 	igb_clear_interrupt_scheme(adapter);
7269 
7270 	igb_init_queue_configuration(adapter);
7271 
7272 	if (igb_init_interrupt_scheme(adapter, true)) {
7273 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7274 		return -ENOMEM;
7275 	}
7276 
7277 	if (netif_running(netdev))
7278 		igb_open(netdev);
7279 
7280 	rtnl_unlock();
7281 
7282 	return 0;
7283 }
7284 
7285 static int igb_pci_disable_sriov(struct pci_dev *dev)
7286 {
7287 	int err = igb_disable_sriov(dev);
7288 
7289 	if (!err)
7290 		err = igb_sriov_reinit(dev);
7291 
7292 	return err;
7293 }
7294 
7295 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7296 {
7297 	int err = igb_enable_sriov(dev, num_vfs);
7298 
7299 	if (err)
7300 		goto out;
7301 
7302 	err = igb_sriov_reinit(dev);
7303 	if (!err)
7304 		return num_vfs;
7305 
7306 out:
7307 	return err;
7308 }
7309 
7310 #endif
7311 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7312 {
7313 #ifdef CONFIG_PCI_IOV
7314 	if (num_vfs == 0)
7315 		return igb_pci_disable_sriov(dev);
7316 	else
7317 		return igb_pci_enable_sriov(dev, num_vfs);
7318 #endif
7319 	return 0;
7320 }
7321 
7322 #ifdef CONFIG_NET_POLL_CONTROLLER
7323 /*
7324  * Polling 'interrupt' - used by things like netconsole to send skbs
7325  * without having to re-enable interrupts. It's not called while
7326  * the interrupt routine is executing.
7327  */
7328 static void igb_netpoll(struct net_device *netdev)
7329 {
7330 	struct igb_adapter *adapter = netdev_priv(netdev);
7331 	struct e1000_hw *hw = &adapter->hw;
7332 	struct igb_q_vector *q_vector;
7333 	int i;
7334 
7335 	for (i = 0; i < adapter->num_q_vectors; i++) {
7336 		q_vector = adapter->q_vector[i];
7337 		if (adapter->msix_entries)
7338 			wr32(E1000_EIMC, q_vector->eims_value);
7339 		else
7340 			igb_irq_disable(adapter);
7341 		napi_schedule(&q_vector->napi);
7342 	}
7343 }
7344 #endif /* CONFIG_NET_POLL_CONTROLLER */
7345 
7346 /**
7347  * igb_io_error_detected - called when PCI error is detected
7348  * @pdev: Pointer to PCI device
7349  * @state: The current pci connection state
7350  *
7351  * This function is called after a PCI bus error affecting
7352  * this device has been detected.
7353  */
7354 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7355 					      pci_channel_state_t state)
7356 {
7357 	struct net_device *netdev = pci_get_drvdata(pdev);
7358 	struct igb_adapter *adapter = netdev_priv(netdev);
7359 
7360 	netif_device_detach(netdev);
7361 
7362 	if (state == pci_channel_io_perm_failure)
7363 		return PCI_ERS_RESULT_DISCONNECT;
7364 
7365 	if (netif_running(netdev))
7366 		igb_down(adapter);
7367 	pci_disable_device(pdev);
7368 
7369 	/* Request a slot slot reset. */
7370 	return PCI_ERS_RESULT_NEED_RESET;
7371 }
7372 
7373 /**
7374  * igb_io_slot_reset - called after the pci bus has been reset.
7375  * @pdev: Pointer to PCI device
7376  *
7377  * Restart the card from scratch, as if from a cold-boot. Implementation
7378  * resembles the first-half of the igb_resume routine.
7379  */
7380 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7381 {
7382 	struct net_device *netdev = pci_get_drvdata(pdev);
7383 	struct igb_adapter *adapter = netdev_priv(netdev);
7384 	struct e1000_hw *hw = &adapter->hw;
7385 	pci_ers_result_t result;
7386 	int err;
7387 
7388 	if (pci_enable_device_mem(pdev)) {
7389 		dev_err(&pdev->dev,
7390 			"Cannot re-enable PCI device after reset.\n");
7391 		result = PCI_ERS_RESULT_DISCONNECT;
7392 	} else {
7393 		pci_set_master(pdev);
7394 		pci_restore_state(pdev);
7395 		pci_save_state(pdev);
7396 
7397 		pci_enable_wake(pdev, PCI_D3hot, 0);
7398 		pci_enable_wake(pdev, PCI_D3cold, 0);
7399 
7400 		igb_reset(adapter);
7401 		wr32(E1000_WUS, ~0);
7402 		result = PCI_ERS_RESULT_RECOVERED;
7403 	}
7404 
7405 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7406 	if (err) {
7407 		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7408 		        "failed 0x%0x\n", err);
7409 		/* non-fatal, continue */
7410 	}
7411 
7412 	return result;
7413 }
7414 
7415 /**
7416  * igb_io_resume - called when traffic can start flowing again.
7417  * @pdev: Pointer to PCI device
7418  *
7419  * This callback is called when the error recovery driver tells us that
7420  * its OK to resume normal operation. Implementation resembles the
7421  * second-half of the igb_resume routine.
7422  */
7423 static void igb_io_resume(struct pci_dev *pdev)
7424 {
7425 	struct net_device *netdev = pci_get_drvdata(pdev);
7426 	struct igb_adapter *adapter = netdev_priv(netdev);
7427 
7428 	if (netif_running(netdev)) {
7429 		if (igb_up(adapter)) {
7430 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7431 			return;
7432 		}
7433 	}
7434 
7435 	netif_device_attach(netdev);
7436 
7437 	/* let the f/w know that the h/w is now under the control of the
7438 	 * driver. */
7439 	igb_get_hw_control(adapter);
7440 }
7441 
7442 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7443                              u8 qsel)
7444 {
7445 	u32 rar_low, rar_high;
7446 	struct e1000_hw *hw = &adapter->hw;
7447 
7448 	/* HW expects these in little endian so we reverse the byte order
7449 	 * from network order (big endian) to little endian
7450 	 */
7451 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7452 	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7453 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7454 
7455 	/* Indicate to hardware the Address is Valid. */
7456 	rar_high |= E1000_RAH_AV;
7457 
7458 	if (hw->mac.type == e1000_82575)
7459 		rar_high |= E1000_RAH_POOL_1 * qsel;
7460 	else
7461 		rar_high |= E1000_RAH_POOL_1 << qsel;
7462 
7463 	wr32(E1000_RAL(index), rar_low);
7464 	wrfl();
7465 	wr32(E1000_RAH(index), rar_high);
7466 	wrfl();
7467 }
7468 
7469 static int igb_set_vf_mac(struct igb_adapter *adapter,
7470                           int vf, unsigned char *mac_addr)
7471 {
7472 	struct e1000_hw *hw = &adapter->hw;
7473 	/* VF MAC addresses start at end of receive addresses and moves
7474 	 * torwards the first, as a result a collision should not be possible */
7475 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7476 
7477 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7478 
7479 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7480 
7481 	return 0;
7482 }
7483 
7484 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7485 {
7486 	struct igb_adapter *adapter = netdev_priv(netdev);
7487 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7488 		return -EINVAL;
7489 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7490 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7491 	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7492 				      " change effective.");
7493 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7494 		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7495 			 " but the PF device is not up.\n");
7496 		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7497 			 " attempting to use the VF device.\n");
7498 	}
7499 	return igb_set_vf_mac(adapter, vf, mac);
7500 }
7501 
7502 static int igb_link_mbps(int internal_link_speed)
7503 {
7504 	switch (internal_link_speed) {
7505 	case SPEED_100:
7506 		return 100;
7507 	case SPEED_1000:
7508 		return 1000;
7509 	default:
7510 		return 0;
7511 	}
7512 }
7513 
7514 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7515 				  int link_speed)
7516 {
7517 	int rf_dec, rf_int;
7518 	u32 bcnrc_val;
7519 
7520 	if (tx_rate != 0) {
7521 		/* Calculate the rate factor values to set */
7522 		rf_int = link_speed / tx_rate;
7523 		rf_dec = (link_speed - (rf_int * tx_rate));
7524 		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7525 
7526 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7527 		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7528 		               E1000_RTTBCNRC_RF_INT_MASK);
7529 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7530 	} else {
7531 		bcnrc_val = 0;
7532 	}
7533 
7534 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7535 	/*
7536 	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7537 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7538 	 */
7539 	wr32(E1000_RTTBCNRM, 0x14);
7540 	wr32(E1000_RTTBCNRC, bcnrc_val);
7541 }
7542 
7543 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7544 {
7545 	int actual_link_speed, i;
7546 	bool reset_rate = false;
7547 
7548 	/* VF TX rate limit was not set or not supported */
7549 	if ((adapter->vf_rate_link_speed == 0) ||
7550 	    (adapter->hw.mac.type != e1000_82576))
7551 		return;
7552 
7553 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7554 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7555 		reset_rate = true;
7556 		adapter->vf_rate_link_speed = 0;
7557 		dev_info(&adapter->pdev->dev,
7558 		         "Link speed has been changed. VF Transmit "
7559 		         "rate is disabled\n");
7560 	}
7561 
7562 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7563 		if (reset_rate)
7564 			adapter->vf_data[i].tx_rate = 0;
7565 
7566 		igb_set_vf_rate_limit(&adapter->hw, i,
7567 		                      adapter->vf_data[i].tx_rate,
7568 		                      actual_link_speed);
7569 	}
7570 }
7571 
7572 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7573 {
7574 	struct igb_adapter *adapter = netdev_priv(netdev);
7575 	struct e1000_hw *hw = &adapter->hw;
7576 	int actual_link_speed;
7577 
7578 	if (hw->mac.type != e1000_82576)
7579 		return -EOPNOTSUPP;
7580 
7581 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7582 	if ((vf >= adapter->vfs_allocated_count) ||
7583 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7584 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7585 		return -EINVAL;
7586 
7587 	adapter->vf_rate_link_speed = actual_link_speed;
7588 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7589 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7590 
7591 	return 0;
7592 }
7593 
7594 static int igb_ndo_get_vf_config(struct net_device *netdev,
7595 				 int vf, struct ifla_vf_info *ivi)
7596 {
7597 	struct igb_adapter *adapter = netdev_priv(netdev);
7598 	if (vf >= adapter->vfs_allocated_count)
7599 		return -EINVAL;
7600 	ivi->vf = vf;
7601 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7602 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7603 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7604 	ivi->qos = adapter->vf_data[vf].pf_qos;
7605 	return 0;
7606 }
7607 
7608 static void igb_vmm_control(struct igb_adapter *adapter)
7609 {
7610 	struct e1000_hw *hw = &adapter->hw;
7611 	u32 reg;
7612 
7613 	switch (hw->mac.type) {
7614 	case e1000_82575:
7615 	case e1000_i210:
7616 	case e1000_i211:
7617 	default:
7618 		/* replication is not supported for 82575 */
7619 		return;
7620 	case e1000_82576:
7621 		/* notify HW that the MAC is adding vlan tags */
7622 		reg = rd32(E1000_DTXCTL);
7623 		reg |= E1000_DTXCTL_VLAN_ADDED;
7624 		wr32(E1000_DTXCTL, reg);
7625 	case e1000_82580:
7626 		/* enable replication vlan tag stripping */
7627 		reg = rd32(E1000_RPLOLR);
7628 		reg |= E1000_RPLOLR_STRVLAN;
7629 		wr32(E1000_RPLOLR, reg);
7630 	case e1000_i350:
7631 		/* none of the above registers are supported by i350 */
7632 		break;
7633 	}
7634 
7635 	if (adapter->vfs_allocated_count) {
7636 		igb_vmdq_set_loopback_pf(hw, true);
7637 		igb_vmdq_set_replication_pf(hw, true);
7638 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7639 						adapter->vfs_allocated_count);
7640 	} else {
7641 		igb_vmdq_set_loopback_pf(hw, false);
7642 		igb_vmdq_set_replication_pf(hw, false);
7643 	}
7644 }
7645 
7646 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7647 {
7648 	struct e1000_hw *hw = &adapter->hw;
7649 	u32 dmac_thr;
7650 	u16 hwm;
7651 
7652 	if (hw->mac.type > e1000_82580) {
7653 		if (adapter->flags & IGB_FLAG_DMAC) {
7654 			u32 reg;
7655 
7656 			/* force threshold to 0. */
7657 			wr32(E1000_DMCTXTH, 0);
7658 
7659 			/*
7660 			 * DMA Coalescing high water mark needs to be greater
7661 			 * than the Rx threshold. Set hwm to PBA - max frame
7662 			 * size in 16B units, capping it at PBA - 6KB.
7663 			 */
7664 			hwm = 64 * pba - adapter->max_frame_size / 16;
7665 			if (hwm < 64 * (pba - 6))
7666 				hwm = 64 * (pba - 6);
7667 			reg = rd32(E1000_FCRTC);
7668 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7669 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7670 				& E1000_FCRTC_RTH_COAL_MASK);
7671 			wr32(E1000_FCRTC, reg);
7672 
7673 			/*
7674 			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7675 			 * frame size, capping it at PBA - 10KB.
7676 			 */
7677 			dmac_thr = pba - adapter->max_frame_size / 512;
7678 			if (dmac_thr < pba - 10)
7679 				dmac_thr = pba - 10;
7680 			reg = rd32(E1000_DMACR);
7681 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7682 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7683 				& E1000_DMACR_DMACTHR_MASK);
7684 
7685 			/* transition to L0x or L1 if available..*/
7686 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7687 
7688 			/* watchdog timer= +-1000 usec in 32usec intervals */
7689 			reg |= (1000 >> 5);
7690 
7691 			/* Disable BMC-to-OS Watchdog Enable */
7692 			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7693 			wr32(E1000_DMACR, reg);
7694 
7695 			/*
7696 			 * no lower threshold to disable
7697 			 * coalescing(smart fifb)-UTRESH=0
7698 			 */
7699 			wr32(E1000_DMCRTRH, 0);
7700 
7701 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7702 
7703 			wr32(E1000_DMCTLX, reg);
7704 
7705 			/*
7706 			 * free space in tx packet buffer to wake from
7707 			 * DMA coal
7708 			 */
7709 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7710 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7711 
7712 			/*
7713 			 * make low power state decision controlled
7714 			 * by DMA coal
7715 			 */
7716 			reg = rd32(E1000_PCIEMISC);
7717 			reg &= ~E1000_PCIEMISC_LX_DECISION;
7718 			wr32(E1000_PCIEMISC, reg);
7719 		} /* endif adapter->dmac is not disabled */
7720 	} else if (hw->mac.type == e1000_82580) {
7721 		u32 reg = rd32(E1000_PCIEMISC);
7722 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7723 		wr32(E1000_DMACR, 0);
7724 	}
7725 }
7726 
7727 static DEFINE_SPINLOCK(i2c_clients_lock);
7728 
7729 /*  igb_get_i2c_client - returns matching client
7730  *  in adapters's client list.
7731  *  @adapter: adapter struct
7732  *  @dev_addr: device address of i2c needed.
7733  */
7734 static struct i2c_client *
7735 igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
7736 {
7737 	ulong flags;
7738 	struct igb_i2c_client_list *client_list;
7739 	struct i2c_client *client = NULL;
7740 	struct i2c_board_info client_info = {
7741 		I2C_BOARD_INFO("igb", 0x00),
7742 	};
7743 
7744 	spin_lock_irqsave(&i2c_clients_lock, flags);
7745 	client_list = adapter->i2c_clients;
7746 
7747 	/* See if we already have an i2c_client */
7748 	while (client_list) {
7749 		if (client_list->client->addr == (dev_addr >> 1)) {
7750 			client = client_list->client;
7751 			goto exit;
7752 		} else {
7753 			client_list = client_list->next;
7754 		}
7755 	}
7756 
7757 	/* no client_list found, create a new one */
7758 	client_list = kzalloc(sizeof(*client_list), GFP_ATOMIC);
7759 	if (client_list == NULL)
7760 		goto exit;
7761 
7762 	/* dev_addr passed to us is left-shifted by 1 bit
7763 	 * i2c_new_device call expects it to be flush to the right.
7764 	 */
7765 	client_info.addr = dev_addr >> 1;
7766 	client_info.platform_data = adapter;
7767 	client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
7768 	if (client_list->client == NULL) {
7769 		dev_info(&adapter->pdev->dev,
7770 			"Failed to create new i2c device..\n");
7771 		goto err_no_client;
7772 	}
7773 
7774 	/* insert new client at head of list */
7775 	client_list->next = adapter->i2c_clients;
7776 	adapter->i2c_clients = client_list;
7777 
7778 	client = client_list->client;
7779 	goto exit;
7780 
7781 err_no_client:
7782 	kfree(client_list);
7783 exit:
7784 	spin_unlock_irqrestore(&i2c_clients_lock, flags);
7785 	return client;
7786 }
7787 
7788 /*  igb_read_i2c_byte - Reads 8 bit word over I2C
7789  *  @hw: pointer to hardware structure
7790  *  @byte_offset: byte offset to read
7791  *  @dev_addr: device address
7792  *  @data: value read
7793  *
7794  *  Performs byte read operation over I2C interface at
7795  *  a specified device address.
7796  */
7797 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7798 				u8 dev_addr, u8 *data)
7799 {
7800 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7801 	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7802 	s32 status;
7803 	u16 swfw_mask = 0;
7804 
7805 	if (!this_client)
7806 		return E1000_ERR_I2C;
7807 
7808 	swfw_mask = E1000_SWFW_PHY0_SM;
7809 
7810 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7811 	    != E1000_SUCCESS)
7812 		return E1000_ERR_SWFW_SYNC;
7813 
7814 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7815 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7816 
7817 	if (status < 0)
7818 		return E1000_ERR_I2C;
7819 	else {
7820 		*data = status;
7821 		return E1000_SUCCESS;
7822 	}
7823 }
7824 
7825 /*  igb_write_i2c_byte - Writes 8 bit word over I2C
7826  *  @hw: pointer to hardware structure
7827  *  @byte_offset: byte offset to write
7828  *  @dev_addr: device address
7829  *  @data: value to write
7830  *
7831  *  Performs byte write operation over I2C interface at
7832  *  a specified device address.
7833  */
7834 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7835 				 u8 dev_addr, u8 data)
7836 {
7837 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7838 	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7839 	s32 status;
7840 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7841 
7842 	if (!this_client)
7843 		return E1000_ERR_I2C;
7844 
7845 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7846 		return E1000_ERR_SWFW_SYNC;
7847 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7848 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7849 
7850 	if (status)
7851 		return E1000_ERR_I2C;
7852 	else
7853 		return E1000_SUCCESS;
7854 
7855 }
7856 /* igb_main.c */
7857