1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/module.h> 31 #include <linux/types.h> 32 #include <linux/init.h> 33 #include <linux/bitops.h> 34 #include <linux/vmalloc.h> 35 #include <linux/pagemap.h> 36 #include <linux/netdevice.h> 37 #include <linux/ipv6.h> 38 #include <linux/slab.h> 39 #include <net/checksum.h> 40 #include <net/ip6_checksum.h> 41 #include <linux/net_tstamp.h> 42 #include <linux/mii.h> 43 #include <linux/ethtool.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/pci.h> 47 #include <linux/pci-aspm.h> 48 #include <linux/delay.h> 49 #include <linux/interrupt.h> 50 #include <linux/ip.h> 51 #include <linux/tcp.h> 52 #include <linux/sctp.h> 53 #include <linux/if_ether.h> 54 #include <linux/aer.h> 55 #include <linux/prefetch.h> 56 #include <linux/pm_runtime.h> 57 #ifdef CONFIG_IGB_DCA 58 #include <linux/dca.h> 59 #endif 60 #include <linux/i2c.h> 61 #include "igb.h" 62 63 #define MAJ 4 64 #define MIN 1 65 #define BUILD 2 66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ 67 __stringify(BUILD) "-k" 68 char igb_driver_name[] = "igb"; 69 char igb_driver_version[] = DRV_VERSION; 70 static const char igb_driver_string[] = 71 "Intel(R) Gigabit Ethernet Network Driver"; 72 static const char igb_copyright[] = 73 "Copyright (c) 2007-2013 Intel Corporation."; 74 75 static const struct e1000_info *igb_info_tbl[] = { 76 [board_82575] = &e1000_82575_info, 77 }; 78 79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 110 /* required last entry */ 111 {0, } 112 }; 113 114 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 115 116 void igb_reset(struct igb_adapter *); 117 static int igb_setup_all_tx_resources(struct igb_adapter *); 118 static int igb_setup_all_rx_resources(struct igb_adapter *); 119 static void igb_free_all_tx_resources(struct igb_adapter *); 120 static void igb_free_all_rx_resources(struct igb_adapter *); 121 static void igb_setup_mrqc(struct igb_adapter *); 122 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 123 static void igb_remove(struct pci_dev *pdev); 124 static int igb_sw_init(struct igb_adapter *); 125 static int igb_open(struct net_device *); 126 static int igb_close(struct net_device *); 127 static void igb_configure(struct igb_adapter *); 128 static void igb_configure_tx(struct igb_adapter *); 129 static void igb_configure_rx(struct igb_adapter *); 130 static void igb_clean_all_tx_rings(struct igb_adapter *); 131 static void igb_clean_all_rx_rings(struct igb_adapter *); 132 static void igb_clean_tx_ring(struct igb_ring *); 133 static void igb_clean_rx_ring(struct igb_ring *); 134 static void igb_set_rx_mode(struct net_device *); 135 static void igb_update_phy_info(unsigned long); 136 static void igb_watchdog(unsigned long); 137 static void igb_watchdog_task(struct work_struct *); 138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, 140 struct rtnl_link_stats64 *stats); 141 static int igb_change_mtu(struct net_device *, int); 142 static int igb_set_mac(struct net_device *, void *); 143 static void igb_set_uta(struct igb_adapter *adapter); 144 static irqreturn_t igb_intr(int irq, void *); 145 static irqreturn_t igb_intr_msi(int irq, void *); 146 static irqreturn_t igb_msix_other(int irq, void *); 147 static irqreturn_t igb_msix_ring(int irq, void *); 148 #ifdef CONFIG_IGB_DCA 149 static void igb_update_dca(struct igb_q_vector *); 150 static void igb_setup_dca(struct igb_adapter *); 151 #endif /* CONFIG_IGB_DCA */ 152 static int igb_poll(struct napi_struct *, int); 153 static bool igb_clean_tx_irq(struct igb_q_vector *); 154 static bool igb_clean_rx_irq(struct igb_q_vector *, int); 155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 156 static void igb_tx_timeout(struct net_device *); 157 static void igb_reset_task(struct work_struct *); 158 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features); 159 static int igb_vlan_rx_add_vid(struct net_device *, u16); 160 static int igb_vlan_rx_kill_vid(struct net_device *, u16); 161 static void igb_restore_vlan(struct igb_adapter *); 162 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); 163 static void igb_ping_all_vfs(struct igb_adapter *); 164 static void igb_msg_task(struct igb_adapter *); 165 static void igb_vmm_control(struct igb_adapter *); 166 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 167 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 168 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 169 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 170 int vf, u16 vlan, u8 qos); 171 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); 172 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 173 struct ifla_vf_info *ivi); 174 static void igb_check_vf_rate_limit(struct igb_adapter *); 175 176 #ifdef CONFIG_PCI_IOV 177 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 178 static bool igb_vfs_are_assigned(struct igb_adapter *adapter); 179 #endif 180 181 #ifdef CONFIG_PM 182 #ifdef CONFIG_PM_SLEEP 183 static int igb_suspend(struct device *); 184 #endif 185 static int igb_resume(struct device *); 186 #ifdef CONFIG_PM_RUNTIME 187 static int igb_runtime_suspend(struct device *dev); 188 static int igb_runtime_resume(struct device *dev); 189 static int igb_runtime_idle(struct device *dev); 190 #endif 191 static const struct dev_pm_ops igb_pm_ops = { 192 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 193 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 194 igb_runtime_idle) 195 }; 196 #endif 197 static void igb_shutdown(struct pci_dev *); 198 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 199 #ifdef CONFIG_IGB_DCA 200 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 201 static struct notifier_block dca_notifier = { 202 .notifier_call = igb_notify_dca, 203 .next = NULL, 204 .priority = 0 205 }; 206 #endif 207 #ifdef CONFIG_NET_POLL_CONTROLLER 208 /* for netdump / net console */ 209 static void igb_netpoll(struct net_device *); 210 #endif 211 #ifdef CONFIG_PCI_IOV 212 static unsigned int max_vfs = 0; 213 module_param(max_vfs, uint, 0); 214 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " 215 "per physical function"); 216 #endif /* CONFIG_PCI_IOV */ 217 218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 219 pci_channel_state_t); 220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 221 static void igb_io_resume(struct pci_dev *); 222 223 static const struct pci_error_handlers igb_err_handler = { 224 .error_detected = igb_io_error_detected, 225 .slot_reset = igb_io_slot_reset, 226 .resume = igb_io_resume, 227 }; 228 229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 230 231 static struct pci_driver igb_driver = { 232 .name = igb_driver_name, 233 .id_table = igb_pci_tbl, 234 .probe = igb_probe, 235 .remove = igb_remove, 236 #ifdef CONFIG_PM 237 .driver.pm = &igb_pm_ops, 238 #endif 239 .shutdown = igb_shutdown, 240 .sriov_configure = igb_pci_sriov_configure, 241 .err_handler = &igb_err_handler 242 }; 243 244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 246 MODULE_LICENSE("GPL"); 247 MODULE_VERSION(DRV_VERSION); 248 249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 250 static int debug = -1; 251 module_param(debug, int, 0); 252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 253 254 struct igb_reg_info { 255 u32 ofs; 256 char *name; 257 }; 258 259 static const struct igb_reg_info igb_reg_info_tbl[] = { 260 261 /* General Registers */ 262 {E1000_CTRL, "CTRL"}, 263 {E1000_STATUS, "STATUS"}, 264 {E1000_CTRL_EXT, "CTRL_EXT"}, 265 266 /* Interrupt Registers */ 267 {E1000_ICR, "ICR"}, 268 269 /* RX Registers */ 270 {E1000_RCTL, "RCTL"}, 271 {E1000_RDLEN(0), "RDLEN"}, 272 {E1000_RDH(0), "RDH"}, 273 {E1000_RDT(0), "RDT"}, 274 {E1000_RXDCTL(0), "RXDCTL"}, 275 {E1000_RDBAL(0), "RDBAL"}, 276 {E1000_RDBAH(0), "RDBAH"}, 277 278 /* TX Registers */ 279 {E1000_TCTL, "TCTL"}, 280 {E1000_TDBAL(0), "TDBAL"}, 281 {E1000_TDBAH(0), "TDBAH"}, 282 {E1000_TDLEN(0), "TDLEN"}, 283 {E1000_TDH(0), "TDH"}, 284 {E1000_TDT(0), "TDT"}, 285 {E1000_TXDCTL(0), "TXDCTL"}, 286 {E1000_TDFH, "TDFH"}, 287 {E1000_TDFT, "TDFT"}, 288 {E1000_TDFHS, "TDFHS"}, 289 {E1000_TDFPC, "TDFPC"}, 290 291 /* List Terminator */ 292 {} 293 }; 294 295 /* 296 * igb_regdump - register printout routine 297 */ 298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 299 { 300 int n = 0; 301 char rname[16]; 302 u32 regs[8]; 303 304 switch (reginfo->ofs) { 305 case E1000_RDLEN(0): 306 for (n = 0; n < 4; n++) 307 regs[n] = rd32(E1000_RDLEN(n)); 308 break; 309 case E1000_RDH(0): 310 for (n = 0; n < 4; n++) 311 regs[n] = rd32(E1000_RDH(n)); 312 break; 313 case E1000_RDT(0): 314 for (n = 0; n < 4; n++) 315 regs[n] = rd32(E1000_RDT(n)); 316 break; 317 case E1000_RXDCTL(0): 318 for (n = 0; n < 4; n++) 319 regs[n] = rd32(E1000_RXDCTL(n)); 320 break; 321 case E1000_RDBAL(0): 322 for (n = 0; n < 4; n++) 323 regs[n] = rd32(E1000_RDBAL(n)); 324 break; 325 case E1000_RDBAH(0): 326 for (n = 0; n < 4; n++) 327 regs[n] = rd32(E1000_RDBAH(n)); 328 break; 329 case E1000_TDBAL(0): 330 for (n = 0; n < 4; n++) 331 regs[n] = rd32(E1000_RDBAL(n)); 332 break; 333 case E1000_TDBAH(0): 334 for (n = 0; n < 4; n++) 335 regs[n] = rd32(E1000_TDBAH(n)); 336 break; 337 case E1000_TDLEN(0): 338 for (n = 0; n < 4; n++) 339 regs[n] = rd32(E1000_TDLEN(n)); 340 break; 341 case E1000_TDH(0): 342 for (n = 0; n < 4; n++) 343 regs[n] = rd32(E1000_TDH(n)); 344 break; 345 case E1000_TDT(0): 346 for (n = 0; n < 4; n++) 347 regs[n] = rd32(E1000_TDT(n)); 348 break; 349 case E1000_TXDCTL(0): 350 for (n = 0; n < 4; n++) 351 regs[n] = rd32(E1000_TXDCTL(n)); 352 break; 353 default: 354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 355 return; 356 } 357 358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 360 regs[2], regs[3]); 361 } 362 363 /* 364 * igb_dump - Print registers, tx-rings and rx-rings 365 */ 366 static void igb_dump(struct igb_adapter *adapter) 367 { 368 struct net_device *netdev = adapter->netdev; 369 struct e1000_hw *hw = &adapter->hw; 370 struct igb_reg_info *reginfo; 371 struct igb_ring *tx_ring; 372 union e1000_adv_tx_desc *tx_desc; 373 struct my_u0 { u64 a; u64 b; } *u0; 374 struct igb_ring *rx_ring; 375 union e1000_adv_rx_desc *rx_desc; 376 u32 staterr; 377 u16 i, n; 378 379 if (!netif_msg_hw(adapter)) 380 return; 381 382 /* Print netdevice Info */ 383 if (netdev) { 384 dev_info(&adapter->pdev->dev, "Net device Info\n"); 385 pr_info("Device Name state trans_start " 386 "last_rx\n"); 387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 388 netdev->state, netdev->trans_start, netdev->last_rx); 389 } 390 391 /* Print Registers */ 392 dev_info(&adapter->pdev->dev, "Register Dump\n"); 393 pr_info(" Register Name Value\n"); 394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 395 reginfo->name; reginfo++) { 396 igb_regdump(hw, reginfo); 397 } 398 399 /* Print TX Ring Summary */ 400 if (!netdev || !netif_running(netdev)) 401 goto exit; 402 403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 405 for (n = 0; n < adapter->num_tx_queues; n++) { 406 struct igb_tx_buffer *buffer_info; 407 tx_ring = adapter->tx_ring[n]; 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 410 n, tx_ring->next_to_use, tx_ring->next_to_clean, 411 (u64)dma_unmap_addr(buffer_info, dma), 412 dma_unmap_len(buffer_info, len), 413 buffer_info->next_to_watch, 414 (u64)buffer_info->time_stamp); 415 } 416 417 /* Print TX Rings */ 418 if (!netif_msg_tx_done(adapter)) 419 goto rx_ring_summary; 420 421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 422 423 /* Transmit Descriptor Formats 424 * 425 * Advanced Transmit Descriptor 426 * +--------------------------------------------------------------+ 427 * 0 | Buffer Address [63:0] | 428 * +--------------------------------------------------------------+ 429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 430 * +--------------------------------------------------------------+ 431 * 63 46 45 40 39 38 36 35 32 31 24 15 0 432 */ 433 434 for (n = 0; n < adapter->num_tx_queues; n++) { 435 tx_ring = adapter->tx_ring[n]; 436 pr_info("------------------------------------\n"); 437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 438 pr_info("------------------------------------\n"); 439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] " 440 "[bi->dma ] leng ntw timestamp " 441 "bi->skb\n"); 442 443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 444 const char *next_desc; 445 struct igb_tx_buffer *buffer_info; 446 tx_desc = IGB_TX_DESC(tx_ring, i); 447 buffer_info = &tx_ring->tx_buffer_info[i]; 448 u0 = (struct my_u0 *)tx_desc; 449 if (i == tx_ring->next_to_use && 450 i == tx_ring->next_to_clean) 451 next_desc = " NTC/U"; 452 else if (i == tx_ring->next_to_use) 453 next_desc = " NTU"; 454 else if (i == tx_ring->next_to_clean) 455 next_desc = " NTC"; 456 else 457 next_desc = ""; 458 459 pr_info("T [0x%03X] %016llX %016llX %016llX" 460 " %04X %p %016llX %p%s\n", i, 461 le64_to_cpu(u0->a), 462 le64_to_cpu(u0->b), 463 (u64)dma_unmap_addr(buffer_info, dma), 464 dma_unmap_len(buffer_info, len), 465 buffer_info->next_to_watch, 466 (u64)buffer_info->time_stamp, 467 buffer_info->skb, next_desc); 468 469 if (netif_msg_pktdata(adapter) && buffer_info->skb) 470 print_hex_dump(KERN_INFO, "", 471 DUMP_PREFIX_ADDRESS, 472 16, 1, buffer_info->skb->data, 473 dma_unmap_len(buffer_info, len), 474 true); 475 } 476 } 477 478 /* Print RX Rings Summary */ 479 rx_ring_summary: 480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 481 pr_info("Queue [NTU] [NTC]\n"); 482 for (n = 0; n < adapter->num_rx_queues; n++) { 483 rx_ring = adapter->rx_ring[n]; 484 pr_info(" %5d %5X %5X\n", 485 n, rx_ring->next_to_use, rx_ring->next_to_clean); 486 } 487 488 /* Print RX Rings */ 489 if (!netif_msg_rx_status(adapter)) 490 goto exit; 491 492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 493 494 /* Advanced Receive Descriptor (Read) Format 495 * 63 1 0 496 * +-----------------------------------------------------+ 497 * 0 | Packet Buffer Address [63:1] |A0/NSE| 498 * +----------------------------------------------+------+ 499 * 8 | Header Buffer Address [63:1] | DD | 500 * +-----------------------------------------------------+ 501 * 502 * 503 * Advanced Receive Descriptor (Write-Back) Format 504 * 505 * 63 48 47 32 31 30 21 20 17 16 4 3 0 506 * +------------------------------------------------------+ 507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 508 * | Checksum Ident | | | | Type | Type | 509 * +------------------------------------------------------+ 510 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 511 * +------------------------------------------------------+ 512 * 63 48 47 32 31 20 19 0 513 */ 514 515 for (n = 0; n < adapter->num_rx_queues; n++) { 516 rx_ring = adapter->rx_ring[n]; 517 pr_info("------------------------------------\n"); 518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 519 pr_info("------------------------------------\n"); 520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] " 521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----" 523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n"); 524 525 for (i = 0; i < rx_ring->count; i++) { 526 const char *next_desc; 527 struct igb_rx_buffer *buffer_info; 528 buffer_info = &rx_ring->rx_buffer_info[i]; 529 rx_desc = IGB_RX_DESC(rx_ring, i); 530 u0 = (struct my_u0 *)rx_desc; 531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 532 533 if (i == rx_ring->next_to_use) 534 next_desc = " NTU"; 535 else if (i == rx_ring->next_to_clean) 536 next_desc = " NTC"; 537 else 538 next_desc = ""; 539 540 if (staterr & E1000_RXD_STAT_DD) { 541 /* Descriptor Done */ 542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 543 "RWB", i, 544 le64_to_cpu(u0->a), 545 le64_to_cpu(u0->b), 546 next_desc); 547 } else { 548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 549 "R ", i, 550 le64_to_cpu(u0->a), 551 le64_to_cpu(u0->b), 552 (u64)buffer_info->dma, 553 next_desc); 554 555 if (netif_msg_pktdata(adapter) && 556 buffer_info->dma && buffer_info->page) { 557 print_hex_dump(KERN_INFO, "", 558 DUMP_PREFIX_ADDRESS, 559 16, 1, 560 page_address(buffer_info->page) + 561 buffer_info->page_offset, 562 IGB_RX_BUFSZ, true); 563 } 564 } 565 } 566 } 567 568 exit: 569 return; 570 } 571 572 /* igb_get_i2c_data - Reads the I2C SDA data bit 573 * @hw: pointer to hardware structure 574 * @i2cctl: Current value of I2CCTL register 575 * 576 * Returns the I2C data bit value 577 */ 578 static int igb_get_i2c_data(void *data) 579 { 580 struct igb_adapter *adapter = (struct igb_adapter *)data; 581 struct e1000_hw *hw = &adapter->hw; 582 s32 i2cctl = rd32(E1000_I2CPARAMS); 583 584 return ((i2cctl & E1000_I2C_DATA_IN) != 0); 585 } 586 587 /* igb_set_i2c_data - Sets the I2C data bit 588 * @data: pointer to hardware structure 589 * @state: I2C data value (0 or 1) to set 590 * 591 * Sets the I2C data bit 592 */ 593 static void igb_set_i2c_data(void *data, int state) 594 { 595 struct igb_adapter *adapter = (struct igb_adapter *)data; 596 struct e1000_hw *hw = &adapter->hw; 597 s32 i2cctl = rd32(E1000_I2CPARAMS); 598 599 if (state) 600 i2cctl |= E1000_I2C_DATA_OUT; 601 else 602 i2cctl &= ~E1000_I2C_DATA_OUT; 603 604 i2cctl &= ~E1000_I2C_DATA_OE_N; 605 i2cctl |= E1000_I2C_CLK_OE_N; 606 wr32(E1000_I2CPARAMS, i2cctl); 607 wrfl(); 608 609 } 610 611 /* igb_set_i2c_clk - Sets the I2C SCL clock 612 * @data: pointer to hardware structure 613 * @state: state to set clock 614 * 615 * Sets the I2C clock line to state 616 */ 617 static void igb_set_i2c_clk(void *data, int state) 618 { 619 struct igb_adapter *adapter = (struct igb_adapter *)data; 620 struct e1000_hw *hw = &adapter->hw; 621 s32 i2cctl = rd32(E1000_I2CPARAMS); 622 623 if (state) { 624 i2cctl |= E1000_I2C_CLK_OUT; 625 i2cctl &= ~E1000_I2C_CLK_OE_N; 626 } else { 627 i2cctl &= ~E1000_I2C_CLK_OUT; 628 i2cctl &= ~E1000_I2C_CLK_OE_N; 629 } 630 wr32(E1000_I2CPARAMS, i2cctl); 631 wrfl(); 632 } 633 634 /* igb_get_i2c_clk - Gets the I2C SCL clock state 635 * @data: pointer to hardware structure 636 * 637 * Gets the I2C clock state 638 */ 639 static int igb_get_i2c_clk(void *data) 640 { 641 struct igb_adapter *adapter = (struct igb_adapter *)data; 642 struct e1000_hw *hw = &adapter->hw; 643 s32 i2cctl = rd32(E1000_I2CPARAMS); 644 645 return ((i2cctl & E1000_I2C_CLK_IN) != 0); 646 } 647 648 static const struct i2c_algo_bit_data igb_i2c_algo = { 649 .setsda = igb_set_i2c_data, 650 .setscl = igb_set_i2c_clk, 651 .getsda = igb_get_i2c_data, 652 .getscl = igb_get_i2c_clk, 653 .udelay = 5, 654 .timeout = 20, 655 }; 656 657 /** 658 * igb_get_hw_dev - return device 659 * used by hardware layer to print debugging information 660 **/ 661 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 662 { 663 struct igb_adapter *adapter = hw->back; 664 return adapter->netdev; 665 } 666 667 /** 668 * igb_init_module - Driver Registration Routine 669 * 670 * igb_init_module is the first routine called when the driver is 671 * loaded. All it does is register with the PCI subsystem. 672 **/ 673 static int __init igb_init_module(void) 674 { 675 int ret; 676 pr_info("%s - version %s\n", 677 igb_driver_string, igb_driver_version); 678 679 pr_info("%s\n", igb_copyright); 680 681 #ifdef CONFIG_IGB_DCA 682 dca_register_notify(&dca_notifier); 683 #endif 684 ret = pci_register_driver(&igb_driver); 685 return ret; 686 } 687 688 module_init(igb_init_module); 689 690 /** 691 * igb_exit_module - Driver Exit Cleanup Routine 692 * 693 * igb_exit_module is called just before the driver is removed 694 * from memory. 695 **/ 696 static void __exit igb_exit_module(void) 697 { 698 #ifdef CONFIG_IGB_DCA 699 dca_unregister_notify(&dca_notifier); 700 #endif 701 pci_unregister_driver(&igb_driver); 702 } 703 704 module_exit(igb_exit_module); 705 706 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 707 /** 708 * igb_cache_ring_register - Descriptor ring to register mapping 709 * @adapter: board private structure to initialize 710 * 711 * Once we know the feature-set enabled for the device, we'll cache 712 * the register offset the descriptor ring is assigned to. 713 **/ 714 static void igb_cache_ring_register(struct igb_adapter *adapter) 715 { 716 int i = 0, j = 0; 717 u32 rbase_offset = adapter->vfs_allocated_count; 718 719 switch (adapter->hw.mac.type) { 720 case e1000_82576: 721 /* The queues are allocated for virtualization such that VF 0 722 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 723 * In order to avoid collision we start at the first free queue 724 * and continue consuming queues in the same sequence 725 */ 726 if (adapter->vfs_allocated_count) { 727 for (; i < adapter->rss_queues; i++) 728 adapter->rx_ring[i]->reg_idx = rbase_offset + 729 Q_IDX_82576(i); 730 } 731 case e1000_82575: 732 case e1000_82580: 733 case e1000_i350: 734 case e1000_i210: 735 case e1000_i211: 736 default: 737 for (; i < adapter->num_rx_queues; i++) 738 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 739 for (; j < adapter->num_tx_queues; j++) 740 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 741 break; 742 } 743 } 744 745 /** 746 * igb_write_ivar - configure ivar for given MSI-X vector 747 * @hw: pointer to the HW structure 748 * @msix_vector: vector number we are allocating to a given ring 749 * @index: row index of IVAR register to write within IVAR table 750 * @offset: column offset of in IVAR, should be multiple of 8 751 * 752 * This function is intended to handle the writing of the IVAR register 753 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 754 * each containing an cause allocation for an Rx and Tx ring, and a 755 * variable number of rows depending on the number of queues supported. 756 **/ 757 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 758 int index, int offset) 759 { 760 u32 ivar = array_rd32(E1000_IVAR0, index); 761 762 /* clear any bits that are currently set */ 763 ivar &= ~((u32)0xFF << offset); 764 765 /* write vector and valid bit */ 766 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 767 768 array_wr32(E1000_IVAR0, index, ivar); 769 } 770 771 #define IGB_N0_QUEUE -1 772 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 773 { 774 struct igb_adapter *adapter = q_vector->adapter; 775 struct e1000_hw *hw = &adapter->hw; 776 int rx_queue = IGB_N0_QUEUE; 777 int tx_queue = IGB_N0_QUEUE; 778 u32 msixbm = 0; 779 780 if (q_vector->rx.ring) 781 rx_queue = q_vector->rx.ring->reg_idx; 782 if (q_vector->tx.ring) 783 tx_queue = q_vector->tx.ring->reg_idx; 784 785 switch (hw->mac.type) { 786 case e1000_82575: 787 /* The 82575 assigns vectors using a bitmask, which matches the 788 bitmask for the EICR/EIMS/EIMC registers. To assign one 789 or more queues to a vector, we write the appropriate bits 790 into the MSIXBM register for that vector. */ 791 if (rx_queue > IGB_N0_QUEUE) 792 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 793 if (tx_queue > IGB_N0_QUEUE) 794 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 795 if (!adapter->msix_entries && msix_vector == 0) 796 msixbm |= E1000_EIMS_OTHER; 797 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 798 q_vector->eims_value = msixbm; 799 break; 800 case e1000_82576: 801 /* 802 * 82576 uses a table that essentially consists of 2 columns 803 * with 8 rows. The ordering is column-major so we use the 804 * lower 3 bits as the row index, and the 4th bit as the 805 * column offset. 806 */ 807 if (rx_queue > IGB_N0_QUEUE) 808 igb_write_ivar(hw, msix_vector, 809 rx_queue & 0x7, 810 (rx_queue & 0x8) << 1); 811 if (tx_queue > IGB_N0_QUEUE) 812 igb_write_ivar(hw, msix_vector, 813 tx_queue & 0x7, 814 ((tx_queue & 0x8) << 1) + 8); 815 q_vector->eims_value = 1 << msix_vector; 816 break; 817 case e1000_82580: 818 case e1000_i350: 819 case e1000_i210: 820 case e1000_i211: 821 /* 822 * On 82580 and newer adapters the scheme is similar to 82576 823 * however instead of ordering column-major we have things 824 * ordered row-major. So we traverse the table by using 825 * bit 0 as the column offset, and the remaining bits as the 826 * row index. 827 */ 828 if (rx_queue > IGB_N0_QUEUE) 829 igb_write_ivar(hw, msix_vector, 830 rx_queue >> 1, 831 (rx_queue & 0x1) << 4); 832 if (tx_queue > IGB_N0_QUEUE) 833 igb_write_ivar(hw, msix_vector, 834 tx_queue >> 1, 835 ((tx_queue & 0x1) << 4) + 8); 836 q_vector->eims_value = 1 << msix_vector; 837 break; 838 default: 839 BUG(); 840 break; 841 } 842 843 /* add q_vector eims value to global eims_enable_mask */ 844 adapter->eims_enable_mask |= q_vector->eims_value; 845 846 /* configure q_vector to set itr on first interrupt */ 847 q_vector->set_itr = 1; 848 } 849 850 /** 851 * igb_configure_msix - Configure MSI-X hardware 852 * 853 * igb_configure_msix sets up the hardware to properly 854 * generate MSI-X interrupts. 855 **/ 856 static void igb_configure_msix(struct igb_adapter *adapter) 857 { 858 u32 tmp; 859 int i, vector = 0; 860 struct e1000_hw *hw = &adapter->hw; 861 862 adapter->eims_enable_mask = 0; 863 864 /* set vector for other causes, i.e. link changes */ 865 switch (hw->mac.type) { 866 case e1000_82575: 867 tmp = rd32(E1000_CTRL_EXT); 868 /* enable MSI-X PBA support*/ 869 tmp |= E1000_CTRL_EXT_PBA_CLR; 870 871 /* Auto-Mask interrupts upon ICR read. */ 872 tmp |= E1000_CTRL_EXT_EIAME; 873 tmp |= E1000_CTRL_EXT_IRCA; 874 875 wr32(E1000_CTRL_EXT, tmp); 876 877 /* enable msix_other interrupt */ 878 array_wr32(E1000_MSIXBM(0), vector++, 879 E1000_EIMS_OTHER); 880 adapter->eims_other = E1000_EIMS_OTHER; 881 882 break; 883 884 case e1000_82576: 885 case e1000_82580: 886 case e1000_i350: 887 case e1000_i210: 888 case e1000_i211: 889 /* Turn on MSI-X capability first, or our settings 890 * won't stick. And it will take days to debug. */ 891 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 892 E1000_GPIE_PBA | E1000_GPIE_EIAME | 893 E1000_GPIE_NSICR); 894 895 /* enable msix_other interrupt */ 896 adapter->eims_other = 1 << vector; 897 tmp = (vector++ | E1000_IVAR_VALID) << 8; 898 899 wr32(E1000_IVAR_MISC, tmp); 900 break; 901 default: 902 /* do nothing, since nothing else supports MSI-X */ 903 break; 904 } /* switch (hw->mac.type) */ 905 906 adapter->eims_enable_mask |= adapter->eims_other; 907 908 for (i = 0; i < adapter->num_q_vectors; i++) 909 igb_assign_vector(adapter->q_vector[i], vector++); 910 911 wrfl(); 912 } 913 914 /** 915 * igb_request_msix - Initialize MSI-X interrupts 916 * 917 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 918 * kernel. 919 **/ 920 static int igb_request_msix(struct igb_adapter *adapter) 921 { 922 struct net_device *netdev = adapter->netdev; 923 struct e1000_hw *hw = &adapter->hw; 924 int i, err = 0, vector = 0, free_vector = 0; 925 926 err = request_irq(adapter->msix_entries[vector].vector, 927 igb_msix_other, 0, netdev->name, adapter); 928 if (err) 929 goto err_out; 930 931 for (i = 0; i < adapter->num_q_vectors; i++) { 932 struct igb_q_vector *q_vector = adapter->q_vector[i]; 933 934 vector++; 935 936 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); 937 938 if (q_vector->rx.ring && q_vector->tx.ring) 939 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 940 q_vector->rx.ring->queue_index); 941 else if (q_vector->tx.ring) 942 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 943 q_vector->tx.ring->queue_index); 944 else if (q_vector->rx.ring) 945 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 946 q_vector->rx.ring->queue_index); 947 else 948 sprintf(q_vector->name, "%s-unused", netdev->name); 949 950 err = request_irq(adapter->msix_entries[vector].vector, 951 igb_msix_ring, 0, q_vector->name, 952 q_vector); 953 if (err) 954 goto err_free; 955 } 956 957 igb_configure_msix(adapter); 958 return 0; 959 960 err_free: 961 /* free already assigned IRQs */ 962 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 963 964 vector--; 965 for (i = 0; i < vector; i++) { 966 free_irq(adapter->msix_entries[free_vector++].vector, 967 adapter->q_vector[i]); 968 } 969 err_out: 970 return err; 971 } 972 973 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 974 { 975 if (adapter->msix_entries) { 976 pci_disable_msix(adapter->pdev); 977 kfree(adapter->msix_entries); 978 adapter->msix_entries = NULL; 979 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 980 pci_disable_msi(adapter->pdev); 981 } 982 } 983 984 /** 985 * igb_free_q_vector - Free memory allocated for specific interrupt vector 986 * @adapter: board private structure to initialize 987 * @v_idx: Index of vector to be freed 988 * 989 * This function frees the memory allocated to the q_vector. In addition if 990 * NAPI is enabled it will delete any references to the NAPI struct prior 991 * to freeing the q_vector. 992 **/ 993 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 994 { 995 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 996 997 if (q_vector->tx.ring) 998 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 999 1000 if (q_vector->rx.ring) 1001 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; 1002 1003 adapter->q_vector[v_idx] = NULL; 1004 netif_napi_del(&q_vector->napi); 1005 1006 /* 1007 * ixgbe_get_stats64() might access the rings on this vector, 1008 * we must wait a grace period before freeing it. 1009 */ 1010 kfree_rcu(q_vector, rcu); 1011 } 1012 1013 /** 1014 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1015 * @adapter: board private structure to initialize 1016 * 1017 * This function frees the memory allocated to the q_vectors. In addition if 1018 * NAPI is enabled it will delete any references to the NAPI struct prior 1019 * to freeing the q_vector. 1020 **/ 1021 static void igb_free_q_vectors(struct igb_adapter *adapter) 1022 { 1023 int v_idx = adapter->num_q_vectors; 1024 1025 adapter->num_tx_queues = 0; 1026 adapter->num_rx_queues = 0; 1027 adapter->num_q_vectors = 0; 1028 1029 while (v_idx--) 1030 igb_free_q_vector(adapter, v_idx); 1031 } 1032 1033 /** 1034 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1035 * 1036 * This function resets the device so that it has 0 rx queues, tx queues, and 1037 * MSI-X interrupts allocated. 1038 */ 1039 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1040 { 1041 igb_free_q_vectors(adapter); 1042 igb_reset_interrupt_capability(adapter); 1043 } 1044 1045 /** 1046 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1047 * 1048 * Attempt to configure interrupts using the best available 1049 * capabilities of the hardware and kernel. 1050 **/ 1051 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1052 { 1053 int err; 1054 int numvecs, i; 1055 1056 if (!msix) 1057 goto msi_only; 1058 1059 /* Number of supported queues. */ 1060 adapter->num_rx_queues = adapter->rss_queues; 1061 if (adapter->vfs_allocated_count) 1062 adapter->num_tx_queues = 1; 1063 else 1064 adapter->num_tx_queues = adapter->rss_queues; 1065 1066 /* start with one vector for every rx queue */ 1067 numvecs = adapter->num_rx_queues; 1068 1069 /* if tx handler is separate add 1 for every tx queue */ 1070 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1071 numvecs += adapter->num_tx_queues; 1072 1073 /* store the number of vectors reserved for queues */ 1074 adapter->num_q_vectors = numvecs; 1075 1076 /* add 1 vector for link status interrupts */ 1077 numvecs++; 1078 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 1079 GFP_KERNEL); 1080 1081 if (!adapter->msix_entries) 1082 goto msi_only; 1083 1084 for (i = 0; i < numvecs; i++) 1085 adapter->msix_entries[i].entry = i; 1086 1087 err = pci_enable_msix(adapter->pdev, 1088 adapter->msix_entries, 1089 numvecs); 1090 if (err == 0) 1091 return; 1092 1093 igb_reset_interrupt_capability(adapter); 1094 1095 /* If we can't do MSI-X, try MSI */ 1096 msi_only: 1097 #ifdef CONFIG_PCI_IOV 1098 /* disable SR-IOV for non MSI-X configurations */ 1099 if (adapter->vf_data) { 1100 struct e1000_hw *hw = &adapter->hw; 1101 /* disable iov and allow time for transactions to clear */ 1102 pci_disable_sriov(adapter->pdev); 1103 msleep(500); 1104 1105 kfree(adapter->vf_data); 1106 adapter->vf_data = NULL; 1107 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1108 wrfl(); 1109 msleep(100); 1110 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1111 } 1112 #endif 1113 adapter->vfs_allocated_count = 0; 1114 adapter->rss_queues = 1; 1115 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1116 adapter->num_rx_queues = 1; 1117 adapter->num_tx_queues = 1; 1118 adapter->num_q_vectors = 1; 1119 if (!pci_enable_msi(adapter->pdev)) 1120 adapter->flags |= IGB_FLAG_HAS_MSI; 1121 } 1122 1123 static void igb_add_ring(struct igb_ring *ring, 1124 struct igb_ring_container *head) 1125 { 1126 head->ring = ring; 1127 head->count++; 1128 } 1129 1130 /** 1131 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1132 * @adapter: board private structure to initialize 1133 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1134 * @v_idx: index of vector in adapter struct 1135 * @txr_count: total number of Tx rings to allocate 1136 * @txr_idx: index of first Tx ring to allocate 1137 * @rxr_count: total number of Rx rings to allocate 1138 * @rxr_idx: index of first Rx ring to allocate 1139 * 1140 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1141 **/ 1142 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1143 int v_count, int v_idx, 1144 int txr_count, int txr_idx, 1145 int rxr_count, int rxr_idx) 1146 { 1147 struct igb_q_vector *q_vector; 1148 struct igb_ring *ring; 1149 int ring_count, size; 1150 1151 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1152 if (txr_count > 1 || rxr_count > 1) 1153 return -ENOMEM; 1154 1155 ring_count = txr_count + rxr_count; 1156 size = sizeof(struct igb_q_vector) + 1157 (sizeof(struct igb_ring) * ring_count); 1158 1159 /* allocate q_vector and rings */ 1160 q_vector = kzalloc(size, GFP_KERNEL); 1161 if (!q_vector) 1162 return -ENOMEM; 1163 1164 /* initialize NAPI */ 1165 netif_napi_add(adapter->netdev, &q_vector->napi, 1166 igb_poll, 64); 1167 1168 /* tie q_vector and adapter together */ 1169 adapter->q_vector[v_idx] = q_vector; 1170 q_vector->adapter = adapter; 1171 1172 /* initialize work limits */ 1173 q_vector->tx.work_limit = adapter->tx_work_limit; 1174 1175 /* initialize ITR configuration */ 1176 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); 1177 q_vector->itr_val = IGB_START_ITR; 1178 1179 /* initialize pointer to rings */ 1180 ring = q_vector->ring; 1181 1182 if (txr_count) { 1183 /* assign generic ring traits */ 1184 ring->dev = &adapter->pdev->dev; 1185 ring->netdev = adapter->netdev; 1186 1187 /* configure backlink on ring */ 1188 ring->q_vector = q_vector; 1189 1190 /* update q_vector Tx values */ 1191 igb_add_ring(ring, &q_vector->tx); 1192 1193 /* For 82575, context index must be unique per ring. */ 1194 if (adapter->hw.mac.type == e1000_82575) 1195 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1196 1197 /* apply Tx specific ring traits */ 1198 ring->count = adapter->tx_ring_count; 1199 ring->queue_index = txr_idx; 1200 1201 /* assign ring to adapter */ 1202 adapter->tx_ring[txr_idx] = ring; 1203 1204 /* push pointer to next ring */ 1205 ring++; 1206 } 1207 1208 if (rxr_count) { 1209 /* assign generic ring traits */ 1210 ring->dev = &adapter->pdev->dev; 1211 ring->netdev = adapter->netdev; 1212 1213 /* configure backlink on ring */ 1214 ring->q_vector = q_vector; 1215 1216 /* update q_vector Rx values */ 1217 igb_add_ring(ring, &q_vector->rx); 1218 1219 /* set flag indicating ring supports SCTP checksum offload */ 1220 if (adapter->hw.mac.type >= e1000_82576) 1221 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1222 1223 /* 1224 * On i350, i210, and i211, loopback VLAN packets 1225 * have the tag byte-swapped. 1226 * */ 1227 if (adapter->hw.mac.type >= e1000_i350) 1228 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1229 1230 /* apply Rx specific ring traits */ 1231 ring->count = adapter->rx_ring_count; 1232 ring->queue_index = rxr_idx; 1233 1234 /* assign ring to adapter */ 1235 adapter->rx_ring[rxr_idx] = ring; 1236 } 1237 1238 return 0; 1239 } 1240 1241 1242 /** 1243 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1244 * @adapter: board private structure to initialize 1245 * 1246 * We allocate one q_vector per queue interrupt. If allocation fails we 1247 * return -ENOMEM. 1248 **/ 1249 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1250 { 1251 int q_vectors = adapter->num_q_vectors; 1252 int rxr_remaining = adapter->num_rx_queues; 1253 int txr_remaining = adapter->num_tx_queues; 1254 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1255 int err; 1256 1257 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1258 for (; rxr_remaining; v_idx++) { 1259 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1260 0, 0, 1, rxr_idx); 1261 1262 if (err) 1263 goto err_out; 1264 1265 /* update counts and index */ 1266 rxr_remaining--; 1267 rxr_idx++; 1268 } 1269 } 1270 1271 for (; v_idx < q_vectors; v_idx++) { 1272 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1273 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1274 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1275 tqpv, txr_idx, rqpv, rxr_idx); 1276 1277 if (err) 1278 goto err_out; 1279 1280 /* update counts and index */ 1281 rxr_remaining -= rqpv; 1282 txr_remaining -= tqpv; 1283 rxr_idx++; 1284 txr_idx++; 1285 } 1286 1287 return 0; 1288 1289 err_out: 1290 adapter->num_tx_queues = 0; 1291 adapter->num_rx_queues = 0; 1292 adapter->num_q_vectors = 0; 1293 1294 while (v_idx--) 1295 igb_free_q_vector(adapter, v_idx); 1296 1297 return -ENOMEM; 1298 } 1299 1300 /** 1301 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1302 * 1303 * This function initializes the interrupts and allocates all of the queues. 1304 **/ 1305 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1306 { 1307 struct pci_dev *pdev = adapter->pdev; 1308 int err; 1309 1310 igb_set_interrupt_capability(adapter, msix); 1311 1312 err = igb_alloc_q_vectors(adapter); 1313 if (err) { 1314 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1315 goto err_alloc_q_vectors; 1316 } 1317 1318 igb_cache_ring_register(adapter); 1319 1320 return 0; 1321 1322 err_alloc_q_vectors: 1323 igb_reset_interrupt_capability(adapter); 1324 return err; 1325 } 1326 1327 /** 1328 * igb_request_irq - initialize interrupts 1329 * 1330 * Attempts to configure interrupts using the best available 1331 * capabilities of the hardware and kernel. 1332 **/ 1333 static int igb_request_irq(struct igb_adapter *adapter) 1334 { 1335 struct net_device *netdev = adapter->netdev; 1336 struct pci_dev *pdev = adapter->pdev; 1337 int err = 0; 1338 1339 if (adapter->msix_entries) { 1340 err = igb_request_msix(adapter); 1341 if (!err) 1342 goto request_done; 1343 /* fall back to MSI */ 1344 igb_free_all_tx_resources(adapter); 1345 igb_free_all_rx_resources(adapter); 1346 1347 igb_clear_interrupt_scheme(adapter); 1348 err = igb_init_interrupt_scheme(adapter, false); 1349 if (err) 1350 goto request_done; 1351 1352 igb_setup_all_tx_resources(adapter); 1353 igb_setup_all_rx_resources(adapter); 1354 igb_configure(adapter); 1355 } 1356 1357 igb_assign_vector(adapter->q_vector[0], 0); 1358 1359 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1360 err = request_irq(pdev->irq, igb_intr_msi, 0, 1361 netdev->name, adapter); 1362 if (!err) 1363 goto request_done; 1364 1365 /* fall back to legacy interrupts */ 1366 igb_reset_interrupt_capability(adapter); 1367 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1368 } 1369 1370 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1371 netdev->name, adapter); 1372 1373 if (err) 1374 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1375 err); 1376 1377 request_done: 1378 return err; 1379 } 1380 1381 static void igb_free_irq(struct igb_adapter *adapter) 1382 { 1383 if (adapter->msix_entries) { 1384 int vector = 0, i; 1385 1386 free_irq(adapter->msix_entries[vector++].vector, adapter); 1387 1388 for (i = 0; i < adapter->num_q_vectors; i++) 1389 free_irq(adapter->msix_entries[vector++].vector, 1390 adapter->q_vector[i]); 1391 } else { 1392 free_irq(adapter->pdev->irq, adapter); 1393 } 1394 } 1395 1396 /** 1397 * igb_irq_disable - Mask off interrupt generation on the NIC 1398 * @adapter: board private structure 1399 **/ 1400 static void igb_irq_disable(struct igb_adapter *adapter) 1401 { 1402 struct e1000_hw *hw = &adapter->hw; 1403 1404 /* 1405 * we need to be careful when disabling interrupts. The VFs are also 1406 * mapped into these registers and so clearing the bits can cause 1407 * issues on the VF drivers so we only need to clear what we set 1408 */ 1409 if (adapter->msix_entries) { 1410 u32 regval = rd32(E1000_EIAM); 1411 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1412 wr32(E1000_EIMC, adapter->eims_enable_mask); 1413 regval = rd32(E1000_EIAC); 1414 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1415 } 1416 1417 wr32(E1000_IAM, 0); 1418 wr32(E1000_IMC, ~0); 1419 wrfl(); 1420 if (adapter->msix_entries) { 1421 int i; 1422 for (i = 0; i < adapter->num_q_vectors; i++) 1423 synchronize_irq(adapter->msix_entries[i].vector); 1424 } else { 1425 synchronize_irq(adapter->pdev->irq); 1426 } 1427 } 1428 1429 /** 1430 * igb_irq_enable - Enable default interrupt generation settings 1431 * @adapter: board private structure 1432 **/ 1433 static void igb_irq_enable(struct igb_adapter *adapter) 1434 { 1435 struct e1000_hw *hw = &adapter->hw; 1436 1437 if (adapter->msix_entries) { 1438 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1439 u32 regval = rd32(E1000_EIAC); 1440 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1441 regval = rd32(E1000_EIAM); 1442 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1443 wr32(E1000_EIMS, adapter->eims_enable_mask); 1444 if (adapter->vfs_allocated_count) { 1445 wr32(E1000_MBVFIMR, 0xFF); 1446 ims |= E1000_IMS_VMMB; 1447 } 1448 wr32(E1000_IMS, ims); 1449 } else { 1450 wr32(E1000_IMS, IMS_ENABLE_MASK | 1451 E1000_IMS_DRSTA); 1452 wr32(E1000_IAM, IMS_ENABLE_MASK | 1453 E1000_IMS_DRSTA); 1454 } 1455 } 1456 1457 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1458 { 1459 struct e1000_hw *hw = &adapter->hw; 1460 u16 vid = adapter->hw.mng_cookie.vlan_id; 1461 u16 old_vid = adapter->mng_vlan_id; 1462 1463 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1464 /* add VID to filter table */ 1465 igb_vfta_set(hw, vid, true); 1466 adapter->mng_vlan_id = vid; 1467 } else { 1468 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1469 } 1470 1471 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1472 (vid != old_vid) && 1473 !test_bit(old_vid, adapter->active_vlans)) { 1474 /* remove VID from filter table */ 1475 igb_vfta_set(hw, old_vid, false); 1476 } 1477 } 1478 1479 /** 1480 * igb_release_hw_control - release control of the h/w to f/w 1481 * @adapter: address of board private structure 1482 * 1483 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1484 * For ASF and Pass Through versions of f/w this means that the 1485 * driver is no longer loaded. 1486 * 1487 **/ 1488 static void igb_release_hw_control(struct igb_adapter *adapter) 1489 { 1490 struct e1000_hw *hw = &adapter->hw; 1491 u32 ctrl_ext; 1492 1493 /* Let firmware take over control of h/w */ 1494 ctrl_ext = rd32(E1000_CTRL_EXT); 1495 wr32(E1000_CTRL_EXT, 1496 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1497 } 1498 1499 /** 1500 * igb_get_hw_control - get control of the h/w from f/w 1501 * @adapter: address of board private structure 1502 * 1503 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1504 * For ASF and Pass Through versions of f/w this means that 1505 * the driver is loaded. 1506 * 1507 **/ 1508 static void igb_get_hw_control(struct igb_adapter *adapter) 1509 { 1510 struct e1000_hw *hw = &adapter->hw; 1511 u32 ctrl_ext; 1512 1513 /* Let firmware know the driver has taken over */ 1514 ctrl_ext = rd32(E1000_CTRL_EXT); 1515 wr32(E1000_CTRL_EXT, 1516 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1517 } 1518 1519 /** 1520 * igb_configure - configure the hardware for RX and TX 1521 * @adapter: private board structure 1522 **/ 1523 static void igb_configure(struct igb_adapter *adapter) 1524 { 1525 struct net_device *netdev = adapter->netdev; 1526 int i; 1527 1528 igb_get_hw_control(adapter); 1529 igb_set_rx_mode(netdev); 1530 1531 igb_restore_vlan(adapter); 1532 1533 igb_setup_tctl(adapter); 1534 igb_setup_mrqc(adapter); 1535 igb_setup_rctl(adapter); 1536 1537 igb_configure_tx(adapter); 1538 igb_configure_rx(adapter); 1539 1540 igb_rx_fifo_flush_82575(&adapter->hw); 1541 1542 /* call igb_desc_unused which always leaves 1543 * at least 1 descriptor unused to make sure 1544 * next_to_use != next_to_clean */ 1545 for (i = 0; i < adapter->num_rx_queues; i++) { 1546 struct igb_ring *ring = adapter->rx_ring[i]; 1547 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 1548 } 1549 } 1550 1551 /** 1552 * igb_power_up_link - Power up the phy/serdes link 1553 * @adapter: address of board private structure 1554 **/ 1555 void igb_power_up_link(struct igb_adapter *adapter) 1556 { 1557 igb_reset_phy(&adapter->hw); 1558 1559 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1560 igb_power_up_phy_copper(&adapter->hw); 1561 else 1562 igb_power_up_serdes_link_82575(&adapter->hw); 1563 } 1564 1565 /** 1566 * igb_power_down_link - Power down the phy/serdes link 1567 * @adapter: address of board private structure 1568 */ 1569 static void igb_power_down_link(struct igb_adapter *adapter) 1570 { 1571 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1572 igb_power_down_phy_copper_82575(&adapter->hw); 1573 else 1574 igb_shutdown_serdes_link_82575(&adapter->hw); 1575 } 1576 1577 /** 1578 * igb_up - Open the interface and prepare it to handle traffic 1579 * @adapter: board private structure 1580 **/ 1581 int igb_up(struct igb_adapter *adapter) 1582 { 1583 struct e1000_hw *hw = &adapter->hw; 1584 int i; 1585 1586 /* hardware has been reset, we need to reload some things */ 1587 igb_configure(adapter); 1588 1589 clear_bit(__IGB_DOWN, &adapter->state); 1590 1591 for (i = 0; i < adapter->num_q_vectors; i++) 1592 napi_enable(&(adapter->q_vector[i]->napi)); 1593 1594 if (adapter->msix_entries) 1595 igb_configure_msix(adapter); 1596 else 1597 igb_assign_vector(adapter->q_vector[0], 0); 1598 1599 /* Clear any pending interrupts. */ 1600 rd32(E1000_ICR); 1601 igb_irq_enable(adapter); 1602 1603 /* notify VFs that reset has been completed */ 1604 if (adapter->vfs_allocated_count) { 1605 u32 reg_data = rd32(E1000_CTRL_EXT); 1606 reg_data |= E1000_CTRL_EXT_PFRSTD; 1607 wr32(E1000_CTRL_EXT, reg_data); 1608 } 1609 1610 netif_tx_start_all_queues(adapter->netdev); 1611 1612 /* start the watchdog. */ 1613 hw->mac.get_link_status = 1; 1614 schedule_work(&adapter->watchdog_task); 1615 1616 return 0; 1617 } 1618 1619 void igb_down(struct igb_adapter *adapter) 1620 { 1621 struct net_device *netdev = adapter->netdev; 1622 struct e1000_hw *hw = &adapter->hw; 1623 u32 tctl, rctl; 1624 int i; 1625 1626 /* signal that we're down so the interrupt handler does not 1627 * reschedule our watchdog timer */ 1628 set_bit(__IGB_DOWN, &adapter->state); 1629 1630 /* disable receives in the hardware */ 1631 rctl = rd32(E1000_RCTL); 1632 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 1633 /* flush and sleep below */ 1634 1635 netif_tx_stop_all_queues(netdev); 1636 1637 /* disable transmits in the hardware */ 1638 tctl = rd32(E1000_TCTL); 1639 tctl &= ~E1000_TCTL_EN; 1640 wr32(E1000_TCTL, tctl); 1641 /* flush both disables and wait for them to finish */ 1642 wrfl(); 1643 msleep(10); 1644 1645 for (i = 0; i < adapter->num_q_vectors; i++) 1646 napi_disable(&(adapter->q_vector[i]->napi)); 1647 1648 igb_irq_disable(adapter); 1649 1650 del_timer_sync(&adapter->watchdog_timer); 1651 del_timer_sync(&adapter->phy_info_timer); 1652 1653 netif_carrier_off(netdev); 1654 1655 /* record the stats before reset*/ 1656 spin_lock(&adapter->stats64_lock); 1657 igb_update_stats(adapter, &adapter->stats64); 1658 spin_unlock(&adapter->stats64_lock); 1659 1660 adapter->link_speed = 0; 1661 adapter->link_duplex = 0; 1662 1663 if (!pci_channel_offline(adapter->pdev)) 1664 igb_reset(adapter); 1665 igb_clean_all_tx_rings(adapter); 1666 igb_clean_all_rx_rings(adapter); 1667 #ifdef CONFIG_IGB_DCA 1668 1669 /* since we reset the hardware DCA settings were cleared */ 1670 igb_setup_dca(adapter); 1671 #endif 1672 } 1673 1674 void igb_reinit_locked(struct igb_adapter *adapter) 1675 { 1676 WARN_ON(in_interrupt()); 1677 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 1678 msleep(1); 1679 igb_down(adapter); 1680 igb_up(adapter); 1681 clear_bit(__IGB_RESETTING, &adapter->state); 1682 } 1683 1684 void igb_reset(struct igb_adapter *adapter) 1685 { 1686 struct pci_dev *pdev = adapter->pdev; 1687 struct e1000_hw *hw = &adapter->hw; 1688 struct e1000_mac_info *mac = &hw->mac; 1689 struct e1000_fc_info *fc = &hw->fc; 1690 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; 1691 1692 /* Repartition Pba for greater than 9k mtu 1693 * To take effect CTRL.RST is required. 1694 */ 1695 switch (mac->type) { 1696 case e1000_i350: 1697 case e1000_82580: 1698 pba = rd32(E1000_RXPBS); 1699 pba = igb_rxpbs_adjust_82580(pba); 1700 break; 1701 case e1000_82576: 1702 pba = rd32(E1000_RXPBS); 1703 pba &= E1000_RXPBS_SIZE_MASK_82576; 1704 break; 1705 case e1000_82575: 1706 case e1000_i210: 1707 case e1000_i211: 1708 default: 1709 pba = E1000_PBA_34K; 1710 break; 1711 } 1712 1713 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && 1714 (mac->type < e1000_82576)) { 1715 /* adjust PBA for jumbo frames */ 1716 wr32(E1000_PBA, pba); 1717 1718 /* To maintain wire speed transmits, the Tx FIFO should be 1719 * large enough to accommodate two full transmit packets, 1720 * rounded up to the next 1KB and expressed in KB. Likewise, 1721 * the Rx FIFO should be large enough to accommodate at least 1722 * one full receive packet and is similarly rounded up and 1723 * expressed in KB. */ 1724 pba = rd32(E1000_PBA); 1725 /* upper 16 bits has Tx packet buffer allocation size in KB */ 1726 tx_space = pba >> 16; 1727 /* lower 16 bits has Rx packet buffer allocation size in KB */ 1728 pba &= 0xffff; 1729 /* the tx fifo also stores 16 bytes of information about the tx 1730 * but don't include ethernet FCS because hardware appends it */ 1731 min_tx_space = (adapter->max_frame_size + 1732 sizeof(union e1000_adv_tx_desc) - 1733 ETH_FCS_LEN) * 2; 1734 min_tx_space = ALIGN(min_tx_space, 1024); 1735 min_tx_space >>= 10; 1736 /* software strips receive CRC, so leave room for it */ 1737 min_rx_space = adapter->max_frame_size; 1738 min_rx_space = ALIGN(min_rx_space, 1024); 1739 min_rx_space >>= 10; 1740 1741 /* If current Tx allocation is less than the min Tx FIFO size, 1742 * and the min Tx FIFO size is less than the current Rx FIFO 1743 * allocation, take space away from current Rx allocation */ 1744 if (tx_space < min_tx_space && 1745 ((min_tx_space - tx_space) < pba)) { 1746 pba = pba - (min_tx_space - tx_space); 1747 1748 /* if short on rx space, rx wins and must trump tx 1749 * adjustment */ 1750 if (pba < min_rx_space) 1751 pba = min_rx_space; 1752 } 1753 wr32(E1000_PBA, pba); 1754 } 1755 1756 /* flow control settings */ 1757 /* The high water mark must be low enough to fit one full frame 1758 * (or the size used for early receive) above it in the Rx FIFO. 1759 * Set it to the lower of: 1760 * - 90% of the Rx FIFO size, or 1761 * - the full Rx FIFO size minus one full frame */ 1762 hwm = min(((pba << 10) * 9 / 10), 1763 ((pba << 10) - 2 * adapter->max_frame_size)); 1764 1765 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 1766 fc->low_water = fc->high_water - 16; 1767 fc->pause_time = 0xFFFF; 1768 fc->send_xon = 1; 1769 fc->current_mode = fc->requested_mode; 1770 1771 /* disable receive for all VFs and wait one second */ 1772 if (adapter->vfs_allocated_count) { 1773 int i; 1774 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 1775 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 1776 1777 /* ping all the active vfs to let them know we are going down */ 1778 igb_ping_all_vfs(adapter); 1779 1780 /* disable transmits and receives */ 1781 wr32(E1000_VFRE, 0); 1782 wr32(E1000_VFTE, 0); 1783 } 1784 1785 /* Allow time for pending master requests to run */ 1786 hw->mac.ops.reset_hw(hw); 1787 wr32(E1000_WUC, 0); 1788 1789 if (hw->mac.ops.init_hw(hw)) 1790 dev_err(&pdev->dev, "Hardware Error\n"); 1791 1792 /* 1793 * Flow control settings reset on hardware reset, so guarantee flow 1794 * control is off when forcing speed. 1795 */ 1796 if (!hw->mac.autoneg) 1797 igb_force_mac_fc(hw); 1798 1799 igb_init_dmac(adapter, pba); 1800 #ifdef CONFIG_IGB_HWMON 1801 /* Re-initialize the thermal sensor on i350 devices. */ 1802 if (!test_bit(__IGB_DOWN, &adapter->state)) { 1803 if (mac->type == e1000_i350 && hw->bus.func == 0) { 1804 /* If present, re-initialize the external thermal sensor 1805 * interface. 1806 */ 1807 if (adapter->ets) 1808 mac->ops.init_thermal_sensor_thresh(hw); 1809 } 1810 } 1811 #endif 1812 if (!netif_running(adapter->netdev)) 1813 igb_power_down_link(adapter); 1814 1815 igb_update_mng_vlan(adapter); 1816 1817 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 1818 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 1819 1820 /* Re-enable PTP, where applicable. */ 1821 igb_ptp_reset(adapter); 1822 1823 igb_get_phy_info(hw); 1824 } 1825 1826 static netdev_features_t igb_fix_features(struct net_device *netdev, 1827 netdev_features_t features) 1828 { 1829 /* 1830 * Since there is no support for separate rx/tx vlan accel 1831 * enable/disable make sure tx flag is always in same state as rx. 1832 */ 1833 if (features & NETIF_F_HW_VLAN_RX) 1834 features |= NETIF_F_HW_VLAN_TX; 1835 else 1836 features &= ~NETIF_F_HW_VLAN_TX; 1837 1838 return features; 1839 } 1840 1841 static int igb_set_features(struct net_device *netdev, 1842 netdev_features_t features) 1843 { 1844 netdev_features_t changed = netdev->features ^ features; 1845 struct igb_adapter *adapter = netdev_priv(netdev); 1846 1847 if (changed & NETIF_F_HW_VLAN_RX) 1848 igb_vlan_mode(netdev, features); 1849 1850 if (!(changed & NETIF_F_RXALL)) 1851 return 0; 1852 1853 netdev->features = features; 1854 1855 if (netif_running(netdev)) 1856 igb_reinit_locked(adapter); 1857 else 1858 igb_reset(adapter); 1859 1860 return 0; 1861 } 1862 1863 static const struct net_device_ops igb_netdev_ops = { 1864 .ndo_open = igb_open, 1865 .ndo_stop = igb_close, 1866 .ndo_start_xmit = igb_xmit_frame, 1867 .ndo_get_stats64 = igb_get_stats64, 1868 .ndo_set_rx_mode = igb_set_rx_mode, 1869 .ndo_set_mac_address = igb_set_mac, 1870 .ndo_change_mtu = igb_change_mtu, 1871 .ndo_do_ioctl = igb_ioctl, 1872 .ndo_tx_timeout = igb_tx_timeout, 1873 .ndo_validate_addr = eth_validate_addr, 1874 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 1875 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 1876 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 1877 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 1878 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, 1879 .ndo_get_vf_config = igb_ndo_get_vf_config, 1880 #ifdef CONFIG_NET_POLL_CONTROLLER 1881 .ndo_poll_controller = igb_netpoll, 1882 #endif 1883 .ndo_fix_features = igb_fix_features, 1884 .ndo_set_features = igb_set_features, 1885 }; 1886 1887 /** 1888 * igb_set_fw_version - Configure version string for ethtool 1889 * @adapter: adapter struct 1890 * 1891 **/ 1892 void igb_set_fw_version(struct igb_adapter *adapter) 1893 { 1894 struct e1000_hw *hw = &adapter->hw; 1895 struct e1000_fw_version fw; 1896 1897 igb_get_fw_version(hw, &fw); 1898 1899 switch (hw->mac.type) { 1900 case e1000_i211: 1901 snprintf(adapter->fw_version, sizeof(adapter->fw_version), 1902 "%2d.%2d-%d", 1903 fw.invm_major, fw.invm_minor, fw.invm_img_type); 1904 break; 1905 1906 default: 1907 /* if option is rom valid, display its version too */ 1908 if (fw.or_valid) { 1909 snprintf(adapter->fw_version, 1910 sizeof(adapter->fw_version), 1911 "%d.%d, 0x%08x, %d.%d.%d", 1912 fw.eep_major, fw.eep_minor, fw.etrack_id, 1913 fw.or_major, fw.or_build, fw.or_patch); 1914 /* no option rom */ 1915 } else { 1916 snprintf(adapter->fw_version, 1917 sizeof(adapter->fw_version), 1918 "%d.%d, 0x%08x", 1919 fw.eep_major, fw.eep_minor, fw.etrack_id); 1920 } 1921 break; 1922 } 1923 return; 1924 } 1925 1926 static const struct i2c_board_info i350_sensor_info = { 1927 I2C_BOARD_INFO("i350bb", 0Xf8), 1928 }; 1929 1930 /* igb_init_i2c - Init I2C interface 1931 * @adapter: pointer to adapter structure 1932 * 1933 */ 1934 static s32 igb_init_i2c(struct igb_adapter *adapter) 1935 { 1936 s32 status = E1000_SUCCESS; 1937 1938 /* I2C interface supported on i350 devices */ 1939 if (adapter->hw.mac.type != e1000_i350) 1940 return E1000_SUCCESS; 1941 1942 /* Initialize the i2c bus which is controlled by the registers. 1943 * This bus will use the i2c_algo_bit structue that implements 1944 * the protocol through toggling of the 4 bits in the register. 1945 */ 1946 adapter->i2c_adap.owner = THIS_MODULE; 1947 adapter->i2c_algo = igb_i2c_algo; 1948 adapter->i2c_algo.data = adapter; 1949 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 1950 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 1951 strlcpy(adapter->i2c_adap.name, "igb BB", 1952 sizeof(adapter->i2c_adap.name)); 1953 status = i2c_bit_add_bus(&adapter->i2c_adap); 1954 return status; 1955 } 1956 1957 /** 1958 * igb_probe - Device Initialization Routine 1959 * @pdev: PCI device information struct 1960 * @ent: entry in igb_pci_tbl 1961 * 1962 * Returns 0 on success, negative on failure 1963 * 1964 * igb_probe initializes an adapter identified by a pci_dev structure. 1965 * The OS initialization, configuring of the adapter private structure, 1966 * and a hardware reset occur. 1967 **/ 1968 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1969 { 1970 struct net_device *netdev; 1971 struct igb_adapter *adapter; 1972 struct e1000_hw *hw; 1973 u16 eeprom_data = 0; 1974 s32 ret_val; 1975 static int global_quad_port_a; /* global quad port a indication */ 1976 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 1977 unsigned long mmio_start, mmio_len; 1978 int err, pci_using_dac; 1979 u8 part_str[E1000_PBANUM_LENGTH]; 1980 1981 /* Catch broken hardware that put the wrong VF device ID in 1982 * the PCIe SR-IOV capability. 1983 */ 1984 if (pdev->is_virtfn) { 1985 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", 1986 pci_name(pdev), pdev->vendor, pdev->device); 1987 return -EINVAL; 1988 } 1989 1990 err = pci_enable_device_mem(pdev); 1991 if (err) 1992 return err; 1993 1994 pci_using_dac = 0; 1995 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 1996 if (!err) { 1997 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 1998 if (!err) 1999 pci_using_dac = 1; 2000 } else { 2001 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2002 if (err) { 2003 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 2004 if (err) { 2005 dev_err(&pdev->dev, "No usable DMA " 2006 "configuration, aborting\n"); 2007 goto err_dma; 2008 } 2009 } 2010 } 2011 2012 err = pci_request_selected_regions(pdev, pci_select_bars(pdev, 2013 IORESOURCE_MEM), 2014 igb_driver_name); 2015 if (err) 2016 goto err_pci_reg; 2017 2018 pci_enable_pcie_error_reporting(pdev); 2019 2020 pci_set_master(pdev); 2021 pci_save_state(pdev); 2022 2023 err = -ENOMEM; 2024 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 2025 IGB_MAX_TX_QUEUES); 2026 if (!netdev) 2027 goto err_alloc_etherdev; 2028 2029 SET_NETDEV_DEV(netdev, &pdev->dev); 2030 2031 pci_set_drvdata(pdev, netdev); 2032 adapter = netdev_priv(netdev); 2033 adapter->netdev = netdev; 2034 adapter->pdev = pdev; 2035 hw = &adapter->hw; 2036 hw->back = adapter; 2037 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2038 2039 mmio_start = pci_resource_start(pdev, 0); 2040 mmio_len = pci_resource_len(pdev, 0); 2041 2042 err = -EIO; 2043 hw->hw_addr = ioremap(mmio_start, mmio_len); 2044 if (!hw->hw_addr) 2045 goto err_ioremap; 2046 2047 netdev->netdev_ops = &igb_netdev_ops; 2048 igb_set_ethtool_ops(netdev); 2049 netdev->watchdog_timeo = 5 * HZ; 2050 2051 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2052 2053 netdev->mem_start = mmio_start; 2054 netdev->mem_end = mmio_start + mmio_len; 2055 2056 /* PCI config space info */ 2057 hw->vendor_id = pdev->vendor; 2058 hw->device_id = pdev->device; 2059 hw->revision_id = pdev->revision; 2060 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2061 hw->subsystem_device_id = pdev->subsystem_device; 2062 2063 /* Copy the default MAC, PHY and NVM function pointers */ 2064 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 2065 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 2066 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 2067 /* Initialize skew-specific constants */ 2068 err = ei->get_invariants(hw); 2069 if (err) 2070 goto err_sw_init; 2071 2072 /* setup the private structure */ 2073 err = igb_sw_init(adapter); 2074 if (err) 2075 goto err_sw_init; 2076 2077 igb_get_bus_info_pcie(hw); 2078 2079 hw->phy.autoneg_wait_to_complete = false; 2080 2081 /* Copper options */ 2082 if (hw->phy.media_type == e1000_media_type_copper) { 2083 hw->phy.mdix = AUTO_ALL_MODES; 2084 hw->phy.disable_polarity_correction = false; 2085 hw->phy.ms_type = e1000_ms_hw_default; 2086 } 2087 2088 if (igb_check_reset_block(hw)) 2089 dev_info(&pdev->dev, 2090 "PHY reset is blocked due to SOL/IDER session.\n"); 2091 2092 /* 2093 * features is initialized to 0 in allocation, it might have bits 2094 * set by igb_sw_init so we should use an or instead of an 2095 * assignment. 2096 */ 2097 netdev->features |= NETIF_F_SG | 2098 NETIF_F_IP_CSUM | 2099 NETIF_F_IPV6_CSUM | 2100 NETIF_F_TSO | 2101 NETIF_F_TSO6 | 2102 NETIF_F_RXHASH | 2103 NETIF_F_RXCSUM | 2104 NETIF_F_HW_VLAN_RX | 2105 NETIF_F_HW_VLAN_TX; 2106 2107 /* copy netdev features into list of user selectable features */ 2108 netdev->hw_features |= netdev->features; 2109 netdev->hw_features |= NETIF_F_RXALL; 2110 2111 /* set this bit last since it cannot be part of hw_features */ 2112 netdev->features |= NETIF_F_HW_VLAN_FILTER; 2113 2114 netdev->vlan_features |= NETIF_F_TSO | 2115 NETIF_F_TSO6 | 2116 NETIF_F_IP_CSUM | 2117 NETIF_F_IPV6_CSUM | 2118 NETIF_F_SG; 2119 2120 netdev->priv_flags |= IFF_SUPP_NOFCS; 2121 2122 if (pci_using_dac) { 2123 netdev->features |= NETIF_F_HIGHDMA; 2124 netdev->vlan_features |= NETIF_F_HIGHDMA; 2125 } 2126 2127 if (hw->mac.type >= e1000_82576) { 2128 netdev->hw_features |= NETIF_F_SCTP_CSUM; 2129 netdev->features |= NETIF_F_SCTP_CSUM; 2130 } 2131 2132 netdev->priv_flags |= IFF_UNICAST_FLT; 2133 2134 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 2135 2136 /* before reading the NVM, reset the controller to put the device in a 2137 * known good starting state */ 2138 hw->mac.ops.reset_hw(hw); 2139 2140 /* 2141 * make sure the NVM is good , i211 parts have special NVM that 2142 * doesn't contain a checksum 2143 */ 2144 if (hw->mac.type != e1000_i211) { 2145 if (hw->nvm.ops.validate(hw) < 0) { 2146 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 2147 err = -EIO; 2148 goto err_eeprom; 2149 } 2150 } 2151 2152 /* copy the MAC address out of the NVM */ 2153 if (hw->mac.ops.read_mac_addr(hw)) 2154 dev_err(&pdev->dev, "NVM Read Error\n"); 2155 2156 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2157 2158 if (!is_valid_ether_addr(netdev->dev_addr)) { 2159 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2160 err = -EIO; 2161 goto err_eeprom; 2162 } 2163 2164 /* get firmware version for ethtool -i */ 2165 igb_set_fw_version(adapter); 2166 2167 setup_timer(&adapter->watchdog_timer, igb_watchdog, 2168 (unsigned long) adapter); 2169 setup_timer(&adapter->phy_info_timer, igb_update_phy_info, 2170 (unsigned long) adapter); 2171 2172 INIT_WORK(&adapter->reset_task, igb_reset_task); 2173 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 2174 2175 /* Initialize link properties that are user-changeable */ 2176 adapter->fc_autoneg = true; 2177 hw->mac.autoneg = true; 2178 hw->phy.autoneg_advertised = 0x2f; 2179 2180 hw->fc.requested_mode = e1000_fc_default; 2181 hw->fc.current_mode = e1000_fc_default; 2182 2183 igb_validate_mdi_setting(hw); 2184 2185 /* By default, support wake on port A */ 2186 if (hw->bus.func == 0) 2187 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2188 2189 /* Check the NVM for wake support on non-port A ports */ 2190 if (hw->mac.type >= e1000_82580) 2191 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2192 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2193 &eeprom_data); 2194 else if (hw->bus.func == 1) 2195 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 2196 2197 if (eeprom_data & IGB_EEPROM_APME) 2198 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2199 2200 /* now that we have the eeprom settings, apply the special cases where 2201 * the eeprom may be wrong or the board simply won't support wake on 2202 * lan on a particular port */ 2203 switch (pdev->device) { 2204 case E1000_DEV_ID_82575GB_QUAD_COPPER: 2205 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2206 break; 2207 case E1000_DEV_ID_82575EB_FIBER_SERDES: 2208 case E1000_DEV_ID_82576_FIBER: 2209 case E1000_DEV_ID_82576_SERDES: 2210 /* Wake events only supported on port A for dual fiber 2211 * regardless of eeprom setting */ 2212 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 2213 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2214 break; 2215 case E1000_DEV_ID_82576_QUAD_COPPER: 2216 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 2217 /* if quad port adapter, disable WoL on all but port A */ 2218 if (global_quad_port_a != 0) 2219 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2220 else 2221 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 2222 /* Reset for multiple quad port adapters */ 2223 if (++global_quad_port_a == 4) 2224 global_quad_port_a = 0; 2225 break; 2226 default: 2227 /* If the device can't wake, don't set software support */ 2228 if (!device_can_wakeup(&adapter->pdev->dev)) 2229 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2230 } 2231 2232 /* initialize the wol settings based on the eeprom settings */ 2233 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 2234 adapter->wol |= E1000_WUFC_MAG; 2235 2236 /* Some vendors want WoL disabled by default, but still supported */ 2237 if ((hw->mac.type == e1000_i350) && 2238 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 2239 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2240 adapter->wol = 0; 2241 } 2242 2243 device_set_wakeup_enable(&adapter->pdev->dev, 2244 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 2245 2246 /* reset the hardware with the new settings */ 2247 igb_reset(adapter); 2248 2249 /* Init the I2C interface */ 2250 err = igb_init_i2c(adapter); 2251 if (err) { 2252 dev_err(&pdev->dev, "failed to init i2c interface\n"); 2253 goto err_eeprom; 2254 } 2255 2256 /* let the f/w know that the h/w is now under the control of the 2257 * driver. */ 2258 igb_get_hw_control(adapter); 2259 2260 strcpy(netdev->name, "eth%d"); 2261 err = register_netdev(netdev); 2262 if (err) 2263 goto err_register; 2264 2265 /* carrier off reporting is important to ethtool even BEFORE open */ 2266 netif_carrier_off(netdev); 2267 2268 #ifdef CONFIG_IGB_DCA 2269 if (dca_add_requester(&pdev->dev) == 0) { 2270 adapter->flags |= IGB_FLAG_DCA_ENABLED; 2271 dev_info(&pdev->dev, "DCA enabled\n"); 2272 igb_setup_dca(adapter); 2273 } 2274 2275 #endif 2276 #ifdef CONFIG_IGB_HWMON 2277 /* Initialize the thermal sensor on i350 devices. */ 2278 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 2279 u16 ets_word; 2280 2281 /* 2282 * Read the NVM to determine if this i350 device supports an 2283 * external thermal sensor. 2284 */ 2285 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 2286 if (ets_word != 0x0000 && ets_word != 0xFFFF) 2287 adapter->ets = true; 2288 else 2289 adapter->ets = false; 2290 if (igb_sysfs_init(adapter)) 2291 dev_err(&pdev->dev, 2292 "failed to allocate sysfs resources\n"); 2293 } else { 2294 adapter->ets = false; 2295 } 2296 #endif 2297 /* do hw tstamp init after resetting */ 2298 igb_ptp_init(adapter); 2299 2300 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 2301 /* print bus type/speed/width info */ 2302 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 2303 netdev->name, 2304 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 2305 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 2306 "unknown"), 2307 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 2308 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : 2309 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : 2310 "unknown"), 2311 netdev->dev_addr); 2312 2313 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); 2314 if (ret_val) 2315 strcpy(part_str, "Unknown"); 2316 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 2317 dev_info(&pdev->dev, 2318 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 2319 adapter->msix_entries ? "MSI-X" : 2320 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 2321 adapter->num_rx_queues, adapter->num_tx_queues); 2322 switch (hw->mac.type) { 2323 case e1000_i350: 2324 case e1000_i210: 2325 case e1000_i211: 2326 igb_set_eee_i350(hw); 2327 break; 2328 default: 2329 break; 2330 } 2331 2332 pm_runtime_put_noidle(&pdev->dev); 2333 return 0; 2334 2335 err_register: 2336 igb_release_hw_control(adapter); 2337 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 2338 err_eeprom: 2339 if (!igb_check_reset_block(hw)) 2340 igb_reset_phy(hw); 2341 2342 if (hw->flash_address) 2343 iounmap(hw->flash_address); 2344 err_sw_init: 2345 igb_clear_interrupt_scheme(adapter); 2346 iounmap(hw->hw_addr); 2347 err_ioremap: 2348 free_netdev(netdev); 2349 err_alloc_etherdev: 2350 pci_release_selected_regions(pdev, 2351 pci_select_bars(pdev, IORESOURCE_MEM)); 2352 err_pci_reg: 2353 err_dma: 2354 pci_disable_device(pdev); 2355 return err; 2356 } 2357 2358 #ifdef CONFIG_PCI_IOV 2359 static int igb_disable_sriov(struct pci_dev *pdev) 2360 { 2361 struct net_device *netdev = pci_get_drvdata(pdev); 2362 struct igb_adapter *adapter = netdev_priv(netdev); 2363 struct e1000_hw *hw = &adapter->hw; 2364 2365 /* reclaim resources allocated to VFs */ 2366 if (adapter->vf_data) { 2367 /* disable iov and allow time for transactions to clear */ 2368 if (igb_vfs_are_assigned(adapter)) { 2369 dev_warn(&pdev->dev, 2370 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 2371 return -EPERM; 2372 } else { 2373 pci_disable_sriov(pdev); 2374 msleep(500); 2375 } 2376 2377 kfree(adapter->vf_data); 2378 adapter->vf_data = NULL; 2379 adapter->vfs_allocated_count = 0; 2380 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 2381 wrfl(); 2382 msleep(100); 2383 dev_info(&pdev->dev, "IOV Disabled\n"); 2384 2385 /* Re-enable DMA Coalescing flag since IOV is turned off */ 2386 adapter->flags |= IGB_FLAG_DMAC; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 2393 { 2394 struct net_device *netdev = pci_get_drvdata(pdev); 2395 struct igb_adapter *adapter = netdev_priv(netdev); 2396 int old_vfs = pci_num_vf(pdev); 2397 int err = 0; 2398 int i; 2399 2400 if (!num_vfs) 2401 goto out; 2402 else if (old_vfs && old_vfs == num_vfs) 2403 goto out; 2404 else if (old_vfs && old_vfs != num_vfs) 2405 err = igb_disable_sriov(pdev); 2406 2407 if (err) 2408 goto out; 2409 2410 if (num_vfs > 7) { 2411 err = -EPERM; 2412 goto out; 2413 } 2414 2415 adapter->vfs_allocated_count = num_vfs; 2416 2417 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 2418 sizeof(struct vf_data_storage), GFP_KERNEL); 2419 2420 /* if allocation failed then we do not support SR-IOV */ 2421 if (!adapter->vf_data) { 2422 adapter->vfs_allocated_count = 0; 2423 dev_err(&pdev->dev, 2424 "Unable to allocate memory for VF Data Storage\n"); 2425 err = -ENOMEM; 2426 goto out; 2427 } 2428 2429 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 2430 if (err) 2431 goto err_out; 2432 2433 dev_info(&pdev->dev, "%d VFs allocated\n", 2434 adapter->vfs_allocated_count); 2435 for (i = 0; i < adapter->vfs_allocated_count; i++) 2436 igb_vf_configure(adapter, i); 2437 2438 /* DMA Coalescing is not supported in IOV mode. */ 2439 adapter->flags &= ~IGB_FLAG_DMAC; 2440 goto out; 2441 2442 err_out: 2443 kfree(adapter->vf_data); 2444 adapter->vf_data = NULL; 2445 adapter->vfs_allocated_count = 0; 2446 out: 2447 return err; 2448 } 2449 2450 #endif 2451 /* 2452 * igb_remove_i2c - Cleanup I2C interface 2453 * @adapter: pointer to adapter structure 2454 * 2455 */ 2456 static void igb_remove_i2c(struct igb_adapter *adapter) 2457 { 2458 2459 /* free the adapter bus structure */ 2460 i2c_del_adapter(&adapter->i2c_adap); 2461 } 2462 2463 /** 2464 * igb_remove - Device Removal Routine 2465 * @pdev: PCI device information struct 2466 * 2467 * igb_remove is called by the PCI subsystem to alert the driver 2468 * that it should release a PCI device. The could be caused by a 2469 * Hot-Plug event, or because the driver is going to be removed from 2470 * memory. 2471 **/ 2472 static void igb_remove(struct pci_dev *pdev) 2473 { 2474 struct net_device *netdev = pci_get_drvdata(pdev); 2475 struct igb_adapter *adapter = netdev_priv(netdev); 2476 struct e1000_hw *hw = &adapter->hw; 2477 2478 pm_runtime_get_noresume(&pdev->dev); 2479 #ifdef CONFIG_IGB_HWMON 2480 igb_sysfs_exit(adapter); 2481 #endif 2482 igb_remove_i2c(adapter); 2483 igb_ptp_stop(adapter); 2484 /* 2485 * The watchdog timer may be rescheduled, so explicitly 2486 * disable watchdog from being rescheduled. 2487 */ 2488 set_bit(__IGB_DOWN, &adapter->state); 2489 del_timer_sync(&adapter->watchdog_timer); 2490 del_timer_sync(&adapter->phy_info_timer); 2491 2492 cancel_work_sync(&adapter->reset_task); 2493 cancel_work_sync(&adapter->watchdog_task); 2494 2495 #ifdef CONFIG_IGB_DCA 2496 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 2497 dev_info(&pdev->dev, "DCA disabled\n"); 2498 dca_remove_requester(&pdev->dev); 2499 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 2500 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 2501 } 2502 #endif 2503 2504 /* Release control of h/w to f/w. If f/w is AMT enabled, this 2505 * would have already happened in close and is redundant. */ 2506 igb_release_hw_control(adapter); 2507 2508 unregister_netdev(netdev); 2509 2510 igb_clear_interrupt_scheme(adapter); 2511 2512 #ifdef CONFIG_PCI_IOV 2513 igb_disable_sriov(pdev); 2514 #endif 2515 2516 iounmap(hw->hw_addr); 2517 if (hw->flash_address) 2518 iounmap(hw->flash_address); 2519 pci_release_selected_regions(pdev, 2520 pci_select_bars(pdev, IORESOURCE_MEM)); 2521 2522 kfree(adapter->shadow_vfta); 2523 free_netdev(netdev); 2524 2525 pci_disable_pcie_error_reporting(pdev); 2526 2527 pci_disable_device(pdev); 2528 } 2529 2530 /** 2531 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 2532 * @adapter: board private structure to initialize 2533 * 2534 * This function initializes the vf specific data storage and then attempts to 2535 * allocate the VFs. The reason for ordering it this way is because it is much 2536 * mor expensive time wise to disable SR-IOV than it is to allocate and free 2537 * the memory for the VFs. 2538 **/ 2539 static void igb_probe_vfs(struct igb_adapter *adapter) 2540 { 2541 #ifdef CONFIG_PCI_IOV 2542 struct pci_dev *pdev = adapter->pdev; 2543 struct e1000_hw *hw = &adapter->hw; 2544 2545 /* Virtualization features not supported on i210 family. */ 2546 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 2547 return; 2548 2549 igb_enable_sriov(pdev, max_vfs); 2550 pci_sriov_set_totalvfs(pdev, 7); 2551 2552 #endif /* CONFIG_PCI_IOV */ 2553 } 2554 2555 static void igb_init_queue_configuration(struct igb_adapter *adapter) 2556 { 2557 struct e1000_hw *hw = &adapter->hw; 2558 u32 max_rss_queues; 2559 2560 /* Determine the maximum number of RSS queues supported. */ 2561 switch (hw->mac.type) { 2562 case e1000_i211: 2563 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 2564 break; 2565 case e1000_82575: 2566 case e1000_i210: 2567 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 2568 break; 2569 case e1000_i350: 2570 /* I350 cannot do RSS and SR-IOV at the same time */ 2571 if (!!adapter->vfs_allocated_count) { 2572 max_rss_queues = 1; 2573 break; 2574 } 2575 /* fall through */ 2576 case e1000_82576: 2577 if (!!adapter->vfs_allocated_count) { 2578 max_rss_queues = 2; 2579 break; 2580 } 2581 /* fall through */ 2582 case e1000_82580: 2583 default: 2584 max_rss_queues = IGB_MAX_RX_QUEUES; 2585 break; 2586 } 2587 2588 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 2589 2590 /* Determine if we need to pair queues. */ 2591 switch (hw->mac.type) { 2592 case e1000_82575: 2593 case e1000_i211: 2594 /* Device supports enough interrupts without queue pairing. */ 2595 break; 2596 case e1000_82576: 2597 /* 2598 * If VFs are going to be allocated with RSS queues then we 2599 * should pair the queues in order to conserve interrupts due 2600 * to limited supply. 2601 */ 2602 if ((adapter->rss_queues > 1) && 2603 (adapter->vfs_allocated_count > 6)) 2604 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2605 /* fall through */ 2606 case e1000_82580: 2607 case e1000_i350: 2608 case e1000_i210: 2609 default: 2610 /* 2611 * If rss_queues > half of max_rss_queues, pair the queues in 2612 * order to conserve interrupts due to limited supply. 2613 */ 2614 if (adapter->rss_queues > (max_rss_queues / 2)) 2615 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2616 break; 2617 } 2618 } 2619 2620 /** 2621 * igb_sw_init - Initialize general software structures (struct igb_adapter) 2622 * @adapter: board private structure to initialize 2623 * 2624 * igb_sw_init initializes the Adapter private data structure. 2625 * Fields are initialized based on PCI device information and 2626 * OS network device settings (MTU size). 2627 **/ 2628 static int igb_sw_init(struct igb_adapter *adapter) 2629 { 2630 struct e1000_hw *hw = &adapter->hw; 2631 struct net_device *netdev = adapter->netdev; 2632 struct pci_dev *pdev = adapter->pdev; 2633 2634 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 2635 2636 /* set default ring sizes */ 2637 adapter->tx_ring_count = IGB_DEFAULT_TXD; 2638 adapter->rx_ring_count = IGB_DEFAULT_RXD; 2639 2640 /* set default ITR values */ 2641 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 2642 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 2643 2644 /* set default work limits */ 2645 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 2646 2647 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 2648 VLAN_HLEN; 2649 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2650 2651 spin_lock_init(&adapter->stats64_lock); 2652 #ifdef CONFIG_PCI_IOV 2653 switch (hw->mac.type) { 2654 case e1000_82576: 2655 case e1000_i350: 2656 if (max_vfs > 7) { 2657 dev_warn(&pdev->dev, 2658 "Maximum of 7 VFs per PF, using max\n"); 2659 adapter->vfs_allocated_count = 7; 2660 } else 2661 adapter->vfs_allocated_count = max_vfs; 2662 if (adapter->vfs_allocated_count) 2663 dev_warn(&pdev->dev, 2664 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 2665 break; 2666 default: 2667 break; 2668 } 2669 #endif /* CONFIG_PCI_IOV */ 2670 2671 igb_init_queue_configuration(adapter); 2672 2673 /* Setup and initialize a copy of the hw vlan table array */ 2674 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 2675 GFP_ATOMIC); 2676 2677 /* This call may decrease the number of queues */ 2678 if (igb_init_interrupt_scheme(adapter, true)) { 2679 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 2680 return -ENOMEM; 2681 } 2682 2683 igb_probe_vfs(adapter); 2684 2685 /* Explicitly disable IRQ since the NIC can be in any state. */ 2686 igb_irq_disable(adapter); 2687 2688 if (hw->mac.type >= e1000_i350) 2689 adapter->flags &= ~IGB_FLAG_DMAC; 2690 2691 set_bit(__IGB_DOWN, &adapter->state); 2692 return 0; 2693 } 2694 2695 /** 2696 * igb_open - Called when a network interface is made active 2697 * @netdev: network interface device structure 2698 * 2699 * Returns 0 on success, negative value on failure 2700 * 2701 * The open entry point is called when a network interface is made 2702 * active by the system (IFF_UP). At this point all resources needed 2703 * for transmit and receive operations are allocated, the interrupt 2704 * handler is registered with the OS, the watchdog timer is started, 2705 * and the stack is notified that the interface is ready. 2706 **/ 2707 static int __igb_open(struct net_device *netdev, bool resuming) 2708 { 2709 struct igb_adapter *adapter = netdev_priv(netdev); 2710 struct e1000_hw *hw = &adapter->hw; 2711 struct pci_dev *pdev = adapter->pdev; 2712 int err; 2713 int i; 2714 2715 /* disallow open during test */ 2716 if (test_bit(__IGB_TESTING, &adapter->state)) { 2717 WARN_ON(resuming); 2718 return -EBUSY; 2719 } 2720 2721 if (!resuming) 2722 pm_runtime_get_sync(&pdev->dev); 2723 2724 netif_carrier_off(netdev); 2725 2726 /* allocate transmit descriptors */ 2727 err = igb_setup_all_tx_resources(adapter); 2728 if (err) 2729 goto err_setup_tx; 2730 2731 /* allocate receive descriptors */ 2732 err = igb_setup_all_rx_resources(adapter); 2733 if (err) 2734 goto err_setup_rx; 2735 2736 igb_power_up_link(adapter); 2737 2738 /* before we allocate an interrupt, we must be ready to handle it. 2739 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 2740 * as soon as we call pci_request_irq, so we have to setup our 2741 * clean_rx handler before we do so. */ 2742 igb_configure(adapter); 2743 2744 err = igb_request_irq(adapter); 2745 if (err) 2746 goto err_req_irq; 2747 2748 /* Notify the stack of the actual queue counts. */ 2749 err = netif_set_real_num_tx_queues(adapter->netdev, 2750 adapter->num_tx_queues); 2751 if (err) 2752 goto err_set_queues; 2753 2754 err = netif_set_real_num_rx_queues(adapter->netdev, 2755 adapter->num_rx_queues); 2756 if (err) 2757 goto err_set_queues; 2758 2759 /* From here on the code is the same as igb_up() */ 2760 clear_bit(__IGB_DOWN, &adapter->state); 2761 2762 for (i = 0; i < adapter->num_q_vectors; i++) 2763 napi_enable(&(adapter->q_vector[i]->napi)); 2764 2765 /* Clear any pending interrupts. */ 2766 rd32(E1000_ICR); 2767 2768 igb_irq_enable(adapter); 2769 2770 /* notify VFs that reset has been completed */ 2771 if (adapter->vfs_allocated_count) { 2772 u32 reg_data = rd32(E1000_CTRL_EXT); 2773 reg_data |= E1000_CTRL_EXT_PFRSTD; 2774 wr32(E1000_CTRL_EXT, reg_data); 2775 } 2776 2777 netif_tx_start_all_queues(netdev); 2778 2779 if (!resuming) 2780 pm_runtime_put(&pdev->dev); 2781 2782 /* start the watchdog. */ 2783 hw->mac.get_link_status = 1; 2784 schedule_work(&adapter->watchdog_task); 2785 2786 return 0; 2787 2788 err_set_queues: 2789 igb_free_irq(adapter); 2790 err_req_irq: 2791 igb_release_hw_control(adapter); 2792 igb_power_down_link(adapter); 2793 igb_free_all_rx_resources(adapter); 2794 err_setup_rx: 2795 igb_free_all_tx_resources(adapter); 2796 err_setup_tx: 2797 igb_reset(adapter); 2798 if (!resuming) 2799 pm_runtime_put(&pdev->dev); 2800 2801 return err; 2802 } 2803 2804 static int igb_open(struct net_device *netdev) 2805 { 2806 return __igb_open(netdev, false); 2807 } 2808 2809 /** 2810 * igb_close - Disables a network interface 2811 * @netdev: network interface device structure 2812 * 2813 * Returns 0, this is not allowed to fail 2814 * 2815 * The close entry point is called when an interface is de-activated 2816 * by the OS. The hardware is still under the driver's control, but 2817 * needs to be disabled. A global MAC reset is issued to stop the 2818 * hardware, and all transmit and receive resources are freed. 2819 **/ 2820 static int __igb_close(struct net_device *netdev, bool suspending) 2821 { 2822 struct igb_adapter *adapter = netdev_priv(netdev); 2823 struct pci_dev *pdev = adapter->pdev; 2824 2825 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 2826 2827 if (!suspending) 2828 pm_runtime_get_sync(&pdev->dev); 2829 2830 igb_down(adapter); 2831 igb_free_irq(adapter); 2832 2833 igb_free_all_tx_resources(adapter); 2834 igb_free_all_rx_resources(adapter); 2835 2836 if (!suspending) 2837 pm_runtime_put_sync(&pdev->dev); 2838 return 0; 2839 } 2840 2841 static int igb_close(struct net_device *netdev) 2842 { 2843 return __igb_close(netdev, false); 2844 } 2845 2846 /** 2847 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 2848 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2849 * 2850 * Return 0 on success, negative on failure 2851 **/ 2852 int igb_setup_tx_resources(struct igb_ring *tx_ring) 2853 { 2854 struct device *dev = tx_ring->dev; 2855 int size; 2856 2857 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 2858 2859 tx_ring->tx_buffer_info = vzalloc(size); 2860 if (!tx_ring->tx_buffer_info) 2861 goto err; 2862 2863 /* round up to nearest 4K */ 2864 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 2865 tx_ring->size = ALIGN(tx_ring->size, 4096); 2866 2867 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2868 &tx_ring->dma, GFP_KERNEL); 2869 if (!tx_ring->desc) 2870 goto err; 2871 2872 tx_ring->next_to_use = 0; 2873 tx_ring->next_to_clean = 0; 2874 2875 return 0; 2876 2877 err: 2878 vfree(tx_ring->tx_buffer_info); 2879 tx_ring->tx_buffer_info = NULL; 2880 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2881 return -ENOMEM; 2882 } 2883 2884 /** 2885 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 2886 * (Descriptors) for all queues 2887 * @adapter: board private structure 2888 * 2889 * Return 0 on success, negative on failure 2890 **/ 2891 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 2892 { 2893 struct pci_dev *pdev = adapter->pdev; 2894 int i, err = 0; 2895 2896 for (i = 0; i < adapter->num_tx_queues; i++) { 2897 err = igb_setup_tx_resources(adapter->tx_ring[i]); 2898 if (err) { 2899 dev_err(&pdev->dev, 2900 "Allocation for Tx Queue %u failed\n", i); 2901 for (i--; i >= 0; i--) 2902 igb_free_tx_resources(adapter->tx_ring[i]); 2903 break; 2904 } 2905 } 2906 2907 return err; 2908 } 2909 2910 /** 2911 * igb_setup_tctl - configure the transmit control registers 2912 * @adapter: Board private structure 2913 **/ 2914 void igb_setup_tctl(struct igb_adapter *adapter) 2915 { 2916 struct e1000_hw *hw = &adapter->hw; 2917 u32 tctl; 2918 2919 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 2920 wr32(E1000_TXDCTL(0), 0); 2921 2922 /* Program the Transmit Control Register */ 2923 tctl = rd32(E1000_TCTL); 2924 tctl &= ~E1000_TCTL_CT; 2925 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2926 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2927 2928 igb_config_collision_dist(hw); 2929 2930 /* Enable transmits */ 2931 tctl |= E1000_TCTL_EN; 2932 2933 wr32(E1000_TCTL, tctl); 2934 } 2935 2936 /** 2937 * igb_configure_tx_ring - Configure transmit ring after Reset 2938 * @adapter: board private structure 2939 * @ring: tx ring to configure 2940 * 2941 * Configure a transmit ring after a reset. 2942 **/ 2943 void igb_configure_tx_ring(struct igb_adapter *adapter, 2944 struct igb_ring *ring) 2945 { 2946 struct e1000_hw *hw = &adapter->hw; 2947 u32 txdctl = 0; 2948 u64 tdba = ring->dma; 2949 int reg_idx = ring->reg_idx; 2950 2951 /* disable the queue */ 2952 wr32(E1000_TXDCTL(reg_idx), 0); 2953 wrfl(); 2954 mdelay(10); 2955 2956 wr32(E1000_TDLEN(reg_idx), 2957 ring->count * sizeof(union e1000_adv_tx_desc)); 2958 wr32(E1000_TDBAL(reg_idx), 2959 tdba & 0x00000000ffffffffULL); 2960 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 2961 2962 ring->tail = hw->hw_addr + E1000_TDT(reg_idx); 2963 wr32(E1000_TDH(reg_idx), 0); 2964 writel(0, ring->tail); 2965 2966 txdctl |= IGB_TX_PTHRESH; 2967 txdctl |= IGB_TX_HTHRESH << 8; 2968 txdctl |= IGB_TX_WTHRESH << 16; 2969 2970 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 2971 wr32(E1000_TXDCTL(reg_idx), txdctl); 2972 } 2973 2974 /** 2975 * igb_configure_tx - Configure transmit Unit after Reset 2976 * @adapter: board private structure 2977 * 2978 * Configure the Tx unit of the MAC after a reset. 2979 **/ 2980 static void igb_configure_tx(struct igb_adapter *adapter) 2981 { 2982 int i; 2983 2984 for (i = 0; i < adapter->num_tx_queues; i++) 2985 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 2986 } 2987 2988 /** 2989 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 2990 * @rx_ring: rx descriptor ring (for a specific queue) to setup 2991 * 2992 * Returns 0 on success, negative on failure 2993 **/ 2994 int igb_setup_rx_resources(struct igb_ring *rx_ring) 2995 { 2996 struct device *dev = rx_ring->dev; 2997 int size; 2998 2999 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3000 3001 rx_ring->rx_buffer_info = vzalloc(size); 3002 if (!rx_ring->rx_buffer_info) 3003 goto err; 3004 3005 /* Round up to nearest 4K */ 3006 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 3007 rx_ring->size = ALIGN(rx_ring->size, 4096); 3008 3009 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 3010 &rx_ring->dma, GFP_KERNEL); 3011 if (!rx_ring->desc) 3012 goto err; 3013 3014 rx_ring->next_to_alloc = 0; 3015 rx_ring->next_to_clean = 0; 3016 rx_ring->next_to_use = 0; 3017 3018 return 0; 3019 3020 err: 3021 vfree(rx_ring->rx_buffer_info); 3022 rx_ring->rx_buffer_info = NULL; 3023 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3024 return -ENOMEM; 3025 } 3026 3027 /** 3028 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 3029 * (Descriptors) for all queues 3030 * @adapter: board private structure 3031 * 3032 * Return 0 on success, negative on failure 3033 **/ 3034 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 3035 { 3036 struct pci_dev *pdev = adapter->pdev; 3037 int i, err = 0; 3038 3039 for (i = 0; i < adapter->num_rx_queues; i++) { 3040 err = igb_setup_rx_resources(adapter->rx_ring[i]); 3041 if (err) { 3042 dev_err(&pdev->dev, 3043 "Allocation for Rx Queue %u failed\n", i); 3044 for (i--; i >= 0; i--) 3045 igb_free_rx_resources(adapter->rx_ring[i]); 3046 break; 3047 } 3048 } 3049 3050 return err; 3051 } 3052 3053 /** 3054 * igb_setup_mrqc - configure the multiple receive queue control registers 3055 * @adapter: Board private structure 3056 **/ 3057 static void igb_setup_mrqc(struct igb_adapter *adapter) 3058 { 3059 struct e1000_hw *hw = &adapter->hw; 3060 u32 mrqc, rxcsum; 3061 u32 j, num_rx_queues, shift = 0; 3062 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741, 3063 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE, 3064 0xA32DCB77, 0x0CF23080, 0x3BB7426A, 3065 0xFA01ACBE }; 3066 3067 /* Fill out hash function seeds */ 3068 for (j = 0; j < 10; j++) 3069 wr32(E1000_RSSRK(j), rsskey[j]); 3070 3071 num_rx_queues = adapter->rss_queues; 3072 3073 switch (hw->mac.type) { 3074 case e1000_82575: 3075 shift = 6; 3076 break; 3077 case e1000_82576: 3078 /* 82576 supports 2 RSS queues for SR-IOV */ 3079 if (adapter->vfs_allocated_count) { 3080 shift = 3; 3081 num_rx_queues = 2; 3082 } 3083 break; 3084 default: 3085 break; 3086 } 3087 3088 /* 3089 * Populate the indirection table 4 entries at a time. To do this 3090 * we are generating the results for n and n+2 and then interleaving 3091 * those with the results with n+1 and n+3. 3092 */ 3093 for (j = 0; j < 32; j++) { 3094 /* first pass generates n and n+2 */ 3095 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues; 3096 u32 reta = (base & 0x07800780) >> (7 - shift); 3097 3098 /* second pass generates n+1 and n+3 */ 3099 base += 0x00010001 * num_rx_queues; 3100 reta |= (base & 0x07800780) << (1 + shift); 3101 3102 wr32(E1000_RETA(j), reta); 3103 } 3104 3105 /* 3106 * Disable raw packet checksumming so that RSS hash is placed in 3107 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 3108 * offloads as they are enabled by default 3109 */ 3110 rxcsum = rd32(E1000_RXCSUM); 3111 rxcsum |= E1000_RXCSUM_PCSD; 3112 3113 if (adapter->hw.mac.type >= e1000_82576) 3114 /* Enable Receive Checksum Offload for SCTP */ 3115 rxcsum |= E1000_RXCSUM_CRCOFL; 3116 3117 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 3118 wr32(E1000_RXCSUM, rxcsum); 3119 3120 /* Generate RSS hash based on packet types, TCP/UDP 3121 * port numbers and/or IPv4/v6 src and dst addresses 3122 */ 3123 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 3124 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3125 E1000_MRQC_RSS_FIELD_IPV6 | 3126 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3127 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 3128 3129 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 3130 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 3131 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 3132 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 3133 3134 /* If VMDq is enabled then we set the appropriate mode for that, else 3135 * we default to RSS so that an RSS hash is calculated per packet even 3136 * if we are only using one queue */ 3137 if (adapter->vfs_allocated_count) { 3138 if (hw->mac.type > e1000_82575) { 3139 /* Set the default pool for the PF's first queue */ 3140 u32 vtctl = rd32(E1000_VT_CTL); 3141 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 3142 E1000_VT_CTL_DISABLE_DEF_POOL); 3143 vtctl |= adapter->vfs_allocated_count << 3144 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 3145 wr32(E1000_VT_CTL, vtctl); 3146 } 3147 if (adapter->rss_queues > 1) 3148 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; 3149 else 3150 mrqc |= E1000_MRQC_ENABLE_VMDQ; 3151 } else { 3152 if (hw->mac.type != e1000_i211) 3153 mrqc |= E1000_MRQC_ENABLE_RSS_4Q; 3154 } 3155 igb_vmm_control(adapter); 3156 3157 wr32(E1000_MRQC, mrqc); 3158 } 3159 3160 /** 3161 * igb_setup_rctl - configure the receive control registers 3162 * @adapter: Board private structure 3163 **/ 3164 void igb_setup_rctl(struct igb_adapter *adapter) 3165 { 3166 struct e1000_hw *hw = &adapter->hw; 3167 u32 rctl; 3168 3169 rctl = rd32(E1000_RCTL); 3170 3171 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3172 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 3173 3174 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 3175 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3176 3177 /* 3178 * enable stripping of CRC. It's unlikely this will break BMC 3179 * redirection as it did with e1000. Newer features require 3180 * that the HW strips the CRC. 3181 */ 3182 rctl |= E1000_RCTL_SECRC; 3183 3184 /* disable store bad packets and clear size bits. */ 3185 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 3186 3187 /* enable LPE to prevent packets larger than max_frame_size */ 3188 rctl |= E1000_RCTL_LPE; 3189 3190 /* disable queue 0 to prevent tail write w/o re-config */ 3191 wr32(E1000_RXDCTL(0), 0); 3192 3193 /* Attention!!! For SR-IOV PF driver operations you must enable 3194 * queue drop for all VF and PF queues to prevent head of line blocking 3195 * if an un-trusted VF does not provide descriptors to hardware. 3196 */ 3197 if (adapter->vfs_allocated_count) { 3198 /* set all queue drop enable bits */ 3199 wr32(E1000_QDE, ALL_QUEUES); 3200 } 3201 3202 /* This is useful for sniffing bad packets. */ 3203 if (adapter->netdev->features & NETIF_F_RXALL) { 3204 /* UPE and MPE will be handled by normal PROMISC logic 3205 * in e1000e_set_rx_mode */ 3206 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3207 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3208 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3209 3210 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3211 E1000_RCTL_DPF | /* Allow filtered pause */ 3212 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3213 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3214 * and that breaks VLANs. 3215 */ 3216 } 3217 3218 wr32(E1000_RCTL, rctl); 3219 } 3220 3221 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 3222 int vfn) 3223 { 3224 struct e1000_hw *hw = &adapter->hw; 3225 u32 vmolr; 3226 3227 /* if it isn't the PF check to see if VFs are enabled and 3228 * increase the size to support vlan tags */ 3229 if (vfn < adapter->vfs_allocated_count && 3230 adapter->vf_data[vfn].vlans_enabled) 3231 size += VLAN_TAG_SIZE; 3232 3233 vmolr = rd32(E1000_VMOLR(vfn)); 3234 vmolr &= ~E1000_VMOLR_RLPML_MASK; 3235 vmolr |= size | E1000_VMOLR_LPE; 3236 wr32(E1000_VMOLR(vfn), vmolr); 3237 3238 return 0; 3239 } 3240 3241 /** 3242 * igb_rlpml_set - set maximum receive packet size 3243 * @adapter: board private structure 3244 * 3245 * Configure maximum receivable packet size. 3246 **/ 3247 static void igb_rlpml_set(struct igb_adapter *adapter) 3248 { 3249 u32 max_frame_size = adapter->max_frame_size; 3250 struct e1000_hw *hw = &adapter->hw; 3251 u16 pf_id = adapter->vfs_allocated_count; 3252 3253 if (pf_id) { 3254 igb_set_vf_rlpml(adapter, max_frame_size, pf_id); 3255 /* 3256 * If we're in VMDQ or SR-IOV mode, then set global RLPML 3257 * to our max jumbo frame size, in case we need to enable 3258 * jumbo frames on one of the rings later. 3259 * This will not pass over-length frames into the default 3260 * queue because it's gated by the VMOLR.RLPML. 3261 */ 3262 max_frame_size = MAX_JUMBO_FRAME_SIZE; 3263 } 3264 3265 wr32(E1000_RLPML, max_frame_size); 3266 } 3267 3268 static inline void igb_set_vmolr(struct igb_adapter *adapter, 3269 int vfn, bool aupe) 3270 { 3271 struct e1000_hw *hw = &adapter->hw; 3272 u32 vmolr; 3273 3274 /* 3275 * This register exists only on 82576 and newer so if we are older then 3276 * we should exit and do nothing 3277 */ 3278 if (hw->mac.type < e1000_82576) 3279 return; 3280 3281 vmolr = rd32(E1000_VMOLR(vfn)); 3282 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ 3283 if (aupe) 3284 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 3285 else 3286 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 3287 3288 /* clear all bits that might not be set */ 3289 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 3290 3291 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 3292 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 3293 /* 3294 * for VMDq only allow the VFs and pool 0 to accept broadcast and 3295 * multicast packets 3296 */ 3297 if (vfn <= adapter->vfs_allocated_count) 3298 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 3299 3300 wr32(E1000_VMOLR(vfn), vmolr); 3301 } 3302 3303 /** 3304 * igb_configure_rx_ring - Configure a receive ring after Reset 3305 * @adapter: board private structure 3306 * @ring: receive ring to be configured 3307 * 3308 * Configure the Rx unit of the MAC after a reset. 3309 **/ 3310 void igb_configure_rx_ring(struct igb_adapter *adapter, 3311 struct igb_ring *ring) 3312 { 3313 struct e1000_hw *hw = &adapter->hw; 3314 u64 rdba = ring->dma; 3315 int reg_idx = ring->reg_idx; 3316 u32 srrctl = 0, rxdctl = 0; 3317 3318 /* disable the queue */ 3319 wr32(E1000_RXDCTL(reg_idx), 0); 3320 3321 /* Set DMA base address registers */ 3322 wr32(E1000_RDBAL(reg_idx), 3323 rdba & 0x00000000ffffffffULL); 3324 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 3325 wr32(E1000_RDLEN(reg_idx), 3326 ring->count * sizeof(union e1000_adv_rx_desc)); 3327 3328 /* initialize head and tail */ 3329 ring->tail = hw->hw_addr + E1000_RDT(reg_idx); 3330 wr32(E1000_RDH(reg_idx), 0); 3331 writel(0, ring->tail); 3332 3333 /* set descriptor configuration */ 3334 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 3335 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3336 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3337 if (hw->mac.type >= e1000_82580) 3338 srrctl |= E1000_SRRCTL_TIMESTAMP; 3339 /* Only set Drop Enable if we are supporting multiple queues */ 3340 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) 3341 srrctl |= E1000_SRRCTL_DROP_EN; 3342 3343 wr32(E1000_SRRCTL(reg_idx), srrctl); 3344 3345 /* set filtering for VMDQ pools */ 3346 igb_set_vmolr(adapter, reg_idx & 0x7, true); 3347 3348 rxdctl |= IGB_RX_PTHRESH; 3349 rxdctl |= IGB_RX_HTHRESH << 8; 3350 rxdctl |= IGB_RX_WTHRESH << 16; 3351 3352 /* enable receive descriptor fetching */ 3353 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3354 wr32(E1000_RXDCTL(reg_idx), rxdctl); 3355 } 3356 3357 static void igb_set_rx_buffer_len(struct igb_adapter *adapter, 3358 struct igb_ring *rx_ring) 3359 { 3360 #define IGB_MAX_BUILD_SKB_SIZE \ 3361 (SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \ 3362 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN)) 3363 3364 /* set build_skb flag */ 3365 if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE) 3366 set_ring_build_skb_enabled(rx_ring); 3367 else 3368 clear_ring_build_skb_enabled(rx_ring); 3369 } 3370 3371 /** 3372 * igb_configure_rx - Configure receive Unit after Reset 3373 * @adapter: board private structure 3374 * 3375 * Configure the Rx unit of the MAC after a reset. 3376 **/ 3377 static void igb_configure_rx(struct igb_adapter *adapter) 3378 { 3379 int i; 3380 3381 /* set UTA to appropriate mode */ 3382 igb_set_uta(adapter); 3383 3384 /* set the correct pool for the PF default MAC address in entry 0 */ 3385 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 3386 adapter->vfs_allocated_count); 3387 3388 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3389 * the Base and Length of the Rx Descriptor Ring */ 3390 for (i = 0; i < adapter->num_rx_queues; i++) { 3391 struct igb_ring *rx_ring = adapter->rx_ring[i]; 3392 igb_set_rx_buffer_len(adapter, rx_ring); 3393 igb_configure_rx_ring(adapter, rx_ring); 3394 } 3395 } 3396 3397 /** 3398 * igb_free_tx_resources - Free Tx Resources per Queue 3399 * @tx_ring: Tx descriptor ring for a specific queue 3400 * 3401 * Free all transmit software resources 3402 **/ 3403 void igb_free_tx_resources(struct igb_ring *tx_ring) 3404 { 3405 igb_clean_tx_ring(tx_ring); 3406 3407 vfree(tx_ring->tx_buffer_info); 3408 tx_ring->tx_buffer_info = NULL; 3409 3410 /* if not set, then don't free */ 3411 if (!tx_ring->desc) 3412 return; 3413 3414 dma_free_coherent(tx_ring->dev, tx_ring->size, 3415 tx_ring->desc, tx_ring->dma); 3416 3417 tx_ring->desc = NULL; 3418 } 3419 3420 /** 3421 * igb_free_all_tx_resources - Free Tx Resources for All Queues 3422 * @adapter: board private structure 3423 * 3424 * Free all transmit software resources 3425 **/ 3426 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 3427 { 3428 int i; 3429 3430 for (i = 0; i < adapter->num_tx_queues; i++) 3431 igb_free_tx_resources(adapter->tx_ring[i]); 3432 } 3433 3434 void igb_unmap_and_free_tx_resource(struct igb_ring *ring, 3435 struct igb_tx_buffer *tx_buffer) 3436 { 3437 if (tx_buffer->skb) { 3438 dev_kfree_skb_any(tx_buffer->skb); 3439 if (dma_unmap_len(tx_buffer, len)) 3440 dma_unmap_single(ring->dev, 3441 dma_unmap_addr(tx_buffer, dma), 3442 dma_unmap_len(tx_buffer, len), 3443 DMA_TO_DEVICE); 3444 } else if (dma_unmap_len(tx_buffer, len)) { 3445 dma_unmap_page(ring->dev, 3446 dma_unmap_addr(tx_buffer, dma), 3447 dma_unmap_len(tx_buffer, len), 3448 DMA_TO_DEVICE); 3449 } 3450 tx_buffer->next_to_watch = NULL; 3451 tx_buffer->skb = NULL; 3452 dma_unmap_len_set(tx_buffer, len, 0); 3453 /* buffer_info must be completely set up in the transmit path */ 3454 } 3455 3456 /** 3457 * igb_clean_tx_ring - Free Tx Buffers 3458 * @tx_ring: ring to be cleaned 3459 **/ 3460 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 3461 { 3462 struct igb_tx_buffer *buffer_info; 3463 unsigned long size; 3464 u16 i; 3465 3466 if (!tx_ring->tx_buffer_info) 3467 return; 3468 /* Free all the Tx ring sk_buffs */ 3469 3470 for (i = 0; i < tx_ring->count; i++) { 3471 buffer_info = &tx_ring->tx_buffer_info[i]; 3472 igb_unmap_and_free_tx_resource(tx_ring, buffer_info); 3473 } 3474 3475 netdev_tx_reset_queue(txring_txq(tx_ring)); 3476 3477 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3478 memset(tx_ring->tx_buffer_info, 0, size); 3479 3480 /* Zero out the descriptor ring */ 3481 memset(tx_ring->desc, 0, tx_ring->size); 3482 3483 tx_ring->next_to_use = 0; 3484 tx_ring->next_to_clean = 0; 3485 } 3486 3487 /** 3488 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 3489 * @adapter: board private structure 3490 **/ 3491 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 3492 { 3493 int i; 3494 3495 for (i = 0; i < adapter->num_tx_queues; i++) 3496 igb_clean_tx_ring(adapter->tx_ring[i]); 3497 } 3498 3499 /** 3500 * igb_free_rx_resources - Free Rx Resources 3501 * @rx_ring: ring to clean the resources from 3502 * 3503 * Free all receive software resources 3504 **/ 3505 void igb_free_rx_resources(struct igb_ring *rx_ring) 3506 { 3507 igb_clean_rx_ring(rx_ring); 3508 3509 vfree(rx_ring->rx_buffer_info); 3510 rx_ring->rx_buffer_info = NULL; 3511 3512 /* if not set, then don't free */ 3513 if (!rx_ring->desc) 3514 return; 3515 3516 dma_free_coherent(rx_ring->dev, rx_ring->size, 3517 rx_ring->desc, rx_ring->dma); 3518 3519 rx_ring->desc = NULL; 3520 } 3521 3522 /** 3523 * igb_free_all_rx_resources - Free Rx Resources for All Queues 3524 * @adapter: board private structure 3525 * 3526 * Free all receive software resources 3527 **/ 3528 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 3529 { 3530 int i; 3531 3532 for (i = 0; i < adapter->num_rx_queues; i++) 3533 igb_free_rx_resources(adapter->rx_ring[i]); 3534 } 3535 3536 /** 3537 * igb_clean_rx_ring - Free Rx Buffers per Queue 3538 * @rx_ring: ring to free buffers from 3539 **/ 3540 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 3541 { 3542 unsigned long size; 3543 u16 i; 3544 3545 if (rx_ring->skb) 3546 dev_kfree_skb(rx_ring->skb); 3547 rx_ring->skb = NULL; 3548 3549 if (!rx_ring->rx_buffer_info) 3550 return; 3551 3552 /* Free all the Rx ring sk_buffs */ 3553 for (i = 0; i < rx_ring->count; i++) { 3554 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 3555 3556 if (!buffer_info->page) 3557 continue; 3558 3559 dma_unmap_page(rx_ring->dev, 3560 buffer_info->dma, 3561 PAGE_SIZE, 3562 DMA_FROM_DEVICE); 3563 __free_page(buffer_info->page); 3564 3565 buffer_info->page = NULL; 3566 } 3567 3568 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3569 memset(rx_ring->rx_buffer_info, 0, size); 3570 3571 /* Zero out the descriptor ring */ 3572 memset(rx_ring->desc, 0, rx_ring->size); 3573 3574 rx_ring->next_to_alloc = 0; 3575 rx_ring->next_to_clean = 0; 3576 rx_ring->next_to_use = 0; 3577 } 3578 3579 /** 3580 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 3581 * @adapter: board private structure 3582 **/ 3583 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 3584 { 3585 int i; 3586 3587 for (i = 0; i < adapter->num_rx_queues; i++) 3588 igb_clean_rx_ring(adapter->rx_ring[i]); 3589 } 3590 3591 /** 3592 * igb_set_mac - Change the Ethernet Address of the NIC 3593 * @netdev: network interface device structure 3594 * @p: pointer to an address structure 3595 * 3596 * Returns 0 on success, negative on failure 3597 **/ 3598 static int igb_set_mac(struct net_device *netdev, void *p) 3599 { 3600 struct igb_adapter *adapter = netdev_priv(netdev); 3601 struct e1000_hw *hw = &adapter->hw; 3602 struct sockaddr *addr = p; 3603 3604 if (!is_valid_ether_addr(addr->sa_data)) 3605 return -EADDRNOTAVAIL; 3606 3607 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3608 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3609 3610 /* set the correct pool for the new PF MAC address in entry 0 */ 3611 igb_rar_set_qsel(adapter, hw->mac.addr, 0, 3612 adapter->vfs_allocated_count); 3613 3614 return 0; 3615 } 3616 3617 /** 3618 * igb_write_mc_addr_list - write multicast addresses to MTA 3619 * @netdev: network interface device structure 3620 * 3621 * Writes multicast address list to the MTA hash table. 3622 * Returns: -ENOMEM on failure 3623 * 0 on no addresses written 3624 * X on writing X addresses to MTA 3625 **/ 3626 static int igb_write_mc_addr_list(struct net_device *netdev) 3627 { 3628 struct igb_adapter *adapter = netdev_priv(netdev); 3629 struct e1000_hw *hw = &adapter->hw; 3630 struct netdev_hw_addr *ha; 3631 u8 *mta_list; 3632 int i; 3633 3634 if (netdev_mc_empty(netdev)) { 3635 /* nothing to program, so clear mc list */ 3636 igb_update_mc_addr_list(hw, NULL, 0); 3637 igb_restore_vf_multicasts(adapter); 3638 return 0; 3639 } 3640 3641 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3642 if (!mta_list) 3643 return -ENOMEM; 3644 3645 /* The shared function expects a packed array of only addresses. */ 3646 i = 0; 3647 netdev_for_each_mc_addr(ha, netdev) 3648 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3649 3650 igb_update_mc_addr_list(hw, mta_list, i); 3651 kfree(mta_list); 3652 3653 return netdev_mc_count(netdev); 3654 } 3655 3656 /** 3657 * igb_write_uc_addr_list - write unicast addresses to RAR table 3658 * @netdev: network interface device structure 3659 * 3660 * Writes unicast address list to the RAR table. 3661 * Returns: -ENOMEM on failure/insufficient address space 3662 * 0 on no addresses written 3663 * X on writing X addresses to the RAR table 3664 **/ 3665 static int igb_write_uc_addr_list(struct net_device *netdev) 3666 { 3667 struct igb_adapter *adapter = netdev_priv(netdev); 3668 struct e1000_hw *hw = &adapter->hw; 3669 unsigned int vfn = adapter->vfs_allocated_count; 3670 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 3671 int count = 0; 3672 3673 /* return ENOMEM indicating insufficient memory for addresses */ 3674 if (netdev_uc_count(netdev) > rar_entries) 3675 return -ENOMEM; 3676 3677 if (!netdev_uc_empty(netdev) && rar_entries) { 3678 struct netdev_hw_addr *ha; 3679 3680 netdev_for_each_uc_addr(ha, netdev) { 3681 if (!rar_entries) 3682 break; 3683 igb_rar_set_qsel(adapter, ha->addr, 3684 rar_entries--, 3685 vfn); 3686 count++; 3687 } 3688 } 3689 /* write the addresses in reverse order to avoid write combining */ 3690 for (; rar_entries > 0 ; rar_entries--) { 3691 wr32(E1000_RAH(rar_entries), 0); 3692 wr32(E1000_RAL(rar_entries), 0); 3693 } 3694 wrfl(); 3695 3696 return count; 3697 } 3698 3699 /** 3700 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3701 * @netdev: network interface device structure 3702 * 3703 * The set_rx_mode entry point is called whenever the unicast or multicast 3704 * address lists or the network interface flags are updated. This routine is 3705 * responsible for configuring the hardware for proper unicast, multicast, 3706 * promiscuous mode, and all-multi behavior. 3707 **/ 3708 static void igb_set_rx_mode(struct net_device *netdev) 3709 { 3710 struct igb_adapter *adapter = netdev_priv(netdev); 3711 struct e1000_hw *hw = &adapter->hw; 3712 unsigned int vfn = adapter->vfs_allocated_count; 3713 u32 rctl, vmolr = 0; 3714 int count; 3715 3716 /* Check for Promiscuous and All Multicast modes */ 3717 rctl = rd32(E1000_RCTL); 3718 3719 /* clear the effected bits */ 3720 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); 3721 3722 if (netdev->flags & IFF_PROMISC) { 3723 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3724 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); 3725 } else { 3726 if (netdev->flags & IFF_ALLMULTI) { 3727 rctl |= E1000_RCTL_MPE; 3728 vmolr |= E1000_VMOLR_MPME; 3729 } else { 3730 /* 3731 * Write addresses to the MTA, if the attempt fails 3732 * then we should just turn on promiscuous mode so 3733 * that we can at least receive multicast traffic 3734 */ 3735 count = igb_write_mc_addr_list(netdev); 3736 if (count < 0) { 3737 rctl |= E1000_RCTL_MPE; 3738 vmolr |= E1000_VMOLR_MPME; 3739 } else if (count) { 3740 vmolr |= E1000_VMOLR_ROMPE; 3741 } 3742 } 3743 /* 3744 * Write addresses to available RAR registers, if there is not 3745 * sufficient space to store all the addresses then enable 3746 * unicast promiscuous mode 3747 */ 3748 count = igb_write_uc_addr_list(netdev); 3749 if (count < 0) { 3750 rctl |= E1000_RCTL_UPE; 3751 vmolr |= E1000_VMOLR_ROPE; 3752 } 3753 rctl |= E1000_RCTL_VFE; 3754 } 3755 wr32(E1000_RCTL, rctl); 3756 3757 /* 3758 * In order to support SR-IOV and eventually VMDq it is necessary to set 3759 * the VMOLR to enable the appropriate modes. Without this workaround 3760 * we will have issues with VLAN tag stripping not being done for frames 3761 * that are only arriving because we are the default pool 3762 */ 3763 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 3764 return; 3765 3766 vmolr |= rd32(E1000_VMOLR(vfn)) & 3767 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 3768 wr32(E1000_VMOLR(vfn), vmolr); 3769 igb_restore_vf_multicasts(adapter); 3770 } 3771 3772 static void igb_check_wvbr(struct igb_adapter *adapter) 3773 { 3774 struct e1000_hw *hw = &adapter->hw; 3775 u32 wvbr = 0; 3776 3777 switch (hw->mac.type) { 3778 case e1000_82576: 3779 case e1000_i350: 3780 if (!(wvbr = rd32(E1000_WVBR))) 3781 return; 3782 break; 3783 default: 3784 break; 3785 } 3786 3787 adapter->wvbr |= wvbr; 3788 } 3789 3790 #define IGB_STAGGERED_QUEUE_OFFSET 8 3791 3792 static void igb_spoof_check(struct igb_adapter *adapter) 3793 { 3794 int j; 3795 3796 if (!adapter->wvbr) 3797 return; 3798 3799 for(j = 0; j < adapter->vfs_allocated_count; j++) { 3800 if (adapter->wvbr & (1 << j) || 3801 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { 3802 dev_warn(&adapter->pdev->dev, 3803 "Spoof event(s) detected on VF %d\n", j); 3804 adapter->wvbr &= 3805 ~((1 << j) | 3806 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); 3807 } 3808 } 3809 } 3810 3811 /* Need to wait a few seconds after link up to get diagnostic information from 3812 * the phy */ 3813 static void igb_update_phy_info(unsigned long data) 3814 { 3815 struct igb_adapter *adapter = (struct igb_adapter *) data; 3816 igb_get_phy_info(&adapter->hw); 3817 } 3818 3819 /** 3820 * igb_has_link - check shared code for link and determine up/down 3821 * @adapter: pointer to driver private info 3822 **/ 3823 bool igb_has_link(struct igb_adapter *adapter) 3824 { 3825 struct e1000_hw *hw = &adapter->hw; 3826 bool link_active = false; 3827 s32 ret_val = 0; 3828 3829 /* get_link_status is set on LSC (link status) interrupt or 3830 * rx sequence error interrupt. get_link_status will stay 3831 * false until the e1000_check_for_link establishes link 3832 * for copper adapters ONLY 3833 */ 3834 switch (hw->phy.media_type) { 3835 case e1000_media_type_copper: 3836 if (hw->mac.get_link_status) { 3837 ret_val = hw->mac.ops.check_for_link(hw); 3838 link_active = !hw->mac.get_link_status; 3839 } else { 3840 link_active = true; 3841 } 3842 break; 3843 case e1000_media_type_internal_serdes: 3844 ret_val = hw->mac.ops.check_for_link(hw); 3845 link_active = hw->mac.serdes_has_link; 3846 break; 3847 default: 3848 case e1000_media_type_unknown: 3849 break; 3850 } 3851 3852 return link_active; 3853 } 3854 3855 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 3856 { 3857 bool ret = false; 3858 u32 ctrl_ext, thstat; 3859 3860 /* check for thermal sensor event on i350 copper only */ 3861 if (hw->mac.type == e1000_i350) { 3862 thstat = rd32(E1000_THSTAT); 3863 ctrl_ext = rd32(E1000_CTRL_EXT); 3864 3865 if ((hw->phy.media_type == e1000_media_type_copper) && 3866 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) { 3867 ret = !!(thstat & event); 3868 } 3869 } 3870 3871 return ret; 3872 } 3873 3874 /** 3875 * igb_watchdog - Timer Call-back 3876 * @data: pointer to adapter cast into an unsigned long 3877 **/ 3878 static void igb_watchdog(unsigned long data) 3879 { 3880 struct igb_adapter *adapter = (struct igb_adapter *)data; 3881 /* Do the rest outside of interrupt context */ 3882 schedule_work(&adapter->watchdog_task); 3883 } 3884 3885 static void igb_watchdog_task(struct work_struct *work) 3886 { 3887 struct igb_adapter *adapter = container_of(work, 3888 struct igb_adapter, 3889 watchdog_task); 3890 struct e1000_hw *hw = &adapter->hw; 3891 struct net_device *netdev = adapter->netdev; 3892 u32 link; 3893 int i; 3894 3895 link = igb_has_link(adapter); 3896 if (link) { 3897 /* Cancel scheduled suspend requests. */ 3898 pm_runtime_resume(netdev->dev.parent); 3899 3900 if (!netif_carrier_ok(netdev)) { 3901 u32 ctrl; 3902 hw->mac.ops.get_speed_and_duplex(hw, 3903 &adapter->link_speed, 3904 &adapter->link_duplex); 3905 3906 ctrl = rd32(E1000_CTRL); 3907 /* Links status message must follow this format */ 3908 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s " 3909 "Duplex, Flow Control: %s\n", 3910 netdev->name, 3911 adapter->link_speed, 3912 adapter->link_duplex == FULL_DUPLEX ? 3913 "Full" : "Half", 3914 (ctrl & E1000_CTRL_TFCE) && 3915 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 3916 (ctrl & E1000_CTRL_RFCE) ? "RX" : 3917 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 3918 3919 /* check for thermal sensor event */ 3920 if (igb_thermal_sensor_event(hw, 3921 E1000_THSTAT_LINK_THROTTLE)) { 3922 netdev_info(netdev, "The network adapter link " 3923 "speed was downshifted because it " 3924 "overheated\n"); 3925 } 3926 3927 /* adjust timeout factor according to speed/duplex */ 3928 adapter->tx_timeout_factor = 1; 3929 switch (adapter->link_speed) { 3930 case SPEED_10: 3931 adapter->tx_timeout_factor = 14; 3932 break; 3933 case SPEED_100: 3934 /* maybe add some timeout factor ? */ 3935 break; 3936 } 3937 3938 netif_carrier_on(netdev); 3939 3940 igb_ping_all_vfs(adapter); 3941 igb_check_vf_rate_limit(adapter); 3942 3943 /* link state has changed, schedule phy info update */ 3944 if (!test_bit(__IGB_DOWN, &adapter->state)) 3945 mod_timer(&adapter->phy_info_timer, 3946 round_jiffies(jiffies + 2 * HZ)); 3947 } 3948 } else { 3949 if (netif_carrier_ok(netdev)) { 3950 adapter->link_speed = 0; 3951 adapter->link_duplex = 0; 3952 3953 /* check for thermal sensor event */ 3954 if (igb_thermal_sensor_event(hw, 3955 E1000_THSTAT_PWR_DOWN)) { 3956 netdev_err(netdev, "The network adapter was " 3957 "stopped because it overheated\n"); 3958 } 3959 3960 /* Links status message must follow this format */ 3961 printk(KERN_INFO "igb: %s NIC Link is Down\n", 3962 netdev->name); 3963 netif_carrier_off(netdev); 3964 3965 igb_ping_all_vfs(adapter); 3966 3967 /* link state has changed, schedule phy info update */ 3968 if (!test_bit(__IGB_DOWN, &adapter->state)) 3969 mod_timer(&adapter->phy_info_timer, 3970 round_jiffies(jiffies + 2 * HZ)); 3971 3972 pm_schedule_suspend(netdev->dev.parent, 3973 MSEC_PER_SEC * 5); 3974 } 3975 } 3976 3977 spin_lock(&adapter->stats64_lock); 3978 igb_update_stats(adapter, &adapter->stats64); 3979 spin_unlock(&adapter->stats64_lock); 3980 3981 for (i = 0; i < adapter->num_tx_queues; i++) { 3982 struct igb_ring *tx_ring = adapter->tx_ring[i]; 3983 if (!netif_carrier_ok(netdev)) { 3984 /* We've lost link, so the controller stops DMA, 3985 * but we've got queued Tx work that's never going 3986 * to get done, so reset controller to flush Tx. 3987 * (Do the reset outside of interrupt context). */ 3988 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 3989 adapter->tx_timeout_count++; 3990 schedule_work(&adapter->reset_task); 3991 /* return immediately since reset is imminent */ 3992 return; 3993 } 3994 } 3995 3996 /* Force detection of hung controller every watchdog period */ 3997 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 3998 } 3999 4000 /* Cause software interrupt to ensure rx ring is cleaned */ 4001 if (adapter->msix_entries) { 4002 u32 eics = 0; 4003 for (i = 0; i < adapter->num_q_vectors; i++) 4004 eics |= adapter->q_vector[i]->eims_value; 4005 wr32(E1000_EICS, eics); 4006 } else { 4007 wr32(E1000_ICS, E1000_ICS_RXDMT0); 4008 } 4009 4010 igb_spoof_check(adapter); 4011 igb_ptp_rx_hang(adapter); 4012 4013 /* Reset the timer */ 4014 if (!test_bit(__IGB_DOWN, &adapter->state)) 4015 mod_timer(&adapter->watchdog_timer, 4016 round_jiffies(jiffies + 2 * HZ)); 4017 } 4018 4019 enum latency_range { 4020 lowest_latency = 0, 4021 low_latency = 1, 4022 bulk_latency = 2, 4023 latency_invalid = 255 4024 }; 4025 4026 /** 4027 * igb_update_ring_itr - update the dynamic ITR value based on packet size 4028 * 4029 * Stores a new ITR value based on strictly on packet size. This 4030 * algorithm is less sophisticated than that used in igb_update_itr, 4031 * due to the difficulty of synchronizing statistics across multiple 4032 * receive rings. The divisors and thresholds used by this function 4033 * were determined based on theoretical maximum wire speed and testing 4034 * data, in order to minimize response time while increasing bulk 4035 * throughput. 4036 * This functionality is controlled by the InterruptThrottleRate module 4037 * parameter (see igb_param.c) 4038 * NOTE: This function is called only when operating in a multiqueue 4039 * receive environment. 4040 * @q_vector: pointer to q_vector 4041 **/ 4042 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 4043 { 4044 int new_val = q_vector->itr_val; 4045 int avg_wire_size = 0; 4046 struct igb_adapter *adapter = q_vector->adapter; 4047 unsigned int packets; 4048 4049 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4050 * ints/sec - ITR timer value of 120 ticks. 4051 */ 4052 if (adapter->link_speed != SPEED_1000) { 4053 new_val = IGB_4K_ITR; 4054 goto set_itr_val; 4055 } 4056 4057 packets = q_vector->rx.total_packets; 4058 if (packets) 4059 avg_wire_size = q_vector->rx.total_bytes / packets; 4060 4061 packets = q_vector->tx.total_packets; 4062 if (packets) 4063 avg_wire_size = max_t(u32, avg_wire_size, 4064 q_vector->tx.total_bytes / packets); 4065 4066 /* if avg_wire_size isn't set no work was done */ 4067 if (!avg_wire_size) 4068 goto clear_counts; 4069 4070 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4071 avg_wire_size += 24; 4072 4073 /* Don't starve jumbo frames */ 4074 avg_wire_size = min(avg_wire_size, 3000); 4075 4076 /* Give a little boost to mid-size frames */ 4077 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 4078 new_val = avg_wire_size / 3; 4079 else 4080 new_val = avg_wire_size / 2; 4081 4082 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4083 if (new_val < IGB_20K_ITR && 4084 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4085 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4086 new_val = IGB_20K_ITR; 4087 4088 set_itr_val: 4089 if (new_val != q_vector->itr_val) { 4090 q_vector->itr_val = new_val; 4091 q_vector->set_itr = 1; 4092 } 4093 clear_counts: 4094 q_vector->rx.total_bytes = 0; 4095 q_vector->rx.total_packets = 0; 4096 q_vector->tx.total_bytes = 0; 4097 q_vector->tx.total_packets = 0; 4098 } 4099 4100 /** 4101 * igb_update_itr - update the dynamic ITR value based on statistics 4102 * Stores a new ITR value based on packets and byte 4103 * counts during the last interrupt. The advantage of per interrupt 4104 * computation is faster updates and more accurate ITR for the current 4105 * traffic pattern. Constants in this function were computed 4106 * based on theoretical maximum wire speed and thresholds were set based 4107 * on testing data as well as attempting to minimize response time 4108 * while increasing bulk throughput. 4109 * this functionality is controlled by the InterruptThrottleRate module 4110 * parameter (see igb_param.c) 4111 * NOTE: These calculations are only valid when operating in a single- 4112 * queue environment. 4113 * @q_vector: pointer to q_vector 4114 * @ring_container: ring info to update the itr for 4115 **/ 4116 static void igb_update_itr(struct igb_q_vector *q_vector, 4117 struct igb_ring_container *ring_container) 4118 { 4119 unsigned int packets = ring_container->total_packets; 4120 unsigned int bytes = ring_container->total_bytes; 4121 u8 itrval = ring_container->itr; 4122 4123 /* no packets, exit with status unchanged */ 4124 if (packets == 0) 4125 return; 4126 4127 switch (itrval) { 4128 case lowest_latency: 4129 /* handle TSO and jumbo frames */ 4130 if (bytes/packets > 8000) 4131 itrval = bulk_latency; 4132 else if ((packets < 5) && (bytes > 512)) 4133 itrval = low_latency; 4134 break; 4135 case low_latency: /* 50 usec aka 20000 ints/s */ 4136 if (bytes > 10000) { 4137 /* this if handles the TSO accounting */ 4138 if (bytes/packets > 8000) { 4139 itrval = bulk_latency; 4140 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 4141 itrval = bulk_latency; 4142 } else if ((packets > 35)) { 4143 itrval = lowest_latency; 4144 } 4145 } else if (bytes/packets > 2000) { 4146 itrval = bulk_latency; 4147 } else if (packets <= 2 && bytes < 512) { 4148 itrval = lowest_latency; 4149 } 4150 break; 4151 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4152 if (bytes > 25000) { 4153 if (packets > 35) 4154 itrval = low_latency; 4155 } else if (bytes < 1500) { 4156 itrval = low_latency; 4157 } 4158 break; 4159 } 4160 4161 /* clear work counters since we have the values we need */ 4162 ring_container->total_bytes = 0; 4163 ring_container->total_packets = 0; 4164 4165 /* write updated itr to ring container */ 4166 ring_container->itr = itrval; 4167 } 4168 4169 static void igb_set_itr(struct igb_q_vector *q_vector) 4170 { 4171 struct igb_adapter *adapter = q_vector->adapter; 4172 u32 new_itr = q_vector->itr_val; 4173 u8 current_itr = 0; 4174 4175 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4176 if (adapter->link_speed != SPEED_1000) { 4177 current_itr = 0; 4178 new_itr = IGB_4K_ITR; 4179 goto set_itr_now; 4180 } 4181 4182 igb_update_itr(q_vector, &q_vector->tx); 4183 igb_update_itr(q_vector, &q_vector->rx); 4184 4185 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4186 4187 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4188 if (current_itr == lowest_latency && 4189 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4190 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4191 current_itr = low_latency; 4192 4193 switch (current_itr) { 4194 /* counts and packets in update_itr are dependent on these numbers */ 4195 case lowest_latency: 4196 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 4197 break; 4198 case low_latency: 4199 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 4200 break; 4201 case bulk_latency: 4202 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 4203 break; 4204 default: 4205 break; 4206 } 4207 4208 set_itr_now: 4209 if (new_itr != q_vector->itr_val) { 4210 /* this attempts to bias the interrupt rate towards Bulk 4211 * by adding intermediate steps when interrupt rate is 4212 * increasing */ 4213 new_itr = new_itr > q_vector->itr_val ? 4214 max((new_itr * q_vector->itr_val) / 4215 (new_itr + (q_vector->itr_val >> 2)), 4216 new_itr) : 4217 new_itr; 4218 /* Don't write the value here; it resets the adapter's 4219 * internal timer, and causes us to delay far longer than 4220 * we should between interrupts. Instead, we write the ITR 4221 * value at the beginning of the next interrupt so the timing 4222 * ends up being correct. 4223 */ 4224 q_vector->itr_val = new_itr; 4225 q_vector->set_itr = 1; 4226 } 4227 } 4228 4229 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, 4230 u32 type_tucmd, u32 mss_l4len_idx) 4231 { 4232 struct e1000_adv_tx_context_desc *context_desc; 4233 u16 i = tx_ring->next_to_use; 4234 4235 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 4236 4237 i++; 4238 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 4239 4240 /* set bits to identify this as an advanced context descriptor */ 4241 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 4242 4243 /* For 82575, context index must be unique per ring. */ 4244 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4245 mss_l4len_idx |= tx_ring->reg_idx << 4; 4246 4247 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 4248 context_desc->seqnum_seed = 0; 4249 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 4250 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 4251 } 4252 4253 static int igb_tso(struct igb_ring *tx_ring, 4254 struct igb_tx_buffer *first, 4255 u8 *hdr_len) 4256 { 4257 struct sk_buff *skb = first->skb; 4258 u32 vlan_macip_lens, type_tucmd; 4259 u32 mss_l4len_idx, l4len; 4260 4261 if (skb->ip_summed != CHECKSUM_PARTIAL) 4262 return 0; 4263 4264 if (!skb_is_gso(skb)) 4265 return 0; 4266 4267 if (skb_header_cloned(skb)) { 4268 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4269 if (err) 4270 return err; 4271 } 4272 4273 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 4274 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 4275 4276 if (first->protocol == __constant_htons(ETH_P_IP)) { 4277 struct iphdr *iph = ip_hdr(skb); 4278 iph->tot_len = 0; 4279 iph->check = 0; 4280 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 4281 iph->daddr, 0, 4282 IPPROTO_TCP, 4283 0); 4284 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4285 first->tx_flags |= IGB_TX_FLAGS_TSO | 4286 IGB_TX_FLAGS_CSUM | 4287 IGB_TX_FLAGS_IPV4; 4288 } else if (skb_is_gso_v6(skb)) { 4289 ipv6_hdr(skb)->payload_len = 0; 4290 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4291 &ipv6_hdr(skb)->daddr, 4292 0, IPPROTO_TCP, 0); 4293 first->tx_flags |= IGB_TX_FLAGS_TSO | 4294 IGB_TX_FLAGS_CSUM; 4295 } 4296 4297 /* compute header lengths */ 4298 l4len = tcp_hdrlen(skb); 4299 *hdr_len = skb_transport_offset(skb) + l4len; 4300 4301 /* update gso size and bytecount with header size */ 4302 first->gso_segs = skb_shinfo(skb)->gso_segs; 4303 first->bytecount += (first->gso_segs - 1) * *hdr_len; 4304 4305 /* MSS L4LEN IDX */ 4306 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; 4307 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 4308 4309 /* VLAN MACLEN IPLEN */ 4310 vlan_macip_lens = skb_network_header_len(skb); 4311 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4312 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4313 4314 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4315 4316 return 1; 4317 } 4318 4319 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 4320 { 4321 struct sk_buff *skb = first->skb; 4322 u32 vlan_macip_lens = 0; 4323 u32 mss_l4len_idx = 0; 4324 u32 type_tucmd = 0; 4325 4326 if (skb->ip_summed != CHECKSUM_PARTIAL) { 4327 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) 4328 return; 4329 } else { 4330 u8 l4_hdr = 0; 4331 switch (first->protocol) { 4332 case __constant_htons(ETH_P_IP): 4333 vlan_macip_lens |= skb_network_header_len(skb); 4334 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4335 l4_hdr = ip_hdr(skb)->protocol; 4336 break; 4337 case __constant_htons(ETH_P_IPV6): 4338 vlan_macip_lens |= skb_network_header_len(skb); 4339 l4_hdr = ipv6_hdr(skb)->nexthdr; 4340 break; 4341 default: 4342 if (unlikely(net_ratelimit())) { 4343 dev_warn(tx_ring->dev, 4344 "partial checksum but proto=%x!\n", 4345 first->protocol); 4346 } 4347 break; 4348 } 4349 4350 switch (l4_hdr) { 4351 case IPPROTO_TCP: 4352 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 4353 mss_l4len_idx = tcp_hdrlen(skb) << 4354 E1000_ADVTXD_L4LEN_SHIFT; 4355 break; 4356 case IPPROTO_SCTP: 4357 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; 4358 mss_l4len_idx = sizeof(struct sctphdr) << 4359 E1000_ADVTXD_L4LEN_SHIFT; 4360 break; 4361 case IPPROTO_UDP: 4362 mss_l4len_idx = sizeof(struct udphdr) << 4363 E1000_ADVTXD_L4LEN_SHIFT; 4364 break; 4365 default: 4366 if (unlikely(net_ratelimit())) { 4367 dev_warn(tx_ring->dev, 4368 "partial checksum but l4 proto=%x!\n", 4369 l4_hdr); 4370 } 4371 break; 4372 } 4373 4374 /* update TX checksum flag */ 4375 first->tx_flags |= IGB_TX_FLAGS_CSUM; 4376 } 4377 4378 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4379 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4380 4381 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4382 } 4383 4384 #define IGB_SET_FLAG(_input, _flag, _result) \ 4385 ((_flag <= _result) ? \ 4386 ((u32)(_input & _flag) * (_result / _flag)) : \ 4387 ((u32)(_input & _flag) / (_flag / _result))) 4388 4389 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 4390 { 4391 /* set type for advanced descriptor with frame checksum insertion */ 4392 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 4393 E1000_ADVTXD_DCMD_DEXT | 4394 E1000_ADVTXD_DCMD_IFCS; 4395 4396 /* set HW vlan bit if vlan is present */ 4397 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 4398 (E1000_ADVTXD_DCMD_VLE)); 4399 4400 /* set segmentation bits for TSO */ 4401 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 4402 (E1000_ADVTXD_DCMD_TSE)); 4403 4404 /* set timestamp bit if present */ 4405 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 4406 (E1000_ADVTXD_MAC_TSTAMP)); 4407 4408 /* insert frame checksum */ 4409 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 4410 4411 return cmd_type; 4412 } 4413 4414 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 4415 union e1000_adv_tx_desc *tx_desc, 4416 u32 tx_flags, unsigned int paylen) 4417 { 4418 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 4419 4420 /* 82575 requires a unique index per ring */ 4421 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4422 olinfo_status |= tx_ring->reg_idx << 4; 4423 4424 /* insert L4 checksum */ 4425 olinfo_status |= IGB_SET_FLAG(tx_flags, 4426 IGB_TX_FLAGS_CSUM, 4427 (E1000_TXD_POPTS_TXSM << 8)); 4428 4429 /* insert IPv4 checksum */ 4430 olinfo_status |= IGB_SET_FLAG(tx_flags, 4431 IGB_TX_FLAGS_IPV4, 4432 (E1000_TXD_POPTS_IXSM << 8)); 4433 4434 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 4435 } 4436 4437 static void igb_tx_map(struct igb_ring *tx_ring, 4438 struct igb_tx_buffer *first, 4439 const u8 hdr_len) 4440 { 4441 struct sk_buff *skb = first->skb; 4442 struct igb_tx_buffer *tx_buffer; 4443 union e1000_adv_tx_desc *tx_desc; 4444 struct skb_frag_struct *frag; 4445 dma_addr_t dma; 4446 unsigned int data_len, size; 4447 u32 tx_flags = first->tx_flags; 4448 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 4449 u16 i = tx_ring->next_to_use; 4450 4451 tx_desc = IGB_TX_DESC(tx_ring, i); 4452 4453 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 4454 4455 size = skb_headlen(skb); 4456 data_len = skb->data_len; 4457 4458 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 4459 4460 tx_buffer = first; 4461 4462 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 4463 if (dma_mapping_error(tx_ring->dev, dma)) 4464 goto dma_error; 4465 4466 /* record length, and DMA address */ 4467 dma_unmap_len_set(tx_buffer, len, size); 4468 dma_unmap_addr_set(tx_buffer, dma, dma); 4469 4470 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4471 4472 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 4473 tx_desc->read.cmd_type_len = 4474 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 4475 4476 i++; 4477 tx_desc++; 4478 if (i == tx_ring->count) { 4479 tx_desc = IGB_TX_DESC(tx_ring, 0); 4480 i = 0; 4481 } 4482 tx_desc->read.olinfo_status = 0; 4483 4484 dma += IGB_MAX_DATA_PER_TXD; 4485 size -= IGB_MAX_DATA_PER_TXD; 4486 4487 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4488 } 4489 4490 if (likely(!data_len)) 4491 break; 4492 4493 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 4494 4495 i++; 4496 tx_desc++; 4497 if (i == tx_ring->count) { 4498 tx_desc = IGB_TX_DESC(tx_ring, 0); 4499 i = 0; 4500 } 4501 tx_desc->read.olinfo_status = 0; 4502 4503 size = skb_frag_size(frag); 4504 data_len -= size; 4505 4506 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 4507 size, DMA_TO_DEVICE); 4508 4509 tx_buffer = &tx_ring->tx_buffer_info[i]; 4510 } 4511 4512 /* write last descriptor with RS and EOP bits */ 4513 cmd_type |= size | IGB_TXD_DCMD; 4514 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 4515 4516 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 4517 4518 /* set the timestamp */ 4519 first->time_stamp = jiffies; 4520 4521 /* 4522 * Force memory writes to complete before letting h/w know there 4523 * are new descriptors to fetch. (Only applicable for weak-ordered 4524 * memory model archs, such as IA-64). 4525 * 4526 * We also need this memory barrier to make certain all of the 4527 * status bits have been updated before next_to_watch is written. 4528 */ 4529 wmb(); 4530 4531 /* set next_to_watch value indicating a packet is present */ 4532 first->next_to_watch = tx_desc; 4533 4534 i++; 4535 if (i == tx_ring->count) 4536 i = 0; 4537 4538 tx_ring->next_to_use = i; 4539 4540 writel(i, tx_ring->tail); 4541 4542 /* we need this if more than one processor can write to our tail 4543 * at a time, it syncronizes IO on IA64/Altix systems */ 4544 mmiowb(); 4545 4546 return; 4547 4548 dma_error: 4549 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4550 4551 /* clear dma mappings for failed tx_buffer_info map */ 4552 for (;;) { 4553 tx_buffer = &tx_ring->tx_buffer_info[i]; 4554 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); 4555 if (tx_buffer == first) 4556 break; 4557 if (i == 0) 4558 i = tx_ring->count; 4559 i--; 4560 } 4561 4562 tx_ring->next_to_use = i; 4563 } 4564 4565 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4566 { 4567 struct net_device *netdev = tx_ring->netdev; 4568 4569 netif_stop_subqueue(netdev, tx_ring->queue_index); 4570 4571 /* Herbert's original patch had: 4572 * smp_mb__after_netif_stop_queue(); 4573 * but since that doesn't exist yet, just open code it. */ 4574 smp_mb(); 4575 4576 /* We need to check again in a case another CPU has just 4577 * made room available. */ 4578 if (igb_desc_unused(tx_ring) < size) 4579 return -EBUSY; 4580 4581 /* A reprieve! */ 4582 netif_wake_subqueue(netdev, tx_ring->queue_index); 4583 4584 u64_stats_update_begin(&tx_ring->tx_syncp2); 4585 tx_ring->tx_stats.restart_queue2++; 4586 u64_stats_update_end(&tx_ring->tx_syncp2); 4587 4588 return 0; 4589 } 4590 4591 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4592 { 4593 if (igb_desc_unused(tx_ring) >= size) 4594 return 0; 4595 return __igb_maybe_stop_tx(tx_ring, size); 4596 } 4597 4598 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 4599 struct igb_ring *tx_ring) 4600 { 4601 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 4602 struct igb_tx_buffer *first; 4603 int tso; 4604 u32 tx_flags = 0; 4605 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4606 __be16 protocol = vlan_get_protocol(skb); 4607 u8 hdr_len = 0; 4608 4609 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 4610 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 4611 * + 2 desc gap to keep tail from touching head, 4612 * + 1 desc for context descriptor, 4613 * otherwise try next time 4614 */ 4615 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { 4616 unsigned short f; 4617 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4618 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4619 } else { 4620 count += skb_shinfo(skb)->nr_frags; 4621 } 4622 4623 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 4624 /* this is a hard error */ 4625 return NETDEV_TX_BUSY; 4626 } 4627 4628 /* record the location of the first descriptor for this packet */ 4629 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4630 first->skb = skb; 4631 first->bytecount = skb->len; 4632 first->gso_segs = 1; 4633 4634 skb_tx_timestamp(skb); 4635 4636 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4637 !(adapter->ptp_tx_skb))) { 4638 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4639 tx_flags |= IGB_TX_FLAGS_TSTAMP; 4640 4641 adapter->ptp_tx_skb = skb_get(skb); 4642 adapter->ptp_tx_start = jiffies; 4643 if (adapter->hw.mac.type == e1000_82576) 4644 schedule_work(&adapter->ptp_tx_work); 4645 } 4646 4647 if (vlan_tx_tag_present(skb)) { 4648 tx_flags |= IGB_TX_FLAGS_VLAN; 4649 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 4650 } 4651 4652 /* record initial flags and protocol */ 4653 first->tx_flags = tx_flags; 4654 first->protocol = protocol; 4655 4656 tso = igb_tso(tx_ring, first, &hdr_len); 4657 if (tso < 0) 4658 goto out_drop; 4659 else if (!tso) 4660 igb_tx_csum(tx_ring, first); 4661 4662 igb_tx_map(tx_ring, first, hdr_len); 4663 4664 /* Make sure there is space in the ring for the next send. */ 4665 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 4666 4667 return NETDEV_TX_OK; 4668 4669 out_drop: 4670 igb_unmap_and_free_tx_resource(tx_ring, first); 4671 4672 return NETDEV_TX_OK; 4673 } 4674 4675 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 4676 struct sk_buff *skb) 4677 { 4678 unsigned int r_idx = skb->queue_mapping; 4679 4680 if (r_idx >= adapter->num_tx_queues) 4681 r_idx = r_idx % adapter->num_tx_queues; 4682 4683 return adapter->tx_ring[r_idx]; 4684 } 4685 4686 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 4687 struct net_device *netdev) 4688 { 4689 struct igb_adapter *adapter = netdev_priv(netdev); 4690 4691 if (test_bit(__IGB_DOWN, &adapter->state)) { 4692 dev_kfree_skb_any(skb); 4693 return NETDEV_TX_OK; 4694 } 4695 4696 if (skb->len <= 0) { 4697 dev_kfree_skb_any(skb); 4698 return NETDEV_TX_OK; 4699 } 4700 4701 /* 4702 * The minimum packet size with TCTL.PSP set is 17 so pad the skb 4703 * in order to meet this minimum size requirement. 4704 */ 4705 if (unlikely(skb->len < 17)) { 4706 if (skb_pad(skb, 17 - skb->len)) 4707 return NETDEV_TX_OK; 4708 skb->len = 17; 4709 skb_set_tail_pointer(skb, 17); 4710 } 4711 4712 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 4713 } 4714 4715 /** 4716 * igb_tx_timeout - Respond to a Tx Hang 4717 * @netdev: network interface device structure 4718 **/ 4719 static void igb_tx_timeout(struct net_device *netdev) 4720 { 4721 struct igb_adapter *adapter = netdev_priv(netdev); 4722 struct e1000_hw *hw = &adapter->hw; 4723 4724 /* Do the reset outside of interrupt context */ 4725 adapter->tx_timeout_count++; 4726 4727 if (hw->mac.type >= e1000_82580) 4728 hw->dev_spec._82575.global_device_reset = true; 4729 4730 schedule_work(&adapter->reset_task); 4731 wr32(E1000_EICS, 4732 (adapter->eims_enable_mask & ~adapter->eims_other)); 4733 } 4734 4735 static void igb_reset_task(struct work_struct *work) 4736 { 4737 struct igb_adapter *adapter; 4738 adapter = container_of(work, struct igb_adapter, reset_task); 4739 4740 igb_dump(adapter); 4741 netdev_err(adapter->netdev, "Reset adapter\n"); 4742 igb_reinit_locked(adapter); 4743 } 4744 4745 /** 4746 * igb_get_stats64 - Get System Network Statistics 4747 * @netdev: network interface device structure 4748 * @stats: rtnl_link_stats64 pointer 4749 * 4750 **/ 4751 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, 4752 struct rtnl_link_stats64 *stats) 4753 { 4754 struct igb_adapter *adapter = netdev_priv(netdev); 4755 4756 spin_lock(&adapter->stats64_lock); 4757 igb_update_stats(adapter, &adapter->stats64); 4758 memcpy(stats, &adapter->stats64, sizeof(*stats)); 4759 spin_unlock(&adapter->stats64_lock); 4760 4761 return stats; 4762 } 4763 4764 /** 4765 * igb_change_mtu - Change the Maximum Transfer Unit 4766 * @netdev: network interface device structure 4767 * @new_mtu: new value for maximum frame size 4768 * 4769 * Returns 0 on success, negative on failure 4770 **/ 4771 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 4772 { 4773 struct igb_adapter *adapter = netdev_priv(netdev); 4774 struct pci_dev *pdev = adapter->pdev; 4775 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4776 4777 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 4778 dev_err(&pdev->dev, "Invalid MTU setting\n"); 4779 return -EINVAL; 4780 } 4781 4782 #define MAX_STD_JUMBO_FRAME_SIZE 9238 4783 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 4784 dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); 4785 return -EINVAL; 4786 } 4787 4788 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 4789 msleep(1); 4790 4791 /* igb_down has a dependency on max_frame_size */ 4792 adapter->max_frame_size = max_frame; 4793 4794 if (netif_running(netdev)) 4795 igb_down(adapter); 4796 4797 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 4798 netdev->mtu, new_mtu); 4799 netdev->mtu = new_mtu; 4800 4801 if (netif_running(netdev)) 4802 igb_up(adapter); 4803 else 4804 igb_reset(adapter); 4805 4806 clear_bit(__IGB_RESETTING, &adapter->state); 4807 4808 return 0; 4809 } 4810 4811 /** 4812 * igb_update_stats - Update the board statistics counters 4813 * @adapter: board private structure 4814 **/ 4815 4816 void igb_update_stats(struct igb_adapter *adapter, 4817 struct rtnl_link_stats64 *net_stats) 4818 { 4819 struct e1000_hw *hw = &adapter->hw; 4820 struct pci_dev *pdev = adapter->pdev; 4821 u32 reg, mpc; 4822 u16 phy_tmp; 4823 int i; 4824 u64 bytes, packets; 4825 unsigned int start; 4826 u64 _bytes, _packets; 4827 4828 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 4829 4830 /* 4831 * Prevent stats update while adapter is being reset, or if the pci 4832 * connection is down. 4833 */ 4834 if (adapter->link_speed == 0) 4835 return; 4836 if (pci_channel_offline(pdev)) 4837 return; 4838 4839 bytes = 0; 4840 packets = 0; 4841 for (i = 0; i < adapter->num_rx_queues; i++) { 4842 u32 rqdpc = rd32(E1000_RQDPC(i)); 4843 struct igb_ring *ring = adapter->rx_ring[i]; 4844 4845 if (rqdpc) { 4846 ring->rx_stats.drops += rqdpc; 4847 net_stats->rx_fifo_errors += rqdpc; 4848 } 4849 4850 do { 4851 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 4852 _bytes = ring->rx_stats.bytes; 4853 _packets = ring->rx_stats.packets; 4854 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 4855 bytes += _bytes; 4856 packets += _packets; 4857 } 4858 4859 net_stats->rx_bytes = bytes; 4860 net_stats->rx_packets = packets; 4861 4862 bytes = 0; 4863 packets = 0; 4864 for (i = 0; i < adapter->num_tx_queues; i++) { 4865 struct igb_ring *ring = adapter->tx_ring[i]; 4866 do { 4867 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 4868 _bytes = ring->tx_stats.bytes; 4869 _packets = ring->tx_stats.packets; 4870 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 4871 bytes += _bytes; 4872 packets += _packets; 4873 } 4874 net_stats->tx_bytes = bytes; 4875 net_stats->tx_packets = packets; 4876 4877 /* read stats registers */ 4878 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 4879 adapter->stats.gprc += rd32(E1000_GPRC); 4880 adapter->stats.gorc += rd32(E1000_GORCL); 4881 rd32(E1000_GORCH); /* clear GORCL */ 4882 adapter->stats.bprc += rd32(E1000_BPRC); 4883 adapter->stats.mprc += rd32(E1000_MPRC); 4884 adapter->stats.roc += rd32(E1000_ROC); 4885 4886 adapter->stats.prc64 += rd32(E1000_PRC64); 4887 adapter->stats.prc127 += rd32(E1000_PRC127); 4888 adapter->stats.prc255 += rd32(E1000_PRC255); 4889 adapter->stats.prc511 += rd32(E1000_PRC511); 4890 adapter->stats.prc1023 += rd32(E1000_PRC1023); 4891 adapter->stats.prc1522 += rd32(E1000_PRC1522); 4892 adapter->stats.symerrs += rd32(E1000_SYMERRS); 4893 adapter->stats.sec += rd32(E1000_SEC); 4894 4895 mpc = rd32(E1000_MPC); 4896 adapter->stats.mpc += mpc; 4897 net_stats->rx_fifo_errors += mpc; 4898 adapter->stats.scc += rd32(E1000_SCC); 4899 adapter->stats.ecol += rd32(E1000_ECOL); 4900 adapter->stats.mcc += rd32(E1000_MCC); 4901 adapter->stats.latecol += rd32(E1000_LATECOL); 4902 adapter->stats.dc += rd32(E1000_DC); 4903 adapter->stats.rlec += rd32(E1000_RLEC); 4904 adapter->stats.xonrxc += rd32(E1000_XONRXC); 4905 adapter->stats.xontxc += rd32(E1000_XONTXC); 4906 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 4907 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 4908 adapter->stats.fcruc += rd32(E1000_FCRUC); 4909 adapter->stats.gptc += rd32(E1000_GPTC); 4910 adapter->stats.gotc += rd32(E1000_GOTCL); 4911 rd32(E1000_GOTCH); /* clear GOTCL */ 4912 adapter->stats.rnbc += rd32(E1000_RNBC); 4913 adapter->stats.ruc += rd32(E1000_RUC); 4914 adapter->stats.rfc += rd32(E1000_RFC); 4915 adapter->stats.rjc += rd32(E1000_RJC); 4916 adapter->stats.tor += rd32(E1000_TORH); 4917 adapter->stats.tot += rd32(E1000_TOTH); 4918 adapter->stats.tpr += rd32(E1000_TPR); 4919 4920 adapter->stats.ptc64 += rd32(E1000_PTC64); 4921 adapter->stats.ptc127 += rd32(E1000_PTC127); 4922 adapter->stats.ptc255 += rd32(E1000_PTC255); 4923 adapter->stats.ptc511 += rd32(E1000_PTC511); 4924 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 4925 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 4926 4927 adapter->stats.mptc += rd32(E1000_MPTC); 4928 adapter->stats.bptc += rd32(E1000_BPTC); 4929 4930 adapter->stats.tpt += rd32(E1000_TPT); 4931 adapter->stats.colc += rd32(E1000_COLC); 4932 4933 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 4934 /* read internal phy specific stats */ 4935 reg = rd32(E1000_CTRL_EXT); 4936 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 4937 adapter->stats.rxerrc += rd32(E1000_RXERRC); 4938 4939 /* this stat has invalid values on i210/i211 */ 4940 if ((hw->mac.type != e1000_i210) && 4941 (hw->mac.type != e1000_i211)) 4942 adapter->stats.tncrs += rd32(E1000_TNCRS); 4943 } 4944 4945 adapter->stats.tsctc += rd32(E1000_TSCTC); 4946 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 4947 4948 adapter->stats.iac += rd32(E1000_IAC); 4949 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 4950 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 4951 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 4952 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 4953 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 4954 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 4955 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 4956 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 4957 4958 /* Fill out the OS statistics structure */ 4959 net_stats->multicast = adapter->stats.mprc; 4960 net_stats->collisions = adapter->stats.colc; 4961 4962 /* Rx Errors */ 4963 4964 /* RLEC on some newer hardware can be incorrect so build 4965 * our own version based on RUC and ROC */ 4966 net_stats->rx_errors = adapter->stats.rxerrc + 4967 adapter->stats.crcerrs + adapter->stats.algnerrc + 4968 adapter->stats.ruc + adapter->stats.roc + 4969 adapter->stats.cexterr; 4970 net_stats->rx_length_errors = adapter->stats.ruc + 4971 adapter->stats.roc; 4972 net_stats->rx_crc_errors = adapter->stats.crcerrs; 4973 net_stats->rx_frame_errors = adapter->stats.algnerrc; 4974 net_stats->rx_missed_errors = adapter->stats.mpc; 4975 4976 /* Tx Errors */ 4977 net_stats->tx_errors = adapter->stats.ecol + 4978 adapter->stats.latecol; 4979 net_stats->tx_aborted_errors = adapter->stats.ecol; 4980 net_stats->tx_window_errors = adapter->stats.latecol; 4981 net_stats->tx_carrier_errors = adapter->stats.tncrs; 4982 4983 /* Tx Dropped needs to be maintained elsewhere */ 4984 4985 /* Phy Stats */ 4986 if (hw->phy.media_type == e1000_media_type_copper) { 4987 if ((adapter->link_speed == SPEED_1000) && 4988 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 4989 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 4990 adapter->phy_stats.idle_errors += phy_tmp; 4991 } 4992 } 4993 4994 /* Management Stats */ 4995 adapter->stats.mgptc += rd32(E1000_MGTPTC); 4996 adapter->stats.mgprc += rd32(E1000_MGTPRC); 4997 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 4998 4999 /* OS2BMC Stats */ 5000 reg = rd32(E1000_MANC); 5001 if (reg & E1000_MANC_EN_BMC2OS) { 5002 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 5003 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 5004 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 5005 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 5006 } 5007 } 5008 5009 static irqreturn_t igb_msix_other(int irq, void *data) 5010 { 5011 struct igb_adapter *adapter = data; 5012 struct e1000_hw *hw = &adapter->hw; 5013 u32 icr = rd32(E1000_ICR); 5014 /* reading ICR causes bit 31 of EICR to be cleared */ 5015 5016 if (icr & E1000_ICR_DRSTA) 5017 schedule_work(&adapter->reset_task); 5018 5019 if (icr & E1000_ICR_DOUTSYNC) { 5020 /* HW is reporting DMA is out of sync */ 5021 adapter->stats.doosync++; 5022 /* The DMA Out of Sync is also indication of a spoof event 5023 * in IOV mode. Check the Wrong VM Behavior register to 5024 * see if it is really a spoof event. */ 5025 igb_check_wvbr(adapter); 5026 } 5027 5028 /* Check for a mailbox event */ 5029 if (icr & E1000_ICR_VMMB) 5030 igb_msg_task(adapter); 5031 5032 if (icr & E1000_ICR_LSC) { 5033 hw->mac.get_link_status = 1; 5034 /* guard against interrupt when we're going down */ 5035 if (!test_bit(__IGB_DOWN, &adapter->state)) 5036 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5037 } 5038 5039 if (icr & E1000_ICR_TS) { 5040 u32 tsicr = rd32(E1000_TSICR); 5041 5042 if (tsicr & E1000_TSICR_TXTS) { 5043 /* acknowledge the interrupt */ 5044 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5045 /* retrieve hardware timestamp */ 5046 schedule_work(&adapter->ptp_tx_work); 5047 } 5048 } 5049 5050 wr32(E1000_EIMS, adapter->eims_other); 5051 5052 return IRQ_HANDLED; 5053 } 5054 5055 static void igb_write_itr(struct igb_q_vector *q_vector) 5056 { 5057 struct igb_adapter *adapter = q_vector->adapter; 5058 u32 itr_val = q_vector->itr_val & 0x7FFC; 5059 5060 if (!q_vector->set_itr) 5061 return; 5062 5063 if (!itr_val) 5064 itr_val = 0x4; 5065 5066 if (adapter->hw.mac.type == e1000_82575) 5067 itr_val |= itr_val << 16; 5068 else 5069 itr_val |= E1000_EITR_CNT_IGNR; 5070 5071 writel(itr_val, q_vector->itr_register); 5072 q_vector->set_itr = 0; 5073 } 5074 5075 static irqreturn_t igb_msix_ring(int irq, void *data) 5076 { 5077 struct igb_q_vector *q_vector = data; 5078 5079 /* Write the ITR value calculated from the previous interrupt. */ 5080 igb_write_itr(q_vector); 5081 5082 napi_schedule(&q_vector->napi); 5083 5084 return IRQ_HANDLED; 5085 } 5086 5087 #ifdef CONFIG_IGB_DCA 5088 static void igb_update_tx_dca(struct igb_adapter *adapter, 5089 struct igb_ring *tx_ring, 5090 int cpu) 5091 { 5092 struct e1000_hw *hw = &adapter->hw; 5093 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 5094 5095 if (hw->mac.type != e1000_82575) 5096 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 5097 5098 /* 5099 * We can enable relaxed ordering for reads, but not writes when 5100 * DCA is enabled. This is due to a known issue in some chipsets 5101 * which will cause the DCA tag to be cleared. 5102 */ 5103 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 5104 E1000_DCA_TXCTRL_DATA_RRO_EN | 5105 E1000_DCA_TXCTRL_DESC_DCA_EN; 5106 5107 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 5108 } 5109 5110 static void igb_update_rx_dca(struct igb_adapter *adapter, 5111 struct igb_ring *rx_ring, 5112 int cpu) 5113 { 5114 struct e1000_hw *hw = &adapter->hw; 5115 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 5116 5117 if (hw->mac.type != e1000_82575) 5118 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 5119 5120 /* 5121 * We can enable relaxed ordering for reads, but not writes when 5122 * DCA is enabled. This is due to a known issue in some chipsets 5123 * which will cause the DCA tag to be cleared. 5124 */ 5125 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 5126 E1000_DCA_RXCTRL_DESC_DCA_EN; 5127 5128 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 5129 } 5130 5131 static void igb_update_dca(struct igb_q_vector *q_vector) 5132 { 5133 struct igb_adapter *adapter = q_vector->adapter; 5134 int cpu = get_cpu(); 5135 5136 if (q_vector->cpu == cpu) 5137 goto out_no_update; 5138 5139 if (q_vector->tx.ring) 5140 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 5141 5142 if (q_vector->rx.ring) 5143 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 5144 5145 q_vector->cpu = cpu; 5146 out_no_update: 5147 put_cpu(); 5148 } 5149 5150 static void igb_setup_dca(struct igb_adapter *adapter) 5151 { 5152 struct e1000_hw *hw = &adapter->hw; 5153 int i; 5154 5155 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 5156 return; 5157 5158 /* Always use CB2 mode, difference is masked in the CB driver. */ 5159 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 5160 5161 for (i = 0; i < adapter->num_q_vectors; i++) { 5162 adapter->q_vector[i]->cpu = -1; 5163 igb_update_dca(adapter->q_vector[i]); 5164 } 5165 } 5166 5167 static int __igb_notify_dca(struct device *dev, void *data) 5168 { 5169 struct net_device *netdev = dev_get_drvdata(dev); 5170 struct igb_adapter *adapter = netdev_priv(netdev); 5171 struct pci_dev *pdev = adapter->pdev; 5172 struct e1000_hw *hw = &adapter->hw; 5173 unsigned long event = *(unsigned long *)data; 5174 5175 switch (event) { 5176 case DCA_PROVIDER_ADD: 5177 /* if already enabled, don't do it again */ 5178 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 5179 break; 5180 if (dca_add_requester(dev) == 0) { 5181 adapter->flags |= IGB_FLAG_DCA_ENABLED; 5182 dev_info(&pdev->dev, "DCA enabled\n"); 5183 igb_setup_dca(adapter); 5184 break; 5185 } 5186 /* Fall Through since DCA is disabled. */ 5187 case DCA_PROVIDER_REMOVE: 5188 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 5189 /* without this a class_device is left 5190 * hanging around in the sysfs model */ 5191 dca_remove_requester(dev); 5192 dev_info(&pdev->dev, "DCA disabled\n"); 5193 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 5194 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 5195 } 5196 break; 5197 } 5198 5199 return 0; 5200 } 5201 5202 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 5203 void *p) 5204 { 5205 int ret_val; 5206 5207 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 5208 __igb_notify_dca); 5209 5210 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 5211 } 5212 #endif /* CONFIG_IGB_DCA */ 5213 5214 #ifdef CONFIG_PCI_IOV 5215 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 5216 { 5217 unsigned char mac_addr[ETH_ALEN]; 5218 5219 eth_zero_addr(mac_addr); 5220 igb_set_vf_mac(adapter, vf, mac_addr); 5221 5222 return 0; 5223 } 5224 5225 static bool igb_vfs_are_assigned(struct igb_adapter *adapter) 5226 { 5227 struct pci_dev *pdev = adapter->pdev; 5228 struct pci_dev *vfdev; 5229 int dev_id; 5230 5231 switch (adapter->hw.mac.type) { 5232 case e1000_82576: 5233 dev_id = IGB_82576_VF_DEV_ID; 5234 break; 5235 case e1000_i350: 5236 dev_id = IGB_I350_VF_DEV_ID; 5237 break; 5238 default: 5239 return false; 5240 } 5241 5242 /* loop through all the VFs to see if we own any that are assigned */ 5243 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL); 5244 while (vfdev) { 5245 /* if we don't own it we don't care */ 5246 if (vfdev->is_virtfn && vfdev->physfn == pdev) { 5247 /* if it is assigned we cannot release it */ 5248 if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED) 5249 return true; 5250 } 5251 5252 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev); 5253 } 5254 5255 return false; 5256 } 5257 5258 #endif 5259 static void igb_ping_all_vfs(struct igb_adapter *adapter) 5260 { 5261 struct e1000_hw *hw = &adapter->hw; 5262 u32 ping; 5263 int i; 5264 5265 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 5266 ping = E1000_PF_CONTROL_MSG; 5267 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 5268 ping |= E1000_VT_MSGTYPE_CTS; 5269 igb_write_mbx(hw, &ping, 1, i); 5270 } 5271 } 5272 5273 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5274 { 5275 struct e1000_hw *hw = &adapter->hw; 5276 u32 vmolr = rd32(E1000_VMOLR(vf)); 5277 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5278 5279 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 5280 IGB_VF_FLAG_MULTI_PROMISC); 5281 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5282 5283 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 5284 vmolr |= E1000_VMOLR_MPME; 5285 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 5286 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 5287 } else { 5288 /* 5289 * if we have hashes and we are clearing a multicast promisc 5290 * flag we need to write the hashes to the MTA as this step 5291 * was previously skipped 5292 */ 5293 if (vf_data->num_vf_mc_hashes > 30) { 5294 vmolr |= E1000_VMOLR_MPME; 5295 } else if (vf_data->num_vf_mc_hashes) { 5296 int j; 5297 vmolr |= E1000_VMOLR_ROMPE; 5298 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5299 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5300 } 5301 } 5302 5303 wr32(E1000_VMOLR(vf), vmolr); 5304 5305 /* there are flags left unprocessed, likely not supported */ 5306 if (*msgbuf & E1000_VT_MSGINFO_MASK) 5307 return -EINVAL; 5308 5309 return 0; 5310 5311 } 5312 5313 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 5314 u32 *msgbuf, u32 vf) 5315 { 5316 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5317 u16 *hash_list = (u16 *)&msgbuf[1]; 5318 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5319 int i; 5320 5321 /* salt away the number of multicast addresses assigned 5322 * to this VF for later use to restore when the PF multi cast 5323 * list changes 5324 */ 5325 vf_data->num_vf_mc_hashes = n; 5326 5327 /* only up to 30 hash values supported */ 5328 if (n > 30) 5329 n = 30; 5330 5331 /* store the hashes for later use */ 5332 for (i = 0; i < n; i++) 5333 vf_data->vf_mc_hashes[i] = hash_list[i]; 5334 5335 /* Flush and reset the mta with the new values */ 5336 igb_set_rx_mode(adapter->netdev); 5337 5338 return 0; 5339 } 5340 5341 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 5342 { 5343 struct e1000_hw *hw = &adapter->hw; 5344 struct vf_data_storage *vf_data; 5345 int i, j; 5346 5347 for (i = 0; i < adapter->vfs_allocated_count; i++) { 5348 u32 vmolr = rd32(E1000_VMOLR(i)); 5349 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5350 5351 vf_data = &adapter->vf_data[i]; 5352 5353 if ((vf_data->num_vf_mc_hashes > 30) || 5354 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 5355 vmolr |= E1000_VMOLR_MPME; 5356 } else if (vf_data->num_vf_mc_hashes) { 5357 vmolr |= E1000_VMOLR_ROMPE; 5358 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5359 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5360 } 5361 wr32(E1000_VMOLR(i), vmolr); 5362 } 5363 } 5364 5365 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 5366 { 5367 struct e1000_hw *hw = &adapter->hw; 5368 u32 pool_mask, reg, vid; 5369 int i; 5370 5371 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5372 5373 /* Find the vlan filter for this id */ 5374 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5375 reg = rd32(E1000_VLVF(i)); 5376 5377 /* remove the vf from the pool */ 5378 reg &= ~pool_mask; 5379 5380 /* if pool is empty then remove entry from vfta */ 5381 if (!(reg & E1000_VLVF_POOLSEL_MASK) && 5382 (reg & E1000_VLVF_VLANID_ENABLE)) { 5383 reg = 0; 5384 vid = reg & E1000_VLVF_VLANID_MASK; 5385 igb_vfta_set(hw, vid, false); 5386 } 5387 5388 wr32(E1000_VLVF(i), reg); 5389 } 5390 5391 adapter->vf_data[vf].vlans_enabled = 0; 5392 } 5393 5394 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) 5395 { 5396 struct e1000_hw *hw = &adapter->hw; 5397 u32 reg, i; 5398 5399 /* The vlvf table only exists on 82576 hardware and newer */ 5400 if (hw->mac.type < e1000_82576) 5401 return -1; 5402 5403 /* we only need to do this if VMDq is enabled */ 5404 if (!adapter->vfs_allocated_count) 5405 return -1; 5406 5407 /* Find the vlan filter for this id */ 5408 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5409 reg = rd32(E1000_VLVF(i)); 5410 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5411 vid == (reg & E1000_VLVF_VLANID_MASK)) 5412 break; 5413 } 5414 5415 if (add) { 5416 if (i == E1000_VLVF_ARRAY_SIZE) { 5417 /* Did not find a matching VLAN ID entry that was 5418 * enabled. Search for a free filter entry, i.e. 5419 * one without the enable bit set 5420 */ 5421 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5422 reg = rd32(E1000_VLVF(i)); 5423 if (!(reg & E1000_VLVF_VLANID_ENABLE)) 5424 break; 5425 } 5426 } 5427 if (i < E1000_VLVF_ARRAY_SIZE) { 5428 /* Found an enabled/available entry */ 5429 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5430 5431 /* if !enabled we need to set this up in vfta */ 5432 if (!(reg & E1000_VLVF_VLANID_ENABLE)) { 5433 /* add VID to filter table */ 5434 igb_vfta_set(hw, vid, true); 5435 reg |= E1000_VLVF_VLANID_ENABLE; 5436 } 5437 reg &= ~E1000_VLVF_VLANID_MASK; 5438 reg |= vid; 5439 wr32(E1000_VLVF(i), reg); 5440 5441 /* do not modify RLPML for PF devices */ 5442 if (vf >= adapter->vfs_allocated_count) 5443 return 0; 5444 5445 if (!adapter->vf_data[vf].vlans_enabled) { 5446 u32 size; 5447 reg = rd32(E1000_VMOLR(vf)); 5448 size = reg & E1000_VMOLR_RLPML_MASK; 5449 size += 4; 5450 reg &= ~E1000_VMOLR_RLPML_MASK; 5451 reg |= size; 5452 wr32(E1000_VMOLR(vf), reg); 5453 } 5454 5455 adapter->vf_data[vf].vlans_enabled++; 5456 } 5457 } else { 5458 if (i < E1000_VLVF_ARRAY_SIZE) { 5459 /* remove vf from the pool */ 5460 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); 5461 /* if pool is empty then remove entry from vfta */ 5462 if (!(reg & E1000_VLVF_POOLSEL_MASK)) { 5463 reg = 0; 5464 igb_vfta_set(hw, vid, false); 5465 } 5466 wr32(E1000_VLVF(i), reg); 5467 5468 /* do not modify RLPML for PF devices */ 5469 if (vf >= adapter->vfs_allocated_count) 5470 return 0; 5471 5472 adapter->vf_data[vf].vlans_enabled--; 5473 if (!adapter->vf_data[vf].vlans_enabled) { 5474 u32 size; 5475 reg = rd32(E1000_VMOLR(vf)); 5476 size = reg & E1000_VMOLR_RLPML_MASK; 5477 size -= 4; 5478 reg &= ~E1000_VMOLR_RLPML_MASK; 5479 reg |= size; 5480 wr32(E1000_VMOLR(vf), reg); 5481 } 5482 } 5483 } 5484 return 0; 5485 } 5486 5487 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 5488 { 5489 struct e1000_hw *hw = &adapter->hw; 5490 5491 if (vid) 5492 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 5493 else 5494 wr32(E1000_VMVIR(vf), 0); 5495 } 5496 5497 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 5498 int vf, u16 vlan, u8 qos) 5499 { 5500 int err = 0; 5501 struct igb_adapter *adapter = netdev_priv(netdev); 5502 5503 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 5504 return -EINVAL; 5505 if (vlan || qos) { 5506 err = igb_vlvf_set(adapter, vlan, !!vlan, vf); 5507 if (err) 5508 goto out; 5509 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 5510 igb_set_vmolr(adapter, vf, !vlan); 5511 adapter->vf_data[vf].pf_vlan = vlan; 5512 adapter->vf_data[vf].pf_qos = qos; 5513 dev_info(&adapter->pdev->dev, 5514 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 5515 if (test_bit(__IGB_DOWN, &adapter->state)) { 5516 dev_warn(&adapter->pdev->dev, 5517 "The VF VLAN has been set," 5518 " but the PF device is not up.\n"); 5519 dev_warn(&adapter->pdev->dev, 5520 "Bring the PF device up before" 5521 " attempting to use the VF device.\n"); 5522 } 5523 } else { 5524 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, 5525 false, vf); 5526 igb_set_vmvir(adapter, vlan, vf); 5527 igb_set_vmolr(adapter, vf, true); 5528 adapter->vf_data[vf].pf_vlan = 0; 5529 adapter->vf_data[vf].pf_qos = 0; 5530 } 5531 out: 5532 return err; 5533 } 5534 5535 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5536 { 5537 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5538 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 5539 5540 return igb_vlvf_set(adapter, vid, add, vf); 5541 } 5542 5543 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 5544 { 5545 /* clear flags - except flag that indicates PF has set the MAC */ 5546 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; 5547 adapter->vf_data[vf].last_nack = jiffies; 5548 5549 /* reset offloads to defaults */ 5550 igb_set_vmolr(adapter, vf, true); 5551 5552 /* reset vlans for device */ 5553 igb_clear_vf_vfta(adapter, vf); 5554 if (adapter->vf_data[vf].pf_vlan) 5555 igb_ndo_set_vf_vlan(adapter->netdev, vf, 5556 adapter->vf_data[vf].pf_vlan, 5557 adapter->vf_data[vf].pf_qos); 5558 else 5559 igb_clear_vf_vfta(adapter, vf); 5560 5561 /* reset multicast table array for vf */ 5562 adapter->vf_data[vf].num_vf_mc_hashes = 0; 5563 5564 /* Flush and reset the mta with the new values */ 5565 igb_set_rx_mode(adapter->netdev); 5566 } 5567 5568 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 5569 { 5570 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5571 5572 /* clear mac address as we were hotplug removed/added */ 5573 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 5574 eth_zero_addr(vf_mac); 5575 5576 /* process remaining reset events */ 5577 igb_vf_reset(adapter, vf); 5578 } 5579 5580 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 5581 { 5582 struct e1000_hw *hw = &adapter->hw; 5583 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5584 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 5585 u32 reg, msgbuf[3]; 5586 u8 *addr = (u8 *)(&msgbuf[1]); 5587 5588 /* process all the same items cleared in a function level reset */ 5589 igb_vf_reset(adapter, vf); 5590 5591 /* set vf mac address */ 5592 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); 5593 5594 /* enable transmit and receive for vf */ 5595 reg = rd32(E1000_VFTE); 5596 wr32(E1000_VFTE, reg | (1 << vf)); 5597 reg = rd32(E1000_VFRE); 5598 wr32(E1000_VFRE, reg | (1 << vf)); 5599 5600 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 5601 5602 /* reply to reset with ack and vf mac address */ 5603 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 5604 memcpy(addr, vf_mac, 6); 5605 igb_write_mbx(hw, msgbuf, 3, vf); 5606 } 5607 5608 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 5609 { 5610 /* 5611 * The VF MAC Address is stored in a packed array of bytes 5612 * starting at the second 32 bit word of the msg array 5613 */ 5614 unsigned char *addr = (char *)&msg[1]; 5615 int err = -1; 5616 5617 if (is_valid_ether_addr(addr)) 5618 err = igb_set_vf_mac(adapter, vf, addr); 5619 5620 return err; 5621 } 5622 5623 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 5624 { 5625 struct e1000_hw *hw = &adapter->hw; 5626 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5627 u32 msg = E1000_VT_MSGTYPE_NACK; 5628 5629 /* if device isn't clear to send it shouldn't be reading either */ 5630 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 5631 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 5632 igb_write_mbx(hw, &msg, 1, vf); 5633 vf_data->last_nack = jiffies; 5634 } 5635 } 5636 5637 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 5638 { 5639 struct pci_dev *pdev = adapter->pdev; 5640 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 5641 struct e1000_hw *hw = &adapter->hw; 5642 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5643 s32 retval; 5644 5645 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); 5646 5647 if (retval) { 5648 /* if receive failed revoke VF CTS stats and restart init */ 5649 dev_err(&pdev->dev, "Error receiving message from VF\n"); 5650 vf_data->flags &= ~IGB_VF_FLAG_CTS; 5651 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 5652 return; 5653 goto out; 5654 } 5655 5656 /* this is a message we already processed, do nothing */ 5657 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 5658 return; 5659 5660 /* 5661 * until the vf completes a reset it should not be 5662 * allowed to start any configuration. 5663 */ 5664 5665 if (msgbuf[0] == E1000_VF_RESET) { 5666 igb_vf_reset_msg(adapter, vf); 5667 return; 5668 } 5669 5670 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 5671 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 5672 return; 5673 retval = -1; 5674 goto out; 5675 } 5676 5677 switch ((msgbuf[0] & 0xFFFF)) { 5678 case E1000_VF_SET_MAC_ADDR: 5679 retval = -EINVAL; 5680 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) 5681 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 5682 else 5683 dev_warn(&pdev->dev, 5684 "VF %d attempted to override administratively " 5685 "set MAC address\nReload the VF driver to " 5686 "resume operations\n", vf); 5687 break; 5688 case E1000_VF_SET_PROMISC: 5689 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 5690 break; 5691 case E1000_VF_SET_MULTICAST: 5692 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 5693 break; 5694 case E1000_VF_SET_LPE: 5695 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 5696 break; 5697 case E1000_VF_SET_VLAN: 5698 retval = -1; 5699 if (vf_data->pf_vlan) 5700 dev_warn(&pdev->dev, 5701 "VF %d attempted to override administratively " 5702 "set VLAN tag\nReload the VF driver to " 5703 "resume operations\n", vf); 5704 else 5705 retval = igb_set_vf_vlan(adapter, msgbuf, vf); 5706 break; 5707 default: 5708 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 5709 retval = -1; 5710 break; 5711 } 5712 5713 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 5714 out: 5715 /* notify the VF of the results of what it sent us */ 5716 if (retval) 5717 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 5718 else 5719 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 5720 5721 igb_write_mbx(hw, msgbuf, 1, vf); 5722 } 5723 5724 static void igb_msg_task(struct igb_adapter *adapter) 5725 { 5726 struct e1000_hw *hw = &adapter->hw; 5727 u32 vf; 5728 5729 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 5730 /* process any reset requests */ 5731 if (!igb_check_for_rst(hw, vf)) 5732 igb_vf_reset_event(adapter, vf); 5733 5734 /* process any messages pending */ 5735 if (!igb_check_for_msg(hw, vf)) 5736 igb_rcv_msg_from_vf(adapter, vf); 5737 5738 /* process any acks */ 5739 if (!igb_check_for_ack(hw, vf)) 5740 igb_rcv_ack_from_vf(adapter, vf); 5741 } 5742 } 5743 5744 /** 5745 * igb_set_uta - Set unicast filter table address 5746 * @adapter: board private structure 5747 * 5748 * The unicast table address is a register array of 32-bit registers. 5749 * The table is meant to be used in a way similar to how the MTA is used 5750 * however due to certain limitations in the hardware it is necessary to 5751 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 5752 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 5753 **/ 5754 static void igb_set_uta(struct igb_adapter *adapter) 5755 { 5756 struct e1000_hw *hw = &adapter->hw; 5757 int i; 5758 5759 /* The UTA table only exists on 82576 hardware and newer */ 5760 if (hw->mac.type < e1000_82576) 5761 return; 5762 5763 /* we only need to do this if VMDq is enabled */ 5764 if (!adapter->vfs_allocated_count) 5765 return; 5766 5767 for (i = 0; i < hw->mac.uta_reg_count; i++) 5768 array_wr32(E1000_UTA, i, ~0); 5769 } 5770 5771 /** 5772 * igb_intr_msi - Interrupt Handler 5773 * @irq: interrupt number 5774 * @data: pointer to a network interface device structure 5775 **/ 5776 static irqreturn_t igb_intr_msi(int irq, void *data) 5777 { 5778 struct igb_adapter *adapter = data; 5779 struct igb_q_vector *q_vector = adapter->q_vector[0]; 5780 struct e1000_hw *hw = &adapter->hw; 5781 /* read ICR disables interrupts using IAM */ 5782 u32 icr = rd32(E1000_ICR); 5783 5784 igb_write_itr(q_vector); 5785 5786 if (icr & E1000_ICR_DRSTA) 5787 schedule_work(&adapter->reset_task); 5788 5789 if (icr & E1000_ICR_DOUTSYNC) { 5790 /* HW is reporting DMA is out of sync */ 5791 adapter->stats.doosync++; 5792 } 5793 5794 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 5795 hw->mac.get_link_status = 1; 5796 if (!test_bit(__IGB_DOWN, &adapter->state)) 5797 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5798 } 5799 5800 if (icr & E1000_ICR_TS) { 5801 u32 tsicr = rd32(E1000_TSICR); 5802 5803 if (tsicr & E1000_TSICR_TXTS) { 5804 /* acknowledge the interrupt */ 5805 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5806 /* retrieve hardware timestamp */ 5807 schedule_work(&adapter->ptp_tx_work); 5808 } 5809 } 5810 5811 napi_schedule(&q_vector->napi); 5812 5813 return IRQ_HANDLED; 5814 } 5815 5816 /** 5817 * igb_intr - Legacy Interrupt Handler 5818 * @irq: interrupt number 5819 * @data: pointer to a network interface device structure 5820 **/ 5821 static irqreturn_t igb_intr(int irq, void *data) 5822 { 5823 struct igb_adapter *adapter = data; 5824 struct igb_q_vector *q_vector = adapter->q_vector[0]; 5825 struct e1000_hw *hw = &adapter->hw; 5826 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5827 * need for the IMC write */ 5828 u32 icr = rd32(E1000_ICR); 5829 5830 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5831 * not set, then the adapter didn't send an interrupt */ 5832 if (!(icr & E1000_ICR_INT_ASSERTED)) 5833 return IRQ_NONE; 5834 5835 igb_write_itr(q_vector); 5836 5837 if (icr & E1000_ICR_DRSTA) 5838 schedule_work(&adapter->reset_task); 5839 5840 if (icr & E1000_ICR_DOUTSYNC) { 5841 /* HW is reporting DMA is out of sync */ 5842 adapter->stats.doosync++; 5843 } 5844 5845 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 5846 hw->mac.get_link_status = 1; 5847 /* guard against interrupt when we're going down */ 5848 if (!test_bit(__IGB_DOWN, &adapter->state)) 5849 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5850 } 5851 5852 if (icr & E1000_ICR_TS) { 5853 u32 tsicr = rd32(E1000_TSICR); 5854 5855 if (tsicr & E1000_TSICR_TXTS) { 5856 /* acknowledge the interrupt */ 5857 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5858 /* retrieve hardware timestamp */ 5859 schedule_work(&adapter->ptp_tx_work); 5860 } 5861 } 5862 5863 napi_schedule(&q_vector->napi); 5864 5865 return IRQ_HANDLED; 5866 } 5867 5868 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 5869 { 5870 struct igb_adapter *adapter = q_vector->adapter; 5871 struct e1000_hw *hw = &adapter->hw; 5872 5873 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 5874 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 5875 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 5876 igb_set_itr(q_vector); 5877 else 5878 igb_update_ring_itr(q_vector); 5879 } 5880 5881 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5882 if (adapter->msix_entries) 5883 wr32(E1000_EIMS, q_vector->eims_value); 5884 else 5885 igb_irq_enable(adapter); 5886 } 5887 } 5888 5889 /** 5890 * igb_poll - NAPI Rx polling callback 5891 * @napi: napi polling structure 5892 * @budget: count of how many packets we should handle 5893 **/ 5894 static int igb_poll(struct napi_struct *napi, int budget) 5895 { 5896 struct igb_q_vector *q_vector = container_of(napi, 5897 struct igb_q_vector, 5898 napi); 5899 bool clean_complete = true; 5900 5901 #ifdef CONFIG_IGB_DCA 5902 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 5903 igb_update_dca(q_vector); 5904 #endif 5905 if (q_vector->tx.ring) 5906 clean_complete = igb_clean_tx_irq(q_vector); 5907 5908 if (q_vector->rx.ring) 5909 clean_complete &= igb_clean_rx_irq(q_vector, budget); 5910 5911 /* If all work not completed, return budget and keep polling */ 5912 if (!clean_complete) 5913 return budget; 5914 5915 /* If not enough Rx work done, exit the polling mode */ 5916 napi_complete(napi); 5917 igb_ring_irq_enable(q_vector); 5918 5919 return 0; 5920 } 5921 5922 /** 5923 * igb_clean_tx_irq - Reclaim resources after transmit completes 5924 * @q_vector: pointer to q_vector containing needed info 5925 * 5926 * returns true if ring is completely cleaned 5927 **/ 5928 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) 5929 { 5930 struct igb_adapter *adapter = q_vector->adapter; 5931 struct igb_ring *tx_ring = q_vector->tx.ring; 5932 struct igb_tx_buffer *tx_buffer; 5933 union e1000_adv_tx_desc *tx_desc; 5934 unsigned int total_bytes = 0, total_packets = 0; 5935 unsigned int budget = q_vector->tx.work_limit; 5936 unsigned int i = tx_ring->next_to_clean; 5937 5938 if (test_bit(__IGB_DOWN, &adapter->state)) 5939 return true; 5940 5941 tx_buffer = &tx_ring->tx_buffer_info[i]; 5942 tx_desc = IGB_TX_DESC(tx_ring, i); 5943 i -= tx_ring->count; 5944 5945 do { 5946 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 5947 5948 /* if next_to_watch is not set then there is no work pending */ 5949 if (!eop_desc) 5950 break; 5951 5952 /* prevent any other reads prior to eop_desc */ 5953 read_barrier_depends(); 5954 5955 /* if DD is not set pending work has not been completed */ 5956 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 5957 break; 5958 5959 /* clear next_to_watch to prevent false hangs */ 5960 tx_buffer->next_to_watch = NULL; 5961 5962 /* update the statistics for this packet */ 5963 total_bytes += tx_buffer->bytecount; 5964 total_packets += tx_buffer->gso_segs; 5965 5966 /* free the skb */ 5967 dev_kfree_skb_any(tx_buffer->skb); 5968 5969 /* unmap skb header data */ 5970 dma_unmap_single(tx_ring->dev, 5971 dma_unmap_addr(tx_buffer, dma), 5972 dma_unmap_len(tx_buffer, len), 5973 DMA_TO_DEVICE); 5974 5975 /* clear tx_buffer data */ 5976 tx_buffer->skb = NULL; 5977 dma_unmap_len_set(tx_buffer, len, 0); 5978 5979 /* clear last DMA location and unmap remaining buffers */ 5980 while (tx_desc != eop_desc) { 5981 tx_buffer++; 5982 tx_desc++; 5983 i++; 5984 if (unlikely(!i)) { 5985 i -= tx_ring->count; 5986 tx_buffer = tx_ring->tx_buffer_info; 5987 tx_desc = IGB_TX_DESC(tx_ring, 0); 5988 } 5989 5990 /* unmap any remaining paged data */ 5991 if (dma_unmap_len(tx_buffer, len)) { 5992 dma_unmap_page(tx_ring->dev, 5993 dma_unmap_addr(tx_buffer, dma), 5994 dma_unmap_len(tx_buffer, len), 5995 DMA_TO_DEVICE); 5996 dma_unmap_len_set(tx_buffer, len, 0); 5997 } 5998 } 5999 6000 /* move us one more past the eop_desc for start of next pkt */ 6001 tx_buffer++; 6002 tx_desc++; 6003 i++; 6004 if (unlikely(!i)) { 6005 i -= tx_ring->count; 6006 tx_buffer = tx_ring->tx_buffer_info; 6007 tx_desc = IGB_TX_DESC(tx_ring, 0); 6008 } 6009 6010 /* issue prefetch for next Tx descriptor */ 6011 prefetch(tx_desc); 6012 6013 /* update budget accounting */ 6014 budget--; 6015 } while (likely(budget)); 6016 6017 netdev_tx_completed_queue(txring_txq(tx_ring), 6018 total_packets, total_bytes); 6019 i += tx_ring->count; 6020 tx_ring->next_to_clean = i; 6021 u64_stats_update_begin(&tx_ring->tx_syncp); 6022 tx_ring->tx_stats.bytes += total_bytes; 6023 tx_ring->tx_stats.packets += total_packets; 6024 u64_stats_update_end(&tx_ring->tx_syncp); 6025 q_vector->tx.total_bytes += total_bytes; 6026 q_vector->tx.total_packets += total_packets; 6027 6028 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 6029 struct e1000_hw *hw = &adapter->hw; 6030 6031 /* Detect a transmit hang in hardware, this serializes the 6032 * check with the clearing of time_stamp and movement of i */ 6033 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 6034 if (tx_buffer->next_to_watch && 6035 time_after(jiffies, tx_buffer->time_stamp + 6036 (adapter->tx_timeout_factor * HZ)) && 6037 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 6038 6039 /* detected Tx unit hang */ 6040 dev_err(tx_ring->dev, 6041 "Detected Tx Unit Hang\n" 6042 " Tx Queue <%d>\n" 6043 " TDH <%x>\n" 6044 " TDT <%x>\n" 6045 " next_to_use <%x>\n" 6046 " next_to_clean <%x>\n" 6047 "buffer_info[next_to_clean]\n" 6048 " time_stamp <%lx>\n" 6049 " next_to_watch <%p>\n" 6050 " jiffies <%lx>\n" 6051 " desc.status <%x>\n", 6052 tx_ring->queue_index, 6053 rd32(E1000_TDH(tx_ring->reg_idx)), 6054 readl(tx_ring->tail), 6055 tx_ring->next_to_use, 6056 tx_ring->next_to_clean, 6057 tx_buffer->time_stamp, 6058 tx_buffer->next_to_watch, 6059 jiffies, 6060 tx_buffer->next_to_watch->wb.status); 6061 netif_stop_subqueue(tx_ring->netdev, 6062 tx_ring->queue_index); 6063 6064 /* we are about to reset, no point in enabling stuff */ 6065 return true; 6066 } 6067 } 6068 6069 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 6070 if (unlikely(total_packets && 6071 netif_carrier_ok(tx_ring->netdev) && 6072 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 6073 /* Make sure that anybody stopping the queue after this 6074 * sees the new next_to_clean. 6075 */ 6076 smp_mb(); 6077 if (__netif_subqueue_stopped(tx_ring->netdev, 6078 tx_ring->queue_index) && 6079 !(test_bit(__IGB_DOWN, &adapter->state))) { 6080 netif_wake_subqueue(tx_ring->netdev, 6081 tx_ring->queue_index); 6082 6083 u64_stats_update_begin(&tx_ring->tx_syncp); 6084 tx_ring->tx_stats.restart_queue++; 6085 u64_stats_update_end(&tx_ring->tx_syncp); 6086 } 6087 } 6088 6089 return !!budget; 6090 } 6091 6092 /** 6093 * igb_reuse_rx_page - page flip buffer and store it back on the ring 6094 * @rx_ring: rx descriptor ring to store buffers on 6095 * @old_buff: donor buffer to have page reused 6096 * 6097 * Synchronizes page for reuse by the adapter 6098 **/ 6099 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 6100 struct igb_rx_buffer *old_buff) 6101 { 6102 struct igb_rx_buffer *new_buff; 6103 u16 nta = rx_ring->next_to_alloc; 6104 6105 new_buff = &rx_ring->rx_buffer_info[nta]; 6106 6107 /* update, and store next to alloc */ 6108 nta++; 6109 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 6110 6111 /* transfer page from old buffer to new buffer */ 6112 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer)); 6113 6114 /* sync the buffer for use by the device */ 6115 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 6116 old_buff->page_offset, 6117 IGB_RX_BUFSZ, 6118 DMA_FROM_DEVICE); 6119 } 6120 6121 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 6122 struct page *page, 6123 unsigned int truesize) 6124 { 6125 /* avoid re-using remote pages */ 6126 if (unlikely(page_to_nid(page) != numa_node_id())) 6127 return false; 6128 6129 #if (PAGE_SIZE < 8192) 6130 /* if we are only owner of page we can reuse it */ 6131 if (unlikely(page_count(page) != 1)) 6132 return false; 6133 6134 /* flip page offset to other buffer */ 6135 rx_buffer->page_offset ^= IGB_RX_BUFSZ; 6136 6137 /* since we are the only owner of the page and we need to 6138 * increment it, just set the value to 2 in order to avoid 6139 * an unnecessary locked operation 6140 */ 6141 atomic_set(&page->_count, 2); 6142 #else 6143 /* move offset up to the next cache line */ 6144 rx_buffer->page_offset += truesize; 6145 6146 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) 6147 return false; 6148 6149 /* bump ref count on page before it is given to the stack */ 6150 get_page(page); 6151 #endif 6152 6153 return true; 6154 } 6155 6156 /** 6157 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 6158 * @rx_ring: rx descriptor ring to transact packets on 6159 * @rx_buffer: buffer containing page to add 6160 * @rx_desc: descriptor containing length of buffer written by hardware 6161 * @skb: sk_buff to place the data into 6162 * 6163 * This function will add the data contained in rx_buffer->page to the skb. 6164 * This is done either through a direct copy if the data in the buffer is 6165 * less than the skb header size, otherwise it will just attach the page as 6166 * a frag to the skb. 6167 * 6168 * The function will then update the page offset if necessary and return 6169 * true if the buffer can be reused by the adapter. 6170 **/ 6171 static bool igb_add_rx_frag(struct igb_ring *rx_ring, 6172 struct igb_rx_buffer *rx_buffer, 6173 union e1000_adv_rx_desc *rx_desc, 6174 struct sk_buff *skb) 6175 { 6176 struct page *page = rx_buffer->page; 6177 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6178 #if (PAGE_SIZE < 8192) 6179 unsigned int truesize = IGB_RX_BUFSZ; 6180 #else 6181 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 6182 #endif 6183 6184 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 6185 unsigned char *va = page_address(page) + rx_buffer->page_offset; 6186 6187 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6188 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6189 va += IGB_TS_HDR_LEN; 6190 size -= IGB_TS_HDR_LEN; 6191 } 6192 6193 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 6194 6195 /* we can reuse buffer as-is, just make sure it is local */ 6196 if (likely(page_to_nid(page) == numa_node_id())) 6197 return true; 6198 6199 /* this page cannot be reused so discard it */ 6200 put_page(page); 6201 return false; 6202 } 6203 6204 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 6205 rx_buffer->page_offset, size, truesize); 6206 6207 return igb_can_reuse_rx_page(rx_buffer, page, truesize); 6208 } 6209 6210 static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring, 6211 union e1000_adv_rx_desc *rx_desc) 6212 { 6213 struct igb_rx_buffer *rx_buffer; 6214 struct sk_buff *skb; 6215 struct page *page; 6216 void *page_addr; 6217 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6218 #if (PAGE_SIZE < 8192) 6219 unsigned int truesize = IGB_RX_BUFSZ; 6220 #else 6221 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 6222 SKB_DATA_ALIGN(NET_SKB_PAD + 6223 NET_IP_ALIGN + 6224 size); 6225 #endif 6226 6227 /* If we spanned a buffer we have a huge mess so test for it */ 6228 BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))); 6229 6230 /* Guarantee this function can be used by verifying buffer sizes */ 6231 BUILD_BUG_ON(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) < (NET_SKB_PAD + 6232 NET_IP_ALIGN + 6233 IGB_TS_HDR_LEN + 6234 ETH_FRAME_LEN + 6235 ETH_FCS_LEN)); 6236 6237 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6238 page = rx_buffer->page; 6239 prefetchw(page); 6240 6241 page_addr = page_address(page) + rx_buffer->page_offset; 6242 6243 /* prefetch first cache line of first page */ 6244 prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN); 6245 #if L1_CACHE_BYTES < 128 6246 prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN); 6247 #endif 6248 6249 /* build an skb to around the page buffer */ 6250 skb = build_skb(page_addr, truesize); 6251 if (unlikely(!skb)) { 6252 rx_ring->rx_stats.alloc_failed++; 6253 return NULL; 6254 } 6255 6256 /* we are reusing so sync this buffer for CPU use */ 6257 dma_sync_single_range_for_cpu(rx_ring->dev, 6258 rx_buffer->dma, 6259 rx_buffer->page_offset, 6260 IGB_RX_BUFSZ, 6261 DMA_FROM_DEVICE); 6262 6263 /* update pointers within the skb to store the data */ 6264 skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD); 6265 __skb_put(skb, size); 6266 6267 /* pull timestamp out of packet data */ 6268 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6269 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb); 6270 __skb_pull(skb, IGB_TS_HDR_LEN); 6271 } 6272 6273 if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) { 6274 /* hand second half of page back to the ring */ 6275 igb_reuse_rx_page(rx_ring, rx_buffer); 6276 } else { 6277 /* we are not reusing the buffer so unmap it */ 6278 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6279 PAGE_SIZE, DMA_FROM_DEVICE); 6280 } 6281 6282 /* clear contents of buffer_info */ 6283 rx_buffer->dma = 0; 6284 rx_buffer->page = NULL; 6285 6286 return skb; 6287 } 6288 6289 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, 6290 union e1000_adv_rx_desc *rx_desc, 6291 struct sk_buff *skb) 6292 { 6293 struct igb_rx_buffer *rx_buffer; 6294 struct page *page; 6295 6296 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6297 6298 page = rx_buffer->page; 6299 prefetchw(page); 6300 6301 if (likely(!skb)) { 6302 void *page_addr = page_address(page) + 6303 rx_buffer->page_offset; 6304 6305 /* prefetch first cache line of first page */ 6306 prefetch(page_addr); 6307 #if L1_CACHE_BYTES < 128 6308 prefetch(page_addr + L1_CACHE_BYTES); 6309 #endif 6310 6311 /* allocate a skb to store the frags */ 6312 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 6313 IGB_RX_HDR_LEN); 6314 if (unlikely(!skb)) { 6315 rx_ring->rx_stats.alloc_failed++; 6316 return NULL; 6317 } 6318 6319 /* 6320 * we will be copying header into skb->data in 6321 * pskb_may_pull so it is in our interest to prefetch 6322 * it now to avoid a possible cache miss 6323 */ 6324 prefetchw(skb->data); 6325 } 6326 6327 /* we are reusing so sync this buffer for CPU use */ 6328 dma_sync_single_range_for_cpu(rx_ring->dev, 6329 rx_buffer->dma, 6330 rx_buffer->page_offset, 6331 IGB_RX_BUFSZ, 6332 DMA_FROM_DEVICE); 6333 6334 /* pull page into skb */ 6335 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 6336 /* hand second half of page back to the ring */ 6337 igb_reuse_rx_page(rx_ring, rx_buffer); 6338 } else { 6339 /* we are not reusing the buffer so unmap it */ 6340 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6341 PAGE_SIZE, DMA_FROM_DEVICE); 6342 } 6343 6344 /* clear contents of rx_buffer */ 6345 rx_buffer->page = NULL; 6346 6347 return skb; 6348 } 6349 6350 static inline void igb_rx_checksum(struct igb_ring *ring, 6351 union e1000_adv_rx_desc *rx_desc, 6352 struct sk_buff *skb) 6353 { 6354 skb_checksum_none_assert(skb); 6355 6356 /* Ignore Checksum bit is set */ 6357 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 6358 return; 6359 6360 /* Rx checksum disabled via ethtool */ 6361 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 6362 return; 6363 6364 /* TCP/UDP checksum error bit is set */ 6365 if (igb_test_staterr(rx_desc, 6366 E1000_RXDEXT_STATERR_TCPE | 6367 E1000_RXDEXT_STATERR_IPE)) { 6368 /* 6369 * work around errata with sctp packets where the TCPE aka 6370 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 6371 * packets, (aka let the stack check the crc32c) 6372 */ 6373 if (!((skb->len == 60) && 6374 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 6375 u64_stats_update_begin(&ring->rx_syncp); 6376 ring->rx_stats.csum_err++; 6377 u64_stats_update_end(&ring->rx_syncp); 6378 } 6379 /* let the stack verify checksum errors */ 6380 return; 6381 } 6382 /* It must be a TCP or UDP packet with a valid checksum */ 6383 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 6384 E1000_RXD_STAT_UDPCS)) 6385 skb->ip_summed = CHECKSUM_UNNECESSARY; 6386 6387 dev_dbg(ring->dev, "cksum success: bits %08X\n", 6388 le32_to_cpu(rx_desc->wb.upper.status_error)); 6389 } 6390 6391 static inline void igb_rx_hash(struct igb_ring *ring, 6392 union e1000_adv_rx_desc *rx_desc, 6393 struct sk_buff *skb) 6394 { 6395 if (ring->netdev->features & NETIF_F_RXHASH) 6396 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 6397 } 6398 6399 /** 6400 * igb_is_non_eop - process handling of non-EOP buffers 6401 * @rx_ring: Rx ring being processed 6402 * @rx_desc: Rx descriptor for current buffer 6403 * @skb: current socket buffer containing buffer in progress 6404 * 6405 * This function updates next to clean. If the buffer is an EOP buffer 6406 * this function exits returning false, otherwise it will place the 6407 * sk_buff in the next buffer to be chained and return true indicating 6408 * that this is in fact a non-EOP buffer. 6409 **/ 6410 static bool igb_is_non_eop(struct igb_ring *rx_ring, 6411 union e1000_adv_rx_desc *rx_desc) 6412 { 6413 u32 ntc = rx_ring->next_to_clean + 1; 6414 6415 /* fetch, update, and store next to clean */ 6416 ntc = (ntc < rx_ring->count) ? ntc : 0; 6417 rx_ring->next_to_clean = ntc; 6418 6419 prefetch(IGB_RX_DESC(rx_ring, ntc)); 6420 6421 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 6422 return false; 6423 6424 return true; 6425 } 6426 6427 /** 6428 * igb_get_headlen - determine size of header for LRO/GRO 6429 * @data: pointer to the start of the headers 6430 * @max_len: total length of section to find headers in 6431 * 6432 * This function is meant to determine the length of headers that will 6433 * be recognized by hardware for LRO, and GRO offloads. The main 6434 * motivation of doing this is to only perform one pull for IPv4 TCP 6435 * packets so that we can do basic things like calculating the gso_size 6436 * based on the average data per packet. 6437 **/ 6438 static unsigned int igb_get_headlen(unsigned char *data, 6439 unsigned int max_len) 6440 { 6441 union { 6442 unsigned char *network; 6443 /* l2 headers */ 6444 struct ethhdr *eth; 6445 struct vlan_hdr *vlan; 6446 /* l3 headers */ 6447 struct iphdr *ipv4; 6448 struct ipv6hdr *ipv6; 6449 } hdr; 6450 __be16 protocol; 6451 u8 nexthdr = 0; /* default to not TCP */ 6452 u8 hlen; 6453 6454 /* this should never happen, but better safe than sorry */ 6455 if (max_len < ETH_HLEN) 6456 return max_len; 6457 6458 /* initialize network frame pointer */ 6459 hdr.network = data; 6460 6461 /* set first protocol and move network header forward */ 6462 protocol = hdr.eth->h_proto; 6463 hdr.network += ETH_HLEN; 6464 6465 /* handle any vlan tag if present */ 6466 if (protocol == __constant_htons(ETH_P_8021Q)) { 6467 if ((hdr.network - data) > (max_len - VLAN_HLEN)) 6468 return max_len; 6469 6470 protocol = hdr.vlan->h_vlan_encapsulated_proto; 6471 hdr.network += VLAN_HLEN; 6472 } 6473 6474 /* handle L3 protocols */ 6475 if (protocol == __constant_htons(ETH_P_IP)) { 6476 if ((hdr.network - data) > (max_len - sizeof(struct iphdr))) 6477 return max_len; 6478 6479 /* access ihl as a u8 to avoid unaligned access on ia64 */ 6480 hlen = (hdr.network[0] & 0x0F) << 2; 6481 6482 /* verify hlen meets minimum size requirements */ 6483 if (hlen < sizeof(struct iphdr)) 6484 return hdr.network - data; 6485 6486 /* record next protocol if header is present */ 6487 if (!hdr.ipv4->frag_off) 6488 nexthdr = hdr.ipv4->protocol; 6489 } else if (protocol == __constant_htons(ETH_P_IPV6)) { 6490 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr))) 6491 return max_len; 6492 6493 /* record next protocol */ 6494 nexthdr = hdr.ipv6->nexthdr; 6495 hlen = sizeof(struct ipv6hdr); 6496 } else { 6497 return hdr.network - data; 6498 } 6499 6500 /* relocate pointer to start of L4 header */ 6501 hdr.network += hlen; 6502 6503 /* finally sort out TCP */ 6504 if (nexthdr == IPPROTO_TCP) { 6505 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr))) 6506 return max_len; 6507 6508 /* access doff as a u8 to avoid unaligned access on ia64 */ 6509 hlen = (hdr.network[12] & 0xF0) >> 2; 6510 6511 /* verify hlen meets minimum size requirements */ 6512 if (hlen < sizeof(struct tcphdr)) 6513 return hdr.network - data; 6514 6515 hdr.network += hlen; 6516 } else if (nexthdr == IPPROTO_UDP) { 6517 if ((hdr.network - data) > (max_len - sizeof(struct udphdr))) 6518 return max_len; 6519 6520 hdr.network += sizeof(struct udphdr); 6521 } 6522 6523 /* 6524 * If everything has gone correctly hdr.network should be the 6525 * data section of the packet and will be the end of the header. 6526 * If not then it probably represents the end of the last recognized 6527 * header. 6528 */ 6529 if ((hdr.network - data) < max_len) 6530 return hdr.network - data; 6531 else 6532 return max_len; 6533 } 6534 6535 /** 6536 * igb_pull_tail - igb specific version of skb_pull_tail 6537 * @rx_ring: rx descriptor ring packet is being transacted on 6538 * @rx_desc: pointer to the EOP Rx descriptor 6539 * @skb: pointer to current skb being adjusted 6540 * 6541 * This function is an igb specific version of __pskb_pull_tail. The 6542 * main difference between this version and the original function is that 6543 * this function can make several assumptions about the state of things 6544 * that allow for significant optimizations versus the standard function. 6545 * As a result we can do things like drop a frag and maintain an accurate 6546 * truesize for the skb. 6547 */ 6548 static void igb_pull_tail(struct igb_ring *rx_ring, 6549 union e1000_adv_rx_desc *rx_desc, 6550 struct sk_buff *skb) 6551 { 6552 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 6553 unsigned char *va; 6554 unsigned int pull_len; 6555 6556 /* 6557 * it is valid to use page_address instead of kmap since we are 6558 * working with pages allocated out of the lomem pool per 6559 * alloc_page(GFP_ATOMIC) 6560 */ 6561 va = skb_frag_address(frag); 6562 6563 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6564 /* retrieve timestamp from buffer */ 6565 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6566 6567 /* update pointers to remove timestamp header */ 6568 skb_frag_size_sub(frag, IGB_TS_HDR_LEN); 6569 frag->page_offset += IGB_TS_HDR_LEN; 6570 skb->data_len -= IGB_TS_HDR_LEN; 6571 skb->len -= IGB_TS_HDR_LEN; 6572 6573 /* move va to start of packet data */ 6574 va += IGB_TS_HDR_LEN; 6575 } 6576 6577 /* 6578 * we need the header to contain the greater of either ETH_HLEN or 6579 * 60 bytes if the skb->len is less than 60 for skb_pad. 6580 */ 6581 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN); 6582 6583 /* align pull length to size of long to optimize memcpy performance */ 6584 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 6585 6586 /* update all of the pointers */ 6587 skb_frag_size_sub(frag, pull_len); 6588 frag->page_offset += pull_len; 6589 skb->data_len -= pull_len; 6590 skb->tail += pull_len; 6591 } 6592 6593 /** 6594 * igb_cleanup_headers - Correct corrupted or empty headers 6595 * @rx_ring: rx descriptor ring packet is being transacted on 6596 * @rx_desc: pointer to the EOP Rx descriptor 6597 * @skb: pointer to current skb being fixed 6598 * 6599 * Address the case where we are pulling data in on pages only 6600 * and as such no data is present in the skb header. 6601 * 6602 * In addition if skb is not at least 60 bytes we need to pad it so that 6603 * it is large enough to qualify as a valid Ethernet frame. 6604 * 6605 * Returns true if an error was encountered and skb was freed. 6606 **/ 6607 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 6608 union e1000_adv_rx_desc *rx_desc, 6609 struct sk_buff *skb) 6610 { 6611 6612 if (unlikely((igb_test_staterr(rx_desc, 6613 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 6614 struct net_device *netdev = rx_ring->netdev; 6615 if (!(netdev->features & NETIF_F_RXALL)) { 6616 dev_kfree_skb_any(skb); 6617 return true; 6618 } 6619 } 6620 6621 /* place header in linear portion of buffer */ 6622 if (skb_is_nonlinear(skb)) 6623 igb_pull_tail(rx_ring, rx_desc, skb); 6624 6625 /* if skb_pad returns an error the skb was freed */ 6626 if (unlikely(skb->len < 60)) { 6627 int pad_len = 60 - skb->len; 6628 6629 if (skb_pad(skb, pad_len)) 6630 return true; 6631 __skb_put(skb, pad_len); 6632 } 6633 6634 return false; 6635 } 6636 6637 /** 6638 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 6639 * @rx_ring: rx descriptor ring packet is being transacted on 6640 * @rx_desc: pointer to the EOP Rx descriptor 6641 * @skb: pointer to current skb being populated 6642 * 6643 * This function checks the ring, descriptor, and packet information in 6644 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 6645 * other fields within the skb. 6646 **/ 6647 static void igb_process_skb_fields(struct igb_ring *rx_ring, 6648 union e1000_adv_rx_desc *rx_desc, 6649 struct sk_buff *skb) 6650 { 6651 struct net_device *dev = rx_ring->netdev; 6652 6653 igb_rx_hash(rx_ring, rx_desc, skb); 6654 6655 igb_rx_checksum(rx_ring, rx_desc, skb); 6656 6657 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb); 6658 6659 if ((dev->features & NETIF_F_HW_VLAN_RX) && 6660 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 6661 u16 vid; 6662 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 6663 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 6664 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 6665 else 6666 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 6667 6668 __vlan_hwaccel_put_tag(skb, vid); 6669 } 6670 6671 skb_record_rx_queue(skb, rx_ring->queue_index); 6672 6673 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 6674 } 6675 6676 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 6677 { 6678 struct igb_ring *rx_ring = q_vector->rx.ring; 6679 struct sk_buff *skb = rx_ring->skb; 6680 unsigned int total_bytes = 0, total_packets = 0; 6681 u16 cleaned_count = igb_desc_unused(rx_ring); 6682 6683 do { 6684 union e1000_adv_rx_desc *rx_desc; 6685 6686 /* return some buffers to hardware, one at a time is too slow */ 6687 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 6688 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6689 cleaned_count = 0; 6690 } 6691 6692 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 6693 6694 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) 6695 break; 6696 6697 /* This memory barrier is needed to keep us from reading 6698 * any other fields out of the rx_desc until we know the 6699 * RXD_STAT_DD bit is set 6700 */ 6701 rmb(); 6702 6703 /* retrieve a buffer from the ring */ 6704 if (ring_uses_build_skb(rx_ring)) 6705 skb = igb_build_rx_buffer(rx_ring, rx_desc); 6706 else 6707 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); 6708 6709 /* exit if we failed to retrieve a buffer */ 6710 if (!skb) 6711 break; 6712 6713 cleaned_count++; 6714 6715 /* fetch next buffer in frame if non-eop */ 6716 if (igb_is_non_eop(rx_ring, rx_desc)) 6717 continue; 6718 6719 /* verify the packet layout is correct */ 6720 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 6721 skb = NULL; 6722 continue; 6723 } 6724 6725 /* probably a little skewed due to removing CRC */ 6726 total_bytes += skb->len; 6727 6728 /* populate checksum, timestamp, VLAN, and protocol */ 6729 igb_process_skb_fields(rx_ring, rx_desc, skb); 6730 6731 napi_gro_receive(&q_vector->napi, skb); 6732 6733 /* reset skb pointer */ 6734 skb = NULL; 6735 6736 /* update budget accounting */ 6737 total_packets++; 6738 } while (likely(total_packets < budget)); 6739 6740 /* place incomplete frames back on ring for completion */ 6741 rx_ring->skb = skb; 6742 6743 u64_stats_update_begin(&rx_ring->rx_syncp); 6744 rx_ring->rx_stats.packets += total_packets; 6745 rx_ring->rx_stats.bytes += total_bytes; 6746 u64_stats_update_end(&rx_ring->rx_syncp); 6747 q_vector->rx.total_packets += total_packets; 6748 q_vector->rx.total_bytes += total_bytes; 6749 6750 if (cleaned_count) 6751 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6752 6753 return (total_packets < budget); 6754 } 6755 6756 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 6757 struct igb_rx_buffer *bi) 6758 { 6759 struct page *page = bi->page; 6760 dma_addr_t dma; 6761 6762 /* since we are recycling buffers we should seldom need to alloc */ 6763 if (likely(page)) 6764 return true; 6765 6766 /* alloc new page for storage */ 6767 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL); 6768 if (unlikely(!page)) { 6769 rx_ring->rx_stats.alloc_failed++; 6770 return false; 6771 } 6772 6773 /* map page for use */ 6774 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 6775 6776 /* 6777 * if mapping failed free memory back to system since 6778 * there isn't much point in holding memory we can't use 6779 */ 6780 if (dma_mapping_error(rx_ring->dev, dma)) { 6781 __free_page(page); 6782 6783 rx_ring->rx_stats.alloc_failed++; 6784 return false; 6785 } 6786 6787 bi->dma = dma; 6788 bi->page = page; 6789 bi->page_offset = 0; 6790 6791 return true; 6792 } 6793 6794 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring) 6795 { 6796 if (ring_uses_build_skb(rx_ring)) 6797 return NET_SKB_PAD + NET_IP_ALIGN; 6798 else 6799 return 0; 6800 } 6801 6802 /** 6803 * igb_alloc_rx_buffers - Replace used receive buffers; packet split 6804 * @adapter: address of board private structure 6805 **/ 6806 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 6807 { 6808 union e1000_adv_rx_desc *rx_desc; 6809 struct igb_rx_buffer *bi; 6810 u16 i = rx_ring->next_to_use; 6811 6812 /* nothing to do */ 6813 if (!cleaned_count) 6814 return; 6815 6816 rx_desc = IGB_RX_DESC(rx_ring, i); 6817 bi = &rx_ring->rx_buffer_info[i]; 6818 i -= rx_ring->count; 6819 6820 do { 6821 if (!igb_alloc_mapped_page(rx_ring, bi)) 6822 break; 6823 6824 /* 6825 * Refresh the desc even if buffer_addrs didn't change 6826 * because each write-back erases this info. 6827 */ 6828 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + 6829 bi->page_offset + 6830 igb_rx_offset(rx_ring)); 6831 6832 rx_desc++; 6833 bi++; 6834 i++; 6835 if (unlikely(!i)) { 6836 rx_desc = IGB_RX_DESC(rx_ring, 0); 6837 bi = rx_ring->rx_buffer_info; 6838 i -= rx_ring->count; 6839 } 6840 6841 /* clear the hdr_addr for the next_to_use descriptor */ 6842 rx_desc->read.hdr_addr = 0; 6843 6844 cleaned_count--; 6845 } while (cleaned_count); 6846 6847 i += rx_ring->count; 6848 6849 if (rx_ring->next_to_use != i) { 6850 /* record the next descriptor to use */ 6851 rx_ring->next_to_use = i; 6852 6853 /* update next to alloc since we have filled the ring */ 6854 rx_ring->next_to_alloc = i; 6855 6856 /* 6857 * Force memory writes to complete before letting h/w 6858 * know there are new descriptors to fetch. (Only 6859 * applicable for weak-ordered memory model archs, 6860 * such as IA-64). 6861 */ 6862 wmb(); 6863 writel(i, rx_ring->tail); 6864 } 6865 } 6866 6867 /** 6868 * igb_mii_ioctl - 6869 * @netdev: 6870 * @ifreq: 6871 * @cmd: 6872 **/ 6873 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6874 { 6875 struct igb_adapter *adapter = netdev_priv(netdev); 6876 struct mii_ioctl_data *data = if_mii(ifr); 6877 6878 if (adapter->hw.phy.media_type != e1000_media_type_copper) 6879 return -EOPNOTSUPP; 6880 6881 switch (cmd) { 6882 case SIOCGMIIPHY: 6883 data->phy_id = adapter->hw.phy.addr; 6884 break; 6885 case SIOCGMIIREG: 6886 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 6887 &data->val_out)) 6888 return -EIO; 6889 break; 6890 case SIOCSMIIREG: 6891 default: 6892 return -EOPNOTSUPP; 6893 } 6894 return 0; 6895 } 6896 6897 /** 6898 * igb_ioctl - 6899 * @netdev: 6900 * @ifreq: 6901 * @cmd: 6902 **/ 6903 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6904 { 6905 switch (cmd) { 6906 case SIOCGMIIPHY: 6907 case SIOCGMIIREG: 6908 case SIOCSMIIREG: 6909 return igb_mii_ioctl(netdev, ifr, cmd); 6910 case SIOCSHWTSTAMP: 6911 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd); 6912 default: 6913 return -EOPNOTSUPP; 6914 } 6915 } 6916 6917 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 6918 { 6919 struct igb_adapter *adapter = hw->back; 6920 6921 if (pcie_capability_read_word(adapter->pdev, reg, value)) 6922 return -E1000_ERR_CONFIG; 6923 6924 return 0; 6925 } 6926 6927 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 6928 { 6929 struct igb_adapter *adapter = hw->back; 6930 6931 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 6932 return -E1000_ERR_CONFIG; 6933 6934 return 0; 6935 } 6936 6937 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 6938 { 6939 struct igb_adapter *adapter = netdev_priv(netdev); 6940 struct e1000_hw *hw = &adapter->hw; 6941 u32 ctrl, rctl; 6942 bool enable = !!(features & NETIF_F_HW_VLAN_RX); 6943 6944 if (enable) { 6945 /* enable VLAN tag insert/strip */ 6946 ctrl = rd32(E1000_CTRL); 6947 ctrl |= E1000_CTRL_VME; 6948 wr32(E1000_CTRL, ctrl); 6949 6950 /* Disable CFI check */ 6951 rctl = rd32(E1000_RCTL); 6952 rctl &= ~E1000_RCTL_CFIEN; 6953 wr32(E1000_RCTL, rctl); 6954 } else { 6955 /* disable VLAN tag insert/strip */ 6956 ctrl = rd32(E1000_CTRL); 6957 ctrl &= ~E1000_CTRL_VME; 6958 wr32(E1000_CTRL, ctrl); 6959 } 6960 6961 igb_rlpml_set(adapter); 6962 } 6963 6964 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 6965 { 6966 struct igb_adapter *adapter = netdev_priv(netdev); 6967 struct e1000_hw *hw = &adapter->hw; 6968 int pf_id = adapter->vfs_allocated_count; 6969 6970 /* attempt to add filter to vlvf array */ 6971 igb_vlvf_set(adapter, vid, true, pf_id); 6972 6973 /* add the filter since PF can receive vlans w/o entry in vlvf */ 6974 igb_vfta_set(hw, vid, true); 6975 6976 set_bit(vid, adapter->active_vlans); 6977 6978 return 0; 6979 } 6980 6981 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 6982 { 6983 struct igb_adapter *adapter = netdev_priv(netdev); 6984 struct e1000_hw *hw = &adapter->hw; 6985 int pf_id = adapter->vfs_allocated_count; 6986 s32 err; 6987 6988 /* remove vlan from VLVF table array */ 6989 err = igb_vlvf_set(adapter, vid, false, pf_id); 6990 6991 /* if vid was not present in VLVF just remove it from table */ 6992 if (err) 6993 igb_vfta_set(hw, vid, false); 6994 6995 clear_bit(vid, adapter->active_vlans); 6996 6997 return 0; 6998 } 6999 7000 static void igb_restore_vlan(struct igb_adapter *adapter) 7001 { 7002 u16 vid; 7003 7004 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 7005 7006 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 7007 igb_vlan_rx_add_vid(adapter->netdev, vid); 7008 } 7009 7010 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 7011 { 7012 struct pci_dev *pdev = adapter->pdev; 7013 struct e1000_mac_info *mac = &adapter->hw.mac; 7014 7015 mac->autoneg = 0; 7016 7017 /* Make sure dplx is at most 1 bit and lsb of speed is not set 7018 * for the switch() below to work */ 7019 if ((spd & 1) || (dplx & ~1)) 7020 goto err_inval; 7021 7022 /* Fiber NIC's only allow 1000 Gbps Full duplex */ 7023 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) && 7024 spd != SPEED_1000 && 7025 dplx != DUPLEX_FULL) 7026 goto err_inval; 7027 7028 switch (spd + dplx) { 7029 case SPEED_10 + DUPLEX_HALF: 7030 mac->forced_speed_duplex = ADVERTISE_10_HALF; 7031 break; 7032 case SPEED_10 + DUPLEX_FULL: 7033 mac->forced_speed_duplex = ADVERTISE_10_FULL; 7034 break; 7035 case SPEED_100 + DUPLEX_HALF: 7036 mac->forced_speed_duplex = ADVERTISE_100_HALF; 7037 break; 7038 case SPEED_100 + DUPLEX_FULL: 7039 mac->forced_speed_duplex = ADVERTISE_100_FULL; 7040 break; 7041 case SPEED_1000 + DUPLEX_FULL: 7042 mac->autoneg = 1; 7043 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 7044 break; 7045 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 7046 default: 7047 goto err_inval; 7048 } 7049 7050 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 7051 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7052 7053 return 0; 7054 7055 err_inval: 7056 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 7057 return -EINVAL; 7058 } 7059 7060 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 7061 bool runtime) 7062 { 7063 struct net_device *netdev = pci_get_drvdata(pdev); 7064 struct igb_adapter *adapter = netdev_priv(netdev); 7065 struct e1000_hw *hw = &adapter->hw; 7066 u32 ctrl, rctl, status; 7067 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 7068 #ifdef CONFIG_PM 7069 int retval = 0; 7070 #endif 7071 7072 netif_device_detach(netdev); 7073 7074 if (netif_running(netdev)) 7075 __igb_close(netdev, true); 7076 7077 igb_clear_interrupt_scheme(adapter); 7078 7079 #ifdef CONFIG_PM 7080 retval = pci_save_state(pdev); 7081 if (retval) 7082 return retval; 7083 #endif 7084 7085 status = rd32(E1000_STATUS); 7086 if (status & E1000_STATUS_LU) 7087 wufc &= ~E1000_WUFC_LNKC; 7088 7089 if (wufc) { 7090 igb_setup_rctl(adapter); 7091 igb_set_rx_mode(netdev); 7092 7093 /* turn on all-multi mode if wake on multicast is enabled */ 7094 if (wufc & E1000_WUFC_MC) { 7095 rctl = rd32(E1000_RCTL); 7096 rctl |= E1000_RCTL_MPE; 7097 wr32(E1000_RCTL, rctl); 7098 } 7099 7100 ctrl = rd32(E1000_CTRL); 7101 /* advertise wake from D3Cold */ 7102 #define E1000_CTRL_ADVD3WUC 0x00100000 7103 /* phy power management enable */ 7104 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 7105 ctrl |= E1000_CTRL_ADVD3WUC; 7106 wr32(E1000_CTRL, ctrl); 7107 7108 /* Allow time for pending master requests to run */ 7109 igb_disable_pcie_master(hw); 7110 7111 wr32(E1000_WUC, E1000_WUC_PME_EN); 7112 wr32(E1000_WUFC, wufc); 7113 } else { 7114 wr32(E1000_WUC, 0); 7115 wr32(E1000_WUFC, 0); 7116 } 7117 7118 *enable_wake = wufc || adapter->en_mng_pt; 7119 if (!*enable_wake) 7120 igb_power_down_link(adapter); 7121 else 7122 igb_power_up_link(adapter); 7123 7124 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7125 * would have already happened in close and is redundant. */ 7126 igb_release_hw_control(adapter); 7127 7128 pci_disable_device(pdev); 7129 7130 return 0; 7131 } 7132 7133 #ifdef CONFIG_PM 7134 #ifdef CONFIG_PM_SLEEP 7135 static int igb_suspend(struct device *dev) 7136 { 7137 int retval; 7138 bool wake; 7139 struct pci_dev *pdev = to_pci_dev(dev); 7140 7141 retval = __igb_shutdown(pdev, &wake, 0); 7142 if (retval) 7143 return retval; 7144 7145 if (wake) { 7146 pci_prepare_to_sleep(pdev); 7147 } else { 7148 pci_wake_from_d3(pdev, false); 7149 pci_set_power_state(pdev, PCI_D3hot); 7150 } 7151 7152 return 0; 7153 } 7154 #endif /* CONFIG_PM_SLEEP */ 7155 7156 static int igb_resume(struct device *dev) 7157 { 7158 struct pci_dev *pdev = to_pci_dev(dev); 7159 struct net_device *netdev = pci_get_drvdata(pdev); 7160 struct igb_adapter *adapter = netdev_priv(netdev); 7161 struct e1000_hw *hw = &adapter->hw; 7162 u32 err; 7163 7164 pci_set_power_state(pdev, PCI_D0); 7165 pci_restore_state(pdev); 7166 pci_save_state(pdev); 7167 7168 err = pci_enable_device_mem(pdev); 7169 if (err) { 7170 dev_err(&pdev->dev, 7171 "igb: Cannot enable PCI device from suspend\n"); 7172 return err; 7173 } 7174 pci_set_master(pdev); 7175 7176 pci_enable_wake(pdev, PCI_D3hot, 0); 7177 pci_enable_wake(pdev, PCI_D3cold, 0); 7178 7179 if (igb_init_interrupt_scheme(adapter, true)) { 7180 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7181 return -ENOMEM; 7182 } 7183 7184 igb_reset(adapter); 7185 7186 /* let the f/w know that the h/w is now under the control of the 7187 * driver. */ 7188 igb_get_hw_control(adapter); 7189 7190 wr32(E1000_WUS, ~0); 7191 7192 if (netdev->flags & IFF_UP) { 7193 rtnl_lock(); 7194 err = __igb_open(netdev, true); 7195 rtnl_unlock(); 7196 if (err) 7197 return err; 7198 } 7199 7200 netif_device_attach(netdev); 7201 return 0; 7202 } 7203 7204 #ifdef CONFIG_PM_RUNTIME 7205 static int igb_runtime_idle(struct device *dev) 7206 { 7207 struct pci_dev *pdev = to_pci_dev(dev); 7208 struct net_device *netdev = pci_get_drvdata(pdev); 7209 struct igb_adapter *adapter = netdev_priv(netdev); 7210 7211 if (!igb_has_link(adapter)) 7212 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7213 7214 return -EBUSY; 7215 } 7216 7217 static int igb_runtime_suspend(struct device *dev) 7218 { 7219 struct pci_dev *pdev = to_pci_dev(dev); 7220 int retval; 7221 bool wake; 7222 7223 retval = __igb_shutdown(pdev, &wake, 1); 7224 if (retval) 7225 return retval; 7226 7227 if (wake) { 7228 pci_prepare_to_sleep(pdev); 7229 } else { 7230 pci_wake_from_d3(pdev, false); 7231 pci_set_power_state(pdev, PCI_D3hot); 7232 } 7233 7234 return 0; 7235 } 7236 7237 static int igb_runtime_resume(struct device *dev) 7238 { 7239 return igb_resume(dev); 7240 } 7241 #endif /* CONFIG_PM_RUNTIME */ 7242 #endif 7243 7244 static void igb_shutdown(struct pci_dev *pdev) 7245 { 7246 bool wake; 7247 7248 __igb_shutdown(pdev, &wake, 0); 7249 7250 if (system_state == SYSTEM_POWER_OFF) { 7251 pci_wake_from_d3(pdev, wake); 7252 pci_set_power_state(pdev, PCI_D3hot); 7253 } 7254 } 7255 7256 #ifdef CONFIG_PCI_IOV 7257 static int igb_sriov_reinit(struct pci_dev *dev) 7258 { 7259 struct net_device *netdev = pci_get_drvdata(dev); 7260 struct igb_adapter *adapter = netdev_priv(netdev); 7261 struct pci_dev *pdev = adapter->pdev; 7262 7263 rtnl_lock(); 7264 7265 if (netif_running(netdev)) 7266 igb_close(netdev); 7267 7268 igb_clear_interrupt_scheme(adapter); 7269 7270 igb_init_queue_configuration(adapter); 7271 7272 if (igb_init_interrupt_scheme(adapter, true)) { 7273 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7274 return -ENOMEM; 7275 } 7276 7277 if (netif_running(netdev)) 7278 igb_open(netdev); 7279 7280 rtnl_unlock(); 7281 7282 return 0; 7283 } 7284 7285 static int igb_pci_disable_sriov(struct pci_dev *dev) 7286 { 7287 int err = igb_disable_sriov(dev); 7288 7289 if (!err) 7290 err = igb_sriov_reinit(dev); 7291 7292 return err; 7293 } 7294 7295 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 7296 { 7297 int err = igb_enable_sriov(dev, num_vfs); 7298 7299 if (err) 7300 goto out; 7301 7302 err = igb_sriov_reinit(dev); 7303 if (!err) 7304 return num_vfs; 7305 7306 out: 7307 return err; 7308 } 7309 7310 #endif 7311 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 7312 { 7313 #ifdef CONFIG_PCI_IOV 7314 if (num_vfs == 0) 7315 return igb_pci_disable_sriov(dev); 7316 else 7317 return igb_pci_enable_sriov(dev, num_vfs); 7318 #endif 7319 return 0; 7320 } 7321 7322 #ifdef CONFIG_NET_POLL_CONTROLLER 7323 /* 7324 * Polling 'interrupt' - used by things like netconsole to send skbs 7325 * without having to re-enable interrupts. It's not called while 7326 * the interrupt routine is executing. 7327 */ 7328 static void igb_netpoll(struct net_device *netdev) 7329 { 7330 struct igb_adapter *adapter = netdev_priv(netdev); 7331 struct e1000_hw *hw = &adapter->hw; 7332 struct igb_q_vector *q_vector; 7333 int i; 7334 7335 for (i = 0; i < adapter->num_q_vectors; i++) { 7336 q_vector = adapter->q_vector[i]; 7337 if (adapter->msix_entries) 7338 wr32(E1000_EIMC, q_vector->eims_value); 7339 else 7340 igb_irq_disable(adapter); 7341 napi_schedule(&q_vector->napi); 7342 } 7343 } 7344 #endif /* CONFIG_NET_POLL_CONTROLLER */ 7345 7346 /** 7347 * igb_io_error_detected - called when PCI error is detected 7348 * @pdev: Pointer to PCI device 7349 * @state: The current pci connection state 7350 * 7351 * This function is called after a PCI bus error affecting 7352 * this device has been detected. 7353 */ 7354 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 7355 pci_channel_state_t state) 7356 { 7357 struct net_device *netdev = pci_get_drvdata(pdev); 7358 struct igb_adapter *adapter = netdev_priv(netdev); 7359 7360 netif_device_detach(netdev); 7361 7362 if (state == pci_channel_io_perm_failure) 7363 return PCI_ERS_RESULT_DISCONNECT; 7364 7365 if (netif_running(netdev)) 7366 igb_down(adapter); 7367 pci_disable_device(pdev); 7368 7369 /* Request a slot slot reset. */ 7370 return PCI_ERS_RESULT_NEED_RESET; 7371 } 7372 7373 /** 7374 * igb_io_slot_reset - called after the pci bus has been reset. 7375 * @pdev: Pointer to PCI device 7376 * 7377 * Restart the card from scratch, as if from a cold-boot. Implementation 7378 * resembles the first-half of the igb_resume routine. 7379 */ 7380 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 7381 { 7382 struct net_device *netdev = pci_get_drvdata(pdev); 7383 struct igb_adapter *adapter = netdev_priv(netdev); 7384 struct e1000_hw *hw = &adapter->hw; 7385 pci_ers_result_t result; 7386 int err; 7387 7388 if (pci_enable_device_mem(pdev)) { 7389 dev_err(&pdev->dev, 7390 "Cannot re-enable PCI device after reset.\n"); 7391 result = PCI_ERS_RESULT_DISCONNECT; 7392 } else { 7393 pci_set_master(pdev); 7394 pci_restore_state(pdev); 7395 pci_save_state(pdev); 7396 7397 pci_enable_wake(pdev, PCI_D3hot, 0); 7398 pci_enable_wake(pdev, PCI_D3cold, 0); 7399 7400 igb_reset(adapter); 7401 wr32(E1000_WUS, ~0); 7402 result = PCI_ERS_RESULT_RECOVERED; 7403 } 7404 7405 err = pci_cleanup_aer_uncorrect_error_status(pdev); 7406 if (err) { 7407 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " 7408 "failed 0x%0x\n", err); 7409 /* non-fatal, continue */ 7410 } 7411 7412 return result; 7413 } 7414 7415 /** 7416 * igb_io_resume - called when traffic can start flowing again. 7417 * @pdev: Pointer to PCI device 7418 * 7419 * This callback is called when the error recovery driver tells us that 7420 * its OK to resume normal operation. Implementation resembles the 7421 * second-half of the igb_resume routine. 7422 */ 7423 static void igb_io_resume(struct pci_dev *pdev) 7424 { 7425 struct net_device *netdev = pci_get_drvdata(pdev); 7426 struct igb_adapter *adapter = netdev_priv(netdev); 7427 7428 if (netif_running(netdev)) { 7429 if (igb_up(adapter)) { 7430 dev_err(&pdev->dev, "igb_up failed after reset\n"); 7431 return; 7432 } 7433 } 7434 7435 netif_device_attach(netdev); 7436 7437 /* let the f/w know that the h/w is now under the control of the 7438 * driver. */ 7439 igb_get_hw_control(adapter); 7440 } 7441 7442 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, 7443 u8 qsel) 7444 { 7445 u32 rar_low, rar_high; 7446 struct e1000_hw *hw = &adapter->hw; 7447 7448 /* HW expects these in little endian so we reverse the byte order 7449 * from network order (big endian) to little endian 7450 */ 7451 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 7452 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 7453 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 7454 7455 /* Indicate to hardware the Address is Valid. */ 7456 rar_high |= E1000_RAH_AV; 7457 7458 if (hw->mac.type == e1000_82575) 7459 rar_high |= E1000_RAH_POOL_1 * qsel; 7460 else 7461 rar_high |= E1000_RAH_POOL_1 << qsel; 7462 7463 wr32(E1000_RAL(index), rar_low); 7464 wrfl(); 7465 wr32(E1000_RAH(index), rar_high); 7466 wrfl(); 7467 } 7468 7469 static int igb_set_vf_mac(struct igb_adapter *adapter, 7470 int vf, unsigned char *mac_addr) 7471 { 7472 struct e1000_hw *hw = &adapter->hw; 7473 /* VF MAC addresses start at end of receive addresses and moves 7474 * torwards the first, as a result a collision should not be possible */ 7475 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 7476 7477 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); 7478 7479 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); 7480 7481 return 0; 7482 } 7483 7484 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 7485 { 7486 struct igb_adapter *adapter = netdev_priv(netdev); 7487 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) 7488 return -EINVAL; 7489 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 7490 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); 7491 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this" 7492 " change effective."); 7493 if (test_bit(__IGB_DOWN, &adapter->state)) { 7494 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set," 7495 " but the PF device is not up.\n"); 7496 dev_warn(&adapter->pdev->dev, "Bring the PF device up before" 7497 " attempting to use the VF device.\n"); 7498 } 7499 return igb_set_vf_mac(adapter, vf, mac); 7500 } 7501 7502 static int igb_link_mbps(int internal_link_speed) 7503 { 7504 switch (internal_link_speed) { 7505 case SPEED_100: 7506 return 100; 7507 case SPEED_1000: 7508 return 1000; 7509 default: 7510 return 0; 7511 } 7512 } 7513 7514 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 7515 int link_speed) 7516 { 7517 int rf_dec, rf_int; 7518 u32 bcnrc_val; 7519 7520 if (tx_rate != 0) { 7521 /* Calculate the rate factor values to set */ 7522 rf_int = link_speed / tx_rate; 7523 rf_dec = (link_speed - (rf_int * tx_rate)); 7524 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate; 7525 7526 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 7527 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) & 7528 E1000_RTTBCNRC_RF_INT_MASK); 7529 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 7530 } else { 7531 bcnrc_val = 0; 7532 } 7533 7534 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 7535 /* 7536 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 7537 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 7538 */ 7539 wr32(E1000_RTTBCNRM, 0x14); 7540 wr32(E1000_RTTBCNRC, bcnrc_val); 7541 } 7542 7543 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 7544 { 7545 int actual_link_speed, i; 7546 bool reset_rate = false; 7547 7548 /* VF TX rate limit was not set or not supported */ 7549 if ((adapter->vf_rate_link_speed == 0) || 7550 (adapter->hw.mac.type != e1000_82576)) 7551 return; 7552 7553 actual_link_speed = igb_link_mbps(adapter->link_speed); 7554 if (actual_link_speed != adapter->vf_rate_link_speed) { 7555 reset_rate = true; 7556 adapter->vf_rate_link_speed = 0; 7557 dev_info(&adapter->pdev->dev, 7558 "Link speed has been changed. VF Transmit " 7559 "rate is disabled\n"); 7560 } 7561 7562 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7563 if (reset_rate) 7564 adapter->vf_data[i].tx_rate = 0; 7565 7566 igb_set_vf_rate_limit(&adapter->hw, i, 7567 adapter->vf_data[i].tx_rate, 7568 actual_link_speed); 7569 } 7570 } 7571 7572 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) 7573 { 7574 struct igb_adapter *adapter = netdev_priv(netdev); 7575 struct e1000_hw *hw = &adapter->hw; 7576 int actual_link_speed; 7577 7578 if (hw->mac.type != e1000_82576) 7579 return -EOPNOTSUPP; 7580 7581 actual_link_speed = igb_link_mbps(adapter->link_speed); 7582 if ((vf >= adapter->vfs_allocated_count) || 7583 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 7584 (tx_rate < 0) || (tx_rate > actual_link_speed)) 7585 return -EINVAL; 7586 7587 adapter->vf_rate_link_speed = actual_link_speed; 7588 adapter->vf_data[vf].tx_rate = (u16)tx_rate; 7589 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); 7590 7591 return 0; 7592 } 7593 7594 static int igb_ndo_get_vf_config(struct net_device *netdev, 7595 int vf, struct ifla_vf_info *ivi) 7596 { 7597 struct igb_adapter *adapter = netdev_priv(netdev); 7598 if (vf >= adapter->vfs_allocated_count) 7599 return -EINVAL; 7600 ivi->vf = vf; 7601 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 7602 ivi->tx_rate = adapter->vf_data[vf].tx_rate; 7603 ivi->vlan = adapter->vf_data[vf].pf_vlan; 7604 ivi->qos = adapter->vf_data[vf].pf_qos; 7605 return 0; 7606 } 7607 7608 static void igb_vmm_control(struct igb_adapter *adapter) 7609 { 7610 struct e1000_hw *hw = &adapter->hw; 7611 u32 reg; 7612 7613 switch (hw->mac.type) { 7614 case e1000_82575: 7615 case e1000_i210: 7616 case e1000_i211: 7617 default: 7618 /* replication is not supported for 82575 */ 7619 return; 7620 case e1000_82576: 7621 /* notify HW that the MAC is adding vlan tags */ 7622 reg = rd32(E1000_DTXCTL); 7623 reg |= E1000_DTXCTL_VLAN_ADDED; 7624 wr32(E1000_DTXCTL, reg); 7625 case e1000_82580: 7626 /* enable replication vlan tag stripping */ 7627 reg = rd32(E1000_RPLOLR); 7628 reg |= E1000_RPLOLR_STRVLAN; 7629 wr32(E1000_RPLOLR, reg); 7630 case e1000_i350: 7631 /* none of the above registers are supported by i350 */ 7632 break; 7633 } 7634 7635 if (adapter->vfs_allocated_count) { 7636 igb_vmdq_set_loopback_pf(hw, true); 7637 igb_vmdq_set_replication_pf(hw, true); 7638 igb_vmdq_set_anti_spoofing_pf(hw, true, 7639 adapter->vfs_allocated_count); 7640 } else { 7641 igb_vmdq_set_loopback_pf(hw, false); 7642 igb_vmdq_set_replication_pf(hw, false); 7643 } 7644 } 7645 7646 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 7647 { 7648 struct e1000_hw *hw = &adapter->hw; 7649 u32 dmac_thr; 7650 u16 hwm; 7651 7652 if (hw->mac.type > e1000_82580) { 7653 if (adapter->flags & IGB_FLAG_DMAC) { 7654 u32 reg; 7655 7656 /* force threshold to 0. */ 7657 wr32(E1000_DMCTXTH, 0); 7658 7659 /* 7660 * DMA Coalescing high water mark needs to be greater 7661 * than the Rx threshold. Set hwm to PBA - max frame 7662 * size in 16B units, capping it at PBA - 6KB. 7663 */ 7664 hwm = 64 * pba - adapter->max_frame_size / 16; 7665 if (hwm < 64 * (pba - 6)) 7666 hwm = 64 * (pba - 6); 7667 reg = rd32(E1000_FCRTC); 7668 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 7669 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 7670 & E1000_FCRTC_RTH_COAL_MASK); 7671 wr32(E1000_FCRTC, reg); 7672 7673 /* 7674 * Set the DMA Coalescing Rx threshold to PBA - 2 * max 7675 * frame size, capping it at PBA - 10KB. 7676 */ 7677 dmac_thr = pba - adapter->max_frame_size / 512; 7678 if (dmac_thr < pba - 10) 7679 dmac_thr = pba - 10; 7680 reg = rd32(E1000_DMACR); 7681 reg &= ~E1000_DMACR_DMACTHR_MASK; 7682 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 7683 & E1000_DMACR_DMACTHR_MASK); 7684 7685 /* transition to L0x or L1 if available..*/ 7686 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 7687 7688 /* watchdog timer= +-1000 usec in 32usec intervals */ 7689 reg |= (1000 >> 5); 7690 7691 /* Disable BMC-to-OS Watchdog Enable */ 7692 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 7693 wr32(E1000_DMACR, reg); 7694 7695 /* 7696 * no lower threshold to disable 7697 * coalescing(smart fifb)-UTRESH=0 7698 */ 7699 wr32(E1000_DMCRTRH, 0); 7700 7701 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 7702 7703 wr32(E1000_DMCTLX, reg); 7704 7705 /* 7706 * free space in tx packet buffer to wake from 7707 * DMA coal 7708 */ 7709 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 7710 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 7711 7712 /* 7713 * make low power state decision controlled 7714 * by DMA coal 7715 */ 7716 reg = rd32(E1000_PCIEMISC); 7717 reg &= ~E1000_PCIEMISC_LX_DECISION; 7718 wr32(E1000_PCIEMISC, reg); 7719 } /* endif adapter->dmac is not disabled */ 7720 } else if (hw->mac.type == e1000_82580) { 7721 u32 reg = rd32(E1000_PCIEMISC); 7722 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 7723 wr32(E1000_DMACR, 0); 7724 } 7725 } 7726 7727 static DEFINE_SPINLOCK(i2c_clients_lock); 7728 7729 /* igb_get_i2c_client - returns matching client 7730 * in adapters's client list. 7731 * @adapter: adapter struct 7732 * @dev_addr: device address of i2c needed. 7733 */ 7734 static struct i2c_client * 7735 igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr) 7736 { 7737 ulong flags; 7738 struct igb_i2c_client_list *client_list; 7739 struct i2c_client *client = NULL; 7740 struct i2c_board_info client_info = { 7741 I2C_BOARD_INFO("igb", 0x00), 7742 }; 7743 7744 spin_lock_irqsave(&i2c_clients_lock, flags); 7745 client_list = adapter->i2c_clients; 7746 7747 /* See if we already have an i2c_client */ 7748 while (client_list) { 7749 if (client_list->client->addr == (dev_addr >> 1)) { 7750 client = client_list->client; 7751 goto exit; 7752 } else { 7753 client_list = client_list->next; 7754 } 7755 } 7756 7757 /* no client_list found, create a new one */ 7758 client_list = kzalloc(sizeof(*client_list), GFP_ATOMIC); 7759 if (client_list == NULL) 7760 goto exit; 7761 7762 /* dev_addr passed to us is left-shifted by 1 bit 7763 * i2c_new_device call expects it to be flush to the right. 7764 */ 7765 client_info.addr = dev_addr >> 1; 7766 client_info.platform_data = adapter; 7767 client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info); 7768 if (client_list->client == NULL) { 7769 dev_info(&adapter->pdev->dev, 7770 "Failed to create new i2c device..\n"); 7771 goto err_no_client; 7772 } 7773 7774 /* insert new client at head of list */ 7775 client_list->next = adapter->i2c_clients; 7776 adapter->i2c_clients = client_list; 7777 7778 client = client_list->client; 7779 goto exit; 7780 7781 err_no_client: 7782 kfree(client_list); 7783 exit: 7784 spin_unlock_irqrestore(&i2c_clients_lock, flags); 7785 return client; 7786 } 7787 7788 /* igb_read_i2c_byte - Reads 8 bit word over I2C 7789 * @hw: pointer to hardware structure 7790 * @byte_offset: byte offset to read 7791 * @dev_addr: device address 7792 * @data: value read 7793 * 7794 * Performs byte read operation over I2C interface at 7795 * a specified device address. 7796 */ 7797 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 7798 u8 dev_addr, u8 *data) 7799 { 7800 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 7801 struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr); 7802 s32 status; 7803 u16 swfw_mask = 0; 7804 7805 if (!this_client) 7806 return E1000_ERR_I2C; 7807 7808 swfw_mask = E1000_SWFW_PHY0_SM; 7809 7810 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) 7811 != E1000_SUCCESS) 7812 return E1000_ERR_SWFW_SYNC; 7813 7814 status = i2c_smbus_read_byte_data(this_client, byte_offset); 7815 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 7816 7817 if (status < 0) 7818 return E1000_ERR_I2C; 7819 else { 7820 *data = status; 7821 return E1000_SUCCESS; 7822 } 7823 } 7824 7825 /* igb_write_i2c_byte - Writes 8 bit word over I2C 7826 * @hw: pointer to hardware structure 7827 * @byte_offset: byte offset to write 7828 * @dev_addr: device address 7829 * @data: value to write 7830 * 7831 * Performs byte write operation over I2C interface at 7832 * a specified device address. 7833 */ 7834 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 7835 u8 dev_addr, u8 data) 7836 { 7837 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 7838 struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr); 7839 s32 status; 7840 u16 swfw_mask = E1000_SWFW_PHY0_SM; 7841 7842 if (!this_client) 7843 return E1000_ERR_I2C; 7844 7845 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) 7846 return E1000_ERR_SWFW_SYNC; 7847 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 7848 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 7849 7850 if (status) 7851 return E1000_ERR_I2C; 7852 else 7853 return E1000_SUCCESS; 7854 7855 } 7856 /* igb_main.c */ 7857