1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58 
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 				"Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 				"Copyright (c) 2007-2014 Intel Corporation.";
70 
71 static const struct e1000_info *igb_info_tbl[] = {
72 	[board_82575] = &e1000_82575_info,
73 };
74 
75 static const struct pci_device_id igb_pci_tbl[] = {
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 	/* required last entry */
112 	{0, }
113 };
114 
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116 
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 					  struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 			  netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 			       int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 				   bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183 
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 static int igb_runtime_suspend(struct device *dev);
190 static int igb_runtime_resume(struct device *dev);
191 static int igb_runtime_idle(struct device *dev);
192 static const struct dev_pm_ops igb_pm_ops = {
193 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195 			igb_runtime_idle)
196 };
197 #endif
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 	.notifier_call	= igb_notify_dca,
204 	.next		= NULL,
205 	.priority	= 0
206 };
207 #endif
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void igb_netpoll(struct net_device *);
211 #endif
212 #ifdef CONFIG_PCI_IOV
213 static unsigned int max_vfs;
214 module_param(max_vfs, uint, 0);
215 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216 #endif /* CONFIG_PCI_IOV */
217 
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 		     pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222 
223 static const struct pci_error_handlers igb_err_handler = {
224 	.error_detected = igb_io_error_detected,
225 	.slot_reset = igb_io_slot_reset,
226 	.resume = igb_io_resume,
227 };
228 
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230 
231 static struct pci_driver igb_driver = {
232 	.name     = igb_driver_name,
233 	.id_table = igb_pci_tbl,
234 	.probe    = igb_probe,
235 	.remove   = igb_remove,
236 #ifdef CONFIG_PM
237 	.driver.pm = &igb_pm_ops,
238 #endif
239 	.shutdown = igb_shutdown,
240 	.sriov_configure = igb_pci_sriov_configure,
241 	.err_handler = &igb_err_handler
242 };
243 
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248 
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253 
254 struct igb_reg_info {
255 	u32 ofs;
256 	char *name;
257 };
258 
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260 
261 	/* General Registers */
262 	{E1000_CTRL, "CTRL"},
263 	{E1000_STATUS, "STATUS"},
264 	{E1000_CTRL_EXT, "CTRL_EXT"},
265 
266 	/* Interrupt Registers */
267 	{E1000_ICR, "ICR"},
268 
269 	/* RX Registers */
270 	{E1000_RCTL, "RCTL"},
271 	{E1000_RDLEN(0), "RDLEN"},
272 	{E1000_RDH(0), "RDH"},
273 	{E1000_RDT(0), "RDT"},
274 	{E1000_RXDCTL(0), "RXDCTL"},
275 	{E1000_RDBAL(0), "RDBAL"},
276 	{E1000_RDBAH(0), "RDBAH"},
277 
278 	/* TX Registers */
279 	{E1000_TCTL, "TCTL"},
280 	{E1000_TDBAL(0), "TDBAL"},
281 	{E1000_TDBAH(0), "TDBAH"},
282 	{E1000_TDLEN(0), "TDLEN"},
283 	{E1000_TDH(0), "TDH"},
284 	{E1000_TDT(0), "TDT"},
285 	{E1000_TXDCTL(0), "TXDCTL"},
286 	{E1000_TDFH, "TDFH"},
287 	{E1000_TDFT, "TDFT"},
288 	{E1000_TDFHS, "TDFHS"},
289 	{E1000_TDFPC, "TDFPC"},
290 
291 	/* List Terminator */
292 	{}
293 };
294 
295 /* igb_regdump - register printout routine */
296 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297 {
298 	int n = 0;
299 	char rname[16];
300 	u32 regs[8];
301 
302 	switch (reginfo->ofs) {
303 	case E1000_RDLEN(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RDLEN(n));
306 		break;
307 	case E1000_RDH(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDH(n));
310 		break;
311 	case E1000_RDT(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RDT(n));
314 		break;
315 	case E1000_RXDCTL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RXDCTL(n));
318 		break;
319 	case E1000_RDBAL(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RDBAL(n));
322 		break;
323 	case E1000_RDBAH(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAH(n));
326 		break;
327 	case E1000_TDBAL(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_RDBAL(n));
330 		break;
331 	case E1000_TDBAH(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDBAH(n));
334 		break;
335 	case E1000_TDLEN(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDLEN(n));
338 		break;
339 	case E1000_TDH(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDH(n));
342 		break;
343 	case E1000_TDT(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TDT(n));
346 		break;
347 	case E1000_TXDCTL(0):
348 		for (n = 0; n < 4; n++)
349 			regs[n] = rd32(E1000_TXDCTL(n));
350 		break;
351 	default:
352 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353 		return;
354 	}
355 
356 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358 		regs[2], regs[3]);
359 }
360 
361 /* igb_dump - Print registers, Tx-rings and Rx-rings */
362 static void igb_dump(struct igb_adapter *adapter)
363 {
364 	struct net_device *netdev = adapter->netdev;
365 	struct e1000_hw *hw = &adapter->hw;
366 	struct igb_reg_info *reginfo;
367 	struct igb_ring *tx_ring;
368 	union e1000_adv_tx_desc *tx_desc;
369 	struct my_u0 { u64 a; u64 b; } *u0;
370 	struct igb_ring *rx_ring;
371 	union e1000_adv_rx_desc *rx_desc;
372 	u32 staterr;
373 	u16 i, n;
374 
375 	if (!netif_msg_hw(adapter))
376 		return;
377 
378 	/* Print netdevice Info */
379 	if (netdev) {
380 		dev_info(&adapter->pdev->dev, "Net device Info\n");
381 		pr_info("Device Name     state            trans_start      last_rx\n");
382 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383 			netdev->state, netdev->trans_start, netdev->last_rx);
384 	}
385 
386 	/* Print Registers */
387 	dev_info(&adapter->pdev->dev, "Register Dump\n");
388 	pr_info(" Register Name   Value\n");
389 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390 	     reginfo->name; reginfo++) {
391 		igb_regdump(hw, reginfo);
392 	}
393 
394 	/* Print TX Ring Summary */
395 	if (!netdev || !netif_running(netdev))
396 		goto exit;
397 
398 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400 	for (n = 0; n < adapter->num_tx_queues; n++) {
401 		struct igb_tx_buffer *buffer_info;
402 		tx_ring = adapter->tx_ring[n];
403 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
406 			(u64)dma_unmap_addr(buffer_info, dma),
407 			dma_unmap_len(buffer_info, len),
408 			buffer_info->next_to_watch,
409 			(u64)buffer_info->time_stamp);
410 	}
411 
412 	/* Print TX Rings */
413 	if (!netif_msg_tx_done(adapter))
414 		goto rx_ring_summary;
415 
416 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417 
418 	/* Transmit Descriptor Formats
419 	 *
420 	 * Advanced Transmit Descriptor
421 	 *   +--------------------------------------------------------------+
422 	 * 0 |         Buffer Address [63:0]                                |
423 	 *   +--------------------------------------------------------------+
424 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425 	 *   +--------------------------------------------------------------+
426 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
427 	 */
428 
429 	for (n = 0; n < adapter->num_tx_queues; n++) {
430 		tx_ring = adapter->tx_ring[n];
431 		pr_info("------------------------------------\n");
432 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433 		pr_info("------------------------------------\n");
434 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
435 
436 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437 			const char *next_desc;
438 			struct igb_tx_buffer *buffer_info;
439 			tx_desc = IGB_TX_DESC(tx_ring, i);
440 			buffer_info = &tx_ring->tx_buffer_info[i];
441 			u0 = (struct my_u0 *)tx_desc;
442 			if (i == tx_ring->next_to_use &&
443 			    i == tx_ring->next_to_clean)
444 				next_desc = " NTC/U";
445 			else if (i == tx_ring->next_to_use)
446 				next_desc = " NTU";
447 			else if (i == tx_ring->next_to_clean)
448 				next_desc = " NTC";
449 			else
450 				next_desc = "";
451 
452 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
453 				i, le64_to_cpu(u0->a),
454 				le64_to_cpu(u0->b),
455 				(u64)dma_unmap_addr(buffer_info, dma),
456 				dma_unmap_len(buffer_info, len),
457 				buffer_info->next_to_watch,
458 				(u64)buffer_info->time_stamp,
459 				buffer_info->skb, next_desc);
460 
461 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
462 				print_hex_dump(KERN_INFO, "",
463 					DUMP_PREFIX_ADDRESS,
464 					16, 1, buffer_info->skb->data,
465 					dma_unmap_len(buffer_info, len),
466 					true);
467 		}
468 	}
469 
470 	/* Print RX Rings Summary */
471 rx_ring_summary:
472 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473 	pr_info("Queue [NTU] [NTC]\n");
474 	for (n = 0; n < adapter->num_rx_queues; n++) {
475 		rx_ring = adapter->rx_ring[n];
476 		pr_info(" %5d %5X %5X\n",
477 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
478 	}
479 
480 	/* Print RX Rings */
481 	if (!netif_msg_rx_status(adapter))
482 		goto exit;
483 
484 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485 
486 	/* Advanced Receive Descriptor (Read) Format
487 	 *    63                                           1        0
488 	 *    +-----------------------------------------------------+
489 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
490 	 *    +----------------------------------------------+------+
491 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
492 	 *    +-----------------------------------------------------+
493 	 *
494 	 *
495 	 * Advanced Receive Descriptor (Write-Back) Format
496 	 *
497 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
498 	 *   +------------------------------------------------------+
499 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
500 	 *   | Checksum   Ident  |   |           |    | Type | Type |
501 	 *   +------------------------------------------------------+
502 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503 	 *   +------------------------------------------------------+
504 	 *   63       48 47    32 31            20 19               0
505 	 */
506 
507 	for (n = 0; n < adapter->num_rx_queues; n++) {
508 		rx_ring = adapter->rx_ring[n];
509 		pr_info("------------------------------------\n");
510 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511 		pr_info("------------------------------------\n");
512 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
513 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514 
515 		for (i = 0; i < rx_ring->count; i++) {
516 			const char *next_desc;
517 			struct igb_rx_buffer *buffer_info;
518 			buffer_info = &rx_ring->rx_buffer_info[i];
519 			rx_desc = IGB_RX_DESC(rx_ring, i);
520 			u0 = (struct my_u0 *)rx_desc;
521 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522 
523 			if (i == rx_ring->next_to_use)
524 				next_desc = " NTU";
525 			else if (i == rx_ring->next_to_clean)
526 				next_desc = " NTC";
527 			else
528 				next_desc = "";
529 
530 			if (staterr & E1000_RXD_STAT_DD) {
531 				/* Descriptor Done */
532 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
533 					"RWB", i,
534 					le64_to_cpu(u0->a),
535 					le64_to_cpu(u0->b),
536 					next_desc);
537 			} else {
538 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
539 					"R  ", i,
540 					le64_to_cpu(u0->a),
541 					le64_to_cpu(u0->b),
542 					(u64)buffer_info->dma,
543 					next_desc);
544 
545 				if (netif_msg_pktdata(adapter) &&
546 				    buffer_info->dma && buffer_info->page) {
547 					print_hex_dump(KERN_INFO, "",
548 					  DUMP_PREFIX_ADDRESS,
549 					  16, 1,
550 					  page_address(buffer_info->page) +
551 						      buffer_info->page_offset,
552 					  IGB_RX_BUFSZ, true);
553 				}
554 			}
555 		}
556 	}
557 
558 exit:
559 	return;
560 }
561 
562 /**
563  *  igb_get_i2c_data - Reads the I2C SDA data bit
564  *  @hw: pointer to hardware structure
565  *  @i2cctl: Current value of I2CCTL register
566  *
567  *  Returns the I2C data bit value
568  **/
569 static int igb_get_i2c_data(void *data)
570 {
571 	struct igb_adapter *adapter = (struct igb_adapter *)data;
572 	struct e1000_hw *hw = &adapter->hw;
573 	s32 i2cctl = rd32(E1000_I2CPARAMS);
574 
575 	return !!(i2cctl & E1000_I2C_DATA_IN);
576 }
577 
578 /**
579  *  igb_set_i2c_data - Sets the I2C data bit
580  *  @data: pointer to hardware structure
581  *  @state: I2C data value (0 or 1) to set
582  *
583  *  Sets the I2C data bit
584  **/
585 static void igb_set_i2c_data(void *data, int state)
586 {
587 	struct igb_adapter *adapter = (struct igb_adapter *)data;
588 	struct e1000_hw *hw = &adapter->hw;
589 	s32 i2cctl = rd32(E1000_I2CPARAMS);
590 
591 	if (state)
592 		i2cctl |= E1000_I2C_DATA_OUT;
593 	else
594 		i2cctl &= ~E1000_I2C_DATA_OUT;
595 
596 	i2cctl &= ~E1000_I2C_DATA_OE_N;
597 	i2cctl |= E1000_I2C_CLK_OE_N;
598 	wr32(E1000_I2CPARAMS, i2cctl);
599 	wrfl();
600 
601 }
602 
603 /**
604  *  igb_set_i2c_clk - Sets the I2C SCL clock
605  *  @data: pointer to hardware structure
606  *  @state: state to set clock
607  *
608  *  Sets the I2C clock line to state
609  **/
610 static void igb_set_i2c_clk(void *data, int state)
611 {
612 	struct igb_adapter *adapter = (struct igb_adapter *)data;
613 	struct e1000_hw *hw = &adapter->hw;
614 	s32 i2cctl = rd32(E1000_I2CPARAMS);
615 
616 	if (state) {
617 		i2cctl |= E1000_I2C_CLK_OUT;
618 		i2cctl &= ~E1000_I2C_CLK_OE_N;
619 	} else {
620 		i2cctl &= ~E1000_I2C_CLK_OUT;
621 		i2cctl &= ~E1000_I2C_CLK_OE_N;
622 	}
623 	wr32(E1000_I2CPARAMS, i2cctl);
624 	wrfl();
625 }
626 
627 /**
628  *  igb_get_i2c_clk - Gets the I2C SCL clock state
629  *  @data: pointer to hardware structure
630  *
631  *  Gets the I2C clock state
632  **/
633 static int igb_get_i2c_clk(void *data)
634 {
635 	struct igb_adapter *adapter = (struct igb_adapter *)data;
636 	struct e1000_hw *hw = &adapter->hw;
637 	s32 i2cctl = rd32(E1000_I2CPARAMS);
638 
639 	return !!(i2cctl & E1000_I2C_CLK_IN);
640 }
641 
642 static const struct i2c_algo_bit_data igb_i2c_algo = {
643 	.setsda		= igb_set_i2c_data,
644 	.setscl		= igb_set_i2c_clk,
645 	.getsda		= igb_get_i2c_data,
646 	.getscl		= igb_get_i2c_clk,
647 	.udelay		= 5,
648 	.timeout	= 20,
649 };
650 
651 /**
652  *  igb_get_hw_dev - return device
653  *  @hw: pointer to hardware structure
654  *
655  *  used by hardware layer to print debugging information
656  **/
657 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658 {
659 	struct igb_adapter *adapter = hw->back;
660 	return adapter->netdev;
661 }
662 
663 /**
664  *  igb_init_module - Driver Registration Routine
665  *
666  *  igb_init_module is the first routine called when the driver is
667  *  loaded. All it does is register with the PCI subsystem.
668  **/
669 static int __init igb_init_module(void)
670 {
671 	int ret;
672 
673 	pr_info("%s - version %s\n",
674 	       igb_driver_string, igb_driver_version);
675 	pr_info("%s\n", igb_copyright);
676 
677 #ifdef CONFIG_IGB_DCA
678 	dca_register_notify(&dca_notifier);
679 #endif
680 	ret = pci_register_driver(&igb_driver);
681 	return ret;
682 }
683 
684 module_init(igb_init_module);
685 
686 /**
687  *  igb_exit_module - Driver Exit Cleanup Routine
688  *
689  *  igb_exit_module is called just before the driver is removed
690  *  from memory.
691  **/
692 static void __exit igb_exit_module(void)
693 {
694 #ifdef CONFIG_IGB_DCA
695 	dca_unregister_notify(&dca_notifier);
696 #endif
697 	pci_unregister_driver(&igb_driver);
698 }
699 
700 module_exit(igb_exit_module);
701 
702 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703 /**
704  *  igb_cache_ring_register - Descriptor ring to register mapping
705  *  @adapter: board private structure to initialize
706  *
707  *  Once we know the feature-set enabled for the device, we'll cache
708  *  the register offset the descriptor ring is assigned to.
709  **/
710 static void igb_cache_ring_register(struct igb_adapter *adapter)
711 {
712 	int i = 0, j = 0;
713 	u32 rbase_offset = adapter->vfs_allocated_count;
714 
715 	switch (adapter->hw.mac.type) {
716 	case e1000_82576:
717 		/* The queues are allocated for virtualization such that VF 0
718 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719 		 * In order to avoid collision we start at the first free queue
720 		 * and continue consuming queues in the same sequence
721 		 */
722 		if (adapter->vfs_allocated_count) {
723 			for (; i < adapter->rss_queues; i++)
724 				adapter->rx_ring[i]->reg_idx = rbase_offset +
725 							       Q_IDX_82576(i);
726 		}
727 		/* Fall through */
728 	case e1000_82575:
729 	case e1000_82580:
730 	case e1000_i350:
731 	case e1000_i354:
732 	case e1000_i210:
733 	case e1000_i211:
734 		/* Fall through */
735 	default:
736 		for (; i < adapter->num_rx_queues; i++)
737 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738 		for (; j < adapter->num_tx_queues; j++)
739 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 		break;
741 	}
742 }
743 
744 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745 {
746 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748 	u32 value = 0;
749 
750 	if (E1000_REMOVED(hw_addr))
751 		return ~value;
752 
753 	value = readl(&hw_addr[reg]);
754 
755 	/* reads should not return all F's */
756 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757 		struct net_device *netdev = igb->netdev;
758 		hw->hw_addr = NULL;
759 		netif_device_detach(netdev);
760 		netdev_err(netdev, "PCIe link lost, device now detached\n");
761 	}
762 
763 	return value;
764 }
765 
766 /**
767  *  igb_write_ivar - configure ivar for given MSI-X vector
768  *  @hw: pointer to the HW structure
769  *  @msix_vector: vector number we are allocating to a given ring
770  *  @index: row index of IVAR register to write within IVAR table
771  *  @offset: column offset of in IVAR, should be multiple of 8
772  *
773  *  This function is intended to handle the writing of the IVAR register
774  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
775  *  each containing an cause allocation for an Rx and Tx ring, and a
776  *  variable number of rows depending on the number of queues supported.
777  **/
778 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779 			   int index, int offset)
780 {
781 	u32 ivar = array_rd32(E1000_IVAR0, index);
782 
783 	/* clear any bits that are currently set */
784 	ivar &= ~((u32)0xFF << offset);
785 
786 	/* write vector and valid bit */
787 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788 
789 	array_wr32(E1000_IVAR0, index, ivar);
790 }
791 
792 #define IGB_N0_QUEUE -1
793 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794 {
795 	struct igb_adapter *adapter = q_vector->adapter;
796 	struct e1000_hw *hw = &adapter->hw;
797 	int rx_queue = IGB_N0_QUEUE;
798 	int tx_queue = IGB_N0_QUEUE;
799 	u32 msixbm = 0;
800 
801 	if (q_vector->rx.ring)
802 		rx_queue = q_vector->rx.ring->reg_idx;
803 	if (q_vector->tx.ring)
804 		tx_queue = q_vector->tx.ring->reg_idx;
805 
806 	switch (hw->mac.type) {
807 	case e1000_82575:
808 		/* The 82575 assigns vectors using a bitmask, which matches the
809 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
810 		 * or more queues to a vector, we write the appropriate bits
811 		 * into the MSIXBM register for that vector.
812 		 */
813 		if (rx_queue > IGB_N0_QUEUE)
814 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815 		if (tx_queue > IGB_N0_QUEUE)
816 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818 			msixbm |= E1000_EIMS_OTHER;
819 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820 		q_vector->eims_value = msixbm;
821 		break;
822 	case e1000_82576:
823 		/* 82576 uses a table that essentially consists of 2 columns
824 		 * with 8 rows.  The ordering is column-major so we use the
825 		 * lower 3 bits as the row index, and the 4th bit as the
826 		 * column offset.
827 		 */
828 		if (rx_queue > IGB_N0_QUEUE)
829 			igb_write_ivar(hw, msix_vector,
830 				       rx_queue & 0x7,
831 				       (rx_queue & 0x8) << 1);
832 		if (tx_queue > IGB_N0_QUEUE)
833 			igb_write_ivar(hw, msix_vector,
834 				       tx_queue & 0x7,
835 				       ((tx_queue & 0x8) << 1) + 8);
836 		q_vector->eims_value = 1 << msix_vector;
837 		break;
838 	case e1000_82580:
839 	case e1000_i350:
840 	case e1000_i354:
841 	case e1000_i210:
842 	case e1000_i211:
843 		/* On 82580 and newer adapters the scheme is similar to 82576
844 		 * however instead of ordering column-major we have things
845 		 * ordered row-major.  So we traverse the table by using
846 		 * bit 0 as the column offset, and the remaining bits as the
847 		 * row index.
848 		 */
849 		if (rx_queue > IGB_N0_QUEUE)
850 			igb_write_ivar(hw, msix_vector,
851 				       rx_queue >> 1,
852 				       (rx_queue & 0x1) << 4);
853 		if (tx_queue > IGB_N0_QUEUE)
854 			igb_write_ivar(hw, msix_vector,
855 				       tx_queue >> 1,
856 				       ((tx_queue & 0x1) << 4) + 8);
857 		q_vector->eims_value = 1 << msix_vector;
858 		break;
859 	default:
860 		BUG();
861 		break;
862 	}
863 
864 	/* add q_vector eims value to global eims_enable_mask */
865 	adapter->eims_enable_mask |= q_vector->eims_value;
866 
867 	/* configure q_vector to set itr on first interrupt */
868 	q_vector->set_itr = 1;
869 }
870 
871 /**
872  *  igb_configure_msix - Configure MSI-X hardware
873  *  @adapter: board private structure to initialize
874  *
875  *  igb_configure_msix sets up the hardware to properly
876  *  generate MSI-X interrupts.
877  **/
878 static void igb_configure_msix(struct igb_adapter *adapter)
879 {
880 	u32 tmp;
881 	int i, vector = 0;
882 	struct e1000_hw *hw = &adapter->hw;
883 
884 	adapter->eims_enable_mask = 0;
885 
886 	/* set vector for other causes, i.e. link changes */
887 	switch (hw->mac.type) {
888 	case e1000_82575:
889 		tmp = rd32(E1000_CTRL_EXT);
890 		/* enable MSI-X PBA support*/
891 		tmp |= E1000_CTRL_EXT_PBA_CLR;
892 
893 		/* Auto-Mask interrupts upon ICR read. */
894 		tmp |= E1000_CTRL_EXT_EIAME;
895 		tmp |= E1000_CTRL_EXT_IRCA;
896 
897 		wr32(E1000_CTRL_EXT, tmp);
898 
899 		/* enable msix_other interrupt */
900 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901 		adapter->eims_other = E1000_EIMS_OTHER;
902 
903 		break;
904 
905 	case e1000_82576:
906 	case e1000_82580:
907 	case e1000_i350:
908 	case e1000_i354:
909 	case e1000_i210:
910 	case e1000_i211:
911 		/* Turn on MSI-X capability first, or our settings
912 		 * won't stick.  And it will take days to debug.
913 		 */
914 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
916 		     E1000_GPIE_NSICR);
917 
918 		/* enable msix_other interrupt */
919 		adapter->eims_other = 1 << vector;
920 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
921 
922 		wr32(E1000_IVAR_MISC, tmp);
923 		break;
924 	default:
925 		/* do nothing, since nothing else supports MSI-X */
926 		break;
927 	} /* switch (hw->mac.type) */
928 
929 	adapter->eims_enable_mask |= adapter->eims_other;
930 
931 	for (i = 0; i < adapter->num_q_vectors; i++)
932 		igb_assign_vector(adapter->q_vector[i], vector++);
933 
934 	wrfl();
935 }
936 
937 /**
938  *  igb_request_msix - Initialize MSI-X interrupts
939  *  @adapter: board private structure to initialize
940  *
941  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
942  *  kernel.
943  **/
944 static int igb_request_msix(struct igb_adapter *adapter)
945 {
946 	struct net_device *netdev = adapter->netdev;
947 	struct e1000_hw *hw = &adapter->hw;
948 	int i, err = 0, vector = 0, free_vector = 0;
949 
950 	err = request_irq(adapter->msix_entries[vector].vector,
951 			  igb_msix_other, 0, netdev->name, adapter);
952 	if (err)
953 		goto err_out;
954 
955 	for (i = 0; i < adapter->num_q_vectors; i++) {
956 		struct igb_q_vector *q_vector = adapter->q_vector[i];
957 
958 		vector++;
959 
960 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961 
962 		if (q_vector->rx.ring && q_vector->tx.ring)
963 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964 				q_vector->rx.ring->queue_index);
965 		else if (q_vector->tx.ring)
966 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967 				q_vector->tx.ring->queue_index);
968 		else if (q_vector->rx.ring)
969 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970 				q_vector->rx.ring->queue_index);
971 		else
972 			sprintf(q_vector->name, "%s-unused", netdev->name);
973 
974 		err = request_irq(adapter->msix_entries[vector].vector,
975 				  igb_msix_ring, 0, q_vector->name,
976 				  q_vector);
977 		if (err)
978 			goto err_free;
979 	}
980 
981 	igb_configure_msix(adapter);
982 	return 0;
983 
984 err_free:
985 	/* free already assigned IRQs */
986 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987 
988 	vector--;
989 	for (i = 0; i < vector; i++) {
990 		free_irq(adapter->msix_entries[free_vector++].vector,
991 			 adapter->q_vector[i]);
992 	}
993 err_out:
994 	return err;
995 }
996 
997 /**
998  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
999  *  @adapter: board private structure to initialize
1000  *  @v_idx: Index of vector to be freed
1001  *
1002  *  This function frees the memory allocated to the q_vector.
1003  **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007 
1008 	adapter->q_vector[v_idx] = NULL;
1009 
1010 	/* igb_get_stats64() might access the rings on this vector,
1011 	 * we must wait a grace period before freeing it.
1012 	 */
1013 	if (q_vector)
1014 		kfree_rcu(q_vector, rcu);
1015 }
1016 
1017 /**
1018  *  igb_reset_q_vector - Reset config for interrupt vector
1019  *  @adapter: board private structure to initialize
1020  *  @v_idx: Index of vector to be reset
1021  *
1022  *  If NAPI is enabled it will delete any references to the
1023  *  NAPI struct. This is preparation for igb_free_q_vector.
1024  **/
1025 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026 {
1027 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028 
1029 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1030 	 * allocated. So, q_vector is NULL so we should stop here.
1031 	 */
1032 	if (!q_vector)
1033 		return;
1034 
1035 	if (q_vector->tx.ring)
1036 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037 
1038 	if (q_vector->rx.ring)
1039 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1040 
1041 	netif_napi_del(&q_vector->napi);
1042 
1043 }
1044 
1045 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046 {
1047 	int v_idx = adapter->num_q_vectors;
1048 
1049 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050 		pci_disable_msix(adapter->pdev);
1051 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052 		pci_disable_msi(adapter->pdev);
1053 
1054 	while (v_idx--)
1055 		igb_reset_q_vector(adapter, v_idx);
1056 }
1057 
1058 /**
1059  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1060  *  @adapter: board private structure to initialize
1061  *
1062  *  This function frees the memory allocated to the q_vectors.  In addition if
1063  *  NAPI is enabled it will delete any references to the NAPI struct prior
1064  *  to freeing the q_vector.
1065  **/
1066 static void igb_free_q_vectors(struct igb_adapter *adapter)
1067 {
1068 	int v_idx = adapter->num_q_vectors;
1069 
1070 	adapter->num_tx_queues = 0;
1071 	adapter->num_rx_queues = 0;
1072 	adapter->num_q_vectors = 0;
1073 
1074 	while (v_idx--) {
1075 		igb_reset_q_vector(adapter, v_idx);
1076 		igb_free_q_vector(adapter, v_idx);
1077 	}
1078 }
1079 
1080 /**
1081  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082  *  @adapter: board private structure to initialize
1083  *
1084  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1085  *  MSI-X interrupts allocated.
1086  */
1087 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088 {
1089 	igb_free_q_vectors(adapter);
1090 	igb_reset_interrupt_capability(adapter);
1091 }
1092 
1093 /**
1094  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1095  *  @adapter: board private structure to initialize
1096  *  @msix: boolean value of MSIX capability
1097  *
1098  *  Attempt to configure interrupts using the best available
1099  *  capabilities of the hardware and kernel.
1100  **/
1101 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102 {
1103 	int err;
1104 	int numvecs, i;
1105 
1106 	if (!msix)
1107 		goto msi_only;
1108 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1109 
1110 	/* Number of supported queues. */
1111 	adapter->num_rx_queues = adapter->rss_queues;
1112 	if (adapter->vfs_allocated_count)
1113 		adapter->num_tx_queues = 1;
1114 	else
1115 		adapter->num_tx_queues = adapter->rss_queues;
1116 
1117 	/* start with one vector for every Rx queue */
1118 	numvecs = adapter->num_rx_queues;
1119 
1120 	/* if Tx handler is separate add 1 for every Tx queue */
1121 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122 		numvecs += adapter->num_tx_queues;
1123 
1124 	/* store the number of vectors reserved for queues */
1125 	adapter->num_q_vectors = numvecs;
1126 
1127 	/* add 1 vector for link status interrupts */
1128 	numvecs++;
1129 	for (i = 0; i < numvecs; i++)
1130 		adapter->msix_entries[i].entry = i;
1131 
1132 	err = pci_enable_msix_range(adapter->pdev,
1133 				    adapter->msix_entries,
1134 				    numvecs,
1135 				    numvecs);
1136 	if (err > 0)
1137 		return;
1138 
1139 	igb_reset_interrupt_capability(adapter);
1140 
1141 	/* If we can't do MSI-X, try MSI */
1142 msi_only:
1143 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144 #ifdef CONFIG_PCI_IOV
1145 	/* disable SR-IOV for non MSI-X configurations */
1146 	if (adapter->vf_data) {
1147 		struct e1000_hw *hw = &adapter->hw;
1148 		/* disable iov and allow time for transactions to clear */
1149 		pci_disable_sriov(adapter->pdev);
1150 		msleep(500);
1151 
1152 		kfree(adapter->vf_data);
1153 		adapter->vf_data = NULL;
1154 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155 		wrfl();
1156 		msleep(100);
1157 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158 	}
1159 #endif
1160 	adapter->vfs_allocated_count = 0;
1161 	adapter->rss_queues = 1;
1162 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163 	adapter->num_rx_queues = 1;
1164 	adapter->num_tx_queues = 1;
1165 	adapter->num_q_vectors = 1;
1166 	if (!pci_enable_msi(adapter->pdev))
1167 		adapter->flags |= IGB_FLAG_HAS_MSI;
1168 }
1169 
1170 static void igb_add_ring(struct igb_ring *ring,
1171 			 struct igb_ring_container *head)
1172 {
1173 	head->ring = ring;
1174 	head->count++;
1175 }
1176 
1177 /**
1178  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179  *  @adapter: board private structure to initialize
1180  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1181  *  @v_idx: index of vector in adapter struct
1182  *  @txr_count: total number of Tx rings to allocate
1183  *  @txr_idx: index of first Tx ring to allocate
1184  *  @rxr_count: total number of Rx rings to allocate
1185  *  @rxr_idx: index of first Rx ring to allocate
1186  *
1187  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1188  **/
1189 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190 			      int v_count, int v_idx,
1191 			      int txr_count, int txr_idx,
1192 			      int rxr_count, int rxr_idx)
1193 {
1194 	struct igb_q_vector *q_vector;
1195 	struct igb_ring *ring;
1196 	int ring_count, size;
1197 
1198 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199 	if (txr_count > 1 || rxr_count > 1)
1200 		return -ENOMEM;
1201 
1202 	ring_count = txr_count + rxr_count;
1203 	size = sizeof(struct igb_q_vector) +
1204 	       (sizeof(struct igb_ring) * ring_count);
1205 
1206 	/* allocate q_vector and rings */
1207 	q_vector = adapter->q_vector[v_idx];
1208 	if (!q_vector)
1209 		q_vector = kzalloc(size, GFP_KERNEL);
1210 	else
1211 		memset(q_vector, 0, size);
1212 	if (!q_vector)
1213 		return -ENOMEM;
1214 
1215 	/* initialize NAPI */
1216 	netif_napi_add(adapter->netdev, &q_vector->napi,
1217 		       igb_poll, 64);
1218 
1219 	/* tie q_vector and adapter together */
1220 	adapter->q_vector[v_idx] = q_vector;
1221 	q_vector->adapter = adapter;
1222 
1223 	/* initialize work limits */
1224 	q_vector->tx.work_limit = adapter->tx_work_limit;
1225 
1226 	/* initialize ITR configuration */
1227 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228 	q_vector->itr_val = IGB_START_ITR;
1229 
1230 	/* initialize pointer to rings */
1231 	ring = q_vector->ring;
1232 
1233 	/* intialize ITR */
1234 	if (rxr_count) {
1235 		/* rx or rx/tx vector */
1236 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 			q_vector->itr_val = adapter->rx_itr_setting;
1238 	} else {
1239 		/* tx only vector */
1240 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 			q_vector->itr_val = adapter->tx_itr_setting;
1242 	}
1243 
1244 	if (txr_count) {
1245 		/* assign generic ring traits */
1246 		ring->dev = &adapter->pdev->dev;
1247 		ring->netdev = adapter->netdev;
1248 
1249 		/* configure backlink on ring */
1250 		ring->q_vector = q_vector;
1251 
1252 		/* update q_vector Tx values */
1253 		igb_add_ring(ring, &q_vector->tx);
1254 
1255 		/* For 82575, context index must be unique per ring. */
1256 		if (adapter->hw.mac.type == e1000_82575)
1257 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258 
1259 		/* apply Tx specific ring traits */
1260 		ring->count = adapter->tx_ring_count;
1261 		ring->queue_index = txr_idx;
1262 
1263 		u64_stats_init(&ring->tx_syncp);
1264 		u64_stats_init(&ring->tx_syncp2);
1265 
1266 		/* assign ring to adapter */
1267 		adapter->tx_ring[txr_idx] = ring;
1268 
1269 		/* push pointer to next ring */
1270 		ring++;
1271 	}
1272 
1273 	if (rxr_count) {
1274 		/* assign generic ring traits */
1275 		ring->dev = &adapter->pdev->dev;
1276 		ring->netdev = adapter->netdev;
1277 
1278 		/* configure backlink on ring */
1279 		ring->q_vector = q_vector;
1280 
1281 		/* update q_vector Rx values */
1282 		igb_add_ring(ring, &q_vector->rx);
1283 
1284 		/* set flag indicating ring supports SCTP checksum offload */
1285 		if (adapter->hw.mac.type >= e1000_82576)
1286 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287 
1288 		/* On i350, i354, i210, and i211, loopback VLAN packets
1289 		 * have the tag byte-swapped.
1290 		 */
1291 		if (adapter->hw.mac.type >= e1000_i350)
1292 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1293 
1294 		/* apply Rx specific ring traits */
1295 		ring->count = adapter->rx_ring_count;
1296 		ring->queue_index = rxr_idx;
1297 
1298 		u64_stats_init(&ring->rx_syncp);
1299 
1300 		/* assign ring to adapter */
1301 		adapter->rx_ring[rxr_idx] = ring;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 
1308 /**
1309  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1310  *  @adapter: board private structure to initialize
1311  *
1312  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1313  *  return -ENOMEM.
1314  **/
1315 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1316 {
1317 	int q_vectors = adapter->num_q_vectors;
1318 	int rxr_remaining = adapter->num_rx_queues;
1319 	int txr_remaining = adapter->num_tx_queues;
1320 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1321 	int err;
1322 
1323 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1324 		for (; rxr_remaining; v_idx++) {
1325 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326 						 0, 0, 1, rxr_idx);
1327 
1328 			if (err)
1329 				goto err_out;
1330 
1331 			/* update counts and index */
1332 			rxr_remaining--;
1333 			rxr_idx++;
1334 		}
1335 	}
1336 
1337 	for (; v_idx < q_vectors; v_idx++) {
1338 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1339 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1340 
1341 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342 					 tqpv, txr_idx, rqpv, rxr_idx);
1343 
1344 		if (err)
1345 			goto err_out;
1346 
1347 		/* update counts and index */
1348 		rxr_remaining -= rqpv;
1349 		txr_remaining -= tqpv;
1350 		rxr_idx++;
1351 		txr_idx++;
1352 	}
1353 
1354 	return 0;
1355 
1356 err_out:
1357 	adapter->num_tx_queues = 0;
1358 	adapter->num_rx_queues = 0;
1359 	adapter->num_q_vectors = 0;
1360 
1361 	while (v_idx--)
1362 		igb_free_q_vector(adapter, v_idx);
1363 
1364 	return -ENOMEM;
1365 }
1366 
1367 /**
1368  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369  *  @adapter: board private structure to initialize
1370  *  @msix: boolean value of MSIX capability
1371  *
1372  *  This function initializes the interrupts and allocates all of the queues.
1373  **/
1374 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375 {
1376 	struct pci_dev *pdev = adapter->pdev;
1377 	int err;
1378 
1379 	igb_set_interrupt_capability(adapter, msix);
1380 
1381 	err = igb_alloc_q_vectors(adapter);
1382 	if (err) {
1383 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384 		goto err_alloc_q_vectors;
1385 	}
1386 
1387 	igb_cache_ring_register(adapter);
1388 
1389 	return 0;
1390 
1391 err_alloc_q_vectors:
1392 	igb_reset_interrupt_capability(adapter);
1393 	return err;
1394 }
1395 
1396 /**
1397  *  igb_request_irq - initialize interrupts
1398  *  @adapter: board private structure to initialize
1399  *
1400  *  Attempts to configure interrupts using the best available
1401  *  capabilities of the hardware and kernel.
1402  **/
1403 static int igb_request_irq(struct igb_adapter *adapter)
1404 {
1405 	struct net_device *netdev = adapter->netdev;
1406 	struct pci_dev *pdev = adapter->pdev;
1407 	int err = 0;
1408 
1409 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410 		err = igb_request_msix(adapter);
1411 		if (!err)
1412 			goto request_done;
1413 		/* fall back to MSI */
1414 		igb_free_all_tx_resources(adapter);
1415 		igb_free_all_rx_resources(adapter);
1416 
1417 		igb_clear_interrupt_scheme(adapter);
1418 		err = igb_init_interrupt_scheme(adapter, false);
1419 		if (err)
1420 			goto request_done;
1421 
1422 		igb_setup_all_tx_resources(adapter);
1423 		igb_setup_all_rx_resources(adapter);
1424 		igb_configure(adapter);
1425 	}
1426 
1427 	igb_assign_vector(adapter->q_vector[0], 0);
1428 
1429 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1431 				  netdev->name, adapter);
1432 		if (!err)
1433 			goto request_done;
1434 
1435 		/* fall back to legacy interrupts */
1436 		igb_reset_interrupt_capability(adapter);
1437 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438 	}
1439 
1440 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441 			  netdev->name, adapter);
1442 
1443 	if (err)
1444 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445 			err);
1446 
1447 request_done:
1448 	return err;
1449 }
1450 
1451 static void igb_free_irq(struct igb_adapter *adapter)
1452 {
1453 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454 		int vector = 0, i;
1455 
1456 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1457 
1458 		for (i = 0; i < adapter->num_q_vectors; i++)
1459 			free_irq(adapter->msix_entries[vector++].vector,
1460 				 adapter->q_vector[i]);
1461 	} else {
1462 		free_irq(adapter->pdev->irq, adapter);
1463 	}
1464 }
1465 
1466 /**
1467  *  igb_irq_disable - Mask off interrupt generation on the NIC
1468  *  @adapter: board private structure
1469  **/
1470 static void igb_irq_disable(struct igb_adapter *adapter)
1471 {
1472 	struct e1000_hw *hw = &adapter->hw;
1473 
1474 	/* we need to be careful when disabling interrupts.  The VFs are also
1475 	 * mapped into these registers and so clearing the bits can cause
1476 	 * issues on the VF drivers so we only need to clear what we set
1477 	 */
1478 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479 		u32 regval = rd32(E1000_EIAM);
1480 
1481 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1482 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1483 		regval = rd32(E1000_EIAC);
1484 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1485 	}
1486 
1487 	wr32(E1000_IAM, 0);
1488 	wr32(E1000_IMC, ~0);
1489 	wrfl();
1490 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1491 		int i;
1492 
1493 		for (i = 0; i < adapter->num_q_vectors; i++)
1494 			synchronize_irq(adapter->msix_entries[i].vector);
1495 	} else {
1496 		synchronize_irq(adapter->pdev->irq);
1497 	}
1498 }
1499 
1500 /**
1501  *  igb_irq_enable - Enable default interrupt generation settings
1502  *  @adapter: board private structure
1503  **/
1504 static void igb_irq_enable(struct igb_adapter *adapter)
1505 {
1506 	struct e1000_hw *hw = &adapter->hw;
1507 
1508 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1509 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1510 		u32 regval = rd32(E1000_EIAC);
1511 
1512 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1513 		regval = rd32(E1000_EIAM);
1514 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1515 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1516 		if (adapter->vfs_allocated_count) {
1517 			wr32(E1000_MBVFIMR, 0xFF);
1518 			ims |= E1000_IMS_VMMB;
1519 		}
1520 		wr32(E1000_IMS, ims);
1521 	} else {
1522 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1523 				E1000_IMS_DRSTA);
1524 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1525 				E1000_IMS_DRSTA);
1526 	}
1527 }
1528 
1529 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1530 {
1531 	struct e1000_hw *hw = &adapter->hw;
1532 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 	u16 old_vid = adapter->mng_vlan_id;
1534 
1535 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 		/* add VID to filter table */
1537 		igb_vfta_set(hw, vid, true);
1538 		adapter->mng_vlan_id = vid;
1539 	} else {
1540 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541 	}
1542 
1543 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 	    (vid != old_vid) &&
1545 	    !test_bit(old_vid, adapter->active_vlans)) {
1546 		/* remove VID from filter table */
1547 		igb_vfta_set(hw, old_vid, false);
1548 	}
1549 }
1550 
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561 	struct e1000_hw *hw = &adapter->hw;
1562 	u32 ctrl_ext;
1563 
1564 	/* Let firmware take over control of h/w */
1565 	ctrl_ext = rd32(E1000_CTRL_EXT);
1566 	wr32(E1000_CTRL_EXT,
1567 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569 
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580 	struct e1000_hw *hw = &adapter->hw;
1581 	u32 ctrl_ext;
1582 
1583 	/* Let firmware know the driver has taken over */
1584 	ctrl_ext = rd32(E1000_CTRL_EXT);
1585 	wr32(E1000_CTRL_EXT,
1586 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588 
1589 /**
1590  *  igb_configure - configure the hardware for RX and TX
1591  *  @adapter: private board structure
1592  **/
1593 static void igb_configure(struct igb_adapter *adapter)
1594 {
1595 	struct net_device *netdev = adapter->netdev;
1596 	int i;
1597 
1598 	igb_get_hw_control(adapter);
1599 	igb_set_rx_mode(netdev);
1600 
1601 	igb_restore_vlan(adapter);
1602 
1603 	igb_setup_tctl(adapter);
1604 	igb_setup_mrqc(adapter);
1605 	igb_setup_rctl(adapter);
1606 
1607 	igb_configure_tx(adapter);
1608 	igb_configure_rx(adapter);
1609 
1610 	igb_rx_fifo_flush_82575(&adapter->hw);
1611 
1612 	/* call igb_desc_unused which always leaves
1613 	 * at least 1 descriptor unused to make sure
1614 	 * next_to_use != next_to_clean
1615 	 */
1616 	for (i = 0; i < adapter->num_rx_queues; i++) {
1617 		struct igb_ring *ring = adapter->rx_ring[i];
1618 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1619 	}
1620 }
1621 
1622 /**
1623  *  igb_power_up_link - Power up the phy/serdes link
1624  *  @adapter: address of board private structure
1625  **/
1626 void igb_power_up_link(struct igb_adapter *adapter)
1627 {
1628 	igb_reset_phy(&adapter->hw);
1629 
1630 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1631 		igb_power_up_phy_copper(&adapter->hw);
1632 	else
1633 		igb_power_up_serdes_link_82575(&adapter->hw);
1634 
1635 	igb_setup_link(&adapter->hw);
1636 }
1637 
1638 /**
1639  *  igb_power_down_link - Power down the phy/serdes link
1640  *  @adapter: address of board private structure
1641  */
1642 static void igb_power_down_link(struct igb_adapter *adapter)
1643 {
1644 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1645 		igb_power_down_phy_copper_82575(&adapter->hw);
1646 	else
1647 		igb_shutdown_serdes_link_82575(&adapter->hw);
1648 }
1649 
1650 /**
1651  * Detect and switch function for Media Auto Sense
1652  * @adapter: address of the board private structure
1653  **/
1654 static void igb_check_swap_media(struct igb_adapter *adapter)
1655 {
1656 	struct e1000_hw *hw = &adapter->hw;
1657 	u32 ctrl_ext, connsw;
1658 	bool swap_now = false;
1659 
1660 	ctrl_ext = rd32(E1000_CTRL_EXT);
1661 	connsw = rd32(E1000_CONNSW);
1662 
1663 	/* need to live swap if current media is copper and we have fiber/serdes
1664 	 * to go to.
1665 	 */
1666 
1667 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1668 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1669 		swap_now = true;
1670 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1671 		/* copper signal takes time to appear */
1672 		if (adapter->copper_tries < 4) {
1673 			adapter->copper_tries++;
1674 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1675 			wr32(E1000_CONNSW, connsw);
1676 			return;
1677 		} else {
1678 			adapter->copper_tries = 0;
1679 			if ((connsw & E1000_CONNSW_PHYSD) &&
1680 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1681 				swap_now = true;
1682 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1683 				wr32(E1000_CONNSW, connsw);
1684 			}
1685 		}
1686 	}
1687 
1688 	if (!swap_now)
1689 		return;
1690 
1691 	switch (hw->phy.media_type) {
1692 	case e1000_media_type_copper:
1693 		netdev_info(adapter->netdev,
1694 			"MAS: changing media to fiber/serdes\n");
1695 		ctrl_ext |=
1696 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1697 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1698 		adapter->copper_tries = 0;
1699 		break;
1700 	case e1000_media_type_internal_serdes:
1701 	case e1000_media_type_fiber:
1702 		netdev_info(adapter->netdev,
1703 			"MAS: changing media to copper\n");
1704 		ctrl_ext &=
1705 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1706 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1707 		break;
1708 	default:
1709 		/* shouldn't get here during regular operation */
1710 		netdev_err(adapter->netdev,
1711 			"AMS: Invalid media type found, returning\n");
1712 		break;
1713 	}
1714 	wr32(E1000_CTRL_EXT, ctrl_ext);
1715 }
1716 
1717 /**
1718  *  igb_up - Open the interface and prepare it to handle traffic
1719  *  @adapter: board private structure
1720  **/
1721 int igb_up(struct igb_adapter *adapter)
1722 {
1723 	struct e1000_hw *hw = &adapter->hw;
1724 	int i;
1725 
1726 	/* hardware has been reset, we need to reload some things */
1727 	igb_configure(adapter);
1728 
1729 	clear_bit(__IGB_DOWN, &adapter->state);
1730 
1731 	for (i = 0; i < adapter->num_q_vectors; i++)
1732 		napi_enable(&(adapter->q_vector[i]->napi));
1733 
1734 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1735 		igb_configure_msix(adapter);
1736 	else
1737 		igb_assign_vector(adapter->q_vector[0], 0);
1738 
1739 	/* Clear any pending interrupts. */
1740 	rd32(E1000_ICR);
1741 	igb_irq_enable(adapter);
1742 
1743 	/* notify VFs that reset has been completed */
1744 	if (adapter->vfs_allocated_count) {
1745 		u32 reg_data = rd32(E1000_CTRL_EXT);
1746 
1747 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1748 		wr32(E1000_CTRL_EXT, reg_data);
1749 	}
1750 
1751 	netif_tx_start_all_queues(adapter->netdev);
1752 
1753 	/* start the watchdog. */
1754 	hw->mac.get_link_status = 1;
1755 	schedule_work(&adapter->watchdog_task);
1756 
1757 	if ((adapter->flags & IGB_FLAG_EEE) &&
1758 	    (!hw->dev_spec._82575.eee_disable))
1759 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1760 
1761 	return 0;
1762 }
1763 
1764 void igb_down(struct igb_adapter *adapter)
1765 {
1766 	struct net_device *netdev = adapter->netdev;
1767 	struct e1000_hw *hw = &adapter->hw;
1768 	u32 tctl, rctl;
1769 	int i;
1770 
1771 	/* signal that we're down so the interrupt handler does not
1772 	 * reschedule our watchdog timer
1773 	 */
1774 	set_bit(__IGB_DOWN, &adapter->state);
1775 
1776 	/* disable receives in the hardware */
1777 	rctl = rd32(E1000_RCTL);
1778 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1779 	/* flush and sleep below */
1780 
1781 	netif_carrier_off(netdev);
1782 	netif_tx_stop_all_queues(netdev);
1783 
1784 	/* disable transmits in the hardware */
1785 	tctl = rd32(E1000_TCTL);
1786 	tctl &= ~E1000_TCTL_EN;
1787 	wr32(E1000_TCTL, tctl);
1788 	/* flush both disables and wait for them to finish */
1789 	wrfl();
1790 	usleep_range(10000, 11000);
1791 
1792 	igb_irq_disable(adapter);
1793 
1794 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795 
1796 	for (i = 0; i < adapter->num_q_vectors; i++) {
1797 		if (adapter->q_vector[i]) {
1798 			napi_synchronize(&adapter->q_vector[i]->napi);
1799 			napi_disable(&adapter->q_vector[i]->napi);
1800 		}
1801 	}
1802 
1803 	del_timer_sync(&adapter->watchdog_timer);
1804 	del_timer_sync(&adapter->phy_info_timer);
1805 
1806 	/* record the stats before reset*/
1807 	spin_lock(&adapter->stats64_lock);
1808 	igb_update_stats(adapter, &adapter->stats64);
1809 	spin_unlock(&adapter->stats64_lock);
1810 
1811 	adapter->link_speed = 0;
1812 	adapter->link_duplex = 0;
1813 
1814 	if (!pci_channel_offline(adapter->pdev))
1815 		igb_reset(adapter);
1816 	igb_clean_all_tx_rings(adapter);
1817 	igb_clean_all_rx_rings(adapter);
1818 #ifdef CONFIG_IGB_DCA
1819 
1820 	/* since we reset the hardware DCA settings were cleared */
1821 	igb_setup_dca(adapter);
1822 #endif
1823 }
1824 
1825 void igb_reinit_locked(struct igb_adapter *adapter)
1826 {
1827 	WARN_ON(in_interrupt());
1828 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1829 		usleep_range(1000, 2000);
1830 	igb_down(adapter);
1831 	igb_up(adapter);
1832 	clear_bit(__IGB_RESETTING, &adapter->state);
1833 }
1834 
1835 /** igb_enable_mas - Media Autosense re-enable after swap
1836  *
1837  * @adapter: adapter struct
1838  **/
1839 static s32 igb_enable_mas(struct igb_adapter *adapter)
1840 {
1841 	struct e1000_hw *hw = &adapter->hw;
1842 	u32 connsw;
1843 	s32 ret_val = 0;
1844 
1845 	connsw = rd32(E1000_CONNSW);
1846 	if (!(hw->phy.media_type == e1000_media_type_copper))
1847 		return ret_val;
1848 
1849 	/* configure for SerDes media detect */
1850 	if (!(connsw & E1000_CONNSW_SERDESD)) {
1851 		connsw |= E1000_CONNSW_ENRGSRC;
1852 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1853 		wr32(E1000_CONNSW, connsw);
1854 		wrfl();
1855 	} else if (connsw & E1000_CONNSW_SERDESD) {
1856 		/* already SerDes, no need to enable anything */
1857 		return ret_val;
1858 	} else {
1859 		netdev_info(adapter->netdev,
1860 			"MAS: Unable to configure feature, disabling..\n");
1861 		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1862 	}
1863 	return ret_val;
1864 }
1865 
1866 void igb_reset(struct igb_adapter *adapter)
1867 {
1868 	struct pci_dev *pdev = adapter->pdev;
1869 	struct e1000_hw *hw = &adapter->hw;
1870 	struct e1000_mac_info *mac = &hw->mac;
1871 	struct e1000_fc_info *fc = &hw->fc;
1872 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1873 
1874 	/* Repartition Pba for greater than 9k mtu
1875 	 * To take effect CTRL.RST is required.
1876 	 */
1877 	switch (mac->type) {
1878 	case e1000_i350:
1879 	case e1000_i354:
1880 	case e1000_82580:
1881 		pba = rd32(E1000_RXPBS);
1882 		pba = igb_rxpbs_adjust_82580(pba);
1883 		break;
1884 	case e1000_82576:
1885 		pba = rd32(E1000_RXPBS);
1886 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1887 		break;
1888 	case e1000_82575:
1889 	case e1000_i210:
1890 	case e1000_i211:
1891 	default:
1892 		pba = E1000_PBA_34K;
1893 		break;
1894 	}
1895 
1896 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1897 	    (mac->type < e1000_82576)) {
1898 		/* adjust PBA for jumbo frames */
1899 		wr32(E1000_PBA, pba);
1900 
1901 		/* To maintain wire speed transmits, the Tx FIFO should be
1902 		 * large enough to accommodate two full transmit packets,
1903 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1904 		 * the Rx FIFO should be large enough to accommodate at least
1905 		 * one full receive packet and is similarly rounded up and
1906 		 * expressed in KB.
1907 		 */
1908 		pba = rd32(E1000_PBA);
1909 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1910 		tx_space = pba >> 16;
1911 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1912 		pba &= 0xffff;
1913 		/* the Tx fifo also stores 16 bytes of information about the Tx
1914 		 * but don't include ethernet FCS because hardware appends it
1915 		 */
1916 		min_tx_space = (adapter->max_frame_size +
1917 				sizeof(union e1000_adv_tx_desc) -
1918 				ETH_FCS_LEN) * 2;
1919 		min_tx_space = ALIGN(min_tx_space, 1024);
1920 		min_tx_space >>= 10;
1921 		/* software strips receive CRC, so leave room for it */
1922 		min_rx_space = adapter->max_frame_size;
1923 		min_rx_space = ALIGN(min_rx_space, 1024);
1924 		min_rx_space >>= 10;
1925 
1926 		/* If current Tx allocation is less than the min Tx FIFO size,
1927 		 * and the min Tx FIFO size is less than the current Rx FIFO
1928 		 * allocation, take space away from current Rx allocation
1929 		 */
1930 		if (tx_space < min_tx_space &&
1931 		    ((min_tx_space - tx_space) < pba)) {
1932 			pba = pba - (min_tx_space - tx_space);
1933 
1934 			/* if short on Rx space, Rx wins and must trump Tx
1935 			 * adjustment
1936 			 */
1937 			if (pba < min_rx_space)
1938 				pba = min_rx_space;
1939 		}
1940 		wr32(E1000_PBA, pba);
1941 	}
1942 
1943 	/* flow control settings */
1944 	/* The high water mark must be low enough to fit one full frame
1945 	 * (or the size used for early receive) above it in the Rx FIFO.
1946 	 * Set it to the lower of:
1947 	 * - 90% of the Rx FIFO size, or
1948 	 * - the full Rx FIFO size minus one full frame
1949 	 */
1950 	hwm = min(((pba << 10) * 9 / 10),
1951 			((pba << 10) - 2 * adapter->max_frame_size));
1952 
1953 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1954 	fc->low_water = fc->high_water - 16;
1955 	fc->pause_time = 0xFFFF;
1956 	fc->send_xon = 1;
1957 	fc->current_mode = fc->requested_mode;
1958 
1959 	/* disable receive for all VFs and wait one second */
1960 	if (adapter->vfs_allocated_count) {
1961 		int i;
1962 
1963 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965 
1966 		/* ping all the active vfs to let them know we are going down */
1967 		igb_ping_all_vfs(adapter);
1968 
1969 		/* disable transmits and receives */
1970 		wr32(E1000_VFRE, 0);
1971 		wr32(E1000_VFTE, 0);
1972 	}
1973 
1974 	/* Allow time for pending master requests to run */
1975 	hw->mac.ops.reset_hw(hw);
1976 	wr32(E1000_WUC, 0);
1977 
1978 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 		/* need to resetup here after media swap */
1980 		adapter->ei.get_invariants(hw);
1981 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 	}
1983 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1984 		if (igb_enable_mas(adapter))
1985 			dev_err(&pdev->dev,
1986 				"Error enabling Media Auto Sense\n");
1987 	}
1988 	if (hw->mac.ops.init_hw(hw))
1989 		dev_err(&pdev->dev, "Hardware Error\n");
1990 
1991 	/* Flow control settings reset on hardware reset, so guarantee flow
1992 	 * control is off when forcing speed.
1993 	 */
1994 	if (!hw->mac.autoneg)
1995 		igb_force_mac_fc(hw);
1996 
1997 	igb_init_dmac(adapter, pba);
1998 #ifdef CONFIG_IGB_HWMON
1999 	/* Re-initialize the thermal sensor on i350 devices. */
2000 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2001 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2002 			/* If present, re-initialize the external thermal sensor
2003 			 * interface.
2004 			 */
2005 			if (adapter->ets)
2006 				mac->ops.init_thermal_sensor_thresh(hw);
2007 		}
2008 	}
2009 #endif
2010 	/* Re-establish EEE setting */
2011 	if (hw->phy.media_type == e1000_media_type_copper) {
2012 		switch (mac->type) {
2013 		case e1000_i350:
2014 		case e1000_i210:
2015 		case e1000_i211:
2016 			igb_set_eee_i350(hw, true, true);
2017 			break;
2018 		case e1000_i354:
2019 			igb_set_eee_i354(hw, true, true);
2020 			break;
2021 		default:
2022 			break;
2023 		}
2024 	}
2025 	if (!netif_running(adapter->netdev))
2026 		igb_power_down_link(adapter);
2027 
2028 	igb_update_mng_vlan(adapter);
2029 
2030 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2031 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2032 
2033 	/* Re-enable PTP, where applicable. */
2034 	igb_ptp_reset(adapter);
2035 
2036 	igb_get_phy_info(hw);
2037 }
2038 
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 	netdev_features_t features)
2041 {
2042 	/* Since there is no support for separate Rx/Tx vlan accel
2043 	 * enable/disable make sure Tx flag is always in same state as Rx.
2044 	 */
2045 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2047 	else
2048 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049 
2050 	return features;
2051 }
2052 
2053 static int igb_set_features(struct net_device *netdev,
2054 	netdev_features_t features)
2055 {
2056 	netdev_features_t changed = netdev->features ^ features;
2057 	struct igb_adapter *adapter = netdev_priv(netdev);
2058 
2059 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060 		igb_vlan_mode(netdev, features);
2061 
2062 	if (!(changed & NETIF_F_RXALL))
2063 		return 0;
2064 
2065 	netdev->features = features;
2066 
2067 	if (netif_running(netdev))
2068 		igb_reinit_locked(adapter);
2069 	else
2070 		igb_reset(adapter);
2071 
2072 	return 0;
2073 }
2074 
2075 static const struct net_device_ops igb_netdev_ops = {
2076 	.ndo_open		= igb_open,
2077 	.ndo_stop		= igb_close,
2078 	.ndo_start_xmit		= igb_xmit_frame,
2079 	.ndo_get_stats64	= igb_get_stats64,
2080 	.ndo_set_rx_mode	= igb_set_rx_mode,
2081 	.ndo_set_mac_address	= igb_set_mac,
2082 	.ndo_change_mtu		= igb_change_mtu,
2083 	.ndo_do_ioctl		= igb_ioctl,
2084 	.ndo_tx_timeout		= igb_tx_timeout,
2085 	.ndo_validate_addr	= eth_validate_addr,
2086 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2087 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2088 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2089 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2090 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2091 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2092 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2093 #ifdef CONFIG_NET_POLL_CONTROLLER
2094 	.ndo_poll_controller	= igb_netpoll,
2095 #endif
2096 	.ndo_fix_features	= igb_fix_features,
2097 	.ndo_set_features	= igb_set_features,
2098 	.ndo_features_check	= passthru_features_check,
2099 };
2100 
2101 /**
2102  * igb_set_fw_version - Configure version string for ethtool
2103  * @adapter: adapter struct
2104  **/
2105 void igb_set_fw_version(struct igb_adapter *adapter)
2106 {
2107 	struct e1000_hw *hw = &adapter->hw;
2108 	struct e1000_fw_version fw;
2109 
2110 	igb_get_fw_version(hw, &fw);
2111 
2112 	switch (hw->mac.type) {
2113 	case e1000_i210:
2114 	case e1000_i211:
2115 		if (!(igb_get_flash_presence_i210(hw))) {
2116 			snprintf(adapter->fw_version,
2117 				 sizeof(adapter->fw_version),
2118 				 "%2d.%2d-%d",
2119 				 fw.invm_major, fw.invm_minor,
2120 				 fw.invm_img_type);
2121 			break;
2122 		}
2123 		/* fall through */
2124 	default:
2125 		/* if option is rom valid, display its version too */
2126 		if (fw.or_valid) {
2127 			snprintf(adapter->fw_version,
2128 				 sizeof(adapter->fw_version),
2129 				 "%d.%d, 0x%08x, %d.%d.%d",
2130 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2131 				 fw.or_major, fw.or_build, fw.or_patch);
2132 		/* no option rom */
2133 		} else if (fw.etrack_id != 0X0000) {
2134 			snprintf(adapter->fw_version,
2135 			    sizeof(adapter->fw_version),
2136 			    "%d.%d, 0x%08x",
2137 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2138 		} else {
2139 		snprintf(adapter->fw_version,
2140 		    sizeof(adapter->fw_version),
2141 		    "%d.%d.%d",
2142 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2143 		}
2144 		break;
2145 	}
2146 }
2147 
2148 /**
2149  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2150  *
2151  * @adapter: adapter struct
2152  **/
2153 static void igb_init_mas(struct igb_adapter *adapter)
2154 {
2155 	struct e1000_hw *hw = &adapter->hw;
2156 	u16 eeprom_data;
2157 
2158 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2159 	switch (hw->bus.func) {
2160 	case E1000_FUNC_0:
2161 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2162 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163 			netdev_info(adapter->netdev,
2164 				"MAS: Enabling Media Autosense for port %d\n",
2165 				hw->bus.func);
2166 		}
2167 		break;
2168 	case E1000_FUNC_1:
2169 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2170 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171 			netdev_info(adapter->netdev,
2172 				"MAS: Enabling Media Autosense for port %d\n",
2173 				hw->bus.func);
2174 		}
2175 		break;
2176 	case E1000_FUNC_2:
2177 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2178 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179 			netdev_info(adapter->netdev,
2180 				"MAS: Enabling Media Autosense for port %d\n",
2181 				hw->bus.func);
2182 		}
2183 		break;
2184 	case E1000_FUNC_3:
2185 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2186 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2187 			netdev_info(adapter->netdev,
2188 				"MAS: Enabling Media Autosense for port %d\n",
2189 				hw->bus.func);
2190 		}
2191 		break;
2192 	default:
2193 		/* Shouldn't get here */
2194 		netdev_err(adapter->netdev,
2195 			"MAS: Invalid port configuration, returning\n");
2196 		break;
2197 	}
2198 }
2199 
2200 /**
2201  *  igb_init_i2c - Init I2C interface
2202  *  @adapter: pointer to adapter structure
2203  **/
2204 static s32 igb_init_i2c(struct igb_adapter *adapter)
2205 {
2206 	s32 status = 0;
2207 
2208 	/* I2C interface supported on i350 devices */
2209 	if (adapter->hw.mac.type != e1000_i350)
2210 		return 0;
2211 
2212 	/* Initialize the i2c bus which is controlled by the registers.
2213 	 * This bus will use the i2c_algo_bit structue that implements
2214 	 * the protocol through toggling of the 4 bits in the register.
2215 	 */
2216 	adapter->i2c_adap.owner = THIS_MODULE;
2217 	adapter->i2c_algo = igb_i2c_algo;
2218 	adapter->i2c_algo.data = adapter;
2219 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2220 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2221 	strlcpy(adapter->i2c_adap.name, "igb BB",
2222 		sizeof(adapter->i2c_adap.name));
2223 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2224 	return status;
2225 }
2226 
2227 /**
2228  *  igb_probe - Device Initialization Routine
2229  *  @pdev: PCI device information struct
2230  *  @ent: entry in igb_pci_tbl
2231  *
2232  *  Returns 0 on success, negative on failure
2233  *
2234  *  igb_probe initializes an adapter identified by a pci_dev structure.
2235  *  The OS initialization, configuring of the adapter private structure,
2236  *  and a hardware reset occur.
2237  **/
2238 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2239 {
2240 	struct net_device *netdev;
2241 	struct igb_adapter *adapter;
2242 	struct e1000_hw *hw;
2243 	u16 eeprom_data = 0;
2244 	s32 ret_val;
2245 	static int global_quad_port_a; /* global quad port a indication */
2246 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2247 	int err, pci_using_dac;
2248 	u8 part_str[E1000_PBANUM_LENGTH];
2249 
2250 	/* Catch broken hardware that put the wrong VF device ID in
2251 	 * the PCIe SR-IOV capability.
2252 	 */
2253 	if (pdev->is_virtfn) {
2254 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2255 			pci_name(pdev), pdev->vendor, pdev->device);
2256 		return -EINVAL;
2257 	}
2258 
2259 	err = pci_enable_device_mem(pdev);
2260 	if (err)
2261 		return err;
2262 
2263 	pci_using_dac = 0;
2264 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2265 	if (!err) {
2266 		pci_using_dac = 1;
2267 	} else {
2268 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2269 		if (err) {
2270 			dev_err(&pdev->dev,
2271 				"No usable DMA configuration, aborting\n");
2272 			goto err_dma;
2273 		}
2274 	}
2275 
2276 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2277 					   IORESOURCE_MEM),
2278 					   igb_driver_name);
2279 	if (err)
2280 		goto err_pci_reg;
2281 
2282 	pci_enable_pcie_error_reporting(pdev);
2283 
2284 	pci_set_master(pdev);
2285 	pci_save_state(pdev);
2286 
2287 	err = -ENOMEM;
2288 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2289 				   IGB_MAX_TX_QUEUES);
2290 	if (!netdev)
2291 		goto err_alloc_etherdev;
2292 
2293 	SET_NETDEV_DEV(netdev, &pdev->dev);
2294 
2295 	pci_set_drvdata(pdev, netdev);
2296 	adapter = netdev_priv(netdev);
2297 	adapter->netdev = netdev;
2298 	adapter->pdev = pdev;
2299 	hw = &adapter->hw;
2300 	hw->back = adapter;
2301 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2302 
2303 	err = -EIO;
2304 	hw->hw_addr = pci_iomap(pdev, 0, 0);
2305 	if (!hw->hw_addr)
2306 		goto err_ioremap;
2307 
2308 	netdev->netdev_ops = &igb_netdev_ops;
2309 	igb_set_ethtool_ops(netdev);
2310 	netdev->watchdog_timeo = 5 * HZ;
2311 
2312 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2313 
2314 	netdev->mem_start = pci_resource_start(pdev, 0);
2315 	netdev->mem_end = pci_resource_end(pdev, 0);
2316 
2317 	/* PCI config space info */
2318 	hw->vendor_id = pdev->vendor;
2319 	hw->device_id = pdev->device;
2320 	hw->revision_id = pdev->revision;
2321 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2322 	hw->subsystem_device_id = pdev->subsystem_device;
2323 
2324 	/* Copy the default MAC, PHY and NVM function pointers */
2325 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2326 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2327 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2328 	/* Initialize skew-specific constants */
2329 	err = ei->get_invariants(hw);
2330 	if (err)
2331 		goto err_sw_init;
2332 
2333 	/* setup the private structure */
2334 	err = igb_sw_init(adapter);
2335 	if (err)
2336 		goto err_sw_init;
2337 
2338 	igb_get_bus_info_pcie(hw);
2339 
2340 	hw->phy.autoneg_wait_to_complete = false;
2341 
2342 	/* Copper options */
2343 	if (hw->phy.media_type == e1000_media_type_copper) {
2344 		hw->phy.mdix = AUTO_ALL_MODES;
2345 		hw->phy.disable_polarity_correction = false;
2346 		hw->phy.ms_type = e1000_ms_hw_default;
2347 	}
2348 
2349 	if (igb_check_reset_block(hw))
2350 		dev_info(&pdev->dev,
2351 			"PHY reset is blocked due to SOL/IDER session.\n");
2352 
2353 	/* features is initialized to 0 in allocation, it might have bits
2354 	 * set by igb_sw_init so we should use an or instead of an
2355 	 * assignment.
2356 	 */
2357 	netdev->features |= NETIF_F_SG |
2358 			    NETIF_F_IP_CSUM |
2359 			    NETIF_F_IPV6_CSUM |
2360 			    NETIF_F_TSO |
2361 			    NETIF_F_TSO6 |
2362 			    NETIF_F_RXHASH |
2363 			    NETIF_F_RXCSUM |
2364 			    NETIF_F_HW_VLAN_CTAG_RX |
2365 			    NETIF_F_HW_VLAN_CTAG_TX;
2366 
2367 	/* copy netdev features into list of user selectable features */
2368 	netdev->hw_features |= netdev->features;
2369 	netdev->hw_features |= NETIF_F_RXALL;
2370 
2371 	/* set this bit last since it cannot be part of hw_features */
2372 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2373 
2374 	netdev->vlan_features |= NETIF_F_TSO |
2375 				 NETIF_F_TSO6 |
2376 				 NETIF_F_IP_CSUM |
2377 				 NETIF_F_IPV6_CSUM |
2378 				 NETIF_F_SG;
2379 
2380 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2381 
2382 	if (pci_using_dac) {
2383 		netdev->features |= NETIF_F_HIGHDMA;
2384 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2385 	}
2386 
2387 	if (hw->mac.type >= e1000_82576) {
2388 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2389 		netdev->features |= NETIF_F_SCTP_CSUM;
2390 	}
2391 
2392 	netdev->priv_flags |= IFF_UNICAST_FLT;
2393 
2394 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2395 
2396 	/* before reading the NVM, reset the controller to put the device in a
2397 	 * known good starting state
2398 	 */
2399 	hw->mac.ops.reset_hw(hw);
2400 
2401 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2402 	 * that doesn't contain a checksum
2403 	 */
2404 	switch (hw->mac.type) {
2405 	case e1000_i210:
2406 	case e1000_i211:
2407 		if (igb_get_flash_presence_i210(hw)) {
2408 			if (hw->nvm.ops.validate(hw) < 0) {
2409 				dev_err(&pdev->dev,
2410 					"The NVM Checksum Is Not Valid\n");
2411 				err = -EIO;
2412 				goto err_eeprom;
2413 			}
2414 		}
2415 		break;
2416 	default:
2417 		if (hw->nvm.ops.validate(hw) < 0) {
2418 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2419 			err = -EIO;
2420 			goto err_eeprom;
2421 		}
2422 		break;
2423 	}
2424 
2425 	/* copy the MAC address out of the NVM */
2426 	if (hw->mac.ops.read_mac_addr(hw))
2427 		dev_err(&pdev->dev, "NVM Read Error\n");
2428 
2429 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2430 
2431 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2432 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2433 		err = -EIO;
2434 		goto err_eeprom;
2435 	}
2436 
2437 	/* get firmware version for ethtool -i */
2438 	igb_set_fw_version(adapter);
2439 
2440 	/* configure RXPBSIZE and TXPBSIZE */
2441 	if (hw->mac.type == e1000_i210) {
2442 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2443 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2444 	}
2445 
2446 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2447 		    (unsigned long) adapter);
2448 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2449 		    (unsigned long) adapter);
2450 
2451 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2452 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2453 
2454 	/* Initialize link properties that are user-changeable */
2455 	adapter->fc_autoneg = true;
2456 	hw->mac.autoneg = true;
2457 	hw->phy.autoneg_advertised = 0x2f;
2458 
2459 	hw->fc.requested_mode = e1000_fc_default;
2460 	hw->fc.current_mode = e1000_fc_default;
2461 
2462 	igb_validate_mdi_setting(hw);
2463 
2464 	/* By default, support wake on port A */
2465 	if (hw->bus.func == 0)
2466 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2467 
2468 	/* Check the NVM for wake support on non-port A ports */
2469 	if (hw->mac.type >= e1000_82580)
2470 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2471 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2472 				 &eeprom_data);
2473 	else if (hw->bus.func == 1)
2474 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2475 
2476 	if (eeprom_data & IGB_EEPROM_APME)
2477 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2478 
2479 	/* now that we have the eeprom settings, apply the special cases where
2480 	 * the eeprom may be wrong or the board simply won't support wake on
2481 	 * lan on a particular port
2482 	 */
2483 	switch (pdev->device) {
2484 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2485 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2486 		break;
2487 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2488 	case E1000_DEV_ID_82576_FIBER:
2489 	case E1000_DEV_ID_82576_SERDES:
2490 		/* Wake events only supported on port A for dual fiber
2491 		 * regardless of eeprom setting
2492 		 */
2493 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2494 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495 		break;
2496 	case E1000_DEV_ID_82576_QUAD_COPPER:
2497 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2498 		/* if quad port adapter, disable WoL on all but port A */
2499 		if (global_quad_port_a != 0)
2500 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2501 		else
2502 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2503 		/* Reset for multiple quad port adapters */
2504 		if (++global_quad_port_a == 4)
2505 			global_quad_port_a = 0;
2506 		break;
2507 	default:
2508 		/* If the device can't wake, don't set software support */
2509 		if (!device_can_wakeup(&adapter->pdev->dev))
2510 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2511 	}
2512 
2513 	/* initialize the wol settings based on the eeprom settings */
2514 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2515 		adapter->wol |= E1000_WUFC_MAG;
2516 
2517 	/* Some vendors want WoL disabled by default, but still supported */
2518 	if ((hw->mac.type == e1000_i350) &&
2519 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2520 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2521 		adapter->wol = 0;
2522 	}
2523 
2524 	device_set_wakeup_enable(&adapter->pdev->dev,
2525 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2526 
2527 	/* reset the hardware with the new settings */
2528 	igb_reset(adapter);
2529 
2530 	/* Init the I2C interface */
2531 	err = igb_init_i2c(adapter);
2532 	if (err) {
2533 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2534 		goto err_eeprom;
2535 	}
2536 
2537 	/* let the f/w know that the h/w is now under the control of the
2538 	 * driver.
2539 	 */
2540 	igb_get_hw_control(adapter);
2541 
2542 	strcpy(netdev->name, "eth%d");
2543 	err = register_netdev(netdev);
2544 	if (err)
2545 		goto err_register;
2546 
2547 	/* carrier off reporting is important to ethtool even BEFORE open */
2548 	netif_carrier_off(netdev);
2549 
2550 #ifdef CONFIG_IGB_DCA
2551 	if (dca_add_requester(&pdev->dev) == 0) {
2552 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2553 		dev_info(&pdev->dev, "DCA enabled\n");
2554 		igb_setup_dca(adapter);
2555 	}
2556 
2557 #endif
2558 #ifdef CONFIG_IGB_HWMON
2559 	/* Initialize the thermal sensor on i350 devices. */
2560 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2561 		u16 ets_word;
2562 
2563 		/* Read the NVM to determine if this i350 device supports an
2564 		 * external thermal sensor.
2565 		 */
2566 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2567 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2568 			adapter->ets = true;
2569 		else
2570 			adapter->ets = false;
2571 		if (igb_sysfs_init(adapter))
2572 			dev_err(&pdev->dev,
2573 				"failed to allocate sysfs resources\n");
2574 	} else {
2575 		adapter->ets = false;
2576 	}
2577 #endif
2578 	/* Check if Media Autosense is enabled */
2579 	adapter->ei = *ei;
2580 	if (hw->dev_spec._82575.mas_capable)
2581 		igb_init_mas(adapter);
2582 
2583 	/* do hw tstamp init after resetting */
2584 	igb_ptp_init(adapter);
2585 
2586 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2587 	/* print bus type/speed/width info, not applicable to i354 */
2588 	if (hw->mac.type != e1000_i354) {
2589 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2590 			 netdev->name,
2591 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2592 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2593 			   "unknown"),
2594 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2595 			  "Width x4" :
2596 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2597 			  "Width x2" :
2598 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2599 			  "Width x1" : "unknown"), netdev->dev_addr);
2600 	}
2601 
2602 	if ((hw->mac.type >= e1000_i210 ||
2603 	     igb_get_flash_presence_i210(hw))) {
2604 		ret_val = igb_read_part_string(hw, part_str,
2605 					       E1000_PBANUM_LENGTH);
2606 	} else {
2607 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2608 	}
2609 
2610 	if (ret_val)
2611 		strcpy(part_str, "Unknown");
2612 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2613 	dev_info(&pdev->dev,
2614 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2615 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2616 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2617 		adapter->num_rx_queues, adapter->num_tx_queues);
2618 	if (hw->phy.media_type == e1000_media_type_copper) {
2619 		switch (hw->mac.type) {
2620 		case e1000_i350:
2621 		case e1000_i210:
2622 		case e1000_i211:
2623 			/* Enable EEE for internal copper PHY devices */
2624 			err = igb_set_eee_i350(hw, true, true);
2625 			if ((!err) &&
2626 			    (!hw->dev_spec._82575.eee_disable)) {
2627 				adapter->eee_advert =
2628 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2629 				adapter->flags |= IGB_FLAG_EEE;
2630 			}
2631 			break;
2632 		case e1000_i354:
2633 			if ((rd32(E1000_CTRL_EXT) &
2634 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2635 				err = igb_set_eee_i354(hw, true, true);
2636 				if ((!err) &&
2637 					(!hw->dev_spec._82575.eee_disable)) {
2638 					adapter->eee_advert =
2639 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2640 					adapter->flags |= IGB_FLAG_EEE;
2641 				}
2642 			}
2643 			break;
2644 		default:
2645 			break;
2646 		}
2647 	}
2648 	pm_runtime_put_noidle(&pdev->dev);
2649 	return 0;
2650 
2651 err_register:
2652 	igb_release_hw_control(adapter);
2653 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2654 err_eeprom:
2655 	if (!igb_check_reset_block(hw))
2656 		igb_reset_phy(hw);
2657 
2658 	if (hw->flash_address)
2659 		iounmap(hw->flash_address);
2660 err_sw_init:
2661 	igb_clear_interrupt_scheme(adapter);
2662 	pci_iounmap(pdev, hw->hw_addr);
2663 err_ioremap:
2664 	free_netdev(netdev);
2665 err_alloc_etherdev:
2666 	pci_release_selected_regions(pdev,
2667 				     pci_select_bars(pdev, IORESOURCE_MEM));
2668 err_pci_reg:
2669 err_dma:
2670 	pci_disable_device(pdev);
2671 	return err;
2672 }
2673 
2674 #ifdef CONFIG_PCI_IOV
2675 static int igb_disable_sriov(struct pci_dev *pdev)
2676 {
2677 	struct net_device *netdev = pci_get_drvdata(pdev);
2678 	struct igb_adapter *adapter = netdev_priv(netdev);
2679 	struct e1000_hw *hw = &adapter->hw;
2680 
2681 	/* reclaim resources allocated to VFs */
2682 	if (adapter->vf_data) {
2683 		/* disable iov and allow time for transactions to clear */
2684 		if (pci_vfs_assigned(pdev)) {
2685 			dev_warn(&pdev->dev,
2686 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2687 			return -EPERM;
2688 		} else {
2689 			pci_disable_sriov(pdev);
2690 			msleep(500);
2691 		}
2692 
2693 		kfree(adapter->vf_data);
2694 		adapter->vf_data = NULL;
2695 		adapter->vfs_allocated_count = 0;
2696 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2697 		wrfl();
2698 		msleep(100);
2699 		dev_info(&pdev->dev, "IOV Disabled\n");
2700 
2701 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2702 		adapter->flags |= IGB_FLAG_DMAC;
2703 	}
2704 
2705 	return 0;
2706 }
2707 
2708 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2709 {
2710 	struct net_device *netdev = pci_get_drvdata(pdev);
2711 	struct igb_adapter *adapter = netdev_priv(netdev);
2712 	int old_vfs = pci_num_vf(pdev);
2713 	int err = 0;
2714 	int i;
2715 
2716 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2717 		err = -EPERM;
2718 		goto out;
2719 	}
2720 	if (!num_vfs)
2721 		goto out;
2722 
2723 	if (old_vfs) {
2724 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2725 			 old_vfs, max_vfs);
2726 		adapter->vfs_allocated_count = old_vfs;
2727 	} else
2728 		adapter->vfs_allocated_count = num_vfs;
2729 
2730 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2731 				sizeof(struct vf_data_storage), GFP_KERNEL);
2732 
2733 	/* if allocation failed then we do not support SR-IOV */
2734 	if (!adapter->vf_data) {
2735 		adapter->vfs_allocated_count = 0;
2736 		dev_err(&pdev->dev,
2737 			"Unable to allocate memory for VF Data Storage\n");
2738 		err = -ENOMEM;
2739 		goto out;
2740 	}
2741 
2742 	/* only call pci_enable_sriov() if no VFs are allocated already */
2743 	if (!old_vfs) {
2744 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2745 		if (err)
2746 			goto err_out;
2747 	}
2748 	dev_info(&pdev->dev, "%d VFs allocated\n",
2749 		 adapter->vfs_allocated_count);
2750 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2751 		igb_vf_configure(adapter, i);
2752 
2753 	/* DMA Coalescing is not supported in IOV mode. */
2754 	adapter->flags &= ~IGB_FLAG_DMAC;
2755 	goto out;
2756 
2757 err_out:
2758 	kfree(adapter->vf_data);
2759 	adapter->vf_data = NULL;
2760 	adapter->vfs_allocated_count = 0;
2761 out:
2762 	return err;
2763 }
2764 
2765 #endif
2766 /**
2767  *  igb_remove_i2c - Cleanup  I2C interface
2768  *  @adapter: pointer to adapter structure
2769  **/
2770 static void igb_remove_i2c(struct igb_adapter *adapter)
2771 {
2772 	/* free the adapter bus structure */
2773 	i2c_del_adapter(&adapter->i2c_adap);
2774 }
2775 
2776 /**
2777  *  igb_remove - Device Removal Routine
2778  *  @pdev: PCI device information struct
2779  *
2780  *  igb_remove is called by the PCI subsystem to alert the driver
2781  *  that it should release a PCI device.  The could be caused by a
2782  *  Hot-Plug event, or because the driver is going to be removed from
2783  *  memory.
2784  **/
2785 static void igb_remove(struct pci_dev *pdev)
2786 {
2787 	struct net_device *netdev = pci_get_drvdata(pdev);
2788 	struct igb_adapter *adapter = netdev_priv(netdev);
2789 	struct e1000_hw *hw = &adapter->hw;
2790 
2791 	pm_runtime_get_noresume(&pdev->dev);
2792 #ifdef CONFIG_IGB_HWMON
2793 	igb_sysfs_exit(adapter);
2794 #endif
2795 	igb_remove_i2c(adapter);
2796 	igb_ptp_stop(adapter);
2797 	/* The watchdog timer may be rescheduled, so explicitly
2798 	 * disable watchdog from being rescheduled.
2799 	 */
2800 	set_bit(__IGB_DOWN, &adapter->state);
2801 	del_timer_sync(&adapter->watchdog_timer);
2802 	del_timer_sync(&adapter->phy_info_timer);
2803 
2804 	cancel_work_sync(&adapter->reset_task);
2805 	cancel_work_sync(&adapter->watchdog_task);
2806 
2807 #ifdef CONFIG_IGB_DCA
2808 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2809 		dev_info(&pdev->dev, "DCA disabled\n");
2810 		dca_remove_requester(&pdev->dev);
2811 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2812 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2813 	}
2814 #endif
2815 
2816 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2817 	 * would have already happened in close and is redundant.
2818 	 */
2819 	igb_release_hw_control(adapter);
2820 
2821 	unregister_netdev(netdev);
2822 
2823 	igb_clear_interrupt_scheme(adapter);
2824 
2825 #ifdef CONFIG_PCI_IOV
2826 	igb_disable_sriov(pdev);
2827 #endif
2828 
2829 	pci_iounmap(pdev, hw->hw_addr);
2830 	if (hw->flash_address)
2831 		iounmap(hw->flash_address);
2832 	pci_release_selected_regions(pdev,
2833 				     pci_select_bars(pdev, IORESOURCE_MEM));
2834 
2835 	kfree(adapter->shadow_vfta);
2836 	free_netdev(netdev);
2837 
2838 	pci_disable_pcie_error_reporting(pdev);
2839 
2840 	pci_disable_device(pdev);
2841 }
2842 
2843 /**
2844  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2845  *  @adapter: board private structure to initialize
2846  *
2847  *  This function initializes the vf specific data storage and then attempts to
2848  *  allocate the VFs.  The reason for ordering it this way is because it is much
2849  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2850  *  the memory for the VFs.
2851  **/
2852 static void igb_probe_vfs(struct igb_adapter *adapter)
2853 {
2854 #ifdef CONFIG_PCI_IOV
2855 	struct pci_dev *pdev = adapter->pdev;
2856 	struct e1000_hw *hw = &adapter->hw;
2857 
2858 	/* Virtualization features not supported on i210 family. */
2859 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2860 		return;
2861 
2862 	pci_sriov_set_totalvfs(pdev, 7);
2863 	igb_pci_enable_sriov(pdev, max_vfs);
2864 
2865 #endif /* CONFIG_PCI_IOV */
2866 }
2867 
2868 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2869 {
2870 	struct e1000_hw *hw = &adapter->hw;
2871 	u32 max_rss_queues;
2872 
2873 	/* Determine the maximum number of RSS queues supported. */
2874 	switch (hw->mac.type) {
2875 	case e1000_i211:
2876 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2877 		break;
2878 	case e1000_82575:
2879 	case e1000_i210:
2880 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2881 		break;
2882 	case e1000_i350:
2883 		/* I350 cannot do RSS and SR-IOV at the same time */
2884 		if (!!adapter->vfs_allocated_count) {
2885 			max_rss_queues = 1;
2886 			break;
2887 		}
2888 		/* fall through */
2889 	case e1000_82576:
2890 		if (!!adapter->vfs_allocated_count) {
2891 			max_rss_queues = 2;
2892 			break;
2893 		}
2894 		/* fall through */
2895 	case e1000_82580:
2896 	case e1000_i354:
2897 	default:
2898 		max_rss_queues = IGB_MAX_RX_QUEUES;
2899 		break;
2900 	}
2901 
2902 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2903 
2904 	/* Determine if we need to pair queues. */
2905 	switch (hw->mac.type) {
2906 	case e1000_82575:
2907 	case e1000_i211:
2908 		/* Device supports enough interrupts without queue pairing. */
2909 		break;
2910 	case e1000_82576:
2911 		/* If VFs are going to be allocated with RSS queues then we
2912 		 * should pair the queues in order to conserve interrupts due
2913 		 * to limited supply.
2914 		 */
2915 		if ((adapter->rss_queues > 1) &&
2916 		    (adapter->vfs_allocated_count > 6))
2917 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2918 		/* fall through */
2919 	case e1000_82580:
2920 	case e1000_i350:
2921 	case e1000_i354:
2922 	case e1000_i210:
2923 	default:
2924 		/* If rss_queues > half of max_rss_queues, pair the queues in
2925 		 * order to conserve interrupts due to limited supply.
2926 		 */
2927 		if (adapter->rss_queues > (max_rss_queues / 2))
2928 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2929 		break;
2930 	}
2931 }
2932 
2933 /**
2934  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2935  *  @adapter: board private structure to initialize
2936  *
2937  *  igb_sw_init initializes the Adapter private data structure.
2938  *  Fields are initialized based on PCI device information and
2939  *  OS network device settings (MTU size).
2940  **/
2941 static int igb_sw_init(struct igb_adapter *adapter)
2942 {
2943 	struct e1000_hw *hw = &adapter->hw;
2944 	struct net_device *netdev = adapter->netdev;
2945 	struct pci_dev *pdev = adapter->pdev;
2946 
2947 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2948 
2949 	/* set default ring sizes */
2950 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2951 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2952 
2953 	/* set default ITR values */
2954 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2955 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2956 
2957 	/* set default work limits */
2958 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2959 
2960 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2961 				  VLAN_HLEN;
2962 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2963 
2964 	spin_lock_init(&adapter->stats64_lock);
2965 #ifdef CONFIG_PCI_IOV
2966 	switch (hw->mac.type) {
2967 	case e1000_82576:
2968 	case e1000_i350:
2969 		if (max_vfs > 7) {
2970 			dev_warn(&pdev->dev,
2971 				 "Maximum of 7 VFs per PF, using max\n");
2972 			max_vfs = adapter->vfs_allocated_count = 7;
2973 		} else
2974 			adapter->vfs_allocated_count = max_vfs;
2975 		if (adapter->vfs_allocated_count)
2976 			dev_warn(&pdev->dev,
2977 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2978 		break;
2979 	default:
2980 		break;
2981 	}
2982 #endif /* CONFIG_PCI_IOV */
2983 
2984 	igb_init_queue_configuration(adapter);
2985 
2986 	/* Setup and initialize a copy of the hw vlan table array */
2987 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2988 				       GFP_ATOMIC);
2989 
2990 	/* This call may decrease the number of queues */
2991 	if (igb_init_interrupt_scheme(adapter, true)) {
2992 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2993 		return -ENOMEM;
2994 	}
2995 
2996 	igb_probe_vfs(adapter);
2997 
2998 	/* Explicitly disable IRQ since the NIC can be in any state. */
2999 	igb_irq_disable(adapter);
3000 
3001 	if (hw->mac.type >= e1000_i350)
3002 		adapter->flags &= ~IGB_FLAG_DMAC;
3003 
3004 	set_bit(__IGB_DOWN, &adapter->state);
3005 	return 0;
3006 }
3007 
3008 /**
3009  *  igb_open - Called when a network interface is made active
3010  *  @netdev: network interface device structure
3011  *
3012  *  Returns 0 on success, negative value on failure
3013  *
3014  *  The open entry point is called when a network interface is made
3015  *  active by the system (IFF_UP).  At this point all resources needed
3016  *  for transmit and receive operations are allocated, the interrupt
3017  *  handler is registered with the OS, the watchdog timer is started,
3018  *  and the stack is notified that the interface is ready.
3019  **/
3020 static int __igb_open(struct net_device *netdev, bool resuming)
3021 {
3022 	struct igb_adapter *adapter = netdev_priv(netdev);
3023 	struct e1000_hw *hw = &adapter->hw;
3024 	struct pci_dev *pdev = adapter->pdev;
3025 	int err;
3026 	int i;
3027 
3028 	/* disallow open during test */
3029 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3030 		WARN_ON(resuming);
3031 		return -EBUSY;
3032 	}
3033 
3034 	if (!resuming)
3035 		pm_runtime_get_sync(&pdev->dev);
3036 
3037 	netif_carrier_off(netdev);
3038 
3039 	/* allocate transmit descriptors */
3040 	err = igb_setup_all_tx_resources(adapter);
3041 	if (err)
3042 		goto err_setup_tx;
3043 
3044 	/* allocate receive descriptors */
3045 	err = igb_setup_all_rx_resources(adapter);
3046 	if (err)
3047 		goto err_setup_rx;
3048 
3049 	igb_power_up_link(adapter);
3050 
3051 	/* before we allocate an interrupt, we must be ready to handle it.
3052 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3053 	 * as soon as we call pci_request_irq, so we have to setup our
3054 	 * clean_rx handler before we do so.
3055 	 */
3056 	igb_configure(adapter);
3057 
3058 	err = igb_request_irq(adapter);
3059 	if (err)
3060 		goto err_req_irq;
3061 
3062 	/* Notify the stack of the actual queue counts. */
3063 	err = netif_set_real_num_tx_queues(adapter->netdev,
3064 					   adapter->num_tx_queues);
3065 	if (err)
3066 		goto err_set_queues;
3067 
3068 	err = netif_set_real_num_rx_queues(adapter->netdev,
3069 					   adapter->num_rx_queues);
3070 	if (err)
3071 		goto err_set_queues;
3072 
3073 	/* From here on the code is the same as igb_up() */
3074 	clear_bit(__IGB_DOWN, &adapter->state);
3075 
3076 	for (i = 0; i < adapter->num_q_vectors; i++)
3077 		napi_enable(&(adapter->q_vector[i]->napi));
3078 
3079 	/* Clear any pending interrupts. */
3080 	rd32(E1000_ICR);
3081 
3082 	igb_irq_enable(adapter);
3083 
3084 	/* notify VFs that reset has been completed */
3085 	if (adapter->vfs_allocated_count) {
3086 		u32 reg_data = rd32(E1000_CTRL_EXT);
3087 
3088 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3089 		wr32(E1000_CTRL_EXT, reg_data);
3090 	}
3091 
3092 	netif_tx_start_all_queues(netdev);
3093 
3094 	if (!resuming)
3095 		pm_runtime_put(&pdev->dev);
3096 
3097 	/* start the watchdog. */
3098 	hw->mac.get_link_status = 1;
3099 	schedule_work(&adapter->watchdog_task);
3100 
3101 	return 0;
3102 
3103 err_set_queues:
3104 	igb_free_irq(adapter);
3105 err_req_irq:
3106 	igb_release_hw_control(adapter);
3107 	igb_power_down_link(adapter);
3108 	igb_free_all_rx_resources(adapter);
3109 err_setup_rx:
3110 	igb_free_all_tx_resources(adapter);
3111 err_setup_tx:
3112 	igb_reset(adapter);
3113 	if (!resuming)
3114 		pm_runtime_put(&pdev->dev);
3115 
3116 	return err;
3117 }
3118 
3119 static int igb_open(struct net_device *netdev)
3120 {
3121 	return __igb_open(netdev, false);
3122 }
3123 
3124 /**
3125  *  igb_close - Disables a network interface
3126  *  @netdev: network interface device structure
3127  *
3128  *  Returns 0, this is not allowed to fail
3129  *
3130  *  The close entry point is called when an interface is de-activated
3131  *  by the OS.  The hardware is still under the driver's control, but
3132  *  needs to be disabled.  A global MAC reset is issued to stop the
3133  *  hardware, and all transmit and receive resources are freed.
3134  **/
3135 static int __igb_close(struct net_device *netdev, bool suspending)
3136 {
3137 	struct igb_adapter *adapter = netdev_priv(netdev);
3138 	struct pci_dev *pdev = adapter->pdev;
3139 
3140 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3141 
3142 	if (!suspending)
3143 		pm_runtime_get_sync(&pdev->dev);
3144 
3145 	igb_down(adapter);
3146 	igb_free_irq(adapter);
3147 
3148 	igb_free_all_tx_resources(adapter);
3149 	igb_free_all_rx_resources(adapter);
3150 
3151 	if (!suspending)
3152 		pm_runtime_put_sync(&pdev->dev);
3153 	return 0;
3154 }
3155 
3156 static int igb_close(struct net_device *netdev)
3157 {
3158 	return __igb_close(netdev, false);
3159 }
3160 
3161 /**
3162  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3163  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3164  *
3165  *  Return 0 on success, negative on failure
3166  **/
3167 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3168 {
3169 	struct device *dev = tx_ring->dev;
3170 	int size;
3171 
3172 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3173 
3174 	tx_ring->tx_buffer_info = vzalloc(size);
3175 	if (!tx_ring->tx_buffer_info)
3176 		goto err;
3177 
3178 	/* round up to nearest 4K */
3179 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3180 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3181 
3182 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3183 					   &tx_ring->dma, GFP_KERNEL);
3184 	if (!tx_ring->desc)
3185 		goto err;
3186 
3187 	tx_ring->next_to_use = 0;
3188 	tx_ring->next_to_clean = 0;
3189 
3190 	return 0;
3191 
3192 err:
3193 	vfree(tx_ring->tx_buffer_info);
3194 	tx_ring->tx_buffer_info = NULL;
3195 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3196 	return -ENOMEM;
3197 }
3198 
3199 /**
3200  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3201  *				 (Descriptors) for all queues
3202  *  @adapter: board private structure
3203  *
3204  *  Return 0 on success, negative on failure
3205  **/
3206 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3207 {
3208 	struct pci_dev *pdev = adapter->pdev;
3209 	int i, err = 0;
3210 
3211 	for (i = 0; i < adapter->num_tx_queues; i++) {
3212 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3213 		if (err) {
3214 			dev_err(&pdev->dev,
3215 				"Allocation for Tx Queue %u failed\n", i);
3216 			for (i--; i >= 0; i--)
3217 				igb_free_tx_resources(adapter->tx_ring[i]);
3218 			break;
3219 		}
3220 	}
3221 
3222 	return err;
3223 }
3224 
3225 /**
3226  *  igb_setup_tctl - configure the transmit control registers
3227  *  @adapter: Board private structure
3228  **/
3229 void igb_setup_tctl(struct igb_adapter *adapter)
3230 {
3231 	struct e1000_hw *hw = &adapter->hw;
3232 	u32 tctl;
3233 
3234 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3235 	wr32(E1000_TXDCTL(0), 0);
3236 
3237 	/* Program the Transmit Control Register */
3238 	tctl = rd32(E1000_TCTL);
3239 	tctl &= ~E1000_TCTL_CT;
3240 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3241 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3242 
3243 	igb_config_collision_dist(hw);
3244 
3245 	/* Enable transmits */
3246 	tctl |= E1000_TCTL_EN;
3247 
3248 	wr32(E1000_TCTL, tctl);
3249 }
3250 
3251 /**
3252  *  igb_configure_tx_ring - Configure transmit ring after Reset
3253  *  @adapter: board private structure
3254  *  @ring: tx ring to configure
3255  *
3256  *  Configure a transmit ring after a reset.
3257  **/
3258 void igb_configure_tx_ring(struct igb_adapter *adapter,
3259 			   struct igb_ring *ring)
3260 {
3261 	struct e1000_hw *hw = &adapter->hw;
3262 	u32 txdctl = 0;
3263 	u64 tdba = ring->dma;
3264 	int reg_idx = ring->reg_idx;
3265 
3266 	/* disable the queue */
3267 	wr32(E1000_TXDCTL(reg_idx), 0);
3268 	wrfl();
3269 	mdelay(10);
3270 
3271 	wr32(E1000_TDLEN(reg_idx),
3272 	     ring->count * sizeof(union e1000_adv_tx_desc));
3273 	wr32(E1000_TDBAL(reg_idx),
3274 	     tdba & 0x00000000ffffffffULL);
3275 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3276 
3277 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3278 	wr32(E1000_TDH(reg_idx), 0);
3279 	writel(0, ring->tail);
3280 
3281 	txdctl |= IGB_TX_PTHRESH;
3282 	txdctl |= IGB_TX_HTHRESH << 8;
3283 	txdctl |= IGB_TX_WTHRESH << 16;
3284 
3285 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3286 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3287 }
3288 
3289 /**
3290  *  igb_configure_tx - Configure transmit Unit after Reset
3291  *  @adapter: board private structure
3292  *
3293  *  Configure the Tx unit of the MAC after a reset.
3294  **/
3295 static void igb_configure_tx(struct igb_adapter *adapter)
3296 {
3297 	int i;
3298 
3299 	for (i = 0; i < adapter->num_tx_queues; i++)
3300 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3301 }
3302 
3303 /**
3304  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3305  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3306  *
3307  *  Returns 0 on success, negative on failure
3308  **/
3309 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3310 {
3311 	struct device *dev = rx_ring->dev;
3312 	int size;
3313 
3314 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3315 
3316 	rx_ring->rx_buffer_info = vzalloc(size);
3317 	if (!rx_ring->rx_buffer_info)
3318 		goto err;
3319 
3320 	/* Round up to nearest 4K */
3321 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3322 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3323 
3324 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3325 					   &rx_ring->dma, GFP_KERNEL);
3326 	if (!rx_ring->desc)
3327 		goto err;
3328 
3329 	rx_ring->next_to_alloc = 0;
3330 	rx_ring->next_to_clean = 0;
3331 	rx_ring->next_to_use = 0;
3332 
3333 	return 0;
3334 
3335 err:
3336 	vfree(rx_ring->rx_buffer_info);
3337 	rx_ring->rx_buffer_info = NULL;
3338 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3339 	return -ENOMEM;
3340 }
3341 
3342 /**
3343  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3344  *				 (Descriptors) for all queues
3345  *  @adapter: board private structure
3346  *
3347  *  Return 0 on success, negative on failure
3348  **/
3349 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3350 {
3351 	struct pci_dev *pdev = adapter->pdev;
3352 	int i, err = 0;
3353 
3354 	for (i = 0; i < adapter->num_rx_queues; i++) {
3355 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3356 		if (err) {
3357 			dev_err(&pdev->dev,
3358 				"Allocation for Rx Queue %u failed\n", i);
3359 			for (i--; i >= 0; i--)
3360 				igb_free_rx_resources(adapter->rx_ring[i]);
3361 			break;
3362 		}
3363 	}
3364 
3365 	return err;
3366 }
3367 
3368 /**
3369  *  igb_setup_mrqc - configure the multiple receive queue control registers
3370  *  @adapter: Board private structure
3371  **/
3372 static void igb_setup_mrqc(struct igb_adapter *adapter)
3373 {
3374 	struct e1000_hw *hw = &adapter->hw;
3375 	u32 mrqc, rxcsum;
3376 	u32 j, num_rx_queues;
3377 	u32 rss_key[10];
3378 
3379 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3380 	for (j = 0; j < 10; j++)
3381 		wr32(E1000_RSSRK(j), rss_key[j]);
3382 
3383 	num_rx_queues = adapter->rss_queues;
3384 
3385 	switch (hw->mac.type) {
3386 	case e1000_82576:
3387 		/* 82576 supports 2 RSS queues for SR-IOV */
3388 		if (adapter->vfs_allocated_count)
3389 			num_rx_queues = 2;
3390 		break;
3391 	default:
3392 		break;
3393 	}
3394 
3395 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3396 		for (j = 0; j < IGB_RETA_SIZE; j++)
3397 			adapter->rss_indir_tbl[j] =
3398 			(j * num_rx_queues) / IGB_RETA_SIZE;
3399 		adapter->rss_indir_tbl_init = num_rx_queues;
3400 	}
3401 	igb_write_rss_indir_tbl(adapter);
3402 
3403 	/* Disable raw packet checksumming so that RSS hash is placed in
3404 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3405 	 * offloads as they are enabled by default
3406 	 */
3407 	rxcsum = rd32(E1000_RXCSUM);
3408 	rxcsum |= E1000_RXCSUM_PCSD;
3409 
3410 	if (adapter->hw.mac.type >= e1000_82576)
3411 		/* Enable Receive Checksum Offload for SCTP */
3412 		rxcsum |= E1000_RXCSUM_CRCOFL;
3413 
3414 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3415 	wr32(E1000_RXCSUM, rxcsum);
3416 
3417 	/* Generate RSS hash based on packet types, TCP/UDP
3418 	 * port numbers and/or IPv4/v6 src and dst addresses
3419 	 */
3420 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3421 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3422 	       E1000_MRQC_RSS_FIELD_IPV6 |
3423 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3424 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3425 
3426 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3427 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3428 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3429 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3430 
3431 	/* If VMDq is enabled then we set the appropriate mode for that, else
3432 	 * we default to RSS so that an RSS hash is calculated per packet even
3433 	 * if we are only using one queue
3434 	 */
3435 	if (adapter->vfs_allocated_count) {
3436 		if (hw->mac.type > e1000_82575) {
3437 			/* Set the default pool for the PF's first queue */
3438 			u32 vtctl = rd32(E1000_VT_CTL);
3439 
3440 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3441 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3442 			vtctl |= adapter->vfs_allocated_count <<
3443 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3444 			wr32(E1000_VT_CTL, vtctl);
3445 		}
3446 		if (adapter->rss_queues > 1)
3447 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3448 		else
3449 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3450 	} else {
3451 		if (hw->mac.type != e1000_i211)
3452 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3453 	}
3454 	igb_vmm_control(adapter);
3455 
3456 	wr32(E1000_MRQC, mrqc);
3457 }
3458 
3459 /**
3460  *  igb_setup_rctl - configure the receive control registers
3461  *  @adapter: Board private structure
3462  **/
3463 void igb_setup_rctl(struct igb_adapter *adapter)
3464 {
3465 	struct e1000_hw *hw = &adapter->hw;
3466 	u32 rctl;
3467 
3468 	rctl = rd32(E1000_RCTL);
3469 
3470 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3471 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3472 
3473 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3474 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3475 
3476 	/* enable stripping of CRC. It's unlikely this will break BMC
3477 	 * redirection as it did with e1000. Newer features require
3478 	 * that the HW strips the CRC.
3479 	 */
3480 	rctl |= E1000_RCTL_SECRC;
3481 
3482 	/* disable store bad packets and clear size bits. */
3483 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3484 
3485 	/* enable LPE to prevent packets larger than max_frame_size */
3486 	rctl |= E1000_RCTL_LPE;
3487 
3488 	/* disable queue 0 to prevent tail write w/o re-config */
3489 	wr32(E1000_RXDCTL(0), 0);
3490 
3491 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3492 	 * queue drop for all VF and PF queues to prevent head of line blocking
3493 	 * if an un-trusted VF does not provide descriptors to hardware.
3494 	 */
3495 	if (adapter->vfs_allocated_count) {
3496 		/* set all queue drop enable bits */
3497 		wr32(E1000_QDE, ALL_QUEUES);
3498 	}
3499 
3500 	/* This is useful for sniffing bad packets. */
3501 	if (adapter->netdev->features & NETIF_F_RXALL) {
3502 		/* UPE and MPE will be handled by normal PROMISC logic
3503 		 * in e1000e_set_rx_mode
3504 		 */
3505 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3506 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3507 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3508 
3509 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3510 			  E1000_RCTL_DPF | /* Allow filtered pause */
3511 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3512 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3513 		 * and that breaks VLANs.
3514 		 */
3515 	}
3516 
3517 	wr32(E1000_RCTL, rctl);
3518 }
3519 
3520 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3521 				   int vfn)
3522 {
3523 	struct e1000_hw *hw = &adapter->hw;
3524 	u32 vmolr;
3525 
3526 	/* if it isn't the PF check to see if VFs are enabled and
3527 	 * increase the size to support vlan tags
3528 	 */
3529 	if (vfn < adapter->vfs_allocated_count &&
3530 	    adapter->vf_data[vfn].vlans_enabled)
3531 		size += VLAN_TAG_SIZE;
3532 
3533 	vmolr = rd32(E1000_VMOLR(vfn));
3534 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3535 	vmolr |= size | E1000_VMOLR_LPE;
3536 	wr32(E1000_VMOLR(vfn), vmolr);
3537 
3538 	return 0;
3539 }
3540 
3541 /**
3542  *  igb_rlpml_set - set maximum receive packet size
3543  *  @adapter: board private structure
3544  *
3545  *  Configure maximum receivable packet size.
3546  **/
3547 static void igb_rlpml_set(struct igb_adapter *adapter)
3548 {
3549 	u32 max_frame_size = adapter->max_frame_size;
3550 	struct e1000_hw *hw = &adapter->hw;
3551 	u16 pf_id = adapter->vfs_allocated_count;
3552 
3553 	if (pf_id) {
3554 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3555 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3556 		 * to our max jumbo frame size, in case we need to enable
3557 		 * jumbo frames on one of the rings later.
3558 		 * This will not pass over-length frames into the default
3559 		 * queue because it's gated by the VMOLR.RLPML.
3560 		 */
3561 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3562 	}
3563 
3564 	wr32(E1000_RLPML, max_frame_size);
3565 }
3566 
3567 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3568 				 int vfn, bool aupe)
3569 {
3570 	struct e1000_hw *hw = &adapter->hw;
3571 	u32 vmolr;
3572 
3573 	/* This register exists only on 82576 and newer so if we are older then
3574 	 * we should exit and do nothing
3575 	 */
3576 	if (hw->mac.type < e1000_82576)
3577 		return;
3578 
3579 	vmolr = rd32(E1000_VMOLR(vfn));
3580 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3581 	if (hw->mac.type == e1000_i350) {
3582 		u32 dvmolr;
3583 
3584 		dvmolr = rd32(E1000_DVMOLR(vfn));
3585 		dvmolr |= E1000_DVMOLR_STRVLAN;
3586 		wr32(E1000_DVMOLR(vfn), dvmolr);
3587 	}
3588 	if (aupe)
3589 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3590 	else
3591 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3592 
3593 	/* clear all bits that might not be set */
3594 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3595 
3596 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3597 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3598 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3599 	 * multicast packets
3600 	 */
3601 	if (vfn <= adapter->vfs_allocated_count)
3602 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3603 
3604 	wr32(E1000_VMOLR(vfn), vmolr);
3605 }
3606 
3607 /**
3608  *  igb_configure_rx_ring - Configure a receive ring after Reset
3609  *  @adapter: board private structure
3610  *  @ring: receive ring to be configured
3611  *
3612  *  Configure the Rx unit of the MAC after a reset.
3613  **/
3614 void igb_configure_rx_ring(struct igb_adapter *adapter,
3615 			   struct igb_ring *ring)
3616 {
3617 	struct e1000_hw *hw = &adapter->hw;
3618 	u64 rdba = ring->dma;
3619 	int reg_idx = ring->reg_idx;
3620 	u32 srrctl = 0, rxdctl = 0;
3621 
3622 	/* disable the queue */
3623 	wr32(E1000_RXDCTL(reg_idx), 0);
3624 
3625 	/* Set DMA base address registers */
3626 	wr32(E1000_RDBAL(reg_idx),
3627 	     rdba & 0x00000000ffffffffULL);
3628 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3629 	wr32(E1000_RDLEN(reg_idx),
3630 	     ring->count * sizeof(union e1000_adv_rx_desc));
3631 
3632 	/* initialize head and tail */
3633 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3634 	wr32(E1000_RDH(reg_idx), 0);
3635 	writel(0, ring->tail);
3636 
3637 	/* set descriptor configuration */
3638 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3639 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3640 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3641 	if (hw->mac.type >= e1000_82580)
3642 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3643 	/* Only set Drop Enable if we are supporting multiple queues */
3644 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3645 		srrctl |= E1000_SRRCTL_DROP_EN;
3646 
3647 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3648 
3649 	/* set filtering for VMDQ pools */
3650 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3651 
3652 	rxdctl |= IGB_RX_PTHRESH;
3653 	rxdctl |= IGB_RX_HTHRESH << 8;
3654 	rxdctl |= IGB_RX_WTHRESH << 16;
3655 
3656 	/* enable receive descriptor fetching */
3657 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3658 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3659 }
3660 
3661 /**
3662  *  igb_configure_rx - Configure receive Unit after Reset
3663  *  @adapter: board private structure
3664  *
3665  *  Configure the Rx unit of the MAC after a reset.
3666  **/
3667 static void igb_configure_rx(struct igb_adapter *adapter)
3668 {
3669 	int i;
3670 
3671 	/* set UTA to appropriate mode */
3672 	igb_set_uta(adapter);
3673 
3674 	/* set the correct pool for the PF default MAC address in entry 0 */
3675 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3676 			 adapter->vfs_allocated_count);
3677 
3678 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3679 	 * the Base and Length of the Rx Descriptor Ring
3680 	 */
3681 	for (i = 0; i < adapter->num_rx_queues; i++)
3682 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3683 }
3684 
3685 /**
3686  *  igb_free_tx_resources - Free Tx Resources per Queue
3687  *  @tx_ring: Tx descriptor ring for a specific queue
3688  *
3689  *  Free all transmit software resources
3690  **/
3691 void igb_free_tx_resources(struct igb_ring *tx_ring)
3692 {
3693 	igb_clean_tx_ring(tx_ring);
3694 
3695 	vfree(tx_ring->tx_buffer_info);
3696 	tx_ring->tx_buffer_info = NULL;
3697 
3698 	/* if not set, then don't free */
3699 	if (!tx_ring->desc)
3700 		return;
3701 
3702 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3703 			  tx_ring->desc, tx_ring->dma);
3704 
3705 	tx_ring->desc = NULL;
3706 }
3707 
3708 /**
3709  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3710  *  @adapter: board private structure
3711  *
3712  *  Free all transmit software resources
3713  **/
3714 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3715 {
3716 	int i;
3717 
3718 	for (i = 0; i < adapter->num_tx_queues; i++)
3719 		if (adapter->tx_ring[i])
3720 			igb_free_tx_resources(adapter->tx_ring[i]);
3721 }
3722 
3723 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3724 				    struct igb_tx_buffer *tx_buffer)
3725 {
3726 	if (tx_buffer->skb) {
3727 		dev_kfree_skb_any(tx_buffer->skb);
3728 		if (dma_unmap_len(tx_buffer, len))
3729 			dma_unmap_single(ring->dev,
3730 					 dma_unmap_addr(tx_buffer, dma),
3731 					 dma_unmap_len(tx_buffer, len),
3732 					 DMA_TO_DEVICE);
3733 	} else if (dma_unmap_len(tx_buffer, len)) {
3734 		dma_unmap_page(ring->dev,
3735 			       dma_unmap_addr(tx_buffer, dma),
3736 			       dma_unmap_len(tx_buffer, len),
3737 			       DMA_TO_DEVICE);
3738 	}
3739 	tx_buffer->next_to_watch = NULL;
3740 	tx_buffer->skb = NULL;
3741 	dma_unmap_len_set(tx_buffer, len, 0);
3742 	/* buffer_info must be completely set up in the transmit path */
3743 }
3744 
3745 /**
3746  *  igb_clean_tx_ring - Free Tx Buffers
3747  *  @tx_ring: ring to be cleaned
3748  **/
3749 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3750 {
3751 	struct igb_tx_buffer *buffer_info;
3752 	unsigned long size;
3753 	u16 i;
3754 
3755 	if (!tx_ring->tx_buffer_info)
3756 		return;
3757 	/* Free all the Tx ring sk_buffs */
3758 
3759 	for (i = 0; i < tx_ring->count; i++) {
3760 		buffer_info = &tx_ring->tx_buffer_info[i];
3761 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3762 	}
3763 
3764 	netdev_tx_reset_queue(txring_txq(tx_ring));
3765 
3766 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3767 	memset(tx_ring->tx_buffer_info, 0, size);
3768 
3769 	/* Zero out the descriptor ring */
3770 	memset(tx_ring->desc, 0, tx_ring->size);
3771 
3772 	tx_ring->next_to_use = 0;
3773 	tx_ring->next_to_clean = 0;
3774 }
3775 
3776 /**
3777  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3778  *  @adapter: board private structure
3779  **/
3780 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3781 {
3782 	int i;
3783 
3784 	for (i = 0; i < adapter->num_tx_queues; i++)
3785 		if (adapter->tx_ring[i])
3786 			igb_clean_tx_ring(adapter->tx_ring[i]);
3787 }
3788 
3789 /**
3790  *  igb_free_rx_resources - Free Rx Resources
3791  *  @rx_ring: ring to clean the resources from
3792  *
3793  *  Free all receive software resources
3794  **/
3795 void igb_free_rx_resources(struct igb_ring *rx_ring)
3796 {
3797 	igb_clean_rx_ring(rx_ring);
3798 
3799 	vfree(rx_ring->rx_buffer_info);
3800 	rx_ring->rx_buffer_info = NULL;
3801 
3802 	/* if not set, then don't free */
3803 	if (!rx_ring->desc)
3804 		return;
3805 
3806 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3807 			  rx_ring->desc, rx_ring->dma);
3808 
3809 	rx_ring->desc = NULL;
3810 }
3811 
3812 /**
3813  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3814  *  @adapter: board private structure
3815  *
3816  *  Free all receive software resources
3817  **/
3818 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3819 {
3820 	int i;
3821 
3822 	for (i = 0; i < adapter->num_rx_queues; i++)
3823 		if (adapter->rx_ring[i])
3824 			igb_free_rx_resources(adapter->rx_ring[i]);
3825 }
3826 
3827 /**
3828  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3829  *  @rx_ring: ring to free buffers from
3830  **/
3831 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3832 {
3833 	unsigned long size;
3834 	u16 i;
3835 
3836 	if (rx_ring->skb)
3837 		dev_kfree_skb(rx_ring->skb);
3838 	rx_ring->skb = NULL;
3839 
3840 	if (!rx_ring->rx_buffer_info)
3841 		return;
3842 
3843 	/* Free all the Rx ring sk_buffs */
3844 	for (i = 0; i < rx_ring->count; i++) {
3845 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3846 
3847 		if (!buffer_info->page)
3848 			continue;
3849 
3850 		dma_unmap_page(rx_ring->dev,
3851 			       buffer_info->dma,
3852 			       PAGE_SIZE,
3853 			       DMA_FROM_DEVICE);
3854 		__free_page(buffer_info->page);
3855 
3856 		buffer_info->page = NULL;
3857 	}
3858 
3859 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3860 	memset(rx_ring->rx_buffer_info, 0, size);
3861 
3862 	/* Zero out the descriptor ring */
3863 	memset(rx_ring->desc, 0, rx_ring->size);
3864 
3865 	rx_ring->next_to_alloc = 0;
3866 	rx_ring->next_to_clean = 0;
3867 	rx_ring->next_to_use = 0;
3868 }
3869 
3870 /**
3871  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3872  *  @adapter: board private structure
3873  **/
3874 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3875 {
3876 	int i;
3877 
3878 	for (i = 0; i < adapter->num_rx_queues; i++)
3879 		if (adapter->rx_ring[i])
3880 			igb_clean_rx_ring(adapter->rx_ring[i]);
3881 }
3882 
3883 /**
3884  *  igb_set_mac - Change the Ethernet Address of the NIC
3885  *  @netdev: network interface device structure
3886  *  @p: pointer to an address structure
3887  *
3888  *  Returns 0 on success, negative on failure
3889  **/
3890 static int igb_set_mac(struct net_device *netdev, void *p)
3891 {
3892 	struct igb_adapter *adapter = netdev_priv(netdev);
3893 	struct e1000_hw *hw = &adapter->hw;
3894 	struct sockaddr *addr = p;
3895 
3896 	if (!is_valid_ether_addr(addr->sa_data))
3897 		return -EADDRNOTAVAIL;
3898 
3899 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3900 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3901 
3902 	/* set the correct pool for the new PF MAC address in entry 0 */
3903 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3904 			 adapter->vfs_allocated_count);
3905 
3906 	return 0;
3907 }
3908 
3909 /**
3910  *  igb_write_mc_addr_list - write multicast addresses to MTA
3911  *  @netdev: network interface device structure
3912  *
3913  *  Writes multicast address list to the MTA hash table.
3914  *  Returns: -ENOMEM on failure
3915  *           0 on no addresses written
3916  *           X on writing X addresses to MTA
3917  **/
3918 static int igb_write_mc_addr_list(struct net_device *netdev)
3919 {
3920 	struct igb_adapter *adapter = netdev_priv(netdev);
3921 	struct e1000_hw *hw = &adapter->hw;
3922 	struct netdev_hw_addr *ha;
3923 	u8  *mta_list;
3924 	int i;
3925 
3926 	if (netdev_mc_empty(netdev)) {
3927 		/* nothing to program, so clear mc list */
3928 		igb_update_mc_addr_list(hw, NULL, 0);
3929 		igb_restore_vf_multicasts(adapter);
3930 		return 0;
3931 	}
3932 
3933 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3934 	if (!mta_list)
3935 		return -ENOMEM;
3936 
3937 	/* The shared function expects a packed array of only addresses. */
3938 	i = 0;
3939 	netdev_for_each_mc_addr(ha, netdev)
3940 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3941 
3942 	igb_update_mc_addr_list(hw, mta_list, i);
3943 	kfree(mta_list);
3944 
3945 	return netdev_mc_count(netdev);
3946 }
3947 
3948 /**
3949  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3950  *  @netdev: network interface device structure
3951  *
3952  *  Writes unicast address list to the RAR table.
3953  *  Returns: -ENOMEM on failure/insufficient address space
3954  *           0 on no addresses written
3955  *           X on writing X addresses to the RAR table
3956  **/
3957 static int igb_write_uc_addr_list(struct net_device *netdev)
3958 {
3959 	struct igb_adapter *adapter = netdev_priv(netdev);
3960 	struct e1000_hw *hw = &adapter->hw;
3961 	unsigned int vfn = adapter->vfs_allocated_count;
3962 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3963 	int count = 0;
3964 
3965 	/* return ENOMEM indicating insufficient memory for addresses */
3966 	if (netdev_uc_count(netdev) > rar_entries)
3967 		return -ENOMEM;
3968 
3969 	if (!netdev_uc_empty(netdev) && rar_entries) {
3970 		struct netdev_hw_addr *ha;
3971 
3972 		netdev_for_each_uc_addr(ha, netdev) {
3973 			if (!rar_entries)
3974 				break;
3975 			igb_rar_set_qsel(adapter, ha->addr,
3976 					 rar_entries--,
3977 					 vfn);
3978 			count++;
3979 		}
3980 	}
3981 	/* write the addresses in reverse order to avoid write combining */
3982 	for (; rar_entries > 0 ; rar_entries--) {
3983 		wr32(E1000_RAH(rar_entries), 0);
3984 		wr32(E1000_RAL(rar_entries), 0);
3985 	}
3986 	wrfl();
3987 
3988 	return count;
3989 }
3990 
3991 /**
3992  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3993  *  @netdev: network interface device structure
3994  *
3995  *  The set_rx_mode entry point is called whenever the unicast or multicast
3996  *  address lists or the network interface flags are updated.  This routine is
3997  *  responsible for configuring the hardware for proper unicast, multicast,
3998  *  promiscuous mode, and all-multi behavior.
3999  **/
4000 static void igb_set_rx_mode(struct net_device *netdev)
4001 {
4002 	struct igb_adapter *adapter = netdev_priv(netdev);
4003 	struct e1000_hw *hw = &adapter->hw;
4004 	unsigned int vfn = adapter->vfs_allocated_count;
4005 	u32 rctl, vmolr = 0;
4006 	int count;
4007 
4008 	/* Check for Promiscuous and All Multicast modes */
4009 	rctl = rd32(E1000_RCTL);
4010 
4011 	/* clear the effected bits */
4012 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4013 
4014 	if (netdev->flags & IFF_PROMISC) {
4015 		/* retain VLAN HW filtering if in VT mode */
4016 		if (adapter->vfs_allocated_count)
4017 			rctl |= E1000_RCTL_VFE;
4018 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4019 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4020 	} else {
4021 		if (netdev->flags & IFF_ALLMULTI) {
4022 			rctl |= E1000_RCTL_MPE;
4023 			vmolr |= E1000_VMOLR_MPME;
4024 		} else {
4025 			/* Write addresses to the MTA, if the attempt fails
4026 			 * then we should just turn on promiscuous mode so
4027 			 * that we can at least receive multicast traffic
4028 			 */
4029 			count = igb_write_mc_addr_list(netdev);
4030 			if (count < 0) {
4031 				rctl |= E1000_RCTL_MPE;
4032 				vmolr |= E1000_VMOLR_MPME;
4033 			} else if (count) {
4034 				vmolr |= E1000_VMOLR_ROMPE;
4035 			}
4036 		}
4037 		/* Write addresses to available RAR registers, if there is not
4038 		 * sufficient space to store all the addresses then enable
4039 		 * unicast promiscuous mode
4040 		 */
4041 		count = igb_write_uc_addr_list(netdev);
4042 		if (count < 0) {
4043 			rctl |= E1000_RCTL_UPE;
4044 			vmolr |= E1000_VMOLR_ROPE;
4045 		}
4046 		rctl |= E1000_RCTL_VFE;
4047 	}
4048 	wr32(E1000_RCTL, rctl);
4049 
4050 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4051 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4052 	 * we will have issues with VLAN tag stripping not being done for frames
4053 	 * that are only arriving because we are the default pool
4054 	 */
4055 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4056 		return;
4057 
4058 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4059 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4060 	wr32(E1000_VMOLR(vfn), vmolr);
4061 	igb_restore_vf_multicasts(adapter);
4062 }
4063 
4064 static void igb_check_wvbr(struct igb_adapter *adapter)
4065 {
4066 	struct e1000_hw *hw = &adapter->hw;
4067 	u32 wvbr = 0;
4068 
4069 	switch (hw->mac.type) {
4070 	case e1000_82576:
4071 	case e1000_i350:
4072 		wvbr = rd32(E1000_WVBR);
4073 		if (!wvbr)
4074 			return;
4075 		break;
4076 	default:
4077 		break;
4078 	}
4079 
4080 	adapter->wvbr |= wvbr;
4081 }
4082 
4083 #define IGB_STAGGERED_QUEUE_OFFSET 8
4084 
4085 static void igb_spoof_check(struct igb_adapter *adapter)
4086 {
4087 	int j;
4088 
4089 	if (!adapter->wvbr)
4090 		return;
4091 
4092 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4093 		if (adapter->wvbr & (1 << j) ||
4094 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4095 			dev_warn(&adapter->pdev->dev,
4096 				"Spoof event(s) detected on VF %d\n", j);
4097 			adapter->wvbr &=
4098 				~((1 << j) |
4099 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4100 		}
4101 	}
4102 }
4103 
4104 /* Need to wait a few seconds after link up to get diagnostic information from
4105  * the phy
4106  */
4107 static void igb_update_phy_info(unsigned long data)
4108 {
4109 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4110 	igb_get_phy_info(&adapter->hw);
4111 }
4112 
4113 /**
4114  *  igb_has_link - check shared code for link and determine up/down
4115  *  @adapter: pointer to driver private info
4116  **/
4117 bool igb_has_link(struct igb_adapter *adapter)
4118 {
4119 	struct e1000_hw *hw = &adapter->hw;
4120 	bool link_active = false;
4121 
4122 	/* get_link_status is set on LSC (link status) interrupt or
4123 	 * rx sequence error interrupt.  get_link_status will stay
4124 	 * false until the e1000_check_for_link establishes link
4125 	 * for copper adapters ONLY
4126 	 */
4127 	switch (hw->phy.media_type) {
4128 	case e1000_media_type_copper:
4129 		if (!hw->mac.get_link_status)
4130 			return true;
4131 	case e1000_media_type_internal_serdes:
4132 		hw->mac.ops.check_for_link(hw);
4133 		link_active = !hw->mac.get_link_status;
4134 		break;
4135 	default:
4136 	case e1000_media_type_unknown:
4137 		break;
4138 	}
4139 
4140 	if (((hw->mac.type == e1000_i210) ||
4141 	     (hw->mac.type == e1000_i211)) &&
4142 	     (hw->phy.id == I210_I_PHY_ID)) {
4143 		if (!netif_carrier_ok(adapter->netdev)) {
4144 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4145 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4146 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4147 			adapter->link_check_timeout = jiffies;
4148 		}
4149 	}
4150 
4151 	return link_active;
4152 }
4153 
4154 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4155 {
4156 	bool ret = false;
4157 	u32 ctrl_ext, thstat;
4158 
4159 	/* check for thermal sensor event on i350 copper only */
4160 	if (hw->mac.type == e1000_i350) {
4161 		thstat = rd32(E1000_THSTAT);
4162 		ctrl_ext = rd32(E1000_CTRL_EXT);
4163 
4164 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4165 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4166 			ret = !!(thstat & event);
4167 	}
4168 
4169 	return ret;
4170 }
4171 
4172 /**
4173  *  igb_check_lvmmc - check for malformed packets received
4174  *  and indicated in LVMMC register
4175  *  @adapter: pointer to adapter
4176  **/
4177 static void igb_check_lvmmc(struct igb_adapter *adapter)
4178 {
4179 	struct e1000_hw *hw = &adapter->hw;
4180 	u32 lvmmc;
4181 
4182 	lvmmc = rd32(E1000_LVMMC);
4183 	if (lvmmc) {
4184 		if (unlikely(net_ratelimit())) {
4185 			netdev_warn(adapter->netdev,
4186 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4187 				    lvmmc);
4188 		}
4189 	}
4190 }
4191 
4192 /**
4193  *  igb_watchdog - Timer Call-back
4194  *  @data: pointer to adapter cast into an unsigned long
4195  **/
4196 static void igb_watchdog(unsigned long data)
4197 {
4198 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4199 	/* Do the rest outside of interrupt context */
4200 	schedule_work(&adapter->watchdog_task);
4201 }
4202 
4203 static void igb_watchdog_task(struct work_struct *work)
4204 {
4205 	struct igb_adapter *adapter = container_of(work,
4206 						   struct igb_adapter,
4207 						   watchdog_task);
4208 	struct e1000_hw *hw = &adapter->hw;
4209 	struct e1000_phy_info *phy = &hw->phy;
4210 	struct net_device *netdev = adapter->netdev;
4211 	u32 link;
4212 	int i;
4213 	u32 connsw;
4214 
4215 	link = igb_has_link(adapter);
4216 
4217 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4218 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4219 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4220 		else
4221 			link = false;
4222 	}
4223 
4224 	/* Force link down if we have fiber to swap to */
4225 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4226 		if (hw->phy.media_type == e1000_media_type_copper) {
4227 			connsw = rd32(E1000_CONNSW);
4228 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4229 				link = 0;
4230 		}
4231 	}
4232 	if (link) {
4233 		/* Perform a reset if the media type changed. */
4234 		if (hw->dev_spec._82575.media_changed) {
4235 			hw->dev_spec._82575.media_changed = false;
4236 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4237 			igb_reset(adapter);
4238 		}
4239 		/* Cancel scheduled suspend requests. */
4240 		pm_runtime_resume(netdev->dev.parent);
4241 
4242 		if (!netif_carrier_ok(netdev)) {
4243 			u32 ctrl;
4244 
4245 			hw->mac.ops.get_speed_and_duplex(hw,
4246 							 &adapter->link_speed,
4247 							 &adapter->link_duplex);
4248 
4249 			ctrl = rd32(E1000_CTRL);
4250 			/* Links status message must follow this format */
4251 			netdev_info(netdev,
4252 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4253 			       netdev->name,
4254 			       adapter->link_speed,
4255 			       adapter->link_duplex == FULL_DUPLEX ?
4256 			       "Full" : "Half",
4257 			       (ctrl & E1000_CTRL_TFCE) &&
4258 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4259 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4260 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4261 
4262 			/* disable EEE if enabled */
4263 			if ((adapter->flags & IGB_FLAG_EEE) &&
4264 				(adapter->link_duplex == HALF_DUPLEX)) {
4265 				dev_info(&adapter->pdev->dev,
4266 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4267 				adapter->hw.dev_spec._82575.eee_disable = true;
4268 				adapter->flags &= ~IGB_FLAG_EEE;
4269 			}
4270 
4271 			/* check if SmartSpeed worked */
4272 			igb_check_downshift(hw);
4273 			if (phy->speed_downgraded)
4274 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4275 
4276 			/* check for thermal sensor event */
4277 			if (igb_thermal_sensor_event(hw,
4278 			    E1000_THSTAT_LINK_THROTTLE))
4279 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4280 
4281 			/* adjust timeout factor according to speed/duplex */
4282 			adapter->tx_timeout_factor = 1;
4283 			switch (adapter->link_speed) {
4284 			case SPEED_10:
4285 				adapter->tx_timeout_factor = 14;
4286 				break;
4287 			case SPEED_100:
4288 				/* maybe add some timeout factor ? */
4289 				break;
4290 			}
4291 
4292 			netif_carrier_on(netdev);
4293 
4294 			igb_ping_all_vfs(adapter);
4295 			igb_check_vf_rate_limit(adapter);
4296 
4297 			/* link state has changed, schedule phy info update */
4298 			if (!test_bit(__IGB_DOWN, &adapter->state))
4299 				mod_timer(&adapter->phy_info_timer,
4300 					  round_jiffies(jiffies + 2 * HZ));
4301 		}
4302 	} else {
4303 		if (netif_carrier_ok(netdev)) {
4304 			adapter->link_speed = 0;
4305 			adapter->link_duplex = 0;
4306 
4307 			/* check for thermal sensor event */
4308 			if (igb_thermal_sensor_event(hw,
4309 			    E1000_THSTAT_PWR_DOWN)) {
4310 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4311 			}
4312 
4313 			/* Links status message must follow this format */
4314 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4315 			       netdev->name);
4316 			netif_carrier_off(netdev);
4317 
4318 			igb_ping_all_vfs(adapter);
4319 
4320 			/* link state has changed, schedule phy info update */
4321 			if (!test_bit(__IGB_DOWN, &adapter->state))
4322 				mod_timer(&adapter->phy_info_timer,
4323 					  round_jiffies(jiffies + 2 * HZ));
4324 
4325 			/* link is down, time to check for alternate media */
4326 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4327 				igb_check_swap_media(adapter);
4328 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4329 					schedule_work(&adapter->reset_task);
4330 					/* return immediately */
4331 					return;
4332 				}
4333 			}
4334 			pm_schedule_suspend(netdev->dev.parent,
4335 					    MSEC_PER_SEC * 5);
4336 
4337 		/* also check for alternate media here */
4338 		} else if (!netif_carrier_ok(netdev) &&
4339 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4340 			igb_check_swap_media(adapter);
4341 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4342 				schedule_work(&adapter->reset_task);
4343 				/* return immediately */
4344 				return;
4345 			}
4346 		}
4347 	}
4348 
4349 	spin_lock(&adapter->stats64_lock);
4350 	igb_update_stats(adapter, &adapter->stats64);
4351 	spin_unlock(&adapter->stats64_lock);
4352 
4353 	for (i = 0; i < adapter->num_tx_queues; i++) {
4354 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4355 		if (!netif_carrier_ok(netdev)) {
4356 			/* We've lost link, so the controller stops DMA,
4357 			 * but we've got queued Tx work that's never going
4358 			 * to get done, so reset controller to flush Tx.
4359 			 * (Do the reset outside of interrupt context).
4360 			 */
4361 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4362 				adapter->tx_timeout_count++;
4363 				schedule_work(&adapter->reset_task);
4364 				/* return immediately since reset is imminent */
4365 				return;
4366 			}
4367 		}
4368 
4369 		/* Force detection of hung controller every watchdog period */
4370 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4371 	}
4372 
4373 	/* Cause software interrupt to ensure Rx ring is cleaned */
4374 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4375 		u32 eics = 0;
4376 
4377 		for (i = 0; i < adapter->num_q_vectors; i++)
4378 			eics |= adapter->q_vector[i]->eims_value;
4379 		wr32(E1000_EICS, eics);
4380 	} else {
4381 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4382 	}
4383 
4384 	igb_spoof_check(adapter);
4385 	igb_ptp_rx_hang(adapter);
4386 
4387 	/* Check LVMMC register on i350/i354 only */
4388 	if ((adapter->hw.mac.type == e1000_i350) ||
4389 	    (adapter->hw.mac.type == e1000_i354))
4390 		igb_check_lvmmc(adapter);
4391 
4392 	/* Reset the timer */
4393 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4394 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4395 			mod_timer(&adapter->watchdog_timer,
4396 				  round_jiffies(jiffies +  HZ));
4397 		else
4398 			mod_timer(&adapter->watchdog_timer,
4399 				  round_jiffies(jiffies + 2 * HZ));
4400 	}
4401 }
4402 
4403 enum latency_range {
4404 	lowest_latency = 0,
4405 	low_latency = 1,
4406 	bulk_latency = 2,
4407 	latency_invalid = 255
4408 };
4409 
4410 /**
4411  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4412  *  @q_vector: pointer to q_vector
4413  *
4414  *  Stores a new ITR value based on strictly on packet size.  This
4415  *  algorithm is less sophisticated than that used in igb_update_itr,
4416  *  due to the difficulty of synchronizing statistics across multiple
4417  *  receive rings.  The divisors and thresholds used by this function
4418  *  were determined based on theoretical maximum wire speed and testing
4419  *  data, in order to minimize response time while increasing bulk
4420  *  throughput.
4421  *  This functionality is controlled by ethtool's coalescing settings.
4422  *  NOTE:  This function is called only when operating in a multiqueue
4423  *         receive environment.
4424  **/
4425 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4426 {
4427 	int new_val = q_vector->itr_val;
4428 	int avg_wire_size = 0;
4429 	struct igb_adapter *adapter = q_vector->adapter;
4430 	unsigned int packets;
4431 
4432 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4433 	 * ints/sec - ITR timer value of 120 ticks.
4434 	 */
4435 	if (adapter->link_speed != SPEED_1000) {
4436 		new_val = IGB_4K_ITR;
4437 		goto set_itr_val;
4438 	}
4439 
4440 	packets = q_vector->rx.total_packets;
4441 	if (packets)
4442 		avg_wire_size = q_vector->rx.total_bytes / packets;
4443 
4444 	packets = q_vector->tx.total_packets;
4445 	if (packets)
4446 		avg_wire_size = max_t(u32, avg_wire_size,
4447 				      q_vector->tx.total_bytes / packets);
4448 
4449 	/* if avg_wire_size isn't set no work was done */
4450 	if (!avg_wire_size)
4451 		goto clear_counts;
4452 
4453 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4454 	avg_wire_size += 24;
4455 
4456 	/* Don't starve jumbo frames */
4457 	avg_wire_size = min(avg_wire_size, 3000);
4458 
4459 	/* Give a little boost to mid-size frames */
4460 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4461 		new_val = avg_wire_size / 3;
4462 	else
4463 		new_val = avg_wire_size / 2;
4464 
4465 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4466 	if (new_val < IGB_20K_ITR &&
4467 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4468 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4469 		new_val = IGB_20K_ITR;
4470 
4471 set_itr_val:
4472 	if (new_val != q_vector->itr_val) {
4473 		q_vector->itr_val = new_val;
4474 		q_vector->set_itr = 1;
4475 	}
4476 clear_counts:
4477 	q_vector->rx.total_bytes = 0;
4478 	q_vector->rx.total_packets = 0;
4479 	q_vector->tx.total_bytes = 0;
4480 	q_vector->tx.total_packets = 0;
4481 }
4482 
4483 /**
4484  *  igb_update_itr - update the dynamic ITR value based on statistics
4485  *  @q_vector: pointer to q_vector
4486  *  @ring_container: ring info to update the itr for
4487  *
4488  *  Stores a new ITR value based on packets and byte
4489  *  counts during the last interrupt.  The advantage of per interrupt
4490  *  computation is faster updates and more accurate ITR for the current
4491  *  traffic pattern.  Constants in this function were computed
4492  *  based on theoretical maximum wire speed and thresholds were set based
4493  *  on testing data as well as attempting to minimize response time
4494  *  while increasing bulk throughput.
4495  *  This functionality is controlled by ethtool's coalescing settings.
4496  *  NOTE:  These calculations are only valid when operating in a single-
4497  *         queue environment.
4498  **/
4499 static void igb_update_itr(struct igb_q_vector *q_vector,
4500 			   struct igb_ring_container *ring_container)
4501 {
4502 	unsigned int packets = ring_container->total_packets;
4503 	unsigned int bytes = ring_container->total_bytes;
4504 	u8 itrval = ring_container->itr;
4505 
4506 	/* no packets, exit with status unchanged */
4507 	if (packets == 0)
4508 		return;
4509 
4510 	switch (itrval) {
4511 	case lowest_latency:
4512 		/* handle TSO and jumbo frames */
4513 		if (bytes/packets > 8000)
4514 			itrval = bulk_latency;
4515 		else if ((packets < 5) && (bytes > 512))
4516 			itrval = low_latency;
4517 		break;
4518 	case low_latency:  /* 50 usec aka 20000 ints/s */
4519 		if (bytes > 10000) {
4520 			/* this if handles the TSO accounting */
4521 			if (bytes/packets > 8000)
4522 				itrval = bulk_latency;
4523 			else if ((packets < 10) || ((bytes/packets) > 1200))
4524 				itrval = bulk_latency;
4525 			else if ((packets > 35))
4526 				itrval = lowest_latency;
4527 		} else if (bytes/packets > 2000) {
4528 			itrval = bulk_latency;
4529 		} else if (packets <= 2 && bytes < 512) {
4530 			itrval = lowest_latency;
4531 		}
4532 		break;
4533 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4534 		if (bytes > 25000) {
4535 			if (packets > 35)
4536 				itrval = low_latency;
4537 		} else if (bytes < 1500) {
4538 			itrval = low_latency;
4539 		}
4540 		break;
4541 	}
4542 
4543 	/* clear work counters since we have the values we need */
4544 	ring_container->total_bytes = 0;
4545 	ring_container->total_packets = 0;
4546 
4547 	/* write updated itr to ring container */
4548 	ring_container->itr = itrval;
4549 }
4550 
4551 static void igb_set_itr(struct igb_q_vector *q_vector)
4552 {
4553 	struct igb_adapter *adapter = q_vector->adapter;
4554 	u32 new_itr = q_vector->itr_val;
4555 	u8 current_itr = 0;
4556 
4557 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4558 	if (adapter->link_speed != SPEED_1000) {
4559 		current_itr = 0;
4560 		new_itr = IGB_4K_ITR;
4561 		goto set_itr_now;
4562 	}
4563 
4564 	igb_update_itr(q_vector, &q_vector->tx);
4565 	igb_update_itr(q_vector, &q_vector->rx);
4566 
4567 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4568 
4569 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4570 	if (current_itr == lowest_latency &&
4571 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4572 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4573 		current_itr = low_latency;
4574 
4575 	switch (current_itr) {
4576 	/* counts and packets in update_itr are dependent on these numbers */
4577 	case lowest_latency:
4578 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4579 		break;
4580 	case low_latency:
4581 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4582 		break;
4583 	case bulk_latency:
4584 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4585 		break;
4586 	default:
4587 		break;
4588 	}
4589 
4590 set_itr_now:
4591 	if (new_itr != q_vector->itr_val) {
4592 		/* this attempts to bias the interrupt rate towards Bulk
4593 		 * by adding intermediate steps when interrupt rate is
4594 		 * increasing
4595 		 */
4596 		new_itr = new_itr > q_vector->itr_val ?
4597 			  max((new_itr * q_vector->itr_val) /
4598 			  (new_itr + (q_vector->itr_val >> 2)),
4599 			  new_itr) : new_itr;
4600 		/* Don't write the value here; it resets the adapter's
4601 		 * internal timer, and causes us to delay far longer than
4602 		 * we should between interrupts.  Instead, we write the ITR
4603 		 * value at the beginning of the next interrupt so the timing
4604 		 * ends up being correct.
4605 		 */
4606 		q_vector->itr_val = new_itr;
4607 		q_vector->set_itr = 1;
4608 	}
4609 }
4610 
4611 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4612 			    u32 type_tucmd, u32 mss_l4len_idx)
4613 {
4614 	struct e1000_adv_tx_context_desc *context_desc;
4615 	u16 i = tx_ring->next_to_use;
4616 
4617 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4618 
4619 	i++;
4620 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4621 
4622 	/* set bits to identify this as an advanced context descriptor */
4623 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4624 
4625 	/* For 82575, context index must be unique per ring. */
4626 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4627 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4628 
4629 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4630 	context_desc->seqnum_seed	= 0;
4631 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4632 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4633 }
4634 
4635 static int igb_tso(struct igb_ring *tx_ring,
4636 		   struct igb_tx_buffer *first,
4637 		   u8 *hdr_len)
4638 {
4639 	struct sk_buff *skb = first->skb;
4640 	u32 vlan_macip_lens, type_tucmd;
4641 	u32 mss_l4len_idx, l4len;
4642 	int err;
4643 
4644 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4645 		return 0;
4646 
4647 	if (!skb_is_gso(skb))
4648 		return 0;
4649 
4650 	err = skb_cow_head(skb, 0);
4651 	if (err < 0)
4652 		return err;
4653 
4654 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4655 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4656 
4657 	if (first->protocol == htons(ETH_P_IP)) {
4658 		struct iphdr *iph = ip_hdr(skb);
4659 		iph->tot_len = 0;
4660 		iph->check = 0;
4661 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4662 							 iph->daddr, 0,
4663 							 IPPROTO_TCP,
4664 							 0);
4665 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4666 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4667 				   IGB_TX_FLAGS_CSUM |
4668 				   IGB_TX_FLAGS_IPV4;
4669 	} else if (skb_is_gso_v6(skb)) {
4670 		ipv6_hdr(skb)->payload_len = 0;
4671 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4672 						       &ipv6_hdr(skb)->daddr,
4673 						       0, IPPROTO_TCP, 0);
4674 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4675 				   IGB_TX_FLAGS_CSUM;
4676 	}
4677 
4678 	/* compute header lengths */
4679 	l4len = tcp_hdrlen(skb);
4680 	*hdr_len = skb_transport_offset(skb) + l4len;
4681 
4682 	/* update gso size and bytecount with header size */
4683 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4684 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4685 
4686 	/* MSS L4LEN IDX */
4687 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4688 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4689 
4690 	/* VLAN MACLEN IPLEN */
4691 	vlan_macip_lens = skb_network_header_len(skb);
4692 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4693 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4694 
4695 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4696 
4697 	return 1;
4698 }
4699 
4700 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4701 {
4702 	struct sk_buff *skb = first->skb;
4703 	u32 vlan_macip_lens = 0;
4704 	u32 mss_l4len_idx = 0;
4705 	u32 type_tucmd = 0;
4706 
4707 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4708 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4709 			return;
4710 	} else {
4711 		u8 l4_hdr = 0;
4712 
4713 		switch (first->protocol) {
4714 		case htons(ETH_P_IP):
4715 			vlan_macip_lens |= skb_network_header_len(skb);
4716 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4717 			l4_hdr = ip_hdr(skb)->protocol;
4718 			break;
4719 		case htons(ETH_P_IPV6):
4720 			vlan_macip_lens |= skb_network_header_len(skb);
4721 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4722 			break;
4723 		default:
4724 			if (unlikely(net_ratelimit())) {
4725 				dev_warn(tx_ring->dev,
4726 					 "partial checksum but proto=%x!\n",
4727 					 first->protocol);
4728 			}
4729 			break;
4730 		}
4731 
4732 		switch (l4_hdr) {
4733 		case IPPROTO_TCP:
4734 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4735 			mss_l4len_idx = tcp_hdrlen(skb) <<
4736 					E1000_ADVTXD_L4LEN_SHIFT;
4737 			break;
4738 		case IPPROTO_SCTP:
4739 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4740 			mss_l4len_idx = sizeof(struct sctphdr) <<
4741 					E1000_ADVTXD_L4LEN_SHIFT;
4742 			break;
4743 		case IPPROTO_UDP:
4744 			mss_l4len_idx = sizeof(struct udphdr) <<
4745 					E1000_ADVTXD_L4LEN_SHIFT;
4746 			break;
4747 		default:
4748 			if (unlikely(net_ratelimit())) {
4749 				dev_warn(tx_ring->dev,
4750 					 "partial checksum but l4 proto=%x!\n",
4751 					 l4_hdr);
4752 			}
4753 			break;
4754 		}
4755 
4756 		/* update TX checksum flag */
4757 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4758 	}
4759 
4760 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4761 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4762 
4763 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4764 }
4765 
4766 #define IGB_SET_FLAG(_input, _flag, _result) \
4767 	((_flag <= _result) ? \
4768 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4769 	 ((u32)(_input & _flag) / (_flag / _result)))
4770 
4771 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4772 {
4773 	/* set type for advanced descriptor with frame checksum insertion */
4774 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4775 		       E1000_ADVTXD_DCMD_DEXT |
4776 		       E1000_ADVTXD_DCMD_IFCS;
4777 
4778 	/* set HW vlan bit if vlan is present */
4779 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4780 				 (E1000_ADVTXD_DCMD_VLE));
4781 
4782 	/* set segmentation bits for TSO */
4783 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4784 				 (E1000_ADVTXD_DCMD_TSE));
4785 
4786 	/* set timestamp bit if present */
4787 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4788 				 (E1000_ADVTXD_MAC_TSTAMP));
4789 
4790 	/* insert frame checksum */
4791 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4792 
4793 	return cmd_type;
4794 }
4795 
4796 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4797 				 union e1000_adv_tx_desc *tx_desc,
4798 				 u32 tx_flags, unsigned int paylen)
4799 {
4800 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4801 
4802 	/* 82575 requires a unique index per ring */
4803 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4804 		olinfo_status |= tx_ring->reg_idx << 4;
4805 
4806 	/* insert L4 checksum */
4807 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4808 				      IGB_TX_FLAGS_CSUM,
4809 				      (E1000_TXD_POPTS_TXSM << 8));
4810 
4811 	/* insert IPv4 checksum */
4812 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4813 				      IGB_TX_FLAGS_IPV4,
4814 				      (E1000_TXD_POPTS_IXSM << 8));
4815 
4816 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4817 }
4818 
4819 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4820 {
4821 	struct net_device *netdev = tx_ring->netdev;
4822 
4823 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4824 
4825 	/* Herbert's original patch had:
4826 	 *  smp_mb__after_netif_stop_queue();
4827 	 * but since that doesn't exist yet, just open code it.
4828 	 */
4829 	smp_mb();
4830 
4831 	/* We need to check again in a case another CPU has just
4832 	 * made room available.
4833 	 */
4834 	if (igb_desc_unused(tx_ring) < size)
4835 		return -EBUSY;
4836 
4837 	/* A reprieve! */
4838 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4839 
4840 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4841 	tx_ring->tx_stats.restart_queue2++;
4842 	u64_stats_update_end(&tx_ring->tx_syncp2);
4843 
4844 	return 0;
4845 }
4846 
4847 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4848 {
4849 	if (igb_desc_unused(tx_ring) >= size)
4850 		return 0;
4851 	return __igb_maybe_stop_tx(tx_ring, size);
4852 }
4853 
4854 static void igb_tx_map(struct igb_ring *tx_ring,
4855 		       struct igb_tx_buffer *first,
4856 		       const u8 hdr_len)
4857 {
4858 	struct sk_buff *skb = first->skb;
4859 	struct igb_tx_buffer *tx_buffer;
4860 	union e1000_adv_tx_desc *tx_desc;
4861 	struct skb_frag_struct *frag;
4862 	dma_addr_t dma;
4863 	unsigned int data_len, size;
4864 	u32 tx_flags = first->tx_flags;
4865 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4866 	u16 i = tx_ring->next_to_use;
4867 
4868 	tx_desc = IGB_TX_DESC(tx_ring, i);
4869 
4870 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4871 
4872 	size = skb_headlen(skb);
4873 	data_len = skb->data_len;
4874 
4875 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4876 
4877 	tx_buffer = first;
4878 
4879 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4880 		if (dma_mapping_error(tx_ring->dev, dma))
4881 			goto dma_error;
4882 
4883 		/* record length, and DMA address */
4884 		dma_unmap_len_set(tx_buffer, len, size);
4885 		dma_unmap_addr_set(tx_buffer, dma, dma);
4886 
4887 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4888 
4889 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4890 			tx_desc->read.cmd_type_len =
4891 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4892 
4893 			i++;
4894 			tx_desc++;
4895 			if (i == tx_ring->count) {
4896 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4897 				i = 0;
4898 			}
4899 			tx_desc->read.olinfo_status = 0;
4900 
4901 			dma += IGB_MAX_DATA_PER_TXD;
4902 			size -= IGB_MAX_DATA_PER_TXD;
4903 
4904 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4905 		}
4906 
4907 		if (likely(!data_len))
4908 			break;
4909 
4910 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4911 
4912 		i++;
4913 		tx_desc++;
4914 		if (i == tx_ring->count) {
4915 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4916 			i = 0;
4917 		}
4918 		tx_desc->read.olinfo_status = 0;
4919 
4920 		size = skb_frag_size(frag);
4921 		data_len -= size;
4922 
4923 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4924 				       size, DMA_TO_DEVICE);
4925 
4926 		tx_buffer = &tx_ring->tx_buffer_info[i];
4927 	}
4928 
4929 	/* write last descriptor with RS and EOP bits */
4930 	cmd_type |= size | IGB_TXD_DCMD;
4931 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4932 
4933 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4934 
4935 	/* set the timestamp */
4936 	first->time_stamp = jiffies;
4937 
4938 	/* Force memory writes to complete before letting h/w know there
4939 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4940 	 * memory model archs, such as IA-64).
4941 	 *
4942 	 * We also need this memory barrier to make certain all of the
4943 	 * status bits have been updated before next_to_watch is written.
4944 	 */
4945 	wmb();
4946 
4947 	/* set next_to_watch value indicating a packet is present */
4948 	first->next_to_watch = tx_desc;
4949 
4950 	i++;
4951 	if (i == tx_ring->count)
4952 		i = 0;
4953 
4954 	tx_ring->next_to_use = i;
4955 
4956 	/* Make sure there is space in the ring for the next send. */
4957 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4958 
4959 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4960 		writel(i, tx_ring->tail);
4961 
4962 		/* we need this if more than one processor can write to our tail
4963 		 * at a time, it synchronizes IO on IA64/Altix systems
4964 		 */
4965 		mmiowb();
4966 	}
4967 	return;
4968 
4969 dma_error:
4970 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4971 
4972 	/* clear dma mappings for failed tx_buffer_info map */
4973 	for (;;) {
4974 		tx_buffer = &tx_ring->tx_buffer_info[i];
4975 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4976 		if (tx_buffer == first)
4977 			break;
4978 		if (i == 0)
4979 			i = tx_ring->count;
4980 		i--;
4981 	}
4982 
4983 	tx_ring->next_to_use = i;
4984 }
4985 
4986 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4987 				struct igb_ring *tx_ring)
4988 {
4989 	struct igb_tx_buffer *first;
4990 	int tso;
4991 	u32 tx_flags = 0;
4992 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4993 	__be16 protocol = vlan_get_protocol(skb);
4994 	u8 hdr_len = 0;
4995 
4996 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4997 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4998 	 *       + 2 desc gap to keep tail from touching head,
4999 	 *       + 1 desc for context descriptor,
5000 	 * otherwise try next time
5001 	 */
5002 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5003 		unsigned short f;
5004 
5005 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5006 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5007 	} else {
5008 		count += skb_shinfo(skb)->nr_frags;
5009 	}
5010 
5011 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5012 		/* this is a hard error */
5013 		return NETDEV_TX_BUSY;
5014 	}
5015 
5016 	/* record the location of the first descriptor for this packet */
5017 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5018 	first->skb = skb;
5019 	first->bytecount = skb->len;
5020 	first->gso_segs = 1;
5021 
5022 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5023 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5024 
5025 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5026 					   &adapter->state)) {
5027 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5028 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5029 
5030 			adapter->ptp_tx_skb = skb_get(skb);
5031 			adapter->ptp_tx_start = jiffies;
5032 			if (adapter->hw.mac.type == e1000_82576)
5033 				schedule_work(&adapter->ptp_tx_work);
5034 		}
5035 	}
5036 
5037 	skb_tx_timestamp(skb);
5038 
5039 	if (skb_vlan_tag_present(skb)) {
5040 		tx_flags |= IGB_TX_FLAGS_VLAN;
5041 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5042 	}
5043 
5044 	/* record initial flags and protocol */
5045 	first->tx_flags = tx_flags;
5046 	first->protocol = protocol;
5047 
5048 	tso = igb_tso(tx_ring, first, &hdr_len);
5049 	if (tso < 0)
5050 		goto out_drop;
5051 	else if (!tso)
5052 		igb_tx_csum(tx_ring, first);
5053 
5054 	igb_tx_map(tx_ring, first, hdr_len);
5055 
5056 	return NETDEV_TX_OK;
5057 
5058 out_drop:
5059 	igb_unmap_and_free_tx_resource(tx_ring, first);
5060 
5061 	return NETDEV_TX_OK;
5062 }
5063 
5064 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5065 						    struct sk_buff *skb)
5066 {
5067 	unsigned int r_idx = skb->queue_mapping;
5068 
5069 	if (r_idx >= adapter->num_tx_queues)
5070 		r_idx = r_idx % adapter->num_tx_queues;
5071 
5072 	return adapter->tx_ring[r_idx];
5073 }
5074 
5075 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5076 				  struct net_device *netdev)
5077 {
5078 	struct igb_adapter *adapter = netdev_priv(netdev);
5079 
5080 	if (test_bit(__IGB_DOWN, &adapter->state)) {
5081 		dev_kfree_skb_any(skb);
5082 		return NETDEV_TX_OK;
5083 	}
5084 
5085 	if (skb->len <= 0) {
5086 		dev_kfree_skb_any(skb);
5087 		return NETDEV_TX_OK;
5088 	}
5089 
5090 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5091 	 * in order to meet this minimum size requirement.
5092 	 */
5093 	if (skb_put_padto(skb, 17))
5094 		return NETDEV_TX_OK;
5095 
5096 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5097 }
5098 
5099 /**
5100  *  igb_tx_timeout - Respond to a Tx Hang
5101  *  @netdev: network interface device structure
5102  **/
5103 static void igb_tx_timeout(struct net_device *netdev)
5104 {
5105 	struct igb_adapter *adapter = netdev_priv(netdev);
5106 	struct e1000_hw *hw = &adapter->hw;
5107 
5108 	/* Do the reset outside of interrupt context */
5109 	adapter->tx_timeout_count++;
5110 
5111 	if (hw->mac.type >= e1000_82580)
5112 		hw->dev_spec._82575.global_device_reset = true;
5113 
5114 	schedule_work(&adapter->reset_task);
5115 	wr32(E1000_EICS,
5116 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5117 }
5118 
5119 static void igb_reset_task(struct work_struct *work)
5120 {
5121 	struct igb_adapter *adapter;
5122 	adapter = container_of(work, struct igb_adapter, reset_task);
5123 
5124 	igb_dump(adapter);
5125 	netdev_err(adapter->netdev, "Reset adapter\n");
5126 	igb_reinit_locked(adapter);
5127 }
5128 
5129 /**
5130  *  igb_get_stats64 - Get System Network Statistics
5131  *  @netdev: network interface device structure
5132  *  @stats: rtnl_link_stats64 pointer
5133  **/
5134 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5135 						struct rtnl_link_stats64 *stats)
5136 {
5137 	struct igb_adapter *adapter = netdev_priv(netdev);
5138 
5139 	spin_lock(&adapter->stats64_lock);
5140 	igb_update_stats(adapter, &adapter->stats64);
5141 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5142 	spin_unlock(&adapter->stats64_lock);
5143 
5144 	return stats;
5145 }
5146 
5147 /**
5148  *  igb_change_mtu - Change the Maximum Transfer Unit
5149  *  @netdev: network interface device structure
5150  *  @new_mtu: new value for maximum frame size
5151  *
5152  *  Returns 0 on success, negative on failure
5153  **/
5154 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5155 {
5156 	struct igb_adapter *adapter = netdev_priv(netdev);
5157 	struct pci_dev *pdev = adapter->pdev;
5158 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5159 
5160 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5161 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5162 		return -EINVAL;
5163 	}
5164 
5165 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5166 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5167 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5168 		return -EINVAL;
5169 	}
5170 
5171 	/* adjust max frame to be at least the size of a standard frame */
5172 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5173 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5174 
5175 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5176 		usleep_range(1000, 2000);
5177 
5178 	/* igb_down has a dependency on max_frame_size */
5179 	adapter->max_frame_size = max_frame;
5180 
5181 	if (netif_running(netdev))
5182 		igb_down(adapter);
5183 
5184 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5185 		 netdev->mtu, new_mtu);
5186 	netdev->mtu = new_mtu;
5187 
5188 	if (netif_running(netdev))
5189 		igb_up(adapter);
5190 	else
5191 		igb_reset(adapter);
5192 
5193 	clear_bit(__IGB_RESETTING, &adapter->state);
5194 
5195 	return 0;
5196 }
5197 
5198 /**
5199  *  igb_update_stats - Update the board statistics counters
5200  *  @adapter: board private structure
5201  **/
5202 void igb_update_stats(struct igb_adapter *adapter,
5203 		      struct rtnl_link_stats64 *net_stats)
5204 {
5205 	struct e1000_hw *hw = &adapter->hw;
5206 	struct pci_dev *pdev = adapter->pdev;
5207 	u32 reg, mpc;
5208 	int i;
5209 	u64 bytes, packets;
5210 	unsigned int start;
5211 	u64 _bytes, _packets;
5212 
5213 	/* Prevent stats update while adapter is being reset, or if the pci
5214 	 * connection is down.
5215 	 */
5216 	if (adapter->link_speed == 0)
5217 		return;
5218 	if (pci_channel_offline(pdev))
5219 		return;
5220 
5221 	bytes = 0;
5222 	packets = 0;
5223 
5224 	rcu_read_lock();
5225 	for (i = 0; i < adapter->num_rx_queues; i++) {
5226 		struct igb_ring *ring = adapter->rx_ring[i];
5227 		u32 rqdpc = rd32(E1000_RQDPC(i));
5228 		if (hw->mac.type >= e1000_i210)
5229 			wr32(E1000_RQDPC(i), 0);
5230 
5231 		if (rqdpc) {
5232 			ring->rx_stats.drops += rqdpc;
5233 			net_stats->rx_fifo_errors += rqdpc;
5234 		}
5235 
5236 		do {
5237 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5238 			_bytes = ring->rx_stats.bytes;
5239 			_packets = ring->rx_stats.packets;
5240 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5241 		bytes += _bytes;
5242 		packets += _packets;
5243 	}
5244 
5245 	net_stats->rx_bytes = bytes;
5246 	net_stats->rx_packets = packets;
5247 
5248 	bytes = 0;
5249 	packets = 0;
5250 	for (i = 0; i < adapter->num_tx_queues; i++) {
5251 		struct igb_ring *ring = adapter->tx_ring[i];
5252 		do {
5253 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5254 			_bytes = ring->tx_stats.bytes;
5255 			_packets = ring->tx_stats.packets;
5256 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5257 		bytes += _bytes;
5258 		packets += _packets;
5259 	}
5260 	net_stats->tx_bytes = bytes;
5261 	net_stats->tx_packets = packets;
5262 	rcu_read_unlock();
5263 
5264 	/* read stats registers */
5265 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5266 	adapter->stats.gprc += rd32(E1000_GPRC);
5267 	adapter->stats.gorc += rd32(E1000_GORCL);
5268 	rd32(E1000_GORCH); /* clear GORCL */
5269 	adapter->stats.bprc += rd32(E1000_BPRC);
5270 	adapter->stats.mprc += rd32(E1000_MPRC);
5271 	adapter->stats.roc += rd32(E1000_ROC);
5272 
5273 	adapter->stats.prc64 += rd32(E1000_PRC64);
5274 	adapter->stats.prc127 += rd32(E1000_PRC127);
5275 	adapter->stats.prc255 += rd32(E1000_PRC255);
5276 	adapter->stats.prc511 += rd32(E1000_PRC511);
5277 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5278 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5279 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5280 	adapter->stats.sec += rd32(E1000_SEC);
5281 
5282 	mpc = rd32(E1000_MPC);
5283 	adapter->stats.mpc += mpc;
5284 	net_stats->rx_fifo_errors += mpc;
5285 	adapter->stats.scc += rd32(E1000_SCC);
5286 	adapter->stats.ecol += rd32(E1000_ECOL);
5287 	adapter->stats.mcc += rd32(E1000_MCC);
5288 	adapter->stats.latecol += rd32(E1000_LATECOL);
5289 	adapter->stats.dc += rd32(E1000_DC);
5290 	adapter->stats.rlec += rd32(E1000_RLEC);
5291 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5292 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5293 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5294 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5295 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5296 	adapter->stats.gptc += rd32(E1000_GPTC);
5297 	adapter->stats.gotc += rd32(E1000_GOTCL);
5298 	rd32(E1000_GOTCH); /* clear GOTCL */
5299 	adapter->stats.rnbc += rd32(E1000_RNBC);
5300 	adapter->stats.ruc += rd32(E1000_RUC);
5301 	adapter->stats.rfc += rd32(E1000_RFC);
5302 	adapter->stats.rjc += rd32(E1000_RJC);
5303 	adapter->stats.tor += rd32(E1000_TORH);
5304 	adapter->stats.tot += rd32(E1000_TOTH);
5305 	adapter->stats.tpr += rd32(E1000_TPR);
5306 
5307 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5308 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5309 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5310 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5311 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5312 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5313 
5314 	adapter->stats.mptc += rd32(E1000_MPTC);
5315 	adapter->stats.bptc += rd32(E1000_BPTC);
5316 
5317 	adapter->stats.tpt += rd32(E1000_TPT);
5318 	adapter->stats.colc += rd32(E1000_COLC);
5319 
5320 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5321 	/* read internal phy specific stats */
5322 	reg = rd32(E1000_CTRL_EXT);
5323 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5324 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5325 
5326 		/* this stat has invalid values on i210/i211 */
5327 		if ((hw->mac.type != e1000_i210) &&
5328 		    (hw->mac.type != e1000_i211))
5329 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5330 	}
5331 
5332 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5333 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5334 
5335 	adapter->stats.iac += rd32(E1000_IAC);
5336 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5337 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5338 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5339 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5340 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5341 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5342 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5343 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5344 
5345 	/* Fill out the OS statistics structure */
5346 	net_stats->multicast = adapter->stats.mprc;
5347 	net_stats->collisions = adapter->stats.colc;
5348 
5349 	/* Rx Errors */
5350 
5351 	/* RLEC on some newer hardware can be incorrect so build
5352 	 * our own version based on RUC and ROC
5353 	 */
5354 	net_stats->rx_errors = adapter->stats.rxerrc +
5355 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5356 		adapter->stats.ruc + adapter->stats.roc +
5357 		adapter->stats.cexterr;
5358 	net_stats->rx_length_errors = adapter->stats.ruc +
5359 				      adapter->stats.roc;
5360 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5361 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5362 	net_stats->rx_missed_errors = adapter->stats.mpc;
5363 
5364 	/* Tx Errors */
5365 	net_stats->tx_errors = adapter->stats.ecol +
5366 			       adapter->stats.latecol;
5367 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5368 	net_stats->tx_window_errors = adapter->stats.latecol;
5369 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5370 
5371 	/* Tx Dropped needs to be maintained elsewhere */
5372 
5373 	/* Management Stats */
5374 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5375 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5376 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5377 
5378 	/* OS2BMC Stats */
5379 	reg = rd32(E1000_MANC);
5380 	if (reg & E1000_MANC_EN_BMC2OS) {
5381 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5382 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5383 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5384 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5385 	}
5386 }
5387 
5388 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5389 {
5390 	struct e1000_hw *hw = &adapter->hw;
5391 	struct ptp_clock_event event;
5392 	struct timespec ts;
5393 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5394 
5395 	if (tsicr & TSINTR_SYS_WRAP) {
5396 		event.type = PTP_CLOCK_PPS;
5397 		if (adapter->ptp_caps.pps)
5398 			ptp_clock_event(adapter->ptp_clock, &event);
5399 		else
5400 			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5401 		ack |= TSINTR_SYS_WRAP;
5402 	}
5403 
5404 	if (tsicr & E1000_TSICR_TXTS) {
5405 		/* retrieve hardware timestamp */
5406 		schedule_work(&adapter->ptp_tx_work);
5407 		ack |= E1000_TSICR_TXTS;
5408 	}
5409 
5410 	if (tsicr & TSINTR_TT0) {
5411 		spin_lock(&adapter->tmreg_lock);
5412 		ts = timespec_add(adapter->perout[0].start,
5413 				  adapter->perout[0].period);
5414 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5415 		wr32(E1000_TRGTTIMH0, ts.tv_sec);
5416 		tsauxc = rd32(E1000_TSAUXC);
5417 		tsauxc |= TSAUXC_EN_TT0;
5418 		wr32(E1000_TSAUXC, tsauxc);
5419 		adapter->perout[0].start = ts;
5420 		spin_unlock(&adapter->tmreg_lock);
5421 		ack |= TSINTR_TT0;
5422 	}
5423 
5424 	if (tsicr & TSINTR_TT1) {
5425 		spin_lock(&adapter->tmreg_lock);
5426 		ts = timespec_add(adapter->perout[1].start,
5427 				  adapter->perout[1].period);
5428 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5429 		wr32(E1000_TRGTTIMH1, ts.tv_sec);
5430 		tsauxc = rd32(E1000_TSAUXC);
5431 		tsauxc |= TSAUXC_EN_TT1;
5432 		wr32(E1000_TSAUXC, tsauxc);
5433 		adapter->perout[1].start = ts;
5434 		spin_unlock(&adapter->tmreg_lock);
5435 		ack |= TSINTR_TT1;
5436 	}
5437 
5438 	if (tsicr & TSINTR_AUTT0) {
5439 		nsec = rd32(E1000_AUXSTMPL0);
5440 		sec  = rd32(E1000_AUXSTMPH0);
5441 		event.type = PTP_CLOCK_EXTTS;
5442 		event.index = 0;
5443 		event.timestamp = sec * 1000000000ULL + nsec;
5444 		ptp_clock_event(adapter->ptp_clock, &event);
5445 		ack |= TSINTR_AUTT0;
5446 	}
5447 
5448 	if (tsicr & TSINTR_AUTT1) {
5449 		nsec = rd32(E1000_AUXSTMPL1);
5450 		sec  = rd32(E1000_AUXSTMPH1);
5451 		event.type = PTP_CLOCK_EXTTS;
5452 		event.index = 1;
5453 		event.timestamp = sec * 1000000000ULL + nsec;
5454 		ptp_clock_event(adapter->ptp_clock, &event);
5455 		ack |= TSINTR_AUTT1;
5456 	}
5457 
5458 	/* acknowledge the interrupts */
5459 	wr32(E1000_TSICR, ack);
5460 }
5461 
5462 static irqreturn_t igb_msix_other(int irq, void *data)
5463 {
5464 	struct igb_adapter *adapter = data;
5465 	struct e1000_hw *hw = &adapter->hw;
5466 	u32 icr = rd32(E1000_ICR);
5467 	/* reading ICR causes bit 31 of EICR to be cleared */
5468 
5469 	if (icr & E1000_ICR_DRSTA)
5470 		schedule_work(&adapter->reset_task);
5471 
5472 	if (icr & E1000_ICR_DOUTSYNC) {
5473 		/* HW is reporting DMA is out of sync */
5474 		adapter->stats.doosync++;
5475 		/* The DMA Out of Sync is also indication of a spoof event
5476 		 * in IOV mode. Check the Wrong VM Behavior register to
5477 		 * see if it is really a spoof event.
5478 		 */
5479 		igb_check_wvbr(adapter);
5480 	}
5481 
5482 	/* Check for a mailbox event */
5483 	if (icr & E1000_ICR_VMMB)
5484 		igb_msg_task(adapter);
5485 
5486 	if (icr & E1000_ICR_LSC) {
5487 		hw->mac.get_link_status = 1;
5488 		/* guard against interrupt when we're going down */
5489 		if (!test_bit(__IGB_DOWN, &adapter->state))
5490 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5491 	}
5492 
5493 	if (icr & E1000_ICR_TS)
5494 		igb_tsync_interrupt(adapter);
5495 
5496 	wr32(E1000_EIMS, adapter->eims_other);
5497 
5498 	return IRQ_HANDLED;
5499 }
5500 
5501 static void igb_write_itr(struct igb_q_vector *q_vector)
5502 {
5503 	struct igb_adapter *adapter = q_vector->adapter;
5504 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5505 
5506 	if (!q_vector->set_itr)
5507 		return;
5508 
5509 	if (!itr_val)
5510 		itr_val = 0x4;
5511 
5512 	if (adapter->hw.mac.type == e1000_82575)
5513 		itr_val |= itr_val << 16;
5514 	else
5515 		itr_val |= E1000_EITR_CNT_IGNR;
5516 
5517 	writel(itr_val, q_vector->itr_register);
5518 	q_vector->set_itr = 0;
5519 }
5520 
5521 static irqreturn_t igb_msix_ring(int irq, void *data)
5522 {
5523 	struct igb_q_vector *q_vector = data;
5524 
5525 	/* Write the ITR value calculated from the previous interrupt. */
5526 	igb_write_itr(q_vector);
5527 
5528 	napi_schedule(&q_vector->napi);
5529 
5530 	return IRQ_HANDLED;
5531 }
5532 
5533 #ifdef CONFIG_IGB_DCA
5534 static void igb_update_tx_dca(struct igb_adapter *adapter,
5535 			      struct igb_ring *tx_ring,
5536 			      int cpu)
5537 {
5538 	struct e1000_hw *hw = &adapter->hw;
5539 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5540 
5541 	if (hw->mac.type != e1000_82575)
5542 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5543 
5544 	/* We can enable relaxed ordering for reads, but not writes when
5545 	 * DCA is enabled.  This is due to a known issue in some chipsets
5546 	 * which will cause the DCA tag to be cleared.
5547 	 */
5548 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5549 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5550 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5551 
5552 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5553 }
5554 
5555 static void igb_update_rx_dca(struct igb_adapter *adapter,
5556 			      struct igb_ring *rx_ring,
5557 			      int cpu)
5558 {
5559 	struct e1000_hw *hw = &adapter->hw;
5560 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5561 
5562 	if (hw->mac.type != e1000_82575)
5563 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5564 
5565 	/* We can enable relaxed ordering for reads, but not writes when
5566 	 * DCA is enabled.  This is due to a known issue in some chipsets
5567 	 * which will cause the DCA tag to be cleared.
5568 	 */
5569 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5570 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5571 
5572 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5573 }
5574 
5575 static void igb_update_dca(struct igb_q_vector *q_vector)
5576 {
5577 	struct igb_adapter *adapter = q_vector->adapter;
5578 	int cpu = get_cpu();
5579 
5580 	if (q_vector->cpu == cpu)
5581 		goto out_no_update;
5582 
5583 	if (q_vector->tx.ring)
5584 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5585 
5586 	if (q_vector->rx.ring)
5587 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5588 
5589 	q_vector->cpu = cpu;
5590 out_no_update:
5591 	put_cpu();
5592 }
5593 
5594 static void igb_setup_dca(struct igb_adapter *adapter)
5595 {
5596 	struct e1000_hw *hw = &adapter->hw;
5597 	int i;
5598 
5599 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5600 		return;
5601 
5602 	/* Always use CB2 mode, difference is masked in the CB driver. */
5603 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5604 
5605 	for (i = 0; i < adapter->num_q_vectors; i++) {
5606 		adapter->q_vector[i]->cpu = -1;
5607 		igb_update_dca(adapter->q_vector[i]);
5608 	}
5609 }
5610 
5611 static int __igb_notify_dca(struct device *dev, void *data)
5612 {
5613 	struct net_device *netdev = dev_get_drvdata(dev);
5614 	struct igb_adapter *adapter = netdev_priv(netdev);
5615 	struct pci_dev *pdev = adapter->pdev;
5616 	struct e1000_hw *hw = &adapter->hw;
5617 	unsigned long event = *(unsigned long *)data;
5618 
5619 	switch (event) {
5620 	case DCA_PROVIDER_ADD:
5621 		/* if already enabled, don't do it again */
5622 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5623 			break;
5624 		if (dca_add_requester(dev) == 0) {
5625 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5626 			dev_info(&pdev->dev, "DCA enabled\n");
5627 			igb_setup_dca(adapter);
5628 			break;
5629 		}
5630 		/* Fall Through since DCA is disabled. */
5631 	case DCA_PROVIDER_REMOVE:
5632 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5633 			/* without this a class_device is left
5634 			 * hanging around in the sysfs model
5635 			 */
5636 			dca_remove_requester(dev);
5637 			dev_info(&pdev->dev, "DCA disabled\n");
5638 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5639 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5640 		}
5641 		break;
5642 	}
5643 
5644 	return 0;
5645 }
5646 
5647 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5648 			  void *p)
5649 {
5650 	int ret_val;
5651 
5652 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5653 					 __igb_notify_dca);
5654 
5655 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5656 }
5657 #endif /* CONFIG_IGB_DCA */
5658 
5659 #ifdef CONFIG_PCI_IOV
5660 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5661 {
5662 	unsigned char mac_addr[ETH_ALEN];
5663 
5664 	eth_zero_addr(mac_addr);
5665 	igb_set_vf_mac(adapter, vf, mac_addr);
5666 
5667 	/* By default spoof check is enabled for all VFs */
5668 	adapter->vf_data[vf].spoofchk_enabled = true;
5669 
5670 	return 0;
5671 }
5672 
5673 #endif
5674 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5675 {
5676 	struct e1000_hw *hw = &adapter->hw;
5677 	u32 ping;
5678 	int i;
5679 
5680 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5681 		ping = E1000_PF_CONTROL_MSG;
5682 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5683 			ping |= E1000_VT_MSGTYPE_CTS;
5684 		igb_write_mbx(hw, &ping, 1, i);
5685 	}
5686 }
5687 
5688 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5689 {
5690 	struct e1000_hw *hw = &adapter->hw;
5691 	u32 vmolr = rd32(E1000_VMOLR(vf));
5692 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5693 
5694 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5695 			    IGB_VF_FLAG_MULTI_PROMISC);
5696 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5697 
5698 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5699 		vmolr |= E1000_VMOLR_MPME;
5700 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5701 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5702 	} else {
5703 		/* if we have hashes and we are clearing a multicast promisc
5704 		 * flag we need to write the hashes to the MTA as this step
5705 		 * was previously skipped
5706 		 */
5707 		if (vf_data->num_vf_mc_hashes > 30) {
5708 			vmolr |= E1000_VMOLR_MPME;
5709 		} else if (vf_data->num_vf_mc_hashes) {
5710 			int j;
5711 
5712 			vmolr |= E1000_VMOLR_ROMPE;
5713 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5714 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5715 		}
5716 	}
5717 
5718 	wr32(E1000_VMOLR(vf), vmolr);
5719 
5720 	/* there are flags left unprocessed, likely not supported */
5721 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5722 		return -EINVAL;
5723 
5724 	return 0;
5725 }
5726 
5727 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5728 				  u32 *msgbuf, u32 vf)
5729 {
5730 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5731 	u16 *hash_list = (u16 *)&msgbuf[1];
5732 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5733 	int i;
5734 
5735 	/* salt away the number of multicast addresses assigned
5736 	 * to this VF for later use to restore when the PF multi cast
5737 	 * list changes
5738 	 */
5739 	vf_data->num_vf_mc_hashes = n;
5740 
5741 	/* only up to 30 hash values supported */
5742 	if (n > 30)
5743 		n = 30;
5744 
5745 	/* store the hashes for later use */
5746 	for (i = 0; i < n; i++)
5747 		vf_data->vf_mc_hashes[i] = hash_list[i];
5748 
5749 	/* Flush and reset the mta with the new values */
5750 	igb_set_rx_mode(adapter->netdev);
5751 
5752 	return 0;
5753 }
5754 
5755 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5756 {
5757 	struct e1000_hw *hw = &adapter->hw;
5758 	struct vf_data_storage *vf_data;
5759 	int i, j;
5760 
5761 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5762 		u32 vmolr = rd32(E1000_VMOLR(i));
5763 
5764 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5765 
5766 		vf_data = &adapter->vf_data[i];
5767 
5768 		if ((vf_data->num_vf_mc_hashes > 30) ||
5769 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5770 			vmolr |= E1000_VMOLR_MPME;
5771 		} else if (vf_data->num_vf_mc_hashes) {
5772 			vmolr |= E1000_VMOLR_ROMPE;
5773 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5774 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5775 		}
5776 		wr32(E1000_VMOLR(i), vmolr);
5777 	}
5778 }
5779 
5780 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5781 {
5782 	struct e1000_hw *hw = &adapter->hw;
5783 	u32 pool_mask, reg, vid;
5784 	int i;
5785 
5786 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5787 
5788 	/* Find the vlan filter for this id */
5789 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5790 		reg = rd32(E1000_VLVF(i));
5791 
5792 		/* remove the vf from the pool */
5793 		reg &= ~pool_mask;
5794 
5795 		/* if pool is empty then remove entry from vfta */
5796 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5797 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5798 			reg = 0;
5799 			vid = reg & E1000_VLVF_VLANID_MASK;
5800 			igb_vfta_set(hw, vid, false);
5801 		}
5802 
5803 		wr32(E1000_VLVF(i), reg);
5804 	}
5805 
5806 	adapter->vf_data[vf].vlans_enabled = 0;
5807 }
5808 
5809 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5810 {
5811 	struct e1000_hw *hw = &adapter->hw;
5812 	u32 reg, i;
5813 
5814 	/* The vlvf table only exists on 82576 hardware and newer */
5815 	if (hw->mac.type < e1000_82576)
5816 		return -1;
5817 
5818 	/* we only need to do this if VMDq is enabled */
5819 	if (!adapter->vfs_allocated_count)
5820 		return -1;
5821 
5822 	/* Find the vlan filter for this id */
5823 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5824 		reg = rd32(E1000_VLVF(i));
5825 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5826 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5827 			break;
5828 	}
5829 
5830 	if (add) {
5831 		if (i == E1000_VLVF_ARRAY_SIZE) {
5832 			/* Did not find a matching VLAN ID entry that was
5833 			 * enabled.  Search for a free filter entry, i.e.
5834 			 * one without the enable bit set
5835 			 */
5836 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5837 				reg = rd32(E1000_VLVF(i));
5838 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5839 					break;
5840 			}
5841 		}
5842 		if (i < E1000_VLVF_ARRAY_SIZE) {
5843 			/* Found an enabled/available entry */
5844 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5845 
5846 			/* if !enabled we need to set this up in vfta */
5847 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5848 				/* add VID to filter table */
5849 				igb_vfta_set(hw, vid, true);
5850 				reg |= E1000_VLVF_VLANID_ENABLE;
5851 			}
5852 			reg &= ~E1000_VLVF_VLANID_MASK;
5853 			reg |= vid;
5854 			wr32(E1000_VLVF(i), reg);
5855 
5856 			/* do not modify RLPML for PF devices */
5857 			if (vf >= adapter->vfs_allocated_count)
5858 				return 0;
5859 
5860 			if (!adapter->vf_data[vf].vlans_enabled) {
5861 				u32 size;
5862 
5863 				reg = rd32(E1000_VMOLR(vf));
5864 				size = reg & E1000_VMOLR_RLPML_MASK;
5865 				size += 4;
5866 				reg &= ~E1000_VMOLR_RLPML_MASK;
5867 				reg |= size;
5868 				wr32(E1000_VMOLR(vf), reg);
5869 			}
5870 
5871 			adapter->vf_data[vf].vlans_enabled++;
5872 		}
5873 	} else {
5874 		if (i < E1000_VLVF_ARRAY_SIZE) {
5875 			/* remove vf from the pool */
5876 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5877 			/* if pool is empty then remove entry from vfta */
5878 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5879 				reg = 0;
5880 				igb_vfta_set(hw, vid, false);
5881 			}
5882 			wr32(E1000_VLVF(i), reg);
5883 
5884 			/* do not modify RLPML for PF devices */
5885 			if (vf >= adapter->vfs_allocated_count)
5886 				return 0;
5887 
5888 			adapter->vf_data[vf].vlans_enabled--;
5889 			if (!adapter->vf_data[vf].vlans_enabled) {
5890 				u32 size;
5891 
5892 				reg = rd32(E1000_VMOLR(vf));
5893 				size = reg & E1000_VMOLR_RLPML_MASK;
5894 				size -= 4;
5895 				reg &= ~E1000_VMOLR_RLPML_MASK;
5896 				reg |= size;
5897 				wr32(E1000_VMOLR(vf), reg);
5898 			}
5899 		}
5900 	}
5901 	return 0;
5902 }
5903 
5904 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5905 {
5906 	struct e1000_hw *hw = &adapter->hw;
5907 
5908 	if (vid)
5909 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5910 	else
5911 		wr32(E1000_VMVIR(vf), 0);
5912 }
5913 
5914 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5915 			       int vf, u16 vlan, u8 qos)
5916 {
5917 	int err = 0;
5918 	struct igb_adapter *adapter = netdev_priv(netdev);
5919 
5920 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5921 		return -EINVAL;
5922 	if (vlan || qos) {
5923 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5924 		if (err)
5925 			goto out;
5926 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5927 		igb_set_vmolr(adapter, vf, !vlan);
5928 		adapter->vf_data[vf].pf_vlan = vlan;
5929 		adapter->vf_data[vf].pf_qos = qos;
5930 		dev_info(&adapter->pdev->dev,
5931 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5932 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5933 			dev_warn(&adapter->pdev->dev,
5934 				 "The VF VLAN has been set, but the PF device is not up.\n");
5935 			dev_warn(&adapter->pdev->dev,
5936 				 "Bring the PF device up before attempting to use the VF device.\n");
5937 		}
5938 	} else {
5939 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5940 			     false, vf);
5941 		igb_set_vmvir(adapter, vlan, vf);
5942 		igb_set_vmolr(adapter, vf, true);
5943 		adapter->vf_data[vf].pf_vlan = 0;
5944 		adapter->vf_data[vf].pf_qos = 0;
5945 	}
5946 out:
5947 	return err;
5948 }
5949 
5950 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5951 {
5952 	struct e1000_hw *hw = &adapter->hw;
5953 	int i;
5954 	u32 reg;
5955 
5956 	/* Find the vlan filter for this id */
5957 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5958 		reg = rd32(E1000_VLVF(i));
5959 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5960 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5961 			break;
5962 	}
5963 
5964 	if (i >= E1000_VLVF_ARRAY_SIZE)
5965 		i = -1;
5966 
5967 	return i;
5968 }
5969 
5970 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5971 {
5972 	struct e1000_hw *hw = &adapter->hw;
5973 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5974 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5975 	int err = 0;
5976 
5977 	/* If in promiscuous mode we need to make sure the PF also has
5978 	 * the VLAN filter set.
5979 	 */
5980 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5981 		err = igb_vlvf_set(adapter, vid, add,
5982 				   adapter->vfs_allocated_count);
5983 	if (err)
5984 		goto out;
5985 
5986 	err = igb_vlvf_set(adapter, vid, add, vf);
5987 
5988 	if (err)
5989 		goto out;
5990 
5991 	/* Go through all the checks to see if the VLAN filter should
5992 	 * be wiped completely.
5993 	 */
5994 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5995 		u32 vlvf, bits;
5996 		int regndx = igb_find_vlvf_entry(adapter, vid);
5997 
5998 		if (regndx < 0)
5999 			goto out;
6000 		/* See if any other pools are set for this VLAN filter
6001 		 * entry other than the PF.
6002 		 */
6003 		vlvf = bits = rd32(E1000_VLVF(regndx));
6004 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6005 			      adapter->vfs_allocated_count);
6006 		/* If the filter was removed then ensure PF pool bit
6007 		 * is cleared if the PF only added itself to the pool
6008 		 * because the PF is in promiscuous mode.
6009 		 */
6010 		if ((vlvf & VLAN_VID_MASK) == vid &&
6011 		    !test_bit(vid, adapter->active_vlans) &&
6012 		    !bits)
6013 			igb_vlvf_set(adapter, vid, add,
6014 				     adapter->vfs_allocated_count);
6015 	}
6016 
6017 out:
6018 	return err;
6019 }
6020 
6021 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6022 {
6023 	/* clear flags - except flag that indicates PF has set the MAC */
6024 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6025 	adapter->vf_data[vf].last_nack = jiffies;
6026 
6027 	/* reset offloads to defaults */
6028 	igb_set_vmolr(adapter, vf, true);
6029 
6030 	/* reset vlans for device */
6031 	igb_clear_vf_vfta(adapter, vf);
6032 	if (adapter->vf_data[vf].pf_vlan)
6033 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
6034 				    adapter->vf_data[vf].pf_vlan,
6035 				    adapter->vf_data[vf].pf_qos);
6036 	else
6037 		igb_clear_vf_vfta(adapter, vf);
6038 
6039 	/* reset multicast table array for vf */
6040 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6041 
6042 	/* Flush and reset the mta with the new values */
6043 	igb_set_rx_mode(adapter->netdev);
6044 }
6045 
6046 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6047 {
6048 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6049 
6050 	/* clear mac address as we were hotplug removed/added */
6051 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6052 		eth_zero_addr(vf_mac);
6053 
6054 	/* process remaining reset events */
6055 	igb_vf_reset(adapter, vf);
6056 }
6057 
6058 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6059 {
6060 	struct e1000_hw *hw = &adapter->hw;
6061 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6062 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6063 	u32 reg, msgbuf[3];
6064 	u8 *addr = (u8 *)(&msgbuf[1]);
6065 
6066 	/* process all the same items cleared in a function level reset */
6067 	igb_vf_reset(adapter, vf);
6068 
6069 	/* set vf mac address */
6070 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6071 
6072 	/* enable transmit and receive for vf */
6073 	reg = rd32(E1000_VFTE);
6074 	wr32(E1000_VFTE, reg | (1 << vf));
6075 	reg = rd32(E1000_VFRE);
6076 	wr32(E1000_VFRE, reg | (1 << vf));
6077 
6078 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6079 
6080 	/* reply to reset with ack and vf mac address */
6081 	if (!is_zero_ether_addr(vf_mac)) {
6082 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6083 		memcpy(addr, vf_mac, ETH_ALEN);
6084 	} else {
6085 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6086 	}
6087 	igb_write_mbx(hw, msgbuf, 3, vf);
6088 }
6089 
6090 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6091 {
6092 	/* The VF MAC Address is stored in a packed array of bytes
6093 	 * starting at the second 32 bit word of the msg array
6094 	 */
6095 	unsigned char *addr = (char *)&msg[1];
6096 	int err = -1;
6097 
6098 	if (is_valid_ether_addr(addr))
6099 		err = igb_set_vf_mac(adapter, vf, addr);
6100 
6101 	return err;
6102 }
6103 
6104 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6105 {
6106 	struct e1000_hw *hw = &adapter->hw;
6107 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6108 	u32 msg = E1000_VT_MSGTYPE_NACK;
6109 
6110 	/* if device isn't clear to send it shouldn't be reading either */
6111 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6112 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6113 		igb_write_mbx(hw, &msg, 1, vf);
6114 		vf_data->last_nack = jiffies;
6115 	}
6116 }
6117 
6118 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6119 {
6120 	struct pci_dev *pdev = adapter->pdev;
6121 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6122 	struct e1000_hw *hw = &adapter->hw;
6123 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6124 	s32 retval;
6125 
6126 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6127 
6128 	if (retval) {
6129 		/* if receive failed revoke VF CTS stats and restart init */
6130 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6131 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6132 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6133 			return;
6134 		goto out;
6135 	}
6136 
6137 	/* this is a message we already processed, do nothing */
6138 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6139 		return;
6140 
6141 	/* until the vf completes a reset it should not be
6142 	 * allowed to start any configuration.
6143 	 */
6144 	if (msgbuf[0] == E1000_VF_RESET) {
6145 		igb_vf_reset_msg(adapter, vf);
6146 		return;
6147 	}
6148 
6149 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6150 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6151 			return;
6152 		retval = -1;
6153 		goto out;
6154 	}
6155 
6156 	switch ((msgbuf[0] & 0xFFFF)) {
6157 	case E1000_VF_SET_MAC_ADDR:
6158 		retval = -EINVAL;
6159 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6160 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6161 		else
6162 			dev_warn(&pdev->dev,
6163 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6164 				 vf);
6165 		break;
6166 	case E1000_VF_SET_PROMISC:
6167 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6168 		break;
6169 	case E1000_VF_SET_MULTICAST:
6170 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6171 		break;
6172 	case E1000_VF_SET_LPE:
6173 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6174 		break;
6175 	case E1000_VF_SET_VLAN:
6176 		retval = -1;
6177 		if (vf_data->pf_vlan)
6178 			dev_warn(&pdev->dev,
6179 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6180 				 vf);
6181 		else
6182 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6183 		break;
6184 	default:
6185 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6186 		retval = -1;
6187 		break;
6188 	}
6189 
6190 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6191 out:
6192 	/* notify the VF of the results of what it sent us */
6193 	if (retval)
6194 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6195 	else
6196 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6197 
6198 	igb_write_mbx(hw, msgbuf, 1, vf);
6199 }
6200 
6201 static void igb_msg_task(struct igb_adapter *adapter)
6202 {
6203 	struct e1000_hw *hw = &adapter->hw;
6204 	u32 vf;
6205 
6206 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6207 		/* process any reset requests */
6208 		if (!igb_check_for_rst(hw, vf))
6209 			igb_vf_reset_event(adapter, vf);
6210 
6211 		/* process any messages pending */
6212 		if (!igb_check_for_msg(hw, vf))
6213 			igb_rcv_msg_from_vf(adapter, vf);
6214 
6215 		/* process any acks */
6216 		if (!igb_check_for_ack(hw, vf))
6217 			igb_rcv_ack_from_vf(adapter, vf);
6218 	}
6219 }
6220 
6221 /**
6222  *  igb_set_uta - Set unicast filter table address
6223  *  @adapter: board private structure
6224  *
6225  *  The unicast table address is a register array of 32-bit registers.
6226  *  The table is meant to be used in a way similar to how the MTA is used
6227  *  however due to certain limitations in the hardware it is necessary to
6228  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6229  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6230  **/
6231 static void igb_set_uta(struct igb_adapter *adapter)
6232 {
6233 	struct e1000_hw *hw = &adapter->hw;
6234 	int i;
6235 
6236 	/* The UTA table only exists on 82576 hardware and newer */
6237 	if (hw->mac.type < e1000_82576)
6238 		return;
6239 
6240 	/* we only need to do this if VMDq is enabled */
6241 	if (!adapter->vfs_allocated_count)
6242 		return;
6243 
6244 	for (i = 0; i < hw->mac.uta_reg_count; i++)
6245 		array_wr32(E1000_UTA, i, ~0);
6246 }
6247 
6248 /**
6249  *  igb_intr_msi - Interrupt Handler
6250  *  @irq: interrupt number
6251  *  @data: pointer to a network interface device structure
6252  **/
6253 static irqreturn_t igb_intr_msi(int irq, void *data)
6254 {
6255 	struct igb_adapter *adapter = data;
6256 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6257 	struct e1000_hw *hw = &adapter->hw;
6258 	/* read ICR disables interrupts using IAM */
6259 	u32 icr = rd32(E1000_ICR);
6260 
6261 	igb_write_itr(q_vector);
6262 
6263 	if (icr & E1000_ICR_DRSTA)
6264 		schedule_work(&adapter->reset_task);
6265 
6266 	if (icr & E1000_ICR_DOUTSYNC) {
6267 		/* HW is reporting DMA is out of sync */
6268 		adapter->stats.doosync++;
6269 	}
6270 
6271 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6272 		hw->mac.get_link_status = 1;
6273 		if (!test_bit(__IGB_DOWN, &adapter->state))
6274 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6275 	}
6276 
6277 	if (icr & E1000_ICR_TS)
6278 		igb_tsync_interrupt(adapter);
6279 
6280 	napi_schedule(&q_vector->napi);
6281 
6282 	return IRQ_HANDLED;
6283 }
6284 
6285 /**
6286  *  igb_intr - Legacy Interrupt Handler
6287  *  @irq: interrupt number
6288  *  @data: pointer to a network interface device structure
6289  **/
6290 static irqreturn_t igb_intr(int irq, void *data)
6291 {
6292 	struct igb_adapter *adapter = data;
6293 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6294 	struct e1000_hw *hw = &adapter->hw;
6295 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6296 	 * need for the IMC write
6297 	 */
6298 	u32 icr = rd32(E1000_ICR);
6299 
6300 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6301 	 * not set, then the adapter didn't send an interrupt
6302 	 */
6303 	if (!(icr & E1000_ICR_INT_ASSERTED))
6304 		return IRQ_NONE;
6305 
6306 	igb_write_itr(q_vector);
6307 
6308 	if (icr & E1000_ICR_DRSTA)
6309 		schedule_work(&adapter->reset_task);
6310 
6311 	if (icr & E1000_ICR_DOUTSYNC) {
6312 		/* HW is reporting DMA is out of sync */
6313 		adapter->stats.doosync++;
6314 	}
6315 
6316 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6317 		hw->mac.get_link_status = 1;
6318 		/* guard against interrupt when we're going down */
6319 		if (!test_bit(__IGB_DOWN, &adapter->state))
6320 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6321 	}
6322 
6323 	if (icr & E1000_ICR_TS)
6324 		igb_tsync_interrupt(adapter);
6325 
6326 	napi_schedule(&q_vector->napi);
6327 
6328 	return IRQ_HANDLED;
6329 }
6330 
6331 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6332 {
6333 	struct igb_adapter *adapter = q_vector->adapter;
6334 	struct e1000_hw *hw = &adapter->hw;
6335 
6336 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6337 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6338 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6339 			igb_set_itr(q_vector);
6340 		else
6341 			igb_update_ring_itr(q_vector);
6342 	}
6343 
6344 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6345 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6346 			wr32(E1000_EIMS, q_vector->eims_value);
6347 		else
6348 			igb_irq_enable(adapter);
6349 	}
6350 }
6351 
6352 /**
6353  *  igb_poll - NAPI Rx polling callback
6354  *  @napi: napi polling structure
6355  *  @budget: count of how many packets we should handle
6356  **/
6357 static int igb_poll(struct napi_struct *napi, int budget)
6358 {
6359 	struct igb_q_vector *q_vector = container_of(napi,
6360 						     struct igb_q_vector,
6361 						     napi);
6362 	bool clean_complete = true;
6363 
6364 #ifdef CONFIG_IGB_DCA
6365 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6366 		igb_update_dca(q_vector);
6367 #endif
6368 	if (q_vector->tx.ring)
6369 		clean_complete = igb_clean_tx_irq(q_vector);
6370 
6371 	if (q_vector->rx.ring)
6372 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6373 
6374 	/* If all work not completed, return budget and keep polling */
6375 	if (!clean_complete)
6376 		return budget;
6377 
6378 	/* If not enough Rx work done, exit the polling mode */
6379 	napi_complete(napi);
6380 	igb_ring_irq_enable(q_vector);
6381 
6382 	return 0;
6383 }
6384 
6385 /**
6386  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6387  *  @q_vector: pointer to q_vector containing needed info
6388  *
6389  *  returns true if ring is completely cleaned
6390  **/
6391 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6392 {
6393 	struct igb_adapter *adapter = q_vector->adapter;
6394 	struct igb_ring *tx_ring = q_vector->tx.ring;
6395 	struct igb_tx_buffer *tx_buffer;
6396 	union e1000_adv_tx_desc *tx_desc;
6397 	unsigned int total_bytes = 0, total_packets = 0;
6398 	unsigned int budget = q_vector->tx.work_limit;
6399 	unsigned int i = tx_ring->next_to_clean;
6400 
6401 	if (test_bit(__IGB_DOWN, &adapter->state))
6402 		return true;
6403 
6404 	tx_buffer = &tx_ring->tx_buffer_info[i];
6405 	tx_desc = IGB_TX_DESC(tx_ring, i);
6406 	i -= tx_ring->count;
6407 
6408 	do {
6409 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6410 
6411 		/* if next_to_watch is not set then there is no work pending */
6412 		if (!eop_desc)
6413 			break;
6414 
6415 		/* prevent any other reads prior to eop_desc */
6416 		read_barrier_depends();
6417 
6418 		/* if DD is not set pending work has not been completed */
6419 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6420 			break;
6421 
6422 		/* clear next_to_watch to prevent false hangs */
6423 		tx_buffer->next_to_watch = NULL;
6424 
6425 		/* update the statistics for this packet */
6426 		total_bytes += tx_buffer->bytecount;
6427 		total_packets += tx_buffer->gso_segs;
6428 
6429 		/* free the skb */
6430 		dev_consume_skb_any(tx_buffer->skb);
6431 
6432 		/* unmap skb header data */
6433 		dma_unmap_single(tx_ring->dev,
6434 				 dma_unmap_addr(tx_buffer, dma),
6435 				 dma_unmap_len(tx_buffer, len),
6436 				 DMA_TO_DEVICE);
6437 
6438 		/* clear tx_buffer data */
6439 		tx_buffer->skb = NULL;
6440 		dma_unmap_len_set(tx_buffer, len, 0);
6441 
6442 		/* clear last DMA location and unmap remaining buffers */
6443 		while (tx_desc != eop_desc) {
6444 			tx_buffer++;
6445 			tx_desc++;
6446 			i++;
6447 			if (unlikely(!i)) {
6448 				i -= tx_ring->count;
6449 				tx_buffer = tx_ring->tx_buffer_info;
6450 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6451 			}
6452 
6453 			/* unmap any remaining paged data */
6454 			if (dma_unmap_len(tx_buffer, len)) {
6455 				dma_unmap_page(tx_ring->dev,
6456 					       dma_unmap_addr(tx_buffer, dma),
6457 					       dma_unmap_len(tx_buffer, len),
6458 					       DMA_TO_DEVICE);
6459 				dma_unmap_len_set(tx_buffer, len, 0);
6460 			}
6461 		}
6462 
6463 		/* move us one more past the eop_desc for start of next pkt */
6464 		tx_buffer++;
6465 		tx_desc++;
6466 		i++;
6467 		if (unlikely(!i)) {
6468 			i -= tx_ring->count;
6469 			tx_buffer = tx_ring->tx_buffer_info;
6470 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6471 		}
6472 
6473 		/* issue prefetch for next Tx descriptor */
6474 		prefetch(tx_desc);
6475 
6476 		/* update budget accounting */
6477 		budget--;
6478 	} while (likely(budget));
6479 
6480 	netdev_tx_completed_queue(txring_txq(tx_ring),
6481 				  total_packets, total_bytes);
6482 	i += tx_ring->count;
6483 	tx_ring->next_to_clean = i;
6484 	u64_stats_update_begin(&tx_ring->tx_syncp);
6485 	tx_ring->tx_stats.bytes += total_bytes;
6486 	tx_ring->tx_stats.packets += total_packets;
6487 	u64_stats_update_end(&tx_ring->tx_syncp);
6488 	q_vector->tx.total_bytes += total_bytes;
6489 	q_vector->tx.total_packets += total_packets;
6490 
6491 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6492 		struct e1000_hw *hw = &adapter->hw;
6493 
6494 		/* Detect a transmit hang in hardware, this serializes the
6495 		 * check with the clearing of time_stamp and movement of i
6496 		 */
6497 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6498 		if (tx_buffer->next_to_watch &&
6499 		    time_after(jiffies, tx_buffer->time_stamp +
6500 			       (adapter->tx_timeout_factor * HZ)) &&
6501 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6502 
6503 			/* detected Tx unit hang */
6504 			dev_err(tx_ring->dev,
6505 				"Detected Tx Unit Hang\n"
6506 				"  Tx Queue             <%d>\n"
6507 				"  TDH                  <%x>\n"
6508 				"  TDT                  <%x>\n"
6509 				"  next_to_use          <%x>\n"
6510 				"  next_to_clean        <%x>\n"
6511 				"buffer_info[next_to_clean]\n"
6512 				"  time_stamp           <%lx>\n"
6513 				"  next_to_watch        <%p>\n"
6514 				"  jiffies              <%lx>\n"
6515 				"  desc.status          <%x>\n",
6516 				tx_ring->queue_index,
6517 				rd32(E1000_TDH(tx_ring->reg_idx)),
6518 				readl(tx_ring->tail),
6519 				tx_ring->next_to_use,
6520 				tx_ring->next_to_clean,
6521 				tx_buffer->time_stamp,
6522 				tx_buffer->next_to_watch,
6523 				jiffies,
6524 				tx_buffer->next_to_watch->wb.status);
6525 			netif_stop_subqueue(tx_ring->netdev,
6526 					    tx_ring->queue_index);
6527 
6528 			/* we are about to reset, no point in enabling stuff */
6529 			return true;
6530 		}
6531 	}
6532 
6533 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6534 	if (unlikely(total_packets &&
6535 	    netif_carrier_ok(tx_ring->netdev) &&
6536 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6537 		/* Make sure that anybody stopping the queue after this
6538 		 * sees the new next_to_clean.
6539 		 */
6540 		smp_mb();
6541 		if (__netif_subqueue_stopped(tx_ring->netdev,
6542 					     tx_ring->queue_index) &&
6543 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6544 			netif_wake_subqueue(tx_ring->netdev,
6545 					    tx_ring->queue_index);
6546 
6547 			u64_stats_update_begin(&tx_ring->tx_syncp);
6548 			tx_ring->tx_stats.restart_queue++;
6549 			u64_stats_update_end(&tx_ring->tx_syncp);
6550 		}
6551 	}
6552 
6553 	return !!budget;
6554 }
6555 
6556 /**
6557  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6558  *  @rx_ring: rx descriptor ring to store buffers on
6559  *  @old_buff: donor buffer to have page reused
6560  *
6561  *  Synchronizes page for reuse by the adapter
6562  **/
6563 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6564 			      struct igb_rx_buffer *old_buff)
6565 {
6566 	struct igb_rx_buffer *new_buff;
6567 	u16 nta = rx_ring->next_to_alloc;
6568 
6569 	new_buff = &rx_ring->rx_buffer_info[nta];
6570 
6571 	/* update, and store next to alloc */
6572 	nta++;
6573 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6574 
6575 	/* transfer page from old buffer to new buffer */
6576 	*new_buff = *old_buff;
6577 
6578 	/* sync the buffer for use by the device */
6579 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6580 					 old_buff->page_offset,
6581 					 IGB_RX_BUFSZ,
6582 					 DMA_FROM_DEVICE);
6583 }
6584 
6585 static inline bool igb_page_is_reserved(struct page *page)
6586 {
6587 	return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
6588 }
6589 
6590 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6591 				  struct page *page,
6592 				  unsigned int truesize)
6593 {
6594 	/* avoid re-using remote pages */
6595 	if (unlikely(igb_page_is_reserved(page)))
6596 		return false;
6597 
6598 #if (PAGE_SIZE < 8192)
6599 	/* if we are only owner of page we can reuse it */
6600 	if (unlikely(page_count(page) != 1))
6601 		return false;
6602 
6603 	/* flip page offset to other buffer */
6604 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6605 #else
6606 	/* move offset up to the next cache line */
6607 	rx_buffer->page_offset += truesize;
6608 
6609 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6610 		return false;
6611 #endif
6612 
6613 	/* Even if we own the page, we are not allowed to use atomic_set()
6614 	 * This would break get_page_unless_zero() users.
6615 	 */
6616 	atomic_inc(&page->_count);
6617 
6618 	return true;
6619 }
6620 
6621 /**
6622  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6623  *  @rx_ring: rx descriptor ring to transact packets on
6624  *  @rx_buffer: buffer containing page to add
6625  *  @rx_desc: descriptor containing length of buffer written by hardware
6626  *  @skb: sk_buff to place the data into
6627  *
6628  *  This function will add the data contained in rx_buffer->page to the skb.
6629  *  This is done either through a direct copy if the data in the buffer is
6630  *  less than the skb header size, otherwise it will just attach the page as
6631  *  a frag to the skb.
6632  *
6633  *  The function will then update the page offset if necessary and return
6634  *  true if the buffer can be reused by the adapter.
6635  **/
6636 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6637 			    struct igb_rx_buffer *rx_buffer,
6638 			    union e1000_adv_rx_desc *rx_desc,
6639 			    struct sk_buff *skb)
6640 {
6641 	struct page *page = rx_buffer->page;
6642 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6643 #if (PAGE_SIZE < 8192)
6644 	unsigned int truesize = IGB_RX_BUFSZ;
6645 #else
6646 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6647 #endif
6648 
6649 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6650 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6651 
6652 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6653 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6654 			va += IGB_TS_HDR_LEN;
6655 			size -= IGB_TS_HDR_LEN;
6656 		}
6657 
6658 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6659 
6660 		/* page is not reserved, we can reuse buffer as-is */
6661 		if (likely(!igb_page_is_reserved(page)))
6662 			return true;
6663 
6664 		/* this page cannot be reused so discard it */
6665 		__free_page(page);
6666 		return false;
6667 	}
6668 
6669 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6670 			rx_buffer->page_offset, size, truesize);
6671 
6672 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6673 }
6674 
6675 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6676 					   union e1000_adv_rx_desc *rx_desc,
6677 					   struct sk_buff *skb)
6678 {
6679 	struct igb_rx_buffer *rx_buffer;
6680 	struct page *page;
6681 
6682 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6683 	page = rx_buffer->page;
6684 	prefetchw(page);
6685 
6686 	if (likely(!skb)) {
6687 		void *page_addr = page_address(page) +
6688 				  rx_buffer->page_offset;
6689 
6690 		/* prefetch first cache line of first page */
6691 		prefetch(page_addr);
6692 #if L1_CACHE_BYTES < 128
6693 		prefetch(page_addr + L1_CACHE_BYTES);
6694 #endif
6695 
6696 		/* allocate a skb to store the frags */
6697 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6698 		if (unlikely(!skb)) {
6699 			rx_ring->rx_stats.alloc_failed++;
6700 			return NULL;
6701 		}
6702 
6703 		/* we will be copying header into skb->data in
6704 		 * pskb_may_pull so it is in our interest to prefetch
6705 		 * it now to avoid a possible cache miss
6706 		 */
6707 		prefetchw(skb->data);
6708 	}
6709 
6710 	/* we are reusing so sync this buffer for CPU use */
6711 	dma_sync_single_range_for_cpu(rx_ring->dev,
6712 				      rx_buffer->dma,
6713 				      rx_buffer->page_offset,
6714 				      IGB_RX_BUFSZ,
6715 				      DMA_FROM_DEVICE);
6716 
6717 	/* pull page into skb */
6718 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6719 		/* hand second half of page back to the ring */
6720 		igb_reuse_rx_page(rx_ring, rx_buffer);
6721 	} else {
6722 		/* we are not reusing the buffer so unmap it */
6723 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6724 			       PAGE_SIZE, DMA_FROM_DEVICE);
6725 	}
6726 
6727 	/* clear contents of rx_buffer */
6728 	rx_buffer->page = NULL;
6729 
6730 	return skb;
6731 }
6732 
6733 static inline void igb_rx_checksum(struct igb_ring *ring,
6734 				   union e1000_adv_rx_desc *rx_desc,
6735 				   struct sk_buff *skb)
6736 {
6737 	skb_checksum_none_assert(skb);
6738 
6739 	/* Ignore Checksum bit is set */
6740 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6741 		return;
6742 
6743 	/* Rx checksum disabled via ethtool */
6744 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6745 		return;
6746 
6747 	/* TCP/UDP checksum error bit is set */
6748 	if (igb_test_staterr(rx_desc,
6749 			     E1000_RXDEXT_STATERR_TCPE |
6750 			     E1000_RXDEXT_STATERR_IPE)) {
6751 		/* work around errata with sctp packets where the TCPE aka
6752 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6753 		 * packets, (aka let the stack check the crc32c)
6754 		 */
6755 		if (!((skb->len == 60) &&
6756 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6757 			u64_stats_update_begin(&ring->rx_syncp);
6758 			ring->rx_stats.csum_err++;
6759 			u64_stats_update_end(&ring->rx_syncp);
6760 		}
6761 		/* let the stack verify checksum errors */
6762 		return;
6763 	}
6764 	/* It must be a TCP or UDP packet with a valid checksum */
6765 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6766 				      E1000_RXD_STAT_UDPCS))
6767 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6768 
6769 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6770 		le32_to_cpu(rx_desc->wb.upper.status_error));
6771 }
6772 
6773 static inline void igb_rx_hash(struct igb_ring *ring,
6774 			       union e1000_adv_rx_desc *rx_desc,
6775 			       struct sk_buff *skb)
6776 {
6777 	if (ring->netdev->features & NETIF_F_RXHASH)
6778 		skb_set_hash(skb,
6779 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6780 			     PKT_HASH_TYPE_L3);
6781 }
6782 
6783 /**
6784  *  igb_is_non_eop - process handling of non-EOP buffers
6785  *  @rx_ring: Rx ring being processed
6786  *  @rx_desc: Rx descriptor for current buffer
6787  *  @skb: current socket buffer containing buffer in progress
6788  *
6789  *  This function updates next to clean.  If the buffer is an EOP buffer
6790  *  this function exits returning false, otherwise it will place the
6791  *  sk_buff in the next buffer to be chained and return true indicating
6792  *  that this is in fact a non-EOP buffer.
6793  **/
6794 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6795 			   union e1000_adv_rx_desc *rx_desc)
6796 {
6797 	u32 ntc = rx_ring->next_to_clean + 1;
6798 
6799 	/* fetch, update, and store next to clean */
6800 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6801 	rx_ring->next_to_clean = ntc;
6802 
6803 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6804 
6805 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6806 		return false;
6807 
6808 	return true;
6809 }
6810 
6811 /**
6812  *  igb_pull_tail - igb specific version of skb_pull_tail
6813  *  @rx_ring: rx descriptor ring packet is being transacted on
6814  *  @rx_desc: pointer to the EOP Rx descriptor
6815  *  @skb: pointer to current skb being adjusted
6816  *
6817  *  This function is an igb specific version of __pskb_pull_tail.  The
6818  *  main difference between this version and the original function is that
6819  *  this function can make several assumptions about the state of things
6820  *  that allow for significant optimizations versus the standard function.
6821  *  As a result we can do things like drop a frag and maintain an accurate
6822  *  truesize for the skb.
6823  */
6824 static void igb_pull_tail(struct igb_ring *rx_ring,
6825 			  union e1000_adv_rx_desc *rx_desc,
6826 			  struct sk_buff *skb)
6827 {
6828 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6829 	unsigned char *va;
6830 	unsigned int pull_len;
6831 
6832 	/* it is valid to use page_address instead of kmap since we are
6833 	 * working with pages allocated out of the lomem pool per
6834 	 * alloc_page(GFP_ATOMIC)
6835 	 */
6836 	va = skb_frag_address(frag);
6837 
6838 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6839 		/* retrieve timestamp from buffer */
6840 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6841 
6842 		/* update pointers to remove timestamp header */
6843 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6844 		frag->page_offset += IGB_TS_HDR_LEN;
6845 		skb->data_len -= IGB_TS_HDR_LEN;
6846 		skb->len -= IGB_TS_HDR_LEN;
6847 
6848 		/* move va to start of packet data */
6849 		va += IGB_TS_HDR_LEN;
6850 	}
6851 
6852 	/* we need the header to contain the greater of either ETH_HLEN or
6853 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6854 	 */
6855 	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6856 
6857 	/* align pull length to size of long to optimize memcpy performance */
6858 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6859 
6860 	/* update all of the pointers */
6861 	skb_frag_size_sub(frag, pull_len);
6862 	frag->page_offset += pull_len;
6863 	skb->data_len -= pull_len;
6864 	skb->tail += pull_len;
6865 }
6866 
6867 /**
6868  *  igb_cleanup_headers - Correct corrupted or empty headers
6869  *  @rx_ring: rx descriptor ring packet is being transacted on
6870  *  @rx_desc: pointer to the EOP Rx descriptor
6871  *  @skb: pointer to current skb being fixed
6872  *
6873  *  Address the case where we are pulling data in on pages only
6874  *  and as such no data is present in the skb header.
6875  *
6876  *  In addition if skb is not at least 60 bytes we need to pad it so that
6877  *  it is large enough to qualify as a valid Ethernet frame.
6878  *
6879  *  Returns true if an error was encountered and skb was freed.
6880  **/
6881 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6882 				union e1000_adv_rx_desc *rx_desc,
6883 				struct sk_buff *skb)
6884 {
6885 	if (unlikely((igb_test_staterr(rx_desc,
6886 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6887 		struct net_device *netdev = rx_ring->netdev;
6888 		if (!(netdev->features & NETIF_F_RXALL)) {
6889 			dev_kfree_skb_any(skb);
6890 			return true;
6891 		}
6892 	}
6893 
6894 	/* place header in linear portion of buffer */
6895 	if (skb_is_nonlinear(skb))
6896 		igb_pull_tail(rx_ring, rx_desc, skb);
6897 
6898 	/* if eth_skb_pad returns an error the skb was freed */
6899 	if (eth_skb_pad(skb))
6900 		return true;
6901 
6902 	return false;
6903 }
6904 
6905 /**
6906  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6907  *  @rx_ring: rx descriptor ring packet is being transacted on
6908  *  @rx_desc: pointer to the EOP Rx descriptor
6909  *  @skb: pointer to current skb being populated
6910  *
6911  *  This function checks the ring, descriptor, and packet information in
6912  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6913  *  other fields within the skb.
6914  **/
6915 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6916 				   union e1000_adv_rx_desc *rx_desc,
6917 				   struct sk_buff *skb)
6918 {
6919 	struct net_device *dev = rx_ring->netdev;
6920 
6921 	igb_rx_hash(rx_ring, rx_desc, skb);
6922 
6923 	igb_rx_checksum(rx_ring, rx_desc, skb);
6924 
6925 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6926 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6927 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6928 
6929 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6930 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6931 		u16 vid;
6932 
6933 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6934 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6935 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6936 		else
6937 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6938 
6939 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6940 	}
6941 
6942 	skb_record_rx_queue(skb, rx_ring->queue_index);
6943 
6944 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6945 }
6946 
6947 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6948 {
6949 	struct igb_ring *rx_ring = q_vector->rx.ring;
6950 	struct sk_buff *skb = rx_ring->skb;
6951 	unsigned int total_bytes = 0, total_packets = 0;
6952 	u16 cleaned_count = igb_desc_unused(rx_ring);
6953 
6954 	while (likely(total_packets < budget)) {
6955 		union e1000_adv_rx_desc *rx_desc;
6956 
6957 		/* return some buffers to hardware, one at a time is too slow */
6958 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6959 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6960 			cleaned_count = 0;
6961 		}
6962 
6963 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6964 
6965 		if (!rx_desc->wb.upper.status_error)
6966 			break;
6967 
6968 		/* This memory barrier is needed to keep us from reading
6969 		 * any other fields out of the rx_desc until we know the
6970 		 * descriptor has been written back
6971 		 */
6972 		dma_rmb();
6973 
6974 		/* retrieve a buffer from the ring */
6975 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6976 
6977 		/* exit if we failed to retrieve a buffer */
6978 		if (!skb)
6979 			break;
6980 
6981 		cleaned_count++;
6982 
6983 		/* fetch next buffer in frame if non-eop */
6984 		if (igb_is_non_eop(rx_ring, rx_desc))
6985 			continue;
6986 
6987 		/* verify the packet layout is correct */
6988 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6989 			skb = NULL;
6990 			continue;
6991 		}
6992 
6993 		/* probably a little skewed due to removing CRC */
6994 		total_bytes += skb->len;
6995 
6996 		/* populate checksum, timestamp, VLAN, and protocol */
6997 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6998 
6999 		napi_gro_receive(&q_vector->napi, skb);
7000 
7001 		/* reset skb pointer */
7002 		skb = NULL;
7003 
7004 		/* update budget accounting */
7005 		total_packets++;
7006 	}
7007 
7008 	/* place incomplete frames back on ring for completion */
7009 	rx_ring->skb = skb;
7010 
7011 	u64_stats_update_begin(&rx_ring->rx_syncp);
7012 	rx_ring->rx_stats.packets += total_packets;
7013 	rx_ring->rx_stats.bytes += total_bytes;
7014 	u64_stats_update_end(&rx_ring->rx_syncp);
7015 	q_vector->rx.total_packets += total_packets;
7016 	q_vector->rx.total_bytes += total_bytes;
7017 
7018 	if (cleaned_count)
7019 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7020 
7021 	return total_packets < budget;
7022 }
7023 
7024 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7025 				  struct igb_rx_buffer *bi)
7026 {
7027 	struct page *page = bi->page;
7028 	dma_addr_t dma;
7029 
7030 	/* since we are recycling buffers we should seldom need to alloc */
7031 	if (likely(page))
7032 		return true;
7033 
7034 	/* alloc new page for storage */
7035 	page = dev_alloc_page();
7036 	if (unlikely(!page)) {
7037 		rx_ring->rx_stats.alloc_failed++;
7038 		return false;
7039 	}
7040 
7041 	/* map page for use */
7042 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7043 
7044 	/* if mapping failed free memory back to system since
7045 	 * there isn't much point in holding memory we can't use
7046 	 */
7047 	if (dma_mapping_error(rx_ring->dev, dma)) {
7048 		__free_page(page);
7049 
7050 		rx_ring->rx_stats.alloc_failed++;
7051 		return false;
7052 	}
7053 
7054 	bi->dma = dma;
7055 	bi->page = page;
7056 	bi->page_offset = 0;
7057 
7058 	return true;
7059 }
7060 
7061 /**
7062  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7063  *  @adapter: address of board private structure
7064  **/
7065 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7066 {
7067 	union e1000_adv_rx_desc *rx_desc;
7068 	struct igb_rx_buffer *bi;
7069 	u16 i = rx_ring->next_to_use;
7070 
7071 	/* nothing to do */
7072 	if (!cleaned_count)
7073 		return;
7074 
7075 	rx_desc = IGB_RX_DESC(rx_ring, i);
7076 	bi = &rx_ring->rx_buffer_info[i];
7077 	i -= rx_ring->count;
7078 
7079 	do {
7080 		if (!igb_alloc_mapped_page(rx_ring, bi))
7081 			break;
7082 
7083 		/* Refresh the desc even if buffer_addrs didn't change
7084 		 * because each write-back erases this info.
7085 		 */
7086 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7087 
7088 		rx_desc++;
7089 		bi++;
7090 		i++;
7091 		if (unlikely(!i)) {
7092 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7093 			bi = rx_ring->rx_buffer_info;
7094 			i -= rx_ring->count;
7095 		}
7096 
7097 		/* clear the status bits for the next_to_use descriptor */
7098 		rx_desc->wb.upper.status_error = 0;
7099 
7100 		cleaned_count--;
7101 	} while (cleaned_count);
7102 
7103 	i += rx_ring->count;
7104 
7105 	if (rx_ring->next_to_use != i) {
7106 		/* record the next descriptor to use */
7107 		rx_ring->next_to_use = i;
7108 
7109 		/* update next to alloc since we have filled the ring */
7110 		rx_ring->next_to_alloc = i;
7111 
7112 		/* Force memory writes to complete before letting h/w
7113 		 * know there are new descriptors to fetch.  (Only
7114 		 * applicable for weak-ordered memory model archs,
7115 		 * such as IA-64).
7116 		 */
7117 		wmb();
7118 		writel(i, rx_ring->tail);
7119 	}
7120 }
7121 
7122 /**
7123  * igb_mii_ioctl -
7124  * @netdev:
7125  * @ifreq:
7126  * @cmd:
7127  **/
7128 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7129 {
7130 	struct igb_adapter *adapter = netdev_priv(netdev);
7131 	struct mii_ioctl_data *data = if_mii(ifr);
7132 
7133 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7134 		return -EOPNOTSUPP;
7135 
7136 	switch (cmd) {
7137 	case SIOCGMIIPHY:
7138 		data->phy_id = adapter->hw.phy.addr;
7139 		break;
7140 	case SIOCGMIIREG:
7141 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7142 				     &data->val_out))
7143 			return -EIO;
7144 		break;
7145 	case SIOCSMIIREG:
7146 	default:
7147 		return -EOPNOTSUPP;
7148 	}
7149 	return 0;
7150 }
7151 
7152 /**
7153  * igb_ioctl -
7154  * @netdev:
7155  * @ifreq:
7156  * @cmd:
7157  **/
7158 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7159 {
7160 	switch (cmd) {
7161 	case SIOCGMIIPHY:
7162 	case SIOCGMIIREG:
7163 	case SIOCSMIIREG:
7164 		return igb_mii_ioctl(netdev, ifr, cmd);
7165 	case SIOCGHWTSTAMP:
7166 		return igb_ptp_get_ts_config(netdev, ifr);
7167 	case SIOCSHWTSTAMP:
7168 		return igb_ptp_set_ts_config(netdev, ifr);
7169 	default:
7170 		return -EOPNOTSUPP;
7171 	}
7172 }
7173 
7174 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7175 {
7176 	struct igb_adapter *adapter = hw->back;
7177 
7178 	pci_read_config_word(adapter->pdev, reg, value);
7179 }
7180 
7181 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7182 {
7183 	struct igb_adapter *adapter = hw->back;
7184 
7185 	pci_write_config_word(adapter->pdev, reg, *value);
7186 }
7187 
7188 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7189 {
7190 	struct igb_adapter *adapter = hw->back;
7191 
7192 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7193 		return -E1000_ERR_CONFIG;
7194 
7195 	return 0;
7196 }
7197 
7198 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7199 {
7200 	struct igb_adapter *adapter = hw->back;
7201 
7202 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7203 		return -E1000_ERR_CONFIG;
7204 
7205 	return 0;
7206 }
7207 
7208 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7209 {
7210 	struct igb_adapter *adapter = netdev_priv(netdev);
7211 	struct e1000_hw *hw = &adapter->hw;
7212 	u32 ctrl, rctl;
7213 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7214 
7215 	if (enable) {
7216 		/* enable VLAN tag insert/strip */
7217 		ctrl = rd32(E1000_CTRL);
7218 		ctrl |= E1000_CTRL_VME;
7219 		wr32(E1000_CTRL, ctrl);
7220 
7221 		/* Disable CFI check */
7222 		rctl = rd32(E1000_RCTL);
7223 		rctl &= ~E1000_RCTL_CFIEN;
7224 		wr32(E1000_RCTL, rctl);
7225 	} else {
7226 		/* disable VLAN tag insert/strip */
7227 		ctrl = rd32(E1000_CTRL);
7228 		ctrl &= ~E1000_CTRL_VME;
7229 		wr32(E1000_CTRL, ctrl);
7230 	}
7231 
7232 	igb_rlpml_set(adapter);
7233 }
7234 
7235 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7236 			       __be16 proto, u16 vid)
7237 {
7238 	struct igb_adapter *adapter = netdev_priv(netdev);
7239 	struct e1000_hw *hw = &adapter->hw;
7240 	int pf_id = adapter->vfs_allocated_count;
7241 
7242 	/* attempt to add filter to vlvf array */
7243 	igb_vlvf_set(adapter, vid, true, pf_id);
7244 
7245 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7246 	igb_vfta_set(hw, vid, true);
7247 
7248 	set_bit(vid, adapter->active_vlans);
7249 
7250 	return 0;
7251 }
7252 
7253 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7254 				__be16 proto, u16 vid)
7255 {
7256 	struct igb_adapter *adapter = netdev_priv(netdev);
7257 	struct e1000_hw *hw = &adapter->hw;
7258 	int pf_id = adapter->vfs_allocated_count;
7259 	s32 err;
7260 
7261 	/* remove vlan from VLVF table array */
7262 	err = igb_vlvf_set(adapter, vid, false, pf_id);
7263 
7264 	/* if vid was not present in VLVF just remove it from table */
7265 	if (err)
7266 		igb_vfta_set(hw, vid, false);
7267 
7268 	clear_bit(vid, adapter->active_vlans);
7269 
7270 	return 0;
7271 }
7272 
7273 static void igb_restore_vlan(struct igb_adapter *adapter)
7274 {
7275 	u16 vid;
7276 
7277 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7278 
7279 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7280 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7281 }
7282 
7283 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7284 {
7285 	struct pci_dev *pdev = adapter->pdev;
7286 	struct e1000_mac_info *mac = &adapter->hw.mac;
7287 
7288 	mac->autoneg = 0;
7289 
7290 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7291 	 * for the switch() below to work
7292 	 */
7293 	if ((spd & 1) || (dplx & ~1))
7294 		goto err_inval;
7295 
7296 	/* Fiber NIC's only allow 1000 gbps Full duplex
7297 	 * and 100Mbps Full duplex for 100baseFx sfp
7298 	 */
7299 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7300 		switch (spd + dplx) {
7301 		case SPEED_10 + DUPLEX_HALF:
7302 		case SPEED_10 + DUPLEX_FULL:
7303 		case SPEED_100 + DUPLEX_HALF:
7304 			goto err_inval;
7305 		default:
7306 			break;
7307 		}
7308 	}
7309 
7310 	switch (spd + dplx) {
7311 	case SPEED_10 + DUPLEX_HALF:
7312 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7313 		break;
7314 	case SPEED_10 + DUPLEX_FULL:
7315 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7316 		break;
7317 	case SPEED_100 + DUPLEX_HALF:
7318 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7319 		break;
7320 	case SPEED_100 + DUPLEX_FULL:
7321 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7322 		break;
7323 	case SPEED_1000 + DUPLEX_FULL:
7324 		mac->autoneg = 1;
7325 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7326 		break;
7327 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7328 	default:
7329 		goto err_inval;
7330 	}
7331 
7332 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7333 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7334 
7335 	return 0;
7336 
7337 err_inval:
7338 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7339 	return -EINVAL;
7340 }
7341 
7342 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7343 			  bool runtime)
7344 {
7345 	struct net_device *netdev = pci_get_drvdata(pdev);
7346 	struct igb_adapter *adapter = netdev_priv(netdev);
7347 	struct e1000_hw *hw = &adapter->hw;
7348 	u32 ctrl, rctl, status;
7349 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7350 #ifdef CONFIG_PM
7351 	int retval = 0;
7352 #endif
7353 
7354 	netif_device_detach(netdev);
7355 
7356 	if (netif_running(netdev))
7357 		__igb_close(netdev, true);
7358 
7359 	igb_clear_interrupt_scheme(adapter);
7360 
7361 #ifdef CONFIG_PM
7362 	retval = pci_save_state(pdev);
7363 	if (retval)
7364 		return retval;
7365 #endif
7366 
7367 	status = rd32(E1000_STATUS);
7368 	if (status & E1000_STATUS_LU)
7369 		wufc &= ~E1000_WUFC_LNKC;
7370 
7371 	if (wufc) {
7372 		igb_setup_rctl(adapter);
7373 		igb_set_rx_mode(netdev);
7374 
7375 		/* turn on all-multi mode if wake on multicast is enabled */
7376 		if (wufc & E1000_WUFC_MC) {
7377 			rctl = rd32(E1000_RCTL);
7378 			rctl |= E1000_RCTL_MPE;
7379 			wr32(E1000_RCTL, rctl);
7380 		}
7381 
7382 		ctrl = rd32(E1000_CTRL);
7383 		/* advertise wake from D3Cold */
7384 		#define E1000_CTRL_ADVD3WUC 0x00100000
7385 		/* phy power management enable */
7386 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7387 		ctrl |= E1000_CTRL_ADVD3WUC;
7388 		wr32(E1000_CTRL, ctrl);
7389 
7390 		/* Allow time for pending master requests to run */
7391 		igb_disable_pcie_master(hw);
7392 
7393 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7394 		wr32(E1000_WUFC, wufc);
7395 	} else {
7396 		wr32(E1000_WUC, 0);
7397 		wr32(E1000_WUFC, 0);
7398 	}
7399 
7400 	*enable_wake = wufc || adapter->en_mng_pt;
7401 	if (!*enable_wake)
7402 		igb_power_down_link(adapter);
7403 	else
7404 		igb_power_up_link(adapter);
7405 
7406 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7407 	 * would have already happened in close and is redundant.
7408 	 */
7409 	igb_release_hw_control(adapter);
7410 
7411 	pci_disable_device(pdev);
7412 
7413 	return 0;
7414 }
7415 
7416 #ifdef CONFIG_PM
7417 #ifdef CONFIG_PM_SLEEP
7418 static int igb_suspend(struct device *dev)
7419 {
7420 	int retval;
7421 	bool wake;
7422 	struct pci_dev *pdev = to_pci_dev(dev);
7423 
7424 	retval = __igb_shutdown(pdev, &wake, 0);
7425 	if (retval)
7426 		return retval;
7427 
7428 	if (wake) {
7429 		pci_prepare_to_sleep(pdev);
7430 	} else {
7431 		pci_wake_from_d3(pdev, false);
7432 		pci_set_power_state(pdev, PCI_D3hot);
7433 	}
7434 
7435 	return 0;
7436 }
7437 #endif /* CONFIG_PM_SLEEP */
7438 
7439 static int igb_resume(struct device *dev)
7440 {
7441 	struct pci_dev *pdev = to_pci_dev(dev);
7442 	struct net_device *netdev = pci_get_drvdata(pdev);
7443 	struct igb_adapter *adapter = netdev_priv(netdev);
7444 	struct e1000_hw *hw = &adapter->hw;
7445 	u32 err;
7446 
7447 	pci_set_power_state(pdev, PCI_D0);
7448 	pci_restore_state(pdev);
7449 	pci_save_state(pdev);
7450 
7451 	if (!pci_device_is_present(pdev))
7452 		return -ENODEV;
7453 	err = pci_enable_device_mem(pdev);
7454 	if (err) {
7455 		dev_err(&pdev->dev,
7456 			"igb: Cannot enable PCI device from suspend\n");
7457 		return err;
7458 	}
7459 	pci_set_master(pdev);
7460 
7461 	pci_enable_wake(pdev, PCI_D3hot, 0);
7462 	pci_enable_wake(pdev, PCI_D3cold, 0);
7463 
7464 	if (igb_init_interrupt_scheme(adapter, true)) {
7465 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7466 		return -ENOMEM;
7467 	}
7468 
7469 	igb_reset(adapter);
7470 
7471 	/* let the f/w know that the h/w is now under the control of the
7472 	 * driver.
7473 	 */
7474 	igb_get_hw_control(adapter);
7475 
7476 	wr32(E1000_WUS, ~0);
7477 
7478 	if (netdev->flags & IFF_UP) {
7479 		rtnl_lock();
7480 		err = __igb_open(netdev, true);
7481 		rtnl_unlock();
7482 		if (err)
7483 			return err;
7484 	}
7485 
7486 	netif_device_attach(netdev);
7487 	return 0;
7488 }
7489 
7490 static int igb_runtime_idle(struct device *dev)
7491 {
7492 	struct pci_dev *pdev = to_pci_dev(dev);
7493 	struct net_device *netdev = pci_get_drvdata(pdev);
7494 	struct igb_adapter *adapter = netdev_priv(netdev);
7495 
7496 	if (!igb_has_link(adapter))
7497 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7498 
7499 	return -EBUSY;
7500 }
7501 
7502 static int igb_runtime_suspend(struct device *dev)
7503 {
7504 	struct pci_dev *pdev = to_pci_dev(dev);
7505 	int retval;
7506 	bool wake;
7507 
7508 	retval = __igb_shutdown(pdev, &wake, 1);
7509 	if (retval)
7510 		return retval;
7511 
7512 	if (wake) {
7513 		pci_prepare_to_sleep(pdev);
7514 	} else {
7515 		pci_wake_from_d3(pdev, false);
7516 		pci_set_power_state(pdev, PCI_D3hot);
7517 	}
7518 
7519 	return 0;
7520 }
7521 
7522 static int igb_runtime_resume(struct device *dev)
7523 {
7524 	return igb_resume(dev);
7525 }
7526 #endif /* CONFIG_PM */
7527 
7528 static void igb_shutdown(struct pci_dev *pdev)
7529 {
7530 	bool wake;
7531 
7532 	__igb_shutdown(pdev, &wake, 0);
7533 
7534 	if (system_state == SYSTEM_POWER_OFF) {
7535 		pci_wake_from_d3(pdev, wake);
7536 		pci_set_power_state(pdev, PCI_D3hot);
7537 	}
7538 }
7539 
7540 #ifdef CONFIG_PCI_IOV
7541 static int igb_sriov_reinit(struct pci_dev *dev)
7542 {
7543 	struct net_device *netdev = pci_get_drvdata(dev);
7544 	struct igb_adapter *adapter = netdev_priv(netdev);
7545 	struct pci_dev *pdev = adapter->pdev;
7546 
7547 	rtnl_lock();
7548 
7549 	if (netif_running(netdev))
7550 		igb_close(netdev);
7551 	else
7552 		igb_reset(adapter);
7553 
7554 	igb_clear_interrupt_scheme(adapter);
7555 
7556 	igb_init_queue_configuration(adapter);
7557 
7558 	if (igb_init_interrupt_scheme(adapter, true)) {
7559 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7560 		return -ENOMEM;
7561 	}
7562 
7563 	if (netif_running(netdev))
7564 		igb_open(netdev);
7565 
7566 	rtnl_unlock();
7567 
7568 	return 0;
7569 }
7570 
7571 static int igb_pci_disable_sriov(struct pci_dev *dev)
7572 {
7573 	int err = igb_disable_sriov(dev);
7574 
7575 	if (!err)
7576 		err = igb_sriov_reinit(dev);
7577 
7578 	return err;
7579 }
7580 
7581 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7582 {
7583 	int err = igb_enable_sriov(dev, num_vfs);
7584 
7585 	if (err)
7586 		goto out;
7587 
7588 	err = igb_sriov_reinit(dev);
7589 	if (!err)
7590 		return num_vfs;
7591 
7592 out:
7593 	return err;
7594 }
7595 
7596 #endif
7597 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7598 {
7599 #ifdef CONFIG_PCI_IOV
7600 	if (num_vfs == 0)
7601 		return igb_pci_disable_sriov(dev);
7602 	else
7603 		return igb_pci_enable_sriov(dev, num_vfs);
7604 #endif
7605 	return 0;
7606 }
7607 
7608 #ifdef CONFIG_NET_POLL_CONTROLLER
7609 /* Polling 'interrupt' - used by things like netconsole to send skbs
7610  * without having to re-enable interrupts. It's not called while
7611  * the interrupt routine is executing.
7612  */
7613 static void igb_netpoll(struct net_device *netdev)
7614 {
7615 	struct igb_adapter *adapter = netdev_priv(netdev);
7616 	struct e1000_hw *hw = &adapter->hw;
7617 	struct igb_q_vector *q_vector;
7618 	int i;
7619 
7620 	for (i = 0; i < adapter->num_q_vectors; i++) {
7621 		q_vector = adapter->q_vector[i];
7622 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7623 			wr32(E1000_EIMC, q_vector->eims_value);
7624 		else
7625 			igb_irq_disable(adapter);
7626 		napi_schedule(&q_vector->napi);
7627 	}
7628 }
7629 #endif /* CONFIG_NET_POLL_CONTROLLER */
7630 
7631 /**
7632  *  igb_io_error_detected - called when PCI error is detected
7633  *  @pdev: Pointer to PCI device
7634  *  @state: The current pci connection state
7635  *
7636  *  This function is called after a PCI bus error affecting
7637  *  this device has been detected.
7638  **/
7639 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7640 					      pci_channel_state_t state)
7641 {
7642 	struct net_device *netdev = pci_get_drvdata(pdev);
7643 	struct igb_adapter *adapter = netdev_priv(netdev);
7644 
7645 	netif_device_detach(netdev);
7646 
7647 	if (state == pci_channel_io_perm_failure)
7648 		return PCI_ERS_RESULT_DISCONNECT;
7649 
7650 	if (netif_running(netdev))
7651 		igb_down(adapter);
7652 	pci_disable_device(pdev);
7653 
7654 	/* Request a slot slot reset. */
7655 	return PCI_ERS_RESULT_NEED_RESET;
7656 }
7657 
7658 /**
7659  *  igb_io_slot_reset - called after the pci bus has been reset.
7660  *  @pdev: Pointer to PCI device
7661  *
7662  *  Restart the card from scratch, as if from a cold-boot. Implementation
7663  *  resembles the first-half of the igb_resume routine.
7664  **/
7665 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7666 {
7667 	struct net_device *netdev = pci_get_drvdata(pdev);
7668 	struct igb_adapter *adapter = netdev_priv(netdev);
7669 	struct e1000_hw *hw = &adapter->hw;
7670 	pci_ers_result_t result;
7671 	int err;
7672 
7673 	if (pci_enable_device_mem(pdev)) {
7674 		dev_err(&pdev->dev,
7675 			"Cannot re-enable PCI device after reset.\n");
7676 		result = PCI_ERS_RESULT_DISCONNECT;
7677 	} else {
7678 		pci_set_master(pdev);
7679 		pci_restore_state(pdev);
7680 		pci_save_state(pdev);
7681 
7682 		pci_enable_wake(pdev, PCI_D3hot, 0);
7683 		pci_enable_wake(pdev, PCI_D3cold, 0);
7684 
7685 		igb_reset(adapter);
7686 		wr32(E1000_WUS, ~0);
7687 		result = PCI_ERS_RESULT_RECOVERED;
7688 	}
7689 
7690 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7691 	if (err) {
7692 		dev_err(&pdev->dev,
7693 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7694 			err);
7695 		/* non-fatal, continue */
7696 	}
7697 
7698 	return result;
7699 }
7700 
7701 /**
7702  *  igb_io_resume - called when traffic can start flowing again.
7703  *  @pdev: Pointer to PCI device
7704  *
7705  *  This callback is called when the error recovery driver tells us that
7706  *  its OK to resume normal operation. Implementation resembles the
7707  *  second-half of the igb_resume routine.
7708  */
7709 static void igb_io_resume(struct pci_dev *pdev)
7710 {
7711 	struct net_device *netdev = pci_get_drvdata(pdev);
7712 	struct igb_adapter *adapter = netdev_priv(netdev);
7713 
7714 	if (netif_running(netdev)) {
7715 		if (igb_up(adapter)) {
7716 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7717 			return;
7718 		}
7719 	}
7720 
7721 	netif_device_attach(netdev);
7722 
7723 	/* let the f/w know that the h/w is now under the control of the
7724 	 * driver.
7725 	 */
7726 	igb_get_hw_control(adapter);
7727 }
7728 
7729 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7730 			     u8 qsel)
7731 {
7732 	u32 rar_low, rar_high;
7733 	struct e1000_hw *hw = &adapter->hw;
7734 
7735 	/* HW expects these in little endian so we reverse the byte order
7736 	 * from network order (big endian) to little endian
7737 	 */
7738 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7739 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7740 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7741 
7742 	/* Indicate to hardware the Address is Valid. */
7743 	rar_high |= E1000_RAH_AV;
7744 
7745 	if (hw->mac.type == e1000_82575)
7746 		rar_high |= E1000_RAH_POOL_1 * qsel;
7747 	else
7748 		rar_high |= E1000_RAH_POOL_1 << qsel;
7749 
7750 	wr32(E1000_RAL(index), rar_low);
7751 	wrfl();
7752 	wr32(E1000_RAH(index), rar_high);
7753 	wrfl();
7754 }
7755 
7756 static int igb_set_vf_mac(struct igb_adapter *adapter,
7757 			  int vf, unsigned char *mac_addr)
7758 {
7759 	struct e1000_hw *hw = &adapter->hw;
7760 	/* VF MAC addresses start at end of receive addresses and moves
7761 	 * towards the first, as a result a collision should not be possible
7762 	 */
7763 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7764 
7765 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7766 
7767 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7768 
7769 	return 0;
7770 }
7771 
7772 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7773 {
7774 	struct igb_adapter *adapter = netdev_priv(netdev);
7775 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7776 		return -EINVAL;
7777 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7778 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7779 	dev_info(&adapter->pdev->dev,
7780 		 "Reload the VF driver to make this change effective.");
7781 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7782 		dev_warn(&adapter->pdev->dev,
7783 			 "The VF MAC address has been set, but the PF device is not up.\n");
7784 		dev_warn(&adapter->pdev->dev,
7785 			 "Bring the PF device up before attempting to use the VF device.\n");
7786 	}
7787 	return igb_set_vf_mac(adapter, vf, mac);
7788 }
7789 
7790 static int igb_link_mbps(int internal_link_speed)
7791 {
7792 	switch (internal_link_speed) {
7793 	case SPEED_100:
7794 		return 100;
7795 	case SPEED_1000:
7796 		return 1000;
7797 	default:
7798 		return 0;
7799 	}
7800 }
7801 
7802 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7803 				  int link_speed)
7804 {
7805 	int rf_dec, rf_int;
7806 	u32 bcnrc_val;
7807 
7808 	if (tx_rate != 0) {
7809 		/* Calculate the rate factor values to set */
7810 		rf_int = link_speed / tx_rate;
7811 		rf_dec = (link_speed - (rf_int * tx_rate));
7812 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7813 			 tx_rate;
7814 
7815 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7816 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7817 			      E1000_RTTBCNRC_RF_INT_MASK);
7818 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7819 	} else {
7820 		bcnrc_val = 0;
7821 	}
7822 
7823 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7824 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7825 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7826 	 */
7827 	wr32(E1000_RTTBCNRM, 0x14);
7828 	wr32(E1000_RTTBCNRC, bcnrc_val);
7829 }
7830 
7831 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7832 {
7833 	int actual_link_speed, i;
7834 	bool reset_rate = false;
7835 
7836 	/* VF TX rate limit was not set or not supported */
7837 	if ((adapter->vf_rate_link_speed == 0) ||
7838 	    (adapter->hw.mac.type != e1000_82576))
7839 		return;
7840 
7841 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7842 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7843 		reset_rate = true;
7844 		adapter->vf_rate_link_speed = 0;
7845 		dev_info(&adapter->pdev->dev,
7846 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7847 	}
7848 
7849 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7850 		if (reset_rate)
7851 			adapter->vf_data[i].tx_rate = 0;
7852 
7853 		igb_set_vf_rate_limit(&adapter->hw, i,
7854 				      adapter->vf_data[i].tx_rate,
7855 				      actual_link_speed);
7856 	}
7857 }
7858 
7859 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7860 			     int min_tx_rate, int max_tx_rate)
7861 {
7862 	struct igb_adapter *adapter = netdev_priv(netdev);
7863 	struct e1000_hw *hw = &adapter->hw;
7864 	int actual_link_speed;
7865 
7866 	if (hw->mac.type != e1000_82576)
7867 		return -EOPNOTSUPP;
7868 
7869 	if (min_tx_rate)
7870 		return -EINVAL;
7871 
7872 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7873 	if ((vf >= adapter->vfs_allocated_count) ||
7874 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7875 	    (max_tx_rate < 0) ||
7876 	    (max_tx_rate > actual_link_speed))
7877 		return -EINVAL;
7878 
7879 	adapter->vf_rate_link_speed = actual_link_speed;
7880 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7881 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7882 
7883 	return 0;
7884 }
7885 
7886 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7887 				   bool setting)
7888 {
7889 	struct igb_adapter *adapter = netdev_priv(netdev);
7890 	struct e1000_hw *hw = &adapter->hw;
7891 	u32 reg_val, reg_offset;
7892 
7893 	if (!adapter->vfs_allocated_count)
7894 		return -EOPNOTSUPP;
7895 
7896 	if (vf >= adapter->vfs_allocated_count)
7897 		return -EINVAL;
7898 
7899 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7900 	reg_val = rd32(reg_offset);
7901 	if (setting)
7902 		reg_val |= ((1 << vf) |
7903 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7904 	else
7905 		reg_val &= ~((1 << vf) |
7906 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7907 	wr32(reg_offset, reg_val);
7908 
7909 	adapter->vf_data[vf].spoofchk_enabled = setting;
7910 	return 0;
7911 }
7912 
7913 static int igb_ndo_get_vf_config(struct net_device *netdev,
7914 				 int vf, struct ifla_vf_info *ivi)
7915 {
7916 	struct igb_adapter *adapter = netdev_priv(netdev);
7917 	if (vf >= adapter->vfs_allocated_count)
7918 		return -EINVAL;
7919 	ivi->vf = vf;
7920 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7921 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7922 	ivi->min_tx_rate = 0;
7923 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7924 	ivi->qos = adapter->vf_data[vf].pf_qos;
7925 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7926 	return 0;
7927 }
7928 
7929 static void igb_vmm_control(struct igb_adapter *adapter)
7930 {
7931 	struct e1000_hw *hw = &adapter->hw;
7932 	u32 reg;
7933 
7934 	switch (hw->mac.type) {
7935 	case e1000_82575:
7936 	case e1000_i210:
7937 	case e1000_i211:
7938 	case e1000_i354:
7939 	default:
7940 		/* replication is not supported for 82575 */
7941 		return;
7942 	case e1000_82576:
7943 		/* notify HW that the MAC is adding vlan tags */
7944 		reg = rd32(E1000_DTXCTL);
7945 		reg |= E1000_DTXCTL_VLAN_ADDED;
7946 		wr32(E1000_DTXCTL, reg);
7947 		/* Fall through */
7948 	case e1000_82580:
7949 		/* enable replication vlan tag stripping */
7950 		reg = rd32(E1000_RPLOLR);
7951 		reg |= E1000_RPLOLR_STRVLAN;
7952 		wr32(E1000_RPLOLR, reg);
7953 		/* Fall through */
7954 	case e1000_i350:
7955 		/* none of the above registers are supported by i350 */
7956 		break;
7957 	}
7958 
7959 	if (adapter->vfs_allocated_count) {
7960 		igb_vmdq_set_loopback_pf(hw, true);
7961 		igb_vmdq_set_replication_pf(hw, true);
7962 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7963 					      adapter->vfs_allocated_count);
7964 	} else {
7965 		igb_vmdq_set_loopback_pf(hw, false);
7966 		igb_vmdq_set_replication_pf(hw, false);
7967 	}
7968 }
7969 
7970 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7971 {
7972 	struct e1000_hw *hw = &adapter->hw;
7973 	u32 dmac_thr;
7974 	u16 hwm;
7975 
7976 	if (hw->mac.type > e1000_82580) {
7977 		if (adapter->flags & IGB_FLAG_DMAC) {
7978 			u32 reg;
7979 
7980 			/* force threshold to 0. */
7981 			wr32(E1000_DMCTXTH, 0);
7982 
7983 			/* DMA Coalescing high water mark needs to be greater
7984 			 * than the Rx threshold. Set hwm to PBA - max frame
7985 			 * size in 16B units, capping it at PBA - 6KB.
7986 			 */
7987 			hwm = 64 * pba - adapter->max_frame_size / 16;
7988 			if (hwm < 64 * (pba - 6))
7989 				hwm = 64 * (pba - 6);
7990 			reg = rd32(E1000_FCRTC);
7991 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7992 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7993 				& E1000_FCRTC_RTH_COAL_MASK);
7994 			wr32(E1000_FCRTC, reg);
7995 
7996 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7997 			 * frame size, capping it at PBA - 10KB.
7998 			 */
7999 			dmac_thr = pba - adapter->max_frame_size / 512;
8000 			if (dmac_thr < pba - 10)
8001 				dmac_thr = pba - 10;
8002 			reg = rd32(E1000_DMACR);
8003 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8004 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8005 				& E1000_DMACR_DMACTHR_MASK);
8006 
8007 			/* transition to L0x or L1 if available..*/
8008 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8009 
8010 			/* watchdog timer= +-1000 usec in 32usec intervals */
8011 			reg |= (1000 >> 5);
8012 
8013 			/* Disable BMC-to-OS Watchdog Enable */
8014 			if (hw->mac.type != e1000_i354)
8015 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8016 
8017 			wr32(E1000_DMACR, reg);
8018 
8019 			/* no lower threshold to disable
8020 			 * coalescing(smart fifb)-UTRESH=0
8021 			 */
8022 			wr32(E1000_DMCRTRH, 0);
8023 
8024 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8025 
8026 			wr32(E1000_DMCTLX, reg);
8027 
8028 			/* free space in tx packet buffer to wake from
8029 			 * DMA coal
8030 			 */
8031 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8032 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8033 
8034 			/* make low power state decision controlled
8035 			 * by DMA coal
8036 			 */
8037 			reg = rd32(E1000_PCIEMISC);
8038 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8039 			wr32(E1000_PCIEMISC, reg);
8040 		} /* endif adapter->dmac is not disabled */
8041 	} else if (hw->mac.type == e1000_82580) {
8042 		u32 reg = rd32(E1000_PCIEMISC);
8043 
8044 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8045 		wr32(E1000_DMACR, 0);
8046 	}
8047 }
8048 
8049 /**
8050  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8051  *  @hw: pointer to hardware structure
8052  *  @byte_offset: byte offset to read
8053  *  @dev_addr: device address
8054  *  @data: value read
8055  *
8056  *  Performs byte read operation over I2C interface at
8057  *  a specified device address.
8058  **/
8059 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8060 		      u8 dev_addr, u8 *data)
8061 {
8062 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8063 	struct i2c_client *this_client = adapter->i2c_client;
8064 	s32 status;
8065 	u16 swfw_mask = 0;
8066 
8067 	if (!this_client)
8068 		return E1000_ERR_I2C;
8069 
8070 	swfw_mask = E1000_SWFW_PHY0_SM;
8071 
8072 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8073 		return E1000_ERR_SWFW_SYNC;
8074 
8075 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8076 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8077 
8078 	if (status < 0)
8079 		return E1000_ERR_I2C;
8080 	else {
8081 		*data = status;
8082 		return 0;
8083 	}
8084 }
8085 
8086 /**
8087  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8088  *  @hw: pointer to hardware structure
8089  *  @byte_offset: byte offset to write
8090  *  @dev_addr: device address
8091  *  @data: value to write
8092  *
8093  *  Performs byte write operation over I2C interface at
8094  *  a specified device address.
8095  **/
8096 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8097 		       u8 dev_addr, u8 data)
8098 {
8099 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8100 	struct i2c_client *this_client = adapter->i2c_client;
8101 	s32 status;
8102 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8103 
8104 	if (!this_client)
8105 		return E1000_ERR_I2C;
8106 
8107 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8108 		return E1000_ERR_SWFW_SYNC;
8109 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8110 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8111 
8112 	if (status)
8113 		return E1000_ERR_I2C;
8114 	else
8115 		return 0;
8116 
8117 }
8118 
8119 int igb_reinit_queues(struct igb_adapter *adapter)
8120 {
8121 	struct net_device *netdev = adapter->netdev;
8122 	struct pci_dev *pdev = adapter->pdev;
8123 	int err = 0;
8124 
8125 	if (netif_running(netdev))
8126 		igb_close(netdev);
8127 
8128 	igb_reset_interrupt_capability(adapter);
8129 
8130 	if (igb_init_interrupt_scheme(adapter, true)) {
8131 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8132 		return -ENOMEM;
8133 	}
8134 
8135 	if (netif_running(netdev))
8136 		err = igb_open(netdev);
8137 
8138 	return err;
8139 }
8140 /* igb_main.c */
8141