1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62 
63 #define MAJ 4
64 #define MIN 1
65 #define BUILD 2
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 				"Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 				"Copyright (c) 2007-2013 Intel Corporation.";
74 
75 static const struct e1000_info *igb_info_tbl[] = {
76 	[board_82575] = &e1000_82575_info,
77 };
78 
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
110 	/* required last entry */
111 	{0, }
112 };
113 
114 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
115 
116 void igb_reset(struct igb_adapter *);
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 						 struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159 static int igb_vlan_rx_add_vid(struct net_device *, u16);
160 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161 static void igb_restore_vlan(struct igb_adapter *);
162 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163 static void igb_ping_all_vfs(struct igb_adapter *);
164 static void igb_msg_task(struct igb_adapter *);
165 static void igb_vmm_control(struct igb_adapter *);
166 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
169 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
170 			       int vf, u16 vlan, u8 qos);
171 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
172 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
173 				 struct ifla_vf_info *ivi);
174 static void igb_check_vf_rate_limit(struct igb_adapter *);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
179 #endif
180 
181 #ifdef CONFIG_PM
182 #ifdef CONFIG_PM_SLEEP
183 static int igb_suspend(struct device *);
184 #endif
185 static int igb_resume(struct device *);
186 #ifdef CONFIG_PM_RUNTIME
187 static int igb_runtime_suspend(struct device *dev);
188 static int igb_runtime_resume(struct device *dev);
189 static int igb_runtime_idle(struct device *dev);
190 #endif
191 static const struct dev_pm_ops igb_pm_ops = {
192 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
193 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
194 			igb_runtime_idle)
195 };
196 #endif
197 static void igb_shutdown(struct pci_dev *);
198 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199 #ifdef CONFIG_IGB_DCA
200 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
201 static struct notifier_block dca_notifier = {
202 	.notifier_call	= igb_notify_dca,
203 	.next		= NULL,
204 	.priority	= 0
205 };
206 #endif
207 #ifdef CONFIG_NET_POLL_CONTROLLER
208 /* for netdump / net console */
209 static void igb_netpoll(struct net_device *);
210 #endif
211 #ifdef CONFIG_PCI_IOV
212 static unsigned int max_vfs = 0;
213 module_param(max_vfs, uint, 0);
214 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
215                  "per physical function");
216 #endif /* CONFIG_PCI_IOV */
217 
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 		     pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222 
223 static const struct pci_error_handlers igb_err_handler = {
224 	.error_detected = igb_io_error_detected,
225 	.slot_reset = igb_io_slot_reset,
226 	.resume = igb_io_resume,
227 };
228 
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230 
231 static struct pci_driver igb_driver = {
232 	.name     = igb_driver_name,
233 	.id_table = igb_pci_tbl,
234 	.probe    = igb_probe,
235 	.remove   = igb_remove,
236 #ifdef CONFIG_PM
237 	.driver.pm = &igb_pm_ops,
238 #endif
239 	.shutdown = igb_shutdown,
240 	.sriov_configure = igb_pci_sriov_configure,
241 	.err_handler = &igb_err_handler
242 };
243 
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248 
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253 
254 struct igb_reg_info {
255 	u32 ofs;
256 	char *name;
257 };
258 
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260 
261 	/* General Registers */
262 	{E1000_CTRL, "CTRL"},
263 	{E1000_STATUS, "STATUS"},
264 	{E1000_CTRL_EXT, "CTRL_EXT"},
265 
266 	/* Interrupt Registers */
267 	{E1000_ICR, "ICR"},
268 
269 	/* RX Registers */
270 	{E1000_RCTL, "RCTL"},
271 	{E1000_RDLEN(0), "RDLEN"},
272 	{E1000_RDH(0), "RDH"},
273 	{E1000_RDT(0), "RDT"},
274 	{E1000_RXDCTL(0), "RXDCTL"},
275 	{E1000_RDBAL(0), "RDBAL"},
276 	{E1000_RDBAH(0), "RDBAH"},
277 
278 	/* TX Registers */
279 	{E1000_TCTL, "TCTL"},
280 	{E1000_TDBAL(0), "TDBAL"},
281 	{E1000_TDBAH(0), "TDBAH"},
282 	{E1000_TDLEN(0), "TDLEN"},
283 	{E1000_TDH(0), "TDH"},
284 	{E1000_TDT(0), "TDT"},
285 	{E1000_TXDCTL(0), "TXDCTL"},
286 	{E1000_TDFH, "TDFH"},
287 	{E1000_TDFT, "TDFT"},
288 	{E1000_TDFHS, "TDFHS"},
289 	{E1000_TDFPC, "TDFPC"},
290 
291 	/* List Terminator */
292 	{}
293 };
294 
295 /*
296  * igb_regdump - register printout routine
297  */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 	int n = 0;
301 	char rname[16];
302 	u32 regs[8];
303 
304 	switch (reginfo->ofs) {
305 	case E1000_RDLEN(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RDLEN(n));
308 		break;
309 	case E1000_RDH(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDH(n));
312 		break;
313 	case E1000_RDT(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDT(n));
316 		break;
317 	case E1000_RXDCTL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RXDCTL(n));
320 		break;
321 	case E1000_RDBAL(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_RDBAL(n));
324 		break;
325 	case E1000_RDBAH(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_RDBAH(n));
328 		break;
329 	case E1000_TDBAL(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_RDBAL(n));
332 		break;
333 	case E1000_TDBAH(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDBAH(n));
336 		break;
337 	case E1000_TDLEN(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TDLEN(n));
340 		break;
341 	case E1000_TDH(0):
342 		for (n = 0; n < 4; n++)
343 			regs[n] = rd32(E1000_TDH(n));
344 		break;
345 	case E1000_TDT(0):
346 		for (n = 0; n < 4; n++)
347 			regs[n] = rd32(E1000_TDT(n));
348 		break;
349 	case E1000_TXDCTL(0):
350 		for (n = 0; n < 4; n++)
351 			regs[n] = rd32(E1000_TXDCTL(n));
352 		break;
353 	default:
354 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 		return;
356 	}
357 
358 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 		regs[2], regs[3]);
361 }
362 
363 /*
364  * igb_dump - Print registers, tx-rings and rx-rings
365  */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368 	struct net_device *netdev = adapter->netdev;
369 	struct e1000_hw *hw = &adapter->hw;
370 	struct igb_reg_info *reginfo;
371 	struct igb_ring *tx_ring;
372 	union e1000_adv_tx_desc *tx_desc;
373 	struct my_u0 { u64 a; u64 b; } *u0;
374 	struct igb_ring *rx_ring;
375 	union e1000_adv_rx_desc *rx_desc;
376 	u32 staterr;
377 	u16 i, n;
378 
379 	if (!netif_msg_hw(adapter))
380 		return;
381 
382 	/* Print netdevice Info */
383 	if (netdev) {
384 		dev_info(&adapter->pdev->dev, "Net device Info\n");
385 		pr_info("Device Name     state            trans_start      "
386 			"last_rx\n");
387 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 			netdev->state, netdev->trans_start, netdev->last_rx);
389 	}
390 
391 	/* Print Registers */
392 	dev_info(&adapter->pdev->dev, "Register Dump\n");
393 	pr_info(" Register Name   Value\n");
394 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 	     reginfo->name; reginfo++) {
396 		igb_regdump(hw, reginfo);
397 	}
398 
399 	/* Print TX Ring Summary */
400 	if (!netdev || !netif_running(netdev))
401 		goto exit;
402 
403 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405 	for (n = 0; n < adapter->num_tx_queues; n++) {
406 		struct igb_tx_buffer *buffer_info;
407 		tx_ring = adapter->tx_ring[n];
408 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 			(u64)dma_unmap_addr(buffer_info, dma),
412 			dma_unmap_len(buffer_info, len),
413 			buffer_info->next_to_watch,
414 			(u64)buffer_info->time_stamp);
415 	}
416 
417 	/* Print TX Rings */
418 	if (!netif_msg_tx_done(adapter))
419 		goto rx_ring_summary;
420 
421 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422 
423 	/* Transmit Descriptor Formats
424 	 *
425 	 * Advanced Transmit Descriptor
426 	 *   +--------------------------------------------------------------+
427 	 * 0 |         Buffer Address [63:0]                                |
428 	 *   +--------------------------------------------------------------+
429 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430 	 *   +--------------------------------------------------------------+
431 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432 	 */
433 
434 	for (n = 0; n < adapter->num_tx_queues; n++) {
435 		tx_ring = adapter->tx_ring[n];
436 		pr_info("------------------------------------\n");
437 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 		pr_info("------------------------------------\n");
439 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
440 			"[bi->dma       ] leng  ntw timestamp        "
441 			"bi->skb\n");
442 
443 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444 			const char *next_desc;
445 			struct igb_tx_buffer *buffer_info;
446 			tx_desc = IGB_TX_DESC(tx_ring, i);
447 			buffer_info = &tx_ring->tx_buffer_info[i];
448 			u0 = (struct my_u0 *)tx_desc;
449 			if (i == tx_ring->next_to_use &&
450 			    i == tx_ring->next_to_clean)
451 				next_desc = " NTC/U";
452 			else if (i == tx_ring->next_to_use)
453 				next_desc = " NTU";
454 			else if (i == tx_ring->next_to_clean)
455 				next_desc = " NTC";
456 			else
457 				next_desc = "";
458 
459 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
460 				" %04X  %p %016llX %p%s\n", i,
461 				le64_to_cpu(u0->a),
462 				le64_to_cpu(u0->b),
463 				(u64)dma_unmap_addr(buffer_info, dma),
464 				dma_unmap_len(buffer_info, len),
465 				buffer_info->next_to_watch,
466 				(u64)buffer_info->time_stamp,
467 				buffer_info->skb, next_desc);
468 
469 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 				print_hex_dump(KERN_INFO, "",
471 					DUMP_PREFIX_ADDRESS,
472 					16, 1, buffer_info->skb->data,
473 					dma_unmap_len(buffer_info, len),
474 					true);
475 		}
476 	}
477 
478 	/* Print RX Rings Summary */
479 rx_ring_summary:
480 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481 	pr_info("Queue [NTU] [NTC]\n");
482 	for (n = 0; n < adapter->num_rx_queues; n++) {
483 		rx_ring = adapter->rx_ring[n];
484 		pr_info(" %5d %5X %5X\n",
485 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 	}
487 
488 	/* Print RX Rings */
489 	if (!netif_msg_rx_status(adapter))
490 		goto exit;
491 
492 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493 
494 	/* Advanced Receive Descriptor (Read) Format
495 	 *    63                                           1        0
496 	 *    +-----------------------------------------------------+
497 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
498 	 *    +----------------------------------------------+------+
499 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
500 	 *    +-----------------------------------------------------+
501 	 *
502 	 *
503 	 * Advanced Receive Descriptor (Write-Back) Format
504 	 *
505 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
506 	 *   +------------------------------------------------------+
507 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
508 	 *   | Checksum   Ident  |   |           |    | Type | Type |
509 	 *   +------------------------------------------------------+
510 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 	 *   +------------------------------------------------------+
512 	 *   63       48 47    32 31            20 19               0
513 	 */
514 
515 	for (n = 0; n < adapter->num_rx_queues; n++) {
516 		rx_ring = adapter->rx_ring[n];
517 		pr_info("------------------------------------\n");
518 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 		pr_info("------------------------------------\n");
520 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
521 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
522 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 
525 		for (i = 0; i < rx_ring->count; i++) {
526 			const char *next_desc;
527 			struct igb_rx_buffer *buffer_info;
528 			buffer_info = &rx_ring->rx_buffer_info[i];
529 			rx_desc = IGB_RX_DESC(rx_ring, i);
530 			u0 = (struct my_u0 *)rx_desc;
531 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532 
533 			if (i == rx_ring->next_to_use)
534 				next_desc = " NTU";
535 			else if (i == rx_ring->next_to_clean)
536 				next_desc = " NTC";
537 			else
538 				next_desc = "";
539 
540 			if (staterr & E1000_RXD_STAT_DD) {
541 				/* Descriptor Done */
542 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
543 					"RWB", i,
544 					le64_to_cpu(u0->a),
545 					le64_to_cpu(u0->b),
546 					next_desc);
547 			} else {
548 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
549 					"R  ", i,
550 					le64_to_cpu(u0->a),
551 					le64_to_cpu(u0->b),
552 					(u64)buffer_info->dma,
553 					next_desc);
554 
555 				if (netif_msg_pktdata(adapter) &&
556 				    buffer_info->dma && buffer_info->page) {
557 					print_hex_dump(KERN_INFO, "",
558 					  DUMP_PREFIX_ADDRESS,
559 					  16, 1,
560 					  page_address(buffer_info->page) +
561 						      buffer_info->page_offset,
562 					  IGB_RX_BUFSZ, true);
563 				}
564 			}
565 		}
566 	}
567 
568 exit:
569 	return;
570 }
571 
572 /*  igb_get_i2c_data - Reads the I2C SDA data bit
573  *  @hw: pointer to hardware structure
574  *  @i2cctl: Current value of I2CCTL register
575  *
576  *  Returns the I2C data bit value
577  */
578 static int igb_get_i2c_data(void *data)
579 {
580 	struct igb_adapter *adapter = (struct igb_adapter *)data;
581 	struct e1000_hw *hw = &adapter->hw;
582 	s32 i2cctl = rd32(E1000_I2CPARAMS);
583 
584 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
585 }
586 
587 /* igb_set_i2c_data - Sets the I2C data bit
588  *  @data: pointer to hardware structure
589  *  @state: I2C data value (0 or 1) to set
590  *
591  *  Sets the I2C data bit
592  */
593 static void igb_set_i2c_data(void *data, int state)
594 {
595 	struct igb_adapter *adapter = (struct igb_adapter *)data;
596 	struct e1000_hw *hw = &adapter->hw;
597 	s32 i2cctl = rd32(E1000_I2CPARAMS);
598 
599 	if (state)
600 		i2cctl |= E1000_I2C_DATA_OUT;
601 	else
602 		i2cctl &= ~E1000_I2C_DATA_OUT;
603 
604 	i2cctl &= ~E1000_I2C_DATA_OE_N;
605 	i2cctl |= E1000_I2C_CLK_OE_N;
606 	wr32(E1000_I2CPARAMS, i2cctl);
607 	wrfl();
608 
609 }
610 
611 /* igb_set_i2c_clk - Sets the I2C SCL clock
612  *  @data: pointer to hardware structure
613  *  @state: state to set clock
614  *
615  *  Sets the I2C clock line to state
616  */
617 static void igb_set_i2c_clk(void *data, int state)
618 {
619 	struct igb_adapter *adapter = (struct igb_adapter *)data;
620 	struct e1000_hw *hw = &adapter->hw;
621 	s32 i2cctl = rd32(E1000_I2CPARAMS);
622 
623 	if (state) {
624 		i2cctl |= E1000_I2C_CLK_OUT;
625 		i2cctl &= ~E1000_I2C_CLK_OE_N;
626 	} else {
627 		i2cctl &= ~E1000_I2C_CLK_OUT;
628 		i2cctl &= ~E1000_I2C_CLK_OE_N;
629 	}
630 	wr32(E1000_I2CPARAMS, i2cctl);
631 	wrfl();
632 }
633 
634 /* igb_get_i2c_clk - Gets the I2C SCL clock state
635  *  @data: pointer to hardware structure
636  *
637  *  Gets the I2C clock state
638  */
639 static int igb_get_i2c_clk(void *data)
640 {
641 	struct igb_adapter *adapter = (struct igb_adapter *)data;
642 	struct e1000_hw *hw = &adapter->hw;
643 	s32 i2cctl = rd32(E1000_I2CPARAMS);
644 
645 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
646 }
647 
648 static const struct i2c_algo_bit_data igb_i2c_algo = {
649 	.setsda		= igb_set_i2c_data,
650 	.setscl		= igb_set_i2c_clk,
651 	.getsda		= igb_get_i2c_data,
652 	.getscl		= igb_get_i2c_clk,
653 	.udelay		= 5,
654 	.timeout	= 20,
655 };
656 
657 /**
658  * igb_get_hw_dev - return device
659  * used by hardware layer to print debugging information
660  **/
661 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662 {
663 	struct igb_adapter *adapter = hw->back;
664 	return adapter->netdev;
665 }
666 
667 /**
668  * igb_init_module - Driver Registration Routine
669  *
670  * igb_init_module is the first routine called when the driver is
671  * loaded. All it does is register with the PCI subsystem.
672  **/
673 static int __init igb_init_module(void)
674 {
675 	int ret;
676 	pr_info("%s - version %s\n",
677 	       igb_driver_string, igb_driver_version);
678 
679 	pr_info("%s\n", igb_copyright);
680 
681 #ifdef CONFIG_IGB_DCA
682 	dca_register_notify(&dca_notifier);
683 #endif
684 	ret = pci_register_driver(&igb_driver);
685 	return ret;
686 }
687 
688 module_init(igb_init_module);
689 
690 /**
691  * igb_exit_module - Driver Exit Cleanup Routine
692  *
693  * igb_exit_module is called just before the driver is removed
694  * from memory.
695  **/
696 static void __exit igb_exit_module(void)
697 {
698 #ifdef CONFIG_IGB_DCA
699 	dca_unregister_notify(&dca_notifier);
700 #endif
701 	pci_unregister_driver(&igb_driver);
702 }
703 
704 module_exit(igb_exit_module);
705 
706 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
707 /**
708  * igb_cache_ring_register - Descriptor ring to register mapping
709  * @adapter: board private structure to initialize
710  *
711  * Once we know the feature-set enabled for the device, we'll cache
712  * the register offset the descriptor ring is assigned to.
713  **/
714 static void igb_cache_ring_register(struct igb_adapter *adapter)
715 {
716 	int i = 0, j = 0;
717 	u32 rbase_offset = adapter->vfs_allocated_count;
718 
719 	switch (adapter->hw.mac.type) {
720 	case e1000_82576:
721 		/* The queues are allocated for virtualization such that VF 0
722 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
723 		 * In order to avoid collision we start at the first free queue
724 		 * and continue consuming queues in the same sequence
725 		 */
726 		if (adapter->vfs_allocated_count) {
727 			for (; i < adapter->rss_queues; i++)
728 				adapter->rx_ring[i]->reg_idx = rbase_offset +
729 				                               Q_IDX_82576(i);
730 		}
731 	case e1000_82575:
732 	case e1000_82580:
733 	case e1000_i350:
734 	case e1000_i210:
735 	case e1000_i211:
736 	default:
737 		for (; i < adapter->num_rx_queues; i++)
738 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739 		for (; j < adapter->num_tx_queues; j++)
740 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741 		break;
742 	}
743 }
744 
745 /**
746  *  igb_write_ivar - configure ivar for given MSI-X vector
747  *  @hw: pointer to the HW structure
748  *  @msix_vector: vector number we are allocating to a given ring
749  *  @index: row index of IVAR register to write within IVAR table
750  *  @offset: column offset of in IVAR, should be multiple of 8
751  *
752  *  This function is intended to handle the writing of the IVAR register
753  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
754  *  each containing an cause allocation for an Rx and Tx ring, and a
755  *  variable number of rows depending on the number of queues supported.
756  **/
757 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
758 			   int index, int offset)
759 {
760 	u32 ivar = array_rd32(E1000_IVAR0, index);
761 
762 	/* clear any bits that are currently set */
763 	ivar &= ~((u32)0xFF << offset);
764 
765 	/* write vector and valid bit */
766 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
767 
768 	array_wr32(E1000_IVAR0, index, ivar);
769 }
770 
771 #define IGB_N0_QUEUE -1
772 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773 {
774 	struct igb_adapter *adapter = q_vector->adapter;
775 	struct e1000_hw *hw = &adapter->hw;
776 	int rx_queue = IGB_N0_QUEUE;
777 	int tx_queue = IGB_N0_QUEUE;
778 	u32 msixbm = 0;
779 
780 	if (q_vector->rx.ring)
781 		rx_queue = q_vector->rx.ring->reg_idx;
782 	if (q_vector->tx.ring)
783 		tx_queue = q_vector->tx.ring->reg_idx;
784 
785 	switch (hw->mac.type) {
786 	case e1000_82575:
787 		/* The 82575 assigns vectors using a bitmask, which matches the
788 		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
789 		   or more queues to a vector, we write the appropriate bits
790 		   into the MSIXBM register for that vector. */
791 		if (rx_queue > IGB_N0_QUEUE)
792 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793 		if (tx_queue > IGB_N0_QUEUE)
794 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795 		if (!adapter->msix_entries && msix_vector == 0)
796 			msixbm |= E1000_EIMS_OTHER;
797 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798 		q_vector->eims_value = msixbm;
799 		break;
800 	case e1000_82576:
801 		/*
802 		 * 82576 uses a table that essentially consists of 2 columns
803 		 * with 8 rows.  The ordering is column-major so we use the
804 		 * lower 3 bits as the row index, and the 4th bit as the
805 		 * column offset.
806 		 */
807 		if (rx_queue > IGB_N0_QUEUE)
808 			igb_write_ivar(hw, msix_vector,
809 				       rx_queue & 0x7,
810 				       (rx_queue & 0x8) << 1);
811 		if (tx_queue > IGB_N0_QUEUE)
812 			igb_write_ivar(hw, msix_vector,
813 				       tx_queue & 0x7,
814 				       ((tx_queue & 0x8) << 1) + 8);
815 		q_vector->eims_value = 1 << msix_vector;
816 		break;
817 	case e1000_82580:
818 	case e1000_i350:
819 	case e1000_i210:
820 	case e1000_i211:
821 		/*
822 		 * On 82580 and newer adapters the scheme is similar to 82576
823 		 * however instead of ordering column-major we have things
824 		 * ordered row-major.  So we traverse the table by using
825 		 * bit 0 as the column offset, and the remaining bits as the
826 		 * row index.
827 		 */
828 		if (rx_queue > IGB_N0_QUEUE)
829 			igb_write_ivar(hw, msix_vector,
830 				       rx_queue >> 1,
831 				       (rx_queue & 0x1) << 4);
832 		if (tx_queue > IGB_N0_QUEUE)
833 			igb_write_ivar(hw, msix_vector,
834 				       tx_queue >> 1,
835 				       ((tx_queue & 0x1) << 4) + 8);
836 		q_vector->eims_value = 1 << msix_vector;
837 		break;
838 	default:
839 		BUG();
840 		break;
841 	}
842 
843 	/* add q_vector eims value to global eims_enable_mask */
844 	adapter->eims_enable_mask |= q_vector->eims_value;
845 
846 	/* configure q_vector to set itr on first interrupt */
847 	q_vector->set_itr = 1;
848 }
849 
850 /**
851  * igb_configure_msix - Configure MSI-X hardware
852  *
853  * igb_configure_msix sets up the hardware to properly
854  * generate MSI-X interrupts.
855  **/
856 static void igb_configure_msix(struct igb_adapter *adapter)
857 {
858 	u32 tmp;
859 	int i, vector = 0;
860 	struct e1000_hw *hw = &adapter->hw;
861 
862 	adapter->eims_enable_mask = 0;
863 
864 	/* set vector for other causes, i.e. link changes */
865 	switch (hw->mac.type) {
866 	case e1000_82575:
867 		tmp = rd32(E1000_CTRL_EXT);
868 		/* enable MSI-X PBA support*/
869 		tmp |= E1000_CTRL_EXT_PBA_CLR;
870 
871 		/* Auto-Mask interrupts upon ICR read. */
872 		tmp |= E1000_CTRL_EXT_EIAME;
873 		tmp |= E1000_CTRL_EXT_IRCA;
874 
875 		wr32(E1000_CTRL_EXT, tmp);
876 
877 		/* enable msix_other interrupt */
878 		array_wr32(E1000_MSIXBM(0), vector++,
879 		                      E1000_EIMS_OTHER);
880 		adapter->eims_other = E1000_EIMS_OTHER;
881 
882 		break;
883 
884 	case e1000_82576:
885 	case e1000_82580:
886 	case e1000_i350:
887 	case e1000_i210:
888 	case e1000_i211:
889 		/* Turn on MSI-X capability first, or our settings
890 		 * won't stick.  And it will take days to debug. */
891 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
892 		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
893 		                E1000_GPIE_NSICR);
894 
895 		/* enable msix_other interrupt */
896 		adapter->eims_other = 1 << vector;
897 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
898 
899 		wr32(E1000_IVAR_MISC, tmp);
900 		break;
901 	default:
902 		/* do nothing, since nothing else supports MSI-X */
903 		break;
904 	} /* switch (hw->mac.type) */
905 
906 	adapter->eims_enable_mask |= adapter->eims_other;
907 
908 	for (i = 0; i < adapter->num_q_vectors; i++)
909 		igb_assign_vector(adapter->q_vector[i], vector++);
910 
911 	wrfl();
912 }
913 
914 /**
915  * igb_request_msix - Initialize MSI-X interrupts
916  *
917  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
918  * kernel.
919  **/
920 static int igb_request_msix(struct igb_adapter *adapter)
921 {
922 	struct net_device *netdev = adapter->netdev;
923 	struct e1000_hw *hw = &adapter->hw;
924 	int i, err = 0, vector = 0, free_vector = 0;
925 
926 	err = request_irq(adapter->msix_entries[vector].vector,
927 	                  igb_msix_other, 0, netdev->name, adapter);
928 	if (err)
929 		goto err_out;
930 
931 	for (i = 0; i < adapter->num_q_vectors; i++) {
932 		struct igb_q_vector *q_vector = adapter->q_vector[i];
933 
934 		vector++;
935 
936 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
937 
938 		if (q_vector->rx.ring && q_vector->tx.ring)
939 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940 				q_vector->rx.ring->queue_index);
941 		else if (q_vector->tx.ring)
942 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943 				q_vector->tx.ring->queue_index);
944 		else if (q_vector->rx.ring)
945 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946 				q_vector->rx.ring->queue_index);
947 		else
948 			sprintf(q_vector->name, "%s-unused", netdev->name);
949 
950 		err = request_irq(adapter->msix_entries[vector].vector,
951 		                  igb_msix_ring, 0, q_vector->name,
952 		                  q_vector);
953 		if (err)
954 			goto err_free;
955 	}
956 
957 	igb_configure_msix(adapter);
958 	return 0;
959 
960 err_free:
961 	/* free already assigned IRQs */
962 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
963 
964 	vector--;
965 	for (i = 0; i < vector; i++) {
966 		free_irq(adapter->msix_entries[free_vector++].vector,
967 			 adapter->q_vector[i]);
968 	}
969 err_out:
970 	return err;
971 }
972 
973 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
974 {
975 	if (adapter->msix_entries) {
976 		pci_disable_msix(adapter->pdev);
977 		kfree(adapter->msix_entries);
978 		adapter->msix_entries = NULL;
979 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980 		pci_disable_msi(adapter->pdev);
981 	}
982 }
983 
984 /**
985  * igb_free_q_vector - Free memory allocated for specific interrupt vector
986  * @adapter: board private structure to initialize
987  * @v_idx: Index of vector to be freed
988  *
989  * This function frees the memory allocated to the q_vector.  In addition if
990  * NAPI is enabled it will delete any references to the NAPI struct prior
991  * to freeing the q_vector.
992  **/
993 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994 {
995 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996 
997 	if (q_vector->tx.ring)
998 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
999 
1000 	if (q_vector->rx.ring)
1001 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1002 
1003 	adapter->q_vector[v_idx] = NULL;
1004 	netif_napi_del(&q_vector->napi);
1005 
1006 	/*
1007 	 * ixgbe_get_stats64() might access the rings on this vector,
1008 	 * we must wait a grace period before freeing it.
1009 	 */
1010 	kfree_rcu(q_vector, rcu);
1011 }
1012 
1013 /**
1014  * igb_free_q_vectors - Free memory allocated for interrupt vectors
1015  * @adapter: board private structure to initialize
1016  *
1017  * This function frees the memory allocated to the q_vectors.  In addition if
1018  * NAPI is enabled it will delete any references to the NAPI struct prior
1019  * to freeing the q_vector.
1020  **/
1021 static void igb_free_q_vectors(struct igb_adapter *adapter)
1022 {
1023 	int v_idx = adapter->num_q_vectors;
1024 
1025 	adapter->num_tx_queues = 0;
1026 	adapter->num_rx_queues = 0;
1027 	adapter->num_q_vectors = 0;
1028 
1029 	while (v_idx--)
1030 		igb_free_q_vector(adapter, v_idx);
1031 }
1032 
1033 /**
1034  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1035  *
1036  * This function resets the device so that it has 0 rx queues, tx queues, and
1037  * MSI-X interrupts allocated.
1038  */
1039 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1040 {
1041 	igb_free_q_vectors(adapter);
1042 	igb_reset_interrupt_capability(adapter);
1043 }
1044 
1045 /**
1046  * igb_set_interrupt_capability - set MSI or MSI-X if supported
1047  *
1048  * Attempt to configure interrupts using the best available
1049  * capabilities of the hardware and kernel.
1050  **/
1051 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052 {
1053 	int err;
1054 	int numvecs, i;
1055 
1056 	if (!msix)
1057 		goto msi_only;
1058 
1059 	/* Number of supported queues. */
1060 	adapter->num_rx_queues = adapter->rss_queues;
1061 	if (adapter->vfs_allocated_count)
1062 		adapter->num_tx_queues = 1;
1063 	else
1064 		adapter->num_tx_queues = adapter->rss_queues;
1065 
1066 	/* start with one vector for every rx queue */
1067 	numvecs = adapter->num_rx_queues;
1068 
1069 	/* if tx handler is separate add 1 for every tx queue */
1070 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1071 		numvecs += adapter->num_tx_queues;
1072 
1073 	/* store the number of vectors reserved for queues */
1074 	adapter->num_q_vectors = numvecs;
1075 
1076 	/* add 1 vector for link status interrupts */
1077 	numvecs++;
1078 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1079 					GFP_KERNEL);
1080 
1081 	if (!adapter->msix_entries)
1082 		goto msi_only;
1083 
1084 	for (i = 0; i < numvecs; i++)
1085 		adapter->msix_entries[i].entry = i;
1086 
1087 	err = pci_enable_msix(adapter->pdev,
1088 			      adapter->msix_entries,
1089 			      numvecs);
1090 	if (err == 0)
1091 		return;
1092 
1093 	igb_reset_interrupt_capability(adapter);
1094 
1095 	/* If we can't do MSI-X, try MSI */
1096 msi_only:
1097 #ifdef CONFIG_PCI_IOV
1098 	/* disable SR-IOV for non MSI-X configurations */
1099 	if (adapter->vf_data) {
1100 		struct e1000_hw *hw = &adapter->hw;
1101 		/* disable iov and allow time for transactions to clear */
1102 		pci_disable_sriov(adapter->pdev);
1103 		msleep(500);
1104 
1105 		kfree(adapter->vf_data);
1106 		adapter->vf_data = NULL;
1107 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108 		wrfl();
1109 		msleep(100);
1110 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1111 	}
1112 #endif
1113 	adapter->vfs_allocated_count = 0;
1114 	adapter->rss_queues = 1;
1115 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116 	adapter->num_rx_queues = 1;
1117 	adapter->num_tx_queues = 1;
1118 	adapter->num_q_vectors = 1;
1119 	if (!pci_enable_msi(adapter->pdev))
1120 		adapter->flags |= IGB_FLAG_HAS_MSI;
1121 }
1122 
1123 static void igb_add_ring(struct igb_ring *ring,
1124 			 struct igb_ring_container *head)
1125 {
1126 	head->ring = ring;
1127 	head->count++;
1128 }
1129 
1130 /**
1131  * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132  * @adapter: board private structure to initialize
1133  * @v_count: q_vectors allocated on adapter, used for ring interleaving
1134  * @v_idx: index of vector in adapter struct
1135  * @txr_count: total number of Tx rings to allocate
1136  * @txr_idx: index of first Tx ring to allocate
1137  * @rxr_count: total number of Rx rings to allocate
1138  * @rxr_idx: index of first Rx ring to allocate
1139  *
1140  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141  **/
1142 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1143 			      int v_count, int v_idx,
1144 			      int txr_count, int txr_idx,
1145 			      int rxr_count, int rxr_idx)
1146 {
1147 	struct igb_q_vector *q_vector;
1148 	struct igb_ring *ring;
1149 	int ring_count, size;
1150 
1151 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1152 	if (txr_count > 1 || rxr_count > 1)
1153 		return -ENOMEM;
1154 
1155 	ring_count = txr_count + rxr_count;
1156 	size = sizeof(struct igb_q_vector) +
1157 	       (sizeof(struct igb_ring) * ring_count);
1158 
1159 	/* allocate q_vector and rings */
1160 	q_vector = kzalloc(size, GFP_KERNEL);
1161 	if (!q_vector)
1162 		return -ENOMEM;
1163 
1164 	/* initialize NAPI */
1165 	netif_napi_add(adapter->netdev, &q_vector->napi,
1166 		       igb_poll, 64);
1167 
1168 	/* tie q_vector and adapter together */
1169 	adapter->q_vector[v_idx] = q_vector;
1170 	q_vector->adapter = adapter;
1171 
1172 	/* initialize work limits */
1173 	q_vector->tx.work_limit = adapter->tx_work_limit;
1174 
1175 	/* initialize ITR configuration */
1176 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1177 	q_vector->itr_val = IGB_START_ITR;
1178 
1179 	/* initialize pointer to rings */
1180 	ring = q_vector->ring;
1181 
1182 	if (txr_count) {
1183 		/* assign generic ring traits */
1184 		ring->dev = &adapter->pdev->dev;
1185 		ring->netdev = adapter->netdev;
1186 
1187 		/* configure backlink on ring */
1188 		ring->q_vector = q_vector;
1189 
1190 		/* update q_vector Tx values */
1191 		igb_add_ring(ring, &q_vector->tx);
1192 
1193 		/* For 82575, context index must be unique per ring. */
1194 		if (adapter->hw.mac.type == e1000_82575)
1195 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1196 
1197 		/* apply Tx specific ring traits */
1198 		ring->count = adapter->tx_ring_count;
1199 		ring->queue_index = txr_idx;
1200 
1201 		/* assign ring to adapter */
1202 		adapter->tx_ring[txr_idx] = ring;
1203 
1204 		/* push pointer to next ring */
1205 		ring++;
1206 	}
1207 
1208 	if (rxr_count) {
1209 		/* assign generic ring traits */
1210 		ring->dev = &adapter->pdev->dev;
1211 		ring->netdev = adapter->netdev;
1212 
1213 		/* configure backlink on ring */
1214 		ring->q_vector = q_vector;
1215 
1216 		/* update q_vector Rx values */
1217 		igb_add_ring(ring, &q_vector->rx);
1218 
1219 		/* set flag indicating ring supports SCTP checksum offload */
1220 		if (adapter->hw.mac.type >= e1000_82576)
1221 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222 
1223 		/*
1224 		 * On i350, i210, and i211, loopback VLAN packets
1225 		 * have the tag byte-swapped.
1226 		 * */
1227 		if (adapter->hw.mac.type >= e1000_i350)
1228 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229 
1230 		/* apply Rx specific ring traits */
1231 		ring->count = adapter->rx_ring_count;
1232 		ring->queue_index = rxr_idx;
1233 
1234 		/* assign ring to adapter */
1235 		adapter->rx_ring[rxr_idx] = ring;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 
1242 /**
1243  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1244  * @adapter: board private structure to initialize
1245  *
1246  * We allocate one q_vector per queue interrupt.  If allocation fails we
1247  * return -ENOMEM.
1248  **/
1249 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250 {
1251 	int q_vectors = adapter->num_q_vectors;
1252 	int rxr_remaining = adapter->num_rx_queues;
1253 	int txr_remaining = adapter->num_tx_queues;
1254 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1255 	int err;
1256 
1257 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1258 		for (; rxr_remaining; v_idx++) {
1259 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1260 						 0, 0, 1, rxr_idx);
1261 
1262 			if (err)
1263 				goto err_out;
1264 
1265 			/* update counts and index */
1266 			rxr_remaining--;
1267 			rxr_idx++;
1268 		}
1269 	}
1270 
1271 	for (; v_idx < q_vectors; v_idx++) {
1272 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1273 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1274 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1275 					 tqpv, txr_idx, rqpv, rxr_idx);
1276 
1277 		if (err)
1278 			goto err_out;
1279 
1280 		/* update counts and index */
1281 		rxr_remaining -= rqpv;
1282 		txr_remaining -= tqpv;
1283 		rxr_idx++;
1284 		txr_idx++;
1285 	}
1286 
1287 	return 0;
1288 
1289 err_out:
1290 	adapter->num_tx_queues = 0;
1291 	adapter->num_rx_queues = 0;
1292 	adapter->num_q_vectors = 0;
1293 
1294 	while (v_idx--)
1295 		igb_free_q_vector(adapter, v_idx);
1296 
1297 	return -ENOMEM;
1298 }
1299 
1300 /**
1301  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1302  *
1303  * This function initializes the interrupts and allocates all of the queues.
1304  **/
1305 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306 {
1307 	struct pci_dev *pdev = adapter->pdev;
1308 	int err;
1309 
1310 	igb_set_interrupt_capability(adapter, msix);
1311 
1312 	err = igb_alloc_q_vectors(adapter);
1313 	if (err) {
1314 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1315 		goto err_alloc_q_vectors;
1316 	}
1317 
1318 	igb_cache_ring_register(adapter);
1319 
1320 	return 0;
1321 
1322 err_alloc_q_vectors:
1323 	igb_reset_interrupt_capability(adapter);
1324 	return err;
1325 }
1326 
1327 /**
1328  * igb_request_irq - initialize interrupts
1329  *
1330  * Attempts to configure interrupts using the best available
1331  * capabilities of the hardware and kernel.
1332  **/
1333 static int igb_request_irq(struct igb_adapter *adapter)
1334 {
1335 	struct net_device *netdev = adapter->netdev;
1336 	struct pci_dev *pdev = adapter->pdev;
1337 	int err = 0;
1338 
1339 	if (adapter->msix_entries) {
1340 		err = igb_request_msix(adapter);
1341 		if (!err)
1342 			goto request_done;
1343 		/* fall back to MSI */
1344 		igb_free_all_tx_resources(adapter);
1345 		igb_free_all_rx_resources(adapter);
1346 
1347 		igb_clear_interrupt_scheme(adapter);
1348 		err = igb_init_interrupt_scheme(adapter, false);
1349 		if (err)
1350 			goto request_done;
1351 
1352 		igb_setup_all_tx_resources(adapter);
1353 		igb_setup_all_rx_resources(adapter);
1354 		igb_configure(adapter);
1355 	}
1356 
1357 	igb_assign_vector(adapter->q_vector[0], 0);
1358 
1359 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1361 				  netdev->name, adapter);
1362 		if (!err)
1363 			goto request_done;
1364 
1365 		/* fall back to legacy interrupts */
1366 		igb_reset_interrupt_capability(adapter);
1367 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368 	}
1369 
1370 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371 			  netdev->name, adapter);
1372 
1373 	if (err)
1374 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375 			err);
1376 
1377 request_done:
1378 	return err;
1379 }
1380 
1381 static void igb_free_irq(struct igb_adapter *adapter)
1382 {
1383 	if (adapter->msix_entries) {
1384 		int vector = 0, i;
1385 
1386 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1387 
1388 		for (i = 0; i < adapter->num_q_vectors; i++)
1389 			free_irq(adapter->msix_entries[vector++].vector,
1390 				 adapter->q_vector[i]);
1391 	} else {
1392 		free_irq(adapter->pdev->irq, adapter);
1393 	}
1394 }
1395 
1396 /**
1397  * igb_irq_disable - Mask off interrupt generation on the NIC
1398  * @adapter: board private structure
1399  **/
1400 static void igb_irq_disable(struct igb_adapter *adapter)
1401 {
1402 	struct e1000_hw *hw = &adapter->hw;
1403 
1404 	/*
1405 	 * we need to be careful when disabling interrupts.  The VFs are also
1406 	 * mapped into these registers and so clearing the bits can cause
1407 	 * issues on the VF drivers so we only need to clear what we set
1408 	 */
1409 	if (adapter->msix_entries) {
1410 		u32 regval = rd32(E1000_EIAM);
1411 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1412 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1413 		regval = rd32(E1000_EIAC);
1414 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415 	}
1416 
1417 	wr32(E1000_IAM, 0);
1418 	wr32(E1000_IMC, ~0);
1419 	wrfl();
1420 	if (adapter->msix_entries) {
1421 		int i;
1422 		for (i = 0; i < adapter->num_q_vectors; i++)
1423 			synchronize_irq(adapter->msix_entries[i].vector);
1424 	} else {
1425 		synchronize_irq(adapter->pdev->irq);
1426 	}
1427 }
1428 
1429 /**
1430  * igb_irq_enable - Enable default interrupt generation settings
1431  * @adapter: board private structure
1432  **/
1433 static void igb_irq_enable(struct igb_adapter *adapter)
1434 {
1435 	struct e1000_hw *hw = &adapter->hw;
1436 
1437 	if (adapter->msix_entries) {
1438 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439 		u32 regval = rd32(E1000_EIAC);
1440 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1441 		regval = rd32(E1000_EIAM);
1442 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1443 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1444 		if (adapter->vfs_allocated_count) {
1445 			wr32(E1000_MBVFIMR, 0xFF);
1446 			ims |= E1000_IMS_VMMB;
1447 		}
1448 		wr32(E1000_IMS, ims);
1449 	} else {
1450 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1451 				E1000_IMS_DRSTA);
1452 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1453 				E1000_IMS_DRSTA);
1454 	}
1455 }
1456 
1457 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1458 {
1459 	struct e1000_hw *hw = &adapter->hw;
1460 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1461 	u16 old_vid = adapter->mng_vlan_id;
1462 
1463 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1464 		/* add VID to filter table */
1465 		igb_vfta_set(hw, vid, true);
1466 		adapter->mng_vlan_id = vid;
1467 	} else {
1468 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1469 	}
1470 
1471 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1472 	    (vid != old_vid) &&
1473 	    !test_bit(old_vid, adapter->active_vlans)) {
1474 		/* remove VID from filter table */
1475 		igb_vfta_set(hw, old_vid, false);
1476 	}
1477 }
1478 
1479 /**
1480  * igb_release_hw_control - release control of the h/w to f/w
1481  * @adapter: address of board private structure
1482  *
1483  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1484  * For ASF and Pass Through versions of f/w this means that the
1485  * driver is no longer loaded.
1486  *
1487  **/
1488 static void igb_release_hw_control(struct igb_adapter *adapter)
1489 {
1490 	struct e1000_hw *hw = &adapter->hw;
1491 	u32 ctrl_ext;
1492 
1493 	/* Let firmware take over control of h/w */
1494 	ctrl_ext = rd32(E1000_CTRL_EXT);
1495 	wr32(E1000_CTRL_EXT,
1496 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1497 }
1498 
1499 /**
1500  * igb_get_hw_control - get control of the h/w from f/w
1501  * @adapter: address of board private structure
1502  *
1503  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1504  * For ASF and Pass Through versions of f/w this means that
1505  * the driver is loaded.
1506  *
1507  **/
1508 static void igb_get_hw_control(struct igb_adapter *adapter)
1509 {
1510 	struct e1000_hw *hw = &adapter->hw;
1511 	u32 ctrl_ext;
1512 
1513 	/* Let firmware know the driver has taken over */
1514 	ctrl_ext = rd32(E1000_CTRL_EXT);
1515 	wr32(E1000_CTRL_EXT,
1516 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1517 }
1518 
1519 /**
1520  * igb_configure - configure the hardware for RX and TX
1521  * @adapter: private board structure
1522  **/
1523 static void igb_configure(struct igb_adapter *adapter)
1524 {
1525 	struct net_device *netdev = adapter->netdev;
1526 	int i;
1527 
1528 	igb_get_hw_control(adapter);
1529 	igb_set_rx_mode(netdev);
1530 
1531 	igb_restore_vlan(adapter);
1532 
1533 	igb_setup_tctl(adapter);
1534 	igb_setup_mrqc(adapter);
1535 	igb_setup_rctl(adapter);
1536 
1537 	igb_configure_tx(adapter);
1538 	igb_configure_rx(adapter);
1539 
1540 	igb_rx_fifo_flush_82575(&adapter->hw);
1541 
1542 	/* call igb_desc_unused which always leaves
1543 	 * at least 1 descriptor unused to make sure
1544 	 * next_to_use != next_to_clean */
1545 	for (i = 0; i < adapter->num_rx_queues; i++) {
1546 		struct igb_ring *ring = adapter->rx_ring[i];
1547 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548 	}
1549 }
1550 
1551 /**
1552  * igb_power_up_link - Power up the phy/serdes link
1553  * @adapter: address of board private structure
1554  **/
1555 void igb_power_up_link(struct igb_adapter *adapter)
1556 {
1557 	igb_reset_phy(&adapter->hw);
1558 
1559 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1560 		igb_power_up_phy_copper(&adapter->hw);
1561 	else
1562 		igb_power_up_serdes_link_82575(&adapter->hw);
1563 }
1564 
1565 /**
1566  * igb_power_down_link - Power down the phy/serdes link
1567  * @adapter: address of board private structure
1568  */
1569 static void igb_power_down_link(struct igb_adapter *adapter)
1570 {
1571 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1572 		igb_power_down_phy_copper_82575(&adapter->hw);
1573 	else
1574 		igb_shutdown_serdes_link_82575(&adapter->hw);
1575 }
1576 
1577 /**
1578  * igb_up - Open the interface and prepare it to handle traffic
1579  * @adapter: board private structure
1580  **/
1581 int igb_up(struct igb_adapter *adapter)
1582 {
1583 	struct e1000_hw *hw = &adapter->hw;
1584 	int i;
1585 
1586 	/* hardware has been reset, we need to reload some things */
1587 	igb_configure(adapter);
1588 
1589 	clear_bit(__IGB_DOWN, &adapter->state);
1590 
1591 	for (i = 0; i < adapter->num_q_vectors; i++)
1592 		napi_enable(&(adapter->q_vector[i]->napi));
1593 
1594 	if (adapter->msix_entries)
1595 		igb_configure_msix(adapter);
1596 	else
1597 		igb_assign_vector(adapter->q_vector[0], 0);
1598 
1599 	/* Clear any pending interrupts. */
1600 	rd32(E1000_ICR);
1601 	igb_irq_enable(adapter);
1602 
1603 	/* notify VFs that reset has been completed */
1604 	if (adapter->vfs_allocated_count) {
1605 		u32 reg_data = rd32(E1000_CTRL_EXT);
1606 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1607 		wr32(E1000_CTRL_EXT, reg_data);
1608 	}
1609 
1610 	netif_tx_start_all_queues(adapter->netdev);
1611 
1612 	/* start the watchdog. */
1613 	hw->mac.get_link_status = 1;
1614 	schedule_work(&adapter->watchdog_task);
1615 
1616 	return 0;
1617 }
1618 
1619 void igb_down(struct igb_adapter *adapter)
1620 {
1621 	struct net_device *netdev = adapter->netdev;
1622 	struct e1000_hw *hw = &adapter->hw;
1623 	u32 tctl, rctl;
1624 	int i;
1625 
1626 	/* signal that we're down so the interrupt handler does not
1627 	 * reschedule our watchdog timer */
1628 	set_bit(__IGB_DOWN, &adapter->state);
1629 
1630 	/* disable receives in the hardware */
1631 	rctl = rd32(E1000_RCTL);
1632 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1633 	/* flush and sleep below */
1634 
1635 	netif_tx_stop_all_queues(netdev);
1636 
1637 	/* disable transmits in the hardware */
1638 	tctl = rd32(E1000_TCTL);
1639 	tctl &= ~E1000_TCTL_EN;
1640 	wr32(E1000_TCTL, tctl);
1641 	/* flush both disables and wait for them to finish */
1642 	wrfl();
1643 	msleep(10);
1644 
1645 	for (i = 0; i < adapter->num_q_vectors; i++)
1646 		napi_disable(&(adapter->q_vector[i]->napi));
1647 
1648 	igb_irq_disable(adapter);
1649 
1650 	del_timer_sync(&adapter->watchdog_timer);
1651 	del_timer_sync(&adapter->phy_info_timer);
1652 
1653 	netif_carrier_off(netdev);
1654 
1655 	/* record the stats before reset*/
1656 	spin_lock(&adapter->stats64_lock);
1657 	igb_update_stats(adapter, &adapter->stats64);
1658 	spin_unlock(&adapter->stats64_lock);
1659 
1660 	adapter->link_speed = 0;
1661 	adapter->link_duplex = 0;
1662 
1663 	if (!pci_channel_offline(adapter->pdev))
1664 		igb_reset(adapter);
1665 	igb_clean_all_tx_rings(adapter);
1666 	igb_clean_all_rx_rings(adapter);
1667 #ifdef CONFIG_IGB_DCA
1668 
1669 	/* since we reset the hardware DCA settings were cleared */
1670 	igb_setup_dca(adapter);
1671 #endif
1672 }
1673 
1674 void igb_reinit_locked(struct igb_adapter *adapter)
1675 {
1676 	WARN_ON(in_interrupt());
1677 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1678 		msleep(1);
1679 	igb_down(adapter);
1680 	igb_up(adapter);
1681 	clear_bit(__IGB_RESETTING, &adapter->state);
1682 }
1683 
1684 void igb_reset(struct igb_adapter *adapter)
1685 {
1686 	struct pci_dev *pdev = adapter->pdev;
1687 	struct e1000_hw *hw = &adapter->hw;
1688 	struct e1000_mac_info *mac = &hw->mac;
1689 	struct e1000_fc_info *fc = &hw->fc;
1690 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691 
1692 	/* Repartition Pba for greater than 9k mtu
1693 	 * To take effect CTRL.RST is required.
1694 	 */
1695 	switch (mac->type) {
1696 	case e1000_i350:
1697 	case e1000_82580:
1698 		pba = rd32(E1000_RXPBS);
1699 		pba = igb_rxpbs_adjust_82580(pba);
1700 		break;
1701 	case e1000_82576:
1702 		pba = rd32(E1000_RXPBS);
1703 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1704 		break;
1705 	case e1000_82575:
1706 	case e1000_i210:
1707 	case e1000_i211:
1708 	default:
1709 		pba = E1000_PBA_34K;
1710 		break;
1711 	}
1712 
1713 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1714 	    (mac->type < e1000_82576)) {
1715 		/* adjust PBA for jumbo frames */
1716 		wr32(E1000_PBA, pba);
1717 
1718 		/* To maintain wire speed transmits, the Tx FIFO should be
1719 		 * large enough to accommodate two full transmit packets,
1720 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1721 		 * the Rx FIFO should be large enough to accommodate at least
1722 		 * one full receive packet and is similarly rounded up and
1723 		 * expressed in KB. */
1724 		pba = rd32(E1000_PBA);
1725 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1726 		tx_space = pba >> 16;
1727 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1728 		pba &= 0xffff;
1729 		/* the tx fifo also stores 16 bytes of information about the tx
1730 		 * but don't include ethernet FCS because hardware appends it */
1731 		min_tx_space = (adapter->max_frame_size +
1732 				sizeof(union e1000_adv_tx_desc) -
1733 				ETH_FCS_LEN) * 2;
1734 		min_tx_space = ALIGN(min_tx_space, 1024);
1735 		min_tx_space >>= 10;
1736 		/* software strips receive CRC, so leave room for it */
1737 		min_rx_space = adapter->max_frame_size;
1738 		min_rx_space = ALIGN(min_rx_space, 1024);
1739 		min_rx_space >>= 10;
1740 
1741 		/* If current Tx allocation is less than the min Tx FIFO size,
1742 		 * and the min Tx FIFO size is less than the current Rx FIFO
1743 		 * allocation, take space away from current Rx allocation */
1744 		if (tx_space < min_tx_space &&
1745 		    ((min_tx_space - tx_space) < pba)) {
1746 			pba = pba - (min_tx_space - tx_space);
1747 
1748 			/* if short on rx space, rx wins and must trump tx
1749 			 * adjustment */
1750 			if (pba < min_rx_space)
1751 				pba = min_rx_space;
1752 		}
1753 		wr32(E1000_PBA, pba);
1754 	}
1755 
1756 	/* flow control settings */
1757 	/* The high water mark must be low enough to fit one full frame
1758 	 * (or the size used for early receive) above it in the Rx FIFO.
1759 	 * Set it to the lower of:
1760 	 * - 90% of the Rx FIFO size, or
1761 	 * - the full Rx FIFO size minus one full frame */
1762 	hwm = min(((pba << 10) * 9 / 10),
1763 			((pba << 10) - 2 * adapter->max_frame_size));
1764 
1765 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1766 	fc->low_water = fc->high_water - 16;
1767 	fc->pause_time = 0xFFFF;
1768 	fc->send_xon = 1;
1769 	fc->current_mode = fc->requested_mode;
1770 
1771 	/* disable receive for all VFs and wait one second */
1772 	if (adapter->vfs_allocated_count) {
1773 		int i;
1774 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1775 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776 
1777 		/* ping all the active vfs to let them know we are going down */
1778 		igb_ping_all_vfs(adapter);
1779 
1780 		/* disable transmits and receives */
1781 		wr32(E1000_VFRE, 0);
1782 		wr32(E1000_VFTE, 0);
1783 	}
1784 
1785 	/* Allow time for pending master requests to run */
1786 	hw->mac.ops.reset_hw(hw);
1787 	wr32(E1000_WUC, 0);
1788 
1789 	if (hw->mac.ops.init_hw(hw))
1790 		dev_err(&pdev->dev, "Hardware Error\n");
1791 
1792 	/*
1793 	 * Flow control settings reset on hardware reset, so guarantee flow
1794 	 * control is off when forcing speed.
1795 	 */
1796 	if (!hw->mac.autoneg)
1797 		igb_force_mac_fc(hw);
1798 
1799 	igb_init_dmac(adapter, pba);
1800 #ifdef CONFIG_IGB_HWMON
1801 	/* Re-initialize the thermal sensor on i350 devices. */
1802 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1803 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1804 			/* If present, re-initialize the external thermal sensor
1805 			 * interface.
1806 			 */
1807 			if (adapter->ets)
1808 				mac->ops.init_thermal_sensor_thresh(hw);
1809 		}
1810 	}
1811 #endif
1812 	if (!netif_running(adapter->netdev))
1813 		igb_power_down_link(adapter);
1814 
1815 	igb_update_mng_vlan(adapter);
1816 
1817 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1818 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1819 
1820 	/* Re-enable PTP, where applicable. */
1821 	igb_ptp_reset(adapter);
1822 
1823 	igb_get_phy_info(hw);
1824 }
1825 
1826 static netdev_features_t igb_fix_features(struct net_device *netdev,
1827 	netdev_features_t features)
1828 {
1829 	/*
1830 	 * Since there is no support for separate rx/tx vlan accel
1831 	 * enable/disable make sure tx flag is always in same state as rx.
1832 	 */
1833 	if (features & NETIF_F_HW_VLAN_RX)
1834 		features |= NETIF_F_HW_VLAN_TX;
1835 	else
1836 		features &= ~NETIF_F_HW_VLAN_TX;
1837 
1838 	return features;
1839 }
1840 
1841 static int igb_set_features(struct net_device *netdev,
1842 	netdev_features_t features)
1843 {
1844 	netdev_features_t changed = netdev->features ^ features;
1845 	struct igb_adapter *adapter = netdev_priv(netdev);
1846 
1847 	if (changed & NETIF_F_HW_VLAN_RX)
1848 		igb_vlan_mode(netdev, features);
1849 
1850 	if (!(changed & NETIF_F_RXALL))
1851 		return 0;
1852 
1853 	netdev->features = features;
1854 
1855 	if (netif_running(netdev))
1856 		igb_reinit_locked(adapter);
1857 	else
1858 		igb_reset(adapter);
1859 
1860 	return 0;
1861 }
1862 
1863 static const struct net_device_ops igb_netdev_ops = {
1864 	.ndo_open		= igb_open,
1865 	.ndo_stop		= igb_close,
1866 	.ndo_start_xmit		= igb_xmit_frame,
1867 	.ndo_get_stats64	= igb_get_stats64,
1868 	.ndo_set_rx_mode	= igb_set_rx_mode,
1869 	.ndo_set_mac_address	= igb_set_mac,
1870 	.ndo_change_mtu		= igb_change_mtu,
1871 	.ndo_do_ioctl		= igb_ioctl,
1872 	.ndo_tx_timeout		= igb_tx_timeout,
1873 	.ndo_validate_addr	= eth_validate_addr,
1874 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1875 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1876 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1877 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1878 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1879 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1880 #ifdef CONFIG_NET_POLL_CONTROLLER
1881 	.ndo_poll_controller	= igb_netpoll,
1882 #endif
1883 	.ndo_fix_features	= igb_fix_features,
1884 	.ndo_set_features	= igb_set_features,
1885 };
1886 
1887 /**
1888  * igb_set_fw_version - Configure version string for ethtool
1889  * @adapter: adapter struct
1890  *
1891  **/
1892 void igb_set_fw_version(struct igb_adapter *adapter)
1893 {
1894 	struct e1000_hw *hw = &adapter->hw;
1895 	struct e1000_fw_version fw;
1896 
1897 	igb_get_fw_version(hw, &fw);
1898 
1899 	switch (hw->mac.type) {
1900 	case e1000_i211:
1901 		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902 			 "%2d.%2d-%d",
1903 			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1904 		break;
1905 
1906 	default:
1907 		/* if option is rom valid, display its version too */
1908 		if (fw.or_valid) {
1909 			snprintf(adapter->fw_version,
1910 				 sizeof(adapter->fw_version),
1911 				 "%d.%d, 0x%08x, %d.%d.%d",
1912 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1913 				 fw.or_major, fw.or_build, fw.or_patch);
1914 		/* no option rom */
1915 		} else {
1916 			snprintf(adapter->fw_version,
1917 				 sizeof(adapter->fw_version),
1918 				 "%d.%d, 0x%08x",
1919 				 fw.eep_major, fw.eep_minor, fw.etrack_id);
1920 		}
1921 		break;
1922 	}
1923 	return;
1924 }
1925 
1926 /*  igb_init_i2c - Init I2C interface
1927  *  @adapter: pointer to adapter structure
1928  *
1929  */
1930 static s32 igb_init_i2c(struct igb_adapter *adapter)
1931 {
1932 	s32 status = E1000_SUCCESS;
1933 
1934 	/* I2C interface supported on i350 devices */
1935 	if (adapter->hw.mac.type != e1000_i350)
1936 		return E1000_SUCCESS;
1937 
1938 	/* Initialize the i2c bus which is controlled by the registers.
1939 	 * This bus will use the i2c_algo_bit structue that implements
1940 	 * the protocol through toggling of the 4 bits in the register.
1941 	 */
1942 	adapter->i2c_adap.owner = THIS_MODULE;
1943 	adapter->i2c_algo = igb_i2c_algo;
1944 	adapter->i2c_algo.data = adapter;
1945 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1946 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1947 	strlcpy(adapter->i2c_adap.name, "igb BB",
1948 		sizeof(adapter->i2c_adap.name));
1949 	status = i2c_bit_add_bus(&adapter->i2c_adap);
1950 	return status;
1951 }
1952 
1953 /**
1954  * igb_probe - Device Initialization Routine
1955  * @pdev: PCI device information struct
1956  * @ent: entry in igb_pci_tbl
1957  *
1958  * Returns 0 on success, negative on failure
1959  *
1960  * igb_probe initializes an adapter identified by a pci_dev structure.
1961  * The OS initialization, configuring of the adapter private structure,
1962  * and a hardware reset occur.
1963  **/
1964 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1965 {
1966 	struct net_device *netdev;
1967 	struct igb_adapter *adapter;
1968 	struct e1000_hw *hw;
1969 	u16 eeprom_data = 0;
1970 	s32 ret_val;
1971 	static int global_quad_port_a; /* global quad port a indication */
1972 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1973 	unsigned long mmio_start, mmio_len;
1974 	int err, pci_using_dac;
1975 	u8 part_str[E1000_PBANUM_LENGTH];
1976 
1977 	/* Catch broken hardware that put the wrong VF device ID in
1978 	 * the PCIe SR-IOV capability.
1979 	 */
1980 	if (pdev->is_virtfn) {
1981 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1982 			pci_name(pdev), pdev->vendor, pdev->device);
1983 		return -EINVAL;
1984 	}
1985 
1986 	err = pci_enable_device_mem(pdev);
1987 	if (err)
1988 		return err;
1989 
1990 	pci_using_dac = 0;
1991 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1992 	if (!err) {
1993 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1994 		if (!err)
1995 			pci_using_dac = 1;
1996 	} else {
1997 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1998 		if (err) {
1999 			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2000 			if (err) {
2001 				dev_err(&pdev->dev, "No usable DMA "
2002 					"configuration, aborting\n");
2003 				goto err_dma;
2004 			}
2005 		}
2006 	}
2007 
2008 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2009 	                                   IORESOURCE_MEM),
2010 	                                   igb_driver_name);
2011 	if (err)
2012 		goto err_pci_reg;
2013 
2014 	pci_enable_pcie_error_reporting(pdev);
2015 
2016 	pci_set_master(pdev);
2017 	pci_save_state(pdev);
2018 
2019 	err = -ENOMEM;
2020 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2021 				   IGB_MAX_TX_QUEUES);
2022 	if (!netdev)
2023 		goto err_alloc_etherdev;
2024 
2025 	SET_NETDEV_DEV(netdev, &pdev->dev);
2026 
2027 	pci_set_drvdata(pdev, netdev);
2028 	adapter = netdev_priv(netdev);
2029 	adapter->netdev = netdev;
2030 	adapter->pdev = pdev;
2031 	hw = &adapter->hw;
2032 	hw->back = adapter;
2033 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2034 
2035 	mmio_start = pci_resource_start(pdev, 0);
2036 	mmio_len = pci_resource_len(pdev, 0);
2037 
2038 	err = -EIO;
2039 	hw->hw_addr = ioremap(mmio_start, mmio_len);
2040 	if (!hw->hw_addr)
2041 		goto err_ioremap;
2042 
2043 	netdev->netdev_ops = &igb_netdev_ops;
2044 	igb_set_ethtool_ops(netdev);
2045 	netdev->watchdog_timeo = 5 * HZ;
2046 
2047 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2048 
2049 	netdev->mem_start = mmio_start;
2050 	netdev->mem_end = mmio_start + mmio_len;
2051 
2052 	/* PCI config space info */
2053 	hw->vendor_id = pdev->vendor;
2054 	hw->device_id = pdev->device;
2055 	hw->revision_id = pdev->revision;
2056 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2057 	hw->subsystem_device_id = pdev->subsystem_device;
2058 
2059 	/* Copy the default MAC, PHY and NVM function pointers */
2060 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2061 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2062 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2063 	/* Initialize skew-specific constants */
2064 	err = ei->get_invariants(hw);
2065 	if (err)
2066 		goto err_sw_init;
2067 
2068 	/* setup the private structure */
2069 	err = igb_sw_init(adapter);
2070 	if (err)
2071 		goto err_sw_init;
2072 
2073 	igb_get_bus_info_pcie(hw);
2074 
2075 	hw->phy.autoneg_wait_to_complete = false;
2076 
2077 	/* Copper options */
2078 	if (hw->phy.media_type == e1000_media_type_copper) {
2079 		hw->phy.mdix = AUTO_ALL_MODES;
2080 		hw->phy.disable_polarity_correction = false;
2081 		hw->phy.ms_type = e1000_ms_hw_default;
2082 	}
2083 
2084 	if (igb_check_reset_block(hw))
2085 		dev_info(&pdev->dev,
2086 			"PHY reset is blocked due to SOL/IDER session.\n");
2087 
2088 	/*
2089 	 * features is initialized to 0 in allocation, it might have bits
2090 	 * set by igb_sw_init so we should use an or instead of an
2091 	 * assignment.
2092 	 */
2093 	netdev->features |= NETIF_F_SG |
2094 			    NETIF_F_IP_CSUM |
2095 			    NETIF_F_IPV6_CSUM |
2096 			    NETIF_F_TSO |
2097 			    NETIF_F_TSO6 |
2098 			    NETIF_F_RXHASH |
2099 			    NETIF_F_RXCSUM |
2100 			    NETIF_F_HW_VLAN_RX |
2101 			    NETIF_F_HW_VLAN_TX;
2102 
2103 	/* copy netdev features into list of user selectable features */
2104 	netdev->hw_features |= netdev->features;
2105 	netdev->hw_features |= NETIF_F_RXALL;
2106 
2107 	/* set this bit last since it cannot be part of hw_features */
2108 	netdev->features |= NETIF_F_HW_VLAN_FILTER;
2109 
2110 	netdev->vlan_features |= NETIF_F_TSO |
2111 				 NETIF_F_TSO6 |
2112 				 NETIF_F_IP_CSUM |
2113 				 NETIF_F_IPV6_CSUM |
2114 				 NETIF_F_SG;
2115 
2116 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2117 
2118 	if (pci_using_dac) {
2119 		netdev->features |= NETIF_F_HIGHDMA;
2120 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2121 	}
2122 
2123 	if (hw->mac.type >= e1000_82576) {
2124 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2125 		netdev->features |= NETIF_F_SCTP_CSUM;
2126 	}
2127 
2128 	netdev->priv_flags |= IFF_UNICAST_FLT;
2129 
2130 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2131 
2132 	/* before reading the NVM, reset the controller to put the device in a
2133 	 * known good starting state */
2134 	hw->mac.ops.reset_hw(hw);
2135 
2136 	/*
2137 	 * make sure the NVM is good , i211 parts have special NVM that
2138 	 * doesn't contain a checksum
2139 	 */
2140 	if (hw->mac.type != e1000_i211) {
2141 		if (hw->nvm.ops.validate(hw) < 0) {
2142 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2143 			err = -EIO;
2144 			goto err_eeprom;
2145 		}
2146 	}
2147 
2148 	/* copy the MAC address out of the NVM */
2149 	if (hw->mac.ops.read_mac_addr(hw))
2150 		dev_err(&pdev->dev, "NVM Read Error\n");
2151 
2152 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2153 
2154 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2155 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2156 		err = -EIO;
2157 		goto err_eeprom;
2158 	}
2159 
2160 	/* get firmware version for ethtool -i */
2161 	igb_set_fw_version(adapter);
2162 
2163 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2164 	            (unsigned long) adapter);
2165 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2166 	            (unsigned long) adapter);
2167 
2168 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2169 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2170 
2171 	/* Initialize link properties that are user-changeable */
2172 	adapter->fc_autoneg = true;
2173 	hw->mac.autoneg = true;
2174 	hw->phy.autoneg_advertised = 0x2f;
2175 
2176 	hw->fc.requested_mode = e1000_fc_default;
2177 	hw->fc.current_mode = e1000_fc_default;
2178 
2179 	igb_validate_mdi_setting(hw);
2180 
2181 	/* By default, support wake on port A */
2182 	if (hw->bus.func == 0)
2183 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2184 
2185 	/* Check the NVM for wake support on non-port A ports */
2186 	if (hw->mac.type >= e1000_82580)
2187 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2188 		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2189 		                 &eeprom_data);
2190 	else if (hw->bus.func == 1)
2191 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2192 
2193 	if (eeprom_data & IGB_EEPROM_APME)
2194 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2195 
2196 	/* now that we have the eeprom settings, apply the special cases where
2197 	 * the eeprom may be wrong or the board simply won't support wake on
2198 	 * lan on a particular port */
2199 	switch (pdev->device) {
2200 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2201 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2202 		break;
2203 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2204 	case E1000_DEV_ID_82576_FIBER:
2205 	case E1000_DEV_ID_82576_SERDES:
2206 		/* Wake events only supported on port A for dual fiber
2207 		 * regardless of eeprom setting */
2208 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2209 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2210 		break;
2211 	case E1000_DEV_ID_82576_QUAD_COPPER:
2212 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2213 		/* if quad port adapter, disable WoL on all but port A */
2214 		if (global_quad_port_a != 0)
2215 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2216 		else
2217 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2218 		/* Reset for multiple quad port adapters */
2219 		if (++global_quad_port_a == 4)
2220 			global_quad_port_a = 0;
2221 		break;
2222 	default:
2223 		/* If the device can't wake, don't set software support */
2224 		if (!device_can_wakeup(&adapter->pdev->dev))
2225 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2226 	}
2227 
2228 	/* initialize the wol settings based on the eeprom settings */
2229 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2230 		adapter->wol |= E1000_WUFC_MAG;
2231 
2232 	/* Some vendors want WoL disabled by default, but still supported */
2233 	if ((hw->mac.type == e1000_i350) &&
2234 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2235 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2236 		adapter->wol = 0;
2237 	}
2238 
2239 	device_set_wakeup_enable(&adapter->pdev->dev,
2240 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2241 
2242 	/* reset the hardware with the new settings */
2243 	igb_reset(adapter);
2244 
2245 	/* Init the I2C interface */
2246 	err = igb_init_i2c(adapter);
2247 	if (err) {
2248 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2249 		goto err_eeprom;
2250 	}
2251 
2252 	/* let the f/w know that the h/w is now under the control of the
2253 	 * driver. */
2254 	igb_get_hw_control(adapter);
2255 
2256 	strcpy(netdev->name, "eth%d");
2257 	err = register_netdev(netdev);
2258 	if (err)
2259 		goto err_register;
2260 
2261 	/* carrier off reporting is important to ethtool even BEFORE open */
2262 	netif_carrier_off(netdev);
2263 
2264 #ifdef CONFIG_IGB_DCA
2265 	if (dca_add_requester(&pdev->dev) == 0) {
2266 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2267 		dev_info(&pdev->dev, "DCA enabled\n");
2268 		igb_setup_dca(adapter);
2269 	}
2270 
2271 #endif
2272 #ifdef CONFIG_IGB_HWMON
2273 	/* Initialize the thermal sensor on i350 devices. */
2274 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2275 		u16 ets_word;
2276 
2277 		/*
2278 		 * Read the NVM to determine if this i350 device supports an
2279 		 * external thermal sensor.
2280 		 */
2281 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2282 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2283 			adapter->ets = true;
2284 		else
2285 			adapter->ets = false;
2286 		if (igb_sysfs_init(adapter))
2287 			dev_err(&pdev->dev,
2288 				"failed to allocate sysfs resources\n");
2289 	} else {
2290 		adapter->ets = false;
2291 	}
2292 #endif
2293 	/* do hw tstamp init after resetting */
2294 	igb_ptp_init(adapter);
2295 
2296 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2297 	/* print bus type/speed/width info */
2298 	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2299 		 netdev->name,
2300 		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2301 		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2302 		                                            "unknown"),
2303 		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2304 		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2305 		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2306 		   "unknown"),
2307 		 netdev->dev_addr);
2308 
2309 	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2310 	if (ret_val)
2311 		strcpy(part_str, "Unknown");
2312 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2313 	dev_info(&pdev->dev,
2314 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2315 		adapter->msix_entries ? "MSI-X" :
2316 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2317 		adapter->num_rx_queues, adapter->num_tx_queues);
2318 	switch (hw->mac.type) {
2319 	case e1000_i350:
2320 	case e1000_i210:
2321 	case e1000_i211:
2322 		igb_set_eee_i350(hw);
2323 		break;
2324 	default:
2325 		break;
2326 	}
2327 
2328 	pm_runtime_put_noidle(&pdev->dev);
2329 	return 0;
2330 
2331 err_register:
2332 	igb_release_hw_control(adapter);
2333 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2334 err_eeprom:
2335 	if (!igb_check_reset_block(hw))
2336 		igb_reset_phy(hw);
2337 
2338 	if (hw->flash_address)
2339 		iounmap(hw->flash_address);
2340 err_sw_init:
2341 	igb_clear_interrupt_scheme(adapter);
2342 	iounmap(hw->hw_addr);
2343 err_ioremap:
2344 	free_netdev(netdev);
2345 err_alloc_etherdev:
2346 	pci_release_selected_regions(pdev,
2347 	                             pci_select_bars(pdev, IORESOURCE_MEM));
2348 err_pci_reg:
2349 err_dma:
2350 	pci_disable_device(pdev);
2351 	return err;
2352 }
2353 
2354 #ifdef CONFIG_PCI_IOV
2355 static int  igb_disable_sriov(struct pci_dev *pdev)
2356 {
2357 	struct net_device *netdev = pci_get_drvdata(pdev);
2358 	struct igb_adapter *adapter = netdev_priv(netdev);
2359 	struct e1000_hw *hw = &adapter->hw;
2360 
2361 	/* reclaim resources allocated to VFs */
2362 	if (adapter->vf_data) {
2363 		/* disable iov and allow time for transactions to clear */
2364 		if (igb_vfs_are_assigned(adapter)) {
2365 			dev_warn(&pdev->dev,
2366 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2367 			return -EPERM;
2368 		} else {
2369 			pci_disable_sriov(pdev);
2370 			msleep(500);
2371 		}
2372 
2373 		kfree(adapter->vf_data);
2374 		adapter->vf_data = NULL;
2375 		adapter->vfs_allocated_count = 0;
2376 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2377 		wrfl();
2378 		msleep(100);
2379 		dev_info(&pdev->dev, "IOV Disabled\n");
2380 
2381 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2382 		adapter->flags |= IGB_FLAG_DMAC;
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2389 {
2390 	struct net_device *netdev = pci_get_drvdata(pdev);
2391 	struct igb_adapter *adapter = netdev_priv(netdev);
2392 	int old_vfs = pci_num_vf(pdev);
2393 	int err = 0;
2394 	int i;
2395 
2396 	if (!num_vfs)
2397 		goto out;
2398 	else if (old_vfs && old_vfs == num_vfs)
2399 		goto out;
2400 	else if (old_vfs && old_vfs != num_vfs)
2401 		err = igb_disable_sriov(pdev);
2402 
2403 	if (err)
2404 		goto out;
2405 
2406 	if (num_vfs > 7) {
2407 		err = -EPERM;
2408 		goto out;
2409 	}
2410 
2411 	adapter->vfs_allocated_count = num_vfs;
2412 
2413 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2414 				sizeof(struct vf_data_storage), GFP_KERNEL);
2415 
2416 	/* if allocation failed then we do not support SR-IOV */
2417 	if (!adapter->vf_data) {
2418 		adapter->vfs_allocated_count = 0;
2419 		dev_err(&pdev->dev,
2420 			"Unable to allocate memory for VF Data Storage\n");
2421 		err = -ENOMEM;
2422 		goto out;
2423 	}
2424 
2425 	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2426 	if (err)
2427 		goto err_out;
2428 
2429 	dev_info(&pdev->dev, "%d VFs allocated\n",
2430 		 adapter->vfs_allocated_count);
2431 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2432 		igb_vf_configure(adapter, i);
2433 
2434 	/* DMA Coalescing is not supported in IOV mode. */
2435 	adapter->flags &= ~IGB_FLAG_DMAC;
2436 	goto out;
2437 
2438 err_out:
2439 	kfree(adapter->vf_data);
2440 	adapter->vf_data = NULL;
2441 	adapter->vfs_allocated_count = 0;
2442 out:
2443 	return err;
2444 }
2445 
2446 #endif
2447 /*
2448  *  igb_remove_i2c - Cleanup  I2C interface
2449  *  @adapter: pointer to adapter structure
2450  *
2451  */
2452 static void igb_remove_i2c(struct igb_adapter *adapter)
2453 {
2454 
2455 	/* free the adapter bus structure */
2456 	i2c_del_adapter(&adapter->i2c_adap);
2457 }
2458 
2459 /**
2460  * igb_remove - Device Removal Routine
2461  * @pdev: PCI device information struct
2462  *
2463  * igb_remove is called by the PCI subsystem to alert the driver
2464  * that it should release a PCI device.  The could be caused by a
2465  * Hot-Plug event, or because the driver is going to be removed from
2466  * memory.
2467  **/
2468 static void igb_remove(struct pci_dev *pdev)
2469 {
2470 	struct net_device *netdev = pci_get_drvdata(pdev);
2471 	struct igb_adapter *adapter = netdev_priv(netdev);
2472 	struct e1000_hw *hw = &adapter->hw;
2473 
2474 	pm_runtime_get_noresume(&pdev->dev);
2475 #ifdef CONFIG_IGB_HWMON
2476 	igb_sysfs_exit(adapter);
2477 #endif
2478 	igb_remove_i2c(adapter);
2479 	igb_ptp_stop(adapter);
2480 	/*
2481 	 * The watchdog timer may be rescheduled, so explicitly
2482 	 * disable watchdog from being rescheduled.
2483 	 */
2484 	set_bit(__IGB_DOWN, &adapter->state);
2485 	del_timer_sync(&adapter->watchdog_timer);
2486 	del_timer_sync(&adapter->phy_info_timer);
2487 
2488 	cancel_work_sync(&adapter->reset_task);
2489 	cancel_work_sync(&adapter->watchdog_task);
2490 
2491 #ifdef CONFIG_IGB_DCA
2492 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2493 		dev_info(&pdev->dev, "DCA disabled\n");
2494 		dca_remove_requester(&pdev->dev);
2495 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2496 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2497 	}
2498 #endif
2499 
2500 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2501 	 * would have already happened in close and is redundant. */
2502 	igb_release_hw_control(adapter);
2503 
2504 	unregister_netdev(netdev);
2505 
2506 	igb_clear_interrupt_scheme(adapter);
2507 
2508 #ifdef CONFIG_PCI_IOV
2509 	igb_disable_sriov(pdev);
2510 #endif
2511 
2512 	iounmap(hw->hw_addr);
2513 	if (hw->flash_address)
2514 		iounmap(hw->flash_address);
2515 	pci_release_selected_regions(pdev,
2516 	                             pci_select_bars(pdev, IORESOURCE_MEM));
2517 
2518 	kfree(adapter->shadow_vfta);
2519 	free_netdev(netdev);
2520 
2521 	pci_disable_pcie_error_reporting(pdev);
2522 
2523 	pci_disable_device(pdev);
2524 }
2525 
2526 /**
2527  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2528  * @adapter: board private structure to initialize
2529  *
2530  * This function initializes the vf specific data storage and then attempts to
2531  * allocate the VFs.  The reason for ordering it this way is because it is much
2532  * mor expensive time wise to disable SR-IOV than it is to allocate and free
2533  * the memory for the VFs.
2534  **/
2535 static void igb_probe_vfs(struct igb_adapter *adapter)
2536 {
2537 #ifdef CONFIG_PCI_IOV
2538 	struct pci_dev *pdev = adapter->pdev;
2539 	struct e1000_hw *hw = &adapter->hw;
2540 
2541 	/* Virtualization features not supported on i210 family. */
2542 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2543 		return;
2544 
2545 	igb_enable_sriov(pdev, max_vfs);
2546 	pci_sriov_set_totalvfs(pdev, 7);
2547 
2548 #endif /* CONFIG_PCI_IOV */
2549 }
2550 
2551 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2552 {
2553 	struct e1000_hw *hw = &adapter->hw;
2554 	u32 max_rss_queues;
2555 
2556 	/* Determine the maximum number of RSS queues supported. */
2557 	switch (hw->mac.type) {
2558 	case e1000_i211:
2559 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2560 		break;
2561 	case e1000_82575:
2562 	case e1000_i210:
2563 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2564 		break;
2565 	case e1000_i350:
2566 		/* I350 cannot do RSS and SR-IOV at the same time */
2567 		if (!!adapter->vfs_allocated_count) {
2568 			max_rss_queues = 1;
2569 			break;
2570 		}
2571 		/* fall through */
2572 	case e1000_82576:
2573 		if (!!adapter->vfs_allocated_count) {
2574 			max_rss_queues = 2;
2575 			break;
2576 		}
2577 		/* fall through */
2578 	case e1000_82580:
2579 	default:
2580 		max_rss_queues = IGB_MAX_RX_QUEUES;
2581 		break;
2582 	}
2583 
2584 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2585 
2586 	/* Determine if we need to pair queues. */
2587 	switch (hw->mac.type) {
2588 	case e1000_82575:
2589 	case e1000_i211:
2590 		/* Device supports enough interrupts without queue pairing. */
2591 		break;
2592 	case e1000_82576:
2593 		/*
2594 		 * If VFs are going to be allocated with RSS queues then we
2595 		 * should pair the queues in order to conserve interrupts due
2596 		 * to limited supply.
2597 		 */
2598 		if ((adapter->rss_queues > 1) &&
2599 		    (adapter->vfs_allocated_count > 6))
2600 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2601 		/* fall through */
2602 	case e1000_82580:
2603 	case e1000_i350:
2604 	case e1000_i210:
2605 	default:
2606 		/*
2607 		 * If rss_queues > half of max_rss_queues, pair the queues in
2608 		 * order to conserve interrupts due to limited supply.
2609 		 */
2610 		if (adapter->rss_queues > (max_rss_queues / 2))
2611 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2612 		break;
2613 	}
2614 }
2615 
2616 /**
2617  * igb_sw_init - Initialize general software structures (struct igb_adapter)
2618  * @adapter: board private structure to initialize
2619  *
2620  * igb_sw_init initializes the Adapter private data structure.
2621  * Fields are initialized based on PCI device information and
2622  * OS network device settings (MTU size).
2623  **/
2624 static int igb_sw_init(struct igb_adapter *adapter)
2625 {
2626 	struct e1000_hw *hw = &adapter->hw;
2627 	struct net_device *netdev = adapter->netdev;
2628 	struct pci_dev *pdev = adapter->pdev;
2629 
2630 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2631 
2632 	/* set default ring sizes */
2633 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2634 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2635 
2636 	/* set default ITR values */
2637 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2638 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2639 
2640 	/* set default work limits */
2641 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2642 
2643 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2644 				  VLAN_HLEN;
2645 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2646 
2647 	spin_lock_init(&adapter->stats64_lock);
2648 #ifdef CONFIG_PCI_IOV
2649 	switch (hw->mac.type) {
2650 	case e1000_82576:
2651 	case e1000_i350:
2652 		if (max_vfs > 7) {
2653 			dev_warn(&pdev->dev,
2654 				 "Maximum of 7 VFs per PF, using max\n");
2655 			adapter->vfs_allocated_count = 7;
2656 		} else
2657 			adapter->vfs_allocated_count = max_vfs;
2658 		if (adapter->vfs_allocated_count)
2659 			dev_warn(&pdev->dev,
2660 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2661 		break;
2662 	default:
2663 		break;
2664 	}
2665 #endif /* CONFIG_PCI_IOV */
2666 
2667 	igb_init_queue_configuration(adapter);
2668 
2669 	/* Setup and initialize a copy of the hw vlan table array */
2670 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2671 				       GFP_ATOMIC);
2672 
2673 	/* This call may decrease the number of queues */
2674 	if (igb_init_interrupt_scheme(adapter, true)) {
2675 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2676 		return -ENOMEM;
2677 	}
2678 
2679 	igb_probe_vfs(adapter);
2680 
2681 	/* Explicitly disable IRQ since the NIC can be in any state. */
2682 	igb_irq_disable(adapter);
2683 
2684 	if (hw->mac.type >= e1000_i350)
2685 		adapter->flags &= ~IGB_FLAG_DMAC;
2686 
2687 	set_bit(__IGB_DOWN, &adapter->state);
2688 	return 0;
2689 }
2690 
2691 /**
2692  * igb_open - Called when a network interface is made active
2693  * @netdev: network interface device structure
2694  *
2695  * Returns 0 on success, negative value on failure
2696  *
2697  * The open entry point is called when a network interface is made
2698  * active by the system (IFF_UP).  At this point all resources needed
2699  * for transmit and receive operations are allocated, the interrupt
2700  * handler is registered with the OS, the watchdog timer is started,
2701  * and the stack is notified that the interface is ready.
2702  **/
2703 static int __igb_open(struct net_device *netdev, bool resuming)
2704 {
2705 	struct igb_adapter *adapter = netdev_priv(netdev);
2706 	struct e1000_hw *hw = &adapter->hw;
2707 	struct pci_dev *pdev = adapter->pdev;
2708 	int err;
2709 	int i;
2710 
2711 	/* disallow open during test */
2712 	if (test_bit(__IGB_TESTING, &adapter->state)) {
2713 		WARN_ON(resuming);
2714 		return -EBUSY;
2715 	}
2716 
2717 	if (!resuming)
2718 		pm_runtime_get_sync(&pdev->dev);
2719 
2720 	netif_carrier_off(netdev);
2721 
2722 	/* allocate transmit descriptors */
2723 	err = igb_setup_all_tx_resources(adapter);
2724 	if (err)
2725 		goto err_setup_tx;
2726 
2727 	/* allocate receive descriptors */
2728 	err = igb_setup_all_rx_resources(adapter);
2729 	if (err)
2730 		goto err_setup_rx;
2731 
2732 	igb_power_up_link(adapter);
2733 
2734 	/* before we allocate an interrupt, we must be ready to handle it.
2735 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2736 	 * as soon as we call pci_request_irq, so we have to setup our
2737 	 * clean_rx handler before we do so.  */
2738 	igb_configure(adapter);
2739 
2740 	err = igb_request_irq(adapter);
2741 	if (err)
2742 		goto err_req_irq;
2743 
2744 	/* Notify the stack of the actual queue counts. */
2745 	err = netif_set_real_num_tx_queues(adapter->netdev,
2746 					   adapter->num_tx_queues);
2747 	if (err)
2748 		goto err_set_queues;
2749 
2750 	err = netif_set_real_num_rx_queues(adapter->netdev,
2751 					   adapter->num_rx_queues);
2752 	if (err)
2753 		goto err_set_queues;
2754 
2755 	/* From here on the code is the same as igb_up() */
2756 	clear_bit(__IGB_DOWN, &adapter->state);
2757 
2758 	for (i = 0; i < adapter->num_q_vectors; i++)
2759 		napi_enable(&(adapter->q_vector[i]->napi));
2760 
2761 	/* Clear any pending interrupts. */
2762 	rd32(E1000_ICR);
2763 
2764 	igb_irq_enable(adapter);
2765 
2766 	/* notify VFs that reset has been completed */
2767 	if (adapter->vfs_allocated_count) {
2768 		u32 reg_data = rd32(E1000_CTRL_EXT);
2769 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2770 		wr32(E1000_CTRL_EXT, reg_data);
2771 	}
2772 
2773 	netif_tx_start_all_queues(netdev);
2774 
2775 	if (!resuming)
2776 		pm_runtime_put(&pdev->dev);
2777 
2778 	/* start the watchdog. */
2779 	hw->mac.get_link_status = 1;
2780 	schedule_work(&adapter->watchdog_task);
2781 
2782 	return 0;
2783 
2784 err_set_queues:
2785 	igb_free_irq(adapter);
2786 err_req_irq:
2787 	igb_release_hw_control(adapter);
2788 	igb_power_down_link(adapter);
2789 	igb_free_all_rx_resources(adapter);
2790 err_setup_rx:
2791 	igb_free_all_tx_resources(adapter);
2792 err_setup_tx:
2793 	igb_reset(adapter);
2794 	if (!resuming)
2795 		pm_runtime_put(&pdev->dev);
2796 
2797 	return err;
2798 }
2799 
2800 static int igb_open(struct net_device *netdev)
2801 {
2802 	return __igb_open(netdev, false);
2803 }
2804 
2805 /**
2806  * igb_close - Disables a network interface
2807  * @netdev: network interface device structure
2808  *
2809  * Returns 0, this is not allowed to fail
2810  *
2811  * The close entry point is called when an interface is de-activated
2812  * by the OS.  The hardware is still under the driver's control, but
2813  * needs to be disabled.  A global MAC reset is issued to stop the
2814  * hardware, and all transmit and receive resources are freed.
2815  **/
2816 static int __igb_close(struct net_device *netdev, bool suspending)
2817 {
2818 	struct igb_adapter *adapter = netdev_priv(netdev);
2819 	struct pci_dev *pdev = adapter->pdev;
2820 
2821 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2822 
2823 	if (!suspending)
2824 		pm_runtime_get_sync(&pdev->dev);
2825 
2826 	igb_down(adapter);
2827 	igb_free_irq(adapter);
2828 
2829 	igb_free_all_tx_resources(adapter);
2830 	igb_free_all_rx_resources(adapter);
2831 
2832 	if (!suspending)
2833 		pm_runtime_put_sync(&pdev->dev);
2834 	return 0;
2835 }
2836 
2837 static int igb_close(struct net_device *netdev)
2838 {
2839 	return __igb_close(netdev, false);
2840 }
2841 
2842 /**
2843  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2844  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2845  *
2846  * Return 0 on success, negative on failure
2847  **/
2848 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2849 {
2850 	struct device *dev = tx_ring->dev;
2851 	int size;
2852 
2853 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2854 
2855 	tx_ring->tx_buffer_info = vzalloc(size);
2856 	if (!tx_ring->tx_buffer_info)
2857 		goto err;
2858 
2859 	/* round up to nearest 4K */
2860 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2861 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2862 
2863 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2864 					   &tx_ring->dma, GFP_KERNEL);
2865 	if (!tx_ring->desc)
2866 		goto err;
2867 
2868 	tx_ring->next_to_use = 0;
2869 	tx_ring->next_to_clean = 0;
2870 
2871 	return 0;
2872 
2873 err:
2874 	vfree(tx_ring->tx_buffer_info);
2875 	tx_ring->tx_buffer_info = NULL;
2876 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2877 	return -ENOMEM;
2878 }
2879 
2880 /**
2881  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2882  *				  (Descriptors) for all queues
2883  * @adapter: board private structure
2884  *
2885  * Return 0 on success, negative on failure
2886  **/
2887 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2888 {
2889 	struct pci_dev *pdev = adapter->pdev;
2890 	int i, err = 0;
2891 
2892 	for (i = 0; i < adapter->num_tx_queues; i++) {
2893 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2894 		if (err) {
2895 			dev_err(&pdev->dev,
2896 				"Allocation for Tx Queue %u failed\n", i);
2897 			for (i--; i >= 0; i--)
2898 				igb_free_tx_resources(adapter->tx_ring[i]);
2899 			break;
2900 		}
2901 	}
2902 
2903 	return err;
2904 }
2905 
2906 /**
2907  * igb_setup_tctl - configure the transmit control registers
2908  * @adapter: Board private structure
2909  **/
2910 void igb_setup_tctl(struct igb_adapter *adapter)
2911 {
2912 	struct e1000_hw *hw = &adapter->hw;
2913 	u32 tctl;
2914 
2915 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2916 	wr32(E1000_TXDCTL(0), 0);
2917 
2918 	/* Program the Transmit Control Register */
2919 	tctl = rd32(E1000_TCTL);
2920 	tctl &= ~E1000_TCTL_CT;
2921 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2922 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2923 
2924 	igb_config_collision_dist(hw);
2925 
2926 	/* Enable transmits */
2927 	tctl |= E1000_TCTL_EN;
2928 
2929 	wr32(E1000_TCTL, tctl);
2930 }
2931 
2932 /**
2933  * igb_configure_tx_ring - Configure transmit ring after Reset
2934  * @adapter: board private structure
2935  * @ring: tx ring to configure
2936  *
2937  * Configure a transmit ring after a reset.
2938  **/
2939 void igb_configure_tx_ring(struct igb_adapter *adapter,
2940                            struct igb_ring *ring)
2941 {
2942 	struct e1000_hw *hw = &adapter->hw;
2943 	u32 txdctl = 0;
2944 	u64 tdba = ring->dma;
2945 	int reg_idx = ring->reg_idx;
2946 
2947 	/* disable the queue */
2948 	wr32(E1000_TXDCTL(reg_idx), 0);
2949 	wrfl();
2950 	mdelay(10);
2951 
2952 	wr32(E1000_TDLEN(reg_idx),
2953 	                ring->count * sizeof(union e1000_adv_tx_desc));
2954 	wr32(E1000_TDBAL(reg_idx),
2955 	                tdba & 0x00000000ffffffffULL);
2956 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2957 
2958 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2959 	wr32(E1000_TDH(reg_idx), 0);
2960 	writel(0, ring->tail);
2961 
2962 	txdctl |= IGB_TX_PTHRESH;
2963 	txdctl |= IGB_TX_HTHRESH << 8;
2964 	txdctl |= IGB_TX_WTHRESH << 16;
2965 
2966 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2967 	wr32(E1000_TXDCTL(reg_idx), txdctl);
2968 }
2969 
2970 /**
2971  * igb_configure_tx - Configure transmit Unit after Reset
2972  * @adapter: board private structure
2973  *
2974  * Configure the Tx unit of the MAC after a reset.
2975  **/
2976 static void igb_configure_tx(struct igb_adapter *adapter)
2977 {
2978 	int i;
2979 
2980 	for (i = 0; i < adapter->num_tx_queues; i++)
2981 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2982 }
2983 
2984 /**
2985  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2986  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2987  *
2988  * Returns 0 on success, negative on failure
2989  **/
2990 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2991 {
2992 	struct device *dev = rx_ring->dev;
2993 	int size;
2994 
2995 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2996 
2997 	rx_ring->rx_buffer_info = vzalloc(size);
2998 	if (!rx_ring->rx_buffer_info)
2999 		goto err;
3000 
3001 	/* Round up to nearest 4K */
3002 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3003 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3004 
3005 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3006 					   &rx_ring->dma, GFP_KERNEL);
3007 	if (!rx_ring->desc)
3008 		goto err;
3009 
3010 	rx_ring->next_to_alloc = 0;
3011 	rx_ring->next_to_clean = 0;
3012 	rx_ring->next_to_use = 0;
3013 
3014 	return 0;
3015 
3016 err:
3017 	vfree(rx_ring->rx_buffer_info);
3018 	rx_ring->rx_buffer_info = NULL;
3019 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3020 	return -ENOMEM;
3021 }
3022 
3023 /**
3024  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3025  *				  (Descriptors) for all queues
3026  * @adapter: board private structure
3027  *
3028  * Return 0 on success, negative on failure
3029  **/
3030 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3031 {
3032 	struct pci_dev *pdev = adapter->pdev;
3033 	int i, err = 0;
3034 
3035 	for (i = 0; i < adapter->num_rx_queues; i++) {
3036 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3037 		if (err) {
3038 			dev_err(&pdev->dev,
3039 				"Allocation for Rx Queue %u failed\n", i);
3040 			for (i--; i >= 0; i--)
3041 				igb_free_rx_resources(adapter->rx_ring[i]);
3042 			break;
3043 		}
3044 	}
3045 
3046 	return err;
3047 }
3048 
3049 /**
3050  * igb_setup_mrqc - configure the multiple receive queue control registers
3051  * @adapter: Board private structure
3052  **/
3053 static void igb_setup_mrqc(struct igb_adapter *adapter)
3054 {
3055 	struct e1000_hw *hw = &adapter->hw;
3056 	u32 mrqc, rxcsum;
3057 	u32 j, num_rx_queues, shift = 0;
3058 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3059 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3060 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3061 					0xFA01ACBE };
3062 
3063 	/* Fill out hash function seeds */
3064 	for (j = 0; j < 10; j++)
3065 		wr32(E1000_RSSRK(j), rsskey[j]);
3066 
3067 	num_rx_queues = adapter->rss_queues;
3068 
3069 	switch (hw->mac.type) {
3070 	case e1000_82575:
3071 		shift = 6;
3072 		break;
3073 	case e1000_82576:
3074 		/* 82576 supports 2 RSS queues for SR-IOV */
3075 		if (adapter->vfs_allocated_count) {
3076 			shift = 3;
3077 			num_rx_queues = 2;
3078 		}
3079 		break;
3080 	default:
3081 		break;
3082 	}
3083 
3084 	/*
3085 	 * Populate the indirection table 4 entries at a time.  To do this
3086 	 * we are generating the results for n and n+2 and then interleaving
3087 	 * those with the results with n+1 and n+3.
3088 	 */
3089 	for (j = 0; j < 32; j++) {
3090 		/* first pass generates n and n+2 */
3091 		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3092 		u32 reta = (base & 0x07800780) >> (7 - shift);
3093 
3094 		/* second pass generates n+1 and n+3 */
3095 		base += 0x00010001 * num_rx_queues;
3096 		reta |= (base & 0x07800780) << (1 + shift);
3097 
3098 		wr32(E1000_RETA(j), reta);
3099 	}
3100 
3101 	/*
3102 	 * Disable raw packet checksumming so that RSS hash is placed in
3103 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3104 	 * offloads as they are enabled by default
3105 	 */
3106 	rxcsum = rd32(E1000_RXCSUM);
3107 	rxcsum |= E1000_RXCSUM_PCSD;
3108 
3109 	if (adapter->hw.mac.type >= e1000_82576)
3110 		/* Enable Receive Checksum Offload for SCTP */
3111 		rxcsum |= E1000_RXCSUM_CRCOFL;
3112 
3113 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3114 	wr32(E1000_RXCSUM, rxcsum);
3115 
3116 	/* Generate RSS hash based on packet types, TCP/UDP
3117 	 * port numbers and/or IPv4/v6 src and dst addresses
3118 	 */
3119 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3120 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3121 	       E1000_MRQC_RSS_FIELD_IPV6 |
3122 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3123 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3124 
3125 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3126 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3127 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3128 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3129 
3130 	/* If VMDq is enabled then we set the appropriate mode for that, else
3131 	 * we default to RSS so that an RSS hash is calculated per packet even
3132 	 * if we are only using one queue */
3133 	if (adapter->vfs_allocated_count) {
3134 		if (hw->mac.type > e1000_82575) {
3135 			/* Set the default pool for the PF's first queue */
3136 			u32 vtctl = rd32(E1000_VT_CTL);
3137 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3138 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3139 			vtctl |= adapter->vfs_allocated_count <<
3140 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3141 			wr32(E1000_VT_CTL, vtctl);
3142 		}
3143 		if (adapter->rss_queues > 1)
3144 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3145 		else
3146 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3147 	} else {
3148 		if (hw->mac.type != e1000_i211)
3149 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3150 	}
3151 	igb_vmm_control(adapter);
3152 
3153 	wr32(E1000_MRQC, mrqc);
3154 }
3155 
3156 /**
3157  * igb_setup_rctl - configure the receive control registers
3158  * @adapter: Board private structure
3159  **/
3160 void igb_setup_rctl(struct igb_adapter *adapter)
3161 {
3162 	struct e1000_hw *hw = &adapter->hw;
3163 	u32 rctl;
3164 
3165 	rctl = rd32(E1000_RCTL);
3166 
3167 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3168 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3169 
3170 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3171 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3172 
3173 	/*
3174 	 * enable stripping of CRC. It's unlikely this will break BMC
3175 	 * redirection as it did with e1000. Newer features require
3176 	 * that the HW strips the CRC.
3177 	 */
3178 	rctl |= E1000_RCTL_SECRC;
3179 
3180 	/* disable store bad packets and clear size bits. */
3181 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3182 
3183 	/* enable LPE to prevent packets larger than max_frame_size */
3184 	rctl |= E1000_RCTL_LPE;
3185 
3186 	/* disable queue 0 to prevent tail write w/o re-config */
3187 	wr32(E1000_RXDCTL(0), 0);
3188 
3189 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3190 	 * queue drop for all VF and PF queues to prevent head of line blocking
3191 	 * if an un-trusted VF does not provide descriptors to hardware.
3192 	 */
3193 	if (adapter->vfs_allocated_count) {
3194 		/* set all queue drop enable bits */
3195 		wr32(E1000_QDE, ALL_QUEUES);
3196 	}
3197 
3198 	/* This is useful for sniffing bad packets. */
3199 	if (adapter->netdev->features & NETIF_F_RXALL) {
3200 		/* UPE and MPE will be handled by normal PROMISC logic
3201 		 * in e1000e_set_rx_mode */
3202 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3203 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3204 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3205 
3206 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3207 			  E1000_RCTL_DPF | /* Allow filtered pause */
3208 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3209 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3210 		 * and that breaks VLANs.
3211 		 */
3212 	}
3213 
3214 	wr32(E1000_RCTL, rctl);
3215 }
3216 
3217 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3218                                    int vfn)
3219 {
3220 	struct e1000_hw *hw = &adapter->hw;
3221 	u32 vmolr;
3222 
3223 	/* if it isn't the PF check to see if VFs are enabled and
3224 	 * increase the size to support vlan tags */
3225 	if (vfn < adapter->vfs_allocated_count &&
3226 	    adapter->vf_data[vfn].vlans_enabled)
3227 		size += VLAN_TAG_SIZE;
3228 
3229 	vmolr = rd32(E1000_VMOLR(vfn));
3230 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3231 	vmolr |= size | E1000_VMOLR_LPE;
3232 	wr32(E1000_VMOLR(vfn), vmolr);
3233 
3234 	return 0;
3235 }
3236 
3237 /**
3238  * igb_rlpml_set - set maximum receive packet size
3239  * @adapter: board private structure
3240  *
3241  * Configure maximum receivable packet size.
3242  **/
3243 static void igb_rlpml_set(struct igb_adapter *adapter)
3244 {
3245 	u32 max_frame_size = adapter->max_frame_size;
3246 	struct e1000_hw *hw = &adapter->hw;
3247 	u16 pf_id = adapter->vfs_allocated_count;
3248 
3249 	if (pf_id) {
3250 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3251 		/*
3252 		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3253 		 * to our max jumbo frame size, in case we need to enable
3254 		 * jumbo frames on one of the rings later.
3255 		 * This will not pass over-length frames into the default
3256 		 * queue because it's gated by the VMOLR.RLPML.
3257 		 */
3258 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3259 	}
3260 
3261 	wr32(E1000_RLPML, max_frame_size);
3262 }
3263 
3264 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3265 				 int vfn, bool aupe)
3266 {
3267 	struct e1000_hw *hw = &adapter->hw;
3268 	u32 vmolr;
3269 
3270 	/*
3271 	 * This register exists only on 82576 and newer so if we are older then
3272 	 * we should exit and do nothing
3273 	 */
3274 	if (hw->mac.type < e1000_82576)
3275 		return;
3276 
3277 	vmolr = rd32(E1000_VMOLR(vfn));
3278 	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
3279 	if (aupe)
3280 		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
3281 	else
3282 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3283 
3284 	/* clear all bits that might not be set */
3285 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3286 
3287 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3288 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3289 	/*
3290 	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3291 	 * multicast packets
3292 	 */
3293 	if (vfn <= adapter->vfs_allocated_count)
3294 		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */
3295 
3296 	wr32(E1000_VMOLR(vfn), vmolr);
3297 }
3298 
3299 /**
3300  * igb_configure_rx_ring - Configure a receive ring after Reset
3301  * @adapter: board private structure
3302  * @ring: receive ring to be configured
3303  *
3304  * Configure the Rx unit of the MAC after a reset.
3305  **/
3306 void igb_configure_rx_ring(struct igb_adapter *adapter,
3307                            struct igb_ring *ring)
3308 {
3309 	struct e1000_hw *hw = &adapter->hw;
3310 	u64 rdba = ring->dma;
3311 	int reg_idx = ring->reg_idx;
3312 	u32 srrctl = 0, rxdctl = 0;
3313 
3314 	/* disable the queue */
3315 	wr32(E1000_RXDCTL(reg_idx), 0);
3316 
3317 	/* Set DMA base address registers */
3318 	wr32(E1000_RDBAL(reg_idx),
3319 	     rdba & 0x00000000ffffffffULL);
3320 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3321 	wr32(E1000_RDLEN(reg_idx),
3322 	               ring->count * sizeof(union e1000_adv_rx_desc));
3323 
3324 	/* initialize head and tail */
3325 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3326 	wr32(E1000_RDH(reg_idx), 0);
3327 	writel(0, ring->tail);
3328 
3329 	/* set descriptor configuration */
3330 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3331 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3332 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3333 	if (hw->mac.type >= e1000_82580)
3334 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3335 	/* Only set Drop Enable if we are supporting multiple queues */
3336 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3337 		srrctl |= E1000_SRRCTL_DROP_EN;
3338 
3339 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3340 
3341 	/* set filtering for VMDQ pools */
3342 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3343 
3344 	rxdctl |= IGB_RX_PTHRESH;
3345 	rxdctl |= IGB_RX_HTHRESH << 8;
3346 	rxdctl |= IGB_RX_WTHRESH << 16;
3347 
3348 	/* enable receive descriptor fetching */
3349 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3350 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3351 }
3352 
3353 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3354 				  struct igb_ring *rx_ring)
3355 {
3356 #define IGB_MAX_BUILD_SKB_SIZE \
3357 	(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
3358 	 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))
3359 
3360 	/* set build_skb flag */
3361 	if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
3362 		set_ring_build_skb_enabled(rx_ring);
3363 	else
3364 		clear_ring_build_skb_enabled(rx_ring);
3365 }
3366 
3367 /**
3368  * igb_configure_rx - Configure receive Unit after Reset
3369  * @adapter: board private structure
3370  *
3371  * Configure the Rx unit of the MAC after a reset.
3372  **/
3373 static void igb_configure_rx(struct igb_adapter *adapter)
3374 {
3375 	int i;
3376 
3377 	/* set UTA to appropriate mode */
3378 	igb_set_uta(adapter);
3379 
3380 	/* set the correct pool for the PF default MAC address in entry 0 */
3381 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3382 	                 adapter->vfs_allocated_count);
3383 
3384 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3385 	 * the Base and Length of the Rx Descriptor Ring */
3386 	for (i = 0; i < adapter->num_rx_queues; i++) {
3387 		struct igb_ring *rx_ring = adapter->rx_ring[i];
3388 		igb_set_rx_buffer_len(adapter, rx_ring);
3389 		igb_configure_rx_ring(adapter, rx_ring);
3390 	}
3391 }
3392 
3393 /**
3394  * igb_free_tx_resources - Free Tx Resources per Queue
3395  * @tx_ring: Tx descriptor ring for a specific queue
3396  *
3397  * Free all transmit software resources
3398  **/
3399 void igb_free_tx_resources(struct igb_ring *tx_ring)
3400 {
3401 	igb_clean_tx_ring(tx_ring);
3402 
3403 	vfree(tx_ring->tx_buffer_info);
3404 	tx_ring->tx_buffer_info = NULL;
3405 
3406 	/* if not set, then don't free */
3407 	if (!tx_ring->desc)
3408 		return;
3409 
3410 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3411 			  tx_ring->desc, tx_ring->dma);
3412 
3413 	tx_ring->desc = NULL;
3414 }
3415 
3416 /**
3417  * igb_free_all_tx_resources - Free Tx Resources for All Queues
3418  * @adapter: board private structure
3419  *
3420  * Free all transmit software resources
3421  **/
3422 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3423 {
3424 	int i;
3425 
3426 	for (i = 0; i < adapter->num_tx_queues; i++)
3427 		igb_free_tx_resources(adapter->tx_ring[i]);
3428 }
3429 
3430 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3431 				    struct igb_tx_buffer *tx_buffer)
3432 {
3433 	if (tx_buffer->skb) {
3434 		dev_kfree_skb_any(tx_buffer->skb);
3435 		if (dma_unmap_len(tx_buffer, len))
3436 			dma_unmap_single(ring->dev,
3437 					 dma_unmap_addr(tx_buffer, dma),
3438 					 dma_unmap_len(tx_buffer, len),
3439 					 DMA_TO_DEVICE);
3440 	} else if (dma_unmap_len(tx_buffer, len)) {
3441 		dma_unmap_page(ring->dev,
3442 			       dma_unmap_addr(tx_buffer, dma),
3443 			       dma_unmap_len(tx_buffer, len),
3444 			       DMA_TO_DEVICE);
3445 	}
3446 	tx_buffer->next_to_watch = NULL;
3447 	tx_buffer->skb = NULL;
3448 	dma_unmap_len_set(tx_buffer, len, 0);
3449 	/* buffer_info must be completely set up in the transmit path */
3450 }
3451 
3452 /**
3453  * igb_clean_tx_ring - Free Tx Buffers
3454  * @tx_ring: ring to be cleaned
3455  **/
3456 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3457 {
3458 	struct igb_tx_buffer *buffer_info;
3459 	unsigned long size;
3460 	u16 i;
3461 
3462 	if (!tx_ring->tx_buffer_info)
3463 		return;
3464 	/* Free all the Tx ring sk_buffs */
3465 
3466 	for (i = 0; i < tx_ring->count; i++) {
3467 		buffer_info = &tx_ring->tx_buffer_info[i];
3468 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3469 	}
3470 
3471 	netdev_tx_reset_queue(txring_txq(tx_ring));
3472 
3473 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3474 	memset(tx_ring->tx_buffer_info, 0, size);
3475 
3476 	/* Zero out the descriptor ring */
3477 	memset(tx_ring->desc, 0, tx_ring->size);
3478 
3479 	tx_ring->next_to_use = 0;
3480 	tx_ring->next_to_clean = 0;
3481 }
3482 
3483 /**
3484  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3485  * @adapter: board private structure
3486  **/
3487 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3488 {
3489 	int i;
3490 
3491 	for (i = 0; i < adapter->num_tx_queues; i++)
3492 		igb_clean_tx_ring(adapter->tx_ring[i]);
3493 }
3494 
3495 /**
3496  * igb_free_rx_resources - Free Rx Resources
3497  * @rx_ring: ring to clean the resources from
3498  *
3499  * Free all receive software resources
3500  **/
3501 void igb_free_rx_resources(struct igb_ring *rx_ring)
3502 {
3503 	igb_clean_rx_ring(rx_ring);
3504 
3505 	vfree(rx_ring->rx_buffer_info);
3506 	rx_ring->rx_buffer_info = NULL;
3507 
3508 	/* if not set, then don't free */
3509 	if (!rx_ring->desc)
3510 		return;
3511 
3512 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3513 			  rx_ring->desc, rx_ring->dma);
3514 
3515 	rx_ring->desc = NULL;
3516 }
3517 
3518 /**
3519  * igb_free_all_rx_resources - Free Rx Resources for All Queues
3520  * @adapter: board private structure
3521  *
3522  * Free all receive software resources
3523  **/
3524 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3525 {
3526 	int i;
3527 
3528 	for (i = 0; i < adapter->num_rx_queues; i++)
3529 		igb_free_rx_resources(adapter->rx_ring[i]);
3530 }
3531 
3532 /**
3533  * igb_clean_rx_ring - Free Rx Buffers per Queue
3534  * @rx_ring: ring to free buffers from
3535  **/
3536 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3537 {
3538 	unsigned long size;
3539 	u16 i;
3540 
3541 	if (rx_ring->skb)
3542 		dev_kfree_skb(rx_ring->skb);
3543 	rx_ring->skb = NULL;
3544 
3545 	if (!rx_ring->rx_buffer_info)
3546 		return;
3547 
3548 	/* Free all the Rx ring sk_buffs */
3549 	for (i = 0; i < rx_ring->count; i++) {
3550 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3551 
3552 		if (!buffer_info->page)
3553 			continue;
3554 
3555 		dma_unmap_page(rx_ring->dev,
3556 			       buffer_info->dma,
3557 			       PAGE_SIZE,
3558 			       DMA_FROM_DEVICE);
3559 		__free_page(buffer_info->page);
3560 
3561 		buffer_info->page = NULL;
3562 	}
3563 
3564 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3565 	memset(rx_ring->rx_buffer_info, 0, size);
3566 
3567 	/* Zero out the descriptor ring */
3568 	memset(rx_ring->desc, 0, rx_ring->size);
3569 
3570 	rx_ring->next_to_alloc = 0;
3571 	rx_ring->next_to_clean = 0;
3572 	rx_ring->next_to_use = 0;
3573 }
3574 
3575 /**
3576  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3577  * @adapter: board private structure
3578  **/
3579 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3580 {
3581 	int i;
3582 
3583 	for (i = 0; i < adapter->num_rx_queues; i++)
3584 		igb_clean_rx_ring(adapter->rx_ring[i]);
3585 }
3586 
3587 /**
3588  * igb_set_mac - Change the Ethernet Address of the NIC
3589  * @netdev: network interface device structure
3590  * @p: pointer to an address structure
3591  *
3592  * Returns 0 on success, negative on failure
3593  **/
3594 static int igb_set_mac(struct net_device *netdev, void *p)
3595 {
3596 	struct igb_adapter *adapter = netdev_priv(netdev);
3597 	struct e1000_hw *hw = &adapter->hw;
3598 	struct sockaddr *addr = p;
3599 
3600 	if (!is_valid_ether_addr(addr->sa_data))
3601 		return -EADDRNOTAVAIL;
3602 
3603 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3604 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3605 
3606 	/* set the correct pool for the new PF MAC address in entry 0 */
3607 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3608 	                 adapter->vfs_allocated_count);
3609 
3610 	return 0;
3611 }
3612 
3613 /**
3614  * igb_write_mc_addr_list - write multicast addresses to MTA
3615  * @netdev: network interface device structure
3616  *
3617  * Writes multicast address list to the MTA hash table.
3618  * Returns: -ENOMEM on failure
3619  *                0 on no addresses written
3620  *                X on writing X addresses to MTA
3621  **/
3622 static int igb_write_mc_addr_list(struct net_device *netdev)
3623 {
3624 	struct igb_adapter *adapter = netdev_priv(netdev);
3625 	struct e1000_hw *hw = &adapter->hw;
3626 	struct netdev_hw_addr *ha;
3627 	u8  *mta_list;
3628 	int i;
3629 
3630 	if (netdev_mc_empty(netdev)) {
3631 		/* nothing to program, so clear mc list */
3632 		igb_update_mc_addr_list(hw, NULL, 0);
3633 		igb_restore_vf_multicasts(adapter);
3634 		return 0;
3635 	}
3636 
3637 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3638 	if (!mta_list)
3639 		return -ENOMEM;
3640 
3641 	/* The shared function expects a packed array of only addresses. */
3642 	i = 0;
3643 	netdev_for_each_mc_addr(ha, netdev)
3644 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3645 
3646 	igb_update_mc_addr_list(hw, mta_list, i);
3647 	kfree(mta_list);
3648 
3649 	return netdev_mc_count(netdev);
3650 }
3651 
3652 /**
3653  * igb_write_uc_addr_list - write unicast addresses to RAR table
3654  * @netdev: network interface device structure
3655  *
3656  * Writes unicast address list to the RAR table.
3657  * Returns: -ENOMEM on failure/insufficient address space
3658  *                0 on no addresses written
3659  *                X on writing X addresses to the RAR table
3660  **/
3661 static int igb_write_uc_addr_list(struct net_device *netdev)
3662 {
3663 	struct igb_adapter *adapter = netdev_priv(netdev);
3664 	struct e1000_hw *hw = &adapter->hw;
3665 	unsigned int vfn = adapter->vfs_allocated_count;
3666 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3667 	int count = 0;
3668 
3669 	/* return ENOMEM indicating insufficient memory for addresses */
3670 	if (netdev_uc_count(netdev) > rar_entries)
3671 		return -ENOMEM;
3672 
3673 	if (!netdev_uc_empty(netdev) && rar_entries) {
3674 		struct netdev_hw_addr *ha;
3675 
3676 		netdev_for_each_uc_addr(ha, netdev) {
3677 			if (!rar_entries)
3678 				break;
3679 			igb_rar_set_qsel(adapter, ha->addr,
3680 			                 rar_entries--,
3681 			                 vfn);
3682 			count++;
3683 		}
3684 	}
3685 	/* write the addresses in reverse order to avoid write combining */
3686 	for (; rar_entries > 0 ; rar_entries--) {
3687 		wr32(E1000_RAH(rar_entries), 0);
3688 		wr32(E1000_RAL(rar_entries), 0);
3689 	}
3690 	wrfl();
3691 
3692 	return count;
3693 }
3694 
3695 /**
3696  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3697  * @netdev: network interface device structure
3698  *
3699  * The set_rx_mode entry point is called whenever the unicast or multicast
3700  * address lists or the network interface flags are updated.  This routine is
3701  * responsible for configuring the hardware for proper unicast, multicast,
3702  * promiscuous mode, and all-multi behavior.
3703  **/
3704 static void igb_set_rx_mode(struct net_device *netdev)
3705 {
3706 	struct igb_adapter *adapter = netdev_priv(netdev);
3707 	struct e1000_hw *hw = &adapter->hw;
3708 	unsigned int vfn = adapter->vfs_allocated_count;
3709 	u32 rctl, vmolr = 0;
3710 	int count;
3711 
3712 	/* Check for Promiscuous and All Multicast modes */
3713 	rctl = rd32(E1000_RCTL);
3714 
3715 	/* clear the effected bits */
3716 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3717 
3718 	if (netdev->flags & IFF_PROMISC) {
3719 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3720 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3721 	} else {
3722 		if (netdev->flags & IFF_ALLMULTI) {
3723 			rctl |= E1000_RCTL_MPE;
3724 			vmolr |= E1000_VMOLR_MPME;
3725 		} else {
3726 			/*
3727 			 * Write addresses to the MTA, if the attempt fails
3728 			 * then we should just turn on promiscuous mode so
3729 			 * that we can at least receive multicast traffic
3730 			 */
3731 			count = igb_write_mc_addr_list(netdev);
3732 			if (count < 0) {
3733 				rctl |= E1000_RCTL_MPE;
3734 				vmolr |= E1000_VMOLR_MPME;
3735 			} else if (count) {
3736 				vmolr |= E1000_VMOLR_ROMPE;
3737 			}
3738 		}
3739 		/*
3740 		 * Write addresses to available RAR registers, if there is not
3741 		 * sufficient space to store all the addresses then enable
3742 		 * unicast promiscuous mode
3743 		 */
3744 		count = igb_write_uc_addr_list(netdev);
3745 		if (count < 0) {
3746 			rctl |= E1000_RCTL_UPE;
3747 			vmolr |= E1000_VMOLR_ROPE;
3748 		}
3749 		rctl |= E1000_RCTL_VFE;
3750 	}
3751 	wr32(E1000_RCTL, rctl);
3752 
3753 	/*
3754 	 * In order to support SR-IOV and eventually VMDq it is necessary to set
3755 	 * the VMOLR to enable the appropriate modes.  Without this workaround
3756 	 * we will have issues with VLAN tag stripping not being done for frames
3757 	 * that are only arriving because we are the default pool
3758 	 */
3759 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3760 		return;
3761 
3762 	vmolr |= rd32(E1000_VMOLR(vfn)) &
3763 	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3764 	wr32(E1000_VMOLR(vfn), vmolr);
3765 	igb_restore_vf_multicasts(adapter);
3766 }
3767 
3768 static void igb_check_wvbr(struct igb_adapter *adapter)
3769 {
3770 	struct e1000_hw *hw = &adapter->hw;
3771 	u32 wvbr = 0;
3772 
3773 	switch (hw->mac.type) {
3774 	case e1000_82576:
3775 	case e1000_i350:
3776 		if (!(wvbr = rd32(E1000_WVBR)))
3777 			return;
3778 		break;
3779 	default:
3780 		break;
3781 	}
3782 
3783 	adapter->wvbr |= wvbr;
3784 }
3785 
3786 #define IGB_STAGGERED_QUEUE_OFFSET 8
3787 
3788 static void igb_spoof_check(struct igb_adapter *adapter)
3789 {
3790 	int j;
3791 
3792 	if (!adapter->wvbr)
3793 		return;
3794 
3795 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3796 		if (adapter->wvbr & (1 << j) ||
3797 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3798 			dev_warn(&adapter->pdev->dev,
3799 				"Spoof event(s) detected on VF %d\n", j);
3800 			adapter->wvbr &=
3801 				~((1 << j) |
3802 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3803 		}
3804 	}
3805 }
3806 
3807 /* Need to wait a few seconds after link up to get diagnostic information from
3808  * the phy */
3809 static void igb_update_phy_info(unsigned long data)
3810 {
3811 	struct igb_adapter *adapter = (struct igb_adapter *) data;
3812 	igb_get_phy_info(&adapter->hw);
3813 }
3814 
3815 /**
3816  * igb_has_link - check shared code for link and determine up/down
3817  * @adapter: pointer to driver private info
3818  **/
3819 bool igb_has_link(struct igb_adapter *adapter)
3820 {
3821 	struct e1000_hw *hw = &adapter->hw;
3822 	bool link_active = false;
3823 	s32 ret_val = 0;
3824 
3825 	/* get_link_status is set on LSC (link status) interrupt or
3826 	 * rx sequence error interrupt.  get_link_status will stay
3827 	 * false until the e1000_check_for_link establishes link
3828 	 * for copper adapters ONLY
3829 	 */
3830 	switch (hw->phy.media_type) {
3831 	case e1000_media_type_copper:
3832 		if (hw->mac.get_link_status) {
3833 			ret_val = hw->mac.ops.check_for_link(hw);
3834 			link_active = !hw->mac.get_link_status;
3835 		} else {
3836 			link_active = true;
3837 		}
3838 		break;
3839 	case e1000_media_type_internal_serdes:
3840 		ret_val = hw->mac.ops.check_for_link(hw);
3841 		link_active = hw->mac.serdes_has_link;
3842 		break;
3843 	default:
3844 	case e1000_media_type_unknown:
3845 		break;
3846 	}
3847 
3848 	return link_active;
3849 }
3850 
3851 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3852 {
3853 	bool ret = false;
3854 	u32 ctrl_ext, thstat;
3855 
3856 	/* check for thermal sensor event on i350 copper only */
3857 	if (hw->mac.type == e1000_i350) {
3858 		thstat = rd32(E1000_THSTAT);
3859 		ctrl_ext = rd32(E1000_CTRL_EXT);
3860 
3861 		if ((hw->phy.media_type == e1000_media_type_copper) &&
3862 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3863 			ret = !!(thstat & event);
3864 		}
3865 	}
3866 
3867 	return ret;
3868 }
3869 
3870 /**
3871  * igb_watchdog - Timer Call-back
3872  * @data: pointer to adapter cast into an unsigned long
3873  **/
3874 static void igb_watchdog(unsigned long data)
3875 {
3876 	struct igb_adapter *adapter = (struct igb_adapter *)data;
3877 	/* Do the rest outside of interrupt context */
3878 	schedule_work(&adapter->watchdog_task);
3879 }
3880 
3881 static void igb_watchdog_task(struct work_struct *work)
3882 {
3883 	struct igb_adapter *adapter = container_of(work,
3884 	                                           struct igb_adapter,
3885                                                    watchdog_task);
3886 	struct e1000_hw *hw = &adapter->hw;
3887 	struct net_device *netdev = adapter->netdev;
3888 	u32 link;
3889 	int i;
3890 
3891 	link = igb_has_link(adapter);
3892 	if (link) {
3893 		/* Cancel scheduled suspend requests. */
3894 		pm_runtime_resume(netdev->dev.parent);
3895 
3896 		if (!netif_carrier_ok(netdev)) {
3897 			u32 ctrl;
3898 			hw->mac.ops.get_speed_and_duplex(hw,
3899 			                                 &adapter->link_speed,
3900 			                                 &adapter->link_duplex);
3901 
3902 			ctrl = rd32(E1000_CTRL);
3903 			/* Links status message must follow this format */
3904 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3905 			       "Duplex, Flow Control: %s\n",
3906 			       netdev->name,
3907 			       adapter->link_speed,
3908 			       adapter->link_duplex == FULL_DUPLEX ?
3909 			       "Full" : "Half",
3910 			       (ctrl & E1000_CTRL_TFCE) &&
3911 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3912 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3913 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3914 
3915 			/* check for thermal sensor event */
3916 			if (igb_thermal_sensor_event(hw,
3917 			    E1000_THSTAT_LINK_THROTTLE)) {
3918 				netdev_info(netdev, "The network adapter link "
3919 					    "speed was downshifted because it "
3920 					    "overheated\n");
3921 			}
3922 
3923 			/* adjust timeout factor according to speed/duplex */
3924 			adapter->tx_timeout_factor = 1;
3925 			switch (adapter->link_speed) {
3926 			case SPEED_10:
3927 				adapter->tx_timeout_factor = 14;
3928 				break;
3929 			case SPEED_100:
3930 				/* maybe add some timeout factor ? */
3931 				break;
3932 			}
3933 
3934 			netif_carrier_on(netdev);
3935 
3936 			igb_ping_all_vfs(adapter);
3937 			igb_check_vf_rate_limit(adapter);
3938 
3939 			/* link state has changed, schedule phy info update */
3940 			if (!test_bit(__IGB_DOWN, &adapter->state))
3941 				mod_timer(&adapter->phy_info_timer,
3942 					  round_jiffies(jiffies + 2 * HZ));
3943 		}
3944 	} else {
3945 		if (netif_carrier_ok(netdev)) {
3946 			adapter->link_speed = 0;
3947 			adapter->link_duplex = 0;
3948 
3949 			/* check for thermal sensor event */
3950 			if (igb_thermal_sensor_event(hw,
3951 			    E1000_THSTAT_PWR_DOWN)) {
3952 				netdev_err(netdev, "The network adapter was "
3953 					   "stopped because it overheated\n");
3954 			}
3955 
3956 			/* Links status message must follow this format */
3957 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
3958 			       netdev->name);
3959 			netif_carrier_off(netdev);
3960 
3961 			igb_ping_all_vfs(adapter);
3962 
3963 			/* link state has changed, schedule phy info update */
3964 			if (!test_bit(__IGB_DOWN, &adapter->state))
3965 				mod_timer(&adapter->phy_info_timer,
3966 					  round_jiffies(jiffies + 2 * HZ));
3967 
3968 			pm_schedule_suspend(netdev->dev.parent,
3969 					    MSEC_PER_SEC * 5);
3970 		}
3971 	}
3972 
3973 	spin_lock(&adapter->stats64_lock);
3974 	igb_update_stats(adapter, &adapter->stats64);
3975 	spin_unlock(&adapter->stats64_lock);
3976 
3977 	for (i = 0; i < adapter->num_tx_queues; i++) {
3978 		struct igb_ring *tx_ring = adapter->tx_ring[i];
3979 		if (!netif_carrier_ok(netdev)) {
3980 			/* We've lost link, so the controller stops DMA,
3981 			 * but we've got queued Tx work that's never going
3982 			 * to get done, so reset controller to flush Tx.
3983 			 * (Do the reset outside of interrupt context). */
3984 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3985 				adapter->tx_timeout_count++;
3986 				schedule_work(&adapter->reset_task);
3987 				/* return immediately since reset is imminent */
3988 				return;
3989 			}
3990 		}
3991 
3992 		/* Force detection of hung controller every watchdog period */
3993 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3994 	}
3995 
3996 	/* Cause software interrupt to ensure rx ring is cleaned */
3997 	if (adapter->msix_entries) {
3998 		u32 eics = 0;
3999 		for (i = 0; i < adapter->num_q_vectors; i++)
4000 			eics |= adapter->q_vector[i]->eims_value;
4001 		wr32(E1000_EICS, eics);
4002 	} else {
4003 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4004 	}
4005 
4006 	igb_spoof_check(adapter);
4007 	igb_ptp_rx_hang(adapter);
4008 
4009 	/* Reset the timer */
4010 	if (!test_bit(__IGB_DOWN, &adapter->state))
4011 		mod_timer(&adapter->watchdog_timer,
4012 			  round_jiffies(jiffies + 2 * HZ));
4013 }
4014 
4015 enum latency_range {
4016 	lowest_latency = 0,
4017 	low_latency = 1,
4018 	bulk_latency = 2,
4019 	latency_invalid = 255
4020 };
4021 
4022 /**
4023  * igb_update_ring_itr - update the dynamic ITR value based on packet size
4024  *
4025  *      Stores a new ITR value based on strictly on packet size.  This
4026  *      algorithm is less sophisticated than that used in igb_update_itr,
4027  *      due to the difficulty of synchronizing statistics across multiple
4028  *      receive rings.  The divisors and thresholds used by this function
4029  *      were determined based on theoretical maximum wire speed and testing
4030  *      data, in order to minimize response time while increasing bulk
4031  *      throughput.
4032  *      This functionality is controlled by the InterruptThrottleRate module
4033  *      parameter (see igb_param.c)
4034  *      NOTE:  This function is called only when operating in a multiqueue
4035  *             receive environment.
4036  * @q_vector: pointer to q_vector
4037  **/
4038 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4039 {
4040 	int new_val = q_vector->itr_val;
4041 	int avg_wire_size = 0;
4042 	struct igb_adapter *adapter = q_vector->adapter;
4043 	unsigned int packets;
4044 
4045 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4046 	 * ints/sec - ITR timer value of 120 ticks.
4047 	 */
4048 	if (adapter->link_speed != SPEED_1000) {
4049 		new_val = IGB_4K_ITR;
4050 		goto set_itr_val;
4051 	}
4052 
4053 	packets = q_vector->rx.total_packets;
4054 	if (packets)
4055 		avg_wire_size = q_vector->rx.total_bytes / packets;
4056 
4057 	packets = q_vector->tx.total_packets;
4058 	if (packets)
4059 		avg_wire_size = max_t(u32, avg_wire_size,
4060 				      q_vector->tx.total_bytes / packets);
4061 
4062 	/* if avg_wire_size isn't set no work was done */
4063 	if (!avg_wire_size)
4064 		goto clear_counts;
4065 
4066 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4067 	avg_wire_size += 24;
4068 
4069 	/* Don't starve jumbo frames */
4070 	avg_wire_size = min(avg_wire_size, 3000);
4071 
4072 	/* Give a little boost to mid-size frames */
4073 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4074 		new_val = avg_wire_size / 3;
4075 	else
4076 		new_val = avg_wire_size / 2;
4077 
4078 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4079 	if (new_val < IGB_20K_ITR &&
4080 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4081 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4082 		new_val = IGB_20K_ITR;
4083 
4084 set_itr_val:
4085 	if (new_val != q_vector->itr_val) {
4086 		q_vector->itr_val = new_val;
4087 		q_vector->set_itr = 1;
4088 	}
4089 clear_counts:
4090 	q_vector->rx.total_bytes = 0;
4091 	q_vector->rx.total_packets = 0;
4092 	q_vector->tx.total_bytes = 0;
4093 	q_vector->tx.total_packets = 0;
4094 }
4095 
4096 /**
4097  * igb_update_itr - update the dynamic ITR value based on statistics
4098  *      Stores a new ITR value based on packets and byte
4099  *      counts during the last interrupt.  The advantage of per interrupt
4100  *      computation is faster updates and more accurate ITR for the current
4101  *      traffic pattern.  Constants in this function were computed
4102  *      based on theoretical maximum wire speed and thresholds were set based
4103  *      on testing data as well as attempting to minimize response time
4104  *      while increasing bulk throughput.
4105  *      this functionality is controlled by the InterruptThrottleRate module
4106  *      parameter (see igb_param.c)
4107  *      NOTE:  These calculations are only valid when operating in a single-
4108  *             queue environment.
4109  * @q_vector: pointer to q_vector
4110  * @ring_container: ring info to update the itr for
4111  **/
4112 static void igb_update_itr(struct igb_q_vector *q_vector,
4113 			   struct igb_ring_container *ring_container)
4114 {
4115 	unsigned int packets = ring_container->total_packets;
4116 	unsigned int bytes = ring_container->total_bytes;
4117 	u8 itrval = ring_container->itr;
4118 
4119 	/* no packets, exit with status unchanged */
4120 	if (packets == 0)
4121 		return;
4122 
4123 	switch (itrval) {
4124 	case lowest_latency:
4125 		/* handle TSO and jumbo frames */
4126 		if (bytes/packets > 8000)
4127 			itrval = bulk_latency;
4128 		else if ((packets < 5) && (bytes > 512))
4129 			itrval = low_latency;
4130 		break;
4131 	case low_latency:  /* 50 usec aka 20000 ints/s */
4132 		if (bytes > 10000) {
4133 			/* this if handles the TSO accounting */
4134 			if (bytes/packets > 8000) {
4135 				itrval = bulk_latency;
4136 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4137 				itrval = bulk_latency;
4138 			} else if ((packets > 35)) {
4139 				itrval = lowest_latency;
4140 			}
4141 		} else if (bytes/packets > 2000) {
4142 			itrval = bulk_latency;
4143 		} else if (packets <= 2 && bytes < 512) {
4144 			itrval = lowest_latency;
4145 		}
4146 		break;
4147 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4148 		if (bytes > 25000) {
4149 			if (packets > 35)
4150 				itrval = low_latency;
4151 		} else if (bytes < 1500) {
4152 			itrval = low_latency;
4153 		}
4154 		break;
4155 	}
4156 
4157 	/* clear work counters since we have the values we need */
4158 	ring_container->total_bytes = 0;
4159 	ring_container->total_packets = 0;
4160 
4161 	/* write updated itr to ring container */
4162 	ring_container->itr = itrval;
4163 }
4164 
4165 static void igb_set_itr(struct igb_q_vector *q_vector)
4166 {
4167 	struct igb_adapter *adapter = q_vector->adapter;
4168 	u32 new_itr = q_vector->itr_val;
4169 	u8 current_itr = 0;
4170 
4171 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4172 	if (adapter->link_speed != SPEED_1000) {
4173 		current_itr = 0;
4174 		new_itr = IGB_4K_ITR;
4175 		goto set_itr_now;
4176 	}
4177 
4178 	igb_update_itr(q_vector, &q_vector->tx);
4179 	igb_update_itr(q_vector, &q_vector->rx);
4180 
4181 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4182 
4183 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4184 	if (current_itr == lowest_latency &&
4185 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4186 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4187 		current_itr = low_latency;
4188 
4189 	switch (current_itr) {
4190 	/* counts and packets in update_itr are dependent on these numbers */
4191 	case lowest_latency:
4192 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4193 		break;
4194 	case low_latency:
4195 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4196 		break;
4197 	case bulk_latency:
4198 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4199 		break;
4200 	default:
4201 		break;
4202 	}
4203 
4204 set_itr_now:
4205 	if (new_itr != q_vector->itr_val) {
4206 		/* this attempts to bias the interrupt rate towards Bulk
4207 		 * by adding intermediate steps when interrupt rate is
4208 		 * increasing */
4209 		new_itr = new_itr > q_vector->itr_val ?
4210 		             max((new_itr * q_vector->itr_val) /
4211 		                 (new_itr + (q_vector->itr_val >> 2)),
4212 				 new_itr) :
4213 			     new_itr;
4214 		/* Don't write the value here; it resets the adapter's
4215 		 * internal timer, and causes us to delay far longer than
4216 		 * we should between interrupts.  Instead, we write the ITR
4217 		 * value at the beginning of the next interrupt so the timing
4218 		 * ends up being correct.
4219 		 */
4220 		q_vector->itr_val = new_itr;
4221 		q_vector->set_itr = 1;
4222 	}
4223 }
4224 
4225 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4226 			    u32 type_tucmd, u32 mss_l4len_idx)
4227 {
4228 	struct e1000_adv_tx_context_desc *context_desc;
4229 	u16 i = tx_ring->next_to_use;
4230 
4231 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4232 
4233 	i++;
4234 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4235 
4236 	/* set bits to identify this as an advanced context descriptor */
4237 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4238 
4239 	/* For 82575, context index must be unique per ring. */
4240 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4241 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4242 
4243 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4244 	context_desc->seqnum_seed	= 0;
4245 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4246 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4247 }
4248 
4249 static int igb_tso(struct igb_ring *tx_ring,
4250 		   struct igb_tx_buffer *first,
4251 		   u8 *hdr_len)
4252 {
4253 	struct sk_buff *skb = first->skb;
4254 	u32 vlan_macip_lens, type_tucmd;
4255 	u32 mss_l4len_idx, l4len;
4256 
4257 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4258 		return 0;
4259 
4260 	if (!skb_is_gso(skb))
4261 		return 0;
4262 
4263 	if (skb_header_cloned(skb)) {
4264 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4265 		if (err)
4266 			return err;
4267 	}
4268 
4269 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4270 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4271 
4272 	if (first->protocol == __constant_htons(ETH_P_IP)) {
4273 		struct iphdr *iph = ip_hdr(skb);
4274 		iph->tot_len = 0;
4275 		iph->check = 0;
4276 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4277 							 iph->daddr, 0,
4278 							 IPPROTO_TCP,
4279 							 0);
4280 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4281 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4282 				   IGB_TX_FLAGS_CSUM |
4283 				   IGB_TX_FLAGS_IPV4;
4284 	} else if (skb_is_gso_v6(skb)) {
4285 		ipv6_hdr(skb)->payload_len = 0;
4286 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4287 						       &ipv6_hdr(skb)->daddr,
4288 						       0, IPPROTO_TCP, 0);
4289 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4290 				   IGB_TX_FLAGS_CSUM;
4291 	}
4292 
4293 	/* compute header lengths */
4294 	l4len = tcp_hdrlen(skb);
4295 	*hdr_len = skb_transport_offset(skb) + l4len;
4296 
4297 	/* update gso size and bytecount with header size */
4298 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4299 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4300 
4301 	/* MSS L4LEN IDX */
4302 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4303 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4304 
4305 	/* VLAN MACLEN IPLEN */
4306 	vlan_macip_lens = skb_network_header_len(skb);
4307 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4308 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4309 
4310 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4311 
4312 	return 1;
4313 }
4314 
4315 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4316 {
4317 	struct sk_buff *skb = first->skb;
4318 	u32 vlan_macip_lens = 0;
4319 	u32 mss_l4len_idx = 0;
4320 	u32 type_tucmd = 0;
4321 
4322 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4323 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4324 			return;
4325 	} else {
4326 		u8 l4_hdr = 0;
4327 		switch (first->protocol) {
4328 		case __constant_htons(ETH_P_IP):
4329 			vlan_macip_lens |= skb_network_header_len(skb);
4330 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4331 			l4_hdr = ip_hdr(skb)->protocol;
4332 			break;
4333 		case __constant_htons(ETH_P_IPV6):
4334 			vlan_macip_lens |= skb_network_header_len(skb);
4335 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4336 			break;
4337 		default:
4338 			if (unlikely(net_ratelimit())) {
4339 				dev_warn(tx_ring->dev,
4340 				 "partial checksum but proto=%x!\n",
4341 				 first->protocol);
4342 			}
4343 			break;
4344 		}
4345 
4346 		switch (l4_hdr) {
4347 		case IPPROTO_TCP:
4348 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4349 			mss_l4len_idx = tcp_hdrlen(skb) <<
4350 					E1000_ADVTXD_L4LEN_SHIFT;
4351 			break;
4352 		case IPPROTO_SCTP:
4353 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4354 			mss_l4len_idx = sizeof(struct sctphdr) <<
4355 					E1000_ADVTXD_L4LEN_SHIFT;
4356 			break;
4357 		case IPPROTO_UDP:
4358 			mss_l4len_idx = sizeof(struct udphdr) <<
4359 					E1000_ADVTXD_L4LEN_SHIFT;
4360 			break;
4361 		default:
4362 			if (unlikely(net_ratelimit())) {
4363 				dev_warn(tx_ring->dev,
4364 				 "partial checksum but l4 proto=%x!\n",
4365 				 l4_hdr);
4366 			}
4367 			break;
4368 		}
4369 
4370 		/* update TX checksum flag */
4371 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4372 	}
4373 
4374 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4375 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4376 
4377 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4378 }
4379 
4380 #define IGB_SET_FLAG(_input, _flag, _result) \
4381 	((_flag <= _result) ? \
4382 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4383 	 ((u32)(_input & _flag) / (_flag / _result)))
4384 
4385 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4386 {
4387 	/* set type for advanced descriptor with frame checksum insertion */
4388 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4389 		       E1000_ADVTXD_DCMD_DEXT |
4390 		       E1000_ADVTXD_DCMD_IFCS;
4391 
4392 	/* set HW vlan bit if vlan is present */
4393 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4394 				 (E1000_ADVTXD_DCMD_VLE));
4395 
4396 	/* set segmentation bits for TSO */
4397 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4398 				 (E1000_ADVTXD_DCMD_TSE));
4399 
4400 	/* set timestamp bit if present */
4401 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4402 				 (E1000_ADVTXD_MAC_TSTAMP));
4403 
4404 	/* insert frame checksum */
4405 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4406 
4407 	return cmd_type;
4408 }
4409 
4410 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4411 				 union e1000_adv_tx_desc *tx_desc,
4412 				 u32 tx_flags, unsigned int paylen)
4413 {
4414 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4415 
4416 	/* 82575 requires a unique index per ring */
4417 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4418 		olinfo_status |= tx_ring->reg_idx << 4;
4419 
4420 	/* insert L4 checksum */
4421 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4422 				      IGB_TX_FLAGS_CSUM,
4423 				      (E1000_TXD_POPTS_TXSM << 8));
4424 
4425 	/* insert IPv4 checksum */
4426 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4427 				      IGB_TX_FLAGS_IPV4,
4428 				      (E1000_TXD_POPTS_IXSM << 8));
4429 
4430 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4431 }
4432 
4433 static void igb_tx_map(struct igb_ring *tx_ring,
4434 		       struct igb_tx_buffer *first,
4435 		       const u8 hdr_len)
4436 {
4437 	struct sk_buff *skb = first->skb;
4438 	struct igb_tx_buffer *tx_buffer;
4439 	union e1000_adv_tx_desc *tx_desc;
4440 	struct skb_frag_struct *frag;
4441 	dma_addr_t dma;
4442 	unsigned int data_len, size;
4443 	u32 tx_flags = first->tx_flags;
4444 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4445 	u16 i = tx_ring->next_to_use;
4446 
4447 	tx_desc = IGB_TX_DESC(tx_ring, i);
4448 
4449 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4450 
4451 	size = skb_headlen(skb);
4452 	data_len = skb->data_len;
4453 
4454 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4455 
4456 	tx_buffer = first;
4457 
4458 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4459 		if (dma_mapping_error(tx_ring->dev, dma))
4460 			goto dma_error;
4461 
4462 		/* record length, and DMA address */
4463 		dma_unmap_len_set(tx_buffer, len, size);
4464 		dma_unmap_addr_set(tx_buffer, dma, dma);
4465 
4466 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4467 
4468 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4469 			tx_desc->read.cmd_type_len =
4470 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4471 
4472 			i++;
4473 			tx_desc++;
4474 			if (i == tx_ring->count) {
4475 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4476 				i = 0;
4477 			}
4478 			tx_desc->read.olinfo_status = 0;
4479 
4480 			dma += IGB_MAX_DATA_PER_TXD;
4481 			size -= IGB_MAX_DATA_PER_TXD;
4482 
4483 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4484 		}
4485 
4486 		if (likely(!data_len))
4487 			break;
4488 
4489 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4490 
4491 		i++;
4492 		tx_desc++;
4493 		if (i == tx_ring->count) {
4494 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4495 			i = 0;
4496 		}
4497 		tx_desc->read.olinfo_status = 0;
4498 
4499 		size = skb_frag_size(frag);
4500 		data_len -= size;
4501 
4502 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4503 				       size, DMA_TO_DEVICE);
4504 
4505 		tx_buffer = &tx_ring->tx_buffer_info[i];
4506 	}
4507 
4508 	/* write last descriptor with RS and EOP bits */
4509 	cmd_type |= size | IGB_TXD_DCMD;
4510 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4511 
4512 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4513 
4514 	/* set the timestamp */
4515 	first->time_stamp = jiffies;
4516 
4517 	/*
4518 	 * Force memory writes to complete before letting h/w know there
4519 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4520 	 * memory model archs, such as IA-64).
4521 	 *
4522 	 * We also need this memory barrier to make certain all of the
4523 	 * status bits have been updated before next_to_watch is written.
4524 	 */
4525 	wmb();
4526 
4527 	/* set next_to_watch value indicating a packet is present */
4528 	first->next_to_watch = tx_desc;
4529 
4530 	i++;
4531 	if (i == tx_ring->count)
4532 		i = 0;
4533 
4534 	tx_ring->next_to_use = i;
4535 
4536 	writel(i, tx_ring->tail);
4537 
4538 	/* we need this if more than one processor can write to our tail
4539 	 * at a time, it syncronizes IO on IA64/Altix systems */
4540 	mmiowb();
4541 
4542 	return;
4543 
4544 dma_error:
4545 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4546 
4547 	/* clear dma mappings for failed tx_buffer_info map */
4548 	for (;;) {
4549 		tx_buffer = &tx_ring->tx_buffer_info[i];
4550 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4551 		if (tx_buffer == first)
4552 			break;
4553 		if (i == 0)
4554 			i = tx_ring->count;
4555 		i--;
4556 	}
4557 
4558 	tx_ring->next_to_use = i;
4559 }
4560 
4561 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4562 {
4563 	struct net_device *netdev = tx_ring->netdev;
4564 
4565 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4566 
4567 	/* Herbert's original patch had:
4568 	 *  smp_mb__after_netif_stop_queue();
4569 	 * but since that doesn't exist yet, just open code it. */
4570 	smp_mb();
4571 
4572 	/* We need to check again in a case another CPU has just
4573 	 * made room available. */
4574 	if (igb_desc_unused(tx_ring) < size)
4575 		return -EBUSY;
4576 
4577 	/* A reprieve! */
4578 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4579 
4580 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4581 	tx_ring->tx_stats.restart_queue2++;
4582 	u64_stats_update_end(&tx_ring->tx_syncp2);
4583 
4584 	return 0;
4585 }
4586 
4587 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4588 {
4589 	if (igb_desc_unused(tx_ring) >= size)
4590 		return 0;
4591 	return __igb_maybe_stop_tx(tx_ring, size);
4592 }
4593 
4594 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4595 				struct igb_ring *tx_ring)
4596 {
4597 	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4598 	struct igb_tx_buffer *first;
4599 	int tso;
4600 	u32 tx_flags = 0;
4601 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4602 	__be16 protocol = vlan_get_protocol(skb);
4603 	u8 hdr_len = 0;
4604 
4605 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4606 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4607 	 *       + 2 desc gap to keep tail from touching head,
4608 	 *       + 1 desc for context descriptor,
4609 	 * otherwise try next time
4610 	 */
4611 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4612 		unsigned short f;
4613 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4614 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4615 	} else {
4616 		count += skb_shinfo(skb)->nr_frags;
4617 	}
4618 
4619 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4620 		/* this is a hard error */
4621 		return NETDEV_TX_BUSY;
4622 	}
4623 
4624 	/* record the location of the first descriptor for this packet */
4625 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4626 	first->skb = skb;
4627 	first->bytecount = skb->len;
4628 	first->gso_segs = 1;
4629 
4630 	skb_tx_timestamp(skb);
4631 
4632 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4633 		     !(adapter->ptp_tx_skb))) {
4634 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4635 		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4636 
4637 		adapter->ptp_tx_skb = skb_get(skb);
4638 		adapter->ptp_tx_start = jiffies;
4639 		if (adapter->hw.mac.type == e1000_82576)
4640 			schedule_work(&adapter->ptp_tx_work);
4641 	}
4642 
4643 	if (vlan_tx_tag_present(skb)) {
4644 		tx_flags |= IGB_TX_FLAGS_VLAN;
4645 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4646 	}
4647 
4648 	/* record initial flags and protocol */
4649 	first->tx_flags = tx_flags;
4650 	first->protocol = protocol;
4651 
4652 	tso = igb_tso(tx_ring, first, &hdr_len);
4653 	if (tso < 0)
4654 		goto out_drop;
4655 	else if (!tso)
4656 		igb_tx_csum(tx_ring, first);
4657 
4658 	igb_tx_map(tx_ring, first, hdr_len);
4659 
4660 	/* Make sure there is space in the ring for the next send. */
4661 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4662 
4663 	return NETDEV_TX_OK;
4664 
4665 out_drop:
4666 	igb_unmap_and_free_tx_resource(tx_ring, first);
4667 
4668 	return NETDEV_TX_OK;
4669 }
4670 
4671 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4672 						    struct sk_buff *skb)
4673 {
4674 	unsigned int r_idx = skb->queue_mapping;
4675 
4676 	if (r_idx >= adapter->num_tx_queues)
4677 		r_idx = r_idx % adapter->num_tx_queues;
4678 
4679 	return adapter->tx_ring[r_idx];
4680 }
4681 
4682 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4683 				  struct net_device *netdev)
4684 {
4685 	struct igb_adapter *adapter = netdev_priv(netdev);
4686 
4687 	if (test_bit(__IGB_DOWN, &adapter->state)) {
4688 		dev_kfree_skb_any(skb);
4689 		return NETDEV_TX_OK;
4690 	}
4691 
4692 	if (skb->len <= 0) {
4693 		dev_kfree_skb_any(skb);
4694 		return NETDEV_TX_OK;
4695 	}
4696 
4697 	/*
4698 	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4699 	 * in order to meet this minimum size requirement.
4700 	 */
4701 	if (unlikely(skb->len < 17)) {
4702 		if (skb_pad(skb, 17 - skb->len))
4703 			return NETDEV_TX_OK;
4704 		skb->len = 17;
4705 		skb_set_tail_pointer(skb, 17);
4706 	}
4707 
4708 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4709 }
4710 
4711 /**
4712  * igb_tx_timeout - Respond to a Tx Hang
4713  * @netdev: network interface device structure
4714  **/
4715 static void igb_tx_timeout(struct net_device *netdev)
4716 {
4717 	struct igb_adapter *adapter = netdev_priv(netdev);
4718 	struct e1000_hw *hw = &adapter->hw;
4719 
4720 	/* Do the reset outside of interrupt context */
4721 	adapter->tx_timeout_count++;
4722 
4723 	if (hw->mac.type >= e1000_82580)
4724 		hw->dev_spec._82575.global_device_reset = true;
4725 
4726 	schedule_work(&adapter->reset_task);
4727 	wr32(E1000_EICS,
4728 	     (adapter->eims_enable_mask & ~adapter->eims_other));
4729 }
4730 
4731 static void igb_reset_task(struct work_struct *work)
4732 {
4733 	struct igb_adapter *adapter;
4734 	adapter = container_of(work, struct igb_adapter, reset_task);
4735 
4736 	igb_dump(adapter);
4737 	netdev_err(adapter->netdev, "Reset adapter\n");
4738 	igb_reinit_locked(adapter);
4739 }
4740 
4741 /**
4742  * igb_get_stats64 - Get System Network Statistics
4743  * @netdev: network interface device structure
4744  * @stats: rtnl_link_stats64 pointer
4745  *
4746  **/
4747 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4748 						 struct rtnl_link_stats64 *stats)
4749 {
4750 	struct igb_adapter *adapter = netdev_priv(netdev);
4751 
4752 	spin_lock(&adapter->stats64_lock);
4753 	igb_update_stats(adapter, &adapter->stats64);
4754 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4755 	spin_unlock(&adapter->stats64_lock);
4756 
4757 	return stats;
4758 }
4759 
4760 /**
4761  * igb_change_mtu - Change the Maximum Transfer Unit
4762  * @netdev: network interface device structure
4763  * @new_mtu: new value for maximum frame size
4764  *
4765  * Returns 0 on success, negative on failure
4766  **/
4767 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4768 {
4769 	struct igb_adapter *adapter = netdev_priv(netdev);
4770 	struct pci_dev *pdev = adapter->pdev;
4771 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4772 
4773 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4774 		dev_err(&pdev->dev, "Invalid MTU setting\n");
4775 		return -EINVAL;
4776 	}
4777 
4778 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4779 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4780 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4781 		return -EINVAL;
4782 	}
4783 
4784 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4785 		msleep(1);
4786 
4787 	/* igb_down has a dependency on max_frame_size */
4788 	adapter->max_frame_size = max_frame;
4789 
4790 	if (netif_running(netdev))
4791 		igb_down(adapter);
4792 
4793 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4794 		 netdev->mtu, new_mtu);
4795 	netdev->mtu = new_mtu;
4796 
4797 	if (netif_running(netdev))
4798 		igb_up(adapter);
4799 	else
4800 		igb_reset(adapter);
4801 
4802 	clear_bit(__IGB_RESETTING, &adapter->state);
4803 
4804 	return 0;
4805 }
4806 
4807 /**
4808  * igb_update_stats - Update the board statistics counters
4809  * @adapter: board private structure
4810  **/
4811 
4812 void igb_update_stats(struct igb_adapter *adapter,
4813 		      struct rtnl_link_stats64 *net_stats)
4814 {
4815 	struct e1000_hw *hw = &adapter->hw;
4816 	struct pci_dev *pdev = adapter->pdev;
4817 	u32 reg, mpc;
4818 	u16 phy_tmp;
4819 	int i;
4820 	u64 bytes, packets;
4821 	unsigned int start;
4822 	u64 _bytes, _packets;
4823 
4824 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4825 
4826 	/*
4827 	 * Prevent stats update while adapter is being reset, or if the pci
4828 	 * connection is down.
4829 	 */
4830 	if (adapter->link_speed == 0)
4831 		return;
4832 	if (pci_channel_offline(pdev))
4833 		return;
4834 
4835 	bytes = 0;
4836 	packets = 0;
4837 	for (i = 0; i < adapter->num_rx_queues; i++) {
4838 		u32 rqdpc = rd32(E1000_RQDPC(i));
4839 		struct igb_ring *ring = adapter->rx_ring[i];
4840 
4841 		if (rqdpc) {
4842 			ring->rx_stats.drops += rqdpc;
4843 			net_stats->rx_fifo_errors += rqdpc;
4844 		}
4845 
4846 		do {
4847 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4848 			_bytes = ring->rx_stats.bytes;
4849 			_packets = ring->rx_stats.packets;
4850 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4851 		bytes += _bytes;
4852 		packets += _packets;
4853 	}
4854 
4855 	net_stats->rx_bytes = bytes;
4856 	net_stats->rx_packets = packets;
4857 
4858 	bytes = 0;
4859 	packets = 0;
4860 	for (i = 0; i < adapter->num_tx_queues; i++) {
4861 		struct igb_ring *ring = adapter->tx_ring[i];
4862 		do {
4863 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4864 			_bytes = ring->tx_stats.bytes;
4865 			_packets = ring->tx_stats.packets;
4866 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4867 		bytes += _bytes;
4868 		packets += _packets;
4869 	}
4870 	net_stats->tx_bytes = bytes;
4871 	net_stats->tx_packets = packets;
4872 
4873 	/* read stats registers */
4874 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4875 	adapter->stats.gprc += rd32(E1000_GPRC);
4876 	adapter->stats.gorc += rd32(E1000_GORCL);
4877 	rd32(E1000_GORCH); /* clear GORCL */
4878 	adapter->stats.bprc += rd32(E1000_BPRC);
4879 	adapter->stats.mprc += rd32(E1000_MPRC);
4880 	adapter->stats.roc += rd32(E1000_ROC);
4881 
4882 	adapter->stats.prc64 += rd32(E1000_PRC64);
4883 	adapter->stats.prc127 += rd32(E1000_PRC127);
4884 	adapter->stats.prc255 += rd32(E1000_PRC255);
4885 	adapter->stats.prc511 += rd32(E1000_PRC511);
4886 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4887 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4888 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4889 	adapter->stats.sec += rd32(E1000_SEC);
4890 
4891 	mpc = rd32(E1000_MPC);
4892 	adapter->stats.mpc += mpc;
4893 	net_stats->rx_fifo_errors += mpc;
4894 	adapter->stats.scc += rd32(E1000_SCC);
4895 	adapter->stats.ecol += rd32(E1000_ECOL);
4896 	adapter->stats.mcc += rd32(E1000_MCC);
4897 	adapter->stats.latecol += rd32(E1000_LATECOL);
4898 	adapter->stats.dc += rd32(E1000_DC);
4899 	adapter->stats.rlec += rd32(E1000_RLEC);
4900 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4901 	adapter->stats.xontxc += rd32(E1000_XONTXC);
4902 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4903 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4904 	adapter->stats.fcruc += rd32(E1000_FCRUC);
4905 	adapter->stats.gptc += rd32(E1000_GPTC);
4906 	adapter->stats.gotc += rd32(E1000_GOTCL);
4907 	rd32(E1000_GOTCH); /* clear GOTCL */
4908 	adapter->stats.rnbc += rd32(E1000_RNBC);
4909 	adapter->stats.ruc += rd32(E1000_RUC);
4910 	adapter->stats.rfc += rd32(E1000_RFC);
4911 	adapter->stats.rjc += rd32(E1000_RJC);
4912 	adapter->stats.tor += rd32(E1000_TORH);
4913 	adapter->stats.tot += rd32(E1000_TOTH);
4914 	adapter->stats.tpr += rd32(E1000_TPR);
4915 
4916 	adapter->stats.ptc64 += rd32(E1000_PTC64);
4917 	adapter->stats.ptc127 += rd32(E1000_PTC127);
4918 	adapter->stats.ptc255 += rd32(E1000_PTC255);
4919 	adapter->stats.ptc511 += rd32(E1000_PTC511);
4920 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4921 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4922 
4923 	adapter->stats.mptc += rd32(E1000_MPTC);
4924 	adapter->stats.bptc += rd32(E1000_BPTC);
4925 
4926 	adapter->stats.tpt += rd32(E1000_TPT);
4927 	adapter->stats.colc += rd32(E1000_COLC);
4928 
4929 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4930 	/* read internal phy specific stats */
4931 	reg = rd32(E1000_CTRL_EXT);
4932 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4933 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4934 
4935 		/* this stat has invalid values on i210/i211 */
4936 		if ((hw->mac.type != e1000_i210) &&
4937 		    (hw->mac.type != e1000_i211))
4938 			adapter->stats.tncrs += rd32(E1000_TNCRS);
4939 	}
4940 
4941 	adapter->stats.tsctc += rd32(E1000_TSCTC);
4942 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4943 
4944 	adapter->stats.iac += rd32(E1000_IAC);
4945 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4946 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4947 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4948 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4949 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4950 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4951 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4952 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4953 
4954 	/* Fill out the OS statistics structure */
4955 	net_stats->multicast = adapter->stats.mprc;
4956 	net_stats->collisions = adapter->stats.colc;
4957 
4958 	/* Rx Errors */
4959 
4960 	/* RLEC on some newer hardware can be incorrect so build
4961 	 * our own version based on RUC and ROC */
4962 	net_stats->rx_errors = adapter->stats.rxerrc +
4963 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4964 		adapter->stats.ruc + adapter->stats.roc +
4965 		adapter->stats.cexterr;
4966 	net_stats->rx_length_errors = adapter->stats.ruc +
4967 				      adapter->stats.roc;
4968 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4969 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4970 	net_stats->rx_missed_errors = adapter->stats.mpc;
4971 
4972 	/* Tx Errors */
4973 	net_stats->tx_errors = adapter->stats.ecol +
4974 			       adapter->stats.latecol;
4975 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4976 	net_stats->tx_window_errors = adapter->stats.latecol;
4977 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4978 
4979 	/* Tx Dropped needs to be maintained elsewhere */
4980 
4981 	/* Phy Stats */
4982 	if (hw->phy.media_type == e1000_media_type_copper) {
4983 		if ((adapter->link_speed == SPEED_1000) &&
4984 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4985 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4986 			adapter->phy_stats.idle_errors += phy_tmp;
4987 		}
4988 	}
4989 
4990 	/* Management Stats */
4991 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
4992 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
4993 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4994 
4995 	/* OS2BMC Stats */
4996 	reg = rd32(E1000_MANC);
4997 	if (reg & E1000_MANC_EN_BMC2OS) {
4998 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4999 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5000 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5001 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5002 	}
5003 }
5004 
5005 static irqreturn_t igb_msix_other(int irq, void *data)
5006 {
5007 	struct igb_adapter *adapter = data;
5008 	struct e1000_hw *hw = &adapter->hw;
5009 	u32 icr = rd32(E1000_ICR);
5010 	/* reading ICR causes bit 31 of EICR to be cleared */
5011 
5012 	if (icr & E1000_ICR_DRSTA)
5013 		schedule_work(&adapter->reset_task);
5014 
5015 	if (icr & E1000_ICR_DOUTSYNC) {
5016 		/* HW is reporting DMA is out of sync */
5017 		adapter->stats.doosync++;
5018 		/* The DMA Out of Sync is also indication of a spoof event
5019 		 * in IOV mode. Check the Wrong VM Behavior register to
5020 		 * see if it is really a spoof event. */
5021 		igb_check_wvbr(adapter);
5022 	}
5023 
5024 	/* Check for a mailbox event */
5025 	if (icr & E1000_ICR_VMMB)
5026 		igb_msg_task(adapter);
5027 
5028 	if (icr & E1000_ICR_LSC) {
5029 		hw->mac.get_link_status = 1;
5030 		/* guard against interrupt when we're going down */
5031 		if (!test_bit(__IGB_DOWN, &adapter->state))
5032 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5033 	}
5034 
5035 	if (icr & E1000_ICR_TS) {
5036 		u32 tsicr = rd32(E1000_TSICR);
5037 
5038 		if (tsicr & E1000_TSICR_TXTS) {
5039 			/* acknowledge the interrupt */
5040 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5041 			/* retrieve hardware timestamp */
5042 			schedule_work(&adapter->ptp_tx_work);
5043 		}
5044 	}
5045 
5046 	wr32(E1000_EIMS, adapter->eims_other);
5047 
5048 	return IRQ_HANDLED;
5049 }
5050 
5051 static void igb_write_itr(struct igb_q_vector *q_vector)
5052 {
5053 	struct igb_adapter *adapter = q_vector->adapter;
5054 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5055 
5056 	if (!q_vector->set_itr)
5057 		return;
5058 
5059 	if (!itr_val)
5060 		itr_val = 0x4;
5061 
5062 	if (adapter->hw.mac.type == e1000_82575)
5063 		itr_val |= itr_val << 16;
5064 	else
5065 		itr_val |= E1000_EITR_CNT_IGNR;
5066 
5067 	writel(itr_val, q_vector->itr_register);
5068 	q_vector->set_itr = 0;
5069 }
5070 
5071 static irqreturn_t igb_msix_ring(int irq, void *data)
5072 {
5073 	struct igb_q_vector *q_vector = data;
5074 
5075 	/* Write the ITR value calculated from the previous interrupt. */
5076 	igb_write_itr(q_vector);
5077 
5078 	napi_schedule(&q_vector->napi);
5079 
5080 	return IRQ_HANDLED;
5081 }
5082 
5083 #ifdef CONFIG_IGB_DCA
5084 static void igb_update_tx_dca(struct igb_adapter *adapter,
5085 			      struct igb_ring *tx_ring,
5086 			      int cpu)
5087 {
5088 	struct e1000_hw *hw = &adapter->hw;
5089 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5090 
5091 	if (hw->mac.type != e1000_82575)
5092 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5093 
5094 	/*
5095 	 * We can enable relaxed ordering for reads, but not writes when
5096 	 * DCA is enabled.  This is due to a known issue in some chipsets
5097 	 * which will cause the DCA tag to be cleared.
5098 	 */
5099 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5100 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5101 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5102 
5103 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5104 }
5105 
5106 static void igb_update_rx_dca(struct igb_adapter *adapter,
5107 			      struct igb_ring *rx_ring,
5108 			      int cpu)
5109 {
5110 	struct e1000_hw *hw = &adapter->hw;
5111 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5112 
5113 	if (hw->mac.type != e1000_82575)
5114 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5115 
5116 	/*
5117 	 * We can enable relaxed ordering for reads, but not writes when
5118 	 * DCA is enabled.  This is due to a known issue in some chipsets
5119 	 * which will cause the DCA tag to be cleared.
5120 	 */
5121 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5122 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5123 
5124 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5125 }
5126 
5127 static void igb_update_dca(struct igb_q_vector *q_vector)
5128 {
5129 	struct igb_adapter *adapter = q_vector->adapter;
5130 	int cpu = get_cpu();
5131 
5132 	if (q_vector->cpu == cpu)
5133 		goto out_no_update;
5134 
5135 	if (q_vector->tx.ring)
5136 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5137 
5138 	if (q_vector->rx.ring)
5139 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5140 
5141 	q_vector->cpu = cpu;
5142 out_no_update:
5143 	put_cpu();
5144 }
5145 
5146 static void igb_setup_dca(struct igb_adapter *adapter)
5147 {
5148 	struct e1000_hw *hw = &adapter->hw;
5149 	int i;
5150 
5151 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5152 		return;
5153 
5154 	/* Always use CB2 mode, difference is masked in the CB driver. */
5155 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5156 
5157 	for (i = 0; i < adapter->num_q_vectors; i++) {
5158 		adapter->q_vector[i]->cpu = -1;
5159 		igb_update_dca(adapter->q_vector[i]);
5160 	}
5161 }
5162 
5163 static int __igb_notify_dca(struct device *dev, void *data)
5164 {
5165 	struct net_device *netdev = dev_get_drvdata(dev);
5166 	struct igb_adapter *adapter = netdev_priv(netdev);
5167 	struct pci_dev *pdev = adapter->pdev;
5168 	struct e1000_hw *hw = &adapter->hw;
5169 	unsigned long event = *(unsigned long *)data;
5170 
5171 	switch (event) {
5172 	case DCA_PROVIDER_ADD:
5173 		/* if already enabled, don't do it again */
5174 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5175 			break;
5176 		if (dca_add_requester(dev) == 0) {
5177 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5178 			dev_info(&pdev->dev, "DCA enabled\n");
5179 			igb_setup_dca(adapter);
5180 			break;
5181 		}
5182 		/* Fall Through since DCA is disabled. */
5183 	case DCA_PROVIDER_REMOVE:
5184 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5185 			/* without this a class_device is left
5186 			 * hanging around in the sysfs model */
5187 			dca_remove_requester(dev);
5188 			dev_info(&pdev->dev, "DCA disabled\n");
5189 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5190 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5191 		}
5192 		break;
5193 	}
5194 
5195 	return 0;
5196 }
5197 
5198 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5199                           void *p)
5200 {
5201 	int ret_val;
5202 
5203 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5204 	                                 __igb_notify_dca);
5205 
5206 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5207 }
5208 #endif /* CONFIG_IGB_DCA */
5209 
5210 #ifdef CONFIG_PCI_IOV
5211 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5212 {
5213 	unsigned char mac_addr[ETH_ALEN];
5214 
5215 	eth_zero_addr(mac_addr);
5216 	igb_set_vf_mac(adapter, vf, mac_addr);
5217 
5218 	return 0;
5219 }
5220 
5221 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5222 {
5223 	struct pci_dev *pdev = adapter->pdev;
5224 	struct pci_dev *vfdev;
5225 	int dev_id;
5226 
5227 	switch (adapter->hw.mac.type) {
5228 	case e1000_82576:
5229 		dev_id = IGB_82576_VF_DEV_ID;
5230 		break;
5231 	case e1000_i350:
5232 		dev_id = IGB_I350_VF_DEV_ID;
5233 		break;
5234 	default:
5235 		return false;
5236 	}
5237 
5238 	/* loop through all the VFs to see if we own any that are assigned */
5239 	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5240 	while (vfdev) {
5241 		/* if we don't own it we don't care */
5242 		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5243 			/* if it is assigned we cannot release it */
5244 			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5245 				return true;
5246 		}
5247 
5248 		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5249 	}
5250 
5251 	return false;
5252 }
5253 
5254 #endif
5255 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5256 {
5257 	struct e1000_hw *hw = &adapter->hw;
5258 	u32 ping;
5259 	int i;
5260 
5261 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5262 		ping = E1000_PF_CONTROL_MSG;
5263 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5264 			ping |= E1000_VT_MSGTYPE_CTS;
5265 		igb_write_mbx(hw, &ping, 1, i);
5266 	}
5267 }
5268 
5269 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5270 {
5271 	struct e1000_hw *hw = &adapter->hw;
5272 	u32 vmolr = rd32(E1000_VMOLR(vf));
5273 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5274 
5275 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5276 	                    IGB_VF_FLAG_MULTI_PROMISC);
5277 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5278 
5279 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5280 		vmolr |= E1000_VMOLR_MPME;
5281 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5282 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5283 	} else {
5284 		/*
5285 		 * if we have hashes and we are clearing a multicast promisc
5286 		 * flag we need to write the hashes to the MTA as this step
5287 		 * was previously skipped
5288 		 */
5289 		if (vf_data->num_vf_mc_hashes > 30) {
5290 			vmolr |= E1000_VMOLR_MPME;
5291 		} else if (vf_data->num_vf_mc_hashes) {
5292 			int j;
5293 			vmolr |= E1000_VMOLR_ROMPE;
5294 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5295 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5296 		}
5297 	}
5298 
5299 	wr32(E1000_VMOLR(vf), vmolr);
5300 
5301 	/* there are flags left unprocessed, likely not supported */
5302 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5303 		return -EINVAL;
5304 
5305 	return 0;
5306 
5307 }
5308 
5309 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5310 				  u32 *msgbuf, u32 vf)
5311 {
5312 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5313 	u16 *hash_list = (u16 *)&msgbuf[1];
5314 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315 	int i;
5316 
5317 	/* salt away the number of multicast addresses assigned
5318 	 * to this VF for later use to restore when the PF multi cast
5319 	 * list changes
5320 	 */
5321 	vf_data->num_vf_mc_hashes = n;
5322 
5323 	/* only up to 30 hash values supported */
5324 	if (n > 30)
5325 		n = 30;
5326 
5327 	/* store the hashes for later use */
5328 	for (i = 0; i < n; i++)
5329 		vf_data->vf_mc_hashes[i] = hash_list[i];
5330 
5331 	/* Flush and reset the mta with the new values */
5332 	igb_set_rx_mode(adapter->netdev);
5333 
5334 	return 0;
5335 }
5336 
5337 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5338 {
5339 	struct e1000_hw *hw = &adapter->hw;
5340 	struct vf_data_storage *vf_data;
5341 	int i, j;
5342 
5343 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5344 		u32 vmolr = rd32(E1000_VMOLR(i));
5345 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5346 
5347 		vf_data = &adapter->vf_data[i];
5348 
5349 		if ((vf_data->num_vf_mc_hashes > 30) ||
5350 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5351 			vmolr |= E1000_VMOLR_MPME;
5352 		} else if (vf_data->num_vf_mc_hashes) {
5353 			vmolr |= E1000_VMOLR_ROMPE;
5354 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5355 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5356 		}
5357 		wr32(E1000_VMOLR(i), vmolr);
5358 	}
5359 }
5360 
5361 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5362 {
5363 	struct e1000_hw *hw = &adapter->hw;
5364 	u32 pool_mask, reg, vid;
5365 	int i;
5366 
5367 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5368 
5369 	/* Find the vlan filter for this id */
5370 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5371 		reg = rd32(E1000_VLVF(i));
5372 
5373 		/* remove the vf from the pool */
5374 		reg &= ~pool_mask;
5375 
5376 		/* if pool is empty then remove entry from vfta */
5377 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5378 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5379 			reg = 0;
5380 			vid = reg & E1000_VLVF_VLANID_MASK;
5381 			igb_vfta_set(hw, vid, false);
5382 		}
5383 
5384 		wr32(E1000_VLVF(i), reg);
5385 	}
5386 
5387 	adapter->vf_data[vf].vlans_enabled = 0;
5388 }
5389 
5390 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5391 {
5392 	struct e1000_hw *hw = &adapter->hw;
5393 	u32 reg, i;
5394 
5395 	/* The vlvf table only exists on 82576 hardware and newer */
5396 	if (hw->mac.type < e1000_82576)
5397 		return -1;
5398 
5399 	/* we only need to do this if VMDq is enabled */
5400 	if (!adapter->vfs_allocated_count)
5401 		return -1;
5402 
5403 	/* Find the vlan filter for this id */
5404 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5405 		reg = rd32(E1000_VLVF(i));
5406 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5407 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5408 			break;
5409 	}
5410 
5411 	if (add) {
5412 		if (i == E1000_VLVF_ARRAY_SIZE) {
5413 			/* Did not find a matching VLAN ID entry that was
5414 			 * enabled.  Search for a free filter entry, i.e.
5415 			 * one without the enable bit set
5416 			 */
5417 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5418 				reg = rd32(E1000_VLVF(i));
5419 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5420 					break;
5421 			}
5422 		}
5423 		if (i < E1000_VLVF_ARRAY_SIZE) {
5424 			/* Found an enabled/available entry */
5425 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5426 
5427 			/* if !enabled we need to set this up in vfta */
5428 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5429 				/* add VID to filter table */
5430 				igb_vfta_set(hw, vid, true);
5431 				reg |= E1000_VLVF_VLANID_ENABLE;
5432 			}
5433 			reg &= ~E1000_VLVF_VLANID_MASK;
5434 			reg |= vid;
5435 			wr32(E1000_VLVF(i), reg);
5436 
5437 			/* do not modify RLPML for PF devices */
5438 			if (vf >= adapter->vfs_allocated_count)
5439 				return 0;
5440 
5441 			if (!adapter->vf_data[vf].vlans_enabled) {
5442 				u32 size;
5443 				reg = rd32(E1000_VMOLR(vf));
5444 				size = reg & E1000_VMOLR_RLPML_MASK;
5445 				size += 4;
5446 				reg &= ~E1000_VMOLR_RLPML_MASK;
5447 				reg |= size;
5448 				wr32(E1000_VMOLR(vf), reg);
5449 			}
5450 
5451 			adapter->vf_data[vf].vlans_enabled++;
5452 		}
5453 	} else {
5454 		if (i < E1000_VLVF_ARRAY_SIZE) {
5455 			/* remove vf from the pool */
5456 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5457 			/* if pool is empty then remove entry from vfta */
5458 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5459 				reg = 0;
5460 				igb_vfta_set(hw, vid, false);
5461 			}
5462 			wr32(E1000_VLVF(i), reg);
5463 
5464 			/* do not modify RLPML for PF devices */
5465 			if (vf >= adapter->vfs_allocated_count)
5466 				return 0;
5467 
5468 			adapter->vf_data[vf].vlans_enabled--;
5469 			if (!adapter->vf_data[vf].vlans_enabled) {
5470 				u32 size;
5471 				reg = rd32(E1000_VMOLR(vf));
5472 				size = reg & E1000_VMOLR_RLPML_MASK;
5473 				size -= 4;
5474 				reg &= ~E1000_VMOLR_RLPML_MASK;
5475 				reg |= size;
5476 				wr32(E1000_VMOLR(vf), reg);
5477 			}
5478 		}
5479 	}
5480 	return 0;
5481 }
5482 
5483 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5484 {
5485 	struct e1000_hw *hw = &adapter->hw;
5486 
5487 	if (vid)
5488 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5489 	else
5490 		wr32(E1000_VMVIR(vf), 0);
5491 }
5492 
5493 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5494 			       int vf, u16 vlan, u8 qos)
5495 {
5496 	int err = 0;
5497 	struct igb_adapter *adapter = netdev_priv(netdev);
5498 
5499 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5500 		return -EINVAL;
5501 	if (vlan || qos) {
5502 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5503 		if (err)
5504 			goto out;
5505 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5506 		igb_set_vmolr(adapter, vf, !vlan);
5507 		adapter->vf_data[vf].pf_vlan = vlan;
5508 		adapter->vf_data[vf].pf_qos = qos;
5509 		dev_info(&adapter->pdev->dev,
5510 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5511 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5512 			dev_warn(&adapter->pdev->dev,
5513 				 "The VF VLAN has been set,"
5514 				 " but the PF device is not up.\n");
5515 			dev_warn(&adapter->pdev->dev,
5516 				 "Bring the PF device up before"
5517 				 " attempting to use the VF device.\n");
5518 		}
5519 	} else {
5520 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5521 				   false, vf);
5522 		igb_set_vmvir(adapter, vlan, vf);
5523 		igb_set_vmolr(adapter, vf, true);
5524 		adapter->vf_data[vf].pf_vlan = 0;
5525 		adapter->vf_data[vf].pf_qos = 0;
5526        }
5527 out:
5528        return err;
5529 }
5530 
5531 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5532 {
5533 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5534 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5535 
5536 	return igb_vlvf_set(adapter, vid, add, vf);
5537 }
5538 
5539 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5540 {
5541 	/* clear flags - except flag that indicates PF has set the MAC */
5542 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5543 	adapter->vf_data[vf].last_nack = jiffies;
5544 
5545 	/* reset offloads to defaults */
5546 	igb_set_vmolr(adapter, vf, true);
5547 
5548 	/* reset vlans for device */
5549 	igb_clear_vf_vfta(adapter, vf);
5550 	if (adapter->vf_data[vf].pf_vlan)
5551 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5552 				    adapter->vf_data[vf].pf_vlan,
5553 				    adapter->vf_data[vf].pf_qos);
5554 	else
5555 		igb_clear_vf_vfta(adapter, vf);
5556 
5557 	/* reset multicast table array for vf */
5558 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5559 
5560 	/* Flush and reset the mta with the new values */
5561 	igb_set_rx_mode(adapter->netdev);
5562 }
5563 
5564 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5565 {
5566 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5567 
5568 	/* clear mac address as we were hotplug removed/added */
5569 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5570 		eth_zero_addr(vf_mac);
5571 
5572 	/* process remaining reset events */
5573 	igb_vf_reset(adapter, vf);
5574 }
5575 
5576 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5577 {
5578 	struct e1000_hw *hw = &adapter->hw;
5579 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5580 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5581 	u32 reg, msgbuf[3];
5582 	u8 *addr = (u8 *)(&msgbuf[1]);
5583 
5584 	/* process all the same items cleared in a function level reset */
5585 	igb_vf_reset(adapter, vf);
5586 
5587 	/* set vf mac address */
5588 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5589 
5590 	/* enable transmit and receive for vf */
5591 	reg = rd32(E1000_VFTE);
5592 	wr32(E1000_VFTE, reg | (1 << vf));
5593 	reg = rd32(E1000_VFRE);
5594 	wr32(E1000_VFRE, reg | (1 << vf));
5595 
5596 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5597 
5598 	/* reply to reset with ack and vf mac address */
5599 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5600 	memcpy(addr, vf_mac, 6);
5601 	igb_write_mbx(hw, msgbuf, 3, vf);
5602 }
5603 
5604 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5605 {
5606 	/*
5607 	 * The VF MAC Address is stored in a packed array of bytes
5608 	 * starting at the second 32 bit word of the msg array
5609 	 */
5610 	unsigned char *addr = (char *)&msg[1];
5611 	int err = -1;
5612 
5613 	if (is_valid_ether_addr(addr))
5614 		err = igb_set_vf_mac(adapter, vf, addr);
5615 
5616 	return err;
5617 }
5618 
5619 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5620 {
5621 	struct e1000_hw *hw = &adapter->hw;
5622 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5623 	u32 msg = E1000_VT_MSGTYPE_NACK;
5624 
5625 	/* if device isn't clear to send it shouldn't be reading either */
5626 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5627 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5628 		igb_write_mbx(hw, &msg, 1, vf);
5629 		vf_data->last_nack = jiffies;
5630 	}
5631 }
5632 
5633 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5634 {
5635 	struct pci_dev *pdev = adapter->pdev;
5636 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5637 	struct e1000_hw *hw = &adapter->hw;
5638 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5639 	s32 retval;
5640 
5641 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5642 
5643 	if (retval) {
5644 		/* if receive failed revoke VF CTS stats and restart init */
5645 		dev_err(&pdev->dev, "Error receiving message from VF\n");
5646 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5647 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5648 			return;
5649 		goto out;
5650 	}
5651 
5652 	/* this is a message we already processed, do nothing */
5653 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5654 		return;
5655 
5656 	/*
5657 	 * until the vf completes a reset it should not be
5658 	 * allowed to start any configuration.
5659 	 */
5660 
5661 	if (msgbuf[0] == E1000_VF_RESET) {
5662 		igb_vf_reset_msg(adapter, vf);
5663 		return;
5664 	}
5665 
5666 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5667 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5668 			return;
5669 		retval = -1;
5670 		goto out;
5671 	}
5672 
5673 	switch ((msgbuf[0] & 0xFFFF)) {
5674 	case E1000_VF_SET_MAC_ADDR:
5675 		retval = -EINVAL;
5676 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5677 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5678 		else
5679 			dev_warn(&pdev->dev,
5680 				 "VF %d attempted to override administratively "
5681 				 "set MAC address\nReload the VF driver to "
5682 				 "resume operations\n", vf);
5683 		break;
5684 	case E1000_VF_SET_PROMISC:
5685 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5686 		break;
5687 	case E1000_VF_SET_MULTICAST:
5688 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5689 		break;
5690 	case E1000_VF_SET_LPE:
5691 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5692 		break;
5693 	case E1000_VF_SET_VLAN:
5694 		retval = -1;
5695 		if (vf_data->pf_vlan)
5696 			dev_warn(&pdev->dev,
5697 				 "VF %d attempted to override administratively "
5698 				 "set VLAN tag\nReload the VF driver to "
5699 				 "resume operations\n", vf);
5700 		else
5701 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5702 		break;
5703 	default:
5704 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5705 		retval = -1;
5706 		break;
5707 	}
5708 
5709 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5710 out:
5711 	/* notify the VF of the results of what it sent us */
5712 	if (retval)
5713 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5714 	else
5715 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5716 
5717 	igb_write_mbx(hw, msgbuf, 1, vf);
5718 }
5719 
5720 static void igb_msg_task(struct igb_adapter *adapter)
5721 {
5722 	struct e1000_hw *hw = &adapter->hw;
5723 	u32 vf;
5724 
5725 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5726 		/* process any reset requests */
5727 		if (!igb_check_for_rst(hw, vf))
5728 			igb_vf_reset_event(adapter, vf);
5729 
5730 		/* process any messages pending */
5731 		if (!igb_check_for_msg(hw, vf))
5732 			igb_rcv_msg_from_vf(adapter, vf);
5733 
5734 		/* process any acks */
5735 		if (!igb_check_for_ack(hw, vf))
5736 			igb_rcv_ack_from_vf(adapter, vf);
5737 	}
5738 }
5739 
5740 /**
5741  *  igb_set_uta - Set unicast filter table address
5742  *  @adapter: board private structure
5743  *
5744  *  The unicast table address is a register array of 32-bit registers.
5745  *  The table is meant to be used in a way similar to how the MTA is used
5746  *  however due to certain limitations in the hardware it is necessary to
5747  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5748  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5749  **/
5750 static void igb_set_uta(struct igb_adapter *adapter)
5751 {
5752 	struct e1000_hw *hw = &adapter->hw;
5753 	int i;
5754 
5755 	/* The UTA table only exists on 82576 hardware and newer */
5756 	if (hw->mac.type < e1000_82576)
5757 		return;
5758 
5759 	/* we only need to do this if VMDq is enabled */
5760 	if (!adapter->vfs_allocated_count)
5761 		return;
5762 
5763 	for (i = 0; i < hw->mac.uta_reg_count; i++)
5764 		array_wr32(E1000_UTA, i, ~0);
5765 }
5766 
5767 /**
5768  * igb_intr_msi - Interrupt Handler
5769  * @irq: interrupt number
5770  * @data: pointer to a network interface device structure
5771  **/
5772 static irqreturn_t igb_intr_msi(int irq, void *data)
5773 {
5774 	struct igb_adapter *adapter = data;
5775 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5776 	struct e1000_hw *hw = &adapter->hw;
5777 	/* read ICR disables interrupts using IAM */
5778 	u32 icr = rd32(E1000_ICR);
5779 
5780 	igb_write_itr(q_vector);
5781 
5782 	if (icr & E1000_ICR_DRSTA)
5783 		schedule_work(&adapter->reset_task);
5784 
5785 	if (icr & E1000_ICR_DOUTSYNC) {
5786 		/* HW is reporting DMA is out of sync */
5787 		adapter->stats.doosync++;
5788 	}
5789 
5790 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5791 		hw->mac.get_link_status = 1;
5792 		if (!test_bit(__IGB_DOWN, &adapter->state))
5793 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5794 	}
5795 
5796 	if (icr & E1000_ICR_TS) {
5797 		u32 tsicr = rd32(E1000_TSICR);
5798 
5799 		if (tsicr & E1000_TSICR_TXTS) {
5800 			/* acknowledge the interrupt */
5801 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5802 			/* retrieve hardware timestamp */
5803 			schedule_work(&adapter->ptp_tx_work);
5804 		}
5805 	}
5806 
5807 	napi_schedule(&q_vector->napi);
5808 
5809 	return IRQ_HANDLED;
5810 }
5811 
5812 /**
5813  * igb_intr - Legacy Interrupt Handler
5814  * @irq: interrupt number
5815  * @data: pointer to a network interface device structure
5816  **/
5817 static irqreturn_t igb_intr(int irq, void *data)
5818 {
5819 	struct igb_adapter *adapter = data;
5820 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5821 	struct e1000_hw *hw = &adapter->hw;
5822 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5823 	 * need for the IMC write */
5824 	u32 icr = rd32(E1000_ICR);
5825 
5826 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5827 	 * not set, then the adapter didn't send an interrupt */
5828 	if (!(icr & E1000_ICR_INT_ASSERTED))
5829 		return IRQ_NONE;
5830 
5831 	igb_write_itr(q_vector);
5832 
5833 	if (icr & E1000_ICR_DRSTA)
5834 		schedule_work(&adapter->reset_task);
5835 
5836 	if (icr & E1000_ICR_DOUTSYNC) {
5837 		/* HW is reporting DMA is out of sync */
5838 		adapter->stats.doosync++;
5839 	}
5840 
5841 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5842 		hw->mac.get_link_status = 1;
5843 		/* guard against interrupt when we're going down */
5844 		if (!test_bit(__IGB_DOWN, &adapter->state))
5845 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5846 	}
5847 
5848 	if (icr & E1000_ICR_TS) {
5849 		u32 tsicr = rd32(E1000_TSICR);
5850 
5851 		if (tsicr & E1000_TSICR_TXTS) {
5852 			/* acknowledge the interrupt */
5853 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5854 			/* retrieve hardware timestamp */
5855 			schedule_work(&adapter->ptp_tx_work);
5856 		}
5857 	}
5858 
5859 	napi_schedule(&q_vector->napi);
5860 
5861 	return IRQ_HANDLED;
5862 }
5863 
5864 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5865 {
5866 	struct igb_adapter *adapter = q_vector->adapter;
5867 	struct e1000_hw *hw = &adapter->hw;
5868 
5869 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5870 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5871 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5872 			igb_set_itr(q_vector);
5873 		else
5874 			igb_update_ring_itr(q_vector);
5875 	}
5876 
5877 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5878 		if (adapter->msix_entries)
5879 			wr32(E1000_EIMS, q_vector->eims_value);
5880 		else
5881 			igb_irq_enable(adapter);
5882 	}
5883 }
5884 
5885 /**
5886  * igb_poll - NAPI Rx polling callback
5887  * @napi: napi polling structure
5888  * @budget: count of how many packets we should handle
5889  **/
5890 static int igb_poll(struct napi_struct *napi, int budget)
5891 {
5892 	struct igb_q_vector *q_vector = container_of(napi,
5893 	                                             struct igb_q_vector,
5894 	                                             napi);
5895 	bool clean_complete = true;
5896 
5897 #ifdef CONFIG_IGB_DCA
5898 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5899 		igb_update_dca(q_vector);
5900 #endif
5901 	if (q_vector->tx.ring)
5902 		clean_complete = igb_clean_tx_irq(q_vector);
5903 
5904 	if (q_vector->rx.ring)
5905 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5906 
5907 	/* If all work not completed, return budget and keep polling */
5908 	if (!clean_complete)
5909 		return budget;
5910 
5911 	/* If not enough Rx work done, exit the polling mode */
5912 	napi_complete(napi);
5913 	igb_ring_irq_enable(q_vector);
5914 
5915 	return 0;
5916 }
5917 
5918 /**
5919  * igb_clean_tx_irq - Reclaim resources after transmit completes
5920  * @q_vector: pointer to q_vector containing needed info
5921  *
5922  * returns true if ring is completely cleaned
5923  **/
5924 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5925 {
5926 	struct igb_adapter *adapter = q_vector->adapter;
5927 	struct igb_ring *tx_ring = q_vector->tx.ring;
5928 	struct igb_tx_buffer *tx_buffer;
5929 	union e1000_adv_tx_desc *tx_desc;
5930 	unsigned int total_bytes = 0, total_packets = 0;
5931 	unsigned int budget = q_vector->tx.work_limit;
5932 	unsigned int i = tx_ring->next_to_clean;
5933 
5934 	if (test_bit(__IGB_DOWN, &adapter->state))
5935 		return true;
5936 
5937 	tx_buffer = &tx_ring->tx_buffer_info[i];
5938 	tx_desc = IGB_TX_DESC(tx_ring, i);
5939 	i -= tx_ring->count;
5940 
5941 	do {
5942 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5943 
5944 		/* if next_to_watch is not set then there is no work pending */
5945 		if (!eop_desc)
5946 			break;
5947 
5948 		/* prevent any other reads prior to eop_desc */
5949 		read_barrier_depends();
5950 
5951 		/* if DD is not set pending work has not been completed */
5952 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5953 			break;
5954 
5955 		/* clear next_to_watch to prevent false hangs */
5956 		tx_buffer->next_to_watch = NULL;
5957 
5958 		/* update the statistics for this packet */
5959 		total_bytes += tx_buffer->bytecount;
5960 		total_packets += tx_buffer->gso_segs;
5961 
5962 		/* free the skb */
5963 		dev_kfree_skb_any(tx_buffer->skb);
5964 
5965 		/* unmap skb header data */
5966 		dma_unmap_single(tx_ring->dev,
5967 				 dma_unmap_addr(tx_buffer, dma),
5968 				 dma_unmap_len(tx_buffer, len),
5969 				 DMA_TO_DEVICE);
5970 
5971 		/* clear tx_buffer data */
5972 		tx_buffer->skb = NULL;
5973 		dma_unmap_len_set(tx_buffer, len, 0);
5974 
5975 		/* clear last DMA location and unmap remaining buffers */
5976 		while (tx_desc != eop_desc) {
5977 			tx_buffer++;
5978 			tx_desc++;
5979 			i++;
5980 			if (unlikely(!i)) {
5981 				i -= tx_ring->count;
5982 				tx_buffer = tx_ring->tx_buffer_info;
5983 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5984 			}
5985 
5986 			/* unmap any remaining paged data */
5987 			if (dma_unmap_len(tx_buffer, len)) {
5988 				dma_unmap_page(tx_ring->dev,
5989 					       dma_unmap_addr(tx_buffer, dma),
5990 					       dma_unmap_len(tx_buffer, len),
5991 					       DMA_TO_DEVICE);
5992 				dma_unmap_len_set(tx_buffer, len, 0);
5993 			}
5994 		}
5995 
5996 		/* move us one more past the eop_desc for start of next pkt */
5997 		tx_buffer++;
5998 		tx_desc++;
5999 		i++;
6000 		if (unlikely(!i)) {
6001 			i -= tx_ring->count;
6002 			tx_buffer = tx_ring->tx_buffer_info;
6003 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6004 		}
6005 
6006 		/* issue prefetch for next Tx descriptor */
6007 		prefetch(tx_desc);
6008 
6009 		/* update budget accounting */
6010 		budget--;
6011 	} while (likely(budget));
6012 
6013 	netdev_tx_completed_queue(txring_txq(tx_ring),
6014 				  total_packets, total_bytes);
6015 	i += tx_ring->count;
6016 	tx_ring->next_to_clean = i;
6017 	u64_stats_update_begin(&tx_ring->tx_syncp);
6018 	tx_ring->tx_stats.bytes += total_bytes;
6019 	tx_ring->tx_stats.packets += total_packets;
6020 	u64_stats_update_end(&tx_ring->tx_syncp);
6021 	q_vector->tx.total_bytes += total_bytes;
6022 	q_vector->tx.total_packets += total_packets;
6023 
6024 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6025 		struct e1000_hw *hw = &adapter->hw;
6026 
6027 		/* Detect a transmit hang in hardware, this serializes the
6028 		 * check with the clearing of time_stamp and movement of i */
6029 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6030 		if (tx_buffer->next_to_watch &&
6031 		    time_after(jiffies, tx_buffer->time_stamp +
6032 			       (adapter->tx_timeout_factor * HZ)) &&
6033 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6034 
6035 			/* detected Tx unit hang */
6036 			dev_err(tx_ring->dev,
6037 				"Detected Tx Unit Hang\n"
6038 				"  Tx Queue             <%d>\n"
6039 				"  TDH                  <%x>\n"
6040 				"  TDT                  <%x>\n"
6041 				"  next_to_use          <%x>\n"
6042 				"  next_to_clean        <%x>\n"
6043 				"buffer_info[next_to_clean]\n"
6044 				"  time_stamp           <%lx>\n"
6045 				"  next_to_watch        <%p>\n"
6046 				"  jiffies              <%lx>\n"
6047 				"  desc.status          <%x>\n",
6048 				tx_ring->queue_index,
6049 				rd32(E1000_TDH(tx_ring->reg_idx)),
6050 				readl(tx_ring->tail),
6051 				tx_ring->next_to_use,
6052 				tx_ring->next_to_clean,
6053 				tx_buffer->time_stamp,
6054 				tx_buffer->next_to_watch,
6055 				jiffies,
6056 				tx_buffer->next_to_watch->wb.status);
6057 			netif_stop_subqueue(tx_ring->netdev,
6058 					    tx_ring->queue_index);
6059 
6060 			/* we are about to reset, no point in enabling stuff */
6061 			return true;
6062 		}
6063 	}
6064 
6065 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6066 	if (unlikely(total_packets &&
6067 		     netif_carrier_ok(tx_ring->netdev) &&
6068 		     igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6069 		/* Make sure that anybody stopping the queue after this
6070 		 * sees the new next_to_clean.
6071 		 */
6072 		smp_mb();
6073 		if (__netif_subqueue_stopped(tx_ring->netdev,
6074 					     tx_ring->queue_index) &&
6075 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6076 			netif_wake_subqueue(tx_ring->netdev,
6077 					    tx_ring->queue_index);
6078 
6079 			u64_stats_update_begin(&tx_ring->tx_syncp);
6080 			tx_ring->tx_stats.restart_queue++;
6081 			u64_stats_update_end(&tx_ring->tx_syncp);
6082 		}
6083 	}
6084 
6085 	return !!budget;
6086 }
6087 
6088 /**
6089  * igb_reuse_rx_page - page flip buffer and store it back on the ring
6090  * @rx_ring: rx descriptor ring to store buffers on
6091  * @old_buff: donor buffer to have page reused
6092  *
6093  * Synchronizes page for reuse by the adapter
6094  **/
6095 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6096 			      struct igb_rx_buffer *old_buff)
6097 {
6098 	struct igb_rx_buffer *new_buff;
6099 	u16 nta = rx_ring->next_to_alloc;
6100 
6101 	new_buff = &rx_ring->rx_buffer_info[nta];
6102 
6103 	/* update, and store next to alloc */
6104 	nta++;
6105 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6106 
6107 	/* transfer page from old buffer to new buffer */
6108 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6109 
6110 	/* sync the buffer for use by the device */
6111 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6112 					 old_buff->page_offset,
6113 					 IGB_RX_BUFSZ,
6114 					 DMA_FROM_DEVICE);
6115 }
6116 
6117 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6118 				  struct page *page,
6119 				  unsigned int truesize)
6120 {
6121 	/* avoid re-using remote pages */
6122 	if (unlikely(page_to_nid(page) != numa_node_id()))
6123 		return false;
6124 
6125 #if (PAGE_SIZE < 8192)
6126 	/* if we are only owner of page we can reuse it */
6127 	if (unlikely(page_count(page) != 1))
6128 		return false;
6129 
6130 	/* flip page offset to other buffer */
6131 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6132 
6133 	/* since we are the only owner of the page and we need to
6134 	 * increment it, just set the value to 2 in order to avoid
6135 	 * an unnecessary locked operation
6136 	 */
6137 	atomic_set(&page->_count, 2);
6138 #else
6139 	/* move offset up to the next cache line */
6140 	rx_buffer->page_offset += truesize;
6141 
6142 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6143 		return false;
6144 
6145 	/* bump ref count on page before it is given to the stack */
6146 	get_page(page);
6147 #endif
6148 
6149 	return true;
6150 }
6151 
6152 /**
6153  * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6154  * @rx_ring: rx descriptor ring to transact packets on
6155  * @rx_buffer: buffer containing page to add
6156  * @rx_desc: descriptor containing length of buffer written by hardware
6157  * @skb: sk_buff to place the data into
6158  *
6159  * This function will add the data contained in rx_buffer->page to the skb.
6160  * This is done either through a direct copy if the data in the buffer is
6161  * less than the skb header size, otherwise it will just attach the page as
6162  * a frag to the skb.
6163  *
6164  * The function will then update the page offset if necessary and return
6165  * true if the buffer can be reused by the adapter.
6166  **/
6167 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6168 			    struct igb_rx_buffer *rx_buffer,
6169 			    union e1000_adv_rx_desc *rx_desc,
6170 			    struct sk_buff *skb)
6171 {
6172 	struct page *page = rx_buffer->page;
6173 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6174 #if (PAGE_SIZE < 8192)
6175 	unsigned int truesize = IGB_RX_BUFSZ;
6176 #else
6177 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6178 #endif
6179 
6180 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6181 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6182 
6183 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6184 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6185 			va += IGB_TS_HDR_LEN;
6186 			size -= IGB_TS_HDR_LEN;
6187 		}
6188 
6189 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6190 
6191 		/* we can reuse buffer as-is, just make sure it is local */
6192 		if (likely(page_to_nid(page) == numa_node_id()))
6193 			return true;
6194 
6195 		/* this page cannot be reused so discard it */
6196 		put_page(page);
6197 		return false;
6198 	}
6199 
6200 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6201 			rx_buffer->page_offset, size, truesize);
6202 
6203 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6204 }
6205 
6206 static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
6207 					   union e1000_adv_rx_desc *rx_desc)
6208 {
6209 	struct igb_rx_buffer *rx_buffer;
6210 	struct sk_buff *skb;
6211 	struct page *page;
6212 	void *page_addr;
6213 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6214 #if (PAGE_SIZE < 8192)
6215 	unsigned int truesize = IGB_RX_BUFSZ;
6216 #else
6217 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
6218 				SKB_DATA_ALIGN(NET_SKB_PAD +
6219 					       NET_IP_ALIGN +
6220 					       size);
6221 #endif
6222 
6223 	/* If we spanned a buffer we have a huge mess so test for it */
6224 	BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6225 
6226 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6227 	page = rx_buffer->page;
6228 	prefetchw(page);
6229 
6230 	page_addr = page_address(page) + rx_buffer->page_offset;
6231 
6232 	/* prefetch first cache line of first page */
6233 	prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
6234 #if L1_CACHE_BYTES < 128
6235 	prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6236 #endif
6237 
6238 	/* build an skb to around the page buffer */
6239 	skb = build_skb(page_addr, truesize);
6240 	if (unlikely(!skb)) {
6241 		rx_ring->rx_stats.alloc_failed++;
6242 		return NULL;
6243 	}
6244 
6245 	/* we are reusing so sync this buffer for CPU use */
6246 	dma_sync_single_range_for_cpu(rx_ring->dev,
6247 				      rx_buffer->dma,
6248 				      rx_buffer->page_offset,
6249 				      IGB_RX_BUFSZ,
6250 				      DMA_FROM_DEVICE);
6251 
6252 	/* update pointers within the skb to store the data */
6253 	skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
6254 	__skb_put(skb, size);
6255 
6256 	/* pull timestamp out of packet data */
6257 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6258 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
6259 		__skb_pull(skb, IGB_TS_HDR_LEN);
6260 	}
6261 
6262 	if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
6263 		/* hand second half of page back to the ring */
6264 		igb_reuse_rx_page(rx_ring, rx_buffer);
6265 	} else {
6266 		/* we are not reusing the buffer so unmap it */
6267 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6268 			       PAGE_SIZE, DMA_FROM_DEVICE);
6269 	}
6270 
6271 	/* clear contents of buffer_info */
6272 	rx_buffer->dma = 0;
6273 	rx_buffer->page = NULL;
6274 
6275 	return skb;
6276 }
6277 
6278 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6279 					   union e1000_adv_rx_desc *rx_desc,
6280 					   struct sk_buff *skb)
6281 {
6282 	struct igb_rx_buffer *rx_buffer;
6283 	struct page *page;
6284 
6285 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6286 
6287 	page = rx_buffer->page;
6288 	prefetchw(page);
6289 
6290 	if (likely(!skb)) {
6291 		void *page_addr = page_address(page) +
6292 				  rx_buffer->page_offset;
6293 
6294 		/* prefetch first cache line of first page */
6295 		prefetch(page_addr);
6296 #if L1_CACHE_BYTES < 128
6297 		prefetch(page_addr + L1_CACHE_BYTES);
6298 #endif
6299 
6300 		/* allocate a skb to store the frags */
6301 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6302 						IGB_RX_HDR_LEN);
6303 		if (unlikely(!skb)) {
6304 			rx_ring->rx_stats.alloc_failed++;
6305 			return NULL;
6306 		}
6307 
6308 		/*
6309 		 * we will be copying header into skb->data in
6310 		 * pskb_may_pull so it is in our interest to prefetch
6311 		 * it now to avoid a possible cache miss
6312 		 */
6313 		prefetchw(skb->data);
6314 	}
6315 
6316 	/* we are reusing so sync this buffer for CPU use */
6317 	dma_sync_single_range_for_cpu(rx_ring->dev,
6318 				      rx_buffer->dma,
6319 				      rx_buffer->page_offset,
6320 				      IGB_RX_BUFSZ,
6321 				      DMA_FROM_DEVICE);
6322 
6323 	/* pull page into skb */
6324 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6325 		/* hand second half of page back to the ring */
6326 		igb_reuse_rx_page(rx_ring, rx_buffer);
6327 	} else {
6328 		/* we are not reusing the buffer so unmap it */
6329 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6330 			       PAGE_SIZE, DMA_FROM_DEVICE);
6331 	}
6332 
6333 	/* clear contents of rx_buffer */
6334 	rx_buffer->page = NULL;
6335 
6336 	return skb;
6337 }
6338 
6339 static inline void igb_rx_checksum(struct igb_ring *ring,
6340 				   union e1000_adv_rx_desc *rx_desc,
6341 				   struct sk_buff *skb)
6342 {
6343 	skb_checksum_none_assert(skb);
6344 
6345 	/* Ignore Checksum bit is set */
6346 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6347 		return;
6348 
6349 	/* Rx checksum disabled via ethtool */
6350 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6351 		return;
6352 
6353 	/* TCP/UDP checksum error bit is set */
6354 	if (igb_test_staterr(rx_desc,
6355 			     E1000_RXDEXT_STATERR_TCPE |
6356 			     E1000_RXDEXT_STATERR_IPE)) {
6357 		/*
6358 		 * work around errata with sctp packets where the TCPE aka
6359 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6360 		 * packets, (aka let the stack check the crc32c)
6361 		 */
6362 		if (!((skb->len == 60) &&
6363 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6364 			u64_stats_update_begin(&ring->rx_syncp);
6365 			ring->rx_stats.csum_err++;
6366 			u64_stats_update_end(&ring->rx_syncp);
6367 		}
6368 		/* let the stack verify checksum errors */
6369 		return;
6370 	}
6371 	/* It must be a TCP or UDP packet with a valid checksum */
6372 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6373 				      E1000_RXD_STAT_UDPCS))
6374 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6375 
6376 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6377 		le32_to_cpu(rx_desc->wb.upper.status_error));
6378 }
6379 
6380 static inline void igb_rx_hash(struct igb_ring *ring,
6381 			       union e1000_adv_rx_desc *rx_desc,
6382 			       struct sk_buff *skb)
6383 {
6384 	if (ring->netdev->features & NETIF_F_RXHASH)
6385 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6386 }
6387 
6388 /**
6389  * igb_is_non_eop - process handling of non-EOP buffers
6390  * @rx_ring: Rx ring being processed
6391  * @rx_desc: Rx descriptor for current buffer
6392  * @skb: current socket buffer containing buffer in progress
6393  *
6394  * This function updates next to clean.  If the buffer is an EOP buffer
6395  * this function exits returning false, otherwise it will place the
6396  * sk_buff in the next buffer to be chained and return true indicating
6397  * that this is in fact a non-EOP buffer.
6398  **/
6399 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6400 			   union e1000_adv_rx_desc *rx_desc)
6401 {
6402 	u32 ntc = rx_ring->next_to_clean + 1;
6403 
6404 	/* fetch, update, and store next to clean */
6405 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6406 	rx_ring->next_to_clean = ntc;
6407 
6408 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6409 
6410 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6411 		return false;
6412 
6413 	return true;
6414 }
6415 
6416 /**
6417  * igb_get_headlen - determine size of header for LRO/GRO
6418  * @data: pointer to the start of the headers
6419  * @max_len: total length of section to find headers in
6420  *
6421  * This function is meant to determine the length of headers that will
6422  * be recognized by hardware for LRO, and GRO offloads.  The main
6423  * motivation of doing this is to only perform one pull for IPv4 TCP
6424  * packets so that we can do basic things like calculating the gso_size
6425  * based on the average data per packet.
6426  **/
6427 static unsigned int igb_get_headlen(unsigned char *data,
6428 				    unsigned int max_len)
6429 {
6430 	union {
6431 		unsigned char *network;
6432 		/* l2 headers */
6433 		struct ethhdr *eth;
6434 		struct vlan_hdr *vlan;
6435 		/* l3 headers */
6436 		struct iphdr *ipv4;
6437 		struct ipv6hdr *ipv6;
6438 	} hdr;
6439 	__be16 protocol;
6440 	u8 nexthdr = 0;	/* default to not TCP */
6441 	u8 hlen;
6442 
6443 	/* this should never happen, but better safe than sorry */
6444 	if (max_len < ETH_HLEN)
6445 		return max_len;
6446 
6447 	/* initialize network frame pointer */
6448 	hdr.network = data;
6449 
6450 	/* set first protocol and move network header forward */
6451 	protocol = hdr.eth->h_proto;
6452 	hdr.network += ETH_HLEN;
6453 
6454 	/* handle any vlan tag if present */
6455 	if (protocol == __constant_htons(ETH_P_8021Q)) {
6456 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6457 			return max_len;
6458 
6459 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6460 		hdr.network += VLAN_HLEN;
6461 	}
6462 
6463 	/* handle L3 protocols */
6464 	if (protocol == __constant_htons(ETH_P_IP)) {
6465 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6466 			return max_len;
6467 
6468 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6469 		hlen = (hdr.network[0] & 0x0F) << 2;
6470 
6471 		/* verify hlen meets minimum size requirements */
6472 		if (hlen < sizeof(struct iphdr))
6473 			return hdr.network - data;
6474 
6475 		/* record next protocol if header is present */
6476 		if (!hdr.ipv4->frag_off)
6477 			nexthdr = hdr.ipv4->protocol;
6478 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6479 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6480 			return max_len;
6481 
6482 		/* record next protocol */
6483 		nexthdr = hdr.ipv6->nexthdr;
6484 		hlen = sizeof(struct ipv6hdr);
6485 	} else {
6486 		return hdr.network - data;
6487 	}
6488 
6489 	/* relocate pointer to start of L4 header */
6490 	hdr.network += hlen;
6491 
6492 	/* finally sort out TCP */
6493 	if (nexthdr == IPPROTO_TCP) {
6494 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6495 			return max_len;
6496 
6497 		/* access doff as a u8 to avoid unaligned access on ia64 */
6498 		hlen = (hdr.network[12] & 0xF0) >> 2;
6499 
6500 		/* verify hlen meets minimum size requirements */
6501 		if (hlen < sizeof(struct tcphdr))
6502 			return hdr.network - data;
6503 
6504 		hdr.network += hlen;
6505 	} else if (nexthdr == IPPROTO_UDP) {
6506 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6507 			return max_len;
6508 
6509 		hdr.network += sizeof(struct udphdr);
6510 	}
6511 
6512 	/*
6513 	 * If everything has gone correctly hdr.network should be the
6514 	 * data section of the packet and will be the end of the header.
6515 	 * If not then it probably represents the end of the last recognized
6516 	 * header.
6517 	 */
6518 	if ((hdr.network - data) < max_len)
6519 		return hdr.network - data;
6520 	else
6521 		return max_len;
6522 }
6523 
6524 /**
6525  * igb_pull_tail - igb specific version of skb_pull_tail
6526  * @rx_ring: rx descriptor ring packet is being transacted on
6527  * @rx_desc: pointer to the EOP Rx descriptor
6528  * @skb: pointer to current skb being adjusted
6529  *
6530  * This function is an igb specific version of __pskb_pull_tail.  The
6531  * main difference between this version and the original function is that
6532  * this function can make several assumptions about the state of things
6533  * that allow for significant optimizations versus the standard function.
6534  * As a result we can do things like drop a frag and maintain an accurate
6535  * truesize for the skb.
6536  */
6537 static void igb_pull_tail(struct igb_ring *rx_ring,
6538 			  union e1000_adv_rx_desc *rx_desc,
6539 			  struct sk_buff *skb)
6540 {
6541 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6542 	unsigned char *va;
6543 	unsigned int pull_len;
6544 
6545 	/*
6546 	 * it is valid to use page_address instead of kmap since we are
6547 	 * working with pages allocated out of the lomem pool per
6548 	 * alloc_page(GFP_ATOMIC)
6549 	 */
6550 	va = skb_frag_address(frag);
6551 
6552 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6553 		/* retrieve timestamp from buffer */
6554 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6555 
6556 		/* update pointers to remove timestamp header */
6557 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6558 		frag->page_offset += IGB_TS_HDR_LEN;
6559 		skb->data_len -= IGB_TS_HDR_LEN;
6560 		skb->len -= IGB_TS_HDR_LEN;
6561 
6562 		/* move va to start of packet data */
6563 		va += IGB_TS_HDR_LEN;
6564 	}
6565 
6566 	/*
6567 	 * we need the header to contain the greater of either ETH_HLEN or
6568 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6569 	 */
6570 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6571 
6572 	/* align pull length to size of long to optimize memcpy performance */
6573 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6574 
6575 	/* update all of the pointers */
6576 	skb_frag_size_sub(frag, pull_len);
6577 	frag->page_offset += pull_len;
6578 	skb->data_len -= pull_len;
6579 	skb->tail += pull_len;
6580 }
6581 
6582 /**
6583  * igb_cleanup_headers - Correct corrupted or empty headers
6584  * @rx_ring: rx descriptor ring packet is being transacted on
6585  * @rx_desc: pointer to the EOP Rx descriptor
6586  * @skb: pointer to current skb being fixed
6587  *
6588  * Address the case where we are pulling data in on pages only
6589  * and as such no data is present in the skb header.
6590  *
6591  * In addition if skb is not at least 60 bytes we need to pad it so that
6592  * it is large enough to qualify as a valid Ethernet frame.
6593  *
6594  * Returns true if an error was encountered and skb was freed.
6595  **/
6596 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6597 				union e1000_adv_rx_desc *rx_desc,
6598 				struct sk_buff *skb)
6599 {
6600 
6601 	if (unlikely((igb_test_staterr(rx_desc,
6602 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6603 		struct net_device *netdev = rx_ring->netdev;
6604 		if (!(netdev->features & NETIF_F_RXALL)) {
6605 			dev_kfree_skb_any(skb);
6606 			return true;
6607 		}
6608 	}
6609 
6610 	/* place header in linear portion of buffer */
6611 	if (skb_is_nonlinear(skb))
6612 		igb_pull_tail(rx_ring, rx_desc, skb);
6613 
6614 	/* if skb_pad returns an error the skb was freed */
6615 	if (unlikely(skb->len < 60)) {
6616 		int pad_len = 60 - skb->len;
6617 
6618 		if (skb_pad(skb, pad_len))
6619 			return true;
6620 		__skb_put(skb, pad_len);
6621 	}
6622 
6623 	return false;
6624 }
6625 
6626 /**
6627  * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6628  * @rx_ring: rx descriptor ring packet is being transacted on
6629  * @rx_desc: pointer to the EOP Rx descriptor
6630  * @skb: pointer to current skb being populated
6631  *
6632  * This function checks the ring, descriptor, and packet information in
6633  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6634  * other fields within the skb.
6635  **/
6636 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6637 				   union e1000_adv_rx_desc *rx_desc,
6638 				   struct sk_buff *skb)
6639 {
6640 	struct net_device *dev = rx_ring->netdev;
6641 
6642 	igb_rx_hash(rx_ring, rx_desc, skb);
6643 
6644 	igb_rx_checksum(rx_ring, rx_desc, skb);
6645 
6646 	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6647 
6648 	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6649 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6650 		u16 vid;
6651 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6652 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6653 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6654 		else
6655 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6656 
6657 		__vlan_hwaccel_put_tag(skb, vid);
6658 	}
6659 
6660 	skb_record_rx_queue(skb, rx_ring->queue_index);
6661 
6662 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6663 }
6664 
6665 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6666 {
6667 	struct igb_ring *rx_ring = q_vector->rx.ring;
6668 	struct sk_buff *skb = rx_ring->skb;
6669 	unsigned int total_bytes = 0, total_packets = 0;
6670 	u16 cleaned_count = igb_desc_unused(rx_ring);
6671 
6672 	do {
6673 		union e1000_adv_rx_desc *rx_desc;
6674 
6675 		/* return some buffers to hardware, one at a time is too slow */
6676 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6677 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6678 			cleaned_count = 0;
6679 		}
6680 
6681 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6682 
6683 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6684 			break;
6685 
6686 		/* This memory barrier is needed to keep us from reading
6687 		 * any other fields out of the rx_desc until we know the
6688 		 * RXD_STAT_DD bit is set
6689 		 */
6690 		rmb();
6691 
6692 		/* retrieve a buffer from the ring */
6693 		if (ring_uses_build_skb(rx_ring))
6694 			skb = igb_build_rx_buffer(rx_ring, rx_desc);
6695 		else
6696 			skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6697 
6698 		/* exit if we failed to retrieve a buffer */
6699 		if (!skb)
6700 			break;
6701 
6702 		cleaned_count++;
6703 
6704 		/* fetch next buffer in frame if non-eop */
6705 		if (igb_is_non_eop(rx_ring, rx_desc))
6706 			continue;
6707 
6708 		/* verify the packet layout is correct */
6709 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6710 			skb = NULL;
6711 			continue;
6712 		}
6713 
6714 		/* probably a little skewed due to removing CRC */
6715 		total_bytes += skb->len;
6716 
6717 		/* populate checksum, timestamp, VLAN, and protocol */
6718 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6719 
6720 		napi_gro_receive(&q_vector->napi, skb);
6721 
6722 		/* reset skb pointer */
6723 		skb = NULL;
6724 
6725 		/* update budget accounting */
6726 		total_packets++;
6727 	} while (likely(total_packets < budget));
6728 
6729 	/* place incomplete frames back on ring for completion */
6730 	rx_ring->skb = skb;
6731 
6732 	u64_stats_update_begin(&rx_ring->rx_syncp);
6733 	rx_ring->rx_stats.packets += total_packets;
6734 	rx_ring->rx_stats.bytes += total_bytes;
6735 	u64_stats_update_end(&rx_ring->rx_syncp);
6736 	q_vector->rx.total_packets += total_packets;
6737 	q_vector->rx.total_bytes += total_bytes;
6738 
6739 	if (cleaned_count)
6740 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6741 
6742 	return (total_packets < budget);
6743 }
6744 
6745 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6746 				  struct igb_rx_buffer *bi)
6747 {
6748 	struct page *page = bi->page;
6749 	dma_addr_t dma;
6750 
6751 	/* since we are recycling buffers we should seldom need to alloc */
6752 	if (likely(page))
6753 		return true;
6754 
6755 	/* alloc new page for storage */
6756 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6757 	if (unlikely(!page)) {
6758 		rx_ring->rx_stats.alloc_failed++;
6759 		return false;
6760 	}
6761 
6762 	/* map page for use */
6763 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6764 
6765 	/*
6766 	 * if mapping failed free memory back to system since
6767 	 * there isn't much point in holding memory we can't use
6768 	 */
6769 	if (dma_mapping_error(rx_ring->dev, dma)) {
6770 		__free_page(page);
6771 
6772 		rx_ring->rx_stats.alloc_failed++;
6773 		return false;
6774 	}
6775 
6776 	bi->dma = dma;
6777 	bi->page = page;
6778 	bi->page_offset = 0;
6779 
6780 	return true;
6781 }
6782 
6783 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
6784 {
6785 	if (ring_uses_build_skb(rx_ring))
6786 		return NET_SKB_PAD + NET_IP_ALIGN;
6787 	else
6788 		return 0;
6789 }
6790 
6791 /**
6792  * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6793  * @adapter: address of board private structure
6794  **/
6795 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6796 {
6797 	union e1000_adv_rx_desc *rx_desc;
6798 	struct igb_rx_buffer *bi;
6799 	u16 i = rx_ring->next_to_use;
6800 
6801 	/* nothing to do */
6802 	if (!cleaned_count)
6803 		return;
6804 
6805 	rx_desc = IGB_RX_DESC(rx_ring, i);
6806 	bi = &rx_ring->rx_buffer_info[i];
6807 	i -= rx_ring->count;
6808 
6809 	do {
6810 		if (!igb_alloc_mapped_page(rx_ring, bi))
6811 			break;
6812 
6813 		/*
6814 		 * Refresh the desc even if buffer_addrs didn't change
6815 		 * because each write-back erases this info.
6816 		 */
6817 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
6818 						     bi->page_offset +
6819 						     igb_rx_offset(rx_ring));
6820 
6821 		rx_desc++;
6822 		bi++;
6823 		i++;
6824 		if (unlikely(!i)) {
6825 			rx_desc = IGB_RX_DESC(rx_ring, 0);
6826 			bi = rx_ring->rx_buffer_info;
6827 			i -= rx_ring->count;
6828 		}
6829 
6830 		/* clear the hdr_addr for the next_to_use descriptor */
6831 		rx_desc->read.hdr_addr = 0;
6832 
6833 		cleaned_count--;
6834 	} while (cleaned_count);
6835 
6836 	i += rx_ring->count;
6837 
6838 	if (rx_ring->next_to_use != i) {
6839 		/* record the next descriptor to use */
6840 		rx_ring->next_to_use = i;
6841 
6842 		/* update next to alloc since we have filled the ring */
6843 		rx_ring->next_to_alloc = i;
6844 
6845 		/*
6846 		 * Force memory writes to complete before letting h/w
6847 		 * know there are new descriptors to fetch.  (Only
6848 		 * applicable for weak-ordered memory model archs,
6849 		 * such as IA-64).
6850 		 */
6851 		wmb();
6852 		writel(i, rx_ring->tail);
6853 	}
6854 }
6855 
6856 /**
6857  * igb_mii_ioctl -
6858  * @netdev:
6859  * @ifreq:
6860  * @cmd:
6861  **/
6862 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6863 {
6864 	struct igb_adapter *adapter = netdev_priv(netdev);
6865 	struct mii_ioctl_data *data = if_mii(ifr);
6866 
6867 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6868 		return -EOPNOTSUPP;
6869 
6870 	switch (cmd) {
6871 	case SIOCGMIIPHY:
6872 		data->phy_id = adapter->hw.phy.addr;
6873 		break;
6874 	case SIOCGMIIREG:
6875 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6876 		                     &data->val_out))
6877 			return -EIO;
6878 		break;
6879 	case SIOCSMIIREG:
6880 	default:
6881 		return -EOPNOTSUPP;
6882 	}
6883 	return 0;
6884 }
6885 
6886 /**
6887  * igb_ioctl -
6888  * @netdev:
6889  * @ifreq:
6890  * @cmd:
6891  **/
6892 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6893 {
6894 	switch (cmd) {
6895 	case SIOCGMIIPHY:
6896 	case SIOCGMIIREG:
6897 	case SIOCSMIIREG:
6898 		return igb_mii_ioctl(netdev, ifr, cmd);
6899 	case SIOCSHWTSTAMP:
6900 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6901 	default:
6902 		return -EOPNOTSUPP;
6903 	}
6904 }
6905 
6906 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6907 {
6908 	struct igb_adapter *adapter = hw->back;
6909 
6910 	if (pcie_capability_read_word(adapter->pdev, reg, value))
6911 		return -E1000_ERR_CONFIG;
6912 
6913 	return 0;
6914 }
6915 
6916 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6917 {
6918 	struct igb_adapter *adapter = hw->back;
6919 
6920 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6921 		return -E1000_ERR_CONFIG;
6922 
6923 	return 0;
6924 }
6925 
6926 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6927 {
6928 	struct igb_adapter *adapter = netdev_priv(netdev);
6929 	struct e1000_hw *hw = &adapter->hw;
6930 	u32 ctrl, rctl;
6931 	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6932 
6933 	if (enable) {
6934 		/* enable VLAN tag insert/strip */
6935 		ctrl = rd32(E1000_CTRL);
6936 		ctrl |= E1000_CTRL_VME;
6937 		wr32(E1000_CTRL, ctrl);
6938 
6939 		/* Disable CFI check */
6940 		rctl = rd32(E1000_RCTL);
6941 		rctl &= ~E1000_RCTL_CFIEN;
6942 		wr32(E1000_RCTL, rctl);
6943 	} else {
6944 		/* disable VLAN tag insert/strip */
6945 		ctrl = rd32(E1000_CTRL);
6946 		ctrl &= ~E1000_CTRL_VME;
6947 		wr32(E1000_CTRL, ctrl);
6948 	}
6949 
6950 	igb_rlpml_set(adapter);
6951 }
6952 
6953 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6954 {
6955 	struct igb_adapter *adapter = netdev_priv(netdev);
6956 	struct e1000_hw *hw = &adapter->hw;
6957 	int pf_id = adapter->vfs_allocated_count;
6958 
6959 	/* attempt to add filter to vlvf array */
6960 	igb_vlvf_set(adapter, vid, true, pf_id);
6961 
6962 	/* add the filter since PF can receive vlans w/o entry in vlvf */
6963 	igb_vfta_set(hw, vid, true);
6964 
6965 	set_bit(vid, adapter->active_vlans);
6966 
6967 	return 0;
6968 }
6969 
6970 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6971 {
6972 	struct igb_adapter *adapter = netdev_priv(netdev);
6973 	struct e1000_hw *hw = &adapter->hw;
6974 	int pf_id = adapter->vfs_allocated_count;
6975 	s32 err;
6976 
6977 	/* remove vlan from VLVF table array */
6978 	err = igb_vlvf_set(adapter, vid, false, pf_id);
6979 
6980 	/* if vid was not present in VLVF just remove it from table */
6981 	if (err)
6982 		igb_vfta_set(hw, vid, false);
6983 
6984 	clear_bit(vid, adapter->active_vlans);
6985 
6986 	return 0;
6987 }
6988 
6989 static void igb_restore_vlan(struct igb_adapter *adapter)
6990 {
6991 	u16 vid;
6992 
6993 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6994 
6995 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6996 		igb_vlan_rx_add_vid(adapter->netdev, vid);
6997 }
6998 
6999 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7000 {
7001 	struct pci_dev *pdev = adapter->pdev;
7002 	struct e1000_mac_info *mac = &adapter->hw.mac;
7003 
7004 	mac->autoneg = 0;
7005 
7006 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7007 	 * for the switch() below to work */
7008 	if ((spd & 1) || (dplx & ~1))
7009 		goto err_inval;
7010 
7011 	/* Fiber NIC's only allow 1000 Gbps Full duplex */
7012 	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
7013 	    spd != SPEED_1000 &&
7014 	    dplx != DUPLEX_FULL)
7015 		goto err_inval;
7016 
7017 	switch (spd + dplx) {
7018 	case SPEED_10 + DUPLEX_HALF:
7019 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7020 		break;
7021 	case SPEED_10 + DUPLEX_FULL:
7022 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7023 		break;
7024 	case SPEED_100 + DUPLEX_HALF:
7025 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7026 		break;
7027 	case SPEED_100 + DUPLEX_FULL:
7028 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7029 		break;
7030 	case SPEED_1000 + DUPLEX_FULL:
7031 		mac->autoneg = 1;
7032 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7033 		break;
7034 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7035 	default:
7036 		goto err_inval;
7037 	}
7038 
7039 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7040 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7041 
7042 	return 0;
7043 
7044 err_inval:
7045 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7046 	return -EINVAL;
7047 }
7048 
7049 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7050 			  bool runtime)
7051 {
7052 	struct net_device *netdev = pci_get_drvdata(pdev);
7053 	struct igb_adapter *adapter = netdev_priv(netdev);
7054 	struct e1000_hw *hw = &adapter->hw;
7055 	u32 ctrl, rctl, status;
7056 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7057 #ifdef CONFIG_PM
7058 	int retval = 0;
7059 #endif
7060 
7061 	netif_device_detach(netdev);
7062 
7063 	if (netif_running(netdev))
7064 		__igb_close(netdev, true);
7065 
7066 	igb_clear_interrupt_scheme(adapter);
7067 
7068 #ifdef CONFIG_PM
7069 	retval = pci_save_state(pdev);
7070 	if (retval)
7071 		return retval;
7072 #endif
7073 
7074 	status = rd32(E1000_STATUS);
7075 	if (status & E1000_STATUS_LU)
7076 		wufc &= ~E1000_WUFC_LNKC;
7077 
7078 	if (wufc) {
7079 		igb_setup_rctl(adapter);
7080 		igb_set_rx_mode(netdev);
7081 
7082 		/* turn on all-multi mode if wake on multicast is enabled */
7083 		if (wufc & E1000_WUFC_MC) {
7084 			rctl = rd32(E1000_RCTL);
7085 			rctl |= E1000_RCTL_MPE;
7086 			wr32(E1000_RCTL, rctl);
7087 		}
7088 
7089 		ctrl = rd32(E1000_CTRL);
7090 		/* advertise wake from D3Cold */
7091 		#define E1000_CTRL_ADVD3WUC 0x00100000
7092 		/* phy power management enable */
7093 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7094 		ctrl |= E1000_CTRL_ADVD3WUC;
7095 		wr32(E1000_CTRL, ctrl);
7096 
7097 		/* Allow time for pending master requests to run */
7098 		igb_disable_pcie_master(hw);
7099 
7100 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7101 		wr32(E1000_WUFC, wufc);
7102 	} else {
7103 		wr32(E1000_WUC, 0);
7104 		wr32(E1000_WUFC, 0);
7105 	}
7106 
7107 	*enable_wake = wufc || adapter->en_mng_pt;
7108 	if (!*enable_wake)
7109 		igb_power_down_link(adapter);
7110 	else
7111 		igb_power_up_link(adapter);
7112 
7113 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7114 	 * would have already happened in close and is redundant. */
7115 	igb_release_hw_control(adapter);
7116 
7117 	pci_disable_device(pdev);
7118 
7119 	return 0;
7120 }
7121 
7122 #ifdef CONFIG_PM
7123 #ifdef CONFIG_PM_SLEEP
7124 static int igb_suspend(struct device *dev)
7125 {
7126 	int retval;
7127 	bool wake;
7128 	struct pci_dev *pdev = to_pci_dev(dev);
7129 
7130 	retval = __igb_shutdown(pdev, &wake, 0);
7131 	if (retval)
7132 		return retval;
7133 
7134 	if (wake) {
7135 		pci_prepare_to_sleep(pdev);
7136 	} else {
7137 		pci_wake_from_d3(pdev, false);
7138 		pci_set_power_state(pdev, PCI_D3hot);
7139 	}
7140 
7141 	return 0;
7142 }
7143 #endif /* CONFIG_PM_SLEEP */
7144 
7145 static int igb_resume(struct device *dev)
7146 {
7147 	struct pci_dev *pdev = to_pci_dev(dev);
7148 	struct net_device *netdev = pci_get_drvdata(pdev);
7149 	struct igb_adapter *adapter = netdev_priv(netdev);
7150 	struct e1000_hw *hw = &adapter->hw;
7151 	u32 err;
7152 
7153 	pci_set_power_state(pdev, PCI_D0);
7154 	pci_restore_state(pdev);
7155 	pci_save_state(pdev);
7156 
7157 	err = pci_enable_device_mem(pdev);
7158 	if (err) {
7159 		dev_err(&pdev->dev,
7160 			"igb: Cannot enable PCI device from suspend\n");
7161 		return err;
7162 	}
7163 	pci_set_master(pdev);
7164 
7165 	pci_enable_wake(pdev, PCI_D3hot, 0);
7166 	pci_enable_wake(pdev, PCI_D3cold, 0);
7167 
7168 	if (igb_init_interrupt_scheme(adapter, true)) {
7169 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7170 		return -ENOMEM;
7171 	}
7172 
7173 	igb_reset(adapter);
7174 
7175 	/* let the f/w know that the h/w is now under the control of the
7176 	 * driver. */
7177 	igb_get_hw_control(adapter);
7178 
7179 	wr32(E1000_WUS, ~0);
7180 
7181 	if (netdev->flags & IFF_UP) {
7182 		rtnl_lock();
7183 		err = __igb_open(netdev, true);
7184 		rtnl_unlock();
7185 		if (err)
7186 			return err;
7187 	}
7188 
7189 	netif_device_attach(netdev);
7190 	return 0;
7191 }
7192 
7193 #ifdef CONFIG_PM_RUNTIME
7194 static int igb_runtime_idle(struct device *dev)
7195 {
7196 	struct pci_dev *pdev = to_pci_dev(dev);
7197 	struct net_device *netdev = pci_get_drvdata(pdev);
7198 	struct igb_adapter *adapter = netdev_priv(netdev);
7199 
7200 	if (!igb_has_link(adapter))
7201 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7202 
7203 	return -EBUSY;
7204 }
7205 
7206 static int igb_runtime_suspend(struct device *dev)
7207 {
7208 	struct pci_dev *pdev = to_pci_dev(dev);
7209 	int retval;
7210 	bool wake;
7211 
7212 	retval = __igb_shutdown(pdev, &wake, 1);
7213 	if (retval)
7214 		return retval;
7215 
7216 	if (wake) {
7217 		pci_prepare_to_sleep(pdev);
7218 	} else {
7219 		pci_wake_from_d3(pdev, false);
7220 		pci_set_power_state(pdev, PCI_D3hot);
7221 	}
7222 
7223 	return 0;
7224 }
7225 
7226 static int igb_runtime_resume(struct device *dev)
7227 {
7228 	return igb_resume(dev);
7229 }
7230 #endif /* CONFIG_PM_RUNTIME */
7231 #endif
7232 
7233 static void igb_shutdown(struct pci_dev *pdev)
7234 {
7235 	bool wake;
7236 
7237 	__igb_shutdown(pdev, &wake, 0);
7238 
7239 	if (system_state == SYSTEM_POWER_OFF) {
7240 		pci_wake_from_d3(pdev, wake);
7241 		pci_set_power_state(pdev, PCI_D3hot);
7242 	}
7243 }
7244 
7245 #ifdef CONFIG_PCI_IOV
7246 static int igb_sriov_reinit(struct pci_dev *dev)
7247 {
7248 	struct net_device *netdev = pci_get_drvdata(dev);
7249 	struct igb_adapter *adapter = netdev_priv(netdev);
7250 	struct pci_dev *pdev = adapter->pdev;
7251 
7252 	rtnl_lock();
7253 
7254 	if (netif_running(netdev))
7255 		igb_close(netdev);
7256 
7257 	igb_clear_interrupt_scheme(adapter);
7258 
7259 	igb_init_queue_configuration(adapter);
7260 
7261 	if (igb_init_interrupt_scheme(adapter, true)) {
7262 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7263 		return -ENOMEM;
7264 	}
7265 
7266 	if (netif_running(netdev))
7267 		igb_open(netdev);
7268 
7269 	rtnl_unlock();
7270 
7271 	return 0;
7272 }
7273 
7274 static int igb_pci_disable_sriov(struct pci_dev *dev)
7275 {
7276 	int err = igb_disable_sriov(dev);
7277 
7278 	if (!err)
7279 		err = igb_sriov_reinit(dev);
7280 
7281 	return err;
7282 }
7283 
7284 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7285 {
7286 	int err = igb_enable_sriov(dev, num_vfs);
7287 
7288 	if (err)
7289 		goto out;
7290 
7291 	err = igb_sriov_reinit(dev);
7292 	if (!err)
7293 		return num_vfs;
7294 
7295 out:
7296 	return err;
7297 }
7298 
7299 #endif
7300 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7301 {
7302 #ifdef CONFIG_PCI_IOV
7303 	if (num_vfs == 0)
7304 		return igb_pci_disable_sriov(dev);
7305 	else
7306 		return igb_pci_enable_sriov(dev, num_vfs);
7307 #endif
7308 	return 0;
7309 }
7310 
7311 #ifdef CONFIG_NET_POLL_CONTROLLER
7312 /*
7313  * Polling 'interrupt' - used by things like netconsole to send skbs
7314  * without having to re-enable interrupts. It's not called while
7315  * the interrupt routine is executing.
7316  */
7317 static void igb_netpoll(struct net_device *netdev)
7318 {
7319 	struct igb_adapter *adapter = netdev_priv(netdev);
7320 	struct e1000_hw *hw = &adapter->hw;
7321 	struct igb_q_vector *q_vector;
7322 	int i;
7323 
7324 	for (i = 0; i < adapter->num_q_vectors; i++) {
7325 		q_vector = adapter->q_vector[i];
7326 		if (adapter->msix_entries)
7327 			wr32(E1000_EIMC, q_vector->eims_value);
7328 		else
7329 			igb_irq_disable(adapter);
7330 		napi_schedule(&q_vector->napi);
7331 	}
7332 }
7333 #endif /* CONFIG_NET_POLL_CONTROLLER */
7334 
7335 /**
7336  * igb_io_error_detected - called when PCI error is detected
7337  * @pdev: Pointer to PCI device
7338  * @state: The current pci connection state
7339  *
7340  * This function is called after a PCI bus error affecting
7341  * this device has been detected.
7342  */
7343 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7344 					      pci_channel_state_t state)
7345 {
7346 	struct net_device *netdev = pci_get_drvdata(pdev);
7347 	struct igb_adapter *adapter = netdev_priv(netdev);
7348 
7349 	netif_device_detach(netdev);
7350 
7351 	if (state == pci_channel_io_perm_failure)
7352 		return PCI_ERS_RESULT_DISCONNECT;
7353 
7354 	if (netif_running(netdev))
7355 		igb_down(adapter);
7356 	pci_disable_device(pdev);
7357 
7358 	/* Request a slot slot reset. */
7359 	return PCI_ERS_RESULT_NEED_RESET;
7360 }
7361 
7362 /**
7363  * igb_io_slot_reset - called after the pci bus has been reset.
7364  * @pdev: Pointer to PCI device
7365  *
7366  * Restart the card from scratch, as if from a cold-boot. Implementation
7367  * resembles the first-half of the igb_resume routine.
7368  */
7369 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7370 {
7371 	struct net_device *netdev = pci_get_drvdata(pdev);
7372 	struct igb_adapter *adapter = netdev_priv(netdev);
7373 	struct e1000_hw *hw = &adapter->hw;
7374 	pci_ers_result_t result;
7375 	int err;
7376 
7377 	if (pci_enable_device_mem(pdev)) {
7378 		dev_err(&pdev->dev,
7379 			"Cannot re-enable PCI device after reset.\n");
7380 		result = PCI_ERS_RESULT_DISCONNECT;
7381 	} else {
7382 		pci_set_master(pdev);
7383 		pci_restore_state(pdev);
7384 		pci_save_state(pdev);
7385 
7386 		pci_enable_wake(pdev, PCI_D3hot, 0);
7387 		pci_enable_wake(pdev, PCI_D3cold, 0);
7388 
7389 		igb_reset(adapter);
7390 		wr32(E1000_WUS, ~0);
7391 		result = PCI_ERS_RESULT_RECOVERED;
7392 	}
7393 
7394 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7395 	if (err) {
7396 		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7397 		        "failed 0x%0x\n", err);
7398 		/* non-fatal, continue */
7399 	}
7400 
7401 	return result;
7402 }
7403 
7404 /**
7405  * igb_io_resume - called when traffic can start flowing again.
7406  * @pdev: Pointer to PCI device
7407  *
7408  * This callback is called when the error recovery driver tells us that
7409  * its OK to resume normal operation. Implementation resembles the
7410  * second-half of the igb_resume routine.
7411  */
7412 static void igb_io_resume(struct pci_dev *pdev)
7413 {
7414 	struct net_device *netdev = pci_get_drvdata(pdev);
7415 	struct igb_adapter *adapter = netdev_priv(netdev);
7416 
7417 	if (netif_running(netdev)) {
7418 		if (igb_up(adapter)) {
7419 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7420 			return;
7421 		}
7422 	}
7423 
7424 	netif_device_attach(netdev);
7425 
7426 	/* let the f/w know that the h/w is now under the control of the
7427 	 * driver. */
7428 	igb_get_hw_control(adapter);
7429 }
7430 
7431 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7432                              u8 qsel)
7433 {
7434 	u32 rar_low, rar_high;
7435 	struct e1000_hw *hw = &adapter->hw;
7436 
7437 	/* HW expects these in little endian so we reverse the byte order
7438 	 * from network order (big endian) to little endian
7439 	 */
7440 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7441 	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7442 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7443 
7444 	/* Indicate to hardware the Address is Valid. */
7445 	rar_high |= E1000_RAH_AV;
7446 
7447 	if (hw->mac.type == e1000_82575)
7448 		rar_high |= E1000_RAH_POOL_1 * qsel;
7449 	else
7450 		rar_high |= E1000_RAH_POOL_1 << qsel;
7451 
7452 	wr32(E1000_RAL(index), rar_low);
7453 	wrfl();
7454 	wr32(E1000_RAH(index), rar_high);
7455 	wrfl();
7456 }
7457 
7458 static int igb_set_vf_mac(struct igb_adapter *adapter,
7459                           int vf, unsigned char *mac_addr)
7460 {
7461 	struct e1000_hw *hw = &adapter->hw;
7462 	/* VF MAC addresses start at end of receive addresses and moves
7463 	 * torwards the first, as a result a collision should not be possible */
7464 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7465 
7466 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7467 
7468 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7469 
7470 	return 0;
7471 }
7472 
7473 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7474 {
7475 	struct igb_adapter *adapter = netdev_priv(netdev);
7476 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7477 		return -EINVAL;
7478 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7479 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7480 	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7481 				      " change effective.");
7482 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7483 		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7484 			 " but the PF device is not up.\n");
7485 		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7486 			 " attempting to use the VF device.\n");
7487 	}
7488 	return igb_set_vf_mac(adapter, vf, mac);
7489 }
7490 
7491 static int igb_link_mbps(int internal_link_speed)
7492 {
7493 	switch (internal_link_speed) {
7494 	case SPEED_100:
7495 		return 100;
7496 	case SPEED_1000:
7497 		return 1000;
7498 	default:
7499 		return 0;
7500 	}
7501 }
7502 
7503 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7504 				  int link_speed)
7505 {
7506 	int rf_dec, rf_int;
7507 	u32 bcnrc_val;
7508 
7509 	if (tx_rate != 0) {
7510 		/* Calculate the rate factor values to set */
7511 		rf_int = link_speed / tx_rate;
7512 		rf_dec = (link_speed - (rf_int * tx_rate));
7513 		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7514 
7515 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7516 		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7517 		               E1000_RTTBCNRC_RF_INT_MASK);
7518 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7519 	} else {
7520 		bcnrc_val = 0;
7521 	}
7522 
7523 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7524 	/*
7525 	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7526 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7527 	 */
7528 	wr32(E1000_RTTBCNRM, 0x14);
7529 	wr32(E1000_RTTBCNRC, bcnrc_val);
7530 }
7531 
7532 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7533 {
7534 	int actual_link_speed, i;
7535 	bool reset_rate = false;
7536 
7537 	/* VF TX rate limit was not set or not supported */
7538 	if ((adapter->vf_rate_link_speed == 0) ||
7539 	    (adapter->hw.mac.type != e1000_82576))
7540 		return;
7541 
7542 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7543 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7544 		reset_rate = true;
7545 		adapter->vf_rate_link_speed = 0;
7546 		dev_info(&adapter->pdev->dev,
7547 		         "Link speed has been changed. VF Transmit "
7548 		         "rate is disabled\n");
7549 	}
7550 
7551 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7552 		if (reset_rate)
7553 			adapter->vf_data[i].tx_rate = 0;
7554 
7555 		igb_set_vf_rate_limit(&adapter->hw, i,
7556 		                      adapter->vf_data[i].tx_rate,
7557 		                      actual_link_speed);
7558 	}
7559 }
7560 
7561 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7562 {
7563 	struct igb_adapter *adapter = netdev_priv(netdev);
7564 	struct e1000_hw *hw = &adapter->hw;
7565 	int actual_link_speed;
7566 
7567 	if (hw->mac.type != e1000_82576)
7568 		return -EOPNOTSUPP;
7569 
7570 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7571 	if ((vf >= adapter->vfs_allocated_count) ||
7572 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7573 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7574 		return -EINVAL;
7575 
7576 	adapter->vf_rate_link_speed = actual_link_speed;
7577 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7578 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7579 
7580 	return 0;
7581 }
7582 
7583 static int igb_ndo_get_vf_config(struct net_device *netdev,
7584 				 int vf, struct ifla_vf_info *ivi)
7585 {
7586 	struct igb_adapter *adapter = netdev_priv(netdev);
7587 	if (vf >= adapter->vfs_allocated_count)
7588 		return -EINVAL;
7589 	ivi->vf = vf;
7590 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7591 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7592 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7593 	ivi->qos = adapter->vf_data[vf].pf_qos;
7594 	return 0;
7595 }
7596 
7597 static void igb_vmm_control(struct igb_adapter *adapter)
7598 {
7599 	struct e1000_hw *hw = &adapter->hw;
7600 	u32 reg;
7601 
7602 	switch (hw->mac.type) {
7603 	case e1000_82575:
7604 	case e1000_i210:
7605 	case e1000_i211:
7606 	default:
7607 		/* replication is not supported for 82575 */
7608 		return;
7609 	case e1000_82576:
7610 		/* notify HW that the MAC is adding vlan tags */
7611 		reg = rd32(E1000_DTXCTL);
7612 		reg |= E1000_DTXCTL_VLAN_ADDED;
7613 		wr32(E1000_DTXCTL, reg);
7614 	case e1000_82580:
7615 		/* enable replication vlan tag stripping */
7616 		reg = rd32(E1000_RPLOLR);
7617 		reg |= E1000_RPLOLR_STRVLAN;
7618 		wr32(E1000_RPLOLR, reg);
7619 	case e1000_i350:
7620 		/* none of the above registers are supported by i350 */
7621 		break;
7622 	}
7623 
7624 	if (adapter->vfs_allocated_count) {
7625 		igb_vmdq_set_loopback_pf(hw, true);
7626 		igb_vmdq_set_replication_pf(hw, true);
7627 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7628 						adapter->vfs_allocated_count);
7629 	} else {
7630 		igb_vmdq_set_loopback_pf(hw, false);
7631 		igb_vmdq_set_replication_pf(hw, false);
7632 	}
7633 }
7634 
7635 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7636 {
7637 	struct e1000_hw *hw = &adapter->hw;
7638 	u32 dmac_thr;
7639 	u16 hwm;
7640 
7641 	if (hw->mac.type > e1000_82580) {
7642 		if (adapter->flags & IGB_FLAG_DMAC) {
7643 			u32 reg;
7644 
7645 			/* force threshold to 0. */
7646 			wr32(E1000_DMCTXTH, 0);
7647 
7648 			/*
7649 			 * DMA Coalescing high water mark needs to be greater
7650 			 * than the Rx threshold. Set hwm to PBA - max frame
7651 			 * size in 16B units, capping it at PBA - 6KB.
7652 			 */
7653 			hwm = 64 * pba - adapter->max_frame_size / 16;
7654 			if (hwm < 64 * (pba - 6))
7655 				hwm = 64 * (pba - 6);
7656 			reg = rd32(E1000_FCRTC);
7657 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7658 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7659 				& E1000_FCRTC_RTH_COAL_MASK);
7660 			wr32(E1000_FCRTC, reg);
7661 
7662 			/*
7663 			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7664 			 * frame size, capping it at PBA - 10KB.
7665 			 */
7666 			dmac_thr = pba - adapter->max_frame_size / 512;
7667 			if (dmac_thr < pba - 10)
7668 				dmac_thr = pba - 10;
7669 			reg = rd32(E1000_DMACR);
7670 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7671 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7672 				& E1000_DMACR_DMACTHR_MASK);
7673 
7674 			/* transition to L0x or L1 if available..*/
7675 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7676 
7677 			/* watchdog timer= +-1000 usec in 32usec intervals */
7678 			reg |= (1000 >> 5);
7679 
7680 			/* Disable BMC-to-OS Watchdog Enable */
7681 			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7682 			wr32(E1000_DMACR, reg);
7683 
7684 			/*
7685 			 * no lower threshold to disable
7686 			 * coalescing(smart fifb)-UTRESH=0
7687 			 */
7688 			wr32(E1000_DMCRTRH, 0);
7689 
7690 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7691 
7692 			wr32(E1000_DMCTLX, reg);
7693 
7694 			/*
7695 			 * free space in tx packet buffer to wake from
7696 			 * DMA coal
7697 			 */
7698 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7699 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7700 
7701 			/*
7702 			 * make low power state decision controlled
7703 			 * by DMA coal
7704 			 */
7705 			reg = rd32(E1000_PCIEMISC);
7706 			reg &= ~E1000_PCIEMISC_LX_DECISION;
7707 			wr32(E1000_PCIEMISC, reg);
7708 		} /* endif adapter->dmac is not disabled */
7709 	} else if (hw->mac.type == e1000_82580) {
7710 		u32 reg = rd32(E1000_PCIEMISC);
7711 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7712 		wr32(E1000_DMACR, 0);
7713 	}
7714 }
7715 
7716 /*  igb_read_i2c_byte - Reads 8 bit word over I2C
7717  *  @hw: pointer to hardware structure
7718  *  @byte_offset: byte offset to read
7719  *  @dev_addr: device address
7720  *  @data: value read
7721  *
7722  *  Performs byte read operation over I2C interface at
7723  *  a specified device address.
7724  */
7725 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7726 				u8 dev_addr, u8 *data)
7727 {
7728 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7729 	struct i2c_client *this_client = adapter->i2c_client;
7730 	s32 status;
7731 	u16 swfw_mask = 0;
7732 
7733 	if (!this_client)
7734 		return E1000_ERR_I2C;
7735 
7736 	swfw_mask = E1000_SWFW_PHY0_SM;
7737 
7738 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7739 	    != E1000_SUCCESS)
7740 		return E1000_ERR_SWFW_SYNC;
7741 
7742 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7743 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7744 
7745 	if (status < 0)
7746 		return E1000_ERR_I2C;
7747 	else {
7748 		*data = status;
7749 		return E1000_SUCCESS;
7750 	}
7751 }
7752 
7753 /*  igb_write_i2c_byte - Writes 8 bit word over I2C
7754  *  @hw: pointer to hardware structure
7755  *  @byte_offset: byte offset to write
7756  *  @dev_addr: device address
7757  *  @data: value to write
7758  *
7759  *  Performs byte write operation over I2C interface at
7760  *  a specified device address.
7761  */
7762 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7763 				 u8 dev_addr, u8 data)
7764 {
7765 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7766 	struct i2c_client *this_client = adapter->i2c_client;
7767 	s32 status;
7768 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7769 
7770 	if (!this_client)
7771 		return E1000_ERR_I2C;
7772 
7773 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7774 		return E1000_ERR_SWFW_SYNC;
7775 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7776 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7777 
7778 	if (status)
7779 		return E1000_ERR_I2C;
7780 	else
7781 		return E1000_SUCCESS;
7782 
7783 }
7784 /* igb_main.c */
7785