1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/bitops.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/netdevice.h> 13 #include <linux/ipv6.h> 14 #include <linux/slab.h> 15 #include <net/checksum.h> 16 #include <net/ip6_checksum.h> 17 #include <net/pkt_sched.h> 18 #include <net/pkt_cls.h> 19 #include <linux/net_tstamp.h> 20 #include <linux/mii.h> 21 #include <linux/ethtool.h> 22 #include <linux/if.h> 23 #include <linux/if_vlan.h> 24 #include <linux/pci.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/ip.h> 28 #include <linux/tcp.h> 29 #include <linux/sctp.h> 30 #include <linux/if_ether.h> 31 #include <linux/aer.h> 32 #include <linux/prefetch.h> 33 #include <linux/bpf.h> 34 #include <linux/bpf_trace.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/etherdevice.h> 37 #ifdef CONFIG_IGB_DCA 38 #include <linux/dca.h> 39 #endif 40 #include <linux/i2c.h> 41 #include "igb.h" 42 43 enum queue_mode { 44 QUEUE_MODE_STRICT_PRIORITY, 45 QUEUE_MODE_STREAM_RESERVATION, 46 }; 47 48 enum tx_queue_prio { 49 TX_QUEUE_PRIO_HIGH, 50 TX_QUEUE_PRIO_LOW, 51 }; 52 53 char igb_driver_name[] = "igb"; 54 static const char igb_driver_string[] = 55 "Intel(R) Gigabit Ethernet Network Driver"; 56 static const char igb_copyright[] = 57 "Copyright (c) 2007-2014 Intel Corporation."; 58 59 static const struct e1000_info *igb_info_tbl[] = { 60 [board_82575] = &e1000_82575_info, 61 }; 62 63 static const struct pci_device_id igb_pci_tbl[] = { 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 99 /* required last entry */ 100 {0, } 101 }; 102 103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 104 105 static int igb_setup_all_tx_resources(struct igb_adapter *); 106 static int igb_setup_all_rx_resources(struct igb_adapter *); 107 static void igb_free_all_tx_resources(struct igb_adapter *); 108 static void igb_free_all_rx_resources(struct igb_adapter *); 109 static void igb_setup_mrqc(struct igb_adapter *); 110 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 111 static void igb_remove(struct pci_dev *pdev); 112 static int igb_sw_init(struct igb_adapter *); 113 int igb_open(struct net_device *); 114 int igb_close(struct net_device *); 115 static void igb_configure(struct igb_adapter *); 116 static void igb_configure_tx(struct igb_adapter *); 117 static void igb_configure_rx(struct igb_adapter *); 118 static void igb_clean_all_tx_rings(struct igb_adapter *); 119 static void igb_clean_all_rx_rings(struct igb_adapter *); 120 static void igb_clean_tx_ring(struct igb_ring *); 121 static void igb_clean_rx_ring(struct igb_ring *); 122 static void igb_set_rx_mode(struct net_device *); 123 static void igb_update_phy_info(struct timer_list *); 124 static void igb_watchdog(struct timer_list *); 125 static void igb_watchdog_task(struct work_struct *); 126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 127 static void igb_get_stats64(struct net_device *dev, 128 struct rtnl_link_stats64 *stats); 129 static int igb_change_mtu(struct net_device *, int); 130 static int igb_set_mac(struct net_device *, void *); 131 static void igb_set_uta(struct igb_adapter *adapter, bool set); 132 static irqreturn_t igb_intr(int irq, void *); 133 static irqreturn_t igb_intr_msi(int irq, void *); 134 static irqreturn_t igb_msix_other(int irq, void *); 135 static irqreturn_t igb_msix_ring(int irq, void *); 136 #ifdef CONFIG_IGB_DCA 137 static void igb_update_dca(struct igb_q_vector *); 138 static void igb_setup_dca(struct igb_adapter *); 139 #endif /* CONFIG_IGB_DCA */ 140 static int igb_poll(struct napi_struct *, int); 141 static bool igb_clean_tx_irq(struct igb_q_vector *, int); 142 static int igb_clean_rx_irq(struct igb_q_vector *, int); 143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue); 145 static void igb_reset_task(struct work_struct *); 146 static void igb_vlan_mode(struct net_device *netdev, 147 netdev_features_t features); 148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 150 static void igb_restore_vlan(struct igb_adapter *); 151 static void igb_rar_set_index(struct igb_adapter *, u32); 152 static void igb_ping_all_vfs(struct igb_adapter *); 153 static void igb_msg_task(struct igb_adapter *); 154 static void igb_vmm_control(struct igb_adapter *); 155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 156 static void igb_flush_mac_table(struct igb_adapter *); 157 static int igb_available_rars(struct igb_adapter *, u8); 158 static void igb_set_default_mac_filter(struct igb_adapter *); 159 static int igb_uc_sync(struct net_device *, const unsigned char *); 160 static int igb_uc_unsync(struct net_device *, const unsigned char *); 161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 163 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 164 int vf, u16 vlan, u8 qos, __be16 vlan_proto); 165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 167 bool setting); 168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, 169 bool setting); 170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 171 struct ifla_vf_info *ivi); 172 static void igb_check_vf_rate_limit(struct igb_adapter *); 173 static void igb_nfc_filter_exit(struct igb_adapter *adapter); 174 static void igb_nfc_filter_restore(struct igb_adapter *adapter); 175 176 #ifdef CONFIG_PCI_IOV 177 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 179 static int igb_disable_sriov(struct pci_dev *dev); 180 static int igb_pci_disable_sriov(struct pci_dev *dev); 181 #endif 182 183 static int igb_suspend(struct device *); 184 static int igb_resume(struct device *); 185 static int igb_runtime_suspend(struct device *dev); 186 static int igb_runtime_resume(struct device *dev); 187 static int igb_runtime_idle(struct device *dev); 188 static const struct dev_pm_ops igb_pm_ops = { 189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 191 igb_runtime_idle) 192 }; 193 static void igb_shutdown(struct pci_dev *); 194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 195 #ifdef CONFIG_IGB_DCA 196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 197 static struct notifier_block dca_notifier = { 198 .notifier_call = igb_notify_dca, 199 .next = NULL, 200 .priority = 0 201 }; 202 #endif 203 #ifdef CONFIG_PCI_IOV 204 static unsigned int max_vfs; 205 module_param(max_vfs, uint, 0); 206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 207 #endif /* CONFIG_PCI_IOV */ 208 209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 210 pci_channel_state_t); 211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 212 static void igb_io_resume(struct pci_dev *); 213 214 static const struct pci_error_handlers igb_err_handler = { 215 .error_detected = igb_io_error_detected, 216 .slot_reset = igb_io_slot_reset, 217 .resume = igb_io_resume, 218 }; 219 220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 221 222 static struct pci_driver igb_driver = { 223 .name = igb_driver_name, 224 .id_table = igb_pci_tbl, 225 .probe = igb_probe, 226 .remove = igb_remove, 227 #ifdef CONFIG_PM 228 .driver.pm = &igb_pm_ops, 229 #endif 230 .shutdown = igb_shutdown, 231 .sriov_configure = igb_pci_sriov_configure, 232 .err_handler = &igb_err_handler 233 }; 234 235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 237 MODULE_LICENSE("GPL v2"); 238 239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 240 static int debug = -1; 241 module_param(debug, int, 0); 242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 243 244 struct igb_reg_info { 245 u32 ofs; 246 char *name; 247 }; 248 249 static const struct igb_reg_info igb_reg_info_tbl[] = { 250 251 /* General Registers */ 252 {E1000_CTRL, "CTRL"}, 253 {E1000_STATUS, "STATUS"}, 254 {E1000_CTRL_EXT, "CTRL_EXT"}, 255 256 /* Interrupt Registers */ 257 {E1000_ICR, "ICR"}, 258 259 /* RX Registers */ 260 {E1000_RCTL, "RCTL"}, 261 {E1000_RDLEN(0), "RDLEN"}, 262 {E1000_RDH(0), "RDH"}, 263 {E1000_RDT(0), "RDT"}, 264 {E1000_RXDCTL(0), "RXDCTL"}, 265 {E1000_RDBAL(0), "RDBAL"}, 266 {E1000_RDBAH(0), "RDBAH"}, 267 268 /* TX Registers */ 269 {E1000_TCTL, "TCTL"}, 270 {E1000_TDBAL(0), "TDBAL"}, 271 {E1000_TDBAH(0), "TDBAH"}, 272 {E1000_TDLEN(0), "TDLEN"}, 273 {E1000_TDH(0), "TDH"}, 274 {E1000_TDT(0), "TDT"}, 275 {E1000_TXDCTL(0), "TXDCTL"}, 276 {E1000_TDFH, "TDFH"}, 277 {E1000_TDFT, "TDFT"}, 278 {E1000_TDFHS, "TDFHS"}, 279 {E1000_TDFPC, "TDFPC"}, 280 281 /* List Terminator */ 282 {} 283 }; 284 285 /* igb_regdump - register printout routine */ 286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 287 { 288 int n = 0; 289 char rname[16]; 290 u32 regs[8]; 291 292 switch (reginfo->ofs) { 293 case E1000_RDLEN(0): 294 for (n = 0; n < 4; n++) 295 regs[n] = rd32(E1000_RDLEN(n)); 296 break; 297 case E1000_RDH(0): 298 for (n = 0; n < 4; n++) 299 regs[n] = rd32(E1000_RDH(n)); 300 break; 301 case E1000_RDT(0): 302 for (n = 0; n < 4; n++) 303 regs[n] = rd32(E1000_RDT(n)); 304 break; 305 case E1000_RXDCTL(0): 306 for (n = 0; n < 4; n++) 307 regs[n] = rd32(E1000_RXDCTL(n)); 308 break; 309 case E1000_RDBAL(0): 310 for (n = 0; n < 4; n++) 311 regs[n] = rd32(E1000_RDBAL(n)); 312 break; 313 case E1000_RDBAH(0): 314 for (n = 0; n < 4; n++) 315 regs[n] = rd32(E1000_RDBAH(n)); 316 break; 317 case E1000_TDBAL(0): 318 for (n = 0; n < 4; n++) 319 regs[n] = rd32(E1000_TDBAL(n)); 320 break; 321 case E1000_TDBAH(0): 322 for (n = 0; n < 4; n++) 323 regs[n] = rd32(E1000_TDBAH(n)); 324 break; 325 case E1000_TDLEN(0): 326 for (n = 0; n < 4; n++) 327 regs[n] = rd32(E1000_TDLEN(n)); 328 break; 329 case E1000_TDH(0): 330 for (n = 0; n < 4; n++) 331 regs[n] = rd32(E1000_TDH(n)); 332 break; 333 case E1000_TDT(0): 334 for (n = 0; n < 4; n++) 335 regs[n] = rd32(E1000_TDT(n)); 336 break; 337 case E1000_TXDCTL(0): 338 for (n = 0; n < 4; n++) 339 regs[n] = rd32(E1000_TXDCTL(n)); 340 break; 341 default: 342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 343 return; 344 } 345 346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 348 regs[2], regs[3]); 349 } 350 351 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 352 static void igb_dump(struct igb_adapter *adapter) 353 { 354 struct net_device *netdev = adapter->netdev; 355 struct e1000_hw *hw = &adapter->hw; 356 struct igb_reg_info *reginfo; 357 struct igb_ring *tx_ring; 358 union e1000_adv_tx_desc *tx_desc; 359 struct my_u0 { __le64 a; __le64 b; } *u0; 360 struct igb_ring *rx_ring; 361 union e1000_adv_rx_desc *rx_desc; 362 u32 staterr; 363 u16 i, n; 364 365 if (!netif_msg_hw(adapter)) 366 return; 367 368 /* Print netdevice Info */ 369 if (netdev) { 370 dev_info(&adapter->pdev->dev, "Net device Info\n"); 371 pr_info("Device Name state trans_start\n"); 372 pr_info("%-15s %016lX %016lX\n", netdev->name, 373 netdev->state, dev_trans_start(netdev)); 374 } 375 376 /* Print Registers */ 377 dev_info(&adapter->pdev->dev, "Register Dump\n"); 378 pr_info(" Register Name Value\n"); 379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 380 reginfo->name; reginfo++) { 381 igb_regdump(hw, reginfo); 382 } 383 384 /* Print TX Ring Summary */ 385 if (!netdev || !netif_running(netdev)) 386 goto exit; 387 388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 390 for (n = 0; n < adapter->num_tx_queues; n++) { 391 struct igb_tx_buffer *buffer_info; 392 tx_ring = adapter->tx_ring[n]; 393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 395 n, tx_ring->next_to_use, tx_ring->next_to_clean, 396 (u64)dma_unmap_addr(buffer_info, dma), 397 dma_unmap_len(buffer_info, len), 398 buffer_info->next_to_watch, 399 (u64)buffer_info->time_stamp); 400 } 401 402 /* Print TX Rings */ 403 if (!netif_msg_tx_done(adapter)) 404 goto rx_ring_summary; 405 406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 407 408 /* Transmit Descriptor Formats 409 * 410 * Advanced Transmit Descriptor 411 * +--------------------------------------------------------------+ 412 * 0 | Buffer Address [63:0] | 413 * +--------------------------------------------------------------+ 414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 415 * +--------------------------------------------------------------+ 416 * 63 46 45 40 39 38 36 35 32 31 24 15 0 417 */ 418 419 for (n = 0; n < adapter->num_tx_queues; n++) { 420 tx_ring = adapter->tx_ring[n]; 421 pr_info("------------------------------------\n"); 422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 423 pr_info("------------------------------------\n"); 424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 425 426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 427 const char *next_desc; 428 struct igb_tx_buffer *buffer_info; 429 tx_desc = IGB_TX_DESC(tx_ring, i); 430 buffer_info = &tx_ring->tx_buffer_info[i]; 431 u0 = (struct my_u0 *)tx_desc; 432 if (i == tx_ring->next_to_use && 433 i == tx_ring->next_to_clean) 434 next_desc = " NTC/U"; 435 else if (i == tx_ring->next_to_use) 436 next_desc = " NTU"; 437 else if (i == tx_ring->next_to_clean) 438 next_desc = " NTC"; 439 else 440 next_desc = ""; 441 442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 443 i, le64_to_cpu(u0->a), 444 le64_to_cpu(u0->b), 445 (u64)dma_unmap_addr(buffer_info, dma), 446 dma_unmap_len(buffer_info, len), 447 buffer_info->next_to_watch, 448 (u64)buffer_info->time_stamp, 449 buffer_info->skb, next_desc); 450 451 if (netif_msg_pktdata(adapter) && buffer_info->skb) 452 print_hex_dump(KERN_INFO, "", 453 DUMP_PREFIX_ADDRESS, 454 16, 1, buffer_info->skb->data, 455 dma_unmap_len(buffer_info, len), 456 true); 457 } 458 } 459 460 /* Print RX Rings Summary */ 461 rx_ring_summary: 462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 463 pr_info("Queue [NTU] [NTC]\n"); 464 for (n = 0; n < adapter->num_rx_queues; n++) { 465 rx_ring = adapter->rx_ring[n]; 466 pr_info(" %5d %5X %5X\n", 467 n, rx_ring->next_to_use, rx_ring->next_to_clean); 468 } 469 470 /* Print RX Rings */ 471 if (!netif_msg_rx_status(adapter)) 472 goto exit; 473 474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 475 476 /* Advanced Receive Descriptor (Read) Format 477 * 63 1 0 478 * +-----------------------------------------------------+ 479 * 0 | Packet Buffer Address [63:1] |A0/NSE| 480 * +----------------------------------------------+------+ 481 * 8 | Header Buffer Address [63:1] | DD | 482 * +-----------------------------------------------------+ 483 * 484 * 485 * Advanced Receive Descriptor (Write-Back) Format 486 * 487 * 63 48 47 32 31 30 21 20 17 16 4 3 0 488 * +------------------------------------------------------+ 489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 490 * | Checksum Ident | | | | Type | Type | 491 * +------------------------------------------------------+ 492 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 493 * +------------------------------------------------------+ 494 * 63 48 47 32 31 20 19 0 495 */ 496 497 for (n = 0; n < adapter->num_rx_queues; n++) { 498 rx_ring = adapter->rx_ring[n]; 499 pr_info("------------------------------------\n"); 500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 501 pr_info("------------------------------------\n"); 502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 504 505 for (i = 0; i < rx_ring->count; i++) { 506 const char *next_desc; 507 struct igb_rx_buffer *buffer_info; 508 buffer_info = &rx_ring->rx_buffer_info[i]; 509 rx_desc = IGB_RX_DESC(rx_ring, i); 510 u0 = (struct my_u0 *)rx_desc; 511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 512 513 if (i == rx_ring->next_to_use) 514 next_desc = " NTU"; 515 else if (i == rx_ring->next_to_clean) 516 next_desc = " NTC"; 517 else 518 next_desc = ""; 519 520 if (staterr & E1000_RXD_STAT_DD) { 521 /* Descriptor Done */ 522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 523 "RWB", i, 524 le64_to_cpu(u0->a), 525 le64_to_cpu(u0->b), 526 next_desc); 527 } else { 528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 529 "R ", i, 530 le64_to_cpu(u0->a), 531 le64_to_cpu(u0->b), 532 (u64)buffer_info->dma, 533 next_desc); 534 535 if (netif_msg_pktdata(adapter) && 536 buffer_info->dma && buffer_info->page) { 537 print_hex_dump(KERN_INFO, "", 538 DUMP_PREFIX_ADDRESS, 539 16, 1, 540 page_address(buffer_info->page) + 541 buffer_info->page_offset, 542 igb_rx_bufsz(rx_ring), true); 543 } 544 } 545 } 546 } 547 548 exit: 549 return; 550 } 551 552 /** 553 * igb_get_i2c_data - Reads the I2C SDA data bit 554 * @data: opaque pointer to adapter struct 555 * 556 * Returns the I2C data bit value 557 **/ 558 static int igb_get_i2c_data(void *data) 559 { 560 struct igb_adapter *adapter = (struct igb_adapter *)data; 561 struct e1000_hw *hw = &adapter->hw; 562 s32 i2cctl = rd32(E1000_I2CPARAMS); 563 564 return !!(i2cctl & E1000_I2C_DATA_IN); 565 } 566 567 /** 568 * igb_set_i2c_data - Sets the I2C data bit 569 * @data: pointer to hardware structure 570 * @state: I2C data value (0 or 1) to set 571 * 572 * Sets the I2C data bit 573 **/ 574 static void igb_set_i2c_data(void *data, int state) 575 { 576 struct igb_adapter *adapter = (struct igb_adapter *)data; 577 struct e1000_hw *hw = &adapter->hw; 578 s32 i2cctl = rd32(E1000_I2CPARAMS); 579 580 if (state) { 581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N; 582 } else { 583 i2cctl &= ~E1000_I2C_DATA_OE_N; 584 i2cctl &= ~E1000_I2C_DATA_OUT; 585 } 586 587 wr32(E1000_I2CPARAMS, i2cctl); 588 wrfl(); 589 } 590 591 /** 592 * igb_set_i2c_clk - Sets the I2C SCL clock 593 * @data: pointer to hardware structure 594 * @state: state to set clock 595 * 596 * Sets the I2C clock line to state 597 **/ 598 static void igb_set_i2c_clk(void *data, int state) 599 { 600 struct igb_adapter *adapter = (struct igb_adapter *)data; 601 struct e1000_hw *hw = &adapter->hw; 602 s32 i2cctl = rd32(E1000_I2CPARAMS); 603 604 if (state) { 605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N; 606 } else { 607 i2cctl &= ~E1000_I2C_CLK_OUT; 608 i2cctl &= ~E1000_I2C_CLK_OE_N; 609 } 610 wr32(E1000_I2CPARAMS, i2cctl); 611 wrfl(); 612 } 613 614 /** 615 * igb_get_i2c_clk - Gets the I2C SCL clock state 616 * @data: pointer to hardware structure 617 * 618 * Gets the I2C clock state 619 **/ 620 static int igb_get_i2c_clk(void *data) 621 { 622 struct igb_adapter *adapter = (struct igb_adapter *)data; 623 struct e1000_hw *hw = &adapter->hw; 624 s32 i2cctl = rd32(E1000_I2CPARAMS); 625 626 return !!(i2cctl & E1000_I2C_CLK_IN); 627 } 628 629 static const struct i2c_algo_bit_data igb_i2c_algo = { 630 .setsda = igb_set_i2c_data, 631 .setscl = igb_set_i2c_clk, 632 .getsda = igb_get_i2c_data, 633 .getscl = igb_get_i2c_clk, 634 .udelay = 5, 635 .timeout = 20, 636 }; 637 638 /** 639 * igb_get_hw_dev - return device 640 * @hw: pointer to hardware structure 641 * 642 * used by hardware layer to print debugging information 643 **/ 644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 645 { 646 struct igb_adapter *adapter = hw->back; 647 return adapter->netdev; 648 } 649 650 /** 651 * igb_init_module - Driver Registration Routine 652 * 653 * igb_init_module is the first routine called when the driver is 654 * loaded. All it does is register with the PCI subsystem. 655 **/ 656 static int __init igb_init_module(void) 657 { 658 int ret; 659 660 pr_info("%s\n", igb_driver_string); 661 pr_info("%s\n", igb_copyright); 662 663 #ifdef CONFIG_IGB_DCA 664 dca_register_notify(&dca_notifier); 665 #endif 666 ret = pci_register_driver(&igb_driver); 667 return ret; 668 } 669 670 module_init(igb_init_module); 671 672 /** 673 * igb_exit_module - Driver Exit Cleanup Routine 674 * 675 * igb_exit_module is called just before the driver is removed 676 * from memory. 677 **/ 678 static void __exit igb_exit_module(void) 679 { 680 #ifdef CONFIG_IGB_DCA 681 dca_unregister_notify(&dca_notifier); 682 #endif 683 pci_unregister_driver(&igb_driver); 684 } 685 686 module_exit(igb_exit_module); 687 688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 689 /** 690 * igb_cache_ring_register - Descriptor ring to register mapping 691 * @adapter: board private structure to initialize 692 * 693 * Once we know the feature-set enabled for the device, we'll cache 694 * the register offset the descriptor ring is assigned to. 695 **/ 696 static void igb_cache_ring_register(struct igb_adapter *adapter) 697 { 698 int i = 0, j = 0; 699 u32 rbase_offset = adapter->vfs_allocated_count; 700 701 switch (adapter->hw.mac.type) { 702 case e1000_82576: 703 /* The queues are allocated for virtualization such that VF 0 704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 705 * In order to avoid collision we start at the first free queue 706 * and continue consuming queues in the same sequence 707 */ 708 if (adapter->vfs_allocated_count) { 709 for (; i < adapter->rss_queues; i++) 710 adapter->rx_ring[i]->reg_idx = rbase_offset + 711 Q_IDX_82576(i); 712 } 713 fallthrough; 714 case e1000_82575: 715 case e1000_82580: 716 case e1000_i350: 717 case e1000_i354: 718 case e1000_i210: 719 case e1000_i211: 720 default: 721 for (; i < adapter->num_rx_queues; i++) 722 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 723 for (; j < adapter->num_tx_queues; j++) 724 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 725 break; 726 } 727 } 728 729 u32 igb_rd32(struct e1000_hw *hw, u32 reg) 730 { 731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 733 u32 value = 0; 734 735 if (E1000_REMOVED(hw_addr)) 736 return ~value; 737 738 value = readl(&hw_addr[reg]); 739 740 /* reads should not return all F's */ 741 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 742 struct net_device *netdev = igb->netdev; 743 hw->hw_addr = NULL; 744 netdev_err(netdev, "PCIe link lost\n"); 745 WARN(pci_device_is_present(igb->pdev), 746 "igb: Failed to read reg 0x%x!\n", reg); 747 } 748 749 return value; 750 } 751 752 /** 753 * igb_write_ivar - configure ivar for given MSI-X vector 754 * @hw: pointer to the HW structure 755 * @msix_vector: vector number we are allocating to a given ring 756 * @index: row index of IVAR register to write within IVAR table 757 * @offset: column offset of in IVAR, should be multiple of 8 758 * 759 * This function is intended to handle the writing of the IVAR register 760 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 761 * each containing an cause allocation for an Rx and Tx ring, and a 762 * variable number of rows depending on the number of queues supported. 763 **/ 764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 765 int index, int offset) 766 { 767 u32 ivar = array_rd32(E1000_IVAR0, index); 768 769 /* clear any bits that are currently set */ 770 ivar &= ~((u32)0xFF << offset); 771 772 /* write vector and valid bit */ 773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 774 775 array_wr32(E1000_IVAR0, index, ivar); 776 } 777 778 #define IGB_N0_QUEUE -1 779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 780 { 781 struct igb_adapter *adapter = q_vector->adapter; 782 struct e1000_hw *hw = &adapter->hw; 783 int rx_queue = IGB_N0_QUEUE; 784 int tx_queue = IGB_N0_QUEUE; 785 u32 msixbm = 0; 786 787 if (q_vector->rx.ring) 788 rx_queue = q_vector->rx.ring->reg_idx; 789 if (q_vector->tx.ring) 790 tx_queue = q_vector->tx.ring->reg_idx; 791 792 switch (hw->mac.type) { 793 case e1000_82575: 794 /* The 82575 assigns vectors using a bitmask, which matches the 795 * bitmask for the EICR/EIMS/EIMC registers. To assign one 796 * or more queues to a vector, we write the appropriate bits 797 * into the MSIXBM register for that vector. 798 */ 799 if (rx_queue > IGB_N0_QUEUE) 800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 801 if (tx_queue > IGB_N0_QUEUE) 802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 804 msixbm |= E1000_EIMS_OTHER; 805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 806 q_vector->eims_value = msixbm; 807 break; 808 case e1000_82576: 809 /* 82576 uses a table that essentially consists of 2 columns 810 * with 8 rows. The ordering is column-major so we use the 811 * lower 3 bits as the row index, and the 4th bit as the 812 * column offset. 813 */ 814 if (rx_queue > IGB_N0_QUEUE) 815 igb_write_ivar(hw, msix_vector, 816 rx_queue & 0x7, 817 (rx_queue & 0x8) << 1); 818 if (tx_queue > IGB_N0_QUEUE) 819 igb_write_ivar(hw, msix_vector, 820 tx_queue & 0x7, 821 ((tx_queue & 0x8) << 1) + 8); 822 q_vector->eims_value = BIT(msix_vector); 823 break; 824 case e1000_82580: 825 case e1000_i350: 826 case e1000_i354: 827 case e1000_i210: 828 case e1000_i211: 829 /* On 82580 and newer adapters the scheme is similar to 82576 830 * however instead of ordering column-major we have things 831 * ordered row-major. So we traverse the table by using 832 * bit 0 as the column offset, and the remaining bits as the 833 * row index. 834 */ 835 if (rx_queue > IGB_N0_QUEUE) 836 igb_write_ivar(hw, msix_vector, 837 rx_queue >> 1, 838 (rx_queue & 0x1) << 4); 839 if (tx_queue > IGB_N0_QUEUE) 840 igb_write_ivar(hw, msix_vector, 841 tx_queue >> 1, 842 ((tx_queue & 0x1) << 4) + 8); 843 q_vector->eims_value = BIT(msix_vector); 844 break; 845 default: 846 BUG(); 847 break; 848 } 849 850 /* add q_vector eims value to global eims_enable_mask */ 851 adapter->eims_enable_mask |= q_vector->eims_value; 852 853 /* configure q_vector to set itr on first interrupt */ 854 q_vector->set_itr = 1; 855 } 856 857 /** 858 * igb_configure_msix - Configure MSI-X hardware 859 * @adapter: board private structure to initialize 860 * 861 * igb_configure_msix sets up the hardware to properly 862 * generate MSI-X interrupts. 863 **/ 864 static void igb_configure_msix(struct igb_adapter *adapter) 865 { 866 u32 tmp; 867 int i, vector = 0; 868 struct e1000_hw *hw = &adapter->hw; 869 870 adapter->eims_enable_mask = 0; 871 872 /* set vector for other causes, i.e. link changes */ 873 switch (hw->mac.type) { 874 case e1000_82575: 875 tmp = rd32(E1000_CTRL_EXT); 876 /* enable MSI-X PBA support*/ 877 tmp |= E1000_CTRL_EXT_PBA_CLR; 878 879 /* Auto-Mask interrupts upon ICR read. */ 880 tmp |= E1000_CTRL_EXT_EIAME; 881 tmp |= E1000_CTRL_EXT_IRCA; 882 883 wr32(E1000_CTRL_EXT, tmp); 884 885 /* enable msix_other interrupt */ 886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 887 adapter->eims_other = E1000_EIMS_OTHER; 888 889 break; 890 891 case e1000_82576: 892 case e1000_82580: 893 case e1000_i350: 894 case e1000_i354: 895 case e1000_i210: 896 case e1000_i211: 897 /* Turn on MSI-X capability first, or our settings 898 * won't stick. And it will take days to debug. 899 */ 900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 901 E1000_GPIE_PBA | E1000_GPIE_EIAME | 902 E1000_GPIE_NSICR); 903 904 /* enable msix_other interrupt */ 905 adapter->eims_other = BIT(vector); 906 tmp = (vector++ | E1000_IVAR_VALID) << 8; 907 908 wr32(E1000_IVAR_MISC, tmp); 909 break; 910 default: 911 /* do nothing, since nothing else supports MSI-X */ 912 break; 913 } /* switch (hw->mac.type) */ 914 915 adapter->eims_enable_mask |= adapter->eims_other; 916 917 for (i = 0; i < adapter->num_q_vectors; i++) 918 igb_assign_vector(adapter->q_vector[i], vector++); 919 920 wrfl(); 921 } 922 923 /** 924 * igb_request_msix - Initialize MSI-X interrupts 925 * @adapter: board private structure to initialize 926 * 927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 928 * kernel. 929 **/ 930 static int igb_request_msix(struct igb_adapter *adapter) 931 { 932 unsigned int num_q_vectors = adapter->num_q_vectors; 933 struct net_device *netdev = adapter->netdev; 934 int i, err = 0, vector = 0, free_vector = 0; 935 936 err = request_irq(adapter->msix_entries[vector].vector, 937 igb_msix_other, 0, netdev->name, adapter); 938 if (err) 939 goto err_out; 940 941 if (num_q_vectors > MAX_Q_VECTORS) { 942 num_q_vectors = MAX_Q_VECTORS; 943 dev_warn(&adapter->pdev->dev, 944 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 945 adapter->num_q_vectors, MAX_Q_VECTORS); 946 } 947 for (i = 0; i < num_q_vectors; i++) { 948 struct igb_q_vector *q_vector = adapter->q_vector[i]; 949 950 vector++; 951 952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector); 953 954 if (q_vector->rx.ring && q_vector->tx.ring) 955 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 956 q_vector->rx.ring->queue_index); 957 else if (q_vector->tx.ring) 958 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 959 q_vector->tx.ring->queue_index); 960 else if (q_vector->rx.ring) 961 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 962 q_vector->rx.ring->queue_index); 963 else 964 sprintf(q_vector->name, "%s-unused", netdev->name); 965 966 err = request_irq(adapter->msix_entries[vector].vector, 967 igb_msix_ring, 0, q_vector->name, 968 q_vector); 969 if (err) 970 goto err_free; 971 } 972 973 igb_configure_msix(adapter); 974 return 0; 975 976 err_free: 977 /* free already assigned IRQs */ 978 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 979 980 vector--; 981 for (i = 0; i < vector; i++) { 982 free_irq(adapter->msix_entries[free_vector++].vector, 983 adapter->q_vector[i]); 984 } 985 err_out: 986 return err; 987 } 988 989 /** 990 * igb_free_q_vector - Free memory allocated for specific interrupt vector 991 * @adapter: board private structure to initialize 992 * @v_idx: Index of vector to be freed 993 * 994 * This function frees the memory allocated to the q_vector. 995 **/ 996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 997 { 998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 999 1000 adapter->q_vector[v_idx] = NULL; 1001 1002 /* igb_get_stats64() might access the rings on this vector, 1003 * we must wait a grace period before freeing it. 1004 */ 1005 if (q_vector) 1006 kfree_rcu(q_vector, rcu); 1007 } 1008 1009 /** 1010 * igb_reset_q_vector - Reset config for interrupt vector 1011 * @adapter: board private structure to initialize 1012 * @v_idx: Index of vector to be reset 1013 * 1014 * If NAPI is enabled it will delete any references to the 1015 * NAPI struct. This is preparation for igb_free_q_vector. 1016 **/ 1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1018 { 1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1020 1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1022 * allocated. So, q_vector is NULL so we should stop here. 1023 */ 1024 if (!q_vector) 1025 return; 1026 1027 if (q_vector->tx.ring) 1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1029 1030 if (q_vector->rx.ring) 1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 1032 1033 netif_napi_del(&q_vector->napi); 1034 1035 } 1036 1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1038 { 1039 int v_idx = adapter->num_q_vectors; 1040 1041 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1042 pci_disable_msix(adapter->pdev); 1043 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1044 pci_disable_msi(adapter->pdev); 1045 1046 while (v_idx--) 1047 igb_reset_q_vector(adapter, v_idx); 1048 } 1049 1050 /** 1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1052 * @adapter: board private structure to initialize 1053 * 1054 * This function frees the memory allocated to the q_vectors. In addition if 1055 * NAPI is enabled it will delete any references to the NAPI struct prior 1056 * to freeing the q_vector. 1057 **/ 1058 static void igb_free_q_vectors(struct igb_adapter *adapter) 1059 { 1060 int v_idx = adapter->num_q_vectors; 1061 1062 adapter->num_tx_queues = 0; 1063 adapter->num_rx_queues = 0; 1064 adapter->num_q_vectors = 0; 1065 1066 while (v_idx--) { 1067 igb_reset_q_vector(adapter, v_idx); 1068 igb_free_q_vector(adapter, v_idx); 1069 } 1070 } 1071 1072 /** 1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1074 * @adapter: board private structure to initialize 1075 * 1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1077 * MSI-X interrupts allocated. 1078 */ 1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1080 { 1081 igb_free_q_vectors(adapter); 1082 igb_reset_interrupt_capability(adapter); 1083 } 1084 1085 /** 1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1087 * @adapter: board private structure to initialize 1088 * @msix: boolean value of MSIX capability 1089 * 1090 * Attempt to configure interrupts using the best available 1091 * capabilities of the hardware and kernel. 1092 **/ 1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1094 { 1095 int err; 1096 int numvecs, i; 1097 1098 if (!msix) 1099 goto msi_only; 1100 adapter->flags |= IGB_FLAG_HAS_MSIX; 1101 1102 /* Number of supported queues. */ 1103 adapter->num_rx_queues = adapter->rss_queues; 1104 if (adapter->vfs_allocated_count) 1105 adapter->num_tx_queues = 1; 1106 else 1107 adapter->num_tx_queues = adapter->rss_queues; 1108 1109 /* start with one vector for every Rx queue */ 1110 numvecs = adapter->num_rx_queues; 1111 1112 /* if Tx handler is separate add 1 for every Tx queue */ 1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1114 numvecs += adapter->num_tx_queues; 1115 1116 /* store the number of vectors reserved for queues */ 1117 adapter->num_q_vectors = numvecs; 1118 1119 /* add 1 vector for link status interrupts */ 1120 numvecs++; 1121 for (i = 0; i < numvecs; i++) 1122 adapter->msix_entries[i].entry = i; 1123 1124 err = pci_enable_msix_range(adapter->pdev, 1125 adapter->msix_entries, 1126 numvecs, 1127 numvecs); 1128 if (err > 0) 1129 return; 1130 1131 igb_reset_interrupt_capability(adapter); 1132 1133 /* If we can't do MSI-X, try MSI */ 1134 msi_only: 1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1136 #ifdef CONFIG_PCI_IOV 1137 /* disable SR-IOV for non MSI-X configurations */ 1138 if (adapter->vf_data) { 1139 struct e1000_hw *hw = &adapter->hw; 1140 /* disable iov and allow time for transactions to clear */ 1141 pci_disable_sriov(adapter->pdev); 1142 msleep(500); 1143 1144 kfree(adapter->vf_mac_list); 1145 adapter->vf_mac_list = NULL; 1146 kfree(adapter->vf_data); 1147 adapter->vf_data = NULL; 1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1149 wrfl(); 1150 msleep(100); 1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1152 } 1153 #endif 1154 adapter->vfs_allocated_count = 0; 1155 adapter->rss_queues = 1; 1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1157 adapter->num_rx_queues = 1; 1158 adapter->num_tx_queues = 1; 1159 adapter->num_q_vectors = 1; 1160 if (!pci_enable_msi(adapter->pdev)) 1161 adapter->flags |= IGB_FLAG_HAS_MSI; 1162 } 1163 1164 static void igb_add_ring(struct igb_ring *ring, 1165 struct igb_ring_container *head) 1166 { 1167 head->ring = ring; 1168 head->count++; 1169 } 1170 1171 /** 1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1173 * @adapter: board private structure to initialize 1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1175 * @v_idx: index of vector in adapter struct 1176 * @txr_count: total number of Tx rings to allocate 1177 * @txr_idx: index of first Tx ring to allocate 1178 * @rxr_count: total number of Rx rings to allocate 1179 * @rxr_idx: index of first Rx ring to allocate 1180 * 1181 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1182 **/ 1183 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1184 int v_count, int v_idx, 1185 int txr_count, int txr_idx, 1186 int rxr_count, int rxr_idx) 1187 { 1188 struct igb_q_vector *q_vector; 1189 struct igb_ring *ring; 1190 int ring_count; 1191 size_t size; 1192 1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1194 if (txr_count > 1 || rxr_count > 1) 1195 return -ENOMEM; 1196 1197 ring_count = txr_count + rxr_count; 1198 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count)); 1199 1200 /* allocate q_vector and rings */ 1201 q_vector = adapter->q_vector[v_idx]; 1202 if (!q_vector) { 1203 q_vector = kzalloc(size, GFP_KERNEL); 1204 } else if (size > ksize(q_vector)) { 1205 struct igb_q_vector *new_q_vector; 1206 1207 new_q_vector = kzalloc(size, GFP_KERNEL); 1208 if (new_q_vector) 1209 kfree_rcu(q_vector, rcu); 1210 q_vector = new_q_vector; 1211 } else { 1212 memset(q_vector, 0, size); 1213 } 1214 if (!q_vector) 1215 return -ENOMEM; 1216 1217 /* initialize NAPI */ 1218 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll); 1219 1220 /* tie q_vector and adapter together */ 1221 adapter->q_vector[v_idx] = q_vector; 1222 q_vector->adapter = adapter; 1223 1224 /* initialize work limits */ 1225 q_vector->tx.work_limit = adapter->tx_work_limit; 1226 1227 /* initialize ITR configuration */ 1228 q_vector->itr_register = adapter->io_addr + E1000_EITR(0); 1229 q_vector->itr_val = IGB_START_ITR; 1230 1231 /* initialize pointer to rings */ 1232 ring = q_vector->ring; 1233 1234 /* intialize ITR */ 1235 if (rxr_count) { 1236 /* rx or rx/tx vector */ 1237 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1238 q_vector->itr_val = adapter->rx_itr_setting; 1239 } else { 1240 /* tx only vector */ 1241 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1242 q_vector->itr_val = adapter->tx_itr_setting; 1243 } 1244 1245 if (txr_count) { 1246 /* assign generic ring traits */ 1247 ring->dev = &adapter->pdev->dev; 1248 ring->netdev = adapter->netdev; 1249 1250 /* configure backlink on ring */ 1251 ring->q_vector = q_vector; 1252 1253 /* update q_vector Tx values */ 1254 igb_add_ring(ring, &q_vector->tx); 1255 1256 /* For 82575, context index must be unique per ring. */ 1257 if (adapter->hw.mac.type == e1000_82575) 1258 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1259 1260 /* apply Tx specific ring traits */ 1261 ring->count = adapter->tx_ring_count; 1262 ring->queue_index = txr_idx; 1263 1264 ring->cbs_enable = false; 1265 ring->idleslope = 0; 1266 ring->sendslope = 0; 1267 ring->hicredit = 0; 1268 ring->locredit = 0; 1269 1270 u64_stats_init(&ring->tx_syncp); 1271 u64_stats_init(&ring->tx_syncp2); 1272 1273 /* assign ring to adapter */ 1274 adapter->tx_ring[txr_idx] = ring; 1275 1276 /* push pointer to next ring */ 1277 ring++; 1278 } 1279 1280 if (rxr_count) { 1281 /* assign generic ring traits */ 1282 ring->dev = &adapter->pdev->dev; 1283 ring->netdev = adapter->netdev; 1284 1285 /* configure backlink on ring */ 1286 ring->q_vector = q_vector; 1287 1288 /* update q_vector Rx values */ 1289 igb_add_ring(ring, &q_vector->rx); 1290 1291 /* set flag indicating ring supports SCTP checksum offload */ 1292 if (adapter->hw.mac.type >= e1000_82576) 1293 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1294 1295 /* On i350, i354, i210, and i211, loopback VLAN packets 1296 * have the tag byte-swapped. 1297 */ 1298 if (adapter->hw.mac.type >= e1000_i350) 1299 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1300 1301 /* apply Rx specific ring traits */ 1302 ring->count = adapter->rx_ring_count; 1303 ring->queue_index = rxr_idx; 1304 1305 u64_stats_init(&ring->rx_syncp); 1306 1307 /* assign ring to adapter */ 1308 adapter->rx_ring[rxr_idx] = ring; 1309 } 1310 1311 return 0; 1312 } 1313 1314 1315 /** 1316 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1317 * @adapter: board private structure to initialize 1318 * 1319 * We allocate one q_vector per queue interrupt. If allocation fails we 1320 * return -ENOMEM. 1321 **/ 1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1323 { 1324 int q_vectors = adapter->num_q_vectors; 1325 int rxr_remaining = adapter->num_rx_queues; 1326 int txr_remaining = adapter->num_tx_queues; 1327 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1328 int err; 1329 1330 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1331 for (; rxr_remaining; v_idx++) { 1332 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1333 0, 0, 1, rxr_idx); 1334 1335 if (err) 1336 goto err_out; 1337 1338 /* update counts and index */ 1339 rxr_remaining--; 1340 rxr_idx++; 1341 } 1342 } 1343 1344 for (; v_idx < q_vectors; v_idx++) { 1345 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1346 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1347 1348 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1349 tqpv, txr_idx, rqpv, rxr_idx); 1350 1351 if (err) 1352 goto err_out; 1353 1354 /* update counts and index */ 1355 rxr_remaining -= rqpv; 1356 txr_remaining -= tqpv; 1357 rxr_idx++; 1358 txr_idx++; 1359 } 1360 1361 return 0; 1362 1363 err_out: 1364 adapter->num_tx_queues = 0; 1365 adapter->num_rx_queues = 0; 1366 adapter->num_q_vectors = 0; 1367 1368 while (v_idx--) 1369 igb_free_q_vector(adapter, v_idx); 1370 1371 return -ENOMEM; 1372 } 1373 1374 /** 1375 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1376 * @adapter: board private structure to initialize 1377 * @msix: boolean value of MSIX capability 1378 * 1379 * This function initializes the interrupts and allocates all of the queues. 1380 **/ 1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1382 { 1383 struct pci_dev *pdev = adapter->pdev; 1384 int err; 1385 1386 igb_set_interrupt_capability(adapter, msix); 1387 1388 err = igb_alloc_q_vectors(adapter); 1389 if (err) { 1390 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1391 goto err_alloc_q_vectors; 1392 } 1393 1394 igb_cache_ring_register(adapter); 1395 1396 return 0; 1397 1398 err_alloc_q_vectors: 1399 igb_reset_interrupt_capability(adapter); 1400 return err; 1401 } 1402 1403 /** 1404 * igb_request_irq - initialize interrupts 1405 * @adapter: board private structure to initialize 1406 * 1407 * Attempts to configure interrupts using the best available 1408 * capabilities of the hardware and kernel. 1409 **/ 1410 static int igb_request_irq(struct igb_adapter *adapter) 1411 { 1412 struct net_device *netdev = adapter->netdev; 1413 struct pci_dev *pdev = adapter->pdev; 1414 int err = 0; 1415 1416 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1417 err = igb_request_msix(adapter); 1418 if (!err) 1419 goto request_done; 1420 /* fall back to MSI */ 1421 igb_free_all_tx_resources(adapter); 1422 igb_free_all_rx_resources(adapter); 1423 1424 igb_clear_interrupt_scheme(adapter); 1425 err = igb_init_interrupt_scheme(adapter, false); 1426 if (err) 1427 goto request_done; 1428 1429 igb_setup_all_tx_resources(adapter); 1430 igb_setup_all_rx_resources(adapter); 1431 igb_configure(adapter); 1432 } 1433 1434 igb_assign_vector(adapter->q_vector[0], 0); 1435 1436 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1437 err = request_irq(pdev->irq, igb_intr_msi, 0, 1438 netdev->name, adapter); 1439 if (!err) 1440 goto request_done; 1441 1442 /* fall back to legacy interrupts */ 1443 igb_reset_interrupt_capability(adapter); 1444 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1445 } 1446 1447 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1448 netdev->name, adapter); 1449 1450 if (err) 1451 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1452 err); 1453 1454 request_done: 1455 return err; 1456 } 1457 1458 static void igb_free_irq(struct igb_adapter *adapter) 1459 { 1460 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1461 int vector = 0, i; 1462 1463 free_irq(adapter->msix_entries[vector++].vector, adapter); 1464 1465 for (i = 0; i < adapter->num_q_vectors; i++) 1466 free_irq(adapter->msix_entries[vector++].vector, 1467 adapter->q_vector[i]); 1468 } else { 1469 free_irq(adapter->pdev->irq, adapter); 1470 } 1471 } 1472 1473 /** 1474 * igb_irq_disable - Mask off interrupt generation on the NIC 1475 * @adapter: board private structure 1476 **/ 1477 static void igb_irq_disable(struct igb_adapter *adapter) 1478 { 1479 struct e1000_hw *hw = &adapter->hw; 1480 1481 /* we need to be careful when disabling interrupts. The VFs are also 1482 * mapped into these registers and so clearing the bits can cause 1483 * issues on the VF drivers so we only need to clear what we set 1484 */ 1485 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1486 u32 regval = rd32(E1000_EIAM); 1487 1488 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1489 wr32(E1000_EIMC, adapter->eims_enable_mask); 1490 regval = rd32(E1000_EIAC); 1491 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1492 } 1493 1494 wr32(E1000_IAM, 0); 1495 wr32(E1000_IMC, ~0); 1496 wrfl(); 1497 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1498 int i; 1499 1500 for (i = 0; i < adapter->num_q_vectors; i++) 1501 synchronize_irq(adapter->msix_entries[i].vector); 1502 } else { 1503 synchronize_irq(adapter->pdev->irq); 1504 } 1505 } 1506 1507 /** 1508 * igb_irq_enable - Enable default interrupt generation settings 1509 * @adapter: board private structure 1510 **/ 1511 static void igb_irq_enable(struct igb_adapter *adapter) 1512 { 1513 struct e1000_hw *hw = &adapter->hw; 1514 1515 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1516 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1517 u32 regval = rd32(E1000_EIAC); 1518 1519 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1520 regval = rd32(E1000_EIAM); 1521 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1522 wr32(E1000_EIMS, adapter->eims_enable_mask); 1523 if (adapter->vfs_allocated_count) { 1524 wr32(E1000_MBVFIMR, 0xFF); 1525 ims |= E1000_IMS_VMMB; 1526 } 1527 wr32(E1000_IMS, ims); 1528 } else { 1529 wr32(E1000_IMS, IMS_ENABLE_MASK | 1530 E1000_IMS_DRSTA); 1531 wr32(E1000_IAM, IMS_ENABLE_MASK | 1532 E1000_IMS_DRSTA); 1533 } 1534 } 1535 1536 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1537 { 1538 struct e1000_hw *hw = &adapter->hw; 1539 u16 pf_id = adapter->vfs_allocated_count; 1540 u16 vid = adapter->hw.mng_cookie.vlan_id; 1541 u16 old_vid = adapter->mng_vlan_id; 1542 1543 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1544 /* add VID to filter table */ 1545 igb_vfta_set(hw, vid, pf_id, true, true); 1546 adapter->mng_vlan_id = vid; 1547 } else { 1548 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1549 } 1550 1551 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1552 (vid != old_vid) && 1553 !test_bit(old_vid, adapter->active_vlans)) { 1554 /* remove VID from filter table */ 1555 igb_vfta_set(hw, vid, pf_id, false, true); 1556 } 1557 } 1558 1559 /** 1560 * igb_release_hw_control - release control of the h/w to f/w 1561 * @adapter: address of board private structure 1562 * 1563 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1564 * For ASF and Pass Through versions of f/w this means that the 1565 * driver is no longer loaded. 1566 **/ 1567 static void igb_release_hw_control(struct igb_adapter *adapter) 1568 { 1569 struct e1000_hw *hw = &adapter->hw; 1570 u32 ctrl_ext; 1571 1572 /* Let firmware take over control of h/w */ 1573 ctrl_ext = rd32(E1000_CTRL_EXT); 1574 wr32(E1000_CTRL_EXT, 1575 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1576 } 1577 1578 /** 1579 * igb_get_hw_control - get control of the h/w from f/w 1580 * @adapter: address of board private structure 1581 * 1582 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1583 * For ASF and Pass Through versions of f/w this means that 1584 * the driver is loaded. 1585 **/ 1586 static void igb_get_hw_control(struct igb_adapter *adapter) 1587 { 1588 struct e1000_hw *hw = &adapter->hw; 1589 u32 ctrl_ext; 1590 1591 /* Let firmware know the driver has taken over */ 1592 ctrl_ext = rd32(E1000_CTRL_EXT); 1593 wr32(E1000_CTRL_EXT, 1594 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1595 } 1596 1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable) 1598 { 1599 struct net_device *netdev = adapter->netdev; 1600 struct e1000_hw *hw = &adapter->hw; 1601 1602 WARN_ON(hw->mac.type != e1000_i210); 1603 1604 if (enable) 1605 adapter->flags |= IGB_FLAG_FQTSS; 1606 else 1607 adapter->flags &= ~IGB_FLAG_FQTSS; 1608 1609 if (netif_running(netdev)) 1610 schedule_work(&adapter->reset_task); 1611 } 1612 1613 static bool is_fqtss_enabled(struct igb_adapter *adapter) 1614 { 1615 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false; 1616 } 1617 1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue, 1619 enum tx_queue_prio prio) 1620 { 1621 u32 val; 1622 1623 WARN_ON(hw->mac.type != e1000_i210); 1624 WARN_ON(queue < 0 || queue > 4); 1625 1626 val = rd32(E1000_I210_TXDCTL(queue)); 1627 1628 if (prio == TX_QUEUE_PRIO_HIGH) 1629 val |= E1000_TXDCTL_PRIORITY; 1630 else 1631 val &= ~E1000_TXDCTL_PRIORITY; 1632 1633 wr32(E1000_I210_TXDCTL(queue), val); 1634 } 1635 1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode) 1637 { 1638 u32 val; 1639 1640 WARN_ON(hw->mac.type != e1000_i210); 1641 WARN_ON(queue < 0 || queue > 1); 1642 1643 val = rd32(E1000_I210_TQAVCC(queue)); 1644 1645 if (mode == QUEUE_MODE_STREAM_RESERVATION) 1646 val |= E1000_TQAVCC_QUEUEMODE; 1647 else 1648 val &= ~E1000_TQAVCC_QUEUEMODE; 1649 1650 wr32(E1000_I210_TQAVCC(queue), val); 1651 } 1652 1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter) 1654 { 1655 int i; 1656 1657 for (i = 0; i < adapter->num_tx_queues; i++) { 1658 if (adapter->tx_ring[i]->cbs_enable) 1659 return true; 1660 } 1661 1662 return false; 1663 } 1664 1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter) 1666 { 1667 int i; 1668 1669 for (i = 0; i < adapter->num_tx_queues; i++) { 1670 if (adapter->tx_ring[i]->launchtime_enable) 1671 return true; 1672 } 1673 1674 return false; 1675 } 1676 1677 /** 1678 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb 1679 * @adapter: pointer to adapter struct 1680 * @queue: queue number 1681 * 1682 * Configure CBS and Launchtime for a given hardware queue. 1683 * Parameters are retrieved from the correct Tx ring, so 1684 * igb_save_cbs_params() and igb_save_txtime_params() should be used 1685 * for setting those correctly prior to this function being called. 1686 **/ 1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue) 1688 { 1689 struct net_device *netdev = adapter->netdev; 1690 struct e1000_hw *hw = &adapter->hw; 1691 struct igb_ring *ring; 1692 u32 tqavcc, tqavctrl; 1693 u16 value; 1694 1695 WARN_ON(hw->mac.type != e1000_i210); 1696 WARN_ON(queue < 0 || queue > 1); 1697 ring = adapter->tx_ring[queue]; 1698 1699 /* If any of the Qav features is enabled, configure queues as SR and 1700 * with HIGH PRIO. If none is, then configure them with LOW PRIO and 1701 * as SP. 1702 */ 1703 if (ring->cbs_enable || ring->launchtime_enable) { 1704 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH); 1705 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION); 1706 } else { 1707 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW); 1708 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY); 1709 } 1710 1711 /* If CBS is enabled, set DataTranARB and config its parameters. */ 1712 if (ring->cbs_enable || queue == 0) { 1713 /* i210 does not allow the queue 0 to be in the Strict 1714 * Priority mode while the Qav mode is enabled, so, 1715 * instead of disabling strict priority mode, we give 1716 * queue 0 the maximum of credits possible. 1717 * 1718 * See section 8.12.19 of the i210 datasheet, "Note: 1719 * Queue0 QueueMode must be set to 1b when 1720 * TransmitMode is set to Qav." 1721 */ 1722 if (queue == 0 && !ring->cbs_enable) { 1723 /* max "linkspeed" idleslope in kbps */ 1724 ring->idleslope = 1000000; 1725 ring->hicredit = ETH_FRAME_LEN; 1726 } 1727 1728 /* Always set data transfer arbitration to credit-based 1729 * shaper algorithm on TQAVCTRL if CBS is enabled for any of 1730 * the queues. 1731 */ 1732 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1733 tqavctrl |= E1000_TQAVCTRL_DATATRANARB; 1734 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1735 1736 /* According to i210 datasheet section 7.2.7.7, we should set 1737 * the 'idleSlope' field from TQAVCC register following the 1738 * equation: 1739 * 1740 * For 100 Mbps link speed: 1741 * 1742 * value = BW * 0x7735 * 0.2 (E1) 1743 * 1744 * For 1000Mbps link speed: 1745 * 1746 * value = BW * 0x7735 * 2 (E2) 1747 * 1748 * E1 and E2 can be merged into one equation as shown below. 1749 * Note that 'link-speed' is in Mbps. 1750 * 1751 * value = BW * 0x7735 * 2 * link-speed 1752 * -------------- (E3) 1753 * 1000 1754 * 1755 * 'BW' is the percentage bandwidth out of full link speed 1756 * which can be found with the following equation. Note that 1757 * idleSlope here is the parameter from this function which 1758 * is in kbps. 1759 * 1760 * BW = idleSlope 1761 * ----------------- (E4) 1762 * link-speed * 1000 1763 * 1764 * That said, we can come up with a generic equation to 1765 * calculate the value we should set it TQAVCC register by 1766 * replacing 'BW' in E3 by E4. The resulting equation is: 1767 * 1768 * value = idleSlope * 0x7735 * 2 * link-speed 1769 * ----------------- -------------- (E5) 1770 * link-speed * 1000 1000 1771 * 1772 * 'link-speed' is present in both sides of the fraction so 1773 * it is canceled out. The final equation is the following: 1774 * 1775 * value = idleSlope * 61034 1776 * ----------------- (E6) 1777 * 1000000 1778 * 1779 * NOTE: For i210, given the above, we can see that idleslope 1780 * is represented in 16.38431 kbps units by the value at 1781 * the TQAVCC register (1Gbps / 61034), which reduces 1782 * the granularity for idleslope increments. 1783 * For instance, if you want to configure a 2576kbps 1784 * idleslope, the value to be written on the register 1785 * would have to be 157.23. If rounded down, you end 1786 * up with less bandwidth available than originally 1787 * required (~2572 kbps). If rounded up, you end up 1788 * with a higher bandwidth (~2589 kbps). Below the 1789 * approach we take is to always round up the 1790 * calculated value, so the resulting bandwidth might 1791 * be slightly higher for some configurations. 1792 */ 1793 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000); 1794 1795 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1796 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1797 tqavcc |= value; 1798 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1799 1800 wr32(E1000_I210_TQAVHC(queue), 1801 0x80000000 + ring->hicredit * 0x7735); 1802 } else { 1803 1804 /* Set idleSlope to zero. */ 1805 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1806 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1807 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1808 1809 /* Set hiCredit to zero. */ 1810 wr32(E1000_I210_TQAVHC(queue), 0); 1811 1812 /* If CBS is not enabled for any queues anymore, then return to 1813 * the default state of Data Transmission Arbitration on 1814 * TQAVCTRL. 1815 */ 1816 if (!is_any_cbs_enabled(adapter)) { 1817 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1818 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB; 1819 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1820 } 1821 } 1822 1823 /* If LaunchTime is enabled, set DataTranTIM. */ 1824 if (ring->launchtime_enable) { 1825 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled 1826 * for any of the SR queues, and configure fetchtime delta. 1827 * XXX NOTE: 1828 * - LaunchTime will be enabled for all SR queues. 1829 * - A fixed offset can be added relative to the launch 1830 * time of all packets if configured at reg LAUNCH_OS0. 1831 * We are keeping it as 0 for now (default value). 1832 */ 1833 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1834 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM | 1835 E1000_TQAVCTRL_FETCHTIME_DELTA; 1836 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1837 } else { 1838 /* If Launchtime is not enabled for any SR queues anymore, 1839 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta, 1840 * effectively disabling Launchtime. 1841 */ 1842 if (!is_any_txtime_enabled(adapter)) { 1843 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1844 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM; 1845 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA; 1846 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1847 } 1848 } 1849 1850 /* XXX: In i210 controller the sendSlope and loCredit parameters from 1851 * CBS are not configurable by software so we don't do any 'controller 1852 * configuration' in respect to these parameters. 1853 */ 1854 1855 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n", 1856 ring->cbs_enable ? "enabled" : "disabled", 1857 ring->launchtime_enable ? "enabled" : "disabled", 1858 queue, 1859 ring->idleslope, ring->sendslope, 1860 ring->hicredit, ring->locredit); 1861 } 1862 1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue, 1864 bool enable) 1865 { 1866 struct igb_ring *ring; 1867 1868 if (queue < 0 || queue > adapter->num_tx_queues) 1869 return -EINVAL; 1870 1871 ring = adapter->tx_ring[queue]; 1872 ring->launchtime_enable = enable; 1873 1874 return 0; 1875 } 1876 1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue, 1878 bool enable, int idleslope, int sendslope, 1879 int hicredit, int locredit) 1880 { 1881 struct igb_ring *ring; 1882 1883 if (queue < 0 || queue > adapter->num_tx_queues) 1884 return -EINVAL; 1885 1886 ring = adapter->tx_ring[queue]; 1887 1888 ring->cbs_enable = enable; 1889 ring->idleslope = idleslope; 1890 ring->sendslope = sendslope; 1891 ring->hicredit = hicredit; 1892 ring->locredit = locredit; 1893 1894 return 0; 1895 } 1896 1897 /** 1898 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable 1899 * @adapter: pointer to adapter struct 1900 * 1901 * Configure TQAVCTRL register switching the controller's Tx mode 1902 * if FQTSS mode is enabled or disabled. Additionally, will issue 1903 * a call to igb_config_tx_modes() per queue so any previously saved 1904 * Tx parameters are applied. 1905 **/ 1906 static void igb_setup_tx_mode(struct igb_adapter *adapter) 1907 { 1908 struct net_device *netdev = adapter->netdev; 1909 struct e1000_hw *hw = &adapter->hw; 1910 u32 val; 1911 1912 /* Only i210 controller supports changing the transmission mode. */ 1913 if (hw->mac.type != e1000_i210) 1914 return; 1915 1916 if (is_fqtss_enabled(adapter)) { 1917 int i, max_queue; 1918 1919 /* Configure TQAVCTRL register: set transmit mode to 'Qav', 1920 * set data fetch arbitration to 'round robin', set SP_WAIT_SR 1921 * so SP queues wait for SR ones. 1922 */ 1923 val = rd32(E1000_I210_TQAVCTRL); 1924 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR; 1925 val &= ~E1000_TQAVCTRL_DATAFETCHARB; 1926 wr32(E1000_I210_TQAVCTRL, val); 1927 1928 /* Configure Tx and Rx packet buffers sizes as described in 1929 * i210 datasheet section 7.2.7.7. 1930 */ 1931 val = rd32(E1000_TXPBS); 1932 val &= ~I210_TXPBSIZE_MASK; 1933 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB | 1934 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB; 1935 wr32(E1000_TXPBS, val); 1936 1937 val = rd32(E1000_RXPBS); 1938 val &= ~I210_RXPBSIZE_MASK; 1939 val |= I210_RXPBSIZE_PB_30KB; 1940 wr32(E1000_RXPBS, val); 1941 1942 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ 1943 * register should not exceed the buffer size programmed in 1944 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB 1945 * so according to the datasheet we should set MAX_TPKT_SIZE to 1946 * 4kB / 64. 1947 * 1948 * However, when we do so, no frame from queue 2 and 3 are 1949 * transmitted. It seems the MAX_TPKT_SIZE should not be great 1950 * or _equal_ to the buffer size programmed in TXPBS. For this 1951 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64. 1952 */ 1953 val = (4096 - 1) / 64; 1954 wr32(E1000_I210_DTXMXPKTSZ, val); 1955 1956 /* Since FQTSS mode is enabled, apply any CBS configuration 1957 * previously set. If no previous CBS configuration has been 1958 * done, then the initial configuration is applied, which means 1959 * CBS is disabled. 1960 */ 1961 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ? 1962 adapter->num_tx_queues : I210_SR_QUEUES_NUM; 1963 1964 for (i = 0; i < max_queue; i++) { 1965 igb_config_tx_modes(adapter, i); 1966 } 1967 } else { 1968 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 1969 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 1970 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT); 1971 1972 val = rd32(E1000_I210_TQAVCTRL); 1973 /* According to Section 8.12.21, the other flags we've set when 1974 * enabling FQTSS are not relevant when disabling FQTSS so we 1975 * don't set they here. 1976 */ 1977 val &= ~E1000_TQAVCTRL_XMIT_MODE; 1978 wr32(E1000_I210_TQAVCTRL, val); 1979 } 1980 1981 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ? 1982 "enabled" : "disabled"); 1983 } 1984 1985 /** 1986 * igb_configure - configure the hardware for RX and TX 1987 * @adapter: private board structure 1988 **/ 1989 static void igb_configure(struct igb_adapter *adapter) 1990 { 1991 struct net_device *netdev = adapter->netdev; 1992 int i; 1993 1994 igb_get_hw_control(adapter); 1995 igb_set_rx_mode(netdev); 1996 igb_setup_tx_mode(adapter); 1997 1998 igb_restore_vlan(adapter); 1999 2000 igb_setup_tctl(adapter); 2001 igb_setup_mrqc(adapter); 2002 igb_setup_rctl(adapter); 2003 2004 igb_nfc_filter_restore(adapter); 2005 igb_configure_tx(adapter); 2006 igb_configure_rx(adapter); 2007 2008 igb_rx_fifo_flush_82575(&adapter->hw); 2009 2010 /* call igb_desc_unused which always leaves 2011 * at least 1 descriptor unused to make sure 2012 * next_to_use != next_to_clean 2013 */ 2014 for (i = 0; i < adapter->num_rx_queues; i++) { 2015 struct igb_ring *ring = adapter->rx_ring[i]; 2016 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 2017 } 2018 } 2019 2020 /** 2021 * igb_power_up_link - Power up the phy/serdes link 2022 * @adapter: address of board private structure 2023 **/ 2024 void igb_power_up_link(struct igb_adapter *adapter) 2025 { 2026 igb_reset_phy(&adapter->hw); 2027 2028 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2029 igb_power_up_phy_copper(&adapter->hw); 2030 else 2031 igb_power_up_serdes_link_82575(&adapter->hw); 2032 2033 igb_setup_link(&adapter->hw); 2034 } 2035 2036 /** 2037 * igb_power_down_link - Power down the phy/serdes link 2038 * @adapter: address of board private structure 2039 */ 2040 static void igb_power_down_link(struct igb_adapter *adapter) 2041 { 2042 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2043 igb_power_down_phy_copper_82575(&adapter->hw); 2044 else 2045 igb_shutdown_serdes_link_82575(&adapter->hw); 2046 } 2047 2048 /** 2049 * igb_check_swap_media - Detect and switch function for Media Auto Sense 2050 * @adapter: address of the board private structure 2051 **/ 2052 static void igb_check_swap_media(struct igb_adapter *adapter) 2053 { 2054 struct e1000_hw *hw = &adapter->hw; 2055 u32 ctrl_ext, connsw; 2056 bool swap_now = false; 2057 2058 ctrl_ext = rd32(E1000_CTRL_EXT); 2059 connsw = rd32(E1000_CONNSW); 2060 2061 /* need to live swap if current media is copper and we have fiber/serdes 2062 * to go to. 2063 */ 2064 2065 if ((hw->phy.media_type == e1000_media_type_copper) && 2066 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 2067 swap_now = true; 2068 } else if ((hw->phy.media_type != e1000_media_type_copper) && 2069 !(connsw & E1000_CONNSW_SERDESD)) { 2070 /* copper signal takes time to appear */ 2071 if (adapter->copper_tries < 4) { 2072 adapter->copper_tries++; 2073 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 2074 wr32(E1000_CONNSW, connsw); 2075 return; 2076 } else { 2077 adapter->copper_tries = 0; 2078 if ((connsw & E1000_CONNSW_PHYSD) && 2079 (!(connsw & E1000_CONNSW_PHY_PDN))) { 2080 swap_now = true; 2081 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 2082 wr32(E1000_CONNSW, connsw); 2083 } 2084 } 2085 } 2086 2087 if (!swap_now) 2088 return; 2089 2090 switch (hw->phy.media_type) { 2091 case e1000_media_type_copper: 2092 netdev_info(adapter->netdev, 2093 "MAS: changing media to fiber/serdes\n"); 2094 ctrl_ext |= 2095 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2096 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2097 adapter->copper_tries = 0; 2098 break; 2099 case e1000_media_type_internal_serdes: 2100 case e1000_media_type_fiber: 2101 netdev_info(adapter->netdev, 2102 "MAS: changing media to copper\n"); 2103 ctrl_ext &= 2104 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2105 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2106 break; 2107 default: 2108 /* shouldn't get here during regular operation */ 2109 netdev_err(adapter->netdev, 2110 "AMS: Invalid media type found, returning\n"); 2111 break; 2112 } 2113 wr32(E1000_CTRL_EXT, ctrl_ext); 2114 } 2115 2116 /** 2117 * igb_up - Open the interface and prepare it to handle traffic 2118 * @adapter: board private structure 2119 **/ 2120 int igb_up(struct igb_adapter *adapter) 2121 { 2122 struct e1000_hw *hw = &adapter->hw; 2123 int i; 2124 2125 /* hardware has been reset, we need to reload some things */ 2126 igb_configure(adapter); 2127 2128 clear_bit(__IGB_DOWN, &adapter->state); 2129 2130 for (i = 0; i < adapter->num_q_vectors; i++) 2131 napi_enable(&(adapter->q_vector[i]->napi)); 2132 2133 if (adapter->flags & IGB_FLAG_HAS_MSIX) 2134 igb_configure_msix(adapter); 2135 else 2136 igb_assign_vector(adapter->q_vector[0], 0); 2137 2138 /* Clear any pending interrupts. */ 2139 rd32(E1000_TSICR); 2140 rd32(E1000_ICR); 2141 igb_irq_enable(adapter); 2142 2143 /* notify VFs that reset has been completed */ 2144 if (adapter->vfs_allocated_count) { 2145 u32 reg_data = rd32(E1000_CTRL_EXT); 2146 2147 reg_data |= E1000_CTRL_EXT_PFRSTD; 2148 wr32(E1000_CTRL_EXT, reg_data); 2149 } 2150 2151 netif_tx_start_all_queues(adapter->netdev); 2152 2153 /* start the watchdog. */ 2154 hw->mac.get_link_status = 1; 2155 schedule_work(&adapter->watchdog_task); 2156 2157 if ((adapter->flags & IGB_FLAG_EEE) && 2158 (!hw->dev_spec._82575.eee_disable)) 2159 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 2160 2161 return 0; 2162 } 2163 2164 void igb_down(struct igb_adapter *adapter) 2165 { 2166 struct net_device *netdev = adapter->netdev; 2167 struct e1000_hw *hw = &adapter->hw; 2168 u32 tctl, rctl; 2169 int i; 2170 2171 /* signal that we're down so the interrupt handler does not 2172 * reschedule our watchdog timer 2173 */ 2174 set_bit(__IGB_DOWN, &adapter->state); 2175 2176 /* disable receives in the hardware */ 2177 rctl = rd32(E1000_RCTL); 2178 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 2179 /* flush and sleep below */ 2180 2181 igb_nfc_filter_exit(adapter); 2182 2183 netif_carrier_off(netdev); 2184 netif_tx_stop_all_queues(netdev); 2185 2186 /* disable transmits in the hardware */ 2187 tctl = rd32(E1000_TCTL); 2188 tctl &= ~E1000_TCTL_EN; 2189 wr32(E1000_TCTL, tctl); 2190 /* flush both disables and wait for them to finish */ 2191 wrfl(); 2192 usleep_range(10000, 11000); 2193 2194 igb_irq_disable(adapter); 2195 2196 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 2197 2198 for (i = 0; i < adapter->num_q_vectors; i++) { 2199 if (adapter->q_vector[i]) { 2200 napi_synchronize(&adapter->q_vector[i]->napi); 2201 napi_disable(&adapter->q_vector[i]->napi); 2202 } 2203 } 2204 2205 del_timer_sync(&adapter->watchdog_timer); 2206 del_timer_sync(&adapter->phy_info_timer); 2207 2208 /* record the stats before reset*/ 2209 spin_lock(&adapter->stats64_lock); 2210 igb_update_stats(adapter); 2211 spin_unlock(&adapter->stats64_lock); 2212 2213 adapter->link_speed = 0; 2214 adapter->link_duplex = 0; 2215 2216 if (!pci_channel_offline(adapter->pdev)) 2217 igb_reset(adapter); 2218 2219 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 2220 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 2221 2222 igb_clean_all_tx_rings(adapter); 2223 igb_clean_all_rx_rings(adapter); 2224 #ifdef CONFIG_IGB_DCA 2225 2226 /* since we reset the hardware DCA settings were cleared */ 2227 igb_setup_dca(adapter); 2228 #endif 2229 } 2230 2231 void igb_reinit_locked(struct igb_adapter *adapter) 2232 { 2233 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 2234 usleep_range(1000, 2000); 2235 igb_down(adapter); 2236 igb_up(adapter); 2237 clear_bit(__IGB_RESETTING, &adapter->state); 2238 } 2239 2240 /** igb_enable_mas - Media Autosense re-enable after swap 2241 * 2242 * @adapter: adapter struct 2243 **/ 2244 static void igb_enable_mas(struct igb_adapter *adapter) 2245 { 2246 struct e1000_hw *hw = &adapter->hw; 2247 u32 connsw = rd32(E1000_CONNSW); 2248 2249 /* configure for SerDes media detect */ 2250 if ((hw->phy.media_type == e1000_media_type_copper) && 2251 (!(connsw & E1000_CONNSW_SERDESD))) { 2252 connsw |= E1000_CONNSW_ENRGSRC; 2253 connsw |= E1000_CONNSW_AUTOSENSE_EN; 2254 wr32(E1000_CONNSW, connsw); 2255 wrfl(); 2256 } 2257 } 2258 2259 void igb_reset(struct igb_adapter *adapter) 2260 { 2261 struct pci_dev *pdev = adapter->pdev; 2262 struct e1000_hw *hw = &adapter->hw; 2263 struct e1000_mac_info *mac = &hw->mac; 2264 struct e1000_fc_info *fc = &hw->fc; 2265 u32 pba, hwm; 2266 2267 /* Repartition Pba for greater than 9k mtu 2268 * To take effect CTRL.RST is required. 2269 */ 2270 switch (mac->type) { 2271 case e1000_i350: 2272 case e1000_i354: 2273 case e1000_82580: 2274 pba = rd32(E1000_RXPBS); 2275 pba = igb_rxpbs_adjust_82580(pba); 2276 break; 2277 case e1000_82576: 2278 pba = rd32(E1000_RXPBS); 2279 pba &= E1000_RXPBS_SIZE_MASK_82576; 2280 break; 2281 case e1000_82575: 2282 case e1000_i210: 2283 case e1000_i211: 2284 default: 2285 pba = E1000_PBA_34K; 2286 break; 2287 } 2288 2289 if (mac->type == e1000_82575) { 2290 u32 min_rx_space, min_tx_space, needed_tx_space; 2291 2292 /* write Rx PBA so that hardware can report correct Tx PBA */ 2293 wr32(E1000_PBA, pba); 2294 2295 /* To maintain wire speed transmits, the Tx FIFO should be 2296 * large enough to accommodate two full transmit packets, 2297 * rounded up to the next 1KB and expressed in KB. Likewise, 2298 * the Rx FIFO should be large enough to accommodate at least 2299 * one full receive packet and is similarly rounded up and 2300 * expressed in KB. 2301 */ 2302 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024); 2303 2304 /* The Tx FIFO also stores 16 bytes of information about the Tx 2305 * but don't include Ethernet FCS because hardware appends it. 2306 * We only need to round down to the nearest 512 byte block 2307 * count since the value we care about is 2 frames, not 1. 2308 */ 2309 min_tx_space = adapter->max_frame_size; 2310 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN; 2311 min_tx_space = DIV_ROUND_UP(min_tx_space, 512); 2312 2313 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2314 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16); 2315 2316 /* If current Tx allocation is less than the min Tx FIFO size, 2317 * and the min Tx FIFO size is less than the current Rx FIFO 2318 * allocation, take space away from current Rx allocation. 2319 */ 2320 if (needed_tx_space < pba) { 2321 pba -= needed_tx_space; 2322 2323 /* if short on Rx space, Rx wins and must trump Tx 2324 * adjustment 2325 */ 2326 if (pba < min_rx_space) 2327 pba = min_rx_space; 2328 } 2329 2330 /* adjust PBA for jumbo frames */ 2331 wr32(E1000_PBA, pba); 2332 } 2333 2334 /* flow control settings 2335 * The high water mark must be low enough to fit one full frame 2336 * after transmitting the pause frame. As such we must have enough 2337 * space to allow for us to complete our current transmit and then 2338 * receive the frame that is in progress from the link partner. 2339 * Set it to: 2340 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 2341 */ 2342 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 2343 2344 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 2345 fc->low_water = fc->high_water - 16; 2346 fc->pause_time = 0xFFFF; 2347 fc->send_xon = 1; 2348 fc->current_mode = fc->requested_mode; 2349 2350 /* disable receive for all VFs and wait one second */ 2351 if (adapter->vfs_allocated_count) { 2352 int i; 2353 2354 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 2355 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 2356 2357 /* ping all the active vfs to let them know we are going down */ 2358 igb_ping_all_vfs(adapter); 2359 2360 /* disable transmits and receives */ 2361 wr32(E1000_VFRE, 0); 2362 wr32(E1000_VFTE, 0); 2363 } 2364 2365 /* Allow time for pending master requests to run */ 2366 hw->mac.ops.reset_hw(hw); 2367 wr32(E1000_WUC, 0); 2368 2369 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 2370 /* need to resetup here after media swap */ 2371 adapter->ei.get_invariants(hw); 2372 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 2373 } 2374 if ((mac->type == e1000_82575 || mac->type == e1000_i350) && 2375 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 2376 igb_enable_mas(adapter); 2377 } 2378 if (hw->mac.ops.init_hw(hw)) 2379 dev_err(&pdev->dev, "Hardware Error\n"); 2380 2381 /* RAR registers were cleared during init_hw, clear mac table */ 2382 igb_flush_mac_table(adapter); 2383 __dev_uc_unsync(adapter->netdev, NULL); 2384 2385 /* Recover default RAR entry */ 2386 igb_set_default_mac_filter(adapter); 2387 2388 /* Flow control settings reset on hardware reset, so guarantee flow 2389 * control is off when forcing speed. 2390 */ 2391 if (!hw->mac.autoneg) 2392 igb_force_mac_fc(hw); 2393 2394 igb_init_dmac(adapter, pba); 2395 #ifdef CONFIG_IGB_HWMON 2396 /* Re-initialize the thermal sensor on i350 devices. */ 2397 if (!test_bit(__IGB_DOWN, &adapter->state)) { 2398 if (mac->type == e1000_i350 && hw->bus.func == 0) { 2399 /* If present, re-initialize the external thermal sensor 2400 * interface. 2401 */ 2402 if (adapter->ets) 2403 mac->ops.init_thermal_sensor_thresh(hw); 2404 } 2405 } 2406 #endif 2407 /* Re-establish EEE setting */ 2408 if (hw->phy.media_type == e1000_media_type_copper) { 2409 switch (mac->type) { 2410 case e1000_i350: 2411 case e1000_i210: 2412 case e1000_i211: 2413 igb_set_eee_i350(hw, true, true); 2414 break; 2415 case e1000_i354: 2416 igb_set_eee_i354(hw, true, true); 2417 break; 2418 default: 2419 break; 2420 } 2421 } 2422 if (!netif_running(adapter->netdev)) 2423 igb_power_down_link(adapter); 2424 2425 igb_update_mng_vlan(adapter); 2426 2427 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2428 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2429 2430 /* Re-enable PTP, where applicable. */ 2431 if (adapter->ptp_flags & IGB_PTP_ENABLED) 2432 igb_ptp_reset(adapter); 2433 2434 igb_get_phy_info(hw); 2435 } 2436 2437 static netdev_features_t igb_fix_features(struct net_device *netdev, 2438 netdev_features_t features) 2439 { 2440 /* Since there is no support for separate Rx/Tx vlan accel 2441 * enable/disable make sure Tx flag is always in same state as Rx. 2442 */ 2443 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2444 features |= NETIF_F_HW_VLAN_CTAG_TX; 2445 else 2446 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2447 2448 return features; 2449 } 2450 2451 static int igb_set_features(struct net_device *netdev, 2452 netdev_features_t features) 2453 { 2454 netdev_features_t changed = netdev->features ^ features; 2455 struct igb_adapter *adapter = netdev_priv(netdev); 2456 2457 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2458 igb_vlan_mode(netdev, features); 2459 2460 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 2461 return 0; 2462 2463 if (!(features & NETIF_F_NTUPLE)) { 2464 struct hlist_node *node2; 2465 struct igb_nfc_filter *rule; 2466 2467 spin_lock(&adapter->nfc_lock); 2468 hlist_for_each_entry_safe(rule, node2, 2469 &adapter->nfc_filter_list, nfc_node) { 2470 igb_erase_filter(adapter, rule); 2471 hlist_del(&rule->nfc_node); 2472 kfree(rule); 2473 } 2474 spin_unlock(&adapter->nfc_lock); 2475 adapter->nfc_filter_count = 0; 2476 } 2477 2478 netdev->features = features; 2479 2480 if (netif_running(netdev)) 2481 igb_reinit_locked(adapter); 2482 else 2483 igb_reset(adapter); 2484 2485 return 1; 2486 } 2487 2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 2489 struct net_device *dev, 2490 const unsigned char *addr, u16 vid, 2491 u16 flags, 2492 struct netlink_ext_ack *extack) 2493 { 2494 /* guarantee we can provide a unique filter for the unicast address */ 2495 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) { 2496 struct igb_adapter *adapter = netdev_priv(dev); 2497 int vfn = adapter->vfs_allocated_count; 2498 2499 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn)) 2500 return -ENOMEM; 2501 } 2502 2503 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags); 2504 } 2505 2506 #define IGB_MAX_MAC_HDR_LEN 127 2507 #define IGB_MAX_NETWORK_HDR_LEN 511 2508 2509 static netdev_features_t 2510 igb_features_check(struct sk_buff *skb, struct net_device *dev, 2511 netdev_features_t features) 2512 { 2513 unsigned int network_hdr_len, mac_hdr_len; 2514 2515 /* Make certain the headers can be described by a context descriptor */ 2516 mac_hdr_len = skb_network_header(skb) - skb->data; 2517 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN)) 2518 return features & ~(NETIF_F_HW_CSUM | 2519 NETIF_F_SCTP_CRC | 2520 NETIF_F_GSO_UDP_L4 | 2521 NETIF_F_HW_VLAN_CTAG_TX | 2522 NETIF_F_TSO | 2523 NETIF_F_TSO6); 2524 2525 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2526 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN)) 2527 return features & ~(NETIF_F_HW_CSUM | 2528 NETIF_F_SCTP_CRC | 2529 NETIF_F_GSO_UDP_L4 | 2530 NETIF_F_TSO | 2531 NETIF_F_TSO6); 2532 2533 /* We can only support IPV4 TSO in tunnels if we can mangle the 2534 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2535 */ 2536 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2537 features &= ~NETIF_F_TSO; 2538 2539 return features; 2540 } 2541 2542 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue) 2543 { 2544 if (!is_fqtss_enabled(adapter)) { 2545 enable_fqtss(adapter, true); 2546 return; 2547 } 2548 2549 igb_config_tx_modes(adapter, queue); 2550 2551 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter)) 2552 enable_fqtss(adapter, false); 2553 } 2554 2555 static int igb_offload_cbs(struct igb_adapter *adapter, 2556 struct tc_cbs_qopt_offload *qopt) 2557 { 2558 struct e1000_hw *hw = &adapter->hw; 2559 int err; 2560 2561 /* CBS offloading is only supported by i210 controller. */ 2562 if (hw->mac.type != e1000_i210) 2563 return -EOPNOTSUPP; 2564 2565 /* CBS offloading is only supported by queue 0 and queue 1. */ 2566 if (qopt->queue < 0 || qopt->queue > 1) 2567 return -EINVAL; 2568 2569 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable, 2570 qopt->idleslope, qopt->sendslope, 2571 qopt->hicredit, qopt->locredit); 2572 if (err) 2573 return err; 2574 2575 igb_offload_apply(adapter, qopt->queue); 2576 2577 return 0; 2578 } 2579 2580 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) 2581 #define VLAN_PRIO_FULL_MASK (0x07) 2582 2583 static int igb_parse_cls_flower(struct igb_adapter *adapter, 2584 struct flow_cls_offload *f, 2585 int traffic_class, 2586 struct igb_nfc_filter *input) 2587 { 2588 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2589 struct flow_dissector *dissector = rule->match.dissector; 2590 struct netlink_ext_ack *extack = f->common.extack; 2591 2592 if (dissector->used_keys & 2593 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) | 2594 BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2595 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2596 BIT(FLOW_DISSECTOR_KEY_VLAN))) { 2597 NL_SET_ERR_MSG_MOD(extack, 2598 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported"); 2599 return -EOPNOTSUPP; 2600 } 2601 2602 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2603 struct flow_match_eth_addrs match; 2604 2605 flow_rule_match_eth_addrs(rule, &match); 2606 if (!is_zero_ether_addr(match.mask->dst)) { 2607 if (!is_broadcast_ether_addr(match.mask->dst)) { 2608 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address"); 2609 return -EINVAL; 2610 } 2611 2612 input->filter.match_flags |= 2613 IGB_FILTER_FLAG_DST_MAC_ADDR; 2614 ether_addr_copy(input->filter.dst_addr, match.key->dst); 2615 } 2616 2617 if (!is_zero_ether_addr(match.mask->src)) { 2618 if (!is_broadcast_ether_addr(match.mask->src)) { 2619 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address"); 2620 return -EINVAL; 2621 } 2622 2623 input->filter.match_flags |= 2624 IGB_FILTER_FLAG_SRC_MAC_ADDR; 2625 ether_addr_copy(input->filter.src_addr, match.key->src); 2626 } 2627 } 2628 2629 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2630 struct flow_match_basic match; 2631 2632 flow_rule_match_basic(rule, &match); 2633 if (match.mask->n_proto) { 2634 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) { 2635 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter"); 2636 return -EINVAL; 2637 } 2638 2639 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE; 2640 input->filter.etype = match.key->n_proto; 2641 } 2642 } 2643 2644 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2645 struct flow_match_vlan match; 2646 2647 flow_rule_match_vlan(rule, &match); 2648 if (match.mask->vlan_priority) { 2649 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) { 2650 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority"); 2651 return -EINVAL; 2652 } 2653 2654 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2655 input->filter.vlan_tci = 2656 (__force __be16)match.key->vlan_priority; 2657 } 2658 } 2659 2660 input->action = traffic_class; 2661 input->cookie = f->cookie; 2662 2663 return 0; 2664 } 2665 2666 static int igb_configure_clsflower(struct igb_adapter *adapter, 2667 struct flow_cls_offload *cls_flower) 2668 { 2669 struct netlink_ext_ack *extack = cls_flower->common.extack; 2670 struct igb_nfc_filter *filter, *f; 2671 int err, tc; 2672 2673 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2674 if (tc < 0) { 2675 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class"); 2676 return -EINVAL; 2677 } 2678 2679 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2680 if (!filter) 2681 return -ENOMEM; 2682 2683 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter); 2684 if (err < 0) 2685 goto err_parse; 2686 2687 spin_lock(&adapter->nfc_lock); 2688 2689 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) { 2690 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2691 err = -EEXIST; 2692 NL_SET_ERR_MSG_MOD(extack, 2693 "This filter is already set in ethtool"); 2694 goto err_locked; 2695 } 2696 } 2697 2698 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) { 2699 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2700 err = -EEXIST; 2701 NL_SET_ERR_MSG_MOD(extack, 2702 "This filter is already set in cls_flower"); 2703 goto err_locked; 2704 } 2705 } 2706 2707 err = igb_add_filter(adapter, filter); 2708 if (err < 0) { 2709 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter"); 2710 goto err_locked; 2711 } 2712 2713 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list); 2714 2715 spin_unlock(&adapter->nfc_lock); 2716 2717 return 0; 2718 2719 err_locked: 2720 spin_unlock(&adapter->nfc_lock); 2721 2722 err_parse: 2723 kfree(filter); 2724 2725 return err; 2726 } 2727 2728 static int igb_delete_clsflower(struct igb_adapter *adapter, 2729 struct flow_cls_offload *cls_flower) 2730 { 2731 struct igb_nfc_filter *filter; 2732 int err; 2733 2734 spin_lock(&adapter->nfc_lock); 2735 2736 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node) 2737 if (filter->cookie == cls_flower->cookie) 2738 break; 2739 2740 if (!filter) { 2741 err = -ENOENT; 2742 goto out; 2743 } 2744 2745 err = igb_erase_filter(adapter, filter); 2746 if (err < 0) 2747 goto out; 2748 2749 hlist_del(&filter->nfc_node); 2750 kfree(filter); 2751 2752 out: 2753 spin_unlock(&adapter->nfc_lock); 2754 2755 return err; 2756 } 2757 2758 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter, 2759 struct flow_cls_offload *cls_flower) 2760 { 2761 switch (cls_flower->command) { 2762 case FLOW_CLS_REPLACE: 2763 return igb_configure_clsflower(adapter, cls_flower); 2764 case FLOW_CLS_DESTROY: 2765 return igb_delete_clsflower(adapter, cls_flower); 2766 case FLOW_CLS_STATS: 2767 return -EOPNOTSUPP; 2768 default: 2769 return -EOPNOTSUPP; 2770 } 2771 } 2772 2773 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2774 void *cb_priv) 2775 { 2776 struct igb_adapter *adapter = cb_priv; 2777 2778 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 2779 return -EOPNOTSUPP; 2780 2781 switch (type) { 2782 case TC_SETUP_CLSFLOWER: 2783 return igb_setup_tc_cls_flower(adapter, type_data); 2784 2785 default: 2786 return -EOPNOTSUPP; 2787 } 2788 } 2789 2790 static int igb_offload_txtime(struct igb_adapter *adapter, 2791 struct tc_etf_qopt_offload *qopt) 2792 { 2793 struct e1000_hw *hw = &adapter->hw; 2794 int err; 2795 2796 /* Launchtime offloading is only supported by i210 controller. */ 2797 if (hw->mac.type != e1000_i210) 2798 return -EOPNOTSUPP; 2799 2800 /* Launchtime offloading is only supported by queues 0 and 1. */ 2801 if (qopt->queue < 0 || qopt->queue > 1) 2802 return -EINVAL; 2803 2804 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable); 2805 if (err) 2806 return err; 2807 2808 igb_offload_apply(adapter, qopt->queue); 2809 2810 return 0; 2811 } 2812 2813 static LIST_HEAD(igb_block_cb_list); 2814 2815 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type, 2816 void *type_data) 2817 { 2818 struct igb_adapter *adapter = netdev_priv(dev); 2819 2820 switch (type) { 2821 case TC_SETUP_QDISC_CBS: 2822 return igb_offload_cbs(adapter, type_data); 2823 case TC_SETUP_BLOCK: 2824 return flow_block_cb_setup_simple(type_data, 2825 &igb_block_cb_list, 2826 igb_setup_tc_block_cb, 2827 adapter, adapter, true); 2828 2829 case TC_SETUP_QDISC_ETF: 2830 return igb_offload_txtime(adapter, type_data); 2831 2832 default: 2833 return -EOPNOTSUPP; 2834 } 2835 } 2836 2837 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf) 2838 { 2839 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD; 2840 struct igb_adapter *adapter = netdev_priv(dev); 2841 struct bpf_prog *prog = bpf->prog, *old_prog; 2842 bool running = netif_running(dev); 2843 bool need_reset; 2844 2845 /* verify igb ring attributes are sufficient for XDP */ 2846 for (i = 0; i < adapter->num_rx_queues; i++) { 2847 struct igb_ring *ring = adapter->rx_ring[i]; 2848 2849 if (frame_size > igb_rx_bufsz(ring)) { 2850 NL_SET_ERR_MSG_MOD(bpf->extack, 2851 "The RX buffer size is too small for the frame size"); 2852 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n", 2853 igb_rx_bufsz(ring), frame_size); 2854 return -EINVAL; 2855 } 2856 } 2857 2858 old_prog = xchg(&adapter->xdp_prog, prog); 2859 need_reset = (!!prog != !!old_prog); 2860 2861 /* device is up and bpf is added/removed, must setup the RX queues */ 2862 if (need_reset && running) { 2863 igb_close(dev); 2864 } else { 2865 for (i = 0; i < adapter->num_rx_queues; i++) 2866 (void)xchg(&adapter->rx_ring[i]->xdp_prog, 2867 adapter->xdp_prog); 2868 } 2869 2870 if (old_prog) 2871 bpf_prog_put(old_prog); 2872 2873 /* bpf is just replaced, RXQ and MTU are already setup */ 2874 if (!need_reset) 2875 return 0; 2876 2877 if (running) 2878 igb_open(dev); 2879 2880 return 0; 2881 } 2882 2883 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2884 { 2885 switch (xdp->command) { 2886 case XDP_SETUP_PROG: 2887 return igb_xdp_setup(dev, xdp); 2888 default: 2889 return -EINVAL; 2890 } 2891 } 2892 2893 static void igb_xdp_ring_update_tail(struct igb_ring *ring) 2894 { 2895 /* Force memory writes to complete before letting h/w know there 2896 * are new descriptors to fetch. 2897 */ 2898 wmb(); 2899 writel(ring->next_to_use, ring->tail); 2900 } 2901 2902 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter) 2903 { 2904 unsigned int r_idx = smp_processor_id(); 2905 2906 if (r_idx >= adapter->num_tx_queues) 2907 r_idx = r_idx % adapter->num_tx_queues; 2908 2909 return adapter->tx_ring[r_idx]; 2910 } 2911 2912 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp) 2913 { 2914 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2915 int cpu = smp_processor_id(); 2916 struct igb_ring *tx_ring; 2917 struct netdev_queue *nq; 2918 u32 ret; 2919 2920 if (unlikely(!xdpf)) 2921 return IGB_XDP_CONSUMED; 2922 2923 /* During program transitions its possible adapter->xdp_prog is assigned 2924 * but ring has not been configured yet. In this case simply abort xmit. 2925 */ 2926 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2927 if (unlikely(!tx_ring)) 2928 return IGB_XDP_CONSUMED; 2929 2930 nq = txring_txq(tx_ring); 2931 __netif_tx_lock(nq, cpu); 2932 /* Avoid transmit queue timeout since we share it with the slow path */ 2933 txq_trans_cond_update(nq); 2934 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2935 __netif_tx_unlock(nq); 2936 2937 return ret; 2938 } 2939 2940 static int igb_xdp_xmit(struct net_device *dev, int n, 2941 struct xdp_frame **frames, u32 flags) 2942 { 2943 struct igb_adapter *adapter = netdev_priv(dev); 2944 int cpu = smp_processor_id(); 2945 struct igb_ring *tx_ring; 2946 struct netdev_queue *nq; 2947 int nxmit = 0; 2948 int i; 2949 2950 if (unlikely(test_bit(__IGB_DOWN, &adapter->state))) 2951 return -ENETDOWN; 2952 2953 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2954 return -EINVAL; 2955 2956 /* During program transitions its possible adapter->xdp_prog is assigned 2957 * but ring has not been configured yet. In this case simply abort xmit. 2958 */ 2959 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2960 if (unlikely(!tx_ring)) 2961 return -ENXIO; 2962 2963 nq = txring_txq(tx_ring); 2964 __netif_tx_lock(nq, cpu); 2965 2966 /* Avoid transmit queue timeout since we share it with the slow path */ 2967 txq_trans_cond_update(nq); 2968 2969 for (i = 0; i < n; i++) { 2970 struct xdp_frame *xdpf = frames[i]; 2971 int err; 2972 2973 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2974 if (err != IGB_XDP_TX) 2975 break; 2976 nxmit++; 2977 } 2978 2979 __netif_tx_unlock(nq); 2980 2981 if (unlikely(flags & XDP_XMIT_FLUSH)) 2982 igb_xdp_ring_update_tail(tx_ring); 2983 2984 return nxmit; 2985 } 2986 2987 static const struct net_device_ops igb_netdev_ops = { 2988 .ndo_open = igb_open, 2989 .ndo_stop = igb_close, 2990 .ndo_start_xmit = igb_xmit_frame, 2991 .ndo_get_stats64 = igb_get_stats64, 2992 .ndo_set_rx_mode = igb_set_rx_mode, 2993 .ndo_set_mac_address = igb_set_mac, 2994 .ndo_change_mtu = igb_change_mtu, 2995 .ndo_eth_ioctl = igb_ioctl, 2996 .ndo_tx_timeout = igb_tx_timeout, 2997 .ndo_validate_addr = eth_validate_addr, 2998 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2999 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 3000 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 3001 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 3002 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 3003 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 3004 .ndo_set_vf_trust = igb_ndo_set_vf_trust, 3005 .ndo_get_vf_config = igb_ndo_get_vf_config, 3006 .ndo_fix_features = igb_fix_features, 3007 .ndo_set_features = igb_set_features, 3008 .ndo_fdb_add = igb_ndo_fdb_add, 3009 .ndo_features_check = igb_features_check, 3010 .ndo_setup_tc = igb_setup_tc, 3011 .ndo_bpf = igb_xdp, 3012 .ndo_xdp_xmit = igb_xdp_xmit, 3013 }; 3014 3015 /** 3016 * igb_set_fw_version - Configure version string for ethtool 3017 * @adapter: adapter struct 3018 **/ 3019 void igb_set_fw_version(struct igb_adapter *adapter) 3020 { 3021 struct e1000_hw *hw = &adapter->hw; 3022 struct e1000_fw_version fw; 3023 3024 igb_get_fw_version(hw, &fw); 3025 3026 switch (hw->mac.type) { 3027 case e1000_i210: 3028 case e1000_i211: 3029 if (!(igb_get_flash_presence_i210(hw))) { 3030 snprintf(adapter->fw_version, 3031 sizeof(adapter->fw_version), 3032 "%2d.%2d-%d", 3033 fw.invm_major, fw.invm_minor, 3034 fw.invm_img_type); 3035 break; 3036 } 3037 fallthrough; 3038 default: 3039 /* if option is rom valid, display its version too */ 3040 if (fw.or_valid) { 3041 snprintf(adapter->fw_version, 3042 sizeof(adapter->fw_version), 3043 "%d.%d, 0x%08x, %d.%d.%d", 3044 fw.eep_major, fw.eep_minor, fw.etrack_id, 3045 fw.or_major, fw.or_build, fw.or_patch); 3046 /* no option rom */ 3047 } else if (fw.etrack_id != 0X0000) { 3048 snprintf(adapter->fw_version, 3049 sizeof(adapter->fw_version), 3050 "%d.%d, 0x%08x", 3051 fw.eep_major, fw.eep_minor, fw.etrack_id); 3052 } else { 3053 snprintf(adapter->fw_version, 3054 sizeof(adapter->fw_version), 3055 "%d.%d.%d", 3056 fw.eep_major, fw.eep_minor, fw.eep_build); 3057 } 3058 break; 3059 } 3060 } 3061 3062 /** 3063 * igb_init_mas - init Media Autosense feature if enabled in the NVM 3064 * 3065 * @adapter: adapter struct 3066 **/ 3067 static void igb_init_mas(struct igb_adapter *adapter) 3068 { 3069 struct e1000_hw *hw = &adapter->hw; 3070 u16 eeprom_data; 3071 3072 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 3073 switch (hw->bus.func) { 3074 case E1000_FUNC_0: 3075 if (eeprom_data & IGB_MAS_ENABLE_0) { 3076 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3077 netdev_info(adapter->netdev, 3078 "MAS: Enabling Media Autosense for port %d\n", 3079 hw->bus.func); 3080 } 3081 break; 3082 case E1000_FUNC_1: 3083 if (eeprom_data & IGB_MAS_ENABLE_1) { 3084 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3085 netdev_info(adapter->netdev, 3086 "MAS: Enabling Media Autosense for port %d\n", 3087 hw->bus.func); 3088 } 3089 break; 3090 case E1000_FUNC_2: 3091 if (eeprom_data & IGB_MAS_ENABLE_2) { 3092 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3093 netdev_info(adapter->netdev, 3094 "MAS: Enabling Media Autosense for port %d\n", 3095 hw->bus.func); 3096 } 3097 break; 3098 case E1000_FUNC_3: 3099 if (eeprom_data & IGB_MAS_ENABLE_3) { 3100 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3101 netdev_info(adapter->netdev, 3102 "MAS: Enabling Media Autosense for port %d\n", 3103 hw->bus.func); 3104 } 3105 break; 3106 default: 3107 /* Shouldn't get here */ 3108 netdev_err(adapter->netdev, 3109 "MAS: Invalid port configuration, returning\n"); 3110 break; 3111 } 3112 } 3113 3114 /** 3115 * igb_init_i2c - Init I2C interface 3116 * @adapter: pointer to adapter structure 3117 **/ 3118 static s32 igb_init_i2c(struct igb_adapter *adapter) 3119 { 3120 struct e1000_hw *hw = &adapter->hw; 3121 s32 status = 0; 3122 s32 i2cctl; 3123 3124 /* I2C interface supported on i350 devices */ 3125 if (adapter->hw.mac.type != e1000_i350) 3126 return 0; 3127 3128 i2cctl = rd32(E1000_I2CPARAMS); 3129 i2cctl |= E1000_I2CBB_EN 3130 | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N 3131 | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N; 3132 wr32(E1000_I2CPARAMS, i2cctl); 3133 wrfl(); 3134 3135 /* Initialize the i2c bus which is controlled by the registers. 3136 * This bus will use the i2c_algo_bit structure that implements 3137 * the protocol through toggling of the 4 bits in the register. 3138 */ 3139 adapter->i2c_adap.owner = THIS_MODULE; 3140 adapter->i2c_algo = igb_i2c_algo; 3141 adapter->i2c_algo.data = adapter; 3142 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 3143 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 3144 strscpy(adapter->i2c_adap.name, "igb BB", 3145 sizeof(adapter->i2c_adap.name)); 3146 status = i2c_bit_add_bus(&adapter->i2c_adap); 3147 return status; 3148 } 3149 3150 /** 3151 * igb_probe - Device Initialization Routine 3152 * @pdev: PCI device information struct 3153 * @ent: entry in igb_pci_tbl 3154 * 3155 * Returns 0 on success, negative on failure 3156 * 3157 * igb_probe initializes an adapter identified by a pci_dev structure. 3158 * The OS initialization, configuring of the adapter private structure, 3159 * and a hardware reset occur. 3160 **/ 3161 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3162 { 3163 struct net_device *netdev; 3164 struct igb_adapter *adapter; 3165 struct e1000_hw *hw; 3166 u16 eeprom_data = 0; 3167 s32 ret_val; 3168 static int global_quad_port_a; /* global quad port a indication */ 3169 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 3170 u8 part_str[E1000_PBANUM_LENGTH]; 3171 int err; 3172 3173 /* Catch broken hardware that put the wrong VF device ID in 3174 * the PCIe SR-IOV capability. 3175 */ 3176 if (pdev->is_virtfn) { 3177 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n", 3178 pci_name(pdev), pdev->vendor, pdev->device); 3179 return -EINVAL; 3180 } 3181 3182 err = pci_enable_device_mem(pdev); 3183 if (err) 3184 return err; 3185 3186 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3187 if (err) { 3188 dev_err(&pdev->dev, 3189 "No usable DMA configuration, aborting\n"); 3190 goto err_dma; 3191 } 3192 3193 err = pci_request_mem_regions(pdev, igb_driver_name); 3194 if (err) 3195 goto err_pci_reg; 3196 3197 pci_enable_pcie_error_reporting(pdev); 3198 3199 pci_set_master(pdev); 3200 pci_save_state(pdev); 3201 3202 err = -ENOMEM; 3203 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 3204 IGB_MAX_TX_QUEUES); 3205 if (!netdev) 3206 goto err_alloc_etherdev; 3207 3208 SET_NETDEV_DEV(netdev, &pdev->dev); 3209 3210 pci_set_drvdata(pdev, netdev); 3211 adapter = netdev_priv(netdev); 3212 adapter->netdev = netdev; 3213 adapter->pdev = pdev; 3214 hw = &adapter->hw; 3215 hw->back = adapter; 3216 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3217 3218 err = -EIO; 3219 adapter->io_addr = pci_iomap(pdev, 0, 0); 3220 if (!adapter->io_addr) 3221 goto err_ioremap; 3222 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */ 3223 hw->hw_addr = adapter->io_addr; 3224 3225 netdev->netdev_ops = &igb_netdev_ops; 3226 igb_set_ethtool_ops(netdev); 3227 netdev->watchdog_timeo = 5 * HZ; 3228 3229 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 3230 3231 netdev->mem_start = pci_resource_start(pdev, 0); 3232 netdev->mem_end = pci_resource_end(pdev, 0); 3233 3234 /* PCI config space info */ 3235 hw->vendor_id = pdev->vendor; 3236 hw->device_id = pdev->device; 3237 hw->revision_id = pdev->revision; 3238 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3239 hw->subsystem_device_id = pdev->subsystem_device; 3240 3241 /* Copy the default MAC, PHY and NVM function pointers */ 3242 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3243 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3244 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 3245 /* Initialize skew-specific constants */ 3246 err = ei->get_invariants(hw); 3247 if (err) 3248 goto err_sw_init; 3249 3250 /* setup the private structure */ 3251 err = igb_sw_init(adapter); 3252 if (err) 3253 goto err_sw_init; 3254 3255 igb_get_bus_info_pcie(hw); 3256 3257 hw->phy.autoneg_wait_to_complete = false; 3258 3259 /* Copper options */ 3260 if (hw->phy.media_type == e1000_media_type_copper) { 3261 hw->phy.mdix = AUTO_ALL_MODES; 3262 hw->phy.disable_polarity_correction = false; 3263 hw->phy.ms_type = e1000_ms_hw_default; 3264 } 3265 3266 if (igb_check_reset_block(hw)) 3267 dev_info(&pdev->dev, 3268 "PHY reset is blocked due to SOL/IDER session.\n"); 3269 3270 /* features is initialized to 0 in allocation, it might have bits 3271 * set by igb_sw_init so we should use an or instead of an 3272 * assignment. 3273 */ 3274 netdev->features |= NETIF_F_SG | 3275 NETIF_F_TSO | 3276 NETIF_F_TSO6 | 3277 NETIF_F_RXHASH | 3278 NETIF_F_RXCSUM | 3279 NETIF_F_HW_CSUM; 3280 3281 if (hw->mac.type >= e1000_82576) 3282 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4; 3283 3284 if (hw->mac.type >= e1000_i350) 3285 netdev->features |= NETIF_F_HW_TC; 3286 3287 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 3288 NETIF_F_GSO_GRE_CSUM | \ 3289 NETIF_F_GSO_IPXIP4 | \ 3290 NETIF_F_GSO_IPXIP6 | \ 3291 NETIF_F_GSO_UDP_TUNNEL | \ 3292 NETIF_F_GSO_UDP_TUNNEL_CSUM) 3293 3294 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES; 3295 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES; 3296 3297 /* copy netdev features into list of user selectable features */ 3298 netdev->hw_features |= netdev->features | 3299 NETIF_F_HW_VLAN_CTAG_RX | 3300 NETIF_F_HW_VLAN_CTAG_TX | 3301 NETIF_F_RXALL; 3302 3303 if (hw->mac.type >= e1000_i350) 3304 netdev->hw_features |= NETIF_F_NTUPLE; 3305 3306 netdev->features |= NETIF_F_HIGHDMA; 3307 3308 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 3309 netdev->mpls_features |= NETIF_F_HW_CSUM; 3310 netdev->hw_enc_features |= netdev->vlan_features; 3311 3312 /* set this bit last since it cannot be part of vlan_features */ 3313 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 3314 NETIF_F_HW_VLAN_CTAG_RX | 3315 NETIF_F_HW_VLAN_CTAG_TX; 3316 3317 netdev->priv_flags |= IFF_SUPP_NOFCS; 3318 3319 netdev->priv_flags |= IFF_UNICAST_FLT; 3320 3321 /* MTU range: 68 - 9216 */ 3322 netdev->min_mtu = ETH_MIN_MTU; 3323 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 3324 3325 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 3326 3327 /* before reading the NVM, reset the controller to put the device in a 3328 * known good starting state 3329 */ 3330 hw->mac.ops.reset_hw(hw); 3331 3332 /* make sure the NVM is good , i211/i210 parts can have special NVM 3333 * that doesn't contain a checksum 3334 */ 3335 switch (hw->mac.type) { 3336 case e1000_i210: 3337 case e1000_i211: 3338 if (igb_get_flash_presence_i210(hw)) { 3339 if (hw->nvm.ops.validate(hw) < 0) { 3340 dev_err(&pdev->dev, 3341 "The NVM Checksum Is Not Valid\n"); 3342 err = -EIO; 3343 goto err_eeprom; 3344 } 3345 } 3346 break; 3347 default: 3348 if (hw->nvm.ops.validate(hw) < 0) { 3349 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 3350 err = -EIO; 3351 goto err_eeprom; 3352 } 3353 break; 3354 } 3355 3356 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 3357 /* copy the MAC address out of the NVM */ 3358 if (hw->mac.ops.read_mac_addr(hw)) 3359 dev_err(&pdev->dev, "NVM Read Error\n"); 3360 } 3361 3362 eth_hw_addr_set(netdev, hw->mac.addr); 3363 3364 if (!is_valid_ether_addr(netdev->dev_addr)) { 3365 dev_err(&pdev->dev, "Invalid MAC Address\n"); 3366 err = -EIO; 3367 goto err_eeprom; 3368 } 3369 3370 igb_set_default_mac_filter(adapter); 3371 3372 /* get firmware version for ethtool -i */ 3373 igb_set_fw_version(adapter); 3374 3375 /* configure RXPBSIZE and TXPBSIZE */ 3376 if (hw->mac.type == e1000_i210) { 3377 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 3378 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 3379 } 3380 3381 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0); 3382 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0); 3383 3384 INIT_WORK(&adapter->reset_task, igb_reset_task); 3385 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 3386 3387 /* Initialize link properties that are user-changeable */ 3388 adapter->fc_autoneg = true; 3389 hw->mac.autoneg = true; 3390 hw->phy.autoneg_advertised = 0x2f; 3391 3392 hw->fc.requested_mode = e1000_fc_default; 3393 hw->fc.current_mode = e1000_fc_default; 3394 3395 igb_validate_mdi_setting(hw); 3396 3397 /* By default, support wake on port A */ 3398 if (hw->bus.func == 0) 3399 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3400 3401 /* Check the NVM for wake support on non-port A ports */ 3402 if (hw->mac.type >= e1000_82580) 3403 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 3404 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 3405 &eeprom_data); 3406 else if (hw->bus.func == 1) 3407 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3408 3409 if (eeprom_data & IGB_EEPROM_APME) 3410 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3411 3412 /* now that we have the eeprom settings, apply the special cases where 3413 * the eeprom may be wrong or the board simply won't support wake on 3414 * lan on a particular port 3415 */ 3416 switch (pdev->device) { 3417 case E1000_DEV_ID_82575GB_QUAD_COPPER: 3418 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3419 break; 3420 case E1000_DEV_ID_82575EB_FIBER_SERDES: 3421 case E1000_DEV_ID_82576_FIBER: 3422 case E1000_DEV_ID_82576_SERDES: 3423 /* Wake events only supported on port A for dual fiber 3424 * regardless of eeprom setting 3425 */ 3426 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 3427 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3428 break; 3429 case E1000_DEV_ID_82576_QUAD_COPPER: 3430 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 3431 /* if quad port adapter, disable WoL on all but port A */ 3432 if (global_quad_port_a != 0) 3433 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3434 else 3435 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 3436 /* Reset for multiple quad port adapters */ 3437 if (++global_quad_port_a == 4) 3438 global_quad_port_a = 0; 3439 break; 3440 default: 3441 /* If the device can't wake, don't set software support */ 3442 if (!device_can_wakeup(&adapter->pdev->dev)) 3443 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3444 } 3445 3446 /* initialize the wol settings based on the eeprom settings */ 3447 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 3448 adapter->wol |= E1000_WUFC_MAG; 3449 3450 /* Some vendors want WoL disabled by default, but still supported */ 3451 if ((hw->mac.type == e1000_i350) && 3452 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 3453 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3454 adapter->wol = 0; 3455 } 3456 3457 /* Some vendors want the ability to Use the EEPROM setting as 3458 * enable/disable only, and not for capability 3459 */ 3460 if (((hw->mac.type == e1000_i350) || 3461 (hw->mac.type == e1000_i354)) && 3462 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) { 3463 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3464 adapter->wol = 0; 3465 } 3466 if (hw->mac.type == e1000_i350) { 3467 if (((pdev->subsystem_device == 0x5001) || 3468 (pdev->subsystem_device == 0x5002)) && 3469 (hw->bus.func == 0)) { 3470 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3471 adapter->wol = 0; 3472 } 3473 if (pdev->subsystem_device == 0x1F52) 3474 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3475 } 3476 3477 device_set_wakeup_enable(&adapter->pdev->dev, 3478 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 3479 3480 /* reset the hardware with the new settings */ 3481 igb_reset(adapter); 3482 3483 /* Init the I2C interface */ 3484 err = igb_init_i2c(adapter); 3485 if (err) { 3486 dev_err(&pdev->dev, "failed to init i2c interface\n"); 3487 goto err_eeprom; 3488 } 3489 3490 /* let the f/w know that the h/w is now under the control of the 3491 * driver. 3492 */ 3493 igb_get_hw_control(adapter); 3494 3495 strcpy(netdev->name, "eth%d"); 3496 err = register_netdev(netdev); 3497 if (err) 3498 goto err_register; 3499 3500 /* carrier off reporting is important to ethtool even BEFORE open */ 3501 netif_carrier_off(netdev); 3502 3503 #ifdef CONFIG_IGB_DCA 3504 if (dca_add_requester(&pdev->dev) == 0) { 3505 adapter->flags |= IGB_FLAG_DCA_ENABLED; 3506 dev_info(&pdev->dev, "DCA enabled\n"); 3507 igb_setup_dca(adapter); 3508 } 3509 3510 #endif 3511 #ifdef CONFIG_IGB_HWMON 3512 /* Initialize the thermal sensor on i350 devices. */ 3513 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 3514 u16 ets_word; 3515 3516 /* Read the NVM to determine if this i350 device supports an 3517 * external thermal sensor. 3518 */ 3519 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 3520 if (ets_word != 0x0000 && ets_word != 0xFFFF) 3521 adapter->ets = true; 3522 else 3523 adapter->ets = false; 3524 if (igb_sysfs_init(adapter)) 3525 dev_err(&pdev->dev, 3526 "failed to allocate sysfs resources\n"); 3527 } else { 3528 adapter->ets = false; 3529 } 3530 #endif 3531 /* Check if Media Autosense is enabled */ 3532 adapter->ei = *ei; 3533 if (hw->dev_spec._82575.mas_capable) 3534 igb_init_mas(adapter); 3535 3536 /* do hw tstamp init after resetting */ 3537 igb_ptp_init(adapter); 3538 3539 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 3540 /* print bus type/speed/width info, not applicable to i354 */ 3541 if (hw->mac.type != e1000_i354) { 3542 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 3543 netdev->name, 3544 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 3545 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 3546 "unknown"), 3547 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 3548 "Width x4" : 3549 (hw->bus.width == e1000_bus_width_pcie_x2) ? 3550 "Width x2" : 3551 (hw->bus.width == e1000_bus_width_pcie_x1) ? 3552 "Width x1" : "unknown"), netdev->dev_addr); 3553 } 3554 3555 if ((hw->mac.type == e1000_82576 && 3556 rd32(E1000_EECD) & E1000_EECD_PRES) || 3557 (hw->mac.type >= e1000_i210 || 3558 igb_get_flash_presence_i210(hw))) { 3559 ret_val = igb_read_part_string(hw, part_str, 3560 E1000_PBANUM_LENGTH); 3561 } else { 3562 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 3563 } 3564 3565 if (ret_val) 3566 strcpy(part_str, "Unknown"); 3567 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 3568 dev_info(&pdev->dev, 3569 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 3570 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 3571 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 3572 adapter->num_rx_queues, adapter->num_tx_queues); 3573 if (hw->phy.media_type == e1000_media_type_copper) { 3574 switch (hw->mac.type) { 3575 case e1000_i350: 3576 case e1000_i210: 3577 case e1000_i211: 3578 /* Enable EEE for internal copper PHY devices */ 3579 err = igb_set_eee_i350(hw, true, true); 3580 if ((!err) && 3581 (!hw->dev_spec._82575.eee_disable)) { 3582 adapter->eee_advert = 3583 MDIO_EEE_100TX | MDIO_EEE_1000T; 3584 adapter->flags |= IGB_FLAG_EEE; 3585 } 3586 break; 3587 case e1000_i354: 3588 if ((rd32(E1000_CTRL_EXT) & 3589 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 3590 err = igb_set_eee_i354(hw, true, true); 3591 if ((!err) && 3592 (!hw->dev_spec._82575.eee_disable)) { 3593 adapter->eee_advert = 3594 MDIO_EEE_100TX | MDIO_EEE_1000T; 3595 adapter->flags |= IGB_FLAG_EEE; 3596 } 3597 } 3598 break; 3599 default: 3600 break; 3601 } 3602 } 3603 3604 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 3605 3606 pm_runtime_put_noidle(&pdev->dev); 3607 return 0; 3608 3609 err_register: 3610 igb_release_hw_control(adapter); 3611 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 3612 err_eeprom: 3613 if (!igb_check_reset_block(hw)) 3614 igb_reset_phy(hw); 3615 3616 if (hw->flash_address) 3617 iounmap(hw->flash_address); 3618 err_sw_init: 3619 kfree(adapter->mac_table); 3620 kfree(adapter->shadow_vfta); 3621 igb_clear_interrupt_scheme(adapter); 3622 #ifdef CONFIG_PCI_IOV 3623 igb_disable_sriov(pdev); 3624 #endif 3625 pci_iounmap(pdev, adapter->io_addr); 3626 err_ioremap: 3627 free_netdev(netdev); 3628 err_alloc_etherdev: 3629 pci_disable_pcie_error_reporting(pdev); 3630 pci_release_mem_regions(pdev); 3631 err_pci_reg: 3632 err_dma: 3633 pci_disable_device(pdev); 3634 return err; 3635 } 3636 3637 #ifdef CONFIG_PCI_IOV 3638 static int igb_disable_sriov(struct pci_dev *pdev) 3639 { 3640 struct net_device *netdev = pci_get_drvdata(pdev); 3641 struct igb_adapter *adapter = netdev_priv(netdev); 3642 struct e1000_hw *hw = &adapter->hw; 3643 unsigned long flags; 3644 3645 /* reclaim resources allocated to VFs */ 3646 if (adapter->vf_data) { 3647 /* disable iov and allow time for transactions to clear */ 3648 if (pci_vfs_assigned(pdev)) { 3649 dev_warn(&pdev->dev, 3650 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 3651 return -EPERM; 3652 } else { 3653 pci_disable_sriov(pdev); 3654 msleep(500); 3655 } 3656 spin_lock_irqsave(&adapter->vfs_lock, flags); 3657 kfree(adapter->vf_mac_list); 3658 adapter->vf_mac_list = NULL; 3659 kfree(adapter->vf_data); 3660 adapter->vf_data = NULL; 3661 adapter->vfs_allocated_count = 0; 3662 spin_unlock_irqrestore(&adapter->vfs_lock, flags); 3663 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 3664 wrfl(); 3665 msleep(100); 3666 dev_info(&pdev->dev, "IOV Disabled\n"); 3667 3668 /* Re-enable DMA Coalescing flag since IOV is turned off */ 3669 adapter->flags |= IGB_FLAG_DMAC; 3670 } 3671 3672 return 0; 3673 } 3674 3675 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 3676 { 3677 struct net_device *netdev = pci_get_drvdata(pdev); 3678 struct igb_adapter *adapter = netdev_priv(netdev); 3679 int old_vfs = pci_num_vf(pdev); 3680 struct vf_mac_filter *mac_list; 3681 int err = 0; 3682 int num_vf_mac_filters, i; 3683 3684 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 3685 err = -EPERM; 3686 goto out; 3687 } 3688 if (!num_vfs) 3689 goto out; 3690 3691 if (old_vfs) { 3692 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 3693 old_vfs, max_vfs); 3694 adapter->vfs_allocated_count = old_vfs; 3695 } else 3696 adapter->vfs_allocated_count = num_vfs; 3697 3698 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 3699 sizeof(struct vf_data_storage), GFP_KERNEL); 3700 3701 /* if allocation failed then we do not support SR-IOV */ 3702 if (!adapter->vf_data) { 3703 adapter->vfs_allocated_count = 0; 3704 err = -ENOMEM; 3705 goto out; 3706 } 3707 3708 /* Due to the limited number of RAR entries calculate potential 3709 * number of MAC filters available for the VFs. Reserve entries 3710 * for PF default MAC, PF MAC filters and at least one RAR entry 3711 * for each VF for VF MAC. 3712 */ 3713 num_vf_mac_filters = adapter->hw.mac.rar_entry_count - 3714 (1 + IGB_PF_MAC_FILTERS_RESERVED + 3715 adapter->vfs_allocated_count); 3716 3717 adapter->vf_mac_list = kcalloc(num_vf_mac_filters, 3718 sizeof(struct vf_mac_filter), 3719 GFP_KERNEL); 3720 3721 mac_list = adapter->vf_mac_list; 3722 INIT_LIST_HEAD(&adapter->vf_macs.l); 3723 3724 if (adapter->vf_mac_list) { 3725 /* Initialize list of VF MAC filters */ 3726 for (i = 0; i < num_vf_mac_filters; i++) { 3727 mac_list->vf = -1; 3728 mac_list->free = true; 3729 list_add(&mac_list->l, &adapter->vf_macs.l); 3730 mac_list++; 3731 } 3732 } else { 3733 /* If we could not allocate memory for the VF MAC filters 3734 * we can continue without this feature but warn user. 3735 */ 3736 dev_err(&pdev->dev, 3737 "Unable to allocate memory for VF MAC filter list\n"); 3738 } 3739 3740 /* only call pci_enable_sriov() if no VFs are allocated already */ 3741 if (!old_vfs) { 3742 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 3743 if (err) 3744 goto err_out; 3745 } 3746 dev_info(&pdev->dev, "%d VFs allocated\n", 3747 adapter->vfs_allocated_count); 3748 for (i = 0; i < adapter->vfs_allocated_count; i++) 3749 igb_vf_configure(adapter, i); 3750 3751 /* DMA Coalescing is not supported in IOV mode. */ 3752 adapter->flags &= ~IGB_FLAG_DMAC; 3753 goto out; 3754 3755 err_out: 3756 kfree(adapter->vf_mac_list); 3757 adapter->vf_mac_list = NULL; 3758 kfree(adapter->vf_data); 3759 adapter->vf_data = NULL; 3760 adapter->vfs_allocated_count = 0; 3761 out: 3762 return err; 3763 } 3764 3765 #endif 3766 /** 3767 * igb_remove_i2c - Cleanup I2C interface 3768 * @adapter: pointer to adapter structure 3769 **/ 3770 static void igb_remove_i2c(struct igb_adapter *adapter) 3771 { 3772 /* free the adapter bus structure */ 3773 i2c_del_adapter(&adapter->i2c_adap); 3774 } 3775 3776 /** 3777 * igb_remove - Device Removal Routine 3778 * @pdev: PCI device information struct 3779 * 3780 * igb_remove is called by the PCI subsystem to alert the driver 3781 * that it should release a PCI device. The could be caused by a 3782 * Hot-Plug event, or because the driver is going to be removed from 3783 * memory. 3784 **/ 3785 static void igb_remove(struct pci_dev *pdev) 3786 { 3787 struct net_device *netdev = pci_get_drvdata(pdev); 3788 struct igb_adapter *adapter = netdev_priv(netdev); 3789 struct e1000_hw *hw = &adapter->hw; 3790 3791 pm_runtime_get_noresume(&pdev->dev); 3792 #ifdef CONFIG_IGB_HWMON 3793 igb_sysfs_exit(adapter); 3794 #endif 3795 igb_remove_i2c(adapter); 3796 igb_ptp_stop(adapter); 3797 /* The watchdog timer may be rescheduled, so explicitly 3798 * disable watchdog from being rescheduled. 3799 */ 3800 set_bit(__IGB_DOWN, &adapter->state); 3801 del_timer_sync(&adapter->watchdog_timer); 3802 del_timer_sync(&adapter->phy_info_timer); 3803 3804 cancel_work_sync(&adapter->reset_task); 3805 cancel_work_sync(&adapter->watchdog_task); 3806 3807 #ifdef CONFIG_IGB_DCA 3808 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 3809 dev_info(&pdev->dev, "DCA disabled\n"); 3810 dca_remove_requester(&pdev->dev); 3811 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 3812 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 3813 } 3814 #endif 3815 3816 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3817 * would have already happened in close and is redundant. 3818 */ 3819 igb_release_hw_control(adapter); 3820 3821 #ifdef CONFIG_PCI_IOV 3822 rtnl_lock(); 3823 igb_disable_sriov(pdev); 3824 rtnl_unlock(); 3825 #endif 3826 3827 unregister_netdev(netdev); 3828 3829 igb_clear_interrupt_scheme(adapter); 3830 3831 pci_iounmap(pdev, adapter->io_addr); 3832 if (hw->flash_address) 3833 iounmap(hw->flash_address); 3834 pci_release_mem_regions(pdev); 3835 3836 kfree(adapter->mac_table); 3837 kfree(adapter->shadow_vfta); 3838 free_netdev(netdev); 3839 3840 pci_disable_pcie_error_reporting(pdev); 3841 3842 pci_disable_device(pdev); 3843 } 3844 3845 /** 3846 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 3847 * @adapter: board private structure to initialize 3848 * 3849 * This function initializes the vf specific data storage and then attempts to 3850 * allocate the VFs. The reason for ordering it this way is because it is much 3851 * mor expensive time wise to disable SR-IOV than it is to allocate and free 3852 * the memory for the VFs. 3853 **/ 3854 static void igb_probe_vfs(struct igb_adapter *adapter) 3855 { 3856 #ifdef CONFIG_PCI_IOV 3857 struct pci_dev *pdev = adapter->pdev; 3858 struct e1000_hw *hw = &adapter->hw; 3859 3860 /* Virtualization features not supported on i210 family. */ 3861 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 3862 return; 3863 3864 /* Of the below we really only want the effect of getting 3865 * IGB_FLAG_HAS_MSIX set (if available), without which 3866 * igb_enable_sriov() has no effect. 3867 */ 3868 igb_set_interrupt_capability(adapter, true); 3869 igb_reset_interrupt_capability(adapter); 3870 3871 pci_sriov_set_totalvfs(pdev, 7); 3872 igb_enable_sriov(pdev, max_vfs); 3873 3874 #endif /* CONFIG_PCI_IOV */ 3875 } 3876 3877 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter) 3878 { 3879 struct e1000_hw *hw = &adapter->hw; 3880 unsigned int max_rss_queues; 3881 3882 /* Determine the maximum number of RSS queues supported. */ 3883 switch (hw->mac.type) { 3884 case e1000_i211: 3885 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 3886 break; 3887 case e1000_82575: 3888 case e1000_i210: 3889 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 3890 break; 3891 case e1000_i350: 3892 /* I350 cannot do RSS and SR-IOV at the same time */ 3893 if (!!adapter->vfs_allocated_count) { 3894 max_rss_queues = 1; 3895 break; 3896 } 3897 fallthrough; 3898 case e1000_82576: 3899 if (!!adapter->vfs_allocated_count) { 3900 max_rss_queues = 2; 3901 break; 3902 } 3903 fallthrough; 3904 case e1000_82580: 3905 case e1000_i354: 3906 default: 3907 max_rss_queues = IGB_MAX_RX_QUEUES; 3908 break; 3909 } 3910 3911 return max_rss_queues; 3912 } 3913 3914 static void igb_init_queue_configuration(struct igb_adapter *adapter) 3915 { 3916 u32 max_rss_queues; 3917 3918 max_rss_queues = igb_get_max_rss_queues(adapter); 3919 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3920 3921 igb_set_flag_queue_pairs(adapter, max_rss_queues); 3922 } 3923 3924 void igb_set_flag_queue_pairs(struct igb_adapter *adapter, 3925 const u32 max_rss_queues) 3926 { 3927 struct e1000_hw *hw = &adapter->hw; 3928 3929 /* Determine if we need to pair queues. */ 3930 switch (hw->mac.type) { 3931 case e1000_82575: 3932 case e1000_i211: 3933 /* Device supports enough interrupts without queue pairing. */ 3934 break; 3935 case e1000_82576: 3936 case e1000_82580: 3937 case e1000_i350: 3938 case e1000_i354: 3939 case e1000_i210: 3940 default: 3941 /* If rss_queues > half of max_rss_queues, pair the queues in 3942 * order to conserve interrupts due to limited supply. 3943 */ 3944 if (adapter->rss_queues > (max_rss_queues / 2)) 3945 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 3946 else 3947 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS; 3948 break; 3949 } 3950 } 3951 3952 /** 3953 * igb_sw_init - Initialize general software structures (struct igb_adapter) 3954 * @adapter: board private structure to initialize 3955 * 3956 * igb_sw_init initializes the Adapter private data structure. 3957 * Fields are initialized based on PCI device information and 3958 * OS network device settings (MTU size). 3959 **/ 3960 static int igb_sw_init(struct igb_adapter *adapter) 3961 { 3962 struct e1000_hw *hw = &adapter->hw; 3963 struct net_device *netdev = adapter->netdev; 3964 struct pci_dev *pdev = adapter->pdev; 3965 3966 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3967 3968 /* set default ring sizes */ 3969 adapter->tx_ring_count = IGB_DEFAULT_TXD; 3970 adapter->rx_ring_count = IGB_DEFAULT_RXD; 3971 3972 /* set default ITR values */ 3973 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 3974 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 3975 3976 /* set default work limits */ 3977 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 3978 3979 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD; 3980 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3981 3982 spin_lock_init(&adapter->nfc_lock); 3983 spin_lock_init(&adapter->stats64_lock); 3984 3985 /* init spinlock to avoid concurrency of VF resources */ 3986 spin_lock_init(&adapter->vfs_lock); 3987 #ifdef CONFIG_PCI_IOV 3988 switch (hw->mac.type) { 3989 case e1000_82576: 3990 case e1000_i350: 3991 if (max_vfs > 7) { 3992 dev_warn(&pdev->dev, 3993 "Maximum of 7 VFs per PF, using max\n"); 3994 max_vfs = adapter->vfs_allocated_count = 7; 3995 } else 3996 adapter->vfs_allocated_count = max_vfs; 3997 if (adapter->vfs_allocated_count) 3998 dev_warn(&pdev->dev, 3999 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 4000 break; 4001 default: 4002 break; 4003 } 4004 #endif /* CONFIG_PCI_IOV */ 4005 4006 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 4007 adapter->flags |= IGB_FLAG_HAS_MSIX; 4008 4009 adapter->mac_table = kcalloc(hw->mac.rar_entry_count, 4010 sizeof(struct igb_mac_addr), 4011 GFP_KERNEL); 4012 if (!adapter->mac_table) 4013 return -ENOMEM; 4014 4015 igb_probe_vfs(adapter); 4016 4017 igb_init_queue_configuration(adapter); 4018 4019 /* Setup and initialize a copy of the hw vlan table array */ 4020 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 4021 GFP_KERNEL); 4022 if (!adapter->shadow_vfta) 4023 return -ENOMEM; 4024 4025 /* This call may decrease the number of queues */ 4026 if (igb_init_interrupt_scheme(adapter, true)) { 4027 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4028 return -ENOMEM; 4029 } 4030 4031 /* Explicitly disable IRQ since the NIC can be in any state. */ 4032 igb_irq_disable(adapter); 4033 4034 if (hw->mac.type >= e1000_i350) 4035 adapter->flags &= ~IGB_FLAG_DMAC; 4036 4037 set_bit(__IGB_DOWN, &adapter->state); 4038 return 0; 4039 } 4040 4041 /** 4042 * __igb_open - Called when a network interface is made active 4043 * @netdev: network interface device structure 4044 * @resuming: indicates whether we are in a resume call 4045 * 4046 * Returns 0 on success, negative value on failure 4047 * 4048 * The open entry point is called when a network interface is made 4049 * active by the system (IFF_UP). At this point all resources needed 4050 * for transmit and receive operations are allocated, the interrupt 4051 * handler is registered with the OS, the watchdog timer is started, 4052 * and the stack is notified that the interface is ready. 4053 **/ 4054 static int __igb_open(struct net_device *netdev, bool resuming) 4055 { 4056 struct igb_adapter *adapter = netdev_priv(netdev); 4057 struct e1000_hw *hw = &adapter->hw; 4058 struct pci_dev *pdev = adapter->pdev; 4059 int err; 4060 int i; 4061 4062 /* disallow open during test */ 4063 if (test_bit(__IGB_TESTING, &adapter->state)) { 4064 WARN_ON(resuming); 4065 return -EBUSY; 4066 } 4067 4068 if (!resuming) 4069 pm_runtime_get_sync(&pdev->dev); 4070 4071 netif_carrier_off(netdev); 4072 4073 /* allocate transmit descriptors */ 4074 err = igb_setup_all_tx_resources(adapter); 4075 if (err) 4076 goto err_setup_tx; 4077 4078 /* allocate receive descriptors */ 4079 err = igb_setup_all_rx_resources(adapter); 4080 if (err) 4081 goto err_setup_rx; 4082 4083 igb_power_up_link(adapter); 4084 4085 /* before we allocate an interrupt, we must be ready to handle it. 4086 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4087 * as soon as we call pci_request_irq, so we have to setup our 4088 * clean_rx handler before we do so. 4089 */ 4090 igb_configure(adapter); 4091 4092 err = igb_request_irq(adapter); 4093 if (err) 4094 goto err_req_irq; 4095 4096 /* Notify the stack of the actual queue counts. */ 4097 err = netif_set_real_num_tx_queues(adapter->netdev, 4098 adapter->num_tx_queues); 4099 if (err) 4100 goto err_set_queues; 4101 4102 err = netif_set_real_num_rx_queues(adapter->netdev, 4103 adapter->num_rx_queues); 4104 if (err) 4105 goto err_set_queues; 4106 4107 /* From here on the code is the same as igb_up() */ 4108 clear_bit(__IGB_DOWN, &adapter->state); 4109 4110 for (i = 0; i < adapter->num_q_vectors; i++) 4111 napi_enable(&(adapter->q_vector[i]->napi)); 4112 4113 /* Clear any pending interrupts. */ 4114 rd32(E1000_TSICR); 4115 rd32(E1000_ICR); 4116 4117 igb_irq_enable(adapter); 4118 4119 /* notify VFs that reset has been completed */ 4120 if (adapter->vfs_allocated_count) { 4121 u32 reg_data = rd32(E1000_CTRL_EXT); 4122 4123 reg_data |= E1000_CTRL_EXT_PFRSTD; 4124 wr32(E1000_CTRL_EXT, reg_data); 4125 } 4126 4127 netif_tx_start_all_queues(netdev); 4128 4129 if (!resuming) 4130 pm_runtime_put(&pdev->dev); 4131 4132 /* start the watchdog. */ 4133 hw->mac.get_link_status = 1; 4134 schedule_work(&adapter->watchdog_task); 4135 4136 return 0; 4137 4138 err_set_queues: 4139 igb_free_irq(adapter); 4140 err_req_irq: 4141 igb_release_hw_control(adapter); 4142 igb_power_down_link(adapter); 4143 igb_free_all_rx_resources(adapter); 4144 err_setup_rx: 4145 igb_free_all_tx_resources(adapter); 4146 err_setup_tx: 4147 igb_reset(adapter); 4148 if (!resuming) 4149 pm_runtime_put(&pdev->dev); 4150 4151 return err; 4152 } 4153 4154 int igb_open(struct net_device *netdev) 4155 { 4156 return __igb_open(netdev, false); 4157 } 4158 4159 /** 4160 * __igb_close - Disables a network interface 4161 * @netdev: network interface device structure 4162 * @suspending: indicates we are in a suspend call 4163 * 4164 * Returns 0, this is not allowed to fail 4165 * 4166 * The close entry point is called when an interface is de-activated 4167 * by the OS. The hardware is still under the driver's control, but 4168 * needs to be disabled. A global MAC reset is issued to stop the 4169 * hardware, and all transmit and receive resources are freed. 4170 **/ 4171 static int __igb_close(struct net_device *netdev, bool suspending) 4172 { 4173 struct igb_adapter *adapter = netdev_priv(netdev); 4174 struct pci_dev *pdev = adapter->pdev; 4175 4176 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 4177 4178 if (!suspending) 4179 pm_runtime_get_sync(&pdev->dev); 4180 4181 igb_down(adapter); 4182 igb_free_irq(adapter); 4183 4184 igb_free_all_tx_resources(adapter); 4185 igb_free_all_rx_resources(adapter); 4186 4187 if (!suspending) 4188 pm_runtime_put_sync(&pdev->dev); 4189 return 0; 4190 } 4191 4192 int igb_close(struct net_device *netdev) 4193 { 4194 if (netif_device_present(netdev) || netdev->dismantle) 4195 return __igb_close(netdev, false); 4196 return 0; 4197 } 4198 4199 /** 4200 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 4201 * @tx_ring: tx descriptor ring (for a specific queue) to setup 4202 * 4203 * Return 0 on success, negative on failure 4204 **/ 4205 int igb_setup_tx_resources(struct igb_ring *tx_ring) 4206 { 4207 struct device *dev = tx_ring->dev; 4208 int size; 4209 4210 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 4211 4212 tx_ring->tx_buffer_info = vmalloc(size); 4213 if (!tx_ring->tx_buffer_info) 4214 goto err; 4215 4216 /* round up to nearest 4K */ 4217 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 4218 tx_ring->size = ALIGN(tx_ring->size, 4096); 4219 4220 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 4221 &tx_ring->dma, GFP_KERNEL); 4222 if (!tx_ring->desc) 4223 goto err; 4224 4225 tx_ring->next_to_use = 0; 4226 tx_ring->next_to_clean = 0; 4227 4228 return 0; 4229 4230 err: 4231 vfree(tx_ring->tx_buffer_info); 4232 tx_ring->tx_buffer_info = NULL; 4233 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 4234 return -ENOMEM; 4235 } 4236 4237 /** 4238 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 4239 * (Descriptors) for all queues 4240 * @adapter: board private structure 4241 * 4242 * Return 0 on success, negative on failure 4243 **/ 4244 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 4245 { 4246 struct pci_dev *pdev = adapter->pdev; 4247 int i, err = 0; 4248 4249 for (i = 0; i < adapter->num_tx_queues; i++) { 4250 err = igb_setup_tx_resources(adapter->tx_ring[i]); 4251 if (err) { 4252 dev_err(&pdev->dev, 4253 "Allocation for Tx Queue %u failed\n", i); 4254 for (i--; i >= 0; i--) 4255 igb_free_tx_resources(adapter->tx_ring[i]); 4256 break; 4257 } 4258 } 4259 4260 return err; 4261 } 4262 4263 /** 4264 * igb_setup_tctl - configure the transmit control registers 4265 * @adapter: Board private structure 4266 **/ 4267 void igb_setup_tctl(struct igb_adapter *adapter) 4268 { 4269 struct e1000_hw *hw = &adapter->hw; 4270 u32 tctl; 4271 4272 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 4273 wr32(E1000_TXDCTL(0), 0); 4274 4275 /* Program the Transmit Control Register */ 4276 tctl = rd32(E1000_TCTL); 4277 tctl &= ~E1000_TCTL_CT; 4278 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 4279 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 4280 4281 igb_config_collision_dist(hw); 4282 4283 /* Enable transmits */ 4284 tctl |= E1000_TCTL_EN; 4285 4286 wr32(E1000_TCTL, tctl); 4287 } 4288 4289 /** 4290 * igb_configure_tx_ring - Configure transmit ring after Reset 4291 * @adapter: board private structure 4292 * @ring: tx ring to configure 4293 * 4294 * Configure a transmit ring after a reset. 4295 **/ 4296 void igb_configure_tx_ring(struct igb_adapter *adapter, 4297 struct igb_ring *ring) 4298 { 4299 struct e1000_hw *hw = &adapter->hw; 4300 u32 txdctl = 0; 4301 u64 tdba = ring->dma; 4302 int reg_idx = ring->reg_idx; 4303 4304 wr32(E1000_TDLEN(reg_idx), 4305 ring->count * sizeof(union e1000_adv_tx_desc)); 4306 wr32(E1000_TDBAL(reg_idx), 4307 tdba & 0x00000000ffffffffULL); 4308 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 4309 4310 ring->tail = adapter->io_addr + E1000_TDT(reg_idx); 4311 wr32(E1000_TDH(reg_idx), 0); 4312 writel(0, ring->tail); 4313 4314 txdctl |= IGB_TX_PTHRESH; 4315 txdctl |= IGB_TX_HTHRESH << 8; 4316 txdctl |= IGB_TX_WTHRESH << 16; 4317 4318 /* reinitialize tx_buffer_info */ 4319 memset(ring->tx_buffer_info, 0, 4320 sizeof(struct igb_tx_buffer) * ring->count); 4321 4322 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 4323 wr32(E1000_TXDCTL(reg_idx), txdctl); 4324 } 4325 4326 /** 4327 * igb_configure_tx - Configure transmit Unit after Reset 4328 * @adapter: board private structure 4329 * 4330 * Configure the Tx unit of the MAC after a reset. 4331 **/ 4332 static void igb_configure_tx(struct igb_adapter *adapter) 4333 { 4334 struct e1000_hw *hw = &adapter->hw; 4335 int i; 4336 4337 /* disable the queues */ 4338 for (i = 0; i < adapter->num_tx_queues; i++) 4339 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0); 4340 4341 wrfl(); 4342 usleep_range(10000, 20000); 4343 4344 for (i = 0; i < adapter->num_tx_queues; i++) 4345 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 4346 } 4347 4348 /** 4349 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 4350 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 4351 * 4352 * Returns 0 on success, negative on failure 4353 **/ 4354 int igb_setup_rx_resources(struct igb_ring *rx_ring) 4355 { 4356 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev); 4357 struct device *dev = rx_ring->dev; 4358 int size, res; 4359 4360 /* XDP RX-queue info */ 4361 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 4362 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4363 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 4364 rx_ring->queue_index, 0); 4365 if (res < 0) { 4366 dev_err(dev, "Failed to register xdp_rxq index %u\n", 4367 rx_ring->queue_index); 4368 return res; 4369 } 4370 4371 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 4372 4373 rx_ring->rx_buffer_info = vmalloc(size); 4374 if (!rx_ring->rx_buffer_info) 4375 goto err; 4376 4377 /* Round up to nearest 4K */ 4378 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 4379 rx_ring->size = ALIGN(rx_ring->size, 4096); 4380 4381 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 4382 &rx_ring->dma, GFP_KERNEL); 4383 if (!rx_ring->desc) 4384 goto err; 4385 4386 rx_ring->next_to_alloc = 0; 4387 rx_ring->next_to_clean = 0; 4388 rx_ring->next_to_use = 0; 4389 4390 rx_ring->xdp_prog = adapter->xdp_prog; 4391 4392 return 0; 4393 4394 err: 4395 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4396 vfree(rx_ring->rx_buffer_info); 4397 rx_ring->rx_buffer_info = NULL; 4398 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 4399 return -ENOMEM; 4400 } 4401 4402 /** 4403 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 4404 * (Descriptors) for all queues 4405 * @adapter: board private structure 4406 * 4407 * Return 0 on success, negative on failure 4408 **/ 4409 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 4410 { 4411 struct pci_dev *pdev = adapter->pdev; 4412 int i, err = 0; 4413 4414 for (i = 0; i < adapter->num_rx_queues; i++) { 4415 err = igb_setup_rx_resources(adapter->rx_ring[i]); 4416 if (err) { 4417 dev_err(&pdev->dev, 4418 "Allocation for Rx Queue %u failed\n", i); 4419 for (i--; i >= 0; i--) 4420 igb_free_rx_resources(adapter->rx_ring[i]); 4421 break; 4422 } 4423 } 4424 4425 return err; 4426 } 4427 4428 /** 4429 * igb_setup_mrqc - configure the multiple receive queue control registers 4430 * @adapter: Board private structure 4431 **/ 4432 static void igb_setup_mrqc(struct igb_adapter *adapter) 4433 { 4434 struct e1000_hw *hw = &adapter->hw; 4435 u32 mrqc, rxcsum; 4436 u32 j, num_rx_queues; 4437 u32 rss_key[10]; 4438 4439 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 4440 for (j = 0; j < 10; j++) 4441 wr32(E1000_RSSRK(j), rss_key[j]); 4442 4443 num_rx_queues = adapter->rss_queues; 4444 4445 switch (hw->mac.type) { 4446 case e1000_82576: 4447 /* 82576 supports 2 RSS queues for SR-IOV */ 4448 if (adapter->vfs_allocated_count) 4449 num_rx_queues = 2; 4450 break; 4451 default: 4452 break; 4453 } 4454 4455 if (adapter->rss_indir_tbl_init != num_rx_queues) { 4456 for (j = 0; j < IGB_RETA_SIZE; j++) 4457 adapter->rss_indir_tbl[j] = 4458 (j * num_rx_queues) / IGB_RETA_SIZE; 4459 adapter->rss_indir_tbl_init = num_rx_queues; 4460 } 4461 igb_write_rss_indir_tbl(adapter); 4462 4463 /* Disable raw packet checksumming so that RSS hash is placed in 4464 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 4465 * offloads as they are enabled by default 4466 */ 4467 rxcsum = rd32(E1000_RXCSUM); 4468 rxcsum |= E1000_RXCSUM_PCSD; 4469 4470 if (adapter->hw.mac.type >= e1000_82576) 4471 /* Enable Receive Checksum Offload for SCTP */ 4472 rxcsum |= E1000_RXCSUM_CRCOFL; 4473 4474 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 4475 wr32(E1000_RXCSUM, rxcsum); 4476 4477 /* Generate RSS hash based on packet types, TCP/UDP 4478 * port numbers and/or IPv4/v6 src and dst addresses 4479 */ 4480 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 4481 E1000_MRQC_RSS_FIELD_IPV4_TCP | 4482 E1000_MRQC_RSS_FIELD_IPV6 | 4483 E1000_MRQC_RSS_FIELD_IPV6_TCP | 4484 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 4485 4486 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 4487 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 4488 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 4489 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 4490 4491 /* If VMDq is enabled then we set the appropriate mode for that, else 4492 * we default to RSS so that an RSS hash is calculated per packet even 4493 * if we are only using one queue 4494 */ 4495 if (adapter->vfs_allocated_count) { 4496 if (hw->mac.type > e1000_82575) { 4497 /* Set the default pool for the PF's first queue */ 4498 u32 vtctl = rd32(E1000_VT_CTL); 4499 4500 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 4501 E1000_VT_CTL_DISABLE_DEF_POOL); 4502 vtctl |= adapter->vfs_allocated_count << 4503 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 4504 wr32(E1000_VT_CTL, vtctl); 4505 } 4506 if (adapter->rss_queues > 1) 4507 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ; 4508 else 4509 mrqc |= E1000_MRQC_ENABLE_VMDQ; 4510 } else { 4511 mrqc |= E1000_MRQC_ENABLE_RSS_MQ; 4512 } 4513 igb_vmm_control(adapter); 4514 4515 wr32(E1000_MRQC, mrqc); 4516 } 4517 4518 /** 4519 * igb_setup_rctl - configure the receive control registers 4520 * @adapter: Board private structure 4521 **/ 4522 void igb_setup_rctl(struct igb_adapter *adapter) 4523 { 4524 struct e1000_hw *hw = &adapter->hw; 4525 u32 rctl; 4526 4527 rctl = rd32(E1000_RCTL); 4528 4529 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 4530 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 4531 4532 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 4533 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 4534 4535 /* enable stripping of CRC. It's unlikely this will break BMC 4536 * redirection as it did with e1000. Newer features require 4537 * that the HW strips the CRC. 4538 */ 4539 rctl |= E1000_RCTL_SECRC; 4540 4541 /* disable store bad packets and clear size bits. */ 4542 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 4543 4544 /* enable LPE to allow for reception of jumbo frames */ 4545 rctl |= E1000_RCTL_LPE; 4546 4547 /* disable queue 0 to prevent tail write w/o re-config */ 4548 wr32(E1000_RXDCTL(0), 0); 4549 4550 /* Attention!!! For SR-IOV PF driver operations you must enable 4551 * queue drop for all VF and PF queues to prevent head of line blocking 4552 * if an un-trusted VF does not provide descriptors to hardware. 4553 */ 4554 if (adapter->vfs_allocated_count) { 4555 /* set all queue drop enable bits */ 4556 wr32(E1000_QDE, ALL_QUEUES); 4557 } 4558 4559 /* This is useful for sniffing bad packets. */ 4560 if (adapter->netdev->features & NETIF_F_RXALL) { 4561 /* UPE and MPE will be handled by normal PROMISC logic 4562 * in e1000e_set_rx_mode 4563 */ 4564 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 4565 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 4566 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 4567 4568 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */ 4569 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 4570 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 4571 * and that breaks VLANs. 4572 */ 4573 } 4574 4575 wr32(E1000_RCTL, rctl); 4576 } 4577 4578 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 4579 int vfn) 4580 { 4581 struct e1000_hw *hw = &adapter->hw; 4582 u32 vmolr; 4583 4584 if (size > MAX_JUMBO_FRAME_SIZE) 4585 size = MAX_JUMBO_FRAME_SIZE; 4586 4587 vmolr = rd32(E1000_VMOLR(vfn)); 4588 vmolr &= ~E1000_VMOLR_RLPML_MASK; 4589 vmolr |= size | E1000_VMOLR_LPE; 4590 wr32(E1000_VMOLR(vfn), vmolr); 4591 4592 return 0; 4593 } 4594 4595 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter, 4596 int vfn, bool enable) 4597 { 4598 struct e1000_hw *hw = &adapter->hw; 4599 u32 val, reg; 4600 4601 if (hw->mac.type < e1000_82576) 4602 return; 4603 4604 if (hw->mac.type == e1000_i350) 4605 reg = E1000_DVMOLR(vfn); 4606 else 4607 reg = E1000_VMOLR(vfn); 4608 4609 val = rd32(reg); 4610 if (enable) 4611 val |= E1000_VMOLR_STRVLAN; 4612 else 4613 val &= ~(E1000_VMOLR_STRVLAN); 4614 wr32(reg, val); 4615 } 4616 4617 static inline void igb_set_vmolr(struct igb_adapter *adapter, 4618 int vfn, bool aupe) 4619 { 4620 struct e1000_hw *hw = &adapter->hw; 4621 u32 vmolr; 4622 4623 /* This register exists only on 82576 and newer so if we are older then 4624 * we should exit and do nothing 4625 */ 4626 if (hw->mac.type < e1000_82576) 4627 return; 4628 4629 vmolr = rd32(E1000_VMOLR(vfn)); 4630 if (aupe) 4631 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 4632 else 4633 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 4634 4635 /* clear all bits that might not be set */ 4636 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 4637 4638 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 4639 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 4640 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 4641 * multicast packets 4642 */ 4643 if (vfn <= adapter->vfs_allocated_count) 4644 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 4645 4646 wr32(E1000_VMOLR(vfn), vmolr); 4647 } 4648 4649 /** 4650 * igb_setup_srrctl - configure the split and replication receive control 4651 * registers 4652 * @adapter: Board private structure 4653 * @ring: receive ring to be configured 4654 **/ 4655 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring) 4656 { 4657 struct e1000_hw *hw = &adapter->hw; 4658 int reg_idx = ring->reg_idx; 4659 u32 srrctl = 0; 4660 4661 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 4662 if (ring_uses_large_buffer(ring)) 4663 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4664 else 4665 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4666 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 4667 if (hw->mac.type >= e1000_82580) 4668 srrctl |= E1000_SRRCTL_TIMESTAMP; 4669 /* Only set Drop Enable if VFs allocated, or we are supporting multiple 4670 * queues and rx flow control is disabled 4671 */ 4672 if (adapter->vfs_allocated_count || 4673 (!(hw->fc.current_mode & e1000_fc_rx_pause) && 4674 adapter->num_rx_queues > 1)) 4675 srrctl |= E1000_SRRCTL_DROP_EN; 4676 4677 wr32(E1000_SRRCTL(reg_idx), srrctl); 4678 } 4679 4680 /** 4681 * igb_configure_rx_ring - Configure a receive ring after Reset 4682 * @adapter: board private structure 4683 * @ring: receive ring to be configured 4684 * 4685 * Configure the Rx unit of the MAC after a reset. 4686 **/ 4687 void igb_configure_rx_ring(struct igb_adapter *adapter, 4688 struct igb_ring *ring) 4689 { 4690 struct e1000_hw *hw = &adapter->hw; 4691 union e1000_adv_rx_desc *rx_desc; 4692 u64 rdba = ring->dma; 4693 int reg_idx = ring->reg_idx; 4694 u32 rxdctl = 0; 4695 4696 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 4697 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 4698 MEM_TYPE_PAGE_SHARED, NULL)); 4699 4700 /* disable the queue */ 4701 wr32(E1000_RXDCTL(reg_idx), 0); 4702 4703 /* Set DMA base address registers */ 4704 wr32(E1000_RDBAL(reg_idx), 4705 rdba & 0x00000000ffffffffULL); 4706 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 4707 wr32(E1000_RDLEN(reg_idx), 4708 ring->count * sizeof(union e1000_adv_rx_desc)); 4709 4710 /* initialize head and tail */ 4711 ring->tail = adapter->io_addr + E1000_RDT(reg_idx); 4712 wr32(E1000_RDH(reg_idx), 0); 4713 writel(0, ring->tail); 4714 4715 /* set descriptor configuration */ 4716 igb_setup_srrctl(adapter, ring); 4717 4718 /* set filtering for VMDQ pools */ 4719 igb_set_vmolr(adapter, reg_idx & 0x7, true); 4720 4721 rxdctl |= IGB_RX_PTHRESH; 4722 rxdctl |= IGB_RX_HTHRESH << 8; 4723 rxdctl |= IGB_RX_WTHRESH << 16; 4724 4725 /* initialize rx_buffer_info */ 4726 memset(ring->rx_buffer_info, 0, 4727 sizeof(struct igb_rx_buffer) * ring->count); 4728 4729 /* initialize Rx descriptor 0 */ 4730 rx_desc = IGB_RX_DESC(ring, 0); 4731 rx_desc->wb.upper.length = 0; 4732 4733 /* enable receive descriptor fetching */ 4734 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 4735 wr32(E1000_RXDCTL(reg_idx), rxdctl); 4736 } 4737 4738 static void igb_set_rx_buffer_len(struct igb_adapter *adapter, 4739 struct igb_ring *rx_ring) 4740 { 4741 /* set build_skb and buffer size flags */ 4742 clear_ring_build_skb_enabled(rx_ring); 4743 clear_ring_uses_large_buffer(rx_ring); 4744 4745 if (adapter->flags & IGB_FLAG_RX_LEGACY) 4746 return; 4747 4748 set_ring_build_skb_enabled(rx_ring); 4749 4750 #if (PAGE_SIZE < 8192) 4751 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 4752 return; 4753 4754 set_ring_uses_large_buffer(rx_ring); 4755 #endif 4756 } 4757 4758 /** 4759 * igb_configure_rx - Configure receive Unit after Reset 4760 * @adapter: board private structure 4761 * 4762 * Configure the Rx unit of the MAC after a reset. 4763 **/ 4764 static void igb_configure_rx(struct igb_adapter *adapter) 4765 { 4766 int i; 4767 4768 /* set the correct pool for the PF default MAC address in entry 0 */ 4769 igb_set_default_mac_filter(adapter); 4770 4771 /* Setup the HW Rx Head and Tail Descriptor Pointers and 4772 * the Base and Length of the Rx Descriptor Ring 4773 */ 4774 for (i = 0; i < adapter->num_rx_queues; i++) { 4775 struct igb_ring *rx_ring = adapter->rx_ring[i]; 4776 4777 igb_set_rx_buffer_len(adapter, rx_ring); 4778 igb_configure_rx_ring(adapter, rx_ring); 4779 } 4780 } 4781 4782 /** 4783 * igb_free_tx_resources - Free Tx Resources per Queue 4784 * @tx_ring: Tx descriptor ring for a specific queue 4785 * 4786 * Free all transmit software resources 4787 **/ 4788 void igb_free_tx_resources(struct igb_ring *tx_ring) 4789 { 4790 igb_clean_tx_ring(tx_ring); 4791 4792 vfree(tx_ring->tx_buffer_info); 4793 tx_ring->tx_buffer_info = NULL; 4794 4795 /* if not set, then don't free */ 4796 if (!tx_ring->desc) 4797 return; 4798 4799 dma_free_coherent(tx_ring->dev, tx_ring->size, 4800 tx_ring->desc, tx_ring->dma); 4801 4802 tx_ring->desc = NULL; 4803 } 4804 4805 /** 4806 * igb_free_all_tx_resources - Free Tx Resources for All Queues 4807 * @adapter: board private structure 4808 * 4809 * Free all transmit software resources 4810 **/ 4811 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 4812 { 4813 int i; 4814 4815 for (i = 0; i < adapter->num_tx_queues; i++) 4816 if (adapter->tx_ring[i]) 4817 igb_free_tx_resources(adapter->tx_ring[i]); 4818 } 4819 4820 /** 4821 * igb_clean_tx_ring - Free Tx Buffers 4822 * @tx_ring: ring to be cleaned 4823 **/ 4824 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 4825 { 4826 u16 i = tx_ring->next_to_clean; 4827 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 4828 4829 while (i != tx_ring->next_to_use) { 4830 union e1000_adv_tx_desc *eop_desc, *tx_desc; 4831 4832 /* Free all the Tx ring sk_buffs or xdp frames */ 4833 if (tx_buffer->type == IGB_TYPE_SKB) 4834 dev_kfree_skb_any(tx_buffer->skb); 4835 else 4836 xdp_return_frame(tx_buffer->xdpf); 4837 4838 /* unmap skb header data */ 4839 dma_unmap_single(tx_ring->dev, 4840 dma_unmap_addr(tx_buffer, dma), 4841 dma_unmap_len(tx_buffer, len), 4842 DMA_TO_DEVICE); 4843 4844 /* check for eop_desc to determine the end of the packet */ 4845 eop_desc = tx_buffer->next_to_watch; 4846 tx_desc = IGB_TX_DESC(tx_ring, i); 4847 4848 /* unmap remaining buffers */ 4849 while (tx_desc != eop_desc) { 4850 tx_buffer++; 4851 tx_desc++; 4852 i++; 4853 if (unlikely(i == tx_ring->count)) { 4854 i = 0; 4855 tx_buffer = tx_ring->tx_buffer_info; 4856 tx_desc = IGB_TX_DESC(tx_ring, 0); 4857 } 4858 4859 /* unmap any remaining paged data */ 4860 if (dma_unmap_len(tx_buffer, len)) 4861 dma_unmap_page(tx_ring->dev, 4862 dma_unmap_addr(tx_buffer, dma), 4863 dma_unmap_len(tx_buffer, len), 4864 DMA_TO_DEVICE); 4865 } 4866 4867 tx_buffer->next_to_watch = NULL; 4868 4869 /* move us one more past the eop_desc for start of next pkt */ 4870 tx_buffer++; 4871 i++; 4872 if (unlikely(i == tx_ring->count)) { 4873 i = 0; 4874 tx_buffer = tx_ring->tx_buffer_info; 4875 } 4876 } 4877 4878 /* reset BQL for queue */ 4879 netdev_tx_reset_queue(txring_txq(tx_ring)); 4880 4881 /* reset next_to_use and next_to_clean */ 4882 tx_ring->next_to_use = 0; 4883 tx_ring->next_to_clean = 0; 4884 } 4885 4886 /** 4887 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 4888 * @adapter: board private structure 4889 **/ 4890 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 4891 { 4892 int i; 4893 4894 for (i = 0; i < adapter->num_tx_queues; i++) 4895 if (adapter->tx_ring[i]) 4896 igb_clean_tx_ring(adapter->tx_ring[i]); 4897 } 4898 4899 /** 4900 * igb_free_rx_resources - Free Rx Resources 4901 * @rx_ring: ring to clean the resources from 4902 * 4903 * Free all receive software resources 4904 **/ 4905 void igb_free_rx_resources(struct igb_ring *rx_ring) 4906 { 4907 igb_clean_rx_ring(rx_ring); 4908 4909 rx_ring->xdp_prog = NULL; 4910 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4911 vfree(rx_ring->rx_buffer_info); 4912 rx_ring->rx_buffer_info = NULL; 4913 4914 /* if not set, then don't free */ 4915 if (!rx_ring->desc) 4916 return; 4917 4918 dma_free_coherent(rx_ring->dev, rx_ring->size, 4919 rx_ring->desc, rx_ring->dma); 4920 4921 rx_ring->desc = NULL; 4922 } 4923 4924 /** 4925 * igb_free_all_rx_resources - Free Rx Resources for All Queues 4926 * @adapter: board private structure 4927 * 4928 * Free all receive software resources 4929 **/ 4930 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 4931 { 4932 int i; 4933 4934 for (i = 0; i < adapter->num_rx_queues; i++) 4935 if (adapter->rx_ring[i]) 4936 igb_free_rx_resources(adapter->rx_ring[i]); 4937 } 4938 4939 /** 4940 * igb_clean_rx_ring - Free Rx Buffers per Queue 4941 * @rx_ring: ring to free buffers from 4942 **/ 4943 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 4944 { 4945 u16 i = rx_ring->next_to_clean; 4946 4947 dev_kfree_skb(rx_ring->skb); 4948 rx_ring->skb = NULL; 4949 4950 /* Free all the Rx ring sk_buffs */ 4951 while (i != rx_ring->next_to_alloc) { 4952 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 4953 4954 /* Invalidate cache lines that may have been written to by 4955 * device so that we avoid corrupting memory. 4956 */ 4957 dma_sync_single_range_for_cpu(rx_ring->dev, 4958 buffer_info->dma, 4959 buffer_info->page_offset, 4960 igb_rx_bufsz(rx_ring), 4961 DMA_FROM_DEVICE); 4962 4963 /* free resources associated with mapping */ 4964 dma_unmap_page_attrs(rx_ring->dev, 4965 buffer_info->dma, 4966 igb_rx_pg_size(rx_ring), 4967 DMA_FROM_DEVICE, 4968 IGB_RX_DMA_ATTR); 4969 __page_frag_cache_drain(buffer_info->page, 4970 buffer_info->pagecnt_bias); 4971 4972 i++; 4973 if (i == rx_ring->count) 4974 i = 0; 4975 } 4976 4977 rx_ring->next_to_alloc = 0; 4978 rx_ring->next_to_clean = 0; 4979 rx_ring->next_to_use = 0; 4980 } 4981 4982 /** 4983 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 4984 * @adapter: board private structure 4985 **/ 4986 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 4987 { 4988 int i; 4989 4990 for (i = 0; i < adapter->num_rx_queues; i++) 4991 if (adapter->rx_ring[i]) 4992 igb_clean_rx_ring(adapter->rx_ring[i]); 4993 } 4994 4995 /** 4996 * igb_set_mac - Change the Ethernet Address of the NIC 4997 * @netdev: network interface device structure 4998 * @p: pointer to an address structure 4999 * 5000 * Returns 0 on success, negative on failure 5001 **/ 5002 static int igb_set_mac(struct net_device *netdev, void *p) 5003 { 5004 struct igb_adapter *adapter = netdev_priv(netdev); 5005 struct e1000_hw *hw = &adapter->hw; 5006 struct sockaddr *addr = p; 5007 5008 if (!is_valid_ether_addr(addr->sa_data)) 5009 return -EADDRNOTAVAIL; 5010 5011 eth_hw_addr_set(netdev, addr->sa_data); 5012 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 5013 5014 /* set the correct pool for the new PF MAC address in entry 0 */ 5015 igb_set_default_mac_filter(adapter); 5016 5017 return 0; 5018 } 5019 5020 /** 5021 * igb_write_mc_addr_list - write multicast addresses to MTA 5022 * @netdev: network interface device structure 5023 * 5024 * Writes multicast address list to the MTA hash table. 5025 * Returns: -ENOMEM on failure 5026 * 0 on no addresses written 5027 * X on writing X addresses to MTA 5028 **/ 5029 static int igb_write_mc_addr_list(struct net_device *netdev) 5030 { 5031 struct igb_adapter *adapter = netdev_priv(netdev); 5032 struct e1000_hw *hw = &adapter->hw; 5033 struct netdev_hw_addr *ha; 5034 u8 *mta_list; 5035 int i; 5036 5037 if (netdev_mc_empty(netdev)) { 5038 /* nothing to program, so clear mc list */ 5039 igb_update_mc_addr_list(hw, NULL, 0); 5040 igb_restore_vf_multicasts(adapter); 5041 return 0; 5042 } 5043 5044 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 5045 if (!mta_list) 5046 return -ENOMEM; 5047 5048 /* The shared function expects a packed array of only addresses. */ 5049 i = 0; 5050 netdev_for_each_mc_addr(ha, netdev) 5051 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 5052 5053 igb_update_mc_addr_list(hw, mta_list, i); 5054 kfree(mta_list); 5055 5056 return netdev_mc_count(netdev); 5057 } 5058 5059 static int igb_vlan_promisc_enable(struct igb_adapter *adapter) 5060 { 5061 struct e1000_hw *hw = &adapter->hw; 5062 u32 i, pf_id; 5063 5064 switch (hw->mac.type) { 5065 case e1000_i210: 5066 case e1000_i211: 5067 case e1000_i350: 5068 /* VLAN filtering needed for VLAN prio filter */ 5069 if (adapter->netdev->features & NETIF_F_NTUPLE) 5070 break; 5071 fallthrough; 5072 case e1000_82576: 5073 case e1000_82580: 5074 case e1000_i354: 5075 /* VLAN filtering needed for pool filtering */ 5076 if (adapter->vfs_allocated_count) 5077 break; 5078 fallthrough; 5079 default: 5080 return 1; 5081 } 5082 5083 /* We are already in VLAN promisc, nothing to do */ 5084 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 5085 return 0; 5086 5087 if (!adapter->vfs_allocated_count) 5088 goto set_vfta; 5089 5090 /* Add PF to all active pools */ 5091 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5092 5093 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5094 u32 vlvf = rd32(E1000_VLVF(i)); 5095 5096 vlvf |= BIT(pf_id); 5097 wr32(E1000_VLVF(i), vlvf); 5098 } 5099 5100 set_vfta: 5101 /* Set all bits in the VLAN filter table array */ 5102 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;) 5103 hw->mac.ops.write_vfta(hw, i, ~0U); 5104 5105 /* Set flag so we don't redo unnecessary work */ 5106 adapter->flags |= IGB_FLAG_VLAN_PROMISC; 5107 5108 return 0; 5109 } 5110 5111 #define VFTA_BLOCK_SIZE 8 5112 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset) 5113 { 5114 struct e1000_hw *hw = &adapter->hw; 5115 u32 vfta[VFTA_BLOCK_SIZE] = { 0 }; 5116 u32 vid_start = vfta_offset * 32; 5117 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32); 5118 u32 i, vid, word, bits, pf_id; 5119 5120 /* guarantee that we don't scrub out management VLAN */ 5121 vid = adapter->mng_vlan_id; 5122 if (vid >= vid_start && vid < vid_end) 5123 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5124 5125 if (!adapter->vfs_allocated_count) 5126 goto set_vfta; 5127 5128 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5129 5130 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5131 u32 vlvf = rd32(E1000_VLVF(i)); 5132 5133 /* pull VLAN ID from VLVF */ 5134 vid = vlvf & VLAN_VID_MASK; 5135 5136 /* only concern ourselves with a certain range */ 5137 if (vid < vid_start || vid >= vid_end) 5138 continue; 5139 5140 if (vlvf & E1000_VLVF_VLANID_ENABLE) { 5141 /* record VLAN ID in VFTA */ 5142 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5143 5144 /* if PF is part of this then continue */ 5145 if (test_bit(vid, adapter->active_vlans)) 5146 continue; 5147 } 5148 5149 /* remove PF from the pool */ 5150 bits = ~BIT(pf_id); 5151 bits &= rd32(E1000_VLVF(i)); 5152 wr32(E1000_VLVF(i), bits); 5153 } 5154 5155 set_vfta: 5156 /* extract values from active_vlans and write back to VFTA */ 5157 for (i = VFTA_BLOCK_SIZE; i--;) { 5158 vid = (vfta_offset + i) * 32; 5159 word = vid / BITS_PER_LONG; 5160 bits = vid % BITS_PER_LONG; 5161 5162 vfta[i] |= adapter->active_vlans[word] >> bits; 5163 5164 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]); 5165 } 5166 } 5167 5168 static void igb_vlan_promisc_disable(struct igb_adapter *adapter) 5169 { 5170 u32 i; 5171 5172 /* We are not in VLAN promisc, nothing to do */ 5173 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 5174 return; 5175 5176 /* Set flag so we don't redo unnecessary work */ 5177 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 5178 5179 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE) 5180 igb_scrub_vfta(adapter, i); 5181 } 5182 5183 /** 5184 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 5185 * @netdev: network interface device structure 5186 * 5187 * The set_rx_mode entry point is called whenever the unicast or multicast 5188 * address lists or the network interface flags are updated. This routine is 5189 * responsible for configuring the hardware for proper unicast, multicast, 5190 * promiscuous mode, and all-multi behavior. 5191 **/ 5192 static void igb_set_rx_mode(struct net_device *netdev) 5193 { 5194 struct igb_adapter *adapter = netdev_priv(netdev); 5195 struct e1000_hw *hw = &adapter->hw; 5196 unsigned int vfn = adapter->vfs_allocated_count; 5197 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 5198 int count; 5199 5200 /* Check for Promiscuous and All Multicast modes */ 5201 if (netdev->flags & IFF_PROMISC) { 5202 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE; 5203 vmolr |= E1000_VMOLR_MPME; 5204 5205 /* enable use of UTA filter to force packets to default pool */ 5206 if (hw->mac.type == e1000_82576) 5207 vmolr |= E1000_VMOLR_ROPE; 5208 } else { 5209 if (netdev->flags & IFF_ALLMULTI) { 5210 rctl |= E1000_RCTL_MPE; 5211 vmolr |= E1000_VMOLR_MPME; 5212 } else { 5213 /* Write addresses to the MTA, if the attempt fails 5214 * then we should just turn on promiscuous mode so 5215 * that we can at least receive multicast traffic 5216 */ 5217 count = igb_write_mc_addr_list(netdev); 5218 if (count < 0) { 5219 rctl |= E1000_RCTL_MPE; 5220 vmolr |= E1000_VMOLR_MPME; 5221 } else if (count) { 5222 vmolr |= E1000_VMOLR_ROMPE; 5223 } 5224 } 5225 } 5226 5227 /* Write addresses to available RAR registers, if there is not 5228 * sufficient space to store all the addresses then enable 5229 * unicast promiscuous mode 5230 */ 5231 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) { 5232 rctl |= E1000_RCTL_UPE; 5233 vmolr |= E1000_VMOLR_ROPE; 5234 } 5235 5236 /* enable VLAN filtering by default */ 5237 rctl |= E1000_RCTL_VFE; 5238 5239 /* disable VLAN filtering for modes that require it */ 5240 if ((netdev->flags & IFF_PROMISC) || 5241 (netdev->features & NETIF_F_RXALL)) { 5242 /* if we fail to set all rules then just clear VFE */ 5243 if (igb_vlan_promisc_enable(adapter)) 5244 rctl &= ~E1000_RCTL_VFE; 5245 } else { 5246 igb_vlan_promisc_disable(adapter); 5247 } 5248 5249 /* update state of unicast, multicast, and VLAN filtering modes */ 5250 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE | 5251 E1000_RCTL_VFE); 5252 wr32(E1000_RCTL, rctl); 5253 5254 #if (PAGE_SIZE < 8192) 5255 if (!adapter->vfs_allocated_count) { 5256 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5257 rlpml = IGB_MAX_FRAME_BUILD_SKB; 5258 } 5259 #endif 5260 wr32(E1000_RLPML, rlpml); 5261 5262 /* In order to support SR-IOV and eventually VMDq it is necessary to set 5263 * the VMOLR to enable the appropriate modes. Without this workaround 5264 * we will have issues with VLAN tag stripping not being done for frames 5265 * that are only arriving because we are the default pool 5266 */ 5267 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 5268 return; 5269 5270 /* set UTA to appropriate mode */ 5271 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE)); 5272 5273 vmolr |= rd32(E1000_VMOLR(vfn)) & 5274 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 5275 5276 /* enable Rx jumbo frames, restrict as needed to support build_skb */ 5277 vmolr &= ~E1000_VMOLR_RLPML_MASK; 5278 #if (PAGE_SIZE < 8192) 5279 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5280 vmolr |= IGB_MAX_FRAME_BUILD_SKB; 5281 else 5282 #endif 5283 vmolr |= MAX_JUMBO_FRAME_SIZE; 5284 vmolr |= E1000_VMOLR_LPE; 5285 5286 wr32(E1000_VMOLR(vfn), vmolr); 5287 5288 igb_restore_vf_multicasts(adapter); 5289 } 5290 5291 static void igb_check_wvbr(struct igb_adapter *adapter) 5292 { 5293 struct e1000_hw *hw = &adapter->hw; 5294 u32 wvbr = 0; 5295 5296 switch (hw->mac.type) { 5297 case e1000_82576: 5298 case e1000_i350: 5299 wvbr = rd32(E1000_WVBR); 5300 if (!wvbr) 5301 return; 5302 break; 5303 default: 5304 break; 5305 } 5306 5307 adapter->wvbr |= wvbr; 5308 } 5309 5310 #define IGB_STAGGERED_QUEUE_OFFSET 8 5311 5312 static void igb_spoof_check(struct igb_adapter *adapter) 5313 { 5314 int j; 5315 5316 if (!adapter->wvbr) 5317 return; 5318 5319 for (j = 0; j < adapter->vfs_allocated_count; j++) { 5320 if (adapter->wvbr & BIT(j) || 5321 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) { 5322 dev_warn(&adapter->pdev->dev, 5323 "Spoof event(s) detected on VF %d\n", j); 5324 adapter->wvbr &= 5325 ~(BIT(j) | 5326 BIT(j + IGB_STAGGERED_QUEUE_OFFSET)); 5327 } 5328 } 5329 } 5330 5331 /* Need to wait a few seconds after link up to get diagnostic information from 5332 * the phy 5333 */ 5334 static void igb_update_phy_info(struct timer_list *t) 5335 { 5336 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5337 igb_get_phy_info(&adapter->hw); 5338 } 5339 5340 /** 5341 * igb_has_link - check shared code for link and determine up/down 5342 * @adapter: pointer to driver private info 5343 **/ 5344 bool igb_has_link(struct igb_adapter *adapter) 5345 { 5346 struct e1000_hw *hw = &adapter->hw; 5347 bool link_active = false; 5348 5349 /* get_link_status is set on LSC (link status) interrupt or 5350 * rx sequence error interrupt. get_link_status will stay 5351 * false until the e1000_check_for_link establishes link 5352 * for copper adapters ONLY 5353 */ 5354 switch (hw->phy.media_type) { 5355 case e1000_media_type_copper: 5356 if (!hw->mac.get_link_status) 5357 return true; 5358 fallthrough; 5359 case e1000_media_type_internal_serdes: 5360 hw->mac.ops.check_for_link(hw); 5361 link_active = !hw->mac.get_link_status; 5362 break; 5363 default: 5364 case e1000_media_type_unknown: 5365 break; 5366 } 5367 5368 if (((hw->mac.type == e1000_i210) || 5369 (hw->mac.type == e1000_i211)) && 5370 (hw->phy.id == I210_I_PHY_ID)) { 5371 if (!netif_carrier_ok(adapter->netdev)) { 5372 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5373 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 5374 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 5375 adapter->link_check_timeout = jiffies; 5376 } 5377 } 5378 5379 return link_active; 5380 } 5381 5382 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 5383 { 5384 bool ret = false; 5385 u32 ctrl_ext, thstat; 5386 5387 /* check for thermal sensor event on i350 copper only */ 5388 if (hw->mac.type == e1000_i350) { 5389 thstat = rd32(E1000_THSTAT); 5390 ctrl_ext = rd32(E1000_CTRL_EXT); 5391 5392 if ((hw->phy.media_type == e1000_media_type_copper) && 5393 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 5394 ret = !!(thstat & event); 5395 } 5396 5397 return ret; 5398 } 5399 5400 /** 5401 * igb_check_lvmmc - check for malformed packets received 5402 * and indicated in LVMMC register 5403 * @adapter: pointer to adapter 5404 **/ 5405 static void igb_check_lvmmc(struct igb_adapter *adapter) 5406 { 5407 struct e1000_hw *hw = &adapter->hw; 5408 u32 lvmmc; 5409 5410 lvmmc = rd32(E1000_LVMMC); 5411 if (lvmmc) { 5412 if (unlikely(net_ratelimit())) { 5413 netdev_warn(adapter->netdev, 5414 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", 5415 lvmmc); 5416 } 5417 } 5418 } 5419 5420 /** 5421 * igb_watchdog - Timer Call-back 5422 * @t: pointer to timer_list containing our private info pointer 5423 **/ 5424 static void igb_watchdog(struct timer_list *t) 5425 { 5426 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5427 /* Do the rest outside of interrupt context */ 5428 schedule_work(&adapter->watchdog_task); 5429 } 5430 5431 static void igb_watchdog_task(struct work_struct *work) 5432 { 5433 struct igb_adapter *adapter = container_of(work, 5434 struct igb_adapter, 5435 watchdog_task); 5436 struct e1000_hw *hw = &adapter->hw; 5437 struct e1000_phy_info *phy = &hw->phy; 5438 struct net_device *netdev = adapter->netdev; 5439 u32 link; 5440 int i; 5441 u32 connsw; 5442 u16 phy_data, retry_count = 20; 5443 5444 link = igb_has_link(adapter); 5445 5446 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 5447 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5448 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5449 else 5450 link = false; 5451 } 5452 5453 /* Force link down if we have fiber to swap to */ 5454 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5455 if (hw->phy.media_type == e1000_media_type_copper) { 5456 connsw = rd32(E1000_CONNSW); 5457 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 5458 link = 0; 5459 } 5460 } 5461 if (link) { 5462 /* Perform a reset if the media type changed. */ 5463 if (hw->dev_spec._82575.media_changed) { 5464 hw->dev_spec._82575.media_changed = false; 5465 adapter->flags |= IGB_FLAG_MEDIA_RESET; 5466 igb_reset(adapter); 5467 } 5468 /* Cancel scheduled suspend requests. */ 5469 pm_runtime_resume(netdev->dev.parent); 5470 5471 if (!netif_carrier_ok(netdev)) { 5472 u32 ctrl; 5473 5474 hw->mac.ops.get_speed_and_duplex(hw, 5475 &adapter->link_speed, 5476 &adapter->link_duplex); 5477 5478 ctrl = rd32(E1000_CTRL); 5479 /* Links status message must follow this format */ 5480 netdev_info(netdev, 5481 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5482 netdev->name, 5483 adapter->link_speed, 5484 adapter->link_duplex == FULL_DUPLEX ? 5485 "Full" : "Half", 5486 (ctrl & E1000_CTRL_TFCE) && 5487 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 5488 (ctrl & E1000_CTRL_RFCE) ? "RX" : 5489 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 5490 5491 /* disable EEE if enabled */ 5492 if ((adapter->flags & IGB_FLAG_EEE) && 5493 (adapter->link_duplex == HALF_DUPLEX)) { 5494 dev_info(&adapter->pdev->dev, 5495 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 5496 adapter->hw.dev_spec._82575.eee_disable = true; 5497 adapter->flags &= ~IGB_FLAG_EEE; 5498 } 5499 5500 /* check if SmartSpeed worked */ 5501 igb_check_downshift(hw); 5502 if (phy->speed_downgraded) 5503 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5504 5505 /* check for thermal sensor event */ 5506 if (igb_thermal_sensor_event(hw, 5507 E1000_THSTAT_LINK_THROTTLE)) 5508 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 5509 5510 /* adjust timeout factor according to speed/duplex */ 5511 adapter->tx_timeout_factor = 1; 5512 switch (adapter->link_speed) { 5513 case SPEED_10: 5514 adapter->tx_timeout_factor = 14; 5515 break; 5516 case SPEED_100: 5517 /* maybe add some timeout factor ? */ 5518 break; 5519 } 5520 5521 if (adapter->link_speed != SPEED_1000 || 5522 !hw->phy.ops.read_reg) 5523 goto no_wait; 5524 5525 /* wait for Remote receiver status OK */ 5526 retry_read_status: 5527 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS, 5528 &phy_data)) { 5529 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5530 retry_count) { 5531 msleep(100); 5532 retry_count--; 5533 goto retry_read_status; 5534 } else if (!retry_count) { 5535 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 5536 } 5537 } else { 5538 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 5539 } 5540 no_wait: 5541 netif_carrier_on(netdev); 5542 5543 igb_ping_all_vfs(adapter); 5544 igb_check_vf_rate_limit(adapter); 5545 5546 /* link state has changed, schedule phy info update */ 5547 if (!test_bit(__IGB_DOWN, &adapter->state)) 5548 mod_timer(&adapter->phy_info_timer, 5549 round_jiffies(jiffies + 2 * HZ)); 5550 } 5551 } else { 5552 if (netif_carrier_ok(netdev)) { 5553 adapter->link_speed = 0; 5554 adapter->link_duplex = 0; 5555 5556 /* check for thermal sensor event */ 5557 if (igb_thermal_sensor_event(hw, 5558 E1000_THSTAT_PWR_DOWN)) { 5559 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 5560 } 5561 5562 /* Links status message must follow this format */ 5563 netdev_info(netdev, "igb: %s NIC Link is Down\n", 5564 netdev->name); 5565 netif_carrier_off(netdev); 5566 5567 igb_ping_all_vfs(adapter); 5568 5569 /* link state has changed, schedule phy info update */ 5570 if (!test_bit(__IGB_DOWN, &adapter->state)) 5571 mod_timer(&adapter->phy_info_timer, 5572 round_jiffies(jiffies + 2 * HZ)); 5573 5574 /* link is down, time to check for alternate media */ 5575 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5576 igb_check_swap_media(adapter); 5577 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5578 schedule_work(&adapter->reset_task); 5579 /* return immediately */ 5580 return; 5581 } 5582 } 5583 pm_schedule_suspend(netdev->dev.parent, 5584 MSEC_PER_SEC * 5); 5585 5586 /* also check for alternate media here */ 5587 } else if (!netif_carrier_ok(netdev) && 5588 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 5589 igb_check_swap_media(adapter); 5590 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5591 schedule_work(&adapter->reset_task); 5592 /* return immediately */ 5593 return; 5594 } 5595 } 5596 } 5597 5598 spin_lock(&adapter->stats64_lock); 5599 igb_update_stats(adapter); 5600 spin_unlock(&adapter->stats64_lock); 5601 5602 for (i = 0; i < adapter->num_tx_queues; i++) { 5603 struct igb_ring *tx_ring = adapter->tx_ring[i]; 5604 if (!netif_carrier_ok(netdev)) { 5605 /* We've lost link, so the controller stops DMA, 5606 * but we've got queued Tx work that's never going 5607 * to get done, so reset controller to flush Tx. 5608 * (Do the reset outside of interrupt context). 5609 */ 5610 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 5611 adapter->tx_timeout_count++; 5612 schedule_work(&adapter->reset_task); 5613 /* return immediately since reset is imminent */ 5614 return; 5615 } 5616 } 5617 5618 /* Force detection of hung controller every watchdog period */ 5619 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5620 } 5621 5622 /* Cause software interrupt to ensure Rx ring is cleaned */ 5623 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 5624 u32 eics = 0; 5625 5626 for (i = 0; i < adapter->num_q_vectors; i++) 5627 eics |= adapter->q_vector[i]->eims_value; 5628 wr32(E1000_EICS, eics); 5629 } else { 5630 wr32(E1000_ICS, E1000_ICS_RXDMT0); 5631 } 5632 5633 igb_spoof_check(adapter); 5634 igb_ptp_rx_hang(adapter); 5635 igb_ptp_tx_hang(adapter); 5636 5637 /* Check LVMMC register on i350/i354 only */ 5638 if ((adapter->hw.mac.type == e1000_i350) || 5639 (adapter->hw.mac.type == e1000_i354)) 5640 igb_check_lvmmc(adapter); 5641 5642 /* Reset the timer */ 5643 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5644 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 5645 mod_timer(&adapter->watchdog_timer, 5646 round_jiffies(jiffies + HZ)); 5647 else 5648 mod_timer(&adapter->watchdog_timer, 5649 round_jiffies(jiffies + 2 * HZ)); 5650 } 5651 } 5652 5653 enum latency_range { 5654 lowest_latency = 0, 5655 low_latency = 1, 5656 bulk_latency = 2, 5657 latency_invalid = 255 5658 }; 5659 5660 /** 5661 * igb_update_ring_itr - update the dynamic ITR value based on packet size 5662 * @q_vector: pointer to q_vector 5663 * 5664 * Stores a new ITR value based on strictly on packet size. This 5665 * algorithm is less sophisticated than that used in igb_update_itr, 5666 * due to the difficulty of synchronizing statistics across multiple 5667 * receive rings. The divisors and thresholds used by this function 5668 * were determined based on theoretical maximum wire speed and testing 5669 * data, in order to minimize response time while increasing bulk 5670 * throughput. 5671 * This functionality is controlled by ethtool's coalescing settings. 5672 * NOTE: This function is called only when operating in a multiqueue 5673 * receive environment. 5674 **/ 5675 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 5676 { 5677 int new_val = q_vector->itr_val; 5678 int avg_wire_size = 0; 5679 struct igb_adapter *adapter = q_vector->adapter; 5680 unsigned int packets; 5681 5682 /* For non-gigabit speeds, just fix the interrupt rate at 4000 5683 * ints/sec - ITR timer value of 120 ticks. 5684 */ 5685 if (adapter->link_speed != SPEED_1000) { 5686 new_val = IGB_4K_ITR; 5687 goto set_itr_val; 5688 } 5689 5690 packets = q_vector->rx.total_packets; 5691 if (packets) 5692 avg_wire_size = q_vector->rx.total_bytes / packets; 5693 5694 packets = q_vector->tx.total_packets; 5695 if (packets) 5696 avg_wire_size = max_t(u32, avg_wire_size, 5697 q_vector->tx.total_bytes / packets); 5698 5699 /* if avg_wire_size isn't set no work was done */ 5700 if (!avg_wire_size) 5701 goto clear_counts; 5702 5703 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 5704 avg_wire_size += 24; 5705 5706 /* Don't starve jumbo frames */ 5707 avg_wire_size = min(avg_wire_size, 3000); 5708 5709 /* Give a little boost to mid-size frames */ 5710 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 5711 new_val = avg_wire_size / 3; 5712 else 5713 new_val = avg_wire_size / 2; 5714 5715 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5716 if (new_val < IGB_20K_ITR && 5717 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5718 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5719 new_val = IGB_20K_ITR; 5720 5721 set_itr_val: 5722 if (new_val != q_vector->itr_val) { 5723 q_vector->itr_val = new_val; 5724 q_vector->set_itr = 1; 5725 } 5726 clear_counts: 5727 q_vector->rx.total_bytes = 0; 5728 q_vector->rx.total_packets = 0; 5729 q_vector->tx.total_bytes = 0; 5730 q_vector->tx.total_packets = 0; 5731 } 5732 5733 /** 5734 * igb_update_itr - update the dynamic ITR value based on statistics 5735 * @q_vector: pointer to q_vector 5736 * @ring_container: ring info to update the itr for 5737 * 5738 * Stores a new ITR value based on packets and byte 5739 * counts during the last interrupt. The advantage of per interrupt 5740 * computation is faster updates and more accurate ITR for the current 5741 * traffic pattern. Constants in this function were computed 5742 * based on theoretical maximum wire speed and thresholds were set based 5743 * on testing data as well as attempting to minimize response time 5744 * while increasing bulk throughput. 5745 * This functionality is controlled by ethtool's coalescing settings. 5746 * NOTE: These calculations are only valid when operating in a single- 5747 * queue environment. 5748 **/ 5749 static void igb_update_itr(struct igb_q_vector *q_vector, 5750 struct igb_ring_container *ring_container) 5751 { 5752 unsigned int packets = ring_container->total_packets; 5753 unsigned int bytes = ring_container->total_bytes; 5754 u8 itrval = ring_container->itr; 5755 5756 /* no packets, exit with status unchanged */ 5757 if (packets == 0) 5758 return; 5759 5760 switch (itrval) { 5761 case lowest_latency: 5762 /* handle TSO and jumbo frames */ 5763 if (bytes/packets > 8000) 5764 itrval = bulk_latency; 5765 else if ((packets < 5) && (bytes > 512)) 5766 itrval = low_latency; 5767 break; 5768 case low_latency: /* 50 usec aka 20000 ints/s */ 5769 if (bytes > 10000) { 5770 /* this if handles the TSO accounting */ 5771 if (bytes/packets > 8000) 5772 itrval = bulk_latency; 5773 else if ((packets < 10) || ((bytes/packets) > 1200)) 5774 itrval = bulk_latency; 5775 else if ((packets > 35)) 5776 itrval = lowest_latency; 5777 } else if (bytes/packets > 2000) { 5778 itrval = bulk_latency; 5779 } else if (packets <= 2 && bytes < 512) { 5780 itrval = lowest_latency; 5781 } 5782 break; 5783 case bulk_latency: /* 250 usec aka 4000 ints/s */ 5784 if (bytes > 25000) { 5785 if (packets > 35) 5786 itrval = low_latency; 5787 } else if (bytes < 1500) { 5788 itrval = low_latency; 5789 } 5790 break; 5791 } 5792 5793 /* clear work counters since we have the values we need */ 5794 ring_container->total_bytes = 0; 5795 ring_container->total_packets = 0; 5796 5797 /* write updated itr to ring container */ 5798 ring_container->itr = itrval; 5799 } 5800 5801 static void igb_set_itr(struct igb_q_vector *q_vector) 5802 { 5803 struct igb_adapter *adapter = q_vector->adapter; 5804 u32 new_itr = q_vector->itr_val; 5805 u8 current_itr = 0; 5806 5807 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 5808 if (adapter->link_speed != SPEED_1000) { 5809 current_itr = 0; 5810 new_itr = IGB_4K_ITR; 5811 goto set_itr_now; 5812 } 5813 5814 igb_update_itr(q_vector, &q_vector->tx); 5815 igb_update_itr(q_vector, &q_vector->rx); 5816 5817 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 5818 5819 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5820 if (current_itr == lowest_latency && 5821 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5822 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5823 current_itr = low_latency; 5824 5825 switch (current_itr) { 5826 /* counts and packets in update_itr are dependent on these numbers */ 5827 case lowest_latency: 5828 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 5829 break; 5830 case low_latency: 5831 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 5832 break; 5833 case bulk_latency: 5834 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 5835 break; 5836 default: 5837 break; 5838 } 5839 5840 set_itr_now: 5841 if (new_itr != q_vector->itr_val) { 5842 /* this attempts to bias the interrupt rate towards Bulk 5843 * by adding intermediate steps when interrupt rate is 5844 * increasing 5845 */ 5846 new_itr = new_itr > q_vector->itr_val ? 5847 max((new_itr * q_vector->itr_val) / 5848 (new_itr + (q_vector->itr_val >> 2)), 5849 new_itr) : new_itr; 5850 /* Don't write the value here; it resets the adapter's 5851 * internal timer, and causes us to delay far longer than 5852 * we should between interrupts. Instead, we write the ITR 5853 * value at the beginning of the next interrupt so the timing 5854 * ends up being correct. 5855 */ 5856 q_vector->itr_val = new_itr; 5857 q_vector->set_itr = 1; 5858 } 5859 } 5860 5861 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, 5862 struct igb_tx_buffer *first, 5863 u32 vlan_macip_lens, u32 type_tucmd, 5864 u32 mss_l4len_idx) 5865 { 5866 struct e1000_adv_tx_context_desc *context_desc; 5867 u16 i = tx_ring->next_to_use; 5868 struct timespec64 ts; 5869 5870 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 5871 5872 i++; 5873 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 5874 5875 /* set bits to identify this as an advanced context descriptor */ 5876 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 5877 5878 /* For 82575, context index must be unique per ring. */ 5879 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 5880 mss_l4len_idx |= tx_ring->reg_idx << 4; 5881 5882 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 5883 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 5884 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 5885 5886 /* We assume there is always a valid tx time available. Invalid times 5887 * should have been handled by the upper layers. 5888 */ 5889 if (tx_ring->launchtime_enable) { 5890 ts = ktime_to_timespec64(first->skb->tstamp); 5891 skb_txtime_consumed(first->skb); 5892 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32); 5893 } else { 5894 context_desc->seqnum_seed = 0; 5895 } 5896 } 5897 5898 static int igb_tso(struct igb_ring *tx_ring, 5899 struct igb_tx_buffer *first, 5900 u8 *hdr_len) 5901 { 5902 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 5903 struct sk_buff *skb = first->skb; 5904 union { 5905 struct iphdr *v4; 5906 struct ipv6hdr *v6; 5907 unsigned char *hdr; 5908 } ip; 5909 union { 5910 struct tcphdr *tcp; 5911 struct udphdr *udp; 5912 unsigned char *hdr; 5913 } l4; 5914 u32 paylen, l4_offset; 5915 int err; 5916 5917 if (skb->ip_summed != CHECKSUM_PARTIAL) 5918 return 0; 5919 5920 if (!skb_is_gso(skb)) 5921 return 0; 5922 5923 err = skb_cow_head(skb, 0); 5924 if (err < 0) 5925 return err; 5926 5927 ip.hdr = skb_network_header(skb); 5928 l4.hdr = skb_checksum_start(skb); 5929 5930 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 5931 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ? 5932 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP; 5933 5934 /* initialize outer IP header fields */ 5935 if (ip.v4->version == 4) { 5936 unsigned char *csum_start = skb_checksum_start(skb); 5937 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 5938 5939 /* IP header will have to cancel out any data that 5940 * is not a part of the outer IP header 5941 */ 5942 ip.v4->check = csum_fold(csum_partial(trans_start, 5943 csum_start - trans_start, 5944 0)); 5945 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 5946 5947 ip.v4->tot_len = 0; 5948 first->tx_flags |= IGB_TX_FLAGS_TSO | 5949 IGB_TX_FLAGS_CSUM | 5950 IGB_TX_FLAGS_IPV4; 5951 } else { 5952 ip.v6->payload_len = 0; 5953 first->tx_flags |= IGB_TX_FLAGS_TSO | 5954 IGB_TX_FLAGS_CSUM; 5955 } 5956 5957 /* determine offset of inner transport header */ 5958 l4_offset = l4.hdr - skb->data; 5959 5960 /* remove payload length from inner checksum */ 5961 paylen = skb->len - l4_offset; 5962 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) { 5963 /* compute length of segmentation header */ 5964 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 5965 csum_replace_by_diff(&l4.tcp->check, 5966 (__force __wsum)htonl(paylen)); 5967 } else { 5968 /* compute length of segmentation header */ 5969 *hdr_len = sizeof(*l4.udp) + l4_offset; 5970 csum_replace_by_diff(&l4.udp->check, 5971 (__force __wsum)htonl(paylen)); 5972 } 5973 5974 /* update gso size and bytecount with header size */ 5975 first->gso_segs = skb_shinfo(skb)->gso_segs; 5976 first->bytecount += (first->gso_segs - 1) * *hdr_len; 5977 5978 /* MSS L4LEN IDX */ 5979 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 5980 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 5981 5982 /* VLAN MACLEN IPLEN */ 5983 vlan_macip_lens = l4.hdr - ip.hdr; 5984 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 5985 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 5986 5987 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 5988 type_tucmd, mss_l4len_idx); 5989 5990 return 1; 5991 } 5992 5993 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 5994 { 5995 struct sk_buff *skb = first->skb; 5996 u32 vlan_macip_lens = 0; 5997 u32 type_tucmd = 0; 5998 5999 if (skb->ip_summed != CHECKSUM_PARTIAL) { 6000 csum_failed: 6001 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) && 6002 !tx_ring->launchtime_enable) 6003 return; 6004 goto no_csum; 6005 } 6006 6007 switch (skb->csum_offset) { 6008 case offsetof(struct tcphdr, check): 6009 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 6010 fallthrough; 6011 case offsetof(struct udphdr, check): 6012 break; 6013 case offsetof(struct sctphdr, checksum): 6014 /* validate that this is actually an SCTP request */ 6015 if (skb_csum_is_sctp(skb)) { 6016 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 6017 break; 6018 } 6019 fallthrough; 6020 default: 6021 skb_checksum_help(skb); 6022 goto csum_failed; 6023 } 6024 6025 /* update TX checksum flag */ 6026 first->tx_flags |= IGB_TX_FLAGS_CSUM; 6027 vlan_macip_lens = skb_checksum_start_offset(skb) - 6028 skb_network_offset(skb); 6029 no_csum: 6030 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 6031 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 6032 6033 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 6034 } 6035 6036 #define IGB_SET_FLAG(_input, _flag, _result) \ 6037 ((_flag <= _result) ? \ 6038 ((u32)(_input & _flag) * (_result / _flag)) : \ 6039 ((u32)(_input & _flag) / (_flag / _result))) 6040 6041 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 6042 { 6043 /* set type for advanced descriptor with frame checksum insertion */ 6044 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 6045 E1000_ADVTXD_DCMD_DEXT | 6046 E1000_ADVTXD_DCMD_IFCS; 6047 6048 /* set HW vlan bit if vlan is present */ 6049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 6050 (E1000_ADVTXD_DCMD_VLE)); 6051 6052 /* set segmentation bits for TSO */ 6053 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 6054 (E1000_ADVTXD_DCMD_TSE)); 6055 6056 /* set timestamp bit if present */ 6057 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 6058 (E1000_ADVTXD_MAC_TSTAMP)); 6059 6060 /* insert frame checksum */ 6061 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 6062 6063 return cmd_type; 6064 } 6065 6066 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 6067 union e1000_adv_tx_desc *tx_desc, 6068 u32 tx_flags, unsigned int paylen) 6069 { 6070 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 6071 6072 /* 82575 requires a unique index per ring */ 6073 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6074 olinfo_status |= tx_ring->reg_idx << 4; 6075 6076 /* insert L4 checksum */ 6077 olinfo_status |= IGB_SET_FLAG(tx_flags, 6078 IGB_TX_FLAGS_CSUM, 6079 (E1000_TXD_POPTS_TXSM << 8)); 6080 6081 /* insert IPv4 checksum */ 6082 olinfo_status |= IGB_SET_FLAG(tx_flags, 6083 IGB_TX_FLAGS_IPV4, 6084 (E1000_TXD_POPTS_IXSM << 8)); 6085 6086 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6087 } 6088 6089 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6090 { 6091 struct net_device *netdev = tx_ring->netdev; 6092 6093 netif_stop_subqueue(netdev, tx_ring->queue_index); 6094 6095 /* Herbert's original patch had: 6096 * smp_mb__after_netif_stop_queue(); 6097 * but since that doesn't exist yet, just open code it. 6098 */ 6099 smp_mb(); 6100 6101 /* We need to check again in a case another CPU has just 6102 * made room available. 6103 */ 6104 if (igb_desc_unused(tx_ring) < size) 6105 return -EBUSY; 6106 6107 /* A reprieve! */ 6108 netif_wake_subqueue(netdev, tx_ring->queue_index); 6109 6110 u64_stats_update_begin(&tx_ring->tx_syncp2); 6111 tx_ring->tx_stats.restart_queue2++; 6112 u64_stats_update_end(&tx_ring->tx_syncp2); 6113 6114 return 0; 6115 } 6116 6117 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6118 { 6119 if (igb_desc_unused(tx_ring) >= size) 6120 return 0; 6121 return __igb_maybe_stop_tx(tx_ring, size); 6122 } 6123 6124 static int igb_tx_map(struct igb_ring *tx_ring, 6125 struct igb_tx_buffer *first, 6126 const u8 hdr_len) 6127 { 6128 struct sk_buff *skb = first->skb; 6129 struct igb_tx_buffer *tx_buffer; 6130 union e1000_adv_tx_desc *tx_desc; 6131 skb_frag_t *frag; 6132 dma_addr_t dma; 6133 unsigned int data_len, size; 6134 u32 tx_flags = first->tx_flags; 6135 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 6136 u16 i = tx_ring->next_to_use; 6137 6138 tx_desc = IGB_TX_DESC(tx_ring, i); 6139 6140 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 6141 6142 size = skb_headlen(skb); 6143 data_len = skb->data_len; 6144 6145 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 6146 6147 tx_buffer = first; 6148 6149 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 6150 if (dma_mapping_error(tx_ring->dev, dma)) 6151 goto dma_error; 6152 6153 /* record length, and DMA address */ 6154 dma_unmap_len_set(tx_buffer, len, size); 6155 dma_unmap_addr_set(tx_buffer, dma, dma); 6156 6157 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6158 6159 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 6160 tx_desc->read.cmd_type_len = 6161 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 6162 6163 i++; 6164 tx_desc++; 6165 if (i == tx_ring->count) { 6166 tx_desc = IGB_TX_DESC(tx_ring, 0); 6167 i = 0; 6168 } 6169 tx_desc->read.olinfo_status = 0; 6170 6171 dma += IGB_MAX_DATA_PER_TXD; 6172 size -= IGB_MAX_DATA_PER_TXD; 6173 6174 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6175 } 6176 6177 if (likely(!data_len)) 6178 break; 6179 6180 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 6181 6182 i++; 6183 tx_desc++; 6184 if (i == tx_ring->count) { 6185 tx_desc = IGB_TX_DESC(tx_ring, 0); 6186 i = 0; 6187 } 6188 tx_desc->read.olinfo_status = 0; 6189 6190 size = skb_frag_size(frag); 6191 data_len -= size; 6192 6193 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 6194 size, DMA_TO_DEVICE); 6195 6196 tx_buffer = &tx_ring->tx_buffer_info[i]; 6197 } 6198 6199 /* write last descriptor with RS and EOP bits */ 6200 cmd_type |= size | IGB_TXD_DCMD; 6201 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6202 6203 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 6204 6205 /* set the timestamp */ 6206 first->time_stamp = jiffies; 6207 6208 skb_tx_timestamp(skb); 6209 6210 /* Force memory writes to complete before letting h/w know there 6211 * are new descriptors to fetch. (Only applicable for weak-ordered 6212 * memory model archs, such as IA-64). 6213 * 6214 * We also need this memory barrier to make certain all of the 6215 * status bits have been updated before next_to_watch is written. 6216 */ 6217 dma_wmb(); 6218 6219 /* set next_to_watch value indicating a packet is present */ 6220 first->next_to_watch = tx_desc; 6221 6222 i++; 6223 if (i == tx_ring->count) 6224 i = 0; 6225 6226 tx_ring->next_to_use = i; 6227 6228 /* Make sure there is space in the ring for the next send. */ 6229 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6230 6231 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 6232 writel(i, tx_ring->tail); 6233 } 6234 return 0; 6235 6236 dma_error: 6237 dev_err(tx_ring->dev, "TX DMA map failed\n"); 6238 tx_buffer = &tx_ring->tx_buffer_info[i]; 6239 6240 /* clear dma mappings for failed tx_buffer_info map */ 6241 while (tx_buffer != first) { 6242 if (dma_unmap_len(tx_buffer, len)) 6243 dma_unmap_page(tx_ring->dev, 6244 dma_unmap_addr(tx_buffer, dma), 6245 dma_unmap_len(tx_buffer, len), 6246 DMA_TO_DEVICE); 6247 dma_unmap_len_set(tx_buffer, len, 0); 6248 6249 if (i-- == 0) 6250 i += tx_ring->count; 6251 tx_buffer = &tx_ring->tx_buffer_info[i]; 6252 } 6253 6254 if (dma_unmap_len(tx_buffer, len)) 6255 dma_unmap_single(tx_ring->dev, 6256 dma_unmap_addr(tx_buffer, dma), 6257 dma_unmap_len(tx_buffer, len), 6258 DMA_TO_DEVICE); 6259 dma_unmap_len_set(tx_buffer, len, 0); 6260 6261 dev_kfree_skb_any(tx_buffer->skb); 6262 tx_buffer->skb = NULL; 6263 6264 tx_ring->next_to_use = i; 6265 6266 return -1; 6267 } 6268 6269 int igb_xmit_xdp_ring(struct igb_adapter *adapter, 6270 struct igb_ring *tx_ring, 6271 struct xdp_frame *xdpf) 6272 { 6273 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 6274 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 6275 u16 count, i, index = tx_ring->next_to_use; 6276 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index]; 6277 struct igb_tx_buffer *tx_buffer = tx_head; 6278 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index); 6279 u32 len = xdpf->len, cmd_type, olinfo_status; 6280 void *data = xdpf->data; 6281 6282 count = TXD_USE_COUNT(len); 6283 for (i = 0; i < nr_frags; i++) 6284 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); 6285 6286 if (igb_maybe_stop_tx(tx_ring, count + 3)) 6287 return IGB_XDP_CONSUMED; 6288 6289 i = 0; 6290 /* record the location of the first descriptor for this packet */ 6291 tx_head->bytecount = xdp_get_frame_len(xdpf); 6292 tx_head->type = IGB_TYPE_XDP; 6293 tx_head->gso_segs = 1; 6294 tx_head->xdpf = xdpf; 6295 6296 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT; 6297 /* 82575 requires a unique index per ring */ 6298 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6299 olinfo_status |= tx_ring->reg_idx << 4; 6300 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6301 6302 for (;;) { 6303 dma_addr_t dma; 6304 6305 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE); 6306 if (dma_mapping_error(tx_ring->dev, dma)) 6307 goto unmap; 6308 6309 /* record length, and DMA address */ 6310 dma_unmap_len_set(tx_buffer, len, len); 6311 dma_unmap_addr_set(tx_buffer, dma, dma); 6312 6313 /* put descriptor type bits */ 6314 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT | 6315 E1000_ADVTXD_DCMD_IFCS | len; 6316 6317 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6318 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6319 6320 tx_buffer->protocol = 0; 6321 6322 if (++index == tx_ring->count) 6323 index = 0; 6324 6325 if (i == nr_frags) 6326 break; 6327 6328 tx_buffer = &tx_ring->tx_buffer_info[index]; 6329 tx_desc = IGB_TX_DESC(tx_ring, index); 6330 tx_desc->read.olinfo_status = 0; 6331 6332 data = skb_frag_address(&sinfo->frags[i]); 6333 len = skb_frag_size(&sinfo->frags[i]); 6334 i++; 6335 } 6336 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD); 6337 6338 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount); 6339 /* set the timestamp */ 6340 tx_head->time_stamp = jiffies; 6341 6342 /* Avoid any potential race with xdp_xmit and cleanup */ 6343 smp_wmb(); 6344 6345 /* set next_to_watch value indicating a packet is present */ 6346 tx_head->next_to_watch = tx_desc; 6347 tx_ring->next_to_use = index; 6348 6349 /* Make sure there is space in the ring for the next send. */ 6350 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6351 6352 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 6353 writel(index, tx_ring->tail); 6354 6355 return IGB_XDP_TX; 6356 6357 unmap: 6358 for (;;) { 6359 tx_buffer = &tx_ring->tx_buffer_info[index]; 6360 if (dma_unmap_len(tx_buffer, len)) 6361 dma_unmap_page(tx_ring->dev, 6362 dma_unmap_addr(tx_buffer, dma), 6363 dma_unmap_len(tx_buffer, len), 6364 DMA_TO_DEVICE); 6365 dma_unmap_len_set(tx_buffer, len, 0); 6366 if (tx_buffer == tx_head) 6367 break; 6368 6369 if (!index) 6370 index += tx_ring->count; 6371 index--; 6372 } 6373 6374 return IGB_XDP_CONSUMED; 6375 } 6376 6377 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 6378 struct igb_ring *tx_ring) 6379 { 6380 struct igb_tx_buffer *first; 6381 int tso; 6382 u32 tx_flags = 0; 6383 unsigned short f; 6384 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 6385 __be16 protocol = vlan_get_protocol(skb); 6386 u8 hdr_len = 0; 6387 6388 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 6389 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 6390 * + 2 desc gap to keep tail from touching head, 6391 * + 1 desc for context descriptor, 6392 * otherwise try next time 6393 */ 6394 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 6395 count += TXD_USE_COUNT(skb_frag_size( 6396 &skb_shinfo(skb)->frags[f])); 6397 6398 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 6399 /* this is a hard error */ 6400 return NETDEV_TX_BUSY; 6401 } 6402 6403 /* record the location of the first descriptor for this packet */ 6404 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 6405 first->type = IGB_TYPE_SKB; 6406 first->skb = skb; 6407 first->bytecount = skb->len; 6408 first->gso_segs = 1; 6409 6410 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 6411 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6412 6413 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 6414 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 6415 &adapter->state)) { 6416 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 6417 tx_flags |= IGB_TX_FLAGS_TSTAMP; 6418 6419 adapter->ptp_tx_skb = skb_get(skb); 6420 adapter->ptp_tx_start = jiffies; 6421 if (adapter->hw.mac.type == e1000_82576) 6422 schedule_work(&adapter->ptp_tx_work); 6423 } else { 6424 adapter->tx_hwtstamp_skipped++; 6425 } 6426 } 6427 6428 if (skb_vlan_tag_present(skb)) { 6429 tx_flags |= IGB_TX_FLAGS_VLAN; 6430 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 6431 } 6432 6433 /* record initial flags and protocol */ 6434 first->tx_flags = tx_flags; 6435 first->protocol = protocol; 6436 6437 tso = igb_tso(tx_ring, first, &hdr_len); 6438 if (tso < 0) 6439 goto out_drop; 6440 else if (!tso) 6441 igb_tx_csum(tx_ring, first); 6442 6443 if (igb_tx_map(tx_ring, first, hdr_len)) 6444 goto cleanup_tx_tstamp; 6445 6446 return NETDEV_TX_OK; 6447 6448 out_drop: 6449 dev_kfree_skb_any(first->skb); 6450 first->skb = NULL; 6451 cleanup_tx_tstamp: 6452 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) { 6453 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6454 6455 dev_kfree_skb_any(adapter->ptp_tx_skb); 6456 adapter->ptp_tx_skb = NULL; 6457 if (adapter->hw.mac.type == e1000_82576) 6458 cancel_work_sync(&adapter->ptp_tx_work); 6459 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 6460 } 6461 6462 return NETDEV_TX_OK; 6463 } 6464 6465 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 6466 struct sk_buff *skb) 6467 { 6468 unsigned int r_idx = skb->queue_mapping; 6469 6470 if (r_idx >= adapter->num_tx_queues) 6471 r_idx = r_idx % adapter->num_tx_queues; 6472 6473 return adapter->tx_ring[r_idx]; 6474 } 6475 6476 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 6477 struct net_device *netdev) 6478 { 6479 struct igb_adapter *adapter = netdev_priv(netdev); 6480 6481 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 6482 * in order to meet this minimum size requirement. 6483 */ 6484 if (skb_put_padto(skb, 17)) 6485 return NETDEV_TX_OK; 6486 6487 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 6488 } 6489 6490 /** 6491 * igb_tx_timeout - Respond to a Tx Hang 6492 * @netdev: network interface device structure 6493 * @txqueue: number of the Tx queue that hung (unused) 6494 **/ 6495 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 6496 { 6497 struct igb_adapter *adapter = netdev_priv(netdev); 6498 struct e1000_hw *hw = &adapter->hw; 6499 6500 /* Do the reset outside of interrupt context */ 6501 adapter->tx_timeout_count++; 6502 6503 if (hw->mac.type >= e1000_82580) 6504 hw->dev_spec._82575.global_device_reset = true; 6505 6506 schedule_work(&adapter->reset_task); 6507 wr32(E1000_EICS, 6508 (adapter->eims_enable_mask & ~adapter->eims_other)); 6509 } 6510 6511 static void igb_reset_task(struct work_struct *work) 6512 { 6513 struct igb_adapter *adapter; 6514 adapter = container_of(work, struct igb_adapter, reset_task); 6515 6516 rtnl_lock(); 6517 /* If we're already down or resetting, just bail */ 6518 if (test_bit(__IGB_DOWN, &adapter->state) || 6519 test_bit(__IGB_RESETTING, &adapter->state)) { 6520 rtnl_unlock(); 6521 return; 6522 } 6523 6524 igb_dump(adapter); 6525 netdev_err(adapter->netdev, "Reset adapter\n"); 6526 igb_reinit_locked(adapter); 6527 rtnl_unlock(); 6528 } 6529 6530 /** 6531 * igb_get_stats64 - Get System Network Statistics 6532 * @netdev: network interface device structure 6533 * @stats: rtnl_link_stats64 pointer 6534 **/ 6535 static void igb_get_stats64(struct net_device *netdev, 6536 struct rtnl_link_stats64 *stats) 6537 { 6538 struct igb_adapter *adapter = netdev_priv(netdev); 6539 6540 spin_lock(&adapter->stats64_lock); 6541 igb_update_stats(adapter); 6542 memcpy(stats, &adapter->stats64, sizeof(*stats)); 6543 spin_unlock(&adapter->stats64_lock); 6544 } 6545 6546 /** 6547 * igb_change_mtu - Change the Maximum Transfer Unit 6548 * @netdev: network interface device structure 6549 * @new_mtu: new value for maximum frame size 6550 * 6551 * Returns 0 on success, negative on failure 6552 **/ 6553 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 6554 { 6555 struct igb_adapter *adapter = netdev_priv(netdev); 6556 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD; 6557 6558 if (adapter->xdp_prog) { 6559 int i; 6560 6561 for (i = 0; i < adapter->num_rx_queues; i++) { 6562 struct igb_ring *ring = adapter->rx_ring[i]; 6563 6564 if (max_frame > igb_rx_bufsz(ring)) { 6565 netdev_warn(adapter->netdev, 6566 "Requested MTU size is not supported with XDP. Max frame size is %d\n", 6567 max_frame); 6568 return -EINVAL; 6569 } 6570 } 6571 } 6572 6573 /* adjust max frame to be at least the size of a standard frame */ 6574 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 6575 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 6576 6577 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 6578 usleep_range(1000, 2000); 6579 6580 /* igb_down has a dependency on max_frame_size */ 6581 adapter->max_frame_size = max_frame; 6582 6583 if (netif_running(netdev)) 6584 igb_down(adapter); 6585 6586 netdev_dbg(netdev, "changing MTU from %d to %d\n", 6587 netdev->mtu, new_mtu); 6588 netdev->mtu = new_mtu; 6589 6590 if (netif_running(netdev)) 6591 igb_up(adapter); 6592 else 6593 igb_reset(adapter); 6594 6595 clear_bit(__IGB_RESETTING, &adapter->state); 6596 6597 return 0; 6598 } 6599 6600 /** 6601 * igb_update_stats - Update the board statistics counters 6602 * @adapter: board private structure 6603 **/ 6604 void igb_update_stats(struct igb_adapter *adapter) 6605 { 6606 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 6607 struct e1000_hw *hw = &adapter->hw; 6608 struct pci_dev *pdev = adapter->pdev; 6609 u32 reg, mpc; 6610 int i; 6611 u64 bytes, packets; 6612 unsigned int start; 6613 u64 _bytes, _packets; 6614 6615 /* Prevent stats update while adapter is being reset, or if the pci 6616 * connection is down. 6617 */ 6618 if (adapter->link_speed == 0) 6619 return; 6620 if (pci_channel_offline(pdev)) 6621 return; 6622 6623 bytes = 0; 6624 packets = 0; 6625 6626 rcu_read_lock(); 6627 for (i = 0; i < adapter->num_rx_queues; i++) { 6628 struct igb_ring *ring = adapter->rx_ring[i]; 6629 u32 rqdpc = rd32(E1000_RQDPC(i)); 6630 if (hw->mac.type >= e1000_i210) 6631 wr32(E1000_RQDPC(i), 0); 6632 6633 if (rqdpc) { 6634 ring->rx_stats.drops += rqdpc; 6635 net_stats->rx_fifo_errors += rqdpc; 6636 } 6637 6638 do { 6639 start = u64_stats_fetch_begin(&ring->rx_syncp); 6640 _bytes = ring->rx_stats.bytes; 6641 _packets = ring->rx_stats.packets; 6642 } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); 6643 bytes += _bytes; 6644 packets += _packets; 6645 } 6646 6647 net_stats->rx_bytes = bytes; 6648 net_stats->rx_packets = packets; 6649 6650 bytes = 0; 6651 packets = 0; 6652 for (i = 0; i < adapter->num_tx_queues; i++) { 6653 struct igb_ring *ring = adapter->tx_ring[i]; 6654 do { 6655 start = u64_stats_fetch_begin(&ring->tx_syncp); 6656 _bytes = ring->tx_stats.bytes; 6657 _packets = ring->tx_stats.packets; 6658 } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); 6659 bytes += _bytes; 6660 packets += _packets; 6661 } 6662 net_stats->tx_bytes = bytes; 6663 net_stats->tx_packets = packets; 6664 rcu_read_unlock(); 6665 6666 /* read stats registers */ 6667 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 6668 adapter->stats.gprc += rd32(E1000_GPRC); 6669 adapter->stats.gorc += rd32(E1000_GORCL); 6670 rd32(E1000_GORCH); /* clear GORCL */ 6671 adapter->stats.bprc += rd32(E1000_BPRC); 6672 adapter->stats.mprc += rd32(E1000_MPRC); 6673 adapter->stats.roc += rd32(E1000_ROC); 6674 6675 adapter->stats.prc64 += rd32(E1000_PRC64); 6676 adapter->stats.prc127 += rd32(E1000_PRC127); 6677 adapter->stats.prc255 += rd32(E1000_PRC255); 6678 adapter->stats.prc511 += rd32(E1000_PRC511); 6679 adapter->stats.prc1023 += rd32(E1000_PRC1023); 6680 adapter->stats.prc1522 += rd32(E1000_PRC1522); 6681 adapter->stats.symerrs += rd32(E1000_SYMERRS); 6682 adapter->stats.sec += rd32(E1000_SEC); 6683 6684 mpc = rd32(E1000_MPC); 6685 adapter->stats.mpc += mpc; 6686 net_stats->rx_fifo_errors += mpc; 6687 adapter->stats.scc += rd32(E1000_SCC); 6688 adapter->stats.ecol += rd32(E1000_ECOL); 6689 adapter->stats.mcc += rd32(E1000_MCC); 6690 adapter->stats.latecol += rd32(E1000_LATECOL); 6691 adapter->stats.dc += rd32(E1000_DC); 6692 adapter->stats.rlec += rd32(E1000_RLEC); 6693 adapter->stats.xonrxc += rd32(E1000_XONRXC); 6694 adapter->stats.xontxc += rd32(E1000_XONTXC); 6695 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 6696 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 6697 adapter->stats.fcruc += rd32(E1000_FCRUC); 6698 adapter->stats.gptc += rd32(E1000_GPTC); 6699 adapter->stats.gotc += rd32(E1000_GOTCL); 6700 rd32(E1000_GOTCH); /* clear GOTCL */ 6701 adapter->stats.rnbc += rd32(E1000_RNBC); 6702 adapter->stats.ruc += rd32(E1000_RUC); 6703 adapter->stats.rfc += rd32(E1000_RFC); 6704 adapter->stats.rjc += rd32(E1000_RJC); 6705 adapter->stats.tor += rd32(E1000_TORH); 6706 adapter->stats.tot += rd32(E1000_TOTH); 6707 adapter->stats.tpr += rd32(E1000_TPR); 6708 6709 adapter->stats.ptc64 += rd32(E1000_PTC64); 6710 adapter->stats.ptc127 += rd32(E1000_PTC127); 6711 adapter->stats.ptc255 += rd32(E1000_PTC255); 6712 adapter->stats.ptc511 += rd32(E1000_PTC511); 6713 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 6714 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 6715 6716 adapter->stats.mptc += rd32(E1000_MPTC); 6717 adapter->stats.bptc += rd32(E1000_BPTC); 6718 6719 adapter->stats.tpt += rd32(E1000_TPT); 6720 adapter->stats.colc += rd32(E1000_COLC); 6721 6722 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 6723 /* read internal phy specific stats */ 6724 reg = rd32(E1000_CTRL_EXT); 6725 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 6726 adapter->stats.rxerrc += rd32(E1000_RXERRC); 6727 6728 /* this stat has invalid values on i210/i211 */ 6729 if ((hw->mac.type != e1000_i210) && 6730 (hw->mac.type != e1000_i211)) 6731 adapter->stats.tncrs += rd32(E1000_TNCRS); 6732 } 6733 6734 adapter->stats.tsctc += rd32(E1000_TSCTC); 6735 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 6736 6737 adapter->stats.iac += rd32(E1000_IAC); 6738 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 6739 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 6740 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 6741 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 6742 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 6743 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 6744 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 6745 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 6746 6747 /* Fill out the OS statistics structure */ 6748 net_stats->multicast = adapter->stats.mprc; 6749 net_stats->collisions = adapter->stats.colc; 6750 6751 /* Rx Errors */ 6752 6753 /* RLEC on some newer hardware can be incorrect so build 6754 * our own version based on RUC and ROC 6755 */ 6756 net_stats->rx_errors = adapter->stats.rxerrc + 6757 adapter->stats.crcerrs + adapter->stats.algnerrc + 6758 adapter->stats.ruc + adapter->stats.roc + 6759 adapter->stats.cexterr; 6760 net_stats->rx_length_errors = adapter->stats.ruc + 6761 adapter->stats.roc; 6762 net_stats->rx_crc_errors = adapter->stats.crcerrs; 6763 net_stats->rx_frame_errors = adapter->stats.algnerrc; 6764 net_stats->rx_missed_errors = adapter->stats.mpc; 6765 6766 /* Tx Errors */ 6767 net_stats->tx_errors = adapter->stats.ecol + 6768 adapter->stats.latecol; 6769 net_stats->tx_aborted_errors = adapter->stats.ecol; 6770 net_stats->tx_window_errors = adapter->stats.latecol; 6771 net_stats->tx_carrier_errors = adapter->stats.tncrs; 6772 6773 /* Tx Dropped needs to be maintained elsewhere */ 6774 6775 /* Management Stats */ 6776 adapter->stats.mgptc += rd32(E1000_MGTPTC); 6777 adapter->stats.mgprc += rd32(E1000_MGTPRC); 6778 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 6779 6780 /* OS2BMC Stats */ 6781 reg = rd32(E1000_MANC); 6782 if (reg & E1000_MANC_EN_BMC2OS) { 6783 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 6784 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 6785 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 6786 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 6787 } 6788 } 6789 6790 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt) 6791 { 6792 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt); 6793 struct e1000_hw *hw = &adapter->hw; 6794 struct timespec64 ts; 6795 u32 tsauxc; 6796 6797 if (pin < 0 || pin >= IGB_N_PEROUT) 6798 return; 6799 6800 spin_lock(&adapter->tmreg_lock); 6801 6802 if (hw->mac.type == e1000_82580 || 6803 hw->mac.type == e1000_i354 || 6804 hw->mac.type == e1000_i350) { 6805 s64 ns = timespec64_to_ns(&adapter->perout[pin].period); 6806 u32 systiml, systimh, level_mask, level, rem; 6807 u64 systim, now; 6808 6809 /* read systim registers in sequence */ 6810 rd32(E1000_SYSTIMR); 6811 systiml = rd32(E1000_SYSTIML); 6812 systimh = rd32(E1000_SYSTIMH); 6813 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml); 6814 now = timecounter_cyc2time(&adapter->tc, systim); 6815 6816 if (pin < 2) { 6817 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000; 6818 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0; 6819 } else { 6820 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40; 6821 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0; 6822 } 6823 6824 div_u64_rem(now, ns, &rem); 6825 systim = systim + (ns - rem); 6826 6827 /* synchronize pin level with rising/falling edges */ 6828 div_u64_rem(now, ns << 1, &rem); 6829 if (rem < ns) { 6830 /* first half of period */ 6831 if (level == 0) { 6832 /* output is already low, skip this period */ 6833 systim += ns; 6834 pr_notice("igb: periodic output on %s missed falling edge\n", 6835 adapter->sdp_config[pin].name); 6836 } 6837 } else { 6838 /* second half of period */ 6839 if (level == 1) { 6840 /* output is already high, skip this period */ 6841 systim += ns; 6842 pr_notice("igb: periodic output on %s missed rising edge\n", 6843 adapter->sdp_config[pin].name); 6844 } 6845 } 6846 6847 /* for this chip family tv_sec is the upper part of the binary value, 6848 * so not seconds 6849 */ 6850 ts.tv_nsec = (u32)systim; 6851 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF; 6852 } else { 6853 ts = timespec64_add(adapter->perout[pin].start, 6854 adapter->perout[pin].period); 6855 } 6856 6857 /* u32 conversion of tv_sec is safe until y2106 */ 6858 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec); 6859 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec); 6860 tsauxc = rd32(E1000_TSAUXC); 6861 tsauxc |= TSAUXC_EN_TT0; 6862 wr32(E1000_TSAUXC, tsauxc); 6863 adapter->perout[pin].start = ts; 6864 6865 spin_unlock(&adapter->tmreg_lock); 6866 } 6867 6868 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt) 6869 { 6870 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt); 6871 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0; 6872 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0; 6873 struct e1000_hw *hw = &adapter->hw; 6874 struct ptp_clock_event event; 6875 struct timespec64 ts; 6876 6877 if (pin < 0 || pin >= IGB_N_EXTTS) 6878 return; 6879 6880 if (hw->mac.type == e1000_82580 || 6881 hw->mac.type == e1000_i354 || 6882 hw->mac.type == e1000_i350) { 6883 s64 ns = rd32(auxstmpl); 6884 6885 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32; 6886 ts = ns_to_timespec64(ns); 6887 } else { 6888 ts.tv_nsec = rd32(auxstmpl); 6889 ts.tv_sec = rd32(auxstmph); 6890 } 6891 6892 event.type = PTP_CLOCK_EXTTS; 6893 event.index = tsintr_tt; 6894 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec; 6895 ptp_clock_event(adapter->ptp_clock, &event); 6896 } 6897 6898 static void igb_tsync_interrupt(struct igb_adapter *adapter) 6899 { 6900 struct e1000_hw *hw = &adapter->hw; 6901 u32 ack = 0, tsicr = rd32(E1000_TSICR); 6902 struct ptp_clock_event event; 6903 6904 if (tsicr & TSINTR_SYS_WRAP) { 6905 event.type = PTP_CLOCK_PPS; 6906 if (adapter->ptp_caps.pps) 6907 ptp_clock_event(adapter->ptp_clock, &event); 6908 ack |= TSINTR_SYS_WRAP; 6909 } 6910 6911 if (tsicr & E1000_TSICR_TXTS) { 6912 /* retrieve hardware timestamp */ 6913 schedule_work(&adapter->ptp_tx_work); 6914 ack |= E1000_TSICR_TXTS; 6915 } 6916 6917 if (tsicr & TSINTR_TT0) { 6918 igb_perout(adapter, 0); 6919 ack |= TSINTR_TT0; 6920 } 6921 6922 if (tsicr & TSINTR_TT1) { 6923 igb_perout(adapter, 1); 6924 ack |= TSINTR_TT1; 6925 } 6926 6927 if (tsicr & TSINTR_AUTT0) { 6928 igb_extts(adapter, 0); 6929 ack |= TSINTR_AUTT0; 6930 } 6931 6932 if (tsicr & TSINTR_AUTT1) { 6933 igb_extts(adapter, 1); 6934 ack |= TSINTR_AUTT1; 6935 } 6936 6937 /* acknowledge the interrupts */ 6938 wr32(E1000_TSICR, ack); 6939 } 6940 6941 static irqreturn_t igb_msix_other(int irq, void *data) 6942 { 6943 struct igb_adapter *adapter = data; 6944 struct e1000_hw *hw = &adapter->hw; 6945 u32 icr = rd32(E1000_ICR); 6946 /* reading ICR causes bit 31 of EICR to be cleared */ 6947 6948 if (icr & E1000_ICR_DRSTA) 6949 schedule_work(&adapter->reset_task); 6950 6951 if (icr & E1000_ICR_DOUTSYNC) { 6952 /* HW is reporting DMA is out of sync */ 6953 adapter->stats.doosync++; 6954 /* The DMA Out of Sync is also indication of a spoof event 6955 * in IOV mode. Check the Wrong VM Behavior register to 6956 * see if it is really a spoof event. 6957 */ 6958 igb_check_wvbr(adapter); 6959 } 6960 6961 /* Check for a mailbox event */ 6962 if (icr & E1000_ICR_VMMB) 6963 igb_msg_task(adapter); 6964 6965 if (icr & E1000_ICR_LSC) { 6966 hw->mac.get_link_status = 1; 6967 /* guard against interrupt when we're going down */ 6968 if (!test_bit(__IGB_DOWN, &adapter->state)) 6969 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6970 } 6971 6972 if (icr & E1000_ICR_TS) 6973 igb_tsync_interrupt(adapter); 6974 6975 wr32(E1000_EIMS, adapter->eims_other); 6976 6977 return IRQ_HANDLED; 6978 } 6979 6980 static void igb_write_itr(struct igb_q_vector *q_vector) 6981 { 6982 struct igb_adapter *adapter = q_vector->adapter; 6983 u32 itr_val = q_vector->itr_val & 0x7FFC; 6984 6985 if (!q_vector->set_itr) 6986 return; 6987 6988 if (!itr_val) 6989 itr_val = 0x4; 6990 6991 if (adapter->hw.mac.type == e1000_82575) 6992 itr_val |= itr_val << 16; 6993 else 6994 itr_val |= E1000_EITR_CNT_IGNR; 6995 6996 writel(itr_val, q_vector->itr_register); 6997 q_vector->set_itr = 0; 6998 } 6999 7000 static irqreturn_t igb_msix_ring(int irq, void *data) 7001 { 7002 struct igb_q_vector *q_vector = data; 7003 7004 /* Write the ITR value calculated from the previous interrupt. */ 7005 igb_write_itr(q_vector); 7006 7007 napi_schedule(&q_vector->napi); 7008 7009 return IRQ_HANDLED; 7010 } 7011 7012 #ifdef CONFIG_IGB_DCA 7013 static void igb_update_tx_dca(struct igb_adapter *adapter, 7014 struct igb_ring *tx_ring, 7015 int cpu) 7016 { 7017 struct e1000_hw *hw = &adapter->hw; 7018 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 7019 7020 if (hw->mac.type != e1000_82575) 7021 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 7022 7023 /* We can enable relaxed ordering for reads, but not writes when 7024 * DCA is enabled. This is due to a known issue in some chipsets 7025 * which will cause the DCA tag to be cleared. 7026 */ 7027 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 7028 E1000_DCA_TXCTRL_DATA_RRO_EN | 7029 E1000_DCA_TXCTRL_DESC_DCA_EN; 7030 7031 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 7032 } 7033 7034 static void igb_update_rx_dca(struct igb_adapter *adapter, 7035 struct igb_ring *rx_ring, 7036 int cpu) 7037 { 7038 struct e1000_hw *hw = &adapter->hw; 7039 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 7040 7041 if (hw->mac.type != e1000_82575) 7042 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 7043 7044 /* We can enable relaxed ordering for reads, but not writes when 7045 * DCA is enabled. This is due to a known issue in some chipsets 7046 * which will cause the DCA tag to be cleared. 7047 */ 7048 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 7049 E1000_DCA_RXCTRL_DESC_DCA_EN; 7050 7051 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 7052 } 7053 7054 static void igb_update_dca(struct igb_q_vector *q_vector) 7055 { 7056 struct igb_adapter *adapter = q_vector->adapter; 7057 int cpu = get_cpu(); 7058 7059 if (q_vector->cpu == cpu) 7060 goto out_no_update; 7061 7062 if (q_vector->tx.ring) 7063 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 7064 7065 if (q_vector->rx.ring) 7066 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 7067 7068 q_vector->cpu = cpu; 7069 out_no_update: 7070 put_cpu(); 7071 } 7072 7073 static void igb_setup_dca(struct igb_adapter *adapter) 7074 { 7075 struct e1000_hw *hw = &adapter->hw; 7076 int i; 7077 7078 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 7079 return; 7080 7081 /* Always use CB2 mode, difference is masked in the CB driver. */ 7082 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 7083 7084 for (i = 0; i < adapter->num_q_vectors; i++) { 7085 adapter->q_vector[i]->cpu = -1; 7086 igb_update_dca(adapter->q_vector[i]); 7087 } 7088 } 7089 7090 static int __igb_notify_dca(struct device *dev, void *data) 7091 { 7092 struct net_device *netdev = dev_get_drvdata(dev); 7093 struct igb_adapter *adapter = netdev_priv(netdev); 7094 struct pci_dev *pdev = adapter->pdev; 7095 struct e1000_hw *hw = &adapter->hw; 7096 unsigned long event = *(unsigned long *)data; 7097 7098 switch (event) { 7099 case DCA_PROVIDER_ADD: 7100 /* if already enabled, don't do it again */ 7101 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 7102 break; 7103 if (dca_add_requester(dev) == 0) { 7104 adapter->flags |= IGB_FLAG_DCA_ENABLED; 7105 dev_info(&pdev->dev, "DCA enabled\n"); 7106 igb_setup_dca(adapter); 7107 break; 7108 } 7109 fallthrough; /* since DCA is disabled. */ 7110 case DCA_PROVIDER_REMOVE: 7111 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 7112 /* without this a class_device is left 7113 * hanging around in the sysfs model 7114 */ 7115 dca_remove_requester(dev); 7116 dev_info(&pdev->dev, "DCA disabled\n"); 7117 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 7118 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 7119 } 7120 break; 7121 } 7122 7123 return 0; 7124 } 7125 7126 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 7127 void *p) 7128 { 7129 int ret_val; 7130 7131 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 7132 __igb_notify_dca); 7133 7134 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 7135 } 7136 #endif /* CONFIG_IGB_DCA */ 7137 7138 #ifdef CONFIG_PCI_IOV 7139 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 7140 { 7141 unsigned char mac_addr[ETH_ALEN]; 7142 7143 eth_zero_addr(mac_addr); 7144 igb_set_vf_mac(adapter, vf, mac_addr); 7145 7146 /* By default spoof check is enabled for all VFs */ 7147 adapter->vf_data[vf].spoofchk_enabled = true; 7148 7149 /* By default VFs are not trusted */ 7150 adapter->vf_data[vf].trusted = false; 7151 7152 return 0; 7153 } 7154 7155 #endif 7156 static void igb_ping_all_vfs(struct igb_adapter *adapter) 7157 { 7158 struct e1000_hw *hw = &adapter->hw; 7159 u32 ping; 7160 int i; 7161 7162 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 7163 ping = E1000_PF_CONTROL_MSG; 7164 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 7165 ping |= E1000_VT_MSGTYPE_CTS; 7166 igb_write_mbx(hw, &ping, 1, i); 7167 } 7168 } 7169 7170 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7171 { 7172 struct e1000_hw *hw = &adapter->hw; 7173 u32 vmolr = rd32(E1000_VMOLR(vf)); 7174 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7175 7176 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 7177 IGB_VF_FLAG_MULTI_PROMISC); 7178 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7179 7180 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 7181 vmolr |= E1000_VMOLR_MPME; 7182 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 7183 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 7184 } else { 7185 /* if we have hashes and we are clearing a multicast promisc 7186 * flag we need to write the hashes to the MTA as this step 7187 * was previously skipped 7188 */ 7189 if (vf_data->num_vf_mc_hashes > 30) { 7190 vmolr |= E1000_VMOLR_MPME; 7191 } else if (vf_data->num_vf_mc_hashes) { 7192 int j; 7193 7194 vmolr |= E1000_VMOLR_ROMPE; 7195 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7196 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7197 } 7198 } 7199 7200 wr32(E1000_VMOLR(vf), vmolr); 7201 7202 /* there are flags left unprocessed, likely not supported */ 7203 if (*msgbuf & E1000_VT_MSGINFO_MASK) 7204 return -EINVAL; 7205 7206 return 0; 7207 } 7208 7209 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 7210 u32 *msgbuf, u32 vf) 7211 { 7212 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7213 u16 *hash_list = (u16 *)&msgbuf[1]; 7214 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7215 int i; 7216 7217 /* salt away the number of multicast addresses assigned 7218 * to this VF for later use to restore when the PF multi cast 7219 * list changes 7220 */ 7221 vf_data->num_vf_mc_hashes = n; 7222 7223 /* only up to 30 hash values supported */ 7224 if (n > 30) 7225 n = 30; 7226 7227 /* store the hashes for later use */ 7228 for (i = 0; i < n; i++) 7229 vf_data->vf_mc_hashes[i] = hash_list[i]; 7230 7231 /* Flush and reset the mta with the new values */ 7232 igb_set_rx_mode(adapter->netdev); 7233 7234 return 0; 7235 } 7236 7237 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 7238 { 7239 struct e1000_hw *hw = &adapter->hw; 7240 struct vf_data_storage *vf_data; 7241 int i, j; 7242 7243 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7244 u32 vmolr = rd32(E1000_VMOLR(i)); 7245 7246 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7247 7248 vf_data = &adapter->vf_data[i]; 7249 7250 if ((vf_data->num_vf_mc_hashes > 30) || 7251 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 7252 vmolr |= E1000_VMOLR_MPME; 7253 } else if (vf_data->num_vf_mc_hashes) { 7254 vmolr |= E1000_VMOLR_ROMPE; 7255 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7256 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7257 } 7258 wr32(E1000_VMOLR(i), vmolr); 7259 } 7260 } 7261 7262 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 7263 { 7264 struct e1000_hw *hw = &adapter->hw; 7265 u32 pool_mask, vlvf_mask, i; 7266 7267 /* create mask for VF and other pools */ 7268 pool_mask = E1000_VLVF_POOLSEL_MASK; 7269 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf); 7270 7271 /* drop PF from pool bits */ 7272 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT + 7273 adapter->vfs_allocated_count); 7274 7275 /* Find the vlan filter for this id */ 7276 for (i = E1000_VLVF_ARRAY_SIZE; i--;) { 7277 u32 vlvf = rd32(E1000_VLVF(i)); 7278 u32 vfta_mask, vid, vfta; 7279 7280 /* remove the vf from the pool */ 7281 if (!(vlvf & vlvf_mask)) 7282 continue; 7283 7284 /* clear out bit from VLVF */ 7285 vlvf ^= vlvf_mask; 7286 7287 /* if other pools are present, just remove ourselves */ 7288 if (vlvf & pool_mask) 7289 goto update_vlvfb; 7290 7291 /* if PF is present, leave VFTA */ 7292 if (vlvf & E1000_VLVF_POOLSEL_MASK) 7293 goto update_vlvf; 7294 7295 vid = vlvf & E1000_VLVF_VLANID_MASK; 7296 vfta_mask = BIT(vid % 32); 7297 7298 /* clear bit from VFTA */ 7299 vfta = adapter->shadow_vfta[vid / 32]; 7300 if (vfta & vfta_mask) 7301 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask); 7302 update_vlvf: 7303 /* clear pool selection enable */ 7304 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7305 vlvf &= E1000_VLVF_POOLSEL_MASK; 7306 else 7307 vlvf = 0; 7308 update_vlvfb: 7309 /* clear pool bits */ 7310 wr32(E1000_VLVF(i), vlvf); 7311 } 7312 } 7313 7314 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan) 7315 { 7316 u32 vlvf; 7317 int idx; 7318 7319 /* short cut the special case */ 7320 if (vlan == 0) 7321 return 0; 7322 7323 /* Search for the VLAN id in the VLVF entries */ 7324 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) { 7325 vlvf = rd32(E1000_VLVF(idx)); 7326 if ((vlvf & VLAN_VID_MASK) == vlan) 7327 break; 7328 } 7329 7330 return idx; 7331 } 7332 7333 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid) 7334 { 7335 struct e1000_hw *hw = &adapter->hw; 7336 u32 bits, pf_id; 7337 int idx; 7338 7339 idx = igb_find_vlvf_entry(hw, vid); 7340 if (!idx) 7341 return; 7342 7343 /* See if any other pools are set for this VLAN filter 7344 * entry other than the PF. 7345 */ 7346 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 7347 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK; 7348 bits &= rd32(E1000_VLVF(idx)); 7349 7350 /* Disable the filter so this falls into the default pool. */ 7351 if (!bits) { 7352 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7353 wr32(E1000_VLVF(idx), BIT(pf_id)); 7354 else 7355 wr32(E1000_VLVF(idx), 0); 7356 } 7357 } 7358 7359 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid, 7360 bool add, u32 vf) 7361 { 7362 int pf_id = adapter->vfs_allocated_count; 7363 struct e1000_hw *hw = &adapter->hw; 7364 int err; 7365 7366 /* If VLAN overlaps with one the PF is currently monitoring make 7367 * sure that we are able to allocate a VLVF entry. This may be 7368 * redundant but it guarantees PF will maintain visibility to 7369 * the VLAN. 7370 */ 7371 if (add && test_bit(vid, adapter->active_vlans)) { 7372 err = igb_vfta_set(hw, vid, pf_id, true, false); 7373 if (err) 7374 return err; 7375 } 7376 7377 err = igb_vfta_set(hw, vid, vf, add, false); 7378 7379 if (add && !err) 7380 return err; 7381 7382 /* If we failed to add the VF VLAN or we are removing the VF VLAN 7383 * we may need to drop the PF pool bit in order to allow us to free 7384 * up the VLVF resources. 7385 */ 7386 if (test_bit(vid, adapter->active_vlans) || 7387 (adapter->flags & IGB_FLAG_VLAN_PROMISC)) 7388 igb_update_pf_vlvf(adapter, vid); 7389 7390 return err; 7391 } 7392 7393 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 7394 { 7395 struct e1000_hw *hw = &adapter->hw; 7396 7397 if (vid) 7398 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 7399 else 7400 wr32(E1000_VMVIR(vf), 0); 7401 } 7402 7403 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf, 7404 u16 vlan, u8 qos) 7405 { 7406 int err; 7407 7408 err = igb_set_vf_vlan(adapter, vlan, true, vf); 7409 if (err) 7410 return err; 7411 7412 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 7413 igb_set_vmolr(adapter, vf, !vlan); 7414 7415 /* revoke access to previous VLAN */ 7416 if (vlan != adapter->vf_data[vf].pf_vlan) 7417 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7418 false, vf); 7419 7420 adapter->vf_data[vf].pf_vlan = vlan; 7421 adapter->vf_data[vf].pf_qos = qos; 7422 igb_set_vf_vlan_strip(adapter, vf, true); 7423 dev_info(&adapter->pdev->dev, 7424 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 7425 if (test_bit(__IGB_DOWN, &adapter->state)) { 7426 dev_warn(&adapter->pdev->dev, 7427 "The VF VLAN has been set, but the PF device is not up.\n"); 7428 dev_warn(&adapter->pdev->dev, 7429 "Bring the PF device up before attempting to use the VF device.\n"); 7430 } 7431 7432 return err; 7433 } 7434 7435 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf) 7436 { 7437 /* Restore tagless access via VLAN 0 */ 7438 igb_set_vf_vlan(adapter, 0, true, vf); 7439 7440 igb_set_vmvir(adapter, 0, vf); 7441 igb_set_vmolr(adapter, vf, true); 7442 7443 /* Remove any PF assigned VLAN */ 7444 if (adapter->vf_data[vf].pf_vlan) 7445 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7446 false, vf); 7447 7448 adapter->vf_data[vf].pf_vlan = 0; 7449 adapter->vf_data[vf].pf_qos = 0; 7450 igb_set_vf_vlan_strip(adapter, vf, false); 7451 7452 return 0; 7453 } 7454 7455 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, 7456 u16 vlan, u8 qos, __be16 vlan_proto) 7457 { 7458 struct igb_adapter *adapter = netdev_priv(netdev); 7459 7460 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 7461 return -EINVAL; 7462 7463 if (vlan_proto != htons(ETH_P_8021Q)) 7464 return -EPROTONOSUPPORT; 7465 7466 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) : 7467 igb_disable_port_vlan(adapter, vf); 7468 } 7469 7470 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7471 { 7472 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7473 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 7474 int ret; 7475 7476 if (adapter->vf_data[vf].pf_vlan) 7477 return -1; 7478 7479 /* VLAN 0 is a special case, don't allow it to be removed */ 7480 if (!vid && !add) 7481 return 0; 7482 7483 ret = igb_set_vf_vlan(adapter, vid, !!add, vf); 7484 if (!ret) 7485 igb_set_vf_vlan_strip(adapter, vf, !!vid); 7486 return ret; 7487 } 7488 7489 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 7490 { 7491 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7492 7493 /* clear flags - except flag that indicates PF has set the MAC */ 7494 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC; 7495 vf_data->last_nack = jiffies; 7496 7497 /* reset vlans for device */ 7498 igb_clear_vf_vfta(adapter, vf); 7499 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf); 7500 igb_set_vmvir(adapter, vf_data->pf_vlan | 7501 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf); 7502 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan); 7503 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan)); 7504 7505 /* reset multicast table array for vf */ 7506 adapter->vf_data[vf].num_vf_mc_hashes = 0; 7507 7508 /* Flush and reset the mta with the new values */ 7509 igb_set_rx_mode(adapter->netdev); 7510 } 7511 7512 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 7513 { 7514 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7515 7516 /* clear mac address as we were hotplug removed/added */ 7517 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 7518 eth_zero_addr(vf_mac); 7519 7520 /* process remaining reset events */ 7521 igb_vf_reset(adapter, vf); 7522 } 7523 7524 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 7525 { 7526 struct e1000_hw *hw = &adapter->hw; 7527 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7528 u32 reg, msgbuf[3]; 7529 u8 *addr = (u8 *)(&msgbuf[1]); 7530 7531 /* process all the same items cleared in a function level reset */ 7532 igb_vf_reset(adapter, vf); 7533 7534 /* set vf mac address */ 7535 igb_set_vf_mac(adapter, vf, vf_mac); 7536 7537 /* enable transmit and receive for vf */ 7538 reg = rd32(E1000_VFTE); 7539 wr32(E1000_VFTE, reg | BIT(vf)); 7540 reg = rd32(E1000_VFRE); 7541 wr32(E1000_VFRE, reg | BIT(vf)); 7542 7543 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 7544 7545 /* reply to reset with ack and vf mac address */ 7546 if (!is_zero_ether_addr(vf_mac)) { 7547 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 7548 memcpy(addr, vf_mac, ETH_ALEN); 7549 } else { 7550 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; 7551 } 7552 igb_write_mbx(hw, msgbuf, 3, vf); 7553 } 7554 7555 static void igb_flush_mac_table(struct igb_adapter *adapter) 7556 { 7557 struct e1000_hw *hw = &adapter->hw; 7558 int i; 7559 7560 for (i = 0; i < hw->mac.rar_entry_count; i++) { 7561 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE; 7562 eth_zero_addr(adapter->mac_table[i].addr); 7563 adapter->mac_table[i].queue = 0; 7564 igb_rar_set_index(adapter, i); 7565 } 7566 } 7567 7568 static int igb_available_rars(struct igb_adapter *adapter, u8 queue) 7569 { 7570 struct e1000_hw *hw = &adapter->hw; 7571 /* do not count rar entries reserved for VFs MAC addresses */ 7572 int rar_entries = hw->mac.rar_entry_count - 7573 adapter->vfs_allocated_count; 7574 int i, count = 0; 7575 7576 for (i = 0; i < rar_entries; i++) { 7577 /* do not count default entries */ 7578 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) 7579 continue; 7580 7581 /* do not count "in use" entries for different queues */ 7582 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) && 7583 (adapter->mac_table[i].queue != queue)) 7584 continue; 7585 7586 count++; 7587 } 7588 7589 return count; 7590 } 7591 7592 /* Set default MAC address for the PF in the first RAR entry */ 7593 static void igb_set_default_mac_filter(struct igb_adapter *adapter) 7594 { 7595 struct igb_mac_addr *mac_table = &adapter->mac_table[0]; 7596 7597 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 7598 mac_table->queue = adapter->vfs_allocated_count; 7599 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7600 7601 igb_rar_set_index(adapter, 0); 7602 } 7603 7604 /* If the filter to be added and an already existing filter express 7605 * the same address and address type, it should be possible to only 7606 * override the other configurations, for example the queue to steer 7607 * traffic. 7608 */ 7609 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry, 7610 const u8 *addr, const u8 flags) 7611 { 7612 if (!(entry->state & IGB_MAC_STATE_IN_USE)) 7613 return true; 7614 7615 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) != 7616 (flags & IGB_MAC_STATE_SRC_ADDR)) 7617 return false; 7618 7619 if (!ether_addr_equal(addr, entry->addr)) 7620 return false; 7621 7622 return true; 7623 } 7624 7625 /* Add a MAC filter for 'addr' directing matching traffic to 'queue', 7626 * 'flags' is used to indicate what kind of match is made, match is by 7627 * default for the destination address, if matching by source address 7628 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used. 7629 */ 7630 static int igb_add_mac_filter_flags(struct igb_adapter *adapter, 7631 const u8 *addr, const u8 queue, 7632 const u8 flags) 7633 { 7634 struct e1000_hw *hw = &adapter->hw; 7635 int rar_entries = hw->mac.rar_entry_count - 7636 adapter->vfs_allocated_count; 7637 int i; 7638 7639 if (is_zero_ether_addr(addr)) 7640 return -EINVAL; 7641 7642 /* Search for the first empty entry in the MAC table. 7643 * Do not touch entries at the end of the table reserved for the VF MAC 7644 * addresses. 7645 */ 7646 for (i = 0; i < rar_entries; i++) { 7647 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i], 7648 addr, flags)) 7649 continue; 7650 7651 ether_addr_copy(adapter->mac_table[i].addr, addr); 7652 adapter->mac_table[i].queue = queue; 7653 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags; 7654 7655 igb_rar_set_index(adapter, i); 7656 return i; 7657 } 7658 7659 return -ENOSPC; 7660 } 7661 7662 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7663 const u8 queue) 7664 { 7665 return igb_add_mac_filter_flags(adapter, addr, queue, 0); 7666 } 7667 7668 /* Remove a MAC filter for 'addr' directing matching traffic to 7669 * 'queue', 'flags' is used to indicate what kind of match need to be 7670 * removed, match is by default for the destination address, if 7671 * matching by source address is to be removed the flag 7672 * IGB_MAC_STATE_SRC_ADDR can be used. 7673 */ 7674 static int igb_del_mac_filter_flags(struct igb_adapter *adapter, 7675 const u8 *addr, const u8 queue, 7676 const u8 flags) 7677 { 7678 struct e1000_hw *hw = &adapter->hw; 7679 int rar_entries = hw->mac.rar_entry_count - 7680 adapter->vfs_allocated_count; 7681 int i; 7682 7683 if (is_zero_ether_addr(addr)) 7684 return -EINVAL; 7685 7686 /* Search for matching entry in the MAC table based on given address 7687 * and queue. Do not touch entries at the end of the table reserved 7688 * for the VF MAC addresses. 7689 */ 7690 for (i = 0; i < rar_entries; i++) { 7691 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)) 7692 continue; 7693 if ((adapter->mac_table[i].state & flags) != flags) 7694 continue; 7695 if (adapter->mac_table[i].queue != queue) 7696 continue; 7697 if (!ether_addr_equal(adapter->mac_table[i].addr, addr)) 7698 continue; 7699 7700 /* When a filter for the default address is "deleted", 7701 * we return it to its initial configuration 7702 */ 7703 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) { 7704 adapter->mac_table[i].state = 7705 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7706 adapter->mac_table[i].queue = 7707 adapter->vfs_allocated_count; 7708 } else { 7709 adapter->mac_table[i].state = 0; 7710 adapter->mac_table[i].queue = 0; 7711 eth_zero_addr(adapter->mac_table[i].addr); 7712 } 7713 7714 igb_rar_set_index(adapter, i); 7715 return 0; 7716 } 7717 7718 return -ENOENT; 7719 } 7720 7721 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7722 const u8 queue) 7723 { 7724 return igb_del_mac_filter_flags(adapter, addr, queue, 0); 7725 } 7726 7727 int igb_add_mac_steering_filter(struct igb_adapter *adapter, 7728 const u8 *addr, u8 queue, u8 flags) 7729 { 7730 struct e1000_hw *hw = &adapter->hw; 7731 7732 /* In theory, this should be supported on 82575 as well, but 7733 * that part wasn't easily accessible during development. 7734 */ 7735 if (hw->mac.type != e1000_i210) 7736 return -EOPNOTSUPP; 7737 7738 return igb_add_mac_filter_flags(adapter, addr, queue, 7739 IGB_MAC_STATE_QUEUE_STEERING | flags); 7740 } 7741 7742 int igb_del_mac_steering_filter(struct igb_adapter *adapter, 7743 const u8 *addr, u8 queue, u8 flags) 7744 { 7745 return igb_del_mac_filter_flags(adapter, addr, queue, 7746 IGB_MAC_STATE_QUEUE_STEERING | flags); 7747 } 7748 7749 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr) 7750 { 7751 struct igb_adapter *adapter = netdev_priv(netdev); 7752 int ret; 7753 7754 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7755 7756 return min_t(int, ret, 0); 7757 } 7758 7759 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr) 7760 { 7761 struct igb_adapter *adapter = netdev_priv(netdev); 7762 7763 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7764 7765 return 0; 7766 } 7767 7768 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf, 7769 const u32 info, const u8 *addr) 7770 { 7771 struct pci_dev *pdev = adapter->pdev; 7772 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7773 struct list_head *pos; 7774 struct vf_mac_filter *entry = NULL; 7775 int ret = 0; 7776 7777 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7778 !vf_data->trusted) { 7779 dev_warn(&pdev->dev, 7780 "VF %d requested MAC filter but is administratively denied\n", 7781 vf); 7782 return -EINVAL; 7783 } 7784 if (!is_valid_ether_addr(addr)) { 7785 dev_warn(&pdev->dev, 7786 "VF %d attempted to set invalid MAC filter\n", 7787 vf); 7788 return -EINVAL; 7789 } 7790 7791 switch (info) { 7792 case E1000_VF_MAC_FILTER_CLR: 7793 /* remove all unicast MAC filters related to the current VF */ 7794 list_for_each(pos, &adapter->vf_macs.l) { 7795 entry = list_entry(pos, struct vf_mac_filter, l); 7796 if (entry->vf == vf) { 7797 entry->vf = -1; 7798 entry->free = true; 7799 igb_del_mac_filter(adapter, entry->vf_mac, vf); 7800 } 7801 } 7802 break; 7803 case E1000_VF_MAC_FILTER_ADD: 7804 /* try to find empty slot in the list */ 7805 list_for_each(pos, &adapter->vf_macs.l) { 7806 entry = list_entry(pos, struct vf_mac_filter, l); 7807 if (entry->free) 7808 break; 7809 } 7810 7811 if (entry && entry->free) { 7812 entry->free = false; 7813 entry->vf = vf; 7814 ether_addr_copy(entry->vf_mac, addr); 7815 7816 ret = igb_add_mac_filter(adapter, addr, vf); 7817 ret = min_t(int, ret, 0); 7818 } else { 7819 ret = -ENOSPC; 7820 } 7821 7822 if (ret == -ENOSPC) 7823 dev_warn(&pdev->dev, 7824 "VF %d has requested MAC filter but there is no space for it\n", 7825 vf); 7826 break; 7827 default: 7828 ret = -EINVAL; 7829 break; 7830 } 7831 7832 return ret; 7833 } 7834 7835 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 7836 { 7837 struct pci_dev *pdev = adapter->pdev; 7838 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7839 u32 info = msg[0] & E1000_VT_MSGINFO_MASK; 7840 7841 /* The VF MAC Address is stored in a packed array of bytes 7842 * starting at the second 32 bit word of the msg array 7843 */ 7844 unsigned char *addr = (unsigned char *)&msg[1]; 7845 int ret = 0; 7846 7847 if (!info) { 7848 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7849 !vf_data->trusted) { 7850 dev_warn(&pdev->dev, 7851 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 7852 vf); 7853 return -EINVAL; 7854 } 7855 7856 if (!is_valid_ether_addr(addr)) { 7857 dev_warn(&pdev->dev, 7858 "VF %d attempted to set invalid MAC\n", 7859 vf); 7860 return -EINVAL; 7861 } 7862 7863 ret = igb_set_vf_mac(adapter, vf, addr); 7864 } else { 7865 ret = igb_set_vf_mac_filter(adapter, vf, info, addr); 7866 } 7867 7868 return ret; 7869 } 7870 7871 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 7872 { 7873 struct e1000_hw *hw = &adapter->hw; 7874 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7875 u32 msg = E1000_VT_MSGTYPE_NACK; 7876 7877 /* if device isn't clear to send it shouldn't be reading either */ 7878 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 7879 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 7880 igb_write_mbx(hw, &msg, 1, vf); 7881 vf_data->last_nack = jiffies; 7882 } 7883 } 7884 7885 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 7886 { 7887 struct pci_dev *pdev = adapter->pdev; 7888 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 7889 struct e1000_hw *hw = &adapter->hw; 7890 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7891 s32 retval; 7892 7893 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false); 7894 7895 if (retval) { 7896 /* if receive failed revoke VF CTS stats and restart init */ 7897 dev_err(&pdev->dev, "Error receiving message from VF\n"); 7898 vf_data->flags &= ~IGB_VF_FLAG_CTS; 7899 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7900 goto unlock; 7901 goto out; 7902 } 7903 7904 /* this is a message we already processed, do nothing */ 7905 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 7906 goto unlock; 7907 7908 /* until the vf completes a reset it should not be 7909 * allowed to start any configuration. 7910 */ 7911 if (msgbuf[0] == E1000_VF_RESET) { 7912 /* unlocks mailbox */ 7913 igb_vf_reset_msg(adapter, vf); 7914 return; 7915 } 7916 7917 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 7918 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7919 goto unlock; 7920 retval = -1; 7921 goto out; 7922 } 7923 7924 switch ((msgbuf[0] & 0xFFFF)) { 7925 case E1000_VF_SET_MAC_ADDR: 7926 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 7927 break; 7928 case E1000_VF_SET_PROMISC: 7929 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 7930 break; 7931 case E1000_VF_SET_MULTICAST: 7932 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 7933 break; 7934 case E1000_VF_SET_LPE: 7935 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 7936 break; 7937 case E1000_VF_SET_VLAN: 7938 retval = -1; 7939 if (vf_data->pf_vlan) 7940 dev_warn(&pdev->dev, 7941 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 7942 vf); 7943 else 7944 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf); 7945 break; 7946 default: 7947 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 7948 retval = -1; 7949 break; 7950 } 7951 7952 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 7953 out: 7954 /* notify the VF of the results of what it sent us */ 7955 if (retval) 7956 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 7957 else 7958 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 7959 7960 /* unlocks mailbox */ 7961 igb_write_mbx(hw, msgbuf, 1, vf); 7962 return; 7963 7964 unlock: 7965 igb_unlock_mbx(hw, vf); 7966 } 7967 7968 static void igb_msg_task(struct igb_adapter *adapter) 7969 { 7970 struct e1000_hw *hw = &adapter->hw; 7971 unsigned long flags; 7972 u32 vf; 7973 7974 spin_lock_irqsave(&adapter->vfs_lock, flags); 7975 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 7976 /* process any reset requests */ 7977 if (!igb_check_for_rst(hw, vf)) 7978 igb_vf_reset_event(adapter, vf); 7979 7980 /* process any messages pending */ 7981 if (!igb_check_for_msg(hw, vf)) 7982 igb_rcv_msg_from_vf(adapter, vf); 7983 7984 /* process any acks */ 7985 if (!igb_check_for_ack(hw, vf)) 7986 igb_rcv_ack_from_vf(adapter, vf); 7987 } 7988 spin_unlock_irqrestore(&adapter->vfs_lock, flags); 7989 } 7990 7991 /** 7992 * igb_set_uta - Set unicast filter table address 7993 * @adapter: board private structure 7994 * @set: boolean indicating if we are setting or clearing bits 7995 * 7996 * The unicast table address is a register array of 32-bit registers. 7997 * The table is meant to be used in a way similar to how the MTA is used 7998 * however due to certain limitations in the hardware it is necessary to 7999 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 8000 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 8001 **/ 8002 static void igb_set_uta(struct igb_adapter *adapter, bool set) 8003 { 8004 struct e1000_hw *hw = &adapter->hw; 8005 u32 uta = set ? ~0 : 0; 8006 int i; 8007 8008 /* we only need to do this if VMDq is enabled */ 8009 if (!adapter->vfs_allocated_count) 8010 return; 8011 8012 for (i = hw->mac.uta_reg_count; i--;) 8013 array_wr32(E1000_UTA, i, uta); 8014 } 8015 8016 /** 8017 * igb_intr_msi - Interrupt Handler 8018 * @irq: interrupt number 8019 * @data: pointer to a network interface device structure 8020 **/ 8021 static irqreturn_t igb_intr_msi(int irq, void *data) 8022 { 8023 struct igb_adapter *adapter = data; 8024 struct igb_q_vector *q_vector = adapter->q_vector[0]; 8025 struct e1000_hw *hw = &adapter->hw; 8026 /* read ICR disables interrupts using IAM */ 8027 u32 icr = rd32(E1000_ICR); 8028 8029 igb_write_itr(q_vector); 8030 8031 if (icr & E1000_ICR_DRSTA) 8032 schedule_work(&adapter->reset_task); 8033 8034 if (icr & E1000_ICR_DOUTSYNC) { 8035 /* HW is reporting DMA is out of sync */ 8036 adapter->stats.doosync++; 8037 } 8038 8039 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 8040 hw->mac.get_link_status = 1; 8041 if (!test_bit(__IGB_DOWN, &adapter->state)) 8042 mod_timer(&adapter->watchdog_timer, jiffies + 1); 8043 } 8044 8045 if (icr & E1000_ICR_TS) 8046 igb_tsync_interrupt(adapter); 8047 8048 napi_schedule(&q_vector->napi); 8049 8050 return IRQ_HANDLED; 8051 } 8052 8053 /** 8054 * igb_intr - Legacy Interrupt Handler 8055 * @irq: interrupt number 8056 * @data: pointer to a network interface device structure 8057 **/ 8058 static irqreturn_t igb_intr(int irq, void *data) 8059 { 8060 struct igb_adapter *adapter = data; 8061 struct igb_q_vector *q_vector = adapter->q_vector[0]; 8062 struct e1000_hw *hw = &adapter->hw; 8063 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 8064 * need for the IMC write 8065 */ 8066 u32 icr = rd32(E1000_ICR); 8067 8068 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 8069 * not set, then the adapter didn't send an interrupt 8070 */ 8071 if (!(icr & E1000_ICR_INT_ASSERTED)) 8072 return IRQ_NONE; 8073 8074 igb_write_itr(q_vector); 8075 8076 if (icr & E1000_ICR_DRSTA) 8077 schedule_work(&adapter->reset_task); 8078 8079 if (icr & E1000_ICR_DOUTSYNC) { 8080 /* HW is reporting DMA is out of sync */ 8081 adapter->stats.doosync++; 8082 } 8083 8084 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 8085 hw->mac.get_link_status = 1; 8086 /* guard against interrupt when we're going down */ 8087 if (!test_bit(__IGB_DOWN, &adapter->state)) 8088 mod_timer(&adapter->watchdog_timer, jiffies + 1); 8089 } 8090 8091 if (icr & E1000_ICR_TS) 8092 igb_tsync_interrupt(adapter); 8093 8094 napi_schedule(&q_vector->napi); 8095 8096 return IRQ_HANDLED; 8097 } 8098 8099 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 8100 { 8101 struct igb_adapter *adapter = q_vector->adapter; 8102 struct e1000_hw *hw = &adapter->hw; 8103 8104 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 8105 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 8106 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 8107 igb_set_itr(q_vector); 8108 else 8109 igb_update_ring_itr(q_vector); 8110 } 8111 8112 if (!test_bit(__IGB_DOWN, &adapter->state)) { 8113 if (adapter->flags & IGB_FLAG_HAS_MSIX) 8114 wr32(E1000_EIMS, q_vector->eims_value); 8115 else 8116 igb_irq_enable(adapter); 8117 } 8118 } 8119 8120 /** 8121 * igb_poll - NAPI Rx polling callback 8122 * @napi: napi polling structure 8123 * @budget: count of how many packets we should handle 8124 **/ 8125 static int igb_poll(struct napi_struct *napi, int budget) 8126 { 8127 struct igb_q_vector *q_vector = container_of(napi, 8128 struct igb_q_vector, 8129 napi); 8130 bool clean_complete = true; 8131 int work_done = 0; 8132 8133 #ifdef CONFIG_IGB_DCA 8134 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 8135 igb_update_dca(q_vector); 8136 #endif 8137 if (q_vector->tx.ring) 8138 clean_complete = igb_clean_tx_irq(q_vector, budget); 8139 8140 if (q_vector->rx.ring) { 8141 int cleaned = igb_clean_rx_irq(q_vector, budget); 8142 8143 work_done += cleaned; 8144 if (cleaned >= budget) 8145 clean_complete = false; 8146 } 8147 8148 /* If all work not completed, return budget and keep polling */ 8149 if (!clean_complete) 8150 return budget; 8151 8152 /* Exit the polling mode, but don't re-enable interrupts if stack might 8153 * poll us due to busy-polling 8154 */ 8155 if (likely(napi_complete_done(napi, work_done))) 8156 igb_ring_irq_enable(q_vector); 8157 8158 return work_done; 8159 } 8160 8161 /** 8162 * igb_clean_tx_irq - Reclaim resources after transmit completes 8163 * @q_vector: pointer to q_vector containing needed info 8164 * @napi_budget: Used to determine if we are in netpoll 8165 * 8166 * returns true if ring is completely cleaned 8167 **/ 8168 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget) 8169 { 8170 struct igb_adapter *adapter = q_vector->adapter; 8171 struct igb_ring *tx_ring = q_vector->tx.ring; 8172 struct igb_tx_buffer *tx_buffer; 8173 union e1000_adv_tx_desc *tx_desc; 8174 unsigned int total_bytes = 0, total_packets = 0; 8175 unsigned int budget = q_vector->tx.work_limit; 8176 unsigned int i = tx_ring->next_to_clean; 8177 8178 if (test_bit(__IGB_DOWN, &adapter->state)) 8179 return true; 8180 8181 tx_buffer = &tx_ring->tx_buffer_info[i]; 8182 tx_desc = IGB_TX_DESC(tx_ring, i); 8183 i -= tx_ring->count; 8184 8185 do { 8186 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 8187 8188 /* if next_to_watch is not set then there is no work pending */ 8189 if (!eop_desc) 8190 break; 8191 8192 /* prevent any other reads prior to eop_desc */ 8193 smp_rmb(); 8194 8195 /* if DD is not set pending work has not been completed */ 8196 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 8197 break; 8198 8199 /* clear next_to_watch to prevent false hangs */ 8200 tx_buffer->next_to_watch = NULL; 8201 8202 /* update the statistics for this packet */ 8203 total_bytes += tx_buffer->bytecount; 8204 total_packets += tx_buffer->gso_segs; 8205 8206 /* free the skb */ 8207 if (tx_buffer->type == IGB_TYPE_SKB) 8208 napi_consume_skb(tx_buffer->skb, napi_budget); 8209 else 8210 xdp_return_frame(tx_buffer->xdpf); 8211 8212 /* unmap skb header data */ 8213 dma_unmap_single(tx_ring->dev, 8214 dma_unmap_addr(tx_buffer, dma), 8215 dma_unmap_len(tx_buffer, len), 8216 DMA_TO_DEVICE); 8217 8218 /* clear tx_buffer data */ 8219 dma_unmap_len_set(tx_buffer, len, 0); 8220 8221 /* clear last DMA location and unmap remaining buffers */ 8222 while (tx_desc != eop_desc) { 8223 tx_buffer++; 8224 tx_desc++; 8225 i++; 8226 if (unlikely(!i)) { 8227 i -= tx_ring->count; 8228 tx_buffer = tx_ring->tx_buffer_info; 8229 tx_desc = IGB_TX_DESC(tx_ring, 0); 8230 } 8231 8232 /* unmap any remaining paged data */ 8233 if (dma_unmap_len(tx_buffer, len)) { 8234 dma_unmap_page(tx_ring->dev, 8235 dma_unmap_addr(tx_buffer, dma), 8236 dma_unmap_len(tx_buffer, len), 8237 DMA_TO_DEVICE); 8238 dma_unmap_len_set(tx_buffer, len, 0); 8239 } 8240 } 8241 8242 /* move us one more past the eop_desc for start of next pkt */ 8243 tx_buffer++; 8244 tx_desc++; 8245 i++; 8246 if (unlikely(!i)) { 8247 i -= tx_ring->count; 8248 tx_buffer = tx_ring->tx_buffer_info; 8249 tx_desc = IGB_TX_DESC(tx_ring, 0); 8250 } 8251 8252 /* issue prefetch for next Tx descriptor */ 8253 prefetch(tx_desc); 8254 8255 /* update budget accounting */ 8256 budget--; 8257 } while (likely(budget)); 8258 8259 netdev_tx_completed_queue(txring_txq(tx_ring), 8260 total_packets, total_bytes); 8261 i += tx_ring->count; 8262 tx_ring->next_to_clean = i; 8263 u64_stats_update_begin(&tx_ring->tx_syncp); 8264 tx_ring->tx_stats.bytes += total_bytes; 8265 tx_ring->tx_stats.packets += total_packets; 8266 u64_stats_update_end(&tx_ring->tx_syncp); 8267 q_vector->tx.total_bytes += total_bytes; 8268 q_vector->tx.total_packets += total_packets; 8269 8270 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 8271 struct e1000_hw *hw = &adapter->hw; 8272 8273 /* Detect a transmit hang in hardware, this serializes the 8274 * check with the clearing of time_stamp and movement of i 8275 */ 8276 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 8277 if (tx_buffer->next_to_watch && 8278 time_after(jiffies, tx_buffer->time_stamp + 8279 (adapter->tx_timeout_factor * HZ)) && 8280 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 8281 8282 /* detected Tx unit hang */ 8283 dev_err(tx_ring->dev, 8284 "Detected Tx Unit Hang\n" 8285 " Tx Queue <%d>\n" 8286 " TDH <%x>\n" 8287 " TDT <%x>\n" 8288 " next_to_use <%x>\n" 8289 " next_to_clean <%x>\n" 8290 "buffer_info[next_to_clean]\n" 8291 " time_stamp <%lx>\n" 8292 " next_to_watch <%p>\n" 8293 " jiffies <%lx>\n" 8294 " desc.status <%x>\n", 8295 tx_ring->queue_index, 8296 rd32(E1000_TDH(tx_ring->reg_idx)), 8297 readl(tx_ring->tail), 8298 tx_ring->next_to_use, 8299 tx_ring->next_to_clean, 8300 tx_buffer->time_stamp, 8301 tx_buffer->next_to_watch, 8302 jiffies, 8303 tx_buffer->next_to_watch->wb.status); 8304 netif_stop_subqueue(tx_ring->netdev, 8305 tx_ring->queue_index); 8306 8307 /* we are about to reset, no point in enabling stuff */ 8308 return true; 8309 } 8310 } 8311 8312 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 8313 if (unlikely(total_packets && 8314 netif_carrier_ok(tx_ring->netdev) && 8315 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 8316 /* Make sure that anybody stopping the queue after this 8317 * sees the new next_to_clean. 8318 */ 8319 smp_mb(); 8320 if (__netif_subqueue_stopped(tx_ring->netdev, 8321 tx_ring->queue_index) && 8322 !(test_bit(__IGB_DOWN, &adapter->state))) { 8323 netif_wake_subqueue(tx_ring->netdev, 8324 tx_ring->queue_index); 8325 8326 u64_stats_update_begin(&tx_ring->tx_syncp); 8327 tx_ring->tx_stats.restart_queue++; 8328 u64_stats_update_end(&tx_ring->tx_syncp); 8329 } 8330 } 8331 8332 return !!budget; 8333 } 8334 8335 /** 8336 * igb_reuse_rx_page - page flip buffer and store it back on the ring 8337 * @rx_ring: rx descriptor ring to store buffers on 8338 * @old_buff: donor buffer to have page reused 8339 * 8340 * Synchronizes page for reuse by the adapter 8341 **/ 8342 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 8343 struct igb_rx_buffer *old_buff) 8344 { 8345 struct igb_rx_buffer *new_buff; 8346 u16 nta = rx_ring->next_to_alloc; 8347 8348 new_buff = &rx_ring->rx_buffer_info[nta]; 8349 8350 /* update, and store next to alloc */ 8351 nta++; 8352 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 8353 8354 /* Transfer page from old buffer to new buffer. 8355 * Move each member individually to avoid possible store 8356 * forwarding stalls. 8357 */ 8358 new_buff->dma = old_buff->dma; 8359 new_buff->page = old_buff->page; 8360 new_buff->page_offset = old_buff->page_offset; 8361 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 8362 } 8363 8364 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 8365 int rx_buf_pgcnt) 8366 { 8367 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 8368 struct page *page = rx_buffer->page; 8369 8370 /* avoid re-using remote and pfmemalloc pages */ 8371 if (!dev_page_is_reusable(page)) 8372 return false; 8373 8374 #if (PAGE_SIZE < 8192) 8375 /* if we are only owner of page we can reuse it */ 8376 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 8377 return false; 8378 #else 8379 #define IGB_LAST_OFFSET \ 8380 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048) 8381 8382 if (rx_buffer->page_offset > IGB_LAST_OFFSET) 8383 return false; 8384 #endif 8385 8386 /* If we have drained the page fragment pool we need to update 8387 * the pagecnt_bias and page count so that we fully restock the 8388 * number of references the driver holds. 8389 */ 8390 if (unlikely(pagecnt_bias == 1)) { 8391 page_ref_add(page, USHRT_MAX - 1); 8392 rx_buffer->pagecnt_bias = USHRT_MAX; 8393 } 8394 8395 return true; 8396 } 8397 8398 /** 8399 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 8400 * @rx_ring: rx descriptor ring to transact packets on 8401 * @rx_buffer: buffer containing page to add 8402 * @skb: sk_buff to place the data into 8403 * @size: size of buffer to be added 8404 * 8405 * This function will add the data contained in rx_buffer->page to the skb. 8406 **/ 8407 static void igb_add_rx_frag(struct igb_ring *rx_ring, 8408 struct igb_rx_buffer *rx_buffer, 8409 struct sk_buff *skb, 8410 unsigned int size) 8411 { 8412 #if (PAGE_SIZE < 8192) 8413 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8414 #else 8415 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 8416 SKB_DATA_ALIGN(IGB_SKB_PAD + size) : 8417 SKB_DATA_ALIGN(size); 8418 #endif 8419 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 8420 rx_buffer->page_offset, size, truesize); 8421 #if (PAGE_SIZE < 8192) 8422 rx_buffer->page_offset ^= truesize; 8423 #else 8424 rx_buffer->page_offset += truesize; 8425 #endif 8426 } 8427 8428 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring, 8429 struct igb_rx_buffer *rx_buffer, 8430 struct xdp_buff *xdp, 8431 ktime_t timestamp) 8432 { 8433 #if (PAGE_SIZE < 8192) 8434 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8435 #else 8436 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 8437 xdp->data_hard_start); 8438 #endif 8439 unsigned int size = xdp->data_end - xdp->data; 8440 unsigned int headlen; 8441 struct sk_buff *skb; 8442 8443 /* prefetch first cache line of first page */ 8444 net_prefetch(xdp->data); 8445 8446 /* allocate a skb to store the frags */ 8447 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); 8448 if (unlikely(!skb)) 8449 return NULL; 8450 8451 if (timestamp) 8452 skb_hwtstamps(skb)->hwtstamp = timestamp; 8453 8454 /* Determine available headroom for copy */ 8455 headlen = size; 8456 if (headlen > IGB_RX_HDR_LEN) 8457 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN); 8458 8459 /* align pull length to size of long to optimize memcpy performance */ 8460 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long))); 8461 8462 /* update all of the pointers */ 8463 size -= headlen; 8464 if (size) { 8465 skb_add_rx_frag(skb, 0, rx_buffer->page, 8466 (xdp->data + headlen) - page_address(rx_buffer->page), 8467 size, truesize); 8468 #if (PAGE_SIZE < 8192) 8469 rx_buffer->page_offset ^= truesize; 8470 #else 8471 rx_buffer->page_offset += truesize; 8472 #endif 8473 } else { 8474 rx_buffer->pagecnt_bias++; 8475 } 8476 8477 return skb; 8478 } 8479 8480 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring, 8481 struct igb_rx_buffer *rx_buffer, 8482 struct xdp_buff *xdp, 8483 ktime_t timestamp) 8484 { 8485 #if (PAGE_SIZE < 8192) 8486 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8487 #else 8488 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 8489 SKB_DATA_ALIGN(xdp->data_end - 8490 xdp->data_hard_start); 8491 #endif 8492 unsigned int metasize = xdp->data - xdp->data_meta; 8493 struct sk_buff *skb; 8494 8495 /* prefetch first cache line of first page */ 8496 net_prefetch(xdp->data_meta); 8497 8498 /* build an skb around the page buffer */ 8499 skb = napi_build_skb(xdp->data_hard_start, truesize); 8500 if (unlikely(!skb)) 8501 return NULL; 8502 8503 /* update pointers within the skb to store the data */ 8504 skb_reserve(skb, xdp->data - xdp->data_hard_start); 8505 __skb_put(skb, xdp->data_end - xdp->data); 8506 8507 if (metasize) 8508 skb_metadata_set(skb, metasize); 8509 8510 if (timestamp) 8511 skb_hwtstamps(skb)->hwtstamp = timestamp; 8512 8513 /* update buffer offset */ 8514 #if (PAGE_SIZE < 8192) 8515 rx_buffer->page_offset ^= truesize; 8516 #else 8517 rx_buffer->page_offset += truesize; 8518 #endif 8519 8520 return skb; 8521 } 8522 8523 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter, 8524 struct igb_ring *rx_ring, 8525 struct xdp_buff *xdp) 8526 { 8527 int err, result = IGB_XDP_PASS; 8528 struct bpf_prog *xdp_prog; 8529 u32 act; 8530 8531 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 8532 8533 if (!xdp_prog) 8534 goto xdp_out; 8535 8536 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 8537 8538 act = bpf_prog_run_xdp(xdp_prog, xdp); 8539 switch (act) { 8540 case XDP_PASS: 8541 break; 8542 case XDP_TX: 8543 result = igb_xdp_xmit_back(adapter, xdp); 8544 if (result == IGB_XDP_CONSUMED) 8545 goto out_failure; 8546 break; 8547 case XDP_REDIRECT: 8548 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog); 8549 if (err) 8550 goto out_failure; 8551 result = IGB_XDP_REDIR; 8552 break; 8553 default: 8554 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act); 8555 fallthrough; 8556 case XDP_ABORTED: 8557 out_failure: 8558 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 8559 fallthrough; 8560 case XDP_DROP: 8561 result = IGB_XDP_CONSUMED; 8562 break; 8563 } 8564 xdp_out: 8565 return ERR_PTR(-result); 8566 } 8567 8568 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring, 8569 unsigned int size) 8570 { 8571 unsigned int truesize; 8572 8573 #if (PAGE_SIZE < 8192) 8574 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 8575 #else 8576 truesize = ring_uses_build_skb(rx_ring) ? 8577 SKB_DATA_ALIGN(IGB_SKB_PAD + size) + 8578 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 8579 SKB_DATA_ALIGN(size); 8580 #endif 8581 return truesize; 8582 } 8583 8584 static void igb_rx_buffer_flip(struct igb_ring *rx_ring, 8585 struct igb_rx_buffer *rx_buffer, 8586 unsigned int size) 8587 { 8588 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size); 8589 #if (PAGE_SIZE < 8192) 8590 rx_buffer->page_offset ^= truesize; 8591 #else 8592 rx_buffer->page_offset += truesize; 8593 #endif 8594 } 8595 8596 static inline void igb_rx_checksum(struct igb_ring *ring, 8597 union e1000_adv_rx_desc *rx_desc, 8598 struct sk_buff *skb) 8599 { 8600 skb_checksum_none_assert(skb); 8601 8602 /* Ignore Checksum bit is set */ 8603 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 8604 return; 8605 8606 /* Rx checksum disabled via ethtool */ 8607 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 8608 return; 8609 8610 /* TCP/UDP checksum error bit is set */ 8611 if (igb_test_staterr(rx_desc, 8612 E1000_RXDEXT_STATERR_TCPE | 8613 E1000_RXDEXT_STATERR_IPE)) { 8614 /* work around errata with sctp packets where the TCPE aka 8615 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 8616 * packets, (aka let the stack check the crc32c) 8617 */ 8618 if (!((skb->len == 60) && 8619 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 8620 u64_stats_update_begin(&ring->rx_syncp); 8621 ring->rx_stats.csum_err++; 8622 u64_stats_update_end(&ring->rx_syncp); 8623 } 8624 /* let the stack verify checksum errors */ 8625 return; 8626 } 8627 /* It must be a TCP or UDP packet with a valid checksum */ 8628 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 8629 E1000_RXD_STAT_UDPCS)) 8630 skb->ip_summed = CHECKSUM_UNNECESSARY; 8631 8632 dev_dbg(ring->dev, "cksum success: bits %08X\n", 8633 le32_to_cpu(rx_desc->wb.upper.status_error)); 8634 } 8635 8636 static inline void igb_rx_hash(struct igb_ring *ring, 8637 union e1000_adv_rx_desc *rx_desc, 8638 struct sk_buff *skb) 8639 { 8640 if (ring->netdev->features & NETIF_F_RXHASH) 8641 skb_set_hash(skb, 8642 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 8643 PKT_HASH_TYPE_L3); 8644 } 8645 8646 /** 8647 * igb_is_non_eop - process handling of non-EOP buffers 8648 * @rx_ring: Rx ring being processed 8649 * @rx_desc: Rx descriptor for current buffer 8650 * 8651 * This function updates next to clean. If the buffer is an EOP buffer 8652 * this function exits returning false, otherwise it will place the 8653 * sk_buff in the next buffer to be chained and return true indicating 8654 * that this is in fact a non-EOP buffer. 8655 **/ 8656 static bool igb_is_non_eop(struct igb_ring *rx_ring, 8657 union e1000_adv_rx_desc *rx_desc) 8658 { 8659 u32 ntc = rx_ring->next_to_clean + 1; 8660 8661 /* fetch, update, and store next to clean */ 8662 ntc = (ntc < rx_ring->count) ? ntc : 0; 8663 rx_ring->next_to_clean = ntc; 8664 8665 prefetch(IGB_RX_DESC(rx_ring, ntc)); 8666 8667 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 8668 return false; 8669 8670 return true; 8671 } 8672 8673 /** 8674 * igb_cleanup_headers - Correct corrupted or empty headers 8675 * @rx_ring: rx descriptor ring packet is being transacted on 8676 * @rx_desc: pointer to the EOP Rx descriptor 8677 * @skb: pointer to current skb being fixed 8678 * 8679 * Address the case where we are pulling data in on pages only 8680 * and as such no data is present in the skb header. 8681 * 8682 * In addition if skb is not at least 60 bytes we need to pad it so that 8683 * it is large enough to qualify as a valid Ethernet frame. 8684 * 8685 * Returns true if an error was encountered and skb was freed. 8686 **/ 8687 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 8688 union e1000_adv_rx_desc *rx_desc, 8689 struct sk_buff *skb) 8690 { 8691 /* XDP packets use error pointer so abort at this point */ 8692 if (IS_ERR(skb)) 8693 return true; 8694 8695 if (unlikely((igb_test_staterr(rx_desc, 8696 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 8697 struct net_device *netdev = rx_ring->netdev; 8698 if (!(netdev->features & NETIF_F_RXALL)) { 8699 dev_kfree_skb_any(skb); 8700 return true; 8701 } 8702 } 8703 8704 /* if eth_skb_pad returns an error the skb was freed */ 8705 if (eth_skb_pad(skb)) 8706 return true; 8707 8708 return false; 8709 } 8710 8711 /** 8712 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 8713 * @rx_ring: rx descriptor ring packet is being transacted on 8714 * @rx_desc: pointer to the EOP Rx descriptor 8715 * @skb: pointer to current skb being populated 8716 * 8717 * This function checks the ring, descriptor, and packet information in 8718 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 8719 * other fields within the skb. 8720 **/ 8721 static void igb_process_skb_fields(struct igb_ring *rx_ring, 8722 union e1000_adv_rx_desc *rx_desc, 8723 struct sk_buff *skb) 8724 { 8725 struct net_device *dev = rx_ring->netdev; 8726 8727 igb_rx_hash(rx_ring, rx_desc, skb); 8728 8729 igb_rx_checksum(rx_ring, rx_desc, skb); 8730 8731 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 8732 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 8733 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 8734 8735 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 8736 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 8737 u16 vid; 8738 8739 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 8740 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 8741 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 8742 else 8743 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 8744 8745 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 8746 } 8747 8748 skb_record_rx_queue(skb, rx_ring->queue_index); 8749 8750 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 8751 } 8752 8753 static unsigned int igb_rx_offset(struct igb_ring *rx_ring) 8754 { 8755 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0; 8756 } 8757 8758 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring, 8759 const unsigned int size, int *rx_buf_pgcnt) 8760 { 8761 struct igb_rx_buffer *rx_buffer; 8762 8763 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 8764 *rx_buf_pgcnt = 8765 #if (PAGE_SIZE < 8192) 8766 page_count(rx_buffer->page); 8767 #else 8768 0; 8769 #endif 8770 prefetchw(rx_buffer->page); 8771 8772 /* we are reusing so sync this buffer for CPU use */ 8773 dma_sync_single_range_for_cpu(rx_ring->dev, 8774 rx_buffer->dma, 8775 rx_buffer->page_offset, 8776 size, 8777 DMA_FROM_DEVICE); 8778 8779 rx_buffer->pagecnt_bias--; 8780 8781 return rx_buffer; 8782 } 8783 8784 static void igb_put_rx_buffer(struct igb_ring *rx_ring, 8785 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt) 8786 { 8787 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) { 8788 /* hand second half of page back to the ring */ 8789 igb_reuse_rx_page(rx_ring, rx_buffer); 8790 } else { 8791 /* We are not reusing the buffer so unmap it and free 8792 * any references we are holding to it 8793 */ 8794 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 8795 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 8796 IGB_RX_DMA_ATTR); 8797 __page_frag_cache_drain(rx_buffer->page, 8798 rx_buffer->pagecnt_bias); 8799 } 8800 8801 /* clear contents of rx_buffer */ 8802 rx_buffer->page = NULL; 8803 } 8804 8805 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 8806 { 8807 struct igb_adapter *adapter = q_vector->adapter; 8808 struct igb_ring *rx_ring = q_vector->rx.ring; 8809 struct sk_buff *skb = rx_ring->skb; 8810 unsigned int total_bytes = 0, total_packets = 0; 8811 u16 cleaned_count = igb_desc_unused(rx_ring); 8812 unsigned int xdp_xmit = 0; 8813 struct xdp_buff xdp; 8814 u32 frame_sz = 0; 8815 int rx_buf_pgcnt; 8816 8817 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 8818 #if (PAGE_SIZE < 8192) 8819 frame_sz = igb_rx_frame_truesize(rx_ring, 0); 8820 #endif 8821 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 8822 8823 while (likely(total_packets < budget)) { 8824 union e1000_adv_rx_desc *rx_desc; 8825 struct igb_rx_buffer *rx_buffer; 8826 ktime_t timestamp = 0; 8827 int pkt_offset = 0; 8828 unsigned int size; 8829 void *pktbuf; 8830 8831 /* return some buffers to hardware, one at a time is too slow */ 8832 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 8833 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8834 cleaned_count = 0; 8835 } 8836 8837 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 8838 size = le16_to_cpu(rx_desc->wb.upper.length); 8839 if (!size) 8840 break; 8841 8842 /* This memory barrier is needed to keep us from reading 8843 * any other fields out of the rx_desc until we know the 8844 * descriptor has been written back 8845 */ 8846 dma_rmb(); 8847 8848 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt); 8849 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 8850 8851 /* pull rx packet timestamp if available and valid */ 8852 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 8853 int ts_hdr_len; 8854 8855 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector, 8856 pktbuf, ×tamp); 8857 8858 pkt_offset += ts_hdr_len; 8859 size -= ts_hdr_len; 8860 } 8861 8862 /* retrieve a buffer from the ring */ 8863 if (!skb) { 8864 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring); 8865 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring); 8866 8867 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 8868 xdp_buff_clear_frags_flag(&xdp); 8869 #if (PAGE_SIZE > 4096) 8870 /* At larger PAGE_SIZE, frame_sz depend on len size */ 8871 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size); 8872 #endif 8873 skb = igb_run_xdp(adapter, rx_ring, &xdp); 8874 } 8875 8876 if (IS_ERR(skb)) { 8877 unsigned int xdp_res = -PTR_ERR(skb); 8878 8879 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) { 8880 xdp_xmit |= xdp_res; 8881 igb_rx_buffer_flip(rx_ring, rx_buffer, size); 8882 } else { 8883 rx_buffer->pagecnt_bias++; 8884 } 8885 total_packets++; 8886 total_bytes += size; 8887 } else if (skb) 8888 igb_add_rx_frag(rx_ring, rx_buffer, skb, size); 8889 else if (ring_uses_build_skb(rx_ring)) 8890 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, 8891 timestamp); 8892 else 8893 skb = igb_construct_skb(rx_ring, rx_buffer, 8894 &xdp, timestamp); 8895 8896 /* exit if we failed to retrieve a buffer */ 8897 if (!skb) { 8898 rx_ring->rx_stats.alloc_failed++; 8899 rx_buffer->pagecnt_bias++; 8900 break; 8901 } 8902 8903 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt); 8904 cleaned_count++; 8905 8906 /* fetch next buffer in frame if non-eop */ 8907 if (igb_is_non_eop(rx_ring, rx_desc)) 8908 continue; 8909 8910 /* verify the packet layout is correct */ 8911 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 8912 skb = NULL; 8913 continue; 8914 } 8915 8916 /* probably a little skewed due to removing CRC */ 8917 total_bytes += skb->len; 8918 8919 /* populate checksum, timestamp, VLAN, and protocol */ 8920 igb_process_skb_fields(rx_ring, rx_desc, skb); 8921 8922 napi_gro_receive(&q_vector->napi, skb); 8923 8924 /* reset skb pointer */ 8925 skb = NULL; 8926 8927 /* update budget accounting */ 8928 total_packets++; 8929 } 8930 8931 /* place incomplete frames back on ring for completion */ 8932 rx_ring->skb = skb; 8933 8934 if (xdp_xmit & IGB_XDP_REDIR) 8935 xdp_do_flush(); 8936 8937 if (xdp_xmit & IGB_XDP_TX) { 8938 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter); 8939 8940 igb_xdp_ring_update_tail(tx_ring); 8941 } 8942 8943 u64_stats_update_begin(&rx_ring->rx_syncp); 8944 rx_ring->rx_stats.packets += total_packets; 8945 rx_ring->rx_stats.bytes += total_bytes; 8946 u64_stats_update_end(&rx_ring->rx_syncp); 8947 q_vector->rx.total_packets += total_packets; 8948 q_vector->rx.total_bytes += total_bytes; 8949 8950 if (cleaned_count) 8951 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8952 8953 return total_packets; 8954 } 8955 8956 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 8957 struct igb_rx_buffer *bi) 8958 { 8959 struct page *page = bi->page; 8960 dma_addr_t dma; 8961 8962 /* since we are recycling buffers we should seldom need to alloc */ 8963 if (likely(page)) 8964 return true; 8965 8966 /* alloc new page for storage */ 8967 page = dev_alloc_pages(igb_rx_pg_order(rx_ring)); 8968 if (unlikely(!page)) { 8969 rx_ring->rx_stats.alloc_failed++; 8970 return false; 8971 } 8972 8973 /* map page for use */ 8974 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 8975 igb_rx_pg_size(rx_ring), 8976 DMA_FROM_DEVICE, 8977 IGB_RX_DMA_ATTR); 8978 8979 /* if mapping failed free memory back to system since 8980 * there isn't much point in holding memory we can't use 8981 */ 8982 if (dma_mapping_error(rx_ring->dev, dma)) { 8983 __free_pages(page, igb_rx_pg_order(rx_ring)); 8984 8985 rx_ring->rx_stats.alloc_failed++; 8986 return false; 8987 } 8988 8989 bi->dma = dma; 8990 bi->page = page; 8991 bi->page_offset = igb_rx_offset(rx_ring); 8992 page_ref_add(page, USHRT_MAX - 1); 8993 bi->pagecnt_bias = USHRT_MAX; 8994 8995 return true; 8996 } 8997 8998 /** 8999 * igb_alloc_rx_buffers - Replace used receive buffers 9000 * @rx_ring: rx descriptor ring to allocate new receive buffers 9001 * @cleaned_count: count of buffers to allocate 9002 **/ 9003 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 9004 { 9005 union e1000_adv_rx_desc *rx_desc; 9006 struct igb_rx_buffer *bi; 9007 u16 i = rx_ring->next_to_use; 9008 u16 bufsz; 9009 9010 /* nothing to do */ 9011 if (!cleaned_count) 9012 return; 9013 9014 rx_desc = IGB_RX_DESC(rx_ring, i); 9015 bi = &rx_ring->rx_buffer_info[i]; 9016 i -= rx_ring->count; 9017 9018 bufsz = igb_rx_bufsz(rx_ring); 9019 9020 do { 9021 if (!igb_alloc_mapped_page(rx_ring, bi)) 9022 break; 9023 9024 /* sync the buffer for use by the device */ 9025 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 9026 bi->page_offset, bufsz, 9027 DMA_FROM_DEVICE); 9028 9029 /* Refresh the desc even if buffer_addrs didn't change 9030 * because each write-back erases this info. 9031 */ 9032 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 9033 9034 rx_desc++; 9035 bi++; 9036 i++; 9037 if (unlikely(!i)) { 9038 rx_desc = IGB_RX_DESC(rx_ring, 0); 9039 bi = rx_ring->rx_buffer_info; 9040 i -= rx_ring->count; 9041 } 9042 9043 /* clear the length for the next_to_use descriptor */ 9044 rx_desc->wb.upper.length = 0; 9045 9046 cleaned_count--; 9047 } while (cleaned_count); 9048 9049 i += rx_ring->count; 9050 9051 if (rx_ring->next_to_use != i) { 9052 /* record the next descriptor to use */ 9053 rx_ring->next_to_use = i; 9054 9055 /* update next to alloc since we have filled the ring */ 9056 rx_ring->next_to_alloc = i; 9057 9058 /* Force memory writes to complete before letting h/w 9059 * know there are new descriptors to fetch. (Only 9060 * applicable for weak-ordered memory model archs, 9061 * such as IA-64). 9062 */ 9063 dma_wmb(); 9064 writel(i, rx_ring->tail); 9065 } 9066 } 9067 9068 /** 9069 * igb_mii_ioctl - 9070 * @netdev: pointer to netdev struct 9071 * @ifr: interface structure 9072 * @cmd: ioctl command to execute 9073 **/ 9074 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 9075 { 9076 struct igb_adapter *adapter = netdev_priv(netdev); 9077 struct mii_ioctl_data *data = if_mii(ifr); 9078 9079 if (adapter->hw.phy.media_type != e1000_media_type_copper) 9080 return -EOPNOTSUPP; 9081 9082 switch (cmd) { 9083 case SIOCGMIIPHY: 9084 data->phy_id = adapter->hw.phy.addr; 9085 break; 9086 case SIOCGMIIREG: 9087 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 9088 &data->val_out)) 9089 return -EIO; 9090 break; 9091 case SIOCSMIIREG: 9092 default: 9093 return -EOPNOTSUPP; 9094 } 9095 return 0; 9096 } 9097 9098 /** 9099 * igb_ioctl - 9100 * @netdev: pointer to netdev struct 9101 * @ifr: interface structure 9102 * @cmd: ioctl command to execute 9103 **/ 9104 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 9105 { 9106 switch (cmd) { 9107 case SIOCGMIIPHY: 9108 case SIOCGMIIREG: 9109 case SIOCSMIIREG: 9110 return igb_mii_ioctl(netdev, ifr, cmd); 9111 case SIOCGHWTSTAMP: 9112 return igb_ptp_get_ts_config(netdev, ifr); 9113 case SIOCSHWTSTAMP: 9114 return igb_ptp_set_ts_config(netdev, ifr); 9115 default: 9116 return -EOPNOTSUPP; 9117 } 9118 } 9119 9120 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 9121 { 9122 struct igb_adapter *adapter = hw->back; 9123 9124 pci_read_config_word(adapter->pdev, reg, value); 9125 } 9126 9127 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 9128 { 9129 struct igb_adapter *adapter = hw->back; 9130 9131 pci_write_config_word(adapter->pdev, reg, *value); 9132 } 9133 9134 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 9135 { 9136 struct igb_adapter *adapter = hw->back; 9137 9138 if (pcie_capability_read_word(adapter->pdev, reg, value)) 9139 return -E1000_ERR_CONFIG; 9140 9141 return 0; 9142 } 9143 9144 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 9145 { 9146 struct igb_adapter *adapter = hw->back; 9147 9148 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 9149 return -E1000_ERR_CONFIG; 9150 9151 return 0; 9152 } 9153 9154 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 9155 { 9156 struct igb_adapter *adapter = netdev_priv(netdev); 9157 struct e1000_hw *hw = &adapter->hw; 9158 u32 ctrl, rctl; 9159 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 9160 9161 if (enable) { 9162 /* enable VLAN tag insert/strip */ 9163 ctrl = rd32(E1000_CTRL); 9164 ctrl |= E1000_CTRL_VME; 9165 wr32(E1000_CTRL, ctrl); 9166 9167 /* Disable CFI check */ 9168 rctl = rd32(E1000_RCTL); 9169 rctl &= ~E1000_RCTL_CFIEN; 9170 wr32(E1000_RCTL, rctl); 9171 } else { 9172 /* disable VLAN tag insert/strip */ 9173 ctrl = rd32(E1000_CTRL); 9174 ctrl &= ~E1000_CTRL_VME; 9175 wr32(E1000_CTRL, ctrl); 9176 } 9177 9178 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable); 9179 } 9180 9181 static int igb_vlan_rx_add_vid(struct net_device *netdev, 9182 __be16 proto, u16 vid) 9183 { 9184 struct igb_adapter *adapter = netdev_priv(netdev); 9185 struct e1000_hw *hw = &adapter->hw; 9186 int pf_id = adapter->vfs_allocated_count; 9187 9188 /* add the filter since PF can receive vlans w/o entry in vlvf */ 9189 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9190 igb_vfta_set(hw, vid, pf_id, true, !!vid); 9191 9192 set_bit(vid, adapter->active_vlans); 9193 9194 return 0; 9195 } 9196 9197 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 9198 __be16 proto, u16 vid) 9199 { 9200 struct igb_adapter *adapter = netdev_priv(netdev); 9201 int pf_id = adapter->vfs_allocated_count; 9202 struct e1000_hw *hw = &adapter->hw; 9203 9204 /* remove VID from filter table */ 9205 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9206 igb_vfta_set(hw, vid, pf_id, false, true); 9207 9208 clear_bit(vid, adapter->active_vlans); 9209 9210 return 0; 9211 } 9212 9213 static void igb_restore_vlan(struct igb_adapter *adapter) 9214 { 9215 u16 vid = 1; 9216 9217 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 9218 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 9219 9220 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID) 9221 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 9222 } 9223 9224 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 9225 { 9226 struct pci_dev *pdev = adapter->pdev; 9227 struct e1000_mac_info *mac = &adapter->hw.mac; 9228 9229 mac->autoneg = 0; 9230 9231 /* Make sure dplx is at most 1 bit and lsb of speed is not set 9232 * for the switch() below to work 9233 */ 9234 if ((spd & 1) || (dplx & ~1)) 9235 goto err_inval; 9236 9237 /* Fiber NIC's only allow 1000 gbps Full duplex 9238 * and 100Mbps Full duplex for 100baseFx sfp 9239 */ 9240 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 9241 switch (spd + dplx) { 9242 case SPEED_10 + DUPLEX_HALF: 9243 case SPEED_10 + DUPLEX_FULL: 9244 case SPEED_100 + DUPLEX_HALF: 9245 goto err_inval; 9246 default: 9247 break; 9248 } 9249 } 9250 9251 switch (spd + dplx) { 9252 case SPEED_10 + DUPLEX_HALF: 9253 mac->forced_speed_duplex = ADVERTISE_10_HALF; 9254 break; 9255 case SPEED_10 + DUPLEX_FULL: 9256 mac->forced_speed_duplex = ADVERTISE_10_FULL; 9257 break; 9258 case SPEED_100 + DUPLEX_HALF: 9259 mac->forced_speed_duplex = ADVERTISE_100_HALF; 9260 break; 9261 case SPEED_100 + DUPLEX_FULL: 9262 mac->forced_speed_duplex = ADVERTISE_100_FULL; 9263 break; 9264 case SPEED_1000 + DUPLEX_FULL: 9265 mac->autoneg = 1; 9266 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 9267 break; 9268 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 9269 default: 9270 goto err_inval; 9271 } 9272 9273 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 9274 adapter->hw.phy.mdix = AUTO_ALL_MODES; 9275 9276 return 0; 9277 9278 err_inval: 9279 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 9280 return -EINVAL; 9281 } 9282 9283 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 9284 bool runtime) 9285 { 9286 struct net_device *netdev = pci_get_drvdata(pdev); 9287 struct igb_adapter *adapter = netdev_priv(netdev); 9288 struct e1000_hw *hw = &adapter->hw; 9289 u32 ctrl, rctl, status; 9290 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 9291 bool wake; 9292 9293 rtnl_lock(); 9294 netif_device_detach(netdev); 9295 9296 if (netif_running(netdev)) 9297 __igb_close(netdev, true); 9298 9299 igb_ptp_suspend(adapter); 9300 9301 igb_clear_interrupt_scheme(adapter); 9302 rtnl_unlock(); 9303 9304 status = rd32(E1000_STATUS); 9305 if (status & E1000_STATUS_LU) 9306 wufc &= ~E1000_WUFC_LNKC; 9307 9308 if (wufc) { 9309 igb_setup_rctl(adapter); 9310 igb_set_rx_mode(netdev); 9311 9312 /* turn on all-multi mode if wake on multicast is enabled */ 9313 if (wufc & E1000_WUFC_MC) { 9314 rctl = rd32(E1000_RCTL); 9315 rctl |= E1000_RCTL_MPE; 9316 wr32(E1000_RCTL, rctl); 9317 } 9318 9319 ctrl = rd32(E1000_CTRL); 9320 ctrl |= E1000_CTRL_ADVD3WUC; 9321 wr32(E1000_CTRL, ctrl); 9322 9323 /* Allow time for pending master requests to run */ 9324 igb_disable_pcie_master(hw); 9325 9326 wr32(E1000_WUC, E1000_WUC_PME_EN); 9327 wr32(E1000_WUFC, wufc); 9328 } else { 9329 wr32(E1000_WUC, 0); 9330 wr32(E1000_WUFC, 0); 9331 } 9332 9333 wake = wufc || adapter->en_mng_pt; 9334 if (!wake) 9335 igb_power_down_link(adapter); 9336 else 9337 igb_power_up_link(adapter); 9338 9339 if (enable_wake) 9340 *enable_wake = wake; 9341 9342 /* Release control of h/w to f/w. If f/w is AMT enabled, this 9343 * would have already happened in close and is redundant. 9344 */ 9345 igb_release_hw_control(adapter); 9346 9347 pci_disable_device(pdev); 9348 9349 return 0; 9350 } 9351 9352 static void igb_deliver_wake_packet(struct net_device *netdev) 9353 { 9354 struct igb_adapter *adapter = netdev_priv(netdev); 9355 struct e1000_hw *hw = &adapter->hw; 9356 struct sk_buff *skb; 9357 u32 wupl; 9358 9359 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK; 9360 9361 /* WUPM stores only the first 128 bytes of the wake packet. 9362 * Read the packet only if we have the whole thing. 9363 */ 9364 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES)) 9365 return; 9366 9367 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES); 9368 if (!skb) 9369 return; 9370 9371 skb_put(skb, wupl); 9372 9373 /* Ensure reads are 32-bit aligned */ 9374 wupl = roundup(wupl, 4); 9375 9376 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl); 9377 9378 skb->protocol = eth_type_trans(skb, netdev); 9379 netif_rx(skb); 9380 } 9381 9382 static int __maybe_unused igb_suspend(struct device *dev) 9383 { 9384 return __igb_shutdown(to_pci_dev(dev), NULL, 0); 9385 } 9386 9387 static int __maybe_unused __igb_resume(struct device *dev, bool rpm) 9388 { 9389 struct pci_dev *pdev = to_pci_dev(dev); 9390 struct net_device *netdev = pci_get_drvdata(pdev); 9391 struct igb_adapter *adapter = netdev_priv(netdev); 9392 struct e1000_hw *hw = &adapter->hw; 9393 u32 err, val; 9394 9395 pci_set_power_state(pdev, PCI_D0); 9396 pci_restore_state(pdev); 9397 pci_save_state(pdev); 9398 9399 if (!pci_device_is_present(pdev)) 9400 return -ENODEV; 9401 err = pci_enable_device_mem(pdev); 9402 if (err) { 9403 dev_err(&pdev->dev, 9404 "igb: Cannot enable PCI device from suspend\n"); 9405 return err; 9406 } 9407 pci_set_master(pdev); 9408 9409 pci_enable_wake(pdev, PCI_D3hot, 0); 9410 pci_enable_wake(pdev, PCI_D3cold, 0); 9411 9412 if (igb_init_interrupt_scheme(adapter, true)) { 9413 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9414 return -ENOMEM; 9415 } 9416 9417 igb_reset(adapter); 9418 9419 /* let the f/w know that the h/w is now under the control of the 9420 * driver. 9421 */ 9422 igb_get_hw_control(adapter); 9423 9424 val = rd32(E1000_WUS); 9425 if (val & WAKE_PKT_WUS) 9426 igb_deliver_wake_packet(netdev); 9427 9428 wr32(E1000_WUS, ~0); 9429 9430 if (!rpm) 9431 rtnl_lock(); 9432 if (!err && netif_running(netdev)) 9433 err = __igb_open(netdev, true); 9434 9435 if (!err) 9436 netif_device_attach(netdev); 9437 if (!rpm) 9438 rtnl_unlock(); 9439 9440 return err; 9441 } 9442 9443 static int __maybe_unused igb_resume(struct device *dev) 9444 { 9445 return __igb_resume(dev, false); 9446 } 9447 9448 static int __maybe_unused igb_runtime_idle(struct device *dev) 9449 { 9450 struct net_device *netdev = dev_get_drvdata(dev); 9451 struct igb_adapter *adapter = netdev_priv(netdev); 9452 9453 if (!igb_has_link(adapter)) 9454 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 9455 9456 return -EBUSY; 9457 } 9458 9459 static int __maybe_unused igb_runtime_suspend(struct device *dev) 9460 { 9461 return __igb_shutdown(to_pci_dev(dev), NULL, 1); 9462 } 9463 9464 static int __maybe_unused igb_runtime_resume(struct device *dev) 9465 { 9466 return __igb_resume(dev, true); 9467 } 9468 9469 static void igb_shutdown(struct pci_dev *pdev) 9470 { 9471 bool wake; 9472 9473 __igb_shutdown(pdev, &wake, 0); 9474 9475 if (system_state == SYSTEM_POWER_OFF) { 9476 pci_wake_from_d3(pdev, wake); 9477 pci_set_power_state(pdev, PCI_D3hot); 9478 } 9479 } 9480 9481 #ifdef CONFIG_PCI_IOV 9482 static int igb_sriov_reinit(struct pci_dev *dev) 9483 { 9484 struct net_device *netdev = pci_get_drvdata(dev); 9485 struct igb_adapter *adapter = netdev_priv(netdev); 9486 struct pci_dev *pdev = adapter->pdev; 9487 9488 rtnl_lock(); 9489 9490 if (netif_running(netdev)) 9491 igb_close(netdev); 9492 else 9493 igb_reset(adapter); 9494 9495 igb_clear_interrupt_scheme(adapter); 9496 9497 igb_init_queue_configuration(adapter); 9498 9499 if (igb_init_interrupt_scheme(adapter, true)) { 9500 rtnl_unlock(); 9501 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9502 return -ENOMEM; 9503 } 9504 9505 if (netif_running(netdev)) 9506 igb_open(netdev); 9507 9508 rtnl_unlock(); 9509 9510 return 0; 9511 } 9512 9513 static int igb_pci_disable_sriov(struct pci_dev *dev) 9514 { 9515 int err = igb_disable_sriov(dev); 9516 9517 if (!err) 9518 err = igb_sriov_reinit(dev); 9519 9520 return err; 9521 } 9522 9523 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 9524 { 9525 int err = igb_enable_sriov(dev, num_vfs); 9526 9527 if (err) 9528 goto out; 9529 9530 err = igb_sriov_reinit(dev); 9531 if (!err) 9532 return num_vfs; 9533 9534 out: 9535 return err; 9536 } 9537 9538 #endif 9539 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 9540 { 9541 #ifdef CONFIG_PCI_IOV 9542 if (num_vfs == 0) 9543 return igb_pci_disable_sriov(dev); 9544 else 9545 return igb_pci_enable_sriov(dev, num_vfs); 9546 #endif 9547 return 0; 9548 } 9549 9550 /** 9551 * igb_io_error_detected - called when PCI error is detected 9552 * @pdev: Pointer to PCI device 9553 * @state: The current pci connection state 9554 * 9555 * This function is called after a PCI bus error affecting 9556 * this device has been detected. 9557 **/ 9558 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 9559 pci_channel_state_t state) 9560 { 9561 struct net_device *netdev = pci_get_drvdata(pdev); 9562 struct igb_adapter *adapter = netdev_priv(netdev); 9563 9564 netif_device_detach(netdev); 9565 9566 if (state == pci_channel_io_perm_failure) 9567 return PCI_ERS_RESULT_DISCONNECT; 9568 9569 if (netif_running(netdev)) 9570 igb_down(adapter); 9571 pci_disable_device(pdev); 9572 9573 /* Request a slot reset. */ 9574 return PCI_ERS_RESULT_NEED_RESET; 9575 } 9576 9577 /** 9578 * igb_io_slot_reset - called after the pci bus has been reset. 9579 * @pdev: Pointer to PCI device 9580 * 9581 * Restart the card from scratch, as if from a cold-boot. Implementation 9582 * resembles the first-half of the __igb_resume routine. 9583 **/ 9584 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 9585 { 9586 struct net_device *netdev = pci_get_drvdata(pdev); 9587 struct igb_adapter *adapter = netdev_priv(netdev); 9588 struct e1000_hw *hw = &adapter->hw; 9589 pci_ers_result_t result; 9590 9591 if (pci_enable_device_mem(pdev)) { 9592 dev_err(&pdev->dev, 9593 "Cannot re-enable PCI device after reset.\n"); 9594 result = PCI_ERS_RESULT_DISCONNECT; 9595 } else { 9596 pci_set_master(pdev); 9597 pci_restore_state(pdev); 9598 pci_save_state(pdev); 9599 9600 pci_enable_wake(pdev, PCI_D3hot, 0); 9601 pci_enable_wake(pdev, PCI_D3cold, 0); 9602 9603 /* In case of PCI error, adapter lose its HW address 9604 * so we should re-assign it here. 9605 */ 9606 hw->hw_addr = adapter->io_addr; 9607 9608 igb_reset(adapter); 9609 wr32(E1000_WUS, ~0); 9610 result = PCI_ERS_RESULT_RECOVERED; 9611 } 9612 9613 return result; 9614 } 9615 9616 /** 9617 * igb_io_resume - called when traffic can start flowing again. 9618 * @pdev: Pointer to PCI device 9619 * 9620 * This callback is called when the error recovery driver tells us that 9621 * its OK to resume normal operation. Implementation resembles the 9622 * second-half of the __igb_resume routine. 9623 */ 9624 static void igb_io_resume(struct pci_dev *pdev) 9625 { 9626 struct net_device *netdev = pci_get_drvdata(pdev); 9627 struct igb_adapter *adapter = netdev_priv(netdev); 9628 9629 if (netif_running(netdev)) { 9630 if (igb_up(adapter)) { 9631 dev_err(&pdev->dev, "igb_up failed after reset\n"); 9632 return; 9633 } 9634 } 9635 9636 netif_device_attach(netdev); 9637 9638 /* let the f/w know that the h/w is now under the control of the 9639 * driver. 9640 */ 9641 igb_get_hw_control(adapter); 9642 } 9643 9644 /** 9645 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 9646 * @adapter: Pointer to adapter structure 9647 * @index: Index of the RAR entry which need to be synced with MAC table 9648 **/ 9649 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index) 9650 { 9651 struct e1000_hw *hw = &adapter->hw; 9652 u32 rar_low, rar_high; 9653 u8 *addr = adapter->mac_table[index].addr; 9654 9655 /* HW expects these to be in network order when they are plugged 9656 * into the registers which are little endian. In order to guarantee 9657 * that ordering we need to do an leXX_to_cpup here in order to be 9658 * ready for the byteswap that occurs with writel 9659 */ 9660 rar_low = le32_to_cpup((__le32 *)(addr)); 9661 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 9662 9663 /* Indicate to hardware the Address is Valid. */ 9664 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) { 9665 if (is_valid_ether_addr(addr)) 9666 rar_high |= E1000_RAH_AV; 9667 9668 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR) 9669 rar_high |= E1000_RAH_ASEL_SRC_ADDR; 9670 9671 switch (hw->mac.type) { 9672 case e1000_82575: 9673 case e1000_i210: 9674 if (adapter->mac_table[index].state & 9675 IGB_MAC_STATE_QUEUE_STEERING) 9676 rar_high |= E1000_RAH_QSEL_ENABLE; 9677 9678 rar_high |= E1000_RAH_POOL_1 * 9679 adapter->mac_table[index].queue; 9680 break; 9681 default: 9682 rar_high |= E1000_RAH_POOL_1 << 9683 adapter->mac_table[index].queue; 9684 break; 9685 } 9686 } 9687 9688 wr32(E1000_RAL(index), rar_low); 9689 wrfl(); 9690 wr32(E1000_RAH(index), rar_high); 9691 wrfl(); 9692 } 9693 9694 static int igb_set_vf_mac(struct igb_adapter *adapter, 9695 int vf, unsigned char *mac_addr) 9696 { 9697 struct e1000_hw *hw = &adapter->hw; 9698 /* VF MAC addresses start at end of receive addresses and moves 9699 * towards the first, as a result a collision should not be possible 9700 */ 9701 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 9702 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses; 9703 9704 ether_addr_copy(vf_mac_addr, mac_addr); 9705 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr); 9706 adapter->mac_table[rar_entry].queue = vf; 9707 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE; 9708 igb_rar_set_index(adapter, rar_entry); 9709 9710 return 0; 9711 } 9712 9713 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 9714 { 9715 struct igb_adapter *adapter = netdev_priv(netdev); 9716 9717 if (vf >= adapter->vfs_allocated_count) 9718 return -EINVAL; 9719 9720 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC 9721 * flag and allows to overwrite the MAC via VF netdev. This 9722 * is necessary to allow libvirt a way to restore the original 9723 * MAC after unbinding vfio-pci and reloading igbvf after shutting 9724 * down a VM. 9725 */ 9726 if (is_zero_ether_addr(mac)) { 9727 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC; 9728 dev_info(&adapter->pdev->dev, 9729 "remove administratively set MAC on VF %d\n", 9730 vf); 9731 } else if (is_valid_ether_addr(mac)) { 9732 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 9733 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", 9734 mac, vf); 9735 dev_info(&adapter->pdev->dev, 9736 "Reload the VF driver to make this change effective."); 9737 /* Generate additional warning if PF is down */ 9738 if (test_bit(__IGB_DOWN, &adapter->state)) { 9739 dev_warn(&adapter->pdev->dev, 9740 "The VF MAC address has been set, but the PF device is not up.\n"); 9741 dev_warn(&adapter->pdev->dev, 9742 "Bring the PF device up before attempting to use the VF device.\n"); 9743 } 9744 } else { 9745 return -EINVAL; 9746 } 9747 return igb_set_vf_mac(adapter, vf, mac); 9748 } 9749 9750 static int igb_link_mbps(int internal_link_speed) 9751 { 9752 switch (internal_link_speed) { 9753 case SPEED_100: 9754 return 100; 9755 case SPEED_1000: 9756 return 1000; 9757 default: 9758 return 0; 9759 } 9760 } 9761 9762 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 9763 int link_speed) 9764 { 9765 int rf_dec, rf_int; 9766 u32 bcnrc_val; 9767 9768 if (tx_rate != 0) { 9769 /* Calculate the rate factor values to set */ 9770 rf_int = link_speed / tx_rate; 9771 rf_dec = (link_speed - (rf_int * tx_rate)); 9772 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) / 9773 tx_rate; 9774 9775 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 9776 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 9777 E1000_RTTBCNRC_RF_INT_MASK); 9778 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 9779 } else { 9780 bcnrc_val = 0; 9781 } 9782 9783 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 9784 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 9785 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 9786 */ 9787 wr32(E1000_RTTBCNRM, 0x14); 9788 wr32(E1000_RTTBCNRC, bcnrc_val); 9789 } 9790 9791 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 9792 { 9793 int actual_link_speed, i; 9794 bool reset_rate = false; 9795 9796 /* VF TX rate limit was not set or not supported */ 9797 if ((adapter->vf_rate_link_speed == 0) || 9798 (adapter->hw.mac.type != e1000_82576)) 9799 return; 9800 9801 actual_link_speed = igb_link_mbps(adapter->link_speed); 9802 if (actual_link_speed != adapter->vf_rate_link_speed) { 9803 reset_rate = true; 9804 adapter->vf_rate_link_speed = 0; 9805 dev_info(&adapter->pdev->dev, 9806 "Link speed has been changed. VF Transmit rate is disabled\n"); 9807 } 9808 9809 for (i = 0; i < adapter->vfs_allocated_count; i++) { 9810 if (reset_rate) 9811 adapter->vf_data[i].tx_rate = 0; 9812 9813 igb_set_vf_rate_limit(&adapter->hw, i, 9814 adapter->vf_data[i].tx_rate, 9815 actual_link_speed); 9816 } 9817 } 9818 9819 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 9820 int min_tx_rate, int max_tx_rate) 9821 { 9822 struct igb_adapter *adapter = netdev_priv(netdev); 9823 struct e1000_hw *hw = &adapter->hw; 9824 int actual_link_speed; 9825 9826 if (hw->mac.type != e1000_82576) 9827 return -EOPNOTSUPP; 9828 9829 if (min_tx_rate) 9830 return -EINVAL; 9831 9832 actual_link_speed = igb_link_mbps(adapter->link_speed); 9833 if ((vf >= adapter->vfs_allocated_count) || 9834 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 9835 (max_tx_rate < 0) || 9836 (max_tx_rate > actual_link_speed)) 9837 return -EINVAL; 9838 9839 adapter->vf_rate_link_speed = actual_link_speed; 9840 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 9841 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 9842 9843 return 0; 9844 } 9845 9846 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 9847 bool setting) 9848 { 9849 struct igb_adapter *adapter = netdev_priv(netdev); 9850 struct e1000_hw *hw = &adapter->hw; 9851 u32 reg_val, reg_offset; 9852 9853 if (!adapter->vfs_allocated_count) 9854 return -EOPNOTSUPP; 9855 9856 if (vf >= adapter->vfs_allocated_count) 9857 return -EINVAL; 9858 9859 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 9860 reg_val = rd32(reg_offset); 9861 if (setting) 9862 reg_val |= (BIT(vf) | 9863 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9864 else 9865 reg_val &= ~(BIT(vf) | 9866 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9867 wr32(reg_offset, reg_val); 9868 9869 adapter->vf_data[vf].spoofchk_enabled = setting; 9870 return 0; 9871 } 9872 9873 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting) 9874 { 9875 struct igb_adapter *adapter = netdev_priv(netdev); 9876 9877 if (vf >= adapter->vfs_allocated_count) 9878 return -EINVAL; 9879 if (adapter->vf_data[vf].trusted == setting) 9880 return 0; 9881 9882 adapter->vf_data[vf].trusted = setting; 9883 9884 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n", 9885 vf, setting ? "" : "not "); 9886 return 0; 9887 } 9888 9889 static int igb_ndo_get_vf_config(struct net_device *netdev, 9890 int vf, struct ifla_vf_info *ivi) 9891 { 9892 struct igb_adapter *adapter = netdev_priv(netdev); 9893 if (vf >= adapter->vfs_allocated_count) 9894 return -EINVAL; 9895 ivi->vf = vf; 9896 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 9897 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 9898 ivi->min_tx_rate = 0; 9899 ivi->vlan = adapter->vf_data[vf].pf_vlan; 9900 ivi->qos = adapter->vf_data[vf].pf_qos; 9901 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 9902 ivi->trusted = adapter->vf_data[vf].trusted; 9903 return 0; 9904 } 9905 9906 static void igb_vmm_control(struct igb_adapter *adapter) 9907 { 9908 struct e1000_hw *hw = &adapter->hw; 9909 u32 reg; 9910 9911 switch (hw->mac.type) { 9912 case e1000_82575: 9913 case e1000_i210: 9914 case e1000_i211: 9915 case e1000_i354: 9916 default: 9917 /* replication is not supported for 82575 */ 9918 return; 9919 case e1000_82576: 9920 /* notify HW that the MAC is adding vlan tags */ 9921 reg = rd32(E1000_DTXCTL); 9922 reg |= E1000_DTXCTL_VLAN_ADDED; 9923 wr32(E1000_DTXCTL, reg); 9924 fallthrough; 9925 case e1000_82580: 9926 /* enable replication vlan tag stripping */ 9927 reg = rd32(E1000_RPLOLR); 9928 reg |= E1000_RPLOLR_STRVLAN; 9929 wr32(E1000_RPLOLR, reg); 9930 fallthrough; 9931 case e1000_i350: 9932 /* none of the above registers are supported by i350 */ 9933 break; 9934 } 9935 9936 if (adapter->vfs_allocated_count) { 9937 igb_vmdq_set_loopback_pf(hw, true); 9938 igb_vmdq_set_replication_pf(hw, true); 9939 igb_vmdq_set_anti_spoofing_pf(hw, true, 9940 adapter->vfs_allocated_count); 9941 } else { 9942 igb_vmdq_set_loopback_pf(hw, false); 9943 igb_vmdq_set_replication_pf(hw, false); 9944 } 9945 } 9946 9947 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 9948 { 9949 struct e1000_hw *hw = &adapter->hw; 9950 u32 dmac_thr; 9951 u16 hwm; 9952 u32 reg; 9953 9954 if (hw->mac.type > e1000_82580) { 9955 if (adapter->flags & IGB_FLAG_DMAC) { 9956 /* force threshold to 0. */ 9957 wr32(E1000_DMCTXTH, 0); 9958 9959 /* DMA Coalescing high water mark needs to be greater 9960 * than the Rx threshold. Set hwm to PBA - max frame 9961 * size in 16B units, capping it at PBA - 6KB. 9962 */ 9963 hwm = 64 * (pba - 6); 9964 reg = rd32(E1000_FCRTC); 9965 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 9966 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 9967 & E1000_FCRTC_RTH_COAL_MASK); 9968 wr32(E1000_FCRTC, reg); 9969 9970 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 9971 * frame size, capping it at PBA - 10KB. 9972 */ 9973 dmac_thr = pba - 10; 9974 reg = rd32(E1000_DMACR); 9975 reg &= ~E1000_DMACR_DMACTHR_MASK; 9976 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 9977 & E1000_DMACR_DMACTHR_MASK); 9978 9979 /* transition to L0x or L1 if available..*/ 9980 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 9981 9982 /* watchdog timer= +-1000 usec in 32usec intervals */ 9983 reg |= (1000 >> 5); 9984 9985 /* Disable BMC-to-OS Watchdog Enable */ 9986 if (hw->mac.type != e1000_i354) 9987 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 9988 wr32(E1000_DMACR, reg); 9989 9990 /* no lower threshold to disable 9991 * coalescing(smart fifb)-UTRESH=0 9992 */ 9993 wr32(E1000_DMCRTRH, 0); 9994 9995 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 9996 9997 wr32(E1000_DMCTLX, reg); 9998 9999 /* free space in tx packet buffer to wake from 10000 * DMA coal 10001 */ 10002 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 10003 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 10004 } 10005 10006 if (hw->mac.type >= e1000_i210 || 10007 (adapter->flags & IGB_FLAG_DMAC)) { 10008 reg = rd32(E1000_PCIEMISC); 10009 reg |= E1000_PCIEMISC_LX_DECISION; 10010 wr32(E1000_PCIEMISC, reg); 10011 } /* endif adapter->dmac is not disabled */ 10012 } else if (hw->mac.type == e1000_82580) { 10013 u32 reg = rd32(E1000_PCIEMISC); 10014 10015 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 10016 wr32(E1000_DMACR, 0); 10017 } 10018 } 10019 10020 /** 10021 * igb_read_i2c_byte - Reads 8 bit word over I2C 10022 * @hw: pointer to hardware structure 10023 * @byte_offset: byte offset to read 10024 * @dev_addr: device address 10025 * @data: value read 10026 * 10027 * Performs byte read operation over I2C interface at 10028 * a specified device address. 10029 **/ 10030 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 10031 u8 dev_addr, u8 *data) 10032 { 10033 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 10034 struct i2c_client *this_client = adapter->i2c_client; 10035 s32 status; 10036 u16 swfw_mask = 0; 10037 10038 if (!this_client) 10039 return E1000_ERR_I2C; 10040 10041 swfw_mask = E1000_SWFW_PHY0_SM; 10042 10043 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 10044 return E1000_ERR_SWFW_SYNC; 10045 10046 status = i2c_smbus_read_byte_data(this_client, byte_offset); 10047 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 10048 10049 if (status < 0) 10050 return E1000_ERR_I2C; 10051 else { 10052 *data = status; 10053 return 0; 10054 } 10055 } 10056 10057 /** 10058 * igb_write_i2c_byte - Writes 8 bit word over I2C 10059 * @hw: pointer to hardware structure 10060 * @byte_offset: byte offset to write 10061 * @dev_addr: device address 10062 * @data: value to write 10063 * 10064 * Performs byte write operation over I2C interface at 10065 * a specified device address. 10066 **/ 10067 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 10068 u8 dev_addr, u8 data) 10069 { 10070 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 10071 struct i2c_client *this_client = adapter->i2c_client; 10072 s32 status; 10073 u16 swfw_mask = E1000_SWFW_PHY0_SM; 10074 10075 if (!this_client) 10076 return E1000_ERR_I2C; 10077 10078 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 10079 return E1000_ERR_SWFW_SYNC; 10080 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 10081 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 10082 10083 if (status) 10084 return E1000_ERR_I2C; 10085 else 10086 return 0; 10087 10088 } 10089 10090 int igb_reinit_queues(struct igb_adapter *adapter) 10091 { 10092 struct net_device *netdev = adapter->netdev; 10093 struct pci_dev *pdev = adapter->pdev; 10094 int err = 0; 10095 10096 if (netif_running(netdev)) 10097 igb_close(netdev); 10098 10099 igb_reset_interrupt_capability(adapter); 10100 10101 if (igb_init_interrupt_scheme(adapter, true)) { 10102 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 10103 return -ENOMEM; 10104 } 10105 10106 if (netif_running(netdev)) 10107 err = igb_open(netdev); 10108 10109 return err; 10110 } 10111 10112 static void igb_nfc_filter_exit(struct igb_adapter *adapter) 10113 { 10114 struct igb_nfc_filter *rule; 10115 10116 spin_lock(&adapter->nfc_lock); 10117 10118 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 10119 igb_erase_filter(adapter, rule); 10120 10121 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node) 10122 igb_erase_filter(adapter, rule); 10123 10124 spin_unlock(&adapter->nfc_lock); 10125 } 10126 10127 static void igb_nfc_filter_restore(struct igb_adapter *adapter) 10128 { 10129 struct igb_nfc_filter *rule; 10130 10131 spin_lock(&adapter->nfc_lock); 10132 10133 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 10134 igb_add_filter(adapter, rule); 10135 10136 spin_unlock(&adapter->nfc_lock); 10137 } 10138 /* igb_main.c */ 10139