xref: /openbmc/linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40 
41 #define MAJ 5
42 #define MIN 4
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46 
47 enum queue_mode {
48 	QUEUE_MODE_STRICT_PRIORITY,
49 	QUEUE_MODE_STREAM_RESERVATION,
50 };
51 
52 enum tx_queue_prio {
53 	TX_QUEUE_PRIO_HIGH,
54 	TX_QUEUE_PRIO_LOW,
55 };
56 
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 				"Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 				"Copyright (c) 2007-2014 Intel Corporation.";
63 
64 static const struct e1000_info *igb_info_tbl[] = {
65 	[board_82575] = &e1000_82575_info,
66 };
67 
68 static const struct pci_device_id igb_pci_tbl[] = {
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 	/* required last entry */
105 	{0, }
106 };
107 
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109 
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 			    struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 			  netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 				   bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 				bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180 
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187 
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 			igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 	.notifier_call	= igb_notify_dca,
204 	.next		= NULL,
205 	.priority	= 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213 
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 		     pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218 
219 static const struct pci_error_handlers igb_err_handler = {
220 	.error_detected = igb_io_error_detected,
221 	.slot_reset = igb_io_slot_reset,
222 	.resume = igb_io_resume,
223 };
224 
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 
227 static struct pci_driver igb_driver = {
228 	.name     = igb_driver_name,
229 	.id_table = igb_pci_tbl,
230 	.probe    = igb_probe,
231 	.remove   = igb_remove,
232 #ifdef CONFIG_PM
233 	.driver.pm = &igb_pm_ops,
234 #endif
235 	.shutdown = igb_shutdown,
236 	.sriov_configure = igb_pci_sriov_configure,
237 	.err_handler = &igb_err_handler
238 };
239 
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244 
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249 
250 struct igb_reg_info {
251 	u32 ofs;
252 	char *name;
253 };
254 
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256 
257 	/* General Registers */
258 	{E1000_CTRL, "CTRL"},
259 	{E1000_STATUS, "STATUS"},
260 	{E1000_CTRL_EXT, "CTRL_EXT"},
261 
262 	/* Interrupt Registers */
263 	{E1000_ICR, "ICR"},
264 
265 	/* RX Registers */
266 	{E1000_RCTL, "RCTL"},
267 	{E1000_RDLEN(0), "RDLEN"},
268 	{E1000_RDH(0), "RDH"},
269 	{E1000_RDT(0), "RDT"},
270 	{E1000_RXDCTL(0), "RXDCTL"},
271 	{E1000_RDBAL(0), "RDBAL"},
272 	{E1000_RDBAH(0), "RDBAH"},
273 
274 	/* TX Registers */
275 	{E1000_TCTL, "TCTL"},
276 	{E1000_TDBAL(0), "TDBAL"},
277 	{E1000_TDBAH(0), "TDBAH"},
278 	{E1000_TDLEN(0), "TDLEN"},
279 	{E1000_TDH(0), "TDH"},
280 	{E1000_TDT(0), "TDT"},
281 	{E1000_TXDCTL(0), "TXDCTL"},
282 	{E1000_TDFH, "TDFH"},
283 	{E1000_TDFT, "TDFT"},
284 	{E1000_TDFHS, "TDFHS"},
285 	{E1000_TDFPC, "TDFPC"},
286 
287 	/* List Terminator */
288 	{}
289 };
290 
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 	int n = 0;
295 	char rname[16];
296 	u32 regs[8];
297 
298 	switch (reginfo->ofs) {
299 	case E1000_RDLEN(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDLEN(n));
302 		break;
303 	case E1000_RDH(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RDH(n));
306 		break;
307 	case E1000_RDT(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDT(n));
310 		break;
311 	case E1000_RXDCTL(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RXDCTL(n));
314 		break;
315 	case E1000_RDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDBAL(n));
318 		break;
319 	case E1000_RDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RDBAH(n));
322 		break;
323 	case E1000_TDBAL(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAL(n));
326 		break;
327 	case E1000_TDBAH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDBAH(n));
330 		break;
331 	case E1000_TDLEN(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDLEN(n));
334 		break;
335 	case E1000_TDH(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDH(n));
338 		break;
339 	case E1000_TDT(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDT(n));
342 		break;
343 	case E1000_TXDCTL(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TXDCTL(n));
346 		break;
347 	default:
348 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 		return;
350 	}
351 
352 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 		regs[2], regs[3]);
355 }
356 
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 	struct net_device *netdev = adapter->netdev;
361 	struct e1000_hw *hw = &adapter->hw;
362 	struct igb_reg_info *reginfo;
363 	struct igb_ring *tx_ring;
364 	union e1000_adv_tx_desc *tx_desc;
365 	struct my_u0 { u64 a; u64 b; } *u0;
366 	struct igb_ring *rx_ring;
367 	union e1000_adv_rx_desc *rx_desc;
368 	u32 staterr;
369 	u16 i, n;
370 
371 	if (!netif_msg_hw(adapter))
372 		return;
373 
374 	/* Print netdevice Info */
375 	if (netdev) {
376 		dev_info(&adapter->pdev->dev, "Net device Info\n");
377 		pr_info("Device Name     state            trans_start\n");
378 		pr_info("%-15s %016lX %016lX\n", netdev->name,
379 			netdev->state, dev_trans_start(netdev));
380 	}
381 
382 	/* Print Registers */
383 	dev_info(&adapter->pdev->dev, "Register Dump\n");
384 	pr_info(" Register Name   Value\n");
385 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 	     reginfo->name; reginfo++) {
387 		igb_regdump(hw, reginfo);
388 	}
389 
390 	/* Print TX Ring Summary */
391 	if (!netdev || !netif_running(netdev))
392 		goto exit;
393 
394 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396 	for (n = 0; n < adapter->num_tx_queues; n++) {
397 		struct igb_tx_buffer *buffer_info;
398 		tx_ring = adapter->tx_ring[n];
399 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 			(u64)dma_unmap_addr(buffer_info, dma),
403 			dma_unmap_len(buffer_info, len),
404 			buffer_info->next_to_watch,
405 			(u64)buffer_info->time_stamp);
406 	}
407 
408 	/* Print TX Rings */
409 	if (!netif_msg_tx_done(adapter))
410 		goto rx_ring_summary;
411 
412 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413 
414 	/* Transmit Descriptor Formats
415 	 *
416 	 * Advanced Transmit Descriptor
417 	 *   +--------------------------------------------------------------+
418 	 * 0 |         Buffer Address [63:0]                                |
419 	 *   +--------------------------------------------------------------+
420 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421 	 *   +--------------------------------------------------------------+
422 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
423 	 */
424 
425 	for (n = 0; n < adapter->num_tx_queues; n++) {
426 		tx_ring = adapter->tx_ring[n];
427 		pr_info("------------------------------------\n");
428 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 		pr_info("------------------------------------\n");
430 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431 
432 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 			const char *next_desc;
434 			struct igb_tx_buffer *buffer_info;
435 			tx_desc = IGB_TX_DESC(tx_ring, i);
436 			buffer_info = &tx_ring->tx_buffer_info[i];
437 			u0 = (struct my_u0 *)tx_desc;
438 			if (i == tx_ring->next_to_use &&
439 			    i == tx_ring->next_to_clean)
440 				next_desc = " NTC/U";
441 			else if (i == tx_ring->next_to_use)
442 				next_desc = " NTU";
443 			else if (i == tx_ring->next_to_clean)
444 				next_desc = " NTC";
445 			else
446 				next_desc = "";
447 
448 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449 				i, le64_to_cpu(u0->a),
450 				le64_to_cpu(u0->b),
451 				(u64)dma_unmap_addr(buffer_info, dma),
452 				dma_unmap_len(buffer_info, len),
453 				buffer_info->next_to_watch,
454 				(u64)buffer_info->time_stamp,
455 				buffer_info->skb, next_desc);
456 
457 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 				print_hex_dump(KERN_INFO, "",
459 					DUMP_PREFIX_ADDRESS,
460 					16, 1, buffer_info->skb->data,
461 					dma_unmap_len(buffer_info, len),
462 					true);
463 		}
464 	}
465 
466 	/* Print RX Rings Summary */
467 rx_ring_summary:
468 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 	pr_info("Queue [NTU] [NTC]\n");
470 	for (n = 0; n < adapter->num_rx_queues; n++) {
471 		rx_ring = adapter->rx_ring[n];
472 		pr_info(" %5d %5X %5X\n",
473 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 	}
475 
476 	/* Print RX Rings */
477 	if (!netif_msg_rx_status(adapter))
478 		goto exit;
479 
480 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481 
482 	/* Advanced Receive Descriptor (Read) Format
483 	 *    63                                           1        0
484 	 *    +-----------------------------------------------------+
485 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486 	 *    +----------------------------------------------+------+
487 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
488 	 *    +-----------------------------------------------------+
489 	 *
490 	 *
491 	 * Advanced Receive Descriptor (Write-Back) Format
492 	 *
493 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
494 	 *   +------------------------------------------------------+
495 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496 	 *   | Checksum   Ident  |   |           |    | Type | Type |
497 	 *   +------------------------------------------------------+
498 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 	 *   +------------------------------------------------------+
500 	 *   63       48 47    32 31            20 19               0
501 	 */
502 
503 	for (n = 0; n < adapter->num_rx_queues; n++) {
504 		rx_ring = adapter->rx_ring[n];
505 		pr_info("------------------------------------\n");
506 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 		pr_info("------------------------------------\n");
508 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510 
511 		for (i = 0; i < rx_ring->count; i++) {
512 			const char *next_desc;
513 			struct igb_rx_buffer *buffer_info;
514 			buffer_info = &rx_ring->rx_buffer_info[i];
515 			rx_desc = IGB_RX_DESC(rx_ring, i);
516 			u0 = (struct my_u0 *)rx_desc;
517 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518 
519 			if (i == rx_ring->next_to_use)
520 				next_desc = " NTU";
521 			else if (i == rx_ring->next_to_clean)
522 				next_desc = " NTC";
523 			else
524 				next_desc = "";
525 
526 			if (staterr & E1000_RXD_STAT_DD) {
527 				/* Descriptor Done */
528 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529 					"RWB", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					next_desc);
533 			} else {
534 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535 					"R  ", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					(u64)buffer_info->dma,
539 					next_desc);
540 
541 				if (netif_msg_pktdata(adapter) &&
542 				    buffer_info->dma && buffer_info->page) {
543 					print_hex_dump(KERN_INFO, "",
544 					  DUMP_PREFIX_ADDRESS,
545 					  16, 1,
546 					  page_address(buffer_info->page) +
547 						      buffer_info->page_offset,
548 					  igb_rx_bufsz(rx_ring), true);
549 				}
550 			}
551 		}
552 	}
553 
554 exit:
555 	return;
556 }
557 
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
565 static int igb_get_i2c_data(void *data)
566 {
567 	struct igb_adapter *adapter = (struct igb_adapter *)data;
568 	struct e1000_hw *hw = &adapter->hw;
569 	s32 i2cctl = rd32(E1000_I2CPARAMS);
570 
571 	return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573 
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
581 static void igb_set_i2c_data(void *data, int state)
582 {
583 	struct igb_adapter *adapter = (struct igb_adapter *)data;
584 	struct e1000_hw *hw = &adapter->hw;
585 	s32 i2cctl = rd32(E1000_I2CPARAMS);
586 
587 	if (state)
588 		i2cctl |= E1000_I2C_DATA_OUT;
589 	else
590 		i2cctl &= ~E1000_I2C_DATA_OUT;
591 
592 	i2cctl &= ~E1000_I2C_DATA_OE_N;
593 	i2cctl |= E1000_I2C_CLK_OE_N;
594 	wr32(E1000_I2CPARAMS, i2cctl);
595 	wrfl();
596 
597 }
598 
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 	struct igb_adapter *adapter = (struct igb_adapter *)data;
609 	struct e1000_hw *hw = &adapter->hw;
610 	s32 i2cctl = rd32(E1000_I2CPARAMS);
611 
612 	if (state) {
613 		i2cctl |= E1000_I2C_CLK_OUT;
614 		i2cctl &= ~E1000_I2C_CLK_OE_N;
615 	} else {
616 		i2cctl &= ~E1000_I2C_CLK_OUT;
617 		i2cctl &= ~E1000_I2C_CLK_OE_N;
618 	}
619 	wr32(E1000_I2CPARAMS, i2cctl);
620 	wrfl();
621 }
622 
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
629 static int igb_get_i2c_clk(void *data)
630 {
631 	struct igb_adapter *adapter = (struct igb_adapter *)data;
632 	struct e1000_hw *hw = &adapter->hw;
633 	s32 i2cctl = rd32(E1000_I2CPARAMS);
634 
635 	return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637 
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 	.setsda		= igb_set_i2c_data,
640 	.setscl		= igb_set_i2c_clk,
641 	.getsda		= igb_get_i2c_data,
642 	.getscl		= igb_get_i2c_clk,
643 	.udelay		= 5,
644 	.timeout	= 20,
645 };
646 
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 	struct igb_adapter *adapter = hw->back;
656 	return adapter->netdev;
657 }
658 
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
665 static int __init igb_init_module(void)
666 {
667 	int ret;
668 
669 	pr_info("%s - version %s\n",
670 	       igb_driver_string, igb_driver_version);
671 	pr_info("%s\n", igb_copyright);
672 
673 #ifdef CONFIG_IGB_DCA
674 	dca_register_notify(&dca_notifier);
675 #endif
676 	ret = pci_register_driver(&igb_driver);
677 	return ret;
678 }
679 
680 module_init(igb_init_module);
681 
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 	dca_unregister_notify(&dca_notifier);
692 #endif
693 	pci_unregister_driver(&igb_driver);
694 }
695 
696 module_exit(igb_exit_module);
697 
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 	int i = 0, j = 0;
709 	u32 rbase_offset = adapter->vfs_allocated_count;
710 
711 	switch (adapter->hw.mac.type) {
712 	case e1000_82576:
713 		/* The queues are allocated for virtualization such that VF 0
714 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 		 * In order to avoid collision we start at the first free queue
716 		 * and continue consuming queues in the same sequence
717 		 */
718 		if (adapter->vfs_allocated_count) {
719 			for (; i < adapter->rss_queues; i++)
720 				adapter->rx_ring[i]->reg_idx = rbase_offset +
721 							       Q_IDX_82576(i);
722 		}
723 		/* Fall through */
724 	case e1000_82575:
725 	case e1000_82580:
726 	case e1000_i350:
727 	case e1000_i354:
728 	case e1000_i210:
729 	case e1000_i211:
730 		/* Fall through */
731 	default:
732 		for (; i < adapter->num_rx_queues; i++)
733 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 		for (; j < adapter->num_tx_queues; j++)
735 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 		break;
737 	}
738 }
739 
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 	u32 value = 0;
745 
746 	if (E1000_REMOVED(hw_addr))
747 		return ~value;
748 
749 	value = readl(&hw_addr[reg]);
750 
751 	/* reads should not return all F's */
752 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 		struct net_device *netdev = igb->netdev;
754 		hw->hw_addr = NULL;
755 		netdev_err(netdev, "PCIe link lost\n");
756 	}
757 
758 	return value;
759 }
760 
761 /**
762  *  igb_write_ivar - configure ivar for given MSI-X vector
763  *  @hw: pointer to the HW structure
764  *  @msix_vector: vector number we are allocating to a given ring
765  *  @index: row index of IVAR register to write within IVAR table
766  *  @offset: column offset of in IVAR, should be multiple of 8
767  *
768  *  This function is intended to handle the writing of the IVAR register
769  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
770  *  each containing an cause allocation for an Rx and Tx ring, and a
771  *  variable number of rows depending on the number of queues supported.
772  **/
773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774 			   int index, int offset)
775 {
776 	u32 ivar = array_rd32(E1000_IVAR0, index);
777 
778 	/* clear any bits that are currently set */
779 	ivar &= ~((u32)0xFF << offset);
780 
781 	/* write vector and valid bit */
782 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
783 
784 	array_wr32(E1000_IVAR0, index, ivar);
785 }
786 
787 #define IGB_N0_QUEUE -1
788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
789 {
790 	struct igb_adapter *adapter = q_vector->adapter;
791 	struct e1000_hw *hw = &adapter->hw;
792 	int rx_queue = IGB_N0_QUEUE;
793 	int tx_queue = IGB_N0_QUEUE;
794 	u32 msixbm = 0;
795 
796 	if (q_vector->rx.ring)
797 		rx_queue = q_vector->rx.ring->reg_idx;
798 	if (q_vector->tx.ring)
799 		tx_queue = q_vector->tx.ring->reg_idx;
800 
801 	switch (hw->mac.type) {
802 	case e1000_82575:
803 		/* The 82575 assigns vectors using a bitmask, which matches the
804 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
805 		 * or more queues to a vector, we write the appropriate bits
806 		 * into the MSIXBM register for that vector.
807 		 */
808 		if (rx_queue > IGB_N0_QUEUE)
809 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810 		if (tx_queue > IGB_N0_QUEUE)
811 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813 			msixbm |= E1000_EIMS_OTHER;
814 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815 		q_vector->eims_value = msixbm;
816 		break;
817 	case e1000_82576:
818 		/* 82576 uses a table that essentially consists of 2 columns
819 		 * with 8 rows.  The ordering is column-major so we use the
820 		 * lower 3 bits as the row index, and the 4th bit as the
821 		 * column offset.
822 		 */
823 		if (rx_queue > IGB_N0_QUEUE)
824 			igb_write_ivar(hw, msix_vector,
825 				       rx_queue & 0x7,
826 				       (rx_queue & 0x8) << 1);
827 		if (tx_queue > IGB_N0_QUEUE)
828 			igb_write_ivar(hw, msix_vector,
829 				       tx_queue & 0x7,
830 				       ((tx_queue & 0x8) << 1) + 8);
831 		q_vector->eims_value = BIT(msix_vector);
832 		break;
833 	case e1000_82580:
834 	case e1000_i350:
835 	case e1000_i354:
836 	case e1000_i210:
837 	case e1000_i211:
838 		/* On 82580 and newer adapters the scheme is similar to 82576
839 		 * however instead of ordering column-major we have things
840 		 * ordered row-major.  So we traverse the table by using
841 		 * bit 0 as the column offset, and the remaining bits as the
842 		 * row index.
843 		 */
844 		if (rx_queue > IGB_N0_QUEUE)
845 			igb_write_ivar(hw, msix_vector,
846 				       rx_queue >> 1,
847 				       (rx_queue & 0x1) << 4);
848 		if (tx_queue > IGB_N0_QUEUE)
849 			igb_write_ivar(hw, msix_vector,
850 				       tx_queue >> 1,
851 				       ((tx_queue & 0x1) << 4) + 8);
852 		q_vector->eims_value = BIT(msix_vector);
853 		break;
854 	default:
855 		BUG();
856 		break;
857 	}
858 
859 	/* add q_vector eims value to global eims_enable_mask */
860 	adapter->eims_enable_mask |= q_vector->eims_value;
861 
862 	/* configure q_vector to set itr on first interrupt */
863 	q_vector->set_itr = 1;
864 }
865 
866 /**
867  *  igb_configure_msix - Configure MSI-X hardware
868  *  @adapter: board private structure to initialize
869  *
870  *  igb_configure_msix sets up the hardware to properly
871  *  generate MSI-X interrupts.
872  **/
873 static void igb_configure_msix(struct igb_adapter *adapter)
874 {
875 	u32 tmp;
876 	int i, vector = 0;
877 	struct e1000_hw *hw = &adapter->hw;
878 
879 	adapter->eims_enable_mask = 0;
880 
881 	/* set vector for other causes, i.e. link changes */
882 	switch (hw->mac.type) {
883 	case e1000_82575:
884 		tmp = rd32(E1000_CTRL_EXT);
885 		/* enable MSI-X PBA support*/
886 		tmp |= E1000_CTRL_EXT_PBA_CLR;
887 
888 		/* Auto-Mask interrupts upon ICR read. */
889 		tmp |= E1000_CTRL_EXT_EIAME;
890 		tmp |= E1000_CTRL_EXT_IRCA;
891 
892 		wr32(E1000_CTRL_EXT, tmp);
893 
894 		/* enable msix_other interrupt */
895 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896 		adapter->eims_other = E1000_EIMS_OTHER;
897 
898 		break;
899 
900 	case e1000_82576:
901 	case e1000_82580:
902 	case e1000_i350:
903 	case e1000_i354:
904 	case e1000_i210:
905 	case e1000_i211:
906 		/* Turn on MSI-X capability first, or our settings
907 		 * won't stick.  And it will take days to debug.
908 		 */
909 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
911 		     E1000_GPIE_NSICR);
912 
913 		/* enable msix_other interrupt */
914 		adapter->eims_other = BIT(vector);
915 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
916 
917 		wr32(E1000_IVAR_MISC, tmp);
918 		break;
919 	default:
920 		/* do nothing, since nothing else supports MSI-X */
921 		break;
922 	} /* switch (hw->mac.type) */
923 
924 	adapter->eims_enable_mask |= adapter->eims_other;
925 
926 	for (i = 0; i < adapter->num_q_vectors; i++)
927 		igb_assign_vector(adapter->q_vector[i], vector++);
928 
929 	wrfl();
930 }
931 
932 /**
933  *  igb_request_msix - Initialize MSI-X interrupts
934  *  @adapter: board private structure to initialize
935  *
936  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
937  *  kernel.
938  **/
939 static int igb_request_msix(struct igb_adapter *adapter)
940 {
941 	struct net_device *netdev = adapter->netdev;
942 	int i, err = 0, vector = 0, free_vector = 0;
943 
944 	err = request_irq(adapter->msix_entries[vector].vector,
945 			  igb_msix_other, 0, netdev->name, adapter);
946 	if (err)
947 		goto err_out;
948 
949 	for (i = 0; i < adapter->num_q_vectors; i++) {
950 		struct igb_q_vector *q_vector = adapter->q_vector[i];
951 
952 		vector++;
953 
954 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955 
956 		if (q_vector->rx.ring && q_vector->tx.ring)
957 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 				q_vector->rx.ring->queue_index);
959 		else if (q_vector->tx.ring)
960 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 				q_vector->tx.ring->queue_index);
962 		else if (q_vector->rx.ring)
963 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 				q_vector->rx.ring->queue_index);
965 		else
966 			sprintf(q_vector->name, "%s-unused", netdev->name);
967 
968 		err = request_irq(adapter->msix_entries[vector].vector,
969 				  igb_msix_ring, 0, q_vector->name,
970 				  q_vector);
971 		if (err)
972 			goto err_free;
973 	}
974 
975 	igb_configure_msix(adapter);
976 	return 0;
977 
978 err_free:
979 	/* free already assigned IRQs */
980 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981 
982 	vector--;
983 	for (i = 0; i < vector; i++) {
984 		free_irq(adapter->msix_entries[free_vector++].vector,
985 			 adapter->q_vector[i]);
986 	}
987 err_out:
988 	return err;
989 }
990 
991 /**
992  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be freed
995  *
996  *  This function frees the memory allocated to the q_vector.
997  **/
998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001 
1002 	adapter->q_vector[v_idx] = NULL;
1003 
1004 	/* igb_get_stats64() might access the rings on this vector,
1005 	 * we must wait a grace period before freeing it.
1006 	 */
1007 	if (q_vector)
1008 		kfree_rcu(q_vector, rcu);
1009 }
1010 
1011 /**
1012  *  igb_reset_q_vector - Reset config for interrupt vector
1013  *  @adapter: board private structure to initialize
1014  *  @v_idx: Index of vector to be reset
1015  *
1016  *  If NAPI is enabled it will delete any references to the
1017  *  NAPI struct. This is preparation for igb_free_q_vector.
1018  **/
1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022 
1023 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 	 * allocated. So, q_vector is NULL so we should stop here.
1025 	 */
1026 	if (!q_vector)
1027 		return;
1028 
1029 	if (q_vector->tx.ring)
1030 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031 
1032 	if (q_vector->rx.ring)
1033 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034 
1035 	netif_napi_del(&q_vector->napi);
1036 
1037 }
1038 
1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 	int v_idx = adapter->num_q_vectors;
1042 
1043 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 		pci_disable_msix(adapter->pdev);
1045 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 		pci_disable_msi(adapter->pdev);
1047 
1048 	while (v_idx--)
1049 		igb_reset_q_vector(adapter, v_idx);
1050 }
1051 
1052 /**
1053  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054  *  @adapter: board private structure to initialize
1055  *
1056  *  This function frees the memory allocated to the q_vectors.  In addition if
1057  *  NAPI is enabled it will delete any references to the NAPI struct prior
1058  *  to freeing the q_vector.
1059  **/
1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 	int v_idx = adapter->num_q_vectors;
1063 
1064 	adapter->num_tx_queues = 0;
1065 	adapter->num_rx_queues = 0;
1066 	adapter->num_q_vectors = 0;
1067 
1068 	while (v_idx--) {
1069 		igb_reset_q_vector(adapter, v_idx);
1070 		igb_free_q_vector(adapter, v_idx);
1071 	}
1072 }
1073 
1074 /**
1075  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076  *  @adapter: board private structure to initialize
1077  *
1078  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079  *  MSI-X interrupts allocated.
1080  */
1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 	igb_free_q_vectors(adapter);
1084 	igb_reset_interrupt_capability(adapter);
1085 }
1086 
1087 /**
1088  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089  *  @adapter: board private structure to initialize
1090  *  @msix: boolean value of MSIX capability
1091  *
1092  *  Attempt to configure interrupts using the best available
1093  *  capabilities of the hardware and kernel.
1094  **/
1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 	int err;
1098 	int numvecs, i;
1099 
1100 	if (!msix)
1101 		goto msi_only;
1102 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1103 
1104 	/* Number of supported queues. */
1105 	adapter->num_rx_queues = adapter->rss_queues;
1106 	if (adapter->vfs_allocated_count)
1107 		adapter->num_tx_queues = 1;
1108 	else
1109 		adapter->num_tx_queues = adapter->rss_queues;
1110 
1111 	/* start with one vector for every Rx queue */
1112 	numvecs = adapter->num_rx_queues;
1113 
1114 	/* if Tx handler is separate add 1 for every Tx queue */
1115 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 		numvecs += adapter->num_tx_queues;
1117 
1118 	/* store the number of vectors reserved for queues */
1119 	adapter->num_q_vectors = numvecs;
1120 
1121 	/* add 1 vector for link status interrupts */
1122 	numvecs++;
1123 	for (i = 0; i < numvecs; i++)
1124 		adapter->msix_entries[i].entry = i;
1125 
1126 	err = pci_enable_msix_range(adapter->pdev,
1127 				    adapter->msix_entries,
1128 				    numvecs,
1129 				    numvecs);
1130 	if (err > 0)
1131 		return;
1132 
1133 	igb_reset_interrupt_capability(adapter);
1134 
1135 	/* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 	/* disable SR-IOV for non MSI-X configurations */
1140 	if (adapter->vf_data) {
1141 		struct e1000_hw *hw = &adapter->hw;
1142 		/* disable iov and allow time for transactions to clear */
1143 		pci_disable_sriov(adapter->pdev);
1144 		msleep(500);
1145 
1146 		kfree(adapter->vf_mac_list);
1147 		adapter->vf_mac_list = NULL;
1148 		kfree(adapter->vf_data);
1149 		adapter->vf_data = NULL;
1150 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 		wrfl();
1152 		msleep(100);
1153 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 	}
1155 #endif
1156 	adapter->vfs_allocated_count = 0;
1157 	adapter->rss_queues = 1;
1158 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 	adapter->num_rx_queues = 1;
1160 	adapter->num_tx_queues = 1;
1161 	adapter->num_q_vectors = 1;
1162 	if (!pci_enable_msi(adapter->pdev))
1163 		adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165 
1166 static void igb_add_ring(struct igb_ring *ring,
1167 			 struct igb_ring_container *head)
1168 {
1169 	head->ring = ring;
1170 	head->count++;
1171 }
1172 
1173 /**
1174  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175  *  @adapter: board private structure to initialize
1176  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177  *  @v_idx: index of vector in adapter struct
1178  *  @txr_count: total number of Tx rings to allocate
1179  *  @txr_idx: index of first Tx ring to allocate
1180  *  @rxr_count: total number of Rx rings to allocate
1181  *  @rxr_idx: index of first Rx ring to allocate
1182  *
1183  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184  **/
1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 			      int v_count, int v_idx,
1187 			      int txr_count, int txr_idx,
1188 			      int rxr_count, int rxr_idx)
1189 {
1190 	struct igb_q_vector *q_vector;
1191 	struct igb_ring *ring;
1192 	int ring_count, size;
1193 
1194 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1195 	if (txr_count > 1 || rxr_count > 1)
1196 		return -ENOMEM;
1197 
1198 	ring_count = txr_count + rxr_count;
1199 	size = sizeof(struct igb_q_vector) +
1200 	       (sizeof(struct igb_ring) * ring_count);
1201 
1202 	/* allocate q_vector and rings */
1203 	q_vector = adapter->q_vector[v_idx];
1204 	if (!q_vector) {
1205 		q_vector = kzalloc(size, GFP_KERNEL);
1206 	} else if (size > ksize(q_vector)) {
1207 		kfree_rcu(q_vector, rcu);
1208 		q_vector = kzalloc(size, GFP_KERNEL);
1209 	} else {
1210 		memset(q_vector, 0, size);
1211 	}
1212 	if (!q_vector)
1213 		return -ENOMEM;
1214 
1215 	/* initialize NAPI */
1216 	netif_napi_add(adapter->netdev, &q_vector->napi,
1217 		       igb_poll, 64);
1218 
1219 	/* tie q_vector and adapter together */
1220 	adapter->q_vector[v_idx] = q_vector;
1221 	q_vector->adapter = adapter;
1222 
1223 	/* initialize work limits */
1224 	q_vector->tx.work_limit = adapter->tx_work_limit;
1225 
1226 	/* initialize ITR configuration */
1227 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 	q_vector->itr_val = IGB_START_ITR;
1229 
1230 	/* initialize pointer to rings */
1231 	ring = q_vector->ring;
1232 
1233 	/* intialize ITR */
1234 	if (rxr_count) {
1235 		/* rx or rx/tx vector */
1236 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 			q_vector->itr_val = adapter->rx_itr_setting;
1238 	} else {
1239 		/* tx only vector */
1240 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 			q_vector->itr_val = adapter->tx_itr_setting;
1242 	}
1243 
1244 	if (txr_count) {
1245 		/* assign generic ring traits */
1246 		ring->dev = &adapter->pdev->dev;
1247 		ring->netdev = adapter->netdev;
1248 
1249 		/* configure backlink on ring */
1250 		ring->q_vector = q_vector;
1251 
1252 		/* update q_vector Tx values */
1253 		igb_add_ring(ring, &q_vector->tx);
1254 
1255 		/* For 82575, context index must be unique per ring. */
1256 		if (adapter->hw.mac.type == e1000_82575)
1257 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258 
1259 		/* apply Tx specific ring traits */
1260 		ring->count = adapter->tx_ring_count;
1261 		ring->queue_index = txr_idx;
1262 
1263 		ring->cbs_enable = false;
1264 		ring->idleslope = 0;
1265 		ring->sendslope = 0;
1266 		ring->hicredit = 0;
1267 		ring->locredit = 0;
1268 
1269 		u64_stats_init(&ring->tx_syncp);
1270 		u64_stats_init(&ring->tx_syncp2);
1271 
1272 		/* assign ring to adapter */
1273 		adapter->tx_ring[txr_idx] = ring;
1274 
1275 		/* push pointer to next ring */
1276 		ring++;
1277 	}
1278 
1279 	if (rxr_count) {
1280 		/* assign generic ring traits */
1281 		ring->dev = &adapter->pdev->dev;
1282 		ring->netdev = adapter->netdev;
1283 
1284 		/* configure backlink on ring */
1285 		ring->q_vector = q_vector;
1286 
1287 		/* update q_vector Rx values */
1288 		igb_add_ring(ring, &q_vector->rx);
1289 
1290 		/* set flag indicating ring supports SCTP checksum offload */
1291 		if (adapter->hw.mac.type >= e1000_82576)
1292 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293 
1294 		/* On i350, i354, i210, and i211, loopback VLAN packets
1295 		 * have the tag byte-swapped.
1296 		 */
1297 		if (adapter->hw.mac.type >= e1000_i350)
1298 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299 
1300 		/* apply Rx specific ring traits */
1301 		ring->count = adapter->rx_ring_count;
1302 		ring->queue_index = rxr_idx;
1303 
1304 		u64_stats_init(&ring->rx_syncp);
1305 
1306 		/* assign ring to adapter */
1307 		adapter->rx_ring[rxr_idx] = ring;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 	int q_vectors = adapter->num_q_vectors;
1324 	int rxr_remaining = adapter->num_rx_queues;
1325 	int txr_remaining = adapter->num_tx_queues;
1326 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 	int err;
1328 
1329 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 		for (; rxr_remaining; v_idx++) {
1331 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 						 0, 0, 1, rxr_idx);
1333 
1334 			if (err)
1335 				goto err_out;
1336 
1337 			/* update counts and index */
1338 			rxr_remaining--;
1339 			rxr_idx++;
1340 		}
1341 	}
1342 
1343 	for (; v_idx < q_vectors; v_idx++) {
1344 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346 
1347 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 					 tqpv, txr_idx, rqpv, rxr_idx);
1349 
1350 		if (err)
1351 			goto err_out;
1352 
1353 		/* update counts and index */
1354 		rxr_remaining -= rqpv;
1355 		txr_remaining -= tqpv;
1356 		rxr_idx++;
1357 		txr_idx++;
1358 	}
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	adapter->num_tx_queues = 0;
1364 	adapter->num_rx_queues = 0;
1365 	adapter->num_q_vectors = 0;
1366 
1367 	while (v_idx--)
1368 		igb_free_q_vector(adapter, v_idx);
1369 
1370 	return -ENOMEM;
1371 }
1372 
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 	struct pci_dev *pdev = adapter->pdev;
1383 	int err;
1384 
1385 	igb_set_interrupt_capability(adapter, msix);
1386 
1387 	err = igb_alloc_q_vectors(adapter);
1388 	if (err) {
1389 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 		goto err_alloc_q_vectors;
1391 	}
1392 
1393 	igb_cache_ring_register(adapter);
1394 
1395 	return 0;
1396 
1397 err_alloc_q_vectors:
1398 	igb_reset_interrupt_capability(adapter);
1399 	return err;
1400 }
1401 
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 	struct net_device *netdev = adapter->netdev;
1412 	struct pci_dev *pdev = adapter->pdev;
1413 	int err = 0;
1414 
1415 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 		err = igb_request_msix(adapter);
1417 		if (!err)
1418 			goto request_done;
1419 		/* fall back to MSI */
1420 		igb_free_all_tx_resources(adapter);
1421 		igb_free_all_rx_resources(adapter);
1422 
1423 		igb_clear_interrupt_scheme(adapter);
1424 		err = igb_init_interrupt_scheme(adapter, false);
1425 		if (err)
1426 			goto request_done;
1427 
1428 		igb_setup_all_tx_resources(adapter);
1429 		igb_setup_all_rx_resources(adapter);
1430 		igb_configure(adapter);
1431 	}
1432 
1433 	igb_assign_vector(adapter->q_vector[0], 0);
1434 
1435 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 				  netdev->name, adapter);
1438 		if (!err)
1439 			goto request_done;
1440 
1441 		/* fall back to legacy interrupts */
1442 		igb_reset_interrupt_capability(adapter);
1443 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 	}
1445 
1446 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 			  netdev->name, adapter);
1448 
1449 	if (err)
1450 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 			err);
1452 
1453 request_done:
1454 	return err;
1455 }
1456 
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 		int vector = 0, i;
1461 
1462 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1463 
1464 		for (i = 0; i < adapter->num_q_vectors; i++)
1465 			free_irq(adapter->msix_entries[vector++].vector,
1466 				 adapter->q_vector[i]);
1467 	} else {
1468 		free_irq(adapter->pdev->irq, adapter);
1469 	}
1470 }
1471 
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 	struct e1000_hw *hw = &adapter->hw;
1479 
1480 	/* we need to be careful when disabling interrupts.  The VFs are also
1481 	 * mapped into these registers and so clearing the bits can cause
1482 	 * issues on the VF drivers so we only need to clear what we set
1483 	 */
1484 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 		u32 regval = rd32(E1000_EIAM);
1486 
1487 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 		regval = rd32(E1000_EIAC);
1490 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 	}
1492 
1493 	wr32(E1000_IAM, 0);
1494 	wr32(E1000_IMC, ~0);
1495 	wrfl();
1496 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 		int i;
1498 
1499 		for (i = 0; i < adapter->num_q_vectors; i++)
1500 			synchronize_irq(adapter->msix_entries[i].vector);
1501 	} else {
1502 		synchronize_irq(adapter->pdev->irq);
1503 	}
1504 }
1505 
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 	struct e1000_hw *hw = &adapter->hw;
1513 
1514 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 		u32 regval = rd32(E1000_EIAC);
1517 
1518 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 		regval = rd32(E1000_EIAM);
1520 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 		if (adapter->vfs_allocated_count) {
1523 			wr32(E1000_MBVFIMR, 0xFF);
1524 			ims |= E1000_IMS_VMMB;
1525 		}
1526 		wr32(E1000_IMS, ims);
1527 	} else {
1528 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 				E1000_IMS_DRSTA);
1530 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 	}
1533 }
1534 
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 	struct e1000_hw *hw = &adapter->hw;
1538 	u16 pf_id = adapter->vfs_allocated_count;
1539 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 	u16 old_vid = adapter->mng_vlan_id;
1541 
1542 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 		/* add VID to filter table */
1544 		igb_vfta_set(hw, vid, pf_id, true, true);
1545 		adapter->mng_vlan_id = vid;
1546 	} else {
1547 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 	}
1549 
1550 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 	    (vid != old_vid) &&
1552 	    !test_bit(old_vid, adapter->active_vlans)) {
1553 		/* remove VID from filter table */
1554 		igb_vfta_set(hw, vid, pf_id, false, true);
1555 	}
1556 }
1557 
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 	struct e1000_hw *hw = &adapter->hw;
1569 	u32 ctrl_ext;
1570 
1571 	/* Let firmware take over control of h/w */
1572 	ctrl_ext = rd32(E1000_CTRL_EXT);
1573 	wr32(E1000_CTRL_EXT,
1574 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576 
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 	struct e1000_hw *hw = &adapter->hw;
1588 	u32 ctrl_ext;
1589 
1590 	/* Let firmware know the driver has taken over */
1591 	ctrl_ext = rd32(E1000_CTRL_EXT);
1592 	wr32(E1000_CTRL_EXT,
1593 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595 
1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 	struct net_device *netdev = adapter->netdev;
1599 	struct e1000_hw *hw = &adapter->hw;
1600 
1601 	WARN_ON(hw->mac.type != e1000_i210);
1602 
1603 	if (enable)
1604 		adapter->flags |= IGB_FLAG_FQTSS;
1605 	else
1606 		adapter->flags &= ~IGB_FLAG_FQTSS;
1607 
1608 	if (netif_running(netdev))
1609 		schedule_work(&adapter->reset_task);
1610 }
1611 
1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616 
1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 				   enum tx_queue_prio prio)
1619 {
1620 	u32 val;
1621 
1622 	WARN_ON(hw->mac.type != e1000_i210);
1623 	WARN_ON(queue < 0 || queue > 4);
1624 
1625 	val = rd32(E1000_I210_TXDCTL(queue));
1626 
1627 	if (prio == TX_QUEUE_PRIO_HIGH)
1628 		val |= E1000_TXDCTL_PRIORITY;
1629 	else
1630 		val &= ~E1000_TXDCTL_PRIORITY;
1631 
1632 	wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634 
1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 	u32 val;
1638 
1639 	WARN_ON(hw->mac.type != e1000_i210);
1640 	WARN_ON(queue < 0 || queue > 1);
1641 
1642 	val = rd32(E1000_I210_TQAVCC(queue));
1643 
1644 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 		val |= E1000_TQAVCC_QUEUEMODE;
1646 	else
1647 		val &= ~E1000_TQAVCC_QUEUEMODE;
1648 
1649 	wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651 
1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 	int i;
1655 
1656 	for (i = 0; i < adapter->num_tx_queues; i++) {
1657 		if (adapter->tx_ring[i]->cbs_enable)
1658 			return true;
1659 	}
1660 
1661 	return false;
1662 }
1663 
1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 	int i;
1667 
1668 	for (i = 0; i < adapter->num_tx_queues; i++) {
1669 		if (adapter->tx_ring[i]->launchtime_enable)
1670 			return true;
1671 	}
1672 
1673 	return false;
1674 }
1675 
1676 /**
1677  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678  *  @adapter: pointer to adapter struct
1679  *  @queue: queue number
1680  *
1681  *  Configure CBS and Launchtime for a given hardware queue.
1682  *  Parameters are retrieved from the correct Tx ring, so
1683  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1684  *  for setting those correctly prior to this function being called.
1685  **/
1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 	struct igb_ring *ring = adapter->tx_ring[queue];
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	u32 tqavcc, tqavctrl;
1692 	u16 value;
1693 
1694 	WARN_ON(hw->mac.type != e1000_i210);
1695 	WARN_ON(queue < 0 || queue > 1);
1696 
1697 	/* If any of the Qav features is enabled, configure queues as SR and
1698 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699 	 * as SP.
1700 	 */
1701 	if (ring->cbs_enable || ring->launchtime_enable) {
1702 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704 	} else {
1705 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707 	}
1708 
1709 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1710 	if (ring->cbs_enable || queue == 0) {
1711 		/* i210 does not allow the queue 0 to be in the Strict
1712 		 * Priority mode while the Qav mode is enabled, so,
1713 		 * instead of disabling strict priority mode, we give
1714 		 * queue 0 the maximum of credits possible.
1715 		 *
1716 		 * See section 8.12.19 of the i210 datasheet, "Note:
1717 		 * Queue0 QueueMode must be set to 1b when
1718 		 * TransmitMode is set to Qav."
1719 		 */
1720 		if (queue == 0 && !ring->cbs_enable) {
1721 			/* max "linkspeed" idleslope in kbps */
1722 			ring->idleslope = 1000000;
1723 			ring->hicredit = ETH_FRAME_LEN;
1724 		}
1725 
1726 		/* Always set data transfer arbitration to credit-based
1727 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728 		 * the queues.
1729 		 */
1730 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733 
1734 		/* According to i210 datasheet section 7.2.7.7, we should set
1735 		 * the 'idleSlope' field from TQAVCC register following the
1736 		 * equation:
1737 		 *
1738 		 * For 100 Mbps link speed:
1739 		 *
1740 		 *     value = BW * 0x7735 * 0.2                          (E1)
1741 		 *
1742 		 * For 1000Mbps link speed:
1743 		 *
1744 		 *     value = BW * 0x7735 * 2                            (E2)
1745 		 *
1746 		 * E1 and E2 can be merged into one equation as shown below.
1747 		 * Note that 'link-speed' is in Mbps.
1748 		 *
1749 		 *     value = BW * 0x7735 * 2 * link-speed
1750 		 *                           --------------               (E3)
1751 		 *                                1000
1752 		 *
1753 		 * 'BW' is the percentage bandwidth out of full link speed
1754 		 * which can be found with the following equation. Note that
1755 		 * idleSlope here is the parameter from this function which
1756 		 * is in kbps.
1757 		 *
1758 		 *     BW =     idleSlope
1759 		 *          -----------------                             (E4)
1760 		 *          link-speed * 1000
1761 		 *
1762 		 * That said, we can come up with a generic equation to
1763 		 * calculate the value we should set it TQAVCC register by
1764 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1765 		 *
1766 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1767 		 *         -----------------            --------------    (E5)
1768 		 *         link-speed * 1000                 1000
1769 		 *
1770 		 * 'link-speed' is present in both sides of the fraction so
1771 		 * it is canceled out. The final equation is the following:
1772 		 *
1773 		 *     value = idleSlope * 61034
1774 		 *             -----------------                          (E6)
1775 		 *                  1000000
1776 		 *
1777 		 * NOTE: For i210, given the above, we can see that idleslope
1778 		 *       is represented in 16.38431 kbps units by the value at
1779 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1780 		 *       the granularity for idleslope increments.
1781 		 *       For instance, if you want to configure a 2576kbps
1782 		 *       idleslope, the value to be written on the register
1783 		 *       would have to be 157.23. If rounded down, you end
1784 		 *       up with less bandwidth available than originally
1785 		 *       required (~2572 kbps). If rounded up, you end up
1786 		 *       with a higher bandwidth (~2589 kbps). Below the
1787 		 *       approach we take is to always round up the
1788 		 *       calculated value, so the resulting bandwidth might
1789 		 *       be slightly higher for some configurations.
1790 		 */
1791 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792 
1793 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795 		tqavcc |= value;
1796 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797 
1798 		wr32(E1000_I210_TQAVHC(queue),
1799 		     0x80000000 + ring->hicredit * 0x7735);
1800 	} else {
1801 
1802 		/* Set idleSlope to zero. */
1803 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806 
1807 		/* Set hiCredit to zero. */
1808 		wr32(E1000_I210_TQAVHC(queue), 0);
1809 
1810 		/* If CBS is not enabled for any queues anymore, then return to
1811 		 * the default state of Data Transmission Arbitration on
1812 		 * TQAVCTRL.
1813 		 */
1814 		if (!is_any_cbs_enabled(adapter)) {
1815 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818 		}
1819 	}
1820 
1821 	/* If LaunchTime is enabled, set DataTranTIM. */
1822 	if (ring->launchtime_enable) {
1823 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 		 * for any of the SR queues, and configure fetchtime delta.
1825 		 * XXX NOTE:
1826 		 *     - LaunchTime will be enabled for all SR queues.
1827 		 *     - A fixed offset can be added relative to the launch
1828 		 *       time of all packets if configured at reg LAUNCH_OS0.
1829 		 *       We are keeping it as 0 for now (default value).
1830 		 */
1831 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835 	} else {
1836 		/* If Launchtime is not enabled for any SR queues anymore,
1837 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 		 * effectively disabling Launchtime.
1839 		 */
1840 		if (!is_any_txtime_enabled(adapter)) {
1841 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845 		}
1846 	}
1847 
1848 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 	 * CBS are not configurable by software so we don't do any 'controller
1850 	 * configuration' in respect to these parameters.
1851 	 */
1852 
1853 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d \
1854 			    idleslope %d sendslope %d hiCredit %d \
1855 			    locredit %d\n",
1856 		   (ring->cbs_enable) ? "enabled" : "disabled",
1857 		   (ring->launchtime_enable) ? "enabled" : "disabled", queue,
1858 		   ring->idleslope, ring->sendslope, ring->hicredit,
1859 		   ring->locredit);
1860 }
1861 
1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863 				  bool enable)
1864 {
1865 	struct igb_ring *ring;
1866 
1867 	if (queue < 0 || queue > adapter->num_tx_queues)
1868 		return -EINVAL;
1869 
1870 	ring = adapter->tx_ring[queue];
1871 	ring->launchtime_enable = enable;
1872 
1873 	return 0;
1874 }
1875 
1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877 			       bool enable, int idleslope, int sendslope,
1878 			       int hicredit, int locredit)
1879 {
1880 	struct igb_ring *ring;
1881 
1882 	if (queue < 0 || queue > adapter->num_tx_queues)
1883 		return -EINVAL;
1884 
1885 	ring = adapter->tx_ring[queue];
1886 
1887 	ring->cbs_enable = enable;
1888 	ring->idleslope = idleslope;
1889 	ring->sendslope = sendslope;
1890 	ring->hicredit = hicredit;
1891 	ring->locredit = locredit;
1892 
1893 	return 0;
1894 }
1895 
1896 /**
1897  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898  *  @adapter: pointer to adapter struct
1899  *
1900  *  Configure TQAVCTRL register switching the controller's Tx mode
1901  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1902  *  a call to igb_config_tx_modes() per queue so any previously saved
1903  *  Tx parameters are applied.
1904  **/
1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907 	struct net_device *netdev = adapter->netdev;
1908 	struct e1000_hw *hw = &adapter->hw;
1909 	u32 val;
1910 
1911 	/* Only i210 controller supports changing the transmission mode. */
1912 	if (hw->mac.type != e1000_i210)
1913 		return;
1914 
1915 	if (is_fqtss_enabled(adapter)) {
1916 		int i, max_queue;
1917 
1918 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920 		 * so SP queues wait for SR ones.
1921 		 */
1922 		val = rd32(E1000_I210_TQAVCTRL);
1923 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925 		wr32(E1000_I210_TQAVCTRL, val);
1926 
1927 		/* Configure Tx and Rx packet buffers sizes as described in
1928 		 * i210 datasheet section 7.2.7.7.
1929 		 */
1930 		val = rd32(E1000_TXPBS);
1931 		val &= ~I210_TXPBSIZE_MASK;
1932 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1933 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1934 		wr32(E1000_TXPBS, val);
1935 
1936 		val = rd32(E1000_RXPBS);
1937 		val &= ~I210_RXPBSIZE_MASK;
1938 		val |= I210_RXPBSIZE_PB_32KB;
1939 		wr32(E1000_RXPBS, val);
1940 
1941 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942 		 * register should not exceed the buffer size programmed in
1943 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945 		 * 4kB / 64.
1946 		 *
1947 		 * However, when we do so, no frame from queue 2 and 3 are
1948 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1949 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1950 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 		 */
1952 		val = (4096 - 1) / 64;
1953 		wr32(E1000_I210_DTXMXPKTSZ, val);
1954 
1955 		/* Since FQTSS mode is enabled, apply any CBS configuration
1956 		 * previously set. If no previous CBS configuration has been
1957 		 * done, then the initial configuration is applied, which means
1958 		 * CBS is disabled.
1959 		 */
1960 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962 
1963 		for (i = 0; i < max_queue; i++) {
1964 			igb_config_tx_modes(adapter, i);
1965 		}
1966 	} else {
1967 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970 
1971 		val = rd32(E1000_I210_TQAVCTRL);
1972 		/* According to Section 8.12.21, the other flags we've set when
1973 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1974 		 * don't set they here.
1975 		 */
1976 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977 		wr32(E1000_I210_TQAVCTRL, val);
1978 	}
1979 
1980 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981 		   "enabled" : "disabled");
1982 }
1983 
1984 /**
1985  *  igb_configure - configure the hardware for RX and TX
1986  *  @adapter: private board structure
1987  **/
1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990 	struct net_device *netdev = adapter->netdev;
1991 	int i;
1992 
1993 	igb_get_hw_control(adapter);
1994 	igb_set_rx_mode(netdev);
1995 	igb_setup_tx_mode(adapter);
1996 
1997 	igb_restore_vlan(adapter);
1998 
1999 	igb_setup_tctl(adapter);
2000 	igb_setup_mrqc(adapter);
2001 	igb_setup_rctl(adapter);
2002 
2003 	igb_nfc_filter_restore(adapter);
2004 	igb_configure_tx(adapter);
2005 	igb_configure_rx(adapter);
2006 
2007 	igb_rx_fifo_flush_82575(&adapter->hw);
2008 
2009 	/* call igb_desc_unused which always leaves
2010 	 * at least 1 descriptor unused to make sure
2011 	 * next_to_use != next_to_clean
2012 	 */
2013 	for (i = 0; i < adapter->num_rx_queues; i++) {
2014 		struct igb_ring *ring = adapter->rx_ring[i];
2015 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016 	}
2017 }
2018 
2019 /**
2020  *  igb_power_up_link - Power up the phy/serdes link
2021  *  @adapter: address of board private structure
2022  **/
2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025 	igb_reset_phy(&adapter->hw);
2026 
2027 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028 		igb_power_up_phy_copper(&adapter->hw);
2029 	else
2030 		igb_power_up_serdes_link_82575(&adapter->hw);
2031 
2032 	igb_setup_link(&adapter->hw);
2033 }
2034 
2035 /**
2036  *  igb_power_down_link - Power down the phy/serdes link
2037  *  @adapter: address of board private structure
2038  */
2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042 		igb_power_down_phy_copper_82575(&adapter->hw);
2043 	else
2044 		igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046 
2047 /**
2048  * Detect and switch function for Media Auto Sense
2049  * @adapter: address of the board private structure
2050  **/
2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053 	struct e1000_hw *hw = &adapter->hw;
2054 	u32 ctrl_ext, connsw;
2055 	bool swap_now = false;
2056 
2057 	ctrl_ext = rd32(E1000_CTRL_EXT);
2058 	connsw = rd32(E1000_CONNSW);
2059 
2060 	/* need to live swap if current media is copper and we have fiber/serdes
2061 	 * to go to.
2062 	 */
2063 
2064 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2065 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 		swap_now = true;
2067 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
2068 		/* copper signal takes time to appear */
2069 		if (adapter->copper_tries < 4) {
2070 			adapter->copper_tries++;
2071 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2072 			wr32(E1000_CONNSW, connsw);
2073 			return;
2074 		} else {
2075 			adapter->copper_tries = 0;
2076 			if ((connsw & E1000_CONNSW_PHYSD) &&
2077 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2078 				swap_now = true;
2079 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2080 				wr32(E1000_CONNSW, connsw);
2081 			}
2082 		}
2083 	}
2084 
2085 	if (!swap_now)
2086 		return;
2087 
2088 	switch (hw->phy.media_type) {
2089 	case e1000_media_type_copper:
2090 		netdev_info(adapter->netdev,
2091 			"MAS: changing media to fiber/serdes\n");
2092 		ctrl_ext |=
2093 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2094 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2095 		adapter->copper_tries = 0;
2096 		break;
2097 	case e1000_media_type_internal_serdes:
2098 	case e1000_media_type_fiber:
2099 		netdev_info(adapter->netdev,
2100 			"MAS: changing media to copper\n");
2101 		ctrl_ext &=
2102 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2103 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2104 		break;
2105 	default:
2106 		/* shouldn't get here during regular operation */
2107 		netdev_err(adapter->netdev,
2108 			"AMS: Invalid media type found, returning\n");
2109 		break;
2110 	}
2111 	wr32(E1000_CTRL_EXT, ctrl_ext);
2112 }
2113 
2114 /**
2115  *  igb_up - Open the interface and prepare it to handle traffic
2116  *  @adapter: board private structure
2117  **/
2118 int igb_up(struct igb_adapter *adapter)
2119 {
2120 	struct e1000_hw *hw = &adapter->hw;
2121 	int i;
2122 
2123 	/* hardware has been reset, we need to reload some things */
2124 	igb_configure(adapter);
2125 
2126 	clear_bit(__IGB_DOWN, &adapter->state);
2127 
2128 	for (i = 0; i < adapter->num_q_vectors; i++)
2129 		napi_enable(&(adapter->q_vector[i]->napi));
2130 
2131 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2132 		igb_configure_msix(adapter);
2133 	else
2134 		igb_assign_vector(adapter->q_vector[0], 0);
2135 
2136 	/* Clear any pending interrupts. */
2137 	rd32(E1000_TSICR);
2138 	rd32(E1000_ICR);
2139 	igb_irq_enable(adapter);
2140 
2141 	/* notify VFs that reset has been completed */
2142 	if (adapter->vfs_allocated_count) {
2143 		u32 reg_data = rd32(E1000_CTRL_EXT);
2144 
2145 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2146 		wr32(E1000_CTRL_EXT, reg_data);
2147 	}
2148 
2149 	netif_tx_start_all_queues(adapter->netdev);
2150 
2151 	/* start the watchdog. */
2152 	hw->mac.get_link_status = 1;
2153 	schedule_work(&adapter->watchdog_task);
2154 
2155 	if ((adapter->flags & IGB_FLAG_EEE) &&
2156 	    (!hw->dev_spec._82575.eee_disable))
2157 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2158 
2159 	return 0;
2160 }
2161 
2162 void igb_down(struct igb_adapter *adapter)
2163 {
2164 	struct net_device *netdev = adapter->netdev;
2165 	struct e1000_hw *hw = &adapter->hw;
2166 	u32 tctl, rctl;
2167 	int i;
2168 
2169 	/* signal that we're down so the interrupt handler does not
2170 	 * reschedule our watchdog timer
2171 	 */
2172 	set_bit(__IGB_DOWN, &adapter->state);
2173 
2174 	/* disable receives in the hardware */
2175 	rctl = rd32(E1000_RCTL);
2176 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2177 	/* flush and sleep below */
2178 
2179 	igb_nfc_filter_exit(adapter);
2180 
2181 	netif_carrier_off(netdev);
2182 	netif_tx_stop_all_queues(netdev);
2183 
2184 	/* disable transmits in the hardware */
2185 	tctl = rd32(E1000_TCTL);
2186 	tctl &= ~E1000_TCTL_EN;
2187 	wr32(E1000_TCTL, tctl);
2188 	/* flush both disables and wait for them to finish */
2189 	wrfl();
2190 	usleep_range(10000, 11000);
2191 
2192 	igb_irq_disable(adapter);
2193 
2194 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2195 
2196 	for (i = 0; i < adapter->num_q_vectors; i++) {
2197 		if (adapter->q_vector[i]) {
2198 			napi_synchronize(&adapter->q_vector[i]->napi);
2199 			napi_disable(&adapter->q_vector[i]->napi);
2200 		}
2201 	}
2202 
2203 	del_timer_sync(&adapter->watchdog_timer);
2204 	del_timer_sync(&adapter->phy_info_timer);
2205 
2206 	/* record the stats before reset*/
2207 	spin_lock(&adapter->stats64_lock);
2208 	igb_update_stats(adapter);
2209 	spin_unlock(&adapter->stats64_lock);
2210 
2211 	adapter->link_speed = 0;
2212 	adapter->link_duplex = 0;
2213 
2214 	if (!pci_channel_offline(adapter->pdev))
2215 		igb_reset(adapter);
2216 
2217 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2218 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2219 
2220 	igb_clean_all_tx_rings(adapter);
2221 	igb_clean_all_rx_rings(adapter);
2222 #ifdef CONFIG_IGB_DCA
2223 
2224 	/* since we reset the hardware DCA settings were cleared */
2225 	igb_setup_dca(adapter);
2226 #endif
2227 }
2228 
2229 void igb_reinit_locked(struct igb_adapter *adapter)
2230 {
2231 	WARN_ON(in_interrupt());
2232 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2233 		usleep_range(1000, 2000);
2234 	igb_down(adapter);
2235 	igb_up(adapter);
2236 	clear_bit(__IGB_RESETTING, &adapter->state);
2237 }
2238 
2239 /** igb_enable_mas - Media Autosense re-enable after swap
2240  *
2241  * @adapter: adapter struct
2242  **/
2243 static void igb_enable_mas(struct igb_adapter *adapter)
2244 {
2245 	struct e1000_hw *hw = &adapter->hw;
2246 	u32 connsw = rd32(E1000_CONNSW);
2247 
2248 	/* configure for SerDes media detect */
2249 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2250 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2251 		connsw |= E1000_CONNSW_ENRGSRC;
2252 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2253 		wr32(E1000_CONNSW, connsw);
2254 		wrfl();
2255 	}
2256 }
2257 
2258 void igb_reset(struct igb_adapter *adapter)
2259 {
2260 	struct pci_dev *pdev = adapter->pdev;
2261 	struct e1000_hw *hw = &adapter->hw;
2262 	struct e1000_mac_info *mac = &hw->mac;
2263 	struct e1000_fc_info *fc = &hw->fc;
2264 	u32 pba, hwm;
2265 
2266 	/* Repartition Pba for greater than 9k mtu
2267 	 * To take effect CTRL.RST is required.
2268 	 */
2269 	switch (mac->type) {
2270 	case e1000_i350:
2271 	case e1000_i354:
2272 	case e1000_82580:
2273 		pba = rd32(E1000_RXPBS);
2274 		pba = igb_rxpbs_adjust_82580(pba);
2275 		break;
2276 	case e1000_82576:
2277 		pba = rd32(E1000_RXPBS);
2278 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2279 		break;
2280 	case e1000_82575:
2281 	case e1000_i210:
2282 	case e1000_i211:
2283 	default:
2284 		pba = E1000_PBA_34K;
2285 		break;
2286 	}
2287 
2288 	if (mac->type == e1000_82575) {
2289 		u32 min_rx_space, min_tx_space, needed_tx_space;
2290 
2291 		/* write Rx PBA so that hardware can report correct Tx PBA */
2292 		wr32(E1000_PBA, pba);
2293 
2294 		/* To maintain wire speed transmits, the Tx FIFO should be
2295 		 * large enough to accommodate two full transmit packets,
2296 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2297 		 * the Rx FIFO should be large enough to accommodate at least
2298 		 * one full receive packet and is similarly rounded up and
2299 		 * expressed in KB.
2300 		 */
2301 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302 
2303 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2304 		 * but don't include Ethernet FCS because hardware appends it.
2305 		 * We only need to round down to the nearest 512 byte block
2306 		 * count since the value we care about is 2 frames, not 1.
2307 		 */
2308 		min_tx_space = adapter->max_frame_size;
2309 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2310 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311 
2312 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2313 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314 
2315 		/* If current Tx allocation is less than the min Tx FIFO size,
2316 		 * and the min Tx FIFO size is less than the current Rx FIFO
2317 		 * allocation, take space away from current Rx allocation.
2318 		 */
2319 		if (needed_tx_space < pba) {
2320 			pba -= needed_tx_space;
2321 
2322 			/* if short on Rx space, Rx wins and must trump Tx
2323 			 * adjustment
2324 			 */
2325 			if (pba < min_rx_space)
2326 				pba = min_rx_space;
2327 		}
2328 
2329 		/* adjust PBA for jumbo frames */
2330 		wr32(E1000_PBA, pba);
2331 	}
2332 
2333 	/* flow control settings
2334 	 * The high water mark must be low enough to fit one full frame
2335 	 * after transmitting the pause frame.  As such we must have enough
2336 	 * space to allow for us to complete our current transmit and then
2337 	 * receive the frame that is in progress from the link partner.
2338 	 * Set it to:
2339 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340 	 */
2341 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342 
2343 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2344 	fc->low_water = fc->high_water - 16;
2345 	fc->pause_time = 0xFFFF;
2346 	fc->send_xon = 1;
2347 	fc->current_mode = fc->requested_mode;
2348 
2349 	/* disable receive for all VFs and wait one second */
2350 	if (adapter->vfs_allocated_count) {
2351 		int i;
2352 
2353 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2354 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355 
2356 		/* ping all the active vfs to let them know we are going down */
2357 		igb_ping_all_vfs(adapter);
2358 
2359 		/* disable transmits and receives */
2360 		wr32(E1000_VFRE, 0);
2361 		wr32(E1000_VFTE, 0);
2362 	}
2363 
2364 	/* Allow time for pending master requests to run */
2365 	hw->mac.ops.reset_hw(hw);
2366 	wr32(E1000_WUC, 0);
2367 
2368 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2369 		/* need to resetup here after media swap */
2370 		adapter->ei.get_invariants(hw);
2371 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372 	}
2373 	if ((mac->type == e1000_82575) &&
2374 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2375 		igb_enable_mas(adapter);
2376 	}
2377 	if (hw->mac.ops.init_hw(hw))
2378 		dev_err(&pdev->dev, "Hardware Error\n");
2379 
2380 	/* RAR registers were cleared during init_hw, clear mac table */
2381 	igb_flush_mac_table(adapter);
2382 	__dev_uc_unsync(adapter->netdev, NULL);
2383 
2384 	/* Recover default RAR entry */
2385 	igb_set_default_mac_filter(adapter);
2386 
2387 	/* Flow control settings reset on hardware reset, so guarantee flow
2388 	 * control is off when forcing speed.
2389 	 */
2390 	if (!hw->mac.autoneg)
2391 		igb_force_mac_fc(hw);
2392 
2393 	igb_init_dmac(adapter, pba);
2394 #ifdef CONFIG_IGB_HWMON
2395 	/* Re-initialize the thermal sensor on i350 devices. */
2396 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2397 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2398 			/* If present, re-initialize the external thermal sensor
2399 			 * interface.
2400 			 */
2401 			if (adapter->ets)
2402 				mac->ops.init_thermal_sensor_thresh(hw);
2403 		}
2404 	}
2405 #endif
2406 	/* Re-establish EEE setting */
2407 	if (hw->phy.media_type == e1000_media_type_copper) {
2408 		switch (mac->type) {
2409 		case e1000_i350:
2410 		case e1000_i210:
2411 		case e1000_i211:
2412 			igb_set_eee_i350(hw, true, true);
2413 			break;
2414 		case e1000_i354:
2415 			igb_set_eee_i354(hw, true, true);
2416 			break;
2417 		default:
2418 			break;
2419 		}
2420 	}
2421 	if (!netif_running(adapter->netdev))
2422 		igb_power_down_link(adapter);
2423 
2424 	igb_update_mng_vlan(adapter);
2425 
2426 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2427 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428 
2429 	/* Re-enable PTP, where applicable. */
2430 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2431 		igb_ptp_reset(adapter);
2432 
2433 	igb_get_phy_info(hw);
2434 }
2435 
2436 static netdev_features_t igb_fix_features(struct net_device *netdev,
2437 	netdev_features_t features)
2438 {
2439 	/* Since there is no support for separate Rx/Tx vlan accel
2440 	 * enable/disable make sure Tx flag is always in same state as Rx.
2441 	 */
2442 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2443 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2444 	else
2445 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2446 
2447 	return features;
2448 }
2449 
2450 static int igb_set_features(struct net_device *netdev,
2451 	netdev_features_t features)
2452 {
2453 	netdev_features_t changed = netdev->features ^ features;
2454 	struct igb_adapter *adapter = netdev_priv(netdev);
2455 
2456 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2457 		igb_vlan_mode(netdev, features);
2458 
2459 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2460 		return 0;
2461 
2462 	if (!(features & NETIF_F_NTUPLE)) {
2463 		struct hlist_node *node2;
2464 		struct igb_nfc_filter *rule;
2465 
2466 		spin_lock(&adapter->nfc_lock);
2467 		hlist_for_each_entry_safe(rule, node2,
2468 					  &adapter->nfc_filter_list, nfc_node) {
2469 			igb_erase_filter(adapter, rule);
2470 			hlist_del(&rule->nfc_node);
2471 			kfree(rule);
2472 		}
2473 		spin_unlock(&adapter->nfc_lock);
2474 		adapter->nfc_filter_count = 0;
2475 	}
2476 
2477 	netdev->features = features;
2478 
2479 	if (netif_running(netdev))
2480 		igb_reinit_locked(adapter);
2481 	else
2482 		igb_reset(adapter);
2483 
2484 	return 0;
2485 }
2486 
2487 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2488 			   struct net_device *dev,
2489 			   const unsigned char *addr, u16 vid,
2490 			   u16 flags)
2491 {
2492 	/* guarantee we can provide a unique filter for the unicast address */
2493 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2494 		struct igb_adapter *adapter = netdev_priv(dev);
2495 		int vfn = adapter->vfs_allocated_count;
2496 
2497 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2498 			return -ENOMEM;
2499 	}
2500 
2501 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2502 }
2503 
2504 #define IGB_MAX_MAC_HDR_LEN	127
2505 #define IGB_MAX_NETWORK_HDR_LEN	511
2506 
2507 static netdev_features_t
2508 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2509 		   netdev_features_t features)
2510 {
2511 	unsigned int network_hdr_len, mac_hdr_len;
2512 
2513 	/* Make certain the headers can be described by a context descriptor */
2514 	mac_hdr_len = skb_network_header(skb) - skb->data;
2515 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2516 		return features & ~(NETIF_F_HW_CSUM |
2517 				    NETIF_F_SCTP_CRC |
2518 				    NETIF_F_HW_VLAN_CTAG_TX |
2519 				    NETIF_F_TSO |
2520 				    NETIF_F_TSO6);
2521 
2522 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2524 		return features & ~(NETIF_F_HW_CSUM |
2525 				    NETIF_F_SCTP_CRC |
2526 				    NETIF_F_TSO |
2527 				    NETIF_F_TSO6);
2528 
2529 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2530 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2531 	 */
2532 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2533 		features &= ~NETIF_F_TSO;
2534 
2535 	return features;
2536 }
2537 
2538 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2539 {
2540 	if (!is_fqtss_enabled(adapter)) {
2541 		enable_fqtss(adapter, true);
2542 		return;
2543 	}
2544 
2545 	igb_config_tx_modes(adapter, queue);
2546 
2547 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2548 		enable_fqtss(adapter, false);
2549 }
2550 
2551 static int igb_offload_cbs(struct igb_adapter *adapter,
2552 			   struct tc_cbs_qopt_offload *qopt)
2553 {
2554 	struct e1000_hw *hw = &adapter->hw;
2555 	int err;
2556 
2557 	/* CBS offloading is only supported by i210 controller. */
2558 	if (hw->mac.type != e1000_i210)
2559 		return -EOPNOTSUPP;
2560 
2561 	/* CBS offloading is only supported by queue 0 and queue 1. */
2562 	if (qopt->queue < 0 || qopt->queue > 1)
2563 		return -EINVAL;
2564 
2565 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2566 				  qopt->idleslope, qopt->sendslope,
2567 				  qopt->hicredit, qopt->locredit);
2568 	if (err)
2569 		return err;
2570 
2571 	igb_offload_apply(adapter, qopt->queue);
2572 
2573 	return 0;
2574 }
2575 
2576 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2577 #define VLAN_PRIO_FULL_MASK (0x07)
2578 
2579 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2580 				struct tc_cls_flower_offload *f,
2581 				int traffic_class,
2582 				struct igb_nfc_filter *input)
2583 {
2584 	struct netlink_ext_ack *extack = f->common.extack;
2585 
2586 	if (f->dissector->used_keys &
2587 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2588 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2589 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2590 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2591 		NL_SET_ERR_MSG_MOD(extack,
2592 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2593 		return -EOPNOTSUPP;
2594 	}
2595 
2596 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2597 		struct flow_dissector_key_eth_addrs *key, *mask;
2598 
2599 		key = skb_flow_dissector_target(f->dissector,
2600 						FLOW_DISSECTOR_KEY_ETH_ADDRS,
2601 						f->key);
2602 		mask = skb_flow_dissector_target(f->dissector,
2603 						 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2604 						 f->mask);
2605 
2606 		if (!is_zero_ether_addr(mask->dst)) {
2607 			if (!is_broadcast_ether_addr(mask->dst)) {
2608 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2609 				return -EINVAL;
2610 			}
2611 
2612 			input->filter.match_flags |=
2613 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2614 			ether_addr_copy(input->filter.dst_addr, key->dst);
2615 		}
2616 
2617 		if (!is_zero_ether_addr(mask->src)) {
2618 			if (!is_broadcast_ether_addr(mask->src)) {
2619 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2620 				return -EINVAL;
2621 			}
2622 
2623 			input->filter.match_flags |=
2624 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2625 			ether_addr_copy(input->filter.src_addr, key->src);
2626 		}
2627 	}
2628 
2629 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
2630 		struct flow_dissector_key_basic *key, *mask;
2631 
2632 		key = skb_flow_dissector_target(f->dissector,
2633 						FLOW_DISSECTOR_KEY_BASIC,
2634 						f->key);
2635 		mask = skb_flow_dissector_target(f->dissector,
2636 						 FLOW_DISSECTOR_KEY_BASIC,
2637 						 f->mask);
2638 
2639 		if (mask->n_proto) {
2640 			if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
2641 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2642 				return -EINVAL;
2643 			}
2644 
2645 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2646 			input->filter.etype = key->n_proto;
2647 		}
2648 	}
2649 
2650 	if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
2651 		struct flow_dissector_key_vlan *key, *mask;
2652 
2653 		key = skb_flow_dissector_target(f->dissector,
2654 						FLOW_DISSECTOR_KEY_VLAN,
2655 						f->key);
2656 		mask = skb_flow_dissector_target(f->dissector,
2657 						 FLOW_DISSECTOR_KEY_VLAN,
2658 						 f->mask);
2659 
2660 		if (mask->vlan_priority) {
2661 			if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2662 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2663 				return -EINVAL;
2664 			}
2665 
2666 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2667 			input->filter.vlan_tci = key->vlan_priority;
2668 		}
2669 	}
2670 
2671 	input->action = traffic_class;
2672 	input->cookie = f->cookie;
2673 
2674 	return 0;
2675 }
2676 
2677 static int igb_configure_clsflower(struct igb_adapter *adapter,
2678 				   struct tc_cls_flower_offload *cls_flower)
2679 {
2680 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2681 	struct igb_nfc_filter *filter, *f;
2682 	int err, tc;
2683 
2684 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2685 	if (tc < 0) {
2686 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2687 		return -EINVAL;
2688 	}
2689 
2690 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2691 	if (!filter)
2692 		return -ENOMEM;
2693 
2694 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2695 	if (err < 0)
2696 		goto err_parse;
2697 
2698 	spin_lock(&adapter->nfc_lock);
2699 
2700 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2701 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2702 			err = -EEXIST;
2703 			NL_SET_ERR_MSG_MOD(extack,
2704 					   "This filter is already set in ethtool");
2705 			goto err_locked;
2706 		}
2707 	}
2708 
2709 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2710 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2711 			err = -EEXIST;
2712 			NL_SET_ERR_MSG_MOD(extack,
2713 					   "This filter is already set in cls_flower");
2714 			goto err_locked;
2715 		}
2716 	}
2717 
2718 	err = igb_add_filter(adapter, filter);
2719 	if (err < 0) {
2720 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2721 		goto err_locked;
2722 	}
2723 
2724 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2725 
2726 	spin_unlock(&adapter->nfc_lock);
2727 
2728 	return 0;
2729 
2730 err_locked:
2731 	spin_unlock(&adapter->nfc_lock);
2732 
2733 err_parse:
2734 	kfree(filter);
2735 
2736 	return err;
2737 }
2738 
2739 static int igb_delete_clsflower(struct igb_adapter *adapter,
2740 				struct tc_cls_flower_offload *cls_flower)
2741 {
2742 	struct igb_nfc_filter *filter;
2743 	int err;
2744 
2745 	spin_lock(&adapter->nfc_lock);
2746 
2747 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2748 		if (filter->cookie == cls_flower->cookie)
2749 			break;
2750 
2751 	if (!filter) {
2752 		err = -ENOENT;
2753 		goto out;
2754 	}
2755 
2756 	err = igb_erase_filter(adapter, filter);
2757 	if (err < 0)
2758 		goto out;
2759 
2760 	hlist_del(&filter->nfc_node);
2761 	kfree(filter);
2762 
2763 out:
2764 	spin_unlock(&adapter->nfc_lock);
2765 
2766 	return err;
2767 }
2768 
2769 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2770 				   struct tc_cls_flower_offload *cls_flower)
2771 {
2772 	switch (cls_flower->command) {
2773 	case TC_CLSFLOWER_REPLACE:
2774 		return igb_configure_clsflower(adapter, cls_flower);
2775 	case TC_CLSFLOWER_DESTROY:
2776 		return igb_delete_clsflower(adapter, cls_flower);
2777 	case TC_CLSFLOWER_STATS:
2778 		return -EOPNOTSUPP;
2779 	default:
2780 		return -EOPNOTSUPP;
2781 	}
2782 }
2783 
2784 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2785 				 void *cb_priv)
2786 {
2787 	struct igb_adapter *adapter = cb_priv;
2788 
2789 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2790 		return -EOPNOTSUPP;
2791 
2792 	switch (type) {
2793 	case TC_SETUP_CLSFLOWER:
2794 		return igb_setup_tc_cls_flower(adapter, type_data);
2795 
2796 	default:
2797 		return -EOPNOTSUPP;
2798 	}
2799 }
2800 
2801 static int igb_setup_tc_block(struct igb_adapter *adapter,
2802 			      struct tc_block_offload *f)
2803 {
2804 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2805 		return -EOPNOTSUPP;
2806 
2807 	switch (f->command) {
2808 	case TC_BLOCK_BIND:
2809 		return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2810 					     adapter, adapter, f->extack);
2811 	case TC_BLOCK_UNBIND:
2812 		tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2813 					adapter);
2814 		return 0;
2815 	default:
2816 		return -EOPNOTSUPP;
2817 	}
2818 }
2819 
2820 static int igb_offload_txtime(struct igb_adapter *adapter,
2821 			      struct tc_etf_qopt_offload *qopt)
2822 {
2823 	struct e1000_hw *hw = &adapter->hw;
2824 	int err;
2825 
2826 	/* Launchtime offloading is only supported by i210 controller. */
2827 	if (hw->mac.type != e1000_i210)
2828 		return -EOPNOTSUPP;
2829 
2830 	/* Launchtime offloading is only supported by queues 0 and 1. */
2831 	if (qopt->queue < 0 || qopt->queue > 1)
2832 		return -EINVAL;
2833 
2834 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2835 	if (err)
2836 		return err;
2837 
2838 	igb_offload_apply(adapter, qopt->queue);
2839 
2840 	return 0;
2841 }
2842 
2843 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2844 			void *type_data)
2845 {
2846 	struct igb_adapter *adapter = netdev_priv(dev);
2847 
2848 	switch (type) {
2849 	case TC_SETUP_QDISC_CBS:
2850 		return igb_offload_cbs(adapter, type_data);
2851 	case TC_SETUP_BLOCK:
2852 		return igb_setup_tc_block(adapter, type_data);
2853 	case TC_SETUP_QDISC_ETF:
2854 		return igb_offload_txtime(adapter, type_data);
2855 
2856 	default:
2857 		return -EOPNOTSUPP;
2858 	}
2859 }
2860 
2861 static const struct net_device_ops igb_netdev_ops = {
2862 	.ndo_open		= igb_open,
2863 	.ndo_stop		= igb_close,
2864 	.ndo_start_xmit		= igb_xmit_frame,
2865 	.ndo_get_stats64	= igb_get_stats64,
2866 	.ndo_set_rx_mode	= igb_set_rx_mode,
2867 	.ndo_set_mac_address	= igb_set_mac,
2868 	.ndo_change_mtu		= igb_change_mtu,
2869 	.ndo_do_ioctl		= igb_ioctl,
2870 	.ndo_tx_timeout		= igb_tx_timeout,
2871 	.ndo_validate_addr	= eth_validate_addr,
2872 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2873 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2874 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2875 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2876 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2877 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2878 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2879 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2880 	.ndo_fix_features	= igb_fix_features,
2881 	.ndo_set_features	= igb_set_features,
2882 	.ndo_fdb_add		= igb_ndo_fdb_add,
2883 	.ndo_features_check	= igb_features_check,
2884 	.ndo_setup_tc		= igb_setup_tc,
2885 };
2886 
2887 /**
2888  * igb_set_fw_version - Configure version string for ethtool
2889  * @adapter: adapter struct
2890  **/
2891 void igb_set_fw_version(struct igb_adapter *adapter)
2892 {
2893 	struct e1000_hw *hw = &adapter->hw;
2894 	struct e1000_fw_version fw;
2895 
2896 	igb_get_fw_version(hw, &fw);
2897 
2898 	switch (hw->mac.type) {
2899 	case e1000_i210:
2900 	case e1000_i211:
2901 		if (!(igb_get_flash_presence_i210(hw))) {
2902 			snprintf(adapter->fw_version,
2903 				 sizeof(adapter->fw_version),
2904 				 "%2d.%2d-%d",
2905 				 fw.invm_major, fw.invm_minor,
2906 				 fw.invm_img_type);
2907 			break;
2908 		}
2909 		/* fall through */
2910 	default:
2911 		/* if option is rom valid, display its version too */
2912 		if (fw.or_valid) {
2913 			snprintf(adapter->fw_version,
2914 				 sizeof(adapter->fw_version),
2915 				 "%d.%d, 0x%08x, %d.%d.%d",
2916 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2917 				 fw.or_major, fw.or_build, fw.or_patch);
2918 		/* no option rom */
2919 		} else if (fw.etrack_id != 0X0000) {
2920 			snprintf(adapter->fw_version,
2921 			    sizeof(adapter->fw_version),
2922 			    "%d.%d, 0x%08x",
2923 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2924 		} else {
2925 		snprintf(adapter->fw_version,
2926 		    sizeof(adapter->fw_version),
2927 		    "%d.%d.%d",
2928 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2929 		}
2930 		break;
2931 	}
2932 }
2933 
2934 /**
2935  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2936  *
2937  * @adapter: adapter struct
2938  **/
2939 static void igb_init_mas(struct igb_adapter *adapter)
2940 {
2941 	struct e1000_hw *hw = &adapter->hw;
2942 	u16 eeprom_data;
2943 
2944 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2945 	switch (hw->bus.func) {
2946 	case E1000_FUNC_0:
2947 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2948 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2949 			netdev_info(adapter->netdev,
2950 				"MAS: Enabling Media Autosense for port %d\n",
2951 				hw->bus.func);
2952 		}
2953 		break;
2954 	case E1000_FUNC_1:
2955 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2956 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2957 			netdev_info(adapter->netdev,
2958 				"MAS: Enabling Media Autosense for port %d\n",
2959 				hw->bus.func);
2960 		}
2961 		break;
2962 	case E1000_FUNC_2:
2963 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2964 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2965 			netdev_info(adapter->netdev,
2966 				"MAS: Enabling Media Autosense for port %d\n",
2967 				hw->bus.func);
2968 		}
2969 		break;
2970 	case E1000_FUNC_3:
2971 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2972 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2973 			netdev_info(adapter->netdev,
2974 				"MAS: Enabling Media Autosense for port %d\n",
2975 				hw->bus.func);
2976 		}
2977 		break;
2978 	default:
2979 		/* Shouldn't get here */
2980 		netdev_err(adapter->netdev,
2981 			"MAS: Invalid port configuration, returning\n");
2982 		break;
2983 	}
2984 }
2985 
2986 /**
2987  *  igb_init_i2c - Init I2C interface
2988  *  @adapter: pointer to adapter structure
2989  **/
2990 static s32 igb_init_i2c(struct igb_adapter *adapter)
2991 {
2992 	s32 status = 0;
2993 
2994 	/* I2C interface supported on i350 devices */
2995 	if (adapter->hw.mac.type != e1000_i350)
2996 		return 0;
2997 
2998 	/* Initialize the i2c bus which is controlled by the registers.
2999 	 * This bus will use the i2c_algo_bit structue that implements
3000 	 * the protocol through toggling of the 4 bits in the register.
3001 	 */
3002 	adapter->i2c_adap.owner = THIS_MODULE;
3003 	adapter->i2c_algo = igb_i2c_algo;
3004 	adapter->i2c_algo.data = adapter;
3005 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3006 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3007 	strlcpy(adapter->i2c_adap.name, "igb BB",
3008 		sizeof(adapter->i2c_adap.name));
3009 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3010 	return status;
3011 }
3012 
3013 /**
3014  *  igb_probe - Device Initialization Routine
3015  *  @pdev: PCI device information struct
3016  *  @ent: entry in igb_pci_tbl
3017  *
3018  *  Returns 0 on success, negative on failure
3019  *
3020  *  igb_probe initializes an adapter identified by a pci_dev structure.
3021  *  The OS initialization, configuring of the adapter private structure,
3022  *  and a hardware reset occur.
3023  **/
3024 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3025 {
3026 	struct net_device *netdev;
3027 	struct igb_adapter *adapter;
3028 	struct e1000_hw *hw;
3029 	u16 eeprom_data = 0;
3030 	s32 ret_val;
3031 	static int global_quad_port_a; /* global quad port a indication */
3032 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3033 	int err, pci_using_dac;
3034 	u8 part_str[E1000_PBANUM_LENGTH];
3035 
3036 	/* Catch broken hardware that put the wrong VF device ID in
3037 	 * the PCIe SR-IOV capability.
3038 	 */
3039 	if (pdev->is_virtfn) {
3040 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3041 			pci_name(pdev), pdev->vendor, pdev->device);
3042 		return -EINVAL;
3043 	}
3044 
3045 	err = pci_enable_device_mem(pdev);
3046 	if (err)
3047 		return err;
3048 
3049 	pci_using_dac = 0;
3050 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3051 	if (!err) {
3052 		pci_using_dac = 1;
3053 	} else {
3054 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3055 		if (err) {
3056 			dev_err(&pdev->dev,
3057 				"No usable DMA configuration, aborting\n");
3058 			goto err_dma;
3059 		}
3060 	}
3061 
3062 	err = pci_request_mem_regions(pdev, igb_driver_name);
3063 	if (err)
3064 		goto err_pci_reg;
3065 
3066 	pci_enable_pcie_error_reporting(pdev);
3067 
3068 	pci_set_master(pdev);
3069 	pci_save_state(pdev);
3070 
3071 	err = -ENOMEM;
3072 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3073 				   IGB_MAX_TX_QUEUES);
3074 	if (!netdev)
3075 		goto err_alloc_etherdev;
3076 
3077 	SET_NETDEV_DEV(netdev, &pdev->dev);
3078 
3079 	pci_set_drvdata(pdev, netdev);
3080 	adapter = netdev_priv(netdev);
3081 	adapter->netdev = netdev;
3082 	adapter->pdev = pdev;
3083 	hw = &adapter->hw;
3084 	hw->back = adapter;
3085 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3086 
3087 	err = -EIO;
3088 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3089 	if (!adapter->io_addr)
3090 		goto err_ioremap;
3091 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3092 	hw->hw_addr = adapter->io_addr;
3093 
3094 	netdev->netdev_ops = &igb_netdev_ops;
3095 	igb_set_ethtool_ops(netdev);
3096 	netdev->watchdog_timeo = 5 * HZ;
3097 
3098 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3099 
3100 	netdev->mem_start = pci_resource_start(pdev, 0);
3101 	netdev->mem_end = pci_resource_end(pdev, 0);
3102 
3103 	/* PCI config space info */
3104 	hw->vendor_id = pdev->vendor;
3105 	hw->device_id = pdev->device;
3106 	hw->revision_id = pdev->revision;
3107 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3108 	hw->subsystem_device_id = pdev->subsystem_device;
3109 
3110 	/* Copy the default MAC, PHY and NVM function pointers */
3111 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3112 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3113 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3114 	/* Initialize skew-specific constants */
3115 	err = ei->get_invariants(hw);
3116 	if (err)
3117 		goto err_sw_init;
3118 
3119 	/* setup the private structure */
3120 	err = igb_sw_init(adapter);
3121 	if (err)
3122 		goto err_sw_init;
3123 
3124 	igb_get_bus_info_pcie(hw);
3125 
3126 	hw->phy.autoneg_wait_to_complete = false;
3127 
3128 	/* Copper options */
3129 	if (hw->phy.media_type == e1000_media_type_copper) {
3130 		hw->phy.mdix = AUTO_ALL_MODES;
3131 		hw->phy.disable_polarity_correction = false;
3132 		hw->phy.ms_type = e1000_ms_hw_default;
3133 	}
3134 
3135 	if (igb_check_reset_block(hw))
3136 		dev_info(&pdev->dev,
3137 			"PHY reset is blocked due to SOL/IDER session.\n");
3138 
3139 	/* features is initialized to 0 in allocation, it might have bits
3140 	 * set by igb_sw_init so we should use an or instead of an
3141 	 * assignment.
3142 	 */
3143 	netdev->features |= NETIF_F_SG |
3144 			    NETIF_F_TSO |
3145 			    NETIF_F_TSO6 |
3146 			    NETIF_F_RXHASH |
3147 			    NETIF_F_RXCSUM |
3148 			    NETIF_F_HW_CSUM;
3149 
3150 	if (hw->mac.type >= e1000_82576)
3151 		netdev->features |= NETIF_F_SCTP_CRC;
3152 
3153 	if (hw->mac.type >= e1000_i350)
3154 		netdev->features |= NETIF_F_HW_TC;
3155 
3156 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3157 				  NETIF_F_GSO_GRE_CSUM | \
3158 				  NETIF_F_GSO_IPXIP4 | \
3159 				  NETIF_F_GSO_IPXIP6 | \
3160 				  NETIF_F_GSO_UDP_TUNNEL | \
3161 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3162 
3163 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3164 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3165 
3166 	/* copy netdev features into list of user selectable features */
3167 	netdev->hw_features |= netdev->features |
3168 			       NETIF_F_HW_VLAN_CTAG_RX |
3169 			       NETIF_F_HW_VLAN_CTAG_TX |
3170 			       NETIF_F_RXALL;
3171 
3172 	if (hw->mac.type >= e1000_i350)
3173 		netdev->hw_features |= NETIF_F_NTUPLE;
3174 
3175 	if (pci_using_dac)
3176 		netdev->features |= NETIF_F_HIGHDMA;
3177 
3178 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3179 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3180 	netdev->hw_enc_features |= netdev->vlan_features;
3181 
3182 	/* set this bit last since it cannot be part of vlan_features */
3183 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3184 			    NETIF_F_HW_VLAN_CTAG_RX |
3185 			    NETIF_F_HW_VLAN_CTAG_TX;
3186 
3187 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3188 
3189 	netdev->priv_flags |= IFF_UNICAST_FLT;
3190 
3191 	/* MTU range: 68 - 9216 */
3192 	netdev->min_mtu = ETH_MIN_MTU;
3193 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3194 
3195 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3196 
3197 	/* before reading the NVM, reset the controller to put the device in a
3198 	 * known good starting state
3199 	 */
3200 	hw->mac.ops.reset_hw(hw);
3201 
3202 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3203 	 * that doesn't contain a checksum
3204 	 */
3205 	switch (hw->mac.type) {
3206 	case e1000_i210:
3207 	case e1000_i211:
3208 		if (igb_get_flash_presence_i210(hw)) {
3209 			if (hw->nvm.ops.validate(hw) < 0) {
3210 				dev_err(&pdev->dev,
3211 					"The NVM Checksum Is Not Valid\n");
3212 				err = -EIO;
3213 				goto err_eeprom;
3214 			}
3215 		}
3216 		break;
3217 	default:
3218 		if (hw->nvm.ops.validate(hw) < 0) {
3219 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3220 			err = -EIO;
3221 			goto err_eeprom;
3222 		}
3223 		break;
3224 	}
3225 
3226 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3227 		/* copy the MAC address out of the NVM */
3228 		if (hw->mac.ops.read_mac_addr(hw))
3229 			dev_err(&pdev->dev, "NVM Read Error\n");
3230 	}
3231 
3232 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3233 
3234 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3235 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3236 		err = -EIO;
3237 		goto err_eeprom;
3238 	}
3239 
3240 	igb_set_default_mac_filter(adapter);
3241 
3242 	/* get firmware version for ethtool -i */
3243 	igb_set_fw_version(adapter);
3244 
3245 	/* configure RXPBSIZE and TXPBSIZE */
3246 	if (hw->mac.type == e1000_i210) {
3247 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3248 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3249 	}
3250 
3251 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3252 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3253 
3254 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3255 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3256 
3257 	/* Initialize link properties that are user-changeable */
3258 	adapter->fc_autoneg = true;
3259 	hw->mac.autoneg = true;
3260 	hw->phy.autoneg_advertised = 0x2f;
3261 
3262 	hw->fc.requested_mode = e1000_fc_default;
3263 	hw->fc.current_mode = e1000_fc_default;
3264 
3265 	igb_validate_mdi_setting(hw);
3266 
3267 	/* By default, support wake on port A */
3268 	if (hw->bus.func == 0)
3269 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3270 
3271 	/* Check the NVM for wake support on non-port A ports */
3272 	if (hw->mac.type >= e1000_82580)
3273 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3274 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3275 				 &eeprom_data);
3276 	else if (hw->bus.func == 1)
3277 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3278 
3279 	if (eeprom_data & IGB_EEPROM_APME)
3280 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3281 
3282 	/* now that we have the eeprom settings, apply the special cases where
3283 	 * the eeprom may be wrong or the board simply won't support wake on
3284 	 * lan on a particular port
3285 	 */
3286 	switch (pdev->device) {
3287 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3288 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3289 		break;
3290 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3291 	case E1000_DEV_ID_82576_FIBER:
3292 	case E1000_DEV_ID_82576_SERDES:
3293 		/* Wake events only supported on port A for dual fiber
3294 		 * regardless of eeprom setting
3295 		 */
3296 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3297 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3298 		break;
3299 	case E1000_DEV_ID_82576_QUAD_COPPER:
3300 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3301 		/* if quad port adapter, disable WoL on all but port A */
3302 		if (global_quad_port_a != 0)
3303 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3304 		else
3305 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3306 		/* Reset for multiple quad port adapters */
3307 		if (++global_quad_port_a == 4)
3308 			global_quad_port_a = 0;
3309 		break;
3310 	default:
3311 		/* If the device can't wake, don't set software support */
3312 		if (!device_can_wakeup(&adapter->pdev->dev))
3313 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3314 	}
3315 
3316 	/* initialize the wol settings based on the eeprom settings */
3317 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3318 		adapter->wol |= E1000_WUFC_MAG;
3319 
3320 	/* Some vendors want WoL disabled by default, but still supported */
3321 	if ((hw->mac.type == e1000_i350) &&
3322 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3323 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3324 		adapter->wol = 0;
3325 	}
3326 
3327 	/* Some vendors want the ability to Use the EEPROM setting as
3328 	 * enable/disable only, and not for capability
3329 	 */
3330 	if (((hw->mac.type == e1000_i350) ||
3331 	     (hw->mac.type == e1000_i354)) &&
3332 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3333 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3334 		adapter->wol = 0;
3335 	}
3336 	if (hw->mac.type == e1000_i350) {
3337 		if (((pdev->subsystem_device == 0x5001) ||
3338 		     (pdev->subsystem_device == 0x5002)) &&
3339 				(hw->bus.func == 0)) {
3340 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3341 			adapter->wol = 0;
3342 		}
3343 		if (pdev->subsystem_device == 0x1F52)
3344 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3345 	}
3346 
3347 	device_set_wakeup_enable(&adapter->pdev->dev,
3348 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3349 
3350 	/* reset the hardware with the new settings */
3351 	igb_reset(adapter);
3352 
3353 	/* Init the I2C interface */
3354 	err = igb_init_i2c(adapter);
3355 	if (err) {
3356 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3357 		goto err_eeprom;
3358 	}
3359 
3360 	/* let the f/w know that the h/w is now under the control of the
3361 	 * driver.
3362 	 */
3363 	igb_get_hw_control(adapter);
3364 
3365 	strcpy(netdev->name, "eth%d");
3366 	err = register_netdev(netdev);
3367 	if (err)
3368 		goto err_register;
3369 
3370 	/* carrier off reporting is important to ethtool even BEFORE open */
3371 	netif_carrier_off(netdev);
3372 
3373 #ifdef CONFIG_IGB_DCA
3374 	if (dca_add_requester(&pdev->dev) == 0) {
3375 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3376 		dev_info(&pdev->dev, "DCA enabled\n");
3377 		igb_setup_dca(adapter);
3378 	}
3379 
3380 #endif
3381 #ifdef CONFIG_IGB_HWMON
3382 	/* Initialize the thermal sensor on i350 devices. */
3383 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3384 		u16 ets_word;
3385 
3386 		/* Read the NVM to determine if this i350 device supports an
3387 		 * external thermal sensor.
3388 		 */
3389 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3390 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3391 			adapter->ets = true;
3392 		else
3393 			adapter->ets = false;
3394 		if (igb_sysfs_init(adapter))
3395 			dev_err(&pdev->dev,
3396 				"failed to allocate sysfs resources\n");
3397 	} else {
3398 		adapter->ets = false;
3399 	}
3400 #endif
3401 	/* Check if Media Autosense is enabled */
3402 	adapter->ei = *ei;
3403 	if (hw->dev_spec._82575.mas_capable)
3404 		igb_init_mas(adapter);
3405 
3406 	/* do hw tstamp init after resetting */
3407 	igb_ptp_init(adapter);
3408 
3409 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3410 	/* print bus type/speed/width info, not applicable to i354 */
3411 	if (hw->mac.type != e1000_i354) {
3412 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3413 			 netdev->name,
3414 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3415 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3416 			   "unknown"),
3417 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3418 			  "Width x4" :
3419 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3420 			  "Width x2" :
3421 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3422 			  "Width x1" : "unknown"), netdev->dev_addr);
3423 	}
3424 
3425 	if ((hw->mac.type >= e1000_i210 ||
3426 	     igb_get_flash_presence_i210(hw))) {
3427 		ret_val = igb_read_part_string(hw, part_str,
3428 					       E1000_PBANUM_LENGTH);
3429 	} else {
3430 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3431 	}
3432 
3433 	if (ret_val)
3434 		strcpy(part_str, "Unknown");
3435 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3436 	dev_info(&pdev->dev,
3437 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3438 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3439 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3440 		adapter->num_rx_queues, adapter->num_tx_queues);
3441 	if (hw->phy.media_type == e1000_media_type_copper) {
3442 		switch (hw->mac.type) {
3443 		case e1000_i350:
3444 		case e1000_i210:
3445 		case e1000_i211:
3446 			/* Enable EEE for internal copper PHY devices */
3447 			err = igb_set_eee_i350(hw, true, true);
3448 			if ((!err) &&
3449 			    (!hw->dev_spec._82575.eee_disable)) {
3450 				adapter->eee_advert =
3451 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3452 				adapter->flags |= IGB_FLAG_EEE;
3453 			}
3454 			break;
3455 		case e1000_i354:
3456 			if ((rd32(E1000_CTRL_EXT) &
3457 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3458 				err = igb_set_eee_i354(hw, true, true);
3459 				if ((!err) &&
3460 					(!hw->dev_spec._82575.eee_disable)) {
3461 					adapter->eee_advert =
3462 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3463 					adapter->flags |= IGB_FLAG_EEE;
3464 				}
3465 			}
3466 			break;
3467 		default:
3468 			break;
3469 		}
3470 	}
3471 	pm_runtime_put_noidle(&pdev->dev);
3472 	return 0;
3473 
3474 err_register:
3475 	igb_release_hw_control(adapter);
3476 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3477 err_eeprom:
3478 	if (!igb_check_reset_block(hw))
3479 		igb_reset_phy(hw);
3480 
3481 	if (hw->flash_address)
3482 		iounmap(hw->flash_address);
3483 err_sw_init:
3484 	kfree(adapter->mac_table);
3485 	kfree(adapter->shadow_vfta);
3486 	igb_clear_interrupt_scheme(adapter);
3487 #ifdef CONFIG_PCI_IOV
3488 	igb_disable_sriov(pdev);
3489 #endif
3490 	pci_iounmap(pdev, adapter->io_addr);
3491 err_ioremap:
3492 	free_netdev(netdev);
3493 err_alloc_etherdev:
3494 	pci_release_mem_regions(pdev);
3495 err_pci_reg:
3496 err_dma:
3497 	pci_disable_device(pdev);
3498 	return err;
3499 }
3500 
3501 #ifdef CONFIG_PCI_IOV
3502 static int igb_disable_sriov(struct pci_dev *pdev)
3503 {
3504 	struct net_device *netdev = pci_get_drvdata(pdev);
3505 	struct igb_adapter *adapter = netdev_priv(netdev);
3506 	struct e1000_hw *hw = &adapter->hw;
3507 
3508 	/* reclaim resources allocated to VFs */
3509 	if (adapter->vf_data) {
3510 		/* disable iov and allow time for transactions to clear */
3511 		if (pci_vfs_assigned(pdev)) {
3512 			dev_warn(&pdev->dev,
3513 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3514 			return -EPERM;
3515 		} else {
3516 			pci_disable_sriov(pdev);
3517 			msleep(500);
3518 		}
3519 
3520 		kfree(adapter->vf_mac_list);
3521 		adapter->vf_mac_list = NULL;
3522 		kfree(adapter->vf_data);
3523 		adapter->vf_data = NULL;
3524 		adapter->vfs_allocated_count = 0;
3525 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3526 		wrfl();
3527 		msleep(100);
3528 		dev_info(&pdev->dev, "IOV Disabled\n");
3529 
3530 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3531 		adapter->flags |= IGB_FLAG_DMAC;
3532 	}
3533 
3534 	return 0;
3535 }
3536 
3537 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3538 {
3539 	struct net_device *netdev = pci_get_drvdata(pdev);
3540 	struct igb_adapter *adapter = netdev_priv(netdev);
3541 	int old_vfs = pci_num_vf(pdev);
3542 	struct vf_mac_filter *mac_list;
3543 	int err = 0;
3544 	int num_vf_mac_filters, i;
3545 
3546 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3547 		err = -EPERM;
3548 		goto out;
3549 	}
3550 	if (!num_vfs)
3551 		goto out;
3552 
3553 	if (old_vfs) {
3554 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3555 			 old_vfs, max_vfs);
3556 		adapter->vfs_allocated_count = old_vfs;
3557 	} else
3558 		adapter->vfs_allocated_count = num_vfs;
3559 
3560 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3561 				sizeof(struct vf_data_storage), GFP_KERNEL);
3562 
3563 	/* if allocation failed then we do not support SR-IOV */
3564 	if (!adapter->vf_data) {
3565 		adapter->vfs_allocated_count = 0;
3566 		err = -ENOMEM;
3567 		goto out;
3568 	}
3569 
3570 	/* Due to the limited number of RAR entries calculate potential
3571 	 * number of MAC filters available for the VFs. Reserve entries
3572 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3573 	 * for each VF for VF MAC.
3574 	 */
3575 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3576 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3577 			      adapter->vfs_allocated_count);
3578 
3579 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3580 				       sizeof(struct vf_mac_filter),
3581 				       GFP_KERNEL);
3582 
3583 	mac_list = adapter->vf_mac_list;
3584 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3585 
3586 	if (adapter->vf_mac_list) {
3587 		/* Initialize list of VF MAC filters */
3588 		for (i = 0; i < num_vf_mac_filters; i++) {
3589 			mac_list->vf = -1;
3590 			mac_list->free = true;
3591 			list_add(&mac_list->l, &adapter->vf_macs.l);
3592 			mac_list++;
3593 		}
3594 	} else {
3595 		/* If we could not allocate memory for the VF MAC filters
3596 		 * we can continue without this feature but warn user.
3597 		 */
3598 		dev_err(&pdev->dev,
3599 			"Unable to allocate memory for VF MAC filter list\n");
3600 	}
3601 
3602 	/* only call pci_enable_sriov() if no VFs are allocated already */
3603 	if (!old_vfs) {
3604 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3605 		if (err)
3606 			goto err_out;
3607 	}
3608 	dev_info(&pdev->dev, "%d VFs allocated\n",
3609 		 adapter->vfs_allocated_count);
3610 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3611 		igb_vf_configure(adapter, i);
3612 
3613 	/* DMA Coalescing is not supported in IOV mode. */
3614 	adapter->flags &= ~IGB_FLAG_DMAC;
3615 	goto out;
3616 
3617 err_out:
3618 	kfree(adapter->vf_mac_list);
3619 	adapter->vf_mac_list = NULL;
3620 	kfree(adapter->vf_data);
3621 	adapter->vf_data = NULL;
3622 	adapter->vfs_allocated_count = 0;
3623 out:
3624 	return err;
3625 }
3626 
3627 #endif
3628 /**
3629  *  igb_remove_i2c - Cleanup  I2C interface
3630  *  @adapter: pointer to adapter structure
3631  **/
3632 static void igb_remove_i2c(struct igb_adapter *adapter)
3633 {
3634 	/* free the adapter bus structure */
3635 	i2c_del_adapter(&adapter->i2c_adap);
3636 }
3637 
3638 /**
3639  *  igb_remove - Device Removal Routine
3640  *  @pdev: PCI device information struct
3641  *
3642  *  igb_remove is called by the PCI subsystem to alert the driver
3643  *  that it should release a PCI device.  The could be caused by a
3644  *  Hot-Plug event, or because the driver is going to be removed from
3645  *  memory.
3646  **/
3647 static void igb_remove(struct pci_dev *pdev)
3648 {
3649 	struct net_device *netdev = pci_get_drvdata(pdev);
3650 	struct igb_adapter *adapter = netdev_priv(netdev);
3651 	struct e1000_hw *hw = &adapter->hw;
3652 
3653 	pm_runtime_get_noresume(&pdev->dev);
3654 #ifdef CONFIG_IGB_HWMON
3655 	igb_sysfs_exit(adapter);
3656 #endif
3657 	igb_remove_i2c(adapter);
3658 	igb_ptp_stop(adapter);
3659 	/* The watchdog timer may be rescheduled, so explicitly
3660 	 * disable watchdog from being rescheduled.
3661 	 */
3662 	set_bit(__IGB_DOWN, &adapter->state);
3663 	del_timer_sync(&adapter->watchdog_timer);
3664 	del_timer_sync(&adapter->phy_info_timer);
3665 
3666 	cancel_work_sync(&adapter->reset_task);
3667 	cancel_work_sync(&adapter->watchdog_task);
3668 
3669 #ifdef CONFIG_IGB_DCA
3670 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3671 		dev_info(&pdev->dev, "DCA disabled\n");
3672 		dca_remove_requester(&pdev->dev);
3673 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3674 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3675 	}
3676 #endif
3677 
3678 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3679 	 * would have already happened in close and is redundant.
3680 	 */
3681 	igb_release_hw_control(adapter);
3682 
3683 #ifdef CONFIG_PCI_IOV
3684 	igb_disable_sriov(pdev);
3685 #endif
3686 
3687 	unregister_netdev(netdev);
3688 
3689 	igb_clear_interrupt_scheme(adapter);
3690 
3691 	pci_iounmap(pdev, adapter->io_addr);
3692 	if (hw->flash_address)
3693 		iounmap(hw->flash_address);
3694 	pci_release_mem_regions(pdev);
3695 
3696 	kfree(adapter->mac_table);
3697 	kfree(adapter->shadow_vfta);
3698 	free_netdev(netdev);
3699 
3700 	pci_disable_pcie_error_reporting(pdev);
3701 
3702 	pci_disable_device(pdev);
3703 }
3704 
3705 /**
3706  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3707  *  @adapter: board private structure to initialize
3708  *
3709  *  This function initializes the vf specific data storage and then attempts to
3710  *  allocate the VFs.  The reason for ordering it this way is because it is much
3711  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3712  *  the memory for the VFs.
3713  **/
3714 static void igb_probe_vfs(struct igb_adapter *adapter)
3715 {
3716 #ifdef CONFIG_PCI_IOV
3717 	struct pci_dev *pdev = adapter->pdev;
3718 	struct e1000_hw *hw = &adapter->hw;
3719 
3720 	/* Virtualization features not supported on i210 family. */
3721 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3722 		return;
3723 
3724 	/* Of the below we really only want the effect of getting
3725 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3726 	 * igb_enable_sriov() has no effect.
3727 	 */
3728 	igb_set_interrupt_capability(adapter, true);
3729 	igb_reset_interrupt_capability(adapter);
3730 
3731 	pci_sriov_set_totalvfs(pdev, 7);
3732 	igb_enable_sriov(pdev, max_vfs);
3733 
3734 #endif /* CONFIG_PCI_IOV */
3735 }
3736 
3737 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3738 {
3739 	struct e1000_hw *hw = &adapter->hw;
3740 	unsigned int max_rss_queues;
3741 
3742 	/* Determine the maximum number of RSS queues supported. */
3743 	switch (hw->mac.type) {
3744 	case e1000_i211:
3745 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3746 		break;
3747 	case e1000_82575:
3748 	case e1000_i210:
3749 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3750 		break;
3751 	case e1000_i350:
3752 		/* I350 cannot do RSS and SR-IOV at the same time */
3753 		if (!!adapter->vfs_allocated_count) {
3754 			max_rss_queues = 1;
3755 			break;
3756 		}
3757 		/* fall through */
3758 	case e1000_82576:
3759 		if (!!adapter->vfs_allocated_count) {
3760 			max_rss_queues = 2;
3761 			break;
3762 		}
3763 		/* fall through */
3764 	case e1000_82580:
3765 	case e1000_i354:
3766 	default:
3767 		max_rss_queues = IGB_MAX_RX_QUEUES;
3768 		break;
3769 	}
3770 
3771 	return max_rss_queues;
3772 }
3773 
3774 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3775 {
3776 	u32 max_rss_queues;
3777 
3778 	max_rss_queues = igb_get_max_rss_queues(adapter);
3779 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3780 
3781 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3782 }
3783 
3784 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3785 			      const u32 max_rss_queues)
3786 {
3787 	struct e1000_hw *hw = &adapter->hw;
3788 
3789 	/* Determine if we need to pair queues. */
3790 	switch (hw->mac.type) {
3791 	case e1000_82575:
3792 	case e1000_i211:
3793 		/* Device supports enough interrupts without queue pairing. */
3794 		break;
3795 	case e1000_82576:
3796 	case e1000_82580:
3797 	case e1000_i350:
3798 	case e1000_i354:
3799 	case e1000_i210:
3800 	default:
3801 		/* If rss_queues > half of max_rss_queues, pair the queues in
3802 		 * order to conserve interrupts due to limited supply.
3803 		 */
3804 		if (adapter->rss_queues > (max_rss_queues / 2))
3805 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3806 		else
3807 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3808 		break;
3809 	}
3810 }
3811 
3812 /**
3813  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3814  *  @adapter: board private structure to initialize
3815  *
3816  *  igb_sw_init initializes the Adapter private data structure.
3817  *  Fields are initialized based on PCI device information and
3818  *  OS network device settings (MTU size).
3819  **/
3820 static int igb_sw_init(struct igb_adapter *adapter)
3821 {
3822 	struct e1000_hw *hw = &adapter->hw;
3823 	struct net_device *netdev = adapter->netdev;
3824 	struct pci_dev *pdev = adapter->pdev;
3825 
3826 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3827 
3828 	/* set default ring sizes */
3829 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3830 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3831 
3832 	/* set default ITR values */
3833 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3834 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3835 
3836 	/* set default work limits */
3837 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3838 
3839 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3840 				  VLAN_HLEN;
3841 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3842 
3843 	spin_lock_init(&adapter->nfc_lock);
3844 	spin_lock_init(&adapter->stats64_lock);
3845 #ifdef CONFIG_PCI_IOV
3846 	switch (hw->mac.type) {
3847 	case e1000_82576:
3848 	case e1000_i350:
3849 		if (max_vfs > 7) {
3850 			dev_warn(&pdev->dev,
3851 				 "Maximum of 7 VFs per PF, using max\n");
3852 			max_vfs = adapter->vfs_allocated_count = 7;
3853 		} else
3854 			adapter->vfs_allocated_count = max_vfs;
3855 		if (adapter->vfs_allocated_count)
3856 			dev_warn(&pdev->dev,
3857 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3858 		break;
3859 	default:
3860 		break;
3861 	}
3862 #endif /* CONFIG_PCI_IOV */
3863 
3864 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3865 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3866 
3867 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3868 				     sizeof(struct igb_mac_addr),
3869 				     GFP_KERNEL);
3870 	if (!adapter->mac_table)
3871 		return -ENOMEM;
3872 
3873 	igb_probe_vfs(adapter);
3874 
3875 	igb_init_queue_configuration(adapter);
3876 
3877 	/* Setup and initialize a copy of the hw vlan table array */
3878 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3879 				       GFP_KERNEL);
3880 	if (!adapter->shadow_vfta)
3881 		return -ENOMEM;
3882 
3883 	/* This call may decrease the number of queues */
3884 	if (igb_init_interrupt_scheme(adapter, true)) {
3885 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3886 		return -ENOMEM;
3887 	}
3888 
3889 	/* Explicitly disable IRQ since the NIC can be in any state. */
3890 	igb_irq_disable(adapter);
3891 
3892 	if (hw->mac.type >= e1000_i350)
3893 		adapter->flags &= ~IGB_FLAG_DMAC;
3894 
3895 	set_bit(__IGB_DOWN, &adapter->state);
3896 	return 0;
3897 }
3898 
3899 /**
3900  *  igb_open - Called when a network interface is made active
3901  *  @netdev: network interface device structure
3902  *
3903  *  Returns 0 on success, negative value on failure
3904  *
3905  *  The open entry point is called when a network interface is made
3906  *  active by the system (IFF_UP).  At this point all resources needed
3907  *  for transmit and receive operations are allocated, the interrupt
3908  *  handler is registered with the OS, the watchdog timer is started,
3909  *  and the stack is notified that the interface is ready.
3910  **/
3911 static int __igb_open(struct net_device *netdev, bool resuming)
3912 {
3913 	struct igb_adapter *adapter = netdev_priv(netdev);
3914 	struct e1000_hw *hw = &adapter->hw;
3915 	struct pci_dev *pdev = adapter->pdev;
3916 	int err;
3917 	int i;
3918 
3919 	/* disallow open during test */
3920 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3921 		WARN_ON(resuming);
3922 		return -EBUSY;
3923 	}
3924 
3925 	if (!resuming)
3926 		pm_runtime_get_sync(&pdev->dev);
3927 
3928 	netif_carrier_off(netdev);
3929 
3930 	/* allocate transmit descriptors */
3931 	err = igb_setup_all_tx_resources(adapter);
3932 	if (err)
3933 		goto err_setup_tx;
3934 
3935 	/* allocate receive descriptors */
3936 	err = igb_setup_all_rx_resources(adapter);
3937 	if (err)
3938 		goto err_setup_rx;
3939 
3940 	igb_power_up_link(adapter);
3941 
3942 	/* before we allocate an interrupt, we must be ready to handle it.
3943 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3944 	 * as soon as we call pci_request_irq, so we have to setup our
3945 	 * clean_rx handler before we do so.
3946 	 */
3947 	igb_configure(adapter);
3948 
3949 	err = igb_request_irq(adapter);
3950 	if (err)
3951 		goto err_req_irq;
3952 
3953 	/* Notify the stack of the actual queue counts. */
3954 	err = netif_set_real_num_tx_queues(adapter->netdev,
3955 					   adapter->num_tx_queues);
3956 	if (err)
3957 		goto err_set_queues;
3958 
3959 	err = netif_set_real_num_rx_queues(adapter->netdev,
3960 					   adapter->num_rx_queues);
3961 	if (err)
3962 		goto err_set_queues;
3963 
3964 	/* From here on the code is the same as igb_up() */
3965 	clear_bit(__IGB_DOWN, &adapter->state);
3966 
3967 	for (i = 0; i < adapter->num_q_vectors; i++)
3968 		napi_enable(&(adapter->q_vector[i]->napi));
3969 
3970 	/* Clear any pending interrupts. */
3971 	rd32(E1000_TSICR);
3972 	rd32(E1000_ICR);
3973 
3974 	igb_irq_enable(adapter);
3975 
3976 	/* notify VFs that reset has been completed */
3977 	if (adapter->vfs_allocated_count) {
3978 		u32 reg_data = rd32(E1000_CTRL_EXT);
3979 
3980 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3981 		wr32(E1000_CTRL_EXT, reg_data);
3982 	}
3983 
3984 	netif_tx_start_all_queues(netdev);
3985 
3986 	if (!resuming)
3987 		pm_runtime_put(&pdev->dev);
3988 
3989 	/* start the watchdog. */
3990 	hw->mac.get_link_status = 1;
3991 	schedule_work(&adapter->watchdog_task);
3992 
3993 	return 0;
3994 
3995 err_set_queues:
3996 	igb_free_irq(adapter);
3997 err_req_irq:
3998 	igb_release_hw_control(adapter);
3999 	igb_power_down_link(adapter);
4000 	igb_free_all_rx_resources(adapter);
4001 err_setup_rx:
4002 	igb_free_all_tx_resources(adapter);
4003 err_setup_tx:
4004 	igb_reset(adapter);
4005 	if (!resuming)
4006 		pm_runtime_put(&pdev->dev);
4007 
4008 	return err;
4009 }
4010 
4011 int igb_open(struct net_device *netdev)
4012 {
4013 	return __igb_open(netdev, false);
4014 }
4015 
4016 /**
4017  *  igb_close - Disables a network interface
4018  *  @netdev: network interface device structure
4019  *
4020  *  Returns 0, this is not allowed to fail
4021  *
4022  *  The close entry point is called when an interface is de-activated
4023  *  by the OS.  The hardware is still under the driver's control, but
4024  *  needs to be disabled.  A global MAC reset is issued to stop the
4025  *  hardware, and all transmit and receive resources are freed.
4026  **/
4027 static int __igb_close(struct net_device *netdev, bool suspending)
4028 {
4029 	struct igb_adapter *adapter = netdev_priv(netdev);
4030 	struct pci_dev *pdev = adapter->pdev;
4031 
4032 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4033 
4034 	if (!suspending)
4035 		pm_runtime_get_sync(&pdev->dev);
4036 
4037 	igb_down(adapter);
4038 	igb_free_irq(adapter);
4039 
4040 	igb_free_all_tx_resources(adapter);
4041 	igb_free_all_rx_resources(adapter);
4042 
4043 	if (!suspending)
4044 		pm_runtime_put_sync(&pdev->dev);
4045 	return 0;
4046 }
4047 
4048 int igb_close(struct net_device *netdev)
4049 {
4050 	if (netif_device_present(netdev) || netdev->dismantle)
4051 		return __igb_close(netdev, false);
4052 	return 0;
4053 }
4054 
4055 /**
4056  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4057  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4058  *
4059  *  Return 0 on success, negative on failure
4060  **/
4061 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4062 {
4063 	struct device *dev = tx_ring->dev;
4064 	int size;
4065 
4066 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4067 
4068 	tx_ring->tx_buffer_info = vmalloc(size);
4069 	if (!tx_ring->tx_buffer_info)
4070 		goto err;
4071 
4072 	/* round up to nearest 4K */
4073 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4074 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4075 
4076 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4077 					   &tx_ring->dma, GFP_KERNEL);
4078 	if (!tx_ring->desc)
4079 		goto err;
4080 
4081 	tx_ring->next_to_use = 0;
4082 	tx_ring->next_to_clean = 0;
4083 
4084 	return 0;
4085 
4086 err:
4087 	vfree(tx_ring->tx_buffer_info);
4088 	tx_ring->tx_buffer_info = NULL;
4089 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4090 	return -ENOMEM;
4091 }
4092 
4093 /**
4094  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4095  *				 (Descriptors) for all queues
4096  *  @adapter: board private structure
4097  *
4098  *  Return 0 on success, negative on failure
4099  **/
4100 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4101 {
4102 	struct pci_dev *pdev = adapter->pdev;
4103 	int i, err = 0;
4104 
4105 	for (i = 0; i < adapter->num_tx_queues; i++) {
4106 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4107 		if (err) {
4108 			dev_err(&pdev->dev,
4109 				"Allocation for Tx Queue %u failed\n", i);
4110 			for (i--; i >= 0; i--)
4111 				igb_free_tx_resources(adapter->tx_ring[i]);
4112 			break;
4113 		}
4114 	}
4115 
4116 	return err;
4117 }
4118 
4119 /**
4120  *  igb_setup_tctl - configure the transmit control registers
4121  *  @adapter: Board private structure
4122  **/
4123 void igb_setup_tctl(struct igb_adapter *adapter)
4124 {
4125 	struct e1000_hw *hw = &adapter->hw;
4126 	u32 tctl;
4127 
4128 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4129 	wr32(E1000_TXDCTL(0), 0);
4130 
4131 	/* Program the Transmit Control Register */
4132 	tctl = rd32(E1000_TCTL);
4133 	tctl &= ~E1000_TCTL_CT;
4134 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4135 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4136 
4137 	igb_config_collision_dist(hw);
4138 
4139 	/* Enable transmits */
4140 	tctl |= E1000_TCTL_EN;
4141 
4142 	wr32(E1000_TCTL, tctl);
4143 }
4144 
4145 /**
4146  *  igb_configure_tx_ring - Configure transmit ring after Reset
4147  *  @adapter: board private structure
4148  *  @ring: tx ring to configure
4149  *
4150  *  Configure a transmit ring after a reset.
4151  **/
4152 void igb_configure_tx_ring(struct igb_adapter *adapter,
4153 			   struct igb_ring *ring)
4154 {
4155 	struct e1000_hw *hw = &adapter->hw;
4156 	u32 txdctl = 0;
4157 	u64 tdba = ring->dma;
4158 	int reg_idx = ring->reg_idx;
4159 
4160 	wr32(E1000_TDLEN(reg_idx),
4161 	     ring->count * sizeof(union e1000_adv_tx_desc));
4162 	wr32(E1000_TDBAL(reg_idx),
4163 	     tdba & 0x00000000ffffffffULL);
4164 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4165 
4166 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4167 	wr32(E1000_TDH(reg_idx), 0);
4168 	writel(0, ring->tail);
4169 
4170 	txdctl |= IGB_TX_PTHRESH;
4171 	txdctl |= IGB_TX_HTHRESH << 8;
4172 	txdctl |= IGB_TX_WTHRESH << 16;
4173 
4174 	/* reinitialize tx_buffer_info */
4175 	memset(ring->tx_buffer_info, 0,
4176 	       sizeof(struct igb_tx_buffer) * ring->count);
4177 
4178 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4179 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4180 }
4181 
4182 /**
4183  *  igb_configure_tx - Configure transmit Unit after Reset
4184  *  @adapter: board private structure
4185  *
4186  *  Configure the Tx unit of the MAC after a reset.
4187  **/
4188 static void igb_configure_tx(struct igb_adapter *adapter)
4189 {
4190 	struct e1000_hw *hw = &adapter->hw;
4191 	int i;
4192 
4193 	/* disable the queues */
4194 	for (i = 0; i < adapter->num_tx_queues; i++)
4195 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4196 
4197 	wrfl();
4198 	usleep_range(10000, 20000);
4199 
4200 	for (i = 0; i < adapter->num_tx_queues; i++)
4201 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4202 }
4203 
4204 /**
4205  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4206  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4207  *
4208  *  Returns 0 on success, negative on failure
4209  **/
4210 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4211 {
4212 	struct device *dev = rx_ring->dev;
4213 	int size;
4214 
4215 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4216 
4217 	rx_ring->rx_buffer_info = vmalloc(size);
4218 	if (!rx_ring->rx_buffer_info)
4219 		goto err;
4220 
4221 	/* Round up to nearest 4K */
4222 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4223 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4224 
4225 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4226 					   &rx_ring->dma, GFP_KERNEL);
4227 	if (!rx_ring->desc)
4228 		goto err;
4229 
4230 	rx_ring->next_to_alloc = 0;
4231 	rx_ring->next_to_clean = 0;
4232 	rx_ring->next_to_use = 0;
4233 
4234 	return 0;
4235 
4236 err:
4237 	vfree(rx_ring->rx_buffer_info);
4238 	rx_ring->rx_buffer_info = NULL;
4239 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4240 	return -ENOMEM;
4241 }
4242 
4243 /**
4244  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4245  *				 (Descriptors) for all queues
4246  *  @adapter: board private structure
4247  *
4248  *  Return 0 on success, negative on failure
4249  **/
4250 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4251 {
4252 	struct pci_dev *pdev = adapter->pdev;
4253 	int i, err = 0;
4254 
4255 	for (i = 0; i < adapter->num_rx_queues; i++) {
4256 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4257 		if (err) {
4258 			dev_err(&pdev->dev,
4259 				"Allocation for Rx Queue %u failed\n", i);
4260 			for (i--; i >= 0; i--)
4261 				igb_free_rx_resources(adapter->rx_ring[i]);
4262 			break;
4263 		}
4264 	}
4265 
4266 	return err;
4267 }
4268 
4269 /**
4270  *  igb_setup_mrqc - configure the multiple receive queue control registers
4271  *  @adapter: Board private structure
4272  **/
4273 static void igb_setup_mrqc(struct igb_adapter *adapter)
4274 {
4275 	struct e1000_hw *hw = &adapter->hw;
4276 	u32 mrqc, rxcsum;
4277 	u32 j, num_rx_queues;
4278 	u32 rss_key[10];
4279 
4280 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4281 	for (j = 0; j < 10; j++)
4282 		wr32(E1000_RSSRK(j), rss_key[j]);
4283 
4284 	num_rx_queues = adapter->rss_queues;
4285 
4286 	switch (hw->mac.type) {
4287 	case e1000_82576:
4288 		/* 82576 supports 2 RSS queues for SR-IOV */
4289 		if (adapter->vfs_allocated_count)
4290 			num_rx_queues = 2;
4291 		break;
4292 	default:
4293 		break;
4294 	}
4295 
4296 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4297 		for (j = 0; j < IGB_RETA_SIZE; j++)
4298 			adapter->rss_indir_tbl[j] =
4299 			(j * num_rx_queues) / IGB_RETA_SIZE;
4300 		adapter->rss_indir_tbl_init = num_rx_queues;
4301 	}
4302 	igb_write_rss_indir_tbl(adapter);
4303 
4304 	/* Disable raw packet checksumming so that RSS hash is placed in
4305 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4306 	 * offloads as they are enabled by default
4307 	 */
4308 	rxcsum = rd32(E1000_RXCSUM);
4309 	rxcsum |= E1000_RXCSUM_PCSD;
4310 
4311 	if (adapter->hw.mac.type >= e1000_82576)
4312 		/* Enable Receive Checksum Offload for SCTP */
4313 		rxcsum |= E1000_RXCSUM_CRCOFL;
4314 
4315 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4316 	wr32(E1000_RXCSUM, rxcsum);
4317 
4318 	/* Generate RSS hash based on packet types, TCP/UDP
4319 	 * port numbers and/or IPv4/v6 src and dst addresses
4320 	 */
4321 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4322 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4323 	       E1000_MRQC_RSS_FIELD_IPV6 |
4324 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4325 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4326 
4327 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4328 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4329 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4330 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4331 
4332 	/* If VMDq is enabled then we set the appropriate mode for that, else
4333 	 * we default to RSS so that an RSS hash is calculated per packet even
4334 	 * if we are only using one queue
4335 	 */
4336 	if (adapter->vfs_allocated_count) {
4337 		if (hw->mac.type > e1000_82575) {
4338 			/* Set the default pool for the PF's first queue */
4339 			u32 vtctl = rd32(E1000_VT_CTL);
4340 
4341 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4342 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4343 			vtctl |= adapter->vfs_allocated_count <<
4344 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4345 			wr32(E1000_VT_CTL, vtctl);
4346 		}
4347 		if (adapter->rss_queues > 1)
4348 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4349 		else
4350 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4351 	} else {
4352 		if (hw->mac.type != e1000_i211)
4353 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4354 	}
4355 	igb_vmm_control(adapter);
4356 
4357 	wr32(E1000_MRQC, mrqc);
4358 }
4359 
4360 /**
4361  *  igb_setup_rctl - configure the receive control registers
4362  *  @adapter: Board private structure
4363  **/
4364 void igb_setup_rctl(struct igb_adapter *adapter)
4365 {
4366 	struct e1000_hw *hw = &adapter->hw;
4367 	u32 rctl;
4368 
4369 	rctl = rd32(E1000_RCTL);
4370 
4371 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4372 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4373 
4374 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4375 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4376 
4377 	/* enable stripping of CRC. It's unlikely this will break BMC
4378 	 * redirection as it did with e1000. Newer features require
4379 	 * that the HW strips the CRC.
4380 	 */
4381 	rctl |= E1000_RCTL_SECRC;
4382 
4383 	/* disable store bad packets and clear size bits. */
4384 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4385 
4386 	/* enable LPE to allow for reception of jumbo frames */
4387 	rctl |= E1000_RCTL_LPE;
4388 
4389 	/* disable queue 0 to prevent tail write w/o re-config */
4390 	wr32(E1000_RXDCTL(0), 0);
4391 
4392 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4393 	 * queue drop for all VF and PF queues to prevent head of line blocking
4394 	 * if an un-trusted VF does not provide descriptors to hardware.
4395 	 */
4396 	if (adapter->vfs_allocated_count) {
4397 		/* set all queue drop enable bits */
4398 		wr32(E1000_QDE, ALL_QUEUES);
4399 	}
4400 
4401 	/* This is useful for sniffing bad packets. */
4402 	if (adapter->netdev->features & NETIF_F_RXALL) {
4403 		/* UPE and MPE will be handled by normal PROMISC logic
4404 		 * in e1000e_set_rx_mode
4405 		 */
4406 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4407 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4408 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4409 
4410 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4411 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4412 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4413 		 * and that breaks VLANs.
4414 		 */
4415 	}
4416 
4417 	wr32(E1000_RCTL, rctl);
4418 }
4419 
4420 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4421 				   int vfn)
4422 {
4423 	struct e1000_hw *hw = &adapter->hw;
4424 	u32 vmolr;
4425 
4426 	if (size > MAX_JUMBO_FRAME_SIZE)
4427 		size = MAX_JUMBO_FRAME_SIZE;
4428 
4429 	vmolr = rd32(E1000_VMOLR(vfn));
4430 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4431 	vmolr |= size | E1000_VMOLR_LPE;
4432 	wr32(E1000_VMOLR(vfn), vmolr);
4433 
4434 	return 0;
4435 }
4436 
4437 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4438 					 int vfn, bool enable)
4439 {
4440 	struct e1000_hw *hw = &adapter->hw;
4441 	u32 val, reg;
4442 
4443 	if (hw->mac.type < e1000_82576)
4444 		return;
4445 
4446 	if (hw->mac.type == e1000_i350)
4447 		reg = E1000_DVMOLR(vfn);
4448 	else
4449 		reg = E1000_VMOLR(vfn);
4450 
4451 	val = rd32(reg);
4452 	if (enable)
4453 		val |= E1000_VMOLR_STRVLAN;
4454 	else
4455 		val &= ~(E1000_VMOLR_STRVLAN);
4456 	wr32(reg, val);
4457 }
4458 
4459 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4460 				 int vfn, bool aupe)
4461 {
4462 	struct e1000_hw *hw = &adapter->hw;
4463 	u32 vmolr;
4464 
4465 	/* This register exists only on 82576 and newer so if we are older then
4466 	 * we should exit and do nothing
4467 	 */
4468 	if (hw->mac.type < e1000_82576)
4469 		return;
4470 
4471 	vmolr = rd32(E1000_VMOLR(vfn));
4472 	if (aupe)
4473 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4474 	else
4475 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4476 
4477 	/* clear all bits that might not be set */
4478 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4479 
4480 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4481 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4482 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4483 	 * multicast packets
4484 	 */
4485 	if (vfn <= adapter->vfs_allocated_count)
4486 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4487 
4488 	wr32(E1000_VMOLR(vfn), vmolr);
4489 }
4490 
4491 /**
4492  *  igb_configure_rx_ring - Configure a receive ring after Reset
4493  *  @adapter: board private structure
4494  *  @ring: receive ring to be configured
4495  *
4496  *  Configure the Rx unit of the MAC after a reset.
4497  **/
4498 void igb_configure_rx_ring(struct igb_adapter *adapter,
4499 			   struct igb_ring *ring)
4500 {
4501 	struct e1000_hw *hw = &adapter->hw;
4502 	union e1000_adv_rx_desc *rx_desc;
4503 	u64 rdba = ring->dma;
4504 	int reg_idx = ring->reg_idx;
4505 	u32 srrctl = 0, rxdctl = 0;
4506 
4507 	/* disable the queue */
4508 	wr32(E1000_RXDCTL(reg_idx), 0);
4509 
4510 	/* Set DMA base address registers */
4511 	wr32(E1000_RDBAL(reg_idx),
4512 	     rdba & 0x00000000ffffffffULL);
4513 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4514 	wr32(E1000_RDLEN(reg_idx),
4515 	     ring->count * sizeof(union e1000_adv_rx_desc));
4516 
4517 	/* initialize head and tail */
4518 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4519 	wr32(E1000_RDH(reg_idx), 0);
4520 	writel(0, ring->tail);
4521 
4522 	/* set descriptor configuration */
4523 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4524 	if (ring_uses_large_buffer(ring))
4525 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4526 	else
4527 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4528 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4529 	if (hw->mac.type >= e1000_82580)
4530 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4531 	/* Only set Drop Enable if we are supporting multiple queues */
4532 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4533 		srrctl |= E1000_SRRCTL_DROP_EN;
4534 
4535 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4536 
4537 	/* set filtering for VMDQ pools */
4538 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4539 
4540 	rxdctl |= IGB_RX_PTHRESH;
4541 	rxdctl |= IGB_RX_HTHRESH << 8;
4542 	rxdctl |= IGB_RX_WTHRESH << 16;
4543 
4544 	/* initialize rx_buffer_info */
4545 	memset(ring->rx_buffer_info, 0,
4546 	       sizeof(struct igb_rx_buffer) * ring->count);
4547 
4548 	/* initialize Rx descriptor 0 */
4549 	rx_desc = IGB_RX_DESC(ring, 0);
4550 	rx_desc->wb.upper.length = 0;
4551 
4552 	/* enable receive descriptor fetching */
4553 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4554 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4555 }
4556 
4557 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4558 				  struct igb_ring *rx_ring)
4559 {
4560 	/* set build_skb and buffer size flags */
4561 	clear_ring_build_skb_enabled(rx_ring);
4562 	clear_ring_uses_large_buffer(rx_ring);
4563 
4564 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4565 		return;
4566 
4567 	set_ring_build_skb_enabled(rx_ring);
4568 
4569 #if (PAGE_SIZE < 8192)
4570 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4571 		return;
4572 
4573 	set_ring_uses_large_buffer(rx_ring);
4574 #endif
4575 }
4576 
4577 /**
4578  *  igb_configure_rx - Configure receive Unit after Reset
4579  *  @adapter: board private structure
4580  *
4581  *  Configure the Rx unit of the MAC after a reset.
4582  **/
4583 static void igb_configure_rx(struct igb_adapter *adapter)
4584 {
4585 	int i;
4586 
4587 	/* set the correct pool for the PF default MAC address in entry 0 */
4588 	igb_set_default_mac_filter(adapter);
4589 
4590 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4591 	 * the Base and Length of the Rx Descriptor Ring
4592 	 */
4593 	for (i = 0; i < adapter->num_rx_queues; i++) {
4594 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4595 
4596 		igb_set_rx_buffer_len(adapter, rx_ring);
4597 		igb_configure_rx_ring(adapter, rx_ring);
4598 	}
4599 }
4600 
4601 /**
4602  *  igb_free_tx_resources - Free Tx Resources per Queue
4603  *  @tx_ring: Tx descriptor ring for a specific queue
4604  *
4605  *  Free all transmit software resources
4606  **/
4607 void igb_free_tx_resources(struct igb_ring *tx_ring)
4608 {
4609 	igb_clean_tx_ring(tx_ring);
4610 
4611 	vfree(tx_ring->tx_buffer_info);
4612 	tx_ring->tx_buffer_info = NULL;
4613 
4614 	/* if not set, then don't free */
4615 	if (!tx_ring->desc)
4616 		return;
4617 
4618 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4619 			  tx_ring->desc, tx_ring->dma);
4620 
4621 	tx_ring->desc = NULL;
4622 }
4623 
4624 /**
4625  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4626  *  @adapter: board private structure
4627  *
4628  *  Free all transmit software resources
4629  **/
4630 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4631 {
4632 	int i;
4633 
4634 	for (i = 0; i < adapter->num_tx_queues; i++)
4635 		if (adapter->tx_ring[i])
4636 			igb_free_tx_resources(adapter->tx_ring[i]);
4637 }
4638 
4639 /**
4640  *  igb_clean_tx_ring - Free Tx Buffers
4641  *  @tx_ring: ring to be cleaned
4642  **/
4643 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4644 {
4645 	u16 i = tx_ring->next_to_clean;
4646 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4647 
4648 	while (i != tx_ring->next_to_use) {
4649 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4650 
4651 		/* Free all the Tx ring sk_buffs */
4652 		dev_kfree_skb_any(tx_buffer->skb);
4653 
4654 		/* unmap skb header data */
4655 		dma_unmap_single(tx_ring->dev,
4656 				 dma_unmap_addr(tx_buffer, dma),
4657 				 dma_unmap_len(tx_buffer, len),
4658 				 DMA_TO_DEVICE);
4659 
4660 		/* check for eop_desc to determine the end of the packet */
4661 		eop_desc = tx_buffer->next_to_watch;
4662 		tx_desc = IGB_TX_DESC(tx_ring, i);
4663 
4664 		/* unmap remaining buffers */
4665 		while (tx_desc != eop_desc) {
4666 			tx_buffer++;
4667 			tx_desc++;
4668 			i++;
4669 			if (unlikely(i == tx_ring->count)) {
4670 				i = 0;
4671 				tx_buffer = tx_ring->tx_buffer_info;
4672 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4673 			}
4674 
4675 			/* unmap any remaining paged data */
4676 			if (dma_unmap_len(tx_buffer, len))
4677 				dma_unmap_page(tx_ring->dev,
4678 					       dma_unmap_addr(tx_buffer, dma),
4679 					       dma_unmap_len(tx_buffer, len),
4680 					       DMA_TO_DEVICE);
4681 		}
4682 
4683 		/* move us one more past the eop_desc for start of next pkt */
4684 		tx_buffer++;
4685 		i++;
4686 		if (unlikely(i == tx_ring->count)) {
4687 			i = 0;
4688 			tx_buffer = tx_ring->tx_buffer_info;
4689 		}
4690 	}
4691 
4692 	/* reset BQL for queue */
4693 	netdev_tx_reset_queue(txring_txq(tx_ring));
4694 
4695 	/* reset next_to_use and next_to_clean */
4696 	tx_ring->next_to_use = 0;
4697 	tx_ring->next_to_clean = 0;
4698 }
4699 
4700 /**
4701  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4702  *  @adapter: board private structure
4703  **/
4704 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4705 {
4706 	int i;
4707 
4708 	for (i = 0; i < adapter->num_tx_queues; i++)
4709 		if (adapter->tx_ring[i])
4710 			igb_clean_tx_ring(adapter->tx_ring[i]);
4711 }
4712 
4713 /**
4714  *  igb_free_rx_resources - Free Rx Resources
4715  *  @rx_ring: ring to clean the resources from
4716  *
4717  *  Free all receive software resources
4718  **/
4719 void igb_free_rx_resources(struct igb_ring *rx_ring)
4720 {
4721 	igb_clean_rx_ring(rx_ring);
4722 
4723 	vfree(rx_ring->rx_buffer_info);
4724 	rx_ring->rx_buffer_info = NULL;
4725 
4726 	/* if not set, then don't free */
4727 	if (!rx_ring->desc)
4728 		return;
4729 
4730 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4731 			  rx_ring->desc, rx_ring->dma);
4732 
4733 	rx_ring->desc = NULL;
4734 }
4735 
4736 /**
4737  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4738  *  @adapter: board private structure
4739  *
4740  *  Free all receive software resources
4741  **/
4742 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4743 {
4744 	int i;
4745 
4746 	for (i = 0; i < adapter->num_rx_queues; i++)
4747 		if (adapter->rx_ring[i])
4748 			igb_free_rx_resources(adapter->rx_ring[i]);
4749 }
4750 
4751 /**
4752  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4753  *  @rx_ring: ring to free buffers from
4754  **/
4755 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4756 {
4757 	u16 i = rx_ring->next_to_clean;
4758 
4759 	if (rx_ring->skb)
4760 		dev_kfree_skb(rx_ring->skb);
4761 	rx_ring->skb = NULL;
4762 
4763 	/* Free all the Rx ring sk_buffs */
4764 	while (i != rx_ring->next_to_alloc) {
4765 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4766 
4767 		/* Invalidate cache lines that may have been written to by
4768 		 * device so that we avoid corrupting memory.
4769 		 */
4770 		dma_sync_single_range_for_cpu(rx_ring->dev,
4771 					      buffer_info->dma,
4772 					      buffer_info->page_offset,
4773 					      igb_rx_bufsz(rx_ring),
4774 					      DMA_FROM_DEVICE);
4775 
4776 		/* free resources associated with mapping */
4777 		dma_unmap_page_attrs(rx_ring->dev,
4778 				     buffer_info->dma,
4779 				     igb_rx_pg_size(rx_ring),
4780 				     DMA_FROM_DEVICE,
4781 				     IGB_RX_DMA_ATTR);
4782 		__page_frag_cache_drain(buffer_info->page,
4783 					buffer_info->pagecnt_bias);
4784 
4785 		i++;
4786 		if (i == rx_ring->count)
4787 			i = 0;
4788 	}
4789 
4790 	rx_ring->next_to_alloc = 0;
4791 	rx_ring->next_to_clean = 0;
4792 	rx_ring->next_to_use = 0;
4793 }
4794 
4795 /**
4796  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4797  *  @adapter: board private structure
4798  **/
4799 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4800 {
4801 	int i;
4802 
4803 	for (i = 0; i < adapter->num_rx_queues; i++)
4804 		if (adapter->rx_ring[i])
4805 			igb_clean_rx_ring(adapter->rx_ring[i]);
4806 }
4807 
4808 /**
4809  *  igb_set_mac - Change the Ethernet Address of the NIC
4810  *  @netdev: network interface device structure
4811  *  @p: pointer to an address structure
4812  *
4813  *  Returns 0 on success, negative on failure
4814  **/
4815 static int igb_set_mac(struct net_device *netdev, void *p)
4816 {
4817 	struct igb_adapter *adapter = netdev_priv(netdev);
4818 	struct e1000_hw *hw = &adapter->hw;
4819 	struct sockaddr *addr = p;
4820 
4821 	if (!is_valid_ether_addr(addr->sa_data))
4822 		return -EADDRNOTAVAIL;
4823 
4824 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4825 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4826 
4827 	/* set the correct pool for the new PF MAC address in entry 0 */
4828 	igb_set_default_mac_filter(adapter);
4829 
4830 	return 0;
4831 }
4832 
4833 /**
4834  *  igb_write_mc_addr_list - write multicast addresses to MTA
4835  *  @netdev: network interface device structure
4836  *
4837  *  Writes multicast address list to the MTA hash table.
4838  *  Returns: -ENOMEM on failure
4839  *           0 on no addresses written
4840  *           X on writing X addresses to MTA
4841  **/
4842 static int igb_write_mc_addr_list(struct net_device *netdev)
4843 {
4844 	struct igb_adapter *adapter = netdev_priv(netdev);
4845 	struct e1000_hw *hw = &adapter->hw;
4846 	struct netdev_hw_addr *ha;
4847 	u8  *mta_list;
4848 	int i;
4849 
4850 	if (netdev_mc_empty(netdev)) {
4851 		/* nothing to program, so clear mc list */
4852 		igb_update_mc_addr_list(hw, NULL, 0);
4853 		igb_restore_vf_multicasts(adapter);
4854 		return 0;
4855 	}
4856 
4857 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4858 	if (!mta_list)
4859 		return -ENOMEM;
4860 
4861 	/* The shared function expects a packed array of only addresses. */
4862 	i = 0;
4863 	netdev_for_each_mc_addr(ha, netdev)
4864 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4865 
4866 	igb_update_mc_addr_list(hw, mta_list, i);
4867 	kfree(mta_list);
4868 
4869 	return netdev_mc_count(netdev);
4870 }
4871 
4872 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4873 {
4874 	struct e1000_hw *hw = &adapter->hw;
4875 	u32 i, pf_id;
4876 
4877 	switch (hw->mac.type) {
4878 	case e1000_i210:
4879 	case e1000_i211:
4880 	case e1000_i350:
4881 		/* VLAN filtering needed for VLAN prio filter */
4882 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4883 			break;
4884 		/* fall through */
4885 	case e1000_82576:
4886 	case e1000_82580:
4887 	case e1000_i354:
4888 		/* VLAN filtering needed for pool filtering */
4889 		if (adapter->vfs_allocated_count)
4890 			break;
4891 		/* fall through */
4892 	default:
4893 		return 1;
4894 	}
4895 
4896 	/* We are already in VLAN promisc, nothing to do */
4897 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4898 		return 0;
4899 
4900 	if (!adapter->vfs_allocated_count)
4901 		goto set_vfta;
4902 
4903 	/* Add PF to all active pools */
4904 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4905 
4906 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4907 		u32 vlvf = rd32(E1000_VLVF(i));
4908 
4909 		vlvf |= BIT(pf_id);
4910 		wr32(E1000_VLVF(i), vlvf);
4911 	}
4912 
4913 set_vfta:
4914 	/* Set all bits in the VLAN filter table array */
4915 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4916 		hw->mac.ops.write_vfta(hw, i, ~0U);
4917 
4918 	/* Set flag so we don't redo unnecessary work */
4919 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4920 
4921 	return 0;
4922 }
4923 
4924 #define VFTA_BLOCK_SIZE 8
4925 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4926 {
4927 	struct e1000_hw *hw = &adapter->hw;
4928 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4929 	u32 vid_start = vfta_offset * 32;
4930 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4931 	u32 i, vid, word, bits, pf_id;
4932 
4933 	/* guarantee that we don't scrub out management VLAN */
4934 	vid = adapter->mng_vlan_id;
4935 	if (vid >= vid_start && vid < vid_end)
4936 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4937 
4938 	if (!adapter->vfs_allocated_count)
4939 		goto set_vfta;
4940 
4941 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4942 
4943 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4944 		u32 vlvf = rd32(E1000_VLVF(i));
4945 
4946 		/* pull VLAN ID from VLVF */
4947 		vid = vlvf & VLAN_VID_MASK;
4948 
4949 		/* only concern ourselves with a certain range */
4950 		if (vid < vid_start || vid >= vid_end)
4951 			continue;
4952 
4953 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4954 			/* record VLAN ID in VFTA */
4955 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4956 
4957 			/* if PF is part of this then continue */
4958 			if (test_bit(vid, adapter->active_vlans))
4959 				continue;
4960 		}
4961 
4962 		/* remove PF from the pool */
4963 		bits = ~BIT(pf_id);
4964 		bits &= rd32(E1000_VLVF(i));
4965 		wr32(E1000_VLVF(i), bits);
4966 	}
4967 
4968 set_vfta:
4969 	/* extract values from active_vlans and write back to VFTA */
4970 	for (i = VFTA_BLOCK_SIZE; i--;) {
4971 		vid = (vfta_offset + i) * 32;
4972 		word = vid / BITS_PER_LONG;
4973 		bits = vid % BITS_PER_LONG;
4974 
4975 		vfta[i] |= adapter->active_vlans[word] >> bits;
4976 
4977 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4978 	}
4979 }
4980 
4981 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4982 {
4983 	u32 i;
4984 
4985 	/* We are not in VLAN promisc, nothing to do */
4986 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4987 		return;
4988 
4989 	/* Set flag so we don't redo unnecessary work */
4990 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4991 
4992 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4993 		igb_scrub_vfta(adapter, i);
4994 }
4995 
4996 /**
4997  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4998  *  @netdev: network interface device structure
4999  *
5000  *  The set_rx_mode entry point is called whenever the unicast or multicast
5001  *  address lists or the network interface flags are updated.  This routine is
5002  *  responsible for configuring the hardware for proper unicast, multicast,
5003  *  promiscuous mode, and all-multi behavior.
5004  **/
5005 static void igb_set_rx_mode(struct net_device *netdev)
5006 {
5007 	struct igb_adapter *adapter = netdev_priv(netdev);
5008 	struct e1000_hw *hw = &adapter->hw;
5009 	unsigned int vfn = adapter->vfs_allocated_count;
5010 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5011 	int count;
5012 
5013 	/* Check for Promiscuous and All Multicast modes */
5014 	if (netdev->flags & IFF_PROMISC) {
5015 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5016 		vmolr |= E1000_VMOLR_MPME;
5017 
5018 		/* enable use of UTA filter to force packets to default pool */
5019 		if (hw->mac.type == e1000_82576)
5020 			vmolr |= E1000_VMOLR_ROPE;
5021 	} else {
5022 		if (netdev->flags & IFF_ALLMULTI) {
5023 			rctl |= E1000_RCTL_MPE;
5024 			vmolr |= E1000_VMOLR_MPME;
5025 		} else {
5026 			/* Write addresses to the MTA, if the attempt fails
5027 			 * then we should just turn on promiscuous mode so
5028 			 * that we can at least receive multicast traffic
5029 			 */
5030 			count = igb_write_mc_addr_list(netdev);
5031 			if (count < 0) {
5032 				rctl |= E1000_RCTL_MPE;
5033 				vmolr |= E1000_VMOLR_MPME;
5034 			} else if (count) {
5035 				vmolr |= E1000_VMOLR_ROMPE;
5036 			}
5037 		}
5038 	}
5039 
5040 	/* Write addresses to available RAR registers, if there is not
5041 	 * sufficient space to store all the addresses then enable
5042 	 * unicast promiscuous mode
5043 	 */
5044 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5045 		rctl |= E1000_RCTL_UPE;
5046 		vmolr |= E1000_VMOLR_ROPE;
5047 	}
5048 
5049 	/* enable VLAN filtering by default */
5050 	rctl |= E1000_RCTL_VFE;
5051 
5052 	/* disable VLAN filtering for modes that require it */
5053 	if ((netdev->flags & IFF_PROMISC) ||
5054 	    (netdev->features & NETIF_F_RXALL)) {
5055 		/* if we fail to set all rules then just clear VFE */
5056 		if (igb_vlan_promisc_enable(adapter))
5057 			rctl &= ~E1000_RCTL_VFE;
5058 	} else {
5059 		igb_vlan_promisc_disable(adapter);
5060 	}
5061 
5062 	/* update state of unicast, multicast, and VLAN filtering modes */
5063 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5064 				     E1000_RCTL_VFE);
5065 	wr32(E1000_RCTL, rctl);
5066 
5067 #if (PAGE_SIZE < 8192)
5068 	if (!adapter->vfs_allocated_count) {
5069 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5070 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5071 	}
5072 #endif
5073 	wr32(E1000_RLPML, rlpml);
5074 
5075 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5076 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5077 	 * we will have issues with VLAN tag stripping not being done for frames
5078 	 * that are only arriving because we are the default pool
5079 	 */
5080 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5081 		return;
5082 
5083 	/* set UTA to appropriate mode */
5084 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5085 
5086 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5087 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5088 
5089 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5090 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5091 #if (PAGE_SIZE < 8192)
5092 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5093 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5094 	else
5095 #endif
5096 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5097 	vmolr |= E1000_VMOLR_LPE;
5098 
5099 	wr32(E1000_VMOLR(vfn), vmolr);
5100 
5101 	igb_restore_vf_multicasts(adapter);
5102 }
5103 
5104 static void igb_check_wvbr(struct igb_adapter *adapter)
5105 {
5106 	struct e1000_hw *hw = &adapter->hw;
5107 	u32 wvbr = 0;
5108 
5109 	switch (hw->mac.type) {
5110 	case e1000_82576:
5111 	case e1000_i350:
5112 		wvbr = rd32(E1000_WVBR);
5113 		if (!wvbr)
5114 			return;
5115 		break;
5116 	default:
5117 		break;
5118 	}
5119 
5120 	adapter->wvbr |= wvbr;
5121 }
5122 
5123 #define IGB_STAGGERED_QUEUE_OFFSET 8
5124 
5125 static void igb_spoof_check(struct igb_adapter *adapter)
5126 {
5127 	int j;
5128 
5129 	if (!adapter->wvbr)
5130 		return;
5131 
5132 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5133 		if (adapter->wvbr & BIT(j) ||
5134 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5135 			dev_warn(&adapter->pdev->dev,
5136 				"Spoof event(s) detected on VF %d\n", j);
5137 			adapter->wvbr &=
5138 				~(BIT(j) |
5139 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5140 		}
5141 	}
5142 }
5143 
5144 /* Need to wait a few seconds after link up to get diagnostic information from
5145  * the phy
5146  */
5147 static void igb_update_phy_info(struct timer_list *t)
5148 {
5149 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5150 	igb_get_phy_info(&adapter->hw);
5151 }
5152 
5153 /**
5154  *  igb_has_link - check shared code for link and determine up/down
5155  *  @adapter: pointer to driver private info
5156  **/
5157 bool igb_has_link(struct igb_adapter *adapter)
5158 {
5159 	struct e1000_hw *hw = &adapter->hw;
5160 	bool link_active = false;
5161 
5162 	/* get_link_status is set on LSC (link status) interrupt or
5163 	 * rx sequence error interrupt.  get_link_status will stay
5164 	 * false until the e1000_check_for_link establishes link
5165 	 * for copper adapters ONLY
5166 	 */
5167 	switch (hw->phy.media_type) {
5168 	case e1000_media_type_copper:
5169 		if (!hw->mac.get_link_status)
5170 			return true;
5171 		/* fall through */
5172 	case e1000_media_type_internal_serdes:
5173 		hw->mac.ops.check_for_link(hw);
5174 		link_active = !hw->mac.get_link_status;
5175 		break;
5176 	default:
5177 	case e1000_media_type_unknown:
5178 		break;
5179 	}
5180 
5181 	if (((hw->mac.type == e1000_i210) ||
5182 	     (hw->mac.type == e1000_i211)) &&
5183 	     (hw->phy.id == I210_I_PHY_ID)) {
5184 		if (!netif_carrier_ok(adapter->netdev)) {
5185 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5186 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5187 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5188 			adapter->link_check_timeout = jiffies;
5189 		}
5190 	}
5191 
5192 	return link_active;
5193 }
5194 
5195 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5196 {
5197 	bool ret = false;
5198 	u32 ctrl_ext, thstat;
5199 
5200 	/* check for thermal sensor event on i350 copper only */
5201 	if (hw->mac.type == e1000_i350) {
5202 		thstat = rd32(E1000_THSTAT);
5203 		ctrl_ext = rd32(E1000_CTRL_EXT);
5204 
5205 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5206 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5207 			ret = !!(thstat & event);
5208 	}
5209 
5210 	return ret;
5211 }
5212 
5213 /**
5214  *  igb_check_lvmmc - check for malformed packets received
5215  *  and indicated in LVMMC register
5216  *  @adapter: pointer to adapter
5217  **/
5218 static void igb_check_lvmmc(struct igb_adapter *adapter)
5219 {
5220 	struct e1000_hw *hw = &adapter->hw;
5221 	u32 lvmmc;
5222 
5223 	lvmmc = rd32(E1000_LVMMC);
5224 	if (lvmmc) {
5225 		if (unlikely(net_ratelimit())) {
5226 			netdev_warn(adapter->netdev,
5227 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5228 				    lvmmc);
5229 		}
5230 	}
5231 }
5232 
5233 /**
5234  *  igb_watchdog - Timer Call-back
5235  *  @data: pointer to adapter cast into an unsigned long
5236  **/
5237 static void igb_watchdog(struct timer_list *t)
5238 {
5239 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5240 	/* Do the rest outside of interrupt context */
5241 	schedule_work(&adapter->watchdog_task);
5242 }
5243 
5244 static void igb_watchdog_task(struct work_struct *work)
5245 {
5246 	struct igb_adapter *adapter = container_of(work,
5247 						   struct igb_adapter,
5248 						   watchdog_task);
5249 	struct e1000_hw *hw = &adapter->hw;
5250 	struct e1000_phy_info *phy = &hw->phy;
5251 	struct net_device *netdev = adapter->netdev;
5252 	u32 link;
5253 	int i;
5254 	u32 connsw;
5255 	u16 phy_data, retry_count = 20;
5256 
5257 	link = igb_has_link(adapter);
5258 
5259 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5260 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5261 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5262 		else
5263 			link = false;
5264 	}
5265 
5266 	/* Force link down if we have fiber to swap to */
5267 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5268 		if (hw->phy.media_type == e1000_media_type_copper) {
5269 			connsw = rd32(E1000_CONNSW);
5270 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5271 				link = 0;
5272 		}
5273 	}
5274 	if (link) {
5275 		/* Perform a reset if the media type changed. */
5276 		if (hw->dev_spec._82575.media_changed) {
5277 			hw->dev_spec._82575.media_changed = false;
5278 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5279 			igb_reset(adapter);
5280 		}
5281 		/* Cancel scheduled suspend requests. */
5282 		pm_runtime_resume(netdev->dev.parent);
5283 
5284 		if (!netif_carrier_ok(netdev)) {
5285 			u32 ctrl;
5286 
5287 			hw->mac.ops.get_speed_and_duplex(hw,
5288 							 &adapter->link_speed,
5289 							 &adapter->link_duplex);
5290 
5291 			ctrl = rd32(E1000_CTRL);
5292 			/* Links status message must follow this format */
5293 			netdev_info(netdev,
5294 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5295 			       netdev->name,
5296 			       adapter->link_speed,
5297 			       adapter->link_duplex == FULL_DUPLEX ?
5298 			       "Full" : "Half",
5299 			       (ctrl & E1000_CTRL_TFCE) &&
5300 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5301 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5302 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5303 
5304 			/* disable EEE if enabled */
5305 			if ((adapter->flags & IGB_FLAG_EEE) &&
5306 				(adapter->link_duplex == HALF_DUPLEX)) {
5307 				dev_info(&adapter->pdev->dev,
5308 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5309 				adapter->hw.dev_spec._82575.eee_disable = true;
5310 				adapter->flags &= ~IGB_FLAG_EEE;
5311 			}
5312 
5313 			/* check if SmartSpeed worked */
5314 			igb_check_downshift(hw);
5315 			if (phy->speed_downgraded)
5316 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5317 
5318 			/* check for thermal sensor event */
5319 			if (igb_thermal_sensor_event(hw,
5320 			    E1000_THSTAT_LINK_THROTTLE))
5321 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5322 
5323 			/* adjust timeout factor according to speed/duplex */
5324 			adapter->tx_timeout_factor = 1;
5325 			switch (adapter->link_speed) {
5326 			case SPEED_10:
5327 				adapter->tx_timeout_factor = 14;
5328 				break;
5329 			case SPEED_100:
5330 				/* maybe add some timeout factor ? */
5331 				break;
5332 			}
5333 
5334 			if (adapter->link_speed != SPEED_1000)
5335 				goto no_wait;
5336 
5337 			/* wait for Remote receiver status OK */
5338 retry_read_status:
5339 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5340 					      &phy_data)) {
5341 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5342 				    retry_count) {
5343 					msleep(100);
5344 					retry_count--;
5345 					goto retry_read_status;
5346 				} else if (!retry_count) {
5347 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5348 				}
5349 			} else {
5350 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5351 			}
5352 no_wait:
5353 			netif_carrier_on(netdev);
5354 
5355 			igb_ping_all_vfs(adapter);
5356 			igb_check_vf_rate_limit(adapter);
5357 
5358 			/* link state has changed, schedule phy info update */
5359 			if (!test_bit(__IGB_DOWN, &adapter->state))
5360 				mod_timer(&adapter->phy_info_timer,
5361 					  round_jiffies(jiffies + 2 * HZ));
5362 		}
5363 	} else {
5364 		if (netif_carrier_ok(netdev)) {
5365 			adapter->link_speed = 0;
5366 			adapter->link_duplex = 0;
5367 
5368 			/* check for thermal sensor event */
5369 			if (igb_thermal_sensor_event(hw,
5370 			    E1000_THSTAT_PWR_DOWN)) {
5371 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5372 			}
5373 
5374 			/* Links status message must follow this format */
5375 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5376 			       netdev->name);
5377 			netif_carrier_off(netdev);
5378 
5379 			igb_ping_all_vfs(adapter);
5380 
5381 			/* link state has changed, schedule phy info update */
5382 			if (!test_bit(__IGB_DOWN, &adapter->state))
5383 				mod_timer(&adapter->phy_info_timer,
5384 					  round_jiffies(jiffies + 2 * HZ));
5385 
5386 			/* link is down, time to check for alternate media */
5387 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5388 				igb_check_swap_media(adapter);
5389 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5390 					schedule_work(&adapter->reset_task);
5391 					/* return immediately */
5392 					return;
5393 				}
5394 			}
5395 			pm_schedule_suspend(netdev->dev.parent,
5396 					    MSEC_PER_SEC * 5);
5397 
5398 		/* also check for alternate media here */
5399 		} else if (!netif_carrier_ok(netdev) &&
5400 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5401 			igb_check_swap_media(adapter);
5402 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5403 				schedule_work(&adapter->reset_task);
5404 				/* return immediately */
5405 				return;
5406 			}
5407 		}
5408 	}
5409 
5410 	spin_lock(&adapter->stats64_lock);
5411 	igb_update_stats(adapter);
5412 	spin_unlock(&adapter->stats64_lock);
5413 
5414 	for (i = 0; i < adapter->num_tx_queues; i++) {
5415 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5416 		if (!netif_carrier_ok(netdev)) {
5417 			/* We've lost link, so the controller stops DMA,
5418 			 * but we've got queued Tx work that's never going
5419 			 * to get done, so reset controller to flush Tx.
5420 			 * (Do the reset outside of interrupt context).
5421 			 */
5422 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5423 				adapter->tx_timeout_count++;
5424 				schedule_work(&adapter->reset_task);
5425 				/* return immediately since reset is imminent */
5426 				return;
5427 			}
5428 		}
5429 
5430 		/* Force detection of hung controller every watchdog period */
5431 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5432 	}
5433 
5434 	/* Cause software interrupt to ensure Rx ring is cleaned */
5435 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5436 		u32 eics = 0;
5437 
5438 		for (i = 0; i < adapter->num_q_vectors; i++)
5439 			eics |= adapter->q_vector[i]->eims_value;
5440 		wr32(E1000_EICS, eics);
5441 	} else {
5442 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5443 	}
5444 
5445 	igb_spoof_check(adapter);
5446 	igb_ptp_rx_hang(adapter);
5447 	igb_ptp_tx_hang(adapter);
5448 
5449 	/* Check LVMMC register on i350/i354 only */
5450 	if ((adapter->hw.mac.type == e1000_i350) ||
5451 	    (adapter->hw.mac.type == e1000_i354))
5452 		igb_check_lvmmc(adapter);
5453 
5454 	/* Reset the timer */
5455 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5456 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5457 			mod_timer(&adapter->watchdog_timer,
5458 				  round_jiffies(jiffies +  HZ));
5459 		else
5460 			mod_timer(&adapter->watchdog_timer,
5461 				  round_jiffies(jiffies + 2 * HZ));
5462 	}
5463 }
5464 
5465 enum latency_range {
5466 	lowest_latency = 0,
5467 	low_latency = 1,
5468 	bulk_latency = 2,
5469 	latency_invalid = 255
5470 };
5471 
5472 /**
5473  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5474  *  @q_vector: pointer to q_vector
5475  *
5476  *  Stores a new ITR value based on strictly on packet size.  This
5477  *  algorithm is less sophisticated than that used in igb_update_itr,
5478  *  due to the difficulty of synchronizing statistics across multiple
5479  *  receive rings.  The divisors and thresholds used by this function
5480  *  were determined based on theoretical maximum wire speed and testing
5481  *  data, in order to minimize response time while increasing bulk
5482  *  throughput.
5483  *  This functionality is controlled by ethtool's coalescing settings.
5484  *  NOTE:  This function is called only when operating in a multiqueue
5485  *         receive environment.
5486  **/
5487 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5488 {
5489 	int new_val = q_vector->itr_val;
5490 	int avg_wire_size = 0;
5491 	struct igb_adapter *adapter = q_vector->adapter;
5492 	unsigned int packets;
5493 
5494 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5495 	 * ints/sec - ITR timer value of 120 ticks.
5496 	 */
5497 	if (adapter->link_speed != SPEED_1000) {
5498 		new_val = IGB_4K_ITR;
5499 		goto set_itr_val;
5500 	}
5501 
5502 	packets = q_vector->rx.total_packets;
5503 	if (packets)
5504 		avg_wire_size = q_vector->rx.total_bytes / packets;
5505 
5506 	packets = q_vector->tx.total_packets;
5507 	if (packets)
5508 		avg_wire_size = max_t(u32, avg_wire_size,
5509 				      q_vector->tx.total_bytes / packets);
5510 
5511 	/* if avg_wire_size isn't set no work was done */
5512 	if (!avg_wire_size)
5513 		goto clear_counts;
5514 
5515 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5516 	avg_wire_size += 24;
5517 
5518 	/* Don't starve jumbo frames */
5519 	avg_wire_size = min(avg_wire_size, 3000);
5520 
5521 	/* Give a little boost to mid-size frames */
5522 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5523 		new_val = avg_wire_size / 3;
5524 	else
5525 		new_val = avg_wire_size / 2;
5526 
5527 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5528 	if (new_val < IGB_20K_ITR &&
5529 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5530 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5531 		new_val = IGB_20K_ITR;
5532 
5533 set_itr_val:
5534 	if (new_val != q_vector->itr_val) {
5535 		q_vector->itr_val = new_val;
5536 		q_vector->set_itr = 1;
5537 	}
5538 clear_counts:
5539 	q_vector->rx.total_bytes = 0;
5540 	q_vector->rx.total_packets = 0;
5541 	q_vector->tx.total_bytes = 0;
5542 	q_vector->tx.total_packets = 0;
5543 }
5544 
5545 /**
5546  *  igb_update_itr - update the dynamic ITR value based on statistics
5547  *  @q_vector: pointer to q_vector
5548  *  @ring_container: ring info to update the itr for
5549  *
5550  *  Stores a new ITR value based on packets and byte
5551  *  counts during the last interrupt.  The advantage of per interrupt
5552  *  computation is faster updates and more accurate ITR for the current
5553  *  traffic pattern.  Constants in this function were computed
5554  *  based on theoretical maximum wire speed and thresholds were set based
5555  *  on testing data as well as attempting to minimize response time
5556  *  while increasing bulk throughput.
5557  *  This functionality is controlled by ethtool's coalescing settings.
5558  *  NOTE:  These calculations are only valid when operating in a single-
5559  *         queue environment.
5560  **/
5561 static void igb_update_itr(struct igb_q_vector *q_vector,
5562 			   struct igb_ring_container *ring_container)
5563 {
5564 	unsigned int packets = ring_container->total_packets;
5565 	unsigned int bytes = ring_container->total_bytes;
5566 	u8 itrval = ring_container->itr;
5567 
5568 	/* no packets, exit with status unchanged */
5569 	if (packets == 0)
5570 		return;
5571 
5572 	switch (itrval) {
5573 	case lowest_latency:
5574 		/* handle TSO and jumbo frames */
5575 		if (bytes/packets > 8000)
5576 			itrval = bulk_latency;
5577 		else if ((packets < 5) && (bytes > 512))
5578 			itrval = low_latency;
5579 		break;
5580 	case low_latency:  /* 50 usec aka 20000 ints/s */
5581 		if (bytes > 10000) {
5582 			/* this if handles the TSO accounting */
5583 			if (bytes/packets > 8000)
5584 				itrval = bulk_latency;
5585 			else if ((packets < 10) || ((bytes/packets) > 1200))
5586 				itrval = bulk_latency;
5587 			else if ((packets > 35))
5588 				itrval = lowest_latency;
5589 		} else if (bytes/packets > 2000) {
5590 			itrval = bulk_latency;
5591 		} else if (packets <= 2 && bytes < 512) {
5592 			itrval = lowest_latency;
5593 		}
5594 		break;
5595 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5596 		if (bytes > 25000) {
5597 			if (packets > 35)
5598 				itrval = low_latency;
5599 		} else if (bytes < 1500) {
5600 			itrval = low_latency;
5601 		}
5602 		break;
5603 	}
5604 
5605 	/* clear work counters since we have the values we need */
5606 	ring_container->total_bytes = 0;
5607 	ring_container->total_packets = 0;
5608 
5609 	/* write updated itr to ring container */
5610 	ring_container->itr = itrval;
5611 }
5612 
5613 static void igb_set_itr(struct igb_q_vector *q_vector)
5614 {
5615 	struct igb_adapter *adapter = q_vector->adapter;
5616 	u32 new_itr = q_vector->itr_val;
5617 	u8 current_itr = 0;
5618 
5619 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5620 	if (adapter->link_speed != SPEED_1000) {
5621 		current_itr = 0;
5622 		new_itr = IGB_4K_ITR;
5623 		goto set_itr_now;
5624 	}
5625 
5626 	igb_update_itr(q_vector, &q_vector->tx);
5627 	igb_update_itr(q_vector, &q_vector->rx);
5628 
5629 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5630 
5631 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5632 	if (current_itr == lowest_latency &&
5633 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5634 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5635 		current_itr = low_latency;
5636 
5637 	switch (current_itr) {
5638 	/* counts and packets in update_itr are dependent on these numbers */
5639 	case lowest_latency:
5640 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5641 		break;
5642 	case low_latency:
5643 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5644 		break;
5645 	case bulk_latency:
5646 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5647 		break;
5648 	default:
5649 		break;
5650 	}
5651 
5652 set_itr_now:
5653 	if (new_itr != q_vector->itr_val) {
5654 		/* this attempts to bias the interrupt rate towards Bulk
5655 		 * by adding intermediate steps when interrupt rate is
5656 		 * increasing
5657 		 */
5658 		new_itr = new_itr > q_vector->itr_val ?
5659 			  max((new_itr * q_vector->itr_val) /
5660 			  (new_itr + (q_vector->itr_val >> 2)),
5661 			  new_itr) : new_itr;
5662 		/* Don't write the value here; it resets the adapter's
5663 		 * internal timer, and causes us to delay far longer than
5664 		 * we should between interrupts.  Instead, we write the ITR
5665 		 * value at the beginning of the next interrupt so the timing
5666 		 * ends up being correct.
5667 		 */
5668 		q_vector->itr_val = new_itr;
5669 		q_vector->set_itr = 1;
5670 	}
5671 }
5672 
5673 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5674 			    struct igb_tx_buffer *first,
5675 			    u32 vlan_macip_lens, u32 type_tucmd,
5676 			    u32 mss_l4len_idx)
5677 {
5678 	struct e1000_adv_tx_context_desc *context_desc;
5679 	u16 i = tx_ring->next_to_use;
5680 	struct timespec64 ts;
5681 
5682 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5683 
5684 	i++;
5685 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5686 
5687 	/* set bits to identify this as an advanced context descriptor */
5688 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5689 
5690 	/* For 82575, context index must be unique per ring. */
5691 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5692 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5693 
5694 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5695 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5696 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5697 
5698 	/* We assume there is always a valid tx time available. Invalid times
5699 	 * should have been handled by the upper layers.
5700 	 */
5701 	if (tx_ring->launchtime_enable) {
5702 		ts = ns_to_timespec64(first->skb->tstamp);
5703 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5704 	} else {
5705 		context_desc->seqnum_seed = 0;
5706 	}
5707 }
5708 
5709 static int igb_tso(struct igb_ring *tx_ring,
5710 		   struct igb_tx_buffer *first,
5711 		   u8 *hdr_len)
5712 {
5713 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5714 	struct sk_buff *skb = first->skb;
5715 	union {
5716 		struct iphdr *v4;
5717 		struct ipv6hdr *v6;
5718 		unsigned char *hdr;
5719 	} ip;
5720 	union {
5721 		struct tcphdr *tcp;
5722 		unsigned char *hdr;
5723 	} l4;
5724 	u32 paylen, l4_offset;
5725 	int err;
5726 
5727 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5728 		return 0;
5729 
5730 	if (!skb_is_gso(skb))
5731 		return 0;
5732 
5733 	err = skb_cow_head(skb, 0);
5734 	if (err < 0)
5735 		return err;
5736 
5737 	ip.hdr = skb_network_header(skb);
5738 	l4.hdr = skb_checksum_start(skb);
5739 
5740 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5741 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5742 
5743 	/* initialize outer IP header fields */
5744 	if (ip.v4->version == 4) {
5745 		unsigned char *csum_start = skb_checksum_start(skb);
5746 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5747 
5748 		/* IP header will have to cancel out any data that
5749 		 * is not a part of the outer IP header
5750 		 */
5751 		ip.v4->check = csum_fold(csum_partial(trans_start,
5752 						      csum_start - trans_start,
5753 						      0));
5754 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5755 
5756 		ip.v4->tot_len = 0;
5757 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5758 				   IGB_TX_FLAGS_CSUM |
5759 				   IGB_TX_FLAGS_IPV4;
5760 	} else {
5761 		ip.v6->payload_len = 0;
5762 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5763 				   IGB_TX_FLAGS_CSUM;
5764 	}
5765 
5766 	/* determine offset of inner transport header */
5767 	l4_offset = l4.hdr - skb->data;
5768 
5769 	/* compute length of segmentation header */
5770 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5771 
5772 	/* remove payload length from inner checksum */
5773 	paylen = skb->len - l4_offset;
5774 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5775 
5776 	/* update gso size and bytecount with header size */
5777 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5778 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5779 
5780 	/* MSS L4LEN IDX */
5781 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5782 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5783 
5784 	/* VLAN MACLEN IPLEN */
5785 	vlan_macip_lens = l4.hdr - ip.hdr;
5786 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5787 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5788 
5789 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5790 			type_tucmd, mss_l4len_idx);
5791 
5792 	return 1;
5793 }
5794 
5795 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5796 {
5797 	unsigned int offset = 0;
5798 
5799 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5800 
5801 	return offset == skb_checksum_start_offset(skb);
5802 }
5803 
5804 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5805 {
5806 	struct sk_buff *skb = first->skb;
5807 	u32 vlan_macip_lens = 0;
5808 	u32 type_tucmd = 0;
5809 
5810 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5811 csum_failed:
5812 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5813 		    !tx_ring->launchtime_enable)
5814 			return;
5815 		goto no_csum;
5816 	}
5817 
5818 	switch (skb->csum_offset) {
5819 	case offsetof(struct tcphdr, check):
5820 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5821 		/* fall through */
5822 	case offsetof(struct udphdr, check):
5823 		break;
5824 	case offsetof(struct sctphdr, checksum):
5825 		/* validate that this is actually an SCTP request */
5826 		if (((first->protocol == htons(ETH_P_IP)) &&
5827 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5828 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5829 		     igb_ipv6_csum_is_sctp(skb))) {
5830 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5831 			break;
5832 		}
5833 		/* fall through */
5834 	default:
5835 		skb_checksum_help(skb);
5836 		goto csum_failed;
5837 	}
5838 
5839 	/* update TX checksum flag */
5840 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5841 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5842 			  skb_network_offset(skb);
5843 no_csum:
5844 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5845 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5846 
5847 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5848 }
5849 
5850 #define IGB_SET_FLAG(_input, _flag, _result) \
5851 	((_flag <= _result) ? \
5852 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5853 	 ((u32)(_input & _flag) / (_flag / _result)))
5854 
5855 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5856 {
5857 	/* set type for advanced descriptor with frame checksum insertion */
5858 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5859 		       E1000_ADVTXD_DCMD_DEXT |
5860 		       E1000_ADVTXD_DCMD_IFCS;
5861 
5862 	/* set HW vlan bit if vlan is present */
5863 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5864 				 (E1000_ADVTXD_DCMD_VLE));
5865 
5866 	/* set segmentation bits for TSO */
5867 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5868 				 (E1000_ADVTXD_DCMD_TSE));
5869 
5870 	/* set timestamp bit if present */
5871 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5872 				 (E1000_ADVTXD_MAC_TSTAMP));
5873 
5874 	/* insert frame checksum */
5875 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5876 
5877 	return cmd_type;
5878 }
5879 
5880 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5881 				 union e1000_adv_tx_desc *tx_desc,
5882 				 u32 tx_flags, unsigned int paylen)
5883 {
5884 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5885 
5886 	/* 82575 requires a unique index per ring */
5887 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5888 		olinfo_status |= tx_ring->reg_idx << 4;
5889 
5890 	/* insert L4 checksum */
5891 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5892 				      IGB_TX_FLAGS_CSUM,
5893 				      (E1000_TXD_POPTS_TXSM << 8));
5894 
5895 	/* insert IPv4 checksum */
5896 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5897 				      IGB_TX_FLAGS_IPV4,
5898 				      (E1000_TXD_POPTS_IXSM << 8));
5899 
5900 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5901 }
5902 
5903 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5904 {
5905 	struct net_device *netdev = tx_ring->netdev;
5906 
5907 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5908 
5909 	/* Herbert's original patch had:
5910 	 *  smp_mb__after_netif_stop_queue();
5911 	 * but since that doesn't exist yet, just open code it.
5912 	 */
5913 	smp_mb();
5914 
5915 	/* We need to check again in a case another CPU has just
5916 	 * made room available.
5917 	 */
5918 	if (igb_desc_unused(tx_ring) < size)
5919 		return -EBUSY;
5920 
5921 	/* A reprieve! */
5922 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5923 
5924 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5925 	tx_ring->tx_stats.restart_queue2++;
5926 	u64_stats_update_end(&tx_ring->tx_syncp2);
5927 
5928 	return 0;
5929 }
5930 
5931 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5932 {
5933 	if (igb_desc_unused(tx_ring) >= size)
5934 		return 0;
5935 	return __igb_maybe_stop_tx(tx_ring, size);
5936 }
5937 
5938 static int igb_tx_map(struct igb_ring *tx_ring,
5939 		      struct igb_tx_buffer *first,
5940 		      const u8 hdr_len)
5941 {
5942 	struct sk_buff *skb = first->skb;
5943 	struct igb_tx_buffer *tx_buffer;
5944 	union e1000_adv_tx_desc *tx_desc;
5945 	struct skb_frag_struct *frag;
5946 	dma_addr_t dma;
5947 	unsigned int data_len, size;
5948 	u32 tx_flags = first->tx_flags;
5949 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5950 	u16 i = tx_ring->next_to_use;
5951 
5952 	tx_desc = IGB_TX_DESC(tx_ring, i);
5953 
5954 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5955 
5956 	size = skb_headlen(skb);
5957 	data_len = skb->data_len;
5958 
5959 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5960 
5961 	tx_buffer = first;
5962 
5963 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5964 		if (dma_mapping_error(tx_ring->dev, dma))
5965 			goto dma_error;
5966 
5967 		/* record length, and DMA address */
5968 		dma_unmap_len_set(tx_buffer, len, size);
5969 		dma_unmap_addr_set(tx_buffer, dma, dma);
5970 
5971 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5972 
5973 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5974 			tx_desc->read.cmd_type_len =
5975 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5976 
5977 			i++;
5978 			tx_desc++;
5979 			if (i == tx_ring->count) {
5980 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5981 				i = 0;
5982 			}
5983 			tx_desc->read.olinfo_status = 0;
5984 
5985 			dma += IGB_MAX_DATA_PER_TXD;
5986 			size -= IGB_MAX_DATA_PER_TXD;
5987 
5988 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5989 		}
5990 
5991 		if (likely(!data_len))
5992 			break;
5993 
5994 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5995 
5996 		i++;
5997 		tx_desc++;
5998 		if (i == tx_ring->count) {
5999 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6000 			i = 0;
6001 		}
6002 		tx_desc->read.olinfo_status = 0;
6003 
6004 		size = skb_frag_size(frag);
6005 		data_len -= size;
6006 
6007 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6008 				       size, DMA_TO_DEVICE);
6009 
6010 		tx_buffer = &tx_ring->tx_buffer_info[i];
6011 	}
6012 
6013 	/* write last descriptor with RS and EOP bits */
6014 	cmd_type |= size | IGB_TXD_DCMD;
6015 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6016 
6017 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6018 
6019 	/* set the timestamp */
6020 	first->time_stamp = jiffies;
6021 
6022 	/* Force memory writes to complete before letting h/w know there
6023 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6024 	 * memory model archs, such as IA-64).
6025 	 *
6026 	 * We also need this memory barrier to make certain all of the
6027 	 * status bits have been updated before next_to_watch is written.
6028 	 */
6029 	dma_wmb();
6030 
6031 	/* set next_to_watch value indicating a packet is present */
6032 	first->next_to_watch = tx_desc;
6033 
6034 	i++;
6035 	if (i == tx_ring->count)
6036 		i = 0;
6037 
6038 	tx_ring->next_to_use = i;
6039 
6040 	/* Make sure there is space in the ring for the next send. */
6041 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6042 
6043 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6044 		writel(i, tx_ring->tail);
6045 
6046 		/* we need this if more than one processor can write to our tail
6047 		 * at a time, it synchronizes IO on IA64/Altix systems
6048 		 */
6049 		mmiowb();
6050 	}
6051 	return 0;
6052 
6053 dma_error:
6054 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6055 	tx_buffer = &tx_ring->tx_buffer_info[i];
6056 
6057 	/* clear dma mappings for failed tx_buffer_info map */
6058 	while (tx_buffer != first) {
6059 		if (dma_unmap_len(tx_buffer, len))
6060 			dma_unmap_page(tx_ring->dev,
6061 				       dma_unmap_addr(tx_buffer, dma),
6062 				       dma_unmap_len(tx_buffer, len),
6063 				       DMA_TO_DEVICE);
6064 		dma_unmap_len_set(tx_buffer, len, 0);
6065 
6066 		if (i-- == 0)
6067 			i += tx_ring->count;
6068 		tx_buffer = &tx_ring->tx_buffer_info[i];
6069 	}
6070 
6071 	if (dma_unmap_len(tx_buffer, len))
6072 		dma_unmap_single(tx_ring->dev,
6073 				 dma_unmap_addr(tx_buffer, dma),
6074 				 dma_unmap_len(tx_buffer, len),
6075 				 DMA_TO_DEVICE);
6076 	dma_unmap_len_set(tx_buffer, len, 0);
6077 
6078 	dev_kfree_skb_any(tx_buffer->skb);
6079 	tx_buffer->skb = NULL;
6080 
6081 	tx_ring->next_to_use = i;
6082 
6083 	return -1;
6084 }
6085 
6086 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6087 				struct igb_ring *tx_ring)
6088 {
6089 	struct igb_tx_buffer *first;
6090 	int tso;
6091 	u32 tx_flags = 0;
6092 	unsigned short f;
6093 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6094 	__be16 protocol = vlan_get_protocol(skb);
6095 	u8 hdr_len = 0;
6096 
6097 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6098 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6099 	 *       + 2 desc gap to keep tail from touching head,
6100 	 *       + 1 desc for context descriptor,
6101 	 * otherwise try next time
6102 	 */
6103 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6104 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6105 
6106 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6107 		/* this is a hard error */
6108 		return NETDEV_TX_BUSY;
6109 	}
6110 
6111 	/* record the location of the first descriptor for this packet */
6112 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6113 	first->skb = skb;
6114 	first->bytecount = skb->len;
6115 	first->gso_segs = 1;
6116 
6117 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6118 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6119 
6120 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6121 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6122 					   &adapter->state)) {
6123 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6124 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6125 
6126 			adapter->ptp_tx_skb = skb_get(skb);
6127 			adapter->ptp_tx_start = jiffies;
6128 			if (adapter->hw.mac.type == e1000_82576)
6129 				schedule_work(&adapter->ptp_tx_work);
6130 		} else {
6131 			adapter->tx_hwtstamp_skipped++;
6132 		}
6133 	}
6134 
6135 	if (skb_vlan_tag_present(skb)) {
6136 		tx_flags |= IGB_TX_FLAGS_VLAN;
6137 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6138 	}
6139 
6140 	/* record initial flags and protocol */
6141 	first->tx_flags = tx_flags;
6142 	first->protocol = protocol;
6143 
6144 	tso = igb_tso(tx_ring, first, &hdr_len);
6145 	if (tso < 0)
6146 		goto out_drop;
6147 	else if (!tso)
6148 		igb_tx_csum(tx_ring, first);
6149 
6150 	skb_tx_timestamp(skb);
6151 
6152 	if (igb_tx_map(tx_ring, first, hdr_len))
6153 		goto cleanup_tx_tstamp;
6154 
6155 	return NETDEV_TX_OK;
6156 
6157 out_drop:
6158 	dev_kfree_skb_any(first->skb);
6159 	first->skb = NULL;
6160 cleanup_tx_tstamp:
6161 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6162 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6163 
6164 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6165 		adapter->ptp_tx_skb = NULL;
6166 		if (adapter->hw.mac.type == e1000_82576)
6167 			cancel_work_sync(&adapter->ptp_tx_work);
6168 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6169 	}
6170 
6171 	return NETDEV_TX_OK;
6172 }
6173 
6174 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6175 						    struct sk_buff *skb)
6176 {
6177 	unsigned int r_idx = skb->queue_mapping;
6178 
6179 	if (r_idx >= adapter->num_tx_queues)
6180 		r_idx = r_idx % adapter->num_tx_queues;
6181 
6182 	return adapter->tx_ring[r_idx];
6183 }
6184 
6185 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6186 				  struct net_device *netdev)
6187 {
6188 	struct igb_adapter *adapter = netdev_priv(netdev);
6189 
6190 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6191 	 * in order to meet this minimum size requirement.
6192 	 */
6193 	if (skb_put_padto(skb, 17))
6194 		return NETDEV_TX_OK;
6195 
6196 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6197 }
6198 
6199 /**
6200  *  igb_tx_timeout - Respond to a Tx Hang
6201  *  @netdev: network interface device structure
6202  **/
6203 static void igb_tx_timeout(struct net_device *netdev)
6204 {
6205 	struct igb_adapter *adapter = netdev_priv(netdev);
6206 	struct e1000_hw *hw = &adapter->hw;
6207 
6208 	/* Do the reset outside of interrupt context */
6209 	adapter->tx_timeout_count++;
6210 
6211 	if (hw->mac.type >= e1000_82580)
6212 		hw->dev_spec._82575.global_device_reset = true;
6213 
6214 	schedule_work(&adapter->reset_task);
6215 	wr32(E1000_EICS,
6216 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6217 }
6218 
6219 static void igb_reset_task(struct work_struct *work)
6220 {
6221 	struct igb_adapter *adapter;
6222 	adapter = container_of(work, struct igb_adapter, reset_task);
6223 
6224 	igb_dump(adapter);
6225 	netdev_err(adapter->netdev, "Reset adapter\n");
6226 	igb_reinit_locked(adapter);
6227 }
6228 
6229 /**
6230  *  igb_get_stats64 - Get System Network Statistics
6231  *  @netdev: network interface device structure
6232  *  @stats: rtnl_link_stats64 pointer
6233  **/
6234 static void igb_get_stats64(struct net_device *netdev,
6235 			    struct rtnl_link_stats64 *stats)
6236 {
6237 	struct igb_adapter *adapter = netdev_priv(netdev);
6238 
6239 	spin_lock(&adapter->stats64_lock);
6240 	igb_update_stats(adapter);
6241 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6242 	spin_unlock(&adapter->stats64_lock);
6243 }
6244 
6245 /**
6246  *  igb_change_mtu - Change the Maximum Transfer Unit
6247  *  @netdev: network interface device structure
6248  *  @new_mtu: new value for maximum frame size
6249  *
6250  *  Returns 0 on success, negative on failure
6251  **/
6252 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6253 {
6254 	struct igb_adapter *adapter = netdev_priv(netdev);
6255 	struct pci_dev *pdev = adapter->pdev;
6256 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6257 
6258 	/* adjust max frame to be at least the size of a standard frame */
6259 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6260 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6261 
6262 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6263 		usleep_range(1000, 2000);
6264 
6265 	/* igb_down has a dependency on max_frame_size */
6266 	adapter->max_frame_size = max_frame;
6267 
6268 	if (netif_running(netdev))
6269 		igb_down(adapter);
6270 
6271 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6272 		 netdev->mtu, new_mtu);
6273 	netdev->mtu = new_mtu;
6274 
6275 	if (netif_running(netdev))
6276 		igb_up(adapter);
6277 	else
6278 		igb_reset(adapter);
6279 
6280 	clear_bit(__IGB_RESETTING, &adapter->state);
6281 
6282 	return 0;
6283 }
6284 
6285 /**
6286  *  igb_update_stats - Update the board statistics counters
6287  *  @adapter: board private structure
6288  **/
6289 void igb_update_stats(struct igb_adapter *adapter)
6290 {
6291 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6292 	struct e1000_hw *hw = &adapter->hw;
6293 	struct pci_dev *pdev = adapter->pdev;
6294 	u32 reg, mpc;
6295 	int i;
6296 	u64 bytes, packets;
6297 	unsigned int start;
6298 	u64 _bytes, _packets;
6299 
6300 	/* Prevent stats update while adapter is being reset, or if the pci
6301 	 * connection is down.
6302 	 */
6303 	if (adapter->link_speed == 0)
6304 		return;
6305 	if (pci_channel_offline(pdev))
6306 		return;
6307 
6308 	bytes = 0;
6309 	packets = 0;
6310 
6311 	rcu_read_lock();
6312 	for (i = 0; i < adapter->num_rx_queues; i++) {
6313 		struct igb_ring *ring = adapter->rx_ring[i];
6314 		u32 rqdpc = rd32(E1000_RQDPC(i));
6315 		if (hw->mac.type >= e1000_i210)
6316 			wr32(E1000_RQDPC(i), 0);
6317 
6318 		if (rqdpc) {
6319 			ring->rx_stats.drops += rqdpc;
6320 			net_stats->rx_fifo_errors += rqdpc;
6321 		}
6322 
6323 		do {
6324 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6325 			_bytes = ring->rx_stats.bytes;
6326 			_packets = ring->rx_stats.packets;
6327 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6328 		bytes += _bytes;
6329 		packets += _packets;
6330 	}
6331 
6332 	net_stats->rx_bytes = bytes;
6333 	net_stats->rx_packets = packets;
6334 
6335 	bytes = 0;
6336 	packets = 0;
6337 	for (i = 0; i < adapter->num_tx_queues; i++) {
6338 		struct igb_ring *ring = adapter->tx_ring[i];
6339 		do {
6340 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6341 			_bytes = ring->tx_stats.bytes;
6342 			_packets = ring->tx_stats.packets;
6343 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6344 		bytes += _bytes;
6345 		packets += _packets;
6346 	}
6347 	net_stats->tx_bytes = bytes;
6348 	net_stats->tx_packets = packets;
6349 	rcu_read_unlock();
6350 
6351 	/* read stats registers */
6352 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6353 	adapter->stats.gprc += rd32(E1000_GPRC);
6354 	adapter->stats.gorc += rd32(E1000_GORCL);
6355 	rd32(E1000_GORCH); /* clear GORCL */
6356 	adapter->stats.bprc += rd32(E1000_BPRC);
6357 	adapter->stats.mprc += rd32(E1000_MPRC);
6358 	adapter->stats.roc += rd32(E1000_ROC);
6359 
6360 	adapter->stats.prc64 += rd32(E1000_PRC64);
6361 	adapter->stats.prc127 += rd32(E1000_PRC127);
6362 	adapter->stats.prc255 += rd32(E1000_PRC255);
6363 	adapter->stats.prc511 += rd32(E1000_PRC511);
6364 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6365 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6366 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6367 	adapter->stats.sec += rd32(E1000_SEC);
6368 
6369 	mpc = rd32(E1000_MPC);
6370 	adapter->stats.mpc += mpc;
6371 	net_stats->rx_fifo_errors += mpc;
6372 	adapter->stats.scc += rd32(E1000_SCC);
6373 	adapter->stats.ecol += rd32(E1000_ECOL);
6374 	adapter->stats.mcc += rd32(E1000_MCC);
6375 	adapter->stats.latecol += rd32(E1000_LATECOL);
6376 	adapter->stats.dc += rd32(E1000_DC);
6377 	adapter->stats.rlec += rd32(E1000_RLEC);
6378 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6379 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6380 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6381 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6382 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6383 	adapter->stats.gptc += rd32(E1000_GPTC);
6384 	adapter->stats.gotc += rd32(E1000_GOTCL);
6385 	rd32(E1000_GOTCH); /* clear GOTCL */
6386 	adapter->stats.rnbc += rd32(E1000_RNBC);
6387 	adapter->stats.ruc += rd32(E1000_RUC);
6388 	adapter->stats.rfc += rd32(E1000_RFC);
6389 	adapter->stats.rjc += rd32(E1000_RJC);
6390 	adapter->stats.tor += rd32(E1000_TORH);
6391 	adapter->stats.tot += rd32(E1000_TOTH);
6392 	adapter->stats.tpr += rd32(E1000_TPR);
6393 
6394 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6395 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6396 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6397 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6398 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6399 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6400 
6401 	adapter->stats.mptc += rd32(E1000_MPTC);
6402 	adapter->stats.bptc += rd32(E1000_BPTC);
6403 
6404 	adapter->stats.tpt += rd32(E1000_TPT);
6405 	adapter->stats.colc += rd32(E1000_COLC);
6406 
6407 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6408 	/* read internal phy specific stats */
6409 	reg = rd32(E1000_CTRL_EXT);
6410 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6411 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6412 
6413 		/* this stat has invalid values on i210/i211 */
6414 		if ((hw->mac.type != e1000_i210) &&
6415 		    (hw->mac.type != e1000_i211))
6416 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6417 	}
6418 
6419 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6420 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6421 
6422 	adapter->stats.iac += rd32(E1000_IAC);
6423 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6424 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6425 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6426 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6427 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6428 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6429 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6430 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6431 
6432 	/* Fill out the OS statistics structure */
6433 	net_stats->multicast = adapter->stats.mprc;
6434 	net_stats->collisions = adapter->stats.colc;
6435 
6436 	/* Rx Errors */
6437 
6438 	/* RLEC on some newer hardware can be incorrect so build
6439 	 * our own version based on RUC and ROC
6440 	 */
6441 	net_stats->rx_errors = adapter->stats.rxerrc +
6442 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6443 		adapter->stats.ruc + adapter->stats.roc +
6444 		adapter->stats.cexterr;
6445 	net_stats->rx_length_errors = adapter->stats.ruc +
6446 				      adapter->stats.roc;
6447 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6448 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6449 	net_stats->rx_missed_errors = adapter->stats.mpc;
6450 
6451 	/* Tx Errors */
6452 	net_stats->tx_errors = adapter->stats.ecol +
6453 			       adapter->stats.latecol;
6454 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6455 	net_stats->tx_window_errors = adapter->stats.latecol;
6456 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6457 
6458 	/* Tx Dropped needs to be maintained elsewhere */
6459 
6460 	/* Management Stats */
6461 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6462 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6463 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6464 
6465 	/* OS2BMC Stats */
6466 	reg = rd32(E1000_MANC);
6467 	if (reg & E1000_MANC_EN_BMC2OS) {
6468 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6469 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6470 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6471 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6472 	}
6473 }
6474 
6475 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6476 {
6477 	struct e1000_hw *hw = &adapter->hw;
6478 	struct ptp_clock_event event;
6479 	struct timespec64 ts;
6480 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6481 
6482 	if (tsicr & TSINTR_SYS_WRAP) {
6483 		event.type = PTP_CLOCK_PPS;
6484 		if (adapter->ptp_caps.pps)
6485 			ptp_clock_event(adapter->ptp_clock, &event);
6486 		ack |= TSINTR_SYS_WRAP;
6487 	}
6488 
6489 	if (tsicr & E1000_TSICR_TXTS) {
6490 		/* retrieve hardware timestamp */
6491 		schedule_work(&adapter->ptp_tx_work);
6492 		ack |= E1000_TSICR_TXTS;
6493 	}
6494 
6495 	if (tsicr & TSINTR_TT0) {
6496 		spin_lock(&adapter->tmreg_lock);
6497 		ts = timespec64_add(adapter->perout[0].start,
6498 				    adapter->perout[0].period);
6499 		/* u32 conversion of tv_sec is safe until y2106 */
6500 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6501 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6502 		tsauxc = rd32(E1000_TSAUXC);
6503 		tsauxc |= TSAUXC_EN_TT0;
6504 		wr32(E1000_TSAUXC, tsauxc);
6505 		adapter->perout[0].start = ts;
6506 		spin_unlock(&adapter->tmreg_lock);
6507 		ack |= TSINTR_TT0;
6508 	}
6509 
6510 	if (tsicr & TSINTR_TT1) {
6511 		spin_lock(&adapter->tmreg_lock);
6512 		ts = timespec64_add(adapter->perout[1].start,
6513 				    adapter->perout[1].period);
6514 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6515 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6516 		tsauxc = rd32(E1000_TSAUXC);
6517 		tsauxc |= TSAUXC_EN_TT1;
6518 		wr32(E1000_TSAUXC, tsauxc);
6519 		adapter->perout[1].start = ts;
6520 		spin_unlock(&adapter->tmreg_lock);
6521 		ack |= TSINTR_TT1;
6522 	}
6523 
6524 	if (tsicr & TSINTR_AUTT0) {
6525 		nsec = rd32(E1000_AUXSTMPL0);
6526 		sec  = rd32(E1000_AUXSTMPH0);
6527 		event.type = PTP_CLOCK_EXTTS;
6528 		event.index = 0;
6529 		event.timestamp = sec * 1000000000ULL + nsec;
6530 		ptp_clock_event(adapter->ptp_clock, &event);
6531 		ack |= TSINTR_AUTT0;
6532 	}
6533 
6534 	if (tsicr & TSINTR_AUTT1) {
6535 		nsec = rd32(E1000_AUXSTMPL1);
6536 		sec  = rd32(E1000_AUXSTMPH1);
6537 		event.type = PTP_CLOCK_EXTTS;
6538 		event.index = 1;
6539 		event.timestamp = sec * 1000000000ULL + nsec;
6540 		ptp_clock_event(adapter->ptp_clock, &event);
6541 		ack |= TSINTR_AUTT1;
6542 	}
6543 
6544 	/* acknowledge the interrupts */
6545 	wr32(E1000_TSICR, ack);
6546 }
6547 
6548 static irqreturn_t igb_msix_other(int irq, void *data)
6549 {
6550 	struct igb_adapter *adapter = data;
6551 	struct e1000_hw *hw = &adapter->hw;
6552 	u32 icr = rd32(E1000_ICR);
6553 	/* reading ICR causes bit 31 of EICR to be cleared */
6554 
6555 	if (icr & E1000_ICR_DRSTA)
6556 		schedule_work(&adapter->reset_task);
6557 
6558 	if (icr & E1000_ICR_DOUTSYNC) {
6559 		/* HW is reporting DMA is out of sync */
6560 		adapter->stats.doosync++;
6561 		/* The DMA Out of Sync is also indication of a spoof event
6562 		 * in IOV mode. Check the Wrong VM Behavior register to
6563 		 * see if it is really a spoof event.
6564 		 */
6565 		igb_check_wvbr(adapter);
6566 	}
6567 
6568 	/* Check for a mailbox event */
6569 	if (icr & E1000_ICR_VMMB)
6570 		igb_msg_task(adapter);
6571 
6572 	if (icr & E1000_ICR_LSC) {
6573 		hw->mac.get_link_status = 1;
6574 		/* guard against interrupt when we're going down */
6575 		if (!test_bit(__IGB_DOWN, &adapter->state))
6576 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6577 	}
6578 
6579 	if (icr & E1000_ICR_TS)
6580 		igb_tsync_interrupt(adapter);
6581 
6582 	wr32(E1000_EIMS, adapter->eims_other);
6583 
6584 	return IRQ_HANDLED;
6585 }
6586 
6587 static void igb_write_itr(struct igb_q_vector *q_vector)
6588 {
6589 	struct igb_adapter *adapter = q_vector->adapter;
6590 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6591 
6592 	if (!q_vector->set_itr)
6593 		return;
6594 
6595 	if (!itr_val)
6596 		itr_val = 0x4;
6597 
6598 	if (adapter->hw.mac.type == e1000_82575)
6599 		itr_val |= itr_val << 16;
6600 	else
6601 		itr_val |= E1000_EITR_CNT_IGNR;
6602 
6603 	writel(itr_val, q_vector->itr_register);
6604 	q_vector->set_itr = 0;
6605 }
6606 
6607 static irqreturn_t igb_msix_ring(int irq, void *data)
6608 {
6609 	struct igb_q_vector *q_vector = data;
6610 
6611 	/* Write the ITR value calculated from the previous interrupt. */
6612 	igb_write_itr(q_vector);
6613 
6614 	napi_schedule(&q_vector->napi);
6615 
6616 	return IRQ_HANDLED;
6617 }
6618 
6619 #ifdef CONFIG_IGB_DCA
6620 static void igb_update_tx_dca(struct igb_adapter *adapter,
6621 			      struct igb_ring *tx_ring,
6622 			      int cpu)
6623 {
6624 	struct e1000_hw *hw = &adapter->hw;
6625 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6626 
6627 	if (hw->mac.type != e1000_82575)
6628 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6629 
6630 	/* We can enable relaxed ordering for reads, but not writes when
6631 	 * DCA is enabled.  This is due to a known issue in some chipsets
6632 	 * which will cause the DCA tag to be cleared.
6633 	 */
6634 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6635 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6636 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6637 
6638 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6639 }
6640 
6641 static void igb_update_rx_dca(struct igb_adapter *adapter,
6642 			      struct igb_ring *rx_ring,
6643 			      int cpu)
6644 {
6645 	struct e1000_hw *hw = &adapter->hw;
6646 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6647 
6648 	if (hw->mac.type != e1000_82575)
6649 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6650 
6651 	/* We can enable relaxed ordering for reads, but not writes when
6652 	 * DCA is enabled.  This is due to a known issue in some chipsets
6653 	 * which will cause the DCA tag to be cleared.
6654 	 */
6655 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6656 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6657 
6658 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6659 }
6660 
6661 static void igb_update_dca(struct igb_q_vector *q_vector)
6662 {
6663 	struct igb_adapter *adapter = q_vector->adapter;
6664 	int cpu = get_cpu();
6665 
6666 	if (q_vector->cpu == cpu)
6667 		goto out_no_update;
6668 
6669 	if (q_vector->tx.ring)
6670 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6671 
6672 	if (q_vector->rx.ring)
6673 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6674 
6675 	q_vector->cpu = cpu;
6676 out_no_update:
6677 	put_cpu();
6678 }
6679 
6680 static void igb_setup_dca(struct igb_adapter *adapter)
6681 {
6682 	struct e1000_hw *hw = &adapter->hw;
6683 	int i;
6684 
6685 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6686 		return;
6687 
6688 	/* Always use CB2 mode, difference is masked in the CB driver. */
6689 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6690 
6691 	for (i = 0; i < adapter->num_q_vectors; i++) {
6692 		adapter->q_vector[i]->cpu = -1;
6693 		igb_update_dca(adapter->q_vector[i]);
6694 	}
6695 }
6696 
6697 static int __igb_notify_dca(struct device *dev, void *data)
6698 {
6699 	struct net_device *netdev = dev_get_drvdata(dev);
6700 	struct igb_adapter *adapter = netdev_priv(netdev);
6701 	struct pci_dev *pdev = adapter->pdev;
6702 	struct e1000_hw *hw = &adapter->hw;
6703 	unsigned long event = *(unsigned long *)data;
6704 
6705 	switch (event) {
6706 	case DCA_PROVIDER_ADD:
6707 		/* if already enabled, don't do it again */
6708 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6709 			break;
6710 		if (dca_add_requester(dev) == 0) {
6711 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6712 			dev_info(&pdev->dev, "DCA enabled\n");
6713 			igb_setup_dca(adapter);
6714 			break;
6715 		}
6716 		/* Fall Through since DCA is disabled. */
6717 	case DCA_PROVIDER_REMOVE:
6718 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6719 			/* without this a class_device is left
6720 			 * hanging around in the sysfs model
6721 			 */
6722 			dca_remove_requester(dev);
6723 			dev_info(&pdev->dev, "DCA disabled\n");
6724 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6725 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6726 		}
6727 		break;
6728 	}
6729 
6730 	return 0;
6731 }
6732 
6733 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6734 			  void *p)
6735 {
6736 	int ret_val;
6737 
6738 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6739 					 __igb_notify_dca);
6740 
6741 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6742 }
6743 #endif /* CONFIG_IGB_DCA */
6744 
6745 #ifdef CONFIG_PCI_IOV
6746 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6747 {
6748 	unsigned char mac_addr[ETH_ALEN];
6749 
6750 	eth_zero_addr(mac_addr);
6751 	igb_set_vf_mac(adapter, vf, mac_addr);
6752 
6753 	/* By default spoof check is enabled for all VFs */
6754 	adapter->vf_data[vf].spoofchk_enabled = true;
6755 
6756 	/* By default VFs are not trusted */
6757 	adapter->vf_data[vf].trusted = false;
6758 
6759 	return 0;
6760 }
6761 
6762 #endif
6763 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6764 {
6765 	struct e1000_hw *hw = &adapter->hw;
6766 	u32 ping;
6767 	int i;
6768 
6769 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6770 		ping = E1000_PF_CONTROL_MSG;
6771 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6772 			ping |= E1000_VT_MSGTYPE_CTS;
6773 		igb_write_mbx(hw, &ping, 1, i);
6774 	}
6775 }
6776 
6777 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6778 {
6779 	struct e1000_hw *hw = &adapter->hw;
6780 	u32 vmolr = rd32(E1000_VMOLR(vf));
6781 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6782 
6783 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6784 			    IGB_VF_FLAG_MULTI_PROMISC);
6785 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6786 
6787 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6788 		vmolr |= E1000_VMOLR_MPME;
6789 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6790 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6791 	} else {
6792 		/* if we have hashes and we are clearing a multicast promisc
6793 		 * flag we need to write the hashes to the MTA as this step
6794 		 * was previously skipped
6795 		 */
6796 		if (vf_data->num_vf_mc_hashes > 30) {
6797 			vmolr |= E1000_VMOLR_MPME;
6798 		} else if (vf_data->num_vf_mc_hashes) {
6799 			int j;
6800 
6801 			vmolr |= E1000_VMOLR_ROMPE;
6802 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6803 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6804 		}
6805 	}
6806 
6807 	wr32(E1000_VMOLR(vf), vmolr);
6808 
6809 	/* there are flags left unprocessed, likely not supported */
6810 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6811 		return -EINVAL;
6812 
6813 	return 0;
6814 }
6815 
6816 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6817 				  u32 *msgbuf, u32 vf)
6818 {
6819 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6820 	u16 *hash_list = (u16 *)&msgbuf[1];
6821 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6822 	int i;
6823 
6824 	/* salt away the number of multicast addresses assigned
6825 	 * to this VF for later use to restore when the PF multi cast
6826 	 * list changes
6827 	 */
6828 	vf_data->num_vf_mc_hashes = n;
6829 
6830 	/* only up to 30 hash values supported */
6831 	if (n > 30)
6832 		n = 30;
6833 
6834 	/* store the hashes for later use */
6835 	for (i = 0; i < n; i++)
6836 		vf_data->vf_mc_hashes[i] = hash_list[i];
6837 
6838 	/* Flush and reset the mta with the new values */
6839 	igb_set_rx_mode(adapter->netdev);
6840 
6841 	return 0;
6842 }
6843 
6844 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6845 {
6846 	struct e1000_hw *hw = &adapter->hw;
6847 	struct vf_data_storage *vf_data;
6848 	int i, j;
6849 
6850 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6851 		u32 vmolr = rd32(E1000_VMOLR(i));
6852 
6853 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6854 
6855 		vf_data = &adapter->vf_data[i];
6856 
6857 		if ((vf_data->num_vf_mc_hashes > 30) ||
6858 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6859 			vmolr |= E1000_VMOLR_MPME;
6860 		} else if (vf_data->num_vf_mc_hashes) {
6861 			vmolr |= E1000_VMOLR_ROMPE;
6862 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6863 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6864 		}
6865 		wr32(E1000_VMOLR(i), vmolr);
6866 	}
6867 }
6868 
6869 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6870 {
6871 	struct e1000_hw *hw = &adapter->hw;
6872 	u32 pool_mask, vlvf_mask, i;
6873 
6874 	/* create mask for VF and other pools */
6875 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6876 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6877 
6878 	/* drop PF from pool bits */
6879 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6880 			     adapter->vfs_allocated_count);
6881 
6882 	/* Find the vlan filter for this id */
6883 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6884 		u32 vlvf = rd32(E1000_VLVF(i));
6885 		u32 vfta_mask, vid, vfta;
6886 
6887 		/* remove the vf from the pool */
6888 		if (!(vlvf & vlvf_mask))
6889 			continue;
6890 
6891 		/* clear out bit from VLVF */
6892 		vlvf ^= vlvf_mask;
6893 
6894 		/* if other pools are present, just remove ourselves */
6895 		if (vlvf & pool_mask)
6896 			goto update_vlvfb;
6897 
6898 		/* if PF is present, leave VFTA */
6899 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6900 			goto update_vlvf;
6901 
6902 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6903 		vfta_mask = BIT(vid % 32);
6904 
6905 		/* clear bit from VFTA */
6906 		vfta = adapter->shadow_vfta[vid / 32];
6907 		if (vfta & vfta_mask)
6908 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6909 update_vlvf:
6910 		/* clear pool selection enable */
6911 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6912 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6913 		else
6914 			vlvf = 0;
6915 update_vlvfb:
6916 		/* clear pool bits */
6917 		wr32(E1000_VLVF(i), vlvf);
6918 	}
6919 }
6920 
6921 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6922 {
6923 	u32 vlvf;
6924 	int idx;
6925 
6926 	/* short cut the special case */
6927 	if (vlan == 0)
6928 		return 0;
6929 
6930 	/* Search for the VLAN id in the VLVF entries */
6931 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6932 		vlvf = rd32(E1000_VLVF(idx));
6933 		if ((vlvf & VLAN_VID_MASK) == vlan)
6934 			break;
6935 	}
6936 
6937 	return idx;
6938 }
6939 
6940 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6941 {
6942 	struct e1000_hw *hw = &adapter->hw;
6943 	u32 bits, pf_id;
6944 	int idx;
6945 
6946 	idx = igb_find_vlvf_entry(hw, vid);
6947 	if (!idx)
6948 		return;
6949 
6950 	/* See if any other pools are set for this VLAN filter
6951 	 * entry other than the PF.
6952 	 */
6953 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6954 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6955 	bits &= rd32(E1000_VLVF(idx));
6956 
6957 	/* Disable the filter so this falls into the default pool. */
6958 	if (!bits) {
6959 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6960 			wr32(E1000_VLVF(idx), BIT(pf_id));
6961 		else
6962 			wr32(E1000_VLVF(idx), 0);
6963 	}
6964 }
6965 
6966 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6967 			   bool add, u32 vf)
6968 {
6969 	int pf_id = adapter->vfs_allocated_count;
6970 	struct e1000_hw *hw = &adapter->hw;
6971 	int err;
6972 
6973 	/* If VLAN overlaps with one the PF is currently monitoring make
6974 	 * sure that we are able to allocate a VLVF entry.  This may be
6975 	 * redundant but it guarantees PF will maintain visibility to
6976 	 * the VLAN.
6977 	 */
6978 	if (add && test_bit(vid, adapter->active_vlans)) {
6979 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6980 		if (err)
6981 			return err;
6982 	}
6983 
6984 	err = igb_vfta_set(hw, vid, vf, add, false);
6985 
6986 	if (add && !err)
6987 		return err;
6988 
6989 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6990 	 * we may need to drop the PF pool bit in order to allow us to free
6991 	 * up the VLVF resources.
6992 	 */
6993 	if (test_bit(vid, adapter->active_vlans) ||
6994 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6995 		igb_update_pf_vlvf(adapter, vid);
6996 
6997 	return err;
6998 }
6999 
7000 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7001 {
7002 	struct e1000_hw *hw = &adapter->hw;
7003 
7004 	if (vid)
7005 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7006 	else
7007 		wr32(E1000_VMVIR(vf), 0);
7008 }
7009 
7010 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7011 				u16 vlan, u8 qos)
7012 {
7013 	int err;
7014 
7015 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7016 	if (err)
7017 		return err;
7018 
7019 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7020 	igb_set_vmolr(adapter, vf, !vlan);
7021 
7022 	/* revoke access to previous VLAN */
7023 	if (vlan != adapter->vf_data[vf].pf_vlan)
7024 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7025 				false, vf);
7026 
7027 	adapter->vf_data[vf].pf_vlan = vlan;
7028 	adapter->vf_data[vf].pf_qos = qos;
7029 	igb_set_vf_vlan_strip(adapter, vf, true);
7030 	dev_info(&adapter->pdev->dev,
7031 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7032 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7033 		dev_warn(&adapter->pdev->dev,
7034 			 "The VF VLAN has been set, but the PF device is not up.\n");
7035 		dev_warn(&adapter->pdev->dev,
7036 			 "Bring the PF device up before attempting to use the VF device.\n");
7037 	}
7038 
7039 	return err;
7040 }
7041 
7042 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7043 {
7044 	/* Restore tagless access via VLAN 0 */
7045 	igb_set_vf_vlan(adapter, 0, true, vf);
7046 
7047 	igb_set_vmvir(adapter, 0, vf);
7048 	igb_set_vmolr(adapter, vf, true);
7049 
7050 	/* Remove any PF assigned VLAN */
7051 	if (adapter->vf_data[vf].pf_vlan)
7052 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7053 				false, vf);
7054 
7055 	adapter->vf_data[vf].pf_vlan = 0;
7056 	adapter->vf_data[vf].pf_qos = 0;
7057 	igb_set_vf_vlan_strip(adapter, vf, false);
7058 
7059 	return 0;
7060 }
7061 
7062 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7063 			       u16 vlan, u8 qos, __be16 vlan_proto)
7064 {
7065 	struct igb_adapter *adapter = netdev_priv(netdev);
7066 
7067 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7068 		return -EINVAL;
7069 
7070 	if (vlan_proto != htons(ETH_P_8021Q))
7071 		return -EPROTONOSUPPORT;
7072 
7073 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7074 			       igb_disable_port_vlan(adapter, vf);
7075 }
7076 
7077 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7078 {
7079 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7080 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7081 	int ret;
7082 
7083 	if (adapter->vf_data[vf].pf_vlan)
7084 		return -1;
7085 
7086 	/* VLAN 0 is a special case, don't allow it to be removed */
7087 	if (!vid && !add)
7088 		return 0;
7089 
7090 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7091 	if (!ret)
7092 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7093 	return ret;
7094 }
7095 
7096 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7097 {
7098 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7099 
7100 	/* clear flags - except flag that indicates PF has set the MAC */
7101 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7102 	vf_data->last_nack = jiffies;
7103 
7104 	/* reset vlans for device */
7105 	igb_clear_vf_vfta(adapter, vf);
7106 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7107 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7108 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7109 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7110 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7111 
7112 	/* reset multicast table array for vf */
7113 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7114 
7115 	/* Flush and reset the mta with the new values */
7116 	igb_set_rx_mode(adapter->netdev);
7117 }
7118 
7119 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7120 {
7121 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7122 
7123 	/* clear mac address as we were hotplug removed/added */
7124 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7125 		eth_zero_addr(vf_mac);
7126 
7127 	/* process remaining reset events */
7128 	igb_vf_reset(adapter, vf);
7129 }
7130 
7131 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7132 {
7133 	struct e1000_hw *hw = &adapter->hw;
7134 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7135 	u32 reg, msgbuf[3];
7136 	u8 *addr = (u8 *)(&msgbuf[1]);
7137 
7138 	/* process all the same items cleared in a function level reset */
7139 	igb_vf_reset(adapter, vf);
7140 
7141 	/* set vf mac address */
7142 	igb_set_vf_mac(adapter, vf, vf_mac);
7143 
7144 	/* enable transmit and receive for vf */
7145 	reg = rd32(E1000_VFTE);
7146 	wr32(E1000_VFTE, reg | BIT(vf));
7147 	reg = rd32(E1000_VFRE);
7148 	wr32(E1000_VFRE, reg | BIT(vf));
7149 
7150 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7151 
7152 	/* reply to reset with ack and vf mac address */
7153 	if (!is_zero_ether_addr(vf_mac)) {
7154 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7155 		memcpy(addr, vf_mac, ETH_ALEN);
7156 	} else {
7157 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7158 	}
7159 	igb_write_mbx(hw, msgbuf, 3, vf);
7160 }
7161 
7162 static void igb_flush_mac_table(struct igb_adapter *adapter)
7163 {
7164 	struct e1000_hw *hw = &adapter->hw;
7165 	int i;
7166 
7167 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7168 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7169 		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7170 		adapter->mac_table[i].queue = 0;
7171 		igb_rar_set_index(adapter, i);
7172 	}
7173 }
7174 
7175 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7176 {
7177 	struct e1000_hw *hw = &adapter->hw;
7178 	/* do not count rar entries reserved for VFs MAC addresses */
7179 	int rar_entries = hw->mac.rar_entry_count -
7180 			  adapter->vfs_allocated_count;
7181 	int i, count = 0;
7182 
7183 	for (i = 0; i < rar_entries; i++) {
7184 		/* do not count default entries */
7185 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7186 			continue;
7187 
7188 		/* do not count "in use" entries for different queues */
7189 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7190 		    (adapter->mac_table[i].queue != queue))
7191 			continue;
7192 
7193 		count++;
7194 	}
7195 
7196 	return count;
7197 }
7198 
7199 /* Set default MAC address for the PF in the first RAR entry */
7200 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7201 {
7202 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7203 
7204 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7205 	mac_table->queue = adapter->vfs_allocated_count;
7206 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7207 
7208 	igb_rar_set_index(adapter, 0);
7209 }
7210 
7211 /* If the filter to be added and an already existing filter express
7212  * the same address and address type, it should be possible to only
7213  * override the other configurations, for example the queue to steer
7214  * traffic.
7215  */
7216 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7217 				      const u8 *addr, const u8 flags)
7218 {
7219 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7220 		return true;
7221 
7222 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7223 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7224 		return false;
7225 
7226 	if (!ether_addr_equal(addr, entry->addr))
7227 		return false;
7228 
7229 	return true;
7230 }
7231 
7232 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7233  * 'flags' is used to indicate what kind of match is made, match is by
7234  * default for the destination address, if matching by source address
7235  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7236  */
7237 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7238 				    const u8 *addr, const u8 queue,
7239 				    const u8 flags)
7240 {
7241 	struct e1000_hw *hw = &adapter->hw;
7242 	int rar_entries = hw->mac.rar_entry_count -
7243 			  adapter->vfs_allocated_count;
7244 	int i;
7245 
7246 	if (is_zero_ether_addr(addr))
7247 		return -EINVAL;
7248 
7249 	/* Search for the first empty entry in the MAC table.
7250 	 * Do not touch entries at the end of the table reserved for the VF MAC
7251 	 * addresses.
7252 	 */
7253 	for (i = 0; i < rar_entries; i++) {
7254 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7255 					       addr, flags))
7256 			continue;
7257 
7258 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7259 		adapter->mac_table[i].queue = queue;
7260 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7261 
7262 		igb_rar_set_index(adapter, i);
7263 		return i;
7264 	}
7265 
7266 	return -ENOSPC;
7267 }
7268 
7269 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7270 			      const u8 queue)
7271 {
7272 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7273 }
7274 
7275 /* Remove a MAC filter for 'addr' directing matching traffic to
7276  * 'queue', 'flags' is used to indicate what kind of match need to be
7277  * removed, match is by default for the destination address, if
7278  * matching by source address is to be removed the flag
7279  * IGB_MAC_STATE_SRC_ADDR can be used.
7280  */
7281 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7282 				    const u8 *addr, const u8 queue,
7283 				    const u8 flags)
7284 {
7285 	struct e1000_hw *hw = &adapter->hw;
7286 	int rar_entries = hw->mac.rar_entry_count -
7287 			  adapter->vfs_allocated_count;
7288 	int i;
7289 
7290 	if (is_zero_ether_addr(addr))
7291 		return -EINVAL;
7292 
7293 	/* Search for matching entry in the MAC table based on given address
7294 	 * and queue. Do not touch entries at the end of the table reserved
7295 	 * for the VF MAC addresses.
7296 	 */
7297 	for (i = 0; i < rar_entries; i++) {
7298 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7299 			continue;
7300 		if ((adapter->mac_table[i].state & flags) != flags)
7301 			continue;
7302 		if (adapter->mac_table[i].queue != queue)
7303 			continue;
7304 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7305 			continue;
7306 
7307 		/* When a filter for the default address is "deleted",
7308 		 * we return it to its initial configuration
7309 		 */
7310 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7311 			adapter->mac_table[i].state =
7312 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7313 			adapter->mac_table[i].queue =
7314 				adapter->vfs_allocated_count;
7315 		} else {
7316 			adapter->mac_table[i].state = 0;
7317 			adapter->mac_table[i].queue = 0;
7318 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7319 		}
7320 
7321 		igb_rar_set_index(adapter, i);
7322 		return 0;
7323 	}
7324 
7325 	return -ENOENT;
7326 }
7327 
7328 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7329 			      const u8 queue)
7330 {
7331 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7332 }
7333 
7334 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7335 				const u8 *addr, u8 queue, u8 flags)
7336 {
7337 	struct e1000_hw *hw = &adapter->hw;
7338 
7339 	/* In theory, this should be supported on 82575 as well, but
7340 	 * that part wasn't easily accessible during development.
7341 	 */
7342 	if (hw->mac.type != e1000_i210)
7343 		return -EOPNOTSUPP;
7344 
7345 	return igb_add_mac_filter_flags(adapter, addr, queue,
7346 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7347 }
7348 
7349 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7350 				const u8 *addr, u8 queue, u8 flags)
7351 {
7352 	return igb_del_mac_filter_flags(adapter, addr, queue,
7353 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7354 }
7355 
7356 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7357 {
7358 	struct igb_adapter *adapter = netdev_priv(netdev);
7359 	int ret;
7360 
7361 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7362 
7363 	return min_t(int, ret, 0);
7364 }
7365 
7366 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7367 {
7368 	struct igb_adapter *adapter = netdev_priv(netdev);
7369 
7370 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7371 
7372 	return 0;
7373 }
7374 
7375 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7376 				 const u32 info, const u8 *addr)
7377 {
7378 	struct pci_dev *pdev = adapter->pdev;
7379 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7380 	struct list_head *pos;
7381 	struct vf_mac_filter *entry = NULL;
7382 	int ret = 0;
7383 
7384 	switch (info) {
7385 	case E1000_VF_MAC_FILTER_CLR:
7386 		/* remove all unicast MAC filters related to the current VF */
7387 		list_for_each(pos, &adapter->vf_macs.l) {
7388 			entry = list_entry(pos, struct vf_mac_filter, l);
7389 			if (entry->vf == vf) {
7390 				entry->vf = -1;
7391 				entry->free = true;
7392 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7393 			}
7394 		}
7395 		break;
7396 	case E1000_VF_MAC_FILTER_ADD:
7397 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7398 		    !vf_data->trusted) {
7399 			dev_warn(&pdev->dev,
7400 				 "VF %d requested MAC filter but is administratively denied\n",
7401 				 vf);
7402 			return -EINVAL;
7403 		}
7404 		if (!is_valid_ether_addr(addr)) {
7405 			dev_warn(&pdev->dev,
7406 				 "VF %d attempted to set invalid MAC filter\n",
7407 				 vf);
7408 			return -EINVAL;
7409 		}
7410 
7411 		/* try to find empty slot in the list */
7412 		list_for_each(pos, &adapter->vf_macs.l) {
7413 			entry = list_entry(pos, struct vf_mac_filter, l);
7414 			if (entry->free)
7415 				break;
7416 		}
7417 
7418 		if (entry && entry->free) {
7419 			entry->free = false;
7420 			entry->vf = vf;
7421 			ether_addr_copy(entry->vf_mac, addr);
7422 
7423 			ret = igb_add_mac_filter(adapter, addr, vf);
7424 			ret = min_t(int, ret, 0);
7425 		} else {
7426 			ret = -ENOSPC;
7427 		}
7428 
7429 		if (ret == -ENOSPC)
7430 			dev_warn(&pdev->dev,
7431 				 "VF %d has requested MAC filter but there is no space for it\n",
7432 				 vf);
7433 		break;
7434 	default:
7435 		ret = -EINVAL;
7436 		break;
7437 	}
7438 
7439 	return ret;
7440 }
7441 
7442 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7443 {
7444 	struct pci_dev *pdev = adapter->pdev;
7445 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7446 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7447 
7448 	/* The VF MAC Address is stored in a packed array of bytes
7449 	 * starting at the second 32 bit word of the msg array
7450 	 */
7451 	unsigned char *addr = (unsigned char *)&msg[1];
7452 	int ret = 0;
7453 
7454 	if (!info) {
7455 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7456 		    !vf_data->trusted) {
7457 			dev_warn(&pdev->dev,
7458 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7459 				 vf);
7460 			return -EINVAL;
7461 		}
7462 
7463 		if (!is_valid_ether_addr(addr)) {
7464 			dev_warn(&pdev->dev,
7465 				 "VF %d attempted to set invalid MAC\n",
7466 				 vf);
7467 			return -EINVAL;
7468 		}
7469 
7470 		ret = igb_set_vf_mac(adapter, vf, addr);
7471 	} else {
7472 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7473 	}
7474 
7475 	return ret;
7476 }
7477 
7478 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7479 {
7480 	struct e1000_hw *hw = &adapter->hw;
7481 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7482 	u32 msg = E1000_VT_MSGTYPE_NACK;
7483 
7484 	/* if device isn't clear to send it shouldn't be reading either */
7485 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7486 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7487 		igb_write_mbx(hw, &msg, 1, vf);
7488 		vf_data->last_nack = jiffies;
7489 	}
7490 }
7491 
7492 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7493 {
7494 	struct pci_dev *pdev = adapter->pdev;
7495 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7496 	struct e1000_hw *hw = &adapter->hw;
7497 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7498 	s32 retval;
7499 
7500 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7501 
7502 	if (retval) {
7503 		/* if receive failed revoke VF CTS stats and restart init */
7504 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7505 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7506 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7507 			goto unlock;
7508 		goto out;
7509 	}
7510 
7511 	/* this is a message we already processed, do nothing */
7512 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7513 		goto unlock;
7514 
7515 	/* until the vf completes a reset it should not be
7516 	 * allowed to start any configuration.
7517 	 */
7518 	if (msgbuf[0] == E1000_VF_RESET) {
7519 		/* unlocks mailbox */
7520 		igb_vf_reset_msg(adapter, vf);
7521 		return;
7522 	}
7523 
7524 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7525 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7526 			goto unlock;
7527 		retval = -1;
7528 		goto out;
7529 	}
7530 
7531 	switch ((msgbuf[0] & 0xFFFF)) {
7532 	case E1000_VF_SET_MAC_ADDR:
7533 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7534 		break;
7535 	case E1000_VF_SET_PROMISC:
7536 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7537 		break;
7538 	case E1000_VF_SET_MULTICAST:
7539 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7540 		break;
7541 	case E1000_VF_SET_LPE:
7542 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7543 		break;
7544 	case E1000_VF_SET_VLAN:
7545 		retval = -1;
7546 		if (vf_data->pf_vlan)
7547 			dev_warn(&pdev->dev,
7548 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7549 				 vf);
7550 		else
7551 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7552 		break;
7553 	default:
7554 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7555 		retval = -1;
7556 		break;
7557 	}
7558 
7559 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7560 out:
7561 	/* notify the VF of the results of what it sent us */
7562 	if (retval)
7563 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7564 	else
7565 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7566 
7567 	/* unlocks mailbox */
7568 	igb_write_mbx(hw, msgbuf, 1, vf);
7569 	return;
7570 
7571 unlock:
7572 	igb_unlock_mbx(hw, vf);
7573 }
7574 
7575 static void igb_msg_task(struct igb_adapter *adapter)
7576 {
7577 	struct e1000_hw *hw = &adapter->hw;
7578 	u32 vf;
7579 
7580 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7581 		/* process any reset requests */
7582 		if (!igb_check_for_rst(hw, vf))
7583 			igb_vf_reset_event(adapter, vf);
7584 
7585 		/* process any messages pending */
7586 		if (!igb_check_for_msg(hw, vf))
7587 			igb_rcv_msg_from_vf(adapter, vf);
7588 
7589 		/* process any acks */
7590 		if (!igb_check_for_ack(hw, vf))
7591 			igb_rcv_ack_from_vf(adapter, vf);
7592 	}
7593 }
7594 
7595 /**
7596  *  igb_set_uta - Set unicast filter table address
7597  *  @adapter: board private structure
7598  *  @set: boolean indicating if we are setting or clearing bits
7599  *
7600  *  The unicast table address is a register array of 32-bit registers.
7601  *  The table is meant to be used in a way similar to how the MTA is used
7602  *  however due to certain limitations in the hardware it is necessary to
7603  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7604  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7605  **/
7606 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7607 {
7608 	struct e1000_hw *hw = &adapter->hw;
7609 	u32 uta = set ? ~0 : 0;
7610 	int i;
7611 
7612 	/* we only need to do this if VMDq is enabled */
7613 	if (!adapter->vfs_allocated_count)
7614 		return;
7615 
7616 	for (i = hw->mac.uta_reg_count; i--;)
7617 		array_wr32(E1000_UTA, i, uta);
7618 }
7619 
7620 /**
7621  *  igb_intr_msi - Interrupt Handler
7622  *  @irq: interrupt number
7623  *  @data: pointer to a network interface device structure
7624  **/
7625 static irqreturn_t igb_intr_msi(int irq, void *data)
7626 {
7627 	struct igb_adapter *adapter = data;
7628 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7629 	struct e1000_hw *hw = &adapter->hw;
7630 	/* read ICR disables interrupts using IAM */
7631 	u32 icr = rd32(E1000_ICR);
7632 
7633 	igb_write_itr(q_vector);
7634 
7635 	if (icr & E1000_ICR_DRSTA)
7636 		schedule_work(&adapter->reset_task);
7637 
7638 	if (icr & E1000_ICR_DOUTSYNC) {
7639 		/* HW is reporting DMA is out of sync */
7640 		adapter->stats.doosync++;
7641 	}
7642 
7643 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7644 		hw->mac.get_link_status = 1;
7645 		if (!test_bit(__IGB_DOWN, &adapter->state))
7646 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7647 	}
7648 
7649 	if (icr & E1000_ICR_TS)
7650 		igb_tsync_interrupt(adapter);
7651 
7652 	napi_schedule(&q_vector->napi);
7653 
7654 	return IRQ_HANDLED;
7655 }
7656 
7657 /**
7658  *  igb_intr - Legacy Interrupt Handler
7659  *  @irq: interrupt number
7660  *  @data: pointer to a network interface device structure
7661  **/
7662 static irqreturn_t igb_intr(int irq, void *data)
7663 {
7664 	struct igb_adapter *adapter = data;
7665 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7666 	struct e1000_hw *hw = &adapter->hw;
7667 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7668 	 * need for the IMC write
7669 	 */
7670 	u32 icr = rd32(E1000_ICR);
7671 
7672 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7673 	 * not set, then the adapter didn't send an interrupt
7674 	 */
7675 	if (!(icr & E1000_ICR_INT_ASSERTED))
7676 		return IRQ_NONE;
7677 
7678 	igb_write_itr(q_vector);
7679 
7680 	if (icr & E1000_ICR_DRSTA)
7681 		schedule_work(&adapter->reset_task);
7682 
7683 	if (icr & E1000_ICR_DOUTSYNC) {
7684 		/* HW is reporting DMA is out of sync */
7685 		adapter->stats.doosync++;
7686 	}
7687 
7688 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7689 		hw->mac.get_link_status = 1;
7690 		/* guard against interrupt when we're going down */
7691 		if (!test_bit(__IGB_DOWN, &adapter->state))
7692 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7693 	}
7694 
7695 	if (icr & E1000_ICR_TS)
7696 		igb_tsync_interrupt(adapter);
7697 
7698 	napi_schedule(&q_vector->napi);
7699 
7700 	return IRQ_HANDLED;
7701 }
7702 
7703 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7704 {
7705 	struct igb_adapter *adapter = q_vector->adapter;
7706 	struct e1000_hw *hw = &adapter->hw;
7707 
7708 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7709 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7710 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7711 			igb_set_itr(q_vector);
7712 		else
7713 			igb_update_ring_itr(q_vector);
7714 	}
7715 
7716 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7717 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7718 			wr32(E1000_EIMS, q_vector->eims_value);
7719 		else
7720 			igb_irq_enable(adapter);
7721 	}
7722 }
7723 
7724 /**
7725  *  igb_poll - NAPI Rx polling callback
7726  *  @napi: napi polling structure
7727  *  @budget: count of how many packets we should handle
7728  **/
7729 static int igb_poll(struct napi_struct *napi, int budget)
7730 {
7731 	struct igb_q_vector *q_vector = container_of(napi,
7732 						     struct igb_q_vector,
7733 						     napi);
7734 	bool clean_complete = true;
7735 	int work_done = 0;
7736 
7737 #ifdef CONFIG_IGB_DCA
7738 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7739 		igb_update_dca(q_vector);
7740 #endif
7741 	if (q_vector->tx.ring)
7742 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7743 
7744 	if (q_vector->rx.ring) {
7745 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7746 
7747 		work_done += cleaned;
7748 		if (cleaned >= budget)
7749 			clean_complete = false;
7750 	}
7751 
7752 	/* If all work not completed, return budget and keep polling */
7753 	if (!clean_complete)
7754 		return budget;
7755 
7756 	/* If not enough Rx work done, exit the polling mode */
7757 	napi_complete_done(napi, work_done);
7758 	igb_ring_irq_enable(q_vector);
7759 
7760 	return 0;
7761 }
7762 
7763 /**
7764  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7765  *  @q_vector: pointer to q_vector containing needed info
7766  *  @napi_budget: Used to determine if we are in netpoll
7767  *
7768  *  returns true if ring is completely cleaned
7769  **/
7770 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7771 {
7772 	struct igb_adapter *adapter = q_vector->adapter;
7773 	struct igb_ring *tx_ring = q_vector->tx.ring;
7774 	struct igb_tx_buffer *tx_buffer;
7775 	union e1000_adv_tx_desc *tx_desc;
7776 	unsigned int total_bytes = 0, total_packets = 0;
7777 	unsigned int budget = q_vector->tx.work_limit;
7778 	unsigned int i = tx_ring->next_to_clean;
7779 
7780 	if (test_bit(__IGB_DOWN, &adapter->state))
7781 		return true;
7782 
7783 	tx_buffer = &tx_ring->tx_buffer_info[i];
7784 	tx_desc = IGB_TX_DESC(tx_ring, i);
7785 	i -= tx_ring->count;
7786 
7787 	do {
7788 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7789 
7790 		/* if next_to_watch is not set then there is no work pending */
7791 		if (!eop_desc)
7792 			break;
7793 
7794 		/* prevent any other reads prior to eop_desc */
7795 		smp_rmb();
7796 
7797 		/* if DD is not set pending work has not been completed */
7798 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7799 			break;
7800 
7801 		/* clear next_to_watch to prevent false hangs */
7802 		tx_buffer->next_to_watch = NULL;
7803 
7804 		/* update the statistics for this packet */
7805 		total_bytes += tx_buffer->bytecount;
7806 		total_packets += tx_buffer->gso_segs;
7807 
7808 		/* free the skb */
7809 		napi_consume_skb(tx_buffer->skb, napi_budget);
7810 
7811 		/* unmap skb header data */
7812 		dma_unmap_single(tx_ring->dev,
7813 				 dma_unmap_addr(tx_buffer, dma),
7814 				 dma_unmap_len(tx_buffer, len),
7815 				 DMA_TO_DEVICE);
7816 
7817 		/* clear tx_buffer data */
7818 		dma_unmap_len_set(tx_buffer, len, 0);
7819 
7820 		/* clear last DMA location and unmap remaining buffers */
7821 		while (tx_desc != eop_desc) {
7822 			tx_buffer++;
7823 			tx_desc++;
7824 			i++;
7825 			if (unlikely(!i)) {
7826 				i -= tx_ring->count;
7827 				tx_buffer = tx_ring->tx_buffer_info;
7828 				tx_desc = IGB_TX_DESC(tx_ring, 0);
7829 			}
7830 
7831 			/* unmap any remaining paged data */
7832 			if (dma_unmap_len(tx_buffer, len)) {
7833 				dma_unmap_page(tx_ring->dev,
7834 					       dma_unmap_addr(tx_buffer, dma),
7835 					       dma_unmap_len(tx_buffer, len),
7836 					       DMA_TO_DEVICE);
7837 				dma_unmap_len_set(tx_buffer, len, 0);
7838 			}
7839 		}
7840 
7841 		/* move us one more past the eop_desc for start of next pkt */
7842 		tx_buffer++;
7843 		tx_desc++;
7844 		i++;
7845 		if (unlikely(!i)) {
7846 			i -= tx_ring->count;
7847 			tx_buffer = tx_ring->tx_buffer_info;
7848 			tx_desc = IGB_TX_DESC(tx_ring, 0);
7849 		}
7850 
7851 		/* issue prefetch for next Tx descriptor */
7852 		prefetch(tx_desc);
7853 
7854 		/* update budget accounting */
7855 		budget--;
7856 	} while (likely(budget));
7857 
7858 	netdev_tx_completed_queue(txring_txq(tx_ring),
7859 				  total_packets, total_bytes);
7860 	i += tx_ring->count;
7861 	tx_ring->next_to_clean = i;
7862 	u64_stats_update_begin(&tx_ring->tx_syncp);
7863 	tx_ring->tx_stats.bytes += total_bytes;
7864 	tx_ring->tx_stats.packets += total_packets;
7865 	u64_stats_update_end(&tx_ring->tx_syncp);
7866 	q_vector->tx.total_bytes += total_bytes;
7867 	q_vector->tx.total_packets += total_packets;
7868 
7869 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7870 		struct e1000_hw *hw = &adapter->hw;
7871 
7872 		/* Detect a transmit hang in hardware, this serializes the
7873 		 * check with the clearing of time_stamp and movement of i
7874 		 */
7875 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7876 		if (tx_buffer->next_to_watch &&
7877 		    time_after(jiffies, tx_buffer->time_stamp +
7878 			       (adapter->tx_timeout_factor * HZ)) &&
7879 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7880 
7881 			/* detected Tx unit hang */
7882 			dev_err(tx_ring->dev,
7883 				"Detected Tx Unit Hang\n"
7884 				"  Tx Queue             <%d>\n"
7885 				"  TDH                  <%x>\n"
7886 				"  TDT                  <%x>\n"
7887 				"  next_to_use          <%x>\n"
7888 				"  next_to_clean        <%x>\n"
7889 				"buffer_info[next_to_clean]\n"
7890 				"  time_stamp           <%lx>\n"
7891 				"  next_to_watch        <%p>\n"
7892 				"  jiffies              <%lx>\n"
7893 				"  desc.status          <%x>\n",
7894 				tx_ring->queue_index,
7895 				rd32(E1000_TDH(tx_ring->reg_idx)),
7896 				readl(tx_ring->tail),
7897 				tx_ring->next_to_use,
7898 				tx_ring->next_to_clean,
7899 				tx_buffer->time_stamp,
7900 				tx_buffer->next_to_watch,
7901 				jiffies,
7902 				tx_buffer->next_to_watch->wb.status);
7903 			netif_stop_subqueue(tx_ring->netdev,
7904 					    tx_ring->queue_index);
7905 
7906 			/* we are about to reset, no point in enabling stuff */
7907 			return true;
7908 		}
7909 	}
7910 
7911 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7912 	if (unlikely(total_packets &&
7913 	    netif_carrier_ok(tx_ring->netdev) &&
7914 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7915 		/* Make sure that anybody stopping the queue after this
7916 		 * sees the new next_to_clean.
7917 		 */
7918 		smp_mb();
7919 		if (__netif_subqueue_stopped(tx_ring->netdev,
7920 					     tx_ring->queue_index) &&
7921 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7922 			netif_wake_subqueue(tx_ring->netdev,
7923 					    tx_ring->queue_index);
7924 
7925 			u64_stats_update_begin(&tx_ring->tx_syncp);
7926 			tx_ring->tx_stats.restart_queue++;
7927 			u64_stats_update_end(&tx_ring->tx_syncp);
7928 		}
7929 	}
7930 
7931 	return !!budget;
7932 }
7933 
7934 /**
7935  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7936  *  @rx_ring: rx descriptor ring to store buffers on
7937  *  @old_buff: donor buffer to have page reused
7938  *
7939  *  Synchronizes page for reuse by the adapter
7940  **/
7941 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7942 			      struct igb_rx_buffer *old_buff)
7943 {
7944 	struct igb_rx_buffer *new_buff;
7945 	u16 nta = rx_ring->next_to_alloc;
7946 
7947 	new_buff = &rx_ring->rx_buffer_info[nta];
7948 
7949 	/* update, and store next to alloc */
7950 	nta++;
7951 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7952 
7953 	/* Transfer page from old buffer to new buffer.
7954 	 * Move each member individually to avoid possible store
7955 	 * forwarding stalls.
7956 	 */
7957 	new_buff->dma		= old_buff->dma;
7958 	new_buff->page		= old_buff->page;
7959 	new_buff->page_offset	= old_buff->page_offset;
7960 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7961 }
7962 
7963 static inline bool igb_page_is_reserved(struct page *page)
7964 {
7965 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7966 }
7967 
7968 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7969 {
7970 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7971 	struct page *page = rx_buffer->page;
7972 
7973 	/* avoid re-using remote pages */
7974 	if (unlikely(igb_page_is_reserved(page)))
7975 		return false;
7976 
7977 #if (PAGE_SIZE < 8192)
7978 	/* if we are only owner of page we can reuse it */
7979 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7980 		return false;
7981 #else
7982 #define IGB_LAST_OFFSET \
7983 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7984 
7985 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7986 		return false;
7987 #endif
7988 
7989 	/* If we have drained the page fragment pool we need to update
7990 	 * the pagecnt_bias and page count so that we fully restock the
7991 	 * number of references the driver holds.
7992 	 */
7993 	if (unlikely(!pagecnt_bias)) {
7994 		page_ref_add(page, USHRT_MAX);
7995 		rx_buffer->pagecnt_bias = USHRT_MAX;
7996 	}
7997 
7998 	return true;
7999 }
8000 
8001 /**
8002  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8003  *  @rx_ring: rx descriptor ring to transact packets on
8004  *  @rx_buffer: buffer containing page to add
8005  *  @skb: sk_buff to place the data into
8006  *  @size: size of buffer to be added
8007  *
8008  *  This function will add the data contained in rx_buffer->page to the skb.
8009  **/
8010 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8011 			    struct igb_rx_buffer *rx_buffer,
8012 			    struct sk_buff *skb,
8013 			    unsigned int size)
8014 {
8015 #if (PAGE_SIZE < 8192)
8016 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8017 #else
8018 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8019 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8020 				SKB_DATA_ALIGN(size);
8021 #endif
8022 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8023 			rx_buffer->page_offset, size, truesize);
8024 #if (PAGE_SIZE < 8192)
8025 	rx_buffer->page_offset ^= truesize;
8026 #else
8027 	rx_buffer->page_offset += truesize;
8028 #endif
8029 }
8030 
8031 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8032 					 struct igb_rx_buffer *rx_buffer,
8033 					 union e1000_adv_rx_desc *rx_desc,
8034 					 unsigned int size)
8035 {
8036 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8037 #if (PAGE_SIZE < 8192)
8038 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8039 #else
8040 	unsigned int truesize = SKB_DATA_ALIGN(size);
8041 #endif
8042 	unsigned int headlen;
8043 	struct sk_buff *skb;
8044 
8045 	/* prefetch first cache line of first page */
8046 	prefetch(va);
8047 #if L1_CACHE_BYTES < 128
8048 	prefetch(va + L1_CACHE_BYTES);
8049 #endif
8050 
8051 	/* allocate a skb to store the frags */
8052 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8053 	if (unlikely(!skb))
8054 		return NULL;
8055 
8056 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8057 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8058 		va += IGB_TS_HDR_LEN;
8059 		size -= IGB_TS_HDR_LEN;
8060 	}
8061 
8062 	/* Determine available headroom for copy */
8063 	headlen = size;
8064 	if (headlen > IGB_RX_HDR_LEN)
8065 		headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8066 
8067 	/* align pull length to size of long to optimize memcpy performance */
8068 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8069 
8070 	/* update all of the pointers */
8071 	size -= headlen;
8072 	if (size) {
8073 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8074 				(va + headlen) - page_address(rx_buffer->page),
8075 				size, truesize);
8076 #if (PAGE_SIZE < 8192)
8077 		rx_buffer->page_offset ^= truesize;
8078 #else
8079 		rx_buffer->page_offset += truesize;
8080 #endif
8081 	} else {
8082 		rx_buffer->pagecnt_bias++;
8083 	}
8084 
8085 	return skb;
8086 }
8087 
8088 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8089 				     struct igb_rx_buffer *rx_buffer,
8090 				     union e1000_adv_rx_desc *rx_desc,
8091 				     unsigned int size)
8092 {
8093 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8094 #if (PAGE_SIZE < 8192)
8095 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8096 #else
8097 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8098 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8099 #endif
8100 	struct sk_buff *skb;
8101 
8102 	/* prefetch first cache line of first page */
8103 	prefetch(va);
8104 #if L1_CACHE_BYTES < 128
8105 	prefetch(va + L1_CACHE_BYTES);
8106 #endif
8107 
8108 	/* build an skb around the page buffer */
8109 	skb = build_skb(va - IGB_SKB_PAD, truesize);
8110 	if (unlikely(!skb))
8111 		return NULL;
8112 
8113 	/* update pointers within the skb to store the data */
8114 	skb_reserve(skb, IGB_SKB_PAD);
8115 	__skb_put(skb, size);
8116 
8117 	/* pull timestamp out of packet data */
8118 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8119 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8120 		__skb_pull(skb, IGB_TS_HDR_LEN);
8121 	}
8122 
8123 	/* update buffer offset */
8124 #if (PAGE_SIZE < 8192)
8125 	rx_buffer->page_offset ^= truesize;
8126 #else
8127 	rx_buffer->page_offset += truesize;
8128 #endif
8129 
8130 	return skb;
8131 }
8132 
8133 static inline void igb_rx_checksum(struct igb_ring *ring,
8134 				   union e1000_adv_rx_desc *rx_desc,
8135 				   struct sk_buff *skb)
8136 {
8137 	skb_checksum_none_assert(skb);
8138 
8139 	/* Ignore Checksum bit is set */
8140 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8141 		return;
8142 
8143 	/* Rx checksum disabled via ethtool */
8144 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8145 		return;
8146 
8147 	/* TCP/UDP checksum error bit is set */
8148 	if (igb_test_staterr(rx_desc,
8149 			     E1000_RXDEXT_STATERR_TCPE |
8150 			     E1000_RXDEXT_STATERR_IPE)) {
8151 		/* work around errata with sctp packets where the TCPE aka
8152 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8153 		 * packets, (aka let the stack check the crc32c)
8154 		 */
8155 		if (!((skb->len == 60) &&
8156 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8157 			u64_stats_update_begin(&ring->rx_syncp);
8158 			ring->rx_stats.csum_err++;
8159 			u64_stats_update_end(&ring->rx_syncp);
8160 		}
8161 		/* let the stack verify checksum errors */
8162 		return;
8163 	}
8164 	/* It must be a TCP or UDP packet with a valid checksum */
8165 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8166 				      E1000_RXD_STAT_UDPCS))
8167 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8168 
8169 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8170 		le32_to_cpu(rx_desc->wb.upper.status_error));
8171 }
8172 
8173 static inline void igb_rx_hash(struct igb_ring *ring,
8174 			       union e1000_adv_rx_desc *rx_desc,
8175 			       struct sk_buff *skb)
8176 {
8177 	if (ring->netdev->features & NETIF_F_RXHASH)
8178 		skb_set_hash(skb,
8179 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8180 			     PKT_HASH_TYPE_L3);
8181 }
8182 
8183 /**
8184  *  igb_is_non_eop - process handling of non-EOP buffers
8185  *  @rx_ring: Rx ring being processed
8186  *  @rx_desc: Rx descriptor for current buffer
8187  *  @skb: current socket buffer containing buffer in progress
8188  *
8189  *  This function updates next to clean.  If the buffer is an EOP buffer
8190  *  this function exits returning false, otherwise it will place the
8191  *  sk_buff in the next buffer to be chained and return true indicating
8192  *  that this is in fact a non-EOP buffer.
8193  **/
8194 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8195 			   union e1000_adv_rx_desc *rx_desc)
8196 {
8197 	u32 ntc = rx_ring->next_to_clean + 1;
8198 
8199 	/* fetch, update, and store next to clean */
8200 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8201 	rx_ring->next_to_clean = ntc;
8202 
8203 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8204 
8205 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8206 		return false;
8207 
8208 	return true;
8209 }
8210 
8211 /**
8212  *  igb_cleanup_headers - Correct corrupted or empty headers
8213  *  @rx_ring: rx descriptor ring packet is being transacted on
8214  *  @rx_desc: pointer to the EOP Rx descriptor
8215  *  @skb: pointer to current skb being fixed
8216  *
8217  *  Address the case where we are pulling data in on pages only
8218  *  and as such no data is present in the skb header.
8219  *
8220  *  In addition if skb is not at least 60 bytes we need to pad it so that
8221  *  it is large enough to qualify as a valid Ethernet frame.
8222  *
8223  *  Returns true if an error was encountered and skb was freed.
8224  **/
8225 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8226 				union e1000_adv_rx_desc *rx_desc,
8227 				struct sk_buff *skb)
8228 {
8229 	if (unlikely((igb_test_staterr(rx_desc,
8230 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8231 		struct net_device *netdev = rx_ring->netdev;
8232 		if (!(netdev->features & NETIF_F_RXALL)) {
8233 			dev_kfree_skb_any(skb);
8234 			return true;
8235 		}
8236 	}
8237 
8238 	/* if eth_skb_pad returns an error the skb was freed */
8239 	if (eth_skb_pad(skb))
8240 		return true;
8241 
8242 	return false;
8243 }
8244 
8245 /**
8246  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8247  *  @rx_ring: rx descriptor ring packet is being transacted on
8248  *  @rx_desc: pointer to the EOP Rx descriptor
8249  *  @skb: pointer to current skb being populated
8250  *
8251  *  This function checks the ring, descriptor, and packet information in
8252  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8253  *  other fields within the skb.
8254  **/
8255 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8256 				   union e1000_adv_rx_desc *rx_desc,
8257 				   struct sk_buff *skb)
8258 {
8259 	struct net_device *dev = rx_ring->netdev;
8260 
8261 	igb_rx_hash(rx_ring, rx_desc, skb);
8262 
8263 	igb_rx_checksum(rx_ring, rx_desc, skb);
8264 
8265 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8266 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8267 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8268 
8269 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8270 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8271 		u16 vid;
8272 
8273 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8274 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8275 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8276 		else
8277 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8278 
8279 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8280 	}
8281 
8282 	skb_record_rx_queue(skb, rx_ring->queue_index);
8283 
8284 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8285 }
8286 
8287 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8288 					       const unsigned int size)
8289 {
8290 	struct igb_rx_buffer *rx_buffer;
8291 
8292 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8293 	prefetchw(rx_buffer->page);
8294 
8295 	/* we are reusing so sync this buffer for CPU use */
8296 	dma_sync_single_range_for_cpu(rx_ring->dev,
8297 				      rx_buffer->dma,
8298 				      rx_buffer->page_offset,
8299 				      size,
8300 				      DMA_FROM_DEVICE);
8301 
8302 	rx_buffer->pagecnt_bias--;
8303 
8304 	return rx_buffer;
8305 }
8306 
8307 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8308 			      struct igb_rx_buffer *rx_buffer)
8309 {
8310 	if (igb_can_reuse_rx_page(rx_buffer)) {
8311 		/* hand second half of page back to the ring */
8312 		igb_reuse_rx_page(rx_ring, rx_buffer);
8313 	} else {
8314 		/* We are not reusing the buffer so unmap it and free
8315 		 * any references we are holding to it
8316 		 */
8317 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8318 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8319 				     IGB_RX_DMA_ATTR);
8320 		__page_frag_cache_drain(rx_buffer->page,
8321 					rx_buffer->pagecnt_bias);
8322 	}
8323 
8324 	/* clear contents of rx_buffer */
8325 	rx_buffer->page = NULL;
8326 }
8327 
8328 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8329 {
8330 	struct igb_ring *rx_ring = q_vector->rx.ring;
8331 	struct sk_buff *skb = rx_ring->skb;
8332 	unsigned int total_bytes = 0, total_packets = 0;
8333 	u16 cleaned_count = igb_desc_unused(rx_ring);
8334 
8335 	while (likely(total_packets < budget)) {
8336 		union e1000_adv_rx_desc *rx_desc;
8337 		struct igb_rx_buffer *rx_buffer;
8338 		unsigned int size;
8339 
8340 		/* return some buffers to hardware, one at a time is too slow */
8341 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8342 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8343 			cleaned_count = 0;
8344 		}
8345 
8346 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8347 		size = le16_to_cpu(rx_desc->wb.upper.length);
8348 		if (!size)
8349 			break;
8350 
8351 		/* This memory barrier is needed to keep us from reading
8352 		 * any other fields out of the rx_desc until we know the
8353 		 * descriptor has been written back
8354 		 */
8355 		dma_rmb();
8356 
8357 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8358 
8359 		/* retrieve a buffer from the ring */
8360 		if (skb)
8361 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8362 		else if (ring_uses_build_skb(rx_ring))
8363 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8364 		else
8365 			skb = igb_construct_skb(rx_ring, rx_buffer,
8366 						rx_desc, size);
8367 
8368 		/* exit if we failed to retrieve a buffer */
8369 		if (!skb) {
8370 			rx_ring->rx_stats.alloc_failed++;
8371 			rx_buffer->pagecnt_bias++;
8372 			break;
8373 		}
8374 
8375 		igb_put_rx_buffer(rx_ring, rx_buffer);
8376 		cleaned_count++;
8377 
8378 		/* fetch next buffer in frame if non-eop */
8379 		if (igb_is_non_eop(rx_ring, rx_desc))
8380 			continue;
8381 
8382 		/* verify the packet layout is correct */
8383 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8384 			skb = NULL;
8385 			continue;
8386 		}
8387 
8388 		/* probably a little skewed due to removing CRC */
8389 		total_bytes += skb->len;
8390 
8391 		/* populate checksum, timestamp, VLAN, and protocol */
8392 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8393 
8394 		napi_gro_receive(&q_vector->napi, skb);
8395 
8396 		/* reset skb pointer */
8397 		skb = NULL;
8398 
8399 		/* update budget accounting */
8400 		total_packets++;
8401 	}
8402 
8403 	/* place incomplete frames back on ring for completion */
8404 	rx_ring->skb = skb;
8405 
8406 	u64_stats_update_begin(&rx_ring->rx_syncp);
8407 	rx_ring->rx_stats.packets += total_packets;
8408 	rx_ring->rx_stats.bytes += total_bytes;
8409 	u64_stats_update_end(&rx_ring->rx_syncp);
8410 	q_vector->rx.total_packets += total_packets;
8411 	q_vector->rx.total_bytes += total_bytes;
8412 
8413 	if (cleaned_count)
8414 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8415 
8416 	return total_packets;
8417 }
8418 
8419 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8420 {
8421 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8422 }
8423 
8424 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8425 				  struct igb_rx_buffer *bi)
8426 {
8427 	struct page *page = bi->page;
8428 	dma_addr_t dma;
8429 
8430 	/* since we are recycling buffers we should seldom need to alloc */
8431 	if (likely(page))
8432 		return true;
8433 
8434 	/* alloc new page for storage */
8435 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8436 	if (unlikely(!page)) {
8437 		rx_ring->rx_stats.alloc_failed++;
8438 		return false;
8439 	}
8440 
8441 	/* map page for use */
8442 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8443 				 igb_rx_pg_size(rx_ring),
8444 				 DMA_FROM_DEVICE,
8445 				 IGB_RX_DMA_ATTR);
8446 
8447 	/* if mapping failed free memory back to system since
8448 	 * there isn't much point in holding memory we can't use
8449 	 */
8450 	if (dma_mapping_error(rx_ring->dev, dma)) {
8451 		__free_pages(page, igb_rx_pg_order(rx_ring));
8452 
8453 		rx_ring->rx_stats.alloc_failed++;
8454 		return false;
8455 	}
8456 
8457 	bi->dma = dma;
8458 	bi->page = page;
8459 	bi->page_offset = igb_rx_offset(rx_ring);
8460 	bi->pagecnt_bias = 1;
8461 
8462 	return true;
8463 }
8464 
8465 /**
8466  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8467  *  @adapter: address of board private structure
8468  **/
8469 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8470 {
8471 	union e1000_adv_rx_desc *rx_desc;
8472 	struct igb_rx_buffer *bi;
8473 	u16 i = rx_ring->next_to_use;
8474 	u16 bufsz;
8475 
8476 	/* nothing to do */
8477 	if (!cleaned_count)
8478 		return;
8479 
8480 	rx_desc = IGB_RX_DESC(rx_ring, i);
8481 	bi = &rx_ring->rx_buffer_info[i];
8482 	i -= rx_ring->count;
8483 
8484 	bufsz = igb_rx_bufsz(rx_ring);
8485 
8486 	do {
8487 		if (!igb_alloc_mapped_page(rx_ring, bi))
8488 			break;
8489 
8490 		/* sync the buffer for use by the device */
8491 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8492 						 bi->page_offset, bufsz,
8493 						 DMA_FROM_DEVICE);
8494 
8495 		/* Refresh the desc even if buffer_addrs didn't change
8496 		 * because each write-back erases this info.
8497 		 */
8498 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8499 
8500 		rx_desc++;
8501 		bi++;
8502 		i++;
8503 		if (unlikely(!i)) {
8504 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8505 			bi = rx_ring->rx_buffer_info;
8506 			i -= rx_ring->count;
8507 		}
8508 
8509 		/* clear the length for the next_to_use descriptor */
8510 		rx_desc->wb.upper.length = 0;
8511 
8512 		cleaned_count--;
8513 	} while (cleaned_count);
8514 
8515 	i += rx_ring->count;
8516 
8517 	if (rx_ring->next_to_use != i) {
8518 		/* record the next descriptor to use */
8519 		rx_ring->next_to_use = i;
8520 
8521 		/* update next to alloc since we have filled the ring */
8522 		rx_ring->next_to_alloc = i;
8523 
8524 		/* Force memory writes to complete before letting h/w
8525 		 * know there are new descriptors to fetch.  (Only
8526 		 * applicable for weak-ordered memory model archs,
8527 		 * such as IA-64).
8528 		 */
8529 		dma_wmb();
8530 		writel(i, rx_ring->tail);
8531 	}
8532 }
8533 
8534 /**
8535  * igb_mii_ioctl -
8536  * @netdev:
8537  * @ifreq:
8538  * @cmd:
8539  **/
8540 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8541 {
8542 	struct igb_adapter *adapter = netdev_priv(netdev);
8543 	struct mii_ioctl_data *data = if_mii(ifr);
8544 
8545 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8546 		return -EOPNOTSUPP;
8547 
8548 	switch (cmd) {
8549 	case SIOCGMIIPHY:
8550 		data->phy_id = adapter->hw.phy.addr;
8551 		break;
8552 	case SIOCGMIIREG:
8553 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8554 				     &data->val_out))
8555 			return -EIO;
8556 		break;
8557 	case SIOCSMIIREG:
8558 	default:
8559 		return -EOPNOTSUPP;
8560 	}
8561 	return 0;
8562 }
8563 
8564 /**
8565  * igb_ioctl -
8566  * @netdev:
8567  * @ifreq:
8568  * @cmd:
8569  **/
8570 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8571 {
8572 	switch (cmd) {
8573 	case SIOCGMIIPHY:
8574 	case SIOCGMIIREG:
8575 	case SIOCSMIIREG:
8576 		return igb_mii_ioctl(netdev, ifr, cmd);
8577 	case SIOCGHWTSTAMP:
8578 		return igb_ptp_get_ts_config(netdev, ifr);
8579 	case SIOCSHWTSTAMP:
8580 		return igb_ptp_set_ts_config(netdev, ifr);
8581 	default:
8582 		return -EOPNOTSUPP;
8583 	}
8584 }
8585 
8586 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8587 {
8588 	struct igb_adapter *adapter = hw->back;
8589 
8590 	pci_read_config_word(adapter->pdev, reg, value);
8591 }
8592 
8593 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8594 {
8595 	struct igb_adapter *adapter = hw->back;
8596 
8597 	pci_write_config_word(adapter->pdev, reg, *value);
8598 }
8599 
8600 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8601 {
8602 	struct igb_adapter *adapter = hw->back;
8603 
8604 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8605 		return -E1000_ERR_CONFIG;
8606 
8607 	return 0;
8608 }
8609 
8610 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8611 {
8612 	struct igb_adapter *adapter = hw->back;
8613 
8614 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8615 		return -E1000_ERR_CONFIG;
8616 
8617 	return 0;
8618 }
8619 
8620 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8621 {
8622 	struct igb_adapter *adapter = netdev_priv(netdev);
8623 	struct e1000_hw *hw = &adapter->hw;
8624 	u32 ctrl, rctl;
8625 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8626 
8627 	if (enable) {
8628 		/* enable VLAN tag insert/strip */
8629 		ctrl = rd32(E1000_CTRL);
8630 		ctrl |= E1000_CTRL_VME;
8631 		wr32(E1000_CTRL, ctrl);
8632 
8633 		/* Disable CFI check */
8634 		rctl = rd32(E1000_RCTL);
8635 		rctl &= ~E1000_RCTL_CFIEN;
8636 		wr32(E1000_RCTL, rctl);
8637 	} else {
8638 		/* disable VLAN tag insert/strip */
8639 		ctrl = rd32(E1000_CTRL);
8640 		ctrl &= ~E1000_CTRL_VME;
8641 		wr32(E1000_CTRL, ctrl);
8642 	}
8643 
8644 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8645 }
8646 
8647 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8648 			       __be16 proto, u16 vid)
8649 {
8650 	struct igb_adapter *adapter = netdev_priv(netdev);
8651 	struct e1000_hw *hw = &adapter->hw;
8652 	int pf_id = adapter->vfs_allocated_count;
8653 
8654 	/* add the filter since PF can receive vlans w/o entry in vlvf */
8655 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8656 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8657 
8658 	set_bit(vid, adapter->active_vlans);
8659 
8660 	return 0;
8661 }
8662 
8663 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8664 				__be16 proto, u16 vid)
8665 {
8666 	struct igb_adapter *adapter = netdev_priv(netdev);
8667 	int pf_id = adapter->vfs_allocated_count;
8668 	struct e1000_hw *hw = &adapter->hw;
8669 
8670 	/* remove VID from filter table */
8671 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8672 		igb_vfta_set(hw, vid, pf_id, false, true);
8673 
8674 	clear_bit(vid, adapter->active_vlans);
8675 
8676 	return 0;
8677 }
8678 
8679 static void igb_restore_vlan(struct igb_adapter *adapter)
8680 {
8681 	u16 vid = 1;
8682 
8683 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8684 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8685 
8686 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8687 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8688 }
8689 
8690 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8691 {
8692 	struct pci_dev *pdev = adapter->pdev;
8693 	struct e1000_mac_info *mac = &adapter->hw.mac;
8694 
8695 	mac->autoneg = 0;
8696 
8697 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8698 	 * for the switch() below to work
8699 	 */
8700 	if ((spd & 1) || (dplx & ~1))
8701 		goto err_inval;
8702 
8703 	/* Fiber NIC's only allow 1000 gbps Full duplex
8704 	 * and 100Mbps Full duplex for 100baseFx sfp
8705 	 */
8706 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8707 		switch (spd + dplx) {
8708 		case SPEED_10 + DUPLEX_HALF:
8709 		case SPEED_10 + DUPLEX_FULL:
8710 		case SPEED_100 + DUPLEX_HALF:
8711 			goto err_inval;
8712 		default:
8713 			break;
8714 		}
8715 	}
8716 
8717 	switch (spd + dplx) {
8718 	case SPEED_10 + DUPLEX_HALF:
8719 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8720 		break;
8721 	case SPEED_10 + DUPLEX_FULL:
8722 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8723 		break;
8724 	case SPEED_100 + DUPLEX_HALF:
8725 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8726 		break;
8727 	case SPEED_100 + DUPLEX_FULL:
8728 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8729 		break;
8730 	case SPEED_1000 + DUPLEX_FULL:
8731 		mac->autoneg = 1;
8732 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8733 		break;
8734 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8735 	default:
8736 		goto err_inval;
8737 	}
8738 
8739 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8740 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8741 
8742 	return 0;
8743 
8744 err_inval:
8745 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8746 	return -EINVAL;
8747 }
8748 
8749 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8750 			  bool runtime)
8751 {
8752 	struct net_device *netdev = pci_get_drvdata(pdev);
8753 	struct igb_adapter *adapter = netdev_priv(netdev);
8754 	struct e1000_hw *hw = &adapter->hw;
8755 	u32 ctrl, rctl, status;
8756 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8757 #ifdef CONFIG_PM
8758 	int retval = 0;
8759 #endif
8760 
8761 	rtnl_lock();
8762 	netif_device_detach(netdev);
8763 
8764 	if (netif_running(netdev))
8765 		__igb_close(netdev, true);
8766 
8767 	igb_ptp_suspend(adapter);
8768 
8769 	igb_clear_interrupt_scheme(adapter);
8770 	rtnl_unlock();
8771 
8772 #ifdef CONFIG_PM
8773 	retval = pci_save_state(pdev);
8774 	if (retval)
8775 		return retval;
8776 #endif
8777 
8778 	status = rd32(E1000_STATUS);
8779 	if (status & E1000_STATUS_LU)
8780 		wufc &= ~E1000_WUFC_LNKC;
8781 
8782 	if (wufc) {
8783 		igb_setup_rctl(adapter);
8784 		igb_set_rx_mode(netdev);
8785 
8786 		/* turn on all-multi mode if wake on multicast is enabled */
8787 		if (wufc & E1000_WUFC_MC) {
8788 			rctl = rd32(E1000_RCTL);
8789 			rctl |= E1000_RCTL_MPE;
8790 			wr32(E1000_RCTL, rctl);
8791 		}
8792 
8793 		ctrl = rd32(E1000_CTRL);
8794 		/* advertise wake from D3Cold */
8795 		#define E1000_CTRL_ADVD3WUC 0x00100000
8796 		/* phy power management enable */
8797 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8798 		ctrl |= E1000_CTRL_ADVD3WUC;
8799 		wr32(E1000_CTRL, ctrl);
8800 
8801 		/* Allow time for pending master requests to run */
8802 		igb_disable_pcie_master(hw);
8803 
8804 		wr32(E1000_WUC, E1000_WUC_PME_EN);
8805 		wr32(E1000_WUFC, wufc);
8806 	} else {
8807 		wr32(E1000_WUC, 0);
8808 		wr32(E1000_WUFC, 0);
8809 	}
8810 
8811 	*enable_wake = wufc || adapter->en_mng_pt;
8812 	if (!*enable_wake)
8813 		igb_power_down_link(adapter);
8814 	else
8815 		igb_power_up_link(adapter);
8816 
8817 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8818 	 * would have already happened in close and is redundant.
8819 	 */
8820 	igb_release_hw_control(adapter);
8821 
8822 	pci_disable_device(pdev);
8823 
8824 	return 0;
8825 }
8826 
8827 static void igb_deliver_wake_packet(struct net_device *netdev)
8828 {
8829 	struct igb_adapter *adapter = netdev_priv(netdev);
8830 	struct e1000_hw *hw = &adapter->hw;
8831 	struct sk_buff *skb;
8832 	u32 wupl;
8833 
8834 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8835 
8836 	/* WUPM stores only the first 128 bytes of the wake packet.
8837 	 * Read the packet only if we have the whole thing.
8838 	 */
8839 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8840 		return;
8841 
8842 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8843 	if (!skb)
8844 		return;
8845 
8846 	skb_put(skb, wupl);
8847 
8848 	/* Ensure reads are 32-bit aligned */
8849 	wupl = roundup(wupl, 4);
8850 
8851 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8852 
8853 	skb->protocol = eth_type_trans(skb, netdev);
8854 	netif_rx(skb);
8855 }
8856 
8857 static int __maybe_unused igb_suspend(struct device *dev)
8858 {
8859 	int retval;
8860 	bool wake;
8861 	struct pci_dev *pdev = to_pci_dev(dev);
8862 
8863 	retval = __igb_shutdown(pdev, &wake, 0);
8864 	if (retval)
8865 		return retval;
8866 
8867 	if (wake) {
8868 		pci_prepare_to_sleep(pdev);
8869 	} else {
8870 		pci_wake_from_d3(pdev, false);
8871 		pci_set_power_state(pdev, PCI_D3hot);
8872 	}
8873 
8874 	return 0;
8875 }
8876 
8877 static int __maybe_unused igb_resume(struct device *dev)
8878 {
8879 	struct pci_dev *pdev = to_pci_dev(dev);
8880 	struct net_device *netdev = pci_get_drvdata(pdev);
8881 	struct igb_adapter *adapter = netdev_priv(netdev);
8882 	struct e1000_hw *hw = &adapter->hw;
8883 	u32 err, val;
8884 
8885 	pci_set_power_state(pdev, PCI_D0);
8886 	pci_restore_state(pdev);
8887 	pci_save_state(pdev);
8888 
8889 	if (!pci_device_is_present(pdev))
8890 		return -ENODEV;
8891 	err = pci_enable_device_mem(pdev);
8892 	if (err) {
8893 		dev_err(&pdev->dev,
8894 			"igb: Cannot enable PCI device from suspend\n");
8895 		return err;
8896 	}
8897 	pci_set_master(pdev);
8898 
8899 	pci_enable_wake(pdev, PCI_D3hot, 0);
8900 	pci_enable_wake(pdev, PCI_D3cold, 0);
8901 
8902 	if (igb_init_interrupt_scheme(adapter, true)) {
8903 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8904 		return -ENOMEM;
8905 	}
8906 
8907 	igb_reset(adapter);
8908 
8909 	/* let the f/w know that the h/w is now under the control of the
8910 	 * driver.
8911 	 */
8912 	igb_get_hw_control(adapter);
8913 
8914 	val = rd32(E1000_WUS);
8915 	if (val & WAKE_PKT_WUS)
8916 		igb_deliver_wake_packet(netdev);
8917 
8918 	wr32(E1000_WUS, ~0);
8919 
8920 	rtnl_lock();
8921 	if (!err && netif_running(netdev))
8922 		err = __igb_open(netdev, true);
8923 
8924 	if (!err)
8925 		netif_device_attach(netdev);
8926 	rtnl_unlock();
8927 
8928 	return err;
8929 }
8930 
8931 static int __maybe_unused igb_runtime_idle(struct device *dev)
8932 {
8933 	struct pci_dev *pdev = to_pci_dev(dev);
8934 	struct net_device *netdev = pci_get_drvdata(pdev);
8935 	struct igb_adapter *adapter = netdev_priv(netdev);
8936 
8937 	if (!igb_has_link(adapter))
8938 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8939 
8940 	return -EBUSY;
8941 }
8942 
8943 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8944 {
8945 	struct pci_dev *pdev = to_pci_dev(dev);
8946 	int retval;
8947 	bool wake;
8948 
8949 	retval = __igb_shutdown(pdev, &wake, 1);
8950 	if (retval)
8951 		return retval;
8952 
8953 	if (wake) {
8954 		pci_prepare_to_sleep(pdev);
8955 	} else {
8956 		pci_wake_from_d3(pdev, false);
8957 		pci_set_power_state(pdev, PCI_D3hot);
8958 	}
8959 
8960 	return 0;
8961 }
8962 
8963 static int __maybe_unused igb_runtime_resume(struct device *dev)
8964 {
8965 	return igb_resume(dev);
8966 }
8967 
8968 static void igb_shutdown(struct pci_dev *pdev)
8969 {
8970 	bool wake;
8971 
8972 	__igb_shutdown(pdev, &wake, 0);
8973 
8974 	if (system_state == SYSTEM_POWER_OFF) {
8975 		pci_wake_from_d3(pdev, wake);
8976 		pci_set_power_state(pdev, PCI_D3hot);
8977 	}
8978 }
8979 
8980 #ifdef CONFIG_PCI_IOV
8981 static int igb_sriov_reinit(struct pci_dev *dev)
8982 {
8983 	struct net_device *netdev = pci_get_drvdata(dev);
8984 	struct igb_adapter *adapter = netdev_priv(netdev);
8985 	struct pci_dev *pdev = adapter->pdev;
8986 
8987 	rtnl_lock();
8988 
8989 	if (netif_running(netdev))
8990 		igb_close(netdev);
8991 	else
8992 		igb_reset(adapter);
8993 
8994 	igb_clear_interrupt_scheme(adapter);
8995 
8996 	igb_init_queue_configuration(adapter);
8997 
8998 	if (igb_init_interrupt_scheme(adapter, true)) {
8999 		rtnl_unlock();
9000 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9001 		return -ENOMEM;
9002 	}
9003 
9004 	if (netif_running(netdev))
9005 		igb_open(netdev);
9006 
9007 	rtnl_unlock();
9008 
9009 	return 0;
9010 }
9011 
9012 static int igb_pci_disable_sriov(struct pci_dev *dev)
9013 {
9014 	int err = igb_disable_sriov(dev);
9015 
9016 	if (!err)
9017 		err = igb_sriov_reinit(dev);
9018 
9019 	return err;
9020 }
9021 
9022 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9023 {
9024 	int err = igb_enable_sriov(dev, num_vfs);
9025 
9026 	if (err)
9027 		goto out;
9028 
9029 	err = igb_sriov_reinit(dev);
9030 	if (!err)
9031 		return num_vfs;
9032 
9033 out:
9034 	return err;
9035 }
9036 
9037 #endif
9038 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9039 {
9040 #ifdef CONFIG_PCI_IOV
9041 	if (num_vfs == 0)
9042 		return igb_pci_disable_sriov(dev);
9043 	else
9044 		return igb_pci_enable_sriov(dev, num_vfs);
9045 #endif
9046 	return 0;
9047 }
9048 
9049 /**
9050  *  igb_io_error_detected - called when PCI error is detected
9051  *  @pdev: Pointer to PCI device
9052  *  @state: The current pci connection state
9053  *
9054  *  This function is called after a PCI bus error affecting
9055  *  this device has been detected.
9056  **/
9057 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9058 					      pci_channel_state_t state)
9059 {
9060 	struct net_device *netdev = pci_get_drvdata(pdev);
9061 	struct igb_adapter *adapter = netdev_priv(netdev);
9062 
9063 	netif_device_detach(netdev);
9064 
9065 	if (state == pci_channel_io_perm_failure)
9066 		return PCI_ERS_RESULT_DISCONNECT;
9067 
9068 	if (netif_running(netdev))
9069 		igb_down(adapter);
9070 	pci_disable_device(pdev);
9071 
9072 	/* Request a slot slot reset. */
9073 	return PCI_ERS_RESULT_NEED_RESET;
9074 }
9075 
9076 /**
9077  *  igb_io_slot_reset - called after the pci bus has been reset.
9078  *  @pdev: Pointer to PCI device
9079  *
9080  *  Restart the card from scratch, as if from a cold-boot. Implementation
9081  *  resembles the first-half of the igb_resume routine.
9082  **/
9083 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9084 {
9085 	struct net_device *netdev = pci_get_drvdata(pdev);
9086 	struct igb_adapter *adapter = netdev_priv(netdev);
9087 	struct e1000_hw *hw = &adapter->hw;
9088 	pci_ers_result_t result;
9089 
9090 	if (pci_enable_device_mem(pdev)) {
9091 		dev_err(&pdev->dev,
9092 			"Cannot re-enable PCI device after reset.\n");
9093 		result = PCI_ERS_RESULT_DISCONNECT;
9094 	} else {
9095 		pci_set_master(pdev);
9096 		pci_restore_state(pdev);
9097 		pci_save_state(pdev);
9098 
9099 		pci_enable_wake(pdev, PCI_D3hot, 0);
9100 		pci_enable_wake(pdev, PCI_D3cold, 0);
9101 
9102 		/* In case of PCI error, adapter lose its HW address
9103 		 * so we should re-assign it here.
9104 		 */
9105 		hw->hw_addr = adapter->io_addr;
9106 
9107 		igb_reset(adapter);
9108 		wr32(E1000_WUS, ~0);
9109 		result = PCI_ERS_RESULT_RECOVERED;
9110 	}
9111 
9112 	return result;
9113 }
9114 
9115 /**
9116  *  igb_io_resume - called when traffic can start flowing again.
9117  *  @pdev: Pointer to PCI device
9118  *
9119  *  This callback is called when the error recovery driver tells us that
9120  *  its OK to resume normal operation. Implementation resembles the
9121  *  second-half of the igb_resume routine.
9122  */
9123 static void igb_io_resume(struct pci_dev *pdev)
9124 {
9125 	struct net_device *netdev = pci_get_drvdata(pdev);
9126 	struct igb_adapter *adapter = netdev_priv(netdev);
9127 
9128 	if (netif_running(netdev)) {
9129 		if (igb_up(adapter)) {
9130 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9131 			return;
9132 		}
9133 	}
9134 
9135 	netif_device_attach(netdev);
9136 
9137 	/* let the f/w know that the h/w is now under the control of the
9138 	 * driver.
9139 	 */
9140 	igb_get_hw_control(adapter);
9141 }
9142 
9143 /**
9144  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9145  *  @adapter: Pointer to adapter structure
9146  *  @index: Index of the RAR entry which need to be synced with MAC table
9147  **/
9148 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9149 {
9150 	struct e1000_hw *hw = &adapter->hw;
9151 	u32 rar_low, rar_high;
9152 	u8 *addr = adapter->mac_table[index].addr;
9153 
9154 	/* HW expects these to be in network order when they are plugged
9155 	 * into the registers which are little endian.  In order to guarantee
9156 	 * that ordering we need to do an leXX_to_cpup here in order to be
9157 	 * ready for the byteswap that occurs with writel
9158 	 */
9159 	rar_low = le32_to_cpup((__le32 *)(addr));
9160 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9161 
9162 	/* Indicate to hardware the Address is Valid. */
9163 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9164 		if (is_valid_ether_addr(addr))
9165 			rar_high |= E1000_RAH_AV;
9166 
9167 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9168 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9169 
9170 		switch (hw->mac.type) {
9171 		case e1000_82575:
9172 		case e1000_i210:
9173 			if (adapter->mac_table[index].state &
9174 			    IGB_MAC_STATE_QUEUE_STEERING)
9175 				rar_high |= E1000_RAH_QSEL_ENABLE;
9176 
9177 			rar_high |= E1000_RAH_POOL_1 *
9178 				    adapter->mac_table[index].queue;
9179 			break;
9180 		default:
9181 			rar_high |= E1000_RAH_POOL_1 <<
9182 				    adapter->mac_table[index].queue;
9183 			break;
9184 		}
9185 	}
9186 
9187 	wr32(E1000_RAL(index), rar_low);
9188 	wrfl();
9189 	wr32(E1000_RAH(index), rar_high);
9190 	wrfl();
9191 }
9192 
9193 static int igb_set_vf_mac(struct igb_adapter *adapter,
9194 			  int vf, unsigned char *mac_addr)
9195 {
9196 	struct e1000_hw *hw = &adapter->hw;
9197 	/* VF MAC addresses start at end of receive addresses and moves
9198 	 * towards the first, as a result a collision should not be possible
9199 	 */
9200 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9201 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9202 
9203 	ether_addr_copy(vf_mac_addr, mac_addr);
9204 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9205 	adapter->mac_table[rar_entry].queue = vf;
9206 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9207 	igb_rar_set_index(adapter, rar_entry);
9208 
9209 	return 0;
9210 }
9211 
9212 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9213 {
9214 	struct igb_adapter *adapter = netdev_priv(netdev);
9215 
9216 	if (vf >= adapter->vfs_allocated_count)
9217 		return -EINVAL;
9218 
9219 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9220 	 * flag and allows to overwrite the MAC via VF netdev.  This
9221 	 * is necessary to allow libvirt a way to restore the original
9222 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9223 	 * down a VM.
9224 	 */
9225 	if (is_zero_ether_addr(mac)) {
9226 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9227 		dev_info(&adapter->pdev->dev,
9228 			 "remove administratively set MAC on VF %d\n",
9229 			 vf);
9230 	} else if (is_valid_ether_addr(mac)) {
9231 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9232 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9233 			 mac, vf);
9234 		dev_info(&adapter->pdev->dev,
9235 			 "Reload the VF driver to make this change effective.");
9236 		/* Generate additional warning if PF is down */
9237 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9238 			dev_warn(&adapter->pdev->dev,
9239 				 "The VF MAC address has been set, but the PF device is not up.\n");
9240 			dev_warn(&adapter->pdev->dev,
9241 				 "Bring the PF device up before attempting to use the VF device.\n");
9242 		}
9243 	} else {
9244 		return -EINVAL;
9245 	}
9246 	return igb_set_vf_mac(adapter, vf, mac);
9247 }
9248 
9249 static int igb_link_mbps(int internal_link_speed)
9250 {
9251 	switch (internal_link_speed) {
9252 	case SPEED_100:
9253 		return 100;
9254 	case SPEED_1000:
9255 		return 1000;
9256 	default:
9257 		return 0;
9258 	}
9259 }
9260 
9261 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9262 				  int link_speed)
9263 {
9264 	int rf_dec, rf_int;
9265 	u32 bcnrc_val;
9266 
9267 	if (tx_rate != 0) {
9268 		/* Calculate the rate factor values to set */
9269 		rf_int = link_speed / tx_rate;
9270 		rf_dec = (link_speed - (rf_int * tx_rate));
9271 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9272 			 tx_rate;
9273 
9274 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9275 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9276 			      E1000_RTTBCNRC_RF_INT_MASK);
9277 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9278 	} else {
9279 		bcnrc_val = 0;
9280 	}
9281 
9282 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9283 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9284 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9285 	 */
9286 	wr32(E1000_RTTBCNRM, 0x14);
9287 	wr32(E1000_RTTBCNRC, bcnrc_val);
9288 }
9289 
9290 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9291 {
9292 	int actual_link_speed, i;
9293 	bool reset_rate = false;
9294 
9295 	/* VF TX rate limit was not set or not supported */
9296 	if ((adapter->vf_rate_link_speed == 0) ||
9297 	    (adapter->hw.mac.type != e1000_82576))
9298 		return;
9299 
9300 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9301 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9302 		reset_rate = true;
9303 		adapter->vf_rate_link_speed = 0;
9304 		dev_info(&adapter->pdev->dev,
9305 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9306 	}
9307 
9308 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9309 		if (reset_rate)
9310 			adapter->vf_data[i].tx_rate = 0;
9311 
9312 		igb_set_vf_rate_limit(&adapter->hw, i,
9313 				      adapter->vf_data[i].tx_rate,
9314 				      actual_link_speed);
9315 	}
9316 }
9317 
9318 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9319 			     int min_tx_rate, int max_tx_rate)
9320 {
9321 	struct igb_adapter *adapter = netdev_priv(netdev);
9322 	struct e1000_hw *hw = &adapter->hw;
9323 	int actual_link_speed;
9324 
9325 	if (hw->mac.type != e1000_82576)
9326 		return -EOPNOTSUPP;
9327 
9328 	if (min_tx_rate)
9329 		return -EINVAL;
9330 
9331 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9332 	if ((vf >= adapter->vfs_allocated_count) ||
9333 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9334 	    (max_tx_rate < 0) ||
9335 	    (max_tx_rate > actual_link_speed))
9336 		return -EINVAL;
9337 
9338 	adapter->vf_rate_link_speed = actual_link_speed;
9339 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9340 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9341 
9342 	return 0;
9343 }
9344 
9345 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9346 				   bool setting)
9347 {
9348 	struct igb_adapter *adapter = netdev_priv(netdev);
9349 	struct e1000_hw *hw = &adapter->hw;
9350 	u32 reg_val, reg_offset;
9351 
9352 	if (!adapter->vfs_allocated_count)
9353 		return -EOPNOTSUPP;
9354 
9355 	if (vf >= adapter->vfs_allocated_count)
9356 		return -EINVAL;
9357 
9358 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9359 	reg_val = rd32(reg_offset);
9360 	if (setting)
9361 		reg_val |= (BIT(vf) |
9362 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9363 	else
9364 		reg_val &= ~(BIT(vf) |
9365 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9366 	wr32(reg_offset, reg_val);
9367 
9368 	adapter->vf_data[vf].spoofchk_enabled = setting;
9369 	return 0;
9370 }
9371 
9372 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9373 {
9374 	struct igb_adapter *adapter = netdev_priv(netdev);
9375 
9376 	if (vf >= adapter->vfs_allocated_count)
9377 		return -EINVAL;
9378 	if (adapter->vf_data[vf].trusted == setting)
9379 		return 0;
9380 
9381 	adapter->vf_data[vf].trusted = setting;
9382 
9383 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9384 		 vf, setting ? "" : "not ");
9385 	return 0;
9386 }
9387 
9388 static int igb_ndo_get_vf_config(struct net_device *netdev,
9389 				 int vf, struct ifla_vf_info *ivi)
9390 {
9391 	struct igb_adapter *adapter = netdev_priv(netdev);
9392 	if (vf >= adapter->vfs_allocated_count)
9393 		return -EINVAL;
9394 	ivi->vf = vf;
9395 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9396 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9397 	ivi->min_tx_rate = 0;
9398 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9399 	ivi->qos = adapter->vf_data[vf].pf_qos;
9400 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9401 	ivi->trusted = adapter->vf_data[vf].trusted;
9402 	return 0;
9403 }
9404 
9405 static void igb_vmm_control(struct igb_adapter *adapter)
9406 {
9407 	struct e1000_hw *hw = &adapter->hw;
9408 	u32 reg;
9409 
9410 	switch (hw->mac.type) {
9411 	case e1000_82575:
9412 	case e1000_i210:
9413 	case e1000_i211:
9414 	case e1000_i354:
9415 	default:
9416 		/* replication is not supported for 82575 */
9417 		return;
9418 	case e1000_82576:
9419 		/* notify HW that the MAC is adding vlan tags */
9420 		reg = rd32(E1000_DTXCTL);
9421 		reg |= E1000_DTXCTL_VLAN_ADDED;
9422 		wr32(E1000_DTXCTL, reg);
9423 		/* Fall through */
9424 	case e1000_82580:
9425 		/* enable replication vlan tag stripping */
9426 		reg = rd32(E1000_RPLOLR);
9427 		reg |= E1000_RPLOLR_STRVLAN;
9428 		wr32(E1000_RPLOLR, reg);
9429 		/* Fall through */
9430 	case e1000_i350:
9431 		/* none of the above registers are supported by i350 */
9432 		break;
9433 	}
9434 
9435 	if (adapter->vfs_allocated_count) {
9436 		igb_vmdq_set_loopback_pf(hw, true);
9437 		igb_vmdq_set_replication_pf(hw, true);
9438 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9439 					      adapter->vfs_allocated_count);
9440 	} else {
9441 		igb_vmdq_set_loopback_pf(hw, false);
9442 		igb_vmdq_set_replication_pf(hw, false);
9443 	}
9444 }
9445 
9446 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9447 {
9448 	struct e1000_hw *hw = &adapter->hw;
9449 	u32 dmac_thr;
9450 	u16 hwm;
9451 
9452 	if (hw->mac.type > e1000_82580) {
9453 		if (adapter->flags & IGB_FLAG_DMAC) {
9454 			u32 reg;
9455 
9456 			/* force threshold to 0. */
9457 			wr32(E1000_DMCTXTH, 0);
9458 
9459 			/* DMA Coalescing high water mark needs to be greater
9460 			 * than the Rx threshold. Set hwm to PBA - max frame
9461 			 * size in 16B units, capping it at PBA - 6KB.
9462 			 */
9463 			hwm = 64 * (pba - 6);
9464 			reg = rd32(E1000_FCRTC);
9465 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9466 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9467 				& E1000_FCRTC_RTH_COAL_MASK);
9468 			wr32(E1000_FCRTC, reg);
9469 
9470 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9471 			 * frame size, capping it at PBA - 10KB.
9472 			 */
9473 			dmac_thr = pba - 10;
9474 			reg = rd32(E1000_DMACR);
9475 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9476 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9477 				& E1000_DMACR_DMACTHR_MASK);
9478 
9479 			/* transition to L0x or L1 if available..*/
9480 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9481 
9482 			/* watchdog timer= +-1000 usec in 32usec intervals */
9483 			reg |= (1000 >> 5);
9484 
9485 			/* Disable BMC-to-OS Watchdog Enable */
9486 			if (hw->mac.type != e1000_i354)
9487 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9488 
9489 			wr32(E1000_DMACR, reg);
9490 
9491 			/* no lower threshold to disable
9492 			 * coalescing(smart fifb)-UTRESH=0
9493 			 */
9494 			wr32(E1000_DMCRTRH, 0);
9495 
9496 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9497 
9498 			wr32(E1000_DMCTLX, reg);
9499 
9500 			/* free space in tx packet buffer to wake from
9501 			 * DMA coal
9502 			 */
9503 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9504 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9505 
9506 			/* make low power state decision controlled
9507 			 * by DMA coal
9508 			 */
9509 			reg = rd32(E1000_PCIEMISC);
9510 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9511 			wr32(E1000_PCIEMISC, reg);
9512 		} /* endif adapter->dmac is not disabled */
9513 	} else if (hw->mac.type == e1000_82580) {
9514 		u32 reg = rd32(E1000_PCIEMISC);
9515 
9516 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9517 		wr32(E1000_DMACR, 0);
9518 	}
9519 }
9520 
9521 /**
9522  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9523  *  @hw: pointer to hardware structure
9524  *  @byte_offset: byte offset to read
9525  *  @dev_addr: device address
9526  *  @data: value read
9527  *
9528  *  Performs byte read operation over I2C interface at
9529  *  a specified device address.
9530  **/
9531 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9532 		      u8 dev_addr, u8 *data)
9533 {
9534 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9535 	struct i2c_client *this_client = adapter->i2c_client;
9536 	s32 status;
9537 	u16 swfw_mask = 0;
9538 
9539 	if (!this_client)
9540 		return E1000_ERR_I2C;
9541 
9542 	swfw_mask = E1000_SWFW_PHY0_SM;
9543 
9544 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9545 		return E1000_ERR_SWFW_SYNC;
9546 
9547 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9548 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9549 
9550 	if (status < 0)
9551 		return E1000_ERR_I2C;
9552 	else {
9553 		*data = status;
9554 		return 0;
9555 	}
9556 }
9557 
9558 /**
9559  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9560  *  @hw: pointer to hardware structure
9561  *  @byte_offset: byte offset to write
9562  *  @dev_addr: device address
9563  *  @data: value to write
9564  *
9565  *  Performs byte write operation over I2C interface at
9566  *  a specified device address.
9567  **/
9568 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9569 		       u8 dev_addr, u8 data)
9570 {
9571 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9572 	struct i2c_client *this_client = adapter->i2c_client;
9573 	s32 status;
9574 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9575 
9576 	if (!this_client)
9577 		return E1000_ERR_I2C;
9578 
9579 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9580 		return E1000_ERR_SWFW_SYNC;
9581 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9582 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9583 
9584 	if (status)
9585 		return E1000_ERR_I2C;
9586 	else
9587 		return 0;
9588 
9589 }
9590 
9591 int igb_reinit_queues(struct igb_adapter *adapter)
9592 {
9593 	struct net_device *netdev = adapter->netdev;
9594 	struct pci_dev *pdev = adapter->pdev;
9595 	int err = 0;
9596 
9597 	if (netif_running(netdev))
9598 		igb_close(netdev);
9599 
9600 	igb_reset_interrupt_capability(adapter);
9601 
9602 	if (igb_init_interrupt_scheme(adapter, true)) {
9603 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9604 		return -ENOMEM;
9605 	}
9606 
9607 	if (netif_running(netdev))
9608 		err = igb_open(netdev);
9609 
9610 	return err;
9611 }
9612 
9613 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9614 {
9615 	struct igb_nfc_filter *rule;
9616 
9617 	spin_lock(&adapter->nfc_lock);
9618 
9619 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9620 		igb_erase_filter(adapter, rule);
9621 
9622 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9623 		igb_erase_filter(adapter, rule);
9624 
9625 	spin_unlock(&adapter->nfc_lock);
9626 }
9627 
9628 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9629 {
9630 	struct igb_nfc_filter *rule;
9631 
9632 	spin_lock(&adapter->nfc_lock);
9633 
9634 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9635 		igb_add_filter(adapter, rule);
9636 
9637 	spin_unlock(&adapter->nfc_lock);
9638 }
9639 /* igb_main.c */
9640