1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58 
59 #define MAJ 5
60 #define MIN 3
61 #define BUILD 0
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 				"Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 				"Copyright (c) 2007-2014 Intel Corporation.";
70 
71 static const struct e1000_info *igb_info_tbl[] = {
72 	[board_82575] = &e1000_82575_info,
73 };
74 
75 static const struct pci_device_id igb_pci_tbl[] = {
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 	/* required last entry */
112 	{0, }
113 };
114 
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116 
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 int igb_open(struct net_device *);
126 int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 					  struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter, bool set);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static int igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 			  netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 			       int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 				   bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 static int igb_disable_sriov(struct pci_dev *dev);
183 static int igb_pci_disable_sriov(struct pci_dev *dev);
184 #endif
185 
186 #ifdef CONFIG_PM
187 #ifdef CONFIG_PM_SLEEP
188 static int igb_suspend(struct device *);
189 #endif
190 static int igb_resume(struct device *);
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 static const struct dev_pm_ops igb_pm_ops = {
195 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 			igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 	.notifier_call	= igb_notify_dca,
206 	.next		= NULL,
207 	.priority	= 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219 
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 		     pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224 
225 static const struct pci_error_handlers igb_err_handler = {
226 	.error_detected = igb_io_error_detected,
227 	.slot_reset = igb_io_slot_reset,
228 	.resume = igb_io_resume,
229 };
230 
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232 
233 static struct pci_driver igb_driver = {
234 	.name     = igb_driver_name,
235 	.id_table = igb_pci_tbl,
236 	.probe    = igb_probe,
237 	.remove   = igb_remove,
238 #ifdef CONFIG_PM
239 	.driver.pm = &igb_pm_ops,
240 #endif
241 	.shutdown = igb_shutdown,
242 	.sriov_configure = igb_pci_sriov_configure,
243 	.err_handler = &igb_err_handler
244 };
245 
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250 
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255 
256 struct igb_reg_info {
257 	u32 ofs;
258 	char *name;
259 };
260 
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262 
263 	/* General Registers */
264 	{E1000_CTRL, "CTRL"},
265 	{E1000_STATUS, "STATUS"},
266 	{E1000_CTRL_EXT, "CTRL_EXT"},
267 
268 	/* Interrupt Registers */
269 	{E1000_ICR, "ICR"},
270 
271 	/* RX Registers */
272 	{E1000_RCTL, "RCTL"},
273 	{E1000_RDLEN(0), "RDLEN"},
274 	{E1000_RDH(0), "RDH"},
275 	{E1000_RDT(0), "RDT"},
276 	{E1000_RXDCTL(0), "RXDCTL"},
277 	{E1000_RDBAL(0), "RDBAL"},
278 	{E1000_RDBAH(0), "RDBAH"},
279 
280 	/* TX Registers */
281 	{E1000_TCTL, "TCTL"},
282 	{E1000_TDBAL(0), "TDBAL"},
283 	{E1000_TDBAH(0), "TDBAH"},
284 	{E1000_TDLEN(0), "TDLEN"},
285 	{E1000_TDH(0), "TDH"},
286 	{E1000_TDT(0), "TDT"},
287 	{E1000_TXDCTL(0), "TXDCTL"},
288 	{E1000_TDFH, "TDFH"},
289 	{E1000_TDFT, "TDFT"},
290 	{E1000_TDFHS, "TDFHS"},
291 	{E1000_TDFPC, "TDFPC"},
292 
293 	/* List Terminator */
294 	{}
295 };
296 
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 	int n = 0;
301 	char rname[16];
302 	u32 regs[8];
303 
304 	switch (reginfo->ofs) {
305 	case E1000_RDLEN(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RDLEN(n));
308 		break;
309 	case E1000_RDH(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDH(n));
312 		break;
313 	case E1000_RDT(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDT(n));
316 		break;
317 	case E1000_RXDCTL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RXDCTL(n));
320 		break;
321 	case E1000_RDBAL(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_RDBAL(n));
324 		break;
325 	case E1000_RDBAH(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_RDBAH(n));
328 		break;
329 	case E1000_TDBAL(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_RDBAL(n));
332 		break;
333 	case E1000_TDBAH(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDBAH(n));
336 		break;
337 	case E1000_TDLEN(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TDLEN(n));
340 		break;
341 	case E1000_TDH(0):
342 		for (n = 0; n < 4; n++)
343 			regs[n] = rd32(E1000_TDH(n));
344 		break;
345 	case E1000_TDT(0):
346 		for (n = 0; n < 4; n++)
347 			regs[n] = rd32(E1000_TDT(n));
348 		break;
349 	case E1000_TXDCTL(0):
350 		for (n = 0; n < 4; n++)
351 			regs[n] = rd32(E1000_TXDCTL(n));
352 		break;
353 	default:
354 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 		return;
356 	}
357 
358 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 		regs[2], regs[3]);
361 }
362 
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366 	struct net_device *netdev = adapter->netdev;
367 	struct e1000_hw *hw = &adapter->hw;
368 	struct igb_reg_info *reginfo;
369 	struct igb_ring *tx_ring;
370 	union e1000_adv_tx_desc *tx_desc;
371 	struct my_u0 { u64 a; u64 b; } *u0;
372 	struct igb_ring *rx_ring;
373 	union e1000_adv_rx_desc *rx_desc;
374 	u32 staterr;
375 	u16 i, n;
376 
377 	if (!netif_msg_hw(adapter))
378 		return;
379 
380 	/* Print netdevice Info */
381 	if (netdev) {
382 		dev_info(&adapter->pdev->dev, "Net device Info\n");
383 		pr_info("Device Name     state            trans_start      last_rx\n");
384 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 			netdev->state, netdev->trans_start, netdev->last_rx);
386 	}
387 
388 	/* Print Registers */
389 	dev_info(&adapter->pdev->dev, "Register Dump\n");
390 	pr_info(" Register Name   Value\n");
391 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 	     reginfo->name; reginfo++) {
393 		igb_regdump(hw, reginfo);
394 	}
395 
396 	/* Print TX Ring Summary */
397 	if (!netdev || !netif_running(netdev))
398 		goto exit;
399 
400 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402 	for (n = 0; n < adapter->num_tx_queues; n++) {
403 		struct igb_tx_buffer *buffer_info;
404 		tx_ring = adapter->tx_ring[n];
405 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 			(u64)dma_unmap_addr(buffer_info, dma),
409 			dma_unmap_len(buffer_info, len),
410 			buffer_info->next_to_watch,
411 			(u64)buffer_info->time_stamp);
412 	}
413 
414 	/* Print TX Rings */
415 	if (!netif_msg_tx_done(adapter))
416 		goto rx_ring_summary;
417 
418 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419 
420 	/* Transmit Descriptor Formats
421 	 *
422 	 * Advanced Transmit Descriptor
423 	 *   +--------------------------------------------------------------+
424 	 * 0 |         Buffer Address [63:0]                                |
425 	 *   +--------------------------------------------------------------+
426 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427 	 *   +--------------------------------------------------------------+
428 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
429 	 */
430 
431 	for (n = 0; n < adapter->num_tx_queues; n++) {
432 		tx_ring = adapter->tx_ring[n];
433 		pr_info("------------------------------------\n");
434 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 		pr_info("------------------------------------\n");
436 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437 
438 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 			const char *next_desc;
440 			struct igb_tx_buffer *buffer_info;
441 			tx_desc = IGB_TX_DESC(tx_ring, i);
442 			buffer_info = &tx_ring->tx_buffer_info[i];
443 			u0 = (struct my_u0 *)tx_desc;
444 			if (i == tx_ring->next_to_use &&
445 			    i == tx_ring->next_to_clean)
446 				next_desc = " NTC/U";
447 			else if (i == tx_ring->next_to_use)
448 				next_desc = " NTU";
449 			else if (i == tx_ring->next_to_clean)
450 				next_desc = " NTC";
451 			else
452 				next_desc = "";
453 
454 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455 				i, le64_to_cpu(u0->a),
456 				le64_to_cpu(u0->b),
457 				(u64)dma_unmap_addr(buffer_info, dma),
458 				dma_unmap_len(buffer_info, len),
459 				buffer_info->next_to_watch,
460 				(u64)buffer_info->time_stamp,
461 				buffer_info->skb, next_desc);
462 
463 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 				print_hex_dump(KERN_INFO, "",
465 					DUMP_PREFIX_ADDRESS,
466 					16, 1, buffer_info->skb->data,
467 					dma_unmap_len(buffer_info, len),
468 					true);
469 		}
470 	}
471 
472 	/* Print RX Rings Summary */
473 rx_ring_summary:
474 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 	pr_info("Queue [NTU] [NTC]\n");
476 	for (n = 0; n < adapter->num_rx_queues; n++) {
477 		rx_ring = adapter->rx_ring[n];
478 		pr_info(" %5d %5X %5X\n",
479 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 	}
481 
482 	/* Print RX Rings */
483 	if (!netif_msg_rx_status(adapter))
484 		goto exit;
485 
486 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487 
488 	/* Advanced Receive Descriptor (Read) Format
489 	 *    63                                           1        0
490 	 *    +-----------------------------------------------------+
491 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492 	 *    +----------------------------------------------+------+
493 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
494 	 *    +-----------------------------------------------------+
495 	 *
496 	 *
497 	 * Advanced Receive Descriptor (Write-Back) Format
498 	 *
499 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
500 	 *   +------------------------------------------------------+
501 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502 	 *   | Checksum   Ident  |   |           |    | Type | Type |
503 	 *   +------------------------------------------------------+
504 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 	 *   +------------------------------------------------------+
506 	 *   63       48 47    32 31            20 19               0
507 	 */
508 
509 	for (n = 0; n < adapter->num_rx_queues; n++) {
510 		rx_ring = adapter->rx_ring[n];
511 		pr_info("------------------------------------\n");
512 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 		pr_info("------------------------------------\n");
514 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516 
517 		for (i = 0; i < rx_ring->count; i++) {
518 			const char *next_desc;
519 			struct igb_rx_buffer *buffer_info;
520 			buffer_info = &rx_ring->rx_buffer_info[i];
521 			rx_desc = IGB_RX_DESC(rx_ring, i);
522 			u0 = (struct my_u0 *)rx_desc;
523 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524 
525 			if (i == rx_ring->next_to_use)
526 				next_desc = " NTU";
527 			else if (i == rx_ring->next_to_clean)
528 				next_desc = " NTC";
529 			else
530 				next_desc = "";
531 
532 			if (staterr & E1000_RXD_STAT_DD) {
533 				/* Descriptor Done */
534 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535 					"RWB", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					next_desc);
539 			} else {
540 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541 					"R  ", i,
542 					le64_to_cpu(u0->a),
543 					le64_to_cpu(u0->b),
544 					(u64)buffer_info->dma,
545 					next_desc);
546 
547 				if (netif_msg_pktdata(adapter) &&
548 				    buffer_info->dma && buffer_info->page) {
549 					print_hex_dump(KERN_INFO, "",
550 					  DUMP_PREFIX_ADDRESS,
551 					  16, 1,
552 					  page_address(buffer_info->page) +
553 						      buffer_info->page_offset,
554 					  IGB_RX_BUFSZ, true);
555 				}
556 			}
557 		}
558 	}
559 
560 exit:
561 	return;
562 }
563 
564 /**
565  *  igb_get_i2c_data - Reads the I2C SDA data bit
566  *  @hw: pointer to hardware structure
567  *  @i2cctl: Current value of I2CCTL register
568  *
569  *  Returns the I2C data bit value
570  **/
571 static int igb_get_i2c_data(void *data)
572 {
573 	struct igb_adapter *adapter = (struct igb_adapter *)data;
574 	struct e1000_hw *hw = &adapter->hw;
575 	s32 i2cctl = rd32(E1000_I2CPARAMS);
576 
577 	return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579 
580 /**
581  *  igb_set_i2c_data - Sets the I2C data bit
582  *  @data: pointer to hardware structure
583  *  @state: I2C data value (0 or 1) to set
584  *
585  *  Sets the I2C data bit
586  **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589 	struct igb_adapter *adapter = (struct igb_adapter *)data;
590 	struct e1000_hw *hw = &adapter->hw;
591 	s32 i2cctl = rd32(E1000_I2CPARAMS);
592 
593 	if (state)
594 		i2cctl |= E1000_I2C_DATA_OUT;
595 	else
596 		i2cctl &= ~E1000_I2C_DATA_OUT;
597 
598 	i2cctl &= ~E1000_I2C_DATA_OE_N;
599 	i2cctl |= E1000_I2C_CLK_OE_N;
600 	wr32(E1000_I2CPARAMS, i2cctl);
601 	wrfl();
602 
603 }
604 
605 /**
606  *  igb_set_i2c_clk - Sets the I2C SCL clock
607  *  @data: pointer to hardware structure
608  *  @state: state to set clock
609  *
610  *  Sets the I2C clock line to state
611  **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614 	struct igb_adapter *adapter = (struct igb_adapter *)data;
615 	struct e1000_hw *hw = &adapter->hw;
616 	s32 i2cctl = rd32(E1000_I2CPARAMS);
617 
618 	if (state) {
619 		i2cctl |= E1000_I2C_CLK_OUT;
620 		i2cctl &= ~E1000_I2C_CLK_OE_N;
621 	} else {
622 		i2cctl &= ~E1000_I2C_CLK_OUT;
623 		i2cctl &= ~E1000_I2C_CLK_OE_N;
624 	}
625 	wr32(E1000_I2CPARAMS, i2cctl);
626 	wrfl();
627 }
628 
629 /**
630  *  igb_get_i2c_clk - Gets the I2C SCL clock state
631  *  @data: pointer to hardware structure
632  *
633  *  Gets the I2C clock state
634  **/
635 static int igb_get_i2c_clk(void *data)
636 {
637 	struct igb_adapter *adapter = (struct igb_adapter *)data;
638 	struct e1000_hw *hw = &adapter->hw;
639 	s32 i2cctl = rd32(E1000_I2CPARAMS);
640 
641 	return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643 
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 	.setsda		= igb_set_i2c_data,
646 	.setscl		= igb_set_i2c_clk,
647 	.getsda		= igb_get_i2c_data,
648 	.getscl		= igb_get_i2c_clk,
649 	.udelay		= 5,
650 	.timeout	= 20,
651 };
652 
653 /**
654  *  igb_get_hw_dev - return device
655  *  @hw: pointer to hardware structure
656  *
657  *  used by hardware layer to print debugging information
658  **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661 	struct igb_adapter *adapter = hw->back;
662 	return adapter->netdev;
663 }
664 
665 /**
666  *  igb_init_module - Driver Registration Routine
667  *
668  *  igb_init_module is the first routine called when the driver is
669  *  loaded. All it does is register with the PCI subsystem.
670  **/
671 static int __init igb_init_module(void)
672 {
673 	int ret;
674 
675 	pr_info("%s - version %s\n",
676 	       igb_driver_string, igb_driver_version);
677 	pr_info("%s\n", igb_copyright);
678 
679 #ifdef CONFIG_IGB_DCA
680 	dca_register_notify(&dca_notifier);
681 #endif
682 	ret = pci_register_driver(&igb_driver);
683 	return ret;
684 }
685 
686 module_init(igb_init_module);
687 
688 /**
689  *  igb_exit_module - Driver Exit Cleanup Routine
690  *
691  *  igb_exit_module is called just before the driver is removed
692  *  from memory.
693  **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697 	dca_unregister_notify(&dca_notifier);
698 #endif
699 	pci_unregister_driver(&igb_driver);
700 }
701 
702 module_exit(igb_exit_module);
703 
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706  *  igb_cache_ring_register - Descriptor ring to register mapping
707  *  @adapter: board private structure to initialize
708  *
709  *  Once we know the feature-set enabled for the device, we'll cache
710  *  the register offset the descriptor ring is assigned to.
711  **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714 	int i = 0, j = 0;
715 	u32 rbase_offset = adapter->vfs_allocated_count;
716 
717 	switch (adapter->hw.mac.type) {
718 	case e1000_82576:
719 		/* The queues are allocated for virtualization such that VF 0
720 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 		 * In order to avoid collision we start at the first free queue
722 		 * and continue consuming queues in the same sequence
723 		 */
724 		if (adapter->vfs_allocated_count) {
725 			for (; i < adapter->rss_queues; i++)
726 				adapter->rx_ring[i]->reg_idx = rbase_offset +
727 							       Q_IDX_82576(i);
728 		}
729 		/* Fall through */
730 	case e1000_82575:
731 	case e1000_82580:
732 	case e1000_i350:
733 	case e1000_i354:
734 	case e1000_i210:
735 	case e1000_i211:
736 		/* Fall through */
737 	default:
738 		for (; i < adapter->num_rx_queues; i++)
739 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 		for (; j < adapter->num_tx_queues; j++)
741 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 		break;
743 	}
744 }
745 
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 	u32 value = 0;
751 
752 	if (E1000_REMOVED(hw_addr))
753 		return ~value;
754 
755 	value = readl(&hw_addr[reg]);
756 
757 	/* reads should not return all F's */
758 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 		struct net_device *netdev = igb->netdev;
760 		hw->hw_addr = NULL;
761 		netif_device_detach(netdev);
762 		netdev_err(netdev, "PCIe link lost, device now detached\n");
763 	}
764 
765 	return value;
766 }
767 
768 /**
769  *  igb_write_ivar - configure ivar for given MSI-X vector
770  *  @hw: pointer to the HW structure
771  *  @msix_vector: vector number we are allocating to a given ring
772  *  @index: row index of IVAR register to write within IVAR table
773  *  @offset: column offset of in IVAR, should be multiple of 8
774  *
775  *  This function is intended to handle the writing of the IVAR register
776  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777  *  each containing an cause allocation for an Rx and Tx ring, and a
778  *  variable number of rows depending on the number of queues supported.
779  **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 			   int index, int offset)
782 {
783 	u32 ivar = array_rd32(E1000_IVAR0, index);
784 
785 	/* clear any bits that are currently set */
786 	ivar &= ~((u32)0xFF << offset);
787 
788 	/* write vector and valid bit */
789 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790 
791 	array_wr32(E1000_IVAR0, index, ivar);
792 }
793 
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797 	struct igb_adapter *adapter = q_vector->adapter;
798 	struct e1000_hw *hw = &adapter->hw;
799 	int rx_queue = IGB_N0_QUEUE;
800 	int tx_queue = IGB_N0_QUEUE;
801 	u32 msixbm = 0;
802 
803 	if (q_vector->rx.ring)
804 		rx_queue = q_vector->rx.ring->reg_idx;
805 	if (q_vector->tx.ring)
806 		tx_queue = q_vector->tx.ring->reg_idx;
807 
808 	switch (hw->mac.type) {
809 	case e1000_82575:
810 		/* The 82575 assigns vectors using a bitmask, which matches the
811 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812 		 * or more queues to a vector, we write the appropriate bits
813 		 * into the MSIXBM register for that vector.
814 		 */
815 		if (rx_queue > IGB_N0_QUEUE)
816 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 		if (tx_queue > IGB_N0_QUEUE)
818 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 			msixbm |= E1000_EIMS_OTHER;
821 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 		q_vector->eims_value = msixbm;
823 		break;
824 	case e1000_82576:
825 		/* 82576 uses a table that essentially consists of 2 columns
826 		 * with 8 rows.  The ordering is column-major so we use the
827 		 * lower 3 bits as the row index, and the 4th bit as the
828 		 * column offset.
829 		 */
830 		if (rx_queue > IGB_N0_QUEUE)
831 			igb_write_ivar(hw, msix_vector,
832 				       rx_queue & 0x7,
833 				       (rx_queue & 0x8) << 1);
834 		if (tx_queue > IGB_N0_QUEUE)
835 			igb_write_ivar(hw, msix_vector,
836 				       tx_queue & 0x7,
837 				       ((tx_queue & 0x8) << 1) + 8);
838 		q_vector->eims_value = 1 << msix_vector;
839 		break;
840 	case e1000_82580:
841 	case e1000_i350:
842 	case e1000_i354:
843 	case e1000_i210:
844 	case e1000_i211:
845 		/* On 82580 and newer adapters the scheme is similar to 82576
846 		 * however instead of ordering column-major we have things
847 		 * ordered row-major.  So we traverse the table by using
848 		 * bit 0 as the column offset, and the remaining bits as the
849 		 * row index.
850 		 */
851 		if (rx_queue > IGB_N0_QUEUE)
852 			igb_write_ivar(hw, msix_vector,
853 				       rx_queue >> 1,
854 				       (rx_queue & 0x1) << 4);
855 		if (tx_queue > IGB_N0_QUEUE)
856 			igb_write_ivar(hw, msix_vector,
857 				       tx_queue >> 1,
858 				       ((tx_queue & 0x1) << 4) + 8);
859 		q_vector->eims_value = 1 << msix_vector;
860 		break;
861 	default:
862 		BUG();
863 		break;
864 	}
865 
866 	/* add q_vector eims value to global eims_enable_mask */
867 	adapter->eims_enable_mask |= q_vector->eims_value;
868 
869 	/* configure q_vector to set itr on first interrupt */
870 	q_vector->set_itr = 1;
871 }
872 
873 /**
874  *  igb_configure_msix - Configure MSI-X hardware
875  *  @adapter: board private structure to initialize
876  *
877  *  igb_configure_msix sets up the hardware to properly
878  *  generate MSI-X interrupts.
879  **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882 	u32 tmp;
883 	int i, vector = 0;
884 	struct e1000_hw *hw = &adapter->hw;
885 
886 	adapter->eims_enable_mask = 0;
887 
888 	/* set vector for other causes, i.e. link changes */
889 	switch (hw->mac.type) {
890 	case e1000_82575:
891 		tmp = rd32(E1000_CTRL_EXT);
892 		/* enable MSI-X PBA support*/
893 		tmp |= E1000_CTRL_EXT_PBA_CLR;
894 
895 		/* Auto-Mask interrupts upon ICR read. */
896 		tmp |= E1000_CTRL_EXT_EIAME;
897 		tmp |= E1000_CTRL_EXT_IRCA;
898 
899 		wr32(E1000_CTRL_EXT, tmp);
900 
901 		/* enable msix_other interrupt */
902 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 		adapter->eims_other = E1000_EIMS_OTHER;
904 
905 		break;
906 
907 	case e1000_82576:
908 	case e1000_82580:
909 	case e1000_i350:
910 	case e1000_i354:
911 	case e1000_i210:
912 	case e1000_i211:
913 		/* Turn on MSI-X capability first, or our settings
914 		 * won't stick.  And it will take days to debug.
915 		 */
916 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 		     E1000_GPIE_NSICR);
919 
920 		/* enable msix_other interrupt */
921 		adapter->eims_other = 1 << vector;
922 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
923 
924 		wr32(E1000_IVAR_MISC, tmp);
925 		break;
926 	default:
927 		/* do nothing, since nothing else supports MSI-X */
928 		break;
929 	} /* switch (hw->mac.type) */
930 
931 	adapter->eims_enable_mask |= adapter->eims_other;
932 
933 	for (i = 0; i < adapter->num_q_vectors; i++)
934 		igb_assign_vector(adapter->q_vector[i], vector++);
935 
936 	wrfl();
937 }
938 
939 /**
940  *  igb_request_msix - Initialize MSI-X interrupts
941  *  @adapter: board private structure to initialize
942  *
943  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944  *  kernel.
945  **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948 	struct net_device *netdev = adapter->netdev;
949 	int i, err = 0, vector = 0, free_vector = 0;
950 
951 	err = request_irq(adapter->msix_entries[vector].vector,
952 			  igb_msix_other, 0, netdev->name, adapter);
953 	if (err)
954 		goto err_out;
955 
956 	for (i = 0; i < adapter->num_q_vectors; i++) {
957 		struct igb_q_vector *q_vector = adapter->q_vector[i];
958 
959 		vector++;
960 
961 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
962 
963 		if (q_vector->rx.ring && q_vector->tx.ring)
964 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
965 				q_vector->rx.ring->queue_index);
966 		else if (q_vector->tx.ring)
967 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
968 				q_vector->tx.ring->queue_index);
969 		else if (q_vector->rx.ring)
970 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
971 				q_vector->rx.ring->queue_index);
972 		else
973 			sprintf(q_vector->name, "%s-unused", netdev->name);
974 
975 		err = request_irq(adapter->msix_entries[vector].vector,
976 				  igb_msix_ring, 0, q_vector->name,
977 				  q_vector);
978 		if (err)
979 			goto err_free;
980 	}
981 
982 	igb_configure_msix(adapter);
983 	return 0;
984 
985 err_free:
986 	/* free already assigned IRQs */
987 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
988 
989 	vector--;
990 	for (i = 0; i < vector; i++) {
991 		free_irq(adapter->msix_entries[free_vector++].vector,
992 			 adapter->q_vector[i]);
993 	}
994 err_out:
995 	return err;
996 }
997 
998 /**
999  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1000  *  @adapter: board private structure to initialize
1001  *  @v_idx: Index of vector to be freed
1002  *
1003  *  This function frees the memory allocated to the q_vector.
1004  **/
1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006 {
1007 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008 
1009 	adapter->q_vector[v_idx] = NULL;
1010 
1011 	/* igb_get_stats64() might access the rings on this vector,
1012 	 * we must wait a grace period before freeing it.
1013 	 */
1014 	if (q_vector)
1015 		kfree_rcu(q_vector, rcu);
1016 }
1017 
1018 /**
1019  *  igb_reset_q_vector - Reset config for interrupt vector
1020  *  @adapter: board private structure to initialize
1021  *  @v_idx: Index of vector to be reset
1022  *
1023  *  If NAPI is enabled it will delete any references to the
1024  *  NAPI struct. This is preparation for igb_free_q_vector.
1025  **/
1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027 {
1028 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029 
1030 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1031 	 * allocated. So, q_vector is NULL so we should stop here.
1032 	 */
1033 	if (!q_vector)
1034 		return;
1035 
1036 	if (q_vector->tx.ring)
1037 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038 
1039 	if (q_vector->rx.ring)
1040 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1041 
1042 	netif_napi_del(&q_vector->napi);
1043 
1044 }
1045 
1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047 {
1048 	int v_idx = adapter->num_q_vectors;
1049 
1050 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051 		pci_disable_msix(adapter->pdev);
1052 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053 		pci_disable_msi(adapter->pdev);
1054 
1055 	while (v_idx--)
1056 		igb_reset_q_vector(adapter, v_idx);
1057 }
1058 
1059 /**
1060  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061  *  @adapter: board private structure to initialize
1062  *
1063  *  This function frees the memory allocated to the q_vectors.  In addition if
1064  *  NAPI is enabled it will delete any references to the NAPI struct prior
1065  *  to freeing the q_vector.
1066  **/
1067 static void igb_free_q_vectors(struct igb_adapter *adapter)
1068 {
1069 	int v_idx = adapter->num_q_vectors;
1070 
1071 	adapter->num_tx_queues = 0;
1072 	adapter->num_rx_queues = 0;
1073 	adapter->num_q_vectors = 0;
1074 
1075 	while (v_idx--) {
1076 		igb_reset_q_vector(adapter, v_idx);
1077 		igb_free_q_vector(adapter, v_idx);
1078 	}
1079 }
1080 
1081 /**
1082  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083  *  @adapter: board private structure to initialize
1084  *
1085  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086  *  MSI-X interrupts allocated.
1087  */
1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089 {
1090 	igb_free_q_vectors(adapter);
1091 	igb_reset_interrupt_capability(adapter);
1092 }
1093 
1094 /**
1095  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096  *  @adapter: board private structure to initialize
1097  *  @msix: boolean value of MSIX capability
1098  *
1099  *  Attempt to configure interrupts using the best available
1100  *  capabilities of the hardware and kernel.
1101  **/
1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 {
1104 	int err;
1105 	int numvecs, i;
1106 
1107 	if (!msix)
1108 		goto msi_only;
1109 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1110 
1111 	/* Number of supported queues. */
1112 	adapter->num_rx_queues = adapter->rss_queues;
1113 	if (adapter->vfs_allocated_count)
1114 		adapter->num_tx_queues = 1;
1115 	else
1116 		adapter->num_tx_queues = adapter->rss_queues;
1117 
1118 	/* start with one vector for every Rx queue */
1119 	numvecs = adapter->num_rx_queues;
1120 
1121 	/* if Tx handler is separate add 1 for every Tx queue */
1122 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123 		numvecs += adapter->num_tx_queues;
1124 
1125 	/* store the number of vectors reserved for queues */
1126 	adapter->num_q_vectors = numvecs;
1127 
1128 	/* add 1 vector for link status interrupts */
1129 	numvecs++;
1130 	for (i = 0; i < numvecs; i++)
1131 		adapter->msix_entries[i].entry = i;
1132 
1133 	err = pci_enable_msix_range(adapter->pdev,
1134 				    adapter->msix_entries,
1135 				    numvecs,
1136 				    numvecs);
1137 	if (err > 0)
1138 		return;
1139 
1140 	igb_reset_interrupt_capability(adapter);
1141 
1142 	/* If we can't do MSI-X, try MSI */
1143 msi_only:
1144 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 #ifdef CONFIG_PCI_IOV
1146 	/* disable SR-IOV for non MSI-X configurations */
1147 	if (adapter->vf_data) {
1148 		struct e1000_hw *hw = &adapter->hw;
1149 		/* disable iov and allow time for transactions to clear */
1150 		pci_disable_sriov(adapter->pdev);
1151 		msleep(500);
1152 
1153 		kfree(adapter->vf_data);
1154 		adapter->vf_data = NULL;
1155 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156 		wrfl();
1157 		msleep(100);
1158 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 	}
1160 #endif
1161 	adapter->vfs_allocated_count = 0;
1162 	adapter->rss_queues = 1;
1163 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164 	adapter->num_rx_queues = 1;
1165 	adapter->num_tx_queues = 1;
1166 	adapter->num_q_vectors = 1;
1167 	if (!pci_enable_msi(adapter->pdev))
1168 		adapter->flags |= IGB_FLAG_HAS_MSI;
1169 }
1170 
1171 static void igb_add_ring(struct igb_ring *ring,
1172 			 struct igb_ring_container *head)
1173 {
1174 	head->ring = ring;
1175 	head->count++;
1176 }
1177 
1178 /**
1179  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180  *  @adapter: board private structure to initialize
1181  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182  *  @v_idx: index of vector in adapter struct
1183  *  @txr_count: total number of Tx rings to allocate
1184  *  @txr_idx: index of first Tx ring to allocate
1185  *  @rxr_count: total number of Rx rings to allocate
1186  *  @rxr_idx: index of first Rx ring to allocate
1187  *
1188  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189  **/
1190 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191 			      int v_count, int v_idx,
1192 			      int txr_count, int txr_idx,
1193 			      int rxr_count, int rxr_idx)
1194 {
1195 	struct igb_q_vector *q_vector;
1196 	struct igb_ring *ring;
1197 	int ring_count, size;
1198 
1199 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200 	if (txr_count > 1 || rxr_count > 1)
1201 		return -ENOMEM;
1202 
1203 	ring_count = txr_count + rxr_count;
1204 	size = sizeof(struct igb_q_vector) +
1205 	       (sizeof(struct igb_ring) * ring_count);
1206 
1207 	/* allocate q_vector and rings */
1208 	q_vector = adapter->q_vector[v_idx];
1209 	if (!q_vector) {
1210 		q_vector = kzalloc(size, GFP_KERNEL);
1211 	} else if (size > ksize(q_vector)) {
1212 		kfree_rcu(q_vector, rcu);
1213 		q_vector = kzalloc(size, GFP_KERNEL);
1214 	} else {
1215 		memset(q_vector, 0, size);
1216 	}
1217 	if (!q_vector)
1218 		return -ENOMEM;
1219 
1220 	/* initialize NAPI */
1221 	netif_napi_add(adapter->netdev, &q_vector->napi,
1222 		       igb_poll, 64);
1223 
1224 	/* tie q_vector and adapter together */
1225 	adapter->q_vector[v_idx] = q_vector;
1226 	q_vector->adapter = adapter;
1227 
1228 	/* initialize work limits */
1229 	q_vector->tx.work_limit = adapter->tx_work_limit;
1230 
1231 	/* initialize ITR configuration */
1232 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1233 	q_vector->itr_val = IGB_START_ITR;
1234 
1235 	/* initialize pointer to rings */
1236 	ring = q_vector->ring;
1237 
1238 	/* intialize ITR */
1239 	if (rxr_count) {
1240 		/* rx or rx/tx vector */
1241 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1242 			q_vector->itr_val = adapter->rx_itr_setting;
1243 	} else {
1244 		/* tx only vector */
1245 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1246 			q_vector->itr_val = adapter->tx_itr_setting;
1247 	}
1248 
1249 	if (txr_count) {
1250 		/* assign generic ring traits */
1251 		ring->dev = &adapter->pdev->dev;
1252 		ring->netdev = adapter->netdev;
1253 
1254 		/* configure backlink on ring */
1255 		ring->q_vector = q_vector;
1256 
1257 		/* update q_vector Tx values */
1258 		igb_add_ring(ring, &q_vector->tx);
1259 
1260 		/* For 82575, context index must be unique per ring. */
1261 		if (adapter->hw.mac.type == e1000_82575)
1262 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263 
1264 		/* apply Tx specific ring traits */
1265 		ring->count = adapter->tx_ring_count;
1266 		ring->queue_index = txr_idx;
1267 
1268 		u64_stats_init(&ring->tx_syncp);
1269 		u64_stats_init(&ring->tx_syncp2);
1270 
1271 		/* assign ring to adapter */
1272 		adapter->tx_ring[txr_idx] = ring;
1273 
1274 		/* push pointer to next ring */
1275 		ring++;
1276 	}
1277 
1278 	if (rxr_count) {
1279 		/* assign generic ring traits */
1280 		ring->dev = &adapter->pdev->dev;
1281 		ring->netdev = adapter->netdev;
1282 
1283 		/* configure backlink on ring */
1284 		ring->q_vector = q_vector;
1285 
1286 		/* update q_vector Rx values */
1287 		igb_add_ring(ring, &q_vector->rx);
1288 
1289 		/* set flag indicating ring supports SCTP checksum offload */
1290 		if (adapter->hw.mac.type >= e1000_82576)
1291 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292 
1293 		/* On i350, i354, i210, and i211, loopback VLAN packets
1294 		 * have the tag byte-swapped.
1295 		 */
1296 		if (adapter->hw.mac.type >= e1000_i350)
1297 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298 
1299 		/* apply Rx specific ring traits */
1300 		ring->count = adapter->rx_ring_count;
1301 		ring->queue_index = rxr_idx;
1302 
1303 		u64_stats_init(&ring->rx_syncp);
1304 
1305 		/* assign ring to adapter */
1306 		adapter->rx_ring[rxr_idx] = ring;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 
1313 /**
1314  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315  *  @adapter: board private structure to initialize
1316  *
1317  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1318  *  return -ENOMEM.
1319  **/
1320 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321 {
1322 	int q_vectors = adapter->num_q_vectors;
1323 	int rxr_remaining = adapter->num_rx_queues;
1324 	int txr_remaining = adapter->num_tx_queues;
1325 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326 	int err;
1327 
1328 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329 		for (; rxr_remaining; v_idx++) {
1330 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331 						 0, 0, 1, rxr_idx);
1332 
1333 			if (err)
1334 				goto err_out;
1335 
1336 			/* update counts and index */
1337 			rxr_remaining--;
1338 			rxr_idx++;
1339 		}
1340 	}
1341 
1342 	for (; v_idx < q_vectors; v_idx++) {
1343 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345 
1346 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347 					 tqpv, txr_idx, rqpv, rxr_idx);
1348 
1349 		if (err)
1350 			goto err_out;
1351 
1352 		/* update counts and index */
1353 		rxr_remaining -= rqpv;
1354 		txr_remaining -= tqpv;
1355 		rxr_idx++;
1356 		txr_idx++;
1357 	}
1358 
1359 	return 0;
1360 
1361 err_out:
1362 	adapter->num_tx_queues = 0;
1363 	adapter->num_rx_queues = 0;
1364 	adapter->num_q_vectors = 0;
1365 
1366 	while (v_idx--)
1367 		igb_free_q_vector(adapter, v_idx);
1368 
1369 	return -ENOMEM;
1370 }
1371 
1372 /**
1373  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374  *  @adapter: board private structure to initialize
1375  *  @msix: boolean value of MSIX capability
1376  *
1377  *  This function initializes the interrupts and allocates all of the queues.
1378  **/
1379 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380 {
1381 	struct pci_dev *pdev = adapter->pdev;
1382 	int err;
1383 
1384 	igb_set_interrupt_capability(adapter, msix);
1385 
1386 	err = igb_alloc_q_vectors(adapter);
1387 	if (err) {
1388 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389 		goto err_alloc_q_vectors;
1390 	}
1391 
1392 	igb_cache_ring_register(adapter);
1393 
1394 	return 0;
1395 
1396 err_alloc_q_vectors:
1397 	igb_reset_interrupt_capability(adapter);
1398 	return err;
1399 }
1400 
1401 /**
1402  *  igb_request_irq - initialize interrupts
1403  *  @adapter: board private structure to initialize
1404  *
1405  *  Attempts to configure interrupts using the best available
1406  *  capabilities of the hardware and kernel.
1407  **/
1408 static int igb_request_irq(struct igb_adapter *adapter)
1409 {
1410 	struct net_device *netdev = adapter->netdev;
1411 	struct pci_dev *pdev = adapter->pdev;
1412 	int err = 0;
1413 
1414 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415 		err = igb_request_msix(adapter);
1416 		if (!err)
1417 			goto request_done;
1418 		/* fall back to MSI */
1419 		igb_free_all_tx_resources(adapter);
1420 		igb_free_all_rx_resources(adapter);
1421 
1422 		igb_clear_interrupt_scheme(adapter);
1423 		err = igb_init_interrupt_scheme(adapter, false);
1424 		if (err)
1425 			goto request_done;
1426 
1427 		igb_setup_all_tx_resources(adapter);
1428 		igb_setup_all_rx_resources(adapter);
1429 		igb_configure(adapter);
1430 	}
1431 
1432 	igb_assign_vector(adapter->q_vector[0], 0);
1433 
1434 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1436 				  netdev->name, adapter);
1437 		if (!err)
1438 			goto request_done;
1439 
1440 		/* fall back to legacy interrupts */
1441 		igb_reset_interrupt_capability(adapter);
1442 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443 	}
1444 
1445 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446 			  netdev->name, adapter);
1447 
1448 	if (err)
1449 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450 			err);
1451 
1452 request_done:
1453 	return err;
1454 }
1455 
1456 static void igb_free_irq(struct igb_adapter *adapter)
1457 {
1458 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459 		int vector = 0, i;
1460 
1461 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1462 
1463 		for (i = 0; i < adapter->num_q_vectors; i++)
1464 			free_irq(adapter->msix_entries[vector++].vector,
1465 				 adapter->q_vector[i]);
1466 	} else {
1467 		free_irq(adapter->pdev->irq, adapter);
1468 	}
1469 }
1470 
1471 /**
1472  *  igb_irq_disable - Mask off interrupt generation on the NIC
1473  *  @adapter: board private structure
1474  **/
1475 static void igb_irq_disable(struct igb_adapter *adapter)
1476 {
1477 	struct e1000_hw *hw = &adapter->hw;
1478 
1479 	/* we need to be careful when disabling interrupts.  The VFs are also
1480 	 * mapped into these registers and so clearing the bits can cause
1481 	 * issues on the VF drivers so we only need to clear what we set
1482 	 */
1483 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484 		u32 regval = rd32(E1000_EIAM);
1485 
1486 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1488 		regval = rd32(E1000_EIAC);
1489 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490 	}
1491 
1492 	wr32(E1000_IAM, 0);
1493 	wr32(E1000_IMC, ~0);
1494 	wrfl();
1495 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496 		int i;
1497 
1498 		for (i = 0; i < adapter->num_q_vectors; i++)
1499 			synchronize_irq(adapter->msix_entries[i].vector);
1500 	} else {
1501 		synchronize_irq(adapter->pdev->irq);
1502 	}
1503 }
1504 
1505 /**
1506  *  igb_irq_enable - Enable default interrupt generation settings
1507  *  @adapter: board private structure
1508  **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511 	struct e1000_hw *hw = &adapter->hw;
1512 
1513 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515 		u32 regval = rd32(E1000_EIAC);
1516 
1517 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518 		regval = rd32(E1000_EIAM);
1519 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1521 		if (adapter->vfs_allocated_count) {
1522 			wr32(E1000_MBVFIMR, 0xFF);
1523 			ims |= E1000_IMS_VMMB;
1524 		}
1525 		wr32(E1000_IMS, ims);
1526 	} else {
1527 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1528 				E1000_IMS_DRSTA);
1529 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 	}
1532 }
1533 
1534 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535 {
1536 	struct e1000_hw *hw = &adapter->hw;
1537 	u16 pf_id = adapter->vfs_allocated_count;
1538 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1539 	u16 old_vid = adapter->mng_vlan_id;
1540 
1541 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542 		/* add VID to filter table */
1543 		igb_vfta_set(hw, vid, pf_id, true, true);
1544 		adapter->mng_vlan_id = vid;
1545 	} else {
1546 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547 	}
1548 
1549 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550 	    (vid != old_vid) &&
1551 	    !test_bit(old_vid, adapter->active_vlans)) {
1552 		/* remove VID from filter table */
1553 		igb_vfta_set(hw, vid, pf_id, false, true);
1554 	}
1555 }
1556 
1557 /**
1558  *  igb_release_hw_control - release control of the h/w to f/w
1559  *  @adapter: address of board private structure
1560  *
1561  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562  *  For ASF and Pass Through versions of f/w this means that the
1563  *  driver is no longer loaded.
1564  **/
1565 static void igb_release_hw_control(struct igb_adapter *adapter)
1566 {
1567 	struct e1000_hw *hw = &adapter->hw;
1568 	u32 ctrl_ext;
1569 
1570 	/* Let firmware take over control of h/w */
1571 	ctrl_ext = rd32(E1000_CTRL_EXT);
1572 	wr32(E1000_CTRL_EXT,
1573 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574 }
1575 
1576 /**
1577  *  igb_get_hw_control - get control of the h/w from f/w
1578  *  @adapter: address of board private structure
1579  *
1580  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581  *  For ASF and Pass Through versions of f/w this means that
1582  *  the driver is loaded.
1583  **/
1584 static void igb_get_hw_control(struct igb_adapter *adapter)
1585 {
1586 	struct e1000_hw *hw = &adapter->hw;
1587 	u32 ctrl_ext;
1588 
1589 	/* Let firmware know the driver has taken over */
1590 	ctrl_ext = rd32(E1000_CTRL_EXT);
1591 	wr32(E1000_CTRL_EXT,
1592 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593 }
1594 
1595 /**
1596  *  igb_configure - configure the hardware for RX and TX
1597  *  @adapter: private board structure
1598  **/
1599 static void igb_configure(struct igb_adapter *adapter)
1600 {
1601 	struct net_device *netdev = adapter->netdev;
1602 	int i;
1603 
1604 	igb_get_hw_control(adapter);
1605 	igb_set_rx_mode(netdev);
1606 
1607 	igb_restore_vlan(adapter);
1608 
1609 	igb_setup_tctl(adapter);
1610 	igb_setup_mrqc(adapter);
1611 	igb_setup_rctl(adapter);
1612 
1613 	igb_configure_tx(adapter);
1614 	igb_configure_rx(adapter);
1615 
1616 	igb_rx_fifo_flush_82575(&adapter->hw);
1617 
1618 	/* call igb_desc_unused which always leaves
1619 	 * at least 1 descriptor unused to make sure
1620 	 * next_to_use != next_to_clean
1621 	 */
1622 	for (i = 0; i < adapter->num_rx_queues; i++) {
1623 		struct igb_ring *ring = adapter->rx_ring[i];
1624 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1625 	}
1626 }
1627 
1628 /**
1629  *  igb_power_up_link - Power up the phy/serdes link
1630  *  @adapter: address of board private structure
1631  **/
1632 void igb_power_up_link(struct igb_adapter *adapter)
1633 {
1634 	igb_reset_phy(&adapter->hw);
1635 
1636 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1637 		igb_power_up_phy_copper(&adapter->hw);
1638 	else
1639 		igb_power_up_serdes_link_82575(&adapter->hw);
1640 
1641 	igb_setup_link(&adapter->hw);
1642 }
1643 
1644 /**
1645  *  igb_power_down_link - Power down the phy/serdes link
1646  *  @adapter: address of board private structure
1647  */
1648 static void igb_power_down_link(struct igb_adapter *adapter)
1649 {
1650 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1651 		igb_power_down_phy_copper_82575(&adapter->hw);
1652 	else
1653 		igb_shutdown_serdes_link_82575(&adapter->hw);
1654 }
1655 
1656 /**
1657  * Detect and switch function for Media Auto Sense
1658  * @adapter: address of the board private structure
1659  **/
1660 static void igb_check_swap_media(struct igb_adapter *adapter)
1661 {
1662 	struct e1000_hw *hw = &adapter->hw;
1663 	u32 ctrl_ext, connsw;
1664 	bool swap_now = false;
1665 
1666 	ctrl_ext = rd32(E1000_CTRL_EXT);
1667 	connsw = rd32(E1000_CONNSW);
1668 
1669 	/* need to live swap if current media is copper and we have fiber/serdes
1670 	 * to go to.
1671 	 */
1672 
1673 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1674 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1675 		swap_now = true;
1676 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1677 		/* copper signal takes time to appear */
1678 		if (adapter->copper_tries < 4) {
1679 			adapter->copper_tries++;
1680 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1681 			wr32(E1000_CONNSW, connsw);
1682 			return;
1683 		} else {
1684 			adapter->copper_tries = 0;
1685 			if ((connsw & E1000_CONNSW_PHYSD) &&
1686 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1687 				swap_now = true;
1688 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1689 				wr32(E1000_CONNSW, connsw);
1690 			}
1691 		}
1692 	}
1693 
1694 	if (!swap_now)
1695 		return;
1696 
1697 	switch (hw->phy.media_type) {
1698 	case e1000_media_type_copper:
1699 		netdev_info(adapter->netdev,
1700 			"MAS: changing media to fiber/serdes\n");
1701 		ctrl_ext |=
1702 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704 		adapter->copper_tries = 0;
1705 		break;
1706 	case e1000_media_type_internal_serdes:
1707 	case e1000_media_type_fiber:
1708 		netdev_info(adapter->netdev,
1709 			"MAS: changing media to copper\n");
1710 		ctrl_ext &=
1711 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1712 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1713 		break;
1714 	default:
1715 		/* shouldn't get here during regular operation */
1716 		netdev_err(adapter->netdev,
1717 			"AMS: Invalid media type found, returning\n");
1718 		break;
1719 	}
1720 	wr32(E1000_CTRL_EXT, ctrl_ext);
1721 }
1722 
1723 /**
1724  *  igb_up - Open the interface and prepare it to handle traffic
1725  *  @adapter: board private structure
1726  **/
1727 int igb_up(struct igb_adapter *adapter)
1728 {
1729 	struct e1000_hw *hw = &adapter->hw;
1730 	int i;
1731 
1732 	/* hardware has been reset, we need to reload some things */
1733 	igb_configure(adapter);
1734 
1735 	clear_bit(__IGB_DOWN, &adapter->state);
1736 
1737 	for (i = 0; i < adapter->num_q_vectors; i++)
1738 		napi_enable(&(adapter->q_vector[i]->napi));
1739 
1740 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1741 		igb_configure_msix(adapter);
1742 	else
1743 		igb_assign_vector(adapter->q_vector[0], 0);
1744 
1745 	/* Clear any pending interrupts. */
1746 	rd32(E1000_ICR);
1747 	igb_irq_enable(adapter);
1748 
1749 	/* notify VFs that reset has been completed */
1750 	if (adapter->vfs_allocated_count) {
1751 		u32 reg_data = rd32(E1000_CTRL_EXT);
1752 
1753 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1754 		wr32(E1000_CTRL_EXT, reg_data);
1755 	}
1756 
1757 	netif_tx_start_all_queues(adapter->netdev);
1758 
1759 	/* start the watchdog. */
1760 	hw->mac.get_link_status = 1;
1761 	schedule_work(&adapter->watchdog_task);
1762 
1763 	if ((adapter->flags & IGB_FLAG_EEE) &&
1764 	    (!hw->dev_spec._82575.eee_disable))
1765 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1766 
1767 	return 0;
1768 }
1769 
1770 void igb_down(struct igb_adapter *adapter)
1771 {
1772 	struct net_device *netdev = adapter->netdev;
1773 	struct e1000_hw *hw = &adapter->hw;
1774 	u32 tctl, rctl;
1775 	int i;
1776 
1777 	/* signal that we're down so the interrupt handler does not
1778 	 * reschedule our watchdog timer
1779 	 */
1780 	set_bit(__IGB_DOWN, &adapter->state);
1781 
1782 	/* disable receives in the hardware */
1783 	rctl = rd32(E1000_RCTL);
1784 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1785 	/* flush and sleep below */
1786 
1787 	netif_carrier_off(netdev);
1788 	netif_tx_stop_all_queues(netdev);
1789 
1790 	/* disable transmits in the hardware */
1791 	tctl = rd32(E1000_TCTL);
1792 	tctl &= ~E1000_TCTL_EN;
1793 	wr32(E1000_TCTL, tctl);
1794 	/* flush both disables and wait for them to finish */
1795 	wrfl();
1796 	usleep_range(10000, 11000);
1797 
1798 	igb_irq_disable(adapter);
1799 
1800 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1801 
1802 	for (i = 0; i < adapter->num_q_vectors; i++) {
1803 		if (adapter->q_vector[i]) {
1804 			napi_synchronize(&adapter->q_vector[i]->napi);
1805 			napi_disable(&adapter->q_vector[i]->napi);
1806 		}
1807 	}
1808 
1809 	del_timer_sync(&adapter->watchdog_timer);
1810 	del_timer_sync(&adapter->phy_info_timer);
1811 
1812 	/* record the stats before reset*/
1813 	spin_lock(&adapter->stats64_lock);
1814 	igb_update_stats(adapter, &adapter->stats64);
1815 	spin_unlock(&adapter->stats64_lock);
1816 
1817 	adapter->link_speed = 0;
1818 	adapter->link_duplex = 0;
1819 
1820 	if (!pci_channel_offline(adapter->pdev))
1821 		igb_reset(adapter);
1822 
1823 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
1824 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1825 
1826 	igb_clean_all_tx_rings(adapter);
1827 	igb_clean_all_rx_rings(adapter);
1828 #ifdef CONFIG_IGB_DCA
1829 
1830 	/* since we reset the hardware DCA settings were cleared */
1831 	igb_setup_dca(adapter);
1832 #endif
1833 }
1834 
1835 void igb_reinit_locked(struct igb_adapter *adapter)
1836 {
1837 	WARN_ON(in_interrupt());
1838 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1839 		usleep_range(1000, 2000);
1840 	igb_down(adapter);
1841 	igb_up(adapter);
1842 	clear_bit(__IGB_RESETTING, &adapter->state);
1843 }
1844 
1845 /** igb_enable_mas - Media Autosense re-enable after swap
1846  *
1847  * @adapter: adapter struct
1848  **/
1849 static void igb_enable_mas(struct igb_adapter *adapter)
1850 {
1851 	struct e1000_hw *hw = &adapter->hw;
1852 	u32 connsw = rd32(E1000_CONNSW);
1853 
1854 	/* configure for SerDes media detect */
1855 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1856 	    (!(connsw & E1000_CONNSW_SERDESD))) {
1857 		connsw |= E1000_CONNSW_ENRGSRC;
1858 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1859 		wr32(E1000_CONNSW, connsw);
1860 		wrfl();
1861 	}
1862 }
1863 
1864 void igb_reset(struct igb_adapter *adapter)
1865 {
1866 	struct pci_dev *pdev = adapter->pdev;
1867 	struct e1000_hw *hw = &adapter->hw;
1868 	struct e1000_mac_info *mac = &hw->mac;
1869 	struct e1000_fc_info *fc = &hw->fc;
1870 	u32 pba, hwm;
1871 
1872 	/* Repartition Pba for greater than 9k mtu
1873 	 * To take effect CTRL.RST is required.
1874 	 */
1875 	switch (mac->type) {
1876 	case e1000_i350:
1877 	case e1000_i354:
1878 	case e1000_82580:
1879 		pba = rd32(E1000_RXPBS);
1880 		pba = igb_rxpbs_adjust_82580(pba);
1881 		break;
1882 	case e1000_82576:
1883 		pba = rd32(E1000_RXPBS);
1884 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1885 		break;
1886 	case e1000_82575:
1887 	case e1000_i210:
1888 	case e1000_i211:
1889 	default:
1890 		pba = E1000_PBA_34K;
1891 		break;
1892 	}
1893 
1894 	if (mac->type == e1000_82575) {
1895 		u32 min_rx_space, min_tx_space, needed_tx_space;
1896 
1897 		/* write Rx PBA so that hardware can report correct Tx PBA */
1898 		wr32(E1000_PBA, pba);
1899 
1900 		/* To maintain wire speed transmits, the Tx FIFO should be
1901 		 * large enough to accommodate two full transmit packets,
1902 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1903 		 * the Rx FIFO should be large enough to accommodate at least
1904 		 * one full receive packet and is similarly rounded up and
1905 		 * expressed in KB.
1906 		 */
1907 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1908 
1909 		/* The Tx FIFO also stores 16 bytes of information about the Tx
1910 		 * but don't include Ethernet FCS because hardware appends it.
1911 		 * We only need to round down to the nearest 512 byte block
1912 		 * count since the value we care about is 2 frames, not 1.
1913 		 */
1914 		min_tx_space = adapter->max_frame_size;
1915 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1916 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1917 
1918 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1919 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1920 
1921 		/* If current Tx allocation is less than the min Tx FIFO size,
1922 		 * and the min Tx FIFO size is less than the current Rx FIFO
1923 		 * allocation, take space away from current Rx allocation.
1924 		 */
1925 		if (needed_tx_space < pba) {
1926 			pba -= needed_tx_space;
1927 
1928 			/* if short on Rx space, Rx wins and must trump Tx
1929 			 * adjustment
1930 			 */
1931 			if (pba < min_rx_space)
1932 				pba = min_rx_space;
1933 		}
1934 
1935 		/* adjust PBA for jumbo frames */
1936 		wr32(E1000_PBA, pba);
1937 	}
1938 
1939 	/* flow control settings
1940 	 * The high water mark must be low enough to fit one full frame
1941 	 * after transmitting the pause frame.  As such we must have enough
1942 	 * space to allow for us to complete our current transmit and then
1943 	 * receive the frame that is in progress from the link partner.
1944 	 * Set it to:
1945 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1946 	 */
1947 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1948 
1949 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1950 	fc->low_water = fc->high_water - 16;
1951 	fc->pause_time = 0xFFFF;
1952 	fc->send_xon = 1;
1953 	fc->current_mode = fc->requested_mode;
1954 
1955 	/* disable receive for all VFs and wait one second */
1956 	if (adapter->vfs_allocated_count) {
1957 		int i;
1958 
1959 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1960 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1961 
1962 		/* ping all the active vfs to let them know we are going down */
1963 		igb_ping_all_vfs(adapter);
1964 
1965 		/* disable transmits and receives */
1966 		wr32(E1000_VFRE, 0);
1967 		wr32(E1000_VFTE, 0);
1968 	}
1969 
1970 	/* Allow time for pending master requests to run */
1971 	hw->mac.ops.reset_hw(hw);
1972 	wr32(E1000_WUC, 0);
1973 
1974 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1975 		/* need to resetup here after media swap */
1976 		adapter->ei.get_invariants(hw);
1977 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1978 	}
1979 	if ((mac->type == e1000_82575) &&
1980 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1981 		igb_enable_mas(adapter);
1982 	}
1983 	if (hw->mac.ops.init_hw(hw))
1984 		dev_err(&pdev->dev, "Hardware Error\n");
1985 
1986 	/* Flow control settings reset on hardware reset, so guarantee flow
1987 	 * control is off when forcing speed.
1988 	 */
1989 	if (!hw->mac.autoneg)
1990 		igb_force_mac_fc(hw);
1991 
1992 	igb_init_dmac(adapter, pba);
1993 #ifdef CONFIG_IGB_HWMON
1994 	/* Re-initialize the thermal sensor on i350 devices. */
1995 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1996 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1997 			/* If present, re-initialize the external thermal sensor
1998 			 * interface.
1999 			 */
2000 			if (adapter->ets)
2001 				mac->ops.init_thermal_sensor_thresh(hw);
2002 		}
2003 	}
2004 #endif
2005 	/* Re-establish EEE setting */
2006 	if (hw->phy.media_type == e1000_media_type_copper) {
2007 		switch (mac->type) {
2008 		case e1000_i350:
2009 		case e1000_i210:
2010 		case e1000_i211:
2011 			igb_set_eee_i350(hw, true, true);
2012 			break;
2013 		case e1000_i354:
2014 			igb_set_eee_i354(hw, true, true);
2015 			break;
2016 		default:
2017 			break;
2018 		}
2019 	}
2020 	if (!netif_running(adapter->netdev))
2021 		igb_power_down_link(adapter);
2022 
2023 	igb_update_mng_vlan(adapter);
2024 
2025 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2026 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2027 
2028 	/* Re-enable PTP, where applicable. */
2029 	igb_ptp_reset(adapter);
2030 
2031 	igb_get_phy_info(hw);
2032 }
2033 
2034 static netdev_features_t igb_fix_features(struct net_device *netdev,
2035 	netdev_features_t features)
2036 {
2037 	/* Since there is no support for separate Rx/Tx vlan accel
2038 	 * enable/disable make sure Tx flag is always in same state as Rx.
2039 	 */
2040 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2041 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2042 	else
2043 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2044 
2045 	return features;
2046 }
2047 
2048 static int igb_set_features(struct net_device *netdev,
2049 	netdev_features_t features)
2050 {
2051 	netdev_features_t changed = netdev->features ^ features;
2052 	struct igb_adapter *adapter = netdev_priv(netdev);
2053 
2054 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2055 		igb_vlan_mode(netdev, features);
2056 
2057 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2058 		return 0;
2059 
2060 	netdev->features = features;
2061 
2062 	if (netif_running(netdev))
2063 		igb_reinit_locked(adapter);
2064 	else
2065 		igb_reset(adapter);
2066 
2067 	return 0;
2068 }
2069 
2070 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2071 			   struct net_device *dev,
2072 			   const unsigned char *addr, u16 vid,
2073 			   u16 flags)
2074 {
2075 	/* guarantee we can provide a unique filter for the unicast address */
2076 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2077 		struct igb_adapter *adapter = netdev_priv(dev);
2078 		struct e1000_hw *hw = &adapter->hw;
2079 		int vfn = adapter->vfs_allocated_count;
2080 		int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2081 
2082 		if (netdev_uc_count(dev) >= rar_entries)
2083 			return -ENOMEM;
2084 	}
2085 
2086 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2087 }
2088 
2089 static const struct net_device_ops igb_netdev_ops = {
2090 	.ndo_open		= igb_open,
2091 	.ndo_stop		= igb_close,
2092 	.ndo_start_xmit		= igb_xmit_frame,
2093 	.ndo_get_stats64	= igb_get_stats64,
2094 	.ndo_set_rx_mode	= igb_set_rx_mode,
2095 	.ndo_set_mac_address	= igb_set_mac,
2096 	.ndo_change_mtu		= igb_change_mtu,
2097 	.ndo_do_ioctl		= igb_ioctl,
2098 	.ndo_tx_timeout		= igb_tx_timeout,
2099 	.ndo_validate_addr	= eth_validate_addr,
2100 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2101 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2102 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2103 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2104 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2105 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2106 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2107 #ifdef CONFIG_NET_POLL_CONTROLLER
2108 	.ndo_poll_controller	= igb_netpoll,
2109 #endif
2110 	.ndo_fix_features	= igb_fix_features,
2111 	.ndo_set_features	= igb_set_features,
2112 	.ndo_fdb_add		= igb_ndo_fdb_add,
2113 	.ndo_features_check	= passthru_features_check,
2114 };
2115 
2116 /**
2117  * igb_set_fw_version - Configure version string for ethtool
2118  * @adapter: adapter struct
2119  **/
2120 void igb_set_fw_version(struct igb_adapter *adapter)
2121 {
2122 	struct e1000_hw *hw = &adapter->hw;
2123 	struct e1000_fw_version fw;
2124 
2125 	igb_get_fw_version(hw, &fw);
2126 
2127 	switch (hw->mac.type) {
2128 	case e1000_i210:
2129 	case e1000_i211:
2130 		if (!(igb_get_flash_presence_i210(hw))) {
2131 			snprintf(adapter->fw_version,
2132 				 sizeof(adapter->fw_version),
2133 				 "%2d.%2d-%d",
2134 				 fw.invm_major, fw.invm_minor,
2135 				 fw.invm_img_type);
2136 			break;
2137 		}
2138 		/* fall through */
2139 	default:
2140 		/* if option is rom valid, display its version too */
2141 		if (fw.or_valid) {
2142 			snprintf(adapter->fw_version,
2143 				 sizeof(adapter->fw_version),
2144 				 "%d.%d, 0x%08x, %d.%d.%d",
2145 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2146 				 fw.or_major, fw.or_build, fw.or_patch);
2147 		/* no option rom */
2148 		} else if (fw.etrack_id != 0X0000) {
2149 			snprintf(adapter->fw_version,
2150 			    sizeof(adapter->fw_version),
2151 			    "%d.%d, 0x%08x",
2152 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2153 		} else {
2154 		snprintf(adapter->fw_version,
2155 		    sizeof(adapter->fw_version),
2156 		    "%d.%d.%d",
2157 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2158 		}
2159 		break;
2160 	}
2161 }
2162 
2163 /**
2164  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2165  *
2166  * @adapter: adapter struct
2167  **/
2168 static void igb_init_mas(struct igb_adapter *adapter)
2169 {
2170 	struct e1000_hw *hw = &adapter->hw;
2171 	u16 eeprom_data;
2172 
2173 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2174 	switch (hw->bus.func) {
2175 	case E1000_FUNC_0:
2176 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2177 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178 			netdev_info(adapter->netdev,
2179 				"MAS: Enabling Media Autosense for port %d\n",
2180 				hw->bus.func);
2181 		}
2182 		break;
2183 	case E1000_FUNC_1:
2184 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2185 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186 			netdev_info(adapter->netdev,
2187 				"MAS: Enabling Media Autosense for port %d\n",
2188 				hw->bus.func);
2189 		}
2190 		break;
2191 	case E1000_FUNC_2:
2192 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2193 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2194 			netdev_info(adapter->netdev,
2195 				"MAS: Enabling Media Autosense for port %d\n",
2196 				hw->bus.func);
2197 		}
2198 		break;
2199 	case E1000_FUNC_3:
2200 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2201 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2202 			netdev_info(adapter->netdev,
2203 				"MAS: Enabling Media Autosense for port %d\n",
2204 				hw->bus.func);
2205 		}
2206 		break;
2207 	default:
2208 		/* Shouldn't get here */
2209 		netdev_err(adapter->netdev,
2210 			"MAS: Invalid port configuration, returning\n");
2211 		break;
2212 	}
2213 }
2214 
2215 /**
2216  *  igb_init_i2c - Init I2C interface
2217  *  @adapter: pointer to adapter structure
2218  **/
2219 static s32 igb_init_i2c(struct igb_adapter *adapter)
2220 {
2221 	s32 status = 0;
2222 
2223 	/* I2C interface supported on i350 devices */
2224 	if (adapter->hw.mac.type != e1000_i350)
2225 		return 0;
2226 
2227 	/* Initialize the i2c bus which is controlled by the registers.
2228 	 * This bus will use the i2c_algo_bit structue that implements
2229 	 * the protocol through toggling of the 4 bits in the register.
2230 	 */
2231 	adapter->i2c_adap.owner = THIS_MODULE;
2232 	adapter->i2c_algo = igb_i2c_algo;
2233 	adapter->i2c_algo.data = adapter;
2234 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2235 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2236 	strlcpy(adapter->i2c_adap.name, "igb BB",
2237 		sizeof(adapter->i2c_adap.name));
2238 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2239 	return status;
2240 }
2241 
2242 /**
2243  *  igb_probe - Device Initialization Routine
2244  *  @pdev: PCI device information struct
2245  *  @ent: entry in igb_pci_tbl
2246  *
2247  *  Returns 0 on success, negative on failure
2248  *
2249  *  igb_probe initializes an adapter identified by a pci_dev structure.
2250  *  The OS initialization, configuring of the adapter private structure,
2251  *  and a hardware reset occur.
2252  **/
2253 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2254 {
2255 	struct net_device *netdev;
2256 	struct igb_adapter *adapter;
2257 	struct e1000_hw *hw;
2258 	u16 eeprom_data = 0;
2259 	s32 ret_val;
2260 	static int global_quad_port_a; /* global quad port a indication */
2261 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2262 	int err, pci_using_dac;
2263 	u8 part_str[E1000_PBANUM_LENGTH];
2264 
2265 	/* Catch broken hardware that put the wrong VF device ID in
2266 	 * the PCIe SR-IOV capability.
2267 	 */
2268 	if (pdev->is_virtfn) {
2269 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2270 			pci_name(pdev), pdev->vendor, pdev->device);
2271 		return -EINVAL;
2272 	}
2273 
2274 	err = pci_enable_device_mem(pdev);
2275 	if (err)
2276 		return err;
2277 
2278 	pci_using_dac = 0;
2279 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2280 	if (!err) {
2281 		pci_using_dac = 1;
2282 	} else {
2283 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2284 		if (err) {
2285 			dev_err(&pdev->dev,
2286 				"No usable DMA configuration, aborting\n");
2287 			goto err_dma;
2288 		}
2289 	}
2290 
2291 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2292 					   IORESOURCE_MEM),
2293 					   igb_driver_name);
2294 	if (err)
2295 		goto err_pci_reg;
2296 
2297 	pci_enable_pcie_error_reporting(pdev);
2298 
2299 	pci_set_master(pdev);
2300 	pci_save_state(pdev);
2301 
2302 	err = -ENOMEM;
2303 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2304 				   IGB_MAX_TX_QUEUES);
2305 	if (!netdev)
2306 		goto err_alloc_etherdev;
2307 
2308 	SET_NETDEV_DEV(netdev, &pdev->dev);
2309 
2310 	pci_set_drvdata(pdev, netdev);
2311 	adapter = netdev_priv(netdev);
2312 	adapter->netdev = netdev;
2313 	adapter->pdev = pdev;
2314 	hw = &adapter->hw;
2315 	hw->back = adapter;
2316 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2317 
2318 	err = -EIO;
2319 	adapter->io_addr = pci_iomap(pdev, 0, 0);
2320 	if (!adapter->io_addr)
2321 		goto err_ioremap;
2322 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2323 	hw->hw_addr = adapter->io_addr;
2324 
2325 	netdev->netdev_ops = &igb_netdev_ops;
2326 	igb_set_ethtool_ops(netdev);
2327 	netdev->watchdog_timeo = 5 * HZ;
2328 
2329 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2330 
2331 	netdev->mem_start = pci_resource_start(pdev, 0);
2332 	netdev->mem_end = pci_resource_end(pdev, 0);
2333 
2334 	/* PCI config space info */
2335 	hw->vendor_id = pdev->vendor;
2336 	hw->device_id = pdev->device;
2337 	hw->revision_id = pdev->revision;
2338 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2339 	hw->subsystem_device_id = pdev->subsystem_device;
2340 
2341 	/* Copy the default MAC, PHY and NVM function pointers */
2342 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2343 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2344 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2345 	/* Initialize skew-specific constants */
2346 	err = ei->get_invariants(hw);
2347 	if (err)
2348 		goto err_sw_init;
2349 
2350 	/* setup the private structure */
2351 	err = igb_sw_init(adapter);
2352 	if (err)
2353 		goto err_sw_init;
2354 
2355 	igb_get_bus_info_pcie(hw);
2356 
2357 	hw->phy.autoneg_wait_to_complete = false;
2358 
2359 	/* Copper options */
2360 	if (hw->phy.media_type == e1000_media_type_copper) {
2361 		hw->phy.mdix = AUTO_ALL_MODES;
2362 		hw->phy.disable_polarity_correction = false;
2363 		hw->phy.ms_type = e1000_ms_hw_default;
2364 	}
2365 
2366 	if (igb_check_reset_block(hw))
2367 		dev_info(&pdev->dev,
2368 			"PHY reset is blocked due to SOL/IDER session.\n");
2369 
2370 	/* features is initialized to 0 in allocation, it might have bits
2371 	 * set by igb_sw_init so we should use an or instead of an
2372 	 * assignment.
2373 	 */
2374 	netdev->features |= NETIF_F_SG |
2375 			    NETIF_F_TSO |
2376 			    NETIF_F_TSO6 |
2377 			    NETIF_F_RXHASH |
2378 			    NETIF_F_RXCSUM |
2379 			    NETIF_F_HW_CSUM |
2380 			    NETIF_F_HW_VLAN_CTAG_RX |
2381 			    NETIF_F_HW_VLAN_CTAG_TX;
2382 
2383 	if (hw->mac.type >= e1000_82576)
2384 		netdev->features |= NETIF_F_SCTP_CRC;
2385 
2386 	/* copy netdev features into list of user selectable features */
2387 	netdev->hw_features |= netdev->features;
2388 	netdev->hw_features |= NETIF_F_RXALL;
2389 
2390 	if (hw->mac.type >= e1000_i350)
2391 		netdev->hw_features |= NETIF_F_NTUPLE;
2392 
2393 	/* set this bit last since it cannot be part of hw_features */
2394 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2395 
2396 	netdev->vlan_features |= NETIF_F_SG |
2397 				 NETIF_F_TSO |
2398 				 NETIF_F_TSO6 |
2399 				 NETIF_F_HW_CSUM |
2400 				 NETIF_F_SCTP_CRC;
2401 
2402 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2403 	netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2404 
2405 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2406 
2407 	if (pci_using_dac) {
2408 		netdev->features |= NETIF_F_HIGHDMA;
2409 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2410 	}
2411 
2412 	netdev->priv_flags |= IFF_UNICAST_FLT;
2413 
2414 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2415 
2416 	/* before reading the NVM, reset the controller to put the device in a
2417 	 * known good starting state
2418 	 */
2419 	hw->mac.ops.reset_hw(hw);
2420 
2421 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2422 	 * that doesn't contain a checksum
2423 	 */
2424 	switch (hw->mac.type) {
2425 	case e1000_i210:
2426 	case e1000_i211:
2427 		if (igb_get_flash_presence_i210(hw)) {
2428 			if (hw->nvm.ops.validate(hw) < 0) {
2429 				dev_err(&pdev->dev,
2430 					"The NVM Checksum Is Not Valid\n");
2431 				err = -EIO;
2432 				goto err_eeprom;
2433 			}
2434 		}
2435 		break;
2436 	default:
2437 		if (hw->nvm.ops.validate(hw) < 0) {
2438 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2439 			err = -EIO;
2440 			goto err_eeprom;
2441 		}
2442 		break;
2443 	}
2444 
2445 	/* copy the MAC address out of the NVM */
2446 	if (hw->mac.ops.read_mac_addr(hw))
2447 		dev_err(&pdev->dev, "NVM Read Error\n");
2448 
2449 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2450 
2451 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2452 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2453 		err = -EIO;
2454 		goto err_eeprom;
2455 	}
2456 
2457 	/* get firmware version for ethtool -i */
2458 	igb_set_fw_version(adapter);
2459 
2460 	/* configure RXPBSIZE and TXPBSIZE */
2461 	if (hw->mac.type == e1000_i210) {
2462 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2463 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2464 	}
2465 
2466 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2467 		    (unsigned long) adapter);
2468 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2469 		    (unsigned long) adapter);
2470 
2471 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2472 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2473 
2474 	/* Initialize link properties that are user-changeable */
2475 	adapter->fc_autoneg = true;
2476 	hw->mac.autoneg = true;
2477 	hw->phy.autoneg_advertised = 0x2f;
2478 
2479 	hw->fc.requested_mode = e1000_fc_default;
2480 	hw->fc.current_mode = e1000_fc_default;
2481 
2482 	igb_validate_mdi_setting(hw);
2483 
2484 	/* By default, support wake on port A */
2485 	if (hw->bus.func == 0)
2486 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2487 
2488 	/* Check the NVM for wake support on non-port A ports */
2489 	if (hw->mac.type >= e1000_82580)
2490 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2491 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2492 				 &eeprom_data);
2493 	else if (hw->bus.func == 1)
2494 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2495 
2496 	if (eeprom_data & IGB_EEPROM_APME)
2497 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2498 
2499 	/* now that we have the eeprom settings, apply the special cases where
2500 	 * the eeprom may be wrong or the board simply won't support wake on
2501 	 * lan on a particular port
2502 	 */
2503 	switch (pdev->device) {
2504 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2505 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2506 		break;
2507 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2508 	case E1000_DEV_ID_82576_FIBER:
2509 	case E1000_DEV_ID_82576_SERDES:
2510 		/* Wake events only supported on port A for dual fiber
2511 		 * regardless of eeprom setting
2512 		 */
2513 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2514 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2515 		break;
2516 	case E1000_DEV_ID_82576_QUAD_COPPER:
2517 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2518 		/* if quad port adapter, disable WoL on all but port A */
2519 		if (global_quad_port_a != 0)
2520 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2521 		else
2522 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2523 		/* Reset for multiple quad port adapters */
2524 		if (++global_quad_port_a == 4)
2525 			global_quad_port_a = 0;
2526 		break;
2527 	default:
2528 		/* If the device can't wake, don't set software support */
2529 		if (!device_can_wakeup(&adapter->pdev->dev))
2530 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2531 	}
2532 
2533 	/* initialize the wol settings based on the eeprom settings */
2534 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2535 		adapter->wol |= E1000_WUFC_MAG;
2536 
2537 	/* Some vendors want WoL disabled by default, but still supported */
2538 	if ((hw->mac.type == e1000_i350) &&
2539 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2540 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2541 		adapter->wol = 0;
2542 	}
2543 
2544 	/* Some vendors want the ability to Use the EEPROM setting as
2545 	 * enable/disable only, and not for capability
2546 	 */
2547 	if (((hw->mac.type == e1000_i350) ||
2548 	     (hw->mac.type == e1000_i354)) &&
2549 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2550 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2551 		adapter->wol = 0;
2552 	}
2553 	if (hw->mac.type == e1000_i350) {
2554 		if (((pdev->subsystem_device == 0x5001) ||
2555 		     (pdev->subsystem_device == 0x5002)) &&
2556 				(hw->bus.func == 0)) {
2557 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2558 			adapter->wol = 0;
2559 		}
2560 		if (pdev->subsystem_device == 0x1F52)
2561 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2562 	}
2563 
2564 	device_set_wakeup_enable(&adapter->pdev->dev,
2565 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2566 
2567 	/* reset the hardware with the new settings */
2568 	igb_reset(adapter);
2569 
2570 	/* Init the I2C interface */
2571 	err = igb_init_i2c(adapter);
2572 	if (err) {
2573 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2574 		goto err_eeprom;
2575 	}
2576 
2577 	/* let the f/w know that the h/w is now under the control of the
2578 	 * driver.
2579 	 */
2580 	igb_get_hw_control(adapter);
2581 
2582 	strcpy(netdev->name, "eth%d");
2583 	err = register_netdev(netdev);
2584 	if (err)
2585 		goto err_register;
2586 
2587 	/* carrier off reporting is important to ethtool even BEFORE open */
2588 	netif_carrier_off(netdev);
2589 
2590 #ifdef CONFIG_IGB_DCA
2591 	if (dca_add_requester(&pdev->dev) == 0) {
2592 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2593 		dev_info(&pdev->dev, "DCA enabled\n");
2594 		igb_setup_dca(adapter);
2595 	}
2596 
2597 #endif
2598 #ifdef CONFIG_IGB_HWMON
2599 	/* Initialize the thermal sensor on i350 devices. */
2600 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2601 		u16 ets_word;
2602 
2603 		/* Read the NVM to determine if this i350 device supports an
2604 		 * external thermal sensor.
2605 		 */
2606 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2607 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2608 			adapter->ets = true;
2609 		else
2610 			adapter->ets = false;
2611 		if (igb_sysfs_init(adapter))
2612 			dev_err(&pdev->dev,
2613 				"failed to allocate sysfs resources\n");
2614 	} else {
2615 		adapter->ets = false;
2616 	}
2617 #endif
2618 	/* Check if Media Autosense is enabled */
2619 	adapter->ei = *ei;
2620 	if (hw->dev_spec._82575.mas_capable)
2621 		igb_init_mas(adapter);
2622 
2623 	/* do hw tstamp init after resetting */
2624 	igb_ptp_init(adapter);
2625 
2626 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2627 	/* print bus type/speed/width info, not applicable to i354 */
2628 	if (hw->mac.type != e1000_i354) {
2629 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2630 			 netdev->name,
2631 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2632 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2633 			   "unknown"),
2634 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2635 			  "Width x4" :
2636 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2637 			  "Width x2" :
2638 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2639 			  "Width x1" : "unknown"), netdev->dev_addr);
2640 	}
2641 
2642 	if ((hw->mac.type >= e1000_i210 ||
2643 	     igb_get_flash_presence_i210(hw))) {
2644 		ret_val = igb_read_part_string(hw, part_str,
2645 					       E1000_PBANUM_LENGTH);
2646 	} else {
2647 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2648 	}
2649 
2650 	if (ret_val)
2651 		strcpy(part_str, "Unknown");
2652 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2653 	dev_info(&pdev->dev,
2654 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2655 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2656 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2657 		adapter->num_rx_queues, adapter->num_tx_queues);
2658 	if (hw->phy.media_type == e1000_media_type_copper) {
2659 		switch (hw->mac.type) {
2660 		case e1000_i350:
2661 		case e1000_i210:
2662 		case e1000_i211:
2663 			/* Enable EEE for internal copper PHY devices */
2664 			err = igb_set_eee_i350(hw, true, true);
2665 			if ((!err) &&
2666 			    (!hw->dev_spec._82575.eee_disable)) {
2667 				adapter->eee_advert =
2668 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2669 				adapter->flags |= IGB_FLAG_EEE;
2670 			}
2671 			break;
2672 		case e1000_i354:
2673 			if ((rd32(E1000_CTRL_EXT) &
2674 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2675 				err = igb_set_eee_i354(hw, true, true);
2676 				if ((!err) &&
2677 					(!hw->dev_spec._82575.eee_disable)) {
2678 					adapter->eee_advert =
2679 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2680 					adapter->flags |= IGB_FLAG_EEE;
2681 				}
2682 			}
2683 			break;
2684 		default:
2685 			break;
2686 		}
2687 	}
2688 	pm_runtime_put_noidle(&pdev->dev);
2689 	return 0;
2690 
2691 err_register:
2692 	igb_release_hw_control(adapter);
2693 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2694 err_eeprom:
2695 	if (!igb_check_reset_block(hw))
2696 		igb_reset_phy(hw);
2697 
2698 	if (hw->flash_address)
2699 		iounmap(hw->flash_address);
2700 err_sw_init:
2701 	kfree(adapter->shadow_vfta);
2702 	igb_clear_interrupt_scheme(adapter);
2703 #ifdef CONFIG_PCI_IOV
2704 	igb_disable_sriov(pdev);
2705 #endif
2706 	pci_iounmap(pdev, adapter->io_addr);
2707 err_ioremap:
2708 	free_netdev(netdev);
2709 err_alloc_etherdev:
2710 	pci_release_selected_regions(pdev,
2711 				     pci_select_bars(pdev, IORESOURCE_MEM));
2712 err_pci_reg:
2713 err_dma:
2714 	pci_disable_device(pdev);
2715 	return err;
2716 }
2717 
2718 #ifdef CONFIG_PCI_IOV
2719 static int igb_disable_sriov(struct pci_dev *pdev)
2720 {
2721 	struct net_device *netdev = pci_get_drvdata(pdev);
2722 	struct igb_adapter *adapter = netdev_priv(netdev);
2723 	struct e1000_hw *hw = &adapter->hw;
2724 
2725 	/* reclaim resources allocated to VFs */
2726 	if (adapter->vf_data) {
2727 		/* disable iov and allow time for transactions to clear */
2728 		if (pci_vfs_assigned(pdev)) {
2729 			dev_warn(&pdev->dev,
2730 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2731 			return -EPERM;
2732 		} else {
2733 			pci_disable_sriov(pdev);
2734 			msleep(500);
2735 		}
2736 
2737 		kfree(adapter->vf_data);
2738 		adapter->vf_data = NULL;
2739 		adapter->vfs_allocated_count = 0;
2740 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2741 		wrfl();
2742 		msleep(100);
2743 		dev_info(&pdev->dev, "IOV Disabled\n");
2744 
2745 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2746 		adapter->flags |= IGB_FLAG_DMAC;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2753 {
2754 	struct net_device *netdev = pci_get_drvdata(pdev);
2755 	struct igb_adapter *adapter = netdev_priv(netdev);
2756 	int old_vfs = pci_num_vf(pdev);
2757 	int err = 0;
2758 	int i;
2759 
2760 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2761 		err = -EPERM;
2762 		goto out;
2763 	}
2764 	if (!num_vfs)
2765 		goto out;
2766 
2767 	if (old_vfs) {
2768 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2769 			 old_vfs, max_vfs);
2770 		adapter->vfs_allocated_count = old_vfs;
2771 	} else
2772 		adapter->vfs_allocated_count = num_vfs;
2773 
2774 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2775 				sizeof(struct vf_data_storage), GFP_KERNEL);
2776 
2777 	/* if allocation failed then we do not support SR-IOV */
2778 	if (!adapter->vf_data) {
2779 		adapter->vfs_allocated_count = 0;
2780 		dev_err(&pdev->dev,
2781 			"Unable to allocate memory for VF Data Storage\n");
2782 		err = -ENOMEM;
2783 		goto out;
2784 	}
2785 
2786 	/* only call pci_enable_sriov() if no VFs are allocated already */
2787 	if (!old_vfs) {
2788 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2789 		if (err)
2790 			goto err_out;
2791 	}
2792 	dev_info(&pdev->dev, "%d VFs allocated\n",
2793 		 adapter->vfs_allocated_count);
2794 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2795 		igb_vf_configure(adapter, i);
2796 
2797 	/* DMA Coalescing is not supported in IOV mode. */
2798 	adapter->flags &= ~IGB_FLAG_DMAC;
2799 	goto out;
2800 
2801 err_out:
2802 	kfree(adapter->vf_data);
2803 	adapter->vf_data = NULL;
2804 	adapter->vfs_allocated_count = 0;
2805 out:
2806 	return err;
2807 }
2808 
2809 #endif
2810 /**
2811  *  igb_remove_i2c - Cleanup  I2C interface
2812  *  @adapter: pointer to adapter structure
2813  **/
2814 static void igb_remove_i2c(struct igb_adapter *adapter)
2815 {
2816 	/* free the adapter bus structure */
2817 	i2c_del_adapter(&adapter->i2c_adap);
2818 }
2819 
2820 /**
2821  *  igb_remove - Device Removal Routine
2822  *  @pdev: PCI device information struct
2823  *
2824  *  igb_remove is called by the PCI subsystem to alert the driver
2825  *  that it should release a PCI device.  The could be caused by a
2826  *  Hot-Plug event, or because the driver is going to be removed from
2827  *  memory.
2828  **/
2829 static void igb_remove(struct pci_dev *pdev)
2830 {
2831 	struct net_device *netdev = pci_get_drvdata(pdev);
2832 	struct igb_adapter *adapter = netdev_priv(netdev);
2833 	struct e1000_hw *hw = &adapter->hw;
2834 
2835 	pm_runtime_get_noresume(&pdev->dev);
2836 #ifdef CONFIG_IGB_HWMON
2837 	igb_sysfs_exit(adapter);
2838 #endif
2839 	igb_remove_i2c(adapter);
2840 	igb_ptp_stop(adapter);
2841 	/* The watchdog timer may be rescheduled, so explicitly
2842 	 * disable watchdog from being rescheduled.
2843 	 */
2844 	set_bit(__IGB_DOWN, &adapter->state);
2845 	del_timer_sync(&adapter->watchdog_timer);
2846 	del_timer_sync(&adapter->phy_info_timer);
2847 
2848 	cancel_work_sync(&adapter->reset_task);
2849 	cancel_work_sync(&adapter->watchdog_task);
2850 
2851 #ifdef CONFIG_IGB_DCA
2852 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2853 		dev_info(&pdev->dev, "DCA disabled\n");
2854 		dca_remove_requester(&pdev->dev);
2855 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2856 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2857 	}
2858 #endif
2859 
2860 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2861 	 * would have already happened in close and is redundant.
2862 	 */
2863 	igb_release_hw_control(adapter);
2864 
2865 #ifdef CONFIG_PCI_IOV
2866 	igb_disable_sriov(pdev);
2867 #endif
2868 
2869 	unregister_netdev(netdev);
2870 
2871 	igb_clear_interrupt_scheme(adapter);
2872 
2873 	pci_iounmap(pdev, adapter->io_addr);
2874 	if (hw->flash_address)
2875 		iounmap(hw->flash_address);
2876 	pci_release_selected_regions(pdev,
2877 				     pci_select_bars(pdev, IORESOURCE_MEM));
2878 
2879 	kfree(adapter->shadow_vfta);
2880 	free_netdev(netdev);
2881 
2882 	pci_disable_pcie_error_reporting(pdev);
2883 
2884 	pci_disable_device(pdev);
2885 }
2886 
2887 /**
2888  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2889  *  @adapter: board private structure to initialize
2890  *
2891  *  This function initializes the vf specific data storage and then attempts to
2892  *  allocate the VFs.  The reason for ordering it this way is because it is much
2893  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2894  *  the memory for the VFs.
2895  **/
2896 static void igb_probe_vfs(struct igb_adapter *adapter)
2897 {
2898 #ifdef CONFIG_PCI_IOV
2899 	struct pci_dev *pdev = adapter->pdev;
2900 	struct e1000_hw *hw = &adapter->hw;
2901 
2902 	/* Virtualization features not supported on i210 family. */
2903 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2904 		return;
2905 
2906 	/* Of the below we really only want the effect of getting
2907 	 * IGB_FLAG_HAS_MSIX set (if available), without which
2908 	 * igb_enable_sriov() has no effect.
2909 	 */
2910 	igb_set_interrupt_capability(adapter, true);
2911 	igb_reset_interrupt_capability(adapter);
2912 
2913 	pci_sriov_set_totalvfs(pdev, 7);
2914 	igb_enable_sriov(pdev, max_vfs);
2915 
2916 #endif /* CONFIG_PCI_IOV */
2917 }
2918 
2919 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2920 {
2921 	struct e1000_hw *hw = &adapter->hw;
2922 	u32 max_rss_queues;
2923 
2924 	/* Determine the maximum number of RSS queues supported. */
2925 	switch (hw->mac.type) {
2926 	case e1000_i211:
2927 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2928 		break;
2929 	case e1000_82575:
2930 	case e1000_i210:
2931 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2932 		break;
2933 	case e1000_i350:
2934 		/* I350 cannot do RSS and SR-IOV at the same time */
2935 		if (!!adapter->vfs_allocated_count) {
2936 			max_rss_queues = 1;
2937 			break;
2938 		}
2939 		/* fall through */
2940 	case e1000_82576:
2941 		if (!!adapter->vfs_allocated_count) {
2942 			max_rss_queues = 2;
2943 			break;
2944 		}
2945 		/* fall through */
2946 	case e1000_82580:
2947 	case e1000_i354:
2948 	default:
2949 		max_rss_queues = IGB_MAX_RX_QUEUES;
2950 		break;
2951 	}
2952 
2953 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2954 
2955 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
2956 }
2957 
2958 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2959 			      const u32 max_rss_queues)
2960 {
2961 	struct e1000_hw *hw = &adapter->hw;
2962 
2963 	/* Determine if we need to pair queues. */
2964 	switch (hw->mac.type) {
2965 	case e1000_82575:
2966 	case e1000_i211:
2967 		/* Device supports enough interrupts without queue pairing. */
2968 		break;
2969 	case e1000_82576:
2970 	case e1000_82580:
2971 	case e1000_i350:
2972 	case e1000_i354:
2973 	case e1000_i210:
2974 	default:
2975 		/* If rss_queues > half of max_rss_queues, pair the queues in
2976 		 * order to conserve interrupts due to limited supply.
2977 		 */
2978 		if (adapter->rss_queues > (max_rss_queues / 2))
2979 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2980 		else
2981 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
2982 		break;
2983 	}
2984 }
2985 
2986 /**
2987  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2988  *  @adapter: board private structure to initialize
2989  *
2990  *  igb_sw_init initializes the Adapter private data structure.
2991  *  Fields are initialized based on PCI device information and
2992  *  OS network device settings (MTU size).
2993  **/
2994 static int igb_sw_init(struct igb_adapter *adapter)
2995 {
2996 	struct e1000_hw *hw = &adapter->hw;
2997 	struct net_device *netdev = adapter->netdev;
2998 	struct pci_dev *pdev = adapter->pdev;
2999 
3000 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3001 
3002 	/* set default ring sizes */
3003 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3004 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3005 
3006 	/* set default ITR values */
3007 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3008 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3009 
3010 	/* set default work limits */
3011 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3012 
3013 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3014 				  VLAN_HLEN;
3015 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3016 
3017 	spin_lock_init(&adapter->stats64_lock);
3018 #ifdef CONFIG_PCI_IOV
3019 	switch (hw->mac.type) {
3020 	case e1000_82576:
3021 	case e1000_i350:
3022 		if (max_vfs > 7) {
3023 			dev_warn(&pdev->dev,
3024 				 "Maximum of 7 VFs per PF, using max\n");
3025 			max_vfs = adapter->vfs_allocated_count = 7;
3026 		} else
3027 			adapter->vfs_allocated_count = max_vfs;
3028 		if (adapter->vfs_allocated_count)
3029 			dev_warn(&pdev->dev,
3030 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3031 		break;
3032 	default:
3033 		break;
3034 	}
3035 #endif /* CONFIG_PCI_IOV */
3036 
3037 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3038 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3039 
3040 	igb_probe_vfs(adapter);
3041 
3042 	igb_init_queue_configuration(adapter);
3043 
3044 	/* Setup and initialize a copy of the hw vlan table array */
3045 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3046 				       GFP_ATOMIC);
3047 
3048 	/* This call may decrease the number of queues */
3049 	if (igb_init_interrupt_scheme(adapter, true)) {
3050 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3051 		return -ENOMEM;
3052 	}
3053 
3054 	/* Explicitly disable IRQ since the NIC can be in any state. */
3055 	igb_irq_disable(adapter);
3056 
3057 	if (hw->mac.type >= e1000_i350)
3058 		adapter->flags &= ~IGB_FLAG_DMAC;
3059 
3060 	set_bit(__IGB_DOWN, &adapter->state);
3061 	return 0;
3062 }
3063 
3064 /**
3065  *  igb_open - Called when a network interface is made active
3066  *  @netdev: network interface device structure
3067  *
3068  *  Returns 0 on success, negative value on failure
3069  *
3070  *  The open entry point is called when a network interface is made
3071  *  active by the system (IFF_UP).  At this point all resources needed
3072  *  for transmit and receive operations are allocated, the interrupt
3073  *  handler is registered with the OS, the watchdog timer is started,
3074  *  and the stack is notified that the interface is ready.
3075  **/
3076 static int __igb_open(struct net_device *netdev, bool resuming)
3077 {
3078 	struct igb_adapter *adapter = netdev_priv(netdev);
3079 	struct e1000_hw *hw = &adapter->hw;
3080 	struct pci_dev *pdev = adapter->pdev;
3081 	int err;
3082 	int i;
3083 
3084 	/* disallow open during test */
3085 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3086 		WARN_ON(resuming);
3087 		return -EBUSY;
3088 	}
3089 
3090 	if (!resuming)
3091 		pm_runtime_get_sync(&pdev->dev);
3092 
3093 	netif_carrier_off(netdev);
3094 
3095 	/* allocate transmit descriptors */
3096 	err = igb_setup_all_tx_resources(adapter);
3097 	if (err)
3098 		goto err_setup_tx;
3099 
3100 	/* allocate receive descriptors */
3101 	err = igb_setup_all_rx_resources(adapter);
3102 	if (err)
3103 		goto err_setup_rx;
3104 
3105 	igb_power_up_link(adapter);
3106 
3107 	/* before we allocate an interrupt, we must be ready to handle it.
3108 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3109 	 * as soon as we call pci_request_irq, so we have to setup our
3110 	 * clean_rx handler before we do so.
3111 	 */
3112 	igb_configure(adapter);
3113 
3114 	err = igb_request_irq(adapter);
3115 	if (err)
3116 		goto err_req_irq;
3117 
3118 	/* Notify the stack of the actual queue counts. */
3119 	err = netif_set_real_num_tx_queues(adapter->netdev,
3120 					   adapter->num_tx_queues);
3121 	if (err)
3122 		goto err_set_queues;
3123 
3124 	err = netif_set_real_num_rx_queues(adapter->netdev,
3125 					   adapter->num_rx_queues);
3126 	if (err)
3127 		goto err_set_queues;
3128 
3129 	/* From here on the code is the same as igb_up() */
3130 	clear_bit(__IGB_DOWN, &adapter->state);
3131 
3132 	for (i = 0; i < adapter->num_q_vectors; i++)
3133 		napi_enable(&(adapter->q_vector[i]->napi));
3134 
3135 	/* Clear any pending interrupts. */
3136 	rd32(E1000_ICR);
3137 
3138 	igb_irq_enable(adapter);
3139 
3140 	/* notify VFs that reset has been completed */
3141 	if (adapter->vfs_allocated_count) {
3142 		u32 reg_data = rd32(E1000_CTRL_EXT);
3143 
3144 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3145 		wr32(E1000_CTRL_EXT, reg_data);
3146 	}
3147 
3148 	netif_tx_start_all_queues(netdev);
3149 
3150 	if (!resuming)
3151 		pm_runtime_put(&pdev->dev);
3152 
3153 	/* start the watchdog. */
3154 	hw->mac.get_link_status = 1;
3155 	schedule_work(&adapter->watchdog_task);
3156 
3157 	return 0;
3158 
3159 err_set_queues:
3160 	igb_free_irq(adapter);
3161 err_req_irq:
3162 	igb_release_hw_control(adapter);
3163 	igb_power_down_link(adapter);
3164 	igb_free_all_rx_resources(adapter);
3165 err_setup_rx:
3166 	igb_free_all_tx_resources(adapter);
3167 err_setup_tx:
3168 	igb_reset(adapter);
3169 	if (!resuming)
3170 		pm_runtime_put(&pdev->dev);
3171 
3172 	return err;
3173 }
3174 
3175 int igb_open(struct net_device *netdev)
3176 {
3177 	return __igb_open(netdev, false);
3178 }
3179 
3180 /**
3181  *  igb_close - Disables a network interface
3182  *  @netdev: network interface device structure
3183  *
3184  *  Returns 0, this is not allowed to fail
3185  *
3186  *  The close entry point is called when an interface is de-activated
3187  *  by the OS.  The hardware is still under the driver's control, but
3188  *  needs to be disabled.  A global MAC reset is issued to stop the
3189  *  hardware, and all transmit and receive resources are freed.
3190  **/
3191 static int __igb_close(struct net_device *netdev, bool suspending)
3192 {
3193 	struct igb_adapter *adapter = netdev_priv(netdev);
3194 	struct pci_dev *pdev = adapter->pdev;
3195 
3196 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3197 
3198 	if (!suspending)
3199 		pm_runtime_get_sync(&pdev->dev);
3200 
3201 	igb_down(adapter);
3202 	igb_free_irq(adapter);
3203 
3204 	igb_free_all_tx_resources(adapter);
3205 	igb_free_all_rx_resources(adapter);
3206 
3207 	if (!suspending)
3208 		pm_runtime_put_sync(&pdev->dev);
3209 	return 0;
3210 }
3211 
3212 int igb_close(struct net_device *netdev)
3213 {
3214 	return __igb_close(netdev, false);
3215 }
3216 
3217 /**
3218  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3219  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3220  *
3221  *  Return 0 on success, negative on failure
3222  **/
3223 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3224 {
3225 	struct device *dev = tx_ring->dev;
3226 	int size;
3227 
3228 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3229 
3230 	tx_ring->tx_buffer_info = vzalloc(size);
3231 	if (!tx_ring->tx_buffer_info)
3232 		goto err;
3233 
3234 	/* round up to nearest 4K */
3235 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3236 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3237 
3238 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3239 					   &tx_ring->dma, GFP_KERNEL);
3240 	if (!tx_ring->desc)
3241 		goto err;
3242 
3243 	tx_ring->next_to_use = 0;
3244 	tx_ring->next_to_clean = 0;
3245 
3246 	return 0;
3247 
3248 err:
3249 	vfree(tx_ring->tx_buffer_info);
3250 	tx_ring->tx_buffer_info = NULL;
3251 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3252 	return -ENOMEM;
3253 }
3254 
3255 /**
3256  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3257  *				 (Descriptors) for all queues
3258  *  @adapter: board private structure
3259  *
3260  *  Return 0 on success, negative on failure
3261  **/
3262 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3263 {
3264 	struct pci_dev *pdev = adapter->pdev;
3265 	int i, err = 0;
3266 
3267 	for (i = 0; i < adapter->num_tx_queues; i++) {
3268 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3269 		if (err) {
3270 			dev_err(&pdev->dev,
3271 				"Allocation for Tx Queue %u failed\n", i);
3272 			for (i--; i >= 0; i--)
3273 				igb_free_tx_resources(adapter->tx_ring[i]);
3274 			break;
3275 		}
3276 	}
3277 
3278 	return err;
3279 }
3280 
3281 /**
3282  *  igb_setup_tctl - configure the transmit control registers
3283  *  @adapter: Board private structure
3284  **/
3285 void igb_setup_tctl(struct igb_adapter *adapter)
3286 {
3287 	struct e1000_hw *hw = &adapter->hw;
3288 	u32 tctl;
3289 
3290 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3291 	wr32(E1000_TXDCTL(0), 0);
3292 
3293 	/* Program the Transmit Control Register */
3294 	tctl = rd32(E1000_TCTL);
3295 	tctl &= ~E1000_TCTL_CT;
3296 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3297 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3298 
3299 	igb_config_collision_dist(hw);
3300 
3301 	/* Enable transmits */
3302 	tctl |= E1000_TCTL_EN;
3303 
3304 	wr32(E1000_TCTL, tctl);
3305 }
3306 
3307 /**
3308  *  igb_configure_tx_ring - Configure transmit ring after Reset
3309  *  @adapter: board private structure
3310  *  @ring: tx ring to configure
3311  *
3312  *  Configure a transmit ring after a reset.
3313  **/
3314 void igb_configure_tx_ring(struct igb_adapter *adapter,
3315 			   struct igb_ring *ring)
3316 {
3317 	struct e1000_hw *hw = &adapter->hw;
3318 	u32 txdctl = 0;
3319 	u64 tdba = ring->dma;
3320 	int reg_idx = ring->reg_idx;
3321 
3322 	/* disable the queue */
3323 	wr32(E1000_TXDCTL(reg_idx), 0);
3324 	wrfl();
3325 	mdelay(10);
3326 
3327 	wr32(E1000_TDLEN(reg_idx),
3328 	     ring->count * sizeof(union e1000_adv_tx_desc));
3329 	wr32(E1000_TDBAL(reg_idx),
3330 	     tdba & 0x00000000ffffffffULL);
3331 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3332 
3333 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3334 	wr32(E1000_TDH(reg_idx), 0);
3335 	writel(0, ring->tail);
3336 
3337 	txdctl |= IGB_TX_PTHRESH;
3338 	txdctl |= IGB_TX_HTHRESH << 8;
3339 	txdctl |= IGB_TX_WTHRESH << 16;
3340 
3341 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3342 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3343 }
3344 
3345 /**
3346  *  igb_configure_tx - Configure transmit Unit after Reset
3347  *  @adapter: board private structure
3348  *
3349  *  Configure the Tx unit of the MAC after a reset.
3350  **/
3351 static void igb_configure_tx(struct igb_adapter *adapter)
3352 {
3353 	int i;
3354 
3355 	for (i = 0; i < adapter->num_tx_queues; i++)
3356 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3357 }
3358 
3359 /**
3360  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3361  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3362  *
3363  *  Returns 0 on success, negative on failure
3364  **/
3365 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3366 {
3367 	struct device *dev = rx_ring->dev;
3368 	int size;
3369 
3370 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3371 
3372 	rx_ring->rx_buffer_info = vzalloc(size);
3373 	if (!rx_ring->rx_buffer_info)
3374 		goto err;
3375 
3376 	/* Round up to nearest 4K */
3377 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3378 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3379 
3380 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3381 					   &rx_ring->dma, GFP_KERNEL);
3382 	if (!rx_ring->desc)
3383 		goto err;
3384 
3385 	rx_ring->next_to_alloc = 0;
3386 	rx_ring->next_to_clean = 0;
3387 	rx_ring->next_to_use = 0;
3388 
3389 	return 0;
3390 
3391 err:
3392 	vfree(rx_ring->rx_buffer_info);
3393 	rx_ring->rx_buffer_info = NULL;
3394 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3395 	return -ENOMEM;
3396 }
3397 
3398 /**
3399  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3400  *				 (Descriptors) for all queues
3401  *  @adapter: board private structure
3402  *
3403  *  Return 0 on success, negative on failure
3404  **/
3405 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3406 {
3407 	struct pci_dev *pdev = adapter->pdev;
3408 	int i, err = 0;
3409 
3410 	for (i = 0; i < adapter->num_rx_queues; i++) {
3411 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3412 		if (err) {
3413 			dev_err(&pdev->dev,
3414 				"Allocation for Rx Queue %u failed\n", i);
3415 			for (i--; i >= 0; i--)
3416 				igb_free_rx_resources(adapter->rx_ring[i]);
3417 			break;
3418 		}
3419 	}
3420 
3421 	return err;
3422 }
3423 
3424 /**
3425  *  igb_setup_mrqc - configure the multiple receive queue control registers
3426  *  @adapter: Board private structure
3427  **/
3428 static void igb_setup_mrqc(struct igb_adapter *adapter)
3429 {
3430 	struct e1000_hw *hw = &adapter->hw;
3431 	u32 mrqc, rxcsum;
3432 	u32 j, num_rx_queues;
3433 	u32 rss_key[10];
3434 
3435 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3436 	for (j = 0; j < 10; j++)
3437 		wr32(E1000_RSSRK(j), rss_key[j]);
3438 
3439 	num_rx_queues = adapter->rss_queues;
3440 
3441 	switch (hw->mac.type) {
3442 	case e1000_82576:
3443 		/* 82576 supports 2 RSS queues for SR-IOV */
3444 		if (adapter->vfs_allocated_count)
3445 			num_rx_queues = 2;
3446 		break;
3447 	default:
3448 		break;
3449 	}
3450 
3451 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3452 		for (j = 0; j < IGB_RETA_SIZE; j++)
3453 			adapter->rss_indir_tbl[j] =
3454 			(j * num_rx_queues) / IGB_RETA_SIZE;
3455 		adapter->rss_indir_tbl_init = num_rx_queues;
3456 	}
3457 	igb_write_rss_indir_tbl(adapter);
3458 
3459 	/* Disable raw packet checksumming so that RSS hash is placed in
3460 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3461 	 * offloads as they are enabled by default
3462 	 */
3463 	rxcsum = rd32(E1000_RXCSUM);
3464 	rxcsum |= E1000_RXCSUM_PCSD;
3465 
3466 	if (adapter->hw.mac.type >= e1000_82576)
3467 		/* Enable Receive Checksum Offload for SCTP */
3468 		rxcsum |= E1000_RXCSUM_CRCOFL;
3469 
3470 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3471 	wr32(E1000_RXCSUM, rxcsum);
3472 
3473 	/* Generate RSS hash based on packet types, TCP/UDP
3474 	 * port numbers and/or IPv4/v6 src and dst addresses
3475 	 */
3476 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3477 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3478 	       E1000_MRQC_RSS_FIELD_IPV6 |
3479 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3480 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3481 
3482 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3483 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3484 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3485 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3486 
3487 	/* If VMDq is enabled then we set the appropriate mode for that, else
3488 	 * we default to RSS so that an RSS hash is calculated per packet even
3489 	 * if we are only using one queue
3490 	 */
3491 	if (adapter->vfs_allocated_count) {
3492 		if (hw->mac.type > e1000_82575) {
3493 			/* Set the default pool for the PF's first queue */
3494 			u32 vtctl = rd32(E1000_VT_CTL);
3495 
3496 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3497 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3498 			vtctl |= adapter->vfs_allocated_count <<
3499 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3500 			wr32(E1000_VT_CTL, vtctl);
3501 		}
3502 		if (adapter->rss_queues > 1)
3503 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3504 		else
3505 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3506 	} else {
3507 		if (hw->mac.type != e1000_i211)
3508 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3509 	}
3510 	igb_vmm_control(adapter);
3511 
3512 	wr32(E1000_MRQC, mrqc);
3513 }
3514 
3515 /**
3516  *  igb_setup_rctl - configure the receive control registers
3517  *  @adapter: Board private structure
3518  **/
3519 void igb_setup_rctl(struct igb_adapter *adapter)
3520 {
3521 	struct e1000_hw *hw = &adapter->hw;
3522 	u32 rctl;
3523 
3524 	rctl = rd32(E1000_RCTL);
3525 
3526 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3527 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3528 
3529 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3530 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3531 
3532 	/* enable stripping of CRC. It's unlikely this will break BMC
3533 	 * redirection as it did with e1000. Newer features require
3534 	 * that the HW strips the CRC.
3535 	 */
3536 	rctl |= E1000_RCTL_SECRC;
3537 
3538 	/* disable store bad packets and clear size bits. */
3539 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3540 
3541 	/* enable LPE to allow for reception of jumbo frames */
3542 	rctl |= E1000_RCTL_LPE;
3543 
3544 	/* disable queue 0 to prevent tail write w/o re-config */
3545 	wr32(E1000_RXDCTL(0), 0);
3546 
3547 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3548 	 * queue drop for all VF and PF queues to prevent head of line blocking
3549 	 * if an un-trusted VF does not provide descriptors to hardware.
3550 	 */
3551 	if (adapter->vfs_allocated_count) {
3552 		/* set all queue drop enable bits */
3553 		wr32(E1000_QDE, ALL_QUEUES);
3554 	}
3555 
3556 	/* This is useful for sniffing bad packets. */
3557 	if (adapter->netdev->features & NETIF_F_RXALL) {
3558 		/* UPE and MPE will be handled by normal PROMISC logic
3559 		 * in e1000e_set_rx_mode
3560 		 */
3561 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3562 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3563 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3564 
3565 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3566 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3567 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3568 		 * and that breaks VLANs.
3569 		 */
3570 	}
3571 
3572 	wr32(E1000_RCTL, rctl);
3573 }
3574 
3575 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3576 				   int vfn)
3577 {
3578 	struct e1000_hw *hw = &adapter->hw;
3579 	u32 vmolr;
3580 
3581 	if (size > MAX_JUMBO_FRAME_SIZE)
3582 		size = MAX_JUMBO_FRAME_SIZE;
3583 
3584 	vmolr = rd32(E1000_VMOLR(vfn));
3585 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3586 	vmolr |= size | E1000_VMOLR_LPE;
3587 	wr32(E1000_VMOLR(vfn), vmolr);
3588 
3589 	return 0;
3590 }
3591 
3592 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3593 					 int vfn, bool enable)
3594 {
3595 	struct e1000_hw *hw = &adapter->hw;
3596 	u32 val, reg;
3597 
3598 	if (hw->mac.type < e1000_82576)
3599 		return;
3600 
3601 	if (hw->mac.type == e1000_i350)
3602 		reg = E1000_DVMOLR(vfn);
3603 	else
3604 		reg = E1000_VMOLR(vfn);
3605 
3606 	val = rd32(reg);
3607 	if (enable)
3608 		val |= E1000_VMOLR_STRVLAN;
3609 	else
3610 		val &= ~(E1000_VMOLR_STRVLAN);
3611 	wr32(reg, val);
3612 }
3613 
3614 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3615 				 int vfn, bool aupe)
3616 {
3617 	struct e1000_hw *hw = &adapter->hw;
3618 	u32 vmolr;
3619 
3620 	/* This register exists only on 82576 and newer so if we are older then
3621 	 * we should exit and do nothing
3622 	 */
3623 	if (hw->mac.type < e1000_82576)
3624 		return;
3625 
3626 	vmolr = rd32(E1000_VMOLR(vfn));
3627 	if (aupe)
3628 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3629 	else
3630 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3631 
3632 	/* clear all bits that might not be set */
3633 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3634 
3635 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3636 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3637 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3638 	 * multicast packets
3639 	 */
3640 	if (vfn <= adapter->vfs_allocated_count)
3641 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3642 
3643 	wr32(E1000_VMOLR(vfn), vmolr);
3644 }
3645 
3646 /**
3647  *  igb_configure_rx_ring - Configure a receive ring after Reset
3648  *  @adapter: board private structure
3649  *  @ring: receive ring to be configured
3650  *
3651  *  Configure the Rx unit of the MAC after a reset.
3652  **/
3653 void igb_configure_rx_ring(struct igb_adapter *adapter,
3654 			   struct igb_ring *ring)
3655 {
3656 	struct e1000_hw *hw = &adapter->hw;
3657 	u64 rdba = ring->dma;
3658 	int reg_idx = ring->reg_idx;
3659 	u32 srrctl = 0, rxdctl = 0;
3660 
3661 	/* disable the queue */
3662 	wr32(E1000_RXDCTL(reg_idx), 0);
3663 
3664 	/* Set DMA base address registers */
3665 	wr32(E1000_RDBAL(reg_idx),
3666 	     rdba & 0x00000000ffffffffULL);
3667 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3668 	wr32(E1000_RDLEN(reg_idx),
3669 	     ring->count * sizeof(union e1000_adv_rx_desc));
3670 
3671 	/* initialize head and tail */
3672 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3673 	wr32(E1000_RDH(reg_idx), 0);
3674 	writel(0, ring->tail);
3675 
3676 	/* set descriptor configuration */
3677 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3678 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3679 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3680 	if (hw->mac.type >= e1000_82580)
3681 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3682 	/* Only set Drop Enable if we are supporting multiple queues */
3683 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3684 		srrctl |= E1000_SRRCTL_DROP_EN;
3685 
3686 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3687 
3688 	/* set filtering for VMDQ pools */
3689 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3690 
3691 	rxdctl |= IGB_RX_PTHRESH;
3692 	rxdctl |= IGB_RX_HTHRESH << 8;
3693 	rxdctl |= IGB_RX_WTHRESH << 16;
3694 
3695 	/* enable receive descriptor fetching */
3696 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3697 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3698 }
3699 
3700 /**
3701  *  igb_configure_rx - Configure receive Unit after Reset
3702  *  @adapter: board private structure
3703  *
3704  *  Configure the Rx unit of the MAC after a reset.
3705  **/
3706 static void igb_configure_rx(struct igb_adapter *adapter)
3707 {
3708 	int i;
3709 
3710 	/* set the correct pool for the PF default MAC address in entry 0 */
3711 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3712 			 adapter->vfs_allocated_count);
3713 
3714 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3715 	 * the Base and Length of the Rx Descriptor Ring
3716 	 */
3717 	for (i = 0; i < adapter->num_rx_queues; i++)
3718 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3719 }
3720 
3721 /**
3722  *  igb_free_tx_resources - Free Tx Resources per Queue
3723  *  @tx_ring: Tx descriptor ring for a specific queue
3724  *
3725  *  Free all transmit software resources
3726  **/
3727 void igb_free_tx_resources(struct igb_ring *tx_ring)
3728 {
3729 	igb_clean_tx_ring(tx_ring);
3730 
3731 	vfree(tx_ring->tx_buffer_info);
3732 	tx_ring->tx_buffer_info = NULL;
3733 
3734 	/* if not set, then don't free */
3735 	if (!tx_ring->desc)
3736 		return;
3737 
3738 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3739 			  tx_ring->desc, tx_ring->dma);
3740 
3741 	tx_ring->desc = NULL;
3742 }
3743 
3744 /**
3745  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3746  *  @adapter: board private structure
3747  *
3748  *  Free all transmit software resources
3749  **/
3750 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3751 {
3752 	int i;
3753 
3754 	for (i = 0; i < adapter->num_tx_queues; i++)
3755 		if (adapter->tx_ring[i])
3756 			igb_free_tx_resources(adapter->tx_ring[i]);
3757 }
3758 
3759 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3760 				    struct igb_tx_buffer *tx_buffer)
3761 {
3762 	if (tx_buffer->skb) {
3763 		dev_kfree_skb_any(tx_buffer->skb);
3764 		if (dma_unmap_len(tx_buffer, len))
3765 			dma_unmap_single(ring->dev,
3766 					 dma_unmap_addr(tx_buffer, dma),
3767 					 dma_unmap_len(tx_buffer, len),
3768 					 DMA_TO_DEVICE);
3769 	} else if (dma_unmap_len(tx_buffer, len)) {
3770 		dma_unmap_page(ring->dev,
3771 			       dma_unmap_addr(tx_buffer, dma),
3772 			       dma_unmap_len(tx_buffer, len),
3773 			       DMA_TO_DEVICE);
3774 	}
3775 	tx_buffer->next_to_watch = NULL;
3776 	tx_buffer->skb = NULL;
3777 	dma_unmap_len_set(tx_buffer, len, 0);
3778 	/* buffer_info must be completely set up in the transmit path */
3779 }
3780 
3781 /**
3782  *  igb_clean_tx_ring - Free Tx Buffers
3783  *  @tx_ring: ring to be cleaned
3784  **/
3785 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3786 {
3787 	struct igb_tx_buffer *buffer_info;
3788 	unsigned long size;
3789 	u16 i;
3790 
3791 	if (!tx_ring->tx_buffer_info)
3792 		return;
3793 	/* Free all the Tx ring sk_buffs */
3794 
3795 	for (i = 0; i < tx_ring->count; i++) {
3796 		buffer_info = &tx_ring->tx_buffer_info[i];
3797 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3798 	}
3799 
3800 	netdev_tx_reset_queue(txring_txq(tx_ring));
3801 
3802 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3803 	memset(tx_ring->tx_buffer_info, 0, size);
3804 
3805 	/* Zero out the descriptor ring */
3806 	memset(tx_ring->desc, 0, tx_ring->size);
3807 
3808 	tx_ring->next_to_use = 0;
3809 	tx_ring->next_to_clean = 0;
3810 }
3811 
3812 /**
3813  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3814  *  @adapter: board private structure
3815  **/
3816 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3817 {
3818 	int i;
3819 
3820 	for (i = 0; i < adapter->num_tx_queues; i++)
3821 		if (adapter->tx_ring[i])
3822 			igb_clean_tx_ring(adapter->tx_ring[i]);
3823 }
3824 
3825 /**
3826  *  igb_free_rx_resources - Free Rx Resources
3827  *  @rx_ring: ring to clean the resources from
3828  *
3829  *  Free all receive software resources
3830  **/
3831 void igb_free_rx_resources(struct igb_ring *rx_ring)
3832 {
3833 	igb_clean_rx_ring(rx_ring);
3834 
3835 	vfree(rx_ring->rx_buffer_info);
3836 	rx_ring->rx_buffer_info = NULL;
3837 
3838 	/* if not set, then don't free */
3839 	if (!rx_ring->desc)
3840 		return;
3841 
3842 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3843 			  rx_ring->desc, rx_ring->dma);
3844 
3845 	rx_ring->desc = NULL;
3846 }
3847 
3848 /**
3849  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3850  *  @adapter: board private structure
3851  *
3852  *  Free all receive software resources
3853  **/
3854 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3855 {
3856 	int i;
3857 
3858 	for (i = 0; i < adapter->num_rx_queues; i++)
3859 		if (adapter->rx_ring[i])
3860 			igb_free_rx_resources(adapter->rx_ring[i]);
3861 }
3862 
3863 /**
3864  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3865  *  @rx_ring: ring to free buffers from
3866  **/
3867 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3868 {
3869 	unsigned long size;
3870 	u16 i;
3871 
3872 	if (rx_ring->skb)
3873 		dev_kfree_skb(rx_ring->skb);
3874 	rx_ring->skb = NULL;
3875 
3876 	if (!rx_ring->rx_buffer_info)
3877 		return;
3878 
3879 	/* Free all the Rx ring sk_buffs */
3880 	for (i = 0; i < rx_ring->count; i++) {
3881 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3882 
3883 		if (!buffer_info->page)
3884 			continue;
3885 
3886 		dma_unmap_page(rx_ring->dev,
3887 			       buffer_info->dma,
3888 			       PAGE_SIZE,
3889 			       DMA_FROM_DEVICE);
3890 		__free_page(buffer_info->page);
3891 
3892 		buffer_info->page = NULL;
3893 	}
3894 
3895 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3896 	memset(rx_ring->rx_buffer_info, 0, size);
3897 
3898 	/* Zero out the descriptor ring */
3899 	memset(rx_ring->desc, 0, rx_ring->size);
3900 
3901 	rx_ring->next_to_alloc = 0;
3902 	rx_ring->next_to_clean = 0;
3903 	rx_ring->next_to_use = 0;
3904 }
3905 
3906 /**
3907  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3908  *  @adapter: board private structure
3909  **/
3910 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3911 {
3912 	int i;
3913 
3914 	for (i = 0; i < adapter->num_rx_queues; i++)
3915 		if (adapter->rx_ring[i])
3916 			igb_clean_rx_ring(adapter->rx_ring[i]);
3917 }
3918 
3919 /**
3920  *  igb_set_mac - Change the Ethernet Address of the NIC
3921  *  @netdev: network interface device structure
3922  *  @p: pointer to an address structure
3923  *
3924  *  Returns 0 on success, negative on failure
3925  **/
3926 static int igb_set_mac(struct net_device *netdev, void *p)
3927 {
3928 	struct igb_adapter *adapter = netdev_priv(netdev);
3929 	struct e1000_hw *hw = &adapter->hw;
3930 	struct sockaddr *addr = p;
3931 
3932 	if (!is_valid_ether_addr(addr->sa_data))
3933 		return -EADDRNOTAVAIL;
3934 
3935 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3936 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3937 
3938 	/* set the correct pool for the new PF MAC address in entry 0 */
3939 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3940 			 adapter->vfs_allocated_count);
3941 
3942 	return 0;
3943 }
3944 
3945 /**
3946  *  igb_write_mc_addr_list - write multicast addresses to MTA
3947  *  @netdev: network interface device structure
3948  *
3949  *  Writes multicast address list to the MTA hash table.
3950  *  Returns: -ENOMEM on failure
3951  *           0 on no addresses written
3952  *           X on writing X addresses to MTA
3953  **/
3954 static int igb_write_mc_addr_list(struct net_device *netdev)
3955 {
3956 	struct igb_adapter *adapter = netdev_priv(netdev);
3957 	struct e1000_hw *hw = &adapter->hw;
3958 	struct netdev_hw_addr *ha;
3959 	u8  *mta_list;
3960 	int i;
3961 
3962 	if (netdev_mc_empty(netdev)) {
3963 		/* nothing to program, so clear mc list */
3964 		igb_update_mc_addr_list(hw, NULL, 0);
3965 		igb_restore_vf_multicasts(adapter);
3966 		return 0;
3967 	}
3968 
3969 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3970 	if (!mta_list)
3971 		return -ENOMEM;
3972 
3973 	/* The shared function expects a packed array of only addresses. */
3974 	i = 0;
3975 	netdev_for_each_mc_addr(ha, netdev)
3976 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3977 
3978 	igb_update_mc_addr_list(hw, mta_list, i);
3979 	kfree(mta_list);
3980 
3981 	return netdev_mc_count(netdev);
3982 }
3983 
3984 /**
3985  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3986  *  @netdev: network interface device structure
3987  *
3988  *  Writes unicast address list to the RAR table.
3989  *  Returns: -ENOMEM on failure/insufficient address space
3990  *           0 on no addresses written
3991  *           X on writing X addresses to the RAR table
3992  **/
3993 static int igb_write_uc_addr_list(struct net_device *netdev)
3994 {
3995 	struct igb_adapter *adapter = netdev_priv(netdev);
3996 	struct e1000_hw *hw = &adapter->hw;
3997 	unsigned int vfn = adapter->vfs_allocated_count;
3998 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3999 	int count = 0;
4000 
4001 	/* return ENOMEM indicating insufficient memory for addresses */
4002 	if (netdev_uc_count(netdev) > rar_entries)
4003 		return -ENOMEM;
4004 
4005 	if (!netdev_uc_empty(netdev) && rar_entries) {
4006 		struct netdev_hw_addr *ha;
4007 
4008 		netdev_for_each_uc_addr(ha, netdev) {
4009 			if (!rar_entries)
4010 				break;
4011 			igb_rar_set_qsel(adapter, ha->addr,
4012 					 rar_entries--,
4013 					 vfn);
4014 			count++;
4015 		}
4016 	}
4017 	/* write the addresses in reverse order to avoid write combining */
4018 	for (; rar_entries > 0 ; rar_entries--) {
4019 		wr32(E1000_RAH(rar_entries), 0);
4020 		wr32(E1000_RAL(rar_entries), 0);
4021 	}
4022 	wrfl();
4023 
4024 	return count;
4025 }
4026 
4027 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4028 {
4029 	struct e1000_hw *hw = &adapter->hw;
4030 	u32 i, pf_id;
4031 
4032 	switch (hw->mac.type) {
4033 	case e1000_i210:
4034 	case e1000_i211:
4035 	case e1000_i350:
4036 		/* VLAN filtering needed for VLAN prio filter */
4037 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4038 			break;
4039 		/* fall through */
4040 	case e1000_82576:
4041 	case e1000_82580:
4042 	case e1000_i354:
4043 		/* VLAN filtering needed for pool filtering */
4044 		if (adapter->vfs_allocated_count)
4045 			break;
4046 		/* fall through */
4047 	default:
4048 		return 1;
4049 	}
4050 
4051 	/* We are already in VLAN promisc, nothing to do */
4052 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4053 		return 0;
4054 
4055 	if (!adapter->vfs_allocated_count)
4056 		goto set_vfta;
4057 
4058 	/* Add PF to all active pools */
4059 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4060 
4061 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4062 		u32 vlvf = rd32(E1000_VLVF(i));
4063 
4064 		vlvf |= 1 << pf_id;
4065 		wr32(E1000_VLVF(i), vlvf);
4066 	}
4067 
4068 set_vfta:
4069 	/* Set all bits in the VLAN filter table array */
4070 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4071 		hw->mac.ops.write_vfta(hw, i, ~0U);
4072 
4073 	/* Set flag so we don't redo unnecessary work */
4074 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4075 
4076 	return 0;
4077 }
4078 
4079 #define VFTA_BLOCK_SIZE 8
4080 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4081 {
4082 	struct e1000_hw *hw = &adapter->hw;
4083 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4084 	u32 vid_start = vfta_offset * 32;
4085 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4086 	u32 i, vid, word, bits, pf_id;
4087 
4088 	/* guarantee that we don't scrub out management VLAN */
4089 	vid = adapter->mng_vlan_id;
4090 	if (vid >= vid_start && vid < vid_end)
4091 		vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4092 
4093 	if (!adapter->vfs_allocated_count)
4094 		goto set_vfta;
4095 
4096 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4097 
4098 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4099 		u32 vlvf = rd32(E1000_VLVF(i));
4100 
4101 		/* pull VLAN ID from VLVF */
4102 		vid = vlvf & VLAN_VID_MASK;
4103 
4104 		/* only concern ourselves with a certain range */
4105 		if (vid < vid_start || vid >= vid_end)
4106 			continue;
4107 
4108 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4109 			/* record VLAN ID in VFTA */
4110 			vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4111 
4112 			/* if PF is part of this then continue */
4113 			if (test_bit(vid, adapter->active_vlans))
4114 				continue;
4115 		}
4116 
4117 		/* remove PF from the pool */
4118 		bits = ~(1 << pf_id);
4119 		bits &= rd32(E1000_VLVF(i));
4120 		wr32(E1000_VLVF(i), bits);
4121 	}
4122 
4123 set_vfta:
4124 	/* extract values from active_vlans and write back to VFTA */
4125 	for (i = VFTA_BLOCK_SIZE; i--;) {
4126 		vid = (vfta_offset + i) * 32;
4127 		word = vid / BITS_PER_LONG;
4128 		bits = vid % BITS_PER_LONG;
4129 
4130 		vfta[i] |= adapter->active_vlans[word] >> bits;
4131 
4132 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4133 	}
4134 }
4135 
4136 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4137 {
4138 	u32 i;
4139 
4140 	/* We are not in VLAN promisc, nothing to do */
4141 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4142 		return;
4143 
4144 	/* Set flag so we don't redo unnecessary work */
4145 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4146 
4147 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4148 		igb_scrub_vfta(adapter, i);
4149 }
4150 
4151 /**
4152  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4153  *  @netdev: network interface device structure
4154  *
4155  *  The set_rx_mode entry point is called whenever the unicast or multicast
4156  *  address lists or the network interface flags are updated.  This routine is
4157  *  responsible for configuring the hardware for proper unicast, multicast,
4158  *  promiscuous mode, and all-multi behavior.
4159  **/
4160 static void igb_set_rx_mode(struct net_device *netdev)
4161 {
4162 	struct igb_adapter *adapter = netdev_priv(netdev);
4163 	struct e1000_hw *hw = &adapter->hw;
4164 	unsigned int vfn = adapter->vfs_allocated_count;
4165 	u32 rctl = 0, vmolr = 0;
4166 	int count;
4167 
4168 	/* Check for Promiscuous and All Multicast modes */
4169 	if (netdev->flags & IFF_PROMISC) {
4170 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4171 		vmolr |= E1000_VMOLR_MPME;
4172 
4173 		/* enable use of UTA filter to force packets to default pool */
4174 		if (hw->mac.type == e1000_82576)
4175 			vmolr |= E1000_VMOLR_ROPE;
4176 	} else {
4177 		if (netdev->flags & IFF_ALLMULTI) {
4178 			rctl |= E1000_RCTL_MPE;
4179 			vmolr |= E1000_VMOLR_MPME;
4180 		} else {
4181 			/* Write addresses to the MTA, if the attempt fails
4182 			 * then we should just turn on promiscuous mode so
4183 			 * that we can at least receive multicast traffic
4184 			 */
4185 			count = igb_write_mc_addr_list(netdev);
4186 			if (count < 0) {
4187 				rctl |= E1000_RCTL_MPE;
4188 				vmolr |= E1000_VMOLR_MPME;
4189 			} else if (count) {
4190 				vmolr |= E1000_VMOLR_ROMPE;
4191 			}
4192 		}
4193 	}
4194 
4195 	/* Write addresses to available RAR registers, if there is not
4196 	 * sufficient space to store all the addresses then enable
4197 	 * unicast promiscuous mode
4198 	 */
4199 	count = igb_write_uc_addr_list(netdev);
4200 	if (count < 0) {
4201 		rctl |= E1000_RCTL_UPE;
4202 		vmolr |= E1000_VMOLR_ROPE;
4203 	}
4204 
4205 	/* enable VLAN filtering by default */
4206 	rctl |= E1000_RCTL_VFE;
4207 
4208 	/* disable VLAN filtering for modes that require it */
4209 	if ((netdev->flags & IFF_PROMISC) ||
4210 	    (netdev->features & NETIF_F_RXALL)) {
4211 		/* if we fail to set all rules then just clear VFE */
4212 		if (igb_vlan_promisc_enable(adapter))
4213 			rctl &= ~E1000_RCTL_VFE;
4214 	} else {
4215 		igb_vlan_promisc_disable(adapter);
4216 	}
4217 
4218 	/* update state of unicast, multicast, and VLAN filtering modes */
4219 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4220 				     E1000_RCTL_VFE);
4221 	wr32(E1000_RCTL, rctl);
4222 
4223 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4224 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4225 	 * we will have issues with VLAN tag stripping not being done for frames
4226 	 * that are only arriving because we are the default pool
4227 	 */
4228 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4229 		return;
4230 
4231 	/* set UTA to appropriate mode */
4232 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4233 
4234 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4235 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4236 
4237 	/* enable Rx jumbo frames, no need for restriction */
4238 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4239 	vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4240 
4241 	wr32(E1000_VMOLR(vfn), vmolr);
4242 	wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4243 
4244 	igb_restore_vf_multicasts(adapter);
4245 }
4246 
4247 static void igb_check_wvbr(struct igb_adapter *adapter)
4248 {
4249 	struct e1000_hw *hw = &adapter->hw;
4250 	u32 wvbr = 0;
4251 
4252 	switch (hw->mac.type) {
4253 	case e1000_82576:
4254 	case e1000_i350:
4255 		wvbr = rd32(E1000_WVBR);
4256 		if (!wvbr)
4257 			return;
4258 		break;
4259 	default:
4260 		break;
4261 	}
4262 
4263 	adapter->wvbr |= wvbr;
4264 }
4265 
4266 #define IGB_STAGGERED_QUEUE_OFFSET 8
4267 
4268 static void igb_spoof_check(struct igb_adapter *adapter)
4269 {
4270 	int j;
4271 
4272 	if (!adapter->wvbr)
4273 		return;
4274 
4275 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4276 		if (adapter->wvbr & (1 << j) ||
4277 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4278 			dev_warn(&adapter->pdev->dev,
4279 				"Spoof event(s) detected on VF %d\n", j);
4280 			adapter->wvbr &=
4281 				~((1 << j) |
4282 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4283 		}
4284 	}
4285 }
4286 
4287 /* Need to wait a few seconds after link up to get diagnostic information from
4288  * the phy
4289  */
4290 static void igb_update_phy_info(unsigned long data)
4291 {
4292 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4293 	igb_get_phy_info(&adapter->hw);
4294 }
4295 
4296 /**
4297  *  igb_has_link - check shared code for link and determine up/down
4298  *  @adapter: pointer to driver private info
4299  **/
4300 bool igb_has_link(struct igb_adapter *adapter)
4301 {
4302 	struct e1000_hw *hw = &adapter->hw;
4303 	bool link_active = false;
4304 
4305 	/* get_link_status is set on LSC (link status) interrupt or
4306 	 * rx sequence error interrupt.  get_link_status will stay
4307 	 * false until the e1000_check_for_link establishes link
4308 	 * for copper adapters ONLY
4309 	 */
4310 	switch (hw->phy.media_type) {
4311 	case e1000_media_type_copper:
4312 		if (!hw->mac.get_link_status)
4313 			return true;
4314 	case e1000_media_type_internal_serdes:
4315 		hw->mac.ops.check_for_link(hw);
4316 		link_active = !hw->mac.get_link_status;
4317 		break;
4318 	default:
4319 	case e1000_media_type_unknown:
4320 		break;
4321 	}
4322 
4323 	if (((hw->mac.type == e1000_i210) ||
4324 	     (hw->mac.type == e1000_i211)) &&
4325 	     (hw->phy.id == I210_I_PHY_ID)) {
4326 		if (!netif_carrier_ok(adapter->netdev)) {
4327 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4328 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4329 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4330 			adapter->link_check_timeout = jiffies;
4331 		}
4332 	}
4333 
4334 	return link_active;
4335 }
4336 
4337 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4338 {
4339 	bool ret = false;
4340 	u32 ctrl_ext, thstat;
4341 
4342 	/* check for thermal sensor event on i350 copper only */
4343 	if (hw->mac.type == e1000_i350) {
4344 		thstat = rd32(E1000_THSTAT);
4345 		ctrl_ext = rd32(E1000_CTRL_EXT);
4346 
4347 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4348 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4349 			ret = !!(thstat & event);
4350 	}
4351 
4352 	return ret;
4353 }
4354 
4355 /**
4356  *  igb_check_lvmmc - check for malformed packets received
4357  *  and indicated in LVMMC register
4358  *  @adapter: pointer to adapter
4359  **/
4360 static void igb_check_lvmmc(struct igb_adapter *adapter)
4361 {
4362 	struct e1000_hw *hw = &adapter->hw;
4363 	u32 lvmmc;
4364 
4365 	lvmmc = rd32(E1000_LVMMC);
4366 	if (lvmmc) {
4367 		if (unlikely(net_ratelimit())) {
4368 			netdev_warn(adapter->netdev,
4369 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4370 				    lvmmc);
4371 		}
4372 	}
4373 }
4374 
4375 /**
4376  *  igb_watchdog - Timer Call-back
4377  *  @data: pointer to adapter cast into an unsigned long
4378  **/
4379 static void igb_watchdog(unsigned long data)
4380 {
4381 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4382 	/* Do the rest outside of interrupt context */
4383 	schedule_work(&adapter->watchdog_task);
4384 }
4385 
4386 static void igb_watchdog_task(struct work_struct *work)
4387 {
4388 	struct igb_adapter *adapter = container_of(work,
4389 						   struct igb_adapter,
4390 						   watchdog_task);
4391 	struct e1000_hw *hw = &adapter->hw;
4392 	struct e1000_phy_info *phy = &hw->phy;
4393 	struct net_device *netdev = adapter->netdev;
4394 	u32 link;
4395 	int i;
4396 	u32 connsw;
4397 	u16 phy_data, retry_count = 20;
4398 
4399 	link = igb_has_link(adapter);
4400 
4401 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4402 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4403 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4404 		else
4405 			link = false;
4406 	}
4407 
4408 	/* Force link down if we have fiber to swap to */
4409 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4410 		if (hw->phy.media_type == e1000_media_type_copper) {
4411 			connsw = rd32(E1000_CONNSW);
4412 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4413 				link = 0;
4414 		}
4415 	}
4416 	if (link) {
4417 		/* Perform a reset if the media type changed. */
4418 		if (hw->dev_spec._82575.media_changed) {
4419 			hw->dev_spec._82575.media_changed = false;
4420 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4421 			igb_reset(adapter);
4422 		}
4423 		/* Cancel scheduled suspend requests. */
4424 		pm_runtime_resume(netdev->dev.parent);
4425 
4426 		if (!netif_carrier_ok(netdev)) {
4427 			u32 ctrl;
4428 
4429 			hw->mac.ops.get_speed_and_duplex(hw,
4430 							 &adapter->link_speed,
4431 							 &adapter->link_duplex);
4432 
4433 			ctrl = rd32(E1000_CTRL);
4434 			/* Links status message must follow this format */
4435 			netdev_info(netdev,
4436 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4437 			       netdev->name,
4438 			       adapter->link_speed,
4439 			       adapter->link_duplex == FULL_DUPLEX ?
4440 			       "Full" : "Half",
4441 			       (ctrl & E1000_CTRL_TFCE) &&
4442 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4443 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4444 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4445 
4446 			/* disable EEE if enabled */
4447 			if ((adapter->flags & IGB_FLAG_EEE) &&
4448 				(adapter->link_duplex == HALF_DUPLEX)) {
4449 				dev_info(&adapter->pdev->dev,
4450 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4451 				adapter->hw.dev_spec._82575.eee_disable = true;
4452 				adapter->flags &= ~IGB_FLAG_EEE;
4453 			}
4454 
4455 			/* check if SmartSpeed worked */
4456 			igb_check_downshift(hw);
4457 			if (phy->speed_downgraded)
4458 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4459 
4460 			/* check for thermal sensor event */
4461 			if (igb_thermal_sensor_event(hw,
4462 			    E1000_THSTAT_LINK_THROTTLE))
4463 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4464 
4465 			/* adjust timeout factor according to speed/duplex */
4466 			adapter->tx_timeout_factor = 1;
4467 			switch (adapter->link_speed) {
4468 			case SPEED_10:
4469 				adapter->tx_timeout_factor = 14;
4470 				break;
4471 			case SPEED_100:
4472 				/* maybe add some timeout factor ? */
4473 				break;
4474 			}
4475 
4476 			if (adapter->link_speed != SPEED_1000)
4477 				goto no_wait;
4478 
4479 			/* wait for Remote receiver status OK */
4480 retry_read_status:
4481 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4482 					      &phy_data)) {
4483 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4484 				    retry_count) {
4485 					msleep(100);
4486 					retry_count--;
4487 					goto retry_read_status;
4488 				} else if (!retry_count) {
4489 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4490 				}
4491 			} else {
4492 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4493 			}
4494 no_wait:
4495 			netif_carrier_on(netdev);
4496 
4497 			igb_ping_all_vfs(adapter);
4498 			igb_check_vf_rate_limit(adapter);
4499 
4500 			/* link state has changed, schedule phy info update */
4501 			if (!test_bit(__IGB_DOWN, &adapter->state))
4502 				mod_timer(&adapter->phy_info_timer,
4503 					  round_jiffies(jiffies + 2 * HZ));
4504 		}
4505 	} else {
4506 		if (netif_carrier_ok(netdev)) {
4507 			adapter->link_speed = 0;
4508 			adapter->link_duplex = 0;
4509 
4510 			/* check for thermal sensor event */
4511 			if (igb_thermal_sensor_event(hw,
4512 			    E1000_THSTAT_PWR_DOWN)) {
4513 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4514 			}
4515 
4516 			/* Links status message must follow this format */
4517 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4518 			       netdev->name);
4519 			netif_carrier_off(netdev);
4520 
4521 			igb_ping_all_vfs(adapter);
4522 
4523 			/* link state has changed, schedule phy info update */
4524 			if (!test_bit(__IGB_DOWN, &adapter->state))
4525 				mod_timer(&adapter->phy_info_timer,
4526 					  round_jiffies(jiffies + 2 * HZ));
4527 
4528 			/* link is down, time to check for alternate media */
4529 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4530 				igb_check_swap_media(adapter);
4531 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4532 					schedule_work(&adapter->reset_task);
4533 					/* return immediately */
4534 					return;
4535 				}
4536 			}
4537 			pm_schedule_suspend(netdev->dev.parent,
4538 					    MSEC_PER_SEC * 5);
4539 
4540 		/* also check for alternate media here */
4541 		} else if (!netif_carrier_ok(netdev) &&
4542 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4543 			igb_check_swap_media(adapter);
4544 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4545 				schedule_work(&adapter->reset_task);
4546 				/* return immediately */
4547 				return;
4548 			}
4549 		}
4550 	}
4551 
4552 	spin_lock(&adapter->stats64_lock);
4553 	igb_update_stats(adapter, &adapter->stats64);
4554 	spin_unlock(&adapter->stats64_lock);
4555 
4556 	for (i = 0; i < adapter->num_tx_queues; i++) {
4557 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4558 		if (!netif_carrier_ok(netdev)) {
4559 			/* We've lost link, so the controller stops DMA,
4560 			 * but we've got queued Tx work that's never going
4561 			 * to get done, so reset controller to flush Tx.
4562 			 * (Do the reset outside of interrupt context).
4563 			 */
4564 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4565 				adapter->tx_timeout_count++;
4566 				schedule_work(&adapter->reset_task);
4567 				/* return immediately since reset is imminent */
4568 				return;
4569 			}
4570 		}
4571 
4572 		/* Force detection of hung controller every watchdog period */
4573 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4574 	}
4575 
4576 	/* Cause software interrupt to ensure Rx ring is cleaned */
4577 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4578 		u32 eics = 0;
4579 
4580 		for (i = 0; i < adapter->num_q_vectors; i++)
4581 			eics |= adapter->q_vector[i]->eims_value;
4582 		wr32(E1000_EICS, eics);
4583 	} else {
4584 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4585 	}
4586 
4587 	igb_spoof_check(adapter);
4588 	igb_ptp_rx_hang(adapter);
4589 
4590 	/* Check LVMMC register on i350/i354 only */
4591 	if ((adapter->hw.mac.type == e1000_i350) ||
4592 	    (adapter->hw.mac.type == e1000_i354))
4593 		igb_check_lvmmc(adapter);
4594 
4595 	/* Reset the timer */
4596 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4597 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4598 			mod_timer(&adapter->watchdog_timer,
4599 				  round_jiffies(jiffies +  HZ));
4600 		else
4601 			mod_timer(&adapter->watchdog_timer,
4602 				  round_jiffies(jiffies + 2 * HZ));
4603 	}
4604 }
4605 
4606 enum latency_range {
4607 	lowest_latency = 0,
4608 	low_latency = 1,
4609 	bulk_latency = 2,
4610 	latency_invalid = 255
4611 };
4612 
4613 /**
4614  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4615  *  @q_vector: pointer to q_vector
4616  *
4617  *  Stores a new ITR value based on strictly on packet size.  This
4618  *  algorithm is less sophisticated than that used in igb_update_itr,
4619  *  due to the difficulty of synchronizing statistics across multiple
4620  *  receive rings.  The divisors and thresholds used by this function
4621  *  were determined based on theoretical maximum wire speed and testing
4622  *  data, in order to minimize response time while increasing bulk
4623  *  throughput.
4624  *  This functionality is controlled by ethtool's coalescing settings.
4625  *  NOTE:  This function is called only when operating in a multiqueue
4626  *         receive environment.
4627  **/
4628 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4629 {
4630 	int new_val = q_vector->itr_val;
4631 	int avg_wire_size = 0;
4632 	struct igb_adapter *adapter = q_vector->adapter;
4633 	unsigned int packets;
4634 
4635 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4636 	 * ints/sec - ITR timer value of 120 ticks.
4637 	 */
4638 	if (adapter->link_speed != SPEED_1000) {
4639 		new_val = IGB_4K_ITR;
4640 		goto set_itr_val;
4641 	}
4642 
4643 	packets = q_vector->rx.total_packets;
4644 	if (packets)
4645 		avg_wire_size = q_vector->rx.total_bytes / packets;
4646 
4647 	packets = q_vector->tx.total_packets;
4648 	if (packets)
4649 		avg_wire_size = max_t(u32, avg_wire_size,
4650 				      q_vector->tx.total_bytes / packets);
4651 
4652 	/* if avg_wire_size isn't set no work was done */
4653 	if (!avg_wire_size)
4654 		goto clear_counts;
4655 
4656 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4657 	avg_wire_size += 24;
4658 
4659 	/* Don't starve jumbo frames */
4660 	avg_wire_size = min(avg_wire_size, 3000);
4661 
4662 	/* Give a little boost to mid-size frames */
4663 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4664 		new_val = avg_wire_size / 3;
4665 	else
4666 		new_val = avg_wire_size / 2;
4667 
4668 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4669 	if (new_val < IGB_20K_ITR &&
4670 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4671 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4672 		new_val = IGB_20K_ITR;
4673 
4674 set_itr_val:
4675 	if (new_val != q_vector->itr_val) {
4676 		q_vector->itr_val = new_val;
4677 		q_vector->set_itr = 1;
4678 	}
4679 clear_counts:
4680 	q_vector->rx.total_bytes = 0;
4681 	q_vector->rx.total_packets = 0;
4682 	q_vector->tx.total_bytes = 0;
4683 	q_vector->tx.total_packets = 0;
4684 }
4685 
4686 /**
4687  *  igb_update_itr - update the dynamic ITR value based on statistics
4688  *  @q_vector: pointer to q_vector
4689  *  @ring_container: ring info to update the itr for
4690  *
4691  *  Stores a new ITR value based on packets and byte
4692  *  counts during the last interrupt.  The advantage of per interrupt
4693  *  computation is faster updates and more accurate ITR for the current
4694  *  traffic pattern.  Constants in this function were computed
4695  *  based on theoretical maximum wire speed and thresholds were set based
4696  *  on testing data as well as attempting to minimize response time
4697  *  while increasing bulk throughput.
4698  *  This functionality is controlled by ethtool's coalescing settings.
4699  *  NOTE:  These calculations are only valid when operating in a single-
4700  *         queue environment.
4701  **/
4702 static void igb_update_itr(struct igb_q_vector *q_vector,
4703 			   struct igb_ring_container *ring_container)
4704 {
4705 	unsigned int packets = ring_container->total_packets;
4706 	unsigned int bytes = ring_container->total_bytes;
4707 	u8 itrval = ring_container->itr;
4708 
4709 	/* no packets, exit with status unchanged */
4710 	if (packets == 0)
4711 		return;
4712 
4713 	switch (itrval) {
4714 	case lowest_latency:
4715 		/* handle TSO and jumbo frames */
4716 		if (bytes/packets > 8000)
4717 			itrval = bulk_latency;
4718 		else if ((packets < 5) && (bytes > 512))
4719 			itrval = low_latency;
4720 		break;
4721 	case low_latency:  /* 50 usec aka 20000 ints/s */
4722 		if (bytes > 10000) {
4723 			/* this if handles the TSO accounting */
4724 			if (bytes/packets > 8000)
4725 				itrval = bulk_latency;
4726 			else if ((packets < 10) || ((bytes/packets) > 1200))
4727 				itrval = bulk_latency;
4728 			else if ((packets > 35))
4729 				itrval = lowest_latency;
4730 		} else if (bytes/packets > 2000) {
4731 			itrval = bulk_latency;
4732 		} else if (packets <= 2 && bytes < 512) {
4733 			itrval = lowest_latency;
4734 		}
4735 		break;
4736 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4737 		if (bytes > 25000) {
4738 			if (packets > 35)
4739 				itrval = low_latency;
4740 		} else if (bytes < 1500) {
4741 			itrval = low_latency;
4742 		}
4743 		break;
4744 	}
4745 
4746 	/* clear work counters since we have the values we need */
4747 	ring_container->total_bytes = 0;
4748 	ring_container->total_packets = 0;
4749 
4750 	/* write updated itr to ring container */
4751 	ring_container->itr = itrval;
4752 }
4753 
4754 static void igb_set_itr(struct igb_q_vector *q_vector)
4755 {
4756 	struct igb_adapter *adapter = q_vector->adapter;
4757 	u32 new_itr = q_vector->itr_val;
4758 	u8 current_itr = 0;
4759 
4760 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4761 	if (adapter->link_speed != SPEED_1000) {
4762 		current_itr = 0;
4763 		new_itr = IGB_4K_ITR;
4764 		goto set_itr_now;
4765 	}
4766 
4767 	igb_update_itr(q_vector, &q_vector->tx);
4768 	igb_update_itr(q_vector, &q_vector->rx);
4769 
4770 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4771 
4772 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4773 	if (current_itr == lowest_latency &&
4774 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4775 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4776 		current_itr = low_latency;
4777 
4778 	switch (current_itr) {
4779 	/* counts and packets in update_itr are dependent on these numbers */
4780 	case lowest_latency:
4781 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4782 		break;
4783 	case low_latency:
4784 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4785 		break;
4786 	case bulk_latency:
4787 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4788 		break;
4789 	default:
4790 		break;
4791 	}
4792 
4793 set_itr_now:
4794 	if (new_itr != q_vector->itr_val) {
4795 		/* this attempts to bias the interrupt rate towards Bulk
4796 		 * by adding intermediate steps when interrupt rate is
4797 		 * increasing
4798 		 */
4799 		new_itr = new_itr > q_vector->itr_val ?
4800 			  max((new_itr * q_vector->itr_val) /
4801 			  (new_itr + (q_vector->itr_val >> 2)),
4802 			  new_itr) : new_itr;
4803 		/* Don't write the value here; it resets the adapter's
4804 		 * internal timer, and causes us to delay far longer than
4805 		 * we should between interrupts.  Instead, we write the ITR
4806 		 * value at the beginning of the next interrupt so the timing
4807 		 * ends up being correct.
4808 		 */
4809 		q_vector->itr_val = new_itr;
4810 		q_vector->set_itr = 1;
4811 	}
4812 }
4813 
4814 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4815 			    u32 type_tucmd, u32 mss_l4len_idx)
4816 {
4817 	struct e1000_adv_tx_context_desc *context_desc;
4818 	u16 i = tx_ring->next_to_use;
4819 
4820 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4821 
4822 	i++;
4823 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4824 
4825 	/* set bits to identify this as an advanced context descriptor */
4826 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4827 
4828 	/* For 82575, context index must be unique per ring. */
4829 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4830 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4831 
4832 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4833 	context_desc->seqnum_seed	= 0;
4834 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4835 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4836 }
4837 
4838 static int igb_tso(struct igb_ring *tx_ring,
4839 		   struct igb_tx_buffer *first,
4840 		   u8 *hdr_len)
4841 {
4842 	struct sk_buff *skb = first->skb;
4843 	u32 vlan_macip_lens, type_tucmd;
4844 	u32 mss_l4len_idx, l4len;
4845 	int err;
4846 
4847 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4848 		return 0;
4849 
4850 	if (!skb_is_gso(skb))
4851 		return 0;
4852 
4853 	err = skb_cow_head(skb, 0);
4854 	if (err < 0)
4855 		return err;
4856 
4857 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4858 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4859 
4860 	if (first->protocol == htons(ETH_P_IP)) {
4861 		struct iphdr *iph = ip_hdr(skb);
4862 		iph->tot_len = 0;
4863 		iph->check = 0;
4864 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4865 							 iph->daddr, 0,
4866 							 IPPROTO_TCP,
4867 							 0);
4868 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4869 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4870 				   IGB_TX_FLAGS_CSUM |
4871 				   IGB_TX_FLAGS_IPV4;
4872 	} else if (skb_is_gso_v6(skb)) {
4873 		ipv6_hdr(skb)->payload_len = 0;
4874 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4875 						       &ipv6_hdr(skb)->daddr,
4876 						       0, IPPROTO_TCP, 0);
4877 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4878 				   IGB_TX_FLAGS_CSUM;
4879 	}
4880 
4881 	/* compute header lengths */
4882 	l4len = tcp_hdrlen(skb);
4883 	*hdr_len = skb_transport_offset(skb) + l4len;
4884 
4885 	/* update gso size and bytecount with header size */
4886 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4887 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4888 
4889 	/* MSS L4LEN IDX */
4890 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4891 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4892 
4893 	/* VLAN MACLEN IPLEN */
4894 	vlan_macip_lens = skb_network_header_len(skb);
4895 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4896 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4897 
4898 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4899 
4900 	return 1;
4901 }
4902 
4903 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4904 {
4905 	unsigned int offset = 0;
4906 
4907 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4908 
4909 	return offset == skb_checksum_start_offset(skb);
4910 }
4911 
4912 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4913 {
4914 	struct sk_buff *skb = first->skb;
4915 	u32 vlan_macip_lens = 0;
4916 	u32 type_tucmd = 0;
4917 
4918 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4919 csum_failed:
4920 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4921 			return;
4922 		goto no_csum;
4923 	}
4924 
4925 	switch (skb->csum_offset) {
4926 	case offsetof(struct tcphdr, check):
4927 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4928 		/* fall through */
4929 	case offsetof(struct udphdr, check):
4930 		break;
4931 	case offsetof(struct sctphdr, checksum):
4932 		/* validate that this is actually an SCTP request */
4933 		if (((first->protocol == htons(ETH_P_IP)) &&
4934 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4935 		    ((first->protocol == htons(ETH_P_IPV6)) &&
4936 		     igb_ipv6_csum_is_sctp(skb))) {
4937 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4938 			break;
4939 		}
4940 	default:
4941 		skb_checksum_help(skb);
4942 		goto csum_failed;
4943 	}
4944 
4945 	/* update TX checksum flag */
4946 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
4947 	vlan_macip_lens = skb_checksum_start_offset(skb) -
4948 			  skb_network_offset(skb);
4949 no_csum:
4950 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4951 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4952 
4953 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
4954 }
4955 
4956 #define IGB_SET_FLAG(_input, _flag, _result) \
4957 	((_flag <= _result) ? \
4958 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4959 	 ((u32)(_input & _flag) / (_flag / _result)))
4960 
4961 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4962 {
4963 	/* set type for advanced descriptor with frame checksum insertion */
4964 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4965 		       E1000_ADVTXD_DCMD_DEXT |
4966 		       E1000_ADVTXD_DCMD_IFCS;
4967 
4968 	/* set HW vlan bit if vlan is present */
4969 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4970 				 (E1000_ADVTXD_DCMD_VLE));
4971 
4972 	/* set segmentation bits for TSO */
4973 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4974 				 (E1000_ADVTXD_DCMD_TSE));
4975 
4976 	/* set timestamp bit if present */
4977 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4978 				 (E1000_ADVTXD_MAC_TSTAMP));
4979 
4980 	/* insert frame checksum */
4981 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4982 
4983 	return cmd_type;
4984 }
4985 
4986 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4987 				 union e1000_adv_tx_desc *tx_desc,
4988 				 u32 tx_flags, unsigned int paylen)
4989 {
4990 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4991 
4992 	/* 82575 requires a unique index per ring */
4993 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4994 		olinfo_status |= tx_ring->reg_idx << 4;
4995 
4996 	/* insert L4 checksum */
4997 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4998 				      IGB_TX_FLAGS_CSUM,
4999 				      (E1000_TXD_POPTS_TXSM << 8));
5000 
5001 	/* insert IPv4 checksum */
5002 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5003 				      IGB_TX_FLAGS_IPV4,
5004 				      (E1000_TXD_POPTS_IXSM << 8));
5005 
5006 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5007 }
5008 
5009 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5010 {
5011 	struct net_device *netdev = tx_ring->netdev;
5012 
5013 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5014 
5015 	/* Herbert's original patch had:
5016 	 *  smp_mb__after_netif_stop_queue();
5017 	 * but since that doesn't exist yet, just open code it.
5018 	 */
5019 	smp_mb();
5020 
5021 	/* We need to check again in a case another CPU has just
5022 	 * made room available.
5023 	 */
5024 	if (igb_desc_unused(tx_ring) < size)
5025 		return -EBUSY;
5026 
5027 	/* A reprieve! */
5028 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5029 
5030 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5031 	tx_ring->tx_stats.restart_queue2++;
5032 	u64_stats_update_end(&tx_ring->tx_syncp2);
5033 
5034 	return 0;
5035 }
5036 
5037 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5038 {
5039 	if (igb_desc_unused(tx_ring) >= size)
5040 		return 0;
5041 	return __igb_maybe_stop_tx(tx_ring, size);
5042 }
5043 
5044 static void igb_tx_map(struct igb_ring *tx_ring,
5045 		       struct igb_tx_buffer *first,
5046 		       const u8 hdr_len)
5047 {
5048 	struct sk_buff *skb = first->skb;
5049 	struct igb_tx_buffer *tx_buffer;
5050 	union e1000_adv_tx_desc *tx_desc;
5051 	struct skb_frag_struct *frag;
5052 	dma_addr_t dma;
5053 	unsigned int data_len, size;
5054 	u32 tx_flags = first->tx_flags;
5055 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5056 	u16 i = tx_ring->next_to_use;
5057 
5058 	tx_desc = IGB_TX_DESC(tx_ring, i);
5059 
5060 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5061 
5062 	size = skb_headlen(skb);
5063 	data_len = skb->data_len;
5064 
5065 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5066 
5067 	tx_buffer = first;
5068 
5069 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5070 		if (dma_mapping_error(tx_ring->dev, dma))
5071 			goto dma_error;
5072 
5073 		/* record length, and DMA address */
5074 		dma_unmap_len_set(tx_buffer, len, size);
5075 		dma_unmap_addr_set(tx_buffer, dma, dma);
5076 
5077 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5078 
5079 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5080 			tx_desc->read.cmd_type_len =
5081 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5082 
5083 			i++;
5084 			tx_desc++;
5085 			if (i == tx_ring->count) {
5086 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5087 				i = 0;
5088 			}
5089 			tx_desc->read.olinfo_status = 0;
5090 
5091 			dma += IGB_MAX_DATA_PER_TXD;
5092 			size -= IGB_MAX_DATA_PER_TXD;
5093 
5094 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5095 		}
5096 
5097 		if (likely(!data_len))
5098 			break;
5099 
5100 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5101 
5102 		i++;
5103 		tx_desc++;
5104 		if (i == tx_ring->count) {
5105 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5106 			i = 0;
5107 		}
5108 		tx_desc->read.olinfo_status = 0;
5109 
5110 		size = skb_frag_size(frag);
5111 		data_len -= size;
5112 
5113 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5114 				       size, DMA_TO_DEVICE);
5115 
5116 		tx_buffer = &tx_ring->tx_buffer_info[i];
5117 	}
5118 
5119 	/* write last descriptor with RS and EOP bits */
5120 	cmd_type |= size | IGB_TXD_DCMD;
5121 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5122 
5123 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5124 
5125 	/* set the timestamp */
5126 	first->time_stamp = jiffies;
5127 
5128 	/* Force memory writes to complete before letting h/w know there
5129 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
5130 	 * memory model archs, such as IA-64).
5131 	 *
5132 	 * We also need this memory barrier to make certain all of the
5133 	 * status bits have been updated before next_to_watch is written.
5134 	 */
5135 	wmb();
5136 
5137 	/* set next_to_watch value indicating a packet is present */
5138 	first->next_to_watch = tx_desc;
5139 
5140 	i++;
5141 	if (i == tx_ring->count)
5142 		i = 0;
5143 
5144 	tx_ring->next_to_use = i;
5145 
5146 	/* Make sure there is space in the ring for the next send. */
5147 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5148 
5149 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5150 		writel(i, tx_ring->tail);
5151 
5152 		/* we need this if more than one processor can write to our tail
5153 		 * at a time, it synchronizes IO on IA64/Altix systems
5154 		 */
5155 		mmiowb();
5156 	}
5157 	return;
5158 
5159 dma_error:
5160 	dev_err(tx_ring->dev, "TX DMA map failed\n");
5161 
5162 	/* clear dma mappings for failed tx_buffer_info map */
5163 	for (;;) {
5164 		tx_buffer = &tx_ring->tx_buffer_info[i];
5165 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5166 		if (tx_buffer == first)
5167 			break;
5168 		if (i == 0)
5169 			i = tx_ring->count;
5170 		i--;
5171 	}
5172 
5173 	tx_ring->next_to_use = i;
5174 }
5175 
5176 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5177 				struct igb_ring *tx_ring)
5178 {
5179 	struct igb_tx_buffer *first;
5180 	int tso;
5181 	u32 tx_flags = 0;
5182 	unsigned short f;
5183 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5184 	__be16 protocol = vlan_get_protocol(skb);
5185 	u8 hdr_len = 0;
5186 
5187 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5188 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5189 	 *       + 2 desc gap to keep tail from touching head,
5190 	 *       + 1 desc for context descriptor,
5191 	 * otherwise try next time
5192 	 */
5193 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5194 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5195 
5196 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5197 		/* this is a hard error */
5198 		return NETDEV_TX_BUSY;
5199 	}
5200 
5201 	/* record the location of the first descriptor for this packet */
5202 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5203 	first->skb = skb;
5204 	first->bytecount = skb->len;
5205 	first->gso_segs = 1;
5206 
5207 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5208 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5209 
5210 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5211 					   &adapter->state)) {
5212 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5213 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5214 
5215 			adapter->ptp_tx_skb = skb_get(skb);
5216 			adapter->ptp_tx_start = jiffies;
5217 			if (adapter->hw.mac.type == e1000_82576)
5218 				schedule_work(&adapter->ptp_tx_work);
5219 		}
5220 	}
5221 
5222 	skb_tx_timestamp(skb);
5223 
5224 	if (skb_vlan_tag_present(skb)) {
5225 		tx_flags |= IGB_TX_FLAGS_VLAN;
5226 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5227 	}
5228 
5229 	/* record initial flags and protocol */
5230 	first->tx_flags = tx_flags;
5231 	first->protocol = protocol;
5232 
5233 	tso = igb_tso(tx_ring, first, &hdr_len);
5234 	if (tso < 0)
5235 		goto out_drop;
5236 	else if (!tso)
5237 		igb_tx_csum(tx_ring, first);
5238 
5239 	igb_tx_map(tx_ring, first, hdr_len);
5240 
5241 	return NETDEV_TX_OK;
5242 
5243 out_drop:
5244 	igb_unmap_and_free_tx_resource(tx_ring, first);
5245 
5246 	return NETDEV_TX_OK;
5247 }
5248 
5249 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5250 						    struct sk_buff *skb)
5251 {
5252 	unsigned int r_idx = skb->queue_mapping;
5253 
5254 	if (r_idx >= adapter->num_tx_queues)
5255 		r_idx = r_idx % adapter->num_tx_queues;
5256 
5257 	return adapter->tx_ring[r_idx];
5258 }
5259 
5260 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5261 				  struct net_device *netdev)
5262 {
5263 	struct igb_adapter *adapter = netdev_priv(netdev);
5264 
5265 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5266 	 * in order to meet this minimum size requirement.
5267 	 */
5268 	if (skb_put_padto(skb, 17))
5269 		return NETDEV_TX_OK;
5270 
5271 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5272 }
5273 
5274 /**
5275  *  igb_tx_timeout - Respond to a Tx Hang
5276  *  @netdev: network interface device structure
5277  **/
5278 static void igb_tx_timeout(struct net_device *netdev)
5279 {
5280 	struct igb_adapter *adapter = netdev_priv(netdev);
5281 	struct e1000_hw *hw = &adapter->hw;
5282 
5283 	/* Do the reset outside of interrupt context */
5284 	adapter->tx_timeout_count++;
5285 
5286 	if (hw->mac.type >= e1000_82580)
5287 		hw->dev_spec._82575.global_device_reset = true;
5288 
5289 	schedule_work(&adapter->reset_task);
5290 	wr32(E1000_EICS,
5291 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5292 }
5293 
5294 static void igb_reset_task(struct work_struct *work)
5295 {
5296 	struct igb_adapter *adapter;
5297 	adapter = container_of(work, struct igb_adapter, reset_task);
5298 
5299 	igb_dump(adapter);
5300 	netdev_err(adapter->netdev, "Reset adapter\n");
5301 	igb_reinit_locked(adapter);
5302 }
5303 
5304 /**
5305  *  igb_get_stats64 - Get System Network Statistics
5306  *  @netdev: network interface device structure
5307  *  @stats: rtnl_link_stats64 pointer
5308  **/
5309 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5310 						struct rtnl_link_stats64 *stats)
5311 {
5312 	struct igb_adapter *adapter = netdev_priv(netdev);
5313 
5314 	spin_lock(&adapter->stats64_lock);
5315 	igb_update_stats(adapter, &adapter->stats64);
5316 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5317 	spin_unlock(&adapter->stats64_lock);
5318 
5319 	return stats;
5320 }
5321 
5322 /**
5323  *  igb_change_mtu - Change the Maximum Transfer Unit
5324  *  @netdev: network interface device structure
5325  *  @new_mtu: new value for maximum frame size
5326  *
5327  *  Returns 0 on success, negative on failure
5328  **/
5329 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5330 {
5331 	struct igb_adapter *adapter = netdev_priv(netdev);
5332 	struct pci_dev *pdev = adapter->pdev;
5333 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5334 
5335 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5336 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5337 		return -EINVAL;
5338 	}
5339 
5340 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5341 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5342 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5343 		return -EINVAL;
5344 	}
5345 
5346 	/* adjust max frame to be at least the size of a standard frame */
5347 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5348 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5349 
5350 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5351 		usleep_range(1000, 2000);
5352 
5353 	/* igb_down has a dependency on max_frame_size */
5354 	adapter->max_frame_size = max_frame;
5355 
5356 	if (netif_running(netdev))
5357 		igb_down(adapter);
5358 
5359 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5360 		 netdev->mtu, new_mtu);
5361 	netdev->mtu = new_mtu;
5362 
5363 	if (netif_running(netdev))
5364 		igb_up(adapter);
5365 	else
5366 		igb_reset(adapter);
5367 
5368 	clear_bit(__IGB_RESETTING, &adapter->state);
5369 
5370 	return 0;
5371 }
5372 
5373 /**
5374  *  igb_update_stats - Update the board statistics counters
5375  *  @adapter: board private structure
5376  **/
5377 void igb_update_stats(struct igb_adapter *adapter,
5378 		      struct rtnl_link_stats64 *net_stats)
5379 {
5380 	struct e1000_hw *hw = &adapter->hw;
5381 	struct pci_dev *pdev = adapter->pdev;
5382 	u32 reg, mpc;
5383 	int i;
5384 	u64 bytes, packets;
5385 	unsigned int start;
5386 	u64 _bytes, _packets;
5387 
5388 	/* Prevent stats update while adapter is being reset, or if the pci
5389 	 * connection is down.
5390 	 */
5391 	if (adapter->link_speed == 0)
5392 		return;
5393 	if (pci_channel_offline(pdev))
5394 		return;
5395 
5396 	bytes = 0;
5397 	packets = 0;
5398 
5399 	rcu_read_lock();
5400 	for (i = 0; i < adapter->num_rx_queues; i++) {
5401 		struct igb_ring *ring = adapter->rx_ring[i];
5402 		u32 rqdpc = rd32(E1000_RQDPC(i));
5403 		if (hw->mac.type >= e1000_i210)
5404 			wr32(E1000_RQDPC(i), 0);
5405 
5406 		if (rqdpc) {
5407 			ring->rx_stats.drops += rqdpc;
5408 			net_stats->rx_fifo_errors += rqdpc;
5409 		}
5410 
5411 		do {
5412 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5413 			_bytes = ring->rx_stats.bytes;
5414 			_packets = ring->rx_stats.packets;
5415 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5416 		bytes += _bytes;
5417 		packets += _packets;
5418 	}
5419 
5420 	net_stats->rx_bytes = bytes;
5421 	net_stats->rx_packets = packets;
5422 
5423 	bytes = 0;
5424 	packets = 0;
5425 	for (i = 0; i < adapter->num_tx_queues; i++) {
5426 		struct igb_ring *ring = adapter->tx_ring[i];
5427 		do {
5428 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5429 			_bytes = ring->tx_stats.bytes;
5430 			_packets = ring->tx_stats.packets;
5431 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5432 		bytes += _bytes;
5433 		packets += _packets;
5434 	}
5435 	net_stats->tx_bytes = bytes;
5436 	net_stats->tx_packets = packets;
5437 	rcu_read_unlock();
5438 
5439 	/* read stats registers */
5440 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5441 	adapter->stats.gprc += rd32(E1000_GPRC);
5442 	adapter->stats.gorc += rd32(E1000_GORCL);
5443 	rd32(E1000_GORCH); /* clear GORCL */
5444 	adapter->stats.bprc += rd32(E1000_BPRC);
5445 	adapter->stats.mprc += rd32(E1000_MPRC);
5446 	adapter->stats.roc += rd32(E1000_ROC);
5447 
5448 	adapter->stats.prc64 += rd32(E1000_PRC64);
5449 	adapter->stats.prc127 += rd32(E1000_PRC127);
5450 	adapter->stats.prc255 += rd32(E1000_PRC255);
5451 	adapter->stats.prc511 += rd32(E1000_PRC511);
5452 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5453 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5454 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5455 	adapter->stats.sec += rd32(E1000_SEC);
5456 
5457 	mpc = rd32(E1000_MPC);
5458 	adapter->stats.mpc += mpc;
5459 	net_stats->rx_fifo_errors += mpc;
5460 	adapter->stats.scc += rd32(E1000_SCC);
5461 	adapter->stats.ecol += rd32(E1000_ECOL);
5462 	adapter->stats.mcc += rd32(E1000_MCC);
5463 	adapter->stats.latecol += rd32(E1000_LATECOL);
5464 	adapter->stats.dc += rd32(E1000_DC);
5465 	adapter->stats.rlec += rd32(E1000_RLEC);
5466 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5467 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5468 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5469 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5470 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5471 	adapter->stats.gptc += rd32(E1000_GPTC);
5472 	adapter->stats.gotc += rd32(E1000_GOTCL);
5473 	rd32(E1000_GOTCH); /* clear GOTCL */
5474 	adapter->stats.rnbc += rd32(E1000_RNBC);
5475 	adapter->stats.ruc += rd32(E1000_RUC);
5476 	adapter->stats.rfc += rd32(E1000_RFC);
5477 	adapter->stats.rjc += rd32(E1000_RJC);
5478 	adapter->stats.tor += rd32(E1000_TORH);
5479 	adapter->stats.tot += rd32(E1000_TOTH);
5480 	adapter->stats.tpr += rd32(E1000_TPR);
5481 
5482 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5483 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5484 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5485 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5486 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5487 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5488 
5489 	adapter->stats.mptc += rd32(E1000_MPTC);
5490 	adapter->stats.bptc += rd32(E1000_BPTC);
5491 
5492 	adapter->stats.tpt += rd32(E1000_TPT);
5493 	adapter->stats.colc += rd32(E1000_COLC);
5494 
5495 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5496 	/* read internal phy specific stats */
5497 	reg = rd32(E1000_CTRL_EXT);
5498 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5499 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5500 
5501 		/* this stat has invalid values on i210/i211 */
5502 		if ((hw->mac.type != e1000_i210) &&
5503 		    (hw->mac.type != e1000_i211))
5504 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5505 	}
5506 
5507 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5508 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5509 
5510 	adapter->stats.iac += rd32(E1000_IAC);
5511 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5512 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5513 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5514 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5515 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5516 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5517 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5518 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5519 
5520 	/* Fill out the OS statistics structure */
5521 	net_stats->multicast = adapter->stats.mprc;
5522 	net_stats->collisions = adapter->stats.colc;
5523 
5524 	/* Rx Errors */
5525 
5526 	/* RLEC on some newer hardware can be incorrect so build
5527 	 * our own version based on RUC and ROC
5528 	 */
5529 	net_stats->rx_errors = adapter->stats.rxerrc +
5530 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5531 		adapter->stats.ruc + adapter->stats.roc +
5532 		adapter->stats.cexterr;
5533 	net_stats->rx_length_errors = adapter->stats.ruc +
5534 				      adapter->stats.roc;
5535 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5536 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5537 	net_stats->rx_missed_errors = adapter->stats.mpc;
5538 
5539 	/* Tx Errors */
5540 	net_stats->tx_errors = adapter->stats.ecol +
5541 			       adapter->stats.latecol;
5542 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5543 	net_stats->tx_window_errors = adapter->stats.latecol;
5544 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5545 
5546 	/* Tx Dropped needs to be maintained elsewhere */
5547 
5548 	/* Management Stats */
5549 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5550 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5551 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5552 
5553 	/* OS2BMC Stats */
5554 	reg = rd32(E1000_MANC);
5555 	if (reg & E1000_MANC_EN_BMC2OS) {
5556 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5557 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5558 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5559 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5560 	}
5561 }
5562 
5563 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5564 {
5565 	struct e1000_hw *hw = &adapter->hw;
5566 	struct ptp_clock_event event;
5567 	struct timespec64 ts;
5568 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5569 
5570 	if (tsicr & TSINTR_SYS_WRAP) {
5571 		event.type = PTP_CLOCK_PPS;
5572 		if (adapter->ptp_caps.pps)
5573 			ptp_clock_event(adapter->ptp_clock, &event);
5574 		else
5575 			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5576 		ack |= TSINTR_SYS_WRAP;
5577 	}
5578 
5579 	if (tsicr & E1000_TSICR_TXTS) {
5580 		/* retrieve hardware timestamp */
5581 		schedule_work(&adapter->ptp_tx_work);
5582 		ack |= E1000_TSICR_TXTS;
5583 	}
5584 
5585 	if (tsicr & TSINTR_TT0) {
5586 		spin_lock(&adapter->tmreg_lock);
5587 		ts = timespec64_add(adapter->perout[0].start,
5588 				    adapter->perout[0].period);
5589 		/* u32 conversion of tv_sec is safe until y2106 */
5590 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5591 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5592 		tsauxc = rd32(E1000_TSAUXC);
5593 		tsauxc |= TSAUXC_EN_TT0;
5594 		wr32(E1000_TSAUXC, tsauxc);
5595 		adapter->perout[0].start = ts;
5596 		spin_unlock(&adapter->tmreg_lock);
5597 		ack |= TSINTR_TT0;
5598 	}
5599 
5600 	if (tsicr & TSINTR_TT1) {
5601 		spin_lock(&adapter->tmreg_lock);
5602 		ts = timespec64_add(adapter->perout[1].start,
5603 				    adapter->perout[1].period);
5604 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5605 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5606 		tsauxc = rd32(E1000_TSAUXC);
5607 		tsauxc |= TSAUXC_EN_TT1;
5608 		wr32(E1000_TSAUXC, tsauxc);
5609 		adapter->perout[1].start = ts;
5610 		spin_unlock(&adapter->tmreg_lock);
5611 		ack |= TSINTR_TT1;
5612 	}
5613 
5614 	if (tsicr & TSINTR_AUTT0) {
5615 		nsec = rd32(E1000_AUXSTMPL0);
5616 		sec  = rd32(E1000_AUXSTMPH0);
5617 		event.type = PTP_CLOCK_EXTTS;
5618 		event.index = 0;
5619 		event.timestamp = sec * 1000000000ULL + nsec;
5620 		ptp_clock_event(adapter->ptp_clock, &event);
5621 		ack |= TSINTR_AUTT0;
5622 	}
5623 
5624 	if (tsicr & TSINTR_AUTT1) {
5625 		nsec = rd32(E1000_AUXSTMPL1);
5626 		sec  = rd32(E1000_AUXSTMPH1);
5627 		event.type = PTP_CLOCK_EXTTS;
5628 		event.index = 1;
5629 		event.timestamp = sec * 1000000000ULL + nsec;
5630 		ptp_clock_event(adapter->ptp_clock, &event);
5631 		ack |= TSINTR_AUTT1;
5632 	}
5633 
5634 	/* acknowledge the interrupts */
5635 	wr32(E1000_TSICR, ack);
5636 }
5637 
5638 static irqreturn_t igb_msix_other(int irq, void *data)
5639 {
5640 	struct igb_adapter *adapter = data;
5641 	struct e1000_hw *hw = &adapter->hw;
5642 	u32 icr = rd32(E1000_ICR);
5643 	/* reading ICR causes bit 31 of EICR to be cleared */
5644 
5645 	if (icr & E1000_ICR_DRSTA)
5646 		schedule_work(&adapter->reset_task);
5647 
5648 	if (icr & E1000_ICR_DOUTSYNC) {
5649 		/* HW is reporting DMA is out of sync */
5650 		adapter->stats.doosync++;
5651 		/* The DMA Out of Sync is also indication of a spoof event
5652 		 * in IOV mode. Check the Wrong VM Behavior register to
5653 		 * see if it is really a spoof event.
5654 		 */
5655 		igb_check_wvbr(adapter);
5656 	}
5657 
5658 	/* Check for a mailbox event */
5659 	if (icr & E1000_ICR_VMMB)
5660 		igb_msg_task(adapter);
5661 
5662 	if (icr & E1000_ICR_LSC) {
5663 		hw->mac.get_link_status = 1;
5664 		/* guard against interrupt when we're going down */
5665 		if (!test_bit(__IGB_DOWN, &adapter->state))
5666 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5667 	}
5668 
5669 	if (icr & E1000_ICR_TS)
5670 		igb_tsync_interrupt(adapter);
5671 
5672 	wr32(E1000_EIMS, adapter->eims_other);
5673 
5674 	return IRQ_HANDLED;
5675 }
5676 
5677 static void igb_write_itr(struct igb_q_vector *q_vector)
5678 {
5679 	struct igb_adapter *adapter = q_vector->adapter;
5680 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5681 
5682 	if (!q_vector->set_itr)
5683 		return;
5684 
5685 	if (!itr_val)
5686 		itr_val = 0x4;
5687 
5688 	if (adapter->hw.mac.type == e1000_82575)
5689 		itr_val |= itr_val << 16;
5690 	else
5691 		itr_val |= E1000_EITR_CNT_IGNR;
5692 
5693 	writel(itr_val, q_vector->itr_register);
5694 	q_vector->set_itr = 0;
5695 }
5696 
5697 static irqreturn_t igb_msix_ring(int irq, void *data)
5698 {
5699 	struct igb_q_vector *q_vector = data;
5700 
5701 	/* Write the ITR value calculated from the previous interrupt. */
5702 	igb_write_itr(q_vector);
5703 
5704 	napi_schedule(&q_vector->napi);
5705 
5706 	return IRQ_HANDLED;
5707 }
5708 
5709 #ifdef CONFIG_IGB_DCA
5710 static void igb_update_tx_dca(struct igb_adapter *adapter,
5711 			      struct igb_ring *tx_ring,
5712 			      int cpu)
5713 {
5714 	struct e1000_hw *hw = &adapter->hw;
5715 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5716 
5717 	if (hw->mac.type != e1000_82575)
5718 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5719 
5720 	/* We can enable relaxed ordering for reads, but not writes when
5721 	 * DCA is enabled.  This is due to a known issue in some chipsets
5722 	 * which will cause the DCA tag to be cleared.
5723 	 */
5724 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5725 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5726 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5727 
5728 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5729 }
5730 
5731 static void igb_update_rx_dca(struct igb_adapter *adapter,
5732 			      struct igb_ring *rx_ring,
5733 			      int cpu)
5734 {
5735 	struct e1000_hw *hw = &adapter->hw;
5736 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5737 
5738 	if (hw->mac.type != e1000_82575)
5739 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5740 
5741 	/* We can enable relaxed ordering for reads, but not writes when
5742 	 * DCA is enabled.  This is due to a known issue in some chipsets
5743 	 * which will cause the DCA tag to be cleared.
5744 	 */
5745 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5746 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5747 
5748 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5749 }
5750 
5751 static void igb_update_dca(struct igb_q_vector *q_vector)
5752 {
5753 	struct igb_adapter *adapter = q_vector->adapter;
5754 	int cpu = get_cpu();
5755 
5756 	if (q_vector->cpu == cpu)
5757 		goto out_no_update;
5758 
5759 	if (q_vector->tx.ring)
5760 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5761 
5762 	if (q_vector->rx.ring)
5763 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5764 
5765 	q_vector->cpu = cpu;
5766 out_no_update:
5767 	put_cpu();
5768 }
5769 
5770 static void igb_setup_dca(struct igb_adapter *adapter)
5771 {
5772 	struct e1000_hw *hw = &adapter->hw;
5773 	int i;
5774 
5775 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5776 		return;
5777 
5778 	/* Always use CB2 mode, difference is masked in the CB driver. */
5779 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5780 
5781 	for (i = 0; i < adapter->num_q_vectors; i++) {
5782 		adapter->q_vector[i]->cpu = -1;
5783 		igb_update_dca(adapter->q_vector[i]);
5784 	}
5785 }
5786 
5787 static int __igb_notify_dca(struct device *dev, void *data)
5788 {
5789 	struct net_device *netdev = dev_get_drvdata(dev);
5790 	struct igb_adapter *adapter = netdev_priv(netdev);
5791 	struct pci_dev *pdev = adapter->pdev;
5792 	struct e1000_hw *hw = &adapter->hw;
5793 	unsigned long event = *(unsigned long *)data;
5794 
5795 	switch (event) {
5796 	case DCA_PROVIDER_ADD:
5797 		/* if already enabled, don't do it again */
5798 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5799 			break;
5800 		if (dca_add_requester(dev) == 0) {
5801 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5802 			dev_info(&pdev->dev, "DCA enabled\n");
5803 			igb_setup_dca(adapter);
5804 			break;
5805 		}
5806 		/* Fall Through since DCA is disabled. */
5807 	case DCA_PROVIDER_REMOVE:
5808 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5809 			/* without this a class_device is left
5810 			 * hanging around in the sysfs model
5811 			 */
5812 			dca_remove_requester(dev);
5813 			dev_info(&pdev->dev, "DCA disabled\n");
5814 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5815 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5816 		}
5817 		break;
5818 	}
5819 
5820 	return 0;
5821 }
5822 
5823 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5824 			  void *p)
5825 {
5826 	int ret_val;
5827 
5828 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5829 					 __igb_notify_dca);
5830 
5831 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5832 }
5833 #endif /* CONFIG_IGB_DCA */
5834 
5835 #ifdef CONFIG_PCI_IOV
5836 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5837 {
5838 	unsigned char mac_addr[ETH_ALEN];
5839 
5840 	eth_zero_addr(mac_addr);
5841 	igb_set_vf_mac(adapter, vf, mac_addr);
5842 
5843 	/* By default spoof check is enabled for all VFs */
5844 	adapter->vf_data[vf].spoofchk_enabled = true;
5845 
5846 	return 0;
5847 }
5848 
5849 #endif
5850 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5851 {
5852 	struct e1000_hw *hw = &adapter->hw;
5853 	u32 ping;
5854 	int i;
5855 
5856 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5857 		ping = E1000_PF_CONTROL_MSG;
5858 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5859 			ping |= E1000_VT_MSGTYPE_CTS;
5860 		igb_write_mbx(hw, &ping, 1, i);
5861 	}
5862 }
5863 
5864 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5865 {
5866 	struct e1000_hw *hw = &adapter->hw;
5867 	u32 vmolr = rd32(E1000_VMOLR(vf));
5868 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5869 
5870 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5871 			    IGB_VF_FLAG_MULTI_PROMISC);
5872 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5873 
5874 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5875 		vmolr |= E1000_VMOLR_MPME;
5876 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5877 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5878 	} else {
5879 		/* if we have hashes and we are clearing a multicast promisc
5880 		 * flag we need to write the hashes to the MTA as this step
5881 		 * was previously skipped
5882 		 */
5883 		if (vf_data->num_vf_mc_hashes > 30) {
5884 			vmolr |= E1000_VMOLR_MPME;
5885 		} else if (vf_data->num_vf_mc_hashes) {
5886 			int j;
5887 
5888 			vmolr |= E1000_VMOLR_ROMPE;
5889 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5890 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5891 		}
5892 	}
5893 
5894 	wr32(E1000_VMOLR(vf), vmolr);
5895 
5896 	/* there are flags left unprocessed, likely not supported */
5897 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5898 		return -EINVAL;
5899 
5900 	return 0;
5901 }
5902 
5903 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5904 				  u32 *msgbuf, u32 vf)
5905 {
5906 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5907 	u16 *hash_list = (u16 *)&msgbuf[1];
5908 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5909 	int i;
5910 
5911 	/* salt away the number of multicast addresses assigned
5912 	 * to this VF for later use to restore when the PF multi cast
5913 	 * list changes
5914 	 */
5915 	vf_data->num_vf_mc_hashes = n;
5916 
5917 	/* only up to 30 hash values supported */
5918 	if (n > 30)
5919 		n = 30;
5920 
5921 	/* store the hashes for later use */
5922 	for (i = 0; i < n; i++)
5923 		vf_data->vf_mc_hashes[i] = hash_list[i];
5924 
5925 	/* Flush and reset the mta with the new values */
5926 	igb_set_rx_mode(adapter->netdev);
5927 
5928 	return 0;
5929 }
5930 
5931 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5932 {
5933 	struct e1000_hw *hw = &adapter->hw;
5934 	struct vf_data_storage *vf_data;
5935 	int i, j;
5936 
5937 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5938 		u32 vmolr = rd32(E1000_VMOLR(i));
5939 
5940 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5941 
5942 		vf_data = &adapter->vf_data[i];
5943 
5944 		if ((vf_data->num_vf_mc_hashes > 30) ||
5945 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5946 			vmolr |= E1000_VMOLR_MPME;
5947 		} else if (vf_data->num_vf_mc_hashes) {
5948 			vmolr |= E1000_VMOLR_ROMPE;
5949 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5950 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5951 		}
5952 		wr32(E1000_VMOLR(i), vmolr);
5953 	}
5954 }
5955 
5956 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5957 {
5958 	struct e1000_hw *hw = &adapter->hw;
5959 	u32 pool_mask, vlvf_mask, i;
5960 
5961 	/* create mask for VF and other pools */
5962 	pool_mask = E1000_VLVF_POOLSEL_MASK;
5963 	vlvf_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5964 
5965 	/* drop PF from pool bits */
5966 	pool_mask &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT +
5967 			     adapter->vfs_allocated_count));
5968 
5969 	/* Find the vlan filter for this id */
5970 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
5971 		u32 vlvf = rd32(E1000_VLVF(i));
5972 		u32 vfta_mask, vid, vfta;
5973 
5974 		/* remove the vf from the pool */
5975 		if (!(vlvf & vlvf_mask))
5976 			continue;
5977 
5978 		/* clear out bit from VLVF */
5979 		vlvf ^= vlvf_mask;
5980 
5981 		/* if other pools are present, just remove ourselves */
5982 		if (vlvf & pool_mask)
5983 			goto update_vlvfb;
5984 
5985 		/* if PF is present, leave VFTA */
5986 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
5987 			goto update_vlvf;
5988 
5989 		vid = vlvf & E1000_VLVF_VLANID_MASK;
5990 		vfta_mask = 1 << (vid % 32);
5991 
5992 		/* clear bit from VFTA */
5993 		vfta = adapter->shadow_vfta[vid / 32];
5994 		if (vfta & vfta_mask)
5995 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
5996 update_vlvf:
5997 		/* clear pool selection enable */
5998 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5999 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6000 		else
6001 			vlvf = 0;
6002 update_vlvfb:
6003 		/* clear pool bits */
6004 		wr32(E1000_VLVF(i), vlvf);
6005 	}
6006 }
6007 
6008 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6009 {
6010 	u32 vlvf;
6011 	int idx;
6012 
6013 	/* short cut the special case */
6014 	if (vlan == 0)
6015 		return 0;
6016 
6017 	/* Search for the VLAN id in the VLVF entries */
6018 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6019 		vlvf = rd32(E1000_VLVF(idx));
6020 		if ((vlvf & VLAN_VID_MASK) == vlan)
6021 			break;
6022 	}
6023 
6024 	return idx;
6025 }
6026 
6027 void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6028 {
6029 	struct e1000_hw *hw = &adapter->hw;
6030 	u32 bits, pf_id;
6031 	int idx;
6032 
6033 	idx = igb_find_vlvf_entry(hw, vid);
6034 	if (!idx)
6035 		return;
6036 
6037 	/* See if any other pools are set for this VLAN filter
6038 	 * entry other than the PF.
6039 	 */
6040 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6041 	bits = ~(1 << pf_id) & E1000_VLVF_POOLSEL_MASK;
6042 	bits &= rd32(E1000_VLVF(idx));
6043 
6044 	/* Disable the filter so this falls into the default pool. */
6045 	if (!bits) {
6046 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6047 			wr32(E1000_VLVF(idx), 1 << pf_id);
6048 		else
6049 			wr32(E1000_VLVF(idx), 0);
6050 	}
6051 }
6052 
6053 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6054 			   bool add, u32 vf)
6055 {
6056 	int pf_id = adapter->vfs_allocated_count;
6057 	struct e1000_hw *hw = &adapter->hw;
6058 	int err;
6059 
6060 	/* If VLAN overlaps with one the PF is currently monitoring make
6061 	 * sure that we are able to allocate a VLVF entry.  This may be
6062 	 * redundant but it guarantees PF will maintain visibility to
6063 	 * the VLAN.
6064 	 */
6065 	if (add && test_bit(vid, adapter->active_vlans)) {
6066 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6067 		if (err)
6068 			return err;
6069 	}
6070 
6071 	err = igb_vfta_set(hw, vid, vf, add, false);
6072 
6073 	if (add && !err)
6074 		return err;
6075 
6076 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6077 	 * we may need to drop the PF pool bit in order to allow us to free
6078 	 * up the VLVF resources.
6079 	 */
6080 	if (test_bit(vid, adapter->active_vlans) ||
6081 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6082 		igb_update_pf_vlvf(adapter, vid);
6083 
6084 	return err;
6085 }
6086 
6087 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6088 {
6089 	struct e1000_hw *hw = &adapter->hw;
6090 
6091 	if (vid)
6092 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6093 	else
6094 		wr32(E1000_VMVIR(vf), 0);
6095 }
6096 
6097 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6098 				u16 vlan, u8 qos)
6099 {
6100 	int err;
6101 
6102 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6103 	if (err)
6104 		return err;
6105 
6106 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6107 	igb_set_vmolr(adapter, vf, !vlan);
6108 
6109 	/* revoke access to previous VLAN */
6110 	if (vlan != adapter->vf_data[vf].pf_vlan)
6111 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6112 				false, vf);
6113 
6114 	adapter->vf_data[vf].pf_vlan = vlan;
6115 	adapter->vf_data[vf].pf_qos = qos;
6116 	igb_set_vf_vlan_strip(adapter, vf, true);
6117 	dev_info(&adapter->pdev->dev,
6118 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6119 	if (test_bit(__IGB_DOWN, &adapter->state)) {
6120 		dev_warn(&adapter->pdev->dev,
6121 			 "The VF VLAN has been set, but the PF device is not up.\n");
6122 		dev_warn(&adapter->pdev->dev,
6123 			 "Bring the PF device up before attempting to use the VF device.\n");
6124 	}
6125 
6126 	return err;
6127 }
6128 
6129 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6130 {
6131 	/* Restore tagless access via VLAN 0 */
6132 	igb_set_vf_vlan(adapter, 0, true, vf);
6133 
6134 	igb_set_vmvir(adapter, 0, vf);
6135 	igb_set_vmolr(adapter, vf, true);
6136 
6137 	/* Remove any PF assigned VLAN */
6138 	if (adapter->vf_data[vf].pf_vlan)
6139 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6140 				false, vf);
6141 
6142 	adapter->vf_data[vf].pf_vlan = 0;
6143 	adapter->vf_data[vf].pf_qos = 0;
6144 	igb_set_vf_vlan_strip(adapter, vf, false);
6145 
6146 	return 0;
6147 }
6148 
6149 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6150 			       int vf, u16 vlan, u8 qos)
6151 {
6152 	struct igb_adapter *adapter = netdev_priv(netdev);
6153 
6154 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6155 		return -EINVAL;
6156 
6157 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6158 			       igb_disable_port_vlan(adapter, vf);
6159 }
6160 
6161 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6162 {
6163 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6164 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6165 	int ret;
6166 
6167 	if (adapter->vf_data[vf].pf_vlan)
6168 		return -1;
6169 
6170 	/* VLAN 0 is a special case, don't allow it to be removed */
6171 	if (!vid && !add)
6172 		return 0;
6173 
6174 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6175 	if (!ret)
6176 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
6177 	return ret;
6178 }
6179 
6180 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6181 {
6182 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6183 
6184 	/* clear flags - except flag that indicates PF has set the MAC */
6185 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6186 	vf_data->last_nack = jiffies;
6187 
6188 	/* reset vlans for device */
6189 	igb_clear_vf_vfta(adapter, vf);
6190 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6191 	igb_set_vmvir(adapter, vf_data->pf_vlan |
6192 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6193 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6194 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6195 
6196 	/* reset multicast table array for vf */
6197 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6198 
6199 	/* Flush and reset the mta with the new values */
6200 	igb_set_rx_mode(adapter->netdev);
6201 }
6202 
6203 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6204 {
6205 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6206 
6207 	/* clear mac address as we were hotplug removed/added */
6208 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6209 		eth_zero_addr(vf_mac);
6210 
6211 	/* process remaining reset events */
6212 	igb_vf_reset(adapter, vf);
6213 }
6214 
6215 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6216 {
6217 	struct e1000_hw *hw = &adapter->hw;
6218 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6219 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6220 	u32 reg, msgbuf[3];
6221 	u8 *addr = (u8 *)(&msgbuf[1]);
6222 
6223 	/* process all the same items cleared in a function level reset */
6224 	igb_vf_reset(adapter, vf);
6225 
6226 	/* set vf mac address */
6227 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6228 
6229 	/* enable transmit and receive for vf */
6230 	reg = rd32(E1000_VFTE);
6231 	wr32(E1000_VFTE, reg | (1 << vf));
6232 	reg = rd32(E1000_VFRE);
6233 	wr32(E1000_VFRE, reg | (1 << vf));
6234 
6235 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6236 
6237 	/* reply to reset with ack and vf mac address */
6238 	if (!is_zero_ether_addr(vf_mac)) {
6239 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6240 		memcpy(addr, vf_mac, ETH_ALEN);
6241 	} else {
6242 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6243 	}
6244 	igb_write_mbx(hw, msgbuf, 3, vf);
6245 }
6246 
6247 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6248 {
6249 	/* The VF MAC Address is stored in a packed array of bytes
6250 	 * starting at the second 32 bit word of the msg array
6251 	 */
6252 	unsigned char *addr = (char *)&msg[1];
6253 	int err = -1;
6254 
6255 	if (is_valid_ether_addr(addr))
6256 		err = igb_set_vf_mac(adapter, vf, addr);
6257 
6258 	return err;
6259 }
6260 
6261 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6262 {
6263 	struct e1000_hw *hw = &adapter->hw;
6264 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6265 	u32 msg = E1000_VT_MSGTYPE_NACK;
6266 
6267 	/* if device isn't clear to send it shouldn't be reading either */
6268 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6269 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6270 		igb_write_mbx(hw, &msg, 1, vf);
6271 		vf_data->last_nack = jiffies;
6272 	}
6273 }
6274 
6275 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6276 {
6277 	struct pci_dev *pdev = adapter->pdev;
6278 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6279 	struct e1000_hw *hw = &adapter->hw;
6280 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6281 	s32 retval;
6282 
6283 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6284 
6285 	if (retval) {
6286 		/* if receive failed revoke VF CTS stats and restart init */
6287 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6288 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6289 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6290 			return;
6291 		goto out;
6292 	}
6293 
6294 	/* this is a message we already processed, do nothing */
6295 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6296 		return;
6297 
6298 	/* until the vf completes a reset it should not be
6299 	 * allowed to start any configuration.
6300 	 */
6301 	if (msgbuf[0] == E1000_VF_RESET) {
6302 		igb_vf_reset_msg(adapter, vf);
6303 		return;
6304 	}
6305 
6306 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6307 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6308 			return;
6309 		retval = -1;
6310 		goto out;
6311 	}
6312 
6313 	switch ((msgbuf[0] & 0xFFFF)) {
6314 	case E1000_VF_SET_MAC_ADDR:
6315 		retval = -EINVAL;
6316 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6317 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6318 		else
6319 			dev_warn(&pdev->dev,
6320 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6321 				 vf);
6322 		break;
6323 	case E1000_VF_SET_PROMISC:
6324 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6325 		break;
6326 	case E1000_VF_SET_MULTICAST:
6327 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6328 		break;
6329 	case E1000_VF_SET_LPE:
6330 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6331 		break;
6332 	case E1000_VF_SET_VLAN:
6333 		retval = -1;
6334 		if (vf_data->pf_vlan)
6335 			dev_warn(&pdev->dev,
6336 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6337 				 vf);
6338 		else
6339 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6340 		break;
6341 	default:
6342 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6343 		retval = -1;
6344 		break;
6345 	}
6346 
6347 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6348 out:
6349 	/* notify the VF of the results of what it sent us */
6350 	if (retval)
6351 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6352 	else
6353 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6354 
6355 	igb_write_mbx(hw, msgbuf, 1, vf);
6356 }
6357 
6358 static void igb_msg_task(struct igb_adapter *adapter)
6359 {
6360 	struct e1000_hw *hw = &adapter->hw;
6361 	u32 vf;
6362 
6363 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6364 		/* process any reset requests */
6365 		if (!igb_check_for_rst(hw, vf))
6366 			igb_vf_reset_event(adapter, vf);
6367 
6368 		/* process any messages pending */
6369 		if (!igb_check_for_msg(hw, vf))
6370 			igb_rcv_msg_from_vf(adapter, vf);
6371 
6372 		/* process any acks */
6373 		if (!igb_check_for_ack(hw, vf))
6374 			igb_rcv_ack_from_vf(adapter, vf);
6375 	}
6376 }
6377 
6378 /**
6379  *  igb_set_uta - Set unicast filter table address
6380  *  @adapter: board private structure
6381  *  @set: boolean indicating if we are setting or clearing bits
6382  *
6383  *  The unicast table address is a register array of 32-bit registers.
6384  *  The table is meant to be used in a way similar to how the MTA is used
6385  *  however due to certain limitations in the hardware it is necessary to
6386  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6387  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6388  **/
6389 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6390 {
6391 	struct e1000_hw *hw = &adapter->hw;
6392 	u32 uta = set ? ~0 : 0;
6393 	int i;
6394 
6395 	/* we only need to do this if VMDq is enabled */
6396 	if (!adapter->vfs_allocated_count)
6397 		return;
6398 
6399 	for (i = hw->mac.uta_reg_count; i--;)
6400 		array_wr32(E1000_UTA, i, uta);
6401 }
6402 
6403 /**
6404  *  igb_intr_msi - Interrupt Handler
6405  *  @irq: interrupt number
6406  *  @data: pointer to a network interface device structure
6407  **/
6408 static irqreturn_t igb_intr_msi(int irq, void *data)
6409 {
6410 	struct igb_adapter *adapter = data;
6411 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6412 	struct e1000_hw *hw = &adapter->hw;
6413 	/* read ICR disables interrupts using IAM */
6414 	u32 icr = rd32(E1000_ICR);
6415 
6416 	igb_write_itr(q_vector);
6417 
6418 	if (icr & E1000_ICR_DRSTA)
6419 		schedule_work(&adapter->reset_task);
6420 
6421 	if (icr & E1000_ICR_DOUTSYNC) {
6422 		/* HW is reporting DMA is out of sync */
6423 		adapter->stats.doosync++;
6424 	}
6425 
6426 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6427 		hw->mac.get_link_status = 1;
6428 		if (!test_bit(__IGB_DOWN, &adapter->state))
6429 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6430 	}
6431 
6432 	if (icr & E1000_ICR_TS)
6433 		igb_tsync_interrupt(adapter);
6434 
6435 	napi_schedule(&q_vector->napi);
6436 
6437 	return IRQ_HANDLED;
6438 }
6439 
6440 /**
6441  *  igb_intr - Legacy Interrupt Handler
6442  *  @irq: interrupt number
6443  *  @data: pointer to a network interface device structure
6444  **/
6445 static irqreturn_t igb_intr(int irq, void *data)
6446 {
6447 	struct igb_adapter *adapter = data;
6448 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6449 	struct e1000_hw *hw = &adapter->hw;
6450 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6451 	 * need for the IMC write
6452 	 */
6453 	u32 icr = rd32(E1000_ICR);
6454 
6455 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6456 	 * not set, then the adapter didn't send an interrupt
6457 	 */
6458 	if (!(icr & E1000_ICR_INT_ASSERTED))
6459 		return IRQ_NONE;
6460 
6461 	igb_write_itr(q_vector);
6462 
6463 	if (icr & E1000_ICR_DRSTA)
6464 		schedule_work(&adapter->reset_task);
6465 
6466 	if (icr & E1000_ICR_DOUTSYNC) {
6467 		/* HW is reporting DMA is out of sync */
6468 		adapter->stats.doosync++;
6469 	}
6470 
6471 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6472 		hw->mac.get_link_status = 1;
6473 		/* guard against interrupt when we're going down */
6474 		if (!test_bit(__IGB_DOWN, &adapter->state))
6475 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6476 	}
6477 
6478 	if (icr & E1000_ICR_TS)
6479 		igb_tsync_interrupt(adapter);
6480 
6481 	napi_schedule(&q_vector->napi);
6482 
6483 	return IRQ_HANDLED;
6484 }
6485 
6486 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6487 {
6488 	struct igb_adapter *adapter = q_vector->adapter;
6489 	struct e1000_hw *hw = &adapter->hw;
6490 
6491 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6492 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6493 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6494 			igb_set_itr(q_vector);
6495 		else
6496 			igb_update_ring_itr(q_vector);
6497 	}
6498 
6499 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6500 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6501 			wr32(E1000_EIMS, q_vector->eims_value);
6502 		else
6503 			igb_irq_enable(adapter);
6504 	}
6505 }
6506 
6507 /**
6508  *  igb_poll - NAPI Rx polling callback
6509  *  @napi: napi polling structure
6510  *  @budget: count of how many packets we should handle
6511  **/
6512 static int igb_poll(struct napi_struct *napi, int budget)
6513 {
6514 	struct igb_q_vector *q_vector = container_of(napi,
6515 						     struct igb_q_vector,
6516 						     napi);
6517 	bool clean_complete = true;
6518 	int work_done = 0;
6519 
6520 #ifdef CONFIG_IGB_DCA
6521 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6522 		igb_update_dca(q_vector);
6523 #endif
6524 	if (q_vector->tx.ring)
6525 		clean_complete = igb_clean_tx_irq(q_vector);
6526 
6527 	if (q_vector->rx.ring) {
6528 		int cleaned = igb_clean_rx_irq(q_vector, budget);
6529 
6530 		work_done += cleaned;
6531 		clean_complete &= (cleaned < budget);
6532 	}
6533 
6534 	/* If all work not completed, return budget and keep polling */
6535 	if (!clean_complete)
6536 		return budget;
6537 
6538 	/* If not enough Rx work done, exit the polling mode */
6539 	napi_complete_done(napi, work_done);
6540 	igb_ring_irq_enable(q_vector);
6541 
6542 	return 0;
6543 }
6544 
6545 /**
6546  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6547  *  @q_vector: pointer to q_vector containing needed info
6548  *
6549  *  returns true if ring is completely cleaned
6550  **/
6551 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6552 {
6553 	struct igb_adapter *adapter = q_vector->adapter;
6554 	struct igb_ring *tx_ring = q_vector->tx.ring;
6555 	struct igb_tx_buffer *tx_buffer;
6556 	union e1000_adv_tx_desc *tx_desc;
6557 	unsigned int total_bytes = 0, total_packets = 0;
6558 	unsigned int budget = q_vector->tx.work_limit;
6559 	unsigned int i = tx_ring->next_to_clean;
6560 
6561 	if (test_bit(__IGB_DOWN, &adapter->state))
6562 		return true;
6563 
6564 	tx_buffer = &tx_ring->tx_buffer_info[i];
6565 	tx_desc = IGB_TX_DESC(tx_ring, i);
6566 	i -= tx_ring->count;
6567 
6568 	do {
6569 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6570 
6571 		/* if next_to_watch is not set then there is no work pending */
6572 		if (!eop_desc)
6573 			break;
6574 
6575 		/* prevent any other reads prior to eop_desc */
6576 		read_barrier_depends();
6577 
6578 		/* if DD is not set pending work has not been completed */
6579 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6580 			break;
6581 
6582 		/* clear next_to_watch to prevent false hangs */
6583 		tx_buffer->next_to_watch = NULL;
6584 
6585 		/* update the statistics for this packet */
6586 		total_bytes += tx_buffer->bytecount;
6587 		total_packets += tx_buffer->gso_segs;
6588 
6589 		/* free the skb */
6590 		dev_consume_skb_any(tx_buffer->skb);
6591 
6592 		/* unmap skb header data */
6593 		dma_unmap_single(tx_ring->dev,
6594 				 dma_unmap_addr(tx_buffer, dma),
6595 				 dma_unmap_len(tx_buffer, len),
6596 				 DMA_TO_DEVICE);
6597 
6598 		/* clear tx_buffer data */
6599 		tx_buffer->skb = NULL;
6600 		dma_unmap_len_set(tx_buffer, len, 0);
6601 
6602 		/* clear last DMA location and unmap remaining buffers */
6603 		while (tx_desc != eop_desc) {
6604 			tx_buffer++;
6605 			tx_desc++;
6606 			i++;
6607 			if (unlikely(!i)) {
6608 				i -= tx_ring->count;
6609 				tx_buffer = tx_ring->tx_buffer_info;
6610 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6611 			}
6612 
6613 			/* unmap any remaining paged data */
6614 			if (dma_unmap_len(tx_buffer, len)) {
6615 				dma_unmap_page(tx_ring->dev,
6616 					       dma_unmap_addr(tx_buffer, dma),
6617 					       dma_unmap_len(tx_buffer, len),
6618 					       DMA_TO_DEVICE);
6619 				dma_unmap_len_set(tx_buffer, len, 0);
6620 			}
6621 		}
6622 
6623 		/* move us one more past the eop_desc for start of next pkt */
6624 		tx_buffer++;
6625 		tx_desc++;
6626 		i++;
6627 		if (unlikely(!i)) {
6628 			i -= tx_ring->count;
6629 			tx_buffer = tx_ring->tx_buffer_info;
6630 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6631 		}
6632 
6633 		/* issue prefetch for next Tx descriptor */
6634 		prefetch(tx_desc);
6635 
6636 		/* update budget accounting */
6637 		budget--;
6638 	} while (likely(budget));
6639 
6640 	netdev_tx_completed_queue(txring_txq(tx_ring),
6641 				  total_packets, total_bytes);
6642 	i += tx_ring->count;
6643 	tx_ring->next_to_clean = i;
6644 	u64_stats_update_begin(&tx_ring->tx_syncp);
6645 	tx_ring->tx_stats.bytes += total_bytes;
6646 	tx_ring->tx_stats.packets += total_packets;
6647 	u64_stats_update_end(&tx_ring->tx_syncp);
6648 	q_vector->tx.total_bytes += total_bytes;
6649 	q_vector->tx.total_packets += total_packets;
6650 
6651 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6652 		struct e1000_hw *hw = &adapter->hw;
6653 
6654 		/* Detect a transmit hang in hardware, this serializes the
6655 		 * check with the clearing of time_stamp and movement of i
6656 		 */
6657 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6658 		if (tx_buffer->next_to_watch &&
6659 		    time_after(jiffies, tx_buffer->time_stamp +
6660 			       (adapter->tx_timeout_factor * HZ)) &&
6661 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6662 
6663 			/* detected Tx unit hang */
6664 			dev_err(tx_ring->dev,
6665 				"Detected Tx Unit Hang\n"
6666 				"  Tx Queue             <%d>\n"
6667 				"  TDH                  <%x>\n"
6668 				"  TDT                  <%x>\n"
6669 				"  next_to_use          <%x>\n"
6670 				"  next_to_clean        <%x>\n"
6671 				"buffer_info[next_to_clean]\n"
6672 				"  time_stamp           <%lx>\n"
6673 				"  next_to_watch        <%p>\n"
6674 				"  jiffies              <%lx>\n"
6675 				"  desc.status          <%x>\n",
6676 				tx_ring->queue_index,
6677 				rd32(E1000_TDH(tx_ring->reg_idx)),
6678 				readl(tx_ring->tail),
6679 				tx_ring->next_to_use,
6680 				tx_ring->next_to_clean,
6681 				tx_buffer->time_stamp,
6682 				tx_buffer->next_to_watch,
6683 				jiffies,
6684 				tx_buffer->next_to_watch->wb.status);
6685 			netif_stop_subqueue(tx_ring->netdev,
6686 					    tx_ring->queue_index);
6687 
6688 			/* we are about to reset, no point in enabling stuff */
6689 			return true;
6690 		}
6691 	}
6692 
6693 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6694 	if (unlikely(total_packets &&
6695 	    netif_carrier_ok(tx_ring->netdev) &&
6696 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6697 		/* Make sure that anybody stopping the queue after this
6698 		 * sees the new next_to_clean.
6699 		 */
6700 		smp_mb();
6701 		if (__netif_subqueue_stopped(tx_ring->netdev,
6702 					     tx_ring->queue_index) &&
6703 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6704 			netif_wake_subqueue(tx_ring->netdev,
6705 					    tx_ring->queue_index);
6706 
6707 			u64_stats_update_begin(&tx_ring->tx_syncp);
6708 			tx_ring->tx_stats.restart_queue++;
6709 			u64_stats_update_end(&tx_ring->tx_syncp);
6710 		}
6711 	}
6712 
6713 	return !!budget;
6714 }
6715 
6716 /**
6717  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6718  *  @rx_ring: rx descriptor ring to store buffers on
6719  *  @old_buff: donor buffer to have page reused
6720  *
6721  *  Synchronizes page for reuse by the adapter
6722  **/
6723 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6724 			      struct igb_rx_buffer *old_buff)
6725 {
6726 	struct igb_rx_buffer *new_buff;
6727 	u16 nta = rx_ring->next_to_alloc;
6728 
6729 	new_buff = &rx_ring->rx_buffer_info[nta];
6730 
6731 	/* update, and store next to alloc */
6732 	nta++;
6733 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6734 
6735 	/* transfer page from old buffer to new buffer */
6736 	*new_buff = *old_buff;
6737 
6738 	/* sync the buffer for use by the device */
6739 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6740 					 old_buff->page_offset,
6741 					 IGB_RX_BUFSZ,
6742 					 DMA_FROM_DEVICE);
6743 }
6744 
6745 static inline bool igb_page_is_reserved(struct page *page)
6746 {
6747 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6748 }
6749 
6750 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6751 				  struct page *page,
6752 				  unsigned int truesize)
6753 {
6754 	/* avoid re-using remote pages */
6755 	if (unlikely(igb_page_is_reserved(page)))
6756 		return false;
6757 
6758 #if (PAGE_SIZE < 8192)
6759 	/* if we are only owner of page we can reuse it */
6760 	if (unlikely(page_count(page) != 1))
6761 		return false;
6762 
6763 	/* flip page offset to other buffer */
6764 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6765 #else
6766 	/* move offset up to the next cache line */
6767 	rx_buffer->page_offset += truesize;
6768 
6769 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6770 		return false;
6771 #endif
6772 
6773 	/* Even if we own the page, we are not allowed to use atomic_set()
6774 	 * This would break get_page_unless_zero() users.
6775 	 */
6776 	page_ref_inc(page);
6777 
6778 	return true;
6779 }
6780 
6781 /**
6782  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6783  *  @rx_ring: rx descriptor ring to transact packets on
6784  *  @rx_buffer: buffer containing page to add
6785  *  @rx_desc: descriptor containing length of buffer written by hardware
6786  *  @skb: sk_buff to place the data into
6787  *
6788  *  This function will add the data contained in rx_buffer->page to the skb.
6789  *  This is done either through a direct copy if the data in the buffer is
6790  *  less than the skb header size, otherwise it will just attach the page as
6791  *  a frag to the skb.
6792  *
6793  *  The function will then update the page offset if necessary and return
6794  *  true if the buffer can be reused by the adapter.
6795  **/
6796 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6797 			    struct igb_rx_buffer *rx_buffer,
6798 			    union e1000_adv_rx_desc *rx_desc,
6799 			    struct sk_buff *skb)
6800 {
6801 	struct page *page = rx_buffer->page;
6802 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
6803 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6804 #if (PAGE_SIZE < 8192)
6805 	unsigned int truesize = IGB_RX_BUFSZ;
6806 #else
6807 	unsigned int truesize = SKB_DATA_ALIGN(size);
6808 #endif
6809 	unsigned int pull_len;
6810 
6811 	if (unlikely(skb_is_nonlinear(skb)))
6812 		goto add_tail_frag;
6813 
6814 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6815 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6816 		va += IGB_TS_HDR_LEN;
6817 		size -= IGB_TS_HDR_LEN;
6818 	}
6819 
6820 	if (likely(size <= IGB_RX_HDR_LEN)) {
6821 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6822 
6823 		/* page is not reserved, we can reuse buffer as-is */
6824 		if (likely(!igb_page_is_reserved(page)))
6825 			return true;
6826 
6827 		/* this page cannot be reused so discard it */
6828 		__free_page(page);
6829 		return false;
6830 	}
6831 
6832 	/* we need the header to contain the greater of either ETH_HLEN or
6833 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6834 	 */
6835 	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6836 
6837 	/* align pull length to size of long to optimize memcpy performance */
6838 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6839 
6840 	/* update all of the pointers */
6841 	va += pull_len;
6842 	size -= pull_len;
6843 
6844 add_tail_frag:
6845 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6846 			(unsigned long)va & ~PAGE_MASK, size, truesize);
6847 
6848 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6849 }
6850 
6851 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6852 					   union e1000_adv_rx_desc *rx_desc,
6853 					   struct sk_buff *skb)
6854 {
6855 	struct igb_rx_buffer *rx_buffer;
6856 	struct page *page;
6857 
6858 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6859 	page = rx_buffer->page;
6860 	prefetchw(page);
6861 
6862 	if (likely(!skb)) {
6863 		void *page_addr = page_address(page) +
6864 				  rx_buffer->page_offset;
6865 
6866 		/* prefetch first cache line of first page */
6867 		prefetch(page_addr);
6868 #if L1_CACHE_BYTES < 128
6869 		prefetch(page_addr + L1_CACHE_BYTES);
6870 #endif
6871 
6872 		/* allocate a skb to store the frags */
6873 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6874 		if (unlikely(!skb)) {
6875 			rx_ring->rx_stats.alloc_failed++;
6876 			return NULL;
6877 		}
6878 
6879 		/* we will be copying header into skb->data in
6880 		 * pskb_may_pull so it is in our interest to prefetch
6881 		 * it now to avoid a possible cache miss
6882 		 */
6883 		prefetchw(skb->data);
6884 	}
6885 
6886 	/* we are reusing so sync this buffer for CPU use */
6887 	dma_sync_single_range_for_cpu(rx_ring->dev,
6888 				      rx_buffer->dma,
6889 				      rx_buffer->page_offset,
6890 				      IGB_RX_BUFSZ,
6891 				      DMA_FROM_DEVICE);
6892 
6893 	/* pull page into skb */
6894 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6895 		/* hand second half of page back to the ring */
6896 		igb_reuse_rx_page(rx_ring, rx_buffer);
6897 	} else {
6898 		/* we are not reusing the buffer so unmap it */
6899 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6900 			       PAGE_SIZE, DMA_FROM_DEVICE);
6901 	}
6902 
6903 	/* clear contents of rx_buffer */
6904 	rx_buffer->page = NULL;
6905 
6906 	return skb;
6907 }
6908 
6909 static inline void igb_rx_checksum(struct igb_ring *ring,
6910 				   union e1000_adv_rx_desc *rx_desc,
6911 				   struct sk_buff *skb)
6912 {
6913 	skb_checksum_none_assert(skb);
6914 
6915 	/* Ignore Checksum bit is set */
6916 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6917 		return;
6918 
6919 	/* Rx checksum disabled via ethtool */
6920 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6921 		return;
6922 
6923 	/* TCP/UDP checksum error bit is set */
6924 	if (igb_test_staterr(rx_desc,
6925 			     E1000_RXDEXT_STATERR_TCPE |
6926 			     E1000_RXDEXT_STATERR_IPE)) {
6927 		/* work around errata with sctp packets where the TCPE aka
6928 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6929 		 * packets, (aka let the stack check the crc32c)
6930 		 */
6931 		if (!((skb->len == 60) &&
6932 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6933 			u64_stats_update_begin(&ring->rx_syncp);
6934 			ring->rx_stats.csum_err++;
6935 			u64_stats_update_end(&ring->rx_syncp);
6936 		}
6937 		/* let the stack verify checksum errors */
6938 		return;
6939 	}
6940 	/* It must be a TCP or UDP packet with a valid checksum */
6941 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6942 				      E1000_RXD_STAT_UDPCS))
6943 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6944 
6945 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6946 		le32_to_cpu(rx_desc->wb.upper.status_error));
6947 }
6948 
6949 static inline void igb_rx_hash(struct igb_ring *ring,
6950 			       union e1000_adv_rx_desc *rx_desc,
6951 			       struct sk_buff *skb)
6952 {
6953 	if (ring->netdev->features & NETIF_F_RXHASH)
6954 		skb_set_hash(skb,
6955 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6956 			     PKT_HASH_TYPE_L3);
6957 }
6958 
6959 /**
6960  *  igb_is_non_eop - process handling of non-EOP buffers
6961  *  @rx_ring: Rx ring being processed
6962  *  @rx_desc: Rx descriptor for current buffer
6963  *  @skb: current socket buffer containing buffer in progress
6964  *
6965  *  This function updates next to clean.  If the buffer is an EOP buffer
6966  *  this function exits returning false, otherwise it will place the
6967  *  sk_buff in the next buffer to be chained and return true indicating
6968  *  that this is in fact a non-EOP buffer.
6969  **/
6970 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6971 			   union e1000_adv_rx_desc *rx_desc)
6972 {
6973 	u32 ntc = rx_ring->next_to_clean + 1;
6974 
6975 	/* fetch, update, and store next to clean */
6976 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6977 	rx_ring->next_to_clean = ntc;
6978 
6979 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6980 
6981 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6982 		return false;
6983 
6984 	return true;
6985 }
6986 
6987 /**
6988  *  igb_cleanup_headers - Correct corrupted or empty headers
6989  *  @rx_ring: rx descriptor ring packet is being transacted on
6990  *  @rx_desc: pointer to the EOP Rx descriptor
6991  *  @skb: pointer to current skb being fixed
6992  *
6993  *  Address the case where we are pulling data in on pages only
6994  *  and as such no data is present in the skb header.
6995  *
6996  *  In addition if skb is not at least 60 bytes we need to pad it so that
6997  *  it is large enough to qualify as a valid Ethernet frame.
6998  *
6999  *  Returns true if an error was encountered and skb was freed.
7000  **/
7001 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7002 				union e1000_adv_rx_desc *rx_desc,
7003 				struct sk_buff *skb)
7004 {
7005 	if (unlikely((igb_test_staterr(rx_desc,
7006 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7007 		struct net_device *netdev = rx_ring->netdev;
7008 		if (!(netdev->features & NETIF_F_RXALL)) {
7009 			dev_kfree_skb_any(skb);
7010 			return true;
7011 		}
7012 	}
7013 
7014 	/* if eth_skb_pad returns an error the skb was freed */
7015 	if (eth_skb_pad(skb))
7016 		return true;
7017 
7018 	return false;
7019 }
7020 
7021 /**
7022  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7023  *  @rx_ring: rx descriptor ring packet is being transacted on
7024  *  @rx_desc: pointer to the EOP Rx descriptor
7025  *  @skb: pointer to current skb being populated
7026  *
7027  *  This function checks the ring, descriptor, and packet information in
7028  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7029  *  other fields within the skb.
7030  **/
7031 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7032 				   union e1000_adv_rx_desc *rx_desc,
7033 				   struct sk_buff *skb)
7034 {
7035 	struct net_device *dev = rx_ring->netdev;
7036 
7037 	igb_rx_hash(rx_ring, rx_desc, skb);
7038 
7039 	igb_rx_checksum(rx_ring, rx_desc, skb);
7040 
7041 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7042 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7043 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7044 
7045 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7046 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7047 		u16 vid;
7048 
7049 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7050 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7051 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7052 		else
7053 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7054 
7055 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7056 	}
7057 
7058 	skb_record_rx_queue(skb, rx_ring->queue_index);
7059 
7060 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7061 }
7062 
7063 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7064 {
7065 	struct igb_ring *rx_ring = q_vector->rx.ring;
7066 	struct sk_buff *skb = rx_ring->skb;
7067 	unsigned int total_bytes = 0, total_packets = 0;
7068 	u16 cleaned_count = igb_desc_unused(rx_ring);
7069 
7070 	while (likely(total_packets < budget)) {
7071 		union e1000_adv_rx_desc *rx_desc;
7072 
7073 		/* return some buffers to hardware, one at a time is too slow */
7074 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7075 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7076 			cleaned_count = 0;
7077 		}
7078 
7079 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7080 
7081 		if (!rx_desc->wb.upper.status_error)
7082 			break;
7083 
7084 		/* This memory barrier is needed to keep us from reading
7085 		 * any other fields out of the rx_desc until we know the
7086 		 * descriptor has been written back
7087 		 */
7088 		dma_rmb();
7089 
7090 		/* retrieve a buffer from the ring */
7091 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7092 
7093 		/* exit if we failed to retrieve a buffer */
7094 		if (!skb)
7095 			break;
7096 
7097 		cleaned_count++;
7098 
7099 		/* fetch next buffer in frame if non-eop */
7100 		if (igb_is_non_eop(rx_ring, rx_desc))
7101 			continue;
7102 
7103 		/* verify the packet layout is correct */
7104 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7105 			skb = NULL;
7106 			continue;
7107 		}
7108 
7109 		/* probably a little skewed due to removing CRC */
7110 		total_bytes += skb->len;
7111 
7112 		/* populate checksum, timestamp, VLAN, and protocol */
7113 		igb_process_skb_fields(rx_ring, rx_desc, skb);
7114 
7115 		napi_gro_receive(&q_vector->napi, skb);
7116 
7117 		/* reset skb pointer */
7118 		skb = NULL;
7119 
7120 		/* update budget accounting */
7121 		total_packets++;
7122 	}
7123 
7124 	/* place incomplete frames back on ring for completion */
7125 	rx_ring->skb = skb;
7126 
7127 	u64_stats_update_begin(&rx_ring->rx_syncp);
7128 	rx_ring->rx_stats.packets += total_packets;
7129 	rx_ring->rx_stats.bytes += total_bytes;
7130 	u64_stats_update_end(&rx_ring->rx_syncp);
7131 	q_vector->rx.total_packets += total_packets;
7132 	q_vector->rx.total_bytes += total_bytes;
7133 
7134 	if (cleaned_count)
7135 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7136 
7137 	return total_packets;
7138 }
7139 
7140 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7141 				  struct igb_rx_buffer *bi)
7142 {
7143 	struct page *page = bi->page;
7144 	dma_addr_t dma;
7145 
7146 	/* since we are recycling buffers we should seldom need to alloc */
7147 	if (likely(page))
7148 		return true;
7149 
7150 	/* alloc new page for storage */
7151 	page = dev_alloc_page();
7152 	if (unlikely(!page)) {
7153 		rx_ring->rx_stats.alloc_failed++;
7154 		return false;
7155 	}
7156 
7157 	/* map page for use */
7158 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7159 
7160 	/* if mapping failed free memory back to system since
7161 	 * there isn't much point in holding memory we can't use
7162 	 */
7163 	if (dma_mapping_error(rx_ring->dev, dma)) {
7164 		__free_page(page);
7165 
7166 		rx_ring->rx_stats.alloc_failed++;
7167 		return false;
7168 	}
7169 
7170 	bi->dma = dma;
7171 	bi->page = page;
7172 	bi->page_offset = 0;
7173 
7174 	return true;
7175 }
7176 
7177 /**
7178  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7179  *  @adapter: address of board private structure
7180  **/
7181 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7182 {
7183 	union e1000_adv_rx_desc *rx_desc;
7184 	struct igb_rx_buffer *bi;
7185 	u16 i = rx_ring->next_to_use;
7186 
7187 	/* nothing to do */
7188 	if (!cleaned_count)
7189 		return;
7190 
7191 	rx_desc = IGB_RX_DESC(rx_ring, i);
7192 	bi = &rx_ring->rx_buffer_info[i];
7193 	i -= rx_ring->count;
7194 
7195 	do {
7196 		if (!igb_alloc_mapped_page(rx_ring, bi))
7197 			break;
7198 
7199 		/* Refresh the desc even if buffer_addrs didn't change
7200 		 * because each write-back erases this info.
7201 		 */
7202 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7203 
7204 		rx_desc++;
7205 		bi++;
7206 		i++;
7207 		if (unlikely(!i)) {
7208 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7209 			bi = rx_ring->rx_buffer_info;
7210 			i -= rx_ring->count;
7211 		}
7212 
7213 		/* clear the status bits for the next_to_use descriptor */
7214 		rx_desc->wb.upper.status_error = 0;
7215 
7216 		cleaned_count--;
7217 	} while (cleaned_count);
7218 
7219 	i += rx_ring->count;
7220 
7221 	if (rx_ring->next_to_use != i) {
7222 		/* record the next descriptor to use */
7223 		rx_ring->next_to_use = i;
7224 
7225 		/* update next to alloc since we have filled the ring */
7226 		rx_ring->next_to_alloc = i;
7227 
7228 		/* Force memory writes to complete before letting h/w
7229 		 * know there are new descriptors to fetch.  (Only
7230 		 * applicable for weak-ordered memory model archs,
7231 		 * such as IA-64).
7232 		 */
7233 		wmb();
7234 		writel(i, rx_ring->tail);
7235 	}
7236 }
7237 
7238 /**
7239  * igb_mii_ioctl -
7240  * @netdev:
7241  * @ifreq:
7242  * @cmd:
7243  **/
7244 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7245 {
7246 	struct igb_adapter *adapter = netdev_priv(netdev);
7247 	struct mii_ioctl_data *data = if_mii(ifr);
7248 
7249 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7250 		return -EOPNOTSUPP;
7251 
7252 	switch (cmd) {
7253 	case SIOCGMIIPHY:
7254 		data->phy_id = adapter->hw.phy.addr;
7255 		break;
7256 	case SIOCGMIIREG:
7257 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7258 				     &data->val_out))
7259 			return -EIO;
7260 		break;
7261 	case SIOCSMIIREG:
7262 	default:
7263 		return -EOPNOTSUPP;
7264 	}
7265 	return 0;
7266 }
7267 
7268 /**
7269  * igb_ioctl -
7270  * @netdev:
7271  * @ifreq:
7272  * @cmd:
7273  **/
7274 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7275 {
7276 	switch (cmd) {
7277 	case SIOCGMIIPHY:
7278 	case SIOCGMIIREG:
7279 	case SIOCSMIIREG:
7280 		return igb_mii_ioctl(netdev, ifr, cmd);
7281 	case SIOCGHWTSTAMP:
7282 		return igb_ptp_get_ts_config(netdev, ifr);
7283 	case SIOCSHWTSTAMP:
7284 		return igb_ptp_set_ts_config(netdev, ifr);
7285 	default:
7286 		return -EOPNOTSUPP;
7287 	}
7288 }
7289 
7290 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7291 {
7292 	struct igb_adapter *adapter = hw->back;
7293 
7294 	pci_read_config_word(adapter->pdev, reg, value);
7295 }
7296 
7297 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7298 {
7299 	struct igb_adapter *adapter = hw->back;
7300 
7301 	pci_write_config_word(adapter->pdev, reg, *value);
7302 }
7303 
7304 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7305 {
7306 	struct igb_adapter *adapter = hw->back;
7307 
7308 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7309 		return -E1000_ERR_CONFIG;
7310 
7311 	return 0;
7312 }
7313 
7314 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7315 {
7316 	struct igb_adapter *adapter = hw->back;
7317 
7318 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7319 		return -E1000_ERR_CONFIG;
7320 
7321 	return 0;
7322 }
7323 
7324 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7325 {
7326 	struct igb_adapter *adapter = netdev_priv(netdev);
7327 	struct e1000_hw *hw = &adapter->hw;
7328 	u32 ctrl, rctl;
7329 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7330 
7331 	if (enable) {
7332 		/* enable VLAN tag insert/strip */
7333 		ctrl = rd32(E1000_CTRL);
7334 		ctrl |= E1000_CTRL_VME;
7335 		wr32(E1000_CTRL, ctrl);
7336 
7337 		/* Disable CFI check */
7338 		rctl = rd32(E1000_RCTL);
7339 		rctl &= ~E1000_RCTL_CFIEN;
7340 		wr32(E1000_RCTL, rctl);
7341 	} else {
7342 		/* disable VLAN tag insert/strip */
7343 		ctrl = rd32(E1000_CTRL);
7344 		ctrl &= ~E1000_CTRL_VME;
7345 		wr32(E1000_CTRL, ctrl);
7346 	}
7347 
7348 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7349 }
7350 
7351 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7352 			       __be16 proto, u16 vid)
7353 {
7354 	struct igb_adapter *adapter = netdev_priv(netdev);
7355 	struct e1000_hw *hw = &adapter->hw;
7356 	int pf_id = adapter->vfs_allocated_count;
7357 
7358 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7359 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7360 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
7361 
7362 	set_bit(vid, adapter->active_vlans);
7363 
7364 	return 0;
7365 }
7366 
7367 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7368 				__be16 proto, u16 vid)
7369 {
7370 	struct igb_adapter *adapter = netdev_priv(netdev);
7371 	int pf_id = adapter->vfs_allocated_count;
7372 	struct e1000_hw *hw = &adapter->hw;
7373 
7374 	/* remove VID from filter table */
7375 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7376 		igb_vfta_set(hw, vid, pf_id, false, true);
7377 
7378 	clear_bit(vid, adapter->active_vlans);
7379 
7380 	return 0;
7381 }
7382 
7383 static void igb_restore_vlan(struct igb_adapter *adapter)
7384 {
7385 	u16 vid = 1;
7386 
7387 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7388 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7389 
7390 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7391 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7392 }
7393 
7394 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7395 {
7396 	struct pci_dev *pdev = adapter->pdev;
7397 	struct e1000_mac_info *mac = &adapter->hw.mac;
7398 
7399 	mac->autoneg = 0;
7400 
7401 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7402 	 * for the switch() below to work
7403 	 */
7404 	if ((spd & 1) || (dplx & ~1))
7405 		goto err_inval;
7406 
7407 	/* Fiber NIC's only allow 1000 gbps Full duplex
7408 	 * and 100Mbps Full duplex for 100baseFx sfp
7409 	 */
7410 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7411 		switch (spd + dplx) {
7412 		case SPEED_10 + DUPLEX_HALF:
7413 		case SPEED_10 + DUPLEX_FULL:
7414 		case SPEED_100 + DUPLEX_HALF:
7415 			goto err_inval;
7416 		default:
7417 			break;
7418 		}
7419 	}
7420 
7421 	switch (spd + dplx) {
7422 	case SPEED_10 + DUPLEX_HALF:
7423 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7424 		break;
7425 	case SPEED_10 + DUPLEX_FULL:
7426 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7427 		break;
7428 	case SPEED_100 + DUPLEX_HALF:
7429 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7430 		break;
7431 	case SPEED_100 + DUPLEX_FULL:
7432 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7433 		break;
7434 	case SPEED_1000 + DUPLEX_FULL:
7435 		mac->autoneg = 1;
7436 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7437 		break;
7438 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7439 	default:
7440 		goto err_inval;
7441 	}
7442 
7443 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7444 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7445 
7446 	return 0;
7447 
7448 err_inval:
7449 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7450 	return -EINVAL;
7451 }
7452 
7453 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7454 			  bool runtime)
7455 {
7456 	struct net_device *netdev = pci_get_drvdata(pdev);
7457 	struct igb_adapter *adapter = netdev_priv(netdev);
7458 	struct e1000_hw *hw = &adapter->hw;
7459 	u32 ctrl, rctl, status;
7460 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7461 #ifdef CONFIG_PM
7462 	int retval = 0;
7463 #endif
7464 
7465 	netif_device_detach(netdev);
7466 
7467 	if (netif_running(netdev))
7468 		__igb_close(netdev, true);
7469 
7470 	igb_clear_interrupt_scheme(adapter);
7471 
7472 #ifdef CONFIG_PM
7473 	retval = pci_save_state(pdev);
7474 	if (retval)
7475 		return retval;
7476 #endif
7477 
7478 	status = rd32(E1000_STATUS);
7479 	if (status & E1000_STATUS_LU)
7480 		wufc &= ~E1000_WUFC_LNKC;
7481 
7482 	if (wufc) {
7483 		igb_setup_rctl(adapter);
7484 		igb_set_rx_mode(netdev);
7485 
7486 		/* turn on all-multi mode if wake on multicast is enabled */
7487 		if (wufc & E1000_WUFC_MC) {
7488 			rctl = rd32(E1000_RCTL);
7489 			rctl |= E1000_RCTL_MPE;
7490 			wr32(E1000_RCTL, rctl);
7491 		}
7492 
7493 		ctrl = rd32(E1000_CTRL);
7494 		/* advertise wake from D3Cold */
7495 		#define E1000_CTRL_ADVD3WUC 0x00100000
7496 		/* phy power management enable */
7497 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7498 		ctrl |= E1000_CTRL_ADVD3WUC;
7499 		wr32(E1000_CTRL, ctrl);
7500 
7501 		/* Allow time for pending master requests to run */
7502 		igb_disable_pcie_master(hw);
7503 
7504 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7505 		wr32(E1000_WUFC, wufc);
7506 	} else {
7507 		wr32(E1000_WUC, 0);
7508 		wr32(E1000_WUFC, 0);
7509 	}
7510 
7511 	*enable_wake = wufc || adapter->en_mng_pt;
7512 	if (!*enable_wake)
7513 		igb_power_down_link(adapter);
7514 	else
7515 		igb_power_up_link(adapter);
7516 
7517 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7518 	 * would have already happened in close and is redundant.
7519 	 */
7520 	igb_release_hw_control(adapter);
7521 
7522 	pci_disable_device(pdev);
7523 
7524 	return 0;
7525 }
7526 
7527 #ifdef CONFIG_PM
7528 #ifdef CONFIG_PM_SLEEP
7529 static int igb_suspend(struct device *dev)
7530 {
7531 	int retval;
7532 	bool wake;
7533 	struct pci_dev *pdev = to_pci_dev(dev);
7534 
7535 	retval = __igb_shutdown(pdev, &wake, 0);
7536 	if (retval)
7537 		return retval;
7538 
7539 	if (wake) {
7540 		pci_prepare_to_sleep(pdev);
7541 	} else {
7542 		pci_wake_from_d3(pdev, false);
7543 		pci_set_power_state(pdev, PCI_D3hot);
7544 	}
7545 
7546 	return 0;
7547 }
7548 #endif /* CONFIG_PM_SLEEP */
7549 
7550 static int igb_resume(struct device *dev)
7551 {
7552 	struct pci_dev *pdev = to_pci_dev(dev);
7553 	struct net_device *netdev = pci_get_drvdata(pdev);
7554 	struct igb_adapter *adapter = netdev_priv(netdev);
7555 	struct e1000_hw *hw = &adapter->hw;
7556 	u32 err;
7557 
7558 	pci_set_power_state(pdev, PCI_D0);
7559 	pci_restore_state(pdev);
7560 	pci_save_state(pdev);
7561 
7562 	if (!pci_device_is_present(pdev))
7563 		return -ENODEV;
7564 	err = pci_enable_device_mem(pdev);
7565 	if (err) {
7566 		dev_err(&pdev->dev,
7567 			"igb: Cannot enable PCI device from suspend\n");
7568 		return err;
7569 	}
7570 	pci_set_master(pdev);
7571 
7572 	pci_enable_wake(pdev, PCI_D3hot, 0);
7573 	pci_enable_wake(pdev, PCI_D3cold, 0);
7574 
7575 	if (igb_init_interrupt_scheme(adapter, true)) {
7576 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7577 		rtnl_unlock();
7578 		return -ENOMEM;
7579 	}
7580 
7581 	igb_reset(adapter);
7582 
7583 	/* let the f/w know that the h/w is now under the control of the
7584 	 * driver.
7585 	 */
7586 	igb_get_hw_control(adapter);
7587 
7588 	wr32(E1000_WUS, ~0);
7589 
7590 	if (netdev->flags & IFF_UP) {
7591 		rtnl_lock();
7592 		err = __igb_open(netdev, true);
7593 		rtnl_unlock();
7594 		if (err)
7595 			return err;
7596 	}
7597 
7598 	netif_device_attach(netdev);
7599 	return 0;
7600 }
7601 
7602 static int igb_runtime_idle(struct device *dev)
7603 {
7604 	struct pci_dev *pdev = to_pci_dev(dev);
7605 	struct net_device *netdev = pci_get_drvdata(pdev);
7606 	struct igb_adapter *adapter = netdev_priv(netdev);
7607 
7608 	if (!igb_has_link(adapter))
7609 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7610 
7611 	return -EBUSY;
7612 }
7613 
7614 static int igb_runtime_suspend(struct device *dev)
7615 {
7616 	struct pci_dev *pdev = to_pci_dev(dev);
7617 	int retval;
7618 	bool wake;
7619 
7620 	retval = __igb_shutdown(pdev, &wake, 1);
7621 	if (retval)
7622 		return retval;
7623 
7624 	if (wake) {
7625 		pci_prepare_to_sleep(pdev);
7626 	} else {
7627 		pci_wake_from_d3(pdev, false);
7628 		pci_set_power_state(pdev, PCI_D3hot);
7629 	}
7630 
7631 	return 0;
7632 }
7633 
7634 static int igb_runtime_resume(struct device *dev)
7635 {
7636 	return igb_resume(dev);
7637 }
7638 #endif /* CONFIG_PM */
7639 
7640 static void igb_shutdown(struct pci_dev *pdev)
7641 {
7642 	bool wake;
7643 
7644 	__igb_shutdown(pdev, &wake, 0);
7645 
7646 	if (system_state == SYSTEM_POWER_OFF) {
7647 		pci_wake_from_d3(pdev, wake);
7648 		pci_set_power_state(pdev, PCI_D3hot);
7649 	}
7650 }
7651 
7652 #ifdef CONFIG_PCI_IOV
7653 static int igb_sriov_reinit(struct pci_dev *dev)
7654 {
7655 	struct net_device *netdev = pci_get_drvdata(dev);
7656 	struct igb_adapter *adapter = netdev_priv(netdev);
7657 	struct pci_dev *pdev = adapter->pdev;
7658 
7659 	rtnl_lock();
7660 
7661 	if (netif_running(netdev))
7662 		igb_close(netdev);
7663 	else
7664 		igb_reset(adapter);
7665 
7666 	igb_clear_interrupt_scheme(adapter);
7667 
7668 	igb_init_queue_configuration(adapter);
7669 
7670 	if (igb_init_interrupt_scheme(adapter, true)) {
7671 		rtnl_unlock();
7672 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7673 		return -ENOMEM;
7674 	}
7675 
7676 	if (netif_running(netdev))
7677 		igb_open(netdev);
7678 
7679 	rtnl_unlock();
7680 
7681 	return 0;
7682 }
7683 
7684 static int igb_pci_disable_sriov(struct pci_dev *dev)
7685 {
7686 	int err = igb_disable_sriov(dev);
7687 
7688 	if (!err)
7689 		err = igb_sriov_reinit(dev);
7690 
7691 	return err;
7692 }
7693 
7694 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7695 {
7696 	int err = igb_enable_sriov(dev, num_vfs);
7697 
7698 	if (err)
7699 		goto out;
7700 
7701 	err = igb_sriov_reinit(dev);
7702 	if (!err)
7703 		return num_vfs;
7704 
7705 out:
7706 	return err;
7707 }
7708 
7709 #endif
7710 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7711 {
7712 #ifdef CONFIG_PCI_IOV
7713 	if (num_vfs == 0)
7714 		return igb_pci_disable_sriov(dev);
7715 	else
7716 		return igb_pci_enable_sriov(dev, num_vfs);
7717 #endif
7718 	return 0;
7719 }
7720 
7721 #ifdef CONFIG_NET_POLL_CONTROLLER
7722 /* Polling 'interrupt' - used by things like netconsole to send skbs
7723  * without having to re-enable interrupts. It's not called while
7724  * the interrupt routine is executing.
7725  */
7726 static void igb_netpoll(struct net_device *netdev)
7727 {
7728 	struct igb_adapter *adapter = netdev_priv(netdev);
7729 	struct e1000_hw *hw = &adapter->hw;
7730 	struct igb_q_vector *q_vector;
7731 	int i;
7732 
7733 	for (i = 0; i < adapter->num_q_vectors; i++) {
7734 		q_vector = adapter->q_vector[i];
7735 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7736 			wr32(E1000_EIMC, q_vector->eims_value);
7737 		else
7738 			igb_irq_disable(adapter);
7739 		napi_schedule(&q_vector->napi);
7740 	}
7741 }
7742 #endif /* CONFIG_NET_POLL_CONTROLLER */
7743 
7744 /**
7745  *  igb_io_error_detected - called when PCI error is detected
7746  *  @pdev: Pointer to PCI device
7747  *  @state: The current pci connection state
7748  *
7749  *  This function is called after a PCI bus error affecting
7750  *  this device has been detected.
7751  **/
7752 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7753 					      pci_channel_state_t state)
7754 {
7755 	struct net_device *netdev = pci_get_drvdata(pdev);
7756 	struct igb_adapter *adapter = netdev_priv(netdev);
7757 
7758 	netif_device_detach(netdev);
7759 
7760 	if (state == pci_channel_io_perm_failure)
7761 		return PCI_ERS_RESULT_DISCONNECT;
7762 
7763 	if (netif_running(netdev))
7764 		igb_down(adapter);
7765 	pci_disable_device(pdev);
7766 
7767 	/* Request a slot slot reset. */
7768 	return PCI_ERS_RESULT_NEED_RESET;
7769 }
7770 
7771 /**
7772  *  igb_io_slot_reset - called after the pci bus has been reset.
7773  *  @pdev: Pointer to PCI device
7774  *
7775  *  Restart the card from scratch, as if from a cold-boot. Implementation
7776  *  resembles the first-half of the igb_resume routine.
7777  **/
7778 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7779 {
7780 	struct net_device *netdev = pci_get_drvdata(pdev);
7781 	struct igb_adapter *adapter = netdev_priv(netdev);
7782 	struct e1000_hw *hw = &adapter->hw;
7783 	pci_ers_result_t result;
7784 	int err;
7785 
7786 	if (pci_enable_device_mem(pdev)) {
7787 		dev_err(&pdev->dev,
7788 			"Cannot re-enable PCI device after reset.\n");
7789 		result = PCI_ERS_RESULT_DISCONNECT;
7790 	} else {
7791 		pci_set_master(pdev);
7792 		pci_restore_state(pdev);
7793 		pci_save_state(pdev);
7794 
7795 		pci_enable_wake(pdev, PCI_D3hot, 0);
7796 		pci_enable_wake(pdev, PCI_D3cold, 0);
7797 
7798 		igb_reset(adapter);
7799 		wr32(E1000_WUS, ~0);
7800 		result = PCI_ERS_RESULT_RECOVERED;
7801 	}
7802 
7803 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7804 	if (err) {
7805 		dev_err(&pdev->dev,
7806 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7807 			err);
7808 		/* non-fatal, continue */
7809 	}
7810 
7811 	return result;
7812 }
7813 
7814 /**
7815  *  igb_io_resume - called when traffic can start flowing again.
7816  *  @pdev: Pointer to PCI device
7817  *
7818  *  This callback is called when the error recovery driver tells us that
7819  *  its OK to resume normal operation. Implementation resembles the
7820  *  second-half of the igb_resume routine.
7821  */
7822 static void igb_io_resume(struct pci_dev *pdev)
7823 {
7824 	struct net_device *netdev = pci_get_drvdata(pdev);
7825 	struct igb_adapter *adapter = netdev_priv(netdev);
7826 
7827 	if (netif_running(netdev)) {
7828 		if (igb_up(adapter)) {
7829 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7830 			return;
7831 		}
7832 	}
7833 
7834 	netif_device_attach(netdev);
7835 
7836 	/* let the f/w know that the h/w is now under the control of the
7837 	 * driver.
7838 	 */
7839 	igb_get_hw_control(adapter);
7840 }
7841 
7842 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7843 			     u8 qsel)
7844 {
7845 	struct e1000_hw *hw = &adapter->hw;
7846 	u32 rar_low, rar_high;
7847 
7848 	/* HW expects these in little endian so we reverse the byte order
7849 	 * from network order (big endian) to CPU endian
7850 	 */
7851 	rar_low = le32_to_cpup((__be32 *)(addr));
7852 	rar_high = le16_to_cpup((__be16 *)(addr + 4));
7853 
7854 	/* Indicate to hardware the Address is Valid. */
7855 	rar_high |= E1000_RAH_AV;
7856 
7857 	if (hw->mac.type == e1000_82575)
7858 		rar_high |= E1000_RAH_POOL_1 * qsel;
7859 	else
7860 		rar_high |= E1000_RAH_POOL_1 << qsel;
7861 
7862 	wr32(E1000_RAL(index), rar_low);
7863 	wrfl();
7864 	wr32(E1000_RAH(index), rar_high);
7865 	wrfl();
7866 }
7867 
7868 static int igb_set_vf_mac(struct igb_adapter *adapter,
7869 			  int vf, unsigned char *mac_addr)
7870 {
7871 	struct e1000_hw *hw = &adapter->hw;
7872 	/* VF MAC addresses start at end of receive addresses and moves
7873 	 * towards the first, as a result a collision should not be possible
7874 	 */
7875 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7876 
7877 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7878 
7879 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7880 
7881 	return 0;
7882 }
7883 
7884 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7885 {
7886 	struct igb_adapter *adapter = netdev_priv(netdev);
7887 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7888 		return -EINVAL;
7889 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7890 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7891 	dev_info(&adapter->pdev->dev,
7892 		 "Reload the VF driver to make this change effective.");
7893 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7894 		dev_warn(&adapter->pdev->dev,
7895 			 "The VF MAC address has been set, but the PF device is not up.\n");
7896 		dev_warn(&adapter->pdev->dev,
7897 			 "Bring the PF device up before attempting to use the VF device.\n");
7898 	}
7899 	return igb_set_vf_mac(adapter, vf, mac);
7900 }
7901 
7902 static int igb_link_mbps(int internal_link_speed)
7903 {
7904 	switch (internal_link_speed) {
7905 	case SPEED_100:
7906 		return 100;
7907 	case SPEED_1000:
7908 		return 1000;
7909 	default:
7910 		return 0;
7911 	}
7912 }
7913 
7914 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7915 				  int link_speed)
7916 {
7917 	int rf_dec, rf_int;
7918 	u32 bcnrc_val;
7919 
7920 	if (tx_rate != 0) {
7921 		/* Calculate the rate factor values to set */
7922 		rf_int = link_speed / tx_rate;
7923 		rf_dec = (link_speed - (rf_int * tx_rate));
7924 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7925 			 tx_rate;
7926 
7927 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7928 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7929 			      E1000_RTTBCNRC_RF_INT_MASK);
7930 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7931 	} else {
7932 		bcnrc_val = 0;
7933 	}
7934 
7935 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7936 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7937 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7938 	 */
7939 	wr32(E1000_RTTBCNRM, 0x14);
7940 	wr32(E1000_RTTBCNRC, bcnrc_val);
7941 }
7942 
7943 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7944 {
7945 	int actual_link_speed, i;
7946 	bool reset_rate = false;
7947 
7948 	/* VF TX rate limit was not set or not supported */
7949 	if ((adapter->vf_rate_link_speed == 0) ||
7950 	    (adapter->hw.mac.type != e1000_82576))
7951 		return;
7952 
7953 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7954 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7955 		reset_rate = true;
7956 		adapter->vf_rate_link_speed = 0;
7957 		dev_info(&adapter->pdev->dev,
7958 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7959 	}
7960 
7961 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7962 		if (reset_rate)
7963 			adapter->vf_data[i].tx_rate = 0;
7964 
7965 		igb_set_vf_rate_limit(&adapter->hw, i,
7966 				      adapter->vf_data[i].tx_rate,
7967 				      actual_link_speed);
7968 	}
7969 }
7970 
7971 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7972 			     int min_tx_rate, int max_tx_rate)
7973 {
7974 	struct igb_adapter *adapter = netdev_priv(netdev);
7975 	struct e1000_hw *hw = &adapter->hw;
7976 	int actual_link_speed;
7977 
7978 	if (hw->mac.type != e1000_82576)
7979 		return -EOPNOTSUPP;
7980 
7981 	if (min_tx_rate)
7982 		return -EINVAL;
7983 
7984 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7985 	if ((vf >= adapter->vfs_allocated_count) ||
7986 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7987 	    (max_tx_rate < 0) ||
7988 	    (max_tx_rate > actual_link_speed))
7989 		return -EINVAL;
7990 
7991 	adapter->vf_rate_link_speed = actual_link_speed;
7992 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7993 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7994 
7995 	return 0;
7996 }
7997 
7998 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7999 				   bool setting)
8000 {
8001 	struct igb_adapter *adapter = netdev_priv(netdev);
8002 	struct e1000_hw *hw = &adapter->hw;
8003 	u32 reg_val, reg_offset;
8004 
8005 	if (!adapter->vfs_allocated_count)
8006 		return -EOPNOTSUPP;
8007 
8008 	if (vf >= adapter->vfs_allocated_count)
8009 		return -EINVAL;
8010 
8011 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8012 	reg_val = rd32(reg_offset);
8013 	if (setting)
8014 		reg_val |= ((1 << vf) |
8015 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
8016 	else
8017 		reg_val &= ~((1 << vf) |
8018 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
8019 	wr32(reg_offset, reg_val);
8020 
8021 	adapter->vf_data[vf].spoofchk_enabled = setting;
8022 	return 0;
8023 }
8024 
8025 static int igb_ndo_get_vf_config(struct net_device *netdev,
8026 				 int vf, struct ifla_vf_info *ivi)
8027 {
8028 	struct igb_adapter *adapter = netdev_priv(netdev);
8029 	if (vf >= adapter->vfs_allocated_count)
8030 		return -EINVAL;
8031 	ivi->vf = vf;
8032 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8033 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8034 	ivi->min_tx_rate = 0;
8035 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
8036 	ivi->qos = adapter->vf_data[vf].pf_qos;
8037 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8038 	return 0;
8039 }
8040 
8041 static void igb_vmm_control(struct igb_adapter *adapter)
8042 {
8043 	struct e1000_hw *hw = &adapter->hw;
8044 	u32 reg;
8045 
8046 	switch (hw->mac.type) {
8047 	case e1000_82575:
8048 	case e1000_i210:
8049 	case e1000_i211:
8050 	case e1000_i354:
8051 	default:
8052 		/* replication is not supported for 82575 */
8053 		return;
8054 	case e1000_82576:
8055 		/* notify HW that the MAC is adding vlan tags */
8056 		reg = rd32(E1000_DTXCTL);
8057 		reg |= E1000_DTXCTL_VLAN_ADDED;
8058 		wr32(E1000_DTXCTL, reg);
8059 		/* Fall through */
8060 	case e1000_82580:
8061 		/* enable replication vlan tag stripping */
8062 		reg = rd32(E1000_RPLOLR);
8063 		reg |= E1000_RPLOLR_STRVLAN;
8064 		wr32(E1000_RPLOLR, reg);
8065 		/* Fall through */
8066 	case e1000_i350:
8067 		/* none of the above registers are supported by i350 */
8068 		break;
8069 	}
8070 
8071 	if (adapter->vfs_allocated_count) {
8072 		igb_vmdq_set_loopback_pf(hw, true);
8073 		igb_vmdq_set_replication_pf(hw, true);
8074 		igb_vmdq_set_anti_spoofing_pf(hw, true,
8075 					      adapter->vfs_allocated_count);
8076 	} else {
8077 		igb_vmdq_set_loopback_pf(hw, false);
8078 		igb_vmdq_set_replication_pf(hw, false);
8079 	}
8080 }
8081 
8082 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8083 {
8084 	struct e1000_hw *hw = &adapter->hw;
8085 	u32 dmac_thr;
8086 	u16 hwm;
8087 
8088 	if (hw->mac.type > e1000_82580) {
8089 		if (adapter->flags & IGB_FLAG_DMAC) {
8090 			u32 reg;
8091 
8092 			/* force threshold to 0. */
8093 			wr32(E1000_DMCTXTH, 0);
8094 
8095 			/* DMA Coalescing high water mark needs to be greater
8096 			 * than the Rx threshold. Set hwm to PBA - max frame
8097 			 * size in 16B units, capping it at PBA - 6KB.
8098 			 */
8099 			hwm = 64 * (pba - 6);
8100 			reg = rd32(E1000_FCRTC);
8101 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8102 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8103 				& E1000_FCRTC_RTH_COAL_MASK);
8104 			wr32(E1000_FCRTC, reg);
8105 
8106 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8107 			 * frame size, capping it at PBA - 10KB.
8108 			 */
8109 			dmac_thr = pba - 10;
8110 			reg = rd32(E1000_DMACR);
8111 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8112 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8113 				& E1000_DMACR_DMACTHR_MASK);
8114 
8115 			/* transition to L0x or L1 if available..*/
8116 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8117 
8118 			/* watchdog timer= +-1000 usec in 32usec intervals */
8119 			reg |= (1000 >> 5);
8120 
8121 			/* Disable BMC-to-OS Watchdog Enable */
8122 			if (hw->mac.type != e1000_i354)
8123 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8124 
8125 			wr32(E1000_DMACR, reg);
8126 
8127 			/* no lower threshold to disable
8128 			 * coalescing(smart fifb)-UTRESH=0
8129 			 */
8130 			wr32(E1000_DMCRTRH, 0);
8131 
8132 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8133 
8134 			wr32(E1000_DMCTLX, reg);
8135 
8136 			/* free space in tx packet buffer to wake from
8137 			 * DMA coal
8138 			 */
8139 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8140 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8141 
8142 			/* make low power state decision controlled
8143 			 * by DMA coal
8144 			 */
8145 			reg = rd32(E1000_PCIEMISC);
8146 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8147 			wr32(E1000_PCIEMISC, reg);
8148 		} /* endif adapter->dmac is not disabled */
8149 	} else if (hw->mac.type == e1000_82580) {
8150 		u32 reg = rd32(E1000_PCIEMISC);
8151 
8152 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8153 		wr32(E1000_DMACR, 0);
8154 	}
8155 }
8156 
8157 /**
8158  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8159  *  @hw: pointer to hardware structure
8160  *  @byte_offset: byte offset to read
8161  *  @dev_addr: device address
8162  *  @data: value read
8163  *
8164  *  Performs byte read operation over I2C interface at
8165  *  a specified device address.
8166  **/
8167 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8168 		      u8 dev_addr, u8 *data)
8169 {
8170 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8171 	struct i2c_client *this_client = adapter->i2c_client;
8172 	s32 status;
8173 	u16 swfw_mask = 0;
8174 
8175 	if (!this_client)
8176 		return E1000_ERR_I2C;
8177 
8178 	swfw_mask = E1000_SWFW_PHY0_SM;
8179 
8180 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8181 		return E1000_ERR_SWFW_SYNC;
8182 
8183 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8184 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8185 
8186 	if (status < 0)
8187 		return E1000_ERR_I2C;
8188 	else {
8189 		*data = status;
8190 		return 0;
8191 	}
8192 }
8193 
8194 /**
8195  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8196  *  @hw: pointer to hardware structure
8197  *  @byte_offset: byte offset to write
8198  *  @dev_addr: device address
8199  *  @data: value to write
8200  *
8201  *  Performs byte write operation over I2C interface at
8202  *  a specified device address.
8203  **/
8204 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8205 		       u8 dev_addr, u8 data)
8206 {
8207 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8208 	struct i2c_client *this_client = adapter->i2c_client;
8209 	s32 status;
8210 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8211 
8212 	if (!this_client)
8213 		return E1000_ERR_I2C;
8214 
8215 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8216 		return E1000_ERR_SWFW_SYNC;
8217 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8218 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8219 
8220 	if (status)
8221 		return E1000_ERR_I2C;
8222 	else
8223 		return 0;
8224 
8225 }
8226 
8227 int igb_reinit_queues(struct igb_adapter *adapter)
8228 {
8229 	struct net_device *netdev = adapter->netdev;
8230 	struct pci_dev *pdev = adapter->pdev;
8231 	int err = 0;
8232 
8233 	if (netif_running(netdev))
8234 		igb_close(netdev);
8235 
8236 	igb_reset_interrupt_capability(adapter);
8237 
8238 	if (igb_init_interrupt_scheme(adapter, true)) {
8239 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8240 		return -ENOMEM;
8241 	}
8242 
8243 	if (netif_running(netdev))
8244 		err = igb_open(netdev);
8245 
8246 	return err;
8247 }
8248 /* igb_main.c */
8249