1 /* Intel(R) Gigabit Ethernet Linux driver 2 * Copyright(c) 2007-2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * The full GNU General Public License is included in this distribution in 17 * the file called "COPYING". 18 * 19 * Contact Information: 20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/module.h> 27 #include <linux/types.h> 28 #include <linux/init.h> 29 #include <linux/bitops.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pagemap.h> 32 #include <linux/netdevice.h> 33 #include <linux/ipv6.h> 34 #include <linux/slab.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 #include <linux/net_tstamp.h> 38 #include <linux/mii.h> 39 #include <linux/ethtool.h> 40 #include <linux/if.h> 41 #include <linux/if_vlan.h> 42 #include <linux/pci.h> 43 #include <linux/pci-aspm.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/ip.h> 47 #include <linux/tcp.h> 48 #include <linux/sctp.h> 49 #include <linux/if_ether.h> 50 #include <linux/aer.h> 51 #include <linux/prefetch.h> 52 #include <linux/pm_runtime.h> 53 #ifdef CONFIG_IGB_DCA 54 #include <linux/dca.h> 55 #endif 56 #include <linux/i2c.h> 57 #include "igb.h" 58 59 #define MAJ 5 60 #define MIN 2 61 #define BUILD 15 62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ 63 __stringify(BUILD) "-k" 64 char igb_driver_name[] = "igb"; 65 char igb_driver_version[] = DRV_VERSION; 66 static const char igb_driver_string[] = 67 "Intel(R) Gigabit Ethernet Network Driver"; 68 static const char igb_copyright[] = 69 "Copyright (c) 2007-2014 Intel Corporation."; 70 71 static const struct e1000_info *igb_info_tbl[] = { 72 [board_82575] = &e1000_82575_info, 73 }; 74 75 static const struct pci_device_id igb_pci_tbl[] = { 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 111 /* required last entry */ 112 {0, } 113 }; 114 115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 116 117 static int igb_setup_all_tx_resources(struct igb_adapter *); 118 static int igb_setup_all_rx_resources(struct igb_adapter *); 119 static void igb_free_all_tx_resources(struct igb_adapter *); 120 static void igb_free_all_rx_resources(struct igb_adapter *); 121 static void igb_setup_mrqc(struct igb_adapter *); 122 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 123 static void igb_remove(struct pci_dev *pdev); 124 static int igb_sw_init(struct igb_adapter *); 125 static int igb_open(struct net_device *); 126 static int igb_close(struct net_device *); 127 static void igb_configure(struct igb_adapter *); 128 static void igb_configure_tx(struct igb_adapter *); 129 static void igb_configure_rx(struct igb_adapter *); 130 static void igb_clean_all_tx_rings(struct igb_adapter *); 131 static void igb_clean_all_rx_rings(struct igb_adapter *); 132 static void igb_clean_tx_ring(struct igb_ring *); 133 static void igb_clean_rx_ring(struct igb_ring *); 134 static void igb_set_rx_mode(struct net_device *); 135 static void igb_update_phy_info(unsigned long); 136 static void igb_watchdog(unsigned long); 137 static void igb_watchdog_task(struct work_struct *); 138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, 140 struct rtnl_link_stats64 *stats); 141 static int igb_change_mtu(struct net_device *, int); 142 static int igb_set_mac(struct net_device *, void *); 143 static void igb_set_uta(struct igb_adapter *adapter); 144 static irqreturn_t igb_intr(int irq, void *); 145 static irqreturn_t igb_intr_msi(int irq, void *); 146 static irqreturn_t igb_msix_other(int irq, void *); 147 static irqreturn_t igb_msix_ring(int irq, void *); 148 #ifdef CONFIG_IGB_DCA 149 static void igb_update_dca(struct igb_q_vector *); 150 static void igb_setup_dca(struct igb_adapter *); 151 #endif /* CONFIG_IGB_DCA */ 152 static int igb_poll(struct napi_struct *, int); 153 static bool igb_clean_tx_irq(struct igb_q_vector *); 154 static bool igb_clean_rx_irq(struct igb_q_vector *, int); 155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 156 static void igb_tx_timeout(struct net_device *); 157 static void igb_reset_task(struct work_struct *); 158 static void igb_vlan_mode(struct net_device *netdev, 159 netdev_features_t features); 160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 162 static void igb_restore_vlan(struct igb_adapter *); 163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); 164 static void igb_ping_all_vfs(struct igb_adapter *); 165 static void igb_msg_task(struct igb_adapter *); 166 static void igb_vmm_control(struct igb_adapter *); 167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 170 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 171 int vf, u16 vlan, u8 qos); 172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 174 bool setting); 175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 176 struct ifla_vf_info *ivi); 177 static void igb_check_vf_rate_limit(struct igb_adapter *); 178 179 #ifdef CONFIG_PCI_IOV 180 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 182 #endif 183 184 #ifdef CONFIG_PM 185 #ifdef CONFIG_PM_SLEEP 186 static int igb_suspend(struct device *); 187 #endif 188 static int igb_resume(struct device *); 189 static int igb_runtime_suspend(struct device *dev); 190 static int igb_runtime_resume(struct device *dev); 191 static int igb_runtime_idle(struct device *dev); 192 static const struct dev_pm_ops igb_pm_ops = { 193 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 194 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 195 igb_runtime_idle) 196 }; 197 #endif 198 static void igb_shutdown(struct pci_dev *); 199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 200 #ifdef CONFIG_IGB_DCA 201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 202 static struct notifier_block dca_notifier = { 203 .notifier_call = igb_notify_dca, 204 .next = NULL, 205 .priority = 0 206 }; 207 #endif 208 #ifdef CONFIG_NET_POLL_CONTROLLER 209 /* for netdump / net console */ 210 static void igb_netpoll(struct net_device *); 211 #endif 212 #ifdef CONFIG_PCI_IOV 213 static unsigned int max_vfs; 214 module_param(max_vfs, uint, 0); 215 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 216 #endif /* CONFIG_PCI_IOV */ 217 218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 219 pci_channel_state_t); 220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 221 static void igb_io_resume(struct pci_dev *); 222 223 static const struct pci_error_handlers igb_err_handler = { 224 .error_detected = igb_io_error_detected, 225 .slot_reset = igb_io_slot_reset, 226 .resume = igb_io_resume, 227 }; 228 229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 230 231 static struct pci_driver igb_driver = { 232 .name = igb_driver_name, 233 .id_table = igb_pci_tbl, 234 .probe = igb_probe, 235 .remove = igb_remove, 236 #ifdef CONFIG_PM 237 .driver.pm = &igb_pm_ops, 238 #endif 239 .shutdown = igb_shutdown, 240 .sriov_configure = igb_pci_sriov_configure, 241 .err_handler = &igb_err_handler 242 }; 243 244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 246 MODULE_LICENSE("GPL"); 247 MODULE_VERSION(DRV_VERSION); 248 249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 250 static int debug = -1; 251 module_param(debug, int, 0); 252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 253 254 struct igb_reg_info { 255 u32 ofs; 256 char *name; 257 }; 258 259 static const struct igb_reg_info igb_reg_info_tbl[] = { 260 261 /* General Registers */ 262 {E1000_CTRL, "CTRL"}, 263 {E1000_STATUS, "STATUS"}, 264 {E1000_CTRL_EXT, "CTRL_EXT"}, 265 266 /* Interrupt Registers */ 267 {E1000_ICR, "ICR"}, 268 269 /* RX Registers */ 270 {E1000_RCTL, "RCTL"}, 271 {E1000_RDLEN(0), "RDLEN"}, 272 {E1000_RDH(0), "RDH"}, 273 {E1000_RDT(0), "RDT"}, 274 {E1000_RXDCTL(0), "RXDCTL"}, 275 {E1000_RDBAL(0), "RDBAL"}, 276 {E1000_RDBAH(0), "RDBAH"}, 277 278 /* TX Registers */ 279 {E1000_TCTL, "TCTL"}, 280 {E1000_TDBAL(0), "TDBAL"}, 281 {E1000_TDBAH(0), "TDBAH"}, 282 {E1000_TDLEN(0), "TDLEN"}, 283 {E1000_TDH(0), "TDH"}, 284 {E1000_TDT(0), "TDT"}, 285 {E1000_TXDCTL(0), "TXDCTL"}, 286 {E1000_TDFH, "TDFH"}, 287 {E1000_TDFT, "TDFT"}, 288 {E1000_TDFHS, "TDFHS"}, 289 {E1000_TDFPC, "TDFPC"}, 290 291 /* List Terminator */ 292 {} 293 }; 294 295 /* igb_regdump - register printout routine */ 296 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 297 { 298 int n = 0; 299 char rname[16]; 300 u32 regs[8]; 301 302 switch (reginfo->ofs) { 303 case E1000_RDLEN(0): 304 for (n = 0; n < 4; n++) 305 regs[n] = rd32(E1000_RDLEN(n)); 306 break; 307 case E1000_RDH(0): 308 for (n = 0; n < 4; n++) 309 regs[n] = rd32(E1000_RDH(n)); 310 break; 311 case E1000_RDT(0): 312 for (n = 0; n < 4; n++) 313 regs[n] = rd32(E1000_RDT(n)); 314 break; 315 case E1000_RXDCTL(0): 316 for (n = 0; n < 4; n++) 317 regs[n] = rd32(E1000_RXDCTL(n)); 318 break; 319 case E1000_RDBAL(0): 320 for (n = 0; n < 4; n++) 321 regs[n] = rd32(E1000_RDBAL(n)); 322 break; 323 case E1000_RDBAH(0): 324 for (n = 0; n < 4; n++) 325 regs[n] = rd32(E1000_RDBAH(n)); 326 break; 327 case E1000_TDBAL(0): 328 for (n = 0; n < 4; n++) 329 regs[n] = rd32(E1000_RDBAL(n)); 330 break; 331 case E1000_TDBAH(0): 332 for (n = 0; n < 4; n++) 333 regs[n] = rd32(E1000_TDBAH(n)); 334 break; 335 case E1000_TDLEN(0): 336 for (n = 0; n < 4; n++) 337 regs[n] = rd32(E1000_TDLEN(n)); 338 break; 339 case E1000_TDH(0): 340 for (n = 0; n < 4; n++) 341 regs[n] = rd32(E1000_TDH(n)); 342 break; 343 case E1000_TDT(0): 344 for (n = 0; n < 4; n++) 345 regs[n] = rd32(E1000_TDT(n)); 346 break; 347 case E1000_TXDCTL(0): 348 for (n = 0; n < 4; n++) 349 regs[n] = rd32(E1000_TXDCTL(n)); 350 break; 351 default: 352 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 353 return; 354 } 355 356 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 357 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 358 regs[2], regs[3]); 359 } 360 361 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 362 static void igb_dump(struct igb_adapter *adapter) 363 { 364 struct net_device *netdev = adapter->netdev; 365 struct e1000_hw *hw = &adapter->hw; 366 struct igb_reg_info *reginfo; 367 struct igb_ring *tx_ring; 368 union e1000_adv_tx_desc *tx_desc; 369 struct my_u0 { u64 a; u64 b; } *u0; 370 struct igb_ring *rx_ring; 371 union e1000_adv_rx_desc *rx_desc; 372 u32 staterr; 373 u16 i, n; 374 375 if (!netif_msg_hw(adapter)) 376 return; 377 378 /* Print netdevice Info */ 379 if (netdev) { 380 dev_info(&adapter->pdev->dev, "Net device Info\n"); 381 pr_info("Device Name state trans_start last_rx\n"); 382 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 383 netdev->state, netdev->trans_start, netdev->last_rx); 384 } 385 386 /* Print Registers */ 387 dev_info(&adapter->pdev->dev, "Register Dump\n"); 388 pr_info(" Register Name Value\n"); 389 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 390 reginfo->name; reginfo++) { 391 igb_regdump(hw, reginfo); 392 } 393 394 /* Print TX Ring Summary */ 395 if (!netdev || !netif_running(netdev)) 396 goto exit; 397 398 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 399 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 400 for (n = 0; n < adapter->num_tx_queues; n++) { 401 struct igb_tx_buffer *buffer_info; 402 tx_ring = adapter->tx_ring[n]; 403 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 404 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 405 n, tx_ring->next_to_use, tx_ring->next_to_clean, 406 (u64)dma_unmap_addr(buffer_info, dma), 407 dma_unmap_len(buffer_info, len), 408 buffer_info->next_to_watch, 409 (u64)buffer_info->time_stamp); 410 } 411 412 /* Print TX Rings */ 413 if (!netif_msg_tx_done(adapter)) 414 goto rx_ring_summary; 415 416 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 417 418 /* Transmit Descriptor Formats 419 * 420 * Advanced Transmit Descriptor 421 * +--------------------------------------------------------------+ 422 * 0 | Buffer Address [63:0] | 423 * +--------------------------------------------------------------+ 424 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 425 * +--------------------------------------------------------------+ 426 * 63 46 45 40 39 38 36 35 32 31 24 15 0 427 */ 428 429 for (n = 0; n < adapter->num_tx_queues; n++) { 430 tx_ring = adapter->tx_ring[n]; 431 pr_info("------------------------------------\n"); 432 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 433 pr_info("------------------------------------\n"); 434 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 435 436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 437 const char *next_desc; 438 struct igb_tx_buffer *buffer_info; 439 tx_desc = IGB_TX_DESC(tx_ring, i); 440 buffer_info = &tx_ring->tx_buffer_info[i]; 441 u0 = (struct my_u0 *)tx_desc; 442 if (i == tx_ring->next_to_use && 443 i == tx_ring->next_to_clean) 444 next_desc = " NTC/U"; 445 else if (i == tx_ring->next_to_use) 446 next_desc = " NTU"; 447 else if (i == tx_ring->next_to_clean) 448 next_desc = " NTC"; 449 else 450 next_desc = ""; 451 452 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 453 i, le64_to_cpu(u0->a), 454 le64_to_cpu(u0->b), 455 (u64)dma_unmap_addr(buffer_info, dma), 456 dma_unmap_len(buffer_info, len), 457 buffer_info->next_to_watch, 458 (u64)buffer_info->time_stamp, 459 buffer_info->skb, next_desc); 460 461 if (netif_msg_pktdata(adapter) && buffer_info->skb) 462 print_hex_dump(KERN_INFO, "", 463 DUMP_PREFIX_ADDRESS, 464 16, 1, buffer_info->skb->data, 465 dma_unmap_len(buffer_info, len), 466 true); 467 } 468 } 469 470 /* Print RX Rings Summary */ 471 rx_ring_summary: 472 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 473 pr_info("Queue [NTU] [NTC]\n"); 474 for (n = 0; n < adapter->num_rx_queues; n++) { 475 rx_ring = adapter->rx_ring[n]; 476 pr_info(" %5d %5X %5X\n", 477 n, rx_ring->next_to_use, rx_ring->next_to_clean); 478 } 479 480 /* Print RX Rings */ 481 if (!netif_msg_rx_status(adapter)) 482 goto exit; 483 484 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 485 486 /* Advanced Receive Descriptor (Read) Format 487 * 63 1 0 488 * +-----------------------------------------------------+ 489 * 0 | Packet Buffer Address [63:1] |A0/NSE| 490 * +----------------------------------------------+------+ 491 * 8 | Header Buffer Address [63:1] | DD | 492 * +-----------------------------------------------------+ 493 * 494 * 495 * Advanced Receive Descriptor (Write-Back) Format 496 * 497 * 63 48 47 32 31 30 21 20 17 16 4 3 0 498 * +------------------------------------------------------+ 499 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 500 * | Checksum Ident | | | | Type | Type | 501 * +------------------------------------------------------+ 502 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 503 * +------------------------------------------------------+ 504 * 63 48 47 32 31 20 19 0 505 */ 506 507 for (n = 0; n < adapter->num_rx_queues; n++) { 508 rx_ring = adapter->rx_ring[n]; 509 pr_info("------------------------------------\n"); 510 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 511 pr_info("------------------------------------\n"); 512 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 513 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 514 515 for (i = 0; i < rx_ring->count; i++) { 516 const char *next_desc; 517 struct igb_rx_buffer *buffer_info; 518 buffer_info = &rx_ring->rx_buffer_info[i]; 519 rx_desc = IGB_RX_DESC(rx_ring, i); 520 u0 = (struct my_u0 *)rx_desc; 521 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 522 523 if (i == rx_ring->next_to_use) 524 next_desc = " NTU"; 525 else if (i == rx_ring->next_to_clean) 526 next_desc = " NTC"; 527 else 528 next_desc = ""; 529 530 if (staterr & E1000_RXD_STAT_DD) { 531 /* Descriptor Done */ 532 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 533 "RWB", i, 534 le64_to_cpu(u0->a), 535 le64_to_cpu(u0->b), 536 next_desc); 537 } else { 538 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 539 "R ", i, 540 le64_to_cpu(u0->a), 541 le64_to_cpu(u0->b), 542 (u64)buffer_info->dma, 543 next_desc); 544 545 if (netif_msg_pktdata(adapter) && 546 buffer_info->dma && buffer_info->page) { 547 print_hex_dump(KERN_INFO, "", 548 DUMP_PREFIX_ADDRESS, 549 16, 1, 550 page_address(buffer_info->page) + 551 buffer_info->page_offset, 552 IGB_RX_BUFSZ, true); 553 } 554 } 555 } 556 } 557 558 exit: 559 return; 560 } 561 562 /** 563 * igb_get_i2c_data - Reads the I2C SDA data bit 564 * @hw: pointer to hardware structure 565 * @i2cctl: Current value of I2CCTL register 566 * 567 * Returns the I2C data bit value 568 **/ 569 static int igb_get_i2c_data(void *data) 570 { 571 struct igb_adapter *adapter = (struct igb_adapter *)data; 572 struct e1000_hw *hw = &adapter->hw; 573 s32 i2cctl = rd32(E1000_I2CPARAMS); 574 575 return !!(i2cctl & E1000_I2C_DATA_IN); 576 } 577 578 /** 579 * igb_set_i2c_data - Sets the I2C data bit 580 * @data: pointer to hardware structure 581 * @state: I2C data value (0 or 1) to set 582 * 583 * Sets the I2C data bit 584 **/ 585 static void igb_set_i2c_data(void *data, int state) 586 { 587 struct igb_adapter *adapter = (struct igb_adapter *)data; 588 struct e1000_hw *hw = &adapter->hw; 589 s32 i2cctl = rd32(E1000_I2CPARAMS); 590 591 if (state) 592 i2cctl |= E1000_I2C_DATA_OUT; 593 else 594 i2cctl &= ~E1000_I2C_DATA_OUT; 595 596 i2cctl &= ~E1000_I2C_DATA_OE_N; 597 i2cctl |= E1000_I2C_CLK_OE_N; 598 wr32(E1000_I2CPARAMS, i2cctl); 599 wrfl(); 600 601 } 602 603 /** 604 * igb_set_i2c_clk - Sets the I2C SCL clock 605 * @data: pointer to hardware structure 606 * @state: state to set clock 607 * 608 * Sets the I2C clock line to state 609 **/ 610 static void igb_set_i2c_clk(void *data, int state) 611 { 612 struct igb_adapter *adapter = (struct igb_adapter *)data; 613 struct e1000_hw *hw = &adapter->hw; 614 s32 i2cctl = rd32(E1000_I2CPARAMS); 615 616 if (state) { 617 i2cctl |= E1000_I2C_CLK_OUT; 618 i2cctl &= ~E1000_I2C_CLK_OE_N; 619 } else { 620 i2cctl &= ~E1000_I2C_CLK_OUT; 621 i2cctl &= ~E1000_I2C_CLK_OE_N; 622 } 623 wr32(E1000_I2CPARAMS, i2cctl); 624 wrfl(); 625 } 626 627 /** 628 * igb_get_i2c_clk - Gets the I2C SCL clock state 629 * @data: pointer to hardware structure 630 * 631 * Gets the I2C clock state 632 **/ 633 static int igb_get_i2c_clk(void *data) 634 { 635 struct igb_adapter *adapter = (struct igb_adapter *)data; 636 struct e1000_hw *hw = &adapter->hw; 637 s32 i2cctl = rd32(E1000_I2CPARAMS); 638 639 return !!(i2cctl & E1000_I2C_CLK_IN); 640 } 641 642 static const struct i2c_algo_bit_data igb_i2c_algo = { 643 .setsda = igb_set_i2c_data, 644 .setscl = igb_set_i2c_clk, 645 .getsda = igb_get_i2c_data, 646 .getscl = igb_get_i2c_clk, 647 .udelay = 5, 648 .timeout = 20, 649 }; 650 651 /** 652 * igb_get_hw_dev - return device 653 * @hw: pointer to hardware structure 654 * 655 * used by hardware layer to print debugging information 656 **/ 657 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 658 { 659 struct igb_adapter *adapter = hw->back; 660 return adapter->netdev; 661 } 662 663 /** 664 * igb_init_module - Driver Registration Routine 665 * 666 * igb_init_module is the first routine called when the driver is 667 * loaded. All it does is register with the PCI subsystem. 668 **/ 669 static int __init igb_init_module(void) 670 { 671 int ret; 672 673 pr_info("%s - version %s\n", 674 igb_driver_string, igb_driver_version); 675 pr_info("%s\n", igb_copyright); 676 677 #ifdef CONFIG_IGB_DCA 678 dca_register_notify(&dca_notifier); 679 #endif 680 ret = pci_register_driver(&igb_driver); 681 return ret; 682 } 683 684 module_init(igb_init_module); 685 686 /** 687 * igb_exit_module - Driver Exit Cleanup Routine 688 * 689 * igb_exit_module is called just before the driver is removed 690 * from memory. 691 **/ 692 static void __exit igb_exit_module(void) 693 { 694 #ifdef CONFIG_IGB_DCA 695 dca_unregister_notify(&dca_notifier); 696 #endif 697 pci_unregister_driver(&igb_driver); 698 } 699 700 module_exit(igb_exit_module); 701 702 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 703 /** 704 * igb_cache_ring_register - Descriptor ring to register mapping 705 * @adapter: board private structure to initialize 706 * 707 * Once we know the feature-set enabled for the device, we'll cache 708 * the register offset the descriptor ring is assigned to. 709 **/ 710 static void igb_cache_ring_register(struct igb_adapter *adapter) 711 { 712 int i = 0, j = 0; 713 u32 rbase_offset = adapter->vfs_allocated_count; 714 715 switch (adapter->hw.mac.type) { 716 case e1000_82576: 717 /* The queues are allocated for virtualization such that VF 0 718 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 719 * In order to avoid collision we start at the first free queue 720 * and continue consuming queues in the same sequence 721 */ 722 if (adapter->vfs_allocated_count) { 723 for (; i < adapter->rss_queues; i++) 724 adapter->rx_ring[i]->reg_idx = rbase_offset + 725 Q_IDX_82576(i); 726 } 727 /* Fall through */ 728 case e1000_82575: 729 case e1000_82580: 730 case e1000_i350: 731 case e1000_i354: 732 case e1000_i210: 733 case e1000_i211: 734 /* Fall through */ 735 default: 736 for (; i < adapter->num_rx_queues; i++) 737 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 738 for (; j < adapter->num_tx_queues; j++) 739 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 740 break; 741 } 742 } 743 744 u32 igb_rd32(struct e1000_hw *hw, u32 reg) 745 { 746 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 747 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr); 748 u32 value = 0; 749 750 if (E1000_REMOVED(hw_addr)) 751 return ~value; 752 753 value = readl(&hw_addr[reg]); 754 755 /* reads should not return all F's */ 756 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 757 struct net_device *netdev = igb->netdev; 758 hw->hw_addr = NULL; 759 netif_device_detach(netdev); 760 netdev_err(netdev, "PCIe link lost, device now detached\n"); 761 } 762 763 return value; 764 } 765 766 /** 767 * igb_write_ivar - configure ivar for given MSI-X vector 768 * @hw: pointer to the HW structure 769 * @msix_vector: vector number we are allocating to a given ring 770 * @index: row index of IVAR register to write within IVAR table 771 * @offset: column offset of in IVAR, should be multiple of 8 772 * 773 * This function is intended to handle the writing of the IVAR register 774 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 775 * each containing an cause allocation for an Rx and Tx ring, and a 776 * variable number of rows depending on the number of queues supported. 777 **/ 778 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 779 int index, int offset) 780 { 781 u32 ivar = array_rd32(E1000_IVAR0, index); 782 783 /* clear any bits that are currently set */ 784 ivar &= ~((u32)0xFF << offset); 785 786 /* write vector and valid bit */ 787 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 788 789 array_wr32(E1000_IVAR0, index, ivar); 790 } 791 792 #define IGB_N0_QUEUE -1 793 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 794 { 795 struct igb_adapter *adapter = q_vector->adapter; 796 struct e1000_hw *hw = &adapter->hw; 797 int rx_queue = IGB_N0_QUEUE; 798 int tx_queue = IGB_N0_QUEUE; 799 u32 msixbm = 0; 800 801 if (q_vector->rx.ring) 802 rx_queue = q_vector->rx.ring->reg_idx; 803 if (q_vector->tx.ring) 804 tx_queue = q_vector->tx.ring->reg_idx; 805 806 switch (hw->mac.type) { 807 case e1000_82575: 808 /* The 82575 assigns vectors using a bitmask, which matches the 809 * bitmask for the EICR/EIMS/EIMC registers. To assign one 810 * or more queues to a vector, we write the appropriate bits 811 * into the MSIXBM register for that vector. 812 */ 813 if (rx_queue > IGB_N0_QUEUE) 814 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 815 if (tx_queue > IGB_N0_QUEUE) 816 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 817 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 818 msixbm |= E1000_EIMS_OTHER; 819 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 820 q_vector->eims_value = msixbm; 821 break; 822 case e1000_82576: 823 /* 82576 uses a table that essentially consists of 2 columns 824 * with 8 rows. The ordering is column-major so we use the 825 * lower 3 bits as the row index, and the 4th bit as the 826 * column offset. 827 */ 828 if (rx_queue > IGB_N0_QUEUE) 829 igb_write_ivar(hw, msix_vector, 830 rx_queue & 0x7, 831 (rx_queue & 0x8) << 1); 832 if (tx_queue > IGB_N0_QUEUE) 833 igb_write_ivar(hw, msix_vector, 834 tx_queue & 0x7, 835 ((tx_queue & 0x8) << 1) + 8); 836 q_vector->eims_value = 1 << msix_vector; 837 break; 838 case e1000_82580: 839 case e1000_i350: 840 case e1000_i354: 841 case e1000_i210: 842 case e1000_i211: 843 /* On 82580 and newer adapters the scheme is similar to 82576 844 * however instead of ordering column-major we have things 845 * ordered row-major. So we traverse the table by using 846 * bit 0 as the column offset, and the remaining bits as the 847 * row index. 848 */ 849 if (rx_queue > IGB_N0_QUEUE) 850 igb_write_ivar(hw, msix_vector, 851 rx_queue >> 1, 852 (rx_queue & 0x1) << 4); 853 if (tx_queue > IGB_N0_QUEUE) 854 igb_write_ivar(hw, msix_vector, 855 tx_queue >> 1, 856 ((tx_queue & 0x1) << 4) + 8); 857 q_vector->eims_value = 1 << msix_vector; 858 break; 859 default: 860 BUG(); 861 break; 862 } 863 864 /* add q_vector eims value to global eims_enable_mask */ 865 adapter->eims_enable_mask |= q_vector->eims_value; 866 867 /* configure q_vector to set itr on first interrupt */ 868 q_vector->set_itr = 1; 869 } 870 871 /** 872 * igb_configure_msix - Configure MSI-X hardware 873 * @adapter: board private structure to initialize 874 * 875 * igb_configure_msix sets up the hardware to properly 876 * generate MSI-X interrupts. 877 **/ 878 static void igb_configure_msix(struct igb_adapter *adapter) 879 { 880 u32 tmp; 881 int i, vector = 0; 882 struct e1000_hw *hw = &adapter->hw; 883 884 adapter->eims_enable_mask = 0; 885 886 /* set vector for other causes, i.e. link changes */ 887 switch (hw->mac.type) { 888 case e1000_82575: 889 tmp = rd32(E1000_CTRL_EXT); 890 /* enable MSI-X PBA support*/ 891 tmp |= E1000_CTRL_EXT_PBA_CLR; 892 893 /* Auto-Mask interrupts upon ICR read. */ 894 tmp |= E1000_CTRL_EXT_EIAME; 895 tmp |= E1000_CTRL_EXT_IRCA; 896 897 wr32(E1000_CTRL_EXT, tmp); 898 899 /* enable msix_other interrupt */ 900 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 901 adapter->eims_other = E1000_EIMS_OTHER; 902 903 break; 904 905 case e1000_82576: 906 case e1000_82580: 907 case e1000_i350: 908 case e1000_i354: 909 case e1000_i210: 910 case e1000_i211: 911 /* Turn on MSI-X capability first, or our settings 912 * won't stick. And it will take days to debug. 913 */ 914 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 915 E1000_GPIE_PBA | E1000_GPIE_EIAME | 916 E1000_GPIE_NSICR); 917 918 /* enable msix_other interrupt */ 919 adapter->eims_other = 1 << vector; 920 tmp = (vector++ | E1000_IVAR_VALID) << 8; 921 922 wr32(E1000_IVAR_MISC, tmp); 923 break; 924 default: 925 /* do nothing, since nothing else supports MSI-X */ 926 break; 927 } /* switch (hw->mac.type) */ 928 929 adapter->eims_enable_mask |= adapter->eims_other; 930 931 for (i = 0; i < adapter->num_q_vectors; i++) 932 igb_assign_vector(adapter->q_vector[i], vector++); 933 934 wrfl(); 935 } 936 937 /** 938 * igb_request_msix - Initialize MSI-X interrupts 939 * @adapter: board private structure to initialize 940 * 941 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 942 * kernel. 943 **/ 944 static int igb_request_msix(struct igb_adapter *adapter) 945 { 946 struct net_device *netdev = adapter->netdev; 947 struct e1000_hw *hw = &adapter->hw; 948 int i, err = 0, vector = 0, free_vector = 0; 949 950 err = request_irq(adapter->msix_entries[vector].vector, 951 igb_msix_other, 0, netdev->name, adapter); 952 if (err) 953 goto err_out; 954 955 for (i = 0; i < adapter->num_q_vectors; i++) { 956 struct igb_q_vector *q_vector = adapter->q_vector[i]; 957 958 vector++; 959 960 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); 961 962 if (q_vector->rx.ring && q_vector->tx.ring) 963 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 964 q_vector->rx.ring->queue_index); 965 else if (q_vector->tx.ring) 966 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 967 q_vector->tx.ring->queue_index); 968 else if (q_vector->rx.ring) 969 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 970 q_vector->rx.ring->queue_index); 971 else 972 sprintf(q_vector->name, "%s-unused", netdev->name); 973 974 err = request_irq(adapter->msix_entries[vector].vector, 975 igb_msix_ring, 0, q_vector->name, 976 q_vector); 977 if (err) 978 goto err_free; 979 } 980 981 igb_configure_msix(adapter); 982 return 0; 983 984 err_free: 985 /* free already assigned IRQs */ 986 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 987 988 vector--; 989 for (i = 0; i < vector; i++) { 990 free_irq(adapter->msix_entries[free_vector++].vector, 991 adapter->q_vector[i]); 992 } 993 err_out: 994 return err; 995 } 996 997 /** 998 * igb_free_q_vector - Free memory allocated for specific interrupt vector 999 * @adapter: board private structure to initialize 1000 * @v_idx: Index of vector to be freed 1001 * 1002 * This function frees the memory allocated to the q_vector. 1003 **/ 1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 1005 { 1006 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1007 1008 adapter->q_vector[v_idx] = NULL; 1009 1010 /* igb_get_stats64() might access the rings on this vector, 1011 * we must wait a grace period before freeing it. 1012 */ 1013 if (q_vector) 1014 kfree_rcu(q_vector, rcu); 1015 } 1016 1017 /** 1018 * igb_reset_q_vector - Reset config for interrupt vector 1019 * @adapter: board private structure to initialize 1020 * @v_idx: Index of vector to be reset 1021 * 1022 * If NAPI is enabled it will delete any references to the 1023 * NAPI struct. This is preparation for igb_free_q_vector. 1024 **/ 1025 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1026 { 1027 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1028 1029 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1030 * allocated. So, q_vector is NULL so we should stop here. 1031 */ 1032 if (!q_vector) 1033 return; 1034 1035 if (q_vector->tx.ring) 1036 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1037 1038 if (q_vector->rx.ring) 1039 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; 1040 1041 netif_napi_del(&q_vector->napi); 1042 1043 } 1044 1045 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1046 { 1047 int v_idx = adapter->num_q_vectors; 1048 1049 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1050 pci_disable_msix(adapter->pdev); 1051 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1052 pci_disable_msi(adapter->pdev); 1053 1054 while (v_idx--) 1055 igb_reset_q_vector(adapter, v_idx); 1056 } 1057 1058 /** 1059 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1060 * @adapter: board private structure to initialize 1061 * 1062 * This function frees the memory allocated to the q_vectors. In addition if 1063 * NAPI is enabled it will delete any references to the NAPI struct prior 1064 * to freeing the q_vector. 1065 **/ 1066 static void igb_free_q_vectors(struct igb_adapter *adapter) 1067 { 1068 int v_idx = adapter->num_q_vectors; 1069 1070 adapter->num_tx_queues = 0; 1071 adapter->num_rx_queues = 0; 1072 adapter->num_q_vectors = 0; 1073 1074 while (v_idx--) { 1075 igb_reset_q_vector(adapter, v_idx); 1076 igb_free_q_vector(adapter, v_idx); 1077 } 1078 } 1079 1080 /** 1081 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1082 * @adapter: board private structure to initialize 1083 * 1084 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1085 * MSI-X interrupts allocated. 1086 */ 1087 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1088 { 1089 igb_free_q_vectors(adapter); 1090 igb_reset_interrupt_capability(adapter); 1091 } 1092 1093 /** 1094 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1095 * @adapter: board private structure to initialize 1096 * @msix: boolean value of MSIX capability 1097 * 1098 * Attempt to configure interrupts using the best available 1099 * capabilities of the hardware and kernel. 1100 **/ 1101 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1102 { 1103 int err; 1104 int numvecs, i; 1105 1106 if (!msix) 1107 goto msi_only; 1108 adapter->flags |= IGB_FLAG_HAS_MSIX; 1109 1110 /* Number of supported queues. */ 1111 adapter->num_rx_queues = adapter->rss_queues; 1112 if (adapter->vfs_allocated_count) 1113 adapter->num_tx_queues = 1; 1114 else 1115 adapter->num_tx_queues = adapter->rss_queues; 1116 1117 /* start with one vector for every Rx queue */ 1118 numvecs = adapter->num_rx_queues; 1119 1120 /* if Tx handler is separate add 1 for every Tx queue */ 1121 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1122 numvecs += adapter->num_tx_queues; 1123 1124 /* store the number of vectors reserved for queues */ 1125 adapter->num_q_vectors = numvecs; 1126 1127 /* add 1 vector for link status interrupts */ 1128 numvecs++; 1129 for (i = 0; i < numvecs; i++) 1130 adapter->msix_entries[i].entry = i; 1131 1132 err = pci_enable_msix_range(adapter->pdev, 1133 adapter->msix_entries, 1134 numvecs, 1135 numvecs); 1136 if (err > 0) 1137 return; 1138 1139 igb_reset_interrupt_capability(adapter); 1140 1141 /* If we can't do MSI-X, try MSI */ 1142 msi_only: 1143 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1144 #ifdef CONFIG_PCI_IOV 1145 /* disable SR-IOV for non MSI-X configurations */ 1146 if (adapter->vf_data) { 1147 struct e1000_hw *hw = &adapter->hw; 1148 /* disable iov and allow time for transactions to clear */ 1149 pci_disable_sriov(adapter->pdev); 1150 msleep(500); 1151 1152 kfree(adapter->vf_data); 1153 adapter->vf_data = NULL; 1154 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1155 wrfl(); 1156 msleep(100); 1157 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1158 } 1159 #endif 1160 adapter->vfs_allocated_count = 0; 1161 adapter->rss_queues = 1; 1162 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1163 adapter->num_rx_queues = 1; 1164 adapter->num_tx_queues = 1; 1165 adapter->num_q_vectors = 1; 1166 if (!pci_enable_msi(adapter->pdev)) 1167 adapter->flags |= IGB_FLAG_HAS_MSI; 1168 } 1169 1170 static void igb_add_ring(struct igb_ring *ring, 1171 struct igb_ring_container *head) 1172 { 1173 head->ring = ring; 1174 head->count++; 1175 } 1176 1177 /** 1178 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1179 * @adapter: board private structure to initialize 1180 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1181 * @v_idx: index of vector in adapter struct 1182 * @txr_count: total number of Tx rings to allocate 1183 * @txr_idx: index of first Tx ring to allocate 1184 * @rxr_count: total number of Rx rings to allocate 1185 * @rxr_idx: index of first Rx ring to allocate 1186 * 1187 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1188 **/ 1189 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1190 int v_count, int v_idx, 1191 int txr_count, int txr_idx, 1192 int rxr_count, int rxr_idx) 1193 { 1194 struct igb_q_vector *q_vector; 1195 struct igb_ring *ring; 1196 int ring_count, size; 1197 1198 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1199 if (txr_count > 1 || rxr_count > 1) 1200 return -ENOMEM; 1201 1202 ring_count = txr_count + rxr_count; 1203 size = sizeof(struct igb_q_vector) + 1204 (sizeof(struct igb_ring) * ring_count); 1205 1206 /* allocate q_vector and rings */ 1207 q_vector = adapter->q_vector[v_idx]; 1208 if (!q_vector) 1209 q_vector = kzalloc(size, GFP_KERNEL); 1210 if (!q_vector) 1211 return -ENOMEM; 1212 1213 /* initialize NAPI */ 1214 netif_napi_add(adapter->netdev, &q_vector->napi, 1215 igb_poll, 64); 1216 1217 /* tie q_vector and adapter together */ 1218 adapter->q_vector[v_idx] = q_vector; 1219 q_vector->adapter = adapter; 1220 1221 /* initialize work limits */ 1222 q_vector->tx.work_limit = adapter->tx_work_limit; 1223 1224 /* initialize ITR configuration */ 1225 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); 1226 q_vector->itr_val = IGB_START_ITR; 1227 1228 /* initialize pointer to rings */ 1229 ring = q_vector->ring; 1230 1231 /* intialize ITR */ 1232 if (rxr_count) { 1233 /* rx or rx/tx vector */ 1234 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1235 q_vector->itr_val = adapter->rx_itr_setting; 1236 } else { 1237 /* tx only vector */ 1238 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1239 q_vector->itr_val = adapter->tx_itr_setting; 1240 } 1241 1242 if (txr_count) { 1243 /* assign generic ring traits */ 1244 ring->dev = &adapter->pdev->dev; 1245 ring->netdev = adapter->netdev; 1246 1247 /* configure backlink on ring */ 1248 ring->q_vector = q_vector; 1249 1250 /* update q_vector Tx values */ 1251 igb_add_ring(ring, &q_vector->tx); 1252 1253 /* For 82575, context index must be unique per ring. */ 1254 if (adapter->hw.mac.type == e1000_82575) 1255 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1256 1257 /* apply Tx specific ring traits */ 1258 ring->count = adapter->tx_ring_count; 1259 ring->queue_index = txr_idx; 1260 1261 u64_stats_init(&ring->tx_syncp); 1262 u64_stats_init(&ring->tx_syncp2); 1263 1264 /* assign ring to adapter */ 1265 adapter->tx_ring[txr_idx] = ring; 1266 1267 /* push pointer to next ring */ 1268 ring++; 1269 } 1270 1271 if (rxr_count) { 1272 /* assign generic ring traits */ 1273 ring->dev = &adapter->pdev->dev; 1274 ring->netdev = adapter->netdev; 1275 1276 /* configure backlink on ring */ 1277 ring->q_vector = q_vector; 1278 1279 /* update q_vector Rx values */ 1280 igb_add_ring(ring, &q_vector->rx); 1281 1282 /* set flag indicating ring supports SCTP checksum offload */ 1283 if (adapter->hw.mac.type >= e1000_82576) 1284 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1285 1286 /* On i350, i354, i210, and i211, loopback VLAN packets 1287 * have the tag byte-swapped. 1288 */ 1289 if (adapter->hw.mac.type >= e1000_i350) 1290 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1291 1292 /* apply Rx specific ring traits */ 1293 ring->count = adapter->rx_ring_count; 1294 ring->queue_index = rxr_idx; 1295 1296 u64_stats_init(&ring->rx_syncp); 1297 1298 /* assign ring to adapter */ 1299 adapter->rx_ring[rxr_idx] = ring; 1300 } 1301 1302 return 0; 1303 } 1304 1305 1306 /** 1307 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1308 * @adapter: board private structure to initialize 1309 * 1310 * We allocate one q_vector per queue interrupt. If allocation fails we 1311 * return -ENOMEM. 1312 **/ 1313 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1314 { 1315 int q_vectors = adapter->num_q_vectors; 1316 int rxr_remaining = adapter->num_rx_queues; 1317 int txr_remaining = adapter->num_tx_queues; 1318 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1319 int err; 1320 1321 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1322 for (; rxr_remaining; v_idx++) { 1323 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1324 0, 0, 1, rxr_idx); 1325 1326 if (err) 1327 goto err_out; 1328 1329 /* update counts and index */ 1330 rxr_remaining--; 1331 rxr_idx++; 1332 } 1333 } 1334 1335 for (; v_idx < q_vectors; v_idx++) { 1336 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1337 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1338 1339 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1340 tqpv, txr_idx, rqpv, rxr_idx); 1341 1342 if (err) 1343 goto err_out; 1344 1345 /* update counts and index */ 1346 rxr_remaining -= rqpv; 1347 txr_remaining -= tqpv; 1348 rxr_idx++; 1349 txr_idx++; 1350 } 1351 1352 return 0; 1353 1354 err_out: 1355 adapter->num_tx_queues = 0; 1356 adapter->num_rx_queues = 0; 1357 adapter->num_q_vectors = 0; 1358 1359 while (v_idx--) 1360 igb_free_q_vector(adapter, v_idx); 1361 1362 return -ENOMEM; 1363 } 1364 1365 /** 1366 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1367 * @adapter: board private structure to initialize 1368 * @msix: boolean value of MSIX capability 1369 * 1370 * This function initializes the interrupts and allocates all of the queues. 1371 **/ 1372 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1373 { 1374 struct pci_dev *pdev = adapter->pdev; 1375 int err; 1376 1377 igb_set_interrupt_capability(adapter, msix); 1378 1379 err = igb_alloc_q_vectors(adapter); 1380 if (err) { 1381 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1382 goto err_alloc_q_vectors; 1383 } 1384 1385 igb_cache_ring_register(adapter); 1386 1387 return 0; 1388 1389 err_alloc_q_vectors: 1390 igb_reset_interrupt_capability(adapter); 1391 return err; 1392 } 1393 1394 /** 1395 * igb_request_irq - initialize interrupts 1396 * @adapter: board private structure to initialize 1397 * 1398 * Attempts to configure interrupts using the best available 1399 * capabilities of the hardware and kernel. 1400 **/ 1401 static int igb_request_irq(struct igb_adapter *adapter) 1402 { 1403 struct net_device *netdev = adapter->netdev; 1404 struct pci_dev *pdev = adapter->pdev; 1405 int err = 0; 1406 1407 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1408 err = igb_request_msix(adapter); 1409 if (!err) 1410 goto request_done; 1411 /* fall back to MSI */ 1412 igb_free_all_tx_resources(adapter); 1413 igb_free_all_rx_resources(adapter); 1414 1415 igb_clear_interrupt_scheme(adapter); 1416 err = igb_init_interrupt_scheme(adapter, false); 1417 if (err) 1418 goto request_done; 1419 1420 igb_setup_all_tx_resources(adapter); 1421 igb_setup_all_rx_resources(adapter); 1422 igb_configure(adapter); 1423 } 1424 1425 igb_assign_vector(adapter->q_vector[0], 0); 1426 1427 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1428 err = request_irq(pdev->irq, igb_intr_msi, 0, 1429 netdev->name, adapter); 1430 if (!err) 1431 goto request_done; 1432 1433 /* fall back to legacy interrupts */ 1434 igb_reset_interrupt_capability(adapter); 1435 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1436 } 1437 1438 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1439 netdev->name, adapter); 1440 1441 if (err) 1442 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1443 err); 1444 1445 request_done: 1446 return err; 1447 } 1448 1449 static void igb_free_irq(struct igb_adapter *adapter) 1450 { 1451 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1452 int vector = 0, i; 1453 1454 free_irq(adapter->msix_entries[vector++].vector, adapter); 1455 1456 for (i = 0; i < adapter->num_q_vectors; i++) 1457 free_irq(adapter->msix_entries[vector++].vector, 1458 adapter->q_vector[i]); 1459 } else { 1460 free_irq(adapter->pdev->irq, adapter); 1461 } 1462 } 1463 1464 /** 1465 * igb_irq_disable - Mask off interrupt generation on the NIC 1466 * @adapter: board private structure 1467 **/ 1468 static void igb_irq_disable(struct igb_adapter *adapter) 1469 { 1470 struct e1000_hw *hw = &adapter->hw; 1471 1472 /* we need to be careful when disabling interrupts. The VFs are also 1473 * mapped into these registers and so clearing the bits can cause 1474 * issues on the VF drivers so we only need to clear what we set 1475 */ 1476 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1477 u32 regval = rd32(E1000_EIAM); 1478 1479 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1480 wr32(E1000_EIMC, adapter->eims_enable_mask); 1481 regval = rd32(E1000_EIAC); 1482 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1483 } 1484 1485 wr32(E1000_IAM, 0); 1486 wr32(E1000_IMC, ~0); 1487 wrfl(); 1488 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1489 int i; 1490 1491 for (i = 0; i < adapter->num_q_vectors; i++) 1492 synchronize_irq(adapter->msix_entries[i].vector); 1493 } else { 1494 synchronize_irq(adapter->pdev->irq); 1495 } 1496 } 1497 1498 /** 1499 * igb_irq_enable - Enable default interrupt generation settings 1500 * @adapter: board private structure 1501 **/ 1502 static void igb_irq_enable(struct igb_adapter *adapter) 1503 { 1504 struct e1000_hw *hw = &adapter->hw; 1505 1506 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1507 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1508 u32 regval = rd32(E1000_EIAC); 1509 1510 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1511 regval = rd32(E1000_EIAM); 1512 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1513 wr32(E1000_EIMS, adapter->eims_enable_mask); 1514 if (adapter->vfs_allocated_count) { 1515 wr32(E1000_MBVFIMR, 0xFF); 1516 ims |= E1000_IMS_VMMB; 1517 } 1518 wr32(E1000_IMS, ims); 1519 } else { 1520 wr32(E1000_IMS, IMS_ENABLE_MASK | 1521 E1000_IMS_DRSTA); 1522 wr32(E1000_IAM, IMS_ENABLE_MASK | 1523 E1000_IMS_DRSTA); 1524 } 1525 } 1526 1527 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1528 { 1529 struct e1000_hw *hw = &adapter->hw; 1530 u16 vid = adapter->hw.mng_cookie.vlan_id; 1531 u16 old_vid = adapter->mng_vlan_id; 1532 1533 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1534 /* add VID to filter table */ 1535 igb_vfta_set(hw, vid, true); 1536 adapter->mng_vlan_id = vid; 1537 } else { 1538 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1539 } 1540 1541 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1542 (vid != old_vid) && 1543 !test_bit(old_vid, adapter->active_vlans)) { 1544 /* remove VID from filter table */ 1545 igb_vfta_set(hw, old_vid, false); 1546 } 1547 } 1548 1549 /** 1550 * igb_release_hw_control - release control of the h/w to f/w 1551 * @adapter: address of board private structure 1552 * 1553 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1554 * For ASF and Pass Through versions of f/w this means that the 1555 * driver is no longer loaded. 1556 **/ 1557 static void igb_release_hw_control(struct igb_adapter *adapter) 1558 { 1559 struct e1000_hw *hw = &adapter->hw; 1560 u32 ctrl_ext; 1561 1562 /* Let firmware take over control of h/w */ 1563 ctrl_ext = rd32(E1000_CTRL_EXT); 1564 wr32(E1000_CTRL_EXT, 1565 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1566 } 1567 1568 /** 1569 * igb_get_hw_control - get control of the h/w from f/w 1570 * @adapter: address of board private structure 1571 * 1572 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1573 * For ASF and Pass Through versions of f/w this means that 1574 * the driver is loaded. 1575 **/ 1576 static void igb_get_hw_control(struct igb_adapter *adapter) 1577 { 1578 struct e1000_hw *hw = &adapter->hw; 1579 u32 ctrl_ext; 1580 1581 /* Let firmware know the driver has taken over */ 1582 ctrl_ext = rd32(E1000_CTRL_EXT); 1583 wr32(E1000_CTRL_EXT, 1584 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1585 } 1586 1587 /** 1588 * igb_configure - configure the hardware for RX and TX 1589 * @adapter: private board structure 1590 **/ 1591 static void igb_configure(struct igb_adapter *adapter) 1592 { 1593 struct net_device *netdev = adapter->netdev; 1594 int i; 1595 1596 igb_get_hw_control(adapter); 1597 igb_set_rx_mode(netdev); 1598 1599 igb_restore_vlan(adapter); 1600 1601 igb_setup_tctl(adapter); 1602 igb_setup_mrqc(adapter); 1603 igb_setup_rctl(adapter); 1604 1605 igb_configure_tx(adapter); 1606 igb_configure_rx(adapter); 1607 1608 igb_rx_fifo_flush_82575(&adapter->hw); 1609 1610 /* call igb_desc_unused which always leaves 1611 * at least 1 descriptor unused to make sure 1612 * next_to_use != next_to_clean 1613 */ 1614 for (i = 0; i < adapter->num_rx_queues; i++) { 1615 struct igb_ring *ring = adapter->rx_ring[i]; 1616 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 1617 } 1618 } 1619 1620 /** 1621 * igb_power_up_link - Power up the phy/serdes link 1622 * @adapter: address of board private structure 1623 **/ 1624 void igb_power_up_link(struct igb_adapter *adapter) 1625 { 1626 igb_reset_phy(&adapter->hw); 1627 1628 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1629 igb_power_up_phy_copper(&adapter->hw); 1630 else 1631 igb_power_up_serdes_link_82575(&adapter->hw); 1632 1633 igb_setup_link(&adapter->hw); 1634 } 1635 1636 /** 1637 * igb_power_down_link - Power down the phy/serdes link 1638 * @adapter: address of board private structure 1639 */ 1640 static void igb_power_down_link(struct igb_adapter *adapter) 1641 { 1642 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1643 igb_power_down_phy_copper_82575(&adapter->hw); 1644 else 1645 igb_shutdown_serdes_link_82575(&adapter->hw); 1646 } 1647 1648 /** 1649 * Detect and switch function for Media Auto Sense 1650 * @adapter: address of the board private structure 1651 **/ 1652 static void igb_check_swap_media(struct igb_adapter *adapter) 1653 { 1654 struct e1000_hw *hw = &adapter->hw; 1655 u32 ctrl_ext, connsw; 1656 bool swap_now = false; 1657 1658 ctrl_ext = rd32(E1000_CTRL_EXT); 1659 connsw = rd32(E1000_CONNSW); 1660 1661 /* need to live swap if current media is copper and we have fiber/serdes 1662 * to go to. 1663 */ 1664 1665 if ((hw->phy.media_type == e1000_media_type_copper) && 1666 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 1667 swap_now = true; 1668 } else if (!(connsw & E1000_CONNSW_SERDESD)) { 1669 /* copper signal takes time to appear */ 1670 if (adapter->copper_tries < 4) { 1671 adapter->copper_tries++; 1672 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 1673 wr32(E1000_CONNSW, connsw); 1674 return; 1675 } else { 1676 adapter->copper_tries = 0; 1677 if ((connsw & E1000_CONNSW_PHYSD) && 1678 (!(connsw & E1000_CONNSW_PHY_PDN))) { 1679 swap_now = true; 1680 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 1681 wr32(E1000_CONNSW, connsw); 1682 } 1683 } 1684 } 1685 1686 if (!swap_now) 1687 return; 1688 1689 switch (hw->phy.media_type) { 1690 case e1000_media_type_copper: 1691 netdev_info(adapter->netdev, 1692 "MAS: changing media to fiber/serdes\n"); 1693 ctrl_ext |= 1694 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1695 adapter->flags |= IGB_FLAG_MEDIA_RESET; 1696 adapter->copper_tries = 0; 1697 break; 1698 case e1000_media_type_internal_serdes: 1699 case e1000_media_type_fiber: 1700 netdev_info(adapter->netdev, 1701 "MAS: changing media to copper\n"); 1702 ctrl_ext &= 1703 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1704 adapter->flags |= IGB_FLAG_MEDIA_RESET; 1705 break; 1706 default: 1707 /* shouldn't get here during regular operation */ 1708 netdev_err(adapter->netdev, 1709 "AMS: Invalid media type found, returning\n"); 1710 break; 1711 } 1712 wr32(E1000_CTRL_EXT, ctrl_ext); 1713 } 1714 1715 /** 1716 * igb_up - Open the interface and prepare it to handle traffic 1717 * @adapter: board private structure 1718 **/ 1719 int igb_up(struct igb_adapter *adapter) 1720 { 1721 struct e1000_hw *hw = &adapter->hw; 1722 int i; 1723 1724 /* hardware has been reset, we need to reload some things */ 1725 igb_configure(adapter); 1726 1727 clear_bit(__IGB_DOWN, &adapter->state); 1728 1729 for (i = 0; i < adapter->num_q_vectors; i++) 1730 napi_enable(&(adapter->q_vector[i]->napi)); 1731 1732 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1733 igb_configure_msix(adapter); 1734 else 1735 igb_assign_vector(adapter->q_vector[0], 0); 1736 1737 /* Clear any pending interrupts. */ 1738 rd32(E1000_ICR); 1739 igb_irq_enable(adapter); 1740 1741 /* notify VFs that reset has been completed */ 1742 if (adapter->vfs_allocated_count) { 1743 u32 reg_data = rd32(E1000_CTRL_EXT); 1744 1745 reg_data |= E1000_CTRL_EXT_PFRSTD; 1746 wr32(E1000_CTRL_EXT, reg_data); 1747 } 1748 1749 netif_tx_start_all_queues(adapter->netdev); 1750 1751 /* start the watchdog. */ 1752 hw->mac.get_link_status = 1; 1753 schedule_work(&adapter->watchdog_task); 1754 1755 if ((adapter->flags & IGB_FLAG_EEE) && 1756 (!hw->dev_spec._82575.eee_disable)) 1757 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 1758 1759 return 0; 1760 } 1761 1762 void igb_down(struct igb_adapter *adapter) 1763 { 1764 struct net_device *netdev = adapter->netdev; 1765 struct e1000_hw *hw = &adapter->hw; 1766 u32 tctl, rctl; 1767 int i; 1768 1769 /* signal that we're down so the interrupt handler does not 1770 * reschedule our watchdog timer 1771 */ 1772 set_bit(__IGB_DOWN, &adapter->state); 1773 1774 /* disable receives in the hardware */ 1775 rctl = rd32(E1000_RCTL); 1776 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 1777 /* flush and sleep below */ 1778 1779 netif_tx_stop_all_queues(netdev); 1780 1781 /* disable transmits in the hardware */ 1782 tctl = rd32(E1000_TCTL); 1783 tctl &= ~E1000_TCTL_EN; 1784 wr32(E1000_TCTL, tctl); 1785 /* flush both disables and wait for them to finish */ 1786 wrfl(); 1787 usleep_range(10000, 11000); 1788 1789 igb_irq_disable(adapter); 1790 1791 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 1792 1793 for (i = 0; i < adapter->num_q_vectors; i++) { 1794 if (adapter->q_vector[i]) { 1795 napi_synchronize(&adapter->q_vector[i]->napi); 1796 napi_disable(&adapter->q_vector[i]->napi); 1797 } 1798 } 1799 1800 1801 del_timer_sync(&adapter->watchdog_timer); 1802 del_timer_sync(&adapter->phy_info_timer); 1803 1804 netif_carrier_off(netdev); 1805 1806 /* record the stats before reset*/ 1807 spin_lock(&adapter->stats64_lock); 1808 igb_update_stats(adapter, &adapter->stats64); 1809 spin_unlock(&adapter->stats64_lock); 1810 1811 adapter->link_speed = 0; 1812 adapter->link_duplex = 0; 1813 1814 if (!pci_channel_offline(adapter->pdev)) 1815 igb_reset(adapter); 1816 igb_clean_all_tx_rings(adapter); 1817 igb_clean_all_rx_rings(adapter); 1818 #ifdef CONFIG_IGB_DCA 1819 1820 /* since we reset the hardware DCA settings were cleared */ 1821 igb_setup_dca(adapter); 1822 #endif 1823 } 1824 1825 void igb_reinit_locked(struct igb_adapter *adapter) 1826 { 1827 WARN_ON(in_interrupt()); 1828 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 1829 usleep_range(1000, 2000); 1830 igb_down(adapter); 1831 igb_up(adapter); 1832 clear_bit(__IGB_RESETTING, &adapter->state); 1833 } 1834 1835 /** igb_enable_mas - Media Autosense re-enable after swap 1836 * 1837 * @adapter: adapter struct 1838 **/ 1839 static s32 igb_enable_mas(struct igb_adapter *adapter) 1840 { 1841 struct e1000_hw *hw = &adapter->hw; 1842 u32 connsw; 1843 s32 ret_val = 0; 1844 1845 connsw = rd32(E1000_CONNSW); 1846 if (!(hw->phy.media_type == e1000_media_type_copper)) 1847 return ret_val; 1848 1849 /* configure for SerDes media detect */ 1850 if (!(connsw & E1000_CONNSW_SERDESD)) { 1851 connsw |= E1000_CONNSW_ENRGSRC; 1852 connsw |= E1000_CONNSW_AUTOSENSE_EN; 1853 wr32(E1000_CONNSW, connsw); 1854 wrfl(); 1855 } else if (connsw & E1000_CONNSW_SERDESD) { 1856 /* already SerDes, no need to enable anything */ 1857 return ret_val; 1858 } else { 1859 netdev_info(adapter->netdev, 1860 "MAS: Unable to configure feature, disabling..\n"); 1861 adapter->flags &= ~IGB_FLAG_MAS_ENABLE; 1862 } 1863 return ret_val; 1864 } 1865 1866 void igb_reset(struct igb_adapter *adapter) 1867 { 1868 struct pci_dev *pdev = adapter->pdev; 1869 struct e1000_hw *hw = &adapter->hw; 1870 struct e1000_mac_info *mac = &hw->mac; 1871 struct e1000_fc_info *fc = &hw->fc; 1872 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; 1873 1874 /* Repartition Pba for greater than 9k mtu 1875 * To take effect CTRL.RST is required. 1876 */ 1877 switch (mac->type) { 1878 case e1000_i350: 1879 case e1000_i354: 1880 case e1000_82580: 1881 pba = rd32(E1000_RXPBS); 1882 pba = igb_rxpbs_adjust_82580(pba); 1883 break; 1884 case e1000_82576: 1885 pba = rd32(E1000_RXPBS); 1886 pba &= E1000_RXPBS_SIZE_MASK_82576; 1887 break; 1888 case e1000_82575: 1889 case e1000_i210: 1890 case e1000_i211: 1891 default: 1892 pba = E1000_PBA_34K; 1893 break; 1894 } 1895 1896 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && 1897 (mac->type < e1000_82576)) { 1898 /* adjust PBA for jumbo frames */ 1899 wr32(E1000_PBA, pba); 1900 1901 /* To maintain wire speed transmits, the Tx FIFO should be 1902 * large enough to accommodate two full transmit packets, 1903 * rounded up to the next 1KB and expressed in KB. Likewise, 1904 * the Rx FIFO should be large enough to accommodate at least 1905 * one full receive packet and is similarly rounded up and 1906 * expressed in KB. 1907 */ 1908 pba = rd32(E1000_PBA); 1909 /* upper 16 bits has Tx packet buffer allocation size in KB */ 1910 tx_space = pba >> 16; 1911 /* lower 16 bits has Rx packet buffer allocation size in KB */ 1912 pba &= 0xffff; 1913 /* the Tx fifo also stores 16 bytes of information about the Tx 1914 * but don't include ethernet FCS because hardware appends it 1915 */ 1916 min_tx_space = (adapter->max_frame_size + 1917 sizeof(union e1000_adv_tx_desc) - 1918 ETH_FCS_LEN) * 2; 1919 min_tx_space = ALIGN(min_tx_space, 1024); 1920 min_tx_space >>= 10; 1921 /* software strips receive CRC, so leave room for it */ 1922 min_rx_space = adapter->max_frame_size; 1923 min_rx_space = ALIGN(min_rx_space, 1024); 1924 min_rx_space >>= 10; 1925 1926 /* If current Tx allocation is less than the min Tx FIFO size, 1927 * and the min Tx FIFO size is less than the current Rx FIFO 1928 * allocation, take space away from current Rx allocation 1929 */ 1930 if (tx_space < min_tx_space && 1931 ((min_tx_space - tx_space) < pba)) { 1932 pba = pba - (min_tx_space - tx_space); 1933 1934 /* if short on Rx space, Rx wins and must trump Tx 1935 * adjustment 1936 */ 1937 if (pba < min_rx_space) 1938 pba = min_rx_space; 1939 } 1940 wr32(E1000_PBA, pba); 1941 } 1942 1943 /* flow control settings */ 1944 /* The high water mark must be low enough to fit one full frame 1945 * (or the size used for early receive) above it in the Rx FIFO. 1946 * Set it to the lower of: 1947 * - 90% of the Rx FIFO size, or 1948 * - the full Rx FIFO size minus one full frame 1949 */ 1950 hwm = min(((pba << 10) * 9 / 10), 1951 ((pba << 10) - 2 * adapter->max_frame_size)); 1952 1953 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 1954 fc->low_water = fc->high_water - 16; 1955 fc->pause_time = 0xFFFF; 1956 fc->send_xon = 1; 1957 fc->current_mode = fc->requested_mode; 1958 1959 /* disable receive for all VFs and wait one second */ 1960 if (adapter->vfs_allocated_count) { 1961 int i; 1962 1963 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 1964 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 1965 1966 /* ping all the active vfs to let them know we are going down */ 1967 igb_ping_all_vfs(adapter); 1968 1969 /* disable transmits and receives */ 1970 wr32(E1000_VFRE, 0); 1971 wr32(E1000_VFTE, 0); 1972 } 1973 1974 /* Allow time for pending master requests to run */ 1975 hw->mac.ops.reset_hw(hw); 1976 wr32(E1000_WUC, 0); 1977 1978 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 1979 /* need to resetup here after media swap */ 1980 adapter->ei.get_invariants(hw); 1981 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 1982 } 1983 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 1984 if (igb_enable_mas(adapter)) 1985 dev_err(&pdev->dev, 1986 "Error enabling Media Auto Sense\n"); 1987 } 1988 if (hw->mac.ops.init_hw(hw)) 1989 dev_err(&pdev->dev, "Hardware Error\n"); 1990 1991 /* Flow control settings reset on hardware reset, so guarantee flow 1992 * control is off when forcing speed. 1993 */ 1994 if (!hw->mac.autoneg) 1995 igb_force_mac_fc(hw); 1996 1997 igb_init_dmac(adapter, pba); 1998 #ifdef CONFIG_IGB_HWMON 1999 /* Re-initialize the thermal sensor on i350 devices. */ 2000 if (!test_bit(__IGB_DOWN, &adapter->state)) { 2001 if (mac->type == e1000_i350 && hw->bus.func == 0) { 2002 /* If present, re-initialize the external thermal sensor 2003 * interface. 2004 */ 2005 if (adapter->ets) 2006 mac->ops.init_thermal_sensor_thresh(hw); 2007 } 2008 } 2009 #endif 2010 /* Re-establish EEE setting */ 2011 if (hw->phy.media_type == e1000_media_type_copper) { 2012 switch (mac->type) { 2013 case e1000_i350: 2014 case e1000_i210: 2015 case e1000_i211: 2016 igb_set_eee_i350(hw, true, true); 2017 break; 2018 case e1000_i354: 2019 igb_set_eee_i354(hw, true, true); 2020 break; 2021 default: 2022 break; 2023 } 2024 } 2025 if (!netif_running(adapter->netdev)) 2026 igb_power_down_link(adapter); 2027 2028 igb_update_mng_vlan(adapter); 2029 2030 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2031 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2032 2033 /* Re-enable PTP, where applicable. */ 2034 igb_ptp_reset(adapter); 2035 2036 igb_get_phy_info(hw); 2037 } 2038 2039 static netdev_features_t igb_fix_features(struct net_device *netdev, 2040 netdev_features_t features) 2041 { 2042 /* Since there is no support for separate Rx/Tx vlan accel 2043 * enable/disable make sure Tx flag is always in same state as Rx. 2044 */ 2045 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2046 features |= NETIF_F_HW_VLAN_CTAG_TX; 2047 else 2048 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2049 2050 return features; 2051 } 2052 2053 static int igb_set_features(struct net_device *netdev, 2054 netdev_features_t features) 2055 { 2056 netdev_features_t changed = netdev->features ^ features; 2057 struct igb_adapter *adapter = netdev_priv(netdev); 2058 2059 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2060 igb_vlan_mode(netdev, features); 2061 2062 if (!(changed & NETIF_F_RXALL)) 2063 return 0; 2064 2065 netdev->features = features; 2066 2067 if (netif_running(netdev)) 2068 igb_reinit_locked(adapter); 2069 else 2070 igb_reset(adapter); 2071 2072 return 0; 2073 } 2074 2075 static const struct net_device_ops igb_netdev_ops = { 2076 .ndo_open = igb_open, 2077 .ndo_stop = igb_close, 2078 .ndo_start_xmit = igb_xmit_frame, 2079 .ndo_get_stats64 = igb_get_stats64, 2080 .ndo_set_rx_mode = igb_set_rx_mode, 2081 .ndo_set_mac_address = igb_set_mac, 2082 .ndo_change_mtu = igb_change_mtu, 2083 .ndo_do_ioctl = igb_ioctl, 2084 .ndo_tx_timeout = igb_tx_timeout, 2085 .ndo_validate_addr = eth_validate_addr, 2086 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2087 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 2088 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 2089 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 2090 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 2091 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 2092 .ndo_get_vf_config = igb_ndo_get_vf_config, 2093 #ifdef CONFIG_NET_POLL_CONTROLLER 2094 .ndo_poll_controller = igb_netpoll, 2095 #endif 2096 .ndo_fix_features = igb_fix_features, 2097 .ndo_set_features = igb_set_features, 2098 }; 2099 2100 /** 2101 * igb_set_fw_version - Configure version string for ethtool 2102 * @adapter: adapter struct 2103 **/ 2104 void igb_set_fw_version(struct igb_adapter *adapter) 2105 { 2106 struct e1000_hw *hw = &adapter->hw; 2107 struct e1000_fw_version fw; 2108 2109 igb_get_fw_version(hw, &fw); 2110 2111 switch (hw->mac.type) { 2112 case e1000_i210: 2113 case e1000_i211: 2114 if (!(igb_get_flash_presence_i210(hw))) { 2115 snprintf(adapter->fw_version, 2116 sizeof(adapter->fw_version), 2117 "%2d.%2d-%d", 2118 fw.invm_major, fw.invm_minor, 2119 fw.invm_img_type); 2120 break; 2121 } 2122 /* fall through */ 2123 default: 2124 /* if option is rom valid, display its version too */ 2125 if (fw.or_valid) { 2126 snprintf(adapter->fw_version, 2127 sizeof(adapter->fw_version), 2128 "%d.%d, 0x%08x, %d.%d.%d", 2129 fw.eep_major, fw.eep_minor, fw.etrack_id, 2130 fw.or_major, fw.or_build, fw.or_patch); 2131 /* no option rom */ 2132 } else if (fw.etrack_id != 0X0000) { 2133 snprintf(adapter->fw_version, 2134 sizeof(adapter->fw_version), 2135 "%d.%d, 0x%08x", 2136 fw.eep_major, fw.eep_minor, fw.etrack_id); 2137 } else { 2138 snprintf(adapter->fw_version, 2139 sizeof(adapter->fw_version), 2140 "%d.%d.%d", 2141 fw.eep_major, fw.eep_minor, fw.eep_build); 2142 } 2143 break; 2144 } 2145 } 2146 2147 /** 2148 * igb_init_mas - init Media Autosense feature if enabled in the NVM 2149 * 2150 * @adapter: adapter struct 2151 **/ 2152 static void igb_init_mas(struct igb_adapter *adapter) 2153 { 2154 struct e1000_hw *hw = &adapter->hw; 2155 u16 eeprom_data; 2156 2157 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 2158 switch (hw->bus.func) { 2159 case E1000_FUNC_0: 2160 if (eeprom_data & IGB_MAS_ENABLE_0) { 2161 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2162 netdev_info(adapter->netdev, 2163 "MAS: Enabling Media Autosense for port %d\n", 2164 hw->bus.func); 2165 } 2166 break; 2167 case E1000_FUNC_1: 2168 if (eeprom_data & IGB_MAS_ENABLE_1) { 2169 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2170 netdev_info(adapter->netdev, 2171 "MAS: Enabling Media Autosense for port %d\n", 2172 hw->bus.func); 2173 } 2174 break; 2175 case E1000_FUNC_2: 2176 if (eeprom_data & IGB_MAS_ENABLE_2) { 2177 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2178 netdev_info(adapter->netdev, 2179 "MAS: Enabling Media Autosense for port %d\n", 2180 hw->bus.func); 2181 } 2182 break; 2183 case E1000_FUNC_3: 2184 if (eeprom_data & IGB_MAS_ENABLE_3) { 2185 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2186 netdev_info(adapter->netdev, 2187 "MAS: Enabling Media Autosense for port %d\n", 2188 hw->bus.func); 2189 } 2190 break; 2191 default: 2192 /* Shouldn't get here */ 2193 netdev_err(adapter->netdev, 2194 "MAS: Invalid port configuration, returning\n"); 2195 break; 2196 } 2197 } 2198 2199 /** 2200 * igb_init_i2c - Init I2C interface 2201 * @adapter: pointer to adapter structure 2202 **/ 2203 static s32 igb_init_i2c(struct igb_adapter *adapter) 2204 { 2205 s32 status = 0; 2206 2207 /* I2C interface supported on i350 devices */ 2208 if (adapter->hw.mac.type != e1000_i350) 2209 return 0; 2210 2211 /* Initialize the i2c bus which is controlled by the registers. 2212 * This bus will use the i2c_algo_bit structue that implements 2213 * the protocol through toggling of the 4 bits in the register. 2214 */ 2215 adapter->i2c_adap.owner = THIS_MODULE; 2216 adapter->i2c_algo = igb_i2c_algo; 2217 adapter->i2c_algo.data = adapter; 2218 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 2219 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 2220 strlcpy(adapter->i2c_adap.name, "igb BB", 2221 sizeof(adapter->i2c_adap.name)); 2222 status = i2c_bit_add_bus(&adapter->i2c_adap); 2223 return status; 2224 } 2225 2226 /** 2227 * igb_probe - Device Initialization Routine 2228 * @pdev: PCI device information struct 2229 * @ent: entry in igb_pci_tbl 2230 * 2231 * Returns 0 on success, negative on failure 2232 * 2233 * igb_probe initializes an adapter identified by a pci_dev structure. 2234 * The OS initialization, configuring of the adapter private structure, 2235 * and a hardware reset occur. 2236 **/ 2237 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2238 { 2239 struct net_device *netdev; 2240 struct igb_adapter *adapter; 2241 struct e1000_hw *hw; 2242 u16 eeprom_data = 0; 2243 s32 ret_val; 2244 static int global_quad_port_a; /* global quad port a indication */ 2245 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 2246 int err, pci_using_dac; 2247 u8 part_str[E1000_PBANUM_LENGTH]; 2248 2249 /* Catch broken hardware that put the wrong VF device ID in 2250 * the PCIe SR-IOV capability. 2251 */ 2252 if (pdev->is_virtfn) { 2253 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", 2254 pci_name(pdev), pdev->vendor, pdev->device); 2255 return -EINVAL; 2256 } 2257 2258 err = pci_enable_device_mem(pdev); 2259 if (err) 2260 return err; 2261 2262 pci_using_dac = 0; 2263 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2264 if (!err) { 2265 pci_using_dac = 1; 2266 } else { 2267 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2268 if (err) { 2269 dev_err(&pdev->dev, 2270 "No usable DMA configuration, aborting\n"); 2271 goto err_dma; 2272 } 2273 } 2274 2275 err = pci_request_selected_regions(pdev, pci_select_bars(pdev, 2276 IORESOURCE_MEM), 2277 igb_driver_name); 2278 if (err) 2279 goto err_pci_reg; 2280 2281 pci_enable_pcie_error_reporting(pdev); 2282 2283 pci_set_master(pdev); 2284 pci_save_state(pdev); 2285 2286 err = -ENOMEM; 2287 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 2288 IGB_MAX_TX_QUEUES); 2289 if (!netdev) 2290 goto err_alloc_etherdev; 2291 2292 SET_NETDEV_DEV(netdev, &pdev->dev); 2293 2294 pci_set_drvdata(pdev, netdev); 2295 adapter = netdev_priv(netdev); 2296 adapter->netdev = netdev; 2297 adapter->pdev = pdev; 2298 hw = &adapter->hw; 2299 hw->back = adapter; 2300 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2301 2302 err = -EIO; 2303 hw->hw_addr = pci_iomap(pdev, 0, 0); 2304 if (!hw->hw_addr) 2305 goto err_ioremap; 2306 2307 netdev->netdev_ops = &igb_netdev_ops; 2308 igb_set_ethtool_ops(netdev); 2309 netdev->watchdog_timeo = 5 * HZ; 2310 2311 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2312 2313 netdev->mem_start = pci_resource_start(pdev, 0); 2314 netdev->mem_end = pci_resource_end(pdev, 0); 2315 2316 /* PCI config space info */ 2317 hw->vendor_id = pdev->vendor; 2318 hw->device_id = pdev->device; 2319 hw->revision_id = pdev->revision; 2320 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2321 hw->subsystem_device_id = pdev->subsystem_device; 2322 2323 /* Copy the default MAC, PHY and NVM function pointers */ 2324 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 2325 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 2326 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 2327 /* Initialize skew-specific constants */ 2328 err = ei->get_invariants(hw); 2329 if (err) 2330 goto err_sw_init; 2331 2332 /* setup the private structure */ 2333 err = igb_sw_init(adapter); 2334 if (err) 2335 goto err_sw_init; 2336 2337 igb_get_bus_info_pcie(hw); 2338 2339 hw->phy.autoneg_wait_to_complete = false; 2340 2341 /* Copper options */ 2342 if (hw->phy.media_type == e1000_media_type_copper) { 2343 hw->phy.mdix = AUTO_ALL_MODES; 2344 hw->phy.disable_polarity_correction = false; 2345 hw->phy.ms_type = e1000_ms_hw_default; 2346 } 2347 2348 if (igb_check_reset_block(hw)) 2349 dev_info(&pdev->dev, 2350 "PHY reset is blocked due to SOL/IDER session.\n"); 2351 2352 /* features is initialized to 0 in allocation, it might have bits 2353 * set by igb_sw_init so we should use an or instead of an 2354 * assignment. 2355 */ 2356 netdev->features |= NETIF_F_SG | 2357 NETIF_F_IP_CSUM | 2358 NETIF_F_IPV6_CSUM | 2359 NETIF_F_TSO | 2360 NETIF_F_TSO6 | 2361 NETIF_F_RXHASH | 2362 NETIF_F_RXCSUM | 2363 NETIF_F_HW_VLAN_CTAG_RX | 2364 NETIF_F_HW_VLAN_CTAG_TX; 2365 2366 /* copy netdev features into list of user selectable features */ 2367 netdev->hw_features |= netdev->features; 2368 netdev->hw_features |= NETIF_F_RXALL; 2369 2370 /* set this bit last since it cannot be part of hw_features */ 2371 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2372 2373 netdev->vlan_features |= NETIF_F_TSO | 2374 NETIF_F_TSO6 | 2375 NETIF_F_IP_CSUM | 2376 NETIF_F_IPV6_CSUM | 2377 NETIF_F_SG; 2378 2379 netdev->priv_flags |= IFF_SUPP_NOFCS; 2380 2381 if (pci_using_dac) { 2382 netdev->features |= NETIF_F_HIGHDMA; 2383 netdev->vlan_features |= NETIF_F_HIGHDMA; 2384 } 2385 2386 if (hw->mac.type >= e1000_82576) { 2387 netdev->hw_features |= NETIF_F_SCTP_CSUM; 2388 netdev->features |= NETIF_F_SCTP_CSUM; 2389 } 2390 2391 netdev->priv_flags |= IFF_UNICAST_FLT; 2392 2393 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 2394 2395 /* before reading the NVM, reset the controller to put the device in a 2396 * known good starting state 2397 */ 2398 hw->mac.ops.reset_hw(hw); 2399 2400 /* make sure the NVM is good , i211/i210 parts can have special NVM 2401 * that doesn't contain a checksum 2402 */ 2403 switch (hw->mac.type) { 2404 case e1000_i210: 2405 case e1000_i211: 2406 if (igb_get_flash_presence_i210(hw)) { 2407 if (hw->nvm.ops.validate(hw) < 0) { 2408 dev_err(&pdev->dev, 2409 "The NVM Checksum Is Not Valid\n"); 2410 err = -EIO; 2411 goto err_eeprom; 2412 } 2413 } 2414 break; 2415 default: 2416 if (hw->nvm.ops.validate(hw) < 0) { 2417 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 2418 err = -EIO; 2419 goto err_eeprom; 2420 } 2421 break; 2422 } 2423 2424 /* copy the MAC address out of the NVM */ 2425 if (hw->mac.ops.read_mac_addr(hw)) 2426 dev_err(&pdev->dev, "NVM Read Error\n"); 2427 2428 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2429 2430 if (!is_valid_ether_addr(netdev->dev_addr)) { 2431 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2432 err = -EIO; 2433 goto err_eeprom; 2434 } 2435 2436 /* get firmware version for ethtool -i */ 2437 igb_set_fw_version(adapter); 2438 2439 /* configure RXPBSIZE and TXPBSIZE */ 2440 if (hw->mac.type == e1000_i210) { 2441 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 2442 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 2443 } 2444 2445 setup_timer(&adapter->watchdog_timer, igb_watchdog, 2446 (unsigned long) adapter); 2447 setup_timer(&adapter->phy_info_timer, igb_update_phy_info, 2448 (unsigned long) adapter); 2449 2450 INIT_WORK(&adapter->reset_task, igb_reset_task); 2451 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 2452 2453 /* Initialize link properties that are user-changeable */ 2454 adapter->fc_autoneg = true; 2455 hw->mac.autoneg = true; 2456 hw->phy.autoneg_advertised = 0x2f; 2457 2458 hw->fc.requested_mode = e1000_fc_default; 2459 hw->fc.current_mode = e1000_fc_default; 2460 2461 igb_validate_mdi_setting(hw); 2462 2463 /* By default, support wake on port A */ 2464 if (hw->bus.func == 0) 2465 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2466 2467 /* Check the NVM for wake support on non-port A ports */ 2468 if (hw->mac.type >= e1000_82580) 2469 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2470 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2471 &eeprom_data); 2472 else if (hw->bus.func == 1) 2473 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 2474 2475 if (eeprom_data & IGB_EEPROM_APME) 2476 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2477 2478 /* now that we have the eeprom settings, apply the special cases where 2479 * the eeprom may be wrong or the board simply won't support wake on 2480 * lan on a particular port 2481 */ 2482 switch (pdev->device) { 2483 case E1000_DEV_ID_82575GB_QUAD_COPPER: 2484 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2485 break; 2486 case E1000_DEV_ID_82575EB_FIBER_SERDES: 2487 case E1000_DEV_ID_82576_FIBER: 2488 case E1000_DEV_ID_82576_SERDES: 2489 /* Wake events only supported on port A for dual fiber 2490 * regardless of eeprom setting 2491 */ 2492 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 2493 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2494 break; 2495 case E1000_DEV_ID_82576_QUAD_COPPER: 2496 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 2497 /* if quad port adapter, disable WoL on all but port A */ 2498 if (global_quad_port_a != 0) 2499 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2500 else 2501 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 2502 /* Reset for multiple quad port adapters */ 2503 if (++global_quad_port_a == 4) 2504 global_quad_port_a = 0; 2505 break; 2506 default: 2507 /* If the device can't wake, don't set software support */ 2508 if (!device_can_wakeup(&adapter->pdev->dev)) 2509 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2510 } 2511 2512 /* initialize the wol settings based on the eeprom settings */ 2513 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 2514 adapter->wol |= E1000_WUFC_MAG; 2515 2516 /* Some vendors want WoL disabled by default, but still supported */ 2517 if ((hw->mac.type == e1000_i350) && 2518 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 2519 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2520 adapter->wol = 0; 2521 } 2522 2523 device_set_wakeup_enable(&adapter->pdev->dev, 2524 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 2525 2526 /* reset the hardware with the new settings */ 2527 igb_reset(adapter); 2528 2529 /* Init the I2C interface */ 2530 err = igb_init_i2c(adapter); 2531 if (err) { 2532 dev_err(&pdev->dev, "failed to init i2c interface\n"); 2533 goto err_eeprom; 2534 } 2535 2536 /* let the f/w know that the h/w is now under the control of the 2537 * driver. 2538 */ 2539 igb_get_hw_control(adapter); 2540 2541 strcpy(netdev->name, "eth%d"); 2542 err = register_netdev(netdev); 2543 if (err) 2544 goto err_register; 2545 2546 /* carrier off reporting is important to ethtool even BEFORE open */ 2547 netif_carrier_off(netdev); 2548 2549 #ifdef CONFIG_IGB_DCA 2550 if (dca_add_requester(&pdev->dev) == 0) { 2551 adapter->flags |= IGB_FLAG_DCA_ENABLED; 2552 dev_info(&pdev->dev, "DCA enabled\n"); 2553 igb_setup_dca(adapter); 2554 } 2555 2556 #endif 2557 #ifdef CONFIG_IGB_HWMON 2558 /* Initialize the thermal sensor on i350 devices. */ 2559 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 2560 u16 ets_word; 2561 2562 /* Read the NVM to determine if this i350 device supports an 2563 * external thermal sensor. 2564 */ 2565 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 2566 if (ets_word != 0x0000 && ets_word != 0xFFFF) 2567 adapter->ets = true; 2568 else 2569 adapter->ets = false; 2570 if (igb_sysfs_init(adapter)) 2571 dev_err(&pdev->dev, 2572 "failed to allocate sysfs resources\n"); 2573 } else { 2574 adapter->ets = false; 2575 } 2576 #endif 2577 /* Check if Media Autosense is enabled */ 2578 adapter->ei = *ei; 2579 if (hw->dev_spec._82575.mas_capable) 2580 igb_init_mas(adapter); 2581 2582 /* do hw tstamp init after resetting */ 2583 igb_ptp_init(adapter); 2584 2585 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 2586 /* print bus type/speed/width info, not applicable to i354 */ 2587 if (hw->mac.type != e1000_i354) { 2588 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 2589 netdev->name, 2590 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 2591 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 2592 "unknown"), 2593 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 2594 "Width x4" : 2595 (hw->bus.width == e1000_bus_width_pcie_x2) ? 2596 "Width x2" : 2597 (hw->bus.width == e1000_bus_width_pcie_x1) ? 2598 "Width x1" : "unknown"), netdev->dev_addr); 2599 } 2600 2601 if ((hw->mac.type >= e1000_i210 || 2602 igb_get_flash_presence_i210(hw))) { 2603 ret_val = igb_read_part_string(hw, part_str, 2604 E1000_PBANUM_LENGTH); 2605 } else { 2606 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 2607 } 2608 2609 if (ret_val) 2610 strcpy(part_str, "Unknown"); 2611 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 2612 dev_info(&pdev->dev, 2613 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 2614 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 2615 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 2616 adapter->num_rx_queues, adapter->num_tx_queues); 2617 if (hw->phy.media_type == e1000_media_type_copper) { 2618 switch (hw->mac.type) { 2619 case e1000_i350: 2620 case e1000_i210: 2621 case e1000_i211: 2622 /* Enable EEE for internal copper PHY devices */ 2623 err = igb_set_eee_i350(hw, true, true); 2624 if ((!err) && 2625 (!hw->dev_spec._82575.eee_disable)) { 2626 adapter->eee_advert = 2627 MDIO_EEE_100TX | MDIO_EEE_1000T; 2628 adapter->flags |= IGB_FLAG_EEE; 2629 } 2630 break; 2631 case e1000_i354: 2632 if ((rd32(E1000_CTRL_EXT) & 2633 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 2634 err = igb_set_eee_i354(hw, true, true); 2635 if ((!err) && 2636 (!hw->dev_spec._82575.eee_disable)) { 2637 adapter->eee_advert = 2638 MDIO_EEE_100TX | MDIO_EEE_1000T; 2639 adapter->flags |= IGB_FLAG_EEE; 2640 } 2641 } 2642 break; 2643 default: 2644 break; 2645 } 2646 } 2647 pm_runtime_put_noidle(&pdev->dev); 2648 return 0; 2649 2650 err_register: 2651 igb_release_hw_control(adapter); 2652 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 2653 err_eeprom: 2654 if (!igb_check_reset_block(hw)) 2655 igb_reset_phy(hw); 2656 2657 if (hw->flash_address) 2658 iounmap(hw->flash_address); 2659 err_sw_init: 2660 igb_clear_interrupt_scheme(adapter); 2661 pci_iounmap(pdev, hw->hw_addr); 2662 err_ioremap: 2663 free_netdev(netdev); 2664 err_alloc_etherdev: 2665 pci_release_selected_regions(pdev, 2666 pci_select_bars(pdev, IORESOURCE_MEM)); 2667 err_pci_reg: 2668 err_dma: 2669 pci_disable_device(pdev); 2670 return err; 2671 } 2672 2673 #ifdef CONFIG_PCI_IOV 2674 static int igb_disable_sriov(struct pci_dev *pdev) 2675 { 2676 struct net_device *netdev = pci_get_drvdata(pdev); 2677 struct igb_adapter *adapter = netdev_priv(netdev); 2678 struct e1000_hw *hw = &adapter->hw; 2679 2680 /* reclaim resources allocated to VFs */ 2681 if (adapter->vf_data) { 2682 /* disable iov and allow time for transactions to clear */ 2683 if (pci_vfs_assigned(pdev)) { 2684 dev_warn(&pdev->dev, 2685 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 2686 return -EPERM; 2687 } else { 2688 pci_disable_sriov(pdev); 2689 msleep(500); 2690 } 2691 2692 kfree(adapter->vf_data); 2693 adapter->vf_data = NULL; 2694 adapter->vfs_allocated_count = 0; 2695 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 2696 wrfl(); 2697 msleep(100); 2698 dev_info(&pdev->dev, "IOV Disabled\n"); 2699 2700 /* Re-enable DMA Coalescing flag since IOV is turned off */ 2701 adapter->flags |= IGB_FLAG_DMAC; 2702 } 2703 2704 return 0; 2705 } 2706 2707 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 2708 { 2709 struct net_device *netdev = pci_get_drvdata(pdev); 2710 struct igb_adapter *adapter = netdev_priv(netdev); 2711 int old_vfs = pci_num_vf(pdev); 2712 int err = 0; 2713 int i; 2714 2715 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 2716 err = -EPERM; 2717 goto out; 2718 } 2719 if (!num_vfs) 2720 goto out; 2721 2722 if (old_vfs) { 2723 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 2724 old_vfs, max_vfs); 2725 adapter->vfs_allocated_count = old_vfs; 2726 } else 2727 adapter->vfs_allocated_count = num_vfs; 2728 2729 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 2730 sizeof(struct vf_data_storage), GFP_KERNEL); 2731 2732 /* if allocation failed then we do not support SR-IOV */ 2733 if (!adapter->vf_data) { 2734 adapter->vfs_allocated_count = 0; 2735 dev_err(&pdev->dev, 2736 "Unable to allocate memory for VF Data Storage\n"); 2737 err = -ENOMEM; 2738 goto out; 2739 } 2740 2741 /* only call pci_enable_sriov() if no VFs are allocated already */ 2742 if (!old_vfs) { 2743 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 2744 if (err) 2745 goto err_out; 2746 } 2747 dev_info(&pdev->dev, "%d VFs allocated\n", 2748 adapter->vfs_allocated_count); 2749 for (i = 0; i < adapter->vfs_allocated_count; i++) 2750 igb_vf_configure(adapter, i); 2751 2752 /* DMA Coalescing is not supported in IOV mode. */ 2753 adapter->flags &= ~IGB_FLAG_DMAC; 2754 goto out; 2755 2756 err_out: 2757 kfree(adapter->vf_data); 2758 adapter->vf_data = NULL; 2759 adapter->vfs_allocated_count = 0; 2760 out: 2761 return err; 2762 } 2763 2764 #endif 2765 /** 2766 * igb_remove_i2c - Cleanup I2C interface 2767 * @adapter: pointer to adapter structure 2768 **/ 2769 static void igb_remove_i2c(struct igb_adapter *adapter) 2770 { 2771 /* free the adapter bus structure */ 2772 i2c_del_adapter(&adapter->i2c_adap); 2773 } 2774 2775 /** 2776 * igb_remove - Device Removal Routine 2777 * @pdev: PCI device information struct 2778 * 2779 * igb_remove is called by the PCI subsystem to alert the driver 2780 * that it should release a PCI device. The could be caused by a 2781 * Hot-Plug event, or because the driver is going to be removed from 2782 * memory. 2783 **/ 2784 static void igb_remove(struct pci_dev *pdev) 2785 { 2786 struct net_device *netdev = pci_get_drvdata(pdev); 2787 struct igb_adapter *adapter = netdev_priv(netdev); 2788 struct e1000_hw *hw = &adapter->hw; 2789 2790 pm_runtime_get_noresume(&pdev->dev); 2791 #ifdef CONFIG_IGB_HWMON 2792 igb_sysfs_exit(adapter); 2793 #endif 2794 igb_remove_i2c(adapter); 2795 igb_ptp_stop(adapter); 2796 /* The watchdog timer may be rescheduled, so explicitly 2797 * disable watchdog from being rescheduled. 2798 */ 2799 set_bit(__IGB_DOWN, &adapter->state); 2800 del_timer_sync(&adapter->watchdog_timer); 2801 del_timer_sync(&adapter->phy_info_timer); 2802 2803 cancel_work_sync(&adapter->reset_task); 2804 cancel_work_sync(&adapter->watchdog_task); 2805 2806 #ifdef CONFIG_IGB_DCA 2807 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 2808 dev_info(&pdev->dev, "DCA disabled\n"); 2809 dca_remove_requester(&pdev->dev); 2810 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 2811 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 2812 } 2813 #endif 2814 2815 /* Release control of h/w to f/w. If f/w is AMT enabled, this 2816 * would have already happened in close and is redundant. 2817 */ 2818 igb_release_hw_control(adapter); 2819 2820 unregister_netdev(netdev); 2821 2822 igb_clear_interrupt_scheme(adapter); 2823 2824 #ifdef CONFIG_PCI_IOV 2825 igb_disable_sriov(pdev); 2826 #endif 2827 2828 pci_iounmap(pdev, hw->hw_addr); 2829 if (hw->flash_address) 2830 iounmap(hw->flash_address); 2831 pci_release_selected_regions(pdev, 2832 pci_select_bars(pdev, IORESOURCE_MEM)); 2833 2834 kfree(adapter->shadow_vfta); 2835 free_netdev(netdev); 2836 2837 pci_disable_pcie_error_reporting(pdev); 2838 2839 pci_disable_device(pdev); 2840 } 2841 2842 /** 2843 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 2844 * @adapter: board private structure to initialize 2845 * 2846 * This function initializes the vf specific data storage and then attempts to 2847 * allocate the VFs. The reason for ordering it this way is because it is much 2848 * mor expensive time wise to disable SR-IOV than it is to allocate and free 2849 * the memory for the VFs. 2850 **/ 2851 static void igb_probe_vfs(struct igb_adapter *adapter) 2852 { 2853 #ifdef CONFIG_PCI_IOV 2854 struct pci_dev *pdev = adapter->pdev; 2855 struct e1000_hw *hw = &adapter->hw; 2856 2857 /* Virtualization features not supported on i210 family. */ 2858 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 2859 return; 2860 2861 pci_sriov_set_totalvfs(pdev, 7); 2862 igb_pci_enable_sriov(pdev, max_vfs); 2863 2864 #endif /* CONFIG_PCI_IOV */ 2865 } 2866 2867 static void igb_init_queue_configuration(struct igb_adapter *adapter) 2868 { 2869 struct e1000_hw *hw = &adapter->hw; 2870 u32 max_rss_queues; 2871 2872 /* Determine the maximum number of RSS queues supported. */ 2873 switch (hw->mac.type) { 2874 case e1000_i211: 2875 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 2876 break; 2877 case e1000_82575: 2878 case e1000_i210: 2879 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 2880 break; 2881 case e1000_i350: 2882 /* I350 cannot do RSS and SR-IOV at the same time */ 2883 if (!!adapter->vfs_allocated_count) { 2884 max_rss_queues = 1; 2885 break; 2886 } 2887 /* fall through */ 2888 case e1000_82576: 2889 if (!!adapter->vfs_allocated_count) { 2890 max_rss_queues = 2; 2891 break; 2892 } 2893 /* fall through */ 2894 case e1000_82580: 2895 case e1000_i354: 2896 default: 2897 max_rss_queues = IGB_MAX_RX_QUEUES; 2898 break; 2899 } 2900 2901 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 2902 2903 /* Determine if we need to pair queues. */ 2904 switch (hw->mac.type) { 2905 case e1000_82575: 2906 case e1000_i211: 2907 /* Device supports enough interrupts without queue pairing. */ 2908 break; 2909 case e1000_82576: 2910 /* If VFs are going to be allocated with RSS queues then we 2911 * should pair the queues in order to conserve interrupts due 2912 * to limited supply. 2913 */ 2914 if ((adapter->rss_queues > 1) && 2915 (adapter->vfs_allocated_count > 6)) 2916 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2917 /* fall through */ 2918 case e1000_82580: 2919 case e1000_i350: 2920 case e1000_i354: 2921 case e1000_i210: 2922 default: 2923 /* If rss_queues > half of max_rss_queues, pair the queues in 2924 * order to conserve interrupts due to limited supply. 2925 */ 2926 if (adapter->rss_queues > (max_rss_queues / 2)) 2927 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2928 break; 2929 } 2930 } 2931 2932 /** 2933 * igb_sw_init - Initialize general software structures (struct igb_adapter) 2934 * @adapter: board private structure to initialize 2935 * 2936 * igb_sw_init initializes the Adapter private data structure. 2937 * Fields are initialized based on PCI device information and 2938 * OS network device settings (MTU size). 2939 **/ 2940 static int igb_sw_init(struct igb_adapter *adapter) 2941 { 2942 struct e1000_hw *hw = &adapter->hw; 2943 struct net_device *netdev = adapter->netdev; 2944 struct pci_dev *pdev = adapter->pdev; 2945 2946 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 2947 2948 /* set default ring sizes */ 2949 adapter->tx_ring_count = IGB_DEFAULT_TXD; 2950 adapter->rx_ring_count = IGB_DEFAULT_RXD; 2951 2952 /* set default ITR values */ 2953 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 2954 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 2955 2956 /* set default work limits */ 2957 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 2958 2959 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 2960 VLAN_HLEN; 2961 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2962 2963 spin_lock_init(&adapter->stats64_lock); 2964 #ifdef CONFIG_PCI_IOV 2965 switch (hw->mac.type) { 2966 case e1000_82576: 2967 case e1000_i350: 2968 if (max_vfs > 7) { 2969 dev_warn(&pdev->dev, 2970 "Maximum of 7 VFs per PF, using max\n"); 2971 max_vfs = adapter->vfs_allocated_count = 7; 2972 } else 2973 adapter->vfs_allocated_count = max_vfs; 2974 if (adapter->vfs_allocated_count) 2975 dev_warn(&pdev->dev, 2976 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 2977 break; 2978 default: 2979 break; 2980 } 2981 #endif /* CONFIG_PCI_IOV */ 2982 2983 igb_init_queue_configuration(adapter); 2984 2985 /* Setup and initialize a copy of the hw vlan table array */ 2986 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 2987 GFP_ATOMIC); 2988 2989 /* This call may decrease the number of queues */ 2990 if (igb_init_interrupt_scheme(adapter, true)) { 2991 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 2992 return -ENOMEM; 2993 } 2994 2995 igb_probe_vfs(adapter); 2996 2997 /* Explicitly disable IRQ since the NIC can be in any state. */ 2998 igb_irq_disable(adapter); 2999 3000 if (hw->mac.type >= e1000_i350) 3001 adapter->flags &= ~IGB_FLAG_DMAC; 3002 3003 set_bit(__IGB_DOWN, &adapter->state); 3004 return 0; 3005 } 3006 3007 /** 3008 * igb_open - Called when a network interface is made active 3009 * @netdev: network interface device structure 3010 * 3011 * Returns 0 on success, negative value on failure 3012 * 3013 * The open entry point is called when a network interface is made 3014 * active by the system (IFF_UP). At this point all resources needed 3015 * for transmit and receive operations are allocated, the interrupt 3016 * handler is registered with the OS, the watchdog timer is started, 3017 * and the stack is notified that the interface is ready. 3018 **/ 3019 static int __igb_open(struct net_device *netdev, bool resuming) 3020 { 3021 struct igb_adapter *adapter = netdev_priv(netdev); 3022 struct e1000_hw *hw = &adapter->hw; 3023 struct pci_dev *pdev = adapter->pdev; 3024 int err; 3025 int i; 3026 3027 /* disallow open during test */ 3028 if (test_bit(__IGB_TESTING, &adapter->state)) { 3029 WARN_ON(resuming); 3030 return -EBUSY; 3031 } 3032 3033 if (!resuming) 3034 pm_runtime_get_sync(&pdev->dev); 3035 3036 netif_carrier_off(netdev); 3037 3038 /* allocate transmit descriptors */ 3039 err = igb_setup_all_tx_resources(adapter); 3040 if (err) 3041 goto err_setup_tx; 3042 3043 /* allocate receive descriptors */ 3044 err = igb_setup_all_rx_resources(adapter); 3045 if (err) 3046 goto err_setup_rx; 3047 3048 igb_power_up_link(adapter); 3049 3050 /* before we allocate an interrupt, we must be ready to handle it. 3051 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 3052 * as soon as we call pci_request_irq, so we have to setup our 3053 * clean_rx handler before we do so. 3054 */ 3055 igb_configure(adapter); 3056 3057 err = igb_request_irq(adapter); 3058 if (err) 3059 goto err_req_irq; 3060 3061 /* Notify the stack of the actual queue counts. */ 3062 err = netif_set_real_num_tx_queues(adapter->netdev, 3063 adapter->num_tx_queues); 3064 if (err) 3065 goto err_set_queues; 3066 3067 err = netif_set_real_num_rx_queues(adapter->netdev, 3068 adapter->num_rx_queues); 3069 if (err) 3070 goto err_set_queues; 3071 3072 /* From here on the code is the same as igb_up() */ 3073 clear_bit(__IGB_DOWN, &adapter->state); 3074 3075 for (i = 0; i < adapter->num_q_vectors; i++) 3076 napi_enable(&(adapter->q_vector[i]->napi)); 3077 3078 /* Clear any pending interrupts. */ 3079 rd32(E1000_ICR); 3080 3081 igb_irq_enable(adapter); 3082 3083 /* notify VFs that reset has been completed */ 3084 if (adapter->vfs_allocated_count) { 3085 u32 reg_data = rd32(E1000_CTRL_EXT); 3086 3087 reg_data |= E1000_CTRL_EXT_PFRSTD; 3088 wr32(E1000_CTRL_EXT, reg_data); 3089 } 3090 3091 netif_tx_start_all_queues(netdev); 3092 3093 if (!resuming) 3094 pm_runtime_put(&pdev->dev); 3095 3096 /* start the watchdog. */ 3097 hw->mac.get_link_status = 1; 3098 schedule_work(&adapter->watchdog_task); 3099 3100 return 0; 3101 3102 err_set_queues: 3103 igb_free_irq(adapter); 3104 err_req_irq: 3105 igb_release_hw_control(adapter); 3106 igb_power_down_link(adapter); 3107 igb_free_all_rx_resources(adapter); 3108 err_setup_rx: 3109 igb_free_all_tx_resources(adapter); 3110 err_setup_tx: 3111 igb_reset(adapter); 3112 if (!resuming) 3113 pm_runtime_put(&pdev->dev); 3114 3115 return err; 3116 } 3117 3118 static int igb_open(struct net_device *netdev) 3119 { 3120 return __igb_open(netdev, false); 3121 } 3122 3123 /** 3124 * igb_close - Disables a network interface 3125 * @netdev: network interface device structure 3126 * 3127 * Returns 0, this is not allowed to fail 3128 * 3129 * The close entry point is called when an interface is de-activated 3130 * by the OS. The hardware is still under the driver's control, but 3131 * needs to be disabled. A global MAC reset is issued to stop the 3132 * hardware, and all transmit and receive resources are freed. 3133 **/ 3134 static int __igb_close(struct net_device *netdev, bool suspending) 3135 { 3136 struct igb_adapter *adapter = netdev_priv(netdev); 3137 struct pci_dev *pdev = adapter->pdev; 3138 3139 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 3140 3141 if (!suspending) 3142 pm_runtime_get_sync(&pdev->dev); 3143 3144 igb_down(adapter); 3145 igb_free_irq(adapter); 3146 3147 igb_free_all_tx_resources(adapter); 3148 igb_free_all_rx_resources(adapter); 3149 3150 if (!suspending) 3151 pm_runtime_put_sync(&pdev->dev); 3152 return 0; 3153 } 3154 3155 static int igb_close(struct net_device *netdev) 3156 { 3157 return __igb_close(netdev, false); 3158 } 3159 3160 /** 3161 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 3162 * @tx_ring: tx descriptor ring (for a specific queue) to setup 3163 * 3164 * Return 0 on success, negative on failure 3165 **/ 3166 int igb_setup_tx_resources(struct igb_ring *tx_ring) 3167 { 3168 struct device *dev = tx_ring->dev; 3169 int size; 3170 3171 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3172 3173 tx_ring->tx_buffer_info = vzalloc(size); 3174 if (!tx_ring->tx_buffer_info) 3175 goto err; 3176 3177 /* round up to nearest 4K */ 3178 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 3179 tx_ring->size = ALIGN(tx_ring->size, 4096); 3180 3181 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 3182 &tx_ring->dma, GFP_KERNEL); 3183 if (!tx_ring->desc) 3184 goto err; 3185 3186 tx_ring->next_to_use = 0; 3187 tx_ring->next_to_clean = 0; 3188 3189 return 0; 3190 3191 err: 3192 vfree(tx_ring->tx_buffer_info); 3193 tx_ring->tx_buffer_info = NULL; 3194 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 3195 return -ENOMEM; 3196 } 3197 3198 /** 3199 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 3200 * (Descriptors) for all queues 3201 * @adapter: board private structure 3202 * 3203 * Return 0 on success, negative on failure 3204 **/ 3205 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 3206 { 3207 struct pci_dev *pdev = adapter->pdev; 3208 int i, err = 0; 3209 3210 for (i = 0; i < adapter->num_tx_queues; i++) { 3211 err = igb_setup_tx_resources(adapter->tx_ring[i]); 3212 if (err) { 3213 dev_err(&pdev->dev, 3214 "Allocation for Tx Queue %u failed\n", i); 3215 for (i--; i >= 0; i--) 3216 igb_free_tx_resources(adapter->tx_ring[i]); 3217 break; 3218 } 3219 } 3220 3221 return err; 3222 } 3223 3224 /** 3225 * igb_setup_tctl - configure the transmit control registers 3226 * @adapter: Board private structure 3227 **/ 3228 void igb_setup_tctl(struct igb_adapter *adapter) 3229 { 3230 struct e1000_hw *hw = &adapter->hw; 3231 u32 tctl; 3232 3233 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 3234 wr32(E1000_TXDCTL(0), 0); 3235 3236 /* Program the Transmit Control Register */ 3237 tctl = rd32(E1000_TCTL); 3238 tctl &= ~E1000_TCTL_CT; 3239 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 3240 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 3241 3242 igb_config_collision_dist(hw); 3243 3244 /* Enable transmits */ 3245 tctl |= E1000_TCTL_EN; 3246 3247 wr32(E1000_TCTL, tctl); 3248 } 3249 3250 /** 3251 * igb_configure_tx_ring - Configure transmit ring after Reset 3252 * @adapter: board private structure 3253 * @ring: tx ring to configure 3254 * 3255 * Configure a transmit ring after a reset. 3256 **/ 3257 void igb_configure_tx_ring(struct igb_adapter *adapter, 3258 struct igb_ring *ring) 3259 { 3260 struct e1000_hw *hw = &adapter->hw; 3261 u32 txdctl = 0; 3262 u64 tdba = ring->dma; 3263 int reg_idx = ring->reg_idx; 3264 3265 /* disable the queue */ 3266 wr32(E1000_TXDCTL(reg_idx), 0); 3267 wrfl(); 3268 mdelay(10); 3269 3270 wr32(E1000_TDLEN(reg_idx), 3271 ring->count * sizeof(union e1000_adv_tx_desc)); 3272 wr32(E1000_TDBAL(reg_idx), 3273 tdba & 0x00000000ffffffffULL); 3274 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 3275 3276 ring->tail = hw->hw_addr + E1000_TDT(reg_idx); 3277 wr32(E1000_TDH(reg_idx), 0); 3278 writel(0, ring->tail); 3279 3280 txdctl |= IGB_TX_PTHRESH; 3281 txdctl |= IGB_TX_HTHRESH << 8; 3282 txdctl |= IGB_TX_WTHRESH << 16; 3283 3284 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 3285 wr32(E1000_TXDCTL(reg_idx), txdctl); 3286 } 3287 3288 /** 3289 * igb_configure_tx - Configure transmit Unit after Reset 3290 * @adapter: board private structure 3291 * 3292 * Configure the Tx unit of the MAC after a reset. 3293 **/ 3294 static void igb_configure_tx(struct igb_adapter *adapter) 3295 { 3296 int i; 3297 3298 for (i = 0; i < adapter->num_tx_queues; i++) 3299 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 3300 } 3301 3302 /** 3303 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 3304 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3305 * 3306 * Returns 0 on success, negative on failure 3307 **/ 3308 int igb_setup_rx_resources(struct igb_ring *rx_ring) 3309 { 3310 struct device *dev = rx_ring->dev; 3311 int size; 3312 3313 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3314 3315 rx_ring->rx_buffer_info = vzalloc(size); 3316 if (!rx_ring->rx_buffer_info) 3317 goto err; 3318 3319 /* Round up to nearest 4K */ 3320 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 3321 rx_ring->size = ALIGN(rx_ring->size, 4096); 3322 3323 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 3324 &rx_ring->dma, GFP_KERNEL); 3325 if (!rx_ring->desc) 3326 goto err; 3327 3328 rx_ring->next_to_alloc = 0; 3329 rx_ring->next_to_clean = 0; 3330 rx_ring->next_to_use = 0; 3331 3332 return 0; 3333 3334 err: 3335 vfree(rx_ring->rx_buffer_info); 3336 rx_ring->rx_buffer_info = NULL; 3337 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3338 return -ENOMEM; 3339 } 3340 3341 /** 3342 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 3343 * (Descriptors) for all queues 3344 * @adapter: board private structure 3345 * 3346 * Return 0 on success, negative on failure 3347 **/ 3348 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 3349 { 3350 struct pci_dev *pdev = adapter->pdev; 3351 int i, err = 0; 3352 3353 for (i = 0; i < adapter->num_rx_queues; i++) { 3354 err = igb_setup_rx_resources(adapter->rx_ring[i]); 3355 if (err) { 3356 dev_err(&pdev->dev, 3357 "Allocation for Rx Queue %u failed\n", i); 3358 for (i--; i >= 0; i--) 3359 igb_free_rx_resources(adapter->rx_ring[i]); 3360 break; 3361 } 3362 } 3363 3364 return err; 3365 } 3366 3367 /** 3368 * igb_setup_mrqc - configure the multiple receive queue control registers 3369 * @adapter: Board private structure 3370 **/ 3371 static void igb_setup_mrqc(struct igb_adapter *adapter) 3372 { 3373 struct e1000_hw *hw = &adapter->hw; 3374 u32 mrqc, rxcsum; 3375 u32 j, num_rx_queues; 3376 u32 rss_key[10]; 3377 3378 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 3379 for (j = 0; j < 10; j++) 3380 wr32(E1000_RSSRK(j), rss_key[j]); 3381 3382 num_rx_queues = adapter->rss_queues; 3383 3384 switch (hw->mac.type) { 3385 case e1000_82576: 3386 /* 82576 supports 2 RSS queues for SR-IOV */ 3387 if (adapter->vfs_allocated_count) 3388 num_rx_queues = 2; 3389 break; 3390 default: 3391 break; 3392 } 3393 3394 if (adapter->rss_indir_tbl_init != num_rx_queues) { 3395 for (j = 0; j < IGB_RETA_SIZE; j++) 3396 adapter->rss_indir_tbl[j] = 3397 (j * num_rx_queues) / IGB_RETA_SIZE; 3398 adapter->rss_indir_tbl_init = num_rx_queues; 3399 } 3400 igb_write_rss_indir_tbl(adapter); 3401 3402 /* Disable raw packet checksumming so that RSS hash is placed in 3403 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 3404 * offloads as they are enabled by default 3405 */ 3406 rxcsum = rd32(E1000_RXCSUM); 3407 rxcsum |= E1000_RXCSUM_PCSD; 3408 3409 if (adapter->hw.mac.type >= e1000_82576) 3410 /* Enable Receive Checksum Offload for SCTP */ 3411 rxcsum |= E1000_RXCSUM_CRCOFL; 3412 3413 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 3414 wr32(E1000_RXCSUM, rxcsum); 3415 3416 /* Generate RSS hash based on packet types, TCP/UDP 3417 * port numbers and/or IPv4/v6 src and dst addresses 3418 */ 3419 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 3420 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3421 E1000_MRQC_RSS_FIELD_IPV6 | 3422 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3423 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 3424 3425 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 3426 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 3427 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 3428 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 3429 3430 /* If VMDq is enabled then we set the appropriate mode for that, else 3431 * we default to RSS so that an RSS hash is calculated per packet even 3432 * if we are only using one queue 3433 */ 3434 if (adapter->vfs_allocated_count) { 3435 if (hw->mac.type > e1000_82575) { 3436 /* Set the default pool for the PF's first queue */ 3437 u32 vtctl = rd32(E1000_VT_CTL); 3438 3439 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 3440 E1000_VT_CTL_DISABLE_DEF_POOL); 3441 vtctl |= adapter->vfs_allocated_count << 3442 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 3443 wr32(E1000_VT_CTL, vtctl); 3444 } 3445 if (adapter->rss_queues > 1) 3446 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; 3447 else 3448 mrqc |= E1000_MRQC_ENABLE_VMDQ; 3449 } else { 3450 if (hw->mac.type != e1000_i211) 3451 mrqc |= E1000_MRQC_ENABLE_RSS_4Q; 3452 } 3453 igb_vmm_control(adapter); 3454 3455 wr32(E1000_MRQC, mrqc); 3456 } 3457 3458 /** 3459 * igb_setup_rctl - configure the receive control registers 3460 * @adapter: Board private structure 3461 **/ 3462 void igb_setup_rctl(struct igb_adapter *adapter) 3463 { 3464 struct e1000_hw *hw = &adapter->hw; 3465 u32 rctl; 3466 3467 rctl = rd32(E1000_RCTL); 3468 3469 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3470 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 3471 3472 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 3473 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3474 3475 /* enable stripping of CRC. It's unlikely this will break BMC 3476 * redirection as it did with e1000. Newer features require 3477 * that the HW strips the CRC. 3478 */ 3479 rctl |= E1000_RCTL_SECRC; 3480 3481 /* disable store bad packets and clear size bits. */ 3482 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 3483 3484 /* enable LPE to prevent packets larger than max_frame_size */ 3485 rctl |= E1000_RCTL_LPE; 3486 3487 /* disable queue 0 to prevent tail write w/o re-config */ 3488 wr32(E1000_RXDCTL(0), 0); 3489 3490 /* Attention!!! For SR-IOV PF driver operations you must enable 3491 * queue drop for all VF and PF queues to prevent head of line blocking 3492 * if an un-trusted VF does not provide descriptors to hardware. 3493 */ 3494 if (adapter->vfs_allocated_count) { 3495 /* set all queue drop enable bits */ 3496 wr32(E1000_QDE, ALL_QUEUES); 3497 } 3498 3499 /* This is useful for sniffing bad packets. */ 3500 if (adapter->netdev->features & NETIF_F_RXALL) { 3501 /* UPE and MPE will be handled by normal PROMISC logic 3502 * in e1000e_set_rx_mode 3503 */ 3504 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3505 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3506 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3507 3508 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3509 E1000_RCTL_DPF | /* Allow filtered pause */ 3510 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3511 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3512 * and that breaks VLANs. 3513 */ 3514 } 3515 3516 wr32(E1000_RCTL, rctl); 3517 } 3518 3519 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 3520 int vfn) 3521 { 3522 struct e1000_hw *hw = &adapter->hw; 3523 u32 vmolr; 3524 3525 /* if it isn't the PF check to see if VFs are enabled and 3526 * increase the size to support vlan tags 3527 */ 3528 if (vfn < adapter->vfs_allocated_count && 3529 adapter->vf_data[vfn].vlans_enabled) 3530 size += VLAN_TAG_SIZE; 3531 3532 vmolr = rd32(E1000_VMOLR(vfn)); 3533 vmolr &= ~E1000_VMOLR_RLPML_MASK; 3534 vmolr |= size | E1000_VMOLR_LPE; 3535 wr32(E1000_VMOLR(vfn), vmolr); 3536 3537 return 0; 3538 } 3539 3540 /** 3541 * igb_rlpml_set - set maximum receive packet size 3542 * @adapter: board private structure 3543 * 3544 * Configure maximum receivable packet size. 3545 **/ 3546 static void igb_rlpml_set(struct igb_adapter *adapter) 3547 { 3548 u32 max_frame_size = adapter->max_frame_size; 3549 struct e1000_hw *hw = &adapter->hw; 3550 u16 pf_id = adapter->vfs_allocated_count; 3551 3552 if (pf_id) { 3553 igb_set_vf_rlpml(adapter, max_frame_size, pf_id); 3554 /* If we're in VMDQ or SR-IOV mode, then set global RLPML 3555 * to our max jumbo frame size, in case we need to enable 3556 * jumbo frames on one of the rings later. 3557 * This will not pass over-length frames into the default 3558 * queue because it's gated by the VMOLR.RLPML. 3559 */ 3560 max_frame_size = MAX_JUMBO_FRAME_SIZE; 3561 } 3562 3563 wr32(E1000_RLPML, max_frame_size); 3564 } 3565 3566 static inline void igb_set_vmolr(struct igb_adapter *adapter, 3567 int vfn, bool aupe) 3568 { 3569 struct e1000_hw *hw = &adapter->hw; 3570 u32 vmolr; 3571 3572 /* This register exists only on 82576 and newer so if we are older then 3573 * we should exit and do nothing 3574 */ 3575 if (hw->mac.type < e1000_82576) 3576 return; 3577 3578 vmolr = rd32(E1000_VMOLR(vfn)); 3579 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ 3580 if (hw->mac.type == e1000_i350) { 3581 u32 dvmolr; 3582 3583 dvmolr = rd32(E1000_DVMOLR(vfn)); 3584 dvmolr |= E1000_DVMOLR_STRVLAN; 3585 wr32(E1000_DVMOLR(vfn), dvmolr); 3586 } 3587 if (aupe) 3588 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 3589 else 3590 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 3591 3592 /* clear all bits that might not be set */ 3593 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 3594 3595 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 3596 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 3597 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 3598 * multicast packets 3599 */ 3600 if (vfn <= adapter->vfs_allocated_count) 3601 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 3602 3603 wr32(E1000_VMOLR(vfn), vmolr); 3604 } 3605 3606 /** 3607 * igb_configure_rx_ring - Configure a receive ring after Reset 3608 * @adapter: board private structure 3609 * @ring: receive ring to be configured 3610 * 3611 * Configure the Rx unit of the MAC after a reset. 3612 **/ 3613 void igb_configure_rx_ring(struct igb_adapter *adapter, 3614 struct igb_ring *ring) 3615 { 3616 struct e1000_hw *hw = &adapter->hw; 3617 u64 rdba = ring->dma; 3618 int reg_idx = ring->reg_idx; 3619 u32 srrctl = 0, rxdctl = 0; 3620 3621 /* disable the queue */ 3622 wr32(E1000_RXDCTL(reg_idx), 0); 3623 3624 /* Set DMA base address registers */ 3625 wr32(E1000_RDBAL(reg_idx), 3626 rdba & 0x00000000ffffffffULL); 3627 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 3628 wr32(E1000_RDLEN(reg_idx), 3629 ring->count * sizeof(union e1000_adv_rx_desc)); 3630 3631 /* initialize head and tail */ 3632 ring->tail = hw->hw_addr + E1000_RDT(reg_idx); 3633 wr32(E1000_RDH(reg_idx), 0); 3634 writel(0, ring->tail); 3635 3636 /* set descriptor configuration */ 3637 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 3638 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3639 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3640 if (hw->mac.type >= e1000_82580) 3641 srrctl |= E1000_SRRCTL_TIMESTAMP; 3642 /* Only set Drop Enable if we are supporting multiple queues */ 3643 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) 3644 srrctl |= E1000_SRRCTL_DROP_EN; 3645 3646 wr32(E1000_SRRCTL(reg_idx), srrctl); 3647 3648 /* set filtering for VMDQ pools */ 3649 igb_set_vmolr(adapter, reg_idx & 0x7, true); 3650 3651 rxdctl |= IGB_RX_PTHRESH; 3652 rxdctl |= IGB_RX_HTHRESH << 8; 3653 rxdctl |= IGB_RX_WTHRESH << 16; 3654 3655 /* enable receive descriptor fetching */ 3656 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3657 wr32(E1000_RXDCTL(reg_idx), rxdctl); 3658 } 3659 3660 /** 3661 * igb_configure_rx - Configure receive Unit after Reset 3662 * @adapter: board private structure 3663 * 3664 * Configure the Rx unit of the MAC after a reset. 3665 **/ 3666 static void igb_configure_rx(struct igb_adapter *adapter) 3667 { 3668 int i; 3669 3670 /* set UTA to appropriate mode */ 3671 igb_set_uta(adapter); 3672 3673 /* set the correct pool for the PF default MAC address in entry 0 */ 3674 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 3675 adapter->vfs_allocated_count); 3676 3677 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3678 * the Base and Length of the Rx Descriptor Ring 3679 */ 3680 for (i = 0; i < adapter->num_rx_queues; i++) 3681 igb_configure_rx_ring(adapter, adapter->rx_ring[i]); 3682 } 3683 3684 /** 3685 * igb_free_tx_resources - Free Tx Resources per Queue 3686 * @tx_ring: Tx descriptor ring for a specific queue 3687 * 3688 * Free all transmit software resources 3689 **/ 3690 void igb_free_tx_resources(struct igb_ring *tx_ring) 3691 { 3692 igb_clean_tx_ring(tx_ring); 3693 3694 vfree(tx_ring->tx_buffer_info); 3695 tx_ring->tx_buffer_info = NULL; 3696 3697 /* if not set, then don't free */ 3698 if (!tx_ring->desc) 3699 return; 3700 3701 dma_free_coherent(tx_ring->dev, tx_ring->size, 3702 tx_ring->desc, tx_ring->dma); 3703 3704 tx_ring->desc = NULL; 3705 } 3706 3707 /** 3708 * igb_free_all_tx_resources - Free Tx Resources for All Queues 3709 * @adapter: board private structure 3710 * 3711 * Free all transmit software resources 3712 **/ 3713 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 3714 { 3715 int i; 3716 3717 for (i = 0; i < adapter->num_tx_queues; i++) 3718 if (adapter->tx_ring[i]) 3719 igb_free_tx_resources(adapter->tx_ring[i]); 3720 } 3721 3722 void igb_unmap_and_free_tx_resource(struct igb_ring *ring, 3723 struct igb_tx_buffer *tx_buffer) 3724 { 3725 if (tx_buffer->skb) { 3726 dev_kfree_skb_any(tx_buffer->skb); 3727 if (dma_unmap_len(tx_buffer, len)) 3728 dma_unmap_single(ring->dev, 3729 dma_unmap_addr(tx_buffer, dma), 3730 dma_unmap_len(tx_buffer, len), 3731 DMA_TO_DEVICE); 3732 } else if (dma_unmap_len(tx_buffer, len)) { 3733 dma_unmap_page(ring->dev, 3734 dma_unmap_addr(tx_buffer, dma), 3735 dma_unmap_len(tx_buffer, len), 3736 DMA_TO_DEVICE); 3737 } 3738 tx_buffer->next_to_watch = NULL; 3739 tx_buffer->skb = NULL; 3740 dma_unmap_len_set(tx_buffer, len, 0); 3741 /* buffer_info must be completely set up in the transmit path */ 3742 } 3743 3744 /** 3745 * igb_clean_tx_ring - Free Tx Buffers 3746 * @tx_ring: ring to be cleaned 3747 **/ 3748 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 3749 { 3750 struct igb_tx_buffer *buffer_info; 3751 unsigned long size; 3752 u16 i; 3753 3754 if (!tx_ring->tx_buffer_info) 3755 return; 3756 /* Free all the Tx ring sk_buffs */ 3757 3758 for (i = 0; i < tx_ring->count; i++) { 3759 buffer_info = &tx_ring->tx_buffer_info[i]; 3760 igb_unmap_and_free_tx_resource(tx_ring, buffer_info); 3761 } 3762 3763 netdev_tx_reset_queue(txring_txq(tx_ring)); 3764 3765 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3766 memset(tx_ring->tx_buffer_info, 0, size); 3767 3768 /* Zero out the descriptor ring */ 3769 memset(tx_ring->desc, 0, tx_ring->size); 3770 3771 tx_ring->next_to_use = 0; 3772 tx_ring->next_to_clean = 0; 3773 } 3774 3775 /** 3776 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 3777 * @adapter: board private structure 3778 **/ 3779 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 3780 { 3781 int i; 3782 3783 for (i = 0; i < adapter->num_tx_queues; i++) 3784 if (adapter->tx_ring[i]) 3785 igb_clean_tx_ring(adapter->tx_ring[i]); 3786 } 3787 3788 /** 3789 * igb_free_rx_resources - Free Rx Resources 3790 * @rx_ring: ring to clean the resources from 3791 * 3792 * Free all receive software resources 3793 **/ 3794 void igb_free_rx_resources(struct igb_ring *rx_ring) 3795 { 3796 igb_clean_rx_ring(rx_ring); 3797 3798 vfree(rx_ring->rx_buffer_info); 3799 rx_ring->rx_buffer_info = NULL; 3800 3801 /* if not set, then don't free */ 3802 if (!rx_ring->desc) 3803 return; 3804 3805 dma_free_coherent(rx_ring->dev, rx_ring->size, 3806 rx_ring->desc, rx_ring->dma); 3807 3808 rx_ring->desc = NULL; 3809 } 3810 3811 /** 3812 * igb_free_all_rx_resources - Free Rx Resources for All Queues 3813 * @adapter: board private structure 3814 * 3815 * Free all receive software resources 3816 **/ 3817 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 3818 { 3819 int i; 3820 3821 for (i = 0; i < adapter->num_rx_queues; i++) 3822 if (adapter->rx_ring[i]) 3823 igb_free_rx_resources(adapter->rx_ring[i]); 3824 } 3825 3826 /** 3827 * igb_clean_rx_ring - Free Rx Buffers per Queue 3828 * @rx_ring: ring to free buffers from 3829 **/ 3830 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 3831 { 3832 unsigned long size; 3833 u16 i; 3834 3835 if (rx_ring->skb) 3836 dev_kfree_skb(rx_ring->skb); 3837 rx_ring->skb = NULL; 3838 3839 if (!rx_ring->rx_buffer_info) 3840 return; 3841 3842 /* Free all the Rx ring sk_buffs */ 3843 for (i = 0; i < rx_ring->count; i++) { 3844 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 3845 3846 if (!buffer_info->page) 3847 continue; 3848 3849 dma_unmap_page(rx_ring->dev, 3850 buffer_info->dma, 3851 PAGE_SIZE, 3852 DMA_FROM_DEVICE); 3853 __free_page(buffer_info->page); 3854 3855 buffer_info->page = NULL; 3856 } 3857 3858 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3859 memset(rx_ring->rx_buffer_info, 0, size); 3860 3861 /* Zero out the descriptor ring */ 3862 memset(rx_ring->desc, 0, rx_ring->size); 3863 3864 rx_ring->next_to_alloc = 0; 3865 rx_ring->next_to_clean = 0; 3866 rx_ring->next_to_use = 0; 3867 } 3868 3869 /** 3870 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 3871 * @adapter: board private structure 3872 **/ 3873 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 3874 { 3875 int i; 3876 3877 for (i = 0; i < adapter->num_rx_queues; i++) 3878 if (adapter->rx_ring[i]) 3879 igb_clean_rx_ring(adapter->rx_ring[i]); 3880 } 3881 3882 /** 3883 * igb_set_mac - Change the Ethernet Address of the NIC 3884 * @netdev: network interface device structure 3885 * @p: pointer to an address structure 3886 * 3887 * Returns 0 on success, negative on failure 3888 **/ 3889 static int igb_set_mac(struct net_device *netdev, void *p) 3890 { 3891 struct igb_adapter *adapter = netdev_priv(netdev); 3892 struct e1000_hw *hw = &adapter->hw; 3893 struct sockaddr *addr = p; 3894 3895 if (!is_valid_ether_addr(addr->sa_data)) 3896 return -EADDRNOTAVAIL; 3897 3898 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3899 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3900 3901 /* set the correct pool for the new PF MAC address in entry 0 */ 3902 igb_rar_set_qsel(adapter, hw->mac.addr, 0, 3903 adapter->vfs_allocated_count); 3904 3905 return 0; 3906 } 3907 3908 /** 3909 * igb_write_mc_addr_list - write multicast addresses to MTA 3910 * @netdev: network interface device structure 3911 * 3912 * Writes multicast address list to the MTA hash table. 3913 * Returns: -ENOMEM on failure 3914 * 0 on no addresses written 3915 * X on writing X addresses to MTA 3916 **/ 3917 static int igb_write_mc_addr_list(struct net_device *netdev) 3918 { 3919 struct igb_adapter *adapter = netdev_priv(netdev); 3920 struct e1000_hw *hw = &adapter->hw; 3921 struct netdev_hw_addr *ha; 3922 u8 *mta_list; 3923 int i; 3924 3925 if (netdev_mc_empty(netdev)) { 3926 /* nothing to program, so clear mc list */ 3927 igb_update_mc_addr_list(hw, NULL, 0); 3928 igb_restore_vf_multicasts(adapter); 3929 return 0; 3930 } 3931 3932 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3933 if (!mta_list) 3934 return -ENOMEM; 3935 3936 /* The shared function expects a packed array of only addresses. */ 3937 i = 0; 3938 netdev_for_each_mc_addr(ha, netdev) 3939 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3940 3941 igb_update_mc_addr_list(hw, mta_list, i); 3942 kfree(mta_list); 3943 3944 return netdev_mc_count(netdev); 3945 } 3946 3947 /** 3948 * igb_write_uc_addr_list - write unicast addresses to RAR table 3949 * @netdev: network interface device structure 3950 * 3951 * Writes unicast address list to the RAR table. 3952 * Returns: -ENOMEM on failure/insufficient address space 3953 * 0 on no addresses written 3954 * X on writing X addresses to the RAR table 3955 **/ 3956 static int igb_write_uc_addr_list(struct net_device *netdev) 3957 { 3958 struct igb_adapter *adapter = netdev_priv(netdev); 3959 struct e1000_hw *hw = &adapter->hw; 3960 unsigned int vfn = adapter->vfs_allocated_count; 3961 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 3962 int count = 0; 3963 3964 /* return ENOMEM indicating insufficient memory for addresses */ 3965 if (netdev_uc_count(netdev) > rar_entries) 3966 return -ENOMEM; 3967 3968 if (!netdev_uc_empty(netdev) && rar_entries) { 3969 struct netdev_hw_addr *ha; 3970 3971 netdev_for_each_uc_addr(ha, netdev) { 3972 if (!rar_entries) 3973 break; 3974 igb_rar_set_qsel(adapter, ha->addr, 3975 rar_entries--, 3976 vfn); 3977 count++; 3978 } 3979 } 3980 /* write the addresses in reverse order to avoid write combining */ 3981 for (; rar_entries > 0 ; rar_entries--) { 3982 wr32(E1000_RAH(rar_entries), 0); 3983 wr32(E1000_RAL(rar_entries), 0); 3984 } 3985 wrfl(); 3986 3987 return count; 3988 } 3989 3990 /** 3991 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3992 * @netdev: network interface device structure 3993 * 3994 * The set_rx_mode entry point is called whenever the unicast or multicast 3995 * address lists or the network interface flags are updated. This routine is 3996 * responsible for configuring the hardware for proper unicast, multicast, 3997 * promiscuous mode, and all-multi behavior. 3998 **/ 3999 static void igb_set_rx_mode(struct net_device *netdev) 4000 { 4001 struct igb_adapter *adapter = netdev_priv(netdev); 4002 struct e1000_hw *hw = &adapter->hw; 4003 unsigned int vfn = adapter->vfs_allocated_count; 4004 u32 rctl, vmolr = 0; 4005 int count; 4006 4007 /* Check for Promiscuous and All Multicast modes */ 4008 rctl = rd32(E1000_RCTL); 4009 4010 /* clear the effected bits */ 4011 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); 4012 4013 if (netdev->flags & IFF_PROMISC) { 4014 /* retain VLAN HW filtering if in VT mode */ 4015 if (adapter->vfs_allocated_count) 4016 rctl |= E1000_RCTL_VFE; 4017 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 4018 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); 4019 } else { 4020 if (netdev->flags & IFF_ALLMULTI) { 4021 rctl |= E1000_RCTL_MPE; 4022 vmolr |= E1000_VMOLR_MPME; 4023 } else { 4024 /* Write addresses to the MTA, if the attempt fails 4025 * then we should just turn on promiscuous mode so 4026 * that we can at least receive multicast traffic 4027 */ 4028 count = igb_write_mc_addr_list(netdev); 4029 if (count < 0) { 4030 rctl |= E1000_RCTL_MPE; 4031 vmolr |= E1000_VMOLR_MPME; 4032 } else if (count) { 4033 vmolr |= E1000_VMOLR_ROMPE; 4034 } 4035 } 4036 /* Write addresses to available RAR registers, if there is not 4037 * sufficient space to store all the addresses then enable 4038 * unicast promiscuous mode 4039 */ 4040 count = igb_write_uc_addr_list(netdev); 4041 if (count < 0) { 4042 rctl |= E1000_RCTL_UPE; 4043 vmolr |= E1000_VMOLR_ROPE; 4044 } 4045 rctl |= E1000_RCTL_VFE; 4046 } 4047 wr32(E1000_RCTL, rctl); 4048 4049 /* In order to support SR-IOV and eventually VMDq it is necessary to set 4050 * the VMOLR to enable the appropriate modes. Without this workaround 4051 * we will have issues with VLAN tag stripping not being done for frames 4052 * that are only arriving because we are the default pool 4053 */ 4054 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 4055 return; 4056 4057 vmolr |= rd32(E1000_VMOLR(vfn)) & 4058 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 4059 wr32(E1000_VMOLR(vfn), vmolr); 4060 igb_restore_vf_multicasts(adapter); 4061 } 4062 4063 static void igb_check_wvbr(struct igb_adapter *adapter) 4064 { 4065 struct e1000_hw *hw = &adapter->hw; 4066 u32 wvbr = 0; 4067 4068 switch (hw->mac.type) { 4069 case e1000_82576: 4070 case e1000_i350: 4071 wvbr = rd32(E1000_WVBR); 4072 if (!wvbr) 4073 return; 4074 break; 4075 default: 4076 break; 4077 } 4078 4079 adapter->wvbr |= wvbr; 4080 } 4081 4082 #define IGB_STAGGERED_QUEUE_OFFSET 8 4083 4084 static void igb_spoof_check(struct igb_adapter *adapter) 4085 { 4086 int j; 4087 4088 if (!adapter->wvbr) 4089 return; 4090 4091 for (j = 0; j < adapter->vfs_allocated_count; j++) { 4092 if (adapter->wvbr & (1 << j) || 4093 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { 4094 dev_warn(&adapter->pdev->dev, 4095 "Spoof event(s) detected on VF %d\n", j); 4096 adapter->wvbr &= 4097 ~((1 << j) | 4098 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); 4099 } 4100 } 4101 } 4102 4103 /* Need to wait a few seconds after link up to get diagnostic information from 4104 * the phy 4105 */ 4106 static void igb_update_phy_info(unsigned long data) 4107 { 4108 struct igb_adapter *adapter = (struct igb_adapter *) data; 4109 igb_get_phy_info(&adapter->hw); 4110 } 4111 4112 /** 4113 * igb_has_link - check shared code for link and determine up/down 4114 * @adapter: pointer to driver private info 4115 **/ 4116 bool igb_has_link(struct igb_adapter *adapter) 4117 { 4118 struct e1000_hw *hw = &adapter->hw; 4119 bool link_active = false; 4120 4121 /* get_link_status is set on LSC (link status) interrupt or 4122 * rx sequence error interrupt. get_link_status will stay 4123 * false until the e1000_check_for_link establishes link 4124 * for copper adapters ONLY 4125 */ 4126 switch (hw->phy.media_type) { 4127 case e1000_media_type_copper: 4128 if (!hw->mac.get_link_status) 4129 return true; 4130 case e1000_media_type_internal_serdes: 4131 hw->mac.ops.check_for_link(hw); 4132 link_active = !hw->mac.get_link_status; 4133 break; 4134 default: 4135 case e1000_media_type_unknown: 4136 break; 4137 } 4138 4139 if (((hw->mac.type == e1000_i210) || 4140 (hw->mac.type == e1000_i211)) && 4141 (hw->phy.id == I210_I_PHY_ID)) { 4142 if (!netif_carrier_ok(adapter->netdev)) { 4143 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 4144 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 4145 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 4146 adapter->link_check_timeout = jiffies; 4147 } 4148 } 4149 4150 return link_active; 4151 } 4152 4153 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 4154 { 4155 bool ret = false; 4156 u32 ctrl_ext, thstat; 4157 4158 /* check for thermal sensor event on i350 copper only */ 4159 if (hw->mac.type == e1000_i350) { 4160 thstat = rd32(E1000_THSTAT); 4161 ctrl_ext = rd32(E1000_CTRL_EXT); 4162 4163 if ((hw->phy.media_type == e1000_media_type_copper) && 4164 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 4165 ret = !!(thstat & event); 4166 } 4167 4168 return ret; 4169 } 4170 4171 /** 4172 * igb_check_lvmmc - check for malformed packets received 4173 * and indicated in LVMMC register 4174 * @adapter: pointer to adapter 4175 **/ 4176 static void igb_check_lvmmc(struct igb_adapter *adapter) 4177 { 4178 struct e1000_hw *hw = &adapter->hw; 4179 u32 lvmmc; 4180 4181 lvmmc = rd32(E1000_LVMMC); 4182 if (lvmmc) { 4183 if (unlikely(net_ratelimit())) { 4184 netdev_warn(adapter->netdev, 4185 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", 4186 lvmmc); 4187 } 4188 } 4189 } 4190 4191 /** 4192 * igb_watchdog - Timer Call-back 4193 * @data: pointer to adapter cast into an unsigned long 4194 **/ 4195 static void igb_watchdog(unsigned long data) 4196 { 4197 struct igb_adapter *adapter = (struct igb_adapter *)data; 4198 /* Do the rest outside of interrupt context */ 4199 schedule_work(&adapter->watchdog_task); 4200 } 4201 4202 static void igb_watchdog_task(struct work_struct *work) 4203 { 4204 struct igb_adapter *adapter = container_of(work, 4205 struct igb_adapter, 4206 watchdog_task); 4207 struct e1000_hw *hw = &adapter->hw; 4208 struct e1000_phy_info *phy = &hw->phy; 4209 struct net_device *netdev = adapter->netdev; 4210 u32 link; 4211 int i; 4212 u32 connsw; 4213 4214 link = igb_has_link(adapter); 4215 4216 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 4217 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 4218 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 4219 else 4220 link = false; 4221 } 4222 4223 /* Force link down if we have fiber to swap to */ 4224 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 4225 if (hw->phy.media_type == e1000_media_type_copper) { 4226 connsw = rd32(E1000_CONNSW); 4227 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 4228 link = 0; 4229 } 4230 } 4231 if (link) { 4232 /* Perform a reset if the media type changed. */ 4233 if (hw->dev_spec._82575.media_changed) { 4234 hw->dev_spec._82575.media_changed = false; 4235 adapter->flags |= IGB_FLAG_MEDIA_RESET; 4236 igb_reset(adapter); 4237 } 4238 /* Cancel scheduled suspend requests. */ 4239 pm_runtime_resume(netdev->dev.parent); 4240 4241 if (!netif_carrier_ok(netdev)) { 4242 u32 ctrl; 4243 4244 hw->mac.ops.get_speed_and_duplex(hw, 4245 &adapter->link_speed, 4246 &adapter->link_duplex); 4247 4248 ctrl = rd32(E1000_CTRL); 4249 /* Links status message must follow this format */ 4250 netdev_info(netdev, 4251 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 4252 netdev->name, 4253 adapter->link_speed, 4254 adapter->link_duplex == FULL_DUPLEX ? 4255 "Full" : "Half", 4256 (ctrl & E1000_CTRL_TFCE) && 4257 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 4258 (ctrl & E1000_CTRL_RFCE) ? "RX" : 4259 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 4260 4261 /* disable EEE if enabled */ 4262 if ((adapter->flags & IGB_FLAG_EEE) && 4263 (adapter->link_duplex == HALF_DUPLEX)) { 4264 dev_info(&adapter->pdev->dev, 4265 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 4266 adapter->hw.dev_spec._82575.eee_disable = true; 4267 adapter->flags &= ~IGB_FLAG_EEE; 4268 } 4269 4270 /* check if SmartSpeed worked */ 4271 igb_check_downshift(hw); 4272 if (phy->speed_downgraded) 4273 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 4274 4275 /* check for thermal sensor event */ 4276 if (igb_thermal_sensor_event(hw, 4277 E1000_THSTAT_LINK_THROTTLE)) 4278 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 4279 4280 /* adjust timeout factor according to speed/duplex */ 4281 adapter->tx_timeout_factor = 1; 4282 switch (adapter->link_speed) { 4283 case SPEED_10: 4284 adapter->tx_timeout_factor = 14; 4285 break; 4286 case SPEED_100: 4287 /* maybe add some timeout factor ? */ 4288 break; 4289 } 4290 4291 netif_carrier_on(netdev); 4292 4293 igb_ping_all_vfs(adapter); 4294 igb_check_vf_rate_limit(adapter); 4295 4296 /* link state has changed, schedule phy info update */ 4297 if (!test_bit(__IGB_DOWN, &adapter->state)) 4298 mod_timer(&adapter->phy_info_timer, 4299 round_jiffies(jiffies + 2 * HZ)); 4300 } 4301 } else { 4302 if (netif_carrier_ok(netdev)) { 4303 adapter->link_speed = 0; 4304 adapter->link_duplex = 0; 4305 4306 /* check for thermal sensor event */ 4307 if (igb_thermal_sensor_event(hw, 4308 E1000_THSTAT_PWR_DOWN)) { 4309 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 4310 } 4311 4312 /* Links status message must follow this format */ 4313 netdev_info(netdev, "igb: %s NIC Link is Down\n", 4314 netdev->name); 4315 netif_carrier_off(netdev); 4316 4317 igb_ping_all_vfs(adapter); 4318 4319 /* link state has changed, schedule phy info update */ 4320 if (!test_bit(__IGB_DOWN, &adapter->state)) 4321 mod_timer(&adapter->phy_info_timer, 4322 round_jiffies(jiffies + 2 * HZ)); 4323 4324 /* link is down, time to check for alternate media */ 4325 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 4326 igb_check_swap_media(adapter); 4327 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 4328 schedule_work(&adapter->reset_task); 4329 /* return immediately */ 4330 return; 4331 } 4332 } 4333 pm_schedule_suspend(netdev->dev.parent, 4334 MSEC_PER_SEC * 5); 4335 4336 /* also check for alternate media here */ 4337 } else if (!netif_carrier_ok(netdev) && 4338 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 4339 igb_check_swap_media(adapter); 4340 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 4341 schedule_work(&adapter->reset_task); 4342 /* return immediately */ 4343 return; 4344 } 4345 } 4346 } 4347 4348 spin_lock(&adapter->stats64_lock); 4349 igb_update_stats(adapter, &adapter->stats64); 4350 spin_unlock(&adapter->stats64_lock); 4351 4352 for (i = 0; i < adapter->num_tx_queues; i++) { 4353 struct igb_ring *tx_ring = adapter->tx_ring[i]; 4354 if (!netif_carrier_ok(netdev)) { 4355 /* We've lost link, so the controller stops DMA, 4356 * but we've got queued Tx work that's never going 4357 * to get done, so reset controller to flush Tx. 4358 * (Do the reset outside of interrupt context). 4359 */ 4360 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 4361 adapter->tx_timeout_count++; 4362 schedule_work(&adapter->reset_task); 4363 /* return immediately since reset is imminent */ 4364 return; 4365 } 4366 } 4367 4368 /* Force detection of hung controller every watchdog period */ 4369 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 4370 } 4371 4372 /* Cause software interrupt to ensure Rx ring is cleaned */ 4373 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 4374 u32 eics = 0; 4375 4376 for (i = 0; i < adapter->num_q_vectors; i++) 4377 eics |= adapter->q_vector[i]->eims_value; 4378 wr32(E1000_EICS, eics); 4379 } else { 4380 wr32(E1000_ICS, E1000_ICS_RXDMT0); 4381 } 4382 4383 igb_spoof_check(adapter); 4384 igb_ptp_rx_hang(adapter); 4385 4386 /* Check LVMMC register on i350/i354 only */ 4387 if ((adapter->hw.mac.type == e1000_i350) || 4388 (adapter->hw.mac.type == e1000_i354)) 4389 igb_check_lvmmc(adapter); 4390 4391 /* Reset the timer */ 4392 if (!test_bit(__IGB_DOWN, &adapter->state)) { 4393 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 4394 mod_timer(&adapter->watchdog_timer, 4395 round_jiffies(jiffies + HZ)); 4396 else 4397 mod_timer(&adapter->watchdog_timer, 4398 round_jiffies(jiffies + 2 * HZ)); 4399 } 4400 } 4401 4402 enum latency_range { 4403 lowest_latency = 0, 4404 low_latency = 1, 4405 bulk_latency = 2, 4406 latency_invalid = 255 4407 }; 4408 4409 /** 4410 * igb_update_ring_itr - update the dynamic ITR value based on packet size 4411 * @q_vector: pointer to q_vector 4412 * 4413 * Stores a new ITR value based on strictly on packet size. This 4414 * algorithm is less sophisticated than that used in igb_update_itr, 4415 * due to the difficulty of synchronizing statistics across multiple 4416 * receive rings. The divisors and thresholds used by this function 4417 * were determined based on theoretical maximum wire speed and testing 4418 * data, in order to minimize response time while increasing bulk 4419 * throughput. 4420 * This functionality is controlled by ethtool's coalescing settings. 4421 * NOTE: This function is called only when operating in a multiqueue 4422 * receive environment. 4423 **/ 4424 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 4425 { 4426 int new_val = q_vector->itr_val; 4427 int avg_wire_size = 0; 4428 struct igb_adapter *adapter = q_vector->adapter; 4429 unsigned int packets; 4430 4431 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4432 * ints/sec - ITR timer value of 120 ticks. 4433 */ 4434 if (adapter->link_speed != SPEED_1000) { 4435 new_val = IGB_4K_ITR; 4436 goto set_itr_val; 4437 } 4438 4439 packets = q_vector->rx.total_packets; 4440 if (packets) 4441 avg_wire_size = q_vector->rx.total_bytes / packets; 4442 4443 packets = q_vector->tx.total_packets; 4444 if (packets) 4445 avg_wire_size = max_t(u32, avg_wire_size, 4446 q_vector->tx.total_bytes / packets); 4447 4448 /* if avg_wire_size isn't set no work was done */ 4449 if (!avg_wire_size) 4450 goto clear_counts; 4451 4452 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4453 avg_wire_size += 24; 4454 4455 /* Don't starve jumbo frames */ 4456 avg_wire_size = min(avg_wire_size, 3000); 4457 4458 /* Give a little boost to mid-size frames */ 4459 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 4460 new_val = avg_wire_size / 3; 4461 else 4462 new_val = avg_wire_size / 2; 4463 4464 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4465 if (new_val < IGB_20K_ITR && 4466 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4467 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4468 new_val = IGB_20K_ITR; 4469 4470 set_itr_val: 4471 if (new_val != q_vector->itr_val) { 4472 q_vector->itr_val = new_val; 4473 q_vector->set_itr = 1; 4474 } 4475 clear_counts: 4476 q_vector->rx.total_bytes = 0; 4477 q_vector->rx.total_packets = 0; 4478 q_vector->tx.total_bytes = 0; 4479 q_vector->tx.total_packets = 0; 4480 } 4481 4482 /** 4483 * igb_update_itr - update the dynamic ITR value based on statistics 4484 * @q_vector: pointer to q_vector 4485 * @ring_container: ring info to update the itr for 4486 * 4487 * Stores a new ITR value based on packets and byte 4488 * counts during the last interrupt. The advantage of per interrupt 4489 * computation is faster updates and more accurate ITR for the current 4490 * traffic pattern. Constants in this function were computed 4491 * based on theoretical maximum wire speed and thresholds were set based 4492 * on testing data as well as attempting to minimize response time 4493 * while increasing bulk throughput. 4494 * This functionality is controlled by ethtool's coalescing settings. 4495 * NOTE: These calculations are only valid when operating in a single- 4496 * queue environment. 4497 **/ 4498 static void igb_update_itr(struct igb_q_vector *q_vector, 4499 struct igb_ring_container *ring_container) 4500 { 4501 unsigned int packets = ring_container->total_packets; 4502 unsigned int bytes = ring_container->total_bytes; 4503 u8 itrval = ring_container->itr; 4504 4505 /* no packets, exit with status unchanged */ 4506 if (packets == 0) 4507 return; 4508 4509 switch (itrval) { 4510 case lowest_latency: 4511 /* handle TSO and jumbo frames */ 4512 if (bytes/packets > 8000) 4513 itrval = bulk_latency; 4514 else if ((packets < 5) && (bytes > 512)) 4515 itrval = low_latency; 4516 break; 4517 case low_latency: /* 50 usec aka 20000 ints/s */ 4518 if (bytes > 10000) { 4519 /* this if handles the TSO accounting */ 4520 if (bytes/packets > 8000) 4521 itrval = bulk_latency; 4522 else if ((packets < 10) || ((bytes/packets) > 1200)) 4523 itrval = bulk_latency; 4524 else if ((packets > 35)) 4525 itrval = lowest_latency; 4526 } else if (bytes/packets > 2000) { 4527 itrval = bulk_latency; 4528 } else if (packets <= 2 && bytes < 512) { 4529 itrval = lowest_latency; 4530 } 4531 break; 4532 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4533 if (bytes > 25000) { 4534 if (packets > 35) 4535 itrval = low_latency; 4536 } else if (bytes < 1500) { 4537 itrval = low_latency; 4538 } 4539 break; 4540 } 4541 4542 /* clear work counters since we have the values we need */ 4543 ring_container->total_bytes = 0; 4544 ring_container->total_packets = 0; 4545 4546 /* write updated itr to ring container */ 4547 ring_container->itr = itrval; 4548 } 4549 4550 static void igb_set_itr(struct igb_q_vector *q_vector) 4551 { 4552 struct igb_adapter *adapter = q_vector->adapter; 4553 u32 new_itr = q_vector->itr_val; 4554 u8 current_itr = 0; 4555 4556 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4557 if (adapter->link_speed != SPEED_1000) { 4558 current_itr = 0; 4559 new_itr = IGB_4K_ITR; 4560 goto set_itr_now; 4561 } 4562 4563 igb_update_itr(q_vector, &q_vector->tx); 4564 igb_update_itr(q_vector, &q_vector->rx); 4565 4566 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4567 4568 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4569 if (current_itr == lowest_latency && 4570 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4571 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4572 current_itr = low_latency; 4573 4574 switch (current_itr) { 4575 /* counts and packets in update_itr are dependent on these numbers */ 4576 case lowest_latency: 4577 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 4578 break; 4579 case low_latency: 4580 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 4581 break; 4582 case bulk_latency: 4583 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 4584 break; 4585 default: 4586 break; 4587 } 4588 4589 set_itr_now: 4590 if (new_itr != q_vector->itr_val) { 4591 /* this attempts to bias the interrupt rate towards Bulk 4592 * by adding intermediate steps when interrupt rate is 4593 * increasing 4594 */ 4595 new_itr = new_itr > q_vector->itr_val ? 4596 max((new_itr * q_vector->itr_val) / 4597 (new_itr + (q_vector->itr_val >> 2)), 4598 new_itr) : new_itr; 4599 /* Don't write the value here; it resets the adapter's 4600 * internal timer, and causes us to delay far longer than 4601 * we should between interrupts. Instead, we write the ITR 4602 * value at the beginning of the next interrupt so the timing 4603 * ends up being correct. 4604 */ 4605 q_vector->itr_val = new_itr; 4606 q_vector->set_itr = 1; 4607 } 4608 } 4609 4610 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, 4611 u32 type_tucmd, u32 mss_l4len_idx) 4612 { 4613 struct e1000_adv_tx_context_desc *context_desc; 4614 u16 i = tx_ring->next_to_use; 4615 4616 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 4617 4618 i++; 4619 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 4620 4621 /* set bits to identify this as an advanced context descriptor */ 4622 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 4623 4624 /* For 82575, context index must be unique per ring. */ 4625 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4626 mss_l4len_idx |= tx_ring->reg_idx << 4; 4627 4628 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 4629 context_desc->seqnum_seed = 0; 4630 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 4631 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 4632 } 4633 4634 static int igb_tso(struct igb_ring *tx_ring, 4635 struct igb_tx_buffer *first, 4636 u8 *hdr_len) 4637 { 4638 struct sk_buff *skb = first->skb; 4639 u32 vlan_macip_lens, type_tucmd; 4640 u32 mss_l4len_idx, l4len; 4641 int err; 4642 4643 if (skb->ip_summed != CHECKSUM_PARTIAL) 4644 return 0; 4645 4646 if (!skb_is_gso(skb)) 4647 return 0; 4648 4649 err = skb_cow_head(skb, 0); 4650 if (err < 0) 4651 return err; 4652 4653 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 4654 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 4655 4656 if (first->protocol == htons(ETH_P_IP)) { 4657 struct iphdr *iph = ip_hdr(skb); 4658 iph->tot_len = 0; 4659 iph->check = 0; 4660 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 4661 iph->daddr, 0, 4662 IPPROTO_TCP, 4663 0); 4664 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4665 first->tx_flags |= IGB_TX_FLAGS_TSO | 4666 IGB_TX_FLAGS_CSUM | 4667 IGB_TX_FLAGS_IPV4; 4668 } else if (skb_is_gso_v6(skb)) { 4669 ipv6_hdr(skb)->payload_len = 0; 4670 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4671 &ipv6_hdr(skb)->daddr, 4672 0, IPPROTO_TCP, 0); 4673 first->tx_flags |= IGB_TX_FLAGS_TSO | 4674 IGB_TX_FLAGS_CSUM; 4675 } 4676 4677 /* compute header lengths */ 4678 l4len = tcp_hdrlen(skb); 4679 *hdr_len = skb_transport_offset(skb) + l4len; 4680 4681 /* update gso size and bytecount with header size */ 4682 first->gso_segs = skb_shinfo(skb)->gso_segs; 4683 first->bytecount += (first->gso_segs - 1) * *hdr_len; 4684 4685 /* MSS L4LEN IDX */ 4686 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; 4687 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 4688 4689 /* VLAN MACLEN IPLEN */ 4690 vlan_macip_lens = skb_network_header_len(skb); 4691 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4692 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4693 4694 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4695 4696 return 1; 4697 } 4698 4699 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 4700 { 4701 struct sk_buff *skb = first->skb; 4702 u32 vlan_macip_lens = 0; 4703 u32 mss_l4len_idx = 0; 4704 u32 type_tucmd = 0; 4705 4706 if (skb->ip_summed != CHECKSUM_PARTIAL) { 4707 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) 4708 return; 4709 } else { 4710 u8 l4_hdr = 0; 4711 4712 switch (first->protocol) { 4713 case htons(ETH_P_IP): 4714 vlan_macip_lens |= skb_network_header_len(skb); 4715 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4716 l4_hdr = ip_hdr(skb)->protocol; 4717 break; 4718 case htons(ETH_P_IPV6): 4719 vlan_macip_lens |= skb_network_header_len(skb); 4720 l4_hdr = ipv6_hdr(skb)->nexthdr; 4721 break; 4722 default: 4723 if (unlikely(net_ratelimit())) { 4724 dev_warn(tx_ring->dev, 4725 "partial checksum but proto=%x!\n", 4726 first->protocol); 4727 } 4728 break; 4729 } 4730 4731 switch (l4_hdr) { 4732 case IPPROTO_TCP: 4733 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 4734 mss_l4len_idx = tcp_hdrlen(skb) << 4735 E1000_ADVTXD_L4LEN_SHIFT; 4736 break; 4737 case IPPROTO_SCTP: 4738 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; 4739 mss_l4len_idx = sizeof(struct sctphdr) << 4740 E1000_ADVTXD_L4LEN_SHIFT; 4741 break; 4742 case IPPROTO_UDP: 4743 mss_l4len_idx = sizeof(struct udphdr) << 4744 E1000_ADVTXD_L4LEN_SHIFT; 4745 break; 4746 default: 4747 if (unlikely(net_ratelimit())) { 4748 dev_warn(tx_ring->dev, 4749 "partial checksum but l4 proto=%x!\n", 4750 l4_hdr); 4751 } 4752 break; 4753 } 4754 4755 /* update TX checksum flag */ 4756 first->tx_flags |= IGB_TX_FLAGS_CSUM; 4757 } 4758 4759 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4760 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4761 4762 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4763 } 4764 4765 #define IGB_SET_FLAG(_input, _flag, _result) \ 4766 ((_flag <= _result) ? \ 4767 ((u32)(_input & _flag) * (_result / _flag)) : \ 4768 ((u32)(_input & _flag) / (_flag / _result))) 4769 4770 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 4771 { 4772 /* set type for advanced descriptor with frame checksum insertion */ 4773 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 4774 E1000_ADVTXD_DCMD_DEXT | 4775 E1000_ADVTXD_DCMD_IFCS; 4776 4777 /* set HW vlan bit if vlan is present */ 4778 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 4779 (E1000_ADVTXD_DCMD_VLE)); 4780 4781 /* set segmentation bits for TSO */ 4782 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 4783 (E1000_ADVTXD_DCMD_TSE)); 4784 4785 /* set timestamp bit if present */ 4786 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 4787 (E1000_ADVTXD_MAC_TSTAMP)); 4788 4789 /* insert frame checksum */ 4790 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 4791 4792 return cmd_type; 4793 } 4794 4795 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 4796 union e1000_adv_tx_desc *tx_desc, 4797 u32 tx_flags, unsigned int paylen) 4798 { 4799 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 4800 4801 /* 82575 requires a unique index per ring */ 4802 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4803 olinfo_status |= tx_ring->reg_idx << 4; 4804 4805 /* insert L4 checksum */ 4806 olinfo_status |= IGB_SET_FLAG(tx_flags, 4807 IGB_TX_FLAGS_CSUM, 4808 (E1000_TXD_POPTS_TXSM << 8)); 4809 4810 /* insert IPv4 checksum */ 4811 olinfo_status |= IGB_SET_FLAG(tx_flags, 4812 IGB_TX_FLAGS_IPV4, 4813 (E1000_TXD_POPTS_IXSM << 8)); 4814 4815 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 4816 } 4817 4818 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4819 { 4820 struct net_device *netdev = tx_ring->netdev; 4821 4822 netif_stop_subqueue(netdev, tx_ring->queue_index); 4823 4824 /* Herbert's original patch had: 4825 * smp_mb__after_netif_stop_queue(); 4826 * but since that doesn't exist yet, just open code it. 4827 */ 4828 smp_mb(); 4829 4830 /* We need to check again in a case another CPU has just 4831 * made room available. 4832 */ 4833 if (igb_desc_unused(tx_ring) < size) 4834 return -EBUSY; 4835 4836 /* A reprieve! */ 4837 netif_wake_subqueue(netdev, tx_ring->queue_index); 4838 4839 u64_stats_update_begin(&tx_ring->tx_syncp2); 4840 tx_ring->tx_stats.restart_queue2++; 4841 u64_stats_update_end(&tx_ring->tx_syncp2); 4842 4843 return 0; 4844 } 4845 4846 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4847 { 4848 if (igb_desc_unused(tx_ring) >= size) 4849 return 0; 4850 return __igb_maybe_stop_tx(tx_ring, size); 4851 } 4852 4853 static void igb_tx_map(struct igb_ring *tx_ring, 4854 struct igb_tx_buffer *first, 4855 const u8 hdr_len) 4856 { 4857 struct sk_buff *skb = first->skb; 4858 struct igb_tx_buffer *tx_buffer; 4859 union e1000_adv_tx_desc *tx_desc; 4860 struct skb_frag_struct *frag; 4861 dma_addr_t dma; 4862 unsigned int data_len, size; 4863 u32 tx_flags = first->tx_flags; 4864 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 4865 u16 i = tx_ring->next_to_use; 4866 4867 tx_desc = IGB_TX_DESC(tx_ring, i); 4868 4869 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 4870 4871 size = skb_headlen(skb); 4872 data_len = skb->data_len; 4873 4874 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 4875 4876 tx_buffer = first; 4877 4878 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 4879 if (dma_mapping_error(tx_ring->dev, dma)) 4880 goto dma_error; 4881 4882 /* record length, and DMA address */ 4883 dma_unmap_len_set(tx_buffer, len, size); 4884 dma_unmap_addr_set(tx_buffer, dma, dma); 4885 4886 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4887 4888 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 4889 tx_desc->read.cmd_type_len = 4890 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 4891 4892 i++; 4893 tx_desc++; 4894 if (i == tx_ring->count) { 4895 tx_desc = IGB_TX_DESC(tx_ring, 0); 4896 i = 0; 4897 } 4898 tx_desc->read.olinfo_status = 0; 4899 4900 dma += IGB_MAX_DATA_PER_TXD; 4901 size -= IGB_MAX_DATA_PER_TXD; 4902 4903 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4904 } 4905 4906 if (likely(!data_len)) 4907 break; 4908 4909 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 4910 4911 i++; 4912 tx_desc++; 4913 if (i == tx_ring->count) { 4914 tx_desc = IGB_TX_DESC(tx_ring, 0); 4915 i = 0; 4916 } 4917 tx_desc->read.olinfo_status = 0; 4918 4919 size = skb_frag_size(frag); 4920 data_len -= size; 4921 4922 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 4923 size, DMA_TO_DEVICE); 4924 4925 tx_buffer = &tx_ring->tx_buffer_info[i]; 4926 } 4927 4928 /* write last descriptor with RS and EOP bits */ 4929 cmd_type |= size | IGB_TXD_DCMD; 4930 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 4931 4932 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 4933 4934 /* set the timestamp */ 4935 first->time_stamp = jiffies; 4936 4937 /* Force memory writes to complete before letting h/w know there 4938 * are new descriptors to fetch. (Only applicable for weak-ordered 4939 * memory model archs, such as IA-64). 4940 * 4941 * We also need this memory barrier to make certain all of the 4942 * status bits have been updated before next_to_watch is written. 4943 */ 4944 wmb(); 4945 4946 /* set next_to_watch value indicating a packet is present */ 4947 first->next_to_watch = tx_desc; 4948 4949 i++; 4950 if (i == tx_ring->count) 4951 i = 0; 4952 4953 tx_ring->next_to_use = i; 4954 4955 /* Make sure there is space in the ring for the next send. */ 4956 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 4957 4958 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 4959 writel(i, tx_ring->tail); 4960 4961 /* we need this if more than one processor can write to our tail 4962 * at a time, it synchronizes IO on IA64/Altix systems 4963 */ 4964 mmiowb(); 4965 } 4966 return; 4967 4968 dma_error: 4969 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4970 4971 /* clear dma mappings for failed tx_buffer_info map */ 4972 for (;;) { 4973 tx_buffer = &tx_ring->tx_buffer_info[i]; 4974 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); 4975 if (tx_buffer == first) 4976 break; 4977 if (i == 0) 4978 i = tx_ring->count; 4979 i--; 4980 } 4981 4982 tx_ring->next_to_use = i; 4983 } 4984 4985 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 4986 struct igb_ring *tx_ring) 4987 { 4988 struct igb_tx_buffer *first; 4989 int tso; 4990 u32 tx_flags = 0; 4991 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4992 __be16 protocol = vlan_get_protocol(skb); 4993 u8 hdr_len = 0; 4994 4995 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 4996 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 4997 * + 2 desc gap to keep tail from touching head, 4998 * + 1 desc for context descriptor, 4999 * otherwise try next time 5000 */ 5001 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { 5002 unsigned short f; 5003 5004 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 5005 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 5006 } else { 5007 count += skb_shinfo(skb)->nr_frags; 5008 } 5009 5010 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 5011 /* this is a hard error */ 5012 return NETDEV_TX_BUSY; 5013 } 5014 5015 /* record the location of the first descriptor for this packet */ 5016 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 5017 first->skb = skb; 5018 first->bytecount = skb->len; 5019 first->gso_segs = 1; 5020 5021 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 5022 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 5023 5024 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 5025 &adapter->state)) { 5026 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5027 tx_flags |= IGB_TX_FLAGS_TSTAMP; 5028 5029 adapter->ptp_tx_skb = skb_get(skb); 5030 adapter->ptp_tx_start = jiffies; 5031 if (adapter->hw.mac.type == e1000_82576) 5032 schedule_work(&adapter->ptp_tx_work); 5033 } 5034 } 5035 5036 skb_tx_timestamp(skb); 5037 5038 if (skb_vlan_tag_present(skb)) { 5039 tx_flags |= IGB_TX_FLAGS_VLAN; 5040 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 5041 } 5042 5043 /* record initial flags and protocol */ 5044 first->tx_flags = tx_flags; 5045 first->protocol = protocol; 5046 5047 tso = igb_tso(tx_ring, first, &hdr_len); 5048 if (tso < 0) 5049 goto out_drop; 5050 else if (!tso) 5051 igb_tx_csum(tx_ring, first); 5052 5053 igb_tx_map(tx_ring, first, hdr_len); 5054 5055 return NETDEV_TX_OK; 5056 5057 out_drop: 5058 igb_unmap_and_free_tx_resource(tx_ring, first); 5059 5060 return NETDEV_TX_OK; 5061 } 5062 5063 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 5064 struct sk_buff *skb) 5065 { 5066 unsigned int r_idx = skb->queue_mapping; 5067 5068 if (r_idx >= adapter->num_tx_queues) 5069 r_idx = r_idx % adapter->num_tx_queues; 5070 5071 return adapter->tx_ring[r_idx]; 5072 } 5073 5074 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 5075 struct net_device *netdev) 5076 { 5077 struct igb_adapter *adapter = netdev_priv(netdev); 5078 5079 if (test_bit(__IGB_DOWN, &adapter->state)) { 5080 dev_kfree_skb_any(skb); 5081 return NETDEV_TX_OK; 5082 } 5083 5084 if (skb->len <= 0) { 5085 dev_kfree_skb_any(skb); 5086 return NETDEV_TX_OK; 5087 } 5088 5089 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 5090 * in order to meet this minimum size requirement. 5091 */ 5092 if (skb_put_padto(skb, 17)) 5093 return NETDEV_TX_OK; 5094 5095 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 5096 } 5097 5098 /** 5099 * igb_tx_timeout - Respond to a Tx Hang 5100 * @netdev: network interface device structure 5101 **/ 5102 static void igb_tx_timeout(struct net_device *netdev) 5103 { 5104 struct igb_adapter *adapter = netdev_priv(netdev); 5105 struct e1000_hw *hw = &adapter->hw; 5106 5107 /* Do the reset outside of interrupt context */ 5108 adapter->tx_timeout_count++; 5109 5110 if (hw->mac.type >= e1000_82580) 5111 hw->dev_spec._82575.global_device_reset = true; 5112 5113 schedule_work(&adapter->reset_task); 5114 wr32(E1000_EICS, 5115 (adapter->eims_enable_mask & ~adapter->eims_other)); 5116 } 5117 5118 static void igb_reset_task(struct work_struct *work) 5119 { 5120 struct igb_adapter *adapter; 5121 adapter = container_of(work, struct igb_adapter, reset_task); 5122 5123 igb_dump(adapter); 5124 netdev_err(adapter->netdev, "Reset adapter\n"); 5125 igb_reinit_locked(adapter); 5126 } 5127 5128 /** 5129 * igb_get_stats64 - Get System Network Statistics 5130 * @netdev: network interface device structure 5131 * @stats: rtnl_link_stats64 pointer 5132 **/ 5133 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, 5134 struct rtnl_link_stats64 *stats) 5135 { 5136 struct igb_adapter *adapter = netdev_priv(netdev); 5137 5138 spin_lock(&adapter->stats64_lock); 5139 igb_update_stats(adapter, &adapter->stats64); 5140 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5141 spin_unlock(&adapter->stats64_lock); 5142 5143 return stats; 5144 } 5145 5146 /** 5147 * igb_change_mtu - Change the Maximum Transfer Unit 5148 * @netdev: network interface device structure 5149 * @new_mtu: new value for maximum frame size 5150 * 5151 * Returns 0 on success, negative on failure 5152 **/ 5153 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 5154 { 5155 struct igb_adapter *adapter = netdev_priv(netdev); 5156 struct pci_dev *pdev = adapter->pdev; 5157 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5158 5159 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 5160 dev_err(&pdev->dev, "Invalid MTU setting\n"); 5161 return -EINVAL; 5162 } 5163 5164 #define MAX_STD_JUMBO_FRAME_SIZE 9238 5165 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 5166 dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); 5167 return -EINVAL; 5168 } 5169 5170 /* adjust max frame to be at least the size of a standard frame */ 5171 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5172 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5173 5174 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 5175 usleep_range(1000, 2000); 5176 5177 /* igb_down has a dependency on max_frame_size */ 5178 adapter->max_frame_size = max_frame; 5179 5180 if (netif_running(netdev)) 5181 igb_down(adapter); 5182 5183 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 5184 netdev->mtu, new_mtu); 5185 netdev->mtu = new_mtu; 5186 5187 if (netif_running(netdev)) 5188 igb_up(adapter); 5189 else 5190 igb_reset(adapter); 5191 5192 clear_bit(__IGB_RESETTING, &adapter->state); 5193 5194 return 0; 5195 } 5196 5197 /** 5198 * igb_update_stats - Update the board statistics counters 5199 * @adapter: board private structure 5200 **/ 5201 void igb_update_stats(struct igb_adapter *adapter, 5202 struct rtnl_link_stats64 *net_stats) 5203 { 5204 struct e1000_hw *hw = &adapter->hw; 5205 struct pci_dev *pdev = adapter->pdev; 5206 u32 reg, mpc; 5207 int i; 5208 u64 bytes, packets; 5209 unsigned int start; 5210 u64 _bytes, _packets; 5211 5212 /* Prevent stats update while adapter is being reset, or if the pci 5213 * connection is down. 5214 */ 5215 if (adapter->link_speed == 0) 5216 return; 5217 if (pci_channel_offline(pdev)) 5218 return; 5219 5220 bytes = 0; 5221 packets = 0; 5222 5223 rcu_read_lock(); 5224 for (i = 0; i < adapter->num_rx_queues; i++) { 5225 struct igb_ring *ring = adapter->rx_ring[i]; 5226 u32 rqdpc = rd32(E1000_RQDPC(i)); 5227 if (hw->mac.type >= e1000_i210) 5228 wr32(E1000_RQDPC(i), 0); 5229 5230 if (rqdpc) { 5231 ring->rx_stats.drops += rqdpc; 5232 net_stats->rx_fifo_errors += rqdpc; 5233 } 5234 5235 do { 5236 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 5237 _bytes = ring->rx_stats.bytes; 5238 _packets = ring->rx_stats.packets; 5239 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 5240 bytes += _bytes; 5241 packets += _packets; 5242 } 5243 5244 net_stats->rx_bytes = bytes; 5245 net_stats->rx_packets = packets; 5246 5247 bytes = 0; 5248 packets = 0; 5249 for (i = 0; i < adapter->num_tx_queues; i++) { 5250 struct igb_ring *ring = adapter->tx_ring[i]; 5251 do { 5252 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 5253 _bytes = ring->tx_stats.bytes; 5254 _packets = ring->tx_stats.packets; 5255 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 5256 bytes += _bytes; 5257 packets += _packets; 5258 } 5259 net_stats->tx_bytes = bytes; 5260 net_stats->tx_packets = packets; 5261 rcu_read_unlock(); 5262 5263 /* read stats registers */ 5264 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 5265 adapter->stats.gprc += rd32(E1000_GPRC); 5266 adapter->stats.gorc += rd32(E1000_GORCL); 5267 rd32(E1000_GORCH); /* clear GORCL */ 5268 adapter->stats.bprc += rd32(E1000_BPRC); 5269 adapter->stats.mprc += rd32(E1000_MPRC); 5270 adapter->stats.roc += rd32(E1000_ROC); 5271 5272 adapter->stats.prc64 += rd32(E1000_PRC64); 5273 adapter->stats.prc127 += rd32(E1000_PRC127); 5274 adapter->stats.prc255 += rd32(E1000_PRC255); 5275 adapter->stats.prc511 += rd32(E1000_PRC511); 5276 adapter->stats.prc1023 += rd32(E1000_PRC1023); 5277 adapter->stats.prc1522 += rd32(E1000_PRC1522); 5278 adapter->stats.symerrs += rd32(E1000_SYMERRS); 5279 adapter->stats.sec += rd32(E1000_SEC); 5280 5281 mpc = rd32(E1000_MPC); 5282 adapter->stats.mpc += mpc; 5283 net_stats->rx_fifo_errors += mpc; 5284 adapter->stats.scc += rd32(E1000_SCC); 5285 adapter->stats.ecol += rd32(E1000_ECOL); 5286 adapter->stats.mcc += rd32(E1000_MCC); 5287 adapter->stats.latecol += rd32(E1000_LATECOL); 5288 adapter->stats.dc += rd32(E1000_DC); 5289 adapter->stats.rlec += rd32(E1000_RLEC); 5290 adapter->stats.xonrxc += rd32(E1000_XONRXC); 5291 adapter->stats.xontxc += rd32(E1000_XONTXC); 5292 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 5293 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 5294 adapter->stats.fcruc += rd32(E1000_FCRUC); 5295 adapter->stats.gptc += rd32(E1000_GPTC); 5296 adapter->stats.gotc += rd32(E1000_GOTCL); 5297 rd32(E1000_GOTCH); /* clear GOTCL */ 5298 adapter->stats.rnbc += rd32(E1000_RNBC); 5299 adapter->stats.ruc += rd32(E1000_RUC); 5300 adapter->stats.rfc += rd32(E1000_RFC); 5301 adapter->stats.rjc += rd32(E1000_RJC); 5302 adapter->stats.tor += rd32(E1000_TORH); 5303 adapter->stats.tot += rd32(E1000_TOTH); 5304 adapter->stats.tpr += rd32(E1000_TPR); 5305 5306 adapter->stats.ptc64 += rd32(E1000_PTC64); 5307 adapter->stats.ptc127 += rd32(E1000_PTC127); 5308 adapter->stats.ptc255 += rd32(E1000_PTC255); 5309 adapter->stats.ptc511 += rd32(E1000_PTC511); 5310 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 5311 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 5312 5313 adapter->stats.mptc += rd32(E1000_MPTC); 5314 adapter->stats.bptc += rd32(E1000_BPTC); 5315 5316 adapter->stats.tpt += rd32(E1000_TPT); 5317 adapter->stats.colc += rd32(E1000_COLC); 5318 5319 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 5320 /* read internal phy specific stats */ 5321 reg = rd32(E1000_CTRL_EXT); 5322 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 5323 adapter->stats.rxerrc += rd32(E1000_RXERRC); 5324 5325 /* this stat has invalid values on i210/i211 */ 5326 if ((hw->mac.type != e1000_i210) && 5327 (hw->mac.type != e1000_i211)) 5328 adapter->stats.tncrs += rd32(E1000_TNCRS); 5329 } 5330 5331 adapter->stats.tsctc += rd32(E1000_TSCTC); 5332 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 5333 5334 adapter->stats.iac += rd32(E1000_IAC); 5335 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 5336 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 5337 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 5338 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 5339 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 5340 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 5341 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 5342 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 5343 5344 /* Fill out the OS statistics structure */ 5345 net_stats->multicast = adapter->stats.mprc; 5346 net_stats->collisions = adapter->stats.colc; 5347 5348 /* Rx Errors */ 5349 5350 /* RLEC on some newer hardware can be incorrect so build 5351 * our own version based on RUC and ROC 5352 */ 5353 net_stats->rx_errors = adapter->stats.rxerrc + 5354 adapter->stats.crcerrs + adapter->stats.algnerrc + 5355 adapter->stats.ruc + adapter->stats.roc + 5356 adapter->stats.cexterr; 5357 net_stats->rx_length_errors = adapter->stats.ruc + 5358 adapter->stats.roc; 5359 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5360 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5361 net_stats->rx_missed_errors = adapter->stats.mpc; 5362 5363 /* Tx Errors */ 5364 net_stats->tx_errors = adapter->stats.ecol + 5365 adapter->stats.latecol; 5366 net_stats->tx_aborted_errors = adapter->stats.ecol; 5367 net_stats->tx_window_errors = adapter->stats.latecol; 5368 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5369 5370 /* Tx Dropped needs to be maintained elsewhere */ 5371 5372 /* Management Stats */ 5373 adapter->stats.mgptc += rd32(E1000_MGTPTC); 5374 adapter->stats.mgprc += rd32(E1000_MGTPRC); 5375 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 5376 5377 /* OS2BMC Stats */ 5378 reg = rd32(E1000_MANC); 5379 if (reg & E1000_MANC_EN_BMC2OS) { 5380 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 5381 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 5382 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 5383 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 5384 } 5385 } 5386 5387 static void igb_tsync_interrupt(struct igb_adapter *adapter) 5388 { 5389 struct e1000_hw *hw = &adapter->hw; 5390 struct ptp_clock_event event; 5391 struct timespec ts; 5392 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR); 5393 5394 if (tsicr & TSINTR_SYS_WRAP) { 5395 event.type = PTP_CLOCK_PPS; 5396 if (adapter->ptp_caps.pps) 5397 ptp_clock_event(adapter->ptp_clock, &event); 5398 else 5399 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP"); 5400 ack |= TSINTR_SYS_WRAP; 5401 } 5402 5403 if (tsicr & E1000_TSICR_TXTS) { 5404 /* retrieve hardware timestamp */ 5405 schedule_work(&adapter->ptp_tx_work); 5406 ack |= E1000_TSICR_TXTS; 5407 } 5408 5409 if (tsicr & TSINTR_TT0) { 5410 spin_lock(&adapter->tmreg_lock); 5411 ts = timespec_add(adapter->perout[0].start, 5412 adapter->perout[0].period); 5413 wr32(E1000_TRGTTIML0, ts.tv_nsec); 5414 wr32(E1000_TRGTTIMH0, ts.tv_sec); 5415 tsauxc = rd32(E1000_TSAUXC); 5416 tsauxc |= TSAUXC_EN_TT0; 5417 wr32(E1000_TSAUXC, tsauxc); 5418 adapter->perout[0].start = ts; 5419 spin_unlock(&adapter->tmreg_lock); 5420 ack |= TSINTR_TT0; 5421 } 5422 5423 if (tsicr & TSINTR_TT1) { 5424 spin_lock(&adapter->tmreg_lock); 5425 ts = timespec_add(adapter->perout[1].start, 5426 adapter->perout[1].period); 5427 wr32(E1000_TRGTTIML1, ts.tv_nsec); 5428 wr32(E1000_TRGTTIMH1, ts.tv_sec); 5429 tsauxc = rd32(E1000_TSAUXC); 5430 tsauxc |= TSAUXC_EN_TT1; 5431 wr32(E1000_TSAUXC, tsauxc); 5432 adapter->perout[1].start = ts; 5433 spin_unlock(&adapter->tmreg_lock); 5434 ack |= TSINTR_TT1; 5435 } 5436 5437 if (tsicr & TSINTR_AUTT0) { 5438 nsec = rd32(E1000_AUXSTMPL0); 5439 sec = rd32(E1000_AUXSTMPH0); 5440 event.type = PTP_CLOCK_EXTTS; 5441 event.index = 0; 5442 event.timestamp = sec * 1000000000ULL + nsec; 5443 ptp_clock_event(adapter->ptp_clock, &event); 5444 ack |= TSINTR_AUTT0; 5445 } 5446 5447 if (tsicr & TSINTR_AUTT1) { 5448 nsec = rd32(E1000_AUXSTMPL1); 5449 sec = rd32(E1000_AUXSTMPH1); 5450 event.type = PTP_CLOCK_EXTTS; 5451 event.index = 1; 5452 event.timestamp = sec * 1000000000ULL + nsec; 5453 ptp_clock_event(adapter->ptp_clock, &event); 5454 ack |= TSINTR_AUTT1; 5455 } 5456 5457 /* acknowledge the interrupts */ 5458 wr32(E1000_TSICR, ack); 5459 } 5460 5461 static irqreturn_t igb_msix_other(int irq, void *data) 5462 { 5463 struct igb_adapter *adapter = data; 5464 struct e1000_hw *hw = &adapter->hw; 5465 u32 icr = rd32(E1000_ICR); 5466 /* reading ICR causes bit 31 of EICR to be cleared */ 5467 5468 if (icr & E1000_ICR_DRSTA) 5469 schedule_work(&adapter->reset_task); 5470 5471 if (icr & E1000_ICR_DOUTSYNC) { 5472 /* HW is reporting DMA is out of sync */ 5473 adapter->stats.doosync++; 5474 /* The DMA Out of Sync is also indication of a spoof event 5475 * in IOV mode. Check the Wrong VM Behavior register to 5476 * see if it is really a spoof event. 5477 */ 5478 igb_check_wvbr(adapter); 5479 } 5480 5481 /* Check for a mailbox event */ 5482 if (icr & E1000_ICR_VMMB) 5483 igb_msg_task(adapter); 5484 5485 if (icr & E1000_ICR_LSC) { 5486 hw->mac.get_link_status = 1; 5487 /* guard against interrupt when we're going down */ 5488 if (!test_bit(__IGB_DOWN, &adapter->state)) 5489 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5490 } 5491 5492 if (icr & E1000_ICR_TS) 5493 igb_tsync_interrupt(adapter); 5494 5495 wr32(E1000_EIMS, adapter->eims_other); 5496 5497 return IRQ_HANDLED; 5498 } 5499 5500 static void igb_write_itr(struct igb_q_vector *q_vector) 5501 { 5502 struct igb_adapter *adapter = q_vector->adapter; 5503 u32 itr_val = q_vector->itr_val & 0x7FFC; 5504 5505 if (!q_vector->set_itr) 5506 return; 5507 5508 if (!itr_val) 5509 itr_val = 0x4; 5510 5511 if (adapter->hw.mac.type == e1000_82575) 5512 itr_val |= itr_val << 16; 5513 else 5514 itr_val |= E1000_EITR_CNT_IGNR; 5515 5516 writel(itr_val, q_vector->itr_register); 5517 q_vector->set_itr = 0; 5518 } 5519 5520 static irqreturn_t igb_msix_ring(int irq, void *data) 5521 { 5522 struct igb_q_vector *q_vector = data; 5523 5524 /* Write the ITR value calculated from the previous interrupt. */ 5525 igb_write_itr(q_vector); 5526 5527 napi_schedule(&q_vector->napi); 5528 5529 return IRQ_HANDLED; 5530 } 5531 5532 #ifdef CONFIG_IGB_DCA 5533 static void igb_update_tx_dca(struct igb_adapter *adapter, 5534 struct igb_ring *tx_ring, 5535 int cpu) 5536 { 5537 struct e1000_hw *hw = &adapter->hw; 5538 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 5539 5540 if (hw->mac.type != e1000_82575) 5541 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 5542 5543 /* We can enable relaxed ordering for reads, but not writes when 5544 * DCA is enabled. This is due to a known issue in some chipsets 5545 * which will cause the DCA tag to be cleared. 5546 */ 5547 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 5548 E1000_DCA_TXCTRL_DATA_RRO_EN | 5549 E1000_DCA_TXCTRL_DESC_DCA_EN; 5550 5551 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 5552 } 5553 5554 static void igb_update_rx_dca(struct igb_adapter *adapter, 5555 struct igb_ring *rx_ring, 5556 int cpu) 5557 { 5558 struct e1000_hw *hw = &adapter->hw; 5559 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 5560 5561 if (hw->mac.type != e1000_82575) 5562 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 5563 5564 /* We can enable relaxed ordering for reads, but not writes when 5565 * DCA is enabled. This is due to a known issue in some chipsets 5566 * which will cause the DCA tag to be cleared. 5567 */ 5568 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 5569 E1000_DCA_RXCTRL_DESC_DCA_EN; 5570 5571 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 5572 } 5573 5574 static void igb_update_dca(struct igb_q_vector *q_vector) 5575 { 5576 struct igb_adapter *adapter = q_vector->adapter; 5577 int cpu = get_cpu(); 5578 5579 if (q_vector->cpu == cpu) 5580 goto out_no_update; 5581 5582 if (q_vector->tx.ring) 5583 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 5584 5585 if (q_vector->rx.ring) 5586 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 5587 5588 q_vector->cpu = cpu; 5589 out_no_update: 5590 put_cpu(); 5591 } 5592 5593 static void igb_setup_dca(struct igb_adapter *adapter) 5594 { 5595 struct e1000_hw *hw = &adapter->hw; 5596 int i; 5597 5598 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 5599 return; 5600 5601 /* Always use CB2 mode, difference is masked in the CB driver. */ 5602 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 5603 5604 for (i = 0; i < adapter->num_q_vectors; i++) { 5605 adapter->q_vector[i]->cpu = -1; 5606 igb_update_dca(adapter->q_vector[i]); 5607 } 5608 } 5609 5610 static int __igb_notify_dca(struct device *dev, void *data) 5611 { 5612 struct net_device *netdev = dev_get_drvdata(dev); 5613 struct igb_adapter *adapter = netdev_priv(netdev); 5614 struct pci_dev *pdev = adapter->pdev; 5615 struct e1000_hw *hw = &adapter->hw; 5616 unsigned long event = *(unsigned long *)data; 5617 5618 switch (event) { 5619 case DCA_PROVIDER_ADD: 5620 /* if already enabled, don't do it again */ 5621 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 5622 break; 5623 if (dca_add_requester(dev) == 0) { 5624 adapter->flags |= IGB_FLAG_DCA_ENABLED; 5625 dev_info(&pdev->dev, "DCA enabled\n"); 5626 igb_setup_dca(adapter); 5627 break; 5628 } 5629 /* Fall Through since DCA is disabled. */ 5630 case DCA_PROVIDER_REMOVE: 5631 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 5632 /* without this a class_device is left 5633 * hanging around in the sysfs model 5634 */ 5635 dca_remove_requester(dev); 5636 dev_info(&pdev->dev, "DCA disabled\n"); 5637 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 5638 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 5639 } 5640 break; 5641 } 5642 5643 return 0; 5644 } 5645 5646 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 5647 void *p) 5648 { 5649 int ret_val; 5650 5651 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 5652 __igb_notify_dca); 5653 5654 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 5655 } 5656 #endif /* CONFIG_IGB_DCA */ 5657 5658 #ifdef CONFIG_PCI_IOV 5659 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 5660 { 5661 unsigned char mac_addr[ETH_ALEN]; 5662 5663 eth_zero_addr(mac_addr); 5664 igb_set_vf_mac(adapter, vf, mac_addr); 5665 5666 /* By default spoof check is enabled for all VFs */ 5667 adapter->vf_data[vf].spoofchk_enabled = true; 5668 5669 return 0; 5670 } 5671 5672 #endif 5673 static void igb_ping_all_vfs(struct igb_adapter *adapter) 5674 { 5675 struct e1000_hw *hw = &adapter->hw; 5676 u32 ping; 5677 int i; 5678 5679 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 5680 ping = E1000_PF_CONTROL_MSG; 5681 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 5682 ping |= E1000_VT_MSGTYPE_CTS; 5683 igb_write_mbx(hw, &ping, 1, i); 5684 } 5685 } 5686 5687 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5688 { 5689 struct e1000_hw *hw = &adapter->hw; 5690 u32 vmolr = rd32(E1000_VMOLR(vf)); 5691 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5692 5693 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 5694 IGB_VF_FLAG_MULTI_PROMISC); 5695 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5696 5697 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 5698 vmolr |= E1000_VMOLR_MPME; 5699 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 5700 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 5701 } else { 5702 /* if we have hashes and we are clearing a multicast promisc 5703 * flag we need to write the hashes to the MTA as this step 5704 * was previously skipped 5705 */ 5706 if (vf_data->num_vf_mc_hashes > 30) { 5707 vmolr |= E1000_VMOLR_MPME; 5708 } else if (vf_data->num_vf_mc_hashes) { 5709 int j; 5710 5711 vmolr |= E1000_VMOLR_ROMPE; 5712 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5713 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5714 } 5715 } 5716 5717 wr32(E1000_VMOLR(vf), vmolr); 5718 5719 /* there are flags left unprocessed, likely not supported */ 5720 if (*msgbuf & E1000_VT_MSGINFO_MASK) 5721 return -EINVAL; 5722 5723 return 0; 5724 } 5725 5726 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 5727 u32 *msgbuf, u32 vf) 5728 { 5729 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5730 u16 *hash_list = (u16 *)&msgbuf[1]; 5731 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5732 int i; 5733 5734 /* salt away the number of multicast addresses assigned 5735 * to this VF for later use to restore when the PF multi cast 5736 * list changes 5737 */ 5738 vf_data->num_vf_mc_hashes = n; 5739 5740 /* only up to 30 hash values supported */ 5741 if (n > 30) 5742 n = 30; 5743 5744 /* store the hashes for later use */ 5745 for (i = 0; i < n; i++) 5746 vf_data->vf_mc_hashes[i] = hash_list[i]; 5747 5748 /* Flush and reset the mta with the new values */ 5749 igb_set_rx_mode(adapter->netdev); 5750 5751 return 0; 5752 } 5753 5754 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 5755 { 5756 struct e1000_hw *hw = &adapter->hw; 5757 struct vf_data_storage *vf_data; 5758 int i, j; 5759 5760 for (i = 0; i < adapter->vfs_allocated_count; i++) { 5761 u32 vmolr = rd32(E1000_VMOLR(i)); 5762 5763 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5764 5765 vf_data = &adapter->vf_data[i]; 5766 5767 if ((vf_data->num_vf_mc_hashes > 30) || 5768 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 5769 vmolr |= E1000_VMOLR_MPME; 5770 } else if (vf_data->num_vf_mc_hashes) { 5771 vmolr |= E1000_VMOLR_ROMPE; 5772 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5773 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5774 } 5775 wr32(E1000_VMOLR(i), vmolr); 5776 } 5777 } 5778 5779 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 5780 { 5781 struct e1000_hw *hw = &adapter->hw; 5782 u32 pool_mask, reg, vid; 5783 int i; 5784 5785 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5786 5787 /* Find the vlan filter for this id */ 5788 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5789 reg = rd32(E1000_VLVF(i)); 5790 5791 /* remove the vf from the pool */ 5792 reg &= ~pool_mask; 5793 5794 /* if pool is empty then remove entry from vfta */ 5795 if (!(reg & E1000_VLVF_POOLSEL_MASK) && 5796 (reg & E1000_VLVF_VLANID_ENABLE)) { 5797 reg = 0; 5798 vid = reg & E1000_VLVF_VLANID_MASK; 5799 igb_vfta_set(hw, vid, false); 5800 } 5801 5802 wr32(E1000_VLVF(i), reg); 5803 } 5804 5805 adapter->vf_data[vf].vlans_enabled = 0; 5806 } 5807 5808 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) 5809 { 5810 struct e1000_hw *hw = &adapter->hw; 5811 u32 reg, i; 5812 5813 /* The vlvf table only exists on 82576 hardware and newer */ 5814 if (hw->mac.type < e1000_82576) 5815 return -1; 5816 5817 /* we only need to do this if VMDq is enabled */ 5818 if (!adapter->vfs_allocated_count) 5819 return -1; 5820 5821 /* Find the vlan filter for this id */ 5822 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5823 reg = rd32(E1000_VLVF(i)); 5824 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5825 vid == (reg & E1000_VLVF_VLANID_MASK)) 5826 break; 5827 } 5828 5829 if (add) { 5830 if (i == E1000_VLVF_ARRAY_SIZE) { 5831 /* Did not find a matching VLAN ID entry that was 5832 * enabled. Search for a free filter entry, i.e. 5833 * one without the enable bit set 5834 */ 5835 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5836 reg = rd32(E1000_VLVF(i)); 5837 if (!(reg & E1000_VLVF_VLANID_ENABLE)) 5838 break; 5839 } 5840 } 5841 if (i < E1000_VLVF_ARRAY_SIZE) { 5842 /* Found an enabled/available entry */ 5843 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5844 5845 /* if !enabled we need to set this up in vfta */ 5846 if (!(reg & E1000_VLVF_VLANID_ENABLE)) { 5847 /* add VID to filter table */ 5848 igb_vfta_set(hw, vid, true); 5849 reg |= E1000_VLVF_VLANID_ENABLE; 5850 } 5851 reg &= ~E1000_VLVF_VLANID_MASK; 5852 reg |= vid; 5853 wr32(E1000_VLVF(i), reg); 5854 5855 /* do not modify RLPML for PF devices */ 5856 if (vf >= adapter->vfs_allocated_count) 5857 return 0; 5858 5859 if (!adapter->vf_data[vf].vlans_enabled) { 5860 u32 size; 5861 5862 reg = rd32(E1000_VMOLR(vf)); 5863 size = reg & E1000_VMOLR_RLPML_MASK; 5864 size += 4; 5865 reg &= ~E1000_VMOLR_RLPML_MASK; 5866 reg |= size; 5867 wr32(E1000_VMOLR(vf), reg); 5868 } 5869 5870 adapter->vf_data[vf].vlans_enabled++; 5871 } 5872 } else { 5873 if (i < E1000_VLVF_ARRAY_SIZE) { 5874 /* remove vf from the pool */ 5875 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); 5876 /* if pool is empty then remove entry from vfta */ 5877 if (!(reg & E1000_VLVF_POOLSEL_MASK)) { 5878 reg = 0; 5879 igb_vfta_set(hw, vid, false); 5880 } 5881 wr32(E1000_VLVF(i), reg); 5882 5883 /* do not modify RLPML for PF devices */ 5884 if (vf >= adapter->vfs_allocated_count) 5885 return 0; 5886 5887 adapter->vf_data[vf].vlans_enabled--; 5888 if (!adapter->vf_data[vf].vlans_enabled) { 5889 u32 size; 5890 5891 reg = rd32(E1000_VMOLR(vf)); 5892 size = reg & E1000_VMOLR_RLPML_MASK; 5893 size -= 4; 5894 reg &= ~E1000_VMOLR_RLPML_MASK; 5895 reg |= size; 5896 wr32(E1000_VMOLR(vf), reg); 5897 } 5898 } 5899 } 5900 return 0; 5901 } 5902 5903 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 5904 { 5905 struct e1000_hw *hw = &adapter->hw; 5906 5907 if (vid) 5908 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 5909 else 5910 wr32(E1000_VMVIR(vf), 0); 5911 } 5912 5913 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 5914 int vf, u16 vlan, u8 qos) 5915 { 5916 int err = 0; 5917 struct igb_adapter *adapter = netdev_priv(netdev); 5918 5919 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 5920 return -EINVAL; 5921 if (vlan || qos) { 5922 err = igb_vlvf_set(adapter, vlan, !!vlan, vf); 5923 if (err) 5924 goto out; 5925 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 5926 igb_set_vmolr(adapter, vf, !vlan); 5927 adapter->vf_data[vf].pf_vlan = vlan; 5928 adapter->vf_data[vf].pf_qos = qos; 5929 dev_info(&adapter->pdev->dev, 5930 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 5931 if (test_bit(__IGB_DOWN, &adapter->state)) { 5932 dev_warn(&adapter->pdev->dev, 5933 "The VF VLAN has been set, but the PF device is not up.\n"); 5934 dev_warn(&adapter->pdev->dev, 5935 "Bring the PF device up before attempting to use the VF device.\n"); 5936 } 5937 } else { 5938 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, 5939 false, vf); 5940 igb_set_vmvir(adapter, vlan, vf); 5941 igb_set_vmolr(adapter, vf, true); 5942 adapter->vf_data[vf].pf_vlan = 0; 5943 adapter->vf_data[vf].pf_qos = 0; 5944 } 5945 out: 5946 return err; 5947 } 5948 5949 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid) 5950 { 5951 struct e1000_hw *hw = &adapter->hw; 5952 int i; 5953 u32 reg; 5954 5955 /* Find the vlan filter for this id */ 5956 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5957 reg = rd32(E1000_VLVF(i)); 5958 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5959 vid == (reg & E1000_VLVF_VLANID_MASK)) 5960 break; 5961 } 5962 5963 if (i >= E1000_VLVF_ARRAY_SIZE) 5964 i = -1; 5965 5966 return i; 5967 } 5968 5969 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5970 { 5971 struct e1000_hw *hw = &adapter->hw; 5972 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5973 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 5974 int err = 0; 5975 5976 /* If in promiscuous mode we need to make sure the PF also has 5977 * the VLAN filter set. 5978 */ 5979 if (add && (adapter->netdev->flags & IFF_PROMISC)) 5980 err = igb_vlvf_set(adapter, vid, add, 5981 adapter->vfs_allocated_count); 5982 if (err) 5983 goto out; 5984 5985 err = igb_vlvf_set(adapter, vid, add, vf); 5986 5987 if (err) 5988 goto out; 5989 5990 /* Go through all the checks to see if the VLAN filter should 5991 * be wiped completely. 5992 */ 5993 if (!add && (adapter->netdev->flags & IFF_PROMISC)) { 5994 u32 vlvf, bits; 5995 int regndx = igb_find_vlvf_entry(adapter, vid); 5996 5997 if (regndx < 0) 5998 goto out; 5999 /* See if any other pools are set for this VLAN filter 6000 * entry other than the PF. 6001 */ 6002 vlvf = bits = rd32(E1000_VLVF(regndx)); 6003 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT + 6004 adapter->vfs_allocated_count); 6005 /* If the filter was removed then ensure PF pool bit 6006 * is cleared if the PF only added itself to the pool 6007 * because the PF is in promiscuous mode. 6008 */ 6009 if ((vlvf & VLAN_VID_MASK) == vid && 6010 !test_bit(vid, adapter->active_vlans) && 6011 !bits) 6012 igb_vlvf_set(adapter, vid, add, 6013 adapter->vfs_allocated_count); 6014 } 6015 6016 out: 6017 return err; 6018 } 6019 6020 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 6021 { 6022 /* clear flags - except flag that indicates PF has set the MAC */ 6023 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; 6024 adapter->vf_data[vf].last_nack = jiffies; 6025 6026 /* reset offloads to defaults */ 6027 igb_set_vmolr(adapter, vf, true); 6028 6029 /* reset vlans for device */ 6030 igb_clear_vf_vfta(adapter, vf); 6031 if (adapter->vf_data[vf].pf_vlan) 6032 igb_ndo_set_vf_vlan(adapter->netdev, vf, 6033 adapter->vf_data[vf].pf_vlan, 6034 adapter->vf_data[vf].pf_qos); 6035 else 6036 igb_clear_vf_vfta(adapter, vf); 6037 6038 /* reset multicast table array for vf */ 6039 adapter->vf_data[vf].num_vf_mc_hashes = 0; 6040 6041 /* Flush and reset the mta with the new values */ 6042 igb_set_rx_mode(adapter->netdev); 6043 } 6044 6045 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 6046 { 6047 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 6048 6049 /* clear mac address as we were hotplug removed/added */ 6050 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 6051 eth_zero_addr(vf_mac); 6052 6053 /* process remaining reset events */ 6054 igb_vf_reset(adapter, vf); 6055 } 6056 6057 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 6058 { 6059 struct e1000_hw *hw = &adapter->hw; 6060 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 6061 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 6062 u32 reg, msgbuf[3]; 6063 u8 *addr = (u8 *)(&msgbuf[1]); 6064 6065 /* process all the same items cleared in a function level reset */ 6066 igb_vf_reset(adapter, vf); 6067 6068 /* set vf mac address */ 6069 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); 6070 6071 /* enable transmit and receive for vf */ 6072 reg = rd32(E1000_VFTE); 6073 wr32(E1000_VFTE, reg | (1 << vf)); 6074 reg = rd32(E1000_VFRE); 6075 wr32(E1000_VFRE, reg | (1 << vf)); 6076 6077 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 6078 6079 /* reply to reset with ack and vf mac address */ 6080 if (!is_zero_ether_addr(vf_mac)) { 6081 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 6082 memcpy(addr, vf_mac, ETH_ALEN); 6083 } else { 6084 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; 6085 } 6086 igb_write_mbx(hw, msgbuf, 3, vf); 6087 } 6088 6089 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 6090 { 6091 /* The VF MAC Address is stored in a packed array of bytes 6092 * starting at the second 32 bit word of the msg array 6093 */ 6094 unsigned char *addr = (char *)&msg[1]; 6095 int err = -1; 6096 6097 if (is_valid_ether_addr(addr)) 6098 err = igb_set_vf_mac(adapter, vf, addr); 6099 6100 return err; 6101 } 6102 6103 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 6104 { 6105 struct e1000_hw *hw = &adapter->hw; 6106 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6107 u32 msg = E1000_VT_MSGTYPE_NACK; 6108 6109 /* if device isn't clear to send it shouldn't be reading either */ 6110 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 6111 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 6112 igb_write_mbx(hw, &msg, 1, vf); 6113 vf_data->last_nack = jiffies; 6114 } 6115 } 6116 6117 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 6118 { 6119 struct pci_dev *pdev = adapter->pdev; 6120 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 6121 struct e1000_hw *hw = &adapter->hw; 6122 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6123 s32 retval; 6124 6125 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); 6126 6127 if (retval) { 6128 /* if receive failed revoke VF CTS stats and restart init */ 6129 dev_err(&pdev->dev, "Error receiving message from VF\n"); 6130 vf_data->flags &= ~IGB_VF_FLAG_CTS; 6131 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 6132 return; 6133 goto out; 6134 } 6135 6136 /* this is a message we already processed, do nothing */ 6137 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 6138 return; 6139 6140 /* until the vf completes a reset it should not be 6141 * allowed to start any configuration. 6142 */ 6143 if (msgbuf[0] == E1000_VF_RESET) { 6144 igb_vf_reset_msg(adapter, vf); 6145 return; 6146 } 6147 6148 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 6149 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 6150 return; 6151 retval = -1; 6152 goto out; 6153 } 6154 6155 switch ((msgbuf[0] & 0xFFFF)) { 6156 case E1000_VF_SET_MAC_ADDR: 6157 retval = -EINVAL; 6158 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) 6159 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 6160 else 6161 dev_warn(&pdev->dev, 6162 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 6163 vf); 6164 break; 6165 case E1000_VF_SET_PROMISC: 6166 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 6167 break; 6168 case E1000_VF_SET_MULTICAST: 6169 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 6170 break; 6171 case E1000_VF_SET_LPE: 6172 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 6173 break; 6174 case E1000_VF_SET_VLAN: 6175 retval = -1; 6176 if (vf_data->pf_vlan) 6177 dev_warn(&pdev->dev, 6178 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 6179 vf); 6180 else 6181 retval = igb_set_vf_vlan(adapter, msgbuf, vf); 6182 break; 6183 default: 6184 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 6185 retval = -1; 6186 break; 6187 } 6188 6189 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 6190 out: 6191 /* notify the VF of the results of what it sent us */ 6192 if (retval) 6193 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 6194 else 6195 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 6196 6197 igb_write_mbx(hw, msgbuf, 1, vf); 6198 } 6199 6200 static void igb_msg_task(struct igb_adapter *adapter) 6201 { 6202 struct e1000_hw *hw = &adapter->hw; 6203 u32 vf; 6204 6205 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 6206 /* process any reset requests */ 6207 if (!igb_check_for_rst(hw, vf)) 6208 igb_vf_reset_event(adapter, vf); 6209 6210 /* process any messages pending */ 6211 if (!igb_check_for_msg(hw, vf)) 6212 igb_rcv_msg_from_vf(adapter, vf); 6213 6214 /* process any acks */ 6215 if (!igb_check_for_ack(hw, vf)) 6216 igb_rcv_ack_from_vf(adapter, vf); 6217 } 6218 } 6219 6220 /** 6221 * igb_set_uta - Set unicast filter table address 6222 * @adapter: board private structure 6223 * 6224 * The unicast table address is a register array of 32-bit registers. 6225 * The table is meant to be used in a way similar to how the MTA is used 6226 * however due to certain limitations in the hardware it is necessary to 6227 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 6228 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 6229 **/ 6230 static void igb_set_uta(struct igb_adapter *adapter) 6231 { 6232 struct e1000_hw *hw = &adapter->hw; 6233 int i; 6234 6235 /* The UTA table only exists on 82576 hardware and newer */ 6236 if (hw->mac.type < e1000_82576) 6237 return; 6238 6239 /* we only need to do this if VMDq is enabled */ 6240 if (!adapter->vfs_allocated_count) 6241 return; 6242 6243 for (i = 0; i < hw->mac.uta_reg_count; i++) 6244 array_wr32(E1000_UTA, i, ~0); 6245 } 6246 6247 /** 6248 * igb_intr_msi - Interrupt Handler 6249 * @irq: interrupt number 6250 * @data: pointer to a network interface device structure 6251 **/ 6252 static irqreturn_t igb_intr_msi(int irq, void *data) 6253 { 6254 struct igb_adapter *adapter = data; 6255 struct igb_q_vector *q_vector = adapter->q_vector[0]; 6256 struct e1000_hw *hw = &adapter->hw; 6257 /* read ICR disables interrupts using IAM */ 6258 u32 icr = rd32(E1000_ICR); 6259 6260 igb_write_itr(q_vector); 6261 6262 if (icr & E1000_ICR_DRSTA) 6263 schedule_work(&adapter->reset_task); 6264 6265 if (icr & E1000_ICR_DOUTSYNC) { 6266 /* HW is reporting DMA is out of sync */ 6267 adapter->stats.doosync++; 6268 } 6269 6270 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 6271 hw->mac.get_link_status = 1; 6272 if (!test_bit(__IGB_DOWN, &adapter->state)) 6273 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6274 } 6275 6276 if (icr & E1000_ICR_TS) 6277 igb_tsync_interrupt(adapter); 6278 6279 napi_schedule(&q_vector->napi); 6280 6281 return IRQ_HANDLED; 6282 } 6283 6284 /** 6285 * igb_intr - Legacy Interrupt Handler 6286 * @irq: interrupt number 6287 * @data: pointer to a network interface device structure 6288 **/ 6289 static irqreturn_t igb_intr(int irq, void *data) 6290 { 6291 struct igb_adapter *adapter = data; 6292 struct igb_q_vector *q_vector = adapter->q_vector[0]; 6293 struct e1000_hw *hw = &adapter->hw; 6294 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 6295 * need for the IMC write 6296 */ 6297 u32 icr = rd32(E1000_ICR); 6298 6299 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 6300 * not set, then the adapter didn't send an interrupt 6301 */ 6302 if (!(icr & E1000_ICR_INT_ASSERTED)) 6303 return IRQ_NONE; 6304 6305 igb_write_itr(q_vector); 6306 6307 if (icr & E1000_ICR_DRSTA) 6308 schedule_work(&adapter->reset_task); 6309 6310 if (icr & E1000_ICR_DOUTSYNC) { 6311 /* HW is reporting DMA is out of sync */ 6312 adapter->stats.doosync++; 6313 } 6314 6315 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 6316 hw->mac.get_link_status = 1; 6317 /* guard against interrupt when we're going down */ 6318 if (!test_bit(__IGB_DOWN, &adapter->state)) 6319 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6320 } 6321 6322 if (icr & E1000_ICR_TS) 6323 igb_tsync_interrupt(adapter); 6324 6325 napi_schedule(&q_vector->napi); 6326 6327 return IRQ_HANDLED; 6328 } 6329 6330 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 6331 { 6332 struct igb_adapter *adapter = q_vector->adapter; 6333 struct e1000_hw *hw = &adapter->hw; 6334 6335 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 6336 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 6337 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 6338 igb_set_itr(q_vector); 6339 else 6340 igb_update_ring_itr(q_vector); 6341 } 6342 6343 if (!test_bit(__IGB_DOWN, &adapter->state)) { 6344 if (adapter->flags & IGB_FLAG_HAS_MSIX) 6345 wr32(E1000_EIMS, q_vector->eims_value); 6346 else 6347 igb_irq_enable(adapter); 6348 } 6349 } 6350 6351 /** 6352 * igb_poll - NAPI Rx polling callback 6353 * @napi: napi polling structure 6354 * @budget: count of how many packets we should handle 6355 **/ 6356 static int igb_poll(struct napi_struct *napi, int budget) 6357 { 6358 struct igb_q_vector *q_vector = container_of(napi, 6359 struct igb_q_vector, 6360 napi); 6361 bool clean_complete = true; 6362 6363 #ifdef CONFIG_IGB_DCA 6364 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 6365 igb_update_dca(q_vector); 6366 #endif 6367 if (q_vector->tx.ring) 6368 clean_complete = igb_clean_tx_irq(q_vector); 6369 6370 if (q_vector->rx.ring) 6371 clean_complete &= igb_clean_rx_irq(q_vector, budget); 6372 6373 /* If all work not completed, return budget and keep polling */ 6374 if (!clean_complete) 6375 return budget; 6376 6377 /* If not enough Rx work done, exit the polling mode */ 6378 napi_complete(napi); 6379 igb_ring_irq_enable(q_vector); 6380 6381 return 0; 6382 } 6383 6384 /** 6385 * igb_clean_tx_irq - Reclaim resources after transmit completes 6386 * @q_vector: pointer to q_vector containing needed info 6387 * 6388 * returns true if ring is completely cleaned 6389 **/ 6390 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) 6391 { 6392 struct igb_adapter *adapter = q_vector->adapter; 6393 struct igb_ring *tx_ring = q_vector->tx.ring; 6394 struct igb_tx_buffer *tx_buffer; 6395 union e1000_adv_tx_desc *tx_desc; 6396 unsigned int total_bytes = 0, total_packets = 0; 6397 unsigned int budget = q_vector->tx.work_limit; 6398 unsigned int i = tx_ring->next_to_clean; 6399 6400 if (test_bit(__IGB_DOWN, &adapter->state)) 6401 return true; 6402 6403 tx_buffer = &tx_ring->tx_buffer_info[i]; 6404 tx_desc = IGB_TX_DESC(tx_ring, i); 6405 i -= tx_ring->count; 6406 6407 do { 6408 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 6409 6410 /* if next_to_watch is not set then there is no work pending */ 6411 if (!eop_desc) 6412 break; 6413 6414 /* prevent any other reads prior to eop_desc */ 6415 read_barrier_depends(); 6416 6417 /* if DD is not set pending work has not been completed */ 6418 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 6419 break; 6420 6421 /* clear next_to_watch to prevent false hangs */ 6422 tx_buffer->next_to_watch = NULL; 6423 6424 /* update the statistics for this packet */ 6425 total_bytes += tx_buffer->bytecount; 6426 total_packets += tx_buffer->gso_segs; 6427 6428 /* free the skb */ 6429 dev_consume_skb_any(tx_buffer->skb); 6430 6431 /* unmap skb header data */ 6432 dma_unmap_single(tx_ring->dev, 6433 dma_unmap_addr(tx_buffer, dma), 6434 dma_unmap_len(tx_buffer, len), 6435 DMA_TO_DEVICE); 6436 6437 /* clear tx_buffer data */ 6438 tx_buffer->skb = NULL; 6439 dma_unmap_len_set(tx_buffer, len, 0); 6440 6441 /* clear last DMA location and unmap remaining buffers */ 6442 while (tx_desc != eop_desc) { 6443 tx_buffer++; 6444 tx_desc++; 6445 i++; 6446 if (unlikely(!i)) { 6447 i -= tx_ring->count; 6448 tx_buffer = tx_ring->tx_buffer_info; 6449 tx_desc = IGB_TX_DESC(tx_ring, 0); 6450 } 6451 6452 /* unmap any remaining paged data */ 6453 if (dma_unmap_len(tx_buffer, len)) { 6454 dma_unmap_page(tx_ring->dev, 6455 dma_unmap_addr(tx_buffer, dma), 6456 dma_unmap_len(tx_buffer, len), 6457 DMA_TO_DEVICE); 6458 dma_unmap_len_set(tx_buffer, len, 0); 6459 } 6460 } 6461 6462 /* move us one more past the eop_desc for start of next pkt */ 6463 tx_buffer++; 6464 tx_desc++; 6465 i++; 6466 if (unlikely(!i)) { 6467 i -= tx_ring->count; 6468 tx_buffer = tx_ring->tx_buffer_info; 6469 tx_desc = IGB_TX_DESC(tx_ring, 0); 6470 } 6471 6472 /* issue prefetch for next Tx descriptor */ 6473 prefetch(tx_desc); 6474 6475 /* update budget accounting */ 6476 budget--; 6477 } while (likely(budget)); 6478 6479 netdev_tx_completed_queue(txring_txq(tx_ring), 6480 total_packets, total_bytes); 6481 i += tx_ring->count; 6482 tx_ring->next_to_clean = i; 6483 u64_stats_update_begin(&tx_ring->tx_syncp); 6484 tx_ring->tx_stats.bytes += total_bytes; 6485 tx_ring->tx_stats.packets += total_packets; 6486 u64_stats_update_end(&tx_ring->tx_syncp); 6487 q_vector->tx.total_bytes += total_bytes; 6488 q_vector->tx.total_packets += total_packets; 6489 6490 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 6491 struct e1000_hw *hw = &adapter->hw; 6492 6493 /* Detect a transmit hang in hardware, this serializes the 6494 * check with the clearing of time_stamp and movement of i 6495 */ 6496 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 6497 if (tx_buffer->next_to_watch && 6498 time_after(jiffies, tx_buffer->time_stamp + 6499 (adapter->tx_timeout_factor * HZ)) && 6500 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 6501 6502 /* detected Tx unit hang */ 6503 dev_err(tx_ring->dev, 6504 "Detected Tx Unit Hang\n" 6505 " Tx Queue <%d>\n" 6506 " TDH <%x>\n" 6507 " TDT <%x>\n" 6508 " next_to_use <%x>\n" 6509 " next_to_clean <%x>\n" 6510 "buffer_info[next_to_clean]\n" 6511 " time_stamp <%lx>\n" 6512 " next_to_watch <%p>\n" 6513 " jiffies <%lx>\n" 6514 " desc.status <%x>\n", 6515 tx_ring->queue_index, 6516 rd32(E1000_TDH(tx_ring->reg_idx)), 6517 readl(tx_ring->tail), 6518 tx_ring->next_to_use, 6519 tx_ring->next_to_clean, 6520 tx_buffer->time_stamp, 6521 tx_buffer->next_to_watch, 6522 jiffies, 6523 tx_buffer->next_to_watch->wb.status); 6524 netif_stop_subqueue(tx_ring->netdev, 6525 tx_ring->queue_index); 6526 6527 /* we are about to reset, no point in enabling stuff */ 6528 return true; 6529 } 6530 } 6531 6532 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 6533 if (unlikely(total_packets && 6534 netif_carrier_ok(tx_ring->netdev) && 6535 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 6536 /* Make sure that anybody stopping the queue after this 6537 * sees the new next_to_clean. 6538 */ 6539 smp_mb(); 6540 if (__netif_subqueue_stopped(tx_ring->netdev, 6541 tx_ring->queue_index) && 6542 !(test_bit(__IGB_DOWN, &adapter->state))) { 6543 netif_wake_subqueue(tx_ring->netdev, 6544 tx_ring->queue_index); 6545 6546 u64_stats_update_begin(&tx_ring->tx_syncp); 6547 tx_ring->tx_stats.restart_queue++; 6548 u64_stats_update_end(&tx_ring->tx_syncp); 6549 } 6550 } 6551 6552 return !!budget; 6553 } 6554 6555 /** 6556 * igb_reuse_rx_page - page flip buffer and store it back on the ring 6557 * @rx_ring: rx descriptor ring to store buffers on 6558 * @old_buff: donor buffer to have page reused 6559 * 6560 * Synchronizes page for reuse by the adapter 6561 **/ 6562 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 6563 struct igb_rx_buffer *old_buff) 6564 { 6565 struct igb_rx_buffer *new_buff; 6566 u16 nta = rx_ring->next_to_alloc; 6567 6568 new_buff = &rx_ring->rx_buffer_info[nta]; 6569 6570 /* update, and store next to alloc */ 6571 nta++; 6572 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 6573 6574 /* transfer page from old buffer to new buffer */ 6575 *new_buff = *old_buff; 6576 6577 /* sync the buffer for use by the device */ 6578 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 6579 old_buff->page_offset, 6580 IGB_RX_BUFSZ, 6581 DMA_FROM_DEVICE); 6582 } 6583 6584 static inline bool igb_page_is_reserved(struct page *page) 6585 { 6586 return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc; 6587 } 6588 6589 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 6590 struct page *page, 6591 unsigned int truesize) 6592 { 6593 /* avoid re-using remote pages */ 6594 if (unlikely(igb_page_is_reserved(page))) 6595 return false; 6596 6597 #if (PAGE_SIZE < 8192) 6598 /* if we are only owner of page we can reuse it */ 6599 if (unlikely(page_count(page) != 1)) 6600 return false; 6601 6602 /* flip page offset to other buffer */ 6603 rx_buffer->page_offset ^= IGB_RX_BUFSZ; 6604 #else 6605 /* move offset up to the next cache line */ 6606 rx_buffer->page_offset += truesize; 6607 6608 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) 6609 return false; 6610 #endif 6611 6612 /* Even if we own the page, we are not allowed to use atomic_set() 6613 * This would break get_page_unless_zero() users. 6614 */ 6615 atomic_inc(&page->_count); 6616 6617 return true; 6618 } 6619 6620 /** 6621 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 6622 * @rx_ring: rx descriptor ring to transact packets on 6623 * @rx_buffer: buffer containing page to add 6624 * @rx_desc: descriptor containing length of buffer written by hardware 6625 * @skb: sk_buff to place the data into 6626 * 6627 * This function will add the data contained in rx_buffer->page to the skb. 6628 * This is done either through a direct copy if the data in the buffer is 6629 * less than the skb header size, otherwise it will just attach the page as 6630 * a frag to the skb. 6631 * 6632 * The function will then update the page offset if necessary and return 6633 * true if the buffer can be reused by the adapter. 6634 **/ 6635 static bool igb_add_rx_frag(struct igb_ring *rx_ring, 6636 struct igb_rx_buffer *rx_buffer, 6637 union e1000_adv_rx_desc *rx_desc, 6638 struct sk_buff *skb) 6639 { 6640 struct page *page = rx_buffer->page; 6641 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6642 #if (PAGE_SIZE < 8192) 6643 unsigned int truesize = IGB_RX_BUFSZ; 6644 #else 6645 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 6646 #endif 6647 6648 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 6649 unsigned char *va = page_address(page) + rx_buffer->page_offset; 6650 6651 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6652 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6653 va += IGB_TS_HDR_LEN; 6654 size -= IGB_TS_HDR_LEN; 6655 } 6656 6657 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 6658 6659 /* page is not reserved, we can reuse buffer as-is */ 6660 if (likely(!igb_page_is_reserved(page))) 6661 return true; 6662 6663 /* this page cannot be reused so discard it */ 6664 __free_page(page); 6665 return false; 6666 } 6667 6668 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 6669 rx_buffer->page_offset, size, truesize); 6670 6671 return igb_can_reuse_rx_page(rx_buffer, page, truesize); 6672 } 6673 6674 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, 6675 union e1000_adv_rx_desc *rx_desc, 6676 struct sk_buff *skb) 6677 { 6678 struct igb_rx_buffer *rx_buffer; 6679 struct page *page; 6680 6681 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6682 page = rx_buffer->page; 6683 prefetchw(page); 6684 6685 if (likely(!skb)) { 6686 void *page_addr = page_address(page) + 6687 rx_buffer->page_offset; 6688 6689 /* prefetch first cache line of first page */ 6690 prefetch(page_addr); 6691 #if L1_CACHE_BYTES < 128 6692 prefetch(page_addr + L1_CACHE_BYTES); 6693 #endif 6694 6695 /* allocate a skb to store the frags */ 6696 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); 6697 if (unlikely(!skb)) { 6698 rx_ring->rx_stats.alloc_failed++; 6699 return NULL; 6700 } 6701 6702 /* we will be copying header into skb->data in 6703 * pskb_may_pull so it is in our interest to prefetch 6704 * it now to avoid a possible cache miss 6705 */ 6706 prefetchw(skb->data); 6707 } 6708 6709 /* we are reusing so sync this buffer for CPU use */ 6710 dma_sync_single_range_for_cpu(rx_ring->dev, 6711 rx_buffer->dma, 6712 rx_buffer->page_offset, 6713 IGB_RX_BUFSZ, 6714 DMA_FROM_DEVICE); 6715 6716 /* pull page into skb */ 6717 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 6718 /* hand second half of page back to the ring */ 6719 igb_reuse_rx_page(rx_ring, rx_buffer); 6720 } else { 6721 /* we are not reusing the buffer so unmap it */ 6722 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6723 PAGE_SIZE, DMA_FROM_DEVICE); 6724 } 6725 6726 /* clear contents of rx_buffer */ 6727 rx_buffer->page = NULL; 6728 6729 return skb; 6730 } 6731 6732 static inline void igb_rx_checksum(struct igb_ring *ring, 6733 union e1000_adv_rx_desc *rx_desc, 6734 struct sk_buff *skb) 6735 { 6736 skb_checksum_none_assert(skb); 6737 6738 /* Ignore Checksum bit is set */ 6739 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 6740 return; 6741 6742 /* Rx checksum disabled via ethtool */ 6743 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 6744 return; 6745 6746 /* TCP/UDP checksum error bit is set */ 6747 if (igb_test_staterr(rx_desc, 6748 E1000_RXDEXT_STATERR_TCPE | 6749 E1000_RXDEXT_STATERR_IPE)) { 6750 /* work around errata with sctp packets where the TCPE aka 6751 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 6752 * packets, (aka let the stack check the crc32c) 6753 */ 6754 if (!((skb->len == 60) && 6755 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 6756 u64_stats_update_begin(&ring->rx_syncp); 6757 ring->rx_stats.csum_err++; 6758 u64_stats_update_end(&ring->rx_syncp); 6759 } 6760 /* let the stack verify checksum errors */ 6761 return; 6762 } 6763 /* It must be a TCP or UDP packet with a valid checksum */ 6764 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 6765 E1000_RXD_STAT_UDPCS)) 6766 skb->ip_summed = CHECKSUM_UNNECESSARY; 6767 6768 dev_dbg(ring->dev, "cksum success: bits %08X\n", 6769 le32_to_cpu(rx_desc->wb.upper.status_error)); 6770 } 6771 6772 static inline void igb_rx_hash(struct igb_ring *ring, 6773 union e1000_adv_rx_desc *rx_desc, 6774 struct sk_buff *skb) 6775 { 6776 if (ring->netdev->features & NETIF_F_RXHASH) 6777 skb_set_hash(skb, 6778 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 6779 PKT_HASH_TYPE_L3); 6780 } 6781 6782 /** 6783 * igb_is_non_eop - process handling of non-EOP buffers 6784 * @rx_ring: Rx ring being processed 6785 * @rx_desc: Rx descriptor for current buffer 6786 * @skb: current socket buffer containing buffer in progress 6787 * 6788 * This function updates next to clean. If the buffer is an EOP buffer 6789 * this function exits returning false, otherwise it will place the 6790 * sk_buff in the next buffer to be chained and return true indicating 6791 * that this is in fact a non-EOP buffer. 6792 **/ 6793 static bool igb_is_non_eop(struct igb_ring *rx_ring, 6794 union e1000_adv_rx_desc *rx_desc) 6795 { 6796 u32 ntc = rx_ring->next_to_clean + 1; 6797 6798 /* fetch, update, and store next to clean */ 6799 ntc = (ntc < rx_ring->count) ? ntc : 0; 6800 rx_ring->next_to_clean = ntc; 6801 6802 prefetch(IGB_RX_DESC(rx_ring, ntc)); 6803 6804 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 6805 return false; 6806 6807 return true; 6808 } 6809 6810 /** 6811 * igb_pull_tail - igb specific version of skb_pull_tail 6812 * @rx_ring: rx descriptor ring packet is being transacted on 6813 * @rx_desc: pointer to the EOP Rx descriptor 6814 * @skb: pointer to current skb being adjusted 6815 * 6816 * This function is an igb specific version of __pskb_pull_tail. The 6817 * main difference between this version and the original function is that 6818 * this function can make several assumptions about the state of things 6819 * that allow for significant optimizations versus the standard function. 6820 * As a result we can do things like drop a frag and maintain an accurate 6821 * truesize for the skb. 6822 */ 6823 static void igb_pull_tail(struct igb_ring *rx_ring, 6824 union e1000_adv_rx_desc *rx_desc, 6825 struct sk_buff *skb) 6826 { 6827 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 6828 unsigned char *va; 6829 unsigned int pull_len; 6830 6831 /* it is valid to use page_address instead of kmap since we are 6832 * working with pages allocated out of the lomem pool per 6833 * alloc_page(GFP_ATOMIC) 6834 */ 6835 va = skb_frag_address(frag); 6836 6837 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6838 /* retrieve timestamp from buffer */ 6839 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6840 6841 /* update pointers to remove timestamp header */ 6842 skb_frag_size_sub(frag, IGB_TS_HDR_LEN); 6843 frag->page_offset += IGB_TS_HDR_LEN; 6844 skb->data_len -= IGB_TS_HDR_LEN; 6845 skb->len -= IGB_TS_HDR_LEN; 6846 6847 /* move va to start of packet data */ 6848 va += IGB_TS_HDR_LEN; 6849 } 6850 6851 /* we need the header to contain the greater of either ETH_HLEN or 6852 * 60 bytes if the skb->len is less than 60 for skb_pad. 6853 */ 6854 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN); 6855 6856 /* align pull length to size of long to optimize memcpy performance */ 6857 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 6858 6859 /* update all of the pointers */ 6860 skb_frag_size_sub(frag, pull_len); 6861 frag->page_offset += pull_len; 6862 skb->data_len -= pull_len; 6863 skb->tail += pull_len; 6864 } 6865 6866 /** 6867 * igb_cleanup_headers - Correct corrupted or empty headers 6868 * @rx_ring: rx descriptor ring packet is being transacted on 6869 * @rx_desc: pointer to the EOP Rx descriptor 6870 * @skb: pointer to current skb being fixed 6871 * 6872 * Address the case where we are pulling data in on pages only 6873 * and as such no data is present in the skb header. 6874 * 6875 * In addition if skb is not at least 60 bytes we need to pad it so that 6876 * it is large enough to qualify as a valid Ethernet frame. 6877 * 6878 * Returns true if an error was encountered and skb was freed. 6879 **/ 6880 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 6881 union e1000_adv_rx_desc *rx_desc, 6882 struct sk_buff *skb) 6883 { 6884 if (unlikely((igb_test_staterr(rx_desc, 6885 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 6886 struct net_device *netdev = rx_ring->netdev; 6887 if (!(netdev->features & NETIF_F_RXALL)) { 6888 dev_kfree_skb_any(skb); 6889 return true; 6890 } 6891 } 6892 6893 /* place header in linear portion of buffer */ 6894 if (skb_is_nonlinear(skb)) 6895 igb_pull_tail(rx_ring, rx_desc, skb); 6896 6897 /* if eth_skb_pad returns an error the skb was freed */ 6898 if (eth_skb_pad(skb)) 6899 return true; 6900 6901 return false; 6902 } 6903 6904 /** 6905 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 6906 * @rx_ring: rx descriptor ring packet is being transacted on 6907 * @rx_desc: pointer to the EOP Rx descriptor 6908 * @skb: pointer to current skb being populated 6909 * 6910 * This function checks the ring, descriptor, and packet information in 6911 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 6912 * other fields within the skb. 6913 **/ 6914 static void igb_process_skb_fields(struct igb_ring *rx_ring, 6915 union e1000_adv_rx_desc *rx_desc, 6916 struct sk_buff *skb) 6917 { 6918 struct net_device *dev = rx_ring->netdev; 6919 6920 igb_rx_hash(rx_ring, rx_desc, skb); 6921 6922 igb_rx_checksum(rx_ring, rx_desc, skb); 6923 6924 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 6925 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 6926 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 6927 6928 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 6929 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 6930 u16 vid; 6931 6932 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 6933 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 6934 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 6935 else 6936 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 6937 6938 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 6939 } 6940 6941 skb_record_rx_queue(skb, rx_ring->queue_index); 6942 6943 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 6944 } 6945 6946 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 6947 { 6948 struct igb_ring *rx_ring = q_vector->rx.ring; 6949 struct sk_buff *skb = rx_ring->skb; 6950 unsigned int total_bytes = 0, total_packets = 0; 6951 u16 cleaned_count = igb_desc_unused(rx_ring); 6952 6953 while (likely(total_packets < budget)) { 6954 union e1000_adv_rx_desc *rx_desc; 6955 6956 /* return some buffers to hardware, one at a time is too slow */ 6957 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 6958 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6959 cleaned_count = 0; 6960 } 6961 6962 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 6963 6964 if (!rx_desc->wb.upper.status_error) 6965 break; 6966 6967 /* This memory barrier is needed to keep us from reading 6968 * any other fields out of the rx_desc until we know the 6969 * descriptor has been written back 6970 */ 6971 dma_rmb(); 6972 6973 /* retrieve a buffer from the ring */ 6974 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); 6975 6976 /* exit if we failed to retrieve a buffer */ 6977 if (!skb) 6978 break; 6979 6980 cleaned_count++; 6981 6982 /* fetch next buffer in frame if non-eop */ 6983 if (igb_is_non_eop(rx_ring, rx_desc)) 6984 continue; 6985 6986 /* verify the packet layout is correct */ 6987 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 6988 skb = NULL; 6989 continue; 6990 } 6991 6992 /* probably a little skewed due to removing CRC */ 6993 total_bytes += skb->len; 6994 6995 /* populate checksum, timestamp, VLAN, and protocol */ 6996 igb_process_skb_fields(rx_ring, rx_desc, skb); 6997 6998 napi_gro_receive(&q_vector->napi, skb); 6999 7000 /* reset skb pointer */ 7001 skb = NULL; 7002 7003 /* update budget accounting */ 7004 total_packets++; 7005 } 7006 7007 /* place incomplete frames back on ring for completion */ 7008 rx_ring->skb = skb; 7009 7010 u64_stats_update_begin(&rx_ring->rx_syncp); 7011 rx_ring->rx_stats.packets += total_packets; 7012 rx_ring->rx_stats.bytes += total_bytes; 7013 u64_stats_update_end(&rx_ring->rx_syncp); 7014 q_vector->rx.total_packets += total_packets; 7015 q_vector->rx.total_bytes += total_bytes; 7016 7017 if (cleaned_count) 7018 igb_alloc_rx_buffers(rx_ring, cleaned_count); 7019 7020 return total_packets < budget; 7021 } 7022 7023 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 7024 struct igb_rx_buffer *bi) 7025 { 7026 struct page *page = bi->page; 7027 dma_addr_t dma; 7028 7029 /* since we are recycling buffers we should seldom need to alloc */ 7030 if (likely(page)) 7031 return true; 7032 7033 /* alloc new page for storage */ 7034 page = dev_alloc_page(); 7035 if (unlikely(!page)) { 7036 rx_ring->rx_stats.alloc_failed++; 7037 return false; 7038 } 7039 7040 /* map page for use */ 7041 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 7042 7043 /* if mapping failed free memory back to system since 7044 * there isn't much point in holding memory we can't use 7045 */ 7046 if (dma_mapping_error(rx_ring->dev, dma)) { 7047 __free_page(page); 7048 7049 rx_ring->rx_stats.alloc_failed++; 7050 return false; 7051 } 7052 7053 bi->dma = dma; 7054 bi->page = page; 7055 bi->page_offset = 0; 7056 7057 return true; 7058 } 7059 7060 /** 7061 * igb_alloc_rx_buffers - Replace used receive buffers; packet split 7062 * @adapter: address of board private structure 7063 **/ 7064 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 7065 { 7066 union e1000_adv_rx_desc *rx_desc; 7067 struct igb_rx_buffer *bi; 7068 u16 i = rx_ring->next_to_use; 7069 7070 /* nothing to do */ 7071 if (!cleaned_count) 7072 return; 7073 7074 rx_desc = IGB_RX_DESC(rx_ring, i); 7075 bi = &rx_ring->rx_buffer_info[i]; 7076 i -= rx_ring->count; 7077 7078 do { 7079 if (!igb_alloc_mapped_page(rx_ring, bi)) 7080 break; 7081 7082 /* Refresh the desc even if buffer_addrs didn't change 7083 * because each write-back erases this info. 7084 */ 7085 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 7086 7087 rx_desc++; 7088 bi++; 7089 i++; 7090 if (unlikely(!i)) { 7091 rx_desc = IGB_RX_DESC(rx_ring, 0); 7092 bi = rx_ring->rx_buffer_info; 7093 i -= rx_ring->count; 7094 } 7095 7096 /* clear the status bits for the next_to_use descriptor */ 7097 rx_desc->wb.upper.status_error = 0; 7098 7099 cleaned_count--; 7100 } while (cleaned_count); 7101 7102 i += rx_ring->count; 7103 7104 if (rx_ring->next_to_use != i) { 7105 /* record the next descriptor to use */ 7106 rx_ring->next_to_use = i; 7107 7108 /* update next to alloc since we have filled the ring */ 7109 rx_ring->next_to_alloc = i; 7110 7111 /* Force memory writes to complete before letting h/w 7112 * know there are new descriptors to fetch. (Only 7113 * applicable for weak-ordered memory model archs, 7114 * such as IA-64). 7115 */ 7116 wmb(); 7117 writel(i, rx_ring->tail); 7118 } 7119 } 7120 7121 /** 7122 * igb_mii_ioctl - 7123 * @netdev: 7124 * @ifreq: 7125 * @cmd: 7126 **/ 7127 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7128 { 7129 struct igb_adapter *adapter = netdev_priv(netdev); 7130 struct mii_ioctl_data *data = if_mii(ifr); 7131 7132 if (adapter->hw.phy.media_type != e1000_media_type_copper) 7133 return -EOPNOTSUPP; 7134 7135 switch (cmd) { 7136 case SIOCGMIIPHY: 7137 data->phy_id = adapter->hw.phy.addr; 7138 break; 7139 case SIOCGMIIREG: 7140 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 7141 &data->val_out)) 7142 return -EIO; 7143 break; 7144 case SIOCSMIIREG: 7145 default: 7146 return -EOPNOTSUPP; 7147 } 7148 return 0; 7149 } 7150 7151 /** 7152 * igb_ioctl - 7153 * @netdev: 7154 * @ifreq: 7155 * @cmd: 7156 **/ 7157 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7158 { 7159 switch (cmd) { 7160 case SIOCGMIIPHY: 7161 case SIOCGMIIREG: 7162 case SIOCSMIIREG: 7163 return igb_mii_ioctl(netdev, ifr, cmd); 7164 case SIOCGHWTSTAMP: 7165 return igb_ptp_get_ts_config(netdev, ifr); 7166 case SIOCSHWTSTAMP: 7167 return igb_ptp_set_ts_config(netdev, ifr); 7168 default: 7169 return -EOPNOTSUPP; 7170 } 7171 } 7172 7173 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 7174 { 7175 struct igb_adapter *adapter = hw->back; 7176 7177 pci_read_config_word(adapter->pdev, reg, value); 7178 } 7179 7180 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 7181 { 7182 struct igb_adapter *adapter = hw->back; 7183 7184 pci_write_config_word(adapter->pdev, reg, *value); 7185 } 7186 7187 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 7188 { 7189 struct igb_adapter *adapter = hw->back; 7190 7191 if (pcie_capability_read_word(adapter->pdev, reg, value)) 7192 return -E1000_ERR_CONFIG; 7193 7194 return 0; 7195 } 7196 7197 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 7198 { 7199 struct igb_adapter *adapter = hw->back; 7200 7201 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 7202 return -E1000_ERR_CONFIG; 7203 7204 return 0; 7205 } 7206 7207 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 7208 { 7209 struct igb_adapter *adapter = netdev_priv(netdev); 7210 struct e1000_hw *hw = &adapter->hw; 7211 u32 ctrl, rctl; 7212 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 7213 7214 if (enable) { 7215 /* enable VLAN tag insert/strip */ 7216 ctrl = rd32(E1000_CTRL); 7217 ctrl |= E1000_CTRL_VME; 7218 wr32(E1000_CTRL, ctrl); 7219 7220 /* Disable CFI check */ 7221 rctl = rd32(E1000_RCTL); 7222 rctl &= ~E1000_RCTL_CFIEN; 7223 wr32(E1000_RCTL, rctl); 7224 } else { 7225 /* disable VLAN tag insert/strip */ 7226 ctrl = rd32(E1000_CTRL); 7227 ctrl &= ~E1000_CTRL_VME; 7228 wr32(E1000_CTRL, ctrl); 7229 } 7230 7231 igb_rlpml_set(adapter); 7232 } 7233 7234 static int igb_vlan_rx_add_vid(struct net_device *netdev, 7235 __be16 proto, u16 vid) 7236 { 7237 struct igb_adapter *adapter = netdev_priv(netdev); 7238 struct e1000_hw *hw = &adapter->hw; 7239 int pf_id = adapter->vfs_allocated_count; 7240 7241 /* attempt to add filter to vlvf array */ 7242 igb_vlvf_set(adapter, vid, true, pf_id); 7243 7244 /* add the filter since PF can receive vlans w/o entry in vlvf */ 7245 igb_vfta_set(hw, vid, true); 7246 7247 set_bit(vid, adapter->active_vlans); 7248 7249 return 0; 7250 } 7251 7252 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 7253 __be16 proto, u16 vid) 7254 { 7255 struct igb_adapter *adapter = netdev_priv(netdev); 7256 struct e1000_hw *hw = &adapter->hw; 7257 int pf_id = adapter->vfs_allocated_count; 7258 s32 err; 7259 7260 /* remove vlan from VLVF table array */ 7261 err = igb_vlvf_set(adapter, vid, false, pf_id); 7262 7263 /* if vid was not present in VLVF just remove it from table */ 7264 if (err) 7265 igb_vfta_set(hw, vid, false); 7266 7267 clear_bit(vid, adapter->active_vlans); 7268 7269 return 0; 7270 } 7271 7272 static void igb_restore_vlan(struct igb_adapter *adapter) 7273 { 7274 u16 vid; 7275 7276 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 7277 7278 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 7279 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 7280 } 7281 7282 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 7283 { 7284 struct pci_dev *pdev = adapter->pdev; 7285 struct e1000_mac_info *mac = &adapter->hw.mac; 7286 7287 mac->autoneg = 0; 7288 7289 /* Make sure dplx is at most 1 bit and lsb of speed is not set 7290 * for the switch() below to work 7291 */ 7292 if ((spd & 1) || (dplx & ~1)) 7293 goto err_inval; 7294 7295 /* Fiber NIC's only allow 1000 gbps Full duplex 7296 * and 100Mbps Full duplex for 100baseFx sfp 7297 */ 7298 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 7299 switch (spd + dplx) { 7300 case SPEED_10 + DUPLEX_HALF: 7301 case SPEED_10 + DUPLEX_FULL: 7302 case SPEED_100 + DUPLEX_HALF: 7303 goto err_inval; 7304 default: 7305 break; 7306 } 7307 } 7308 7309 switch (spd + dplx) { 7310 case SPEED_10 + DUPLEX_HALF: 7311 mac->forced_speed_duplex = ADVERTISE_10_HALF; 7312 break; 7313 case SPEED_10 + DUPLEX_FULL: 7314 mac->forced_speed_duplex = ADVERTISE_10_FULL; 7315 break; 7316 case SPEED_100 + DUPLEX_HALF: 7317 mac->forced_speed_duplex = ADVERTISE_100_HALF; 7318 break; 7319 case SPEED_100 + DUPLEX_FULL: 7320 mac->forced_speed_duplex = ADVERTISE_100_FULL; 7321 break; 7322 case SPEED_1000 + DUPLEX_FULL: 7323 mac->autoneg = 1; 7324 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 7325 break; 7326 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 7327 default: 7328 goto err_inval; 7329 } 7330 7331 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 7332 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7333 7334 return 0; 7335 7336 err_inval: 7337 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 7338 return -EINVAL; 7339 } 7340 7341 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 7342 bool runtime) 7343 { 7344 struct net_device *netdev = pci_get_drvdata(pdev); 7345 struct igb_adapter *adapter = netdev_priv(netdev); 7346 struct e1000_hw *hw = &adapter->hw; 7347 u32 ctrl, rctl, status; 7348 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 7349 #ifdef CONFIG_PM 7350 int retval = 0; 7351 #endif 7352 7353 netif_device_detach(netdev); 7354 7355 if (netif_running(netdev)) 7356 __igb_close(netdev, true); 7357 7358 igb_clear_interrupt_scheme(adapter); 7359 7360 #ifdef CONFIG_PM 7361 retval = pci_save_state(pdev); 7362 if (retval) 7363 return retval; 7364 #endif 7365 7366 status = rd32(E1000_STATUS); 7367 if (status & E1000_STATUS_LU) 7368 wufc &= ~E1000_WUFC_LNKC; 7369 7370 if (wufc) { 7371 igb_setup_rctl(adapter); 7372 igb_set_rx_mode(netdev); 7373 7374 /* turn on all-multi mode if wake on multicast is enabled */ 7375 if (wufc & E1000_WUFC_MC) { 7376 rctl = rd32(E1000_RCTL); 7377 rctl |= E1000_RCTL_MPE; 7378 wr32(E1000_RCTL, rctl); 7379 } 7380 7381 ctrl = rd32(E1000_CTRL); 7382 /* advertise wake from D3Cold */ 7383 #define E1000_CTRL_ADVD3WUC 0x00100000 7384 /* phy power management enable */ 7385 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 7386 ctrl |= E1000_CTRL_ADVD3WUC; 7387 wr32(E1000_CTRL, ctrl); 7388 7389 /* Allow time for pending master requests to run */ 7390 igb_disable_pcie_master(hw); 7391 7392 wr32(E1000_WUC, E1000_WUC_PME_EN); 7393 wr32(E1000_WUFC, wufc); 7394 } else { 7395 wr32(E1000_WUC, 0); 7396 wr32(E1000_WUFC, 0); 7397 } 7398 7399 *enable_wake = wufc || adapter->en_mng_pt; 7400 if (!*enable_wake) 7401 igb_power_down_link(adapter); 7402 else 7403 igb_power_up_link(adapter); 7404 7405 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7406 * would have already happened in close and is redundant. 7407 */ 7408 igb_release_hw_control(adapter); 7409 7410 pci_disable_device(pdev); 7411 7412 return 0; 7413 } 7414 7415 #ifdef CONFIG_PM 7416 #ifdef CONFIG_PM_SLEEP 7417 static int igb_suspend(struct device *dev) 7418 { 7419 int retval; 7420 bool wake; 7421 struct pci_dev *pdev = to_pci_dev(dev); 7422 7423 retval = __igb_shutdown(pdev, &wake, 0); 7424 if (retval) 7425 return retval; 7426 7427 if (wake) { 7428 pci_prepare_to_sleep(pdev); 7429 } else { 7430 pci_wake_from_d3(pdev, false); 7431 pci_set_power_state(pdev, PCI_D3hot); 7432 } 7433 7434 return 0; 7435 } 7436 #endif /* CONFIG_PM_SLEEP */ 7437 7438 static int igb_resume(struct device *dev) 7439 { 7440 struct pci_dev *pdev = to_pci_dev(dev); 7441 struct net_device *netdev = pci_get_drvdata(pdev); 7442 struct igb_adapter *adapter = netdev_priv(netdev); 7443 struct e1000_hw *hw = &adapter->hw; 7444 u32 err; 7445 7446 pci_set_power_state(pdev, PCI_D0); 7447 pci_restore_state(pdev); 7448 pci_save_state(pdev); 7449 7450 if (!pci_device_is_present(pdev)) 7451 return -ENODEV; 7452 err = pci_enable_device_mem(pdev); 7453 if (err) { 7454 dev_err(&pdev->dev, 7455 "igb: Cannot enable PCI device from suspend\n"); 7456 return err; 7457 } 7458 pci_set_master(pdev); 7459 7460 pci_enable_wake(pdev, PCI_D3hot, 0); 7461 pci_enable_wake(pdev, PCI_D3cold, 0); 7462 7463 if (igb_init_interrupt_scheme(adapter, true)) { 7464 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7465 return -ENOMEM; 7466 } 7467 7468 igb_reset(adapter); 7469 7470 /* let the f/w know that the h/w is now under the control of the 7471 * driver. 7472 */ 7473 igb_get_hw_control(adapter); 7474 7475 wr32(E1000_WUS, ~0); 7476 7477 if (netdev->flags & IFF_UP) { 7478 rtnl_lock(); 7479 err = __igb_open(netdev, true); 7480 rtnl_unlock(); 7481 if (err) 7482 return err; 7483 } 7484 7485 netif_device_attach(netdev); 7486 return 0; 7487 } 7488 7489 static int igb_runtime_idle(struct device *dev) 7490 { 7491 struct pci_dev *pdev = to_pci_dev(dev); 7492 struct net_device *netdev = pci_get_drvdata(pdev); 7493 struct igb_adapter *adapter = netdev_priv(netdev); 7494 7495 if (!igb_has_link(adapter)) 7496 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7497 7498 return -EBUSY; 7499 } 7500 7501 static int igb_runtime_suspend(struct device *dev) 7502 { 7503 struct pci_dev *pdev = to_pci_dev(dev); 7504 int retval; 7505 bool wake; 7506 7507 retval = __igb_shutdown(pdev, &wake, 1); 7508 if (retval) 7509 return retval; 7510 7511 if (wake) { 7512 pci_prepare_to_sleep(pdev); 7513 } else { 7514 pci_wake_from_d3(pdev, false); 7515 pci_set_power_state(pdev, PCI_D3hot); 7516 } 7517 7518 return 0; 7519 } 7520 7521 static int igb_runtime_resume(struct device *dev) 7522 { 7523 return igb_resume(dev); 7524 } 7525 #endif /* CONFIG_PM */ 7526 7527 static void igb_shutdown(struct pci_dev *pdev) 7528 { 7529 bool wake; 7530 7531 __igb_shutdown(pdev, &wake, 0); 7532 7533 if (system_state == SYSTEM_POWER_OFF) { 7534 pci_wake_from_d3(pdev, wake); 7535 pci_set_power_state(pdev, PCI_D3hot); 7536 } 7537 } 7538 7539 #ifdef CONFIG_PCI_IOV 7540 static int igb_sriov_reinit(struct pci_dev *dev) 7541 { 7542 struct net_device *netdev = pci_get_drvdata(dev); 7543 struct igb_adapter *adapter = netdev_priv(netdev); 7544 struct pci_dev *pdev = adapter->pdev; 7545 7546 rtnl_lock(); 7547 7548 if (netif_running(netdev)) 7549 igb_close(netdev); 7550 else 7551 igb_reset(adapter); 7552 7553 igb_clear_interrupt_scheme(adapter); 7554 7555 igb_init_queue_configuration(adapter); 7556 7557 if (igb_init_interrupt_scheme(adapter, true)) { 7558 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7559 return -ENOMEM; 7560 } 7561 7562 if (netif_running(netdev)) 7563 igb_open(netdev); 7564 7565 rtnl_unlock(); 7566 7567 return 0; 7568 } 7569 7570 static int igb_pci_disable_sriov(struct pci_dev *dev) 7571 { 7572 int err = igb_disable_sriov(dev); 7573 7574 if (!err) 7575 err = igb_sriov_reinit(dev); 7576 7577 return err; 7578 } 7579 7580 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 7581 { 7582 int err = igb_enable_sriov(dev, num_vfs); 7583 7584 if (err) 7585 goto out; 7586 7587 err = igb_sriov_reinit(dev); 7588 if (!err) 7589 return num_vfs; 7590 7591 out: 7592 return err; 7593 } 7594 7595 #endif 7596 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 7597 { 7598 #ifdef CONFIG_PCI_IOV 7599 if (num_vfs == 0) 7600 return igb_pci_disable_sriov(dev); 7601 else 7602 return igb_pci_enable_sriov(dev, num_vfs); 7603 #endif 7604 return 0; 7605 } 7606 7607 #ifdef CONFIG_NET_POLL_CONTROLLER 7608 /* Polling 'interrupt' - used by things like netconsole to send skbs 7609 * without having to re-enable interrupts. It's not called while 7610 * the interrupt routine is executing. 7611 */ 7612 static void igb_netpoll(struct net_device *netdev) 7613 { 7614 struct igb_adapter *adapter = netdev_priv(netdev); 7615 struct e1000_hw *hw = &adapter->hw; 7616 struct igb_q_vector *q_vector; 7617 int i; 7618 7619 for (i = 0; i < adapter->num_q_vectors; i++) { 7620 q_vector = adapter->q_vector[i]; 7621 if (adapter->flags & IGB_FLAG_HAS_MSIX) 7622 wr32(E1000_EIMC, q_vector->eims_value); 7623 else 7624 igb_irq_disable(adapter); 7625 napi_schedule(&q_vector->napi); 7626 } 7627 } 7628 #endif /* CONFIG_NET_POLL_CONTROLLER */ 7629 7630 /** 7631 * igb_io_error_detected - called when PCI error is detected 7632 * @pdev: Pointer to PCI device 7633 * @state: The current pci connection state 7634 * 7635 * This function is called after a PCI bus error affecting 7636 * this device has been detected. 7637 **/ 7638 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 7639 pci_channel_state_t state) 7640 { 7641 struct net_device *netdev = pci_get_drvdata(pdev); 7642 struct igb_adapter *adapter = netdev_priv(netdev); 7643 7644 netif_device_detach(netdev); 7645 7646 if (state == pci_channel_io_perm_failure) 7647 return PCI_ERS_RESULT_DISCONNECT; 7648 7649 if (netif_running(netdev)) 7650 igb_down(adapter); 7651 pci_disable_device(pdev); 7652 7653 /* Request a slot slot reset. */ 7654 return PCI_ERS_RESULT_NEED_RESET; 7655 } 7656 7657 /** 7658 * igb_io_slot_reset - called after the pci bus has been reset. 7659 * @pdev: Pointer to PCI device 7660 * 7661 * Restart the card from scratch, as if from a cold-boot. Implementation 7662 * resembles the first-half of the igb_resume routine. 7663 **/ 7664 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 7665 { 7666 struct net_device *netdev = pci_get_drvdata(pdev); 7667 struct igb_adapter *adapter = netdev_priv(netdev); 7668 struct e1000_hw *hw = &adapter->hw; 7669 pci_ers_result_t result; 7670 int err; 7671 7672 if (pci_enable_device_mem(pdev)) { 7673 dev_err(&pdev->dev, 7674 "Cannot re-enable PCI device after reset.\n"); 7675 result = PCI_ERS_RESULT_DISCONNECT; 7676 } else { 7677 pci_set_master(pdev); 7678 pci_restore_state(pdev); 7679 pci_save_state(pdev); 7680 7681 pci_enable_wake(pdev, PCI_D3hot, 0); 7682 pci_enable_wake(pdev, PCI_D3cold, 0); 7683 7684 igb_reset(adapter); 7685 wr32(E1000_WUS, ~0); 7686 result = PCI_ERS_RESULT_RECOVERED; 7687 } 7688 7689 err = pci_cleanup_aer_uncorrect_error_status(pdev); 7690 if (err) { 7691 dev_err(&pdev->dev, 7692 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 7693 err); 7694 /* non-fatal, continue */ 7695 } 7696 7697 return result; 7698 } 7699 7700 /** 7701 * igb_io_resume - called when traffic can start flowing again. 7702 * @pdev: Pointer to PCI device 7703 * 7704 * This callback is called when the error recovery driver tells us that 7705 * its OK to resume normal operation. Implementation resembles the 7706 * second-half of the igb_resume routine. 7707 */ 7708 static void igb_io_resume(struct pci_dev *pdev) 7709 { 7710 struct net_device *netdev = pci_get_drvdata(pdev); 7711 struct igb_adapter *adapter = netdev_priv(netdev); 7712 7713 if (netif_running(netdev)) { 7714 if (igb_up(adapter)) { 7715 dev_err(&pdev->dev, "igb_up failed after reset\n"); 7716 return; 7717 } 7718 } 7719 7720 netif_device_attach(netdev); 7721 7722 /* let the f/w know that the h/w is now under the control of the 7723 * driver. 7724 */ 7725 igb_get_hw_control(adapter); 7726 } 7727 7728 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, 7729 u8 qsel) 7730 { 7731 u32 rar_low, rar_high; 7732 struct e1000_hw *hw = &adapter->hw; 7733 7734 /* HW expects these in little endian so we reverse the byte order 7735 * from network order (big endian) to little endian 7736 */ 7737 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 7738 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 7739 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 7740 7741 /* Indicate to hardware the Address is Valid. */ 7742 rar_high |= E1000_RAH_AV; 7743 7744 if (hw->mac.type == e1000_82575) 7745 rar_high |= E1000_RAH_POOL_1 * qsel; 7746 else 7747 rar_high |= E1000_RAH_POOL_1 << qsel; 7748 7749 wr32(E1000_RAL(index), rar_low); 7750 wrfl(); 7751 wr32(E1000_RAH(index), rar_high); 7752 wrfl(); 7753 } 7754 7755 static int igb_set_vf_mac(struct igb_adapter *adapter, 7756 int vf, unsigned char *mac_addr) 7757 { 7758 struct e1000_hw *hw = &adapter->hw; 7759 /* VF MAC addresses start at end of receive addresses and moves 7760 * towards the first, as a result a collision should not be possible 7761 */ 7762 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 7763 7764 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); 7765 7766 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); 7767 7768 return 0; 7769 } 7770 7771 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 7772 { 7773 struct igb_adapter *adapter = netdev_priv(netdev); 7774 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) 7775 return -EINVAL; 7776 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 7777 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); 7778 dev_info(&adapter->pdev->dev, 7779 "Reload the VF driver to make this change effective."); 7780 if (test_bit(__IGB_DOWN, &adapter->state)) { 7781 dev_warn(&adapter->pdev->dev, 7782 "The VF MAC address has been set, but the PF device is not up.\n"); 7783 dev_warn(&adapter->pdev->dev, 7784 "Bring the PF device up before attempting to use the VF device.\n"); 7785 } 7786 return igb_set_vf_mac(adapter, vf, mac); 7787 } 7788 7789 static int igb_link_mbps(int internal_link_speed) 7790 { 7791 switch (internal_link_speed) { 7792 case SPEED_100: 7793 return 100; 7794 case SPEED_1000: 7795 return 1000; 7796 default: 7797 return 0; 7798 } 7799 } 7800 7801 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 7802 int link_speed) 7803 { 7804 int rf_dec, rf_int; 7805 u32 bcnrc_val; 7806 7807 if (tx_rate != 0) { 7808 /* Calculate the rate factor values to set */ 7809 rf_int = link_speed / tx_rate; 7810 rf_dec = (link_speed - (rf_int * tx_rate)); 7811 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) / 7812 tx_rate; 7813 7814 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 7815 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 7816 E1000_RTTBCNRC_RF_INT_MASK); 7817 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 7818 } else { 7819 bcnrc_val = 0; 7820 } 7821 7822 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 7823 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 7824 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 7825 */ 7826 wr32(E1000_RTTBCNRM, 0x14); 7827 wr32(E1000_RTTBCNRC, bcnrc_val); 7828 } 7829 7830 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 7831 { 7832 int actual_link_speed, i; 7833 bool reset_rate = false; 7834 7835 /* VF TX rate limit was not set or not supported */ 7836 if ((adapter->vf_rate_link_speed == 0) || 7837 (adapter->hw.mac.type != e1000_82576)) 7838 return; 7839 7840 actual_link_speed = igb_link_mbps(adapter->link_speed); 7841 if (actual_link_speed != adapter->vf_rate_link_speed) { 7842 reset_rate = true; 7843 adapter->vf_rate_link_speed = 0; 7844 dev_info(&adapter->pdev->dev, 7845 "Link speed has been changed. VF Transmit rate is disabled\n"); 7846 } 7847 7848 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7849 if (reset_rate) 7850 adapter->vf_data[i].tx_rate = 0; 7851 7852 igb_set_vf_rate_limit(&adapter->hw, i, 7853 adapter->vf_data[i].tx_rate, 7854 actual_link_speed); 7855 } 7856 } 7857 7858 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 7859 int min_tx_rate, int max_tx_rate) 7860 { 7861 struct igb_adapter *adapter = netdev_priv(netdev); 7862 struct e1000_hw *hw = &adapter->hw; 7863 int actual_link_speed; 7864 7865 if (hw->mac.type != e1000_82576) 7866 return -EOPNOTSUPP; 7867 7868 if (min_tx_rate) 7869 return -EINVAL; 7870 7871 actual_link_speed = igb_link_mbps(adapter->link_speed); 7872 if ((vf >= adapter->vfs_allocated_count) || 7873 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 7874 (max_tx_rate < 0) || 7875 (max_tx_rate > actual_link_speed)) 7876 return -EINVAL; 7877 7878 adapter->vf_rate_link_speed = actual_link_speed; 7879 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 7880 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 7881 7882 return 0; 7883 } 7884 7885 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 7886 bool setting) 7887 { 7888 struct igb_adapter *adapter = netdev_priv(netdev); 7889 struct e1000_hw *hw = &adapter->hw; 7890 u32 reg_val, reg_offset; 7891 7892 if (!adapter->vfs_allocated_count) 7893 return -EOPNOTSUPP; 7894 7895 if (vf >= adapter->vfs_allocated_count) 7896 return -EINVAL; 7897 7898 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 7899 reg_val = rd32(reg_offset); 7900 if (setting) 7901 reg_val |= ((1 << vf) | 7902 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7903 else 7904 reg_val &= ~((1 << vf) | 7905 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7906 wr32(reg_offset, reg_val); 7907 7908 adapter->vf_data[vf].spoofchk_enabled = setting; 7909 return 0; 7910 } 7911 7912 static int igb_ndo_get_vf_config(struct net_device *netdev, 7913 int vf, struct ifla_vf_info *ivi) 7914 { 7915 struct igb_adapter *adapter = netdev_priv(netdev); 7916 if (vf >= adapter->vfs_allocated_count) 7917 return -EINVAL; 7918 ivi->vf = vf; 7919 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 7920 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 7921 ivi->min_tx_rate = 0; 7922 ivi->vlan = adapter->vf_data[vf].pf_vlan; 7923 ivi->qos = adapter->vf_data[vf].pf_qos; 7924 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 7925 return 0; 7926 } 7927 7928 static void igb_vmm_control(struct igb_adapter *adapter) 7929 { 7930 struct e1000_hw *hw = &adapter->hw; 7931 u32 reg; 7932 7933 switch (hw->mac.type) { 7934 case e1000_82575: 7935 case e1000_i210: 7936 case e1000_i211: 7937 case e1000_i354: 7938 default: 7939 /* replication is not supported for 82575 */ 7940 return; 7941 case e1000_82576: 7942 /* notify HW that the MAC is adding vlan tags */ 7943 reg = rd32(E1000_DTXCTL); 7944 reg |= E1000_DTXCTL_VLAN_ADDED; 7945 wr32(E1000_DTXCTL, reg); 7946 /* Fall through */ 7947 case e1000_82580: 7948 /* enable replication vlan tag stripping */ 7949 reg = rd32(E1000_RPLOLR); 7950 reg |= E1000_RPLOLR_STRVLAN; 7951 wr32(E1000_RPLOLR, reg); 7952 /* Fall through */ 7953 case e1000_i350: 7954 /* none of the above registers are supported by i350 */ 7955 break; 7956 } 7957 7958 if (adapter->vfs_allocated_count) { 7959 igb_vmdq_set_loopback_pf(hw, true); 7960 igb_vmdq_set_replication_pf(hw, true); 7961 igb_vmdq_set_anti_spoofing_pf(hw, true, 7962 adapter->vfs_allocated_count); 7963 } else { 7964 igb_vmdq_set_loopback_pf(hw, false); 7965 igb_vmdq_set_replication_pf(hw, false); 7966 } 7967 } 7968 7969 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 7970 { 7971 struct e1000_hw *hw = &adapter->hw; 7972 u32 dmac_thr; 7973 u16 hwm; 7974 7975 if (hw->mac.type > e1000_82580) { 7976 if (adapter->flags & IGB_FLAG_DMAC) { 7977 u32 reg; 7978 7979 /* force threshold to 0. */ 7980 wr32(E1000_DMCTXTH, 0); 7981 7982 /* DMA Coalescing high water mark needs to be greater 7983 * than the Rx threshold. Set hwm to PBA - max frame 7984 * size in 16B units, capping it at PBA - 6KB. 7985 */ 7986 hwm = 64 * pba - adapter->max_frame_size / 16; 7987 if (hwm < 64 * (pba - 6)) 7988 hwm = 64 * (pba - 6); 7989 reg = rd32(E1000_FCRTC); 7990 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 7991 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 7992 & E1000_FCRTC_RTH_COAL_MASK); 7993 wr32(E1000_FCRTC, reg); 7994 7995 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 7996 * frame size, capping it at PBA - 10KB. 7997 */ 7998 dmac_thr = pba - adapter->max_frame_size / 512; 7999 if (dmac_thr < pba - 10) 8000 dmac_thr = pba - 10; 8001 reg = rd32(E1000_DMACR); 8002 reg &= ~E1000_DMACR_DMACTHR_MASK; 8003 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 8004 & E1000_DMACR_DMACTHR_MASK); 8005 8006 /* transition to L0x or L1 if available..*/ 8007 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 8008 8009 /* watchdog timer= +-1000 usec in 32usec intervals */ 8010 reg |= (1000 >> 5); 8011 8012 /* Disable BMC-to-OS Watchdog Enable */ 8013 if (hw->mac.type != e1000_i354) 8014 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 8015 8016 wr32(E1000_DMACR, reg); 8017 8018 /* no lower threshold to disable 8019 * coalescing(smart fifb)-UTRESH=0 8020 */ 8021 wr32(E1000_DMCRTRH, 0); 8022 8023 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 8024 8025 wr32(E1000_DMCTLX, reg); 8026 8027 /* free space in tx packet buffer to wake from 8028 * DMA coal 8029 */ 8030 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 8031 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 8032 8033 /* make low power state decision controlled 8034 * by DMA coal 8035 */ 8036 reg = rd32(E1000_PCIEMISC); 8037 reg &= ~E1000_PCIEMISC_LX_DECISION; 8038 wr32(E1000_PCIEMISC, reg); 8039 } /* endif adapter->dmac is not disabled */ 8040 } else if (hw->mac.type == e1000_82580) { 8041 u32 reg = rd32(E1000_PCIEMISC); 8042 8043 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 8044 wr32(E1000_DMACR, 0); 8045 } 8046 } 8047 8048 /** 8049 * igb_read_i2c_byte - Reads 8 bit word over I2C 8050 * @hw: pointer to hardware structure 8051 * @byte_offset: byte offset to read 8052 * @dev_addr: device address 8053 * @data: value read 8054 * 8055 * Performs byte read operation over I2C interface at 8056 * a specified device address. 8057 **/ 8058 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 8059 u8 dev_addr, u8 *data) 8060 { 8061 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 8062 struct i2c_client *this_client = adapter->i2c_client; 8063 s32 status; 8064 u16 swfw_mask = 0; 8065 8066 if (!this_client) 8067 return E1000_ERR_I2C; 8068 8069 swfw_mask = E1000_SWFW_PHY0_SM; 8070 8071 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 8072 return E1000_ERR_SWFW_SYNC; 8073 8074 status = i2c_smbus_read_byte_data(this_client, byte_offset); 8075 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 8076 8077 if (status < 0) 8078 return E1000_ERR_I2C; 8079 else { 8080 *data = status; 8081 return 0; 8082 } 8083 } 8084 8085 /** 8086 * igb_write_i2c_byte - Writes 8 bit word over I2C 8087 * @hw: pointer to hardware structure 8088 * @byte_offset: byte offset to write 8089 * @dev_addr: device address 8090 * @data: value to write 8091 * 8092 * Performs byte write operation over I2C interface at 8093 * a specified device address. 8094 **/ 8095 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 8096 u8 dev_addr, u8 data) 8097 { 8098 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 8099 struct i2c_client *this_client = adapter->i2c_client; 8100 s32 status; 8101 u16 swfw_mask = E1000_SWFW_PHY0_SM; 8102 8103 if (!this_client) 8104 return E1000_ERR_I2C; 8105 8106 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 8107 return E1000_ERR_SWFW_SYNC; 8108 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 8109 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 8110 8111 if (status) 8112 return E1000_ERR_I2C; 8113 else 8114 return 0; 8115 8116 } 8117 8118 int igb_reinit_queues(struct igb_adapter *adapter) 8119 { 8120 struct net_device *netdev = adapter->netdev; 8121 struct pci_dev *pdev = adapter->pdev; 8122 int err = 0; 8123 8124 if (netif_running(netdev)) 8125 igb_close(netdev); 8126 8127 igb_reset_interrupt_capability(adapter); 8128 8129 if (igb_init_interrupt_scheme(adapter, true)) { 8130 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 8131 return -ENOMEM; 8132 } 8133 8134 if (netif_running(netdev)) 8135 err = igb_open(netdev); 8136 8137 return err; 8138 } 8139 /* igb_main.c */ 8140