1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59 
60 #define MAJ 5
61 #define MIN 4
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 				"Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 				"Copyright (c) 2007-2014 Intel Corporation.";
71 
72 static const struct e1000_info *igb_info_tbl[] = {
73 	[board_82575] = &e1000_82575_info,
74 };
75 
76 static const struct pci_device_id igb_pci_tbl[] = {
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 	/* required last entry */
113 	{0, }
114 };
115 
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117 
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 					  struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 			  netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 				   bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 				 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
180 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181 
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 static int igb_disable_sriov(struct pci_dev *dev);
186 static int igb_pci_disable_sriov(struct pci_dev *dev);
187 #endif
188 
189 #ifdef CONFIG_PM
190 #ifdef CONFIG_PM_SLEEP
191 static int igb_suspend(struct device *);
192 #endif
193 static int igb_resume(struct device *);
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 static const struct dev_pm_ops igb_pm_ops = {
198 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 			igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 	.notifier_call	= igb_notify_dca,
209 	.next		= NULL,
210 	.priority	= 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221 #endif /* CONFIG_PCI_IOV */
222 
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 		     pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227 
228 static const struct pci_error_handlers igb_err_handler = {
229 	.error_detected = igb_io_error_detected,
230 	.slot_reset = igb_io_slot_reset,
231 	.resume = igb_io_resume,
232 };
233 
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235 
236 static struct pci_driver igb_driver = {
237 	.name     = igb_driver_name,
238 	.id_table = igb_pci_tbl,
239 	.probe    = igb_probe,
240 	.remove   = igb_remove,
241 #ifdef CONFIG_PM
242 	.driver.pm = &igb_pm_ops,
243 #endif
244 	.shutdown = igb_shutdown,
245 	.sriov_configure = igb_pci_sriov_configure,
246 	.err_handler = &igb_err_handler
247 };
248 
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253 
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258 
259 struct igb_reg_info {
260 	u32 ofs;
261 	char *name;
262 };
263 
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265 
266 	/* General Registers */
267 	{E1000_CTRL, "CTRL"},
268 	{E1000_STATUS, "STATUS"},
269 	{E1000_CTRL_EXT, "CTRL_EXT"},
270 
271 	/* Interrupt Registers */
272 	{E1000_ICR, "ICR"},
273 
274 	/* RX Registers */
275 	{E1000_RCTL, "RCTL"},
276 	{E1000_RDLEN(0), "RDLEN"},
277 	{E1000_RDH(0), "RDH"},
278 	{E1000_RDT(0), "RDT"},
279 	{E1000_RXDCTL(0), "RXDCTL"},
280 	{E1000_RDBAL(0), "RDBAL"},
281 	{E1000_RDBAH(0), "RDBAH"},
282 
283 	/* TX Registers */
284 	{E1000_TCTL, "TCTL"},
285 	{E1000_TDBAL(0), "TDBAL"},
286 	{E1000_TDBAH(0), "TDBAH"},
287 	{E1000_TDLEN(0), "TDLEN"},
288 	{E1000_TDH(0), "TDH"},
289 	{E1000_TDT(0), "TDT"},
290 	{E1000_TXDCTL(0), "TXDCTL"},
291 	{E1000_TDFH, "TDFH"},
292 	{E1000_TDFT, "TDFT"},
293 	{E1000_TDFHS, "TDFHS"},
294 	{E1000_TDFPC, "TDFPC"},
295 
296 	/* List Terminator */
297 	{}
298 };
299 
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303 	int n = 0;
304 	char rname[16];
305 	u32 regs[8];
306 
307 	switch (reginfo->ofs) {
308 	case E1000_RDLEN(0):
309 		for (n = 0; n < 4; n++)
310 			regs[n] = rd32(E1000_RDLEN(n));
311 		break;
312 	case E1000_RDH(0):
313 		for (n = 0; n < 4; n++)
314 			regs[n] = rd32(E1000_RDH(n));
315 		break;
316 	case E1000_RDT(0):
317 		for (n = 0; n < 4; n++)
318 			regs[n] = rd32(E1000_RDT(n));
319 		break;
320 	case E1000_RXDCTL(0):
321 		for (n = 0; n < 4; n++)
322 			regs[n] = rd32(E1000_RXDCTL(n));
323 		break;
324 	case E1000_RDBAL(0):
325 		for (n = 0; n < 4; n++)
326 			regs[n] = rd32(E1000_RDBAL(n));
327 		break;
328 	case E1000_RDBAH(0):
329 		for (n = 0; n < 4; n++)
330 			regs[n] = rd32(E1000_RDBAH(n));
331 		break;
332 	case E1000_TDBAL(0):
333 		for (n = 0; n < 4; n++)
334 			regs[n] = rd32(E1000_RDBAL(n));
335 		break;
336 	case E1000_TDBAH(0):
337 		for (n = 0; n < 4; n++)
338 			regs[n] = rd32(E1000_TDBAH(n));
339 		break;
340 	case E1000_TDLEN(0):
341 		for (n = 0; n < 4; n++)
342 			regs[n] = rd32(E1000_TDLEN(n));
343 		break;
344 	case E1000_TDH(0):
345 		for (n = 0; n < 4; n++)
346 			regs[n] = rd32(E1000_TDH(n));
347 		break;
348 	case E1000_TDT(0):
349 		for (n = 0; n < 4; n++)
350 			regs[n] = rd32(E1000_TDT(n));
351 		break;
352 	case E1000_TXDCTL(0):
353 		for (n = 0; n < 4; n++)
354 			regs[n] = rd32(E1000_TXDCTL(n));
355 		break;
356 	default:
357 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358 		return;
359 	}
360 
361 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 		regs[2], regs[3]);
364 }
365 
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369 	struct net_device *netdev = adapter->netdev;
370 	struct e1000_hw *hw = &adapter->hw;
371 	struct igb_reg_info *reginfo;
372 	struct igb_ring *tx_ring;
373 	union e1000_adv_tx_desc *tx_desc;
374 	struct my_u0 { u64 a; u64 b; } *u0;
375 	struct igb_ring *rx_ring;
376 	union e1000_adv_rx_desc *rx_desc;
377 	u32 staterr;
378 	u16 i, n;
379 
380 	if (!netif_msg_hw(adapter))
381 		return;
382 
383 	/* Print netdevice Info */
384 	if (netdev) {
385 		dev_info(&adapter->pdev->dev, "Net device Info\n");
386 		pr_info("Device Name     state            trans_start      last_rx\n");
387 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 			netdev->state, dev_trans_start(netdev), netdev->last_rx);
389 	}
390 
391 	/* Print Registers */
392 	dev_info(&adapter->pdev->dev, "Register Dump\n");
393 	pr_info(" Register Name   Value\n");
394 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 	     reginfo->name; reginfo++) {
396 		igb_regdump(hw, reginfo);
397 	}
398 
399 	/* Print TX Ring Summary */
400 	if (!netdev || !netif_running(netdev))
401 		goto exit;
402 
403 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405 	for (n = 0; n < adapter->num_tx_queues; n++) {
406 		struct igb_tx_buffer *buffer_info;
407 		tx_ring = adapter->tx_ring[n];
408 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 			(u64)dma_unmap_addr(buffer_info, dma),
412 			dma_unmap_len(buffer_info, len),
413 			buffer_info->next_to_watch,
414 			(u64)buffer_info->time_stamp);
415 	}
416 
417 	/* Print TX Rings */
418 	if (!netif_msg_tx_done(adapter))
419 		goto rx_ring_summary;
420 
421 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422 
423 	/* Transmit Descriptor Formats
424 	 *
425 	 * Advanced Transmit Descriptor
426 	 *   +--------------------------------------------------------------+
427 	 * 0 |         Buffer Address [63:0]                                |
428 	 *   +--------------------------------------------------------------+
429 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430 	 *   +--------------------------------------------------------------+
431 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432 	 */
433 
434 	for (n = 0; n < adapter->num_tx_queues; n++) {
435 		tx_ring = adapter->tx_ring[n];
436 		pr_info("------------------------------------\n");
437 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 		pr_info("------------------------------------\n");
439 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
440 
441 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442 			const char *next_desc;
443 			struct igb_tx_buffer *buffer_info;
444 			tx_desc = IGB_TX_DESC(tx_ring, i);
445 			buffer_info = &tx_ring->tx_buffer_info[i];
446 			u0 = (struct my_u0 *)tx_desc;
447 			if (i == tx_ring->next_to_use &&
448 			    i == tx_ring->next_to_clean)
449 				next_desc = " NTC/U";
450 			else if (i == tx_ring->next_to_use)
451 				next_desc = " NTU";
452 			else if (i == tx_ring->next_to_clean)
453 				next_desc = " NTC";
454 			else
455 				next_desc = "";
456 
457 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
458 				i, le64_to_cpu(u0->a),
459 				le64_to_cpu(u0->b),
460 				(u64)dma_unmap_addr(buffer_info, dma),
461 				dma_unmap_len(buffer_info, len),
462 				buffer_info->next_to_watch,
463 				(u64)buffer_info->time_stamp,
464 				buffer_info->skb, next_desc);
465 
466 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
467 				print_hex_dump(KERN_INFO, "",
468 					DUMP_PREFIX_ADDRESS,
469 					16, 1, buffer_info->skb->data,
470 					dma_unmap_len(buffer_info, len),
471 					true);
472 		}
473 	}
474 
475 	/* Print RX Rings Summary */
476 rx_ring_summary:
477 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478 	pr_info("Queue [NTU] [NTC]\n");
479 	for (n = 0; n < adapter->num_rx_queues; n++) {
480 		rx_ring = adapter->rx_ring[n];
481 		pr_info(" %5d %5X %5X\n",
482 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
483 	}
484 
485 	/* Print RX Rings */
486 	if (!netif_msg_rx_status(adapter))
487 		goto exit;
488 
489 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490 
491 	/* Advanced Receive Descriptor (Read) Format
492 	 *    63                                           1        0
493 	 *    +-----------------------------------------------------+
494 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
495 	 *    +----------------------------------------------+------+
496 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
497 	 *    +-----------------------------------------------------+
498 	 *
499 	 *
500 	 * Advanced Receive Descriptor (Write-Back) Format
501 	 *
502 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
503 	 *   +------------------------------------------------------+
504 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
505 	 *   | Checksum   Ident  |   |           |    | Type | Type |
506 	 *   +------------------------------------------------------+
507 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508 	 *   +------------------------------------------------------+
509 	 *   63       48 47    32 31            20 19               0
510 	 */
511 
512 	for (n = 0; n < adapter->num_rx_queues; n++) {
513 		rx_ring = adapter->rx_ring[n];
514 		pr_info("------------------------------------\n");
515 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516 		pr_info("------------------------------------\n");
517 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519 
520 		for (i = 0; i < rx_ring->count; i++) {
521 			const char *next_desc;
522 			struct igb_rx_buffer *buffer_info;
523 			buffer_info = &rx_ring->rx_buffer_info[i];
524 			rx_desc = IGB_RX_DESC(rx_ring, i);
525 			u0 = (struct my_u0 *)rx_desc;
526 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527 
528 			if (i == rx_ring->next_to_use)
529 				next_desc = " NTU";
530 			else if (i == rx_ring->next_to_clean)
531 				next_desc = " NTC";
532 			else
533 				next_desc = "";
534 
535 			if (staterr & E1000_RXD_STAT_DD) {
536 				/* Descriptor Done */
537 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538 					"RWB", i,
539 					le64_to_cpu(u0->a),
540 					le64_to_cpu(u0->b),
541 					next_desc);
542 			} else {
543 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544 					"R  ", i,
545 					le64_to_cpu(u0->a),
546 					le64_to_cpu(u0->b),
547 					(u64)buffer_info->dma,
548 					next_desc);
549 
550 				if (netif_msg_pktdata(adapter) &&
551 				    buffer_info->dma && buffer_info->page) {
552 					print_hex_dump(KERN_INFO, "",
553 					  DUMP_PREFIX_ADDRESS,
554 					  16, 1,
555 					  page_address(buffer_info->page) +
556 						      buffer_info->page_offset,
557 					  IGB_RX_BUFSZ, true);
558 				}
559 			}
560 		}
561 	}
562 
563 exit:
564 	return;
565 }
566 
567 /**
568  *  igb_get_i2c_data - Reads the I2C SDA data bit
569  *  @hw: pointer to hardware structure
570  *  @i2cctl: Current value of I2CCTL register
571  *
572  *  Returns the I2C data bit value
573  **/
574 static int igb_get_i2c_data(void *data)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	return !!(i2cctl & E1000_I2C_DATA_IN);
581 }
582 
583 /**
584  *  igb_set_i2c_data - Sets the I2C data bit
585  *  @data: pointer to hardware structure
586  *  @state: I2C data value (0 or 1) to set
587  *
588  *  Sets the I2C data bit
589  **/
590 static void igb_set_i2c_data(void *data, int state)
591 {
592 	struct igb_adapter *adapter = (struct igb_adapter *)data;
593 	struct e1000_hw *hw = &adapter->hw;
594 	s32 i2cctl = rd32(E1000_I2CPARAMS);
595 
596 	if (state)
597 		i2cctl |= E1000_I2C_DATA_OUT;
598 	else
599 		i2cctl &= ~E1000_I2C_DATA_OUT;
600 
601 	i2cctl &= ~E1000_I2C_DATA_OE_N;
602 	i2cctl |= E1000_I2C_CLK_OE_N;
603 	wr32(E1000_I2CPARAMS, i2cctl);
604 	wrfl();
605 
606 }
607 
608 /**
609  *  igb_set_i2c_clk - Sets the I2C SCL clock
610  *  @data: pointer to hardware structure
611  *  @state: state to set clock
612  *
613  *  Sets the I2C clock line to state
614  **/
615 static void igb_set_i2c_clk(void *data, int state)
616 {
617 	struct igb_adapter *adapter = (struct igb_adapter *)data;
618 	struct e1000_hw *hw = &adapter->hw;
619 	s32 i2cctl = rd32(E1000_I2CPARAMS);
620 
621 	if (state) {
622 		i2cctl |= E1000_I2C_CLK_OUT;
623 		i2cctl &= ~E1000_I2C_CLK_OE_N;
624 	} else {
625 		i2cctl &= ~E1000_I2C_CLK_OUT;
626 		i2cctl &= ~E1000_I2C_CLK_OE_N;
627 	}
628 	wr32(E1000_I2CPARAMS, i2cctl);
629 	wrfl();
630 }
631 
632 /**
633  *  igb_get_i2c_clk - Gets the I2C SCL clock state
634  *  @data: pointer to hardware structure
635  *
636  *  Gets the I2C clock state
637  **/
638 static int igb_get_i2c_clk(void *data)
639 {
640 	struct igb_adapter *adapter = (struct igb_adapter *)data;
641 	struct e1000_hw *hw = &adapter->hw;
642 	s32 i2cctl = rd32(E1000_I2CPARAMS);
643 
644 	return !!(i2cctl & E1000_I2C_CLK_IN);
645 }
646 
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648 	.setsda		= igb_set_i2c_data,
649 	.setscl		= igb_set_i2c_clk,
650 	.getsda		= igb_get_i2c_data,
651 	.getscl		= igb_get_i2c_clk,
652 	.udelay		= 5,
653 	.timeout	= 20,
654 };
655 
656 /**
657  *  igb_get_hw_dev - return device
658  *  @hw: pointer to hardware structure
659  *
660  *  used by hardware layer to print debugging information
661  **/
662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663 {
664 	struct igb_adapter *adapter = hw->back;
665 	return adapter->netdev;
666 }
667 
668 /**
669  *  igb_init_module - Driver Registration Routine
670  *
671  *  igb_init_module is the first routine called when the driver is
672  *  loaded. All it does is register with the PCI subsystem.
673  **/
674 static int __init igb_init_module(void)
675 {
676 	int ret;
677 
678 	pr_info("%s - version %s\n",
679 	       igb_driver_string, igb_driver_version);
680 	pr_info("%s\n", igb_copyright);
681 
682 #ifdef CONFIG_IGB_DCA
683 	dca_register_notify(&dca_notifier);
684 #endif
685 	ret = pci_register_driver(&igb_driver);
686 	return ret;
687 }
688 
689 module_init(igb_init_module);
690 
691 /**
692  *  igb_exit_module - Driver Exit Cleanup Routine
693  *
694  *  igb_exit_module is called just before the driver is removed
695  *  from memory.
696  **/
697 static void __exit igb_exit_module(void)
698 {
699 #ifdef CONFIG_IGB_DCA
700 	dca_unregister_notify(&dca_notifier);
701 #endif
702 	pci_unregister_driver(&igb_driver);
703 }
704 
705 module_exit(igb_exit_module);
706 
707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708 /**
709  *  igb_cache_ring_register - Descriptor ring to register mapping
710  *  @adapter: board private structure to initialize
711  *
712  *  Once we know the feature-set enabled for the device, we'll cache
713  *  the register offset the descriptor ring is assigned to.
714  **/
715 static void igb_cache_ring_register(struct igb_adapter *adapter)
716 {
717 	int i = 0, j = 0;
718 	u32 rbase_offset = adapter->vfs_allocated_count;
719 
720 	switch (adapter->hw.mac.type) {
721 	case e1000_82576:
722 		/* The queues are allocated for virtualization such that VF 0
723 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724 		 * In order to avoid collision we start at the first free queue
725 		 * and continue consuming queues in the same sequence
726 		 */
727 		if (adapter->vfs_allocated_count) {
728 			for (; i < adapter->rss_queues; i++)
729 				adapter->rx_ring[i]->reg_idx = rbase_offset +
730 							       Q_IDX_82576(i);
731 		}
732 		/* Fall through */
733 	case e1000_82575:
734 	case e1000_82580:
735 	case e1000_i350:
736 	case e1000_i354:
737 	case e1000_i210:
738 	case e1000_i211:
739 		/* Fall through */
740 	default:
741 		for (; i < adapter->num_rx_queues; i++)
742 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
743 		for (; j < adapter->num_tx_queues; j++)
744 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
745 		break;
746 	}
747 }
748 
749 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
750 {
751 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
752 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
753 	u32 value = 0;
754 
755 	if (E1000_REMOVED(hw_addr))
756 		return ~value;
757 
758 	value = readl(&hw_addr[reg]);
759 
760 	/* reads should not return all F's */
761 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
762 		struct net_device *netdev = igb->netdev;
763 		hw->hw_addr = NULL;
764 		netif_device_detach(netdev);
765 		netdev_err(netdev, "PCIe link lost, device now detached\n");
766 	}
767 
768 	return value;
769 }
770 
771 /**
772  *  igb_write_ivar - configure ivar for given MSI-X vector
773  *  @hw: pointer to the HW structure
774  *  @msix_vector: vector number we are allocating to a given ring
775  *  @index: row index of IVAR register to write within IVAR table
776  *  @offset: column offset of in IVAR, should be multiple of 8
777  *
778  *  This function is intended to handle the writing of the IVAR register
779  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
780  *  each containing an cause allocation for an Rx and Tx ring, and a
781  *  variable number of rows depending on the number of queues supported.
782  **/
783 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
784 			   int index, int offset)
785 {
786 	u32 ivar = array_rd32(E1000_IVAR0, index);
787 
788 	/* clear any bits that are currently set */
789 	ivar &= ~((u32)0xFF << offset);
790 
791 	/* write vector and valid bit */
792 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
793 
794 	array_wr32(E1000_IVAR0, index, ivar);
795 }
796 
797 #define IGB_N0_QUEUE -1
798 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
799 {
800 	struct igb_adapter *adapter = q_vector->adapter;
801 	struct e1000_hw *hw = &adapter->hw;
802 	int rx_queue = IGB_N0_QUEUE;
803 	int tx_queue = IGB_N0_QUEUE;
804 	u32 msixbm = 0;
805 
806 	if (q_vector->rx.ring)
807 		rx_queue = q_vector->rx.ring->reg_idx;
808 	if (q_vector->tx.ring)
809 		tx_queue = q_vector->tx.ring->reg_idx;
810 
811 	switch (hw->mac.type) {
812 	case e1000_82575:
813 		/* The 82575 assigns vectors using a bitmask, which matches the
814 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
815 		 * or more queues to a vector, we write the appropriate bits
816 		 * into the MSIXBM register for that vector.
817 		 */
818 		if (rx_queue > IGB_N0_QUEUE)
819 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
820 		if (tx_queue > IGB_N0_QUEUE)
821 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
822 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
823 			msixbm |= E1000_EIMS_OTHER;
824 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
825 		q_vector->eims_value = msixbm;
826 		break;
827 	case e1000_82576:
828 		/* 82576 uses a table that essentially consists of 2 columns
829 		 * with 8 rows.  The ordering is column-major so we use the
830 		 * lower 3 bits as the row index, and the 4th bit as the
831 		 * column offset.
832 		 */
833 		if (rx_queue > IGB_N0_QUEUE)
834 			igb_write_ivar(hw, msix_vector,
835 				       rx_queue & 0x7,
836 				       (rx_queue & 0x8) << 1);
837 		if (tx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       tx_queue & 0x7,
840 				       ((tx_queue & 0x8) << 1) + 8);
841 		q_vector->eims_value = BIT(msix_vector);
842 		break;
843 	case e1000_82580:
844 	case e1000_i350:
845 	case e1000_i354:
846 	case e1000_i210:
847 	case e1000_i211:
848 		/* On 82580 and newer adapters the scheme is similar to 82576
849 		 * however instead of ordering column-major we have things
850 		 * ordered row-major.  So we traverse the table by using
851 		 * bit 0 as the column offset, and the remaining bits as the
852 		 * row index.
853 		 */
854 		if (rx_queue > IGB_N0_QUEUE)
855 			igb_write_ivar(hw, msix_vector,
856 				       rx_queue >> 1,
857 				       (rx_queue & 0x1) << 4);
858 		if (tx_queue > IGB_N0_QUEUE)
859 			igb_write_ivar(hw, msix_vector,
860 				       tx_queue >> 1,
861 				       ((tx_queue & 0x1) << 4) + 8);
862 		q_vector->eims_value = BIT(msix_vector);
863 		break;
864 	default:
865 		BUG();
866 		break;
867 	}
868 
869 	/* add q_vector eims value to global eims_enable_mask */
870 	adapter->eims_enable_mask |= q_vector->eims_value;
871 
872 	/* configure q_vector to set itr on first interrupt */
873 	q_vector->set_itr = 1;
874 }
875 
876 /**
877  *  igb_configure_msix - Configure MSI-X hardware
878  *  @adapter: board private structure to initialize
879  *
880  *  igb_configure_msix sets up the hardware to properly
881  *  generate MSI-X interrupts.
882  **/
883 static void igb_configure_msix(struct igb_adapter *adapter)
884 {
885 	u32 tmp;
886 	int i, vector = 0;
887 	struct e1000_hw *hw = &adapter->hw;
888 
889 	adapter->eims_enable_mask = 0;
890 
891 	/* set vector for other causes, i.e. link changes */
892 	switch (hw->mac.type) {
893 	case e1000_82575:
894 		tmp = rd32(E1000_CTRL_EXT);
895 		/* enable MSI-X PBA support*/
896 		tmp |= E1000_CTRL_EXT_PBA_CLR;
897 
898 		/* Auto-Mask interrupts upon ICR read. */
899 		tmp |= E1000_CTRL_EXT_EIAME;
900 		tmp |= E1000_CTRL_EXT_IRCA;
901 
902 		wr32(E1000_CTRL_EXT, tmp);
903 
904 		/* enable msix_other interrupt */
905 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
906 		adapter->eims_other = E1000_EIMS_OTHER;
907 
908 		break;
909 
910 	case e1000_82576:
911 	case e1000_82580:
912 	case e1000_i350:
913 	case e1000_i354:
914 	case e1000_i210:
915 	case e1000_i211:
916 		/* Turn on MSI-X capability first, or our settings
917 		 * won't stick.  And it will take days to debug.
918 		 */
919 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
920 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
921 		     E1000_GPIE_NSICR);
922 
923 		/* enable msix_other interrupt */
924 		adapter->eims_other = BIT(vector);
925 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
926 
927 		wr32(E1000_IVAR_MISC, tmp);
928 		break;
929 	default:
930 		/* do nothing, since nothing else supports MSI-X */
931 		break;
932 	} /* switch (hw->mac.type) */
933 
934 	adapter->eims_enable_mask |= adapter->eims_other;
935 
936 	for (i = 0; i < adapter->num_q_vectors; i++)
937 		igb_assign_vector(adapter->q_vector[i], vector++);
938 
939 	wrfl();
940 }
941 
942 /**
943  *  igb_request_msix - Initialize MSI-X interrupts
944  *  @adapter: board private structure to initialize
945  *
946  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
947  *  kernel.
948  **/
949 static int igb_request_msix(struct igb_adapter *adapter)
950 {
951 	struct net_device *netdev = adapter->netdev;
952 	int i, err = 0, vector = 0, free_vector = 0;
953 
954 	err = request_irq(adapter->msix_entries[vector].vector,
955 			  igb_msix_other, 0, netdev->name, adapter);
956 	if (err)
957 		goto err_out;
958 
959 	for (i = 0; i < adapter->num_q_vectors; i++) {
960 		struct igb_q_vector *q_vector = adapter->q_vector[i];
961 
962 		vector++;
963 
964 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
965 
966 		if (q_vector->rx.ring && q_vector->tx.ring)
967 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
968 				q_vector->rx.ring->queue_index);
969 		else if (q_vector->tx.ring)
970 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
971 				q_vector->tx.ring->queue_index);
972 		else if (q_vector->rx.ring)
973 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
974 				q_vector->rx.ring->queue_index);
975 		else
976 			sprintf(q_vector->name, "%s-unused", netdev->name);
977 
978 		err = request_irq(adapter->msix_entries[vector].vector,
979 				  igb_msix_ring, 0, q_vector->name,
980 				  q_vector);
981 		if (err)
982 			goto err_free;
983 	}
984 
985 	igb_configure_msix(adapter);
986 	return 0;
987 
988 err_free:
989 	/* free already assigned IRQs */
990 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
991 
992 	vector--;
993 	for (i = 0; i < vector; i++) {
994 		free_irq(adapter->msix_entries[free_vector++].vector,
995 			 adapter->q_vector[i]);
996 	}
997 err_out:
998 	return err;
999 }
1000 
1001 /**
1002  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1003  *  @adapter: board private structure to initialize
1004  *  @v_idx: Index of vector to be freed
1005  *
1006  *  This function frees the memory allocated to the q_vector.
1007  **/
1008 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1009 {
1010 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011 
1012 	adapter->q_vector[v_idx] = NULL;
1013 
1014 	/* igb_get_stats64() might access the rings on this vector,
1015 	 * we must wait a grace period before freeing it.
1016 	 */
1017 	if (q_vector)
1018 		kfree_rcu(q_vector, rcu);
1019 }
1020 
1021 /**
1022  *  igb_reset_q_vector - Reset config for interrupt vector
1023  *  @adapter: board private structure to initialize
1024  *  @v_idx: Index of vector to be reset
1025  *
1026  *  If NAPI is enabled it will delete any references to the
1027  *  NAPI struct. This is preparation for igb_free_q_vector.
1028  **/
1029 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1030 {
1031 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1032 
1033 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1034 	 * allocated. So, q_vector is NULL so we should stop here.
1035 	 */
1036 	if (!q_vector)
1037 		return;
1038 
1039 	if (q_vector->tx.ring)
1040 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1041 
1042 	if (q_vector->rx.ring)
1043 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1044 
1045 	netif_napi_del(&q_vector->napi);
1046 
1047 }
1048 
1049 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1050 {
1051 	int v_idx = adapter->num_q_vectors;
1052 
1053 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1054 		pci_disable_msix(adapter->pdev);
1055 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1056 		pci_disable_msi(adapter->pdev);
1057 
1058 	while (v_idx--)
1059 		igb_reset_q_vector(adapter, v_idx);
1060 }
1061 
1062 /**
1063  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1064  *  @adapter: board private structure to initialize
1065  *
1066  *  This function frees the memory allocated to the q_vectors.  In addition if
1067  *  NAPI is enabled it will delete any references to the NAPI struct prior
1068  *  to freeing the q_vector.
1069  **/
1070 static void igb_free_q_vectors(struct igb_adapter *adapter)
1071 {
1072 	int v_idx = adapter->num_q_vectors;
1073 
1074 	adapter->num_tx_queues = 0;
1075 	adapter->num_rx_queues = 0;
1076 	adapter->num_q_vectors = 0;
1077 
1078 	while (v_idx--) {
1079 		igb_reset_q_vector(adapter, v_idx);
1080 		igb_free_q_vector(adapter, v_idx);
1081 	}
1082 }
1083 
1084 /**
1085  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1086  *  @adapter: board private structure to initialize
1087  *
1088  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1089  *  MSI-X interrupts allocated.
1090  */
1091 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1092 {
1093 	igb_free_q_vectors(adapter);
1094 	igb_reset_interrupt_capability(adapter);
1095 }
1096 
1097 /**
1098  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1099  *  @adapter: board private structure to initialize
1100  *  @msix: boolean value of MSIX capability
1101  *
1102  *  Attempt to configure interrupts using the best available
1103  *  capabilities of the hardware and kernel.
1104  **/
1105 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1106 {
1107 	int err;
1108 	int numvecs, i;
1109 
1110 	if (!msix)
1111 		goto msi_only;
1112 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1113 
1114 	/* Number of supported queues. */
1115 	adapter->num_rx_queues = adapter->rss_queues;
1116 	if (adapter->vfs_allocated_count)
1117 		adapter->num_tx_queues = 1;
1118 	else
1119 		adapter->num_tx_queues = adapter->rss_queues;
1120 
1121 	/* start with one vector for every Rx queue */
1122 	numvecs = adapter->num_rx_queues;
1123 
1124 	/* if Tx handler is separate add 1 for every Tx queue */
1125 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1126 		numvecs += adapter->num_tx_queues;
1127 
1128 	/* store the number of vectors reserved for queues */
1129 	adapter->num_q_vectors = numvecs;
1130 
1131 	/* add 1 vector for link status interrupts */
1132 	numvecs++;
1133 	for (i = 0; i < numvecs; i++)
1134 		adapter->msix_entries[i].entry = i;
1135 
1136 	err = pci_enable_msix_range(adapter->pdev,
1137 				    adapter->msix_entries,
1138 				    numvecs,
1139 				    numvecs);
1140 	if (err > 0)
1141 		return;
1142 
1143 	igb_reset_interrupt_capability(adapter);
1144 
1145 	/* If we can't do MSI-X, try MSI */
1146 msi_only:
1147 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1148 #ifdef CONFIG_PCI_IOV
1149 	/* disable SR-IOV for non MSI-X configurations */
1150 	if (adapter->vf_data) {
1151 		struct e1000_hw *hw = &adapter->hw;
1152 		/* disable iov and allow time for transactions to clear */
1153 		pci_disable_sriov(adapter->pdev);
1154 		msleep(500);
1155 
1156 		kfree(adapter->vf_data);
1157 		adapter->vf_data = NULL;
1158 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1159 		wrfl();
1160 		msleep(100);
1161 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1162 	}
1163 #endif
1164 	adapter->vfs_allocated_count = 0;
1165 	adapter->rss_queues = 1;
1166 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1167 	adapter->num_rx_queues = 1;
1168 	adapter->num_tx_queues = 1;
1169 	adapter->num_q_vectors = 1;
1170 	if (!pci_enable_msi(adapter->pdev))
1171 		adapter->flags |= IGB_FLAG_HAS_MSI;
1172 }
1173 
1174 static void igb_add_ring(struct igb_ring *ring,
1175 			 struct igb_ring_container *head)
1176 {
1177 	head->ring = ring;
1178 	head->count++;
1179 }
1180 
1181 /**
1182  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1183  *  @adapter: board private structure to initialize
1184  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1185  *  @v_idx: index of vector in adapter struct
1186  *  @txr_count: total number of Tx rings to allocate
1187  *  @txr_idx: index of first Tx ring to allocate
1188  *  @rxr_count: total number of Rx rings to allocate
1189  *  @rxr_idx: index of first Rx ring to allocate
1190  *
1191  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1192  **/
1193 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1194 			      int v_count, int v_idx,
1195 			      int txr_count, int txr_idx,
1196 			      int rxr_count, int rxr_idx)
1197 {
1198 	struct igb_q_vector *q_vector;
1199 	struct igb_ring *ring;
1200 	int ring_count, size;
1201 
1202 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1203 	if (txr_count > 1 || rxr_count > 1)
1204 		return -ENOMEM;
1205 
1206 	ring_count = txr_count + rxr_count;
1207 	size = sizeof(struct igb_q_vector) +
1208 	       (sizeof(struct igb_ring) * ring_count);
1209 
1210 	/* allocate q_vector and rings */
1211 	q_vector = adapter->q_vector[v_idx];
1212 	if (!q_vector) {
1213 		q_vector = kzalloc(size, GFP_KERNEL);
1214 	} else if (size > ksize(q_vector)) {
1215 		kfree_rcu(q_vector, rcu);
1216 		q_vector = kzalloc(size, GFP_KERNEL);
1217 	} else {
1218 		memset(q_vector, 0, size);
1219 	}
1220 	if (!q_vector)
1221 		return -ENOMEM;
1222 
1223 	/* initialize NAPI */
1224 	netif_napi_add(adapter->netdev, &q_vector->napi,
1225 		       igb_poll, 64);
1226 
1227 	/* tie q_vector and adapter together */
1228 	adapter->q_vector[v_idx] = q_vector;
1229 	q_vector->adapter = adapter;
1230 
1231 	/* initialize work limits */
1232 	q_vector->tx.work_limit = adapter->tx_work_limit;
1233 
1234 	/* initialize ITR configuration */
1235 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1236 	q_vector->itr_val = IGB_START_ITR;
1237 
1238 	/* initialize pointer to rings */
1239 	ring = q_vector->ring;
1240 
1241 	/* intialize ITR */
1242 	if (rxr_count) {
1243 		/* rx or rx/tx vector */
1244 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1245 			q_vector->itr_val = adapter->rx_itr_setting;
1246 	} else {
1247 		/* tx only vector */
1248 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1249 			q_vector->itr_val = adapter->tx_itr_setting;
1250 	}
1251 
1252 	if (txr_count) {
1253 		/* assign generic ring traits */
1254 		ring->dev = &adapter->pdev->dev;
1255 		ring->netdev = adapter->netdev;
1256 
1257 		/* configure backlink on ring */
1258 		ring->q_vector = q_vector;
1259 
1260 		/* update q_vector Tx values */
1261 		igb_add_ring(ring, &q_vector->tx);
1262 
1263 		/* For 82575, context index must be unique per ring. */
1264 		if (adapter->hw.mac.type == e1000_82575)
1265 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1266 
1267 		/* apply Tx specific ring traits */
1268 		ring->count = adapter->tx_ring_count;
1269 		ring->queue_index = txr_idx;
1270 
1271 		u64_stats_init(&ring->tx_syncp);
1272 		u64_stats_init(&ring->tx_syncp2);
1273 
1274 		/* assign ring to adapter */
1275 		adapter->tx_ring[txr_idx] = ring;
1276 
1277 		/* push pointer to next ring */
1278 		ring++;
1279 	}
1280 
1281 	if (rxr_count) {
1282 		/* assign generic ring traits */
1283 		ring->dev = &adapter->pdev->dev;
1284 		ring->netdev = adapter->netdev;
1285 
1286 		/* configure backlink on ring */
1287 		ring->q_vector = q_vector;
1288 
1289 		/* update q_vector Rx values */
1290 		igb_add_ring(ring, &q_vector->rx);
1291 
1292 		/* set flag indicating ring supports SCTP checksum offload */
1293 		if (adapter->hw.mac.type >= e1000_82576)
1294 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295 
1296 		/* On i350, i354, i210, and i211, loopback VLAN packets
1297 		 * have the tag byte-swapped.
1298 		 */
1299 		if (adapter->hw.mac.type >= e1000_i350)
1300 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301 
1302 		/* apply Rx specific ring traits */
1303 		ring->count = adapter->rx_ring_count;
1304 		ring->queue_index = rxr_idx;
1305 
1306 		u64_stats_init(&ring->rx_syncp);
1307 
1308 		/* assign ring to adapter */
1309 		adapter->rx_ring[rxr_idx] = ring;
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 
1316 /**
1317  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318  *  @adapter: board private structure to initialize
1319  *
1320  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321  *  return -ENOMEM.
1322  **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 	int q_vectors = adapter->num_q_vectors;
1326 	int rxr_remaining = adapter->num_rx_queues;
1327 	int txr_remaining = adapter->num_tx_queues;
1328 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 	int err;
1330 
1331 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 		for (; rxr_remaining; v_idx++) {
1333 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 						 0, 0, 1, rxr_idx);
1335 
1336 			if (err)
1337 				goto err_out;
1338 
1339 			/* update counts and index */
1340 			rxr_remaining--;
1341 			rxr_idx++;
1342 		}
1343 	}
1344 
1345 	for (; v_idx < q_vectors; v_idx++) {
1346 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348 
1349 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 					 tqpv, txr_idx, rqpv, rxr_idx);
1351 
1352 		if (err)
1353 			goto err_out;
1354 
1355 		/* update counts and index */
1356 		rxr_remaining -= rqpv;
1357 		txr_remaining -= tqpv;
1358 		rxr_idx++;
1359 		txr_idx++;
1360 	}
1361 
1362 	return 0;
1363 
1364 err_out:
1365 	adapter->num_tx_queues = 0;
1366 	adapter->num_rx_queues = 0;
1367 	adapter->num_q_vectors = 0;
1368 
1369 	while (v_idx--)
1370 		igb_free_q_vector(adapter, v_idx);
1371 
1372 	return -ENOMEM;
1373 }
1374 
1375 /**
1376  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377  *  @adapter: board private structure to initialize
1378  *  @msix: boolean value of MSIX capability
1379  *
1380  *  This function initializes the interrupts and allocates all of the queues.
1381  **/
1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384 	struct pci_dev *pdev = adapter->pdev;
1385 	int err;
1386 
1387 	igb_set_interrupt_capability(adapter, msix);
1388 
1389 	err = igb_alloc_q_vectors(adapter);
1390 	if (err) {
1391 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 		goto err_alloc_q_vectors;
1393 	}
1394 
1395 	igb_cache_ring_register(adapter);
1396 
1397 	return 0;
1398 
1399 err_alloc_q_vectors:
1400 	igb_reset_interrupt_capability(adapter);
1401 	return err;
1402 }
1403 
1404 /**
1405  *  igb_request_irq - initialize interrupts
1406  *  @adapter: board private structure to initialize
1407  *
1408  *  Attempts to configure interrupts using the best available
1409  *  capabilities of the hardware and kernel.
1410  **/
1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413 	struct net_device *netdev = adapter->netdev;
1414 	struct pci_dev *pdev = adapter->pdev;
1415 	int err = 0;
1416 
1417 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418 		err = igb_request_msix(adapter);
1419 		if (!err)
1420 			goto request_done;
1421 		/* fall back to MSI */
1422 		igb_free_all_tx_resources(adapter);
1423 		igb_free_all_rx_resources(adapter);
1424 
1425 		igb_clear_interrupt_scheme(adapter);
1426 		err = igb_init_interrupt_scheme(adapter, false);
1427 		if (err)
1428 			goto request_done;
1429 
1430 		igb_setup_all_tx_resources(adapter);
1431 		igb_setup_all_rx_resources(adapter);
1432 		igb_configure(adapter);
1433 	}
1434 
1435 	igb_assign_vector(adapter->q_vector[0], 0);
1436 
1437 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1439 				  netdev->name, adapter);
1440 		if (!err)
1441 			goto request_done;
1442 
1443 		/* fall back to legacy interrupts */
1444 		igb_reset_interrupt_capability(adapter);
1445 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446 	}
1447 
1448 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449 			  netdev->name, adapter);
1450 
1451 	if (err)
1452 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453 			err);
1454 
1455 request_done:
1456 	return err;
1457 }
1458 
1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462 		int vector = 0, i;
1463 
1464 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1465 
1466 		for (i = 0; i < adapter->num_q_vectors; i++)
1467 			free_irq(adapter->msix_entries[vector++].vector,
1468 				 adapter->q_vector[i]);
1469 	} else {
1470 		free_irq(adapter->pdev->irq, adapter);
1471 	}
1472 }
1473 
1474 /**
1475  *  igb_irq_disable - Mask off interrupt generation on the NIC
1476  *  @adapter: board private structure
1477  **/
1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480 	struct e1000_hw *hw = &adapter->hw;
1481 
1482 	/* we need to be careful when disabling interrupts.  The VFs are also
1483 	 * mapped into these registers and so clearing the bits can cause
1484 	 * issues on the VF drivers so we only need to clear what we set
1485 	 */
1486 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487 		u32 regval = rd32(E1000_EIAM);
1488 
1489 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 		regval = rd32(E1000_EIAC);
1492 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493 	}
1494 
1495 	wr32(E1000_IAM, 0);
1496 	wr32(E1000_IMC, ~0);
1497 	wrfl();
1498 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 		int i;
1500 
1501 		for (i = 0; i < adapter->num_q_vectors; i++)
1502 			synchronize_irq(adapter->msix_entries[i].vector);
1503 	} else {
1504 		synchronize_irq(adapter->pdev->irq);
1505 	}
1506 }
1507 
1508 /**
1509  *  igb_irq_enable - Enable default interrupt generation settings
1510  *  @adapter: board private structure
1511  **/
1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514 	struct e1000_hw *hw = &adapter->hw;
1515 
1516 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518 		u32 regval = rd32(E1000_EIAC);
1519 
1520 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 		regval = rd32(E1000_EIAM);
1522 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1524 		if (adapter->vfs_allocated_count) {
1525 			wr32(E1000_MBVFIMR, 0xFF);
1526 			ims |= E1000_IMS_VMMB;
1527 		}
1528 		wr32(E1000_IMS, ims);
1529 	} else {
1530 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 				E1000_IMS_DRSTA);
1534 	}
1535 }
1536 
1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539 	struct e1000_hw *hw = &adapter->hw;
1540 	u16 pf_id = adapter->vfs_allocated_count;
1541 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 	u16 old_vid = adapter->mng_vlan_id;
1543 
1544 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 		/* add VID to filter table */
1546 		igb_vfta_set(hw, vid, pf_id, true, true);
1547 		adapter->mng_vlan_id = vid;
1548 	} else {
1549 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 	}
1551 
1552 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 	    (vid != old_vid) &&
1554 	    !test_bit(old_vid, adapter->active_vlans)) {
1555 		/* remove VID from filter table */
1556 		igb_vfta_set(hw, vid, pf_id, false, true);
1557 	}
1558 }
1559 
1560 /**
1561  *  igb_release_hw_control - release control of the h/w to f/w
1562  *  @adapter: address of board private structure
1563  *
1564  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565  *  For ASF and Pass Through versions of f/w this means that the
1566  *  driver is no longer loaded.
1567  **/
1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570 	struct e1000_hw *hw = &adapter->hw;
1571 	u32 ctrl_ext;
1572 
1573 	/* Let firmware take over control of h/w */
1574 	ctrl_ext = rd32(E1000_CTRL_EXT);
1575 	wr32(E1000_CTRL_EXT,
1576 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578 
1579 /**
1580  *  igb_get_hw_control - get control of the h/w from f/w
1581  *  @adapter: address of board private structure
1582  *
1583  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584  *  For ASF and Pass Through versions of f/w this means that
1585  *  the driver is loaded.
1586  **/
1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589 	struct e1000_hw *hw = &adapter->hw;
1590 	u32 ctrl_ext;
1591 
1592 	/* Let firmware know the driver has taken over */
1593 	ctrl_ext = rd32(E1000_CTRL_EXT);
1594 	wr32(E1000_CTRL_EXT,
1595 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597 
1598 /**
1599  *  igb_configure - configure the hardware for RX and TX
1600  *  @adapter: private board structure
1601  **/
1602 static void igb_configure(struct igb_adapter *adapter)
1603 {
1604 	struct net_device *netdev = adapter->netdev;
1605 	int i;
1606 
1607 	igb_get_hw_control(adapter);
1608 	igb_set_rx_mode(netdev);
1609 
1610 	igb_restore_vlan(adapter);
1611 
1612 	igb_setup_tctl(adapter);
1613 	igb_setup_mrqc(adapter);
1614 	igb_setup_rctl(adapter);
1615 
1616 	igb_nfc_filter_restore(adapter);
1617 	igb_configure_tx(adapter);
1618 	igb_configure_rx(adapter);
1619 
1620 	igb_rx_fifo_flush_82575(&adapter->hw);
1621 
1622 	/* call igb_desc_unused which always leaves
1623 	 * at least 1 descriptor unused to make sure
1624 	 * next_to_use != next_to_clean
1625 	 */
1626 	for (i = 0; i < adapter->num_rx_queues; i++) {
1627 		struct igb_ring *ring = adapter->rx_ring[i];
1628 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1629 	}
1630 }
1631 
1632 /**
1633  *  igb_power_up_link - Power up the phy/serdes link
1634  *  @adapter: address of board private structure
1635  **/
1636 void igb_power_up_link(struct igb_adapter *adapter)
1637 {
1638 	igb_reset_phy(&adapter->hw);
1639 
1640 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1641 		igb_power_up_phy_copper(&adapter->hw);
1642 	else
1643 		igb_power_up_serdes_link_82575(&adapter->hw);
1644 
1645 	igb_setup_link(&adapter->hw);
1646 }
1647 
1648 /**
1649  *  igb_power_down_link - Power down the phy/serdes link
1650  *  @adapter: address of board private structure
1651  */
1652 static void igb_power_down_link(struct igb_adapter *adapter)
1653 {
1654 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1655 		igb_power_down_phy_copper_82575(&adapter->hw);
1656 	else
1657 		igb_shutdown_serdes_link_82575(&adapter->hw);
1658 }
1659 
1660 /**
1661  * Detect and switch function for Media Auto Sense
1662  * @adapter: address of the board private structure
1663  **/
1664 static void igb_check_swap_media(struct igb_adapter *adapter)
1665 {
1666 	struct e1000_hw *hw = &adapter->hw;
1667 	u32 ctrl_ext, connsw;
1668 	bool swap_now = false;
1669 
1670 	ctrl_ext = rd32(E1000_CTRL_EXT);
1671 	connsw = rd32(E1000_CONNSW);
1672 
1673 	/* need to live swap if current media is copper and we have fiber/serdes
1674 	 * to go to.
1675 	 */
1676 
1677 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1678 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1679 		swap_now = true;
1680 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1681 		/* copper signal takes time to appear */
1682 		if (adapter->copper_tries < 4) {
1683 			adapter->copper_tries++;
1684 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1685 			wr32(E1000_CONNSW, connsw);
1686 			return;
1687 		} else {
1688 			adapter->copper_tries = 0;
1689 			if ((connsw & E1000_CONNSW_PHYSD) &&
1690 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1691 				swap_now = true;
1692 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1693 				wr32(E1000_CONNSW, connsw);
1694 			}
1695 		}
1696 	}
1697 
1698 	if (!swap_now)
1699 		return;
1700 
1701 	switch (hw->phy.media_type) {
1702 	case e1000_media_type_copper:
1703 		netdev_info(adapter->netdev,
1704 			"MAS: changing media to fiber/serdes\n");
1705 		ctrl_ext |=
1706 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1707 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1708 		adapter->copper_tries = 0;
1709 		break;
1710 	case e1000_media_type_internal_serdes:
1711 	case e1000_media_type_fiber:
1712 		netdev_info(adapter->netdev,
1713 			"MAS: changing media to copper\n");
1714 		ctrl_ext &=
1715 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1716 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1717 		break;
1718 	default:
1719 		/* shouldn't get here during regular operation */
1720 		netdev_err(adapter->netdev,
1721 			"AMS: Invalid media type found, returning\n");
1722 		break;
1723 	}
1724 	wr32(E1000_CTRL_EXT, ctrl_ext);
1725 }
1726 
1727 /**
1728  *  igb_up - Open the interface and prepare it to handle traffic
1729  *  @adapter: board private structure
1730  **/
1731 int igb_up(struct igb_adapter *adapter)
1732 {
1733 	struct e1000_hw *hw = &adapter->hw;
1734 	int i;
1735 
1736 	/* hardware has been reset, we need to reload some things */
1737 	igb_configure(adapter);
1738 
1739 	clear_bit(__IGB_DOWN, &adapter->state);
1740 
1741 	for (i = 0; i < adapter->num_q_vectors; i++)
1742 		napi_enable(&(adapter->q_vector[i]->napi));
1743 
1744 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1745 		igb_configure_msix(adapter);
1746 	else
1747 		igb_assign_vector(adapter->q_vector[0], 0);
1748 
1749 	/* Clear any pending interrupts. */
1750 	rd32(E1000_ICR);
1751 	igb_irq_enable(adapter);
1752 
1753 	/* notify VFs that reset has been completed */
1754 	if (adapter->vfs_allocated_count) {
1755 		u32 reg_data = rd32(E1000_CTRL_EXT);
1756 
1757 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1758 		wr32(E1000_CTRL_EXT, reg_data);
1759 	}
1760 
1761 	netif_tx_start_all_queues(adapter->netdev);
1762 
1763 	/* start the watchdog. */
1764 	hw->mac.get_link_status = 1;
1765 	schedule_work(&adapter->watchdog_task);
1766 
1767 	if ((adapter->flags & IGB_FLAG_EEE) &&
1768 	    (!hw->dev_spec._82575.eee_disable))
1769 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1770 
1771 	return 0;
1772 }
1773 
1774 void igb_down(struct igb_adapter *adapter)
1775 {
1776 	struct net_device *netdev = adapter->netdev;
1777 	struct e1000_hw *hw = &adapter->hw;
1778 	u32 tctl, rctl;
1779 	int i;
1780 
1781 	/* signal that we're down so the interrupt handler does not
1782 	 * reschedule our watchdog timer
1783 	 */
1784 	set_bit(__IGB_DOWN, &adapter->state);
1785 
1786 	/* disable receives in the hardware */
1787 	rctl = rd32(E1000_RCTL);
1788 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1789 	/* flush and sleep below */
1790 
1791 	netif_carrier_off(netdev);
1792 	netif_tx_stop_all_queues(netdev);
1793 
1794 	/* disable transmits in the hardware */
1795 	tctl = rd32(E1000_TCTL);
1796 	tctl &= ~E1000_TCTL_EN;
1797 	wr32(E1000_TCTL, tctl);
1798 	/* flush both disables and wait for them to finish */
1799 	wrfl();
1800 	usleep_range(10000, 11000);
1801 
1802 	igb_irq_disable(adapter);
1803 
1804 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1805 
1806 	for (i = 0; i < adapter->num_q_vectors; i++) {
1807 		if (adapter->q_vector[i]) {
1808 			napi_synchronize(&adapter->q_vector[i]->napi);
1809 			napi_disable(&adapter->q_vector[i]->napi);
1810 		}
1811 	}
1812 
1813 	del_timer_sync(&adapter->watchdog_timer);
1814 	del_timer_sync(&adapter->phy_info_timer);
1815 
1816 	/* record the stats before reset*/
1817 	spin_lock(&adapter->stats64_lock);
1818 	igb_update_stats(adapter, &adapter->stats64);
1819 	spin_unlock(&adapter->stats64_lock);
1820 
1821 	adapter->link_speed = 0;
1822 	adapter->link_duplex = 0;
1823 
1824 	if (!pci_channel_offline(adapter->pdev))
1825 		igb_reset(adapter);
1826 
1827 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
1828 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1829 
1830 	igb_clean_all_tx_rings(adapter);
1831 	igb_clean_all_rx_rings(adapter);
1832 #ifdef CONFIG_IGB_DCA
1833 
1834 	/* since we reset the hardware DCA settings were cleared */
1835 	igb_setup_dca(adapter);
1836 #endif
1837 }
1838 
1839 void igb_reinit_locked(struct igb_adapter *adapter)
1840 {
1841 	WARN_ON(in_interrupt());
1842 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1843 		usleep_range(1000, 2000);
1844 	igb_down(adapter);
1845 	igb_up(adapter);
1846 	clear_bit(__IGB_RESETTING, &adapter->state);
1847 }
1848 
1849 /** igb_enable_mas - Media Autosense re-enable after swap
1850  *
1851  * @adapter: adapter struct
1852  **/
1853 static void igb_enable_mas(struct igb_adapter *adapter)
1854 {
1855 	struct e1000_hw *hw = &adapter->hw;
1856 	u32 connsw = rd32(E1000_CONNSW);
1857 
1858 	/* configure for SerDes media detect */
1859 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1860 	    (!(connsw & E1000_CONNSW_SERDESD))) {
1861 		connsw |= E1000_CONNSW_ENRGSRC;
1862 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1863 		wr32(E1000_CONNSW, connsw);
1864 		wrfl();
1865 	}
1866 }
1867 
1868 void igb_reset(struct igb_adapter *adapter)
1869 {
1870 	struct pci_dev *pdev = adapter->pdev;
1871 	struct e1000_hw *hw = &adapter->hw;
1872 	struct e1000_mac_info *mac = &hw->mac;
1873 	struct e1000_fc_info *fc = &hw->fc;
1874 	u32 pba, hwm;
1875 
1876 	/* Repartition Pba for greater than 9k mtu
1877 	 * To take effect CTRL.RST is required.
1878 	 */
1879 	switch (mac->type) {
1880 	case e1000_i350:
1881 	case e1000_i354:
1882 	case e1000_82580:
1883 		pba = rd32(E1000_RXPBS);
1884 		pba = igb_rxpbs_adjust_82580(pba);
1885 		break;
1886 	case e1000_82576:
1887 		pba = rd32(E1000_RXPBS);
1888 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1889 		break;
1890 	case e1000_82575:
1891 	case e1000_i210:
1892 	case e1000_i211:
1893 	default:
1894 		pba = E1000_PBA_34K;
1895 		break;
1896 	}
1897 
1898 	if (mac->type == e1000_82575) {
1899 		u32 min_rx_space, min_tx_space, needed_tx_space;
1900 
1901 		/* write Rx PBA so that hardware can report correct Tx PBA */
1902 		wr32(E1000_PBA, pba);
1903 
1904 		/* To maintain wire speed transmits, the Tx FIFO should be
1905 		 * large enough to accommodate two full transmit packets,
1906 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1907 		 * the Rx FIFO should be large enough to accommodate at least
1908 		 * one full receive packet and is similarly rounded up and
1909 		 * expressed in KB.
1910 		 */
1911 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1912 
1913 		/* The Tx FIFO also stores 16 bytes of information about the Tx
1914 		 * but don't include Ethernet FCS because hardware appends it.
1915 		 * We only need to round down to the nearest 512 byte block
1916 		 * count since the value we care about is 2 frames, not 1.
1917 		 */
1918 		min_tx_space = adapter->max_frame_size;
1919 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1920 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1921 
1922 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1923 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1924 
1925 		/* If current Tx allocation is less than the min Tx FIFO size,
1926 		 * and the min Tx FIFO size is less than the current Rx FIFO
1927 		 * allocation, take space away from current Rx allocation.
1928 		 */
1929 		if (needed_tx_space < pba) {
1930 			pba -= needed_tx_space;
1931 
1932 			/* if short on Rx space, Rx wins and must trump Tx
1933 			 * adjustment
1934 			 */
1935 			if (pba < min_rx_space)
1936 				pba = min_rx_space;
1937 		}
1938 
1939 		/* adjust PBA for jumbo frames */
1940 		wr32(E1000_PBA, pba);
1941 	}
1942 
1943 	/* flow control settings
1944 	 * The high water mark must be low enough to fit one full frame
1945 	 * after transmitting the pause frame.  As such we must have enough
1946 	 * space to allow for us to complete our current transmit and then
1947 	 * receive the frame that is in progress from the link partner.
1948 	 * Set it to:
1949 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1950 	 */
1951 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1952 
1953 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1954 	fc->low_water = fc->high_water - 16;
1955 	fc->pause_time = 0xFFFF;
1956 	fc->send_xon = 1;
1957 	fc->current_mode = fc->requested_mode;
1958 
1959 	/* disable receive for all VFs and wait one second */
1960 	if (adapter->vfs_allocated_count) {
1961 		int i;
1962 
1963 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965 
1966 		/* ping all the active vfs to let them know we are going down */
1967 		igb_ping_all_vfs(adapter);
1968 
1969 		/* disable transmits and receives */
1970 		wr32(E1000_VFRE, 0);
1971 		wr32(E1000_VFTE, 0);
1972 	}
1973 
1974 	/* Allow time for pending master requests to run */
1975 	hw->mac.ops.reset_hw(hw);
1976 	wr32(E1000_WUC, 0);
1977 
1978 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 		/* need to resetup here after media swap */
1980 		adapter->ei.get_invariants(hw);
1981 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 	}
1983 	if ((mac->type == e1000_82575) &&
1984 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1985 		igb_enable_mas(adapter);
1986 	}
1987 	if (hw->mac.ops.init_hw(hw))
1988 		dev_err(&pdev->dev, "Hardware Error\n");
1989 
1990 	/* Flow control settings reset on hardware reset, so guarantee flow
1991 	 * control is off when forcing speed.
1992 	 */
1993 	if (!hw->mac.autoneg)
1994 		igb_force_mac_fc(hw);
1995 
1996 	igb_init_dmac(adapter, pba);
1997 #ifdef CONFIG_IGB_HWMON
1998 	/* Re-initialize the thermal sensor on i350 devices. */
1999 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001 			/* If present, re-initialize the external thermal sensor
2002 			 * interface.
2003 			 */
2004 			if (adapter->ets)
2005 				mac->ops.init_thermal_sensor_thresh(hw);
2006 		}
2007 	}
2008 #endif
2009 	/* Re-establish EEE setting */
2010 	if (hw->phy.media_type == e1000_media_type_copper) {
2011 		switch (mac->type) {
2012 		case e1000_i350:
2013 		case e1000_i210:
2014 		case e1000_i211:
2015 			igb_set_eee_i350(hw, true, true);
2016 			break;
2017 		case e1000_i354:
2018 			igb_set_eee_i354(hw, true, true);
2019 			break;
2020 		default:
2021 			break;
2022 		}
2023 	}
2024 	if (!netif_running(adapter->netdev))
2025 		igb_power_down_link(adapter);
2026 
2027 	igb_update_mng_vlan(adapter);
2028 
2029 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031 
2032 	/* Re-enable PTP, where applicable. */
2033 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2034 		igb_ptp_reset(adapter);
2035 
2036 	igb_get_phy_info(hw);
2037 }
2038 
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 	netdev_features_t features)
2041 {
2042 	/* Since there is no support for separate Rx/Tx vlan accel
2043 	 * enable/disable make sure Tx flag is always in same state as Rx.
2044 	 */
2045 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2047 	else
2048 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049 
2050 	return features;
2051 }
2052 
2053 static int igb_set_features(struct net_device *netdev,
2054 	netdev_features_t features)
2055 {
2056 	netdev_features_t changed = netdev->features ^ features;
2057 	struct igb_adapter *adapter = netdev_priv(netdev);
2058 
2059 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060 		igb_vlan_mode(netdev, features);
2061 
2062 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2063 		return 0;
2064 
2065 	if (!(features & NETIF_F_NTUPLE)) {
2066 		struct hlist_node *node2;
2067 		struct igb_nfc_filter *rule;
2068 
2069 		spin_lock(&adapter->nfc_lock);
2070 		hlist_for_each_entry_safe(rule, node2,
2071 					  &adapter->nfc_filter_list, nfc_node) {
2072 			igb_erase_filter(adapter, rule);
2073 			hlist_del(&rule->nfc_node);
2074 			kfree(rule);
2075 		}
2076 		spin_unlock(&adapter->nfc_lock);
2077 		adapter->nfc_filter_count = 0;
2078 	}
2079 
2080 	netdev->features = features;
2081 
2082 	if (netif_running(netdev))
2083 		igb_reinit_locked(adapter);
2084 	else
2085 		igb_reset(adapter);
2086 
2087 	return 0;
2088 }
2089 
2090 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2091 			   struct net_device *dev,
2092 			   const unsigned char *addr, u16 vid,
2093 			   u16 flags)
2094 {
2095 	/* guarantee we can provide a unique filter for the unicast address */
2096 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2097 		struct igb_adapter *adapter = netdev_priv(dev);
2098 		struct e1000_hw *hw = &adapter->hw;
2099 		int vfn = adapter->vfs_allocated_count;
2100 		int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2101 
2102 		if (netdev_uc_count(dev) >= rar_entries)
2103 			return -ENOMEM;
2104 	}
2105 
2106 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2107 }
2108 
2109 #define IGB_MAX_MAC_HDR_LEN	127
2110 #define IGB_MAX_NETWORK_HDR_LEN	511
2111 
2112 static netdev_features_t
2113 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2114 		   netdev_features_t features)
2115 {
2116 	unsigned int network_hdr_len, mac_hdr_len;
2117 
2118 	/* Make certain the headers can be described by a context descriptor */
2119 	mac_hdr_len = skb_network_header(skb) - skb->data;
2120 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2121 		return features & ~(NETIF_F_HW_CSUM |
2122 				    NETIF_F_SCTP_CRC |
2123 				    NETIF_F_HW_VLAN_CTAG_TX |
2124 				    NETIF_F_TSO |
2125 				    NETIF_F_TSO6);
2126 
2127 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2128 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2129 		return features & ~(NETIF_F_HW_CSUM |
2130 				    NETIF_F_SCTP_CRC |
2131 				    NETIF_F_TSO |
2132 				    NETIF_F_TSO6);
2133 
2134 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2135 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2136 	 */
2137 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2138 		features &= ~NETIF_F_TSO;
2139 
2140 	return features;
2141 }
2142 
2143 static const struct net_device_ops igb_netdev_ops = {
2144 	.ndo_open		= igb_open,
2145 	.ndo_stop		= igb_close,
2146 	.ndo_start_xmit		= igb_xmit_frame,
2147 	.ndo_get_stats64	= igb_get_stats64,
2148 	.ndo_set_rx_mode	= igb_set_rx_mode,
2149 	.ndo_set_mac_address	= igb_set_mac,
2150 	.ndo_change_mtu		= igb_change_mtu,
2151 	.ndo_do_ioctl		= igb_ioctl,
2152 	.ndo_tx_timeout		= igb_tx_timeout,
2153 	.ndo_validate_addr	= eth_validate_addr,
2154 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2155 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2156 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2157 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2158 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2159 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2160 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2161 #ifdef CONFIG_NET_POLL_CONTROLLER
2162 	.ndo_poll_controller	= igb_netpoll,
2163 #endif
2164 	.ndo_fix_features	= igb_fix_features,
2165 	.ndo_set_features	= igb_set_features,
2166 	.ndo_fdb_add		= igb_ndo_fdb_add,
2167 	.ndo_features_check	= igb_features_check,
2168 };
2169 
2170 /**
2171  * igb_set_fw_version - Configure version string for ethtool
2172  * @adapter: adapter struct
2173  **/
2174 void igb_set_fw_version(struct igb_adapter *adapter)
2175 {
2176 	struct e1000_hw *hw = &adapter->hw;
2177 	struct e1000_fw_version fw;
2178 
2179 	igb_get_fw_version(hw, &fw);
2180 
2181 	switch (hw->mac.type) {
2182 	case e1000_i210:
2183 	case e1000_i211:
2184 		if (!(igb_get_flash_presence_i210(hw))) {
2185 			snprintf(adapter->fw_version,
2186 				 sizeof(adapter->fw_version),
2187 				 "%2d.%2d-%d",
2188 				 fw.invm_major, fw.invm_minor,
2189 				 fw.invm_img_type);
2190 			break;
2191 		}
2192 		/* fall through */
2193 	default:
2194 		/* if option is rom valid, display its version too */
2195 		if (fw.or_valid) {
2196 			snprintf(adapter->fw_version,
2197 				 sizeof(adapter->fw_version),
2198 				 "%d.%d, 0x%08x, %d.%d.%d",
2199 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2200 				 fw.or_major, fw.or_build, fw.or_patch);
2201 		/* no option rom */
2202 		} else if (fw.etrack_id != 0X0000) {
2203 			snprintf(adapter->fw_version,
2204 			    sizeof(adapter->fw_version),
2205 			    "%d.%d, 0x%08x",
2206 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2207 		} else {
2208 		snprintf(adapter->fw_version,
2209 		    sizeof(adapter->fw_version),
2210 		    "%d.%d.%d",
2211 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2212 		}
2213 		break;
2214 	}
2215 }
2216 
2217 /**
2218  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2219  *
2220  * @adapter: adapter struct
2221  **/
2222 static void igb_init_mas(struct igb_adapter *adapter)
2223 {
2224 	struct e1000_hw *hw = &adapter->hw;
2225 	u16 eeprom_data;
2226 
2227 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2228 	switch (hw->bus.func) {
2229 	case E1000_FUNC_0:
2230 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2231 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2232 			netdev_info(adapter->netdev,
2233 				"MAS: Enabling Media Autosense for port %d\n",
2234 				hw->bus.func);
2235 		}
2236 		break;
2237 	case E1000_FUNC_1:
2238 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2239 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240 			netdev_info(adapter->netdev,
2241 				"MAS: Enabling Media Autosense for port %d\n",
2242 				hw->bus.func);
2243 		}
2244 		break;
2245 	case E1000_FUNC_2:
2246 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2247 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248 			netdev_info(adapter->netdev,
2249 				"MAS: Enabling Media Autosense for port %d\n",
2250 				hw->bus.func);
2251 		}
2252 		break;
2253 	case E1000_FUNC_3:
2254 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2255 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256 			netdev_info(adapter->netdev,
2257 				"MAS: Enabling Media Autosense for port %d\n",
2258 				hw->bus.func);
2259 		}
2260 		break;
2261 	default:
2262 		/* Shouldn't get here */
2263 		netdev_err(adapter->netdev,
2264 			"MAS: Invalid port configuration, returning\n");
2265 		break;
2266 	}
2267 }
2268 
2269 /**
2270  *  igb_init_i2c - Init I2C interface
2271  *  @adapter: pointer to adapter structure
2272  **/
2273 static s32 igb_init_i2c(struct igb_adapter *adapter)
2274 {
2275 	s32 status = 0;
2276 
2277 	/* I2C interface supported on i350 devices */
2278 	if (adapter->hw.mac.type != e1000_i350)
2279 		return 0;
2280 
2281 	/* Initialize the i2c bus which is controlled by the registers.
2282 	 * This bus will use the i2c_algo_bit structue that implements
2283 	 * the protocol through toggling of the 4 bits in the register.
2284 	 */
2285 	adapter->i2c_adap.owner = THIS_MODULE;
2286 	adapter->i2c_algo = igb_i2c_algo;
2287 	adapter->i2c_algo.data = adapter;
2288 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2289 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2290 	strlcpy(adapter->i2c_adap.name, "igb BB",
2291 		sizeof(adapter->i2c_adap.name));
2292 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2293 	return status;
2294 }
2295 
2296 /**
2297  *  igb_probe - Device Initialization Routine
2298  *  @pdev: PCI device information struct
2299  *  @ent: entry in igb_pci_tbl
2300  *
2301  *  Returns 0 on success, negative on failure
2302  *
2303  *  igb_probe initializes an adapter identified by a pci_dev structure.
2304  *  The OS initialization, configuring of the adapter private structure,
2305  *  and a hardware reset occur.
2306  **/
2307 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2308 {
2309 	struct net_device *netdev;
2310 	struct igb_adapter *adapter;
2311 	struct e1000_hw *hw;
2312 	u16 eeprom_data = 0;
2313 	s32 ret_val;
2314 	static int global_quad_port_a; /* global quad port a indication */
2315 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2316 	int err, pci_using_dac;
2317 	u8 part_str[E1000_PBANUM_LENGTH];
2318 
2319 	/* Catch broken hardware that put the wrong VF device ID in
2320 	 * the PCIe SR-IOV capability.
2321 	 */
2322 	if (pdev->is_virtfn) {
2323 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2324 			pci_name(pdev), pdev->vendor, pdev->device);
2325 		return -EINVAL;
2326 	}
2327 
2328 	err = pci_enable_device_mem(pdev);
2329 	if (err)
2330 		return err;
2331 
2332 	pci_using_dac = 0;
2333 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2334 	if (!err) {
2335 		pci_using_dac = 1;
2336 	} else {
2337 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2338 		if (err) {
2339 			dev_err(&pdev->dev,
2340 				"No usable DMA configuration, aborting\n");
2341 			goto err_dma;
2342 		}
2343 	}
2344 
2345 	err = pci_request_mem_regions(pdev, igb_driver_name);
2346 	if (err)
2347 		goto err_pci_reg;
2348 
2349 	pci_enable_pcie_error_reporting(pdev);
2350 
2351 	pci_set_master(pdev);
2352 	pci_save_state(pdev);
2353 
2354 	err = -ENOMEM;
2355 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2356 				   IGB_MAX_TX_QUEUES);
2357 	if (!netdev)
2358 		goto err_alloc_etherdev;
2359 
2360 	SET_NETDEV_DEV(netdev, &pdev->dev);
2361 
2362 	pci_set_drvdata(pdev, netdev);
2363 	adapter = netdev_priv(netdev);
2364 	adapter->netdev = netdev;
2365 	adapter->pdev = pdev;
2366 	hw = &adapter->hw;
2367 	hw->back = adapter;
2368 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2369 
2370 	err = -EIO;
2371 	adapter->io_addr = pci_iomap(pdev, 0, 0);
2372 	if (!adapter->io_addr)
2373 		goto err_ioremap;
2374 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2375 	hw->hw_addr = adapter->io_addr;
2376 
2377 	netdev->netdev_ops = &igb_netdev_ops;
2378 	igb_set_ethtool_ops(netdev);
2379 	netdev->watchdog_timeo = 5 * HZ;
2380 
2381 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2382 
2383 	netdev->mem_start = pci_resource_start(pdev, 0);
2384 	netdev->mem_end = pci_resource_end(pdev, 0);
2385 
2386 	/* PCI config space info */
2387 	hw->vendor_id = pdev->vendor;
2388 	hw->device_id = pdev->device;
2389 	hw->revision_id = pdev->revision;
2390 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2391 	hw->subsystem_device_id = pdev->subsystem_device;
2392 
2393 	/* Copy the default MAC, PHY and NVM function pointers */
2394 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2395 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2396 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2397 	/* Initialize skew-specific constants */
2398 	err = ei->get_invariants(hw);
2399 	if (err)
2400 		goto err_sw_init;
2401 
2402 	/* setup the private structure */
2403 	err = igb_sw_init(adapter);
2404 	if (err)
2405 		goto err_sw_init;
2406 
2407 	igb_get_bus_info_pcie(hw);
2408 
2409 	hw->phy.autoneg_wait_to_complete = false;
2410 
2411 	/* Copper options */
2412 	if (hw->phy.media_type == e1000_media_type_copper) {
2413 		hw->phy.mdix = AUTO_ALL_MODES;
2414 		hw->phy.disable_polarity_correction = false;
2415 		hw->phy.ms_type = e1000_ms_hw_default;
2416 	}
2417 
2418 	if (igb_check_reset_block(hw))
2419 		dev_info(&pdev->dev,
2420 			"PHY reset is blocked due to SOL/IDER session.\n");
2421 
2422 	/* features is initialized to 0 in allocation, it might have bits
2423 	 * set by igb_sw_init so we should use an or instead of an
2424 	 * assignment.
2425 	 */
2426 	netdev->features |= NETIF_F_SG |
2427 			    NETIF_F_TSO |
2428 			    NETIF_F_TSO6 |
2429 			    NETIF_F_RXHASH |
2430 			    NETIF_F_RXCSUM |
2431 			    NETIF_F_HW_CSUM;
2432 
2433 	if (hw->mac.type >= e1000_82576)
2434 		netdev->features |= NETIF_F_SCTP_CRC;
2435 
2436 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2437 				  NETIF_F_GSO_GRE_CSUM | \
2438 				  NETIF_F_GSO_IPXIP4 | \
2439 				  NETIF_F_GSO_IPXIP6 | \
2440 				  NETIF_F_GSO_UDP_TUNNEL | \
2441 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
2442 
2443 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2444 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2445 
2446 	/* copy netdev features into list of user selectable features */
2447 	netdev->hw_features |= netdev->features |
2448 			       NETIF_F_HW_VLAN_CTAG_RX |
2449 			       NETIF_F_HW_VLAN_CTAG_TX |
2450 			       NETIF_F_RXALL;
2451 
2452 	if (hw->mac.type >= e1000_i350)
2453 		netdev->hw_features |= NETIF_F_NTUPLE;
2454 
2455 	if (pci_using_dac)
2456 		netdev->features |= NETIF_F_HIGHDMA;
2457 
2458 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2459 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2460 	netdev->hw_enc_features |= netdev->vlan_features;
2461 
2462 	/* set this bit last since it cannot be part of vlan_features */
2463 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2464 			    NETIF_F_HW_VLAN_CTAG_RX |
2465 			    NETIF_F_HW_VLAN_CTAG_TX;
2466 
2467 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2468 
2469 	netdev->priv_flags |= IFF_UNICAST_FLT;
2470 
2471 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2472 
2473 	/* before reading the NVM, reset the controller to put the device in a
2474 	 * known good starting state
2475 	 */
2476 	hw->mac.ops.reset_hw(hw);
2477 
2478 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2479 	 * that doesn't contain a checksum
2480 	 */
2481 	switch (hw->mac.type) {
2482 	case e1000_i210:
2483 	case e1000_i211:
2484 		if (igb_get_flash_presence_i210(hw)) {
2485 			if (hw->nvm.ops.validate(hw) < 0) {
2486 				dev_err(&pdev->dev,
2487 					"The NVM Checksum Is Not Valid\n");
2488 				err = -EIO;
2489 				goto err_eeprom;
2490 			}
2491 		}
2492 		break;
2493 	default:
2494 		if (hw->nvm.ops.validate(hw) < 0) {
2495 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2496 			err = -EIO;
2497 			goto err_eeprom;
2498 		}
2499 		break;
2500 	}
2501 
2502 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2503 		/* copy the MAC address out of the NVM */
2504 		if (hw->mac.ops.read_mac_addr(hw))
2505 			dev_err(&pdev->dev, "NVM Read Error\n");
2506 	}
2507 
2508 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2509 
2510 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2511 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2512 		err = -EIO;
2513 		goto err_eeprom;
2514 	}
2515 
2516 	/* get firmware version for ethtool -i */
2517 	igb_set_fw_version(adapter);
2518 
2519 	/* configure RXPBSIZE and TXPBSIZE */
2520 	if (hw->mac.type == e1000_i210) {
2521 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2522 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2523 	}
2524 
2525 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2526 		    (unsigned long) adapter);
2527 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2528 		    (unsigned long) adapter);
2529 
2530 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2531 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2532 
2533 	/* Initialize link properties that are user-changeable */
2534 	adapter->fc_autoneg = true;
2535 	hw->mac.autoneg = true;
2536 	hw->phy.autoneg_advertised = 0x2f;
2537 
2538 	hw->fc.requested_mode = e1000_fc_default;
2539 	hw->fc.current_mode = e1000_fc_default;
2540 
2541 	igb_validate_mdi_setting(hw);
2542 
2543 	/* By default, support wake on port A */
2544 	if (hw->bus.func == 0)
2545 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2546 
2547 	/* Check the NVM for wake support on non-port A ports */
2548 	if (hw->mac.type >= e1000_82580)
2549 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2550 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2551 				 &eeprom_data);
2552 	else if (hw->bus.func == 1)
2553 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2554 
2555 	if (eeprom_data & IGB_EEPROM_APME)
2556 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2557 
2558 	/* now that we have the eeprom settings, apply the special cases where
2559 	 * the eeprom may be wrong or the board simply won't support wake on
2560 	 * lan on a particular port
2561 	 */
2562 	switch (pdev->device) {
2563 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2564 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2565 		break;
2566 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2567 	case E1000_DEV_ID_82576_FIBER:
2568 	case E1000_DEV_ID_82576_SERDES:
2569 		/* Wake events only supported on port A for dual fiber
2570 		 * regardless of eeprom setting
2571 		 */
2572 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2573 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2574 		break;
2575 	case E1000_DEV_ID_82576_QUAD_COPPER:
2576 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2577 		/* if quad port adapter, disable WoL on all but port A */
2578 		if (global_quad_port_a != 0)
2579 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2580 		else
2581 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2582 		/* Reset for multiple quad port adapters */
2583 		if (++global_quad_port_a == 4)
2584 			global_quad_port_a = 0;
2585 		break;
2586 	default:
2587 		/* If the device can't wake, don't set software support */
2588 		if (!device_can_wakeup(&adapter->pdev->dev))
2589 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2590 	}
2591 
2592 	/* initialize the wol settings based on the eeprom settings */
2593 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2594 		adapter->wol |= E1000_WUFC_MAG;
2595 
2596 	/* Some vendors want WoL disabled by default, but still supported */
2597 	if ((hw->mac.type == e1000_i350) &&
2598 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2599 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2600 		adapter->wol = 0;
2601 	}
2602 
2603 	/* Some vendors want the ability to Use the EEPROM setting as
2604 	 * enable/disable only, and not for capability
2605 	 */
2606 	if (((hw->mac.type == e1000_i350) ||
2607 	     (hw->mac.type == e1000_i354)) &&
2608 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2609 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2610 		adapter->wol = 0;
2611 	}
2612 	if (hw->mac.type == e1000_i350) {
2613 		if (((pdev->subsystem_device == 0x5001) ||
2614 		     (pdev->subsystem_device == 0x5002)) &&
2615 				(hw->bus.func == 0)) {
2616 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2617 			adapter->wol = 0;
2618 		}
2619 		if (pdev->subsystem_device == 0x1F52)
2620 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2621 	}
2622 
2623 	device_set_wakeup_enable(&adapter->pdev->dev,
2624 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2625 
2626 	/* reset the hardware with the new settings */
2627 	igb_reset(adapter);
2628 
2629 	/* Init the I2C interface */
2630 	err = igb_init_i2c(adapter);
2631 	if (err) {
2632 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2633 		goto err_eeprom;
2634 	}
2635 
2636 	/* let the f/w know that the h/w is now under the control of the
2637 	 * driver.
2638 	 */
2639 	igb_get_hw_control(adapter);
2640 
2641 	strcpy(netdev->name, "eth%d");
2642 	err = register_netdev(netdev);
2643 	if (err)
2644 		goto err_register;
2645 
2646 	/* carrier off reporting is important to ethtool even BEFORE open */
2647 	netif_carrier_off(netdev);
2648 
2649 #ifdef CONFIG_IGB_DCA
2650 	if (dca_add_requester(&pdev->dev) == 0) {
2651 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2652 		dev_info(&pdev->dev, "DCA enabled\n");
2653 		igb_setup_dca(adapter);
2654 	}
2655 
2656 #endif
2657 #ifdef CONFIG_IGB_HWMON
2658 	/* Initialize the thermal sensor on i350 devices. */
2659 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2660 		u16 ets_word;
2661 
2662 		/* Read the NVM to determine if this i350 device supports an
2663 		 * external thermal sensor.
2664 		 */
2665 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2666 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2667 			adapter->ets = true;
2668 		else
2669 			adapter->ets = false;
2670 		if (igb_sysfs_init(adapter))
2671 			dev_err(&pdev->dev,
2672 				"failed to allocate sysfs resources\n");
2673 	} else {
2674 		adapter->ets = false;
2675 	}
2676 #endif
2677 	/* Check if Media Autosense is enabled */
2678 	adapter->ei = *ei;
2679 	if (hw->dev_spec._82575.mas_capable)
2680 		igb_init_mas(adapter);
2681 
2682 	/* do hw tstamp init after resetting */
2683 	igb_ptp_init(adapter);
2684 
2685 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2686 	/* print bus type/speed/width info, not applicable to i354 */
2687 	if (hw->mac.type != e1000_i354) {
2688 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2689 			 netdev->name,
2690 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2691 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2692 			   "unknown"),
2693 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2694 			  "Width x4" :
2695 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2696 			  "Width x2" :
2697 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2698 			  "Width x1" : "unknown"), netdev->dev_addr);
2699 	}
2700 
2701 	if ((hw->mac.type >= e1000_i210 ||
2702 	     igb_get_flash_presence_i210(hw))) {
2703 		ret_val = igb_read_part_string(hw, part_str,
2704 					       E1000_PBANUM_LENGTH);
2705 	} else {
2706 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2707 	}
2708 
2709 	if (ret_val)
2710 		strcpy(part_str, "Unknown");
2711 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2712 	dev_info(&pdev->dev,
2713 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2714 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2715 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2716 		adapter->num_rx_queues, adapter->num_tx_queues);
2717 	if (hw->phy.media_type == e1000_media_type_copper) {
2718 		switch (hw->mac.type) {
2719 		case e1000_i350:
2720 		case e1000_i210:
2721 		case e1000_i211:
2722 			/* Enable EEE for internal copper PHY devices */
2723 			err = igb_set_eee_i350(hw, true, true);
2724 			if ((!err) &&
2725 			    (!hw->dev_spec._82575.eee_disable)) {
2726 				adapter->eee_advert =
2727 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2728 				adapter->flags |= IGB_FLAG_EEE;
2729 			}
2730 			break;
2731 		case e1000_i354:
2732 			if ((rd32(E1000_CTRL_EXT) &
2733 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2734 				err = igb_set_eee_i354(hw, true, true);
2735 				if ((!err) &&
2736 					(!hw->dev_spec._82575.eee_disable)) {
2737 					adapter->eee_advert =
2738 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2739 					adapter->flags |= IGB_FLAG_EEE;
2740 				}
2741 			}
2742 			break;
2743 		default:
2744 			break;
2745 		}
2746 	}
2747 	pm_runtime_put_noidle(&pdev->dev);
2748 	return 0;
2749 
2750 err_register:
2751 	igb_release_hw_control(adapter);
2752 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2753 err_eeprom:
2754 	if (!igb_check_reset_block(hw))
2755 		igb_reset_phy(hw);
2756 
2757 	if (hw->flash_address)
2758 		iounmap(hw->flash_address);
2759 err_sw_init:
2760 	kfree(adapter->shadow_vfta);
2761 	igb_clear_interrupt_scheme(adapter);
2762 #ifdef CONFIG_PCI_IOV
2763 	igb_disable_sriov(pdev);
2764 #endif
2765 	pci_iounmap(pdev, adapter->io_addr);
2766 err_ioremap:
2767 	free_netdev(netdev);
2768 err_alloc_etherdev:
2769 	pci_release_mem_regions(pdev);
2770 err_pci_reg:
2771 err_dma:
2772 	pci_disable_device(pdev);
2773 	return err;
2774 }
2775 
2776 #ifdef CONFIG_PCI_IOV
2777 static int igb_disable_sriov(struct pci_dev *pdev)
2778 {
2779 	struct net_device *netdev = pci_get_drvdata(pdev);
2780 	struct igb_adapter *adapter = netdev_priv(netdev);
2781 	struct e1000_hw *hw = &adapter->hw;
2782 
2783 	/* reclaim resources allocated to VFs */
2784 	if (adapter->vf_data) {
2785 		/* disable iov and allow time for transactions to clear */
2786 		if (pci_vfs_assigned(pdev)) {
2787 			dev_warn(&pdev->dev,
2788 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2789 			return -EPERM;
2790 		} else {
2791 			pci_disable_sriov(pdev);
2792 			msleep(500);
2793 		}
2794 
2795 		kfree(adapter->vf_data);
2796 		adapter->vf_data = NULL;
2797 		adapter->vfs_allocated_count = 0;
2798 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2799 		wrfl();
2800 		msleep(100);
2801 		dev_info(&pdev->dev, "IOV Disabled\n");
2802 
2803 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2804 		adapter->flags |= IGB_FLAG_DMAC;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2811 {
2812 	struct net_device *netdev = pci_get_drvdata(pdev);
2813 	struct igb_adapter *adapter = netdev_priv(netdev);
2814 	int old_vfs = pci_num_vf(pdev);
2815 	int err = 0;
2816 	int i;
2817 
2818 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2819 		err = -EPERM;
2820 		goto out;
2821 	}
2822 	if (!num_vfs)
2823 		goto out;
2824 
2825 	if (old_vfs) {
2826 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2827 			 old_vfs, max_vfs);
2828 		adapter->vfs_allocated_count = old_vfs;
2829 	} else
2830 		adapter->vfs_allocated_count = num_vfs;
2831 
2832 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2833 				sizeof(struct vf_data_storage), GFP_KERNEL);
2834 
2835 	/* if allocation failed then we do not support SR-IOV */
2836 	if (!adapter->vf_data) {
2837 		adapter->vfs_allocated_count = 0;
2838 		dev_err(&pdev->dev,
2839 			"Unable to allocate memory for VF Data Storage\n");
2840 		err = -ENOMEM;
2841 		goto out;
2842 	}
2843 
2844 	/* only call pci_enable_sriov() if no VFs are allocated already */
2845 	if (!old_vfs) {
2846 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2847 		if (err)
2848 			goto err_out;
2849 	}
2850 	dev_info(&pdev->dev, "%d VFs allocated\n",
2851 		 adapter->vfs_allocated_count);
2852 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2853 		igb_vf_configure(adapter, i);
2854 
2855 	/* DMA Coalescing is not supported in IOV mode. */
2856 	adapter->flags &= ~IGB_FLAG_DMAC;
2857 	goto out;
2858 
2859 err_out:
2860 	kfree(adapter->vf_data);
2861 	adapter->vf_data = NULL;
2862 	adapter->vfs_allocated_count = 0;
2863 out:
2864 	return err;
2865 }
2866 
2867 #endif
2868 /**
2869  *  igb_remove_i2c - Cleanup  I2C interface
2870  *  @adapter: pointer to adapter structure
2871  **/
2872 static void igb_remove_i2c(struct igb_adapter *adapter)
2873 {
2874 	/* free the adapter bus structure */
2875 	i2c_del_adapter(&adapter->i2c_adap);
2876 }
2877 
2878 /**
2879  *  igb_remove - Device Removal Routine
2880  *  @pdev: PCI device information struct
2881  *
2882  *  igb_remove is called by the PCI subsystem to alert the driver
2883  *  that it should release a PCI device.  The could be caused by a
2884  *  Hot-Plug event, or because the driver is going to be removed from
2885  *  memory.
2886  **/
2887 static void igb_remove(struct pci_dev *pdev)
2888 {
2889 	struct net_device *netdev = pci_get_drvdata(pdev);
2890 	struct igb_adapter *adapter = netdev_priv(netdev);
2891 	struct e1000_hw *hw = &adapter->hw;
2892 
2893 	pm_runtime_get_noresume(&pdev->dev);
2894 #ifdef CONFIG_IGB_HWMON
2895 	igb_sysfs_exit(adapter);
2896 #endif
2897 	igb_remove_i2c(adapter);
2898 	igb_ptp_stop(adapter);
2899 	/* The watchdog timer may be rescheduled, so explicitly
2900 	 * disable watchdog from being rescheduled.
2901 	 */
2902 	set_bit(__IGB_DOWN, &adapter->state);
2903 	del_timer_sync(&adapter->watchdog_timer);
2904 	del_timer_sync(&adapter->phy_info_timer);
2905 
2906 	cancel_work_sync(&adapter->reset_task);
2907 	cancel_work_sync(&adapter->watchdog_task);
2908 
2909 #ifdef CONFIG_IGB_DCA
2910 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2911 		dev_info(&pdev->dev, "DCA disabled\n");
2912 		dca_remove_requester(&pdev->dev);
2913 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2914 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2915 	}
2916 #endif
2917 
2918 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2919 	 * would have already happened in close and is redundant.
2920 	 */
2921 	igb_release_hw_control(adapter);
2922 
2923 #ifdef CONFIG_PCI_IOV
2924 	igb_disable_sriov(pdev);
2925 #endif
2926 
2927 	unregister_netdev(netdev);
2928 
2929 	igb_clear_interrupt_scheme(adapter);
2930 
2931 	pci_iounmap(pdev, adapter->io_addr);
2932 	if (hw->flash_address)
2933 		iounmap(hw->flash_address);
2934 	pci_release_mem_regions(pdev);
2935 
2936 	kfree(adapter->shadow_vfta);
2937 	free_netdev(netdev);
2938 
2939 	pci_disable_pcie_error_reporting(pdev);
2940 
2941 	pci_disable_device(pdev);
2942 }
2943 
2944 /**
2945  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2946  *  @adapter: board private structure to initialize
2947  *
2948  *  This function initializes the vf specific data storage and then attempts to
2949  *  allocate the VFs.  The reason for ordering it this way is because it is much
2950  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2951  *  the memory for the VFs.
2952  **/
2953 static void igb_probe_vfs(struct igb_adapter *adapter)
2954 {
2955 #ifdef CONFIG_PCI_IOV
2956 	struct pci_dev *pdev = adapter->pdev;
2957 	struct e1000_hw *hw = &adapter->hw;
2958 
2959 	/* Virtualization features not supported on i210 family. */
2960 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2961 		return;
2962 
2963 	/* Of the below we really only want the effect of getting
2964 	 * IGB_FLAG_HAS_MSIX set (if available), without which
2965 	 * igb_enable_sriov() has no effect.
2966 	 */
2967 	igb_set_interrupt_capability(adapter, true);
2968 	igb_reset_interrupt_capability(adapter);
2969 
2970 	pci_sriov_set_totalvfs(pdev, 7);
2971 	igb_enable_sriov(pdev, max_vfs);
2972 
2973 #endif /* CONFIG_PCI_IOV */
2974 }
2975 
2976 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2977 {
2978 	struct e1000_hw *hw = &adapter->hw;
2979 	u32 max_rss_queues;
2980 
2981 	/* Determine the maximum number of RSS queues supported. */
2982 	switch (hw->mac.type) {
2983 	case e1000_i211:
2984 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2985 		break;
2986 	case e1000_82575:
2987 	case e1000_i210:
2988 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2989 		break;
2990 	case e1000_i350:
2991 		/* I350 cannot do RSS and SR-IOV at the same time */
2992 		if (!!adapter->vfs_allocated_count) {
2993 			max_rss_queues = 1;
2994 			break;
2995 		}
2996 		/* fall through */
2997 	case e1000_82576:
2998 		if (!!adapter->vfs_allocated_count) {
2999 			max_rss_queues = 2;
3000 			break;
3001 		}
3002 		/* fall through */
3003 	case e1000_82580:
3004 	case e1000_i354:
3005 	default:
3006 		max_rss_queues = IGB_MAX_RX_QUEUES;
3007 		break;
3008 	}
3009 
3010 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3011 
3012 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3013 }
3014 
3015 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3016 			      const u32 max_rss_queues)
3017 {
3018 	struct e1000_hw *hw = &adapter->hw;
3019 
3020 	/* Determine if we need to pair queues. */
3021 	switch (hw->mac.type) {
3022 	case e1000_82575:
3023 	case e1000_i211:
3024 		/* Device supports enough interrupts without queue pairing. */
3025 		break;
3026 	case e1000_82576:
3027 	case e1000_82580:
3028 	case e1000_i350:
3029 	case e1000_i354:
3030 	case e1000_i210:
3031 	default:
3032 		/* If rss_queues > half of max_rss_queues, pair the queues in
3033 		 * order to conserve interrupts due to limited supply.
3034 		 */
3035 		if (adapter->rss_queues > (max_rss_queues / 2))
3036 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3037 		else
3038 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3039 		break;
3040 	}
3041 }
3042 
3043 /**
3044  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3045  *  @adapter: board private structure to initialize
3046  *
3047  *  igb_sw_init initializes the Adapter private data structure.
3048  *  Fields are initialized based on PCI device information and
3049  *  OS network device settings (MTU size).
3050  **/
3051 static int igb_sw_init(struct igb_adapter *adapter)
3052 {
3053 	struct e1000_hw *hw = &adapter->hw;
3054 	struct net_device *netdev = adapter->netdev;
3055 	struct pci_dev *pdev = adapter->pdev;
3056 
3057 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3058 
3059 	/* set default ring sizes */
3060 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3061 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3062 
3063 	/* set default ITR values */
3064 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3065 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3066 
3067 	/* set default work limits */
3068 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3069 
3070 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3071 				  VLAN_HLEN;
3072 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3073 
3074 	spin_lock_init(&adapter->nfc_lock);
3075 	spin_lock_init(&adapter->stats64_lock);
3076 #ifdef CONFIG_PCI_IOV
3077 	switch (hw->mac.type) {
3078 	case e1000_82576:
3079 	case e1000_i350:
3080 		if (max_vfs > 7) {
3081 			dev_warn(&pdev->dev,
3082 				 "Maximum of 7 VFs per PF, using max\n");
3083 			max_vfs = adapter->vfs_allocated_count = 7;
3084 		} else
3085 			adapter->vfs_allocated_count = max_vfs;
3086 		if (adapter->vfs_allocated_count)
3087 			dev_warn(&pdev->dev,
3088 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3089 		break;
3090 	default:
3091 		break;
3092 	}
3093 #endif /* CONFIG_PCI_IOV */
3094 
3095 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3096 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3097 
3098 	igb_probe_vfs(adapter);
3099 
3100 	igb_init_queue_configuration(adapter);
3101 
3102 	/* Setup and initialize a copy of the hw vlan table array */
3103 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3104 				       GFP_ATOMIC);
3105 
3106 	/* This call may decrease the number of queues */
3107 	if (igb_init_interrupt_scheme(adapter, true)) {
3108 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3109 		return -ENOMEM;
3110 	}
3111 
3112 	/* Explicitly disable IRQ since the NIC can be in any state. */
3113 	igb_irq_disable(adapter);
3114 
3115 	if (hw->mac.type >= e1000_i350)
3116 		adapter->flags &= ~IGB_FLAG_DMAC;
3117 
3118 	set_bit(__IGB_DOWN, &adapter->state);
3119 	return 0;
3120 }
3121 
3122 /**
3123  *  igb_open - Called when a network interface is made active
3124  *  @netdev: network interface device structure
3125  *
3126  *  Returns 0 on success, negative value on failure
3127  *
3128  *  The open entry point is called when a network interface is made
3129  *  active by the system (IFF_UP).  At this point all resources needed
3130  *  for transmit and receive operations are allocated, the interrupt
3131  *  handler is registered with the OS, the watchdog timer is started,
3132  *  and the stack is notified that the interface is ready.
3133  **/
3134 static int __igb_open(struct net_device *netdev, bool resuming)
3135 {
3136 	struct igb_adapter *adapter = netdev_priv(netdev);
3137 	struct e1000_hw *hw = &adapter->hw;
3138 	struct pci_dev *pdev = adapter->pdev;
3139 	int err;
3140 	int i;
3141 
3142 	/* disallow open during test */
3143 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3144 		WARN_ON(resuming);
3145 		return -EBUSY;
3146 	}
3147 
3148 	if (!resuming)
3149 		pm_runtime_get_sync(&pdev->dev);
3150 
3151 	netif_carrier_off(netdev);
3152 
3153 	/* allocate transmit descriptors */
3154 	err = igb_setup_all_tx_resources(adapter);
3155 	if (err)
3156 		goto err_setup_tx;
3157 
3158 	/* allocate receive descriptors */
3159 	err = igb_setup_all_rx_resources(adapter);
3160 	if (err)
3161 		goto err_setup_rx;
3162 
3163 	igb_power_up_link(adapter);
3164 
3165 	/* before we allocate an interrupt, we must be ready to handle it.
3166 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3167 	 * as soon as we call pci_request_irq, so we have to setup our
3168 	 * clean_rx handler before we do so.
3169 	 */
3170 	igb_configure(adapter);
3171 
3172 	err = igb_request_irq(adapter);
3173 	if (err)
3174 		goto err_req_irq;
3175 
3176 	/* Notify the stack of the actual queue counts. */
3177 	err = netif_set_real_num_tx_queues(adapter->netdev,
3178 					   adapter->num_tx_queues);
3179 	if (err)
3180 		goto err_set_queues;
3181 
3182 	err = netif_set_real_num_rx_queues(adapter->netdev,
3183 					   adapter->num_rx_queues);
3184 	if (err)
3185 		goto err_set_queues;
3186 
3187 	/* From here on the code is the same as igb_up() */
3188 	clear_bit(__IGB_DOWN, &adapter->state);
3189 
3190 	for (i = 0; i < adapter->num_q_vectors; i++)
3191 		napi_enable(&(adapter->q_vector[i]->napi));
3192 
3193 	/* Clear any pending interrupts. */
3194 	rd32(E1000_ICR);
3195 
3196 	igb_irq_enable(adapter);
3197 
3198 	/* notify VFs that reset has been completed */
3199 	if (adapter->vfs_allocated_count) {
3200 		u32 reg_data = rd32(E1000_CTRL_EXT);
3201 
3202 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3203 		wr32(E1000_CTRL_EXT, reg_data);
3204 	}
3205 
3206 	netif_tx_start_all_queues(netdev);
3207 
3208 	if (!resuming)
3209 		pm_runtime_put(&pdev->dev);
3210 
3211 	/* start the watchdog. */
3212 	hw->mac.get_link_status = 1;
3213 	schedule_work(&adapter->watchdog_task);
3214 
3215 	return 0;
3216 
3217 err_set_queues:
3218 	igb_free_irq(adapter);
3219 err_req_irq:
3220 	igb_release_hw_control(adapter);
3221 	igb_power_down_link(adapter);
3222 	igb_free_all_rx_resources(adapter);
3223 err_setup_rx:
3224 	igb_free_all_tx_resources(adapter);
3225 err_setup_tx:
3226 	igb_reset(adapter);
3227 	if (!resuming)
3228 		pm_runtime_put(&pdev->dev);
3229 
3230 	return err;
3231 }
3232 
3233 int igb_open(struct net_device *netdev)
3234 {
3235 	return __igb_open(netdev, false);
3236 }
3237 
3238 /**
3239  *  igb_close - Disables a network interface
3240  *  @netdev: network interface device structure
3241  *
3242  *  Returns 0, this is not allowed to fail
3243  *
3244  *  The close entry point is called when an interface is de-activated
3245  *  by the OS.  The hardware is still under the driver's control, but
3246  *  needs to be disabled.  A global MAC reset is issued to stop the
3247  *  hardware, and all transmit and receive resources are freed.
3248  **/
3249 static int __igb_close(struct net_device *netdev, bool suspending)
3250 {
3251 	struct igb_adapter *adapter = netdev_priv(netdev);
3252 	struct pci_dev *pdev = adapter->pdev;
3253 
3254 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3255 
3256 	if (!suspending)
3257 		pm_runtime_get_sync(&pdev->dev);
3258 
3259 	igb_down(adapter);
3260 	igb_free_irq(adapter);
3261 
3262 	igb_nfc_filter_exit(adapter);
3263 
3264 	igb_free_all_tx_resources(adapter);
3265 	igb_free_all_rx_resources(adapter);
3266 
3267 	if (!suspending)
3268 		pm_runtime_put_sync(&pdev->dev);
3269 	return 0;
3270 }
3271 
3272 int igb_close(struct net_device *netdev)
3273 {
3274 	return __igb_close(netdev, false);
3275 }
3276 
3277 /**
3278  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3279  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3280  *
3281  *  Return 0 on success, negative on failure
3282  **/
3283 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3284 {
3285 	struct device *dev = tx_ring->dev;
3286 	int size;
3287 
3288 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3289 
3290 	tx_ring->tx_buffer_info = vzalloc(size);
3291 	if (!tx_ring->tx_buffer_info)
3292 		goto err;
3293 
3294 	/* round up to nearest 4K */
3295 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3296 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3297 
3298 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3299 					   &tx_ring->dma, GFP_KERNEL);
3300 	if (!tx_ring->desc)
3301 		goto err;
3302 
3303 	tx_ring->next_to_use = 0;
3304 	tx_ring->next_to_clean = 0;
3305 
3306 	return 0;
3307 
3308 err:
3309 	vfree(tx_ring->tx_buffer_info);
3310 	tx_ring->tx_buffer_info = NULL;
3311 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3312 	return -ENOMEM;
3313 }
3314 
3315 /**
3316  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3317  *				 (Descriptors) for all queues
3318  *  @adapter: board private structure
3319  *
3320  *  Return 0 on success, negative on failure
3321  **/
3322 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3323 {
3324 	struct pci_dev *pdev = adapter->pdev;
3325 	int i, err = 0;
3326 
3327 	for (i = 0; i < adapter->num_tx_queues; i++) {
3328 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3329 		if (err) {
3330 			dev_err(&pdev->dev,
3331 				"Allocation for Tx Queue %u failed\n", i);
3332 			for (i--; i >= 0; i--)
3333 				igb_free_tx_resources(adapter->tx_ring[i]);
3334 			break;
3335 		}
3336 	}
3337 
3338 	return err;
3339 }
3340 
3341 /**
3342  *  igb_setup_tctl - configure the transmit control registers
3343  *  @adapter: Board private structure
3344  **/
3345 void igb_setup_tctl(struct igb_adapter *adapter)
3346 {
3347 	struct e1000_hw *hw = &adapter->hw;
3348 	u32 tctl;
3349 
3350 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3351 	wr32(E1000_TXDCTL(0), 0);
3352 
3353 	/* Program the Transmit Control Register */
3354 	tctl = rd32(E1000_TCTL);
3355 	tctl &= ~E1000_TCTL_CT;
3356 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3357 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3358 
3359 	igb_config_collision_dist(hw);
3360 
3361 	/* Enable transmits */
3362 	tctl |= E1000_TCTL_EN;
3363 
3364 	wr32(E1000_TCTL, tctl);
3365 }
3366 
3367 /**
3368  *  igb_configure_tx_ring - Configure transmit ring after Reset
3369  *  @adapter: board private structure
3370  *  @ring: tx ring to configure
3371  *
3372  *  Configure a transmit ring after a reset.
3373  **/
3374 void igb_configure_tx_ring(struct igb_adapter *adapter,
3375 			   struct igb_ring *ring)
3376 {
3377 	struct e1000_hw *hw = &adapter->hw;
3378 	u32 txdctl = 0;
3379 	u64 tdba = ring->dma;
3380 	int reg_idx = ring->reg_idx;
3381 
3382 	/* disable the queue */
3383 	wr32(E1000_TXDCTL(reg_idx), 0);
3384 	wrfl();
3385 	mdelay(10);
3386 
3387 	wr32(E1000_TDLEN(reg_idx),
3388 	     ring->count * sizeof(union e1000_adv_tx_desc));
3389 	wr32(E1000_TDBAL(reg_idx),
3390 	     tdba & 0x00000000ffffffffULL);
3391 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3392 
3393 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3394 	wr32(E1000_TDH(reg_idx), 0);
3395 	writel(0, ring->tail);
3396 
3397 	txdctl |= IGB_TX_PTHRESH;
3398 	txdctl |= IGB_TX_HTHRESH << 8;
3399 	txdctl |= IGB_TX_WTHRESH << 16;
3400 
3401 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3402 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3403 }
3404 
3405 /**
3406  *  igb_configure_tx - Configure transmit Unit after Reset
3407  *  @adapter: board private structure
3408  *
3409  *  Configure the Tx unit of the MAC after a reset.
3410  **/
3411 static void igb_configure_tx(struct igb_adapter *adapter)
3412 {
3413 	int i;
3414 
3415 	for (i = 0; i < adapter->num_tx_queues; i++)
3416 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3417 }
3418 
3419 /**
3420  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3421  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3422  *
3423  *  Returns 0 on success, negative on failure
3424  **/
3425 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3426 {
3427 	struct device *dev = rx_ring->dev;
3428 	int size;
3429 
3430 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3431 
3432 	rx_ring->rx_buffer_info = vzalloc(size);
3433 	if (!rx_ring->rx_buffer_info)
3434 		goto err;
3435 
3436 	/* Round up to nearest 4K */
3437 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3438 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3439 
3440 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3441 					   &rx_ring->dma, GFP_KERNEL);
3442 	if (!rx_ring->desc)
3443 		goto err;
3444 
3445 	rx_ring->next_to_alloc = 0;
3446 	rx_ring->next_to_clean = 0;
3447 	rx_ring->next_to_use = 0;
3448 
3449 	return 0;
3450 
3451 err:
3452 	vfree(rx_ring->rx_buffer_info);
3453 	rx_ring->rx_buffer_info = NULL;
3454 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3455 	return -ENOMEM;
3456 }
3457 
3458 /**
3459  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3460  *				 (Descriptors) for all queues
3461  *  @adapter: board private structure
3462  *
3463  *  Return 0 on success, negative on failure
3464  **/
3465 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3466 {
3467 	struct pci_dev *pdev = adapter->pdev;
3468 	int i, err = 0;
3469 
3470 	for (i = 0; i < adapter->num_rx_queues; i++) {
3471 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3472 		if (err) {
3473 			dev_err(&pdev->dev,
3474 				"Allocation for Rx Queue %u failed\n", i);
3475 			for (i--; i >= 0; i--)
3476 				igb_free_rx_resources(adapter->rx_ring[i]);
3477 			break;
3478 		}
3479 	}
3480 
3481 	return err;
3482 }
3483 
3484 /**
3485  *  igb_setup_mrqc - configure the multiple receive queue control registers
3486  *  @adapter: Board private structure
3487  **/
3488 static void igb_setup_mrqc(struct igb_adapter *adapter)
3489 {
3490 	struct e1000_hw *hw = &adapter->hw;
3491 	u32 mrqc, rxcsum;
3492 	u32 j, num_rx_queues;
3493 	u32 rss_key[10];
3494 
3495 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3496 	for (j = 0; j < 10; j++)
3497 		wr32(E1000_RSSRK(j), rss_key[j]);
3498 
3499 	num_rx_queues = adapter->rss_queues;
3500 
3501 	switch (hw->mac.type) {
3502 	case e1000_82576:
3503 		/* 82576 supports 2 RSS queues for SR-IOV */
3504 		if (adapter->vfs_allocated_count)
3505 			num_rx_queues = 2;
3506 		break;
3507 	default:
3508 		break;
3509 	}
3510 
3511 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3512 		for (j = 0; j < IGB_RETA_SIZE; j++)
3513 			adapter->rss_indir_tbl[j] =
3514 			(j * num_rx_queues) / IGB_RETA_SIZE;
3515 		adapter->rss_indir_tbl_init = num_rx_queues;
3516 	}
3517 	igb_write_rss_indir_tbl(adapter);
3518 
3519 	/* Disable raw packet checksumming so that RSS hash is placed in
3520 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3521 	 * offloads as they are enabled by default
3522 	 */
3523 	rxcsum = rd32(E1000_RXCSUM);
3524 	rxcsum |= E1000_RXCSUM_PCSD;
3525 
3526 	if (adapter->hw.mac.type >= e1000_82576)
3527 		/* Enable Receive Checksum Offload for SCTP */
3528 		rxcsum |= E1000_RXCSUM_CRCOFL;
3529 
3530 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3531 	wr32(E1000_RXCSUM, rxcsum);
3532 
3533 	/* Generate RSS hash based on packet types, TCP/UDP
3534 	 * port numbers and/or IPv4/v6 src and dst addresses
3535 	 */
3536 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3537 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3538 	       E1000_MRQC_RSS_FIELD_IPV6 |
3539 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3540 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3541 
3542 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3543 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3544 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3545 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3546 
3547 	/* If VMDq is enabled then we set the appropriate mode for that, else
3548 	 * we default to RSS so that an RSS hash is calculated per packet even
3549 	 * if we are only using one queue
3550 	 */
3551 	if (adapter->vfs_allocated_count) {
3552 		if (hw->mac.type > e1000_82575) {
3553 			/* Set the default pool for the PF's first queue */
3554 			u32 vtctl = rd32(E1000_VT_CTL);
3555 
3556 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3557 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3558 			vtctl |= adapter->vfs_allocated_count <<
3559 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3560 			wr32(E1000_VT_CTL, vtctl);
3561 		}
3562 		if (adapter->rss_queues > 1)
3563 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3564 		else
3565 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3566 	} else {
3567 		if (hw->mac.type != e1000_i211)
3568 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3569 	}
3570 	igb_vmm_control(adapter);
3571 
3572 	wr32(E1000_MRQC, mrqc);
3573 }
3574 
3575 /**
3576  *  igb_setup_rctl - configure the receive control registers
3577  *  @adapter: Board private structure
3578  **/
3579 void igb_setup_rctl(struct igb_adapter *adapter)
3580 {
3581 	struct e1000_hw *hw = &adapter->hw;
3582 	u32 rctl;
3583 
3584 	rctl = rd32(E1000_RCTL);
3585 
3586 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3587 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3588 
3589 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3590 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3591 
3592 	/* enable stripping of CRC. It's unlikely this will break BMC
3593 	 * redirection as it did with e1000. Newer features require
3594 	 * that the HW strips the CRC.
3595 	 */
3596 	rctl |= E1000_RCTL_SECRC;
3597 
3598 	/* disable store bad packets and clear size bits. */
3599 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3600 
3601 	/* enable LPE to allow for reception of jumbo frames */
3602 	rctl |= E1000_RCTL_LPE;
3603 
3604 	/* disable queue 0 to prevent tail write w/o re-config */
3605 	wr32(E1000_RXDCTL(0), 0);
3606 
3607 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3608 	 * queue drop for all VF and PF queues to prevent head of line blocking
3609 	 * if an un-trusted VF does not provide descriptors to hardware.
3610 	 */
3611 	if (adapter->vfs_allocated_count) {
3612 		/* set all queue drop enable bits */
3613 		wr32(E1000_QDE, ALL_QUEUES);
3614 	}
3615 
3616 	/* This is useful for sniffing bad packets. */
3617 	if (adapter->netdev->features & NETIF_F_RXALL) {
3618 		/* UPE and MPE will be handled by normal PROMISC logic
3619 		 * in e1000e_set_rx_mode
3620 		 */
3621 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3622 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3623 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3624 
3625 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3626 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3627 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3628 		 * and that breaks VLANs.
3629 		 */
3630 	}
3631 
3632 	wr32(E1000_RCTL, rctl);
3633 }
3634 
3635 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3636 				   int vfn)
3637 {
3638 	struct e1000_hw *hw = &adapter->hw;
3639 	u32 vmolr;
3640 
3641 	if (size > MAX_JUMBO_FRAME_SIZE)
3642 		size = MAX_JUMBO_FRAME_SIZE;
3643 
3644 	vmolr = rd32(E1000_VMOLR(vfn));
3645 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3646 	vmolr |= size | E1000_VMOLR_LPE;
3647 	wr32(E1000_VMOLR(vfn), vmolr);
3648 
3649 	return 0;
3650 }
3651 
3652 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3653 					 int vfn, bool enable)
3654 {
3655 	struct e1000_hw *hw = &adapter->hw;
3656 	u32 val, reg;
3657 
3658 	if (hw->mac.type < e1000_82576)
3659 		return;
3660 
3661 	if (hw->mac.type == e1000_i350)
3662 		reg = E1000_DVMOLR(vfn);
3663 	else
3664 		reg = E1000_VMOLR(vfn);
3665 
3666 	val = rd32(reg);
3667 	if (enable)
3668 		val |= E1000_VMOLR_STRVLAN;
3669 	else
3670 		val &= ~(E1000_VMOLR_STRVLAN);
3671 	wr32(reg, val);
3672 }
3673 
3674 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3675 				 int vfn, bool aupe)
3676 {
3677 	struct e1000_hw *hw = &adapter->hw;
3678 	u32 vmolr;
3679 
3680 	/* This register exists only on 82576 and newer so if we are older then
3681 	 * we should exit and do nothing
3682 	 */
3683 	if (hw->mac.type < e1000_82576)
3684 		return;
3685 
3686 	vmolr = rd32(E1000_VMOLR(vfn));
3687 	if (aupe)
3688 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3689 	else
3690 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3691 
3692 	/* clear all bits that might not be set */
3693 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3694 
3695 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3696 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3697 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3698 	 * multicast packets
3699 	 */
3700 	if (vfn <= adapter->vfs_allocated_count)
3701 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3702 
3703 	wr32(E1000_VMOLR(vfn), vmolr);
3704 }
3705 
3706 /**
3707  *  igb_configure_rx_ring - Configure a receive ring after Reset
3708  *  @adapter: board private structure
3709  *  @ring: receive ring to be configured
3710  *
3711  *  Configure the Rx unit of the MAC after a reset.
3712  **/
3713 void igb_configure_rx_ring(struct igb_adapter *adapter,
3714 			   struct igb_ring *ring)
3715 {
3716 	struct e1000_hw *hw = &adapter->hw;
3717 	u64 rdba = ring->dma;
3718 	int reg_idx = ring->reg_idx;
3719 	u32 srrctl = 0, rxdctl = 0;
3720 
3721 	/* disable the queue */
3722 	wr32(E1000_RXDCTL(reg_idx), 0);
3723 
3724 	/* Set DMA base address registers */
3725 	wr32(E1000_RDBAL(reg_idx),
3726 	     rdba & 0x00000000ffffffffULL);
3727 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3728 	wr32(E1000_RDLEN(reg_idx),
3729 	     ring->count * sizeof(union e1000_adv_rx_desc));
3730 
3731 	/* initialize head and tail */
3732 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3733 	wr32(E1000_RDH(reg_idx), 0);
3734 	writel(0, ring->tail);
3735 
3736 	/* set descriptor configuration */
3737 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3738 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3739 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3740 	if (hw->mac.type >= e1000_82580)
3741 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3742 	/* Only set Drop Enable if we are supporting multiple queues */
3743 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3744 		srrctl |= E1000_SRRCTL_DROP_EN;
3745 
3746 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3747 
3748 	/* set filtering for VMDQ pools */
3749 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3750 
3751 	rxdctl |= IGB_RX_PTHRESH;
3752 	rxdctl |= IGB_RX_HTHRESH << 8;
3753 	rxdctl |= IGB_RX_WTHRESH << 16;
3754 
3755 	/* enable receive descriptor fetching */
3756 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3757 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3758 }
3759 
3760 /**
3761  *  igb_configure_rx - Configure receive Unit after Reset
3762  *  @adapter: board private structure
3763  *
3764  *  Configure the Rx unit of the MAC after a reset.
3765  **/
3766 static void igb_configure_rx(struct igb_adapter *adapter)
3767 {
3768 	int i;
3769 
3770 	/* set the correct pool for the PF default MAC address in entry 0 */
3771 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3772 			 adapter->vfs_allocated_count);
3773 
3774 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3775 	 * the Base and Length of the Rx Descriptor Ring
3776 	 */
3777 	for (i = 0; i < adapter->num_rx_queues; i++)
3778 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3779 }
3780 
3781 /**
3782  *  igb_free_tx_resources - Free Tx Resources per Queue
3783  *  @tx_ring: Tx descriptor ring for a specific queue
3784  *
3785  *  Free all transmit software resources
3786  **/
3787 void igb_free_tx_resources(struct igb_ring *tx_ring)
3788 {
3789 	igb_clean_tx_ring(tx_ring);
3790 
3791 	vfree(tx_ring->tx_buffer_info);
3792 	tx_ring->tx_buffer_info = NULL;
3793 
3794 	/* if not set, then don't free */
3795 	if (!tx_ring->desc)
3796 		return;
3797 
3798 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3799 			  tx_ring->desc, tx_ring->dma);
3800 
3801 	tx_ring->desc = NULL;
3802 }
3803 
3804 /**
3805  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3806  *  @adapter: board private structure
3807  *
3808  *  Free all transmit software resources
3809  **/
3810 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3811 {
3812 	int i;
3813 
3814 	for (i = 0; i < adapter->num_tx_queues; i++)
3815 		if (adapter->tx_ring[i])
3816 			igb_free_tx_resources(adapter->tx_ring[i]);
3817 }
3818 
3819 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3820 				    struct igb_tx_buffer *tx_buffer)
3821 {
3822 	if (tx_buffer->skb) {
3823 		dev_kfree_skb_any(tx_buffer->skb);
3824 		if (dma_unmap_len(tx_buffer, len))
3825 			dma_unmap_single(ring->dev,
3826 					 dma_unmap_addr(tx_buffer, dma),
3827 					 dma_unmap_len(tx_buffer, len),
3828 					 DMA_TO_DEVICE);
3829 	} else if (dma_unmap_len(tx_buffer, len)) {
3830 		dma_unmap_page(ring->dev,
3831 			       dma_unmap_addr(tx_buffer, dma),
3832 			       dma_unmap_len(tx_buffer, len),
3833 			       DMA_TO_DEVICE);
3834 	}
3835 	tx_buffer->next_to_watch = NULL;
3836 	tx_buffer->skb = NULL;
3837 	dma_unmap_len_set(tx_buffer, len, 0);
3838 	/* buffer_info must be completely set up in the transmit path */
3839 }
3840 
3841 /**
3842  *  igb_clean_tx_ring - Free Tx Buffers
3843  *  @tx_ring: ring to be cleaned
3844  **/
3845 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3846 {
3847 	struct igb_tx_buffer *buffer_info;
3848 	unsigned long size;
3849 	u16 i;
3850 
3851 	if (!tx_ring->tx_buffer_info)
3852 		return;
3853 	/* Free all the Tx ring sk_buffs */
3854 
3855 	for (i = 0; i < tx_ring->count; i++) {
3856 		buffer_info = &tx_ring->tx_buffer_info[i];
3857 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3858 	}
3859 
3860 	netdev_tx_reset_queue(txring_txq(tx_ring));
3861 
3862 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3863 	memset(tx_ring->tx_buffer_info, 0, size);
3864 
3865 	/* Zero out the descriptor ring */
3866 	memset(tx_ring->desc, 0, tx_ring->size);
3867 
3868 	tx_ring->next_to_use = 0;
3869 	tx_ring->next_to_clean = 0;
3870 }
3871 
3872 /**
3873  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3874  *  @adapter: board private structure
3875  **/
3876 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3877 {
3878 	int i;
3879 
3880 	for (i = 0; i < adapter->num_tx_queues; i++)
3881 		if (adapter->tx_ring[i])
3882 			igb_clean_tx_ring(adapter->tx_ring[i]);
3883 }
3884 
3885 /**
3886  *  igb_free_rx_resources - Free Rx Resources
3887  *  @rx_ring: ring to clean the resources from
3888  *
3889  *  Free all receive software resources
3890  **/
3891 void igb_free_rx_resources(struct igb_ring *rx_ring)
3892 {
3893 	igb_clean_rx_ring(rx_ring);
3894 
3895 	vfree(rx_ring->rx_buffer_info);
3896 	rx_ring->rx_buffer_info = NULL;
3897 
3898 	/* if not set, then don't free */
3899 	if (!rx_ring->desc)
3900 		return;
3901 
3902 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3903 			  rx_ring->desc, rx_ring->dma);
3904 
3905 	rx_ring->desc = NULL;
3906 }
3907 
3908 /**
3909  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3910  *  @adapter: board private structure
3911  *
3912  *  Free all receive software resources
3913  **/
3914 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3915 {
3916 	int i;
3917 
3918 	for (i = 0; i < adapter->num_rx_queues; i++)
3919 		if (adapter->rx_ring[i])
3920 			igb_free_rx_resources(adapter->rx_ring[i]);
3921 }
3922 
3923 /**
3924  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3925  *  @rx_ring: ring to free buffers from
3926  **/
3927 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3928 {
3929 	unsigned long size;
3930 	u16 i;
3931 
3932 	if (rx_ring->skb)
3933 		dev_kfree_skb(rx_ring->skb);
3934 	rx_ring->skb = NULL;
3935 
3936 	if (!rx_ring->rx_buffer_info)
3937 		return;
3938 
3939 	/* Free all the Rx ring sk_buffs */
3940 	for (i = 0; i < rx_ring->count; i++) {
3941 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3942 
3943 		if (!buffer_info->page)
3944 			continue;
3945 
3946 		dma_unmap_page(rx_ring->dev,
3947 			       buffer_info->dma,
3948 			       PAGE_SIZE,
3949 			       DMA_FROM_DEVICE);
3950 		__free_page(buffer_info->page);
3951 
3952 		buffer_info->page = NULL;
3953 	}
3954 
3955 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3956 	memset(rx_ring->rx_buffer_info, 0, size);
3957 
3958 	/* Zero out the descriptor ring */
3959 	memset(rx_ring->desc, 0, rx_ring->size);
3960 
3961 	rx_ring->next_to_alloc = 0;
3962 	rx_ring->next_to_clean = 0;
3963 	rx_ring->next_to_use = 0;
3964 }
3965 
3966 /**
3967  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3968  *  @adapter: board private structure
3969  **/
3970 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3971 {
3972 	int i;
3973 
3974 	for (i = 0; i < adapter->num_rx_queues; i++)
3975 		if (adapter->rx_ring[i])
3976 			igb_clean_rx_ring(adapter->rx_ring[i]);
3977 }
3978 
3979 /**
3980  *  igb_set_mac - Change the Ethernet Address of the NIC
3981  *  @netdev: network interface device structure
3982  *  @p: pointer to an address structure
3983  *
3984  *  Returns 0 on success, negative on failure
3985  **/
3986 static int igb_set_mac(struct net_device *netdev, void *p)
3987 {
3988 	struct igb_adapter *adapter = netdev_priv(netdev);
3989 	struct e1000_hw *hw = &adapter->hw;
3990 	struct sockaddr *addr = p;
3991 
3992 	if (!is_valid_ether_addr(addr->sa_data))
3993 		return -EADDRNOTAVAIL;
3994 
3995 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3996 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3997 
3998 	/* set the correct pool for the new PF MAC address in entry 0 */
3999 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
4000 			 adapter->vfs_allocated_count);
4001 
4002 	return 0;
4003 }
4004 
4005 /**
4006  *  igb_write_mc_addr_list - write multicast addresses to MTA
4007  *  @netdev: network interface device structure
4008  *
4009  *  Writes multicast address list to the MTA hash table.
4010  *  Returns: -ENOMEM on failure
4011  *           0 on no addresses written
4012  *           X on writing X addresses to MTA
4013  **/
4014 static int igb_write_mc_addr_list(struct net_device *netdev)
4015 {
4016 	struct igb_adapter *adapter = netdev_priv(netdev);
4017 	struct e1000_hw *hw = &adapter->hw;
4018 	struct netdev_hw_addr *ha;
4019 	u8  *mta_list;
4020 	int i;
4021 
4022 	if (netdev_mc_empty(netdev)) {
4023 		/* nothing to program, so clear mc list */
4024 		igb_update_mc_addr_list(hw, NULL, 0);
4025 		igb_restore_vf_multicasts(adapter);
4026 		return 0;
4027 	}
4028 
4029 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4030 	if (!mta_list)
4031 		return -ENOMEM;
4032 
4033 	/* The shared function expects a packed array of only addresses. */
4034 	i = 0;
4035 	netdev_for_each_mc_addr(ha, netdev)
4036 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4037 
4038 	igb_update_mc_addr_list(hw, mta_list, i);
4039 	kfree(mta_list);
4040 
4041 	return netdev_mc_count(netdev);
4042 }
4043 
4044 /**
4045  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4046  *  @netdev: network interface device structure
4047  *
4048  *  Writes unicast address list to the RAR table.
4049  *  Returns: -ENOMEM on failure/insufficient address space
4050  *           0 on no addresses written
4051  *           X on writing X addresses to the RAR table
4052  **/
4053 static int igb_write_uc_addr_list(struct net_device *netdev)
4054 {
4055 	struct igb_adapter *adapter = netdev_priv(netdev);
4056 	struct e1000_hw *hw = &adapter->hw;
4057 	unsigned int vfn = adapter->vfs_allocated_count;
4058 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4059 	int count = 0;
4060 
4061 	/* return ENOMEM indicating insufficient memory for addresses */
4062 	if (netdev_uc_count(netdev) > rar_entries)
4063 		return -ENOMEM;
4064 
4065 	if (!netdev_uc_empty(netdev) && rar_entries) {
4066 		struct netdev_hw_addr *ha;
4067 
4068 		netdev_for_each_uc_addr(ha, netdev) {
4069 			if (!rar_entries)
4070 				break;
4071 			igb_rar_set_qsel(adapter, ha->addr,
4072 					 rar_entries--,
4073 					 vfn);
4074 			count++;
4075 		}
4076 	}
4077 	/* write the addresses in reverse order to avoid write combining */
4078 	for (; rar_entries > 0 ; rar_entries--) {
4079 		wr32(E1000_RAH(rar_entries), 0);
4080 		wr32(E1000_RAL(rar_entries), 0);
4081 	}
4082 	wrfl();
4083 
4084 	return count;
4085 }
4086 
4087 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4088 {
4089 	struct e1000_hw *hw = &adapter->hw;
4090 	u32 i, pf_id;
4091 
4092 	switch (hw->mac.type) {
4093 	case e1000_i210:
4094 	case e1000_i211:
4095 	case e1000_i350:
4096 		/* VLAN filtering needed for VLAN prio filter */
4097 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4098 			break;
4099 		/* fall through */
4100 	case e1000_82576:
4101 	case e1000_82580:
4102 	case e1000_i354:
4103 		/* VLAN filtering needed for pool filtering */
4104 		if (adapter->vfs_allocated_count)
4105 			break;
4106 		/* fall through */
4107 	default:
4108 		return 1;
4109 	}
4110 
4111 	/* We are already in VLAN promisc, nothing to do */
4112 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4113 		return 0;
4114 
4115 	if (!adapter->vfs_allocated_count)
4116 		goto set_vfta;
4117 
4118 	/* Add PF to all active pools */
4119 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4120 
4121 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4122 		u32 vlvf = rd32(E1000_VLVF(i));
4123 
4124 		vlvf |= BIT(pf_id);
4125 		wr32(E1000_VLVF(i), vlvf);
4126 	}
4127 
4128 set_vfta:
4129 	/* Set all bits in the VLAN filter table array */
4130 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4131 		hw->mac.ops.write_vfta(hw, i, ~0U);
4132 
4133 	/* Set flag so we don't redo unnecessary work */
4134 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4135 
4136 	return 0;
4137 }
4138 
4139 #define VFTA_BLOCK_SIZE 8
4140 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4141 {
4142 	struct e1000_hw *hw = &adapter->hw;
4143 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4144 	u32 vid_start = vfta_offset * 32;
4145 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4146 	u32 i, vid, word, bits, pf_id;
4147 
4148 	/* guarantee that we don't scrub out management VLAN */
4149 	vid = adapter->mng_vlan_id;
4150 	if (vid >= vid_start && vid < vid_end)
4151 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4152 
4153 	if (!adapter->vfs_allocated_count)
4154 		goto set_vfta;
4155 
4156 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4157 
4158 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4159 		u32 vlvf = rd32(E1000_VLVF(i));
4160 
4161 		/* pull VLAN ID from VLVF */
4162 		vid = vlvf & VLAN_VID_MASK;
4163 
4164 		/* only concern ourselves with a certain range */
4165 		if (vid < vid_start || vid >= vid_end)
4166 			continue;
4167 
4168 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4169 			/* record VLAN ID in VFTA */
4170 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4171 
4172 			/* if PF is part of this then continue */
4173 			if (test_bit(vid, adapter->active_vlans))
4174 				continue;
4175 		}
4176 
4177 		/* remove PF from the pool */
4178 		bits = ~BIT(pf_id);
4179 		bits &= rd32(E1000_VLVF(i));
4180 		wr32(E1000_VLVF(i), bits);
4181 	}
4182 
4183 set_vfta:
4184 	/* extract values from active_vlans and write back to VFTA */
4185 	for (i = VFTA_BLOCK_SIZE; i--;) {
4186 		vid = (vfta_offset + i) * 32;
4187 		word = vid / BITS_PER_LONG;
4188 		bits = vid % BITS_PER_LONG;
4189 
4190 		vfta[i] |= adapter->active_vlans[word] >> bits;
4191 
4192 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4193 	}
4194 }
4195 
4196 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4197 {
4198 	u32 i;
4199 
4200 	/* We are not in VLAN promisc, nothing to do */
4201 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4202 		return;
4203 
4204 	/* Set flag so we don't redo unnecessary work */
4205 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4206 
4207 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4208 		igb_scrub_vfta(adapter, i);
4209 }
4210 
4211 /**
4212  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4213  *  @netdev: network interface device structure
4214  *
4215  *  The set_rx_mode entry point is called whenever the unicast or multicast
4216  *  address lists or the network interface flags are updated.  This routine is
4217  *  responsible for configuring the hardware for proper unicast, multicast,
4218  *  promiscuous mode, and all-multi behavior.
4219  **/
4220 static void igb_set_rx_mode(struct net_device *netdev)
4221 {
4222 	struct igb_adapter *adapter = netdev_priv(netdev);
4223 	struct e1000_hw *hw = &adapter->hw;
4224 	unsigned int vfn = adapter->vfs_allocated_count;
4225 	u32 rctl = 0, vmolr = 0;
4226 	int count;
4227 
4228 	/* Check for Promiscuous and All Multicast modes */
4229 	if (netdev->flags & IFF_PROMISC) {
4230 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4231 		vmolr |= E1000_VMOLR_MPME;
4232 
4233 		/* enable use of UTA filter to force packets to default pool */
4234 		if (hw->mac.type == e1000_82576)
4235 			vmolr |= E1000_VMOLR_ROPE;
4236 	} else {
4237 		if (netdev->flags & IFF_ALLMULTI) {
4238 			rctl |= E1000_RCTL_MPE;
4239 			vmolr |= E1000_VMOLR_MPME;
4240 		} else {
4241 			/* Write addresses to the MTA, if the attempt fails
4242 			 * then we should just turn on promiscuous mode so
4243 			 * that we can at least receive multicast traffic
4244 			 */
4245 			count = igb_write_mc_addr_list(netdev);
4246 			if (count < 0) {
4247 				rctl |= E1000_RCTL_MPE;
4248 				vmolr |= E1000_VMOLR_MPME;
4249 			} else if (count) {
4250 				vmolr |= E1000_VMOLR_ROMPE;
4251 			}
4252 		}
4253 	}
4254 
4255 	/* Write addresses to available RAR registers, if there is not
4256 	 * sufficient space to store all the addresses then enable
4257 	 * unicast promiscuous mode
4258 	 */
4259 	count = igb_write_uc_addr_list(netdev);
4260 	if (count < 0) {
4261 		rctl |= E1000_RCTL_UPE;
4262 		vmolr |= E1000_VMOLR_ROPE;
4263 	}
4264 
4265 	/* enable VLAN filtering by default */
4266 	rctl |= E1000_RCTL_VFE;
4267 
4268 	/* disable VLAN filtering for modes that require it */
4269 	if ((netdev->flags & IFF_PROMISC) ||
4270 	    (netdev->features & NETIF_F_RXALL)) {
4271 		/* if we fail to set all rules then just clear VFE */
4272 		if (igb_vlan_promisc_enable(adapter))
4273 			rctl &= ~E1000_RCTL_VFE;
4274 	} else {
4275 		igb_vlan_promisc_disable(adapter);
4276 	}
4277 
4278 	/* update state of unicast, multicast, and VLAN filtering modes */
4279 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4280 				     E1000_RCTL_VFE);
4281 	wr32(E1000_RCTL, rctl);
4282 
4283 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4284 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4285 	 * we will have issues with VLAN tag stripping not being done for frames
4286 	 * that are only arriving because we are the default pool
4287 	 */
4288 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4289 		return;
4290 
4291 	/* set UTA to appropriate mode */
4292 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4293 
4294 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4295 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4296 
4297 	/* enable Rx jumbo frames, no need for restriction */
4298 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4299 	vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4300 
4301 	wr32(E1000_VMOLR(vfn), vmolr);
4302 	wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4303 
4304 	igb_restore_vf_multicasts(adapter);
4305 }
4306 
4307 static void igb_check_wvbr(struct igb_adapter *adapter)
4308 {
4309 	struct e1000_hw *hw = &adapter->hw;
4310 	u32 wvbr = 0;
4311 
4312 	switch (hw->mac.type) {
4313 	case e1000_82576:
4314 	case e1000_i350:
4315 		wvbr = rd32(E1000_WVBR);
4316 		if (!wvbr)
4317 			return;
4318 		break;
4319 	default:
4320 		break;
4321 	}
4322 
4323 	adapter->wvbr |= wvbr;
4324 }
4325 
4326 #define IGB_STAGGERED_QUEUE_OFFSET 8
4327 
4328 static void igb_spoof_check(struct igb_adapter *adapter)
4329 {
4330 	int j;
4331 
4332 	if (!adapter->wvbr)
4333 		return;
4334 
4335 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4336 		if (adapter->wvbr & BIT(j) ||
4337 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4338 			dev_warn(&adapter->pdev->dev,
4339 				"Spoof event(s) detected on VF %d\n", j);
4340 			adapter->wvbr &=
4341 				~(BIT(j) |
4342 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4343 		}
4344 	}
4345 }
4346 
4347 /* Need to wait a few seconds after link up to get diagnostic information from
4348  * the phy
4349  */
4350 static void igb_update_phy_info(unsigned long data)
4351 {
4352 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4353 	igb_get_phy_info(&adapter->hw);
4354 }
4355 
4356 /**
4357  *  igb_has_link - check shared code for link and determine up/down
4358  *  @adapter: pointer to driver private info
4359  **/
4360 bool igb_has_link(struct igb_adapter *adapter)
4361 {
4362 	struct e1000_hw *hw = &adapter->hw;
4363 	bool link_active = false;
4364 
4365 	/* get_link_status is set on LSC (link status) interrupt or
4366 	 * rx sequence error interrupt.  get_link_status will stay
4367 	 * false until the e1000_check_for_link establishes link
4368 	 * for copper adapters ONLY
4369 	 */
4370 	switch (hw->phy.media_type) {
4371 	case e1000_media_type_copper:
4372 		if (!hw->mac.get_link_status)
4373 			return true;
4374 	case e1000_media_type_internal_serdes:
4375 		hw->mac.ops.check_for_link(hw);
4376 		link_active = !hw->mac.get_link_status;
4377 		break;
4378 	default:
4379 	case e1000_media_type_unknown:
4380 		break;
4381 	}
4382 
4383 	if (((hw->mac.type == e1000_i210) ||
4384 	     (hw->mac.type == e1000_i211)) &&
4385 	     (hw->phy.id == I210_I_PHY_ID)) {
4386 		if (!netif_carrier_ok(adapter->netdev)) {
4387 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4388 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4389 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4390 			adapter->link_check_timeout = jiffies;
4391 		}
4392 	}
4393 
4394 	return link_active;
4395 }
4396 
4397 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4398 {
4399 	bool ret = false;
4400 	u32 ctrl_ext, thstat;
4401 
4402 	/* check for thermal sensor event on i350 copper only */
4403 	if (hw->mac.type == e1000_i350) {
4404 		thstat = rd32(E1000_THSTAT);
4405 		ctrl_ext = rd32(E1000_CTRL_EXT);
4406 
4407 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4408 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4409 			ret = !!(thstat & event);
4410 	}
4411 
4412 	return ret;
4413 }
4414 
4415 /**
4416  *  igb_check_lvmmc - check for malformed packets received
4417  *  and indicated in LVMMC register
4418  *  @adapter: pointer to adapter
4419  **/
4420 static void igb_check_lvmmc(struct igb_adapter *adapter)
4421 {
4422 	struct e1000_hw *hw = &adapter->hw;
4423 	u32 lvmmc;
4424 
4425 	lvmmc = rd32(E1000_LVMMC);
4426 	if (lvmmc) {
4427 		if (unlikely(net_ratelimit())) {
4428 			netdev_warn(adapter->netdev,
4429 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4430 				    lvmmc);
4431 		}
4432 	}
4433 }
4434 
4435 /**
4436  *  igb_watchdog - Timer Call-back
4437  *  @data: pointer to adapter cast into an unsigned long
4438  **/
4439 static void igb_watchdog(unsigned long data)
4440 {
4441 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4442 	/* Do the rest outside of interrupt context */
4443 	schedule_work(&adapter->watchdog_task);
4444 }
4445 
4446 static void igb_watchdog_task(struct work_struct *work)
4447 {
4448 	struct igb_adapter *adapter = container_of(work,
4449 						   struct igb_adapter,
4450 						   watchdog_task);
4451 	struct e1000_hw *hw = &adapter->hw;
4452 	struct e1000_phy_info *phy = &hw->phy;
4453 	struct net_device *netdev = adapter->netdev;
4454 	u32 link;
4455 	int i;
4456 	u32 connsw;
4457 	u16 phy_data, retry_count = 20;
4458 
4459 	link = igb_has_link(adapter);
4460 
4461 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4462 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4463 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4464 		else
4465 			link = false;
4466 	}
4467 
4468 	/* Force link down if we have fiber to swap to */
4469 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4470 		if (hw->phy.media_type == e1000_media_type_copper) {
4471 			connsw = rd32(E1000_CONNSW);
4472 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4473 				link = 0;
4474 		}
4475 	}
4476 	if (link) {
4477 		/* Perform a reset if the media type changed. */
4478 		if (hw->dev_spec._82575.media_changed) {
4479 			hw->dev_spec._82575.media_changed = false;
4480 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4481 			igb_reset(adapter);
4482 		}
4483 		/* Cancel scheduled suspend requests. */
4484 		pm_runtime_resume(netdev->dev.parent);
4485 
4486 		if (!netif_carrier_ok(netdev)) {
4487 			u32 ctrl;
4488 
4489 			hw->mac.ops.get_speed_and_duplex(hw,
4490 							 &adapter->link_speed,
4491 							 &adapter->link_duplex);
4492 
4493 			ctrl = rd32(E1000_CTRL);
4494 			/* Links status message must follow this format */
4495 			netdev_info(netdev,
4496 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4497 			       netdev->name,
4498 			       adapter->link_speed,
4499 			       adapter->link_duplex == FULL_DUPLEX ?
4500 			       "Full" : "Half",
4501 			       (ctrl & E1000_CTRL_TFCE) &&
4502 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4503 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4504 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4505 
4506 			/* disable EEE if enabled */
4507 			if ((adapter->flags & IGB_FLAG_EEE) &&
4508 				(adapter->link_duplex == HALF_DUPLEX)) {
4509 				dev_info(&adapter->pdev->dev,
4510 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4511 				adapter->hw.dev_spec._82575.eee_disable = true;
4512 				adapter->flags &= ~IGB_FLAG_EEE;
4513 			}
4514 
4515 			/* check if SmartSpeed worked */
4516 			igb_check_downshift(hw);
4517 			if (phy->speed_downgraded)
4518 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4519 
4520 			/* check for thermal sensor event */
4521 			if (igb_thermal_sensor_event(hw,
4522 			    E1000_THSTAT_LINK_THROTTLE))
4523 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4524 
4525 			/* adjust timeout factor according to speed/duplex */
4526 			adapter->tx_timeout_factor = 1;
4527 			switch (adapter->link_speed) {
4528 			case SPEED_10:
4529 				adapter->tx_timeout_factor = 14;
4530 				break;
4531 			case SPEED_100:
4532 				/* maybe add some timeout factor ? */
4533 				break;
4534 			}
4535 
4536 			if (adapter->link_speed != SPEED_1000)
4537 				goto no_wait;
4538 
4539 			/* wait for Remote receiver status OK */
4540 retry_read_status:
4541 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4542 					      &phy_data)) {
4543 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4544 				    retry_count) {
4545 					msleep(100);
4546 					retry_count--;
4547 					goto retry_read_status;
4548 				} else if (!retry_count) {
4549 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4550 				}
4551 			} else {
4552 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4553 			}
4554 no_wait:
4555 			netif_carrier_on(netdev);
4556 
4557 			igb_ping_all_vfs(adapter);
4558 			igb_check_vf_rate_limit(adapter);
4559 
4560 			/* link state has changed, schedule phy info update */
4561 			if (!test_bit(__IGB_DOWN, &adapter->state))
4562 				mod_timer(&adapter->phy_info_timer,
4563 					  round_jiffies(jiffies + 2 * HZ));
4564 		}
4565 	} else {
4566 		if (netif_carrier_ok(netdev)) {
4567 			adapter->link_speed = 0;
4568 			adapter->link_duplex = 0;
4569 
4570 			/* check for thermal sensor event */
4571 			if (igb_thermal_sensor_event(hw,
4572 			    E1000_THSTAT_PWR_DOWN)) {
4573 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4574 			}
4575 
4576 			/* Links status message must follow this format */
4577 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4578 			       netdev->name);
4579 			netif_carrier_off(netdev);
4580 
4581 			igb_ping_all_vfs(adapter);
4582 
4583 			/* link state has changed, schedule phy info update */
4584 			if (!test_bit(__IGB_DOWN, &adapter->state))
4585 				mod_timer(&adapter->phy_info_timer,
4586 					  round_jiffies(jiffies + 2 * HZ));
4587 
4588 			/* link is down, time to check for alternate media */
4589 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4590 				igb_check_swap_media(adapter);
4591 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4592 					schedule_work(&adapter->reset_task);
4593 					/* return immediately */
4594 					return;
4595 				}
4596 			}
4597 			pm_schedule_suspend(netdev->dev.parent,
4598 					    MSEC_PER_SEC * 5);
4599 
4600 		/* also check for alternate media here */
4601 		} else if (!netif_carrier_ok(netdev) &&
4602 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4603 			igb_check_swap_media(adapter);
4604 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4605 				schedule_work(&adapter->reset_task);
4606 				/* return immediately */
4607 				return;
4608 			}
4609 		}
4610 	}
4611 
4612 	spin_lock(&adapter->stats64_lock);
4613 	igb_update_stats(adapter, &adapter->stats64);
4614 	spin_unlock(&adapter->stats64_lock);
4615 
4616 	for (i = 0; i < adapter->num_tx_queues; i++) {
4617 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4618 		if (!netif_carrier_ok(netdev)) {
4619 			/* We've lost link, so the controller stops DMA,
4620 			 * but we've got queued Tx work that's never going
4621 			 * to get done, so reset controller to flush Tx.
4622 			 * (Do the reset outside of interrupt context).
4623 			 */
4624 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4625 				adapter->tx_timeout_count++;
4626 				schedule_work(&adapter->reset_task);
4627 				/* return immediately since reset is imminent */
4628 				return;
4629 			}
4630 		}
4631 
4632 		/* Force detection of hung controller every watchdog period */
4633 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4634 	}
4635 
4636 	/* Cause software interrupt to ensure Rx ring is cleaned */
4637 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4638 		u32 eics = 0;
4639 
4640 		for (i = 0; i < adapter->num_q_vectors; i++)
4641 			eics |= adapter->q_vector[i]->eims_value;
4642 		wr32(E1000_EICS, eics);
4643 	} else {
4644 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4645 	}
4646 
4647 	igb_spoof_check(adapter);
4648 	igb_ptp_rx_hang(adapter);
4649 
4650 	/* Check LVMMC register on i350/i354 only */
4651 	if ((adapter->hw.mac.type == e1000_i350) ||
4652 	    (adapter->hw.mac.type == e1000_i354))
4653 		igb_check_lvmmc(adapter);
4654 
4655 	/* Reset the timer */
4656 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4657 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4658 			mod_timer(&adapter->watchdog_timer,
4659 				  round_jiffies(jiffies +  HZ));
4660 		else
4661 			mod_timer(&adapter->watchdog_timer,
4662 				  round_jiffies(jiffies + 2 * HZ));
4663 	}
4664 }
4665 
4666 enum latency_range {
4667 	lowest_latency = 0,
4668 	low_latency = 1,
4669 	bulk_latency = 2,
4670 	latency_invalid = 255
4671 };
4672 
4673 /**
4674  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4675  *  @q_vector: pointer to q_vector
4676  *
4677  *  Stores a new ITR value based on strictly on packet size.  This
4678  *  algorithm is less sophisticated than that used in igb_update_itr,
4679  *  due to the difficulty of synchronizing statistics across multiple
4680  *  receive rings.  The divisors and thresholds used by this function
4681  *  were determined based on theoretical maximum wire speed and testing
4682  *  data, in order to minimize response time while increasing bulk
4683  *  throughput.
4684  *  This functionality is controlled by ethtool's coalescing settings.
4685  *  NOTE:  This function is called only when operating in a multiqueue
4686  *         receive environment.
4687  **/
4688 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4689 {
4690 	int new_val = q_vector->itr_val;
4691 	int avg_wire_size = 0;
4692 	struct igb_adapter *adapter = q_vector->adapter;
4693 	unsigned int packets;
4694 
4695 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4696 	 * ints/sec - ITR timer value of 120 ticks.
4697 	 */
4698 	if (adapter->link_speed != SPEED_1000) {
4699 		new_val = IGB_4K_ITR;
4700 		goto set_itr_val;
4701 	}
4702 
4703 	packets = q_vector->rx.total_packets;
4704 	if (packets)
4705 		avg_wire_size = q_vector->rx.total_bytes / packets;
4706 
4707 	packets = q_vector->tx.total_packets;
4708 	if (packets)
4709 		avg_wire_size = max_t(u32, avg_wire_size,
4710 				      q_vector->tx.total_bytes / packets);
4711 
4712 	/* if avg_wire_size isn't set no work was done */
4713 	if (!avg_wire_size)
4714 		goto clear_counts;
4715 
4716 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4717 	avg_wire_size += 24;
4718 
4719 	/* Don't starve jumbo frames */
4720 	avg_wire_size = min(avg_wire_size, 3000);
4721 
4722 	/* Give a little boost to mid-size frames */
4723 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4724 		new_val = avg_wire_size / 3;
4725 	else
4726 		new_val = avg_wire_size / 2;
4727 
4728 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4729 	if (new_val < IGB_20K_ITR &&
4730 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4731 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4732 		new_val = IGB_20K_ITR;
4733 
4734 set_itr_val:
4735 	if (new_val != q_vector->itr_val) {
4736 		q_vector->itr_val = new_val;
4737 		q_vector->set_itr = 1;
4738 	}
4739 clear_counts:
4740 	q_vector->rx.total_bytes = 0;
4741 	q_vector->rx.total_packets = 0;
4742 	q_vector->tx.total_bytes = 0;
4743 	q_vector->tx.total_packets = 0;
4744 }
4745 
4746 /**
4747  *  igb_update_itr - update the dynamic ITR value based on statistics
4748  *  @q_vector: pointer to q_vector
4749  *  @ring_container: ring info to update the itr for
4750  *
4751  *  Stores a new ITR value based on packets and byte
4752  *  counts during the last interrupt.  The advantage of per interrupt
4753  *  computation is faster updates and more accurate ITR for the current
4754  *  traffic pattern.  Constants in this function were computed
4755  *  based on theoretical maximum wire speed and thresholds were set based
4756  *  on testing data as well as attempting to minimize response time
4757  *  while increasing bulk throughput.
4758  *  This functionality is controlled by ethtool's coalescing settings.
4759  *  NOTE:  These calculations are only valid when operating in a single-
4760  *         queue environment.
4761  **/
4762 static void igb_update_itr(struct igb_q_vector *q_vector,
4763 			   struct igb_ring_container *ring_container)
4764 {
4765 	unsigned int packets = ring_container->total_packets;
4766 	unsigned int bytes = ring_container->total_bytes;
4767 	u8 itrval = ring_container->itr;
4768 
4769 	/* no packets, exit with status unchanged */
4770 	if (packets == 0)
4771 		return;
4772 
4773 	switch (itrval) {
4774 	case lowest_latency:
4775 		/* handle TSO and jumbo frames */
4776 		if (bytes/packets > 8000)
4777 			itrval = bulk_latency;
4778 		else if ((packets < 5) && (bytes > 512))
4779 			itrval = low_latency;
4780 		break;
4781 	case low_latency:  /* 50 usec aka 20000 ints/s */
4782 		if (bytes > 10000) {
4783 			/* this if handles the TSO accounting */
4784 			if (bytes/packets > 8000)
4785 				itrval = bulk_latency;
4786 			else if ((packets < 10) || ((bytes/packets) > 1200))
4787 				itrval = bulk_latency;
4788 			else if ((packets > 35))
4789 				itrval = lowest_latency;
4790 		} else if (bytes/packets > 2000) {
4791 			itrval = bulk_latency;
4792 		} else if (packets <= 2 && bytes < 512) {
4793 			itrval = lowest_latency;
4794 		}
4795 		break;
4796 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4797 		if (bytes > 25000) {
4798 			if (packets > 35)
4799 				itrval = low_latency;
4800 		} else if (bytes < 1500) {
4801 			itrval = low_latency;
4802 		}
4803 		break;
4804 	}
4805 
4806 	/* clear work counters since we have the values we need */
4807 	ring_container->total_bytes = 0;
4808 	ring_container->total_packets = 0;
4809 
4810 	/* write updated itr to ring container */
4811 	ring_container->itr = itrval;
4812 }
4813 
4814 static void igb_set_itr(struct igb_q_vector *q_vector)
4815 {
4816 	struct igb_adapter *adapter = q_vector->adapter;
4817 	u32 new_itr = q_vector->itr_val;
4818 	u8 current_itr = 0;
4819 
4820 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4821 	if (adapter->link_speed != SPEED_1000) {
4822 		current_itr = 0;
4823 		new_itr = IGB_4K_ITR;
4824 		goto set_itr_now;
4825 	}
4826 
4827 	igb_update_itr(q_vector, &q_vector->tx);
4828 	igb_update_itr(q_vector, &q_vector->rx);
4829 
4830 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4831 
4832 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4833 	if (current_itr == lowest_latency &&
4834 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4835 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4836 		current_itr = low_latency;
4837 
4838 	switch (current_itr) {
4839 	/* counts and packets in update_itr are dependent on these numbers */
4840 	case lowest_latency:
4841 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4842 		break;
4843 	case low_latency:
4844 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4845 		break;
4846 	case bulk_latency:
4847 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4848 		break;
4849 	default:
4850 		break;
4851 	}
4852 
4853 set_itr_now:
4854 	if (new_itr != q_vector->itr_val) {
4855 		/* this attempts to bias the interrupt rate towards Bulk
4856 		 * by adding intermediate steps when interrupt rate is
4857 		 * increasing
4858 		 */
4859 		new_itr = new_itr > q_vector->itr_val ?
4860 			  max((new_itr * q_vector->itr_val) /
4861 			  (new_itr + (q_vector->itr_val >> 2)),
4862 			  new_itr) : new_itr;
4863 		/* Don't write the value here; it resets the adapter's
4864 		 * internal timer, and causes us to delay far longer than
4865 		 * we should between interrupts.  Instead, we write the ITR
4866 		 * value at the beginning of the next interrupt so the timing
4867 		 * ends up being correct.
4868 		 */
4869 		q_vector->itr_val = new_itr;
4870 		q_vector->set_itr = 1;
4871 	}
4872 }
4873 
4874 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4875 			    u32 type_tucmd, u32 mss_l4len_idx)
4876 {
4877 	struct e1000_adv_tx_context_desc *context_desc;
4878 	u16 i = tx_ring->next_to_use;
4879 
4880 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4881 
4882 	i++;
4883 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4884 
4885 	/* set bits to identify this as an advanced context descriptor */
4886 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4887 
4888 	/* For 82575, context index must be unique per ring. */
4889 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4890 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4891 
4892 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4893 	context_desc->seqnum_seed	= 0;
4894 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4895 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4896 }
4897 
4898 static int igb_tso(struct igb_ring *tx_ring,
4899 		   struct igb_tx_buffer *first,
4900 		   u8 *hdr_len)
4901 {
4902 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4903 	struct sk_buff *skb = first->skb;
4904 	union {
4905 		struct iphdr *v4;
4906 		struct ipv6hdr *v6;
4907 		unsigned char *hdr;
4908 	} ip;
4909 	union {
4910 		struct tcphdr *tcp;
4911 		unsigned char *hdr;
4912 	} l4;
4913 	u32 paylen, l4_offset;
4914 	int err;
4915 
4916 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4917 		return 0;
4918 
4919 	if (!skb_is_gso(skb))
4920 		return 0;
4921 
4922 	err = skb_cow_head(skb, 0);
4923 	if (err < 0)
4924 		return err;
4925 
4926 	ip.hdr = skb_network_header(skb);
4927 	l4.hdr = skb_checksum_start(skb);
4928 
4929 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4930 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4931 
4932 	/* initialize outer IP header fields */
4933 	if (ip.v4->version == 4) {
4934 		/* IP header will have to cancel out any data that
4935 		 * is not a part of the outer IP header
4936 		 */
4937 		ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4938 						  csum_unfold(l4.tcp->check)));
4939 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4940 
4941 		ip.v4->tot_len = 0;
4942 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4943 				   IGB_TX_FLAGS_CSUM |
4944 				   IGB_TX_FLAGS_IPV4;
4945 	} else {
4946 		ip.v6->payload_len = 0;
4947 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4948 				   IGB_TX_FLAGS_CSUM;
4949 	}
4950 
4951 	/* determine offset of inner transport header */
4952 	l4_offset = l4.hdr - skb->data;
4953 
4954 	/* compute length of segmentation header */
4955 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
4956 
4957 	/* remove payload length from inner checksum */
4958 	paylen = skb->len - l4_offset;
4959 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4960 
4961 	/* update gso size and bytecount with header size */
4962 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4963 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4964 
4965 	/* MSS L4LEN IDX */
4966 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4967 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4968 
4969 	/* VLAN MACLEN IPLEN */
4970 	vlan_macip_lens = l4.hdr - ip.hdr;
4971 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4972 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4973 
4974 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4975 
4976 	return 1;
4977 }
4978 
4979 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4980 {
4981 	unsigned int offset = 0;
4982 
4983 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4984 
4985 	return offset == skb_checksum_start_offset(skb);
4986 }
4987 
4988 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4989 {
4990 	struct sk_buff *skb = first->skb;
4991 	u32 vlan_macip_lens = 0;
4992 	u32 type_tucmd = 0;
4993 
4994 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4995 csum_failed:
4996 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4997 			return;
4998 		goto no_csum;
4999 	}
5000 
5001 	switch (skb->csum_offset) {
5002 	case offsetof(struct tcphdr, check):
5003 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5004 		/* fall through */
5005 	case offsetof(struct udphdr, check):
5006 		break;
5007 	case offsetof(struct sctphdr, checksum):
5008 		/* validate that this is actually an SCTP request */
5009 		if (((first->protocol == htons(ETH_P_IP)) &&
5010 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5011 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5012 		     igb_ipv6_csum_is_sctp(skb))) {
5013 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5014 			break;
5015 		}
5016 	default:
5017 		skb_checksum_help(skb);
5018 		goto csum_failed;
5019 	}
5020 
5021 	/* update TX checksum flag */
5022 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5023 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5024 			  skb_network_offset(skb);
5025 no_csum:
5026 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5027 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5028 
5029 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5030 }
5031 
5032 #define IGB_SET_FLAG(_input, _flag, _result) \
5033 	((_flag <= _result) ? \
5034 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5035 	 ((u32)(_input & _flag) / (_flag / _result)))
5036 
5037 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5038 {
5039 	/* set type for advanced descriptor with frame checksum insertion */
5040 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5041 		       E1000_ADVTXD_DCMD_DEXT |
5042 		       E1000_ADVTXD_DCMD_IFCS;
5043 
5044 	/* set HW vlan bit if vlan is present */
5045 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5046 				 (E1000_ADVTXD_DCMD_VLE));
5047 
5048 	/* set segmentation bits for TSO */
5049 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5050 				 (E1000_ADVTXD_DCMD_TSE));
5051 
5052 	/* set timestamp bit if present */
5053 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5054 				 (E1000_ADVTXD_MAC_TSTAMP));
5055 
5056 	/* insert frame checksum */
5057 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5058 
5059 	return cmd_type;
5060 }
5061 
5062 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5063 				 union e1000_adv_tx_desc *tx_desc,
5064 				 u32 tx_flags, unsigned int paylen)
5065 {
5066 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5067 
5068 	/* 82575 requires a unique index per ring */
5069 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5070 		olinfo_status |= tx_ring->reg_idx << 4;
5071 
5072 	/* insert L4 checksum */
5073 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5074 				      IGB_TX_FLAGS_CSUM,
5075 				      (E1000_TXD_POPTS_TXSM << 8));
5076 
5077 	/* insert IPv4 checksum */
5078 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5079 				      IGB_TX_FLAGS_IPV4,
5080 				      (E1000_TXD_POPTS_IXSM << 8));
5081 
5082 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5083 }
5084 
5085 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5086 {
5087 	struct net_device *netdev = tx_ring->netdev;
5088 
5089 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5090 
5091 	/* Herbert's original patch had:
5092 	 *  smp_mb__after_netif_stop_queue();
5093 	 * but since that doesn't exist yet, just open code it.
5094 	 */
5095 	smp_mb();
5096 
5097 	/* We need to check again in a case another CPU has just
5098 	 * made room available.
5099 	 */
5100 	if (igb_desc_unused(tx_ring) < size)
5101 		return -EBUSY;
5102 
5103 	/* A reprieve! */
5104 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5105 
5106 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5107 	tx_ring->tx_stats.restart_queue2++;
5108 	u64_stats_update_end(&tx_ring->tx_syncp2);
5109 
5110 	return 0;
5111 }
5112 
5113 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5114 {
5115 	if (igb_desc_unused(tx_ring) >= size)
5116 		return 0;
5117 	return __igb_maybe_stop_tx(tx_ring, size);
5118 }
5119 
5120 static void igb_tx_map(struct igb_ring *tx_ring,
5121 		       struct igb_tx_buffer *first,
5122 		       const u8 hdr_len)
5123 {
5124 	struct sk_buff *skb = first->skb;
5125 	struct igb_tx_buffer *tx_buffer;
5126 	union e1000_adv_tx_desc *tx_desc;
5127 	struct skb_frag_struct *frag;
5128 	dma_addr_t dma;
5129 	unsigned int data_len, size;
5130 	u32 tx_flags = first->tx_flags;
5131 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5132 	u16 i = tx_ring->next_to_use;
5133 
5134 	tx_desc = IGB_TX_DESC(tx_ring, i);
5135 
5136 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5137 
5138 	size = skb_headlen(skb);
5139 	data_len = skb->data_len;
5140 
5141 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5142 
5143 	tx_buffer = first;
5144 
5145 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5146 		if (dma_mapping_error(tx_ring->dev, dma))
5147 			goto dma_error;
5148 
5149 		/* record length, and DMA address */
5150 		dma_unmap_len_set(tx_buffer, len, size);
5151 		dma_unmap_addr_set(tx_buffer, dma, dma);
5152 
5153 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5154 
5155 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5156 			tx_desc->read.cmd_type_len =
5157 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5158 
5159 			i++;
5160 			tx_desc++;
5161 			if (i == tx_ring->count) {
5162 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5163 				i = 0;
5164 			}
5165 			tx_desc->read.olinfo_status = 0;
5166 
5167 			dma += IGB_MAX_DATA_PER_TXD;
5168 			size -= IGB_MAX_DATA_PER_TXD;
5169 
5170 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5171 		}
5172 
5173 		if (likely(!data_len))
5174 			break;
5175 
5176 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5177 
5178 		i++;
5179 		tx_desc++;
5180 		if (i == tx_ring->count) {
5181 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5182 			i = 0;
5183 		}
5184 		tx_desc->read.olinfo_status = 0;
5185 
5186 		size = skb_frag_size(frag);
5187 		data_len -= size;
5188 
5189 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5190 				       size, DMA_TO_DEVICE);
5191 
5192 		tx_buffer = &tx_ring->tx_buffer_info[i];
5193 	}
5194 
5195 	/* write last descriptor with RS and EOP bits */
5196 	cmd_type |= size | IGB_TXD_DCMD;
5197 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5198 
5199 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5200 
5201 	/* set the timestamp */
5202 	first->time_stamp = jiffies;
5203 
5204 	/* Force memory writes to complete before letting h/w know there
5205 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
5206 	 * memory model archs, such as IA-64).
5207 	 *
5208 	 * We also need this memory barrier to make certain all of the
5209 	 * status bits have been updated before next_to_watch is written.
5210 	 */
5211 	wmb();
5212 
5213 	/* set next_to_watch value indicating a packet is present */
5214 	first->next_to_watch = tx_desc;
5215 
5216 	i++;
5217 	if (i == tx_ring->count)
5218 		i = 0;
5219 
5220 	tx_ring->next_to_use = i;
5221 
5222 	/* Make sure there is space in the ring for the next send. */
5223 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5224 
5225 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5226 		writel(i, tx_ring->tail);
5227 
5228 		/* we need this if more than one processor can write to our tail
5229 		 * at a time, it synchronizes IO on IA64/Altix systems
5230 		 */
5231 		mmiowb();
5232 	}
5233 	return;
5234 
5235 dma_error:
5236 	dev_err(tx_ring->dev, "TX DMA map failed\n");
5237 
5238 	/* clear dma mappings for failed tx_buffer_info map */
5239 	for (;;) {
5240 		tx_buffer = &tx_ring->tx_buffer_info[i];
5241 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5242 		if (tx_buffer == first)
5243 			break;
5244 		if (i == 0)
5245 			i = tx_ring->count;
5246 		i--;
5247 	}
5248 
5249 	tx_ring->next_to_use = i;
5250 }
5251 
5252 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5253 				struct igb_ring *tx_ring)
5254 {
5255 	struct igb_tx_buffer *first;
5256 	int tso;
5257 	u32 tx_flags = 0;
5258 	unsigned short f;
5259 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5260 	__be16 protocol = vlan_get_protocol(skb);
5261 	u8 hdr_len = 0;
5262 
5263 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5264 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5265 	 *       + 2 desc gap to keep tail from touching head,
5266 	 *       + 1 desc for context descriptor,
5267 	 * otherwise try next time
5268 	 */
5269 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5270 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5271 
5272 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5273 		/* this is a hard error */
5274 		return NETDEV_TX_BUSY;
5275 	}
5276 
5277 	/* record the location of the first descriptor for this packet */
5278 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5279 	first->skb = skb;
5280 	first->bytecount = skb->len;
5281 	first->gso_segs = 1;
5282 
5283 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5284 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5285 
5286 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5287 					   &adapter->state)) {
5288 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5289 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5290 
5291 			adapter->ptp_tx_skb = skb_get(skb);
5292 			adapter->ptp_tx_start = jiffies;
5293 			if (adapter->hw.mac.type == e1000_82576)
5294 				schedule_work(&adapter->ptp_tx_work);
5295 		}
5296 	}
5297 
5298 	skb_tx_timestamp(skb);
5299 
5300 	if (skb_vlan_tag_present(skb)) {
5301 		tx_flags |= IGB_TX_FLAGS_VLAN;
5302 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5303 	}
5304 
5305 	/* record initial flags and protocol */
5306 	first->tx_flags = tx_flags;
5307 	first->protocol = protocol;
5308 
5309 	tso = igb_tso(tx_ring, first, &hdr_len);
5310 	if (tso < 0)
5311 		goto out_drop;
5312 	else if (!tso)
5313 		igb_tx_csum(tx_ring, first);
5314 
5315 	igb_tx_map(tx_ring, first, hdr_len);
5316 
5317 	return NETDEV_TX_OK;
5318 
5319 out_drop:
5320 	igb_unmap_and_free_tx_resource(tx_ring, first);
5321 
5322 	return NETDEV_TX_OK;
5323 }
5324 
5325 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5326 						    struct sk_buff *skb)
5327 {
5328 	unsigned int r_idx = skb->queue_mapping;
5329 
5330 	if (r_idx >= adapter->num_tx_queues)
5331 		r_idx = r_idx % adapter->num_tx_queues;
5332 
5333 	return adapter->tx_ring[r_idx];
5334 }
5335 
5336 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5337 				  struct net_device *netdev)
5338 {
5339 	struct igb_adapter *adapter = netdev_priv(netdev);
5340 
5341 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5342 	 * in order to meet this minimum size requirement.
5343 	 */
5344 	if (skb_put_padto(skb, 17))
5345 		return NETDEV_TX_OK;
5346 
5347 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5348 }
5349 
5350 /**
5351  *  igb_tx_timeout - Respond to a Tx Hang
5352  *  @netdev: network interface device structure
5353  **/
5354 static void igb_tx_timeout(struct net_device *netdev)
5355 {
5356 	struct igb_adapter *adapter = netdev_priv(netdev);
5357 	struct e1000_hw *hw = &adapter->hw;
5358 
5359 	/* Do the reset outside of interrupt context */
5360 	adapter->tx_timeout_count++;
5361 
5362 	if (hw->mac.type >= e1000_82580)
5363 		hw->dev_spec._82575.global_device_reset = true;
5364 
5365 	schedule_work(&adapter->reset_task);
5366 	wr32(E1000_EICS,
5367 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5368 }
5369 
5370 static void igb_reset_task(struct work_struct *work)
5371 {
5372 	struct igb_adapter *adapter;
5373 	adapter = container_of(work, struct igb_adapter, reset_task);
5374 
5375 	igb_dump(adapter);
5376 	netdev_err(adapter->netdev, "Reset adapter\n");
5377 	igb_reinit_locked(adapter);
5378 }
5379 
5380 /**
5381  *  igb_get_stats64 - Get System Network Statistics
5382  *  @netdev: network interface device structure
5383  *  @stats: rtnl_link_stats64 pointer
5384  **/
5385 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5386 						struct rtnl_link_stats64 *stats)
5387 {
5388 	struct igb_adapter *adapter = netdev_priv(netdev);
5389 
5390 	spin_lock(&adapter->stats64_lock);
5391 	igb_update_stats(adapter, &adapter->stats64);
5392 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5393 	spin_unlock(&adapter->stats64_lock);
5394 
5395 	return stats;
5396 }
5397 
5398 /**
5399  *  igb_change_mtu - Change the Maximum Transfer Unit
5400  *  @netdev: network interface device structure
5401  *  @new_mtu: new value for maximum frame size
5402  *
5403  *  Returns 0 on success, negative on failure
5404  **/
5405 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5406 {
5407 	struct igb_adapter *adapter = netdev_priv(netdev);
5408 	struct pci_dev *pdev = adapter->pdev;
5409 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5410 
5411 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5412 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5413 		return -EINVAL;
5414 	}
5415 
5416 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5417 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5418 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5419 		return -EINVAL;
5420 	}
5421 
5422 	/* adjust max frame to be at least the size of a standard frame */
5423 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5424 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5425 
5426 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5427 		usleep_range(1000, 2000);
5428 
5429 	/* igb_down has a dependency on max_frame_size */
5430 	adapter->max_frame_size = max_frame;
5431 
5432 	if (netif_running(netdev))
5433 		igb_down(adapter);
5434 
5435 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5436 		 netdev->mtu, new_mtu);
5437 	netdev->mtu = new_mtu;
5438 
5439 	if (netif_running(netdev))
5440 		igb_up(adapter);
5441 	else
5442 		igb_reset(adapter);
5443 
5444 	clear_bit(__IGB_RESETTING, &adapter->state);
5445 
5446 	return 0;
5447 }
5448 
5449 /**
5450  *  igb_update_stats - Update the board statistics counters
5451  *  @adapter: board private structure
5452  **/
5453 void igb_update_stats(struct igb_adapter *adapter,
5454 		      struct rtnl_link_stats64 *net_stats)
5455 {
5456 	struct e1000_hw *hw = &adapter->hw;
5457 	struct pci_dev *pdev = adapter->pdev;
5458 	u32 reg, mpc;
5459 	int i;
5460 	u64 bytes, packets;
5461 	unsigned int start;
5462 	u64 _bytes, _packets;
5463 
5464 	/* Prevent stats update while adapter is being reset, or if the pci
5465 	 * connection is down.
5466 	 */
5467 	if (adapter->link_speed == 0)
5468 		return;
5469 	if (pci_channel_offline(pdev))
5470 		return;
5471 
5472 	bytes = 0;
5473 	packets = 0;
5474 
5475 	rcu_read_lock();
5476 	for (i = 0; i < adapter->num_rx_queues; i++) {
5477 		struct igb_ring *ring = adapter->rx_ring[i];
5478 		u32 rqdpc = rd32(E1000_RQDPC(i));
5479 		if (hw->mac.type >= e1000_i210)
5480 			wr32(E1000_RQDPC(i), 0);
5481 
5482 		if (rqdpc) {
5483 			ring->rx_stats.drops += rqdpc;
5484 			net_stats->rx_fifo_errors += rqdpc;
5485 		}
5486 
5487 		do {
5488 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5489 			_bytes = ring->rx_stats.bytes;
5490 			_packets = ring->rx_stats.packets;
5491 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5492 		bytes += _bytes;
5493 		packets += _packets;
5494 	}
5495 
5496 	net_stats->rx_bytes = bytes;
5497 	net_stats->rx_packets = packets;
5498 
5499 	bytes = 0;
5500 	packets = 0;
5501 	for (i = 0; i < adapter->num_tx_queues; i++) {
5502 		struct igb_ring *ring = adapter->tx_ring[i];
5503 		do {
5504 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5505 			_bytes = ring->tx_stats.bytes;
5506 			_packets = ring->tx_stats.packets;
5507 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5508 		bytes += _bytes;
5509 		packets += _packets;
5510 	}
5511 	net_stats->tx_bytes = bytes;
5512 	net_stats->tx_packets = packets;
5513 	rcu_read_unlock();
5514 
5515 	/* read stats registers */
5516 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5517 	adapter->stats.gprc += rd32(E1000_GPRC);
5518 	adapter->stats.gorc += rd32(E1000_GORCL);
5519 	rd32(E1000_GORCH); /* clear GORCL */
5520 	adapter->stats.bprc += rd32(E1000_BPRC);
5521 	adapter->stats.mprc += rd32(E1000_MPRC);
5522 	adapter->stats.roc += rd32(E1000_ROC);
5523 
5524 	adapter->stats.prc64 += rd32(E1000_PRC64);
5525 	adapter->stats.prc127 += rd32(E1000_PRC127);
5526 	adapter->stats.prc255 += rd32(E1000_PRC255);
5527 	adapter->stats.prc511 += rd32(E1000_PRC511);
5528 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5529 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5530 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5531 	adapter->stats.sec += rd32(E1000_SEC);
5532 
5533 	mpc = rd32(E1000_MPC);
5534 	adapter->stats.mpc += mpc;
5535 	net_stats->rx_fifo_errors += mpc;
5536 	adapter->stats.scc += rd32(E1000_SCC);
5537 	adapter->stats.ecol += rd32(E1000_ECOL);
5538 	adapter->stats.mcc += rd32(E1000_MCC);
5539 	adapter->stats.latecol += rd32(E1000_LATECOL);
5540 	adapter->stats.dc += rd32(E1000_DC);
5541 	adapter->stats.rlec += rd32(E1000_RLEC);
5542 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5543 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5544 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5545 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5546 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5547 	adapter->stats.gptc += rd32(E1000_GPTC);
5548 	adapter->stats.gotc += rd32(E1000_GOTCL);
5549 	rd32(E1000_GOTCH); /* clear GOTCL */
5550 	adapter->stats.rnbc += rd32(E1000_RNBC);
5551 	adapter->stats.ruc += rd32(E1000_RUC);
5552 	adapter->stats.rfc += rd32(E1000_RFC);
5553 	adapter->stats.rjc += rd32(E1000_RJC);
5554 	adapter->stats.tor += rd32(E1000_TORH);
5555 	adapter->stats.tot += rd32(E1000_TOTH);
5556 	adapter->stats.tpr += rd32(E1000_TPR);
5557 
5558 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5559 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5560 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5561 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5562 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5563 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5564 
5565 	adapter->stats.mptc += rd32(E1000_MPTC);
5566 	adapter->stats.bptc += rd32(E1000_BPTC);
5567 
5568 	adapter->stats.tpt += rd32(E1000_TPT);
5569 	adapter->stats.colc += rd32(E1000_COLC);
5570 
5571 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5572 	/* read internal phy specific stats */
5573 	reg = rd32(E1000_CTRL_EXT);
5574 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5575 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5576 
5577 		/* this stat has invalid values on i210/i211 */
5578 		if ((hw->mac.type != e1000_i210) &&
5579 		    (hw->mac.type != e1000_i211))
5580 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5581 	}
5582 
5583 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5584 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5585 
5586 	adapter->stats.iac += rd32(E1000_IAC);
5587 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5588 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5589 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5590 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5591 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5592 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5593 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5594 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5595 
5596 	/* Fill out the OS statistics structure */
5597 	net_stats->multicast = adapter->stats.mprc;
5598 	net_stats->collisions = adapter->stats.colc;
5599 
5600 	/* Rx Errors */
5601 
5602 	/* RLEC on some newer hardware can be incorrect so build
5603 	 * our own version based on RUC and ROC
5604 	 */
5605 	net_stats->rx_errors = adapter->stats.rxerrc +
5606 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5607 		adapter->stats.ruc + adapter->stats.roc +
5608 		adapter->stats.cexterr;
5609 	net_stats->rx_length_errors = adapter->stats.ruc +
5610 				      adapter->stats.roc;
5611 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5612 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5613 	net_stats->rx_missed_errors = adapter->stats.mpc;
5614 
5615 	/* Tx Errors */
5616 	net_stats->tx_errors = adapter->stats.ecol +
5617 			       adapter->stats.latecol;
5618 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5619 	net_stats->tx_window_errors = adapter->stats.latecol;
5620 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5621 
5622 	/* Tx Dropped needs to be maintained elsewhere */
5623 
5624 	/* Management Stats */
5625 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5626 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5627 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5628 
5629 	/* OS2BMC Stats */
5630 	reg = rd32(E1000_MANC);
5631 	if (reg & E1000_MANC_EN_BMC2OS) {
5632 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5633 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5634 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5635 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5636 	}
5637 }
5638 
5639 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5640 {
5641 	struct e1000_hw *hw = &adapter->hw;
5642 	struct ptp_clock_event event;
5643 	struct timespec64 ts;
5644 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5645 
5646 	if (tsicr & TSINTR_SYS_WRAP) {
5647 		event.type = PTP_CLOCK_PPS;
5648 		if (adapter->ptp_caps.pps)
5649 			ptp_clock_event(adapter->ptp_clock, &event);
5650 		else
5651 			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5652 		ack |= TSINTR_SYS_WRAP;
5653 	}
5654 
5655 	if (tsicr & E1000_TSICR_TXTS) {
5656 		/* retrieve hardware timestamp */
5657 		schedule_work(&adapter->ptp_tx_work);
5658 		ack |= E1000_TSICR_TXTS;
5659 	}
5660 
5661 	if (tsicr & TSINTR_TT0) {
5662 		spin_lock(&adapter->tmreg_lock);
5663 		ts = timespec64_add(adapter->perout[0].start,
5664 				    adapter->perout[0].period);
5665 		/* u32 conversion of tv_sec is safe until y2106 */
5666 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5667 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5668 		tsauxc = rd32(E1000_TSAUXC);
5669 		tsauxc |= TSAUXC_EN_TT0;
5670 		wr32(E1000_TSAUXC, tsauxc);
5671 		adapter->perout[0].start = ts;
5672 		spin_unlock(&adapter->tmreg_lock);
5673 		ack |= TSINTR_TT0;
5674 	}
5675 
5676 	if (tsicr & TSINTR_TT1) {
5677 		spin_lock(&adapter->tmreg_lock);
5678 		ts = timespec64_add(adapter->perout[1].start,
5679 				    adapter->perout[1].period);
5680 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5681 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5682 		tsauxc = rd32(E1000_TSAUXC);
5683 		tsauxc |= TSAUXC_EN_TT1;
5684 		wr32(E1000_TSAUXC, tsauxc);
5685 		adapter->perout[1].start = ts;
5686 		spin_unlock(&adapter->tmreg_lock);
5687 		ack |= TSINTR_TT1;
5688 	}
5689 
5690 	if (tsicr & TSINTR_AUTT0) {
5691 		nsec = rd32(E1000_AUXSTMPL0);
5692 		sec  = rd32(E1000_AUXSTMPH0);
5693 		event.type = PTP_CLOCK_EXTTS;
5694 		event.index = 0;
5695 		event.timestamp = sec * 1000000000ULL + nsec;
5696 		ptp_clock_event(adapter->ptp_clock, &event);
5697 		ack |= TSINTR_AUTT0;
5698 	}
5699 
5700 	if (tsicr & TSINTR_AUTT1) {
5701 		nsec = rd32(E1000_AUXSTMPL1);
5702 		sec  = rd32(E1000_AUXSTMPH1);
5703 		event.type = PTP_CLOCK_EXTTS;
5704 		event.index = 1;
5705 		event.timestamp = sec * 1000000000ULL + nsec;
5706 		ptp_clock_event(adapter->ptp_clock, &event);
5707 		ack |= TSINTR_AUTT1;
5708 	}
5709 
5710 	/* acknowledge the interrupts */
5711 	wr32(E1000_TSICR, ack);
5712 }
5713 
5714 static irqreturn_t igb_msix_other(int irq, void *data)
5715 {
5716 	struct igb_adapter *adapter = data;
5717 	struct e1000_hw *hw = &adapter->hw;
5718 	u32 icr = rd32(E1000_ICR);
5719 	/* reading ICR causes bit 31 of EICR to be cleared */
5720 
5721 	if (icr & E1000_ICR_DRSTA)
5722 		schedule_work(&adapter->reset_task);
5723 
5724 	if (icr & E1000_ICR_DOUTSYNC) {
5725 		/* HW is reporting DMA is out of sync */
5726 		adapter->stats.doosync++;
5727 		/* The DMA Out of Sync is also indication of a spoof event
5728 		 * in IOV mode. Check the Wrong VM Behavior register to
5729 		 * see if it is really a spoof event.
5730 		 */
5731 		igb_check_wvbr(adapter);
5732 	}
5733 
5734 	/* Check for a mailbox event */
5735 	if (icr & E1000_ICR_VMMB)
5736 		igb_msg_task(adapter);
5737 
5738 	if (icr & E1000_ICR_LSC) {
5739 		hw->mac.get_link_status = 1;
5740 		/* guard against interrupt when we're going down */
5741 		if (!test_bit(__IGB_DOWN, &adapter->state))
5742 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5743 	}
5744 
5745 	if (icr & E1000_ICR_TS)
5746 		igb_tsync_interrupt(adapter);
5747 
5748 	wr32(E1000_EIMS, adapter->eims_other);
5749 
5750 	return IRQ_HANDLED;
5751 }
5752 
5753 static void igb_write_itr(struct igb_q_vector *q_vector)
5754 {
5755 	struct igb_adapter *adapter = q_vector->adapter;
5756 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5757 
5758 	if (!q_vector->set_itr)
5759 		return;
5760 
5761 	if (!itr_val)
5762 		itr_val = 0x4;
5763 
5764 	if (adapter->hw.mac.type == e1000_82575)
5765 		itr_val |= itr_val << 16;
5766 	else
5767 		itr_val |= E1000_EITR_CNT_IGNR;
5768 
5769 	writel(itr_val, q_vector->itr_register);
5770 	q_vector->set_itr = 0;
5771 }
5772 
5773 static irqreturn_t igb_msix_ring(int irq, void *data)
5774 {
5775 	struct igb_q_vector *q_vector = data;
5776 
5777 	/* Write the ITR value calculated from the previous interrupt. */
5778 	igb_write_itr(q_vector);
5779 
5780 	napi_schedule(&q_vector->napi);
5781 
5782 	return IRQ_HANDLED;
5783 }
5784 
5785 #ifdef CONFIG_IGB_DCA
5786 static void igb_update_tx_dca(struct igb_adapter *adapter,
5787 			      struct igb_ring *tx_ring,
5788 			      int cpu)
5789 {
5790 	struct e1000_hw *hw = &adapter->hw;
5791 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5792 
5793 	if (hw->mac.type != e1000_82575)
5794 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5795 
5796 	/* We can enable relaxed ordering for reads, but not writes when
5797 	 * DCA is enabled.  This is due to a known issue in some chipsets
5798 	 * which will cause the DCA tag to be cleared.
5799 	 */
5800 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5801 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5802 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5803 
5804 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5805 }
5806 
5807 static void igb_update_rx_dca(struct igb_adapter *adapter,
5808 			      struct igb_ring *rx_ring,
5809 			      int cpu)
5810 {
5811 	struct e1000_hw *hw = &adapter->hw;
5812 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5813 
5814 	if (hw->mac.type != e1000_82575)
5815 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5816 
5817 	/* We can enable relaxed ordering for reads, but not writes when
5818 	 * DCA is enabled.  This is due to a known issue in some chipsets
5819 	 * which will cause the DCA tag to be cleared.
5820 	 */
5821 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5822 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5823 
5824 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5825 }
5826 
5827 static void igb_update_dca(struct igb_q_vector *q_vector)
5828 {
5829 	struct igb_adapter *adapter = q_vector->adapter;
5830 	int cpu = get_cpu();
5831 
5832 	if (q_vector->cpu == cpu)
5833 		goto out_no_update;
5834 
5835 	if (q_vector->tx.ring)
5836 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5837 
5838 	if (q_vector->rx.ring)
5839 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5840 
5841 	q_vector->cpu = cpu;
5842 out_no_update:
5843 	put_cpu();
5844 }
5845 
5846 static void igb_setup_dca(struct igb_adapter *adapter)
5847 {
5848 	struct e1000_hw *hw = &adapter->hw;
5849 	int i;
5850 
5851 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5852 		return;
5853 
5854 	/* Always use CB2 mode, difference is masked in the CB driver. */
5855 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5856 
5857 	for (i = 0; i < adapter->num_q_vectors; i++) {
5858 		adapter->q_vector[i]->cpu = -1;
5859 		igb_update_dca(adapter->q_vector[i]);
5860 	}
5861 }
5862 
5863 static int __igb_notify_dca(struct device *dev, void *data)
5864 {
5865 	struct net_device *netdev = dev_get_drvdata(dev);
5866 	struct igb_adapter *adapter = netdev_priv(netdev);
5867 	struct pci_dev *pdev = adapter->pdev;
5868 	struct e1000_hw *hw = &adapter->hw;
5869 	unsigned long event = *(unsigned long *)data;
5870 
5871 	switch (event) {
5872 	case DCA_PROVIDER_ADD:
5873 		/* if already enabled, don't do it again */
5874 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5875 			break;
5876 		if (dca_add_requester(dev) == 0) {
5877 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5878 			dev_info(&pdev->dev, "DCA enabled\n");
5879 			igb_setup_dca(adapter);
5880 			break;
5881 		}
5882 		/* Fall Through since DCA is disabled. */
5883 	case DCA_PROVIDER_REMOVE:
5884 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5885 			/* without this a class_device is left
5886 			 * hanging around in the sysfs model
5887 			 */
5888 			dca_remove_requester(dev);
5889 			dev_info(&pdev->dev, "DCA disabled\n");
5890 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5891 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5892 		}
5893 		break;
5894 	}
5895 
5896 	return 0;
5897 }
5898 
5899 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5900 			  void *p)
5901 {
5902 	int ret_val;
5903 
5904 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5905 					 __igb_notify_dca);
5906 
5907 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5908 }
5909 #endif /* CONFIG_IGB_DCA */
5910 
5911 #ifdef CONFIG_PCI_IOV
5912 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5913 {
5914 	unsigned char mac_addr[ETH_ALEN];
5915 
5916 	eth_zero_addr(mac_addr);
5917 	igb_set_vf_mac(adapter, vf, mac_addr);
5918 
5919 	/* By default spoof check is enabled for all VFs */
5920 	adapter->vf_data[vf].spoofchk_enabled = true;
5921 
5922 	return 0;
5923 }
5924 
5925 #endif
5926 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5927 {
5928 	struct e1000_hw *hw = &adapter->hw;
5929 	u32 ping;
5930 	int i;
5931 
5932 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5933 		ping = E1000_PF_CONTROL_MSG;
5934 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5935 			ping |= E1000_VT_MSGTYPE_CTS;
5936 		igb_write_mbx(hw, &ping, 1, i);
5937 	}
5938 }
5939 
5940 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5941 {
5942 	struct e1000_hw *hw = &adapter->hw;
5943 	u32 vmolr = rd32(E1000_VMOLR(vf));
5944 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5945 
5946 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5947 			    IGB_VF_FLAG_MULTI_PROMISC);
5948 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5949 
5950 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5951 		vmolr |= E1000_VMOLR_MPME;
5952 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5953 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5954 	} else {
5955 		/* if we have hashes and we are clearing a multicast promisc
5956 		 * flag we need to write the hashes to the MTA as this step
5957 		 * was previously skipped
5958 		 */
5959 		if (vf_data->num_vf_mc_hashes > 30) {
5960 			vmolr |= E1000_VMOLR_MPME;
5961 		} else if (vf_data->num_vf_mc_hashes) {
5962 			int j;
5963 
5964 			vmolr |= E1000_VMOLR_ROMPE;
5965 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5966 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5967 		}
5968 	}
5969 
5970 	wr32(E1000_VMOLR(vf), vmolr);
5971 
5972 	/* there are flags left unprocessed, likely not supported */
5973 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5974 		return -EINVAL;
5975 
5976 	return 0;
5977 }
5978 
5979 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5980 				  u32 *msgbuf, u32 vf)
5981 {
5982 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5983 	u16 *hash_list = (u16 *)&msgbuf[1];
5984 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5985 	int i;
5986 
5987 	/* salt away the number of multicast addresses assigned
5988 	 * to this VF for later use to restore when the PF multi cast
5989 	 * list changes
5990 	 */
5991 	vf_data->num_vf_mc_hashes = n;
5992 
5993 	/* only up to 30 hash values supported */
5994 	if (n > 30)
5995 		n = 30;
5996 
5997 	/* store the hashes for later use */
5998 	for (i = 0; i < n; i++)
5999 		vf_data->vf_mc_hashes[i] = hash_list[i];
6000 
6001 	/* Flush and reset the mta with the new values */
6002 	igb_set_rx_mode(adapter->netdev);
6003 
6004 	return 0;
6005 }
6006 
6007 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6008 {
6009 	struct e1000_hw *hw = &adapter->hw;
6010 	struct vf_data_storage *vf_data;
6011 	int i, j;
6012 
6013 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6014 		u32 vmolr = rd32(E1000_VMOLR(i));
6015 
6016 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6017 
6018 		vf_data = &adapter->vf_data[i];
6019 
6020 		if ((vf_data->num_vf_mc_hashes > 30) ||
6021 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6022 			vmolr |= E1000_VMOLR_MPME;
6023 		} else if (vf_data->num_vf_mc_hashes) {
6024 			vmolr |= E1000_VMOLR_ROMPE;
6025 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6026 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6027 		}
6028 		wr32(E1000_VMOLR(i), vmolr);
6029 	}
6030 }
6031 
6032 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6033 {
6034 	struct e1000_hw *hw = &adapter->hw;
6035 	u32 pool_mask, vlvf_mask, i;
6036 
6037 	/* create mask for VF and other pools */
6038 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6039 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6040 
6041 	/* drop PF from pool bits */
6042 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6043 			     adapter->vfs_allocated_count);
6044 
6045 	/* Find the vlan filter for this id */
6046 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6047 		u32 vlvf = rd32(E1000_VLVF(i));
6048 		u32 vfta_mask, vid, vfta;
6049 
6050 		/* remove the vf from the pool */
6051 		if (!(vlvf & vlvf_mask))
6052 			continue;
6053 
6054 		/* clear out bit from VLVF */
6055 		vlvf ^= vlvf_mask;
6056 
6057 		/* if other pools are present, just remove ourselves */
6058 		if (vlvf & pool_mask)
6059 			goto update_vlvfb;
6060 
6061 		/* if PF is present, leave VFTA */
6062 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6063 			goto update_vlvf;
6064 
6065 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6066 		vfta_mask = BIT(vid % 32);
6067 
6068 		/* clear bit from VFTA */
6069 		vfta = adapter->shadow_vfta[vid / 32];
6070 		if (vfta & vfta_mask)
6071 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6072 update_vlvf:
6073 		/* clear pool selection enable */
6074 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6075 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6076 		else
6077 			vlvf = 0;
6078 update_vlvfb:
6079 		/* clear pool bits */
6080 		wr32(E1000_VLVF(i), vlvf);
6081 	}
6082 }
6083 
6084 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6085 {
6086 	u32 vlvf;
6087 	int idx;
6088 
6089 	/* short cut the special case */
6090 	if (vlan == 0)
6091 		return 0;
6092 
6093 	/* Search for the VLAN id in the VLVF entries */
6094 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6095 		vlvf = rd32(E1000_VLVF(idx));
6096 		if ((vlvf & VLAN_VID_MASK) == vlan)
6097 			break;
6098 	}
6099 
6100 	return idx;
6101 }
6102 
6103 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6104 {
6105 	struct e1000_hw *hw = &adapter->hw;
6106 	u32 bits, pf_id;
6107 	int idx;
6108 
6109 	idx = igb_find_vlvf_entry(hw, vid);
6110 	if (!idx)
6111 		return;
6112 
6113 	/* See if any other pools are set for this VLAN filter
6114 	 * entry other than the PF.
6115 	 */
6116 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6117 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6118 	bits &= rd32(E1000_VLVF(idx));
6119 
6120 	/* Disable the filter so this falls into the default pool. */
6121 	if (!bits) {
6122 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6123 			wr32(E1000_VLVF(idx), BIT(pf_id));
6124 		else
6125 			wr32(E1000_VLVF(idx), 0);
6126 	}
6127 }
6128 
6129 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6130 			   bool add, u32 vf)
6131 {
6132 	int pf_id = adapter->vfs_allocated_count;
6133 	struct e1000_hw *hw = &adapter->hw;
6134 	int err;
6135 
6136 	/* If VLAN overlaps with one the PF is currently monitoring make
6137 	 * sure that we are able to allocate a VLVF entry.  This may be
6138 	 * redundant but it guarantees PF will maintain visibility to
6139 	 * the VLAN.
6140 	 */
6141 	if (add && test_bit(vid, adapter->active_vlans)) {
6142 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6143 		if (err)
6144 			return err;
6145 	}
6146 
6147 	err = igb_vfta_set(hw, vid, vf, add, false);
6148 
6149 	if (add && !err)
6150 		return err;
6151 
6152 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6153 	 * we may need to drop the PF pool bit in order to allow us to free
6154 	 * up the VLVF resources.
6155 	 */
6156 	if (test_bit(vid, adapter->active_vlans) ||
6157 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6158 		igb_update_pf_vlvf(adapter, vid);
6159 
6160 	return err;
6161 }
6162 
6163 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6164 {
6165 	struct e1000_hw *hw = &adapter->hw;
6166 
6167 	if (vid)
6168 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6169 	else
6170 		wr32(E1000_VMVIR(vf), 0);
6171 }
6172 
6173 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6174 				u16 vlan, u8 qos)
6175 {
6176 	int err;
6177 
6178 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6179 	if (err)
6180 		return err;
6181 
6182 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6183 	igb_set_vmolr(adapter, vf, !vlan);
6184 
6185 	/* revoke access to previous VLAN */
6186 	if (vlan != adapter->vf_data[vf].pf_vlan)
6187 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6188 				false, vf);
6189 
6190 	adapter->vf_data[vf].pf_vlan = vlan;
6191 	adapter->vf_data[vf].pf_qos = qos;
6192 	igb_set_vf_vlan_strip(adapter, vf, true);
6193 	dev_info(&adapter->pdev->dev,
6194 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6195 	if (test_bit(__IGB_DOWN, &adapter->state)) {
6196 		dev_warn(&adapter->pdev->dev,
6197 			 "The VF VLAN has been set, but the PF device is not up.\n");
6198 		dev_warn(&adapter->pdev->dev,
6199 			 "Bring the PF device up before attempting to use the VF device.\n");
6200 	}
6201 
6202 	return err;
6203 }
6204 
6205 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6206 {
6207 	/* Restore tagless access via VLAN 0 */
6208 	igb_set_vf_vlan(adapter, 0, true, vf);
6209 
6210 	igb_set_vmvir(adapter, 0, vf);
6211 	igb_set_vmolr(adapter, vf, true);
6212 
6213 	/* Remove any PF assigned VLAN */
6214 	if (adapter->vf_data[vf].pf_vlan)
6215 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6216 				false, vf);
6217 
6218 	adapter->vf_data[vf].pf_vlan = 0;
6219 	adapter->vf_data[vf].pf_qos = 0;
6220 	igb_set_vf_vlan_strip(adapter, vf, false);
6221 
6222 	return 0;
6223 }
6224 
6225 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6226 			       u16 vlan, u8 qos, __be16 vlan_proto)
6227 {
6228 	struct igb_adapter *adapter = netdev_priv(netdev);
6229 
6230 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6231 		return -EINVAL;
6232 
6233 	if (vlan_proto != htons(ETH_P_8021Q))
6234 		return -EPROTONOSUPPORT;
6235 
6236 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6237 			       igb_disable_port_vlan(adapter, vf);
6238 }
6239 
6240 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6241 {
6242 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6243 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6244 	int ret;
6245 
6246 	if (adapter->vf_data[vf].pf_vlan)
6247 		return -1;
6248 
6249 	/* VLAN 0 is a special case, don't allow it to be removed */
6250 	if (!vid && !add)
6251 		return 0;
6252 
6253 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6254 	if (!ret)
6255 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
6256 	return ret;
6257 }
6258 
6259 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6260 {
6261 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6262 
6263 	/* clear flags - except flag that indicates PF has set the MAC */
6264 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6265 	vf_data->last_nack = jiffies;
6266 
6267 	/* reset vlans for device */
6268 	igb_clear_vf_vfta(adapter, vf);
6269 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6270 	igb_set_vmvir(adapter, vf_data->pf_vlan |
6271 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6272 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6273 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6274 
6275 	/* reset multicast table array for vf */
6276 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6277 
6278 	/* Flush and reset the mta with the new values */
6279 	igb_set_rx_mode(adapter->netdev);
6280 }
6281 
6282 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6283 {
6284 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6285 
6286 	/* clear mac address as we were hotplug removed/added */
6287 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6288 		eth_zero_addr(vf_mac);
6289 
6290 	/* process remaining reset events */
6291 	igb_vf_reset(adapter, vf);
6292 }
6293 
6294 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6295 {
6296 	struct e1000_hw *hw = &adapter->hw;
6297 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6298 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6299 	u32 reg, msgbuf[3];
6300 	u8 *addr = (u8 *)(&msgbuf[1]);
6301 
6302 	/* process all the same items cleared in a function level reset */
6303 	igb_vf_reset(adapter, vf);
6304 
6305 	/* set vf mac address */
6306 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6307 
6308 	/* enable transmit and receive for vf */
6309 	reg = rd32(E1000_VFTE);
6310 	wr32(E1000_VFTE, reg | BIT(vf));
6311 	reg = rd32(E1000_VFRE);
6312 	wr32(E1000_VFRE, reg | BIT(vf));
6313 
6314 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6315 
6316 	/* reply to reset with ack and vf mac address */
6317 	if (!is_zero_ether_addr(vf_mac)) {
6318 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6319 		memcpy(addr, vf_mac, ETH_ALEN);
6320 	} else {
6321 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6322 	}
6323 	igb_write_mbx(hw, msgbuf, 3, vf);
6324 }
6325 
6326 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6327 {
6328 	/* The VF MAC Address is stored in a packed array of bytes
6329 	 * starting at the second 32 bit word of the msg array
6330 	 */
6331 	unsigned char *addr = (char *)&msg[1];
6332 	int err = -1;
6333 
6334 	if (is_valid_ether_addr(addr))
6335 		err = igb_set_vf_mac(adapter, vf, addr);
6336 
6337 	return err;
6338 }
6339 
6340 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6341 {
6342 	struct e1000_hw *hw = &adapter->hw;
6343 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6344 	u32 msg = E1000_VT_MSGTYPE_NACK;
6345 
6346 	/* if device isn't clear to send it shouldn't be reading either */
6347 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6348 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6349 		igb_write_mbx(hw, &msg, 1, vf);
6350 		vf_data->last_nack = jiffies;
6351 	}
6352 }
6353 
6354 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6355 {
6356 	struct pci_dev *pdev = adapter->pdev;
6357 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6358 	struct e1000_hw *hw = &adapter->hw;
6359 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6360 	s32 retval;
6361 
6362 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6363 
6364 	if (retval) {
6365 		/* if receive failed revoke VF CTS stats and restart init */
6366 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6367 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6368 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6369 			return;
6370 		goto out;
6371 	}
6372 
6373 	/* this is a message we already processed, do nothing */
6374 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6375 		return;
6376 
6377 	/* until the vf completes a reset it should not be
6378 	 * allowed to start any configuration.
6379 	 */
6380 	if (msgbuf[0] == E1000_VF_RESET) {
6381 		igb_vf_reset_msg(adapter, vf);
6382 		return;
6383 	}
6384 
6385 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6386 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6387 			return;
6388 		retval = -1;
6389 		goto out;
6390 	}
6391 
6392 	switch ((msgbuf[0] & 0xFFFF)) {
6393 	case E1000_VF_SET_MAC_ADDR:
6394 		retval = -EINVAL;
6395 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6396 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6397 		else
6398 			dev_warn(&pdev->dev,
6399 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6400 				 vf);
6401 		break;
6402 	case E1000_VF_SET_PROMISC:
6403 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6404 		break;
6405 	case E1000_VF_SET_MULTICAST:
6406 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6407 		break;
6408 	case E1000_VF_SET_LPE:
6409 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6410 		break;
6411 	case E1000_VF_SET_VLAN:
6412 		retval = -1;
6413 		if (vf_data->pf_vlan)
6414 			dev_warn(&pdev->dev,
6415 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6416 				 vf);
6417 		else
6418 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6419 		break;
6420 	default:
6421 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6422 		retval = -1;
6423 		break;
6424 	}
6425 
6426 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6427 out:
6428 	/* notify the VF of the results of what it sent us */
6429 	if (retval)
6430 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6431 	else
6432 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6433 
6434 	igb_write_mbx(hw, msgbuf, 1, vf);
6435 }
6436 
6437 static void igb_msg_task(struct igb_adapter *adapter)
6438 {
6439 	struct e1000_hw *hw = &adapter->hw;
6440 	u32 vf;
6441 
6442 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6443 		/* process any reset requests */
6444 		if (!igb_check_for_rst(hw, vf))
6445 			igb_vf_reset_event(adapter, vf);
6446 
6447 		/* process any messages pending */
6448 		if (!igb_check_for_msg(hw, vf))
6449 			igb_rcv_msg_from_vf(adapter, vf);
6450 
6451 		/* process any acks */
6452 		if (!igb_check_for_ack(hw, vf))
6453 			igb_rcv_ack_from_vf(adapter, vf);
6454 	}
6455 }
6456 
6457 /**
6458  *  igb_set_uta - Set unicast filter table address
6459  *  @adapter: board private structure
6460  *  @set: boolean indicating if we are setting or clearing bits
6461  *
6462  *  The unicast table address is a register array of 32-bit registers.
6463  *  The table is meant to be used in a way similar to how the MTA is used
6464  *  however due to certain limitations in the hardware it is necessary to
6465  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6466  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6467  **/
6468 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6469 {
6470 	struct e1000_hw *hw = &adapter->hw;
6471 	u32 uta = set ? ~0 : 0;
6472 	int i;
6473 
6474 	/* we only need to do this if VMDq is enabled */
6475 	if (!adapter->vfs_allocated_count)
6476 		return;
6477 
6478 	for (i = hw->mac.uta_reg_count; i--;)
6479 		array_wr32(E1000_UTA, i, uta);
6480 }
6481 
6482 /**
6483  *  igb_intr_msi - Interrupt Handler
6484  *  @irq: interrupt number
6485  *  @data: pointer to a network interface device structure
6486  **/
6487 static irqreturn_t igb_intr_msi(int irq, void *data)
6488 {
6489 	struct igb_adapter *adapter = data;
6490 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6491 	struct e1000_hw *hw = &adapter->hw;
6492 	/* read ICR disables interrupts using IAM */
6493 	u32 icr = rd32(E1000_ICR);
6494 
6495 	igb_write_itr(q_vector);
6496 
6497 	if (icr & E1000_ICR_DRSTA)
6498 		schedule_work(&adapter->reset_task);
6499 
6500 	if (icr & E1000_ICR_DOUTSYNC) {
6501 		/* HW is reporting DMA is out of sync */
6502 		adapter->stats.doosync++;
6503 	}
6504 
6505 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6506 		hw->mac.get_link_status = 1;
6507 		if (!test_bit(__IGB_DOWN, &adapter->state))
6508 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6509 	}
6510 
6511 	if (icr & E1000_ICR_TS)
6512 		igb_tsync_interrupt(adapter);
6513 
6514 	napi_schedule(&q_vector->napi);
6515 
6516 	return IRQ_HANDLED;
6517 }
6518 
6519 /**
6520  *  igb_intr - Legacy Interrupt Handler
6521  *  @irq: interrupt number
6522  *  @data: pointer to a network interface device structure
6523  **/
6524 static irqreturn_t igb_intr(int irq, void *data)
6525 {
6526 	struct igb_adapter *adapter = data;
6527 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6528 	struct e1000_hw *hw = &adapter->hw;
6529 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6530 	 * need for the IMC write
6531 	 */
6532 	u32 icr = rd32(E1000_ICR);
6533 
6534 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6535 	 * not set, then the adapter didn't send an interrupt
6536 	 */
6537 	if (!(icr & E1000_ICR_INT_ASSERTED))
6538 		return IRQ_NONE;
6539 
6540 	igb_write_itr(q_vector);
6541 
6542 	if (icr & E1000_ICR_DRSTA)
6543 		schedule_work(&adapter->reset_task);
6544 
6545 	if (icr & E1000_ICR_DOUTSYNC) {
6546 		/* HW is reporting DMA is out of sync */
6547 		adapter->stats.doosync++;
6548 	}
6549 
6550 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6551 		hw->mac.get_link_status = 1;
6552 		/* guard against interrupt when we're going down */
6553 		if (!test_bit(__IGB_DOWN, &adapter->state))
6554 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6555 	}
6556 
6557 	if (icr & E1000_ICR_TS)
6558 		igb_tsync_interrupt(adapter);
6559 
6560 	napi_schedule(&q_vector->napi);
6561 
6562 	return IRQ_HANDLED;
6563 }
6564 
6565 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6566 {
6567 	struct igb_adapter *adapter = q_vector->adapter;
6568 	struct e1000_hw *hw = &adapter->hw;
6569 
6570 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6571 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6572 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6573 			igb_set_itr(q_vector);
6574 		else
6575 			igb_update_ring_itr(q_vector);
6576 	}
6577 
6578 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6579 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6580 			wr32(E1000_EIMS, q_vector->eims_value);
6581 		else
6582 			igb_irq_enable(adapter);
6583 	}
6584 }
6585 
6586 /**
6587  *  igb_poll - NAPI Rx polling callback
6588  *  @napi: napi polling structure
6589  *  @budget: count of how many packets we should handle
6590  **/
6591 static int igb_poll(struct napi_struct *napi, int budget)
6592 {
6593 	struct igb_q_vector *q_vector = container_of(napi,
6594 						     struct igb_q_vector,
6595 						     napi);
6596 	bool clean_complete = true;
6597 	int work_done = 0;
6598 
6599 #ifdef CONFIG_IGB_DCA
6600 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6601 		igb_update_dca(q_vector);
6602 #endif
6603 	if (q_vector->tx.ring)
6604 		clean_complete = igb_clean_tx_irq(q_vector, budget);
6605 
6606 	if (q_vector->rx.ring) {
6607 		int cleaned = igb_clean_rx_irq(q_vector, budget);
6608 
6609 		work_done += cleaned;
6610 		if (cleaned >= budget)
6611 			clean_complete = false;
6612 	}
6613 
6614 	/* If all work not completed, return budget and keep polling */
6615 	if (!clean_complete)
6616 		return budget;
6617 
6618 	/* If not enough Rx work done, exit the polling mode */
6619 	napi_complete_done(napi, work_done);
6620 	igb_ring_irq_enable(q_vector);
6621 
6622 	return 0;
6623 }
6624 
6625 /**
6626  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6627  *  @q_vector: pointer to q_vector containing needed info
6628  *  @napi_budget: Used to determine if we are in netpoll
6629  *
6630  *  returns true if ring is completely cleaned
6631  **/
6632 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6633 {
6634 	struct igb_adapter *adapter = q_vector->adapter;
6635 	struct igb_ring *tx_ring = q_vector->tx.ring;
6636 	struct igb_tx_buffer *tx_buffer;
6637 	union e1000_adv_tx_desc *tx_desc;
6638 	unsigned int total_bytes = 0, total_packets = 0;
6639 	unsigned int budget = q_vector->tx.work_limit;
6640 	unsigned int i = tx_ring->next_to_clean;
6641 
6642 	if (test_bit(__IGB_DOWN, &adapter->state))
6643 		return true;
6644 
6645 	tx_buffer = &tx_ring->tx_buffer_info[i];
6646 	tx_desc = IGB_TX_DESC(tx_ring, i);
6647 	i -= tx_ring->count;
6648 
6649 	do {
6650 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6651 
6652 		/* if next_to_watch is not set then there is no work pending */
6653 		if (!eop_desc)
6654 			break;
6655 
6656 		/* prevent any other reads prior to eop_desc */
6657 		read_barrier_depends();
6658 
6659 		/* if DD is not set pending work has not been completed */
6660 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6661 			break;
6662 
6663 		/* clear next_to_watch to prevent false hangs */
6664 		tx_buffer->next_to_watch = NULL;
6665 
6666 		/* update the statistics for this packet */
6667 		total_bytes += tx_buffer->bytecount;
6668 		total_packets += tx_buffer->gso_segs;
6669 
6670 		/* free the skb */
6671 		napi_consume_skb(tx_buffer->skb, napi_budget);
6672 
6673 		/* unmap skb header data */
6674 		dma_unmap_single(tx_ring->dev,
6675 				 dma_unmap_addr(tx_buffer, dma),
6676 				 dma_unmap_len(tx_buffer, len),
6677 				 DMA_TO_DEVICE);
6678 
6679 		/* clear tx_buffer data */
6680 		tx_buffer->skb = NULL;
6681 		dma_unmap_len_set(tx_buffer, len, 0);
6682 
6683 		/* clear last DMA location and unmap remaining buffers */
6684 		while (tx_desc != eop_desc) {
6685 			tx_buffer++;
6686 			tx_desc++;
6687 			i++;
6688 			if (unlikely(!i)) {
6689 				i -= tx_ring->count;
6690 				tx_buffer = tx_ring->tx_buffer_info;
6691 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6692 			}
6693 
6694 			/* unmap any remaining paged data */
6695 			if (dma_unmap_len(tx_buffer, len)) {
6696 				dma_unmap_page(tx_ring->dev,
6697 					       dma_unmap_addr(tx_buffer, dma),
6698 					       dma_unmap_len(tx_buffer, len),
6699 					       DMA_TO_DEVICE);
6700 				dma_unmap_len_set(tx_buffer, len, 0);
6701 			}
6702 		}
6703 
6704 		/* move us one more past the eop_desc for start of next pkt */
6705 		tx_buffer++;
6706 		tx_desc++;
6707 		i++;
6708 		if (unlikely(!i)) {
6709 			i -= tx_ring->count;
6710 			tx_buffer = tx_ring->tx_buffer_info;
6711 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6712 		}
6713 
6714 		/* issue prefetch for next Tx descriptor */
6715 		prefetch(tx_desc);
6716 
6717 		/* update budget accounting */
6718 		budget--;
6719 	} while (likely(budget));
6720 
6721 	netdev_tx_completed_queue(txring_txq(tx_ring),
6722 				  total_packets, total_bytes);
6723 	i += tx_ring->count;
6724 	tx_ring->next_to_clean = i;
6725 	u64_stats_update_begin(&tx_ring->tx_syncp);
6726 	tx_ring->tx_stats.bytes += total_bytes;
6727 	tx_ring->tx_stats.packets += total_packets;
6728 	u64_stats_update_end(&tx_ring->tx_syncp);
6729 	q_vector->tx.total_bytes += total_bytes;
6730 	q_vector->tx.total_packets += total_packets;
6731 
6732 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6733 		struct e1000_hw *hw = &adapter->hw;
6734 
6735 		/* Detect a transmit hang in hardware, this serializes the
6736 		 * check with the clearing of time_stamp and movement of i
6737 		 */
6738 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6739 		if (tx_buffer->next_to_watch &&
6740 		    time_after(jiffies, tx_buffer->time_stamp +
6741 			       (adapter->tx_timeout_factor * HZ)) &&
6742 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6743 
6744 			/* detected Tx unit hang */
6745 			dev_err(tx_ring->dev,
6746 				"Detected Tx Unit Hang\n"
6747 				"  Tx Queue             <%d>\n"
6748 				"  TDH                  <%x>\n"
6749 				"  TDT                  <%x>\n"
6750 				"  next_to_use          <%x>\n"
6751 				"  next_to_clean        <%x>\n"
6752 				"buffer_info[next_to_clean]\n"
6753 				"  time_stamp           <%lx>\n"
6754 				"  next_to_watch        <%p>\n"
6755 				"  jiffies              <%lx>\n"
6756 				"  desc.status          <%x>\n",
6757 				tx_ring->queue_index,
6758 				rd32(E1000_TDH(tx_ring->reg_idx)),
6759 				readl(tx_ring->tail),
6760 				tx_ring->next_to_use,
6761 				tx_ring->next_to_clean,
6762 				tx_buffer->time_stamp,
6763 				tx_buffer->next_to_watch,
6764 				jiffies,
6765 				tx_buffer->next_to_watch->wb.status);
6766 			netif_stop_subqueue(tx_ring->netdev,
6767 					    tx_ring->queue_index);
6768 
6769 			/* we are about to reset, no point in enabling stuff */
6770 			return true;
6771 		}
6772 	}
6773 
6774 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6775 	if (unlikely(total_packets &&
6776 	    netif_carrier_ok(tx_ring->netdev) &&
6777 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6778 		/* Make sure that anybody stopping the queue after this
6779 		 * sees the new next_to_clean.
6780 		 */
6781 		smp_mb();
6782 		if (__netif_subqueue_stopped(tx_ring->netdev,
6783 					     tx_ring->queue_index) &&
6784 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6785 			netif_wake_subqueue(tx_ring->netdev,
6786 					    tx_ring->queue_index);
6787 
6788 			u64_stats_update_begin(&tx_ring->tx_syncp);
6789 			tx_ring->tx_stats.restart_queue++;
6790 			u64_stats_update_end(&tx_ring->tx_syncp);
6791 		}
6792 	}
6793 
6794 	return !!budget;
6795 }
6796 
6797 /**
6798  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6799  *  @rx_ring: rx descriptor ring to store buffers on
6800  *  @old_buff: donor buffer to have page reused
6801  *
6802  *  Synchronizes page for reuse by the adapter
6803  **/
6804 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6805 			      struct igb_rx_buffer *old_buff)
6806 {
6807 	struct igb_rx_buffer *new_buff;
6808 	u16 nta = rx_ring->next_to_alloc;
6809 
6810 	new_buff = &rx_ring->rx_buffer_info[nta];
6811 
6812 	/* update, and store next to alloc */
6813 	nta++;
6814 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6815 
6816 	/* transfer page from old buffer to new buffer */
6817 	*new_buff = *old_buff;
6818 
6819 	/* sync the buffer for use by the device */
6820 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6821 					 old_buff->page_offset,
6822 					 IGB_RX_BUFSZ,
6823 					 DMA_FROM_DEVICE);
6824 }
6825 
6826 static inline bool igb_page_is_reserved(struct page *page)
6827 {
6828 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6829 }
6830 
6831 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6832 				  struct page *page,
6833 				  unsigned int truesize)
6834 {
6835 	/* avoid re-using remote pages */
6836 	if (unlikely(igb_page_is_reserved(page)))
6837 		return false;
6838 
6839 #if (PAGE_SIZE < 8192)
6840 	/* if we are only owner of page we can reuse it */
6841 	if (unlikely(page_count(page) != 1))
6842 		return false;
6843 
6844 	/* flip page offset to other buffer */
6845 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6846 #else
6847 	/* move offset up to the next cache line */
6848 	rx_buffer->page_offset += truesize;
6849 
6850 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6851 		return false;
6852 #endif
6853 
6854 	/* Even if we own the page, we are not allowed to use atomic_set()
6855 	 * This would break get_page_unless_zero() users.
6856 	 */
6857 	page_ref_inc(page);
6858 
6859 	return true;
6860 }
6861 
6862 /**
6863  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6864  *  @rx_ring: rx descriptor ring to transact packets on
6865  *  @rx_buffer: buffer containing page to add
6866  *  @rx_desc: descriptor containing length of buffer written by hardware
6867  *  @skb: sk_buff to place the data into
6868  *
6869  *  This function will add the data contained in rx_buffer->page to the skb.
6870  *  This is done either through a direct copy if the data in the buffer is
6871  *  less than the skb header size, otherwise it will just attach the page as
6872  *  a frag to the skb.
6873  *
6874  *  The function will then update the page offset if necessary and return
6875  *  true if the buffer can be reused by the adapter.
6876  **/
6877 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6878 			    struct igb_rx_buffer *rx_buffer,
6879 			    unsigned int size,
6880 			    union e1000_adv_rx_desc *rx_desc,
6881 			    struct sk_buff *skb)
6882 {
6883 	struct page *page = rx_buffer->page;
6884 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
6885 #if (PAGE_SIZE < 8192)
6886 	unsigned int truesize = IGB_RX_BUFSZ;
6887 #else
6888 	unsigned int truesize = SKB_DATA_ALIGN(size);
6889 #endif
6890 	unsigned int pull_len;
6891 
6892 	if (unlikely(skb_is_nonlinear(skb)))
6893 		goto add_tail_frag;
6894 
6895 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6896 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6897 		va += IGB_TS_HDR_LEN;
6898 		size -= IGB_TS_HDR_LEN;
6899 	}
6900 
6901 	if (likely(size <= IGB_RX_HDR_LEN)) {
6902 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6903 
6904 		/* page is not reserved, we can reuse buffer as-is */
6905 		if (likely(!igb_page_is_reserved(page)))
6906 			return true;
6907 
6908 		/* this page cannot be reused so discard it */
6909 		__free_page(page);
6910 		return false;
6911 	}
6912 
6913 	/* we need the header to contain the greater of either ETH_HLEN or
6914 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6915 	 */
6916 	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6917 
6918 	/* align pull length to size of long to optimize memcpy performance */
6919 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6920 
6921 	/* update all of the pointers */
6922 	va += pull_len;
6923 	size -= pull_len;
6924 
6925 add_tail_frag:
6926 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6927 			(unsigned long)va & ~PAGE_MASK, size, truesize);
6928 
6929 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6930 }
6931 
6932 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6933 					   union e1000_adv_rx_desc *rx_desc,
6934 					   struct sk_buff *skb)
6935 {
6936 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6937 	struct igb_rx_buffer *rx_buffer;
6938 	struct page *page;
6939 
6940 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6941 	page = rx_buffer->page;
6942 	prefetchw(page);
6943 
6944 	if (likely(!skb)) {
6945 		void *page_addr = page_address(page) +
6946 				  rx_buffer->page_offset;
6947 
6948 		/* prefetch first cache line of first page */
6949 		prefetch(page_addr);
6950 #if L1_CACHE_BYTES < 128
6951 		prefetch(page_addr + L1_CACHE_BYTES);
6952 #endif
6953 
6954 		/* allocate a skb to store the frags */
6955 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6956 		if (unlikely(!skb)) {
6957 			rx_ring->rx_stats.alloc_failed++;
6958 			return NULL;
6959 		}
6960 
6961 		/* we will be copying header into skb->data in
6962 		 * pskb_may_pull so it is in our interest to prefetch
6963 		 * it now to avoid a possible cache miss
6964 		 */
6965 		prefetchw(skb->data);
6966 	}
6967 
6968 	/* we are reusing so sync this buffer for CPU use */
6969 	dma_sync_single_range_for_cpu(rx_ring->dev,
6970 				      rx_buffer->dma,
6971 				      rx_buffer->page_offset,
6972 				      size,
6973 				      DMA_FROM_DEVICE);
6974 
6975 	/* pull page into skb */
6976 	if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6977 		/* hand second half of page back to the ring */
6978 		igb_reuse_rx_page(rx_ring, rx_buffer);
6979 	} else {
6980 		/* we are not reusing the buffer so unmap it */
6981 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6982 			       PAGE_SIZE, DMA_FROM_DEVICE);
6983 	}
6984 
6985 	/* clear contents of rx_buffer */
6986 	rx_buffer->page = NULL;
6987 
6988 	return skb;
6989 }
6990 
6991 static inline void igb_rx_checksum(struct igb_ring *ring,
6992 				   union e1000_adv_rx_desc *rx_desc,
6993 				   struct sk_buff *skb)
6994 {
6995 	skb_checksum_none_assert(skb);
6996 
6997 	/* Ignore Checksum bit is set */
6998 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6999 		return;
7000 
7001 	/* Rx checksum disabled via ethtool */
7002 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
7003 		return;
7004 
7005 	/* TCP/UDP checksum error bit is set */
7006 	if (igb_test_staterr(rx_desc,
7007 			     E1000_RXDEXT_STATERR_TCPE |
7008 			     E1000_RXDEXT_STATERR_IPE)) {
7009 		/* work around errata with sctp packets where the TCPE aka
7010 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7011 		 * packets, (aka let the stack check the crc32c)
7012 		 */
7013 		if (!((skb->len == 60) &&
7014 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7015 			u64_stats_update_begin(&ring->rx_syncp);
7016 			ring->rx_stats.csum_err++;
7017 			u64_stats_update_end(&ring->rx_syncp);
7018 		}
7019 		/* let the stack verify checksum errors */
7020 		return;
7021 	}
7022 	/* It must be a TCP or UDP packet with a valid checksum */
7023 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7024 				      E1000_RXD_STAT_UDPCS))
7025 		skb->ip_summed = CHECKSUM_UNNECESSARY;
7026 
7027 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
7028 		le32_to_cpu(rx_desc->wb.upper.status_error));
7029 }
7030 
7031 static inline void igb_rx_hash(struct igb_ring *ring,
7032 			       union e1000_adv_rx_desc *rx_desc,
7033 			       struct sk_buff *skb)
7034 {
7035 	if (ring->netdev->features & NETIF_F_RXHASH)
7036 		skb_set_hash(skb,
7037 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7038 			     PKT_HASH_TYPE_L3);
7039 }
7040 
7041 /**
7042  *  igb_is_non_eop - process handling of non-EOP buffers
7043  *  @rx_ring: Rx ring being processed
7044  *  @rx_desc: Rx descriptor for current buffer
7045  *  @skb: current socket buffer containing buffer in progress
7046  *
7047  *  This function updates next to clean.  If the buffer is an EOP buffer
7048  *  this function exits returning false, otherwise it will place the
7049  *  sk_buff in the next buffer to be chained and return true indicating
7050  *  that this is in fact a non-EOP buffer.
7051  **/
7052 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7053 			   union e1000_adv_rx_desc *rx_desc)
7054 {
7055 	u32 ntc = rx_ring->next_to_clean + 1;
7056 
7057 	/* fetch, update, and store next to clean */
7058 	ntc = (ntc < rx_ring->count) ? ntc : 0;
7059 	rx_ring->next_to_clean = ntc;
7060 
7061 	prefetch(IGB_RX_DESC(rx_ring, ntc));
7062 
7063 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7064 		return false;
7065 
7066 	return true;
7067 }
7068 
7069 /**
7070  *  igb_cleanup_headers - Correct corrupted or empty headers
7071  *  @rx_ring: rx descriptor ring packet is being transacted on
7072  *  @rx_desc: pointer to the EOP Rx descriptor
7073  *  @skb: pointer to current skb being fixed
7074  *
7075  *  Address the case where we are pulling data in on pages only
7076  *  and as such no data is present in the skb header.
7077  *
7078  *  In addition if skb is not at least 60 bytes we need to pad it so that
7079  *  it is large enough to qualify as a valid Ethernet frame.
7080  *
7081  *  Returns true if an error was encountered and skb was freed.
7082  **/
7083 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7084 				union e1000_adv_rx_desc *rx_desc,
7085 				struct sk_buff *skb)
7086 {
7087 	if (unlikely((igb_test_staterr(rx_desc,
7088 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7089 		struct net_device *netdev = rx_ring->netdev;
7090 		if (!(netdev->features & NETIF_F_RXALL)) {
7091 			dev_kfree_skb_any(skb);
7092 			return true;
7093 		}
7094 	}
7095 
7096 	/* if eth_skb_pad returns an error the skb was freed */
7097 	if (eth_skb_pad(skb))
7098 		return true;
7099 
7100 	return false;
7101 }
7102 
7103 /**
7104  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7105  *  @rx_ring: rx descriptor ring packet is being transacted on
7106  *  @rx_desc: pointer to the EOP Rx descriptor
7107  *  @skb: pointer to current skb being populated
7108  *
7109  *  This function checks the ring, descriptor, and packet information in
7110  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7111  *  other fields within the skb.
7112  **/
7113 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7114 				   union e1000_adv_rx_desc *rx_desc,
7115 				   struct sk_buff *skb)
7116 {
7117 	struct net_device *dev = rx_ring->netdev;
7118 
7119 	igb_rx_hash(rx_ring, rx_desc, skb);
7120 
7121 	igb_rx_checksum(rx_ring, rx_desc, skb);
7122 
7123 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7124 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7125 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7126 
7127 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7128 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7129 		u16 vid;
7130 
7131 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7132 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7133 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7134 		else
7135 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7136 
7137 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7138 	}
7139 
7140 	skb_record_rx_queue(skb, rx_ring->queue_index);
7141 
7142 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7143 }
7144 
7145 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7146 {
7147 	struct igb_ring *rx_ring = q_vector->rx.ring;
7148 	struct sk_buff *skb = rx_ring->skb;
7149 	unsigned int total_bytes = 0, total_packets = 0;
7150 	u16 cleaned_count = igb_desc_unused(rx_ring);
7151 
7152 	while (likely(total_packets < budget)) {
7153 		union e1000_adv_rx_desc *rx_desc;
7154 
7155 		/* return some buffers to hardware, one at a time is too slow */
7156 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7157 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7158 			cleaned_count = 0;
7159 		}
7160 
7161 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7162 
7163 		if (!rx_desc->wb.upper.status_error)
7164 			break;
7165 
7166 		/* This memory barrier is needed to keep us from reading
7167 		 * any other fields out of the rx_desc until we know the
7168 		 * descriptor has been written back
7169 		 */
7170 		dma_rmb();
7171 
7172 		/* retrieve a buffer from the ring */
7173 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7174 
7175 		/* exit if we failed to retrieve a buffer */
7176 		if (!skb)
7177 			break;
7178 
7179 		cleaned_count++;
7180 
7181 		/* fetch next buffer in frame if non-eop */
7182 		if (igb_is_non_eop(rx_ring, rx_desc))
7183 			continue;
7184 
7185 		/* verify the packet layout is correct */
7186 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7187 			skb = NULL;
7188 			continue;
7189 		}
7190 
7191 		/* probably a little skewed due to removing CRC */
7192 		total_bytes += skb->len;
7193 
7194 		/* populate checksum, timestamp, VLAN, and protocol */
7195 		igb_process_skb_fields(rx_ring, rx_desc, skb);
7196 
7197 		napi_gro_receive(&q_vector->napi, skb);
7198 
7199 		/* reset skb pointer */
7200 		skb = NULL;
7201 
7202 		/* update budget accounting */
7203 		total_packets++;
7204 	}
7205 
7206 	/* place incomplete frames back on ring for completion */
7207 	rx_ring->skb = skb;
7208 
7209 	u64_stats_update_begin(&rx_ring->rx_syncp);
7210 	rx_ring->rx_stats.packets += total_packets;
7211 	rx_ring->rx_stats.bytes += total_bytes;
7212 	u64_stats_update_end(&rx_ring->rx_syncp);
7213 	q_vector->rx.total_packets += total_packets;
7214 	q_vector->rx.total_bytes += total_bytes;
7215 
7216 	if (cleaned_count)
7217 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7218 
7219 	return total_packets;
7220 }
7221 
7222 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7223 				  struct igb_rx_buffer *bi)
7224 {
7225 	struct page *page = bi->page;
7226 	dma_addr_t dma;
7227 
7228 	/* since we are recycling buffers we should seldom need to alloc */
7229 	if (likely(page))
7230 		return true;
7231 
7232 	/* alloc new page for storage */
7233 	page = dev_alloc_page();
7234 	if (unlikely(!page)) {
7235 		rx_ring->rx_stats.alloc_failed++;
7236 		return false;
7237 	}
7238 
7239 	/* map page for use */
7240 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7241 
7242 	/* if mapping failed free memory back to system since
7243 	 * there isn't much point in holding memory we can't use
7244 	 */
7245 	if (dma_mapping_error(rx_ring->dev, dma)) {
7246 		__free_page(page);
7247 
7248 		rx_ring->rx_stats.alloc_failed++;
7249 		return false;
7250 	}
7251 
7252 	bi->dma = dma;
7253 	bi->page = page;
7254 	bi->page_offset = 0;
7255 
7256 	return true;
7257 }
7258 
7259 /**
7260  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7261  *  @adapter: address of board private structure
7262  **/
7263 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7264 {
7265 	union e1000_adv_rx_desc *rx_desc;
7266 	struct igb_rx_buffer *bi;
7267 	u16 i = rx_ring->next_to_use;
7268 
7269 	/* nothing to do */
7270 	if (!cleaned_count)
7271 		return;
7272 
7273 	rx_desc = IGB_RX_DESC(rx_ring, i);
7274 	bi = &rx_ring->rx_buffer_info[i];
7275 	i -= rx_ring->count;
7276 
7277 	do {
7278 		if (!igb_alloc_mapped_page(rx_ring, bi))
7279 			break;
7280 
7281 		/* Refresh the desc even if buffer_addrs didn't change
7282 		 * because each write-back erases this info.
7283 		 */
7284 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7285 
7286 		rx_desc++;
7287 		bi++;
7288 		i++;
7289 		if (unlikely(!i)) {
7290 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7291 			bi = rx_ring->rx_buffer_info;
7292 			i -= rx_ring->count;
7293 		}
7294 
7295 		/* clear the status bits for the next_to_use descriptor */
7296 		rx_desc->wb.upper.status_error = 0;
7297 
7298 		cleaned_count--;
7299 	} while (cleaned_count);
7300 
7301 	i += rx_ring->count;
7302 
7303 	if (rx_ring->next_to_use != i) {
7304 		/* record the next descriptor to use */
7305 		rx_ring->next_to_use = i;
7306 
7307 		/* update next to alloc since we have filled the ring */
7308 		rx_ring->next_to_alloc = i;
7309 
7310 		/* Force memory writes to complete before letting h/w
7311 		 * know there are new descriptors to fetch.  (Only
7312 		 * applicable for weak-ordered memory model archs,
7313 		 * such as IA-64).
7314 		 */
7315 		wmb();
7316 		writel(i, rx_ring->tail);
7317 	}
7318 }
7319 
7320 /**
7321  * igb_mii_ioctl -
7322  * @netdev:
7323  * @ifreq:
7324  * @cmd:
7325  **/
7326 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7327 {
7328 	struct igb_adapter *adapter = netdev_priv(netdev);
7329 	struct mii_ioctl_data *data = if_mii(ifr);
7330 
7331 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7332 		return -EOPNOTSUPP;
7333 
7334 	switch (cmd) {
7335 	case SIOCGMIIPHY:
7336 		data->phy_id = adapter->hw.phy.addr;
7337 		break;
7338 	case SIOCGMIIREG:
7339 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7340 				     &data->val_out))
7341 			return -EIO;
7342 		break;
7343 	case SIOCSMIIREG:
7344 	default:
7345 		return -EOPNOTSUPP;
7346 	}
7347 	return 0;
7348 }
7349 
7350 /**
7351  * igb_ioctl -
7352  * @netdev:
7353  * @ifreq:
7354  * @cmd:
7355  **/
7356 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7357 {
7358 	switch (cmd) {
7359 	case SIOCGMIIPHY:
7360 	case SIOCGMIIREG:
7361 	case SIOCSMIIREG:
7362 		return igb_mii_ioctl(netdev, ifr, cmd);
7363 	case SIOCGHWTSTAMP:
7364 		return igb_ptp_get_ts_config(netdev, ifr);
7365 	case SIOCSHWTSTAMP:
7366 		return igb_ptp_set_ts_config(netdev, ifr);
7367 	default:
7368 		return -EOPNOTSUPP;
7369 	}
7370 }
7371 
7372 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7373 {
7374 	struct igb_adapter *adapter = hw->back;
7375 
7376 	pci_read_config_word(adapter->pdev, reg, value);
7377 }
7378 
7379 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7380 {
7381 	struct igb_adapter *adapter = hw->back;
7382 
7383 	pci_write_config_word(adapter->pdev, reg, *value);
7384 }
7385 
7386 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7387 {
7388 	struct igb_adapter *adapter = hw->back;
7389 
7390 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7391 		return -E1000_ERR_CONFIG;
7392 
7393 	return 0;
7394 }
7395 
7396 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7397 {
7398 	struct igb_adapter *adapter = hw->back;
7399 
7400 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7401 		return -E1000_ERR_CONFIG;
7402 
7403 	return 0;
7404 }
7405 
7406 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7407 {
7408 	struct igb_adapter *adapter = netdev_priv(netdev);
7409 	struct e1000_hw *hw = &adapter->hw;
7410 	u32 ctrl, rctl;
7411 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7412 
7413 	if (enable) {
7414 		/* enable VLAN tag insert/strip */
7415 		ctrl = rd32(E1000_CTRL);
7416 		ctrl |= E1000_CTRL_VME;
7417 		wr32(E1000_CTRL, ctrl);
7418 
7419 		/* Disable CFI check */
7420 		rctl = rd32(E1000_RCTL);
7421 		rctl &= ~E1000_RCTL_CFIEN;
7422 		wr32(E1000_RCTL, rctl);
7423 	} else {
7424 		/* disable VLAN tag insert/strip */
7425 		ctrl = rd32(E1000_CTRL);
7426 		ctrl &= ~E1000_CTRL_VME;
7427 		wr32(E1000_CTRL, ctrl);
7428 	}
7429 
7430 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7431 }
7432 
7433 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7434 			       __be16 proto, u16 vid)
7435 {
7436 	struct igb_adapter *adapter = netdev_priv(netdev);
7437 	struct e1000_hw *hw = &adapter->hw;
7438 	int pf_id = adapter->vfs_allocated_count;
7439 
7440 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7441 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7442 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
7443 
7444 	set_bit(vid, adapter->active_vlans);
7445 
7446 	return 0;
7447 }
7448 
7449 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7450 				__be16 proto, u16 vid)
7451 {
7452 	struct igb_adapter *adapter = netdev_priv(netdev);
7453 	int pf_id = adapter->vfs_allocated_count;
7454 	struct e1000_hw *hw = &adapter->hw;
7455 
7456 	/* remove VID from filter table */
7457 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7458 		igb_vfta_set(hw, vid, pf_id, false, true);
7459 
7460 	clear_bit(vid, adapter->active_vlans);
7461 
7462 	return 0;
7463 }
7464 
7465 static void igb_restore_vlan(struct igb_adapter *adapter)
7466 {
7467 	u16 vid = 1;
7468 
7469 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7470 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7471 
7472 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7473 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7474 }
7475 
7476 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7477 {
7478 	struct pci_dev *pdev = adapter->pdev;
7479 	struct e1000_mac_info *mac = &adapter->hw.mac;
7480 
7481 	mac->autoneg = 0;
7482 
7483 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7484 	 * for the switch() below to work
7485 	 */
7486 	if ((spd & 1) || (dplx & ~1))
7487 		goto err_inval;
7488 
7489 	/* Fiber NIC's only allow 1000 gbps Full duplex
7490 	 * and 100Mbps Full duplex for 100baseFx sfp
7491 	 */
7492 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7493 		switch (spd + dplx) {
7494 		case SPEED_10 + DUPLEX_HALF:
7495 		case SPEED_10 + DUPLEX_FULL:
7496 		case SPEED_100 + DUPLEX_HALF:
7497 			goto err_inval;
7498 		default:
7499 			break;
7500 		}
7501 	}
7502 
7503 	switch (spd + dplx) {
7504 	case SPEED_10 + DUPLEX_HALF:
7505 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7506 		break;
7507 	case SPEED_10 + DUPLEX_FULL:
7508 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7509 		break;
7510 	case SPEED_100 + DUPLEX_HALF:
7511 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7512 		break;
7513 	case SPEED_100 + DUPLEX_FULL:
7514 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7515 		break;
7516 	case SPEED_1000 + DUPLEX_FULL:
7517 		mac->autoneg = 1;
7518 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7519 		break;
7520 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7521 	default:
7522 		goto err_inval;
7523 	}
7524 
7525 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7526 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7527 
7528 	return 0;
7529 
7530 err_inval:
7531 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7532 	return -EINVAL;
7533 }
7534 
7535 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7536 			  bool runtime)
7537 {
7538 	struct net_device *netdev = pci_get_drvdata(pdev);
7539 	struct igb_adapter *adapter = netdev_priv(netdev);
7540 	struct e1000_hw *hw = &adapter->hw;
7541 	u32 ctrl, rctl, status;
7542 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7543 #ifdef CONFIG_PM
7544 	int retval = 0;
7545 #endif
7546 
7547 	netif_device_detach(netdev);
7548 
7549 	if (netif_running(netdev))
7550 		__igb_close(netdev, true);
7551 
7552 	igb_ptp_suspend(adapter);
7553 
7554 	igb_clear_interrupt_scheme(adapter);
7555 
7556 #ifdef CONFIG_PM
7557 	retval = pci_save_state(pdev);
7558 	if (retval)
7559 		return retval;
7560 #endif
7561 
7562 	status = rd32(E1000_STATUS);
7563 	if (status & E1000_STATUS_LU)
7564 		wufc &= ~E1000_WUFC_LNKC;
7565 
7566 	if (wufc) {
7567 		igb_setup_rctl(adapter);
7568 		igb_set_rx_mode(netdev);
7569 
7570 		/* turn on all-multi mode if wake on multicast is enabled */
7571 		if (wufc & E1000_WUFC_MC) {
7572 			rctl = rd32(E1000_RCTL);
7573 			rctl |= E1000_RCTL_MPE;
7574 			wr32(E1000_RCTL, rctl);
7575 		}
7576 
7577 		ctrl = rd32(E1000_CTRL);
7578 		/* advertise wake from D3Cold */
7579 		#define E1000_CTRL_ADVD3WUC 0x00100000
7580 		/* phy power management enable */
7581 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7582 		ctrl |= E1000_CTRL_ADVD3WUC;
7583 		wr32(E1000_CTRL, ctrl);
7584 
7585 		/* Allow time for pending master requests to run */
7586 		igb_disable_pcie_master(hw);
7587 
7588 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7589 		wr32(E1000_WUFC, wufc);
7590 	} else {
7591 		wr32(E1000_WUC, 0);
7592 		wr32(E1000_WUFC, 0);
7593 	}
7594 
7595 	*enable_wake = wufc || adapter->en_mng_pt;
7596 	if (!*enable_wake)
7597 		igb_power_down_link(adapter);
7598 	else
7599 		igb_power_up_link(adapter);
7600 
7601 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7602 	 * would have already happened in close and is redundant.
7603 	 */
7604 	igb_release_hw_control(adapter);
7605 
7606 	pci_disable_device(pdev);
7607 
7608 	return 0;
7609 }
7610 
7611 #ifdef CONFIG_PM
7612 #ifdef CONFIG_PM_SLEEP
7613 static int igb_suspend(struct device *dev)
7614 {
7615 	int retval;
7616 	bool wake;
7617 	struct pci_dev *pdev = to_pci_dev(dev);
7618 
7619 	retval = __igb_shutdown(pdev, &wake, 0);
7620 	if (retval)
7621 		return retval;
7622 
7623 	if (wake) {
7624 		pci_prepare_to_sleep(pdev);
7625 	} else {
7626 		pci_wake_from_d3(pdev, false);
7627 		pci_set_power_state(pdev, PCI_D3hot);
7628 	}
7629 
7630 	return 0;
7631 }
7632 #endif /* CONFIG_PM_SLEEP */
7633 
7634 static int igb_resume(struct device *dev)
7635 {
7636 	struct pci_dev *pdev = to_pci_dev(dev);
7637 	struct net_device *netdev = pci_get_drvdata(pdev);
7638 	struct igb_adapter *adapter = netdev_priv(netdev);
7639 	struct e1000_hw *hw = &adapter->hw;
7640 	u32 err;
7641 
7642 	pci_set_power_state(pdev, PCI_D0);
7643 	pci_restore_state(pdev);
7644 	pci_save_state(pdev);
7645 
7646 	if (!pci_device_is_present(pdev))
7647 		return -ENODEV;
7648 	err = pci_enable_device_mem(pdev);
7649 	if (err) {
7650 		dev_err(&pdev->dev,
7651 			"igb: Cannot enable PCI device from suspend\n");
7652 		return err;
7653 	}
7654 	pci_set_master(pdev);
7655 
7656 	pci_enable_wake(pdev, PCI_D3hot, 0);
7657 	pci_enable_wake(pdev, PCI_D3cold, 0);
7658 
7659 	if (igb_init_interrupt_scheme(adapter, true)) {
7660 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7661 		return -ENOMEM;
7662 	}
7663 
7664 	igb_reset(adapter);
7665 
7666 	/* let the f/w know that the h/w is now under the control of the
7667 	 * driver.
7668 	 */
7669 	igb_get_hw_control(adapter);
7670 
7671 	wr32(E1000_WUS, ~0);
7672 
7673 	if (netdev->flags & IFF_UP) {
7674 		rtnl_lock();
7675 		err = __igb_open(netdev, true);
7676 		rtnl_unlock();
7677 		if (err)
7678 			return err;
7679 	}
7680 
7681 	netif_device_attach(netdev);
7682 	return 0;
7683 }
7684 
7685 static int igb_runtime_idle(struct device *dev)
7686 {
7687 	struct pci_dev *pdev = to_pci_dev(dev);
7688 	struct net_device *netdev = pci_get_drvdata(pdev);
7689 	struct igb_adapter *adapter = netdev_priv(netdev);
7690 
7691 	if (!igb_has_link(adapter))
7692 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7693 
7694 	return -EBUSY;
7695 }
7696 
7697 static int igb_runtime_suspend(struct device *dev)
7698 {
7699 	struct pci_dev *pdev = to_pci_dev(dev);
7700 	int retval;
7701 	bool wake;
7702 
7703 	retval = __igb_shutdown(pdev, &wake, 1);
7704 	if (retval)
7705 		return retval;
7706 
7707 	if (wake) {
7708 		pci_prepare_to_sleep(pdev);
7709 	} else {
7710 		pci_wake_from_d3(pdev, false);
7711 		pci_set_power_state(pdev, PCI_D3hot);
7712 	}
7713 
7714 	return 0;
7715 }
7716 
7717 static int igb_runtime_resume(struct device *dev)
7718 {
7719 	return igb_resume(dev);
7720 }
7721 #endif /* CONFIG_PM */
7722 
7723 static void igb_shutdown(struct pci_dev *pdev)
7724 {
7725 	bool wake;
7726 
7727 	__igb_shutdown(pdev, &wake, 0);
7728 
7729 	if (system_state == SYSTEM_POWER_OFF) {
7730 		pci_wake_from_d3(pdev, wake);
7731 		pci_set_power_state(pdev, PCI_D3hot);
7732 	}
7733 }
7734 
7735 #ifdef CONFIG_PCI_IOV
7736 static int igb_sriov_reinit(struct pci_dev *dev)
7737 {
7738 	struct net_device *netdev = pci_get_drvdata(dev);
7739 	struct igb_adapter *adapter = netdev_priv(netdev);
7740 	struct pci_dev *pdev = adapter->pdev;
7741 
7742 	rtnl_lock();
7743 
7744 	if (netif_running(netdev))
7745 		igb_close(netdev);
7746 	else
7747 		igb_reset(adapter);
7748 
7749 	igb_clear_interrupt_scheme(adapter);
7750 
7751 	igb_init_queue_configuration(adapter);
7752 
7753 	if (igb_init_interrupt_scheme(adapter, true)) {
7754 		rtnl_unlock();
7755 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7756 		return -ENOMEM;
7757 	}
7758 
7759 	if (netif_running(netdev))
7760 		igb_open(netdev);
7761 
7762 	rtnl_unlock();
7763 
7764 	return 0;
7765 }
7766 
7767 static int igb_pci_disable_sriov(struct pci_dev *dev)
7768 {
7769 	int err = igb_disable_sriov(dev);
7770 
7771 	if (!err)
7772 		err = igb_sriov_reinit(dev);
7773 
7774 	return err;
7775 }
7776 
7777 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7778 {
7779 	int err = igb_enable_sriov(dev, num_vfs);
7780 
7781 	if (err)
7782 		goto out;
7783 
7784 	err = igb_sriov_reinit(dev);
7785 	if (!err)
7786 		return num_vfs;
7787 
7788 out:
7789 	return err;
7790 }
7791 
7792 #endif
7793 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7794 {
7795 #ifdef CONFIG_PCI_IOV
7796 	if (num_vfs == 0)
7797 		return igb_pci_disable_sriov(dev);
7798 	else
7799 		return igb_pci_enable_sriov(dev, num_vfs);
7800 #endif
7801 	return 0;
7802 }
7803 
7804 #ifdef CONFIG_NET_POLL_CONTROLLER
7805 /* Polling 'interrupt' - used by things like netconsole to send skbs
7806  * without having to re-enable interrupts. It's not called while
7807  * the interrupt routine is executing.
7808  */
7809 static void igb_netpoll(struct net_device *netdev)
7810 {
7811 	struct igb_adapter *adapter = netdev_priv(netdev);
7812 	struct e1000_hw *hw = &adapter->hw;
7813 	struct igb_q_vector *q_vector;
7814 	int i;
7815 
7816 	for (i = 0; i < adapter->num_q_vectors; i++) {
7817 		q_vector = adapter->q_vector[i];
7818 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7819 			wr32(E1000_EIMC, q_vector->eims_value);
7820 		else
7821 			igb_irq_disable(adapter);
7822 		napi_schedule(&q_vector->napi);
7823 	}
7824 }
7825 #endif /* CONFIG_NET_POLL_CONTROLLER */
7826 
7827 /**
7828  *  igb_io_error_detected - called when PCI error is detected
7829  *  @pdev: Pointer to PCI device
7830  *  @state: The current pci connection state
7831  *
7832  *  This function is called after a PCI bus error affecting
7833  *  this device has been detected.
7834  **/
7835 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7836 					      pci_channel_state_t state)
7837 {
7838 	struct net_device *netdev = pci_get_drvdata(pdev);
7839 	struct igb_adapter *adapter = netdev_priv(netdev);
7840 
7841 	netif_device_detach(netdev);
7842 
7843 	if (state == pci_channel_io_perm_failure)
7844 		return PCI_ERS_RESULT_DISCONNECT;
7845 
7846 	if (netif_running(netdev))
7847 		igb_down(adapter);
7848 	pci_disable_device(pdev);
7849 
7850 	/* Request a slot slot reset. */
7851 	return PCI_ERS_RESULT_NEED_RESET;
7852 }
7853 
7854 /**
7855  *  igb_io_slot_reset - called after the pci bus has been reset.
7856  *  @pdev: Pointer to PCI device
7857  *
7858  *  Restart the card from scratch, as if from a cold-boot. Implementation
7859  *  resembles the first-half of the igb_resume routine.
7860  **/
7861 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7862 {
7863 	struct net_device *netdev = pci_get_drvdata(pdev);
7864 	struct igb_adapter *adapter = netdev_priv(netdev);
7865 	struct e1000_hw *hw = &adapter->hw;
7866 	pci_ers_result_t result;
7867 	int err;
7868 
7869 	if (pci_enable_device_mem(pdev)) {
7870 		dev_err(&pdev->dev,
7871 			"Cannot re-enable PCI device after reset.\n");
7872 		result = PCI_ERS_RESULT_DISCONNECT;
7873 	} else {
7874 		pci_set_master(pdev);
7875 		pci_restore_state(pdev);
7876 		pci_save_state(pdev);
7877 
7878 		pci_enable_wake(pdev, PCI_D3hot, 0);
7879 		pci_enable_wake(pdev, PCI_D3cold, 0);
7880 
7881 		igb_reset(adapter);
7882 		wr32(E1000_WUS, ~0);
7883 		result = PCI_ERS_RESULT_RECOVERED;
7884 	}
7885 
7886 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7887 	if (err) {
7888 		dev_err(&pdev->dev,
7889 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7890 			err);
7891 		/* non-fatal, continue */
7892 	}
7893 
7894 	return result;
7895 }
7896 
7897 /**
7898  *  igb_io_resume - called when traffic can start flowing again.
7899  *  @pdev: Pointer to PCI device
7900  *
7901  *  This callback is called when the error recovery driver tells us that
7902  *  its OK to resume normal operation. Implementation resembles the
7903  *  second-half of the igb_resume routine.
7904  */
7905 static void igb_io_resume(struct pci_dev *pdev)
7906 {
7907 	struct net_device *netdev = pci_get_drvdata(pdev);
7908 	struct igb_adapter *adapter = netdev_priv(netdev);
7909 
7910 	if (netif_running(netdev)) {
7911 		if (igb_up(adapter)) {
7912 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7913 			return;
7914 		}
7915 	}
7916 
7917 	netif_device_attach(netdev);
7918 
7919 	/* let the f/w know that the h/w is now under the control of the
7920 	 * driver.
7921 	 */
7922 	igb_get_hw_control(adapter);
7923 }
7924 
7925 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7926 			     u8 qsel)
7927 {
7928 	struct e1000_hw *hw = &adapter->hw;
7929 	u32 rar_low, rar_high;
7930 
7931 	/* HW expects these to be in network order when they are plugged
7932 	 * into the registers which are little endian.  In order to guarantee
7933 	 * that ordering we need to do an leXX_to_cpup here in order to be
7934 	 * ready for the byteswap that occurs with writel
7935 	 */
7936 	rar_low = le32_to_cpup((__le32 *)(addr));
7937 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
7938 
7939 	/* Indicate to hardware the Address is Valid. */
7940 	rar_high |= E1000_RAH_AV;
7941 
7942 	if (hw->mac.type == e1000_82575)
7943 		rar_high |= E1000_RAH_POOL_1 * qsel;
7944 	else
7945 		rar_high |= E1000_RAH_POOL_1 << qsel;
7946 
7947 	wr32(E1000_RAL(index), rar_low);
7948 	wrfl();
7949 	wr32(E1000_RAH(index), rar_high);
7950 	wrfl();
7951 }
7952 
7953 static int igb_set_vf_mac(struct igb_adapter *adapter,
7954 			  int vf, unsigned char *mac_addr)
7955 {
7956 	struct e1000_hw *hw = &adapter->hw;
7957 	/* VF MAC addresses start at end of receive addresses and moves
7958 	 * towards the first, as a result a collision should not be possible
7959 	 */
7960 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7961 
7962 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7963 
7964 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7965 
7966 	return 0;
7967 }
7968 
7969 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7970 {
7971 	struct igb_adapter *adapter = netdev_priv(netdev);
7972 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7973 		return -EINVAL;
7974 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7975 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7976 	dev_info(&adapter->pdev->dev,
7977 		 "Reload the VF driver to make this change effective.");
7978 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7979 		dev_warn(&adapter->pdev->dev,
7980 			 "The VF MAC address has been set, but the PF device is not up.\n");
7981 		dev_warn(&adapter->pdev->dev,
7982 			 "Bring the PF device up before attempting to use the VF device.\n");
7983 	}
7984 	return igb_set_vf_mac(adapter, vf, mac);
7985 }
7986 
7987 static int igb_link_mbps(int internal_link_speed)
7988 {
7989 	switch (internal_link_speed) {
7990 	case SPEED_100:
7991 		return 100;
7992 	case SPEED_1000:
7993 		return 1000;
7994 	default:
7995 		return 0;
7996 	}
7997 }
7998 
7999 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8000 				  int link_speed)
8001 {
8002 	int rf_dec, rf_int;
8003 	u32 bcnrc_val;
8004 
8005 	if (tx_rate != 0) {
8006 		/* Calculate the rate factor values to set */
8007 		rf_int = link_speed / tx_rate;
8008 		rf_dec = (link_speed - (rf_int * tx_rate));
8009 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8010 			 tx_rate;
8011 
8012 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8013 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8014 			      E1000_RTTBCNRC_RF_INT_MASK);
8015 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8016 	} else {
8017 		bcnrc_val = 0;
8018 	}
8019 
8020 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8021 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8022 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8023 	 */
8024 	wr32(E1000_RTTBCNRM, 0x14);
8025 	wr32(E1000_RTTBCNRC, bcnrc_val);
8026 }
8027 
8028 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8029 {
8030 	int actual_link_speed, i;
8031 	bool reset_rate = false;
8032 
8033 	/* VF TX rate limit was not set or not supported */
8034 	if ((adapter->vf_rate_link_speed == 0) ||
8035 	    (adapter->hw.mac.type != e1000_82576))
8036 		return;
8037 
8038 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8039 	if (actual_link_speed != adapter->vf_rate_link_speed) {
8040 		reset_rate = true;
8041 		adapter->vf_rate_link_speed = 0;
8042 		dev_info(&adapter->pdev->dev,
8043 			 "Link speed has been changed. VF Transmit rate is disabled\n");
8044 	}
8045 
8046 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
8047 		if (reset_rate)
8048 			adapter->vf_data[i].tx_rate = 0;
8049 
8050 		igb_set_vf_rate_limit(&adapter->hw, i,
8051 				      adapter->vf_data[i].tx_rate,
8052 				      actual_link_speed);
8053 	}
8054 }
8055 
8056 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8057 			     int min_tx_rate, int max_tx_rate)
8058 {
8059 	struct igb_adapter *adapter = netdev_priv(netdev);
8060 	struct e1000_hw *hw = &adapter->hw;
8061 	int actual_link_speed;
8062 
8063 	if (hw->mac.type != e1000_82576)
8064 		return -EOPNOTSUPP;
8065 
8066 	if (min_tx_rate)
8067 		return -EINVAL;
8068 
8069 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8070 	if ((vf >= adapter->vfs_allocated_count) ||
8071 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8072 	    (max_tx_rate < 0) ||
8073 	    (max_tx_rate > actual_link_speed))
8074 		return -EINVAL;
8075 
8076 	adapter->vf_rate_link_speed = actual_link_speed;
8077 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8078 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8079 
8080 	return 0;
8081 }
8082 
8083 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8084 				   bool setting)
8085 {
8086 	struct igb_adapter *adapter = netdev_priv(netdev);
8087 	struct e1000_hw *hw = &adapter->hw;
8088 	u32 reg_val, reg_offset;
8089 
8090 	if (!adapter->vfs_allocated_count)
8091 		return -EOPNOTSUPP;
8092 
8093 	if (vf >= adapter->vfs_allocated_count)
8094 		return -EINVAL;
8095 
8096 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8097 	reg_val = rd32(reg_offset);
8098 	if (setting)
8099 		reg_val |= (BIT(vf) |
8100 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8101 	else
8102 		reg_val &= ~(BIT(vf) |
8103 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8104 	wr32(reg_offset, reg_val);
8105 
8106 	adapter->vf_data[vf].spoofchk_enabled = setting;
8107 	return 0;
8108 }
8109 
8110 static int igb_ndo_get_vf_config(struct net_device *netdev,
8111 				 int vf, struct ifla_vf_info *ivi)
8112 {
8113 	struct igb_adapter *adapter = netdev_priv(netdev);
8114 	if (vf >= adapter->vfs_allocated_count)
8115 		return -EINVAL;
8116 	ivi->vf = vf;
8117 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8118 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8119 	ivi->min_tx_rate = 0;
8120 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
8121 	ivi->qos = adapter->vf_data[vf].pf_qos;
8122 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8123 	return 0;
8124 }
8125 
8126 static void igb_vmm_control(struct igb_adapter *adapter)
8127 {
8128 	struct e1000_hw *hw = &adapter->hw;
8129 	u32 reg;
8130 
8131 	switch (hw->mac.type) {
8132 	case e1000_82575:
8133 	case e1000_i210:
8134 	case e1000_i211:
8135 	case e1000_i354:
8136 	default:
8137 		/* replication is not supported for 82575 */
8138 		return;
8139 	case e1000_82576:
8140 		/* notify HW that the MAC is adding vlan tags */
8141 		reg = rd32(E1000_DTXCTL);
8142 		reg |= E1000_DTXCTL_VLAN_ADDED;
8143 		wr32(E1000_DTXCTL, reg);
8144 		/* Fall through */
8145 	case e1000_82580:
8146 		/* enable replication vlan tag stripping */
8147 		reg = rd32(E1000_RPLOLR);
8148 		reg |= E1000_RPLOLR_STRVLAN;
8149 		wr32(E1000_RPLOLR, reg);
8150 		/* Fall through */
8151 	case e1000_i350:
8152 		/* none of the above registers are supported by i350 */
8153 		break;
8154 	}
8155 
8156 	if (adapter->vfs_allocated_count) {
8157 		igb_vmdq_set_loopback_pf(hw, true);
8158 		igb_vmdq_set_replication_pf(hw, true);
8159 		igb_vmdq_set_anti_spoofing_pf(hw, true,
8160 					      adapter->vfs_allocated_count);
8161 	} else {
8162 		igb_vmdq_set_loopback_pf(hw, false);
8163 		igb_vmdq_set_replication_pf(hw, false);
8164 	}
8165 }
8166 
8167 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8168 {
8169 	struct e1000_hw *hw = &adapter->hw;
8170 	u32 dmac_thr;
8171 	u16 hwm;
8172 
8173 	if (hw->mac.type > e1000_82580) {
8174 		if (adapter->flags & IGB_FLAG_DMAC) {
8175 			u32 reg;
8176 
8177 			/* force threshold to 0. */
8178 			wr32(E1000_DMCTXTH, 0);
8179 
8180 			/* DMA Coalescing high water mark needs to be greater
8181 			 * than the Rx threshold. Set hwm to PBA - max frame
8182 			 * size in 16B units, capping it at PBA - 6KB.
8183 			 */
8184 			hwm = 64 * (pba - 6);
8185 			reg = rd32(E1000_FCRTC);
8186 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8187 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8188 				& E1000_FCRTC_RTH_COAL_MASK);
8189 			wr32(E1000_FCRTC, reg);
8190 
8191 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8192 			 * frame size, capping it at PBA - 10KB.
8193 			 */
8194 			dmac_thr = pba - 10;
8195 			reg = rd32(E1000_DMACR);
8196 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8197 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8198 				& E1000_DMACR_DMACTHR_MASK);
8199 
8200 			/* transition to L0x or L1 if available..*/
8201 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8202 
8203 			/* watchdog timer= +-1000 usec in 32usec intervals */
8204 			reg |= (1000 >> 5);
8205 
8206 			/* Disable BMC-to-OS Watchdog Enable */
8207 			if (hw->mac.type != e1000_i354)
8208 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8209 
8210 			wr32(E1000_DMACR, reg);
8211 
8212 			/* no lower threshold to disable
8213 			 * coalescing(smart fifb)-UTRESH=0
8214 			 */
8215 			wr32(E1000_DMCRTRH, 0);
8216 
8217 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8218 
8219 			wr32(E1000_DMCTLX, reg);
8220 
8221 			/* free space in tx packet buffer to wake from
8222 			 * DMA coal
8223 			 */
8224 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8225 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8226 
8227 			/* make low power state decision controlled
8228 			 * by DMA coal
8229 			 */
8230 			reg = rd32(E1000_PCIEMISC);
8231 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8232 			wr32(E1000_PCIEMISC, reg);
8233 		} /* endif adapter->dmac is not disabled */
8234 	} else if (hw->mac.type == e1000_82580) {
8235 		u32 reg = rd32(E1000_PCIEMISC);
8236 
8237 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8238 		wr32(E1000_DMACR, 0);
8239 	}
8240 }
8241 
8242 /**
8243  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8244  *  @hw: pointer to hardware structure
8245  *  @byte_offset: byte offset to read
8246  *  @dev_addr: device address
8247  *  @data: value read
8248  *
8249  *  Performs byte read operation over I2C interface at
8250  *  a specified device address.
8251  **/
8252 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8253 		      u8 dev_addr, u8 *data)
8254 {
8255 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8256 	struct i2c_client *this_client = adapter->i2c_client;
8257 	s32 status;
8258 	u16 swfw_mask = 0;
8259 
8260 	if (!this_client)
8261 		return E1000_ERR_I2C;
8262 
8263 	swfw_mask = E1000_SWFW_PHY0_SM;
8264 
8265 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8266 		return E1000_ERR_SWFW_SYNC;
8267 
8268 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8269 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8270 
8271 	if (status < 0)
8272 		return E1000_ERR_I2C;
8273 	else {
8274 		*data = status;
8275 		return 0;
8276 	}
8277 }
8278 
8279 /**
8280  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8281  *  @hw: pointer to hardware structure
8282  *  @byte_offset: byte offset to write
8283  *  @dev_addr: device address
8284  *  @data: value to write
8285  *
8286  *  Performs byte write operation over I2C interface at
8287  *  a specified device address.
8288  **/
8289 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8290 		       u8 dev_addr, u8 data)
8291 {
8292 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8293 	struct i2c_client *this_client = adapter->i2c_client;
8294 	s32 status;
8295 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8296 
8297 	if (!this_client)
8298 		return E1000_ERR_I2C;
8299 
8300 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8301 		return E1000_ERR_SWFW_SYNC;
8302 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8303 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8304 
8305 	if (status)
8306 		return E1000_ERR_I2C;
8307 	else
8308 		return 0;
8309 
8310 }
8311 
8312 int igb_reinit_queues(struct igb_adapter *adapter)
8313 {
8314 	struct net_device *netdev = adapter->netdev;
8315 	struct pci_dev *pdev = adapter->pdev;
8316 	int err = 0;
8317 
8318 	if (netif_running(netdev))
8319 		igb_close(netdev);
8320 
8321 	igb_reset_interrupt_capability(adapter);
8322 
8323 	if (igb_init_interrupt_scheme(adapter, true)) {
8324 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8325 		return -ENOMEM;
8326 	}
8327 
8328 	if (netif_running(netdev))
8329 		err = igb_open(netdev);
8330 
8331 	return err;
8332 }
8333 
8334 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8335 {
8336 	struct igb_nfc_filter *rule;
8337 
8338 	spin_lock(&adapter->nfc_lock);
8339 
8340 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8341 		igb_erase_filter(adapter, rule);
8342 
8343 	spin_unlock(&adapter->nfc_lock);
8344 }
8345 
8346 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8347 {
8348 	struct igb_nfc_filter *rule;
8349 
8350 	spin_lock(&adapter->nfc_lock);
8351 
8352 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8353 		igb_add_filter(adapter, rule);
8354 
8355 	spin_unlock(&adapter->nfc_lock);
8356 }
8357 /* igb_main.c */
8358