1 /* Intel(R) Gigabit Ethernet Linux driver 2 * Copyright(c) 2007-2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * The full GNU General Public License is included in this distribution in 17 * the file called "COPYING". 18 * 19 * Contact Information: 20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/module.h> 27 #include <linux/types.h> 28 #include <linux/init.h> 29 #include <linux/bitops.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pagemap.h> 32 #include <linux/netdevice.h> 33 #include <linux/ipv6.h> 34 #include <linux/slab.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 #include <linux/net_tstamp.h> 38 #include <linux/mii.h> 39 #include <linux/ethtool.h> 40 #include <linux/if.h> 41 #include <linux/if_vlan.h> 42 #include <linux/pci.h> 43 #include <linux/pci-aspm.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/ip.h> 47 #include <linux/tcp.h> 48 #include <linux/sctp.h> 49 #include <linux/if_ether.h> 50 #include <linux/aer.h> 51 #include <linux/prefetch.h> 52 #include <linux/pm_runtime.h> 53 #include <linux/etherdevice.h> 54 #ifdef CONFIG_IGB_DCA 55 #include <linux/dca.h> 56 #endif 57 #include <linux/i2c.h> 58 #include "igb.h" 59 60 #define MAJ 5 61 #define MIN 4 62 #define BUILD 0 63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ 64 __stringify(BUILD) "-k" 65 char igb_driver_name[] = "igb"; 66 char igb_driver_version[] = DRV_VERSION; 67 static const char igb_driver_string[] = 68 "Intel(R) Gigabit Ethernet Network Driver"; 69 static const char igb_copyright[] = 70 "Copyright (c) 2007-2014 Intel Corporation."; 71 72 static const struct e1000_info *igb_info_tbl[] = { 73 [board_82575] = &e1000_82575_info, 74 }; 75 76 static const struct pci_device_id igb_pci_tbl[] = { 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 112 /* required last entry */ 113 {0, } 114 }; 115 116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 117 118 static int igb_setup_all_tx_resources(struct igb_adapter *); 119 static int igb_setup_all_rx_resources(struct igb_adapter *); 120 static void igb_free_all_tx_resources(struct igb_adapter *); 121 static void igb_free_all_rx_resources(struct igb_adapter *); 122 static void igb_setup_mrqc(struct igb_adapter *); 123 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 124 static void igb_remove(struct pci_dev *pdev); 125 static int igb_sw_init(struct igb_adapter *); 126 int igb_open(struct net_device *); 127 int igb_close(struct net_device *); 128 static void igb_configure(struct igb_adapter *); 129 static void igb_configure_tx(struct igb_adapter *); 130 static void igb_configure_rx(struct igb_adapter *); 131 static void igb_clean_all_tx_rings(struct igb_adapter *); 132 static void igb_clean_all_rx_rings(struct igb_adapter *); 133 static void igb_clean_tx_ring(struct igb_ring *); 134 static void igb_clean_rx_ring(struct igb_ring *); 135 static void igb_set_rx_mode(struct net_device *); 136 static void igb_update_phy_info(unsigned long); 137 static void igb_watchdog(unsigned long); 138 static void igb_watchdog_task(struct work_struct *); 139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, 141 struct rtnl_link_stats64 *stats); 142 static int igb_change_mtu(struct net_device *, int); 143 static int igb_set_mac(struct net_device *, void *); 144 static void igb_set_uta(struct igb_adapter *adapter, bool set); 145 static irqreturn_t igb_intr(int irq, void *); 146 static irqreturn_t igb_intr_msi(int irq, void *); 147 static irqreturn_t igb_msix_other(int irq, void *); 148 static irqreturn_t igb_msix_ring(int irq, void *); 149 #ifdef CONFIG_IGB_DCA 150 static void igb_update_dca(struct igb_q_vector *); 151 static void igb_setup_dca(struct igb_adapter *); 152 #endif /* CONFIG_IGB_DCA */ 153 static int igb_poll(struct napi_struct *, int); 154 static bool igb_clean_tx_irq(struct igb_q_vector *, int); 155 static int igb_clean_rx_irq(struct igb_q_vector *, int); 156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 157 static void igb_tx_timeout(struct net_device *); 158 static void igb_reset_task(struct work_struct *); 159 static void igb_vlan_mode(struct net_device *netdev, 160 netdev_features_t features); 161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 163 static void igb_restore_vlan(struct igb_adapter *); 164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); 165 static void igb_ping_all_vfs(struct igb_adapter *); 166 static void igb_msg_task(struct igb_adapter *); 167 static void igb_vmm_control(struct igb_adapter *); 168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 171 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 172 int vf, u16 vlan, u8 qos, __be16 vlan_proto); 173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 175 bool setting); 176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 177 struct ifla_vf_info *ivi); 178 static void igb_check_vf_rate_limit(struct igb_adapter *); 179 static void igb_nfc_filter_exit(struct igb_adapter *adapter); 180 static void igb_nfc_filter_restore(struct igb_adapter *adapter); 181 182 #ifdef CONFIG_PCI_IOV 183 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 185 static int igb_disable_sriov(struct pci_dev *dev); 186 static int igb_pci_disable_sriov(struct pci_dev *dev); 187 #endif 188 189 #ifdef CONFIG_PM 190 #ifdef CONFIG_PM_SLEEP 191 static int igb_suspend(struct device *); 192 #endif 193 static int igb_resume(struct device *); 194 static int igb_runtime_suspend(struct device *dev); 195 static int igb_runtime_resume(struct device *dev); 196 static int igb_runtime_idle(struct device *dev); 197 static const struct dev_pm_ops igb_pm_ops = { 198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 200 igb_runtime_idle) 201 }; 202 #endif 203 static void igb_shutdown(struct pci_dev *); 204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 205 #ifdef CONFIG_IGB_DCA 206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 207 static struct notifier_block dca_notifier = { 208 .notifier_call = igb_notify_dca, 209 .next = NULL, 210 .priority = 0 211 }; 212 #endif 213 #ifdef CONFIG_NET_POLL_CONTROLLER 214 /* for netdump / net console */ 215 static void igb_netpoll(struct net_device *); 216 #endif 217 #ifdef CONFIG_PCI_IOV 218 static unsigned int max_vfs; 219 module_param(max_vfs, uint, 0); 220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 221 #endif /* CONFIG_PCI_IOV */ 222 223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 224 pci_channel_state_t); 225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 226 static void igb_io_resume(struct pci_dev *); 227 228 static const struct pci_error_handlers igb_err_handler = { 229 .error_detected = igb_io_error_detected, 230 .slot_reset = igb_io_slot_reset, 231 .resume = igb_io_resume, 232 }; 233 234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 235 236 static struct pci_driver igb_driver = { 237 .name = igb_driver_name, 238 .id_table = igb_pci_tbl, 239 .probe = igb_probe, 240 .remove = igb_remove, 241 #ifdef CONFIG_PM 242 .driver.pm = &igb_pm_ops, 243 #endif 244 .shutdown = igb_shutdown, 245 .sriov_configure = igb_pci_sriov_configure, 246 .err_handler = &igb_err_handler 247 }; 248 249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 251 MODULE_LICENSE("GPL"); 252 MODULE_VERSION(DRV_VERSION); 253 254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 255 static int debug = -1; 256 module_param(debug, int, 0); 257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 258 259 struct igb_reg_info { 260 u32 ofs; 261 char *name; 262 }; 263 264 static const struct igb_reg_info igb_reg_info_tbl[] = { 265 266 /* General Registers */ 267 {E1000_CTRL, "CTRL"}, 268 {E1000_STATUS, "STATUS"}, 269 {E1000_CTRL_EXT, "CTRL_EXT"}, 270 271 /* Interrupt Registers */ 272 {E1000_ICR, "ICR"}, 273 274 /* RX Registers */ 275 {E1000_RCTL, "RCTL"}, 276 {E1000_RDLEN(0), "RDLEN"}, 277 {E1000_RDH(0), "RDH"}, 278 {E1000_RDT(0), "RDT"}, 279 {E1000_RXDCTL(0), "RXDCTL"}, 280 {E1000_RDBAL(0), "RDBAL"}, 281 {E1000_RDBAH(0), "RDBAH"}, 282 283 /* TX Registers */ 284 {E1000_TCTL, "TCTL"}, 285 {E1000_TDBAL(0), "TDBAL"}, 286 {E1000_TDBAH(0), "TDBAH"}, 287 {E1000_TDLEN(0), "TDLEN"}, 288 {E1000_TDH(0), "TDH"}, 289 {E1000_TDT(0), "TDT"}, 290 {E1000_TXDCTL(0), "TXDCTL"}, 291 {E1000_TDFH, "TDFH"}, 292 {E1000_TDFT, "TDFT"}, 293 {E1000_TDFHS, "TDFHS"}, 294 {E1000_TDFPC, "TDFPC"}, 295 296 /* List Terminator */ 297 {} 298 }; 299 300 /* igb_regdump - register printout routine */ 301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 302 { 303 int n = 0; 304 char rname[16]; 305 u32 regs[8]; 306 307 switch (reginfo->ofs) { 308 case E1000_RDLEN(0): 309 for (n = 0; n < 4; n++) 310 regs[n] = rd32(E1000_RDLEN(n)); 311 break; 312 case E1000_RDH(0): 313 for (n = 0; n < 4; n++) 314 regs[n] = rd32(E1000_RDH(n)); 315 break; 316 case E1000_RDT(0): 317 for (n = 0; n < 4; n++) 318 regs[n] = rd32(E1000_RDT(n)); 319 break; 320 case E1000_RXDCTL(0): 321 for (n = 0; n < 4; n++) 322 regs[n] = rd32(E1000_RXDCTL(n)); 323 break; 324 case E1000_RDBAL(0): 325 for (n = 0; n < 4; n++) 326 regs[n] = rd32(E1000_RDBAL(n)); 327 break; 328 case E1000_RDBAH(0): 329 for (n = 0; n < 4; n++) 330 regs[n] = rd32(E1000_RDBAH(n)); 331 break; 332 case E1000_TDBAL(0): 333 for (n = 0; n < 4; n++) 334 regs[n] = rd32(E1000_RDBAL(n)); 335 break; 336 case E1000_TDBAH(0): 337 for (n = 0; n < 4; n++) 338 regs[n] = rd32(E1000_TDBAH(n)); 339 break; 340 case E1000_TDLEN(0): 341 for (n = 0; n < 4; n++) 342 regs[n] = rd32(E1000_TDLEN(n)); 343 break; 344 case E1000_TDH(0): 345 for (n = 0; n < 4; n++) 346 regs[n] = rd32(E1000_TDH(n)); 347 break; 348 case E1000_TDT(0): 349 for (n = 0; n < 4; n++) 350 regs[n] = rd32(E1000_TDT(n)); 351 break; 352 case E1000_TXDCTL(0): 353 for (n = 0; n < 4; n++) 354 regs[n] = rd32(E1000_TXDCTL(n)); 355 break; 356 default: 357 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 358 return; 359 } 360 361 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 362 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 363 regs[2], regs[3]); 364 } 365 366 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 367 static void igb_dump(struct igb_adapter *adapter) 368 { 369 struct net_device *netdev = adapter->netdev; 370 struct e1000_hw *hw = &adapter->hw; 371 struct igb_reg_info *reginfo; 372 struct igb_ring *tx_ring; 373 union e1000_adv_tx_desc *tx_desc; 374 struct my_u0 { u64 a; u64 b; } *u0; 375 struct igb_ring *rx_ring; 376 union e1000_adv_rx_desc *rx_desc; 377 u32 staterr; 378 u16 i, n; 379 380 if (!netif_msg_hw(adapter)) 381 return; 382 383 /* Print netdevice Info */ 384 if (netdev) { 385 dev_info(&adapter->pdev->dev, "Net device Info\n"); 386 pr_info("Device Name state trans_start last_rx\n"); 387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 388 netdev->state, dev_trans_start(netdev), netdev->last_rx); 389 } 390 391 /* Print Registers */ 392 dev_info(&adapter->pdev->dev, "Register Dump\n"); 393 pr_info(" Register Name Value\n"); 394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 395 reginfo->name; reginfo++) { 396 igb_regdump(hw, reginfo); 397 } 398 399 /* Print TX Ring Summary */ 400 if (!netdev || !netif_running(netdev)) 401 goto exit; 402 403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 405 for (n = 0; n < adapter->num_tx_queues; n++) { 406 struct igb_tx_buffer *buffer_info; 407 tx_ring = adapter->tx_ring[n]; 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 410 n, tx_ring->next_to_use, tx_ring->next_to_clean, 411 (u64)dma_unmap_addr(buffer_info, dma), 412 dma_unmap_len(buffer_info, len), 413 buffer_info->next_to_watch, 414 (u64)buffer_info->time_stamp); 415 } 416 417 /* Print TX Rings */ 418 if (!netif_msg_tx_done(adapter)) 419 goto rx_ring_summary; 420 421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 422 423 /* Transmit Descriptor Formats 424 * 425 * Advanced Transmit Descriptor 426 * +--------------------------------------------------------------+ 427 * 0 | Buffer Address [63:0] | 428 * +--------------------------------------------------------------+ 429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 430 * +--------------------------------------------------------------+ 431 * 63 46 45 40 39 38 36 35 32 31 24 15 0 432 */ 433 434 for (n = 0; n < adapter->num_tx_queues; n++) { 435 tx_ring = adapter->tx_ring[n]; 436 pr_info("------------------------------------\n"); 437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 438 pr_info("------------------------------------\n"); 439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 440 441 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 442 const char *next_desc; 443 struct igb_tx_buffer *buffer_info; 444 tx_desc = IGB_TX_DESC(tx_ring, i); 445 buffer_info = &tx_ring->tx_buffer_info[i]; 446 u0 = (struct my_u0 *)tx_desc; 447 if (i == tx_ring->next_to_use && 448 i == tx_ring->next_to_clean) 449 next_desc = " NTC/U"; 450 else if (i == tx_ring->next_to_use) 451 next_desc = " NTU"; 452 else if (i == tx_ring->next_to_clean) 453 next_desc = " NTC"; 454 else 455 next_desc = ""; 456 457 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 458 i, le64_to_cpu(u0->a), 459 le64_to_cpu(u0->b), 460 (u64)dma_unmap_addr(buffer_info, dma), 461 dma_unmap_len(buffer_info, len), 462 buffer_info->next_to_watch, 463 (u64)buffer_info->time_stamp, 464 buffer_info->skb, next_desc); 465 466 if (netif_msg_pktdata(adapter) && buffer_info->skb) 467 print_hex_dump(KERN_INFO, "", 468 DUMP_PREFIX_ADDRESS, 469 16, 1, buffer_info->skb->data, 470 dma_unmap_len(buffer_info, len), 471 true); 472 } 473 } 474 475 /* Print RX Rings Summary */ 476 rx_ring_summary: 477 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 478 pr_info("Queue [NTU] [NTC]\n"); 479 for (n = 0; n < adapter->num_rx_queues; n++) { 480 rx_ring = adapter->rx_ring[n]; 481 pr_info(" %5d %5X %5X\n", 482 n, rx_ring->next_to_use, rx_ring->next_to_clean); 483 } 484 485 /* Print RX Rings */ 486 if (!netif_msg_rx_status(adapter)) 487 goto exit; 488 489 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 490 491 /* Advanced Receive Descriptor (Read) Format 492 * 63 1 0 493 * +-----------------------------------------------------+ 494 * 0 | Packet Buffer Address [63:1] |A0/NSE| 495 * +----------------------------------------------+------+ 496 * 8 | Header Buffer Address [63:1] | DD | 497 * +-----------------------------------------------------+ 498 * 499 * 500 * Advanced Receive Descriptor (Write-Back) Format 501 * 502 * 63 48 47 32 31 30 21 20 17 16 4 3 0 503 * +------------------------------------------------------+ 504 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 505 * | Checksum Ident | | | | Type | Type | 506 * +------------------------------------------------------+ 507 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 508 * +------------------------------------------------------+ 509 * 63 48 47 32 31 20 19 0 510 */ 511 512 for (n = 0; n < adapter->num_rx_queues; n++) { 513 rx_ring = adapter->rx_ring[n]; 514 pr_info("------------------------------------\n"); 515 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 516 pr_info("------------------------------------\n"); 517 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 518 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 519 520 for (i = 0; i < rx_ring->count; i++) { 521 const char *next_desc; 522 struct igb_rx_buffer *buffer_info; 523 buffer_info = &rx_ring->rx_buffer_info[i]; 524 rx_desc = IGB_RX_DESC(rx_ring, i); 525 u0 = (struct my_u0 *)rx_desc; 526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 527 528 if (i == rx_ring->next_to_use) 529 next_desc = " NTU"; 530 else if (i == rx_ring->next_to_clean) 531 next_desc = " NTC"; 532 else 533 next_desc = ""; 534 535 if (staterr & E1000_RXD_STAT_DD) { 536 /* Descriptor Done */ 537 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 538 "RWB", i, 539 le64_to_cpu(u0->a), 540 le64_to_cpu(u0->b), 541 next_desc); 542 } else { 543 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 544 "R ", i, 545 le64_to_cpu(u0->a), 546 le64_to_cpu(u0->b), 547 (u64)buffer_info->dma, 548 next_desc); 549 550 if (netif_msg_pktdata(adapter) && 551 buffer_info->dma && buffer_info->page) { 552 print_hex_dump(KERN_INFO, "", 553 DUMP_PREFIX_ADDRESS, 554 16, 1, 555 page_address(buffer_info->page) + 556 buffer_info->page_offset, 557 IGB_RX_BUFSZ, true); 558 } 559 } 560 } 561 } 562 563 exit: 564 return; 565 } 566 567 /** 568 * igb_get_i2c_data - Reads the I2C SDA data bit 569 * @hw: pointer to hardware structure 570 * @i2cctl: Current value of I2CCTL register 571 * 572 * Returns the I2C data bit value 573 **/ 574 static int igb_get_i2c_data(void *data) 575 { 576 struct igb_adapter *adapter = (struct igb_adapter *)data; 577 struct e1000_hw *hw = &adapter->hw; 578 s32 i2cctl = rd32(E1000_I2CPARAMS); 579 580 return !!(i2cctl & E1000_I2C_DATA_IN); 581 } 582 583 /** 584 * igb_set_i2c_data - Sets the I2C data bit 585 * @data: pointer to hardware structure 586 * @state: I2C data value (0 or 1) to set 587 * 588 * Sets the I2C data bit 589 **/ 590 static void igb_set_i2c_data(void *data, int state) 591 { 592 struct igb_adapter *adapter = (struct igb_adapter *)data; 593 struct e1000_hw *hw = &adapter->hw; 594 s32 i2cctl = rd32(E1000_I2CPARAMS); 595 596 if (state) 597 i2cctl |= E1000_I2C_DATA_OUT; 598 else 599 i2cctl &= ~E1000_I2C_DATA_OUT; 600 601 i2cctl &= ~E1000_I2C_DATA_OE_N; 602 i2cctl |= E1000_I2C_CLK_OE_N; 603 wr32(E1000_I2CPARAMS, i2cctl); 604 wrfl(); 605 606 } 607 608 /** 609 * igb_set_i2c_clk - Sets the I2C SCL clock 610 * @data: pointer to hardware structure 611 * @state: state to set clock 612 * 613 * Sets the I2C clock line to state 614 **/ 615 static void igb_set_i2c_clk(void *data, int state) 616 { 617 struct igb_adapter *adapter = (struct igb_adapter *)data; 618 struct e1000_hw *hw = &adapter->hw; 619 s32 i2cctl = rd32(E1000_I2CPARAMS); 620 621 if (state) { 622 i2cctl |= E1000_I2C_CLK_OUT; 623 i2cctl &= ~E1000_I2C_CLK_OE_N; 624 } else { 625 i2cctl &= ~E1000_I2C_CLK_OUT; 626 i2cctl &= ~E1000_I2C_CLK_OE_N; 627 } 628 wr32(E1000_I2CPARAMS, i2cctl); 629 wrfl(); 630 } 631 632 /** 633 * igb_get_i2c_clk - Gets the I2C SCL clock state 634 * @data: pointer to hardware structure 635 * 636 * Gets the I2C clock state 637 **/ 638 static int igb_get_i2c_clk(void *data) 639 { 640 struct igb_adapter *adapter = (struct igb_adapter *)data; 641 struct e1000_hw *hw = &adapter->hw; 642 s32 i2cctl = rd32(E1000_I2CPARAMS); 643 644 return !!(i2cctl & E1000_I2C_CLK_IN); 645 } 646 647 static const struct i2c_algo_bit_data igb_i2c_algo = { 648 .setsda = igb_set_i2c_data, 649 .setscl = igb_set_i2c_clk, 650 .getsda = igb_get_i2c_data, 651 .getscl = igb_get_i2c_clk, 652 .udelay = 5, 653 .timeout = 20, 654 }; 655 656 /** 657 * igb_get_hw_dev - return device 658 * @hw: pointer to hardware structure 659 * 660 * used by hardware layer to print debugging information 661 **/ 662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 663 { 664 struct igb_adapter *adapter = hw->back; 665 return adapter->netdev; 666 } 667 668 /** 669 * igb_init_module - Driver Registration Routine 670 * 671 * igb_init_module is the first routine called when the driver is 672 * loaded. All it does is register with the PCI subsystem. 673 **/ 674 static int __init igb_init_module(void) 675 { 676 int ret; 677 678 pr_info("%s - version %s\n", 679 igb_driver_string, igb_driver_version); 680 pr_info("%s\n", igb_copyright); 681 682 #ifdef CONFIG_IGB_DCA 683 dca_register_notify(&dca_notifier); 684 #endif 685 ret = pci_register_driver(&igb_driver); 686 return ret; 687 } 688 689 module_init(igb_init_module); 690 691 /** 692 * igb_exit_module - Driver Exit Cleanup Routine 693 * 694 * igb_exit_module is called just before the driver is removed 695 * from memory. 696 **/ 697 static void __exit igb_exit_module(void) 698 { 699 #ifdef CONFIG_IGB_DCA 700 dca_unregister_notify(&dca_notifier); 701 #endif 702 pci_unregister_driver(&igb_driver); 703 } 704 705 module_exit(igb_exit_module); 706 707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 708 /** 709 * igb_cache_ring_register - Descriptor ring to register mapping 710 * @adapter: board private structure to initialize 711 * 712 * Once we know the feature-set enabled for the device, we'll cache 713 * the register offset the descriptor ring is assigned to. 714 **/ 715 static void igb_cache_ring_register(struct igb_adapter *adapter) 716 { 717 int i = 0, j = 0; 718 u32 rbase_offset = adapter->vfs_allocated_count; 719 720 switch (adapter->hw.mac.type) { 721 case e1000_82576: 722 /* The queues are allocated for virtualization such that VF 0 723 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 724 * In order to avoid collision we start at the first free queue 725 * and continue consuming queues in the same sequence 726 */ 727 if (adapter->vfs_allocated_count) { 728 for (; i < adapter->rss_queues; i++) 729 adapter->rx_ring[i]->reg_idx = rbase_offset + 730 Q_IDX_82576(i); 731 } 732 /* Fall through */ 733 case e1000_82575: 734 case e1000_82580: 735 case e1000_i350: 736 case e1000_i354: 737 case e1000_i210: 738 case e1000_i211: 739 /* Fall through */ 740 default: 741 for (; i < adapter->num_rx_queues; i++) 742 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 743 for (; j < adapter->num_tx_queues; j++) 744 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 745 break; 746 } 747 } 748 749 u32 igb_rd32(struct e1000_hw *hw, u32 reg) 750 { 751 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 752 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr); 753 u32 value = 0; 754 755 if (E1000_REMOVED(hw_addr)) 756 return ~value; 757 758 value = readl(&hw_addr[reg]); 759 760 /* reads should not return all F's */ 761 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 762 struct net_device *netdev = igb->netdev; 763 hw->hw_addr = NULL; 764 netif_device_detach(netdev); 765 netdev_err(netdev, "PCIe link lost, device now detached\n"); 766 } 767 768 return value; 769 } 770 771 /** 772 * igb_write_ivar - configure ivar for given MSI-X vector 773 * @hw: pointer to the HW structure 774 * @msix_vector: vector number we are allocating to a given ring 775 * @index: row index of IVAR register to write within IVAR table 776 * @offset: column offset of in IVAR, should be multiple of 8 777 * 778 * This function is intended to handle the writing of the IVAR register 779 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 780 * each containing an cause allocation for an Rx and Tx ring, and a 781 * variable number of rows depending on the number of queues supported. 782 **/ 783 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 784 int index, int offset) 785 { 786 u32 ivar = array_rd32(E1000_IVAR0, index); 787 788 /* clear any bits that are currently set */ 789 ivar &= ~((u32)0xFF << offset); 790 791 /* write vector and valid bit */ 792 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 793 794 array_wr32(E1000_IVAR0, index, ivar); 795 } 796 797 #define IGB_N0_QUEUE -1 798 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 799 { 800 struct igb_adapter *adapter = q_vector->adapter; 801 struct e1000_hw *hw = &adapter->hw; 802 int rx_queue = IGB_N0_QUEUE; 803 int tx_queue = IGB_N0_QUEUE; 804 u32 msixbm = 0; 805 806 if (q_vector->rx.ring) 807 rx_queue = q_vector->rx.ring->reg_idx; 808 if (q_vector->tx.ring) 809 tx_queue = q_vector->tx.ring->reg_idx; 810 811 switch (hw->mac.type) { 812 case e1000_82575: 813 /* The 82575 assigns vectors using a bitmask, which matches the 814 * bitmask for the EICR/EIMS/EIMC registers. To assign one 815 * or more queues to a vector, we write the appropriate bits 816 * into the MSIXBM register for that vector. 817 */ 818 if (rx_queue > IGB_N0_QUEUE) 819 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 820 if (tx_queue > IGB_N0_QUEUE) 821 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 822 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 823 msixbm |= E1000_EIMS_OTHER; 824 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 825 q_vector->eims_value = msixbm; 826 break; 827 case e1000_82576: 828 /* 82576 uses a table that essentially consists of 2 columns 829 * with 8 rows. The ordering is column-major so we use the 830 * lower 3 bits as the row index, and the 4th bit as the 831 * column offset. 832 */ 833 if (rx_queue > IGB_N0_QUEUE) 834 igb_write_ivar(hw, msix_vector, 835 rx_queue & 0x7, 836 (rx_queue & 0x8) << 1); 837 if (tx_queue > IGB_N0_QUEUE) 838 igb_write_ivar(hw, msix_vector, 839 tx_queue & 0x7, 840 ((tx_queue & 0x8) << 1) + 8); 841 q_vector->eims_value = BIT(msix_vector); 842 break; 843 case e1000_82580: 844 case e1000_i350: 845 case e1000_i354: 846 case e1000_i210: 847 case e1000_i211: 848 /* On 82580 and newer adapters the scheme is similar to 82576 849 * however instead of ordering column-major we have things 850 * ordered row-major. So we traverse the table by using 851 * bit 0 as the column offset, and the remaining bits as the 852 * row index. 853 */ 854 if (rx_queue > IGB_N0_QUEUE) 855 igb_write_ivar(hw, msix_vector, 856 rx_queue >> 1, 857 (rx_queue & 0x1) << 4); 858 if (tx_queue > IGB_N0_QUEUE) 859 igb_write_ivar(hw, msix_vector, 860 tx_queue >> 1, 861 ((tx_queue & 0x1) << 4) + 8); 862 q_vector->eims_value = BIT(msix_vector); 863 break; 864 default: 865 BUG(); 866 break; 867 } 868 869 /* add q_vector eims value to global eims_enable_mask */ 870 adapter->eims_enable_mask |= q_vector->eims_value; 871 872 /* configure q_vector to set itr on first interrupt */ 873 q_vector->set_itr = 1; 874 } 875 876 /** 877 * igb_configure_msix - Configure MSI-X hardware 878 * @adapter: board private structure to initialize 879 * 880 * igb_configure_msix sets up the hardware to properly 881 * generate MSI-X interrupts. 882 **/ 883 static void igb_configure_msix(struct igb_adapter *adapter) 884 { 885 u32 tmp; 886 int i, vector = 0; 887 struct e1000_hw *hw = &adapter->hw; 888 889 adapter->eims_enable_mask = 0; 890 891 /* set vector for other causes, i.e. link changes */ 892 switch (hw->mac.type) { 893 case e1000_82575: 894 tmp = rd32(E1000_CTRL_EXT); 895 /* enable MSI-X PBA support*/ 896 tmp |= E1000_CTRL_EXT_PBA_CLR; 897 898 /* Auto-Mask interrupts upon ICR read. */ 899 tmp |= E1000_CTRL_EXT_EIAME; 900 tmp |= E1000_CTRL_EXT_IRCA; 901 902 wr32(E1000_CTRL_EXT, tmp); 903 904 /* enable msix_other interrupt */ 905 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 906 adapter->eims_other = E1000_EIMS_OTHER; 907 908 break; 909 910 case e1000_82576: 911 case e1000_82580: 912 case e1000_i350: 913 case e1000_i354: 914 case e1000_i210: 915 case e1000_i211: 916 /* Turn on MSI-X capability first, or our settings 917 * won't stick. And it will take days to debug. 918 */ 919 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 920 E1000_GPIE_PBA | E1000_GPIE_EIAME | 921 E1000_GPIE_NSICR); 922 923 /* enable msix_other interrupt */ 924 adapter->eims_other = BIT(vector); 925 tmp = (vector++ | E1000_IVAR_VALID) << 8; 926 927 wr32(E1000_IVAR_MISC, tmp); 928 break; 929 default: 930 /* do nothing, since nothing else supports MSI-X */ 931 break; 932 } /* switch (hw->mac.type) */ 933 934 adapter->eims_enable_mask |= adapter->eims_other; 935 936 for (i = 0; i < adapter->num_q_vectors; i++) 937 igb_assign_vector(adapter->q_vector[i], vector++); 938 939 wrfl(); 940 } 941 942 /** 943 * igb_request_msix - Initialize MSI-X interrupts 944 * @adapter: board private structure to initialize 945 * 946 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 947 * kernel. 948 **/ 949 static int igb_request_msix(struct igb_adapter *adapter) 950 { 951 struct net_device *netdev = adapter->netdev; 952 int i, err = 0, vector = 0, free_vector = 0; 953 954 err = request_irq(adapter->msix_entries[vector].vector, 955 igb_msix_other, 0, netdev->name, adapter); 956 if (err) 957 goto err_out; 958 959 for (i = 0; i < adapter->num_q_vectors; i++) { 960 struct igb_q_vector *q_vector = adapter->q_vector[i]; 961 962 vector++; 963 964 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector); 965 966 if (q_vector->rx.ring && q_vector->tx.ring) 967 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 968 q_vector->rx.ring->queue_index); 969 else if (q_vector->tx.ring) 970 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 971 q_vector->tx.ring->queue_index); 972 else if (q_vector->rx.ring) 973 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 974 q_vector->rx.ring->queue_index); 975 else 976 sprintf(q_vector->name, "%s-unused", netdev->name); 977 978 err = request_irq(adapter->msix_entries[vector].vector, 979 igb_msix_ring, 0, q_vector->name, 980 q_vector); 981 if (err) 982 goto err_free; 983 } 984 985 igb_configure_msix(adapter); 986 return 0; 987 988 err_free: 989 /* free already assigned IRQs */ 990 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 991 992 vector--; 993 for (i = 0; i < vector; i++) { 994 free_irq(adapter->msix_entries[free_vector++].vector, 995 adapter->q_vector[i]); 996 } 997 err_out: 998 return err; 999 } 1000 1001 /** 1002 * igb_free_q_vector - Free memory allocated for specific interrupt vector 1003 * @adapter: board private structure to initialize 1004 * @v_idx: Index of vector to be freed 1005 * 1006 * This function frees the memory allocated to the q_vector. 1007 **/ 1008 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 1009 { 1010 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1011 1012 adapter->q_vector[v_idx] = NULL; 1013 1014 /* igb_get_stats64() might access the rings on this vector, 1015 * we must wait a grace period before freeing it. 1016 */ 1017 if (q_vector) 1018 kfree_rcu(q_vector, rcu); 1019 } 1020 1021 /** 1022 * igb_reset_q_vector - Reset config for interrupt vector 1023 * @adapter: board private structure to initialize 1024 * @v_idx: Index of vector to be reset 1025 * 1026 * If NAPI is enabled it will delete any references to the 1027 * NAPI struct. This is preparation for igb_free_q_vector. 1028 **/ 1029 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1030 { 1031 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1032 1033 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1034 * allocated. So, q_vector is NULL so we should stop here. 1035 */ 1036 if (!q_vector) 1037 return; 1038 1039 if (q_vector->tx.ring) 1040 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1041 1042 if (q_vector->rx.ring) 1043 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 1044 1045 netif_napi_del(&q_vector->napi); 1046 1047 } 1048 1049 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1050 { 1051 int v_idx = adapter->num_q_vectors; 1052 1053 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1054 pci_disable_msix(adapter->pdev); 1055 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1056 pci_disable_msi(adapter->pdev); 1057 1058 while (v_idx--) 1059 igb_reset_q_vector(adapter, v_idx); 1060 } 1061 1062 /** 1063 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1064 * @adapter: board private structure to initialize 1065 * 1066 * This function frees the memory allocated to the q_vectors. In addition if 1067 * NAPI is enabled it will delete any references to the NAPI struct prior 1068 * to freeing the q_vector. 1069 **/ 1070 static void igb_free_q_vectors(struct igb_adapter *adapter) 1071 { 1072 int v_idx = adapter->num_q_vectors; 1073 1074 adapter->num_tx_queues = 0; 1075 adapter->num_rx_queues = 0; 1076 adapter->num_q_vectors = 0; 1077 1078 while (v_idx--) { 1079 igb_reset_q_vector(adapter, v_idx); 1080 igb_free_q_vector(adapter, v_idx); 1081 } 1082 } 1083 1084 /** 1085 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1086 * @adapter: board private structure to initialize 1087 * 1088 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1089 * MSI-X interrupts allocated. 1090 */ 1091 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1092 { 1093 igb_free_q_vectors(adapter); 1094 igb_reset_interrupt_capability(adapter); 1095 } 1096 1097 /** 1098 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1099 * @adapter: board private structure to initialize 1100 * @msix: boolean value of MSIX capability 1101 * 1102 * Attempt to configure interrupts using the best available 1103 * capabilities of the hardware and kernel. 1104 **/ 1105 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1106 { 1107 int err; 1108 int numvecs, i; 1109 1110 if (!msix) 1111 goto msi_only; 1112 adapter->flags |= IGB_FLAG_HAS_MSIX; 1113 1114 /* Number of supported queues. */ 1115 adapter->num_rx_queues = adapter->rss_queues; 1116 if (adapter->vfs_allocated_count) 1117 adapter->num_tx_queues = 1; 1118 else 1119 adapter->num_tx_queues = adapter->rss_queues; 1120 1121 /* start with one vector for every Rx queue */ 1122 numvecs = adapter->num_rx_queues; 1123 1124 /* if Tx handler is separate add 1 for every Tx queue */ 1125 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1126 numvecs += adapter->num_tx_queues; 1127 1128 /* store the number of vectors reserved for queues */ 1129 adapter->num_q_vectors = numvecs; 1130 1131 /* add 1 vector for link status interrupts */ 1132 numvecs++; 1133 for (i = 0; i < numvecs; i++) 1134 adapter->msix_entries[i].entry = i; 1135 1136 err = pci_enable_msix_range(adapter->pdev, 1137 adapter->msix_entries, 1138 numvecs, 1139 numvecs); 1140 if (err > 0) 1141 return; 1142 1143 igb_reset_interrupt_capability(adapter); 1144 1145 /* If we can't do MSI-X, try MSI */ 1146 msi_only: 1147 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1148 #ifdef CONFIG_PCI_IOV 1149 /* disable SR-IOV for non MSI-X configurations */ 1150 if (adapter->vf_data) { 1151 struct e1000_hw *hw = &adapter->hw; 1152 /* disable iov and allow time for transactions to clear */ 1153 pci_disable_sriov(adapter->pdev); 1154 msleep(500); 1155 1156 kfree(adapter->vf_data); 1157 adapter->vf_data = NULL; 1158 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1159 wrfl(); 1160 msleep(100); 1161 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1162 } 1163 #endif 1164 adapter->vfs_allocated_count = 0; 1165 adapter->rss_queues = 1; 1166 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1167 adapter->num_rx_queues = 1; 1168 adapter->num_tx_queues = 1; 1169 adapter->num_q_vectors = 1; 1170 if (!pci_enable_msi(adapter->pdev)) 1171 adapter->flags |= IGB_FLAG_HAS_MSI; 1172 } 1173 1174 static void igb_add_ring(struct igb_ring *ring, 1175 struct igb_ring_container *head) 1176 { 1177 head->ring = ring; 1178 head->count++; 1179 } 1180 1181 /** 1182 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1183 * @adapter: board private structure to initialize 1184 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1185 * @v_idx: index of vector in adapter struct 1186 * @txr_count: total number of Tx rings to allocate 1187 * @txr_idx: index of first Tx ring to allocate 1188 * @rxr_count: total number of Rx rings to allocate 1189 * @rxr_idx: index of first Rx ring to allocate 1190 * 1191 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1192 **/ 1193 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1194 int v_count, int v_idx, 1195 int txr_count, int txr_idx, 1196 int rxr_count, int rxr_idx) 1197 { 1198 struct igb_q_vector *q_vector; 1199 struct igb_ring *ring; 1200 int ring_count, size; 1201 1202 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1203 if (txr_count > 1 || rxr_count > 1) 1204 return -ENOMEM; 1205 1206 ring_count = txr_count + rxr_count; 1207 size = sizeof(struct igb_q_vector) + 1208 (sizeof(struct igb_ring) * ring_count); 1209 1210 /* allocate q_vector and rings */ 1211 q_vector = adapter->q_vector[v_idx]; 1212 if (!q_vector) { 1213 q_vector = kzalloc(size, GFP_KERNEL); 1214 } else if (size > ksize(q_vector)) { 1215 kfree_rcu(q_vector, rcu); 1216 q_vector = kzalloc(size, GFP_KERNEL); 1217 } else { 1218 memset(q_vector, 0, size); 1219 } 1220 if (!q_vector) 1221 return -ENOMEM; 1222 1223 /* initialize NAPI */ 1224 netif_napi_add(adapter->netdev, &q_vector->napi, 1225 igb_poll, 64); 1226 1227 /* tie q_vector and adapter together */ 1228 adapter->q_vector[v_idx] = q_vector; 1229 q_vector->adapter = adapter; 1230 1231 /* initialize work limits */ 1232 q_vector->tx.work_limit = adapter->tx_work_limit; 1233 1234 /* initialize ITR configuration */ 1235 q_vector->itr_register = adapter->io_addr + E1000_EITR(0); 1236 q_vector->itr_val = IGB_START_ITR; 1237 1238 /* initialize pointer to rings */ 1239 ring = q_vector->ring; 1240 1241 /* intialize ITR */ 1242 if (rxr_count) { 1243 /* rx or rx/tx vector */ 1244 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1245 q_vector->itr_val = adapter->rx_itr_setting; 1246 } else { 1247 /* tx only vector */ 1248 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1249 q_vector->itr_val = adapter->tx_itr_setting; 1250 } 1251 1252 if (txr_count) { 1253 /* assign generic ring traits */ 1254 ring->dev = &adapter->pdev->dev; 1255 ring->netdev = adapter->netdev; 1256 1257 /* configure backlink on ring */ 1258 ring->q_vector = q_vector; 1259 1260 /* update q_vector Tx values */ 1261 igb_add_ring(ring, &q_vector->tx); 1262 1263 /* For 82575, context index must be unique per ring. */ 1264 if (adapter->hw.mac.type == e1000_82575) 1265 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1266 1267 /* apply Tx specific ring traits */ 1268 ring->count = adapter->tx_ring_count; 1269 ring->queue_index = txr_idx; 1270 1271 u64_stats_init(&ring->tx_syncp); 1272 u64_stats_init(&ring->tx_syncp2); 1273 1274 /* assign ring to adapter */ 1275 adapter->tx_ring[txr_idx] = ring; 1276 1277 /* push pointer to next ring */ 1278 ring++; 1279 } 1280 1281 if (rxr_count) { 1282 /* assign generic ring traits */ 1283 ring->dev = &adapter->pdev->dev; 1284 ring->netdev = adapter->netdev; 1285 1286 /* configure backlink on ring */ 1287 ring->q_vector = q_vector; 1288 1289 /* update q_vector Rx values */ 1290 igb_add_ring(ring, &q_vector->rx); 1291 1292 /* set flag indicating ring supports SCTP checksum offload */ 1293 if (adapter->hw.mac.type >= e1000_82576) 1294 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1295 1296 /* On i350, i354, i210, and i211, loopback VLAN packets 1297 * have the tag byte-swapped. 1298 */ 1299 if (adapter->hw.mac.type >= e1000_i350) 1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1301 1302 /* apply Rx specific ring traits */ 1303 ring->count = adapter->rx_ring_count; 1304 ring->queue_index = rxr_idx; 1305 1306 u64_stats_init(&ring->rx_syncp); 1307 1308 /* assign ring to adapter */ 1309 adapter->rx_ring[rxr_idx] = ring; 1310 } 1311 1312 return 0; 1313 } 1314 1315 1316 /** 1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1318 * @adapter: board private structure to initialize 1319 * 1320 * We allocate one q_vector per queue interrupt. If allocation fails we 1321 * return -ENOMEM. 1322 **/ 1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1324 { 1325 int q_vectors = adapter->num_q_vectors; 1326 int rxr_remaining = adapter->num_rx_queues; 1327 int txr_remaining = adapter->num_tx_queues; 1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1329 int err; 1330 1331 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1332 for (; rxr_remaining; v_idx++) { 1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1334 0, 0, 1, rxr_idx); 1335 1336 if (err) 1337 goto err_out; 1338 1339 /* update counts and index */ 1340 rxr_remaining--; 1341 rxr_idx++; 1342 } 1343 } 1344 1345 for (; v_idx < q_vectors; v_idx++) { 1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1348 1349 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1350 tqpv, txr_idx, rqpv, rxr_idx); 1351 1352 if (err) 1353 goto err_out; 1354 1355 /* update counts and index */ 1356 rxr_remaining -= rqpv; 1357 txr_remaining -= tqpv; 1358 rxr_idx++; 1359 txr_idx++; 1360 } 1361 1362 return 0; 1363 1364 err_out: 1365 adapter->num_tx_queues = 0; 1366 adapter->num_rx_queues = 0; 1367 adapter->num_q_vectors = 0; 1368 1369 while (v_idx--) 1370 igb_free_q_vector(adapter, v_idx); 1371 1372 return -ENOMEM; 1373 } 1374 1375 /** 1376 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1377 * @adapter: board private structure to initialize 1378 * @msix: boolean value of MSIX capability 1379 * 1380 * This function initializes the interrupts and allocates all of the queues. 1381 **/ 1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1383 { 1384 struct pci_dev *pdev = adapter->pdev; 1385 int err; 1386 1387 igb_set_interrupt_capability(adapter, msix); 1388 1389 err = igb_alloc_q_vectors(adapter); 1390 if (err) { 1391 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1392 goto err_alloc_q_vectors; 1393 } 1394 1395 igb_cache_ring_register(adapter); 1396 1397 return 0; 1398 1399 err_alloc_q_vectors: 1400 igb_reset_interrupt_capability(adapter); 1401 return err; 1402 } 1403 1404 /** 1405 * igb_request_irq - initialize interrupts 1406 * @adapter: board private structure to initialize 1407 * 1408 * Attempts to configure interrupts using the best available 1409 * capabilities of the hardware and kernel. 1410 **/ 1411 static int igb_request_irq(struct igb_adapter *adapter) 1412 { 1413 struct net_device *netdev = adapter->netdev; 1414 struct pci_dev *pdev = adapter->pdev; 1415 int err = 0; 1416 1417 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1418 err = igb_request_msix(adapter); 1419 if (!err) 1420 goto request_done; 1421 /* fall back to MSI */ 1422 igb_free_all_tx_resources(adapter); 1423 igb_free_all_rx_resources(adapter); 1424 1425 igb_clear_interrupt_scheme(adapter); 1426 err = igb_init_interrupt_scheme(adapter, false); 1427 if (err) 1428 goto request_done; 1429 1430 igb_setup_all_tx_resources(adapter); 1431 igb_setup_all_rx_resources(adapter); 1432 igb_configure(adapter); 1433 } 1434 1435 igb_assign_vector(adapter->q_vector[0], 0); 1436 1437 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1438 err = request_irq(pdev->irq, igb_intr_msi, 0, 1439 netdev->name, adapter); 1440 if (!err) 1441 goto request_done; 1442 1443 /* fall back to legacy interrupts */ 1444 igb_reset_interrupt_capability(adapter); 1445 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1446 } 1447 1448 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1449 netdev->name, adapter); 1450 1451 if (err) 1452 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1453 err); 1454 1455 request_done: 1456 return err; 1457 } 1458 1459 static void igb_free_irq(struct igb_adapter *adapter) 1460 { 1461 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1462 int vector = 0, i; 1463 1464 free_irq(adapter->msix_entries[vector++].vector, adapter); 1465 1466 for (i = 0; i < adapter->num_q_vectors; i++) 1467 free_irq(adapter->msix_entries[vector++].vector, 1468 adapter->q_vector[i]); 1469 } else { 1470 free_irq(adapter->pdev->irq, adapter); 1471 } 1472 } 1473 1474 /** 1475 * igb_irq_disable - Mask off interrupt generation on the NIC 1476 * @adapter: board private structure 1477 **/ 1478 static void igb_irq_disable(struct igb_adapter *adapter) 1479 { 1480 struct e1000_hw *hw = &adapter->hw; 1481 1482 /* we need to be careful when disabling interrupts. The VFs are also 1483 * mapped into these registers and so clearing the bits can cause 1484 * issues on the VF drivers so we only need to clear what we set 1485 */ 1486 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1487 u32 regval = rd32(E1000_EIAM); 1488 1489 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1490 wr32(E1000_EIMC, adapter->eims_enable_mask); 1491 regval = rd32(E1000_EIAC); 1492 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1493 } 1494 1495 wr32(E1000_IAM, 0); 1496 wr32(E1000_IMC, ~0); 1497 wrfl(); 1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1499 int i; 1500 1501 for (i = 0; i < adapter->num_q_vectors; i++) 1502 synchronize_irq(adapter->msix_entries[i].vector); 1503 } else { 1504 synchronize_irq(adapter->pdev->irq); 1505 } 1506 } 1507 1508 /** 1509 * igb_irq_enable - Enable default interrupt generation settings 1510 * @adapter: board private structure 1511 **/ 1512 static void igb_irq_enable(struct igb_adapter *adapter) 1513 { 1514 struct e1000_hw *hw = &adapter->hw; 1515 1516 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1517 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1518 u32 regval = rd32(E1000_EIAC); 1519 1520 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1521 regval = rd32(E1000_EIAM); 1522 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1523 wr32(E1000_EIMS, adapter->eims_enable_mask); 1524 if (adapter->vfs_allocated_count) { 1525 wr32(E1000_MBVFIMR, 0xFF); 1526 ims |= E1000_IMS_VMMB; 1527 } 1528 wr32(E1000_IMS, ims); 1529 } else { 1530 wr32(E1000_IMS, IMS_ENABLE_MASK | 1531 E1000_IMS_DRSTA); 1532 wr32(E1000_IAM, IMS_ENABLE_MASK | 1533 E1000_IMS_DRSTA); 1534 } 1535 } 1536 1537 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1538 { 1539 struct e1000_hw *hw = &adapter->hw; 1540 u16 pf_id = adapter->vfs_allocated_count; 1541 u16 vid = adapter->hw.mng_cookie.vlan_id; 1542 u16 old_vid = adapter->mng_vlan_id; 1543 1544 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1545 /* add VID to filter table */ 1546 igb_vfta_set(hw, vid, pf_id, true, true); 1547 adapter->mng_vlan_id = vid; 1548 } else { 1549 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1550 } 1551 1552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1553 (vid != old_vid) && 1554 !test_bit(old_vid, adapter->active_vlans)) { 1555 /* remove VID from filter table */ 1556 igb_vfta_set(hw, vid, pf_id, false, true); 1557 } 1558 } 1559 1560 /** 1561 * igb_release_hw_control - release control of the h/w to f/w 1562 * @adapter: address of board private structure 1563 * 1564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1565 * For ASF and Pass Through versions of f/w this means that the 1566 * driver is no longer loaded. 1567 **/ 1568 static void igb_release_hw_control(struct igb_adapter *adapter) 1569 { 1570 struct e1000_hw *hw = &adapter->hw; 1571 u32 ctrl_ext; 1572 1573 /* Let firmware take over control of h/w */ 1574 ctrl_ext = rd32(E1000_CTRL_EXT); 1575 wr32(E1000_CTRL_EXT, 1576 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1577 } 1578 1579 /** 1580 * igb_get_hw_control - get control of the h/w from f/w 1581 * @adapter: address of board private structure 1582 * 1583 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1584 * For ASF and Pass Through versions of f/w this means that 1585 * the driver is loaded. 1586 **/ 1587 static void igb_get_hw_control(struct igb_adapter *adapter) 1588 { 1589 struct e1000_hw *hw = &adapter->hw; 1590 u32 ctrl_ext; 1591 1592 /* Let firmware know the driver has taken over */ 1593 ctrl_ext = rd32(E1000_CTRL_EXT); 1594 wr32(E1000_CTRL_EXT, 1595 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1596 } 1597 1598 /** 1599 * igb_configure - configure the hardware for RX and TX 1600 * @adapter: private board structure 1601 **/ 1602 static void igb_configure(struct igb_adapter *adapter) 1603 { 1604 struct net_device *netdev = adapter->netdev; 1605 int i; 1606 1607 igb_get_hw_control(adapter); 1608 igb_set_rx_mode(netdev); 1609 1610 igb_restore_vlan(adapter); 1611 1612 igb_setup_tctl(adapter); 1613 igb_setup_mrqc(adapter); 1614 igb_setup_rctl(adapter); 1615 1616 igb_nfc_filter_restore(adapter); 1617 igb_configure_tx(adapter); 1618 igb_configure_rx(adapter); 1619 1620 igb_rx_fifo_flush_82575(&adapter->hw); 1621 1622 /* call igb_desc_unused which always leaves 1623 * at least 1 descriptor unused to make sure 1624 * next_to_use != next_to_clean 1625 */ 1626 for (i = 0; i < adapter->num_rx_queues; i++) { 1627 struct igb_ring *ring = adapter->rx_ring[i]; 1628 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 1629 } 1630 } 1631 1632 /** 1633 * igb_power_up_link - Power up the phy/serdes link 1634 * @adapter: address of board private structure 1635 **/ 1636 void igb_power_up_link(struct igb_adapter *adapter) 1637 { 1638 igb_reset_phy(&adapter->hw); 1639 1640 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1641 igb_power_up_phy_copper(&adapter->hw); 1642 else 1643 igb_power_up_serdes_link_82575(&adapter->hw); 1644 1645 igb_setup_link(&adapter->hw); 1646 } 1647 1648 /** 1649 * igb_power_down_link - Power down the phy/serdes link 1650 * @adapter: address of board private structure 1651 */ 1652 static void igb_power_down_link(struct igb_adapter *adapter) 1653 { 1654 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1655 igb_power_down_phy_copper_82575(&adapter->hw); 1656 else 1657 igb_shutdown_serdes_link_82575(&adapter->hw); 1658 } 1659 1660 /** 1661 * Detect and switch function for Media Auto Sense 1662 * @adapter: address of the board private structure 1663 **/ 1664 static void igb_check_swap_media(struct igb_adapter *adapter) 1665 { 1666 struct e1000_hw *hw = &adapter->hw; 1667 u32 ctrl_ext, connsw; 1668 bool swap_now = false; 1669 1670 ctrl_ext = rd32(E1000_CTRL_EXT); 1671 connsw = rd32(E1000_CONNSW); 1672 1673 /* need to live swap if current media is copper and we have fiber/serdes 1674 * to go to. 1675 */ 1676 1677 if ((hw->phy.media_type == e1000_media_type_copper) && 1678 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 1679 swap_now = true; 1680 } else if (!(connsw & E1000_CONNSW_SERDESD)) { 1681 /* copper signal takes time to appear */ 1682 if (adapter->copper_tries < 4) { 1683 adapter->copper_tries++; 1684 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 1685 wr32(E1000_CONNSW, connsw); 1686 return; 1687 } else { 1688 adapter->copper_tries = 0; 1689 if ((connsw & E1000_CONNSW_PHYSD) && 1690 (!(connsw & E1000_CONNSW_PHY_PDN))) { 1691 swap_now = true; 1692 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 1693 wr32(E1000_CONNSW, connsw); 1694 } 1695 } 1696 } 1697 1698 if (!swap_now) 1699 return; 1700 1701 switch (hw->phy.media_type) { 1702 case e1000_media_type_copper: 1703 netdev_info(adapter->netdev, 1704 "MAS: changing media to fiber/serdes\n"); 1705 ctrl_ext |= 1706 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1707 adapter->flags |= IGB_FLAG_MEDIA_RESET; 1708 adapter->copper_tries = 0; 1709 break; 1710 case e1000_media_type_internal_serdes: 1711 case e1000_media_type_fiber: 1712 netdev_info(adapter->netdev, 1713 "MAS: changing media to copper\n"); 1714 ctrl_ext &= 1715 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1716 adapter->flags |= IGB_FLAG_MEDIA_RESET; 1717 break; 1718 default: 1719 /* shouldn't get here during regular operation */ 1720 netdev_err(adapter->netdev, 1721 "AMS: Invalid media type found, returning\n"); 1722 break; 1723 } 1724 wr32(E1000_CTRL_EXT, ctrl_ext); 1725 } 1726 1727 /** 1728 * igb_up - Open the interface and prepare it to handle traffic 1729 * @adapter: board private structure 1730 **/ 1731 int igb_up(struct igb_adapter *adapter) 1732 { 1733 struct e1000_hw *hw = &adapter->hw; 1734 int i; 1735 1736 /* hardware has been reset, we need to reload some things */ 1737 igb_configure(adapter); 1738 1739 clear_bit(__IGB_DOWN, &adapter->state); 1740 1741 for (i = 0; i < adapter->num_q_vectors; i++) 1742 napi_enable(&(adapter->q_vector[i]->napi)); 1743 1744 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1745 igb_configure_msix(adapter); 1746 else 1747 igb_assign_vector(adapter->q_vector[0], 0); 1748 1749 /* Clear any pending interrupts. */ 1750 rd32(E1000_ICR); 1751 igb_irq_enable(adapter); 1752 1753 /* notify VFs that reset has been completed */ 1754 if (adapter->vfs_allocated_count) { 1755 u32 reg_data = rd32(E1000_CTRL_EXT); 1756 1757 reg_data |= E1000_CTRL_EXT_PFRSTD; 1758 wr32(E1000_CTRL_EXT, reg_data); 1759 } 1760 1761 netif_tx_start_all_queues(adapter->netdev); 1762 1763 /* start the watchdog. */ 1764 hw->mac.get_link_status = 1; 1765 schedule_work(&adapter->watchdog_task); 1766 1767 if ((adapter->flags & IGB_FLAG_EEE) && 1768 (!hw->dev_spec._82575.eee_disable)) 1769 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 1770 1771 return 0; 1772 } 1773 1774 void igb_down(struct igb_adapter *adapter) 1775 { 1776 struct net_device *netdev = adapter->netdev; 1777 struct e1000_hw *hw = &adapter->hw; 1778 u32 tctl, rctl; 1779 int i; 1780 1781 /* signal that we're down so the interrupt handler does not 1782 * reschedule our watchdog timer 1783 */ 1784 set_bit(__IGB_DOWN, &adapter->state); 1785 1786 /* disable receives in the hardware */ 1787 rctl = rd32(E1000_RCTL); 1788 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 1789 /* flush and sleep below */ 1790 1791 netif_carrier_off(netdev); 1792 netif_tx_stop_all_queues(netdev); 1793 1794 /* disable transmits in the hardware */ 1795 tctl = rd32(E1000_TCTL); 1796 tctl &= ~E1000_TCTL_EN; 1797 wr32(E1000_TCTL, tctl); 1798 /* flush both disables and wait for them to finish */ 1799 wrfl(); 1800 usleep_range(10000, 11000); 1801 1802 igb_irq_disable(adapter); 1803 1804 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 1805 1806 for (i = 0; i < adapter->num_q_vectors; i++) { 1807 if (adapter->q_vector[i]) { 1808 napi_synchronize(&adapter->q_vector[i]->napi); 1809 napi_disable(&adapter->q_vector[i]->napi); 1810 } 1811 } 1812 1813 del_timer_sync(&adapter->watchdog_timer); 1814 del_timer_sync(&adapter->phy_info_timer); 1815 1816 /* record the stats before reset*/ 1817 spin_lock(&adapter->stats64_lock); 1818 igb_update_stats(adapter, &adapter->stats64); 1819 spin_unlock(&adapter->stats64_lock); 1820 1821 adapter->link_speed = 0; 1822 adapter->link_duplex = 0; 1823 1824 if (!pci_channel_offline(adapter->pdev)) 1825 igb_reset(adapter); 1826 1827 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 1828 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 1829 1830 igb_clean_all_tx_rings(adapter); 1831 igb_clean_all_rx_rings(adapter); 1832 #ifdef CONFIG_IGB_DCA 1833 1834 /* since we reset the hardware DCA settings were cleared */ 1835 igb_setup_dca(adapter); 1836 #endif 1837 } 1838 1839 void igb_reinit_locked(struct igb_adapter *adapter) 1840 { 1841 WARN_ON(in_interrupt()); 1842 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 1843 usleep_range(1000, 2000); 1844 igb_down(adapter); 1845 igb_up(adapter); 1846 clear_bit(__IGB_RESETTING, &adapter->state); 1847 } 1848 1849 /** igb_enable_mas - Media Autosense re-enable after swap 1850 * 1851 * @adapter: adapter struct 1852 **/ 1853 static void igb_enable_mas(struct igb_adapter *adapter) 1854 { 1855 struct e1000_hw *hw = &adapter->hw; 1856 u32 connsw = rd32(E1000_CONNSW); 1857 1858 /* configure for SerDes media detect */ 1859 if ((hw->phy.media_type == e1000_media_type_copper) && 1860 (!(connsw & E1000_CONNSW_SERDESD))) { 1861 connsw |= E1000_CONNSW_ENRGSRC; 1862 connsw |= E1000_CONNSW_AUTOSENSE_EN; 1863 wr32(E1000_CONNSW, connsw); 1864 wrfl(); 1865 } 1866 } 1867 1868 void igb_reset(struct igb_adapter *adapter) 1869 { 1870 struct pci_dev *pdev = adapter->pdev; 1871 struct e1000_hw *hw = &adapter->hw; 1872 struct e1000_mac_info *mac = &hw->mac; 1873 struct e1000_fc_info *fc = &hw->fc; 1874 u32 pba, hwm; 1875 1876 /* Repartition Pba for greater than 9k mtu 1877 * To take effect CTRL.RST is required. 1878 */ 1879 switch (mac->type) { 1880 case e1000_i350: 1881 case e1000_i354: 1882 case e1000_82580: 1883 pba = rd32(E1000_RXPBS); 1884 pba = igb_rxpbs_adjust_82580(pba); 1885 break; 1886 case e1000_82576: 1887 pba = rd32(E1000_RXPBS); 1888 pba &= E1000_RXPBS_SIZE_MASK_82576; 1889 break; 1890 case e1000_82575: 1891 case e1000_i210: 1892 case e1000_i211: 1893 default: 1894 pba = E1000_PBA_34K; 1895 break; 1896 } 1897 1898 if (mac->type == e1000_82575) { 1899 u32 min_rx_space, min_tx_space, needed_tx_space; 1900 1901 /* write Rx PBA so that hardware can report correct Tx PBA */ 1902 wr32(E1000_PBA, pba); 1903 1904 /* To maintain wire speed transmits, the Tx FIFO should be 1905 * large enough to accommodate two full transmit packets, 1906 * rounded up to the next 1KB and expressed in KB. Likewise, 1907 * the Rx FIFO should be large enough to accommodate at least 1908 * one full receive packet and is similarly rounded up and 1909 * expressed in KB. 1910 */ 1911 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024); 1912 1913 /* The Tx FIFO also stores 16 bytes of information about the Tx 1914 * but don't include Ethernet FCS because hardware appends it. 1915 * We only need to round down to the nearest 512 byte block 1916 * count since the value we care about is 2 frames, not 1. 1917 */ 1918 min_tx_space = adapter->max_frame_size; 1919 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN; 1920 min_tx_space = DIV_ROUND_UP(min_tx_space, 512); 1921 1922 /* upper 16 bits has Tx packet buffer allocation size in KB */ 1923 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16); 1924 1925 /* If current Tx allocation is less than the min Tx FIFO size, 1926 * and the min Tx FIFO size is less than the current Rx FIFO 1927 * allocation, take space away from current Rx allocation. 1928 */ 1929 if (needed_tx_space < pba) { 1930 pba -= needed_tx_space; 1931 1932 /* if short on Rx space, Rx wins and must trump Tx 1933 * adjustment 1934 */ 1935 if (pba < min_rx_space) 1936 pba = min_rx_space; 1937 } 1938 1939 /* adjust PBA for jumbo frames */ 1940 wr32(E1000_PBA, pba); 1941 } 1942 1943 /* flow control settings 1944 * The high water mark must be low enough to fit one full frame 1945 * after transmitting the pause frame. As such we must have enough 1946 * space to allow for us to complete our current transmit and then 1947 * receive the frame that is in progress from the link partner. 1948 * Set it to: 1949 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 1950 */ 1951 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 1952 1953 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 1954 fc->low_water = fc->high_water - 16; 1955 fc->pause_time = 0xFFFF; 1956 fc->send_xon = 1; 1957 fc->current_mode = fc->requested_mode; 1958 1959 /* disable receive for all VFs and wait one second */ 1960 if (adapter->vfs_allocated_count) { 1961 int i; 1962 1963 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 1964 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 1965 1966 /* ping all the active vfs to let them know we are going down */ 1967 igb_ping_all_vfs(adapter); 1968 1969 /* disable transmits and receives */ 1970 wr32(E1000_VFRE, 0); 1971 wr32(E1000_VFTE, 0); 1972 } 1973 1974 /* Allow time for pending master requests to run */ 1975 hw->mac.ops.reset_hw(hw); 1976 wr32(E1000_WUC, 0); 1977 1978 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 1979 /* need to resetup here after media swap */ 1980 adapter->ei.get_invariants(hw); 1981 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 1982 } 1983 if ((mac->type == e1000_82575) && 1984 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 1985 igb_enable_mas(adapter); 1986 } 1987 if (hw->mac.ops.init_hw(hw)) 1988 dev_err(&pdev->dev, "Hardware Error\n"); 1989 1990 /* Flow control settings reset on hardware reset, so guarantee flow 1991 * control is off when forcing speed. 1992 */ 1993 if (!hw->mac.autoneg) 1994 igb_force_mac_fc(hw); 1995 1996 igb_init_dmac(adapter, pba); 1997 #ifdef CONFIG_IGB_HWMON 1998 /* Re-initialize the thermal sensor on i350 devices. */ 1999 if (!test_bit(__IGB_DOWN, &adapter->state)) { 2000 if (mac->type == e1000_i350 && hw->bus.func == 0) { 2001 /* If present, re-initialize the external thermal sensor 2002 * interface. 2003 */ 2004 if (adapter->ets) 2005 mac->ops.init_thermal_sensor_thresh(hw); 2006 } 2007 } 2008 #endif 2009 /* Re-establish EEE setting */ 2010 if (hw->phy.media_type == e1000_media_type_copper) { 2011 switch (mac->type) { 2012 case e1000_i350: 2013 case e1000_i210: 2014 case e1000_i211: 2015 igb_set_eee_i350(hw, true, true); 2016 break; 2017 case e1000_i354: 2018 igb_set_eee_i354(hw, true, true); 2019 break; 2020 default: 2021 break; 2022 } 2023 } 2024 if (!netif_running(adapter->netdev)) 2025 igb_power_down_link(adapter); 2026 2027 igb_update_mng_vlan(adapter); 2028 2029 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2030 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2031 2032 /* Re-enable PTP, where applicable. */ 2033 if (adapter->ptp_flags & IGB_PTP_ENABLED) 2034 igb_ptp_reset(adapter); 2035 2036 igb_get_phy_info(hw); 2037 } 2038 2039 static netdev_features_t igb_fix_features(struct net_device *netdev, 2040 netdev_features_t features) 2041 { 2042 /* Since there is no support for separate Rx/Tx vlan accel 2043 * enable/disable make sure Tx flag is always in same state as Rx. 2044 */ 2045 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2046 features |= NETIF_F_HW_VLAN_CTAG_TX; 2047 else 2048 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2049 2050 return features; 2051 } 2052 2053 static int igb_set_features(struct net_device *netdev, 2054 netdev_features_t features) 2055 { 2056 netdev_features_t changed = netdev->features ^ features; 2057 struct igb_adapter *adapter = netdev_priv(netdev); 2058 2059 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2060 igb_vlan_mode(netdev, features); 2061 2062 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 2063 return 0; 2064 2065 if (!(features & NETIF_F_NTUPLE)) { 2066 struct hlist_node *node2; 2067 struct igb_nfc_filter *rule; 2068 2069 spin_lock(&adapter->nfc_lock); 2070 hlist_for_each_entry_safe(rule, node2, 2071 &adapter->nfc_filter_list, nfc_node) { 2072 igb_erase_filter(adapter, rule); 2073 hlist_del(&rule->nfc_node); 2074 kfree(rule); 2075 } 2076 spin_unlock(&adapter->nfc_lock); 2077 adapter->nfc_filter_count = 0; 2078 } 2079 2080 netdev->features = features; 2081 2082 if (netif_running(netdev)) 2083 igb_reinit_locked(adapter); 2084 else 2085 igb_reset(adapter); 2086 2087 return 0; 2088 } 2089 2090 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 2091 struct net_device *dev, 2092 const unsigned char *addr, u16 vid, 2093 u16 flags) 2094 { 2095 /* guarantee we can provide a unique filter for the unicast address */ 2096 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) { 2097 struct igb_adapter *adapter = netdev_priv(dev); 2098 struct e1000_hw *hw = &adapter->hw; 2099 int vfn = adapter->vfs_allocated_count; 2100 int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 2101 2102 if (netdev_uc_count(dev) >= rar_entries) 2103 return -ENOMEM; 2104 } 2105 2106 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags); 2107 } 2108 2109 #define IGB_MAX_MAC_HDR_LEN 127 2110 #define IGB_MAX_NETWORK_HDR_LEN 511 2111 2112 static netdev_features_t 2113 igb_features_check(struct sk_buff *skb, struct net_device *dev, 2114 netdev_features_t features) 2115 { 2116 unsigned int network_hdr_len, mac_hdr_len; 2117 2118 /* Make certain the headers can be described by a context descriptor */ 2119 mac_hdr_len = skb_network_header(skb) - skb->data; 2120 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN)) 2121 return features & ~(NETIF_F_HW_CSUM | 2122 NETIF_F_SCTP_CRC | 2123 NETIF_F_HW_VLAN_CTAG_TX | 2124 NETIF_F_TSO | 2125 NETIF_F_TSO6); 2126 2127 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2128 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN)) 2129 return features & ~(NETIF_F_HW_CSUM | 2130 NETIF_F_SCTP_CRC | 2131 NETIF_F_TSO | 2132 NETIF_F_TSO6); 2133 2134 /* We can only support IPV4 TSO in tunnels if we can mangle the 2135 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2136 */ 2137 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2138 features &= ~NETIF_F_TSO; 2139 2140 return features; 2141 } 2142 2143 static const struct net_device_ops igb_netdev_ops = { 2144 .ndo_open = igb_open, 2145 .ndo_stop = igb_close, 2146 .ndo_start_xmit = igb_xmit_frame, 2147 .ndo_get_stats64 = igb_get_stats64, 2148 .ndo_set_rx_mode = igb_set_rx_mode, 2149 .ndo_set_mac_address = igb_set_mac, 2150 .ndo_change_mtu = igb_change_mtu, 2151 .ndo_do_ioctl = igb_ioctl, 2152 .ndo_tx_timeout = igb_tx_timeout, 2153 .ndo_validate_addr = eth_validate_addr, 2154 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2155 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 2156 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 2157 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 2158 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 2159 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 2160 .ndo_get_vf_config = igb_ndo_get_vf_config, 2161 #ifdef CONFIG_NET_POLL_CONTROLLER 2162 .ndo_poll_controller = igb_netpoll, 2163 #endif 2164 .ndo_fix_features = igb_fix_features, 2165 .ndo_set_features = igb_set_features, 2166 .ndo_fdb_add = igb_ndo_fdb_add, 2167 .ndo_features_check = igb_features_check, 2168 }; 2169 2170 /** 2171 * igb_set_fw_version - Configure version string for ethtool 2172 * @adapter: adapter struct 2173 **/ 2174 void igb_set_fw_version(struct igb_adapter *adapter) 2175 { 2176 struct e1000_hw *hw = &adapter->hw; 2177 struct e1000_fw_version fw; 2178 2179 igb_get_fw_version(hw, &fw); 2180 2181 switch (hw->mac.type) { 2182 case e1000_i210: 2183 case e1000_i211: 2184 if (!(igb_get_flash_presence_i210(hw))) { 2185 snprintf(adapter->fw_version, 2186 sizeof(adapter->fw_version), 2187 "%2d.%2d-%d", 2188 fw.invm_major, fw.invm_minor, 2189 fw.invm_img_type); 2190 break; 2191 } 2192 /* fall through */ 2193 default: 2194 /* if option is rom valid, display its version too */ 2195 if (fw.or_valid) { 2196 snprintf(adapter->fw_version, 2197 sizeof(adapter->fw_version), 2198 "%d.%d, 0x%08x, %d.%d.%d", 2199 fw.eep_major, fw.eep_minor, fw.etrack_id, 2200 fw.or_major, fw.or_build, fw.or_patch); 2201 /* no option rom */ 2202 } else if (fw.etrack_id != 0X0000) { 2203 snprintf(adapter->fw_version, 2204 sizeof(adapter->fw_version), 2205 "%d.%d, 0x%08x", 2206 fw.eep_major, fw.eep_minor, fw.etrack_id); 2207 } else { 2208 snprintf(adapter->fw_version, 2209 sizeof(adapter->fw_version), 2210 "%d.%d.%d", 2211 fw.eep_major, fw.eep_minor, fw.eep_build); 2212 } 2213 break; 2214 } 2215 } 2216 2217 /** 2218 * igb_init_mas - init Media Autosense feature if enabled in the NVM 2219 * 2220 * @adapter: adapter struct 2221 **/ 2222 static void igb_init_mas(struct igb_adapter *adapter) 2223 { 2224 struct e1000_hw *hw = &adapter->hw; 2225 u16 eeprom_data; 2226 2227 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 2228 switch (hw->bus.func) { 2229 case E1000_FUNC_0: 2230 if (eeprom_data & IGB_MAS_ENABLE_0) { 2231 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2232 netdev_info(adapter->netdev, 2233 "MAS: Enabling Media Autosense for port %d\n", 2234 hw->bus.func); 2235 } 2236 break; 2237 case E1000_FUNC_1: 2238 if (eeprom_data & IGB_MAS_ENABLE_1) { 2239 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2240 netdev_info(adapter->netdev, 2241 "MAS: Enabling Media Autosense for port %d\n", 2242 hw->bus.func); 2243 } 2244 break; 2245 case E1000_FUNC_2: 2246 if (eeprom_data & IGB_MAS_ENABLE_2) { 2247 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2248 netdev_info(adapter->netdev, 2249 "MAS: Enabling Media Autosense for port %d\n", 2250 hw->bus.func); 2251 } 2252 break; 2253 case E1000_FUNC_3: 2254 if (eeprom_data & IGB_MAS_ENABLE_3) { 2255 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2256 netdev_info(adapter->netdev, 2257 "MAS: Enabling Media Autosense for port %d\n", 2258 hw->bus.func); 2259 } 2260 break; 2261 default: 2262 /* Shouldn't get here */ 2263 netdev_err(adapter->netdev, 2264 "MAS: Invalid port configuration, returning\n"); 2265 break; 2266 } 2267 } 2268 2269 /** 2270 * igb_init_i2c - Init I2C interface 2271 * @adapter: pointer to adapter structure 2272 **/ 2273 static s32 igb_init_i2c(struct igb_adapter *adapter) 2274 { 2275 s32 status = 0; 2276 2277 /* I2C interface supported on i350 devices */ 2278 if (adapter->hw.mac.type != e1000_i350) 2279 return 0; 2280 2281 /* Initialize the i2c bus which is controlled by the registers. 2282 * This bus will use the i2c_algo_bit structue that implements 2283 * the protocol through toggling of the 4 bits in the register. 2284 */ 2285 adapter->i2c_adap.owner = THIS_MODULE; 2286 adapter->i2c_algo = igb_i2c_algo; 2287 adapter->i2c_algo.data = adapter; 2288 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 2289 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 2290 strlcpy(adapter->i2c_adap.name, "igb BB", 2291 sizeof(adapter->i2c_adap.name)); 2292 status = i2c_bit_add_bus(&adapter->i2c_adap); 2293 return status; 2294 } 2295 2296 /** 2297 * igb_probe - Device Initialization Routine 2298 * @pdev: PCI device information struct 2299 * @ent: entry in igb_pci_tbl 2300 * 2301 * Returns 0 on success, negative on failure 2302 * 2303 * igb_probe initializes an adapter identified by a pci_dev structure. 2304 * The OS initialization, configuring of the adapter private structure, 2305 * and a hardware reset occur. 2306 **/ 2307 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2308 { 2309 struct net_device *netdev; 2310 struct igb_adapter *adapter; 2311 struct e1000_hw *hw; 2312 u16 eeprom_data = 0; 2313 s32 ret_val; 2314 static int global_quad_port_a; /* global quad port a indication */ 2315 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 2316 int err, pci_using_dac; 2317 u8 part_str[E1000_PBANUM_LENGTH]; 2318 2319 /* Catch broken hardware that put the wrong VF device ID in 2320 * the PCIe SR-IOV capability. 2321 */ 2322 if (pdev->is_virtfn) { 2323 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", 2324 pci_name(pdev), pdev->vendor, pdev->device); 2325 return -EINVAL; 2326 } 2327 2328 err = pci_enable_device_mem(pdev); 2329 if (err) 2330 return err; 2331 2332 pci_using_dac = 0; 2333 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2334 if (!err) { 2335 pci_using_dac = 1; 2336 } else { 2337 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2338 if (err) { 2339 dev_err(&pdev->dev, 2340 "No usable DMA configuration, aborting\n"); 2341 goto err_dma; 2342 } 2343 } 2344 2345 err = pci_request_mem_regions(pdev, igb_driver_name); 2346 if (err) 2347 goto err_pci_reg; 2348 2349 pci_enable_pcie_error_reporting(pdev); 2350 2351 pci_set_master(pdev); 2352 pci_save_state(pdev); 2353 2354 err = -ENOMEM; 2355 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 2356 IGB_MAX_TX_QUEUES); 2357 if (!netdev) 2358 goto err_alloc_etherdev; 2359 2360 SET_NETDEV_DEV(netdev, &pdev->dev); 2361 2362 pci_set_drvdata(pdev, netdev); 2363 adapter = netdev_priv(netdev); 2364 adapter->netdev = netdev; 2365 adapter->pdev = pdev; 2366 hw = &adapter->hw; 2367 hw->back = adapter; 2368 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2369 2370 err = -EIO; 2371 adapter->io_addr = pci_iomap(pdev, 0, 0); 2372 if (!adapter->io_addr) 2373 goto err_ioremap; 2374 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */ 2375 hw->hw_addr = adapter->io_addr; 2376 2377 netdev->netdev_ops = &igb_netdev_ops; 2378 igb_set_ethtool_ops(netdev); 2379 netdev->watchdog_timeo = 5 * HZ; 2380 2381 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2382 2383 netdev->mem_start = pci_resource_start(pdev, 0); 2384 netdev->mem_end = pci_resource_end(pdev, 0); 2385 2386 /* PCI config space info */ 2387 hw->vendor_id = pdev->vendor; 2388 hw->device_id = pdev->device; 2389 hw->revision_id = pdev->revision; 2390 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2391 hw->subsystem_device_id = pdev->subsystem_device; 2392 2393 /* Copy the default MAC, PHY and NVM function pointers */ 2394 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 2395 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 2396 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 2397 /* Initialize skew-specific constants */ 2398 err = ei->get_invariants(hw); 2399 if (err) 2400 goto err_sw_init; 2401 2402 /* setup the private structure */ 2403 err = igb_sw_init(adapter); 2404 if (err) 2405 goto err_sw_init; 2406 2407 igb_get_bus_info_pcie(hw); 2408 2409 hw->phy.autoneg_wait_to_complete = false; 2410 2411 /* Copper options */ 2412 if (hw->phy.media_type == e1000_media_type_copper) { 2413 hw->phy.mdix = AUTO_ALL_MODES; 2414 hw->phy.disable_polarity_correction = false; 2415 hw->phy.ms_type = e1000_ms_hw_default; 2416 } 2417 2418 if (igb_check_reset_block(hw)) 2419 dev_info(&pdev->dev, 2420 "PHY reset is blocked due to SOL/IDER session.\n"); 2421 2422 /* features is initialized to 0 in allocation, it might have bits 2423 * set by igb_sw_init so we should use an or instead of an 2424 * assignment. 2425 */ 2426 netdev->features |= NETIF_F_SG | 2427 NETIF_F_TSO | 2428 NETIF_F_TSO6 | 2429 NETIF_F_RXHASH | 2430 NETIF_F_RXCSUM | 2431 NETIF_F_HW_CSUM; 2432 2433 if (hw->mac.type >= e1000_82576) 2434 netdev->features |= NETIF_F_SCTP_CRC; 2435 2436 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 2437 NETIF_F_GSO_GRE_CSUM | \ 2438 NETIF_F_GSO_IPXIP4 | \ 2439 NETIF_F_GSO_IPXIP6 | \ 2440 NETIF_F_GSO_UDP_TUNNEL | \ 2441 NETIF_F_GSO_UDP_TUNNEL_CSUM) 2442 2443 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES; 2444 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES; 2445 2446 /* copy netdev features into list of user selectable features */ 2447 netdev->hw_features |= netdev->features | 2448 NETIF_F_HW_VLAN_CTAG_RX | 2449 NETIF_F_HW_VLAN_CTAG_TX | 2450 NETIF_F_RXALL; 2451 2452 if (hw->mac.type >= e1000_i350) 2453 netdev->hw_features |= NETIF_F_NTUPLE; 2454 2455 if (pci_using_dac) 2456 netdev->features |= NETIF_F_HIGHDMA; 2457 2458 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 2459 netdev->mpls_features |= NETIF_F_HW_CSUM; 2460 netdev->hw_enc_features |= netdev->vlan_features; 2461 2462 /* set this bit last since it cannot be part of vlan_features */ 2463 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 2464 NETIF_F_HW_VLAN_CTAG_RX | 2465 NETIF_F_HW_VLAN_CTAG_TX; 2466 2467 netdev->priv_flags |= IFF_SUPP_NOFCS; 2468 2469 netdev->priv_flags |= IFF_UNICAST_FLT; 2470 2471 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 2472 2473 /* before reading the NVM, reset the controller to put the device in a 2474 * known good starting state 2475 */ 2476 hw->mac.ops.reset_hw(hw); 2477 2478 /* make sure the NVM is good , i211/i210 parts can have special NVM 2479 * that doesn't contain a checksum 2480 */ 2481 switch (hw->mac.type) { 2482 case e1000_i210: 2483 case e1000_i211: 2484 if (igb_get_flash_presence_i210(hw)) { 2485 if (hw->nvm.ops.validate(hw) < 0) { 2486 dev_err(&pdev->dev, 2487 "The NVM Checksum Is Not Valid\n"); 2488 err = -EIO; 2489 goto err_eeprom; 2490 } 2491 } 2492 break; 2493 default: 2494 if (hw->nvm.ops.validate(hw) < 0) { 2495 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 2496 err = -EIO; 2497 goto err_eeprom; 2498 } 2499 break; 2500 } 2501 2502 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 2503 /* copy the MAC address out of the NVM */ 2504 if (hw->mac.ops.read_mac_addr(hw)) 2505 dev_err(&pdev->dev, "NVM Read Error\n"); 2506 } 2507 2508 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2509 2510 if (!is_valid_ether_addr(netdev->dev_addr)) { 2511 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2512 err = -EIO; 2513 goto err_eeprom; 2514 } 2515 2516 /* get firmware version for ethtool -i */ 2517 igb_set_fw_version(adapter); 2518 2519 /* configure RXPBSIZE and TXPBSIZE */ 2520 if (hw->mac.type == e1000_i210) { 2521 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 2522 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 2523 } 2524 2525 setup_timer(&adapter->watchdog_timer, igb_watchdog, 2526 (unsigned long) adapter); 2527 setup_timer(&adapter->phy_info_timer, igb_update_phy_info, 2528 (unsigned long) adapter); 2529 2530 INIT_WORK(&adapter->reset_task, igb_reset_task); 2531 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 2532 2533 /* Initialize link properties that are user-changeable */ 2534 adapter->fc_autoneg = true; 2535 hw->mac.autoneg = true; 2536 hw->phy.autoneg_advertised = 0x2f; 2537 2538 hw->fc.requested_mode = e1000_fc_default; 2539 hw->fc.current_mode = e1000_fc_default; 2540 2541 igb_validate_mdi_setting(hw); 2542 2543 /* By default, support wake on port A */ 2544 if (hw->bus.func == 0) 2545 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2546 2547 /* Check the NVM for wake support on non-port A ports */ 2548 if (hw->mac.type >= e1000_82580) 2549 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2550 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2551 &eeprom_data); 2552 else if (hw->bus.func == 1) 2553 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 2554 2555 if (eeprom_data & IGB_EEPROM_APME) 2556 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2557 2558 /* now that we have the eeprom settings, apply the special cases where 2559 * the eeprom may be wrong or the board simply won't support wake on 2560 * lan on a particular port 2561 */ 2562 switch (pdev->device) { 2563 case E1000_DEV_ID_82575GB_QUAD_COPPER: 2564 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2565 break; 2566 case E1000_DEV_ID_82575EB_FIBER_SERDES: 2567 case E1000_DEV_ID_82576_FIBER: 2568 case E1000_DEV_ID_82576_SERDES: 2569 /* Wake events only supported on port A for dual fiber 2570 * regardless of eeprom setting 2571 */ 2572 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 2573 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2574 break; 2575 case E1000_DEV_ID_82576_QUAD_COPPER: 2576 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 2577 /* if quad port adapter, disable WoL on all but port A */ 2578 if (global_quad_port_a != 0) 2579 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2580 else 2581 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 2582 /* Reset for multiple quad port adapters */ 2583 if (++global_quad_port_a == 4) 2584 global_quad_port_a = 0; 2585 break; 2586 default: 2587 /* If the device can't wake, don't set software support */ 2588 if (!device_can_wakeup(&adapter->pdev->dev)) 2589 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2590 } 2591 2592 /* initialize the wol settings based on the eeprom settings */ 2593 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 2594 adapter->wol |= E1000_WUFC_MAG; 2595 2596 /* Some vendors want WoL disabled by default, but still supported */ 2597 if ((hw->mac.type == e1000_i350) && 2598 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 2599 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2600 adapter->wol = 0; 2601 } 2602 2603 /* Some vendors want the ability to Use the EEPROM setting as 2604 * enable/disable only, and not for capability 2605 */ 2606 if (((hw->mac.type == e1000_i350) || 2607 (hw->mac.type == e1000_i354)) && 2608 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) { 2609 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2610 adapter->wol = 0; 2611 } 2612 if (hw->mac.type == e1000_i350) { 2613 if (((pdev->subsystem_device == 0x5001) || 2614 (pdev->subsystem_device == 0x5002)) && 2615 (hw->bus.func == 0)) { 2616 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2617 adapter->wol = 0; 2618 } 2619 if (pdev->subsystem_device == 0x1F52) 2620 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2621 } 2622 2623 device_set_wakeup_enable(&adapter->pdev->dev, 2624 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 2625 2626 /* reset the hardware with the new settings */ 2627 igb_reset(adapter); 2628 2629 /* Init the I2C interface */ 2630 err = igb_init_i2c(adapter); 2631 if (err) { 2632 dev_err(&pdev->dev, "failed to init i2c interface\n"); 2633 goto err_eeprom; 2634 } 2635 2636 /* let the f/w know that the h/w is now under the control of the 2637 * driver. 2638 */ 2639 igb_get_hw_control(adapter); 2640 2641 strcpy(netdev->name, "eth%d"); 2642 err = register_netdev(netdev); 2643 if (err) 2644 goto err_register; 2645 2646 /* carrier off reporting is important to ethtool even BEFORE open */ 2647 netif_carrier_off(netdev); 2648 2649 #ifdef CONFIG_IGB_DCA 2650 if (dca_add_requester(&pdev->dev) == 0) { 2651 adapter->flags |= IGB_FLAG_DCA_ENABLED; 2652 dev_info(&pdev->dev, "DCA enabled\n"); 2653 igb_setup_dca(adapter); 2654 } 2655 2656 #endif 2657 #ifdef CONFIG_IGB_HWMON 2658 /* Initialize the thermal sensor on i350 devices. */ 2659 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 2660 u16 ets_word; 2661 2662 /* Read the NVM to determine if this i350 device supports an 2663 * external thermal sensor. 2664 */ 2665 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 2666 if (ets_word != 0x0000 && ets_word != 0xFFFF) 2667 adapter->ets = true; 2668 else 2669 adapter->ets = false; 2670 if (igb_sysfs_init(adapter)) 2671 dev_err(&pdev->dev, 2672 "failed to allocate sysfs resources\n"); 2673 } else { 2674 adapter->ets = false; 2675 } 2676 #endif 2677 /* Check if Media Autosense is enabled */ 2678 adapter->ei = *ei; 2679 if (hw->dev_spec._82575.mas_capable) 2680 igb_init_mas(adapter); 2681 2682 /* do hw tstamp init after resetting */ 2683 igb_ptp_init(adapter); 2684 2685 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 2686 /* print bus type/speed/width info, not applicable to i354 */ 2687 if (hw->mac.type != e1000_i354) { 2688 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 2689 netdev->name, 2690 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 2691 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 2692 "unknown"), 2693 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 2694 "Width x4" : 2695 (hw->bus.width == e1000_bus_width_pcie_x2) ? 2696 "Width x2" : 2697 (hw->bus.width == e1000_bus_width_pcie_x1) ? 2698 "Width x1" : "unknown"), netdev->dev_addr); 2699 } 2700 2701 if ((hw->mac.type >= e1000_i210 || 2702 igb_get_flash_presence_i210(hw))) { 2703 ret_val = igb_read_part_string(hw, part_str, 2704 E1000_PBANUM_LENGTH); 2705 } else { 2706 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 2707 } 2708 2709 if (ret_val) 2710 strcpy(part_str, "Unknown"); 2711 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 2712 dev_info(&pdev->dev, 2713 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 2714 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 2715 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 2716 adapter->num_rx_queues, adapter->num_tx_queues); 2717 if (hw->phy.media_type == e1000_media_type_copper) { 2718 switch (hw->mac.type) { 2719 case e1000_i350: 2720 case e1000_i210: 2721 case e1000_i211: 2722 /* Enable EEE for internal copper PHY devices */ 2723 err = igb_set_eee_i350(hw, true, true); 2724 if ((!err) && 2725 (!hw->dev_spec._82575.eee_disable)) { 2726 adapter->eee_advert = 2727 MDIO_EEE_100TX | MDIO_EEE_1000T; 2728 adapter->flags |= IGB_FLAG_EEE; 2729 } 2730 break; 2731 case e1000_i354: 2732 if ((rd32(E1000_CTRL_EXT) & 2733 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 2734 err = igb_set_eee_i354(hw, true, true); 2735 if ((!err) && 2736 (!hw->dev_spec._82575.eee_disable)) { 2737 adapter->eee_advert = 2738 MDIO_EEE_100TX | MDIO_EEE_1000T; 2739 adapter->flags |= IGB_FLAG_EEE; 2740 } 2741 } 2742 break; 2743 default: 2744 break; 2745 } 2746 } 2747 pm_runtime_put_noidle(&pdev->dev); 2748 return 0; 2749 2750 err_register: 2751 igb_release_hw_control(adapter); 2752 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 2753 err_eeprom: 2754 if (!igb_check_reset_block(hw)) 2755 igb_reset_phy(hw); 2756 2757 if (hw->flash_address) 2758 iounmap(hw->flash_address); 2759 err_sw_init: 2760 kfree(adapter->shadow_vfta); 2761 igb_clear_interrupt_scheme(adapter); 2762 #ifdef CONFIG_PCI_IOV 2763 igb_disable_sriov(pdev); 2764 #endif 2765 pci_iounmap(pdev, adapter->io_addr); 2766 err_ioremap: 2767 free_netdev(netdev); 2768 err_alloc_etherdev: 2769 pci_release_mem_regions(pdev); 2770 err_pci_reg: 2771 err_dma: 2772 pci_disable_device(pdev); 2773 return err; 2774 } 2775 2776 #ifdef CONFIG_PCI_IOV 2777 static int igb_disable_sriov(struct pci_dev *pdev) 2778 { 2779 struct net_device *netdev = pci_get_drvdata(pdev); 2780 struct igb_adapter *adapter = netdev_priv(netdev); 2781 struct e1000_hw *hw = &adapter->hw; 2782 2783 /* reclaim resources allocated to VFs */ 2784 if (adapter->vf_data) { 2785 /* disable iov and allow time for transactions to clear */ 2786 if (pci_vfs_assigned(pdev)) { 2787 dev_warn(&pdev->dev, 2788 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 2789 return -EPERM; 2790 } else { 2791 pci_disable_sriov(pdev); 2792 msleep(500); 2793 } 2794 2795 kfree(adapter->vf_data); 2796 adapter->vf_data = NULL; 2797 adapter->vfs_allocated_count = 0; 2798 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 2799 wrfl(); 2800 msleep(100); 2801 dev_info(&pdev->dev, "IOV Disabled\n"); 2802 2803 /* Re-enable DMA Coalescing flag since IOV is turned off */ 2804 adapter->flags |= IGB_FLAG_DMAC; 2805 } 2806 2807 return 0; 2808 } 2809 2810 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 2811 { 2812 struct net_device *netdev = pci_get_drvdata(pdev); 2813 struct igb_adapter *adapter = netdev_priv(netdev); 2814 int old_vfs = pci_num_vf(pdev); 2815 int err = 0; 2816 int i; 2817 2818 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 2819 err = -EPERM; 2820 goto out; 2821 } 2822 if (!num_vfs) 2823 goto out; 2824 2825 if (old_vfs) { 2826 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 2827 old_vfs, max_vfs); 2828 adapter->vfs_allocated_count = old_vfs; 2829 } else 2830 adapter->vfs_allocated_count = num_vfs; 2831 2832 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 2833 sizeof(struct vf_data_storage), GFP_KERNEL); 2834 2835 /* if allocation failed then we do not support SR-IOV */ 2836 if (!adapter->vf_data) { 2837 adapter->vfs_allocated_count = 0; 2838 dev_err(&pdev->dev, 2839 "Unable to allocate memory for VF Data Storage\n"); 2840 err = -ENOMEM; 2841 goto out; 2842 } 2843 2844 /* only call pci_enable_sriov() if no VFs are allocated already */ 2845 if (!old_vfs) { 2846 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 2847 if (err) 2848 goto err_out; 2849 } 2850 dev_info(&pdev->dev, "%d VFs allocated\n", 2851 adapter->vfs_allocated_count); 2852 for (i = 0; i < adapter->vfs_allocated_count; i++) 2853 igb_vf_configure(adapter, i); 2854 2855 /* DMA Coalescing is not supported in IOV mode. */ 2856 adapter->flags &= ~IGB_FLAG_DMAC; 2857 goto out; 2858 2859 err_out: 2860 kfree(adapter->vf_data); 2861 adapter->vf_data = NULL; 2862 adapter->vfs_allocated_count = 0; 2863 out: 2864 return err; 2865 } 2866 2867 #endif 2868 /** 2869 * igb_remove_i2c - Cleanup I2C interface 2870 * @adapter: pointer to adapter structure 2871 **/ 2872 static void igb_remove_i2c(struct igb_adapter *adapter) 2873 { 2874 /* free the adapter bus structure */ 2875 i2c_del_adapter(&adapter->i2c_adap); 2876 } 2877 2878 /** 2879 * igb_remove - Device Removal Routine 2880 * @pdev: PCI device information struct 2881 * 2882 * igb_remove is called by the PCI subsystem to alert the driver 2883 * that it should release a PCI device. The could be caused by a 2884 * Hot-Plug event, or because the driver is going to be removed from 2885 * memory. 2886 **/ 2887 static void igb_remove(struct pci_dev *pdev) 2888 { 2889 struct net_device *netdev = pci_get_drvdata(pdev); 2890 struct igb_adapter *adapter = netdev_priv(netdev); 2891 struct e1000_hw *hw = &adapter->hw; 2892 2893 pm_runtime_get_noresume(&pdev->dev); 2894 #ifdef CONFIG_IGB_HWMON 2895 igb_sysfs_exit(adapter); 2896 #endif 2897 igb_remove_i2c(adapter); 2898 igb_ptp_stop(adapter); 2899 /* The watchdog timer may be rescheduled, so explicitly 2900 * disable watchdog from being rescheduled. 2901 */ 2902 set_bit(__IGB_DOWN, &adapter->state); 2903 del_timer_sync(&adapter->watchdog_timer); 2904 del_timer_sync(&adapter->phy_info_timer); 2905 2906 cancel_work_sync(&adapter->reset_task); 2907 cancel_work_sync(&adapter->watchdog_task); 2908 2909 #ifdef CONFIG_IGB_DCA 2910 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 2911 dev_info(&pdev->dev, "DCA disabled\n"); 2912 dca_remove_requester(&pdev->dev); 2913 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 2914 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 2915 } 2916 #endif 2917 2918 /* Release control of h/w to f/w. If f/w is AMT enabled, this 2919 * would have already happened in close and is redundant. 2920 */ 2921 igb_release_hw_control(adapter); 2922 2923 #ifdef CONFIG_PCI_IOV 2924 igb_disable_sriov(pdev); 2925 #endif 2926 2927 unregister_netdev(netdev); 2928 2929 igb_clear_interrupt_scheme(adapter); 2930 2931 pci_iounmap(pdev, adapter->io_addr); 2932 if (hw->flash_address) 2933 iounmap(hw->flash_address); 2934 pci_release_mem_regions(pdev); 2935 2936 kfree(adapter->shadow_vfta); 2937 free_netdev(netdev); 2938 2939 pci_disable_pcie_error_reporting(pdev); 2940 2941 pci_disable_device(pdev); 2942 } 2943 2944 /** 2945 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 2946 * @adapter: board private structure to initialize 2947 * 2948 * This function initializes the vf specific data storage and then attempts to 2949 * allocate the VFs. The reason for ordering it this way is because it is much 2950 * mor expensive time wise to disable SR-IOV than it is to allocate and free 2951 * the memory for the VFs. 2952 **/ 2953 static void igb_probe_vfs(struct igb_adapter *adapter) 2954 { 2955 #ifdef CONFIG_PCI_IOV 2956 struct pci_dev *pdev = adapter->pdev; 2957 struct e1000_hw *hw = &adapter->hw; 2958 2959 /* Virtualization features not supported on i210 family. */ 2960 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 2961 return; 2962 2963 /* Of the below we really only want the effect of getting 2964 * IGB_FLAG_HAS_MSIX set (if available), without which 2965 * igb_enable_sriov() has no effect. 2966 */ 2967 igb_set_interrupt_capability(adapter, true); 2968 igb_reset_interrupt_capability(adapter); 2969 2970 pci_sriov_set_totalvfs(pdev, 7); 2971 igb_enable_sriov(pdev, max_vfs); 2972 2973 #endif /* CONFIG_PCI_IOV */ 2974 } 2975 2976 static void igb_init_queue_configuration(struct igb_adapter *adapter) 2977 { 2978 struct e1000_hw *hw = &adapter->hw; 2979 u32 max_rss_queues; 2980 2981 /* Determine the maximum number of RSS queues supported. */ 2982 switch (hw->mac.type) { 2983 case e1000_i211: 2984 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 2985 break; 2986 case e1000_82575: 2987 case e1000_i210: 2988 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 2989 break; 2990 case e1000_i350: 2991 /* I350 cannot do RSS and SR-IOV at the same time */ 2992 if (!!adapter->vfs_allocated_count) { 2993 max_rss_queues = 1; 2994 break; 2995 } 2996 /* fall through */ 2997 case e1000_82576: 2998 if (!!adapter->vfs_allocated_count) { 2999 max_rss_queues = 2; 3000 break; 3001 } 3002 /* fall through */ 3003 case e1000_82580: 3004 case e1000_i354: 3005 default: 3006 max_rss_queues = IGB_MAX_RX_QUEUES; 3007 break; 3008 } 3009 3010 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3011 3012 igb_set_flag_queue_pairs(adapter, max_rss_queues); 3013 } 3014 3015 void igb_set_flag_queue_pairs(struct igb_adapter *adapter, 3016 const u32 max_rss_queues) 3017 { 3018 struct e1000_hw *hw = &adapter->hw; 3019 3020 /* Determine if we need to pair queues. */ 3021 switch (hw->mac.type) { 3022 case e1000_82575: 3023 case e1000_i211: 3024 /* Device supports enough interrupts without queue pairing. */ 3025 break; 3026 case e1000_82576: 3027 case e1000_82580: 3028 case e1000_i350: 3029 case e1000_i354: 3030 case e1000_i210: 3031 default: 3032 /* If rss_queues > half of max_rss_queues, pair the queues in 3033 * order to conserve interrupts due to limited supply. 3034 */ 3035 if (adapter->rss_queues > (max_rss_queues / 2)) 3036 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 3037 else 3038 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS; 3039 break; 3040 } 3041 } 3042 3043 /** 3044 * igb_sw_init - Initialize general software structures (struct igb_adapter) 3045 * @adapter: board private structure to initialize 3046 * 3047 * igb_sw_init initializes the Adapter private data structure. 3048 * Fields are initialized based on PCI device information and 3049 * OS network device settings (MTU size). 3050 **/ 3051 static int igb_sw_init(struct igb_adapter *adapter) 3052 { 3053 struct e1000_hw *hw = &adapter->hw; 3054 struct net_device *netdev = adapter->netdev; 3055 struct pci_dev *pdev = adapter->pdev; 3056 3057 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3058 3059 /* set default ring sizes */ 3060 adapter->tx_ring_count = IGB_DEFAULT_TXD; 3061 adapter->rx_ring_count = IGB_DEFAULT_RXD; 3062 3063 /* set default ITR values */ 3064 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 3065 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 3066 3067 /* set default work limits */ 3068 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 3069 3070 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 3071 VLAN_HLEN; 3072 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3073 3074 spin_lock_init(&adapter->nfc_lock); 3075 spin_lock_init(&adapter->stats64_lock); 3076 #ifdef CONFIG_PCI_IOV 3077 switch (hw->mac.type) { 3078 case e1000_82576: 3079 case e1000_i350: 3080 if (max_vfs > 7) { 3081 dev_warn(&pdev->dev, 3082 "Maximum of 7 VFs per PF, using max\n"); 3083 max_vfs = adapter->vfs_allocated_count = 7; 3084 } else 3085 adapter->vfs_allocated_count = max_vfs; 3086 if (adapter->vfs_allocated_count) 3087 dev_warn(&pdev->dev, 3088 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 3089 break; 3090 default: 3091 break; 3092 } 3093 #endif /* CONFIG_PCI_IOV */ 3094 3095 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 3096 adapter->flags |= IGB_FLAG_HAS_MSIX; 3097 3098 igb_probe_vfs(adapter); 3099 3100 igb_init_queue_configuration(adapter); 3101 3102 /* Setup and initialize a copy of the hw vlan table array */ 3103 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 3104 GFP_ATOMIC); 3105 3106 /* This call may decrease the number of queues */ 3107 if (igb_init_interrupt_scheme(adapter, true)) { 3108 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 3109 return -ENOMEM; 3110 } 3111 3112 /* Explicitly disable IRQ since the NIC can be in any state. */ 3113 igb_irq_disable(adapter); 3114 3115 if (hw->mac.type >= e1000_i350) 3116 adapter->flags &= ~IGB_FLAG_DMAC; 3117 3118 set_bit(__IGB_DOWN, &adapter->state); 3119 return 0; 3120 } 3121 3122 /** 3123 * igb_open - Called when a network interface is made active 3124 * @netdev: network interface device structure 3125 * 3126 * Returns 0 on success, negative value on failure 3127 * 3128 * The open entry point is called when a network interface is made 3129 * active by the system (IFF_UP). At this point all resources needed 3130 * for transmit and receive operations are allocated, the interrupt 3131 * handler is registered with the OS, the watchdog timer is started, 3132 * and the stack is notified that the interface is ready. 3133 **/ 3134 static int __igb_open(struct net_device *netdev, bool resuming) 3135 { 3136 struct igb_adapter *adapter = netdev_priv(netdev); 3137 struct e1000_hw *hw = &adapter->hw; 3138 struct pci_dev *pdev = adapter->pdev; 3139 int err; 3140 int i; 3141 3142 /* disallow open during test */ 3143 if (test_bit(__IGB_TESTING, &adapter->state)) { 3144 WARN_ON(resuming); 3145 return -EBUSY; 3146 } 3147 3148 if (!resuming) 3149 pm_runtime_get_sync(&pdev->dev); 3150 3151 netif_carrier_off(netdev); 3152 3153 /* allocate transmit descriptors */ 3154 err = igb_setup_all_tx_resources(adapter); 3155 if (err) 3156 goto err_setup_tx; 3157 3158 /* allocate receive descriptors */ 3159 err = igb_setup_all_rx_resources(adapter); 3160 if (err) 3161 goto err_setup_rx; 3162 3163 igb_power_up_link(adapter); 3164 3165 /* before we allocate an interrupt, we must be ready to handle it. 3166 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 3167 * as soon as we call pci_request_irq, so we have to setup our 3168 * clean_rx handler before we do so. 3169 */ 3170 igb_configure(adapter); 3171 3172 err = igb_request_irq(adapter); 3173 if (err) 3174 goto err_req_irq; 3175 3176 /* Notify the stack of the actual queue counts. */ 3177 err = netif_set_real_num_tx_queues(adapter->netdev, 3178 adapter->num_tx_queues); 3179 if (err) 3180 goto err_set_queues; 3181 3182 err = netif_set_real_num_rx_queues(adapter->netdev, 3183 adapter->num_rx_queues); 3184 if (err) 3185 goto err_set_queues; 3186 3187 /* From here on the code is the same as igb_up() */ 3188 clear_bit(__IGB_DOWN, &adapter->state); 3189 3190 for (i = 0; i < adapter->num_q_vectors; i++) 3191 napi_enable(&(adapter->q_vector[i]->napi)); 3192 3193 /* Clear any pending interrupts. */ 3194 rd32(E1000_ICR); 3195 3196 igb_irq_enable(adapter); 3197 3198 /* notify VFs that reset has been completed */ 3199 if (adapter->vfs_allocated_count) { 3200 u32 reg_data = rd32(E1000_CTRL_EXT); 3201 3202 reg_data |= E1000_CTRL_EXT_PFRSTD; 3203 wr32(E1000_CTRL_EXT, reg_data); 3204 } 3205 3206 netif_tx_start_all_queues(netdev); 3207 3208 if (!resuming) 3209 pm_runtime_put(&pdev->dev); 3210 3211 /* start the watchdog. */ 3212 hw->mac.get_link_status = 1; 3213 schedule_work(&adapter->watchdog_task); 3214 3215 return 0; 3216 3217 err_set_queues: 3218 igb_free_irq(adapter); 3219 err_req_irq: 3220 igb_release_hw_control(adapter); 3221 igb_power_down_link(adapter); 3222 igb_free_all_rx_resources(adapter); 3223 err_setup_rx: 3224 igb_free_all_tx_resources(adapter); 3225 err_setup_tx: 3226 igb_reset(adapter); 3227 if (!resuming) 3228 pm_runtime_put(&pdev->dev); 3229 3230 return err; 3231 } 3232 3233 int igb_open(struct net_device *netdev) 3234 { 3235 return __igb_open(netdev, false); 3236 } 3237 3238 /** 3239 * igb_close - Disables a network interface 3240 * @netdev: network interface device structure 3241 * 3242 * Returns 0, this is not allowed to fail 3243 * 3244 * The close entry point is called when an interface is de-activated 3245 * by the OS. The hardware is still under the driver's control, but 3246 * needs to be disabled. A global MAC reset is issued to stop the 3247 * hardware, and all transmit and receive resources are freed. 3248 **/ 3249 static int __igb_close(struct net_device *netdev, bool suspending) 3250 { 3251 struct igb_adapter *adapter = netdev_priv(netdev); 3252 struct pci_dev *pdev = adapter->pdev; 3253 3254 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 3255 3256 if (!suspending) 3257 pm_runtime_get_sync(&pdev->dev); 3258 3259 igb_down(adapter); 3260 igb_free_irq(adapter); 3261 3262 igb_nfc_filter_exit(adapter); 3263 3264 igb_free_all_tx_resources(adapter); 3265 igb_free_all_rx_resources(adapter); 3266 3267 if (!suspending) 3268 pm_runtime_put_sync(&pdev->dev); 3269 return 0; 3270 } 3271 3272 int igb_close(struct net_device *netdev) 3273 { 3274 return __igb_close(netdev, false); 3275 } 3276 3277 /** 3278 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 3279 * @tx_ring: tx descriptor ring (for a specific queue) to setup 3280 * 3281 * Return 0 on success, negative on failure 3282 **/ 3283 int igb_setup_tx_resources(struct igb_ring *tx_ring) 3284 { 3285 struct device *dev = tx_ring->dev; 3286 int size; 3287 3288 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3289 3290 tx_ring->tx_buffer_info = vzalloc(size); 3291 if (!tx_ring->tx_buffer_info) 3292 goto err; 3293 3294 /* round up to nearest 4K */ 3295 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 3296 tx_ring->size = ALIGN(tx_ring->size, 4096); 3297 3298 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 3299 &tx_ring->dma, GFP_KERNEL); 3300 if (!tx_ring->desc) 3301 goto err; 3302 3303 tx_ring->next_to_use = 0; 3304 tx_ring->next_to_clean = 0; 3305 3306 return 0; 3307 3308 err: 3309 vfree(tx_ring->tx_buffer_info); 3310 tx_ring->tx_buffer_info = NULL; 3311 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 3312 return -ENOMEM; 3313 } 3314 3315 /** 3316 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 3317 * (Descriptors) for all queues 3318 * @adapter: board private structure 3319 * 3320 * Return 0 on success, negative on failure 3321 **/ 3322 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 3323 { 3324 struct pci_dev *pdev = adapter->pdev; 3325 int i, err = 0; 3326 3327 for (i = 0; i < adapter->num_tx_queues; i++) { 3328 err = igb_setup_tx_resources(adapter->tx_ring[i]); 3329 if (err) { 3330 dev_err(&pdev->dev, 3331 "Allocation for Tx Queue %u failed\n", i); 3332 for (i--; i >= 0; i--) 3333 igb_free_tx_resources(adapter->tx_ring[i]); 3334 break; 3335 } 3336 } 3337 3338 return err; 3339 } 3340 3341 /** 3342 * igb_setup_tctl - configure the transmit control registers 3343 * @adapter: Board private structure 3344 **/ 3345 void igb_setup_tctl(struct igb_adapter *adapter) 3346 { 3347 struct e1000_hw *hw = &adapter->hw; 3348 u32 tctl; 3349 3350 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 3351 wr32(E1000_TXDCTL(0), 0); 3352 3353 /* Program the Transmit Control Register */ 3354 tctl = rd32(E1000_TCTL); 3355 tctl &= ~E1000_TCTL_CT; 3356 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 3357 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 3358 3359 igb_config_collision_dist(hw); 3360 3361 /* Enable transmits */ 3362 tctl |= E1000_TCTL_EN; 3363 3364 wr32(E1000_TCTL, tctl); 3365 } 3366 3367 /** 3368 * igb_configure_tx_ring - Configure transmit ring after Reset 3369 * @adapter: board private structure 3370 * @ring: tx ring to configure 3371 * 3372 * Configure a transmit ring after a reset. 3373 **/ 3374 void igb_configure_tx_ring(struct igb_adapter *adapter, 3375 struct igb_ring *ring) 3376 { 3377 struct e1000_hw *hw = &adapter->hw; 3378 u32 txdctl = 0; 3379 u64 tdba = ring->dma; 3380 int reg_idx = ring->reg_idx; 3381 3382 /* disable the queue */ 3383 wr32(E1000_TXDCTL(reg_idx), 0); 3384 wrfl(); 3385 mdelay(10); 3386 3387 wr32(E1000_TDLEN(reg_idx), 3388 ring->count * sizeof(union e1000_adv_tx_desc)); 3389 wr32(E1000_TDBAL(reg_idx), 3390 tdba & 0x00000000ffffffffULL); 3391 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 3392 3393 ring->tail = hw->hw_addr + E1000_TDT(reg_idx); 3394 wr32(E1000_TDH(reg_idx), 0); 3395 writel(0, ring->tail); 3396 3397 txdctl |= IGB_TX_PTHRESH; 3398 txdctl |= IGB_TX_HTHRESH << 8; 3399 txdctl |= IGB_TX_WTHRESH << 16; 3400 3401 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 3402 wr32(E1000_TXDCTL(reg_idx), txdctl); 3403 } 3404 3405 /** 3406 * igb_configure_tx - Configure transmit Unit after Reset 3407 * @adapter: board private structure 3408 * 3409 * Configure the Tx unit of the MAC after a reset. 3410 **/ 3411 static void igb_configure_tx(struct igb_adapter *adapter) 3412 { 3413 int i; 3414 3415 for (i = 0; i < adapter->num_tx_queues; i++) 3416 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 3417 } 3418 3419 /** 3420 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 3421 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3422 * 3423 * Returns 0 on success, negative on failure 3424 **/ 3425 int igb_setup_rx_resources(struct igb_ring *rx_ring) 3426 { 3427 struct device *dev = rx_ring->dev; 3428 int size; 3429 3430 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3431 3432 rx_ring->rx_buffer_info = vzalloc(size); 3433 if (!rx_ring->rx_buffer_info) 3434 goto err; 3435 3436 /* Round up to nearest 4K */ 3437 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 3438 rx_ring->size = ALIGN(rx_ring->size, 4096); 3439 3440 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 3441 &rx_ring->dma, GFP_KERNEL); 3442 if (!rx_ring->desc) 3443 goto err; 3444 3445 rx_ring->next_to_alloc = 0; 3446 rx_ring->next_to_clean = 0; 3447 rx_ring->next_to_use = 0; 3448 3449 return 0; 3450 3451 err: 3452 vfree(rx_ring->rx_buffer_info); 3453 rx_ring->rx_buffer_info = NULL; 3454 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3455 return -ENOMEM; 3456 } 3457 3458 /** 3459 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 3460 * (Descriptors) for all queues 3461 * @adapter: board private structure 3462 * 3463 * Return 0 on success, negative on failure 3464 **/ 3465 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 3466 { 3467 struct pci_dev *pdev = adapter->pdev; 3468 int i, err = 0; 3469 3470 for (i = 0; i < adapter->num_rx_queues; i++) { 3471 err = igb_setup_rx_resources(adapter->rx_ring[i]); 3472 if (err) { 3473 dev_err(&pdev->dev, 3474 "Allocation for Rx Queue %u failed\n", i); 3475 for (i--; i >= 0; i--) 3476 igb_free_rx_resources(adapter->rx_ring[i]); 3477 break; 3478 } 3479 } 3480 3481 return err; 3482 } 3483 3484 /** 3485 * igb_setup_mrqc - configure the multiple receive queue control registers 3486 * @adapter: Board private structure 3487 **/ 3488 static void igb_setup_mrqc(struct igb_adapter *adapter) 3489 { 3490 struct e1000_hw *hw = &adapter->hw; 3491 u32 mrqc, rxcsum; 3492 u32 j, num_rx_queues; 3493 u32 rss_key[10]; 3494 3495 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 3496 for (j = 0; j < 10; j++) 3497 wr32(E1000_RSSRK(j), rss_key[j]); 3498 3499 num_rx_queues = adapter->rss_queues; 3500 3501 switch (hw->mac.type) { 3502 case e1000_82576: 3503 /* 82576 supports 2 RSS queues for SR-IOV */ 3504 if (adapter->vfs_allocated_count) 3505 num_rx_queues = 2; 3506 break; 3507 default: 3508 break; 3509 } 3510 3511 if (adapter->rss_indir_tbl_init != num_rx_queues) { 3512 for (j = 0; j < IGB_RETA_SIZE; j++) 3513 adapter->rss_indir_tbl[j] = 3514 (j * num_rx_queues) / IGB_RETA_SIZE; 3515 adapter->rss_indir_tbl_init = num_rx_queues; 3516 } 3517 igb_write_rss_indir_tbl(adapter); 3518 3519 /* Disable raw packet checksumming so that RSS hash is placed in 3520 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 3521 * offloads as they are enabled by default 3522 */ 3523 rxcsum = rd32(E1000_RXCSUM); 3524 rxcsum |= E1000_RXCSUM_PCSD; 3525 3526 if (adapter->hw.mac.type >= e1000_82576) 3527 /* Enable Receive Checksum Offload for SCTP */ 3528 rxcsum |= E1000_RXCSUM_CRCOFL; 3529 3530 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 3531 wr32(E1000_RXCSUM, rxcsum); 3532 3533 /* Generate RSS hash based on packet types, TCP/UDP 3534 * port numbers and/or IPv4/v6 src and dst addresses 3535 */ 3536 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 3537 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3538 E1000_MRQC_RSS_FIELD_IPV6 | 3539 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3540 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 3541 3542 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 3543 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 3544 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 3545 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 3546 3547 /* If VMDq is enabled then we set the appropriate mode for that, else 3548 * we default to RSS so that an RSS hash is calculated per packet even 3549 * if we are only using one queue 3550 */ 3551 if (adapter->vfs_allocated_count) { 3552 if (hw->mac.type > e1000_82575) { 3553 /* Set the default pool for the PF's first queue */ 3554 u32 vtctl = rd32(E1000_VT_CTL); 3555 3556 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 3557 E1000_VT_CTL_DISABLE_DEF_POOL); 3558 vtctl |= adapter->vfs_allocated_count << 3559 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 3560 wr32(E1000_VT_CTL, vtctl); 3561 } 3562 if (adapter->rss_queues > 1) 3563 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ; 3564 else 3565 mrqc |= E1000_MRQC_ENABLE_VMDQ; 3566 } else { 3567 if (hw->mac.type != e1000_i211) 3568 mrqc |= E1000_MRQC_ENABLE_RSS_MQ; 3569 } 3570 igb_vmm_control(adapter); 3571 3572 wr32(E1000_MRQC, mrqc); 3573 } 3574 3575 /** 3576 * igb_setup_rctl - configure the receive control registers 3577 * @adapter: Board private structure 3578 **/ 3579 void igb_setup_rctl(struct igb_adapter *adapter) 3580 { 3581 struct e1000_hw *hw = &adapter->hw; 3582 u32 rctl; 3583 3584 rctl = rd32(E1000_RCTL); 3585 3586 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3587 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 3588 3589 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 3590 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3591 3592 /* enable stripping of CRC. It's unlikely this will break BMC 3593 * redirection as it did with e1000. Newer features require 3594 * that the HW strips the CRC. 3595 */ 3596 rctl |= E1000_RCTL_SECRC; 3597 3598 /* disable store bad packets and clear size bits. */ 3599 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 3600 3601 /* enable LPE to allow for reception of jumbo frames */ 3602 rctl |= E1000_RCTL_LPE; 3603 3604 /* disable queue 0 to prevent tail write w/o re-config */ 3605 wr32(E1000_RXDCTL(0), 0); 3606 3607 /* Attention!!! For SR-IOV PF driver operations you must enable 3608 * queue drop for all VF and PF queues to prevent head of line blocking 3609 * if an un-trusted VF does not provide descriptors to hardware. 3610 */ 3611 if (adapter->vfs_allocated_count) { 3612 /* set all queue drop enable bits */ 3613 wr32(E1000_QDE, ALL_QUEUES); 3614 } 3615 3616 /* This is useful for sniffing bad packets. */ 3617 if (adapter->netdev->features & NETIF_F_RXALL) { 3618 /* UPE and MPE will be handled by normal PROMISC logic 3619 * in e1000e_set_rx_mode 3620 */ 3621 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3622 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3623 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3624 3625 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */ 3626 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3627 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3628 * and that breaks VLANs. 3629 */ 3630 } 3631 3632 wr32(E1000_RCTL, rctl); 3633 } 3634 3635 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 3636 int vfn) 3637 { 3638 struct e1000_hw *hw = &adapter->hw; 3639 u32 vmolr; 3640 3641 if (size > MAX_JUMBO_FRAME_SIZE) 3642 size = MAX_JUMBO_FRAME_SIZE; 3643 3644 vmolr = rd32(E1000_VMOLR(vfn)); 3645 vmolr &= ~E1000_VMOLR_RLPML_MASK; 3646 vmolr |= size | E1000_VMOLR_LPE; 3647 wr32(E1000_VMOLR(vfn), vmolr); 3648 3649 return 0; 3650 } 3651 3652 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter, 3653 int vfn, bool enable) 3654 { 3655 struct e1000_hw *hw = &adapter->hw; 3656 u32 val, reg; 3657 3658 if (hw->mac.type < e1000_82576) 3659 return; 3660 3661 if (hw->mac.type == e1000_i350) 3662 reg = E1000_DVMOLR(vfn); 3663 else 3664 reg = E1000_VMOLR(vfn); 3665 3666 val = rd32(reg); 3667 if (enable) 3668 val |= E1000_VMOLR_STRVLAN; 3669 else 3670 val &= ~(E1000_VMOLR_STRVLAN); 3671 wr32(reg, val); 3672 } 3673 3674 static inline void igb_set_vmolr(struct igb_adapter *adapter, 3675 int vfn, bool aupe) 3676 { 3677 struct e1000_hw *hw = &adapter->hw; 3678 u32 vmolr; 3679 3680 /* This register exists only on 82576 and newer so if we are older then 3681 * we should exit and do nothing 3682 */ 3683 if (hw->mac.type < e1000_82576) 3684 return; 3685 3686 vmolr = rd32(E1000_VMOLR(vfn)); 3687 if (aupe) 3688 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 3689 else 3690 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 3691 3692 /* clear all bits that might not be set */ 3693 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 3694 3695 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 3696 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 3697 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 3698 * multicast packets 3699 */ 3700 if (vfn <= adapter->vfs_allocated_count) 3701 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 3702 3703 wr32(E1000_VMOLR(vfn), vmolr); 3704 } 3705 3706 /** 3707 * igb_configure_rx_ring - Configure a receive ring after Reset 3708 * @adapter: board private structure 3709 * @ring: receive ring to be configured 3710 * 3711 * Configure the Rx unit of the MAC after a reset. 3712 **/ 3713 void igb_configure_rx_ring(struct igb_adapter *adapter, 3714 struct igb_ring *ring) 3715 { 3716 struct e1000_hw *hw = &adapter->hw; 3717 u64 rdba = ring->dma; 3718 int reg_idx = ring->reg_idx; 3719 u32 srrctl = 0, rxdctl = 0; 3720 3721 /* disable the queue */ 3722 wr32(E1000_RXDCTL(reg_idx), 0); 3723 3724 /* Set DMA base address registers */ 3725 wr32(E1000_RDBAL(reg_idx), 3726 rdba & 0x00000000ffffffffULL); 3727 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 3728 wr32(E1000_RDLEN(reg_idx), 3729 ring->count * sizeof(union e1000_adv_rx_desc)); 3730 3731 /* initialize head and tail */ 3732 ring->tail = hw->hw_addr + E1000_RDT(reg_idx); 3733 wr32(E1000_RDH(reg_idx), 0); 3734 writel(0, ring->tail); 3735 3736 /* set descriptor configuration */ 3737 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 3738 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3739 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3740 if (hw->mac.type >= e1000_82580) 3741 srrctl |= E1000_SRRCTL_TIMESTAMP; 3742 /* Only set Drop Enable if we are supporting multiple queues */ 3743 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) 3744 srrctl |= E1000_SRRCTL_DROP_EN; 3745 3746 wr32(E1000_SRRCTL(reg_idx), srrctl); 3747 3748 /* set filtering for VMDQ pools */ 3749 igb_set_vmolr(adapter, reg_idx & 0x7, true); 3750 3751 rxdctl |= IGB_RX_PTHRESH; 3752 rxdctl |= IGB_RX_HTHRESH << 8; 3753 rxdctl |= IGB_RX_WTHRESH << 16; 3754 3755 /* enable receive descriptor fetching */ 3756 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3757 wr32(E1000_RXDCTL(reg_idx), rxdctl); 3758 } 3759 3760 /** 3761 * igb_configure_rx - Configure receive Unit after Reset 3762 * @adapter: board private structure 3763 * 3764 * Configure the Rx unit of the MAC after a reset. 3765 **/ 3766 static void igb_configure_rx(struct igb_adapter *adapter) 3767 { 3768 int i; 3769 3770 /* set the correct pool for the PF default MAC address in entry 0 */ 3771 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 3772 adapter->vfs_allocated_count); 3773 3774 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3775 * the Base and Length of the Rx Descriptor Ring 3776 */ 3777 for (i = 0; i < adapter->num_rx_queues; i++) 3778 igb_configure_rx_ring(adapter, adapter->rx_ring[i]); 3779 } 3780 3781 /** 3782 * igb_free_tx_resources - Free Tx Resources per Queue 3783 * @tx_ring: Tx descriptor ring for a specific queue 3784 * 3785 * Free all transmit software resources 3786 **/ 3787 void igb_free_tx_resources(struct igb_ring *tx_ring) 3788 { 3789 igb_clean_tx_ring(tx_ring); 3790 3791 vfree(tx_ring->tx_buffer_info); 3792 tx_ring->tx_buffer_info = NULL; 3793 3794 /* if not set, then don't free */ 3795 if (!tx_ring->desc) 3796 return; 3797 3798 dma_free_coherent(tx_ring->dev, tx_ring->size, 3799 tx_ring->desc, tx_ring->dma); 3800 3801 tx_ring->desc = NULL; 3802 } 3803 3804 /** 3805 * igb_free_all_tx_resources - Free Tx Resources for All Queues 3806 * @adapter: board private structure 3807 * 3808 * Free all transmit software resources 3809 **/ 3810 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 3811 { 3812 int i; 3813 3814 for (i = 0; i < adapter->num_tx_queues; i++) 3815 if (adapter->tx_ring[i]) 3816 igb_free_tx_resources(adapter->tx_ring[i]); 3817 } 3818 3819 void igb_unmap_and_free_tx_resource(struct igb_ring *ring, 3820 struct igb_tx_buffer *tx_buffer) 3821 { 3822 if (tx_buffer->skb) { 3823 dev_kfree_skb_any(tx_buffer->skb); 3824 if (dma_unmap_len(tx_buffer, len)) 3825 dma_unmap_single(ring->dev, 3826 dma_unmap_addr(tx_buffer, dma), 3827 dma_unmap_len(tx_buffer, len), 3828 DMA_TO_DEVICE); 3829 } else if (dma_unmap_len(tx_buffer, len)) { 3830 dma_unmap_page(ring->dev, 3831 dma_unmap_addr(tx_buffer, dma), 3832 dma_unmap_len(tx_buffer, len), 3833 DMA_TO_DEVICE); 3834 } 3835 tx_buffer->next_to_watch = NULL; 3836 tx_buffer->skb = NULL; 3837 dma_unmap_len_set(tx_buffer, len, 0); 3838 /* buffer_info must be completely set up in the transmit path */ 3839 } 3840 3841 /** 3842 * igb_clean_tx_ring - Free Tx Buffers 3843 * @tx_ring: ring to be cleaned 3844 **/ 3845 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 3846 { 3847 struct igb_tx_buffer *buffer_info; 3848 unsigned long size; 3849 u16 i; 3850 3851 if (!tx_ring->tx_buffer_info) 3852 return; 3853 /* Free all the Tx ring sk_buffs */ 3854 3855 for (i = 0; i < tx_ring->count; i++) { 3856 buffer_info = &tx_ring->tx_buffer_info[i]; 3857 igb_unmap_and_free_tx_resource(tx_ring, buffer_info); 3858 } 3859 3860 netdev_tx_reset_queue(txring_txq(tx_ring)); 3861 3862 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3863 memset(tx_ring->tx_buffer_info, 0, size); 3864 3865 /* Zero out the descriptor ring */ 3866 memset(tx_ring->desc, 0, tx_ring->size); 3867 3868 tx_ring->next_to_use = 0; 3869 tx_ring->next_to_clean = 0; 3870 } 3871 3872 /** 3873 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 3874 * @adapter: board private structure 3875 **/ 3876 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 3877 { 3878 int i; 3879 3880 for (i = 0; i < adapter->num_tx_queues; i++) 3881 if (adapter->tx_ring[i]) 3882 igb_clean_tx_ring(adapter->tx_ring[i]); 3883 } 3884 3885 /** 3886 * igb_free_rx_resources - Free Rx Resources 3887 * @rx_ring: ring to clean the resources from 3888 * 3889 * Free all receive software resources 3890 **/ 3891 void igb_free_rx_resources(struct igb_ring *rx_ring) 3892 { 3893 igb_clean_rx_ring(rx_ring); 3894 3895 vfree(rx_ring->rx_buffer_info); 3896 rx_ring->rx_buffer_info = NULL; 3897 3898 /* if not set, then don't free */ 3899 if (!rx_ring->desc) 3900 return; 3901 3902 dma_free_coherent(rx_ring->dev, rx_ring->size, 3903 rx_ring->desc, rx_ring->dma); 3904 3905 rx_ring->desc = NULL; 3906 } 3907 3908 /** 3909 * igb_free_all_rx_resources - Free Rx Resources for All Queues 3910 * @adapter: board private structure 3911 * 3912 * Free all receive software resources 3913 **/ 3914 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 3915 { 3916 int i; 3917 3918 for (i = 0; i < adapter->num_rx_queues; i++) 3919 if (adapter->rx_ring[i]) 3920 igb_free_rx_resources(adapter->rx_ring[i]); 3921 } 3922 3923 /** 3924 * igb_clean_rx_ring - Free Rx Buffers per Queue 3925 * @rx_ring: ring to free buffers from 3926 **/ 3927 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 3928 { 3929 unsigned long size; 3930 u16 i; 3931 3932 if (rx_ring->skb) 3933 dev_kfree_skb(rx_ring->skb); 3934 rx_ring->skb = NULL; 3935 3936 if (!rx_ring->rx_buffer_info) 3937 return; 3938 3939 /* Free all the Rx ring sk_buffs */ 3940 for (i = 0; i < rx_ring->count; i++) { 3941 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 3942 3943 if (!buffer_info->page) 3944 continue; 3945 3946 dma_unmap_page(rx_ring->dev, 3947 buffer_info->dma, 3948 PAGE_SIZE, 3949 DMA_FROM_DEVICE); 3950 __free_page(buffer_info->page); 3951 3952 buffer_info->page = NULL; 3953 } 3954 3955 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3956 memset(rx_ring->rx_buffer_info, 0, size); 3957 3958 /* Zero out the descriptor ring */ 3959 memset(rx_ring->desc, 0, rx_ring->size); 3960 3961 rx_ring->next_to_alloc = 0; 3962 rx_ring->next_to_clean = 0; 3963 rx_ring->next_to_use = 0; 3964 } 3965 3966 /** 3967 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 3968 * @adapter: board private structure 3969 **/ 3970 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 3971 { 3972 int i; 3973 3974 for (i = 0; i < adapter->num_rx_queues; i++) 3975 if (adapter->rx_ring[i]) 3976 igb_clean_rx_ring(adapter->rx_ring[i]); 3977 } 3978 3979 /** 3980 * igb_set_mac - Change the Ethernet Address of the NIC 3981 * @netdev: network interface device structure 3982 * @p: pointer to an address structure 3983 * 3984 * Returns 0 on success, negative on failure 3985 **/ 3986 static int igb_set_mac(struct net_device *netdev, void *p) 3987 { 3988 struct igb_adapter *adapter = netdev_priv(netdev); 3989 struct e1000_hw *hw = &adapter->hw; 3990 struct sockaddr *addr = p; 3991 3992 if (!is_valid_ether_addr(addr->sa_data)) 3993 return -EADDRNOTAVAIL; 3994 3995 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3996 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3997 3998 /* set the correct pool for the new PF MAC address in entry 0 */ 3999 igb_rar_set_qsel(adapter, hw->mac.addr, 0, 4000 adapter->vfs_allocated_count); 4001 4002 return 0; 4003 } 4004 4005 /** 4006 * igb_write_mc_addr_list - write multicast addresses to MTA 4007 * @netdev: network interface device structure 4008 * 4009 * Writes multicast address list to the MTA hash table. 4010 * Returns: -ENOMEM on failure 4011 * 0 on no addresses written 4012 * X on writing X addresses to MTA 4013 **/ 4014 static int igb_write_mc_addr_list(struct net_device *netdev) 4015 { 4016 struct igb_adapter *adapter = netdev_priv(netdev); 4017 struct e1000_hw *hw = &adapter->hw; 4018 struct netdev_hw_addr *ha; 4019 u8 *mta_list; 4020 int i; 4021 4022 if (netdev_mc_empty(netdev)) { 4023 /* nothing to program, so clear mc list */ 4024 igb_update_mc_addr_list(hw, NULL, 0); 4025 igb_restore_vf_multicasts(adapter); 4026 return 0; 4027 } 4028 4029 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 4030 if (!mta_list) 4031 return -ENOMEM; 4032 4033 /* The shared function expects a packed array of only addresses. */ 4034 i = 0; 4035 netdev_for_each_mc_addr(ha, netdev) 4036 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 4037 4038 igb_update_mc_addr_list(hw, mta_list, i); 4039 kfree(mta_list); 4040 4041 return netdev_mc_count(netdev); 4042 } 4043 4044 /** 4045 * igb_write_uc_addr_list - write unicast addresses to RAR table 4046 * @netdev: network interface device structure 4047 * 4048 * Writes unicast address list to the RAR table. 4049 * Returns: -ENOMEM on failure/insufficient address space 4050 * 0 on no addresses written 4051 * X on writing X addresses to the RAR table 4052 **/ 4053 static int igb_write_uc_addr_list(struct net_device *netdev) 4054 { 4055 struct igb_adapter *adapter = netdev_priv(netdev); 4056 struct e1000_hw *hw = &adapter->hw; 4057 unsigned int vfn = adapter->vfs_allocated_count; 4058 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 4059 int count = 0; 4060 4061 /* return ENOMEM indicating insufficient memory for addresses */ 4062 if (netdev_uc_count(netdev) > rar_entries) 4063 return -ENOMEM; 4064 4065 if (!netdev_uc_empty(netdev) && rar_entries) { 4066 struct netdev_hw_addr *ha; 4067 4068 netdev_for_each_uc_addr(ha, netdev) { 4069 if (!rar_entries) 4070 break; 4071 igb_rar_set_qsel(adapter, ha->addr, 4072 rar_entries--, 4073 vfn); 4074 count++; 4075 } 4076 } 4077 /* write the addresses in reverse order to avoid write combining */ 4078 for (; rar_entries > 0 ; rar_entries--) { 4079 wr32(E1000_RAH(rar_entries), 0); 4080 wr32(E1000_RAL(rar_entries), 0); 4081 } 4082 wrfl(); 4083 4084 return count; 4085 } 4086 4087 static int igb_vlan_promisc_enable(struct igb_adapter *adapter) 4088 { 4089 struct e1000_hw *hw = &adapter->hw; 4090 u32 i, pf_id; 4091 4092 switch (hw->mac.type) { 4093 case e1000_i210: 4094 case e1000_i211: 4095 case e1000_i350: 4096 /* VLAN filtering needed for VLAN prio filter */ 4097 if (adapter->netdev->features & NETIF_F_NTUPLE) 4098 break; 4099 /* fall through */ 4100 case e1000_82576: 4101 case e1000_82580: 4102 case e1000_i354: 4103 /* VLAN filtering needed for pool filtering */ 4104 if (adapter->vfs_allocated_count) 4105 break; 4106 /* fall through */ 4107 default: 4108 return 1; 4109 } 4110 4111 /* We are already in VLAN promisc, nothing to do */ 4112 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 4113 return 0; 4114 4115 if (!adapter->vfs_allocated_count) 4116 goto set_vfta; 4117 4118 /* Add PF to all active pools */ 4119 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 4120 4121 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 4122 u32 vlvf = rd32(E1000_VLVF(i)); 4123 4124 vlvf |= BIT(pf_id); 4125 wr32(E1000_VLVF(i), vlvf); 4126 } 4127 4128 set_vfta: 4129 /* Set all bits in the VLAN filter table array */ 4130 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;) 4131 hw->mac.ops.write_vfta(hw, i, ~0U); 4132 4133 /* Set flag so we don't redo unnecessary work */ 4134 adapter->flags |= IGB_FLAG_VLAN_PROMISC; 4135 4136 return 0; 4137 } 4138 4139 #define VFTA_BLOCK_SIZE 8 4140 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset) 4141 { 4142 struct e1000_hw *hw = &adapter->hw; 4143 u32 vfta[VFTA_BLOCK_SIZE] = { 0 }; 4144 u32 vid_start = vfta_offset * 32; 4145 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32); 4146 u32 i, vid, word, bits, pf_id; 4147 4148 /* guarantee that we don't scrub out management VLAN */ 4149 vid = adapter->mng_vlan_id; 4150 if (vid >= vid_start && vid < vid_end) 4151 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 4152 4153 if (!adapter->vfs_allocated_count) 4154 goto set_vfta; 4155 4156 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 4157 4158 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 4159 u32 vlvf = rd32(E1000_VLVF(i)); 4160 4161 /* pull VLAN ID from VLVF */ 4162 vid = vlvf & VLAN_VID_MASK; 4163 4164 /* only concern ourselves with a certain range */ 4165 if (vid < vid_start || vid >= vid_end) 4166 continue; 4167 4168 if (vlvf & E1000_VLVF_VLANID_ENABLE) { 4169 /* record VLAN ID in VFTA */ 4170 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 4171 4172 /* if PF is part of this then continue */ 4173 if (test_bit(vid, adapter->active_vlans)) 4174 continue; 4175 } 4176 4177 /* remove PF from the pool */ 4178 bits = ~BIT(pf_id); 4179 bits &= rd32(E1000_VLVF(i)); 4180 wr32(E1000_VLVF(i), bits); 4181 } 4182 4183 set_vfta: 4184 /* extract values from active_vlans and write back to VFTA */ 4185 for (i = VFTA_BLOCK_SIZE; i--;) { 4186 vid = (vfta_offset + i) * 32; 4187 word = vid / BITS_PER_LONG; 4188 bits = vid % BITS_PER_LONG; 4189 4190 vfta[i] |= adapter->active_vlans[word] >> bits; 4191 4192 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]); 4193 } 4194 } 4195 4196 static void igb_vlan_promisc_disable(struct igb_adapter *adapter) 4197 { 4198 u32 i; 4199 4200 /* We are not in VLAN promisc, nothing to do */ 4201 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 4202 return; 4203 4204 /* Set flag so we don't redo unnecessary work */ 4205 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 4206 4207 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE) 4208 igb_scrub_vfta(adapter, i); 4209 } 4210 4211 /** 4212 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 4213 * @netdev: network interface device structure 4214 * 4215 * The set_rx_mode entry point is called whenever the unicast or multicast 4216 * address lists or the network interface flags are updated. This routine is 4217 * responsible for configuring the hardware for proper unicast, multicast, 4218 * promiscuous mode, and all-multi behavior. 4219 **/ 4220 static void igb_set_rx_mode(struct net_device *netdev) 4221 { 4222 struct igb_adapter *adapter = netdev_priv(netdev); 4223 struct e1000_hw *hw = &adapter->hw; 4224 unsigned int vfn = adapter->vfs_allocated_count; 4225 u32 rctl = 0, vmolr = 0; 4226 int count; 4227 4228 /* Check for Promiscuous and All Multicast modes */ 4229 if (netdev->flags & IFF_PROMISC) { 4230 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE; 4231 vmolr |= E1000_VMOLR_MPME; 4232 4233 /* enable use of UTA filter to force packets to default pool */ 4234 if (hw->mac.type == e1000_82576) 4235 vmolr |= E1000_VMOLR_ROPE; 4236 } else { 4237 if (netdev->flags & IFF_ALLMULTI) { 4238 rctl |= E1000_RCTL_MPE; 4239 vmolr |= E1000_VMOLR_MPME; 4240 } else { 4241 /* Write addresses to the MTA, if the attempt fails 4242 * then we should just turn on promiscuous mode so 4243 * that we can at least receive multicast traffic 4244 */ 4245 count = igb_write_mc_addr_list(netdev); 4246 if (count < 0) { 4247 rctl |= E1000_RCTL_MPE; 4248 vmolr |= E1000_VMOLR_MPME; 4249 } else if (count) { 4250 vmolr |= E1000_VMOLR_ROMPE; 4251 } 4252 } 4253 } 4254 4255 /* Write addresses to available RAR registers, if there is not 4256 * sufficient space to store all the addresses then enable 4257 * unicast promiscuous mode 4258 */ 4259 count = igb_write_uc_addr_list(netdev); 4260 if (count < 0) { 4261 rctl |= E1000_RCTL_UPE; 4262 vmolr |= E1000_VMOLR_ROPE; 4263 } 4264 4265 /* enable VLAN filtering by default */ 4266 rctl |= E1000_RCTL_VFE; 4267 4268 /* disable VLAN filtering for modes that require it */ 4269 if ((netdev->flags & IFF_PROMISC) || 4270 (netdev->features & NETIF_F_RXALL)) { 4271 /* if we fail to set all rules then just clear VFE */ 4272 if (igb_vlan_promisc_enable(adapter)) 4273 rctl &= ~E1000_RCTL_VFE; 4274 } else { 4275 igb_vlan_promisc_disable(adapter); 4276 } 4277 4278 /* update state of unicast, multicast, and VLAN filtering modes */ 4279 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE | 4280 E1000_RCTL_VFE); 4281 wr32(E1000_RCTL, rctl); 4282 4283 /* In order to support SR-IOV and eventually VMDq it is necessary to set 4284 * the VMOLR to enable the appropriate modes. Without this workaround 4285 * we will have issues with VLAN tag stripping not being done for frames 4286 * that are only arriving because we are the default pool 4287 */ 4288 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 4289 return; 4290 4291 /* set UTA to appropriate mode */ 4292 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE)); 4293 4294 vmolr |= rd32(E1000_VMOLR(vfn)) & 4295 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 4296 4297 /* enable Rx jumbo frames, no need for restriction */ 4298 vmolr &= ~E1000_VMOLR_RLPML_MASK; 4299 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE; 4300 4301 wr32(E1000_VMOLR(vfn), vmolr); 4302 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE); 4303 4304 igb_restore_vf_multicasts(adapter); 4305 } 4306 4307 static void igb_check_wvbr(struct igb_adapter *adapter) 4308 { 4309 struct e1000_hw *hw = &adapter->hw; 4310 u32 wvbr = 0; 4311 4312 switch (hw->mac.type) { 4313 case e1000_82576: 4314 case e1000_i350: 4315 wvbr = rd32(E1000_WVBR); 4316 if (!wvbr) 4317 return; 4318 break; 4319 default: 4320 break; 4321 } 4322 4323 adapter->wvbr |= wvbr; 4324 } 4325 4326 #define IGB_STAGGERED_QUEUE_OFFSET 8 4327 4328 static void igb_spoof_check(struct igb_adapter *adapter) 4329 { 4330 int j; 4331 4332 if (!adapter->wvbr) 4333 return; 4334 4335 for (j = 0; j < adapter->vfs_allocated_count; j++) { 4336 if (adapter->wvbr & BIT(j) || 4337 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) { 4338 dev_warn(&adapter->pdev->dev, 4339 "Spoof event(s) detected on VF %d\n", j); 4340 adapter->wvbr &= 4341 ~(BIT(j) | 4342 BIT(j + IGB_STAGGERED_QUEUE_OFFSET)); 4343 } 4344 } 4345 } 4346 4347 /* Need to wait a few seconds after link up to get diagnostic information from 4348 * the phy 4349 */ 4350 static void igb_update_phy_info(unsigned long data) 4351 { 4352 struct igb_adapter *adapter = (struct igb_adapter *) data; 4353 igb_get_phy_info(&adapter->hw); 4354 } 4355 4356 /** 4357 * igb_has_link - check shared code for link and determine up/down 4358 * @adapter: pointer to driver private info 4359 **/ 4360 bool igb_has_link(struct igb_adapter *adapter) 4361 { 4362 struct e1000_hw *hw = &adapter->hw; 4363 bool link_active = false; 4364 4365 /* get_link_status is set on LSC (link status) interrupt or 4366 * rx sequence error interrupt. get_link_status will stay 4367 * false until the e1000_check_for_link establishes link 4368 * for copper adapters ONLY 4369 */ 4370 switch (hw->phy.media_type) { 4371 case e1000_media_type_copper: 4372 if (!hw->mac.get_link_status) 4373 return true; 4374 case e1000_media_type_internal_serdes: 4375 hw->mac.ops.check_for_link(hw); 4376 link_active = !hw->mac.get_link_status; 4377 break; 4378 default: 4379 case e1000_media_type_unknown: 4380 break; 4381 } 4382 4383 if (((hw->mac.type == e1000_i210) || 4384 (hw->mac.type == e1000_i211)) && 4385 (hw->phy.id == I210_I_PHY_ID)) { 4386 if (!netif_carrier_ok(adapter->netdev)) { 4387 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 4388 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 4389 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 4390 adapter->link_check_timeout = jiffies; 4391 } 4392 } 4393 4394 return link_active; 4395 } 4396 4397 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 4398 { 4399 bool ret = false; 4400 u32 ctrl_ext, thstat; 4401 4402 /* check for thermal sensor event on i350 copper only */ 4403 if (hw->mac.type == e1000_i350) { 4404 thstat = rd32(E1000_THSTAT); 4405 ctrl_ext = rd32(E1000_CTRL_EXT); 4406 4407 if ((hw->phy.media_type == e1000_media_type_copper) && 4408 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 4409 ret = !!(thstat & event); 4410 } 4411 4412 return ret; 4413 } 4414 4415 /** 4416 * igb_check_lvmmc - check for malformed packets received 4417 * and indicated in LVMMC register 4418 * @adapter: pointer to adapter 4419 **/ 4420 static void igb_check_lvmmc(struct igb_adapter *adapter) 4421 { 4422 struct e1000_hw *hw = &adapter->hw; 4423 u32 lvmmc; 4424 4425 lvmmc = rd32(E1000_LVMMC); 4426 if (lvmmc) { 4427 if (unlikely(net_ratelimit())) { 4428 netdev_warn(adapter->netdev, 4429 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", 4430 lvmmc); 4431 } 4432 } 4433 } 4434 4435 /** 4436 * igb_watchdog - Timer Call-back 4437 * @data: pointer to adapter cast into an unsigned long 4438 **/ 4439 static void igb_watchdog(unsigned long data) 4440 { 4441 struct igb_adapter *adapter = (struct igb_adapter *)data; 4442 /* Do the rest outside of interrupt context */ 4443 schedule_work(&adapter->watchdog_task); 4444 } 4445 4446 static void igb_watchdog_task(struct work_struct *work) 4447 { 4448 struct igb_adapter *adapter = container_of(work, 4449 struct igb_adapter, 4450 watchdog_task); 4451 struct e1000_hw *hw = &adapter->hw; 4452 struct e1000_phy_info *phy = &hw->phy; 4453 struct net_device *netdev = adapter->netdev; 4454 u32 link; 4455 int i; 4456 u32 connsw; 4457 u16 phy_data, retry_count = 20; 4458 4459 link = igb_has_link(adapter); 4460 4461 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 4462 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 4463 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 4464 else 4465 link = false; 4466 } 4467 4468 /* Force link down if we have fiber to swap to */ 4469 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 4470 if (hw->phy.media_type == e1000_media_type_copper) { 4471 connsw = rd32(E1000_CONNSW); 4472 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 4473 link = 0; 4474 } 4475 } 4476 if (link) { 4477 /* Perform a reset if the media type changed. */ 4478 if (hw->dev_spec._82575.media_changed) { 4479 hw->dev_spec._82575.media_changed = false; 4480 adapter->flags |= IGB_FLAG_MEDIA_RESET; 4481 igb_reset(adapter); 4482 } 4483 /* Cancel scheduled suspend requests. */ 4484 pm_runtime_resume(netdev->dev.parent); 4485 4486 if (!netif_carrier_ok(netdev)) { 4487 u32 ctrl; 4488 4489 hw->mac.ops.get_speed_and_duplex(hw, 4490 &adapter->link_speed, 4491 &adapter->link_duplex); 4492 4493 ctrl = rd32(E1000_CTRL); 4494 /* Links status message must follow this format */ 4495 netdev_info(netdev, 4496 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 4497 netdev->name, 4498 adapter->link_speed, 4499 adapter->link_duplex == FULL_DUPLEX ? 4500 "Full" : "Half", 4501 (ctrl & E1000_CTRL_TFCE) && 4502 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 4503 (ctrl & E1000_CTRL_RFCE) ? "RX" : 4504 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 4505 4506 /* disable EEE if enabled */ 4507 if ((adapter->flags & IGB_FLAG_EEE) && 4508 (adapter->link_duplex == HALF_DUPLEX)) { 4509 dev_info(&adapter->pdev->dev, 4510 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 4511 adapter->hw.dev_spec._82575.eee_disable = true; 4512 adapter->flags &= ~IGB_FLAG_EEE; 4513 } 4514 4515 /* check if SmartSpeed worked */ 4516 igb_check_downshift(hw); 4517 if (phy->speed_downgraded) 4518 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 4519 4520 /* check for thermal sensor event */ 4521 if (igb_thermal_sensor_event(hw, 4522 E1000_THSTAT_LINK_THROTTLE)) 4523 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 4524 4525 /* adjust timeout factor according to speed/duplex */ 4526 adapter->tx_timeout_factor = 1; 4527 switch (adapter->link_speed) { 4528 case SPEED_10: 4529 adapter->tx_timeout_factor = 14; 4530 break; 4531 case SPEED_100: 4532 /* maybe add some timeout factor ? */ 4533 break; 4534 } 4535 4536 if (adapter->link_speed != SPEED_1000) 4537 goto no_wait; 4538 4539 /* wait for Remote receiver status OK */ 4540 retry_read_status: 4541 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS, 4542 &phy_data)) { 4543 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 4544 retry_count) { 4545 msleep(100); 4546 retry_count--; 4547 goto retry_read_status; 4548 } else if (!retry_count) { 4549 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 4550 } 4551 } else { 4552 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 4553 } 4554 no_wait: 4555 netif_carrier_on(netdev); 4556 4557 igb_ping_all_vfs(adapter); 4558 igb_check_vf_rate_limit(adapter); 4559 4560 /* link state has changed, schedule phy info update */ 4561 if (!test_bit(__IGB_DOWN, &adapter->state)) 4562 mod_timer(&adapter->phy_info_timer, 4563 round_jiffies(jiffies + 2 * HZ)); 4564 } 4565 } else { 4566 if (netif_carrier_ok(netdev)) { 4567 adapter->link_speed = 0; 4568 adapter->link_duplex = 0; 4569 4570 /* check for thermal sensor event */ 4571 if (igb_thermal_sensor_event(hw, 4572 E1000_THSTAT_PWR_DOWN)) { 4573 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 4574 } 4575 4576 /* Links status message must follow this format */ 4577 netdev_info(netdev, "igb: %s NIC Link is Down\n", 4578 netdev->name); 4579 netif_carrier_off(netdev); 4580 4581 igb_ping_all_vfs(adapter); 4582 4583 /* link state has changed, schedule phy info update */ 4584 if (!test_bit(__IGB_DOWN, &adapter->state)) 4585 mod_timer(&adapter->phy_info_timer, 4586 round_jiffies(jiffies + 2 * HZ)); 4587 4588 /* link is down, time to check for alternate media */ 4589 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 4590 igb_check_swap_media(adapter); 4591 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 4592 schedule_work(&adapter->reset_task); 4593 /* return immediately */ 4594 return; 4595 } 4596 } 4597 pm_schedule_suspend(netdev->dev.parent, 4598 MSEC_PER_SEC * 5); 4599 4600 /* also check for alternate media here */ 4601 } else if (!netif_carrier_ok(netdev) && 4602 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 4603 igb_check_swap_media(adapter); 4604 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 4605 schedule_work(&adapter->reset_task); 4606 /* return immediately */ 4607 return; 4608 } 4609 } 4610 } 4611 4612 spin_lock(&adapter->stats64_lock); 4613 igb_update_stats(adapter, &adapter->stats64); 4614 spin_unlock(&adapter->stats64_lock); 4615 4616 for (i = 0; i < adapter->num_tx_queues; i++) { 4617 struct igb_ring *tx_ring = adapter->tx_ring[i]; 4618 if (!netif_carrier_ok(netdev)) { 4619 /* We've lost link, so the controller stops DMA, 4620 * but we've got queued Tx work that's never going 4621 * to get done, so reset controller to flush Tx. 4622 * (Do the reset outside of interrupt context). 4623 */ 4624 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 4625 adapter->tx_timeout_count++; 4626 schedule_work(&adapter->reset_task); 4627 /* return immediately since reset is imminent */ 4628 return; 4629 } 4630 } 4631 4632 /* Force detection of hung controller every watchdog period */ 4633 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 4634 } 4635 4636 /* Cause software interrupt to ensure Rx ring is cleaned */ 4637 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 4638 u32 eics = 0; 4639 4640 for (i = 0; i < adapter->num_q_vectors; i++) 4641 eics |= adapter->q_vector[i]->eims_value; 4642 wr32(E1000_EICS, eics); 4643 } else { 4644 wr32(E1000_ICS, E1000_ICS_RXDMT0); 4645 } 4646 4647 igb_spoof_check(adapter); 4648 igb_ptp_rx_hang(adapter); 4649 4650 /* Check LVMMC register on i350/i354 only */ 4651 if ((adapter->hw.mac.type == e1000_i350) || 4652 (adapter->hw.mac.type == e1000_i354)) 4653 igb_check_lvmmc(adapter); 4654 4655 /* Reset the timer */ 4656 if (!test_bit(__IGB_DOWN, &adapter->state)) { 4657 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 4658 mod_timer(&adapter->watchdog_timer, 4659 round_jiffies(jiffies + HZ)); 4660 else 4661 mod_timer(&adapter->watchdog_timer, 4662 round_jiffies(jiffies + 2 * HZ)); 4663 } 4664 } 4665 4666 enum latency_range { 4667 lowest_latency = 0, 4668 low_latency = 1, 4669 bulk_latency = 2, 4670 latency_invalid = 255 4671 }; 4672 4673 /** 4674 * igb_update_ring_itr - update the dynamic ITR value based on packet size 4675 * @q_vector: pointer to q_vector 4676 * 4677 * Stores a new ITR value based on strictly on packet size. This 4678 * algorithm is less sophisticated than that used in igb_update_itr, 4679 * due to the difficulty of synchronizing statistics across multiple 4680 * receive rings. The divisors and thresholds used by this function 4681 * were determined based on theoretical maximum wire speed and testing 4682 * data, in order to minimize response time while increasing bulk 4683 * throughput. 4684 * This functionality is controlled by ethtool's coalescing settings. 4685 * NOTE: This function is called only when operating in a multiqueue 4686 * receive environment. 4687 **/ 4688 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 4689 { 4690 int new_val = q_vector->itr_val; 4691 int avg_wire_size = 0; 4692 struct igb_adapter *adapter = q_vector->adapter; 4693 unsigned int packets; 4694 4695 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4696 * ints/sec - ITR timer value of 120 ticks. 4697 */ 4698 if (adapter->link_speed != SPEED_1000) { 4699 new_val = IGB_4K_ITR; 4700 goto set_itr_val; 4701 } 4702 4703 packets = q_vector->rx.total_packets; 4704 if (packets) 4705 avg_wire_size = q_vector->rx.total_bytes / packets; 4706 4707 packets = q_vector->tx.total_packets; 4708 if (packets) 4709 avg_wire_size = max_t(u32, avg_wire_size, 4710 q_vector->tx.total_bytes / packets); 4711 4712 /* if avg_wire_size isn't set no work was done */ 4713 if (!avg_wire_size) 4714 goto clear_counts; 4715 4716 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4717 avg_wire_size += 24; 4718 4719 /* Don't starve jumbo frames */ 4720 avg_wire_size = min(avg_wire_size, 3000); 4721 4722 /* Give a little boost to mid-size frames */ 4723 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 4724 new_val = avg_wire_size / 3; 4725 else 4726 new_val = avg_wire_size / 2; 4727 4728 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4729 if (new_val < IGB_20K_ITR && 4730 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4731 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4732 new_val = IGB_20K_ITR; 4733 4734 set_itr_val: 4735 if (new_val != q_vector->itr_val) { 4736 q_vector->itr_val = new_val; 4737 q_vector->set_itr = 1; 4738 } 4739 clear_counts: 4740 q_vector->rx.total_bytes = 0; 4741 q_vector->rx.total_packets = 0; 4742 q_vector->tx.total_bytes = 0; 4743 q_vector->tx.total_packets = 0; 4744 } 4745 4746 /** 4747 * igb_update_itr - update the dynamic ITR value based on statistics 4748 * @q_vector: pointer to q_vector 4749 * @ring_container: ring info to update the itr for 4750 * 4751 * Stores a new ITR value based on packets and byte 4752 * counts during the last interrupt. The advantage of per interrupt 4753 * computation is faster updates and more accurate ITR for the current 4754 * traffic pattern. Constants in this function were computed 4755 * based on theoretical maximum wire speed and thresholds were set based 4756 * on testing data as well as attempting to minimize response time 4757 * while increasing bulk throughput. 4758 * This functionality is controlled by ethtool's coalescing settings. 4759 * NOTE: These calculations are only valid when operating in a single- 4760 * queue environment. 4761 **/ 4762 static void igb_update_itr(struct igb_q_vector *q_vector, 4763 struct igb_ring_container *ring_container) 4764 { 4765 unsigned int packets = ring_container->total_packets; 4766 unsigned int bytes = ring_container->total_bytes; 4767 u8 itrval = ring_container->itr; 4768 4769 /* no packets, exit with status unchanged */ 4770 if (packets == 0) 4771 return; 4772 4773 switch (itrval) { 4774 case lowest_latency: 4775 /* handle TSO and jumbo frames */ 4776 if (bytes/packets > 8000) 4777 itrval = bulk_latency; 4778 else if ((packets < 5) && (bytes > 512)) 4779 itrval = low_latency; 4780 break; 4781 case low_latency: /* 50 usec aka 20000 ints/s */ 4782 if (bytes > 10000) { 4783 /* this if handles the TSO accounting */ 4784 if (bytes/packets > 8000) 4785 itrval = bulk_latency; 4786 else if ((packets < 10) || ((bytes/packets) > 1200)) 4787 itrval = bulk_latency; 4788 else if ((packets > 35)) 4789 itrval = lowest_latency; 4790 } else if (bytes/packets > 2000) { 4791 itrval = bulk_latency; 4792 } else if (packets <= 2 && bytes < 512) { 4793 itrval = lowest_latency; 4794 } 4795 break; 4796 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4797 if (bytes > 25000) { 4798 if (packets > 35) 4799 itrval = low_latency; 4800 } else if (bytes < 1500) { 4801 itrval = low_latency; 4802 } 4803 break; 4804 } 4805 4806 /* clear work counters since we have the values we need */ 4807 ring_container->total_bytes = 0; 4808 ring_container->total_packets = 0; 4809 4810 /* write updated itr to ring container */ 4811 ring_container->itr = itrval; 4812 } 4813 4814 static void igb_set_itr(struct igb_q_vector *q_vector) 4815 { 4816 struct igb_adapter *adapter = q_vector->adapter; 4817 u32 new_itr = q_vector->itr_val; 4818 u8 current_itr = 0; 4819 4820 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4821 if (adapter->link_speed != SPEED_1000) { 4822 current_itr = 0; 4823 new_itr = IGB_4K_ITR; 4824 goto set_itr_now; 4825 } 4826 4827 igb_update_itr(q_vector, &q_vector->tx); 4828 igb_update_itr(q_vector, &q_vector->rx); 4829 4830 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4831 4832 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4833 if (current_itr == lowest_latency && 4834 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4835 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4836 current_itr = low_latency; 4837 4838 switch (current_itr) { 4839 /* counts and packets in update_itr are dependent on these numbers */ 4840 case lowest_latency: 4841 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 4842 break; 4843 case low_latency: 4844 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 4845 break; 4846 case bulk_latency: 4847 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 4848 break; 4849 default: 4850 break; 4851 } 4852 4853 set_itr_now: 4854 if (new_itr != q_vector->itr_val) { 4855 /* this attempts to bias the interrupt rate towards Bulk 4856 * by adding intermediate steps when interrupt rate is 4857 * increasing 4858 */ 4859 new_itr = new_itr > q_vector->itr_val ? 4860 max((new_itr * q_vector->itr_val) / 4861 (new_itr + (q_vector->itr_val >> 2)), 4862 new_itr) : new_itr; 4863 /* Don't write the value here; it resets the adapter's 4864 * internal timer, and causes us to delay far longer than 4865 * we should between interrupts. Instead, we write the ITR 4866 * value at the beginning of the next interrupt so the timing 4867 * ends up being correct. 4868 */ 4869 q_vector->itr_val = new_itr; 4870 q_vector->set_itr = 1; 4871 } 4872 } 4873 4874 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, 4875 u32 type_tucmd, u32 mss_l4len_idx) 4876 { 4877 struct e1000_adv_tx_context_desc *context_desc; 4878 u16 i = tx_ring->next_to_use; 4879 4880 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 4881 4882 i++; 4883 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 4884 4885 /* set bits to identify this as an advanced context descriptor */ 4886 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 4887 4888 /* For 82575, context index must be unique per ring. */ 4889 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4890 mss_l4len_idx |= tx_ring->reg_idx << 4; 4891 4892 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 4893 context_desc->seqnum_seed = 0; 4894 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 4895 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 4896 } 4897 4898 static int igb_tso(struct igb_ring *tx_ring, 4899 struct igb_tx_buffer *first, 4900 u8 *hdr_len) 4901 { 4902 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 4903 struct sk_buff *skb = first->skb; 4904 union { 4905 struct iphdr *v4; 4906 struct ipv6hdr *v6; 4907 unsigned char *hdr; 4908 } ip; 4909 union { 4910 struct tcphdr *tcp; 4911 unsigned char *hdr; 4912 } l4; 4913 u32 paylen, l4_offset; 4914 int err; 4915 4916 if (skb->ip_summed != CHECKSUM_PARTIAL) 4917 return 0; 4918 4919 if (!skb_is_gso(skb)) 4920 return 0; 4921 4922 err = skb_cow_head(skb, 0); 4923 if (err < 0) 4924 return err; 4925 4926 ip.hdr = skb_network_header(skb); 4927 l4.hdr = skb_checksum_start(skb); 4928 4929 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 4930 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 4931 4932 /* initialize outer IP header fields */ 4933 if (ip.v4->version == 4) { 4934 /* IP header will have to cancel out any data that 4935 * is not a part of the outer IP header 4936 */ 4937 ip.v4->check = csum_fold(csum_add(lco_csum(skb), 4938 csum_unfold(l4.tcp->check))); 4939 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4940 4941 ip.v4->tot_len = 0; 4942 first->tx_flags |= IGB_TX_FLAGS_TSO | 4943 IGB_TX_FLAGS_CSUM | 4944 IGB_TX_FLAGS_IPV4; 4945 } else { 4946 ip.v6->payload_len = 0; 4947 first->tx_flags |= IGB_TX_FLAGS_TSO | 4948 IGB_TX_FLAGS_CSUM; 4949 } 4950 4951 /* determine offset of inner transport header */ 4952 l4_offset = l4.hdr - skb->data; 4953 4954 /* compute length of segmentation header */ 4955 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 4956 4957 /* remove payload length from inner checksum */ 4958 paylen = skb->len - l4_offset; 4959 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 4960 4961 /* update gso size and bytecount with header size */ 4962 first->gso_segs = skb_shinfo(skb)->gso_segs; 4963 first->bytecount += (first->gso_segs - 1) * *hdr_len; 4964 4965 /* MSS L4LEN IDX */ 4966 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 4967 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 4968 4969 /* VLAN MACLEN IPLEN */ 4970 vlan_macip_lens = l4.hdr - ip.hdr; 4971 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 4972 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4973 4974 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4975 4976 return 1; 4977 } 4978 4979 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb) 4980 { 4981 unsigned int offset = 0; 4982 4983 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 4984 4985 return offset == skb_checksum_start_offset(skb); 4986 } 4987 4988 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 4989 { 4990 struct sk_buff *skb = first->skb; 4991 u32 vlan_macip_lens = 0; 4992 u32 type_tucmd = 0; 4993 4994 if (skb->ip_summed != CHECKSUM_PARTIAL) { 4995 csum_failed: 4996 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) 4997 return; 4998 goto no_csum; 4999 } 5000 5001 switch (skb->csum_offset) { 5002 case offsetof(struct tcphdr, check): 5003 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 5004 /* fall through */ 5005 case offsetof(struct udphdr, check): 5006 break; 5007 case offsetof(struct sctphdr, checksum): 5008 /* validate that this is actually an SCTP request */ 5009 if (((first->protocol == htons(ETH_P_IP)) && 5010 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 5011 ((first->protocol == htons(ETH_P_IPV6)) && 5012 igb_ipv6_csum_is_sctp(skb))) { 5013 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 5014 break; 5015 } 5016 default: 5017 skb_checksum_help(skb); 5018 goto csum_failed; 5019 } 5020 5021 /* update TX checksum flag */ 5022 first->tx_flags |= IGB_TX_FLAGS_CSUM; 5023 vlan_macip_lens = skb_checksum_start_offset(skb) - 5024 skb_network_offset(skb); 5025 no_csum: 5026 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 5027 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 5028 5029 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 5030 } 5031 5032 #define IGB_SET_FLAG(_input, _flag, _result) \ 5033 ((_flag <= _result) ? \ 5034 ((u32)(_input & _flag) * (_result / _flag)) : \ 5035 ((u32)(_input & _flag) / (_flag / _result))) 5036 5037 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 5038 { 5039 /* set type for advanced descriptor with frame checksum insertion */ 5040 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 5041 E1000_ADVTXD_DCMD_DEXT | 5042 E1000_ADVTXD_DCMD_IFCS; 5043 5044 /* set HW vlan bit if vlan is present */ 5045 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 5046 (E1000_ADVTXD_DCMD_VLE)); 5047 5048 /* set segmentation bits for TSO */ 5049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 5050 (E1000_ADVTXD_DCMD_TSE)); 5051 5052 /* set timestamp bit if present */ 5053 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 5054 (E1000_ADVTXD_MAC_TSTAMP)); 5055 5056 /* insert frame checksum */ 5057 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 5058 5059 return cmd_type; 5060 } 5061 5062 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 5063 union e1000_adv_tx_desc *tx_desc, 5064 u32 tx_flags, unsigned int paylen) 5065 { 5066 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 5067 5068 /* 82575 requires a unique index per ring */ 5069 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 5070 olinfo_status |= tx_ring->reg_idx << 4; 5071 5072 /* insert L4 checksum */ 5073 olinfo_status |= IGB_SET_FLAG(tx_flags, 5074 IGB_TX_FLAGS_CSUM, 5075 (E1000_TXD_POPTS_TXSM << 8)); 5076 5077 /* insert IPv4 checksum */ 5078 olinfo_status |= IGB_SET_FLAG(tx_flags, 5079 IGB_TX_FLAGS_IPV4, 5080 (E1000_TXD_POPTS_IXSM << 8)); 5081 5082 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 5083 } 5084 5085 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 5086 { 5087 struct net_device *netdev = tx_ring->netdev; 5088 5089 netif_stop_subqueue(netdev, tx_ring->queue_index); 5090 5091 /* Herbert's original patch had: 5092 * smp_mb__after_netif_stop_queue(); 5093 * but since that doesn't exist yet, just open code it. 5094 */ 5095 smp_mb(); 5096 5097 /* We need to check again in a case another CPU has just 5098 * made room available. 5099 */ 5100 if (igb_desc_unused(tx_ring) < size) 5101 return -EBUSY; 5102 5103 /* A reprieve! */ 5104 netif_wake_subqueue(netdev, tx_ring->queue_index); 5105 5106 u64_stats_update_begin(&tx_ring->tx_syncp2); 5107 tx_ring->tx_stats.restart_queue2++; 5108 u64_stats_update_end(&tx_ring->tx_syncp2); 5109 5110 return 0; 5111 } 5112 5113 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 5114 { 5115 if (igb_desc_unused(tx_ring) >= size) 5116 return 0; 5117 return __igb_maybe_stop_tx(tx_ring, size); 5118 } 5119 5120 static void igb_tx_map(struct igb_ring *tx_ring, 5121 struct igb_tx_buffer *first, 5122 const u8 hdr_len) 5123 { 5124 struct sk_buff *skb = first->skb; 5125 struct igb_tx_buffer *tx_buffer; 5126 union e1000_adv_tx_desc *tx_desc; 5127 struct skb_frag_struct *frag; 5128 dma_addr_t dma; 5129 unsigned int data_len, size; 5130 u32 tx_flags = first->tx_flags; 5131 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 5132 u16 i = tx_ring->next_to_use; 5133 5134 tx_desc = IGB_TX_DESC(tx_ring, i); 5135 5136 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 5137 5138 size = skb_headlen(skb); 5139 data_len = skb->data_len; 5140 5141 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 5142 5143 tx_buffer = first; 5144 5145 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 5146 if (dma_mapping_error(tx_ring->dev, dma)) 5147 goto dma_error; 5148 5149 /* record length, and DMA address */ 5150 dma_unmap_len_set(tx_buffer, len, size); 5151 dma_unmap_addr_set(tx_buffer, dma, dma); 5152 5153 tx_desc->read.buffer_addr = cpu_to_le64(dma); 5154 5155 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 5156 tx_desc->read.cmd_type_len = 5157 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 5158 5159 i++; 5160 tx_desc++; 5161 if (i == tx_ring->count) { 5162 tx_desc = IGB_TX_DESC(tx_ring, 0); 5163 i = 0; 5164 } 5165 tx_desc->read.olinfo_status = 0; 5166 5167 dma += IGB_MAX_DATA_PER_TXD; 5168 size -= IGB_MAX_DATA_PER_TXD; 5169 5170 tx_desc->read.buffer_addr = cpu_to_le64(dma); 5171 } 5172 5173 if (likely(!data_len)) 5174 break; 5175 5176 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 5177 5178 i++; 5179 tx_desc++; 5180 if (i == tx_ring->count) { 5181 tx_desc = IGB_TX_DESC(tx_ring, 0); 5182 i = 0; 5183 } 5184 tx_desc->read.olinfo_status = 0; 5185 5186 size = skb_frag_size(frag); 5187 data_len -= size; 5188 5189 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 5190 size, DMA_TO_DEVICE); 5191 5192 tx_buffer = &tx_ring->tx_buffer_info[i]; 5193 } 5194 5195 /* write last descriptor with RS and EOP bits */ 5196 cmd_type |= size | IGB_TXD_DCMD; 5197 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 5198 5199 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 5200 5201 /* set the timestamp */ 5202 first->time_stamp = jiffies; 5203 5204 /* Force memory writes to complete before letting h/w know there 5205 * are new descriptors to fetch. (Only applicable for weak-ordered 5206 * memory model archs, such as IA-64). 5207 * 5208 * We also need this memory barrier to make certain all of the 5209 * status bits have been updated before next_to_watch is written. 5210 */ 5211 wmb(); 5212 5213 /* set next_to_watch value indicating a packet is present */ 5214 first->next_to_watch = tx_desc; 5215 5216 i++; 5217 if (i == tx_ring->count) 5218 i = 0; 5219 5220 tx_ring->next_to_use = i; 5221 5222 /* Make sure there is space in the ring for the next send. */ 5223 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 5224 5225 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 5226 writel(i, tx_ring->tail); 5227 5228 /* we need this if more than one processor can write to our tail 5229 * at a time, it synchronizes IO on IA64/Altix systems 5230 */ 5231 mmiowb(); 5232 } 5233 return; 5234 5235 dma_error: 5236 dev_err(tx_ring->dev, "TX DMA map failed\n"); 5237 5238 /* clear dma mappings for failed tx_buffer_info map */ 5239 for (;;) { 5240 tx_buffer = &tx_ring->tx_buffer_info[i]; 5241 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); 5242 if (tx_buffer == first) 5243 break; 5244 if (i == 0) 5245 i = tx_ring->count; 5246 i--; 5247 } 5248 5249 tx_ring->next_to_use = i; 5250 } 5251 5252 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 5253 struct igb_ring *tx_ring) 5254 { 5255 struct igb_tx_buffer *first; 5256 int tso; 5257 u32 tx_flags = 0; 5258 unsigned short f; 5259 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 5260 __be16 protocol = vlan_get_protocol(skb); 5261 u8 hdr_len = 0; 5262 5263 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 5264 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 5265 * + 2 desc gap to keep tail from touching head, 5266 * + 1 desc for context descriptor, 5267 * otherwise try next time 5268 */ 5269 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 5270 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 5271 5272 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 5273 /* this is a hard error */ 5274 return NETDEV_TX_BUSY; 5275 } 5276 5277 /* record the location of the first descriptor for this packet */ 5278 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 5279 first->skb = skb; 5280 first->bytecount = skb->len; 5281 first->gso_segs = 1; 5282 5283 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 5284 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 5285 5286 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 5287 &adapter->state)) { 5288 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5289 tx_flags |= IGB_TX_FLAGS_TSTAMP; 5290 5291 adapter->ptp_tx_skb = skb_get(skb); 5292 adapter->ptp_tx_start = jiffies; 5293 if (adapter->hw.mac.type == e1000_82576) 5294 schedule_work(&adapter->ptp_tx_work); 5295 } 5296 } 5297 5298 skb_tx_timestamp(skb); 5299 5300 if (skb_vlan_tag_present(skb)) { 5301 tx_flags |= IGB_TX_FLAGS_VLAN; 5302 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 5303 } 5304 5305 /* record initial flags and protocol */ 5306 first->tx_flags = tx_flags; 5307 first->protocol = protocol; 5308 5309 tso = igb_tso(tx_ring, first, &hdr_len); 5310 if (tso < 0) 5311 goto out_drop; 5312 else if (!tso) 5313 igb_tx_csum(tx_ring, first); 5314 5315 igb_tx_map(tx_ring, first, hdr_len); 5316 5317 return NETDEV_TX_OK; 5318 5319 out_drop: 5320 igb_unmap_and_free_tx_resource(tx_ring, first); 5321 5322 return NETDEV_TX_OK; 5323 } 5324 5325 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 5326 struct sk_buff *skb) 5327 { 5328 unsigned int r_idx = skb->queue_mapping; 5329 5330 if (r_idx >= adapter->num_tx_queues) 5331 r_idx = r_idx % adapter->num_tx_queues; 5332 5333 return adapter->tx_ring[r_idx]; 5334 } 5335 5336 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 5337 struct net_device *netdev) 5338 { 5339 struct igb_adapter *adapter = netdev_priv(netdev); 5340 5341 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 5342 * in order to meet this minimum size requirement. 5343 */ 5344 if (skb_put_padto(skb, 17)) 5345 return NETDEV_TX_OK; 5346 5347 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 5348 } 5349 5350 /** 5351 * igb_tx_timeout - Respond to a Tx Hang 5352 * @netdev: network interface device structure 5353 **/ 5354 static void igb_tx_timeout(struct net_device *netdev) 5355 { 5356 struct igb_adapter *adapter = netdev_priv(netdev); 5357 struct e1000_hw *hw = &adapter->hw; 5358 5359 /* Do the reset outside of interrupt context */ 5360 adapter->tx_timeout_count++; 5361 5362 if (hw->mac.type >= e1000_82580) 5363 hw->dev_spec._82575.global_device_reset = true; 5364 5365 schedule_work(&adapter->reset_task); 5366 wr32(E1000_EICS, 5367 (adapter->eims_enable_mask & ~adapter->eims_other)); 5368 } 5369 5370 static void igb_reset_task(struct work_struct *work) 5371 { 5372 struct igb_adapter *adapter; 5373 adapter = container_of(work, struct igb_adapter, reset_task); 5374 5375 igb_dump(adapter); 5376 netdev_err(adapter->netdev, "Reset adapter\n"); 5377 igb_reinit_locked(adapter); 5378 } 5379 5380 /** 5381 * igb_get_stats64 - Get System Network Statistics 5382 * @netdev: network interface device structure 5383 * @stats: rtnl_link_stats64 pointer 5384 **/ 5385 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, 5386 struct rtnl_link_stats64 *stats) 5387 { 5388 struct igb_adapter *adapter = netdev_priv(netdev); 5389 5390 spin_lock(&adapter->stats64_lock); 5391 igb_update_stats(adapter, &adapter->stats64); 5392 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5393 spin_unlock(&adapter->stats64_lock); 5394 5395 return stats; 5396 } 5397 5398 /** 5399 * igb_change_mtu - Change the Maximum Transfer Unit 5400 * @netdev: network interface device structure 5401 * @new_mtu: new value for maximum frame size 5402 * 5403 * Returns 0 on success, negative on failure 5404 **/ 5405 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 5406 { 5407 struct igb_adapter *adapter = netdev_priv(netdev); 5408 struct pci_dev *pdev = adapter->pdev; 5409 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5410 5411 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 5412 dev_err(&pdev->dev, "Invalid MTU setting\n"); 5413 return -EINVAL; 5414 } 5415 5416 #define MAX_STD_JUMBO_FRAME_SIZE 9238 5417 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 5418 dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); 5419 return -EINVAL; 5420 } 5421 5422 /* adjust max frame to be at least the size of a standard frame */ 5423 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5424 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5425 5426 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 5427 usleep_range(1000, 2000); 5428 5429 /* igb_down has a dependency on max_frame_size */ 5430 adapter->max_frame_size = max_frame; 5431 5432 if (netif_running(netdev)) 5433 igb_down(adapter); 5434 5435 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 5436 netdev->mtu, new_mtu); 5437 netdev->mtu = new_mtu; 5438 5439 if (netif_running(netdev)) 5440 igb_up(adapter); 5441 else 5442 igb_reset(adapter); 5443 5444 clear_bit(__IGB_RESETTING, &adapter->state); 5445 5446 return 0; 5447 } 5448 5449 /** 5450 * igb_update_stats - Update the board statistics counters 5451 * @adapter: board private structure 5452 **/ 5453 void igb_update_stats(struct igb_adapter *adapter, 5454 struct rtnl_link_stats64 *net_stats) 5455 { 5456 struct e1000_hw *hw = &adapter->hw; 5457 struct pci_dev *pdev = adapter->pdev; 5458 u32 reg, mpc; 5459 int i; 5460 u64 bytes, packets; 5461 unsigned int start; 5462 u64 _bytes, _packets; 5463 5464 /* Prevent stats update while adapter is being reset, or if the pci 5465 * connection is down. 5466 */ 5467 if (adapter->link_speed == 0) 5468 return; 5469 if (pci_channel_offline(pdev)) 5470 return; 5471 5472 bytes = 0; 5473 packets = 0; 5474 5475 rcu_read_lock(); 5476 for (i = 0; i < adapter->num_rx_queues; i++) { 5477 struct igb_ring *ring = adapter->rx_ring[i]; 5478 u32 rqdpc = rd32(E1000_RQDPC(i)); 5479 if (hw->mac.type >= e1000_i210) 5480 wr32(E1000_RQDPC(i), 0); 5481 5482 if (rqdpc) { 5483 ring->rx_stats.drops += rqdpc; 5484 net_stats->rx_fifo_errors += rqdpc; 5485 } 5486 5487 do { 5488 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 5489 _bytes = ring->rx_stats.bytes; 5490 _packets = ring->rx_stats.packets; 5491 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 5492 bytes += _bytes; 5493 packets += _packets; 5494 } 5495 5496 net_stats->rx_bytes = bytes; 5497 net_stats->rx_packets = packets; 5498 5499 bytes = 0; 5500 packets = 0; 5501 for (i = 0; i < adapter->num_tx_queues; i++) { 5502 struct igb_ring *ring = adapter->tx_ring[i]; 5503 do { 5504 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 5505 _bytes = ring->tx_stats.bytes; 5506 _packets = ring->tx_stats.packets; 5507 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 5508 bytes += _bytes; 5509 packets += _packets; 5510 } 5511 net_stats->tx_bytes = bytes; 5512 net_stats->tx_packets = packets; 5513 rcu_read_unlock(); 5514 5515 /* read stats registers */ 5516 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 5517 adapter->stats.gprc += rd32(E1000_GPRC); 5518 adapter->stats.gorc += rd32(E1000_GORCL); 5519 rd32(E1000_GORCH); /* clear GORCL */ 5520 adapter->stats.bprc += rd32(E1000_BPRC); 5521 adapter->stats.mprc += rd32(E1000_MPRC); 5522 adapter->stats.roc += rd32(E1000_ROC); 5523 5524 adapter->stats.prc64 += rd32(E1000_PRC64); 5525 adapter->stats.prc127 += rd32(E1000_PRC127); 5526 adapter->stats.prc255 += rd32(E1000_PRC255); 5527 adapter->stats.prc511 += rd32(E1000_PRC511); 5528 adapter->stats.prc1023 += rd32(E1000_PRC1023); 5529 adapter->stats.prc1522 += rd32(E1000_PRC1522); 5530 adapter->stats.symerrs += rd32(E1000_SYMERRS); 5531 adapter->stats.sec += rd32(E1000_SEC); 5532 5533 mpc = rd32(E1000_MPC); 5534 adapter->stats.mpc += mpc; 5535 net_stats->rx_fifo_errors += mpc; 5536 adapter->stats.scc += rd32(E1000_SCC); 5537 adapter->stats.ecol += rd32(E1000_ECOL); 5538 adapter->stats.mcc += rd32(E1000_MCC); 5539 adapter->stats.latecol += rd32(E1000_LATECOL); 5540 adapter->stats.dc += rd32(E1000_DC); 5541 adapter->stats.rlec += rd32(E1000_RLEC); 5542 adapter->stats.xonrxc += rd32(E1000_XONRXC); 5543 adapter->stats.xontxc += rd32(E1000_XONTXC); 5544 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 5545 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 5546 adapter->stats.fcruc += rd32(E1000_FCRUC); 5547 adapter->stats.gptc += rd32(E1000_GPTC); 5548 adapter->stats.gotc += rd32(E1000_GOTCL); 5549 rd32(E1000_GOTCH); /* clear GOTCL */ 5550 adapter->stats.rnbc += rd32(E1000_RNBC); 5551 adapter->stats.ruc += rd32(E1000_RUC); 5552 adapter->stats.rfc += rd32(E1000_RFC); 5553 adapter->stats.rjc += rd32(E1000_RJC); 5554 adapter->stats.tor += rd32(E1000_TORH); 5555 adapter->stats.tot += rd32(E1000_TOTH); 5556 adapter->stats.tpr += rd32(E1000_TPR); 5557 5558 adapter->stats.ptc64 += rd32(E1000_PTC64); 5559 adapter->stats.ptc127 += rd32(E1000_PTC127); 5560 adapter->stats.ptc255 += rd32(E1000_PTC255); 5561 adapter->stats.ptc511 += rd32(E1000_PTC511); 5562 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 5563 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 5564 5565 adapter->stats.mptc += rd32(E1000_MPTC); 5566 adapter->stats.bptc += rd32(E1000_BPTC); 5567 5568 adapter->stats.tpt += rd32(E1000_TPT); 5569 adapter->stats.colc += rd32(E1000_COLC); 5570 5571 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 5572 /* read internal phy specific stats */ 5573 reg = rd32(E1000_CTRL_EXT); 5574 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 5575 adapter->stats.rxerrc += rd32(E1000_RXERRC); 5576 5577 /* this stat has invalid values on i210/i211 */ 5578 if ((hw->mac.type != e1000_i210) && 5579 (hw->mac.type != e1000_i211)) 5580 adapter->stats.tncrs += rd32(E1000_TNCRS); 5581 } 5582 5583 adapter->stats.tsctc += rd32(E1000_TSCTC); 5584 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 5585 5586 adapter->stats.iac += rd32(E1000_IAC); 5587 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 5588 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 5589 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 5590 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 5591 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 5592 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 5593 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 5594 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 5595 5596 /* Fill out the OS statistics structure */ 5597 net_stats->multicast = adapter->stats.mprc; 5598 net_stats->collisions = adapter->stats.colc; 5599 5600 /* Rx Errors */ 5601 5602 /* RLEC on some newer hardware can be incorrect so build 5603 * our own version based on RUC and ROC 5604 */ 5605 net_stats->rx_errors = adapter->stats.rxerrc + 5606 adapter->stats.crcerrs + adapter->stats.algnerrc + 5607 adapter->stats.ruc + adapter->stats.roc + 5608 adapter->stats.cexterr; 5609 net_stats->rx_length_errors = adapter->stats.ruc + 5610 adapter->stats.roc; 5611 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5612 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5613 net_stats->rx_missed_errors = adapter->stats.mpc; 5614 5615 /* Tx Errors */ 5616 net_stats->tx_errors = adapter->stats.ecol + 5617 adapter->stats.latecol; 5618 net_stats->tx_aborted_errors = adapter->stats.ecol; 5619 net_stats->tx_window_errors = adapter->stats.latecol; 5620 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5621 5622 /* Tx Dropped needs to be maintained elsewhere */ 5623 5624 /* Management Stats */ 5625 adapter->stats.mgptc += rd32(E1000_MGTPTC); 5626 adapter->stats.mgprc += rd32(E1000_MGTPRC); 5627 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 5628 5629 /* OS2BMC Stats */ 5630 reg = rd32(E1000_MANC); 5631 if (reg & E1000_MANC_EN_BMC2OS) { 5632 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 5633 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 5634 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 5635 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 5636 } 5637 } 5638 5639 static void igb_tsync_interrupt(struct igb_adapter *adapter) 5640 { 5641 struct e1000_hw *hw = &adapter->hw; 5642 struct ptp_clock_event event; 5643 struct timespec64 ts; 5644 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR); 5645 5646 if (tsicr & TSINTR_SYS_WRAP) { 5647 event.type = PTP_CLOCK_PPS; 5648 if (adapter->ptp_caps.pps) 5649 ptp_clock_event(adapter->ptp_clock, &event); 5650 else 5651 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP"); 5652 ack |= TSINTR_SYS_WRAP; 5653 } 5654 5655 if (tsicr & E1000_TSICR_TXTS) { 5656 /* retrieve hardware timestamp */ 5657 schedule_work(&adapter->ptp_tx_work); 5658 ack |= E1000_TSICR_TXTS; 5659 } 5660 5661 if (tsicr & TSINTR_TT0) { 5662 spin_lock(&adapter->tmreg_lock); 5663 ts = timespec64_add(adapter->perout[0].start, 5664 adapter->perout[0].period); 5665 /* u32 conversion of tv_sec is safe until y2106 */ 5666 wr32(E1000_TRGTTIML0, ts.tv_nsec); 5667 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec); 5668 tsauxc = rd32(E1000_TSAUXC); 5669 tsauxc |= TSAUXC_EN_TT0; 5670 wr32(E1000_TSAUXC, tsauxc); 5671 adapter->perout[0].start = ts; 5672 spin_unlock(&adapter->tmreg_lock); 5673 ack |= TSINTR_TT0; 5674 } 5675 5676 if (tsicr & TSINTR_TT1) { 5677 spin_lock(&adapter->tmreg_lock); 5678 ts = timespec64_add(adapter->perout[1].start, 5679 adapter->perout[1].period); 5680 wr32(E1000_TRGTTIML1, ts.tv_nsec); 5681 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec); 5682 tsauxc = rd32(E1000_TSAUXC); 5683 tsauxc |= TSAUXC_EN_TT1; 5684 wr32(E1000_TSAUXC, tsauxc); 5685 adapter->perout[1].start = ts; 5686 spin_unlock(&adapter->tmreg_lock); 5687 ack |= TSINTR_TT1; 5688 } 5689 5690 if (tsicr & TSINTR_AUTT0) { 5691 nsec = rd32(E1000_AUXSTMPL0); 5692 sec = rd32(E1000_AUXSTMPH0); 5693 event.type = PTP_CLOCK_EXTTS; 5694 event.index = 0; 5695 event.timestamp = sec * 1000000000ULL + nsec; 5696 ptp_clock_event(adapter->ptp_clock, &event); 5697 ack |= TSINTR_AUTT0; 5698 } 5699 5700 if (tsicr & TSINTR_AUTT1) { 5701 nsec = rd32(E1000_AUXSTMPL1); 5702 sec = rd32(E1000_AUXSTMPH1); 5703 event.type = PTP_CLOCK_EXTTS; 5704 event.index = 1; 5705 event.timestamp = sec * 1000000000ULL + nsec; 5706 ptp_clock_event(adapter->ptp_clock, &event); 5707 ack |= TSINTR_AUTT1; 5708 } 5709 5710 /* acknowledge the interrupts */ 5711 wr32(E1000_TSICR, ack); 5712 } 5713 5714 static irqreturn_t igb_msix_other(int irq, void *data) 5715 { 5716 struct igb_adapter *adapter = data; 5717 struct e1000_hw *hw = &adapter->hw; 5718 u32 icr = rd32(E1000_ICR); 5719 /* reading ICR causes bit 31 of EICR to be cleared */ 5720 5721 if (icr & E1000_ICR_DRSTA) 5722 schedule_work(&adapter->reset_task); 5723 5724 if (icr & E1000_ICR_DOUTSYNC) { 5725 /* HW is reporting DMA is out of sync */ 5726 adapter->stats.doosync++; 5727 /* The DMA Out of Sync is also indication of a spoof event 5728 * in IOV mode. Check the Wrong VM Behavior register to 5729 * see if it is really a spoof event. 5730 */ 5731 igb_check_wvbr(adapter); 5732 } 5733 5734 /* Check for a mailbox event */ 5735 if (icr & E1000_ICR_VMMB) 5736 igb_msg_task(adapter); 5737 5738 if (icr & E1000_ICR_LSC) { 5739 hw->mac.get_link_status = 1; 5740 /* guard against interrupt when we're going down */ 5741 if (!test_bit(__IGB_DOWN, &adapter->state)) 5742 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5743 } 5744 5745 if (icr & E1000_ICR_TS) 5746 igb_tsync_interrupt(adapter); 5747 5748 wr32(E1000_EIMS, adapter->eims_other); 5749 5750 return IRQ_HANDLED; 5751 } 5752 5753 static void igb_write_itr(struct igb_q_vector *q_vector) 5754 { 5755 struct igb_adapter *adapter = q_vector->adapter; 5756 u32 itr_val = q_vector->itr_val & 0x7FFC; 5757 5758 if (!q_vector->set_itr) 5759 return; 5760 5761 if (!itr_val) 5762 itr_val = 0x4; 5763 5764 if (adapter->hw.mac.type == e1000_82575) 5765 itr_val |= itr_val << 16; 5766 else 5767 itr_val |= E1000_EITR_CNT_IGNR; 5768 5769 writel(itr_val, q_vector->itr_register); 5770 q_vector->set_itr = 0; 5771 } 5772 5773 static irqreturn_t igb_msix_ring(int irq, void *data) 5774 { 5775 struct igb_q_vector *q_vector = data; 5776 5777 /* Write the ITR value calculated from the previous interrupt. */ 5778 igb_write_itr(q_vector); 5779 5780 napi_schedule(&q_vector->napi); 5781 5782 return IRQ_HANDLED; 5783 } 5784 5785 #ifdef CONFIG_IGB_DCA 5786 static void igb_update_tx_dca(struct igb_adapter *adapter, 5787 struct igb_ring *tx_ring, 5788 int cpu) 5789 { 5790 struct e1000_hw *hw = &adapter->hw; 5791 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 5792 5793 if (hw->mac.type != e1000_82575) 5794 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 5795 5796 /* We can enable relaxed ordering for reads, but not writes when 5797 * DCA is enabled. This is due to a known issue in some chipsets 5798 * which will cause the DCA tag to be cleared. 5799 */ 5800 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 5801 E1000_DCA_TXCTRL_DATA_RRO_EN | 5802 E1000_DCA_TXCTRL_DESC_DCA_EN; 5803 5804 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 5805 } 5806 5807 static void igb_update_rx_dca(struct igb_adapter *adapter, 5808 struct igb_ring *rx_ring, 5809 int cpu) 5810 { 5811 struct e1000_hw *hw = &adapter->hw; 5812 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 5813 5814 if (hw->mac.type != e1000_82575) 5815 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 5816 5817 /* We can enable relaxed ordering for reads, but not writes when 5818 * DCA is enabled. This is due to a known issue in some chipsets 5819 * which will cause the DCA tag to be cleared. 5820 */ 5821 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 5822 E1000_DCA_RXCTRL_DESC_DCA_EN; 5823 5824 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 5825 } 5826 5827 static void igb_update_dca(struct igb_q_vector *q_vector) 5828 { 5829 struct igb_adapter *adapter = q_vector->adapter; 5830 int cpu = get_cpu(); 5831 5832 if (q_vector->cpu == cpu) 5833 goto out_no_update; 5834 5835 if (q_vector->tx.ring) 5836 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 5837 5838 if (q_vector->rx.ring) 5839 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 5840 5841 q_vector->cpu = cpu; 5842 out_no_update: 5843 put_cpu(); 5844 } 5845 5846 static void igb_setup_dca(struct igb_adapter *adapter) 5847 { 5848 struct e1000_hw *hw = &adapter->hw; 5849 int i; 5850 5851 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 5852 return; 5853 5854 /* Always use CB2 mode, difference is masked in the CB driver. */ 5855 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 5856 5857 for (i = 0; i < adapter->num_q_vectors; i++) { 5858 adapter->q_vector[i]->cpu = -1; 5859 igb_update_dca(adapter->q_vector[i]); 5860 } 5861 } 5862 5863 static int __igb_notify_dca(struct device *dev, void *data) 5864 { 5865 struct net_device *netdev = dev_get_drvdata(dev); 5866 struct igb_adapter *adapter = netdev_priv(netdev); 5867 struct pci_dev *pdev = adapter->pdev; 5868 struct e1000_hw *hw = &adapter->hw; 5869 unsigned long event = *(unsigned long *)data; 5870 5871 switch (event) { 5872 case DCA_PROVIDER_ADD: 5873 /* if already enabled, don't do it again */ 5874 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 5875 break; 5876 if (dca_add_requester(dev) == 0) { 5877 adapter->flags |= IGB_FLAG_DCA_ENABLED; 5878 dev_info(&pdev->dev, "DCA enabled\n"); 5879 igb_setup_dca(adapter); 5880 break; 5881 } 5882 /* Fall Through since DCA is disabled. */ 5883 case DCA_PROVIDER_REMOVE: 5884 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 5885 /* without this a class_device is left 5886 * hanging around in the sysfs model 5887 */ 5888 dca_remove_requester(dev); 5889 dev_info(&pdev->dev, "DCA disabled\n"); 5890 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 5891 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 5892 } 5893 break; 5894 } 5895 5896 return 0; 5897 } 5898 5899 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 5900 void *p) 5901 { 5902 int ret_val; 5903 5904 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 5905 __igb_notify_dca); 5906 5907 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 5908 } 5909 #endif /* CONFIG_IGB_DCA */ 5910 5911 #ifdef CONFIG_PCI_IOV 5912 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 5913 { 5914 unsigned char mac_addr[ETH_ALEN]; 5915 5916 eth_zero_addr(mac_addr); 5917 igb_set_vf_mac(adapter, vf, mac_addr); 5918 5919 /* By default spoof check is enabled for all VFs */ 5920 adapter->vf_data[vf].spoofchk_enabled = true; 5921 5922 return 0; 5923 } 5924 5925 #endif 5926 static void igb_ping_all_vfs(struct igb_adapter *adapter) 5927 { 5928 struct e1000_hw *hw = &adapter->hw; 5929 u32 ping; 5930 int i; 5931 5932 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 5933 ping = E1000_PF_CONTROL_MSG; 5934 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 5935 ping |= E1000_VT_MSGTYPE_CTS; 5936 igb_write_mbx(hw, &ping, 1, i); 5937 } 5938 } 5939 5940 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5941 { 5942 struct e1000_hw *hw = &adapter->hw; 5943 u32 vmolr = rd32(E1000_VMOLR(vf)); 5944 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5945 5946 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 5947 IGB_VF_FLAG_MULTI_PROMISC); 5948 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5949 5950 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 5951 vmolr |= E1000_VMOLR_MPME; 5952 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 5953 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 5954 } else { 5955 /* if we have hashes and we are clearing a multicast promisc 5956 * flag we need to write the hashes to the MTA as this step 5957 * was previously skipped 5958 */ 5959 if (vf_data->num_vf_mc_hashes > 30) { 5960 vmolr |= E1000_VMOLR_MPME; 5961 } else if (vf_data->num_vf_mc_hashes) { 5962 int j; 5963 5964 vmolr |= E1000_VMOLR_ROMPE; 5965 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5966 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5967 } 5968 } 5969 5970 wr32(E1000_VMOLR(vf), vmolr); 5971 5972 /* there are flags left unprocessed, likely not supported */ 5973 if (*msgbuf & E1000_VT_MSGINFO_MASK) 5974 return -EINVAL; 5975 5976 return 0; 5977 } 5978 5979 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 5980 u32 *msgbuf, u32 vf) 5981 { 5982 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5983 u16 *hash_list = (u16 *)&msgbuf[1]; 5984 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5985 int i; 5986 5987 /* salt away the number of multicast addresses assigned 5988 * to this VF for later use to restore when the PF multi cast 5989 * list changes 5990 */ 5991 vf_data->num_vf_mc_hashes = n; 5992 5993 /* only up to 30 hash values supported */ 5994 if (n > 30) 5995 n = 30; 5996 5997 /* store the hashes for later use */ 5998 for (i = 0; i < n; i++) 5999 vf_data->vf_mc_hashes[i] = hash_list[i]; 6000 6001 /* Flush and reset the mta with the new values */ 6002 igb_set_rx_mode(adapter->netdev); 6003 6004 return 0; 6005 } 6006 6007 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 6008 { 6009 struct e1000_hw *hw = &adapter->hw; 6010 struct vf_data_storage *vf_data; 6011 int i, j; 6012 6013 for (i = 0; i < adapter->vfs_allocated_count; i++) { 6014 u32 vmolr = rd32(E1000_VMOLR(i)); 6015 6016 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 6017 6018 vf_data = &adapter->vf_data[i]; 6019 6020 if ((vf_data->num_vf_mc_hashes > 30) || 6021 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 6022 vmolr |= E1000_VMOLR_MPME; 6023 } else if (vf_data->num_vf_mc_hashes) { 6024 vmolr |= E1000_VMOLR_ROMPE; 6025 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 6026 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 6027 } 6028 wr32(E1000_VMOLR(i), vmolr); 6029 } 6030 } 6031 6032 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 6033 { 6034 struct e1000_hw *hw = &adapter->hw; 6035 u32 pool_mask, vlvf_mask, i; 6036 6037 /* create mask for VF and other pools */ 6038 pool_mask = E1000_VLVF_POOLSEL_MASK; 6039 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf); 6040 6041 /* drop PF from pool bits */ 6042 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT + 6043 adapter->vfs_allocated_count); 6044 6045 /* Find the vlan filter for this id */ 6046 for (i = E1000_VLVF_ARRAY_SIZE; i--;) { 6047 u32 vlvf = rd32(E1000_VLVF(i)); 6048 u32 vfta_mask, vid, vfta; 6049 6050 /* remove the vf from the pool */ 6051 if (!(vlvf & vlvf_mask)) 6052 continue; 6053 6054 /* clear out bit from VLVF */ 6055 vlvf ^= vlvf_mask; 6056 6057 /* if other pools are present, just remove ourselves */ 6058 if (vlvf & pool_mask) 6059 goto update_vlvfb; 6060 6061 /* if PF is present, leave VFTA */ 6062 if (vlvf & E1000_VLVF_POOLSEL_MASK) 6063 goto update_vlvf; 6064 6065 vid = vlvf & E1000_VLVF_VLANID_MASK; 6066 vfta_mask = BIT(vid % 32); 6067 6068 /* clear bit from VFTA */ 6069 vfta = adapter->shadow_vfta[vid / 32]; 6070 if (vfta & vfta_mask) 6071 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask); 6072 update_vlvf: 6073 /* clear pool selection enable */ 6074 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 6075 vlvf &= E1000_VLVF_POOLSEL_MASK; 6076 else 6077 vlvf = 0; 6078 update_vlvfb: 6079 /* clear pool bits */ 6080 wr32(E1000_VLVF(i), vlvf); 6081 } 6082 } 6083 6084 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan) 6085 { 6086 u32 vlvf; 6087 int idx; 6088 6089 /* short cut the special case */ 6090 if (vlan == 0) 6091 return 0; 6092 6093 /* Search for the VLAN id in the VLVF entries */ 6094 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) { 6095 vlvf = rd32(E1000_VLVF(idx)); 6096 if ((vlvf & VLAN_VID_MASK) == vlan) 6097 break; 6098 } 6099 6100 return idx; 6101 } 6102 6103 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid) 6104 { 6105 struct e1000_hw *hw = &adapter->hw; 6106 u32 bits, pf_id; 6107 int idx; 6108 6109 idx = igb_find_vlvf_entry(hw, vid); 6110 if (!idx) 6111 return; 6112 6113 /* See if any other pools are set for this VLAN filter 6114 * entry other than the PF. 6115 */ 6116 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 6117 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK; 6118 bits &= rd32(E1000_VLVF(idx)); 6119 6120 /* Disable the filter so this falls into the default pool. */ 6121 if (!bits) { 6122 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 6123 wr32(E1000_VLVF(idx), BIT(pf_id)); 6124 else 6125 wr32(E1000_VLVF(idx), 0); 6126 } 6127 } 6128 6129 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid, 6130 bool add, u32 vf) 6131 { 6132 int pf_id = adapter->vfs_allocated_count; 6133 struct e1000_hw *hw = &adapter->hw; 6134 int err; 6135 6136 /* If VLAN overlaps with one the PF is currently monitoring make 6137 * sure that we are able to allocate a VLVF entry. This may be 6138 * redundant but it guarantees PF will maintain visibility to 6139 * the VLAN. 6140 */ 6141 if (add && test_bit(vid, adapter->active_vlans)) { 6142 err = igb_vfta_set(hw, vid, pf_id, true, false); 6143 if (err) 6144 return err; 6145 } 6146 6147 err = igb_vfta_set(hw, vid, vf, add, false); 6148 6149 if (add && !err) 6150 return err; 6151 6152 /* If we failed to add the VF VLAN or we are removing the VF VLAN 6153 * we may need to drop the PF pool bit in order to allow us to free 6154 * up the VLVF resources. 6155 */ 6156 if (test_bit(vid, adapter->active_vlans) || 6157 (adapter->flags & IGB_FLAG_VLAN_PROMISC)) 6158 igb_update_pf_vlvf(adapter, vid); 6159 6160 return err; 6161 } 6162 6163 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 6164 { 6165 struct e1000_hw *hw = &adapter->hw; 6166 6167 if (vid) 6168 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 6169 else 6170 wr32(E1000_VMVIR(vf), 0); 6171 } 6172 6173 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf, 6174 u16 vlan, u8 qos) 6175 { 6176 int err; 6177 6178 err = igb_set_vf_vlan(adapter, vlan, true, vf); 6179 if (err) 6180 return err; 6181 6182 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 6183 igb_set_vmolr(adapter, vf, !vlan); 6184 6185 /* revoke access to previous VLAN */ 6186 if (vlan != adapter->vf_data[vf].pf_vlan) 6187 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 6188 false, vf); 6189 6190 adapter->vf_data[vf].pf_vlan = vlan; 6191 adapter->vf_data[vf].pf_qos = qos; 6192 igb_set_vf_vlan_strip(adapter, vf, true); 6193 dev_info(&adapter->pdev->dev, 6194 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 6195 if (test_bit(__IGB_DOWN, &adapter->state)) { 6196 dev_warn(&adapter->pdev->dev, 6197 "The VF VLAN has been set, but the PF device is not up.\n"); 6198 dev_warn(&adapter->pdev->dev, 6199 "Bring the PF device up before attempting to use the VF device.\n"); 6200 } 6201 6202 return err; 6203 } 6204 6205 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf) 6206 { 6207 /* Restore tagless access via VLAN 0 */ 6208 igb_set_vf_vlan(adapter, 0, true, vf); 6209 6210 igb_set_vmvir(adapter, 0, vf); 6211 igb_set_vmolr(adapter, vf, true); 6212 6213 /* Remove any PF assigned VLAN */ 6214 if (adapter->vf_data[vf].pf_vlan) 6215 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 6216 false, vf); 6217 6218 adapter->vf_data[vf].pf_vlan = 0; 6219 adapter->vf_data[vf].pf_qos = 0; 6220 igb_set_vf_vlan_strip(adapter, vf, false); 6221 6222 return 0; 6223 } 6224 6225 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, 6226 u16 vlan, u8 qos, __be16 vlan_proto) 6227 { 6228 struct igb_adapter *adapter = netdev_priv(netdev); 6229 6230 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 6231 return -EINVAL; 6232 6233 if (vlan_proto != htons(ETH_P_8021Q)) 6234 return -EPROTONOSUPPORT; 6235 6236 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) : 6237 igb_disable_port_vlan(adapter, vf); 6238 } 6239 6240 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 6241 { 6242 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 6243 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 6244 int ret; 6245 6246 if (adapter->vf_data[vf].pf_vlan) 6247 return -1; 6248 6249 /* VLAN 0 is a special case, don't allow it to be removed */ 6250 if (!vid && !add) 6251 return 0; 6252 6253 ret = igb_set_vf_vlan(adapter, vid, !!add, vf); 6254 if (!ret) 6255 igb_set_vf_vlan_strip(adapter, vf, !!vid); 6256 return ret; 6257 } 6258 6259 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 6260 { 6261 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6262 6263 /* clear flags - except flag that indicates PF has set the MAC */ 6264 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC; 6265 vf_data->last_nack = jiffies; 6266 6267 /* reset vlans for device */ 6268 igb_clear_vf_vfta(adapter, vf); 6269 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf); 6270 igb_set_vmvir(adapter, vf_data->pf_vlan | 6271 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf); 6272 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan); 6273 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan)); 6274 6275 /* reset multicast table array for vf */ 6276 adapter->vf_data[vf].num_vf_mc_hashes = 0; 6277 6278 /* Flush and reset the mta with the new values */ 6279 igb_set_rx_mode(adapter->netdev); 6280 } 6281 6282 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 6283 { 6284 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 6285 6286 /* clear mac address as we were hotplug removed/added */ 6287 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 6288 eth_zero_addr(vf_mac); 6289 6290 /* process remaining reset events */ 6291 igb_vf_reset(adapter, vf); 6292 } 6293 6294 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 6295 { 6296 struct e1000_hw *hw = &adapter->hw; 6297 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 6298 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 6299 u32 reg, msgbuf[3]; 6300 u8 *addr = (u8 *)(&msgbuf[1]); 6301 6302 /* process all the same items cleared in a function level reset */ 6303 igb_vf_reset(adapter, vf); 6304 6305 /* set vf mac address */ 6306 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); 6307 6308 /* enable transmit and receive for vf */ 6309 reg = rd32(E1000_VFTE); 6310 wr32(E1000_VFTE, reg | BIT(vf)); 6311 reg = rd32(E1000_VFRE); 6312 wr32(E1000_VFRE, reg | BIT(vf)); 6313 6314 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 6315 6316 /* reply to reset with ack and vf mac address */ 6317 if (!is_zero_ether_addr(vf_mac)) { 6318 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 6319 memcpy(addr, vf_mac, ETH_ALEN); 6320 } else { 6321 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; 6322 } 6323 igb_write_mbx(hw, msgbuf, 3, vf); 6324 } 6325 6326 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 6327 { 6328 /* The VF MAC Address is stored in a packed array of bytes 6329 * starting at the second 32 bit word of the msg array 6330 */ 6331 unsigned char *addr = (char *)&msg[1]; 6332 int err = -1; 6333 6334 if (is_valid_ether_addr(addr)) 6335 err = igb_set_vf_mac(adapter, vf, addr); 6336 6337 return err; 6338 } 6339 6340 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 6341 { 6342 struct e1000_hw *hw = &adapter->hw; 6343 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6344 u32 msg = E1000_VT_MSGTYPE_NACK; 6345 6346 /* if device isn't clear to send it shouldn't be reading either */ 6347 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 6348 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 6349 igb_write_mbx(hw, &msg, 1, vf); 6350 vf_data->last_nack = jiffies; 6351 } 6352 } 6353 6354 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 6355 { 6356 struct pci_dev *pdev = adapter->pdev; 6357 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 6358 struct e1000_hw *hw = &adapter->hw; 6359 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6360 s32 retval; 6361 6362 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); 6363 6364 if (retval) { 6365 /* if receive failed revoke VF CTS stats and restart init */ 6366 dev_err(&pdev->dev, "Error receiving message from VF\n"); 6367 vf_data->flags &= ~IGB_VF_FLAG_CTS; 6368 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 6369 return; 6370 goto out; 6371 } 6372 6373 /* this is a message we already processed, do nothing */ 6374 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 6375 return; 6376 6377 /* until the vf completes a reset it should not be 6378 * allowed to start any configuration. 6379 */ 6380 if (msgbuf[0] == E1000_VF_RESET) { 6381 igb_vf_reset_msg(adapter, vf); 6382 return; 6383 } 6384 6385 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 6386 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 6387 return; 6388 retval = -1; 6389 goto out; 6390 } 6391 6392 switch ((msgbuf[0] & 0xFFFF)) { 6393 case E1000_VF_SET_MAC_ADDR: 6394 retval = -EINVAL; 6395 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) 6396 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 6397 else 6398 dev_warn(&pdev->dev, 6399 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 6400 vf); 6401 break; 6402 case E1000_VF_SET_PROMISC: 6403 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 6404 break; 6405 case E1000_VF_SET_MULTICAST: 6406 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 6407 break; 6408 case E1000_VF_SET_LPE: 6409 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 6410 break; 6411 case E1000_VF_SET_VLAN: 6412 retval = -1; 6413 if (vf_data->pf_vlan) 6414 dev_warn(&pdev->dev, 6415 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 6416 vf); 6417 else 6418 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf); 6419 break; 6420 default: 6421 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 6422 retval = -1; 6423 break; 6424 } 6425 6426 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 6427 out: 6428 /* notify the VF of the results of what it sent us */ 6429 if (retval) 6430 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 6431 else 6432 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 6433 6434 igb_write_mbx(hw, msgbuf, 1, vf); 6435 } 6436 6437 static void igb_msg_task(struct igb_adapter *adapter) 6438 { 6439 struct e1000_hw *hw = &adapter->hw; 6440 u32 vf; 6441 6442 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 6443 /* process any reset requests */ 6444 if (!igb_check_for_rst(hw, vf)) 6445 igb_vf_reset_event(adapter, vf); 6446 6447 /* process any messages pending */ 6448 if (!igb_check_for_msg(hw, vf)) 6449 igb_rcv_msg_from_vf(adapter, vf); 6450 6451 /* process any acks */ 6452 if (!igb_check_for_ack(hw, vf)) 6453 igb_rcv_ack_from_vf(adapter, vf); 6454 } 6455 } 6456 6457 /** 6458 * igb_set_uta - Set unicast filter table address 6459 * @adapter: board private structure 6460 * @set: boolean indicating if we are setting or clearing bits 6461 * 6462 * The unicast table address is a register array of 32-bit registers. 6463 * The table is meant to be used in a way similar to how the MTA is used 6464 * however due to certain limitations in the hardware it is necessary to 6465 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 6466 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 6467 **/ 6468 static void igb_set_uta(struct igb_adapter *adapter, bool set) 6469 { 6470 struct e1000_hw *hw = &adapter->hw; 6471 u32 uta = set ? ~0 : 0; 6472 int i; 6473 6474 /* we only need to do this if VMDq is enabled */ 6475 if (!adapter->vfs_allocated_count) 6476 return; 6477 6478 for (i = hw->mac.uta_reg_count; i--;) 6479 array_wr32(E1000_UTA, i, uta); 6480 } 6481 6482 /** 6483 * igb_intr_msi - Interrupt Handler 6484 * @irq: interrupt number 6485 * @data: pointer to a network interface device structure 6486 **/ 6487 static irqreturn_t igb_intr_msi(int irq, void *data) 6488 { 6489 struct igb_adapter *adapter = data; 6490 struct igb_q_vector *q_vector = adapter->q_vector[0]; 6491 struct e1000_hw *hw = &adapter->hw; 6492 /* read ICR disables interrupts using IAM */ 6493 u32 icr = rd32(E1000_ICR); 6494 6495 igb_write_itr(q_vector); 6496 6497 if (icr & E1000_ICR_DRSTA) 6498 schedule_work(&adapter->reset_task); 6499 6500 if (icr & E1000_ICR_DOUTSYNC) { 6501 /* HW is reporting DMA is out of sync */ 6502 adapter->stats.doosync++; 6503 } 6504 6505 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 6506 hw->mac.get_link_status = 1; 6507 if (!test_bit(__IGB_DOWN, &adapter->state)) 6508 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6509 } 6510 6511 if (icr & E1000_ICR_TS) 6512 igb_tsync_interrupt(adapter); 6513 6514 napi_schedule(&q_vector->napi); 6515 6516 return IRQ_HANDLED; 6517 } 6518 6519 /** 6520 * igb_intr - Legacy Interrupt Handler 6521 * @irq: interrupt number 6522 * @data: pointer to a network interface device structure 6523 **/ 6524 static irqreturn_t igb_intr(int irq, void *data) 6525 { 6526 struct igb_adapter *adapter = data; 6527 struct igb_q_vector *q_vector = adapter->q_vector[0]; 6528 struct e1000_hw *hw = &adapter->hw; 6529 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 6530 * need for the IMC write 6531 */ 6532 u32 icr = rd32(E1000_ICR); 6533 6534 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 6535 * not set, then the adapter didn't send an interrupt 6536 */ 6537 if (!(icr & E1000_ICR_INT_ASSERTED)) 6538 return IRQ_NONE; 6539 6540 igb_write_itr(q_vector); 6541 6542 if (icr & E1000_ICR_DRSTA) 6543 schedule_work(&adapter->reset_task); 6544 6545 if (icr & E1000_ICR_DOUTSYNC) { 6546 /* HW is reporting DMA is out of sync */ 6547 adapter->stats.doosync++; 6548 } 6549 6550 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 6551 hw->mac.get_link_status = 1; 6552 /* guard against interrupt when we're going down */ 6553 if (!test_bit(__IGB_DOWN, &adapter->state)) 6554 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6555 } 6556 6557 if (icr & E1000_ICR_TS) 6558 igb_tsync_interrupt(adapter); 6559 6560 napi_schedule(&q_vector->napi); 6561 6562 return IRQ_HANDLED; 6563 } 6564 6565 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 6566 { 6567 struct igb_adapter *adapter = q_vector->adapter; 6568 struct e1000_hw *hw = &adapter->hw; 6569 6570 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 6571 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 6572 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 6573 igb_set_itr(q_vector); 6574 else 6575 igb_update_ring_itr(q_vector); 6576 } 6577 6578 if (!test_bit(__IGB_DOWN, &adapter->state)) { 6579 if (adapter->flags & IGB_FLAG_HAS_MSIX) 6580 wr32(E1000_EIMS, q_vector->eims_value); 6581 else 6582 igb_irq_enable(adapter); 6583 } 6584 } 6585 6586 /** 6587 * igb_poll - NAPI Rx polling callback 6588 * @napi: napi polling structure 6589 * @budget: count of how many packets we should handle 6590 **/ 6591 static int igb_poll(struct napi_struct *napi, int budget) 6592 { 6593 struct igb_q_vector *q_vector = container_of(napi, 6594 struct igb_q_vector, 6595 napi); 6596 bool clean_complete = true; 6597 int work_done = 0; 6598 6599 #ifdef CONFIG_IGB_DCA 6600 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 6601 igb_update_dca(q_vector); 6602 #endif 6603 if (q_vector->tx.ring) 6604 clean_complete = igb_clean_tx_irq(q_vector, budget); 6605 6606 if (q_vector->rx.ring) { 6607 int cleaned = igb_clean_rx_irq(q_vector, budget); 6608 6609 work_done += cleaned; 6610 if (cleaned >= budget) 6611 clean_complete = false; 6612 } 6613 6614 /* If all work not completed, return budget and keep polling */ 6615 if (!clean_complete) 6616 return budget; 6617 6618 /* If not enough Rx work done, exit the polling mode */ 6619 napi_complete_done(napi, work_done); 6620 igb_ring_irq_enable(q_vector); 6621 6622 return 0; 6623 } 6624 6625 /** 6626 * igb_clean_tx_irq - Reclaim resources after transmit completes 6627 * @q_vector: pointer to q_vector containing needed info 6628 * @napi_budget: Used to determine if we are in netpoll 6629 * 6630 * returns true if ring is completely cleaned 6631 **/ 6632 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget) 6633 { 6634 struct igb_adapter *adapter = q_vector->adapter; 6635 struct igb_ring *tx_ring = q_vector->tx.ring; 6636 struct igb_tx_buffer *tx_buffer; 6637 union e1000_adv_tx_desc *tx_desc; 6638 unsigned int total_bytes = 0, total_packets = 0; 6639 unsigned int budget = q_vector->tx.work_limit; 6640 unsigned int i = tx_ring->next_to_clean; 6641 6642 if (test_bit(__IGB_DOWN, &adapter->state)) 6643 return true; 6644 6645 tx_buffer = &tx_ring->tx_buffer_info[i]; 6646 tx_desc = IGB_TX_DESC(tx_ring, i); 6647 i -= tx_ring->count; 6648 6649 do { 6650 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 6651 6652 /* if next_to_watch is not set then there is no work pending */ 6653 if (!eop_desc) 6654 break; 6655 6656 /* prevent any other reads prior to eop_desc */ 6657 read_barrier_depends(); 6658 6659 /* if DD is not set pending work has not been completed */ 6660 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 6661 break; 6662 6663 /* clear next_to_watch to prevent false hangs */ 6664 tx_buffer->next_to_watch = NULL; 6665 6666 /* update the statistics for this packet */ 6667 total_bytes += tx_buffer->bytecount; 6668 total_packets += tx_buffer->gso_segs; 6669 6670 /* free the skb */ 6671 napi_consume_skb(tx_buffer->skb, napi_budget); 6672 6673 /* unmap skb header data */ 6674 dma_unmap_single(tx_ring->dev, 6675 dma_unmap_addr(tx_buffer, dma), 6676 dma_unmap_len(tx_buffer, len), 6677 DMA_TO_DEVICE); 6678 6679 /* clear tx_buffer data */ 6680 tx_buffer->skb = NULL; 6681 dma_unmap_len_set(tx_buffer, len, 0); 6682 6683 /* clear last DMA location and unmap remaining buffers */ 6684 while (tx_desc != eop_desc) { 6685 tx_buffer++; 6686 tx_desc++; 6687 i++; 6688 if (unlikely(!i)) { 6689 i -= tx_ring->count; 6690 tx_buffer = tx_ring->tx_buffer_info; 6691 tx_desc = IGB_TX_DESC(tx_ring, 0); 6692 } 6693 6694 /* unmap any remaining paged data */ 6695 if (dma_unmap_len(tx_buffer, len)) { 6696 dma_unmap_page(tx_ring->dev, 6697 dma_unmap_addr(tx_buffer, dma), 6698 dma_unmap_len(tx_buffer, len), 6699 DMA_TO_DEVICE); 6700 dma_unmap_len_set(tx_buffer, len, 0); 6701 } 6702 } 6703 6704 /* move us one more past the eop_desc for start of next pkt */ 6705 tx_buffer++; 6706 tx_desc++; 6707 i++; 6708 if (unlikely(!i)) { 6709 i -= tx_ring->count; 6710 tx_buffer = tx_ring->tx_buffer_info; 6711 tx_desc = IGB_TX_DESC(tx_ring, 0); 6712 } 6713 6714 /* issue prefetch for next Tx descriptor */ 6715 prefetch(tx_desc); 6716 6717 /* update budget accounting */ 6718 budget--; 6719 } while (likely(budget)); 6720 6721 netdev_tx_completed_queue(txring_txq(tx_ring), 6722 total_packets, total_bytes); 6723 i += tx_ring->count; 6724 tx_ring->next_to_clean = i; 6725 u64_stats_update_begin(&tx_ring->tx_syncp); 6726 tx_ring->tx_stats.bytes += total_bytes; 6727 tx_ring->tx_stats.packets += total_packets; 6728 u64_stats_update_end(&tx_ring->tx_syncp); 6729 q_vector->tx.total_bytes += total_bytes; 6730 q_vector->tx.total_packets += total_packets; 6731 6732 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 6733 struct e1000_hw *hw = &adapter->hw; 6734 6735 /* Detect a transmit hang in hardware, this serializes the 6736 * check with the clearing of time_stamp and movement of i 6737 */ 6738 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 6739 if (tx_buffer->next_to_watch && 6740 time_after(jiffies, tx_buffer->time_stamp + 6741 (adapter->tx_timeout_factor * HZ)) && 6742 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 6743 6744 /* detected Tx unit hang */ 6745 dev_err(tx_ring->dev, 6746 "Detected Tx Unit Hang\n" 6747 " Tx Queue <%d>\n" 6748 " TDH <%x>\n" 6749 " TDT <%x>\n" 6750 " next_to_use <%x>\n" 6751 " next_to_clean <%x>\n" 6752 "buffer_info[next_to_clean]\n" 6753 " time_stamp <%lx>\n" 6754 " next_to_watch <%p>\n" 6755 " jiffies <%lx>\n" 6756 " desc.status <%x>\n", 6757 tx_ring->queue_index, 6758 rd32(E1000_TDH(tx_ring->reg_idx)), 6759 readl(tx_ring->tail), 6760 tx_ring->next_to_use, 6761 tx_ring->next_to_clean, 6762 tx_buffer->time_stamp, 6763 tx_buffer->next_to_watch, 6764 jiffies, 6765 tx_buffer->next_to_watch->wb.status); 6766 netif_stop_subqueue(tx_ring->netdev, 6767 tx_ring->queue_index); 6768 6769 /* we are about to reset, no point in enabling stuff */ 6770 return true; 6771 } 6772 } 6773 6774 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 6775 if (unlikely(total_packets && 6776 netif_carrier_ok(tx_ring->netdev) && 6777 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 6778 /* Make sure that anybody stopping the queue after this 6779 * sees the new next_to_clean. 6780 */ 6781 smp_mb(); 6782 if (__netif_subqueue_stopped(tx_ring->netdev, 6783 tx_ring->queue_index) && 6784 !(test_bit(__IGB_DOWN, &adapter->state))) { 6785 netif_wake_subqueue(tx_ring->netdev, 6786 tx_ring->queue_index); 6787 6788 u64_stats_update_begin(&tx_ring->tx_syncp); 6789 tx_ring->tx_stats.restart_queue++; 6790 u64_stats_update_end(&tx_ring->tx_syncp); 6791 } 6792 } 6793 6794 return !!budget; 6795 } 6796 6797 /** 6798 * igb_reuse_rx_page - page flip buffer and store it back on the ring 6799 * @rx_ring: rx descriptor ring to store buffers on 6800 * @old_buff: donor buffer to have page reused 6801 * 6802 * Synchronizes page for reuse by the adapter 6803 **/ 6804 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 6805 struct igb_rx_buffer *old_buff) 6806 { 6807 struct igb_rx_buffer *new_buff; 6808 u16 nta = rx_ring->next_to_alloc; 6809 6810 new_buff = &rx_ring->rx_buffer_info[nta]; 6811 6812 /* update, and store next to alloc */ 6813 nta++; 6814 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 6815 6816 /* transfer page from old buffer to new buffer */ 6817 *new_buff = *old_buff; 6818 6819 /* sync the buffer for use by the device */ 6820 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 6821 old_buff->page_offset, 6822 IGB_RX_BUFSZ, 6823 DMA_FROM_DEVICE); 6824 } 6825 6826 static inline bool igb_page_is_reserved(struct page *page) 6827 { 6828 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 6829 } 6830 6831 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 6832 struct page *page, 6833 unsigned int truesize) 6834 { 6835 /* avoid re-using remote pages */ 6836 if (unlikely(igb_page_is_reserved(page))) 6837 return false; 6838 6839 #if (PAGE_SIZE < 8192) 6840 /* if we are only owner of page we can reuse it */ 6841 if (unlikely(page_count(page) != 1)) 6842 return false; 6843 6844 /* flip page offset to other buffer */ 6845 rx_buffer->page_offset ^= IGB_RX_BUFSZ; 6846 #else 6847 /* move offset up to the next cache line */ 6848 rx_buffer->page_offset += truesize; 6849 6850 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) 6851 return false; 6852 #endif 6853 6854 /* Even if we own the page, we are not allowed to use atomic_set() 6855 * This would break get_page_unless_zero() users. 6856 */ 6857 page_ref_inc(page); 6858 6859 return true; 6860 } 6861 6862 /** 6863 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 6864 * @rx_ring: rx descriptor ring to transact packets on 6865 * @rx_buffer: buffer containing page to add 6866 * @rx_desc: descriptor containing length of buffer written by hardware 6867 * @skb: sk_buff to place the data into 6868 * 6869 * This function will add the data contained in rx_buffer->page to the skb. 6870 * This is done either through a direct copy if the data in the buffer is 6871 * less than the skb header size, otherwise it will just attach the page as 6872 * a frag to the skb. 6873 * 6874 * The function will then update the page offset if necessary and return 6875 * true if the buffer can be reused by the adapter. 6876 **/ 6877 static bool igb_add_rx_frag(struct igb_ring *rx_ring, 6878 struct igb_rx_buffer *rx_buffer, 6879 unsigned int size, 6880 union e1000_adv_rx_desc *rx_desc, 6881 struct sk_buff *skb) 6882 { 6883 struct page *page = rx_buffer->page; 6884 unsigned char *va = page_address(page) + rx_buffer->page_offset; 6885 #if (PAGE_SIZE < 8192) 6886 unsigned int truesize = IGB_RX_BUFSZ; 6887 #else 6888 unsigned int truesize = SKB_DATA_ALIGN(size); 6889 #endif 6890 unsigned int pull_len; 6891 6892 if (unlikely(skb_is_nonlinear(skb))) 6893 goto add_tail_frag; 6894 6895 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) { 6896 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6897 va += IGB_TS_HDR_LEN; 6898 size -= IGB_TS_HDR_LEN; 6899 } 6900 6901 if (likely(size <= IGB_RX_HDR_LEN)) { 6902 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 6903 6904 /* page is not reserved, we can reuse buffer as-is */ 6905 if (likely(!igb_page_is_reserved(page))) 6906 return true; 6907 6908 /* this page cannot be reused so discard it */ 6909 __free_page(page); 6910 return false; 6911 } 6912 6913 /* we need the header to contain the greater of either ETH_HLEN or 6914 * 60 bytes if the skb->len is less than 60 for skb_pad. 6915 */ 6916 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN); 6917 6918 /* align pull length to size of long to optimize memcpy performance */ 6919 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 6920 6921 /* update all of the pointers */ 6922 va += pull_len; 6923 size -= pull_len; 6924 6925 add_tail_frag: 6926 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 6927 (unsigned long)va & ~PAGE_MASK, size, truesize); 6928 6929 return igb_can_reuse_rx_page(rx_buffer, page, truesize); 6930 } 6931 6932 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, 6933 union e1000_adv_rx_desc *rx_desc, 6934 struct sk_buff *skb) 6935 { 6936 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6937 struct igb_rx_buffer *rx_buffer; 6938 struct page *page; 6939 6940 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6941 page = rx_buffer->page; 6942 prefetchw(page); 6943 6944 if (likely(!skb)) { 6945 void *page_addr = page_address(page) + 6946 rx_buffer->page_offset; 6947 6948 /* prefetch first cache line of first page */ 6949 prefetch(page_addr); 6950 #if L1_CACHE_BYTES < 128 6951 prefetch(page_addr + L1_CACHE_BYTES); 6952 #endif 6953 6954 /* allocate a skb to store the frags */ 6955 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); 6956 if (unlikely(!skb)) { 6957 rx_ring->rx_stats.alloc_failed++; 6958 return NULL; 6959 } 6960 6961 /* we will be copying header into skb->data in 6962 * pskb_may_pull so it is in our interest to prefetch 6963 * it now to avoid a possible cache miss 6964 */ 6965 prefetchw(skb->data); 6966 } 6967 6968 /* we are reusing so sync this buffer for CPU use */ 6969 dma_sync_single_range_for_cpu(rx_ring->dev, 6970 rx_buffer->dma, 6971 rx_buffer->page_offset, 6972 size, 6973 DMA_FROM_DEVICE); 6974 6975 /* pull page into skb */ 6976 if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) { 6977 /* hand second half of page back to the ring */ 6978 igb_reuse_rx_page(rx_ring, rx_buffer); 6979 } else { 6980 /* we are not reusing the buffer so unmap it */ 6981 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6982 PAGE_SIZE, DMA_FROM_DEVICE); 6983 } 6984 6985 /* clear contents of rx_buffer */ 6986 rx_buffer->page = NULL; 6987 6988 return skb; 6989 } 6990 6991 static inline void igb_rx_checksum(struct igb_ring *ring, 6992 union e1000_adv_rx_desc *rx_desc, 6993 struct sk_buff *skb) 6994 { 6995 skb_checksum_none_assert(skb); 6996 6997 /* Ignore Checksum bit is set */ 6998 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 6999 return; 7000 7001 /* Rx checksum disabled via ethtool */ 7002 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 7003 return; 7004 7005 /* TCP/UDP checksum error bit is set */ 7006 if (igb_test_staterr(rx_desc, 7007 E1000_RXDEXT_STATERR_TCPE | 7008 E1000_RXDEXT_STATERR_IPE)) { 7009 /* work around errata with sctp packets where the TCPE aka 7010 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 7011 * packets, (aka let the stack check the crc32c) 7012 */ 7013 if (!((skb->len == 60) && 7014 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 7015 u64_stats_update_begin(&ring->rx_syncp); 7016 ring->rx_stats.csum_err++; 7017 u64_stats_update_end(&ring->rx_syncp); 7018 } 7019 /* let the stack verify checksum errors */ 7020 return; 7021 } 7022 /* It must be a TCP or UDP packet with a valid checksum */ 7023 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 7024 E1000_RXD_STAT_UDPCS)) 7025 skb->ip_summed = CHECKSUM_UNNECESSARY; 7026 7027 dev_dbg(ring->dev, "cksum success: bits %08X\n", 7028 le32_to_cpu(rx_desc->wb.upper.status_error)); 7029 } 7030 7031 static inline void igb_rx_hash(struct igb_ring *ring, 7032 union e1000_adv_rx_desc *rx_desc, 7033 struct sk_buff *skb) 7034 { 7035 if (ring->netdev->features & NETIF_F_RXHASH) 7036 skb_set_hash(skb, 7037 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 7038 PKT_HASH_TYPE_L3); 7039 } 7040 7041 /** 7042 * igb_is_non_eop - process handling of non-EOP buffers 7043 * @rx_ring: Rx ring being processed 7044 * @rx_desc: Rx descriptor for current buffer 7045 * @skb: current socket buffer containing buffer in progress 7046 * 7047 * This function updates next to clean. If the buffer is an EOP buffer 7048 * this function exits returning false, otherwise it will place the 7049 * sk_buff in the next buffer to be chained and return true indicating 7050 * that this is in fact a non-EOP buffer. 7051 **/ 7052 static bool igb_is_non_eop(struct igb_ring *rx_ring, 7053 union e1000_adv_rx_desc *rx_desc) 7054 { 7055 u32 ntc = rx_ring->next_to_clean + 1; 7056 7057 /* fetch, update, and store next to clean */ 7058 ntc = (ntc < rx_ring->count) ? ntc : 0; 7059 rx_ring->next_to_clean = ntc; 7060 7061 prefetch(IGB_RX_DESC(rx_ring, ntc)); 7062 7063 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 7064 return false; 7065 7066 return true; 7067 } 7068 7069 /** 7070 * igb_cleanup_headers - Correct corrupted or empty headers 7071 * @rx_ring: rx descriptor ring packet is being transacted on 7072 * @rx_desc: pointer to the EOP Rx descriptor 7073 * @skb: pointer to current skb being fixed 7074 * 7075 * Address the case where we are pulling data in on pages only 7076 * and as such no data is present in the skb header. 7077 * 7078 * In addition if skb is not at least 60 bytes we need to pad it so that 7079 * it is large enough to qualify as a valid Ethernet frame. 7080 * 7081 * Returns true if an error was encountered and skb was freed. 7082 **/ 7083 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 7084 union e1000_adv_rx_desc *rx_desc, 7085 struct sk_buff *skb) 7086 { 7087 if (unlikely((igb_test_staterr(rx_desc, 7088 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 7089 struct net_device *netdev = rx_ring->netdev; 7090 if (!(netdev->features & NETIF_F_RXALL)) { 7091 dev_kfree_skb_any(skb); 7092 return true; 7093 } 7094 } 7095 7096 /* if eth_skb_pad returns an error the skb was freed */ 7097 if (eth_skb_pad(skb)) 7098 return true; 7099 7100 return false; 7101 } 7102 7103 /** 7104 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 7105 * @rx_ring: rx descriptor ring packet is being transacted on 7106 * @rx_desc: pointer to the EOP Rx descriptor 7107 * @skb: pointer to current skb being populated 7108 * 7109 * This function checks the ring, descriptor, and packet information in 7110 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 7111 * other fields within the skb. 7112 **/ 7113 static void igb_process_skb_fields(struct igb_ring *rx_ring, 7114 union e1000_adv_rx_desc *rx_desc, 7115 struct sk_buff *skb) 7116 { 7117 struct net_device *dev = rx_ring->netdev; 7118 7119 igb_rx_hash(rx_ring, rx_desc, skb); 7120 7121 igb_rx_checksum(rx_ring, rx_desc, skb); 7122 7123 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 7124 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 7125 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 7126 7127 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 7128 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 7129 u16 vid; 7130 7131 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 7132 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 7133 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 7134 else 7135 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 7136 7137 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 7138 } 7139 7140 skb_record_rx_queue(skb, rx_ring->queue_index); 7141 7142 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 7143 } 7144 7145 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 7146 { 7147 struct igb_ring *rx_ring = q_vector->rx.ring; 7148 struct sk_buff *skb = rx_ring->skb; 7149 unsigned int total_bytes = 0, total_packets = 0; 7150 u16 cleaned_count = igb_desc_unused(rx_ring); 7151 7152 while (likely(total_packets < budget)) { 7153 union e1000_adv_rx_desc *rx_desc; 7154 7155 /* return some buffers to hardware, one at a time is too slow */ 7156 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 7157 igb_alloc_rx_buffers(rx_ring, cleaned_count); 7158 cleaned_count = 0; 7159 } 7160 7161 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 7162 7163 if (!rx_desc->wb.upper.status_error) 7164 break; 7165 7166 /* This memory barrier is needed to keep us from reading 7167 * any other fields out of the rx_desc until we know the 7168 * descriptor has been written back 7169 */ 7170 dma_rmb(); 7171 7172 /* retrieve a buffer from the ring */ 7173 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); 7174 7175 /* exit if we failed to retrieve a buffer */ 7176 if (!skb) 7177 break; 7178 7179 cleaned_count++; 7180 7181 /* fetch next buffer in frame if non-eop */ 7182 if (igb_is_non_eop(rx_ring, rx_desc)) 7183 continue; 7184 7185 /* verify the packet layout is correct */ 7186 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 7187 skb = NULL; 7188 continue; 7189 } 7190 7191 /* probably a little skewed due to removing CRC */ 7192 total_bytes += skb->len; 7193 7194 /* populate checksum, timestamp, VLAN, and protocol */ 7195 igb_process_skb_fields(rx_ring, rx_desc, skb); 7196 7197 napi_gro_receive(&q_vector->napi, skb); 7198 7199 /* reset skb pointer */ 7200 skb = NULL; 7201 7202 /* update budget accounting */ 7203 total_packets++; 7204 } 7205 7206 /* place incomplete frames back on ring for completion */ 7207 rx_ring->skb = skb; 7208 7209 u64_stats_update_begin(&rx_ring->rx_syncp); 7210 rx_ring->rx_stats.packets += total_packets; 7211 rx_ring->rx_stats.bytes += total_bytes; 7212 u64_stats_update_end(&rx_ring->rx_syncp); 7213 q_vector->rx.total_packets += total_packets; 7214 q_vector->rx.total_bytes += total_bytes; 7215 7216 if (cleaned_count) 7217 igb_alloc_rx_buffers(rx_ring, cleaned_count); 7218 7219 return total_packets; 7220 } 7221 7222 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 7223 struct igb_rx_buffer *bi) 7224 { 7225 struct page *page = bi->page; 7226 dma_addr_t dma; 7227 7228 /* since we are recycling buffers we should seldom need to alloc */ 7229 if (likely(page)) 7230 return true; 7231 7232 /* alloc new page for storage */ 7233 page = dev_alloc_page(); 7234 if (unlikely(!page)) { 7235 rx_ring->rx_stats.alloc_failed++; 7236 return false; 7237 } 7238 7239 /* map page for use */ 7240 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 7241 7242 /* if mapping failed free memory back to system since 7243 * there isn't much point in holding memory we can't use 7244 */ 7245 if (dma_mapping_error(rx_ring->dev, dma)) { 7246 __free_page(page); 7247 7248 rx_ring->rx_stats.alloc_failed++; 7249 return false; 7250 } 7251 7252 bi->dma = dma; 7253 bi->page = page; 7254 bi->page_offset = 0; 7255 7256 return true; 7257 } 7258 7259 /** 7260 * igb_alloc_rx_buffers - Replace used receive buffers; packet split 7261 * @adapter: address of board private structure 7262 **/ 7263 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 7264 { 7265 union e1000_adv_rx_desc *rx_desc; 7266 struct igb_rx_buffer *bi; 7267 u16 i = rx_ring->next_to_use; 7268 7269 /* nothing to do */ 7270 if (!cleaned_count) 7271 return; 7272 7273 rx_desc = IGB_RX_DESC(rx_ring, i); 7274 bi = &rx_ring->rx_buffer_info[i]; 7275 i -= rx_ring->count; 7276 7277 do { 7278 if (!igb_alloc_mapped_page(rx_ring, bi)) 7279 break; 7280 7281 /* Refresh the desc even if buffer_addrs didn't change 7282 * because each write-back erases this info. 7283 */ 7284 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 7285 7286 rx_desc++; 7287 bi++; 7288 i++; 7289 if (unlikely(!i)) { 7290 rx_desc = IGB_RX_DESC(rx_ring, 0); 7291 bi = rx_ring->rx_buffer_info; 7292 i -= rx_ring->count; 7293 } 7294 7295 /* clear the status bits for the next_to_use descriptor */ 7296 rx_desc->wb.upper.status_error = 0; 7297 7298 cleaned_count--; 7299 } while (cleaned_count); 7300 7301 i += rx_ring->count; 7302 7303 if (rx_ring->next_to_use != i) { 7304 /* record the next descriptor to use */ 7305 rx_ring->next_to_use = i; 7306 7307 /* update next to alloc since we have filled the ring */ 7308 rx_ring->next_to_alloc = i; 7309 7310 /* Force memory writes to complete before letting h/w 7311 * know there are new descriptors to fetch. (Only 7312 * applicable for weak-ordered memory model archs, 7313 * such as IA-64). 7314 */ 7315 wmb(); 7316 writel(i, rx_ring->tail); 7317 } 7318 } 7319 7320 /** 7321 * igb_mii_ioctl - 7322 * @netdev: 7323 * @ifreq: 7324 * @cmd: 7325 **/ 7326 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7327 { 7328 struct igb_adapter *adapter = netdev_priv(netdev); 7329 struct mii_ioctl_data *data = if_mii(ifr); 7330 7331 if (adapter->hw.phy.media_type != e1000_media_type_copper) 7332 return -EOPNOTSUPP; 7333 7334 switch (cmd) { 7335 case SIOCGMIIPHY: 7336 data->phy_id = adapter->hw.phy.addr; 7337 break; 7338 case SIOCGMIIREG: 7339 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 7340 &data->val_out)) 7341 return -EIO; 7342 break; 7343 case SIOCSMIIREG: 7344 default: 7345 return -EOPNOTSUPP; 7346 } 7347 return 0; 7348 } 7349 7350 /** 7351 * igb_ioctl - 7352 * @netdev: 7353 * @ifreq: 7354 * @cmd: 7355 **/ 7356 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7357 { 7358 switch (cmd) { 7359 case SIOCGMIIPHY: 7360 case SIOCGMIIREG: 7361 case SIOCSMIIREG: 7362 return igb_mii_ioctl(netdev, ifr, cmd); 7363 case SIOCGHWTSTAMP: 7364 return igb_ptp_get_ts_config(netdev, ifr); 7365 case SIOCSHWTSTAMP: 7366 return igb_ptp_set_ts_config(netdev, ifr); 7367 default: 7368 return -EOPNOTSUPP; 7369 } 7370 } 7371 7372 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 7373 { 7374 struct igb_adapter *adapter = hw->back; 7375 7376 pci_read_config_word(adapter->pdev, reg, value); 7377 } 7378 7379 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 7380 { 7381 struct igb_adapter *adapter = hw->back; 7382 7383 pci_write_config_word(adapter->pdev, reg, *value); 7384 } 7385 7386 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 7387 { 7388 struct igb_adapter *adapter = hw->back; 7389 7390 if (pcie_capability_read_word(adapter->pdev, reg, value)) 7391 return -E1000_ERR_CONFIG; 7392 7393 return 0; 7394 } 7395 7396 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 7397 { 7398 struct igb_adapter *adapter = hw->back; 7399 7400 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 7401 return -E1000_ERR_CONFIG; 7402 7403 return 0; 7404 } 7405 7406 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 7407 { 7408 struct igb_adapter *adapter = netdev_priv(netdev); 7409 struct e1000_hw *hw = &adapter->hw; 7410 u32 ctrl, rctl; 7411 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 7412 7413 if (enable) { 7414 /* enable VLAN tag insert/strip */ 7415 ctrl = rd32(E1000_CTRL); 7416 ctrl |= E1000_CTRL_VME; 7417 wr32(E1000_CTRL, ctrl); 7418 7419 /* Disable CFI check */ 7420 rctl = rd32(E1000_RCTL); 7421 rctl &= ~E1000_RCTL_CFIEN; 7422 wr32(E1000_RCTL, rctl); 7423 } else { 7424 /* disable VLAN tag insert/strip */ 7425 ctrl = rd32(E1000_CTRL); 7426 ctrl &= ~E1000_CTRL_VME; 7427 wr32(E1000_CTRL, ctrl); 7428 } 7429 7430 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable); 7431 } 7432 7433 static int igb_vlan_rx_add_vid(struct net_device *netdev, 7434 __be16 proto, u16 vid) 7435 { 7436 struct igb_adapter *adapter = netdev_priv(netdev); 7437 struct e1000_hw *hw = &adapter->hw; 7438 int pf_id = adapter->vfs_allocated_count; 7439 7440 /* add the filter since PF can receive vlans w/o entry in vlvf */ 7441 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 7442 igb_vfta_set(hw, vid, pf_id, true, !!vid); 7443 7444 set_bit(vid, adapter->active_vlans); 7445 7446 return 0; 7447 } 7448 7449 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 7450 __be16 proto, u16 vid) 7451 { 7452 struct igb_adapter *adapter = netdev_priv(netdev); 7453 int pf_id = adapter->vfs_allocated_count; 7454 struct e1000_hw *hw = &adapter->hw; 7455 7456 /* remove VID from filter table */ 7457 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 7458 igb_vfta_set(hw, vid, pf_id, false, true); 7459 7460 clear_bit(vid, adapter->active_vlans); 7461 7462 return 0; 7463 } 7464 7465 static void igb_restore_vlan(struct igb_adapter *adapter) 7466 { 7467 u16 vid = 1; 7468 7469 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 7470 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 7471 7472 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID) 7473 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 7474 } 7475 7476 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 7477 { 7478 struct pci_dev *pdev = adapter->pdev; 7479 struct e1000_mac_info *mac = &adapter->hw.mac; 7480 7481 mac->autoneg = 0; 7482 7483 /* Make sure dplx is at most 1 bit and lsb of speed is not set 7484 * for the switch() below to work 7485 */ 7486 if ((spd & 1) || (dplx & ~1)) 7487 goto err_inval; 7488 7489 /* Fiber NIC's only allow 1000 gbps Full duplex 7490 * and 100Mbps Full duplex for 100baseFx sfp 7491 */ 7492 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 7493 switch (spd + dplx) { 7494 case SPEED_10 + DUPLEX_HALF: 7495 case SPEED_10 + DUPLEX_FULL: 7496 case SPEED_100 + DUPLEX_HALF: 7497 goto err_inval; 7498 default: 7499 break; 7500 } 7501 } 7502 7503 switch (spd + dplx) { 7504 case SPEED_10 + DUPLEX_HALF: 7505 mac->forced_speed_duplex = ADVERTISE_10_HALF; 7506 break; 7507 case SPEED_10 + DUPLEX_FULL: 7508 mac->forced_speed_duplex = ADVERTISE_10_FULL; 7509 break; 7510 case SPEED_100 + DUPLEX_HALF: 7511 mac->forced_speed_duplex = ADVERTISE_100_HALF; 7512 break; 7513 case SPEED_100 + DUPLEX_FULL: 7514 mac->forced_speed_duplex = ADVERTISE_100_FULL; 7515 break; 7516 case SPEED_1000 + DUPLEX_FULL: 7517 mac->autoneg = 1; 7518 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 7519 break; 7520 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 7521 default: 7522 goto err_inval; 7523 } 7524 7525 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 7526 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7527 7528 return 0; 7529 7530 err_inval: 7531 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 7532 return -EINVAL; 7533 } 7534 7535 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 7536 bool runtime) 7537 { 7538 struct net_device *netdev = pci_get_drvdata(pdev); 7539 struct igb_adapter *adapter = netdev_priv(netdev); 7540 struct e1000_hw *hw = &adapter->hw; 7541 u32 ctrl, rctl, status; 7542 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 7543 #ifdef CONFIG_PM 7544 int retval = 0; 7545 #endif 7546 7547 netif_device_detach(netdev); 7548 7549 if (netif_running(netdev)) 7550 __igb_close(netdev, true); 7551 7552 igb_ptp_suspend(adapter); 7553 7554 igb_clear_interrupt_scheme(adapter); 7555 7556 #ifdef CONFIG_PM 7557 retval = pci_save_state(pdev); 7558 if (retval) 7559 return retval; 7560 #endif 7561 7562 status = rd32(E1000_STATUS); 7563 if (status & E1000_STATUS_LU) 7564 wufc &= ~E1000_WUFC_LNKC; 7565 7566 if (wufc) { 7567 igb_setup_rctl(adapter); 7568 igb_set_rx_mode(netdev); 7569 7570 /* turn on all-multi mode if wake on multicast is enabled */ 7571 if (wufc & E1000_WUFC_MC) { 7572 rctl = rd32(E1000_RCTL); 7573 rctl |= E1000_RCTL_MPE; 7574 wr32(E1000_RCTL, rctl); 7575 } 7576 7577 ctrl = rd32(E1000_CTRL); 7578 /* advertise wake from D3Cold */ 7579 #define E1000_CTRL_ADVD3WUC 0x00100000 7580 /* phy power management enable */ 7581 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 7582 ctrl |= E1000_CTRL_ADVD3WUC; 7583 wr32(E1000_CTRL, ctrl); 7584 7585 /* Allow time for pending master requests to run */ 7586 igb_disable_pcie_master(hw); 7587 7588 wr32(E1000_WUC, E1000_WUC_PME_EN); 7589 wr32(E1000_WUFC, wufc); 7590 } else { 7591 wr32(E1000_WUC, 0); 7592 wr32(E1000_WUFC, 0); 7593 } 7594 7595 *enable_wake = wufc || adapter->en_mng_pt; 7596 if (!*enable_wake) 7597 igb_power_down_link(adapter); 7598 else 7599 igb_power_up_link(adapter); 7600 7601 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7602 * would have already happened in close and is redundant. 7603 */ 7604 igb_release_hw_control(adapter); 7605 7606 pci_disable_device(pdev); 7607 7608 return 0; 7609 } 7610 7611 #ifdef CONFIG_PM 7612 #ifdef CONFIG_PM_SLEEP 7613 static int igb_suspend(struct device *dev) 7614 { 7615 int retval; 7616 bool wake; 7617 struct pci_dev *pdev = to_pci_dev(dev); 7618 7619 retval = __igb_shutdown(pdev, &wake, 0); 7620 if (retval) 7621 return retval; 7622 7623 if (wake) { 7624 pci_prepare_to_sleep(pdev); 7625 } else { 7626 pci_wake_from_d3(pdev, false); 7627 pci_set_power_state(pdev, PCI_D3hot); 7628 } 7629 7630 return 0; 7631 } 7632 #endif /* CONFIG_PM_SLEEP */ 7633 7634 static int igb_resume(struct device *dev) 7635 { 7636 struct pci_dev *pdev = to_pci_dev(dev); 7637 struct net_device *netdev = pci_get_drvdata(pdev); 7638 struct igb_adapter *adapter = netdev_priv(netdev); 7639 struct e1000_hw *hw = &adapter->hw; 7640 u32 err; 7641 7642 pci_set_power_state(pdev, PCI_D0); 7643 pci_restore_state(pdev); 7644 pci_save_state(pdev); 7645 7646 if (!pci_device_is_present(pdev)) 7647 return -ENODEV; 7648 err = pci_enable_device_mem(pdev); 7649 if (err) { 7650 dev_err(&pdev->dev, 7651 "igb: Cannot enable PCI device from suspend\n"); 7652 return err; 7653 } 7654 pci_set_master(pdev); 7655 7656 pci_enable_wake(pdev, PCI_D3hot, 0); 7657 pci_enable_wake(pdev, PCI_D3cold, 0); 7658 7659 if (igb_init_interrupt_scheme(adapter, true)) { 7660 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7661 return -ENOMEM; 7662 } 7663 7664 igb_reset(adapter); 7665 7666 /* let the f/w know that the h/w is now under the control of the 7667 * driver. 7668 */ 7669 igb_get_hw_control(adapter); 7670 7671 wr32(E1000_WUS, ~0); 7672 7673 if (netdev->flags & IFF_UP) { 7674 rtnl_lock(); 7675 err = __igb_open(netdev, true); 7676 rtnl_unlock(); 7677 if (err) 7678 return err; 7679 } 7680 7681 netif_device_attach(netdev); 7682 return 0; 7683 } 7684 7685 static int igb_runtime_idle(struct device *dev) 7686 { 7687 struct pci_dev *pdev = to_pci_dev(dev); 7688 struct net_device *netdev = pci_get_drvdata(pdev); 7689 struct igb_adapter *adapter = netdev_priv(netdev); 7690 7691 if (!igb_has_link(adapter)) 7692 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7693 7694 return -EBUSY; 7695 } 7696 7697 static int igb_runtime_suspend(struct device *dev) 7698 { 7699 struct pci_dev *pdev = to_pci_dev(dev); 7700 int retval; 7701 bool wake; 7702 7703 retval = __igb_shutdown(pdev, &wake, 1); 7704 if (retval) 7705 return retval; 7706 7707 if (wake) { 7708 pci_prepare_to_sleep(pdev); 7709 } else { 7710 pci_wake_from_d3(pdev, false); 7711 pci_set_power_state(pdev, PCI_D3hot); 7712 } 7713 7714 return 0; 7715 } 7716 7717 static int igb_runtime_resume(struct device *dev) 7718 { 7719 return igb_resume(dev); 7720 } 7721 #endif /* CONFIG_PM */ 7722 7723 static void igb_shutdown(struct pci_dev *pdev) 7724 { 7725 bool wake; 7726 7727 __igb_shutdown(pdev, &wake, 0); 7728 7729 if (system_state == SYSTEM_POWER_OFF) { 7730 pci_wake_from_d3(pdev, wake); 7731 pci_set_power_state(pdev, PCI_D3hot); 7732 } 7733 } 7734 7735 #ifdef CONFIG_PCI_IOV 7736 static int igb_sriov_reinit(struct pci_dev *dev) 7737 { 7738 struct net_device *netdev = pci_get_drvdata(dev); 7739 struct igb_adapter *adapter = netdev_priv(netdev); 7740 struct pci_dev *pdev = adapter->pdev; 7741 7742 rtnl_lock(); 7743 7744 if (netif_running(netdev)) 7745 igb_close(netdev); 7746 else 7747 igb_reset(adapter); 7748 7749 igb_clear_interrupt_scheme(adapter); 7750 7751 igb_init_queue_configuration(adapter); 7752 7753 if (igb_init_interrupt_scheme(adapter, true)) { 7754 rtnl_unlock(); 7755 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7756 return -ENOMEM; 7757 } 7758 7759 if (netif_running(netdev)) 7760 igb_open(netdev); 7761 7762 rtnl_unlock(); 7763 7764 return 0; 7765 } 7766 7767 static int igb_pci_disable_sriov(struct pci_dev *dev) 7768 { 7769 int err = igb_disable_sriov(dev); 7770 7771 if (!err) 7772 err = igb_sriov_reinit(dev); 7773 7774 return err; 7775 } 7776 7777 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 7778 { 7779 int err = igb_enable_sriov(dev, num_vfs); 7780 7781 if (err) 7782 goto out; 7783 7784 err = igb_sriov_reinit(dev); 7785 if (!err) 7786 return num_vfs; 7787 7788 out: 7789 return err; 7790 } 7791 7792 #endif 7793 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 7794 { 7795 #ifdef CONFIG_PCI_IOV 7796 if (num_vfs == 0) 7797 return igb_pci_disable_sriov(dev); 7798 else 7799 return igb_pci_enable_sriov(dev, num_vfs); 7800 #endif 7801 return 0; 7802 } 7803 7804 #ifdef CONFIG_NET_POLL_CONTROLLER 7805 /* Polling 'interrupt' - used by things like netconsole to send skbs 7806 * without having to re-enable interrupts. It's not called while 7807 * the interrupt routine is executing. 7808 */ 7809 static void igb_netpoll(struct net_device *netdev) 7810 { 7811 struct igb_adapter *adapter = netdev_priv(netdev); 7812 struct e1000_hw *hw = &adapter->hw; 7813 struct igb_q_vector *q_vector; 7814 int i; 7815 7816 for (i = 0; i < adapter->num_q_vectors; i++) { 7817 q_vector = adapter->q_vector[i]; 7818 if (adapter->flags & IGB_FLAG_HAS_MSIX) 7819 wr32(E1000_EIMC, q_vector->eims_value); 7820 else 7821 igb_irq_disable(adapter); 7822 napi_schedule(&q_vector->napi); 7823 } 7824 } 7825 #endif /* CONFIG_NET_POLL_CONTROLLER */ 7826 7827 /** 7828 * igb_io_error_detected - called when PCI error is detected 7829 * @pdev: Pointer to PCI device 7830 * @state: The current pci connection state 7831 * 7832 * This function is called after a PCI bus error affecting 7833 * this device has been detected. 7834 **/ 7835 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 7836 pci_channel_state_t state) 7837 { 7838 struct net_device *netdev = pci_get_drvdata(pdev); 7839 struct igb_adapter *adapter = netdev_priv(netdev); 7840 7841 netif_device_detach(netdev); 7842 7843 if (state == pci_channel_io_perm_failure) 7844 return PCI_ERS_RESULT_DISCONNECT; 7845 7846 if (netif_running(netdev)) 7847 igb_down(adapter); 7848 pci_disable_device(pdev); 7849 7850 /* Request a slot slot reset. */ 7851 return PCI_ERS_RESULT_NEED_RESET; 7852 } 7853 7854 /** 7855 * igb_io_slot_reset - called after the pci bus has been reset. 7856 * @pdev: Pointer to PCI device 7857 * 7858 * Restart the card from scratch, as if from a cold-boot. Implementation 7859 * resembles the first-half of the igb_resume routine. 7860 **/ 7861 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 7862 { 7863 struct net_device *netdev = pci_get_drvdata(pdev); 7864 struct igb_adapter *adapter = netdev_priv(netdev); 7865 struct e1000_hw *hw = &adapter->hw; 7866 pci_ers_result_t result; 7867 int err; 7868 7869 if (pci_enable_device_mem(pdev)) { 7870 dev_err(&pdev->dev, 7871 "Cannot re-enable PCI device after reset.\n"); 7872 result = PCI_ERS_RESULT_DISCONNECT; 7873 } else { 7874 pci_set_master(pdev); 7875 pci_restore_state(pdev); 7876 pci_save_state(pdev); 7877 7878 pci_enable_wake(pdev, PCI_D3hot, 0); 7879 pci_enable_wake(pdev, PCI_D3cold, 0); 7880 7881 igb_reset(adapter); 7882 wr32(E1000_WUS, ~0); 7883 result = PCI_ERS_RESULT_RECOVERED; 7884 } 7885 7886 err = pci_cleanup_aer_uncorrect_error_status(pdev); 7887 if (err) { 7888 dev_err(&pdev->dev, 7889 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 7890 err); 7891 /* non-fatal, continue */ 7892 } 7893 7894 return result; 7895 } 7896 7897 /** 7898 * igb_io_resume - called when traffic can start flowing again. 7899 * @pdev: Pointer to PCI device 7900 * 7901 * This callback is called when the error recovery driver tells us that 7902 * its OK to resume normal operation. Implementation resembles the 7903 * second-half of the igb_resume routine. 7904 */ 7905 static void igb_io_resume(struct pci_dev *pdev) 7906 { 7907 struct net_device *netdev = pci_get_drvdata(pdev); 7908 struct igb_adapter *adapter = netdev_priv(netdev); 7909 7910 if (netif_running(netdev)) { 7911 if (igb_up(adapter)) { 7912 dev_err(&pdev->dev, "igb_up failed after reset\n"); 7913 return; 7914 } 7915 } 7916 7917 netif_device_attach(netdev); 7918 7919 /* let the f/w know that the h/w is now under the control of the 7920 * driver. 7921 */ 7922 igb_get_hw_control(adapter); 7923 } 7924 7925 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, 7926 u8 qsel) 7927 { 7928 struct e1000_hw *hw = &adapter->hw; 7929 u32 rar_low, rar_high; 7930 7931 /* HW expects these to be in network order when they are plugged 7932 * into the registers which are little endian. In order to guarantee 7933 * that ordering we need to do an leXX_to_cpup here in order to be 7934 * ready for the byteswap that occurs with writel 7935 */ 7936 rar_low = le32_to_cpup((__le32 *)(addr)); 7937 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 7938 7939 /* Indicate to hardware the Address is Valid. */ 7940 rar_high |= E1000_RAH_AV; 7941 7942 if (hw->mac.type == e1000_82575) 7943 rar_high |= E1000_RAH_POOL_1 * qsel; 7944 else 7945 rar_high |= E1000_RAH_POOL_1 << qsel; 7946 7947 wr32(E1000_RAL(index), rar_low); 7948 wrfl(); 7949 wr32(E1000_RAH(index), rar_high); 7950 wrfl(); 7951 } 7952 7953 static int igb_set_vf_mac(struct igb_adapter *adapter, 7954 int vf, unsigned char *mac_addr) 7955 { 7956 struct e1000_hw *hw = &adapter->hw; 7957 /* VF MAC addresses start at end of receive addresses and moves 7958 * towards the first, as a result a collision should not be possible 7959 */ 7960 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 7961 7962 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); 7963 7964 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); 7965 7966 return 0; 7967 } 7968 7969 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 7970 { 7971 struct igb_adapter *adapter = netdev_priv(netdev); 7972 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) 7973 return -EINVAL; 7974 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 7975 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); 7976 dev_info(&adapter->pdev->dev, 7977 "Reload the VF driver to make this change effective."); 7978 if (test_bit(__IGB_DOWN, &adapter->state)) { 7979 dev_warn(&adapter->pdev->dev, 7980 "The VF MAC address has been set, but the PF device is not up.\n"); 7981 dev_warn(&adapter->pdev->dev, 7982 "Bring the PF device up before attempting to use the VF device.\n"); 7983 } 7984 return igb_set_vf_mac(adapter, vf, mac); 7985 } 7986 7987 static int igb_link_mbps(int internal_link_speed) 7988 { 7989 switch (internal_link_speed) { 7990 case SPEED_100: 7991 return 100; 7992 case SPEED_1000: 7993 return 1000; 7994 default: 7995 return 0; 7996 } 7997 } 7998 7999 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 8000 int link_speed) 8001 { 8002 int rf_dec, rf_int; 8003 u32 bcnrc_val; 8004 8005 if (tx_rate != 0) { 8006 /* Calculate the rate factor values to set */ 8007 rf_int = link_speed / tx_rate; 8008 rf_dec = (link_speed - (rf_int * tx_rate)); 8009 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) / 8010 tx_rate; 8011 8012 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 8013 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 8014 E1000_RTTBCNRC_RF_INT_MASK); 8015 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 8016 } else { 8017 bcnrc_val = 0; 8018 } 8019 8020 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 8021 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 8022 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 8023 */ 8024 wr32(E1000_RTTBCNRM, 0x14); 8025 wr32(E1000_RTTBCNRC, bcnrc_val); 8026 } 8027 8028 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 8029 { 8030 int actual_link_speed, i; 8031 bool reset_rate = false; 8032 8033 /* VF TX rate limit was not set or not supported */ 8034 if ((adapter->vf_rate_link_speed == 0) || 8035 (adapter->hw.mac.type != e1000_82576)) 8036 return; 8037 8038 actual_link_speed = igb_link_mbps(adapter->link_speed); 8039 if (actual_link_speed != adapter->vf_rate_link_speed) { 8040 reset_rate = true; 8041 adapter->vf_rate_link_speed = 0; 8042 dev_info(&adapter->pdev->dev, 8043 "Link speed has been changed. VF Transmit rate is disabled\n"); 8044 } 8045 8046 for (i = 0; i < adapter->vfs_allocated_count; i++) { 8047 if (reset_rate) 8048 adapter->vf_data[i].tx_rate = 0; 8049 8050 igb_set_vf_rate_limit(&adapter->hw, i, 8051 adapter->vf_data[i].tx_rate, 8052 actual_link_speed); 8053 } 8054 } 8055 8056 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 8057 int min_tx_rate, int max_tx_rate) 8058 { 8059 struct igb_adapter *adapter = netdev_priv(netdev); 8060 struct e1000_hw *hw = &adapter->hw; 8061 int actual_link_speed; 8062 8063 if (hw->mac.type != e1000_82576) 8064 return -EOPNOTSUPP; 8065 8066 if (min_tx_rate) 8067 return -EINVAL; 8068 8069 actual_link_speed = igb_link_mbps(adapter->link_speed); 8070 if ((vf >= adapter->vfs_allocated_count) || 8071 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 8072 (max_tx_rate < 0) || 8073 (max_tx_rate > actual_link_speed)) 8074 return -EINVAL; 8075 8076 adapter->vf_rate_link_speed = actual_link_speed; 8077 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 8078 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 8079 8080 return 0; 8081 } 8082 8083 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 8084 bool setting) 8085 { 8086 struct igb_adapter *adapter = netdev_priv(netdev); 8087 struct e1000_hw *hw = &adapter->hw; 8088 u32 reg_val, reg_offset; 8089 8090 if (!adapter->vfs_allocated_count) 8091 return -EOPNOTSUPP; 8092 8093 if (vf >= adapter->vfs_allocated_count) 8094 return -EINVAL; 8095 8096 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 8097 reg_val = rd32(reg_offset); 8098 if (setting) 8099 reg_val |= (BIT(vf) | 8100 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 8101 else 8102 reg_val &= ~(BIT(vf) | 8103 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 8104 wr32(reg_offset, reg_val); 8105 8106 adapter->vf_data[vf].spoofchk_enabled = setting; 8107 return 0; 8108 } 8109 8110 static int igb_ndo_get_vf_config(struct net_device *netdev, 8111 int vf, struct ifla_vf_info *ivi) 8112 { 8113 struct igb_adapter *adapter = netdev_priv(netdev); 8114 if (vf >= adapter->vfs_allocated_count) 8115 return -EINVAL; 8116 ivi->vf = vf; 8117 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 8118 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 8119 ivi->min_tx_rate = 0; 8120 ivi->vlan = adapter->vf_data[vf].pf_vlan; 8121 ivi->qos = adapter->vf_data[vf].pf_qos; 8122 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 8123 return 0; 8124 } 8125 8126 static void igb_vmm_control(struct igb_adapter *adapter) 8127 { 8128 struct e1000_hw *hw = &adapter->hw; 8129 u32 reg; 8130 8131 switch (hw->mac.type) { 8132 case e1000_82575: 8133 case e1000_i210: 8134 case e1000_i211: 8135 case e1000_i354: 8136 default: 8137 /* replication is not supported for 82575 */ 8138 return; 8139 case e1000_82576: 8140 /* notify HW that the MAC is adding vlan tags */ 8141 reg = rd32(E1000_DTXCTL); 8142 reg |= E1000_DTXCTL_VLAN_ADDED; 8143 wr32(E1000_DTXCTL, reg); 8144 /* Fall through */ 8145 case e1000_82580: 8146 /* enable replication vlan tag stripping */ 8147 reg = rd32(E1000_RPLOLR); 8148 reg |= E1000_RPLOLR_STRVLAN; 8149 wr32(E1000_RPLOLR, reg); 8150 /* Fall through */ 8151 case e1000_i350: 8152 /* none of the above registers are supported by i350 */ 8153 break; 8154 } 8155 8156 if (adapter->vfs_allocated_count) { 8157 igb_vmdq_set_loopback_pf(hw, true); 8158 igb_vmdq_set_replication_pf(hw, true); 8159 igb_vmdq_set_anti_spoofing_pf(hw, true, 8160 adapter->vfs_allocated_count); 8161 } else { 8162 igb_vmdq_set_loopback_pf(hw, false); 8163 igb_vmdq_set_replication_pf(hw, false); 8164 } 8165 } 8166 8167 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 8168 { 8169 struct e1000_hw *hw = &adapter->hw; 8170 u32 dmac_thr; 8171 u16 hwm; 8172 8173 if (hw->mac.type > e1000_82580) { 8174 if (adapter->flags & IGB_FLAG_DMAC) { 8175 u32 reg; 8176 8177 /* force threshold to 0. */ 8178 wr32(E1000_DMCTXTH, 0); 8179 8180 /* DMA Coalescing high water mark needs to be greater 8181 * than the Rx threshold. Set hwm to PBA - max frame 8182 * size in 16B units, capping it at PBA - 6KB. 8183 */ 8184 hwm = 64 * (pba - 6); 8185 reg = rd32(E1000_FCRTC); 8186 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 8187 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 8188 & E1000_FCRTC_RTH_COAL_MASK); 8189 wr32(E1000_FCRTC, reg); 8190 8191 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 8192 * frame size, capping it at PBA - 10KB. 8193 */ 8194 dmac_thr = pba - 10; 8195 reg = rd32(E1000_DMACR); 8196 reg &= ~E1000_DMACR_DMACTHR_MASK; 8197 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 8198 & E1000_DMACR_DMACTHR_MASK); 8199 8200 /* transition to L0x or L1 if available..*/ 8201 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 8202 8203 /* watchdog timer= +-1000 usec in 32usec intervals */ 8204 reg |= (1000 >> 5); 8205 8206 /* Disable BMC-to-OS Watchdog Enable */ 8207 if (hw->mac.type != e1000_i354) 8208 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 8209 8210 wr32(E1000_DMACR, reg); 8211 8212 /* no lower threshold to disable 8213 * coalescing(smart fifb)-UTRESH=0 8214 */ 8215 wr32(E1000_DMCRTRH, 0); 8216 8217 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 8218 8219 wr32(E1000_DMCTLX, reg); 8220 8221 /* free space in tx packet buffer to wake from 8222 * DMA coal 8223 */ 8224 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 8225 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 8226 8227 /* make low power state decision controlled 8228 * by DMA coal 8229 */ 8230 reg = rd32(E1000_PCIEMISC); 8231 reg &= ~E1000_PCIEMISC_LX_DECISION; 8232 wr32(E1000_PCIEMISC, reg); 8233 } /* endif adapter->dmac is not disabled */ 8234 } else if (hw->mac.type == e1000_82580) { 8235 u32 reg = rd32(E1000_PCIEMISC); 8236 8237 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 8238 wr32(E1000_DMACR, 0); 8239 } 8240 } 8241 8242 /** 8243 * igb_read_i2c_byte - Reads 8 bit word over I2C 8244 * @hw: pointer to hardware structure 8245 * @byte_offset: byte offset to read 8246 * @dev_addr: device address 8247 * @data: value read 8248 * 8249 * Performs byte read operation over I2C interface at 8250 * a specified device address. 8251 **/ 8252 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 8253 u8 dev_addr, u8 *data) 8254 { 8255 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 8256 struct i2c_client *this_client = adapter->i2c_client; 8257 s32 status; 8258 u16 swfw_mask = 0; 8259 8260 if (!this_client) 8261 return E1000_ERR_I2C; 8262 8263 swfw_mask = E1000_SWFW_PHY0_SM; 8264 8265 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 8266 return E1000_ERR_SWFW_SYNC; 8267 8268 status = i2c_smbus_read_byte_data(this_client, byte_offset); 8269 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 8270 8271 if (status < 0) 8272 return E1000_ERR_I2C; 8273 else { 8274 *data = status; 8275 return 0; 8276 } 8277 } 8278 8279 /** 8280 * igb_write_i2c_byte - Writes 8 bit word over I2C 8281 * @hw: pointer to hardware structure 8282 * @byte_offset: byte offset to write 8283 * @dev_addr: device address 8284 * @data: value to write 8285 * 8286 * Performs byte write operation over I2C interface at 8287 * a specified device address. 8288 **/ 8289 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 8290 u8 dev_addr, u8 data) 8291 { 8292 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 8293 struct i2c_client *this_client = adapter->i2c_client; 8294 s32 status; 8295 u16 swfw_mask = E1000_SWFW_PHY0_SM; 8296 8297 if (!this_client) 8298 return E1000_ERR_I2C; 8299 8300 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 8301 return E1000_ERR_SWFW_SYNC; 8302 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 8303 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 8304 8305 if (status) 8306 return E1000_ERR_I2C; 8307 else 8308 return 0; 8309 8310 } 8311 8312 int igb_reinit_queues(struct igb_adapter *adapter) 8313 { 8314 struct net_device *netdev = adapter->netdev; 8315 struct pci_dev *pdev = adapter->pdev; 8316 int err = 0; 8317 8318 if (netif_running(netdev)) 8319 igb_close(netdev); 8320 8321 igb_reset_interrupt_capability(adapter); 8322 8323 if (igb_init_interrupt_scheme(adapter, true)) { 8324 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 8325 return -ENOMEM; 8326 } 8327 8328 if (netif_running(netdev)) 8329 err = igb_open(netdev); 8330 8331 return err; 8332 } 8333 8334 static void igb_nfc_filter_exit(struct igb_adapter *adapter) 8335 { 8336 struct igb_nfc_filter *rule; 8337 8338 spin_lock(&adapter->nfc_lock); 8339 8340 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 8341 igb_erase_filter(adapter, rule); 8342 8343 spin_unlock(&adapter->nfc_lock); 8344 } 8345 8346 static void igb_nfc_filter_restore(struct igb_adapter *adapter) 8347 { 8348 struct igb_nfc_filter *rule; 8349 8350 spin_lock(&adapter->nfc_lock); 8351 8352 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 8353 igb_add_filter(adapter, rule); 8354 8355 spin_unlock(&adapter->nfc_lock); 8356 } 8357 /* igb_main.c */ 8358