1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59 
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 				"Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 				"Copyright (c) 2007-2014 Intel Corporation.";
71 
72 static const struct e1000_info *igb_info_tbl[] = {
73 	[board_82575] = &e1000_82575_info,
74 };
75 
76 static const struct pci_device_id igb_pci_tbl[] = {
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 	/* required last entry */
113 	{0, }
114 };
115 
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117 
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 					  struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 			  netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 			       int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 				   bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 				 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186 
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 			igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 	.notifier_call	= igb_notify_dca,
207 	.next		= NULL,
208 	.priority	= 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220 
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222 		     pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225 
226 static const struct pci_error_handlers igb_err_handler = {
227 	.error_detected = igb_io_error_detected,
228 	.slot_reset = igb_io_slot_reset,
229 	.resume = igb_io_resume,
230 };
231 
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233 
234 static struct pci_driver igb_driver = {
235 	.name     = igb_driver_name,
236 	.id_table = igb_pci_tbl,
237 	.probe    = igb_probe,
238 	.remove   = igb_remove,
239 #ifdef CONFIG_PM
240 	.driver.pm = &igb_pm_ops,
241 #endif
242 	.shutdown = igb_shutdown,
243 	.sriov_configure = igb_pci_sriov_configure,
244 	.err_handler = &igb_err_handler
245 };
246 
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251 
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256 
257 struct igb_reg_info {
258 	u32 ofs;
259 	char *name;
260 };
261 
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263 
264 	/* General Registers */
265 	{E1000_CTRL, "CTRL"},
266 	{E1000_STATUS, "STATUS"},
267 	{E1000_CTRL_EXT, "CTRL_EXT"},
268 
269 	/* Interrupt Registers */
270 	{E1000_ICR, "ICR"},
271 
272 	/* RX Registers */
273 	{E1000_RCTL, "RCTL"},
274 	{E1000_RDLEN(0), "RDLEN"},
275 	{E1000_RDH(0), "RDH"},
276 	{E1000_RDT(0), "RDT"},
277 	{E1000_RXDCTL(0), "RXDCTL"},
278 	{E1000_RDBAL(0), "RDBAL"},
279 	{E1000_RDBAH(0), "RDBAH"},
280 
281 	/* TX Registers */
282 	{E1000_TCTL, "TCTL"},
283 	{E1000_TDBAL(0), "TDBAL"},
284 	{E1000_TDBAH(0), "TDBAH"},
285 	{E1000_TDLEN(0), "TDLEN"},
286 	{E1000_TDH(0), "TDH"},
287 	{E1000_TDT(0), "TDT"},
288 	{E1000_TXDCTL(0), "TXDCTL"},
289 	{E1000_TDFH, "TDFH"},
290 	{E1000_TDFT, "TDFT"},
291 	{E1000_TDFHS, "TDFHS"},
292 	{E1000_TDFPC, "TDFPC"},
293 
294 	/* List Terminator */
295 	{}
296 };
297 
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301 	int n = 0;
302 	char rname[16];
303 	u32 regs[8];
304 
305 	switch (reginfo->ofs) {
306 	case E1000_RDLEN(0):
307 		for (n = 0; n < 4; n++)
308 			regs[n] = rd32(E1000_RDLEN(n));
309 		break;
310 	case E1000_RDH(0):
311 		for (n = 0; n < 4; n++)
312 			regs[n] = rd32(E1000_RDH(n));
313 		break;
314 	case E1000_RDT(0):
315 		for (n = 0; n < 4; n++)
316 			regs[n] = rd32(E1000_RDT(n));
317 		break;
318 	case E1000_RXDCTL(0):
319 		for (n = 0; n < 4; n++)
320 			regs[n] = rd32(E1000_RXDCTL(n));
321 		break;
322 	case E1000_RDBAL(0):
323 		for (n = 0; n < 4; n++)
324 			regs[n] = rd32(E1000_RDBAL(n));
325 		break;
326 	case E1000_RDBAH(0):
327 		for (n = 0; n < 4; n++)
328 			regs[n] = rd32(E1000_RDBAH(n));
329 		break;
330 	case E1000_TDBAL(0):
331 		for (n = 0; n < 4; n++)
332 			regs[n] = rd32(E1000_RDBAL(n));
333 		break;
334 	case E1000_TDBAH(0):
335 		for (n = 0; n < 4; n++)
336 			regs[n] = rd32(E1000_TDBAH(n));
337 		break;
338 	case E1000_TDLEN(0):
339 		for (n = 0; n < 4; n++)
340 			regs[n] = rd32(E1000_TDLEN(n));
341 		break;
342 	case E1000_TDH(0):
343 		for (n = 0; n < 4; n++)
344 			regs[n] = rd32(E1000_TDH(n));
345 		break;
346 	case E1000_TDT(0):
347 		for (n = 0; n < 4; n++)
348 			regs[n] = rd32(E1000_TDT(n));
349 		break;
350 	case E1000_TXDCTL(0):
351 		for (n = 0; n < 4; n++)
352 			regs[n] = rd32(E1000_TXDCTL(n));
353 		break;
354 	default:
355 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356 		return;
357 	}
358 
359 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361 		regs[2], regs[3]);
362 }
363 
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367 	struct net_device *netdev = adapter->netdev;
368 	struct e1000_hw *hw = &adapter->hw;
369 	struct igb_reg_info *reginfo;
370 	struct igb_ring *tx_ring;
371 	union e1000_adv_tx_desc *tx_desc;
372 	struct my_u0 { u64 a; u64 b; } *u0;
373 	struct igb_ring *rx_ring;
374 	union e1000_adv_rx_desc *rx_desc;
375 	u32 staterr;
376 	u16 i, n;
377 
378 	if (!netif_msg_hw(adapter))
379 		return;
380 
381 	/* Print netdevice Info */
382 	if (netdev) {
383 		dev_info(&adapter->pdev->dev, "Net device Info\n");
384 		pr_info("Device Name     state            trans_start      last_rx\n");
385 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386 			netdev->state, dev_trans_start(netdev), netdev->last_rx);
387 	}
388 
389 	/* Print Registers */
390 	dev_info(&adapter->pdev->dev, "Register Dump\n");
391 	pr_info(" Register Name   Value\n");
392 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393 	     reginfo->name; reginfo++) {
394 		igb_regdump(hw, reginfo);
395 	}
396 
397 	/* Print TX Ring Summary */
398 	if (!netdev || !netif_running(netdev))
399 		goto exit;
400 
401 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
403 	for (n = 0; n < adapter->num_tx_queues; n++) {
404 		struct igb_tx_buffer *buffer_info;
405 		tx_ring = adapter->tx_ring[n];
406 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
409 			(u64)dma_unmap_addr(buffer_info, dma),
410 			dma_unmap_len(buffer_info, len),
411 			buffer_info->next_to_watch,
412 			(u64)buffer_info->time_stamp);
413 	}
414 
415 	/* Print TX Rings */
416 	if (!netif_msg_tx_done(adapter))
417 		goto rx_ring_summary;
418 
419 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420 
421 	/* Transmit Descriptor Formats
422 	 *
423 	 * Advanced Transmit Descriptor
424 	 *   +--------------------------------------------------------------+
425 	 * 0 |         Buffer Address [63:0]                                |
426 	 *   +--------------------------------------------------------------+
427 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
428 	 *   +--------------------------------------------------------------+
429 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
430 	 */
431 
432 	for (n = 0; n < adapter->num_tx_queues; n++) {
433 		tx_ring = adapter->tx_ring[n];
434 		pr_info("------------------------------------\n");
435 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436 		pr_info("------------------------------------\n");
437 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
438 
439 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440 			const char *next_desc;
441 			struct igb_tx_buffer *buffer_info;
442 			tx_desc = IGB_TX_DESC(tx_ring, i);
443 			buffer_info = &tx_ring->tx_buffer_info[i];
444 			u0 = (struct my_u0 *)tx_desc;
445 			if (i == tx_ring->next_to_use &&
446 			    i == tx_ring->next_to_clean)
447 				next_desc = " NTC/U";
448 			else if (i == tx_ring->next_to_use)
449 				next_desc = " NTU";
450 			else if (i == tx_ring->next_to_clean)
451 				next_desc = " NTC";
452 			else
453 				next_desc = "";
454 
455 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
456 				i, le64_to_cpu(u0->a),
457 				le64_to_cpu(u0->b),
458 				(u64)dma_unmap_addr(buffer_info, dma),
459 				dma_unmap_len(buffer_info, len),
460 				buffer_info->next_to_watch,
461 				(u64)buffer_info->time_stamp,
462 				buffer_info->skb, next_desc);
463 
464 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
465 				print_hex_dump(KERN_INFO, "",
466 					DUMP_PREFIX_ADDRESS,
467 					16, 1, buffer_info->skb->data,
468 					dma_unmap_len(buffer_info, len),
469 					true);
470 		}
471 	}
472 
473 	/* Print RX Rings Summary */
474 rx_ring_summary:
475 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476 	pr_info("Queue [NTU] [NTC]\n");
477 	for (n = 0; n < adapter->num_rx_queues; n++) {
478 		rx_ring = adapter->rx_ring[n];
479 		pr_info(" %5d %5X %5X\n",
480 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 	}
482 
483 	/* Print RX Rings */
484 	if (!netif_msg_rx_status(adapter))
485 		goto exit;
486 
487 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488 
489 	/* Advanced Receive Descriptor (Read) Format
490 	 *    63                                           1        0
491 	 *    +-----------------------------------------------------+
492 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493 	 *    +----------------------------------------------+------+
494 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
495 	 *    +-----------------------------------------------------+
496 	 *
497 	 *
498 	 * Advanced Receive Descriptor (Write-Back) Format
499 	 *
500 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
501 	 *   +------------------------------------------------------+
502 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503 	 *   | Checksum   Ident  |   |           |    | Type | Type |
504 	 *   +------------------------------------------------------+
505 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 	 *   +------------------------------------------------------+
507 	 *   63       48 47    32 31            20 19               0
508 	 */
509 
510 	for (n = 0; n < adapter->num_rx_queues; n++) {
511 		rx_ring = adapter->rx_ring[n];
512 		pr_info("------------------------------------\n");
513 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 		pr_info("------------------------------------\n");
515 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
516 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517 
518 		for (i = 0; i < rx_ring->count; i++) {
519 			const char *next_desc;
520 			struct igb_rx_buffer *buffer_info;
521 			buffer_info = &rx_ring->rx_buffer_info[i];
522 			rx_desc = IGB_RX_DESC(rx_ring, i);
523 			u0 = (struct my_u0 *)rx_desc;
524 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525 
526 			if (i == rx_ring->next_to_use)
527 				next_desc = " NTU";
528 			else if (i == rx_ring->next_to_clean)
529 				next_desc = " NTC";
530 			else
531 				next_desc = "";
532 
533 			if (staterr & E1000_RXD_STAT_DD) {
534 				/* Descriptor Done */
535 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
536 					"RWB", i,
537 					le64_to_cpu(u0->a),
538 					le64_to_cpu(u0->b),
539 					next_desc);
540 			} else {
541 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
542 					"R  ", i,
543 					le64_to_cpu(u0->a),
544 					le64_to_cpu(u0->b),
545 					(u64)buffer_info->dma,
546 					next_desc);
547 
548 				if (netif_msg_pktdata(adapter) &&
549 				    buffer_info->dma && buffer_info->page) {
550 					print_hex_dump(KERN_INFO, "",
551 					  DUMP_PREFIX_ADDRESS,
552 					  16, 1,
553 					  page_address(buffer_info->page) +
554 						      buffer_info->page_offset,
555 					  IGB_RX_BUFSZ, true);
556 				}
557 			}
558 		}
559 	}
560 
561 exit:
562 	return;
563 }
564 
565 /**
566  *  igb_get_i2c_data - Reads the I2C SDA data bit
567  *  @hw: pointer to hardware structure
568  *  @i2cctl: Current value of I2CCTL register
569  *
570  *  Returns the I2C data bit value
571  **/
572 static int igb_get_i2c_data(void *data)
573 {
574 	struct igb_adapter *adapter = (struct igb_adapter *)data;
575 	struct e1000_hw *hw = &adapter->hw;
576 	s32 i2cctl = rd32(E1000_I2CPARAMS);
577 
578 	return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580 
581 /**
582  *  igb_set_i2c_data - Sets the I2C data bit
583  *  @data: pointer to hardware structure
584  *  @state: I2C data value (0 or 1) to set
585  *
586  *  Sets the I2C data bit
587  **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590 	struct igb_adapter *adapter = (struct igb_adapter *)data;
591 	struct e1000_hw *hw = &adapter->hw;
592 	s32 i2cctl = rd32(E1000_I2CPARAMS);
593 
594 	if (state)
595 		i2cctl |= E1000_I2C_DATA_OUT;
596 	else
597 		i2cctl &= ~E1000_I2C_DATA_OUT;
598 
599 	i2cctl &= ~E1000_I2C_DATA_OE_N;
600 	i2cctl |= E1000_I2C_CLK_OE_N;
601 	wr32(E1000_I2CPARAMS, i2cctl);
602 	wrfl();
603 
604 }
605 
606 /**
607  *  igb_set_i2c_clk - Sets the I2C SCL clock
608  *  @data: pointer to hardware structure
609  *  @state: state to set clock
610  *
611  *  Sets the I2C clock line to state
612  **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615 	struct igb_adapter *adapter = (struct igb_adapter *)data;
616 	struct e1000_hw *hw = &adapter->hw;
617 	s32 i2cctl = rd32(E1000_I2CPARAMS);
618 
619 	if (state) {
620 		i2cctl |= E1000_I2C_CLK_OUT;
621 		i2cctl &= ~E1000_I2C_CLK_OE_N;
622 	} else {
623 		i2cctl &= ~E1000_I2C_CLK_OUT;
624 		i2cctl &= ~E1000_I2C_CLK_OE_N;
625 	}
626 	wr32(E1000_I2CPARAMS, i2cctl);
627 	wrfl();
628 }
629 
630 /**
631  *  igb_get_i2c_clk - Gets the I2C SCL clock state
632  *  @data: pointer to hardware structure
633  *
634  *  Gets the I2C clock state
635  **/
636 static int igb_get_i2c_clk(void *data)
637 {
638 	struct igb_adapter *adapter = (struct igb_adapter *)data;
639 	struct e1000_hw *hw = &adapter->hw;
640 	s32 i2cctl = rd32(E1000_I2CPARAMS);
641 
642 	return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644 
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646 	.setsda		= igb_set_i2c_data,
647 	.setscl		= igb_set_i2c_clk,
648 	.getsda		= igb_get_i2c_data,
649 	.getscl		= igb_get_i2c_clk,
650 	.udelay		= 5,
651 	.timeout	= 20,
652 };
653 
654 /**
655  *  igb_get_hw_dev - return device
656  *  @hw: pointer to hardware structure
657  *
658  *  used by hardware layer to print debugging information
659  **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662 	struct igb_adapter *adapter = hw->back;
663 	return adapter->netdev;
664 }
665 
666 /**
667  *  igb_init_module - Driver Registration Routine
668  *
669  *  igb_init_module is the first routine called when the driver is
670  *  loaded. All it does is register with the PCI subsystem.
671  **/
672 static int __init igb_init_module(void)
673 {
674 	int ret;
675 
676 	pr_info("%s - version %s\n",
677 	       igb_driver_string, igb_driver_version);
678 	pr_info("%s\n", igb_copyright);
679 
680 #ifdef CONFIG_IGB_DCA
681 	dca_register_notify(&dca_notifier);
682 #endif
683 	ret = pci_register_driver(&igb_driver);
684 	return ret;
685 }
686 
687 module_init(igb_init_module);
688 
689 /**
690  *  igb_exit_module - Driver Exit Cleanup Routine
691  *
692  *  igb_exit_module is called just before the driver is removed
693  *  from memory.
694  **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698 	dca_unregister_notify(&dca_notifier);
699 #endif
700 	pci_unregister_driver(&igb_driver);
701 }
702 
703 module_exit(igb_exit_module);
704 
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707  *  igb_cache_ring_register - Descriptor ring to register mapping
708  *  @adapter: board private structure to initialize
709  *
710  *  Once we know the feature-set enabled for the device, we'll cache
711  *  the register offset the descriptor ring is assigned to.
712  **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715 	int i = 0, j = 0;
716 	u32 rbase_offset = adapter->vfs_allocated_count;
717 
718 	switch (adapter->hw.mac.type) {
719 	case e1000_82576:
720 		/* The queues are allocated for virtualization such that VF 0
721 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722 		 * In order to avoid collision we start at the first free queue
723 		 * and continue consuming queues in the same sequence
724 		 */
725 		if (adapter->vfs_allocated_count) {
726 			for (; i < adapter->rss_queues; i++)
727 				adapter->rx_ring[i]->reg_idx = rbase_offset +
728 							       Q_IDX_82576(i);
729 		}
730 		/* Fall through */
731 	case e1000_82575:
732 	case e1000_82580:
733 	case e1000_i350:
734 	case e1000_i354:
735 	case e1000_i210:
736 	case e1000_i211:
737 		/* Fall through */
738 	default:
739 		for (; i < adapter->num_rx_queues; i++)
740 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741 		for (; j < adapter->num_tx_queues; j++)
742 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743 		break;
744 	}
745 }
746 
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751 	u32 value = 0;
752 
753 	if (E1000_REMOVED(hw_addr))
754 		return ~value;
755 
756 	value = readl(&hw_addr[reg]);
757 
758 	/* reads should not return all F's */
759 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760 		struct net_device *netdev = igb->netdev;
761 		hw->hw_addr = NULL;
762 		netif_device_detach(netdev);
763 		netdev_err(netdev, "PCIe link lost, device now detached\n");
764 	}
765 
766 	return value;
767 }
768 
769 /**
770  *  igb_write_ivar - configure ivar for given MSI-X vector
771  *  @hw: pointer to the HW structure
772  *  @msix_vector: vector number we are allocating to a given ring
773  *  @index: row index of IVAR register to write within IVAR table
774  *  @offset: column offset of in IVAR, should be multiple of 8
775  *
776  *  This function is intended to handle the writing of the IVAR register
777  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778  *  each containing an cause allocation for an Rx and Tx ring, and a
779  *  variable number of rows depending on the number of queues supported.
780  **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782 			   int index, int offset)
783 {
784 	u32 ivar = array_rd32(E1000_IVAR0, index);
785 
786 	/* clear any bits that are currently set */
787 	ivar &= ~((u32)0xFF << offset);
788 
789 	/* write vector and valid bit */
790 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791 
792 	array_wr32(E1000_IVAR0, index, ivar);
793 }
794 
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798 	struct igb_adapter *adapter = q_vector->adapter;
799 	struct e1000_hw *hw = &adapter->hw;
800 	int rx_queue = IGB_N0_QUEUE;
801 	int tx_queue = IGB_N0_QUEUE;
802 	u32 msixbm = 0;
803 
804 	if (q_vector->rx.ring)
805 		rx_queue = q_vector->rx.ring->reg_idx;
806 	if (q_vector->tx.ring)
807 		tx_queue = q_vector->tx.ring->reg_idx;
808 
809 	switch (hw->mac.type) {
810 	case e1000_82575:
811 		/* The 82575 assigns vectors using a bitmask, which matches the
812 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813 		 * or more queues to a vector, we write the appropriate bits
814 		 * into the MSIXBM register for that vector.
815 		 */
816 		if (rx_queue > IGB_N0_QUEUE)
817 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818 		if (tx_queue > IGB_N0_QUEUE)
819 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821 			msixbm |= E1000_EIMS_OTHER;
822 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823 		q_vector->eims_value = msixbm;
824 		break;
825 	case e1000_82576:
826 		/* 82576 uses a table that essentially consists of 2 columns
827 		 * with 8 rows.  The ordering is column-major so we use the
828 		 * lower 3 bits as the row index, and the 4th bit as the
829 		 * column offset.
830 		 */
831 		if (rx_queue > IGB_N0_QUEUE)
832 			igb_write_ivar(hw, msix_vector,
833 				       rx_queue & 0x7,
834 				       (rx_queue & 0x8) << 1);
835 		if (tx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       tx_queue & 0x7,
838 				       ((tx_queue & 0x8) << 1) + 8);
839 		q_vector->eims_value = BIT(msix_vector);
840 		break;
841 	case e1000_82580:
842 	case e1000_i350:
843 	case e1000_i354:
844 	case e1000_i210:
845 	case e1000_i211:
846 		/* On 82580 and newer adapters the scheme is similar to 82576
847 		 * however instead of ordering column-major we have things
848 		 * ordered row-major.  So we traverse the table by using
849 		 * bit 0 as the column offset, and the remaining bits as the
850 		 * row index.
851 		 */
852 		if (rx_queue > IGB_N0_QUEUE)
853 			igb_write_ivar(hw, msix_vector,
854 				       rx_queue >> 1,
855 				       (rx_queue & 0x1) << 4);
856 		if (tx_queue > IGB_N0_QUEUE)
857 			igb_write_ivar(hw, msix_vector,
858 				       tx_queue >> 1,
859 				       ((tx_queue & 0x1) << 4) + 8);
860 		q_vector->eims_value = BIT(msix_vector);
861 		break;
862 	default:
863 		BUG();
864 		break;
865 	}
866 
867 	/* add q_vector eims value to global eims_enable_mask */
868 	adapter->eims_enable_mask |= q_vector->eims_value;
869 
870 	/* configure q_vector to set itr on first interrupt */
871 	q_vector->set_itr = 1;
872 }
873 
874 /**
875  *  igb_configure_msix - Configure MSI-X hardware
876  *  @adapter: board private structure to initialize
877  *
878  *  igb_configure_msix sets up the hardware to properly
879  *  generate MSI-X interrupts.
880  **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883 	u32 tmp;
884 	int i, vector = 0;
885 	struct e1000_hw *hw = &adapter->hw;
886 
887 	adapter->eims_enable_mask = 0;
888 
889 	/* set vector for other causes, i.e. link changes */
890 	switch (hw->mac.type) {
891 	case e1000_82575:
892 		tmp = rd32(E1000_CTRL_EXT);
893 		/* enable MSI-X PBA support*/
894 		tmp |= E1000_CTRL_EXT_PBA_CLR;
895 
896 		/* Auto-Mask interrupts upon ICR read. */
897 		tmp |= E1000_CTRL_EXT_EIAME;
898 		tmp |= E1000_CTRL_EXT_IRCA;
899 
900 		wr32(E1000_CTRL_EXT, tmp);
901 
902 		/* enable msix_other interrupt */
903 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904 		adapter->eims_other = E1000_EIMS_OTHER;
905 
906 		break;
907 
908 	case e1000_82576:
909 	case e1000_82580:
910 	case e1000_i350:
911 	case e1000_i354:
912 	case e1000_i210:
913 	case e1000_i211:
914 		/* Turn on MSI-X capability first, or our settings
915 		 * won't stick.  And it will take days to debug.
916 		 */
917 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
919 		     E1000_GPIE_NSICR);
920 
921 		/* enable msix_other interrupt */
922 		adapter->eims_other = BIT(vector);
923 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
924 
925 		wr32(E1000_IVAR_MISC, tmp);
926 		break;
927 	default:
928 		/* do nothing, since nothing else supports MSI-X */
929 		break;
930 	} /* switch (hw->mac.type) */
931 
932 	adapter->eims_enable_mask |= adapter->eims_other;
933 
934 	for (i = 0; i < adapter->num_q_vectors; i++)
935 		igb_assign_vector(adapter->q_vector[i], vector++);
936 
937 	wrfl();
938 }
939 
940 /**
941  *  igb_request_msix - Initialize MSI-X interrupts
942  *  @adapter: board private structure to initialize
943  *
944  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945  *  kernel.
946  **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949 	struct net_device *netdev = adapter->netdev;
950 	int i, err = 0, vector = 0, free_vector = 0;
951 
952 	err = request_irq(adapter->msix_entries[vector].vector,
953 			  igb_msix_other, 0, netdev->name, adapter);
954 	if (err)
955 		goto err_out;
956 
957 	for (i = 0; i < adapter->num_q_vectors; i++) {
958 		struct igb_q_vector *q_vector = adapter->q_vector[i];
959 
960 		vector++;
961 
962 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963 
964 		if (q_vector->rx.ring && q_vector->tx.ring)
965 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 				q_vector->rx.ring->queue_index);
967 		else if (q_vector->tx.ring)
968 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 				q_vector->tx.ring->queue_index);
970 		else if (q_vector->rx.ring)
971 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 				q_vector->rx.ring->queue_index);
973 		else
974 			sprintf(q_vector->name, "%s-unused", netdev->name);
975 
976 		err = request_irq(adapter->msix_entries[vector].vector,
977 				  igb_msix_ring, 0, q_vector->name,
978 				  q_vector);
979 		if (err)
980 			goto err_free;
981 	}
982 
983 	igb_configure_msix(adapter);
984 	return 0;
985 
986 err_free:
987 	/* free already assigned IRQs */
988 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989 
990 	vector--;
991 	for (i = 0; i < vector; i++) {
992 		free_irq(adapter->msix_entries[free_vector++].vector,
993 			 adapter->q_vector[i]);
994 	}
995 err_out:
996 	return err;
997 }
998 
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009 
1010 	adapter->q_vector[v_idx] = NULL;
1011 
1012 	/* igb_get_stats64() might access the rings on this vector,
1013 	 * we must wait a grace period before freeing it.
1014 	 */
1015 	if (q_vector)
1016 		kfree_rcu(q_vector, rcu);
1017 }
1018 
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030 
1031 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 	 * allocated. So, q_vector is NULL so we should stop here.
1033 	 */
1034 	if (!q_vector)
1035 		return;
1036 
1037 	if (q_vector->tx.ring)
1038 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039 
1040 	if (q_vector->rx.ring)
1041 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042 
1043 	netif_napi_del(&q_vector->napi);
1044 
1045 }
1046 
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049 	int v_idx = adapter->num_q_vectors;
1050 
1051 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 		pci_disable_msix(adapter->pdev);
1053 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 		pci_disable_msi(adapter->pdev);
1055 
1056 	while (v_idx--)
1057 		igb_reset_q_vector(adapter, v_idx);
1058 }
1059 
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070 	int v_idx = adapter->num_q_vectors;
1071 
1072 	adapter->num_tx_queues = 0;
1073 	adapter->num_rx_queues = 0;
1074 	adapter->num_q_vectors = 0;
1075 
1076 	while (v_idx--) {
1077 		igb_reset_q_vector(adapter, v_idx);
1078 		igb_free_q_vector(adapter, v_idx);
1079 	}
1080 }
1081 
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091 	igb_free_q_vectors(adapter);
1092 	igb_reset_interrupt_capability(adapter);
1093 }
1094 
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105 	int err;
1106 	int numvecs, i;
1107 
1108 	if (!msix)
1109 		goto msi_only;
1110 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1111 
1112 	/* Number of supported queues. */
1113 	adapter->num_rx_queues = adapter->rss_queues;
1114 	if (adapter->vfs_allocated_count)
1115 		adapter->num_tx_queues = 1;
1116 	else
1117 		adapter->num_tx_queues = adapter->rss_queues;
1118 
1119 	/* start with one vector for every Rx queue */
1120 	numvecs = adapter->num_rx_queues;
1121 
1122 	/* if Tx handler is separate add 1 for every Tx queue */
1123 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 		numvecs += adapter->num_tx_queues;
1125 
1126 	/* store the number of vectors reserved for queues */
1127 	adapter->num_q_vectors = numvecs;
1128 
1129 	/* add 1 vector for link status interrupts */
1130 	numvecs++;
1131 	for (i = 0; i < numvecs; i++)
1132 		adapter->msix_entries[i].entry = i;
1133 
1134 	err = pci_enable_msix_range(adapter->pdev,
1135 				    adapter->msix_entries,
1136 				    numvecs,
1137 				    numvecs);
1138 	if (err > 0)
1139 		return;
1140 
1141 	igb_reset_interrupt_capability(adapter);
1142 
1143 	/* If we can't do MSI-X, try MSI */
1144 msi_only:
1145 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147 	/* disable SR-IOV for non MSI-X configurations */
1148 	if (adapter->vf_data) {
1149 		struct e1000_hw *hw = &adapter->hw;
1150 		/* disable iov and allow time for transactions to clear */
1151 		pci_disable_sriov(adapter->pdev);
1152 		msleep(500);
1153 
1154 		kfree(adapter->vf_data);
1155 		adapter->vf_data = NULL;
1156 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 		wrfl();
1158 		msleep(100);
1159 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 	}
1161 #endif
1162 	adapter->vfs_allocated_count = 0;
1163 	adapter->rss_queues = 1;
1164 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 	adapter->num_rx_queues = 1;
1166 	adapter->num_tx_queues = 1;
1167 	adapter->num_q_vectors = 1;
1168 	if (!pci_enable_msi(adapter->pdev))
1169 		adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171 
1172 static void igb_add_ring(struct igb_ring *ring,
1173 			 struct igb_ring_container *head)
1174 {
1175 	head->ring = ring;
1176 	head->count++;
1177 }
1178 
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 			      int v_count, int v_idx,
1193 			      int txr_count, int txr_idx,
1194 			      int rxr_count, int rxr_idx)
1195 {
1196 	struct igb_q_vector *q_vector;
1197 	struct igb_ring *ring;
1198 	int ring_count, size;
1199 
1200 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 	if (txr_count > 1 || rxr_count > 1)
1202 		return -ENOMEM;
1203 
1204 	ring_count = txr_count + rxr_count;
1205 	size = sizeof(struct igb_q_vector) +
1206 	       (sizeof(struct igb_ring) * ring_count);
1207 
1208 	/* allocate q_vector and rings */
1209 	q_vector = adapter->q_vector[v_idx];
1210 	if (!q_vector) {
1211 		q_vector = kzalloc(size, GFP_KERNEL);
1212 	} else if (size > ksize(q_vector)) {
1213 		kfree_rcu(q_vector, rcu);
1214 		q_vector = kzalloc(size, GFP_KERNEL);
1215 	} else {
1216 		memset(q_vector, 0, size);
1217 	}
1218 	if (!q_vector)
1219 		return -ENOMEM;
1220 
1221 	/* initialize NAPI */
1222 	netif_napi_add(adapter->netdev, &q_vector->napi,
1223 		       igb_poll, 64);
1224 
1225 	/* tie q_vector and adapter together */
1226 	adapter->q_vector[v_idx] = q_vector;
1227 	q_vector->adapter = adapter;
1228 
1229 	/* initialize work limits */
1230 	q_vector->tx.work_limit = adapter->tx_work_limit;
1231 
1232 	/* initialize ITR configuration */
1233 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234 	q_vector->itr_val = IGB_START_ITR;
1235 
1236 	/* initialize pointer to rings */
1237 	ring = q_vector->ring;
1238 
1239 	/* intialize ITR */
1240 	if (rxr_count) {
1241 		/* rx or rx/tx vector */
1242 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243 			q_vector->itr_val = adapter->rx_itr_setting;
1244 	} else {
1245 		/* tx only vector */
1246 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247 			q_vector->itr_val = adapter->tx_itr_setting;
1248 	}
1249 
1250 	if (txr_count) {
1251 		/* assign generic ring traits */
1252 		ring->dev = &adapter->pdev->dev;
1253 		ring->netdev = adapter->netdev;
1254 
1255 		/* configure backlink on ring */
1256 		ring->q_vector = q_vector;
1257 
1258 		/* update q_vector Tx values */
1259 		igb_add_ring(ring, &q_vector->tx);
1260 
1261 		/* For 82575, context index must be unique per ring. */
1262 		if (adapter->hw.mac.type == e1000_82575)
1263 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264 
1265 		/* apply Tx specific ring traits */
1266 		ring->count = adapter->tx_ring_count;
1267 		ring->queue_index = txr_idx;
1268 
1269 		u64_stats_init(&ring->tx_syncp);
1270 		u64_stats_init(&ring->tx_syncp2);
1271 
1272 		/* assign ring to adapter */
1273 		adapter->tx_ring[txr_idx] = ring;
1274 
1275 		/* push pointer to next ring */
1276 		ring++;
1277 	}
1278 
1279 	if (rxr_count) {
1280 		/* assign generic ring traits */
1281 		ring->dev = &adapter->pdev->dev;
1282 		ring->netdev = adapter->netdev;
1283 
1284 		/* configure backlink on ring */
1285 		ring->q_vector = q_vector;
1286 
1287 		/* update q_vector Rx values */
1288 		igb_add_ring(ring, &q_vector->rx);
1289 
1290 		/* set flag indicating ring supports SCTP checksum offload */
1291 		if (adapter->hw.mac.type >= e1000_82576)
1292 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293 
1294 		/* On i350, i354, i210, and i211, loopback VLAN packets
1295 		 * have the tag byte-swapped.
1296 		 */
1297 		if (adapter->hw.mac.type >= e1000_i350)
1298 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299 
1300 		/* apply Rx specific ring traits */
1301 		ring->count = adapter->rx_ring_count;
1302 		ring->queue_index = rxr_idx;
1303 
1304 		u64_stats_init(&ring->rx_syncp);
1305 
1306 		/* assign ring to adapter */
1307 		adapter->rx_ring[rxr_idx] = ring;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 	int q_vectors = adapter->num_q_vectors;
1324 	int rxr_remaining = adapter->num_rx_queues;
1325 	int txr_remaining = adapter->num_tx_queues;
1326 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 	int err;
1328 
1329 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 		for (; rxr_remaining; v_idx++) {
1331 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 						 0, 0, 1, rxr_idx);
1333 
1334 			if (err)
1335 				goto err_out;
1336 
1337 			/* update counts and index */
1338 			rxr_remaining--;
1339 			rxr_idx++;
1340 		}
1341 	}
1342 
1343 	for (; v_idx < q_vectors; v_idx++) {
1344 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346 
1347 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 					 tqpv, txr_idx, rqpv, rxr_idx);
1349 
1350 		if (err)
1351 			goto err_out;
1352 
1353 		/* update counts and index */
1354 		rxr_remaining -= rqpv;
1355 		txr_remaining -= tqpv;
1356 		rxr_idx++;
1357 		txr_idx++;
1358 	}
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	adapter->num_tx_queues = 0;
1364 	adapter->num_rx_queues = 0;
1365 	adapter->num_q_vectors = 0;
1366 
1367 	while (v_idx--)
1368 		igb_free_q_vector(adapter, v_idx);
1369 
1370 	return -ENOMEM;
1371 }
1372 
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 	struct pci_dev *pdev = adapter->pdev;
1383 	int err;
1384 
1385 	igb_set_interrupt_capability(adapter, msix);
1386 
1387 	err = igb_alloc_q_vectors(adapter);
1388 	if (err) {
1389 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 		goto err_alloc_q_vectors;
1391 	}
1392 
1393 	igb_cache_ring_register(adapter);
1394 
1395 	return 0;
1396 
1397 err_alloc_q_vectors:
1398 	igb_reset_interrupt_capability(adapter);
1399 	return err;
1400 }
1401 
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 	struct net_device *netdev = adapter->netdev;
1412 	struct pci_dev *pdev = adapter->pdev;
1413 	int err = 0;
1414 
1415 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 		err = igb_request_msix(adapter);
1417 		if (!err)
1418 			goto request_done;
1419 		/* fall back to MSI */
1420 		igb_free_all_tx_resources(adapter);
1421 		igb_free_all_rx_resources(adapter);
1422 
1423 		igb_clear_interrupt_scheme(adapter);
1424 		err = igb_init_interrupt_scheme(adapter, false);
1425 		if (err)
1426 			goto request_done;
1427 
1428 		igb_setup_all_tx_resources(adapter);
1429 		igb_setup_all_rx_resources(adapter);
1430 		igb_configure(adapter);
1431 	}
1432 
1433 	igb_assign_vector(adapter->q_vector[0], 0);
1434 
1435 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 				  netdev->name, adapter);
1438 		if (!err)
1439 			goto request_done;
1440 
1441 		/* fall back to legacy interrupts */
1442 		igb_reset_interrupt_capability(adapter);
1443 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 	}
1445 
1446 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 			  netdev->name, adapter);
1448 
1449 	if (err)
1450 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 			err);
1452 
1453 request_done:
1454 	return err;
1455 }
1456 
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 		int vector = 0, i;
1461 
1462 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1463 
1464 		for (i = 0; i < adapter->num_q_vectors; i++)
1465 			free_irq(adapter->msix_entries[vector++].vector,
1466 				 adapter->q_vector[i]);
1467 	} else {
1468 		free_irq(adapter->pdev->irq, adapter);
1469 	}
1470 }
1471 
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 	struct e1000_hw *hw = &adapter->hw;
1479 
1480 	/* we need to be careful when disabling interrupts.  The VFs are also
1481 	 * mapped into these registers and so clearing the bits can cause
1482 	 * issues on the VF drivers so we only need to clear what we set
1483 	 */
1484 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 		u32 regval = rd32(E1000_EIAM);
1486 
1487 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 		regval = rd32(E1000_EIAC);
1490 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 	}
1492 
1493 	wr32(E1000_IAM, 0);
1494 	wr32(E1000_IMC, ~0);
1495 	wrfl();
1496 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 		int i;
1498 
1499 		for (i = 0; i < adapter->num_q_vectors; i++)
1500 			synchronize_irq(adapter->msix_entries[i].vector);
1501 	} else {
1502 		synchronize_irq(adapter->pdev->irq);
1503 	}
1504 }
1505 
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 	struct e1000_hw *hw = &adapter->hw;
1513 
1514 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 		u32 regval = rd32(E1000_EIAC);
1517 
1518 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 		regval = rd32(E1000_EIAM);
1520 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 		if (adapter->vfs_allocated_count) {
1523 			wr32(E1000_MBVFIMR, 0xFF);
1524 			ims |= E1000_IMS_VMMB;
1525 		}
1526 		wr32(E1000_IMS, ims);
1527 	} else {
1528 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 				E1000_IMS_DRSTA);
1530 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 	}
1533 }
1534 
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 	struct e1000_hw *hw = &adapter->hw;
1538 	u16 pf_id = adapter->vfs_allocated_count;
1539 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 	u16 old_vid = adapter->mng_vlan_id;
1541 
1542 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 		/* add VID to filter table */
1544 		igb_vfta_set(hw, vid, pf_id, true, true);
1545 		adapter->mng_vlan_id = vid;
1546 	} else {
1547 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 	}
1549 
1550 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 	    (vid != old_vid) &&
1552 	    !test_bit(old_vid, adapter->active_vlans)) {
1553 		/* remove VID from filter table */
1554 		igb_vfta_set(hw, vid, pf_id, false, true);
1555 	}
1556 }
1557 
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 	struct e1000_hw *hw = &adapter->hw;
1569 	u32 ctrl_ext;
1570 
1571 	/* Let firmware take over control of h/w */
1572 	ctrl_ext = rd32(E1000_CTRL_EXT);
1573 	wr32(E1000_CTRL_EXT,
1574 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576 
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 	struct e1000_hw *hw = &adapter->hw;
1588 	u32 ctrl_ext;
1589 
1590 	/* Let firmware know the driver has taken over */
1591 	ctrl_ext = rd32(E1000_CTRL_EXT);
1592 	wr32(E1000_CTRL_EXT,
1593 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595 
1596 /**
1597  *  igb_configure - configure the hardware for RX and TX
1598  *  @adapter: private board structure
1599  **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602 	struct net_device *netdev = adapter->netdev;
1603 	int i;
1604 
1605 	igb_get_hw_control(adapter);
1606 	igb_set_rx_mode(netdev);
1607 
1608 	igb_restore_vlan(adapter);
1609 
1610 	igb_setup_tctl(adapter);
1611 	igb_setup_mrqc(adapter);
1612 	igb_setup_rctl(adapter);
1613 
1614 	igb_configure_tx(adapter);
1615 	igb_configure_rx(adapter);
1616 
1617 	igb_rx_fifo_flush_82575(&adapter->hw);
1618 
1619 	/* call igb_desc_unused which always leaves
1620 	 * at least 1 descriptor unused to make sure
1621 	 * next_to_use != next_to_clean
1622 	 */
1623 	for (i = 0; i < adapter->num_rx_queues; i++) {
1624 		struct igb_ring *ring = adapter->rx_ring[i];
1625 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626 	}
1627 }
1628 
1629 /**
1630  *  igb_power_up_link - Power up the phy/serdes link
1631  *  @adapter: address of board private structure
1632  **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635 	igb_reset_phy(&adapter->hw);
1636 
1637 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638 		igb_power_up_phy_copper(&adapter->hw);
1639 	else
1640 		igb_power_up_serdes_link_82575(&adapter->hw);
1641 
1642 	igb_setup_link(&adapter->hw);
1643 }
1644 
1645 /**
1646  *  igb_power_down_link - Power down the phy/serdes link
1647  *  @adapter: address of board private structure
1648  */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652 		igb_power_down_phy_copper_82575(&adapter->hw);
1653 	else
1654 		igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656 
1657 /**
1658  * Detect and switch function for Media Auto Sense
1659  * @adapter: address of the board private structure
1660  **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663 	struct e1000_hw *hw = &adapter->hw;
1664 	u32 ctrl_ext, connsw;
1665 	bool swap_now = false;
1666 
1667 	ctrl_ext = rd32(E1000_CTRL_EXT);
1668 	connsw = rd32(E1000_CONNSW);
1669 
1670 	/* need to live swap if current media is copper and we have fiber/serdes
1671 	 * to go to.
1672 	 */
1673 
1674 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1675 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676 		swap_now = true;
1677 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678 		/* copper signal takes time to appear */
1679 		if (adapter->copper_tries < 4) {
1680 			adapter->copper_tries++;
1681 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682 			wr32(E1000_CONNSW, connsw);
1683 			return;
1684 		} else {
1685 			adapter->copper_tries = 0;
1686 			if ((connsw & E1000_CONNSW_PHYSD) &&
1687 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688 				swap_now = true;
1689 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690 				wr32(E1000_CONNSW, connsw);
1691 			}
1692 		}
1693 	}
1694 
1695 	if (!swap_now)
1696 		return;
1697 
1698 	switch (hw->phy.media_type) {
1699 	case e1000_media_type_copper:
1700 		netdev_info(adapter->netdev,
1701 			"MAS: changing media to fiber/serdes\n");
1702 		ctrl_ext |=
1703 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705 		adapter->copper_tries = 0;
1706 		break;
1707 	case e1000_media_type_internal_serdes:
1708 	case e1000_media_type_fiber:
1709 		netdev_info(adapter->netdev,
1710 			"MAS: changing media to copper\n");
1711 		ctrl_ext &=
1712 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714 		break;
1715 	default:
1716 		/* shouldn't get here during regular operation */
1717 		netdev_err(adapter->netdev,
1718 			"AMS: Invalid media type found, returning\n");
1719 		break;
1720 	}
1721 	wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723 
1724 /**
1725  *  igb_up - Open the interface and prepare it to handle traffic
1726  *  @adapter: board private structure
1727  **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730 	struct e1000_hw *hw = &adapter->hw;
1731 	int i;
1732 
1733 	/* hardware has been reset, we need to reload some things */
1734 	igb_configure(adapter);
1735 
1736 	clear_bit(__IGB_DOWN, &adapter->state);
1737 
1738 	for (i = 0; i < adapter->num_q_vectors; i++)
1739 		napi_enable(&(adapter->q_vector[i]->napi));
1740 
1741 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742 		igb_configure_msix(adapter);
1743 	else
1744 		igb_assign_vector(adapter->q_vector[0], 0);
1745 
1746 	/* Clear any pending interrupts. */
1747 	rd32(E1000_ICR);
1748 	igb_irq_enable(adapter);
1749 
1750 	/* notify VFs that reset has been completed */
1751 	if (adapter->vfs_allocated_count) {
1752 		u32 reg_data = rd32(E1000_CTRL_EXT);
1753 
1754 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1755 		wr32(E1000_CTRL_EXT, reg_data);
1756 	}
1757 
1758 	netif_tx_start_all_queues(adapter->netdev);
1759 
1760 	/* start the watchdog. */
1761 	hw->mac.get_link_status = 1;
1762 	schedule_work(&adapter->watchdog_task);
1763 
1764 	if ((adapter->flags & IGB_FLAG_EEE) &&
1765 	    (!hw->dev_spec._82575.eee_disable))
1766 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767 
1768 	return 0;
1769 }
1770 
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773 	struct net_device *netdev = adapter->netdev;
1774 	struct e1000_hw *hw = &adapter->hw;
1775 	u32 tctl, rctl;
1776 	int i;
1777 
1778 	/* signal that we're down so the interrupt handler does not
1779 	 * reschedule our watchdog timer
1780 	 */
1781 	set_bit(__IGB_DOWN, &adapter->state);
1782 
1783 	/* disable receives in the hardware */
1784 	rctl = rd32(E1000_RCTL);
1785 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786 	/* flush and sleep below */
1787 
1788 	netif_carrier_off(netdev);
1789 	netif_tx_stop_all_queues(netdev);
1790 
1791 	/* disable transmits in the hardware */
1792 	tctl = rd32(E1000_TCTL);
1793 	tctl &= ~E1000_TCTL_EN;
1794 	wr32(E1000_TCTL, tctl);
1795 	/* flush both disables and wait for them to finish */
1796 	wrfl();
1797 	usleep_range(10000, 11000);
1798 
1799 	igb_irq_disable(adapter);
1800 
1801 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802 
1803 	for (i = 0; i < adapter->num_q_vectors; i++) {
1804 		if (adapter->q_vector[i]) {
1805 			napi_synchronize(&adapter->q_vector[i]->napi);
1806 			napi_disable(&adapter->q_vector[i]->napi);
1807 		}
1808 	}
1809 
1810 	del_timer_sync(&adapter->watchdog_timer);
1811 	del_timer_sync(&adapter->phy_info_timer);
1812 
1813 	/* record the stats before reset*/
1814 	spin_lock(&adapter->stats64_lock);
1815 	igb_update_stats(adapter, &adapter->stats64);
1816 	spin_unlock(&adapter->stats64_lock);
1817 
1818 	adapter->link_speed = 0;
1819 	adapter->link_duplex = 0;
1820 
1821 	if (!pci_channel_offline(adapter->pdev))
1822 		igb_reset(adapter);
1823 
1824 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
1825 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826 
1827 	igb_clean_all_tx_rings(adapter);
1828 	igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830 
1831 	/* since we reset the hardware DCA settings were cleared */
1832 	igb_setup_dca(adapter);
1833 #endif
1834 }
1835 
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838 	WARN_ON(in_interrupt());
1839 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840 		usleep_range(1000, 2000);
1841 	igb_down(adapter);
1842 	igb_up(adapter);
1843 	clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845 
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847  *
1848  * @adapter: adapter struct
1849  **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852 	struct e1000_hw *hw = &adapter->hw;
1853 	u32 connsw = rd32(E1000_CONNSW);
1854 
1855 	/* configure for SerDes media detect */
1856 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1857 	    (!(connsw & E1000_CONNSW_SERDESD))) {
1858 		connsw |= E1000_CONNSW_ENRGSRC;
1859 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860 		wr32(E1000_CONNSW, connsw);
1861 		wrfl();
1862 	}
1863 }
1864 
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867 	struct pci_dev *pdev = adapter->pdev;
1868 	struct e1000_hw *hw = &adapter->hw;
1869 	struct e1000_mac_info *mac = &hw->mac;
1870 	struct e1000_fc_info *fc = &hw->fc;
1871 	u32 pba, hwm;
1872 
1873 	/* Repartition Pba for greater than 9k mtu
1874 	 * To take effect CTRL.RST is required.
1875 	 */
1876 	switch (mac->type) {
1877 	case e1000_i350:
1878 	case e1000_i354:
1879 	case e1000_82580:
1880 		pba = rd32(E1000_RXPBS);
1881 		pba = igb_rxpbs_adjust_82580(pba);
1882 		break;
1883 	case e1000_82576:
1884 		pba = rd32(E1000_RXPBS);
1885 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1886 		break;
1887 	case e1000_82575:
1888 	case e1000_i210:
1889 	case e1000_i211:
1890 	default:
1891 		pba = E1000_PBA_34K;
1892 		break;
1893 	}
1894 
1895 	if (mac->type == e1000_82575) {
1896 		u32 min_rx_space, min_tx_space, needed_tx_space;
1897 
1898 		/* write Rx PBA so that hardware can report correct Tx PBA */
1899 		wr32(E1000_PBA, pba);
1900 
1901 		/* To maintain wire speed transmits, the Tx FIFO should be
1902 		 * large enough to accommodate two full transmit packets,
1903 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1904 		 * the Rx FIFO should be large enough to accommodate at least
1905 		 * one full receive packet and is similarly rounded up and
1906 		 * expressed in KB.
1907 		 */
1908 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909 
1910 		/* The Tx FIFO also stores 16 bytes of information about the Tx
1911 		 * but don't include Ethernet FCS because hardware appends it.
1912 		 * We only need to round down to the nearest 512 byte block
1913 		 * count since the value we care about is 2 frames, not 1.
1914 		 */
1915 		min_tx_space = adapter->max_frame_size;
1916 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918 
1919 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1920 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921 
1922 		/* If current Tx allocation is less than the min Tx FIFO size,
1923 		 * and the min Tx FIFO size is less than the current Rx FIFO
1924 		 * allocation, take space away from current Rx allocation.
1925 		 */
1926 		if (needed_tx_space < pba) {
1927 			pba -= needed_tx_space;
1928 
1929 			/* if short on Rx space, Rx wins and must trump Tx
1930 			 * adjustment
1931 			 */
1932 			if (pba < min_rx_space)
1933 				pba = min_rx_space;
1934 		}
1935 
1936 		/* adjust PBA for jumbo frames */
1937 		wr32(E1000_PBA, pba);
1938 	}
1939 
1940 	/* flow control settings
1941 	 * The high water mark must be low enough to fit one full frame
1942 	 * after transmitting the pause frame.  As such we must have enough
1943 	 * space to allow for us to complete our current transmit and then
1944 	 * receive the frame that is in progress from the link partner.
1945 	 * Set it to:
1946 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947 	 */
1948 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949 
1950 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1951 	fc->low_water = fc->high_water - 16;
1952 	fc->pause_time = 0xFFFF;
1953 	fc->send_xon = 1;
1954 	fc->current_mode = fc->requested_mode;
1955 
1956 	/* disable receive for all VFs and wait one second */
1957 	if (adapter->vfs_allocated_count) {
1958 		int i;
1959 
1960 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962 
1963 		/* ping all the active vfs to let them know we are going down */
1964 		igb_ping_all_vfs(adapter);
1965 
1966 		/* disable transmits and receives */
1967 		wr32(E1000_VFRE, 0);
1968 		wr32(E1000_VFTE, 0);
1969 	}
1970 
1971 	/* Allow time for pending master requests to run */
1972 	hw->mac.ops.reset_hw(hw);
1973 	wr32(E1000_WUC, 0);
1974 
1975 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 		/* need to resetup here after media swap */
1977 		adapter->ei.get_invariants(hw);
1978 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 	}
1980 	if ((mac->type == e1000_82575) &&
1981 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982 		igb_enable_mas(adapter);
1983 	}
1984 	if (hw->mac.ops.init_hw(hw))
1985 		dev_err(&pdev->dev, "Hardware Error\n");
1986 
1987 	/* Flow control settings reset on hardware reset, so guarantee flow
1988 	 * control is off when forcing speed.
1989 	 */
1990 	if (!hw->mac.autoneg)
1991 		igb_force_mac_fc(hw);
1992 
1993 	igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995 	/* Re-initialize the thermal sensor on i350 devices. */
1996 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998 			/* If present, re-initialize the external thermal sensor
1999 			 * interface.
2000 			 */
2001 			if (adapter->ets)
2002 				mac->ops.init_thermal_sensor_thresh(hw);
2003 		}
2004 	}
2005 #endif
2006 	/* Re-establish EEE setting */
2007 	if (hw->phy.media_type == e1000_media_type_copper) {
2008 		switch (mac->type) {
2009 		case e1000_i350:
2010 		case e1000_i210:
2011 		case e1000_i211:
2012 			igb_set_eee_i350(hw, true, true);
2013 			break;
2014 		case e1000_i354:
2015 			igb_set_eee_i354(hw, true, true);
2016 			break;
2017 		default:
2018 			break;
2019 		}
2020 	}
2021 	if (!netif_running(adapter->netdev))
2022 		igb_power_down_link(adapter);
2023 
2024 	igb_update_mng_vlan(adapter);
2025 
2026 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028 
2029 	/* Re-enable PTP, where applicable. */
2030 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2031 		igb_ptp_reset(adapter);
2032 
2033 	igb_get_phy_info(hw);
2034 }
2035 
2036 static netdev_features_t igb_fix_features(struct net_device *netdev,
2037 	netdev_features_t features)
2038 {
2039 	/* Since there is no support for separate Rx/Tx vlan accel
2040 	 * enable/disable make sure Tx flag is always in same state as Rx.
2041 	 */
2042 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2044 	else
2045 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046 
2047 	return features;
2048 }
2049 
2050 static int igb_set_features(struct net_device *netdev,
2051 	netdev_features_t features)
2052 {
2053 	netdev_features_t changed = netdev->features ^ features;
2054 	struct igb_adapter *adapter = netdev_priv(netdev);
2055 
2056 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057 		igb_vlan_mode(netdev, features);
2058 
2059 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2060 		return 0;
2061 
2062 	netdev->features = features;
2063 
2064 	if (netif_running(netdev))
2065 		igb_reinit_locked(adapter);
2066 	else
2067 		igb_reset(adapter);
2068 
2069 	return 0;
2070 }
2071 
2072 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2073 			   struct net_device *dev,
2074 			   const unsigned char *addr, u16 vid,
2075 			   u16 flags)
2076 {
2077 	/* guarantee we can provide a unique filter for the unicast address */
2078 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2079 		struct igb_adapter *adapter = netdev_priv(dev);
2080 		struct e1000_hw *hw = &adapter->hw;
2081 		int vfn = adapter->vfs_allocated_count;
2082 		int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2083 
2084 		if (netdev_uc_count(dev) >= rar_entries)
2085 			return -ENOMEM;
2086 	}
2087 
2088 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2089 }
2090 
2091 #define IGB_MAX_MAC_HDR_LEN	127
2092 #define IGB_MAX_NETWORK_HDR_LEN	511
2093 
2094 static netdev_features_t
2095 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2096 		   netdev_features_t features)
2097 {
2098 	unsigned int network_hdr_len, mac_hdr_len;
2099 
2100 	/* Make certain the headers can be described by a context descriptor */
2101 	mac_hdr_len = skb_network_header(skb) - skb->data;
2102 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2103 		return features & ~(NETIF_F_HW_CSUM |
2104 				    NETIF_F_SCTP_CRC |
2105 				    NETIF_F_HW_VLAN_CTAG_TX |
2106 				    NETIF_F_TSO |
2107 				    NETIF_F_TSO6);
2108 
2109 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2110 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2111 		return features & ~(NETIF_F_HW_CSUM |
2112 				    NETIF_F_SCTP_CRC |
2113 				    NETIF_F_TSO |
2114 				    NETIF_F_TSO6);
2115 
2116 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2117 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2118 	 */
2119 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2120 		features &= ~NETIF_F_TSO;
2121 
2122 	return features;
2123 }
2124 
2125 static const struct net_device_ops igb_netdev_ops = {
2126 	.ndo_open		= igb_open,
2127 	.ndo_stop		= igb_close,
2128 	.ndo_start_xmit		= igb_xmit_frame,
2129 	.ndo_get_stats64	= igb_get_stats64,
2130 	.ndo_set_rx_mode	= igb_set_rx_mode,
2131 	.ndo_set_mac_address	= igb_set_mac,
2132 	.ndo_change_mtu		= igb_change_mtu,
2133 	.ndo_do_ioctl		= igb_ioctl,
2134 	.ndo_tx_timeout		= igb_tx_timeout,
2135 	.ndo_validate_addr	= eth_validate_addr,
2136 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2137 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2138 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2139 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2140 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2141 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2142 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2143 #ifdef CONFIG_NET_POLL_CONTROLLER
2144 	.ndo_poll_controller	= igb_netpoll,
2145 #endif
2146 	.ndo_fix_features	= igb_fix_features,
2147 	.ndo_set_features	= igb_set_features,
2148 	.ndo_fdb_add		= igb_ndo_fdb_add,
2149 	.ndo_features_check	= igb_features_check,
2150 };
2151 
2152 /**
2153  * igb_set_fw_version - Configure version string for ethtool
2154  * @adapter: adapter struct
2155  **/
2156 void igb_set_fw_version(struct igb_adapter *adapter)
2157 {
2158 	struct e1000_hw *hw = &adapter->hw;
2159 	struct e1000_fw_version fw;
2160 
2161 	igb_get_fw_version(hw, &fw);
2162 
2163 	switch (hw->mac.type) {
2164 	case e1000_i210:
2165 	case e1000_i211:
2166 		if (!(igb_get_flash_presence_i210(hw))) {
2167 			snprintf(adapter->fw_version,
2168 				 sizeof(adapter->fw_version),
2169 				 "%2d.%2d-%d",
2170 				 fw.invm_major, fw.invm_minor,
2171 				 fw.invm_img_type);
2172 			break;
2173 		}
2174 		/* fall through */
2175 	default:
2176 		/* if option is rom valid, display its version too */
2177 		if (fw.or_valid) {
2178 			snprintf(adapter->fw_version,
2179 				 sizeof(adapter->fw_version),
2180 				 "%d.%d, 0x%08x, %d.%d.%d",
2181 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2182 				 fw.or_major, fw.or_build, fw.or_patch);
2183 		/* no option rom */
2184 		} else if (fw.etrack_id != 0X0000) {
2185 			snprintf(adapter->fw_version,
2186 			    sizeof(adapter->fw_version),
2187 			    "%d.%d, 0x%08x",
2188 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2189 		} else {
2190 		snprintf(adapter->fw_version,
2191 		    sizeof(adapter->fw_version),
2192 		    "%d.%d.%d",
2193 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2194 		}
2195 		break;
2196 	}
2197 }
2198 
2199 /**
2200  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2201  *
2202  * @adapter: adapter struct
2203  **/
2204 static void igb_init_mas(struct igb_adapter *adapter)
2205 {
2206 	struct e1000_hw *hw = &adapter->hw;
2207 	u16 eeprom_data;
2208 
2209 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2210 	switch (hw->bus.func) {
2211 	case E1000_FUNC_0:
2212 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2213 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2214 			netdev_info(adapter->netdev,
2215 				"MAS: Enabling Media Autosense for port %d\n",
2216 				hw->bus.func);
2217 		}
2218 		break;
2219 	case E1000_FUNC_1:
2220 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2221 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2222 			netdev_info(adapter->netdev,
2223 				"MAS: Enabling Media Autosense for port %d\n",
2224 				hw->bus.func);
2225 		}
2226 		break;
2227 	case E1000_FUNC_2:
2228 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2229 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2230 			netdev_info(adapter->netdev,
2231 				"MAS: Enabling Media Autosense for port %d\n",
2232 				hw->bus.func);
2233 		}
2234 		break;
2235 	case E1000_FUNC_3:
2236 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2237 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2238 			netdev_info(adapter->netdev,
2239 				"MAS: Enabling Media Autosense for port %d\n",
2240 				hw->bus.func);
2241 		}
2242 		break;
2243 	default:
2244 		/* Shouldn't get here */
2245 		netdev_err(adapter->netdev,
2246 			"MAS: Invalid port configuration, returning\n");
2247 		break;
2248 	}
2249 }
2250 
2251 /**
2252  *  igb_init_i2c - Init I2C interface
2253  *  @adapter: pointer to adapter structure
2254  **/
2255 static s32 igb_init_i2c(struct igb_adapter *adapter)
2256 {
2257 	s32 status = 0;
2258 
2259 	/* I2C interface supported on i350 devices */
2260 	if (adapter->hw.mac.type != e1000_i350)
2261 		return 0;
2262 
2263 	/* Initialize the i2c bus which is controlled by the registers.
2264 	 * This bus will use the i2c_algo_bit structue that implements
2265 	 * the protocol through toggling of the 4 bits in the register.
2266 	 */
2267 	adapter->i2c_adap.owner = THIS_MODULE;
2268 	adapter->i2c_algo = igb_i2c_algo;
2269 	adapter->i2c_algo.data = adapter;
2270 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2271 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2272 	strlcpy(adapter->i2c_adap.name, "igb BB",
2273 		sizeof(adapter->i2c_adap.name));
2274 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2275 	return status;
2276 }
2277 
2278 /**
2279  *  igb_probe - Device Initialization Routine
2280  *  @pdev: PCI device information struct
2281  *  @ent: entry in igb_pci_tbl
2282  *
2283  *  Returns 0 on success, negative on failure
2284  *
2285  *  igb_probe initializes an adapter identified by a pci_dev structure.
2286  *  The OS initialization, configuring of the adapter private structure,
2287  *  and a hardware reset occur.
2288  **/
2289 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2290 {
2291 	struct net_device *netdev;
2292 	struct igb_adapter *adapter;
2293 	struct e1000_hw *hw;
2294 	u16 eeprom_data = 0;
2295 	s32 ret_val;
2296 	static int global_quad_port_a; /* global quad port a indication */
2297 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2298 	int err, pci_using_dac;
2299 	u8 part_str[E1000_PBANUM_LENGTH];
2300 
2301 	/* Catch broken hardware that put the wrong VF device ID in
2302 	 * the PCIe SR-IOV capability.
2303 	 */
2304 	if (pdev->is_virtfn) {
2305 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2306 			pci_name(pdev), pdev->vendor, pdev->device);
2307 		return -EINVAL;
2308 	}
2309 
2310 	err = pci_enable_device_mem(pdev);
2311 	if (err)
2312 		return err;
2313 
2314 	pci_using_dac = 0;
2315 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2316 	if (!err) {
2317 		pci_using_dac = 1;
2318 	} else {
2319 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2320 		if (err) {
2321 			dev_err(&pdev->dev,
2322 				"No usable DMA configuration, aborting\n");
2323 			goto err_dma;
2324 		}
2325 	}
2326 
2327 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2328 					   IORESOURCE_MEM),
2329 					   igb_driver_name);
2330 	if (err)
2331 		goto err_pci_reg;
2332 
2333 	pci_enable_pcie_error_reporting(pdev);
2334 
2335 	pci_set_master(pdev);
2336 	pci_save_state(pdev);
2337 
2338 	err = -ENOMEM;
2339 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2340 				   IGB_MAX_TX_QUEUES);
2341 	if (!netdev)
2342 		goto err_alloc_etherdev;
2343 
2344 	SET_NETDEV_DEV(netdev, &pdev->dev);
2345 
2346 	pci_set_drvdata(pdev, netdev);
2347 	adapter = netdev_priv(netdev);
2348 	adapter->netdev = netdev;
2349 	adapter->pdev = pdev;
2350 	hw = &adapter->hw;
2351 	hw->back = adapter;
2352 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2353 
2354 	err = -EIO;
2355 	adapter->io_addr = pci_iomap(pdev, 0, 0);
2356 	if (!adapter->io_addr)
2357 		goto err_ioremap;
2358 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2359 	hw->hw_addr = adapter->io_addr;
2360 
2361 	netdev->netdev_ops = &igb_netdev_ops;
2362 	igb_set_ethtool_ops(netdev);
2363 	netdev->watchdog_timeo = 5 * HZ;
2364 
2365 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2366 
2367 	netdev->mem_start = pci_resource_start(pdev, 0);
2368 	netdev->mem_end = pci_resource_end(pdev, 0);
2369 
2370 	/* PCI config space info */
2371 	hw->vendor_id = pdev->vendor;
2372 	hw->device_id = pdev->device;
2373 	hw->revision_id = pdev->revision;
2374 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2375 	hw->subsystem_device_id = pdev->subsystem_device;
2376 
2377 	/* Copy the default MAC, PHY and NVM function pointers */
2378 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2379 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2380 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2381 	/* Initialize skew-specific constants */
2382 	err = ei->get_invariants(hw);
2383 	if (err)
2384 		goto err_sw_init;
2385 
2386 	/* setup the private structure */
2387 	err = igb_sw_init(adapter);
2388 	if (err)
2389 		goto err_sw_init;
2390 
2391 	igb_get_bus_info_pcie(hw);
2392 
2393 	hw->phy.autoneg_wait_to_complete = false;
2394 
2395 	/* Copper options */
2396 	if (hw->phy.media_type == e1000_media_type_copper) {
2397 		hw->phy.mdix = AUTO_ALL_MODES;
2398 		hw->phy.disable_polarity_correction = false;
2399 		hw->phy.ms_type = e1000_ms_hw_default;
2400 	}
2401 
2402 	if (igb_check_reset_block(hw))
2403 		dev_info(&pdev->dev,
2404 			"PHY reset is blocked due to SOL/IDER session.\n");
2405 
2406 	/* features is initialized to 0 in allocation, it might have bits
2407 	 * set by igb_sw_init so we should use an or instead of an
2408 	 * assignment.
2409 	 */
2410 	netdev->features |= NETIF_F_SG |
2411 			    NETIF_F_TSO |
2412 			    NETIF_F_TSO6 |
2413 			    NETIF_F_RXHASH |
2414 			    NETIF_F_RXCSUM |
2415 			    NETIF_F_HW_CSUM;
2416 
2417 	if (hw->mac.type >= e1000_82576)
2418 		netdev->features |= NETIF_F_SCTP_CRC;
2419 
2420 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2421 				  NETIF_F_GSO_GRE_CSUM | \
2422 				  NETIF_F_GSO_IPXIP4 | \
2423 				  NETIF_F_GSO_IPXIP6 | \
2424 				  NETIF_F_GSO_UDP_TUNNEL | \
2425 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
2426 
2427 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2428 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2429 
2430 	/* copy netdev features into list of user selectable features */
2431 	netdev->hw_features |= netdev->features |
2432 			       NETIF_F_HW_VLAN_CTAG_RX |
2433 			       NETIF_F_HW_VLAN_CTAG_TX |
2434 			       NETIF_F_RXALL;
2435 
2436 	if (hw->mac.type >= e1000_i350)
2437 		netdev->hw_features |= NETIF_F_NTUPLE;
2438 
2439 	if (pci_using_dac)
2440 		netdev->features |= NETIF_F_HIGHDMA;
2441 
2442 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2443 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2444 	netdev->hw_enc_features |= netdev->vlan_features;
2445 
2446 	/* set this bit last since it cannot be part of vlan_features */
2447 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2448 			    NETIF_F_HW_VLAN_CTAG_RX |
2449 			    NETIF_F_HW_VLAN_CTAG_TX;
2450 
2451 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2452 
2453 	netdev->priv_flags |= IFF_UNICAST_FLT;
2454 
2455 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2456 
2457 	/* before reading the NVM, reset the controller to put the device in a
2458 	 * known good starting state
2459 	 */
2460 	hw->mac.ops.reset_hw(hw);
2461 
2462 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2463 	 * that doesn't contain a checksum
2464 	 */
2465 	switch (hw->mac.type) {
2466 	case e1000_i210:
2467 	case e1000_i211:
2468 		if (igb_get_flash_presence_i210(hw)) {
2469 			if (hw->nvm.ops.validate(hw) < 0) {
2470 				dev_err(&pdev->dev,
2471 					"The NVM Checksum Is Not Valid\n");
2472 				err = -EIO;
2473 				goto err_eeprom;
2474 			}
2475 		}
2476 		break;
2477 	default:
2478 		if (hw->nvm.ops.validate(hw) < 0) {
2479 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2480 			err = -EIO;
2481 			goto err_eeprom;
2482 		}
2483 		break;
2484 	}
2485 
2486 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2487 		/* copy the MAC address out of the NVM */
2488 		if (hw->mac.ops.read_mac_addr(hw))
2489 			dev_err(&pdev->dev, "NVM Read Error\n");
2490 	}
2491 
2492 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2493 
2494 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2495 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2496 		err = -EIO;
2497 		goto err_eeprom;
2498 	}
2499 
2500 	/* get firmware version for ethtool -i */
2501 	igb_set_fw_version(adapter);
2502 
2503 	/* configure RXPBSIZE and TXPBSIZE */
2504 	if (hw->mac.type == e1000_i210) {
2505 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2506 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2507 	}
2508 
2509 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2510 		    (unsigned long) adapter);
2511 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2512 		    (unsigned long) adapter);
2513 
2514 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2515 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2516 
2517 	/* Initialize link properties that are user-changeable */
2518 	adapter->fc_autoneg = true;
2519 	hw->mac.autoneg = true;
2520 	hw->phy.autoneg_advertised = 0x2f;
2521 
2522 	hw->fc.requested_mode = e1000_fc_default;
2523 	hw->fc.current_mode = e1000_fc_default;
2524 
2525 	igb_validate_mdi_setting(hw);
2526 
2527 	/* By default, support wake on port A */
2528 	if (hw->bus.func == 0)
2529 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2530 
2531 	/* Check the NVM for wake support on non-port A ports */
2532 	if (hw->mac.type >= e1000_82580)
2533 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2534 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2535 				 &eeprom_data);
2536 	else if (hw->bus.func == 1)
2537 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2538 
2539 	if (eeprom_data & IGB_EEPROM_APME)
2540 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2541 
2542 	/* now that we have the eeprom settings, apply the special cases where
2543 	 * the eeprom may be wrong or the board simply won't support wake on
2544 	 * lan on a particular port
2545 	 */
2546 	switch (pdev->device) {
2547 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2548 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2549 		break;
2550 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2551 	case E1000_DEV_ID_82576_FIBER:
2552 	case E1000_DEV_ID_82576_SERDES:
2553 		/* Wake events only supported on port A for dual fiber
2554 		 * regardless of eeprom setting
2555 		 */
2556 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2557 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2558 		break;
2559 	case E1000_DEV_ID_82576_QUAD_COPPER:
2560 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2561 		/* if quad port adapter, disable WoL on all but port A */
2562 		if (global_quad_port_a != 0)
2563 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2564 		else
2565 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2566 		/* Reset for multiple quad port adapters */
2567 		if (++global_quad_port_a == 4)
2568 			global_quad_port_a = 0;
2569 		break;
2570 	default:
2571 		/* If the device can't wake, don't set software support */
2572 		if (!device_can_wakeup(&adapter->pdev->dev))
2573 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2574 	}
2575 
2576 	/* initialize the wol settings based on the eeprom settings */
2577 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2578 		adapter->wol |= E1000_WUFC_MAG;
2579 
2580 	/* Some vendors want WoL disabled by default, but still supported */
2581 	if ((hw->mac.type == e1000_i350) &&
2582 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2583 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2584 		adapter->wol = 0;
2585 	}
2586 
2587 	/* Some vendors want the ability to Use the EEPROM setting as
2588 	 * enable/disable only, and not for capability
2589 	 */
2590 	if (((hw->mac.type == e1000_i350) ||
2591 	     (hw->mac.type == e1000_i354)) &&
2592 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2593 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2594 		adapter->wol = 0;
2595 	}
2596 	if (hw->mac.type == e1000_i350) {
2597 		if (((pdev->subsystem_device == 0x5001) ||
2598 		     (pdev->subsystem_device == 0x5002)) &&
2599 				(hw->bus.func == 0)) {
2600 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2601 			adapter->wol = 0;
2602 		}
2603 		if (pdev->subsystem_device == 0x1F52)
2604 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2605 	}
2606 
2607 	device_set_wakeup_enable(&adapter->pdev->dev,
2608 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2609 
2610 	/* reset the hardware with the new settings */
2611 	igb_reset(adapter);
2612 
2613 	/* Init the I2C interface */
2614 	err = igb_init_i2c(adapter);
2615 	if (err) {
2616 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2617 		goto err_eeprom;
2618 	}
2619 
2620 	/* let the f/w know that the h/w is now under the control of the
2621 	 * driver.
2622 	 */
2623 	igb_get_hw_control(adapter);
2624 
2625 	strcpy(netdev->name, "eth%d");
2626 	err = register_netdev(netdev);
2627 	if (err)
2628 		goto err_register;
2629 
2630 	/* carrier off reporting is important to ethtool even BEFORE open */
2631 	netif_carrier_off(netdev);
2632 
2633 #ifdef CONFIG_IGB_DCA
2634 	if (dca_add_requester(&pdev->dev) == 0) {
2635 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2636 		dev_info(&pdev->dev, "DCA enabled\n");
2637 		igb_setup_dca(adapter);
2638 	}
2639 
2640 #endif
2641 #ifdef CONFIG_IGB_HWMON
2642 	/* Initialize the thermal sensor on i350 devices. */
2643 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2644 		u16 ets_word;
2645 
2646 		/* Read the NVM to determine if this i350 device supports an
2647 		 * external thermal sensor.
2648 		 */
2649 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2650 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2651 			adapter->ets = true;
2652 		else
2653 			adapter->ets = false;
2654 		if (igb_sysfs_init(adapter))
2655 			dev_err(&pdev->dev,
2656 				"failed to allocate sysfs resources\n");
2657 	} else {
2658 		adapter->ets = false;
2659 	}
2660 #endif
2661 	/* Check if Media Autosense is enabled */
2662 	adapter->ei = *ei;
2663 	if (hw->dev_spec._82575.mas_capable)
2664 		igb_init_mas(adapter);
2665 
2666 	/* do hw tstamp init after resetting */
2667 	igb_ptp_init(adapter);
2668 
2669 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2670 	/* print bus type/speed/width info, not applicable to i354 */
2671 	if (hw->mac.type != e1000_i354) {
2672 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2673 			 netdev->name,
2674 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2675 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2676 			   "unknown"),
2677 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2678 			  "Width x4" :
2679 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2680 			  "Width x2" :
2681 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2682 			  "Width x1" : "unknown"), netdev->dev_addr);
2683 	}
2684 
2685 	if ((hw->mac.type >= e1000_i210 ||
2686 	     igb_get_flash_presence_i210(hw))) {
2687 		ret_val = igb_read_part_string(hw, part_str,
2688 					       E1000_PBANUM_LENGTH);
2689 	} else {
2690 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2691 	}
2692 
2693 	if (ret_val)
2694 		strcpy(part_str, "Unknown");
2695 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2696 	dev_info(&pdev->dev,
2697 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2698 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2699 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2700 		adapter->num_rx_queues, adapter->num_tx_queues);
2701 	if (hw->phy.media_type == e1000_media_type_copper) {
2702 		switch (hw->mac.type) {
2703 		case e1000_i350:
2704 		case e1000_i210:
2705 		case e1000_i211:
2706 			/* Enable EEE for internal copper PHY devices */
2707 			err = igb_set_eee_i350(hw, true, true);
2708 			if ((!err) &&
2709 			    (!hw->dev_spec._82575.eee_disable)) {
2710 				adapter->eee_advert =
2711 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2712 				adapter->flags |= IGB_FLAG_EEE;
2713 			}
2714 			break;
2715 		case e1000_i354:
2716 			if ((rd32(E1000_CTRL_EXT) &
2717 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2718 				err = igb_set_eee_i354(hw, true, true);
2719 				if ((!err) &&
2720 					(!hw->dev_spec._82575.eee_disable)) {
2721 					adapter->eee_advert =
2722 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2723 					adapter->flags |= IGB_FLAG_EEE;
2724 				}
2725 			}
2726 			break;
2727 		default:
2728 			break;
2729 		}
2730 	}
2731 	pm_runtime_put_noidle(&pdev->dev);
2732 	return 0;
2733 
2734 err_register:
2735 	igb_release_hw_control(adapter);
2736 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2737 err_eeprom:
2738 	if (!igb_check_reset_block(hw))
2739 		igb_reset_phy(hw);
2740 
2741 	if (hw->flash_address)
2742 		iounmap(hw->flash_address);
2743 err_sw_init:
2744 	kfree(adapter->shadow_vfta);
2745 	igb_clear_interrupt_scheme(adapter);
2746 #ifdef CONFIG_PCI_IOV
2747 	igb_disable_sriov(pdev);
2748 #endif
2749 	pci_iounmap(pdev, adapter->io_addr);
2750 err_ioremap:
2751 	free_netdev(netdev);
2752 err_alloc_etherdev:
2753 	pci_release_selected_regions(pdev,
2754 				     pci_select_bars(pdev, IORESOURCE_MEM));
2755 err_pci_reg:
2756 err_dma:
2757 	pci_disable_device(pdev);
2758 	return err;
2759 }
2760 
2761 #ifdef CONFIG_PCI_IOV
2762 static int igb_disable_sriov(struct pci_dev *pdev)
2763 {
2764 	struct net_device *netdev = pci_get_drvdata(pdev);
2765 	struct igb_adapter *adapter = netdev_priv(netdev);
2766 	struct e1000_hw *hw = &adapter->hw;
2767 
2768 	/* reclaim resources allocated to VFs */
2769 	if (adapter->vf_data) {
2770 		/* disable iov and allow time for transactions to clear */
2771 		if (pci_vfs_assigned(pdev)) {
2772 			dev_warn(&pdev->dev,
2773 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2774 			return -EPERM;
2775 		} else {
2776 			pci_disable_sriov(pdev);
2777 			msleep(500);
2778 		}
2779 
2780 		kfree(adapter->vf_data);
2781 		adapter->vf_data = NULL;
2782 		adapter->vfs_allocated_count = 0;
2783 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2784 		wrfl();
2785 		msleep(100);
2786 		dev_info(&pdev->dev, "IOV Disabled\n");
2787 
2788 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2789 		adapter->flags |= IGB_FLAG_DMAC;
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2796 {
2797 	struct net_device *netdev = pci_get_drvdata(pdev);
2798 	struct igb_adapter *adapter = netdev_priv(netdev);
2799 	int old_vfs = pci_num_vf(pdev);
2800 	int err = 0;
2801 	int i;
2802 
2803 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2804 		err = -EPERM;
2805 		goto out;
2806 	}
2807 	if (!num_vfs)
2808 		goto out;
2809 
2810 	if (old_vfs) {
2811 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2812 			 old_vfs, max_vfs);
2813 		adapter->vfs_allocated_count = old_vfs;
2814 	} else
2815 		adapter->vfs_allocated_count = num_vfs;
2816 
2817 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2818 				sizeof(struct vf_data_storage), GFP_KERNEL);
2819 
2820 	/* if allocation failed then we do not support SR-IOV */
2821 	if (!adapter->vf_data) {
2822 		adapter->vfs_allocated_count = 0;
2823 		dev_err(&pdev->dev,
2824 			"Unable to allocate memory for VF Data Storage\n");
2825 		err = -ENOMEM;
2826 		goto out;
2827 	}
2828 
2829 	/* only call pci_enable_sriov() if no VFs are allocated already */
2830 	if (!old_vfs) {
2831 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2832 		if (err)
2833 			goto err_out;
2834 	}
2835 	dev_info(&pdev->dev, "%d VFs allocated\n",
2836 		 adapter->vfs_allocated_count);
2837 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2838 		igb_vf_configure(adapter, i);
2839 
2840 	/* DMA Coalescing is not supported in IOV mode. */
2841 	adapter->flags &= ~IGB_FLAG_DMAC;
2842 	goto out;
2843 
2844 err_out:
2845 	kfree(adapter->vf_data);
2846 	adapter->vf_data = NULL;
2847 	adapter->vfs_allocated_count = 0;
2848 out:
2849 	return err;
2850 }
2851 
2852 #endif
2853 /**
2854  *  igb_remove_i2c - Cleanup  I2C interface
2855  *  @adapter: pointer to adapter structure
2856  **/
2857 static void igb_remove_i2c(struct igb_adapter *adapter)
2858 {
2859 	/* free the adapter bus structure */
2860 	i2c_del_adapter(&adapter->i2c_adap);
2861 }
2862 
2863 /**
2864  *  igb_remove - Device Removal Routine
2865  *  @pdev: PCI device information struct
2866  *
2867  *  igb_remove is called by the PCI subsystem to alert the driver
2868  *  that it should release a PCI device.  The could be caused by a
2869  *  Hot-Plug event, or because the driver is going to be removed from
2870  *  memory.
2871  **/
2872 static void igb_remove(struct pci_dev *pdev)
2873 {
2874 	struct net_device *netdev = pci_get_drvdata(pdev);
2875 	struct igb_adapter *adapter = netdev_priv(netdev);
2876 	struct e1000_hw *hw = &adapter->hw;
2877 
2878 	pm_runtime_get_noresume(&pdev->dev);
2879 #ifdef CONFIG_IGB_HWMON
2880 	igb_sysfs_exit(adapter);
2881 #endif
2882 	igb_remove_i2c(adapter);
2883 	igb_ptp_stop(adapter);
2884 	/* The watchdog timer may be rescheduled, so explicitly
2885 	 * disable watchdog from being rescheduled.
2886 	 */
2887 	set_bit(__IGB_DOWN, &adapter->state);
2888 	del_timer_sync(&adapter->watchdog_timer);
2889 	del_timer_sync(&adapter->phy_info_timer);
2890 
2891 	cancel_work_sync(&adapter->reset_task);
2892 	cancel_work_sync(&adapter->watchdog_task);
2893 
2894 #ifdef CONFIG_IGB_DCA
2895 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2896 		dev_info(&pdev->dev, "DCA disabled\n");
2897 		dca_remove_requester(&pdev->dev);
2898 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2899 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2900 	}
2901 #endif
2902 
2903 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2904 	 * would have already happened in close and is redundant.
2905 	 */
2906 	igb_release_hw_control(adapter);
2907 
2908 #ifdef CONFIG_PCI_IOV
2909 	igb_disable_sriov(pdev);
2910 #endif
2911 
2912 	unregister_netdev(netdev);
2913 
2914 	igb_clear_interrupt_scheme(adapter);
2915 
2916 	pci_iounmap(pdev, adapter->io_addr);
2917 	if (hw->flash_address)
2918 		iounmap(hw->flash_address);
2919 	pci_release_selected_regions(pdev,
2920 				     pci_select_bars(pdev, IORESOURCE_MEM));
2921 
2922 	kfree(adapter->shadow_vfta);
2923 	free_netdev(netdev);
2924 
2925 	pci_disable_pcie_error_reporting(pdev);
2926 
2927 	pci_disable_device(pdev);
2928 }
2929 
2930 /**
2931  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2932  *  @adapter: board private structure to initialize
2933  *
2934  *  This function initializes the vf specific data storage and then attempts to
2935  *  allocate the VFs.  The reason for ordering it this way is because it is much
2936  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2937  *  the memory for the VFs.
2938  **/
2939 static void igb_probe_vfs(struct igb_adapter *adapter)
2940 {
2941 #ifdef CONFIG_PCI_IOV
2942 	struct pci_dev *pdev = adapter->pdev;
2943 	struct e1000_hw *hw = &adapter->hw;
2944 
2945 	/* Virtualization features not supported on i210 family. */
2946 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2947 		return;
2948 
2949 	/* Of the below we really only want the effect of getting
2950 	 * IGB_FLAG_HAS_MSIX set (if available), without which
2951 	 * igb_enable_sriov() has no effect.
2952 	 */
2953 	igb_set_interrupt_capability(adapter, true);
2954 	igb_reset_interrupt_capability(adapter);
2955 
2956 	pci_sriov_set_totalvfs(pdev, 7);
2957 	igb_enable_sriov(pdev, max_vfs);
2958 
2959 #endif /* CONFIG_PCI_IOV */
2960 }
2961 
2962 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2963 {
2964 	struct e1000_hw *hw = &adapter->hw;
2965 	u32 max_rss_queues;
2966 
2967 	/* Determine the maximum number of RSS queues supported. */
2968 	switch (hw->mac.type) {
2969 	case e1000_i211:
2970 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2971 		break;
2972 	case e1000_82575:
2973 	case e1000_i210:
2974 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2975 		break;
2976 	case e1000_i350:
2977 		/* I350 cannot do RSS and SR-IOV at the same time */
2978 		if (!!adapter->vfs_allocated_count) {
2979 			max_rss_queues = 1;
2980 			break;
2981 		}
2982 		/* fall through */
2983 	case e1000_82576:
2984 		if (!!adapter->vfs_allocated_count) {
2985 			max_rss_queues = 2;
2986 			break;
2987 		}
2988 		/* fall through */
2989 	case e1000_82580:
2990 	case e1000_i354:
2991 	default:
2992 		max_rss_queues = IGB_MAX_RX_QUEUES;
2993 		break;
2994 	}
2995 
2996 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2997 
2998 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
2999 }
3000 
3001 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3002 			      const u32 max_rss_queues)
3003 {
3004 	struct e1000_hw *hw = &adapter->hw;
3005 
3006 	/* Determine if we need to pair queues. */
3007 	switch (hw->mac.type) {
3008 	case e1000_82575:
3009 	case e1000_i211:
3010 		/* Device supports enough interrupts without queue pairing. */
3011 		break;
3012 	case e1000_82576:
3013 	case e1000_82580:
3014 	case e1000_i350:
3015 	case e1000_i354:
3016 	case e1000_i210:
3017 	default:
3018 		/* If rss_queues > half of max_rss_queues, pair the queues in
3019 		 * order to conserve interrupts due to limited supply.
3020 		 */
3021 		if (adapter->rss_queues > (max_rss_queues / 2))
3022 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3023 		else
3024 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3025 		break;
3026 	}
3027 }
3028 
3029 /**
3030  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3031  *  @adapter: board private structure to initialize
3032  *
3033  *  igb_sw_init initializes the Adapter private data structure.
3034  *  Fields are initialized based on PCI device information and
3035  *  OS network device settings (MTU size).
3036  **/
3037 static int igb_sw_init(struct igb_adapter *adapter)
3038 {
3039 	struct e1000_hw *hw = &adapter->hw;
3040 	struct net_device *netdev = adapter->netdev;
3041 	struct pci_dev *pdev = adapter->pdev;
3042 
3043 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3044 
3045 	/* set default ring sizes */
3046 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3047 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3048 
3049 	/* set default ITR values */
3050 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3051 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3052 
3053 	/* set default work limits */
3054 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3055 
3056 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3057 				  VLAN_HLEN;
3058 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3059 
3060 	spin_lock_init(&adapter->stats64_lock);
3061 #ifdef CONFIG_PCI_IOV
3062 	switch (hw->mac.type) {
3063 	case e1000_82576:
3064 	case e1000_i350:
3065 		if (max_vfs > 7) {
3066 			dev_warn(&pdev->dev,
3067 				 "Maximum of 7 VFs per PF, using max\n");
3068 			max_vfs = adapter->vfs_allocated_count = 7;
3069 		} else
3070 			adapter->vfs_allocated_count = max_vfs;
3071 		if (adapter->vfs_allocated_count)
3072 			dev_warn(&pdev->dev,
3073 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3074 		break;
3075 	default:
3076 		break;
3077 	}
3078 #endif /* CONFIG_PCI_IOV */
3079 
3080 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3081 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3082 
3083 	igb_probe_vfs(adapter);
3084 
3085 	igb_init_queue_configuration(adapter);
3086 
3087 	/* Setup and initialize a copy of the hw vlan table array */
3088 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3089 				       GFP_ATOMIC);
3090 
3091 	/* This call may decrease the number of queues */
3092 	if (igb_init_interrupt_scheme(adapter, true)) {
3093 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3094 		return -ENOMEM;
3095 	}
3096 
3097 	/* Explicitly disable IRQ since the NIC can be in any state. */
3098 	igb_irq_disable(adapter);
3099 
3100 	if (hw->mac.type >= e1000_i350)
3101 		adapter->flags &= ~IGB_FLAG_DMAC;
3102 
3103 	set_bit(__IGB_DOWN, &adapter->state);
3104 	return 0;
3105 }
3106 
3107 /**
3108  *  igb_open - Called when a network interface is made active
3109  *  @netdev: network interface device structure
3110  *
3111  *  Returns 0 on success, negative value on failure
3112  *
3113  *  The open entry point is called when a network interface is made
3114  *  active by the system (IFF_UP).  At this point all resources needed
3115  *  for transmit and receive operations are allocated, the interrupt
3116  *  handler is registered with the OS, the watchdog timer is started,
3117  *  and the stack is notified that the interface is ready.
3118  **/
3119 static int __igb_open(struct net_device *netdev, bool resuming)
3120 {
3121 	struct igb_adapter *adapter = netdev_priv(netdev);
3122 	struct e1000_hw *hw = &adapter->hw;
3123 	struct pci_dev *pdev = adapter->pdev;
3124 	int err;
3125 	int i;
3126 
3127 	/* disallow open during test */
3128 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3129 		WARN_ON(resuming);
3130 		return -EBUSY;
3131 	}
3132 
3133 	if (!resuming)
3134 		pm_runtime_get_sync(&pdev->dev);
3135 
3136 	netif_carrier_off(netdev);
3137 
3138 	/* allocate transmit descriptors */
3139 	err = igb_setup_all_tx_resources(adapter);
3140 	if (err)
3141 		goto err_setup_tx;
3142 
3143 	/* allocate receive descriptors */
3144 	err = igb_setup_all_rx_resources(adapter);
3145 	if (err)
3146 		goto err_setup_rx;
3147 
3148 	igb_power_up_link(adapter);
3149 
3150 	/* before we allocate an interrupt, we must be ready to handle it.
3151 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3152 	 * as soon as we call pci_request_irq, so we have to setup our
3153 	 * clean_rx handler before we do so.
3154 	 */
3155 	igb_configure(adapter);
3156 
3157 	err = igb_request_irq(adapter);
3158 	if (err)
3159 		goto err_req_irq;
3160 
3161 	/* Notify the stack of the actual queue counts. */
3162 	err = netif_set_real_num_tx_queues(adapter->netdev,
3163 					   adapter->num_tx_queues);
3164 	if (err)
3165 		goto err_set_queues;
3166 
3167 	err = netif_set_real_num_rx_queues(adapter->netdev,
3168 					   adapter->num_rx_queues);
3169 	if (err)
3170 		goto err_set_queues;
3171 
3172 	/* From here on the code is the same as igb_up() */
3173 	clear_bit(__IGB_DOWN, &adapter->state);
3174 
3175 	for (i = 0; i < adapter->num_q_vectors; i++)
3176 		napi_enable(&(adapter->q_vector[i]->napi));
3177 
3178 	/* Clear any pending interrupts. */
3179 	rd32(E1000_ICR);
3180 
3181 	igb_irq_enable(adapter);
3182 
3183 	/* notify VFs that reset has been completed */
3184 	if (adapter->vfs_allocated_count) {
3185 		u32 reg_data = rd32(E1000_CTRL_EXT);
3186 
3187 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3188 		wr32(E1000_CTRL_EXT, reg_data);
3189 	}
3190 
3191 	netif_tx_start_all_queues(netdev);
3192 
3193 	if (!resuming)
3194 		pm_runtime_put(&pdev->dev);
3195 
3196 	/* start the watchdog. */
3197 	hw->mac.get_link_status = 1;
3198 	schedule_work(&adapter->watchdog_task);
3199 
3200 	return 0;
3201 
3202 err_set_queues:
3203 	igb_free_irq(adapter);
3204 err_req_irq:
3205 	igb_release_hw_control(adapter);
3206 	igb_power_down_link(adapter);
3207 	igb_free_all_rx_resources(adapter);
3208 err_setup_rx:
3209 	igb_free_all_tx_resources(adapter);
3210 err_setup_tx:
3211 	igb_reset(adapter);
3212 	if (!resuming)
3213 		pm_runtime_put(&pdev->dev);
3214 
3215 	return err;
3216 }
3217 
3218 int igb_open(struct net_device *netdev)
3219 {
3220 	return __igb_open(netdev, false);
3221 }
3222 
3223 /**
3224  *  igb_close - Disables a network interface
3225  *  @netdev: network interface device structure
3226  *
3227  *  Returns 0, this is not allowed to fail
3228  *
3229  *  The close entry point is called when an interface is de-activated
3230  *  by the OS.  The hardware is still under the driver's control, but
3231  *  needs to be disabled.  A global MAC reset is issued to stop the
3232  *  hardware, and all transmit and receive resources are freed.
3233  **/
3234 static int __igb_close(struct net_device *netdev, bool suspending)
3235 {
3236 	struct igb_adapter *adapter = netdev_priv(netdev);
3237 	struct pci_dev *pdev = adapter->pdev;
3238 
3239 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3240 
3241 	if (!suspending)
3242 		pm_runtime_get_sync(&pdev->dev);
3243 
3244 	igb_down(adapter);
3245 	igb_free_irq(adapter);
3246 
3247 	igb_free_all_tx_resources(adapter);
3248 	igb_free_all_rx_resources(adapter);
3249 
3250 	if (!suspending)
3251 		pm_runtime_put_sync(&pdev->dev);
3252 	return 0;
3253 }
3254 
3255 int igb_close(struct net_device *netdev)
3256 {
3257 	return __igb_close(netdev, false);
3258 }
3259 
3260 /**
3261  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3262  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3263  *
3264  *  Return 0 on success, negative on failure
3265  **/
3266 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3267 {
3268 	struct device *dev = tx_ring->dev;
3269 	int size;
3270 
3271 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3272 
3273 	tx_ring->tx_buffer_info = vzalloc(size);
3274 	if (!tx_ring->tx_buffer_info)
3275 		goto err;
3276 
3277 	/* round up to nearest 4K */
3278 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3279 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3280 
3281 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3282 					   &tx_ring->dma, GFP_KERNEL);
3283 	if (!tx_ring->desc)
3284 		goto err;
3285 
3286 	tx_ring->next_to_use = 0;
3287 	tx_ring->next_to_clean = 0;
3288 
3289 	return 0;
3290 
3291 err:
3292 	vfree(tx_ring->tx_buffer_info);
3293 	tx_ring->tx_buffer_info = NULL;
3294 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3295 	return -ENOMEM;
3296 }
3297 
3298 /**
3299  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3300  *				 (Descriptors) for all queues
3301  *  @adapter: board private structure
3302  *
3303  *  Return 0 on success, negative on failure
3304  **/
3305 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3306 {
3307 	struct pci_dev *pdev = adapter->pdev;
3308 	int i, err = 0;
3309 
3310 	for (i = 0; i < adapter->num_tx_queues; i++) {
3311 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3312 		if (err) {
3313 			dev_err(&pdev->dev,
3314 				"Allocation for Tx Queue %u failed\n", i);
3315 			for (i--; i >= 0; i--)
3316 				igb_free_tx_resources(adapter->tx_ring[i]);
3317 			break;
3318 		}
3319 	}
3320 
3321 	return err;
3322 }
3323 
3324 /**
3325  *  igb_setup_tctl - configure the transmit control registers
3326  *  @adapter: Board private structure
3327  **/
3328 void igb_setup_tctl(struct igb_adapter *adapter)
3329 {
3330 	struct e1000_hw *hw = &adapter->hw;
3331 	u32 tctl;
3332 
3333 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3334 	wr32(E1000_TXDCTL(0), 0);
3335 
3336 	/* Program the Transmit Control Register */
3337 	tctl = rd32(E1000_TCTL);
3338 	tctl &= ~E1000_TCTL_CT;
3339 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3340 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3341 
3342 	igb_config_collision_dist(hw);
3343 
3344 	/* Enable transmits */
3345 	tctl |= E1000_TCTL_EN;
3346 
3347 	wr32(E1000_TCTL, tctl);
3348 }
3349 
3350 /**
3351  *  igb_configure_tx_ring - Configure transmit ring after Reset
3352  *  @adapter: board private structure
3353  *  @ring: tx ring to configure
3354  *
3355  *  Configure a transmit ring after a reset.
3356  **/
3357 void igb_configure_tx_ring(struct igb_adapter *adapter,
3358 			   struct igb_ring *ring)
3359 {
3360 	struct e1000_hw *hw = &adapter->hw;
3361 	u32 txdctl = 0;
3362 	u64 tdba = ring->dma;
3363 	int reg_idx = ring->reg_idx;
3364 
3365 	/* disable the queue */
3366 	wr32(E1000_TXDCTL(reg_idx), 0);
3367 	wrfl();
3368 	mdelay(10);
3369 
3370 	wr32(E1000_TDLEN(reg_idx),
3371 	     ring->count * sizeof(union e1000_adv_tx_desc));
3372 	wr32(E1000_TDBAL(reg_idx),
3373 	     tdba & 0x00000000ffffffffULL);
3374 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3375 
3376 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3377 	wr32(E1000_TDH(reg_idx), 0);
3378 	writel(0, ring->tail);
3379 
3380 	txdctl |= IGB_TX_PTHRESH;
3381 	txdctl |= IGB_TX_HTHRESH << 8;
3382 	txdctl |= IGB_TX_WTHRESH << 16;
3383 
3384 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3385 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3386 }
3387 
3388 /**
3389  *  igb_configure_tx - Configure transmit Unit after Reset
3390  *  @adapter: board private structure
3391  *
3392  *  Configure the Tx unit of the MAC after a reset.
3393  **/
3394 static void igb_configure_tx(struct igb_adapter *adapter)
3395 {
3396 	int i;
3397 
3398 	for (i = 0; i < adapter->num_tx_queues; i++)
3399 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3400 }
3401 
3402 /**
3403  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3404  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3405  *
3406  *  Returns 0 on success, negative on failure
3407  **/
3408 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3409 {
3410 	struct device *dev = rx_ring->dev;
3411 	int size;
3412 
3413 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3414 
3415 	rx_ring->rx_buffer_info = vzalloc(size);
3416 	if (!rx_ring->rx_buffer_info)
3417 		goto err;
3418 
3419 	/* Round up to nearest 4K */
3420 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3421 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3422 
3423 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3424 					   &rx_ring->dma, GFP_KERNEL);
3425 	if (!rx_ring->desc)
3426 		goto err;
3427 
3428 	rx_ring->next_to_alloc = 0;
3429 	rx_ring->next_to_clean = 0;
3430 	rx_ring->next_to_use = 0;
3431 
3432 	return 0;
3433 
3434 err:
3435 	vfree(rx_ring->rx_buffer_info);
3436 	rx_ring->rx_buffer_info = NULL;
3437 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3438 	return -ENOMEM;
3439 }
3440 
3441 /**
3442  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3443  *				 (Descriptors) for all queues
3444  *  @adapter: board private structure
3445  *
3446  *  Return 0 on success, negative on failure
3447  **/
3448 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3449 {
3450 	struct pci_dev *pdev = adapter->pdev;
3451 	int i, err = 0;
3452 
3453 	for (i = 0; i < adapter->num_rx_queues; i++) {
3454 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3455 		if (err) {
3456 			dev_err(&pdev->dev,
3457 				"Allocation for Rx Queue %u failed\n", i);
3458 			for (i--; i >= 0; i--)
3459 				igb_free_rx_resources(adapter->rx_ring[i]);
3460 			break;
3461 		}
3462 	}
3463 
3464 	return err;
3465 }
3466 
3467 /**
3468  *  igb_setup_mrqc - configure the multiple receive queue control registers
3469  *  @adapter: Board private structure
3470  **/
3471 static void igb_setup_mrqc(struct igb_adapter *adapter)
3472 {
3473 	struct e1000_hw *hw = &adapter->hw;
3474 	u32 mrqc, rxcsum;
3475 	u32 j, num_rx_queues;
3476 	u32 rss_key[10];
3477 
3478 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3479 	for (j = 0; j < 10; j++)
3480 		wr32(E1000_RSSRK(j), rss_key[j]);
3481 
3482 	num_rx_queues = adapter->rss_queues;
3483 
3484 	switch (hw->mac.type) {
3485 	case e1000_82576:
3486 		/* 82576 supports 2 RSS queues for SR-IOV */
3487 		if (adapter->vfs_allocated_count)
3488 			num_rx_queues = 2;
3489 		break;
3490 	default:
3491 		break;
3492 	}
3493 
3494 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3495 		for (j = 0; j < IGB_RETA_SIZE; j++)
3496 			adapter->rss_indir_tbl[j] =
3497 			(j * num_rx_queues) / IGB_RETA_SIZE;
3498 		adapter->rss_indir_tbl_init = num_rx_queues;
3499 	}
3500 	igb_write_rss_indir_tbl(adapter);
3501 
3502 	/* Disable raw packet checksumming so that RSS hash is placed in
3503 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3504 	 * offloads as they are enabled by default
3505 	 */
3506 	rxcsum = rd32(E1000_RXCSUM);
3507 	rxcsum |= E1000_RXCSUM_PCSD;
3508 
3509 	if (adapter->hw.mac.type >= e1000_82576)
3510 		/* Enable Receive Checksum Offload for SCTP */
3511 		rxcsum |= E1000_RXCSUM_CRCOFL;
3512 
3513 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3514 	wr32(E1000_RXCSUM, rxcsum);
3515 
3516 	/* Generate RSS hash based on packet types, TCP/UDP
3517 	 * port numbers and/or IPv4/v6 src and dst addresses
3518 	 */
3519 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3520 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3521 	       E1000_MRQC_RSS_FIELD_IPV6 |
3522 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3523 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3524 
3525 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3526 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3527 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3528 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3529 
3530 	/* If VMDq is enabled then we set the appropriate mode for that, else
3531 	 * we default to RSS so that an RSS hash is calculated per packet even
3532 	 * if we are only using one queue
3533 	 */
3534 	if (adapter->vfs_allocated_count) {
3535 		if (hw->mac.type > e1000_82575) {
3536 			/* Set the default pool for the PF's first queue */
3537 			u32 vtctl = rd32(E1000_VT_CTL);
3538 
3539 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3540 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3541 			vtctl |= adapter->vfs_allocated_count <<
3542 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3543 			wr32(E1000_VT_CTL, vtctl);
3544 		}
3545 		if (adapter->rss_queues > 1)
3546 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3547 		else
3548 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3549 	} else {
3550 		if (hw->mac.type != e1000_i211)
3551 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3552 	}
3553 	igb_vmm_control(adapter);
3554 
3555 	wr32(E1000_MRQC, mrqc);
3556 }
3557 
3558 /**
3559  *  igb_setup_rctl - configure the receive control registers
3560  *  @adapter: Board private structure
3561  **/
3562 void igb_setup_rctl(struct igb_adapter *adapter)
3563 {
3564 	struct e1000_hw *hw = &adapter->hw;
3565 	u32 rctl;
3566 
3567 	rctl = rd32(E1000_RCTL);
3568 
3569 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3570 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3571 
3572 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3573 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3574 
3575 	/* enable stripping of CRC. It's unlikely this will break BMC
3576 	 * redirection as it did with e1000. Newer features require
3577 	 * that the HW strips the CRC.
3578 	 */
3579 	rctl |= E1000_RCTL_SECRC;
3580 
3581 	/* disable store bad packets and clear size bits. */
3582 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3583 
3584 	/* enable LPE to allow for reception of jumbo frames */
3585 	rctl |= E1000_RCTL_LPE;
3586 
3587 	/* disable queue 0 to prevent tail write w/o re-config */
3588 	wr32(E1000_RXDCTL(0), 0);
3589 
3590 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3591 	 * queue drop for all VF and PF queues to prevent head of line blocking
3592 	 * if an un-trusted VF does not provide descriptors to hardware.
3593 	 */
3594 	if (adapter->vfs_allocated_count) {
3595 		/* set all queue drop enable bits */
3596 		wr32(E1000_QDE, ALL_QUEUES);
3597 	}
3598 
3599 	/* This is useful for sniffing bad packets. */
3600 	if (adapter->netdev->features & NETIF_F_RXALL) {
3601 		/* UPE and MPE will be handled by normal PROMISC logic
3602 		 * in e1000e_set_rx_mode
3603 		 */
3604 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3605 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3606 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3607 
3608 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3609 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3610 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3611 		 * and that breaks VLANs.
3612 		 */
3613 	}
3614 
3615 	wr32(E1000_RCTL, rctl);
3616 }
3617 
3618 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3619 				   int vfn)
3620 {
3621 	struct e1000_hw *hw = &adapter->hw;
3622 	u32 vmolr;
3623 
3624 	if (size > MAX_JUMBO_FRAME_SIZE)
3625 		size = MAX_JUMBO_FRAME_SIZE;
3626 
3627 	vmolr = rd32(E1000_VMOLR(vfn));
3628 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3629 	vmolr |= size | E1000_VMOLR_LPE;
3630 	wr32(E1000_VMOLR(vfn), vmolr);
3631 
3632 	return 0;
3633 }
3634 
3635 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3636 					 int vfn, bool enable)
3637 {
3638 	struct e1000_hw *hw = &adapter->hw;
3639 	u32 val, reg;
3640 
3641 	if (hw->mac.type < e1000_82576)
3642 		return;
3643 
3644 	if (hw->mac.type == e1000_i350)
3645 		reg = E1000_DVMOLR(vfn);
3646 	else
3647 		reg = E1000_VMOLR(vfn);
3648 
3649 	val = rd32(reg);
3650 	if (enable)
3651 		val |= E1000_VMOLR_STRVLAN;
3652 	else
3653 		val &= ~(E1000_VMOLR_STRVLAN);
3654 	wr32(reg, val);
3655 }
3656 
3657 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3658 				 int vfn, bool aupe)
3659 {
3660 	struct e1000_hw *hw = &adapter->hw;
3661 	u32 vmolr;
3662 
3663 	/* This register exists only on 82576 and newer so if we are older then
3664 	 * we should exit and do nothing
3665 	 */
3666 	if (hw->mac.type < e1000_82576)
3667 		return;
3668 
3669 	vmolr = rd32(E1000_VMOLR(vfn));
3670 	if (aupe)
3671 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3672 	else
3673 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3674 
3675 	/* clear all bits that might not be set */
3676 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3677 
3678 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3679 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3680 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3681 	 * multicast packets
3682 	 */
3683 	if (vfn <= adapter->vfs_allocated_count)
3684 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3685 
3686 	wr32(E1000_VMOLR(vfn), vmolr);
3687 }
3688 
3689 /**
3690  *  igb_configure_rx_ring - Configure a receive ring after Reset
3691  *  @adapter: board private structure
3692  *  @ring: receive ring to be configured
3693  *
3694  *  Configure the Rx unit of the MAC after a reset.
3695  **/
3696 void igb_configure_rx_ring(struct igb_adapter *adapter,
3697 			   struct igb_ring *ring)
3698 {
3699 	struct e1000_hw *hw = &adapter->hw;
3700 	u64 rdba = ring->dma;
3701 	int reg_idx = ring->reg_idx;
3702 	u32 srrctl = 0, rxdctl = 0;
3703 
3704 	/* disable the queue */
3705 	wr32(E1000_RXDCTL(reg_idx), 0);
3706 
3707 	/* Set DMA base address registers */
3708 	wr32(E1000_RDBAL(reg_idx),
3709 	     rdba & 0x00000000ffffffffULL);
3710 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3711 	wr32(E1000_RDLEN(reg_idx),
3712 	     ring->count * sizeof(union e1000_adv_rx_desc));
3713 
3714 	/* initialize head and tail */
3715 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3716 	wr32(E1000_RDH(reg_idx), 0);
3717 	writel(0, ring->tail);
3718 
3719 	/* set descriptor configuration */
3720 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3721 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3722 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3723 	if (hw->mac.type >= e1000_82580)
3724 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3725 	/* Only set Drop Enable if we are supporting multiple queues */
3726 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3727 		srrctl |= E1000_SRRCTL_DROP_EN;
3728 
3729 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3730 
3731 	/* set filtering for VMDQ pools */
3732 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3733 
3734 	rxdctl |= IGB_RX_PTHRESH;
3735 	rxdctl |= IGB_RX_HTHRESH << 8;
3736 	rxdctl |= IGB_RX_WTHRESH << 16;
3737 
3738 	/* enable receive descriptor fetching */
3739 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3740 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3741 }
3742 
3743 /**
3744  *  igb_configure_rx - Configure receive Unit after Reset
3745  *  @adapter: board private structure
3746  *
3747  *  Configure the Rx unit of the MAC after a reset.
3748  **/
3749 static void igb_configure_rx(struct igb_adapter *adapter)
3750 {
3751 	int i;
3752 
3753 	/* set the correct pool for the PF default MAC address in entry 0 */
3754 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3755 			 adapter->vfs_allocated_count);
3756 
3757 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3758 	 * the Base and Length of the Rx Descriptor Ring
3759 	 */
3760 	for (i = 0; i < adapter->num_rx_queues; i++)
3761 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3762 }
3763 
3764 /**
3765  *  igb_free_tx_resources - Free Tx Resources per Queue
3766  *  @tx_ring: Tx descriptor ring for a specific queue
3767  *
3768  *  Free all transmit software resources
3769  **/
3770 void igb_free_tx_resources(struct igb_ring *tx_ring)
3771 {
3772 	igb_clean_tx_ring(tx_ring);
3773 
3774 	vfree(tx_ring->tx_buffer_info);
3775 	tx_ring->tx_buffer_info = NULL;
3776 
3777 	/* if not set, then don't free */
3778 	if (!tx_ring->desc)
3779 		return;
3780 
3781 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3782 			  tx_ring->desc, tx_ring->dma);
3783 
3784 	tx_ring->desc = NULL;
3785 }
3786 
3787 /**
3788  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3789  *  @adapter: board private structure
3790  *
3791  *  Free all transmit software resources
3792  **/
3793 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3794 {
3795 	int i;
3796 
3797 	for (i = 0; i < adapter->num_tx_queues; i++)
3798 		if (adapter->tx_ring[i])
3799 			igb_free_tx_resources(adapter->tx_ring[i]);
3800 }
3801 
3802 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3803 				    struct igb_tx_buffer *tx_buffer)
3804 {
3805 	if (tx_buffer->skb) {
3806 		dev_kfree_skb_any(tx_buffer->skb);
3807 		if (dma_unmap_len(tx_buffer, len))
3808 			dma_unmap_single(ring->dev,
3809 					 dma_unmap_addr(tx_buffer, dma),
3810 					 dma_unmap_len(tx_buffer, len),
3811 					 DMA_TO_DEVICE);
3812 	} else if (dma_unmap_len(tx_buffer, len)) {
3813 		dma_unmap_page(ring->dev,
3814 			       dma_unmap_addr(tx_buffer, dma),
3815 			       dma_unmap_len(tx_buffer, len),
3816 			       DMA_TO_DEVICE);
3817 	}
3818 	tx_buffer->next_to_watch = NULL;
3819 	tx_buffer->skb = NULL;
3820 	dma_unmap_len_set(tx_buffer, len, 0);
3821 	/* buffer_info must be completely set up in the transmit path */
3822 }
3823 
3824 /**
3825  *  igb_clean_tx_ring - Free Tx Buffers
3826  *  @tx_ring: ring to be cleaned
3827  **/
3828 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3829 {
3830 	struct igb_tx_buffer *buffer_info;
3831 	unsigned long size;
3832 	u16 i;
3833 
3834 	if (!tx_ring->tx_buffer_info)
3835 		return;
3836 	/* Free all the Tx ring sk_buffs */
3837 
3838 	for (i = 0; i < tx_ring->count; i++) {
3839 		buffer_info = &tx_ring->tx_buffer_info[i];
3840 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3841 	}
3842 
3843 	netdev_tx_reset_queue(txring_txq(tx_ring));
3844 
3845 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3846 	memset(tx_ring->tx_buffer_info, 0, size);
3847 
3848 	/* Zero out the descriptor ring */
3849 	memset(tx_ring->desc, 0, tx_ring->size);
3850 
3851 	tx_ring->next_to_use = 0;
3852 	tx_ring->next_to_clean = 0;
3853 }
3854 
3855 /**
3856  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3857  *  @adapter: board private structure
3858  **/
3859 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3860 {
3861 	int i;
3862 
3863 	for (i = 0; i < adapter->num_tx_queues; i++)
3864 		if (adapter->tx_ring[i])
3865 			igb_clean_tx_ring(adapter->tx_ring[i]);
3866 }
3867 
3868 /**
3869  *  igb_free_rx_resources - Free Rx Resources
3870  *  @rx_ring: ring to clean the resources from
3871  *
3872  *  Free all receive software resources
3873  **/
3874 void igb_free_rx_resources(struct igb_ring *rx_ring)
3875 {
3876 	igb_clean_rx_ring(rx_ring);
3877 
3878 	vfree(rx_ring->rx_buffer_info);
3879 	rx_ring->rx_buffer_info = NULL;
3880 
3881 	/* if not set, then don't free */
3882 	if (!rx_ring->desc)
3883 		return;
3884 
3885 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3886 			  rx_ring->desc, rx_ring->dma);
3887 
3888 	rx_ring->desc = NULL;
3889 }
3890 
3891 /**
3892  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3893  *  @adapter: board private structure
3894  *
3895  *  Free all receive software resources
3896  **/
3897 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3898 {
3899 	int i;
3900 
3901 	for (i = 0; i < adapter->num_rx_queues; i++)
3902 		if (adapter->rx_ring[i])
3903 			igb_free_rx_resources(adapter->rx_ring[i]);
3904 }
3905 
3906 /**
3907  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3908  *  @rx_ring: ring to free buffers from
3909  **/
3910 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3911 {
3912 	unsigned long size;
3913 	u16 i;
3914 
3915 	if (rx_ring->skb)
3916 		dev_kfree_skb(rx_ring->skb);
3917 	rx_ring->skb = NULL;
3918 
3919 	if (!rx_ring->rx_buffer_info)
3920 		return;
3921 
3922 	/* Free all the Rx ring sk_buffs */
3923 	for (i = 0; i < rx_ring->count; i++) {
3924 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3925 
3926 		if (!buffer_info->page)
3927 			continue;
3928 
3929 		dma_unmap_page(rx_ring->dev,
3930 			       buffer_info->dma,
3931 			       PAGE_SIZE,
3932 			       DMA_FROM_DEVICE);
3933 		__free_page(buffer_info->page);
3934 
3935 		buffer_info->page = NULL;
3936 	}
3937 
3938 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3939 	memset(rx_ring->rx_buffer_info, 0, size);
3940 
3941 	/* Zero out the descriptor ring */
3942 	memset(rx_ring->desc, 0, rx_ring->size);
3943 
3944 	rx_ring->next_to_alloc = 0;
3945 	rx_ring->next_to_clean = 0;
3946 	rx_ring->next_to_use = 0;
3947 }
3948 
3949 /**
3950  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3951  *  @adapter: board private structure
3952  **/
3953 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3954 {
3955 	int i;
3956 
3957 	for (i = 0; i < adapter->num_rx_queues; i++)
3958 		if (adapter->rx_ring[i])
3959 			igb_clean_rx_ring(adapter->rx_ring[i]);
3960 }
3961 
3962 /**
3963  *  igb_set_mac - Change the Ethernet Address of the NIC
3964  *  @netdev: network interface device structure
3965  *  @p: pointer to an address structure
3966  *
3967  *  Returns 0 on success, negative on failure
3968  **/
3969 static int igb_set_mac(struct net_device *netdev, void *p)
3970 {
3971 	struct igb_adapter *adapter = netdev_priv(netdev);
3972 	struct e1000_hw *hw = &adapter->hw;
3973 	struct sockaddr *addr = p;
3974 
3975 	if (!is_valid_ether_addr(addr->sa_data))
3976 		return -EADDRNOTAVAIL;
3977 
3978 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3979 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3980 
3981 	/* set the correct pool for the new PF MAC address in entry 0 */
3982 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3983 			 adapter->vfs_allocated_count);
3984 
3985 	return 0;
3986 }
3987 
3988 /**
3989  *  igb_write_mc_addr_list - write multicast addresses to MTA
3990  *  @netdev: network interface device structure
3991  *
3992  *  Writes multicast address list to the MTA hash table.
3993  *  Returns: -ENOMEM on failure
3994  *           0 on no addresses written
3995  *           X on writing X addresses to MTA
3996  **/
3997 static int igb_write_mc_addr_list(struct net_device *netdev)
3998 {
3999 	struct igb_adapter *adapter = netdev_priv(netdev);
4000 	struct e1000_hw *hw = &adapter->hw;
4001 	struct netdev_hw_addr *ha;
4002 	u8  *mta_list;
4003 	int i;
4004 
4005 	if (netdev_mc_empty(netdev)) {
4006 		/* nothing to program, so clear mc list */
4007 		igb_update_mc_addr_list(hw, NULL, 0);
4008 		igb_restore_vf_multicasts(adapter);
4009 		return 0;
4010 	}
4011 
4012 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4013 	if (!mta_list)
4014 		return -ENOMEM;
4015 
4016 	/* The shared function expects a packed array of only addresses. */
4017 	i = 0;
4018 	netdev_for_each_mc_addr(ha, netdev)
4019 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4020 
4021 	igb_update_mc_addr_list(hw, mta_list, i);
4022 	kfree(mta_list);
4023 
4024 	return netdev_mc_count(netdev);
4025 }
4026 
4027 /**
4028  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4029  *  @netdev: network interface device structure
4030  *
4031  *  Writes unicast address list to the RAR table.
4032  *  Returns: -ENOMEM on failure/insufficient address space
4033  *           0 on no addresses written
4034  *           X on writing X addresses to the RAR table
4035  **/
4036 static int igb_write_uc_addr_list(struct net_device *netdev)
4037 {
4038 	struct igb_adapter *adapter = netdev_priv(netdev);
4039 	struct e1000_hw *hw = &adapter->hw;
4040 	unsigned int vfn = adapter->vfs_allocated_count;
4041 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4042 	int count = 0;
4043 
4044 	/* return ENOMEM indicating insufficient memory for addresses */
4045 	if (netdev_uc_count(netdev) > rar_entries)
4046 		return -ENOMEM;
4047 
4048 	if (!netdev_uc_empty(netdev) && rar_entries) {
4049 		struct netdev_hw_addr *ha;
4050 
4051 		netdev_for_each_uc_addr(ha, netdev) {
4052 			if (!rar_entries)
4053 				break;
4054 			igb_rar_set_qsel(adapter, ha->addr,
4055 					 rar_entries--,
4056 					 vfn);
4057 			count++;
4058 		}
4059 	}
4060 	/* write the addresses in reverse order to avoid write combining */
4061 	for (; rar_entries > 0 ; rar_entries--) {
4062 		wr32(E1000_RAH(rar_entries), 0);
4063 		wr32(E1000_RAL(rar_entries), 0);
4064 	}
4065 	wrfl();
4066 
4067 	return count;
4068 }
4069 
4070 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4071 {
4072 	struct e1000_hw *hw = &adapter->hw;
4073 	u32 i, pf_id;
4074 
4075 	switch (hw->mac.type) {
4076 	case e1000_i210:
4077 	case e1000_i211:
4078 	case e1000_i350:
4079 		/* VLAN filtering needed for VLAN prio filter */
4080 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4081 			break;
4082 		/* fall through */
4083 	case e1000_82576:
4084 	case e1000_82580:
4085 	case e1000_i354:
4086 		/* VLAN filtering needed for pool filtering */
4087 		if (adapter->vfs_allocated_count)
4088 			break;
4089 		/* fall through */
4090 	default:
4091 		return 1;
4092 	}
4093 
4094 	/* We are already in VLAN promisc, nothing to do */
4095 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4096 		return 0;
4097 
4098 	if (!adapter->vfs_allocated_count)
4099 		goto set_vfta;
4100 
4101 	/* Add PF to all active pools */
4102 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4103 
4104 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4105 		u32 vlvf = rd32(E1000_VLVF(i));
4106 
4107 		vlvf |= BIT(pf_id);
4108 		wr32(E1000_VLVF(i), vlvf);
4109 	}
4110 
4111 set_vfta:
4112 	/* Set all bits in the VLAN filter table array */
4113 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4114 		hw->mac.ops.write_vfta(hw, i, ~0U);
4115 
4116 	/* Set flag so we don't redo unnecessary work */
4117 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4118 
4119 	return 0;
4120 }
4121 
4122 #define VFTA_BLOCK_SIZE 8
4123 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4124 {
4125 	struct e1000_hw *hw = &adapter->hw;
4126 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4127 	u32 vid_start = vfta_offset * 32;
4128 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4129 	u32 i, vid, word, bits, pf_id;
4130 
4131 	/* guarantee that we don't scrub out management VLAN */
4132 	vid = adapter->mng_vlan_id;
4133 	if (vid >= vid_start && vid < vid_end)
4134 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4135 
4136 	if (!adapter->vfs_allocated_count)
4137 		goto set_vfta;
4138 
4139 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4140 
4141 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4142 		u32 vlvf = rd32(E1000_VLVF(i));
4143 
4144 		/* pull VLAN ID from VLVF */
4145 		vid = vlvf & VLAN_VID_MASK;
4146 
4147 		/* only concern ourselves with a certain range */
4148 		if (vid < vid_start || vid >= vid_end)
4149 			continue;
4150 
4151 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4152 			/* record VLAN ID in VFTA */
4153 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4154 
4155 			/* if PF is part of this then continue */
4156 			if (test_bit(vid, adapter->active_vlans))
4157 				continue;
4158 		}
4159 
4160 		/* remove PF from the pool */
4161 		bits = ~BIT(pf_id);
4162 		bits &= rd32(E1000_VLVF(i));
4163 		wr32(E1000_VLVF(i), bits);
4164 	}
4165 
4166 set_vfta:
4167 	/* extract values from active_vlans and write back to VFTA */
4168 	for (i = VFTA_BLOCK_SIZE; i--;) {
4169 		vid = (vfta_offset + i) * 32;
4170 		word = vid / BITS_PER_LONG;
4171 		bits = vid % BITS_PER_LONG;
4172 
4173 		vfta[i] |= adapter->active_vlans[word] >> bits;
4174 
4175 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4176 	}
4177 }
4178 
4179 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4180 {
4181 	u32 i;
4182 
4183 	/* We are not in VLAN promisc, nothing to do */
4184 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4185 		return;
4186 
4187 	/* Set flag so we don't redo unnecessary work */
4188 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4189 
4190 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4191 		igb_scrub_vfta(adapter, i);
4192 }
4193 
4194 /**
4195  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4196  *  @netdev: network interface device structure
4197  *
4198  *  The set_rx_mode entry point is called whenever the unicast or multicast
4199  *  address lists or the network interface flags are updated.  This routine is
4200  *  responsible for configuring the hardware for proper unicast, multicast,
4201  *  promiscuous mode, and all-multi behavior.
4202  **/
4203 static void igb_set_rx_mode(struct net_device *netdev)
4204 {
4205 	struct igb_adapter *adapter = netdev_priv(netdev);
4206 	struct e1000_hw *hw = &adapter->hw;
4207 	unsigned int vfn = adapter->vfs_allocated_count;
4208 	u32 rctl = 0, vmolr = 0;
4209 	int count;
4210 
4211 	/* Check for Promiscuous and All Multicast modes */
4212 	if (netdev->flags & IFF_PROMISC) {
4213 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4214 		vmolr |= E1000_VMOLR_MPME;
4215 
4216 		/* enable use of UTA filter to force packets to default pool */
4217 		if (hw->mac.type == e1000_82576)
4218 			vmolr |= E1000_VMOLR_ROPE;
4219 	} else {
4220 		if (netdev->flags & IFF_ALLMULTI) {
4221 			rctl |= E1000_RCTL_MPE;
4222 			vmolr |= E1000_VMOLR_MPME;
4223 		} else {
4224 			/* Write addresses to the MTA, if the attempt fails
4225 			 * then we should just turn on promiscuous mode so
4226 			 * that we can at least receive multicast traffic
4227 			 */
4228 			count = igb_write_mc_addr_list(netdev);
4229 			if (count < 0) {
4230 				rctl |= E1000_RCTL_MPE;
4231 				vmolr |= E1000_VMOLR_MPME;
4232 			} else if (count) {
4233 				vmolr |= E1000_VMOLR_ROMPE;
4234 			}
4235 		}
4236 	}
4237 
4238 	/* Write addresses to available RAR registers, if there is not
4239 	 * sufficient space to store all the addresses then enable
4240 	 * unicast promiscuous mode
4241 	 */
4242 	count = igb_write_uc_addr_list(netdev);
4243 	if (count < 0) {
4244 		rctl |= E1000_RCTL_UPE;
4245 		vmolr |= E1000_VMOLR_ROPE;
4246 	}
4247 
4248 	/* enable VLAN filtering by default */
4249 	rctl |= E1000_RCTL_VFE;
4250 
4251 	/* disable VLAN filtering for modes that require it */
4252 	if ((netdev->flags & IFF_PROMISC) ||
4253 	    (netdev->features & NETIF_F_RXALL)) {
4254 		/* if we fail to set all rules then just clear VFE */
4255 		if (igb_vlan_promisc_enable(adapter))
4256 			rctl &= ~E1000_RCTL_VFE;
4257 	} else {
4258 		igb_vlan_promisc_disable(adapter);
4259 	}
4260 
4261 	/* update state of unicast, multicast, and VLAN filtering modes */
4262 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4263 				     E1000_RCTL_VFE);
4264 	wr32(E1000_RCTL, rctl);
4265 
4266 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4267 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4268 	 * we will have issues with VLAN tag stripping not being done for frames
4269 	 * that are only arriving because we are the default pool
4270 	 */
4271 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4272 		return;
4273 
4274 	/* set UTA to appropriate mode */
4275 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4276 
4277 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4278 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4279 
4280 	/* enable Rx jumbo frames, no need for restriction */
4281 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4282 	vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4283 
4284 	wr32(E1000_VMOLR(vfn), vmolr);
4285 	wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4286 
4287 	igb_restore_vf_multicasts(adapter);
4288 }
4289 
4290 static void igb_check_wvbr(struct igb_adapter *adapter)
4291 {
4292 	struct e1000_hw *hw = &adapter->hw;
4293 	u32 wvbr = 0;
4294 
4295 	switch (hw->mac.type) {
4296 	case e1000_82576:
4297 	case e1000_i350:
4298 		wvbr = rd32(E1000_WVBR);
4299 		if (!wvbr)
4300 			return;
4301 		break;
4302 	default:
4303 		break;
4304 	}
4305 
4306 	adapter->wvbr |= wvbr;
4307 }
4308 
4309 #define IGB_STAGGERED_QUEUE_OFFSET 8
4310 
4311 static void igb_spoof_check(struct igb_adapter *adapter)
4312 {
4313 	int j;
4314 
4315 	if (!adapter->wvbr)
4316 		return;
4317 
4318 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4319 		if (adapter->wvbr & BIT(j) ||
4320 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4321 			dev_warn(&adapter->pdev->dev,
4322 				"Spoof event(s) detected on VF %d\n", j);
4323 			adapter->wvbr &=
4324 				~(BIT(j) |
4325 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4326 		}
4327 	}
4328 }
4329 
4330 /* Need to wait a few seconds after link up to get diagnostic information from
4331  * the phy
4332  */
4333 static void igb_update_phy_info(unsigned long data)
4334 {
4335 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4336 	igb_get_phy_info(&adapter->hw);
4337 }
4338 
4339 /**
4340  *  igb_has_link - check shared code for link and determine up/down
4341  *  @adapter: pointer to driver private info
4342  **/
4343 bool igb_has_link(struct igb_adapter *adapter)
4344 {
4345 	struct e1000_hw *hw = &adapter->hw;
4346 	bool link_active = false;
4347 
4348 	/* get_link_status is set on LSC (link status) interrupt or
4349 	 * rx sequence error interrupt.  get_link_status will stay
4350 	 * false until the e1000_check_for_link establishes link
4351 	 * for copper adapters ONLY
4352 	 */
4353 	switch (hw->phy.media_type) {
4354 	case e1000_media_type_copper:
4355 		if (!hw->mac.get_link_status)
4356 			return true;
4357 	case e1000_media_type_internal_serdes:
4358 		hw->mac.ops.check_for_link(hw);
4359 		link_active = !hw->mac.get_link_status;
4360 		break;
4361 	default:
4362 	case e1000_media_type_unknown:
4363 		break;
4364 	}
4365 
4366 	if (((hw->mac.type == e1000_i210) ||
4367 	     (hw->mac.type == e1000_i211)) &&
4368 	     (hw->phy.id == I210_I_PHY_ID)) {
4369 		if (!netif_carrier_ok(adapter->netdev)) {
4370 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4371 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4372 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4373 			adapter->link_check_timeout = jiffies;
4374 		}
4375 	}
4376 
4377 	return link_active;
4378 }
4379 
4380 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4381 {
4382 	bool ret = false;
4383 	u32 ctrl_ext, thstat;
4384 
4385 	/* check for thermal sensor event on i350 copper only */
4386 	if (hw->mac.type == e1000_i350) {
4387 		thstat = rd32(E1000_THSTAT);
4388 		ctrl_ext = rd32(E1000_CTRL_EXT);
4389 
4390 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4391 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4392 			ret = !!(thstat & event);
4393 	}
4394 
4395 	return ret;
4396 }
4397 
4398 /**
4399  *  igb_check_lvmmc - check for malformed packets received
4400  *  and indicated in LVMMC register
4401  *  @adapter: pointer to adapter
4402  **/
4403 static void igb_check_lvmmc(struct igb_adapter *adapter)
4404 {
4405 	struct e1000_hw *hw = &adapter->hw;
4406 	u32 lvmmc;
4407 
4408 	lvmmc = rd32(E1000_LVMMC);
4409 	if (lvmmc) {
4410 		if (unlikely(net_ratelimit())) {
4411 			netdev_warn(adapter->netdev,
4412 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4413 				    lvmmc);
4414 		}
4415 	}
4416 }
4417 
4418 /**
4419  *  igb_watchdog - Timer Call-back
4420  *  @data: pointer to adapter cast into an unsigned long
4421  **/
4422 static void igb_watchdog(unsigned long data)
4423 {
4424 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4425 	/* Do the rest outside of interrupt context */
4426 	schedule_work(&adapter->watchdog_task);
4427 }
4428 
4429 static void igb_watchdog_task(struct work_struct *work)
4430 {
4431 	struct igb_adapter *adapter = container_of(work,
4432 						   struct igb_adapter,
4433 						   watchdog_task);
4434 	struct e1000_hw *hw = &adapter->hw;
4435 	struct e1000_phy_info *phy = &hw->phy;
4436 	struct net_device *netdev = adapter->netdev;
4437 	u32 link;
4438 	int i;
4439 	u32 connsw;
4440 	u16 phy_data, retry_count = 20;
4441 
4442 	link = igb_has_link(adapter);
4443 
4444 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4445 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4446 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4447 		else
4448 			link = false;
4449 	}
4450 
4451 	/* Force link down if we have fiber to swap to */
4452 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4453 		if (hw->phy.media_type == e1000_media_type_copper) {
4454 			connsw = rd32(E1000_CONNSW);
4455 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4456 				link = 0;
4457 		}
4458 	}
4459 	if (link) {
4460 		/* Perform a reset if the media type changed. */
4461 		if (hw->dev_spec._82575.media_changed) {
4462 			hw->dev_spec._82575.media_changed = false;
4463 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4464 			igb_reset(adapter);
4465 		}
4466 		/* Cancel scheduled suspend requests. */
4467 		pm_runtime_resume(netdev->dev.parent);
4468 
4469 		if (!netif_carrier_ok(netdev)) {
4470 			u32 ctrl;
4471 
4472 			hw->mac.ops.get_speed_and_duplex(hw,
4473 							 &adapter->link_speed,
4474 							 &adapter->link_duplex);
4475 
4476 			ctrl = rd32(E1000_CTRL);
4477 			/* Links status message must follow this format */
4478 			netdev_info(netdev,
4479 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4480 			       netdev->name,
4481 			       adapter->link_speed,
4482 			       adapter->link_duplex == FULL_DUPLEX ?
4483 			       "Full" : "Half",
4484 			       (ctrl & E1000_CTRL_TFCE) &&
4485 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4486 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4487 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4488 
4489 			/* disable EEE if enabled */
4490 			if ((adapter->flags & IGB_FLAG_EEE) &&
4491 				(adapter->link_duplex == HALF_DUPLEX)) {
4492 				dev_info(&adapter->pdev->dev,
4493 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4494 				adapter->hw.dev_spec._82575.eee_disable = true;
4495 				adapter->flags &= ~IGB_FLAG_EEE;
4496 			}
4497 
4498 			/* check if SmartSpeed worked */
4499 			igb_check_downshift(hw);
4500 			if (phy->speed_downgraded)
4501 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4502 
4503 			/* check for thermal sensor event */
4504 			if (igb_thermal_sensor_event(hw,
4505 			    E1000_THSTAT_LINK_THROTTLE))
4506 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4507 
4508 			/* adjust timeout factor according to speed/duplex */
4509 			adapter->tx_timeout_factor = 1;
4510 			switch (adapter->link_speed) {
4511 			case SPEED_10:
4512 				adapter->tx_timeout_factor = 14;
4513 				break;
4514 			case SPEED_100:
4515 				/* maybe add some timeout factor ? */
4516 				break;
4517 			}
4518 
4519 			if (adapter->link_speed != SPEED_1000)
4520 				goto no_wait;
4521 
4522 			/* wait for Remote receiver status OK */
4523 retry_read_status:
4524 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4525 					      &phy_data)) {
4526 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4527 				    retry_count) {
4528 					msleep(100);
4529 					retry_count--;
4530 					goto retry_read_status;
4531 				} else if (!retry_count) {
4532 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4533 				}
4534 			} else {
4535 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4536 			}
4537 no_wait:
4538 			netif_carrier_on(netdev);
4539 
4540 			igb_ping_all_vfs(adapter);
4541 			igb_check_vf_rate_limit(adapter);
4542 
4543 			/* link state has changed, schedule phy info update */
4544 			if (!test_bit(__IGB_DOWN, &adapter->state))
4545 				mod_timer(&adapter->phy_info_timer,
4546 					  round_jiffies(jiffies + 2 * HZ));
4547 		}
4548 	} else {
4549 		if (netif_carrier_ok(netdev)) {
4550 			adapter->link_speed = 0;
4551 			adapter->link_duplex = 0;
4552 
4553 			/* check for thermal sensor event */
4554 			if (igb_thermal_sensor_event(hw,
4555 			    E1000_THSTAT_PWR_DOWN)) {
4556 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4557 			}
4558 
4559 			/* Links status message must follow this format */
4560 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4561 			       netdev->name);
4562 			netif_carrier_off(netdev);
4563 
4564 			igb_ping_all_vfs(adapter);
4565 
4566 			/* link state has changed, schedule phy info update */
4567 			if (!test_bit(__IGB_DOWN, &adapter->state))
4568 				mod_timer(&adapter->phy_info_timer,
4569 					  round_jiffies(jiffies + 2 * HZ));
4570 
4571 			/* link is down, time to check for alternate media */
4572 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4573 				igb_check_swap_media(adapter);
4574 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4575 					schedule_work(&adapter->reset_task);
4576 					/* return immediately */
4577 					return;
4578 				}
4579 			}
4580 			pm_schedule_suspend(netdev->dev.parent,
4581 					    MSEC_PER_SEC * 5);
4582 
4583 		/* also check for alternate media here */
4584 		} else if (!netif_carrier_ok(netdev) &&
4585 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4586 			igb_check_swap_media(adapter);
4587 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4588 				schedule_work(&adapter->reset_task);
4589 				/* return immediately */
4590 				return;
4591 			}
4592 		}
4593 	}
4594 
4595 	spin_lock(&adapter->stats64_lock);
4596 	igb_update_stats(adapter, &adapter->stats64);
4597 	spin_unlock(&adapter->stats64_lock);
4598 
4599 	for (i = 0; i < adapter->num_tx_queues; i++) {
4600 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4601 		if (!netif_carrier_ok(netdev)) {
4602 			/* We've lost link, so the controller stops DMA,
4603 			 * but we've got queued Tx work that's never going
4604 			 * to get done, so reset controller to flush Tx.
4605 			 * (Do the reset outside of interrupt context).
4606 			 */
4607 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4608 				adapter->tx_timeout_count++;
4609 				schedule_work(&adapter->reset_task);
4610 				/* return immediately since reset is imminent */
4611 				return;
4612 			}
4613 		}
4614 
4615 		/* Force detection of hung controller every watchdog period */
4616 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4617 	}
4618 
4619 	/* Cause software interrupt to ensure Rx ring is cleaned */
4620 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4621 		u32 eics = 0;
4622 
4623 		for (i = 0; i < adapter->num_q_vectors; i++)
4624 			eics |= adapter->q_vector[i]->eims_value;
4625 		wr32(E1000_EICS, eics);
4626 	} else {
4627 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4628 	}
4629 
4630 	igb_spoof_check(adapter);
4631 	igb_ptp_rx_hang(adapter);
4632 
4633 	/* Check LVMMC register on i350/i354 only */
4634 	if ((adapter->hw.mac.type == e1000_i350) ||
4635 	    (adapter->hw.mac.type == e1000_i354))
4636 		igb_check_lvmmc(adapter);
4637 
4638 	/* Reset the timer */
4639 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4640 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4641 			mod_timer(&adapter->watchdog_timer,
4642 				  round_jiffies(jiffies +  HZ));
4643 		else
4644 			mod_timer(&adapter->watchdog_timer,
4645 				  round_jiffies(jiffies + 2 * HZ));
4646 	}
4647 }
4648 
4649 enum latency_range {
4650 	lowest_latency = 0,
4651 	low_latency = 1,
4652 	bulk_latency = 2,
4653 	latency_invalid = 255
4654 };
4655 
4656 /**
4657  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4658  *  @q_vector: pointer to q_vector
4659  *
4660  *  Stores a new ITR value based on strictly on packet size.  This
4661  *  algorithm is less sophisticated than that used in igb_update_itr,
4662  *  due to the difficulty of synchronizing statistics across multiple
4663  *  receive rings.  The divisors and thresholds used by this function
4664  *  were determined based on theoretical maximum wire speed and testing
4665  *  data, in order to minimize response time while increasing bulk
4666  *  throughput.
4667  *  This functionality is controlled by ethtool's coalescing settings.
4668  *  NOTE:  This function is called only when operating in a multiqueue
4669  *         receive environment.
4670  **/
4671 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4672 {
4673 	int new_val = q_vector->itr_val;
4674 	int avg_wire_size = 0;
4675 	struct igb_adapter *adapter = q_vector->adapter;
4676 	unsigned int packets;
4677 
4678 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4679 	 * ints/sec - ITR timer value of 120 ticks.
4680 	 */
4681 	if (adapter->link_speed != SPEED_1000) {
4682 		new_val = IGB_4K_ITR;
4683 		goto set_itr_val;
4684 	}
4685 
4686 	packets = q_vector->rx.total_packets;
4687 	if (packets)
4688 		avg_wire_size = q_vector->rx.total_bytes / packets;
4689 
4690 	packets = q_vector->tx.total_packets;
4691 	if (packets)
4692 		avg_wire_size = max_t(u32, avg_wire_size,
4693 				      q_vector->tx.total_bytes / packets);
4694 
4695 	/* if avg_wire_size isn't set no work was done */
4696 	if (!avg_wire_size)
4697 		goto clear_counts;
4698 
4699 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4700 	avg_wire_size += 24;
4701 
4702 	/* Don't starve jumbo frames */
4703 	avg_wire_size = min(avg_wire_size, 3000);
4704 
4705 	/* Give a little boost to mid-size frames */
4706 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4707 		new_val = avg_wire_size / 3;
4708 	else
4709 		new_val = avg_wire_size / 2;
4710 
4711 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4712 	if (new_val < IGB_20K_ITR &&
4713 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4714 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4715 		new_val = IGB_20K_ITR;
4716 
4717 set_itr_val:
4718 	if (new_val != q_vector->itr_val) {
4719 		q_vector->itr_val = new_val;
4720 		q_vector->set_itr = 1;
4721 	}
4722 clear_counts:
4723 	q_vector->rx.total_bytes = 0;
4724 	q_vector->rx.total_packets = 0;
4725 	q_vector->tx.total_bytes = 0;
4726 	q_vector->tx.total_packets = 0;
4727 }
4728 
4729 /**
4730  *  igb_update_itr - update the dynamic ITR value based on statistics
4731  *  @q_vector: pointer to q_vector
4732  *  @ring_container: ring info to update the itr for
4733  *
4734  *  Stores a new ITR value based on packets and byte
4735  *  counts during the last interrupt.  The advantage of per interrupt
4736  *  computation is faster updates and more accurate ITR for the current
4737  *  traffic pattern.  Constants in this function were computed
4738  *  based on theoretical maximum wire speed and thresholds were set based
4739  *  on testing data as well as attempting to minimize response time
4740  *  while increasing bulk throughput.
4741  *  This functionality is controlled by ethtool's coalescing settings.
4742  *  NOTE:  These calculations are only valid when operating in a single-
4743  *         queue environment.
4744  **/
4745 static void igb_update_itr(struct igb_q_vector *q_vector,
4746 			   struct igb_ring_container *ring_container)
4747 {
4748 	unsigned int packets = ring_container->total_packets;
4749 	unsigned int bytes = ring_container->total_bytes;
4750 	u8 itrval = ring_container->itr;
4751 
4752 	/* no packets, exit with status unchanged */
4753 	if (packets == 0)
4754 		return;
4755 
4756 	switch (itrval) {
4757 	case lowest_latency:
4758 		/* handle TSO and jumbo frames */
4759 		if (bytes/packets > 8000)
4760 			itrval = bulk_latency;
4761 		else if ((packets < 5) && (bytes > 512))
4762 			itrval = low_latency;
4763 		break;
4764 	case low_latency:  /* 50 usec aka 20000 ints/s */
4765 		if (bytes > 10000) {
4766 			/* this if handles the TSO accounting */
4767 			if (bytes/packets > 8000)
4768 				itrval = bulk_latency;
4769 			else if ((packets < 10) || ((bytes/packets) > 1200))
4770 				itrval = bulk_latency;
4771 			else if ((packets > 35))
4772 				itrval = lowest_latency;
4773 		} else if (bytes/packets > 2000) {
4774 			itrval = bulk_latency;
4775 		} else if (packets <= 2 && bytes < 512) {
4776 			itrval = lowest_latency;
4777 		}
4778 		break;
4779 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4780 		if (bytes > 25000) {
4781 			if (packets > 35)
4782 				itrval = low_latency;
4783 		} else if (bytes < 1500) {
4784 			itrval = low_latency;
4785 		}
4786 		break;
4787 	}
4788 
4789 	/* clear work counters since we have the values we need */
4790 	ring_container->total_bytes = 0;
4791 	ring_container->total_packets = 0;
4792 
4793 	/* write updated itr to ring container */
4794 	ring_container->itr = itrval;
4795 }
4796 
4797 static void igb_set_itr(struct igb_q_vector *q_vector)
4798 {
4799 	struct igb_adapter *adapter = q_vector->adapter;
4800 	u32 new_itr = q_vector->itr_val;
4801 	u8 current_itr = 0;
4802 
4803 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4804 	if (adapter->link_speed != SPEED_1000) {
4805 		current_itr = 0;
4806 		new_itr = IGB_4K_ITR;
4807 		goto set_itr_now;
4808 	}
4809 
4810 	igb_update_itr(q_vector, &q_vector->tx);
4811 	igb_update_itr(q_vector, &q_vector->rx);
4812 
4813 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4814 
4815 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4816 	if (current_itr == lowest_latency &&
4817 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4818 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4819 		current_itr = low_latency;
4820 
4821 	switch (current_itr) {
4822 	/* counts and packets in update_itr are dependent on these numbers */
4823 	case lowest_latency:
4824 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4825 		break;
4826 	case low_latency:
4827 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4828 		break;
4829 	case bulk_latency:
4830 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4831 		break;
4832 	default:
4833 		break;
4834 	}
4835 
4836 set_itr_now:
4837 	if (new_itr != q_vector->itr_val) {
4838 		/* this attempts to bias the interrupt rate towards Bulk
4839 		 * by adding intermediate steps when interrupt rate is
4840 		 * increasing
4841 		 */
4842 		new_itr = new_itr > q_vector->itr_val ?
4843 			  max((new_itr * q_vector->itr_val) /
4844 			  (new_itr + (q_vector->itr_val >> 2)),
4845 			  new_itr) : new_itr;
4846 		/* Don't write the value here; it resets the adapter's
4847 		 * internal timer, and causes us to delay far longer than
4848 		 * we should between interrupts.  Instead, we write the ITR
4849 		 * value at the beginning of the next interrupt so the timing
4850 		 * ends up being correct.
4851 		 */
4852 		q_vector->itr_val = new_itr;
4853 		q_vector->set_itr = 1;
4854 	}
4855 }
4856 
4857 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4858 			    u32 type_tucmd, u32 mss_l4len_idx)
4859 {
4860 	struct e1000_adv_tx_context_desc *context_desc;
4861 	u16 i = tx_ring->next_to_use;
4862 
4863 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4864 
4865 	i++;
4866 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4867 
4868 	/* set bits to identify this as an advanced context descriptor */
4869 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4870 
4871 	/* For 82575, context index must be unique per ring. */
4872 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4873 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4874 
4875 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4876 	context_desc->seqnum_seed	= 0;
4877 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4878 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4879 }
4880 
4881 static int igb_tso(struct igb_ring *tx_ring,
4882 		   struct igb_tx_buffer *first,
4883 		   u8 *hdr_len)
4884 {
4885 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4886 	struct sk_buff *skb = first->skb;
4887 	union {
4888 		struct iphdr *v4;
4889 		struct ipv6hdr *v6;
4890 		unsigned char *hdr;
4891 	} ip;
4892 	union {
4893 		struct tcphdr *tcp;
4894 		unsigned char *hdr;
4895 	} l4;
4896 	u32 paylen, l4_offset;
4897 	int err;
4898 
4899 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4900 		return 0;
4901 
4902 	if (!skb_is_gso(skb))
4903 		return 0;
4904 
4905 	err = skb_cow_head(skb, 0);
4906 	if (err < 0)
4907 		return err;
4908 
4909 	ip.hdr = skb_network_header(skb);
4910 	l4.hdr = skb_checksum_start(skb);
4911 
4912 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4913 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4914 
4915 	/* initialize outer IP header fields */
4916 	if (ip.v4->version == 4) {
4917 		/* IP header will have to cancel out any data that
4918 		 * is not a part of the outer IP header
4919 		 */
4920 		ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4921 						  csum_unfold(l4.tcp->check)));
4922 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4923 
4924 		ip.v4->tot_len = 0;
4925 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4926 				   IGB_TX_FLAGS_CSUM |
4927 				   IGB_TX_FLAGS_IPV4;
4928 	} else {
4929 		ip.v6->payload_len = 0;
4930 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4931 				   IGB_TX_FLAGS_CSUM;
4932 	}
4933 
4934 	/* determine offset of inner transport header */
4935 	l4_offset = l4.hdr - skb->data;
4936 
4937 	/* compute length of segmentation header */
4938 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
4939 
4940 	/* remove payload length from inner checksum */
4941 	paylen = skb->len - l4_offset;
4942 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4943 
4944 	/* update gso size and bytecount with header size */
4945 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4946 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4947 
4948 	/* MSS L4LEN IDX */
4949 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4950 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4951 
4952 	/* VLAN MACLEN IPLEN */
4953 	vlan_macip_lens = l4.hdr - ip.hdr;
4954 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4955 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4956 
4957 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4958 
4959 	return 1;
4960 }
4961 
4962 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4963 {
4964 	unsigned int offset = 0;
4965 
4966 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4967 
4968 	return offset == skb_checksum_start_offset(skb);
4969 }
4970 
4971 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4972 {
4973 	struct sk_buff *skb = first->skb;
4974 	u32 vlan_macip_lens = 0;
4975 	u32 type_tucmd = 0;
4976 
4977 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4978 csum_failed:
4979 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4980 			return;
4981 		goto no_csum;
4982 	}
4983 
4984 	switch (skb->csum_offset) {
4985 	case offsetof(struct tcphdr, check):
4986 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4987 		/* fall through */
4988 	case offsetof(struct udphdr, check):
4989 		break;
4990 	case offsetof(struct sctphdr, checksum):
4991 		/* validate that this is actually an SCTP request */
4992 		if (((first->protocol == htons(ETH_P_IP)) &&
4993 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4994 		    ((first->protocol == htons(ETH_P_IPV6)) &&
4995 		     igb_ipv6_csum_is_sctp(skb))) {
4996 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4997 			break;
4998 		}
4999 	default:
5000 		skb_checksum_help(skb);
5001 		goto csum_failed;
5002 	}
5003 
5004 	/* update TX checksum flag */
5005 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5006 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5007 			  skb_network_offset(skb);
5008 no_csum:
5009 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5010 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5011 
5012 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5013 }
5014 
5015 #define IGB_SET_FLAG(_input, _flag, _result) \
5016 	((_flag <= _result) ? \
5017 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5018 	 ((u32)(_input & _flag) / (_flag / _result)))
5019 
5020 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5021 {
5022 	/* set type for advanced descriptor with frame checksum insertion */
5023 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5024 		       E1000_ADVTXD_DCMD_DEXT |
5025 		       E1000_ADVTXD_DCMD_IFCS;
5026 
5027 	/* set HW vlan bit if vlan is present */
5028 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5029 				 (E1000_ADVTXD_DCMD_VLE));
5030 
5031 	/* set segmentation bits for TSO */
5032 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5033 				 (E1000_ADVTXD_DCMD_TSE));
5034 
5035 	/* set timestamp bit if present */
5036 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5037 				 (E1000_ADVTXD_MAC_TSTAMP));
5038 
5039 	/* insert frame checksum */
5040 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5041 
5042 	return cmd_type;
5043 }
5044 
5045 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5046 				 union e1000_adv_tx_desc *tx_desc,
5047 				 u32 tx_flags, unsigned int paylen)
5048 {
5049 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5050 
5051 	/* 82575 requires a unique index per ring */
5052 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5053 		olinfo_status |= tx_ring->reg_idx << 4;
5054 
5055 	/* insert L4 checksum */
5056 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5057 				      IGB_TX_FLAGS_CSUM,
5058 				      (E1000_TXD_POPTS_TXSM << 8));
5059 
5060 	/* insert IPv4 checksum */
5061 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5062 				      IGB_TX_FLAGS_IPV4,
5063 				      (E1000_TXD_POPTS_IXSM << 8));
5064 
5065 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5066 }
5067 
5068 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5069 {
5070 	struct net_device *netdev = tx_ring->netdev;
5071 
5072 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5073 
5074 	/* Herbert's original patch had:
5075 	 *  smp_mb__after_netif_stop_queue();
5076 	 * but since that doesn't exist yet, just open code it.
5077 	 */
5078 	smp_mb();
5079 
5080 	/* We need to check again in a case another CPU has just
5081 	 * made room available.
5082 	 */
5083 	if (igb_desc_unused(tx_ring) < size)
5084 		return -EBUSY;
5085 
5086 	/* A reprieve! */
5087 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5088 
5089 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5090 	tx_ring->tx_stats.restart_queue2++;
5091 	u64_stats_update_end(&tx_ring->tx_syncp2);
5092 
5093 	return 0;
5094 }
5095 
5096 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5097 {
5098 	if (igb_desc_unused(tx_ring) >= size)
5099 		return 0;
5100 	return __igb_maybe_stop_tx(tx_ring, size);
5101 }
5102 
5103 static void igb_tx_map(struct igb_ring *tx_ring,
5104 		       struct igb_tx_buffer *first,
5105 		       const u8 hdr_len)
5106 {
5107 	struct sk_buff *skb = first->skb;
5108 	struct igb_tx_buffer *tx_buffer;
5109 	union e1000_adv_tx_desc *tx_desc;
5110 	struct skb_frag_struct *frag;
5111 	dma_addr_t dma;
5112 	unsigned int data_len, size;
5113 	u32 tx_flags = first->tx_flags;
5114 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5115 	u16 i = tx_ring->next_to_use;
5116 
5117 	tx_desc = IGB_TX_DESC(tx_ring, i);
5118 
5119 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5120 
5121 	size = skb_headlen(skb);
5122 	data_len = skb->data_len;
5123 
5124 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5125 
5126 	tx_buffer = first;
5127 
5128 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5129 		if (dma_mapping_error(tx_ring->dev, dma))
5130 			goto dma_error;
5131 
5132 		/* record length, and DMA address */
5133 		dma_unmap_len_set(tx_buffer, len, size);
5134 		dma_unmap_addr_set(tx_buffer, dma, dma);
5135 
5136 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5137 
5138 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5139 			tx_desc->read.cmd_type_len =
5140 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5141 
5142 			i++;
5143 			tx_desc++;
5144 			if (i == tx_ring->count) {
5145 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5146 				i = 0;
5147 			}
5148 			tx_desc->read.olinfo_status = 0;
5149 
5150 			dma += IGB_MAX_DATA_PER_TXD;
5151 			size -= IGB_MAX_DATA_PER_TXD;
5152 
5153 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5154 		}
5155 
5156 		if (likely(!data_len))
5157 			break;
5158 
5159 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5160 
5161 		i++;
5162 		tx_desc++;
5163 		if (i == tx_ring->count) {
5164 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5165 			i = 0;
5166 		}
5167 		tx_desc->read.olinfo_status = 0;
5168 
5169 		size = skb_frag_size(frag);
5170 		data_len -= size;
5171 
5172 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5173 				       size, DMA_TO_DEVICE);
5174 
5175 		tx_buffer = &tx_ring->tx_buffer_info[i];
5176 	}
5177 
5178 	/* write last descriptor with RS and EOP bits */
5179 	cmd_type |= size | IGB_TXD_DCMD;
5180 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5181 
5182 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5183 
5184 	/* set the timestamp */
5185 	first->time_stamp = jiffies;
5186 
5187 	/* Force memory writes to complete before letting h/w know there
5188 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
5189 	 * memory model archs, such as IA-64).
5190 	 *
5191 	 * We also need this memory barrier to make certain all of the
5192 	 * status bits have been updated before next_to_watch is written.
5193 	 */
5194 	wmb();
5195 
5196 	/* set next_to_watch value indicating a packet is present */
5197 	first->next_to_watch = tx_desc;
5198 
5199 	i++;
5200 	if (i == tx_ring->count)
5201 		i = 0;
5202 
5203 	tx_ring->next_to_use = i;
5204 
5205 	/* Make sure there is space in the ring for the next send. */
5206 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5207 
5208 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5209 		writel(i, tx_ring->tail);
5210 
5211 		/* we need this if more than one processor can write to our tail
5212 		 * at a time, it synchronizes IO on IA64/Altix systems
5213 		 */
5214 		mmiowb();
5215 	}
5216 	return;
5217 
5218 dma_error:
5219 	dev_err(tx_ring->dev, "TX DMA map failed\n");
5220 
5221 	/* clear dma mappings for failed tx_buffer_info map */
5222 	for (;;) {
5223 		tx_buffer = &tx_ring->tx_buffer_info[i];
5224 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5225 		if (tx_buffer == first)
5226 			break;
5227 		if (i == 0)
5228 			i = tx_ring->count;
5229 		i--;
5230 	}
5231 
5232 	tx_ring->next_to_use = i;
5233 }
5234 
5235 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5236 				struct igb_ring *tx_ring)
5237 {
5238 	struct igb_tx_buffer *first;
5239 	int tso;
5240 	u32 tx_flags = 0;
5241 	unsigned short f;
5242 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5243 	__be16 protocol = vlan_get_protocol(skb);
5244 	u8 hdr_len = 0;
5245 
5246 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5247 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5248 	 *       + 2 desc gap to keep tail from touching head,
5249 	 *       + 1 desc for context descriptor,
5250 	 * otherwise try next time
5251 	 */
5252 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5253 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5254 
5255 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5256 		/* this is a hard error */
5257 		return NETDEV_TX_BUSY;
5258 	}
5259 
5260 	/* record the location of the first descriptor for this packet */
5261 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5262 	first->skb = skb;
5263 	first->bytecount = skb->len;
5264 	first->gso_segs = 1;
5265 
5266 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5267 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5268 
5269 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5270 					   &adapter->state)) {
5271 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5272 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5273 
5274 			adapter->ptp_tx_skb = skb_get(skb);
5275 			adapter->ptp_tx_start = jiffies;
5276 			if (adapter->hw.mac.type == e1000_82576)
5277 				schedule_work(&adapter->ptp_tx_work);
5278 		}
5279 	}
5280 
5281 	skb_tx_timestamp(skb);
5282 
5283 	if (skb_vlan_tag_present(skb)) {
5284 		tx_flags |= IGB_TX_FLAGS_VLAN;
5285 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5286 	}
5287 
5288 	/* record initial flags and protocol */
5289 	first->tx_flags = tx_flags;
5290 	first->protocol = protocol;
5291 
5292 	tso = igb_tso(tx_ring, first, &hdr_len);
5293 	if (tso < 0)
5294 		goto out_drop;
5295 	else if (!tso)
5296 		igb_tx_csum(tx_ring, first);
5297 
5298 	igb_tx_map(tx_ring, first, hdr_len);
5299 
5300 	return NETDEV_TX_OK;
5301 
5302 out_drop:
5303 	igb_unmap_and_free_tx_resource(tx_ring, first);
5304 
5305 	return NETDEV_TX_OK;
5306 }
5307 
5308 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5309 						    struct sk_buff *skb)
5310 {
5311 	unsigned int r_idx = skb->queue_mapping;
5312 
5313 	if (r_idx >= adapter->num_tx_queues)
5314 		r_idx = r_idx % adapter->num_tx_queues;
5315 
5316 	return adapter->tx_ring[r_idx];
5317 }
5318 
5319 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5320 				  struct net_device *netdev)
5321 {
5322 	struct igb_adapter *adapter = netdev_priv(netdev);
5323 
5324 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5325 	 * in order to meet this minimum size requirement.
5326 	 */
5327 	if (skb_put_padto(skb, 17))
5328 		return NETDEV_TX_OK;
5329 
5330 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5331 }
5332 
5333 /**
5334  *  igb_tx_timeout - Respond to a Tx Hang
5335  *  @netdev: network interface device structure
5336  **/
5337 static void igb_tx_timeout(struct net_device *netdev)
5338 {
5339 	struct igb_adapter *adapter = netdev_priv(netdev);
5340 	struct e1000_hw *hw = &adapter->hw;
5341 
5342 	/* Do the reset outside of interrupt context */
5343 	adapter->tx_timeout_count++;
5344 
5345 	if (hw->mac.type >= e1000_82580)
5346 		hw->dev_spec._82575.global_device_reset = true;
5347 
5348 	schedule_work(&adapter->reset_task);
5349 	wr32(E1000_EICS,
5350 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5351 }
5352 
5353 static void igb_reset_task(struct work_struct *work)
5354 {
5355 	struct igb_adapter *adapter;
5356 	adapter = container_of(work, struct igb_adapter, reset_task);
5357 
5358 	igb_dump(adapter);
5359 	netdev_err(adapter->netdev, "Reset adapter\n");
5360 	igb_reinit_locked(adapter);
5361 }
5362 
5363 /**
5364  *  igb_get_stats64 - Get System Network Statistics
5365  *  @netdev: network interface device structure
5366  *  @stats: rtnl_link_stats64 pointer
5367  **/
5368 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5369 						struct rtnl_link_stats64 *stats)
5370 {
5371 	struct igb_adapter *adapter = netdev_priv(netdev);
5372 
5373 	spin_lock(&adapter->stats64_lock);
5374 	igb_update_stats(adapter, &adapter->stats64);
5375 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5376 	spin_unlock(&adapter->stats64_lock);
5377 
5378 	return stats;
5379 }
5380 
5381 /**
5382  *  igb_change_mtu - Change the Maximum Transfer Unit
5383  *  @netdev: network interface device structure
5384  *  @new_mtu: new value for maximum frame size
5385  *
5386  *  Returns 0 on success, negative on failure
5387  **/
5388 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5389 {
5390 	struct igb_adapter *adapter = netdev_priv(netdev);
5391 	struct pci_dev *pdev = adapter->pdev;
5392 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5393 
5394 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5395 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5396 		return -EINVAL;
5397 	}
5398 
5399 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5400 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5401 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5402 		return -EINVAL;
5403 	}
5404 
5405 	/* adjust max frame to be at least the size of a standard frame */
5406 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5407 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5408 
5409 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5410 		usleep_range(1000, 2000);
5411 
5412 	/* igb_down has a dependency on max_frame_size */
5413 	adapter->max_frame_size = max_frame;
5414 
5415 	if (netif_running(netdev))
5416 		igb_down(adapter);
5417 
5418 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5419 		 netdev->mtu, new_mtu);
5420 	netdev->mtu = new_mtu;
5421 
5422 	if (netif_running(netdev))
5423 		igb_up(adapter);
5424 	else
5425 		igb_reset(adapter);
5426 
5427 	clear_bit(__IGB_RESETTING, &adapter->state);
5428 
5429 	return 0;
5430 }
5431 
5432 /**
5433  *  igb_update_stats - Update the board statistics counters
5434  *  @adapter: board private structure
5435  **/
5436 void igb_update_stats(struct igb_adapter *adapter,
5437 		      struct rtnl_link_stats64 *net_stats)
5438 {
5439 	struct e1000_hw *hw = &adapter->hw;
5440 	struct pci_dev *pdev = adapter->pdev;
5441 	u32 reg, mpc;
5442 	int i;
5443 	u64 bytes, packets;
5444 	unsigned int start;
5445 	u64 _bytes, _packets;
5446 
5447 	/* Prevent stats update while adapter is being reset, or if the pci
5448 	 * connection is down.
5449 	 */
5450 	if (adapter->link_speed == 0)
5451 		return;
5452 	if (pci_channel_offline(pdev))
5453 		return;
5454 
5455 	bytes = 0;
5456 	packets = 0;
5457 
5458 	rcu_read_lock();
5459 	for (i = 0; i < adapter->num_rx_queues; i++) {
5460 		struct igb_ring *ring = adapter->rx_ring[i];
5461 		u32 rqdpc = rd32(E1000_RQDPC(i));
5462 		if (hw->mac.type >= e1000_i210)
5463 			wr32(E1000_RQDPC(i), 0);
5464 
5465 		if (rqdpc) {
5466 			ring->rx_stats.drops += rqdpc;
5467 			net_stats->rx_fifo_errors += rqdpc;
5468 		}
5469 
5470 		do {
5471 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5472 			_bytes = ring->rx_stats.bytes;
5473 			_packets = ring->rx_stats.packets;
5474 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5475 		bytes += _bytes;
5476 		packets += _packets;
5477 	}
5478 
5479 	net_stats->rx_bytes = bytes;
5480 	net_stats->rx_packets = packets;
5481 
5482 	bytes = 0;
5483 	packets = 0;
5484 	for (i = 0; i < adapter->num_tx_queues; i++) {
5485 		struct igb_ring *ring = adapter->tx_ring[i];
5486 		do {
5487 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5488 			_bytes = ring->tx_stats.bytes;
5489 			_packets = ring->tx_stats.packets;
5490 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5491 		bytes += _bytes;
5492 		packets += _packets;
5493 	}
5494 	net_stats->tx_bytes = bytes;
5495 	net_stats->tx_packets = packets;
5496 	rcu_read_unlock();
5497 
5498 	/* read stats registers */
5499 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5500 	adapter->stats.gprc += rd32(E1000_GPRC);
5501 	adapter->stats.gorc += rd32(E1000_GORCL);
5502 	rd32(E1000_GORCH); /* clear GORCL */
5503 	adapter->stats.bprc += rd32(E1000_BPRC);
5504 	adapter->stats.mprc += rd32(E1000_MPRC);
5505 	adapter->stats.roc += rd32(E1000_ROC);
5506 
5507 	adapter->stats.prc64 += rd32(E1000_PRC64);
5508 	adapter->stats.prc127 += rd32(E1000_PRC127);
5509 	adapter->stats.prc255 += rd32(E1000_PRC255);
5510 	adapter->stats.prc511 += rd32(E1000_PRC511);
5511 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5512 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5513 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5514 	adapter->stats.sec += rd32(E1000_SEC);
5515 
5516 	mpc = rd32(E1000_MPC);
5517 	adapter->stats.mpc += mpc;
5518 	net_stats->rx_fifo_errors += mpc;
5519 	adapter->stats.scc += rd32(E1000_SCC);
5520 	adapter->stats.ecol += rd32(E1000_ECOL);
5521 	adapter->stats.mcc += rd32(E1000_MCC);
5522 	adapter->stats.latecol += rd32(E1000_LATECOL);
5523 	adapter->stats.dc += rd32(E1000_DC);
5524 	adapter->stats.rlec += rd32(E1000_RLEC);
5525 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5526 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5527 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5528 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5529 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5530 	adapter->stats.gptc += rd32(E1000_GPTC);
5531 	adapter->stats.gotc += rd32(E1000_GOTCL);
5532 	rd32(E1000_GOTCH); /* clear GOTCL */
5533 	adapter->stats.rnbc += rd32(E1000_RNBC);
5534 	adapter->stats.ruc += rd32(E1000_RUC);
5535 	adapter->stats.rfc += rd32(E1000_RFC);
5536 	adapter->stats.rjc += rd32(E1000_RJC);
5537 	adapter->stats.tor += rd32(E1000_TORH);
5538 	adapter->stats.tot += rd32(E1000_TOTH);
5539 	adapter->stats.tpr += rd32(E1000_TPR);
5540 
5541 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5542 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5543 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5544 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5545 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5546 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5547 
5548 	adapter->stats.mptc += rd32(E1000_MPTC);
5549 	adapter->stats.bptc += rd32(E1000_BPTC);
5550 
5551 	adapter->stats.tpt += rd32(E1000_TPT);
5552 	adapter->stats.colc += rd32(E1000_COLC);
5553 
5554 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5555 	/* read internal phy specific stats */
5556 	reg = rd32(E1000_CTRL_EXT);
5557 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5558 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5559 
5560 		/* this stat has invalid values on i210/i211 */
5561 		if ((hw->mac.type != e1000_i210) &&
5562 		    (hw->mac.type != e1000_i211))
5563 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5564 	}
5565 
5566 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5567 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5568 
5569 	adapter->stats.iac += rd32(E1000_IAC);
5570 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5571 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5572 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5573 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5574 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5575 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5576 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5577 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5578 
5579 	/* Fill out the OS statistics structure */
5580 	net_stats->multicast = adapter->stats.mprc;
5581 	net_stats->collisions = adapter->stats.colc;
5582 
5583 	/* Rx Errors */
5584 
5585 	/* RLEC on some newer hardware can be incorrect so build
5586 	 * our own version based on RUC and ROC
5587 	 */
5588 	net_stats->rx_errors = adapter->stats.rxerrc +
5589 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5590 		adapter->stats.ruc + adapter->stats.roc +
5591 		adapter->stats.cexterr;
5592 	net_stats->rx_length_errors = adapter->stats.ruc +
5593 				      adapter->stats.roc;
5594 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5595 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5596 	net_stats->rx_missed_errors = adapter->stats.mpc;
5597 
5598 	/* Tx Errors */
5599 	net_stats->tx_errors = adapter->stats.ecol +
5600 			       adapter->stats.latecol;
5601 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5602 	net_stats->tx_window_errors = adapter->stats.latecol;
5603 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5604 
5605 	/* Tx Dropped needs to be maintained elsewhere */
5606 
5607 	/* Management Stats */
5608 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5609 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5610 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5611 
5612 	/* OS2BMC Stats */
5613 	reg = rd32(E1000_MANC);
5614 	if (reg & E1000_MANC_EN_BMC2OS) {
5615 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5616 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5617 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5618 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5619 	}
5620 }
5621 
5622 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5623 {
5624 	struct e1000_hw *hw = &adapter->hw;
5625 	struct ptp_clock_event event;
5626 	struct timespec64 ts;
5627 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5628 
5629 	if (tsicr & TSINTR_SYS_WRAP) {
5630 		event.type = PTP_CLOCK_PPS;
5631 		if (adapter->ptp_caps.pps)
5632 			ptp_clock_event(adapter->ptp_clock, &event);
5633 		else
5634 			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5635 		ack |= TSINTR_SYS_WRAP;
5636 	}
5637 
5638 	if (tsicr & E1000_TSICR_TXTS) {
5639 		/* retrieve hardware timestamp */
5640 		schedule_work(&adapter->ptp_tx_work);
5641 		ack |= E1000_TSICR_TXTS;
5642 	}
5643 
5644 	if (tsicr & TSINTR_TT0) {
5645 		spin_lock(&adapter->tmreg_lock);
5646 		ts = timespec64_add(adapter->perout[0].start,
5647 				    adapter->perout[0].period);
5648 		/* u32 conversion of tv_sec is safe until y2106 */
5649 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5650 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5651 		tsauxc = rd32(E1000_TSAUXC);
5652 		tsauxc |= TSAUXC_EN_TT0;
5653 		wr32(E1000_TSAUXC, tsauxc);
5654 		adapter->perout[0].start = ts;
5655 		spin_unlock(&adapter->tmreg_lock);
5656 		ack |= TSINTR_TT0;
5657 	}
5658 
5659 	if (tsicr & TSINTR_TT1) {
5660 		spin_lock(&adapter->tmreg_lock);
5661 		ts = timespec64_add(adapter->perout[1].start,
5662 				    adapter->perout[1].period);
5663 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5664 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5665 		tsauxc = rd32(E1000_TSAUXC);
5666 		tsauxc |= TSAUXC_EN_TT1;
5667 		wr32(E1000_TSAUXC, tsauxc);
5668 		adapter->perout[1].start = ts;
5669 		spin_unlock(&adapter->tmreg_lock);
5670 		ack |= TSINTR_TT1;
5671 	}
5672 
5673 	if (tsicr & TSINTR_AUTT0) {
5674 		nsec = rd32(E1000_AUXSTMPL0);
5675 		sec  = rd32(E1000_AUXSTMPH0);
5676 		event.type = PTP_CLOCK_EXTTS;
5677 		event.index = 0;
5678 		event.timestamp = sec * 1000000000ULL + nsec;
5679 		ptp_clock_event(adapter->ptp_clock, &event);
5680 		ack |= TSINTR_AUTT0;
5681 	}
5682 
5683 	if (tsicr & TSINTR_AUTT1) {
5684 		nsec = rd32(E1000_AUXSTMPL1);
5685 		sec  = rd32(E1000_AUXSTMPH1);
5686 		event.type = PTP_CLOCK_EXTTS;
5687 		event.index = 1;
5688 		event.timestamp = sec * 1000000000ULL + nsec;
5689 		ptp_clock_event(adapter->ptp_clock, &event);
5690 		ack |= TSINTR_AUTT1;
5691 	}
5692 
5693 	/* acknowledge the interrupts */
5694 	wr32(E1000_TSICR, ack);
5695 }
5696 
5697 static irqreturn_t igb_msix_other(int irq, void *data)
5698 {
5699 	struct igb_adapter *adapter = data;
5700 	struct e1000_hw *hw = &adapter->hw;
5701 	u32 icr = rd32(E1000_ICR);
5702 	/* reading ICR causes bit 31 of EICR to be cleared */
5703 
5704 	if (icr & E1000_ICR_DRSTA)
5705 		schedule_work(&adapter->reset_task);
5706 
5707 	if (icr & E1000_ICR_DOUTSYNC) {
5708 		/* HW is reporting DMA is out of sync */
5709 		adapter->stats.doosync++;
5710 		/* The DMA Out of Sync is also indication of a spoof event
5711 		 * in IOV mode. Check the Wrong VM Behavior register to
5712 		 * see if it is really a spoof event.
5713 		 */
5714 		igb_check_wvbr(adapter);
5715 	}
5716 
5717 	/* Check for a mailbox event */
5718 	if (icr & E1000_ICR_VMMB)
5719 		igb_msg_task(adapter);
5720 
5721 	if (icr & E1000_ICR_LSC) {
5722 		hw->mac.get_link_status = 1;
5723 		/* guard against interrupt when we're going down */
5724 		if (!test_bit(__IGB_DOWN, &adapter->state))
5725 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5726 	}
5727 
5728 	if (icr & E1000_ICR_TS)
5729 		igb_tsync_interrupt(adapter);
5730 
5731 	wr32(E1000_EIMS, adapter->eims_other);
5732 
5733 	return IRQ_HANDLED;
5734 }
5735 
5736 static void igb_write_itr(struct igb_q_vector *q_vector)
5737 {
5738 	struct igb_adapter *adapter = q_vector->adapter;
5739 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5740 
5741 	if (!q_vector->set_itr)
5742 		return;
5743 
5744 	if (!itr_val)
5745 		itr_val = 0x4;
5746 
5747 	if (adapter->hw.mac.type == e1000_82575)
5748 		itr_val |= itr_val << 16;
5749 	else
5750 		itr_val |= E1000_EITR_CNT_IGNR;
5751 
5752 	writel(itr_val, q_vector->itr_register);
5753 	q_vector->set_itr = 0;
5754 }
5755 
5756 static irqreturn_t igb_msix_ring(int irq, void *data)
5757 {
5758 	struct igb_q_vector *q_vector = data;
5759 
5760 	/* Write the ITR value calculated from the previous interrupt. */
5761 	igb_write_itr(q_vector);
5762 
5763 	napi_schedule(&q_vector->napi);
5764 
5765 	return IRQ_HANDLED;
5766 }
5767 
5768 #ifdef CONFIG_IGB_DCA
5769 static void igb_update_tx_dca(struct igb_adapter *adapter,
5770 			      struct igb_ring *tx_ring,
5771 			      int cpu)
5772 {
5773 	struct e1000_hw *hw = &adapter->hw;
5774 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5775 
5776 	if (hw->mac.type != e1000_82575)
5777 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5778 
5779 	/* We can enable relaxed ordering for reads, but not writes when
5780 	 * DCA is enabled.  This is due to a known issue in some chipsets
5781 	 * which will cause the DCA tag to be cleared.
5782 	 */
5783 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5784 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5785 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5786 
5787 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5788 }
5789 
5790 static void igb_update_rx_dca(struct igb_adapter *adapter,
5791 			      struct igb_ring *rx_ring,
5792 			      int cpu)
5793 {
5794 	struct e1000_hw *hw = &adapter->hw;
5795 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5796 
5797 	if (hw->mac.type != e1000_82575)
5798 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5799 
5800 	/* We can enable relaxed ordering for reads, but not writes when
5801 	 * DCA is enabled.  This is due to a known issue in some chipsets
5802 	 * which will cause the DCA tag to be cleared.
5803 	 */
5804 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5805 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5806 
5807 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5808 }
5809 
5810 static void igb_update_dca(struct igb_q_vector *q_vector)
5811 {
5812 	struct igb_adapter *adapter = q_vector->adapter;
5813 	int cpu = get_cpu();
5814 
5815 	if (q_vector->cpu == cpu)
5816 		goto out_no_update;
5817 
5818 	if (q_vector->tx.ring)
5819 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5820 
5821 	if (q_vector->rx.ring)
5822 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5823 
5824 	q_vector->cpu = cpu;
5825 out_no_update:
5826 	put_cpu();
5827 }
5828 
5829 static void igb_setup_dca(struct igb_adapter *adapter)
5830 {
5831 	struct e1000_hw *hw = &adapter->hw;
5832 	int i;
5833 
5834 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5835 		return;
5836 
5837 	/* Always use CB2 mode, difference is masked in the CB driver. */
5838 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5839 
5840 	for (i = 0; i < adapter->num_q_vectors; i++) {
5841 		adapter->q_vector[i]->cpu = -1;
5842 		igb_update_dca(adapter->q_vector[i]);
5843 	}
5844 }
5845 
5846 static int __igb_notify_dca(struct device *dev, void *data)
5847 {
5848 	struct net_device *netdev = dev_get_drvdata(dev);
5849 	struct igb_adapter *adapter = netdev_priv(netdev);
5850 	struct pci_dev *pdev = adapter->pdev;
5851 	struct e1000_hw *hw = &adapter->hw;
5852 	unsigned long event = *(unsigned long *)data;
5853 
5854 	switch (event) {
5855 	case DCA_PROVIDER_ADD:
5856 		/* if already enabled, don't do it again */
5857 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5858 			break;
5859 		if (dca_add_requester(dev) == 0) {
5860 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5861 			dev_info(&pdev->dev, "DCA enabled\n");
5862 			igb_setup_dca(adapter);
5863 			break;
5864 		}
5865 		/* Fall Through since DCA is disabled. */
5866 	case DCA_PROVIDER_REMOVE:
5867 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5868 			/* without this a class_device is left
5869 			 * hanging around in the sysfs model
5870 			 */
5871 			dca_remove_requester(dev);
5872 			dev_info(&pdev->dev, "DCA disabled\n");
5873 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5874 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5875 		}
5876 		break;
5877 	}
5878 
5879 	return 0;
5880 }
5881 
5882 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5883 			  void *p)
5884 {
5885 	int ret_val;
5886 
5887 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5888 					 __igb_notify_dca);
5889 
5890 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5891 }
5892 #endif /* CONFIG_IGB_DCA */
5893 
5894 #ifdef CONFIG_PCI_IOV
5895 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5896 {
5897 	unsigned char mac_addr[ETH_ALEN];
5898 
5899 	eth_zero_addr(mac_addr);
5900 	igb_set_vf_mac(adapter, vf, mac_addr);
5901 
5902 	/* By default spoof check is enabled for all VFs */
5903 	adapter->vf_data[vf].spoofchk_enabled = true;
5904 
5905 	return 0;
5906 }
5907 
5908 #endif
5909 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5910 {
5911 	struct e1000_hw *hw = &adapter->hw;
5912 	u32 ping;
5913 	int i;
5914 
5915 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5916 		ping = E1000_PF_CONTROL_MSG;
5917 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5918 			ping |= E1000_VT_MSGTYPE_CTS;
5919 		igb_write_mbx(hw, &ping, 1, i);
5920 	}
5921 }
5922 
5923 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5924 {
5925 	struct e1000_hw *hw = &adapter->hw;
5926 	u32 vmolr = rd32(E1000_VMOLR(vf));
5927 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5928 
5929 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5930 			    IGB_VF_FLAG_MULTI_PROMISC);
5931 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5932 
5933 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5934 		vmolr |= E1000_VMOLR_MPME;
5935 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5936 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5937 	} else {
5938 		/* if we have hashes and we are clearing a multicast promisc
5939 		 * flag we need to write the hashes to the MTA as this step
5940 		 * was previously skipped
5941 		 */
5942 		if (vf_data->num_vf_mc_hashes > 30) {
5943 			vmolr |= E1000_VMOLR_MPME;
5944 		} else if (vf_data->num_vf_mc_hashes) {
5945 			int j;
5946 
5947 			vmolr |= E1000_VMOLR_ROMPE;
5948 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5949 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5950 		}
5951 	}
5952 
5953 	wr32(E1000_VMOLR(vf), vmolr);
5954 
5955 	/* there are flags left unprocessed, likely not supported */
5956 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5957 		return -EINVAL;
5958 
5959 	return 0;
5960 }
5961 
5962 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5963 				  u32 *msgbuf, u32 vf)
5964 {
5965 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5966 	u16 *hash_list = (u16 *)&msgbuf[1];
5967 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5968 	int i;
5969 
5970 	/* salt away the number of multicast addresses assigned
5971 	 * to this VF for later use to restore when the PF multi cast
5972 	 * list changes
5973 	 */
5974 	vf_data->num_vf_mc_hashes = n;
5975 
5976 	/* only up to 30 hash values supported */
5977 	if (n > 30)
5978 		n = 30;
5979 
5980 	/* store the hashes for later use */
5981 	for (i = 0; i < n; i++)
5982 		vf_data->vf_mc_hashes[i] = hash_list[i];
5983 
5984 	/* Flush and reset the mta with the new values */
5985 	igb_set_rx_mode(adapter->netdev);
5986 
5987 	return 0;
5988 }
5989 
5990 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5991 {
5992 	struct e1000_hw *hw = &adapter->hw;
5993 	struct vf_data_storage *vf_data;
5994 	int i, j;
5995 
5996 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5997 		u32 vmolr = rd32(E1000_VMOLR(i));
5998 
5999 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6000 
6001 		vf_data = &adapter->vf_data[i];
6002 
6003 		if ((vf_data->num_vf_mc_hashes > 30) ||
6004 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6005 			vmolr |= E1000_VMOLR_MPME;
6006 		} else if (vf_data->num_vf_mc_hashes) {
6007 			vmolr |= E1000_VMOLR_ROMPE;
6008 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6009 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6010 		}
6011 		wr32(E1000_VMOLR(i), vmolr);
6012 	}
6013 }
6014 
6015 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6016 {
6017 	struct e1000_hw *hw = &adapter->hw;
6018 	u32 pool_mask, vlvf_mask, i;
6019 
6020 	/* create mask for VF and other pools */
6021 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6022 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6023 
6024 	/* drop PF from pool bits */
6025 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6026 			     adapter->vfs_allocated_count);
6027 
6028 	/* Find the vlan filter for this id */
6029 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6030 		u32 vlvf = rd32(E1000_VLVF(i));
6031 		u32 vfta_mask, vid, vfta;
6032 
6033 		/* remove the vf from the pool */
6034 		if (!(vlvf & vlvf_mask))
6035 			continue;
6036 
6037 		/* clear out bit from VLVF */
6038 		vlvf ^= vlvf_mask;
6039 
6040 		/* if other pools are present, just remove ourselves */
6041 		if (vlvf & pool_mask)
6042 			goto update_vlvfb;
6043 
6044 		/* if PF is present, leave VFTA */
6045 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6046 			goto update_vlvf;
6047 
6048 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6049 		vfta_mask = BIT(vid % 32);
6050 
6051 		/* clear bit from VFTA */
6052 		vfta = adapter->shadow_vfta[vid / 32];
6053 		if (vfta & vfta_mask)
6054 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6055 update_vlvf:
6056 		/* clear pool selection enable */
6057 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6058 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6059 		else
6060 			vlvf = 0;
6061 update_vlvfb:
6062 		/* clear pool bits */
6063 		wr32(E1000_VLVF(i), vlvf);
6064 	}
6065 }
6066 
6067 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6068 {
6069 	u32 vlvf;
6070 	int idx;
6071 
6072 	/* short cut the special case */
6073 	if (vlan == 0)
6074 		return 0;
6075 
6076 	/* Search for the VLAN id in the VLVF entries */
6077 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6078 		vlvf = rd32(E1000_VLVF(idx));
6079 		if ((vlvf & VLAN_VID_MASK) == vlan)
6080 			break;
6081 	}
6082 
6083 	return idx;
6084 }
6085 
6086 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6087 {
6088 	struct e1000_hw *hw = &adapter->hw;
6089 	u32 bits, pf_id;
6090 	int idx;
6091 
6092 	idx = igb_find_vlvf_entry(hw, vid);
6093 	if (!idx)
6094 		return;
6095 
6096 	/* See if any other pools are set for this VLAN filter
6097 	 * entry other than the PF.
6098 	 */
6099 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6100 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6101 	bits &= rd32(E1000_VLVF(idx));
6102 
6103 	/* Disable the filter so this falls into the default pool. */
6104 	if (!bits) {
6105 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6106 			wr32(E1000_VLVF(idx), BIT(pf_id));
6107 		else
6108 			wr32(E1000_VLVF(idx), 0);
6109 	}
6110 }
6111 
6112 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6113 			   bool add, u32 vf)
6114 {
6115 	int pf_id = adapter->vfs_allocated_count;
6116 	struct e1000_hw *hw = &adapter->hw;
6117 	int err;
6118 
6119 	/* If VLAN overlaps with one the PF is currently monitoring make
6120 	 * sure that we are able to allocate a VLVF entry.  This may be
6121 	 * redundant but it guarantees PF will maintain visibility to
6122 	 * the VLAN.
6123 	 */
6124 	if (add && test_bit(vid, adapter->active_vlans)) {
6125 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6126 		if (err)
6127 			return err;
6128 	}
6129 
6130 	err = igb_vfta_set(hw, vid, vf, add, false);
6131 
6132 	if (add && !err)
6133 		return err;
6134 
6135 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6136 	 * we may need to drop the PF pool bit in order to allow us to free
6137 	 * up the VLVF resources.
6138 	 */
6139 	if (test_bit(vid, adapter->active_vlans) ||
6140 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6141 		igb_update_pf_vlvf(adapter, vid);
6142 
6143 	return err;
6144 }
6145 
6146 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6147 {
6148 	struct e1000_hw *hw = &adapter->hw;
6149 
6150 	if (vid)
6151 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6152 	else
6153 		wr32(E1000_VMVIR(vf), 0);
6154 }
6155 
6156 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6157 				u16 vlan, u8 qos)
6158 {
6159 	int err;
6160 
6161 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6162 	if (err)
6163 		return err;
6164 
6165 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6166 	igb_set_vmolr(adapter, vf, !vlan);
6167 
6168 	/* revoke access to previous VLAN */
6169 	if (vlan != adapter->vf_data[vf].pf_vlan)
6170 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6171 				false, vf);
6172 
6173 	adapter->vf_data[vf].pf_vlan = vlan;
6174 	adapter->vf_data[vf].pf_qos = qos;
6175 	igb_set_vf_vlan_strip(adapter, vf, true);
6176 	dev_info(&adapter->pdev->dev,
6177 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6178 	if (test_bit(__IGB_DOWN, &adapter->state)) {
6179 		dev_warn(&adapter->pdev->dev,
6180 			 "The VF VLAN has been set, but the PF device is not up.\n");
6181 		dev_warn(&adapter->pdev->dev,
6182 			 "Bring the PF device up before attempting to use the VF device.\n");
6183 	}
6184 
6185 	return err;
6186 }
6187 
6188 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6189 {
6190 	/* Restore tagless access via VLAN 0 */
6191 	igb_set_vf_vlan(adapter, 0, true, vf);
6192 
6193 	igb_set_vmvir(adapter, 0, vf);
6194 	igb_set_vmolr(adapter, vf, true);
6195 
6196 	/* Remove any PF assigned VLAN */
6197 	if (adapter->vf_data[vf].pf_vlan)
6198 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6199 				false, vf);
6200 
6201 	adapter->vf_data[vf].pf_vlan = 0;
6202 	adapter->vf_data[vf].pf_qos = 0;
6203 	igb_set_vf_vlan_strip(adapter, vf, false);
6204 
6205 	return 0;
6206 }
6207 
6208 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6209 			       int vf, u16 vlan, u8 qos)
6210 {
6211 	struct igb_adapter *adapter = netdev_priv(netdev);
6212 
6213 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6214 		return -EINVAL;
6215 
6216 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6217 			       igb_disable_port_vlan(adapter, vf);
6218 }
6219 
6220 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6221 {
6222 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6223 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6224 	int ret;
6225 
6226 	if (adapter->vf_data[vf].pf_vlan)
6227 		return -1;
6228 
6229 	/* VLAN 0 is a special case, don't allow it to be removed */
6230 	if (!vid && !add)
6231 		return 0;
6232 
6233 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6234 	if (!ret)
6235 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
6236 	return ret;
6237 }
6238 
6239 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6240 {
6241 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6242 
6243 	/* clear flags - except flag that indicates PF has set the MAC */
6244 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6245 	vf_data->last_nack = jiffies;
6246 
6247 	/* reset vlans for device */
6248 	igb_clear_vf_vfta(adapter, vf);
6249 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6250 	igb_set_vmvir(adapter, vf_data->pf_vlan |
6251 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6252 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6253 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6254 
6255 	/* reset multicast table array for vf */
6256 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6257 
6258 	/* Flush and reset the mta with the new values */
6259 	igb_set_rx_mode(adapter->netdev);
6260 }
6261 
6262 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6263 {
6264 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6265 
6266 	/* clear mac address as we were hotplug removed/added */
6267 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6268 		eth_zero_addr(vf_mac);
6269 
6270 	/* process remaining reset events */
6271 	igb_vf_reset(adapter, vf);
6272 }
6273 
6274 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6275 {
6276 	struct e1000_hw *hw = &adapter->hw;
6277 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6278 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6279 	u32 reg, msgbuf[3];
6280 	u8 *addr = (u8 *)(&msgbuf[1]);
6281 
6282 	/* process all the same items cleared in a function level reset */
6283 	igb_vf_reset(adapter, vf);
6284 
6285 	/* set vf mac address */
6286 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6287 
6288 	/* enable transmit and receive for vf */
6289 	reg = rd32(E1000_VFTE);
6290 	wr32(E1000_VFTE, reg | BIT(vf));
6291 	reg = rd32(E1000_VFRE);
6292 	wr32(E1000_VFRE, reg | BIT(vf));
6293 
6294 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6295 
6296 	/* reply to reset with ack and vf mac address */
6297 	if (!is_zero_ether_addr(vf_mac)) {
6298 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6299 		memcpy(addr, vf_mac, ETH_ALEN);
6300 	} else {
6301 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6302 	}
6303 	igb_write_mbx(hw, msgbuf, 3, vf);
6304 }
6305 
6306 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6307 {
6308 	/* The VF MAC Address is stored in a packed array of bytes
6309 	 * starting at the second 32 bit word of the msg array
6310 	 */
6311 	unsigned char *addr = (char *)&msg[1];
6312 	int err = -1;
6313 
6314 	if (is_valid_ether_addr(addr))
6315 		err = igb_set_vf_mac(adapter, vf, addr);
6316 
6317 	return err;
6318 }
6319 
6320 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6321 {
6322 	struct e1000_hw *hw = &adapter->hw;
6323 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6324 	u32 msg = E1000_VT_MSGTYPE_NACK;
6325 
6326 	/* if device isn't clear to send it shouldn't be reading either */
6327 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6328 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6329 		igb_write_mbx(hw, &msg, 1, vf);
6330 		vf_data->last_nack = jiffies;
6331 	}
6332 }
6333 
6334 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6335 {
6336 	struct pci_dev *pdev = adapter->pdev;
6337 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6338 	struct e1000_hw *hw = &adapter->hw;
6339 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6340 	s32 retval;
6341 
6342 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6343 
6344 	if (retval) {
6345 		/* if receive failed revoke VF CTS stats and restart init */
6346 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6347 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6348 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6349 			return;
6350 		goto out;
6351 	}
6352 
6353 	/* this is a message we already processed, do nothing */
6354 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6355 		return;
6356 
6357 	/* until the vf completes a reset it should not be
6358 	 * allowed to start any configuration.
6359 	 */
6360 	if (msgbuf[0] == E1000_VF_RESET) {
6361 		igb_vf_reset_msg(adapter, vf);
6362 		return;
6363 	}
6364 
6365 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6366 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6367 			return;
6368 		retval = -1;
6369 		goto out;
6370 	}
6371 
6372 	switch ((msgbuf[0] & 0xFFFF)) {
6373 	case E1000_VF_SET_MAC_ADDR:
6374 		retval = -EINVAL;
6375 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6376 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6377 		else
6378 			dev_warn(&pdev->dev,
6379 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6380 				 vf);
6381 		break;
6382 	case E1000_VF_SET_PROMISC:
6383 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6384 		break;
6385 	case E1000_VF_SET_MULTICAST:
6386 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6387 		break;
6388 	case E1000_VF_SET_LPE:
6389 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6390 		break;
6391 	case E1000_VF_SET_VLAN:
6392 		retval = -1;
6393 		if (vf_data->pf_vlan)
6394 			dev_warn(&pdev->dev,
6395 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6396 				 vf);
6397 		else
6398 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6399 		break;
6400 	default:
6401 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6402 		retval = -1;
6403 		break;
6404 	}
6405 
6406 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6407 out:
6408 	/* notify the VF of the results of what it sent us */
6409 	if (retval)
6410 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6411 	else
6412 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6413 
6414 	igb_write_mbx(hw, msgbuf, 1, vf);
6415 }
6416 
6417 static void igb_msg_task(struct igb_adapter *adapter)
6418 {
6419 	struct e1000_hw *hw = &adapter->hw;
6420 	u32 vf;
6421 
6422 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6423 		/* process any reset requests */
6424 		if (!igb_check_for_rst(hw, vf))
6425 			igb_vf_reset_event(adapter, vf);
6426 
6427 		/* process any messages pending */
6428 		if (!igb_check_for_msg(hw, vf))
6429 			igb_rcv_msg_from_vf(adapter, vf);
6430 
6431 		/* process any acks */
6432 		if (!igb_check_for_ack(hw, vf))
6433 			igb_rcv_ack_from_vf(adapter, vf);
6434 	}
6435 }
6436 
6437 /**
6438  *  igb_set_uta - Set unicast filter table address
6439  *  @adapter: board private structure
6440  *  @set: boolean indicating if we are setting or clearing bits
6441  *
6442  *  The unicast table address is a register array of 32-bit registers.
6443  *  The table is meant to be used in a way similar to how the MTA is used
6444  *  however due to certain limitations in the hardware it is necessary to
6445  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6446  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6447  **/
6448 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6449 {
6450 	struct e1000_hw *hw = &adapter->hw;
6451 	u32 uta = set ? ~0 : 0;
6452 	int i;
6453 
6454 	/* we only need to do this if VMDq is enabled */
6455 	if (!adapter->vfs_allocated_count)
6456 		return;
6457 
6458 	for (i = hw->mac.uta_reg_count; i--;)
6459 		array_wr32(E1000_UTA, i, uta);
6460 }
6461 
6462 /**
6463  *  igb_intr_msi - Interrupt Handler
6464  *  @irq: interrupt number
6465  *  @data: pointer to a network interface device structure
6466  **/
6467 static irqreturn_t igb_intr_msi(int irq, void *data)
6468 {
6469 	struct igb_adapter *adapter = data;
6470 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6471 	struct e1000_hw *hw = &adapter->hw;
6472 	/* read ICR disables interrupts using IAM */
6473 	u32 icr = rd32(E1000_ICR);
6474 
6475 	igb_write_itr(q_vector);
6476 
6477 	if (icr & E1000_ICR_DRSTA)
6478 		schedule_work(&adapter->reset_task);
6479 
6480 	if (icr & E1000_ICR_DOUTSYNC) {
6481 		/* HW is reporting DMA is out of sync */
6482 		adapter->stats.doosync++;
6483 	}
6484 
6485 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6486 		hw->mac.get_link_status = 1;
6487 		if (!test_bit(__IGB_DOWN, &adapter->state))
6488 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6489 	}
6490 
6491 	if (icr & E1000_ICR_TS)
6492 		igb_tsync_interrupt(adapter);
6493 
6494 	napi_schedule(&q_vector->napi);
6495 
6496 	return IRQ_HANDLED;
6497 }
6498 
6499 /**
6500  *  igb_intr - Legacy Interrupt Handler
6501  *  @irq: interrupt number
6502  *  @data: pointer to a network interface device structure
6503  **/
6504 static irqreturn_t igb_intr(int irq, void *data)
6505 {
6506 	struct igb_adapter *adapter = data;
6507 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6508 	struct e1000_hw *hw = &adapter->hw;
6509 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6510 	 * need for the IMC write
6511 	 */
6512 	u32 icr = rd32(E1000_ICR);
6513 
6514 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6515 	 * not set, then the adapter didn't send an interrupt
6516 	 */
6517 	if (!(icr & E1000_ICR_INT_ASSERTED))
6518 		return IRQ_NONE;
6519 
6520 	igb_write_itr(q_vector);
6521 
6522 	if (icr & E1000_ICR_DRSTA)
6523 		schedule_work(&adapter->reset_task);
6524 
6525 	if (icr & E1000_ICR_DOUTSYNC) {
6526 		/* HW is reporting DMA is out of sync */
6527 		adapter->stats.doosync++;
6528 	}
6529 
6530 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6531 		hw->mac.get_link_status = 1;
6532 		/* guard against interrupt when we're going down */
6533 		if (!test_bit(__IGB_DOWN, &adapter->state))
6534 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6535 	}
6536 
6537 	if (icr & E1000_ICR_TS)
6538 		igb_tsync_interrupt(adapter);
6539 
6540 	napi_schedule(&q_vector->napi);
6541 
6542 	return IRQ_HANDLED;
6543 }
6544 
6545 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6546 {
6547 	struct igb_adapter *adapter = q_vector->adapter;
6548 	struct e1000_hw *hw = &adapter->hw;
6549 
6550 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6551 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6552 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6553 			igb_set_itr(q_vector);
6554 		else
6555 			igb_update_ring_itr(q_vector);
6556 	}
6557 
6558 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6559 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6560 			wr32(E1000_EIMS, q_vector->eims_value);
6561 		else
6562 			igb_irq_enable(adapter);
6563 	}
6564 }
6565 
6566 /**
6567  *  igb_poll - NAPI Rx polling callback
6568  *  @napi: napi polling structure
6569  *  @budget: count of how many packets we should handle
6570  **/
6571 static int igb_poll(struct napi_struct *napi, int budget)
6572 {
6573 	struct igb_q_vector *q_vector = container_of(napi,
6574 						     struct igb_q_vector,
6575 						     napi);
6576 	bool clean_complete = true;
6577 	int work_done = 0;
6578 
6579 #ifdef CONFIG_IGB_DCA
6580 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6581 		igb_update_dca(q_vector);
6582 #endif
6583 	if (q_vector->tx.ring)
6584 		clean_complete = igb_clean_tx_irq(q_vector, budget);
6585 
6586 	if (q_vector->rx.ring) {
6587 		int cleaned = igb_clean_rx_irq(q_vector, budget);
6588 
6589 		work_done += cleaned;
6590 		if (cleaned >= budget)
6591 			clean_complete = false;
6592 	}
6593 
6594 	/* If all work not completed, return budget and keep polling */
6595 	if (!clean_complete)
6596 		return budget;
6597 
6598 	/* If not enough Rx work done, exit the polling mode */
6599 	napi_complete_done(napi, work_done);
6600 	igb_ring_irq_enable(q_vector);
6601 
6602 	return 0;
6603 }
6604 
6605 /**
6606  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6607  *  @q_vector: pointer to q_vector containing needed info
6608  *  @napi_budget: Used to determine if we are in netpoll
6609  *
6610  *  returns true if ring is completely cleaned
6611  **/
6612 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6613 {
6614 	struct igb_adapter *adapter = q_vector->adapter;
6615 	struct igb_ring *tx_ring = q_vector->tx.ring;
6616 	struct igb_tx_buffer *tx_buffer;
6617 	union e1000_adv_tx_desc *tx_desc;
6618 	unsigned int total_bytes = 0, total_packets = 0;
6619 	unsigned int budget = q_vector->tx.work_limit;
6620 	unsigned int i = tx_ring->next_to_clean;
6621 
6622 	if (test_bit(__IGB_DOWN, &adapter->state))
6623 		return true;
6624 
6625 	tx_buffer = &tx_ring->tx_buffer_info[i];
6626 	tx_desc = IGB_TX_DESC(tx_ring, i);
6627 	i -= tx_ring->count;
6628 
6629 	do {
6630 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6631 
6632 		/* if next_to_watch is not set then there is no work pending */
6633 		if (!eop_desc)
6634 			break;
6635 
6636 		/* prevent any other reads prior to eop_desc */
6637 		read_barrier_depends();
6638 
6639 		/* if DD is not set pending work has not been completed */
6640 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6641 			break;
6642 
6643 		/* clear next_to_watch to prevent false hangs */
6644 		tx_buffer->next_to_watch = NULL;
6645 
6646 		/* update the statistics for this packet */
6647 		total_bytes += tx_buffer->bytecount;
6648 		total_packets += tx_buffer->gso_segs;
6649 
6650 		/* free the skb */
6651 		napi_consume_skb(tx_buffer->skb, napi_budget);
6652 
6653 		/* unmap skb header data */
6654 		dma_unmap_single(tx_ring->dev,
6655 				 dma_unmap_addr(tx_buffer, dma),
6656 				 dma_unmap_len(tx_buffer, len),
6657 				 DMA_TO_DEVICE);
6658 
6659 		/* clear tx_buffer data */
6660 		tx_buffer->skb = NULL;
6661 		dma_unmap_len_set(tx_buffer, len, 0);
6662 
6663 		/* clear last DMA location and unmap remaining buffers */
6664 		while (tx_desc != eop_desc) {
6665 			tx_buffer++;
6666 			tx_desc++;
6667 			i++;
6668 			if (unlikely(!i)) {
6669 				i -= tx_ring->count;
6670 				tx_buffer = tx_ring->tx_buffer_info;
6671 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6672 			}
6673 
6674 			/* unmap any remaining paged data */
6675 			if (dma_unmap_len(tx_buffer, len)) {
6676 				dma_unmap_page(tx_ring->dev,
6677 					       dma_unmap_addr(tx_buffer, dma),
6678 					       dma_unmap_len(tx_buffer, len),
6679 					       DMA_TO_DEVICE);
6680 				dma_unmap_len_set(tx_buffer, len, 0);
6681 			}
6682 		}
6683 
6684 		/* move us one more past the eop_desc for start of next pkt */
6685 		tx_buffer++;
6686 		tx_desc++;
6687 		i++;
6688 		if (unlikely(!i)) {
6689 			i -= tx_ring->count;
6690 			tx_buffer = tx_ring->tx_buffer_info;
6691 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6692 		}
6693 
6694 		/* issue prefetch for next Tx descriptor */
6695 		prefetch(tx_desc);
6696 
6697 		/* update budget accounting */
6698 		budget--;
6699 	} while (likely(budget));
6700 
6701 	netdev_tx_completed_queue(txring_txq(tx_ring),
6702 				  total_packets, total_bytes);
6703 	i += tx_ring->count;
6704 	tx_ring->next_to_clean = i;
6705 	u64_stats_update_begin(&tx_ring->tx_syncp);
6706 	tx_ring->tx_stats.bytes += total_bytes;
6707 	tx_ring->tx_stats.packets += total_packets;
6708 	u64_stats_update_end(&tx_ring->tx_syncp);
6709 	q_vector->tx.total_bytes += total_bytes;
6710 	q_vector->tx.total_packets += total_packets;
6711 
6712 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6713 		struct e1000_hw *hw = &adapter->hw;
6714 
6715 		/* Detect a transmit hang in hardware, this serializes the
6716 		 * check with the clearing of time_stamp and movement of i
6717 		 */
6718 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6719 		if (tx_buffer->next_to_watch &&
6720 		    time_after(jiffies, tx_buffer->time_stamp +
6721 			       (adapter->tx_timeout_factor * HZ)) &&
6722 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6723 
6724 			/* detected Tx unit hang */
6725 			dev_err(tx_ring->dev,
6726 				"Detected Tx Unit Hang\n"
6727 				"  Tx Queue             <%d>\n"
6728 				"  TDH                  <%x>\n"
6729 				"  TDT                  <%x>\n"
6730 				"  next_to_use          <%x>\n"
6731 				"  next_to_clean        <%x>\n"
6732 				"buffer_info[next_to_clean]\n"
6733 				"  time_stamp           <%lx>\n"
6734 				"  next_to_watch        <%p>\n"
6735 				"  jiffies              <%lx>\n"
6736 				"  desc.status          <%x>\n",
6737 				tx_ring->queue_index,
6738 				rd32(E1000_TDH(tx_ring->reg_idx)),
6739 				readl(tx_ring->tail),
6740 				tx_ring->next_to_use,
6741 				tx_ring->next_to_clean,
6742 				tx_buffer->time_stamp,
6743 				tx_buffer->next_to_watch,
6744 				jiffies,
6745 				tx_buffer->next_to_watch->wb.status);
6746 			netif_stop_subqueue(tx_ring->netdev,
6747 					    tx_ring->queue_index);
6748 
6749 			/* we are about to reset, no point in enabling stuff */
6750 			return true;
6751 		}
6752 	}
6753 
6754 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6755 	if (unlikely(total_packets &&
6756 	    netif_carrier_ok(tx_ring->netdev) &&
6757 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6758 		/* Make sure that anybody stopping the queue after this
6759 		 * sees the new next_to_clean.
6760 		 */
6761 		smp_mb();
6762 		if (__netif_subqueue_stopped(tx_ring->netdev,
6763 					     tx_ring->queue_index) &&
6764 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6765 			netif_wake_subqueue(tx_ring->netdev,
6766 					    tx_ring->queue_index);
6767 
6768 			u64_stats_update_begin(&tx_ring->tx_syncp);
6769 			tx_ring->tx_stats.restart_queue++;
6770 			u64_stats_update_end(&tx_ring->tx_syncp);
6771 		}
6772 	}
6773 
6774 	return !!budget;
6775 }
6776 
6777 /**
6778  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6779  *  @rx_ring: rx descriptor ring to store buffers on
6780  *  @old_buff: donor buffer to have page reused
6781  *
6782  *  Synchronizes page for reuse by the adapter
6783  **/
6784 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6785 			      struct igb_rx_buffer *old_buff)
6786 {
6787 	struct igb_rx_buffer *new_buff;
6788 	u16 nta = rx_ring->next_to_alloc;
6789 
6790 	new_buff = &rx_ring->rx_buffer_info[nta];
6791 
6792 	/* update, and store next to alloc */
6793 	nta++;
6794 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6795 
6796 	/* transfer page from old buffer to new buffer */
6797 	*new_buff = *old_buff;
6798 
6799 	/* sync the buffer for use by the device */
6800 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6801 					 old_buff->page_offset,
6802 					 IGB_RX_BUFSZ,
6803 					 DMA_FROM_DEVICE);
6804 }
6805 
6806 static inline bool igb_page_is_reserved(struct page *page)
6807 {
6808 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6809 }
6810 
6811 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6812 				  struct page *page,
6813 				  unsigned int truesize)
6814 {
6815 	/* avoid re-using remote pages */
6816 	if (unlikely(igb_page_is_reserved(page)))
6817 		return false;
6818 
6819 #if (PAGE_SIZE < 8192)
6820 	/* if we are only owner of page we can reuse it */
6821 	if (unlikely(page_count(page) != 1))
6822 		return false;
6823 
6824 	/* flip page offset to other buffer */
6825 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6826 #else
6827 	/* move offset up to the next cache line */
6828 	rx_buffer->page_offset += truesize;
6829 
6830 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6831 		return false;
6832 #endif
6833 
6834 	/* Even if we own the page, we are not allowed to use atomic_set()
6835 	 * This would break get_page_unless_zero() users.
6836 	 */
6837 	page_ref_inc(page);
6838 
6839 	return true;
6840 }
6841 
6842 /**
6843  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6844  *  @rx_ring: rx descriptor ring to transact packets on
6845  *  @rx_buffer: buffer containing page to add
6846  *  @rx_desc: descriptor containing length of buffer written by hardware
6847  *  @skb: sk_buff to place the data into
6848  *
6849  *  This function will add the data contained in rx_buffer->page to the skb.
6850  *  This is done either through a direct copy if the data in the buffer is
6851  *  less than the skb header size, otherwise it will just attach the page as
6852  *  a frag to the skb.
6853  *
6854  *  The function will then update the page offset if necessary and return
6855  *  true if the buffer can be reused by the adapter.
6856  **/
6857 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6858 			    struct igb_rx_buffer *rx_buffer,
6859 			    unsigned int size,
6860 			    union e1000_adv_rx_desc *rx_desc,
6861 			    struct sk_buff *skb)
6862 {
6863 	struct page *page = rx_buffer->page;
6864 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
6865 #if (PAGE_SIZE < 8192)
6866 	unsigned int truesize = IGB_RX_BUFSZ;
6867 #else
6868 	unsigned int truesize = SKB_DATA_ALIGN(size);
6869 #endif
6870 	unsigned int pull_len;
6871 
6872 	if (unlikely(skb_is_nonlinear(skb)))
6873 		goto add_tail_frag;
6874 
6875 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6876 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6877 		va += IGB_TS_HDR_LEN;
6878 		size -= IGB_TS_HDR_LEN;
6879 	}
6880 
6881 	if (likely(size <= IGB_RX_HDR_LEN)) {
6882 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6883 
6884 		/* page is not reserved, we can reuse buffer as-is */
6885 		if (likely(!igb_page_is_reserved(page)))
6886 			return true;
6887 
6888 		/* this page cannot be reused so discard it */
6889 		__free_page(page);
6890 		return false;
6891 	}
6892 
6893 	/* we need the header to contain the greater of either ETH_HLEN or
6894 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6895 	 */
6896 	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6897 
6898 	/* align pull length to size of long to optimize memcpy performance */
6899 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6900 
6901 	/* update all of the pointers */
6902 	va += pull_len;
6903 	size -= pull_len;
6904 
6905 add_tail_frag:
6906 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6907 			(unsigned long)va & ~PAGE_MASK, size, truesize);
6908 
6909 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6910 }
6911 
6912 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6913 					   union e1000_adv_rx_desc *rx_desc,
6914 					   struct sk_buff *skb)
6915 {
6916 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6917 	struct igb_rx_buffer *rx_buffer;
6918 	struct page *page;
6919 
6920 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6921 	page = rx_buffer->page;
6922 	prefetchw(page);
6923 
6924 	if (likely(!skb)) {
6925 		void *page_addr = page_address(page) +
6926 				  rx_buffer->page_offset;
6927 
6928 		/* prefetch first cache line of first page */
6929 		prefetch(page_addr);
6930 #if L1_CACHE_BYTES < 128
6931 		prefetch(page_addr + L1_CACHE_BYTES);
6932 #endif
6933 
6934 		/* allocate a skb to store the frags */
6935 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6936 		if (unlikely(!skb)) {
6937 			rx_ring->rx_stats.alloc_failed++;
6938 			return NULL;
6939 		}
6940 
6941 		/* we will be copying header into skb->data in
6942 		 * pskb_may_pull so it is in our interest to prefetch
6943 		 * it now to avoid a possible cache miss
6944 		 */
6945 		prefetchw(skb->data);
6946 	}
6947 
6948 	/* we are reusing so sync this buffer for CPU use */
6949 	dma_sync_single_range_for_cpu(rx_ring->dev,
6950 				      rx_buffer->dma,
6951 				      rx_buffer->page_offset,
6952 				      size,
6953 				      DMA_FROM_DEVICE);
6954 
6955 	/* pull page into skb */
6956 	if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6957 		/* hand second half of page back to the ring */
6958 		igb_reuse_rx_page(rx_ring, rx_buffer);
6959 	} else {
6960 		/* we are not reusing the buffer so unmap it */
6961 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6962 			       PAGE_SIZE, DMA_FROM_DEVICE);
6963 	}
6964 
6965 	/* clear contents of rx_buffer */
6966 	rx_buffer->page = NULL;
6967 
6968 	return skb;
6969 }
6970 
6971 static inline void igb_rx_checksum(struct igb_ring *ring,
6972 				   union e1000_adv_rx_desc *rx_desc,
6973 				   struct sk_buff *skb)
6974 {
6975 	skb_checksum_none_assert(skb);
6976 
6977 	/* Ignore Checksum bit is set */
6978 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6979 		return;
6980 
6981 	/* Rx checksum disabled via ethtool */
6982 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6983 		return;
6984 
6985 	/* TCP/UDP checksum error bit is set */
6986 	if (igb_test_staterr(rx_desc,
6987 			     E1000_RXDEXT_STATERR_TCPE |
6988 			     E1000_RXDEXT_STATERR_IPE)) {
6989 		/* work around errata with sctp packets where the TCPE aka
6990 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6991 		 * packets, (aka let the stack check the crc32c)
6992 		 */
6993 		if (!((skb->len == 60) &&
6994 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6995 			u64_stats_update_begin(&ring->rx_syncp);
6996 			ring->rx_stats.csum_err++;
6997 			u64_stats_update_end(&ring->rx_syncp);
6998 		}
6999 		/* let the stack verify checksum errors */
7000 		return;
7001 	}
7002 	/* It must be a TCP or UDP packet with a valid checksum */
7003 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7004 				      E1000_RXD_STAT_UDPCS))
7005 		skb->ip_summed = CHECKSUM_UNNECESSARY;
7006 
7007 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
7008 		le32_to_cpu(rx_desc->wb.upper.status_error));
7009 }
7010 
7011 static inline void igb_rx_hash(struct igb_ring *ring,
7012 			       union e1000_adv_rx_desc *rx_desc,
7013 			       struct sk_buff *skb)
7014 {
7015 	if (ring->netdev->features & NETIF_F_RXHASH)
7016 		skb_set_hash(skb,
7017 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7018 			     PKT_HASH_TYPE_L3);
7019 }
7020 
7021 /**
7022  *  igb_is_non_eop - process handling of non-EOP buffers
7023  *  @rx_ring: Rx ring being processed
7024  *  @rx_desc: Rx descriptor for current buffer
7025  *  @skb: current socket buffer containing buffer in progress
7026  *
7027  *  This function updates next to clean.  If the buffer is an EOP buffer
7028  *  this function exits returning false, otherwise it will place the
7029  *  sk_buff in the next buffer to be chained and return true indicating
7030  *  that this is in fact a non-EOP buffer.
7031  **/
7032 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7033 			   union e1000_adv_rx_desc *rx_desc)
7034 {
7035 	u32 ntc = rx_ring->next_to_clean + 1;
7036 
7037 	/* fetch, update, and store next to clean */
7038 	ntc = (ntc < rx_ring->count) ? ntc : 0;
7039 	rx_ring->next_to_clean = ntc;
7040 
7041 	prefetch(IGB_RX_DESC(rx_ring, ntc));
7042 
7043 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7044 		return false;
7045 
7046 	return true;
7047 }
7048 
7049 /**
7050  *  igb_cleanup_headers - Correct corrupted or empty headers
7051  *  @rx_ring: rx descriptor ring packet is being transacted on
7052  *  @rx_desc: pointer to the EOP Rx descriptor
7053  *  @skb: pointer to current skb being fixed
7054  *
7055  *  Address the case where we are pulling data in on pages only
7056  *  and as such no data is present in the skb header.
7057  *
7058  *  In addition if skb is not at least 60 bytes we need to pad it so that
7059  *  it is large enough to qualify as a valid Ethernet frame.
7060  *
7061  *  Returns true if an error was encountered and skb was freed.
7062  **/
7063 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7064 				union e1000_adv_rx_desc *rx_desc,
7065 				struct sk_buff *skb)
7066 {
7067 	if (unlikely((igb_test_staterr(rx_desc,
7068 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7069 		struct net_device *netdev = rx_ring->netdev;
7070 		if (!(netdev->features & NETIF_F_RXALL)) {
7071 			dev_kfree_skb_any(skb);
7072 			return true;
7073 		}
7074 	}
7075 
7076 	/* if eth_skb_pad returns an error the skb was freed */
7077 	if (eth_skb_pad(skb))
7078 		return true;
7079 
7080 	return false;
7081 }
7082 
7083 /**
7084  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7085  *  @rx_ring: rx descriptor ring packet is being transacted on
7086  *  @rx_desc: pointer to the EOP Rx descriptor
7087  *  @skb: pointer to current skb being populated
7088  *
7089  *  This function checks the ring, descriptor, and packet information in
7090  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7091  *  other fields within the skb.
7092  **/
7093 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7094 				   union e1000_adv_rx_desc *rx_desc,
7095 				   struct sk_buff *skb)
7096 {
7097 	struct net_device *dev = rx_ring->netdev;
7098 
7099 	igb_rx_hash(rx_ring, rx_desc, skb);
7100 
7101 	igb_rx_checksum(rx_ring, rx_desc, skb);
7102 
7103 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7104 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7105 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7106 
7107 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7108 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7109 		u16 vid;
7110 
7111 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7112 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7113 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7114 		else
7115 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7116 
7117 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7118 	}
7119 
7120 	skb_record_rx_queue(skb, rx_ring->queue_index);
7121 
7122 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7123 }
7124 
7125 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7126 {
7127 	struct igb_ring *rx_ring = q_vector->rx.ring;
7128 	struct sk_buff *skb = rx_ring->skb;
7129 	unsigned int total_bytes = 0, total_packets = 0;
7130 	u16 cleaned_count = igb_desc_unused(rx_ring);
7131 
7132 	while (likely(total_packets < budget)) {
7133 		union e1000_adv_rx_desc *rx_desc;
7134 
7135 		/* return some buffers to hardware, one at a time is too slow */
7136 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7137 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7138 			cleaned_count = 0;
7139 		}
7140 
7141 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7142 
7143 		if (!rx_desc->wb.upper.status_error)
7144 			break;
7145 
7146 		/* This memory barrier is needed to keep us from reading
7147 		 * any other fields out of the rx_desc until we know the
7148 		 * descriptor has been written back
7149 		 */
7150 		dma_rmb();
7151 
7152 		/* retrieve a buffer from the ring */
7153 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7154 
7155 		/* exit if we failed to retrieve a buffer */
7156 		if (!skb)
7157 			break;
7158 
7159 		cleaned_count++;
7160 
7161 		/* fetch next buffer in frame if non-eop */
7162 		if (igb_is_non_eop(rx_ring, rx_desc))
7163 			continue;
7164 
7165 		/* verify the packet layout is correct */
7166 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7167 			skb = NULL;
7168 			continue;
7169 		}
7170 
7171 		/* probably a little skewed due to removing CRC */
7172 		total_bytes += skb->len;
7173 
7174 		/* populate checksum, timestamp, VLAN, and protocol */
7175 		igb_process_skb_fields(rx_ring, rx_desc, skb);
7176 
7177 		napi_gro_receive(&q_vector->napi, skb);
7178 
7179 		/* reset skb pointer */
7180 		skb = NULL;
7181 
7182 		/* update budget accounting */
7183 		total_packets++;
7184 	}
7185 
7186 	/* place incomplete frames back on ring for completion */
7187 	rx_ring->skb = skb;
7188 
7189 	u64_stats_update_begin(&rx_ring->rx_syncp);
7190 	rx_ring->rx_stats.packets += total_packets;
7191 	rx_ring->rx_stats.bytes += total_bytes;
7192 	u64_stats_update_end(&rx_ring->rx_syncp);
7193 	q_vector->rx.total_packets += total_packets;
7194 	q_vector->rx.total_bytes += total_bytes;
7195 
7196 	if (cleaned_count)
7197 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7198 
7199 	return total_packets;
7200 }
7201 
7202 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7203 				  struct igb_rx_buffer *bi)
7204 {
7205 	struct page *page = bi->page;
7206 	dma_addr_t dma;
7207 
7208 	/* since we are recycling buffers we should seldom need to alloc */
7209 	if (likely(page))
7210 		return true;
7211 
7212 	/* alloc new page for storage */
7213 	page = dev_alloc_page();
7214 	if (unlikely(!page)) {
7215 		rx_ring->rx_stats.alloc_failed++;
7216 		return false;
7217 	}
7218 
7219 	/* map page for use */
7220 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7221 
7222 	/* if mapping failed free memory back to system since
7223 	 * there isn't much point in holding memory we can't use
7224 	 */
7225 	if (dma_mapping_error(rx_ring->dev, dma)) {
7226 		__free_page(page);
7227 
7228 		rx_ring->rx_stats.alloc_failed++;
7229 		return false;
7230 	}
7231 
7232 	bi->dma = dma;
7233 	bi->page = page;
7234 	bi->page_offset = 0;
7235 
7236 	return true;
7237 }
7238 
7239 /**
7240  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7241  *  @adapter: address of board private structure
7242  **/
7243 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7244 {
7245 	union e1000_adv_rx_desc *rx_desc;
7246 	struct igb_rx_buffer *bi;
7247 	u16 i = rx_ring->next_to_use;
7248 
7249 	/* nothing to do */
7250 	if (!cleaned_count)
7251 		return;
7252 
7253 	rx_desc = IGB_RX_DESC(rx_ring, i);
7254 	bi = &rx_ring->rx_buffer_info[i];
7255 	i -= rx_ring->count;
7256 
7257 	do {
7258 		if (!igb_alloc_mapped_page(rx_ring, bi))
7259 			break;
7260 
7261 		/* Refresh the desc even if buffer_addrs didn't change
7262 		 * because each write-back erases this info.
7263 		 */
7264 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7265 
7266 		rx_desc++;
7267 		bi++;
7268 		i++;
7269 		if (unlikely(!i)) {
7270 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7271 			bi = rx_ring->rx_buffer_info;
7272 			i -= rx_ring->count;
7273 		}
7274 
7275 		/* clear the status bits for the next_to_use descriptor */
7276 		rx_desc->wb.upper.status_error = 0;
7277 
7278 		cleaned_count--;
7279 	} while (cleaned_count);
7280 
7281 	i += rx_ring->count;
7282 
7283 	if (rx_ring->next_to_use != i) {
7284 		/* record the next descriptor to use */
7285 		rx_ring->next_to_use = i;
7286 
7287 		/* update next to alloc since we have filled the ring */
7288 		rx_ring->next_to_alloc = i;
7289 
7290 		/* Force memory writes to complete before letting h/w
7291 		 * know there are new descriptors to fetch.  (Only
7292 		 * applicable for weak-ordered memory model archs,
7293 		 * such as IA-64).
7294 		 */
7295 		wmb();
7296 		writel(i, rx_ring->tail);
7297 	}
7298 }
7299 
7300 /**
7301  * igb_mii_ioctl -
7302  * @netdev:
7303  * @ifreq:
7304  * @cmd:
7305  **/
7306 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7307 {
7308 	struct igb_adapter *adapter = netdev_priv(netdev);
7309 	struct mii_ioctl_data *data = if_mii(ifr);
7310 
7311 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7312 		return -EOPNOTSUPP;
7313 
7314 	switch (cmd) {
7315 	case SIOCGMIIPHY:
7316 		data->phy_id = adapter->hw.phy.addr;
7317 		break;
7318 	case SIOCGMIIREG:
7319 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7320 				     &data->val_out))
7321 			return -EIO;
7322 		break;
7323 	case SIOCSMIIREG:
7324 	default:
7325 		return -EOPNOTSUPP;
7326 	}
7327 	return 0;
7328 }
7329 
7330 /**
7331  * igb_ioctl -
7332  * @netdev:
7333  * @ifreq:
7334  * @cmd:
7335  **/
7336 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7337 {
7338 	switch (cmd) {
7339 	case SIOCGMIIPHY:
7340 	case SIOCGMIIREG:
7341 	case SIOCSMIIREG:
7342 		return igb_mii_ioctl(netdev, ifr, cmd);
7343 	case SIOCGHWTSTAMP:
7344 		return igb_ptp_get_ts_config(netdev, ifr);
7345 	case SIOCSHWTSTAMP:
7346 		return igb_ptp_set_ts_config(netdev, ifr);
7347 	default:
7348 		return -EOPNOTSUPP;
7349 	}
7350 }
7351 
7352 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7353 {
7354 	struct igb_adapter *adapter = hw->back;
7355 
7356 	pci_read_config_word(adapter->pdev, reg, value);
7357 }
7358 
7359 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7360 {
7361 	struct igb_adapter *adapter = hw->back;
7362 
7363 	pci_write_config_word(adapter->pdev, reg, *value);
7364 }
7365 
7366 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7367 {
7368 	struct igb_adapter *adapter = hw->back;
7369 
7370 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7371 		return -E1000_ERR_CONFIG;
7372 
7373 	return 0;
7374 }
7375 
7376 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7377 {
7378 	struct igb_adapter *adapter = hw->back;
7379 
7380 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7381 		return -E1000_ERR_CONFIG;
7382 
7383 	return 0;
7384 }
7385 
7386 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7387 {
7388 	struct igb_adapter *adapter = netdev_priv(netdev);
7389 	struct e1000_hw *hw = &adapter->hw;
7390 	u32 ctrl, rctl;
7391 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7392 
7393 	if (enable) {
7394 		/* enable VLAN tag insert/strip */
7395 		ctrl = rd32(E1000_CTRL);
7396 		ctrl |= E1000_CTRL_VME;
7397 		wr32(E1000_CTRL, ctrl);
7398 
7399 		/* Disable CFI check */
7400 		rctl = rd32(E1000_RCTL);
7401 		rctl &= ~E1000_RCTL_CFIEN;
7402 		wr32(E1000_RCTL, rctl);
7403 	} else {
7404 		/* disable VLAN tag insert/strip */
7405 		ctrl = rd32(E1000_CTRL);
7406 		ctrl &= ~E1000_CTRL_VME;
7407 		wr32(E1000_CTRL, ctrl);
7408 	}
7409 
7410 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7411 }
7412 
7413 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7414 			       __be16 proto, u16 vid)
7415 {
7416 	struct igb_adapter *adapter = netdev_priv(netdev);
7417 	struct e1000_hw *hw = &adapter->hw;
7418 	int pf_id = adapter->vfs_allocated_count;
7419 
7420 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7421 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7422 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
7423 
7424 	set_bit(vid, adapter->active_vlans);
7425 
7426 	return 0;
7427 }
7428 
7429 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7430 				__be16 proto, u16 vid)
7431 {
7432 	struct igb_adapter *adapter = netdev_priv(netdev);
7433 	int pf_id = adapter->vfs_allocated_count;
7434 	struct e1000_hw *hw = &adapter->hw;
7435 
7436 	/* remove VID from filter table */
7437 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7438 		igb_vfta_set(hw, vid, pf_id, false, true);
7439 
7440 	clear_bit(vid, adapter->active_vlans);
7441 
7442 	return 0;
7443 }
7444 
7445 static void igb_restore_vlan(struct igb_adapter *adapter)
7446 {
7447 	u16 vid = 1;
7448 
7449 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7450 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7451 
7452 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7453 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7454 }
7455 
7456 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7457 {
7458 	struct pci_dev *pdev = adapter->pdev;
7459 	struct e1000_mac_info *mac = &adapter->hw.mac;
7460 
7461 	mac->autoneg = 0;
7462 
7463 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7464 	 * for the switch() below to work
7465 	 */
7466 	if ((spd & 1) || (dplx & ~1))
7467 		goto err_inval;
7468 
7469 	/* Fiber NIC's only allow 1000 gbps Full duplex
7470 	 * and 100Mbps Full duplex for 100baseFx sfp
7471 	 */
7472 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7473 		switch (spd + dplx) {
7474 		case SPEED_10 + DUPLEX_HALF:
7475 		case SPEED_10 + DUPLEX_FULL:
7476 		case SPEED_100 + DUPLEX_HALF:
7477 			goto err_inval;
7478 		default:
7479 			break;
7480 		}
7481 	}
7482 
7483 	switch (spd + dplx) {
7484 	case SPEED_10 + DUPLEX_HALF:
7485 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7486 		break;
7487 	case SPEED_10 + DUPLEX_FULL:
7488 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7489 		break;
7490 	case SPEED_100 + DUPLEX_HALF:
7491 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7492 		break;
7493 	case SPEED_100 + DUPLEX_FULL:
7494 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7495 		break;
7496 	case SPEED_1000 + DUPLEX_FULL:
7497 		mac->autoneg = 1;
7498 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7499 		break;
7500 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7501 	default:
7502 		goto err_inval;
7503 	}
7504 
7505 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7506 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7507 
7508 	return 0;
7509 
7510 err_inval:
7511 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7512 	return -EINVAL;
7513 }
7514 
7515 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7516 			  bool runtime)
7517 {
7518 	struct net_device *netdev = pci_get_drvdata(pdev);
7519 	struct igb_adapter *adapter = netdev_priv(netdev);
7520 	struct e1000_hw *hw = &adapter->hw;
7521 	u32 ctrl, rctl, status;
7522 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7523 #ifdef CONFIG_PM
7524 	int retval = 0;
7525 #endif
7526 
7527 	netif_device_detach(netdev);
7528 
7529 	if (netif_running(netdev))
7530 		__igb_close(netdev, true);
7531 
7532 	igb_ptp_suspend(adapter);
7533 
7534 	igb_clear_interrupt_scheme(adapter);
7535 
7536 #ifdef CONFIG_PM
7537 	retval = pci_save_state(pdev);
7538 	if (retval)
7539 		return retval;
7540 #endif
7541 
7542 	status = rd32(E1000_STATUS);
7543 	if (status & E1000_STATUS_LU)
7544 		wufc &= ~E1000_WUFC_LNKC;
7545 
7546 	if (wufc) {
7547 		igb_setup_rctl(adapter);
7548 		igb_set_rx_mode(netdev);
7549 
7550 		/* turn on all-multi mode if wake on multicast is enabled */
7551 		if (wufc & E1000_WUFC_MC) {
7552 			rctl = rd32(E1000_RCTL);
7553 			rctl |= E1000_RCTL_MPE;
7554 			wr32(E1000_RCTL, rctl);
7555 		}
7556 
7557 		ctrl = rd32(E1000_CTRL);
7558 		/* advertise wake from D3Cold */
7559 		#define E1000_CTRL_ADVD3WUC 0x00100000
7560 		/* phy power management enable */
7561 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7562 		ctrl |= E1000_CTRL_ADVD3WUC;
7563 		wr32(E1000_CTRL, ctrl);
7564 
7565 		/* Allow time for pending master requests to run */
7566 		igb_disable_pcie_master(hw);
7567 
7568 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7569 		wr32(E1000_WUFC, wufc);
7570 	} else {
7571 		wr32(E1000_WUC, 0);
7572 		wr32(E1000_WUFC, 0);
7573 	}
7574 
7575 	*enable_wake = wufc || adapter->en_mng_pt;
7576 	if (!*enable_wake)
7577 		igb_power_down_link(adapter);
7578 	else
7579 		igb_power_up_link(adapter);
7580 
7581 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7582 	 * would have already happened in close and is redundant.
7583 	 */
7584 	igb_release_hw_control(adapter);
7585 
7586 	pci_disable_device(pdev);
7587 
7588 	return 0;
7589 }
7590 
7591 #ifdef CONFIG_PM
7592 #ifdef CONFIG_PM_SLEEP
7593 static int igb_suspend(struct device *dev)
7594 {
7595 	int retval;
7596 	bool wake;
7597 	struct pci_dev *pdev = to_pci_dev(dev);
7598 
7599 	retval = __igb_shutdown(pdev, &wake, 0);
7600 	if (retval)
7601 		return retval;
7602 
7603 	if (wake) {
7604 		pci_prepare_to_sleep(pdev);
7605 	} else {
7606 		pci_wake_from_d3(pdev, false);
7607 		pci_set_power_state(pdev, PCI_D3hot);
7608 	}
7609 
7610 	return 0;
7611 }
7612 #endif /* CONFIG_PM_SLEEP */
7613 
7614 static int igb_resume(struct device *dev)
7615 {
7616 	struct pci_dev *pdev = to_pci_dev(dev);
7617 	struct net_device *netdev = pci_get_drvdata(pdev);
7618 	struct igb_adapter *adapter = netdev_priv(netdev);
7619 	struct e1000_hw *hw = &adapter->hw;
7620 	u32 err;
7621 
7622 	pci_set_power_state(pdev, PCI_D0);
7623 	pci_restore_state(pdev);
7624 	pci_save_state(pdev);
7625 
7626 	if (!pci_device_is_present(pdev))
7627 		return -ENODEV;
7628 	err = pci_enable_device_mem(pdev);
7629 	if (err) {
7630 		dev_err(&pdev->dev,
7631 			"igb: Cannot enable PCI device from suspend\n");
7632 		return err;
7633 	}
7634 	pci_set_master(pdev);
7635 
7636 	pci_enable_wake(pdev, PCI_D3hot, 0);
7637 	pci_enable_wake(pdev, PCI_D3cold, 0);
7638 
7639 	if (igb_init_interrupt_scheme(adapter, true)) {
7640 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7641 		return -ENOMEM;
7642 	}
7643 
7644 	igb_reset(adapter);
7645 
7646 	/* let the f/w know that the h/w is now under the control of the
7647 	 * driver.
7648 	 */
7649 	igb_get_hw_control(adapter);
7650 
7651 	wr32(E1000_WUS, ~0);
7652 
7653 	if (netdev->flags & IFF_UP) {
7654 		rtnl_lock();
7655 		err = __igb_open(netdev, true);
7656 		rtnl_unlock();
7657 		if (err)
7658 			return err;
7659 	}
7660 
7661 	netif_device_attach(netdev);
7662 	return 0;
7663 }
7664 
7665 static int igb_runtime_idle(struct device *dev)
7666 {
7667 	struct pci_dev *pdev = to_pci_dev(dev);
7668 	struct net_device *netdev = pci_get_drvdata(pdev);
7669 	struct igb_adapter *adapter = netdev_priv(netdev);
7670 
7671 	if (!igb_has_link(adapter))
7672 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7673 
7674 	return -EBUSY;
7675 }
7676 
7677 static int igb_runtime_suspend(struct device *dev)
7678 {
7679 	struct pci_dev *pdev = to_pci_dev(dev);
7680 	int retval;
7681 	bool wake;
7682 
7683 	retval = __igb_shutdown(pdev, &wake, 1);
7684 	if (retval)
7685 		return retval;
7686 
7687 	if (wake) {
7688 		pci_prepare_to_sleep(pdev);
7689 	} else {
7690 		pci_wake_from_d3(pdev, false);
7691 		pci_set_power_state(pdev, PCI_D3hot);
7692 	}
7693 
7694 	return 0;
7695 }
7696 
7697 static int igb_runtime_resume(struct device *dev)
7698 {
7699 	return igb_resume(dev);
7700 }
7701 #endif /* CONFIG_PM */
7702 
7703 static void igb_shutdown(struct pci_dev *pdev)
7704 {
7705 	bool wake;
7706 
7707 	__igb_shutdown(pdev, &wake, 0);
7708 
7709 	if (system_state == SYSTEM_POWER_OFF) {
7710 		pci_wake_from_d3(pdev, wake);
7711 		pci_set_power_state(pdev, PCI_D3hot);
7712 	}
7713 }
7714 
7715 #ifdef CONFIG_PCI_IOV
7716 static int igb_sriov_reinit(struct pci_dev *dev)
7717 {
7718 	struct net_device *netdev = pci_get_drvdata(dev);
7719 	struct igb_adapter *adapter = netdev_priv(netdev);
7720 	struct pci_dev *pdev = adapter->pdev;
7721 
7722 	rtnl_lock();
7723 
7724 	if (netif_running(netdev))
7725 		igb_close(netdev);
7726 	else
7727 		igb_reset(adapter);
7728 
7729 	igb_clear_interrupt_scheme(adapter);
7730 
7731 	igb_init_queue_configuration(adapter);
7732 
7733 	if (igb_init_interrupt_scheme(adapter, true)) {
7734 		rtnl_unlock();
7735 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7736 		return -ENOMEM;
7737 	}
7738 
7739 	if (netif_running(netdev))
7740 		igb_open(netdev);
7741 
7742 	rtnl_unlock();
7743 
7744 	return 0;
7745 }
7746 
7747 static int igb_pci_disable_sriov(struct pci_dev *dev)
7748 {
7749 	int err = igb_disable_sriov(dev);
7750 
7751 	if (!err)
7752 		err = igb_sriov_reinit(dev);
7753 
7754 	return err;
7755 }
7756 
7757 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7758 {
7759 	int err = igb_enable_sriov(dev, num_vfs);
7760 
7761 	if (err)
7762 		goto out;
7763 
7764 	err = igb_sriov_reinit(dev);
7765 	if (!err)
7766 		return num_vfs;
7767 
7768 out:
7769 	return err;
7770 }
7771 
7772 #endif
7773 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7774 {
7775 #ifdef CONFIG_PCI_IOV
7776 	if (num_vfs == 0)
7777 		return igb_pci_disable_sriov(dev);
7778 	else
7779 		return igb_pci_enable_sriov(dev, num_vfs);
7780 #endif
7781 	return 0;
7782 }
7783 
7784 #ifdef CONFIG_NET_POLL_CONTROLLER
7785 /* Polling 'interrupt' - used by things like netconsole to send skbs
7786  * without having to re-enable interrupts. It's not called while
7787  * the interrupt routine is executing.
7788  */
7789 static void igb_netpoll(struct net_device *netdev)
7790 {
7791 	struct igb_adapter *adapter = netdev_priv(netdev);
7792 	struct e1000_hw *hw = &adapter->hw;
7793 	struct igb_q_vector *q_vector;
7794 	int i;
7795 
7796 	for (i = 0; i < adapter->num_q_vectors; i++) {
7797 		q_vector = adapter->q_vector[i];
7798 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7799 			wr32(E1000_EIMC, q_vector->eims_value);
7800 		else
7801 			igb_irq_disable(adapter);
7802 		napi_schedule(&q_vector->napi);
7803 	}
7804 }
7805 #endif /* CONFIG_NET_POLL_CONTROLLER */
7806 
7807 /**
7808  *  igb_io_error_detected - called when PCI error is detected
7809  *  @pdev: Pointer to PCI device
7810  *  @state: The current pci connection state
7811  *
7812  *  This function is called after a PCI bus error affecting
7813  *  this device has been detected.
7814  **/
7815 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7816 					      pci_channel_state_t state)
7817 {
7818 	struct net_device *netdev = pci_get_drvdata(pdev);
7819 	struct igb_adapter *adapter = netdev_priv(netdev);
7820 
7821 	netif_device_detach(netdev);
7822 
7823 	if (state == pci_channel_io_perm_failure)
7824 		return PCI_ERS_RESULT_DISCONNECT;
7825 
7826 	if (netif_running(netdev))
7827 		igb_down(adapter);
7828 	pci_disable_device(pdev);
7829 
7830 	/* Request a slot slot reset. */
7831 	return PCI_ERS_RESULT_NEED_RESET;
7832 }
7833 
7834 /**
7835  *  igb_io_slot_reset - called after the pci bus has been reset.
7836  *  @pdev: Pointer to PCI device
7837  *
7838  *  Restart the card from scratch, as if from a cold-boot. Implementation
7839  *  resembles the first-half of the igb_resume routine.
7840  **/
7841 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7842 {
7843 	struct net_device *netdev = pci_get_drvdata(pdev);
7844 	struct igb_adapter *adapter = netdev_priv(netdev);
7845 	struct e1000_hw *hw = &adapter->hw;
7846 	pci_ers_result_t result;
7847 	int err;
7848 
7849 	if (pci_enable_device_mem(pdev)) {
7850 		dev_err(&pdev->dev,
7851 			"Cannot re-enable PCI device after reset.\n");
7852 		result = PCI_ERS_RESULT_DISCONNECT;
7853 	} else {
7854 		pci_set_master(pdev);
7855 		pci_restore_state(pdev);
7856 		pci_save_state(pdev);
7857 
7858 		pci_enable_wake(pdev, PCI_D3hot, 0);
7859 		pci_enable_wake(pdev, PCI_D3cold, 0);
7860 
7861 		igb_reset(adapter);
7862 		wr32(E1000_WUS, ~0);
7863 		result = PCI_ERS_RESULT_RECOVERED;
7864 	}
7865 
7866 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7867 	if (err) {
7868 		dev_err(&pdev->dev,
7869 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7870 			err);
7871 		/* non-fatal, continue */
7872 	}
7873 
7874 	return result;
7875 }
7876 
7877 /**
7878  *  igb_io_resume - called when traffic can start flowing again.
7879  *  @pdev: Pointer to PCI device
7880  *
7881  *  This callback is called when the error recovery driver tells us that
7882  *  its OK to resume normal operation. Implementation resembles the
7883  *  second-half of the igb_resume routine.
7884  */
7885 static void igb_io_resume(struct pci_dev *pdev)
7886 {
7887 	struct net_device *netdev = pci_get_drvdata(pdev);
7888 	struct igb_adapter *adapter = netdev_priv(netdev);
7889 
7890 	if (netif_running(netdev)) {
7891 		if (igb_up(adapter)) {
7892 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7893 			return;
7894 		}
7895 	}
7896 
7897 	netif_device_attach(netdev);
7898 
7899 	/* let the f/w know that the h/w is now under the control of the
7900 	 * driver.
7901 	 */
7902 	igb_get_hw_control(adapter);
7903 }
7904 
7905 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7906 			     u8 qsel)
7907 {
7908 	struct e1000_hw *hw = &adapter->hw;
7909 	u32 rar_low, rar_high;
7910 
7911 	/* HW expects these to be in network order when they are plugged
7912 	 * into the registers which are little endian.  In order to guarantee
7913 	 * that ordering we need to do an leXX_to_cpup here in order to be
7914 	 * ready for the byteswap that occurs with writel
7915 	 */
7916 	rar_low = le32_to_cpup((__le32 *)(addr));
7917 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
7918 
7919 	/* Indicate to hardware the Address is Valid. */
7920 	rar_high |= E1000_RAH_AV;
7921 
7922 	if (hw->mac.type == e1000_82575)
7923 		rar_high |= E1000_RAH_POOL_1 * qsel;
7924 	else
7925 		rar_high |= E1000_RAH_POOL_1 << qsel;
7926 
7927 	wr32(E1000_RAL(index), rar_low);
7928 	wrfl();
7929 	wr32(E1000_RAH(index), rar_high);
7930 	wrfl();
7931 }
7932 
7933 static int igb_set_vf_mac(struct igb_adapter *adapter,
7934 			  int vf, unsigned char *mac_addr)
7935 {
7936 	struct e1000_hw *hw = &adapter->hw;
7937 	/* VF MAC addresses start at end of receive addresses and moves
7938 	 * towards the first, as a result a collision should not be possible
7939 	 */
7940 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7941 
7942 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7943 
7944 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7945 
7946 	return 0;
7947 }
7948 
7949 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7950 {
7951 	struct igb_adapter *adapter = netdev_priv(netdev);
7952 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7953 		return -EINVAL;
7954 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7955 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7956 	dev_info(&adapter->pdev->dev,
7957 		 "Reload the VF driver to make this change effective.");
7958 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7959 		dev_warn(&adapter->pdev->dev,
7960 			 "The VF MAC address has been set, but the PF device is not up.\n");
7961 		dev_warn(&adapter->pdev->dev,
7962 			 "Bring the PF device up before attempting to use the VF device.\n");
7963 	}
7964 	return igb_set_vf_mac(adapter, vf, mac);
7965 }
7966 
7967 static int igb_link_mbps(int internal_link_speed)
7968 {
7969 	switch (internal_link_speed) {
7970 	case SPEED_100:
7971 		return 100;
7972 	case SPEED_1000:
7973 		return 1000;
7974 	default:
7975 		return 0;
7976 	}
7977 }
7978 
7979 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7980 				  int link_speed)
7981 {
7982 	int rf_dec, rf_int;
7983 	u32 bcnrc_val;
7984 
7985 	if (tx_rate != 0) {
7986 		/* Calculate the rate factor values to set */
7987 		rf_int = link_speed / tx_rate;
7988 		rf_dec = (link_speed - (rf_int * tx_rate));
7989 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7990 			 tx_rate;
7991 
7992 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7993 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7994 			      E1000_RTTBCNRC_RF_INT_MASK);
7995 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7996 	} else {
7997 		bcnrc_val = 0;
7998 	}
7999 
8000 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8001 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8002 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8003 	 */
8004 	wr32(E1000_RTTBCNRM, 0x14);
8005 	wr32(E1000_RTTBCNRC, bcnrc_val);
8006 }
8007 
8008 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8009 {
8010 	int actual_link_speed, i;
8011 	bool reset_rate = false;
8012 
8013 	/* VF TX rate limit was not set or not supported */
8014 	if ((adapter->vf_rate_link_speed == 0) ||
8015 	    (adapter->hw.mac.type != e1000_82576))
8016 		return;
8017 
8018 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8019 	if (actual_link_speed != adapter->vf_rate_link_speed) {
8020 		reset_rate = true;
8021 		adapter->vf_rate_link_speed = 0;
8022 		dev_info(&adapter->pdev->dev,
8023 			 "Link speed has been changed. VF Transmit rate is disabled\n");
8024 	}
8025 
8026 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
8027 		if (reset_rate)
8028 			adapter->vf_data[i].tx_rate = 0;
8029 
8030 		igb_set_vf_rate_limit(&adapter->hw, i,
8031 				      adapter->vf_data[i].tx_rate,
8032 				      actual_link_speed);
8033 	}
8034 }
8035 
8036 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8037 			     int min_tx_rate, int max_tx_rate)
8038 {
8039 	struct igb_adapter *adapter = netdev_priv(netdev);
8040 	struct e1000_hw *hw = &adapter->hw;
8041 	int actual_link_speed;
8042 
8043 	if (hw->mac.type != e1000_82576)
8044 		return -EOPNOTSUPP;
8045 
8046 	if (min_tx_rate)
8047 		return -EINVAL;
8048 
8049 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8050 	if ((vf >= adapter->vfs_allocated_count) ||
8051 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8052 	    (max_tx_rate < 0) ||
8053 	    (max_tx_rate > actual_link_speed))
8054 		return -EINVAL;
8055 
8056 	adapter->vf_rate_link_speed = actual_link_speed;
8057 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8058 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8059 
8060 	return 0;
8061 }
8062 
8063 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8064 				   bool setting)
8065 {
8066 	struct igb_adapter *adapter = netdev_priv(netdev);
8067 	struct e1000_hw *hw = &adapter->hw;
8068 	u32 reg_val, reg_offset;
8069 
8070 	if (!adapter->vfs_allocated_count)
8071 		return -EOPNOTSUPP;
8072 
8073 	if (vf >= adapter->vfs_allocated_count)
8074 		return -EINVAL;
8075 
8076 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8077 	reg_val = rd32(reg_offset);
8078 	if (setting)
8079 		reg_val |= (BIT(vf) |
8080 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8081 	else
8082 		reg_val &= ~(BIT(vf) |
8083 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8084 	wr32(reg_offset, reg_val);
8085 
8086 	adapter->vf_data[vf].spoofchk_enabled = setting;
8087 	return 0;
8088 }
8089 
8090 static int igb_ndo_get_vf_config(struct net_device *netdev,
8091 				 int vf, struct ifla_vf_info *ivi)
8092 {
8093 	struct igb_adapter *adapter = netdev_priv(netdev);
8094 	if (vf >= adapter->vfs_allocated_count)
8095 		return -EINVAL;
8096 	ivi->vf = vf;
8097 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8098 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8099 	ivi->min_tx_rate = 0;
8100 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
8101 	ivi->qos = adapter->vf_data[vf].pf_qos;
8102 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8103 	return 0;
8104 }
8105 
8106 static void igb_vmm_control(struct igb_adapter *adapter)
8107 {
8108 	struct e1000_hw *hw = &adapter->hw;
8109 	u32 reg;
8110 
8111 	switch (hw->mac.type) {
8112 	case e1000_82575:
8113 	case e1000_i210:
8114 	case e1000_i211:
8115 	case e1000_i354:
8116 	default:
8117 		/* replication is not supported for 82575 */
8118 		return;
8119 	case e1000_82576:
8120 		/* notify HW that the MAC is adding vlan tags */
8121 		reg = rd32(E1000_DTXCTL);
8122 		reg |= E1000_DTXCTL_VLAN_ADDED;
8123 		wr32(E1000_DTXCTL, reg);
8124 		/* Fall through */
8125 	case e1000_82580:
8126 		/* enable replication vlan tag stripping */
8127 		reg = rd32(E1000_RPLOLR);
8128 		reg |= E1000_RPLOLR_STRVLAN;
8129 		wr32(E1000_RPLOLR, reg);
8130 		/* Fall through */
8131 	case e1000_i350:
8132 		/* none of the above registers are supported by i350 */
8133 		break;
8134 	}
8135 
8136 	if (adapter->vfs_allocated_count) {
8137 		igb_vmdq_set_loopback_pf(hw, true);
8138 		igb_vmdq_set_replication_pf(hw, true);
8139 		igb_vmdq_set_anti_spoofing_pf(hw, true,
8140 					      adapter->vfs_allocated_count);
8141 	} else {
8142 		igb_vmdq_set_loopback_pf(hw, false);
8143 		igb_vmdq_set_replication_pf(hw, false);
8144 	}
8145 }
8146 
8147 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8148 {
8149 	struct e1000_hw *hw = &adapter->hw;
8150 	u32 dmac_thr;
8151 	u16 hwm;
8152 
8153 	if (hw->mac.type > e1000_82580) {
8154 		if (adapter->flags & IGB_FLAG_DMAC) {
8155 			u32 reg;
8156 
8157 			/* force threshold to 0. */
8158 			wr32(E1000_DMCTXTH, 0);
8159 
8160 			/* DMA Coalescing high water mark needs to be greater
8161 			 * than the Rx threshold. Set hwm to PBA - max frame
8162 			 * size in 16B units, capping it at PBA - 6KB.
8163 			 */
8164 			hwm = 64 * (pba - 6);
8165 			reg = rd32(E1000_FCRTC);
8166 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8167 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8168 				& E1000_FCRTC_RTH_COAL_MASK);
8169 			wr32(E1000_FCRTC, reg);
8170 
8171 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8172 			 * frame size, capping it at PBA - 10KB.
8173 			 */
8174 			dmac_thr = pba - 10;
8175 			reg = rd32(E1000_DMACR);
8176 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8177 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8178 				& E1000_DMACR_DMACTHR_MASK);
8179 
8180 			/* transition to L0x or L1 if available..*/
8181 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8182 
8183 			/* watchdog timer= +-1000 usec in 32usec intervals */
8184 			reg |= (1000 >> 5);
8185 
8186 			/* Disable BMC-to-OS Watchdog Enable */
8187 			if (hw->mac.type != e1000_i354)
8188 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8189 
8190 			wr32(E1000_DMACR, reg);
8191 
8192 			/* no lower threshold to disable
8193 			 * coalescing(smart fifb)-UTRESH=0
8194 			 */
8195 			wr32(E1000_DMCRTRH, 0);
8196 
8197 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8198 
8199 			wr32(E1000_DMCTLX, reg);
8200 
8201 			/* free space in tx packet buffer to wake from
8202 			 * DMA coal
8203 			 */
8204 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8205 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8206 
8207 			/* make low power state decision controlled
8208 			 * by DMA coal
8209 			 */
8210 			reg = rd32(E1000_PCIEMISC);
8211 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8212 			wr32(E1000_PCIEMISC, reg);
8213 		} /* endif adapter->dmac is not disabled */
8214 	} else if (hw->mac.type == e1000_82580) {
8215 		u32 reg = rd32(E1000_PCIEMISC);
8216 
8217 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8218 		wr32(E1000_DMACR, 0);
8219 	}
8220 }
8221 
8222 /**
8223  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8224  *  @hw: pointer to hardware structure
8225  *  @byte_offset: byte offset to read
8226  *  @dev_addr: device address
8227  *  @data: value read
8228  *
8229  *  Performs byte read operation over I2C interface at
8230  *  a specified device address.
8231  **/
8232 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8233 		      u8 dev_addr, u8 *data)
8234 {
8235 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8236 	struct i2c_client *this_client = adapter->i2c_client;
8237 	s32 status;
8238 	u16 swfw_mask = 0;
8239 
8240 	if (!this_client)
8241 		return E1000_ERR_I2C;
8242 
8243 	swfw_mask = E1000_SWFW_PHY0_SM;
8244 
8245 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8246 		return E1000_ERR_SWFW_SYNC;
8247 
8248 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8249 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8250 
8251 	if (status < 0)
8252 		return E1000_ERR_I2C;
8253 	else {
8254 		*data = status;
8255 		return 0;
8256 	}
8257 }
8258 
8259 /**
8260  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8261  *  @hw: pointer to hardware structure
8262  *  @byte_offset: byte offset to write
8263  *  @dev_addr: device address
8264  *  @data: value to write
8265  *
8266  *  Performs byte write operation over I2C interface at
8267  *  a specified device address.
8268  **/
8269 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8270 		       u8 dev_addr, u8 data)
8271 {
8272 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8273 	struct i2c_client *this_client = adapter->i2c_client;
8274 	s32 status;
8275 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8276 
8277 	if (!this_client)
8278 		return E1000_ERR_I2C;
8279 
8280 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8281 		return E1000_ERR_SWFW_SYNC;
8282 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8283 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8284 
8285 	if (status)
8286 		return E1000_ERR_I2C;
8287 	else
8288 		return 0;
8289 
8290 }
8291 
8292 int igb_reinit_queues(struct igb_adapter *adapter)
8293 {
8294 	struct net_device *netdev = adapter->netdev;
8295 	struct pci_dev *pdev = adapter->pdev;
8296 	int err = 0;
8297 
8298 	if (netif_running(netdev))
8299 		igb_close(netdev);
8300 
8301 	igb_reset_interrupt_capability(adapter);
8302 
8303 	if (igb_init_interrupt_scheme(adapter, true)) {
8304 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8305 		return -ENOMEM;
8306 	}
8307 
8308 	if (netif_running(netdev))
8309 		err = igb_open(netdev);
8310 
8311 	return err;
8312 }
8313 /* igb_main.c */
8314