1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62 
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 5
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 				"Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 				"Copyright (c) 2007-2013 Intel Corporation.";
74 
75 static const struct e1000_info *igb_info_tbl[] = {
76 	[board_82575] = &e1000_82575_info,
77 };
78 
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115 	/* required last entry */
116 	{0, }
117 };
118 
119 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120 
121 void igb_reset(struct igb_adapter *);
122 static int igb_setup_all_tx_resources(struct igb_adapter *);
123 static int igb_setup_all_rx_resources(struct igb_adapter *);
124 static void igb_free_all_tx_resources(struct igb_adapter *);
125 static void igb_free_all_rx_resources(struct igb_adapter *);
126 static void igb_setup_mrqc(struct igb_adapter *);
127 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128 static void igb_remove(struct pci_dev *pdev);
129 static int igb_sw_init(struct igb_adapter *);
130 static int igb_open(struct net_device *);
131 static int igb_close(struct net_device *);
132 static void igb_configure(struct igb_adapter *);
133 static void igb_configure_tx(struct igb_adapter *);
134 static void igb_configure_rx(struct igb_adapter *);
135 static void igb_clean_all_tx_rings(struct igb_adapter *);
136 static void igb_clean_all_rx_rings(struct igb_adapter *);
137 static void igb_clean_tx_ring(struct igb_ring *);
138 static void igb_clean_rx_ring(struct igb_ring *);
139 static void igb_set_rx_mode(struct net_device *);
140 static void igb_update_phy_info(unsigned long);
141 static void igb_watchdog(unsigned long);
142 static void igb_watchdog_task(struct work_struct *);
143 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145 						 struct rtnl_link_stats64 *stats);
146 static int igb_change_mtu(struct net_device *, int);
147 static int igb_set_mac(struct net_device *, void *);
148 static void igb_set_uta(struct igb_adapter *adapter);
149 static irqreturn_t igb_intr(int irq, void *);
150 static irqreturn_t igb_intr_msi(int irq, void *);
151 static irqreturn_t igb_msix_other(int irq, void *);
152 static irqreturn_t igb_msix_ring(int irq, void *);
153 #ifdef CONFIG_IGB_DCA
154 static void igb_update_dca(struct igb_q_vector *);
155 static void igb_setup_dca(struct igb_adapter *);
156 #endif /* CONFIG_IGB_DCA */
157 static int igb_poll(struct napi_struct *, int);
158 static bool igb_clean_tx_irq(struct igb_q_vector *);
159 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161 static void igb_tx_timeout(struct net_device *);
162 static void igb_reset_task(struct work_struct *);
163 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166 static void igb_restore_vlan(struct igb_adapter *);
167 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 static void igb_ping_all_vfs(struct igb_adapter *);
169 static void igb_msg_task(struct igb_adapter *);
170 static void igb_vmm_control(struct igb_adapter *);
171 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175 			       int vf, u16 vlan, u8 qos);
176 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178 				   bool setting);
179 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180 				 struct ifla_vf_info *ivi);
181 static void igb_check_vf_rate_limit(struct igb_adapter *);
182 
183 #ifdef CONFIG_PCI_IOV
184 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
186 #endif
187 
188 #ifdef CONFIG_PM
189 #ifdef CONFIG_PM_SLEEP
190 static int igb_suspend(struct device *);
191 #endif
192 static int igb_resume(struct device *);
193 #ifdef CONFIG_PM_RUNTIME
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 #endif
198 static const struct dev_pm_ops igb_pm_ops = {
199 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
200 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
201 			igb_runtime_idle)
202 };
203 #endif
204 static void igb_shutdown(struct pci_dev *);
205 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
206 #ifdef CONFIG_IGB_DCA
207 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
208 static struct notifier_block dca_notifier = {
209 	.notifier_call	= igb_notify_dca,
210 	.next		= NULL,
211 	.priority	= 0
212 };
213 #endif
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 /* for netdump / net console */
216 static void igb_netpoll(struct net_device *);
217 #endif
218 #ifdef CONFIG_PCI_IOV
219 static unsigned int max_vfs = 0;
220 module_param(max_vfs, uint, 0);
221 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
222                  "per physical function");
223 #endif /* CONFIG_PCI_IOV */
224 
225 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
226 		     pci_channel_state_t);
227 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
228 static void igb_io_resume(struct pci_dev *);
229 
230 static const struct pci_error_handlers igb_err_handler = {
231 	.error_detected = igb_io_error_detected,
232 	.slot_reset = igb_io_slot_reset,
233 	.resume = igb_io_resume,
234 };
235 
236 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
237 
238 static struct pci_driver igb_driver = {
239 	.name     = igb_driver_name,
240 	.id_table = igb_pci_tbl,
241 	.probe    = igb_probe,
242 	.remove   = igb_remove,
243 #ifdef CONFIG_PM
244 	.driver.pm = &igb_pm_ops,
245 #endif
246 	.shutdown = igb_shutdown,
247 	.sriov_configure = igb_pci_sriov_configure,
248 	.err_handler = &igb_err_handler
249 };
250 
251 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
252 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
253 MODULE_LICENSE("GPL");
254 MODULE_VERSION(DRV_VERSION);
255 
256 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
257 static int debug = -1;
258 module_param(debug, int, 0);
259 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
260 
261 struct igb_reg_info {
262 	u32 ofs;
263 	char *name;
264 };
265 
266 static const struct igb_reg_info igb_reg_info_tbl[] = {
267 
268 	/* General Registers */
269 	{E1000_CTRL, "CTRL"},
270 	{E1000_STATUS, "STATUS"},
271 	{E1000_CTRL_EXT, "CTRL_EXT"},
272 
273 	/* Interrupt Registers */
274 	{E1000_ICR, "ICR"},
275 
276 	/* RX Registers */
277 	{E1000_RCTL, "RCTL"},
278 	{E1000_RDLEN(0), "RDLEN"},
279 	{E1000_RDH(0), "RDH"},
280 	{E1000_RDT(0), "RDT"},
281 	{E1000_RXDCTL(0), "RXDCTL"},
282 	{E1000_RDBAL(0), "RDBAL"},
283 	{E1000_RDBAH(0), "RDBAH"},
284 
285 	/* TX Registers */
286 	{E1000_TCTL, "TCTL"},
287 	{E1000_TDBAL(0), "TDBAL"},
288 	{E1000_TDBAH(0), "TDBAH"},
289 	{E1000_TDLEN(0), "TDLEN"},
290 	{E1000_TDH(0), "TDH"},
291 	{E1000_TDT(0), "TDT"},
292 	{E1000_TXDCTL(0), "TXDCTL"},
293 	{E1000_TDFH, "TDFH"},
294 	{E1000_TDFT, "TDFT"},
295 	{E1000_TDFHS, "TDFHS"},
296 	{E1000_TDFPC, "TDFPC"},
297 
298 	/* List Terminator */
299 	{}
300 };
301 
302 /* igb_regdump - register printout routine */
303 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
304 {
305 	int n = 0;
306 	char rname[16];
307 	u32 regs[8];
308 
309 	switch (reginfo->ofs) {
310 	case E1000_RDLEN(0):
311 		for (n = 0; n < 4; n++)
312 			regs[n] = rd32(E1000_RDLEN(n));
313 		break;
314 	case E1000_RDH(0):
315 		for (n = 0; n < 4; n++)
316 			regs[n] = rd32(E1000_RDH(n));
317 		break;
318 	case E1000_RDT(0):
319 		for (n = 0; n < 4; n++)
320 			regs[n] = rd32(E1000_RDT(n));
321 		break;
322 	case E1000_RXDCTL(0):
323 		for (n = 0; n < 4; n++)
324 			regs[n] = rd32(E1000_RXDCTL(n));
325 		break;
326 	case E1000_RDBAL(0):
327 		for (n = 0; n < 4; n++)
328 			regs[n] = rd32(E1000_RDBAL(n));
329 		break;
330 	case E1000_RDBAH(0):
331 		for (n = 0; n < 4; n++)
332 			regs[n] = rd32(E1000_RDBAH(n));
333 		break;
334 	case E1000_TDBAL(0):
335 		for (n = 0; n < 4; n++)
336 			regs[n] = rd32(E1000_RDBAL(n));
337 		break;
338 	case E1000_TDBAH(0):
339 		for (n = 0; n < 4; n++)
340 			regs[n] = rd32(E1000_TDBAH(n));
341 		break;
342 	case E1000_TDLEN(0):
343 		for (n = 0; n < 4; n++)
344 			regs[n] = rd32(E1000_TDLEN(n));
345 		break;
346 	case E1000_TDH(0):
347 		for (n = 0; n < 4; n++)
348 			regs[n] = rd32(E1000_TDH(n));
349 		break;
350 	case E1000_TDT(0):
351 		for (n = 0; n < 4; n++)
352 			regs[n] = rd32(E1000_TDT(n));
353 		break;
354 	case E1000_TXDCTL(0):
355 		for (n = 0; n < 4; n++)
356 			regs[n] = rd32(E1000_TXDCTL(n));
357 		break;
358 	default:
359 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
360 		return;
361 	}
362 
363 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
364 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
365 		regs[2], regs[3]);
366 }
367 
368 /* igb_dump - Print registers, Tx-rings and Rx-rings */
369 static void igb_dump(struct igb_adapter *adapter)
370 {
371 	struct net_device *netdev = adapter->netdev;
372 	struct e1000_hw *hw = &adapter->hw;
373 	struct igb_reg_info *reginfo;
374 	struct igb_ring *tx_ring;
375 	union e1000_adv_tx_desc *tx_desc;
376 	struct my_u0 { u64 a; u64 b; } *u0;
377 	struct igb_ring *rx_ring;
378 	union e1000_adv_rx_desc *rx_desc;
379 	u32 staterr;
380 	u16 i, n;
381 
382 	if (!netif_msg_hw(adapter))
383 		return;
384 
385 	/* Print netdevice Info */
386 	if (netdev) {
387 		dev_info(&adapter->pdev->dev, "Net device Info\n");
388 		pr_info("Device Name     state            trans_start      "
389 			"last_rx\n");
390 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
391 			netdev->state, netdev->trans_start, netdev->last_rx);
392 	}
393 
394 	/* Print Registers */
395 	dev_info(&adapter->pdev->dev, "Register Dump\n");
396 	pr_info(" Register Name   Value\n");
397 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
398 	     reginfo->name; reginfo++) {
399 		igb_regdump(hw, reginfo);
400 	}
401 
402 	/* Print TX Ring Summary */
403 	if (!netdev || !netif_running(netdev))
404 		goto exit;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
407 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
408 	for (n = 0; n < adapter->num_tx_queues; n++) {
409 		struct igb_tx_buffer *buffer_info;
410 		tx_ring = adapter->tx_ring[n];
411 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
412 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
413 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
414 			(u64)dma_unmap_addr(buffer_info, dma),
415 			dma_unmap_len(buffer_info, len),
416 			buffer_info->next_to_watch,
417 			(u64)buffer_info->time_stamp);
418 	}
419 
420 	/* Print TX Rings */
421 	if (!netif_msg_tx_done(adapter))
422 		goto rx_ring_summary;
423 
424 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
425 
426 	/* Transmit Descriptor Formats
427 	 *
428 	 * Advanced Transmit Descriptor
429 	 *   +--------------------------------------------------------------+
430 	 * 0 |         Buffer Address [63:0]                                |
431 	 *   +--------------------------------------------------------------+
432 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
433 	 *   +--------------------------------------------------------------+
434 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
435 	 */
436 
437 	for (n = 0; n < adapter->num_tx_queues; n++) {
438 		tx_ring = adapter->tx_ring[n];
439 		pr_info("------------------------------------\n");
440 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
441 		pr_info("------------------------------------\n");
442 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
443 			"[bi->dma       ] leng  ntw timestamp        "
444 			"bi->skb\n");
445 
446 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
447 			const char *next_desc;
448 			struct igb_tx_buffer *buffer_info;
449 			tx_desc = IGB_TX_DESC(tx_ring, i);
450 			buffer_info = &tx_ring->tx_buffer_info[i];
451 			u0 = (struct my_u0 *)tx_desc;
452 			if (i == tx_ring->next_to_use &&
453 			    i == tx_ring->next_to_clean)
454 				next_desc = " NTC/U";
455 			else if (i == tx_ring->next_to_use)
456 				next_desc = " NTU";
457 			else if (i == tx_ring->next_to_clean)
458 				next_desc = " NTC";
459 			else
460 				next_desc = "";
461 
462 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
463 				" %04X  %p %016llX %p%s\n", i,
464 				le64_to_cpu(u0->a),
465 				le64_to_cpu(u0->b),
466 				(u64)dma_unmap_addr(buffer_info, dma),
467 				dma_unmap_len(buffer_info, len),
468 				buffer_info->next_to_watch,
469 				(u64)buffer_info->time_stamp,
470 				buffer_info->skb, next_desc);
471 
472 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
473 				print_hex_dump(KERN_INFO, "",
474 					DUMP_PREFIX_ADDRESS,
475 					16, 1, buffer_info->skb->data,
476 					dma_unmap_len(buffer_info, len),
477 					true);
478 		}
479 	}
480 
481 	/* Print RX Rings Summary */
482 rx_ring_summary:
483 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
484 	pr_info("Queue [NTU] [NTC]\n");
485 	for (n = 0; n < adapter->num_rx_queues; n++) {
486 		rx_ring = adapter->rx_ring[n];
487 		pr_info(" %5d %5X %5X\n",
488 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
489 	}
490 
491 	/* Print RX Rings */
492 	if (!netif_msg_rx_status(adapter))
493 		goto exit;
494 
495 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
496 
497 	/* Advanced Receive Descriptor (Read) Format
498 	 *    63                                           1        0
499 	 *    +-----------------------------------------------------+
500 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
501 	 *    +----------------------------------------------+------+
502 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
503 	 *    +-----------------------------------------------------+
504 	 *
505 	 *
506 	 * Advanced Receive Descriptor (Write-Back) Format
507 	 *
508 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
509 	 *   +------------------------------------------------------+
510 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
511 	 *   | Checksum   Ident  |   |           |    | Type | Type |
512 	 *   +------------------------------------------------------+
513 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
514 	 *   +------------------------------------------------------+
515 	 *   63       48 47    32 31            20 19               0
516 	 */
517 
518 	for (n = 0; n < adapter->num_rx_queues; n++) {
519 		rx_ring = adapter->rx_ring[n];
520 		pr_info("------------------------------------\n");
521 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
522 		pr_info("------------------------------------\n");
523 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
524 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
525 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
526 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
527 
528 		for (i = 0; i < rx_ring->count; i++) {
529 			const char *next_desc;
530 			struct igb_rx_buffer *buffer_info;
531 			buffer_info = &rx_ring->rx_buffer_info[i];
532 			rx_desc = IGB_RX_DESC(rx_ring, i);
533 			u0 = (struct my_u0 *)rx_desc;
534 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
535 
536 			if (i == rx_ring->next_to_use)
537 				next_desc = " NTU";
538 			else if (i == rx_ring->next_to_clean)
539 				next_desc = " NTC";
540 			else
541 				next_desc = "";
542 
543 			if (staterr & E1000_RXD_STAT_DD) {
544 				/* Descriptor Done */
545 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
546 					"RWB", i,
547 					le64_to_cpu(u0->a),
548 					le64_to_cpu(u0->b),
549 					next_desc);
550 			} else {
551 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
552 					"R  ", i,
553 					le64_to_cpu(u0->a),
554 					le64_to_cpu(u0->b),
555 					(u64)buffer_info->dma,
556 					next_desc);
557 
558 				if (netif_msg_pktdata(adapter) &&
559 				    buffer_info->dma && buffer_info->page) {
560 					print_hex_dump(KERN_INFO, "",
561 					  DUMP_PREFIX_ADDRESS,
562 					  16, 1,
563 					  page_address(buffer_info->page) +
564 						      buffer_info->page_offset,
565 					  IGB_RX_BUFSZ, true);
566 				}
567 			}
568 		}
569 	}
570 
571 exit:
572 	return;
573 }
574 
575 /**
576  *  igb_get_i2c_data - Reads the I2C SDA data bit
577  *  @hw: pointer to hardware structure
578  *  @i2cctl: Current value of I2CCTL register
579  *
580  *  Returns the I2C data bit value
581  **/
582 static int igb_get_i2c_data(void *data)
583 {
584 	struct igb_adapter *adapter = (struct igb_adapter *)data;
585 	struct e1000_hw *hw = &adapter->hw;
586 	s32 i2cctl = rd32(E1000_I2CPARAMS);
587 
588 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
589 }
590 
591 /**
592  *  igb_set_i2c_data - Sets the I2C data bit
593  *  @data: pointer to hardware structure
594  *  @state: I2C data value (0 or 1) to set
595  *
596  *  Sets the I2C data bit
597  **/
598 static void igb_set_i2c_data(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state)
605 		i2cctl |= E1000_I2C_DATA_OUT;
606 	else
607 		i2cctl &= ~E1000_I2C_DATA_OUT;
608 
609 	i2cctl &= ~E1000_I2C_DATA_OE_N;
610 	i2cctl |= E1000_I2C_CLK_OE_N;
611 	wr32(E1000_I2CPARAMS, i2cctl);
612 	wrfl();
613 
614 }
615 
616 /**
617  *  igb_set_i2c_clk - Sets the I2C SCL clock
618  *  @data: pointer to hardware structure
619  *  @state: state to set clock
620  *
621  *  Sets the I2C clock line to state
622  **/
623 static void igb_set_i2c_clk(void *data, int state)
624 {
625 	struct igb_adapter *adapter = (struct igb_adapter *)data;
626 	struct e1000_hw *hw = &adapter->hw;
627 	s32 i2cctl = rd32(E1000_I2CPARAMS);
628 
629 	if (state) {
630 		i2cctl |= E1000_I2C_CLK_OUT;
631 		i2cctl &= ~E1000_I2C_CLK_OE_N;
632 	} else {
633 		i2cctl &= ~E1000_I2C_CLK_OUT;
634 		i2cctl &= ~E1000_I2C_CLK_OE_N;
635 	}
636 	wr32(E1000_I2CPARAMS, i2cctl);
637 	wrfl();
638 }
639 
640 /**
641  *  igb_get_i2c_clk - Gets the I2C SCL clock state
642  *  @data: pointer to hardware structure
643  *
644  *  Gets the I2C clock state
645  **/
646 static int igb_get_i2c_clk(void *data)
647 {
648 	struct igb_adapter *adapter = (struct igb_adapter *)data;
649 	struct e1000_hw *hw = &adapter->hw;
650 	s32 i2cctl = rd32(E1000_I2CPARAMS);
651 
652 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
653 }
654 
655 static const struct i2c_algo_bit_data igb_i2c_algo = {
656 	.setsda		= igb_set_i2c_data,
657 	.setscl		= igb_set_i2c_clk,
658 	.getsda		= igb_get_i2c_data,
659 	.getscl		= igb_get_i2c_clk,
660 	.udelay		= 5,
661 	.timeout	= 20,
662 };
663 
664 /**
665  *  igb_get_hw_dev - return device
666  *  @hw: pointer to hardware structure
667  *
668  *  used by hardware layer to print debugging information
669  **/
670 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
671 {
672 	struct igb_adapter *adapter = hw->back;
673 	return adapter->netdev;
674 }
675 
676 /**
677  *  igb_init_module - Driver Registration Routine
678  *
679  *  igb_init_module is the first routine called when the driver is
680  *  loaded. All it does is register with the PCI subsystem.
681  **/
682 static int __init igb_init_module(void)
683 {
684 	int ret;
685 	pr_info("%s - version %s\n",
686 	       igb_driver_string, igb_driver_version);
687 
688 	pr_info("%s\n", igb_copyright);
689 
690 #ifdef CONFIG_IGB_DCA
691 	dca_register_notify(&dca_notifier);
692 #endif
693 	ret = pci_register_driver(&igb_driver);
694 	return ret;
695 }
696 
697 module_init(igb_init_module);
698 
699 /**
700  *  igb_exit_module - Driver Exit Cleanup Routine
701  *
702  *  igb_exit_module is called just before the driver is removed
703  *  from memory.
704  **/
705 static void __exit igb_exit_module(void)
706 {
707 #ifdef CONFIG_IGB_DCA
708 	dca_unregister_notify(&dca_notifier);
709 #endif
710 	pci_unregister_driver(&igb_driver);
711 }
712 
713 module_exit(igb_exit_module);
714 
715 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
716 /**
717  *  igb_cache_ring_register - Descriptor ring to register mapping
718  *  @adapter: board private structure to initialize
719  *
720  *  Once we know the feature-set enabled for the device, we'll cache
721  *  the register offset the descriptor ring is assigned to.
722  **/
723 static void igb_cache_ring_register(struct igb_adapter *adapter)
724 {
725 	int i = 0, j = 0;
726 	u32 rbase_offset = adapter->vfs_allocated_count;
727 
728 	switch (adapter->hw.mac.type) {
729 	case e1000_82576:
730 		/* The queues are allocated for virtualization such that VF 0
731 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
732 		 * In order to avoid collision we start at the first free queue
733 		 * and continue consuming queues in the same sequence
734 		 */
735 		if (adapter->vfs_allocated_count) {
736 			for (; i < adapter->rss_queues; i++)
737 				adapter->rx_ring[i]->reg_idx = rbase_offset +
738 							       Q_IDX_82576(i);
739 		}
740 	case e1000_82575:
741 	case e1000_82580:
742 	case e1000_i350:
743 	case e1000_i354:
744 	case e1000_i210:
745 	case e1000_i211:
746 	default:
747 		for (; i < adapter->num_rx_queues; i++)
748 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
749 		for (; j < adapter->num_tx_queues; j++)
750 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
751 		break;
752 	}
753 }
754 
755 /**
756  *  igb_write_ivar - configure ivar for given MSI-X vector
757  *  @hw: pointer to the HW structure
758  *  @msix_vector: vector number we are allocating to a given ring
759  *  @index: row index of IVAR register to write within IVAR table
760  *  @offset: column offset of in IVAR, should be multiple of 8
761  *
762  *  This function is intended to handle the writing of the IVAR register
763  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
764  *  each containing an cause allocation for an Rx and Tx ring, and a
765  *  variable number of rows depending on the number of queues supported.
766  **/
767 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
768 			   int index, int offset)
769 {
770 	u32 ivar = array_rd32(E1000_IVAR0, index);
771 
772 	/* clear any bits that are currently set */
773 	ivar &= ~((u32)0xFF << offset);
774 
775 	/* write vector and valid bit */
776 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
777 
778 	array_wr32(E1000_IVAR0, index, ivar);
779 }
780 
781 #define IGB_N0_QUEUE -1
782 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
783 {
784 	struct igb_adapter *adapter = q_vector->adapter;
785 	struct e1000_hw *hw = &adapter->hw;
786 	int rx_queue = IGB_N0_QUEUE;
787 	int tx_queue = IGB_N0_QUEUE;
788 	u32 msixbm = 0;
789 
790 	if (q_vector->rx.ring)
791 		rx_queue = q_vector->rx.ring->reg_idx;
792 	if (q_vector->tx.ring)
793 		tx_queue = q_vector->tx.ring->reg_idx;
794 
795 	switch (hw->mac.type) {
796 	case e1000_82575:
797 		/* The 82575 assigns vectors using a bitmask, which matches the
798 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
799 		 * or more queues to a vector, we write the appropriate bits
800 		 * into the MSIXBM register for that vector.
801 		 */
802 		if (rx_queue > IGB_N0_QUEUE)
803 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
804 		if (tx_queue > IGB_N0_QUEUE)
805 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
806 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
807 			msixbm |= E1000_EIMS_OTHER;
808 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
809 		q_vector->eims_value = msixbm;
810 		break;
811 	case e1000_82576:
812 		/* 82576 uses a table that essentially consists of 2 columns
813 		 * with 8 rows.  The ordering is column-major so we use the
814 		 * lower 3 bits as the row index, and the 4th bit as the
815 		 * column offset.
816 		 */
817 		if (rx_queue > IGB_N0_QUEUE)
818 			igb_write_ivar(hw, msix_vector,
819 				       rx_queue & 0x7,
820 				       (rx_queue & 0x8) << 1);
821 		if (tx_queue > IGB_N0_QUEUE)
822 			igb_write_ivar(hw, msix_vector,
823 				       tx_queue & 0x7,
824 				       ((tx_queue & 0x8) << 1) + 8);
825 		q_vector->eims_value = 1 << msix_vector;
826 		break;
827 	case e1000_82580:
828 	case e1000_i350:
829 	case e1000_i354:
830 	case e1000_i210:
831 	case e1000_i211:
832 		/* On 82580 and newer adapters the scheme is similar to 82576
833 		 * however instead of ordering column-major we have things
834 		 * ordered row-major.  So we traverse the table by using
835 		 * bit 0 as the column offset, and the remaining bits as the
836 		 * row index.
837 		 */
838 		if (rx_queue > IGB_N0_QUEUE)
839 			igb_write_ivar(hw, msix_vector,
840 				       rx_queue >> 1,
841 				       (rx_queue & 0x1) << 4);
842 		if (tx_queue > IGB_N0_QUEUE)
843 			igb_write_ivar(hw, msix_vector,
844 				       tx_queue >> 1,
845 				       ((tx_queue & 0x1) << 4) + 8);
846 		q_vector->eims_value = 1 << msix_vector;
847 		break;
848 	default:
849 		BUG();
850 		break;
851 	}
852 
853 	/* add q_vector eims value to global eims_enable_mask */
854 	adapter->eims_enable_mask |= q_vector->eims_value;
855 
856 	/* configure q_vector to set itr on first interrupt */
857 	q_vector->set_itr = 1;
858 }
859 
860 /**
861  *  igb_configure_msix - Configure MSI-X hardware
862  *  @adapter: board private structure to initialize
863  *
864  *  igb_configure_msix sets up the hardware to properly
865  *  generate MSI-X interrupts.
866  **/
867 static void igb_configure_msix(struct igb_adapter *adapter)
868 {
869 	u32 tmp;
870 	int i, vector = 0;
871 	struct e1000_hw *hw = &adapter->hw;
872 
873 	adapter->eims_enable_mask = 0;
874 
875 	/* set vector for other causes, i.e. link changes */
876 	switch (hw->mac.type) {
877 	case e1000_82575:
878 		tmp = rd32(E1000_CTRL_EXT);
879 		/* enable MSI-X PBA support*/
880 		tmp |= E1000_CTRL_EXT_PBA_CLR;
881 
882 		/* Auto-Mask interrupts upon ICR read. */
883 		tmp |= E1000_CTRL_EXT_EIAME;
884 		tmp |= E1000_CTRL_EXT_IRCA;
885 
886 		wr32(E1000_CTRL_EXT, tmp);
887 
888 		/* enable msix_other interrupt */
889 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
890 		adapter->eims_other = E1000_EIMS_OTHER;
891 
892 		break;
893 
894 	case e1000_82576:
895 	case e1000_82580:
896 	case e1000_i350:
897 	case e1000_i354:
898 	case e1000_i210:
899 	case e1000_i211:
900 		/* Turn on MSI-X capability first, or our settings
901 		 * won't stick.  And it will take days to debug.
902 		 */
903 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
904 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
905 		     E1000_GPIE_NSICR);
906 
907 		/* enable msix_other interrupt */
908 		adapter->eims_other = 1 << vector;
909 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
910 
911 		wr32(E1000_IVAR_MISC, tmp);
912 		break;
913 	default:
914 		/* do nothing, since nothing else supports MSI-X */
915 		break;
916 	} /* switch (hw->mac.type) */
917 
918 	adapter->eims_enable_mask |= adapter->eims_other;
919 
920 	for (i = 0; i < adapter->num_q_vectors; i++)
921 		igb_assign_vector(adapter->q_vector[i], vector++);
922 
923 	wrfl();
924 }
925 
926 /**
927  *  igb_request_msix - Initialize MSI-X interrupts
928  *  @adapter: board private structure to initialize
929  *
930  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
931  *  kernel.
932  **/
933 static int igb_request_msix(struct igb_adapter *adapter)
934 {
935 	struct net_device *netdev = adapter->netdev;
936 	struct e1000_hw *hw = &adapter->hw;
937 	int i, err = 0, vector = 0, free_vector = 0;
938 
939 	err = request_irq(adapter->msix_entries[vector].vector,
940 			  igb_msix_other, 0, netdev->name, adapter);
941 	if (err)
942 		goto err_out;
943 
944 	for (i = 0; i < adapter->num_q_vectors; i++) {
945 		struct igb_q_vector *q_vector = adapter->q_vector[i];
946 
947 		vector++;
948 
949 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
950 
951 		if (q_vector->rx.ring && q_vector->tx.ring)
952 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
953 				q_vector->rx.ring->queue_index);
954 		else if (q_vector->tx.ring)
955 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
956 				q_vector->tx.ring->queue_index);
957 		else if (q_vector->rx.ring)
958 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
959 				q_vector->rx.ring->queue_index);
960 		else
961 			sprintf(q_vector->name, "%s-unused", netdev->name);
962 
963 		err = request_irq(adapter->msix_entries[vector].vector,
964 				  igb_msix_ring, 0, q_vector->name,
965 				  q_vector);
966 		if (err)
967 			goto err_free;
968 	}
969 
970 	igb_configure_msix(adapter);
971 	return 0;
972 
973 err_free:
974 	/* free already assigned IRQs */
975 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
976 
977 	vector--;
978 	for (i = 0; i < vector; i++) {
979 		free_irq(adapter->msix_entries[free_vector++].vector,
980 			 adapter->q_vector[i]);
981 	}
982 err_out:
983 	return err;
984 }
985 
986 /**
987  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
988  *  @adapter: board private structure to initialize
989  *  @v_idx: Index of vector to be freed
990  *
991  *  This function frees the memory allocated to the q_vector.
992  **/
993 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
994 {
995 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
996 
997 	adapter->q_vector[v_idx] = NULL;
998 
999 	/* igb_get_stats64() might access the rings on this vector,
1000 	 * we must wait a grace period before freeing it.
1001 	 */
1002 	kfree_rcu(q_vector, rcu);
1003 }
1004 
1005 /**
1006  *  igb_reset_q_vector - Reset config for interrupt vector
1007  *  @adapter: board private structure to initialize
1008  *  @v_idx: Index of vector to be reset
1009  *
1010  *  If NAPI is enabled it will delete any references to the
1011  *  NAPI struct. This is preparation for igb_free_q_vector.
1012  **/
1013 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1014 {
1015 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1016 
1017 	if (q_vector->tx.ring)
1018 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1019 
1020 	if (q_vector->rx.ring)
1021 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1022 
1023 	netif_napi_del(&q_vector->napi);
1024 
1025 }
1026 
1027 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1028 {
1029 	int v_idx = adapter->num_q_vectors;
1030 
1031 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1032 		pci_disable_msix(adapter->pdev);
1033 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1034 		pci_disable_msi(adapter->pdev);
1035 
1036 	while (v_idx--)
1037 		igb_reset_q_vector(adapter, v_idx);
1038 }
1039 
1040 /**
1041  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1042  *  @adapter: board private structure to initialize
1043  *
1044  *  This function frees the memory allocated to the q_vectors.  In addition if
1045  *  NAPI is enabled it will delete any references to the NAPI struct prior
1046  *  to freeing the q_vector.
1047  **/
1048 static void igb_free_q_vectors(struct igb_adapter *adapter)
1049 {
1050 	int v_idx = adapter->num_q_vectors;
1051 
1052 	adapter->num_tx_queues = 0;
1053 	adapter->num_rx_queues = 0;
1054 	adapter->num_q_vectors = 0;
1055 
1056 	while (v_idx--) {
1057 		igb_reset_q_vector(adapter, v_idx);
1058 		igb_free_q_vector(adapter, v_idx);
1059 	}
1060 }
1061 
1062 /**
1063  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1064  *  @adapter: board private structure to initialize
1065  *
1066  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1067  *  MSI-X interrupts allocated.
1068  */
1069 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1070 {
1071 	igb_free_q_vectors(adapter);
1072 	igb_reset_interrupt_capability(adapter);
1073 }
1074 
1075 /**
1076  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1077  *  @adapter: board private structure to initialize
1078  *  @msix: boolean value of MSIX capability
1079  *
1080  *  Attempt to configure interrupts using the best available
1081  *  capabilities of the hardware and kernel.
1082  **/
1083 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1084 {
1085 	int err;
1086 	int numvecs, i;
1087 
1088 	if (!msix)
1089 		goto msi_only;
1090 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1091 
1092 	/* Number of supported queues. */
1093 	adapter->num_rx_queues = adapter->rss_queues;
1094 	if (adapter->vfs_allocated_count)
1095 		adapter->num_tx_queues = 1;
1096 	else
1097 		adapter->num_tx_queues = adapter->rss_queues;
1098 
1099 	/* start with one vector for every Rx queue */
1100 	numvecs = adapter->num_rx_queues;
1101 
1102 	/* if Tx handler is separate add 1 for every Tx queue */
1103 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1104 		numvecs += adapter->num_tx_queues;
1105 
1106 	/* store the number of vectors reserved for queues */
1107 	adapter->num_q_vectors = numvecs;
1108 
1109 	/* add 1 vector for link status interrupts */
1110 	numvecs++;
1111 	for (i = 0; i < numvecs; i++)
1112 		adapter->msix_entries[i].entry = i;
1113 
1114 	err = pci_enable_msix(adapter->pdev,
1115 			      adapter->msix_entries,
1116 			      numvecs);
1117 	if (err == 0)
1118 		return;
1119 
1120 	igb_reset_interrupt_capability(adapter);
1121 
1122 	/* If we can't do MSI-X, try MSI */
1123 msi_only:
1124 #ifdef CONFIG_PCI_IOV
1125 	/* disable SR-IOV for non MSI-X configurations */
1126 	if (adapter->vf_data) {
1127 		struct e1000_hw *hw = &adapter->hw;
1128 		/* disable iov and allow time for transactions to clear */
1129 		pci_disable_sriov(adapter->pdev);
1130 		msleep(500);
1131 
1132 		kfree(adapter->vf_data);
1133 		adapter->vf_data = NULL;
1134 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1135 		wrfl();
1136 		msleep(100);
1137 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1138 	}
1139 #endif
1140 	adapter->vfs_allocated_count = 0;
1141 	adapter->rss_queues = 1;
1142 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1143 	adapter->num_rx_queues = 1;
1144 	adapter->num_tx_queues = 1;
1145 	adapter->num_q_vectors = 1;
1146 	if (!pci_enable_msi(adapter->pdev))
1147 		adapter->flags |= IGB_FLAG_HAS_MSI;
1148 }
1149 
1150 static void igb_add_ring(struct igb_ring *ring,
1151 			 struct igb_ring_container *head)
1152 {
1153 	head->ring = ring;
1154 	head->count++;
1155 }
1156 
1157 /**
1158  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1159  *  @adapter: board private structure to initialize
1160  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1161  *  @v_idx: index of vector in adapter struct
1162  *  @txr_count: total number of Tx rings to allocate
1163  *  @txr_idx: index of first Tx ring to allocate
1164  *  @rxr_count: total number of Rx rings to allocate
1165  *  @rxr_idx: index of first Rx ring to allocate
1166  *
1167  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1168  **/
1169 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1170 			      int v_count, int v_idx,
1171 			      int txr_count, int txr_idx,
1172 			      int rxr_count, int rxr_idx)
1173 {
1174 	struct igb_q_vector *q_vector;
1175 	struct igb_ring *ring;
1176 	int ring_count, size;
1177 
1178 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1179 	if (txr_count > 1 || rxr_count > 1)
1180 		return -ENOMEM;
1181 
1182 	ring_count = txr_count + rxr_count;
1183 	size = sizeof(struct igb_q_vector) +
1184 	       (sizeof(struct igb_ring) * ring_count);
1185 
1186 	/* allocate q_vector and rings */
1187 	q_vector = adapter->q_vector[v_idx];
1188 	if (!q_vector)
1189 		q_vector = kzalloc(size, GFP_KERNEL);
1190 	if (!q_vector)
1191 		return -ENOMEM;
1192 
1193 	/* initialize NAPI */
1194 	netif_napi_add(adapter->netdev, &q_vector->napi,
1195 		       igb_poll, 64);
1196 
1197 	/* tie q_vector and adapter together */
1198 	adapter->q_vector[v_idx] = q_vector;
1199 	q_vector->adapter = adapter;
1200 
1201 	/* initialize work limits */
1202 	q_vector->tx.work_limit = adapter->tx_work_limit;
1203 
1204 	/* initialize ITR configuration */
1205 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1206 	q_vector->itr_val = IGB_START_ITR;
1207 
1208 	/* initialize pointer to rings */
1209 	ring = q_vector->ring;
1210 
1211 	/* intialize ITR */
1212 	if (rxr_count) {
1213 		/* rx or rx/tx vector */
1214 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1215 			q_vector->itr_val = adapter->rx_itr_setting;
1216 	} else {
1217 		/* tx only vector */
1218 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1219 			q_vector->itr_val = adapter->tx_itr_setting;
1220 	}
1221 
1222 	if (txr_count) {
1223 		/* assign generic ring traits */
1224 		ring->dev = &adapter->pdev->dev;
1225 		ring->netdev = adapter->netdev;
1226 
1227 		/* configure backlink on ring */
1228 		ring->q_vector = q_vector;
1229 
1230 		/* update q_vector Tx values */
1231 		igb_add_ring(ring, &q_vector->tx);
1232 
1233 		/* For 82575, context index must be unique per ring. */
1234 		if (adapter->hw.mac.type == e1000_82575)
1235 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1236 
1237 		/* apply Tx specific ring traits */
1238 		ring->count = adapter->tx_ring_count;
1239 		ring->queue_index = txr_idx;
1240 
1241 		u64_stats_init(&ring->tx_syncp);
1242 		u64_stats_init(&ring->tx_syncp2);
1243 
1244 		/* assign ring to adapter */
1245 		adapter->tx_ring[txr_idx] = ring;
1246 
1247 		/* push pointer to next ring */
1248 		ring++;
1249 	}
1250 
1251 	if (rxr_count) {
1252 		/* assign generic ring traits */
1253 		ring->dev = &adapter->pdev->dev;
1254 		ring->netdev = adapter->netdev;
1255 
1256 		/* configure backlink on ring */
1257 		ring->q_vector = q_vector;
1258 
1259 		/* update q_vector Rx values */
1260 		igb_add_ring(ring, &q_vector->rx);
1261 
1262 		/* set flag indicating ring supports SCTP checksum offload */
1263 		if (adapter->hw.mac.type >= e1000_82576)
1264 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1265 
1266 		/*
1267 		 * On i350, i354, i210, and i211, loopback VLAN packets
1268 		 * have the tag byte-swapped.
1269 		 */
1270 		if (adapter->hw.mac.type >= e1000_i350)
1271 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1272 
1273 		/* apply Rx specific ring traits */
1274 		ring->count = adapter->rx_ring_count;
1275 		ring->queue_index = rxr_idx;
1276 
1277 		u64_stats_init(&ring->rx_syncp);
1278 
1279 		/* assign ring to adapter */
1280 		adapter->rx_ring[rxr_idx] = ring;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 
1287 /**
1288  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1289  *  @adapter: board private structure to initialize
1290  *
1291  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1292  *  return -ENOMEM.
1293  **/
1294 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1295 {
1296 	int q_vectors = adapter->num_q_vectors;
1297 	int rxr_remaining = adapter->num_rx_queues;
1298 	int txr_remaining = adapter->num_tx_queues;
1299 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1300 	int err;
1301 
1302 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1303 		for (; rxr_remaining; v_idx++) {
1304 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1305 						 0, 0, 1, rxr_idx);
1306 
1307 			if (err)
1308 				goto err_out;
1309 
1310 			/* update counts and index */
1311 			rxr_remaining--;
1312 			rxr_idx++;
1313 		}
1314 	}
1315 
1316 	for (; v_idx < q_vectors; v_idx++) {
1317 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1318 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1319 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1320 					 tqpv, txr_idx, rqpv, rxr_idx);
1321 
1322 		if (err)
1323 			goto err_out;
1324 
1325 		/* update counts and index */
1326 		rxr_remaining -= rqpv;
1327 		txr_remaining -= tqpv;
1328 		rxr_idx++;
1329 		txr_idx++;
1330 	}
1331 
1332 	return 0;
1333 
1334 err_out:
1335 	adapter->num_tx_queues = 0;
1336 	adapter->num_rx_queues = 0;
1337 	adapter->num_q_vectors = 0;
1338 
1339 	while (v_idx--)
1340 		igb_free_q_vector(adapter, v_idx);
1341 
1342 	return -ENOMEM;
1343 }
1344 
1345 /**
1346  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1347  *  @adapter: board private structure to initialize
1348  *  @msix: boolean value of MSIX capability
1349  *
1350  *  This function initializes the interrupts and allocates all of the queues.
1351  **/
1352 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1353 {
1354 	struct pci_dev *pdev = adapter->pdev;
1355 	int err;
1356 
1357 	igb_set_interrupt_capability(adapter, msix);
1358 
1359 	err = igb_alloc_q_vectors(adapter);
1360 	if (err) {
1361 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1362 		goto err_alloc_q_vectors;
1363 	}
1364 
1365 	igb_cache_ring_register(adapter);
1366 
1367 	return 0;
1368 
1369 err_alloc_q_vectors:
1370 	igb_reset_interrupt_capability(adapter);
1371 	return err;
1372 }
1373 
1374 /**
1375  *  igb_request_irq - initialize interrupts
1376  *  @adapter: board private structure to initialize
1377  *
1378  *  Attempts to configure interrupts using the best available
1379  *  capabilities of the hardware and kernel.
1380  **/
1381 static int igb_request_irq(struct igb_adapter *adapter)
1382 {
1383 	struct net_device *netdev = adapter->netdev;
1384 	struct pci_dev *pdev = adapter->pdev;
1385 	int err = 0;
1386 
1387 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1388 		err = igb_request_msix(adapter);
1389 		if (!err)
1390 			goto request_done;
1391 		/* fall back to MSI */
1392 		igb_free_all_tx_resources(adapter);
1393 		igb_free_all_rx_resources(adapter);
1394 
1395 		igb_clear_interrupt_scheme(adapter);
1396 		err = igb_init_interrupt_scheme(adapter, false);
1397 		if (err)
1398 			goto request_done;
1399 
1400 		igb_setup_all_tx_resources(adapter);
1401 		igb_setup_all_rx_resources(adapter);
1402 		igb_configure(adapter);
1403 	}
1404 
1405 	igb_assign_vector(adapter->q_vector[0], 0);
1406 
1407 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1408 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1409 				  netdev->name, adapter);
1410 		if (!err)
1411 			goto request_done;
1412 
1413 		/* fall back to legacy interrupts */
1414 		igb_reset_interrupt_capability(adapter);
1415 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1416 	}
1417 
1418 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1419 			  netdev->name, adapter);
1420 
1421 	if (err)
1422 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1423 			err);
1424 
1425 request_done:
1426 	return err;
1427 }
1428 
1429 static void igb_free_irq(struct igb_adapter *adapter)
1430 {
1431 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1432 		int vector = 0, i;
1433 
1434 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1435 
1436 		for (i = 0; i < adapter->num_q_vectors; i++)
1437 			free_irq(adapter->msix_entries[vector++].vector,
1438 				 adapter->q_vector[i]);
1439 	} else {
1440 		free_irq(adapter->pdev->irq, adapter);
1441 	}
1442 }
1443 
1444 /**
1445  *  igb_irq_disable - Mask off interrupt generation on the NIC
1446  *  @adapter: board private structure
1447  **/
1448 static void igb_irq_disable(struct igb_adapter *adapter)
1449 {
1450 	struct e1000_hw *hw = &adapter->hw;
1451 
1452 	/* we need to be careful when disabling interrupts.  The VFs are also
1453 	 * mapped into these registers and so clearing the bits can cause
1454 	 * issues on the VF drivers so we only need to clear what we set
1455 	 */
1456 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1457 		u32 regval = rd32(E1000_EIAM);
1458 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1459 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1460 		regval = rd32(E1000_EIAC);
1461 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1462 	}
1463 
1464 	wr32(E1000_IAM, 0);
1465 	wr32(E1000_IMC, ~0);
1466 	wrfl();
1467 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1468 		int i;
1469 		for (i = 0; i < adapter->num_q_vectors; i++)
1470 			synchronize_irq(adapter->msix_entries[i].vector);
1471 	} else {
1472 		synchronize_irq(adapter->pdev->irq);
1473 	}
1474 }
1475 
1476 /**
1477  *  igb_irq_enable - Enable default interrupt generation settings
1478  *  @adapter: board private structure
1479  **/
1480 static void igb_irq_enable(struct igb_adapter *adapter)
1481 {
1482 	struct e1000_hw *hw = &adapter->hw;
1483 
1484 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1486 		u32 regval = rd32(E1000_EIAC);
1487 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1488 		regval = rd32(E1000_EIAM);
1489 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1490 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1491 		if (adapter->vfs_allocated_count) {
1492 			wr32(E1000_MBVFIMR, 0xFF);
1493 			ims |= E1000_IMS_VMMB;
1494 		}
1495 		wr32(E1000_IMS, ims);
1496 	} else {
1497 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1498 				E1000_IMS_DRSTA);
1499 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1500 				E1000_IMS_DRSTA);
1501 	}
1502 }
1503 
1504 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1505 {
1506 	struct e1000_hw *hw = &adapter->hw;
1507 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1508 	u16 old_vid = adapter->mng_vlan_id;
1509 
1510 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1511 		/* add VID to filter table */
1512 		igb_vfta_set(hw, vid, true);
1513 		adapter->mng_vlan_id = vid;
1514 	} else {
1515 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1516 	}
1517 
1518 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1519 	    (vid != old_vid) &&
1520 	    !test_bit(old_vid, adapter->active_vlans)) {
1521 		/* remove VID from filter table */
1522 		igb_vfta_set(hw, old_vid, false);
1523 	}
1524 }
1525 
1526 /**
1527  *  igb_release_hw_control - release control of the h/w to f/w
1528  *  @adapter: address of board private structure
1529  *
1530  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1531  *  For ASF and Pass Through versions of f/w this means that the
1532  *  driver is no longer loaded.
1533  **/
1534 static void igb_release_hw_control(struct igb_adapter *adapter)
1535 {
1536 	struct e1000_hw *hw = &adapter->hw;
1537 	u32 ctrl_ext;
1538 
1539 	/* Let firmware take over control of h/w */
1540 	ctrl_ext = rd32(E1000_CTRL_EXT);
1541 	wr32(E1000_CTRL_EXT,
1542 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1543 }
1544 
1545 /**
1546  *  igb_get_hw_control - get control of the h/w from f/w
1547  *  @adapter: address of board private structure
1548  *
1549  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1550  *  For ASF and Pass Through versions of f/w this means that
1551  *  the driver is loaded.
1552  **/
1553 static void igb_get_hw_control(struct igb_adapter *adapter)
1554 {
1555 	struct e1000_hw *hw = &adapter->hw;
1556 	u32 ctrl_ext;
1557 
1558 	/* Let firmware know the driver has taken over */
1559 	ctrl_ext = rd32(E1000_CTRL_EXT);
1560 	wr32(E1000_CTRL_EXT,
1561 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1562 }
1563 
1564 /**
1565  *  igb_configure - configure the hardware for RX and TX
1566  *  @adapter: private board structure
1567  **/
1568 static void igb_configure(struct igb_adapter *adapter)
1569 {
1570 	struct net_device *netdev = adapter->netdev;
1571 	int i;
1572 
1573 	igb_get_hw_control(adapter);
1574 	igb_set_rx_mode(netdev);
1575 
1576 	igb_restore_vlan(adapter);
1577 
1578 	igb_setup_tctl(adapter);
1579 	igb_setup_mrqc(adapter);
1580 	igb_setup_rctl(adapter);
1581 
1582 	igb_configure_tx(adapter);
1583 	igb_configure_rx(adapter);
1584 
1585 	igb_rx_fifo_flush_82575(&adapter->hw);
1586 
1587 	/* call igb_desc_unused which always leaves
1588 	 * at least 1 descriptor unused to make sure
1589 	 * next_to_use != next_to_clean
1590 	 */
1591 	for (i = 0; i < adapter->num_rx_queues; i++) {
1592 		struct igb_ring *ring = adapter->rx_ring[i];
1593 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1594 	}
1595 }
1596 
1597 /**
1598  *  igb_power_up_link - Power up the phy/serdes link
1599  *  @adapter: address of board private structure
1600  **/
1601 void igb_power_up_link(struct igb_adapter *adapter)
1602 {
1603 	igb_reset_phy(&adapter->hw);
1604 
1605 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1606 		igb_power_up_phy_copper(&adapter->hw);
1607 	else
1608 		igb_power_up_serdes_link_82575(&adapter->hw);
1609 }
1610 
1611 /**
1612  *  igb_power_down_link - Power down the phy/serdes link
1613  *  @adapter: address of board private structure
1614  */
1615 static void igb_power_down_link(struct igb_adapter *adapter)
1616 {
1617 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1618 		igb_power_down_phy_copper_82575(&adapter->hw);
1619 	else
1620 		igb_shutdown_serdes_link_82575(&adapter->hw);
1621 }
1622 
1623 /**
1624  * Detect and switch function for Media Auto Sense
1625  * @adapter: address of the board private structure
1626  **/
1627 static void igb_check_swap_media(struct igb_adapter *adapter)
1628 {
1629 	struct e1000_hw *hw = &adapter->hw;
1630 	u32 ctrl_ext, connsw;
1631 	bool swap_now = false;
1632 
1633 	ctrl_ext = rd32(E1000_CTRL_EXT);
1634 	connsw = rd32(E1000_CONNSW);
1635 
1636 	/* need to live swap if current media is copper and we have fiber/serdes
1637 	 * to go to.
1638 	 */
1639 
1640 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1641 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1642 		swap_now = true;
1643 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1644 		/* copper signal takes time to appear */
1645 		if (adapter->copper_tries < 4) {
1646 			adapter->copper_tries++;
1647 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1648 			wr32(E1000_CONNSW, connsw);
1649 			return;
1650 		} else {
1651 			adapter->copper_tries = 0;
1652 			if ((connsw & E1000_CONNSW_PHYSD) &&
1653 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1654 				swap_now = true;
1655 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1656 				wr32(E1000_CONNSW, connsw);
1657 			}
1658 		}
1659 	}
1660 
1661 	if (!swap_now)
1662 		return;
1663 
1664 	switch (hw->phy.media_type) {
1665 	case e1000_media_type_copper:
1666 		netdev_info(adapter->netdev,
1667 			"MAS: changing media to fiber/serdes\n");
1668 		ctrl_ext |=
1669 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1670 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1671 		adapter->copper_tries = 0;
1672 		break;
1673 	case e1000_media_type_internal_serdes:
1674 	case e1000_media_type_fiber:
1675 		netdev_info(adapter->netdev,
1676 			"MAS: changing media to copper\n");
1677 		ctrl_ext &=
1678 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1679 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1680 		break;
1681 	default:
1682 		/* shouldn't get here during regular operation */
1683 		netdev_err(adapter->netdev,
1684 			"AMS: Invalid media type found, returning\n");
1685 		break;
1686 	}
1687 	wr32(E1000_CTRL_EXT, ctrl_ext);
1688 }
1689 
1690 /**
1691  *  igb_up - Open the interface and prepare it to handle traffic
1692  *  @adapter: board private structure
1693  **/
1694 int igb_up(struct igb_adapter *adapter)
1695 {
1696 	struct e1000_hw *hw = &adapter->hw;
1697 	int i;
1698 
1699 	/* hardware has been reset, we need to reload some things */
1700 	igb_configure(adapter);
1701 
1702 	clear_bit(__IGB_DOWN, &adapter->state);
1703 
1704 	for (i = 0; i < adapter->num_q_vectors; i++)
1705 		napi_enable(&(adapter->q_vector[i]->napi));
1706 
1707 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1708 		igb_configure_msix(adapter);
1709 	else
1710 		igb_assign_vector(adapter->q_vector[0], 0);
1711 
1712 	/* Clear any pending interrupts. */
1713 	rd32(E1000_ICR);
1714 	igb_irq_enable(adapter);
1715 
1716 	/* notify VFs that reset has been completed */
1717 	if (adapter->vfs_allocated_count) {
1718 		u32 reg_data = rd32(E1000_CTRL_EXT);
1719 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1720 		wr32(E1000_CTRL_EXT, reg_data);
1721 	}
1722 
1723 	netif_tx_start_all_queues(adapter->netdev);
1724 
1725 	/* start the watchdog. */
1726 	hw->mac.get_link_status = 1;
1727 	schedule_work(&adapter->watchdog_task);
1728 
1729 	return 0;
1730 }
1731 
1732 void igb_down(struct igb_adapter *adapter)
1733 {
1734 	struct net_device *netdev = adapter->netdev;
1735 	struct e1000_hw *hw = &adapter->hw;
1736 	u32 tctl, rctl;
1737 	int i;
1738 
1739 	/* signal that we're down so the interrupt handler does not
1740 	 * reschedule our watchdog timer
1741 	 */
1742 	set_bit(__IGB_DOWN, &adapter->state);
1743 
1744 	/* disable receives in the hardware */
1745 	rctl = rd32(E1000_RCTL);
1746 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1747 	/* flush and sleep below */
1748 
1749 	netif_tx_stop_all_queues(netdev);
1750 
1751 	/* disable transmits in the hardware */
1752 	tctl = rd32(E1000_TCTL);
1753 	tctl &= ~E1000_TCTL_EN;
1754 	wr32(E1000_TCTL, tctl);
1755 	/* flush both disables and wait for them to finish */
1756 	wrfl();
1757 	msleep(10);
1758 
1759 	igb_irq_disable(adapter);
1760 
1761 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1762 
1763 	for (i = 0; i < adapter->num_q_vectors; i++) {
1764 		napi_synchronize(&(adapter->q_vector[i]->napi));
1765 		napi_disable(&(adapter->q_vector[i]->napi));
1766 	}
1767 
1768 
1769 	del_timer_sync(&adapter->watchdog_timer);
1770 	del_timer_sync(&adapter->phy_info_timer);
1771 
1772 	netif_carrier_off(netdev);
1773 
1774 	/* record the stats before reset*/
1775 	spin_lock(&adapter->stats64_lock);
1776 	igb_update_stats(adapter, &adapter->stats64);
1777 	spin_unlock(&adapter->stats64_lock);
1778 
1779 	adapter->link_speed = 0;
1780 	adapter->link_duplex = 0;
1781 
1782 	if (!pci_channel_offline(adapter->pdev))
1783 		igb_reset(adapter);
1784 	igb_clean_all_tx_rings(adapter);
1785 	igb_clean_all_rx_rings(adapter);
1786 #ifdef CONFIG_IGB_DCA
1787 
1788 	/* since we reset the hardware DCA settings were cleared */
1789 	igb_setup_dca(adapter);
1790 #endif
1791 }
1792 
1793 void igb_reinit_locked(struct igb_adapter *adapter)
1794 {
1795 	WARN_ON(in_interrupt());
1796 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1797 		msleep(1);
1798 	igb_down(adapter);
1799 	igb_up(adapter);
1800 	clear_bit(__IGB_RESETTING, &adapter->state);
1801 }
1802 
1803 /** igb_enable_mas - Media Autosense re-enable after swap
1804  *
1805  * @adapter: adapter struct
1806  **/
1807 static s32 igb_enable_mas(struct igb_adapter *adapter)
1808 {
1809 	struct e1000_hw *hw = &adapter->hw;
1810 	u32 connsw;
1811 	s32 ret_val = 0;
1812 
1813 	connsw = rd32(E1000_CONNSW);
1814 	if (!(hw->phy.media_type == e1000_media_type_copper))
1815 		return ret_val;
1816 
1817 	/* configure for SerDes media detect */
1818 	if (!(connsw & E1000_CONNSW_SERDESD)) {
1819 		connsw |= E1000_CONNSW_ENRGSRC;
1820 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1821 		wr32(E1000_CONNSW, connsw);
1822 		wrfl();
1823 	} else if (connsw & E1000_CONNSW_SERDESD) {
1824 		/* already SerDes, no need to enable anything */
1825 		return ret_val;
1826 	} else {
1827 		netdev_info(adapter->netdev,
1828 			"MAS: Unable to configure feature, disabling..\n");
1829 		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1830 	}
1831 	return ret_val;
1832 }
1833 
1834 void igb_reset(struct igb_adapter *adapter)
1835 {
1836 	struct pci_dev *pdev = adapter->pdev;
1837 	struct e1000_hw *hw = &adapter->hw;
1838 	struct e1000_mac_info *mac = &hw->mac;
1839 	struct e1000_fc_info *fc = &hw->fc;
1840 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1841 
1842 	/* Repartition Pba for greater than 9k mtu
1843 	 * To take effect CTRL.RST is required.
1844 	 */
1845 	switch (mac->type) {
1846 	case e1000_i350:
1847 	case e1000_i354:
1848 	case e1000_82580:
1849 		pba = rd32(E1000_RXPBS);
1850 		pba = igb_rxpbs_adjust_82580(pba);
1851 		break;
1852 	case e1000_82576:
1853 		pba = rd32(E1000_RXPBS);
1854 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1855 		break;
1856 	case e1000_82575:
1857 	case e1000_i210:
1858 	case e1000_i211:
1859 	default:
1860 		pba = E1000_PBA_34K;
1861 		break;
1862 	}
1863 
1864 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1865 	    (mac->type < e1000_82576)) {
1866 		/* adjust PBA for jumbo frames */
1867 		wr32(E1000_PBA, pba);
1868 
1869 		/* To maintain wire speed transmits, the Tx FIFO should be
1870 		 * large enough to accommodate two full transmit packets,
1871 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1872 		 * the Rx FIFO should be large enough to accommodate at least
1873 		 * one full receive packet and is similarly rounded up and
1874 		 * expressed in KB.
1875 		 */
1876 		pba = rd32(E1000_PBA);
1877 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1878 		tx_space = pba >> 16;
1879 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1880 		pba &= 0xffff;
1881 		/* the Tx fifo also stores 16 bytes of information about the Tx
1882 		 * but don't include ethernet FCS because hardware appends it
1883 		 */
1884 		min_tx_space = (adapter->max_frame_size +
1885 				sizeof(union e1000_adv_tx_desc) -
1886 				ETH_FCS_LEN) * 2;
1887 		min_tx_space = ALIGN(min_tx_space, 1024);
1888 		min_tx_space >>= 10;
1889 		/* software strips receive CRC, so leave room for it */
1890 		min_rx_space = adapter->max_frame_size;
1891 		min_rx_space = ALIGN(min_rx_space, 1024);
1892 		min_rx_space >>= 10;
1893 
1894 		/* If current Tx allocation is less than the min Tx FIFO size,
1895 		 * and the min Tx FIFO size is less than the current Rx FIFO
1896 		 * allocation, take space away from current Rx allocation
1897 		 */
1898 		if (tx_space < min_tx_space &&
1899 		    ((min_tx_space - tx_space) < pba)) {
1900 			pba = pba - (min_tx_space - tx_space);
1901 
1902 			/* if short on Rx space, Rx wins and must trump Tx
1903 			 * adjustment
1904 			 */
1905 			if (pba < min_rx_space)
1906 				pba = min_rx_space;
1907 		}
1908 		wr32(E1000_PBA, pba);
1909 	}
1910 
1911 	/* flow control settings */
1912 	/* The high water mark must be low enough to fit one full frame
1913 	 * (or the size used for early receive) above it in the Rx FIFO.
1914 	 * Set it to the lower of:
1915 	 * - 90% of the Rx FIFO size, or
1916 	 * - the full Rx FIFO size minus one full frame
1917 	 */
1918 	hwm = min(((pba << 10) * 9 / 10),
1919 			((pba << 10) - 2 * adapter->max_frame_size));
1920 
1921 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1922 	fc->low_water = fc->high_water - 16;
1923 	fc->pause_time = 0xFFFF;
1924 	fc->send_xon = 1;
1925 	fc->current_mode = fc->requested_mode;
1926 
1927 	/* disable receive for all VFs and wait one second */
1928 	if (adapter->vfs_allocated_count) {
1929 		int i;
1930 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1931 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1932 
1933 		/* ping all the active vfs to let them know we are going down */
1934 		igb_ping_all_vfs(adapter);
1935 
1936 		/* disable transmits and receives */
1937 		wr32(E1000_VFRE, 0);
1938 		wr32(E1000_VFTE, 0);
1939 	}
1940 
1941 	/* Allow time for pending master requests to run */
1942 	hw->mac.ops.reset_hw(hw);
1943 	wr32(E1000_WUC, 0);
1944 
1945 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1946 		/* need to resetup here after media swap */
1947 		adapter->ei.get_invariants(hw);
1948 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1949 	}
1950 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1951 		if (igb_enable_mas(adapter))
1952 			dev_err(&pdev->dev,
1953 				"Error enabling Media Auto Sense\n");
1954 	}
1955 	if (hw->mac.ops.init_hw(hw))
1956 		dev_err(&pdev->dev, "Hardware Error\n");
1957 
1958 	/* Flow control settings reset on hardware reset, so guarantee flow
1959 	 * control is off when forcing speed.
1960 	 */
1961 	if (!hw->mac.autoneg)
1962 		igb_force_mac_fc(hw);
1963 
1964 	igb_init_dmac(adapter, pba);
1965 #ifdef CONFIG_IGB_HWMON
1966 	/* Re-initialize the thermal sensor on i350 devices. */
1967 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1968 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1969 			/* If present, re-initialize the external thermal sensor
1970 			 * interface.
1971 			 */
1972 			if (adapter->ets)
1973 				mac->ops.init_thermal_sensor_thresh(hw);
1974 		}
1975 	}
1976 #endif
1977 	if (!netif_running(adapter->netdev))
1978 		igb_power_down_link(adapter);
1979 
1980 	igb_update_mng_vlan(adapter);
1981 
1982 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1983 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1984 
1985 	/* Re-enable PTP, where applicable. */
1986 	igb_ptp_reset(adapter);
1987 
1988 	igb_get_phy_info(hw);
1989 }
1990 
1991 static netdev_features_t igb_fix_features(struct net_device *netdev,
1992 	netdev_features_t features)
1993 {
1994 	/* Since there is no support for separate Rx/Tx vlan accel
1995 	 * enable/disable make sure Tx flag is always in same state as Rx.
1996 	 */
1997 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1998 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1999 	else
2000 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2001 
2002 	return features;
2003 }
2004 
2005 static int igb_set_features(struct net_device *netdev,
2006 	netdev_features_t features)
2007 {
2008 	netdev_features_t changed = netdev->features ^ features;
2009 	struct igb_adapter *adapter = netdev_priv(netdev);
2010 
2011 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2012 		igb_vlan_mode(netdev, features);
2013 
2014 	if (!(changed & NETIF_F_RXALL))
2015 		return 0;
2016 
2017 	netdev->features = features;
2018 
2019 	if (netif_running(netdev))
2020 		igb_reinit_locked(adapter);
2021 	else
2022 		igb_reset(adapter);
2023 
2024 	return 0;
2025 }
2026 
2027 static const struct net_device_ops igb_netdev_ops = {
2028 	.ndo_open		= igb_open,
2029 	.ndo_stop		= igb_close,
2030 	.ndo_start_xmit		= igb_xmit_frame,
2031 	.ndo_get_stats64	= igb_get_stats64,
2032 	.ndo_set_rx_mode	= igb_set_rx_mode,
2033 	.ndo_set_mac_address	= igb_set_mac,
2034 	.ndo_change_mtu		= igb_change_mtu,
2035 	.ndo_do_ioctl		= igb_ioctl,
2036 	.ndo_tx_timeout		= igb_tx_timeout,
2037 	.ndo_validate_addr	= eth_validate_addr,
2038 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2039 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2040 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2041 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2042 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
2043 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2044 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2045 #ifdef CONFIG_NET_POLL_CONTROLLER
2046 	.ndo_poll_controller	= igb_netpoll,
2047 #endif
2048 	.ndo_fix_features	= igb_fix_features,
2049 	.ndo_set_features	= igb_set_features,
2050 };
2051 
2052 /**
2053  * igb_set_fw_version - Configure version string for ethtool
2054  * @adapter: adapter struct
2055  **/
2056 void igb_set_fw_version(struct igb_adapter *adapter)
2057 {
2058 	struct e1000_hw *hw = &adapter->hw;
2059 	struct e1000_fw_version fw;
2060 
2061 	igb_get_fw_version(hw, &fw);
2062 
2063 	switch (hw->mac.type) {
2064 	case e1000_i210:
2065 	case e1000_i211:
2066 		if (!(igb_get_flash_presence_i210(hw))) {
2067 			snprintf(adapter->fw_version,
2068 				 sizeof(adapter->fw_version),
2069 				 "%2d.%2d-%d",
2070 				 fw.invm_major, fw.invm_minor,
2071 				 fw.invm_img_type);
2072 			break;
2073 		}
2074 		/* fall through */
2075 	default:
2076 		/* if option is rom valid, display its version too */
2077 		if (fw.or_valid) {
2078 			snprintf(adapter->fw_version,
2079 				 sizeof(adapter->fw_version),
2080 				 "%d.%d, 0x%08x, %d.%d.%d",
2081 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2082 				 fw.or_major, fw.or_build, fw.or_patch);
2083 		/* no option rom */
2084 		} else if (fw.etrack_id != 0X0000) {
2085 			snprintf(adapter->fw_version,
2086 			    sizeof(adapter->fw_version),
2087 			    "%d.%d, 0x%08x",
2088 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2089 		} else {
2090 		snprintf(adapter->fw_version,
2091 		    sizeof(adapter->fw_version),
2092 		    "%d.%d.%d",
2093 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2094 		}
2095 		break;
2096 	}
2097 	return;
2098 }
2099 
2100 /**
2101  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2102  *
2103  * @adapter: adapter struct
2104  **/
2105 static void igb_init_mas(struct igb_adapter *adapter)
2106 {
2107 	struct e1000_hw *hw = &adapter->hw;
2108 	u16 eeprom_data;
2109 
2110 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2111 	switch (hw->bus.func) {
2112 	case E1000_FUNC_0:
2113 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2114 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2115 			netdev_info(adapter->netdev,
2116 				"MAS: Enabling Media Autosense for port %d\n",
2117 				hw->bus.func);
2118 		}
2119 		break;
2120 	case E1000_FUNC_1:
2121 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2122 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2123 			netdev_info(adapter->netdev,
2124 				"MAS: Enabling Media Autosense for port %d\n",
2125 				hw->bus.func);
2126 		}
2127 		break;
2128 	case E1000_FUNC_2:
2129 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2130 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2131 			netdev_info(adapter->netdev,
2132 				"MAS: Enabling Media Autosense for port %d\n",
2133 				hw->bus.func);
2134 		}
2135 		break;
2136 	case E1000_FUNC_3:
2137 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2138 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2139 			netdev_info(adapter->netdev,
2140 				"MAS: Enabling Media Autosense for port %d\n",
2141 				hw->bus.func);
2142 		}
2143 		break;
2144 	default:
2145 		/* Shouldn't get here */
2146 		netdev_err(adapter->netdev,
2147 			"MAS: Invalid port configuration, returning\n");
2148 		break;
2149 	}
2150 }
2151 
2152 /**
2153  *  igb_init_i2c - Init I2C interface
2154  *  @adapter: pointer to adapter structure
2155  **/
2156 static s32 igb_init_i2c(struct igb_adapter *adapter)
2157 {
2158 	s32 status = E1000_SUCCESS;
2159 
2160 	/* I2C interface supported on i350 devices */
2161 	if (adapter->hw.mac.type != e1000_i350)
2162 		return E1000_SUCCESS;
2163 
2164 	/* Initialize the i2c bus which is controlled by the registers.
2165 	 * This bus will use the i2c_algo_bit structue that implements
2166 	 * the protocol through toggling of the 4 bits in the register.
2167 	 */
2168 	adapter->i2c_adap.owner = THIS_MODULE;
2169 	adapter->i2c_algo = igb_i2c_algo;
2170 	adapter->i2c_algo.data = adapter;
2171 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2172 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2173 	strlcpy(adapter->i2c_adap.name, "igb BB",
2174 		sizeof(adapter->i2c_adap.name));
2175 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2176 	return status;
2177 }
2178 
2179 /**
2180  *  igb_probe - Device Initialization Routine
2181  *  @pdev: PCI device information struct
2182  *  @ent: entry in igb_pci_tbl
2183  *
2184  *  Returns 0 on success, negative on failure
2185  *
2186  *  igb_probe initializes an adapter identified by a pci_dev structure.
2187  *  The OS initialization, configuring of the adapter private structure,
2188  *  and a hardware reset occur.
2189  **/
2190 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2191 {
2192 	struct net_device *netdev;
2193 	struct igb_adapter *adapter;
2194 	struct e1000_hw *hw;
2195 	u16 eeprom_data = 0;
2196 	s32 ret_val;
2197 	static int global_quad_port_a; /* global quad port a indication */
2198 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2199 	int err, pci_using_dac;
2200 	u8 part_str[E1000_PBANUM_LENGTH];
2201 
2202 	/* Catch broken hardware that put the wrong VF device ID in
2203 	 * the PCIe SR-IOV capability.
2204 	 */
2205 	if (pdev->is_virtfn) {
2206 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2207 			pci_name(pdev), pdev->vendor, pdev->device);
2208 		return -EINVAL;
2209 	}
2210 
2211 	err = pci_enable_device_mem(pdev);
2212 	if (err)
2213 		return err;
2214 
2215 	pci_using_dac = 0;
2216 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2217 	if (!err) {
2218 		pci_using_dac = 1;
2219 	} else {
2220 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2221 		if (err) {
2222 			dev_err(&pdev->dev,
2223 				"No usable DMA configuration, aborting\n");
2224 			goto err_dma;
2225 		}
2226 	}
2227 
2228 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2229 					   IORESOURCE_MEM),
2230 					   igb_driver_name);
2231 	if (err)
2232 		goto err_pci_reg;
2233 
2234 	pci_enable_pcie_error_reporting(pdev);
2235 
2236 	pci_set_master(pdev);
2237 	pci_save_state(pdev);
2238 
2239 	err = -ENOMEM;
2240 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2241 				   IGB_MAX_TX_QUEUES);
2242 	if (!netdev)
2243 		goto err_alloc_etherdev;
2244 
2245 	SET_NETDEV_DEV(netdev, &pdev->dev);
2246 
2247 	pci_set_drvdata(pdev, netdev);
2248 	adapter = netdev_priv(netdev);
2249 	adapter->netdev = netdev;
2250 	adapter->pdev = pdev;
2251 	hw = &adapter->hw;
2252 	hw->back = adapter;
2253 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2254 
2255 	err = -EIO;
2256 	hw->hw_addr = pci_iomap(pdev, 0, 0);
2257 	if (!hw->hw_addr)
2258 		goto err_ioremap;
2259 
2260 	netdev->netdev_ops = &igb_netdev_ops;
2261 	igb_set_ethtool_ops(netdev);
2262 	netdev->watchdog_timeo = 5 * HZ;
2263 
2264 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2265 
2266 	netdev->mem_start = pci_resource_start(pdev, 0);
2267 	netdev->mem_end = pci_resource_end(pdev, 0);
2268 
2269 	/* PCI config space info */
2270 	hw->vendor_id = pdev->vendor;
2271 	hw->device_id = pdev->device;
2272 	hw->revision_id = pdev->revision;
2273 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2274 	hw->subsystem_device_id = pdev->subsystem_device;
2275 
2276 	/* Copy the default MAC, PHY and NVM function pointers */
2277 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2278 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2279 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2280 	/* Initialize skew-specific constants */
2281 	err = ei->get_invariants(hw);
2282 	if (err)
2283 		goto err_sw_init;
2284 
2285 	/* setup the private structure */
2286 	err = igb_sw_init(adapter);
2287 	if (err)
2288 		goto err_sw_init;
2289 
2290 	igb_get_bus_info_pcie(hw);
2291 
2292 	hw->phy.autoneg_wait_to_complete = false;
2293 
2294 	/* Copper options */
2295 	if (hw->phy.media_type == e1000_media_type_copper) {
2296 		hw->phy.mdix = AUTO_ALL_MODES;
2297 		hw->phy.disable_polarity_correction = false;
2298 		hw->phy.ms_type = e1000_ms_hw_default;
2299 	}
2300 
2301 	if (igb_check_reset_block(hw))
2302 		dev_info(&pdev->dev,
2303 			"PHY reset is blocked due to SOL/IDER session.\n");
2304 
2305 	/* features is initialized to 0 in allocation, it might have bits
2306 	 * set by igb_sw_init so we should use an or instead of an
2307 	 * assignment.
2308 	 */
2309 	netdev->features |= NETIF_F_SG |
2310 			    NETIF_F_IP_CSUM |
2311 			    NETIF_F_IPV6_CSUM |
2312 			    NETIF_F_TSO |
2313 			    NETIF_F_TSO6 |
2314 			    NETIF_F_RXHASH |
2315 			    NETIF_F_RXCSUM |
2316 			    NETIF_F_HW_VLAN_CTAG_RX |
2317 			    NETIF_F_HW_VLAN_CTAG_TX;
2318 
2319 	/* copy netdev features into list of user selectable features */
2320 	netdev->hw_features |= netdev->features;
2321 	netdev->hw_features |= NETIF_F_RXALL;
2322 
2323 	/* set this bit last since it cannot be part of hw_features */
2324 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2325 
2326 	netdev->vlan_features |= NETIF_F_TSO |
2327 				 NETIF_F_TSO6 |
2328 				 NETIF_F_IP_CSUM |
2329 				 NETIF_F_IPV6_CSUM |
2330 				 NETIF_F_SG;
2331 
2332 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2333 
2334 	if (pci_using_dac) {
2335 		netdev->features |= NETIF_F_HIGHDMA;
2336 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2337 	}
2338 
2339 	if (hw->mac.type >= e1000_82576) {
2340 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2341 		netdev->features |= NETIF_F_SCTP_CSUM;
2342 	}
2343 
2344 	netdev->priv_flags |= IFF_UNICAST_FLT;
2345 
2346 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2347 
2348 	/* before reading the NVM, reset the controller to put the device in a
2349 	 * known good starting state
2350 	 */
2351 	hw->mac.ops.reset_hw(hw);
2352 
2353 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2354 	 * that doesn't contain a checksum
2355 	 */
2356 	switch (hw->mac.type) {
2357 	case e1000_i210:
2358 	case e1000_i211:
2359 		if (igb_get_flash_presence_i210(hw)) {
2360 			if (hw->nvm.ops.validate(hw) < 0) {
2361 				dev_err(&pdev->dev,
2362 					"The NVM Checksum Is Not Valid\n");
2363 				err = -EIO;
2364 				goto err_eeprom;
2365 			}
2366 		}
2367 		break;
2368 	default:
2369 		if (hw->nvm.ops.validate(hw) < 0) {
2370 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2371 			err = -EIO;
2372 			goto err_eeprom;
2373 		}
2374 		break;
2375 	}
2376 
2377 	/* copy the MAC address out of the NVM */
2378 	if (hw->mac.ops.read_mac_addr(hw))
2379 		dev_err(&pdev->dev, "NVM Read Error\n");
2380 
2381 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2382 
2383 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2384 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2385 		err = -EIO;
2386 		goto err_eeprom;
2387 	}
2388 
2389 	/* get firmware version for ethtool -i */
2390 	igb_set_fw_version(adapter);
2391 
2392 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2393 		    (unsigned long) adapter);
2394 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2395 		    (unsigned long) adapter);
2396 
2397 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2398 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2399 
2400 	/* Initialize link properties that are user-changeable */
2401 	adapter->fc_autoneg = true;
2402 	hw->mac.autoneg = true;
2403 	hw->phy.autoneg_advertised = 0x2f;
2404 
2405 	hw->fc.requested_mode = e1000_fc_default;
2406 	hw->fc.current_mode = e1000_fc_default;
2407 
2408 	igb_validate_mdi_setting(hw);
2409 
2410 	/* By default, support wake on port A */
2411 	if (hw->bus.func == 0)
2412 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2413 
2414 	/* Check the NVM for wake support on non-port A ports */
2415 	if (hw->mac.type >= e1000_82580)
2416 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2417 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2418 				 &eeprom_data);
2419 	else if (hw->bus.func == 1)
2420 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2421 
2422 	if (eeprom_data & IGB_EEPROM_APME)
2423 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2424 
2425 	/* now that we have the eeprom settings, apply the special cases where
2426 	 * the eeprom may be wrong or the board simply won't support wake on
2427 	 * lan on a particular port
2428 	 */
2429 	switch (pdev->device) {
2430 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2431 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2432 		break;
2433 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2434 	case E1000_DEV_ID_82576_FIBER:
2435 	case E1000_DEV_ID_82576_SERDES:
2436 		/* Wake events only supported on port A for dual fiber
2437 		 * regardless of eeprom setting
2438 		 */
2439 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2440 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2441 		break;
2442 	case E1000_DEV_ID_82576_QUAD_COPPER:
2443 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2444 		/* if quad port adapter, disable WoL on all but port A */
2445 		if (global_quad_port_a != 0)
2446 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2447 		else
2448 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2449 		/* Reset for multiple quad port adapters */
2450 		if (++global_quad_port_a == 4)
2451 			global_quad_port_a = 0;
2452 		break;
2453 	default:
2454 		/* If the device can't wake, don't set software support */
2455 		if (!device_can_wakeup(&adapter->pdev->dev))
2456 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2457 	}
2458 
2459 	/* initialize the wol settings based on the eeprom settings */
2460 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2461 		adapter->wol |= E1000_WUFC_MAG;
2462 
2463 	/* Some vendors want WoL disabled by default, but still supported */
2464 	if ((hw->mac.type == e1000_i350) &&
2465 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2466 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2467 		adapter->wol = 0;
2468 	}
2469 
2470 	device_set_wakeup_enable(&adapter->pdev->dev,
2471 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2472 
2473 	/* reset the hardware with the new settings */
2474 	igb_reset(adapter);
2475 
2476 	/* Init the I2C interface */
2477 	err = igb_init_i2c(adapter);
2478 	if (err) {
2479 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2480 		goto err_eeprom;
2481 	}
2482 
2483 	/* let the f/w know that the h/w is now under the control of the
2484 	 * driver. */
2485 	igb_get_hw_control(adapter);
2486 
2487 	strcpy(netdev->name, "eth%d");
2488 	err = register_netdev(netdev);
2489 	if (err)
2490 		goto err_register;
2491 
2492 	/* carrier off reporting is important to ethtool even BEFORE open */
2493 	netif_carrier_off(netdev);
2494 
2495 #ifdef CONFIG_IGB_DCA
2496 	if (dca_add_requester(&pdev->dev) == 0) {
2497 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2498 		dev_info(&pdev->dev, "DCA enabled\n");
2499 		igb_setup_dca(adapter);
2500 	}
2501 
2502 #endif
2503 #ifdef CONFIG_IGB_HWMON
2504 	/* Initialize the thermal sensor on i350 devices. */
2505 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2506 		u16 ets_word;
2507 
2508 		/* Read the NVM to determine if this i350 device supports an
2509 		 * external thermal sensor.
2510 		 */
2511 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2512 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2513 			adapter->ets = true;
2514 		else
2515 			adapter->ets = false;
2516 		if (igb_sysfs_init(adapter))
2517 			dev_err(&pdev->dev,
2518 				"failed to allocate sysfs resources\n");
2519 	} else {
2520 		adapter->ets = false;
2521 	}
2522 #endif
2523 	/* Check if Media Autosense is enabled */
2524 	adapter->ei = *ei;
2525 	if (hw->dev_spec._82575.mas_capable)
2526 		igb_init_mas(adapter);
2527 
2528 	/* do hw tstamp init after resetting */
2529 	igb_ptp_init(adapter);
2530 
2531 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2532 	/* print bus type/speed/width info, not applicable to i354 */
2533 	if (hw->mac.type != e1000_i354) {
2534 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2535 			 netdev->name,
2536 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2537 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2538 			   "unknown"),
2539 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2540 			  "Width x4" :
2541 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2542 			  "Width x2" :
2543 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2544 			  "Width x1" : "unknown"), netdev->dev_addr);
2545 	}
2546 
2547 	if ((hw->mac.type >= e1000_i210 ||
2548 	     igb_get_flash_presence_i210(hw))) {
2549 		ret_val = igb_read_part_string(hw, part_str,
2550 					       E1000_PBANUM_LENGTH);
2551 	} else {
2552 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2553 	}
2554 
2555 	if (ret_val)
2556 		strcpy(part_str, "Unknown");
2557 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2558 	dev_info(&pdev->dev,
2559 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2560 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2561 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2562 		adapter->num_rx_queues, adapter->num_tx_queues);
2563 	switch (hw->mac.type) {
2564 	case e1000_i350:
2565 	case e1000_i210:
2566 	case e1000_i211:
2567 		igb_set_eee_i350(hw);
2568 		break;
2569 	case e1000_i354:
2570 		if (hw->phy.media_type == e1000_media_type_copper) {
2571 			if ((rd32(E1000_CTRL_EXT) &
2572 			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2573 				igb_set_eee_i354(hw);
2574 		}
2575 		break;
2576 	default:
2577 		break;
2578 	}
2579 
2580 	pm_runtime_put_noidle(&pdev->dev);
2581 	return 0;
2582 
2583 err_register:
2584 	igb_release_hw_control(adapter);
2585 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2586 err_eeprom:
2587 	if (!igb_check_reset_block(hw))
2588 		igb_reset_phy(hw);
2589 
2590 	if (hw->flash_address)
2591 		iounmap(hw->flash_address);
2592 err_sw_init:
2593 	igb_clear_interrupt_scheme(adapter);
2594 	iounmap(hw->hw_addr);
2595 err_ioremap:
2596 	free_netdev(netdev);
2597 err_alloc_etherdev:
2598 	pci_release_selected_regions(pdev,
2599 				     pci_select_bars(pdev, IORESOURCE_MEM));
2600 err_pci_reg:
2601 err_dma:
2602 	pci_disable_device(pdev);
2603 	return err;
2604 }
2605 
2606 #ifdef CONFIG_PCI_IOV
2607 static int igb_disable_sriov(struct pci_dev *pdev)
2608 {
2609 	struct net_device *netdev = pci_get_drvdata(pdev);
2610 	struct igb_adapter *adapter = netdev_priv(netdev);
2611 	struct e1000_hw *hw = &adapter->hw;
2612 
2613 	/* reclaim resources allocated to VFs */
2614 	if (adapter->vf_data) {
2615 		/* disable iov and allow time for transactions to clear */
2616 		if (pci_vfs_assigned(pdev)) {
2617 			dev_warn(&pdev->dev,
2618 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2619 			return -EPERM;
2620 		} else {
2621 			pci_disable_sriov(pdev);
2622 			msleep(500);
2623 		}
2624 
2625 		kfree(adapter->vf_data);
2626 		adapter->vf_data = NULL;
2627 		adapter->vfs_allocated_count = 0;
2628 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2629 		wrfl();
2630 		msleep(100);
2631 		dev_info(&pdev->dev, "IOV Disabled\n");
2632 
2633 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2634 		adapter->flags |= IGB_FLAG_DMAC;
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2641 {
2642 	struct net_device *netdev = pci_get_drvdata(pdev);
2643 	struct igb_adapter *adapter = netdev_priv(netdev);
2644 	int old_vfs = pci_num_vf(pdev);
2645 	int err = 0;
2646 	int i;
2647 
2648 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2649 		err = -EPERM;
2650 		goto out;
2651 	}
2652 	if (!num_vfs)
2653 		goto out;
2654 
2655 	if (old_vfs) {
2656 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2657 			 old_vfs, max_vfs);
2658 		adapter->vfs_allocated_count = old_vfs;
2659 	} else
2660 		adapter->vfs_allocated_count = num_vfs;
2661 
2662 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2663 				sizeof(struct vf_data_storage), GFP_KERNEL);
2664 
2665 	/* if allocation failed then we do not support SR-IOV */
2666 	if (!adapter->vf_data) {
2667 		adapter->vfs_allocated_count = 0;
2668 		dev_err(&pdev->dev,
2669 			"Unable to allocate memory for VF Data Storage\n");
2670 		err = -ENOMEM;
2671 		goto out;
2672 	}
2673 
2674 	/* only call pci_enable_sriov() if no VFs are allocated already */
2675 	if (!old_vfs) {
2676 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2677 		if (err)
2678 			goto err_out;
2679 	}
2680 	dev_info(&pdev->dev, "%d VFs allocated\n",
2681 		 adapter->vfs_allocated_count);
2682 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2683 		igb_vf_configure(adapter, i);
2684 
2685 	/* DMA Coalescing is not supported in IOV mode. */
2686 	adapter->flags &= ~IGB_FLAG_DMAC;
2687 	goto out;
2688 
2689 err_out:
2690 	kfree(adapter->vf_data);
2691 	adapter->vf_data = NULL;
2692 	adapter->vfs_allocated_count = 0;
2693 out:
2694 	return err;
2695 }
2696 
2697 #endif
2698 /**
2699  *  igb_remove_i2c - Cleanup  I2C interface
2700  *  @adapter: pointer to adapter structure
2701  **/
2702 static void igb_remove_i2c(struct igb_adapter *adapter)
2703 {
2704 	/* free the adapter bus structure */
2705 	i2c_del_adapter(&adapter->i2c_adap);
2706 }
2707 
2708 /**
2709  *  igb_remove - Device Removal Routine
2710  *  @pdev: PCI device information struct
2711  *
2712  *  igb_remove is called by the PCI subsystem to alert the driver
2713  *  that it should release a PCI device.  The could be caused by a
2714  *  Hot-Plug event, or because the driver is going to be removed from
2715  *  memory.
2716  **/
2717 static void igb_remove(struct pci_dev *pdev)
2718 {
2719 	struct net_device *netdev = pci_get_drvdata(pdev);
2720 	struct igb_adapter *adapter = netdev_priv(netdev);
2721 	struct e1000_hw *hw = &adapter->hw;
2722 
2723 	pm_runtime_get_noresume(&pdev->dev);
2724 #ifdef CONFIG_IGB_HWMON
2725 	igb_sysfs_exit(adapter);
2726 #endif
2727 	igb_remove_i2c(adapter);
2728 	igb_ptp_stop(adapter);
2729 	/* The watchdog timer may be rescheduled, so explicitly
2730 	 * disable watchdog from being rescheduled.
2731 	 */
2732 	set_bit(__IGB_DOWN, &adapter->state);
2733 	del_timer_sync(&adapter->watchdog_timer);
2734 	del_timer_sync(&adapter->phy_info_timer);
2735 
2736 	cancel_work_sync(&adapter->reset_task);
2737 	cancel_work_sync(&adapter->watchdog_task);
2738 
2739 #ifdef CONFIG_IGB_DCA
2740 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2741 		dev_info(&pdev->dev, "DCA disabled\n");
2742 		dca_remove_requester(&pdev->dev);
2743 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2744 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2745 	}
2746 #endif
2747 
2748 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2749 	 * would have already happened in close and is redundant.
2750 	 */
2751 	igb_release_hw_control(adapter);
2752 
2753 	unregister_netdev(netdev);
2754 
2755 	igb_clear_interrupt_scheme(adapter);
2756 
2757 #ifdef CONFIG_PCI_IOV
2758 	igb_disable_sriov(pdev);
2759 #endif
2760 
2761 	iounmap(hw->hw_addr);
2762 	if (hw->flash_address)
2763 		iounmap(hw->flash_address);
2764 	pci_release_selected_regions(pdev,
2765 				     pci_select_bars(pdev, IORESOURCE_MEM));
2766 
2767 	kfree(adapter->shadow_vfta);
2768 	free_netdev(netdev);
2769 
2770 	pci_disable_pcie_error_reporting(pdev);
2771 
2772 	pci_disable_device(pdev);
2773 }
2774 
2775 /**
2776  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2777  *  @adapter: board private structure to initialize
2778  *
2779  *  This function initializes the vf specific data storage and then attempts to
2780  *  allocate the VFs.  The reason for ordering it this way is because it is much
2781  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2782  *  the memory for the VFs.
2783  **/
2784 static void igb_probe_vfs(struct igb_adapter *adapter)
2785 {
2786 #ifdef CONFIG_PCI_IOV
2787 	struct pci_dev *pdev = adapter->pdev;
2788 	struct e1000_hw *hw = &adapter->hw;
2789 
2790 	/* Virtualization features not supported on i210 family. */
2791 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2792 		return;
2793 
2794 	pci_sriov_set_totalvfs(pdev, 7);
2795 	igb_pci_enable_sriov(pdev, max_vfs);
2796 
2797 #endif /* CONFIG_PCI_IOV */
2798 }
2799 
2800 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2801 {
2802 	struct e1000_hw *hw = &adapter->hw;
2803 	u32 max_rss_queues;
2804 
2805 	/* Determine the maximum number of RSS queues supported. */
2806 	switch (hw->mac.type) {
2807 	case e1000_i211:
2808 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2809 		break;
2810 	case e1000_82575:
2811 	case e1000_i210:
2812 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2813 		break;
2814 	case e1000_i350:
2815 		/* I350 cannot do RSS and SR-IOV at the same time */
2816 		if (!!adapter->vfs_allocated_count) {
2817 			max_rss_queues = 1;
2818 			break;
2819 		}
2820 		/* fall through */
2821 	case e1000_82576:
2822 		if (!!adapter->vfs_allocated_count) {
2823 			max_rss_queues = 2;
2824 			break;
2825 		}
2826 		/* fall through */
2827 	case e1000_82580:
2828 	case e1000_i354:
2829 	default:
2830 		max_rss_queues = IGB_MAX_RX_QUEUES;
2831 		break;
2832 	}
2833 
2834 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2835 
2836 	/* Determine if we need to pair queues. */
2837 	switch (hw->mac.type) {
2838 	case e1000_82575:
2839 	case e1000_i211:
2840 		/* Device supports enough interrupts without queue pairing. */
2841 		break;
2842 	case e1000_82576:
2843 		/* If VFs are going to be allocated with RSS queues then we
2844 		 * should pair the queues in order to conserve interrupts due
2845 		 * to limited supply.
2846 		 */
2847 		if ((adapter->rss_queues > 1) &&
2848 		    (adapter->vfs_allocated_count > 6))
2849 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2850 		/* fall through */
2851 	case e1000_82580:
2852 	case e1000_i350:
2853 	case e1000_i354:
2854 	case e1000_i210:
2855 	default:
2856 		/* If rss_queues > half of max_rss_queues, pair the queues in
2857 		 * order to conserve interrupts due to limited supply.
2858 		 */
2859 		if (adapter->rss_queues > (max_rss_queues / 2))
2860 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2861 		break;
2862 	}
2863 }
2864 
2865 /**
2866  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2867  *  @adapter: board private structure to initialize
2868  *
2869  *  igb_sw_init initializes the Adapter private data structure.
2870  *  Fields are initialized based on PCI device information and
2871  *  OS network device settings (MTU size).
2872  **/
2873 static int igb_sw_init(struct igb_adapter *adapter)
2874 {
2875 	struct e1000_hw *hw = &adapter->hw;
2876 	struct net_device *netdev = adapter->netdev;
2877 	struct pci_dev *pdev = adapter->pdev;
2878 
2879 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2880 
2881 	/* set default ring sizes */
2882 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2883 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2884 
2885 	/* set default ITR values */
2886 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2887 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2888 
2889 	/* set default work limits */
2890 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2891 
2892 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2893 				  VLAN_HLEN;
2894 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2895 
2896 	spin_lock_init(&adapter->stats64_lock);
2897 #ifdef CONFIG_PCI_IOV
2898 	switch (hw->mac.type) {
2899 	case e1000_82576:
2900 	case e1000_i350:
2901 		if (max_vfs > 7) {
2902 			dev_warn(&pdev->dev,
2903 				 "Maximum of 7 VFs per PF, using max\n");
2904 			max_vfs = adapter->vfs_allocated_count = 7;
2905 		} else
2906 			adapter->vfs_allocated_count = max_vfs;
2907 		if (adapter->vfs_allocated_count)
2908 			dev_warn(&pdev->dev,
2909 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2910 		break;
2911 	default:
2912 		break;
2913 	}
2914 #endif /* CONFIG_PCI_IOV */
2915 
2916 	igb_init_queue_configuration(adapter);
2917 
2918 	/* Setup and initialize a copy of the hw vlan table array */
2919 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2920 				       GFP_ATOMIC);
2921 
2922 	/* This call may decrease the number of queues */
2923 	if (igb_init_interrupt_scheme(adapter, true)) {
2924 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2925 		return -ENOMEM;
2926 	}
2927 
2928 	igb_probe_vfs(adapter);
2929 
2930 	/* Explicitly disable IRQ since the NIC can be in any state. */
2931 	igb_irq_disable(adapter);
2932 
2933 	if (hw->mac.type >= e1000_i350)
2934 		adapter->flags &= ~IGB_FLAG_DMAC;
2935 
2936 	set_bit(__IGB_DOWN, &adapter->state);
2937 	return 0;
2938 }
2939 
2940 /**
2941  *  igb_open - Called when a network interface is made active
2942  *  @netdev: network interface device structure
2943  *
2944  *  Returns 0 on success, negative value on failure
2945  *
2946  *  The open entry point is called when a network interface is made
2947  *  active by the system (IFF_UP).  At this point all resources needed
2948  *  for transmit and receive operations are allocated, the interrupt
2949  *  handler is registered with the OS, the watchdog timer is started,
2950  *  and the stack is notified that the interface is ready.
2951  **/
2952 static int __igb_open(struct net_device *netdev, bool resuming)
2953 {
2954 	struct igb_adapter *adapter = netdev_priv(netdev);
2955 	struct e1000_hw *hw = &adapter->hw;
2956 	struct pci_dev *pdev = adapter->pdev;
2957 	int err;
2958 	int i;
2959 
2960 	/* disallow open during test */
2961 	if (test_bit(__IGB_TESTING, &adapter->state)) {
2962 		WARN_ON(resuming);
2963 		return -EBUSY;
2964 	}
2965 
2966 	if (!resuming)
2967 		pm_runtime_get_sync(&pdev->dev);
2968 
2969 	netif_carrier_off(netdev);
2970 
2971 	/* allocate transmit descriptors */
2972 	err = igb_setup_all_tx_resources(adapter);
2973 	if (err)
2974 		goto err_setup_tx;
2975 
2976 	/* allocate receive descriptors */
2977 	err = igb_setup_all_rx_resources(adapter);
2978 	if (err)
2979 		goto err_setup_rx;
2980 
2981 	igb_power_up_link(adapter);
2982 
2983 	/* before we allocate an interrupt, we must be ready to handle it.
2984 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2985 	 * as soon as we call pci_request_irq, so we have to setup our
2986 	 * clean_rx handler before we do so.
2987 	 */
2988 	igb_configure(adapter);
2989 
2990 	err = igb_request_irq(adapter);
2991 	if (err)
2992 		goto err_req_irq;
2993 
2994 	/* Notify the stack of the actual queue counts. */
2995 	err = netif_set_real_num_tx_queues(adapter->netdev,
2996 					   adapter->num_tx_queues);
2997 	if (err)
2998 		goto err_set_queues;
2999 
3000 	err = netif_set_real_num_rx_queues(adapter->netdev,
3001 					   adapter->num_rx_queues);
3002 	if (err)
3003 		goto err_set_queues;
3004 
3005 	/* From here on the code is the same as igb_up() */
3006 	clear_bit(__IGB_DOWN, &adapter->state);
3007 
3008 	for (i = 0; i < adapter->num_q_vectors; i++)
3009 		napi_enable(&(adapter->q_vector[i]->napi));
3010 
3011 	/* Clear any pending interrupts. */
3012 	rd32(E1000_ICR);
3013 
3014 	igb_irq_enable(adapter);
3015 
3016 	/* notify VFs that reset has been completed */
3017 	if (adapter->vfs_allocated_count) {
3018 		u32 reg_data = rd32(E1000_CTRL_EXT);
3019 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3020 		wr32(E1000_CTRL_EXT, reg_data);
3021 	}
3022 
3023 	netif_tx_start_all_queues(netdev);
3024 
3025 	if (!resuming)
3026 		pm_runtime_put(&pdev->dev);
3027 
3028 	/* start the watchdog. */
3029 	hw->mac.get_link_status = 1;
3030 	schedule_work(&adapter->watchdog_task);
3031 
3032 	return 0;
3033 
3034 err_set_queues:
3035 	igb_free_irq(adapter);
3036 err_req_irq:
3037 	igb_release_hw_control(adapter);
3038 	igb_power_down_link(adapter);
3039 	igb_free_all_rx_resources(adapter);
3040 err_setup_rx:
3041 	igb_free_all_tx_resources(adapter);
3042 err_setup_tx:
3043 	igb_reset(adapter);
3044 	if (!resuming)
3045 		pm_runtime_put(&pdev->dev);
3046 
3047 	return err;
3048 }
3049 
3050 static int igb_open(struct net_device *netdev)
3051 {
3052 	return __igb_open(netdev, false);
3053 }
3054 
3055 /**
3056  *  igb_close - Disables a network interface
3057  *  @netdev: network interface device structure
3058  *
3059  *  Returns 0, this is not allowed to fail
3060  *
3061  *  The close entry point is called when an interface is de-activated
3062  *  by the OS.  The hardware is still under the driver's control, but
3063  *  needs to be disabled.  A global MAC reset is issued to stop the
3064  *  hardware, and all transmit and receive resources are freed.
3065  **/
3066 static int __igb_close(struct net_device *netdev, bool suspending)
3067 {
3068 	struct igb_adapter *adapter = netdev_priv(netdev);
3069 	struct pci_dev *pdev = adapter->pdev;
3070 
3071 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3072 
3073 	if (!suspending)
3074 		pm_runtime_get_sync(&pdev->dev);
3075 
3076 	igb_down(adapter);
3077 	igb_free_irq(adapter);
3078 
3079 	igb_free_all_tx_resources(adapter);
3080 	igb_free_all_rx_resources(adapter);
3081 
3082 	if (!suspending)
3083 		pm_runtime_put_sync(&pdev->dev);
3084 	return 0;
3085 }
3086 
3087 static int igb_close(struct net_device *netdev)
3088 {
3089 	return __igb_close(netdev, false);
3090 }
3091 
3092 /**
3093  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3094  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3095  *
3096  *  Return 0 on success, negative on failure
3097  **/
3098 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3099 {
3100 	struct device *dev = tx_ring->dev;
3101 	int size;
3102 
3103 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3104 
3105 	tx_ring->tx_buffer_info = vzalloc(size);
3106 	if (!tx_ring->tx_buffer_info)
3107 		goto err;
3108 
3109 	/* round up to nearest 4K */
3110 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3111 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3112 
3113 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3114 					   &tx_ring->dma, GFP_KERNEL);
3115 	if (!tx_ring->desc)
3116 		goto err;
3117 
3118 	tx_ring->next_to_use = 0;
3119 	tx_ring->next_to_clean = 0;
3120 
3121 	return 0;
3122 
3123 err:
3124 	vfree(tx_ring->tx_buffer_info);
3125 	tx_ring->tx_buffer_info = NULL;
3126 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3127 	return -ENOMEM;
3128 }
3129 
3130 /**
3131  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3132  *				 (Descriptors) for all queues
3133  *  @adapter: board private structure
3134  *
3135  *  Return 0 on success, negative on failure
3136  **/
3137 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3138 {
3139 	struct pci_dev *pdev = adapter->pdev;
3140 	int i, err = 0;
3141 
3142 	for (i = 0; i < adapter->num_tx_queues; i++) {
3143 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3144 		if (err) {
3145 			dev_err(&pdev->dev,
3146 				"Allocation for Tx Queue %u failed\n", i);
3147 			for (i--; i >= 0; i--)
3148 				igb_free_tx_resources(adapter->tx_ring[i]);
3149 			break;
3150 		}
3151 	}
3152 
3153 	return err;
3154 }
3155 
3156 /**
3157  *  igb_setup_tctl - configure the transmit control registers
3158  *  @adapter: Board private structure
3159  **/
3160 void igb_setup_tctl(struct igb_adapter *adapter)
3161 {
3162 	struct e1000_hw *hw = &adapter->hw;
3163 	u32 tctl;
3164 
3165 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3166 	wr32(E1000_TXDCTL(0), 0);
3167 
3168 	/* Program the Transmit Control Register */
3169 	tctl = rd32(E1000_TCTL);
3170 	tctl &= ~E1000_TCTL_CT;
3171 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3172 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3173 
3174 	igb_config_collision_dist(hw);
3175 
3176 	/* Enable transmits */
3177 	tctl |= E1000_TCTL_EN;
3178 
3179 	wr32(E1000_TCTL, tctl);
3180 }
3181 
3182 /**
3183  *  igb_configure_tx_ring - Configure transmit ring after Reset
3184  *  @adapter: board private structure
3185  *  @ring: tx ring to configure
3186  *
3187  *  Configure a transmit ring after a reset.
3188  **/
3189 void igb_configure_tx_ring(struct igb_adapter *adapter,
3190                            struct igb_ring *ring)
3191 {
3192 	struct e1000_hw *hw = &adapter->hw;
3193 	u32 txdctl = 0;
3194 	u64 tdba = ring->dma;
3195 	int reg_idx = ring->reg_idx;
3196 
3197 	/* disable the queue */
3198 	wr32(E1000_TXDCTL(reg_idx), 0);
3199 	wrfl();
3200 	mdelay(10);
3201 
3202 	wr32(E1000_TDLEN(reg_idx),
3203 	     ring->count * sizeof(union e1000_adv_tx_desc));
3204 	wr32(E1000_TDBAL(reg_idx),
3205 	     tdba & 0x00000000ffffffffULL);
3206 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3207 
3208 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3209 	wr32(E1000_TDH(reg_idx), 0);
3210 	writel(0, ring->tail);
3211 
3212 	txdctl |= IGB_TX_PTHRESH;
3213 	txdctl |= IGB_TX_HTHRESH << 8;
3214 	txdctl |= IGB_TX_WTHRESH << 16;
3215 
3216 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3217 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3218 }
3219 
3220 /**
3221  *  igb_configure_tx - Configure transmit Unit after Reset
3222  *  @adapter: board private structure
3223  *
3224  *  Configure the Tx unit of the MAC after a reset.
3225  **/
3226 static void igb_configure_tx(struct igb_adapter *adapter)
3227 {
3228 	int i;
3229 
3230 	for (i = 0; i < adapter->num_tx_queues; i++)
3231 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3232 }
3233 
3234 /**
3235  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3236  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3237  *
3238  *  Returns 0 on success, negative on failure
3239  **/
3240 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3241 {
3242 	struct device *dev = rx_ring->dev;
3243 	int size;
3244 
3245 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3246 
3247 	rx_ring->rx_buffer_info = vzalloc(size);
3248 	if (!rx_ring->rx_buffer_info)
3249 		goto err;
3250 
3251 	/* Round up to nearest 4K */
3252 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3253 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3254 
3255 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3256 					   &rx_ring->dma, GFP_KERNEL);
3257 	if (!rx_ring->desc)
3258 		goto err;
3259 
3260 	rx_ring->next_to_alloc = 0;
3261 	rx_ring->next_to_clean = 0;
3262 	rx_ring->next_to_use = 0;
3263 
3264 	return 0;
3265 
3266 err:
3267 	vfree(rx_ring->rx_buffer_info);
3268 	rx_ring->rx_buffer_info = NULL;
3269 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3270 	return -ENOMEM;
3271 }
3272 
3273 /**
3274  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3275  *				 (Descriptors) for all queues
3276  *  @adapter: board private structure
3277  *
3278  *  Return 0 on success, negative on failure
3279  **/
3280 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3281 {
3282 	struct pci_dev *pdev = adapter->pdev;
3283 	int i, err = 0;
3284 
3285 	for (i = 0; i < adapter->num_rx_queues; i++) {
3286 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3287 		if (err) {
3288 			dev_err(&pdev->dev,
3289 				"Allocation for Rx Queue %u failed\n", i);
3290 			for (i--; i >= 0; i--)
3291 				igb_free_rx_resources(adapter->rx_ring[i]);
3292 			break;
3293 		}
3294 	}
3295 
3296 	return err;
3297 }
3298 
3299 /**
3300  *  igb_setup_mrqc - configure the multiple receive queue control registers
3301  *  @adapter: Board private structure
3302  **/
3303 static void igb_setup_mrqc(struct igb_adapter *adapter)
3304 {
3305 	struct e1000_hw *hw = &adapter->hw;
3306 	u32 mrqc, rxcsum;
3307 	u32 j, num_rx_queues;
3308 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3309 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3310 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3311 					0xFA01ACBE };
3312 
3313 	/* Fill out hash function seeds */
3314 	for (j = 0; j < 10; j++)
3315 		wr32(E1000_RSSRK(j), rsskey[j]);
3316 
3317 	num_rx_queues = adapter->rss_queues;
3318 
3319 	switch (hw->mac.type) {
3320 	case e1000_82576:
3321 		/* 82576 supports 2 RSS queues for SR-IOV */
3322 		if (adapter->vfs_allocated_count)
3323 			num_rx_queues = 2;
3324 		break;
3325 	default:
3326 		break;
3327 	}
3328 
3329 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3330 		for (j = 0; j < IGB_RETA_SIZE; j++)
3331 			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3332 		adapter->rss_indir_tbl_init = num_rx_queues;
3333 	}
3334 	igb_write_rss_indir_tbl(adapter);
3335 
3336 	/* Disable raw packet checksumming so that RSS hash is placed in
3337 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3338 	 * offloads as they are enabled by default
3339 	 */
3340 	rxcsum = rd32(E1000_RXCSUM);
3341 	rxcsum |= E1000_RXCSUM_PCSD;
3342 
3343 	if (adapter->hw.mac.type >= e1000_82576)
3344 		/* Enable Receive Checksum Offload for SCTP */
3345 		rxcsum |= E1000_RXCSUM_CRCOFL;
3346 
3347 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3348 	wr32(E1000_RXCSUM, rxcsum);
3349 
3350 	/* Generate RSS hash based on packet types, TCP/UDP
3351 	 * port numbers and/or IPv4/v6 src and dst addresses
3352 	 */
3353 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3354 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3355 	       E1000_MRQC_RSS_FIELD_IPV6 |
3356 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3357 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3358 
3359 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3360 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3361 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3362 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3363 
3364 	/* If VMDq is enabled then we set the appropriate mode for that, else
3365 	 * we default to RSS so that an RSS hash is calculated per packet even
3366 	 * if we are only using one queue
3367 	 */
3368 	if (adapter->vfs_allocated_count) {
3369 		if (hw->mac.type > e1000_82575) {
3370 			/* Set the default pool for the PF's first queue */
3371 			u32 vtctl = rd32(E1000_VT_CTL);
3372 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3373 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3374 			vtctl |= adapter->vfs_allocated_count <<
3375 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3376 			wr32(E1000_VT_CTL, vtctl);
3377 		}
3378 		if (adapter->rss_queues > 1)
3379 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3380 		else
3381 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3382 	} else {
3383 		if (hw->mac.type != e1000_i211)
3384 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3385 	}
3386 	igb_vmm_control(adapter);
3387 
3388 	wr32(E1000_MRQC, mrqc);
3389 }
3390 
3391 /**
3392  *  igb_setup_rctl - configure the receive control registers
3393  *  @adapter: Board private structure
3394  **/
3395 void igb_setup_rctl(struct igb_adapter *adapter)
3396 {
3397 	struct e1000_hw *hw = &adapter->hw;
3398 	u32 rctl;
3399 
3400 	rctl = rd32(E1000_RCTL);
3401 
3402 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3403 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3404 
3405 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3406 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3407 
3408 	/* enable stripping of CRC. It's unlikely this will break BMC
3409 	 * redirection as it did with e1000. Newer features require
3410 	 * that the HW strips the CRC.
3411 	 */
3412 	rctl |= E1000_RCTL_SECRC;
3413 
3414 	/* disable store bad packets and clear size bits. */
3415 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3416 
3417 	/* enable LPE to prevent packets larger than max_frame_size */
3418 	rctl |= E1000_RCTL_LPE;
3419 
3420 	/* disable queue 0 to prevent tail write w/o re-config */
3421 	wr32(E1000_RXDCTL(0), 0);
3422 
3423 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3424 	 * queue drop for all VF and PF queues to prevent head of line blocking
3425 	 * if an un-trusted VF does not provide descriptors to hardware.
3426 	 */
3427 	if (adapter->vfs_allocated_count) {
3428 		/* set all queue drop enable bits */
3429 		wr32(E1000_QDE, ALL_QUEUES);
3430 	}
3431 
3432 	/* This is useful for sniffing bad packets. */
3433 	if (adapter->netdev->features & NETIF_F_RXALL) {
3434 		/* UPE and MPE will be handled by normal PROMISC logic
3435 		 * in e1000e_set_rx_mode
3436 		 */
3437 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3438 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3439 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3440 
3441 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3442 			  E1000_RCTL_DPF | /* Allow filtered pause */
3443 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3444 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3445 		 * and that breaks VLANs.
3446 		 */
3447 	}
3448 
3449 	wr32(E1000_RCTL, rctl);
3450 }
3451 
3452 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3453                                    int vfn)
3454 {
3455 	struct e1000_hw *hw = &adapter->hw;
3456 	u32 vmolr;
3457 
3458 	/* if it isn't the PF check to see if VFs are enabled and
3459 	 * increase the size to support vlan tags
3460 	 */
3461 	if (vfn < adapter->vfs_allocated_count &&
3462 	    adapter->vf_data[vfn].vlans_enabled)
3463 		size += VLAN_TAG_SIZE;
3464 
3465 	vmolr = rd32(E1000_VMOLR(vfn));
3466 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3467 	vmolr |= size | E1000_VMOLR_LPE;
3468 	wr32(E1000_VMOLR(vfn), vmolr);
3469 
3470 	return 0;
3471 }
3472 
3473 /**
3474  *  igb_rlpml_set - set maximum receive packet size
3475  *  @adapter: board private structure
3476  *
3477  *  Configure maximum receivable packet size.
3478  **/
3479 static void igb_rlpml_set(struct igb_adapter *adapter)
3480 {
3481 	u32 max_frame_size = adapter->max_frame_size;
3482 	struct e1000_hw *hw = &adapter->hw;
3483 	u16 pf_id = adapter->vfs_allocated_count;
3484 
3485 	if (pf_id) {
3486 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3487 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3488 		 * to our max jumbo frame size, in case we need to enable
3489 		 * jumbo frames on one of the rings later.
3490 		 * This will not pass over-length frames into the default
3491 		 * queue because it's gated by the VMOLR.RLPML.
3492 		 */
3493 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3494 	}
3495 
3496 	wr32(E1000_RLPML, max_frame_size);
3497 }
3498 
3499 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3500 				 int vfn, bool aupe)
3501 {
3502 	struct e1000_hw *hw = &adapter->hw;
3503 	u32 vmolr;
3504 
3505 	/* This register exists only on 82576 and newer so if we are older then
3506 	 * we should exit and do nothing
3507 	 */
3508 	if (hw->mac.type < e1000_82576)
3509 		return;
3510 
3511 	vmolr = rd32(E1000_VMOLR(vfn));
3512 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3513 	if (aupe)
3514 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3515 	else
3516 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3517 
3518 	/* clear all bits that might not be set */
3519 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3520 
3521 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3522 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3523 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3524 	 * multicast packets
3525 	 */
3526 	if (vfn <= adapter->vfs_allocated_count)
3527 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3528 
3529 	wr32(E1000_VMOLR(vfn), vmolr);
3530 }
3531 
3532 /**
3533  *  igb_configure_rx_ring - Configure a receive ring after Reset
3534  *  @adapter: board private structure
3535  *  @ring: receive ring to be configured
3536  *
3537  *  Configure the Rx unit of the MAC after a reset.
3538  **/
3539 void igb_configure_rx_ring(struct igb_adapter *adapter,
3540 			   struct igb_ring *ring)
3541 {
3542 	struct e1000_hw *hw = &adapter->hw;
3543 	u64 rdba = ring->dma;
3544 	int reg_idx = ring->reg_idx;
3545 	u32 srrctl = 0, rxdctl = 0;
3546 
3547 	/* disable the queue */
3548 	wr32(E1000_RXDCTL(reg_idx), 0);
3549 
3550 	/* Set DMA base address registers */
3551 	wr32(E1000_RDBAL(reg_idx),
3552 	     rdba & 0x00000000ffffffffULL);
3553 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3554 	wr32(E1000_RDLEN(reg_idx),
3555 	     ring->count * sizeof(union e1000_adv_rx_desc));
3556 
3557 	/* initialize head and tail */
3558 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3559 	wr32(E1000_RDH(reg_idx), 0);
3560 	writel(0, ring->tail);
3561 
3562 	/* set descriptor configuration */
3563 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3564 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3565 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3566 	if (hw->mac.type >= e1000_82580)
3567 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3568 	/* Only set Drop Enable if we are supporting multiple queues */
3569 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3570 		srrctl |= E1000_SRRCTL_DROP_EN;
3571 
3572 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3573 
3574 	/* set filtering for VMDQ pools */
3575 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3576 
3577 	rxdctl |= IGB_RX_PTHRESH;
3578 	rxdctl |= IGB_RX_HTHRESH << 8;
3579 	rxdctl |= IGB_RX_WTHRESH << 16;
3580 
3581 	/* enable receive descriptor fetching */
3582 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3583 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3584 }
3585 
3586 /**
3587  *  igb_configure_rx - Configure receive Unit after Reset
3588  *  @adapter: board private structure
3589  *
3590  *  Configure the Rx unit of the MAC after a reset.
3591  **/
3592 static void igb_configure_rx(struct igb_adapter *adapter)
3593 {
3594 	int i;
3595 
3596 	/* set UTA to appropriate mode */
3597 	igb_set_uta(adapter);
3598 
3599 	/* set the correct pool for the PF default MAC address in entry 0 */
3600 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3601 			 adapter->vfs_allocated_count);
3602 
3603 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3604 	 * the Base and Length of the Rx Descriptor Ring
3605 	 */
3606 	for (i = 0; i < adapter->num_rx_queues; i++)
3607 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3608 }
3609 
3610 /**
3611  *  igb_free_tx_resources - Free Tx Resources per Queue
3612  *  @tx_ring: Tx descriptor ring for a specific queue
3613  *
3614  *  Free all transmit software resources
3615  **/
3616 void igb_free_tx_resources(struct igb_ring *tx_ring)
3617 {
3618 	igb_clean_tx_ring(tx_ring);
3619 
3620 	vfree(tx_ring->tx_buffer_info);
3621 	tx_ring->tx_buffer_info = NULL;
3622 
3623 	/* if not set, then don't free */
3624 	if (!tx_ring->desc)
3625 		return;
3626 
3627 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3628 			  tx_ring->desc, tx_ring->dma);
3629 
3630 	tx_ring->desc = NULL;
3631 }
3632 
3633 /**
3634  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3635  *  @adapter: board private structure
3636  *
3637  *  Free all transmit software resources
3638  **/
3639 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3640 {
3641 	int i;
3642 
3643 	for (i = 0; i < adapter->num_tx_queues; i++)
3644 		igb_free_tx_resources(adapter->tx_ring[i]);
3645 }
3646 
3647 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3648 				    struct igb_tx_buffer *tx_buffer)
3649 {
3650 	if (tx_buffer->skb) {
3651 		dev_kfree_skb_any(tx_buffer->skb);
3652 		if (dma_unmap_len(tx_buffer, len))
3653 			dma_unmap_single(ring->dev,
3654 					 dma_unmap_addr(tx_buffer, dma),
3655 					 dma_unmap_len(tx_buffer, len),
3656 					 DMA_TO_DEVICE);
3657 	} else if (dma_unmap_len(tx_buffer, len)) {
3658 		dma_unmap_page(ring->dev,
3659 			       dma_unmap_addr(tx_buffer, dma),
3660 			       dma_unmap_len(tx_buffer, len),
3661 			       DMA_TO_DEVICE);
3662 	}
3663 	tx_buffer->next_to_watch = NULL;
3664 	tx_buffer->skb = NULL;
3665 	dma_unmap_len_set(tx_buffer, len, 0);
3666 	/* buffer_info must be completely set up in the transmit path */
3667 }
3668 
3669 /**
3670  *  igb_clean_tx_ring - Free Tx Buffers
3671  *  @tx_ring: ring to be cleaned
3672  **/
3673 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3674 {
3675 	struct igb_tx_buffer *buffer_info;
3676 	unsigned long size;
3677 	u16 i;
3678 
3679 	if (!tx_ring->tx_buffer_info)
3680 		return;
3681 	/* Free all the Tx ring sk_buffs */
3682 
3683 	for (i = 0; i < tx_ring->count; i++) {
3684 		buffer_info = &tx_ring->tx_buffer_info[i];
3685 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3686 	}
3687 
3688 	netdev_tx_reset_queue(txring_txq(tx_ring));
3689 
3690 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3691 	memset(tx_ring->tx_buffer_info, 0, size);
3692 
3693 	/* Zero out the descriptor ring */
3694 	memset(tx_ring->desc, 0, tx_ring->size);
3695 
3696 	tx_ring->next_to_use = 0;
3697 	tx_ring->next_to_clean = 0;
3698 }
3699 
3700 /**
3701  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3702  *  @adapter: board private structure
3703  **/
3704 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3705 {
3706 	int i;
3707 
3708 	for (i = 0; i < adapter->num_tx_queues; i++)
3709 		igb_clean_tx_ring(adapter->tx_ring[i]);
3710 }
3711 
3712 /**
3713  *  igb_free_rx_resources - Free Rx Resources
3714  *  @rx_ring: ring to clean the resources from
3715  *
3716  *  Free all receive software resources
3717  **/
3718 void igb_free_rx_resources(struct igb_ring *rx_ring)
3719 {
3720 	igb_clean_rx_ring(rx_ring);
3721 
3722 	vfree(rx_ring->rx_buffer_info);
3723 	rx_ring->rx_buffer_info = NULL;
3724 
3725 	/* if not set, then don't free */
3726 	if (!rx_ring->desc)
3727 		return;
3728 
3729 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3730 			  rx_ring->desc, rx_ring->dma);
3731 
3732 	rx_ring->desc = NULL;
3733 }
3734 
3735 /**
3736  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3737  *  @adapter: board private structure
3738  *
3739  *  Free all receive software resources
3740  **/
3741 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3742 {
3743 	int i;
3744 
3745 	for (i = 0; i < adapter->num_rx_queues; i++)
3746 		igb_free_rx_resources(adapter->rx_ring[i]);
3747 }
3748 
3749 /**
3750  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3751  *  @rx_ring: ring to free buffers from
3752  **/
3753 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3754 {
3755 	unsigned long size;
3756 	u16 i;
3757 
3758 	if (rx_ring->skb)
3759 		dev_kfree_skb(rx_ring->skb);
3760 	rx_ring->skb = NULL;
3761 
3762 	if (!rx_ring->rx_buffer_info)
3763 		return;
3764 
3765 	/* Free all the Rx ring sk_buffs */
3766 	for (i = 0; i < rx_ring->count; i++) {
3767 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3768 
3769 		if (!buffer_info->page)
3770 			continue;
3771 
3772 		dma_unmap_page(rx_ring->dev,
3773 			       buffer_info->dma,
3774 			       PAGE_SIZE,
3775 			       DMA_FROM_DEVICE);
3776 		__free_page(buffer_info->page);
3777 
3778 		buffer_info->page = NULL;
3779 	}
3780 
3781 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3782 	memset(rx_ring->rx_buffer_info, 0, size);
3783 
3784 	/* Zero out the descriptor ring */
3785 	memset(rx_ring->desc, 0, rx_ring->size);
3786 
3787 	rx_ring->next_to_alloc = 0;
3788 	rx_ring->next_to_clean = 0;
3789 	rx_ring->next_to_use = 0;
3790 }
3791 
3792 /**
3793  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3794  *  @adapter: board private structure
3795  **/
3796 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3797 {
3798 	int i;
3799 
3800 	for (i = 0; i < adapter->num_rx_queues; i++)
3801 		igb_clean_rx_ring(adapter->rx_ring[i]);
3802 }
3803 
3804 /**
3805  *  igb_set_mac - Change the Ethernet Address of the NIC
3806  *  @netdev: network interface device structure
3807  *  @p: pointer to an address structure
3808  *
3809  *  Returns 0 on success, negative on failure
3810  **/
3811 static int igb_set_mac(struct net_device *netdev, void *p)
3812 {
3813 	struct igb_adapter *adapter = netdev_priv(netdev);
3814 	struct e1000_hw *hw = &adapter->hw;
3815 	struct sockaddr *addr = p;
3816 
3817 	if (!is_valid_ether_addr(addr->sa_data))
3818 		return -EADDRNOTAVAIL;
3819 
3820 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3821 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3822 
3823 	/* set the correct pool for the new PF MAC address in entry 0 */
3824 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3825 			 adapter->vfs_allocated_count);
3826 
3827 	return 0;
3828 }
3829 
3830 /**
3831  *  igb_write_mc_addr_list - write multicast addresses to MTA
3832  *  @netdev: network interface device structure
3833  *
3834  *  Writes multicast address list to the MTA hash table.
3835  *  Returns: -ENOMEM on failure
3836  *           0 on no addresses written
3837  *           X on writing X addresses to MTA
3838  **/
3839 static int igb_write_mc_addr_list(struct net_device *netdev)
3840 {
3841 	struct igb_adapter *adapter = netdev_priv(netdev);
3842 	struct e1000_hw *hw = &adapter->hw;
3843 	struct netdev_hw_addr *ha;
3844 	u8  *mta_list;
3845 	int i;
3846 
3847 	if (netdev_mc_empty(netdev)) {
3848 		/* nothing to program, so clear mc list */
3849 		igb_update_mc_addr_list(hw, NULL, 0);
3850 		igb_restore_vf_multicasts(adapter);
3851 		return 0;
3852 	}
3853 
3854 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3855 	if (!mta_list)
3856 		return -ENOMEM;
3857 
3858 	/* The shared function expects a packed array of only addresses. */
3859 	i = 0;
3860 	netdev_for_each_mc_addr(ha, netdev)
3861 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3862 
3863 	igb_update_mc_addr_list(hw, mta_list, i);
3864 	kfree(mta_list);
3865 
3866 	return netdev_mc_count(netdev);
3867 }
3868 
3869 /**
3870  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3871  *  @netdev: network interface device structure
3872  *
3873  *  Writes unicast address list to the RAR table.
3874  *  Returns: -ENOMEM on failure/insufficient address space
3875  *           0 on no addresses written
3876  *           X on writing X addresses to the RAR table
3877  **/
3878 static int igb_write_uc_addr_list(struct net_device *netdev)
3879 {
3880 	struct igb_adapter *adapter = netdev_priv(netdev);
3881 	struct e1000_hw *hw = &adapter->hw;
3882 	unsigned int vfn = adapter->vfs_allocated_count;
3883 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3884 	int count = 0;
3885 
3886 	/* return ENOMEM indicating insufficient memory for addresses */
3887 	if (netdev_uc_count(netdev) > rar_entries)
3888 		return -ENOMEM;
3889 
3890 	if (!netdev_uc_empty(netdev) && rar_entries) {
3891 		struct netdev_hw_addr *ha;
3892 
3893 		netdev_for_each_uc_addr(ha, netdev) {
3894 			if (!rar_entries)
3895 				break;
3896 			igb_rar_set_qsel(adapter, ha->addr,
3897 					 rar_entries--,
3898 					 vfn);
3899 			count++;
3900 		}
3901 	}
3902 	/* write the addresses in reverse order to avoid write combining */
3903 	for (; rar_entries > 0 ; rar_entries--) {
3904 		wr32(E1000_RAH(rar_entries), 0);
3905 		wr32(E1000_RAL(rar_entries), 0);
3906 	}
3907 	wrfl();
3908 
3909 	return count;
3910 }
3911 
3912 /**
3913  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3914  *  @netdev: network interface device structure
3915  *
3916  *  The set_rx_mode entry point is called whenever the unicast or multicast
3917  *  address lists or the network interface flags are updated.  This routine is
3918  *  responsible for configuring the hardware for proper unicast, multicast,
3919  *  promiscuous mode, and all-multi behavior.
3920  **/
3921 static void igb_set_rx_mode(struct net_device *netdev)
3922 {
3923 	struct igb_adapter *adapter = netdev_priv(netdev);
3924 	struct e1000_hw *hw = &adapter->hw;
3925 	unsigned int vfn = adapter->vfs_allocated_count;
3926 	u32 rctl, vmolr = 0;
3927 	int count;
3928 
3929 	/* Check for Promiscuous and All Multicast modes */
3930 	rctl = rd32(E1000_RCTL);
3931 
3932 	/* clear the effected bits */
3933 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3934 
3935 	if (netdev->flags & IFF_PROMISC) {
3936 		/* retain VLAN HW filtering if in VT mode */
3937 		if (adapter->vfs_allocated_count)
3938 			rctl |= E1000_RCTL_VFE;
3939 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3940 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3941 	} else {
3942 		if (netdev->flags & IFF_ALLMULTI) {
3943 			rctl |= E1000_RCTL_MPE;
3944 			vmolr |= E1000_VMOLR_MPME;
3945 		} else {
3946 			/* Write addresses to the MTA, if the attempt fails
3947 			 * then we should just turn on promiscuous mode so
3948 			 * that we can at least receive multicast traffic
3949 			 */
3950 			count = igb_write_mc_addr_list(netdev);
3951 			if (count < 0) {
3952 				rctl |= E1000_RCTL_MPE;
3953 				vmolr |= E1000_VMOLR_MPME;
3954 			} else if (count) {
3955 				vmolr |= E1000_VMOLR_ROMPE;
3956 			}
3957 		}
3958 		/* Write addresses to available RAR registers, if there is not
3959 		 * sufficient space to store all the addresses then enable
3960 		 * unicast promiscuous mode
3961 		 */
3962 		count = igb_write_uc_addr_list(netdev);
3963 		if (count < 0) {
3964 			rctl |= E1000_RCTL_UPE;
3965 			vmolr |= E1000_VMOLR_ROPE;
3966 		}
3967 		rctl |= E1000_RCTL_VFE;
3968 	}
3969 	wr32(E1000_RCTL, rctl);
3970 
3971 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3972 	 * the VMOLR to enable the appropriate modes.  Without this workaround
3973 	 * we will have issues with VLAN tag stripping not being done for frames
3974 	 * that are only arriving because we are the default pool
3975 	 */
3976 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3977 		return;
3978 
3979 	vmolr |= rd32(E1000_VMOLR(vfn)) &
3980 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3981 	wr32(E1000_VMOLR(vfn), vmolr);
3982 	igb_restore_vf_multicasts(adapter);
3983 }
3984 
3985 static void igb_check_wvbr(struct igb_adapter *adapter)
3986 {
3987 	struct e1000_hw *hw = &adapter->hw;
3988 	u32 wvbr = 0;
3989 
3990 	switch (hw->mac.type) {
3991 	case e1000_82576:
3992 	case e1000_i350:
3993 		if (!(wvbr = rd32(E1000_WVBR)))
3994 			return;
3995 		break;
3996 	default:
3997 		break;
3998 	}
3999 
4000 	adapter->wvbr |= wvbr;
4001 }
4002 
4003 #define IGB_STAGGERED_QUEUE_OFFSET 8
4004 
4005 static void igb_spoof_check(struct igb_adapter *adapter)
4006 {
4007 	int j;
4008 
4009 	if (!adapter->wvbr)
4010 		return;
4011 
4012 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
4013 		if (adapter->wvbr & (1 << j) ||
4014 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4015 			dev_warn(&adapter->pdev->dev,
4016 				"Spoof event(s) detected on VF %d\n", j);
4017 			adapter->wvbr &=
4018 				~((1 << j) |
4019 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4020 		}
4021 	}
4022 }
4023 
4024 /* Need to wait a few seconds after link up to get diagnostic information from
4025  * the phy
4026  */
4027 static void igb_update_phy_info(unsigned long data)
4028 {
4029 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4030 	igb_get_phy_info(&adapter->hw);
4031 }
4032 
4033 /**
4034  *  igb_has_link - check shared code for link and determine up/down
4035  *  @adapter: pointer to driver private info
4036  **/
4037 bool igb_has_link(struct igb_adapter *adapter)
4038 {
4039 	struct e1000_hw *hw = &adapter->hw;
4040 	bool link_active = false;
4041 
4042 	/* get_link_status is set on LSC (link status) interrupt or
4043 	 * rx sequence error interrupt.  get_link_status will stay
4044 	 * false until the e1000_check_for_link establishes link
4045 	 * for copper adapters ONLY
4046 	 */
4047 	switch (hw->phy.media_type) {
4048 	case e1000_media_type_copper:
4049 		if (!hw->mac.get_link_status)
4050 			return true;
4051 	case e1000_media_type_internal_serdes:
4052 		hw->mac.ops.check_for_link(hw);
4053 		link_active = !hw->mac.get_link_status;
4054 		break;
4055 	default:
4056 	case e1000_media_type_unknown:
4057 		break;
4058 	}
4059 
4060 	if (((hw->mac.type == e1000_i210) ||
4061 	     (hw->mac.type == e1000_i211)) &&
4062 	     (hw->phy.id == I210_I_PHY_ID)) {
4063 		if (!netif_carrier_ok(adapter->netdev)) {
4064 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4065 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4066 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4067 			adapter->link_check_timeout = jiffies;
4068 		}
4069 	}
4070 
4071 	return link_active;
4072 }
4073 
4074 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4075 {
4076 	bool ret = false;
4077 	u32 ctrl_ext, thstat;
4078 
4079 	/* check for thermal sensor event on i350 copper only */
4080 	if (hw->mac.type == e1000_i350) {
4081 		thstat = rd32(E1000_THSTAT);
4082 		ctrl_ext = rd32(E1000_CTRL_EXT);
4083 
4084 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4085 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4086 			ret = !!(thstat & event);
4087 	}
4088 
4089 	return ret;
4090 }
4091 
4092 /**
4093  *  igb_watchdog - Timer Call-back
4094  *  @data: pointer to adapter cast into an unsigned long
4095  **/
4096 static void igb_watchdog(unsigned long data)
4097 {
4098 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4099 	/* Do the rest outside of interrupt context */
4100 	schedule_work(&adapter->watchdog_task);
4101 }
4102 
4103 static void igb_watchdog_task(struct work_struct *work)
4104 {
4105 	struct igb_adapter *adapter = container_of(work,
4106 						   struct igb_adapter,
4107 						   watchdog_task);
4108 	struct e1000_hw *hw = &adapter->hw;
4109 	struct e1000_phy_info *phy = &hw->phy;
4110 	struct net_device *netdev = adapter->netdev;
4111 	u32 link;
4112 	int i;
4113 	u32 connsw;
4114 
4115 	link = igb_has_link(adapter);
4116 
4117 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4118 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4119 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4120 		else
4121 			link = false;
4122 	}
4123 
4124 	/* Force link down if we have fiber to swap to */
4125 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4126 		if (hw->phy.media_type == e1000_media_type_copper) {
4127 			connsw = rd32(E1000_CONNSW);
4128 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4129 				link = 0;
4130 		}
4131 	}
4132 	if (link) {
4133 		/* Perform a reset if the media type changed. */
4134 		if (hw->dev_spec._82575.media_changed) {
4135 			hw->dev_spec._82575.media_changed = false;
4136 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4137 			igb_reset(adapter);
4138 		}
4139 		/* Cancel scheduled suspend requests. */
4140 		pm_runtime_resume(netdev->dev.parent);
4141 
4142 		if (!netif_carrier_ok(netdev)) {
4143 			u32 ctrl;
4144 			hw->mac.ops.get_speed_and_duplex(hw,
4145 							 &adapter->link_speed,
4146 							 &adapter->link_duplex);
4147 
4148 			ctrl = rd32(E1000_CTRL);
4149 			/* Links status message must follow this format */
4150 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4151 			       "Duplex, Flow Control: %s\n",
4152 			       netdev->name,
4153 			       adapter->link_speed,
4154 			       adapter->link_duplex == FULL_DUPLEX ?
4155 			       "Full" : "Half",
4156 			       (ctrl & E1000_CTRL_TFCE) &&
4157 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4158 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4159 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4160 
4161 			/* check if SmartSpeed worked */
4162 			igb_check_downshift(hw);
4163 			if (phy->speed_downgraded)
4164 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4165 
4166 			/* check for thermal sensor event */
4167 			if (igb_thermal_sensor_event(hw,
4168 			    E1000_THSTAT_LINK_THROTTLE)) {
4169 				netdev_info(netdev, "The network adapter link "
4170 					    "speed was downshifted because it "
4171 					    "overheated\n");
4172 			}
4173 
4174 			/* adjust timeout factor according to speed/duplex */
4175 			adapter->tx_timeout_factor = 1;
4176 			switch (adapter->link_speed) {
4177 			case SPEED_10:
4178 				adapter->tx_timeout_factor = 14;
4179 				break;
4180 			case SPEED_100:
4181 				/* maybe add some timeout factor ? */
4182 				break;
4183 			}
4184 
4185 			netif_carrier_on(netdev);
4186 
4187 			igb_ping_all_vfs(adapter);
4188 			igb_check_vf_rate_limit(adapter);
4189 
4190 			/* link state has changed, schedule phy info update */
4191 			if (!test_bit(__IGB_DOWN, &adapter->state))
4192 				mod_timer(&adapter->phy_info_timer,
4193 					  round_jiffies(jiffies + 2 * HZ));
4194 		}
4195 	} else {
4196 		if (netif_carrier_ok(netdev)) {
4197 			adapter->link_speed = 0;
4198 			adapter->link_duplex = 0;
4199 
4200 			/* check for thermal sensor event */
4201 			if (igb_thermal_sensor_event(hw,
4202 			    E1000_THSTAT_PWR_DOWN)) {
4203 				netdev_err(netdev, "The network adapter was "
4204 					   "stopped because it overheated\n");
4205 			}
4206 
4207 			/* Links status message must follow this format */
4208 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4209 			       netdev->name);
4210 			netif_carrier_off(netdev);
4211 
4212 			igb_ping_all_vfs(adapter);
4213 
4214 			/* link state has changed, schedule phy info update */
4215 			if (!test_bit(__IGB_DOWN, &adapter->state))
4216 				mod_timer(&adapter->phy_info_timer,
4217 					  round_jiffies(jiffies + 2 * HZ));
4218 
4219 			/* link is down, time to check for alternate media */
4220 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4221 				igb_check_swap_media(adapter);
4222 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4223 					schedule_work(&adapter->reset_task);
4224 					/* return immediately */
4225 					return;
4226 				}
4227 			}
4228 			pm_schedule_suspend(netdev->dev.parent,
4229 					    MSEC_PER_SEC * 5);
4230 
4231 		/* also check for alternate media here */
4232 		} else if (!netif_carrier_ok(netdev) &&
4233 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4234 			igb_check_swap_media(adapter);
4235 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4236 				schedule_work(&adapter->reset_task);
4237 				/* return immediately */
4238 				return;
4239 			}
4240 		}
4241 	}
4242 
4243 	spin_lock(&adapter->stats64_lock);
4244 	igb_update_stats(adapter, &adapter->stats64);
4245 	spin_unlock(&adapter->stats64_lock);
4246 
4247 	for (i = 0; i < adapter->num_tx_queues; i++) {
4248 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4249 		if (!netif_carrier_ok(netdev)) {
4250 			/* We've lost link, so the controller stops DMA,
4251 			 * but we've got queued Tx work that's never going
4252 			 * to get done, so reset controller to flush Tx.
4253 			 * (Do the reset outside of interrupt context).
4254 			 */
4255 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4256 				adapter->tx_timeout_count++;
4257 				schedule_work(&adapter->reset_task);
4258 				/* return immediately since reset is imminent */
4259 				return;
4260 			}
4261 		}
4262 
4263 		/* Force detection of hung controller every watchdog period */
4264 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4265 	}
4266 
4267 	/* Cause software interrupt to ensure Rx ring is cleaned */
4268 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4269 		u32 eics = 0;
4270 		for (i = 0; i < adapter->num_q_vectors; i++)
4271 			eics |= adapter->q_vector[i]->eims_value;
4272 		wr32(E1000_EICS, eics);
4273 	} else {
4274 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4275 	}
4276 
4277 	igb_spoof_check(adapter);
4278 	igb_ptp_rx_hang(adapter);
4279 
4280 	/* Reset the timer */
4281 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4282 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4283 			mod_timer(&adapter->watchdog_timer,
4284 				  round_jiffies(jiffies +  HZ));
4285 		else
4286 			mod_timer(&adapter->watchdog_timer,
4287 				  round_jiffies(jiffies + 2 * HZ));
4288 	}
4289 }
4290 
4291 enum latency_range {
4292 	lowest_latency = 0,
4293 	low_latency = 1,
4294 	bulk_latency = 2,
4295 	latency_invalid = 255
4296 };
4297 
4298 /**
4299  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4300  *  @q_vector: pointer to q_vector
4301  *
4302  *  Stores a new ITR value based on strictly on packet size.  This
4303  *  algorithm is less sophisticated than that used in igb_update_itr,
4304  *  due to the difficulty of synchronizing statistics across multiple
4305  *  receive rings.  The divisors and thresholds used by this function
4306  *  were determined based on theoretical maximum wire speed and testing
4307  *  data, in order to minimize response time while increasing bulk
4308  *  throughput.
4309  *  This functionality is controlled by the InterruptThrottleRate module
4310  *  parameter (see igb_param.c)
4311  *  NOTE:  This function is called only when operating in a multiqueue
4312  *         receive environment.
4313  **/
4314 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4315 {
4316 	int new_val = q_vector->itr_val;
4317 	int avg_wire_size = 0;
4318 	struct igb_adapter *adapter = q_vector->adapter;
4319 	unsigned int packets;
4320 
4321 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4322 	 * ints/sec - ITR timer value of 120 ticks.
4323 	 */
4324 	if (adapter->link_speed != SPEED_1000) {
4325 		new_val = IGB_4K_ITR;
4326 		goto set_itr_val;
4327 	}
4328 
4329 	packets = q_vector->rx.total_packets;
4330 	if (packets)
4331 		avg_wire_size = q_vector->rx.total_bytes / packets;
4332 
4333 	packets = q_vector->tx.total_packets;
4334 	if (packets)
4335 		avg_wire_size = max_t(u32, avg_wire_size,
4336 				      q_vector->tx.total_bytes / packets);
4337 
4338 	/* if avg_wire_size isn't set no work was done */
4339 	if (!avg_wire_size)
4340 		goto clear_counts;
4341 
4342 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4343 	avg_wire_size += 24;
4344 
4345 	/* Don't starve jumbo frames */
4346 	avg_wire_size = min(avg_wire_size, 3000);
4347 
4348 	/* Give a little boost to mid-size frames */
4349 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4350 		new_val = avg_wire_size / 3;
4351 	else
4352 		new_val = avg_wire_size / 2;
4353 
4354 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4355 	if (new_val < IGB_20K_ITR &&
4356 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4357 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4358 		new_val = IGB_20K_ITR;
4359 
4360 set_itr_val:
4361 	if (new_val != q_vector->itr_val) {
4362 		q_vector->itr_val = new_val;
4363 		q_vector->set_itr = 1;
4364 	}
4365 clear_counts:
4366 	q_vector->rx.total_bytes = 0;
4367 	q_vector->rx.total_packets = 0;
4368 	q_vector->tx.total_bytes = 0;
4369 	q_vector->tx.total_packets = 0;
4370 }
4371 
4372 /**
4373  *  igb_update_itr - update the dynamic ITR value based on statistics
4374  *  @q_vector: pointer to q_vector
4375  *  @ring_container: ring info to update the itr for
4376  *
4377  *  Stores a new ITR value based on packets and byte
4378  *  counts during the last interrupt.  The advantage of per interrupt
4379  *  computation is faster updates and more accurate ITR for the current
4380  *  traffic pattern.  Constants in this function were computed
4381  *  based on theoretical maximum wire speed and thresholds were set based
4382  *  on testing data as well as attempting to minimize response time
4383  *  while increasing bulk throughput.
4384  *  this functionality is controlled by the InterruptThrottleRate module
4385  *  parameter (see igb_param.c)
4386  *  NOTE:  These calculations are only valid when operating in a single-
4387  *         queue environment.
4388  **/
4389 static void igb_update_itr(struct igb_q_vector *q_vector,
4390 			   struct igb_ring_container *ring_container)
4391 {
4392 	unsigned int packets = ring_container->total_packets;
4393 	unsigned int bytes = ring_container->total_bytes;
4394 	u8 itrval = ring_container->itr;
4395 
4396 	/* no packets, exit with status unchanged */
4397 	if (packets == 0)
4398 		return;
4399 
4400 	switch (itrval) {
4401 	case lowest_latency:
4402 		/* handle TSO and jumbo frames */
4403 		if (bytes/packets > 8000)
4404 			itrval = bulk_latency;
4405 		else if ((packets < 5) && (bytes > 512))
4406 			itrval = low_latency;
4407 		break;
4408 	case low_latency:  /* 50 usec aka 20000 ints/s */
4409 		if (bytes > 10000) {
4410 			/* this if handles the TSO accounting */
4411 			if (bytes/packets > 8000) {
4412 				itrval = bulk_latency;
4413 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4414 				itrval = bulk_latency;
4415 			} else if ((packets > 35)) {
4416 				itrval = lowest_latency;
4417 			}
4418 		} else if (bytes/packets > 2000) {
4419 			itrval = bulk_latency;
4420 		} else if (packets <= 2 && bytes < 512) {
4421 			itrval = lowest_latency;
4422 		}
4423 		break;
4424 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4425 		if (bytes > 25000) {
4426 			if (packets > 35)
4427 				itrval = low_latency;
4428 		} else if (bytes < 1500) {
4429 			itrval = low_latency;
4430 		}
4431 		break;
4432 	}
4433 
4434 	/* clear work counters since we have the values we need */
4435 	ring_container->total_bytes = 0;
4436 	ring_container->total_packets = 0;
4437 
4438 	/* write updated itr to ring container */
4439 	ring_container->itr = itrval;
4440 }
4441 
4442 static void igb_set_itr(struct igb_q_vector *q_vector)
4443 {
4444 	struct igb_adapter *adapter = q_vector->adapter;
4445 	u32 new_itr = q_vector->itr_val;
4446 	u8 current_itr = 0;
4447 
4448 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4449 	if (adapter->link_speed != SPEED_1000) {
4450 		current_itr = 0;
4451 		new_itr = IGB_4K_ITR;
4452 		goto set_itr_now;
4453 	}
4454 
4455 	igb_update_itr(q_vector, &q_vector->tx);
4456 	igb_update_itr(q_vector, &q_vector->rx);
4457 
4458 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4459 
4460 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4461 	if (current_itr == lowest_latency &&
4462 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4463 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4464 		current_itr = low_latency;
4465 
4466 	switch (current_itr) {
4467 	/* counts and packets in update_itr are dependent on these numbers */
4468 	case lowest_latency:
4469 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4470 		break;
4471 	case low_latency:
4472 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4473 		break;
4474 	case bulk_latency:
4475 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4476 		break;
4477 	default:
4478 		break;
4479 	}
4480 
4481 set_itr_now:
4482 	if (new_itr != q_vector->itr_val) {
4483 		/* this attempts to bias the interrupt rate towards Bulk
4484 		 * by adding intermediate steps when interrupt rate is
4485 		 * increasing
4486 		 */
4487 		new_itr = new_itr > q_vector->itr_val ?
4488 			  max((new_itr * q_vector->itr_val) /
4489 			  (new_itr + (q_vector->itr_val >> 2)),
4490 			  new_itr) : new_itr;
4491 		/* Don't write the value here; it resets the adapter's
4492 		 * internal timer, and causes us to delay far longer than
4493 		 * we should between interrupts.  Instead, we write the ITR
4494 		 * value at the beginning of the next interrupt so the timing
4495 		 * ends up being correct.
4496 		 */
4497 		q_vector->itr_val = new_itr;
4498 		q_vector->set_itr = 1;
4499 	}
4500 }
4501 
4502 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4503 			    u32 type_tucmd, u32 mss_l4len_idx)
4504 {
4505 	struct e1000_adv_tx_context_desc *context_desc;
4506 	u16 i = tx_ring->next_to_use;
4507 
4508 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4509 
4510 	i++;
4511 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4512 
4513 	/* set bits to identify this as an advanced context descriptor */
4514 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4515 
4516 	/* For 82575, context index must be unique per ring. */
4517 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4518 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4519 
4520 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4521 	context_desc->seqnum_seed	= 0;
4522 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4523 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4524 }
4525 
4526 static int igb_tso(struct igb_ring *tx_ring,
4527 		   struct igb_tx_buffer *first,
4528 		   u8 *hdr_len)
4529 {
4530 	struct sk_buff *skb = first->skb;
4531 	u32 vlan_macip_lens, type_tucmd;
4532 	u32 mss_l4len_idx, l4len;
4533 
4534 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4535 		return 0;
4536 
4537 	if (!skb_is_gso(skb))
4538 		return 0;
4539 
4540 	if (skb_header_cloned(skb)) {
4541 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4542 		if (err)
4543 			return err;
4544 	}
4545 
4546 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4547 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4548 
4549 	if (first->protocol == __constant_htons(ETH_P_IP)) {
4550 		struct iphdr *iph = ip_hdr(skb);
4551 		iph->tot_len = 0;
4552 		iph->check = 0;
4553 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4554 							 iph->daddr, 0,
4555 							 IPPROTO_TCP,
4556 							 0);
4557 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4558 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4559 				   IGB_TX_FLAGS_CSUM |
4560 				   IGB_TX_FLAGS_IPV4;
4561 	} else if (skb_is_gso_v6(skb)) {
4562 		ipv6_hdr(skb)->payload_len = 0;
4563 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4564 						       &ipv6_hdr(skb)->daddr,
4565 						       0, IPPROTO_TCP, 0);
4566 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4567 				   IGB_TX_FLAGS_CSUM;
4568 	}
4569 
4570 	/* compute header lengths */
4571 	l4len = tcp_hdrlen(skb);
4572 	*hdr_len = skb_transport_offset(skb) + l4len;
4573 
4574 	/* update gso size and bytecount with header size */
4575 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4576 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4577 
4578 	/* MSS L4LEN IDX */
4579 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4580 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4581 
4582 	/* VLAN MACLEN IPLEN */
4583 	vlan_macip_lens = skb_network_header_len(skb);
4584 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4585 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4586 
4587 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4588 
4589 	return 1;
4590 }
4591 
4592 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4593 {
4594 	struct sk_buff *skb = first->skb;
4595 	u32 vlan_macip_lens = 0;
4596 	u32 mss_l4len_idx = 0;
4597 	u32 type_tucmd = 0;
4598 
4599 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4600 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4601 			return;
4602 	} else {
4603 		u8 l4_hdr = 0;
4604 		switch (first->protocol) {
4605 		case __constant_htons(ETH_P_IP):
4606 			vlan_macip_lens |= skb_network_header_len(skb);
4607 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4608 			l4_hdr = ip_hdr(skb)->protocol;
4609 			break;
4610 		case __constant_htons(ETH_P_IPV6):
4611 			vlan_macip_lens |= skb_network_header_len(skb);
4612 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4613 			break;
4614 		default:
4615 			if (unlikely(net_ratelimit())) {
4616 				dev_warn(tx_ring->dev,
4617 					 "partial checksum but proto=%x!\n",
4618 					 first->protocol);
4619 			}
4620 			break;
4621 		}
4622 
4623 		switch (l4_hdr) {
4624 		case IPPROTO_TCP:
4625 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4626 			mss_l4len_idx = tcp_hdrlen(skb) <<
4627 					E1000_ADVTXD_L4LEN_SHIFT;
4628 			break;
4629 		case IPPROTO_SCTP:
4630 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4631 			mss_l4len_idx = sizeof(struct sctphdr) <<
4632 					E1000_ADVTXD_L4LEN_SHIFT;
4633 			break;
4634 		case IPPROTO_UDP:
4635 			mss_l4len_idx = sizeof(struct udphdr) <<
4636 					E1000_ADVTXD_L4LEN_SHIFT;
4637 			break;
4638 		default:
4639 			if (unlikely(net_ratelimit())) {
4640 				dev_warn(tx_ring->dev,
4641 					 "partial checksum but l4 proto=%x!\n",
4642 					 l4_hdr);
4643 			}
4644 			break;
4645 		}
4646 
4647 		/* update TX checksum flag */
4648 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4649 	}
4650 
4651 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4652 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4653 
4654 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4655 }
4656 
4657 #define IGB_SET_FLAG(_input, _flag, _result) \
4658 	((_flag <= _result) ? \
4659 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4660 	 ((u32)(_input & _flag) / (_flag / _result)))
4661 
4662 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4663 {
4664 	/* set type for advanced descriptor with frame checksum insertion */
4665 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4666 		       E1000_ADVTXD_DCMD_DEXT |
4667 		       E1000_ADVTXD_DCMD_IFCS;
4668 
4669 	/* set HW vlan bit if vlan is present */
4670 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4671 				 (E1000_ADVTXD_DCMD_VLE));
4672 
4673 	/* set segmentation bits for TSO */
4674 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4675 				 (E1000_ADVTXD_DCMD_TSE));
4676 
4677 	/* set timestamp bit if present */
4678 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4679 				 (E1000_ADVTXD_MAC_TSTAMP));
4680 
4681 	/* insert frame checksum */
4682 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4683 
4684 	return cmd_type;
4685 }
4686 
4687 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4688 				 union e1000_adv_tx_desc *tx_desc,
4689 				 u32 tx_flags, unsigned int paylen)
4690 {
4691 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4692 
4693 	/* 82575 requires a unique index per ring */
4694 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4695 		olinfo_status |= tx_ring->reg_idx << 4;
4696 
4697 	/* insert L4 checksum */
4698 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4699 				      IGB_TX_FLAGS_CSUM,
4700 				      (E1000_TXD_POPTS_TXSM << 8));
4701 
4702 	/* insert IPv4 checksum */
4703 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4704 				      IGB_TX_FLAGS_IPV4,
4705 				      (E1000_TXD_POPTS_IXSM << 8));
4706 
4707 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4708 }
4709 
4710 static void igb_tx_map(struct igb_ring *tx_ring,
4711 		       struct igb_tx_buffer *first,
4712 		       const u8 hdr_len)
4713 {
4714 	struct sk_buff *skb = first->skb;
4715 	struct igb_tx_buffer *tx_buffer;
4716 	union e1000_adv_tx_desc *tx_desc;
4717 	struct skb_frag_struct *frag;
4718 	dma_addr_t dma;
4719 	unsigned int data_len, size;
4720 	u32 tx_flags = first->tx_flags;
4721 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4722 	u16 i = tx_ring->next_to_use;
4723 
4724 	tx_desc = IGB_TX_DESC(tx_ring, i);
4725 
4726 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4727 
4728 	size = skb_headlen(skb);
4729 	data_len = skb->data_len;
4730 
4731 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4732 
4733 	tx_buffer = first;
4734 
4735 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4736 		if (dma_mapping_error(tx_ring->dev, dma))
4737 			goto dma_error;
4738 
4739 		/* record length, and DMA address */
4740 		dma_unmap_len_set(tx_buffer, len, size);
4741 		dma_unmap_addr_set(tx_buffer, dma, dma);
4742 
4743 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4744 
4745 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4746 			tx_desc->read.cmd_type_len =
4747 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4748 
4749 			i++;
4750 			tx_desc++;
4751 			if (i == tx_ring->count) {
4752 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4753 				i = 0;
4754 			}
4755 			tx_desc->read.olinfo_status = 0;
4756 
4757 			dma += IGB_MAX_DATA_PER_TXD;
4758 			size -= IGB_MAX_DATA_PER_TXD;
4759 
4760 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4761 		}
4762 
4763 		if (likely(!data_len))
4764 			break;
4765 
4766 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4767 
4768 		i++;
4769 		tx_desc++;
4770 		if (i == tx_ring->count) {
4771 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4772 			i = 0;
4773 		}
4774 		tx_desc->read.olinfo_status = 0;
4775 
4776 		size = skb_frag_size(frag);
4777 		data_len -= size;
4778 
4779 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4780 				       size, DMA_TO_DEVICE);
4781 
4782 		tx_buffer = &tx_ring->tx_buffer_info[i];
4783 	}
4784 
4785 	/* write last descriptor with RS and EOP bits */
4786 	cmd_type |= size | IGB_TXD_DCMD;
4787 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4788 
4789 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4790 
4791 	/* set the timestamp */
4792 	first->time_stamp = jiffies;
4793 
4794 	/* Force memory writes to complete before letting h/w know there
4795 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4796 	 * memory model archs, such as IA-64).
4797 	 *
4798 	 * We also need this memory barrier to make certain all of the
4799 	 * status bits have been updated before next_to_watch is written.
4800 	 */
4801 	wmb();
4802 
4803 	/* set next_to_watch value indicating a packet is present */
4804 	first->next_to_watch = tx_desc;
4805 
4806 	i++;
4807 	if (i == tx_ring->count)
4808 		i = 0;
4809 
4810 	tx_ring->next_to_use = i;
4811 
4812 	writel(i, tx_ring->tail);
4813 
4814 	/* we need this if more than one processor can write to our tail
4815 	 * at a time, it synchronizes IO on IA64/Altix systems
4816 	 */
4817 	mmiowb();
4818 
4819 	return;
4820 
4821 dma_error:
4822 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4823 
4824 	/* clear dma mappings for failed tx_buffer_info map */
4825 	for (;;) {
4826 		tx_buffer = &tx_ring->tx_buffer_info[i];
4827 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4828 		if (tx_buffer == first)
4829 			break;
4830 		if (i == 0)
4831 			i = tx_ring->count;
4832 		i--;
4833 	}
4834 
4835 	tx_ring->next_to_use = i;
4836 }
4837 
4838 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4839 {
4840 	struct net_device *netdev = tx_ring->netdev;
4841 
4842 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4843 
4844 	/* Herbert's original patch had:
4845 	 *  smp_mb__after_netif_stop_queue();
4846 	 * but since that doesn't exist yet, just open code it.
4847 	 */
4848 	smp_mb();
4849 
4850 	/* We need to check again in a case another CPU has just
4851 	 * made room available.
4852 	 */
4853 	if (igb_desc_unused(tx_ring) < size)
4854 		return -EBUSY;
4855 
4856 	/* A reprieve! */
4857 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4858 
4859 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4860 	tx_ring->tx_stats.restart_queue2++;
4861 	u64_stats_update_end(&tx_ring->tx_syncp2);
4862 
4863 	return 0;
4864 }
4865 
4866 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4867 {
4868 	if (igb_desc_unused(tx_ring) >= size)
4869 		return 0;
4870 	return __igb_maybe_stop_tx(tx_ring, size);
4871 }
4872 
4873 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4874 				struct igb_ring *tx_ring)
4875 {
4876 	struct igb_tx_buffer *first;
4877 	int tso;
4878 	u32 tx_flags = 0;
4879 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4880 	__be16 protocol = vlan_get_protocol(skb);
4881 	u8 hdr_len = 0;
4882 
4883 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4884 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4885 	 *       + 2 desc gap to keep tail from touching head,
4886 	 *       + 1 desc for context descriptor,
4887 	 * otherwise try next time
4888 	 */
4889 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4890 		unsigned short f;
4891 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4892 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4893 	} else {
4894 		count += skb_shinfo(skb)->nr_frags;
4895 	}
4896 
4897 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4898 		/* this is a hard error */
4899 		return NETDEV_TX_BUSY;
4900 	}
4901 
4902 	/* record the location of the first descriptor for this packet */
4903 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4904 	first->skb = skb;
4905 	first->bytecount = skb->len;
4906 	first->gso_segs = 1;
4907 
4908 	skb_tx_timestamp(skb);
4909 
4910 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4911 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4912 
4913 		if (!(adapter->ptp_tx_skb)) {
4914 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4915 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4916 
4917 			adapter->ptp_tx_skb = skb_get(skb);
4918 			adapter->ptp_tx_start = jiffies;
4919 			if (adapter->hw.mac.type == e1000_82576)
4920 				schedule_work(&adapter->ptp_tx_work);
4921 		}
4922 	}
4923 
4924 	if (vlan_tx_tag_present(skb)) {
4925 		tx_flags |= IGB_TX_FLAGS_VLAN;
4926 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4927 	}
4928 
4929 	/* record initial flags and protocol */
4930 	first->tx_flags = tx_flags;
4931 	first->protocol = protocol;
4932 
4933 	tso = igb_tso(tx_ring, first, &hdr_len);
4934 	if (tso < 0)
4935 		goto out_drop;
4936 	else if (!tso)
4937 		igb_tx_csum(tx_ring, first);
4938 
4939 	igb_tx_map(tx_ring, first, hdr_len);
4940 
4941 	/* Make sure there is space in the ring for the next send. */
4942 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4943 
4944 	return NETDEV_TX_OK;
4945 
4946 out_drop:
4947 	igb_unmap_and_free_tx_resource(tx_ring, first);
4948 
4949 	return NETDEV_TX_OK;
4950 }
4951 
4952 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4953 						    struct sk_buff *skb)
4954 {
4955 	unsigned int r_idx = skb->queue_mapping;
4956 
4957 	if (r_idx >= adapter->num_tx_queues)
4958 		r_idx = r_idx % adapter->num_tx_queues;
4959 
4960 	return adapter->tx_ring[r_idx];
4961 }
4962 
4963 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4964 				  struct net_device *netdev)
4965 {
4966 	struct igb_adapter *adapter = netdev_priv(netdev);
4967 
4968 	if (test_bit(__IGB_DOWN, &adapter->state)) {
4969 		dev_kfree_skb_any(skb);
4970 		return NETDEV_TX_OK;
4971 	}
4972 
4973 	if (skb->len <= 0) {
4974 		dev_kfree_skb_any(skb);
4975 		return NETDEV_TX_OK;
4976 	}
4977 
4978 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4979 	 * in order to meet this minimum size requirement.
4980 	 */
4981 	if (unlikely(skb->len < 17)) {
4982 		if (skb_pad(skb, 17 - skb->len))
4983 			return NETDEV_TX_OK;
4984 		skb->len = 17;
4985 		skb_set_tail_pointer(skb, 17);
4986 	}
4987 
4988 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4989 }
4990 
4991 /**
4992  *  igb_tx_timeout - Respond to a Tx Hang
4993  *  @netdev: network interface device structure
4994  **/
4995 static void igb_tx_timeout(struct net_device *netdev)
4996 {
4997 	struct igb_adapter *adapter = netdev_priv(netdev);
4998 	struct e1000_hw *hw = &adapter->hw;
4999 
5000 	/* Do the reset outside of interrupt context */
5001 	adapter->tx_timeout_count++;
5002 
5003 	if (hw->mac.type >= e1000_82580)
5004 		hw->dev_spec._82575.global_device_reset = true;
5005 
5006 	schedule_work(&adapter->reset_task);
5007 	wr32(E1000_EICS,
5008 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5009 }
5010 
5011 static void igb_reset_task(struct work_struct *work)
5012 {
5013 	struct igb_adapter *adapter;
5014 	adapter = container_of(work, struct igb_adapter, reset_task);
5015 
5016 	igb_dump(adapter);
5017 	netdev_err(adapter->netdev, "Reset adapter\n");
5018 	igb_reinit_locked(adapter);
5019 }
5020 
5021 /**
5022  *  igb_get_stats64 - Get System Network Statistics
5023  *  @netdev: network interface device structure
5024  *  @stats: rtnl_link_stats64 pointer
5025  **/
5026 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5027 						struct rtnl_link_stats64 *stats)
5028 {
5029 	struct igb_adapter *adapter = netdev_priv(netdev);
5030 
5031 	spin_lock(&adapter->stats64_lock);
5032 	igb_update_stats(adapter, &adapter->stats64);
5033 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5034 	spin_unlock(&adapter->stats64_lock);
5035 
5036 	return stats;
5037 }
5038 
5039 /**
5040  *  igb_change_mtu - Change the Maximum Transfer Unit
5041  *  @netdev: network interface device structure
5042  *  @new_mtu: new value for maximum frame size
5043  *
5044  *  Returns 0 on success, negative on failure
5045  **/
5046 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5047 {
5048 	struct igb_adapter *adapter = netdev_priv(netdev);
5049 	struct pci_dev *pdev = adapter->pdev;
5050 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5051 
5052 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5053 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5054 		return -EINVAL;
5055 	}
5056 
5057 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5058 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5059 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5060 		return -EINVAL;
5061 	}
5062 
5063 	/* adjust max frame to be at least the size of a standard frame */
5064 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5065 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5066 
5067 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5068 		msleep(1);
5069 
5070 	/* igb_down has a dependency on max_frame_size */
5071 	adapter->max_frame_size = max_frame;
5072 
5073 	if (netif_running(netdev))
5074 		igb_down(adapter);
5075 
5076 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5077 		 netdev->mtu, new_mtu);
5078 	netdev->mtu = new_mtu;
5079 
5080 	if (netif_running(netdev))
5081 		igb_up(adapter);
5082 	else
5083 		igb_reset(adapter);
5084 
5085 	clear_bit(__IGB_RESETTING, &adapter->state);
5086 
5087 	return 0;
5088 }
5089 
5090 /**
5091  *  igb_update_stats - Update the board statistics counters
5092  *  @adapter: board private structure
5093  **/
5094 void igb_update_stats(struct igb_adapter *adapter,
5095 		      struct rtnl_link_stats64 *net_stats)
5096 {
5097 	struct e1000_hw *hw = &adapter->hw;
5098 	struct pci_dev *pdev = adapter->pdev;
5099 	u32 reg, mpc;
5100 	u16 phy_tmp;
5101 	int i;
5102 	u64 bytes, packets;
5103 	unsigned int start;
5104 	u64 _bytes, _packets;
5105 
5106 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5107 
5108 	/* Prevent stats update while adapter is being reset, or if the pci
5109 	 * connection is down.
5110 	 */
5111 	if (adapter->link_speed == 0)
5112 		return;
5113 	if (pci_channel_offline(pdev))
5114 		return;
5115 
5116 	bytes = 0;
5117 	packets = 0;
5118 
5119 	rcu_read_lock();
5120 	for (i = 0; i < adapter->num_rx_queues; i++) {
5121 		u32 rqdpc = rd32(E1000_RQDPC(i));
5122 		struct igb_ring *ring = adapter->rx_ring[i];
5123 
5124 		if (rqdpc) {
5125 			ring->rx_stats.drops += rqdpc;
5126 			net_stats->rx_fifo_errors += rqdpc;
5127 		}
5128 
5129 		do {
5130 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
5131 			_bytes = ring->rx_stats.bytes;
5132 			_packets = ring->rx_stats.packets;
5133 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
5134 		bytes += _bytes;
5135 		packets += _packets;
5136 	}
5137 
5138 	net_stats->rx_bytes = bytes;
5139 	net_stats->rx_packets = packets;
5140 
5141 	bytes = 0;
5142 	packets = 0;
5143 	for (i = 0; i < adapter->num_tx_queues; i++) {
5144 		struct igb_ring *ring = adapter->tx_ring[i];
5145 		do {
5146 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
5147 			_bytes = ring->tx_stats.bytes;
5148 			_packets = ring->tx_stats.packets;
5149 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
5150 		bytes += _bytes;
5151 		packets += _packets;
5152 	}
5153 	net_stats->tx_bytes = bytes;
5154 	net_stats->tx_packets = packets;
5155 	rcu_read_unlock();
5156 
5157 	/* read stats registers */
5158 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5159 	adapter->stats.gprc += rd32(E1000_GPRC);
5160 	adapter->stats.gorc += rd32(E1000_GORCL);
5161 	rd32(E1000_GORCH); /* clear GORCL */
5162 	adapter->stats.bprc += rd32(E1000_BPRC);
5163 	adapter->stats.mprc += rd32(E1000_MPRC);
5164 	adapter->stats.roc += rd32(E1000_ROC);
5165 
5166 	adapter->stats.prc64 += rd32(E1000_PRC64);
5167 	adapter->stats.prc127 += rd32(E1000_PRC127);
5168 	adapter->stats.prc255 += rd32(E1000_PRC255);
5169 	adapter->stats.prc511 += rd32(E1000_PRC511);
5170 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5171 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5172 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5173 	adapter->stats.sec += rd32(E1000_SEC);
5174 
5175 	mpc = rd32(E1000_MPC);
5176 	adapter->stats.mpc += mpc;
5177 	net_stats->rx_fifo_errors += mpc;
5178 	adapter->stats.scc += rd32(E1000_SCC);
5179 	adapter->stats.ecol += rd32(E1000_ECOL);
5180 	adapter->stats.mcc += rd32(E1000_MCC);
5181 	adapter->stats.latecol += rd32(E1000_LATECOL);
5182 	adapter->stats.dc += rd32(E1000_DC);
5183 	adapter->stats.rlec += rd32(E1000_RLEC);
5184 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5185 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5186 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5187 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5188 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5189 	adapter->stats.gptc += rd32(E1000_GPTC);
5190 	adapter->stats.gotc += rd32(E1000_GOTCL);
5191 	rd32(E1000_GOTCH); /* clear GOTCL */
5192 	adapter->stats.rnbc += rd32(E1000_RNBC);
5193 	adapter->stats.ruc += rd32(E1000_RUC);
5194 	adapter->stats.rfc += rd32(E1000_RFC);
5195 	adapter->stats.rjc += rd32(E1000_RJC);
5196 	adapter->stats.tor += rd32(E1000_TORH);
5197 	adapter->stats.tot += rd32(E1000_TOTH);
5198 	adapter->stats.tpr += rd32(E1000_TPR);
5199 
5200 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5201 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5202 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5203 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5204 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5205 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5206 
5207 	adapter->stats.mptc += rd32(E1000_MPTC);
5208 	adapter->stats.bptc += rd32(E1000_BPTC);
5209 
5210 	adapter->stats.tpt += rd32(E1000_TPT);
5211 	adapter->stats.colc += rd32(E1000_COLC);
5212 
5213 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5214 	/* read internal phy specific stats */
5215 	reg = rd32(E1000_CTRL_EXT);
5216 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5217 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5218 
5219 		/* this stat has invalid values on i210/i211 */
5220 		if ((hw->mac.type != e1000_i210) &&
5221 		    (hw->mac.type != e1000_i211))
5222 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5223 	}
5224 
5225 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5226 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5227 
5228 	adapter->stats.iac += rd32(E1000_IAC);
5229 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5230 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5231 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5232 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5233 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5234 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5235 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5236 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5237 
5238 	/* Fill out the OS statistics structure */
5239 	net_stats->multicast = adapter->stats.mprc;
5240 	net_stats->collisions = adapter->stats.colc;
5241 
5242 	/* Rx Errors */
5243 
5244 	/* RLEC on some newer hardware can be incorrect so build
5245 	 * our own version based on RUC and ROC
5246 	 */
5247 	net_stats->rx_errors = adapter->stats.rxerrc +
5248 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5249 		adapter->stats.ruc + adapter->stats.roc +
5250 		adapter->stats.cexterr;
5251 	net_stats->rx_length_errors = adapter->stats.ruc +
5252 				      adapter->stats.roc;
5253 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5254 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5255 	net_stats->rx_missed_errors = adapter->stats.mpc;
5256 
5257 	/* Tx Errors */
5258 	net_stats->tx_errors = adapter->stats.ecol +
5259 			       adapter->stats.latecol;
5260 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5261 	net_stats->tx_window_errors = adapter->stats.latecol;
5262 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5263 
5264 	/* Tx Dropped needs to be maintained elsewhere */
5265 
5266 	/* Phy Stats */
5267 	if (hw->phy.media_type == e1000_media_type_copper) {
5268 		if ((adapter->link_speed == SPEED_1000) &&
5269 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5270 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5271 			adapter->phy_stats.idle_errors += phy_tmp;
5272 		}
5273 	}
5274 
5275 	/* Management Stats */
5276 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5277 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5278 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5279 
5280 	/* OS2BMC Stats */
5281 	reg = rd32(E1000_MANC);
5282 	if (reg & E1000_MANC_EN_BMC2OS) {
5283 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5284 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5285 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5286 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5287 	}
5288 }
5289 
5290 static irqreturn_t igb_msix_other(int irq, void *data)
5291 {
5292 	struct igb_adapter *adapter = data;
5293 	struct e1000_hw *hw = &adapter->hw;
5294 	u32 icr = rd32(E1000_ICR);
5295 	/* reading ICR causes bit 31 of EICR to be cleared */
5296 
5297 	if (icr & E1000_ICR_DRSTA)
5298 		schedule_work(&adapter->reset_task);
5299 
5300 	if (icr & E1000_ICR_DOUTSYNC) {
5301 		/* HW is reporting DMA is out of sync */
5302 		adapter->stats.doosync++;
5303 		/* The DMA Out of Sync is also indication of a spoof event
5304 		 * in IOV mode. Check the Wrong VM Behavior register to
5305 		 * see if it is really a spoof event.
5306 		 */
5307 		igb_check_wvbr(adapter);
5308 	}
5309 
5310 	/* Check for a mailbox event */
5311 	if (icr & E1000_ICR_VMMB)
5312 		igb_msg_task(adapter);
5313 
5314 	if (icr & E1000_ICR_LSC) {
5315 		hw->mac.get_link_status = 1;
5316 		/* guard against interrupt when we're going down */
5317 		if (!test_bit(__IGB_DOWN, &adapter->state))
5318 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5319 	}
5320 
5321 	if (icr & E1000_ICR_TS) {
5322 		u32 tsicr = rd32(E1000_TSICR);
5323 
5324 		if (tsicr & E1000_TSICR_TXTS) {
5325 			/* acknowledge the interrupt */
5326 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5327 			/* retrieve hardware timestamp */
5328 			schedule_work(&adapter->ptp_tx_work);
5329 		}
5330 	}
5331 
5332 	wr32(E1000_EIMS, adapter->eims_other);
5333 
5334 	return IRQ_HANDLED;
5335 }
5336 
5337 static void igb_write_itr(struct igb_q_vector *q_vector)
5338 {
5339 	struct igb_adapter *adapter = q_vector->adapter;
5340 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5341 
5342 	if (!q_vector->set_itr)
5343 		return;
5344 
5345 	if (!itr_val)
5346 		itr_val = 0x4;
5347 
5348 	if (adapter->hw.mac.type == e1000_82575)
5349 		itr_val |= itr_val << 16;
5350 	else
5351 		itr_val |= E1000_EITR_CNT_IGNR;
5352 
5353 	writel(itr_val, q_vector->itr_register);
5354 	q_vector->set_itr = 0;
5355 }
5356 
5357 static irqreturn_t igb_msix_ring(int irq, void *data)
5358 {
5359 	struct igb_q_vector *q_vector = data;
5360 
5361 	/* Write the ITR value calculated from the previous interrupt. */
5362 	igb_write_itr(q_vector);
5363 
5364 	napi_schedule(&q_vector->napi);
5365 
5366 	return IRQ_HANDLED;
5367 }
5368 
5369 #ifdef CONFIG_IGB_DCA
5370 static void igb_update_tx_dca(struct igb_adapter *adapter,
5371 			      struct igb_ring *tx_ring,
5372 			      int cpu)
5373 {
5374 	struct e1000_hw *hw = &adapter->hw;
5375 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5376 
5377 	if (hw->mac.type != e1000_82575)
5378 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5379 
5380 	/* We can enable relaxed ordering for reads, but not writes when
5381 	 * DCA is enabled.  This is due to a known issue in some chipsets
5382 	 * which will cause the DCA tag to be cleared.
5383 	 */
5384 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5385 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5386 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5387 
5388 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5389 }
5390 
5391 static void igb_update_rx_dca(struct igb_adapter *adapter,
5392 			      struct igb_ring *rx_ring,
5393 			      int cpu)
5394 {
5395 	struct e1000_hw *hw = &adapter->hw;
5396 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5397 
5398 	if (hw->mac.type != e1000_82575)
5399 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5400 
5401 	/* We can enable relaxed ordering for reads, but not writes when
5402 	 * DCA is enabled.  This is due to a known issue in some chipsets
5403 	 * which will cause the DCA tag to be cleared.
5404 	 */
5405 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5406 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5407 
5408 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5409 }
5410 
5411 static void igb_update_dca(struct igb_q_vector *q_vector)
5412 {
5413 	struct igb_adapter *adapter = q_vector->adapter;
5414 	int cpu = get_cpu();
5415 
5416 	if (q_vector->cpu == cpu)
5417 		goto out_no_update;
5418 
5419 	if (q_vector->tx.ring)
5420 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5421 
5422 	if (q_vector->rx.ring)
5423 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5424 
5425 	q_vector->cpu = cpu;
5426 out_no_update:
5427 	put_cpu();
5428 }
5429 
5430 static void igb_setup_dca(struct igb_adapter *adapter)
5431 {
5432 	struct e1000_hw *hw = &adapter->hw;
5433 	int i;
5434 
5435 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5436 		return;
5437 
5438 	/* Always use CB2 mode, difference is masked in the CB driver. */
5439 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5440 
5441 	for (i = 0; i < adapter->num_q_vectors; i++) {
5442 		adapter->q_vector[i]->cpu = -1;
5443 		igb_update_dca(adapter->q_vector[i]);
5444 	}
5445 }
5446 
5447 static int __igb_notify_dca(struct device *dev, void *data)
5448 {
5449 	struct net_device *netdev = dev_get_drvdata(dev);
5450 	struct igb_adapter *adapter = netdev_priv(netdev);
5451 	struct pci_dev *pdev = adapter->pdev;
5452 	struct e1000_hw *hw = &adapter->hw;
5453 	unsigned long event = *(unsigned long *)data;
5454 
5455 	switch (event) {
5456 	case DCA_PROVIDER_ADD:
5457 		/* if already enabled, don't do it again */
5458 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5459 			break;
5460 		if (dca_add_requester(dev) == 0) {
5461 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5462 			dev_info(&pdev->dev, "DCA enabled\n");
5463 			igb_setup_dca(adapter);
5464 			break;
5465 		}
5466 		/* Fall Through since DCA is disabled. */
5467 	case DCA_PROVIDER_REMOVE:
5468 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5469 			/* without this a class_device is left
5470 			 * hanging around in the sysfs model
5471 			 */
5472 			dca_remove_requester(dev);
5473 			dev_info(&pdev->dev, "DCA disabled\n");
5474 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5475 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5476 		}
5477 		break;
5478 	}
5479 
5480 	return 0;
5481 }
5482 
5483 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5484 			  void *p)
5485 {
5486 	int ret_val;
5487 
5488 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5489 					 __igb_notify_dca);
5490 
5491 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5492 }
5493 #endif /* CONFIG_IGB_DCA */
5494 
5495 #ifdef CONFIG_PCI_IOV
5496 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5497 {
5498 	unsigned char mac_addr[ETH_ALEN];
5499 
5500 	eth_zero_addr(mac_addr);
5501 	igb_set_vf_mac(adapter, vf, mac_addr);
5502 
5503 	/* By default spoof check is enabled for all VFs */
5504 	adapter->vf_data[vf].spoofchk_enabled = true;
5505 
5506 	return 0;
5507 }
5508 
5509 #endif
5510 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5511 {
5512 	struct e1000_hw *hw = &adapter->hw;
5513 	u32 ping;
5514 	int i;
5515 
5516 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5517 		ping = E1000_PF_CONTROL_MSG;
5518 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5519 			ping |= E1000_VT_MSGTYPE_CTS;
5520 		igb_write_mbx(hw, &ping, 1, i);
5521 	}
5522 }
5523 
5524 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5525 {
5526 	struct e1000_hw *hw = &adapter->hw;
5527 	u32 vmolr = rd32(E1000_VMOLR(vf));
5528 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5529 
5530 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5531 			    IGB_VF_FLAG_MULTI_PROMISC);
5532 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5533 
5534 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5535 		vmolr |= E1000_VMOLR_MPME;
5536 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5537 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5538 	} else {
5539 		/* if we have hashes and we are clearing a multicast promisc
5540 		 * flag we need to write the hashes to the MTA as this step
5541 		 * was previously skipped
5542 		 */
5543 		if (vf_data->num_vf_mc_hashes > 30) {
5544 			vmolr |= E1000_VMOLR_MPME;
5545 		} else if (vf_data->num_vf_mc_hashes) {
5546 			int j;
5547 			vmolr |= E1000_VMOLR_ROMPE;
5548 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5549 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5550 		}
5551 	}
5552 
5553 	wr32(E1000_VMOLR(vf), vmolr);
5554 
5555 	/* there are flags left unprocessed, likely not supported */
5556 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5557 		return -EINVAL;
5558 
5559 	return 0;
5560 }
5561 
5562 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5563 				  u32 *msgbuf, u32 vf)
5564 {
5565 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5566 	u16 *hash_list = (u16 *)&msgbuf[1];
5567 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5568 	int i;
5569 
5570 	/* salt away the number of multicast addresses assigned
5571 	 * to this VF for later use to restore when the PF multi cast
5572 	 * list changes
5573 	 */
5574 	vf_data->num_vf_mc_hashes = n;
5575 
5576 	/* only up to 30 hash values supported */
5577 	if (n > 30)
5578 		n = 30;
5579 
5580 	/* store the hashes for later use */
5581 	for (i = 0; i < n; i++)
5582 		vf_data->vf_mc_hashes[i] = hash_list[i];
5583 
5584 	/* Flush and reset the mta with the new values */
5585 	igb_set_rx_mode(adapter->netdev);
5586 
5587 	return 0;
5588 }
5589 
5590 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5591 {
5592 	struct e1000_hw *hw = &adapter->hw;
5593 	struct vf_data_storage *vf_data;
5594 	int i, j;
5595 
5596 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5597 		u32 vmolr = rd32(E1000_VMOLR(i));
5598 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5599 
5600 		vf_data = &adapter->vf_data[i];
5601 
5602 		if ((vf_data->num_vf_mc_hashes > 30) ||
5603 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5604 			vmolr |= E1000_VMOLR_MPME;
5605 		} else if (vf_data->num_vf_mc_hashes) {
5606 			vmolr |= E1000_VMOLR_ROMPE;
5607 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5608 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5609 		}
5610 		wr32(E1000_VMOLR(i), vmolr);
5611 	}
5612 }
5613 
5614 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5615 {
5616 	struct e1000_hw *hw = &adapter->hw;
5617 	u32 pool_mask, reg, vid;
5618 	int i;
5619 
5620 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5621 
5622 	/* Find the vlan filter for this id */
5623 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5624 		reg = rd32(E1000_VLVF(i));
5625 
5626 		/* remove the vf from the pool */
5627 		reg &= ~pool_mask;
5628 
5629 		/* if pool is empty then remove entry from vfta */
5630 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5631 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5632 			reg = 0;
5633 			vid = reg & E1000_VLVF_VLANID_MASK;
5634 			igb_vfta_set(hw, vid, false);
5635 		}
5636 
5637 		wr32(E1000_VLVF(i), reg);
5638 	}
5639 
5640 	adapter->vf_data[vf].vlans_enabled = 0;
5641 }
5642 
5643 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5644 {
5645 	struct e1000_hw *hw = &adapter->hw;
5646 	u32 reg, i;
5647 
5648 	/* The vlvf table only exists on 82576 hardware and newer */
5649 	if (hw->mac.type < e1000_82576)
5650 		return -1;
5651 
5652 	/* we only need to do this if VMDq is enabled */
5653 	if (!adapter->vfs_allocated_count)
5654 		return -1;
5655 
5656 	/* Find the vlan filter for this id */
5657 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5658 		reg = rd32(E1000_VLVF(i));
5659 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5660 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5661 			break;
5662 	}
5663 
5664 	if (add) {
5665 		if (i == E1000_VLVF_ARRAY_SIZE) {
5666 			/* Did not find a matching VLAN ID entry that was
5667 			 * enabled.  Search for a free filter entry, i.e.
5668 			 * one without the enable bit set
5669 			 */
5670 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5671 				reg = rd32(E1000_VLVF(i));
5672 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5673 					break;
5674 			}
5675 		}
5676 		if (i < E1000_VLVF_ARRAY_SIZE) {
5677 			/* Found an enabled/available entry */
5678 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5679 
5680 			/* if !enabled we need to set this up in vfta */
5681 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5682 				/* add VID to filter table */
5683 				igb_vfta_set(hw, vid, true);
5684 				reg |= E1000_VLVF_VLANID_ENABLE;
5685 			}
5686 			reg &= ~E1000_VLVF_VLANID_MASK;
5687 			reg |= vid;
5688 			wr32(E1000_VLVF(i), reg);
5689 
5690 			/* do not modify RLPML for PF devices */
5691 			if (vf >= adapter->vfs_allocated_count)
5692 				return 0;
5693 
5694 			if (!adapter->vf_data[vf].vlans_enabled) {
5695 				u32 size;
5696 				reg = rd32(E1000_VMOLR(vf));
5697 				size = reg & E1000_VMOLR_RLPML_MASK;
5698 				size += 4;
5699 				reg &= ~E1000_VMOLR_RLPML_MASK;
5700 				reg |= size;
5701 				wr32(E1000_VMOLR(vf), reg);
5702 			}
5703 
5704 			adapter->vf_data[vf].vlans_enabled++;
5705 		}
5706 	} else {
5707 		if (i < E1000_VLVF_ARRAY_SIZE) {
5708 			/* remove vf from the pool */
5709 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5710 			/* if pool is empty then remove entry from vfta */
5711 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5712 				reg = 0;
5713 				igb_vfta_set(hw, vid, false);
5714 			}
5715 			wr32(E1000_VLVF(i), reg);
5716 
5717 			/* do not modify RLPML for PF devices */
5718 			if (vf >= adapter->vfs_allocated_count)
5719 				return 0;
5720 
5721 			adapter->vf_data[vf].vlans_enabled--;
5722 			if (!adapter->vf_data[vf].vlans_enabled) {
5723 				u32 size;
5724 				reg = rd32(E1000_VMOLR(vf));
5725 				size = reg & E1000_VMOLR_RLPML_MASK;
5726 				size -= 4;
5727 				reg &= ~E1000_VMOLR_RLPML_MASK;
5728 				reg |= size;
5729 				wr32(E1000_VMOLR(vf), reg);
5730 			}
5731 		}
5732 	}
5733 	return 0;
5734 }
5735 
5736 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5737 {
5738 	struct e1000_hw *hw = &adapter->hw;
5739 
5740 	if (vid)
5741 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5742 	else
5743 		wr32(E1000_VMVIR(vf), 0);
5744 }
5745 
5746 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5747 			       int vf, u16 vlan, u8 qos)
5748 {
5749 	int err = 0;
5750 	struct igb_adapter *adapter = netdev_priv(netdev);
5751 
5752 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5753 		return -EINVAL;
5754 	if (vlan || qos) {
5755 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5756 		if (err)
5757 			goto out;
5758 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5759 		igb_set_vmolr(adapter, vf, !vlan);
5760 		adapter->vf_data[vf].pf_vlan = vlan;
5761 		adapter->vf_data[vf].pf_qos = qos;
5762 		dev_info(&adapter->pdev->dev,
5763 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5764 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5765 			dev_warn(&adapter->pdev->dev,
5766 				 "The VF VLAN has been set, but the PF device is not up.\n");
5767 			dev_warn(&adapter->pdev->dev,
5768 				 "Bring the PF device up before attempting to use the VF device.\n");
5769 		}
5770 	} else {
5771 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5772 			     false, vf);
5773 		igb_set_vmvir(adapter, vlan, vf);
5774 		igb_set_vmolr(adapter, vf, true);
5775 		adapter->vf_data[vf].pf_vlan = 0;
5776 		adapter->vf_data[vf].pf_qos = 0;
5777 	}
5778 out:
5779 	return err;
5780 }
5781 
5782 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5783 {
5784 	struct e1000_hw *hw = &adapter->hw;
5785 	int i;
5786 	u32 reg;
5787 
5788 	/* Find the vlan filter for this id */
5789 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5790 		reg = rd32(E1000_VLVF(i));
5791 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5792 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5793 			break;
5794 	}
5795 
5796 	if (i >= E1000_VLVF_ARRAY_SIZE)
5797 		i = -1;
5798 
5799 	return i;
5800 }
5801 
5802 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5803 {
5804 	struct e1000_hw *hw = &adapter->hw;
5805 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5806 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5807 	int err = 0;
5808 
5809 	/* If in promiscuous mode we need to make sure the PF also has
5810 	 * the VLAN filter set.
5811 	 */
5812 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5813 		err = igb_vlvf_set(adapter, vid, add,
5814 				   adapter->vfs_allocated_count);
5815 	if (err)
5816 		goto out;
5817 
5818 	err = igb_vlvf_set(adapter, vid, add, vf);
5819 
5820 	if (err)
5821 		goto out;
5822 
5823 	/* Go through all the checks to see if the VLAN filter should
5824 	 * be wiped completely.
5825 	 */
5826 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5827 		u32 vlvf, bits;
5828 
5829 		int regndx = igb_find_vlvf_entry(adapter, vid);
5830 		if (regndx < 0)
5831 			goto out;
5832 		/* See if any other pools are set for this VLAN filter
5833 		 * entry other than the PF.
5834 		 */
5835 		vlvf = bits = rd32(E1000_VLVF(regndx));
5836 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5837 			      adapter->vfs_allocated_count);
5838 		/* If the filter was removed then ensure PF pool bit
5839 		 * is cleared if the PF only added itself to the pool
5840 		 * because the PF is in promiscuous mode.
5841 		 */
5842 		if ((vlvf & VLAN_VID_MASK) == vid &&
5843 		    !test_bit(vid, adapter->active_vlans) &&
5844 		    !bits)
5845 			igb_vlvf_set(adapter, vid, add,
5846 				     adapter->vfs_allocated_count);
5847 	}
5848 
5849 out:
5850 	return err;
5851 }
5852 
5853 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5854 {
5855 	/* clear flags - except flag that indicates PF has set the MAC */
5856 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5857 	adapter->vf_data[vf].last_nack = jiffies;
5858 
5859 	/* reset offloads to defaults */
5860 	igb_set_vmolr(adapter, vf, true);
5861 
5862 	/* reset vlans for device */
5863 	igb_clear_vf_vfta(adapter, vf);
5864 	if (adapter->vf_data[vf].pf_vlan)
5865 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5866 				    adapter->vf_data[vf].pf_vlan,
5867 				    adapter->vf_data[vf].pf_qos);
5868 	else
5869 		igb_clear_vf_vfta(adapter, vf);
5870 
5871 	/* reset multicast table array for vf */
5872 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5873 
5874 	/* Flush and reset the mta with the new values */
5875 	igb_set_rx_mode(adapter->netdev);
5876 }
5877 
5878 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5879 {
5880 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5881 
5882 	/* clear mac address as we were hotplug removed/added */
5883 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5884 		eth_zero_addr(vf_mac);
5885 
5886 	/* process remaining reset events */
5887 	igb_vf_reset(adapter, vf);
5888 }
5889 
5890 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5891 {
5892 	struct e1000_hw *hw = &adapter->hw;
5893 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5894 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5895 	u32 reg, msgbuf[3];
5896 	u8 *addr = (u8 *)(&msgbuf[1]);
5897 
5898 	/* process all the same items cleared in a function level reset */
5899 	igb_vf_reset(adapter, vf);
5900 
5901 	/* set vf mac address */
5902 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5903 
5904 	/* enable transmit and receive for vf */
5905 	reg = rd32(E1000_VFTE);
5906 	wr32(E1000_VFTE, reg | (1 << vf));
5907 	reg = rd32(E1000_VFRE);
5908 	wr32(E1000_VFRE, reg | (1 << vf));
5909 
5910 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5911 
5912 	/* reply to reset with ack and vf mac address */
5913 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5914 	memcpy(addr, vf_mac, ETH_ALEN);
5915 	igb_write_mbx(hw, msgbuf, 3, vf);
5916 }
5917 
5918 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5919 {
5920 	/* The VF MAC Address is stored in a packed array of bytes
5921 	 * starting at the second 32 bit word of the msg array
5922 	 */
5923 	unsigned char *addr = (char *)&msg[1];
5924 	int err = -1;
5925 
5926 	if (is_valid_ether_addr(addr))
5927 		err = igb_set_vf_mac(adapter, vf, addr);
5928 
5929 	return err;
5930 }
5931 
5932 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5933 {
5934 	struct e1000_hw *hw = &adapter->hw;
5935 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5936 	u32 msg = E1000_VT_MSGTYPE_NACK;
5937 
5938 	/* if device isn't clear to send it shouldn't be reading either */
5939 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5940 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5941 		igb_write_mbx(hw, &msg, 1, vf);
5942 		vf_data->last_nack = jiffies;
5943 	}
5944 }
5945 
5946 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5947 {
5948 	struct pci_dev *pdev = adapter->pdev;
5949 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5950 	struct e1000_hw *hw = &adapter->hw;
5951 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5952 	s32 retval;
5953 
5954 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5955 
5956 	if (retval) {
5957 		/* if receive failed revoke VF CTS stats and restart init */
5958 		dev_err(&pdev->dev, "Error receiving message from VF\n");
5959 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5960 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5961 			return;
5962 		goto out;
5963 	}
5964 
5965 	/* this is a message we already processed, do nothing */
5966 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5967 		return;
5968 
5969 	/* until the vf completes a reset it should not be
5970 	 * allowed to start any configuration.
5971 	 */
5972 	if (msgbuf[0] == E1000_VF_RESET) {
5973 		igb_vf_reset_msg(adapter, vf);
5974 		return;
5975 	}
5976 
5977 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5978 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5979 			return;
5980 		retval = -1;
5981 		goto out;
5982 	}
5983 
5984 	switch ((msgbuf[0] & 0xFFFF)) {
5985 	case E1000_VF_SET_MAC_ADDR:
5986 		retval = -EINVAL;
5987 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5988 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5989 		else
5990 			dev_warn(&pdev->dev,
5991 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5992 				 vf);
5993 		break;
5994 	case E1000_VF_SET_PROMISC:
5995 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5996 		break;
5997 	case E1000_VF_SET_MULTICAST:
5998 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5999 		break;
6000 	case E1000_VF_SET_LPE:
6001 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6002 		break;
6003 	case E1000_VF_SET_VLAN:
6004 		retval = -1;
6005 		if (vf_data->pf_vlan)
6006 			dev_warn(&pdev->dev,
6007 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6008 				 vf);
6009 		else
6010 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6011 		break;
6012 	default:
6013 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6014 		retval = -1;
6015 		break;
6016 	}
6017 
6018 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6019 out:
6020 	/* notify the VF of the results of what it sent us */
6021 	if (retval)
6022 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6023 	else
6024 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6025 
6026 	igb_write_mbx(hw, msgbuf, 1, vf);
6027 }
6028 
6029 static void igb_msg_task(struct igb_adapter *adapter)
6030 {
6031 	struct e1000_hw *hw = &adapter->hw;
6032 	u32 vf;
6033 
6034 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6035 		/* process any reset requests */
6036 		if (!igb_check_for_rst(hw, vf))
6037 			igb_vf_reset_event(adapter, vf);
6038 
6039 		/* process any messages pending */
6040 		if (!igb_check_for_msg(hw, vf))
6041 			igb_rcv_msg_from_vf(adapter, vf);
6042 
6043 		/* process any acks */
6044 		if (!igb_check_for_ack(hw, vf))
6045 			igb_rcv_ack_from_vf(adapter, vf);
6046 	}
6047 }
6048 
6049 /**
6050  *  igb_set_uta - Set unicast filter table address
6051  *  @adapter: board private structure
6052  *
6053  *  The unicast table address is a register array of 32-bit registers.
6054  *  The table is meant to be used in a way similar to how the MTA is used
6055  *  however due to certain limitations in the hardware it is necessary to
6056  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6057  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6058  **/
6059 static void igb_set_uta(struct igb_adapter *adapter)
6060 {
6061 	struct e1000_hw *hw = &adapter->hw;
6062 	int i;
6063 
6064 	/* The UTA table only exists on 82576 hardware and newer */
6065 	if (hw->mac.type < e1000_82576)
6066 		return;
6067 
6068 	/* we only need to do this if VMDq is enabled */
6069 	if (!adapter->vfs_allocated_count)
6070 		return;
6071 
6072 	for (i = 0; i < hw->mac.uta_reg_count; i++)
6073 		array_wr32(E1000_UTA, i, ~0);
6074 }
6075 
6076 /**
6077  *  igb_intr_msi - Interrupt Handler
6078  *  @irq: interrupt number
6079  *  @data: pointer to a network interface device structure
6080  **/
6081 static irqreturn_t igb_intr_msi(int irq, void *data)
6082 {
6083 	struct igb_adapter *adapter = data;
6084 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6085 	struct e1000_hw *hw = &adapter->hw;
6086 	/* read ICR disables interrupts using IAM */
6087 	u32 icr = rd32(E1000_ICR);
6088 
6089 	igb_write_itr(q_vector);
6090 
6091 	if (icr & E1000_ICR_DRSTA)
6092 		schedule_work(&adapter->reset_task);
6093 
6094 	if (icr & E1000_ICR_DOUTSYNC) {
6095 		/* HW is reporting DMA is out of sync */
6096 		adapter->stats.doosync++;
6097 	}
6098 
6099 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6100 		hw->mac.get_link_status = 1;
6101 		if (!test_bit(__IGB_DOWN, &adapter->state))
6102 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6103 	}
6104 
6105 	if (icr & E1000_ICR_TS) {
6106 		u32 tsicr = rd32(E1000_TSICR);
6107 
6108 		if (tsicr & E1000_TSICR_TXTS) {
6109 			/* acknowledge the interrupt */
6110 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6111 			/* retrieve hardware timestamp */
6112 			schedule_work(&adapter->ptp_tx_work);
6113 		}
6114 	}
6115 
6116 	napi_schedule(&q_vector->napi);
6117 
6118 	return IRQ_HANDLED;
6119 }
6120 
6121 /**
6122  *  igb_intr - Legacy Interrupt Handler
6123  *  @irq: interrupt number
6124  *  @data: pointer to a network interface device structure
6125  **/
6126 static irqreturn_t igb_intr(int irq, void *data)
6127 {
6128 	struct igb_adapter *adapter = data;
6129 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6130 	struct e1000_hw *hw = &adapter->hw;
6131 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6132 	 * need for the IMC write
6133 	 */
6134 	u32 icr = rd32(E1000_ICR);
6135 
6136 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6137 	 * not set, then the adapter didn't send an interrupt
6138 	 */
6139 	if (!(icr & E1000_ICR_INT_ASSERTED))
6140 		return IRQ_NONE;
6141 
6142 	igb_write_itr(q_vector);
6143 
6144 	if (icr & E1000_ICR_DRSTA)
6145 		schedule_work(&adapter->reset_task);
6146 
6147 	if (icr & E1000_ICR_DOUTSYNC) {
6148 		/* HW is reporting DMA is out of sync */
6149 		adapter->stats.doosync++;
6150 	}
6151 
6152 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6153 		hw->mac.get_link_status = 1;
6154 		/* guard against interrupt when we're going down */
6155 		if (!test_bit(__IGB_DOWN, &adapter->state))
6156 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6157 	}
6158 
6159 	if (icr & E1000_ICR_TS) {
6160 		u32 tsicr = rd32(E1000_TSICR);
6161 
6162 		if (tsicr & E1000_TSICR_TXTS) {
6163 			/* acknowledge the interrupt */
6164 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6165 			/* retrieve hardware timestamp */
6166 			schedule_work(&adapter->ptp_tx_work);
6167 		}
6168 	}
6169 
6170 	napi_schedule(&q_vector->napi);
6171 
6172 	return IRQ_HANDLED;
6173 }
6174 
6175 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6176 {
6177 	struct igb_adapter *adapter = q_vector->adapter;
6178 	struct e1000_hw *hw = &adapter->hw;
6179 
6180 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6181 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6182 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6183 			igb_set_itr(q_vector);
6184 		else
6185 			igb_update_ring_itr(q_vector);
6186 	}
6187 
6188 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6189 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6190 			wr32(E1000_EIMS, q_vector->eims_value);
6191 		else
6192 			igb_irq_enable(adapter);
6193 	}
6194 }
6195 
6196 /**
6197  *  igb_poll - NAPI Rx polling callback
6198  *  @napi: napi polling structure
6199  *  @budget: count of how many packets we should handle
6200  **/
6201 static int igb_poll(struct napi_struct *napi, int budget)
6202 {
6203 	struct igb_q_vector *q_vector = container_of(napi,
6204 						     struct igb_q_vector,
6205 						     napi);
6206 	bool clean_complete = true;
6207 
6208 #ifdef CONFIG_IGB_DCA
6209 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6210 		igb_update_dca(q_vector);
6211 #endif
6212 	if (q_vector->tx.ring)
6213 		clean_complete = igb_clean_tx_irq(q_vector);
6214 
6215 	if (q_vector->rx.ring)
6216 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6217 
6218 	/* If all work not completed, return budget and keep polling */
6219 	if (!clean_complete)
6220 		return budget;
6221 
6222 	/* If not enough Rx work done, exit the polling mode */
6223 	napi_complete(napi);
6224 	igb_ring_irq_enable(q_vector);
6225 
6226 	return 0;
6227 }
6228 
6229 /**
6230  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6231  *  @q_vector: pointer to q_vector containing needed info
6232  *
6233  *  returns true if ring is completely cleaned
6234  **/
6235 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6236 {
6237 	struct igb_adapter *adapter = q_vector->adapter;
6238 	struct igb_ring *tx_ring = q_vector->tx.ring;
6239 	struct igb_tx_buffer *tx_buffer;
6240 	union e1000_adv_tx_desc *tx_desc;
6241 	unsigned int total_bytes = 0, total_packets = 0;
6242 	unsigned int budget = q_vector->tx.work_limit;
6243 	unsigned int i = tx_ring->next_to_clean;
6244 
6245 	if (test_bit(__IGB_DOWN, &adapter->state))
6246 		return true;
6247 
6248 	tx_buffer = &tx_ring->tx_buffer_info[i];
6249 	tx_desc = IGB_TX_DESC(tx_ring, i);
6250 	i -= tx_ring->count;
6251 
6252 	do {
6253 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6254 
6255 		/* if next_to_watch is not set then there is no work pending */
6256 		if (!eop_desc)
6257 			break;
6258 
6259 		/* prevent any other reads prior to eop_desc */
6260 		read_barrier_depends();
6261 
6262 		/* if DD is not set pending work has not been completed */
6263 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6264 			break;
6265 
6266 		/* clear next_to_watch to prevent false hangs */
6267 		tx_buffer->next_to_watch = NULL;
6268 
6269 		/* update the statistics for this packet */
6270 		total_bytes += tx_buffer->bytecount;
6271 		total_packets += tx_buffer->gso_segs;
6272 
6273 		/* free the skb */
6274 		dev_kfree_skb_any(tx_buffer->skb);
6275 
6276 		/* unmap skb header data */
6277 		dma_unmap_single(tx_ring->dev,
6278 				 dma_unmap_addr(tx_buffer, dma),
6279 				 dma_unmap_len(tx_buffer, len),
6280 				 DMA_TO_DEVICE);
6281 
6282 		/* clear tx_buffer data */
6283 		tx_buffer->skb = NULL;
6284 		dma_unmap_len_set(tx_buffer, len, 0);
6285 
6286 		/* clear last DMA location and unmap remaining buffers */
6287 		while (tx_desc != eop_desc) {
6288 			tx_buffer++;
6289 			tx_desc++;
6290 			i++;
6291 			if (unlikely(!i)) {
6292 				i -= tx_ring->count;
6293 				tx_buffer = tx_ring->tx_buffer_info;
6294 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6295 			}
6296 
6297 			/* unmap any remaining paged data */
6298 			if (dma_unmap_len(tx_buffer, len)) {
6299 				dma_unmap_page(tx_ring->dev,
6300 					       dma_unmap_addr(tx_buffer, dma),
6301 					       dma_unmap_len(tx_buffer, len),
6302 					       DMA_TO_DEVICE);
6303 				dma_unmap_len_set(tx_buffer, len, 0);
6304 			}
6305 		}
6306 
6307 		/* move us one more past the eop_desc for start of next pkt */
6308 		tx_buffer++;
6309 		tx_desc++;
6310 		i++;
6311 		if (unlikely(!i)) {
6312 			i -= tx_ring->count;
6313 			tx_buffer = tx_ring->tx_buffer_info;
6314 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6315 		}
6316 
6317 		/* issue prefetch for next Tx descriptor */
6318 		prefetch(tx_desc);
6319 
6320 		/* update budget accounting */
6321 		budget--;
6322 	} while (likely(budget));
6323 
6324 	netdev_tx_completed_queue(txring_txq(tx_ring),
6325 				  total_packets, total_bytes);
6326 	i += tx_ring->count;
6327 	tx_ring->next_to_clean = i;
6328 	u64_stats_update_begin(&tx_ring->tx_syncp);
6329 	tx_ring->tx_stats.bytes += total_bytes;
6330 	tx_ring->tx_stats.packets += total_packets;
6331 	u64_stats_update_end(&tx_ring->tx_syncp);
6332 	q_vector->tx.total_bytes += total_bytes;
6333 	q_vector->tx.total_packets += total_packets;
6334 
6335 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6336 		struct e1000_hw *hw = &adapter->hw;
6337 
6338 		/* Detect a transmit hang in hardware, this serializes the
6339 		 * check with the clearing of time_stamp and movement of i
6340 		 */
6341 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6342 		if (tx_buffer->next_to_watch &&
6343 		    time_after(jiffies, tx_buffer->time_stamp +
6344 			       (adapter->tx_timeout_factor * HZ)) &&
6345 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6346 
6347 			/* detected Tx unit hang */
6348 			dev_err(tx_ring->dev,
6349 				"Detected Tx Unit Hang\n"
6350 				"  Tx Queue             <%d>\n"
6351 				"  TDH                  <%x>\n"
6352 				"  TDT                  <%x>\n"
6353 				"  next_to_use          <%x>\n"
6354 				"  next_to_clean        <%x>\n"
6355 				"buffer_info[next_to_clean]\n"
6356 				"  time_stamp           <%lx>\n"
6357 				"  next_to_watch        <%p>\n"
6358 				"  jiffies              <%lx>\n"
6359 				"  desc.status          <%x>\n",
6360 				tx_ring->queue_index,
6361 				rd32(E1000_TDH(tx_ring->reg_idx)),
6362 				readl(tx_ring->tail),
6363 				tx_ring->next_to_use,
6364 				tx_ring->next_to_clean,
6365 				tx_buffer->time_stamp,
6366 				tx_buffer->next_to_watch,
6367 				jiffies,
6368 				tx_buffer->next_to_watch->wb.status);
6369 			netif_stop_subqueue(tx_ring->netdev,
6370 					    tx_ring->queue_index);
6371 
6372 			/* we are about to reset, no point in enabling stuff */
6373 			return true;
6374 		}
6375 	}
6376 
6377 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6378 	if (unlikely(total_packets &&
6379 	    netif_carrier_ok(tx_ring->netdev) &&
6380 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6381 		/* Make sure that anybody stopping the queue after this
6382 		 * sees the new next_to_clean.
6383 		 */
6384 		smp_mb();
6385 		if (__netif_subqueue_stopped(tx_ring->netdev,
6386 					     tx_ring->queue_index) &&
6387 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6388 			netif_wake_subqueue(tx_ring->netdev,
6389 					    tx_ring->queue_index);
6390 
6391 			u64_stats_update_begin(&tx_ring->tx_syncp);
6392 			tx_ring->tx_stats.restart_queue++;
6393 			u64_stats_update_end(&tx_ring->tx_syncp);
6394 		}
6395 	}
6396 
6397 	return !!budget;
6398 }
6399 
6400 /**
6401  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6402  *  @rx_ring: rx descriptor ring to store buffers on
6403  *  @old_buff: donor buffer to have page reused
6404  *
6405  *  Synchronizes page for reuse by the adapter
6406  **/
6407 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6408 			      struct igb_rx_buffer *old_buff)
6409 {
6410 	struct igb_rx_buffer *new_buff;
6411 	u16 nta = rx_ring->next_to_alloc;
6412 
6413 	new_buff = &rx_ring->rx_buffer_info[nta];
6414 
6415 	/* update, and store next to alloc */
6416 	nta++;
6417 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6418 
6419 	/* transfer page from old buffer to new buffer */
6420 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6421 
6422 	/* sync the buffer for use by the device */
6423 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6424 					 old_buff->page_offset,
6425 					 IGB_RX_BUFSZ,
6426 					 DMA_FROM_DEVICE);
6427 }
6428 
6429 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6430 				  struct page *page,
6431 				  unsigned int truesize)
6432 {
6433 	/* avoid re-using remote pages */
6434 	if (unlikely(page_to_nid(page) != numa_node_id()))
6435 		return false;
6436 
6437 #if (PAGE_SIZE < 8192)
6438 	/* if we are only owner of page we can reuse it */
6439 	if (unlikely(page_count(page) != 1))
6440 		return false;
6441 
6442 	/* flip page offset to other buffer */
6443 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6444 
6445 	/* since we are the only owner of the page and we need to
6446 	 * increment it, just set the value to 2 in order to avoid
6447 	 * an unnecessary locked operation
6448 	 */
6449 	atomic_set(&page->_count, 2);
6450 #else
6451 	/* move offset up to the next cache line */
6452 	rx_buffer->page_offset += truesize;
6453 
6454 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6455 		return false;
6456 
6457 	/* bump ref count on page before it is given to the stack */
6458 	get_page(page);
6459 #endif
6460 
6461 	return true;
6462 }
6463 
6464 /**
6465  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6466  *  @rx_ring: rx descriptor ring to transact packets on
6467  *  @rx_buffer: buffer containing page to add
6468  *  @rx_desc: descriptor containing length of buffer written by hardware
6469  *  @skb: sk_buff to place the data into
6470  *
6471  *  This function will add the data contained in rx_buffer->page to the skb.
6472  *  This is done either through a direct copy if the data in the buffer is
6473  *  less than the skb header size, otherwise it will just attach the page as
6474  *  a frag to the skb.
6475  *
6476  *  The function will then update the page offset if necessary and return
6477  *  true if the buffer can be reused by the adapter.
6478  **/
6479 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6480 			    struct igb_rx_buffer *rx_buffer,
6481 			    union e1000_adv_rx_desc *rx_desc,
6482 			    struct sk_buff *skb)
6483 {
6484 	struct page *page = rx_buffer->page;
6485 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6486 #if (PAGE_SIZE < 8192)
6487 	unsigned int truesize = IGB_RX_BUFSZ;
6488 #else
6489 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6490 #endif
6491 
6492 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6493 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6494 
6495 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6496 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6497 			va += IGB_TS_HDR_LEN;
6498 			size -= IGB_TS_HDR_LEN;
6499 		}
6500 
6501 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6502 
6503 		/* we can reuse buffer as-is, just make sure it is local */
6504 		if (likely(page_to_nid(page) == numa_node_id()))
6505 			return true;
6506 
6507 		/* this page cannot be reused so discard it */
6508 		put_page(page);
6509 		return false;
6510 	}
6511 
6512 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6513 			rx_buffer->page_offset, size, truesize);
6514 
6515 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6516 }
6517 
6518 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6519 					   union e1000_adv_rx_desc *rx_desc,
6520 					   struct sk_buff *skb)
6521 {
6522 	struct igb_rx_buffer *rx_buffer;
6523 	struct page *page;
6524 
6525 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6526 
6527 	page = rx_buffer->page;
6528 	prefetchw(page);
6529 
6530 	if (likely(!skb)) {
6531 		void *page_addr = page_address(page) +
6532 				  rx_buffer->page_offset;
6533 
6534 		/* prefetch first cache line of first page */
6535 		prefetch(page_addr);
6536 #if L1_CACHE_BYTES < 128
6537 		prefetch(page_addr + L1_CACHE_BYTES);
6538 #endif
6539 
6540 		/* allocate a skb to store the frags */
6541 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6542 						IGB_RX_HDR_LEN);
6543 		if (unlikely(!skb)) {
6544 			rx_ring->rx_stats.alloc_failed++;
6545 			return NULL;
6546 		}
6547 
6548 		/* we will be copying header into skb->data in
6549 		 * pskb_may_pull so it is in our interest to prefetch
6550 		 * it now to avoid a possible cache miss
6551 		 */
6552 		prefetchw(skb->data);
6553 	}
6554 
6555 	/* we are reusing so sync this buffer for CPU use */
6556 	dma_sync_single_range_for_cpu(rx_ring->dev,
6557 				      rx_buffer->dma,
6558 				      rx_buffer->page_offset,
6559 				      IGB_RX_BUFSZ,
6560 				      DMA_FROM_DEVICE);
6561 
6562 	/* pull page into skb */
6563 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6564 		/* hand second half of page back to the ring */
6565 		igb_reuse_rx_page(rx_ring, rx_buffer);
6566 	} else {
6567 		/* we are not reusing the buffer so unmap it */
6568 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6569 			       PAGE_SIZE, DMA_FROM_DEVICE);
6570 	}
6571 
6572 	/* clear contents of rx_buffer */
6573 	rx_buffer->page = NULL;
6574 
6575 	return skb;
6576 }
6577 
6578 static inline void igb_rx_checksum(struct igb_ring *ring,
6579 				   union e1000_adv_rx_desc *rx_desc,
6580 				   struct sk_buff *skb)
6581 {
6582 	skb_checksum_none_assert(skb);
6583 
6584 	/* Ignore Checksum bit is set */
6585 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6586 		return;
6587 
6588 	/* Rx checksum disabled via ethtool */
6589 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6590 		return;
6591 
6592 	/* TCP/UDP checksum error bit is set */
6593 	if (igb_test_staterr(rx_desc,
6594 			     E1000_RXDEXT_STATERR_TCPE |
6595 			     E1000_RXDEXT_STATERR_IPE)) {
6596 		/* work around errata with sctp packets where the TCPE aka
6597 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6598 		 * packets, (aka let the stack check the crc32c)
6599 		 */
6600 		if (!((skb->len == 60) &&
6601 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6602 			u64_stats_update_begin(&ring->rx_syncp);
6603 			ring->rx_stats.csum_err++;
6604 			u64_stats_update_end(&ring->rx_syncp);
6605 		}
6606 		/* let the stack verify checksum errors */
6607 		return;
6608 	}
6609 	/* It must be a TCP or UDP packet with a valid checksum */
6610 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6611 				      E1000_RXD_STAT_UDPCS))
6612 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6613 
6614 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6615 		le32_to_cpu(rx_desc->wb.upper.status_error));
6616 }
6617 
6618 static inline void igb_rx_hash(struct igb_ring *ring,
6619 			       union e1000_adv_rx_desc *rx_desc,
6620 			       struct sk_buff *skb)
6621 {
6622 	if (ring->netdev->features & NETIF_F_RXHASH)
6623 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6624 }
6625 
6626 /**
6627  *  igb_is_non_eop - process handling of non-EOP buffers
6628  *  @rx_ring: Rx ring being processed
6629  *  @rx_desc: Rx descriptor for current buffer
6630  *  @skb: current socket buffer containing buffer in progress
6631  *
6632  *  This function updates next to clean.  If the buffer is an EOP buffer
6633  *  this function exits returning false, otherwise it will place the
6634  *  sk_buff in the next buffer to be chained and return true indicating
6635  *  that this is in fact a non-EOP buffer.
6636  **/
6637 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6638 			   union e1000_adv_rx_desc *rx_desc)
6639 {
6640 	u32 ntc = rx_ring->next_to_clean + 1;
6641 
6642 	/* fetch, update, and store next to clean */
6643 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6644 	rx_ring->next_to_clean = ntc;
6645 
6646 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6647 
6648 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6649 		return false;
6650 
6651 	return true;
6652 }
6653 
6654 /**
6655  *  igb_get_headlen - determine size of header for LRO/GRO
6656  *  @data: pointer to the start of the headers
6657  *  @max_len: total length of section to find headers in
6658  *
6659  *  This function is meant to determine the length of headers that will
6660  *  be recognized by hardware for LRO, and GRO offloads.  The main
6661  *  motivation of doing this is to only perform one pull for IPv4 TCP
6662  *  packets so that we can do basic things like calculating the gso_size
6663  *  based on the average data per packet.
6664  **/
6665 static unsigned int igb_get_headlen(unsigned char *data,
6666 				    unsigned int max_len)
6667 {
6668 	union {
6669 		unsigned char *network;
6670 		/* l2 headers */
6671 		struct ethhdr *eth;
6672 		struct vlan_hdr *vlan;
6673 		/* l3 headers */
6674 		struct iphdr *ipv4;
6675 		struct ipv6hdr *ipv6;
6676 	} hdr;
6677 	__be16 protocol;
6678 	u8 nexthdr = 0;	/* default to not TCP */
6679 	u8 hlen;
6680 
6681 	/* this should never happen, but better safe than sorry */
6682 	if (max_len < ETH_HLEN)
6683 		return max_len;
6684 
6685 	/* initialize network frame pointer */
6686 	hdr.network = data;
6687 
6688 	/* set first protocol and move network header forward */
6689 	protocol = hdr.eth->h_proto;
6690 	hdr.network += ETH_HLEN;
6691 
6692 	/* handle any vlan tag if present */
6693 	if (protocol == __constant_htons(ETH_P_8021Q)) {
6694 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6695 			return max_len;
6696 
6697 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6698 		hdr.network += VLAN_HLEN;
6699 	}
6700 
6701 	/* handle L3 protocols */
6702 	if (protocol == __constant_htons(ETH_P_IP)) {
6703 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6704 			return max_len;
6705 
6706 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6707 		hlen = (hdr.network[0] & 0x0F) << 2;
6708 
6709 		/* verify hlen meets minimum size requirements */
6710 		if (hlen < sizeof(struct iphdr))
6711 			return hdr.network - data;
6712 
6713 		/* record next protocol if header is present */
6714 		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6715 			nexthdr = hdr.ipv4->protocol;
6716 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6717 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6718 			return max_len;
6719 
6720 		/* record next protocol */
6721 		nexthdr = hdr.ipv6->nexthdr;
6722 		hlen = sizeof(struct ipv6hdr);
6723 	} else {
6724 		return hdr.network - data;
6725 	}
6726 
6727 	/* relocate pointer to start of L4 header */
6728 	hdr.network += hlen;
6729 
6730 	/* finally sort out TCP */
6731 	if (nexthdr == IPPROTO_TCP) {
6732 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6733 			return max_len;
6734 
6735 		/* access doff as a u8 to avoid unaligned access on ia64 */
6736 		hlen = (hdr.network[12] & 0xF0) >> 2;
6737 
6738 		/* verify hlen meets minimum size requirements */
6739 		if (hlen < sizeof(struct tcphdr))
6740 			return hdr.network - data;
6741 
6742 		hdr.network += hlen;
6743 	} else if (nexthdr == IPPROTO_UDP) {
6744 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6745 			return max_len;
6746 
6747 		hdr.network += sizeof(struct udphdr);
6748 	}
6749 
6750 	/* If everything has gone correctly hdr.network should be the
6751 	 * data section of the packet and will be the end of the header.
6752 	 * If not then it probably represents the end of the last recognized
6753 	 * header.
6754 	 */
6755 	if ((hdr.network - data) < max_len)
6756 		return hdr.network - data;
6757 	else
6758 		return max_len;
6759 }
6760 
6761 /**
6762  *  igb_pull_tail - igb specific version of skb_pull_tail
6763  *  @rx_ring: rx descriptor ring packet is being transacted on
6764  *  @rx_desc: pointer to the EOP Rx descriptor
6765  *  @skb: pointer to current skb being adjusted
6766  *
6767  *  This function is an igb specific version of __pskb_pull_tail.  The
6768  *  main difference between this version and the original function is that
6769  *  this function can make several assumptions about the state of things
6770  *  that allow for significant optimizations versus the standard function.
6771  *  As a result we can do things like drop a frag and maintain an accurate
6772  *  truesize for the skb.
6773  */
6774 static void igb_pull_tail(struct igb_ring *rx_ring,
6775 			  union e1000_adv_rx_desc *rx_desc,
6776 			  struct sk_buff *skb)
6777 {
6778 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6779 	unsigned char *va;
6780 	unsigned int pull_len;
6781 
6782 	/* it is valid to use page_address instead of kmap since we are
6783 	 * working with pages allocated out of the lomem pool per
6784 	 * alloc_page(GFP_ATOMIC)
6785 	 */
6786 	va = skb_frag_address(frag);
6787 
6788 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6789 		/* retrieve timestamp from buffer */
6790 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6791 
6792 		/* update pointers to remove timestamp header */
6793 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6794 		frag->page_offset += IGB_TS_HDR_LEN;
6795 		skb->data_len -= IGB_TS_HDR_LEN;
6796 		skb->len -= IGB_TS_HDR_LEN;
6797 
6798 		/* move va to start of packet data */
6799 		va += IGB_TS_HDR_LEN;
6800 	}
6801 
6802 	/* we need the header to contain the greater of either ETH_HLEN or
6803 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6804 	 */
6805 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6806 
6807 	/* align pull length to size of long to optimize memcpy performance */
6808 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6809 
6810 	/* update all of the pointers */
6811 	skb_frag_size_sub(frag, pull_len);
6812 	frag->page_offset += pull_len;
6813 	skb->data_len -= pull_len;
6814 	skb->tail += pull_len;
6815 }
6816 
6817 /**
6818  *  igb_cleanup_headers - Correct corrupted or empty headers
6819  *  @rx_ring: rx descriptor ring packet is being transacted on
6820  *  @rx_desc: pointer to the EOP Rx descriptor
6821  *  @skb: pointer to current skb being fixed
6822  *
6823  *  Address the case where we are pulling data in on pages only
6824  *  and as such no data is present in the skb header.
6825  *
6826  *  In addition if skb is not at least 60 bytes we need to pad it so that
6827  *  it is large enough to qualify as a valid Ethernet frame.
6828  *
6829  *  Returns true if an error was encountered and skb was freed.
6830  **/
6831 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6832 				union e1000_adv_rx_desc *rx_desc,
6833 				struct sk_buff *skb)
6834 {
6835 	if (unlikely((igb_test_staterr(rx_desc,
6836 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6837 		struct net_device *netdev = rx_ring->netdev;
6838 		if (!(netdev->features & NETIF_F_RXALL)) {
6839 			dev_kfree_skb_any(skb);
6840 			return true;
6841 		}
6842 	}
6843 
6844 	/* place header in linear portion of buffer */
6845 	if (skb_is_nonlinear(skb))
6846 		igb_pull_tail(rx_ring, rx_desc, skb);
6847 
6848 	/* if skb_pad returns an error the skb was freed */
6849 	if (unlikely(skb->len < 60)) {
6850 		int pad_len = 60 - skb->len;
6851 
6852 		if (skb_pad(skb, pad_len))
6853 			return true;
6854 		__skb_put(skb, pad_len);
6855 	}
6856 
6857 	return false;
6858 }
6859 
6860 /**
6861  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6862  *  @rx_ring: rx descriptor ring packet is being transacted on
6863  *  @rx_desc: pointer to the EOP Rx descriptor
6864  *  @skb: pointer to current skb being populated
6865  *
6866  *  This function checks the ring, descriptor, and packet information in
6867  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6868  *  other fields within the skb.
6869  **/
6870 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6871 				   union e1000_adv_rx_desc *rx_desc,
6872 				   struct sk_buff *skb)
6873 {
6874 	struct net_device *dev = rx_ring->netdev;
6875 
6876 	igb_rx_hash(rx_ring, rx_desc, skb);
6877 
6878 	igb_rx_checksum(rx_ring, rx_desc, skb);
6879 
6880 	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6881 
6882 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6883 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6884 		u16 vid;
6885 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6886 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6887 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6888 		else
6889 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6890 
6891 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6892 	}
6893 
6894 	skb_record_rx_queue(skb, rx_ring->queue_index);
6895 
6896 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6897 }
6898 
6899 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6900 {
6901 	struct igb_ring *rx_ring = q_vector->rx.ring;
6902 	struct sk_buff *skb = rx_ring->skb;
6903 	unsigned int total_bytes = 0, total_packets = 0;
6904 	u16 cleaned_count = igb_desc_unused(rx_ring);
6905 
6906 	do {
6907 		union e1000_adv_rx_desc *rx_desc;
6908 
6909 		/* return some buffers to hardware, one at a time is too slow */
6910 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6911 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6912 			cleaned_count = 0;
6913 		}
6914 
6915 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6916 
6917 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6918 			break;
6919 
6920 		/* This memory barrier is needed to keep us from reading
6921 		 * any other fields out of the rx_desc until we know the
6922 		 * RXD_STAT_DD bit is set
6923 		 */
6924 		rmb();
6925 
6926 		/* retrieve a buffer from the ring */
6927 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6928 
6929 		/* exit if we failed to retrieve a buffer */
6930 		if (!skb)
6931 			break;
6932 
6933 		cleaned_count++;
6934 
6935 		/* fetch next buffer in frame if non-eop */
6936 		if (igb_is_non_eop(rx_ring, rx_desc))
6937 			continue;
6938 
6939 		/* verify the packet layout is correct */
6940 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6941 			skb = NULL;
6942 			continue;
6943 		}
6944 
6945 		/* probably a little skewed due to removing CRC */
6946 		total_bytes += skb->len;
6947 
6948 		/* populate checksum, timestamp, VLAN, and protocol */
6949 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6950 
6951 		napi_gro_receive(&q_vector->napi, skb);
6952 
6953 		/* reset skb pointer */
6954 		skb = NULL;
6955 
6956 		/* update budget accounting */
6957 		total_packets++;
6958 	} while (likely(total_packets < budget));
6959 
6960 	/* place incomplete frames back on ring for completion */
6961 	rx_ring->skb = skb;
6962 
6963 	u64_stats_update_begin(&rx_ring->rx_syncp);
6964 	rx_ring->rx_stats.packets += total_packets;
6965 	rx_ring->rx_stats.bytes += total_bytes;
6966 	u64_stats_update_end(&rx_ring->rx_syncp);
6967 	q_vector->rx.total_packets += total_packets;
6968 	q_vector->rx.total_bytes += total_bytes;
6969 
6970 	if (cleaned_count)
6971 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6972 
6973 	return (total_packets < budget);
6974 }
6975 
6976 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6977 				  struct igb_rx_buffer *bi)
6978 {
6979 	struct page *page = bi->page;
6980 	dma_addr_t dma;
6981 
6982 	/* since we are recycling buffers we should seldom need to alloc */
6983 	if (likely(page))
6984 		return true;
6985 
6986 	/* alloc new page for storage */
6987 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6988 	if (unlikely(!page)) {
6989 		rx_ring->rx_stats.alloc_failed++;
6990 		return false;
6991 	}
6992 
6993 	/* map page for use */
6994 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6995 
6996 	/* if mapping failed free memory back to system since
6997 	 * there isn't much point in holding memory we can't use
6998 	 */
6999 	if (dma_mapping_error(rx_ring->dev, dma)) {
7000 		__free_page(page);
7001 
7002 		rx_ring->rx_stats.alloc_failed++;
7003 		return false;
7004 	}
7005 
7006 	bi->dma = dma;
7007 	bi->page = page;
7008 	bi->page_offset = 0;
7009 
7010 	return true;
7011 }
7012 
7013 /**
7014  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7015  *  @adapter: address of board private structure
7016  **/
7017 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7018 {
7019 	union e1000_adv_rx_desc *rx_desc;
7020 	struct igb_rx_buffer *bi;
7021 	u16 i = rx_ring->next_to_use;
7022 
7023 	/* nothing to do */
7024 	if (!cleaned_count)
7025 		return;
7026 
7027 	rx_desc = IGB_RX_DESC(rx_ring, i);
7028 	bi = &rx_ring->rx_buffer_info[i];
7029 	i -= rx_ring->count;
7030 
7031 	do {
7032 		if (!igb_alloc_mapped_page(rx_ring, bi))
7033 			break;
7034 
7035 		/* Refresh the desc even if buffer_addrs didn't change
7036 		 * because each write-back erases this info.
7037 		 */
7038 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7039 
7040 		rx_desc++;
7041 		bi++;
7042 		i++;
7043 		if (unlikely(!i)) {
7044 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7045 			bi = rx_ring->rx_buffer_info;
7046 			i -= rx_ring->count;
7047 		}
7048 
7049 		/* clear the hdr_addr for the next_to_use descriptor */
7050 		rx_desc->read.hdr_addr = 0;
7051 
7052 		cleaned_count--;
7053 	} while (cleaned_count);
7054 
7055 	i += rx_ring->count;
7056 
7057 	if (rx_ring->next_to_use != i) {
7058 		/* record the next descriptor to use */
7059 		rx_ring->next_to_use = i;
7060 
7061 		/* update next to alloc since we have filled the ring */
7062 		rx_ring->next_to_alloc = i;
7063 
7064 		/* Force memory writes to complete before letting h/w
7065 		 * know there are new descriptors to fetch.  (Only
7066 		 * applicable for weak-ordered memory model archs,
7067 		 * such as IA-64).
7068 		 */
7069 		wmb();
7070 		writel(i, rx_ring->tail);
7071 	}
7072 }
7073 
7074 /**
7075  * igb_mii_ioctl -
7076  * @netdev:
7077  * @ifreq:
7078  * @cmd:
7079  **/
7080 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7081 {
7082 	struct igb_adapter *adapter = netdev_priv(netdev);
7083 	struct mii_ioctl_data *data = if_mii(ifr);
7084 
7085 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7086 		return -EOPNOTSUPP;
7087 
7088 	switch (cmd) {
7089 	case SIOCGMIIPHY:
7090 		data->phy_id = adapter->hw.phy.addr;
7091 		break;
7092 	case SIOCGMIIREG:
7093 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7094 		                     &data->val_out))
7095 			return -EIO;
7096 		break;
7097 	case SIOCSMIIREG:
7098 	default:
7099 		return -EOPNOTSUPP;
7100 	}
7101 	return 0;
7102 }
7103 
7104 /**
7105  * igb_ioctl -
7106  * @netdev:
7107  * @ifreq:
7108  * @cmd:
7109  **/
7110 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7111 {
7112 	switch (cmd) {
7113 	case SIOCGMIIPHY:
7114 	case SIOCGMIIREG:
7115 	case SIOCSMIIREG:
7116 		return igb_mii_ioctl(netdev, ifr, cmd);
7117 	case SIOCSHWTSTAMP:
7118 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
7119 	default:
7120 		return -EOPNOTSUPP;
7121 	}
7122 }
7123 
7124 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7125 {
7126 	struct igb_adapter *adapter = hw->back;
7127 
7128 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7129 		return -E1000_ERR_CONFIG;
7130 
7131 	return 0;
7132 }
7133 
7134 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7135 {
7136 	struct igb_adapter *adapter = hw->back;
7137 
7138 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7139 		return -E1000_ERR_CONFIG;
7140 
7141 	return 0;
7142 }
7143 
7144 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7145 {
7146 	struct igb_adapter *adapter = netdev_priv(netdev);
7147 	struct e1000_hw *hw = &adapter->hw;
7148 	u32 ctrl, rctl;
7149 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7150 
7151 	if (enable) {
7152 		/* enable VLAN tag insert/strip */
7153 		ctrl = rd32(E1000_CTRL);
7154 		ctrl |= E1000_CTRL_VME;
7155 		wr32(E1000_CTRL, ctrl);
7156 
7157 		/* Disable CFI check */
7158 		rctl = rd32(E1000_RCTL);
7159 		rctl &= ~E1000_RCTL_CFIEN;
7160 		wr32(E1000_RCTL, rctl);
7161 	} else {
7162 		/* disable VLAN tag insert/strip */
7163 		ctrl = rd32(E1000_CTRL);
7164 		ctrl &= ~E1000_CTRL_VME;
7165 		wr32(E1000_CTRL, ctrl);
7166 	}
7167 
7168 	igb_rlpml_set(adapter);
7169 }
7170 
7171 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7172 			       __be16 proto, u16 vid)
7173 {
7174 	struct igb_adapter *adapter = netdev_priv(netdev);
7175 	struct e1000_hw *hw = &adapter->hw;
7176 	int pf_id = adapter->vfs_allocated_count;
7177 
7178 	/* attempt to add filter to vlvf array */
7179 	igb_vlvf_set(adapter, vid, true, pf_id);
7180 
7181 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7182 	igb_vfta_set(hw, vid, true);
7183 
7184 	set_bit(vid, adapter->active_vlans);
7185 
7186 	return 0;
7187 }
7188 
7189 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7190 				__be16 proto, u16 vid)
7191 {
7192 	struct igb_adapter *adapter = netdev_priv(netdev);
7193 	struct e1000_hw *hw = &adapter->hw;
7194 	int pf_id = adapter->vfs_allocated_count;
7195 	s32 err;
7196 
7197 	/* remove vlan from VLVF table array */
7198 	err = igb_vlvf_set(adapter, vid, false, pf_id);
7199 
7200 	/* if vid was not present in VLVF just remove it from table */
7201 	if (err)
7202 		igb_vfta_set(hw, vid, false);
7203 
7204 	clear_bit(vid, adapter->active_vlans);
7205 
7206 	return 0;
7207 }
7208 
7209 static void igb_restore_vlan(struct igb_adapter *adapter)
7210 {
7211 	u16 vid;
7212 
7213 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7214 
7215 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7216 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7217 }
7218 
7219 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7220 {
7221 	struct pci_dev *pdev = adapter->pdev;
7222 	struct e1000_mac_info *mac = &adapter->hw.mac;
7223 
7224 	mac->autoneg = 0;
7225 
7226 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7227 	 * for the switch() below to work
7228 	 */
7229 	if ((spd & 1) || (dplx & ~1))
7230 		goto err_inval;
7231 
7232 	/* Fiber NIC's only allow 1000 gbps Full duplex
7233 	 * and 100Mbps Full duplex for 100baseFx sfp
7234 	 */
7235 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7236 		switch (spd + dplx) {
7237 		case SPEED_10 + DUPLEX_HALF:
7238 		case SPEED_10 + DUPLEX_FULL:
7239 		case SPEED_100 + DUPLEX_HALF:
7240 			goto err_inval;
7241 		default:
7242 			break;
7243 		}
7244 	}
7245 
7246 	switch (spd + dplx) {
7247 	case SPEED_10 + DUPLEX_HALF:
7248 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7249 		break;
7250 	case SPEED_10 + DUPLEX_FULL:
7251 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7252 		break;
7253 	case SPEED_100 + DUPLEX_HALF:
7254 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7255 		break;
7256 	case SPEED_100 + DUPLEX_FULL:
7257 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7258 		break;
7259 	case SPEED_1000 + DUPLEX_FULL:
7260 		mac->autoneg = 1;
7261 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7262 		break;
7263 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7264 	default:
7265 		goto err_inval;
7266 	}
7267 
7268 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7269 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7270 
7271 	return 0;
7272 
7273 err_inval:
7274 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7275 	return -EINVAL;
7276 }
7277 
7278 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7279 			  bool runtime)
7280 {
7281 	struct net_device *netdev = pci_get_drvdata(pdev);
7282 	struct igb_adapter *adapter = netdev_priv(netdev);
7283 	struct e1000_hw *hw = &adapter->hw;
7284 	u32 ctrl, rctl, status;
7285 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7286 #ifdef CONFIG_PM
7287 	int retval = 0;
7288 #endif
7289 
7290 	netif_device_detach(netdev);
7291 
7292 	if (netif_running(netdev))
7293 		__igb_close(netdev, true);
7294 
7295 	igb_clear_interrupt_scheme(adapter);
7296 
7297 #ifdef CONFIG_PM
7298 	retval = pci_save_state(pdev);
7299 	if (retval)
7300 		return retval;
7301 #endif
7302 
7303 	status = rd32(E1000_STATUS);
7304 	if (status & E1000_STATUS_LU)
7305 		wufc &= ~E1000_WUFC_LNKC;
7306 
7307 	if (wufc) {
7308 		igb_setup_rctl(adapter);
7309 		igb_set_rx_mode(netdev);
7310 
7311 		/* turn on all-multi mode if wake on multicast is enabled */
7312 		if (wufc & E1000_WUFC_MC) {
7313 			rctl = rd32(E1000_RCTL);
7314 			rctl |= E1000_RCTL_MPE;
7315 			wr32(E1000_RCTL, rctl);
7316 		}
7317 
7318 		ctrl = rd32(E1000_CTRL);
7319 		/* advertise wake from D3Cold */
7320 		#define E1000_CTRL_ADVD3WUC 0x00100000
7321 		/* phy power management enable */
7322 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7323 		ctrl |= E1000_CTRL_ADVD3WUC;
7324 		wr32(E1000_CTRL, ctrl);
7325 
7326 		/* Allow time for pending master requests to run */
7327 		igb_disable_pcie_master(hw);
7328 
7329 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7330 		wr32(E1000_WUFC, wufc);
7331 	} else {
7332 		wr32(E1000_WUC, 0);
7333 		wr32(E1000_WUFC, 0);
7334 	}
7335 
7336 	*enable_wake = wufc || adapter->en_mng_pt;
7337 	if (!*enable_wake)
7338 		igb_power_down_link(adapter);
7339 	else
7340 		igb_power_up_link(adapter);
7341 
7342 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7343 	 * would have already happened in close and is redundant.
7344 	 */
7345 	igb_release_hw_control(adapter);
7346 
7347 	pci_disable_device(pdev);
7348 
7349 	return 0;
7350 }
7351 
7352 #ifdef CONFIG_PM
7353 #ifdef CONFIG_PM_SLEEP
7354 static int igb_suspend(struct device *dev)
7355 {
7356 	int retval;
7357 	bool wake;
7358 	struct pci_dev *pdev = to_pci_dev(dev);
7359 
7360 	retval = __igb_shutdown(pdev, &wake, 0);
7361 	if (retval)
7362 		return retval;
7363 
7364 	if (wake) {
7365 		pci_prepare_to_sleep(pdev);
7366 	} else {
7367 		pci_wake_from_d3(pdev, false);
7368 		pci_set_power_state(pdev, PCI_D3hot);
7369 	}
7370 
7371 	return 0;
7372 }
7373 #endif /* CONFIG_PM_SLEEP */
7374 
7375 static int igb_resume(struct device *dev)
7376 {
7377 	struct pci_dev *pdev = to_pci_dev(dev);
7378 	struct net_device *netdev = pci_get_drvdata(pdev);
7379 	struct igb_adapter *adapter = netdev_priv(netdev);
7380 	struct e1000_hw *hw = &adapter->hw;
7381 	u32 err;
7382 
7383 	pci_set_power_state(pdev, PCI_D0);
7384 	pci_restore_state(pdev);
7385 	pci_save_state(pdev);
7386 
7387 	err = pci_enable_device_mem(pdev);
7388 	if (err) {
7389 		dev_err(&pdev->dev,
7390 			"igb: Cannot enable PCI device from suspend\n");
7391 		return err;
7392 	}
7393 	pci_set_master(pdev);
7394 
7395 	pci_enable_wake(pdev, PCI_D3hot, 0);
7396 	pci_enable_wake(pdev, PCI_D3cold, 0);
7397 
7398 	if (igb_init_interrupt_scheme(adapter, true)) {
7399 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7400 		return -ENOMEM;
7401 	}
7402 
7403 	igb_reset(adapter);
7404 
7405 	/* let the f/w know that the h/w is now under the control of the
7406 	 * driver.
7407 	 */
7408 	igb_get_hw_control(adapter);
7409 
7410 	wr32(E1000_WUS, ~0);
7411 
7412 	if (netdev->flags & IFF_UP) {
7413 		rtnl_lock();
7414 		err = __igb_open(netdev, true);
7415 		rtnl_unlock();
7416 		if (err)
7417 			return err;
7418 	}
7419 
7420 	netif_device_attach(netdev);
7421 	return 0;
7422 }
7423 
7424 #ifdef CONFIG_PM_RUNTIME
7425 static int igb_runtime_idle(struct device *dev)
7426 {
7427 	struct pci_dev *pdev = to_pci_dev(dev);
7428 	struct net_device *netdev = pci_get_drvdata(pdev);
7429 	struct igb_adapter *adapter = netdev_priv(netdev);
7430 
7431 	if (!igb_has_link(adapter))
7432 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7433 
7434 	return -EBUSY;
7435 }
7436 
7437 static int igb_runtime_suspend(struct device *dev)
7438 {
7439 	struct pci_dev *pdev = to_pci_dev(dev);
7440 	int retval;
7441 	bool wake;
7442 
7443 	retval = __igb_shutdown(pdev, &wake, 1);
7444 	if (retval)
7445 		return retval;
7446 
7447 	if (wake) {
7448 		pci_prepare_to_sleep(pdev);
7449 	} else {
7450 		pci_wake_from_d3(pdev, false);
7451 		pci_set_power_state(pdev, PCI_D3hot);
7452 	}
7453 
7454 	return 0;
7455 }
7456 
7457 static int igb_runtime_resume(struct device *dev)
7458 {
7459 	return igb_resume(dev);
7460 }
7461 #endif /* CONFIG_PM_RUNTIME */
7462 #endif
7463 
7464 static void igb_shutdown(struct pci_dev *pdev)
7465 {
7466 	bool wake;
7467 
7468 	__igb_shutdown(pdev, &wake, 0);
7469 
7470 	if (system_state == SYSTEM_POWER_OFF) {
7471 		pci_wake_from_d3(pdev, wake);
7472 		pci_set_power_state(pdev, PCI_D3hot);
7473 	}
7474 }
7475 
7476 #ifdef CONFIG_PCI_IOV
7477 static int igb_sriov_reinit(struct pci_dev *dev)
7478 {
7479 	struct net_device *netdev = pci_get_drvdata(dev);
7480 	struct igb_adapter *adapter = netdev_priv(netdev);
7481 	struct pci_dev *pdev = adapter->pdev;
7482 
7483 	rtnl_lock();
7484 
7485 	if (netif_running(netdev))
7486 		igb_close(netdev);
7487 
7488 	igb_clear_interrupt_scheme(adapter);
7489 
7490 	igb_init_queue_configuration(adapter);
7491 
7492 	if (igb_init_interrupt_scheme(adapter, true)) {
7493 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7494 		return -ENOMEM;
7495 	}
7496 
7497 	if (netif_running(netdev))
7498 		igb_open(netdev);
7499 
7500 	rtnl_unlock();
7501 
7502 	return 0;
7503 }
7504 
7505 static int igb_pci_disable_sriov(struct pci_dev *dev)
7506 {
7507 	int err = igb_disable_sriov(dev);
7508 
7509 	if (!err)
7510 		err = igb_sriov_reinit(dev);
7511 
7512 	return err;
7513 }
7514 
7515 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7516 {
7517 	int err = igb_enable_sriov(dev, num_vfs);
7518 
7519 	if (err)
7520 		goto out;
7521 
7522 	err = igb_sriov_reinit(dev);
7523 	if (!err)
7524 		return num_vfs;
7525 
7526 out:
7527 	return err;
7528 }
7529 
7530 #endif
7531 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7532 {
7533 #ifdef CONFIG_PCI_IOV
7534 	if (num_vfs == 0)
7535 		return igb_pci_disable_sriov(dev);
7536 	else
7537 		return igb_pci_enable_sriov(dev, num_vfs);
7538 #endif
7539 	return 0;
7540 }
7541 
7542 #ifdef CONFIG_NET_POLL_CONTROLLER
7543 /* Polling 'interrupt' - used by things like netconsole to send skbs
7544  * without having to re-enable interrupts. It's not called while
7545  * the interrupt routine is executing.
7546  */
7547 static void igb_netpoll(struct net_device *netdev)
7548 {
7549 	struct igb_adapter *adapter = netdev_priv(netdev);
7550 	struct e1000_hw *hw = &adapter->hw;
7551 	struct igb_q_vector *q_vector;
7552 	int i;
7553 
7554 	for (i = 0; i < adapter->num_q_vectors; i++) {
7555 		q_vector = adapter->q_vector[i];
7556 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7557 			wr32(E1000_EIMC, q_vector->eims_value);
7558 		else
7559 			igb_irq_disable(adapter);
7560 		napi_schedule(&q_vector->napi);
7561 	}
7562 }
7563 #endif /* CONFIG_NET_POLL_CONTROLLER */
7564 
7565 /**
7566  *  igb_io_error_detected - called when PCI error is detected
7567  *  @pdev: Pointer to PCI device
7568  *  @state: The current pci connection state
7569  *
7570  *  This function is called after a PCI bus error affecting
7571  *  this device has been detected.
7572  **/
7573 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7574 					      pci_channel_state_t state)
7575 {
7576 	struct net_device *netdev = pci_get_drvdata(pdev);
7577 	struct igb_adapter *adapter = netdev_priv(netdev);
7578 
7579 	netif_device_detach(netdev);
7580 
7581 	if (state == pci_channel_io_perm_failure)
7582 		return PCI_ERS_RESULT_DISCONNECT;
7583 
7584 	if (netif_running(netdev))
7585 		igb_down(adapter);
7586 	pci_disable_device(pdev);
7587 
7588 	/* Request a slot slot reset. */
7589 	return PCI_ERS_RESULT_NEED_RESET;
7590 }
7591 
7592 /**
7593  *  igb_io_slot_reset - called after the pci bus has been reset.
7594  *  @pdev: Pointer to PCI device
7595  *
7596  *  Restart the card from scratch, as if from a cold-boot. Implementation
7597  *  resembles the first-half of the igb_resume routine.
7598  **/
7599 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7600 {
7601 	struct net_device *netdev = pci_get_drvdata(pdev);
7602 	struct igb_adapter *adapter = netdev_priv(netdev);
7603 	struct e1000_hw *hw = &adapter->hw;
7604 	pci_ers_result_t result;
7605 	int err;
7606 
7607 	if (pci_enable_device_mem(pdev)) {
7608 		dev_err(&pdev->dev,
7609 			"Cannot re-enable PCI device after reset.\n");
7610 		result = PCI_ERS_RESULT_DISCONNECT;
7611 	} else {
7612 		pci_set_master(pdev);
7613 		pci_restore_state(pdev);
7614 		pci_save_state(pdev);
7615 
7616 		pci_enable_wake(pdev, PCI_D3hot, 0);
7617 		pci_enable_wake(pdev, PCI_D3cold, 0);
7618 
7619 		igb_reset(adapter);
7620 		wr32(E1000_WUS, ~0);
7621 		result = PCI_ERS_RESULT_RECOVERED;
7622 	}
7623 
7624 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7625 	if (err) {
7626 		dev_err(&pdev->dev,
7627 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7628 			err);
7629 		/* non-fatal, continue */
7630 	}
7631 
7632 	return result;
7633 }
7634 
7635 /**
7636  *  igb_io_resume - called when traffic can start flowing again.
7637  *  @pdev: Pointer to PCI device
7638  *
7639  *  This callback is called when the error recovery driver tells us that
7640  *  its OK to resume normal operation. Implementation resembles the
7641  *  second-half of the igb_resume routine.
7642  */
7643 static void igb_io_resume(struct pci_dev *pdev)
7644 {
7645 	struct net_device *netdev = pci_get_drvdata(pdev);
7646 	struct igb_adapter *adapter = netdev_priv(netdev);
7647 
7648 	if (netif_running(netdev)) {
7649 		if (igb_up(adapter)) {
7650 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7651 			return;
7652 		}
7653 	}
7654 
7655 	netif_device_attach(netdev);
7656 
7657 	/* let the f/w know that the h/w is now under the control of the
7658 	 * driver.
7659 	 */
7660 	igb_get_hw_control(adapter);
7661 }
7662 
7663 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7664 			     u8 qsel)
7665 {
7666 	u32 rar_low, rar_high;
7667 	struct e1000_hw *hw = &adapter->hw;
7668 
7669 	/* HW expects these in little endian so we reverse the byte order
7670 	 * from network order (big endian) to little endian
7671 	 */
7672 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7673 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7674 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7675 
7676 	/* Indicate to hardware the Address is Valid. */
7677 	rar_high |= E1000_RAH_AV;
7678 
7679 	if (hw->mac.type == e1000_82575)
7680 		rar_high |= E1000_RAH_POOL_1 * qsel;
7681 	else
7682 		rar_high |= E1000_RAH_POOL_1 << qsel;
7683 
7684 	wr32(E1000_RAL(index), rar_low);
7685 	wrfl();
7686 	wr32(E1000_RAH(index), rar_high);
7687 	wrfl();
7688 }
7689 
7690 static int igb_set_vf_mac(struct igb_adapter *adapter,
7691 			  int vf, unsigned char *mac_addr)
7692 {
7693 	struct e1000_hw *hw = &adapter->hw;
7694 	/* VF MAC addresses start at end of receive addresses and moves
7695 	 * towards the first, as a result a collision should not be possible
7696 	 */
7697 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7698 
7699 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7700 
7701 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7702 
7703 	return 0;
7704 }
7705 
7706 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7707 {
7708 	struct igb_adapter *adapter = netdev_priv(netdev);
7709 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7710 		return -EINVAL;
7711 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7712 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7713 	dev_info(&adapter->pdev->dev,
7714 		 "Reload the VF driver to make this change effective.");
7715 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7716 		dev_warn(&adapter->pdev->dev,
7717 			 "The VF MAC address has been set, but the PF device is not up.\n");
7718 		dev_warn(&adapter->pdev->dev,
7719 			 "Bring the PF device up before attempting to use the VF device.\n");
7720 	}
7721 	return igb_set_vf_mac(adapter, vf, mac);
7722 }
7723 
7724 static int igb_link_mbps(int internal_link_speed)
7725 {
7726 	switch (internal_link_speed) {
7727 	case SPEED_100:
7728 		return 100;
7729 	case SPEED_1000:
7730 		return 1000;
7731 	default:
7732 		return 0;
7733 	}
7734 }
7735 
7736 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7737 				  int link_speed)
7738 {
7739 	int rf_dec, rf_int;
7740 	u32 bcnrc_val;
7741 
7742 	if (tx_rate != 0) {
7743 		/* Calculate the rate factor values to set */
7744 		rf_int = link_speed / tx_rate;
7745 		rf_dec = (link_speed - (rf_int * tx_rate));
7746 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7747 			 tx_rate;
7748 
7749 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7750 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7751 			      E1000_RTTBCNRC_RF_INT_MASK);
7752 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7753 	} else {
7754 		bcnrc_val = 0;
7755 	}
7756 
7757 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7758 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7759 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7760 	 */
7761 	wr32(E1000_RTTBCNRM, 0x14);
7762 	wr32(E1000_RTTBCNRC, bcnrc_val);
7763 }
7764 
7765 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7766 {
7767 	int actual_link_speed, i;
7768 	bool reset_rate = false;
7769 
7770 	/* VF TX rate limit was not set or not supported */
7771 	if ((adapter->vf_rate_link_speed == 0) ||
7772 	    (adapter->hw.mac.type != e1000_82576))
7773 		return;
7774 
7775 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7776 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7777 		reset_rate = true;
7778 		adapter->vf_rate_link_speed = 0;
7779 		dev_info(&adapter->pdev->dev,
7780 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7781 	}
7782 
7783 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7784 		if (reset_rate)
7785 			adapter->vf_data[i].tx_rate = 0;
7786 
7787 		igb_set_vf_rate_limit(&adapter->hw, i,
7788 				      adapter->vf_data[i].tx_rate,
7789 				      actual_link_speed);
7790 	}
7791 }
7792 
7793 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7794 {
7795 	struct igb_adapter *adapter = netdev_priv(netdev);
7796 	struct e1000_hw *hw = &adapter->hw;
7797 	int actual_link_speed;
7798 
7799 	if (hw->mac.type != e1000_82576)
7800 		return -EOPNOTSUPP;
7801 
7802 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7803 	if ((vf >= adapter->vfs_allocated_count) ||
7804 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7805 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7806 		return -EINVAL;
7807 
7808 	adapter->vf_rate_link_speed = actual_link_speed;
7809 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7810 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7811 
7812 	return 0;
7813 }
7814 
7815 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7816 				   bool setting)
7817 {
7818 	struct igb_adapter *adapter = netdev_priv(netdev);
7819 	struct e1000_hw *hw = &adapter->hw;
7820 	u32 reg_val, reg_offset;
7821 
7822 	if (!adapter->vfs_allocated_count)
7823 		return -EOPNOTSUPP;
7824 
7825 	if (vf >= adapter->vfs_allocated_count)
7826 		return -EINVAL;
7827 
7828 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7829 	reg_val = rd32(reg_offset);
7830 	if (setting)
7831 		reg_val |= ((1 << vf) |
7832 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7833 	else
7834 		reg_val &= ~((1 << vf) |
7835 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7836 	wr32(reg_offset, reg_val);
7837 
7838 	adapter->vf_data[vf].spoofchk_enabled = setting;
7839 	return E1000_SUCCESS;
7840 }
7841 
7842 static int igb_ndo_get_vf_config(struct net_device *netdev,
7843 				 int vf, struct ifla_vf_info *ivi)
7844 {
7845 	struct igb_adapter *adapter = netdev_priv(netdev);
7846 	if (vf >= adapter->vfs_allocated_count)
7847 		return -EINVAL;
7848 	ivi->vf = vf;
7849 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7850 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7851 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7852 	ivi->qos = adapter->vf_data[vf].pf_qos;
7853 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7854 	return 0;
7855 }
7856 
7857 static void igb_vmm_control(struct igb_adapter *adapter)
7858 {
7859 	struct e1000_hw *hw = &adapter->hw;
7860 	u32 reg;
7861 
7862 	switch (hw->mac.type) {
7863 	case e1000_82575:
7864 	case e1000_i210:
7865 	case e1000_i211:
7866 	case e1000_i354:
7867 	default:
7868 		/* replication is not supported for 82575 */
7869 		return;
7870 	case e1000_82576:
7871 		/* notify HW that the MAC is adding vlan tags */
7872 		reg = rd32(E1000_DTXCTL);
7873 		reg |= E1000_DTXCTL_VLAN_ADDED;
7874 		wr32(E1000_DTXCTL, reg);
7875 	case e1000_82580:
7876 		/* enable replication vlan tag stripping */
7877 		reg = rd32(E1000_RPLOLR);
7878 		reg |= E1000_RPLOLR_STRVLAN;
7879 		wr32(E1000_RPLOLR, reg);
7880 	case e1000_i350:
7881 		/* none of the above registers are supported by i350 */
7882 		break;
7883 	}
7884 
7885 	if (adapter->vfs_allocated_count) {
7886 		igb_vmdq_set_loopback_pf(hw, true);
7887 		igb_vmdq_set_replication_pf(hw, true);
7888 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7889 					      adapter->vfs_allocated_count);
7890 	} else {
7891 		igb_vmdq_set_loopback_pf(hw, false);
7892 		igb_vmdq_set_replication_pf(hw, false);
7893 	}
7894 }
7895 
7896 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7897 {
7898 	struct e1000_hw *hw = &adapter->hw;
7899 	u32 dmac_thr;
7900 	u16 hwm;
7901 
7902 	if (hw->mac.type > e1000_82580) {
7903 		if (adapter->flags & IGB_FLAG_DMAC) {
7904 			u32 reg;
7905 
7906 			/* force threshold to 0. */
7907 			wr32(E1000_DMCTXTH, 0);
7908 
7909 			/* DMA Coalescing high water mark needs to be greater
7910 			 * than the Rx threshold. Set hwm to PBA - max frame
7911 			 * size in 16B units, capping it at PBA - 6KB.
7912 			 */
7913 			hwm = 64 * pba - adapter->max_frame_size / 16;
7914 			if (hwm < 64 * (pba - 6))
7915 				hwm = 64 * (pba - 6);
7916 			reg = rd32(E1000_FCRTC);
7917 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7918 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7919 				& E1000_FCRTC_RTH_COAL_MASK);
7920 			wr32(E1000_FCRTC, reg);
7921 
7922 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7923 			 * frame size, capping it at PBA - 10KB.
7924 			 */
7925 			dmac_thr = pba - adapter->max_frame_size / 512;
7926 			if (dmac_thr < pba - 10)
7927 				dmac_thr = pba - 10;
7928 			reg = rd32(E1000_DMACR);
7929 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7930 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7931 				& E1000_DMACR_DMACTHR_MASK);
7932 
7933 			/* transition to L0x or L1 if available..*/
7934 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7935 
7936 			/* watchdog timer= +-1000 usec in 32usec intervals */
7937 			reg |= (1000 >> 5);
7938 
7939 			/* Disable BMC-to-OS Watchdog Enable */
7940 			if (hw->mac.type != e1000_i354)
7941 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7942 
7943 			wr32(E1000_DMACR, reg);
7944 
7945 			/* no lower threshold to disable
7946 			 * coalescing(smart fifb)-UTRESH=0
7947 			 */
7948 			wr32(E1000_DMCRTRH, 0);
7949 
7950 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7951 
7952 			wr32(E1000_DMCTLX, reg);
7953 
7954 			/* free space in tx packet buffer to wake from
7955 			 * DMA coal
7956 			 */
7957 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7958 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7959 
7960 			/* make low power state decision controlled
7961 			 * by DMA coal
7962 			 */
7963 			reg = rd32(E1000_PCIEMISC);
7964 			reg &= ~E1000_PCIEMISC_LX_DECISION;
7965 			wr32(E1000_PCIEMISC, reg);
7966 		} /* endif adapter->dmac is not disabled */
7967 	} else if (hw->mac.type == e1000_82580) {
7968 		u32 reg = rd32(E1000_PCIEMISC);
7969 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7970 		wr32(E1000_DMACR, 0);
7971 	}
7972 }
7973 
7974 /**
7975  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7976  *  @hw: pointer to hardware structure
7977  *  @byte_offset: byte offset to read
7978  *  @dev_addr: device address
7979  *  @data: value read
7980  *
7981  *  Performs byte read operation over I2C interface at
7982  *  a specified device address.
7983  **/
7984 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7985 		      u8 dev_addr, u8 *data)
7986 {
7987 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7988 	struct i2c_client *this_client = adapter->i2c_client;
7989 	s32 status;
7990 	u16 swfw_mask = 0;
7991 
7992 	if (!this_client)
7993 		return E1000_ERR_I2C;
7994 
7995 	swfw_mask = E1000_SWFW_PHY0_SM;
7996 
7997 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7998 	    != E1000_SUCCESS)
7999 		return E1000_ERR_SWFW_SYNC;
8000 
8001 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8002 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8003 
8004 	if (status < 0)
8005 		return E1000_ERR_I2C;
8006 	else {
8007 		*data = status;
8008 		return E1000_SUCCESS;
8009 	}
8010 }
8011 
8012 /**
8013  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8014  *  @hw: pointer to hardware structure
8015  *  @byte_offset: byte offset to write
8016  *  @dev_addr: device address
8017  *  @data: value to write
8018  *
8019  *  Performs byte write operation over I2C interface at
8020  *  a specified device address.
8021  **/
8022 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8023 		       u8 dev_addr, u8 data)
8024 {
8025 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8026 	struct i2c_client *this_client = adapter->i2c_client;
8027 	s32 status;
8028 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8029 
8030 	if (!this_client)
8031 		return E1000_ERR_I2C;
8032 
8033 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8034 		return E1000_ERR_SWFW_SYNC;
8035 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8036 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8037 
8038 	if (status)
8039 		return E1000_ERR_I2C;
8040 	else
8041 		return E1000_SUCCESS;
8042 
8043 }
8044 
8045 int igb_reinit_queues(struct igb_adapter *adapter)
8046 {
8047 	struct net_device *netdev = adapter->netdev;
8048 	struct pci_dev *pdev = adapter->pdev;
8049 	int err = 0;
8050 
8051 	if (netif_running(netdev))
8052 		igb_close(netdev);
8053 
8054 	igb_reset_interrupt_capability(adapter);
8055 
8056 	if (igb_init_interrupt_scheme(adapter, true)) {
8057 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8058 		return -ENOMEM;
8059 	}
8060 
8061 	if (netif_running(netdev))
8062 		err = igb_open(netdev);
8063 
8064 	return err;
8065 }
8066 /* igb_main.c */
8067