1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/module.h> 31 #include <linux/types.h> 32 #include <linux/init.h> 33 #include <linux/bitops.h> 34 #include <linux/vmalloc.h> 35 #include <linux/pagemap.h> 36 #include <linux/netdevice.h> 37 #include <linux/ipv6.h> 38 #include <linux/slab.h> 39 #include <net/checksum.h> 40 #include <net/ip6_checksum.h> 41 #include <linux/net_tstamp.h> 42 #include <linux/mii.h> 43 #include <linux/ethtool.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/pci.h> 47 #include <linux/pci-aspm.h> 48 #include <linux/delay.h> 49 #include <linux/interrupt.h> 50 #include <linux/ip.h> 51 #include <linux/tcp.h> 52 #include <linux/sctp.h> 53 #include <linux/if_ether.h> 54 #include <linux/aer.h> 55 #include <linux/prefetch.h> 56 #include <linux/pm_runtime.h> 57 #ifdef CONFIG_IGB_DCA 58 #include <linux/dca.h> 59 #endif 60 #include <linux/i2c.h> 61 #include "igb.h" 62 63 #define MAJ 5 64 #define MIN 0 65 #define BUILD 3 66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ 67 __stringify(BUILD) "-k" 68 char igb_driver_name[] = "igb"; 69 char igb_driver_version[] = DRV_VERSION; 70 static const char igb_driver_string[] = 71 "Intel(R) Gigabit Ethernet Network Driver"; 72 static const char igb_copyright[] = 73 "Copyright (c) 2007-2013 Intel Corporation."; 74 75 static const struct e1000_info *igb_info_tbl[] = { 76 [board_82575] = &e1000_82575_info, 77 }; 78 79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 113 /* required last entry */ 114 {0, } 115 }; 116 117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 118 119 void igb_reset(struct igb_adapter *); 120 static int igb_setup_all_tx_resources(struct igb_adapter *); 121 static int igb_setup_all_rx_resources(struct igb_adapter *); 122 static void igb_free_all_tx_resources(struct igb_adapter *); 123 static void igb_free_all_rx_resources(struct igb_adapter *); 124 static void igb_setup_mrqc(struct igb_adapter *); 125 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 126 static void igb_remove(struct pci_dev *pdev); 127 static int igb_sw_init(struct igb_adapter *); 128 static int igb_open(struct net_device *); 129 static int igb_close(struct net_device *); 130 static void igb_configure(struct igb_adapter *); 131 static void igb_configure_tx(struct igb_adapter *); 132 static void igb_configure_rx(struct igb_adapter *); 133 static void igb_clean_all_tx_rings(struct igb_adapter *); 134 static void igb_clean_all_rx_rings(struct igb_adapter *); 135 static void igb_clean_tx_ring(struct igb_ring *); 136 static void igb_clean_rx_ring(struct igb_ring *); 137 static void igb_set_rx_mode(struct net_device *); 138 static void igb_update_phy_info(unsigned long); 139 static void igb_watchdog(unsigned long); 140 static void igb_watchdog_task(struct work_struct *); 141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, 143 struct rtnl_link_stats64 *stats); 144 static int igb_change_mtu(struct net_device *, int); 145 static int igb_set_mac(struct net_device *, void *); 146 static void igb_set_uta(struct igb_adapter *adapter); 147 static irqreturn_t igb_intr(int irq, void *); 148 static irqreturn_t igb_intr_msi(int irq, void *); 149 static irqreturn_t igb_msix_other(int irq, void *); 150 static irqreturn_t igb_msix_ring(int irq, void *); 151 #ifdef CONFIG_IGB_DCA 152 static void igb_update_dca(struct igb_q_vector *); 153 static void igb_setup_dca(struct igb_adapter *); 154 #endif /* CONFIG_IGB_DCA */ 155 static int igb_poll(struct napi_struct *, int); 156 static bool igb_clean_tx_irq(struct igb_q_vector *); 157 static bool igb_clean_rx_irq(struct igb_q_vector *, int); 158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 159 static void igb_tx_timeout(struct net_device *); 160 static void igb_reset_task(struct work_struct *); 161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features); 162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 164 static void igb_restore_vlan(struct igb_adapter *); 165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); 166 static void igb_ping_all_vfs(struct igb_adapter *); 167 static void igb_msg_task(struct igb_adapter *); 168 static void igb_vmm_control(struct igb_adapter *); 169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 172 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 173 int vf, u16 vlan, u8 qos); 174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); 175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 176 bool setting); 177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 178 struct ifla_vf_info *ivi); 179 static void igb_check_vf_rate_limit(struct igb_adapter *); 180 181 #ifdef CONFIG_PCI_IOV 182 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 183 #endif 184 185 #ifdef CONFIG_PM 186 #ifdef CONFIG_PM_SLEEP 187 static int igb_suspend(struct device *); 188 #endif 189 static int igb_resume(struct device *); 190 #ifdef CONFIG_PM_RUNTIME 191 static int igb_runtime_suspend(struct device *dev); 192 static int igb_runtime_resume(struct device *dev); 193 static int igb_runtime_idle(struct device *dev); 194 #endif 195 static const struct dev_pm_ops igb_pm_ops = { 196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 198 igb_runtime_idle) 199 }; 200 #endif 201 static void igb_shutdown(struct pci_dev *); 202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 203 #ifdef CONFIG_IGB_DCA 204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 205 static struct notifier_block dca_notifier = { 206 .notifier_call = igb_notify_dca, 207 .next = NULL, 208 .priority = 0 209 }; 210 #endif 211 #ifdef CONFIG_NET_POLL_CONTROLLER 212 /* for netdump / net console */ 213 static void igb_netpoll(struct net_device *); 214 #endif 215 #ifdef CONFIG_PCI_IOV 216 static unsigned int max_vfs = 0; 217 module_param(max_vfs, uint, 0); 218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " 219 "per physical function"); 220 #endif /* CONFIG_PCI_IOV */ 221 222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 223 pci_channel_state_t); 224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 225 static void igb_io_resume(struct pci_dev *); 226 227 static const struct pci_error_handlers igb_err_handler = { 228 .error_detected = igb_io_error_detected, 229 .slot_reset = igb_io_slot_reset, 230 .resume = igb_io_resume, 231 }; 232 233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 234 235 static struct pci_driver igb_driver = { 236 .name = igb_driver_name, 237 .id_table = igb_pci_tbl, 238 .probe = igb_probe, 239 .remove = igb_remove, 240 #ifdef CONFIG_PM 241 .driver.pm = &igb_pm_ops, 242 #endif 243 .shutdown = igb_shutdown, 244 .sriov_configure = igb_pci_sriov_configure, 245 .err_handler = &igb_err_handler 246 }; 247 248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 250 MODULE_LICENSE("GPL"); 251 MODULE_VERSION(DRV_VERSION); 252 253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 254 static int debug = -1; 255 module_param(debug, int, 0); 256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 257 258 struct igb_reg_info { 259 u32 ofs; 260 char *name; 261 }; 262 263 static const struct igb_reg_info igb_reg_info_tbl[] = { 264 265 /* General Registers */ 266 {E1000_CTRL, "CTRL"}, 267 {E1000_STATUS, "STATUS"}, 268 {E1000_CTRL_EXT, "CTRL_EXT"}, 269 270 /* Interrupt Registers */ 271 {E1000_ICR, "ICR"}, 272 273 /* RX Registers */ 274 {E1000_RCTL, "RCTL"}, 275 {E1000_RDLEN(0), "RDLEN"}, 276 {E1000_RDH(0), "RDH"}, 277 {E1000_RDT(0), "RDT"}, 278 {E1000_RXDCTL(0), "RXDCTL"}, 279 {E1000_RDBAL(0), "RDBAL"}, 280 {E1000_RDBAH(0), "RDBAH"}, 281 282 /* TX Registers */ 283 {E1000_TCTL, "TCTL"}, 284 {E1000_TDBAL(0), "TDBAL"}, 285 {E1000_TDBAH(0), "TDBAH"}, 286 {E1000_TDLEN(0), "TDLEN"}, 287 {E1000_TDH(0), "TDH"}, 288 {E1000_TDT(0), "TDT"}, 289 {E1000_TXDCTL(0), "TXDCTL"}, 290 {E1000_TDFH, "TDFH"}, 291 {E1000_TDFT, "TDFT"}, 292 {E1000_TDFHS, "TDFHS"}, 293 {E1000_TDFPC, "TDFPC"}, 294 295 /* List Terminator */ 296 {} 297 }; 298 299 /* igb_regdump - register printout routine */ 300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 301 { 302 int n = 0; 303 char rname[16]; 304 u32 regs[8]; 305 306 switch (reginfo->ofs) { 307 case E1000_RDLEN(0): 308 for (n = 0; n < 4; n++) 309 regs[n] = rd32(E1000_RDLEN(n)); 310 break; 311 case E1000_RDH(0): 312 for (n = 0; n < 4; n++) 313 regs[n] = rd32(E1000_RDH(n)); 314 break; 315 case E1000_RDT(0): 316 for (n = 0; n < 4; n++) 317 regs[n] = rd32(E1000_RDT(n)); 318 break; 319 case E1000_RXDCTL(0): 320 for (n = 0; n < 4; n++) 321 regs[n] = rd32(E1000_RXDCTL(n)); 322 break; 323 case E1000_RDBAL(0): 324 for (n = 0; n < 4; n++) 325 regs[n] = rd32(E1000_RDBAL(n)); 326 break; 327 case E1000_RDBAH(0): 328 for (n = 0; n < 4; n++) 329 regs[n] = rd32(E1000_RDBAH(n)); 330 break; 331 case E1000_TDBAL(0): 332 for (n = 0; n < 4; n++) 333 regs[n] = rd32(E1000_RDBAL(n)); 334 break; 335 case E1000_TDBAH(0): 336 for (n = 0; n < 4; n++) 337 regs[n] = rd32(E1000_TDBAH(n)); 338 break; 339 case E1000_TDLEN(0): 340 for (n = 0; n < 4; n++) 341 regs[n] = rd32(E1000_TDLEN(n)); 342 break; 343 case E1000_TDH(0): 344 for (n = 0; n < 4; n++) 345 regs[n] = rd32(E1000_TDH(n)); 346 break; 347 case E1000_TDT(0): 348 for (n = 0; n < 4; n++) 349 regs[n] = rd32(E1000_TDT(n)); 350 break; 351 case E1000_TXDCTL(0): 352 for (n = 0; n < 4; n++) 353 regs[n] = rd32(E1000_TXDCTL(n)); 354 break; 355 default: 356 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 357 return; 358 } 359 360 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 361 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 362 regs[2], regs[3]); 363 } 364 365 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 366 static void igb_dump(struct igb_adapter *adapter) 367 { 368 struct net_device *netdev = adapter->netdev; 369 struct e1000_hw *hw = &adapter->hw; 370 struct igb_reg_info *reginfo; 371 struct igb_ring *tx_ring; 372 union e1000_adv_tx_desc *tx_desc; 373 struct my_u0 { u64 a; u64 b; } *u0; 374 struct igb_ring *rx_ring; 375 union e1000_adv_rx_desc *rx_desc; 376 u32 staterr; 377 u16 i, n; 378 379 if (!netif_msg_hw(adapter)) 380 return; 381 382 /* Print netdevice Info */ 383 if (netdev) { 384 dev_info(&adapter->pdev->dev, "Net device Info\n"); 385 pr_info("Device Name state trans_start " 386 "last_rx\n"); 387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 388 netdev->state, netdev->trans_start, netdev->last_rx); 389 } 390 391 /* Print Registers */ 392 dev_info(&adapter->pdev->dev, "Register Dump\n"); 393 pr_info(" Register Name Value\n"); 394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 395 reginfo->name; reginfo++) { 396 igb_regdump(hw, reginfo); 397 } 398 399 /* Print TX Ring Summary */ 400 if (!netdev || !netif_running(netdev)) 401 goto exit; 402 403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 405 for (n = 0; n < adapter->num_tx_queues; n++) { 406 struct igb_tx_buffer *buffer_info; 407 tx_ring = adapter->tx_ring[n]; 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 410 n, tx_ring->next_to_use, tx_ring->next_to_clean, 411 (u64)dma_unmap_addr(buffer_info, dma), 412 dma_unmap_len(buffer_info, len), 413 buffer_info->next_to_watch, 414 (u64)buffer_info->time_stamp); 415 } 416 417 /* Print TX Rings */ 418 if (!netif_msg_tx_done(adapter)) 419 goto rx_ring_summary; 420 421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 422 423 /* Transmit Descriptor Formats 424 * 425 * Advanced Transmit Descriptor 426 * +--------------------------------------------------------------+ 427 * 0 | Buffer Address [63:0] | 428 * +--------------------------------------------------------------+ 429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 430 * +--------------------------------------------------------------+ 431 * 63 46 45 40 39 38 36 35 32 31 24 15 0 432 */ 433 434 for (n = 0; n < adapter->num_tx_queues; n++) { 435 tx_ring = adapter->tx_ring[n]; 436 pr_info("------------------------------------\n"); 437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 438 pr_info("------------------------------------\n"); 439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] " 440 "[bi->dma ] leng ntw timestamp " 441 "bi->skb\n"); 442 443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 444 const char *next_desc; 445 struct igb_tx_buffer *buffer_info; 446 tx_desc = IGB_TX_DESC(tx_ring, i); 447 buffer_info = &tx_ring->tx_buffer_info[i]; 448 u0 = (struct my_u0 *)tx_desc; 449 if (i == tx_ring->next_to_use && 450 i == tx_ring->next_to_clean) 451 next_desc = " NTC/U"; 452 else if (i == tx_ring->next_to_use) 453 next_desc = " NTU"; 454 else if (i == tx_ring->next_to_clean) 455 next_desc = " NTC"; 456 else 457 next_desc = ""; 458 459 pr_info("T [0x%03X] %016llX %016llX %016llX" 460 " %04X %p %016llX %p%s\n", i, 461 le64_to_cpu(u0->a), 462 le64_to_cpu(u0->b), 463 (u64)dma_unmap_addr(buffer_info, dma), 464 dma_unmap_len(buffer_info, len), 465 buffer_info->next_to_watch, 466 (u64)buffer_info->time_stamp, 467 buffer_info->skb, next_desc); 468 469 if (netif_msg_pktdata(adapter) && buffer_info->skb) 470 print_hex_dump(KERN_INFO, "", 471 DUMP_PREFIX_ADDRESS, 472 16, 1, buffer_info->skb->data, 473 dma_unmap_len(buffer_info, len), 474 true); 475 } 476 } 477 478 /* Print RX Rings Summary */ 479 rx_ring_summary: 480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 481 pr_info("Queue [NTU] [NTC]\n"); 482 for (n = 0; n < adapter->num_rx_queues; n++) { 483 rx_ring = adapter->rx_ring[n]; 484 pr_info(" %5d %5X %5X\n", 485 n, rx_ring->next_to_use, rx_ring->next_to_clean); 486 } 487 488 /* Print RX Rings */ 489 if (!netif_msg_rx_status(adapter)) 490 goto exit; 491 492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 493 494 /* Advanced Receive Descriptor (Read) Format 495 * 63 1 0 496 * +-----------------------------------------------------+ 497 * 0 | Packet Buffer Address [63:1] |A0/NSE| 498 * +----------------------------------------------+------+ 499 * 8 | Header Buffer Address [63:1] | DD | 500 * +-----------------------------------------------------+ 501 * 502 * 503 * Advanced Receive Descriptor (Write-Back) Format 504 * 505 * 63 48 47 32 31 30 21 20 17 16 4 3 0 506 * +------------------------------------------------------+ 507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 508 * | Checksum Ident | | | | Type | Type | 509 * +------------------------------------------------------+ 510 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 511 * +------------------------------------------------------+ 512 * 63 48 47 32 31 20 19 0 513 */ 514 515 for (n = 0; n < adapter->num_rx_queues; n++) { 516 rx_ring = adapter->rx_ring[n]; 517 pr_info("------------------------------------\n"); 518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 519 pr_info("------------------------------------\n"); 520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] " 521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----" 523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n"); 524 525 for (i = 0; i < rx_ring->count; i++) { 526 const char *next_desc; 527 struct igb_rx_buffer *buffer_info; 528 buffer_info = &rx_ring->rx_buffer_info[i]; 529 rx_desc = IGB_RX_DESC(rx_ring, i); 530 u0 = (struct my_u0 *)rx_desc; 531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 532 533 if (i == rx_ring->next_to_use) 534 next_desc = " NTU"; 535 else if (i == rx_ring->next_to_clean) 536 next_desc = " NTC"; 537 else 538 next_desc = ""; 539 540 if (staterr & E1000_RXD_STAT_DD) { 541 /* Descriptor Done */ 542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 543 "RWB", i, 544 le64_to_cpu(u0->a), 545 le64_to_cpu(u0->b), 546 next_desc); 547 } else { 548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 549 "R ", i, 550 le64_to_cpu(u0->a), 551 le64_to_cpu(u0->b), 552 (u64)buffer_info->dma, 553 next_desc); 554 555 if (netif_msg_pktdata(adapter) && 556 buffer_info->dma && buffer_info->page) { 557 print_hex_dump(KERN_INFO, "", 558 DUMP_PREFIX_ADDRESS, 559 16, 1, 560 page_address(buffer_info->page) + 561 buffer_info->page_offset, 562 IGB_RX_BUFSZ, true); 563 } 564 } 565 } 566 } 567 568 exit: 569 return; 570 } 571 572 /** 573 * igb_get_i2c_data - Reads the I2C SDA data bit 574 * @hw: pointer to hardware structure 575 * @i2cctl: Current value of I2CCTL register 576 * 577 * Returns the I2C data bit value 578 **/ 579 static int igb_get_i2c_data(void *data) 580 { 581 struct igb_adapter *adapter = (struct igb_adapter *)data; 582 struct e1000_hw *hw = &adapter->hw; 583 s32 i2cctl = rd32(E1000_I2CPARAMS); 584 585 return ((i2cctl & E1000_I2C_DATA_IN) != 0); 586 } 587 588 /** 589 * igb_set_i2c_data - Sets the I2C data bit 590 * @data: pointer to hardware structure 591 * @state: I2C data value (0 or 1) to set 592 * 593 * Sets the I2C data bit 594 **/ 595 static void igb_set_i2c_data(void *data, int state) 596 { 597 struct igb_adapter *adapter = (struct igb_adapter *)data; 598 struct e1000_hw *hw = &adapter->hw; 599 s32 i2cctl = rd32(E1000_I2CPARAMS); 600 601 if (state) 602 i2cctl |= E1000_I2C_DATA_OUT; 603 else 604 i2cctl &= ~E1000_I2C_DATA_OUT; 605 606 i2cctl &= ~E1000_I2C_DATA_OE_N; 607 i2cctl |= E1000_I2C_CLK_OE_N; 608 wr32(E1000_I2CPARAMS, i2cctl); 609 wrfl(); 610 611 } 612 613 /** 614 * igb_set_i2c_clk - Sets the I2C SCL clock 615 * @data: pointer to hardware structure 616 * @state: state to set clock 617 * 618 * Sets the I2C clock line to state 619 **/ 620 static void igb_set_i2c_clk(void *data, int state) 621 { 622 struct igb_adapter *adapter = (struct igb_adapter *)data; 623 struct e1000_hw *hw = &adapter->hw; 624 s32 i2cctl = rd32(E1000_I2CPARAMS); 625 626 if (state) { 627 i2cctl |= E1000_I2C_CLK_OUT; 628 i2cctl &= ~E1000_I2C_CLK_OE_N; 629 } else { 630 i2cctl &= ~E1000_I2C_CLK_OUT; 631 i2cctl &= ~E1000_I2C_CLK_OE_N; 632 } 633 wr32(E1000_I2CPARAMS, i2cctl); 634 wrfl(); 635 } 636 637 /** 638 * igb_get_i2c_clk - Gets the I2C SCL clock state 639 * @data: pointer to hardware structure 640 * 641 * Gets the I2C clock state 642 **/ 643 static int igb_get_i2c_clk(void *data) 644 { 645 struct igb_adapter *adapter = (struct igb_adapter *)data; 646 struct e1000_hw *hw = &adapter->hw; 647 s32 i2cctl = rd32(E1000_I2CPARAMS); 648 649 return ((i2cctl & E1000_I2C_CLK_IN) != 0); 650 } 651 652 static const struct i2c_algo_bit_data igb_i2c_algo = { 653 .setsda = igb_set_i2c_data, 654 .setscl = igb_set_i2c_clk, 655 .getsda = igb_get_i2c_data, 656 .getscl = igb_get_i2c_clk, 657 .udelay = 5, 658 .timeout = 20, 659 }; 660 661 /** 662 * igb_get_hw_dev - return device 663 * @hw: pointer to hardware structure 664 * 665 * used by hardware layer to print debugging information 666 **/ 667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 668 { 669 struct igb_adapter *adapter = hw->back; 670 return adapter->netdev; 671 } 672 673 /** 674 * igb_init_module - Driver Registration Routine 675 * 676 * igb_init_module is the first routine called when the driver is 677 * loaded. All it does is register with the PCI subsystem. 678 **/ 679 static int __init igb_init_module(void) 680 { 681 int ret; 682 pr_info("%s - version %s\n", 683 igb_driver_string, igb_driver_version); 684 685 pr_info("%s\n", igb_copyright); 686 687 #ifdef CONFIG_IGB_DCA 688 dca_register_notify(&dca_notifier); 689 #endif 690 ret = pci_register_driver(&igb_driver); 691 return ret; 692 } 693 694 module_init(igb_init_module); 695 696 /** 697 * igb_exit_module - Driver Exit Cleanup Routine 698 * 699 * igb_exit_module is called just before the driver is removed 700 * from memory. 701 **/ 702 static void __exit igb_exit_module(void) 703 { 704 #ifdef CONFIG_IGB_DCA 705 dca_unregister_notify(&dca_notifier); 706 #endif 707 pci_unregister_driver(&igb_driver); 708 } 709 710 module_exit(igb_exit_module); 711 712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 713 /** 714 * igb_cache_ring_register - Descriptor ring to register mapping 715 * @adapter: board private structure to initialize 716 * 717 * Once we know the feature-set enabled for the device, we'll cache 718 * the register offset the descriptor ring is assigned to. 719 **/ 720 static void igb_cache_ring_register(struct igb_adapter *adapter) 721 { 722 int i = 0, j = 0; 723 u32 rbase_offset = adapter->vfs_allocated_count; 724 725 switch (adapter->hw.mac.type) { 726 case e1000_82576: 727 /* The queues are allocated for virtualization such that VF 0 728 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 729 * In order to avoid collision we start at the first free queue 730 * and continue consuming queues in the same sequence 731 */ 732 if (adapter->vfs_allocated_count) { 733 for (; i < adapter->rss_queues; i++) 734 adapter->rx_ring[i]->reg_idx = rbase_offset + 735 Q_IDX_82576(i); 736 } 737 case e1000_82575: 738 case e1000_82580: 739 case e1000_i350: 740 case e1000_i354: 741 case e1000_i210: 742 case e1000_i211: 743 default: 744 for (; i < adapter->num_rx_queues; i++) 745 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 746 for (; j < adapter->num_tx_queues; j++) 747 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 748 break; 749 } 750 } 751 752 /** 753 * igb_write_ivar - configure ivar for given MSI-X vector 754 * @hw: pointer to the HW structure 755 * @msix_vector: vector number we are allocating to a given ring 756 * @index: row index of IVAR register to write within IVAR table 757 * @offset: column offset of in IVAR, should be multiple of 8 758 * 759 * This function is intended to handle the writing of the IVAR register 760 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 761 * each containing an cause allocation for an Rx and Tx ring, and a 762 * variable number of rows depending on the number of queues supported. 763 **/ 764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 765 int index, int offset) 766 { 767 u32 ivar = array_rd32(E1000_IVAR0, index); 768 769 /* clear any bits that are currently set */ 770 ivar &= ~((u32)0xFF << offset); 771 772 /* write vector and valid bit */ 773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 774 775 array_wr32(E1000_IVAR0, index, ivar); 776 } 777 778 #define IGB_N0_QUEUE -1 779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 780 { 781 struct igb_adapter *adapter = q_vector->adapter; 782 struct e1000_hw *hw = &adapter->hw; 783 int rx_queue = IGB_N0_QUEUE; 784 int tx_queue = IGB_N0_QUEUE; 785 u32 msixbm = 0; 786 787 if (q_vector->rx.ring) 788 rx_queue = q_vector->rx.ring->reg_idx; 789 if (q_vector->tx.ring) 790 tx_queue = q_vector->tx.ring->reg_idx; 791 792 switch (hw->mac.type) { 793 case e1000_82575: 794 /* The 82575 assigns vectors using a bitmask, which matches the 795 * bitmask for the EICR/EIMS/EIMC registers. To assign one 796 * or more queues to a vector, we write the appropriate bits 797 * into the MSIXBM register for that vector. 798 */ 799 if (rx_queue > IGB_N0_QUEUE) 800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 801 if (tx_queue > IGB_N0_QUEUE) 802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 803 if (!adapter->msix_entries && msix_vector == 0) 804 msixbm |= E1000_EIMS_OTHER; 805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 806 q_vector->eims_value = msixbm; 807 break; 808 case e1000_82576: 809 /* 82576 uses a table that essentially consists of 2 columns 810 * with 8 rows. The ordering is column-major so we use the 811 * lower 3 bits as the row index, and the 4th bit as the 812 * column offset. 813 */ 814 if (rx_queue > IGB_N0_QUEUE) 815 igb_write_ivar(hw, msix_vector, 816 rx_queue & 0x7, 817 (rx_queue & 0x8) << 1); 818 if (tx_queue > IGB_N0_QUEUE) 819 igb_write_ivar(hw, msix_vector, 820 tx_queue & 0x7, 821 ((tx_queue & 0x8) << 1) + 8); 822 q_vector->eims_value = 1 << msix_vector; 823 break; 824 case e1000_82580: 825 case e1000_i350: 826 case e1000_i354: 827 case e1000_i210: 828 case e1000_i211: 829 /* On 82580 and newer adapters the scheme is similar to 82576 830 * however instead of ordering column-major we have things 831 * ordered row-major. So we traverse the table by using 832 * bit 0 as the column offset, and the remaining bits as the 833 * row index. 834 */ 835 if (rx_queue > IGB_N0_QUEUE) 836 igb_write_ivar(hw, msix_vector, 837 rx_queue >> 1, 838 (rx_queue & 0x1) << 4); 839 if (tx_queue > IGB_N0_QUEUE) 840 igb_write_ivar(hw, msix_vector, 841 tx_queue >> 1, 842 ((tx_queue & 0x1) << 4) + 8); 843 q_vector->eims_value = 1 << msix_vector; 844 break; 845 default: 846 BUG(); 847 break; 848 } 849 850 /* add q_vector eims value to global eims_enable_mask */ 851 adapter->eims_enable_mask |= q_vector->eims_value; 852 853 /* configure q_vector to set itr on first interrupt */ 854 q_vector->set_itr = 1; 855 } 856 857 /** 858 * igb_configure_msix - Configure MSI-X hardware 859 * @adapter: board private structure to initialize 860 * 861 * igb_configure_msix sets up the hardware to properly 862 * generate MSI-X interrupts. 863 **/ 864 static void igb_configure_msix(struct igb_adapter *adapter) 865 { 866 u32 tmp; 867 int i, vector = 0; 868 struct e1000_hw *hw = &adapter->hw; 869 870 adapter->eims_enable_mask = 0; 871 872 /* set vector for other causes, i.e. link changes */ 873 switch (hw->mac.type) { 874 case e1000_82575: 875 tmp = rd32(E1000_CTRL_EXT); 876 /* enable MSI-X PBA support*/ 877 tmp |= E1000_CTRL_EXT_PBA_CLR; 878 879 /* Auto-Mask interrupts upon ICR read. */ 880 tmp |= E1000_CTRL_EXT_EIAME; 881 tmp |= E1000_CTRL_EXT_IRCA; 882 883 wr32(E1000_CTRL_EXT, tmp); 884 885 /* enable msix_other interrupt */ 886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 887 adapter->eims_other = E1000_EIMS_OTHER; 888 889 break; 890 891 case e1000_82576: 892 case e1000_82580: 893 case e1000_i350: 894 case e1000_i354: 895 case e1000_i210: 896 case e1000_i211: 897 /* Turn on MSI-X capability first, or our settings 898 * won't stick. And it will take days to debug. 899 */ 900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 901 E1000_GPIE_PBA | E1000_GPIE_EIAME | 902 E1000_GPIE_NSICR); 903 904 /* enable msix_other interrupt */ 905 adapter->eims_other = 1 << vector; 906 tmp = (vector++ | E1000_IVAR_VALID) << 8; 907 908 wr32(E1000_IVAR_MISC, tmp); 909 break; 910 default: 911 /* do nothing, since nothing else supports MSI-X */ 912 break; 913 } /* switch (hw->mac.type) */ 914 915 adapter->eims_enable_mask |= adapter->eims_other; 916 917 for (i = 0; i < adapter->num_q_vectors; i++) 918 igb_assign_vector(adapter->q_vector[i], vector++); 919 920 wrfl(); 921 } 922 923 /** 924 * igb_request_msix - Initialize MSI-X interrupts 925 * @adapter: board private structure to initialize 926 * 927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 928 * kernel. 929 **/ 930 static int igb_request_msix(struct igb_adapter *adapter) 931 { 932 struct net_device *netdev = adapter->netdev; 933 struct e1000_hw *hw = &adapter->hw; 934 int i, err = 0, vector = 0, free_vector = 0; 935 936 err = request_irq(adapter->msix_entries[vector].vector, 937 igb_msix_other, 0, netdev->name, adapter); 938 if (err) 939 goto err_out; 940 941 for (i = 0; i < adapter->num_q_vectors; i++) { 942 struct igb_q_vector *q_vector = adapter->q_vector[i]; 943 944 vector++; 945 946 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); 947 948 if (q_vector->rx.ring && q_vector->tx.ring) 949 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 950 q_vector->rx.ring->queue_index); 951 else if (q_vector->tx.ring) 952 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 953 q_vector->tx.ring->queue_index); 954 else if (q_vector->rx.ring) 955 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 956 q_vector->rx.ring->queue_index); 957 else 958 sprintf(q_vector->name, "%s-unused", netdev->name); 959 960 err = request_irq(adapter->msix_entries[vector].vector, 961 igb_msix_ring, 0, q_vector->name, 962 q_vector); 963 if (err) 964 goto err_free; 965 } 966 967 igb_configure_msix(adapter); 968 return 0; 969 970 err_free: 971 /* free already assigned IRQs */ 972 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 973 974 vector--; 975 for (i = 0; i < vector; i++) { 976 free_irq(adapter->msix_entries[free_vector++].vector, 977 adapter->q_vector[i]); 978 } 979 err_out: 980 return err; 981 } 982 983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 984 { 985 if (adapter->msix_entries) { 986 pci_disable_msix(adapter->pdev); 987 kfree(adapter->msix_entries); 988 adapter->msix_entries = NULL; 989 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 990 pci_disable_msi(adapter->pdev); 991 } 992 } 993 994 /** 995 * igb_free_q_vector - Free memory allocated for specific interrupt vector 996 * @adapter: board private structure to initialize 997 * @v_idx: Index of vector to be freed 998 * 999 * This function frees the memory allocated to the q_vector. In addition if 1000 * NAPI is enabled it will delete any references to the NAPI struct prior 1001 * to freeing the q_vector. 1002 **/ 1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 1004 { 1005 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1006 1007 if (q_vector->tx.ring) 1008 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1009 1010 if (q_vector->rx.ring) 1011 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; 1012 1013 adapter->q_vector[v_idx] = NULL; 1014 netif_napi_del(&q_vector->napi); 1015 1016 /* ixgbe_get_stats64() might access the rings on this vector, 1017 * we must wait a grace period before freeing it. 1018 */ 1019 kfree_rcu(q_vector, rcu); 1020 } 1021 1022 /** 1023 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1024 * @adapter: board private structure to initialize 1025 * 1026 * This function frees the memory allocated to the q_vectors. In addition if 1027 * NAPI is enabled it will delete any references to the NAPI struct prior 1028 * to freeing the q_vector. 1029 **/ 1030 static void igb_free_q_vectors(struct igb_adapter *adapter) 1031 { 1032 int v_idx = adapter->num_q_vectors; 1033 1034 adapter->num_tx_queues = 0; 1035 adapter->num_rx_queues = 0; 1036 adapter->num_q_vectors = 0; 1037 1038 while (v_idx--) 1039 igb_free_q_vector(adapter, v_idx); 1040 } 1041 1042 /** 1043 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1044 * @adapter: board private structure to initialize 1045 * 1046 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1047 * MSI-X interrupts allocated. 1048 */ 1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1050 { 1051 igb_free_q_vectors(adapter); 1052 igb_reset_interrupt_capability(adapter); 1053 } 1054 1055 /** 1056 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1057 * @adapter: board private structure to initialize 1058 * @msix: boolean value of MSIX capability 1059 * 1060 * Attempt to configure interrupts using the best available 1061 * capabilities of the hardware and kernel. 1062 **/ 1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1064 { 1065 int err; 1066 int numvecs, i; 1067 1068 if (!msix) 1069 goto msi_only; 1070 1071 /* Number of supported queues. */ 1072 adapter->num_rx_queues = adapter->rss_queues; 1073 if (adapter->vfs_allocated_count) 1074 adapter->num_tx_queues = 1; 1075 else 1076 adapter->num_tx_queues = adapter->rss_queues; 1077 1078 /* start with one vector for every Rx queue */ 1079 numvecs = adapter->num_rx_queues; 1080 1081 /* if Tx handler is separate add 1 for every Tx queue */ 1082 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1083 numvecs += adapter->num_tx_queues; 1084 1085 /* store the number of vectors reserved for queues */ 1086 adapter->num_q_vectors = numvecs; 1087 1088 /* add 1 vector for link status interrupts */ 1089 numvecs++; 1090 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), 1091 GFP_KERNEL); 1092 1093 if (!adapter->msix_entries) 1094 goto msi_only; 1095 1096 for (i = 0; i < numvecs; i++) 1097 adapter->msix_entries[i].entry = i; 1098 1099 err = pci_enable_msix(adapter->pdev, 1100 adapter->msix_entries, 1101 numvecs); 1102 if (err == 0) 1103 return; 1104 1105 igb_reset_interrupt_capability(adapter); 1106 1107 /* If we can't do MSI-X, try MSI */ 1108 msi_only: 1109 #ifdef CONFIG_PCI_IOV 1110 /* disable SR-IOV for non MSI-X configurations */ 1111 if (adapter->vf_data) { 1112 struct e1000_hw *hw = &adapter->hw; 1113 /* disable iov and allow time for transactions to clear */ 1114 pci_disable_sriov(adapter->pdev); 1115 msleep(500); 1116 1117 kfree(adapter->vf_data); 1118 adapter->vf_data = NULL; 1119 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1120 wrfl(); 1121 msleep(100); 1122 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1123 } 1124 #endif 1125 adapter->vfs_allocated_count = 0; 1126 adapter->rss_queues = 1; 1127 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1128 adapter->num_rx_queues = 1; 1129 adapter->num_tx_queues = 1; 1130 adapter->num_q_vectors = 1; 1131 if (!pci_enable_msi(adapter->pdev)) 1132 adapter->flags |= IGB_FLAG_HAS_MSI; 1133 } 1134 1135 static void igb_add_ring(struct igb_ring *ring, 1136 struct igb_ring_container *head) 1137 { 1138 head->ring = ring; 1139 head->count++; 1140 } 1141 1142 /** 1143 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1144 * @adapter: board private structure to initialize 1145 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1146 * @v_idx: index of vector in adapter struct 1147 * @txr_count: total number of Tx rings to allocate 1148 * @txr_idx: index of first Tx ring to allocate 1149 * @rxr_count: total number of Rx rings to allocate 1150 * @rxr_idx: index of first Rx ring to allocate 1151 * 1152 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1153 **/ 1154 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1155 int v_count, int v_idx, 1156 int txr_count, int txr_idx, 1157 int rxr_count, int rxr_idx) 1158 { 1159 struct igb_q_vector *q_vector; 1160 struct igb_ring *ring; 1161 int ring_count, size; 1162 1163 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1164 if (txr_count > 1 || rxr_count > 1) 1165 return -ENOMEM; 1166 1167 ring_count = txr_count + rxr_count; 1168 size = sizeof(struct igb_q_vector) + 1169 (sizeof(struct igb_ring) * ring_count); 1170 1171 /* allocate q_vector and rings */ 1172 q_vector = kzalloc(size, GFP_KERNEL); 1173 if (!q_vector) 1174 return -ENOMEM; 1175 1176 /* initialize NAPI */ 1177 netif_napi_add(adapter->netdev, &q_vector->napi, 1178 igb_poll, 64); 1179 1180 /* tie q_vector and adapter together */ 1181 adapter->q_vector[v_idx] = q_vector; 1182 q_vector->adapter = adapter; 1183 1184 /* initialize work limits */ 1185 q_vector->tx.work_limit = adapter->tx_work_limit; 1186 1187 /* initialize ITR configuration */ 1188 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); 1189 q_vector->itr_val = IGB_START_ITR; 1190 1191 /* initialize pointer to rings */ 1192 ring = q_vector->ring; 1193 1194 /* intialize ITR */ 1195 if (rxr_count) { 1196 /* rx or rx/tx vector */ 1197 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1198 q_vector->itr_val = adapter->rx_itr_setting; 1199 } else { 1200 /* tx only vector */ 1201 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1202 q_vector->itr_val = adapter->tx_itr_setting; 1203 } 1204 1205 if (txr_count) { 1206 /* assign generic ring traits */ 1207 ring->dev = &adapter->pdev->dev; 1208 ring->netdev = adapter->netdev; 1209 1210 /* configure backlink on ring */ 1211 ring->q_vector = q_vector; 1212 1213 /* update q_vector Tx values */ 1214 igb_add_ring(ring, &q_vector->tx); 1215 1216 /* For 82575, context index must be unique per ring. */ 1217 if (adapter->hw.mac.type == e1000_82575) 1218 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1219 1220 /* apply Tx specific ring traits */ 1221 ring->count = adapter->tx_ring_count; 1222 ring->queue_index = txr_idx; 1223 1224 /* assign ring to adapter */ 1225 adapter->tx_ring[txr_idx] = ring; 1226 1227 /* push pointer to next ring */ 1228 ring++; 1229 } 1230 1231 if (rxr_count) { 1232 /* assign generic ring traits */ 1233 ring->dev = &adapter->pdev->dev; 1234 ring->netdev = adapter->netdev; 1235 1236 /* configure backlink on ring */ 1237 ring->q_vector = q_vector; 1238 1239 /* update q_vector Rx values */ 1240 igb_add_ring(ring, &q_vector->rx); 1241 1242 /* set flag indicating ring supports SCTP checksum offload */ 1243 if (adapter->hw.mac.type >= e1000_82576) 1244 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1245 1246 /* 1247 * On i350, i354, i210, and i211, loopback VLAN packets 1248 * have the tag byte-swapped. 1249 */ 1250 if (adapter->hw.mac.type >= e1000_i350) 1251 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1252 1253 /* apply Rx specific ring traits */ 1254 ring->count = adapter->rx_ring_count; 1255 ring->queue_index = rxr_idx; 1256 1257 /* assign ring to adapter */ 1258 adapter->rx_ring[rxr_idx] = ring; 1259 } 1260 1261 return 0; 1262 } 1263 1264 1265 /** 1266 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1267 * @adapter: board private structure to initialize 1268 * 1269 * We allocate one q_vector per queue interrupt. If allocation fails we 1270 * return -ENOMEM. 1271 **/ 1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1273 { 1274 int q_vectors = adapter->num_q_vectors; 1275 int rxr_remaining = adapter->num_rx_queues; 1276 int txr_remaining = adapter->num_tx_queues; 1277 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1278 int err; 1279 1280 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1281 for (; rxr_remaining; v_idx++) { 1282 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1283 0, 0, 1, rxr_idx); 1284 1285 if (err) 1286 goto err_out; 1287 1288 /* update counts and index */ 1289 rxr_remaining--; 1290 rxr_idx++; 1291 } 1292 } 1293 1294 for (; v_idx < q_vectors; v_idx++) { 1295 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1296 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1297 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1298 tqpv, txr_idx, rqpv, rxr_idx); 1299 1300 if (err) 1301 goto err_out; 1302 1303 /* update counts and index */ 1304 rxr_remaining -= rqpv; 1305 txr_remaining -= tqpv; 1306 rxr_idx++; 1307 txr_idx++; 1308 } 1309 1310 return 0; 1311 1312 err_out: 1313 adapter->num_tx_queues = 0; 1314 adapter->num_rx_queues = 0; 1315 adapter->num_q_vectors = 0; 1316 1317 while (v_idx--) 1318 igb_free_q_vector(adapter, v_idx); 1319 1320 return -ENOMEM; 1321 } 1322 1323 /** 1324 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1325 * @adapter: board private structure to initialize 1326 * @msix: boolean value of MSIX capability 1327 * 1328 * This function initializes the interrupts and allocates all of the queues. 1329 **/ 1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1331 { 1332 struct pci_dev *pdev = adapter->pdev; 1333 int err; 1334 1335 igb_set_interrupt_capability(adapter, msix); 1336 1337 err = igb_alloc_q_vectors(adapter); 1338 if (err) { 1339 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1340 goto err_alloc_q_vectors; 1341 } 1342 1343 igb_cache_ring_register(adapter); 1344 1345 return 0; 1346 1347 err_alloc_q_vectors: 1348 igb_reset_interrupt_capability(adapter); 1349 return err; 1350 } 1351 1352 /** 1353 * igb_request_irq - initialize interrupts 1354 * @adapter: board private structure to initialize 1355 * 1356 * Attempts to configure interrupts using the best available 1357 * capabilities of the hardware and kernel. 1358 **/ 1359 static int igb_request_irq(struct igb_adapter *adapter) 1360 { 1361 struct net_device *netdev = adapter->netdev; 1362 struct pci_dev *pdev = adapter->pdev; 1363 int err = 0; 1364 1365 if (adapter->msix_entries) { 1366 err = igb_request_msix(adapter); 1367 if (!err) 1368 goto request_done; 1369 /* fall back to MSI */ 1370 igb_free_all_tx_resources(adapter); 1371 igb_free_all_rx_resources(adapter); 1372 1373 igb_clear_interrupt_scheme(adapter); 1374 err = igb_init_interrupt_scheme(adapter, false); 1375 if (err) 1376 goto request_done; 1377 1378 igb_setup_all_tx_resources(adapter); 1379 igb_setup_all_rx_resources(adapter); 1380 igb_configure(adapter); 1381 } 1382 1383 igb_assign_vector(adapter->q_vector[0], 0); 1384 1385 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1386 err = request_irq(pdev->irq, igb_intr_msi, 0, 1387 netdev->name, adapter); 1388 if (!err) 1389 goto request_done; 1390 1391 /* fall back to legacy interrupts */ 1392 igb_reset_interrupt_capability(adapter); 1393 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1394 } 1395 1396 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1397 netdev->name, adapter); 1398 1399 if (err) 1400 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1401 err); 1402 1403 request_done: 1404 return err; 1405 } 1406 1407 static void igb_free_irq(struct igb_adapter *adapter) 1408 { 1409 if (adapter->msix_entries) { 1410 int vector = 0, i; 1411 1412 free_irq(adapter->msix_entries[vector++].vector, adapter); 1413 1414 for (i = 0; i < adapter->num_q_vectors; i++) 1415 free_irq(adapter->msix_entries[vector++].vector, 1416 adapter->q_vector[i]); 1417 } else { 1418 free_irq(adapter->pdev->irq, adapter); 1419 } 1420 } 1421 1422 /** 1423 * igb_irq_disable - Mask off interrupt generation on the NIC 1424 * @adapter: board private structure 1425 **/ 1426 static void igb_irq_disable(struct igb_adapter *adapter) 1427 { 1428 struct e1000_hw *hw = &adapter->hw; 1429 1430 /* we need to be careful when disabling interrupts. The VFs are also 1431 * mapped into these registers and so clearing the bits can cause 1432 * issues on the VF drivers so we only need to clear what we set 1433 */ 1434 if (adapter->msix_entries) { 1435 u32 regval = rd32(E1000_EIAM); 1436 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1437 wr32(E1000_EIMC, adapter->eims_enable_mask); 1438 regval = rd32(E1000_EIAC); 1439 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1440 } 1441 1442 wr32(E1000_IAM, 0); 1443 wr32(E1000_IMC, ~0); 1444 wrfl(); 1445 if (adapter->msix_entries) { 1446 int i; 1447 for (i = 0; i < adapter->num_q_vectors; i++) 1448 synchronize_irq(adapter->msix_entries[i].vector); 1449 } else { 1450 synchronize_irq(adapter->pdev->irq); 1451 } 1452 } 1453 1454 /** 1455 * igb_irq_enable - Enable default interrupt generation settings 1456 * @adapter: board private structure 1457 **/ 1458 static void igb_irq_enable(struct igb_adapter *adapter) 1459 { 1460 struct e1000_hw *hw = &adapter->hw; 1461 1462 if (adapter->msix_entries) { 1463 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1464 u32 regval = rd32(E1000_EIAC); 1465 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1466 regval = rd32(E1000_EIAM); 1467 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1468 wr32(E1000_EIMS, adapter->eims_enable_mask); 1469 if (adapter->vfs_allocated_count) { 1470 wr32(E1000_MBVFIMR, 0xFF); 1471 ims |= E1000_IMS_VMMB; 1472 } 1473 wr32(E1000_IMS, ims); 1474 } else { 1475 wr32(E1000_IMS, IMS_ENABLE_MASK | 1476 E1000_IMS_DRSTA); 1477 wr32(E1000_IAM, IMS_ENABLE_MASK | 1478 E1000_IMS_DRSTA); 1479 } 1480 } 1481 1482 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1483 { 1484 struct e1000_hw *hw = &adapter->hw; 1485 u16 vid = adapter->hw.mng_cookie.vlan_id; 1486 u16 old_vid = adapter->mng_vlan_id; 1487 1488 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1489 /* add VID to filter table */ 1490 igb_vfta_set(hw, vid, true); 1491 adapter->mng_vlan_id = vid; 1492 } else { 1493 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1494 } 1495 1496 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1497 (vid != old_vid) && 1498 !test_bit(old_vid, adapter->active_vlans)) { 1499 /* remove VID from filter table */ 1500 igb_vfta_set(hw, old_vid, false); 1501 } 1502 } 1503 1504 /** 1505 * igb_release_hw_control - release control of the h/w to f/w 1506 * @adapter: address of board private structure 1507 * 1508 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1509 * For ASF and Pass Through versions of f/w this means that the 1510 * driver is no longer loaded. 1511 **/ 1512 static void igb_release_hw_control(struct igb_adapter *adapter) 1513 { 1514 struct e1000_hw *hw = &adapter->hw; 1515 u32 ctrl_ext; 1516 1517 /* Let firmware take over control of h/w */ 1518 ctrl_ext = rd32(E1000_CTRL_EXT); 1519 wr32(E1000_CTRL_EXT, 1520 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1521 } 1522 1523 /** 1524 * igb_get_hw_control - get control of the h/w from f/w 1525 * @adapter: address of board private structure 1526 * 1527 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1528 * For ASF and Pass Through versions of f/w this means that 1529 * the driver is loaded. 1530 **/ 1531 static void igb_get_hw_control(struct igb_adapter *adapter) 1532 { 1533 struct e1000_hw *hw = &adapter->hw; 1534 u32 ctrl_ext; 1535 1536 /* Let firmware know the driver has taken over */ 1537 ctrl_ext = rd32(E1000_CTRL_EXT); 1538 wr32(E1000_CTRL_EXT, 1539 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1540 } 1541 1542 /** 1543 * igb_configure - configure the hardware for RX and TX 1544 * @adapter: private board structure 1545 **/ 1546 static void igb_configure(struct igb_adapter *adapter) 1547 { 1548 struct net_device *netdev = adapter->netdev; 1549 int i; 1550 1551 igb_get_hw_control(adapter); 1552 igb_set_rx_mode(netdev); 1553 1554 igb_restore_vlan(adapter); 1555 1556 igb_setup_tctl(adapter); 1557 igb_setup_mrqc(adapter); 1558 igb_setup_rctl(adapter); 1559 1560 igb_configure_tx(adapter); 1561 igb_configure_rx(adapter); 1562 1563 igb_rx_fifo_flush_82575(&adapter->hw); 1564 1565 /* call igb_desc_unused which always leaves 1566 * at least 1 descriptor unused to make sure 1567 * next_to_use != next_to_clean 1568 */ 1569 for (i = 0; i < adapter->num_rx_queues; i++) { 1570 struct igb_ring *ring = adapter->rx_ring[i]; 1571 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 1572 } 1573 } 1574 1575 /** 1576 * igb_power_up_link - Power up the phy/serdes link 1577 * @adapter: address of board private structure 1578 **/ 1579 void igb_power_up_link(struct igb_adapter *adapter) 1580 { 1581 igb_reset_phy(&adapter->hw); 1582 1583 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1584 igb_power_up_phy_copper(&adapter->hw); 1585 else 1586 igb_power_up_serdes_link_82575(&adapter->hw); 1587 } 1588 1589 /** 1590 * igb_power_down_link - Power down the phy/serdes link 1591 * @adapter: address of board private structure 1592 */ 1593 static void igb_power_down_link(struct igb_adapter *adapter) 1594 { 1595 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1596 igb_power_down_phy_copper_82575(&adapter->hw); 1597 else 1598 igb_shutdown_serdes_link_82575(&adapter->hw); 1599 } 1600 1601 /** 1602 * igb_up - Open the interface and prepare it to handle traffic 1603 * @adapter: board private structure 1604 **/ 1605 int igb_up(struct igb_adapter *adapter) 1606 { 1607 struct e1000_hw *hw = &adapter->hw; 1608 int i; 1609 1610 /* hardware has been reset, we need to reload some things */ 1611 igb_configure(adapter); 1612 1613 clear_bit(__IGB_DOWN, &adapter->state); 1614 1615 for (i = 0; i < adapter->num_q_vectors; i++) 1616 napi_enable(&(adapter->q_vector[i]->napi)); 1617 1618 if (adapter->msix_entries) 1619 igb_configure_msix(adapter); 1620 else 1621 igb_assign_vector(adapter->q_vector[0], 0); 1622 1623 /* Clear any pending interrupts. */ 1624 rd32(E1000_ICR); 1625 igb_irq_enable(adapter); 1626 1627 /* notify VFs that reset has been completed */ 1628 if (adapter->vfs_allocated_count) { 1629 u32 reg_data = rd32(E1000_CTRL_EXT); 1630 reg_data |= E1000_CTRL_EXT_PFRSTD; 1631 wr32(E1000_CTRL_EXT, reg_data); 1632 } 1633 1634 netif_tx_start_all_queues(adapter->netdev); 1635 1636 /* start the watchdog. */ 1637 hw->mac.get_link_status = 1; 1638 schedule_work(&adapter->watchdog_task); 1639 1640 return 0; 1641 } 1642 1643 void igb_down(struct igb_adapter *adapter) 1644 { 1645 struct net_device *netdev = adapter->netdev; 1646 struct e1000_hw *hw = &adapter->hw; 1647 u32 tctl, rctl; 1648 int i; 1649 1650 /* signal that we're down so the interrupt handler does not 1651 * reschedule our watchdog timer 1652 */ 1653 set_bit(__IGB_DOWN, &adapter->state); 1654 1655 /* disable receives in the hardware */ 1656 rctl = rd32(E1000_RCTL); 1657 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 1658 /* flush and sleep below */ 1659 1660 netif_tx_stop_all_queues(netdev); 1661 1662 /* disable transmits in the hardware */ 1663 tctl = rd32(E1000_TCTL); 1664 tctl &= ~E1000_TCTL_EN; 1665 wr32(E1000_TCTL, tctl); 1666 /* flush both disables and wait for them to finish */ 1667 wrfl(); 1668 msleep(10); 1669 1670 igb_irq_disable(adapter); 1671 1672 for (i = 0; i < adapter->num_q_vectors; i++) { 1673 napi_synchronize(&(adapter->q_vector[i]->napi)); 1674 napi_disable(&(adapter->q_vector[i]->napi)); 1675 } 1676 1677 1678 del_timer_sync(&adapter->watchdog_timer); 1679 del_timer_sync(&adapter->phy_info_timer); 1680 1681 netif_carrier_off(netdev); 1682 1683 /* record the stats before reset*/ 1684 spin_lock(&adapter->stats64_lock); 1685 igb_update_stats(adapter, &adapter->stats64); 1686 spin_unlock(&adapter->stats64_lock); 1687 1688 adapter->link_speed = 0; 1689 adapter->link_duplex = 0; 1690 1691 if (!pci_channel_offline(adapter->pdev)) 1692 igb_reset(adapter); 1693 igb_clean_all_tx_rings(adapter); 1694 igb_clean_all_rx_rings(adapter); 1695 #ifdef CONFIG_IGB_DCA 1696 1697 /* since we reset the hardware DCA settings were cleared */ 1698 igb_setup_dca(adapter); 1699 #endif 1700 } 1701 1702 void igb_reinit_locked(struct igb_adapter *adapter) 1703 { 1704 WARN_ON(in_interrupt()); 1705 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 1706 msleep(1); 1707 igb_down(adapter); 1708 igb_up(adapter); 1709 clear_bit(__IGB_RESETTING, &adapter->state); 1710 } 1711 1712 void igb_reset(struct igb_adapter *adapter) 1713 { 1714 struct pci_dev *pdev = adapter->pdev; 1715 struct e1000_hw *hw = &adapter->hw; 1716 struct e1000_mac_info *mac = &hw->mac; 1717 struct e1000_fc_info *fc = &hw->fc; 1718 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; 1719 1720 /* Repartition Pba for greater than 9k mtu 1721 * To take effect CTRL.RST is required. 1722 */ 1723 switch (mac->type) { 1724 case e1000_i350: 1725 case e1000_i354: 1726 case e1000_82580: 1727 pba = rd32(E1000_RXPBS); 1728 pba = igb_rxpbs_adjust_82580(pba); 1729 break; 1730 case e1000_82576: 1731 pba = rd32(E1000_RXPBS); 1732 pba &= E1000_RXPBS_SIZE_MASK_82576; 1733 break; 1734 case e1000_82575: 1735 case e1000_i210: 1736 case e1000_i211: 1737 default: 1738 pba = E1000_PBA_34K; 1739 break; 1740 } 1741 1742 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && 1743 (mac->type < e1000_82576)) { 1744 /* adjust PBA for jumbo frames */ 1745 wr32(E1000_PBA, pba); 1746 1747 /* To maintain wire speed transmits, the Tx FIFO should be 1748 * large enough to accommodate two full transmit packets, 1749 * rounded up to the next 1KB and expressed in KB. Likewise, 1750 * the Rx FIFO should be large enough to accommodate at least 1751 * one full receive packet and is similarly rounded up and 1752 * expressed in KB. 1753 */ 1754 pba = rd32(E1000_PBA); 1755 /* upper 16 bits has Tx packet buffer allocation size in KB */ 1756 tx_space = pba >> 16; 1757 /* lower 16 bits has Rx packet buffer allocation size in KB */ 1758 pba &= 0xffff; 1759 /* the Tx fifo also stores 16 bytes of information about the Tx 1760 * but don't include ethernet FCS because hardware appends it 1761 */ 1762 min_tx_space = (adapter->max_frame_size + 1763 sizeof(union e1000_adv_tx_desc) - 1764 ETH_FCS_LEN) * 2; 1765 min_tx_space = ALIGN(min_tx_space, 1024); 1766 min_tx_space >>= 10; 1767 /* software strips receive CRC, so leave room for it */ 1768 min_rx_space = adapter->max_frame_size; 1769 min_rx_space = ALIGN(min_rx_space, 1024); 1770 min_rx_space >>= 10; 1771 1772 /* If current Tx allocation is less than the min Tx FIFO size, 1773 * and the min Tx FIFO size is less than the current Rx FIFO 1774 * allocation, take space away from current Rx allocation 1775 */ 1776 if (tx_space < min_tx_space && 1777 ((min_tx_space - tx_space) < pba)) { 1778 pba = pba - (min_tx_space - tx_space); 1779 1780 /* if short on Rx space, Rx wins and must trump Tx 1781 * adjustment 1782 */ 1783 if (pba < min_rx_space) 1784 pba = min_rx_space; 1785 } 1786 wr32(E1000_PBA, pba); 1787 } 1788 1789 /* flow control settings */ 1790 /* The high water mark must be low enough to fit one full frame 1791 * (or the size used for early receive) above it in the Rx FIFO. 1792 * Set it to the lower of: 1793 * - 90% of the Rx FIFO size, or 1794 * - the full Rx FIFO size minus one full frame 1795 */ 1796 hwm = min(((pba << 10) * 9 / 10), 1797 ((pba << 10) - 2 * adapter->max_frame_size)); 1798 1799 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 1800 fc->low_water = fc->high_water - 16; 1801 fc->pause_time = 0xFFFF; 1802 fc->send_xon = 1; 1803 fc->current_mode = fc->requested_mode; 1804 1805 /* disable receive for all VFs and wait one second */ 1806 if (adapter->vfs_allocated_count) { 1807 int i; 1808 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 1809 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 1810 1811 /* ping all the active vfs to let them know we are going down */ 1812 igb_ping_all_vfs(adapter); 1813 1814 /* disable transmits and receives */ 1815 wr32(E1000_VFRE, 0); 1816 wr32(E1000_VFTE, 0); 1817 } 1818 1819 /* Allow time for pending master requests to run */ 1820 hw->mac.ops.reset_hw(hw); 1821 wr32(E1000_WUC, 0); 1822 1823 if (hw->mac.ops.init_hw(hw)) 1824 dev_err(&pdev->dev, "Hardware Error\n"); 1825 1826 /* Flow control settings reset on hardware reset, so guarantee flow 1827 * control is off when forcing speed. 1828 */ 1829 if (!hw->mac.autoneg) 1830 igb_force_mac_fc(hw); 1831 1832 igb_init_dmac(adapter, pba); 1833 #ifdef CONFIG_IGB_HWMON 1834 /* Re-initialize the thermal sensor on i350 devices. */ 1835 if (!test_bit(__IGB_DOWN, &adapter->state)) { 1836 if (mac->type == e1000_i350 && hw->bus.func == 0) { 1837 /* If present, re-initialize the external thermal sensor 1838 * interface. 1839 */ 1840 if (adapter->ets) 1841 mac->ops.init_thermal_sensor_thresh(hw); 1842 } 1843 } 1844 #endif 1845 if (!netif_running(adapter->netdev)) 1846 igb_power_down_link(adapter); 1847 1848 igb_update_mng_vlan(adapter); 1849 1850 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 1851 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 1852 1853 /* Re-enable PTP, where applicable. */ 1854 igb_ptp_reset(adapter); 1855 1856 igb_get_phy_info(hw); 1857 } 1858 1859 static netdev_features_t igb_fix_features(struct net_device *netdev, 1860 netdev_features_t features) 1861 { 1862 /* Since there is no support for separate Rx/Tx vlan accel 1863 * enable/disable make sure Tx flag is always in same state as Rx. 1864 */ 1865 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1866 features |= NETIF_F_HW_VLAN_CTAG_TX; 1867 else 1868 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 1869 1870 return features; 1871 } 1872 1873 static int igb_set_features(struct net_device *netdev, 1874 netdev_features_t features) 1875 { 1876 netdev_features_t changed = netdev->features ^ features; 1877 struct igb_adapter *adapter = netdev_priv(netdev); 1878 1879 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1880 igb_vlan_mode(netdev, features); 1881 1882 if (!(changed & NETIF_F_RXALL)) 1883 return 0; 1884 1885 netdev->features = features; 1886 1887 if (netif_running(netdev)) 1888 igb_reinit_locked(adapter); 1889 else 1890 igb_reset(adapter); 1891 1892 return 0; 1893 } 1894 1895 static const struct net_device_ops igb_netdev_ops = { 1896 .ndo_open = igb_open, 1897 .ndo_stop = igb_close, 1898 .ndo_start_xmit = igb_xmit_frame, 1899 .ndo_get_stats64 = igb_get_stats64, 1900 .ndo_set_rx_mode = igb_set_rx_mode, 1901 .ndo_set_mac_address = igb_set_mac, 1902 .ndo_change_mtu = igb_change_mtu, 1903 .ndo_do_ioctl = igb_ioctl, 1904 .ndo_tx_timeout = igb_tx_timeout, 1905 .ndo_validate_addr = eth_validate_addr, 1906 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 1907 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 1908 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 1909 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 1910 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, 1911 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 1912 .ndo_get_vf_config = igb_ndo_get_vf_config, 1913 #ifdef CONFIG_NET_POLL_CONTROLLER 1914 .ndo_poll_controller = igb_netpoll, 1915 #endif 1916 .ndo_fix_features = igb_fix_features, 1917 .ndo_set_features = igb_set_features, 1918 }; 1919 1920 /** 1921 * igb_set_fw_version - Configure version string for ethtool 1922 * @adapter: adapter struct 1923 **/ 1924 void igb_set_fw_version(struct igb_adapter *adapter) 1925 { 1926 struct e1000_hw *hw = &adapter->hw; 1927 struct e1000_fw_version fw; 1928 1929 igb_get_fw_version(hw, &fw); 1930 1931 switch (hw->mac.type) { 1932 case e1000_i211: 1933 snprintf(adapter->fw_version, sizeof(adapter->fw_version), 1934 "%2d.%2d-%d", 1935 fw.invm_major, fw.invm_minor, fw.invm_img_type); 1936 break; 1937 1938 default: 1939 /* if option is rom valid, display its version too */ 1940 if (fw.or_valid) { 1941 snprintf(adapter->fw_version, 1942 sizeof(adapter->fw_version), 1943 "%d.%d, 0x%08x, %d.%d.%d", 1944 fw.eep_major, fw.eep_minor, fw.etrack_id, 1945 fw.or_major, fw.or_build, fw.or_patch); 1946 /* no option rom */ 1947 } else { 1948 snprintf(adapter->fw_version, 1949 sizeof(adapter->fw_version), 1950 "%d.%d, 0x%08x", 1951 fw.eep_major, fw.eep_minor, fw.etrack_id); 1952 } 1953 break; 1954 } 1955 return; 1956 } 1957 1958 /** 1959 * igb_init_i2c - Init I2C interface 1960 * @adapter: pointer to adapter structure 1961 **/ 1962 static s32 igb_init_i2c(struct igb_adapter *adapter) 1963 { 1964 s32 status = E1000_SUCCESS; 1965 1966 /* I2C interface supported on i350 devices */ 1967 if (adapter->hw.mac.type != e1000_i350) 1968 return E1000_SUCCESS; 1969 1970 /* Initialize the i2c bus which is controlled by the registers. 1971 * This bus will use the i2c_algo_bit structue that implements 1972 * the protocol through toggling of the 4 bits in the register. 1973 */ 1974 adapter->i2c_adap.owner = THIS_MODULE; 1975 adapter->i2c_algo = igb_i2c_algo; 1976 adapter->i2c_algo.data = adapter; 1977 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 1978 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 1979 strlcpy(adapter->i2c_adap.name, "igb BB", 1980 sizeof(adapter->i2c_adap.name)); 1981 status = i2c_bit_add_bus(&adapter->i2c_adap); 1982 return status; 1983 } 1984 1985 /** 1986 * igb_probe - Device Initialization Routine 1987 * @pdev: PCI device information struct 1988 * @ent: entry in igb_pci_tbl 1989 * 1990 * Returns 0 on success, negative on failure 1991 * 1992 * igb_probe initializes an adapter identified by a pci_dev structure. 1993 * The OS initialization, configuring of the adapter private structure, 1994 * and a hardware reset occur. 1995 **/ 1996 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1997 { 1998 struct net_device *netdev; 1999 struct igb_adapter *adapter; 2000 struct e1000_hw *hw; 2001 u16 eeprom_data = 0; 2002 s32 ret_val; 2003 static int global_quad_port_a; /* global quad port a indication */ 2004 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 2005 unsigned long mmio_start, mmio_len; 2006 int err, pci_using_dac; 2007 u8 part_str[E1000_PBANUM_LENGTH]; 2008 2009 /* Catch broken hardware that put the wrong VF device ID in 2010 * the PCIe SR-IOV capability. 2011 */ 2012 if (pdev->is_virtfn) { 2013 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", 2014 pci_name(pdev), pdev->vendor, pdev->device); 2015 return -EINVAL; 2016 } 2017 2018 err = pci_enable_device_mem(pdev); 2019 if (err) 2020 return err; 2021 2022 pci_using_dac = 0; 2023 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 2024 if (!err) { 2025 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 2026 if (!err) 2027 pci_using_dac = 1; 2028 } else { 2029 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2030 if (err) { 2031 err = dma_set_coherent_mask(&pdev->dev, 2032 DMA_BIT_MASK(32)); 2033 if (err) { 2034 dev_err(&pdev->dev, 2035 "No usable DMA configuration, aborting\n"); 2036 goto err_dma; 2037 } 2038 } 2039 } 2040 2041 err = pci_request_selected_regions(pdev, pci_select_bars(pdev, 2042 IORESOURCE_MEM), 2043 igb_driver_name); 2044 if (err) 2045 goto err_pci_reg; 2046 2047 pci_enable_pcie_error_reporting(pdev); 2048 2049 pci_set_master(pdev); 2050 pci_save_state(pdev); 2051 2052 err = -ENOMEM; 2053 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 2054 IGB_MAX_TX_QUEUES); 2055 if (!netdev) 2056 goto err_alloc_etherdev; 2057 2058 SET_NETDEV_DEV(netdev, &pdev->dev); 2059 2060 pci_set_drvdata(pdev, netdev); 2061 adapter = netdev_priv(netdev); 2062 adapter->netdev = netdev; 2063 adapter->pdev = pdev; 2064 hw = &adapter->hw; 2065 hw->back = adapter; 2066 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2067 2068 mmio_start = pci_resource_start(pdev, 0); 2069 mmio_len = pci_resource_len(pdev, 0); 2070 2071 err = -EIO; 2072 hw->hw_addr = ioremap(mmio_start, mmio_len); 2073 if (!hw->hw_addr) 2074 goto err_ioremap; 2075 2076 netdev->netdev_ops = &igb_netdev_ops; 2077 igb_set_ethtool_ops(netdev); 2078 netdev->watchdog_timeo = 5 * HZ; 2079 2080 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2081 2082 netdev->mem_start = mmio_start; 2083 netdev->mem_end = mmio_start + mmio_len; 2084 2085 /* PCI config space info */ 2086 hw->vendor_id = pdev->vendor; 2087 hw->device_id = pdev->device; 2088 hw->revision_id = pdev->revision; 2089 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2090 hw->subsystem_device_id = pdev->subsystem_device; 2091 2092 /* Copy the default MAC, PHY and NVM function pointers */ 2093 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 2094 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 2095 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 2096 /* Initialize skew-specific constants */ 2097 err = ei->get_invariants(hw); 2098 if (err) 2099 goto err_sw_init; 2100 2101 /* setup the private structure */ 2102 err = igb_sw_init(adapter); 2103 if (err) 2104 goto err_sw_init; 2105 2106 igb_get_bus_info_pcie(hw); 2107 2108 hw->phy.autoneg_wait_to_complete = false; 2109 2110 /* Copper options */ 2111 if (hw->phy.media_type == e1000_media_type_copper) { 2112 hw->phy.mdix = AUTO_ALL_MODES; 2113 hw->phy.disable_polarity_correction = false; 2114 hw->phy.ms_type = e1000_ms_hw_default; 2115 } 2116 2117 if (igb_check_reset_block(hw)) 2118 dev_info(&pdev->dev, 2119 "PHY reset is blocked due to SOL/IDER session.\n"); 2120 2121 /* features is initialized to 0 in allocation, it might have bits 2122 * set by igb_sw_init so we should use an or instead of an 2123 * assignment. 2124 */ 2125 netdev->features |= NETIF_F_SG | 2126 NETIF_F_IP_CSUM | 2127 NETIF_F_IPV6_CSUM | 2128 NETIF_F_TSO | 2129 NETIF_F_TSO6 | 2130 NETIF_F_RXHASH | 2131 NETIF_F_RXCSUM | 2132 NETIF_F_HW_VLAN_CTAG_RX | 2133 NETIF_F_HW_VLAN_CTAG_TX; 2134 2135 /* copy netdev features into list of user selectable features */ 2136 netdev->hw_features |= netdev->features; 2137 netdev->hw_features |= NETIF_F_RXALL; 2138 2139 /* set this bit last since it cannot be part of hw_features */ 2140 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2141 2142 netdev->vlan_features |= NETIF_F_TSO | 2143 NETIF_F_TSO6 | 2144 NETIF_F_IP_CSUM | 2145 NETIF_F_IPV6_CSUM | 2146 NETIF_F_SG; 2147 2148 netdev->priv_flags |= IFF_SUPP_NOFCS; 2149 2150 if (pci_using_dac) { 2151 netdev->features |= NETIF_F_HIGHDMA; 2152 netdev->vlan_features |= NETIF_F_HIGHDMA; 2153 } 2154 2155 if (hw->mac.type >= e1000_82576) { 2156 netdev->hw_features |= NETIF_F_SCTP_CSUM; 2157 netdev->features |= NETIF_F_SCTP_CSUM; 2158 } 2159 2160 netdev->priv_flags |= IFF_UNICAST_FLT; 2161 2162 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 2163 2164 /* before reading the NVM, reset the controller to put the device in a 2165 * known good starting state 2166 */ 2167 hw->mac.ops.reset_hw(hw); 2168 2169 /* make sure the NVM is good , i211 parts have special NVM that 2170 * doesn't contain a checksum 2171 */ 2172 if (hw->mac.type != e1000_i211) { 2173 if (hw->nvm.ops.validate(hw) < 0) { 2174 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 2175 err = -EIO; 2176 goto err_eeprom; 2177 } 2178 } 2179 2180 /* copy the MAC address out of the NVM */ 2181 if (hw->mac.ops.read_mac_addr(hw)) 2182 dev_err(&pdev->dev, "NVM Read Error\n"); 2183 2184 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2185 2186 if (!is_valid_ether_addr(netdev->dev_addr)) { 2187 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2188 err = -EIO; 2189 goto err_eeprom; 2190 } 2191 2192 /* get firmware version for ethtool -i */ 2193 igb_set_fw_version(adapter); 2194 2195 setup_timer(&adapter->watchdog_timer, igb_watchdog, 2196 (unsigned long) adapter); 2197 setup_timer(&adapter->phy_info_timer, igb_update_phy_info, 2198 (unsigned long) adapter); 2199 2200 INIT_WORK(&adapter->reset_task, igb_reset_task); 2201 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 2202 2203 /* Initialize link properties that are user-changeable */ 2204 adapter->fc_autoneg = true; 2205 hw->mac.autoneg = true; 2206 hw->phy.autoneg_advertised = 0x2f; 2207 2208 hw->fc.requested_mode = e1000_fc_default; 2209 hw->fc.current_mode = e1000_fc_default; 2210 2211 igb_validate_mdi_setting(hw); 2212 2213 /* By default, support wake on port A */ 2214 if (hw->bus.func == 0) 2215 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2216 2217 /* Check the NVM for wake support on non-port A ports */ 2218 if (hw->mac.type >= e1000_82580) 2219 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2220 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2221 &eeprom_data); 2222 else if (hw->bus.func == 1) 2223 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 2224 2225 if (eeprom_data & IGB_EEPROM_APME) 2226 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2227 2228 /* now that we have the eeprom settings, apply the special cases where 2229 * the eeprom may be wrong or the board simply won't support wake on 2230 * lan on a particular port 2231 */ 2232 switch (pdev->device) { 2233 case E1000_DEV_ID_82575GB_QUAD_COPPER: 2234 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2235 break; 2236 case E1000_DEV_ID_82575EB_FIBER_SERDES: 2237 case E1000_DEV_ID_82576_FIBER: 2238 case E1000_DEV_ID_82576_SERDES: 2239 /* Wake events only supported on port A for dual fiber 2240 * regardless of eeprom setting 2241 */ 2242 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 2243 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2244 break; 2245 case E1000_DEV_ID_82576_QUAD_COPPER: 2246 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 2247 /* if quad port adapter, disable WoL on all but port A */ 2248 if (global_quad_port_a != 0) 2249 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2250 else 2251 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 2252 /* Reset for multiple quad port adapters */ 2253 if (++global_quad_port_a == 4) 2254 global_quad_port_a = 0; 2255 break; 2256 default: 2257 /* If the device can't wake, don't set software support */ 2258 if (!device_can_wakeup(&adapter->pdev->dev)) 2259 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2260 } 2261 2262 /* initialize the wol settings based on the eeprom settings */ 2263 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 2264 adapter->wol |= E1000_WUFC_MAG; 2265 2266 /* Some vendors want WoL disabled by default, but still supported */ 2267 if ((hw->mac.type == e1000_i350) && 2268 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 2269 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2270 adapter->wol = 0; 2271 } 2272 2273 device_set_wakeup_enable(&adapter->pdev->dev, 2274 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 2275 2276 /* reset the hardware with the new settings */ 2277 igb_reset(adapter); 2278 2279 /* Init the I2C interface */ 2280 err = igb_init_i2c(adapter); 2281 if (err) { 2282 dev_err(&pdev->dev, "failed to init i2c interface\n"); 2283 goto err_eeprom; 2284 } 2285 2286 /* let the f/w know that the h/w is now under the control of the 2287 * driver. */ 2288 igb_get_hw_control(adapter); 2289 2290 strcpy(netdev->name, "eth%d"); 2291 err = register_netdev(netdev); 2292 if (err) 2293 goto err_register; 2294 2295 /* carrier off reporting is important to ethtool even BEFORE open */ 2296 netif_carrier_off(netdev); 2297 2298 #ifdef CONFIG_IGB_DCA 2299 if (dca_add_requester(&pdev->dev) == 0) { 2300 adapter->flags |= IGB_FLAG_DCA_ENABLED; 2301 dev_info(&pdev->dev, "DCA enabled\n"); 2302 igb_setup_dca(adapter); 2303 } 2304 2305 #endif 2306 #ifdef CONFIG_IGB_HWMON 2307 /* Initialize the thermal sensor on i350 devices. */ 2308 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 2309 u16 ets_word; 2310 2311 /* Read the NVM to determine if this i350 device supports an 2312 * external thermal sensor. 2313 */ 2314 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 2315 if (ets_word != 0x0000 && ets_word != 0xFFFF) 2316 adapter->ets = true; 2317 else 2318 adapter->ets = false; 2319 if (igb_sysfs_init(adapter)) 2320 dev_err(&pdev->dev, 2321 "failed to allocate sysfs resources\n"); 2322 } else { 2323 adapter->ets = false; 2324 } 2325 #endif 2326 /* do hw tstamp init after resetting */ 2327 igb_ptp_init(adapter); 2328 2329 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 2330 /* print bus type/speed/width info, not applicable to i354 */ 2331 if (hw->mac.type != e1000_i354) { 2332 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 2333 netdev->name, 2334 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 2335 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 2336 "unknown"), 2337 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 2338 "Width x4" : 2339 (hw->bus.width == e1000_bus_width_pcie_x2) ? 2340 "Width x2" : 2341 (hw->bus.width == e1000_bus_width_pcie_x1) ? 2342 "Width x1" : "unknown"), netdev->dev_addr); 2343 } 2344 2345 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); 2346 if (ret_val) 2347 strcpy(part_str, "Unknown"); 2348 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 2349 dev_info(&pdev->dev, 2350 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 2351 adapter->msix_entries ? "MSI-X" : 2352 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 2353 adapter->num_rx_queues, adapter->num_tx_queues); 2354 switch (hw->mac.type) { 2355 case e1000_i350: 2356 case e1000_i210: 2357 case e1000_i211: 2358 igb_set_eee_i350(hw); 2359 break; 2360 case e1000_i354: 2361 if (hw->phy.media_type == e1000_media_type_copper) { 2362 if ((rd32(E1000_CTRL_EXT) & 2363 E1000_CTRL_EXT_LINK_MODE_SGMII)) 2364 igb_set_eee_i354(hw); 2365 } 2366 break; 2367 default: 2368 break; 2369 } 2370 2371 pm_runtime_put_noidle(&pdev->dev); 2372 return 0; 2373 2374 err_register: 2375 igb_release_hw_control(adapter); 2376 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 2377 err_eeprom: 2378 if (!igb_check_reset_block(hw)) 2379 igb_reset_phy(hw); 2380 2381 if (hw->flash_address) 2382 iounmap(hw->flash_address); 2383 err_sw_init: 2384 igb_clear_interrupt_scheme(adapter); 2385 iounmap(hw->hw_addr); 2386 err_ioremap: 2387 free_netdev(netdev); 2388 err_alloc_etherdev: 2389 pci_release_selected_regions(pdev, 2390 pci_select_bars(pdev, IORESOURCE_MEM)); 2391 err_pci_reg: 2392 err_dma: 2393 pci_disable_device(pdev); 2394 return err; 2395 } 2396 2397 #ifdef CONFIG_PCI_IOV 2398 static int igb_disable_sriov(struct pci_dev *pdev) 2399 { 2400 struct net_device *netdev = pci_get_drvdata(pdev); 2401 struct igb_adapter *adapter = netdev_priv(netdev); 2402 struct e1000_hw *hw = &adapter->hw; 2403 2404 /* reclaim resources allocated to VFs */ 2405 if (adapter->vf_data) { 2406 /* disable iov and allow time for transactions to clear */ 2407 if (pci_vfs_assigned(pdev)) { 2408 dev_warn(&pdev->dev, 2409 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 2410 return -EPERM; 2411 } else { 2412 pci_disable_sriov(pdev); 2413 msleep(500); 2414 } 2415 2416 kfree(adapter->vf_data); 2417 adapter->vf_data = NULL; 2418 adapter->vfs_allocated_count = 0; 2419 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 2420 wrfl(); 2421 msleep(100); 2422 dev_info(&pdev->dev, "IOV Disabled\n"); 2423 2424 /* Re-enable DMA Coalescing flag since IOV is turned off */ 2425 adapter->flags |= IGB_FLAG_DMAC; 2426 } 2427 2428 return 0; 2429 } 2430 2431 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 2432 { 2433 struct net_device *netdev = pci_get_drvdata(pdev); 2434 struct igb_adapter *adapter = netdev_priv(netdev); 2435 int old_vfs = pci_num_vf(pdev); 2436 int err = 0; 2437 int i; 2438 2439 if (!num_vfs) 2440 goto out; 2441 else if (old_vfs && old_vfs == num_vfs) 2442 goto out; 2443 else if (old_vfs && old_vfs != num_vfs) 2444 err = igb_disable_sriov(pdev); 2445 2446 if (err) 2447 goto out; 2448 2449 if (num_vfs > 7) { 2450 err = -EPERM; 2451 goto out; 2452 } 2453 2454 adapter->vfs_allocated_count = num_vfs; 2455 2456 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 2457 sizeof(struct vf_data_storage), GFP_KERNEL); 2458 2459 /* if allocation failed then we do not support SR-IOV */ 2460 if (!adapter->vf_data) { 2461 adapter->vfs_allocated_count = 0; 2462 dev_err(&pdev->dev, 2463 "Unable to allocate memory for VF Data Storage\n"); 2464 err = -ENOMEM; 2465 goto out; 2466 } 2467 2468 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 2469 if (err) 2470 goto err_out; 2471 2472 dev_info(&pdev->dev, "%d VFs allocated\n", 2473 adapter->vfs_allocated_count); 2474 for (i = 0; i < adapter->vfs_allocated_count; i++) 2475 igb_vf_configure(adapter, i); 2476 2477 /* DMA Coalescing is not supported in IOV mode. */ 2478 adapter->flags &= ~IGB_FLAG_DMAC; 2479 goto out; 2480 2481 err_out: 2482 kfree(adapter->vf_data); 2483 adapter->vf_data = NULL; 2484 adapter->vfs_allocated_count = 0; 2485 out: 2486 return err; 2487 } 2488 2489 #endif 2490 /** 2491 * igb_remove_i2c - Cleanup I2C interface 2492 * @adapter: pointer to adapter structure 2493 **/ 2494 static void igb_remove_i2c(struct igb_adapter *adapter) 2495 { 2496 /* free the adapter bus structure */ 2497 i2c_del_adapter(&adapter->i2c_adap); 2498 } 2499 2500 /** 2501 * igb_remove - Device Removal Routine 2502 * @pdev: PCI device information struct 2503 * 2504 * igb_remove is called by the PCI subsystem to alert the driver 2505 * that it should release a PCI device. The could be caused by a 2506 * Hot-Plug event, or because the driver is going to be removed from 2507 * memory. 2508 **/ 2509 static void igb_remove(struct pci_dev *pdev) 2510 { 2511 struct net_device *netdev = pci_get_drvdata(pdev); 2512 struct igb_adapter *adapter = netdev_priv(netdev); 2513 struct e1000_hw *hw = &adapter->hw; 2514 2515 pm_runtime_get_noresume(&pdev->dev); 2516 #ifdef CONFIG_IGB_HWMON 2517 igb_sysfs_exit(adapter); 2518 #endif 2519 igb_remove_i2c(adapter); 2520 igb_ptp_stop(adapter); 2521 /* The watchdog timer may be rescheduled, so explicitly 2522 * disable watchdog from being rescheduled. 2523 */ 2524 set_bit(__IGB_DOWN, &adapter->state); 2525 del_timer_sync(&adapter->watchdog_timer); 2526 del_timer_sync(&adapter->phy_info_timer); 2527 2528 cancel_work_sync(&adapter->reset_task); 2529 cancel_work_sync(&adapter->watchdog_task); 2530 2531 #ifdef CONFIG_IGB_DCA 2532 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 2533 dev_info(&pdev->dev, "DCA disabled\n"); 2534 dca_remove_requester(&pdev->dev); 2535 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 2536 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 2537 } 2538 #endif 2539 2540 /* Release control of h/w to f/w. If f/w is AMT enabled, this 2541 * would have already happened in close and is redundant. 2542 */ 2543 igb_release_hw_control(adapter); 2544 2545 unregister_netdev(netdev); 2546 2547 igb_clear_interrupt_scheme(adapter); 2548 2549 #ifdef CONFIG_PCI_IOV 2550 igb_disable_sriov(pdev); 2551 #endif 2552 2553 iounmap(hw->hw_addr); 2554 if (hw->flash_address) 2555 iounmap(hw->flash_address); 2556 pci_release_selected_regions(pdev, 2557 pci_select_bars(pdev, IORESOURCE_MEM)); 2558 2559 kfree(adapter->shadow_vfta); 2560 free_netdev(netdev); 2561 2562 pci_disable_pcie_error_reporting(pdev); 2563 2564 pci_disable_device(pdev); 2565 } 2566 2567 /** 2568 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 2569 * @adapter: board private structure to initialize 2570 * 2571 * This function initializes the vf specific data storage and then attempts to 2572 * allocate the VFs. The reason for ordering it this way is because it is much 2573 * mor expensive time wise to disable SR-IOV than it is to allocate and free 2574 * the memory for the VFs. 2575 **/ 2576 static void igb_probe_vfs(struct igb_adapter *adapter) 2577 { 2578 #ifdef CONFIG_PCI_IOV 2579 struct pci_dev *pdev = adapter->pdev; 2580 struct e1000_hw *hw = &adapter->hw; 2581 2582 /* Virtualization features not supported on i210 family. */ 2583 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 2584 return; 2585 2586 pci_sriov_set_totalvfs(pdev, 7); 2587 igb_enable_sriov(pdev, max_vfs); 2588 2589 #endif /* CONFIG_PCI_IOV */ 2590 } 2591 2592 static void igb_init_queue_configuration(struct igb_adapter *adapter) 2593 { 2594 struct e1000_hw *hw = &adapter->hw; 2595 u32 max_rss_queues; 2596 2597 /* Determine the maximum number of RSS queues supported. */ 2598 switch (hw->mac.type) { 2599 case e1000_i211: 2600 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 2601 break; 2602 case e1000_82575: 2603 case e1000_i210: 2604 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 2605 break; 2606 case e1000_i350: 2607 /* I350 cannot do RSS and SR-IOV at the same time */ 2608 if (!!adapter->vfs_allocated_count) { 2609 max_rss_queues = 1; 2610 break; 2611 } 2612 /* fall through */ 2613 case e1000_82576: 2614 if (!!adapter->vfs_allocated_count) { 2615 max_rss_queues = 2; 2616 break; 2617 } 2618 /* fall through */ 2619 case e1000_82580: 2620 case e1000_i354: 2621 default: 2622 max_rss_queues = IGB_MAX_RX_QUEUES; 2623 break; 2624 } 2625 2626 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 2627 2628 /* Determine if we need to pair queues. */ 2629 switch (hw->mac.type) { 2630 case e1000_82575: 2631 case e1000_i211: 2632 /* Device supports enough interrupts without queue pairing. */ 2633 break; 2634 case e1000_82576: 2635 /* If VFs are going to be allocated with RSS queues then we 2636 * should pair the queues in order to conserve interrupts due 2637 * to limited supply. 2638 */ 2639 if ((adapter->rss_queues > 1) && 2640 (adapter->vfs_allocated_count > 6)) 2641 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2642 /* fall through */ 2643 case e1000_82580: 2644 case e1000_i350: 2645 case e1000_i354: 2646 case e1000_i210: 2647 default: 2648 /* If rss_queues > half of max_rss_queues, pair the queues in 2649 * order to conserve interrupts due to limited supply. 2650 */ 2651 if (adapter->rss_queues > (max_rss_queues / 2)) 2652 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2653 break; 2654 } 2655 } 2656 2657 /** 2658 * igb_sw_init - Initialize general software structures (struct igb_adapter) 2659 * @adapter: board private structure to initialize 2660 * 2661 * igb_sw_init initializes the Adapter private data structure. 2662 * Fields are initialized based on PCI device information and 2663 * OS network device settings (MTU size). 2664 **/ 2665 static int igb_sw_init(struct igb_adapter *adapter) 2666 { 2667 struct e1000_hw *hw = &adapter->hw; 2668 struct net_device *netdev = adapter->netdev; 2669 struct pci_dev *pdev = adapter->pdev; 2670 2671 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 2672 2673 /* set default ring sizes */ 2674 adapter->tx_ring_count = IGB_DEFAULT_TXD; 2675 adapter->rx_ring_count = IGB_DEFAULT_RXD; 2676 2677 /* set default ITR values */ 2678 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 2679 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 2680 2681 /* set default work limits */ 2682 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 2683 2684 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 2685 VLAN_HLEN; 2686 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2687 2688 spin_lock_init(&adapter->stats64_lock); 2689 #ifdef CONFIG_PCI_IOV 2690 switch (hw->mac.type) { 2691 case e1000_82576: 2692 case e1000_i350: 2693 if (max_vfs > 7) { 2694 dev_warn(&pdev->dev, 2695 "Maximum of 7 VFs per PF, using max\n"); 2696 max_vfs = adapter->vfs_allocated_count = 7; 2697 } else 2698 adapter->vfs_allocated_count = max_vfs; 2699 if (adapter->vfs_allocated_count) 2700 dev_warn(&pdev->dev, 2701 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 2702 break; 2703 default: 2704 break; 2705 } 2706 #endif /* CONFIG_PCI_IOV */ 2707 2708 igb_init_queue_configuration(adapter); 2709 2710 /* Setup and initialize a copy of the hw vlan table array */ 2711 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 2712 GFP_ATOMIC); 2713 2714 /* This call may decrease the number of queues */ 2715 if (igb_init_interrupt_scheme(adapter, true)) { 2716 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 2717 return -ENOMEM; 2718 } 2719 2720 igb_probe_vfs(adapter); 2721 2722 /* Explicitly disable IRQ since the NIC can be in any state. */ 2723 igb_irq_disable(adapter); 2724 2725 if (hw->mac.type >= e1000_i350) 2726 adapter->flags &= ~IGB_FLAG_DMAC; 2727 2728 set_bit(__IGB_DOWN, &adapter->state); 2729 return 0; 2730 } 2731 2732 /** 2733 * igb_open - Called when a network interface is made active 2734 * @netdev: network interface device structure 2735 * 2736 * Returns 0 on success, negative value on failure 2737 * 2738 * The open entry point is called when a network interface is made 2739 * active by the system (IFF_UP). At this point all resources needed 2740 * for transmit and receive operations are allocated, the interrupt 2741 * handler is registered with the OS, the watchdog timer is started, 2742 * and the stack is notified that the interface is ready. 2743 **/ 2744 static int __igb_open(struct net_device *netdev, bool resuming) 2745 { 2746 struct igb_adapter *adapter = netdev_priv(netdev); 2747 struct e1000_hw *hw = &adapter->hw; 2748 struct pci_dev *pdev = adapter->pdev; 2749 int err; 2750 int i; 2751 2752 /* disallow open during test */ 2753 if (test_bit(__IGB_TESTING, &adapter->state)) { 2754 WARN_ON(resuming); 2755 return -EBUSY; 2756 } 2757 2758 if (!resuming) 2759 pm_runtime_get_sync(&pdev->dev); 2760 2761 netif_carrier_off(netdev); 2762 2763 /* allocate transmit descriptors */ 2764 err = igb_setup_all_tx_resources(adapter); 2765 if (err) 2766 goto err_setup_tx; 2767 2768 /* allocate receive descriptors */ 2769 err = igb_setup_all_rx_resources(adapter); 2770 if (err) 2771 goto err_setup_rx; 2772 2773 igb_power_up_link(adapter); 2774 2775 /* before we allocate an interrupt, we must be ready to handle it. 2776 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 2777 * as soon as we call pci_request_irq, so we have to setup our 2778 * clean_rx handler before we do so. 2779 */ 2780 igb_configure(adapter); 2781 2782 err = igb_request_irq(adapter); 2783 if (err) 2784 goto err_req_irq; 2785 2786 /* Notify the stack of the actual queue counts. */ 2787 err = netif_set_real_num_tx_queues(adapter->netdev, 2788 adapter->num_tx_queues); 2789 if (err) 2790 goto err_set_queues; 2791 2792 err = netif_set_real_num_rx_queues(adapter->netdev, 2793 adapter->num_rx_queues); 2794 if (err) 2795 goto err_set_queues; 2796 2797 /* From here on the code is the same as igb_up() */ 2798 clear_bit(__IGB_DOWN, &adapter->state); 2799 2800 for (i = 0; i < adapter->num_q_vectors; i++) 2801 napi_enable(&(adapter->q_vector[i]->napi)); 2802 2803 /* Clear any pending interrupts. */ 2804 rd32(E1000_ICR); 2805 2806 igb_irq_enable(adapter); 2807 2808 /* notify VFs that reset has been completed */ 2809 if (adapter->vfs_allocated_count) { 2810 u32 reg_data = rd32(E1000_CTRL_EXT); 2811 reg_data |= E1000_CTRL_EXT_PFRSTD; 2812 wr32(E1000_CTRL_EXT, reg_data); 2813 } 2814 2815 netif_tx_start_all_queues(netdev); 2816 2817 if (!resuming) 2818 pm_runtime_put(&pdev->dev); 2819 2820 /* start the watchdog. */ 2821 hw->mac.get_link_status = 1; 2822 schedule_work(&adapter->watchdog_task); 2823 2824 return 0; 2825 2826 err_set_queues: 2827 igb_free_irq(adapter); 2828 err_req_irq: 2829 igb_release_hw_control(adapter); 2830 igb_power_down_link(adapter); 2831 igb_free_all_rx_resources(adapter); 2832 err_setup_rx: 2833 igb_free_all_tx_resources(adapter); 2834 err_setup_tx: 2835 igb_reset(adapter); 2836 if (!resuming) 2837 pm_runtime_put(&pdev->dev); 2838 2839 return err; 2840 } 2841 2842 static int igb_open(struct net_device *netdev) 2843 { 2844 return __igb_open(netdev, false); 2845 } 2846 2847 /** 2848 * igb_close - Disables a network interface 2849 * @netdev: network interface device structure 2850 * 2851 * Returns 0, this is not allowed to fail 2852 * 2853 * The close entry point is called when an interface is de-activated 2854 * by the OS. The hardware is still under the driver's control, but 2855 * needs to be disabled. A global MAC reset is issued to stop the 2856 * hardware, and all transmit and receive resources are freed. 2857 **/ 2858 static int __igb_close(struct net_device *netdev, bool suspending) 2859 { 2860 struct igb_adapter *adapter = netdev_priv(netdev); 2861 struct pci_dev *pdev = adapter->pdev; 2862 2863 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 2864 2865 if (!suspending) 2866 pm_runtime_get_sync(&pdev->dev); 2867 2868 igb_down(adapter); 2869 igb_free_irq(adapter); 2870 2871 igb_free_all_tx_resources(adapter); 2872 igb_free_all_rx_resources(adapter); 2873 2874 if (!suspending) 2875 pm_runtime_put_sync(&pdev->dev); 2876 return 0; 2877 } 2878 2879 static int igb_close(struct net_device *netdev) 2880 { 2881 return __igb_close(netdev, false); 2882 } 2883 2884 /** 2885 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 2886 * @tx_ring: tx descriptor ring (for a specific queue) to setup 2887 * 2888 * Return 0 on success, negative on failure 2889 **/ 2890 int igb_setup_tx_resources(struct igb_ring *tx_ring) 2891 { 2892 struct device *dev = tx_ring->dev; 2893 int size; 2894 2895 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 2896 2897 tx_ring->tx_buffer_info = vzalloc(size); 2898 if (!tx_ring->tx_buffer_info) 2899 goto err; 2900 2901 /* round up to nearest 4K */ 2902 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 2903 tx_ring->size = ALIGN(tx_ring->size, 4096); 2904 2905 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 2906 &tx_ring->dma, GFP_KERNEL); 2907 if (!tx_ring->desc) 2908 goto err; 2909 2910 tx_ring->next_to_use = 0; 2911 tx_ring->next_to_clean = 0; 2912 2913 return 0; 2914 2915 err: 2916 vfree(tx_ring->tx_buffer_info); 2917 tx_ring->tx_buffer_info = NULL; 2918 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 2919 return -ENOMEM; 2920 } 2921 2922 /** 2923 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 2924 * (Descriptors) for all queues 2925 * @adapter: board private structure 2926 * 2927 * Return 0 on success, negative on failure 2928 **/ 2929 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 2930 { 2931 struct pci_dev *pdev = adapter->pdev; 2932 int i, err = 0; 2933 2934 for (i = 0; i < adapter->num_tx_queues; i++) { 2935 err = igb_setup_tx_resources(adapter->tx_ring[i]); 2936 if (err) { 2937 dev_err(&pdev->dev, 2938 "Allocation for Tx Queue %u failed\n", i); 2939 for (i--; i >= 0; i--) 2940 igb_free_tx_resources(adapter->tx_ring[i]); 2941 break; 2942 } 2943 } 2944 2945 return err; 2946 } 2947 2948 /** 2949 * igb_setup_tctl - configure the transmit control registers 2950 * @adapter: Board private structure 2951 **/ 2952 void igb_setup_tctl(struct igb_adapter *adapter) 2953 { 2954 struct e1000_hw *hw = &adapter->hw; 2955 u32 tctl; 2956 2957 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 2958 wr32(E1000_TXDCTL(0), 0); 2959 2960 /* Program the Transmit Control Register */ 2961 tctl = rd32(E1000_TCTL); 2962 tctl &= ~E1000_TCTL_CT; 2963 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2964 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2965 2966 igb_config_collision_dist(hw); 2967 2968 /* Enable transmits */ 2969 tctl |= E1000_TCTL_EN; 2970 2971 wr32(E1000_TCTL, tctl); 2972 } 2973 2974 /** 2975 * igb_configure_tx_ring - Configure transmit ring after Reset 2976 * @adapter: board private structure 2977 * @ring: tx ring to configure 2978 * 2979 * Configure a transmit ring after a reset. 2980 **/ 2981 void igb_configure_tx_ring(struct igb_adapter *adapter, 2982 struct igb_ring *ring) 2983 { 2984 struct e1000_hw *hw = &adapter->hw; 2985 u32 txdctl = 0; 2986 u64 tdba = ring->dma; 2987 int reg_idx = ring->reg_idx; 2988 2989 /* disable the queue */ 2990 wr32(E1000_TXDCTL(reg_idx), 0); 2991 wrfl(); 2992 mdelay(10); 2993 2994 wr32(E1000_TDLEN(reg_idx), 2995 ring->count * sizeof(union e1000_adv_tx_desc)); 2996 wr32(E1000_TDBAL(reg_idx), 2997 tdba & 0x00000000ffffffffULL); 2998 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 2999 3000 ring->tail = hw->hw_addr + E1000_TDT(reg_idx); 3001 wr32(E1000_TDH(reg_idx), 0); 3002 writel(0, ring->tail); 3003 3004 txdctl |= IGB_TX_PTHRESH; 3005 txdctl |= IGB_TX_HTHRESH << 8; 3006 txdctl |= IGB_TX_WTHRESH << 16; 3007 3008 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 3009 wr32(E1000_TXDCTL(reg_idx), txdctl); 3010 } 3011 3012 /** 3013 * igb_configure_tx - Configure transmit Unit after Reset 3014 * @adapter: board private structure 3015 * 3016 * Configure the Tx unit of the MAC after a reset. 3017 **/ 3018 static void igb_configure_tx(struct igb_adapter *adapter) 3019 { 3020 int i; 3021 3022 for (i = 0; i < adapter->num_tx_queues; i++) 3023 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 3024 } 3025 3026 /** 3027 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 3028 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3029 * 3030 * Returns 0 on success, negative on failure 3031 **/ 3032 int igb_setup_rx_resources(struct igb_ring *rx_ring) 3033 { 3034 struct device *dev = rx_ring->dev; 3035 int size; 3036 3037 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3038 3039 rx_ring->rx_buffer_info = vzalloc(size); 3040 if (!rx_ring->rx_buffer_info) 3041 goto err; 3042 3043 /* Round up to nearest 4K */ 3044 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 3045 rx_ring->size = ALIGN(rx_ring->size, 4096); 3046 3047 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 3048 &rx_ring->dma, GFP_KERNEL); 3049 if (!rx_ring->desc) 3050 goto err; 3051 3052 rx_ring->next_to_alloc = 0; 3053 rx_ring->next_to_clean = 0; 3054 rx_ring->next_to_use = 0; 3055 3056 return 0; 3057 3058 err: 3059 vfree(rx_ring->rx_buffer_info); 3060 rx_ring->rx_buffer_info = NULL; 3061 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3062 return -ENOMEM; 3063 } 3064 3065 /** 3066 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 3067 * (Descriptors) for all queues 3068 * @adapter: board private structure 3069 * 3070 * Return 0 on success, negative on failure 3071 **/ 3072 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 3073 { 3074 struct pci_dev *pdev = adapter->pdev; 3075 int i, err = 0; 3076 3077 for (i = 0; i < adapter->num_rx_queues; i++) { 3078 err = igb_setup_rx_resources(adapter->rx_ring[i]); 3079 if (err) { 3080 dev_err(&pdev->dev, 3081 "Allocation for Rx Queue %u failed\n", i); 3082 for (i--; i >= 0; i--) 3083 igb_free_rx_resources(adapter->rx_ring[i]); 3084 break; 3085 } 3086 } 3087 3088 return err; 3089 } 3090 3091 /** 3092 * igb_setup_mrqc - configure the multiple receive queue control registers 3093 * @adapter: Board private structure 3094 **/ 3095 static void igb_setup_mrqc(struct igb_adapter *adapter) 3096 { 3097 struct e1000_hw *hw = &adapter->hw; 3098 u32 mrqc, rxcsum; 3099 u32 j, num_rx_queues, shift = 0; 3100 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741, 3101 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE, 3102 0xA32DCB77, 0x0CF23080, 0x3BB7426A, 3103 0xFA01ACBE }; 3104 3105 /* Fill out hash function seeds */ 3106 for (j = 0; j < 10; j++) 3107 wr32(E1000_RSSRK(j), rsskey[j]); 3108 3109 num_rx_queues = adapter->rss_queues; 3110 3111 switch (hw->mac.type) { 3112 case e1000_82575: 3113 shift = 6; 3114 break; 3115 case e1000_82576: 3116 /* 82576 supports 2 RSS queues for SR-IOV */ 3117 if (adapter->vfs_allocated_count) { 3118 shift = 3; 3119 num_rx_queues = 2; 3120 } 3121 break; 3122 default: 3123 break; 3124 } 3125 3126 /* Populate the indirection table 4 entries at a time. To do this 3127 * we are generating the results for n and n+2 and then interleaving 3128 * those with the results with n+1 and n+3. 3129 */ 3130 for (j = 0; j < 32; j++) { 3131 /* first pass generates n and n+2 */ 3132 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues; 3133 u32 reta = (base & 0x07800780) >> (7 - shift); 3134 3135 /* second pass generates n+1 and n+3 */ 3136 base += 0x00010001 * num_rx_queues; 3137 reta |= (base & 0x07800780) << (1 + shift); 3138 3139 wr32(E1000_RETA(j), reta); 3140 } 3141 3142 /* Disable raw packet checksumming so that RSS hash is placed in 3143 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 3144 * offloads as they are enabled by default 3145 */ 3146 rxcsum = rd32(E1000_RXCSUM); 3147 rxcsum |= E1000_RXCSUM_PCSD; 3148 3149 if (adapter->hw.mac.type >= e1000_82576) 3150 /* Enable Receive Checksum Offload for SCTP */ 3151 rxcsum |= E1000_RXCSUM_CRCOFL; 3152 3153 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 3154 wr32(E1000_RXCSUM, rxcsum); 3155 3156 /* Generate RSS hash based on packet types, TCP/UDP 3157 * port numbers and/or IPv4/v6 src and dst addresses 3158 */ 3159 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 3160 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3161 E1000_MRQC_RSS_FIELD_IPV6 | 3162 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3163 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 3164 3165 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 3166 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 3167 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 3168 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 3169 3170 /* If VMDq is enabled then we set the appropriate mode for that, else 3171 * we default to RSS so that an RSS hash is calculated per packet even 3172 * if we are only using one queue 3173 */ 3174 if (adapter->vfs_allocated_count) { 3175 if (hw->mac.type > e1000_82575) { 3176 /* Set the default pool for the PF's first queue */ 3177 u32 vtctl = rd32(E1000_VT_CTL); 3178 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 3179 E1000_VT_CTL_DISABLE_DEF_POOL); 3180 vtctl |= adapter->vfs_allocated_count << 3181 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 3182 wr32(E1000_VT_CTL, vtctl); 3183 } 3184 if (adapter->rss_queues > 1) 3185 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; 3186 else 3187 mrqc |= E1000_MRQC_ENABLE_VMDQ; 3188 } else { 3189 if (hw->mac.type != e1000_i211) 3190 mrqc |= E1000_MRQC_ENABLE_RSS_4Q; 3191 } 3192 igb_vmm_control(adapter); 3193 3194 wr32(E1000_MRQC, mrqc); 3195 } 3196 3197 /** 3198 * igb_setup_rctl - configure the receive control registers 3199 * @adapter: Board private structure 3200 **/ 3201 void igb_setup_rctl(struct igb_adapter *adapter) 3202 { 3203 struct e1000_hw *hw = &adapter->hw; 3204 u32 rctl; 3205 3206 rctl = rd32(E1000_RCTL); 3207 3208 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3209 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 3210 3211 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 3212 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3213 3214 /* enable stripping of CRC. It's unlikely this will break BMC 3215 * redirection as it did with e1000. Newer features require 3216 * that the HW strips the CRC. 3217 */ 3218 rctl |= E1000_RCTL_SECRC; 3219 3220 /* disable store bad packets and clear size bits. */ 3221 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 3222 3223 /* enable LPE to prevent packets larger than max_frame_size */ 3224 rctl |= E1000_RCTL_LPE; 3225 3226 /* disable queue 0 to prevent tail write w/o re-config */ 3227 wr32(E1000_RXDCTL(0), 0); 3228 3229 /* Attention!!! For SR-IOV PF driver operations you must enable 3230 * queue drop for all VF and PF queues to prevent head of line blocking 3231 * if an un-trusted VF does not provide descriptors to hardware. 3232 */ 3233 if (adapter->vfs_allocated_count) { 3234 /* set all queue drop enable bits */ 3235 wr32(E1000_QDE, ALL_QUEUES); 3236 } 3237 3238 /* This is useful for sniffing bad packets. */ 3239 if (adapter->netdev->features & NETIF_F_RXALL) { 3240 /* UPE and MPE will be handled by normal PROMISC logic 3241 * in e1000e_set_rx_mode 3242 */ 3243 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3244 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3245 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3246 3247 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3248 E1000_RCTL_DPF | /* Allow filtered pause */ 3249 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3250 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3251 * and that breaks VLANs. 3252 */ 3253 } 3254 3255 wr32(E1000_RCTL, rctl); 3256 } 3257 3258 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 3259 int vfn) 3260 { 3261 struct e1000_hw *hw = &adapter->hw; 3262 u32 vmolr; 3263 3264 /* if it isn't the PF check to see if VFs are enabled and 3265 * increase the size to support vlan tags 3266 */ 3267 if (vfn < adapter->vfs_allocated_count && 3268 adapter->vf_data[vfn].vlans_enabled) 3269 size += VLAN_TAG_SIZE; 3270 3271 vmolr = rd32(E1000_VMOLR(vfn)); 3272 vmolr &= ~E1000_VMOLR_RLPML_MASK; 3273 vmolr |= size | E1000_VMOLR_LPE; 3274 wr32(E1000_VMOLR(vfn), vmolr); 3275 3276 return 0; 3277 } 3278 3279 /** 3280 * igb_rlpml_set - set maximum receive packet size 3281 * @adapter: board private structure 3282 * 3283 * Configure maximum receivable packet size. 3284 **/ 3285 static void igb_rlpml_set(struct igb_adapter *adapter) 3286 { 3287 u32 max_frame_size = adapter->max_frame_size; 3288 struct e1000_hw *hw = &adapter->hw; 3289 u16 pf_id = adapter->vfs_allocated_count; 3290 3291 if (pf_id) { 3292 igb_set_vf_rlpml(adapter, max_frame_size, pf_id); 3293 /* If we're in VMDQ or SR-IOV mode, then set global RLPML 3294 * to our max jumbo frame size, in case we need to enable 3295 * jumbo frames on one of the rings later. 3296 * This will not pass over-length frames into the default 3297 * queue because it's gated by the VMOLR.RLPML. 3298 */ 3299 max_frame_size = MAX_JUMBO_FRAME_SIZE; 3300 } 3301 3302 wr32(E1000_RLPML, max_frame_size); 3303 } 3304 3305 static inline void igb_set_vmolr(struct igb_adapter *adapter, 3306 int vfn, bool aupe) 3307 { 3308 struct e1000_hw *hw = &adapter->hw; 3309 u32 vmolr; 3310 3311 /* This register exists only on 82576 and newer so if we are older then 3312 * we should exit and do nothing 3313 */ 3314 if (hw->mac.type < e1000_82576) 3315 return; 3316 3317 vmolr = rd32(E1000_VMOLR(vfn)); 3318 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ 3319 if (aupe) 3320 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 3321 else 3322 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 3323 3324 /* clear all bits that might not be set */ 3325 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 3326 3327 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 3328 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 3329 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 3330 * multicast packets 3331 */ 3332 if (vfn <= adapter->vfs_allocated_count) 3333 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 3334 3335 wr32(E1000_VMOLR(vfn), vmolr); 3336 } 3337 3338 /** 3339 * igb_configure_rx_ring - Configure a receive ring after Reset 3340 * @adapter: board private structure 3341 * @ring: receive ring to be configured 3342 * 3343 * Configure the Rx unit of the MAC after a reset. 3344 **/ 3345 void igb_configure_rx_ring(struct igb_adapter *adapter, 3346 struct igb_ring *ring) 3347 { 3348 struct e1000_hw *hw = &adapter->hw; 3349 u64 rdba = ring->dma; 3350 int reg_idx = ring->reg_idx; 3351 u32 srrctl = 0, rxdctl = 0; 3352 3353 /* disable the queue */ 3354 wr32(E1000_RXDCTL(reg_idx), 0); 3355 3356 /* Set DMA base address registers */ 3357 wr32(E1000_RDBAL(reg_idx), 3358 rdba & 0x00000000ffffffffULL); 3359 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 3360 wr32(E1000_RDLEN(reg_idx), 3361 ring->count * sizeof(union e1000_adv_rx_desc)); 3362 3363 /* initialize head and tail */ 3364 ring->tail = hw->hw_addr + E1000_RDT(reg_idx); 3365 wr32(E1000_RDH(reg_idx), 0); 3366 writel(0, ring->tail); 3367 3368 /* set descriptor configuration */ 3369 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 3370 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3371 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3372 if (hw->mac.type >= e1000_82580) 3373 srrctl |= E1000_SRRCTL_TIMESTAMP; 3374 /* Only set Drop Enable if we are supporting multiple queues */ 3375 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) 3376 srrctl |= E1000_SRRCTL_DROP_EN; 3377 3378 wr32(E1000_SRRCTL(reg_idx), srrctl); 3379 3380 /* set filtering for VMDQ pools */ 3381 igb_set_vmolr(adapter, reg_idx & 0x7, true); 3382 3383 rxdctl |= IGB_RX_PTHRESH; 3384 rxdctl |= IGB_RX_HTHRESH << 8; 3385 rxdctl |= IGB_RX_WTHRESH << 16; 3386 3387 /* enable receive descriptor fetching */ 3388 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3389 wr32(E1000_RXDCTL(reg_idx), rxdctl); 3390 } 3391 3392 /** 3393 * igb_configure_rx - Configure receive Unit after Reset 3394 * @adapter: board private structure 3395 * 3396 * Configure the Rx unit of the MAC after a reset. 3397 **/ 3398 static void igb_configure_rx(struct igb_adapter *adapter) 3399 { 3400 int i; 3401 3402 /* set UTA to appropriate mode */ 3403 igb_set_uta(adapter); 3404 3405 /* set the correct pool for the PF default MAC address in entry 0 */ 3406 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 3407 adapter->vfs_allocated_count); 3408 3409 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3410 * the Base and Length of the Rx Descriptor Ring 3411 */ 3412 for (i = 0; i < adapter->num_rx_queues; i++) 3413 igb_configure_rx_ring(adapter, adapter->rx_ring[i]); 3414 } 3415 3416 /** 3417 * igb_free_tx_resources - Free Tx Resources per Queue 3418 * @tx_ring: Tx descriptor ring for a specific queue 3419 * 3420 * Free all transmit software resources 3421 **/ 3422 void igb_free_tx_resources(struct igb_ring *tx_ring) 3423 { 3424 igb_clean_tx_ring(tx_ring); 3425 3426 vfree(tx_ring->tx_buffer_info); 3427 tx_ring->tx_buffer_info = NULL; 3428 3429 /* if not set, then don't free */ 3430 if (!tx_ring->desc) 3431 return; 3432 3433 dma_free_coherent(tx_ring->dev, tx_ring->size, 3434 tx_ring->desc, tx_ring->dma); 3435 3436 tx_ring->desc = NULL; 3437 } 3438 3439 /** 3440 * igb_free_all_tx_resources - Free Tx Resources for All Queues 3441 * @adapter: board private structure 3442 * 3443 * Free all transmit software resources 3444 **/ 3445 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 3446 { 3447 int i; 3448 3449 for (i = 0; i < adapter->num_tx_queues; i++) 3450 igb_free_tx_resources(adapter->tx_ring[i]); 3451 } 3452 3453 void igb_unmap_and_free_tx_resource(struct igb_ring *ring, 3454 struct igb_tx_buffer *tx_buffer) 3455 { 3456 if (tx_buffer->skb) { 3457 dev_kfree_skb_any(tx_buffer->skb); 3458 if (dma_unmap_len(tx_buffer, len)) 3459 dma_unmap_single(ring->dev, 3460 dma_unmap_addr(tx_buffer, dma), 3461 dma_unmap_len(tx_buffer, len), 3462 DMA_TO_DEVICE); 3463 } else if (dma_unmap_len(tx_buffer, len)) { 3464 dma_unmap_page(ring->dev, 3465 dma_unmap_addr(tx_buffer, dma), 3466 dma_unmap_len(tx_buffer, len), 3467 DMA_TO_DEVICE); 3468 } 3469 tx_buffer->next_to_watch = NULL; 3470 tx_buffer->skb = NULL; 3471 dma_unmap_len_set(tx_buffer, len, 0); 3472 /* buffer_info must be completely set up in the transmit path */ 3473 } 3474 3475 /** 3476 * igb_clean_tx_ring - Free Tx Buffers 3477 * @tx_ring: ring to be cleaned 3478 **/ 3479 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 3480 { 3481 struct igb_tx_buffer *buffer_info; 3482 unsigned long size; 3483 u16 i; 3484 3485 if (!tx_ring->tx_buffer_info) 3486 return; 3487 /* Free all the Tx ring sk_buffs */ 3488 3489 for (i = 0; i < tx_ring->count; i++) { 3490 buffer_info = &tx_ring->tx_buffer_info[i]; 3491 igb_unmap_and_free_tx_resource(tx_ring, buffer_info); 3492 } 3493 3494 netdev_tx_reset_queue(txring_txq(tx_ring)); 3495 3496 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3497 memset(tx_ring->tx_buffer_info, 0, size); 3498 3499 /* Zero out the descriptor ring */ 3500 memset(tx_ring->desc, 0, tx_ring->size); 3501 3502 tx_ring->next_to_use = 0; 3503 tx_ring->next_to_clean = 0; 3504 } 3505 3506 /** 3507 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 3508 * @adapter: board private structure 3509 **/ 3510 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 3511 { 3512 int i; 3513 3514 for (i = 0; i < adapter->num_tx_queues; i++) 3515 igb_clean_tx_ring(adapter->tx_ring[i]); 3516 } 3517 3518 /** 3519 * igb_free_rx_resources - Free Rx Resources 3520 * @rx_ring: ring to clean the resources from 3521 * 3522 * Free all receive software resources 3523 **/ 3524 void igb_free_rx_resources(struct igb_ring *rx_ring) 3525 { 3526 igb_clean_rx_ring(rx_ring); 3527 3528 vfree(rx_ring->rx_buffer_info); 3529 rx_ring->rx_buffer_info = NULL; 3530 3531 /* if not set, then don't free */ 3532 if (!rx_ring->desc) 3533 return; 3534 3535 dma_free_coherent(rx_ring->dev, rx_ring->size, 3536 rx_ring->desc, rx_ring->dma); 3537 3538 rx_ring->desc = NULL; 3539 } 3540 3541 /** 3542 * igb_free_all_rx_resources - Free Rx Resources for All Queues 3543 * @adapter: board private structure 3544 * 3545 * Free all receive software resources 3546 **/ 3547 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 3548 { 3549 int i; 3550 3551 for (i = 0; i < adapter->num_rx_queues; i++) 3552 igb_free_rx_resources(adapter->rx_ring[i]); 3553 } 3554 3555 /** 3556 * igb_clean_rx_ring - Free Rx Buffers per Queue 3557 * @rx_ring: ring to free buffers from 3558 **/ 3559 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 3560 { 3561 unsigned long size; 3562 u16 i; 3563 3564 if (rx_ring->skb) 3565 dev_kfree_skb(rx_ring->skb); 3566 rx_ring->skb = NULL; 3567 3568 if (!rx_ring->rx_buffer_info) 3569 return; 3570 3571 /* Free all the Rx ring sk_buffs */ 3572 for (i = 0; i < rx_ring->count; i++) { 3573 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 3574 3575 if (!buffer_info->page) 3576 continue; 3577 3578 dma_unmap_page(rx_ring->dev, 3579 buffer_info->dma, 3580 PAGE_SIZE, 3581 DMA_FROM_DEVICE); 3582 __free_page(buffer_info->page); 3583 3584 buffer_info->page = NULL; 3585 } 3586 3587 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3588 memset(rx_ring->rx_buffer_info, 0, size); 3589 3590 /* Zero out the descriptor ring */ 3591 memset(rx_ring->desc, 0, rx_ring->size); 3592 3593 rx_ring->next_to_alloc = 0; 3594 rx_ring->next_to_clean = 0; 3595 rx_ring->next_to_use = 0; 3596 } 3597 3598 /** 3599 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 3600 * @adapter: board private structure 3601 **/ 3602 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 3603 { 3604 int i; 3605 3606 for (i = 0; i < adapter->num_rx_queues; i++) 3607 igb_clean_rx_ring(adapter->rx_ring[i]); 3608 } 3609 3610 /** 3611 * igb_set_mac - Change the Ethernet Address of the NIC 3612 * @netdev: network interface device structure 3613 * @p: pointer to an address structure 3614 * 3615 * Returns 0 on success, negative on failure 3616 **/ 3617 static int igb_set_mac(struct net_device *netdev, void *p) 3618 { 3619 struct igb_adapter *adapter = netdev_priv(netdev); 3620 struct e1000_hw *hw = &adapter->hw; 3621 struct sockaddr *addr = p; 3622 3623 if (!is_valid_ether_addr(addr->sa_data)) 3624 return -EADDRNOTAVAIL; 3625 3626 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3627 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3628 3629 /* set the correct pool for the new PF MAC address in entry 0 */ 3630 igb_rar_set_qsel(adapter, hw->mac.addr, 0, 3631 adapter->vfs_allocated_count); 3632 3633 return 0; 3634 } 3635 3636 /** 3637 * igb_write_mc_addr_list - write multicast addresses to MTA 3638 * @netdev: network interface device structure 3639 * 3640 * Writes multicast address list to the MTA hash table. 3641 * Returns: -ENOMEM on failure 3642 * 0 on no addresses written 3643 * X on writing X addresses to MTA 3644 **/ 3645 static int igb_write_mc_addr_list(struct net_device *netdev) 3646 { 3647 struct igb_adapter *adapter = netdev_priv(netdev); 3648 struct e1000_hw *hw = &adapter->hw; 3649 struct netdev_hw_addr *ha; 3650 u8 *mta_list; 3651 int i; 3652 3653 if (netdev_mc_empty(netdev)) { 3654 /* nothing to program, so clear mc list */ 3655 igb_update_mc_addr_list(hw, NULL, 0); 3656 igb_restore_vf_multicasts(adapter); 3657 return 0; 3658 } 3659 3660 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3661 if (!mta_list) 3662 return -ENOMEM; 3663 3664 /* The shared function expects a packed array of only addresses. */ 3665 i = 0; 3666 netdev_for_each_mc_addr(ha, netdev) 3667 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3668 3669 igb_update_mc_addr_list(hw, mta_list, i); 3670 kfree(mta_list); 3671 3672 return netdev_mc_count(netdev); 3673 } 3674 3675 /** 3676 * igb_write_uc_addr_list - write unicast addresses to RAR table 3677 * @netdev: network interface device structure 3678 * 3679 * Writes unicast address list to the RAR table. 3680 * Returns: -ENOMEM on failure/insufficient address space 3681 * 0 on no addresses written 3682 * X on writing X addresses to the RAR table 3683 **/ 3684 static int igb_write_uc_addr_list(struct net_device *netdev) 3685 { 3686 struct igb_adapter *adapter = netdev_priv(netdev); 3687 struct e1000_hw *hw = &adapter->hw; 3688 unsigned int vfn = adapter->vfs_allocated_count; 3689 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 3690 int count = 0; 3691 3692 /* return ENOMEM indicating insufficient memory for addresses */ 3693 if (netdev_uc_count(netdev) > rar_entries) 3694 return -ENOMEM; 3695 3696 if (!netdev_uc_empty(netdev) && rar_entries) { 3697 struct netdev_hw_addr *ha; 3698 3699 netdev_for_each_uc_addr(ha, netdev) { 3700 if (!rar_entries) 3701 break; 3702 igb_rar_set_qsel(adapter, ha->addr, 3703 rar_entries--, 3704 vfn); 3705 count++; 3706 } 3707 } 3708 /* write the addresses in reverse order to avoid write combining */ 3709 for (; rar_entries > 0 ; rar_entries--) { 3710 wr32(E1000_RAH(rar_entries), 0); 3711 wr32(E1000_RAL(rar_entries), 0); 3712 } 3713 wrfl(); 3714 3715 return count; 3716 } 3717 3718 /** 3719 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3720 * @netdev: network interface device structure 3721 * 3722 * The set_rx_mode entry point is called whenever the unicast or multicast 3723 * address lists or the network interface flags are updated. This routine is 3724 * responsible for configuring the hardware for proper unicast, multicast, 3725 * promiscuous mode, and all-multi behavior. 3726 **/ 3727 static void igb_set_rx_mode(struct net_device *netdev) 3728 { 3729 struct igb_adapter *adapter = netdev_priv(netdev); 3730 struct e1000_hw *hw = &adapter->hw; 3731 unsigned int vfn = adapter->vfs_allocated_count; 3732 u32 rctl, vmolr = 0; 3733 int count; 3734 3735 /* Check for Promiscuous and All Multicast modes */ 3736 rctl = rd32(E1000_RCTL); 3737 3738 /* clear the effected bits */ 3739 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); 3740 3741 if (netdev->flags & IFF_PROMISC) { 3742 u32 mrqc = rd32(E1000_MRQC); 3743 /* retain VLAN HW filtering if in VT mode */ 3744 if (mrqc & E1000_MRQC_ENABLE_VMDQ) 3745 rctl |= E1000_RCTL_VFE; 3746 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3747 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); 3748 } else { 3749 if (netdev->flags & IFF_ALLMULTI) { 3750 rctl |= E1000_RCTL_MPE; 3751 vmolr |= E1000_VMOLR_MPME; 3752 } else { 3753 /* Write addresses to the MTA, if the attempt fails 3754 * then we should just turn on promiscuous mode so 3755 * that we can at least receive multicast traffic 3756 */ 3757 count = igb_write_mc_addr_list(netdev); 3758 if (count < 0) { 3759 rctl |= E1000_RCTL_MPE; 3760 vmolr |= E1000_VMOLR_MPME; 3761 } else if (count) { 3762 vmolr |= E1000_VMOLR_ROMPE; 3763 } 3764 } 3765 /* Write addresses to available RAR registers, if there is not 3766 * sufficient space to store all the addresses then enable 3767 * unicast promiscuous mode 3768 */ 3769 count = igb_write_uc_addr_list(netdev); 3770 if (count < 0) { 3771 rctl |= E1000_RCTL_UPE; 3772 vmolr |= E1000_VMOLR_ROPE; 3773 } 3774 rctl |= E1000_RCTL_VFE; 3775 } 3776 wr32(E1000_RCTL, rctl); 3777 3778 /* In order to support SR-IOV and eventually VMDq it is necessary to set 3779 * the VMOLR to enable the appropriate modes. Without this workaround 3780 * we will have issues with VLAN tag stripping not being done for frames 3781 * that are only arriving because we are the default pool 3782 */ 3783 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 3784 return; 3785 3786 vmolr |= rd32(E1000_VMOLR(vfn)) & 3787 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 3788 wr32(E1000_VMOLR(vfn), vmolr); 3789 igb_restore_vf_multicasts(adapter); 3790 } 3791 3792 static void igb_check_wvbr(struct igb_adapter *adapter) 3793 { 3794 struct e1000_hw *hw = &adapter->hw; 3795 u32 wvbr = 0; 3796 3797 switch (hw->mac.type) { 3798 case e1000_82576: 3799 case e1000_i350: 3800 if (!(wvbr = rd32(E1000_WVBR))) 3801 return; 3802 break; 3803 default: 3804 break; 3805 } 3806 3807 adapter->wvbr |= wvbr; 3808 } 3809 3810 #define IGB_STAGGERED_QUEUE_OFFSET 8 3811 3812 static void igb_spoof_check(struct igb_adapter *adapter) 3813 { 3814 int j; 3815 3816 if (!adapter->wvbr) 3817 return; 3818 3819 for(j = 0; j < adapter->vfs_allocated_count; j++) { 3820 if (adapter->wvbr & (1 << j) || 3821 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { 3822 dev_warn(&adapter->pdev->dev, 3823 "Spoof event(s) detected on VF %d\n", j); 3824 adapter->wvbr &= 3825 ~((1 << j) | 3826 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); 3827 } 3828 } 3829 } 3830 3831 /* Need to wait a few seconds after link up to get diagnostic information from 3832 * the phy 3833 */ 3834 static void igb_update_phy_info(unsigned long data) 3835 { 3836 struct igb_adapter *adapter = (struct igb_adapter *) data; 3837 igb_get_phy_info(&adapter->hw); 3838 } 3839 3840 /** 3841 * igb_has_link - check shared code for link and determine up/down 3842 * @adapter: pointer to driver private info 3843 **/ 3844 bool igb_has_link(struct igb_adapter *adapter) 3845 { 3846 struct e1000_hw *hw = &adapter->hw; 3847 bool link_active = false; 3848 s32 ret_val = 0; 3849 3850 /* get_link_status is set on LSC (link status) interrupt or 3851 * rx sequence error interrupt. get_link_status will stay 3852 * false until the e1000_check_for_link establishes link 3853 * for copper adapters ONLY 3854 */ 3855 switch (hw->phy.media_type) { 3856 case e1000_media_type_copper: 3857 if (hw->mac.get_link_status) { 3858 ret_val = hw->mac.ops.check_for_link(hw); 3859 link_active = !hw->mac.get_link_status; 3860 } else { 3861 link_active = true; 3862 } 3863 break; 3864 case e1000_media_type_internal_serdes: 3865 ret_val = hw->mac.ops.check_for_link(hw); 3866 link_active = hw->mac.serdes_has_link; 3867 break; 3868 default: 3869 case e1000_media_type_unknown: 3870 break; 3871 } 3872 3873 return link_active; 3874 } 3875 3876 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 3877 { 3878 bool ret = false; 3879 u32 ctrl_ext, thstat; 3880 3881 /* check for thermal sensor event on i350 copper only */ 3882 if (hw->mac.type == e1000_i350) { 3883 thstat = rd32(E1000_THSTAT); 3884 ctrl_ext = rd32(E1000_CTRL_EXT); 3885 3886 if ((hw->phy.media_type == e1000_media_type_copper) && 3887 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 3888 ret = !!(thstat & event); 3889 } 3890 3891 return ret; 3892 } 3893 3894 /** 3895 * igb_watchdog - Timer Call-back 3896 * @data: pointer to adapter cast into an unsigned long 3897 **/ 3898 static void igb_watchdog(unsigned long data) 3899 { 3900 struct igb_adapter *adapter = (struct igb_adapter *)data; 3901 /* Do the rest outside of interrupt context */ 3902 schedule_work(&adapter->watchdog_task); 3903 } 3904 3905 static void igb_watchdog_task(struct work_struct *work) 3906 { 3907 struct igb_adapter *adapter = container_of(work, 3908 struct igb_adapter, 3909 watchdog_task); 3910 struct e1000_hw *hw = &adapter->hw; 3911 struct e1000_phy_info *phy = &hw->phy; 3912 struct net_device *netdev = adapter->netdev; 3913 u32 link; 3914 int i; 3915 3916 link = igb_has_link(adapter); 3917 if (link) { 3918 /* Cancel scheduled suspend requests. */ 3919 pm_runtime_resume(netdev->dev.parent); 3920 3921 if (!netif_carrier_ok(netdev)) { 3922 u32 ctrl; 3923 hw->mac.ops.get_speed_and_duplex(hw, 3924 &adapter->link_speed, 3925 &adapter->link_duplex); 3926 3927 ctrl = rd32(E1000_CTRL); 3928 /* Links status message must follow this format */ 3929 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s " 3930 "Duplex, Flow Control: %s\n", 3931 netdev->name, 3932 adapter->link_speed, 3933 adapter->link_duplex == FULL_DUPLEX ? 3934 "Full" : "Half", 3935 (ctrl & E1000_CTRL_TFCE) && 3936 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 3937 (ctrl & E1000_CTRL_RFCE) ? "RX" : 3938 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 3939 3940 /* check if SmartSpeed worked */ 3941 igb_check_downshift(hw); 3942 if (phy->speed_downgraded) 3943 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 3944 3945 /* check for thermal sensor event */ 3946 if (igb_thermal_sensor_event(hw, 3947 E1000_THSTAT_LINK_THROTTLE)) { 3948 netdev_info(netdev, "The network adapter link " 3949 "speed was downshifted because it " 3950 "overheated\n"); 3951 } 3952 3953 /* adjust timeout factor according to speed/duplex */ 3954 adapter->tx_timeout_factor = 1; 3955 switch (adapter->link_speed) { 3956 case SPEED_10: 3957 adapter->tx_timeout_factor = 14; 3958 break; 3959 case SPEED_100: 3960 /* maybe add some timeout factor ? */ 3961 break; 3962 } 3963 3964 netif_carrier_on(netdev); 3965 3966 igb_ping_all_vfs(adapter); 3967 igb_check_vf_rate_limit(adapter); 3968 3969 /* link state has changed, schedule phy info update */ 3970 if (!test_bit(__IGB_DOWN, &adapter->state)) 3971 mod_timer(&adapter->phy_info_timer, 3972 round_jiffies(jiffies + 2 * HZ)); 3973 } 3974 } else { 3975 if (netif_carrier_ok(netdev)) { 3976 adapter->link_speed = 0; 3977 adapter->link_duplex = 0; 3978 3979 /* check for thermal sensor event */ 3980 if (igb_thermal_sensor_event(hw, 3981 E1000_THSTAT_PWR_DOWN)) { 3982 netdev_err(netdev, "The network adapter was " 3983 "stopped because it overheated\n"); 3984 } 3985 3986 /* Links status message must follow this format */ 3987 printk(KERN_INFO "igb: %s NIC Link is Down\n", 3988 netdev->name); 3989 netif_carrier_off(netdev); 3990 3991 igb_ping_all_vfs(adapter); 3992 3993 /* link state has changed, schedule phy info update */ 3994 if (!test_bit(__IGB_DOWN, &adapter->state)) 3995 mod_timer(&adapter->phy_info_timer, 3996 round_jiffies(jiffies + 2 * HZ)); 3997 3998 pm_schedule_suspend(netdev->dev.parent, 3999 MSEC_PER_SEC * 5); 4000 } 4001 } 4002 4003 spin_lock(&adapter->stats64_lock); 4004 igb_update_stats(adapter, &adapter->stats64); 4005 spin_unlock(&adapter->stats64_lock); 4006 4007 for (i = 0; i < adapter->num_tx_queues; i++) { 4008 struct igb_ring *tx_ring = adapter->tx_ring[i]; 4009 if (!netif_carrier_ok(netdev)) { 4010 /* We've lost link, so the controller stops DMA, 4011 * but we've got queued Tx work that's never going 4012 * to get done, so reset controller to flush Tx. 4013 * (Do the reset outside of interrupt context). 4014 */ 4015 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 4016 adapter->tx_timeout_count++; 4017 schedule_work(&adapter->reset_task); 4018 /* return immediately since reset is imminent */ 4019 return; 4020 } 4021 } 4022 4023 /* Force detection of hung controller every watchdog period */ 4024 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 4025 } 4026 4027 /* Cause software interrupt to ensure Rx ring is cleaned */ 4028 if (adapter->msix_entries) { 4029 u32 eics = 0; 4030 for (i = 0; i < adapter->num_q_vectors; i++) 4031 eics |= adapter->q_vector[i]->eims_value; 4032 wr32(E1000_EICS, eics); 4033 } else { 4034 wr32(E1000_ICS, E1000_ICS_RXDMT0); 4035 } 4036 4037 igb_spoof_check(adapter); 4038 igb_ptp_rx_hang(adapter); 4039 4040 /* Reset the timer */ 4041 if (!test_bit(__IGB_DOWN, &adapter->state)) 4042 mod_timer(&adapter->watchdog_timer, 4043 round_jiffies(jiffies + 2 * HZ)); 4044 } 4045 4046 enum latency_range { 4047 lowest_latency = 0, 4048 low_latency = 1, 4049 bulk_latency = 2, 4050 latency_invalid = 255 4051 }; 4052 4053 /** 4054 * igb_update_ring_itr - update the dynamic ITR value based on packet size 4055 * @q_vector: pointer to q_vector 4056 * 4057 * Stores a new ITR value based on strictly on packet size. This 4058 * algorithm is less sophisticated than that used in igb_update_itr, 4059 * due to the difficulty of synchronizing statistics across multiple 4060 * receive rings. The divisors and thresholds used by this function 4061 * were determined based on theoretical maximum wire speed and testing 4062 * data, in order to minimize response time while increasing bulk 4063 * throughput. 4064 * This functionality is controlled by the InterruptThrottleRate module 4065 * parameter (see igb_param.c) 4066 * NOTE: This function is called only when operating in a multiqueue 4067 * receive environment. 4068 **/ 4069 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 4070 { 4071 int new_val = q_vector->itr_val; 4072 int avg_wire_size = 0; 4073 struct igb_adapter *adapter = q_vector->adapter; 4074 unsigned int packets; 4075 4076 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4077 * ints/sec - ITR timer value of 120 ticks. 4078 */ 4079 if (adapter->link_speed != SPEED_1000) { 4080 new_val = IGB_4K_ITR; 4081 goto set_itr_val; 4082 } 4083 4084 packets = q_vector->rx.total_packets; 4085 if (packets) 4086 avg_wire_size = q_vector->rx.total_bytes / packets; 4087 4088 packets = q_vector->tx.total_packets; 4089 if (packets) 4090 avg_wire_size = max_t(u32, avg_wire_size, 4091 q_vector->tx.total_bytes / packets); 4092 4093 /* if avg_wire_size isn't set no work was done */ 4094 if (!avg_wire_size) 4095 goto clear_counts; 4096 4097 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4098 avg_wire_size += 24; 4099 4100 /* Don't starve jumbo frames */ 4101 avg_wire_size = min(avg_wire_size, 3000); 4102 4103 /* Give a little boost to mid-size frames */ 4104 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 4105 new_val = avg_wire_size / 3; 4106 else 4107 new_val = avg_wire_size / 2; 4108 4109 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4110 if (new_val < IGB_20K_ITR && 4111 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4112 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4113 new_val = IGB_20K_ITR; 4114 4115 set_itr_val: 4116 if (new_val != q_vector->itr_val) { 4117 q_vector->itr_val = new_val; 4118 q_vector->set_itr = 1; 4119 } 4120 clear_counts: 4121 q_vector->rx.total_bytes = 0; 4122 q_vector->rx.total_packets = 0; 4123 q_vector->tx.total_bytes = 0; 4124 q_vector->tx.total_packets = 0; 4125 } 4126 4127 /** 4128 * igb_update_itr - update the dynamic ITR value based on statistics 4129 * @q_vector: pointer to q_vector 4130 * @ring_container: ring info to update the itr for 4131 * 4132 * Stores a new ITR value based on packets and byte 4133 * counts during the last interrupt. The advantage of per interrupt 4134 * computation is faster updates and more accurate ITR for the current 4135 * traffic pattern. Constants in this function were computed 4136 * based on theoretical maximum wire speed and thresholds were set based 4137 * on testing data as well as attempting to minimize response time 4138 * while increasing bulk throughput. 4139 * this functionality is controlled by the InterruptThrottleRate module 4140 * parameter (see igb_param.c) 4141 * NOTE: These calculations are only valid when operating in a single- 4142 * queue environment. 4143 **/ 4144 static void igb_update_itr(struct igb_q_vector *q_vector, 4145 struct igb_ring_container *ring_container) 4146 { 4147 unsigned int packets = ring_container->total_packets; 4148 unsigned int bytes = ring_container->total_bytes; 4149 u8 itrval = ring_container->itr; 4150 4151 /* no packets, exit with status unchanged */ 4152 if (packets == 0) 4153 return; 4154 4155 switch (itrval) { 4156 case lowest_latency: 4157 /* handle TSO and jumbo frames */ 4158 if (bytes/packets > 8000) 4159 itrval = bulk_latency; 4160 else if ((packets < 5) && (bytes > 512)) 4161 itrval = low_latency; 4162 break; 4163 case low_latency: /* 50 usec aka 20000 ints/s */ 4164 if (bytes > 10000) { 4165 /* this if handles the TSO accounting */ 4166 if (bytes/packets > 8000) { 4167 itrval = bulk_latency; 4168 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 4169 itrval = bulk_latency; 4170 } else if ((packets > 35)) { 4171 itrval = lowest_latency; 4172 } 4173 } else if (bytes/packets > 2000) { 4174 itrval = bulk_latency; 4175 } else if (packets <= 2 && bytes < 512) { 4176 itrval = lowest_latency; 4177 } 4178 break; 4179 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4180 if (bytes > 25000) { 4181 if (packets > 35) 4182 itrval = low_latency; 4183 } else if (bytes < 1500) { 4184 itrval = low_latency; 4185 } 4186 break; 4187 } 4188 4189 /* clear work counters since we have the values we need */ 4190 ring_container->total_bytes = 0; 4191 ring_container->total_packets = 0; 4192 4193 /* write updated itr to ring container */ 4194 ring_container->itr = itrval; 4195 } 4196 4197 static void igb_set_itr(struct igb_q_vector *q_vector) 4198 { 4199 struct igb_adapter *adapter = q_vector->adapter; 4200 u32 new_itr = q_vector->itr_val; 4201 u8 current_itr = 0; 4202 4203 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4204 if (adapter->link_speed != SPEED_1000) { 4205 current_itr = 0; 4206 new_itr = IGB_4K_ITR; 4207 goto set_itr_now; 4208 } 4209 4210 igb_update_itr(q_vector, &q_vector->tx); 4211 igb_update_itr(q_vector, &q_vector->rx); 4212 4213 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4214 4215 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4216 if (current_itr == lowest_latency && 4217 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4218 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4219 current_itr = low_latency; 4220 4221 switch (current_itr) { 4222 /* counts and packets in update_itr are dependent on these numbers */ 4223 case lowest_latency: 4224 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 4225 break; 4226 case low_latency: 4227 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 4228 break; 4229 case bulk_latency: 4230 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 4231 break; 4232 default: 4233 break; 4234 } 4235 4236 set_itr_now: 4237 if (new_itr != q_vector->itr_val) { 4238 /* this attempts to bias the interrupt rate towards Bulk 4239 * by adding intermediate steps when interrupt rate is 4240 * increasing 4241 */ 4242 new_itr = new_itr > q_vector->itr_val ? 4243 max((new_itr * q_vector->itr_val) / 4244 (new_itr + (q_vector->itr_val >> 2)), 4245 new_itr) : new_itr; 4246 /* Don't write the value here; it resets the adapter's 4247 * internal timer, and causes us to delay far longer than 4248 * we should between interrupts. Instead, we write the ITR 4249 * value at the beginning of the next interrupt so the timing 4250 * ends up being correct. 4251 */ 4252 q_vector->itr_val = new_itr; 4253 q_vector->set_itr = 1; 4254 } 4255 } 4256 4257 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, 4258 u32 type_tucmd, u32 mss_l4len_idx) 4259 { 4260 struct e1000_adv_tx_context_desc *context_desc; 4261 u16 i = tx_ring->next_to_use; 4262 4263 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 4264 4265 i++; 4266 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 4267 4268 /* set bits to identify this as an advanced context descriptor */ 4269 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 4270 4271 /* For 82575, context index must be unique per ring. */ 4272 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4273 mss_l4len_idx |= tx_ring->reg_idx << 4; 4274 4275 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 4276 context_desc->seqnum_seed = 0; 4277 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 4278 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 4279 } 4280 4281 static int igb_tso(struct igb_ring *tx_ring, 4282 struct igb_tx_buffer *first, 4283 u8 *hdr_len) 4284 { 4285 struct sk_buff *skb = first->skb; 4286 u32 vlan_macip_lens, type_tucmd; 4287 u32 mss_l4len_idx, l4len; 4288 4289 if (skb->ip_summed != CHECKSUM_PARTIAL) 4290 return 0; 4291 4292 if (!skb_is_gso(skb)) 4293 return 0; 4294 4295 if (skb_header_cloned(skb)) { 4296 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4297 if (err) 4298 return err; 4299 } 4300 4301 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 4302 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 4303 4304 if (first->protocol == __constant_htons(ETH_P_IP)) { 4305 struct iphdr *iph = ip_hdr(skb); 4306 iph->tot_len = 0; 4307 iph->check = 0; 4308 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 4309 iph->daddr, 0, 4310 IPPROTO_TCP, 4311 0); 4312 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4313 first->tx_flags |= IGB_TX_FLAGS_TSO | 4314 IGB_TX_FLAGS_CSUM | 4315 IGB_TX_FLAGS_IPV4; 4316 } else if (skb_is_gso_v6(skb)) { 4317 ipv6_hdr(skb)->payload_len = 0; 4318 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4319 &ipv6_hdr(skb)->daddr, 4320 0, IPPROTO_TCP, 0); 4321 first->tx_flags |= IGB_TX_FLAGS_TSO | 4322 IGB_TX_FLAGS_CSUM; 4323 } 4324 4325 /* compute header lengths */ 4326 l4len = tcp_hdrlen(skb); 4327 *hdr_len = skb_transport_offset(skb) + l4len; 4328 4329 /* update gso size and bytecount with header size */ 4330 first->gso_segs = skb_shinfo(skb)->gso_segs; 4331 first->bytecount += (first->gso_segs - 1) * *hdr_len; 4332 4333 /* MSS L4LEN IDX */ 4334 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; 4335 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 4336 4337 /* VLAN MACLEN IPLEN */ 4338 vlan_macip_lens = skb_network_header_len(skb); 4339 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4340 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4341 4342 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4343 4344 return 1; 4345 } 4346 4347 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 4348 { 4349 struct sk_buff *skb = first->skb; 4350 u32 vlan_macip_lens = 0; 4351 u32 mss_l4len_idx = 0; 4352 u32 type_tucmd = 0; 4353 4354 if (skb->ip_summed != CHECKSUM_PARTIAL) { 4355 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) 4356 return; 4357 } else { 4358 u8 l4_hdr = 0; 4359 switch (first->protocol) { 4360 case __constant_htons(ETH_P_IP): 4361 vlan_macip_lens |= skb_network_header_len(skb); 4362 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4363 l4_hdr = ip_hdr(skb)->protocol; 4364 break; 4365 case __constant_htons(ETH_P_IPV6): 4366 vlan_macip_lens |= skb_network_header_len(skb); 4367 l4_hdr = ipv6_hdr(skb)->nexthdr; 4368 break; 4369 default: 4370 if (unlikely(net_ratelimit())) { 4371 dev_warn(tx_ring->dev, 4372 "partial checksum but proto=%x!\n", 4373 first->protocol); 4374 } 4375 break; 4376 } 4377 4378 switch (l4_hdr) { 4379 case IPPROTO_TCP: 4380 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 4381 mss_l4len_idx = tcp_hdrlen(skb) << 4382 E1000_ADVTXD_L4LEN_SHIFT; 4383 break; 4384 case IPPROTO_SCTP: 4385 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; 4386 mss_l4len_idx = sizeof(struct sctphdr) << 4387 E1000_ADVTXD_L4LEN_SHIFT; 4388 break; 4389 case IPPROTO_UDP: 4390 mss_l4len_idx = sizeof(struct udphdr) << 4391 E1000_ADVTXD_L4LEN_SHIFT; 4392 break; 4393 default: 4394 if (unlikely(net_ratelimit())) { 4395 dev_warn(tx_ring->dev, 4396 "partial checksum but l4 proto=%x!\n", 4397 l4_hdr); 4398 } 4399 break; 4400 } 4401 4402 /* update TX checksum flag */ 4403 first->tx_flags |= IGB_TX_FLAGS_CSUM; 4404 } 4405 4406 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4407 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4408 4409 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4410 } 4411 4412 #define IGB_SET_FLAG(_input, _flag, _result) \ 4413 ((_flag <= _result) ? \ 4414 ((u32)(_input & _flag) * (_result / _flag)) : \ 4415 ((u32)(_input & _flag) / (_flag / _result))) 4416 4417 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 4418 { 4419 /* set type for advanced descriptor with frame checksum insertion */ 4420 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 4421 E1000_ADVTXD_DCMD_DEXT | 4422 E1000_ADVTXD_DCMD_IFCS; 4423 4424 /* set HW vlan bit if vlan is present */ 4425 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 4426 (E1000_ADVTXD_DCMD_VLE)); 4427 4428 /* set segmentation bits for TSO */ 4429 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 4430 (E1000_ADVTXD_DCMD_TSE)); 4431 4432 /* set timestamp bit if present */ 4433 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 4434 (E1000_ADVTXD_MAC_TSTAMP)); 4435 4436 /* insert frame checksum */ 4437 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 4438 4439 return cmd_type; 4440 } 4441 4442 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 4443 union e1000_adv_tx_desc *tx_desc, 4444 u32 tx_flags, unsigned int paylen) 4445 { 4446 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 4447 4448 /* 82575 requires a unique index per ring */ 4449 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4450 olinfo_status |= tx_ring->reg_idx << 4; 4451 4452 /* insert L4 checksum */ 4453 olinfo_status |= IGB_SET_FLAG(tx_flags, 4454 IGB_TX_FLAGS_CSUM, 4455 (E1000_TXD_POPTS_TXSM << 8)); 4456 4457 /* insert IPv4 checksum */ 4458 olinfo_status |= IGB_SET_FLAG(tx_flags, 4459 IGB_TX_FLAGS_IPV4, 4460 (E1000_TXD_POPTS_IXSM << 8)); 4461 4462 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 4463 } 4464 4465 static void igb_tx_map(struct igb_ring *tx_ring, 4466 struct igb_tx_buffer *first, 4467 const u8 hdr_len) 4468 { 4469 struct sk_buff *skb = first->skb; 4470 struct igb_tx_buffer *tx_buffer; 4471 union e1000_adv_tx_desc *tx_desc; 4472 struct skb_frag_struct *frag; 4473 dma_addr_t dma; 4474 unsigned int data_len, size; 4475 u32 tx_flags = first->tx_flags; 4476 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 4477 u16 i = tx_ring->next_to_use; 4478 4479 tx_desc = IGB_TX_DESC(tx_ring, i); 4480 4481 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 4482 4483 size = skb_headlen(skb); 4484 data_len = skb->data_len; 4485 4486 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 4487 4488 tx_buffer = first; 4489 4490 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 4491 if (dma_mapping_error(tx_ring->dev, dma)) 4492 goto dma_error; 4493 4494 /* record length, and DMA address */ 4495 dma_unmap_len_set(tx_buffer, len, size); 4496 dma_unmap_addr_set(tx_buffer, dma, dma); 4497 4498 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4499 4500 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 4501 tx_desc->read.cmd_type_len = 4502 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 4503 4504 i++; 4505 tx_desc++; 4506 if (i == tx_ring->count) { 4507 tx_desc = IGB_TX_DESC(tx_ring, 0); 4508 i = 0; 4509 } 4510 tx_desc->read.olinfo_status = 0; 4511 4512 dma += IGB_MAX_DATA_PER_TXD; 4513 size -= IGB_MAX_DATA_PER_TXD; 4514 4515 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4516 } 4517 4518 if (likely(!data_len)) 4519 break; 4520 4521 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 4522 4523 i++; 4524 tx_desc++; 4525 if (i == tx_ring->count) { 4526 tx_desc = IGB_TX_DESC(tx_ring, 0); 4527 i = 0; 4528 } 4529 tx_desc->read.olinfo_status = 0; 4530 4531 size = skb_frag_size(frag); 4532 data_len -= size; 4533 4534 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 4535 size, DMA_TO_DEVICE); 4536 4537 tx_buffer = &tx_ring->tx_buffer_info[i]; 4538 } 4539 4540 /* write last descriptor with RS and EOP bits */ 4541 cmd_type |= size | IGB_TXD_DCMD; 4542 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 4543 4544 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 4545 4546 /* set the timestamp */ 4547 first->time_stamp = jiffies; 4548 4549 /* Force memory writes to complete before letting h/w know there 4550 * are new descriptors to fetch. (Only applicable for weak-ordered 4551 * memory model archs, such as IA-64). 4552 * 4553 * We also need this memory barrier to make certain all of the 4554 * status bits have been updated before next_to_watch is written. 4555 */ 4556 wmb(); 4557 4558 /* set next_to_watch value indicating a packet is present */ 4559 first->next_to_watch = tx_desc; 4560 4561 i++; 4562 if (i == tx_ring->count) 4563 i = 0; 4564 4565 tx_ring->next_to_use = i; 4566 4567 writel(i, tx_ring->tail); 4568 4569 /* we need this if more than one processor can write to our tail 4570 * at a time, it synchronizes IO on IA64/Altix systems 4571 */ 4572 mmiowb(); 4573 4574 return; 4575 4576 dma_error: 4577 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4578 4579 /* clear dma mappings for failed tx_buffer_info map */ 4580 for (;;) { 4581 tx_buffer = &tx_ring->tx_buffer_info[i]; 4582 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); 4583 if (tx_buffer == first) 4584 break; 4585 if (i == 0) 4586 i = tx_ring->count; 4587 i--; 4588 } 4589 4590 tx_ring->next_to_use = i; 4591 } 4592 4593 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4594 { 4595 struct net_device *netdev = tx_ring->netdev; 4596 4597 netif_stop_subqueue(netdev, tx_ring->queue_index); 4598 4599 /* Herbert's original patch had: 4600 * smp_mb__after_netif_stop_queue(); 4601 * but since that doesn't exist yet, just open code it. 4602 */ 4603 smp_mb(); 4604 4605 /* We need to check again in a case another CPU has just 4606 * made room available. 4607 */ 4608 if (igb_desc_unused(tx_ring) < size) 4609 return -EBUSY; 4610 4611 /* A reprieve! */ 4612 netif_wake_subqueue(netdev, tx_ring->queue_index); 4613 4614 u64_stats_update_begin(&tx_ring->tx_syncp2); 4615 tx_ring->tx_stats.restart_queue2++; 4616 u64_stats_update_end(&tx_ring->tx_syncp2); 4617 4618 return 0; 4619 } 4620 4621 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4622 { 4623 if (igb_desc_unused(tx_ring) >= size) 4624 return 0; 4625 return __igb_maybe_stop_tx(tx_ring, size); 4626 } 4627 4628 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 4629 struct igb_ring *tx_ring) 4630 { 4631 struct igb_tx_buffer *first; 4632 int tso; 4633 u32 tx_flags = 0; 4634 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4635 __be16 protocol = vlan_get_protocol(skb); 4636 u8 hdr_len = 0; 4637 4638 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 4639 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 4640 * + 2 desc gap to keep tail from touching head, 4641 * + 1 desc for context descriptor, 4642 * otherwise try next time 4643 */ 4644 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { 4645 unsigned short f; 4646 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4647 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4648 } else { 4649 count += skb_shinfo(skb)->nr_frags; 4650 } 4651 4652 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 4653 /* this is a hard error */ 4654 return NETDEV_TX_BUSY; 4655 } 4656 4657 /* record the location of the first descriptor for this packet */ 4658 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4659 first->skb = skb; 4660 first->bytecount = skb->len; 4661 first->gso_segs = 1; 4662 4663 skb_tx_timestamp(skb); 4664 4665 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 4666 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 4667 4668 if (!(adapter->ptp_tx_skb)) { 4669 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4670 tx_flags |= IGB_TX_FLAGS_TSTAMP; 4671 4672 adapter->ptp_tx_skb = skb_get(skb); 4673 adapter->ptp_tx_start = jiffies; 4674 if (adapter->hw.mac.type == e1000_82576) 4675 schedule_work(&adapter->ptp_tx_work); 4676 } 4677 } 4678 4679 if (vlan_tx_tag_present(skb)) { 4680 tx_flags |= IGB_TX_FLAGS_VLAN; 4681 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 4682 } 4683 4684 /* record initial flags and protocol */ 4685 first->tx_flags = tx_flags; 4686 first->protocol = protocol; 4687 4688 tso = igb_tso(tx_ring, first, &hdr_len); 4689 if (tso < 0) 4690 goto out_drop; 4691 else if (!tso) 4692 igb_tx_csum(tx_ring, first); 4693 4694 igb_tx_map(tx_ring, first, hdr_len); 4695 4696 /* Make sure there is space in the ring for the next send. */ 4697 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 4698 4699 return NETDEV_TX_OK; 4700 4701 out_drop: 4702 igb_unmap_and_free_tx_resource(tx_ring, first); 4703 4704 return NETDEV_TX_OK; 4705 } 4706 4707 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 4708 struct sk_buff *skb) 4709 { 4710 unsigned int r_idx = skb->queue_mapping; 4711 4712 if (r_idx >= adapter->num_tx_queues) 4713 r_idx = r_idx % adapter->num_tx_queues; 4714 4715 return adapter->tx_ring[r_idx]; 4716 } 4717 4718 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 4719 struct net_device *netdev) 4720 { 4721 struct igb_adapter *adapter = netdev_priv(netdev); 4722 4723 if (test_bit(__IGB_DOWN, &adapter->state)) { 4724 dev_kfree_skb_any(skb); 4725 return NETDEV_TX_OK; 4726 } 4727 4728 if (skb->len <= 0) { 4729 dev_kfree_skb_any(skb); 4730 return NETDEV_TX_OK; 4731 } 4732 4733 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 4734 * in order to meet this minimum size requirement. 4735 */ 4736 if (unlikely(skb->len < 17)) { 4737 if (skb_pad(skb, 17 - skb->len)) 4738 return NETDEV_TX_OK; 4739 skb->len = 17; 4740 skb_set_tail_pointer(skb, 17); 4741 } 4742 4743 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 4744 } 4745 4746 /** 4747 * igb_tx_timeout - Respond to a Tx Hang 4748 * @netdev: network interface device structure 4749 **/ 4750 static void igb_tx_timeout(struct net_device *netdev) 4751 { 4752 struct igb_adapter *adapter = netdev_priv(netdev); 4753 struct e1000_hw *hw = &adapter->hw; 4754 4755 /* Do the reset outside of interrupt context */ 4756 adapter->tx_timeout_count++; 4757 4758 if (hw->mac.type >= e1000_82580) 4759 hw->dev_spec._82575.global_device_reset = true; 4760 4761 schedule_work(&adapter->reset_task); 4762 wr32(E1000_EICS, 4763 (adapter->eims_enable_mask & ~adapter->eims_other)); 4764 } 4765 4766 static void igb_reset_task(struct work_struct *work) 4767 { 4768 struct igb_adapter *adapter; 4769 adapter = container_of(work, struct igb_adapter, reset_task); 4770 4771 igb_dump(adapter); 4772 netdev_err(adapter->netdev, "Reset adapter\n"); 4773 igb_reinit_locked(adapter); 4774 } 4775 4776 /** 4777 * igb_get_stats64 - Get System Network Statistics 4778 * @netdev: network interface device structure 4779 * @stats: rtnl_link_stats64 pointer 4780 **/ 4781 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, 4782 struct rtnl_link_stats64 *stats) 4783 { 4784 struct igb_adapter *adapter = netdev_priv(netdev); 4785 4786 spin_lock(&adapter->stats64_lock); 4787 igb_update_stats(adapter, &adapter->stats64); 4788 memcpy(stats, &adapter->stats64, sizeof(*stats)); 4789 spin_unlock(&adapter->stats64_lock); 4790 4791 return stats; 4792 } 4793 4794 /** 4795 * igb_change_mtu - Change the Maximum Transfer Unit 4796 * @netdev: network interface device structure 4797 * @new_mtu: new value for maximum frame size 4798 * 4799 * Returns 0 on success, negative on failure 4800 **/ 4801 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 4802 { 4803 struct igb_adapter *adapter = netdev_priv(netdev); 4804 struct pci_dev *pdev = adapter->pdev; 4805 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4806 4807 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 4808 dev_err(&pdev->dev, "Invalid MTU setting\n"); 4809 return -EINVAL; 4810 } 4811 4812 #define MAX_STD_JUMBO_FRAME_SIZE 9238 4813 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 4814 dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); 4815 return -EINVAL; 4816 } 4817 4818 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 4819 msleep(1); 4820 4821 /* igb_down has a dependency on max_frame_size */ 4822 adapter->max_frame_size = max_frame; 4823 4824 if (netif_running(netdev)) 4825 igb_down(adapter); 4826 4827 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 4828 netdev->mtu, new_mtu); 4829 netdev->mtu = new_mtu; 4830 4831 if (netif_running(netdev)) 4832 igb_up(adapter); 4833 else 4834 igb_reset(adapter); 4835 4836 clear_bit(__IGB_RESETTING, &adapter->state); 4837 4838 return 0; 4839 } 4840 4841 /** 4842 * igb_update_stats - Update the board statistics counters 4843 * @adapter: board private structure 4844 **/ 4845 void igb_update_stats(struct igb_adapter *adapter, 4846 struct rtnl_link_stats64 *net_stats) 4847 { 4848 struct e1000_hw *hw = &adapter->hw; 4849 struct pci_dev *pdev = adapter->pdev; 4850 u32 reg, mpc; 4851 u16 phy_tmp; 4852 int i; 4853 u64 bytes, packets; 4854 unsigned int start; 4855 u64 _bytes, _packets; 4856 4857 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 4858 4859 /* Prevent stats update while adapter is being reset, or if the pci 4860 * connection is down. 4861 */ 4862 if (adapter->link_speed == 0) 4863 return; 4864 if (pci_channel_offline(pdev)) 4865 return; 4866 4867 bytes = 0; 4868 packets = 0; 4869 for (i = 0; i < adapter->num_rx_queues; i++) { 4870 u32 rqdpc = rd32(E1000_RQDPC(i)); 4871 struct igb_ring *ring = adapter->rx_ring[i]; 4872 4873 if (rqdpc) { 4874 ring->rx_stats.drops += rqdpc; 4875 net_stats->rx_fifo_errors += rqdpc; 4876 } 4877 4878 do { 4879 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 4880 _bytes = ring->rx_stats.bytes; 4881 _packets = ring->rx_stats.packets; 4882 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 4883 bytes += _bytes; 4884 packets += _packets; 4885 } 4886 4887 net_stats->rx_bytes = bytes; 4888 net_stats->rx_packets = packets; 4889 4890 bytes = 0; 4891 packets = 0; 4892 for (i = 0; i < adapter->num_tx_queues; i++) { 4893 struct igb_ring *ring = adapter->tx_ring[i]; 4894 do { 4895 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 4896 _bytes = ring->tx_stats.bytes; 4897 _packets = ring->tx_stats.packets; 4898 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 4899 bytes += _bytes; 4900 packets += _packets; 4901 } 4902 net_stats->tx_bytes = bytes; 4903 net_stats->tx_packets = packets; 4904 4905 /* read stats registers */ 4906 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 4907 adapter->stats.gprc += rd32(E1000_GPRC); 4908 adapter->stats.gorc += rd32(E1000_GORCL); 4909 rd32(E1000_GORCH); /* clear GORCL */ 4910 adapter->stats.bprc += rd32(E1000_BPRC); 4911 adapter->stats.mprc += rd32(E1000_MPRC); 4912 adapter->stats.roc += rd32(E1000_ROC); 4913 4914 adapter->stats.prc64 += rd32(E1000_PRC64); 4915 adapter->stats.prc127 += rd32(E1000_PRC127); 4916 adapter->stats.prc255 += rd32(E1000_PRC255); 4917 adapter->stats.prc511 += rd32(E1000_PRC511); 4918 adapter->stats.prc1023 += rd32(E1000_PRC1023); 4919 adapter->stats.prc1522 += rd32(E1000_PRC1522); 4920 adapter->stats.symerrs += rd32(E1000_SYMERRS); 4921 adapter->stats.sec += rd32(E1000_SEC); 4922 4923 mpc = rd32(E1000_MPC); 4924 adapter->stats.mpc += mpc; 4925 net_stats->rx_fifo_errors += mpc; 4926 adapter->stats.scc += rd32(E1000_SCC); 4927 adapter->stats.ecol += rd32(E1000_ECOL); 4928 adapter->stats.mcc += rd32(E1000_MCC); 4929 adapter->stats.latecol += rd32(E1000_LATECOL); 4930 adapter->stats.dc += rd32(E1000_DC); 4931 adapter->stats.rlec += rd32(E1000_RLEC); 4932 adapter->stats.xonrxc += rd32(E1000_XONRXC); 4933 adapter->stats.xontxc += rd32(E1000_XONTXC); 4934 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 4935 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 4936 adapter->stats.fcruc += rd32(E1000_FCRUC); 4937 adapter->stats.gptc += rd32(E1000_GPTC); 4938 adapter->stats.gotc += rd32(E1000_GOTCL); 4939 rd32(E1000_GOTCH); /* clear GOTCL */ 4940 adapter->stats.rnbc += rd32(E1000_RNBC); 4941 adapter->stats.ruc += rd32(E1000_RUC); 4942 adapter->stats.rfc += rd32(E1000_RFC); 4943 adapter->stats.rjc += rd32(E1000_RJC); 4944 adapter->stats.tor += rd32(E1000_TORH); 4945 adapter->stats.tot += rd32(E1000_TOTH); 4946 adapter->stats.tpr += rd32(E1000_TPR); 4947 4948 adapter->stats.ptc64 += rd32(E1000_PTC64); 4949 adapter->stats.ptc127 += rd32(E1000_PTC127); 4950 adapter->stats.ptc255 += rd32(E1000_PTC255); 4951 adapter->stats.ptc511 += rd32(E1000_PTC511); 4952 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 4953 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 4954 4955 adapter->stats.mptc += rd32(E1000_MPTC); 4956 adapter->stats.bptc += rd32(E1000_BPTC); 4957 4958 adapter->stats.tpt += rd32(E1000_TPT); 4959 adapter->stats.colc += rd32(E1000_COLC); 4960 4961 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 4962 /* read internal phy specific stats */ 4963 reg = rd32(E1000_CTRL_EXT); 4964 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 4965 adapter->stats.rxerrc += rd32(E1000_RXERRC); 4966 4967 /* this stat has invalid values on i210/i211 */ 4968 if ((hw->mac.type != e1000_i210) && 4969 (hw->mac.type != e1000_i211)) 4970 adapter->stats.tncrs += rd32(E1000_TNCRS); 4971 } 4972 4973 adapter->stats.tsctc += rd32(E1000_TSCTC); 4974 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 4975 4976 adapter->stats.iac += rd32(E1000_IAC); 4977 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 4978 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 4979 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 4980 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 4981 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 4982 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 4983 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 4984 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 4985 4986 /* Fill out the OS statistics structure */ 4987 net_stats->multicast = adapter->stats.mprc; 4988 net_stats->collisions = adapter->stats.colc; 4989 4990 /* Rx Errors */ 4991 4992 /* RLEC on some newer hardware can be incorrect so build 4993 * our own version based on RUC and ROC 4994 */ 4995 net_stats->rx_errors = adapter->stats.rxerrc + 4996 adapter->stats.crcerrs + adapter->stats.algnerrc + 4997 adapter->stats.ruc + adapter->stats.roc + 4998 adapter->stats.cexterr; 4999 net_stats->rx_length_errors = adapter->stats.ruc + 5000 adapter->stats.roc; 5001 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5002 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5003 net_stats->rx_missed_errors = adapter->stats.mpc; 5004 5005 /* Tx Errors */ 5006 net_stats->tx_errors = adapter->stats.ecol + 5007 adapter->stats.latecol; 5008 net_stats->tx_aborted_errors = adapter->stats.ecol; 5009 net_stats->tx_window_errors = adapter->stats.latecol; 5010 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5011 5012 /* Tx Dropped needs to be maintained elsewhere */ 5013 5014 /* Phy Stats */ 5015 if (hw->phy.media_type == e1000_media_type_copper) { 5016 if ((adapter->link_speed == SPEED_1000) && 5017 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 5018 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 5019 adapter->phy_stats.idle_errors += phy_tmp; 5020 } 5021 } 5022 5023 /* Management Stats */ 5024 adapter->stats.mgptc += rd32(E1000_MGTPTC); 5025 adapter->stats.mgprc += rd32(E1000_MGTPRC); 5026 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 5027 5028 /* OS2BMC Stats */ 5029 reg = rd32(E1000_MANC); 5030 if (reg & E1000_MANC_EN_BMC2OS) { 5031 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 5032 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 5033 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 5034 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 5035 } 5036 } 5037 5038 static irqreturn_t igb_msix_other(int irq, void *data) 5039 { 5040 struct igb_adapter *adapter = data; 5041 struct e1000_hw *hw = &adapter->hw; 5042 u32 icr = rd32(E1000_ICR); 5043 /* reading ICR causes bit 31 of EICR to be cleared */ 5044 5045 if (icr & E1000_ICR_DRSTA) 5046 schedule_work(&adapter->reset_task); 5047 5048 if (icr & E1000_ICR_DOUTSYNC) { 5049 /* HW is reporting DMA is out of sync */ 5050 adapter->stats.doosync++; 5051 /* The DMA Out of Sync is also indication of a spoof event 5052 * in IOV mode. Check the Wrong VM Behavior register to 5053 * see if it is really a spoof event. 5054 */ 5055 igb_check_wvbr(adapter); 5056 } 5057 5058 /* Check for a mailbox event */ 5059 if (icr & E1000_ICR_VMMB) 5060 igb_msg_task(adapter); 5061 5062 if (icr & E1000_ICR_LSC) { 5063 hw->mac.get_link_status = 1; 5064 /* guard against interrupt when we're going down */ 5065 if (!test_bit(__IGB_DOWN, &adapter->state)) 5066 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5067 } 5068 5069 if (icr & E1000_ICR_TS) { 5070 u32 tsicr = rd32(E1000_TSICR); 5071 5072 if (tsicr & E1000_TSICR_TXTS) { 5073 /* acknowledge the interrupt */ 5074 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5075 /* retrieve hardware timestamp */ 5076 schedule_work(&adapter->ptp_tx_work); 5077 } 5078 } 5079 5080 wr32(E1000_EIMS, adapter->eims_other); 5081 5082 return IRQ_HANDLED; 5083 } 5084 5085 static void igb_write_itr(struct igb_q_vector *q_vector) 5086 { 5087 struct igb_adapter *adapter = q_vector->adapter; 5088 u32 itr_val = q_vector->itr_val & 0x7FFC; 5089 5090 if (!q_vector->set_itr) 5091 return; 5092 5093 if (!itr_val) 5094 itr_val = 0x4; 5095 5096 if (adapter->hw.mac.type == e1000_82575) 5097 itr_val |= itr_val << 16; 5098 else 5099 itr_val |= E1000_EITR_CNT_IGNR; 5100 5101 writel(itr_val, q_vector->itr_register); 5102 q_vector->set_itr = 0; 5103 } 5104 5105 static irqreturn_t igb_msix_ring(int irq, void *data) 5106 { 5107 struct igb_q_vector *q_vector = data; 5108 5109 /* Write the ITR value calculated from the previous interrupt. */ 5110 igb_write_itr(q_vector); 5111 5112 napi_schedule(&q_vector->napi); 5113 5114 return IRQ_HANDLED; 5115 } 5116 5117 #ifdef CONFIG_IGB_DCA 5118 static void igb_update_tx_dca(struct igb_adapter *adapter, 5119 struct igb_ring *tx_ring, 5120 int cpu) 5121 { 5122 struct e1000_hw *hw = &adapter->hw; 5123 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 5124 5125 if (hw->mac.type != e1000_82575) 5126 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 5127 5128 /* We can enable relaxed ordering for reads, but not writes when 5129 * DCA is enabled. This is due to a known issue in some chipsets 5130 * which will cause the DCA tag to be cleared. 5131 */ 5132 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 5133 E1000_DCA_TXCTRL_DATA_RRO_EN | 5134 E1000_DCA_TXCTRL_DESC_DCA_EN; 5135 5136 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 5137 } 5138 5139 static void igb_update_rx_dca(struct igb_adapter *adapter, 5140 struct igb_ring *rx_ring, 5141 int cpu) 5142 { 5143 struct e1000_hw *hw = &adapter->hw; 5144 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 5145 5146 if (hw->mac.type != e1000_82575) 5147 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 5148 5149 /* We can enable relaxed ordering for reads, but not writes when 5150 * DCA is enabled. This is due to a known issue in some chipsets 5151 * which will cause the DCA tag to be cleared. 5152 */ 5153 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 5154 E1000_DCA_RXCTRL_DESC_DCA_EN; 5155 5156 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 5157 } 5158 5159 static void igb_update_dca(struct igb_q_vector *q_vector) 5160 { 5161 struct igb_adapter *adapter = q_vector->adapter; 5162 int cpu = get_cpu(); 5163 5164 if (q_vector->cpu == cpu) 5165 goto out_no_update; 5166 5167 if (q_vector->tx.ring) 5168 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 5169 5170 if (q_vector->rx.ring) 5171 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 5172 5173 q_vector->cpu = cpu; 5174 out_no_update: 5175 put_cpu(); 5176 } 5177 5178 static void igb_setup_dca(struct igb_adapter *adapter) 5179 { 5180 struct e1000_hw *hw = &adapter->hw; 5181 int i; 5182 5183 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 5184 return; 5185 5186 /* Always use CB2 mode, difference is masked in the CB driver. */ 5187 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 5188 5189 for (i = 0; i < adapter->num_q_vectors; i++) { 5190 adapter->q_vector[i]->cpu = -1; 5191 igb_update_dca(adapter->q_vector[i]); 5192 } 5193 } 5194 5195 static int __igb_notify_dca(struct device *dev, void *data) 5196 { 5197 struct net_device *netdev = dev_get_drvdata(dev); 5198 struct igb_adapter *adapter = netdev_priv(netdev); 5199 struct pci_dev *pdev = adapter->pdev; 5200 struct e1000_hw *hw = &adapter->hw; 5201 unsigned long event = *(unsigned long *)data; 5202 5203 switch (event) { 5204 case DCA_PROVIDER_ADD: 5205 /* if already enabled, don't do it again */ 5206 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 5207 break; 5208 if (dca_add_requester(dev) == 0) { 5209 adapter->flags |= IGB_FLAG_DCA_ENABLED; 5210 dev_info(&pdev->dev, "DCA enabled\n"); 5211 igb_setup_dca(adapter); 5212 break; 5213 } 5214 /* Fall Through since DCA is disabled. */ 5215 case DCA_PROVIDER_REMOVE: 5216 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 5217 /* without this a class_device is left 5218 * hanging around in the sysfs model 5219 */ 5220 dca_remove_requester(dev); 5221 dev_info(&pdev->dev, "DCA disabled\n"); 5222 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 5223 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 5224 } 5225 break; 5226 } 5227 5228 return 0; 5229 } 5230 5231 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 5232 void *p) 5233 { 5234 int ret_val; 5235 5236 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 5237 __igb_notify_dca); 5238 5239 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 5240 } 5241 #endif /* CONFIG_IGB_DCA */ 5242 5243 #ifdef CONFIG_PCI_IOV 5244 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 5245 { 5246 unsigned char mac_addr[ETH_ALEN]; 5247 5248 eth_zero_addr(mac_addr); 5249 igb_set_vf_mac(adapter, vf, mac_addr); 5250 5251 /* By default spoof check is enabled for all VFs */ 5252 adapter->vf_data[vf].spoofchk_enabled = true; 5253 5254 return 0; 5255 } 5256 5257 #endif 5258 static void igb_ping_all_vfs(struct igb_adapter *adapter) 5259 { 5260 struct e1000_hw *hw = &adapter->hw; 5261 u32 ping; 5262 int i; 5263 5264 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 5265 ping = E1000_PF_CONTROL_MSG; 5266 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 5267 ping |= E1000_VT_MSGTYPE_CTS; 5268 igb_write_mbx(hw, &ping, 1, i); 5269 } 5270 } 5271 5272 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5273 { 5274 struct e1000_hw *hw = &adapter->hw; 5275 u32 vmolr = rd32(E1000_VMOLR(vf)); 5276 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5277 5278 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 5279 IGB_VF_FLAG_MULTI_PROMISC); 5280 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5281 5282 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 5283 vmolr |= E1000_VMOLR_MPME; 5284 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 5285 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 5286 } else { 5287 /* if we have hashes and we are clearing a multicast promisc 5288 * flag we need to write the hashes to the MTA as this step 5289 * was previously skipped 5290 */ 5291 if (vf_data->num_vf_mc_hashes > 30) { 5292 vmolr |= E1000_VMOLR_MPME; 5293 } else if (vf_data->num_vf_mc_hashes) { 5294 int j; 5295 vmolr |= E1000_VMOLR_ROMPE; 5296 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5297 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5298 } 5299 } 5300 5301 wr32(E1000_VMOLR(vf), vmolr); 5302 5303 /* there are flags left unprocessed, likely not supported */ 5304 if (*msgbuf & E1000_VT_MSGINFO_MASK) 5305 return -EINVAL; 5306 5307 return 0; 5308 } 5309 5310 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 5311 u32 *msgbuf, u32 vf) 5312 { 5313 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5314 u16 *hash_list = (u16 *)&msgbuf[1]; 5315 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5316 int i; 5317 5318 /* salt away the number of multicast addresses assigned 5319 * to this VF for later use to restore when the PF multi cast 5320 * list changes 5321 */ 5322 vf_data->num_vf_mc_hashes = n; 5323 5324 /* only up to 30 hash values supported */ 5325 if (n > 30) 5326 n = 30; 5327 5328 /* store the hashes for later use */ 5329 for (i = 0; i < n; i++) 5330 vf_data->vf_mc_hashes[i] = hash_list[i]; 5331 5332 /* Flush and reset the mta with the new values */ 5333 igb_set_rx_mode(adapter->netdev); 5334 5335 return 0; 5336 } 5337 5338 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 5339 { 5340 struct e1000_hw *hw = &adapter->hw; 5341 struct vf_data_storage *vf_data; 5342 int i, j; 5343 5344 for (i = 0; i < adapter->vfs_allocated_count; i++) { 5345 u32 vmolr = rd32(E1000_VMOLR(i)); 5346 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5347 5348 vf_data = &adapter->vf_data[i]; 5349 5350 if ((vf_data->num_vf_mc_hashes > 30) || 5351 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 5352 vmolr |= E1000_VMOLR_MPME; 5353 } else if (vf_data->num_vf_mc_hashes) { 5354 vmolr |= E1000_VMOLR_ROMPE; 5355 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5356 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5357 } 5358 wr32(E1000_VMOLR(i), vmolr); 5359 } 5360 } 5361 5362 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 5363 { 5364 struct e1000_hw *hw = &adapter->hw; 5365 u32 pool_mask, reg, vid; 5366 int i; 5367 5368 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5369 5370 /* Find the vlan filter for this id */ 5371 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5372 reg = rd32(E1000_VLVF(i)); 5373 5374 /* remove the vf from the pool */ 5375 reg &= ~pool_mask; 5376 5377 /* if pool is empty then remove entry from vfta */ 5378 if (!(reg & E1000_VLVF_POOLSEL_MASK) && 5379 (reg & E1000_VLVF_VLANID_ENABLE)) { 5380 reg = 0; 5381 vid = reg & E1000_VLVF_VLANID_MASK; 5382 igb_vfta_set(hw, vid, false); 5383 } 5384 5385 wr32(E1000_VLVF(i), reg); 5386 } 5387 5388 adapter->vf_data[vf].vlans_enabled = 0; 5389 } 5390 5391 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) 5392 { 5393 struct e1000_hw *hw = &adapter->hw; 5394 u32 reg, i; 5395 5396 /* The vlvf table only exists on 82576 hardware and newer */ 5397 if (hw->mac.type < e1000_82576) 5398 return -1; 5399 5400 /* we only need to do this if VMDq is enabled */ 5401 if (!adapter->vfs_allocated_count) 5402 return -1; 5403 5404 /* Find the vlan filter for this id */ 5405 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5406 reg = rd32(E1000_VLVF(i)); 5407 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5408 vid == (reg & E1000_VLVF_VLANID_MASK)) 5409 break; 5410 } 5411 5412 if (add) { 5413 if (i == E1000_VLVF_ARRAY_SIZE) { 5414 /* Did not find a matching VLAN ID entry that was 5415 * enabled. Search for a free filter entry, i.e. 5416 * one without the enable bit set 5417 */ 5418 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5419 reg = rd32(E1000_VLVF(i)); 5420 if (!(reg & E1000_VLVF_VLANID_ENABLE)) 5421 break; 5422 } 5423 } 5424 if (i < E1000_VLVF_ARRAY_SIZE) { 5425 /* Found an enabled/available entry */ 5426 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5427 5428 /* if !enabled we need to set this up in vfta */ 5429 if (!(reg & E1000_VLVF_VLANID_ENABLE)) { 5430 /* add VID to filter table */ 5431 igb_vfta_set(hw, vid, true); 5432 reg |= E1000_VLVF_VLANID_ENABLE; 5433 } 5434 reg &= ~E1000_VLVF_VLANID_MASK; 5435 reg |= vid; 5436 wr32(E1000_VLVF(i), reg); 5437 5438 /* do not modify RLPML for PF devices */ 5439 if (vf >= adapter->vfs_allocated_count) 5440 return 0; 5441 5442 if (!adapter->vf_data[vf].vlans_enabled) { 5443 u32 size; 5444 reg = rd32(E1000_VMOLR(vf)); 5445 size = reg & E1000_VMOLR_RLPML_MASK; 5446 size += 4; 5447 reg &= ~E1000_VMOLR_RLPML_MASK; 5448 reg |= size; 5449 wr32(E1000_VMOLR(vf), reg); 5450 } 5451 5452 adapter->vf_data[vf].vlans_enabled++; 5453 } 5454 } else { 5455 if (i < E1000_VLVF_ARRAY_SIZE) { 5456 /* remove vf from the pool */ 5457 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); 5458 /* if pool is empty then remove entry from vfta */ 5459 if (!(reg & E1000_VLVF_POOLSEL_MASK)) { 5460 reg = 0; 5461 igb_vfta_set(hw, vid, false); 5462 } 5463 wr32(E1000_VLVF(i), reg); 5464 5465 /* do not modify RLPML for PF devices */ 5466 if (vf >= adapter->vfs_allocated_count) 5467 return 0; 5468 5469 adapter->vf_data[vf].vlans_enabled--; 5470 if (!adapter->vf_data[vf].vlans_enabled) { 5471 u32 size; 5472 reg = rd32(E1000_VMOLR(vf)); 5473 size = reg & E1000_VMOLR_RLPML_MASK; 5474 size -= 4; 5475 reg &= ~E1000_VMOLR_RLPML_MASK; 5476 reg |= size; 5477 wr32(E1000_VMOLR(vf), reg); 5478 } 5479 } 5480 } 5481 return 0; 5482 } 5483 5484 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 5485 { 5486 struct e1000_hw *hw = &adapter->hw; 5487 5488 if (vid) 5489 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 5490 else 5491 wr32(E1000_VMVIR(vf), 0); 5492 } 5493 5494 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 5495 int vf, u16 vlan, u8 qos) 5496 { 5497 int err = 0; 5498 struct igb_adapter *adapter = netdev_priv(netdev); 5499 5500 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 5501 return -EINVAL; 5502 if (vlan || qos) { 5503 err = igb_vlvf_set(adapter, vlan, !!vlan, vf); 5504 if (err) 5505 goto out; 5506 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 5507 igb_set_vmolr(adapter, vf, !vlan); 5508 adapter->vf_data[vf].pf_vlan = vlan; 5509 adapter->vf_data[vf].pf_qos = qos; 5510 dev_info(&adapter->pdev->dev, 5511 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 5512 if (test_bit(__IGB_DOWN, &adapter->state)) { 5513 dev_warn(&adapter->pdev->dev, 5514 "The VF VLAN has been set, but the PF device is not up.\n"); 5515 dev_warn(&adapter->pdev->dev, 5516 "Bring the PF device up before attempting to use the VF device.\n"); 5517 } 5518 } else { 5519 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, 5520 false, vf); 5521 igb_set_vmvir(adapter, vlan, vf); 5522 igb_set_vmolr(adapter, vf, true); 5523 adapter->vf_data[vf].pf_vlan = 0; 5524 adapter->vf_data[vf].pf_qos = 0; 5525 } 5526 out: 5527 return err; 5528 } 5529 5530 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid) 5531 { 5532 struct e1000_hw *hw = &adapter->hw; 5533 int i; 5534 u32 reg; 5535 5536 /* Find the vlan filter for this id */ 5537 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5538 reg = rd32(E1000_VLVF(i)); 5539 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5540 vid == (reg & E1000_VLVF_VLANID_MASK)) 5541 break; 5542 } 5543 5544 if (i >= E1000_VLVF_ARRAY_SIZE) 5545 i = -1; 5546 5547 return i; 5548 } 5549 5550 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5551 { 5552 struct e1000_hw *hw = &adapter->hw; 5553 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5554 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 5555 int err = 0; 5556 5557 /* If in promiscuous mode we need to make sure the PF also has 5558 * the VLAN filter set. 5559 */ 5560 if (add && (adapter->netdev->flags & IFF_PROMISC)) 5561 err = igb_vlvf_set(adapter, vid, add, 5562 adapter->vfs_allocated_count); 5563 if (err) 5564 goto out; 5565 5566 err = igb_vlvf_set(adapter, vid, add, vf); 5567 5568 if (err) 5569 goto out; 5570 5571 /* Go through all the checks to see if the VLAN filter should 5572 * be wiped completely. 5573 */ 5574 if (!add && (adapter->netdev->flags & IFF_PROMISC)) { 5575 u32 vlvf, bits; 5576 5577 int regndx = igb_find_vlvf_entry(adapter, vid); 5578 if (regndx < 0) 5579 goto out; 5580 /* See if any other pools are set for this VLAN filter 5581 * entry other than the PF. 5582 */ 5583 vlvf = bits = rd32(E1000_VLVF(regndx)); 5584 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT + 5585 adapter->vfs_allocated_count); 5586 /* If the filter was removed then ensure PF pool bit 5587 * is cleared if the PF only added itself to the pool 5588 * because the PF is in promiscuous mode. 5589 */ 5590 if ((vlvf & VLAN_VID_MASK) == vid && 5591 !test_bit(vid, adapter->active_vlans) && 5592 !bits) 5593 igb_vlvf_set(adapter, vid, add, 5594 adapter->vfs_allocated_count); 5595 } 5596 5597 out: 5598 return err; 5599 } 5600 5601 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 5602 { 5603 /* clear flags - except flag that indicates PF has set the MAC */ 5604 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; 5605 adapter->vf_data[vf].last_nack = jiffies; 5606 5607 /* reset offloads to defaults */ 5608 igb_set_vmolr(adapter, vf, true); 5609 5610 /* reset vlans for device */ 5611 igb_clear_vf_vfta(adapter, vf); 5612 if (adapter->vf_data[vf].pf_vlan) 5613 igb_ndo_set_vf_vlan(adapter->netdev, vf, 5614 adapter->vf_data[vf].pf_vlan, 5615 adapter->vf_data[vf].pf_qos); 5616 else 5617 igb_clear_vf_vfta(adapter, vf); 5618 5619 /* reset multicast table array for vf */ 5620 adapter->vf_data[vf].num_vf_mc_hashes = 0; 5621 5622 /* Flush and reset the mta with the new values */ 5623 igb_set_rx_mode(adapter->netdev); 5624 } 5625 5626 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 5627 { 5628 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5629 5630 /* clear mac address as we were hotplug removed/added */ 5631 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 5632 eth_zero_addr(vf_mac); 5633 5634 /* process remaining reset events */ 5635 igb_vf_reset(adapter, vf); 5636 } 5637 5638 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 5639 { 5640 struct e1000_hw *hw = &adapter->hw; 5641 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5642 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 5643 u32 reg, msgbuf[3]; 5644 u8 *addr = (u8 *)(&msgbuf[1]); 5645 5646 /* process all the same items cleared in a function level reset */ 5647 igb_vf_reset(adapter, vf); 5648 5649 /* set vf mac address */ 5650 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); 5651 5652 /* enable transmit and receive for vf */ 5653 reg = rd32(E1000_VFTE); 5654 wr32(E1000_VFTE, reg | (1 << vf)); 5655 reg = rd32(E1000_VFRE); 5656 wr32(E1000_VFRE, reg | (1 << vf)); 5657 5658 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 5659 5660 /* reply to reset with ack and vf mac address */ 5661 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 5662 memcpy(addr, vf_mac, 6); 5663 igb_write_mbx(hw, msgbuf, 3, vf); 5664 } 5665 5666 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 5667 { 5668 /* The VF MAC Address is stored in a packed array of bytes 5669 * starting at the second 32 bit word of the msg array 5670 */ 5671 unsigned char *addr = (char *)&msg[1]; 5672 int err = -1; 5673 5674 if (is_valid_ether_addr(addr)) 5675 err = igb_set_vf_mac(adapter, vf, addr); 5676 5677 return err; 5678 } 5679 5680 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 5681 { 5682 struct e1000_hw *hw = &adapter->hw; 5683 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5684 u32 msg = E1000_VT_MSGTYPE_NACK; 5685 5686 /* if device isn't clear to send it shouldn't be reading either */ 5687 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 5688 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 5689 igb_write_mbx(hw, &msg, 1, vf); 5690 vf_data->last_nack = jiffies; 5691 } 5692 } 5693 5694 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 5695 { 5696 struct pci_dev *pdev = adapter->pdev; 5697 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 5698 struct e1000_hw *hw = &adapter->hw; 5699 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5700 s32 retval; 5701 5702 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); 5703 5704 if (retval) { 5705 /* if receive failed revoke VF CTS stats and restart init */ 5706 dev_err(&pdev->dev, "Error receiving message from VF\n"); 5707 vf_data->flags &= ~IGB_VF_FLAG_CTS; 5708 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 5709 return; 5710 goto out; 5711 } 5712 5713 /* this is a message we already processed, do nothing */ 5714 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 5715 return; 5716 5717 /* until the vf completes a reset it should not be 5718 * allowed to start any configuration. 5719 */ 5720 if (msgbuf[0] == E1000_VF_RESET) { 5721 igb_vf_reset_msg(adapter, vf); 5722 return; 5723 } 5724 5725 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 5726 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 5727 return; 5728 retval = -1; 5729 goto out; 5730 } 5731 5732 switch ((msgbuf[0] & 0xFFFF)) { 5733 case E1000_VF_SET_MAC_ADDR: 5734 retval = -EINVAL; 5735 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) 5736 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 5737 else 5738 dev_warn(&pdev->dev, 5739 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 5740 vf); 5741 break; 5742 case E1000_VF_SET_PROMISC: 5743 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 5744 break; 5745 case E1000_VF_SET_MULTICAST: 5746 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 5747 break; 5748 case E1000_VF_SET_LPE: 5749 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 5750 break; 5751 case E1000_VF_SET_VLAN: 5752 retval = -1; 5753 if (vf_data->pf_vlan) 5754 dev_warn(&pdev->dev, 5755 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 5756 vf); 5757 else 5758 retval = igb_set_vf_vlan(adapter, msgbuf, vf); 5759 break; 5760 default: 5761 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 5762 retval = -1; 5763 break; 5764 } 5765 5766 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 5767 out: 5768 /* notify the VF of the results of what it sent us */ 5769 if (retval) 5770 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 5771 else 5772 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 5773 5774 igb_write_mbx(hw, msgbuf, 1, vf); 5775 } 5776 5777 static void igb_msg_task(struct igb_adapter *adapter) 5778 { 5779 struct e1000_hw *hw = &adapter->hw; 5780 u32 vf; 5781 5782 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 5783 /* process any reset requests */ 5784 if (!igb_check_for_rst(hw, vf)) 5785 igb_vf_reset_event(adapter, vf); 5786 5787 /* process any messages pending */ 5788 if (!igb_check_for_msg(hw, vf)) 5789 igb_rcv_msg_from_vf(adapter, vf); 5790 5791 /* process any acks */ 5792 if (!igb_check_for_ack(hw, vf)) 5793 igb_rcv_ack_from_vf(adapter, vf); 5794 } 5795 } 5796 5797 /** 5798 * igb_set_uta - Set unicast filter table address 5799 * @adapter: board private structure 5800 * 5801 * The unicast table address is a register array of 32-bit registers. 5802 * The table is meant to be used in a way similar to how the MTA is used 5803 * however due to certain limitations in the hardware it is necessary to 5804 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 5805 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 5806 **/ 5807 static void igb_set_uta(struct igb_adapter *adapter) 5808 { 5809 struct e1000_hw *hw = &adapter->hw; 5810 int i; 5811 5812 /* The UTA table only exists on 82576 hardware and newer */ 5813 if (hw->mac.type < e1000_82576) 5814 return; 5815 5816 /* we only need to do this if VMDq is enabled */ 5817 if (!adapter->vfs_allocated_count) 5818 return; 5819 5820 for (i = 0; i < hw->mac.uta_reg_count; i++) 5821 array_wr32(E1000_UTA, i, ~0); 5822 } 5823 5824 /** 5825 * igb_intr_msi - Interrupt Handler 5826 * @irq: interrupt number 5827 * @data: pointer to a network interface device structure 5828 **/ 5829 static irqreturn_t igb_intr_msi(int irq, void *data) 5830 { 5831 struct igb_adapter *adapter = data; 5832 struct igb_q_vector *q_vector = adapter->q_vector[0]; 5833 struct e1000_hw *hw = &adapter->hw; 5834 /* read ICR disables interrupts using IAM */ 5835 u32 icr = rd32(E1000_ICR); 5836 5837 igb_write_itr(q_vector); 5838 5839 if (icr & E1000_ICR_DRSTA) 5840 schedule_work(&adapter->reset_task); 5841 5842 if (icr & E1000_ICR_DOUTSYNC) { 5843 /* HW is reporting DMA is out of sync */ 5844 adapter->stats.doosync++; 5845 } 5846 5847 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 5848 hw->mac.get_link_status = 1; 5849 if (!test_bit(__IGB_DOWN, &adapter->state)) 5850 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5851 } 5852 5853 if (icr & E1000_ICR_TS) { 5854 u32 tsicr = rd32(E1000_TSICR); 5855 5856 if (tsicr & E1000_TSICR_TXTS) { 5857 /* acknowledge the interrupt */ 5858 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5859 /* retrieve hardware timestamp */ 5860 schedule_work(&adapter->ptp_tx_work); 5861 } 5862 } 5863 5864 napi_schedule(&q_vector->napi); 5865 5866 return IRQ_HANDLED; 5867 } 5868 5869 /** 5870 * igb_intr - Legacy Interrupt Handler 5871 * @irq: interrupt number 5872 * @data: pointer to a network interface device structure 5873 **/ 5874 static irqreturn_t igb_intr(int irq, void *data) 5875 { 5876 struct igb_adapter *adapter = data; 5877 struct igb_q_vector *q_vector = adapter->q_vector[0]; 5878 struct e1000_hw *hw = &adapter->hw; 5879 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 5880 * need for the IMC write 5881 */ 5882 u32 icr = rd32(E1000_ICR); 5883 5884 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 5885 * not set, then the adapter didn't send an interrupt 5886 */ 5887 if (!(icr & E1000_ICR_INT_ASSERTED)) 5888 return IRQ_NONE; 5889 5890 igb_write_itr(q_vector); 5891 5892 if (icr & E1000_ICR_DRSTA) 5893 schedule_work(&adapter->reset_task); 5894 5895 if (icr & E1000_ICR_DOUTSYNC) { 5896 /* HW is reporting DMA is out of sync */ 5897 adapter->stats.doosync++; 5898 } 5899 5900 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 5901 hw->mac.get_link_status = 1; 5902 /* guard against interrupt when we're going down */ 5903 if (!test_bit(__IGB_DOWN, &adapter->state)) 5904 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5905 } 5906 5907 if (icr & E1000_ICR_TS) { 5908 u32 tsicr = rd32(E1000_TSICR); 5909 5910 if (tsicr & E1000_TSICR_TXTS) { 5911 /* acknowledge the interrupt */ 5912 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5913 /* retrieve hardware timestamp */ 5914 schedule_work(&adapter->ptp_tx_work); 5915 } 5916 } 5917 5918 napi_schedule(&q_vector->napi); 5919 5920 return IRQ_HANDLED; 5921 } 5922 5923 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 5924 { 5925 struct igb_adapter *adapter = q_vector->adapter; 5926 struct e1000_hw *hw = &adapter->hw; 5927 5928 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 5929 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 5930 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 5931 igb_set_itr(q_vector); 5932 else 5933 igb_update_ring_itr(q_vector); 5934 } 5935 5936 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5937 if (adapter->msix_entries) 5938 wr32(E1000_EIMS, q_vector->eims_value); 5939 else 5940 igb_irq_enable(adapter); 5941 } 5942 } 5943 5944 /** 5945 * igb_poll - NAPI Rx polling callback 5946 * @napi: napi polling structure 5947 * @budget: count of how many packets we should handle 5948 **/ 5949 static int igb_poll(struct napi_struct *napi, int budget) 5950 { 5951 struct igb_q_vector *q_vector = container_of(napi, 5952 struct igb_q_vector, 5953 napi); 5954 bool clean_complete = true; 5955 5956 #ifdef CONFIG_IGB_DCA 5957 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 5958 igb_update_dca(q_vector); 5959 #endif 5960 if (q_vector->tx.ring) 5961 clean_complete = igb_clean_tx_irq(q_vector); 5962 5963 if (q_vector->rx.ring) 5964 clean_complete &= igb_clean_rx_irq(q_vector, budget); 5965 5966 /* If all work not completed, return budget and keep polling */ 5967 if (!clean_complete) 5968 return budget; 5969 5970 /* If not enough Rx work done, exit the polling mode */ 5971 napi_complete(napi); 5972 igb_ring_irq_enable(q_vector); 5973 5974 return 0; 5975 } 5976 5977 /** 5978 * igb_clean_tx_irq - Reclaim resources after transmit completes 5979 * @q_vector: pointer to q_vector containing needed info 5980 * 5981 * returns true if ring is completely cleaned 5982 **/ 5983 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) 5984 { 5985 struct igb_adapter *adapter = q_vector->adapter; 5986 struct igb_ring *tx_ring = q_vector->tx.ring; 5987 struct igb_tx_buffer *tx_buffer; 5988 union e1000_adv_tx_desc *tx_desc; 5989 unsigned int total_bytes = 0, total_packets = 0; 5990 unsigned int budget = q_vector->tx.work_limit; 5991 unsigned int i = tx_ring->next_to_clean; 5992 5993 if (test_bit(__IGB_DOWN, &adapter->state)) 5994 return true; 5995 5996 tx_buffer = &tx_ring->tx_buffer_info[i]; 5997 tx_desc = IGB_TX_DESC(tx_ring, i); 5998 i -= tx_ring->count; 5999 6000 do { 6001 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 6002 6003 /* if next_to_watch is not set then there is no work pending */ 6004 if (!eop_desc) 6005 break; 6006 6007 /* prevent any other reads prior to eop_desc */ 6008 read_barrier_depends(); 6009 6010 /* if DD is not set pending work has not been completed */ 6011 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 6012 break; 6013 6014 /* clear next_to_watch to prevent false hangs */ 6015 tx_buffer->next_to_watch = NULL; 6016 6017 /* update the statistics for this packet */ 6018 total_bytes += tx_buffer->bytecount; 6019 total_packets += tx_buffer->gso_segs; 6020 6021 /* free the skb */ 6022 dev_kfree_skb_any(tx_buffer->skb); 6023 6024 /* unmap skb header data */ 6025 dma_unmap_single(tx_ring->dev, 6026 dma_unmap_addr(tx_buffer, dma), 6027 dma_unmap_len(tx_buffer, len), 6028 DMA_TO_DEVICE); 6029 6030 /* clear tx_buffer data */ 6031 tx_buffer->skb = NULL; 6032 dma_unmap_len_set(tx_buffer, len, 0); 6033 6034 /* clear last DMA location and unmap remaining buffers */ 6035 while (tx_desc != eop_desc) { 6036 tx_buffer++; 6037 tx_desc++; 6038 i++; 6039 if (unlikely(!i)) { 6040 i -= tx_ring->count; 6041 tx_buffer = tx_ring->tx_buffer_info; 6042 tx_desc = IGB_TX_DESC(tx_ring, 0); 6043 } 6044 6045 /* unmap any remaining paged data */ 6046 if (dma_unmap_len(tx_buffer, len)) { 6047 dma_unmap_page(tx_ring->dev, 6048 dma_unmap_addr(tx_buffer, dma), 6049 dma_unmap_len(tx_buffer, len), 6050 DMA_TO_DEVICE); 6051 dma_unmap_len_set(tx_buffer, len, 0); 6052 } 6053 } 6054 6055 /* move us one more past the eop_desc for start of next pkt */ 6056 tx_buffer++; 6057 tx_desc++; 6058 i++; 6059 if (unlikely(!i)) { 6060 i -= tx_ring->count; 6061 tx_buffer = tx_ring->tx_buffer_info; 6062 tx_desc = IGB_TX_DESC(tx_ring, 0); 6063 } 6064 6065 /* issue prefetch for next Tx descriptor */ 6066 prefetch(tx_desc); 6067 6068 /* update budget accounting */ 6069 budget--; 6070 } while (likely(budget)); 6071 6072 netdev_tx_completed_queue(txring_txq(tx_ring), 6073 total_packets, total_bytes); 6074 i += tx_ring->count; 6075 tx_ring->next_to_clean = i; 6076 u64_stats_update_begin(&tx_ring->tx_syncp); 6077 tx_ring->tx_stats.bytes += total_bytes; 6078 tx_ring->tx_stats.packets += total_packets; 6079 u64_stats_update_end(&tx_ring->tx_syncp); 6080 q_vector->tx.total_bytes += total_bytes; 6081 q_vector->tx.total_packets += total_packets; 6082 6083 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 6084 struct e1000_hw *hw = &adapter->hw; 6085 6086 /* Detect a transmit hang in hardware, this serializes the 6087 * check with the clearing of time_stamp and movement of i 6088 */ 6089 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 6090 if (tx_buffer->next_to_watch && 6091 time_after(jiffies, tx_buffer->time_stamp + 6092 (adapter->tx_timeout_factor * HZ)) && 6093 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 6094 6095 /* detected Tx unit hang */ 6096 dev_err(tx_ring->dev, 6097 "Detected Tx Unit Hang\n" 6098 " Tx Queue <%d>\n" 6099 " TDH <%x>\n" 6100 " TDT <%x>\n" 6101 " next_to_use <%x>\n" 6102 " next_to_clean <%x>\n" 6103 "buffer_info[next_to_clean]\n" 6104 " time_stamp <%lx>\n" 6105 " next_to_watch <%p>\n" 6106 " jiffies <%lx>\n" 6107 " desc.status <%x>\n", 6108 tx_ring->queue_index, 6109 rd32(E1000_TDH(tx_ring->reg_idx)), 6110 readl(tx_ring->tail), 6111 tx_ring->next_to_use, 6112 tx_ring->next_to_clean, 6113 tx_buffer->time_stamp, 6114 tx_buffer->next_to_watch, 6115 jiffies, 6116 tx_buffer->next_to_watch->wb.status); 6117 netif_stop_subqueue(tx_ring->netdev, 6118 tx_ring->queue_index); 6119 6120 /* we are about to reset, no point in enabling stuff */ 6121 return true; 6122 } 6123 } 6124 6125 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 6126 if (unlikely(total_packets && 6127 netif_carrier_ok(tx_ring->netdev) && 6128 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 6129 /* Make sure that anybody stopping the queue after this 6130 * sees the new next_to_clean. 6131 */ 6132 smp_mb(); 6133 if (__netif_subqueue_stopped(tx_ring->netdev, 6134 tx_ring->queue_index) && 6135 !(test_bit(__IGB_DOWN, &adapter->state))) { 6136 netif_wake_subqueue(tx_ring->netdev, 6137 tx_ring->queue_index); 6138 6139 u64_stats_update_begin(&tx_ring->tx_syncp); 6140 tx_ring->tx_stats.restart_queue++; 6141 u64_stats_update_end(&tx_ring->tx_syncp); 6142 } 6143 } 6144 6145 return !!budget; 6146 } 6147 6148 /** 6149 * igb_reuse_rx_page - page flip buffer and store it back on the ring 6150 * @rx_ring: rx descriptor ring to store buffers on 6151 * @old_buff: donor buffer to have page reused 6152 * 6153 * Synchronizes page for reuse by the adapter 6154 **/ 6155 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 6156 struct igb_rx_buffer *old_buff) 6157 { 6158 struct igb_rx_buffer *new_buff; 6159 u16 nta = rx_ring->next_to_alloc; 6160 6161 new_buff = &rx_ring->rx_buffer_info[nta]; 6162 6163 /* update, and store next to alloc */ 6164 nta++; 6165 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 6166 6167 /* transfer page from old buffer to new buffer */ 6168 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer)); 6169 6170 /* sync the buffer for use by the device */ 6171 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 6172 old_buff->page_offset, 6173 IGB_RX_BUFSZ, 6174 DMA_FROM_DEVICE); 6175 } 6176 6177 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 6178 struct page *page, 6179 unsigned int truesize) 6180 { 6181 /* avoid re-using remote pages */ 6182 if (unlikely(page_to_nid(page) != numa_node_id())) 6183 return false; 6184 6185 #if (PAGE_SIZE < 8192) 6186 /* if we are only owner of page we can reuse it */ 6187 if (unlikely(page_count(page) != 1)) 6188 return false; 6189 6190 /* flip page offset to other buffer */ 6191 rx_buffer->page_offset ^= IGB_RX_BUFSZ; 6192 6193 /* since we are the only owner of the page and we need to 6194 * increment it, just set the value to 2 in order to avoid 6195 * an unnecessary locked operation 6196 */ 6197 atomic_set(&page->_count, 2); 6198 #else 6199 /* move offset up to the next cache line */ 6200 rx_buffer->page_offset += truesize; 6201 6202 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) 6203 return false; 6204 6205 /* bump ref count on page before it is given to the stack */ 6206 get_page(page); 6207 #endif 6208 6209 return true; 6210 } 6211 6212 /** 6213 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 6214 * @rx_ring: rx descriptor ring to transact packets on 6215 * @rx_buffer: buffer containing page to add 6216 * @rx_desc: descriptor containing length of buffer written by hardware 6217 * @skb: sk_buff to place the data into 6218 * 6219 * This function will add the data contained in rx_buffer->page to the skb. 6220 * This is done either through a direct copy if the data in the buffer is 6221 * less than the skb header size, otherwise it will just attach the page as 6222 * a frag to the skb. 6223 * 6224 * The function will then update the page offset if necessary and return 6225 * true if the buffer can be reused by the adapter. 6226 **/ 6227 static bool igb_add_rx_frag(struct igb_ring *rx_ring, 6228 struct igb_rx_buffer *rx_buffer, 6229 union e1000_adv_rx_desc *rx_desc, 6230 struct sk_buff *skb) 6231 { 6232 struct page *page = rx_buffer->page; 6233 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6234 #if (PAGE_SIZE < 8192) 6235 unsigned int truesize = IGB_RX_BUFSZ; 6236 #else 6237 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 6238 #endif 6239 6240 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 6241 unsigned char *va = page_address(page) + rx_buffer->page_offset; 6242 6243 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6244 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6245 va += IGB_TS_HDR_LEN; 6246 size -= IGB_TS_HDR_LEN; 6247 } 6248 6249 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 6250 6251 /* we can reuse buffer as-is, just make sure it is local */ 6252 if (likely(page_to_nid(page) == numa_node_id())) 6253 return true; 6254 6255 /* this page cannot be reused so discard it */ 6256 put_page(page); 6257 return false; 6258 } 6259 6260 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 6261 rx_buffer->page_offset, size, truesize); 6262 6263 return igb_can_reuse_rx_page(rx_buffer, page, truesize); 6264 } 6265 6266 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, 6267 union e1000_adv_rx_desc *rx_desc, 6268 struct sk_buff *skb) 6269 { 6270 struct igb_rx_buffer *rx_buffer; 6271 struct page *page; 6272 6273 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6274 6275 page = rx_buffer->page; 6276 prefetchw(page); 6277 6278 if (likely(!skb)) { 6279 void *page_addr = page_address(page) + 6280 rx_buffer->page_offset; 6281 6282 /* prefetch first cache line of first page */ 6283 prefetch(page_addr); 6284 #if L1_CACHE_BYTES < 128 6285 prefetch(page_addr + L1_CACHE_BYTES); 6286 #endif 6287 6288 /* allocate a skb to store the frags */ 6289 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 6290 IGB_RX_HDR_LEN); 6291 if (unlikely(!skb)) { 6292 rx_ring->rx_stats.alloc_failed++; 6293 return NULL; 6294 } 6295 6296 /* we will be copying header into skb->data in 6297 * pskb_may_pull so it is in our interest to prefetch 6298 * it now to avoid a possible cache miss 6299 */ 6300 prefetchw(skb->data); 6301 } 6302 6303 /* we are reusing so sync this buffer for CPU use */ 6304 dma_sync_single_range_for_cpu(rx_ring->dev, 6305 rx_buffer->dma, 6306 rx_buffer->page_offset, 6307 IGB_RX_BUFSZ, 6308 DMA_FROM_DEVICE); 6309 6310 /* pull page into skb */ 6311 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 6312 /* hand second half of page back to the ring */ 6313 igb_reuse_rx_page(rx_ring, rx_buffer); 6314 } else { 6315 /* we are not reusing the buffer so unmap it */ 6316 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6317 PAGE_SIZE, DMA_FROM_DEVICE); 6318 } 6319 6320 /* clear contents of rx_buffer */ 6321 rx_buffer->page = NULL; 6322 6323 return skb; 6324 } 6325 6326 static inline void igb_rx_checksum(struct igb_ring *ring, 6327 union e1000_adv_rx_desc *rx_desc, 6328 struct sk_buff *skb) 6329 { 6330 skb_checksum_none_assert(skb); 6331 6332 /* Ignore Checksum bit is set */ 6333 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 6334 return; 6335 6336 /* Rx checksum disabled via ethtool */ 6337 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 6338 return; 6339 6340 /* TCP/UDP checksum error bit is set */ 6341 if (igb_test_staterr(rx_desc, 6342 E1000_RXDEXT_STATERR_TCPE | 6343 E1000_RXDEXT_STATERR_IPE)) { 6344 /* work around errata with sctp packets where the TCPE aka 6345 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 6346 * packets, (aka let the stack check the crc32c) 6347 */ 6348 if (!((skb->len == 60) && 6349 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 6350 u64_stats_update_begin(&ring->rx_syncp); 6351 ring->rx_stats.csum_err++; 6352 u64_stats_update_end(&ring->rx_syncp); 6353 } 6354 /* let the stack verify checksum errors */ 6355 return; 6356 } 6357 /* It must be a TCP or UDP packet with a valid checksum */ 6358 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 6359 E1000_RXD_STAT_UDPCS)) 6360 skb->ip_summed = CHECKSUM_UNNECESSARY; 6361 6362 dev_dbg(ring->dev, "cksum success: bits %08X\n", 6363 le32_to_cpu(rx_desc->wb.upper.status_error)); 6364 } 6365 6366 static inline void igb_rx_hash(struct igb_ring *ring, 6367 union e1000_adv_rx_desc *rx_desc, 6368 struct sk_buff *skb) 6369 { 6370 if (ring->netdev->features & NETIF_F_RXHASH) 6371 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); 6372 } 6373 6374 /** 6375 * igb_is_non_eop - process handling of non-EOP buffers 6376 * @rx_ring: Rx ring being processed 6377 * @rx_desc: Rx descriptor for current buffer 6378 * @skb: current socket buffer containing buffer in progress 6379 * 6380 * This function updates next to clean. If the buffer is an EOP buffer 6381 * this function exits returning false, otherwise it will place the 6382 * sk_buff in the next buffer to be chained and return true indicating 6383 * that this is in fact a non-EOP buffer. 6384 **/ 6385 static bool igb_is_non_eop(struct igb_ring *rx_ring, 6386 union e1000_adv_rx_desc *rx_desc) 6387 { 6388 u32 ntc = rx_ring->next_to_clean + 1; 6389 6390 /* fetch, update, and store next to clean */ 6391 ntc = (ntc < rx_ring->count) ? ntc : 0; 6392 rx_ring->next_to_clean = ntc; 6393 6394 prefetch(IGB_RX_DESC(rx_ring, ntc)); 6395 6396 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 6397 return false; 6398 6399 return true; 6400 } 6401 6402 /** 6403 * igb_get_headlen - determine size of header for LRO/GRO 6404 * @data: pointer to the start of the headers 6405 * @max_len: total length of section to find headers in 6406 * 6407 * This function is meant to determine the length of headers that will 6408 * be recognized by hardware for LRO, and GRO offloads. The main 6409 * motivation of doing this is to only perform one pull for IPv4 TCP 6410 * packets so that we can do basic things like calculating the gso_size 6411 * based on the average data per packet. 6412 **/ 6413 static unsigned int igb_get_headlen(unsigned char *data, 6414 unsigned int max_len) 6415 { 6416 union { 6417 unsigned char *network; 6418 /* l2 headers */ 6419 struct ethhdr *eth; 6420 struct vlan_hdr *vlan; 6421 /* l3 headers */ 6422 struct iphdr *ipv4; 6423 struct ipv6hdr *ipv6; 6424 } hdr; 6425 __be16 protocol; 6426 u8 nexthdr = 0; /* default to not TCP */ 6427 u8 hlen; 6428 6429 /* this should never happen, but better safe than sorry */ 6430 if (max_len < ETH_HLEN) 6431 return max_len; 6432 6433 /* initialize network frame pointer */ 6434 hdr.network = data; 6435 6436 /* set first protocol and move network header forward */ 6437 protocol = hdr.eth->h_proto; 6438 hdr.network += ETH_HLEN; 6439 6440 /* handle any vlan tag if present */ 6441 if (protocol == __constant_htons(ETH_P_8021Q)) { 6442 if ((hdr.network - data) > (max_len - VLAN_HLEN)) 6443 return max_len; 6444 6445 protocol = hdr.vlan->h_vlan_encapsulated_proto; 6446 hdr.network += VLAN_HLEN; 6447 } 6448 6449 /* handle L3 protocols */ 6450 if (protocol == __constant_htons(ETH_P_IP)) { 6451 if ((hdr.network - data) > (max_len - sizeof(struct iphdr))) 6452 return max_len; 6453 6454 /* access ihl as a u8 to avoid unaligned access on ia64 */ 6455 hlen = (hdr.network[0] & 0x0F) << 2; 6456 6457 /* verify hlen meets minimum size requirements */ 6458 if (hlen < sizeof(struct iphdr)) 6459 return hdr.network - data; 6460 6461 /* record next protocol if header is present */ 6462 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET))) 6463 nexthdr = hdr.ipv4->protocol; 6464 } else if (protocol == __constant_htons(ETH_P_IPV6)) { 6465 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr))) 6466 return max_len; 6467 6468 /* record next protocol */ 6469 nexthdr = hdr.ipv6->nexthdr; 6470 hlen = sizeof(struct ipv6hdr); 6471 } else { 6472 return hdr.network - data; 6473 } 6474 6475 /* relocate pointer to start of L4 header */ 6476 hdr.network += hlen; 6477 6478 /* finally sort out TCP */ 6479 if (nexthdr == IPPROTO_TCP) { 6480 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr))) 6481 return max_len; 6482 6483 /* access doff as a u8 to avoid unaligned access on ia64 */ 6484 hlen = (hdr.network[12] & 0xF0) >> 2; 6485 6486 /* verify hlen meets minimum size requirements */ 6487 if (hlen < sizeof(struct tcphdr)) 6488 return hdr.network - data; 6489 6490 hdr.network += hlen; 6491 } else if (nexthdr == IPPROTO_UDP) { 6492 if ((hdr.network - data) > (max_len - sizeof(struct udphdr))) 6493 return max_len; 6494 6495 hdr.network += sizeof(struct udphdr); 6496 } 6497 6498 /* If everything has gone correctly hdr.network should be the 6499 * data section of the packet and will be the end of the header. 6500 * If not then it probably represents the end of the last recognized 6501 * header. 6502 */ 6503 if ((hdr.network - data) < max_len) 6504 return hdr.network - data; 6505 else 6506 return max_len; 6507 } 6508 6509 /** 6510 * igb_pull_tail - igb specific version of skb_pull_tail 6511 * @rx_ring: rx descriptor ring packet is being transacted on 6512 * @rx_desc: pointer to the EOP Rx descriptor 6513 * @skb: pointer to current skb being adjusted 6514 * 6515 * This function is an igb specific version of __pskb_pull_tail. The 6516 * main difference between this version and the original function is that 6517 * this function can make several assumptions about the state of things 6518 * that allow for significant optimizations versus the standard function. 6519 * As a result we can do things like drop a frag and maintain an accurate 6520 * truesize for the skb. 6521 */ 6522 static void igb_pull_tail(struct igb_ring *rx_ring, 6523 union e1000_adv_rx_desc *rx_desc, 6524 struct sk_buff *skb) 6525 { 6526 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 6527 unsigned char *va; 6528 unsigned int pull_len; 6529 6530 /* it is valid to use page_address instead of kmap since we are 6531 * working with pages allocated out of the lomem pool per 6532 * alloc_page(GFP_ATOMIC) 6533 */ 6534 va = skb_frag_address(frag); 6535 6536 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6537 /* retrieve timestamp from buffer */ 6538 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6539 6540 /* update pointers to remove timestamp header */ 6541 skb_frag_size_sub(frag, IGB_TS_HDR_LEN); 6542 frag->page_offset += IGB_TS_HDR_LEN; 6543 skb->data_len -= IGB_TS_HDR_LEN; 6544 skb->len -= IGB_TS_HDR_LEN; 6545 6546 /* move va to start of packet data */ 6547 va += IGB_TS_HDR_LEN; 6548 } 6549 6550 /* we need the header to contain the greater of either ETH_HLEN or 6551 * 60 bytes if the skb->len is less than 60 for skb_pad. 6552 */ 6553 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN); 6554 6555 /* align pull length to size of long to optimize memcpy performance */ 6556 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 6557 6558 /* update all of the pointers */ 6559 skb_frag_size_sub(frag, pull_len); 6560 frag->page_offset += pull_len; 6561 skb->data_len -= pull_len; 6562 skb->tail += pull_len; 6563 } 6564 6565 /** 6566 * igb_cleanup_headers - Correct corrupted or empty headers 6567 * @rx_ring: rx descriptor ring packet is being transacted on 6568 * @rx_desc: pointer to the EOP Rx descriptor 6569 * @skb: pointer to current skb being fixed 6570 * 6571 * Address the case where we are pulling data in on pages only 6572 * and as such no data is present in the skb header. 6573 * 6574 * In addition if skb is not at least 60 bytes we need to pad it so that 6575 * it is large enough to qualify as a valid Ethernet frame. 6576 * 6577 * Returns true if an error was encountered and skb was freed. 6578 **/ 6579 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 6580 union e1000_adv_rx_desc *rx_desc, 6581 struct sk_buff *skb) 6582 { 6583 if (unlikely((igb_test_staterr(rx_desc, 6584 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 6585 struct net_device *netdev = rx_ring->netdev; 6586 if (!(netdev->features & NETIF_F_RXALL)) { 6587 dev_kfree_skb_any(skb); 6588 return true; 6589 } 6590 } 6591 6592 /* place header in linear portion of buffer */ 6593 if (skb_is_nonlinear(skb)) 6594 igb_pull_tail(rx_ring, rx_desc, skb); 6595 6596 /* if skb_pad returns an error the skb was freed */ 6597 if (unlikely(skb->len < 60)) { 6598 int pad_len = 60 - skb->len; 6599 6600 if (skb_pad(skb, pad_len)) 6601 return true; 6602 __skb_put(skb, pad_len); 6603 } 6604 6605 return false; 6606 } 6607 6608 /** 6609 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 6610 * @rx_ring: rx descriptor ring packet is being transacted on 6611 * @rx_desc: pointer to the EOP Rx descriptor 6612 * @skb: pointer to current skb being populated 6613 * 6614 * This function checks the ring, descriptor, and packet information in 6615 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 6616 * other fields within the skb. 6617 **/ 6618 static void igb_process_skb_fields(struct igb_ring *rx_ring, 6619 union e1000_adv_rx_desc *rx_desc, 6620 struct sk_buff *skb) 6621 { 6622 struct net_device *dev = rx_ring->netdev; 6623 6624 igb_rx_hash(rx_ring, rx_desc, skb); 6625 6626 igb_rx_checksum(rx_ring, rx_desc, skb); 6627 6628 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb); 6629 6630 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 6631 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 6632 u16 vid; 6633 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 6634 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 6635 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 6636 else 6637 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 6638 6639 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 6640 } 6641 6642 skb_record_rx_queue(skb, rx_ring->queue_index); 6643 6644 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 6645 } 6646 6647 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 6648 { 6649 struct igb_ring *rx_ring = q_vector->rx.ring; 6650 struct sk_buff *skb = rx_ring->skb; 6651 unsigned int total_bytes = 0, total_packets = 0; 6652 u16 cleaned_count = igb_desc_unused(rx_ring); 6653 6654 do { 6655 union e1000_adv_rx_desc *rx_desc; 6656 6657 /* return some buffers to hardware, one at a time is too slow */ 6658 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 6659 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6660 cleaned_count = 0; 6661 } 6662 6663 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 6664 6665 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) 6666 break; 6667 6668 /* This memory barrier is needed to keep us from reading 6669 * any other fields out of the rx_desc until we know the 6670 * RXD_STAT_DD bit is set 6671 */ 6672 rmb(); 6673 6674 /* retrieve a buffer from the ring */ 6675 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); 6676 6677 /* exit if we failed to retrieve a buffer */ 6678 if (!skb) 6679 break; 6680 6681 cleaned_count++; 6682 6683 /* fetch next buffer in frame if non-eop */ 6684 if (igb_is_non_eop(rx_ring, rx_desc)) 6685 continue; 6686 6687 /* verify the packet layout is correct */ 6688 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 6689 skb = NULL; 6690 continue; 6691 } 6692 6693 /* probably a little skewed due to removing CRC */ 6694 total_bytes += skb->len; 6695 6696 /* populate checksum, timestamp, VLAN, and protocol */ 6697 igb_process_skb_fields(rx_ring, rx_desc, skb); 6698 6699 napi_gro_receive(&q_vector->napi, skb); 6700 6701 /* reset skb pointer */ 6702 skb = NULL; 6703 6704 /* update budget accounting */ 6705 total_packets++; 6706 } while (likely(total_packets < budget)); 6707 6708 /* place incomplete frames back on ring for completion */ 6709 rx_ring->skb = skb; 6710 6711 u64_stats_update_begin(&rx_ring->rx_syncp); 6712 rx_ring->rx_stats.packets += total_packets; 6713 rx_ring->rx_stats.bytes += total_bytes; 6714 u64_stats_update_end(&rx_ring->rx_syncp); 6715 q_vector->rx.total_packets += total_packets; 6716 q_vector->rx.total_bytes += total_bytes; 6717 6718 if (cleaned_count) 6719 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6720 6721 return (total_packets < budget); 6722 } 6723 6724 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 6725 struct igb_rx_buffer *bi) 6726 { 6727 struct page *page = bi->page; 6728 dma_addr_t dma; 6729 6730 /* since we are recycling buffers we should seldom need to alloc */ 6731 if (likely(page)) 6732 return true; 6733 6734 /* alloc new page for storage */ 6735 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL); 6736 if (unlikely(!page)) { 6737 rx_ring->rx_stats.alloc_failed++; 6738 return false; 6739 } 6740 6741 /* map page for use */ 6742 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 6743 6744 /* if mapping failed free memory back to system since 6745 * there isn't much point in holding memory we can't use 6746 */ 6747 if (dma_mapping_error(rx_ring->dev, dma)) { 6748 __free_page(page); 6749 6750 rx_ring->rx_stats.alloc_failed++; 6751 return false; 6752 } 6753 6754 bi->dma = dma; 6755 bi->page = page; 6756 bi->page_offset = 0; 6757 6758 return true; 6759 } 6760 6761 /** 6762 * igb_alloc_rx_buffers - Replace used receive buffers; packet split 6763 * @adapter: address of board private structure 6764 **/ 6765 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 6766 { 6767 union e1000_adv_rx_desc *rx_desc; 6768 struct igb_rx_buffer *bi; 6769 u16 i = rx_ring->next_to_use; 6770 6771 /* nothing to do */ 6772 if (!cleaned_count) 6773 return; 6774 6775 rx_desc = IGB_RX_DESC(rx_ring, i); 6776 bi = &rx_ring->rx_buffer_info[i]; 6777 i -= rx_ring->count; 6778 6779 do { 6780 if (!igb_alloc_mapped_page(rx_ring, bi)) 6781 break; 6782 6783 /* Refresh the desc even if buffer_addrs didn't change 6784 * because each write-back erases this info. 6785 */ 6786 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 6787 6788 rx_desc++; 6789 bi++; 6790 i++; 6791 if (unlikely(!i)) { 6792 rx_desc = IGB_RX_DESC(rx_ring, 0); 6793 bi = rx_ring->rx_buffer_info; 6794 i -= rx_ring->count; 6795 } 6796 6797 /* clear the hdr_addr for the next_to_use descriptor */ 6798 rx_desc->read.hdr_addr = 0; 6799 6800 cleaned_count--; 6801 } while (cleaned_count); 6802 6803 i += rx_ring->count; 6804 6805 if (rx_ring->next_to_use != i) { 6806 /* record the next descriptor to use */ 6807 rx_ring->next_to_use = i; 6808 6809 /* update next to alloc since we have filled the ring */ 6810 rx_ring->next_to_alloc = i; 6811 6812 /* Force memory writes to complete before letting h/w 6813 * know there are new descriptors to fetch. (Only 6814 * applicable for weak-ordered memory model archs, 6815 * such as IA-64). 6816 */ 6817 wmb(); 6818 writel(i, rx_ring->tail); 6819 } 6820 } 6821 6822 /** 6823 * igb_mii_ioctl - 6824 * @netdev: 6825 * @ifreq: 6826 * @cmd: 6827 **/ 6828 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6829 { 6830 struct igb_adapter *adapter = netdev_priv(netdev); 6831 struct mii_ioctl_data *data = if_mii(ifr); 6832 6833 if (adapter->hw.phy.media_type != e1000_media_type_copper) 6834 return -EOPNOTSUPP; 6835 6836 switch (cmd) { 6837 case SIOCGMIIPHY: 6838 data->phy_id = adapter->hw.phy.addr; 6839 break; 6840 case SIOCGMIIREG: 6841 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 6842 &data->val_out)) 6843 return -EIO; 6844 break; 6845 case SIOCSMIIREG: 6846 default: 6847 return -EOPNOTSUPP; 6848 } 6849 return 0; 6850 } 6851 6852 /** 6853 * igb_ioctl - 6854 * @netdev: 6855 * @ifreq: 6856 * @cmd: 6857 **/ 6858 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6859 { 6860 switch (cmd) { 6861 case SIOCGMIIPHY: 6862 case SIOCGMIIREG: 6863 case SIOCSMIIREG: 6864 return igb_mii_ioctl(netdev, ifr, cmd); 6865 case SIOCSHWTSTAMP: 6866 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd); 6867 default: 6868 return -EOPNOTSUPP; 6869 } 6870 } 6871 6872 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 6873 { 6874 struct igb_adapter *adapter = hw->back; 6875 6876 if (pcie_capability_read_word(adapter->pdev, reg, value)) 6877 return -E1000_ERR_CONFIG; 6878 6879 return 0; 6880 } 6881 6882 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 6883 { 6884 struct igb_adapter *adapter = hw->back; 6885 6886 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 6887 return -E1000_ERR_CONFIG; 6888 6889 return 0; 6890 } 6891 6892 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 6893 { 6894 struct igb_adapter *adapter = netdev_priv(netdev); 6895 struct e1000_hw *hw = &adapter->hw; 6896 u32 ctrl, rctl; 6897 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 6898 6899 if (enable) { 6900 /* enable VLAN tag insert/strip */ 6901 ctrl = rd32(E1000_CTRL); 6902 ctrl |= E1000_CTRL_VME; 6903 wr32(E1000_CTRL, ctrl); 6904 6905 /* Disable CFI check */ 6906 rctl = rd32(E1000_RCTL); 6907 rctl &= ~E1000_RCTL_CFIEN; 6908 wr32(E1000_RCTL, rctl); 6909 } else { 6910 /* disable VLAN tag insert/strip */ 6911 ctrl = rd32(E1000_CTRL); 6912 ctrl &= ~E1000_CTRL_VME; 6913 wr32(E1000_CTRL, ctrl); 6914 } 6915 6916 igb_rlpml_set(adapter); 6917 } 6918 6919 static int igb_vlan_rx_add_vid(struct net_device *netdev, 6920 __be16 proto, u16 vid) 6921 { 6922 struct igb_adapter *adapter = netdev_priv(netdev); 6923 struct e1000_hw *hw = &adapter->hw; 6924 int pf_id = adapter->vfs_allocated_count; 6925 6926 /* attempt to add filter to vlvf array */ 6927 igb_vlvf_set(adapter, vid, true, pf_id); 6928 6929 /* add the filter since PF can receive vlans w/o entry in vlvf */ 6930 igb_vfta_set(hw, vid, true); 6931 6932 set_bit(vid, adapter->active_vlans); 6933 6934 return 0; 6935 } 6936 6937 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 6938 __be16 proto, u16 vid) 6939 { 6940 struct igb_adapter *adapter = netdev_priv(netdev); 6941 struct e1000_hw *hw = &adapter->hw; 6942 int pf_id = adapter->vfs_allocated_count; 6943 s32 err; 6944 6945 /* remove vlan from VLVF table array */ 6946 err = igb_vlvf_set(adapter, vid, false, pf_id); 6947 6948 /* if vid was not present in VLVF just remove it from table */ 6949 if (err) 6950 igb_vfta_set(hw, vid, false); 6951 6952 clear_bit(vid, adapter->active_vlans); 6953 6954 return 0; 6955 } 6956 6957 static void igb_restore_vlan(struct igb_adapter *adapter) 6958 { 6959 u16 vid; 6960 6961 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 6962 6963 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 6964 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 6965 } 6966 6967 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 6968 { 6969 struct pci_dev *pdev = adapter->pdev; 6970 struct e1000_mac_info *mac = &adapter->hw.mac; 6971 6972 mac->autoneg = 0; 6973 6974 /* Make sure dplx is at most 1 bit and lsb of speed is not set 6975 * for the switch() below to work 6976 */ 6977 if ((spd & 1) || (dplx & ~1)) 6978 goto err_inval; 6979 6980 /* Fiber NIC's only allow 1000 gbps Full duplex 6981 * and 100Mbps Full duplex for 100baseFx sfp 6982 */ 6983 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 6984 switch (spd + dplx) { 6985 case SPEED_10 + DUPLEX_HALF: 6986 case SPEED_10 + DUPLEX_FULL: 6987 case SPEED_100 + DUPLEX_HALF: 6988 goto err_inval; 6989 default: 6990 break; 6991 } 6992 } 6993 6994 switch (spd + dplx) { 6995 case SPEED_10 + DUPLEX_HALF: 6996 mac->forced_speed_duplex = ADVERTISE_10_HALF; 6997 break; 6998 case SPEED_10 + DUPLEX_FULL: 6999 mac->forced_speed_duplex = ADVERTISE_10_FULL; 7000 break; 7001 case SPEED_100 + DUPLEX_HALF: 7002 mac->forced_speed_duplex = ADVERTISE_100_HALF; 7003 break; 7004 case SPEED_100 + DUPLEX_FULL: 7005 mac->forced_speed_duplex = ADVERTISE_100_FULL; 7006 break; 7007 case SPEED_1000 + DUPLEX_FULL: 7008 mac->autoneg = 1; 7009 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 7010 break; 7011 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 7012 default: 7013 goto err_inval; 7014 } 7015 7016 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 7017 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7018 7019 return 0; 7020 7021 err_inval: 7022 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 7023 return -EINVAL; 7024 } 7025 7026 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 7027 bool runtime) 7028 { 7029 struct net_device *netdev = pci_get_drvdata(pdev); 7030 struct igb_adapter *adapter = netdev_priv(netdev); 7031 struct e1000_hw *hw = &adapter->hw; 7032 u32 ctrl, rctl, status; 7033 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 7034 #ifdef CONFIG_PM 7035 int retval = 0; 7036 #endif 7037 7038 netif_device_detach(netdev); 7039 7040 if (netif_running(netdev)) 7041 __igb_close(netdev, true); 7042 7043 igb_clear_interrupt_scheme(adapter); 7044 7045 #ifdef CONFIG_PM 7046 retval = pci_save_state(pdev); 7047 if (retval) 7048 return retval; 7049 #endif 7050 7051 status = rd32(E1000_STATUS); 7052 if (status & E1000_STATUS_LU) 7053 wufc &= ~E1000_WUFC_LNKC; 7054 7055 if (wufc) { 7056 igb_setup_rctl(adapter); 7057 igb_set_rx_mode(netdev); 7058 7059 /* turn on all-multi mode if wake on multicast is enabled */ 7060 if (wufc & E1000_WUFC_MC) { 7061 rctl = rd32(E1000_RCTL); 7062 rctl |= E1000_RCTL_MPE; 7063 wr32(E1000_RCTL, rctl); 7064 } 7065 7066 ctrl = rd32(E1000_CTRL); 7067 /* advertise wake from D3Cold */ 7068 #define E1000_CTRL_ADVD3WUC 0x00100000 7069 /* phy power management enable */ 7070 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 7071 ctrl |= E1000_CTRL_ADVD3WUC; 7072 wr32(E1000_CTRL, ctrl); 7073 7074 /* Allow time for pending master requests to run */ 7075 igb_disable_pcie_master(hw); 7076 7077 wr32(E1000_WUC, E1000_WUC_PME_EN); 7078 wr32(E1000_WUFC, wufc); 7079 } else { 7080 wr32(E1000_WUC, 0); 7081 wr32(E1000_WUFC, 0); 7082 } 7083 7084 *enable_wake = wufc || adapter->en_mng_pt; 7085 if (!*enable_wake) 7086 igb_power_down_link(adapter); 7087 else 7088 igb_power_up_link(adapter); 7089 7090 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7091 * would have already happened in close and is redundant. 7092 */ 7093 igb_release_hw_control(adapter); 7094 7095 pci_disable_device(pdev); 7096 7097 return 0; 7098 } 7099 7100 #ifdef CONFIG_PM 7101 #ifdef CONFIG_PM_SLEEP 7102 static int igb_suspend(struct device *dev) 7103 { 7104 int retval; 7105 bool wake; 7106 struct pci_dev *pdev = to_pci_dev(dev); 7107 7108 retval = __igb_shutdown(pdev, &wake, 0); 7109 if (retval) 7110 return retval; 7111 7112 if (wake) { 7113 pci_prepare_to_sleep(pdev); 7114 } else { 7115 pci_wake_from_d3(pdev, false); 7116 pci_set_power_state(pdev, PCI_D3hot); 7117 } 7118 7119 return 0; 7120 } 7121 #endif /* CONFIG_PM_SLEEP */ 7122 7123 static int igb_resume(struct device *dev) 7124 { 7125 struct pci_dev *pdev = to_pci_dev(dev); 7126 struct net_device *netdev = pci_get_drvdata(pdev); 7127 struct igb_adapter *adapter = netdev_priv(netdev); 7128 struct e1000_hw *hw = &adapter->hw; 7129 u32 err; 7130 7131 pci_set_power_state(pdev, PCI_D0); 7132 pci_restore_state(pdev); 7133 pci_save_state(pdev); 7134 7135 err = pci_enable_device_mem(pdev); 7136 if (err) { 7137 dev_err(&pdev->dev, 7138 "igb: Cannot enable PCI device from suspend\n"); 7139 return err; 7140 } 7141 pci_set_master(pdev); 7142 7143 pci_enable_wake(pdev, PCI_D3hot, 0); 7144 pci_enable_wake(pdev, PCI_D3cold, 0); 7145 7146 if (igb_init_interrupt_scheme(adapter, true)) { 7147 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7148 return -ENOMEM; 7149 } 7150 7151 igb_reset(adapter); 7152 7153 /* let the f/w know that the h/w is now under the control of the 7154 * driver. 7155 */ 7156 igb_get_hw_control(adapter); 7157 7158 wr32(E1000_WUS, ~0); 7159 7160 if (netdev->flags & IFF_UP) { 7161 rtnl_lock(); 7162 err = __igb_open(netdev, true); 7163 rtnl_unlock(); 7164 if (err) 7165 return err; 7166 } 7167 7168 netif_device_attach(netdev); 7169 return 0; 7170 } 7171 7172 #ifdef CONFIG_PM_RUNTIME 7173 static int igb_runtime_idle(struct device *dev) 7174 { 7175 struct pci_dev *pdev = to_pci_dev(dev); 7176 struct net_device *netdev = pci_get_drvdata(pdev); 7177 struct igb_adapter *adapter = netdev_priv(netdev); 7178 7179 if (!igb_has_link(adapter)) 7180 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7181 7182 return -EBUSY; 7183 } 7184 7185 static int igb_runtime_suspend(struct device *dev) 7186 { 7187 struct pci_dev *pdev = to_pci_dev(dev); 7188 int retval; 7189 bool wake; 7190 7191 retval = __igb_shutdown(pdev, &wake, 1); 7192 if (retval) 7193 return retval; 7194 7195 if (wake) { 7196 pci_prepare_to_sleep(pdev); 7197 } else { 7198 pci_wake_from_d3(pdev, false); 7199 pci_set_power_state(pdev, PCI_D3hot); 7200 } 7201 7202 return 0; 7203 } 7204 7205 static int igb_runtime_resume(struct device *dev) 7206 { 7207 return igb_resume(dev); 7208 } 7209 #endif /* CONFIG_PM_RUNTIME */ 7210 #endif 7211 7212 static void igb_shutdown(struct pci_dev *pdev) 7213 { 7214 bool wake; 7215 7216 __igb_shutdown(pdev, &wake, 0); 7217 7218 if (system_state == SYSTEM_POWER_OFF) { 7219 pci_wake_from_d3(pdev, wake); 7220 pci_set_power_state(pdev, PCI_D3hot); 7221 } 7222 } 7223 7224 #ifdef CONFIG_PCI_IOV 7225 static int igb_sriov_reinit(struct pci_dev *dev) 7226 { 7227 struct net_device *netdev = pci_get_drvdata(dev); 7228 struct igb_adapter *adapter = netdev_priv(netdev); 7229 struct pci_dev *pdev = adapter->pdev; 7230 7231 rtnl_lock(); 7232 7233 if (netif_running(netdev)) 7234 igb_close(netdev); 7235 7236 igb_clear_interrupt_scheme(adapter); 7237 7238 igb_init_queue_configuration(adapter); 7239 7240 if (igb_init_interrupt_scheme(adapter, true)) { 7241 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7242 return -ENOMEM; 7243 } 7244 7245 if (netif_running(netdev)) 7246 igb_open(netdev); 7247 7248 rtnl_unlock(); 7249 7250 return 0; 7251 } 7252 7253 static int igb_pci_disable_sriov(struct pci_dev *dev) 7254 { 7255 int err = igb_disable_sriov(dev); 7256 7257 if (!err) 7258 err = igb_sriov_reinit(dev); 7259 7260 return err; 7261 } 7262 7263 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 7264 { 7265 int err = igb_enable_sriov(dev, num_vfs); 7266 7267 if (err) 7268 goto out; 7269 7270 err = igb_sriov_reinit(dev); 7271 if (!err) 7272 return num_vfs; 7273 7274 out: 7275 return err; 7276 } 7277 7278 #endif 7279 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 7280 { 7281 #ifdef CONFIG_PCI_IOV 7282 if (num_vfs == 0) 7283 return igb_pci_disable_sriov(dev); 7284 else 7285 return igb_pci_enable_sriov(dev, num_vfs); 7286 #endif 7287 return 0; 7288 } 7289 7290 #ifdef CONFIG_NET_POLL_CONTROLLER 7291 /* Polling 'interrupt' - used by things like netconsole to send skbs 7292 * without having to re-enable interrupts. It's not called while 7293 * the interrupt routine is executing. 7294 */ 7295 static void igb_netpoll(struct net_device *netdev) 7296 { 7297 struct igb_adapter *adapter = netdev_priv(netdev); 7298 struct e1000_hw *hw = &adapter->hw; 7299 struct igb_q_vector *q_vector; 7300 int i; 7301 7302 for (i = 0; i < adapter->num_q_vectors; i++) { 7303 q_vector = adapter->q_vector[i]; 7304 if (adapter->msix_entries) 7305 wr32(E1000_EIMC, q_vector->eims_value); 7306 else 7307 igb_irq_disable(adapter); 7308 napi_schedule(&q_vector->napi); 7309 } 7310 } 7311 #endif /* CONFIG_NET_POLL_CONTROLLER */ 7312 7313 /** 7314 * igb_io_error_detected - called when PCI error is detected 7315 * @pdev: Pointer to PCI device 7316 * @state: The current pci connection state 7317 * 7318 * This function is called after a PCI bus error affecting 7319 * this device has been detected. 7320 **/ 7321 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 7322 pci_channel_state_t state) 7323 { 7324 struct net_device *netdev = pci_get_drvdata(pdev); 7325 struct igb_adapter *adapter = netdev_priv(netdev); 7326 7327 netif_device_detach(netdev); 7328 7329 if (state == pci_channel_io_perm_failure) 7330 return PCI_ERS_RESULT_DISCONNECT; 7331 7332 if (netif_running(netdev)) 7333 igb_down(adapter); 7334 pci_disable_device(pdev); 7335 7336 /* Request a slot slot reset. */ 7337 return PCI_ERS_RESULT_NEED_RESET; 7338 } 7339 7340 /** 7341 * igb_io_slot_reset - called after the pci bus has been reset. 7342 * @pdev: Pointer to PCI device 7343 * 7344 * Restart the card from scratch, as if from a cold-boot. Implementation 7345 * resembles the first-half of the igb_resume routine. 7346 **/ 7347 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 7348 { 7349 struct net_device *netdev = pci_get_drvdata(pdev); 7350 struct igb_adapter *adapter = netdev_priv(netdev); 7351 struct e1000_hw *hw = &adapter->hw; 7352 pci_ers_result_t result; 7353 int err; 7354 7355 if (pci_enable_device_mem(pdev)) { 7356 dev_err(&pdev->dev, 7357 "Cannot re-enable PCI device after reset.\n"); 7358 result = PCI_ERS_RESULT_DISCONNECT; 7359 } else { 7360 pci_set_master(pdev); 7361 pci_restore_state(pdev); 7362 pci_save_state(pdev); 7363 7364 pci_enable_wake(pdev, PCI_D3hot, 0); 7365 pci_enable_wake(pdev, PCI_D3cold, 0); 7366 7367 igb_reset(adapter); 7368 wr32(E1000_WUS, ~0); 7369 result = PCI_ERS_RESULT_RECOVERED; 7370 } 7371 7372 err = pci_cleanup_aer_uncorrect_error_status(pdev); 7373 if (err) { 7374 dev_err(&pdev->dev, 7375 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 7376 err); 7377 /* non-fatal, continue */ 7378 } 7379 7380 return result; 7381 } 7382 7383 /** 7384 * igb_io_resume - called when traffic can start flowing again. 7385 * @pdev: Pointer to PCI device 7386 * 7387 * This callback is called when the error recovery driver tells us that 7388 * its OK to resume normal operation. Implementation resembles the 7389 * second-half of the igb_resume routine. 7390 */ 7391 static void igb_io_resume(struct pci_dev *pdev) 7392 { 7393 struct net_device *netdev = pci_get_drvdata(pdev); 7394 struct igb_adapter *adapter = netdev_priv(netdev); 7395 7396 if (netif_running(netdev)) { 7397 if (igb_up(adapter)) { 7398 dev_err(&pdev->dev, "igb_up failed after reset\n"); 7399 return; 7400 } 7401 } 7402 7403 netif_device_attach(netdev); 7404 7405 /* let the f/w know that the h/w is now under the control of the 7406 * driver. 7407 */ 7408 igb_get_hw_control(adapter); 7409 } 7410 7411 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, 7412 u8 qsel) 7413 { 7414 u32 rar_low, rar_high; 7415 struct e1000_hw *hw = &adapter->hw; 7416 7417 /* HW expects these in little endian so we reverse the byte order 7418 * from network order (big endian) to little endian 7419 */ 7420 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 7421 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 7422 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 7423 7424 /* Indicate to hardware the Address is Valid. */ 7425 rar_high |= E1000_RAH_AV; 7426 7427 if (hw->mac.type == e1000_82575) 7428 rar_high |= E1000_RAH_POOL_1 * qsel; 7429 else 7430 rar_high |= E1000_RAH_POOL_1 << qsel; 7431 7432 wr32(E1000_RAL(index), rar_low); 7433 wrfl(); 7434 wr32(E1000_RAH(index), rar_high); 7435 wrfl(); 7436 } 7437 7438 static int igb_set_vf_mac(struct igb_adapter *adapter, 7439 int vf, unsigned char *mac_addr) 7440 { 7441 struct e1000_hw *hw = &adapter->hw; 7442 /* VF MAC addresses start at end of receive addresses and moves 7443 * towards the first, as a result a collision should not be possible 7444 */ 7445 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 7446 7447 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); 7448 7449 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); 7450 7451 return 0; 7452 } 7453 7454 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 7455 { 7456 struct igb_adapter *adapter = netdev_priv(netdev); 7457 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) 7458 return -EINVAL; 7459 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 7460 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); 7461 dev_info(&adapter->pdev->dev, 7462 "Reload the VF driver to make this change effective."); 7463 if (test_bit(__IGB_DOWN, &adapter->state)) { 7464 dev_warn(&adapter->pdev->dev, 7465 "The VF MAC address has been set, but the PF device is not up.\n"); 7466 dev_warn(&adapter->pdev->dev, 7467 "Bring the PF device up before attempting to use the VF device.\n"); 7468 } 7469 return igb_set_vf_mac(adapter, vf, mac); 7470 } 7471 7472 static int igb_link_mbps(int internal_link_speed) 7473 { 7474 switch (internal_link_speed) { 7475 case SPEED_100: 7476 return 100; 7477 case SPEED_1000: 7478 return 1000; 7479 default: 7480 return 0; 7481 } 7482 } 7483 7484 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 7485 int link_speed) 7486 { 7487 int rf_dec, rf_int; 7488 u32 bcnrc_val; 7489 7490 if (tx_rate != 0) { 7491 /* Calculate the rate factor values to set */ 7492 rf_int = link_speed / tx_rate; 7493 rf_dec = (link_speed - (rf_int * tx_rate)); 7494 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) / 7495 tx_rate; 7496 7497 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 7498 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 7499 E1000_RTTBCNRC_RF_INT_MASK); 7500 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 7501 } else { 7502 bcnrc_val = 0; 7503 } 7504 7505 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 7506 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 7507 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 7508 */ 7509 wr32(E1000_RTTBCNRM, 0x14); 7510 wr32(E1000_RTTBCNRC, bcnrc_val); 7511 } 7512 7513 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 7514 { 7515 int actual_link_speed, i; 7516 bool reset_rate = false; 7517 7518 /* VF TX rate limit was not set or not supported */ 7519 if ((adapter->vf_rate_link_speed == 0) || 7520 (adapter->hw.mac.type != e1000_82576)) 7521 return; 7522 7523 actual_link_speed = igb_link_mbps(adapter->link_speed); 7524 if (actual_link_speed != adapter->vf_rate_link_speed) { 7525 reset_rate = true; 7526 adapter->vf_rate_link_speed = 0; 7527 dev_info(&adapter->pdev->dev, 7528 "Link speed has been changed. VF Transmit rate is disabled\n"); 7529 } 7530 7531 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7532 if (reset_rate) 7533 adapter->vf_data[i].tx_rate = 0; 7534 7535 igb_set_vf_rate_limit(&adapter->hw, i, 7536 adapter->vf_data[i].tx_rate, 7537 actual_link_speed); 7538 } 7539 } 7540 7541 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) 7542 { 7543 struct igb_adapter *adapter = netdev_priv(netdev); 7544 struct e1000_hw *hw = &adapter->hw; 7545 int actual_link_speed; 7546 7547 if (hw->mac.type != e1000_82576) 7548 return -EOPNOTSUPP; 7549 7550 actual_link_speed = igb_link_mbps(adapter->link_speed); 7551 if ((vf >= adapter->vfs_allocated_count) || 7552 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 7553 (tx_rate < 0) || (tx_rate > actual_link_speed)) 7554 return -EINVAL; 7555 7556 adapter->vf_rate_link_speed = actual_link_speed; 7557 adapter->vf_data[vf].tx_rate = (u16)tx_rate; 7558 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); 7559 7560 return 0; 7561 } 7562 7563 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 7564 bool setting) 7565 { 7566 struct igb_adapter *adapter = netdev_priv(netdev); 7567 struct e1000_hw *hw = &adapter->hw; 7568 u32 reg_val, reg_offset; 7569 7570 if (!adapter->vfs_allocated_count) 7571 return -EOPNOTSUPP; 7572 7573 if (vf >= adapter->vfs_allocated_count) 7574 return -EINVAL; 7575 7576 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 7577 reg_val = rd32(reg_offset); 7578 if (setting) 7579 reg_val |= ((1 << vf) | 7580 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7581 else 7582 reg_val &= ~((1 << vf) | 7583 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7584 wr32(reg_offset, reg_val); 7585 7586 adapter->vf_data[vf].spoofchk_enabled = setting; 7587 return E1000_SUCCESS; 7588 } 7589 7590 static int igb_ndo_get_vf_config(struct net_device *netdev, 7591 int vf, struct ifla_vf_info *ivi) 7592 { 7593 struct igb_adapter *adapter = netdev_priv(netdev); 7594 if (vf >= adapter->vfs_allocated_count) 7595 return -EINVAL; 7596 ivi->vf = vf; 7597 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 7598 ivi->tx_rate = adapter->vf_data[vf].tx_rate; 7599 ivi->vlan = adapter->vf_data[vf].pf_vlan; 7600 ivi->qos = adapter->vf_data[vf].pf_qos; 7601 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 7602 return 0; 7603 } 7604 7605 static void igb_vmm_control(struct igb_adapter *adapter) 7606 { 7607 struct e1000_hw *hw = &adapter->hw; 7608 u32 reg; 7609 7610 switch (hw->mac.type) { 7611 case e1000_82575: 7612 case e1000_i210: 7613 case e1000_i211: 7614 case e1000_i354: 7615 default: 7616 /* replication is not supported for 82575 */ 7617 return; 7618 case e1000_82576: 7619 /* notify HW that the MAC is adding vlan tags */ 7620 reg = rd32(E1000_DTXCTL); 7621 reg |= E1000_DTXCTL_VLAN_ADDED; 7622 wr32(E1000_DTXCTL, reg); 7623 case e1000_82580: 7624 /* enable replication vlan tag stripping */ 7625 reg = rd32(E1000_RPLOLR); 7626 reg |= E1000_RPLOLR_STRVLAN; 7627 wr32(E1000_RPLOLR, reg); 7628 case e1000_i350: 7629 /* none of the above registers are supported by i350 */ 7630 break; 7631 } 7632 7633 if (adapter->vfs_allocated_count) { 7634 igb_vmdq_set_loopback_pf(hw, true); 7635 igb_vmdq_set_replication_pf(hw, true); 7636 igb_vmdq_set_anti_spoofing_pf(hw, true, 7637 adapter->vfs_allocated_count); 7638 } else { 7639 igb_vmdq_set_loopback_pf(hw, false); 7640 igb_vmdq_set_replication_pf(hw, false); 7641 } 7642 } 7643 7644 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 7645 { 7646 struct e1000_hw *hw = &adapter->hw; 7647 u32 dmac_thr; 7648 u16 hwm; 7649 7650 if (hw->mac.type > e1000_82580) { 7651 if (adapter->flags & IGB_FLAG_DMAC) { 7652 u32 reg; 7653 7654 /* force threshold to 0. */ 7655 wr32(E1000_DMCTXTH, 0); 7656 7657 /* DMA Coalescing high water mark needs to be greater 7658 * than the Rx threshold. Set hwm to PBA - max frame 7659 * size in 16B units, capping it at PBA - 6KB. 7660 */ 7661 hwm = 64 * pba - adapter->max_frame_size / 16; 7662 if (hwm < 64 * (pba - 6)) 7663 hwm = 64 * (pba - 6); 7664 reg = rd32(E1000_FCRTC); 7665 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 7666 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 7667 & E1000_FCRTC_RTH_COAL_MASK); 7668 wr32(E1000_FCRTC, reg); 7669 7670 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 7671 * frame size, capping it at PBA - 10KB. 7672 */ 7673 dmac_thr = pba - adapter->max_frame_size / 512; 7674 if (dmac_thr < pba - 10) 7675 dmac_thr = pba - 10; 7676 reg = rd32(E1000_DMACR); 7677 reg &= ~E1000_DMACR_DMACTHR_MASK; 7678 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 7679 & E1000_DMACR_DMACTHR_MASK); 7680 7681 /* transition to L0x or L1 if available..*/ 7682 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 7683 7684 /* watchdog timer= +-1000 usec in 32usec intervals */ 7685 reg |= (1000 >> 5); 7686 7687 /* Disable BMC-to-OS Watchdog Enable */ 7688 if (hw->mac.type != e1000_i354) 7689 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 7690 7691 wr32(E1000_DMACR, reg); 7692 7693 /* no lower threshold to disable 7694 * coalescing(smart fifb)-UTRESH=0 7695 */ 7696 wr32(E1000_DMCRTRH, 0); 7697 7698 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 7699 7700 wr32(E1000_DMCTLX, reg); 7701 7702 /* free space in tx packet buffer to wake from 7703 * DMA coal 7704 */ 7705 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 7706 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 7707 7708 /* make low power state decision controlled 7709 * by DMA coal 7710 */ 7711 reg = rd32(E1000_PCIEMISC); 7712 reg &= ~E1000_PCIEMISC_LX_DECISION; 7713 wr32(E1000_PCIEMISC, reg); 7714 } /* endif adapter->dmac is not disabled */ 7715 } else if (hw->mac.type == e1000_82580) { 7716 u32 reg = rd32(E1000_PCIEMISC); 7717 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 7718 wr32(E1000_DMACR, 0); 7719 } 7720 } 7721 7722 /** 7723 * igb_read_i2c_byte - Reads 8 bit word over I2C 7724 * @hw: pointer to hardware structure 7725 * @byte_offset: byte offset to read 7726 * @dev_addr: device address 7727 * @data: value read 7728 * 7729 * Performs byte read operation over I2C interface at 7730 * a specified device address. 7731 **/ 7732 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 7733 u8 dev_addr, u8 *data) 7734 { 7735 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 7736 struct i2c_client *this_client = adapter->i2c_client; 7737 s32 status; 7738 u16 swfw_mask = 0; 7739 7740 if (!this_client) 7741 return E1000_ERR_I2C; 7742 7743 swfw_mask = E1000_SWFW_PHY0_SM; 7744 7745 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) 7746 != E1000_SUCCESS) 7747 return E1000_ERR_SWFW_SYNC; 7748 7749 status = i2c_smbus_read_byte_data(this_client, byte_offset); 7750 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 7751 7752 if (status < 0) 7753 return E1000_ERR_I2C; 7754 else { 7755 *data = status; 7756 return E1000_SUCCESS; 7757 } 7758 } 7759 7760 /** 7761 * igb_write_i2c_byte - Writes 8 bit word over I2C 7762 * @hw: pointer to hardware structure 7763 * @byte_offset: byte offset to write 7764 * @dev_addr: device address 7765 * @data: value to write 7766 * 7767 * Performs byte write operation over I2C interface at 7768 * a specified device address. 7769 **/ 7770 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 7771 u8 dev_addr, u8 data) 7772 { 7773 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 7774 struct i2c_client *this_client = adapter->i2c_client; 7775 s32 status; 7776 u16 swfw_mask = E1000_SWFW_PHY0_SM; 7777 7778 if (!this_client) 7779 return E1000_ERR_I2C; 7780 7781 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) 7782 return E1000_ERR_SWFW_SYNC; 7783 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 7784 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 7785 7786 if (status) 7787 return E1000_ERR_I2C; 7788 else 7789 return E1000_SUCCESS; 7790 7791 } 7792 /* igb_main.c */ 7793