1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/bitops.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/netdevice.h> 13 #include <linux/ipv6.h> 14 #include <linux/slab.h> 15 #include <net/checksum.h> 16 #include <net/ip6_checksum.h> 17 #include <net/pkt_sched.h> 18 #include <net/pkt_cls.h> 19 #include <linux/net_tstamp.h> 20 #include <linux/mii.h> 21 #include <linux/ethtool.h> 22 #include <linux/if.h> 23 #include <linux/if_vlan.h> 24 #include <linux/pci.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/ip.h> 28 #include <linux/tcp.h> 29 #include <linux/sctp.h> 30 #include <linux/if_ether.h> 31 #include <linux/aer.h> 32 #include <linux/prefetch.h> 33 #include <linux/bpf.h> 34 #include <linux/bpf_trace.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/etherdevice.h> 37 #ifdef CONFIG_IGB_DCA 38 #include <linux/dca.h> 39 #endif 40 #include <linux/i2c.h> 41 #include "igb.h" 42 43 enum queue_mode { 44 QUEUE_MODE_STRICT_PRIORITY, 45 QUEUE_MODE_STREAM_RESERVATION, 46 }; 47 48 enum tx_queue_prio { 49 TX_QUEUE_PRIO_HIGH, 50 TX_QUEUE_PRIO_LOW, 51 }; 52 53 char igb_driver_name[] = "igb"; 54 static const char igb_driver_string[] = 55 "Intel(R) Gigabit Ethernet Network Driver"; 56 static const char igb_copyright[] = 57 "Copyright (c) 2007-2014 Intel Corporation."; 58 59 static const struct e1000_info *igb_info_tbl[] = { 60 [board_82575] = &e1000_82575_info, 61 }; 62 63 static const struct pci_device_id igb_pci_tbl[] = { 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 99 /* required last entry */ 100 {0, } 101 }; 102 103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 104 105 static int igb_setup_all_tx_resources(struct igb_adapter *); 106 static int igb_setup_all_rx_resources(struct igb_adapter *); 107 static void igb_free_all_tx_resources(struct igb_adapter *); 108 static void igb_free_all_rx_resources(struct igb_adapter *); 109 static void igb_setup_mrqc(struct igb_adapter *); 110 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 111 static void igb_remove(struct pci_dev *pdev); 112 static int igb_sw_init(struct igb_adapter *); 113 int igb_open(struct net_device *); 114 int igb_close(struct net_device *); 115 static void igb_configure(struct igb_adapter *); 116 static void igb_configure_tx(struct igb_adapter *); 117 static void igb_configure_rx(struct igb_adapter *); 118 static void igb_clean_all_tx_rings(struct igb_adapter *); 119 static void igb_clean_all_rx_rings(struct igb_adapter *); 120 static void igb_clean_tx_ring(struct igb_ring *); 121 static void igb_clean_rx_ring(struct igb_ring *); 122 static void igb_set_rx_mode(struct net_device *); 123 static void igb_update_phy_info(struct timer_list *); 124 static void igb_watchdog(struct timer_list *); 125 static void igb_watchdog_task(struct work_struct *); 126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 127 static void igb_get_stats64(struct net_device *dev, 128 struct rtnl_link_stats64 *stats); 129 static int igb_change_mtu(struct net_device *, int); 130 static int igb_set_mac(struct net_device *, void *); 131 static void igb_set_uta(struct igb_adapter *adapter, bool set); 132 static irqreturn_t igb_intr(int irq, void *); 133 static irqreturn_t igb_intr_msi(int irq, void *); 134 static irqreturn_t igb_msix_other(int irq, void *); 135 static irqreturn_t igb_msix_ring(int irq, void *); 136 #ifdef CONFIG_IGB_DCA 137 static void igb_update_dca(struct igb_q_vector *); 138 static void igb_setup_dca(struct igb_adapter *); 139 #endif /* CONFIG_IGB_DCA */ 140 static int igb_poll(struct napi_struct *, int); 141 static bool igb_clean_tx_irq(struct igb_q_vector *, int); 142 static int igb_clean_rx_irq(struct igb_q_vector *, int); 143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue); 145 static void igb_reset_task(struct work_struct *); 146 static void igb_vlan_mode(struct net_device *netdev, 147 netdev_features_t features); 148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 150 static void igb_restore_vlan(struct igb_adapter *); 151 static void igb_rar_set_index(struct igb_adapter *, u32); 152 static void igb_ping_all_vfs(struct igb_adapter *); 153 static void igb_msg_task(struct igb_adapter *); 154 static void igb_vmm_control(struct igb_adapter *); 155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 156 static void igb_flush_mac_table(struct igb_adapter *); 157 static int igb_available_rars(struct igb_adapter *, u8); 158 static void igb_set_default_mac_filter(struct igb_adapter *); 159 static int igb_uc_sync(struct net_device *, const unsigned char *); 160 static int igb_uc_unsync(struct net_device *, const unsigned char *); 161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 163 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 164 int vf, u16 vlan, u8 qos, __be16 vlan_proto); 165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 167 bool setting); 168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, 169 bool setting); 170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 171 struct ifla_vf_info *ivi); 172 static void igb_check_vf_rate_limit(struct igb_adapter *); 173 static void igb_nfc_filter_exit(struct igb_adapter *adapter); 174 static void igb_nfc_filter_restore(struct igb_adapter *adapter); 175 176 #ifdef CONFIG_PCI_IOV 177 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 179 static int igb_disable_sriov(struct pci_dev *dev); 180 static int igb_pci_disable_sriov(struct pci_dev *dev); 181 #endif 182 183 static int igb_suspend(struct device *); 184 static int igb_resume(struct device *); 185 static int igb_runtime_suspend(struct device *dev); 186 static int igb_runtime_resume(struct device *dev); 187 static int igb_runtime_idle(struct device *dev); 188 static const struct dev_pm_ops igb_pm_ops = { 189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 191 igb_runtime_idle) 192 }; 193 static void igb_shutdown(struct pci_dev *); 194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 195 #ifdef CONFIG_IGB_DCA 196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 197 static struct notifier_block dca_notifier = { 198 .notifier_call = igb_notify_dca, 199 .next = NULL, 200 .priority = 0 201 }; 202 #endif 203 #ifdef CONFIG_PCI_IOV 204 static unsigned int max_vfs; 205 module_param(max_vfs, uint, 0); 206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 207 #endif /* CONFIG_PCI_IOV */ 208 209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 210 pci_channel_state_t); 211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 212 static void igb_io_resume(struct pci_dev *); 213 214 static const struct pci_error_handlers igb_err_handler = { 215 .error_detected = igb_io_error_detected, 216 .slot_reset = igb_io_slot_reset, 217 .resume = igb_io_resume, 218 }; 219 220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 221 222 static struct pci_driver igb_driver = { 223 .name = igb_driver_name, 224 .id_table = igb_pci_tbl, 225 .probe = igb_probe, 226 .remove = igb_remove, 227 #ifdef CONFIG_PM 228 .driver.pm = &igb_pm_ops, 229 #endif 230 .shutdown = igb_shutdown, 231 .sriov_configure = igb_pci_sriov_configure, 232 .err_handler = &igb_err_handler 233 }; 234 235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 237 MODULE_LICENSE("GPL v2"); 238 239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 240 static int debug = -1; 241 module_param(debug, int, 0); 242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 243 244 struct igb_reg_info { 245 u32 ofs; 246 char *name; 247 }; 248 249 static const struct igb_reg_info igb_reg_info_tbl[] = { 250 251 /* General Registers */ 252 {E1000_CTRL, "CTRL"}, 253 {E1000_STATUS, "STATUS"}, 254 {E1000_CTRL_EXT, "CTRL_EXT"}, 255 256 /* Interrupt Registers */ 257 {E1000_ICR, "ICR"}, 258 259 /* RX Registers */ 260 {E1000_RCTL, "RCTL"}, 261 {E1000_RDLEN(0), "RDLEN"}, 262 {E1000_RDH(0), "RDH"}, 263 {E1000_RDT(0), "RDT"}, 264 {E1000_RXDCTL(0), "RXDCTL"}, 265 {E1000_RDBAL(0), "RDBAL"}, 266 {E1000_RDBAH(0), "RDBAH"}, 267 268 /* TX Registers */ 269 {E1000_TCTL, "TCTL"}, 270 {E1000_TDBAL(0), "TDBAL"}, 271 {E1000_TDBAH(0), "TDBAH"}, 272 {E1000_TDLEN(0), "TDLEN"}, 273 {E1000_TDH(0), "TDH"}, 274 {E1000_TDT(0), "TDT"}, 275 {E1000_TXDCTL(0), "TXDCTL"}, 276 {E1000_TDFH, "TDFH"}, 277 {E1000_TDFT, "TDFT"}, 278 {E1000_TDFHS, "TDFHS"}, 279 {E1000_TDFPC, "TDFPC"}, 280 281 /* List Terminator */ 282 {} 283 }; 284 285 /* igb_regdump - register printout routine */ 286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 287 { 288 int n = 0; 289 char rname[16]; 290 u32 regs[8]; 291 292 switch (reginfo->ofs) { 293 case E1000_RDLEN(0): 294 for (n = 0; n < 4; n++) 295 regs[n] = rd32(E1000_RDLEN(n)); 296 break; 297 case E1000_RDH(0): 298 for (n = 0; n < 4; n++) 299 regs[n] = rd32(E1000_RDH(n)); 300 break; 301 case E1000_RDT(0): 302 for (n = 0; n < 4; n++) 303 regs[n] = rd32(E1000_RDT(n)); 304 break; 305 case E1000_RXDCTL(0): 306 for (n = 0; n < 4; n++) 307 regs[n] = rd32(E1000_RXDCTL(n)); 308 break; 309 case E1000_RDBAL(0): 310 for (n = 0; n < 4; n++) 311 regs[n] = rd32(E1000_RDBAL(n)); 312 break; 313 case E1000_RDBAH(0): 314 for (n = 0; n < 4; n++) 315 regs[n] = rd32(E1000_RDBAH(n)); 316 break; 317 case E1000_TDBAL(0): 318 for (n = 0; n < 4; n++) 319 regs[n] = rd32(E1000_TDBAL(n)); 320 break; 321 case E1000_TDBAH(0): 322 for (n = 0; n < 4; n++) 323 regs[n] = rd32(E1000_TDBAH(n)); 324 break; 325 case E1000_TDLEN(0): 326 for (n = 0; n < 4; n++) 327 regs[n] = rd32(E1000_TDLEN(n)); 328 break; 329 case E1000_TDH(0): 330 for (n = 0; n < 4; n++) 331 regs[n] = rd32(E1000_TDH(n)); 332 break; 333 case E1000_TDT(0): 334 for (n = 0; n < 4; n++) 335 regs[n] = rd32(E1000_TDT(n)); 336 break; 337 case E1000_TXDCTL(0): 338 for (n = 0; n < 4; n++) 339 regs[n] = rd32(E1000_TXDCTL(n)); 340 break; 341 default: 342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 343 return; 344 } 345 346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 348 regs[2], regs[3]); 349 } 350 351 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 352 static void igb_dump(struct igb_adapter *adapter) 353 { 354 struct net_device *netdev = adapter->netdev; 355 struct e1000_hw *hw = &adapter->hw; 356 struct igb_reg_info *reginfo; 357 struct igb_ring *tx_ring; 358 union e1000_adv_tx_desc *tx_desc; 359 struct my_u0 { __le64 a; __le64 b; } *u0; 360 struct igb_ring *rx_ring; 361 union e1000_adv_rx_desc *rx_desc; 362 u32 staterr; 363 u16 i, n; 364 365 if (!netif_msg_hw(adapter)) 366 return; 367 368 /* Print netdevice Info */ 369 if (netdev) { 370 dev_info(&adapter->pdev->dev, "Net device Info\n"); 371 pr_info("Device Name state trans_start\n"); 372 pr_info("%-15s %016lX %016lX\n", netdev->name, 373 netdev->state, dev_trans_start(netdev)); 374 } 375 376 /* Print Registers */ 377 dev_info(&adapter->pdev->dev, "Register Dump\n"); 378 pr_info(" Register Name Value\n"); 379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 380 reginfo->name; reginfo++) { 381 igb_regdump(hw, reginfo); 382 } 383 384 /* Print TX Ring Summary */ 385 if (!netdev || !netif_running(netdev)) 386 goto exit; 387 388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 390 for (n = 0; n < adapter->num_tx_queues; n++) { 391 struct igb_tx_buffer *buffer_info; 392 tx_ring = adapter->tx_ring[n]; 393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 395 n, tx_ring->next_to_use, tx_ring->next_to_clean, 396 (u64)dma_unmap_addr(buffer_info, dma), 397 dma_unmap_len(buffer_info, len), 398 buffer_info->next_to_watch, 399 (u64)buffer_info->time_stamp); 400 } 401 402 /* Print TX Rings */ 403 if (!netif_msg_tx_done(adapter)) 404 goto rx_ring_summary; 405 406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 407 408 /* Transmit Descriptor Formats 409 * 410 * Advanced Transmit Descriptor 411 * +--------------------------------------------------------------+ 412 * 0 | Buffer Address [63:0] | 413 * +--------------------------------------------------------------+ 414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 415 * +--------------------------------------------------------------+ 416 * 63 46 45 40 39 38 36 35 32 31 24 15 0 417 */ 418 419 for (n = 0; n < adapter->num_tx_queues; n++) { 420 tx_ring = adapter->tx_ring[n]; 421 pr_info("------------------------------------\n"); 422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 423 pr_info("------------------------------------\n"); 424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 425 426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 427 const char *next_desc; 428 struct igb_tx_buffer *buffer_info; 429 tx_desc = IGB_TX_DESC(tx_ring, i); 430 buffer_info = &tx_ring->tx_buffer_info[i]; 431 u0 = (struct my_u0 *)tx_desc; 432 if (i == tx_ring->next_to_use && 433 i == tx_ring->next_to_clean) 434 next_desc = " NTC/U"; 435 else if (i == tx_ring->next_to_use) 436 next_desc = " NTU"; 437 else if (i == tx_ring->next_to_clean) 438 next_desc = " NTC"; 439 else 440 next_desc = ""; 441 442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 443 i, le64_to_cpu(u0->a), 444 le64_to_cpu(u0->b), 445 (u64)dma_unmap_addr(buffer_info, dma), 446 dma_unmap_len(buffer_info, len), 447 buffer_info->next_to_watch, 448 (u64)buffer_info->time_stamp, 449 buffer_info->skb, next_desc); 450 451 if (netif_msg_pktdata(adapter) && buffer_info->skb) 452 print_hex_dump(KERN_INFO, "", 453 DUMP_PREFIX_ADDRESS, 454 16, 1, buffer_info->skb->data, 455 dma_unmap_len(buffer_info, len), 456 true); 457 } 458 } 459 460 /* Print RX Rings Summary */ 461 rx_ring_summary: 462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 463 pr_info("Queue [NTU] [NTC]\n"); 464 for (n = 0; n < adapter->num_rx_queues; n++) { 465 rx_ring = adapter->rx_ring[n]; 466 pr_info(" %5d %5X %5X\n", 467 n, rx_ring->next_to_use, rx_ring->next_to_clean); 468 } 469 470 /* Print RX Rings */ 471 if (!netif_msg_rx_status(adapter)) 472 goto exit; 473 474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 475 476 /* Advanced Receive Descriptor (Read) Format 477 * 63 1 0 478 * +-----------------------------------------------------+ 479 * 0 | Packet Buffer Address [63:1] |A0/NSE| 480 * +----------------------------------------------+------+ 481 * 8 | Header Buffer Address [63:1] | DD | 482 * +-----------------------------------------------------+ 483 * 484 * 485 * Advanced Receive Descriptor (Write-Back) Format 486 * 487 * 63 48 47 32 31 30 21 20 17 16 4 3 0 488 * +------------------------------------------------------+ 489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 490 * | Checksum Ident | | | | Type | Type | 491 * +------------------------------------------------------+ 492 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 493 * +------------------------------------------------------+ 494 * 63 48 47 32 31 20 19 0 495 */ 496 497 for (n = 0; n < adapter->num_rx_queues; n++) { 498 rx_ring = adapter->rx_ring[n]; 499 pr_info("------------------------------------\n"); 500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 501 pr_info("------------------------------------\n"); 502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 504 505 for (i = 0; i < rx_ring->count; i++) { 506 const char *next_desc; 507 struct igb_rx_buffer *buffer_info; 508 buffer_info = &rx_ring->rx_buffer_info[i]; 509 rx_desc = IGB_RX_DESC(rx_ring, i); 510 u0 = (struct my_u0 *)rx_desc; 511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 512 513 if (i == rx_ring->next_to_use) 514 next_desc = " NTU"; 515 else if (i == rx_ring->next_to_clean) 516 next_desc = " NTC"; 517 else 518 next_desc = ""; 519 520 if (staterr & E1000_RXD_STAT_DD) { 521 /* Descriptor Done */ 522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 523 "RWB", i, 524 le64_to_cpu(u0->a), 525 le64_to_cpu(u0->b), 526 next_desc); 527 } else { 528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 529 "R ", i, 530 le64_to_cpu(u0->a), 531 le64_to_cpu(u0->b), 532 (u64)buffer_info->dma, 533 next_desc); 534 535 if (netif_msg_pktdata(adapter) && 536 buffer_info->dma && buffer_info->page) { 537 print_hex_dump(KERN_INFO, "", 538 DUMP_PREFIX_ADDRESS, 539 16, 1, 540 page_address(buffer_info->page) + 541 buffer_info->page_offset, 542 igb_rx_bufsz(rx_ring), true); 543 } 544 } 545 } 546 } 547 548 exit: 549 return; 550 } 551 552 /** 553 * igb_get_i2c_data - Reads the I2C SDA data bit 554 * @data: opaque pointer to adapter struct 555 * 556 * Returns the I2C data bit value 557 **/ 558 static int igb_get_i2c_data(void *data) 559 { 560 struct igb_adapter *adapter = (struct igb_adapter *)data; 561 struct e1000_hw *hw = &adapter->hw; 562 s32 i2cctl = rd32(E1000_I2CPARAMS); 563 564 return !!(i2cctl & E1000_I2C_DATA_IN); 565 } 566 567 /** 568 * igb_set_i2c_data - Sets the I2C data bit 569 * @data: pointer to hardware structure 570 * @state: I2C data value (0 or 1) to set 571 * 572 * Sets the I2C data bit 573 **/ 574 static void igb_set_i2c_data(void *data, int state) 575 { 576 struct igb_adapter *adapter = (struct igb_adapter *)data; 577 struct e1000_hw *hw = &adapter->hw; 578 s32 i2cctl = rd32(E1000_I2CPARAMS); 579 580 if (state) { 581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N; 582 } else { 583 i2cctl &= ~E1000_I2C_DATA_OE_N; 584 i2cctl &= ~E1000_I2C_DATA_OUT; 585 } 586 587 wr32(E1000_I2CPARAMS, i2cctl); 588 wrfl(); 589 } 590 591 /** 592 * igb_set_i2c_clk - Sets the I2C SCL clock 593 * @data: pointer to hardware structure 594 * @state: state to set clock 595 * 596 * Sets the I2C clock line to state 597 **/ 598 static void igb_set_i2c_clk(void *data, int state) 599 { 600 struct igb_adapter *adapter = (struct igb_adapter *)data; 601 struct e1000_hw *hw = &adapter->hw; 602 s32 i2cctl = rd32(E1000_I2CPARAMS); 603 604 if (state) { 605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N; 606 } else { 607 i2cctl &= ~E1000_I2C_CLK_OUT; 608 i2cctl &= ~E1000_I2C_CLK_OE_N; 609 } 610 wr32(E1000_I2CPARAMS, i2cctl); 611 wrfl(); 612 } 613 614 /** 615 * igb_get_i2c_clk - Gets the I2C SCL clock state 616 * @data: pointer to hardware structure 617 * 618 * Gets the I2C clock state 619 **/ 620 static int igb_get_i2c_clk(void *data) 621 { 622 struct igb_adapter *adapter = (struct igb_adapter *)data; 623 struct e1000_hw *hw = &adapter->hw; 624 s32 i2cctl = rd32(E1000_I2CPARAMS); 625 626 return !!(i2cctl & E1000_I2C_CLK_IN); 627 } 628 629 static const struct i2c_algo_bit_data igb_i2c_algo = { 630 .setsda = igb_set_i2c_data, 631 .setscl = igb_set_i2c_clk, 632 .getsda = igb_get_i2c_data, 633 .getscl = igb_get_i2c_clk, 634 .udelay = 5, 635 .timeout = 20, 636 }; 637 638 /** 639 * igb_get_hw_dev - return device 640 * @hw: pointer to hardware structure 641 * 642 * used by hardware layer to print debugging information 643 **/ 644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 645 { 646 struct igb_adapter *adapter = hw->back; 647 return adapter->netdev; 648 } 649 650 /** 651 * igb_init_module - Driver Registration Routine 652 * 653 * igb_init_module is the first routine called when the driver is 654 * loaded. All it does is register with the PCI subsystem. 655 **/ 656 static int __init igb_init_module(void) 657 { 658 int ret; 659 660 pr_info("%s\n", igb_driver_string); 661 pr_info("%s\n", igb_copyright); 662 663 #ifdef CONFIG_IGB_DCA 664 dca_register_notify(&dca_notifier); 665 #endif 666 ret = pci_register_driver(&igb_driver); 667 return ret; 668 } 669 670 module_init(igb_init_module); 671 672 /** 673 * igb_exit_module - Driver Exit Cleanup Routine 674 * 675 * igb_exit_module is called just before the driver is removed 676 * from memory. 677 **/ 678 static void __exit igb_exit_module(void) 679 { 680 #ifdef CONFIG_IGB_DCA 681 dca_unregister_notify(&dca_notifier); 682 #endif 683 pci_unregister_driver(&igb_driver); 684 } 685 686 module_exit(igb_exit_module); 687 688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 689 /** 690 * igb_cache_ring_register - Descriptor ring to register mapping 691 * @adapter: board private structure to initialize 692 * 693 * Once we know the feature-set enabled for the device, we'll cache 694 * the register offset the descriptor ring is assigned to. 695 **/ 696 static void igb_cache_ring_register(struct igb_adapter *adapter) 697 { 698 int i = 0, j = 0; 699 u32 rbase_offset = adapter->vfs_allocated_count; 700 701 switch (adapter->hw.mac.type) { 702 case e1000_82576: 703 /* The queues are allocated for virtualization such that VF 0 704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 705 * In order to avoid collision we start at the first free queue 706 * and continue consuming queues in the same sequence 707 */ 708 if (adapter->vfs_allocated_count) { 709 for (; i < adapter->rss_queues; i++) 710 adapter->rx_ring[i]->reg_idx = rbase_offset + 711 Q_IDX_82576(i); 712 } 713 fallthrough; 714 case e1000_82575: 715 case e1000_82580: 716 case e1000_i350: 717 case e1000_i354: 718 case e1000_i210: 719 case e1000_i211: 720 default: 721 for (; i < adapter->num_rx_queues; i++) 722 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 723 for (; j < adapter->num_tx_queues; j++) 724 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 725 break; 726 } 727 } 728 729 u32 igb_rd32(struct e1000_hw *hw, u32 reg) 730 { 731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 733 u32 value = 0; 734 735 if (E1000_REMOVED(hw_addr)) 736 return ~value; 737 738 value = readl(&hw_addr[reg]); 739 740 /* reads should not return all F's */ 741 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 742 struct net_device *netdev = igb->netdev; 743 hw->hw_addr = NULL; 744 netdev_err(netdev, "PCIe link lost\n"); 745 WARN(pci_device_is_present(igb->pdev), 746 "igb: Failed to read reg 0x%x!\n", reg); 747 } 748 749 return value; 750 } 751 752 /** 753 * igb_write_ivar - configure ivar for given MSI-X vector 754 * @hw: pointer to the HW structure 755 * @msix_vector: vector number we are allocating to a given ring 756 * @index: row index of IVAR register to write within IVAR table 757 * @offset: column offset of in IVAR, should be multiple of 8 758 * 759 * This function is intended to handle the writing of the IVAR register 760 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 761 * each containing an cause allocation for an Rx and Tx ring, and a 762 * variable number of rows depending on the number of queues supported. 763 **/ 764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 765 int index, int offset) 766 { 767 u32 ivar = array_rd32(E1000_IVAR0, index); 768 769 /* clear any bits that are currently set */ 770 ivar &= ~((u32)0xFF << offset); 771 772 /* write vector and valid bit */ 773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 774 775 array_wr32(E1000_IVAR0, index, ivar); 776 } 777 778 #define IGB_N0_QUEUE -1 779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 780 { 781 struct igb_adapter *adapter = q_vector->adapter; 782 struct e1000_hw *hw = &adapter->hw; 783 int rx_queue = IGB_N0_QUEUE; 784 int tx_queue = IGB_N0_QUEUE; 785 u32 msixbm = 0; 786 787 if (q_vector->rx.ring) 788 rx_queue = q_vector->rx.ring->reg_idx; 789 if (q_vector->tx.ring) 790 tx_queue = q_vector->tx.ring->reg_idx; 791 792 switch (hw->mac.type) { 793 case e1000_82575: 794 /* The 82575 assigns vectors using a bitmask, which matches the 795 * bitmask for the EICR/EIMS/EIMC registers. To assign one 796 * or more queues to a vector, we write the appropriate bits 797 * into the MSIXBM register for that vector. 798 */ 799 if (rx_queue > IGB_N0_QUEUE) 800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 801 if (tx_queue > IGB_N0_QUEUE) 802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 804 msixbm |= E1000_EIMS_OTHER; 805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 806 q_vector->eims_value = msixbm; 807 break; 808 case e1000_82576: 809 /* 82576 uses a table that essentially consists of 2 columns 810 * with 8 rows. The ordering is column-major so we use the 811 * lower 3 bits as the row index, and the 4th bit as the 812 * column offset. 813 */ 814 if (rx_queue > IGB_N0_QUEUE) 815 igb_write_ivar(hw, msix_vector, 816 rx_queue & 0x7, 817 (rx_queue & 0x8) << 1); 818 if (tx_queue > IGB_N0_QUEUE) 819 igb_write_ivar(hw, msix_vector, 820 tx_queue & 0x7, 821 ((tx_queue & 0x8) << 1) + 8); 822 q_vector->eims_value = BIT(msix_vector); 823 break; 824 case e1000_82580: 825 case e1000_i350: 826 case e1000_i354: 827 case e1000_i210: 828 case e1000_i211: 829 /* On 82580 and newer adapters the scheme is similar to 82576 830 * however instead of ordering column-major we have things 831 * ordered row-major. So we traverse the table by using 832 * bit 0 as the column offset, and the remaining bits as the 833 * row index. 834 */ 835 if (rx_queue > IGB_N0_QUEUE) 836 igb_write_ivar(hw, msix_vector, 837 rx_queue >> 1, 838 (rx_queue & 0x1) << 4); 839 if (tx_queue > IGB_N0_QUEUE) 840 igb_write_ivar(hw, msix_vector, 841 tx_queue >> 1, 842 ((tx_queue & 0x1) << 4) + 8); 843 q_vector->eims_value = BIT(msix_vector); 844 break; 845 default: 846 BUG(); 847 break; 848 } 849 850 /* add q_vector eims value to global eims_enable_mask */ 851 adapter->eims_enable_mask |= q_vector->eims_value; 852 853 /* configure q_vector to set itr on first interrupt */ 854 q_vector->set_itr = 1; 855 } 856 857 /** 858 * igb_configure_msix - Configure MSI-X hardware 859 * @adapter: board private structure to initialize 860 * 861 * igb_configure_msix sets up the hardware to properly 862 * generate MSI-X interrupts. 863 **/ 864 static void igb_configure_msix(struct igb_adapter *adapter) 865 { 866 u32 tmp; 867 int i, vector = 0; 868 struct e1000_hw *hw = &adapter->hw; 869 870 adapter->eims_enable_mask = 0; 871 872 /* set vector for other causes, i.e. link changes */ 873 switch (hw->mac.type) { 874 case e1000_82575: 875 tmp = rd32(E1000_CTRL_EXT); 876 /* enable MSI-X PBA support*/ 877 tmp |= E1000_CTRL_EXT_PBA_CLR; 878 879 /* Auto-Mask interrupts upon ICR read. */ 880 tmp |= E1000_CTRL_EXT_EIAME; 881 tmp |= E1000_CTRL_EXT_IRCA; 882 883 wr32(E1000_CTRL_EXT, tmp); 884 885 /* enable msix_other interrupt */ 886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 887 adapter->eims_other = E1000_EIMS_OTHER; 888 889 break; 890 891 case e1000_82576: 892 case e1000_82580: 893 case e1000_i350: 894 case e1000_i354: 895 case e1000_i210: 896 case e1000_i211: 897 /* Turn on MSI-X capability first, or our settings 898 * won't stick. And it will take days to debug. 899 */ 900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 901 E1000_GPIE_PBA | E1000_GPIE_EIAME | 902 E1000_GPIE_NSICR); 903 904 /* enable msix_other interrupt */ 905 adapter->eims_other = BIT(vector); 906 tmp = (vector++ | E1000_IVAR_VALID) << 8; 907 908 wr32(E1000_IVAR_MISC, tmp); 909 break; 910 default: 911 /* do nothing, since nothing else supports MSI-X */ 912 break; 913 } /* switch (hw->mac.type) */ 914 915 adapter->eims_enable_mask |= adapter->eims_other; 916 917 for (i = 0; i < adapter->num_q_vectors; i++) 918 igb_assign_vector(adapter->q_vector[i], vector++); 919 920 wrfl(); 921 } 922 923 /** 924 * igb_request_msix - Initialize MSI-X interrupts 925 * @adapter: board private structure to initialize 926 * 927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 928 * kernel. 929 **/ 930 static int igb_request_msix(struct igb_adapter *adapter) 931 { 932 unsigned int num_q_vectors = adapter->num_q_vectors; 933 struct net_device *netdev = adapter->netdev; 934 int i, err = 0, vector = 0, free_vector = 0; 935 936 err = request_irq(adapter->msix_entries[vector].vector, 937 igb_msix_other, 0, netdev->name, adapter); 938 if (err) 939 goto err_out; 940 941 if (num_q_vectors > MAX_Q_VECTORS) { 942 num_q_vectors = MAX_Q_VECTORS; 943 dev_warn(&adapter->pdev->dev, 944 "The number of queue vectors (%d) is higher than max allowed (%d)\n", 945 adapter->num_q_vectors, MAX_Q_VECTORS); 946 } 947 for (i = 0; i < num_q_vectors; i++) { 948 struct igb_q_vector *q_vector = adapter->q_vector[i]; 949 950 vector++; 951 952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector); 953 954 if (q_vector->rx.ring && q_vector->tx.ring) 955 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 956 q_vector->rx.ring->queue_index); 957 else if (q_vector->tx.ring) 958 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 959 q_vector->tx.ring->queue_index); 960 else if (q_vector->rx.ring) 961 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 962 q_vector->rx.ring->queue_index); 963 else 964 sprintf(q_vector->name, "%s-unused", netdev->name); 965 966 err = request_irq(adapter->msix_entries[vector].vector, 967 igb_msix_ring, 0, q_vector->name, 968 q_vector); 969 if (err) 970 goto err_free; 971 } 972 973 igb_configure_msix(adapter); 974 return 0; 975 976 err_free: 977 /* free already assigned IRQs */ 978 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 979 980 vector--; 981 for (i = 0; i < vector; i++) { 982 free_irq(adapter->msix_entries[free_vector++].vector, 983 adapter->q_vector[i]); 984 } 985 err_out: 986 return err; 987 } 988 989 /** 990 * igb_free_q_vector - Free memory allocated for specific interrupt vector 991 * @adapter: board private structure to initialize 992 * @v_idx: Index of vector to be freed 993 * 994 * This function frees the memory allocated to the q_vector. 995 **/ 996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 997 { 998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 999 1000 adapter->q_vector[v_idx] = NULL; 1001 1002 /* igb_get_stats64() might access the rings on this vector, 1003 * we must wait a grace period before freeing it. 1004 */ 1005 if (q_vector) 1006 kfree_rcu(q_vector, rcu); 1007 } 1008 1009 /** 1010 * igb_reset_q_vector - Reset config for interrupt vector 1011 * @adapter: board private structure to initialize 1012 * @v_idx: Index of vector to be reset 1013 * 1014 * If NAPI is enabled it will delete any references to the 1015 * NAPI struct. This is preparation for igb_free_q_vector. 1016 **/ 1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1018 { 1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1020 1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1022 * allocated. So, q_vector is NULL so we should stop here. 1023 */ 1024 if (!q_vector) 1025 return; 1026 1027 if (q_vector->tx.ring) 1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1029 1030 if (q_vector->rx.ring) 1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 1032 1033 netif_napi_del(&q_vector->napi); 1034 1035 } 1036 1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1038 { 1039 int v_idx = adapter->num_q_vectors; 1040 1041 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1042 pci_disable_msix(adapter->pdev); 1043 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1044 pci_disable_msi(adapter->pdev); 1045 1046 while (v_idx--) 1047 igb_reset_q_vector(adapter, v_idx); 1048 } 1049 1050 /** 1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1052 * @adapter: board private structure to initialize 1053 * 1054 * This function frees the memory allocated to the q_vectors. In addition if 1055 * NAPI is enabled it will delete any references to the NAPI struct prior 1056 * to freeing the q_vector. 1057 **/ 1058 static void igb_free_q_vectors(struct igb_adapter *adapter) 1059 { 1060 int v_idx = adapter->num_q_vectors; 1061 1062 adapter->num_tx_queues = 0; 1063 adapter->num_rx_queues = 0; 1064 adapter->num_q_vectors = 0; 1065 1066 while (v_idx--) { 1067 igb_reset_q_vector(adapter, v_idx); 1068 igb_free_q_vector(adapter, v_idx); 1069 } 1070 } 1071 1072 /** 1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1074 * @adapter: board private structure to initialize 1075 * 1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1077 * MSI-X interrupts allocated. 1078 */ 1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1080 { 1081 igb_free_q_vectors(adapter); 1082 igb_reset_interrupt_capability(adapter); 1083 } 1084 1085 /** 1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1087 * @adapter: board private structure to initialize 1088 * @msix: boolean value of MSIX capability 1089 * 1090 * Attempt to configure interrupts using the best available 1091 * capabilities of the hardware and kernel. 1092 **/ 1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1094 { 1095 int err; 1096 int numvecs, i; 1097 1098 if (!msix) 1099 goto msi_only; 1100 adapter->flags |= IGB_FLAG_HAS_MSIX; 1101 1102 /* Number of supported queues. */ 1103 adapter->num_rx_queues = adapter->rss_queues; 1104 if (adapter->vfs_allocated_count) 1105 adapter->num_tx_queues = 1; 1106 else 1107 adapter->num_tx_queues = adapter->rss_queues; 1108 1109 /* start with one vector for every Rx queue */ 1110 numvecs = adapter->num_rx_queues; 1111 1112 /* if Tx handler is separate add 1 for every Tx queue */ 1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1114 numvecs += adapter->num_tx_queues; 1115 1116 /* store the number of vectors reserved for queues */ 1117 adapter->num_q_vectors = numvecs; 1118 1119 /* add 1 vector for link status interrupts */ 1120 numvecs++; 1121 for (i = 0; i < numvecs; i++) 1122 adapter->msix_entries[i].entry = i; 1123 1124 err = pci_enable_msix_range(adapter->pdev, 1125 adapter->msix_entries, 1126 numvecs, 1127 numvecs); 1128 if (err > 0) 1129 return; 1130 1131 igb_reset_interrupt_capability(adapter); 1132 1133 /* If we can't do MSI-X, try MSI */ 1134 msi_only: 1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1136 #ifdef CONFIG_PCI_IOV 1137 /* disable SR-IOV for non MSI-X configurations */ 1138 if (adapter->vf_data) { 1139 struct e1000_hw *hw = &adapter->hw; 1140 /* disable iov and allow time for transactions to clear */ 1141 pci_disable_sriov(adapter->pdev); 1142 msleep(500); 1143 1144 kfree(adapter->vf_mac_list); 1145 adapter->vf_mac_list = NULL; 1146 kfree(adapter->vf_data); 1147 adapter->vf_data = NULL; 1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1149 wrfl(); 1150 msleep(100); 1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1152 } 1153 #endif 1154 adapter->vfs_allocated_count = 0; 1155 adapter->rss_queues = 1; 1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1157 adapter->num_rx_queues = 1; 1158 adapter->num_tx_queues = 1; 1159 adapter->num_q_vectors = 1; 1160 if (!pci_enable_msi(adapter->pdev)) 1161 adapter->flags |= IGB_FLAG_HAS_MSI; 1162 } 1163 1164 static void igb_add_ring(struct igb_ring *ring, 1165 struct igb_ring_container *head) 1166 { 1167 head->ring = ring; 1168 head->count++; 1169 } 1170 1171 /** 1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1173 * @adapter: board private structure to initialize 1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1175 * @v_idx: index of vector in adapter struct 1176 * @txr_count: total number of Tx rings to allocate 1177 * @txr_idx: index of first Tx ring to allocate 1178 * @rxr_count: total number of Rx rings to allocate 1179 * @rxr_idx: index of first Rx ring to allocate 1180 * 1181 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1182 **/ 1183 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1184 int v_count, int v_idx, 1185 int txr_count, int txr_idx, 1186 int rxr_count, int rxr_idx) 1187 { 1188 struct igb_q_vector *q_vector; 1189 struct igb_ring *ring; 1190 int ring_count; 1191 size_t size; 1192 1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1194 if (txr_count > 1 || rxr_count > 1) 1195 return -ENOMEM; 1196 1197 ring_count = txr_count + rxr_count; 1198 size = struct_size(q_vector, ring, ring_count); 1199 1200 /* allocate q_vector and rings */ 1201 q_vector = adapter->q_vector[v_idx]; 1202 if (!q_vector) { 1203 q_vector = kzalloc(size, GFP_KERNEL); 1204 } else if (size > ksize(q_vector)) { 1205 kfree_rcu(q_vector, rcu); 1206 q_vector = kzalloc(size, GFP_KERNEL); 1207 } else { 1208 memset(q_vector, 0, size); 1209 } 1210 if (!q_vector) 1211 return -ENOMEM; 1212 1213 /* initialize NAPI */ 1214 netif_napi_add(adapter->netdev, &q_vector->napi, 1215 igb_poll, 64); 1216 1217 /* tie q_vector and adapter together */ 1218 adapter->q_vector[v_idx] = q_vector; 1219 q_vector->adapter = adapter; 1220 1221 /* initialize work limits */ 1222 q_vector->tx.work_limit = adapter->tx_work_limit; 1223 1224 /* initialize ITR configuration */ 1225 q_vector->itr_register = adapter->io_addr + E1000_EITR(0); 1226 q_vector->itr_val = IGB_START_ITR; 1227 1228 /* initialize pointer to rings */ 1229 ring = q_vector->ring; 1230 1231 /* intialize ITR */ 1232 if (rxr_count) { 1233 /* rx or rx/tx vector */ 1234 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1235 q_vector->itr_val = adapter->rx_itr_setting; 1236 } else { 1237 /* tx only vector */ 1238 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1239 q_vector->itr_val = adapter->tx_itr_setting; 1240 } 1241 1242 if (txr_count) { 1243 /* assign generic ring traits */ 1244 ring->dev = &adapter->pdev->dev; 1245 ring->netdev = adapter->netdev; 1246 1247 /* configure backlink on ring */ 1248 ring->q_vector = q_vector; 1249 1250 /* update q_vector Tx values */ 1251 igb_add_ring(ring, &q_vector->tx); 1252 1253 /* For 82575, context index must be unique per ring. */ 1254 if (adapter->hw.mac.type == e1000_82575) 1255 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1256 1257 /* apply Tx specific ring traits */ 1258 ring->count = adapter->tx_ring_count; 1259 ring->queue_index = txr_idx; 1260 1261 ring->cbs_enable = false; 1262 ring->idleslope = 0; 1263 ring->sendslope = 0; 1264 ring->hicredit = 0; 1265 ring->locredit = 0; 1266 1267 u64_stats_init(&ring->tx_syncp); 1268 u64_stats_init(&ring->tx_syncp2); 1269 1270 /* assign ring to adapter */ 1271 adapter->tx_ring[txr_idx] = ring; 1272 1273 /* push pointer to next ring */ 1274 ring++; 1275 } 1276 1277 if (rxr_count) { 1278 /* assign generic ring traits */ 1279 ring->dev = &adapter->pdev->dev; 1280 ring->netdev = adapter->netdev; 1281 1282 /* configure backlink on ring */ 1283 ring->q_vector = q_vector; 1284 1285 /* update q_vector Rx values */ 1286 igb_add_ring(ring, &q_vector->rx); 1287 1288 /* set flag indicating ring supports SCTP checksum offload */ 1289 if (adapter->hw.mac.type >= e1000_82576) 1290 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1291 1292 /* On i350, i354, i210, and i211, loopback VLAN packets 1293 * have the tag byte-swapped. 1294 */ 1295 if (adapter->hw.mac.type >= e1000_i350) 1296 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1297 1298 /* apply Rx specific ring traits */ 1299 ring->count = adapter->rx_ring_count; 1300 ring->queue_index = rxr_idx; 1301 1302 u64_stats_init(&ring->rx_syncp); 1303 1304 /* assign ring to adapter */ 1305 adapter->rx_ring[rxr_idx] = ring; 1306 } 1307 1308 return 0; 1309 } 1310 1311 1312 /** 1313 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1314 * @adapter: board private structure to initialize 1315 * 1316 * We allocate one q_vector per queue interrupt. If allocation fails we 1317 * return -ENOMEM. 1318 **/ 1319 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1320 { 1321 int q_vectors = adapter->num_q_vectors; 1322 int rxr_remaining = adapter->num_rx_queues; 1323 int txr_remaining = adapter->num_tx_queues; 1324 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1325 int err; 1326 1327 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1328 for (; rxr_remaining; v_idx++) { 1329 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1330 0, 0, 1, rxr_idx); 1331 1332 if (err) 1333 goto err_out; 1334 1335 /* update counts and index */ 1336 rxr_remaining--; 1337 rxr_idx++; 1338 } 1339 } 1340 1341 for (; v_idx < q_vectors; v_idx++) { 1342 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1343 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1344 1345 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1346 tqpv, txr_idx, rqpv, rxr_idx); 1347 1348 if (err) 1349 goto err_out; 1350 1351 /* update counts and index */ 1352 rxr_remaining -= rqpv; 1353 txr_remaining -= tqpv; 1354 rxr_idx++; 1355 txr_idx++; 1356 } 1357 1358 return 0; 1359 1360 err_out: 1361 adapter->num_tx_queues = 0; 1362 adapter->num_rx_queues = 0; 1363 adapter->num_q_vectors = 0; 1364 1365 while (v_idx--) 1366 igb_free_q_vector(adapter, v_idx); 1367 1368 return -ENOMEM; 1369 } 1370 1371 /** 1372 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1373 * @adapter: board private structure to initialize 1374 * @msix: boolean value of MSIX capability 1375 * 1376 * This function initializes the interrupts and allocates all of the queues. 1377 **/ 1378 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1379 { 1380 struct pci_dev *pdev = adapter->pdev; 1381 int err; 1382 1383 igb_set_interrupt_capability(adapter, msix); 1384 1385 err = igb_alloc_q_vectors(adapter); 1386 if (err) { 1387 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1388 goto err_alloc_q_vectors; 1389 } 1390 1391 igb_cache_ring_register(adapter); 1392 1393 return 0; 1394 1395 err_alloc_q_vectors: 1396 igb_reset_interrupt_capability(adapter); 1397 return err; 1398 } 1399 1400 /** 1401 * igb_request_irq - initialize interrupts 1402 * @adapter: board private structure to initialize 1403 * 1404 * Attempts to configure interrupts using the best available 1405 * capabilities of the hardware and kernel. 1406 **/ 1407 static int igb_request_irq(struct igb_adapter *adapter) 1408 { 1409 struct net_device *netdev = adapter->netdev; 1410 struct pci_dev *pdev = adapter->pdev; 1411 int err = 0; 1412 1413 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1414 err = igb_request_msix(adapter); 1415 if (!err) 1416 goto request_done; 1417 /* fall back to MSI */ 1418 igb_free_all_tx_resources(adapter); 1419 igb_free_all_rx_resources(adapter); 1420 1421 igb_clear_interrupt_scheme(adapter); 1422 err = igb_init_interrupt_scheme(adapter, false); 1423 if (err) 1424 goto request_done; 1425 1426 igb_setup_all_tx_resources(adapter); 1427 igb_setup_all_rx_resources(adapter); 1428 igb_configure(adapter); 1429 } 1430 1431 igb_assign_vector(adapter->q_vector[0], 0); 1432 1433 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1434 err = request_irq(pdev->irq, igb_intr_msi, 0, 1435 netdev->name, adapter); 1436 if (!err) 1437 goto request_done; 1438 1439 /* fall back to legacy interrupts */ 1440 igb_reset_interrupt_capability(adapter); 1441 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1442 } 1443 1444 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1445 netdev->name, adapter); 1446 1447 if (err) 1448 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1449 err); 1450 1451 request_done: 1452 return err; 1453 } 1454 1455 static void igb_free_irq(struct igb_adapter *adapter) 1456 { 1457 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1458 int vector = 0, i; 1459 1460 free_irq(adapter->msix_entries[vector++].vector, adapter); 1461 1462 for (i = 0; i < adapter->num_q_vectors; i++) 1463 free_irq(adapter->msix_entries[vector++].vector, 1464 adapter->q_vector[i]); 1465 } else { 1466 free_irq(adapter->pdev->irq, adapter); 1467 } 1468 } 1469 1470 /** 1471 * igb_irq_disable - Mask off interrupt generation on the NIC 1472 * @adapter: board private structure 1473 **/ 1474 static void igb_irq_disable(struct igb_adapter *adapter) 1475 { 1476 struct e1000_hw *hw = &adapter->hw; 1477 1478 /* we need to be careful when disabling interrupts. The VFs are also 1479 * mapped into these registers and so clearing the bits can cause 1480 * issues on the VF drivers so we only need to clear what we set 1481 */ 1482 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1483 u32 regval = rd32(E1000_EIAM); 1484 1485 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1486 wr32(E1000_EIMC, adapter->eims_enable_mask); 1487 regval = rd32(E1000_EIAC); 1488 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1489 } 1490 1491 wr32(E1000_IAM, 0); 1492 wr32(E1000_IMC, ~0); 1493 wrfl(); 1494 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1495 int i; 1496 1497 for (i = 0; i < adapter->num_q_vectors; i++) 1498 synchronize_irq(adapter->msix_entries[i].vector); 1499 } else { 1500 synchronize_irq(adapter->pdev->irq); 1501 } 1502 } 1503 1504 /** 1505 * igb_irq_enable - Enable default interrupt generation settings 1506 * @adapter: board private structure 1507 **/ 1508 static void igb_irq_enable(struct igb_adapter *adapter) 1509 { 1510 struct e1000_hw *hw = &adapter->hw; 1511 1512 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1513 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1514 u32 regval = rd32(E1000_EIAC); 1515 1516 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1517 regval = rd32(E1000_EIAM); 1518 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1519 wr32(E1000_EIMS, adapter->eims_enable_mask); 1520 if (adapter->vfs_allocated_count) { 1521 wr32(E1000_MBVFIMR, 0xFF); 1522 ims |= E1000_IMS_VMMB; 1523 } 1524 wr32(E1000_IMS, ims); 1525 } else { 1526 wr32(E1000_IMS, IMS_ENABLE_MASK | 1527 E1000_IMS_DRSTA); 1528 wr32(E1000_IAM, IMS_ENABLE_MASK | 1529 E1000_IMS_DRSTA); 1530 } 1531 } 1532 1533 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1534 { 1535 struct e1000_hw *hw = &adapter->hw; 1536 u16 pf_id = adapter->vfs_allocated_count; 1537 u16 vid = adapter->hw.mng_cookie.vlan_id; 1538 u16 old_vid = adapter->mng_vlan_id; 1539 1540 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1541 /* add VID to filter table */ 1542 igb_vfta_set(hw, vid, pf_id, true, true); 1543 adapter->mng_vlan_id = vid; 1544 } else { 1545 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1546 } 1547 1548 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1549 (vid != old_vid) && 1550 !test_bit(old_vid, adapter->active_vlans)) { 1551 /* remove VID from filter table */ 1552 igb_vfta_set(hw, vid, pf_id, false, true); 1553 } 1554 } 1555 1556 /** 1557 * igb_release_hw_control - release control of the h/w to f/w 1558 * @adapter: address of board private structure 1559 * 1560 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1561 * For ASF and Pass Through versions of f/w this means that the 1562 * driver is no longer loaded. 1563 **/ 1564 static void igb_release_hw_control(struct igb_adapter *adapter) 1565 { 1566 struct e1000_hw *hw = &adapter->hw; 1567 u32 ctrl_ext; 1568 1569 /* Let firmware take over control of h/w */ 1570 ctrl_ext = rd32(E1000_CTRL_EXT); 1571 wr32(E1000_CTRL_EXT, 1572 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1573 } 1574 1575 /** 1576 * igb_get_hw_control - get control of the h/w from f/w 1577 * @adapter: address of board private structure 1578 * 1579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1580 * For ASF and Pass Through versions of f/w this means that 1581 * the driver is loaded. 1582 **/ 1583 static void igb_get_hw_control(struct igb_adapter *adapter) 1584 { 1585 struct e1000_hw *hw = &adapter->hw; 1586 u32 ctrl_ext; 1587 1588 /* Let firmware know the driver has taken over */ 1589 ctrl_ext = rd32(E1000_CTRL_EXT); 1590 wr32(E1000_CTRL_EXT, 1591 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1592 } 1593 1594 static void enable_fqtss(struct igb_adapter *adapter, bool enable) 1595 { 1596 struct net_device *netdev = adapter->netdev; 1597 struct e1000_hw *hw = &adapter->hw; 1598 1599 WARN_ON(hw->mac.type != e1000_i210); 1600 1601 if (enable) 1602 adapter->flags |= IGB_FLAG_FQTSS; 1603 else 1604 adapter->flags &= ~IGB_FLAG_FQTSS; 1605 1606 if (netif_running(netdev)) 1607 schedule_work(&adapter->reset_task); 1608 } 1609 1610 static bool is_fqtss_enabled(struct igb_adapter *adapter) 1611 { 1612 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false; 1613 } 1614 1615 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue, 1616 enum tx_queue_prio prio) 1617 { 1618 u32 val; 1619 1620 WARN_ON(hw->mac.type != e1000_i210); 1621 WARN_ON(queue < 0 || queue > 4); 1622 1623 val = rd32(E1000_I210_TXDCTL(queue)); 1624 1625 if (prio == TX_QUEUE_PRIO_HIGH) 1626 val |= E1000_TXDCTL_PRIORITY; 1627 else 1628 val &= ~E1000_TXDCTL_PRIORITY; 1629 1630 wr32(E1000_I210_TXDCTL(queue), val); 1631 } 1632 1633 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode) 1634 { 1635 u32 val; 1636 1637 WARN_ON(hw->mac.type != e1000_i210); 1638 WARN_ON(queue < 0 || queue > 1); 1639 1640 val = rd32(E1000_I210_TQAVCC(queue)); 1641 1642 if (mode == QUEUE_MODE_STREAM_RESERVATION) 1643 val |= E1000_TQAVCC_QUEUEMODE; 1644 else 1645 val &= ~E1000_TQAVCC_QUEUEMODE; 1646 1647 wr32(E1000_I210_TQAVCC(queue), val); 1648 } 1649 1650 static bool is_any_cbs_enabled(struct igb_adapter *adapter) 1651 { 1652 int i; 1653 1654 for (i = 0; i < adapter->num_tx_queues; i++) { 1655 if (adapter->tx_ring[i]->cbs_enable) 1656 return true; 1657 } 1658 1659 return false; 1660 } 1661 1662 static bool is_any_txtime_enabled(struct igb_adapter *adapter) 1663 { 1664 int i; 1665 1666 for (i = 0; i < adapter->num_tx_queues; i++) { 1667 if (adapter->tx_ring[i]->launchtime_enable) 1668 return true; 1669 } 1670 1671 return false; 1672 } 1673 1674 /** 1675 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb 1676 * @adapter: pointer to adapter struct 1677 * @queue: queue number 1678 * 1679 * Configure CBS and Launchtime for a given hardware queue. 1680 * Parameters are retrieved from the correct Tx ring, so 1681 * igb_save_cbs_params() and igb_save_txtime_params() should be used 1682 * for setting those correctly prior to this function being called. 1683 **/ 1684 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue) 1685 { 1686 struct net_device *netdev = adapter->netdev; 1687 struct e1000_hw *hw = &adapter->hw; 1688 struct igb_ring *ring; 1689 u32 tqavcc, tqavctrl; 1690 u16 value; 1691 1692 WARN_ON(hw->mac.type != e1000_i210); 1693 WARN_ON(queue < 0 || queue > 1); 1694 ring = adapter->tx_ring[queue]; 1695 1696 /* If any of the Qav features is enabled, configure queues as SR and 1697 * with HIGH PRIO. If none is, then configure them with LOW PRIO and 1698 * as SP. 1699 */ 1700 if (ring->cbs_enable || ring->launchtime_enable) { 1701 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH); 1702 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION); 1703 } else { 1704 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW); 1705 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY); 1706 } 1707 1708 /* If CBS is enabled, set DataTranARB and config its parameters. */ 1709 if (ring->cbs_enable || queue == 0) { 1710 /* i210 does not allow the queue 0 to be in the Strict 1711 * Priority mode while the Qav mode is enabled, so, 1712 * instead of disabling strict priority mode, we give 1713 * queue 0 the maximum of credits possible. 1714 * 1715 * See section 8.12.19 of the i210 datasheet, "Note: 1716 * Queue0 QueueMode must be set to 1b when 1717 * TransmitMode is set to Qav." 1718 */ 1719 if (queue == 0 && !ring->cbs_enable) { 1720 /* max "linkspeed" idleslope in kbps */ 1721 ring->idleslope = 1000000; 1722 ring->hicredit = ETH_FRAME_LEN; 1723 } 1724 1725 /* Always set data transfer arbitration to credit-based 1726 * shaper algorithm on TQAVCTRL if CBS is enabled for any of 1727 * the queues. 1728 */ 1729 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1730 tqavctrl |= E1000_TQAVCTRL_DATATRANARB; 1731 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1732 1733 /* According to i210 datasheet section 7.2.7.7, we should set 1734 * the 'idleSlope' field from TQAVCC register following the 1735 * equation: 1736 * 1737 * For 100 Mbps link speed: 1738 * 1739 * value = BW * 0x7735 * 0.2 (E1) 1740 * 1741 * For 1000Mbps link speed: 1742 * 1743 * value = BW * 0x7735 * 2 (E2) 1744 * 1745 * E1 and E2 can be merged into one equation as shown below. 1746 * Note that 'link-speed' is in Mbps. 1747 * 1748 * value = BW * 0x7735 * 2 * link-speed 1749 * -------------- (E3) 1750 * 1000 1751 * 1752 * 'BW' is the percentage bandwidth out of full link speed 1753 * which can be found with the following equation. Note that 1754 * idleSlope here is the parameter from this function which 1755 * is in kbps. 1756 * 1757 * BW = idleSlope 1758 * ----------------- (E4) 1759 * link-speed * 1000 1760 * 1761 * That said, we can come up with a generic equation to 1762 * calculate the value we should set it TQAVCC register by 1763 * replacing 'BW' in E3 by E4. The resulting equation is: 1764 * 1765 * value = idleSlope * 0x7735 * 2 * link-speed 1766 * ----------------- -------------- (E5) 1767 * link-speed * 1000 1000 1768 * 1769 * 'link-speed' is present in both sides of the fraction so 1770 * it is canceled out. The final equation is the following: 1771 * 1772 * value = idleSlope * 61034 1773 * ----------------- (E6) 1774 * 1000000 1775 * 1776 * NOTE: For i210, given the above, we can see that idleslope 1777 * is represented in 16.38431 kbps units by the value at 1778 * the TQAVCC register (1Gbps / 61034), which reduces 1779 * the granularity for idleslope increments. 1780 * For instance, if you want to configure a 2576kbps 1781 * idleslope, the value to be written on the register 1782 * would have to be 157.23. If rounded down, you end 1783 * up with less bandwidth available than originally 1784 * required (~2572 kbps). If rounded up, you end up 1785 * with a higher bandwidth (~2589 kbps). Below the 1786 * approach we take is to always round up the 1787 * calculated value, so the resulting bandwidth might 1788 * be slightly higher for some configurations. 1789 */ 1790 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000); 1791 1792 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1793 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1794 tqavcc |= value; 1795 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1796 1797 wr32(E1000_I210_TQAVHC(queue), 1798 0x80000000 + ring->hicredit * 0x7735); 1799 } else { 1800 1801 /* Set idleSlope to zero. */ 1802 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1803 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1804 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1805 1806 /* Set hiCredit to zero. */ 1807 wr32(E1000_I210_TQAVHC(queue), 0); 1808 1809 /* If CBS is not enabled for any queues anymore, then return to 1810 * the default state of Data Transmission Arbitration on 1811 * TQAVCTRL. 1812 */ 1813 if (!is_any_cbs_enabled(adapter)) { 1814 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1815 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB; 1816 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1817 } 1818 } 1819 1820 /* If LaunchTime is enabled, set DataTranTIM. */ 1821 if (ring->launchtime_enable) { 1822 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled 1823 * for any of the SR queues, and configure fetchtime delta. 1824 * XXX NOTE: 1825 * - LaunchTime will be enabled for all SR queues. 1826 * - A fixed offset can be added relative to the launch 1827 * time of all packets if configured at reg LAUNCH_OS0. 1828 * We are keeping it as 0 for now (default value). 1829 */ 1830 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1831 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM | 1832 E1000_TQAVCTRL_FETCHTIME_DELTA; 1833 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1834 } else { 1835 /* If Launchtime is not enabled for any SR queues anymore, 1836 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta, 1837 * effectively disabling Launchtime. 1838 */ 1839 if (!is_any_txtime_enabled(adapter)) { 1840 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1841 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM; 1842 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA; 1843 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1844 } 1845 } 1846 1847 /* XXX: In i210 controller the sendSlope and loCredit parameters from 1848 * CBS are not configurable by software so we don't do any 'controller 1849 * configuration' in respect to these parameters. 1850 */ 1851 1852 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n", 1853 ring->cbs_enable ? "enabled" : "disabled", 1854 ring->launchtime_enable ? "enabled" : "disabled", 1855 queue, 1856 ring->idleslope, ring->sendslope, 1857 ring->hicredit, ring->locredit); 1858 } 1859 1860 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue, 1861 bool enable) 1862 { 1863 struct igb_ring *ring; 1864 1865 if (queue < 0 || queue > adapter->num_tx_queues) 1866 return -EINVAL; 1867 1868 ring = adapter->tx_ring[queue]; 1869 ring->launchtime_enable = enable; 1870 1871 return 0; 1872 } 1873 1874 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue, 1875 bool enable, int idleslope, int sendslope, 1876 int hicredit, int locredit) 1877 { 1878 struct igb_ring *ring; 1879 1880 if (queue < 0 || queue > adapter->num_tx_queues) 1881 return -EINVAL; 1882 1883 ring = adapter->tx_ring[queue]; 1884 1885 ring->cbs_enable = enable; 1886 ring->idleslope = idleslope; 1887 ring->sendslope = sendslope; 1888 ring->hicredit = hicredit; 1889 ring->locredit = locredit; 1890 1891 return 0; 1892 } 1893 1894 /** 1895 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable 1896 * @adapter: pointer to adapter struct 1897 * 1898 * Configure TQAVCTRL register switching the controller's Tx mode 1899 * if FQTSS mode is enabled or disabled. Additionally, will issue 1900 * a call to igb_config_tx_modes() per queue so any previously saved 1901 * Tx parameters are applied. 1902 **/ 1903 static void igb_setup_tx_mode(struct igb_adapter *adapter) 1904 { 1905 struct net_device *netdev = adapter->netdev; 1906 struct e1000_hw *hw = &adapter->hw; 1907 u32 val; 1908 1909 /* Only i210 controller supports changing the transmission mode. */ 1910 if (hw->mac.type != e1000_i210) 1911 return; 1912 1913 if (is_fqtss_enabled(adapter)) { 1914 int i, max_queue; 1915 1916 /* Configure TQAVCTRL register: set transmit mode to 'Qav', 1917 * set data fetch arbitration to 'round robin', set SP_WAIT_SR 1918 * so SP queues wait for SR ones. 1919 */ 1920 val = rd32(E1000_I210_TQAVCTRL); 1921 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR; 1922 val &= ~E1000_TQAVCTRL_DATAFETCHARB; 1923 wr32(E1000_I210_TQAVCTRL, val); 1924 1925 /* Configure Tx and Rx packet buffers sizes as described in 1926 * i210 datasheet section 7.2.7.7. 1927 */ 1928 val = rd32(E1000_TXPBS); 1929 val &= ~I210_TXPBSIZE_MASK; 1930 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB | 1931 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB; 1932 wr32(E1000_TXPBS, val); 1933 1934 val = rd32(E1000_RXPBS); 1935 val &= ~I210_RXPBSIZE_MASK; 1936 val |= I210_RXPBSIZE_PB_30KB; 1937 wr32(E1000_RXPBS, val); 1938 1939 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ 1940 * register should not exceed the buffer size programmed in 1941 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB 1942 * so according to the datasheet we should set MAX_TPKT_SIZE to 1943 * 4kB / 64. 1944 * 1945 * However, when we do so, no frame from queue 2 and 3 are 1946 * transmitted. It seems the MAX_TPKT_SIZE should not be great 1947 * or _equal_ to the buffer size programmed in TXPBS. For this 1948 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64. 1949 */ 1950 val = (4096 - 1) / 64; 1951 wr32(E1000_I210_DTXMXPKTSZ, val); 1952 1953 /* Since FQTSS mode is enabled, apply any CBS configuration 1954 * previously set. If no previous CBS configuration has been 1955 * done, then the initial configuration is applied, which means 1956 * CBS is disabled. 1957 */ 1958 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ? 1959 adapter->num_tx_queues : I210_SR_QUEUES_NUM; 1960 1961 for (i = 0; i < max_queue; i++) { 1962 igb_config_tx_modes(adapter, i); 1963 } 1964 } else { 1965 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 1966 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 1967 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT); 1968 1969 val = rd32(E1000_I210_TQAVCTRL); 1970 /* According to Section 8.12.21, the other flags we've set when 1971 * enabling FQTSS are not relevant when disabling FQTSS so we 1972 * don't set they here. 1973 */ 1974 val &= ~E1000_TQAVCTRL_XMIT_MODE; 1975 wr32(E1000_I210_TQAVCTRL, val); 1976 } 1977 1978 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ? 1979 "enabled" : "disabled"); 1980 } 1981 1982 /** 1983 * igb_configure - configure the hardware for RX and TX 1984 * @adapter: private board structure 1985 **/ 1986 static void igb_configure(struct igb_adapter *adapter) 1987 { 1988 struct net_device *netdev = adapter->netdev; 1989 int i; 1990 1991 igb_get_hw_control(adapter); 1992 igb_set_rx_mode(netdev); 1993 igb_setup_tx_mode(adapter); 1994 1995 igb_restore_vlan(adapter); 1996 1997 igb_setup_tctl(adapter); 1998 igb_setup_mrqc(adapter); 1999 igb_setup_rctl(adapter); 2000 2001 igb_nfc_filter_restore(adapter); 2002 igb_configure_tx(adapter); 2003 igb_configure_rx(adapter); 2004 2005 igb_rx_fifo_flush_82575(&adapter->hw); 2006 2007 /* call igb_desc_unused which always leaves 2008 * at least 1 descriptor unused to make sure 2009 * next_to_use != next_to_clean 2010 */ 2011 for (i = 0; i < adapter->num_rx_queues; i++) { 2012 struct igb_ring *ring = adapter->rx_ring[i]; 2013 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 2014 } 2015 } 2016 2017 /** 2018 * igb_power_up_link - Power up the phy/serdes link 2019 * @adapter: address of board private structure 2020 **/ 2021 void igb_power_up_link(struct igb_adapter *adapter) 2022 { 2023 igb_reset_phy(&adapter->hw); 2024 2025 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2026 igb_power_up_phy_copper(&adapter->hw); 2027 else 2028 igb_power_up_serdes_link_82575(&adapter->hw); 2029 2030 igb_setup_link(&adapter->hw); 2031 } 2032 2033 /** 2034 * igb_power_down_link - Power down the phy/serdes link 2035 * @adapter: address of board private structure 2036 */ 2037 static void igb_power_down_link(struct igb_adapter *adapter) 2038 { 2039 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2040 igb_power_down_phy_copper_82575(&adapter->hw); 2041 else 2042 igb_shutdown_serdes_link_82575(&adapter->hw); 2043 } 2044 2045 /** 2046 * igb_check_swap_media - Detect and switch function for Media Auto Sense 2047 * @adapter: address of the board private structure 2048 **/ 2049 static void igb_check_swap_media(struct igb_adapter *adapter) 2050 { 2051 struct e1000_hw *hw = &adapter->hw; 2052 u32 ctrl_ext, connsw; 2053 bool swap_now = false; 2054 2055 ctrl_ext = rd32(E1000_CTRL_EXT); 2056 connsw = rd32(E1000_CONNSW); 2057 2058 /* need to live swap if current media is copper and we have fiber/serdes 2059 * to go to. 2060 */ 2061 2062 if ((hw->phy.media_type == e1000_media_type_copper) && 2063 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 2064 swap_now = true; 2065 } else if ((hw->phy.media_type != e1000_media_type_copper) && 2066 !(connsw & E1000_CONNSW_SERDESD)) { 2067 /* copper signal takes time to appear */ 2068 if (adapter->copper_tries < 4) { 2069 adapter->copper_tries++; 2070 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 2071 wr32(E1000_CONNSW, connsw); 2072 return; 2073 } else { 2074 adapter->copper_tries = 0; 2075 if ((connsw & E1000_CONNSW_PHYSD) && 2076 (!(connsw & E1000_CONNSW_PHY_PDN))) { 2077 swap_now = true; 2078 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 2079 wr32(E1000_CONNSW, connsw); 2080 } 2081 } 2082 } 2083 2084 if (!swap_now) 2085 return; 2086 2087 switch (hw->phy.media_type) { 2088 case e1000_media_type_copper: 2089 netdev_info(adapter->netdev, 2090 "MAS: changing media to fiber/serdes\n"); 2091 ctrl_ext |= 2092 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2093 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2094 adapter->copper_tries = 0; 2095 break; 2096 case e1000_media_type_internal_serdes: 2097 case e1000_media_type_fiber: 2098 netdev_info(adapter->netdev, 2099 "MAS: changing media to copper\n"); 2100 ctrl_ext &= 2101 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2102 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2103 break; 2104 default: 2105 /* shouldn't get here during regular operation */ 2106 netdev_err(adapter->netdev, 2107 "AMS: Invalid media type found, returning\n"); 2108 break; 2109 } 2110 wr32(E1000_CTRL_EXT, ctrl_ext); 2111 } 2112 2113 /** 2114 * igb_up - Open the interface and prepare it to handle traffic 2115 * @adapter: board private structure 2116 **/ 2117 int igb_up(struct igb_adapter *adapter) 2118 { 2119 struct e1000_hw *hw = &adapter->hw; 2120 int i; 2121 2122 /* hardware has been reset, we need to reload some things */ 2123 igb_configure(adapter); 2124 2125 clear_bit(__IGB_DOWN, &adapter->state); 2126 2127 for (i = 0; i < adapter->num_q_vectors; i++) 2128 napi_enable(&(adapter->q_vector[i]->napi)); 2129 2130 if (adapter->flags & IGB_FLAG_HAS_MSIX) 2131 igb_configure_msix(adapter); 2132 else 2133 igb_assign_vector(adapter->q_vector[0], 0); 2134 2135 /* Clear any pending interrupts. */ 2136 rd32(E1000_TSICR); 2137 rd32(E1000_ICR); 2138 igb_irq_enable(adapter); 2139 2140 /* notify VFs that reset has been completed */ 2141 if (adapter->vfs_allocated_count) { 2142 u32 reg_data = rd32(E1000_CTRL_EXT); 2143 2144 reg_data |= E1000_CTRL_EXT_PFRSTD; 2145 wr32(E1000_CTRL_EXT, reg_data); 2146 } 2147 2148 netif_tx_start_all_queues(adapter->netdev); 2149 2150 /* start the watchdog. */ 2151 hw->mac.get_link_status = 1; 2152 schedule_work(&adapter->watchdog_task); 2153 2154 if ((adapter->flags & IGB_FLAG_EEE) && 2155 (!hw->dev_spec._82575.eee_disable)) 2156 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 2157 2158 return 0; 2159 } 2160 2161 void igb_down(struct igb_adapter *adapter) 2162 { 2163 struct net_device *netdev = adapter->netdev; 2164 struct e1000_hw *hw = &adapter->hw; 2165 u32 tctl, rctl; 2166 int i; 2167 2168 /* signal that we're down so the interrupt handler does not 2169 * reschedule our watchdog timer 2170 */ 2171 set_bit(__IGB_DOWN, &adapter->state); 2172 2173 /* disable receives in the hardware */ 2174 rctl = rd32(E1000_RCTL); 2175 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 2176 /* flush and sleep below */ 2177 2178 igb_nfc_filter_exit(adapter); 2179 2180 netif_carrier_off(netdev); 2181 netif_tx_stop_all_queues(netdev); 2182 2183 /* disable transmits in the hardware */ 2184 tctl = rd32(E1000_TCTL); 2185 tctl &= ~E1000_TCTL_EN; 2186 wr32(E1000_TCTL, tctl); 2187 /* flush both disables and wait for them to finish */ 2188 wrfl(); 2189 usleep_range(10000, 11000); 2190 2191 igb_irq_disable(adapter); 2192 2193 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 2194 2195 for (i = 0; i < adapter->num_q_vectors; i++) { 2196 if (adapter->q_vector[i]) { 2197 napi_synchronize(&adapter->q_vector[i]->napi); 2198 napi_disable(&adapter->q_vector[i]->napi); 2199 } 2200 } 2201 2202 del_timer_sync(&adapter->watchdog_timer); 2203 del_timer_sync(&adapter->phy_info_timer); 2204 2205 /* record the stats before reset*/ 2206 spin_lock(&adapter->stats64_lock); 2207 igb_update_stats(adapter); 2208 spin_unlock(&adapter->stats64_lock); 2209 2210 adapter->link_speed = 0; 2211 adapter->link_duplex = 0; 2212 2213 if (!pci_channel_offline(adapter->pdev)) 2214 igb_reset(adapter); 2215 2216 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 2217 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 2218 2219 igb_clean_all_tx_rings(adapter); 2220 igb_clean_all_rx_rings(adapter); 2221 #ifdef CONFIG_IGB_DCA 2222 2223 /* since we reset the hardware DCA settings were cleared */ 2224 igb_setup_dca(adapter); 2225 #endif 2226 } 2227 2228 void igb_reinit_locked(struct igb_adapter *adapter) 2229 { 2230 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 2231 usleep_range(1000, 2000); 2232 igb_down(adapter); 2233 igb_up(adapter); 2234 clear_bit(__IGB_RESETTING, &adapter->state); 2235 } 2236 2237 /** igb_enable_mas - Media Autosense re-enable after swap 2238 * 2239 * @adapter: adapter struct 2240 **/ 2241 static void igb_enable_mas(struct igb_adapter *adapter) 2242 { 2243 struct e1000_hw *hw = &adapter->hw; 2244 u32 connsw = rd32(E1000_CONNSW); 2245 2246 /* configure for SerDes media detect */ 2247 if ((hw->phy.media_type == e1000_media_type_copper) && 2248 (!(connsw & E1000_CONNSW_SERDESD))) { 2249 connsw |= E1000_CONNSW_ENRGSRC; 2250 connsw |= E1000_CONNSW_AUTOSENSE_EN; 2251 wr32(E1000_CONNSW, connsw); 2252 wrfl(); 2253 } 2254 } 2255 2256 void igb_reset(struct igb_adapter *adapter) 2257 { 2258 struct pci_dev *pdev = adapter->pdev; 2259 struct e1000_hw *hw = &adapter->hw; 2260 struct e1000_mac_info *mac = &hw->mac; 2261 struct e1000_fc_info *fc = &hw->fc; 2262 u32 pba, hwm; 2263 2264 /* Repartition Pba for greater than 9k mtu 2265 * To take effect CTRL.RST is required. 2266 */ 2267 switch (mac->type) { 2268 case e1000_i350: 2269 case e1000_i354: 2270 case e1000_82580: 2271 pba = rd32(E1000_RXPBS); 2272 pba = igb_rxpbs_adjust_82580(pba); 2273 break; 2274 case e1000_82576: 2275 pba = rd32(E1000_RXPBS); 2276 pba &= E1000_RXPBS_SIZE_MASK_82576; 2277 break; 2278 case e1000_82575: 2279 case e1000_i210: 2280 case e1000_i211: 2281 default: 2282 pba = E1000_PBA_34K; 2283 break; 2284 } 2285 2286 if (mac->type == e1000_82575) { 2287 u32 min_rx_space, min_tx_space, needed_tx_space; 2288 2289 /* write Rx PBA so that hardware can report correct Tx PBA */ 2290 wr32(E1000_PBA, pba); 2291 2292 /* To maintain wire speed transmits, the Tx FIFO should be 2293 * large enough to accommodate two full transmit packets, 2294 * rounded up to the next 1KB and expressed in KB. Likewise, 2295 * the Rx FIFO should be large enough to accommodate at least 2296 * one full receive packet and is similarly rounded up and 2297 * expressed in KB. 2298 */ 2299 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024); 2300 2301 /* The Tx FIFO also stores 16 bytes of information about the Tx 2302 * but don't include Ethernet FCS because hardware appends it. 2303 * We only need to round down to the nearest 512 byte block 2304 * count since the value we care about is 2 frames, not 1. 2305 */ 2306 min_tx_space = adapter->max_frame_size; 2307 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN; 2308 min_tx_space = DIV_ROUND_UP(min_tx_space, 512); 2309 2310 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2311 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16); 2312 2313 /* If current Tx allocation is less than the min Tx FIFO size, 2314 * and the min Tx FIFO size is less than the current Rx FIFO 2315 * allocation, take space away from current Rx allocation. 2316 */ 2317 if (needed_tx_space < pba) { 2318 pba -= needed_tx_space; 2319 2320 /* if short on Rx space, Rx wins and must trump Tx 2321 * adjustment 2322 */ 2323 if (pba < min_rx_space) 2324 pba = min_rx_space; 2325 } 2326 2327 /* adjust PBA for jumbo frames */ 2328 wr32(E1000_PBA, pba); 2329 } 2330 2331 /* flow control settings 2332 * The high water mark must be low enough to fit one full frame 2333 * after transmitting the pause frame. As such we must have enough 2334 * space to allow for us to complete our current transmit and then 2335 * receive the frame that is in progress from the link partner. 2336 * Set it to: 2337 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 2338 */ 2339 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 2340 2341 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 2342 fc->low_water = fc->high_water - 16; 2343 fc->pause_time = 0xFFFF; 2344 fc->send_xon = 1; 2345 fc->current_mode = fc->requested_mode; 2346 2347 /* disable receive for all VFs and wait one second */ 2348 if (adapter->vfs_allocated_count) { 2349 int i; 2350 2351 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 2352 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 2353 2354 /* ping all the active vfs to let them know we are going down */ 2355 igb_ping_all_vfs(adapter); 2356 2357 /* disable transmits and receives */ 2358 wr32(E1000_VFRE, 0); 2359 wr32(E1000_VFTE, 0); 2360 } 2361 2362 /* Allow time for pending master requests to run */ 2363 hw->mac.ops.reset_hw(hw); 2364 wr32(E1000_WUC, 0); 2365 2366 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 2367 /* need to resetup here after media swap */ 2368 adapter->ei.get_invariants(hw); 2369 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 2370 } 2371 if ((mac->type == e1000_82575 || mac->type == e1000_i350) && 2372 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 2373 igb_enable_mas(adapter); 2374 } 2375 if (hw->mac.ops.init_hw(hw)) 2376 dev_err(&pdev->dev, "Hardware Error\n"); 2377 2378 /* RAR registers were cleared during init_hw, clear mac table */ 2379 igb_flush_mac_table(adapter); 2380 __dev_uc_unsync(adapter->netdev, NULL); 2381 2382 /* Recover default RAR entry */ 2383 igb_set_default_mac_filter(adapter); 2384 2385 /* Flow control settings reset on hardware reset, so guarantee flow 2386 * control is off when forcing speed. 2387 */ 2388 if (!hw->mac.autoneg) 2389 igb_force_mac_fc(hw); 2390 2391 igb_init_dmac(adapter, pba); 2392 #ifdef CONFIG_IGB_HWMON 2393 /* Re-initialize the thermal sensor on i350 devices. */ 2394 if (!test_bit(__IGB_DOWN, &adapter->state)) { 2395 if (mac->type == e1000_i350 && hw->bus.func == 0) { 2396 /* If present, re-initialize the external thermal sensor 2397 * interface. 2398 */ 2399 if (adapter->ets) 2400 mac->ops.init_thermal_sensor_thresh(hw); 2401 } 2402 } 2403 #endif 2404 /* Re-establish EEE setting */ 2405 if (hw->phy.media_type == e1000_media_type_copper) { 2406 switch (mac->type) { 2407 case e1000_i350: 2408 case e1000_i210: 2409 case e1000_i211: 2410 igb_set_eee_i350(hw, true, true); 2411 break; 2412 case e1000_i354: 2413 igb_set_eee_i354(hw, true, true); 2414 break; 2415 default: 2416 break; 2417 } 2418 } 2419 if (!netif_running(adapter->netdev)) 2420 igb_power_down_link(adapter); 2421 2422 igb_update_mng_vlan(adapter); 2423 2424 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2425 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2426 2427 /* Re-enable PTP, where applicable. */ 2428 if (adapter->ptp_flags & IGB_PTP_ENABLED) 2429 igb_ptp_reset(adapter); 2430 2431 igb_get_phy_info(hw); 2432 } 2433 2434 static netdev_features_t igb_fix_features(struct net_device *netdev, 2435 netdev_features_t features) 2436 { 2437 /* Since there is no support for separate Rx/Tx vlan accel 2438 * enable/disable make sure Tx flag is always in same state as Rx. 2439 */ 2440 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2441 features |= NETIF_F_HW_VLAN_CTAG_TX; 2442 else 2443 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2444 2445 return features; 2446 } 2447 2448 static int igb_set_features(struct net_device *netdev, 2449 netdev_features_t features) 2450 { 2451 netdev_features_t changed = netdev->features ^ features; 2452 struct igb_adapter *adapter = netdev_priv(netdev); 2453 2454 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2455 igb_vlan_mode(netdev, features); 2456 2457 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 2458 return 0; 2459 2460 if (!(features & NETIF_F_NTUPLE)) { 2461 struct hlist_node *node2; 2462 struct igb_nfc_filter *rule; 2463 2464 spin_lock(&adapter->nfc_lock); 2465 hlist_for_each_entry_safe(rule, node2, 2466 &adapter->nfc_filter_list, nfc_node) { 2467 igb_erase_filter(adapter, rule); 2468 hlist_del(&rule->nfc_node); 2469 kfree(rule); 2470 } 2471 spin_unlock(&adapter->nfc_lock); 2472 adapter->nfc_filter_count = 0; 2473 } 2474 2475 netdev->features = features; 2476 2477 if (netif_running(netdev)) 2478 igb_reinit_locked(adapter); 2479 else 2480 igb_reset(adapter); 2481 2482 return 1; 2483 } 2484 2485 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 2486 struct net_device *dev, 2487 const unsigned char *addr, u16 vid, 2488 u16 flags, 2489 struct netlink_ext_ack *extack) 2490 { 2491 /* guarantee we can provide a unique filter for the unicast address */ 2492 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) { 2493 struct igb_adapter *adapter = netdev_priv(dev); 2494 int vfn = adapter->vfs_allocated_count; 2495 2496 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn)) 2497 return -ENOMEM; 2498 } 2499 2500 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags); 2501 } 2502 2503 #define IGB_MAX_MAC_HDR_LEN 127 2504 #define IGB_MAX_NETWORK_HDR_LEN 511 2505 2506 static netdev_features_t 2507 igb_features_check(struct sk_buff *skb, struct net_device *dev, 2508 netdev_features_t features) 2509 { 2510 unsigned int network_hdr_len, mac_hdr_len; 2511 2512 /* Make certain the headers can be described by a context descriptor */ 2513 mac_hdr_len = skb_network_header(skb) - skb->data; 2514 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN)) 2515 return features & ~(NETIF_F_HW_CSUM | 2516 NETIF_F_SCTP_CRC | 2517 NETIF_F_GSO_UDP_L4 | 2518 NETIF_F_HW_VLAN_CTAG_TX | 2519 NETIF_F_TSO | 2520 NETIF_F_TSO6); 2521 2522 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2523 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN)) 2524 return features & ~(NETIF_F_HW_CSUM | 2525 NETIF_F_SCTP_CRC | 2526 NETIF_F_GSO_UDP_L4 | 2527 NETIF_F_TSO | 2528 NETIF_F_TSO6); 2529 2530 /* We can only support IPV4 TSO in tunnels if we can mangle the 2531 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2532 */ 2533 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2534 features &= ~NETIF_F_TSO; 2535 2536 return features; 2537 } 2538 2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue) 2540 { 2541 if (!is_fqtss_enabled(adapter)) { 2542 enable_fqtss(adapter, true); 2543 return; 2544 } 2545 2546 igb_config_tx_modes(adapter, queue); 2547 2548 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter)) 2549 enable_fqtss(adapter, false); 2550 } 2551 2552 static int igb_offload_cbs(struct igb_adapter *adapter, 2553 struct tc_cbs_qopt_offload *qopt) 2554 { 2555 struct e1000_hw *hw = &adapter->hw; 2556 int err; 2557 2558 /* CBS offloading is only supported by i210 controller. */ 2559 if (hw->mac.type != e1000_i210) 2560 return -EOPNOTSUPP; 2561 2562 /* CBS offloading is only supported by queue 0 and queue 1. */ 2563 if (qopt->queue < 0 || qopt->queue > 1) 2564 return -EINVAL; 2565 2566 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable, 2567 qopt->idleslope, qopt->sendslope, 2568 qopt->hicredit, qopt->locredit); 2569 if (err) 2570 return err; 2571 2572 igb_offload_apply(adapter, qopt->queue); 2573 2574 return 0; 2575 } 2576 2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) 2578 #define VLAN_PRIO_FULL_MASK (0x07) 2579 2580 static int igb_parse_cls_flower(struct igb_adapter *adapter, 2581 struct flow_cls_offload *f, 2582 int traffic_class, 2583 struct igb_nfc_filter *input) 2584 { 2585 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2586 struct flow_dissector *dissector = rule->match.dissector; 2587 struct netlink_ext_ack *extack = f->common.extack; 2588 2589 if (dissector->used_keys & 2590 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) | 2591 BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2592 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2593 BIT(FLOW_DISSECTOR_KEY_VLAN))) { 2594 NL_SET_ERR_MSG_MOD(extack, 2595 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported"); 2596 return -EOPNOTSUPP; 2597 } 2598 2599 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2600 struct flow_match_eth_addrs match; 2601 2602 flow_rule_match_eth_addrs(rule, &match); 2603 if (!is_zero_ether_addr(match.mask->dst)) { 2604 if (!is_broadcast_ether_addr(match.mask->dst)) { 2605 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address"); 2606 return -EINVAL; 2607 } 2608 2609 input->filter.match_flags |= 2610 IGB_FILTER_FLAG_DST_MAC_ADDR; 2611 ether_addr_copy(input->filter.dst_addr, match.key->dst); 2612 } 2613 2614 if (!is_zero_ether_addr(match.mask->src)) { 2615 if (!is_broadcast_ether_addr(match.mask->src)) { 2616 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address"); 2617 return -EINVAL; 2618 } 2619 2620 input->filter.match_flags |= 2621 IGB_FILTER_FLAG_SRC_MAC_ADDR; 2622 ether_addr_copy(input->filter.src_addr, match.key->src); 2623 } 2624 } 2625 2626 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2627 struct flow_match_basic match; 2628 2629 flow_rule_match_basic(rule, &match); 2630 if (match.mask->n_proto) { 2631 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) { 2632 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter"); 2633 return -EINVAL; 2634 } 2635 2636 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE; 2637 input->filter.etype = match.key->n_proto; 2638 } 2639 } 2640 2641 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2642 struct flow_match_vlan match; 2643 2644 flow_rule_match_vlan(rule, &match); 2645 if (match.mask->vlan_priority) { 2646 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) { 2647 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority"); 2648 return -EINVAL; 2649 } 2650 2651 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2652 input->filter.vlan_tci = 2653 (__force __be16)match.key->vlan_priority; 2654 } 2655 } 2656 2657 input->action = traffic_class; 2658 input->cookie = f->cookie; 2659 2660 return 0; 2661 } 2662 2663 static int igb_configure_clsflower(struct igb_adapter *adapter, 2664 struct flow_cls_offload *cls_flower) 2665 { 2666 struct netlink_ext_ack *extack = cls_flower->common.extack; 2667 struct igb_nfc_filter *filter, *f; 2668 int err, tc; 2669 2670 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2671 if (tc < 0) { 2672 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class"); 2673 return -EINVAL; 2674 } 2675 2676 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2677 if (!filter) 2678 return -ENOMEM; 2679 2680 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter); 2681 if (err < 0) 2682 goto err_parse; 2683 2684 spin_lock(&adapter->nfc_lock); 2685 2686 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) { 2687 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2688 err = -EEXIST; 2689 NL_SET_ERR_MSG_MOD(extack, 2690 "This filter is already set in ethtool"); 2691 goto err_locked; 2692 } 2693 } 2694 2695 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) { 2696 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2697 err = -EEXIST; 2698 NL_SET_ERR_MSG_MOD(extack, 2699 "This filter is already set in cls_flower"); 2700 goto err_locked; 2701 } 2702 } 2703 2704 err = igb_add_filter(adapter, filter); 2705 if (err < 0) { 2706 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter"); 2707 goto err_locked; 2708 } 2709 2710 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list); 2711 2712 spin_unlock(&adapter->nfc_lock); 2713 2714 return 0; 2715 2716 err_locked: 2717 spin_unlock(&adapter->nfc_lock); 2718 2719 err_parse: 2720 kfree(filter); 2721 2722 return err; 2723 } 2724 2725 static int igb_delete_clsflower(struct igb_adapter *adapter, 2726 struct flow_cls_offload *cls_flower) 2727 { 2728 struct igb_nfc_filter *filter; 2729 int err; 2730 2731 spin_lock(&adapter->nfc_lock); 2732 2733 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node) 2734 if (filter->cookie == cls_flower->cookie) 2735 break; 2736 2737 if (!filter) { 2738 err = -ENOENT; 2739 goto out; 2740 } 2741 2742 err = igb_erase_filter(adapter, filter); 2743 if (err < 0) 2744 goto out; 2745 2746 hlist_del(&filter->nfc_node); 2747 kfree(filter); 2748 2749 out: 2750 spin_unlock(&adapter->nfc_lock); 2751 2752 return err; 2753 } 2754 2755 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter, 2756 struct flow_cls_offload *cls_flower) 2757 { 2758 switch (cls_flower->command) { 2759 case FLOW_CLS_REPLACE: 2760 return igb_configure_clsflower(adapter, cls_flower); 2761 case FLOW_CLS_DESTROY: 2762 return igb_delete_clsflower(adapter, cls_flower); 2763 case FLOW_CLS_STATS: 2764 return -EOPNOTSUPP; 2765 default: 2766 return -EOPNOTSUPP; 2767 } 2768 } 2769 2770 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2771 void *cb_priv) 2772 { 2773 struct igb_adapter *adapter = cb_priv; 2774 2775 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 2776 return -EOPNOTSUPP; 2777 2778 switch (type) { 2779 case TC_SETUP_CLSFLOWER: 2780 return igb_setup_tc_cls_flower(adapter, type_data); 2781 2782 default: 2783 return -EOPNOTSUPP; 2784 } 2785 } 2786 2787 static int igb_offload_txtime(struct igb_adapter *adapter, 2788 struct tc_etf_qopt_offload *qopt) 2789 { 2790 struct e1000_hw *hw = &adapter->hw; 2791 int err; 2792 2793 /* Launchtime offloading is only supported by i210 controller. */ 2794 if (hw->mac.type != e1000_i210) 2795 return -EOPNOTSUPP; 2796 2797 /* Launchtime offloading is only supported by queues 0 and 1. */ 2798 if (qopt->queue < 0 || qopt->queue > 1) 2799 return -EINVAL; 2800 2801 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable); 2802 if (err) 2803 return err; 2804 2805 igb_offload_apply(adapter, qopt->queue); 2806 2807 return 0; 2808 } 2809 2810 static LIST_HEAD(igb_block_cb_list); 2811 2812 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type, 2813 void *type_data) 2814 { 2815 struct igb_adapter *adapter = netdev_priv(dev); 2816 2817 switch (type) { 2818 case TC_SETUP_QDISC_CBS: 2819 return igb_offload_cbs(adapter, type_data); 2820 case TC_SETUP_BLOCK: 2821 return flow_block_cb_setup_simple(type_data, 2822 &igb_block_cb_list, 2823 igb_setup_tc_block_cb, 2824 adapter, adapter, true); 2825 2826 case TC_SETUP_QDISC_ETF: 2827 return igb_offload_txtime(adapter, type_data); 2828 2829 default: 2830 return -EOPNOTSUPP; 2831 } 2832 } 2833 2834 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf) 2835 { 2836 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD; 2837 struct igb_adapter *adapter = netdev_priv(dev); 2838 struct bpf_prog *prog = bpf->prog, *old_prog; 2839 bool running = netif_running(dev); 2840 bool need_reset; 2841 2842 /* verify igb ring attributes are sufficient for XDP */ 2843 for (i = 0; i < adapter->num_rx_queues; i++) { 2844 struct igb_ring *ring = adapter->rx_ring[i]; 2845 2846 if (frame_size > igb_rx_bufsz(ring)) { 2847 NL_SET_ERR_MSG_MOD(bpf->extack, 2848 "The RX buffer size is too small for the frame size"); 2849 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n", 2850 igb_rx_bufsz(ring), frame_size); 2851 return -EINVAL; 2852 } 2853 } 2854 2855 old_prog = xchg(&adapter->xdp_prog, prog); 2856 need_reset = (!!prog != !!old_prog); 2857 2858 /* device is up and bpf is added/removed, must setup the RX queues */ 2859 if (need_reset && running) { 2860 igb_close(dev); 2861 } else { 2862 for (i = 0; i < adapter->num_rx_queues; i++) 2863 (void)xchg(&adapter->rx_ring[i]->xdp_prog, 2864 adapter->xdp_prog); 2865 } 2866 2867 if (old_prog) 2868 bpf_prog_put(old_prog); 2869 2870 /* bpf is just replaced, RXQ and MTU are already setup */ 2871 if (!need_reset) 2872 return 0; 2873 2874 if (running) 2875 igb_open(dev); 2876 2877 return 0; 2878 } 2879 2880 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2881 { 2882 switch (xdp->command) { 2883 case XDP_SETUP_PROG: 2884 return igb_xdp_setup(dev, xdp); 2885 default: 2886 return -EINVAL; 2887 } 2888 } 2889 2890 static void igb_xdp_ring_update_tail(struct igb_ring *ring) 2891 { 2892 /* Force memory writes to complete before letting h/w know there 2893 * are new descriptors to fetch. 2894 */ 2895 wmb(); 2896 writel(ring->next_to_use, ring->tail); 2897 } 2898 2899 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter) 2900 { 2901 unsigned int r_idx = smp_processor_id(); 2902 2903 if (r_idx >= adapter->num_tx_queues) 2904 r_idx = r_idx % adapter->num_tx_queues; 2905 2906 return adapter->tx_ring[r_idx]; 2907 } 2908 2909 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp) 2910 { 2911 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2912 int cpu = smp_processor_id(); 2913 struct igb_ring *tx_ring; 2914 struct netdev_queue *nq; 2915 u32 ret; 2916 2917 if (unlikely(!xdpf)) 2918 return IGB_XDP_CONSUMED; 2919 2920 /* During program transitions its possible adapter->xdp_prog is assigned 2921 * but ring has not been configured yet. In this case simply abort xmit. 2922 */ 2923 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2924 if (unlikely(!tx_ring)) 2925 return IGB_XDP_CONSUMED; 2926 2927 nq = txring_txq(tx_ring); 2928 __netif_tx_lock(nq, cpu); 2929 /* Avoid transmit queue timeout since we share it with the slow path */ 2930 txq_trans_cond_update(nq); 2931 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2932 __netif_tx_unlock(nq); 2933 2934 return ret; 2935 } 2936 2937 static int igb_xdp_xmit(struct net_device *dev, int n, 2938 struct xdp_frame **frames, u32 flags) 2939 { 2940 struct igb_adapter *adapter = netdev_priv(dev); 2941 int cpu = smp_processor_id(); 2942 struct igb_ring *tx_ring; 2943 struct netdev_queue *nq; 2944 int nxmit = 0; 2945 int i; 2946 2947 if (unlikely(test_bit(__IGB_DOWN, &adapter->state))) 2948 return -ENETDOWN; 2949 2950 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2951 return -EINVAL; 2952 2953 /* During program transitions its possible adapter->xdp_prog is assigned 2954 * but ring has not been configured yet. In this case simply abort xmit. 2955 */ 2956 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2957 if (unlikely(!tx_ring)) 2958 return -ENXIO; 2959 2960 nq = txring_txq(tx_ring); 2961 __netif_tx_lock(nq, cpu); 2962 2963 /* Avoid transmit queue timeout since we share it with the slow path */ 2964 txq_trans_cond_update(nq); 2965 2966 for (i = 0; i < n; i++) { 2967 struct xdp_frame *xdpf = frames[i]; 2968 int err; 2969 2970 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2971 if (err != IGB_XDP_TX) 2972 break; 2973 nxmit++; 2974 } 2975 2976 __netif_tx_unlock(nq); 2977 2978 if (unlikely(flags & XDP_XMIT_FLUSH)) 2979 igb_xdp_ring_update_tail(tx_ring); 2980 2981 return nxmit; 2982 } 2983 2984 static const struct net_device_ops igb_netdev_ops = { 2985 .ndo_open = igb_open, 2986 .ndo_stop = igb_close, 2987 .ndo_start_xmit = igb_xmit_frame, 2988 .ndo_get_stats64 = igb_get_stats64, 2989 .ndo_set_rx_mode = igb_set_rx_mode, 2990 .ndo_set_mac_address = igb_set_mac, 2991 .ndo_change_mtu = igb_change_mtu, 2992 .ndo_eth_ioctl = igb_ioctl, 2993 .ndo_tx_timeout = igb_tx_timeout, 2994 .ndo_validate_addr = eth_validate_addr, 2995 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2996 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 2997 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 2998 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 2999 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 3000 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 3001 .ndo_set_vf_trust = igb_ndo_set_vf_trust, 3002 .ndo_get_vf_config = igb_ndo_get_vf_config, 3003 .ndo_fix_features = igb_fix_features, 3004 .ndo_set_features = igb_set_features, 3005 .ndo_fdb_add = igb_ndo_fdb_add, 3006 .ndo_features_check = igb_features_check, 3007 .ndo_setup_tc = igb_setup_tc, 3008 .ndo_bpf = igb_xdp, 3009 .ndo_xdp_xmit = igb_xdp_xmit, 3010 }; 3011 3012 /** 3013 * igb_set_fw_version - Configure version string for ethtool 3014 * @adapter: adapter struct 3015 **/ 3016 void igb_set_fw_version(struct igb_adapter *adapter) 3017 { 3018 struct e1000_hw *hw = &adapter->hw; 3019 struct e1000_fw_version fw; 3020 3021 igb_get_fw_version(hw, &fw); 3022 3023 switch (hw->mac.type) { 3024 case e1000_i210: 3025 case e1000_i211: 3026 if (!(igb_get_flash_presence_i210(hw))) { 3027 snprintf(adapter->fw_version, 3028 sizeof(adapter->fw_version), 3029 "%2d.%2d-%d", 3030 fw.invm_major, fw.invm_minor, 3031 fw.invm_img_type); 3032 break; 3033 } 3034 fallthrough; 3035 default: 3036 /* if option is rom valid, display its version too */ 3037 if (fw.or_valid) { 3038 snprintf(adapter->fw_version, 3039 sizeof(adapter->fw_version), 3040 "%d.%d, 0x%08x, %d.%d.%d", 3041 fw.eep_major, fw.eep_minor, fw.etrack_id, 3042 fw.or_major, fw.or_build, fw.or_patch); 3043 /* no option rom */ 3044 } else if (fw.etrack_id != 0X0000) { 3045 snprintf(adapter->fw_version, 3046 sizeof(adapter->fw_version), 3047 "%d.%d, 0x%08x", 3048 fw.eep_major, fw.eep_minor, fw.etrack_id); 3049 } else { 3050 snprintf(adapter->fw_version, 3051 sizeof(adapter->fw_version), 3052 "%d.%d.%d", 3053 fw.eep_major, fw.eep_minor, fw.eep_build); 3054 } 3055 break; 3056 } 3057 } 3058 3059 /** 3060 * igb_init_mas - init Media Autosense feature if enabled in the NVM 3061 * 3062 * @adapter: adapter struct 3063 **/ 3064 static void igb_init_mas(struct igb_adapter *adapter) 3065 { 3066 struct e1000_hw *hw = &adapter->hw; 3067 u16 eeprom_data; 3068 3069 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 3070 switch (hw->bus.func) { 3071 case E1000_FUNC_0: 3072 if (eeprom_data & IGB_MAS_ENABLE_0) { 3073 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3074 netdev_info(adapter->netdev, 3075 "MAS: Enabling Media Autosense for port %d\n", 3076 hw->bus.func); 3077 } 3078 break; 3079 case E1000_FUNC_1: 3080 if (eeprom_data & IGB_MAS_ENABLE_1) { 3081 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3082 netdev_info(adapter->netdev, 3083 "MAS: Enabling Media Autosense for port %d\n", 3084 hw->bus.func); 3085 } 3086 break; 3087 case E1000_FUNC_2: 3088 if (eeprom_data & IGB_MAS_ENABLE_2) { 3089 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3090 netdev_info(adapter->netdev, 3091 "MAS: Enabling Media Autosense for port %d\n", 3092 hw->bus.func); 3093 } 3094 break; 3095 case E1000_FUNC_3: 3096 if (eeprom_data & IGB_MAS_ENABLE_3) { 3097 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3098 netdev_info(adapter->netdev, 3099 "MAS: Enabling Media Autosense for port %d\n", 3100 hw->bus.func); 3101 } 3102 break; 3103 default: 3104 /* Shouldn't get here */ 3105 netdev_err(adapter->netdev, 3106 "MAS: Invalid port configuration, returning\n"); 3107 break; 3108 } 3109 } 3110 3111 /** 3112 * igb_init_i2c - Init I2C interface 3113 * @adapter: pointer to adapter structure 3114 **/ 3115 static s32 igb_init_i2c(struct igb_adapter *adapter) 3116 { 3117 struct e1000_hw *hw = &adapter->hw; 3118 s32 status = 0; 3119 s32 i2cctl; 3120 3121 /* I2C interface supported on i350 devices */ 3122 if (adapter->hw.mac.type != e1000_i350) 3123 return 0; 3124 3125 i2cctl = rd32(E1000_I2CPARAMS); 3126 i2cctl |= E1000_I2CBB_EN 3127 | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N 3128 | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N; 3129 wr32(E1000_I2CPARAMS, i2cctl); 3130 wrfl(); 3131 3132 /* Initialize the i2c bus which is controlled by the registers. 3133 * This bus will use the i2c_algo_bit structure that implements 3134 * the protocol through toggling of the 4 bits in the register. 3135 */ 3136 adapter->i2c_adap.owner = THIS_MODULE; 3137 adapter->i2c_algo = igb_i2c_algo; 3138 adapter->i2c_algo.data = adapter; 3139 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 3140 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 3141 strlcpy(adapter->i2c_adap.name, "igb BB", 3142 sizeof(adapter->i2c_adap.name)); 3143 status = i2c_bit_add_bus(&adapter->i2c_adap); 3144 return status; 3145 } 3146 3147 /** 3148 * igb_probe - Device Initialization Routine 3149 * @pdev: PCI device information struct 3150 * @ent: entry in igb_pci_tbl 3151 * 3152 * Returns 0 on success, negative on failure 3153 * 3154 * igb_probe initializes an adapter identified by a pci_dev structure. 3155 * The OS initialization, configuring of the adapter private structure, 3156 * and a hardware reset occur. 3157 **/ 3158 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3159 { 3160 struct net_device *netdev; 3161 struct igb_adapter *adapter; 3162 struct e1000_hw *hw; 3163 u16 eeprom_data = 0; 3164 s32 ret_val; 3165 static int global_quad_port_a; /* global quad port a indication */ 3166 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 3167 u8 part_str[E1000_PBANUM_LENGTH]; 3168 int err; 3169 3170 /* Catch broken hardware that put the wrong VF device ID in 3171 * the PCIe SR-IOV capability. 3172 */ 3173 if (pdev->is_virtfn) { 3174 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n", 3175 pci_name(pdev), pdev->vendor, pdev->device); 3176 return -EINVAL; 3177 } 3178 3179 err = pci_enable_device_mem(pdev); 3180 if (err) 3181 return err; 3182 3183 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3184 if (err) { 3185 dev_err(&pdev->dev, 3186 "No usable DMA configuration, aborting\n"); 3187 goto err_dma; 3188 } 3189 3190 err = pci_request_mem_regions(pdev, igb_driver_name); 3191 if (err) 3192 goto err_pci_reg; 3193 3194 pci_enable_pcie_error_reporting(pdev); 3195 3196 pci_set_master(pdev); 3197 pci_save_state(pdev); 3198 3199 err = -ENOMEM; 3200 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 3201 IGB_MAX_TX_QUEUES); 3202 if (!netdev) 3203 goto err_alloc_etherdev; 3204 3205 SET_NETDEV_DEV(netdev, &pdev->dev); 3206 3207 pci_set_drvdata(pdev, netdev); 3208 adapter = netdev_priv(netdev); 3209 adapter->netdev = netdev; 3210 adapter->pdev = pdev; 3211 hw = &adapter->hw; 3212 hw->back = adapter; 3213 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3214 3215 err = -EIO; 3216 adapter->io_addr = pci_iomap(pdev, 0, 0); 3217 if (!adapter->io_addr) 3218 goto err_ioremap; 3219 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */ 3220 hw->hw_addr = adapter->io_addr; 3221 3222 netdev->netdev_ops = &igb_netdev_ops; 3223 igb_set_ethtool_ops(netdev); 3224 netdev->watchdog_timeo = 5 * HZ; 3225 3226 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 3227 3228 netdev->mem_start = pci_resource_start(pdev, 0); 3229 netdev->mem_end = pci_resource_end(pdev, 0); 3230 3231 /* PCI config space info */ 3232 hw->vendor_id = pdev->vendor; 3233 hw->device_id = pdev->device; 3234 hw->revision_id = pdev->revision; 3235 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3236 hw->subsystem_device_id = pdev->subsystem_device; 3237 3238 /* Copy the default MAC, PHY and NVM function pointers */ 3239 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3240 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3241 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 3242 /* Initialize skew-specific constants */ 3243 err = ei->get_invariants(hw); 3244 if (err) 3245 goto err_sw_init; 3246 3247 /* setup the private structure */ 3248 err = igb_sw_init(adapter); 3249 if (err) 3250 goto err_sw_init; 3251 3252 igb_get_bus_info_pcie(hw); 3253 3254 hw->phy.autoneg_wait_to_complete = false; 3255 3256 /* Copper options */ 3257 if (hw->phy.media_type == e1000_media_type_copper) { 3258 hw->phy.mdix = AUTO_ALL_MODES; 3259 hw->phy.disable_polarity_correction = false; 3260 hw->phy.ms_type = e1000_ms_hw_default; 3261 } 3262 3263 if (igb_check_reset_block(hw)) 3264 dev_info(&pdev->dev, 3265 "PHY reset is blocked due to SOL/IDER session.\n"); 3266 3267 /* features is initialized to 0 in allocation, it might have bits 3268 * set by igb_sw_init so we should use an or instead of an 3269 * assignment. 3270 */ 3271 netdev->features |= NETIF_F_SG | 3272 NETIF_F_TSO | 3273 NETIF_F_TSO6 | 3274 NETIF_F_RXHASH | 3275 NETIF_F_RXCSUM | 3276 NETIF_F_HW_CSUM; 3277 3278 if (hw->mac.type >= e1000_82576) 3279 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4; 3280 3281 if (hw->mac.type >= e1000_i350) 3282 netdev->features |= NETIF_F_HW_TC; 3283 3284 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 3285 NETIF_F_GSO_GRE_CSUM | \ 3286 NETIF_F_GSO_IPXIP4 | \ 3287 NETIF_F_GSO_IPXIP6 | \ 3288 NETIF_F_GSO_UDP_TUNNEL | \ 3289 NETIF_F_GSO_UDP_TUNNEL_CSUM) 3290 3291 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES; 3292 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES; 3293 3294 /* copy netdev features into list of user selectable features */ 3295 netdev->hw_features |= netdev->features | 3296 NETIF_F_HW_VLAN_CTAG_RX | 3297 NETIF_F_HW_VLAN_CTAG_TX | 3298 NETIF_F_RXALL; 3299 3300 if (hw->mac.type >= e1000_i350) 3301 netdev->hw_features |= NETIF_F_NTUPLE; 3302 3303 netdev->features |= NETIF_F_HIGHDMA; 3304 3305 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 3306 netdev->mpls_features |= NETIF_F_HW_CSUM; 3307 netdev->hw_enc_features |= netdev->vlan_features; 3308 3309 /* set this bit last since it cannot be part of vlan_features */ 3310 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 3311 NETIF_F_HW_VLAN_CTAG_RX | 3312 NETIF_F_HW_VLAN_CTAG_TX; 3313 3314 netdev->priv_flags |= IFF_SUPP_NOFCS; 3315 3316 netdev->priv_flags |= IFF_UNICAST_FLT; 3317 3318 /* MTU range: 68 - 9216 */ 3319 netdev->min_mtu = ETH_MIN_MTU; 3320 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 3321 3322 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 3323 3324 /* before reading the NVM, reset the controller to put the device in a 3325 * known good starting state 3326 */ 3327 hw->mac.ops.reset_hw(hw); 3328 3329 /* make sure the NVM is good , i211/i210 parts can have special NVM 3330 * that doesn't contain a checksum 3331 */ 3332 switch (hw->mac.type) { 3333 case e1000_i210: 3334 case e1000_i211: 3335 if (igb_get_flash_presence_i210(hw)) { 3336 if (hw->nvm.ops.validate(hw) < 0) { 3337 dev_err(&pdev->dev, 3338 "The NVM Checksum Is Not Valid\n"); 3339 err = -EIO; 3340 goto err_eeprom; 3341 } 3342 } 3343 break; 3344 default: 3345 if (hw->nvm.ops.validate(hw) < 0) { 3346 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 3347 err = -EIO; 3348 goto err_eeprom; 3349 } 3350 break; 3351 } 3352 3353 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 3354 /* copy the MAC address out of the NVM */ 3355 if (hw->mac.ops.read_mac_addr(hw)) 3356 dev_err(&pdev->dev, "NVM Read Error\n"); 3357 } 3358 3359 eth_hw_addr_set(netdev, hw->mac.addr); 3360 3361 if (!is_valid_ether_addr(netdev->dev_addr)) { 3362 dev_err(&pdev->dev, "Invalid MAC Address\n"); 3363 err = -EIO; 3364 goto err_eeprom; 3365 } 3366 3367 igb_set_default_mac_filter(adapter); 3368 3369 /* get firmware version for ethtool -i */ 3370 igb_set_fw_version(adapter); 3371 3372 /* configure RXPBSIZE and TXPBSIZE */ 3373 if (hw->mac.type == e1000_i210) { 3374 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 3375 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 3376 } 3377 3378 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0); 3379 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0); 3380 3381 INIT_WORK(&adapter->reset_task, igb_reset_task); 3382 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 3383 3384 /* Initialize link properties that are user-changeable */ 3385 adapter->fc_autoneg = true; 3386 hw->mac.autoneg = true; 3387 hw->phy.autoneg_advertised = 0x2f; 3388 3389 hw->fc.requested_mode = e1000_fc_default; 3390 hw->fc.current_mode = e1000_fc_default; 3391 3392 igb_validate_mdi_setting(hw); 3393 3394 /* By default, support wake on port A */ 3395 if (hw->bus.func == 0) 3396 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3397 3398 /* Check the NVM for wake support on non-port A ports */ 3399 if (hw->mac.type >= e1000_82580) 3400 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 3401 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 3402 &eeprom_data); 3403 else if (hw->bus.func == 1) 3404 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3405 3406 if (eeprom_data & IGB_EEPROM_APME) 3407 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3408 3409 /* now that we have the eeprom settings, apply the special cases where 3410 * the eeprom may be wrong or the board simply won't support wake on 3411 * lan on a particular port 3412 */ 3413 switch (pdev->device) { 3414 case E1000_DEV_ID_82575GB_QUAD_COPPER: 3415 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3416 break; 3417 case E1000_DEV_ID_82575EB_FIBER_SERDES: 3418 case E1000_DEV_ID_82576_FIBER: 3419 case E1000_DEV_ID_82576_SERDES: 3420 /* Wake events only supported on port A for dual fiber 3421 * regardless of eeprom setting 3422 */ 3423 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 3424 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3425 break; 3426 case E1000_DEV_ID_82576_QUAD_COPPER: 3427 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 3428 /* if quad port adapter, disable WoL on all but port A */ 3429 if (global_quad_port_a != 0) 3430 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3431 else 3432 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 3433 /* Reset for multiple quad port adapters */ 3434 if (++global_quad_port_a == 4) 3435 global_quad_port_a = 0; 3436 break; 3437 default: 3438 /* If the device can't wake, don't set software support */ 3439 if (!device_can_wakeup(&adapter->pdev->dev)) 3440 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3441 } 3442 3443 /* initialize the wol settings based on the eeprom settings */ 3444 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 3445 adapter->wol |= E1000_WUFC_MAG; 3446 3447 /* Some vendors want WoL disabled by default, but still supported */ 3448 if ((hw->mac.type == e1000_i350) && 3449 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 3450 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3451 adapter->wol = 0; 3452 } 3453 3454 /* Some vendors want the ability to Use the EEPROM setting as 3455 * enable/disable only, and not for capability 3456 */ 3457 if (((hw->mac.type == e1000_i350) || 3458 (hw->mac.type == e1000_i354)) && 3459 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) { 3460 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3461 adapter->wol = 0; 3462 } 3463 if (hw->mac.type == e1000_i350) { 3464 if (((pdev->subsystem_device == 0x5001) || 3465 (pdev->subsystem_device == 0x5002)) && 3466 (hw->bus.func == 0)) { 3467 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3468 adapter->wol = 0; 3469 } 3470 if (pdev->subsystem_device == 0x1F52) 3471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3472 } 3473 3474 device_set_wakeup_enable(&adapter->pdev->dev, 3475 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 3476 3477 /* reset the hardware with the new settings */ 3478 igb_reset(adapter); 3479 3480 /* Init the I2C interface */ 3481 err = igb_init_i2c(adapter); 3482 if (err) { 3483 dev_err(&pdev->dev, "failed to init i2c interface\n"); 3484 goto err_eeprom; 3485 } 3486 3487 /* let the f/w know that the h/w is now under the control of the 3488 * driver. 3489 */ 3490 igb_get_hw_control(adapter); 3491 3492 strcpy(netdev->name, "eth%d"); 3493 err = register_netdev(netdev); 3494 if (err) 3495 goto err_register; 3496 3497 /* carrier off reporting is important to ethtool even BEFORE open */ 3498 netif_carrier_off(netdev); 3499 3500 #ifdef CONFIG_IGB_DCA 3501 if (dca_add_requester(&pdev->dev) == 0) { 3502 adapter->flags |= IGB_FLAG_DCA_ENABLED; 3503 dev_info(&pdev->dev, "DCA enabled\n"); 3504 igb_setup_dca(adapter); 3505 } 3506 3507 #endif 3508 #ifdef CONFIG_IGB_HWMON 3509 /* Initialize the thermal sensor on i350 devices. */ 3510 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 3511 u16 ets_word; 3512 3513 /* Read the NVM to determine if this i350 device supports an 3514 * external thermal sensor. 3515 */ 3516 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 3517 if (ets_word != 0x0000 && ets_word != 0xFFFF) 3518 adapter->ets = true; 3519 else 3520 adapter->ets = false; 3521 if (igb_sysfs_init(adapter)) 3522 dev_err(&pdev->dev, 3523 "failed to allocate sysfs resources\n"); 3524 } else { 3525 adapter->ets = false; 3526 } 3527 #endif 3528 /* Check if Media Autosense is enabled */ 3529 adapter->ei = *ei; 3530 if (hw->dev_spec._82575.mas_capable) 3531 igb_init_mas(adapter); 3532 3533 /* do hw tstamp init after resetting */ 3534 igb_ptp_init(adapter); 3535 3536 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 3537 /* print bus type/speed/width info, not applicable to i354 */ 3538 if (hw->mac.type != e1000_i354) { 3539 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 3540 netdev->name, 3541 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 3542 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 3543 "unknown"), 3544 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 3545 "Width x4" : 3546 (hw->bus.width == e1000_bus_width_pcie_x2) ? 3547 "Width x2" : 3548 (hw->bus.width == e1000_bus_width_pcie_x1) ? 3549 "Width x1" : "unknown"), netdev->dev_addr); 3550 } 3551 3552 if ((hw->mac.type == e1000_82576 && 3553 rd32(E1000_EECD) & E1000_EECD_PRES) || 3554 (hw->mac.type >= e1000_i210 || 3555 igb_get_flash_presence_i210(hw))) { 3556 ret_val = igb_read_part_string(hw, part_str, 3557 E1000_PBANUM_LENGTH); 3558 } else { 3559 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 3560 } 3561 3562 if (ret_val) 3563 strcpy(part_str, "Unknown"); 3564 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 3565 dev_info(&pdev->dev, 3566 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 3567 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 3568 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 3569 adapter->num_rx_queues, adapter->num_tx_queues); 3570 if (hw->phy.media_type == e1000_media_type_copper) { 3571 switch (hw->mac.type) { 3572 case e1000_i350: 3573 case e1000_i210: 3574 case e1000_i211: 3575 /* Enable EEE for internal copper PHY devices */ 3576 err = igb_set_eee_i350(hw, true, true); 3577 if ((!err) && 3578 (!hw->dev_spec._82575.eee_disable)) { 3579 adapter->eee_advert = 3580 MDIO_EEE_100TX | MDIO_EEE_1000T; 3581 adapter->flags |= IGB_FLAG_EEE; 3582 } 3583 break; 3584 case e1000_i354: 3585 if ((rd32(E1000_CTRL_EXT) & 3586 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 3587 err = igb_set_eee_i354(hw, true, true); 3588 if ((!err) && 3589 (!hw->dev_spec._82575.eee_disable)) { 3590 adapter->eee_advert = 3591 MDIO_EEE_100TX | MDIO_EEE_1000T; 3592 adapter->flags |= IGB_FLAG_EEE; 3593 } 3594 } 3595 break; 3596 default: 3597 break; 3598 } 3599 } 3600 3601 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 3602 3603 pm_runtime_put_noidle(&pdev->dev); 3604 return 0; 3605 3606 err_register: 3607 igb_release_hw_control(adapter); 3608 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 3609 err_eeprom: 3610 if (!igb_check_reset_block(hw)) 3611 igb_reset_phy(hw); 3612 3613 if (hw->flash_address) 3614 iounmap(hw->flash_address); 3615 err_sw_init: 3616 kfree(adapter->mac_table); 3617 kfree(adapter->shadow_vfta); 3618 igb_clear_interrupt_scheme(adapter); 3619 #ifdef CONFIG_PCI_IOV 3620 igb_disable_sriov(pdev); 3621 #endif 3622 pci_iounmap(pdev, adapter->io_addr); 3623 err_ioremap: 3624 free_netdev(netdev); 3625 err_alloc_etherdev: 3626 pci_disable_pcie_error_reporting(pdev); 3627 pci_release_mem_regions(pdev); 3628 err_pci_reg: 3629 err_dma: 3630 pci_disable_device(pdev); 3631 return err; 3632 } 3633 3634 #ifdef CONFIG_PCI_IOV 3635 static int igb_disable_sriov(struct pci_dev *pdev) 3636 { 3637 struct net_device *netdev = pci_get_drvdata(pdev); 3638 struct igb_adapter *adapter = netdev_priv(netdev); 3639 struct e1000_hw *hw = &adapter->hw; 3640 3641 /* reclaim resources allocated to VFs */ 3642 if (adapter->vf_data) { 3643 /* disable iov and allow time for transactions to clear */ 3644 if (pci_vfs_assigned(pdev)) { 3645 dev_warn(&pdev->dev, 3646 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 3647 return -EPERM; 3648 } else { 3649 pci_disable_sriov(pdev); 3650 msleep(500); 3651 } 3652 3653 kfree(adapter->vf_mac_list); 3654 adapter->vf_mac_list = NULL; 3655 kfree(adapter->vf_data); 3656 adapter->vf_data = NULL; 3657 adapter->vfs_allocated_count = 0; 3658 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 3659 wrfl(); 3660 msleep(100); 3661 dev_info(&pdev->dev, "IOV Disabled\n"); 3662 3663 /* Re-enable DMA Coalescing flag since IOV is turned off */ 3664 adapter->flags |= IGB_FLAG_DMAC; 3665 } 3666 3667 return 0; 3668 } 3669 3670 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 3671 { 3672 struct net_device *netdev = pci_get_drvdata(pdev); 3673 struct igb_adapter *adapter = netdev_priv(netdev); 3674 int old_vfs = pci_num_vf(pdev); 3675 struct vf_mac_filter *mac_list; 3676 int err = 0; 3677 int num_vf_mac_filters, i; 3678 3679 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 3680 err = -EPERM; 3681 goto out; 3682 } 3683 if (!num_vfs) 3684 goto out; 3685 3686 if (old_vfs) { 3687 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 3688 old_vfs, max_vfs); 3689 adapter->vfs_allocated_count = old_vfs; 3690 } else 3691 adapter->vfs_allocated_count = num_vfs; 3692 3693 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 3694 sizeof(struct vf_data_storage), GFP_KERNEL); 3695 3696 /* if allocation failed then we do not support SR-IOV */ 3697 if (!adapter->vf_data) { 3698 adapter->vfs_allocated_count = 0; 3699 err = -ENOMEM; 3700 goto out; 3701 } 3702 3703 /* Due to the limited number of RAR entries calculate potential 3704 * number of MAC filters available for the VFs. Reserve entries 3705 * for PF default MAC, PF MAC filters and at least one RAR entry 3706 * for each VF for VF MAC. 3707 */ 3708 num_vf_mac_filters = adapter->hw.mac.rar_entry_count - 3709 (1 + IGB_PF_MAC_FILTERS_RESERVED + 3710 adapter->vfs_allocated_count); 3711 3712 adapter->vf_mac_list = kcalloc(num_vf_mac_filters, 3713 sizeof(struct vf_mac_filter), 3714 GFP_KERNEL); 3715 3716 mac_list = adapter->vf_mac_list; 3717 INIT_LIST_HEAD(&adapter->vf_macs.l); 3718 3719 if (adapter->vf_mac_list) { 3720 /* Initialize list of VF MAC filters */ 3721 for (i = 0; i < num_vf_mac_filters; i++) { 3722 mac_list->vf = -1; 3723 mac_list->free = true; 3724 list_add(&mac_list->l, &adapter->vf_macs.l); 3725 mac_list++; 3726 } 3727 } else { 3728 /* If we could not allocate memory for the VF MAC filters 3729 * we can continue without this feature but warn user. 3730 */ 3731 dev_err(&pdev->dev, 3732 "Unable to allocate memory for VF MAC filter list\n"); 3733 } 3734 3735 /* only call pci_enable_sriov() if no VFs are allocated already */ 3736 if (!old_vfs) { 3737 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 3738 if (err) 3739 goto err_out; 3740 } 3741 dev_info(&pdev->dev, "%d VFs allocated\n", 3742 adapter->vfs_allocated_count); 3743 for (i = 0; i < adapter->vfs_allocated_count; i++) 3744 igb_vf_configure(adapter, i); 3745 3746 /* DMA Coalescing is not supported in IOV mode. */ 3747 adapter->flags &= ~IGB_FLAG_DMAC; 3748 goto out; 3749 3750 err_out: 3751 kfree(adapter->vf_mac_list); 3752 adapter->vf_mac_list = NULL; 3753 kfree(adapter->vf_data); 3754 adapter->vf_data = NULL; 3755 adapter->vfs_allocated_count = 0; 3756 out: 3757 return err; 3758 } 3759 3760 #endif 3761 /** 3762 * igb_remove_i2c - Cleanup I2C interface 3763 * @adapter: pointer to adapter structure 3764 **/ 3765 static void igb_remove_i2c(struct igb_adapter *adapter) 3766 { 3767 /* free the adapter bus structure */ 3768 i2c_del_adapter(&adapter->i2c_adap); 3769 } 3770 3771 /** 3772 * igb_remove - Device Removal Routine 3773 * @pdev: PCI device information struct 3774 * 3775 * igb_remove is called by the PCI subsystem to alert the driver 3776 * that it should release a PCI device. The could be caused by a 3777 * Hot-Plug event, or because the driver is going to be removed from 3778 * memory. 3779 **/ 3780 static void igb_remove(struct pci_dev *pdev) 3781 { 3782 struct net_device *netdev = pci_get_drvdata(pdev); 3783 struct igb_adapter *adapter = netdev_priv(netdev); 3784 struct e1000_hw *hw = &adapter->hw; 3785 3786 pm_runtime_get_noresume(&pdev->dev); 3787 #ifdef CONFIG_IGB_HWMON 3788 igb_sysfs_exit(adapter); 3789 #endif 3790 igb_remove_i2c(adapter); 3791 igb_ptp_stop(adapter); 3792 /* The watchdog timer may be rescheduled, so explicitly 3793 * disable watchdog from being rescheduled. 3794 */ 3795 set_bit(__IGB_DOWN, &adapter->state); 3796 del_timer_sync(&adapter->watchdog_timer); 3797 del_timer_sync(&adapter->phy_info_timer); 3798 3799 cancel_work_sync(&adapter->reset_task); 3800 cancel_work_sync(&adapter->watchdog_task); 3801 3802 #ifdef CONFIG_IGB_DCA 3803 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 3804 dev_info(&pdev->dev, "DCA disabled\n"); 3805 dca_remove_requester(&pdev->dev); 3806 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 3807 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 3808 } 3809 #endif 3810 3811 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3812 * would have already happened in close and is redundant. 3813 */ 3814 igb_release_hw_control(adapter); 3815 3816 #ifdef CONFIG_PCI_IOV 3817 igb_disable_sriov(pdev); 3818 #endif 3819 3820 unregister_netdev(netdev); 3821 3822 igb_clear_interrupt_scheme(adapter); 3823 3824 pci_iounmap(pdev, adapter->io_addr); 3825 if (hw->flash_address) 3826 iounmap(hw->flash_address); 3827 pci_release_mem_regions(pdev); 3828 3829 kfree(adapter->mac_table); 3830 kfree(adapter->shadow_vfta); 3831 free_netdev(netdev); 3832 3833 pci_disable_pcie_error_reporting(pdev); 3834 3835 pci_disable_device(pdev); 3836 } 3837 3838 /** 3839 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 3840 * @adapter: board private structure to initialize 3841 * 3842 * This function initializes the vf specific data storage and then attempts to 3843 * allocate the VFs. The reason for ordering it this way is because it is much 3844 * mor expensive time wise to disable SR-IOV than it is to allocate and free 3845 * the memory for the VFs. 3846 **/ 3847 static void igb_probe_vfs(struct igb_adapter *adapter) 3848 { 3849 #ifdef CONFIG_PCI_IOV 3850 struct pci_dev *pdev = adapter->pdev; 3851 struct e1000_hw *hw = &adapter->hw; 3852 3853 /* Virtualization features not supported on i210 family. */ 3854 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 3855 return; 3856 3857 /* Of the below we really only want the effect of getting 3858 * IGB_FLAG_HAS_MSIX set (if available), without which 3859 * igb_enable_sriov() has no effect. 3860 */ 3861 igb_set_interrupt_capability(adapter, true); 3862 igb_reset_interrupt_capability(adapter); 3863 3864 pci_sriov_set_totalvfs(pdev, 7); 3865 igb_enable_sriov(pdev, max_vfs); 3866 3867 #endif /* CONFIG_PCI_IOV */ 3868 } 3869 3870 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter) 3871 { 3872 struct e1000_hw *hw = &adapter->hw; 3873 unsigned int max_rss_queues; 3874 3875 /* Determine the maximum number of RSS queues supported. */ 3876 switch (hw->mac.type) { 3877 case e1000_i211: 3878 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 3879 break; 3880 case e1000_82575: 3881 case e1000_i210: 3882 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 3883 break; 3884 case e1000_i350: 3885 /* I350 cannot do RSS and SR-IOV at the same time */ 3886 if (!!adapter->vfs_allocated_count) { 3887 max_rss_queues = 1; 3888 break; 3889 } 3890 fallthrough; 3891 case e1000_82576: 3892 if (!!adapter->vfs_allocated_count) { 3893 max_rss_queues = 2; 3894 break; 3895 } 3896 fallthrough; 3897 case e1000_82580: 3898 case e1000_i354: 3899 default: 3900 max_rss_queues = IGB_MAX_RX_QUEUES; 3901 break; 3902 } 3903 3904 return max_rss_queues; 3905 } 3906 3907 static void igb_init_queue_configuration(struct igb_adapter *adapter) 3908 { 3909 u32 max_rss_queues; 3910 3911 max_rss_queues = igb_get_max_rss_queues(adapter); 3912 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3913 3914 igb_set_flag_queue_pairs(adapter, max_rss_queues); 3915 } 3916 3917 void igb_set_flag_queue_pairs(struct igb_adapter *adapter, 3918 const u32 max_rss_queues) 3919 { 3920 struct e1000_hw *hw = &adapter->hw; 3921 3922 /* Determine if we need to pair queues. */ 3923 switch (hw->mac.type) { 3924 case e1000_82575: 3925 case e1000_i211: 3926 /* Device supports enough interrupts without queue pairing. */ 3927 break; 3928 case e1000_82576: 3929 case e1000_82580: 3930 case e1000_i350: 3931 case e1000_i354: 3932 case e1000_i210: 3933 default: 3934 /* If rss_queues > half of max_rss_queues, pair the queues in 3935 * order to conserve interrupts due to limited supply. 3936 */ 3937 if (adapter->rss_queues > (max_rss_queues / 2)) 3938 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 3939 else 3940 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS; 3941 break; 3942 } 3943 } 3944 3945 /** 3946 * igb_sw_init - Initialize general software structures (struct igb_adapter) 3947 * @adapter: board private structure to initialize 3948 * 3949 * igb_sw_init initializes the Adapter private data structure. 3950 * Fields are initialized based on PCI device information and 3951 * OS network device settings (MTU size). 3952 **/ 3953 static int igb_sw_init(struct igb_adapter *adapter) 3954 { 3955 struct e1000_hw *hw = &adapter->hw; 3956 struct net_device *netdev = adapter->netdev; 3957 struct pci_dev *pdev = adapter->pdev; 3958 3959 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3960 3961 /* set default ring sizes */ 3962 adapter->tx_ring_count = IGB_DEFAULT_TXD; 3963 adapter->rx_ring_count = IGB_DEFAULT_RXD; 3964 3965 /* set default ITR values */ 3966 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 3967 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 3968 3969 /* set default work limits */ 3970 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 3971 3972 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD; 3973 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3974 3975 spin_lock_init(&adapter->nfc_lock); 3976 spin_lock_init(&adapter->stats64_lock); 3977 #ifdef CONFIG_PCI_IOV 3978 switch (hw->mac.type) { 3979 case e1000_82576: 3980 case e1000_i350: 3981 if (max_vfs > 7) { 3982 dev_warn(&pdev->dev, 3983 "Maximum of 7 VFs per PF, using max\n"); 3984 max_vfs = adapter->vfs_allocated_count = 7; 3985 } else 3986 adapter->vfs_allocated_count = max_vfs; 3987 if (adapter->vfs_allocated_count) 3988 dev_warn(&pdev->dev, 3989 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 3990 break; 3991 default: 3992 break; 3993 } 3994 #endif /* CONFIG_PCI_IOV */ 3995 3996 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 3997 adapter->flags |= IGB_FLAG_HAS_MSIX; 3998 3999 adapter->mac_table = kcalloc(hw->mac.rar_entry_count, 4000 sizeof(struct igb_mac_addr), 4001 GFP_KERNEL); 4002 if (!adapter->mac_table) 4003 return -ENOMEM; 4004 4005 igb_probe_vfs(adapter); 4006 4007 igb_init_queue_configuration(adapter); 4008 4009 /* Setup and initialize a copy of the hw vlan table array */ 4010 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 4011 GFP_KERNEL); 4012 if (!adapter->shadow_vfta) 4013 return -ENOMEM; 4014 4015 /* This call may decrease the number of queues */ 4016 if (igb_init_interrupt_scheme(adapter, true)) { 4017 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4018 return -ENOMEM; 4019 } 4020 4021 /* Explicitly disable IRQ since the NIC can be in any state. */ 4022 igb_irq_disable(adapter); 4023 4024 if (hw->mac.type >= e1000_i350) 4025 adapter->flags &= ~IGB_FLAG_DMAC; 4026 4027 set_bit(__IGB_DOWN, &adapter->state); 4028 return 0; 4029 } 4030 4031 /** 4032 * __igb_open - Called when a network interface is made active 4033 * @netdev: network interface device structure 4034 * @resuming: indicates whether we are in a resume call 4035 * 4036 * Returns 0 on success, negative value on failure 4037 * 4038 * The open entry point is called when a network interface is made 4039 * active by the system (IFF_UP). At this point all resources needed 4040 * for transmit and receive operations are allocated, the interrupt 4041 * handler is registered with the OS, the watchdog timer is started, 4042 * and the stack is notified that the interface is ready. 4043 **/ 4044 static int __igb_open(struct net_device *netdev, bool resuming) 4045 { 4046 struct igb_adapter *adapter = netdev_priv(netdev); 4047 struct e1000_hw *hw = &adapter->hw; 4048 struct pci_dev *pdev = adapter->pdev; 4049 int err; 4050 int i; 4051 4052 /* disallow open during test */ 4053 if (test_bit(__IGB_TESTING, &adapter->state)) { 4054 WARN_ON(resuming); 4055 return -EBUSY; 4056 } 4057 4058 if (!resuming) 4059 pm_runtime_get_sync(&pdev->dev); 4060 4061 netif_carrier_off(netdev); 4062 4063 /* allocate transmit descriptors */ 4064 err = igb_setup_all_tx_resources(adapter); 4065 if (err) 4066 goto err_setup_tx; 4067 4068 /* allocate receive descriptors */ 4069 err = igb_setup_all_rx_resources(adapter); 4070 if (err) 4071 goto err_setup_rx; 4072 4073 igb_power_up_link(adapter); 4074 4075 /* before we allocate an interrupt, we must be ready to handle it. 4076 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4077 * as soon as we call pci_request_irq, so we have to setup our 4078 * clean_rx handler before we do so. 4079 */ 4080 igb_configure(adapter); 4081 4082 err = igb_request_irq(adapter); 4083 if (err) 4084 goto err_req_irq; 4085 4086 /* Notify the stack of the actual queue counts. */ 4087 err = netif_set_real_num_tx_queues(adapter->netdev, 4088 adapter->num_tx_queues); 4089 if (err) 4090 goto err_set_queues; 4091 4092 err = netif_set_real_num_rx_queues(adapter->netdev, 4093 adapter->num_rx_queues); 4094 if (err) 4095 goto err_set_queues; 4096 4097 /* From here on the code is the same as igb_up() */ 4098 clear_bit(__IGB_DOWN, &adapter->state); 4099 4100 for (i = 0; i < adapter->num_q_vectors; i++) 4101 napi_enable(&(adapter->q_vector[i]->napi)); 4102 4103 /* Clear any pending interrupts. */ 4104 rd32(E1000_TSICR); 4105 rd32(E1000_ICR); 4106 4107 igb_irq_enable(adapter); 4108 4109 /* notify VFs that reset has been completed */ 4110 if (adapter->vfs_allocated_count) { 4111 u32 reg_data = rd32(E1000_CTRL_EXT); 4112 4113 reg_data |= E1000_CTRL_EXT_PFRSTD; 4114 wr32(E1000_CTRL_EXT, reg_data); 4115 } 4116 4117 netif_tx_start_all_queues(netdev); 4118 4119 if (!resuming) 4120 pm_runtime_put(&pdev->dev); 4121 4122 /* start the watchdog. */ 4123 hw->mac.get_link_status = 1; 4124 schedule_work(&adapter->watchdog_task); 4125 4126 return 0; 4127 4128 err_set_queues: 4129 igb_free_irq(adapter); 4130 err_req_irq: 4131 igb_release_hw_control(adapter); 4132 igb_power_down_link(adapter); 4133 igb_free_all_rx_resources(adapter); 4134 err_setup_rx: 4135 igb_free_all_tx_resources(adapter); 4136 err_setup_tx: 4137 igb_reset(adapter); 4138 if (!resuming) 4139 pm_runtime_put(&pdev->dev); 4140 4141 return err; 4142 } 4143 4144 int igb_open(struct net_device *netdev) 4145 { 4146 return __igb_open(netdev, false); 4147 } 4148 4149 /** 4150 * __igb_close - Disables a network interface 4151 * @netdev: network interface device structure 4152 * @suspending: indicates we are in a suspend call 4153 * 4154 * Returns 0, this is not allowed to fail 4155 * 4156 * The close entry point is called when an interface is de-activated 4157 * by the OS. The hardware is still under the driver's control, but 4158 * needs to be disabled. A global MAC reset is issued to stop the 4159 * hardware, and all transmit and receive resources are freed. 4160 **/ 4161 static int __igb_close(struct net_device *netdev, bool suspending) 4162 { 4163 struct igb_adapter *adapter = netdev_priv(netdev); 4164 struct pci_dev *pdev = adapter->pdev; 4165 4166 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 4167 4168 if (!suspending) 4169 pm_runtime_get_sync(&pdev->dev); 4170 4171 igb_down(adapter); 4172 igb_free_irq(adapter); 4173 4174 igb_free_all_tx_resources(adapter); 4175 igb_free_all_rx_resources(adapter); 4176 4177 if (!suspending) 4178 pm_runtime_put_sync(&pdev->dev); 4179 return 0; 4180 } 4181 4182 int igb_close(struct net_device *netdev) 4183 { 4184 if (netif_device_present(netdev) || netdev->dismantle) 4185 return __igb_close(netdev, false); 4186 return 0; 4187 } 4188 4189 /** 4190 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 4191 * @tx_ring: tx descriptor ring (for a specific queue) to setup 4192 * 4193 * Return 0 on success, negative on failure 4194 **/ 4195 int igb_setup_tx_resources(struct igb_ring *tx_ring) 4196 { 4197 struct device *dev = tx_ring->dev; 4198 int size; 4199 4200 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 4201 4202 tx_ring->tx_buffer_info = vmalloc(size); 4203 if (!tx_ring->tx_buffer_info) 4204 goto err; 4205 4206 /* round up to nearest 4K */ 4207 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 4208 tx_ring->size = ALIGN(tx_ring->size, 4096); 4209 4210 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 4211 &tx_ring->dma, GFP_KERNEL); 4212 if (!tx_ring->desc) 4213 goto err; 4214 4215 tx_ring->next_to_use = 0; 4216 tx_ring->next_to_clean = 0; 4217 4218 return 0; 4219 4220 err: 4221 vfree(tx_ring->tx_buffer_info); 4222 tx_ring->tx_buffer_info = NULL; 4223 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 4224 return -ENOMEM; 4225 } 4226 4227 /** 4228 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 4229 * (Descriptors) for all queues 4230 * @adapter: board private structure 4231 * 4232 * Return 0 on success, negative on failure 4233 **/ 4234 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 4235 { 4236 struct pci_dev *pdev = adapter->pdev; 4237 int i, err = 0; 4238 4239 for (i = 0; i < adapter->num_tx_queues; i++) { 4240 err = igb_setup_tx_resources(adapter->tx_ring[i]); 4241 if (err) { 4242 dev_err(&pdev->dev, 4243 "Allocation for Tx Queue %u failed\n", i); 4244 for (i--; i >= 0; i--) 4245 igb_free_tx_resources(adapter->tx_ring[i]); 4246 break; 4247 } 4248 } 4249 4250 return err; 4251 } 4252 4253 /** 4254 * igb_setup_tctl - configure the transmit control registers 4255 * @adapter: Board private structure 4256 **/ 4257 void igb_setup_tctl(struct igb_adapter *adapter) 4258 { 4259 struct e1000_hw *hw = &adapter->hw; 4260 u32 tctl; 4261 4262 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 4263 wr32(E1000_TXDCTL(0), 0); 4264 4265 /* Program the Transmit Control Register */ 4266 tctl = rd32(E1000_TCTL); 4267 tctl &= ~E1000_TCTL_CT; 4268 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 4269 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 4270 4271 igb_config_collision_dist(hw); 4272 4273 /* Enable transmits */ 4274 tctl |= E1000_TCTL_EN; 4275 4276 wr32(E1000_TCTL, tctl); 4277 } 4278 4279 /** 4280 * igb_configure_tx_ring - Configure transmit ring after Reset 4281 * @adapter: board private structure 4282 * @ring: tx ring to configure 4283 * 4284 * Configure a transmit ring after a reset. 4285 **/ 4286 void igb_configure_tx_ring(struct igb_adapter *adapter, 4287 struct igb_ring *ring) 4288 { 4289 struct e1000_hw *hw = &adapter->hw; 4290 u32 txdctl = 0; 4291 u64 tdba = ring->dma; 4292 int reg_idx = ring->reg_idx; 4293 4294 wr32(E1000_TDLEN(reg_idx), 4295 ring->count * sizeof(union e1000_adv_tx_desc)); 4296 wr32(E1000_TDBAL(reg_idx), 4297 tdba & 0x00000000ffffffffULL); 4298 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 4299 4300 ring->tail = adapter->io_addr + E1000_TDT(reg_idx); 4301 wr32(E1000_TDH(reg_idx), 0); 4302 writel(0, ring->tail); 4303 4304 txdctl |= IGB_TX_PTHRESH; 4305 txdctl |= IGB_TX_HTHRESH << 8; 4306 txdctl |= IGB_TX_WTHRESH << 16; 4307 4308 /* reinitialize tx_buffer_info */ 4309 memset(ring->tx_buffer_info, 0, 4310 sizeof(struct igb_tx_buffer) * ring->count); 4311 4312 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 4313 wr32(E1000_TXDCTL(reg_idx), txdctl); 4314 } 4315 4316 /** 4317 * igb_configure_tx - Configure transmit Unit after Reset 4318 * @adapter: board private structure 4319 * 4320 * Configure the Tx unit of the MAC after a reset. 4321 **/ 4322 static void igb_configure_tx(struct igb_adapter *adapter) 4323 { 4324 struct e1000_hw *hw = &adapter->hw; 4325 int i; 4326 4327 /* disable the queues */ 4328 for (i = 0; i < adapter->num_tx_queues; i++) 4329 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0); 4330 4331 wrfl(); 4332 usleep_range(10000, 20000); 4333 4334 for (i = 0; i < adapter->num_tx_queues; i++) 4335 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 4336 } 4337 4338 /** 4339 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 4340 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 4341 * 4342 * Returns 0 on success, negative on failure 4343 **/ 4344 int igb_setup_rx_resources(struct igb_ring *rx_ring) 4345 { 4346 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev); 4347 struct device *dev = rx_ring->dev; 4348 int size, res; 4349 4350 /* XDP RX-queue info */ 4351 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) 4352 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4353 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 4354 rx_ring->queue_index, 0); 4355 if (res < 0) { 4356 dev_err(dev, "Failed to register xdp_rxq index %u\n", 4357 rx_ring->queue_index); 4358 return res; 4359 } 4360 4361 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 4362 4363 rx_ring->rx_buffer_info = vmalloc(size); 4364 if (!rx_ring->rx_buffer_info) 4365 goto err; 4366 4367 /* Round up to nearest 4K */ 4368 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 4369 rx_ring->size = ALIGN(rx_ring->size, 4096); 4370 4371 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 4372 &rx_ring->dma, GFP_KERNEL); 4373 if (!rx_ring->desc) 4374 goto err; 4375 4376 rx_ring->next_to_alloc = 0; 4377 rx_ring->next_to_clean = 0; 4378 rx_ring->next_to_use = 0; 4379 4380 rx_ring->xdp_prog = adapter->xdp_prog; 4381 4382 return 0; 4383 4384 err: 4385 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4386 vfree(rx_ring->rx_buffer_info); 4387 rx_ring->rx_buffer_info = NULL; 4388 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 4389 return -ENOMEM; 4390 } 4391 4392 /** 4393 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 4394 * (Descriptors) for all queues 4395 * @adapter: board private structure 4396 * 4397 * Return 0 on success, negative on failure 4398 **/ 4399 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 4400 { 4401 struct pci_dev *pdev = adapter->pdev; 4402 int i, err = 0; 4403 4404 for (i = 0; i < adapter->num_rx_queues; i++) { 4405 err = igb_setup_rx_resources(adapter->rx_ring[i]); 4406 if (err) { 4407 dev_err(&pdev->dev, 4408 "Allocation for Rx Queue %u failed\n", i); 4409 for (i--; i >= 0; i--) 4410 igb_free_rx_resources(adapter->rx_ring[i]); 4411 break; 4412 } 4413 } 4414 4415 return err; 4416 } 4417 4418 /** 4419 * igb_setup_mrqc - configure the multiple receive queue control registers 4420 * @adapter: Board private structure 4421 **/ 4422 static void igb_setup_mrqc(struct igb_adapter *adapter) 4423 { 4424 struct e1000_hw *hw = &adapter->hw; 4425 u32 mrqc, rxcsum; 4426 u32 j, num_rx_queues; 4427 u32 rss_key[10]; 4428 4429 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 4430 for (j = 0; j < 10; j++) 4431 wr32(E1000_RSSRK(j), rss_key[j]); 4432 4433 num_rx_queues = adapter->rss_queues; 4434 4435 switch (hw->mac.type) { 4436 case e1000_82576: 4437 /* 82576 supports 2 RSS queues for SR-IOV */ 4438 if (adapter->vfs_allocated_count) 4439 num_rx_queues = 2; 4440 break; 4441 default: 4442 break; 4443 } 4444 4445 if (adapter->rss_indir_tbl_init != num_rx_queues) { 4446 for (j = 0; j < IGB_RETA_SIZE; j++) 4447 adapter->rss_indir_tbl[j] = 4448 (j * num_rx_queues) / IGB_RETA_SIZE; 4449 adapter->rss_indir_tbl_init = num_rx_queues; 4450 } 4451 igb_write_rss_indir_tbl(adapter); 4452 4453 /* Disable raw packet checksumming so that RSS hash is placed in 4454 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 4455 * offloads as they are enabled by default 4456 */ 4457 rxcsum = rd32(E1000_RXCSUM); 4458 rxcsum |= E1000_RXCSUM_PCSD; 4459 4460 if (adapter->hw.mac.type >= e1000_82576) 4461 /* Enable Receive Checksum Offload for SCTP */ 4462 rxcsum |= E1000_RXCSUM_CRCOFL; 4463 4464 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 4465 wr32(E1000_RXCSUM, rxcsum); 4466 4467 /* Generate RSS hash based on packet types, TCP/UDP 4468 * port numbers and/or IPv4/v6 src and dst addresses 4469 */ 4470 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 4471 E1000_MRQC_RSS_FIELD_IPV4_TCP | 4472 E1000_MRQC_RSS_FIELD_IPV6 | 4473 E1000_MRQC_RSS_FIELD_IPV6_TCP | 4474 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 4475 4476 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 4477 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 4478 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 4479 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 4480 4481 /* If VMDq is enabled then we set the appropriate mode for that, else 4482 * we default to RSS so that an RSS hash is calculated per packet even 4483 * if we are only using one queue 4484 */ 4485 if (adapter->vfs_allocated_count) { 4486 if (hw->mac.type > e1000_82575) { 4487 /* Set the default pool for the PF's first queue */ 4488 u32 vtctl = rd32(E1000_VT_CTL); 4489 4490 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 4491 E1000_VT_CTL_DISABLE_DEF_POOL); 4492 vtctl |= adapter->vfs_allocated_count << 4493 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 4494 wr32(E1000_VT_CTL, vtctl); 4495 } 4496 if (adapter->rss_queues > 1) 4497 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ; 4498 else 4499 mrqc |= E1000_MRQC_ENABLE_VMDQ; 4500 } else { 4501 mrqc |= E1000_MRQC_ENABLE_RSS_MQ; 4502 } 4503 igb_vmm_control(adapter); 4504 4505 wr32(E1000_MRQC, mrqc); 4506 } 4507 4508 /** 4509 * igb_setup_rctl - configure the receive control registers 4510 * @adapter: Board private structure 4511 **/ 4512 void igb_setup_rctl(struct igb_adapter *adapter) 4513 { 4514 struct e1000_hw *hw = &adapter->hw; 4515 u32 rctl; 4516 4517 rctl = rd32(E1000_RCTL); 4518 4519 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 4520 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 4521 4522 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 4523 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 4524 4525 /* enable stripping of CRC. It's unlikely this will break BMC 4526 * redirection as it did with e1000. Newer features require 4527 * that the HW strips the CRC. 4528 */ 4529 rctl |= E1000_RCTL_SECRC; 4530 4531 /* disable store bad packets and clear size bits. */ 4532 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 4533 4534 /* enable LPE to allow for reception of jumbo frames */ 4535 rctl |= E1000_RCTL_LPE; 4536 4537 /* disable queue 0 to prevent tail write w/o re-config */ 4538 wr32(E1000_RXDCTL(0), 0); 4539 4540 /* Attention!!! For SR-IOV PF driver operations you must enable 4541 * queue drop for all VF and PF queues to prevent head of line blocking 4542 * if an un-trusted VF does not provide descriptors to hardware. 4543 */ 4544 if (adapter->vfs_allocated_count) { 4545 /* set all queue drop enable bits */ 4546 wr32(E1000_QDE, ALL_QUEUES); 4547 } 4548 4549 /* This is useful for sniffing bad packets. */ 4550 if (adapter->netdev->features & NETIF_F_RXALL) { 4551 /* UPE and MPE will be handled by normal PROMISC logic 4552 * in e1000e_set_rx_mode 4553 */ 4554 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 4555 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 4556 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 4557 4558 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */ 4559 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 4560 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 4561 * and that breaks VLANs. 4562 */ 4563 } 4564 4565 wr32(E1000_RCTL, rctl); 4566 } 4567 4568 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 4569 int vfn) 4570 { 4571 struct e1000_hw *hw = &adapter->hw; 4572 u32 vmolr; 4573 4574 if (size > MAX_JUMBO_FRAME_SIZE) 4575 size = MAX_JUMBO_FRAME_SIZE; 4576 4577 vmolr = rd32(E1000_VMOLR(vfn)); 4578 vmolr &= ~E1000_VMOLR_RLPML_MASK; 4579 vmolr |= size | E1000_VMOLR_LPE; 4580 wr32(E1000_VMOLR(vfn), vmolr); 4581 4582 return 0; 4583 } 4584 4585 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter, 4586 int vfn, bool enable) 4587 { 4588 struct e1000_hw *hw = &adapter->hw; 4589 u32 val, reg; 4590 4591 if (hw->mac.type < e1000_82576) 4592 return; 4593 4594 if (hw->mac.type == e1000_i350) 4595 reg = E1000_DVMOLR(vfn); 4596 else 4597 reg = E1000_VMOLR(vfn); 4598 4599 val = rd32(reg); 4600 if (enable) 4601 val |= E1000_VMOLR_STRVLAN; 4602 else 4603 val &= ~(E1000_VMOLR_STRVLAN); 4604 wr32(reg, val); 4605 } 4606 4607 static inline void igb_set_vmolr(struct igb_adapter *adapter, 4608 int vfn, bool aupe) 4609 { 4610 struct e1000_hw *hw = &adapter->hw; 4611 u32 vmolr; 4612 4613 /* This register exists only on 82576 and newer so if we are older then 4614 * we should exit and do nothing 4615 */ 4616 if (hw->mac.type < e1000_82576) 4617 return; 4618 4619 vmolr = rd32(E1000_VMOLR(vfn)); 4620 if (aupe) 4621 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 4622 else 4623 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 4624 4625 /* clear all bits that might not be set */ 4626 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 4627 4628 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 4629 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 4630 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 4631 * multicast packets 4632 */ 4633 if (vfn <= adapter->vfs_allocated_count) 4634 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 4635 4636 wr32(E1000_VMOLR(vfn), vmolr); 4637 } 4638 4639 /** 4640 * igb_setup_srrctl - configure the split and replication receive control 4641 * registers 4642 * @adapter: Board private structure 4643 * @ring: receive ring to be configured 4644 **/ 4645 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring) 4646 { 4647 struct e1000_hw *hw = &adapter->hw; 4648 int reg_idx = ring->reg_idx; 4649 u32 srrctl = 0; 4650 4651 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 4652 if (ring_uses_large_buffer(ring)) 4653 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4654 else 4655 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4656 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 4657 if (hw->mac.type >= e1000_82580) 4658 srrctl |= E1000_SRRCTL_TIMESTAMP; 4659 /* Only set Drop Enable if VFs allocated, or we are supporting multiple 4660 * queues and rx flow control is disabled 4661 */ 4662 if (adapter->vfs_allocated_count || 4663 (!(hw->fc.current_mode & e1000_fc_rx_pause) && 4664 adapter->num_rx_queues > 1)) 4665 srrctl |= E1000_SRRCTL_DROP_EN; 4666 4667 wr32(E1000_SRRCTL(reg_idx), srrctl); 4668 } 4669 4670 /** 4671 * igb_configure_rx_ring - Configure a receive ring after Reset 4672 * @adapter: board private structure 4673 * @ring: receive ring to be configured 4674 * 4675 * Configure the Rx unit of the MAC after a reset. 4676 **/ 4677 void igb_configure_rx_ring(struct igb_adapter *adapter, 4678 struct igb_ring *ring) 4679 { 4680 struct e1000_hw *hw = &adapter->hw; 4681 union e1000_adv_rx_desc *rx_desc; 4682 u64 rdba = ring->dma; 4683 int reg_idx = ring->reg_idx; 4684 u32 rxdctl = 0; 4685 4686 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 4687 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 4688 MEM_TYPE_PAGE_SHARED, NULL)); 4689 4690 /* disable the queue */ 4691 wr32(E1000_RXDCTL(reg_idx), 0); 4692 4693 /* Set DMA base address registers */ 4694 wr32(E1000_RDBAL(reg_idx), 4695 rdba & 0x00000000ffffffffULL); 4696 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 4697 wr32(E1000_RDLEN(reg_idx), 4698 ring->count * sizeof(union e1000_adv_rx_desc)); 4699 4700 /* initialize head and tail */ 4701 ring->tail = adapter->io_addr + E1000_RDT(reg_idx); 4702 wr32(E1000_RDH(reg_idx), 0); 4703 writel(0, ring->tail); 4704 4705 /* set descriptor configuration */ 4706 igb_setup_srrctl(adapter, ring); 4707 4708 /* set filtering for VMDQ pools */ 4709 igb_set_vmolr(adapter, reg_idx & 0x7, true); 4710 4711 rxdctl |= IGB_RX_PTHRESH; 4712 rxdctl |= IGB_RX_HTHRESH << 8; 4713 rxdctl |= IGB_RX_WTHRESH << 16; 4714 4715 /* initialize rx_buffer_info */ 4716 memset(ring->rx_buffer_info, 0, 4717 sizeof(struct igb_rx_buffer) * ring->count); 4718 4719 /* initialize Rx descriptor 0 */ 4720 rx_desc = IGB_RX_DESC(ring, 0); 4721 rx_desc->wb.upper.length = 0; 4722 4723 /* enable receive descriptor fetching */ 4724 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 4725 wr32(E1000_RXDCTL(reg_idx), rxdctl); 4726 } 4727 4728 static void igb_set_rx_buffer_len(struct igb_adapter *adapter, 4729 struct igb_ring *rx_ring) 4730 { 4731 /* set build_skb and buffer size flags */ 4732 clear_ring_build_skb_enabled(rx_ring); 4733 clear_ring_uses_large_buffer(rx_ring); 4734 4735 if (adapter->flags & IGB_FLAG_RX_LEGACY) 4736 return; 4737 4738 set_ring_build_skb_enabled(rx_ring); 4739 4740 #if (PAGE_SIZE < 8192) 4741 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 4742 return; 4743 4744 set_ring_uses_large_buffer(rx_ring); 4745 #endif 4746 } 4747 4748 /** 4749 * igb_configure_rx - Configure receive Unit after Reset 4750 * @adapter: board private structure 4751 * 4752 * Configure the Rx unit of the MAC after a reset. 4753 **/ 4754 static void igb_configure_rx(struct igb_adapter *adapter) 4755 { 4756 int i; 4757 4758 /* set the correct pool for the PF default MAC address in entry 0 */ 4759 igb_set_default_mac_filter(adapter); 4760 4761 /* Setup the HW Rx Head and Tail Descriptor Pointers and 4762 * the Base and Length of the Rx Descriptor Ring 4763 */ 4764 for (i = 0; i < adapter->num_rx_queues; i++) { 4765 struct igb_ring *rx_ring = adapter->rx_ring[i]; 4766 4767 igb_set_rx_buffer_len(adapter, rx_ring); 4768 igb_configure_rx_ring(adapter, rx_ring); 4769 } 4770 } 4771 4772 /** 4773 * igb_free_tx_resources - Free Tx Resources per Queue 4774 * @tx_ring: Tx descriptor ring for a specific queue 4775 * 4776 * Free all transmit software resources 4777 **/ 4778 void igb_free_tx_resources(struct igb_ring *tx_ring) 4779 { 4780 igb_clean_tx_ring(tx_ring); 4781 4782 vfree(tx_ring->tx_buffer_info); 4783 tx_ring->tx_buffer_info = NULL; 4784 4785 /* if not set, then don't free */ 4786 if (!tx_ring->desc) 4787 return; 4788 4789 dma_free_coherent(tx_ring->dev, tx_ring->size, 4790 tx_ring->desc, tx_ring->dma); 4791 4792 tx_ring->desc = NULL; 4793 } 4794 4795 /** 4796 * igb_free_all_tx_resources - Free Tx Resources for All Queues 4797 * @adapter: board private structure 4798 * 4799 * Free all transmit software resources 4800 **/ 4801 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 4802 { 4803 int i; 4804 4805 for (i = 0; i < adapter->num_tx_queues; i++) 4806 if (adapter->tx_ring[i]) 4807 igb_free_tx_resources(adapter->tx_ring[i]); 4808 } 4809 4810 /** 4811 * igb_clean_tx_ring - Free Tx Buffers 4812 * @tx_ring: ring to be cleaned 4813 **/ 4814 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 4815 { 4816 u16 i = tx_ring->next_to_clean; 4817 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 4818 4819 while (i != tx_ring->next_to_use) { 4820 union e1000_adv_tx_desc *eop_desc, *tx_desc; 4821 4822 /* Free all the Tx ring sk_buffs or xdp frames */ 4823 if (tx_buffer->type == IGB_TYPE_SKB) 4824 dev_kfree_skb_any(tx_buffer->skb); 4825 else 4826 xdp_return_frame(tx_buffer->xdpf); 4827 4828 /* unmap skb header data */ 4829 dma_unmap_single(tx_ring->dev, 4830 dma_unmap_addr(tx_buffer, dma), 4831 dma_unmap_len(tx_buffer, len), 4832 DMA_TO_DEVICE); 4833 4834 /* check for eop_desc to determine the end of the packet */ 4835 eop_desc = tx_buffer->next_to_watch; 4836 tx_desc = IGB_TX_DESC(tx_ring, i); 4837 4838 /* unmap remaining buffers */ 4839 while (tx_desc != eop_desc) { 4840 tx_buffer++; 4841 tx_desc++; 4842 i++; 4843 if (unlikely(i == tx_ring->count)) { 4844 i = 0; 4845 tx_buffer = tx_ring->tx_buffer_info; 4846 tx_desc = IGB_TX_DESC(tx_ring, 0); 4847 } 4848 4849 /* unmap any remaining paged data */ 4850 if (dma_unmap_len(tx_buffer, len)) 4851 dma_unmap_page(tx_ring->dev, 4852 dma_unmap_addr(tx_buffer, dma), 4853 dma_unmap_len(tx_buffer, len), 4854 DMA_TO_DEVICE); 4855 } 4856 4857 tx_buffer->next_to_watch = NULL; 4858 4859 /* move us one more past the eop_desc for start of next pkt */ 4860 tx_buffer++; 4861 i++; 4862 if (unlikely(i == tx_ring->count)) { 4863 i = 0; 4864 tx_buffer = tx_ring->tx_buffer_info; 4865 } 4866 } 4867 4868 /* reset BQL for queue */ 4869 netdev_tx_reset_queue(txring_txq(tx_ring)); 4870 4871 /* reset next_to_use and next_to_clean */ 4872 tx_ring->next_to_use = 0; 4873 tx_ring->next_to_clean = 0; 4874 } 4875 4876 /** 4877 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 4878 * @adapter: board private structure 4879 **/ 4880 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 4881 { 4882 int i; 4883 4884 for (i = 0; i < adapter->num_tx_queues; i++) 4885 if (adapter->tx_ring[i]) 4886 igb_clean_tx_ring(adapter->tx_ring[i]); 4887 } 4888 4889 /** 4890 * igb_free_rx_resources - Free Rx Resources 4891 * @rx_ring: ring to clean the resources from 4892 * 4893 * Free all receive software resources 4894 **/ 4895 void igb_free_rx_resources(struct igb_ring *rx_ring) 4896 { 4897 igb_clean_rx_ring(rx_ring); 4898 4899 rx_ring->xdp_prog = NULL; 4900 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4901 vfree(rx_ring->rx_buffer_info); 4902 rx_ring->rx_buffer_info = NULL; 4903 4904 /* if not set, then don't free */ 4905 if (!rx_ring->desc) 4906 return; 4907 4908 dma_free_coherent(rx_ring->dev, rx_ring->size, 4909 rx_ring->desc, rx_ring->dma); 4910 4911 rx_ring->desc = NULL; 4912 } 4913 4914 /** 4915 * igb_free_all_rx_resources - Free Rx Resources for All Queues 4916 * @adapter: board private structure 4917 * 4918 * Free all receive software resources 4919 **/ 4920 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 4921 { 4922 int i; 4923 4924 for (i = 0; i < adapter->num_rx_queues; i++) 4925 if (adapter->rx_ring[i]) 4926 igb_free_rx_resources(adapter->rx_ring[i]); 4927 } 4928 4929 /** 4930 * igb_clean_rx_ring - Free Rx Buffers per Queue 4931 * @rx_ring: ring to free buffers from 4932 **/ 4933 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 4934 { 4935 u16 i = rx_ring->next_to_clean; 4936 4937 dev_kfree_skb(rx_ring->skb); 4938 rx_ring->skb = NULL; 4939 4940 /* Free all the Rx ring sk_buffs */ 4941 while (i != rx_ring->next_to_alloc) { 4942 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 4943 4944 /* Invalidate cache lines that may have been written to by 4945 * device so that we avoid corrupting memory. 4946 */ 4947 dma_sync_single_range_for_cpu(rx_ring->dev, 4948 buffer_info->dma, 4949 buffer_info->page_offset, 4950 igb_rx_bufsz(rx_ring), 4951 DMA_FROM_DEVICE); 4952 4953 /* free resources associated with mapping */ 4954 dma_unmap_page_attrs(rx_ring->dev, 4955 buffer_info->dma, 4956 igb_rx_pg_size(rx_ring), 4957 DMA_FROM_DEVICE, 4958 IGB_RX_DMA_ATTR); 4959 __page_frag_cache_drain(buffer_info->page, 4960 buffer_info->pagecnt_bias); 4961 4962 i++; 4963 if (i == rx_ring->count) 4964 i = 0; 4965 } 4966 4967 rx_ring->next_to_alloc = 0; 4968 rx_ring->next_to_clean = 0; 4969 rx_ring->next_to_use = 0; 4970 } 4971 4972 /** 4973 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 4974 * @adapter: board private structure 4975 **/ 4976 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 4977 { 4978 int i; 4979 4980 for (i = 0; i < adapter->num_rx_queues; i++) 4981 if (adapter->rx_ring[i]) 4982 igb_clean_rx_ring(adapter->rx_ring[i]); 4983 } 4984 4985 /** 4986 * igb_set_mac - Change the Ethernet Address of the NIC 4987 * @netdev: network interface device structure 4988 * @p: pointer to an address structure 4989 * 4990 * Returns 0 on success, negative on failure 4991 **/ 4992 static int igb_set_mac(struct net_device *netdev, void *p) 4993 { 4994 struct igb_adapter *adapter = netdev_priv(netdev); 4995 struct e1000_hw *hw = &adapter->hw; 4996 struct sockaddr *addr = p; 4997 4998 if (!is_valid_ether_addr(addr->sa_data)) 4999 return -EADDRNOTAVAIL; 5000 5001 eth_hw_addr_set(netdev, addr->sa_data); 5002 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 5003 5004 /* set the correct pool for the new PF MAC address in entry 0 */ 5005 igb_set_default_mac_filter(adapter); 5006 5007 return 0; 5008 } 5009 5010 /** 5011 * igb_write_mc_addr_list - write multicast addresses to MTA 5012 * @netdev: network interface device structure 5013 * 5014 * Writes multicast address list to the MTA hash table. 5015 * Returns: -ENOMEM on failure 5016 * 0 on no addresses written 5017 * X on writing X addresses to MTA 5018 **/ 5019 static int igb_write_mc_addr_list(struct net_device *netdev) 5020 { 5021 struct igb_adapter *adapter = netdev_priv(netdev); 5022 struct e1000_hw *hw = &adapter->hw; 5023 struct netdev_hw_addr *ha; 5024 u8 *mta_list; 5025 int i; 5026 5027 if (netdev_mc_empty(netdev)) { 5028 /* nothing to program, so clear mc list */ 5029 igb_update_mc_addr_list(hw, NULL, 0); 5030 igb_restore_vf_multicasts(adapter); 5031 return 0; 5032 } 5033 5034 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 5035 if (!mta_list) 5036 return -ENOMEM; 5037 5038 /* The shared function expects a packed array of only addresses. */ 5039 i = 0; 5040 netdev_for_each_mc_addr(ha, netdev) 5041 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 5042 5043 igb_update_mc_addr_list(hw, mta_list, i); 5044 kfree(mta_list); 5045 5046 return netdev_mc_count(netdev); 5047 } 5048 5049 static int igb_vlan_promisc_enable(struct igb_adapter *adapter) 5050 { 5051 struct e1000_hw *hw = &adapter->hw; 5052 u32 i, pf_id; 5053 5054 switch (hw->mac.type) { 5055 case e1000_i210: 5056 case e1000_i211: 5057 case e1000_i350: 5058 /* VLAN filtering needed for VLAN prio filter */ 5059 if (adapter->netdev->features & NETIF_F_NTUPLE) 5060 break; 5061 fallthrough; 5062 case e1000_82576: 5063 case e1000_82580: 5064 case e1000_i354: 5065 /* VLAN filtering needed for pool filtering */ 5066 if (adapter->vfs_allocated_count) 5067 break; 5068 fallthrough; 5069 default: 5070 return 1; 5071 } 5072 5073 /* We are already in VLAN promisc, nothing to do */ 5074 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 5075 return 0; 5076 5077 if (!adapter->vfs_allocated_count) 5078 goto set_vfta; 5079 5080 /* Add PF to all active pools */ 5081 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5082 5083 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5084 u32 vlvf = rd32(E1000_VLVF(i)); 5085 5086 vlvf |= BIT(pf_id); 5087 wr32(E1000_VLVF(i), vlvf); 5088 } 5089 5090 set_vfta: 5091 /* Set all bits in the VLAN filter table array */ 5092 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;) 5093 hw->mac.ops.write_vfta(hw, i, ~0U); 5094 5095 /* Set flag so we don't redo unnecessary work */ 5096 adapter->flags |= IGB_FLAG_VLAN_PROMISC; 5097 5098 return 0; 5099 } 5100 5101 #define VFTA_BLOCK_SIZE 8 5102 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset) 5103 { 5104 struct e1000_hw *hw = &adapter->hw; 5105 u32 vfta[VFTA_BLOCK_SIZE] = { 0 }; 5106 u32 vid_start = vfta_offset * 32; 5107 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32); 5108 u32 i, vid, word, bits, pf_id; 5109 5110 /* guarantee that we don't scrub out management VLAN */ 5111 vid = adapter->mng_vlan_id; 5112 if (vid >= vid_start && vid < vid_end) 5113 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5114 5115 if (!adapter->vfs_allocated_count) 5116 goto set_vfta; 5117 5118 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5119 5120 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5121 u32 vlvf = rd32(E1000_VLVF(i)); 5122 5123 /* pull VLAN ID from VLVF */ 5124 vid = vlvf & VLAN_VID_MASK; 5125 5126 /* only concern ourselves with a certain range */ 5127 if (vid < vid_start || vid >= vid_end) 5128 continue; 5129 5130 if (vlvf & E1000_VLVF_VLANID_ENABLE) { 5131 /* record VLAN ID in VFTA */ 5132 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5133 5134 /* if PF is part of this then continue */ 5135 if (test_bit(vid, adapter->active_vlans)) 5136 continue; 5137 } 5138 5139 /* remove PF from the pool */ 5140 bits = ~BIT(pf_id); 5141 bits &= rd32(E1000_VLVF(i)); 5142 wr32(E1000_VLVF(i), bits); 5143 } 5144 5145 set_vfta: 5146 /* extract values from active_vlans and write back to VFTA */ 5147 for (i = VFTA_BLOCK_SIZE; i--;) { 5148 vid = (vfta_offset + i) * 32; 5149 word = vid / BITS_PER_LONG; 5150 bits = vid % BITS_PER_LONG; 5151 5152 vfta[i] |= adapter->active_vlans[word] >> bits; 5153 5154 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]); 5155 } 5156 } 5157 5158 static void igb_vlan_promisc_disable(struct igb_adapter *adapter) 5159 { 5160 u32 i; 5161 5162 /* We are not in VLAN promisc, nothing to do */ 5163 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 5164 return; 5165 5166 /* Set flag so we don't redo unnecessary work */ 5167 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 5168 5169 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE) 5170 igb_scrub_vfta(adapter, i); 5171 } 5172 5173 /** 5174 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 5175 * @netdev: network interface device structure 5176 * 5177 * The set_rx_mode entry point is called whenever the unicast or multicast 5178 * address lists or the network interface flags are updated. This routine is 5179 * responsible for configuring the hardware for proper unicast, multicast, 5180 * promiscuous mode, and all-multi behavior. 5181 **/ 5182 static void igb_set_rx_mode(struct net_device *netdev) 5183 { 5184 struct igb_adapter *adapter = netdev_priv(netdev); 5185 struct e1000_hw *hw = &adapter->hw; 5186 unsigned int vfn = adapter->vfs_allocated_count; 5187 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 5188 int count; 5189 5190 /* Check for Promiscuous and All Multicast modes */ 5191 if (netdev->flags & IFF_PROMISC) { 5192 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE; 5193 vmolr |= E1000_VMOLR_MPME; 5194 5195 /* enable use of UTA filter to force packets to default pool */ 5196 if (hw->mac.type == e1000_82576) 5197 vmolr |= E1000_VMOLR_ROPE; 5198 } else { 5199 if (netdev->flags & IFF_ALLMULTI) { 5200 rctl |= E1000_RCTL_MPE; 5201 vmolr |= E1000_VMOLR_MPME; 5202 } else { 5203 /* Write addresses to the MTA, if the attempt fails 5204 * then we should just turn on promiscuous mode so 5205 * that we can at least receive multicast traffic 5206 */ 5207 count = igb_write_mc_addr_list(netdev); 5208 if (count < 0) { 5209 rctl |= E1000_RCTL_MPE; 5210 vmolr |= E1000_VMOLR_MPME; 5211 } else if (count) { 5212 vmolr |= E1000_VMOLR_ROMPE; 5213 } 5214 } 5215 } 5216 5217 /* Write addresses to available RAR registers, if there is not 5218 * sufficient space to store all the addresses then enable 5219 * unicast promiscuous mode 5220 */ 5221 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) { 5222 rctl |= E1000_RCTL_UPE; 5223 vmolr |= E1000_VMOLR_ROPE; 5224 } 5225 5226 /* enable VLAN filtering by default */ 5227 rctl |= E1000_RCTL_VFE; 5228 5229 /* disable VLAN filtering for modes that require it */ 5230 if ((netdev->flags & IFF_PROMISC) || 5231 (netdev->features & NETIF_F_RXALL)) { 5232 /* if we fail to set all rules then just clear VFE */ 5233 if (igb_vlan_promisc_enable(adapter)) 5234 rctl &= ~E1000_RCTL_VFE; 5235 } else { 5236 igb_vlan_promisc_disable(adapter); 5237 } 5238 5239 /* update state of unicast, multicast, and VLAN filtering modes */ 5240 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE | 5241 E1000_RCTL_VFE); 5242 wr32(E1000_RCTL, rctl); 5243 5244 #if (PAGE_SIZE < 8192) 5245 if (!adapter->vfs_allocated_count) { 5246 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5247 rlpml = IGB_MAX_FRAME_BUILD_SKB; 5248 } 5249 #endif 5250 wr32(E1000_RLPML, rlpml); 5251 5252 /* In order to support SR-IOV and eventually VMDq it is necessary to set 5253 * the VMOLR to enable the appropriate modes. Without this workaround 5254 * we will have issues with VLAN tag stripping not being done for frames 5255 * that are only arriving because we are the default pool 5256 */ 5257 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 5258 return; 5259 5260 /* set UTA to appropriate mode */ 5261 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE)); 5262 5263 vmolr |= rd32(E1000_VMOLR(vfn)) & 5264 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 5265 5266 /* enable Rx jumbo frames, restrict as needed to support build_skb */ 5267 vmolr &= ~E1000_VMOLR_RLPML_MASK; 5268 #if (PAGE_SIZE < 8192) 5269 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5270 vmolr |= IGB_MAX_FRAME_BUILD_SKB; 5271 else 5272 #endif 5273 vmolr |= MAX_JUMBO_FRAME_SIZE; 5274 vmolr |= E1000_VMOLR_LPE; 5275 5276 wr32(E1000_VMOLR(vfn), vmolr); 5277 5278 igb_restore_vf_multicasts(adapter); 5279 } 5280 5281 static void igb_check_wvbr(struct igb_adapter *adapter) 5282 { 5283 struct e1000_hw *hw = &adapter->hw; 5284 u32 wvbr = 0; 5285 5286 switch (hw->mac.type) { 5287 case e1000_82576: 5288 case e1000_i350: 5289 wvbr = rd32(E1000_WVBR); 5290 if (!wvbr) 5291 return; 5292 break; 5293 default: 5294 break; 5295 } 5296 5297 adapter->wvbr |= wvbr; 5298 } 5299 5300 #define IGB_STAGGERED_QUEUE_OFFSET 8 5301 5302 static void igb_spoof_check(struct igb_adapter *adapter) 5303 { 5304 int j; 5305 5306 if (!adapter->wvbr) 5307 return; 5308 5309 for (j = 0; j < adapter->vfs_allocated_count; j++) { 5310 if (adapter->wvbr & BIT(j) || 5311 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) { 5312 dev_warn(&adapter->pdev->dev, 5313 "Spoof event(s) detected on VF %d\n", j); 5314 adapter->wvbr &= 5315 ~(BIT(j) | 5316 BIT(j + IGB_STAGGERED_QUEUE_OFFSET)); 5317 } 5318 } 5319 } 5320 5321 /* Need to wait a few seconds after link up to get diagnostic information from 5322 * the phy 5323 */ 5324 static void igb_update_phy_info(struct timer_list *t) 5325 { 5326 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5327 igb_get_phy_info(&adapter->hw); 5328 } 5329 5330 /** 5331 * igb_has_link - check shared code for link and determine up/down 5332 * @adapter: pointer to driver private info 5333 **/ 5334 bool igb_has_link(struct igb_adapter *adapter) 5335 { 5336 struct e1000_hw *hw = &adapter->hw; 5337 bool link_active = false; 5338 5339 /* get_link_status is set on LSC (link status) interrupt or 5340 * rx sequence error interrupt. get_link_status will stay 5341 * false until the e1000_check_for_link establishes link 5342 * for copper adapters ONLY 5343 */ 5344 switch (hw->phy.media_type) { 5345 case e1000_media_type_copper: 5346 if (!hw->mac.get_link_status) 5347 return true; 5348 fallthrough; 5349 case e1000_media_type_internal_serdes: 5350 hw->mac.ops.check_for_link(hw); 5351 link_active = !hw->mac.get_link_status; 5352 break; 5353 default: 5354 case e1000_media_type_unknown: 5355 break; 5356 } 5357 5358 if (((hw->mac.type == e1000_i210) || 5359 (hw->mac.type == e1000_i211)) && 5360 (hw->phy.id == I210_I_PHY_ID)) { 5361 if (!netif_carrier_ok(adapter->netdev)) { 5362 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5363 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 5364 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 5365 adapter->link_check_timeout = jiffies; 5366 } 5367 } 5368 5369 return link_active; 5370 } 5371 5372 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 5373 { 5374 bool ret = false; 5375 u32 ctrl_ext, thstat; 5376 5377 /* check for thermal sensor event on i350 copper only */ 5378 if (hw->mac.type == e1000_i350) { 5379 thstat = rd32(E1000_THSTAT); 5380 ctrl_ext = rd32(E1000_CTRL_EXT); 5381 5382 if ((hw->phy.media_type == e1000_media_type_copper) && 5383 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 5384 ret = !!(thstat & event); 5385 } 5386 5387 return ret; 5388 } 5389 5390 /** 5391 * igb_check_lvmmc - check for malformed packets received 5392 * and indicated in LVMMC register 5393 * @adapter: pointer to adapter 5394 **/ 5395 static void igb_check_lvmmc(struct igb_adapter *adapter) 5396 { 5397 struct e1000_hw *hw = &adapter->hw; 5398 u32 lvmmc; 5399 5400 lvmmc = rd32(E1000_LVMMC); 5401 if (lvmmc) { 5402 if (unlikely(net_ratelimit())) { 5403 netdev_warn(adapter->netdev, 5404 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", 5405 lvmmc); 5406 } 5407 } 5408 } 5409 5410 /** 5411 * igb_watchdog - Timer Call-back 5412 * @t: pointer to timer_list containing our private info pointer 5413 **/ 5414 static void igb_watchdog(struct timer_list *t) 5415 { 5416 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5417 /* Do the rest outside of interrupt context */ 5418 schedule_work(&adapter->watchdog_task); 5419 } 5420 5421 static void igb_watchdog_task(struct work_struct *work) 5422 { 5423 struct igb_adapter *adapter = container_of(work, 5424 struct igb_adapter, 5425 watchdog_task); 5426 struct e1000_hw *hw = &adapter->hw; 5427 struct e1000_phy_info *phy = &hw->phy; 5428 struct net_device *netdev = adapter->netdev; 5429 u32 link; 5430 int i; 5431 u32 connsw; 5432 u16 phy_data, retry_count = 20; 5433 5434 link = igb_has_link(adapter); 5435 5436 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 5437 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5438 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5439 else 5440 link = false; 5441 } 5442 5443 /* Force link down if we have fiber to swap to */ 5444 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5445 if (hw->phy.media_type == e1000_media_type_copper) { 5446 connsw = rd32(E1000_CONNSW); 5447 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 5448 link = 0; 5449 } 5450 } 5451 if (link) { 5452 /* Perform a reset if the media type changed. */ 5453 if (hw->dev_spec._82575.media_changed) { 5454 hw->dev_spec._82575.media_changed = false; 5455 adapter->flags |= IGB_FLAG_MEDIA_RESET; 5456 igb_reset(adapter); 5457 } 5458 /* Cancel scheduled suspend requests. */ 5459 pm_runtime_resume(netdev->dev.parent); 5460 5461 if (!netif_carrier_ok(netdev)) { 5462 u32 ctrl; 5463 5464 hw->mac.ops.get_speed_and_duplex(hw, 5465 &adapter->link_speed, 5466 &adapter->link_duplex); 5467 5468 ctrl = rd32(E1000_CTRL); 5469 /* Links status message must follow this format */ 5470 netdev_info(netdev, 5471 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5472 netdev->name, 5473 adapter->link_speed, 5474 adapter->link_duplex == FULL_DUPLEX ? 5475 "Full" : "Half", 5476 (ctrl & E1000_CTRL_TFCE) && 5477 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 5478 (ctrl & E1000_CTRL_RFCE) ? "RX" : 5479 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 5480 5481 /* disable EEE if enabled */ 5482 if ((adapter->flags & IGB_FLAG_EEE) && 5483 (adapter->link_duplex == HALF_DUPLEX)) { 5484 dev_info(&adapter->pdev->dev, 5485 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 5486 adapter->hw.dev_spec._82575.eee_disable = true; 5487 adapter->flags &= ~IGB_FLAG_EEE; 5488 } 5489 5490 /* check if SmartSpeed worked */ 5491 igb_check_downshift(hw); 5492 if (phy->speed_downgraded) 5493 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5494 5495 /* check for thermal sensor event */ 5496 if (igb_thermal_sensor_event(hw, 5497 E1000_THSTAT_LINK_THROTTLE)) 5498 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 5499 5500 /* adjust timeout factor according to speed/duplex */ 5501 adapter->tx_timeout_factor = 1; 5502 switch (adapter->link_speed) { 5503 case SPEED_10: 5504 adapter->tx_timeout_factor = 14; 5505 break; 5506 case SPEED_100: 5507 /* maybe add some timeout factor ? */ 5508 break; 5509 } 5510 5511 if (adapter->link_speed != SPEED_1000 || 5512 !hw->phy.ops.read_reg) 5513 goto no_wait; 5514 5515 /* wait for Remote receiver status OK */ 5516 retry_read_status: 5517 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS, 5518 &phy_data)) { 5519 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5520 retry_count) { 5521 msleep(100); 5522 retry_count--; 5523 goto retry_read_status; 5524 } else if (!retry_count) { 5525 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 5526 } 5527 } else { 5528 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 5529 } 5530 no_wait: 5531 netif_carrier_on(netdev); 5532 5533 igb_ping_all_vfs(adapter); 5534 igb_check_vf_rate_limit(adapter); 5535 5536 /* link state has changed, schedule phy info update */ 5537 if (!test_bit(__IGB_DOWN, &adapter->state)) 5538 mod_timer(&adapter->phy_info_timer, 5539 round_jiffies(jiffies + 2 * HZ)); 5540 } 5541 } else { 5542 if (netif_carrier_ok(netdev)) { 5543 adapter->link_speed = 0; 5544 adapter->link_duplex = 0; 5545 5546 /* check for thermal sensor event */ 5547 if (igb_thermal_sensor_event(hw, 5548 E1000_THSTAT_PWR_DOWN)) { 5549 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 5550 } 5551 5552 /* Links status message must follow this format */ 5553 netdev_info(netdev, "igb: %s NIC Link is Down\n", 5554 netdev->name); 5555 netif_carrier_off(netdev); 5556 5557 igb_ping_all_vfs(adapter); 5558 5559 /* link state has changed, schedule phy info update */ 5560 if (!test_bit(__IGB_DOWN, &adapter->state)) 5561 mod_timer(&adapter->phy_info_timer, 5562 round_jiffies(jiffies + 2 * HZ)); 5563 5564 /* link is down, time to check for alternate media */ 5565 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5566 igb_check_swap_media(adapter); 5567 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5568 schedule_work(&adapter->reset_task); 5569 /* return immediately */ 5570 return; 5571 } 5572 } 5573 pm_schedule_suspend(netdev->dev.parent, 5574 MSEC_PER_SEC * 5); 5575 5576 /* also check for alternate media here */ 5577 } else if (!netif_carrier_ok(netdev) && 5578 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 5579 igb_check_swap_media(adapter); 5580 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5581 schedule_work(&adapter->reset_task); 5582 /* return immediately */ 5583 return; 5584 } 5585 } 5586 } 5587 5588 spin_lock(&adapter->stats64_lock); 5589 igb_update_stats(adapter); 5590 spin_unlock(&adapter->stats64_lock); 5591 5592 for (i = 0; i < adapter->num_tx_queues; i++) { 5593 struct igb_ring *tx_ring = adapter->tx_ring[i]; 5594 if (!netif_carrier_ok(netdev)) { 5595 /* We've lost link, so the controller stops DMA, 5596 * but we've got queued Tx work that's never going 5597 * to get done, so reset controller to flush Tx. 5598 * (Do the reset outside of interrupt context). 5599 */ 5600 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 5601 adapter->tx_timeout_count++; 5602 schedule_work(&adapter->reset_task); 5603 /* return immediately since reset is imminent */ 5604 return; 5605 } 5606 } 5607 5608 /* Force detection of hung controller every watchdog period */ 5609 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5610 } 5611 5612 /* Cause software interrupt to ensure Rx ring is cleaned */ 5613 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 5614 u32 eics = 0; 5615 5616 for (i = 0; i < adapter->num_q_vectors; i++) 5617 eics |= adapter->q_vector[i]->eims_value; 5618 wr32(E1000_EICS, eics); 5619 } else { 5620 wr32(E1000_ICS, E1000_ICS_RXDMT0); 5621 } 5622 5623 igb_spoof_check(adapter); 5624 igb_ptp_rx_hang(adapter); 5625 igb_ptp_tx_hang(adapter); 5626 5627 /* Check LVMMC register on i350/i354 only */ 5628 if ((adapter->hw.mac.type == e1000_i350) || 5629 (adapter->hw.mac.type == e1000_i354)) 5630 igb_check_lvmmc(adapter); 5631 5632 /* Reset the timer */ 5633 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5634 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 5635 mod_timer(&adapter->watchdog_timer, 5636 round_jiffies(jiffies + HZ)); 5637 else 5638 mod_timer(&adapter->watchdog_timer, 5639 round_jiffies(jiffies + 2 * HZ)); 5640 } 5641 } 5642 5643 enum latency_range { 5644 lowest_latency = 0, 5645 low_latency = 1, 5646 bulk_latency = 2, 5647 latency_invalid = 255 5648 }; 5649 5650 /** 5651 * igb_update_ring_itr - update the dynamic ITR value based on packet size 5652 * @q_vector: pointer to q_vector 5653 * 5654 * Stores a new ITR value based on strictly on packet size. This 5655 * algorithm is less sophisticated than that used in igb_update_itr, 5656 * due to the difficulty of synchronizing statistics across multiple 5657 * receive rings. The divisors and thresholds used by this function 5658 * were determined based on theoretical maximum wire speed and testing 5659 * data, in order to minimize response time while increasing bulk 5660 * throughput. 5661 * This functionality is controlled by ethtool's coalescing settings. 5662 * NOTE: This function is called only when operating in a multiqueue 5663 * receive environment. 5664 **/ 5665 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 5666 { 5667 int new_val = q_vector->itr_val; 5668 int avg_wire_size = 0; 5669 struct igb_adapter *adapter = q_vector->adapter; 5670 unsigned int packets; 5671 5672 /* For non-gigabit speeds, just fix the interrupt rate at 4000 5673 * ints/sec - ITR timer value of 120 ticks. 5674 */ 5675 if (adapter->link_speed != SPEED_1000) { 5676 new_val = IGB_4K_ITR; 5677 goto set_itr_val; 5678 } 5679 5680 packets = q_vector->rx.total_packets; 5681 if (packets) 5682 avg_wire_size = q_vector->rx.total_bytes / packets; 5683 5684 packets = q_vector->tx.total_packets; 5685 if (packets) 5686 avg_wire_size = max_t(u32, avg_wire_size, 5687 q_vector->tx.total_bytes / packets); 5688 5689 /* if avg_wire_size isn't set no work was done */ 5690 if (!avg_wire_size) 5691 goto clear_counts; 5692 5693 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 5694 avg_wire_size += 24; 5695 5696 /* Don't starve jumbo frames */ 5697 avg_wire_size = min(avg_wire_size, 3000); 5698 5699 /* Give a little boost to mid-size frames */ 5700 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 5701 new_val = avg_wire_size / 3; 5702 else 5703 new_val = avg_wire_size / 2; 5704 5705 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5706 if (new_val < IGB_20K_ITR && 5707 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5708 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5709 new_val = IGB_20K_ITR; 5710 5711 set_itr_val: 5712 if (new_val != q_vector->itr_val) { 5713 q_vector->itr_val = new_val; 5714 q_vector->set_itr = 1; 5715 } 5716 clear_counts: 5717 q_vector->rx.total_bytes = 0; 5718 q_vector->rx.total_packets = 0; 5719 q_vector->tx.total_bytes = 0; 5720 q_vector->tx.total_packets = 0; 5721 } 5722 5723 /** 5724 * igb_update_itr - update the dynamic ITR value based on statistics 5725 * @q_vector: pointer to q_vector 5726 * @ring_container: ring info to update the itr for 5727 * 5728 * Stores a new ITR value based on packets and byte 5729 * counts during the last interrupt. The advantage of per interrupt 5730 * computation is faster updates and more accurate ITR for the current 5731 * traffic pattern. Constants in this function were computed 5732 * based on theoretical maximum wire speed and thresholds were set based 5733 * on testing data as well as attempting to minimize response time 5734 * while increasing bulk throughput. 5735 * This functionality is controlled by ethtool's coalescing settings. 5736 * NOTE: These calculations are only valid when operating in a single- 5737 * queue environment. 5738 **/ 5739 static void igb_update_itr(struct igb_q_vector *q_vector, 5740 struct igb_ring_container *ring_container) 5741 { 5742 unsigned int packets = ring_container->total_packets; 5743 unsigned int bytes = ring_container->total_bytes; 5744 u8 itrval = ring_container->itr; 5745 5746 /* no packets, exit with status unchanged */ 5747 if (packets == 0) 5748 return; 5749 5750 switch (itrval) { 5751 case lowest_latency: 5752 /* handle TSO and jumbo frames */ 5753 if (bytes/packets > 8000) 5754 itrval = bulk_latency; 5755 else if ((packets < 5) && (bytes > 512)) 5756 itrval = low_latency; 5757 break; 5758 case low_latency: /* 50 usec aka 20000 ints/s */ 5759 if (bytes > 10000) { 5760 /* this if handles the TSO accounting */ 5761 if (bytes/packets > 8000) 5762 itrval = bulk_latency; 5763 else if ((packets < 10) || ((bytes/packets) > 1200)) 5764 itrval = bulk_latency; 5765 else if ((packets > 35)) 5766 itrval = lowest_latency; 5767 } else if (bytes/packets > 2000) { 5768 itrval = bulk_latency; 5769 } else if (packets <= 2 && bytes < 512) { 5770 itrval = lowest_latency; 5771 } 5772 break; 5773 case bulk_latency: /* 250 usec aka 4000 ints/s */ 5774 if (bytes > 25000) { 5775 if (packets > 35) 5776 itrval = low_latency; 5777 } else if (bytes < 1500) { 5778 itrval = low_latency; 5779 } 5780 break; 5781 } 5782 5783 /* clear work counters since we have the values we need */ 5784 ring_container->total_bytes = 0; 5785 ring_container->total_packets = 0; 5786 5787 /* write updated itr to ring container */ 5788 ring_container->itr = itrval; 5789 } 5790 5791 static void igb_set_itr(struct igb_q_vector *q_vector) 5792 { 5793 struct igb_adapter *adapter = q_vector->adapter; 5794 u32 new_itr = q_vector->itr_val; 5795 u8 current_itr = 0; 5796 5797 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 5798 if (adapter->link_speed != SPEED_1000) { 5799 current_itr = 0; 5800 new_itr = IGB_4K_ITR; 5801 goto set_itr_now; 5802 } 5803 5804 igb_update_itr(q_vector, &q_vector->tx); 5805 igb_update_itr(q_vector, &q_vector->rx); 5806 5807 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 5808 5809 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5810 if (current_itr == lowest_latency && 5811 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5812 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5813 current_itr = low_latency; 5814 5815 switch (current_itr) { 5816 /* counts and packets in update_itr are dependent on these numbers */ 5817 case lowest_latency: 5818 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 5819 break; 5820 case low_latency: 5821 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 5822 break; 5823 case bulk_latency: 5824 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 5825 break; 5826 default: 5827 break; 5828 } 5829 5830 set_itr_now: 5831 if (new_itr != q_vector->itr_val) { 5832 /* this attempts to bias the interrupt rate towards Bulk 5833 * by adding intermediate steps when interrupt rate is 5834 * increasing 5835 */ 5836 new_itr = new_itr > q_vector->itr_val ? 5837 max((new_itr * q_vector->itr_val) / 5838 (new_itr + (q_vector->itr_val >> 2)), 5839 new_itr) : new_itr; 5840 /* Don't write the value here; it resets the adapter's 5841 * internal timer, and causes us to delay far longer than 5842 * we should between interrupts. Instead, we write the ITR 5843 * value at the beginning of the next interrupt so the timing 5844 * ends up being correct. 5845 */ 5846 q_vector->itr_val = new_itr; 5847 q_vector->set_itr = 1; 5848 } 5849 } 5850 5851 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, 5852 struct igb_tx_buffer *first, 5853 u32 vlan_macip_lens, u32 type_tucmd, 5854 u32 mss_l4len_idx) 5855 { 5856 struct e1000_adv_tx_context_desc *context_desc; 5857 u16 i = tx_ring->next_to_use; 5858 struct timespec64 ts; 5859 5860 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 5861 5862 i++; 5863 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 5864 5865 /* set bits to identify this as an advanced context descriptor */ 5866 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 5867 5868 /* For 82575, context index must be unique per ring. */ 5869 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 5870 mss_l4len_idx |= tx_ring->reg_idx << 4; 5871 5872 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 5873 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 5874 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 5875 5876 /* We assume there is always a valid tx time available. Invalid times 5877 * should have been handled by the upper layers. 5878 */ 5879 if (tx_ring->launchtime_enable) { 5880 ts = ktime_to_timespec64(first->skb->tstamp); 5881 skb_txtime_consumed(first->skb); 5882 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32); 5883 } else { 5884 context_desc->seqnum_seed = 0; 5885 } 5886 } 5887 5888 static int igb_tso(struct igb_ring *tx_ring, 5889 struct igb_tx_buffer *first, 5890 u8 *hdr_len) 5891 { 5892 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 5893 struct sk_buff *skb = first->skb; 5894 union { 5895 struct iphdr *v4; 5896 struct ipv6hdr *v6; 5897 unsigned char *hdr; 5898 } ip; 5899 union { 5900 struct tcphdr *tcp; 5901 struct udphdr *udp; 5902 unsigned char *hdr; 5903 } l4; 5904 u32 paylen, l4_offset; 5905 int err; 5906 5907 if (skb->ip_summed != CHECKSUM_PARTIAL) 5908 return 0; 5909 5910 if (!skb_is_gso(skb)) 5911 return 0; 5912 5913 err = skb_cow_head(skb, 0); 5914 if (err < 0) 5915 return err; 5916 5917 ip.hdr = skb_network_header(skb); 5918 l4.hdr = skb_checksum_start(skb); 5919 5920 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 5921 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ? 5922 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP; 5923 5924 /* initialize outer IP header fields */ 5925 if (ip.v4->version == 4) { 5926 unsigned char *csum_start = skb_checksum_start(skb); 5927 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 5928 5929 /* IP header will have to cancel out any data that 5930 * is not a part of the outer IP header 5931 */ 5932 ip.v4->check = csum_fold(csum_partial(trans_start, 5933 csum_start - trans_start, 5934 0)); 5935 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 5936 5937 ip.v4->tot_len = 0; 5938 first->tx_flags |= IGB_TX_FLAGS_TSO | 5939 IGB_TX_FLAGS_CSUM | 5940 IGB_TX_FLAGS_IPV4; 5941 } else { 5942 ip.v6->payload_len = 0; 5943 first->tx_flags |= IGB_TX_FLAGS_TSO | 5944 IGB_TX_FLAGS_CSUM; 5945 } 5946 5947 /* determine offset of inner transport header */ 5948 l4_offset = l4.hdr - skb->data; 5949 5950 /* remove payload length from inner checksum */ 5951 paylen = skb->len - l4_offset; 5952 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) { 5953 /* compute length of segmentation header */ 5954 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 5955 csum_replace_by_diff(&l4.tcp->check, 5956 (__force __wsum)htonl(paylen)); 5957 } else { 5958 /* compute length of segmentation header */ 5959 *hdr_len = sizeof(*l4.udp) + l4_offset; 5960 csum_replace_by_diff(&l4.udp->check, 5961 (__force __wsum)htonl(paylen)); 5962 } 5963 5964 /* update gso size and bytecount with header size */ 5965 first->gso_segs = skb_shinfo(skb)->gso_segs; 5966 first->bytecount += (first->gso_segs - 1) * *hdr_len; 5967 5968 /* MSS L4LEN IDX */ 5969 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 5970 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 5971 5972 /* VLAN MACLEN IPLEN */ 5973 vlan_macip_lens = l4.hdr - ip.hdr; 5974 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 5975 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 5976 5977 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 5978 type_tucmd, mss_l4len_idx); 5979 5980 return 1; 5981 } 5982 5983 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 5984 { 5985 struct sk_buff *skb = first->skb; 5986 u32 vlan_macip_lens = 0; 5987 u32 type_tucmd = 0; 5988 5989 if (skb->ip_summed != CHECKSUM_PARTIAL) { 5990 csum_failed: 5991 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) && 5992 !tx_ring->launchtime_enable) 5993 return; 5994 goto no_csum; 5995 } 5996 5997 switch (skb->csum_offset) { 5998 case offsetof(struct tcphdr, check): 5999 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 6000 fallthrough; 6001 case offsetof(struct udphdr, check): 6002 break; 6003 case offsetof(struct sctphdr, checksum): 6004 /* validate that this is actually an SCTP request */ 6005 if (skb_csum_is_sctp(skb)) { 6006 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 6007 break; 6008 } 6009 fallthrough; 6010 default: 6011 skb_checksum_help(skb); 6012 goto csum_failed; 6013 } 6014 6015 /* update TX checksum flag */ 6016 first->tx_flags |= IGB_TX_FLAGS_CSUM; 6017 vlan_macip_lens = skb_checksum_start_offset(skb) - 6018 skb_network_offset(skb); 6019 no_csum: 6020 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 6021 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 6022 6023 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 6024 } 6025 6026 #define IGB_SET_FLAG(_input, _flag, _result) \ 6027 ((_flag <= _result) ? \ 6028 ((u32)(_input & _flag) * (_result / _flag)) : \ 6029 ((u32)(_input & _flag) / (_flag / _result))) 6030 6031 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 6032 { 6033 /* set type for advanced descriptor with frame checksum insertion */ 6034 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 6035 E1000_ADVTXD_DCMD_DEXT | 6036 E1000_ADVTXD_DCMD_IFCS; 6037 6038 /* set HW vlan bit if vlan is present */ 6039 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 6040 (E1000_ADVTXD_DCMD_VLE)); 6041 6042 /* set segmentation bits for TSO */ 6043 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 6044 (E1000_ADVTXD_DCMD_TSE)); 6045 6046 /* set timestamp bit if present */ 6047 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 6048 (E1000_ADVTXD_MAC_TSTAMP)); 6049 6050 /* insert frame checksum */ 6051 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 6052 6053 return cmd_type; 6054 } 6055 6056 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 6057 union e1000_adv_tx_desc *tx_desc, 6058 u32 tx_flags, unsigned int paylen) 6059 { 6060 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 6061 6062 /* 82575 requires a unique index per ring */ 6063 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6064 olinfo_status |= tx_ring->reg_idx << 4; 6065 6066 /* insert L4 checksum */ 6067 olinfo_status |= IGB_SET_FLAG(tx_flags, 6068 IGB_TX_FLAGS_CSUM, 6069 (E1000_TXD_POPTS_TXSM << 8)); 6070 6071 /* insert IPv4 checksum */ 6072 olinfo_status |= IGB_SET_FLAG(tx_flags, 6073 IGB_TX_FLAGS_IPV4, 6074 (E1000_TXD_POPTS_IXSM << 8)); 6075 6076 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6077 } 6078 6079 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6080 { 6081 struct net_device *netdev = tx_ring->netdev; 6082 6083 netif_stop_subqueue(netdev, tx_ring->queue_index); 6084 6085 /* Herbert's original patch had: 6086 * smp_mb__after_netif_stop_queue(); 6087 * but since that doesn't exist yet, just open code it. 6088 */ 6089 smp_mb(); 6090 6091 /* We need to check again in a case another CPU has just 6092 * made room available. 6093 */ 6094 if (igb_desc_unused(tx_ring) < size) 6095 return -EBUSY; 6096 6097 /* A reprieve! */ 6098 netif_wake_subqueue(netdev, tx_ring->queue_index); 6099 6100 u64_stats_update_begin(&tx_ring->tx_syncp2); 6101 tx_ring->tx_stats.restart_queue2++; 6102 u64_stats_update_end(&tx_ring->tx_syncp2); 6103 6104 return 0; 6105 } 6106 6107 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6108 { 6109 if (igb_desc_unused(tx_ring) >= size) 6110 return 0; 6111 return __igb_maybe_stop_tx(tx_ring, size); 6112 } 6113 6114 static int igb_tx_map(struct igb_ring *tx_ring, 6115 struct igb_tx_buffer *first, 6116 const u8 hdr_len) 6117 { 6118 struct sk_buff *skb = first->skb; 6119 struct igb_tx_buffer *tx_buffer; 6120 union e1000_adv_tx_desc *tx_desc; 6121 skb_frag_t *frag; 6122 dma_addr_t dma; 6123 unsigned int data_len, size; 6124 u32 tx_flags = first->tx_flags; 6125 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 6126 u16 i = tx_ring->next_to_use; 6127 6128 tx_desc = IGB_TX_DESC(tx_ring, i); 6129 6130 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 6131 6132 size = skb_headlen(skb); 6133 data_len = skb->data_len; 6134 6135 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 6136 6137 tx_buffer = first; 6138 6139 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 6140 if (dma_mapping_error(tx_ring->dev, dma)) 6141 goto dma_error; 6142 6143 /* record length, and DMA address */ 6144 dma_unmap_len_set(tx_buffer, len, size); 6145 dma_unmap_addr_set(tx_buffer, dma, dma); 6146 6147 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6148 6149 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 6150 tx_desc->read.cmd_type_len = 6151 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 6152 6153 i++; 6154 tx_desc++; 6155 if (i == tx_ring->count) { 6156 tx_desc = IGB_TX_DESC(tx_ring, 0); 6157 i = 0; 6158 } 6159 tx_desc->read.olinfo_status = 0; 6160 6161 dma += IGB_MAX_DATA_PER_TXD; 6162 size -= IGB_MAX_DATA_PER_TXD; 6163 6164 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6165 } 6166 6167 if (likely(!data_len)) 6168 break; 6169 6170 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 6171 6172 i++; 6173 tx_desc++; 6174 if (i == tx_ring->count) { 6175 tx_desc = IGB_TX_DESC(tx_ring, 0); 6176 i = 0; 6177 } 6178 tx_desc->read.olinfo_status = 0; 6179 6180 size = skb_frag_size(frag); 6181 data_len -= size; 6182 6183 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 6184 size, DMA_TO_DEVICE); 6185 6186 tx_buffer = &tx_ring->tx_buffer_info[i]; 6187 } 6188 6189 /* write last descriptor with RS and EOP bits */ 6190 cmd_type |= size | IGB_TXD_DCMD; 6191 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6192 6193 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 6194 6195 /* set the timestamp */ 6196 first->time_stamp = jiffies; 6197 6198 skb_tx_timestamp(skb); 6199 6200 /* Force memory writes to complete before letting h/w know there 6201 * are new descriptors to fetch. (Only applicable for weak-ordered 6202 * memory model archs, such as IA-64). 6203 * 6204 * We also need this memory barrier to make certain all of the 6205 * status bits have been updated before next_to_watch is written. 6206 */ 6207 dma_wmb(); 6208 6209 /* set next_to_watch value indicating a packet is present */ 6210 first->next_to_watch = tx_desc; 6211 6212 i++; 6213 if (i == tx_ring->count) 6214 i = 0; 6215 6216 tx_ring->next_to_use = i; 6217 6218 /* Make sure there is space in the ring for the next send. */ 6219 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6220 6221 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 6222 writel(i, tx_ring->tail); 6223 } 6224 return 0; 6225 6226 dma_error: 6227 dev_err(tx_ring->dev, "TX DMA map failed\n"); 6228 tx_buffer = &tx_ring->tx_buffer_info[i]; 6229 6230 /* clear dma mappings for failed tx_buffer_info map */ 6231 while (tx_buffer != first) { 6232 if (dma_unmap_len(tx_buffer, len)) 6233 dma_unmap_page(tx_ring->dev, 6234 dma_unmap_addr(tx_buffer, dma), 6235 dma_unmap_len(tx_buffer, len), 6236 DMA_TO_DEVICE); 6237 dma_unmap_len_set(tx_buffer, len, 0); 6238 6239 if (i-- == 0) 6240 i += tx_ring->count; 6241 tx_buffer = &tx_ring->tx_buffer_info[i]; 6242 } 6243 6244 if (dma_unmap_len(tx_buffer, len)) 6245 dma_unmap_single(tx_ring->dev, 6246 dma_unmap_addr(tx_buffer, dma), 6247 dma_unmap_len(tx_buffer, len), 6248 DMA_TO_DEVICE); 6249 dma_unmap_len_set(tx_buffer, len, 0); 6250 6251 dev_kfree_skb_any(tx_buffer->skb); 6252 tx_buffer->skb = NULL; 6253 6254 tx_ring->next_to_use = i; 6255 6256 return -1; 6257 } 6258 6259 int igb_xmit_xdp_ring(struct igb_adapter *adapter, 6260 struct igb_ring *tx_ring, 6261 struct xdp_frame *xdpf) 6262 { 6263 union e1000_adv_tx_desc *tx_desc; 6264 u32 len, cmd_type, olinfo_status; 6265 struct igb_tx_buffer *tx_buffer; 6266 dma_addr_t dma; 6267 u16 i; 6268 6269 len = xdpf->len; 6270 6271 if (unlikely(!igb_desc_unused(tx_ring))) 6272 return IGB_XDP_CONSUMED; 6273 6274 dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE); 6275 if (dma_mapping_error(tx_ring->dev, dma)) 6276 return IGB_XDP_CONSUMED; 6277 6278 /* record the location of the first descriptor for this packet */ 6279 tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 6280 tx_buffer->bytecount = len; 6281 tx_buffer->gso_segs = 1; 6282 tx_buffer->protocol = 0; 6283 6284 i = tx_ring->next_to_use; 6285 tx_desc = IGB_TX_DESC(tx_ring, i); 6286 6287 dma_unmap_len_set(tx_buffer, len, len); 6288 dma_unmap_addr_set(tx_buffer, dma, dma); 6289 tx_buffer->type = IGB_TYPE_XDP; 6290 tx_buffer->xdpf = xdpf; 6291 6292 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6293 6294 /* put descriptor type bits */ 6295 cmd_type = E1000_ADVTXD_DTYP_DATA | 6296 E1000_ADVTXD_DCMD_DEXT | 6297 E1000_ADVTXD_DCMD_IFCS; 6298 cmd_type |= len | IGB_TXD_DCMD; 6299 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6300 6301 olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT; 6302 /* 82575 requires a unique index per ring */ 6303 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6304 olinfo_status |= tx_ring->reg_idx << 4; 6305 6306 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6307 6308 netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount); 6309 6310 /* set the timestamp */ 6311 tx_buffer->time_stamp = jiffies; 6312 6313 /* Avoid any potential race with xdp_xmit and cleanup */ 6314 smp_wmb(); 6315 6316 /* set next_to_watch value indicating a packet is present */ 6317 i++; 6318 if (i == tx_ring->count) 6319 i = 0; 6320 6321 tx_buffer->next_to_watch = tx_desc; 6322 tx_ring->next_to_use = i; 6323 6324 /* Make sure there is space in the ring for the next send. */ 6325 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6326 6327 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 6328 writel(i, tx_ring->tail); 6329 6330 return IGB_XDP_TX; 6331 } 6332 6333 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 6334 struct igb_ring *tx_ring) 6335 { 6336 struct igb_tx_buffer *first; 6337 int tso; 6338 u32 tx_flags = 0; 6339 unsigned short f; 6340 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 6341 __be16 protocol = vlan_get_protocol(skb); 6342 u8 hdr_len = 0; 6343 6344 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 6345 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 6346 * + 2 desc gap to keep tail from touching head, 6347 * + 1 desc for context descriptor, 6348 * otherwise try next time 6349 */ 6350 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 6351 count += TXD_USE_COUNT(skb_frag_size( 6352 &skb_shinfo(skb)->frags[f])); 6353 6354 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 6355 /* this is a hard error */ 6356 return NETDEV_TX_BUSY; 6357 } 6358 6359 /* record the location of the first descriptor for this packet */ 6360 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 6361 first->type = IGB_TYPE_SKB; 6362 first->skb = skb; 6363 first->bytecount = skb->len; 6364 first->gso_segs = 1; 6365 6366 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 6367 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6368 6369 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 6370 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 6371 &adapter->state)) { 6372 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 6373 tx_flags |= IGB_TX_FLAGS_TSTAMP; 6374 6375 adapter->ptp_tx_skb = skb_get(skb); 6376 adapter->ptp_tx_start = jiffies; 6377 if (adapter->hw.mac.type == e1000_82576) 6378 schedule_work(&adapter->ptp_tx_work); 6379 } else { 6380 adapter->tx_hwtstamp_skipped++; 6381 } 6382 } 6383 6384 if (skb_vlan_tag_present(skb)) { 6385 tx_flags |= IGB_TX_FLAGS_VLAN; 6386 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 6387 } 6388 6389 /* record initial flags and protocol */ 6390 first->tx_flags = tx_flags; 6391 first->protocol = protocol; 6392 6393 tso = igb_tso(tx_ring, first, &hdr_len); 6394 if (tso < 0) 6395 goto out_drop; 6396 else if (!tso) 6397 igb_tx_csum(tx_ring, first); 6398 6399 if (igb_tx_map(tx_ring, first, hdr_len)) 6400 goto cleanup_tx_tstamp; 6401 6402 return NETDEV_TX_OK; 6403 6404 out_drop: 6405 dev_kfree_skb_any(first->skb); 6406 first->skb = NULL; 6407 cleanup_tx_tstamp: 6408 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) { 6409 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6410 6411 dev_kfree_skb_any(adapter->ptp_tx_skb); 6412 adapter->ptp_tx_skb = NULL; 6413 if (adapter->hw.mac.type == e1000_82576) 6414 cancel_work_sync(&adapter->ptp_tx_work); 6415 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 6416 } 6417 6418 return NETDEV_TX_OK; 6419 } 6420 6421 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 6422 struct sk_buff *skb) 6423 { 6424 unsigned int r_idx = skb->queue_mapping; 6425 6426 if (r_idx >= adapter->num_tx_queues) 6427 r_idx = r_idx % adapter->num_tx_queues; 6428 6429 return adapter->tx_ring[r_idx]; 6430 } 6431 6432 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 6433 struct net_device *netdev) 6434 { 6435 struct igb_adapter *adapter = netdev_priv(netdev); 6436 6437 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 6438 * in order to meet this minimum size requirement. 6439 */ 6440 if (skb_put_padto(skb, 17)) 6441 return NETDEV_TX_OK; 6442 6443 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 6444 } 6445 6446 /** 6447 * igb_tx_timeout - Respond to a Tx Hang 6448 * @netdev: network interface device structure 6449 * @txqueue: number of the Tx queue that hung (unused) 6450 **/ 6451 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 6452 { 6453 struct igb_adapter *adapter = netdev_priv(netdev); 6454 struct e1000_hw *hw = &adapter->hw; 6455 6456 /* Do the reset outside of interrupt context */ 6457 adapter->tx_timeout_count++; 6458 6459 if (hw->mac.type >= e1000_82580) 6460 hw->dev_spec._82575.global_device_reset = true; 6461 6462 schedule_work(&adapter->reset_task); 6463 wr32(E1000_EICS, 6464 (adapter->eims_enable_mask & ~adapter->eims_other)); 6465 } 6466 6467 static void igb_reset_task(struct work_struct *work) 6468 { 6469 struct igb_adapter *adapter; 6470 adapter = container_of(work, struct igb_adapter, reset_task); 6471 6472 rtnl_lock(); 6473 /* If we're already down or resetting, just bail */ 6474 if (test_bit(__IGB_DOWN, &adapter->state) || 6475 test_bit(__IGB_RESETTING, &adapter->state)) { 6476 rtnl_unlock(); 6477 return; 6478 } 6479 6480 igb_dump(adapter); 6481 netdev_err(adapter->netdev, "Reset adapter\n"); 6482 igb_reinit_locked(adapter); 6483 rtnl_unlock(); 6484 } 6485 6486 /** 6487 * igb_get_stats64 - Get System Network Statistics 6488 * @netdev: network interface device structure 6489 * @stats: rtnl_link_stats64 pointer 6490 **/ 6491 static void igb_get_stats64(struct net_device *netdev, 6492 struct rtnl_link_stats64 *stats) 6493 { 6494 struct igb_adapter *adapter = netdev_priv(netdev); 6495 6496 spin_lock(&adapter->stats64_lock); 6497 igb_update_stats(adapter); 6498 memcpy(stats, &adapter->stats64, sizeof(*stats)); 6499 spin_unlock(&adapter->stats64_lock); 6500 } 6501 6502 /** 6503 * igb_change_mtu - Change the Maximum Transfer Unit 6504 * @netdev: network interface device structure 6505 * @new_mtu: new value for maximum frame size 6506 * 6507 * Returns 0 on success, negative on failure 6508 **/ 6509 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 6510 { 6511 struct igb_adapter *adapter = netdev_priv(netdev); 6512 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD; 6513 6514 if (adapter->xdp_prog) { 6515 int i; 6516 6517 for (i = 0; i < adapter->num_rx_queues; i++) { 6518 struct igb_ring *ring = adapter->rx_ring[i]; 6519 6520 if (max_frame > igb_rx_bufsz(ring)) { 6521 netdev_warn(adapter->netdev, 6522 "Requested MTU size is not supported with XDP. Max frame size is %d\n", 6523 max_frame); 6524 return -EINVAL; 6525 } 6526 } 6527 } 6528 6529 /* adjust max frame to be at least the size of a standard frame */ 6530 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 6531 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 6532 6533 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 6534 usleep_range(1000, 2000); 6535 6536 /* igb_down has a dependency on max_frame_size */ 6537 adapter->max_frame_size = max_frame; 6538 6539 if (netif_running(netdev)) 6540 igb_down(adapter); 6541 6542 netdev_dbg(netdev, "changing MTU from %d to %d\n", 6543 netdev->mtu, new_mtu); 6544 netdev->mtu = new_mtu; 6545 6546 if (netif_running(netdev)) 6547 igb_up(adapter); 6548 else 6549 igb_reset(adapter); 6550 6551 clear_bit(__IGB_RESETTING, &adapter->state); 6552 6553 return 0; 6554 } 6555 6556 /** 6557 * igb_update_stats - Update the board statistics counters 6558 * @adapter: board private structure 6559 **/ 6560 void igb_update_stats(struct igb_adapter *adapter) 6561 { 6562 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 6563 struct e1000_hw *hw = &adapter->hw; 6564 struct pci_dev *pdev = adapter->pdev; 6565 u32 reg, mpc; 6566 int i; 6567 u64 bytes, packets; 6568 unsigned int start; 6569 u64 _bytes, _packets; 6570 6571 /* Prevent stats update while adapter is being reset, or if the pci 6572 * connection is down. 6573 */ 6574 if (adapter->link_speed == 0) 6575 return; 6576 if (pci_channel_offline(pdev)) 6577 return; 6578 6579 bytes = 0; 6580 packets = 0; 6581 6582 rcu_read_lock(); 6583 for (i = 0; i < adapter->num_rx_queues; i++) { 6584 struct igb_ring *ring = adapter->rx_ring[i]; 6585 u32 rqdpc = rd32(E1000_RQDPC(i)); 6586 if (hw->mac.type >= e1000_i210) 6587 wr32(E1000_RQDPC(i), 0); 6588 6589 if (rqdpc) { 6590 ring->rx_stats.drops += rqdpc; 6591 net_stats->rx_fifo_errors += rqdpc; 6592 } 6593 6594 do { 6595 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 6596 _bytes = ring->rx_stats.bytes; 6597 _packets = ring->rx_stats.packets; 6598 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 6599 bytes += _bytes; 6600 packets += _packets; 6601 } 6602 6603 net_stats->rx_bytes = bytes; 6604 net_stats->rx_packets = packets; 6605 6606 bytes = 0; 6607 packets = 0; 6608 for (i = 0; i < adapter->num_tx_queues; i++) { 6609 struct igb_ring *ring = adapter->tx_ring[i]; 6610 do { 6611 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 6612 _bytes = ring->tx_stats.bytes; 6613 _packets = ring->tx_stats.packets; 6614 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 6615 bytes += _bytes; 6616 packets += _packets; 6617 } 6618 net_stats->tx_bytes = bytes; 6619 net_stats->tx_packets = packets; 6620 rcu_read_unlock(); 6621 6622 /* read stats registers */ 6623 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 6624 adapter->stats.gprc += rd32(E1000_GPRC); 6625 adapter->stats.gorc += rd32(E1000_GORCL); 6626 rd32(E1000_GORCH); /* clear GORCL */ 6627 adapter->stats.bprc += rd32(E1000_BPRC); 6628 adapter->stats.mprc += rd32(E1000_MPRC); 6629 adapter->stats.roc += rd32(E1000_ROC); 6630 6631 adapter->stats.prc64 += rd32(E1000_PRC64); 6632 adapter->stats.prc127 += rd32(E1000_PRC127); 6633 adapter->stats.prc255 += rd32(E1000_PRC255); 6634 adapter->stats.prc511 += rd32(E1000_PRC511); 6635 adapter->stats.prc1023 += rd32(E1000_PRC1023); 6636 adapter->stats.prc1522 += rd32(E1000_PRC1522); 6637 adapter->stats.symerrs += rd32(E1000_SYMERRS); 6638 adapter->stats.sec += rd32(E1000_SEC); 6639 6640 mpc = rd32(E1000_MPC); 6641 adapter->stats.mpc += mpc; 6642 net_stats->rx_fifo_errors += mpc; 6643 adapter->stats.scc += rd32(E1000_SCC); 6644 adapter->stats.ecol += rd32(E1000_ECOL); 6645 adapter->stats.mcc += rd32(E1000_MCC); 6646 adapter->stats.latecol += rd32(E1000_LATECOL); 6647 adapter->stats.dc += rd32(E1000_DC); 6648 adapter->stats.rlec += rd32(E1000_RLEC); 6649 adapter->stats.xonrxc += rd32(E1000_XONRXC); 6650 adapter->stats.xontxc += rd32(E1000_XONTXC); 6651 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 6652 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 6653 adapter->stats.fcruc += rd32(E1000_FCRUC); 6654 adapter->stats.gptc += rd32(E1000_GPTC); 6655 adapter->stats.gotc += rd32(E1000_GOTCL); 6656 rd32(E1000_GOTCH); /* clear GOTCL */ 6657 adapter->stats.rnbc += rd32(E1000_RNBC); 6658 adapter->stats.ruc += rd32(E1000_RUC); 6659 adapter->stats.rfc += rd32(E1000_RFC); 6660 adapter->stats.rjc += rd32(E1000_RJC); 6661 adapter->stats.tor += rd32(E1000_TORH); 6662 adapter->stats.tot += rd32(E1000_TOTH); 6663 adapter->stats.tpr += rd32(E1000_TPR); 6664 6665 adapter->stats.ptc64 += rd32(E1000_PTC64); 6666 adapter->stats.ptc127 += rd32(E1000_PTC127); 6667 adapter->stats.ptc255 += rd32(E1000_PTC255); 6668 adapter->stats.ptc511 += rd32(E1000_PTC511); 6669 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 6670 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 6671 6672 adapter->stats.mptc += rd32(E1000_MPTC); 6673 adapter->stats.bptc += rd32(E1000_BPTC); 6674 6675 adapter->stats.tpt += rd32(E1000_TPT); 6676 adapter->stats.colc += rd32(E1000_COLC); 6677 6678 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 6679 /* read internal phy specific stats */ 6680 reg = rd32(E1000_CTRL_EXT); 6681 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 6682 adapter->stats.rxerrc += rd32(E1000_RXERRC); 6683 6684 /* this stat has invalid values on i210/i211 */ 6685 if ((hw->mac.type != e1000_i210) && 6686 (hw->mac.type != e1000_i211)) 6687 adapter->stats.tncrs += rd32(E1000_TNCRS); 6688 } 6689 6690 adapter->stats.tsctc += rd32(E1000_TSCTC); 6691 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 6692 6693 adapter->stats.iac += rd32(E1000_IAC); 6694 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 6695 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 6696 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 6697 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 6698 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 6699 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 6700 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 6701 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 6702 6703 /* Fill out the OS statistics structure */ 6704 net_stats->multicast = adapter->stats.mprc; 6705 net_stats->collisions = adapter->stats.colc; 6706 6707 /* Rx Errors */ 6708 6709 /* RLEC on some newer hardware can be incorrect so build 6710 * our own version based on RUC and ROC 6711 */ 6712 net_stats->rx_errors = adapter->stats.rxerrc + 6713 adapter->stats.crcerrs + adapter->stats.algnerrc + 6714 adapter->stats.ruc + adapter->stats.roc + 6715 adapter->stats.cexterr; 6716 net_stats->rx_length_errors = adapter->stats.ruc + 6717 adapter->stats.roc; 6718 net_stats->rx_crc_errors = adapter->stats.crcerrs; 6719 net_stats->rx_frame_errors = adapter->stats.algnerrc; 6720 net_stats->rx_missed_errors = adapter->stats.mpc; 6721 6722 /* Tx Errors */ 6723 net_stats->tx_errors = adapter->stats.ecol + 6724 adapter->stats.latecol; 6725 net_stats->tx_aborted_errors = adapter->stats.ecol; 6726 net_stats->tx_window_errors = adapter->stats.latecol; 6727 net_stats->tx_carrier_errors = adapter->stats.tncrs; 6728 6729 /* Tx Dropped needs to be maintained elsewhere */ 6730 6731 /* Management Stats */ 6732 adapter->stats.mgptc += rd32(E1000_MGTPTC); 6733 adapter->stats.mgprc += rd32(E1000_MGTPRC); 6734 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 6735 6736 /* OS2BMC Stats */ 6737 reg = rd32(E1000_MANC); 6738 if (reg & E1000_MANC_EN_BMC2OS) { 6739 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 6740 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 6741 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 6742 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 6743 } 6744 } 6745 6746 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt) 6747 { 6748 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt); 6749 struct e1000_hw *hw = &adapter->hw; 6750 struct timespec64 ts; 6751 u32 tsauxc; 6752 6753 if (pin < 0 || pin >= IGB_N_PEROUT) 6754 return; 6755 6756 spin_lock(&adapter->tmreg_lock); 6757 6758 if (hw->mac.type == e1000_82580 || 6759 hw->mac.type == e1000_i354 || 6760 hw->mac.type == e1000_i350) { 6761 s64 ns = timespec64_to_ns(&adapter->perout[pin].period); 6762 u32 systiml, systimh, level_mask, level, rem; 6763 u64 systim, now; 6764 6765 /* read systim registers in sequence */ 6766 rd32(E1000_SYSTIMR); 6767 systiml = rd32(E1000_SYSTIML); 6768 systimh = rd32(E1000_SYSTIMH); 6769 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml); 6770 now = timecounter_cyc2time(&adapter->tc, systim); 6771 6772 if (pin < 2) { 6773 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000; 6774 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0; 6775 } else { 6776 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40; 6777 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0; 6778 } 6779 6780 div_u64_rem(now, ns, &rem); 6781 systim = systim + (ns - rem); 6782 6783 /* synchronize pin level with rising/falling edges */ 6784 div_u64_rem(now, ns << 1, &rem); 6785 if (rem < ns) { 6786 /* first half of period */ 6787 if (level == 0) { 6788 /* output is already low, skip this period */ 6789 systim += ns; 6790 pr_notice("igb: periodic output on %s missed falling edge\n", 6791 adapter->sdp_config[pin].name); 6792 } 6793 } else { 6794 /* second half of period */ 6795 if (level == 1) { 6796 /* output is already high, skip this period */ 6797 systim += ns; 6798 pr_notice("igb: periodic output on %s missed rising edge\n", 6799 adapter->sdp_config[pin].name); 6800 } 6801 } 6802 6803 /* for this chip family tv_sec is the upper part of the binary value, 6804 * so not seconds 6805 */ 6806 ts.tv_nsec = (u32)systim; 6807 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF; 6808 } else { 6809 ts = timespec64_add(adapter->perout[pin].start, 6810 adapter->perout[pin].period); 6811 } 6812 6813 /* u32 conversion of tv_sec is safe until y2106 */ 6814 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec); 6815 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec); 6816 tsauxc = rd32(E1000_TSAUXC); 6817 tsauxc |= TSAUXC_EN_TT0; 6818 wr32(E1000_TSAUXC, tsauxc); 6819 adapter->perout[pin].start = ts; 6820 6821 spin_unlock(&adapter->tmreg_lock); 6822 } 6823 6824 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt) 6825 { 6826 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt); 6827 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0; 6828 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0; 6829 struct e1000_hw *hw = &adapter->hw; 6830 struct ptp_clock_event event; 6831 struct timespec64 ts; 6832 6833 if (pin < 0 || pin >= IGB_N_EXTTS) 6834 return; 6835 6836 if (hw->mac.type == e1000_82580 || 6837 hw->mac.type == e1000_i354 || 6838 hw->mac.type == e1000_i350) { 6839 s64 ns = rd32(auxstmpl); 6840 6841 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32; 6842 ts = ns_to_timespec64(ns); 6843 } else { 6844 ts.tv_nsec = rd32(auxstmpl); 6845 ts.tv_sec = rd32(auxstmph); 6846 } 6847 6848 event.type = PTP_CLOCK_EXTTS; 6849 event.index = tsintr_tt; 6850 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec; 6851 ptp_clock_event(adapter->ptp_clock, &event); 6852 } 6853 6854 static void igb_tsync_interrupt(struct igb_adapter *adapter) 6855 { 6856 struct e1000_hw *hw = &adapter->hw; 6857 u32 ack = 0, tsicr = rd32(E1000_TSICR); 6858 struct ptp_clock_event event; 6859 6860 if (tsicr & TSINTR_SYS_WRAP) { 6861 event.type = PTP_CLOCK_PPS; 6862 if (adapter->ptp_caps.pps) 6863 ptp_clock_event(adapter->ptp_clock, &event); 6864 ack |= TSINTR_SYS_WRAP; 6865 } 6866 6867 if (tsicr & E1000_TSICR_TXTS) { 6868 /* retrieve hardware timestamp */ 6869 schedule_work(&adapter->ptp_tx_work); 6870 ack |= E1000_TSICR_TXTS; 6871 } 6872 6873 if (tsicr & TSINTR_TT0) { 6874 igb_perout(adapter, 0); 6875 ack |= TSINTR_TT0; 6876 } 6877 6878 if (tsicr & TSINTR_TT1) { 6879 igb_perout(adapter, 1); 6880 ack |= TSINTR_TT1; 6881 } 6882 6883 if (tsicr & TSINTR_AUTT0) { 6884 igb_extts(adapter, 0); 6885 ack |= TSINTR_AUTT0; 6886 } 6887 6888 if (tsicr & TSINTR_AUTT1) { 6889 igb_extts(adapter, 1); 6890 ack |= TSINTR_AUTT1; 6891 } 6892 6893 /* acknowledge the interrupts */ 6894 wr32(E1000_TSICR, ack); 6895 } 6896 6897 static irqreturn_t igb_msix_other(int irq, void *data) 6898 { 6899 struct igb_adapter *adapter = data; 6900 struct e1000_hw *hw = &adapter->hw; 6901 u32 icr = rd32(E1000_ICR); 6902 /* reading ICR causes bit 31 of EICR to be cleared */ 6903 6904 if (icr & E1000_ICR_DRSTA) 6905 schedule_work(&adapter->reset_task); 6906 6907 if (icr & E1000_ICR_DOUTSYNC) { 6908 /* HW is reporting DMA is out of sync */ 6909 adapter->stats.doosync++; 6910 /* The DMA Out of Sync is also indication of a spoof event 6911 * in IOV mode. Check the Wrong VM Behavior register to 6912 * see if it is really a spoof event. 6913 */ 6914 igb_check_wvbr(adapter); 6915 } 6916 6917 /* Check for a mailbox event */ 6918 if (icr & E1000_ICR_VMMB) 6919 igb_msg_task(adapter); 6920 6921 if (icr & E1000_ICR_LSC) { 6922 hw->mac.get_link_status = 1; 6923 /* guard against interrupt when we're going down */ 6924 if (!test_bit(__IGB_DOWN, &adapter->state)) 6925 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6926 } 6927 6928 if (icr & E1000_ICR_TS) 6929 igb_tsync_interrupt(adapter); 6930 6931 wr32(E1000_EIMS, adapter->eims_other); 6932 6933 return IRQ_HANDLED; 6934 } 6935 6936 static void igb_write_itr(struct igb_q_vector *q_vector) 6937 { 6938 struct igb_adapter *adapter = q_vector->adapter; 6939 u32 itr_val = q_vector->itr_val & 0x7FFC; 6940 6941 if (!q_vector->set_itr) 6942 return; 6943 6944 if (!itr_val) 6945 itr_val = 0x4; 6946 6947 if (adapter->hw.mac.type == e1000_82575) 6948 itr_val |= itr_val << 16; 6949 else 6950 itr_val |= E1000_EITR_CNT_IGNR; 6951 6952 writel(itr_val, q_vector->itr_register); 6953 q_vector->set_itr = 0; 6954 } 6955 6956 static irqreturn_t igb_msix_ring(int irq, void *data) 6957 { 6958 struct igb_q_vector *q_vector = data; 6959 6960 /* Write the ITR value calculated from the previous interrupt. */ 6961 igb_write_itr(q_vector); 6962 6963 napi_schedule(&q_vector->napi); 6964 6965 return IRQ_HANDLED; 6966 } 6967 6968 #ifdef CONFIG_IGB_DCA 6969 static void igb_update_tx_dca(struct igb_adapter *adapter, 6970 struct igb_ring *tx_ring, 6971 int cpu) 6972 { 6973 struct e1000_hw *hw = &adapter->hw; 6974 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 6975 6976 if (hw->mac.type != e1000_82575) 6977 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 6978 6979 /* We can enable relaxed ordering for reads, but not writes when 6980 * DCA is enabled. This is due to a known issue in some chipsets 6981 * which will cause the DCA tag to be cleared. 6982 */ 6983 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 6984 E1000_DCA_TXCTRL_DATA_RRO_EN | 6985 E1000_DCA_TXCTRL_DESC_DCA_EN; 6986 6987 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 6988 } 6989 6990 static void igb_update_rx_dca(struct igb_adapter *adapter, 6991 struct igb_ring *rx_ring, 6992 int cpu) 6993 { 6994 struct e1000_hw *hw = &adapter->hw; 6995 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 6996 6997 if (hw->mac.type != e1000_82575) 6998 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 6999 7000 /* We can enable relaxed ordering for reads, but not writes when 7001 * DCA is enabled. This is due to a known issue in some chipsets 7002 * which will cause the DCA tag to be cleared. 7003 */ 7004 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 7005 E1000_DCA_RXCTRL_DESC_DCA_EN; 7006 7007 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 7008 } 7009 7010 static void igb_update_dca(struct igb_q_vector *q_vector) 7011 { 7012 struct igb_adapter *adapter = q_vector->adapter; 7013 int cpu = get_cpu(); 7014 7015 if (q_vector->cpu == cpu) 7016 goto out_no_update; 7017 7018 if (q_vector->tx.ring) 7019 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 7020 7021 if (q_vector->rx.ring) 7022 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 7023 7024 q_vector->cpu = cpu; 7025 out_no_update: 7026 put_cpu(); 7027 } 7028 7029 static void igb_setup_dca(struct igb_adapter *adapter) 7030 { 7031 struct e1000_hw *hw = &adapter->hw; 7032 int i; 7033 7034 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 7035 return; 7036 7037 /* Always use CB2 mode, difference is masked in the CB driver. */ 7038 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 7039 7040 for (i = 0; i < adapter->num_q_vectors; i++) { 7041 adapter->q_vector[i]->cpu = -1; 7042 igb_update_dca(adapter->q_vector[i]); 7043 } 7044 } 7045 7046 static int __igb_notify_dca(struct device *dev, void *data) 7047 { 7048 struct net_device *netdev = dev_get_drvdata(dev); 7049 struct igb_adapter *adapter = netdev_priv(netdev); 7050 struct pci_dev *pdev = adapter->pdev; 7051 struct e1000_hw *hw = &adapter->hw; 7052 unsigned long event = *(unsigned long *)data; 7053 7054 switch (event) { 7055 case DCA_PROVIDER_ADD: 7056 /* if already enabled, don't do it again */ 7057 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 7058 break; 7059 if (dca_add_requester(dev) == 0) { 7060 adapter->flags |= IGB_FLAG_DCA_ENABLED; 7061 dev_info(&pdev->dev, "DCA enabled\n"); 7062 igb_setup_dca(adapter); 7063 break; 7064 } 7065 fallthrough; /* since DCA is disabled. */ 7066 case DCA_PROVIDER_REMOVE: 7067 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 7068 /* without this a class_device is left 7069 * hanging around in the sysfs model 7070 */ 7071 dca_remove_requester(dev); 7072 dev_info(&pdev->dev, "DCA disabled\n"); 7073 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 7074 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 7075 } 7076 break; 7077 } 7078 7079 return 0; 7080 } 7081 7082 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 7083 void *p) 7084 { 7085 int ret_val; 7086 7087 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 7088 __igb_notify_dca); 7089 7090 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 7091 } 7092 #endif /* CONFIG_IGB_DCA */ 7093 7094 #ifdef CONFIG_PCI_IOV 7095 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 7096 { 7097 unsigned char mac_addr[ETH_ALEN]; 7098 7099 eth_zero_addr(mac_addr); 7100 igb_set_vf_mac(adapter, vf, mac_addr); 7101 7102 /* By default spoof check is enabled for all VFs */ 7103 adapter->vf_data[vf].spoofchk_enabled = true; 7104 7105 /* By default VFs are not trusted */ 7106 adapter->vf_data[vf].trusted = false; 7107 7108 return 0; 7109 } 7110 7111 #endif 7112 static void igb_ping_all_vfs(struct igb_adapter *adapter) 7113 { 7114 struct e1000_hw *hw = &adapter->hw; 7115 u32 ping; 7116 int i; 7117 7118 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 7119 ping = E1000_PF_CONTROL_MSG; 7120 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 7121 ping |= E1000_VT_MSGTYPE_CTS; 7122 igb_write_mbx(hw, &ping, 1, i); 7123 } 7124 } 7125 7126 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7127 { 7128 struct e1000_hw *hw = &adapter->hw; 7129 u32 vmolr = rd32(E1000_VMOLR(vf)); 7130 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7131 7132 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 7133 IGB_VF_FLAG_MULTI_PROMISC); 7134 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7135 7136 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 7137 vmolr |= E1000_VMOLR_MPME; 7138 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 7139 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 7140 } else { 7141 /* if we have hashes and we are clearing a multicast promisc 7142 * flag we need to write the hashes to the MTA as this step 7143 * was previously skipped 7144 */ 7145 if (vf_data->num_vf_mc_hashes > 30) { 7146 vmolr |= E1000_VMOLR_MPME; 7147 } else if (vf_data->num_vf_mc_hashes) { 7148 int j; 7149 7150 vmolr |= E1000_VMOLR_ROMPE; 7151 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7152 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7153 } 7154 } 7155 7156 wr32(E1000_VMOLR(vf), vmolr); 7157 7158 /* there are flags left unprocessed, likely not supported */ 7159 if (*msgbuf & E1000_VT_MSGINFO_MASK) 7160 return -EINVAL; 7161 7162 return 0; 7163 } 7164 7165 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 7166 u32 *msgbuf, u32 vf) 7167 { 7168 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7169 u16 *hash_list = (u16 *)&msgbuf[1]; 7170 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7171 int i; 7172 7173 /* salt away the number of multicast addresses assigned 7174 * to this VF for later use to restore when the PF multi cast 7175 * list changes 7176 */ 7177 vf_data->num_vf_mc_hashes = n; 7178 7179 /* only up to 30 hash values supported */ 7180 if (n > 30) 7181 n = 30; 7182 7183 /* store the hashes for later use */ 7184 for (i = 0; i < n; i++) 7185 vf_data->vf_mc_hashes[i] = hash_list[i]; 7186 7187 /* Flush and reset the mta with the new values */ 7188 igb_set_rx_mode(adapter->netdev); 7189 7190 return 0; 7191 } 7192 7193 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 7194 { 7195 struct e1000_hw *hw = &adapter->hw; 7196 struct vf_data_storage *vf_data; 7197 int i, j; 7198 7199 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7200 u32 vmolr = rd32(E1000_VMOLR(i)); 7201 7202 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7203 7204 vf_data = &adapter->vf_data[i]; 7205 7206 if ((vf_data->num_vf_mc_hashes > 30) || 7207 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 7208 vmolr |= E1000_VMOLR_MPME; 7209 } else if (vf_data->num_vf_mc_hashes) { 7210 vmolr |= E1000_VMOLR_ROMPE; 7211 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7212 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7213 } 7214 wr32(E1000_VMOLR(i), vmolr); 7215 } 7216 } 7217 7218 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 7219 { 7220 struct e1000_hw *hw = &adapter->hw; 7221 u32 pool_mask, vlvf_mask, i; 7222 7223 /* create mask for VF and other pools */ 7224 pool_mask = E1000_VLVF_POOLSEL_MASK; 7225 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf); 7226 7227 /* drop PF from pool bits */ 7228 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT + 7229 adapter->vfs_allocated_count); 7230 7231 /* Find the vlan filter for this id */ 7232 for (i = E1000_VLVF_ARRAY_SIZE; i--;) { 7233 u32 vlvf = rd32(E1000_VLVF(i)); 7234 u32 vfta_mask, vid, vfta; 7235 7236 /* remove the vf from the pool */ 7237 if (!(vlvf & vlvf_mask)) 7238 continue; 7239 7240 /* clear out bit from VLVF */ 7241 vlvf ^= vlvf_mask; 7242 7243 /* if other pools are present, just remove ourselves */ 7244 if (vlvf & pool_mask) 7245 goto update_vlvfb; 7246 7247 /* if PF is present, leave VFTA */ 7248 if (vlvf & E1000_VLVF_POOLSEL_MASK) 7249 goto update_vlvf; 7250 7251 vid = vlvf & E1000_VLVF_VLANID_MASK; 7252 vfta_mask = BIT(vid % 32); 7253 7254 /* clear bit from VFTA */ 7255 vfta = adapter->shadow_vfta[vid / 32]; 7256 if (vfta & vfta_mask) 7257 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask); 7258 update_vlvf: 7259 /* clear pool selection enable */ 7260 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7261 vlvf &= E1000_VLVF_POOLSEL_MASK; 7262 else 7263 vlvf = 0; 7264 update_vlvfb: 7265 /* clear pool bits */ 7266 wr32(E1000_VLVF(i), vlvf); 7267 } 7268 } 7269 7270 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan) 7271 { 7272 u32 vlvf; 7273 int idx; 7274 7275 /* short cut the special case */ 7276 if (vlan == 0) 7277 return 0; 7278 7279 /* Search for the VLAN id in the VLVF entries */ 7280 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) { 7281 vlvf = rd32(E1000_VLVF(idx)); 7282 if ((vlvf & VLAN_VID_MASK) == vlan) 7283 break; 7284 } 7285 7286 return idx; 7287 } 7288 7289 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid) 7290 { 7291 struct e1000_hw *hw = &adapter->hw; 7292 u32 bits, pf_id; 7293 int idx; 7294 7295 idx = igb_find_vlvf_entry(hw, vid); 7296 if (!idx) 7297 return; 7298 7299 /* See if any other pools are set for this VLAN filter 7300 * entry other than the PF. 7301 */ 7302 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 7303 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK; 7304 bits &= rd32(E1000_VLVF(idx)); 7305 7306 /* Disable the filter so this falls into the default pool. */ 7307 if (!bits) { 7308 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7309 wr32(E1000_VLVF(idx), BIT(pf_id)); 7310 else 7311 wr32(E1000_VLVF(idx), 0); 7312 } 7313 } 7314 7315 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid, 7316 bool add, u32 vf) 7317 { 7318 int pf_id = adapter->vfs_allocated_count; 7319 struct e1000_hw *hw = &adapter->hw; 7320 int err; 7321 7322 /* If VLAN overlaps with one the PF is currently monitoring make 7323 * sure that we are able to allocate a VLVF entry. This may be 7324 * redundant but it guarantees PF will maintain visibility to 7325 * the VLAN. 7326 */ 7327 if (add && test_bit(vid, adapter->active_vlans)) { 7328 err = igb_vfta_set(hw, vid, pf_id, true, false); 7329 if (err) 7330 return err; 7331 } 7332 7333 err = igb_vfta_set(hw, vid, vf, add, false); 7334 7335 if (add && !err) 7336 return err; 7337 7338 /* If we failed to add the VF VLAN or we are removing the VF VLAN 7339 * we may need to drop the PF pool bit in order to allow us to free 7340 * up the VLVF resources. 7341 */ 7342 if (test_bit(vid, adapter->active_vlans) || 7343 (adapter->flags & IGB_FLAG_VLAN_PROMISC)) 7344 igb_update_pf_vlvf(adapter, vid); 7345 7346 return err; 7347 } 7348 7349 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 7350 { 7351 struct e1000_hw *hw = &adapter->hw; 7352 7353 if (vid) 7354 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 7355 else 7356 wr32(E1000_VMVIR(vf), 0); 7357 } 7358 7359 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf, 7360 u16 vlan, u8 qos) 7361 { 7362 int err; 7363 7364 err = igb_set_vf_vlan(adapter, vlan, true, vf); 7365 if (err) 7366 return err; 7367 7368 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 7369 igb_set_vmolr(adapter, vf, !vlan); 7370 7371 /* revoke access to previous VLAN */ 7372 if (vlan != adapter->vf_data[vf].pf_vlan) 7373 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7374 false, vf); 7375 7376 adapter->vf_data[vf].pf_vlan = vlan; 7377 adapter->vf_data[vf].pf_qos = qos; 7378 igb_set_vf_vlan_strip(adapter, vf, true); 7379 dev_info(&adapter->pdev->dev, 7380 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 7381 if (test_bit(__IGB_DOWN, &adapter->state)) { 7382 dev_warn(&adapter->pdev->dev, 7383 "The VF VLAN has been set, but the PF device is not up.\n"); 7384 dev_warn(&adapter->pdev->dev, 7385 "Bring the PF device up before attempting to use the VF device.\n"); 7386 } 7387 7388 return err; 7389 } 7390 7391 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf) 7392 { 7393 /* Restore tagless access via VLAN 0 */ 7394 igb_set_vf_vlan(adapter, 0, true, vf); 7395 7396 igb_set_vmvir(adapter, 0, vf); 7397 igb_set_vmolr(adapter, vf, true); 7398 7399 /* Remove any PF assigned VLAN */ 7400 if (adapter->vf_data[vf].pf_vlan) 7401 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7402 false, vf); 7403 7404 adapter->vf_data[vf].pf_vlan = 0; 7405 adapter->vf_data[vf].pf_qos = 0; 7406 igb_set_vf_vlan_strip(adapter, vf, false); 7407 7408 return 0; 7409 } 7410 7411 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, 7412 u16 vlan, u8 qos, __be16 vlan_proto) 7413 { 7414 struct igb_adapter *adapter = netdev_priv(netdev); 7415 7416 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 7417 return -EINVAL; 7418 7419 if (vlan_proto != htons(ETH_P_8021Q)) 7420 return -EPROTONOSUPPORT; 7421 7422 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) : 7423 igb_disable_port_vlan(adapter, vf); 7424 } 7425 7426 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7427 { 7428 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7429 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 7430 int ret; 7431 7432 if (adapter->vf_data[vf].pf_vlan) 7433 return -1; 7434 7435 /* VLAN 0 is a special case, don't allow it to be removed */ 7436 if (!vid && !add) 7437 return 0; 7438 7439 ret = igb_set_vf_vlan(adapter, vid, !!add, vf); 7440 if (!ret) 7441 igb_set_vf_vlan_strip(adapter, vf, !!vid); 7442 return ret; 7443 } 7444 7445 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 7446 { 7447 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7448 7449 /* clear flags - except flag that indicates PF has set the MAC */ 7450 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC; 7451 vf_data->last_nack = jiffies; 7452 7453 /* reset vlans for device */ 7454 igb_clear_vf_vfta(adapter, vf); 7455 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf); 7456 igb_set_vmvir(adapter, vf_data->pf_vlan | 7457 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf); 7458 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan); 7459 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan)); 7460 7461 /* reset multicast table array for vf */ 7462 adapter->vf_data[vf].num_vf_mc_hashes = 0; 7463 7464 /* Flush and reset the mta with the new values */ 7465 igb_set_rx_mode(adapter->netdev); 7466 } 7467 7468 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 7469 { 7470 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7471 7472 /* clear mac address as we were hotplug removed/added */ 7473 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 7474 eth_zero_addr(vf_mac); 7475 7476 /* process remaining reset events */ 7477 igb_vf_reset(adapter, vf); 7478 } 7479 7480 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 7481 { 7482 struct e1000_hw *hw = &adapter->hw; 7483 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7484 u32 reg, msgbuf[3]; 7485 u8 *addr = (u8 *)(&msgbuf[1]); 7486 7487 /* process all the same items cleared in a function level reset */ 7488 igb_vf_reset(adapter, vf); 7489 7490 /* set vf mac address */ 7491 igb_set_vf_mac(adapter, vf, vf_mac); 7492 7493 /* enable transmit and receive for vf */ 7494 reg = rd32(E1000_VFTE); 7495 wr32(E1000_VFTE, reg | BIT(vf)); 7496 reg = rd32(E1000_VFRE); 7497 wr32(E1000_VFRE, reg | BIT(vf)); 7498 7499 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 7500 7501 /* reply to reset with ack and vf mac address */ 7502 if (!is_zero_ether_addr(vf_mac)) { 7503 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 7504 memcpy(addr, vf_mac, ETH_ALEN); 7505 } else { 7506 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; 7507 } 7508 igb_write_mbx(hw, msgbuf, 3, vf); 7509 } 7510 7511 static void igb_flush_mac_table(struct igb_adapter *adapter) 7512 { 7513 struct e1000_hw *hw = &adapter->hw; 7514 int i; 7515 7516 for (i = 0; i < hw->mac.rar_entry_count; i++) { 7517 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE; 7518 eth_zero_addr(adapter->mac_table[i].addr); 7519 adapter->mac_table[i].queue = 0; 7520 igb_rar_set_index(adapter, i); 7521 } 7522 } 7523 7524 static int igb_available_rars(struct igb_adapter *adapter, u8 queue) 7525 { 7526 struct e1000_hw *hw = &adapter->hw; 7527 /* do not count rar entries reserved for VFs MAC addresses */ 7528 int rar_entries = hw->mac.rar_entry_count - 7529 adapter->vfs_allocated_count; 7530 int i, count = 0; 7531 7532 for (i = 0; i < rar_entries; i++) { 7533 /* do not count default entries */ 7534 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) 7535 continue; 7536 7537 /* do not count "in use" entries for different queues */ 7538 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) && 7539 (adapter->mac_table[i].queue != queue)) 7540 continue; 7541 7542 count++; 7543 } 7544 7545 return count; 7546 } 7547 7548 /* Set default MAC address for the PF in the first RAR entry */ 7549 static void igb_set_default_mac_filter(struct igb_adapter *adapter) 7550 { 7551 struct igb_mac_addr *mac_table = &adapter->mac_table[0]; 7552 7553 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 7554 mac_table->queue = adapter->vfs_allocated_count; 7555 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7556 7557 igb_rar_set_index(adapter, 0); 7558 } 7559 7560 /* If the filter to be added and an already existing filter express 7561 * the same address and address type, it should be possible to only 7562 * override the other configurations, for example the queue to steer 7563 * traffic. 7564 */ 7565 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry, 7566 const u8 *addr, const u8 flags) 7567 { 7568 if (!(entry->state & IGB_MAC_STATE_IN_USE)) 7569 return true; 7570 7571 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) != 7572 (flags & IGB_MAC_STATE_SRC_ADDR)) 7573 return false; 7574 7575 if (!ether_addr_equal(addr, entry->addr)) 7576 return false; 7577 7578 return true; 7579 } 7580 7581 /* Add a MAC filter for 'addr' directing matching traffic to 'queue', 7582 * 'flags' is used to indicate what kind of match is made, match is by 7583 * default for the destination address, if matching by source address 7584 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used. 7585 */ 7586 static int igb_add_mac_filter_flags(struct igb_adapter *adapter, 7587 const u8 *addr, const u8 queue, 7588 const u8 flags) 7589 { 7590 struct e1000_hw *hw = &adapter->hw; 7591 int rar_entries = hw->mac.rar_entry_count - 7592 adapter->vfs_allocated_count; 7593 int i; 7594 7595 if (is_zero_ether_addr(addr)) 7596 return -EINVAL; 7597 7598 /* Search for the first empty entry in the MAC table. 7599 * Do not touch entries at the end of the table reserved for the VF MAC 7600 * addresses. 7601 */ 7602 for (i = 0; i < rar_entries; i++) { 7603 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i], 7604 addr, flags)) 7605 continue; 7606 7607 ether_addr_copy(adapter->mac_table[i].addr, addr); 7608 adapter->mac_table[i].queue = queue; 7609 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags; 7610 7611 igb_rar_set_index(adapter, i); 7612 return i; 7613 } 7614 7615 return -ENOSPC; 7616 } 7617 7618 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7619 const u8 queue) 7620 { 7621 return igb_add_mac_filter_flags(adapter, addr, queue, 0); 7622 } 7623 7624 /* Remove a MAC filter for 'addr' directing matching traffic to 7625 * 'queue', 'flags' is used to indicate what kind of match need to be 7626 * removed, match is by default for the destination address, if 7627 * matching by source address is to be removed the flag 7628 * IGB_MAC_STATE_SRC_ADDR can be used. 7629 */ 7630 static int igb_del_mac_filter_flags(struct igb_adapter *adapter, 7631 const u8 *addr, const u8 queue, 7632 const u8 flags) 7633 { 7634 struct e1000_hw *hw = &adapter->hw; 7635 int rar_entries = hw->mac.rar_entry_count - 7636 adapter->vfs_allocated_count; 7637 int i; 7638 7639 if (is_zero_ether_addr(addr)) 7640 return -EINVAL; 7641 7642 /* Search for matching entry in the MAC table based on given address 7643 * and queue. Do not touch entries at the end of the table reserved 7644 * for the VF MAC addresses. 7645 */ 7646 for (i = 0; i < rar_entries; i++) { 7647 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)) 7648 continue; 7649 if ((adapter->mac_table[i].state & flags) != flags) 7650 continue; 7651 if (adapter->mac_table[i].queue != queue) 7652 continue; 7653 if (!ether_addr_equal(adapter->mac_table[i].addr, addr)) 7654 continue; 7655 7656 /* When a filter for the default address is "deleted", 7657 * we return it to its initial configuration 7658 */ 7659 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) { 7660 adapter->mac_table[i].state = 7661 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7662 adapter->mac_table[i].queue = 7663 adapter->vfs_allocated_count; 7664 } else { 7665 adapter->mac_table[i].state = 0; 7666 adapter->mac_table[i].queue = 0; 7667 eth_zero_addr(adapter->mac_table[i].addr); 7668 } 7669 7670 igb_rar_set_index(adapter, i); 7671 return 0; 7672 } 7673 7674 return -ENOENT; 7675 } 7676 7677 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7678 const u8 queue) 7679 { 7680 return igb_del_mac_filter_flags(adapter, addr, queue, 0); 7681 } 7682 7683 int igb_add_mac_steering_filter(struct igb_adapter *adapter, 7684 const u8 *addr, u8 queue, u8 flags) 7685 { 7686 struct e1000_hw *hw = &adapter->hw; 7687 7688 /* In theory, this should be supported on 82575 as well, but 7689 * that part wasn't easily accessible during development. 7690 */ 7691 if (hw->mac.type != e1000_i210) 7692 return -EOPNOTSUPP; 7693 7694 return igb_add_mac_filter_flags(adapter, addr, queue, 7695 IGB_MAC_STATE_QUEUE_STEERING | flags); 7696 } 7697 7698 int igb_del_mac_steering_filter(struct igb_adapter *adapter, 7699 const u8 *addr, u8 queue, u8 flags) 7700 { 7701 return igb_del_mac_filter_flags(adapter, addr, queue, 7702 IGB_MAC_STATE_QUEUE_STEERING | flags); 7703 } 7704 7705 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr) 7706 { 7707 struct igb_adapter *adapter = netdev_priv(netdev); 7708 int ret; 7709 7710 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7711 7712 return min_t(int, ret, 0); 7713 } 7714 7715 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr) 7716 { 7717 struct igb_adapter *adapter = netdev_priv(netdev); 7718 7719 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7720 7721 return 0; 7722 } 7723 7724 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf, 7725 const u32 info, const u8 *addr) 7726 { 7727 struct pci_dev *pdev = adapter->pdev; 7728 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7729 struct list_head *pos; 7730 struct vf_mac_filter *entry = NULL; 7731 int ret = 0; 7732 7733 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7734 !vf_data->trusted) { 7735 dev_warn(&pdev->dev, 7736 "VF %d requested MAC filter but is administratively denied\n", 7737 vf); 7738 return -EINVAL; 7739 } 7740 if (!is_valid_ether_addr(addr)) { 7741 dev_warn(&pdev->dev, 7742 "VF %d attempted to set invalid MAC filter\n", 7743 vf); 7744 return -EINVAL; 7745 } 7746 7747 switch (info) { 7748 case E1000_VF_MAC_FILTER_CLR: 7749 /* remove all unicast MAC filters related to the current VF */ 7750 list_for_each(pos, &adapter->vf_macs.l) { 7751 entry = list_entry(pos, struct vf_mac_filter, l); 7752 if (entry->vf == vf) { 7753 entry->vf = -1; 7754 entry->free = true; 7755 igb_del_mac_filter(adapter, entry->vf_mac, vf); 7756 } 7757 } 7758 break; 7759 case E1000_VF_MAC_FILTER_ADD: 7760 /* try to find empty slot in the list */ 7761 list_for_each(pos, &adapter->vf_macs.l) { 7762 entry = list_entry(pos, struct vf_mac_filter, l); 7763 if (entry->free) 7764 break; 7765 } 7766 7767 if (entry && entry->free) { 7768 entry->free = false; 7769 entry->vf = vf; 7770 ether_addr_copy(entry->vf_mac, addr); 7771 7772 ret = igb_add_mac_filter(adapter, addr, vf); 7773 ret = min_t(int, ret, 0); 7774 } else { 7775 ret = -ENOSPC; 7776 } 7777 7778 if (ret == -ENOSPC) 7779 dev_warn(&pdev->dev, 7780 "VF %d has requested MAC filter but there is no space for it\n", 7781 vf); 7782 break; 7783 default: 7784 ret = -EINVAL; 7785 break; 7786 } 7787 7788 return ret; 7789 } 7790 7791 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 7792 { 7793 struct pci_dev *pdev = adapter->pdev; 7794 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7795 u32 info = msg[0] & E1000_VT_MSGINFO_MASK; 7796 7797 /* The VF MAC Address is stored in a packed array of bytes 7798 * starting at the second 32 bit word of the msg array 7799 */ 7800 unsigned char *addr = (unsigned char *)&msg[1]; 7801 int ret = 0; 7802 7803 if (!info) { 7804 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7805 !vf_data->trusted) { 7806 dev_warn(&pdev->dev, 7807 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 7808 vf); 7809 return -EINVAL; 7810 } 7811 7812 if (!is_valid_ether_addr(addr)) { 7813 dev_warn(&pdev->dev, 7814 "VF %d attempted to set invalid MAC\n", 7815 vf); 7816 return -EINVAL; 7817 } 7818 7819 ret = igb_set_vf_mac(adapter, vf, addr); 7820 } else { 7821 ret = igb_set_vf_mac_filter(adapter, vf, info, addr); 7822 } 7823 7824 return ret; 7825 } 7826 7827 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 7828 { 7829 struct e1000_hw *hw = &adapter->hw; 7830 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7831 u32 msg = E1000_VT_MSGTYPE_NACK; 7832 7833 /* if device isn't clear to send it shouldn't be reading either */ 7834 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 7835 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 7836 igb_write_mbx(hw, &msg, 1, vf); 7837 vf_data->last_nack = jiffies; 7838 } 7839 } 7840 7841 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 7842 { 7843 struct pci_dev *pdev = adapter->pdev; 7844 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 7845 struct e1000_hw *hw = &adapter->hw; 7846 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7847 s32 retval; 7848 7849 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false); 7850 7851 if (retval) { 7852 /* if receive failed revoke VF CTS stats and restart init */ 7853 dev_err(&pdev->dev, "Error receiving message from VF\n"); 7854 vf_data->flags &= ~IGB_VF_FLAG_CTS; 7855 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7856 goto unlock; 7857 goto out; 7858 } 7859 7860 /* this is a message we already processed, do nothing */ 7861 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 7862 goto unlock; 7863 7864 /* until the vf completes a reset it should not be 7865 * allowed to start any configuration. 7866 */ 7867 if (msgbuf[0] == E1000_VF_RESET) { 7868 /* unlocks mailbox */ 7869 igb_vf_reset_msg(adapter, vf); 7870 return; 7871 } 7872 7873 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 7874 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7875 goto unlock; 7876 retval = -1; 7877 goto out; 7878 } 7879 7880 switch ((msgbuf[0] & 0xFFFF)) { 7881 case E1000_VF_SET_MAC_ADDR: 7882 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 7883 break; 7884 case E1000_VF_SET_PROMISC: 7885 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 7886 break; 7887 case E1000_VF_SET_MULTICAST: 7888 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 7889 break; 7890 case E1000_VF_SET_LPE: 7891 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 7892 break; 7893 case E1000_VF_SET_VLAN: 7894 retval = -1; 7895 if (vf_data->pf_vlan) 7896 dev_warn(&pdev->dev, 7897 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 7898 vf); 7899 else 7900 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf); 7901 break; 7902 default: 7903 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 7904 retval = -1; 7905 break; 7906 } 7907 7908 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 7909 out: 7910 /* notify the VF of the results of what it sent us */ 7911 if (retval) 7912 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 7913 else 7914 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 7915 7916 /* unlocks mailbox */ 7917 igb_write_mbx(hw, msgbuf, 1, vf); 7918 return; 7919 7920 unlock: 7921 igb_unlock_mbx(hw, vf); 7922 } 7923 7924 static void igb_msg_task(struct igb_adapter *adapter) 7925 { 7926 struct e1000_hw *hw = &adapter->hw; 7927 u32 vf; 7928 7929 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 7930 /* process any reset requests */ 7931 if (!igb_check_for_rst(hw, vf)) 7932 igb_vf_reset_event(adapter, vf); 7933 7934 /* process any messages pending */ 7935 if (!igb_check_for_msg(hw, vf)) 7936 igb_rcv_msg_from_vf(adapter, vf); 7937 7938 /* process any acks */ 7939 if (!igb_check_for_ack(hw, vf)) 7940 igb_rcv_ack_from_vf(adapter, vf); 7941 } 7942 } 7943 7944 /** 7945 * igb_set_uta - Set unicast filter table address 7946 * @adapter: board private structure 7947 * @set: boolean indicating if we are setting or clearing bits 7948 * 7949 * The unicast table address is a register array of 32-bit registers. 7950 * The table is meant to be used in a way similar to how the MTA is used 7951 * however due to certain limitations in the hardware it is necessary to 7952 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 7953 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 7954 **/ 7955 static void igb_set_uta(struct igb_adapter *adapter, bool set) 7956 { 7957 struct e1000_hw *hw = &adapter->hw; 7958 u32 uta = set ? ~0 : 0; 7959 int i; 7960 7961 /* we only need to do this if VMDq is enabled */ 7962 if (!adapter->vfs_allocated_count) 7963 return; 7964 7965 for (i = hw->mac.uta_reg_count; i--;) 7966 array_wr32(E1000_UTA, i, uta); 7967 } 7968 7969 /** 7970 * igb_intr_msi - Interrupt Handler 7971 * @irq: interrupt number 7972 * @data: pointer to a network interface device structure 7973 **/ 7974 static irqreturn_t igb_intr_msi(int irq, void *data) 7975 { 7976 struct igb_adapter *adapter = data; 7977 struct igb_q_vector *q_vector = adapter->q_vector[0]; 7978 struct e1000_hw *hw = &adapter->hw; 7979 /* read ICR disables interrupts using IAM */ 7980 u32 icr = rd32(E1000_ICR); 7981 7982 igb_write_itr(q_vector); 7983 7984 if (icr & E1000_ICR_DRSTA) 7985 schedule_work(&adapter->reset_task); 7986 7987 if (icr & E1000_ICR_DOUTSYNC) { 7988 /* HW is reporting DMA is out of sync */ 7989 adapter->stats.doosync++; 7990 } 7991 7992 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 7993 hw->mac.get_link_status = 1; 7994 if (!test_bit(__IGB_DOWN, &adapter->state)) 7995 mod_timer(&adapter->watchdog_timer, jiffies + 1); 7996 } 7997 7998 if (icr & E1000_ICR_TS) 7999 igb_tsync_interrupt(adapter); 8000 8001 napi_schedule(&q_vector->napi); 8002 8003 return IRQ_HANDLED; 8004 } 8005 8006 /** 8007 * igb_intr - Legacy Interrupt Handler 8008 * @irq: interrupt number 8009 * @data: pointer to a network interface device structure 8010 **/ 8011 static irqreturn_t igb_intr(int irq, void *data) 8012 { 8013 struct igb_adapter *adapter = data; 8014 struct igb_q_vector *q_vector = adapter->q_vector[0]; 8015 struct e1000_hw *hw = &adapter->hw; 8016 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 8017 * need for the IMC write 8018 */ 8019 u32 icr = rd32(E1000_ICR); 8020 8021 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 8022 * not set, then the adapter didn't send an interrupt 8023 */ 8024 if (!(icr & E1000_ICR_INT_ASSERTED)) 8025 return IRQ_NONE; 8026 8027 igb_write_itr(q_vector); 8028 8029 if (icr & E1000_ICR_DRSTA) 8030 schedule_work(&adapter->reset_task); 8031 8032 if (icr & E1000_ICR_DOUTSYNC) { 8033 /* HW is reporting DMA is out of sync */ 8034 adapter->stats.doosync++; 8035 } 8036 8037 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 8038 hw->mac.get_link_status = 1; 8039 /* guard against interrupt when we're going down */ 8040 if (!test_bit(__IGB_DOWN, &adapter->state)) 8041 mod_timer(&adapter->watchdog_timer, jiffies + 1); 8042 } 8043 8044 if (icr & E1000_ICR_TS) 8045 igb_tsync_interrupt(adapter); 8046 8047 napi_schedule(&q_vector->napi); 8048 8049 return IRQ_HANDLED; 8050 } 8051 8052 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 8053 { 8054 struct igb_adapter *adapter = q_vector->adapter; 8055 struct e1000_hw *hw = &adapter->hw; 8056 8057 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 8058 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 8059 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 8060 igb_set_itr(q_vector); 8061 else 8062 igb_update_ring_itr(q_vector); 8063 } 8064 8065 if (!test_bit(__IGB_DOWN, &adapter->state)) { 8066 if (adapter->flags & IGB_FLAG_HAS_MSIX) 8067 wr32(E1000_EIMS, q_vector->eims_value); 8068 else 8069 igb_irq_enable(adapter); 8070 } 8071 } 8072 8073 /** 8074 * igb_poll - NAPI Rx polling callback 8075 * @napi: napi polling structure 8076 * @budget: count of how many packets we should handle 8077 **/ 8078 static int igb_poll(struct napi_struct *napi, int budget) 8079 { 8080 struct igb_q_vector *q_vector = container_of(napi, 8081 struct igb_q_vector, 8082 napi); 8083 bool clean_complete = true; 8084 int work_done = 0; 8085 8086 #ifdef CONFIG_IGB_DCA 8087 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 8088 igb_update_dca(q_vector); 8089 #endif 8090 if (q_vector->tx.ring) 8091 clean_complete = igb_clean_tx_irq(q_vector, budget); 8092 8093 if (q_vector->rx.ring) { 8094 int cleaned = igb_clean_rx_irq(q_vector, budget); 8095 8096 work_done += cleaned; 8097 if (cleaned >= budget) 8098 clean_complete = false; 8099 } 8100 8101 /* If all work not completed, return budget and keep polling */ 8102 if (!clean_complete) 8103 return budget; 8104 8105 /* Exit the polling mode, but don't re-enable interrupts if stack might 8106 * poll us due to busy-polling 8107 */ 8108 if (likely(napi_complete_done(napi, work_done))) 8109 igb_ring_irq_enable(q_vector); 8110 8111 return work_done; 8112 } 8113 8114 /** 8115 * igb_clean_tx_irq - Reclaim resources after transmit completes 8116 * @q_vector: pointer to q_vector containing needed info 8117 * @napi_budget: Used to determine if we are in netpoll 8118 * 8119 * returns true if ring is completely cleaned 8120 **/ 8121 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget) 8122 { 8123 struct igb_adapter *adapter = q_vector->adapter; 8124 struct igb_ring *tx_ring = q_vector->tx.ring; 8125 struct igb_tx_buffer *tx_buffer; 8126 union e1000_adv_tx_desc *tx_desc; 8127 unsigned int total_bytes = 0, total_packets = 0; 8128 unsigned int budget = q_vector->tx.work_limit; 8129 unsigned int i = tx_ring->next_to_clean; 8130 8131 if (test_bit(__IGB_DOWN, &adapter->state)) 8132 return true; 8133 8134 tx_buffer = &tx_ring->tx_buffer_info[i]; 8135 tx_desc = IGB_TX_DESC(tx_ring, i); 8136 i -= tx_ring->count; 8137 8138 do { 8139 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 8140 8141 /* if next_to_watch is not set then there is no work pending */ 8142 if (!eop_desc) 8143 break; 8144 8145 /* prevent any other reads prior to eop_desc */ 8146 smp_rmb(); 8147 8148 /* if DD is not set pending work has not been completed */ 8149 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 8150 break; 8151 8152 /* clear next_to_watch to prevent false hangs */ 8153 tx_buffer->next_to_watch = NULL; 8154 8155 /* update the statistics for this packet */ 8156 total_bytes += tx_buffer->bytecount; 8157 total_packets += tx_buffer->gso_segs; 8158 8159 /* free the skb */ 8160 if (tx_buffer->type == IGB_TYPE_SKB) 8161 napi_consume_skb(tx_buffer->skb, napi_budget); 8162 else 8163 xdp_return_frame(tx_buffer->xdpf); 8164 8165 /* unmap skb header data */ 8166 dma_unmap_single(tx_ring->dev, 8167 dma_unmap_addr(tx_buffer, dma), 8168 dma_unmap_len(tx_buffer, len), 8169 DMA_TO_DEVICE); 8170 8171 /* clear tx_buffer data */ 8172 dma_unmap_len_set(tx_buffer, len, 0); 8173 8174 /* clear last DMA location and unmap remaining buffers */ 8175 while (tx_desc != eop_desc) { 8176 tx_buffer++; 8177 tx_desc++; 8178 i++; 8179 if (unlikely(!i)) { 8180 i -= tx_ring->count; 8181 tx_buffer = tx_ring->tx_buffer_info; 8182 tx_desc = IGB_TX_DESC(tx_ring, 0); 8183 } 8184 8185 /* unmap any remaining paged data */ 8186 if (dma_unmap_len(tx_buffer, len)) { 8187 dma_unmap_page(tx_ring->dev, 8188 dma_unmap_addr(tx_buffer, dma), 8189 dma_unmap_len(tx_buffer, len), 8190 DMA_TO_DEVICE); 8191 dma_unmap_len_set(tx_buffer, len, 0); 8192 } 8193 } 8194 8195 /* move us one more past the eop_desc for start of next pkt */ 8196 tx_buffer++; 8197 tx_desc++; 8198 i++; 8199 if (unlikely(!i)) { 8200 i -= tx_ring->count; 8201 tx_buffer = tx_ring->tx_buffer_info; 8202 tx_desc = IGB_TX_DESC(tx_ring, 0); 8203 } 8204 8205 /* issue prefetch for next Tx descriptor */ 8206 prefetch(tx_desc); 8207 8208 /* update budget accounting */ 8209 budget--; 8210 } while (likely(budget)); 8211 8212 netdev_tx_completed_queue(txring_txq(tx_ring), 8213 total_packets, total_bytes); 8214 i += tx_ring->count; 8215 tx_ring->next_to_clean = i; 8216 u64_stats_update_begin(&tx_ring->tx_syncp); 8217 tx_ring->tx_stats.bytes += total_bytes; 8218 tx_ring->tx_stats.packets += total_packets; 8219 u64_stats_update_end(&tx_ring->tx_syncp); 8220 q_vector->tx.total_bytes += total_bytes; 8221 q_vector->tx.total_packets += total_packets; 8222 8223 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 8224 struct e1000_hw *hw = &adapter->hw; 8225 8226 /* Detect a transmit hang in hardware, this serializes the 8227 * check with the clearing of time_stamp and movement of i 8228 */ 8229 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 8230 if (tx_buffer->next_to_watch && 8231 time_after(jiffies, tx_buffer->time_stamp + 8232 (adapter->tx_timeout_factor * HZ)) && 8233 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 8234 8235 /* detected Tx unit hang */ 8236 dev_err(tx_ring->dev, 8237 "Detected Tx Unit Hang\n" 8238 " Tx Queue <%d>\n" 8239 " TDH <%x>\n" 8240 " TDT <%x>\n" 8241 " next_to_use <%x>\n" 8242 " next_to_clean <%x>\n" 8243 "buffer_info[next_to_clean]\n" 8244 " time_stamp <%lx>\n" 8245 " next_to_watch <%p>\n" 8246 " jiffies <%lx>\n" 8247 " desc.status <%x>\n", 8248 tx_ring->queue_index, 8249 rd32(E1000_TDH(tx_ring->reg_idx)), 8250 readl(tx_ring->tail), 8251 tx_ring->next_to_use, 8252 tx_ring->next_to_clean, 8253 tx_buffer->time_stamp, 8254 tx_buffer->next_to_watch, 8255 jiffies, 8256 tx_buffer->next_to_watch->wb.status); 8257 netif_stop_subqueue(tx_ring->netdev, 8258 tx_ring->queue_index); 8259 8260 /* we are about to reset, no point in enabling stuff */ 8261 return true; 8262 } 8263 } 8264 8265 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 8266 if (unlikely(total_packets && 8267 netif_carrier_ok(tx_ring->netdev) && 8268 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 8269 /* Make sure that anybody stopping the queue after this 8270 * sees the new next_to_clean. 8271 */ 8272 smp_mb(); 8273 if (__netif_subqueue_stopped(tx_ring->netdev, 8274 tx_ring->queue_index) && 8275 !(test_bit(__IGB_DOWN, &adapter->state))) { 8276 netif_wake_subqueue(tx_ring->netdev, 8277 tx_ring->queue_index); 8278 8279 u64_stats_update_begin(&tx_ring->tx_syncp); 8280 tx_ring->tx_stats.restart_queue++; 8281 u64_stats_update_end(&tx_ring->tx_syncp); 8282 } 8283 } 8284 8285 return !!budget; 8286 } 8287 8288 /** 8289 * igb_reuse_rx_page - page flip buffer and store it back on the ring 8290 * @rx_ring: rx descriptor ring to store buffers on 8291 * @old_buff: donor buffer to have page reused 8292 * 8293 * Synchronizes page for reuse by the adapter 8294 **/ 8295 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 8296 struct igb_rx_buffer *old_buff) 8297 { 8298 struct igb_rx_buffer *new_buff; 8299 u16 nta = rx_ring->next_to_alloc; 8300 8301 new_buff = &rx_ring->rx_buffer_info[nta]; 8302 8303 /* update, and store next to alloc */ 8304 nta++; 8305 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 8306 8307 /* Transfer page from old buffer to new buffer. 8308 * Move each member individually to avoid possible store 8309 * forwarding stalls. 8310 */ 8311 new_buff->dma = old_buff->dma; 8312 new_buff->page = old_buff->page; 8313 new_buff->page_offset = old_buff->page_offset; 8314 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 8315 } 8316 8317 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 8318 int rx_buf_pgcnt) 8319 { 8320 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 8321 struct page *page = rx_buffer->page; 8322 8323 /* avoid re-using remote and pfmemalloc pages */ 8324 if (!dev_page_is_reusable(page)) 8325 return false; 8326 8327 #if (PAGE_SIZE < 8192) 8328 /* if we are only owner of page we can reuse it */ 8329 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 8330 return false; 8331 #else 8332 #define IGB_LAST_OFFSET \ 8333 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048) 8334 8335 if (rx_buffer->page_offset > IGB_LAST_OFFSET) 8336 return false; 8337 #endif 8338 8339 /* If we have drained the page fragment pool we need to update 8340 * the pagecnt_bias and page count so that we fully restock the 8341 * number of references the driver holds. 8342 */ 8343 if (unlikely(pagecnt_bias == 1)) { 8344 page_ref_add(page, USHRT_MAX - 1); 8345 rx_buffer->pagecnt_bias = USHRT_MAX; 8346 } 8347 8348 return true; 8349 } 8350 8351 /** 8352 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 8353 * @rx_ring: rx descriptor ring to transact packets on 8354 * @rx_buffer: buffer containing page to add 8355 * @skb: sk_buff to place the data into 8356 * @size: size of buffer to be added 8357 * 8358 * This function will add the data contained in rx_buffer->page to the skb. 8359 **/ 8360 static void igb_add_rx_frag(struct igb_ring *rx_ring, 8361 struct igb_rx_buffer *rx_buffer, 8362 struct sk_buff *skb, 8363 unsigned int size) 8364 { 8365 #if (PAGE_SIZE < 8192) 8366 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8367 #else 8368 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 8369 SKB_DATA_ALIGN(IGB_SKB_PAD + size) : 8370 SKB_DATA_ALIGN(size); 8371 #endif 8372 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 8373 rx_buffer->page_offset, size, truesize); 8374 #if (PAGE_SIZE < 8192) 8375 rx_buffer->page_offset ^= truesize; 8376 #else 8377 rx_buffer->page_offset += truesize; 8378 #endif 8379 } 8380 8381 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring, 8382 struct igb_rx_buffer *rx_buffer, 8383 struct xdp_buff *xdp, 8384 ktime_t timestamp) 8385 { 8386 #if (PAGE_SIZE < 8192) 8387 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8388 #else 8389 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 8390 xdp->data_hard_start); 8391 #endif 8392 unsigned int size = xdp->data_end - xdp->data; 8393 unsigned int headlen; 8394 struct sk_buff *skb; 8395 8396 /* prefetch first cache line of first page */ 8397 net_prefetch(xdp->data); 8398 8399 /* allocate a skb to store the frags */ 8400 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); 8401 if (unlikely(!skb)) 8402 return NULL; 8403 8404 if (timestamp) 8405 skb_hwtstamps(skb)->hwtstamp = timestamp; 8406 8407 /* Determine available headroom for copy */ 8408 headlen = size; 8409 if (headlen > IGB_RX_HDR_LEN) 8410 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN); 8411 8412 /* align pull length to size of long to optimize memcpy performance */ 8413 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long))); 8414 8415 /* update all of the pointers */ 8416 size -= headlen; 8417 if (size) { 8418 skb_add_rx_frag(skb, 0, rx_buffer->page, 8419 (xdp->data + headlen) - page_address(rx_buffer->page), 8420 size, truesize); 8421 #if (PAGE_SIZE < 8192) 8422 rx_buffer->page_offset ^= truesize; 8423 #else 8424 rx_buffer->page_offset += truesize; 8425 #endif 8426 } else { 8427 rx_buffer->pagecnt_bias++; 8428 } 8429 8430 return skb; 8431 } 8432 8433 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring, 8434 struct igb_rx_buffer *rx_buffer, 8435 struct xdp_buff *xdp, 8436 ktime_t timestamp) 8437 { 8438 #if (PAGE_SIZE < 8192) 8439 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8440 #else 8441 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 8442 SKB_DATA_ALIGN(xdp->data_end - 8443 xdp->data_hard_start); 8444 #endif 8445 unsigned int metasize = xdp->data - xdp->data_meta; 8446 struct sk_buff *skb; 8447 8448 /* prefetch first cache line of first page */ 8449 net_prefetch(xdp->data_meta); 8450 8451 /* build an skb around the page buffer */ 8452 skb = napi_build_skb(xdp->data_hard_start, truesize); 8453 if (unlikely(!skb)) 8454 return NULL; 8455 8456 /* update pointers within the skb to store the data */ 8457 skb_reserve(skb, xdp->data - xdp->data_hard_start); 8458 __skb_put(skb, xdp->data_end - xdp->data); 8459 8460 if (metasize) 8461 skb_metadata_set(skb, metasize); 8462 8463 if (timestamp) 8464 skb_hwtstamps(skb)->hwtstamp = timestamp; 8465 8466 /* update buffer offset */ 8467 #if (PAGE_SIZE < 8192) 8468 rx_buffer->page_offset ^= truesize; 8469 #else 8470 rx_buffer->page_offset += truesize; 8471 #endif 8472 8473 return skb; 8474 } 8475 8476 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter, 8477 struct igb_ring *rx_ring, 8478 struct xdp_buff *xdp) 8479 { 8480 int err, result = IGB_XDP_PASS; 8481 struct bpf_prog *xdp_prog; 8482 u32 act; 8483 8484 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 8485 8486 if (!xdp_prog) 8487 goto xdp_out; 8488 8489 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 8490 8491 act = bpf_prog_run_xdp(xdp_prog, xdp); 8492 switch (act) { 8493 case XDP_PASS: 8494 break; 8495 case XDP_TX: 8496 result = igb_xdp_xmit_back(adapter, xdp); 8497 if (result == IGB_XDP_CONSUMED) 8498 goto out_failure; 8499 break; 8500 case XDP_REDIRECT: 8501 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog); 8502 if (err) 8503 goto out_failure; 8504 result = IGB_XDP_REDIR; 8505 break; 8506 default: 8507 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act); 8508 fallthrough; 8509 case XDP_ABORTED: 8510 out_failure: 8511 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 8512 fallthrough; 8513 case XDP_DROP: 8514 result = IGB_XDP_CONSUMED; 8515 break; 8516 } 8517 xdp_out: 8518 return ERR_PTR(-result); 8519 } 8520 8521 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring, 8522 unsigned int size) 8523 { 8524 unsigned int truesize; 8525 8526 #if (PAGE_SIZE < 8192) 8527 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 8528 #else 8529 truesize = ring_uses_build_skb(rx_ring) ? 8530 SKB_DATA_ALIGN(IGB_SKB_PAD + size) + 8531 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 8532 SKB_DATA_ALIGN(size); 8533 #endif 8534 return truesize; 8535 } 8536 8537 static void igb_rx_buffer_flip(struct igb_ring *rx_ring, 8538 struct igb_rx_buffer *rx_buffer, 8539 unsigned int size) 8540 { 8541 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size); 8542 #if (PAGE_SIZE < 8192) 8543 rx_buffer->page_offset ^= truesize; 8544 #else 8545 rx_buffer->page_offset += truesize; 8546 #endif 8547 } 8548 8549 static inline void igb_rx_checksum(struct igb_ring *ring, 8550 union e1000_adv_rx_desc *rx_desc, 8551 struct sk_buff *skb) 8552 { 8553 skb_checksum_none_assert(skb); 8554 8555 /* Ignore Checksum bit is set */ 8556 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 8557 return; 8558 8559 /* Rx checksum disabled via ethtool */ 8560 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 8561 return; 8562 8563 /* TCP/UDP checksum error bit is set */ 8564 if (igb_test_staterr(rx_desc, 8565 E1000_RXDEXT_STATERR_TCPE | 8566 E1000_RXDEXT_STATERR_IPE)) { 8567 /* work around errata with sctp packets where the TCPE aka 8568 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 8569 * packets, (aka let the stack check the crc32c) 8570 */ 8571 if (!((skb->len == 60) && 8572 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 8573 u64_stats_update_begin(&ring->rx_syncp); 8574 ring->rx_stats.csum_err++; 8575 u64_stats_update_end(&ring->rx_syncp); 8576 } 8577 /* let the stack verify checksum errors */ 8578 return; 8579 } 8580 /* It must be a TCP or UDP packet with a valid checksum */ 8581 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 8582 E1000_RXD_STAT_UDPCS)) 8583 skb->ip_summed = CHECKSUM_UNNECESSARY; 8584 8585 dev_dbg(ring->dev, "cksum success: bits %08X\n", 8586 le32_to_cpu(rx_desc->wb.upper.status_error)); 8587 } 8588 8589 static inline void igb_rx_hash(struct igb_ring *ring, 8590 union e1000_adv_rx_desc *rx_desc, 8591 struct sk_buff *skb) 8592 { 8593 if (ring->netdev->features & NETIF_F_RXHASH) 8594 skb_set_hash(skb, 8595 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 8596 PKT_HASH_TYPE_L3); 8597 } 8598 8599 /** 8600 * igb_is_non_eop - process handling of non-EOP buffers 8601 * @rx_ring: Rx ring being processed 8602 * @rx_desc: Rx descriptor for current buffer 8603 * 8604 * This function updates next to clean. If the buffer is an EOP buffer 8605 * this function exits returning false, otherwise it will place the 8606 * sk_buff in the next buffer to be chained and return true indicating 8607 * that this is in fact a non-EOP buffer. 8608 **/ 8609 static bool igb_is_non_eop(struct igb_ring *rx_ring, 8610 union e1000_adv_rx_desc *rx_desc) 8611 { 8612 u32 ntc = rx_ring->next_to_clean + 1; 8613 8614 /* fetch, update, and store next to clean */ 8615 ntc = (ntc < rx_ring->count) ? ntc : 0; 8616 rx_ring->next_to_clean = ntc; 8617 8618 prefetch(IGB_RX_DESC(rx_ring, ntc)); 8619 8620 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 8621 return false; 8622 8623 return true; 8624 } 8625 8626 /** 8627 * igb_cleanup_headers - Correct corrupted or empty headers 8628 * @rx_ring: rx descriptor ring packet is being transacted on 8629 * @rx_desc: pointer to the EOP Rx descriptor 8630 * @skb: pointer to current skb being fixed 8631 * 8632 * Address the case where we are pulling data in on pages only 8633 * and as such no data is present in the skb header. 8634 * 8635 * In addition if skb is not at least 60 bytes we need to pad it so that 8636 * it is large enough to qualify as a valid Ethernet frame. 8637 * 8638 * Returns true if an error was encountered and skb was freed. 8639 **/ 8640 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 8641 union e1000_adv_rx_desc *rx_desc, 8642 struct sk_buff *skb) 8643 { 8644 /* XDP packets use error pointer so abort at this point */ 8645 if (IS_ERR(skb)) 8646 return true; 8647 8648 if (unlikely((igb_test_staterr(rx_desc, 8649 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 8650 struct net_device *netdev = rx_ring->netdev; 8651 if (!(netdev->features & NETIF_F_RXALL)) { 8652 dev_kfree_skb_any(skb); 8653 return true; 8654 } 8655 } 8656 8657 /* if eth_skb_pad returns an error the skb was freed */ 8658 if (eth_skb_pad(skb)) 8659 return true; 8660 8661 return false; 8662 } 8663 8664 /** 8665 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 8666 * @rx_ring: rx descriptor ring packet is being transacted on 8667 * @rx_desc: pointer to the EOP Rx descriptor 8668 * @skb: pointer to current skb being populated 8669 * 8670 * This function checks the ring, descriptor, and packet information in 8671 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 8672 * other fields within the skb. 8673 **/ 8674 static void igb_process_skb_fields(struct igb_ring *rx_ring, 8675 union e1000_adv_rx_desc *rx_desc, 8676 struct sk_buff *skb) 8677 { 8678 struct net_device *dev = rx_ring->netdev; 8679 8680 igb_rx_hash(rx_ring, rx_desc, skb); 8681 8682 igb_rx_checksum(rx_ring, rx_desc, skb); 8683 8684 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 8685 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 8686 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 8687 8688 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 8689 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 8690 u16 vid; 8691 8692 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 8693 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 8694 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); 8695 else 8696 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 8697 8698 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 8699 } 8700 8701 skb_record_rx_queue(skb, rx_ring->queue_index); 8702 8703 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 8704 } 8705 8706 static unsigned int igb_rx_offset(struct igb_ring *rx_ring) 8707 { 8708 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0; 8709 } 8710 8711 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring, 8712 const unsigned int size, int *rx_buf_pgcnt) 8713 { 8714 struct igb_rx_buffer *rx_buffer; 8715 8716 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 8717 *rx_buf_pgcnt = 8718 #if (PAGE_SIZE < 8192) 8719 page_count(rx_buffer->page); 8720 #else 8721 0; 8722 #endif 8723 prefetchw(rx_buffer->page); 8724 8725 /* we are reusing so sync this buffer for CPU use */ 8726 dma_sync_single_range_for_cpu(rx_ring->dev, 8727 rx_buffer->dma, 8728 rx_buffer->page_offset, 8729 size, 8730 DMA_FROM_DEVICE); 8731 8732 rx_buffer->pagecnt_bias--; 8733 8734 return rx_buffer; 8735 } 8736 8737 static void igb_put_rx_buffer(struct igb_ring *rx_ring, 8738 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt) 8739 { 8740 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) { 8741 /* hand second half of page back to the ring */ 8742 igb_reuse_rx_page(rx_ring, rx_buffer); 8743 } else { 8744 /* We are not reusing the buffer so unmap it and free 8745 * any references we are holding to it 8746 */ 8747 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 8748 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 8749 IGB_RX_DMA_ATTR); 8750 __page_frag_cache_drain(rx_buffer->page, 8751 rx_buffer->pagecnt_bias); 8752 } 8753 8754 /* clear contents of rx_buffer */ 8755 rx_buffer->page = NULL; 8756 } 8757 8758 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 8759 { 8760 struct igb_adapter *adapter = q_vector->adapter; 8761 struct igb_ring *rx_ring = q_vector->rx.ring; 8762 struct sk_buff *skb = rx_ring->skb; 8763 unsigned int total_bytes = 0, total_packets = 0; 8764 u16 cleaned_count = igb_desc_unused(rx_ring); 8765 unsigned int xdp_xmit = 0; 8766 struct xdp_buff xdp; 8767 u32 frame_sz = 0; 8768 int rx_buf_pgcnt; 8769 8770 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 8771 #if (PAGE_SIZE < 8192) 8772 frame_sz = igb_rx_frame_truesize(rx_ring, 0); 8773 #endif 8774 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 8775 8776 while (likely(total_packets < budget)) { 8777 union e1000_adv_rx_desc *rx_desc; 8778 struct igb_rx_buffer *rx_buffer; 8779 ktime_t timestamp = 0; 8780 int pkt_offset = 0; 8781 unsigned int size; 8782 void *pktbuf; 8783 8784 /* return some buffers to hardware, one at a time is too slow */ 8785 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 8786 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8787 cleaned_count = 0; 8788 } 8789 8790 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 8791 size = le16_to_cpu(rx_desc->wb.upper.length); 8792 if (!size) 8793 break; 8794 8795 /* This memory barrier is needed to keep us from reading 8796 * any other fields out of the rx_desc until we know the 8797 * descriptor has been written back 8798 */ 8799 dma_rmb(); 8800 8801 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt); 8802 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; 8803 8804 /* pull rx packet timestamp if available and valid */ 8805 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 8806 int ts_hdr_len; 8807 8808 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector, 8809 pktbuf, ×tamp); 8810 8811 pkt_offset += ts_hdr_len; 8812 size -= ts_hdr_len; 8813 } 8814 8815 /* retrieve a buffer from the ring */ 8816 if (!skb) { 8817 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring); 8818 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring); 8819 8820 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 8821 #if (PAGE_SIZE > 4096) 8822 /* At larger PAGE_SIZE, frame_sz depend on len size */ 8823 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size); 8824 #endif 8825 skb = igb_run_xdp(adapter, rx_ring, &xdp); 8826 } 8827 8828 if (IS_ERR(skb)) { 8829 unsigned int xdp_res = -PTR_ERR(skb); 8830 8831 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) { 8832 xdp_xmit |= xdp_res; 8833 igb_rx_buffer_flip(rx_ring, rx_buffer, size); 8834 } else { 8835 rx_buffer->pagecnt_bias++; 8836 } 8837 total_packets++; 8838 total_bytes += size; 8839 } else if (skb) 8840 igb_add_rx_frag(rx_ring, rx_buffer, skb, size); 8841 else if (ring_uses_build_skb(rx_ring)) 8842 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, 8843 timestamp); 8844 else 8845 skb = igb_construct_skb(rx_ring, rx_buffer, 8846 &xdp, timestamp); 8847 8848 /* exit if we failed to retrieve a buffer */ 8849 if (!skb) { 8850 rx_ring->rx_stats.alloc_failed++; 8851 rx_buffer->pagecnt_bias++; 8852 break; 8853 } 8854 8855 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt); 8856 cleaned_count++; 8857 8858 /* fetch next buffer in frame if non-eop */ 8859 if (igb_is_non_eop(rx_ring, rx_desc)) 8860 continue; 8861 8862 /* verify the packet layout is correct */ 8863 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 8864 skb = NULL; 8865 continue; 8866 } 8867 8868 /* probably a little skewed due to removing CRC */ 8869 total_bytes += skb->len; 8870 8871 /* populate checksum, timestamp, VLAN, and protocol */ 8872 igb_process_skb_fields(rx_ring, rx_desc, skb); 8873 8874 napi_gro_receive(&q_vector->napi, skb); 8875 8876 /* reset skb pointer */ 8877 skb = NULL; 8878 8879 /* update budget accounting */ 8880 total_packets++; 8881 } 8882 8883 /* place incomplete frames back on ring for completion */ 8884 rx_ring->skb = skb; 8885 8886 if (xdp_xmit & IGB_XDP_REDIR) 8887 xdp_do_flush(); 8888 8889 if (xdp_xmit & IGB_XDP_TX) { 8890 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter); 8891 8892 igb_xdp_ring_update_tail(tx_ring); 8893 } 8894 8895 u64_stats_update_begin(&rx_ring->rx_syncp); 8896 rx_ring->rx_stats.packets += total_packets; 8897 rx_ring->rx_stats.bytes += total_bytes; 8898 u64_stats_update_end(&rx_ring->rx_syncp); 8899 q_vector->rx.total_packets += total_packets; 8900 q_vector->rx.total_bytes += total_bytes; 8901 8902 if (cleaned_count) 8903 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8904 8905 return total_packets; 8906 } 8907 8908 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 8909 struct igb_rx_buffer *bi) 8910 { 8911 struct page *page = bi->page; 8912 dma_addr_t dma; 8913 8914 /* since we are recycling buffers we should seldom need to alloc */ 8915 if (likely(page)) 8916 return true; 8917 8918 /* alloc new page for storage */ 8919 page = dev_alloc_pages(igb_rx_pg_order(rx_ring)); 8920 if (unlikely(!page)) { 8921 rx_ring->rx_stats.alloc_failed++; 8922 return false; 8923 } 8924 8925 /* map page for use */ 8926 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 8927 igb_rx_pg_size(rx_ring), 8928 DMA_FROM_DEVICE, 8929 IGB_RX_DMA_ATTR); 8930 8931 /* if mapping failed free memory back to system since 8932 * there isn't much point in holding memory we can't use 8933 */ 8934 if (dma_mapping_error(rx_ring->dev, dma)) { 8935 __free_pages(page, igb_rx_pg_order(rx_ring)); 8936 8937 rx_ring->rx_stats.alloc_failed++; 8938 return false; 8939 } 8940 8941 bi->dma = dma; 8942 bi->page = page; 8943 bi->page_offset = igb_rx_offset(rx_ring); 8944 page_ref_add(page, USHRT_MAX - 1); 8945 bi->pagecnt_bias = USHRT_MAX; 8946 8947 return true; 8948 } 8949 8950 /** 8951 * igb_alloc_rx_buffers - Replace used receive buffers 8952 * @rx_ring: rx descriptor ring to allocate new receive buffers 8953 * @cleaned_count: count of buffers to allocate 8954 **/ 8955 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 8956 { 8957 union e1000_adv_rx_desc *rx_desc; 8958 struct igb_rx_buffer *bi; 8959 u16 i = rx_ring->next_to_use; 8960 u16 bufsz; 8961 8962 /* nothing to do */ 8963 if (!cleaned_count) 8964 return; 8965 8966 rx_desc = IGB_RX_DESC(rx_ring, i); 8967 bi = &rx_ring->rx_buffer_info[i]; 8968 i -= rx_ring->count; 8969 8970 bufsz = igb_rx_bufsz(rx_ring); 8971 8972 do { 8973 if (!igb_alloc_mapped_page(rx_ring, bi)) 8974 break; 8975 8976 /* sync the buffer for use by the device */ 8977 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 8978 bi->page_offset, bufsz, 8979 DMA_FROM_DEVICE); 8980 8981 /* Refresh the desc even if buffer_addrs didn't change 8982 * because each write-back erases this info. 8983 */ 8984 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 8985 8986 rx_desc++; 8987 bi++; 8988 i++; 8989 if (unlikely(!i)) { 8990 rx_desc = IGB_RX_DESC(rx_ring, 0); 8991 bi = rx_ring->rx_buffer_info; 8992 i -= rx_ring->count; 8993 } 8994 8995 /* clear the length for the next_to_use descriptor */ 8996 rx_desc->wb.upper.length = 0; 8997 8998 cleaned_count--; 8999 } while (cleaned_count); 9000 9001 i += rx_ring->count; 9002 9003 if (rx_ring->next_to_use != i) { 9004 /* record the next descriptor to use */ 9005 rx_ring->next_to_use = i; 9006 9007 /* update next to alloc since we have filled the ring */ 9008 rx_ring->next_to_alloc = i; 9009 9010 /* Force memory writes to complete before letting h/w 9011 * know there are new descriptors to fetch. (Only 9012 * applicable for weak-ordered memory model archs, 9013 * such as IA-64). 9014 */ 9015 dma_wmb(); 9016 writel(i, rx_ring->tail); 9017 } 9018 } 9019 9020 /** 9021 * igb_mii_ioctl - 9022 * @netdev: pointer to netdev struct 9023 * @ifr: interface structure 9024 * @cmd: ioctl command to execute 9025 **/ 9026 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 9027 { 9028 struct igb_adapter *adapter = netdev_priv(netdev); 9029 struct mii_ioctl_data *data = if_mii(ifr); 9030 9031 if (adapter->hw.phy.media_type != e1000_media_type_copper) 9032 return -EOPNOTSUPP; 9033 9034 switch (cmd) { 9035 case SIOCGMIIPHY: 9036 data->phy_id = adapter->hw.phy.addr; 9037 break; 9038 case SIOCGMIIREG: 9039 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 9040 &data->val_out)) 9041 return -EIO; 9042 break; 9043 case SIOCSMIIREG: 9044 default: 9045 return -EOPNOTSUPP; 9046 } 9047 return 0; 9048 } 9049 9050 /** 9051 * igb_ioctl - 9052 * @netdev: pointer to netdev struct 9053 * @ifr: interface structure 9054 * @cmd: ioctl command to execute 9055 **/ 9056 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 9057 { 9058 switch (cmd) { 9059 case SIOCGMIIPHY: 9060 case SIOCGMIIREG: 9061 case SIOCSMIIREG: 9062 return igb_mii_ioctl(netdev, ifr, cmd); 9063 case SIOCGHWTSTAMP: 9064 return igb_ptp_get_ts_config(netdev, ifr); 9065 case SIOCSHWTSTAMP: 9066 return igb_ptp_set_ts_config(netdev, ifr); 9067 default: 9068 return -EOPNOTSUPP; 9069 } 9070 } 9071 9072 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 9073 { 9074 struct igb_adapter *adapter = hw->back; 9075 9076 pci_read_config_word(adapter->pdev, reg, value); 9077 } 9078 9079 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 9080 { 9081 struct igb_adapter *adapter = hw->back; 9082 9083 pci_write_config_word(adapter->pdev, reg, *value); 9084 } 9085 9086 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 9087 { 9088 struct igb_adapter *adapter = hw->back; 9089 9090 if (pcie_capability_read_word(adapter->pdev, reg, value)) 9091 return -E1000_ERR_CONFIG; 9092 9093 return 0; 9094 } 9095 9096 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 9097 { 9098 struct igb_adapter *adapter = hw->back; 9099 9100 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 9101 return -E1000_ERR_CONFIG; 9102 9103 return 0; 9104 } 9105 9106 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 9107 { 9108 struct igb_adapter *adapter = netdev_priv(netdev); 9109 struct e1000_hw *hw = &adapter->hw; 9110 u32 ctrl, rctl; 9111 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 9112 9113 if (enable) { 9114 /* enable VLAN tag insert/strip */ 9115 ctrl = rd32(E1000_CTRL); 9116 ctrl |= E1000_CTRL_VME; 9117 wr32(E1000_CTRL, ctrl); 9118 9119 /* Disable CFI check */ 9120 rctl = rd32(E1000_RCTL); 9121 rctl &= ~E1000_RCTL_CFIEN; 9122 wr32(E1000_RCTL, rctl); 9123 } else { 9124 /* disable VLAN tag insert/strip */ 9125 ctrl = rd32(E1000_CTRL); 9126 ctrl &= ~E1000_CTRL_VME; 9127 wr32(E1000_CTRL, ctrl); 9128 } 9129 9130 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable); 9131 } 9132 9133 static int igb_vlan_rx_add_vid(struct net_device *netdev, 9134 __be16 proto, u16 vid) 9135 { 9136 struct igb_adapter *adapter = netdev_priv(netdev); 9137 struct e1000_hw *hw = &adapter->hw; 9138 int pf_id = adapter->vfs_allocated_count; 9139 9140 /* add the filter since PF can receive vlans w/o entry in vlvf */ 9141 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9142 igb_vfta_set(hw, vid, pf_id, true, !!vid); 9143 9144 set_bit(vid, adapter->active_vlans); 9145 9146 return 0; 9147 } 9148 9149 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 9150 __be16 proto, u16 vid) 9151 { 9152 struct igb_adapter *adapter = netdev_priv(netdev); 9153 int pf_id = adapter->vfs_allocated_count; 9154 struct e1000_hw *hw = &adapter->hw; 9155 9156 /* remove VID from filter table */ 9157 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9158 igb_vfta_set(hw, vid, pf_id, false, true); 9159 9160 clear_bit(vid, adapter->active_vlans); 9161 9162 return 0; 9163 } 9164 9165 static void igb_restore_vlan(struct igb_adapter *adapter) 9166 { 9167 u16 vid = 1; 9168 9169 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 9170 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 9171 9172 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID) 9173 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 9174 } 9175 9176 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 9177 { 9178 struct pci_dev *pdev = adapter->pdev; 9179 struct e1000_mac_info *mac = &adapter->hw.mac; 9180 9181 mac->autoneg = 0; 9182 9183 /* Make sure dplx is at most 1 bit and lsb of speed is not set 9184 * for the switch() below to work 9185 */ 9186 if ((spd & 1) || (dplx & ~1)) 9187 goto err_inval; 9188 9189 /* Fiber NIC's only allow 1000 gbps Full duplex 9190 * and 100Mbps Full duplex for 100baseFx sfp 9191 */ 9192 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 9193 switch (spd + dplx) { 9194 case SPEED_10 + DUPLEX_HALF: 9195 case SPEED_10 + DUPLEX_FULL: 9196 case SPEED_100 + DUPLEX_HALF: 9197 goto err_inval; 9198 default: 9199 break; 9200 } 9201 } 9202 9203 switch (spd + dplx) { 9204 case SPEED_10 + DUPLEX_HALF: 9205 mac->forced_speed_duplex = ADVERTISE_10_HALF; 9206 break; 9207 case SPEED_10 + DUPLEX_FULL: 9208 mac->forced_speed_duplex = ADVERTISE_10_FULL; 9209 break; 9210 case SPEED_100 + DUPLEX_HALF: 9211 mac->forced_speed_duplex = ADVERTISE_100_HALF; 9212 break; 9213 case SPEED_100 + DUPLEX_FULL: 9214 mac->forced_speed_duplex = ADVERTISE_100_FULL; 9215 break; 9216 case SPEED_1000 + DUPLEX_FULL: 9217 mac->autoneg = 1; 9218 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 9219 break; 9220 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 9221 default: 9222 goto err_inval; 9223 } 9224 9225 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 9226 adapter->hw.phy.mdix = AUTO_ALL_MODES; 9227 9228 return 0; 9229 9230 err_inval: 9231 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 9232 return -EINVAL; 9233 } 9234 9235 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 9236 bool runtime) 9237 { 9238 struct net_device *netdev = pci_get_drvdata(pdev); 9239 struct igb_adapter *adapter = netdev_priv(netdev); 9240 struct e1000_hw *hw = &adapter->hw; 9241 u32 ctrl, rctl, status; 9242 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 9243 bool wake; 9244 9245 rtnl_lock(); 9246 netif_device_detach(netdev); 9247 9248 if (netif_running(netdev)) 9249 __igb_close(netdev, true); 9250 9251 igb_ptp_suspend(adapter); 9252 9253 igb_clear_interrupt_scheme(adapter); 9254 rtnl_unlock(); 9255 9256 status = rd32(E1000_STATUS); 9257 if (status & E1000_STATUS_LU) 9258 wufc &= ~E1000_WUFC_LNKC; 9259 9260 if (wufc) { 9261 igb_setup_rctl(adapter); 9262 igb_set_rx_mode(netdev); 9263 9264 /* turn on all-multi mode if wake on multicast is enabled */ 9265 if (wufc & E1000_WUFC_MC) { 9266 rctl = rd32(E1000_RCTL); 9267 rctl |= E1000_RCTL_MPE; 9268 wr32(E1000_RCTL, rctl); 9269 } 9270 9271 ctrl = rd32(E1000_CTRL); 9272 ctrl |= E1000_CTRL_ADVD3WUC; 9273 wr32(E1000_CTRL, ctrl); 9274 9275 /* Allow time for pending master requests to run */ 9276 igb_disable_pcie_master(hw); 9277 9278 wr32(E1000_WUC, E1000_WUC_PME_EN); 9279 wr32(E1000_WUFC, wufc); 9280 } else { 9281 wr32(E1000_WUC, 0); 9282 wr32(E1000_WUFC, 0); 9283 } 9284 9285 wake = wufc || adapter->en_mng_pt; 9286 if (!wake) 9287 igb_power_down_link(adapter); 9288 else 9289 igb_power_up_link(adapter); 9290 9291 if (enable_wake) 9292 *enable_wake = wake; 9293 9294 /* Release control of h/w to f/w. If f/w is AMT enabled, this 9295 * would have already happened in close and is redundant. 9296 */ 9297 igb_release_hw_control(adapter); 9298 9299 pci_disable_device(pdev); 9300 9301 return 0; 9302 } 9303 9304 static void igb_deliver_wake_packet(struct net_device *netdev) 9305 { 9306 struct igb_adapter *adapter = netdev_priv(netdev); 9307 struct e1000_hw *hw = &adapter->hw; 9308 struct sk_buff *skb; 9309 u32 wupl; 9310 9311 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK; 9312 9313 /* WUPM stores only the first 128 bytes of the wake packet. 9314 * Read the packet only if we have the whole thing. 9315 */ 9316 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES)) 9317 return; 9318 9319 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES); 9320 if (!skb) 9321 return; 9322 9323 skb_put(skb, wupl); 9324 9325 /* Ensure reads are 32-bit aligned */ 9326 wupl = roundup(wupl, 4); 9327 9328 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl); 9329 9330 skb->protocol = eth_type_trans(skb, netdev); 9331 netif_rx(skb); 9332 } 9333 9334 static int __maybe_unused igb_suspend(struct device *dev) 9335 { 9336 return __igb_shutdown(to_pci_dev(dev), NULL, 0); 9337 } 9338 9339 static int __maybe_unused __igb_resume(struct device *dev, bool rpm) 9340 { 9341 struct pci_dev *pdev = to_pci_dev(dev); 9342 struct net_device *netdev = pci_get_drvdata(pdev); 9343 struct igb_adapter *adapter = netdev_priv(netdev); 9344 struct e1000_hw *hw = &adapter->hw; 9345 u32 err, val; 9346 9347 pci_set_power_state(pdev, PCI_D0); 9348 pci_restore_state(pdev); 9349 pci_save_state(pdev); 9350 9351 if (!pci_device_is_present(pdev)) 9352 return -ENODEV; 9353 err = pci_enable_device_mem(pdev); 9354 if (err) { 9355 dev_err(&pdev->dev, 9356 "igb: Cannot enable PCI device from suspend\n"); 9357 return err; 9358 } 9359 pci_set_master(pdev); 9360 9361 pci_enable_wake(pdev, PCI_D3hot, 0); 9362 pci_enable_wake(pdev, PCI_D3cold, 0); 9363 9364 if (igb_init_interrupt_scheme(adapter, true)) { 9365 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9366 return -ENOMEM; 9367 } 9368 9369 igb_reset(adapter); 9370 9371 /* let the f/w know that the h/w is now under the control of the 9372 * driver. 9373 */ 9374 igb_get_hw_control(adapter); 9375 9376 val = rd32(E1000_WUS); 9377 if (val & WAKE_PKT_WUS) 9378 igb_deliver_wake_packet(netdev); 9379 9380 wr32(E1000_WUS, ~0); 9381 9382 if (!rpm) 9383 rtnl_lock(); 9384 if (!err && netif_running(netdev)) 9385 err = __igb_open(netdev, true); 9386 9387 if (!err) 9388 netif_device_attach(netdev); 9389 if (!rpm) 9390 rtnl_unlock(); 9391 9392 return err; 9393 } 9394 9395 static int __maybe_unused igb_resume(struct device *dev) 9396 { 9397 return __igb_resume(dev, false); 9398 } 9399 9400 static int __maybe_unused igb_runtime_idle(struct device *dev) 9401 { 9402 struct net_device *netdev = dev_get_drvdata(dev); 9403 struct igb_adapter *adapter = netdev_priv(netdev); 9404 9405 if (!igb_has_link(adapter)) 9406 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 9407 9408 return -EBUSY; 9409 } 9410 9411 static int __maybe_unused igb_runtime_suspend(struct device *dev) 9412 { 9413 return __igb_shutdown(to_pci_dev(dev), NULL, 1); 9414 } 9415 9416 static int __maybe_unused igb_runtime_resume(struct device *dev) 9417 { 9418 return __igb_resume(dev, true); 9419 } 9420 9421 static void igb_shutdown(struct pci_dev *pdev) 9422 { 9423 bool wake; 9424 9425 __igb_shutdown(pdev, &wake, 0); 9426 9427 if (system_state == SYSTEM_POWER_OFF) { 9428 pci_wake_from_d3(pdev, wake); 9429 pci_set_power_state(pdev, PCI_D3hot); 9430 } 9431 } 9432 9433 #ifdef CONFIG_PCI_IOV 9434 static int igb_sriov_reinit(struct pci_dev *dev) 9435 { 9436 struct net_device *netdev = pci_get_drvdata(dev); 9437 struct igb_adapter *adapter = netdev_priv(netdev); 9438 struct pci_dev *pdev = adapter->pdev; 9439 9440 rtnl_lock(); 9441 9442 if (netif_running(netdev)) 9443 igb_close(netdev); 9444 else 9445 igb_reset(adapter); 9446 9447 igb_clear_interrupt_scheme(adapter); 9448 9449 igb_init_queue_configuration(adapter); 9450 9451 if (igb_init_interrupt_scheme(adapter, true)) { 9452 rtnl_unlock(); 9453 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9454 return -ENOMEM; 9455 } 9456 9457 if (netif_running(netdev)) 9458 igb_open(netdev); 9459 9460 rtnl_unlock(); 9461 9462 return 0; 9463 } 9464 9465 static int igb_pci_disable_sriov(struct pci_dev *dev) 9466 { 9467 int err = igb_disable_sriov(dev); 9468 9469 if (!err) 9470 err = igb_sriov_reinit(dev); 9471 9472 return err; 9473 } 9474 9475 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 9476 { 9477 int err = igb_enable_sriov(dev, num_vfs); 9478 9479 if (err) 9480 goto out; 9481 9482 err = igb_sriov_reinit(dev); 9483 if (!err) 9484 return num_vfs; 9485 9486 out: 9487 return err; 9488 } 9489 9490 #endif 9491 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 9492 { 9493 #ifdef CONFIG_PCI_IOV 9494 if (num_vfs == 0) 9495 return igb_pci_disable_sriov(dev); 9496 else 9497 return igb_pci_enable_sriov(dev, num_vfs); 9498 #endif 9499 return 0; 9500 } 9501 9502 /** 9503 * igb_io_error_detected - called when PCI error is detected 9504 * @pdev: Pointer to PCI device 9505 * @state: The current pci connection state 9506 * 9507 * This function is called after a PCI bus error affecting 9508 * this device has been detected. 9509 **/ 9510 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 9511 pci_channel_state_t state) 9512 { 9513 struct net_device *netdev = pci_get_drvdata(pdev); 9514 struct igb_adapter *adapter = netdev_priv(netdev); 9515 9516 netif_device_detach(netdev); 9517 9518 if (state == pci_channel_io_perm_failure) 9519 return PCI_ERS_RESULT_DISCONNECT; 9520 9521 if (netif_running(netdev)) 9522 igb_down(adapter); 9523 pci_disable_device(pdev); 9524 9525 /* Request a slot reset. */ 9526 return PCI_ERS_RESULT_NEED_RESET; 9527 } 9528 9529 /** 9530 * igb_io_slot_reset - called after the pci bus has been reset. 9531 * @pdev: Pointer to PCI device 9532 * 9533 * Restart the card from scratch, as if from a cold-boot. Implementation 9534 * resembles the first-half of the __igb_resume routine. 9535 **/ 9536 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 9537 { 9538 struct net_device *netdev = pci_get_drvdata(pdev); 9539 struct igb_adapter *adapter = netdev_priv(netdev); 9540 struct e1000_hw *hw = &adapter->hw; 9541 pci_ers_result_t result; 9542 9543 if (pci_enable_device_mem(pdev)) { 9544 dev_err(&pdev->dev, 9545 "Cannot re-enable PCI device after reset.\n"); 9546 result = PCI_ERS_RESULT_DISCONNECT; 9547 } else { 9548 pci_set_master(pdev); 9549 pci_restore_state(pdev); 9550 pci_save_state(pdev); 9551 9552 pci_enable_wake(pdev, PCI_D3hot, 0); 9553 pci_enable_wake(pdev, PCI_D3cold, 0); 9554 9555 /* In case of PCI error, adapter lose its HW address 9556 * so we should re-assign it here. 9557 */ 9558 hw->hw_addr = adapter->io_addr; 9559 9560 igb_reset(adapter); 9561 wr32(E1000_WUS, ~0); 9562 result = PCI_ERS_RESULT_RECOVERED; 9563 } 9564 9565 return result; 9566 } 9567 9568 /** 9569 * igb_io_resume - called when traffic can start flowing again. 9570 * @pdev: Pointer to PCI device 9571 * 9572 * This callback is called when the error recovery driver tells us that 9573 * its OK to resume normal operation. Implementation resembles the 9574 * second-half of the __igb_resume routine. 9575 */ 9576 static void igb_io_resume(struct pci_dev *pdev) 9577 { 9578 struct net_device *netdev = pci_get_drvdata(pdev); 9579 struct igb_adapter *adapter = netdev_priv(netdev); 9580 9581 if (netif_running(netdev)) { 9582 if (igb_up(adapter)) { 9583 dev_err(&pdev->dev, "igb_up failed after reset\n"); 9584 return; 9585 } 9586 } 9587 9588 netif_device_attach(netdev); 9589 9590 /* let the f/w know that the h/w is now under the control of the 9591 * driver. 9592 */ 9593 igb_get_hw_control(adapter); 9594 } 9595 9596 /** 9597 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 9598 * @adapter: Pointer to adapter structure 9599 * @index: Index of the RAR entry which need to be synced with MAC table 9600 **/ 9601 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index) 9602 { 9603 struct e1000_hw *hw = &adapter->hw; 9604 u32 rar_low, rar_high; 9605 u8 *addr = adapter->mac_table[index].addr; 9606 9607 /* HW expects these to be in network order when they are plugged 9608 * into the registers which are little endian. In order to guarantee 9609 * that ordering we need to do an leXX_to_cpup here in order to be 9610 * ready for the byteswap that occurs with writel 9611 */ 9612 rar_low = le32_to_cpup((__le32 *)(addr)); 9613 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 9614 9615 /* Indicate to hardware the Address is Valid. */ 9616 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) { 9617 if (is_valid_ether_addr(addr)) 9618 rar_high |= E1000_RAH_AV; 9619 9620 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR) 9621 rar_high |= E1000_RAH_ASEL_SRC_ADDR; 9622 9623 switch (hw->mac.type) { 9624 case e1000_82575: 9625 case e1000_i210: 9626 if (adapter->mac_table[index].state & 9627 IGB_MAC_STATE_QUEUE_STEERING) 9628 rar_high |= E1000_RAH_QSEL_ENABLE; 9629 9630 rar_high |= E1000_RAH_POOL_1 * 9631 adapter->mac_table[index].queue; 9632 break; 9633 default: 9634 rar_high |= E1000_RAH_POOL_1 << 9635 adapter->mac_table[index].queue; 9636 break; 9637 } 9638 } 9639 9640 wr32(E1000_RAL(index), rar_low); 9641 wrfl(); 9642 wr32(E1000_RAH(index), rar_high); 9643 wrfl(); 9644 } 9645 9646 static int igb_set_vf_mac(struct igb_adapter *adapter, 9647 int vf, unsigned char *mac_addr) 9648 { 9649 struct e1000_hw *hw = &adapter->hw; 9650 /* VF MAC addresses start at end of receive addresses and moves 9651 * towards the first, as a result a collision should not be possible 9652 */ 9653 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 9654 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses; 9655 9656 ether_addr_copy(vf_mac_addr, mac_addr); 9657 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr); 9658 adapter->mac_table[rar_entry].queue = vf; 9659 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE; 9660 igb_rar_set_index(adapter, rar_entry); 9661 9662 return 0; 9663 } 9664 9665 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 9666 { 9667 struct igb_adapter *adapter = netdev_priv(netdev); 9668 9669 if (vf >= adapter->vfs_allocated_count) 9670 return -EINVAL; 9671 9672 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC 9673 * flag and allows to overwrite the MAC via VF netdev. This 9674 * is necessary to allow libvirt a way to restore the original 9675 * MAC after unbinding vfio-pci and reloading igbvf after shutting 9676 * down a VM. 9677 */ 9678 if (is_zero_ether_addr(mac)) { 9679 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC; 9680 dev_info(&adapter->pdev->dev, 9681 "remove administratively set MAC on VF %d\n", 9682 vf); 9683 } else if (is_valid_ether_addr(mac)) { 9684 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 9685 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", 9686 mac, vf); 9687 dev_info(&adapter->pdev->dev, 9688 "Reload the VF driver to make this change effective."); 9689 /* Generate additional warning if PF is down */ 9690 if (test_bit(__IGB_DOWN, &adapter->state)) { 9691 dev_warn(&adapter->pdev->dev, 9692 "The VF MAC address has been set, but the PF device is not up.\n"); 9693 dev_warn(&adapter->pdev->dev, 9694 "Bring the PF device up before attempting to use the VF device.\n"); 9695 } 9696 } else { 9697 return -EINVAL; 9698 } 9699 return igb_set_vf_mac(adapter, vf, mac); 9700 } 9701 9702 static int igb_link_mbps(int internal_link_speed) 9703 { 9704 switch (internal_link_speed) { 9705 case SPEED_100: 9706 return 100; 9707 case SPEED_1000: 9708 return 1000; 9709 default: 9710 return 0; 9711 } 9712 } 9713 9714 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 9715 int link_speed) 9716 { 9717 int rf_dec, rf_int; 9718 u32 bcnrc_val; 9719 9720 if (tx_rate != 0) { 9721 /* Calculate the rate factor values to set */ 9722 rf_int = link_speed / tx_rate; 9723 rf_dec = (link_speed - (rf_int * tx_rate)); 9724 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) / 9725 tx_rate; 9726 9727 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 9728 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 9729 E1000_RTTBCNRC_RF_INT_MASK); 9730 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 9731 } else { 9732 bcnrc_val = 0; 9733 } 9734 9735 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 9736 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 9737 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 9738 */ 9739 wr32(E1000_RTTBCNRM, 0x14); 9740 wr32(E1000_RTTBCNRC, bcnrc_val); 9741 } 9742 9743 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 9744 { 9745 int actual_link_speed, i; 9746 bool reset_rate = false; 9747 9748 /* VF TX rate limit was not set or not supported */ 9749 if ((adapter->vf_rate_link_speed == 0) || 9750 (adapter->hw.mac.type != e1000_82576)) 9751 return; 9752 9753 actual_link_speed = igb_link_mbps(adapter->link_speed); 9754 if (actual_link_speed != adapter->vf_rate_link_speed) { 9755 reset_rate = true; 9756 adapter->vf_rate_link_speed = 0; 9757 dev_info(&adapter->pdev->dev, 9758 "Link speed has been changed. VF Transmit rate is disabled\n"); 9759 } 9760 9761 for (i = 0; i < adapter->vfs_allocated_count; i++) { 9762 if (reset_rate) 9763 adapter->vf_data[i].tx_rate = 0; 9764 9765 igb_set_vf_rate_limit(&adapter->hw, i, 9766 adapter->vf_data[i].tx_rate, 9767 actual_link_speed); 9768 } 9769 } 9770 9771 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 9772 int min_tx_rate, int max_tx_rate) 9773 { 9774 struct igb_adapter *adapter = netdev_priv(netdev); 9775 struct e1000_hw *hw = &adapter->hw; 9776 int actual_link_speed; 9777 9778 if (hw->mac.type != e1000_82576) 9779 return -EOPNOTSUPP; 9780 9781 if (min_tx_rate) 9782 return -EINVAL; 9783 9784 actual_link_speed = igb_link_mbps(adapter->link_speed); 9785 if ((vf >= adapter->vfs_allocated_count) || 9786 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 9787 (max_tx_rate < 0) || 9788 (max_tx_rate > actual_link_speed)) 9789 return -EINVAL; 9790 9791 adapter->vf_rate_link_speed = actual_link_speed; 9792 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 9793 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 9794 9795 return 0; 9796 } 9797 9798 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 9799 bool setting) 9800 { 9801 struct igb_adapter *adapter = netdev_priv(netdev); 9802 struct e1000_hw *hw = &adapter->hw; 9803 u32 reg_val, reg_offset; 9804 9805 if (!adapter->vfs_allocated_count) 9806 return -EOPNOTSUPP; 9807 9808 if (vf >= adapter->vfs_allocated_count) 9809 return -EINVAL; 9810 9811 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 9812 reg_val = rd32(reg_offset); 9813 if (setting) 9814 reg_val |= (BIT(vf) | 9815 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9816 else 9817 reg_val &= ~(BIT(vf) | 9818 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9819 wr32(reg_offset, reg_val); 9820 9821 adapter->vf_data[vf].spoofchk_enabled = setting; 9822 return 0; 9823 } 9824 9825 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting) 9826 { 9827 struct igb_adapter *adapter = netdev_priv(netdev); 9828 9829 if (vf >= adapter->vfs_allocated_count) 9830 return -EINVAL; 9831 if (adapter->vf_data[vf].trusted == setting) 9832 return 0; 9833 9834 adapter->vf_data[vf].trusted = setting; 9835 9836 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n", 9837 vf, setting ? "" : "not "); 9838 return 0; 9839 } 9840 9841 static int igb_ndo_get_vf_config(struct net_device *netdev, 9842 int vf, struct ifla_vf_info *ivi) 9843 { 9844 struct igb_adapter *adapter = netdev_priv(netdev); 9845 if (vf >= adapter->vfs_allocated_count) 9846 return -EINVAL; 9847 ivi->vf = vf; 9848 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 9849 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 9850 ivi->min_tx_rate = 0; 9851 ivi->vlan = adapter->vf_data[vf].pf_vlan; 9852 ivi->qos = adapter->vf_data[vf].pf_qos; 9853 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 9854 ivi->trusted = adapter->vf_data[vf].trusted; 9855 return 0; 9856 } 9857 9858 static void igb_vmm_control(struct igb_adapter *adapter) 9859 { 9860 struct e1000_hw *hw = &adapter->hw; 9861 u32 reg; 9862 9863 switch (hw->mac.type) { 9864 case e1000_82575: 9865 case e1000_i210: 9866 case e1000_i211: 9867 case e1000_i354: 9868 default: 9869 /* replication is not supported for 82575 */ 9870 return; 9871 case e1000_82576: 9872 /* notify HW that the MAC is adding vlan tags */ 9873 reg = rd32(E1000_DTXCTL); 9874 reg |= E1000_DTXCTL_VLAN_ADDED; 9875 wr32(E1000_DTXCTL, reg); 9876 fallthrough; 9877 case e1000_82580: 9878 /* enable replication vlan tag stripping */ 9879 reg = rd32(E1000_RPLOLR); 9880 reg |= E1000_RPLOLR_STRVLAN; 9881 wr32(E1000_RPLOLR, reg); 9882 fallthrough; 9883 case e1000_i350: 9884 /* none of the above registers are supported by i350 */ 9885 break; 9886 } 9887 9888 if (adapter->vfs_allocated_count) { 9889 igb_vmdq_set_loopback_pf(hw, true); 9890 igb_vmdq_set_replication_pf(hw, true); 9891 igb_vmdq_set_anti_spoofing_pf(hw, true, 9892 adapter->vfs_allocated_count); 9893 } else { 9894 igb_vmdq_set_loopback_pf(hw, false); 9895 igb_vmdq_set_replication_pf(hw, false); 9896 } 9897 } 9898 9899 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 9900 { 9901 struct e1000_hw *hw = &adapter->hw; 9902 u32 dmac_thr; 9903 u16 hwm; 9904 u32 reg; 9905 9906 if (hw->mac.type > e1000_82580) { 9907 if (adapter->flags & IGB_FLAG_DMAC) { 9908 /* force threshold to 0. */ 9909 wr32(E1000_DMCTXTH, 0); 9910 9911 /* DMA Coalescing high water mark needs to be greater 9912 * than the Rx threshold. Set hwm to PBA - max frame 9913 * size in 16B units, capping it at PBA - 6KB. 9914 */ 9915 hwm = 64 * (pba - 6); 9916 reg = rd32(E1000_FCRTC); 9917 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 9918 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 9919 & E1000_FCRTC_RTH_COAL_MASK); 9920 wr32(E1000_FCRTC, reg); 9921 9922 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 9923 * frame size, capping it at PBA - 10KB. 9924 */ 9925 dmac_thr = pba - 10; 9926 reg = rd32(E1000_DMACR); 9927 reg &= ~E1000_DMACR_DMACTHR_MASK; 9928 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 9929 & E1000_DMACR_DMACTHR_MASK); 9930 9931 /* transition to L0x or L1 if available..*/ 9932 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 9933 9934 /* watchdog timer= +-1000 usec in 32usec intervals */ 9935 reg |= (1000 >> 5); 9936 9937 /* Disable BMC-to-OS Watchdog Enable */ 9938 if (hw->mac.type != e1000_i354) 9939 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 9940 wr32(E1000_DMACR, reg); 9941 9942 /* no lower threshold to disable 9943 * coalescing(smart fifb)-UTRESH=0 9944 */ 9945 wr32(E1000_DMCRTRH, 0); 9946 9947 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 9948 9949 wr32(E1000_DMCTLX, reg); 9950 9951 /* free space in tx packet buffer to wake from 9952 * DMA coal 9953 */ 9954 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 9955 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 9956 } 9957 9958 if (hw->mac.type >= e1000_i210 || 9959 (adapter->flags & IGB_FLAG_DMAC)) { 9960 reg = rd32(E1000_PCIEMISC); 9961 reg |= E1000_PCIEMISC_LX_DECISION; 9962 wr32(E1000_PCIEMISC, reg); 9963 } /* endif adapter->dmac is not disabled */ 9964 } else if (hw->mac.type == e1000_82580) { 9965 u32 reg = rd32(E1000_PCIEMISC); 9966 9967 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 9968 wr32(E1000_DMACR, 0); 9969 } 9970 } 9971 9972 /** 9973 * igb_read_i2c_byte - Reads 8 bit word over I2C 9974 * @hw: pointer to hardware structure 9975 * @byte_offset: byte offset to read 9976 * @dev_addr: device address 9977 * @data: value read 9978 * 9979 * Performs byte read operation over I2C interface at 9980 * a specified device address. 9981 **/ 9982 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 9983 u8 dev_addr, u8 *data) 9984 { 9985 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 9986 struct i2c_client *this_client = adapter->i2c_client; 9987 s32 status; 9988 u16 swfw_mask = 0; 9989 9990 if (!this_client) 9991 return E1000_ERR_I2C; 9992 9993 swfw_mask = E1000_SWFW_PHY0_SM; 9994 9995 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 9996 return E1000_ERR_SWFW_SYNC; 9997 9998 status = i2c_smbus_read_byte_data(this_client, byte_offset); 9999 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 10000 10001 if (status < 0) 10002 return E1000_ERR_I2C; 10003 else { 10004 *data = status; 10005 return 0; 10006 } 10007 } 10008 10009 /** 10010 * igb_write_i2c_byte - Writes 8 bit word over I2C 10011 * @hw: pointer to hardware structure 10012 * @byte_offset: byte offset to write 10013 * @dev_addr: device address 10014 * @data: value to write 10015 * 10016 * Performs byte write operation over I2C interface at 10017 * a specified device address. 10018 **/ 10019 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 10020 u8 dev_addr, u8 data) 10021 { 10022 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 10023 struct i2c_client *this_client = adapter->i2c_client; 10024 s32 status; 10025 u16 swfw_mask = E1000_SWFW_PHY0_SM; 10026 10027 if (!this_client) 10028 return E1000_ERR_I2C; 10029 10030 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 10031 return E1000_ERR_SWFW_SYNC; 10032 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 10033 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 10034 10035 if (status) 10036 return E1000_ERR_I2C; 10037 else 10038 return 0; 10039 10040 } 10041 10042 int igb_reinit_queues(struct igb_adapter *adapter) 10043 { 10044 struct net_device *netdev = adapter->netdev; 10045 struct pci_dev *pdev = adapter->pdev; 10046 int err = 0; 10047 10048 if (netif_running(netdev)) 10049 igb_close(netdev); 10050 10051 igb_reset_interrupt_capability(adapter); 10052 10053 if (igb_init_interrupt_scheme(adapter, true)) { 10054 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 10055 return -ENOMEM; 10056 } 10057 10058 if (netif_running(netdev)) 10059 err = igb_open(netdev); 10060 10061 return err; 10062 } 10063 10064 static void igb_nfc_filter_exit(struct igb_adapter *adapter) 10065 { 10066 struct igb_nfc_filter *rule; 10067 10068 spin_lock(&adapter->nfc_lock); 10069 10070 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 10071 igb_erase_filter(adapter, rule); 10072 10073 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node) 10074 igb_erase_filter(adapter, rule); 10075 10076 spin_unlock(&adapter->nfc_lock); 10077 } 10078 10079 static void igb_nfc_filter_restore(struct igb_adapter *adapter) 10080 { 10081 struct igb_nfc_filter *rule; 10082 10083 spin_lock(&adapter->nfc_lock); 10084 10085 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 10086 igb_add_filter(adapter, rule); 10087 10088 spin_unlock(&adapter->nfc_lock); 10089 } 10090 /* igb_main.c */ 10091