xref: /openbmc/linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59 
60 #define MAJ 5
61 #define MIN 4
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 				"Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 				"Copyright (c) 2007-2014 Intel Corporation.";
71 
72 static const struct e1000_info *igb_info_tbl[] = {
73 	[board_82575] = &e1000_82575_info,
74 };
75 
76 static const struct pci_device_id igb_pci_tbl[] = {
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 	/* required last entry */
113 	{0, }
114 };
115 
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117 
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static void igb_get_stats64(struct net_device *dev,
141 			    struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 			  netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 				   bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 				 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
180 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181 
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 static int igb_disable_sriov(struct pci_dev *dev);
186 static int igb_pci_disable_sriov(struct pci_dev *dev);
187 #endif
188 
189 #ifdef CONFIG_PM
190 #ifdef CONFIG_PM_SLEEP
191 static int igb_suspend(struct device *);
192 #endif
193 static int igb_resume(struct device *);
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 static const struct dev_pm_ops igb_pm_ops = {
198 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 			igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 	.notifier_call	= igb_notify_dca,
209 	.next		= NULL,
210 	.priority	= 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221 #endif /* CONFIG_PCI_IOV */
222 
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 		     pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227 
228 static const struct pci_error_handlers igb_err_handler = {
229 	.error_detected = igb_io_error_detected,
230 	.slot_reset = igb_io_slot_reset,
231 	.resume = igb_io_resume,
232 };
233 
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235 
236 static struct pci_driver igb_driver = {
237 	.name     = igb_driver_name,
238 	.id_table = igb_pci_tbl,
239 	.probe    = igb_probe,
240 	.remove   = igb_remove,
241 #ifdef CONFIG_PM
242 	.driver.pm = &igb_pm_ops,
243 #endif
244 	.shutdown = igb_shutdown,
245 	.sriov_configure = igb_pci_sriov_configure,
246 	.err_handler = &igb_err_handler
247 };
248 
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253 
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258 
259 struct igb_reg_info {
260 	u32 ofs;
261 	char *name;
262 };
263 
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265 
266 	/* General Registers */
267 	{E1000_CTRL, "CTRL"},
268 	{E1000_STATUS, "STATUS"},
269 	{E1000_CTRL_EXT, "CTRL_EXT"},
270 
271 	/* Interrupt Registers */
272 	{E1000_ICR, "ICR"},
273 
274 	/* RX Registers */
275 	{E1000_RCTL, "RCTL"},
276 	{E1000_RDLEN(0), "RDLEN"},
277 	{E1000_RDH(0), "RDH"},
278 	{E1000_RDT(0), "RDT"},
279 	{E1000_RXDCTL(0), "RXDCTL"},
280 	{E1000_RDBAL(0), "RDBAL"},
281 	{E1000_RDBAH(0), "RDBAH"},
282 
283 	/* TX Registers */
284 	{E1000_TCTL, "TCTL"},
285 	{E1000_TDBAL(0), "TDBAL"},
286 	{E1000_TDBAH(0), "TDBAH"},
287 	{E1000_TDLEN(0), "TDLEN"},
288 	{E1000_TDH(0), "TDH"},
289 	{E1000_TDT(0), "TDT"},
290 	{E1000_TXDCTL(0), "TXDCTL"},
291 	{E1000_TDFH, "TDFH"},
292 	{E1000_TDFT, "TDFT"},
293 	{E1000_TDFHS, "TDFHS"},
294 	{E1000_TDFPC, "TDFPC"},
295 
296 	/* List Terminator */
297 	{}
298 };
299 
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303 	int n = 0;
304 	char rname[16];
305 	u32 regs[8];
306 
307 	switch (reginfo->ofs) {
308 	case E1000_RDLEN(0):
309 		for (n = 0; n < 4; n++)
310 			regs[n] = rd32(E1000_RDLEN(n));
311 		break;
312 	case E1000_RDH(0):
313 		for (n = 0; n < 4; n++)
314 			regs[n] = rd32(E1000_RDH(n));
315 		break;
316 	case E1000_RDT(0):
317 		for (n = 0; n < 4; n++)
318 			regs[n] = rd32(E1000_RDT(n));
319 		break;
320 	case E1000_RXDCTL(0):
321 		for (n = 0; n < 4; n++)
322 			regs[n] = rd32(E1000_RXDCTL(n));
323 		break;
324 	case E1000_RDBAL(0):
325 		for (n = 0; n < 4; n++)
326 			regs[n] = rd32(E1000_RDBAL(n));
327 		break;
328 	case E1000_RDBAH(0):
329 		for (n = 0; n < 4; n++)
330 			regs[n] = rd32(E1000_RDBAH(n));
331 		break;
332 	case E1000_TDBAL(0):
333 		for (n = 0; n < 4; n++)
334 			regs[n] = rd32(E1000_RDBAL(n));
335 		break;
336 	case E1000_TDBAH(0):
337 		for (n = 0; n < 4; n++)
338 			regs[n] = rd32(E1000_TDBAH(n));
339 		break;
340 	case E1000_TDLEN(0):
341 		for (n = 0; n < 4; n++)
342 			regs[n] = rd32(E1000_TDLEN(n));
343 		break;
344 	case E1000_TDH(0):
345 		for (n = 0; n < 4; n++)
346 			regs[n] = rd32(E1000_TDH(n));
347 		break;
348 	case E1000_TDT(0):
349 		for (n = 0; n < 4; n++)
350 			regs[n] = rd32(E1000_TDT(n));
351 		break;
352 	case E1000_TXDCTL(0):
353 		for (n = 0; n < 4; n++)
354 			regs[n] = rd32(E1000_TXDCTL(n));
355 		break;
356 	default:
357 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358 		return;
359 	}
360 
361 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 		regs[2], regs[3]);
364 }
365 
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369 	struct net_device *netdev = adapter->netdev;
370 	struct e1000_hw *hw = &adapter->hw;
371 	struct igb_reg_info *reginfo;
372 	struct igb_ring *tx_ring;
373 	union e1000_adv_tx_desc *tx_desc;
374 	struct my_u0 { u64 a; u64 b; } *u0;
375 	struct igb_ring *rx_ring;
376 	union e1000_adv_rx_desc *rx_desc;
377 	u32 staterr;
378 	u16 i, n;
379 
380 	if (!netif_msg_hw(adapter))
381 		return;
382 
383 	/* Print netdevice Info */
384 	if (netdev) {
385 		dev_info(&adapter->pdev->dev, "Net device Info\n");
386 		pr_info("Device Name     state            trans_start\n");
387 		pr_info("%-15s %016lX %016lX\n", netdev->name,
388 			netdev->state, dev_trans_start(netdev));
389 	}
390 
391 	/* Print Registers */
392 	dev_info(&adapter->pdev->dev, "Register Dump\n");
393 	pr_info(" Register Name   Value\n");
394 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 	     reginfo->name; reginfo++) {
396 		igb_regdump(hw, reginfo);
397 	}
398 
399 	/* Print TX Ring Summary */
400 	if (!netdev || !netif_running(netdev))
401 		goto exit;
402 
403 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405 	for (n = 0; n < adapter->num_tx_queues; n++) {
406 		struct igb_tx_buffer *buffer_info;
407 		tx_ring = adapter->tx_ring[n];
408 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 			(u64)dma_unmap_addr(buffer_info, dma),
412 			dma_unmap_len(buffer_info, len),
413 			buffer_info->next_to_watch,
414 			(u64)buffer_info->time_stamp);
415 	}
416 
417 	/* Print TX Rings */
418 	if (!netif_msg_tx_done(adapter))
419 		goto rx_ring_summary;
420 
421 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422 
423 	/* Transmit Descriptor Formats
424 	 *
425 	 * Advanced Transmit Descriptor
426 	 *   +--------------------------------------------------------------+
427 	 * 0 |         Buffer Address [63:0]                                |
428 	 *   +--------------------------------------------------------------+
429 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430 	 *   +--------------------------------------------------------------+
431 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
432 	 */
433 
434 	for (n = 0; n < adapter->num_tx_queues; n++) {
435 		tx_ring = adapter->tx_ring[n];
436 		pr_info("------------------------------------\n");
437 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 		pr_info("------------------------------------\n");
439 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
440 
441 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442 			const char *next_desc;
443 			struct igb_tx_buffer *buffer_info;
444 			tx_desc = IGB_TX_DESC(tx_ring, i);
445 			buffer_info = &tx_ring->tx_buffer_info[i];
446 			u0 = (struct my_u0 *)tx_desc;
447 			if (i == tx_ring->next_to_use &&
448 			    i == tx_ring->next_to_clean)
449 				next_desc = " NTC/U";
450 			else if (i == tx_ring->next_to_use)
451 				next_desc = " NTU";
452 			else if (i == tx_ring->next_to_clean)
453 				next_desc = " NTC";
454 			else
455 				next_desc = "";
456 
457 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
458 				i, le64_to_cpu(u0->a),
459 				le64_to_cpu(u0->b),
460 				(u64)dma_unmap_addr(buffer_info, dma),
461 				dma_unmap_len(buffer_info, len),
462 				buffer_info->next_to_watch,
463 				(u64)buffer_info->time_stamp,
464 				buffer_info->skb, next_desc);
465 
466 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
467 				print_hex_dump(KERN_INFO, "",
468 					DUMP_PREFIX_ADDRESS,
469 					16, 1, buffer_info->skb->data,
470 					dma_unmap_len(buffer_info, len),
471 					true);
472 		}
473 	}
474 
475 	/* Print RX Rings Summary */
476 rx_ring_summary:
477 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478 	pr_info("Queue [NTU] [NTC]\n");
479 	for (n = 0; n < adapter->num_rx_queues; n++) {
480 		rx_ring = adapter->rx_ring[n];
481 		pr_info(" %5d %5X %5X\n",
482 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
483 	}
484 
485 	/* Print RX Rings */
486 	if (!netif_msg_rx_status(adapter))
487 		goto exit;
488 
489 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490 
491 	/* Advanced Receive Descriptor (Read) Format
492 	 *    63                                           1        0
493 	 *    +-----------------------------------------------------+
494 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
495 	 *    +----------------------------------------------+------+
496 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
497 	 *    +-----------------------------------------------------+
498 	 *
499 	 *
500 	 * Advanced Receive Descriptor (Write-Back) Format
501 	 *
502 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
503 	 *   +------------------------------------------------------+
504 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
505 	 *   | Checksum   Ident  |   |           |    | Type | Type |
506 	 *   +------------------------------------------------------+
507 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508 	 *   +------------------------------------------------------+
509 	 *   63       48 47    32 31            20 19               0
510 	 */
511 
512 	for (n = 0; n < adapter->num_rx_queues; n++) {
513 		rx_ring = adapter->rx_ring[n];
514 		pr_info("------------------------------------\n");
515 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516 		pr_info("------------------------------------\n");
517 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519 
520 		for (i = 0; i < rx_ring->count; i++) {
521 			const char *next_desc;
522 			struct igb_rx_buffer *buffer_info;
523 			buffer_info = &rx_ring->rx_buffer_info[i];
524 			rx_desc = IGB_RX_DESC(rx_ring, i);
525 			u0 = (struct my_u0 *)rx_desc;
526 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527 
528 			if (i == rx_ring->next_to_use)
529 				next_desc = " NTU";
530 			else if (i == rx_ring->next_to_clean)
531 				next_desc = " NTC";
532 			else
533 				next_desc = "";
534 
535 			if (staterr & E1000_RXD_STAT_DD) {
536 				/* Descriptor Done */
537 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538 					"RWB", i,
539 					le64_to_cpu(u0->a),
540 					le64_to_cpu(u0->b),
541 					next_desc);
542 			} else {
543 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544 					"R  ", i,
545 					le64_to_cpu(u0->a),
546 					le64_to_cpu(u0->b),
547 					(u64)buffer_info->dma,
548 					next_desc);
549 
550 				if (netif_msg_pktdata(adapter) &&
551 				    buffer_info->dma && buffer_info->page) {
552 					print_hex_dump(KERN_INFO, "",
553 					  DUMP_PREFIX_ADDRESS,
554 					  16, 1,
555 					  page_address(buffer_info->page) +
556 						      buffer_info->page_offset,
557 					  igb_rx_bufsz(rx_ring), true);
558 				}
559 			}
560 		}
561 	}
562 
563 exit:
564 	return;
565 }
566 
567 /**
568  *  igb_get_i2c_data - Reads the I2C SDA data bit
569  *  @hw: pointer to hardware structure
570  *  @i2cctl: Current value of I2CCTL register
571  *
572  *  Returns the I2C data bit value
573  **/
574 static int igb_get_i2c_data(void *data)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	return !!(i2cctl & E1000_I2C_DATA_IN);
581 }
582 
583 /**
584  *  igb_set_i2c_data - Sets the I2C data bit
585  *  @data: pointer to hardware structure
586  *  @state: I2C data value (0 or 1) to set
587  *
588  *  Sets the I2C data bit
589  **/
590 static void igb_set_i2c_data(void *data, int state)
591 {
592 	struct igb_adapter *adapter = (struct igb_adapter *)data;
593 	struct e1000_hw *hw = &adapter->hw;
594 	s32 i2cctl = rd32(E1000_I2CPARAMS);
595 
596 	if (state)
597 		i2cctl |= E1000_I2C_DATA_OUT;
598 	else
599 		i2cctl &= ~E1000_I2C_DATA_OUT;
600 
601 	i2cctl &= ~E1000_I2C_DATA_OE_N;
602 	i2cctl |= E1000_I2C_CLK_OE_N;
603 	wr32(E1000_I2CPARAMS, i2cctl);
604 	wrfl();
605 
606 }
607 
608 /**
609  *  igb_set_i2c_clk - Sets the I2C SCL clock
610  *  @data: pointer to hardware structure
611  *  @state: state to set clock
612  *
613  *  Sets the I2C clock line to state
614  **/
615 static void igb_set_i2c_clk(void *data, int state)
616 {
617 	struct igb_adapter *adapter = (struct igb_adapter *)data;
618 	struct e1000_hw *hw = &adapter->hw;
619 	s32 i2cctl = rd32(E1000_I2CPARAMS);
620 
621 	if (state) {
622 		i2cctl |= E1000_I2C_CLK_OUT;
623 		i2cctl &= ~E1000_I2C_CLK_OE_N;
624 	} else {
625 		i2cctl &= ~E1000_I2C_CLK_OUT;
626 		i2cctl &= ~E1000_I2C_CLK_OE_N;
627 	}
628 	wr32(E1000_I2CPARAMS, i2cctl);
629 	wrfl();
630 }
631 
632 /**
633  *  igb_get_i2c_clk - Gets the I2C SCL clock state
634  *  @data: pointer to hardware structure
635  *
636  *  Gets the I2C clock state
637  **/
638 static int igb_get_i2c_clk(void *data)
639 {
640 	struct igb_adapter *adapter = (struct igb_adapter *)data;
641 	struct e1000_hw *hw = &adapter->hw;
642 	s32 i2cctl = rd32(E1000_I2CPARAMS);
643 
644 	return !!(i2cctl & E1000_I2C_CLK_IN);
645 }
646 
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648 	.setsda		= igb_set_i2c_data,
649 	.setscl		= igb_set_i2c_clk,
650 	.getsda		= igb_get_i2c_data,
651 	.getscl		= igb_get_i2c_clk,
652 	.udelay		= 5,
653 	.timeout	= 20,
654 };
655 
656 /**
657  *  igb_get_hw_dev - return device
658  *  @hw: pointer to hardware structure
659  *
660  *  used by hardware layer to print debugging information
661  **/
662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663 {
664 	struct igb_adapter *adapter = hw->back;
665 	return adapter->netdev;
666 }
667 
668 /**
669  *  igb_init_module - Driver Registration Routine
670  *
671  *  igb_init_module is the first routine called when the driver is
672  *  loaded. All it does is register with the PCI subsystem.
673  **/
674 static int __init igb_init_module(void)
675 {
676 	int ret;
677 
678 	pr_info("%s - version %s\n",
679 	       igb_driver_string, igb_driver_version);
680 	pr_info("%s\n", igb_copyright);
681 
682 #ifdef CONFIG_IGB_DCA
683 	dca_register_notify(&dca_notifier);
684 #endif
685 	ret = pci_register_driver(&igb_driver);
686 	return ret;
687 }
688 
689 module_init(igb_init_module);
690 
691 /**
692  *  igb_exit_module - Driver Exit Cleanup Routine
693  *
694  *  igb_exit_module is called just before the driver is removed
695  *  from memory.
696  **/
697 static void __exit igb_exit_module(void)
698 {
699 #ifdef CONFIG_IGB_DCA
700 	dca_unregister_notify(&dca_notifier);
701 #endif
702 	pci_unregister_driver(&igb_driver);
703 }
704 
705 module_exit(igb_exit_module);
706 
707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708 /**
709  *  igb_cache_ring_register - Descriptor ring to register mapping
710  *  @adapter: board private structure to initialize
711  *
712  *  Once we know the feature-set enabled for the device, we'll cache
713  *  the register offset the descriptor ring is assigned to.
714  **/
715 static void igb_cache_ring_register(struct igb_adapter *adapter)
716 {
717 	int i = 0, j = 0;
718 	u32 rbase_offset = adapter->vfs_allocated_count;
719 
720 	switch (adapter->hw.mac.type) {
721 	case e1000_82576:
722 		/* The queues are allocated for virtualization such that VF 0
723 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724 		 * In order to avoid collision we start at the first free queue
725 		 * and continue consuming queues in the same sequence
726 		 */
727 		if (adapter->vfs_allocated_count) {
728 			for (; i < adapter->rss_queues; i++)
729 				adapter->rx_ring[i]->reg_idx = rbase_offset +
730 							       Q_IDX_82576(i);
731 		}
732 		/* Fall through */
733 	case e1000_82575:
734 	case e1000_82580:
735 	case e1000_i350:
736 	case e1000_i354:
737 	case e1000_i210:
738 	case e1000_i211:
739 		/* Fall through */
740 	default:
741 		for (; i < adapter->num_rx_queues; i++)
742 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
743 		for (; j < adapter->num_tx_queues; j++)
744 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
745 		break;
746 	}
747 }
748 
749 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
750 {
751 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
752 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
753 	u32 value = 0;
754 
755 	if (E1000_REMOVED(hw_addr))
756 		return ~value;
757 
758 	value = readl(&hw_addr[reg]);
759 
760 	/* reads should not return all F's */
761 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
762 		struct net_device *netdev = igb->netdev;
763 		hw->hw_addr = NULL;
764 		netif_device_detach(netdev);
765 		netdev_err(netdev, "PCIe link lost, device now detached\n");
766 	}
767 
768 	return value;
769 }
770 
771 /**
772  *  igb_write_ivar - configure ivar for given MSI-X vector
773  *  @hw: pointer to the HW structure
774  *  @msix_vector: vector number we are allocating to a given ring
775  *  @index: row index of IVAR register to write within IVAR table
776  *  @offset: column offset of in IVAR, should be multiple of 8
777  *
778  *  This function is intended to handle the writing of the IVAR register
779  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
780  *  each containing an cause allocation for an Rx and Tx ring, and a
781  *  variable number of rows depending on the number of queues supported.
782  **/
783 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
784 			   int index, int offset)
785 {
786 	u32 ivar = array_rd32(E1000_IVAR0, index);
787 
788 	/* clear any bits that are currently set */
789 	ivar &= ~((u32)0xFF << offset);
790 
791 	/* write vector and valid bit */
792 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
793 
794 	array_wr32(E1000_IVAR0, index, ivar);
795 }
796 
797 #define IGB_N0_QUEUE -1
798 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
799 {
800 	struct igb_adapter *adapter = q_vector->adapter;
801 	struct e1000_hw *hw = &adapter->hw;
802 	int rx_queue = IGB_N0_QUEUE;
803 	int tx_queue = IGB_N0_QUEUE;
804 	u32 msixbm = 0;
805 
806 	if (q_vector->rx.ring)
807 		rx_queue = q_vector->rx.ring->reg_idx;
808 	if (q_vector->tx.ring)
809 		tx_queue = q_vector->tx.ring->reg_idx;
810 
811 	switch (hw->mac.type) {
812 	case e1000_82575:
813 		/* The 82575 assigns vectors using a bitmask, which matches the
814 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
815 		 * or more queues to a vector, we write the appropriate bits
816 		 * into the MSIXBM register for that vector.
817 		 */
818 		if (rx_queue > IGB_N0_QUEUE)
819 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
820 		if (tx_queue > IGB_N0_QUEUE)
821 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
822 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
823 			msixbm |= E1000_EIMS_OTHER;
824 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
825 		q_vector->eims_value = msixbm;
826 		break;
827 	case e1000_82576:
828 		/* 82576 uses a table that essentially consists of 2 columns
829 		 * with 8 rows.  The ordering is column-major so we use the
830 		 * lower 3 bits as the row index, and the 4th bit as the
831 		 * column offset.
832 		 */
833 		if (rx_queue > IGB_N0_QUEUE)
834 			igb_write_ivar(hw, msix_vector,
835 				       rx_queue & 0x7,
836 				       (rx_queue & 0x8) << 1);
837 		if (tx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       tx_queue & 0x7,
840 				       ((tx_queue & 0x8) << 1) + 8);
841 		q_vector->eims_value = BIT(msix_vector);
842 		break;
843 	case e1000_82580:
844 	case e1000_i350:
845 	case e1000_i354:
846 	case e1000_i210:
847 	case e1000_i211:
848 		/* On 82580 and newer adapters the scheme is similar to 82576
849 		 * however instead of ordering column-major we have things
850 		 * ordered row-major.  So we traverse the table by using
851 		 * bit 0 as the column offset, and the remaining bits as the
852 		 * row index.
853 		 */
854 		if (rx_queue > IGB_N0_QUEUE)
855 			igb_write_ivar(hw, msix_vector,
856 				       rx_queue >> 1,
857 				       (rx_queue & 0x1) << 4);
858 		if (tx_queue > IGB_N0_QUEUE)
859 			igb_write_ivar(hw, msix_vector,
860 				       tx_queue >> 1,
861 				       ((tx_queue & 0x1) << 4) + 8);
862 		q_vector->eims_value = BIT(msix_vector);
863 		break;
864 	default:
865 		BUG();
866 		break;
867 	}
868 
869 	/* add q_vector eims value to global eims_enable_mask */
870 	adapter->eims_enable_mask |= q_vector->eims_value;
871 
872 	/* configure q_vector to set itr on first interrupt */
873 	q_vector->set_itr = 1;
874 }
875 
876 /**
877  *  igb_configure_msix - Configure MSI-X hardware
878  *  @adapter: board private structure to initialize
879  *
880  *  igb_configure_msix sets up the hardware to properly
881  *  generate MSI-X interrupts.
882  **/
883 static void igb_configure_msix(struct igb_adapter *adapter)
884 {
885 	u32 tmp;
886 	int i, vector = 0;
887 	struct e1000_hw *hw = &adapter->hw;
888 
889 	adapter->eims_enable_mask = 0;
890 
891 	/* set vector for other causes, i.e. link changes */
892 	switch (hw->mac.type) {
893 	case e1000_82575:
894 		tmp = rd32(E1000_CTRL_EXT);
895 		/* enable MSI-X PBA support*/
896 		tmp |= E1000_CTRL_EXT_PBA_CLR;
897 
898 		/* Auto-Mask interrupts upon ICR read. */
899 		tmp |= E1000_CTRL_EXT_EIAME;
900 		tmp |= E1000_CTRL_EXT_IRCA;
901 
902 		wr32(E1000_CTRL_EXT, tmp);
903 
904 		/* enable msix_other interrupt */
905 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
906 		adapter->eims_other = E1000_EIMS_OTHER;
907 
908 		break;
909 
910 	case e1000_82576:
911 	case e1000_82580:
912 	case e1000_i350:
913 	case e1000_i354:
914 	case e1000_i210:
915 	case e1000_i211:
916 		/* Turn on MSI-X capability first, or our settings
917 		 * won't stick.  And it will take days to debug.
918 		 */
919 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
920 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
921 		     E1000_GPIE_NSICR);
922 
923 		/* enable msix_other interrupt */
924 		adapter->eims_other = BIT(vector);
925 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
926 
927 		wr32(E1000_IVAR_MISC, tmp);
928 		break;
929 	default:
930 		/* do nothing, since nothing else supports MSI-X */
931 		break;
932 	} /* switch (hw->mac.type) */
933 
934 	adapter->eims_enable_mask |= adapter->eims_other;
935 
936 	for (i = 0; i < adapter->num_q_vectors; i++)
937 		igb_assign_vector(adapter->q_vector[i], vector++);
938 
939 	wrfl();
940 }
941 
942 /**
943  *  igb_request_msix - Initialize MSI-X interrupts
944  *  @adapter: board private structure to initialize
945  *
946  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
947  *  kernel.
948  **/
949 static int igb_request_msix(struct igb_adapter *adapter)
950 {
951 	struct net_device *netdev = adapter->netdev;
952 	int i, err = 0, vector = 0, free_vector = 0;
953 
954 	err = request_irq(adapter->msix_entries[vector].vector,
955 			  igb_msix_other, 0, netdev->name, adapter);
956 	if (err)
957 		goto err_out;
958 
959 	for (i = 0; i < adapter->num_q_vectors; i++) {
960 		struct igb_q_vector *q_vector = adapter->q_vector[i];
961 
962 		vector++;
963 
964 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
965 
966 		if (q_vector->rx.ring && q_vector->tx.ring)
967 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
968 				q_vector->rx.ring->queue_index);
969 		else if (q_vector->tx.ring)
970 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
971 				q_vector->tx.ring->queue_index);
972 		else if (q_vector->rx.ring)
973 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
974 				q_vector->rx.ring->queue_index);
975 		else
976 			sprintf(q_vector->name, "%s-unused", netdev->name);
977 
978 		err = request_irq(adapter->msix_entries[vector].vector,
979 				  igb_msix_ring, 0, q_vector->name,
980 				  q_vector);
981 		if (err)
982 			goto err_free;
983 	}
984 
985 	igb_configure_msix(adapter);
986 	return 0;
987 
988 err_free:
989 	/* free already assigned IRQs */
990 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
991 
992 	vector--;
993 	for (i = 0; i < vector; i++) {
994 		free_irq(adapter->msix_entries[free_vector++].vector,
995 			 adapter->q_vector[i]);
996 	}
997 err_out:
998 	return err;
999 }
1000 
1001 /**
1002  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1003  *  @adapter: board private structure to initialize
1004  *  @v_idx: Index of vector to be freed
1005  *
1006  *  This function frees the memory allocated to the q_vector.
1007  **/
1008 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1009 {
1010 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011 
1012 	adapter->q_vector[v_idx] = NULL;
1013 
1014 	/* igb_get_stats64() might access the rings on this vector,
1015 	 * we must wait a grace period before freeing it.
1016 	 */
1017 	if (q_vector)
1018 		kfree_rcu(q_vector, rcu);
1019 }
1020 
1021 /**
1022  *  igb_reset_q_vector - Reset config for interrupt vector
1023  *  @adapter: board private structure to initialize
1024  *  @v_idx: Index of vector to be reset
1025  *
1026  *  If NAPI is enabled it will delete any references to the
1027  *  NAPI struct. This is preparation for igb_free_q_vector.
1028  **/
1029 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1030 {
1031 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1032 
1033 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1034 	 * allocated. So, q_vector is NULL so we should stop here.
1035 	 */
1036 	if (!q_vector)
1037 		return;
1038 
1039 	if (q_vector->tx.ring)
1040 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1041 
1042 	if (q_vector->rx.ring)
1043 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1044 
1045 	netif_napi_del(&q_vector->napi);
1046 
1047 }
1048 
1049 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1050 {
1051 	int v_idx = adapter->num_q_vectors;
1052 
1053 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1054 		pci_disable_msix(adapter->pdev);
1055 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1056 		pci_disable_msi(adapter->pdev);
1057 
1058 	while (v_idx--)
1059 		igb_reset_q_vector(adapter, v_idx);
1060 }
1061 
1062 /**
1063  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1064  *  @adapter: board private structure to initialize
1065  *
1066  *  This function frees the memory allocated to the q_vectors.  In addition if
1067  *  NAPI is enabled it will delete any references to the NAPI struct prior
1068  *  to freeing the q_vector.
1069  **/
1070 static void igb_free_q_vectors(struct igb_adapter *adapter)
1071 {
1072 	int v_idx = adapter->num_q_vectors;
1073 
1074 	adapter->num_tx_queues = 0;
1075 	adapter->num_rx_queues = 0;
1076 	adapter->num_q_vectors = 0;
1077 
1078 	while (v_idx--) {
1079 		igb_reset_q_vector(adapter, v_idx);
1080 		igb_free_q_vector(adapter, v_idx);
1081 	}
1082 }
1083 
1084 /**
1085  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1086  *  @adapter: board private structure to initialize
1087  *
1088  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1089  *  MSI-X interrupts allocated.
1090  */
1091 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1092 {
1093 	igb_free_q_vectors(adapter);
1094 	igb_reset_interrupt_capability(adapter);
1095 }
1096 
1097 /**
1098  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1099  *  @adapter: board private structure to initialize
1100  *  @msix: boolean value of MSIX capability
1101  *
1102  *  Attempt to configure interrupts using the best available
1103  *  capabilities of the hardware and kernel.
1104  **/
1105 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1106 {
1107 	int err;
1108 	int numvecs, i;
1109 
1110 	if (!msix)
1111 		goto msi_only;
1112 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1113 
1114 	/* Number of supported queues. */
1115 	adapter->num_rx_queues = adapter->rss_queues;
1116 	if (adapter->vfs_allocated_count)
1117 		adapter->num_tx_queues = 1;
1118 	else
1119 		adapter->num_tx_queues = adapter->rss_queues;
1120 
1121 	/* start with one vector for every Rx queue */
1122 	numvecs = adapter->num_rx_queues;
1123 
1124 	/* if Tx handler is separate add 1 for every Tx queue */
1125 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1126 		numvecs += adapter->num_tx_queues;
1127 
1128 	/* store the number of vectors reserved for queues */
1129 	adapter->num_q_vectors = numvecs;
1130 
1131 	/* add 1 vector for link status interrupts */
1132 	numvecs++;
1133 	for (i = 0; i < numvecs; i++)
1134 		adapter->msix_entries[i].entry = i;
1135 
1136 	err = pci_enable_msix_range(adapter->pdev,
1137 				    adapter->msix_entries,
1138 				    numvecs,
1139 				    numvecs);
1140 	if (err > 0)
1141 		return;
1142 
1143 	igb_reset_interrupt_capability(adapter);
1144 
1145 	/* If we can't do MSI-X, try MSI */
1146 msi_only:
1147 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1148 #ifdef CONFIG_PCI_IOV
1149 	/* disable SR-IOV for non MSI-X configurations */
1150 	if (adapter->vf_data) {
1151 		struct e1000_hw *hw = &adapter->hw;
1152 		/* disable iov and allow time for transactions to clear */
1153 		pci_disable_sriov(adapter->pdev);
1154 		msleep(500);
1155 
1156 		kfree(adapter->vf_data);
1157 		adapter->vf_data = NULL;
1158 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1159 		wrfl();
1160 		msleep(100);
1161 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1162 	}
1163 #endif
1164 	adapter->vfs_allocated_count = 0;
1165 	adapter->rss_queues = 1;
1166 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1167 	adapter->num_rx_queues = 1;
1168 	adapter->num_tx_queues = 1;
1169 	adapter->num_q_vectors = 1;
1170 	if (!pci_enable_msi(adapter->pdev))
1171 		adapter->flags |= IGB_FLAG_HAS_MSI;
1172 }
1173 
1174 static void igb_add_ring(struct igb_ring *ring,
1175 			 struct igb_ring_container *head)
1176 {
1177 	head->ring = ring;
1178 	head->count++;
1179 }
1180 
1181 /**
1182  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1183  *  @adapter: board private structure to initialize
1184  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1185  *  @v_idx: index of vector in adapter struct
1186  *  @txr_count: total number of Tx rings to allocate
1187  *  @txr_idx: index of first Tx ring to allocate
1188  *  @rxr_count: total number of Rx rings to allocate
1189  *  @rxr_idx: index of first Rx ring to allocate
1190  *
1191  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1192  **/
1193 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1194 			      int v_count, int v_idx,
1195 			      int txr_count, int txr_idx,
1196 			      int rxr_count, int rxr_idx)
1197 {
1198 	struct igb_q_vector *q_vector;
1199 	struct igb_ring *ring;
1200 	int ring_count, size;
1201 
1202 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1203 	if (txr_count > 1 || rxr_count > 1)
1204 		return -ENOMEM;
1205 
1206 	ring_count = txr_count + rxr_count;
1207 	size = sizeof(struct igb_q_vector) +
1208 	       (sizeof(struct igb_ring) * ring_count);
1209 
1210 	/* allocate q_vector and rings */
1211 	q_vector = adapter->q_vector[v_idx];
1212 	if (!q_vector) {
1213 		q_vector = kzalloc(size, GFP_KERNEL);
1214 	} else if (size > ksize(q_vector)) {
1215 		kfree_rcu(q_vector, rcu);
1216 		q_vector = kzalloc(size, GFP_KERNEL);
1217 	} else {
1218 		memset(q_vector, 0, size);
1219 	}
1220 	if (!q_vector)
1221 		return -ENOMEM;
1222 
1223 	/* initialize NAPI */
1224 	netif_napi_add(adapter->netdev, &q_vector->napi,
1225 		       igb_poll, 64);
1226 
1227 	/* tie q_vector and adapter together */
1228 	adapter->q_vector[v_idx] = q_vector;
1229 	q_vector->adapter = adapter;
1230 
1231 	/* initialize work limits */
1232 	q_vector->tx.work_limit = adapter->tx_work_limit;
1233 
1234 	/* initialize ITR configuration */
1235 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1236 	q_vector->itr_val = IGB_START_ITR;
1237 
1238 	/* initialize pointer to rings */
1239 	ring = q_vector->ring;
1240 
1241 	/* intialize ITR */
1242 	if (rxr_count) {
1243 		/* rx or rx/tx vector */
1244 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1245 			q_vector->itr_val = adapter->rx_itr_setting;
1246 	} else {
1247 		/* tx only vector */
1248 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1249 			q_vector->itr_val = adapter->tx_itr_setting;
1250 	}
1251 
1252 	if (txr_count) {
1253 		/* assign generic ring traits */
1254 		ring->dev = &adapter->pdev->dev;
1255 		ring->netdev = adapter->netdev;
1256 
1257 		/* configure backlink on ring */
1258 		ring->q_vector = q_vector;
1259 
1260 		/* update q_vector Tx values */
1261 		igb_add_ring(ring, &q_vector->tx);
1262 
1263 		/* For 82575, context index must be unique per ring. */
1264 		if (adapter->hw.mac.type == e1000_82575)
1265 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1266 
1267 		/* apply Tx specific ring traits */
1268 		ring->count = adapter->tx_ring_count;
1269 		ring->queue_index = txr_idx;
1270 
1271 		u64_stats_init(&ring->tx_syncp);
1272 		u64_stats_init(&ring->tx_syncp2);
1273 
1274 		/* assign ring to adapter */
1275 		adapter->tx_ring[txr_idx] = ring;
1276 
1277 		/* push pointer to next ring */
1278 		ring++;
1279 	}
1280 
1281 	if (rxr_count) {
1282 		/* assign generic ring traits */
1283 		ring->dev = &adapter->pdev->dev;
1284 		ring->netdev = adapter->netdev;
1285 
1286 		/* configure backlink on ring */
1287 		ring->q_vector = q_vector;
1288 
1289 		/* update q_vector Rx values */
1290 		igb_add_ring(ring, &q_vector->rx);
1291 
1292 		/* set flag indicating ring supports SCTP checksum offload */
1293 		if (adapter->hw.mac.type >= e1000_82576)
1294 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295 
1296 		/* On i350, i354, i210, and i211, loopback VLAN packets
1297 		 * have the tag byte-swapped.
1298 		 */
1299 		if (adapter->hw.mac.type >= e1000_i350)
1300 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301 
1302 		/* apply Rx specific ring traits */
1303 		ring->count = adapter->rx_ring_count;
1304 		ring->queue_index = rxr_idx;
1305 
1306 		u64_stats_init(&ring->rx_syncp);
1307 
1308 		/* assign ring to adapter */
1309 		adapter->rx_ring[rxr_idx] = ring;
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 
1316 /**
1317  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318  *  @adapter: board private structure to initialize
1319  *
1320  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321  *  return -ENOMEM.
1322  **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 	int q_vectors = adapter->num_q_vectors;
1326 	int rxr_remaining = adapter->num_rx_queues;
1327 	int txr_remaining = adapter->num_tx_queues;
1328 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 	int err;
1330 
1331 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 		for (; rxr_remaining; v_idx++) {
1333 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 						 0, 0, 1, rxr_idx);
1335 
1336 			if (err)
1337 				goto err_out;
1338 
1339 			/* update counts and index */
1340 			rxr_remaining--;
1341 			rxr_idx++;
1342 		}
1343 	}
1344 
1345 	for (; v_idx < q_vectors; v_idx++) {
1346 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348 
1349 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 					 tqpv, txr_idx, rqpv, rxr_idx);
1351 
1352 		if (err)
1353 			goto err_out;
1354 
1355 		/* update counts and index */
1356 		rxr_remaining -= rqpv;
1357 		txr_remaining -= tqpv;
1358 		rxr_idx++;
1359 		txr_idx++;
1360 	}
1361 
1362 	return 0;
1363 
1364 err_out:
1365 	adapter->num_tx_queues = 0;
1366 	adapter->num_rx_queues = 0;
1367 	adapter->num_q_vectors = 0;
1368 
1369 	while (v_idx--)
1370 		igb_free_q_vector(adapter, v_idx);
1371 
1372 	return -ENOMEM;
1373 }
1374 
1375 /**
1376  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377  *  @adapter: board private structure to initialize
1378  *  @msix: boolean value of MSIX capability
1379  *
1380  *  This function initializes the interrupts and allocates all of the queues.
1381  **/
1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384 	struct pci_dev *pdev = adapter->pdev;
1385 	int err;
1386 
1387 	igb_set_interrupt_capability(adapter, msix);
1388 
1389 	err = igb_alloc_q_vectors(adapter);
1390 	if (err) {
1391 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 		goto err_alloc_q_vectors;
1393 	}
1394 
1395 	igb_cache_ring_register(adapter);
1396 
1397 	return 0;
1398 
1399 err_alloc_q_vectors:
1400 	igb_reset_interrupt_capability(adapter);
1401 	return err;
1402 }
1403 
1404 /**
1405  *  igb_request_irq - initialize interrupts
1406  *  @adapter: board private structure to initialize
1407  *
1408  *  Attempts to configure interrupts using the best available
1409  *  capabilities of the hardware and kernel.
1410  **/
1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413 	struct net_device *netdev = adapter->netdev;
1414 	struct pci_dev *pdev = adapter->pdev;
1415 	int err = 0;
1416 
1417 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418 		err = igb_request_msix(adapter);
1419 		if (!err)
1420 			goto request_done;
1421 		/* fall back to MSI */
1422 		igb_free_all_tx_resources(adapter);
1423 		igb_free_all_rx_resources(adapter);
1424 
1425 		igb_clear_interrupt_scheme(adapter);
1426 		err = igb_init_interrupt_scheme(adapter, false);
1427 		if (err)
1428 			goto request_done;
1429 
1430 		igb_setup_all_tx_resources(adapter);
1431 		igb_setup_all_rx_resources(adapter);
1432 		igb_configure(adapter);
1433 	}
1434 
1435 	igb_assign_vector(adapter->q_vector[0], 0);
1436 
1437 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1439 				  netdev->name, adapter);
1440 		if (!err)
1441 			goto request_done;
1442 
1443 		/* fall back to legacy interrupts */
1444 		igb_reset_interrupt_capability(adapter);
1445 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446 	}
1447 
1448 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449 			  netdev->name, adapter);
1450 
1451 	if (err)
1452 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453 			err);
1454 
1455 request_done:
1456 	return err;
1457 }
1458 
1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462 		int vector = 0, i;
1463 
1464 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1465 
1466 		for (i = 0; i < adapter->num_q_vectors; i++)
1467 			free_irq(adapter->msix_entries[vector++].vector,
1468 				 adapter->q_vector[i]);
1469 	} else {
1470 		free_irq(adapter->pdev->irq, adapter);
1471 	}
1472 }
1473 
1474 /**
1475  *  igb_irq_disable - Mask off interrupt generation on the NIC
1476  *  @adapter: board private structure
1477  **/
1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480 	struct e1000_hw *hw = &adapter->hw;
1481 
1482 	/* we need to be careful when disabling interrupts.  The VFs are also
1483 	 * mapped into these registers and so clearing the bits can cause
1484 	 * issues on the VF drivers so we only need to clear what we set
1485 	 */
1486 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487 		u32 regval = rd32(E1000_EIAM);
1488 
1489 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 		regval = rd32(E1000_EIAC);
1492 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493 	}
1494 
1495 	wr32(E1000_IAM, 0);
1496 	wr32(E1000_IMC, ~0);
1497 	wrfl();
1498 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 		int i;
1500 
1501 		for (i = 0; i < adapter->num_q_vectors; i++)
1502 			synchronize_irq(adapter->msix_entries[i].vector);
1503 	} else {
1504 		synchronize_irq(adapter->pdev->irq);
1505 	}
1506 }
1507 
1508 /**
1509  *  igb_irq_enable - Enable default interrupt generation settings
1510  *  @adapter: board private structure
1511  **/
1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514 	struct e1000_hw *hw = &adapter->hw;
1515 
1516 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518 		u32 regval = rd32(E1000_EIAC);
1519 
1520 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 		regval = rd32(E1000_EIAM);
1522 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1524 		if (adapter->vfs_allocated_count) {
1525 			wr32(E1000_MBVFIMR, 0xFF);
1526 			ims |= E1000_IMS_VMMB;
1527 		}
1528 		wr32(E1000_IMS, ims);
1529 	} else {
1530 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 				E1000_IMS_DRSTA);
1534 	}
1535 }
1536 
1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539 	struct e1000_hw *hw = &adapter->hw;
1540 	u16 pf_id = adapter->vfs_allocated_count;
1541 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 	u16 old_vid = adapter->mng_vlan_id;
1543 
1544 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 		/* add VID to filter table */
1546 		igb_vfta_set(hw, vid, pf_id, true, true);
1547 		adapter->mng_vlan_id = vid;
1548 	} else {
1549 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 	}
1551 
1552 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 	    (vid != old_vid) &&
1554 	    !test_bit(old_vid, adapter->active_vlans)) {
1555 		/* remove VID from filter table */
1556 		igb_vfta_set(hw, vid, pf_id, false, true);
1557 	}
1558 }
1559 
1560 /**
1561  *  igb_release_hw_control - release control of the h/w to f/w
1562  *  @adapter: address of board private structure
1563  *
1564  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565  *  For ASF and Pass Through versions of f/w this means that the
1566  *  driver is no longer loaded.
1567  **/
1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570 	struct e1000_hw *hw = &adapter->hw;
1571 	u32 ctrl_ext;
1572 
1573 	/* Let firmware take over control of h/w */
1574 	ctrl_ext = rd32(E1000_CTRL_EXT);
1575 	wr32(E1000_CTRL_EXT,
1576 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578 
1579 /**
1580  *  igb_get_hw_control - get control of the h/w from f/w
1581  *  @adapter: address of board private structure
1582  *
1583  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584  *  For ASF and Pass Through versions of f/w this means that
1585  *  the driver is loaded.
1586  **/
1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589 	struct e1000_hw *hw = &adapter->hw;
1590 	u32 ctrl_ext;
1591 
1592 	/* Let firmware know the driver has taken over */
1593 	ctrl_ext = rd32(E1000_CTRL_EXT);
1594 	wr32(E1000_CTRL_EXT,
1595 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597 
1598 /**
1599  *  igb_configure - configure the hardware for RX and TX
1600  *  @adapter: private board structure
1601  **/
1602 static void igb_configure(struct igb_adapter *adapter)
1603 {
1604 	struct net_device *netdev = adapter->netdev;
1605 	int i;
1606 
1607 	igb_get_hw_control(adapter);
1608 	igb_set_rx_mode(netdev);
1609 
1610 	igb_restore_vlan(adapter);
1611 
1612 	igb_setup_tctl(adapter);
1613 	igb_setup_mrqc(adapter);
1614 	igb_setup_rctl(adapter);
1615 
1616 	igb_nfc_filter_restore(adapter);
1617 	igb_configure_tx(adapter);
1618 	igb_configure_rx(adapter);
1619 
1620 	igb_rx_fifo_flush_82575(&adapter->hw);
1621 
1622 	/* call igb_desc_unused which always leaves
1623 	 * at least 1 descriptor unused to make sure
1624 	 * next_to_use != next_to_clean
1625 	 */
1626 	for (i = 0; i < adapter->num_rx_queues; i++) {
1627 		struct igb_ring *ring = adapter->rx_ring[i];
1628 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1629 	}
1630 }
1631 
1632 /**
1633  *  igb_power_up_link - Power up the phy/serdes link
1634  *  @adapter: address of board private structure
1635  **/
1636 void igb_power_up_link(struct igb_adapter *adapter)
1637 {
1638 	igb_reset_phy(&adapter->hw);
1639 
1640 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1641 		igb_power_up_phy_copper(&adapter->hw);
1642 	else
1643 		igb_power_up_serdes_link_82575(&adapter->hw);
1644 
1645 	igb_setup_link(&adapter->hw);
1646 }
1647 
1648 /**
1649  *  igb_power_down_link - Power down the phy/serdes link
1650  *  @adapter: address of board private structure
1651  */
1652 static void igb_power_down_link(struct igb_adapter *adapter)
1653 {
1654 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1655 		igb_power_down_phy_copper_82575(&adapter->hw);
1656 	else
1657 		igb_shutdown_serdes_link_82575(&adapter->hw);
1658 }
1659 
1660 /**
1661  * Detect and switch function for Media Auto Sense
1662  * @adapter: address of the board private structure
1663  **/
1664 static void igb_check_swap_media(struct igb_adapter *adapter)
1665 {
1666 	struct e1000_hw *hw = &adapter->hw;
1667 	u32 ctrl_ext, connsw;
1668 	bool swap_now = false;
1669 
1670 	ctrl_ext = rd32(E1000_CTRL_EXT);
1671 	connsw = rd32(E1000_CONNSW);
1672 
1673 	/* need to live swap if current media is copper and we have fiber/serdes
1674 	 * to go to.
1675 	 */
1676 
1677 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1678 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1679 		swap_now = true;
1680 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1681 		/* copper signal takes time to appear */
1682 		if (adapter->copper_tries < 4) {
1683 			adapter->copper_tries++;
1684 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1685 			wr32(E1000_CONNSW, connsw);
1686 			return;
1687 		} else {
1688 			adapter->copper_tries = 0;
1689 			if ((connsw & E1000_CONNSW_PHYSD) &&
1690 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1691 				swap_now = true;
1692 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1693 				wr32(E1000_CONNSW, connsw);
1694 			}
1695 		}
1696 	}
1697 
1698 	if (!swap_now)
1699 		return;
1700 
1701 	switch (hw->phy.media_type) {
1702 	case e1000_media_type_copper:
1703 		netdev_info(adapter->netdev,
1704 			"MAS: changing media to fiber/serdes\n");
1705 		ctrl_ext |=
1706 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1707 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1708 		adapter->copper_tries = 0;
1709 		break;
1710 	case e1000_media_type_internal_serdes:
1711 	case e1000_media_type_fiber:
1712 		netdev_info(adapter->netdev,
1713 			"MAS: changing media to copper\n");
1714 		ctrl_ext &=
1715 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1716 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1717 		break;
1718 	default:
1719 		/* shouldn't get here during regular operation */
1720 		netdev_err(adapter->netdev,
1721 			"AMS: Invalid media type found, returning\n");
1722 		break;
1723 	}
1724 	wr32(E1000_CTRL_EXT, ctrl_ext);
1725 }
1726 
1727 /**
1728  *  igb_up - Open the interface and prepare it to handle traffic
1729  *  @adapter: board private structure
1730  **/
1731 int igb_up(struct igb_adapter *adapter)
1732 {
1733 	struct e1000_hw *hw = &adapter->hw;
1734 	int i;
1735 
1736 	/* hardware has been reset, we need to reload some things */
1737 	igb_configure(adapter);
1738 
1739 	clear_bit(__IGB_DOWN, &adapter->state);
1740 
1741 	for (i = 0; i < adapter->num_q_vectors; i++)
1742 		napi_enable(&(adapter->q_vector[i]->napi));
1743 
1744 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1745 		igb_configure_msix(adapter);
1746 	else
1747 		igb_assign_vector(adapter->q_vector[0], 0);
1748 
1749 	/* Clear any pending interrupts. */
1750 	rd32(E1000_ICR);
1751 	igb_irq_enable(adapter);
1752 
1753 	/* notify VFs that reset has been completed */
1754 	if (adapter->vfs_allocated_count) {
1755 		u32 reg_data = rd32(E1000_CTRL_EXT);
1756 
1757 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1758 		wr32(E1000_CTRL_EXT, reg_data);
1759 	}
1760 
1761 	netif_tx_start_all_queues(adapter->netdev);
1762 
1763 	/* start the watchdog. */
1764 	hw->mac.get_link_status = 1;
1765 	schedule_work(&adapter->watchdog_task);
1766 
1767 	if ((adapter->flags & IGB_FLAG_EEE) &&
1768 	    (!hw->dev_spec._82575.eee_disable))
1769 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1770 
1771 	return 0;
1772 }
1773 
1774 void igb_down(struct igb_adapter *adapter)
1775 {
1776 	struct net_device *netdev = adapter->netdev;
1777 	struct e1000_hw *hw = &adapter->hw;
1778 	u32 tctl, rctl;
1779 	int i;
1780 
1781 	/* signal that we're down so the interrupt handler does not
1782 	 * reschedule our watchdog timer
1783 	 */
1784 	set_bit(__IGB_DOWN, &adapter->state);
1785 
1786 	/* disable receives in the hardware */
1787 	rctl = rd32(E1000_RCTL);
1788 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1789 	/* flush and sleep below */
1790 
1791 	netif_carrier_off(netdev);
1792 	netif_tx_stop_all_queues(netdev);
1793 
1794 	/* disable transmits in the hardware */
1795 	tctl = rd32(E1000_TCTL);
1796 	tctl &= ~E1000_TCTL_EN;
1797 	wr32(E1000_TCTL, tctl);
1798 	/* flush both disables and wait for them to finish */
1799 	wrfl();
1800 	usleep_range(10000, 11000);
1801 
1802 	igb_irq_disable(adapter);
1803 
1804 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1805 
1806 	for (i = 0; i < adapter->num_q_vectors; i++) {
1807 		if (adapter->q_vector[i]) {
1808 			napi_synchronize(&adapter->q_vector[i]->napi);
1809 			napi_disable(&adapter->q_vector[i]->napi);
1810 		}
1811 	}
1812 
1813 	del_timer_sync(&adapter->watchdog_timer);
1814 	del_timer_sync(&adapter->phy_info_timer);
1815 
1816 	/* record the stats before reset*/
1817 	spin_lock(&adapter->stats64_lock);
1818 	igb_update_stats(adapter, &adapter->stats64);
1819 	spin_unlock(&adapter->stats64_lock);
1820 
1821 	adapter->link_speed = 0;
1822 	adapter->link_duplex = 0;
1823 
1824 	if (!pci_channel_offline(adapter->pdev))
1825 		igb_reset(adapter);
1826 
1827 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
1828 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1829 
1830 	igb_clean_all_tx_rings(adapter);
1831 	igb_clean_all_rx_rings(adapter);
1832 #ifdef CONFIG_IGB_DCA
1833 
1834 	/* since we reset the hardware DCA settings were cleared */
1835 	igb_setup_dca(adapter);
1836 #endif
1837 }
1838 
1839 void igb_reinit_locked(struct igb_adapter *adapter)
1840 {
1841 	WARN_ON(in_interrupt());
1842 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1843 		usleep_range(1000, 2000);
1844 	igb_down(adapter);
1845 	igb_up(adapter);
1846 	clear_bit(__IGB_RESETTING, &adapter->state);
1847 }
1848 
1849 /** igb_enable_mas - Media Autosense re-enable after swap
1850  *
1851  * @adapter: adapter struct
1852  **/
1853 static void igb_enable_mas(struct igb_adapter *adapter)
1854 {
1855 	struct e1000_hw *hw = &adapter->hw;
1856 	u32 connsw = rd32(E1000_CONNSW);
1857 
1858 	/* configure for SerDes media detect */
1859 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1860 	    (!(connsw & E1000_CONNSW_SERDESD))) {
1861 		connsw |= E1000_CONNSW_ENRGSRC;
1862 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1863 		wr32(E1000_CONNSW, connsw);
1864 		wrfl();
1865 	}
1866 }
1867 
1868 void igb_reset(struct igb_adapter *adapter)
1869 {
1870 	struct pci_dev *pdev = adapter->pdev;
1871 	struct e1000_hw *hw = &adapter->hw;
1872 	struct e1000_mac_info *mac = &hw->mac;
1873 	struct e1000_fc_info *fc = &hw->fc;
1874 	u32 pba, hwm;
1875 
1876 	/* Repartition Pba for greater than 9k mtu
1877 	 * To take effect CTRL.RST is required.
1878 	 */
1879 	switch (mac->type) {
1880 	case e1000_i350:
1881 	case e1000_i354:
1882 	case e1000_82580:
1883 		pba = rd32(E1000_RXPBS);
1884 		pba = igb_rxpbs_adjust_82580(pba);
1885 		break;
1886 	case e1000_82576:
1887 		pba = rd32(E1000_RXPBS);
1888 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1889 		break;
1890 	case e1000_82575:
1891 	case e1000_i210:
1892 	case e1000_i211:
1893 	default:
1894 		pba = E1000_PBA_34K;
1895 		break;
1896 	}
1897 
1898 	if (mac->type == e1000_82575) {
1899 		u32 min_rx_space, min_tx_space, needed_tx_space;
1900 
1901 		/* write Rx PBA so that hardware can report correct Tx PBA */
1902 		wr32(E1000_PBA, pba);
1903 
1904 		/* To maintain wire speed transmits, the Tx FIFO should be
1905 		 * large enough to accommodate two full transmit packets,
1906 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1907 		 * the Rx FIFO should be large enough to accommodate at least
1908 		 * one full receive packet and is similarly rounded up and
1909 		 * expressed in KB.
1910 		 */
1911 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1912 
1913 		/* The Tx FIFO also stores 16 bytes of information about the Tx
1914 		 * but don't include Ethernet FCS because hardware appends it.
1915 		 * We only need to round down to the nearest 512 byte block
1916 		 * count since the value we care about is 2 frames, not 1.
1917 		 */
1918 		min_tx_space = adapter->max_frame_size;
1919 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1920 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1921 
1922 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1923 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1924 
1925 		/* If current Tx allocation is less than the min Tx FIFO size,
1926 		 * and the min Tx FIFO size is less than the current Rx FIFO
1927 		 * allocation, take space away from current Rx allocation.
1928 		 */
1929 		if (needed_tx_space < pba) {
1930 			pba -= needed_tx_space;
1931 
1932 			/* if short on Rx space, Rx wins and must trump Tx
1933 			 * adjustment
1934 			 */
1935 			if (pba < min_rx_space)
1936 				pba = min_rx_space;
1937 		}
1938 
1939 		/* adjust PBA for jumbo frames */
1940 		wr32(E1000_PBA, pba);
1941 	}
1942 
1943 	/* flow control settings
1944 	 * The high water mark must be low enough to fit one full frame
1945 	 * after transmitting the pause frame.  As such we must have enough
1946 	 * space to allow for us to complete our current transmit and then
1947 	 * receive the frame that is in progress from the link partner.
1948 	 * Set it to:
1949 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1950 	 */
1951 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1952 
1953 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1954 	fc->low_water = fc->high_water - 16;
1955 	fc->pause_time = 0xFFFF;
1956 	fc->send_xon = 1;
1957 	fc->current_mode = fc->requested_mode;
1958 
1959 	/* disable receive for all VFs and wait one second */
1960 	if (adapter->vfs_allocated_count) {
1961 		int i;
1962 
1963 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965 
1966 		/* ping all the active vfs to let them know we are going down */
1967 		igb_ping_all_vfs(adapter);
1968 
1969 		/* disable transmits and receives */
1970 		wr32(E1000_VFRE, 0);
1971 		wr32(E1000_VFTE, 0);
1972 	}
1973 
1974 	/* Allow time for pending master requests to run */
1975 	hw->mac.ops.reset_hw(hw);
1976 	wr32(E1000_WUC, 0);
1977 
1978 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 		/* need to resetup here after media swap */
1980 		adapter->ei.get_invariants(hw);
1981 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 	}
1983 	if ((mac->type == e1000_82575) &&
1984 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1985 		igb_enable_mas(adapter);
1986 	}
1987 	if (hw->mac.ops.init_hw(hw))
1988 		dev_err(&pdev->dev, "Hardware Error\n");
1989 
1990 	/* Flow control settings reset on hardware reset, so guarantee flow
1991 	 * control is off when forcing speed.
1992 	 */
1993 	if (!hw->mac.autoneg)
1994 		igb_force_mac_fc(hw);
1995 
1996 	igb_init_dmac(adapter, pba);
1997 #ifdef CONFIG_IGB_HWMON
1998 	/* Re-initialize the thermal sensor on i350 devices. */
1999 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001 			/* If present, re-initialize the external thermal sensor
2002 			 * interface.
2003 			 */
2004 			if (adapter->ets)
2005 				mac->ops.init_thermal_sensor_thresh(hw);
2006 		}
2007 	}
2008 #endif
2009 	/* Re-establish EEE setting */
2010 	if (hw->phy.media_type == e1000_media_type_copper) {
2011 		switch (mac->type) {
2012 		case e1000_i350:
2013 		case e1000_i210:
2014 		case e1000_i211:
2015 			igb_set_eee_i350(hw, true, true);
2016 			break;
2017 		case e1000_i354:
2018 			igb_set_eee_i354(hw, true, true);
2019 			break;
2020 		default:
2021 			break;
2022 		}
2023 	}
2024 	if (!netif_running(adapter->netdev))
2025 		igb_power_down_link(adapter);
2026 
2027 	igb_update_mng_vlan(adapter);
2028 
2029 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031 
2032 	/* Re-enable PTP, where applicable. */
2033 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2034 		igb_ptp_reset(adapter);
2035 
2036 	igb_get_phy_info(hw);
2037 }
2038 
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 	netdev_features_t features)
2041 {
2042 	/* Since there is no support for separate Rx/Tx vlan accel
2043 	 * enable/disable make sure Tx flag is always in same state as Rx.
2044 	 */
2045 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2047 	else
2048 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049 
2050 	return features;
2051 }
2052 
2053 static int igb_set_features(struct net_device *netdev,
2054 	netdev_features_t features)
2055 {
2056 	netdev_features_t changed = netdev->features ^ features;
2057 	struct igb_adapter *adapter = netdev_priv(netdev);
2058 
2059 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060 		igb_vlan_mode(netdev, features);
2061 
2062 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2063 		return 0;
2064 
2065 	if (!(features & NETIF_F_NTUPLE)) {
2066 		struct hlist_node *node2;
2067 		struct igb_nfc_filter *rule;
2068 
2069 		spin_lock(&adapter->nfc_lock);
2070 		hlist_for_each_entry_safe(rule, node2,
2071 					  &adapter->nfc_filter_list, nfc_node) {
2072 			igb_erase_filter(adapter, rule);
2073 			hlist_del(&rule->nfc_node);
2074 			kfree(rule);
2075 		}
2076 		spin_unlock(&adapter->nfc_lock);
2077 		adapter->nfc_filter_count = 0;
2078 	}
2079 
2080 	netdev->features = features;
2081 
2082 	if (netif_running(netdev))
2083 		igb_reinit_locked(adapter);
2084 	else
2085 		igb_reset(adapter);
2086 
2087 	return 0;
2088 }
2089 
2090 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2091 			   struct net_device *dev,
2092 			   const unsigned char *addr, u16 vid,
2093 			   u16 flags)
2094 {
2095 	/* guarantee we can provide a unique filter for the unicast address */
2096 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2097 		struct igb_adapter *adapter = netdev_priv(dev);
2098 		struct e1000_hw *hw = &adapter->hw;
2099 		int vfn = adapter->vfs_allocated_count;
2100 		int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2101 
2102 		if (netdev_uc_count(dev) >= rar_entries)
2103 			return -ENOMEM;
2104 	}
2105 
2106 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2107 }
2108 
2109 #define IGB_MAX_MAC_HDR_LEN	127
2110 #define IGB_MAX_NETWORK_HDR_LEN	511
2111 
2112 static netdev_features_t
2113 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2114 		   netdev_features_t features)
2115 {
2116 	unsigned int network_hdr_len, mac_hdr_len;
2117 
2118 	/* Make certain the headers can be described by a context descriptor */
2119 	mac_hdr_len = skb_network_header(skb) - skb->data;
2120 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2121 		return features & ~(NETIF_F_HW_CSUM |
2122 				    NETIF_F_SCTP_CRC |
2123 				    NETIF_F_HW_VLAN_CTAG_TX |
2124 				    NETIF_F_TSO |
2125 				    NETIF_F_TSO6);
2126 
2127 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2128 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2129 		return features & ~(NETIF_F_HW_CSUM |
2130 				    NETIF_F_SCTP_CRC |
2131 				    NETIF_F_TSO |
2132 				    NETIF_F_TSO6);
2133 
2134 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2135 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2136 	 */
2137 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2138 		features &= ~NETIF_F_TSO;
2139 
2140 	return features;
2141 }
2142 
2143 static const struct net_device_ops igb_netdev_ops = {
2144 	.ndo_open		= igb_open,
2145 	.ndo_stop		= igb_close,
2146 	.ndo_start_xmit		= igb_xmit_frame,
2147 	.ndo_get_stats64	= igb_get_stats64,
2148 	.ndo_set_rx_mode	= igb_set_rx_mode,
2149 	.ndo_set_mac_address	= igb_set_mac,
2150 	.ndo_change_mtu		= igb_change_mtu,
2151 	.ndo_do_ioctl		= igb_ioctl,
2152 	.ndo_tx_timeout		= igb_tx_timeout,
2153 	.ndo_validate_addr	= eth_validate_addr,
2154 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2155 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2156 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2157 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2158 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2159 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2160 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2161 #ifdef CONFIG_NET_POLL_CONTROLLER
2162 	.ndo_poll_controller	= igb_netpoll,
2163 #endif
2164 	.ndo_fix_features	= igb_fix_features,
2165 	.ndo_set_features	= igb_set_features,
2166 	.ndo_fdb_add		= igb_ndo_fdb_add,
2167 	.ndo_features_check	= igb_features_check,
2168 };
2169 
2170 /**
2171  * igb_set_fw_version - Configure version string for ethtool
2172  * @adapter: adapter struct
2173  **/
2174 void igb_set_fw_version(struct igb_adapter *adapter)
2175 {
2176 	struct e1000_hw *hw = &adapter->hw;
2177 	struct e1000_fw_version fw;
2178 
2179 	igb_get_fw_version(hw, &fw);
2180 
2181 	switch (hw->mac.type) {
2182 	case e1000_i210:
2183 	case e1000_i211:
2184 		if (!(igb_get_flash_presence_i210(hw))) {
2185 			snprintf(adapter->fw_version,
2186 				 sizeof(adapter->fw_version),
2187 				 "%2d.%2d-%d",
2188 				 fw.invm_major, fw.invm_minor,
2189 				 fw.invm_img_type);
2190 			break;
2191 		}
2192 		/* fall through */
2193 	default:
2194 		/* if option is rom valid, display its version too */
2195 		if (fw.or_valid) {
2196 			snprintf(adapter->fw_version,
2197 				 sizeof(adapter->fw_version),
2198 				 "%d.%d, 0x%08x, %d.%d.%d",
2199 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2200 				 fw.or_major, fw.or_build, fw.or_patch);
2201 		/* no option rom */
2202 		} else if (fw.etrack_id != 0X0000) {
2203 			snprintf(adapter->fw_version,
2204 			    sizeof(adapter->fw_version),
2205 			    "%d.%d, 0x%08x",
2206 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2207 		} else {
2208 		snprintf(adapter->fw_version,
2209 		    sizeof(adapter->fw_version),
2210 		    "%d.%d.%d",
2211 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2212 		}
2213 		break;
2214 	}
2215 }
2216 
2217 /**
2218  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2219  *
2220  * @adapter: adapter struct
2221  **/
2222 static void igb_init_mas(struct igb_adapter *adapter)
2223 {
2224 	struct e1000_hw *hw = &adapter->hw;
2225 	u16 eeprom_data;
2226 
2227 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2228 	switch (hw->bus.func) {
2229 	case E1000_FUNC_0:
2230 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2231 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2232 			netdev_info(adapter->netdev,
2233 				"MAS: Enabling Media Autosense for port %d\n",
2234 				hw->bus.func);
2235 		}
2236 		break;
2237 	case E1000_FUNC_1:
2238 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2239 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240 			netdev_info(adapter->netdev,
2241 				"MAS: Enabling Media Autosense for port %d\n",
2242 				hw->bus.func);
2243 		}
2244 		break;
2245 	case E1000_FUNC_2:
2246 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2247 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248 			netdev_info(adapter->netdev,
2249 				"MAS: Enabling Media Autosense for port %d\n",
2250 				hw->bus.func);
2251 		}
2252 		break;
2253 	case E1000_FUNC_3:
2254 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2255 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256 			netdev_info(adapter->netdev,
2257 				"MAS: Enabling Media Autosense for port %d\n",
2258 				hw->bus.func);
2259 		}
2260 		break;
2261 	default:
2262 		/* Shouldn't get here */
2263 		netdev_err(adapter->netdev,
2264 			"MAS: Invalid port configuration, returning\n");
2265 		break;
2266 	}
2267 }
2268 
2269 /**
2270  *  igb_init_i2c - Init I2C interface
2271  *  @adapter: pointer to adapter structure
2272  **/
2273 static s32 igb_init_i2c(struct igb_adapter *adapter)
2274 {
2275 	s32 status = 0;
2276 
2277 	/* I2C interface supported on i350 devices */
2278 	if (adapter->hw.mac.type != e1000_i350)
2279 		return 0;
2280 
2281 	/* Initialize the i2c bus which is controlled by the registers.
2282 	 * This bus will use the i2c_algo_bit structue that implements
2283 	 * the protocol through toggling of the 4 bits in the register.
2284 	 */
2285 	adapter->i2c_adap.owner = THIS_MODULE;
2286 	adapter->i2c_algo = igb_i2c_algo;
2287 	adapter->i2c_algo.data = adapter;
2288 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2289 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2290 	strlcpy(adapter->i2c_adap.name, "igb BB",
2291 		sizeof(adapter->i2c_adap.name));
2292 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2293 	return status;
2294 }
2295 
2296 /**
2297  *  igb_probe - Device Initialization Routine
2298  *  @pdev: PCI device information struct
2299  *  @ent: entry in igb_pci_tbl
2300  *
2301  *  Returns 0 on success, negative on failure
2302  *
2303  *  igb_probe initializes an adapter identified by a pci_dev structure.
2304  *  The OS initialization, configuring of the adapter private structure,
2305  *  and a hardware reset occur.
2306  **/
2307 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2308 {
2309 	struct net_device *netdev;
2310 	struct igb_adapter *adapter;
2311 	struct e1000_hw *hw;
2312 	u16 eeprom_data = 0;
2313 	s32 ret_val;
2314 	static int global_quad_port_a; /* global quad port a indication */
2315 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2316 	int err, pci_using_dac;
2317 	u8 part_str[E1000_PBANUM_LENGTH];
2318 
2319 	/* Catch broken hardware that put the wrong VF device ID in
2320 	 * the PCIe SR-IOV capability.
2321 	 */
2322 	if (pdev->is_virtfn) {
2323 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2324 			pci_name(pdev), pdev->vendor, pdev->device);
2325 		return -EINVAL;
2326 	}
2327 
2328 	err = pci_enable_device_mem(pdev);
2329 	if (err)
2330 		return err;
2331 
2332 	pci_using_dac = 0;
2333 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2334 	if (!err) {
2335 		pci_using_dac = 1;
2336 	} else {
2337 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2338 		if (err) {
2339 			dev_err(&pdev->dev,
2340 				"No usable DMA configuration, aborting\n");
2341 			goto err_dma;
2342 		}
2343 	}
2344 
2345 	err = pci_request_mem_regions(pdev, igb_driver_name);
2346 	if (err)
2347 		goto err_pci_reg;
2348 
2349 	pci_enable_pcie_error_reporting(pdev);
2350 
2351 	pci_set_master(pdev);
2352 	pci_save_state(pdev);
2353 
2354 	err = -ENOMEM;
2355 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2356 				   IGB_MAX_TX_QUEUES);
2357 	if (!netdev)
2358 		goto err_alloc_etherdev;
2359 
2360 	SET_NETDEV_DEV(netdev, &pdev->dev);
2361 
2362 	pci_set_drvdata(pdev, netdev);
2363 	adapter = netdev_priv(netdev);
2364 	adapter->netdev = netdev;
2365 	adapter->pdev = pdev;
2366 	hw = &adapter->hw;
2367 	hw->back = adapter;
2368 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2369 
2370 	err = -EIO;
2371 	adapter->io_addr = pci_iomap(pdev, 0, 0);
2372 	if (!adapter->io_addr)
2373 		goto err_ioremap;
2374 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2375 	hw->hw_addr = adapter->io_addr;
2376 
2377 	netdev->netdev_ops = &igb_netdev_ops;
2378 	igb_set_ethtool_ops(netdev);
2379 	netdev->watchdog_timeo = 5 * HZ;
2380 
2381 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2382 
2383 	netdev->mem_start = pci_resource_start(pdev, 0);
2384 	netdev->mem_end = pci_resource_end(pdev, 0);
2385 
2386 	/* PCI config space info */
2387 	hw->vendor_id = pdev->vendor;
2388 	hw->device_id = pdev->device;
2389 	hw->revision_id = pdev->revision;
2390 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2391 	hw->subsystem_device_id = pdev->subsystem_device;
2392 
2393 	/* Copy the default MAC, PHY and NVM function pointers */
2394 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2395 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2396 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2397 	/* Initialize skew-specific constants */
2398 	err = ei->get_invariants(hw);
2399 	if (err)
2400 		goto err_sw_init;
2401 
2402 	/* setup the private structure */
2403 	err = igb_sw_init(adapter);
2404 	if (err)
2405 		goto err_sw_init;
2406 
2407 	igb_get_bus_info_pcie(hw);
2408 
2409 	hw->phy.autoneg_wait_to_complete = false;
2410 
2411 	/* Copper options */
2412 	if (hw->phy.media_type == e1000_media_type_copper) {
2413 		hw->phy.mdix = AUTO_ALL_MODES;
2414 		hw->phy.disable_polarity_correction = false;
2415 		hw->phy.ms_type = e1000_ms_hw_default;
2416 	}
2417 
2418 	if (igb_check_reset_block(hw))
2419 		dev_info(&pdev->dev,
2420 			"PHY reset is blocked due to SOL/IDER session.\n");
2421 
2422 	/* features is initialized to 0 in allocation, it might have bits
2423 	 * set by igb_sw_init so we should use an or instead of an
2424 	 * assignment.
2425 	 */
2426 	netdev->features |= NETIF_F_SG |
2427 			    NETIF_F_TSO |
2428 			    NETIF_F_TSO6 |
2429 			    NETIF_F_RXHASH |
2430 			    NETIF_F_RXCSUM |
2431 			    NETIF_F_HW_CSUM;
2432 
2433 	if (hw->mac.type >= e1000_82576)
2434 		netdev->features |= NETIF_F_SCTP_CRC;
2435 
2436 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2437 				  NETIF_F_GSO_GRE_CSUM | \
2438 				  NETIF_F_GSO_IPXIP4 | \
2439 				  NETIF_F_GSO_IPXIP6 | \
2440 				  NETIF_F_GSO_UDP_TUNNEL | \
2441 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
2442 
2443 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2444 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2445 
2446 	/* copy netdev features into list of user selectable features */
2447 	netdev->hw_features |= netdev->features |
2448 			       NETIF_F_HW_VLAN_CTAG_RX |
2449 			       NETIF_F_HW_VLAN_CTAG_TX |
2450 			       NETIF_F_RXALL;
2451 
2452 	if (hw->mac.type >= e1000_i350)
2453 		netdev->hw_features |= NETIF_F_NTUPLE;
2454 
2455 	if (pci_using_dac)
2456 		netdev->features |= NETIF_F_HIGHDMA;
2457 
2458 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2459 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2460 	netdev->hw_enc_features |= netdev->vlan_features;
2461 
2462 	/* set this bit last since it cannot be part of vlan_features */
2463 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2464 			    NETIF_F_HW_VLAN_CTAG_RX |
2465 			    NETIF_F_HW_VLAN_CTAG_TX;
2466 
2467 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2468 
2469 	netdev->priv_flags |= IFF_UNICAST_FLT;
2470 
2471 	/* MTU range: 68 - 9216 */
2472 	netdev->min_mtu = ETH_MIN_MTU;
2473 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2474 
2475 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2476 
2477 	/* before reading the NVM, reset the controller to put the device in a
2478 	 * known good starting state
2479 	 */
2480 	hw->mac.ops.reset_hw(hw);
2481 
2482 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2483 	 * that doesn't contain a checksum
2484 	 */
2485 	switch (hw->mac.type) {
2486 	case e1000_i210:
2487 	case e1000_i211:
2488 		if (igb_get_flash_presence_i210(hw)) {
2489 			if (hw->nvm.ops.validate(hw) < 0) {
2490 				dev_err(&pdev->dev,
2491 					"The NVM Checksum Is Not Valid\n");
2492 				err = -EIO;
2493 				goto err_eeprom;
2494 			}
2495 		}
2496 		break;
2497 	default:
2498 		if (hw->nvm.ops.validate(hw) < 0) {
2499 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2500 			err = -EIO;
2501 			goto err_eeprom;
2502 		}
2503 		break;
2504 	}
2505 
2506 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2507 		/* copy the MAC address out of the NVM */
2508 		if (hw->mac.ops.read_mac_addr(hw))
2509 			dev_err(&pdev->dev, "NVM Read Error\n");
2510 	}
2511 
2512 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2513 
2514 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2515 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2516 		err = -EIO;
2517 		goto err_eeprom;
2518 	}
2519 
2520 	/* get firmware version for ethtool -i */
2521 	igb_set_fw_version(adapter);
2522 
2523 	/* configure RXPBSIZE and TXPBSIZE */
2524 	if (hw->mac.type == e1000_i210) {
2525 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2526 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2527 	}
2528 
2529 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2530 		    (unsigned long) adapter);
2531 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2532 		    (unsigned long) adapter);
2533 
2534 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2535 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2536 
2537 	/* Initialize link properties that are user-changeable */
2538 	adapter->fc_autoneg = true;
2539 	hw->mac.autoneg = true;
2540 	hw->phy.autoneg_advertised = 0x2f;
2541 
2542 	hw->fc.requested_mode = e1000_fc_default;
2543 	hw->fc.current_mode = e1000_fc_default;
2544 
2545 	igb_validate_mdi_setting(hw);
2546 
2547 	/* By default, support wake on port A */
2548 	if (hw->bus.func == 0)
2549 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2550 
2551 	/* Check the NVM for wake support on non-port A ports */
2552 	if (hw->mac.type >= e1000_82580)
2553 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2554 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2555 				 &eeprom_data);
2556 	else if (hw->bus.func == 1)
2557 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2558 
2559 	if (eeprom_data & IGB_EEPROM_APME)
2560 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2561 
2562 	/* now that we have the eeprom settings, apply the special cases where
2563 	 * the eeprom may be wrong or the board simply won't support wake on
2564 	 * lan on a particular port
2565 	 */
2566 	switch (pdev->device) {
2567 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2568 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2569 		break;
2570 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2571 	case E1000_DEV_ID_82576_FIBER:
2572 	case E1000_DEV_ID_82576_SERDES:
2573 		/* Wake events only supported on port A for dual fiber
2574 		 * regardless of eeprom setting
2575 		 */
2576 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2577 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2578 		break;
2579 	case E1000_DEV_ID_82576_QUAD_COPPER:
2580 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2581 		/* if quad port adapter, disable WoL on all but port A */
2582 		if (global_quad_port_a != 0)
2583 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2584 		else
2585 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2586 		/* Reset for multiple quad port adapters */
2587 		if (++global_quad_port_a == 4)
2588 			global_quad_port_a = 0;
2589 		break;
2590 	default:
2591 		/* If the device can't wake, don't set software support */
2592 		if (!device_can_wakeup(&adapter->pdev->dev))
2593 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2594 	}
2595 
2596 	/* initialize the wol settings based on the eeprom settings */
2597 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2598 		adapter->wol |= E1000_WUFC_MAG;
2599 
2600 	/* Some vendors want WoL disabled by default, but still supported */
2601 	if ((hw->mac.type == e1000_i350) &&
2602 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2603 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2604 		adapter->wol = 0;
2605 	}
2606 
2607 	/* Some vendors want the ability to Use the EEPROM setting as
2608 	 * enable/disable only, and not for capability
2609 	 */
2610 	if (((hw->mac.type == e1000_i350) ||
2611 	     (hw->mac.type == e1000_i354)) &&
2612 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2613 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2614 		adapter->wol = 0;
2615 	}
2616 	if (hw->mac.type == e1000_i350) {
2617 		if (((pdev->subsystem_device == 0x5001) ||
2618 		     (pdev->subsystem_device == 0x5002)) &&
2619 				(hw->bus.func == 0)) {
2620 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2621 			adapter->wol = 0;
2622 		}
2623 		if (pdev->subsystem_device == 0x1F52)
2624 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2625 	}
2626 
2627 	device_set_wakeup_enable(&adapter->pdev->dev,
2628 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2629 
2630 	/* reset the hardware with the new settings */
2631 	igb_reset(adapter);
2632 
2633 	/* Init the I2C interface */
2634 	err = igb_init_i2c(adapter);
2635 	if (err) {
2636 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2637 		goto err_eeprom;
2638 	}
2639 
2640 	/* let the f/w know that the h/w is now under the control of the
2641 	 * driver.
2642 	 */
2643 	igb_get_hw_control(adapter);
2644 
2645 	strcpy(netdev->name, "eth%d");
2646 	err = register_netdev(netdev);
2647 	if (err)
2648 		goto err_register;
2649 
2650 	/* carrier off reporting is important to ethtool even BEFORE open */
2651 	netif_carrier_off(netdev);
2652 
2653 #ifdef CONFIG_IGB_DCA
2654 	if (dca_add_requester(&pdev->dev) == 0) {
2655 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2656 		dev_info(&pdev->dev, "DCA enabled\n");
2657 		igb_setup_dca(adapter);
2658 	}
2659 
2660 #endif
2661 #ifdef CONFIG_IGB_HWMON
2662 	/* Initialize the thermal sensor on i350 devices. */
2663 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2664 		u16 ets_word;
2665 
2666 		/* Read the NVM to determine if this i350 device supports an
2667 		 * external thermal sensor.
2668 		 */
2669 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2670 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2671 			adapter->ets = true;
2672 		else
2673 			adapter->ets = false;
2674 		if (igb_sysfs_init(adapter))
2675 			dev_err(&pdev->dev,
2676 				"failed to allocate sysfs resources\n");
2677 	} else {
2678 		adapter->ets = false;
2679 	}
2680 #endif
2681 	/* Check if Media Autosense is enabled */
2682 	adapter->ei = *ei;
2683 	if (hw->dev_spec._82575.mas_capable)
2684 		igb_init_mas(adapter);
2685 
2686 	/* do hw tstamp init after resetting */
2687 	igb_ptp_init(adapter);
2688 
2689 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2690 	/* print bus type/speed/width info, not applicable to i354 */
2691 	if (hw->mac.type != e1000_i354) {
2692 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2693 			 netdev->name,
2694 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2695 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2696 			   "unknown"),
2697 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2698 			  "Width x4" :
2699 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2700 			  "Width x2" :
2701 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2702 			  "Width x1" : "unknown"), netdev->dev_addr);
2703 	}
2704 
2705 	if ((hw->mac.type >= e1000_i210 ||
2706 	     igb_get_flash_presence_i210(hw))) {
2707 		ret_val = igb_read_part_string(hw, part_str,
2708 					       E1000_PBANUM_LENGTH);
2709 	} else {
2710 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2711 	}
2712 
2713 	if (ret_val)
2714 		strcpy(part_str, "Unknown");
2715 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2716 	dev_info(&pdev->dev,
2717 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2718 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2719 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2720 		adapter->num_rx_queues, adapter->num_tx_queues);
2721 	if (hw->phy.media_type == e1000_media_type_copper) {
2722 		switch (hw->mac.type) {
2723 		case e1000_i350:
2724 		case e1000_i210:
2725 		case e1000_i211:
2726 			/* Enable EEE for internal copper PHY devices */
2727 			err = igb_set_eee_i350(hw, true, true);
2728 			if ((!err) &&
2729 			    (!hw->dev_spec._82575.eee_disable)) {
2730 				adapter->eee_advert =
2731 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2732 				adapter->flags |= IGB_FLAG_EEE;
2733 			}
2734 			break;
2735 		case e1000_i354:
2736 			if ((rd32(E1000_CTRL_EXT) &
2737 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2738 				err = igb_set_eee_i354(hw, true, true);
2739 				if ((!err) &&
2740 					(!hw->dev_spec._82575.eee_disable)) {
2741 					adapter->eee_advert =
2742 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2743 					adapter->flags |= IGB_FLAG_EEE;
2744 				}
2745 			}
2746 			break;
2747 		default:
2748 			break;
2749 		}
2750 	}
2751 	pm_runtime_put_noidle(&pdev->dev);
2752 	return 0;
2753 
2754 err_register:
2755 	igb_release_hw_control(adapter);
2756 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2757 err_eeprom:
2758 	if (!igb_check_reset_block(hw))
2759 		igb_reset_phy(hw);
2760 
2761 	if (hw->flash_address)
2762 		iounmap(hw->flash_address);
2763 err_sw_init:
2764 	kfree(adapter->shadow_vfta);
2765 	igb_clear_interrupt_scheme(adapter);
2766 #ifdef CONFIG_PCI_IOV
2767 	igb_disable_sriov(pdev);
2768 #endif
2769 	pci_iounmap(pdev, adapter->io_addr);
2770 err_ioremap:
2771 	free_netdev(netdev);
2772 err_alloc_etherdev:
2773 	pci_release_mem_regions(pdev);
2774 err_pci_reg:
2775 err_dma:
2776 	pci_disable_device(pdev);
2777 	return err;
2778 }
2779 
2780 #ifdef CONFIG_PCI_IOV
2781 static int igb_disable_sriov(struct pci_dev *pdev)
2782 {
2783 	struct net_device *netdev = pci_get_drvdata(pdev);
2784 	struct igb_adapter *adapter = netdev_priv(netdev);
2785 	struct e1000_hw *hw = &adapter->hw;
2786 
2787 	/* reclaim resources allocated to VFs */
2788 	if (adapter->vf_data) {
2789 		/* disable iov and allow time for transactions to clear */
2790 		if (pci_vfs_assigned(pdev)) {
2791 			dev_warn(&pdev->dev,
2792 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2793 			return -EPERM;
2794 		} else {
2795 			pci_disable_sriov(pdev);
2796 			msleep(500);
2797 		}
2798 
2799 		kfree(adapter->vf_data);
2800 		adapter->vf_data = NULL;
2801 		adapter->vfs_allocated_count = 0;
2802 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2803 		wrfl();
2804 		msleep(100);
2805 		dev_info(&pdev->dev, "IOV Disabled\n");
2806 
2807 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2808 		adapter->flags |= IGB_FLAG_DMAC;
2809 	}
2810 
2811 	return 0;
2812 }
2813 
2814 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2815 {
2816 	struct net_device *netdev = pci_get_drvdata(pdev);
2817 	struct igb_adapter *adapter = netdev_priv(netdev);
2818 	int old_vfs = pci_num_vf(pdev);
2819 	int err = 0;
2820 	int i;
2821 
2822 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2823 		err = -EPERM;
2824 		goto out;
2825 	}
2826 	if (!num_vfs)
2827 		goto out;
2828 
2829 	if (old_vfs) {
2830 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2831 			 old_vfs, max_vfs);
2832 		adapter->vfs_allocated_count = old_vfs;
2833 	} else
2834 		adapter->vfs_allocated_count = num_vfs;
2835 
2836 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2837 				sizeof(struct vf_data_storage), GFP_KERNEL);
2838 
2839 	/* if allocation failed then we do not support SR-IOV */
2840 	if (!adapter->vf_data) {
2841 		adapter->vfs_allocated_count = 0;
2842 		dev_err(&pdev->dev,
2843 			"Unable to allocate memory for VF Data Storage\n");
2844 		err = -ENOMEM;
2845 		goto out;
2846 	}
2847 
2848 	/* only call pci_enable_sriov() if no VFs are allocated already */
2849 	if (!old_vfs) {
2850 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2851 		if (err)
2852 			goto err_out;
2853 	}
2854 	dev_info(&pdev->dev, "%d VFs allocated\n",
2855 		 adapter->vfs_allocated_count);
2856 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2857 		igb_vf_configure(adapter, i);
2858 
2859 	/* DMA Coalescing is not supported in IOV mode. */
2860 	adapter->flags &= ~IGB_FLAG_DMAC;
2861 	goto out;
2862 
2863 err_out:
2864 	kfree(adapter->vf_data);
2865 	adapter->vf_data = NULL;
2866 	adapter->vfs_allocated_count = 0;
2867 out:
2868 	return err;
2869 }
2870 
2871 #endif
2872 /**
2873  *  igb_remove_i2c - Cleanup  I2C interface
2874  *  @adapter: pointer to adapter structure
2875  **/
2876 static void igb_remove_i2c(struct igb_adapter *adapter)
2877 {
2878 	/* free the adapter bus structure */
2879 	i2c_del_adapter(&adapter->i2c_adap);
2880 }
2881 
2882 /**
2883  *  igb_remove - Device Removal Routine
2884  *  @pdev: PCI device information struct
2885  *
2886  *  igb_remove is called by the PCI subsystem to alert the driver
2887  *  that it should release a PCI device.  The could be caused by a
2888  *  Hot-Plug event, or because the driver is going to be removed from
2889  *  memory.
2890  **/
2891 static void igb_remove(struct pci_dev *pdev)
2892 {
2893 	struct net_device *netdev = pci_get_drvdata(pdev);
2894 	struct igb_adapter *adapter = netdev_priv(netdev);
2895 	struct e1000_hw *hw = &adapter->hw;
2896 
2897 	pm_runtime_get_noresume(&pdev->dev);
2898 #ifdef CONFIG_IGB_HWMON
2899 	igb_sysfs_exit(adapter);
2900 #endif
2901 	igb_remove_i2c(adapter);
2902 	igb_ptp_stop(adapter);
2903 	/* The watchdog timer may be rescheduled, so explicitly
2904 	 * disable watchdog from being rescheduled.
2905 	 */
2906 	set_bit(__IGB_DOWN, &adapter->state);
2907 	del_timer_sync(&adapter->watchdog_timer);
2908 	del_timer_sync(&adapter->phy_info_timer);
2909 
2910 	cancel_work_sync(&adapter->reset_task);
2911 	cancel_work_sync(&adapter->watchdog_task);
2912 
2913 #ifdef CONFIG_IGB_DCA
2914 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2915 		dev_info(&pdev->dev, "DCA disabled\n");
2916 		dca_remove_requester(&pdev->dev);
2917 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2918 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2919 	}
2920 #endif
2921 
2922 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2923 	 * would have already happened in close and is redundant.
2924 	 */
2925 	igb_release_hw_control(adapter);
2926 
2927 #ifdef CONFIG_PCI_IOV
2928 	igb_disable_sriov(pdev);
2929 #endif
2930 
2931 	unregister_netdev(netdev);
2932 
2933 	igb_clear_interrupt_scheme(adapter);
2934 
2935 	pci_iounmap(pdev, adapter->io_addr);
2936 	if (hw->flash_address)
2937 		iounmap(hw->flash_address);
2938 	pci_release_mem_regions(pdev);
2939 
2940 	kfree(adapter->shadow_vfta);
2941 	free_netdev(netdev);
2942 
2943 	pci_disable_pcie_error_reporting(pdev);
2944 
2945 	pci_disable_device(pdev);
2946 }
2947 
2948 /**
2949  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2950  *  @adapter: board private structure to initialize
2951  *
2952  *  This function initializes the vf specific data storage and then attempts to
2953  *  allocate the VFs.  The reason for ordering it this way is because it is much
2954  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2955  *  the memory for the VFs.
2956  **/
2957 static void igb_probe_vfs(struct igb_adapter *adapter)
2958 {
2959 #ifdef CONFIG_PCI_IOV
2960 	struct pci_dev *pdev = adapter->pdev;
2961 	struct e1000_hw *hw = &adapter->hw;
2962 
2963 	/* Virtualization features not supported on i210 family. */
2964 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2965 		return;
2966 
2967 	/* Of the below we really only want the effect of getting
2968 	 * IGB_FLAG_HAS_MSIX set (if available), without which
2969 	 * igb_enable_sriov() has no effect.
2970 	 */
2971 	igb_set_interrupt_capability(adapter, true);
2972 	igb_reset_interrupt_capability(adapter);
2973 
2974 	pci_sriov_set_totalvfs(pdev, 7);
2975 	igb_enable_sriov(pdev, max_vfs);
2976 
2977 #endif /* CONFIG_PCI_IOV */
2978 }
2979 
2980 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2981 {
2982 	struct e1000_hw *hw = &adapter->hw;
2983 	u32 max_rss_queues;
2984 
2985 	/* Determine the maximum number of RSS queues supported. */
2986 	switch (hw->mac.type) {
2987 	case e1000_i211:
2988 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2989 		break;
2990 	case e1000_82575:
2991 	case e1000_i210:
2992 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2993 		break;
2994 	case e1000_i350:
2995 		/* I350 cannot do RSS and SR-IOV at the same time */
2996 		if (!!adapter->vfs_allocated_count) {
2997 			max_rss_queues = 1;
2998 			break;
2999 		}
3000 		/* fall through */
3001 	case e1000_82576:
3002 		if (!!adapter->vfs_allocated_count) {
3003 			max_rss_queues = 2;
3004 			break;
3005 		}
3006 		/* fall through */
3007 	case e1000_82580:
3008 	case e1000_i354:
3009 	default:
3010 		max_rss_queues = IGB_MAX_RX_QUEUES;
3011 		break;
3012 	}
3013 
3014 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3015 
3016 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3017 }
3018 
3019 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3020 			      const u32 max_rss_queues)
3021 {
3022 	struct e1000_hw *hw = &adapter->hw;
3023 
3024 	/* Determine if we need to pair queues. */
3025 	switch (hw->mac.type) {
3026 	case e1000_82575:
3027 	case e1000_i211:
3028 		/* Device supports enough interrupts without queue pairing. */
3029 		break;
3030 	case e1000_82576:
3031 	case e1000_82580:
3032 	case e1000_i350:
3033 	case e1000_i354:
3034 	case e1000_i210:
3035 	default:
3036 		/* If rss_queues > half of max_rss_queues, pair the queues in
3037 		 * order to conserve interrupts due to limited supply.
3038 		 */
3039 		if (adapter->rss_queues > (max_rss_queues / 2))
3040 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3041 		else
3042 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3043 		break;
3044 	}
3045 }
3046 
3047 /**
3048  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3049  *  @adapter: board private structure to initialize
3050  *
3051  *  igb_sw_init initializes the Adapter private data structure.
3052  *  Fields are initialized based on PCI device information and
3053  *  OS network device settings (MTU size).
3054  **/
3055 static int igb_sw_init(struct igb_adapter *adapter)
3056 {
3057 	struct e1000_hw *hw = &adapter->hw;
3058 	struct net_device *netdev = adapter->netdev;
3059 	struct pci_dev *pdev = adapter->pdev;
3060 
3061 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3062 
3063 	/* set default ring sizes */
3064 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3065 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3066 
3067 	/* set default ITR values */
3068 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3069 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3070 
3071 	/* set default work limits */
3072 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3073 
3074 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3075 				  VLAN_HLEN;
3076 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3077 
3078 	spin_lock_init(&adapter->nfc_lock);
3079 	spin_lock_init(&adapter->stats64_lock);
3080 #ifdef CONFIG_PCI_IOV
3081 	switch (hw->mac.type) {
3082 	case e1000_82576:
3083 	case e1000_i350:
3084 		if (max_vfs > 7) {
3085 			dev_warn(&pdev->dev,
3086 				 "Maximum of 7 VFs per PF, using max\n");
3087 			max_vfs = adapter->vfs_allocated_count = 7;
3088 		} else
3089 			adapter->vfs_allocated_count = max_vfs;
3090 		if (adapter->vfs_allocated_count)
3091 			dev_warn(&pdev->dev,
3092 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3093 		break;
3094 	default:
3095 		break;
3096 	}
3097 #endif /* CONFIG_PCI_IOV */
3098 
3099 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3100 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3101 
3102 	igb_probe_vfs(adapter);
3103 
3104 	igb_init_queue_configuration(adapter);
3105 
3106 	/* Setup and initialize a copy of the hw vlan table array */
3107 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3108 				       GFP_ATOMIC);
3109 
3110 	/* This call may decrease the number of queues */
3111 	if (igb_init_interrupt_scheme(adapter, true)) {
3112 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3113 		return -ENOMEM;
3114 	}
3115 
3116 	/* Explicitly disable IRQ since the NIC can be in any state. */
3117 	igb_irq_disable(adapter);
3118 
3119 	if (hw->mac.type >= e1000_i350)
3120 		adapter->flags &= ~IGB_FLAG_DMAC;
3121 
3122 	set_bit(__IGB_DOWN, &adapter->state);
3123 	return 0;
3124 }
3125 
3126 /**
3127  *  igb_open - Called when a network interface is made active
3128  *  @netdev: network interface device structure
3129  *
3130  *  Returns 0 on success, negative value on failure
3131  *
3132  *  The open entry point is called when a network interface is made
3133  *  active by the system (IFF_UP).  At this point all resources needed
3134  *  for transmit and receive operations are allocated, the interrupt
3135  *  handler is registered with the OS, the watchdog timer is started,
3136  *  and the stack is notified that the interface is ready.
3137  **/
3138 static int __igb_open(struct net_device *netdev, bool resuming)
3139 {
3140 	struct igb_adapter *adapter = netdev_priv(netdev);
3141 	struct e1000_hw *hw = &adapter->hw;
3142 	struct pci_dev *pdev = adapter->pdev;
3143 	int err;
3144 	int i;
3145 
3146 	/* disallow open during test */
3147 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3148 		WARN_ON(resuming);
3149 		return -EBUSY;
3150 	}
3151 
3152 	if (!resuming)
3153 		pm_runtime_get_sync(&pdev->dev);
3154 
3155 	netif_carrier_off(netdev);
3156 
3157 	/* allocate transmit descriptors */
3158 	err = igb_setup_all_tx_resources(adapter);
3159 	if (err)
3160 		goto err_setup_tx;
3161 
3162 	/* allocate receive descriptors */
3163 	err = igb_setup_all_rx_resources(adapter);
3164 	if (err)
3165 		goto err_setup_rx;
3166 
3167 	igb_power_up_link(adapter);
3168 
3169 	/* before we allocate an interrupt, we must be ready to handle it.
3170 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3171 	 * as soon as we call pci_request_irq, so we have to setup our
3172 	 * clean_rx handler before we do so.
3173 	 */
3174 	igb_configure(adapter);
3175 
3176 	err = igb_request_irq(adapter);
3177 	if (err)
3178 		goto err_req_irq;
3179 
3180 	/* Notify the stack of the actual queue counts. */
3181 	err = netif_set_real_num_tx_queues(adapter->netdev,
3182 					   adapter->num_tx_queues);
3183 	if (err)
3184 		goto err_set_queues;
3185 
3186 	err = netif_set_real_num_rx_queues(adapter->netdev,
3187 					   adapter->num_rx_queues);
3188 	if (err)
3189 		goto err_set_queues;
3190 
3191 	/* From here on the code is the same as igb_up() */
3192 	clear_bit(__IGB_DOWN, &adapter->state);
3193 
3194 	for (i = 0; i < adapter->num_q_vectors; i++)
3195 		napi_enable(&(adapter->q_vector[i]->napi));
3196 
3197 	/* Clear any pending interrupts. */
3198 	rd32(E1000_ICR);
3199 
3200 	igb_irq_enable(adapter);
3201 
3202 	/* notify VFs that reset has been completed */
3203 	if (adapter->vfs_allocated_count) {
3204 		u32 reg_data = rd32(E1000_CTRL_EXT);
3205 
3206 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3207 		wr32(E1000_CTRL_EXT, reg_data);
3208 	}
3209 
3210 	netif_tx_start_all_queues(netdev);
3211 
3212 	if (!resuming)
3213 		pm_runtime_put(&pdev->dev);
3214 
3215 	/* start the watchdog. */
3216 	hw->mac.get_link_status = 1;
3217 	schedule_work(&adapter->watchdog_task);
3218 
3219 	return 0;
3220 
3221 err_set_queues:
3222 	igb_free_irq(adapter);
3223 err_req_irq:
3224 	igb_release_hw_control(adapter);
3225 	igb_power_down_link(adapter);
3226 	igb_free_all_rx_resources(adapter);
3227 err_setup_rx:
3228 	igb_free_all_tx_resources(adapter);
3229 err_setup_tx:
3230 	igb_reset(adapter);
3231 	if (!resuming)
3232 		pm_runtime_put(&pdev->dev);
3233 
3234 	return err;
3235 }
3236 
3237 int igb_open(struct net_device *netdev)
3238 {
3239 	return __igb_open(netdev, false);
3240 }
3241 
3242 /**
3243  *  igb_close - Disables a network interface
3244  *  @netdev: network interface device structure
3245  *
3246  *  Returns 0, this is not allowed to fail
3247  *
3248  *  The close entry point is called when an interface is de-activated
3249  *  by the OS.  The hardware is still under the driver's control, but
3250  *  needs to be disabled.  A global MAC reset is issued to stop the
3251  *  hardware, and all transmit and receive resources are freed.
3252  **/
3253 static int __igb_close(struct net_device *netdev, bool suspending)
3254 {
3255 	struct igb_adapter *adapter = netdev_priv(netdev);
3256 	struct pci_dev *pdev = adapter->pdev;
3257 
3258 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3259 
3260 	if (!suspending)
3261 		pm_runtime_get_sync(&pdev->dev);
3262 
3263 	igb_down(adapter);
3264 	igb_free_irq(adapter);
3265 
3266 	igb_nfc_filter_exit(adapter);
3267 
3268 	igb_free_all_tx_resources(adapter);
3269 	igb_free_all_rx_resources(adapter);
3270 
3271 	if (!suspending)
3272 		pm_runtime_put_sync(&pdev->dev);
3273 	return 0;
3274 }
3275 
3276 int igb_close(struct net_device *netdev)
3277 {
3278 	if (netif_device_present(netdev))
3279 		return __igb_close(netdev, false);
3280 	return 0;
3281 }
3282 
3283 /**
3284  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3285  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3286  *
3287  *  Return 0 on success, negative on failure
3288  **/
3289 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3290 {
3291 	struct device *dev = tx_ring->dev;
3292 	int size;
3293 
3294 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3295 
3296 	tx_ring->tx_buffer_info = vmalloc(size);
3297 	if (!tx_ring->tx_buffer_info)
3298 		goto err;
3299 
3300 	/* round up to nearest 4K */
3301 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3302 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3303 
3304 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3305 					   &tx_ring->dma, GFP_KERNEL);
3306 	if (!tx_ring->desc)
3307 		goto err;
3308 
3309 	tx_ring->next_to_use = 0;
3310 	tx_ring->next_to_clean = 0;
3311 
3312 	return 0;
3313 
3314 err:
3315 	vfree(tx_ring->tx_buffer_info);
3316 	tx_ring->tx_buffer_info = NULL;
3317 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3318 	return -ENOMEM;
3319 }
3320 
3321 /**
3322  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3323  *				 (Descriptors) for all queues
3324  *  @adapter: board private structure
3325  *
3326  *  Return 0 on success, negative on failure
3327  **/
3328 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3329 {
3330 	struct pci_dev *pdev = adapter->pdev;
3331 	int i, err = 0;
3332 
3333 	for (i = 0; i < adapter->num_tx_queues; i++) {
3334 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3335 		if (err) {
3336 			dev_err(&pdev->dev,
3337 				"Allocation for Tx Queue %u failed\n", i);
3338 			for (i--; i >= 0; i--)
3339 				igb_free_tx_resources(adapter->tx_ring[i]);
3340 			break;
3341 		}
3342 	}
3343 
3344 	return err;
3345 }
3346 
3347 /**
3348  *  igb_setup_tctl - configure the transmit control registers
3349  *  @adapter: Board private structure
3350  **/
3351 void igb_setup_tctl(struct igb_adapter *adapter)
3352 {
3353 	struct e1000_hw *hw = &adapter->hw;
3354 	u32 tctl;
3355 
3356 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3357 	wr32(E1000_TXDCTL(0), 0);
3358 
3359 	/* Program the Transmit Control Register */
3360 	tctl = rd32(E1000_TCTL);
3361 	tctl &= ~E1000_TCTL_CT;
3362 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3363 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3364 
3365 	igb_config_collision_dist(hw);
3366 
3367 	/* Enable transmits */
3368 	tctl |= E1000_TCTL_EN;
3369 
3370 	wr32(E1000_TCTL, tctl);
3371 }
3372 
3373 /**
3374  *  igb_configure_tx_ring - Configure transmit ring after Reset
3375  *  @adapter: board private structure
3376  *  @ring: tx ring to configure
3377  *
3378  *  Configure a transmit ring after a reset.
3379  **/
3380 void igb_configure_tx_ring(struct igb_adapter *adapter,
3381 			   struct igb_ring *ring)
3382 {
3383 	struct e1000_hw *hw = &adapter->hw;
3384 	u32 txdctl = 0;
3385 	u64 tdba = ring->dma;
3386 	int reg_idx = ring->reg_idx;
3387 
3388 	/* disable the queue */
3389 	wr32(E1000_TXDCTL(reg_idx), 0);
3390 	wrfl();
3391 	mdelay(10);
3392 
3393 	wr32(E1000_TDLEN(reg_idx),
3394 	     ring->count * sizeof(union e1000_adv_tx_desc));
3395 	wr32(E1000_TDBAL(reg_idx),
3396 	     tdba & 0x00000000ffffffffULL);
3397 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3398 
3399 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3400 	wr32(E1000_TDH(reg_idx), 0);
3401 	writel(0, ring->tail);
3402 
3403 	txdctl |= IGB_TX_PTHRESH;
3404 	txdctl |= IGB_TX_HTHRESH << 8;
3405 	txdctl |= IGB_TX_WTHRESH << 16;
3406 
3407 	/* reinitialize tx_buffer_info */
3408 	memset(ring->tx_buffer_info, 0,
3409 	       sizeof(struct igb_tx_buffer) * ring->count);
3410 
3411 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3412 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3413 }
3414 
3415 /**
3416  *  igb_configure_tx - Configure transmit Unit after Reset
3417  *  @adapter: board private structure
3418  *
3419  *  Configure the Tx unit of the MAC after a reset.
3420  **/
3421 static void igb_configure_tx(struct igb_adapter *adapter)
3422 {
3423 	int i;
3424 
3425 	for (i = 0; i < adapter->num_tx_queues; i++)
3426 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3427 }
3428 
3429 /**
3430  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3431  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3432  *
3433  *  Returns 0 on success, negative on failure
3434  **/
3435 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3436 {
3437 	struct device *dev = rx_ring->dev;
3438 	int size;
3439 
3440 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3441 
3442 	rx_ring->rx_buffer_info = vmalloc(size);
3443 	if (!rx_ring->rx_buffer_info)
3444 		goto err;
3445 
3446 	/* Round up to nearest 4K */
3447 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3448 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3449 
3450 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3451 					   &rx_ring->dma, GFP_KERNEL);
3452 	if (!rx_ring->desc)
3453 		goto err;
3454 
3455 	rx_ring->next_to_alloc = 0;
3456 	rx_ring->next_to_clean = 0;
3457 	rx_ring->next_to_use = 0;
3458 
3459 	return 0;
3460 
3461 err:
3462 	vfree(rx_ring->rx_buffer_info);
3463 	rx_ring->rx_buffer_info = NULL;
3464 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3465 	return -ENOMEM;
3466 }
3467 
3468 /**
3469  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3470  *				 (Descriptors) for all queues
3471  *  @adapter: board private structure
3472  *
3473  *  Return 0 on success, negative on failure
3474  **/
3475 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3476 {
3477 	struct pci_dev *pdev = adapter->pdev;
3478 	int i, err = 0;
3479 
3480 	for (i = 0; i < adapter->num_rx_queues; i++) {
3481 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3482 		if (err) {
3483 			dev_err(&pdev->dev,
3484 				"Allocation for Rx Queue %u failed\n", i);
3485 			for (i--; i >= 0; i--)
3486 				igb_free_rx_resources(adapter->rx_ring[i]);
3487 			break;
3488 		}
3489 	}
3490 
3491 	return err;
3492 }
3493 
3494 /**
3495  *  igb_setup_mrqc - configure the multiple receive queue control registers
3496  *  @adapter: Board private structure
3497  **/
3498 static void igb_setup_mrqc(struct igb_adapter *adapter)
3499 {
3500 	struct e1000_hw *hw = &adapter->hw;
3501 	u32 mrqc, rxcsum;
3502 	u32 j, num_rx_queues;
3503 	u32 rss_key[10];
3504 
3505 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3506 	for (j = 0; j < 10; j++)
3507 		wr32(E1000_RSSRK(j), rss_key[j]);
3508 
3509 	num_rx_queues = adapter->rss_queues;
3510 
3511 	switch (hw->mac.type) {
3512 	case e1000_82576:
3513 		/* 82576 supports 2 RSS queues for SR-IOV */
3514 		if (adapter->vfs_allocated_count)
3515 			num_rx_queues = 2;
3516 		break;
3517 	default:
3518 		break;
3519 	}
3520 
3521 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3522 		for (j = 0; j < IGB_RETA_SIZE; j++)
3523 			adapter->rss_indir_tbl[j] =
3524 			(j * num_rx_queues) / IGB_RETA_SIZE;
3525 		adapter->rss_indir_tbl_init = num_rx_queues;
3526 	}
3527 	igb_write_rss_indir_tbl(adapter);
3528 
3529 	/* Disable raw packet checksumming so that RSS hash is placed in
3530 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3531 	 * offloads as they are enabled by default
3532 	 */
3533 	rxcsum = rd32(E1000_RXCSUM);
3534 	rxcsum |= E1000_RXCSUM_PCSD;
3535 
3536 	if (adapter->hw.mac.type >= e1000_82576)
3537 		/* Enable Receive Checksum Offload for SCTP */
3538 		rxcsum |= E1000_RXCSUM_CRCOFL;
3539 
3540 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3541 	wr32(E1000_RXCSUM, rxcsum);
3542 
3543 	/* Generate RSS hash based on packet types, TCP/UDP
3544 	 * port numbers and/or IPv4/v6 src and dst addresses
3545 	 */
3546 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3547 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3548 	       E1000_MRQC_RSS_FIELD_IPV6 |
3549 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3550 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3551 
3552 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3553 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3554 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3555 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3556 
3557 	/* If VMDq is enabled then we set the appropriate mode for that, else
3558 	 * we default to RSS so that an RSS hash is calculated per packet even
3559 	 * if we are only using one queue
3560 	 */
3561 	if (adapter->vfs_allocated_count) {
3562 		if (hw->mac.type > e1000_82575) {
3563 			/* Set the default pool for the PF's first queue */
3564 			u32 vtctl = rd32(E1000_VT_CTL);
3565 
3566 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3567 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3568 			vtctl |= adapter->vfs_allocated_count <<
3569 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3570 			wr32(E1000_VT_CTL, vtctl);
3571 		}
3572 		if (adapter->rss_queues > 1)
3573 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3574 		else
3575 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3576 	} else {
3577 		if (hw->mac.type != e1000_i211)
3578 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3579 	}
3580 	igb_vmm_control(adapter);
3581 
3582 	wr32(E1000_MRQC, mrqc);
3583 }
3584 
3585 /**
3586  *  igb_setup_rctl - configure the receive control registers
3587  *  @adapter: Board private structure
3588  **/
3589 void igb_setup_rctl(struct igb_adapter *adapter)
3590 {
3591 	struct e1000_hw *hw = &adapter->hw;
3592 	u32 rctl;
3593 
3594 	rctl = rd32(E1000_RCTL);
3595 
3596 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3597 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3598 
3599 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3600 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3601 
3602 	/* enable stripping of CRC. It's unlikely this will break BMC
3603 	 * redirection as it did with e1000. Newer features require
3604 	 * that the HW strips the CRC.
3605 	 */
3606 	rctl |= E1000_RCTL_SECRC;
3607 
3608 	/* disable store bad packets and clear size bits. */
3609 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3610 
3611 	/* enable LPE to allow for reception of jumbo frames */
3612 	rctl |= E1000_RCTL_LPE;
3613 
3614 	/* disable queue 0 to prevent tail write w/o re-config */
3615 	wr32(E1000_RXDCTL(0), 0);
3616 
3617 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3618 	 * queue drop for all VF and PF queues to prevent head of line blocking
3619 	 * if an un-trusted VF does not provide descriptors to hardware.
3620 	 */
3621 	if (adapter->vfs_allocated_count) {
3622 		/* set all queue drop enable bits */
3623 		wr32(E1000_QDE, ALL_QUEUES);
3624 	}
3625 
3626 	/* This is useful for sniffing bad packets. */
3627 	if (adapter->netdev->features & NETIF_F_RXALL) {
3628 		/* UPE and MPE will be handled by normal PROMISC logic
3629 		 * in e1000e_set_rx_mode
3630 		 */
3631 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3632 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3633 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3634 
3635 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3636 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3637 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3638 		 * and that breaks VLANs.
3639 		 */
3640 	}
3641 
3642 	wr32(E1000_RCTL, rctl);
3643 }
3644 
3645 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3646 				   int vfn)
3647 {
3648 	struct e1000_hw *hw = &adapter->hw;
3649 	u32 vmolr;
3650 
3651 	if (size > MAX_JUMBO_FRAME_SIZE)
3652 		size = MAX_JUMBO_FRAME_SIZE;
3653 
3654 	vmolr = rd32(E1000_VMOLR(vfn));
3655 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3656 	vmolr |= size | E1000_VMOLR_LPE;
3657 	wr32(E1000_VMOLR(vfn), vmolr);
3658 
3659 	return 0;
3660 }
3661 
3662 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3663 					 int vfn, bool enable)
3664 {
3665 	struct e1000_hw *hw = &adapter->hw;
3666 	u32 val, reg;
3667 
3668 	if (hw->mac.type < e1000_82576)
3669 		return;
3670 
3671 	if (hw->mac.type == e1000_i350)
3672 		reg = E1000_DVMOLR(vfn);
3673 	else
3674 		reg = E1000_VMOLR(vfn);
3675 
3676 	val = rd32(reg);
3677 	if (enable)
3678 		val |= E1000_VMOLR_STRVLAN;
3679 	else
3680 		val &= ~(E1000_VMOLR_STRVLAN);
3681 	wr32(reg, val);
3682 }
3683 
3684 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3685 				 int vfn, bool aupe)
3686 {
3687 	struct e1000_hw *hw = &adapter->hw;
3688 	u32 vmolr;
3689 
3690 	/* This register exists only on 82576 and newer so if we are older then
3691 	 * we should exit and do nothing
3692 	 */
3693 	if (hw->mac.type < e1000_82576)
3694 		return;
3695 
3696 	vmolr = rd32(E1000_VMOLR(vfn));
3697 	if (aupe)
3698 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3699 	else
3700 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3701 
3702 	/* clear all bits that might not be set */
3703 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3704 
3705 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3706 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3707 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3708 	 * multicast packets
3709 	 */
3710 	if (vfn <= adapter->vfs_allocated_count)
3711 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3712 
3713 	wr32(E1000_VMOLR(vfn), vmolr);
3714 }
3715 
3716 /**
3717  *  igb_configure_rx_ring - Configure a receive ring after Reset
3718  *  @adapter: board private structure
3719  *  @ring: receive ring to be configured
3720  *
3721  *  Configure the Rx unit of the MAC after a reset.
3722  **/
3723 void igb_configure_rx_ring(struct igb_adapter *adapter,
3724 			   struct igb_ring *ring)
3725 {
3726 	struct e1000_hw *hw = &adapter->hw;
3727 	union e1000_adv_rx_desc *rx_desc;
3728 	u64 rdba = ring->dma;
3729 	int reg_idx = ring->reg_idx;
3730 	u32 srrctl = 0, rxdctl = 0;
3731 
3732 	/* disable the queue */
3733 	wr32(E1000_RXDCTL(reg_idx), 0);
3734 
3735 	/* Set DMA base address registers */
3736 	wr32(E1000_RDBAL(reg_idx),
3737 	     rdba & 0x00000000ffffffffULL);
3738 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3739 	wr32(E1000_RDLEN(reg_idx),
3740 	     ring->count * sizeof(union e1000_adv_rx_desc));
3741 
3742 	/* initialize head and tail */
3743 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
3744 	wr32(E1000_RDH(reg_idx), 0);
3745 	writel(0, ring->tail);
3746 
3747 	/* set descriptor configuration */
3748 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3749 	if (ring_uses_large_buffer(ring))
3750 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3751 	else
3752 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3753 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3754 	if (hw->mac.type >= e1000_82580)
3755 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3756 	/* Only set Drop Enable if we are supporting multiple queues */
3757 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3758 		srrctl |= E1000_SRRCTL_DROP_EN;
3759 
3760 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3761 
3762 	/* set filtering for VMDQ pools */
3763 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3764 
3765 	rxdctl |= IGB_RX_PTHRESH;
3766 	rxdctl |= IGB_RX_HTHRESH << 8;
3767 	rxdctl |= IGB_RX_WTHRESH << 16;
3768 
3769 	/* initialize rx_buffer_info */
3770 	memset(ring->rx_buffer_info, 0,
3771 	       sizeof(struct igb_rx_buffer) * ring->count);
3772 
3773 	/* initialize Rx descriptor 0 */
3774 	rx_desc = IGB_RX_DESC(ring, 0);
3775 	rx_desc->wb.upper.length = 0;
3776 
3777 	/* enable receive descriptor fetching */
3778 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3779 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3780 }
3781 
3782 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3783 				  struct igb_ring *rx_ring)
3784 {
3785 	/* set build_skb and buffer size flags */
3786 	clear_ring_build_skb_enabled(rx_ring);
3787 	clear_ring_uses_large_buffer(rx_ring);
3788 
3789 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3790 		return;
3791 
3792 	set_ring_build_skb_enabled(rx_ring);
3793 
3794 #if (PAGE_SIZE < 8192)
3795 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
3796 		return;
3797 
3798 	set_ring_uses_large_buffer(rx_ring);
3799 #endif
3800 }
3801 
3802 /**
3803  *  igb_configure_rx - Configure receive Unit after Reset
3804  *  @adapter: board private structure
3805  *
3806  *  Configure the Rx unit of the MAC after a reset.
3807  **/
3808 static void igb_configure_rx(struct igb_adapter *adapter)
3809 {
3810 	int i;
3811 
3812 	/* set the correct pool for the PF default MAC address in entry 0 */
3813 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3814 			 adapter->vfs_allocated_count);
3815 
3816 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3817 	 * the Base and Length of the Rx Descriptor Ring
3818 	 */
3819 	for (i = 0; i < adapter->num_rx_queues; i++) {
3820 		struct igb_ring *rx_ring = adapter->rx_ring[i];
3821 
3822 		igb_set_rx_buffer_len(adapter, rx_ring);
3823 		igb_configure_rx_ring(adapter, rx_ring);
3824 	}
3825 }
3826 
3827 /**
3828  *  igb_free_tx_resources - Free Tx Resources per Queue
3829  *  @tx_ring: Tx descriptor ring for a specific queue
3830  *
3831  *  Free all transmit software resources
3832  **/
3833 void igb_free_tx_resources(struct igb_ring *tx_ring)
3834 {
3835 	igb_clean_tx_ring(tx_ring);
3836 
3837 	vfree(tx_ring->tx_buffer_info);
3838 	tx_ring->tx_buffer_info = NULL;
3839 
3840 	/* if not set, then don't free */
3841 	if (!tx_ring->desc)
3842 		return;
3843 
3844 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3845 			  tx_ring->desc, tx_ring->dma);
3846 
3847 	tx_ring->desc = NULL;
3848 }
3849 
3850 /**
3851  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3852  *  @adapter: board private structure
3853  *
3854  *  Free all transmit software resources
3855  **/
3856 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3857 {
3858 	int i;
3859 
3860 	for (i = 0; i < adapter->num_tx_queues; i++)
3861 		if (adapter->tx_ring[i])
3862 			igb_free_tx_resources(adapter->tx_ring[i]);
3863 }
3864 
3865 /**
3866  *  igb_clean_tx_ring - Free Tx Buffers
3867  *  @tx_ring: ring to be cleaned
3868  **/
3869 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3870 {
3871 	u16 i = tx_ring->next_to_clean;
3872 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
3873 
3874 	while (i != tx_ring->next_to_use) {
3875 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
3876 
3877 		/* Free all the Tx ring sk_buffs */
3878 		dev_kfree_skb_any(tx_buffer->skb);
3879 
3880 		/* unmap skb header data */
3881 		dma_unmap_single(tx_ring->dev,
3882 				 dma_unmap_addr(tx_buffer, dma),
3883 				 dma_unmap_len(tx_buffer, len),
3884 				 DMA_TO_DEVICE);
3885 
3886 		/* check for eop_desc to determine the end of the packet */
3887 		eop_desc = tx_buffer->next_to_watch;
3888 		tx_desc = IGB_TX_DESC(tx_ring, i);
3889 
3890 		/* unmap remaining buffers */
3891 		while (tx_desc != eop_desc) {
3892 			tx_buffer++;
3893 			tx_desc++;
3894 			i++;
3895 			if (unlikely(i == tx_ring->count)) {
3896 				i = 0;
3897 				tx_buffer = tx_ring->tx_buffer_info;
3898 				tx_desc = IGB_TX_DESC(tx_ring, 0);
3899 			}
3900 
3901 			/* unmap any remaining paged data */
3902 			if (dma_unmap_len(tx_buffer, len))
3903 				dma_unmap_page(tx_ring->dev,
3904 					       dma_unmap_addr(tx_buffer, dma),
3905 					       dma_unmap_len(tx_buffer, len),
3906 					       DMA_TO_DEVICE);
3907 		}
3908 
3909 		/* move us one more past the eop_desc for start of next pkt */
3910 		tx_buffer++;
3911 		i++;
3912 		if (unlikely(i == tx_ring->count)) {
3913 			i = 0;
3914 			tx_buffer = tx_ring->tx_buffer_info;
3915 		}
3916 	}
3917 
3918 	/* reset BQL for queue */
3919 	netdev_tx_reset_queue(txring_txq(tx_ring));
3920 
3921 	/* reset next_to_use and next_to_clean */
3922 	tx_ring->next_to_use = 0;
3923 	tx_ring->next_to_clean = 0;
3924 }
3925 
3926 /**
3927  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3928  *  @adapter: board private structure
3929  **/
3930 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3931 {
3932 	int i;
3933 
3934 	for (i = 0; i < adapter->num_tx_queues; i++)
3935 		if (adapter->tx_ring[i])
3936 			igb_clean_tx_ring(adapter->tx_ring[i]);
3937 }
3938 
3939 /**
3940  *  igb_free_rx_resources - Free Rx Resources
3941  *  @rx_ring: ring to clean the resources from
3942  *
3943  *  Free all receive software resources
3944  **/
3945 void igb_free_rx_resources(struct igb_ring *rx_ring)
3946 {
3947 	igb_clean_rx_ring(rx_ring);
3948 
3949 	vfree(rx_ring->rx_buffer_info);
3950 	rx_ring->rx_buffer_info = NULL;
3951 
3952 	/* if not set, then don't free */
3953 	if (!rx_ring->desc)
3954 		return;
3955 
3956 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3957 			  rx_ring->desc, rx_ring->dma);
3958 
3959 	rx_ring->desc = NULL;
3960 }
3961 
3962 /**
3963  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3964  *  @adapter: board private structure
3965  *
3966  *  Free all receive software resources
3967  **/
3968 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3969 {
3970 	int i;
3971 
3972 	for (i = 0; i < adapter->num_rx_queues; i++)
3973 		if (adapter->rx_ring[i])
3974 			igb_free_rx_resources(adapter->rx_ring[i]);
3975 }
3976 
3977 /**
3978  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3979  *  @rx_ring: ring to free buffers from
3980  **/
3981 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3982 {
3983 	u16 i = rx_ring->next_to_clean;
3984 
3985 	if (rx_ring->skb)
3986 		dev_kfree_skb(rx_ring->skb);
3987 	rx_ring->skb = NULL;
3988 
3989 	/* Free all the Rx ring sk_buffs */
3990 	while (i != rx_ring->next_to_alloc) {
3991 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3992 
3993 		/* Invalidate cache lines that may have been written to by
3994 		 * device so that we avoid corrupting memory.
3995 		 */
3996 		dma_sync_single_range_for_cpu(rx_ring->dev,
3997 					      buffer_info->dma,
3998 					      buffer_info->page_offset,
3999 					      igb_rx_bufsz(rx_ring),
4000 					      DMA_FROM_DEVICE);
4001 
4002 		/* free resources associated with mapping */
4003 		dma_unmap_page_attrs(rx_ring->dev,
4004 				     buffer_info->dma,
4005 				     igb_rx_pg_size(rx_ring),
4006 				     DMA_FROM_DEVICE,
4007 				     IGB_RX_DMA_ATTR);
4008 		__page_frag_cache_drain(buffer_info->page,
4009 					buffer_info->pagecnt_bias);
4010 
4011 		i++;
4012 		if (i == rx_ring->count)
4013 			i = 0;
4014 	}
4015 
4016 	rx_ring->next_to_alloc = 0;
4017 	rx_ring->next_to_clean = 0;
4018 	rx_ring->next_to_use = 0;
4019 }
4020 
4021 /**
4022  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4023  *  @adapter: board private structure
4024  **/
4025 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4026 {
4027 	int i;
4028 
4029 	for (i = 0; i < adapter->num_rx_queues; i++)
4030 		if (adapter->rx_ring[i])
4031 			igb_clean_rx_ring(adapter->rx_ring[i]);
4032 }
4033 
4034 /**
4035  *  igb_set_mac - Change the Ethernet Address of the NIC
4036  *  @netdev: network interface device structure
4037  *  @p: pointer to an address structure
4038  *
4039  *  Returns 0 on success, negative on failure
4040  **/
4041 static int igb_set_mac(struct net_device *netdev, void *p)
4042 {
4043 	struct igb_adapter *adapter = netdev_priv(netdev);
4044 	struct e1000_hw *hw = &adapter->hw;
4045 	struct sockaddr *addr = p;
4046 
4047 	if (!is_valid_ether_addr(addr->sa_data))
4048 		return -EADDRNOTAVAIL;
4049 
4050 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4051 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4052 
4053 	/* set the correct pool for the new PF MAC address in entry 0 */
4054 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
4055 			 adapter->vfs_allocated_count);
4056 
4057 	return 0;
4058 }
4059 
4060 /**
4061  *  igb_write_mc_addr_list - write multicast addresses to MTA
4062  *  @netdev: network interface device structure
4063  *
4064  *  Writes multicast address list to the MTA hash table.
4065  *  Returns: -ENOMEM on failure
4066  *           0 on no addresses written
4067  *           X on writing X addresses to MTA
4068  **/
4069 static int igb_write_mc_addr_list(struct net_device *netdev)
4070 {
4071 	struct igb_adapter *adapter = netdev_priv(netdev);
4072 	struct e1000_hw *hw = &adapter->hw;
4073 	struct netdev_hw_addr *ha;
4074 	u8  *mta_list;
4075 	int i;
4076 
4077 	if (netdev_mc_empty(netdev)) {
4078 		/* nothing to program, so clear mc list */
4079 		igb_update_mc_addr_list(hw, NULL, 0);
4080 		igb_restore_vf_multicasts(adapter);
4081 		return 0;
4082 	}
4083 
4084 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4085 	if (!mta_list)
4086 		return -ENOMEM;
4087 
4088 	/* The shared function expects a packed array of only addresses. */
4089 	i = 0;
4090 	netdev_for_each_mc_addr(ha, netdev)
4091 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4092 
4093 	igb_update_mc_addr_list(hw, mta_list, i);
4094 	kfree(mta_list);
4095 
4096 	return netdev_mc_count(netdev);
4097 }
4098 
4099 /**
4100  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4101  *  @netdev: network interface device structure
4102  *
4103  *  Writes unicast address list to the RAR table.
4104  *  Returns: -ENOMEM on failure/insufficient address space
4105  *           0 on no addresses written
4106  *           X on writing X addresses to the RAR table
4107  **/
4108 static int igb_write_uc_addr_list(struct net_device *netdev)
4109 {
4110 	struct igb_adapter *adapter = netdev_priv(netdev);
4111 	struct e1000_hw *hw = &adapter->hw;
4112 	unsigned int vfn = adapter->vfs_allocated_count;
4113 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4114 	int count = 0;
4115 
4116 	/* return ENOMEM indicating insufficient memory for addresses */
4117 	if (netdev_uc_count(netdev) > rar_entries)
4118 		return -ENOMEM;
4119 
4120 	if (!netdev_uc_empty(netdev) && rar_entries) {
4121 		struct netdev_hw_addr *ha;
4122 
4123 		netdev_for_each_uc_addr(ha, netdev) {
4124 			if (!rar_entries)
4125 				break;
4126 			igb_rar_set_qsel(adapter, ha->addr,
4127 					 rar_entries--,
4128 					 vfn);
4129 			count++;
4130 		}
4131 	}
4132 	/* write the addresses in reverse order to avoid write combining */
4133 	for (; rar_entries > 0 ; rar_entries--) {
4134 		wr32(E1000_RAH(rar_entries), 0);
4135 		wr32(E1000_RAL(rar_entries), 0);
4136 	}
4137 	wrfl();
4138 
4139 	return count;
4140 }
4141 
4142 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4143 {
4144 	struct e1000_hw *hw = &adapter->hw;
4145 	u32 i, pf_id;
4146 
4147 	switch (hw->mac.type) {
4148 	case e1000_i210:
4149 	case e1000_i211:
4150 	case e1000_i350:
4151 		/* VLAN filtering needed for VLAN prio filter */
4152 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4153 			break;
4154 		/* fall through */
4155 	case e1000_82576:
4156 	case e1000_82580:
4157 	case e1000_i354:
4158 		/* VLAN filtering needed for pool filtering */
4159 		if (adapter->vfs_allocated_count)
4160 			break;
4161 		/* fall through */
4162 	default:
4163 		return 1;
4164 	}
4165 
4166 	/* We are already in VLAN promisc, nothing to do */
4167 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4168 		return 0;
4169 
4170 	if (!adapter->vfs_allocated_count)
4171 		goto set_vfta;
4172 
4173 	/* Add PF to all active pools */
4174 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4175 
4176 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4177 		u32 vlvf = rd32(E1000_VLVF(i));
4178 
4179 		vlvf |= BIT(pf_id);
4180 		wr32(E1000_VLVF(i), vlvf);
4181 	}
4182 
4183 set_vfta:
4184 	/* Set all bits in the VLAN filter table array */
4185 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4186 		hw->mac.ops.write_vfta(hw, i, ~0U);
4187 
4188 	/* Set flag so we don't redo unnecessary work */
4189 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4190 
4191 	return 0;
4192 }
4193 
4194 #define VFTA_BLOCK_SIZE 8
4195 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4196 {
4197 	struct e1000_hw *hw = &adapter->hw;
4198 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4199 	u32 vid_start = vfta_offset * 32;
4200 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4201 	u32 i, vid, word, bits, pf_id;
4202 
4203 	/* guarantee that we don't scrub out management VLAN */
4204 	vid = adapter->mng_vlan_id;
4205 	if (vid >= vid_start && vid < vid_end)
4206 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4207 
4208 	if (!adapter->vfs_allocated_count)
4209 		goto set_vfta;
4210 
4211 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4212 
4213 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4214 		u32 vlvf = rd32(E1000_VLVF(i));
4215 
4216 		/* pull VLAN ID from VLVF */
4217 		vid = vlvf & VLAN_VID_MASK;
4218 
4219 		/* only concern ourselves with a certain range */
4220 		if (vid < vid_start || vid >= vid_end)
4221 			continue;
4222 
4223 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4224 			/* record VLAN ID in VFTA */
4225 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4226 
4227 			/* if PF is part of this then continue */
4228 			if (test_bit(vid, adapter->active_vlans))
4229 				continue;
4230 		}
4231 
4232 		/* remove PF from the pool */
4233 		bits = ~BIT(pf_id);
4234 		bits &= rd32(E1000_VLVF(i));
4235 		wr32(E1000_VLVF(i), bits);
4236 	}
4237 
4238 set_vfta:
4239 	/* extract values from active_vlans and write back to VFTA */
4240 	for (i = VFTA_BLOCK_SIZE; i--;) {
4241 		vid = (vfta_offset + i) * 32;
4242 		word = vid / BITS_PER_LONG;
4243 		bits = vid % BITS_PER_LONG;
4244 
4245 		vfta[i] |= adapter->active_vlans[word] >> bits;
4246 
4247 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4248 	}
4249 }
4250 
4251 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4252 {
4253 	u32 i;
4254 
4255 	/* We are not in VLAN promisc, nothing to do */
4256 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4257 		return;
4258 
4259 	/* Set flag so we don't redo unnecessary work */
4260 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4261 
4262 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4263 		igb_scrub_vfta(adapter, i);
4264 }
4265 
4266 /**
4267  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4268  *  @netdev: network interface device structure
4269  *
4270  *  The set_rx_mode entry point is called whenever the unicast or multicast
4271  *  address lists or the network interface flags are updated.  This routine is
4272  *  responsible for configuring the hardware for proper unicast, multicast,
4273  *  promiscuous mode, and all-multi behavior.
4274  **/
4275 static void igb_set_rx_mode(struct net_device *netdev)
4276 {
4277 	struct igb_adapter *adapter = netdev_priv(netdev);
4278 	struct e1000_hw *hw = &adapter->hw;
4279 	unsigned int vfn = adapter->vfs_allocated_count;
4280 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4281 	int count;
4282 
4283 	/* Check for Promiscuous and All Multicast modes */
4284 	if (netdev->flags & IFF_PROMISC) {
4285 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4286 		vmolr |= E1000_VMOLR_MPME;
4287 
4288 		/* enable use of UTA filter to force packets to default pool */
4289 		if (hw->mac.type == e1000_82576)
4290 			vmolr |= E1000_VMOLR_ROPE;
4291 	} else {
4292 		if (netdev->flags & IFF_ALLMULTI) {
4293 			rctl |= E1000_RCTL_MPE;
4294 			vmolr |= E1000_VMOLR_MPME;
4295 		} else {
4296 			/* Write addresses to the MTA, if the attempt fails
4297 			 * then we should just turn on promiscuous mode so
4298 			 * that we can at least receive multicast traffic
4299 			 */
4300 			count = igb_write_mc_addr_list(netdev);
4301 			if (count < 0) {
4302 				rctl |= E1000_RCTL_MPE;
4303 				vmolr |= E1000_VMOLR_MPME;
4304 			} else if (count) {
4305 				vmolr |= E1000_VMOLR_ROMPE;
4306 			}
4307 		}
4308 	}
4309 
4310 	/* Write addresses to available RAR registers, if there is not
4311 	 * sufficient space to store all the addresses then enable
4312 	 * unicast promiscuous mode
4313 	 */
4314 	count = igb_write_uc_addr_list(netdev);
4315 	if (count < 0) {
4316 		rctl |= E1000_RCTL_UPE;
4317 		vmolr |= E1000_VMOLR_ROPE;
4318 	}
4319 
4320 	/* enable VLAN filtering by default */
4321 	rctl |= E1000_RCTL_VFE;
4322 
4323 	/* disable VLAN filtering for modes that require it */
4324 	if ((netdev->flags & IFF_PROMISC) ||
4325 	    (netdev->features & NETIF_F_RXALL)) {
4326 		/* if we fail to set all rules then just clear VFE */
4327 		if (igb_vlan_promisc_enable(adapter))
4328 			rctl &= ~E1000_RCTL_VFE;
4329 	} else {
4330 		igb_vlan_promisc_disable(adapter);
4331 	}
4332 
4333 	/* update state of unicast, multicast, and VLAN filtering modes */
4334 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4335 				     E1000_RCTL_VFE);
4336 	wr32(E1000_RCTL, rctl);
4337 
4338 #if (PAGE_SIZE < 8192)
4339 	if (!adapter->vfs_allocated_count) {
4340 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4341 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
4342 	}
4343 #endif
4344 	wr32(E1000_RLPML, rlpml);
4345 
4346 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4347 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4348 	 * we will have issues with VLAN tag stripping not being done for frames
4349 	 * that are only arriving because we are the default pool
4350 	 */
4351 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4352 		return;
4353 
4354 	/* set UTA to appropriate mode */
4355 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4356 
4357 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4358 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4359 
4360 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
4361 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4362 #if (PAGE_SIZE < 8192)
4363 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4364 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4365 	else
4366 #endif
4367 		vmolr |= MAX_JUMBO_FRAME_SIZE;
4368 	vmolr |= E1000_VMOLR_LPE;
4369 
4370 	wr32(E1000_VMOLR(vfn), vmolr);
4371 
4372 	igb_restore_vf_multicasts(adapter);
4373 }
4374 
4375 static void igb_check_wvbr(struct igb_adapter *adapter)
4376 {
4377 	struct e1000_hw *hw = &adapter->hw;
4378 	u32 wvbr = 0;
4379 
4380 	switch (hw->mac.type) {
4381 	case e1000_82576:
4382 	case e1000_i350:
4383 		wvbr = rd32(E1000_WVBR);
4384 		if (!wvbr)
4385 			return;
4386 		break;
4387 	default:
4388 		break;
4389 	}
4390 
4391 	adapter->wvbr |= wvbr;
4392 }
4393 
4394 #define IGB_STAGGERED_QUEUE_OFFSET 8
4395 
4396 static void igb_spoof_check(struct igb_adapter *adapter)
4397 {
4398 	int j;
4399 
4400 	if (!adapter->wvbr)
4401 		return;
4402 
4403 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4404 		if (adapter->wvbr & BIT(j) ||
4405 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4406 			dev_warn(&adapter->pdev->dev,
4407 				"Spoof event(s) detected on VF %d\n", j);
4408 			adapter->wvbr &=
4409 				~(BIT(j) |
4410 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4411 		}
4412 	}
4413 }
4414 
4415 /* Need to wait a few seconds after link up to get diagnostic information from
4416  * the phy
4417  */
4418 static void igb_update_phy_info(unsigned long data)
4419 {
4420 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4421 	igb_get_phy_info(&adapter->hw);
4422 }
4423 
4424 /**
4425  *  igb_has_link - check shared code for link and determine up/down
4426  *  @adapter: pointer to driver private info
4427  **/
4428 bool igb_has_link(struct igb_adapter *adapter)
4429 {
4430 	struct e1000_hw *hw = &adapter->hw;
4431 	bool link_active = false;
4432 
4433 	/* get_link_status is set on LSC (link status) interrupt or
4434 	 * rx sequence error interrupt.  get_link_status will stay
4435 	 * false until the e1000_check_for_link establishes link
4436 	 * for copper adapters ONLY
4437 	 */
4438 	switch (hw->phy.media_type) {
4439 	case e1000_media_type_copper:
4440 		if (!hw->mac.get_link_status)
4441 			return true;
4442 	case e1000_media_type_internal_serdes:
4443 		hw->mac.ops.check_for_link(hw);
4444 		link_active = !hw->mac.get_link_status;
4445 		break;
4446 	default:
4447 	case e1000_media_type_unknown:
4448 		break;
4449 	}
4450 
4451 	if (((hw->mac.type == e1000_i210) ||
4452 	     (hw->mac.type == e1000_i211)) &&
4453 	     (hw->phy.id == I210_I_PHY_ID)) {
4454 		if (!netif_carrier_ok(adapter->netdev)) {
4455 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4456 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4457 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4458 			adapter->link_check_timeout = jiffies;
4459 		}
4460 	}
4461 
4462 	return link_active;
4463 }
4464 
4465 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4466 {
4467 	bool ret = false;
4468 	u32 ctrl_ext, thstat;
4469 
4470 	/* check for thermal sensor event on i350 copper only */
4471 	if (hw->mac.type == e1000_i350) {
4472 		thstat = rd32(E1000_THSTAT);
4473 		ctrl_ext = rd32(E1000_CTRL_EXT);
4474 
4475 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4476 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4477 			ret = !!(thstat & event);
4478 	}
4479 
4480 	return ret;
4481 }
4482 
4483 /**
4484  *  igb_check_lvmmc - check for malformed packets received
4485  *  and indicated in LVMMC register
4486  *  @adapter: pointer to adapter
4487  **/
4488 static void igb_check_lvmmc(struct igb_adapter *adapter)
4489 {
4490 	struct e1000_hw *hw = &adapter->hw;
4491 	u32 lvmmc;
4492 
4493 	lvmmc = rd32(E1000_LVMMC);
4494 	if (lvmmc) {
4495 		if (unlikely(net_ratelimit())) {
4496 			netdev_warn(adapter->netdev,
4497 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4498 				    lvmmc);
4499 		}
4500 	}
4501 }
4502 
4503 /**
4504  *  igb_watchdog - Timer Call-back
4505  *  @data: pointer to adapter cast into an unsigned long
4506  **/
4507 static void igb_watchdog(unsigned long data)
4508 {
4509 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4510 	/* Do the rest outside of interrupt context */
4511 	schedule_work(&adapter->watchdog_task);
4512 }
4513 
4514 static void igb_watchdog_task(struct work_struct *work)
4515 {
4516 	struct igb_adapter *adapter = container_of(work,
4517 						   struct igb_adapter,
4518 						   watchdog_task);
4519 	struct e1000_hw *hw = &adapter->hw;
4520 	struct e1000_phy_info *phy = &hw->phy;
4521 	struct net_device *netdev = adapter->netdev;
4522 	u32 link;
4523 	int i;
4524 	u32 connsw;
4525 	u16 phy_data, retry_count = 20;
4526 
4527 	link = igb_has_link(adapter);
4528 
4529 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4530 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4531 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4532 		else
4533 			link = false;
4534 	}
4535 
4536 	/* Force link down if we have fiber to swap to */
4537 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4538 		if (hw->phy.media_type == e1000_media_type_copper) {
4539 			connsw = rd32(E1000_CONNSW);
4540 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4541 				link = 0;
4542 		}
4543 	}
4544 	if (link) {
4545 		/* Perform a reset if the media type changed. */
4546 		if (hw->dev_spec._82575.media_changed) {
4547 			hw->dev_spec._82575.media_changed = false;
4548 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4549 			igb_reset(adapter);
4550 		}
4551 		/* Cancel scheduled suspend requests. */
4552 		pm_runtime_resume(netdev->dev.parent);
4553 
4554 		if (!netif_carrier_ok(netdev)) {
4555 			u32 ctrl;
4556 
4557 			hw->mac.ops.get_speed_and_duplex(hw,
4558 							 &adapter->link_speed,
4559 							 &adapter->link_duplex);
4560 
4561 			ctrl = rd32(E1000_CTRL);
4562 			/* Links status message must follow this format */
4563 			netdev_info(netdev,
4564 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4565 			       netdev->name,
4566 			       adapter->link_speed,
4567 			       adapter->link_duplex == FULL_DUPLEX ?
4568 			       "Full" : "Half",
4569 			       (ctrl & E1000_CTRL_TFCE) &&
4570 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4571 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4572 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4573 
4574 			/* disable EEE if enabled */
4575 			if ((adapter->flags & IGB_FLAG_EEE) &&
4576 				(adapter->link_duplex == HALF_DUPLEX)) {
4577 				dev_info(&adapter->pdev->dev,
4578 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4579 				adapter->hw.dev_spec._82575.eee_disable = true;
4580 				adapter->flags &= ~IGB_FLAG_EEE;
4581 			}
4582 
4583 			/* check if SmartSpeed worked */
4584 			igb_check_downshift(hw);
4585 			if (phy->speed_downgraded)
4586 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4587 
4588 			/* check for thermal sensor event */
4589 			if (igb_thermal_sensor_event(hw,
4590 			    E1000_THSTAT_LINK_THROTTLE))
4591 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4592 
4593 			/* adjust timeout factor according to speed/duplex */
4594 			adapter->tx_timeout_factor = 1;
4595 			switch (adapter->link_speed) {
4596 			case SPEED_10:
4597 				adapter->tx_timeout_factor = 14;
4598 				break;
4599 			case SPEED_100:
4600 				/* maybe add some timeout factor ? */
4601 				break;
4602 			}
4603 
4604 			if (adapter->link_speed != SPEED_1000)
4605 				goto no_wait;
4606 
4607 			/* wait for Remote receiver status OK */
4608 retry_read_status:
4609 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4610 					      &phy_data)) {
4611 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4612 				    retry_count) {
4613 					msleep(100);
4614 					retry_count--;
4615 					goto retry_read_status;
4616 				} else if (!retry_count) {
4617 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4618 				}
4619 			} else {
4620 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4621 			}
4622 no_wait:
4623 			netif_carrier_on(netdev);
4624 
4625 			igb_ping_all_vfs(adapter);
4626 			igb_check_vf_rate_limit(adapter);
4627 
4628 			/* link state has changed, schedule phy info update */
4629 			if (!test_bit(__IGB_DOWN, &adapter->state))
4630 				mod_timer(&adapter->phy_info_timer,
4631 					  round_jiffies(jiffies + 2 * HZ));
4632 		}
4633 	} else {
4634 		if (netif_carrier_ok(netdev)) {
4635 			adapter->link_speed = 0;
4636 			adapter->link_duplex = 0;
4637 
4638 			/* check for thermal sensor event */
4639 			if (igb_thermal_sensor_event(hw,
4640 			    E1000_THSTAT_PWR_DOWN)) {
4641 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4642 			}
4643 
4644 			/* Links status message must follow this format */
4645 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4646 			       netdev->name);
4647 			netif_carrier_off(netdev);
4648 
4649 			igb_ping_all_vfs(adapter);
4650 
4651 			/* link state has changed, schedule phy info update */
4652 			if (!test_bit(__IGB_DOWN, &adapter->state))
4653 				mod_timer(&adapter->phy_info_timer,
4654 					  round_jiffies(jiffies + 2 * HZ));
4655 
4656 			/* link is down, time to check for alternate media */
4657 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4658 				igb_check_swap_media(adapter);
4659 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4660 					schedule_work(&adapter->reset_task);
4661 					/* return immediately */
4662 					return;
4663 				}
4664 			}
4665 			pm_schedule_suspend(netdev->dev.parent,
4666 					    MSEC_PER_SEC * 5);
4667 
4668 		/* also check for alternate media here */
4669 		} else if (!netif_carrier_ok(netdev) &&
4670 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4671 			igb_check_swap_media(adapter);
4672 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4673 				schedule_work(&adapter->reset_task);
4674 				/* return immediately */
4675 				return;
4676 			}
4677 		}
4678 	}
4679 
4680 	spin_lock(&adapter->stats64_lock);
4681 	igb_update_stats(adapter, &adapter->stats64);
4682 	spin_unlock(&adapter->stats64_lock);
4683 
4684 	for (i = 0; i < adapter->num_tx_queues; i++) {
4685 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4686 		if (!netif_carrier_ok(netdev)) {
4687 			/* We've lost link, so the controller stops DMA,
4688 			 * but we've got queued Tx work that's never going
4689 			 * to get done, so reset controller to flush Tx.
4690 			 * (Do the reset outside of interrupt context).
4691 			 */
4692 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4693 				adapter->tx_timeout_count++;
4694 				schedule_work(&adapter->reset_task);
4695 				/* return immediately since reset is imminent */
4696 				return;
4697 			}
4698 		}
4699 
4700 		/* Force detection of hung controller every watchdog period */
4701 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4702 	}
4703 
4704 	/* Cause software interrupt to ensure Rx ring is cleaned */
4705 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4706 		u32 eics = 0;
4707 
4708 		for (i = 0; i < adapter->num_q_vectors; i++)
4709 			eics |= adapter->q_vector[i]->eims_value;
4710 		wr32(E1000_EICS, eics);
4711 	} else {
4712 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4713 	}
4714 
4715 	igb_spoof_check(adapter);
4716 	igb_ptp_rx_hang(adapter);
4717 
4718 	/* Check LVMMC register on i350/i354 only */
4719 	if ((adapter->hw.mac.type == e1000_i350) ||
4720 	    (adapter->hw.mac.type == e1000_i354))
4721 		igb_check_lvmmc(adapter);
4722 
4723 	/* Reset the timer */
4724 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4725 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4726 			mod_timer(&adapter->watchdog_timer,
4727 				  round_jiffies(jiffies +  HZ));
4728 		else
4729 			mod_timer(&adapter->watchdog_timer,
4730 				  round_jiffies(jiffies + 2 * HZ));
4731 	}
4732 }
4733 
4734 enum latency_range {
4735 	lowest_latency = 0,
4736 	low_latency = 1,
4737 	bulk_latency = 2,
4738 	latency_invalid = 255
4739 };
4740 
4741 /**
4742  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4743  *  @q_vector: pointer to q_vector
4744  *
4745  *  Stores a new ITR value based on strictly on packet size.  This
4746  *  algorithm is less sophisticated than that used in igb_update_itr,
4747  *  due to the difficulty of synchronizing statistics across multiple
4748  *  receive rings.  The divisors and thresholds used by this function
4749  *  were determined based on theoretical maximum wire speed and testing
4750  *  data, in order to minimize response time while increasing bulk
4751  *  throughput.
4752  *  This functionality is controlled by ethtool's coalescing settings.
4753  *  NOTE:  This function is called only when operating in a multiqueue
4754  *         receive environment.
4755  **/
4756 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4757 {
4758 	int new_val = q_vector->itr_val;
4759 	int avg_wire_size = 0;
4760 	struct igb_adapter *adapter = q_vector->adapter;
4761 	unsigned int packets;
4762 
4763 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4764 	 * ints/sec - ITR timer value of 120 ticks.
4765 	 */
4766 	if (adapter->link_speed != SPEED_1000) {
4767 		new_val = IGB_4K_ITR;
4768 		goto set_itr_val;
4769 	}
4770 
4771 	packets = q_vector->rx.total_packets;
4772 	if (packets)
4773 		avg_wire_size = q_vector->rx.total_bytes / packets;
4774 
4775 	packets = q_vector->tx.total_packets;
4776 	if (packets)
4777 		avg_wire_size = max_t(u32, avg_wire_size,
4778 				      q_vector->tx.total_bytes / packets);
4779 
4780 	/* if avg_wire_size isn't set no work was done */
4781 	if (!avg_wire_size)
4782 		goto clear_counts;
4783 
4784 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4785 	avg_wire_size += 24;
4786 
4787 	/* Don't starve jumbo frames */
4788 	avg_wire_size = min(avg_wire_size, 3000);
4789 
4790 	/* Give a little boost to mid-size frames */
4791 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4792 		new_val = avg_wire_size / 3;
4793 	else
4794 		new_val = avg_wire_size / 2;
4795 
4796 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4797 	if (new_val < IGB_20K_ITR &&
4798 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4799 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4800 		new_val = IGB_20K_ITR;
4801 
4802 set_itr_val:
4803 	if (new_val != q_vector->itr_val) {
4804 		q_vector->itr_val = new_val;
4805 		q_vector->set_itr = 1;
4806 	}
4807 clear_counts:
4808 	q_vector->rx.total_bytes = 0;
4809 	q_vector->rx.total_packets = 0;
4810 	q_vector->tx.total_bytes = 0;
4811 	q_vector->tx.total_packets = 0;
4812 }
4813 
4814 /**
4815  *  igb_update_itr - update the dynamic ITR value based on statistics
4816  *  @q_vector: pointer to q_vector
4817  *  @ring_container: ring info to update the itr for
4818  *
4819  *  Stores a new ITR value based on packets and byte
4820  *  counts during the last interrupt.  The advantage of per interrupt
4821  *  computation is faster updates and more accurate ITR for the current
4822  *  traffic pattern.  Constants in this function were computed
4823  *  based on theoretical maximum wire speed and thresholds were set based
4824  *  on testing data as well as attempting to minimize response time
4825  *  while increasing bulk throughput.
4826  *  This functionality is controlled by ethtool's coalescing settings.
4827  *  NOTE:  These calculations are only valid when operating in a single-
4828  *         queue environment.
4829  **/
4830 static void igb_update_itr(struct igb_q_vector *q_vector,
4831 			   struct igb_ring_container *ring_container)
4832 {
4833 	unsigned int packets = ring_container->total_packets;
4834 	unsigned int bytes = ring_container->total_bytes;
4835 	u8 itrval = ring_container->itr;
4836 
4837 	/* no packets, exit with status unchanged */
4838 	if (packets == 0)
4839 		return;
4840 
4841 	switch (itrval) {
4842 	case lowest_latency:
4843 		/* handle TSO and jumbo frames */
4844 		if (bytes/packets > 8000)
4845 			itrval = bulk_latency;
4846 		else if ((packets < 5) && (bytes > 512))
4847 			itrval = low_latency;
4848 		break;
4849 	case low_latency:  /* 50 usec aka 20000 ints/s */
4850 		if (bytes > 10000) {
4851 			/* this if handles the TSO accounting */
4852 			if (bytes/packets > 8000)
4853 				itrval = bulk_latency;
4854 			else if ((packets < 10) || ((bytes/packets) > 1200))
4855 				itrval = bulk_latency;
4856 			else if ((packets > 35))
4857 				itrval = lowest_latency;
4858 		} else if (bytes/packets > 2000) {
4859 			itrval = bulk_latency;
4860 		} else if (packets <= 2 && bytes < 512) {
4861 			itrval = lowest_latency;
4862 		}
4863 		break;
4864 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4865 		if (bytes > 25000) {
4866 			if (packets > 35)
4867 				itrval = low_latency;
4868 		} else if (bytes < 1500) {
4869 			itrval = low_latency;
4870 		}
4871 		break;
4872 	}
4873 
4874 	/* clear work counters since we have the values we need */
4875 	ring_container->total_bytes = 0;
4876 	ring_container->total_packets = 0;
4877 
4878 	/* write updated itr to ring container */
4879 	ring_container->itr = itrval;
4880 }
4881 
4882 static void igb_set_itr(struct igb_q_vector *q_vector)
4883 {
4884 	struct igb_adapter *adapter = q_vector->adapter;
4885 	u32 new_itr = q_vector->itr_val;
4886 	u8 current_itr = 0;
4887 
4888 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4889 	if (adapter->link_speed != SPEED_1000) {
4890 		current_itr = 0;
4891 		new_itr = IGB_4K_ITR;
4892 		goto set_itr_now;
4893 	}
4894 
4895 	igb_update_itr(q_vector, &q_vector->tx);
4896 	igb_update_itr(q_vector, &q_vector->rx);
4897 
4898 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4899 
4900 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4901 	if (current_itr == lowest_latency &&
4902 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4903 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4904 		current_itr = low_latency;
4905 
4906 	switch (current_itr) {
4907 	/* counts and packets in update_itr are dependent on these numbers */
4908 	case lowest_latency:
4909 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4910 		break;
4911 	case low_latency:
4912 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4913 		break;
4914 	case bulk_latency:
4915 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4916 		break;
4917 	default:
4918 		break;
4919 	}
4920 
4921 set_itr_now:
4922 	if (new_itr != q_vector->itr_val) {
4923 		/* this attempts to bias the interrupt rate towards Bulk
4924 		 * by adding intermediate steps when interrupt rate is
4925 		 * increasing
4926 		 */
4927 		new_itr = new_itr > q_vector->itr_val ?
4928 			  max((new_itr * q_vector->itr_val) /
4929 			  (new_itr + (q_vector->itr_val >> 2)),
4930 			  new_itr) : new_itr;
4931 		/* Don't write the value here; it resets the adapter's
4932 		 * internal timer, and causes us to delay far longer than
4933 		 * we should between interrupts.  Instead, we write the ITR
4934 		 * value at the beginning of the next interrupt so the timing
4935 		 * ends up being correct.
4936 		 */
4937 		q_vector->itr_val = new_itr;
4938 		q_vector->set_itr = 1;
4939 	}
4940 }
4941 
4942 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4943 			    u32 type_tucmd, u32 mss_l4len_idx)
4944 {
4945 	struct e1000_adv_tx_context_desc *context_desc;
4946 	u16 i = tx_ring->next_to_use;
4947 
4948 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4949 
4950 	i++;
4951 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4952 
4953 	/* set bits to identify this as an advanced context descriptor */
4954 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4955 
4956 	/* For 82575, context index must be unique per ring. */
4957 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4958 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4959 
4960 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4961 	context_desc->seqnum_seed	= 0;
4962 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4963 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4964 }
4965 
4966 static int igb_tso(struct igb_ring *tx_ring,
4967 		   struct igb_tx_buffer *first,
4968 		   u8 *hdr_len)
4969 {
4970 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4971 	struct sk_buff *skb = first->skb;
4972 	union {
4973 		struct iphdr *v4;
4974 		struct ipv6hdr *v6;
4975 		unsigned char *hdr;
4976 	} ip;
4977 	union {
4978 		struct tcphdr *tcp;
4979 		unsigned char *hdr;
4980 	} l4;
4981 	u32 paylen, l4_offset;
4982 	int err;
4983 
4984 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4985 		return 0;
4986 
4987 	if (!skb_is_gso(skb))
4988 		return 0;
4989 
4990 	err = skb_cow_head(skb, 0);
4991 	if (err < 0)
4992 		return err;
4993 
4994 	ip.hdr = skb_network_header(skb);
4995 	l4.hdr = skb_checksum_start(skb);
4996 
4997 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4998 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4999 
5000 	/* initialize outer IP header fields */
5001 	if (ip.v4->version == 4) {
5002 		unsigned char *csum_start = skb_checksum_start(skb);
5003 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5004 
5005 		/* IP header will have to cancel out any data that
5006 		 * is not a part of the outer IP header
5007 		 */
5008 		ip.v4->check = csum_fold(csum_partial(trans_start,
5009 						      csum_start - trans_start,
5010 						      0));
5011 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5012 
5013 		ip.v4->tot_len = 0;
5014 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5015 				   IGB_TX_FLAGS_CSUM |
5016 				   IGB_TX_FLAGS_IPV4;
5017 	} else {
5018 		ip.v6->payload_len = 0;
5019 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5020 				   IGB_TX_FLAGS_CSUM;
5021 	}
5022 
5023 	/* determine offset of inner transport header */
5024 	l4_offset = l4.hdr - skb->data;
5025 
5026 	/* compute length of segmentation header */
5027 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5028 
5029 	/* remove payload length from inner checksum */
5030 	paylen = skb->len - l4_offset;
5031 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5032 
5033 	/* update gso size and bytecount with header size */
5034 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5035 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5036 
5037 	/* MSS L4LEN IDX */
5038 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5039 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5040 
5041 	/* VLAN MACLEN IPLEN */
5042 	vlan_macip_lens = l4.hdr - ip.hdr;
5043 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5044 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5045 
5046 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5047 
5048 	return 1;
5049 }
5050 
5051 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5052 {
5053 	unsigned int offset = 0;
5054 
5055 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5056 
5057 	return offset == skb_checksum_start_offset(skb);
5058 }
5059 
5060 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5061 {
5062 	struct sk_buff *skb = first->skb;
5063 	u32 vlan_macip_lens = 0;
5064 	u32 type_tucmd = 0;
5065 
5066 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5067 csum_failed:
5068 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5069 			return;
5070 		goto no_csum;
5071 	}
5072 
5073 	switch (skb->csum_offset) {
5074 	case offsetof(struct tcphdr, check):
5075 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5076 		/* fall through */
5077 	case offsetof(struct udphdr, check):
5078 		break;
5079 	case offsetof(struct sctphdr, checksum):
5080 		/* validate that this is actually an SCTP request */
5081 		if (((first->protocol == htons(ETH_P_IP)) &&
5082 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5083 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5084 		     igb_ipv6_csum_is_sctp(skb))) {
5085 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5086 			break;
5087 		}
5088 	default:
5089 		skb_checksum_help(skb);
5090 		goto csum_failed;
5091 	}
5092 
5093 	/* update TX checksum flag */
5094 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5095 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5096 			  skb_network_offset(skb);
5097 no_csum:
5098 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5099 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5100 
5101 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5102 }
5103 
5104 #define IGB_SET_FLAG(_input, _flag, _result) \
5105 	((_flag <= _result) ? \
5106 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5107 	 ((u32)(_input & _flag) / (_flag / _result)))
5108 
5109 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5110 {
5111 	/* set type for advanced descriptor with frame checksum insertion */
5112 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5113 		       E1000_ADVTXD_DCMD_DEXT |
5114 		       E1000_ADVTXD_DCMD_IFCS;
5115 
5116 	/* set HW vlan bit if vlan is present */
5117 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5118 				 (E1000_ADVTXD_DCMD_VLE));
5119 
5120 	/* set segmentation bits for TSO */
5121 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5122 				 (E1000_ADVTXD_DCMD_TSE));
5123 
5124 	/* set timestamp bit if present */
5125 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5126 				 (E1000_ADVTXD_MAC_TSTAMP));
5127 
5128 	/* insert frame checksum */
5129 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5130 
5131 	return cmd_type;
5132 }
5133 
5134 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5135 				 union e1000_adv_tx_desc *tx_desc,
5136 				 u32 tx_flags, unsigned int paylen)
5137 {
5138 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5139 
5140 	/* 82575 requires a unique index per ring */
5141 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5142 		olinfo_status |= tx_ring->reg_idx << 4;
5143 
5144 	/* insert L4 checksum */
5145 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5146 				      IGB_TX_FLAGS_CSUM,
5147 				      (E1000_TXD_POPTS_TXSM << 8));
5148 
5149 	/* insert IPv4 checksum */
5150 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5151 				      IGB_TX_FLAGS_IPV4,
5152 				      (E1000_TXD_POPTS_IXSM << 8));
5153 
5154 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5155 }
5156 
5157 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5158 {
5159 	struct net_device *netdev = tx_ring->netdev;
5160 
5161 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5162 
5163 	/* Herbert's original patch had:
5164 	 *  smp_mb__after_netif_stop_queue();
5165 	 * but since that doesn't exist yet, just open code it.
5166 	 */
5167 	smp_mb();
5168 
5169 	/* We need to check again in a case another CPU has just
5170 	 * made room available.
5171 	 */
5172 	if (igb_desc_unused(tx_ring) < size)
5173 		return -EBUSY;
5174 
5175 	/* A reprieve! */
5176 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5177 
5178 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5179 	tx_ring->tx_stats.restart_queue2++;
5180 	u64_stats_update_end(&tx_ring->tx_syncp2);
5181 
5182 	return 0;
5183 }
5184 
5185 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5186 {
5187 	if (igb_desc_unused(tx_ring) >= size)
5188 		return 0;
5189 	return __igb_maybe_stop_tx(tx_ring, size);
5190 }
5191 
5192 static void igb_tx_map(struct igb_ring *tx_ring,
5193 		       struct igb_tx_buffer *first,
5194 		       const u8 hdr_len)
5195 {
5196 	struct sk_buff *skb = first->skb;
5197 	struct igb_tx_buffer *tx_buffer;
5198 	union e1000_adv_tx_desc *tx_desc;
5199 	struct skb_frag_struct *frag;
5200 	dma_addr_t dma;
5201 	unsigned int data_len, size;
5202 	u32 tx_flags = first->tx_flags;
5203 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5204 	u16 i = tx_ring->next_to_use;
5205 
5206 	tx_desc = IGB_TX_DESC(tx_ring, i);
5207 
5208 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5209 
5210 	size = skb_headlen(skb);
5211 	data_len = skb->data_len;
5212 
5213 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5214 
5215 	tx_buffer = first;
5216 
5217 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5218 		if (dma_mapping_error(tx_ring->dev, dma))
5219 			goto dma_error;
5220 
5221 		/* record length, and DMA address */
5222 		dma_unmap_len_set(tx_buffer, len, size);
5223 		dma_unmap_addr_set(tx_buffer, dma, dma);
5224 
5225 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5226 
5227 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5228 			tx_desc->read.cmd_type_len =
5229 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5230 
5231 			i++;
5232 			tx_desc++;
5233 			if (i == tx_ring->count) {
5234 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5235 				i = 0;
5236 			}
5237 			tx_desc->read.olinfo_status = 0;
5238 
5239 			dma += IGB_MAX_DATA_PER_TXD;
5240 			size -= IGB_MAX_DATA_PER_TXD;
5241 
5242 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5243 		}
5244 
5245 		if (likely(!data_len))
5246 			break;
5247 
5248 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5249 
5250 		i++;
5251 		tx_desc++;
5252 		if (i == tx_ring->count) {
5253 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5254 			i = 0;
5255 		}
5256 		tx_desc->read.olinfo_status = 0;
5257 
5258 		size = skb_frag_size(frag);
5259 		data_len -= size;
5260 
5261 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5262 				       size, DMA_TO_DEVICE);
5263 
5264 		tx_buffer = &tx_ring->tx_buffer_info[i];
5265 	}
5266 
5267 	/* write last descriptor with RS and EOP bits */
5268 	cmd_type |= size | IGB_TXD_DCMD;
5269 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5270 
5271 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5272 
5273 	/* set the timestamp */
5274 	first->time_stamp = jiffies;
5275 
5276 	/* Force memory writes to complete before letting h/w know there
5277 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
5278 	 * memory model archs, such as IA-64).
5279 	 *
5280 	 * We also need this memory barrier to make certain all of the
5281 	 * status bits have been updated before next_to_watch is written.
5282 	 */
5283 	wmb();
5284 
5285 	/* set next_to_watch value indicating a packet is present */
5286 	first->next_to_watch = tx_desc;
5287 
5288 	i++;
5289 	if (i == tx_ring->count)
5290 		i = 0;
5291 
5292 	tx_ring->next_to_use = i;
5293 
5294 	/* Make sure there is space in the ring for the next send. */
5295 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5296 
5297 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5298 		writel(i, tx_ring->tail);
5299 
5300 		/* we need this if more than one processor can write to our tail
5301 		 * at a time, it synchronizes IO on IA64/Altix systems
5302 		 */
5303 		mmiowb();
5304 	}
5305 	return;
5306 
5307 dma_error:
5308 	dev_err(tx_ring->dev, "TX DMA map failed\n");
5309 	tx_buffer = &tx_ring->tx_buffer_info[i];
5310 
5311 	/* clear dma mappings for failed tx_buffer_info map */
5312 	while (tx_buffer != first) {
5313 		if (dma_unmap_len(tx_buffer, len))
5314 			dma_unmap_page(tx_ring->dev,
5315 				       dma_unmap_addr(tx_buffer, dma),
5316 				       dma_unmap_len(tx_buffer, len),
5317 				       DMA_TO_DEVICE);
5318 		dma_unmap_len_set(tx_buffer, len, 0);
5319 
5320 		if (i--)
5321 			i += tx_ring->count;
5322 		tx_buffer = &tx_ring->tx_buffer_info[i];
5323 	}
5324 
5325 	if (dma_unmap_len(tx_buffer, len))
5326 		dma_unmap_single(tx_ring->dev,
5327 				 dma_unmap_addr(tx_buffer, dma),
5328 				 dma_unmap_len(tx_buffer, len),
5329 				 DMA_TO_DEVICE);
5330 	dma_unmap_len_set(tx_buffer, len, 0);
5331 
5332 	dev_kfree_skb_any(tx_buffer->skb);
5333 	tx_buffer->skb = NULL;
5334 
5335 	tx_ring->next_to_use = i;
5336 }
5337 
5338 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5339 				struct igb_ring *tx_ring)
5340 {
5341 	struct igb_tx_buffer *first;
5342 	int tso;
5343 	u32 tx_flags = 0;
5344 	unsigned short f;
5345 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5346 	__be16 protocol = vlan_get_protocol(skb);
5347 	u8 hdr_len = 0;
5348 
5349 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5350 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5351 	 *       + 2 desc gap to keep tail from touching head,
5352 	 *       + 1 desc for context descriptor,
5353 	 * otherwise try next time
5354 	 */
5355 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5356 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5357 
5358 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5359 		/* this is a hard error */
5360 		return NETDEV_TX_BUSY;
5361 	}
5362 
5363 	/* record the location of the first descriptor for this packet */
5364 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5365 	first->skb = skb;
5366 	first->bytecount = skb->len;
5367 	first->gso_segs = 1;
5368 
5369 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5370 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5371 
5372 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5373 					   &adapter->state)) {
5374 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5375 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5376 
5377 			adapter->ptp_tx_skb = skb_get(skb);
5378 			adapter->ptp_tx_start = jiffies;
5379 			if (adapter->hw.mac.type == e1000_82576)
5380 				schedule_work(&adapter->ptp_tx_work);
5381 		}
5382 	}
5383 
5384 	skb_tx_timestamp(skb);
5385 
5386 	if (skb_vlan_tag_present(skb)) {
5387 		tx_flags |= IGB_TX_FLAGS_VLAN;
5388 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5389 	}
5390 
5391 	/* record initial flags and protocol */
5392 	first->tx_flags = tx_flags;
5393 	first->protocol = protocol;
5394 
5395 	tso = igb_tso(tx_ring, first, &hdr_len);
5396 	if (tso < 0)
5397 		goto out_drop;
5398 	else if (!tso)
5399 		igb_tx_csum(tx_ring, first);
5400 
5401 	igb_tx_map(tx_ring, first, hdr_len);
5402 
5403 	return NETDEV_TX_OK;
5404 
5405 out_drop:
5406 	dev_kfree_skb_any(first->skb);
5407 	first->skb = NULL;
5408 
5409 	return NETDEV_TX_OK;
5410 }
5411 
5412 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5413 						    struct sk_buff *skb)
5414 {
5415 	unsigned int r_idx = skb->queue_mapping;
5416 
5417 	if (r_idx >= adapter->num_tx_queues)
5418 		r_idx = r_idx % adapter->num_tx_queues;
5419 
5420 	return adapter->tx_ring[r_idx];
5421 }
5422 
5423 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5424 				  struct net_device *netdev)
5425 {
5426 	struct igb_adapter *adapter = netdev_priv(netdev);
5427 
5428 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5429 	 * in order to meet this minimum size requirement.
5430 	 */
5431 	if (skb_put_padto(skb, 17))
5432 		return NETDEV_TX_OK;
5433 
5434 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5435 }
5436 
5437 /**
5438  *  igb_tx_timeout - Respond to a Tx Hang
5439  *  @netdev: network interface device structure
5440  **/
5441 static void igb_tx_timeout(struct net_device *netdev)
5442 {
5443 	struct igb_adapter *adapter = netdev_priv(netdev);
5444 	struct e1000_hw *hw = &adapter->hw;
5445 
5446 	/* Do the reset outside of interrupt context */
5447 	adapter->tx_timeout_count++;
5448 
5449 	if (hw->mac.type >= e1000_82580)
5450 		hw->dev_spec._82575.global_device_reset = true;
5451 
5452 	schedule_work(&adapter->reset_task);
5453 	wr32(E1000_EICS,
5454 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5455 }
5456 
5457 static void igb_reset_task(struct work_struct *work)
5458 {
5459 	struct igb_adapter *adapter;
5460 	adapter = container_of(work, struct igb_adapter, reset_task);
5461 
5462 	igb_dump(adapter);
5463 	netdev_err(adapter->netdev, "Reset adapter\n");
5464 	igb_reinit_locked(adapter);
5465 }
5466 
5467 /**
5468  *  igb_get_stats64 - Get System Network Statistics
5469  *  @netdev: network interface device structure
5470  *  @stats: rtnl_link_stats64 pointer
5471  **/
5472 static void igb_get_stats64(struct net_device *netdev,
5473 			    struct rtnl_link_stats64 *stats)
5474 {
5475 	struct igb_adapter *adapter = netdev_priv(netdev);
5476 
5477 	spin_lock(&adapter->stats64_lock);
5478 	igb_update_stats(adapter, &adapter->stats64);
5479 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5480 	spin_unlock(&adapter->stats64_lock);
5481 }
5482 
5483 /**
5484  *  igb_change_mtu - Change the Maximum Transfer Unit
5485  *  @netdev: network interface device structure
5486  *  @new_mtu: new value for maximum frame size
5487  *
5488  *  Returns 0 on success, negative on failure
5489  **/
5490 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5491 {
5492 	struct igb_adapter *adapter = netdev_priv(netdev);
5493 	struct pci_dev *pdev = adapter->pdev;
5494 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5495 
5496 	/* adjust max frame to be at least the size of a standard frame */
5497 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5498 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5499 
5500 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5501 		usleep_range(1000, 2000);
5502 
5503 	/* igb_down has a dependency on max_frame_size */
5504 	adapter->max_frame_size = max_frame;
5505 
5506 	if (netif_running(netdev))
5507 		igb_down(adapter);
5508 
5509 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5510 		 netdev->mtu, new_mtu);
5511 	netdev->mtu = new_mtu;
5512 
5513 	if (netif_running(netdev))
5514 		igb_up(adapter);
5515 	else
5516 		igb_reset(adapter);
5517 
5518 	clear_bit(__IGB_RESETTING, &adapter->state);
5519 
5520 	return 0;
5521 }
5522 
5523 /**
5524  *  igb_update_stats - Update the board statistics counters
5525  *  @adapter: board private structure
5526  **/
5527 void igb_update_stats(struct igb_adapter *adapter,
5528 		      struct rtnl_link_stats64 *net_stats)
5529 {
5530 	struct e1000_hw *hw = &adapter->hw;
5531 	struct pci_dev *pdev = adapter->pdev;
5532 	u32 reg, mpc;
5533 	int i;
5534 	u64 bytes, packets;
5535 	unsigned int start;
5536 	u64 _bytes, _packets;
5537 
5538 	/* Prevent stats update while adapter is being reset, or if the pci
5539 	 * connection is down.
5540 	 */
5541 	if (adapter->link_speed == 0)
5542 		return;
5543 	if (pci_channel_offline(pdev))
5544 		return;
5545 
5546 	bytes = 0;
5547 	packets = 0;
5548 
5549 	rcu_read_lock();
5550 	for (i = 0; i < adapter->num_rx_queues; i++) {
5551 		struct igb_ring *ring = adapter->rx_ring[i];
5552 		u32 rqdpc = rd32(E1000_RQDPC(i));
5553 		if (hw->mac.type >= e1000_i210)
5554 			wr32(E1000_RQDPC(i), 0);
5555 
5556 		if (rqdpc) {
5557 			ring->rx_stats.drops += rqdpc;
5558 			net_stats->rx_fifo_errors += rqdpc;
5559 		}
5560 
5561 		do {
5562 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5563 			_bytes = ring->rx_stats.bytes;
5564 			_packets = ring->rx_stats.packets;
5565 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5566 		bytes += _bytes;
5567 		packets += _packets;
5568 	}
5569 
5570 	net_stats->rx_bytes = bytes;
5571 	net_stats->rx_packets = packets;
5572 
5573 	bytes = 0;
5574 	packets = 0;
5575 	for (i = 0; i < adapter->num_tx_queues; i++) {
5576 		struct igb_ring *ring = adapter->tx_ring[i];
5577 		do {
5578 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5579 			_bytes = ring->tx_stats.bytes;
5580 			_packets = ring->tx_stats.packets;
5581 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5582 		bytes += _bytes;
5583 		packets += _packets;
5584 	}
5585 	net_stats->tx_bytes = bytes;
5586 	net_stats->tx_packets = packets;
5587 	rcu_read_unlock();
5588 
5589 	/* read stats registers */
5590 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5591 	adapter->stats.gprc += rd32(E1000_GPRC);
5592 	adapter->stats.gorc += rd32(E1000_GORCL);
5593 	rd32(E1000_GORCH); /* clear GORCL */
5594 	adapter->stats.bprc += rd32(E1000_BPRC);
5595 	adapter->stats.mprc += rd32(E1000_MPRC);
5596 	adapter->stats.roc += rd32(E1000_ROC);
5597 
5598 	adapter->stats.prc64 += rd32(E1000_PRC64);
5599 	adapter->stats.prc127 += rd32(E1000_PRC127);
5600 	adapter->stats.prc255 += rd32(E1000_PRC255);
5601 	adapter->stats.prc511 += rd32(E1000_PRC511);
5602 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5603 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5604 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5605 	adapter->stats.sec += rd32(E1000_SEC);
5606 
5607 	mpc = rd32(E1000_MPC);
5608 	adapter->stats.mpc += mpc;
5609 	net_stats->rx_fifo_errors += mpc;
5610 	adapter->stats.scc += rd32(E1000_SCC);
5611 	adapter->stats.ecol += rd32(E1000_ECOL);
5612 	adapter->stats.mcc += rd32(E1000_MCC);
5613 	adapter->stats.latecol += rd32(E1000_LATECOL);
5614 	adapter->stats.dc += rd32(E1000_DC);
5615 	adapter->stats.rlec += rd32(E1000_RLEC);
5616 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5617 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5618 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5619 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5620 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5621 	adapter->stats.gptc += rd32(E1000_GPTC);
5622 	adapter->stats.gotc += rd32(E1000_GOTCL);
5623 	rd32(E1000_GOTCH); /* clear GOTCL */
5624 	adapter->stats.rnbc += rd32(E1000_RNBC);
5625 	adapter->stats.ruc += rd32(E1000_RUC);
5626 	adapter->stats.rfc += rd32(E1000_RFC);
5627 	adapter->stats.rjc += rd32(E1000_RJC);
5628 	adapter->stats.tor += rd32(E1000_TORH);
5629 	adapter->stats.tot += rd32(E1000_TOTH);
5630 	adapter->stats.tpr += rd32(E1000_TPR);
5631 
5632 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5633 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5634 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5635 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5636 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5637 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5638 
5639 	adapter->stats.mptc += rd32(E1000_MPTC);
5640 	adapter->stats.bptc += rd32(E1000_BPTC);
5641 
5642 	adapter->stats.tpt += rd32(E1000_TPT);
5643 	adapter->stats.colc += rd32(E1000_COLC);
5644 
5645 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5646 	/* read internal phy specific stats */
5647 	reg = rd32(E1000_CTRL_EXT);
5648 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5649 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5650 
5651 		/* this stat has invalid values on i210/i211 */
5652 		if ((hw->mac.type != e1000_i210) &&
5653 		    (hw->mac.type != e1000_i211))
5654 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5655 	}
5656 
5657 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5658 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5659 
5660 	adapter->stats.iac += rd32(E1000_IAC);
5661 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5662 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5663 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5664 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5665 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5666 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5667 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5668 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5669 
5670 	/* Fill out the OS statistics structure */
5671 	net_stats->multicast = adapter->stats.mprc;
5672 	net_stats->collisions = adapter->stats.colc;
5673 
5674 	/* Rx Errors */
5675 
5676 	/* RLEC on some newer hardware can be incorrect so build
5677 	 * our own version based on RUC and ROC
5678 	 */
5679 	net_stats->rx_errors = adapter->stats.rxerrc +
5680 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5681 		adapter->stats.ruc + adapter->stats.roc +
5682 		adapter->stats.cexterr;
5683 	net_stats->rx_length_errors = adapter->stats.ruc +
5684 				      adapter->stats.roc;
5685 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5686 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5687 	net_stats->rx_missed_errors = adapter->stats.mpc;
5688 
5689 	/* Tx Errors */
5690 	net_stats->tx_errors = adapter->stats.ecol +
5691 			       adapter->stats.latecol;
5692 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5693 	net_stats->tx_window_errors = adapter->stats.latecol;
5694 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5695 
5696 	/* Tx Dropped needs to be maintained elsewhere */
5697 
5698 	/* Management Stats */
5699 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5700 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5701 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5702 
5703 	/* OS2BMC Stats */
5704 	reg = rd32(E1000_MANC);
5705 	if (reg & E1000_MANC_EN_BMC2OS) {
5706 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5707 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5708 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5709 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5710 	}
5711 }
5712 
5713 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5714 {
5715 	struct e1000_hw *hw = &adapter->hw;
5716 	struct ptp_clock_event event;
5717 	struct timespec64 ts;
5718 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5719 
5720 	if (tsicr & TSINTR_SYS_WRAP) {
5721 		event.type = PTP_CLOCK_PPS;
5722 		if (adapter->ptp_caps.pps)
5723 			ptp_clock_event(adapter->ptp_clock, &event);
5724 		else
5725 			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5726 		ack |= TSINTR_SYS_WRAP;
5727 	}
5728 
5729 	if (tsicr & E1000_TSICR_TXTS) {
5730 		/* retrieve hardware timestamp */
5731 		schedule_work(&adapter->ptp_tx_work);
5732 		ack |= E1000_TSICR_TXTS;
5733 	}
5734 
5735 	if (tsicr & TSINTR_TT0) {
5736 		spin_lock(&adapter->tmreg_lock);
5737 		ts = timespec64_add(adapter->perout[0].start,
5738 				    adapter->perout[0].period);
5739 		/* u32 conversion of tv_sec is safe until y2106 */
5740 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5741 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5742 		tsauxc = rd32(E1000_TSAUXC);
5743 		tsauxc |= TSAUXC_EN_TT0;
5744 		wr32(E1000_TSAUXC, tsauxc);
5745 		adapter->perout[0].start = ts;
5746 		spin_unlock(&adapter->tmreg_lock);
5747 		ack |= TSINTR_TT0;
5748 	}
5749 
5750 	if (tsicr & TSINTR_TT1) {
5751 		spin_lock(&adapter->tmreg_lock);
5752 		ts = timespec64_add(adapter->perout[1].start,
5753 				    adapter->perout[1].period);
5754 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5755 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5756 		tsauxc = rd32(E1000_TSAUXC);
5757 		tsauxc |= TSAUXC_EN_TT1;
5758 		wr32(E1000_TSAUXC, tsauxc);
5759 		adapter->perout[1].start = ts;
5760 		spin_unlock(&adapter->tmreg_lock);
5761 		ack |= TSINTR_TT1;
5762 	}
5763 
5764 	if (tsicr & TSINTR_AUTT0) {
5765 		nsec = rd32(E1000_AUXSTMPL0);
5766 		sec  = rd32(E1000_AUXSTMPH0);
5767 		event.type = PTP_CLOCK_EXTTS;
5768 		event.index = 0;
5769 		event.timestamp = sec * 1000000000ULL + nsec;
5770 		ptp_clock_event(adapter->ptp_clock, &event);
5771 		ack |= TSINTR_AUTT0;
5772 	}
5773 
5774 	if (tsicr & TSINTR_AUTT1) {
5775 		nsec = rd32(E1000_AUXSTMPL1);
5776 		sec  = rd32(E1000_AUXSTMPH1);
5777 		event.type = PTP_CLOCK_EXTTS;
5778 		event.index = 1;
5779 		event.timestamp = sec * 1000000000ULL + nsec;
5780 		ptp_clock_event(adapter->ptp_clock, &event);
5781 		ack |= TSINTR_AUTT1;
5782 	}
5783 
5784 	/* acknowledge the interrupts */
5785 	wr32(E1000_TSICR, ack);
5786 }
5787 
5788 static irqreturn_t igb_msix_other(int irq, void *data)
5789 {
5790 	struct igb_adapter *adapter = data;
5791 	struct e1000_hw *hw = &adapter->hw;
5792 	u32 icr = rd32(E1000_ICR);
5793 	/* reading ICR causes bit 31 of EICR to be cleared */
5794 
5795 	if (icr & E1000_ICR_DRSTA)
5796 		schedule_work(&adapter->reset_task);
5797 
5798 	if (icr & E1000_ICR_DOUTSYNC) {
5799 		/* HW is reporting DMA is out of sync */
5800 		adapter->stats.doosync++;
5801 		/* The DMA Out of Sync is also indication of a spoof event
5802 		 * in IOV mode. Check the Wrong VM Behavior register to
5803 		 * see if it is really a spoof event.
5804 		 */
5805 		igb_check_wvbr(adapter);
5806 	}
5807 
5808 	/* Check for a mailbox event */
5809 	if (icr & E1000_ICR_VMMB)
5810 		igb_msg_task(adapter);
5811 
5812 	if (icr & E1000_ICR_LSC) {
5813 		hw->mac.get_link_status = 1;
5814 		/* guard against interrupt when we're going down */
5815 		if (!test_bit(__IGB_DOWN, &adapter->state))
5816 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5817 	}
5818 
5819 	if (icr & E1000_ICR_TS)
5820 		igb_tsync_interrupt(adapter);
5821 
5822 	wr32(E1000_EIMS, adapter->eims_other);
5823 
5824 	return IRQ_HANDLED;
5825 }
5826 
5827 static void igb_write_itr(struct igb_q_vector *q_vector)
5828 {
5829 	struct igb_adapter *adapter = q_vector->adapter;
5830 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5831 
5832 	if (!q_vector->set_itr)
5833 		return;
5834 
5835 	if (!itr_val)
5836 		itr_val = 0x4;
5837 
5838 	if (adapter->hw.mac.type == e1000_82575)
5839 		itr_val |= itr_val << 16;
5840 	else
5841 		itr_val |= E1000_EITR_CNT_IGNR;
5842 
5843 	writel(itr_val, q_vector->itr_register);
5844 	q_vector->set_itr = 0;
5845 }
5846 
5847 static irqreturn_t igb_msix_ring(int irq, void *data)
5848 {
5849 	struct igb_q_vector *q_vector = data;
5850 
5851 	/* Write the ITR value calculated from the previous interrupt. */
5852 	igb_write_itr(q_vector);
5853 
5854 	napi_schedule(&q_vector->napi);
5855 
5856 	return IRQ_HANDLED;
5857 }
5858 
5859 #ifdef CONFIG_IGB_DCA
5860 static void igb_update_tx_dca(struct igb_adapter *adapter,
5861 			      struct igb_ring *tx_ring,
5862 			      int cpu)
5863 {
5864 	struct e1000_hw *hw = &adapter->hw;
5865 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5866 
5867 	if (hw->mac.type != e1000_82575)
5868 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5869 
5870 	/* We can enable relaxed ordering for reads, but not writes when
5871 	 * DCA is enabled.  This is due to a known issue in some chipsets
5872 	 * which will cause the DCA tag to be cleared.
5873 	 */
5874 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5875 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5876 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5877 
5878 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5879 }
5880 
5881 static void igb_update_rx_dca(struct igb_adapter *adapter,
5882 			      struct igb_ring *rx_ring,
5883 			      int cpu)
5884 {
5885 	struct e1000_hw *hw = &adapter->hw;
5886 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5887 
5888 	if (hw->mac.type != e1000_82575)
5889 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5890 
5891 	/* We can enable relaxed ordering for reads, but not writes when
5892 	 * DCA is enabled.  This is due to a known issue in some chipsets
5893 	 * which will cause the DCA tag to be cleared.
5894 	 */
5895 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5896 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5897 
5898 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5899 }
5900 
5901 static void igb_update_dca(struct igb_q_vector *q_vector)
5902 {
5903 	struct igb_adapter *adapter = q_vector->adapter;
5904 	int cpu = get_cpu();
5905 
5906 	if (q_vector->cpu == cpu)
5907 		goto out_no_update;
5908 
5909 	if (q_vector->tx.ring)
5910 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5911 
5912 	if (q_vector->rx.ring)
5913 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5914 
5915 	q_vector->cpu = cpu;
5916 out_no_update:
5917 	put_cpu();
5918 }
5919 
5920 static void igb_setup_dca(struct igb_adapter *adapter)
5921 {
5922 	struct e1000_hw *hw = &adapter->hw;
5923 	int i;
5924 
5925 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5926 		return;
5927 
5928 	/* Always use CB2 mode, difference is masked in the CB driver. */
5929 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5930 
5931 	for (i = 0; i < adapter->num_q_vectors; i++) {
5932 		adapter->q_vector[i]->cpu = -1;
5933 		igb_update_dca(adapter->q_vector[i]);
5934 	}
5935 }
5936 
5937 static int __igb_notify_dca(struct device *dev, void *data)
5938 {
5939 	struct net_device *netdev = dev_get_drvdata(dev);
5940 	struct igb_adapter *adapter = netdev_priv(netdev);
5941 	struct pci_dev *pdev = adapter->pdev;
5942 	struct e1000_hw *hw = &adapter->hw;
5943 	unsigned long event = *(unsigned long *)data;
5944 
5945 	switch (event) {
5946 	case DCA_PROVIDER_ADD:
5947 		/* if already enabled, don't do it again */
5948 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5949 			break;
5950 		if (dca_add_requester(dev) == 0) {
5951 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5952 			dev_info(&pdev->dev, "DCA enabled\n");
5953 			igb_setup_dca(adapter);
5954 			break;
5955 		}
5956 		/* Fall Through since DCA is disabled. */
5957 	case DCA_PROVIDER_REMOVE:
5958 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5959 			/* without this a class_device is left
5960 			 * hanging around in the sysfs model
5961 			 */
5962 			dca_remove_requester(dev);
5963 			dev_info(&pdev->dev, "DCA disabled\n");
5964 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5965 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5966 		}
5967 		break;
5968 	}
5969 
5970 	return 0;
5971 }
5972 
5973 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5974 			  void *p)
5975 {
5976 	int ret_val;
5977 
5978 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5979 					 __igb_notify_dca);
5980 
5981 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5982 }
5983 #endif /* CONFIG_IGB_DCA */
5984 
5985 #ifdef CONFIG_PCI_IOV
5986 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5987 {
5988 	unsigned char mac_addr[ETH_ALEN];
5989 
5990 	eth_zero_addr(mac_addr);
5991 	igb_set_vf_mac(adapter, vf, mac_addr);
5992 
5993 	/* By default spoof check is enabled for all VFs */
5994 	adapter->vf_data[vf].spoofchk_enabled = true;
5995 
5996 	return 0;
5997 }
5998 
5999 #endif
6000 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6001 {
6002 	struct e1000_hw *hw = &adapter->hw;
6003 	u32 ping;
6004 	int i;
6005 
6006 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6007 		ping = E1000_PF_CONTROL_MSG;
6008 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6009 			ping |= E1000_VT_MSGTYPE_CTS;
6010 		igb_write_mbx(hw, &ping, 1, i);
6011 	}
6012 }
6013 
6014 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6015 {
6016 	struct e1000_hw *hw = &adapter->hw;
6017 	u32 vmolr = rd32(E1000_VMOLR(vf));
6018 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6019 
6020 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6021 			    IGB_VF_FLAG_MULTI_PROMISC);
6022 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6023 
6024 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6025 		vmolr |= E1000_VMOLR_MPME;
6026 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6027 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6028 	} else {
6029 		/* if we have hashes and we are clearing a multicast promisc
6030 		 * flag we need to write the hashes to the MTA as this step
6031 		 * was previously skipped
6032 		 */
6033 		if (vf_data->num_vf_mc_hashes > 30) {
6034 			vmolr |= E1000_VMOLR_MPME;
6035 		} else if (vf_data->num_vf_mc_hashes) {
6036 			int j;
6037 
6038 			vmolr |= E1000_VMOLR_ROMPE;
6039 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6040 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6041 		}
6042 	}
6043 
6044 	wr32(E1000_VMOLR(vf), vmolr);
6045 
6046 	/* there are flags left unprocessed, likely not supported */
6047 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6048 		return -EINVAL;
6049 
6050 	return 0;
6051 }
6052 
6053 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6054 				  u32 *msgbuf, u32 vf)
6055 {
6056 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6057 	u16 *hash_list = (u16 *)&msgbuf[1];
6058 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6059 	int i;
6060 
6061 	/* salt away the number of multicast addresses assigned
6062 	 * to this VF for later use to restore when the PF multi cast
6063 	 * list changes
6064 	 */
6065 	vf_data->num_vf_mc_hashes = n;
6066 
6067 	/* only up to 30 hash values supported */
6068 	if (n > 30)
6069 		n = 30;
6070 
6071 	/* store the hashes for later use */
6072 	for (i = 0; i < n; i++)
6073 		vf_data->vf_mc_hashes[i] = hash_list[i];
6074 
6075 	/* Flush and reset the mta with the new values */
6076 	igb_set_rx_mode(adapter->netdev);
6077 
6078 	return 0;
6079 }
6080 
6081 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6082 {
6083 	struct e1000_hw *hw = &adapter->hw;
6084 	struct vf_data_storage *vf_data;
6085 	int i, j;
6086 
6087 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6088 		u32 vmolr = rd32(E1000_VMOLR(i));
6089 
6090 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6091 
6092 		vf_data = &adapter->vf_data[i];
6093 
6094 		if ((vf_data->num_vf_mc_hashes > 30) ||
6095 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6096 			vmolr |= E1000_VMOLR_MPME;
6097 		} else if (vf_data->num_vf_mc_hashes) {
6098 			vmolr |= E1000_VMOLR_ROMPE;
6099 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6100 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6101 		}
6102 		wr32(E1000_VMOLR(i), vmolr);
6103 	}
6104 }
6105 
6106 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6107 {
6108 	struct e1000_hw *hw = &adapter->hw;
6109 	u32 pool_mask, vlvf_mask, i;
6110 
6111 	/* create mask for VF and other pools */
6112 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6113 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6114 
6115 	/* drop PF from pool bits */
6116 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6117 			     adapter->vfs_allocated_count);
6118 
6119 	/* Find the vlan filter for this id */
6120 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6121 		u32 vlvf = rd32(E1000_VLVF(i));
6122 		u32 vfta_mask, vid, vfta;
6123 
6124 		/* remove the vf from the pool */
6125 		if (!(vlvf & vlvf_mask))
6126 			continue;
6127 
6128 		/* clear out bit from VLVF */
6129 		vlvf ^= vlvf_mask;
6130 
6131 		/* if other pools are present, just remove ourselves */
6132 		if (vlvf & pool_mask)
6133 			goto update_vlvfb;
6134 
6135 		/* if PF is present, leave VFTA */
6136 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6137 			goto update_vlvf;
6138 
6139 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6140 		vfta_mask = BIT(vid % 32);
6141 
6142 		/* clear bit from VFTA */
6143 		vfta = adapter->shadow_vfta[vid / 32];
6144 		if (vfta & vfta_mask)
6145 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6146 update_vlvf:
6147 		/* clear pool selection enable */
6148 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6149 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6150 		else
6151 			vlvf = 0;
6152 update_vlvfb:
6153 		/* clear pool bits */
6154 		wr32(E1000_VLVF(i), vlvf);
6155 	}
6156 }
6157 
6158 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6159 {
6160 	u32 vlvf;
6161 	int idx;
6162 
6163 	/* short cut the special case */
6164 	if (vlan == 0)
6165 		return 0;
6166 
6167 	/* Search for the VLAN id in the VLVF entries */
6168 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6169 		vlvf = rd32(E1000_VLVF(idx));
6170 		if ((vlvf & VLAN_VID_MASK) == vlan)
6171 			break;
6172 	}
6173 
6174 	return idx;
6175 }
6176 
6177 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6178 {
6179 	struct e1000_hw *hw = &adapter->hw;
6180 	u32 bits, pf_id;
6181 	int idx;
6182 
6183 	idx = igb_find_vlvf_entry(hw, vid);
6184 	if (!idx)
6185 		return;
6186 
6187 	/* See if any other pools are set for this VLAN filter
6188 	 * entry other than the PF.
6189 	 */
6190 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6191 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6192 	bits &= rd32(E1000_VLVF(idx));
6193 
6194 	/* Disable the filter so this falls into the default pool. */
6195 	if (!bits) {
6196 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6197 			wr32(E1000_VLVF(idx), BIT(pf_id));
6198 		else
6199 			wr32(E1000_VLVF(idx), 0);
6200 	}
6201 }
6202 
6203 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6204 			   bool add, u32 vf)
6205 {
6206 	int pf_id = adapter->vfs_allocated_count;
6207 	struct e1000_hw *hw = &adapter->hw;
6208 	int err;
6209 
6210 	/* If VLAN overlaps with one the PF is currently monitoring make
6211 	 * sure that we are able to allocate a VLVF entry.  This may be
6212 	 * redundant but it guarantees PF will maintain visibility to
6213 	 * the VLAN.
6214 	 */
6215 	if (add && test_bit(vid, adapter->active_vlans)) {
6216 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6217 		if (err)
6218 			return err;
6219 	}
6220 
6221 	err = igb_vfta_set(hw, vid, vf, add, false);
6222 
6223 	if (add && !err)
6224 		return err;
6225 
6226 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6227 	 * we may need to drop the PF pool bit in order to allow us to free
6228 	 * up the VLVF resources.
6229 	 */
6230 	if (test_bit(vid, adapter->active_vlans) ||
6231 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6232 		igb_update_pf_vlvf(adapter, vid);
6233 
6234 	return err;
6235 }
6236 
6237 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6238 {
6239 	struct e1000_hw *hw = &adapter->hw;
6240 
6241 	if (vid)
6242 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6243 	else
6244 		wr32(E1000_VMVIR(vf), 0);
6245 }
6246 
6247 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6248 				u16 vlan, u8 qos)
6249 {
6250 	int err;
6251 
6252 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6253 	if (err)
6254 		return err;
6255 
6256 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6257 	igb_set_vmolr(adapter, vf, !vlan);
6258 
6259 	/* revoke access to previous VLAN */
6260 	if (vlan != adapter->vf_data[vf].pf_vlan)
6261 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6262 				false, vf);
6263 
6264 	adapter->vf_data[vf].pf_vlan = vlan;
6265 	adapter->vf_data[vf].pf_qos = qos;
6266 	igb_set_vf_vlan_strip(adapter, vf, true);
6267 	dev_info(&adapter->pdev->dev,
6268 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6269 	if (test_bit(__IGB_DOWN, &adapter->state)) {
6270 		dev_warn(&adapter->pdev->dev,
6271 			 "The VF VLAN has been set, but the PF device is not up.\n");
6272 		dev_warn(&adapter->pdev->dev,
6273 			 "Bring the PF device up before attempting to use the VF device.\n");
6274 	}
6275 
6276 	return err;
6277 }
6278 
6279 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6280 {
6281 	/* Restore tagless access via VLAN 0 */
6282 	igb_set_vf_vlan(adapter, 0, true, vf);
6283 
6284 	igb_set_vmvir(adapter, 0, vf);
6285 	igb_set_vmolr(adapter, vf, true);
6286 
6287 	/* Remove any PF assigned VLAN */
6288 	if (adapter->vf_data[vf].pf_vlan)
6289 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6290 				false, vf);
6291 
6292 	adapter->vf_data[vf].pf_vlan = 0;
6293 	adapter->vf_data[vf].pf_qos = 0;
6294 	igb_set_vf_vlan_strip(adapter, vf, false);
6295 
6296 	return 0;
6297 }
6298 
6299 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6300 			       u16 vlan, u8 qos, __be16 vlan_proto)
6301 {
6302 	struct igb_adapter *adapter = netdev_priv(netdev);
6303 
6304 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6305 		return -EINVAL;
6306 
6307 	if (vlan_proto != htons(ETH_P_8021Q))
6308 		return -EPROTONOSUPPORT;
6309 
6310 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6311 			       igb_disable_port_vlan(adapter, vf);
6312 }
6313 
6314 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6315 {
6316 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6317 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6318 	int ret;
6319 
6320 	if (adapter->vf_data[vf].pf_vlan)
6321 		return -1;
6322 
6323 	/* VLAN 0 is a special case, don't allow it to be removed */
6324 	if (!vid && !add)
6325 		return 0;
6326 
6327 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6328 	if (!ret)
6329 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
6330 	return ret;
6331 }
6332 
6333 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6334 {
6335 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6336 
6337 	/* clear flags - except flag that indicates PF has set the MAC */
6338 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6339 	vf_data->last_nack = jiffies;
6340 
6341 	/* reset vlans for device */
6342 	igb_clear_vf_vfta(adapter, vf);
6343 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6344 	igb_set_vmvir(adapter, vf_data->pf_vlan |
6345 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6346 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6347 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6348 
6349 	/* reset multicast table array for vf */
6350 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6351 
6352 	/* Flush and reset the mta with the new values */
6353 	igb_set_rx_mode(adapter->netdev);
6354 }
6355 
6356 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6357 {
6358 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6359 
6360 	/* clear mac address as we were hotplug removed/added */
6361 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6362 		eth_zero_addr(vf_mac);
6363 
6364 	/* process remaining reset events */
6365 	igb_vf_reset(adapter, vf);
6366 }
6367 
6368 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6369 {
6370 	struct e1000_hw *hw = &adapter->hw;
6371 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6372 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6373 	u32 reg, msgbuf[3];
6374 	u8 *addr = (u8 *)(&msgbuf[1]);
6375 
6376 	/* process all the same items cleared in a function level reset */
6377 	igb_vf_reset(adapter, vf);
6378 
6379 	/* set vf mac address */
6380 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6381 
6382 	/* enable transmit and receive for vf */
6383 	reg = rd32(E1000_VFTE);
6384 	wr32(E1000_VFTE, reg | BIT(vf));
6385 	reg = rd32(E1000_VFRE);
6386 	wr32(E1000_VFRE, reg | BIT(vf));
6387 
6388 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6389 
6390 	/* reply to reset with ack and vf mac address */
6391 	if (!is_zero_ether_addr(vf_mac)) {
6392 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6393 		memcpy(addr, vf_mac, ETH_ALEN);
6394 	} else {
6395 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6396 	}
6397 	igb_write_mbx(hw, msgbuf, 3, vf);
6398 }
6399 
6400 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6401 {
6402 	/* The VF MAC Address is stored in a packed array of bytes
6403 	 * starting at the second 32 bit word of the msg array
6404 	 */
6405 	unsigned char *addr = (char *)&msg[1];
6406 	int err = -1;
6407 
6408 	if (is_valid_ether_addr(addr))
6409 		err = igb_set_vf_mac(adapter, vf, addr);
6410 
6411 	return err;
6412 }
6413 
6414 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6415 {
6416 	struct e1000_hw *hw = &adapter->hw;
6417 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6418 	u32 msg = E1000_VT_MSGTYPE_NACK;
6419 
6420 	/* if device isn't clear to send it shouldn't be reading either */
6421 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6422 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6423 		igb_write_mbx(hw, &msg, 1, vf);
6424 		vf_data->last_nack = jiffies;
6425 	}
6426 }
6427 
6428 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6429 {
6430 	struct pci_dev *pdev = adapter->pdev;
6431 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6432 	struct e1000_hw *hw = &adapter->hw;
6433 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6434 	s32 retval;
6435 
6436 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6437 
6438 	if (retval) {
6439 		/* if receive failed revoke VF CTS stats and restart init */
6440 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6441 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6442 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6443 			return;
6444 		goto out;
6445 	}
6446 
6447 	/* this is a message we already processed, do nothing */
6448 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6449 		return;
6450 
6451 	/* until the vf completes a reset it should not be
6452 	 * allowed to start any configuration.
6453 	 */
6454 	if (msgbuf[0] == E1000_VF_RESET) {
6455 		igb_vf_reset_msg(adapter, vf);
6456 		return;
6457 	}
6458 
6459 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6460 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6461 			return;
6462 		retval = -1;
6463 		goto out;
6464 	}
6465 
6466 	switch ((msgbuf[0] & 0xFFFF)) {
6467 	case E1000_VF_SET_MAC_ADDR:
6468 		retval = -EINVAL;
6469 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6470 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6471 		else
6472 			dev_warn(&pdev->dev,
6473 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6474 				 vf);
6475 		break;
6476 	case E1000_VF_SET_PROMISC:
6477 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6478 		break;
6479 	case E1000_VF_SET_MULTICAST:
6480 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6481 		break;
6482 	case E1000_VF_SET_LPE:
6483 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6484 		break;
6485 	case E1000_VF_SET_VLAN:
6486 		retval = -1;
6487 		if (vf_data->pf_vlan)
6488 			dev_warn(&pdev->dev,
6489 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6490 				 vf);
6491 		else
6492 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6493 		break;
6494 	default:
6495 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6496 		retval = -1;
6497 		break;
6498 	}
6499 
6500 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6501 out:
6502 	/* notify the VF of the results of what it sent us */
6503 	if (retval)
6504 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6505 	else
6506 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6507 
6508 	igb_write_mbx(hw, msgbuf, 1, vf);
6509 }
6510 
6511 static void igb_msg_task(struct igb_adapter *adapter)
6512 {
6513 	struct e1000_hw *hw = &adapter->hw;
6514 	u32 vf;
6515 
6516 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6517 		/* process any reset requests */
6518 		if (!igb_check_for_rst(hw, vf))
6519 			igb_vf_reset_event(adapter, vf);
6520 
6521 		/* process any messages pending */
6522 		if (!igb_check_for_msg(hw, vf))
6523 			igb_rcv_msg_from_vf(adapter, vf);
6524 
6525 		/* process any acks */
6526 		if (!igb_check_for_ack(hw, vf))
6527 			igb_rcv_ack_from_vf(adapter, vf);
6528 	}
6529 }
6530 
6531 /**
6532  *  igb_set_uta - Set unicast filter table address
6533  *  @adapter: board private structure
6534  *  @set: boolean indicating if we are setting or clearing bits
6535  *
6536  *  The unicast table address is a register array of 32-bit registers.
6537  *  The table is meant to be used in a way similar to how the MTA is used
6538  *  however due to certain limitations in the hardware it is necessary to
6539  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6540  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6541  **/
6542 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6543 {
6544 	struct e1000_hw *hw = &adapter->hw;
6545 	u32 uta = set ? ~0 : 0;
6546 	int i;
6547 
6548 	/* we only need to do this if VMDq is enabled */
6549 	if (!adapter->vfs_allocated_count)
6550 		return;
6551 
6552 	for (i = hw->mac.uta_reg_count; i--;)
6553 		array_wr32(E1000_UTA, i, uta);
6554 }
6555 
6556 /**
6557  *  igb_intr_msi - Interrupt Handler
6558  *  @irq: interrupt number
6559  *  @data: pointer to a network interface device structure
6560  **/
6561 static irqreturn_t igb_intr_msi(int irq, void *data)
6562 {
6563 	struct igb_adapter *adapter = data;
6564 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6565 	struct e1000_hw *hw = &adapter->hw;
6566 	/* read ICR disables interrupts using IAM */
6567 	u32 icr = rd32(E1000_ICR);
6568 
6569 	igb_write_itr(q_vector);
6570 
6571 	if (icr & E1000_ICR_DRSTA)
6572 		schedule_work(&adapter->reset_task);
6573 
6574 	if (icr & E1000_ICR_DOUTSYNC) {
6575 		/* HW is reporting DMA is out of sync */
6576 		adapter->stats.doosync++;
6577 	}
6578 
6579 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6580 		hw->mac.get_link_status = 1;
6581 		if (!test_bit(__IGB_DOWN, &adapter->state))
6582 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6583 	}
6584 
6585 	if (icr & E1000_ICR_TS)
6586 		igb_tsync_interrupt(adapter);
6587 
6588 	napi_schedule(&q_vector->napi);
6589 
6590 	return IRQ_HANDLED;
6591 }
6592 
6593 /**
6594  *  igb_intr - Legacy Interrupt Handler
6595  *  @irq: interrupt number
6596  *  @data: pointer to a network interface device structure
6597  **/
6598 static irqreturn_t igb_intr(int irq, void *data)
6599 {
6600 	struct igb_adapter *adapter = data;
6601 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6602 	struct e1000_hw *hw = &adapter->hw;
6603 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6604 	 * need for the IMC write
6605 	 */
6606 	u32 icr = rd32(E1000_ICR);
6607 
6608 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6609 	 * not set, then the adapter didn't send an interrupt
6610 	 */
6611 	if (!(icr & E1000_ICR_INT_ASSERTED))
6612 		return IRQ_NONE;
6613 
6614 	igb_write_itr(q_vector);
6615 
6616 	if (icr & E1000_ICR_DRSTA)
6617 		schedule_work(&adapter->reset_task);
6618 
6619 	if (icr & E1000_ICR_DOUTSYNC) {
6620 		/* HW is reporting DMA is out of sync */
6621 		adapter->stats.doosync++;
6622 	}
6623 
6624 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6625 		hw->mac.get_link_status = 1;
6626 		/* guard against interrupt when we're going down */
6627 		if (!test_bit(__IGB_DOWN, &adapter->state))
6628 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6629 	}
6630 
6631 	if (icr & E1000_ICR_TS)
6632 		igb_tsync_interrupt(adapter);
6633 
6634 	napi_schedule(&q_vector->napi);
6635 
6636 	return IRQ_HANDLED;
6637 }
6638 
6639 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6640 {
6641 	struct igb_adapter *adapter = q_vector->adapter;
6642 	struct e1000_hw *hw = &adapter->hw;
6643 
6644 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6645 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6646 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6647 			igb_set_itr(q_vector);
6648 		else
6649 			igb_update_ring_itr(q_vector);
6650 	}
6651 
6652 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6653 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6654 			wr32(E1000_EIMS, q_vector->eims_value);
6655 		else
6656 			igb_irq_enable(adapter);
6657 	}
6658 }
6659 
6660 /**
6661  *  igb_poll - NAPI Rx polling callback
6662  *  @napi: napi polling structure
6663  *  @budget: count of how many packets we should handle
6664  **/
6665 static int igb_poll(struct napi_struct *napi, int budget)
6666 {
6667 	struct igb_q_vector *q_vector = container_of(napi,
6668 						     struct igb_q_vector,
6669 						     napi);
6670 	bool clean_complete = true;
6671 	int work_done = 0;
6672 
6673 #ifdef CONFIG_IGB_DCA
6674 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6675 		igb_update_dca(q_vector);
6676 #endif
6677 	if (q_vector->tx.ring)
6678 		clean_complete = igb_clean_tx_irq(q_vector, budget);
6679 
6680 	if (q_vector->rx.ring) {
6681 		int cleaned = igb_clean_rx_irq(q_vector, budget);
6682 
6683 		work_done += cleaned;
6684 		if (cleaned >= budget)
6685 			clean_complete = false;
6686 	}
6687 
6688 	/* If all work not completed, return budget and keep polling */
6689 	if (!clean_complete)
6690 		return budget;
6691 
6692 	/* If not enough Rx work done, exit the polling mode */
6693 	napi_complete_done(napi, work_done);
6694 	igb_ring_irq_enable(q_vector);
6695 
6696 	return 0;
6697 }
6698 
6699 /**
6700  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6701  *  @q_vector: pointer to q_vector containing needed info
6702  *  @napi_budget: Used to determine if we are in netpoll
6703  *
6704  *  returns true if ring is completely cleaned
6705  **/
6706 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6707 {
6708 	struct igb_adapter *adapter = q_vector->adapter;
6709 	struct igb_ring *tx_ring = q_vector->tx.ring;
6710 	struct igb_tx_buffer *tx_buffer;
6711 	union e1000_adv_tx_desc *tx_desc;
6712 	unsigned int total_bytes = 0, total_packets = 0;
6713 	unsigned int budget = q_vector->tx.work_limit;
6714 	unsigned int i = tx_ring->next_to_clean;
6715 
6716 	if (test_bit(__IGB_DOWN, &adapter->state))
6717 		return true;
6718 
6719 	tx_buffer = &tx_ring->tx_buffer_info[i];
6720 	tx_desc = IGB_TX_DESC(tx_ring, i);
6721 	i -= tx_ring->count;
6722 
6723 	do {
6724 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6725 
6726 		/* if next_to_watch is not set then there is no work pending */
6727 		if (!eop_desc)
6728 			break;
6729 
6730 		/* prevent any other reads prior to eop_desc */
6731 		read_barrier_depends();
6732 
6733 		/* if DD is not set pending work has not been completed */
6734 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6735 			break;
6736 
6737 		/* clear next_to_watch to prevent false hangs */
6738 		tx_buffer->next_to_watch = NULL;
6739 
6740 		/* update the statistics for this packet */
6741 		total_bytes += tx_buffer->bytecount;
6742 		total_packets += tx_buffer->gso_segs;
6743 
6744 		/* free the skb */
6745 		napi_consume_skb(tx_buffer->skb, napi_budget);
6746 
6747 		/* unmap skb header data */
6748 		dma_unmap_single(tx_ring->dev,
6749 				 dma_unmap_addr(tx_buffer, dma),
6750 				 dma_unmap_len(tx_buffer, len),
6751 				 DMA_TO_DEVICE);
6752 
6753 		/* clear tx_buffer data */
6754 		dma_unmap_len_set(tx_buffer, len, 0);
6755 
6756 		/* clear last DMA location and unmap remaining buffers */
6757 		while (tx_desc != eop_desc) {
6758 			tx_buffer++;
6759 			tx_desc++;
6760 			i++;
6761 			if (unlikely(!i)) {
6762 				i -= tx_ring->count;
6763 				tx_buffer = tx_ring->tx_buffer_info;
6764 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6765 			}
6766 
6767 			/* unmap any remaining paged data */
6768 			if (dma_unmap_len(tx_buffer, len)) {
6769 				dma_unmap_page(tx_ring->dev,
6770 					       dma_unmap_addr(tx_buffer, dma),
6771 					       dma_unmap_len(tx_buffer, len),
6772 					       DMA_TO_DEVICE);
6773 				dma_unmap_len_set(tx_buffer, len, 0);
6774 			}
6775 		}
6776 
6777 		/* move us one more past the eop_desc for start of next pkt */
6778 		tx_buffer++;
6779 		tx_desc++;
6780 		i++;
6781 		if (unlikely(!i)) {
6782 			i -= tx_ring->count;
6783 			tx_buffer = tx_ring->tx_buffer_info;
6784 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6785 		}
6786 
6787 		/* issue prefetch for next Tx descriptor */
6788 		prefetch(tx_desc);
6789 
6790 		/* update budget accounting */
6791 		budget--;
6792 	} while (likely(budget));
6793 
6794 	netdev_tx_completed_queue(txring_txq(tx_ring),
6795 				  total_packets, total_bytes);
6796 	i += tx_ring->count;
6797 	tx_ring->next_to_clean = i;
6798 	u64_stats_update_begin(&tx_ring->tx_syncp);
6799 	tx_ring->tx_stats.bytes += total_bytes;
6800 	tx_ring->tx_stats.packets += total_packets;
6801 	u64_stats_update_end(&tx_ring->tx_syncp);
6802 	q_vector->tx.total_bytes += total_bytes;
6803 	q_vector->tx.total_packets += total_packets;
6804 
6805 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6806 		struct e1000_hw *hw = &adapter->hw;
6807 
6808 		/* Detect a transmit hang in hardware, this serializes the
6809 		 * check with the clearing of time_stamp and movement of i
6810 		 */
6811 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6812 		if (tx_buffer->next_to_watch &&
6813 		    time_after(jiffies, tx_buffer->time_stamp +
6814 			       (adapter->tx_timeout_factor * HZ)) &&
6815 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6816 
6817 			/* detected Tx unit hang */
6818 			dev_err(tx_ring->dev,
6819 				"Detected Tx Unit Hang\n"
6820 				"  Tx Queue             <%d>\n"
6821 				"  TDH                  <%x>\n"
6822 				"  TDT                  <%x>\n"
6823 				"  next_to_use          <%x>\n"
6824 				"  next_to_clean        <%x>\n"
6825 				"buffer_info[next_to_clean]\n"
6826 				"  time_stamp           <%lx>\n"
6827 				"  next_to_watch        <%p>\n"
6828 				"  jiffies              <%lx>\n"
6829 				"  desc.status          <%x>\n",
6830 				tx_ring->queue_index,
6831 				rd32(E1000_TDH(tx_ring->reg_idx)),
6832 				readl(tx_ring->tail),
6833 				tx_ring->next_to_use,
6834 				tx_ring->next_to_clean,
6835 				tx_buffer->time_stamp,
6836 				tx_buffer->next_to_watch,
6837 				jiffies,
6838 				tx_buffer->next_to_watch->wb.status);
6839 			netif_stop_subqueue(tx_ring->netdev,
6840 					    tx_ring->queue_index);
6841 
6842 			/* we are about to reset, no point in enabling stuff */
6843 			return true;
6844 		}
6845 	}
6846 
6847 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6848 	if (unlikely(total_packets &&
6849 	    netif_carrier_ok(tx_ring->netdev) &&
6850 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6851 		/* Make sure that anybody stopping the queue after this
6852 		 * sees the new next_to_clean.
6853 		 */
6854 		smp_mb();
6855 		if (__netif_subqueue_stopped(tx_ring->netdev,
6856 					     tx_ring->queue_index) &&
6857 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6858 			netif_wake_subqueue(tx_ring->netdev,
6859 					    tx_ring->queue_index);
6860 
6861 			u64_stats_update_begin(&tx_ring->tx_syncp);
6862 			tx_ring->tx_stats.restart_queue++;
6863 			u64_stats_update_end(&tx_ring->tx_syncp);
6864 		}
6865 	}
6866 
6867 	return !!budget;
6868 }
6869 
6870 /**
6871  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6872  *  @rx_ring: rx descriptor ring to store buffers on
6873  *  @old_buff: donor buffer to have page reused
6874  *
6875  *  Synchronizes page for reuse by the adapter
6876  **/
6877 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6878 			      struct igb_rx_buffer *old_buff)
6879 {
6880 	struct igb_rx_buffer *new_buff;
6881 	u16 nta = rx_ring->next_to_alloc;
6882 
6883 	new_buff = &rx_ring->rx_buffer_info[nta];
6884 
6885 	/* update, and store next to alloc */
6886 	nta++;
6887 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6888 
6889 	/* Transfer page from old buffer to new buffer.
6890 	 * Move each member individually to avoid possible store
6891 	 * forwarding stalls.
6892 	 */
6893 	new_buff->dma		= old_buff->dma;
6894 	new_buff->page		= old_buff->page;
6895 	new_buff->page_offset	= old_buff->page_offset;
6896 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
6897 }
6898 
6899 static inline bool igb_page_is_reserved(struct page *page)
6900 {
6901 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6902 }
6903 
6904 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
6905 {
6906 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
6907 	struct page *page = rx_buffer->page;
6908 
6909 	/* avoid re-using remote pages */
6910 	if (unlikely(igb_page_is_reserved(page)))
6911 		return false;
6912 
6913 #if (PAGE_SIZE < 8192)
6914 	/* if we are only owner of page we can reuse it */
6915 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
6916 		return false;
6917 #else
6918 #define IGB_LAST_OFFSET \
6919 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
6920 
6921 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
6922 		return false;
6923 #endif
6924 
6925 	/* If we have drained the page fragment pool we need to update
6926 	 * the pagecnt_bias and page count so that we fully restock the
6927 	 * number of references the driver holds.
6928 	 */
6929 	if (unlikely(!pagecnt_bias)) {
6930 		page_ref_add(page, USHRT_MAX);
6931 		rx_buffer->pagecnt_bias = USHRT_MAX;
6932 	}
6933 
6934 	return true;
6935 }
6936 
6937 /**
6938  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6939  *  @rx_ring: rx descriptor ring to transact packets on
6940  *  @rx_buffer: buffer containing page to add
6941  *  @skb: sk_buff to place the data into
6942  *  @size: size of buffer to be added
6943  *
6944  *  This function will add the data contained in rx_buffer->page to the skb.
6945  **/
6946 static void igb_add_rx_frag(struct igb_ring *rx_ring,
6947 			    struct igb_rx_buffer *rx_buffer,
6948 			    struct sk_buff *skb,
6949 			    unsigned int size)
6950 {
6951 #if (PAGE_SIZE < 8192)
6952 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
6953 #else
6954 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
6955 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
6956 				SKB_DATA_ALIGN(size);
6957 #endif
6958 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
6959 			rx_buffer->page_offset, size, truesize);
6960 #if (PAGE_SIZE < 8192)
6961 	rx_buffer->page_offset ^= truesize;
6962 #else
6963 	rx_buffer->page_offset += truesize;
6964 #endif
6965 }
6966 
6967 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
6968 					 struct igb_rx_buffer *rx_buffer,
6969 					 union e1000_adv_rx_desc *rx_desc,
6970 					 unsigned int size)
6971 {
6972 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
6973 #if (PAGE_SIZE < 8192)
6974 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
6975 #else
6976 	unsigned int truesize = SKB_DATA_ALIGN(size);
6977 #endif
6978 	unsigned int headlen;
6979 	struct sk_buff *skb;
6980 
6981 	/* prefetch first cache line of first page */
6982 	prefetch(va);
6983 #if L1_CACHE_BYTES < 128
6984 	prefetch(va + L1_CACHE_BYTES);
6985 #endif
6986 
6987 	/* allocate a skb to store the frags */
6988 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6989 	if (unlikely(!skb))
6990 		return NULL;
6991 
6992 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6993 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6994 		va += IGB_TS_HDR_LEN;
6995 		size -= IGB_TS_HDR_LEN;
6996 	}
6997 
6998 	/* Determine available headroom for copy */
6999 	headlen = size;
7000 	if (headlen > IGB_RX_HDR_LEN)
7001 		headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7002 
7003 	/* align pull length to size of long to optimize memcpy performance */
7004 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7005 
7006 	/* update all of the pointers */
7007 	size -= headlen;
7008 	if (size) {
7009 		skb_add_rx_frag(skb, 0, rx_buffer->page,
7010 				(va + headlen) - page_address(rx_buffer->page),
7011 				size, truesize);
7012 #if (PAGE_SIZE < 8192)
7013 		rx_buffer->page_offset ^= truesize;
7014 #else
7015 		rx_buffer->page_offset += truesize;
7016 #endif
7017 	} else {
7018 		rx_buffer->pagecnt_bias++;
7019 	}
7020 
7021 	return skb;
7022 }
7023 
7024 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7025 				     struct igb_rx_buffer *rx_buffer,
7026 				     union e1000_adv_rx_desc *rx_desc,
7027 				     unsigned int size)
7028 {
7029 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7030 #if (PAGE_SIZE < 8192)
7031 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7032 #else
7033 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7034 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7035 #endif
7036 	struct sk_buff *skb;
7037 
7038 	/* prefetch first cache line of first page */
7039 	prefetch(va);
7040 #if L1_CACHE_BYTES < 128
7041 	prefetch(va + L1_CACHE_BYTES);
7042 #endif
7043 
7044 	/* build an skb around the page buffer */
7045 	skb = build_skb(va - IGB_SKB_PAD, truesize);
7046 	if (unlikely(!skb))
7047 		return NULL;
7048 
7049 	/* update pointers within the skb to store the data */
7050 	skb_reserve(skb, IGB_SKB_PAD);
7051 	__skb_put(skb, size);
7052 
7053 	/* pull timestamp out of packet data */
7054 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7055 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7056 		__skb_pull(skb, IGB_TS_HDR_LEN);
7057 	}
7058 
7059 	/* update buffer offset */
7060 #if (PAGE_SIZE < 8192)
7061 	rx_buffer->page_offset ^= truesize;
7062 #else
7063 	rx_buffer->page_offset += truesize;
7064 #endif
7065 
7066 	return skb;
7067 }
7068 
7069 static inline void igb_rx_checksum(struct igb_ring *ring,
7070 				   union e1000_adv_rx_desc *rx_desc,
7071 				   struct sk_buff *skb)
7072 {
7073 	skb_checksum_none_assert(skb);
7074 
7075 	/* Ignore Checksum bit is set */
7076 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7077 		return;
7078 
7079 	/* Rx checksum disabled via ethtool */
7080 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
7081 		return;
7082 
7083 	/* TCP/UDP checksum error bit is set */
7084 	if (igb_test_staterr(rx_desc,
7085 			     E1000_RXDEXT_STATERR_TCPE |
7086 			     E1000_RXDEXT_STATERR_IPE)) {
7087 		/* work around errata with sctp packets where the TCPE aka
7088 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7089 		 * packets, (aka let the stack check the crc32c)
7090 		 */
7091 		if (!((skb->len == 60) &&
7092 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7093 			u64_stats_update_begin(&ring->rx_syncp);
7094 			ring->rx_stats.csum_err++;
7095 			u64_stats_update_end(&ring->rx_syncp);
7096 		}
7097 		/* let the stack verify checksum errors */
7098 		return;
7099 	}
7100 	/* It must be a TCP or UDP packet with a valid checksum */
7101 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7102 				      E1000_RXD_STAT_UDPCS))
7103 		skb->ip_summed = CHECKSUM_UNNECESSARY;
7104 
7105 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
7106 		le32_to_cpu(rx_desc->wb.upper.status_error));
7107 }
7108 
7109 static inline void igb_rx_hash(struct igb_ring *ring,
7110 			       union e1000_adv_rx_desc *rx_desc,
7111 			       struct sk_buff *skb)
7112 {
7113 	if (ring->netdev->features & NETIF_F_RXHASH)
7114 		skb_set_hash(skb,
7115 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7116 			     PKT_HASH_TYPE_L3);
7117 }
7118 
7119 /**
7120  *  igb_is_non_eop - process handling of non-EOP buffers
7121  *  @rx_ring: Rx ring being processed
7122  *  @rx_desc: Rx descriptor for current buffer
7123  *  @skb: current socket buffer containing buffer in progress
7124  *
7125  *  This function updates next to clean.  If the buffer is an EOP buffer
7126  *  this function exits returning false, otherwise it will place the
7127  *  sk_buff in the next buffer to be chained and return true indicating
7128  *  that this is in fact a non-EOP buffer.
7129  **/
7130 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7131 			   union e1000_adv_rx_desc *rx_desc)
7132 {
7133 	u32 ntc = rx_ring->next_to_clean + 1;
7134 
7135 	/* fetch, update, and store next to clean */
7136 	ntc = (ntc < rx_ring->count) ? ntc : 0;
7137 	rx_ring->next_to_clean = ntc;
7138 
7139 	prefetch(IGB_RX_DESC(rx_ring, ntc));
7140 
7141 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7142 		return false;
7143 
7144 	return true;
7145 }
7146 
7147 /**
7148  *  igb_cleanup_headers - Correct corrupted or empty headers
7149  *  @rx_ring: rx descriptor ring packet is being transacted on
7150  *  @rx_desc: pointer to the EOP Rx descriptor
7151  *  @skb: pointer to current skb being fixed
7152  *
7153  *  Address the case where we are pulling data in on pages only
7154  *  and as such no data is present in the skb header.
7155  *
7156  *  In addition if skb is not at least 60 bytes we need to pad it so that
7157  *  it is large enough to qualify as a valid Ethernet frame.
7158  *
7159  *  Returns true if an error was encountered and skb was freed.
7160  **/
7161 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7162 				union e1000_adv_rx_desc *rx_desc,
7163 				struct sk_buff *skb)
7164 {
7165 	if (unlikely((igb_test_staterr(rx_desc,
7166 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7167 		struct net_device *netdev = rx_ring->netdev;
7168 		if (!(netdev->features & NETIF_F_RXALL)) {
7169 			dev_kfree_skb_any(skb);
7170 			return true;
7171 		}
7172 	}
7173 
7174 	/* if eth_skb_pad returns an error the skb was freed */
7175 	if (eth_skb_pad(skb))
7176 		return true;
7177 
7178 	return false;
7179 }
7180 
7181 /**
7182  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7183  *  @rx_ring: rx descriptor ring packet is being transacted on
7184  *  @rx_desc: pointer to the EOP Rx descriptor
7185  *  @skb: pointer to current skb being populated
7186  *
7187  *  This function checks the ring, descriptor, and packet information in
7188  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7189  *  other fields within the skb.
7190  **/
7191 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7192 				   union e1000_adv_rx_desc *rx_desc,
7193 				   struct sk_buff *skb)
7194 {
7195 	struct net_device *dev = rx_ring->netdev;
7196 
7197 	igb_rx_hash(rx_ring, rx_desc, skb);
7198 
7199 	igb_rx_checksum(rx_ring, rx_desc, skb);
7200 
7201 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7202 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7203 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7204 
7205 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7206 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7207 		u16 vid;
7208 
7209 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7210 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7211 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7212 		else
7213 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7214 
7215 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7216 	}
7217 
7218 	skb_record_rx_queue(skb, rx_ring->queue_index);
7219 
7220 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7221 }
7222 
7223 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7224 					       const unsigned int size)
7225 {
7226 	struct igb_rx_buffer *rx_buffer;
7227 
7228 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7229 	prefetchw(rx_buffer->page);
7230 
7231 	/* we are reusing so sync this buffer for CPU use */
7232 	dma_sync_single_range_for_cpu(rx_ring->dev,
7233 				      rx_buffer->dma,
7234 				      rx_buffer->page_offset,
7235 				      size,
7236 				      DMA_FROM_DEVICE);
7237 
7238 	rx_buffer->pagecnt_bias--;
7239 
7240 	return rx_buffer;
7241 }
7242 
7243 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7244 			      struct igb_rx_buffer *rx_buffer)
7245 {
7246 	if (igb_can_reuse_rx_page(rx_buffer)) {
7247 		/* hand second half of page back to the ring */
7248 		igb_reuse_rx_page(rx_ring, rx_buffer);
7249 	} else {
7250 		/* We are not reusing the buffer so unmap it and free
7251 		 * any references we are holding to it
7252 		 */
7253 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7254 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7255 				     IGB_RX_DMA_ATTR);
7256 		__page_frag_cache_drain(rx_buffer->page,
7257 					rx_buffer->pagecnt_bias);
7258 	}
7259 
7260 	/* clear contents of rx_buffer */
7261 	rx_buffer->page = NULL;
7262 }
7263 
7264 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7265 {
7266 	struct igb_ring *rx_ring = q_vector->rx.ring;
7267 	struct sk_buff *skb = rx_ring->skb;
7268 	unsigned int total_bytes = 0, total_packets = 0;
7269 	u16 cleaned_count = igb_desc_unused(rx_ring);
7270 
7271 	while (likely(total_packets < budget)) {
7272 		union e1000_adv_rx_desc *rx_desc;
7273 		struct igb_rx_buffer *rx_buffer;
7274 		unsigned int size;
7275 
7276 		/* return some buffers to hardware, one at a time is too slow */
7277 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7278 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7279 			cleaned_count = 0;
7280 		}
7281 
7282 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7283 		size = le16_to_cpu(rx_desc->wb.upper.length);
7284 		if (!size)
7285 			break;
7286 
7287 		/* This memory barrier is needed to keep us from reading
7288 		 * any other fields out of the rx_desc until we know the
7289 		 * descriptor has been written back
7290 		 */
7291 		dma_rmb();
7292 
7293 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
7294 
7295 		/* retrieve a buffer from the ring */
7296 		if (skb)
7297 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7298 		else if (ring_uses_build_skb(rx_ring))
7299 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7300 		else
7301 			skb = igb_construct_skb(rx_ring, rx_buffer,
7302 						rx_desc, size);
7303 
7304 		/* exit if we failed to retrieve a buffer */
7305 		if (!skb) {
7306 			rx_ring->rx_stats.alloc_failed++;
7307 			rx_buffer->pagecnt_bias++;
7308 			break;
7309 		}
7310 
7311 		igb_put_rx_buffer(rx_ring, rx_buffer);
7312 		cleaned_count++;
7313 
7314 		/* fetch next buffer in frame if non-eop */
7315 		if (igb_is_non_eop(rx_ring, rx_desc))
7316 			continue;
7317 
7318 		/* verify the packet layout is correct */
7319 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7320 			skb = NULL;
7321 			continue;
7322 		}
7323 
7324 		/* probably a little skewed due to removing CRC */
7325 		total_bytes += skb->len;
7326 
7327 		/* populate checksum, timestamp, VLAN, and protocol */
7328 		igb_process_skb_fields(rx_ring, rx_desc, skb);
7329 
7330 		napi_gro_receive(&q_vector->napi, skb);
7331 
7332 		/* reset skb pointer */
7333 		skb = NULL;
7334 
7335 		/* update budget accounting */
7336 		total_packets++;
7337 	}
7338 
7339 	/* place incomplete frames back on ring for completion */
7340 	rx_ring->skb = skb;
7341 
7342 	u64_stats_update_begin(&rx_ring->rx_syncp);
7343 	rx_ring->rx_stats.packets += total_packets;
7344 	rx_ring->rx_stats.bytes += total_bytes;
7345 	u64_stats_update_end(&rx_ring->rx_syncp);
7346 	q_vector->rx.total_packets += total_packets;
7347 	q_vector->rx.total_bytes += total_bytes;
7348 
7349 	if (cleaned_count)
7350 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7351 
7352 	return total_packets;
7353 }
7354 
7355 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7356 {
7357 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7358 }
7359 
7360 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7361 				  struct igb_rx_buffer *bi)
7362 {
7363 	struct page *page = bi->page;
7364 	dma_addr_t dma;
7365 
7366 	/* since we are recycling buffers we should seldom need to alloc */
7367 	if (likely(page))
7368 		return true;
7369 
7370 	/* alloc new page for storage */
7371 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
7372 	if (unlikely(!page)) {
7373 		rx_ring->rx_stats.alloc_failed++;
7374 		return false;
7375 	}
7376 
7377 	/* map page for use */
7378 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
7379 				 igb_rx_pg_size(rx_ring),
7380 				 DMA_FROM_DEVICE,
7381 				 IGB_RX_DMA_ATTR);
7382 
7383 	/* if mapping failed free memory back to system since
7384 	 * there isn't much point in holding memory we can't use
7385 	 */
7386 	if (dma_mapping_error(rx_ring->dev, dma)) {
7387 		__free_pages(page, igb_rx_pg_order(rx_ring));
7388 
7389 		rx_ring->rx_stats.alloc_failed++;
7390 		return false;
7391 	}
7392 
7393 	bi->dma = dma;
7394 	bi->page = page;
7395 	bi->page_offset = igb_rx_offset(rx_ring);
7396 	bi->pagecnt_bias = 1;
7397 
7398 	return true;
7399 }
7400 
7401 /**
7402  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7403  *  @adapter: address of board private structure
7404  **/
7405 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7406 {
7407 	union e1000_adv_rx_desc *rx_desc;
7408 	struct igb_rx_buffer *bi;
7409 	u16 i = rx_ring->next_to_use;
7410 	u16 bufsz;
7411 
7412 	/* nothing to do */
7413 	if (!cleaned_count)
7414 		return;
7415 
7416 	rx_desc = IGB_RX_DESC(rx_ring, i);
7417 	bi = &rx_ring->rx_buffer_info[i];
7418 	i -= rx_ring->count;
7419 
7420 	bufsz = igb_rx_bufsz(rx_ring);
7421 
7422 	do {
7423 		if (!igb_alloc_mapped_page(rx_ring, bi))
7424 			break;
7425 
7426 		/* sync the buffer for use by the device */
7427 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
7428 						 bi->page_offset, bufsz,
7429 						 DMA_FROM_DEVICE);
7430 
7431 		/* Refresh the desc even if buffer_addrs didn't change
7432 		 * because each write-back erases this info.
7433 		 */
7434 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7435 
7436 		rx_desc++;
7437 		bi++;
7438 		i++;
7439 		if (unlikely(!i)) {
7440 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7441 			bi = rx_ring->rx_buffer_info;
7442 			i -= rx_ring->count;
7443 		}
7444 
7445 		/* clear the length for the next_to_use descriptor */
7446 		rx_desc->wb.upper.length = 0;
7447 
7448 		cleaned_count--;
7449 	} while (cleaned_count);
7450 
7451 	i += rx_ring->count;
7452 
7453 	if (rx_ring->next_to_use != i) {
7454 		/* record the next descriptor to use */
7455 		rx_ring->next_to_use = i;
7456 
7457 		/* update next to alloc since we have filled the ring */
7458 		rx_ring->next_to_alloc = i;
7459 
7460 		/* Force memory writes to complete before letting h/w
7461 		 * know there are new descriptors to fetch.  (Only
7462 		 * applicable for weak-ordered memory model archs,
7463 		 * such as IA-64).
7464 		 */
7465 		wmb();
7466 		writel(i, rx_ring->tail);
7467 	}
7468 }
7469 
7470 /**
7471  * igb_mii_ioctl -
7472  * @netdev:
7473  * @ifreq:
7474  * @cmd:
7475  **/
7476 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7477 {
7478 	struct igb_adapter *adapter = netdev_priv(netdev);
7479 	struct mii_ioctl_data *data = if_mii(ifr);
7480 
7481 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7482 		return -EOPNOTSUPP;
7483 
7484 	switch (cmd) {
7485 	case SIOCGMIIPHY:
7486 		data->phy_id = adapter->hw.phy.addr;
7487 		break;
7488 	case SIOCGMIIREG:
7489 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7490 				     &data->val_out))
7491 			return -EIO;
7492 		break;
7493 	case SIOCSMIIREG:
7494 	default:
7495 		return -EOPNOTSUPP;
7496 	}
7497 	return 0;
7498 }
7499 
7500 /**
7501  * igb_ioctl -
7502  * @netdev:
7503  * @ifreq:
7504  * @cmd:
7505  **/
7506 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7507 {
7508 	switch (cmd) {
7509 	case SIOCGMIIPHY:
7510 	case SIOCGMIIREG:
7511 	case SIOCSMIIREG:
7512 		return igb_mii_ioctl(netdev, ifr, cmd);
7513 	case SIOCGHWTSTAMP:
7514 		return igb_ptp_get_ts_config(netdev, ifr);
7515 	case SIOCSHWTSTAMP:
7516 		return igb_ptp_set_ts_config(netdev, ifr);
7517 	default:
7518 		return -EOPNOTSUPP;
7519 	}
7520 }
7521 
7522 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7523 {
7524 	struct igb_adapter *adapter = hw->back;
7525 
7526 	pci_read_config_word(adapter->pdev, reg, value);
7527 }
7528 
7529 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7530 {
7531 	struct igb_adapter *adapter = hw->back;
7532 
7533 	pci_write_config_word(adapter->pdev, reg, *value);
7534 }
7535 
7536 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7537 {
7538 	struct igb_adapter *adapter = hw->back;
7539 
7540 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7541 		return -E1000_ERR_CONFIG;
7542 
7543 	return 0;
7544 }
7545 
7546 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7547 {
7548 	struct igb_adapter *adapter = hw->back;
7549 
7550 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7551 		return -E1000_ERR_CONFIG;
7552 
7553 	return 0;
7554 }
7555 
7556 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7557 {
7558 	struct igb_adapter *adapter = netdev_priv(netdev);
7559 	struct e1000_hw *hw = &adapter->hw;
7560 	u32 ctrl, rctl;
7561 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7562 
7563 	if (enable) {
7564 		/* enable VLAN tag insert/strip */
7565 		ctrl = rd32(E1000_CTRL);
7566 		ctrl |= E1000_CTRL_VME;
7567 		wr32(E1000_CTRL, ctrl);
7568 
7569 		/* Disable CFI check */
7570 		rctl = rd32(E1000_RCTL);
7571 		rctl &= ~E1000_RCTL_CFIEN;
7572 		wr32(E1000_RCTL, rctl);
7573 	} else {
7574 		/* disable VLAN tag insert/strip */
7575 		ctrl = rd32(E1000_CTRL);
7576 		ctrl &= ~E1000_CTRL_VME;
7577 		wr32(E1000_CTRL, ctrl);
7578 	}
7579 
7580 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7581 }
7582 
7583 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7584 			       __be16 proto, u16 vid)
7585 {
7586 	struct igb_adapter *adapter = netdev_priv(netdev);
7587 	struct e1000_hw *hw = &adapter->hw;
7588 	int pf_id = adapter->vfs_allocated_count;
7589 
7590 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7591 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7592 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
7593 
7594 	set_bit(vid, adapter->active_vlans);
7595 
7596 	return 0;
7597 }
7598 
7599 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7600 				__be16 proto, u16 vid)
7601 {
7602 	struct igb_adapter *adapter = netdev_priv(netdev);
7603 	int pf_id = adapter->vfs_allocated_count;
7604 	struct e1000_hw *hw = &adapter->hw;
7605 
7606 	/* remove VID from filter table */
7607 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7608 		igb_vfta_set(hw, vid, pf_id, false, true);
7609 
7610 	clear_bit(vid, adapter->active_vlans);
7611 
7612 	return 0;
7613 }
7614 
7615 static void igb_restore_vlan(struct igb_adapter *adapter)
7616 {
7617 	u16 vid = 1;
7618 
7619 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7620 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7621 
7622 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7623 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7624 }
7625 
7626 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7627 {
7628 	struct pci_dev *pdev = adapter->pdev;
7629 	struct e1000_mac_info *mac = &adapter->hw.mac;
7630 
7631 	mac->autoneg = 0;
7632 
7633 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7634 	 * for the switch() below to work
7635 	 */
7636 	if ((spd & 1) || (dplx & ~1))
7637 		goto err_inval;
7638 
7639 	/* Fiber NIC's only allow 1000 gbps Full duplex
7640 	 * and 100Mbps Full duplex for 100baseFx sfp
7641 	 */
7642 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7643 		switch (spd + dplx) {
7644 		case SPEED_10 + DUPLEX_HALF:
7645 		case SPEED_10 + DUPLEX_FULL:
7646 		case SPEED_100 + DUPLEX_HALF:
7647 			goto err_inval;
7648 		default:
7649 			break;
7650 		}
7651 	}
7652 
7653 	switch (spd + dplx) {
7654 	case SPEED_10 + DUPLEX_HALF:
7655 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7656 		break;
7657 	case SPEED_10 + DUPLEX_FULL:
7658 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7659 		break;
7660 	case SPEED_100 + DUPLEX_HALF:
7661 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7662 		break;
7663 	case SPEED_100 + DUPLEX_FULL:
7664 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7665 		break;
7666 	case SPEED_1000 + DUPLEX_FULL:
7667 		mac->autoneg = 1;
7668 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7669 		break;
7670 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7671 	default:
7672 		goto err_inval;
7673 	}
7674 
7675 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7676 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7677 
7678 	return 0;
7679 
7680 err_inval:
7681 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7682 	return -EINVAL;
7683 }
7684 
7685 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7686 			  bool runtime)
7687 {
7688 	struct net_device *netdev = pci_get_drvdata(pdev);
7689 	struct igb_adapter *adapter = netdev_priv(netdev);
7690 	struct e1000_hw *hw = &adapter->hw;
7691 	u32 ctrl, rctl, status;
7692 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7693 #ifdef CONFIG_PM
7694 	int retval = 0;
7695 #endif
7696 
7697 	rtnl_lock();
7698 	netif_device_detach(netdev);
7699 
7700 	if (netif_running(netdev))
7701 		__igb_close(netdev, true);
7702 
7703 	igb_ptp_suspend(adapter);
7704 
7705 	igb_clear_interrupt_scheme(adapter);
7706 	rtnl_unlock();
7707 
7708 #ifdef CONFIG_PM
7709 	retval = pci_save_state(pdev);
7710 	if (retval)
7711 		return retval;
7712 #endif
7713 
7714 	status = rd32(E1000_STATUS);
7715 	if (status & E1000_STATUS_LU)
7716 		wufc &= ~E1000_WUFC_LNKC;
7717 
7718 	if (wufc) {
7719 		igb_setup_rctl(adapter);
7720 		igb_set_rx_mode(netdev);
7721 
7722 		/* turn on all-multi mode if wake on multicast is enabled */
7723 		if (wufc & E1000_WUFC_MC) {
7724 			rctl = rd32(E1000_RCTL);
7725 			rctl |= E1000_RCTL_MPE;
7726 			wr32(E1000_RCTL, rctl);
7727 		}
7728 
7729 		ctrl = rd32(E1000_CTRL);
7730 		/* advertise wake from D3Cold */
7731 		#define E1000_CTRL_ADVD3WUC 0x00100000
7732 		/* phy power management enable */
7733 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7734 		ctrl |= E1000_CTRL_ADVD3WUC;
7735 		wr32(E1000_CTRL, ctrl);
7736 
7737 		/* Allow time for pending master requests to run */
7738 		igb_disable_pcie_master(hw);
7739 
7740 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7741 		wr32(E1000_WUFC, wufc);
7742 	} else {
7743 		wr32(E1000_WUC, 0);
7744 		wr32(E1000_WUFC, 0);
7745 	}
7746 
7747 	*enable_wake = wufc || adapter->en_mng_pt;
7748 	if (!*enable_wake)
7749 		igb_power_down_link(adapter);
7750 	else
7751 		igb_power_up_link(adapter);
7752 
7753 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7754 	 * would have already happened in close and is redundant.
7755 	 */
7756 	igb_release_hw_control(adapter);
7757 
7758 	pci_disable_device(pdev);
7759 
7760 	return 0;
7761 }
7762 
7763 #ifdef CONFIG_PM
7764 #ifdef CONFIG_PM_SLEEP
7765 static int igb_suspend(struct device *dev)
7766 {
7767 	int retval;
7768 	bool wake;
7769 	struct pci_dev *pdev = to_pci_dev(dev);
7770 
7771 	retval = __igb_shutdown(pdev, &wake, 0);
7772 	if (retval)
7773 		return retval;
7774 
7775 	if (wake) {
7776 		pci_prepare_to_sleep(pdev);
7777 	} else {
7778 		pci_wake_from_d3(pdev, false);
7779 		pci_set_power_state(pdev, PCI_D3hot);
7780 	}
7781 
7782 	return 0;
7783 }
7784 #endif /* CONFIG_PM_SLEEP */
7785 
7786 static int igb_resume(struct device *dev)
7787 {
7788 	struct pci_dev *pdev = to_pci_dev(dev);
7789 	struct net_device *netdev = pci_get_drvdata(pdev);
7790 	struct igb_adapter *adapter = netdev_priv(netdev);
7791 	struct e1000_hw *hw = &adapter->hw;
7792 	u32 err;
7793 
7794 	pci_set_power_state(pdev, PCI_D0);
7795 	pci_restore_state(pdev);
7796 	pci_save_state(pdev);
7797 
7798 	if (!pci_device_is_present(pdev))
7799 		return -ENODEV;
7800 	err = pci_enable_device_mem(pdev);
7801 	if (err) {
7802 		dev_err(&pdev->dev,
7803 			"igb: Cannot enable PCI device from suspend\n");
7804 		return err;
7805 	}
7806 	pci_set_master(pdev);
7807 
7808 	pci_enable_wake(pdev, PCI_D3hot, 0);
7809 	pci_enable_wake(pdev, PCI_D3cold, 0);
7810 
7811 	if (igb_init_interrupt_scheme(adapter, true)) {
7812 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7813 		return -ENOMEM;
7814 	}
7815 
7816 	igb_reset(adapter);
7817 
7818 	/* let the f/w know that the h/w is now under the control of the
7819 	 * driver.
7820 	 */
7821 	igb_get_hw_control(adapter);
7822 
7823 	wr32(E1000_WUS, ~0);
7824 
7825 	rtnl_lock();
7826 	if (!err && netif_running(netdev))
7827 		err = __igb_open(netdev, true);
7828 
7829 	if (!err)
7830 		netif_device_attach(netdev);
7831 	rtnl_unlock();
7832 
7833 	return err;
7834 }
7835 
7836 static int igb_runtime_idle(struct device *dev)
7837 {
7838 	struct pci_dev *pdev = to_pci_dev(dev);
7839 	struct net_device *netdev = pci_get_drvdata(pdev);
7840 	struct igb_adapter *adapter = netdev_priv(netdev);
7841 
7842 	if (!igb_has_link(adapter))
7843 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7844 
7845 	return -EBUSY;
7846 }
7847 
7848 static int igb_runtime_suspend(struct device *dev)
7849 {
7850 	struct pci_dev *pdev = to_pci_dev(dev);
7851 	int retval;
7852 	bool wake;
7853 
7854 	retval = __igb_shutdown(pdev, &wake, 1);
7855 	if (retval)
7856 		return retval;
7857 
7858 	if (wake) {
7859 		pci_prepare_to_sleep(pdev);
7860 	} else {
7861 		pci_wake_from_d3(pdev, false);
7862 		pci_set_power_state(pdev, PCI_D3hot);
7863 	}
7864 
7865 	return 0;
7866 }
7867 
7868 static int igb_runtime_resume(struct device *dev)
7869 {
7870 	return igb_resume(dev);
7871 }
7872 #endif /* CONFIG_PM */
7873 
7874 static void igb_shutdown(struct pci_dev *pdev)
7875 {
7876 	bool wake;
7877 
7878 	__igb_shutdown(pdev, &wake, 0);
7879 
7880 	if (system_state == SYSTEM_POWER_OFF) {
7881 		pci_wake_from_d3(pdev, wake);
7882 		pci_set_power_state(pdev, PCI_D3hot);
7883 	}
7884 }
7885 
7886 #ifdef CONFIG_PCI_IOV
7887 static int igb_sriov_reinit(struct pci_dev *dev)
7888 {
7889 	struct net_device *netdev = pci_get_drvdata(dev);
7890 	struct igb_adapter *adapter = netdev_priv(netdev);
7891 	struct pci_dev *pdev = adapter->pdev;
7892 
7893 	rtnl_lock();
7894 
7895 	if (netif_running(netdev))
7896 		igb_close(netdev);
7897 	else
7898 		igb_reset(adapter);
7899 
7900 	igb_clear_interrupt_scheme(adapter);
7901 
7902 	igb_init_queue_configuration(adapter);
7903 
7904 	if (igb_init_interrupt_scheme(adapter, true)) {
7905 		rtnl_unlock();
7906 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7907 		return -ENOMEM;
7908 	}
7909 
7910 	if (netif_running(netdev))
7911 		igb_open(netdev);
7912 
7913 	rtnl_unlock();
7914 
7915 	return 0;
7916 }
7917 
7918 static int igb_pci_disable_sriov(struct pci_dev *dev)
7919 {
7920 	int err = igb_disable_sriov(dev);
7921 
7922 	if (!err)
7923 		err = igb_sriov_reinit(dev);
7924 
7925 	return err;
7926 }
7927 
7928 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7929 {
7930 	int err = igb_enable_sriov(dev, num_vfs);
7931 
7932 	if (err)
7933 		goto out;
7934 
7935 	err = igb_sriov_reinit(dev);
7936 	if (!err)
7937 		return num_vfs;
7938 
7939 out:
7940 	return err;
7941 }
7942 
7943 #endif
7944 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7945 {
7946 #ifdef CONFIG_PCI_IOV
7947 	if (num_vfs == 0)
7948 		return igb_pci_disable_sriov(dev);
7949 	else
7950 		return igb_pci_enable_sriov(dev, num_vfs);
7951 #endif
7952 	return 0;
7953 }
7954 
7955 #ifdef CONFIG_NET_POLL_CONTROLLER
7956 /* Polling 'interrupt' - used by things like netconsole to send skbs
7957  * without having to re-enable interrupts. It's not called while
7958  * the interrupt routine is executing.
7959  */
7960 static void igb_netpoll(struct net_device *netdev)
7961 {
7962 	struct igb_adapter *adapter = netdev_priv(netdev);
7963 	struct e1000_hw *hw = &adapter->hw;
7964 	struct igb_q_vector *q_vector;
7965 	int i;
7966 
7967 	for (i = 0; i < adapter->num_q_vectors; i++) {
7968 		q_vector = adapter->q_vector[i];
7969 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7970 			wr32(E1000_EIMC, q_vector->eims_value);
7971 		else
7972 			igb_irq_disable(adapter);
7973 		napi_schedule(&q_vector->napi);
7974 	}
7975 }
7976 #endif /* CONFIG_NET_POLL_CONTROLLER */
7977 
7978 /**
7979  *  igb_io_error_detected - called when PCI error is detected
7980  *  @pdev: Pointer to PCI device
7981  *  @state: The current pci connection state
7982  *
7983  *  This function is called after a PCI bus error affecting
7984  *  this device has been detected.
7985  **/
7986 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7987 					      pci_channel_state_t state)
7988 {
7989 	struct net_device *netdev = pci_get_drvdata(pdev);
7990 	struct igb_adapter *adapter = netdev_priv(netdev);
7991 
7992 	netif_device_detach(netdev);
7993 
7994 	if (state == pci_channel_io_perm_failure)
7995 		return PCI_ERS_RESULT_DISCONNECT;
7996 
7997 	if (netif_running(netdev))
7998 		igb_down(adapter);
7999 	pci_disable_device(pdev);
8000 
8001 	/* Request a slot slot reset. */
8002 	return PCI_ERS_RESULT_NEED_RESET;
8003 }
8004 
8005 /**
8006  *  igb_io_slot_reset - called after the pci bus has been reset.
8007  *  @pdev: Pointer to PCI device
8008  *
8009  *  Restart the card from scratch, as if from a cold-boot. Implementation
8010  *  resembles the first-half of the igb_resume routine.
8011  **/
8012 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8013 {
8014 	struct net_device *netdev = pci_get_drvdata(pdev);
8015 	struct igb_adapter *adapter = netdev_priv(netdev);
8016 	struct e1000_hw *hw = &adapter->hw;
8017 	pci_ers_result_t result;
8018 	int err;
8019 
8020 	if (pci_enable_device_mem(pdev)) {
8021 		dev_err(&pdev->dev,
8022 			"Cannot re-enable PCI device after reset.\n");
8023 		result = PCI_ERS_RESULT_DISCONNECT;
8024 	} else {
8025 		pci_set_master(pdev);
8026 		pci_restore_state(pdev);
8027 		pci_save_state(pdev);
8028 
8029 		pci_enable_wake(pdev, PCI_D3hot, 0);
8030 		pci_enable_wake(pdev, PCI_D3cold, 0);
8031 
8032 		/* In case of PCI error, adapter lose its HW address
8033 		 * so we should re-assign it here.
8034 		 */
8035 		hw->hw_addr = adapter->io_addr;
8036 
8037 		igb_reset(adapter);
8038 		wr32(E1000_WUS, ~0);
8039 		result = PCI_ERS_RESULT_RECOVERED;
8040 	}
8041 
8042 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
8043 	if (err) {
8044 		dev_err(&pdev->dev,
8045 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8046 			err);
8047 		/* non-fatal, continue */
8048 	}
8049 
8050 	return result;
8051 }
8052 
8053 /**
8054  *  igb_io_resume - called when traffic can start flowing again.
8055  *  @pdev: Pointer to PCI device
8056  *
8057  *  This callback is called when the error recovery driver tells us that
8058  *  its OK to resume normal operation. Implementation resembles the
8059  *  second-half of the igb_resume routine.
8060  */
8061 static void igb_io_resume(struct pci_dev *pdev)
8062 {
8063 	struct net_device *netdev = pci_get_drvdata(pdev);
8064 	struct igb_adapter *adapter = netdev_priv(netdev);
8065 
8066 	if (netif_running(netdev)) {
8067 		if (igb_up(adapter)) {
8068 			dev_err(&pdev->dev, "igb_up failed after reset\n");
8069 			return;
8070 		}
8071 	}
8072 
8073 	netif_device_attach(netdev);
8074 
8075 	/* let the f/w know that the h/w is now under the control of the
8076 	 * driver.
8077 	 */
8078 	igb_get_hw_control(adapter);
8079 }
8080 
8081 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
8082 			     u8 qsel)
8083 {
8084 	struct e1000_hw *hw = &adapter->hw;
8085 	u32 rar_low, rar_high;
8086 
8087 	/* HW expects these to be in network order when they are plugged
8088 	 * into the registers which are little endian.  In order to guarantee
8089 	 * that ordering we need to do an leXX_to_cpup here in order to be
8090 	 * ready for the byteswap that occurs with writel
8091 	 */
8092 	rar_low = le32_to_cpup((__le32 *)(addr));
8093 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
8094 
8095 	/* Indicate to hardware the Address is Valid. */
8096 	rar_high |= E1000_RAH_AV;
8097 
8098 	if (hw->mac.type == e1000_82575)
8099 		rar_high |= E1000_RAH_POOL_1 * qsel;
8100 	else
8101 		rar_high |= E1000_RAH_POOL_1 << qsel;
8102 
8103 	wr32(E1000_RAL(index), rar_low);
8104 	wrfl();
8105 	wr32(E1000_RAH(index), rar_high);
8106 	wrfl();
8107 }
8108 
8109 static int igb_set_vf_mac(struct igb_adapter *adapter,
8110 			  int vf, unsigned char *mac_addr)
8111 {
8112 	struct e1000_hw *hw = &adapter->hw;
8113 	/* VF MAC addresses start at end of receive addresses and moves
8114 	 * towards the first, as a result a collision should not be possible
8115 	 */
8116 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8117 
8118 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
8119 
8120 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
8121 
8122 	return 0;
8123 }
8124 
8125 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8126 {
8127 	struct igb_adapter *adapter = netdev_priv(netdev);
8128 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
8129 		return -EINVAL;
8130 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8131 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
8132 	dev_info(&adapter->pdev->dev,
8133 		 "Reload the VF driver to make this change effective.");
8134 	if (test_bit(__IGB_DOWN, &adapter->state)) {
8135 		dev_warn(&adapter->pdev->dev,
8136 			 "The VF MAC address has been set, but the PF device is not up.\n");
8137 		dev_warn(&adapter->pdev->dev,
8138 			 "Bring the PF device up before attempting to use the VF device.\n");
8139 	}
8140 	return igb_set_vf_mac(adapter, vf, mac);
8141 }
8142 
8143 static int igb_link_mbps(int internal_link_speed)
8144 {
8145 	switch (internal_link_speed) {
8146 	case SPEED_100:
8147 		return 100;
8148 	case SPEED_1000:
8149 		return 1000;
8150 	default:
8151 		return 0;
8152 	}
8153 }
8154 
8155 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8156 				  int link_speed)
8157 {
8158 	int rf_dec, rf_int;
8159 	u32 bcnrc_val;
8160 
8161 	if (tx_rate != 0) {
8162 		/* Calculate the rate factor values to set */
8163 		rf_int = link_speed / tx_rate;
8164 		rf_dec = (link_speed - (rf_int * tx_rate));
8165 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8166 			 tx_rate;
8167 
8168 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8169 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8170 			      E1000_RTTBCNRC_RF_INT_MASK);
8171 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8172 	} else {
8173 		bcnrc_val = 0;
8174 	}
8175 
8176 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8177 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8178 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8179 	 */
8180 	wr32(E1000_RTTBCNRM, 0x14);
8181 	wr32(E1000_RTTBCNRC, bcnrc_val);
8182 }
8183 
8184 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8185 {
8186 	int actual_link_speed, i;
8187 	bool reset_rate = false;
8188 
8189 	/* VF TX rate limit was not set or not supported */
8190 	if ((adapter->vf_rate_link_speed == 0) ||
8191 	    (adapter->hw.mac.type != e1000_82576))
8192 		return;
8193 
8194 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8195 	if (actual_link_speed != adapter->vf_rate_link_speed) {
8196 		reset_rate = true;
8197 		adapter->vf_rate_link_speed = 0;
8198 		dev_info(&adapter->pdev->dev,
8199 			 "Link speed has been changed. VF Transmit rate is disabled\n");
8200 	}
8201 
8202 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
8203 		if (reset_rate)
8204 			adapter->vf_data[i].tx_rate = 0;
8205 
8206 		igb_set_vf_rate_limit(&adapter->hw, i,
8207 				      adapter->vf_data[i].tx_rate,
8208 				      actual_link_speed);
8209 	}
8210 }
8211 
8212 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8213 			     int min_tx_rate, int max_tx_rate)
8214 {
8215 	struct igb_adapter *adapter = netdev_priv(netdev);
8216 	struct e1000_hw *hw = &adapter->hw;
8217 	int actual_link_speed;
8218 
8219 	if (hw->mac.type != e1000_82576)
8220 		return -EOPNOTSUPP;
8221 
8222 	if (min_tx_rate)
8223 		return -EINVAL;
8224 
8225 	actual_link_speed = igb_link_mbps(adapter->link_speed);
8226 	if ((vf >= adapter->vfs_allocated_count) ||
8227 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8228 	    (max_tx_rate < 0) ||
8229 	    (max_tx_rate > actual_link_speed))
8230 		return -EINVAL;
8231 
8232 	adapter->vf_rate_link_speed = actual_link_speed;
8233 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8234 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8235 
8236 	return 0;
8237 }
8238 
8239 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8240 				   bool setting)
8241 {
8242 	struct igb_adapter *adapter = netdev_priv(netdev);
8243 	struct e1000_hw *hw = &adapter->hw;
8244 	u32 reg_val, reg_offset;
8245 
8246 	if (!adapter->vfs_allocated_count)
8247 		return -EOPNOTSUPP;
8248 
8249 	if (vf >= adapter->vfs_allocated_count)
8250 		return -EINVAL;
8251 
8252 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8253 	reg_val = rd32(reg_offset);
8254 	if (setting)
8255 		reg_val |= (BIT(vf) |
8256 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8257 	else
8258 		reg_val &= ~(BIT(vf) |
8259 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8260 	wr32(reg_offset, reg_val);
8261 
8262 	adapter->vf_data[vf].spoofchk_enabled = setting;
8263 	return 0;
8264 }
8265 
8266 static int igb_ndo_get_vf_config(struct net_device *netdev,
8267 				 int vf, struct ifla_vf_info *ivi)
8268 {
8269 	struct igb_adapter *adapter = netdev_priv(netdev);
8270 	if (vf >= adapter->vfs_allocated_count)
8271 		return -EINVAL;
8272 	ivi->vf = vf;
8273 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8274 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8275 	ivi->min_tx_rate = 0;
8276 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
8277 	ivi->qos = adapter->vf_data[vf].pf_qos;
8278 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8279 	return 0;
8280 }
8281 
8282 static void igb_vmm_control(struct igb_adapter *adapter)
8283 {
8284 	struct e1000_hw *hw = &adapter->hw;
8285 	u32 reg;
8286 
8287 	switch (hw->mac.type) {
8288 	case e1000_82575:
8289 	case e1000_i210:
8290 	case e1000_i211:
8291 	case e1000_i354:
8292 	default:
8293 		/* replication is not supported for 82575 */
8294 		return;
8295 	case e1000_82576:
8296 		/* notify HW that the MAC is adding vlan tags */
8297 		reg = rd32(E1000_DTXCTL);
8298 		reg |= E1000_DTXCTL_VLAN_ADDED;
8299 		wr32(E1000_DTXCTL, reg);
8300 		/* Fall through */
8301 	case e1000_82580:
8302 		/* enable replication vlan tag stripping */
8303 		reg = rd32(E1000_RPLOLR);
8304 		reg |= E1000_RPLOLR_STRVLAN;
8305 		wr32(E1000_RPLOLR, reg);
8306 		/* Fall through */
8307 	case e1000_i350:
8308 		/* none of the above registers are supported by i350 */
8309 		break;
8310 	}
8311 
8312 	if (adapter->vfs_allocated_count) {
8313 		igb_vmdq_set_loopback_pf(hw, true);
8314 		igb_vmdq_set_replication_pf(hw, true);
8315 		igb_vmdq_set_anti_spoofing_pf(hw, true,
8316 					      adapter->vfs_allocated_count);
8317 	} else {
8318 		igb_vmdq_set_loopback_pf(hw, false);
8319 		igb_vmdq_set_replication_pf(hw, false);
8320 	}
8321 }
8322 
8323 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8324 {
8325 	struct e1000_hw *hw = &adapter->hw;
8326 	u32 dmac_thr;
8327 	u16 hwm;
8328 
8329 	if (hw->mac.type > e1000_82580) {
8330 		if (adapter->flags & IGB_FLAG_DMAC) {
8331 			u32 reg;
8332 
8333 			/* force threshold to 0. */
8334 			wr32(E1000_DMCTXTH, 0);
8335 
8336 			/* DMA Coalescing high water mark needs to be greater
8337 			 * than the Rx threshold. Set hwm to PBA - max frame
8338 			 * size in 16B units, capping it at PBA - 6KB.
8339 			 */
8340 			hwm = 64 * (pba - 6);
8341 			reg = rd32(E1000_FCRTC);
8342 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8343 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8344 				& E1000_FCRTC_RTH_COAL_MASK);
8345 			wr32(E1000_FCRTC, reg);
8346 
8347 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8348 			 * frame size, capping it at PBA - 10KB.
8349 			 */
8350 			dmac_thr = pba - 10;
8351 			reg = rd32(E1000_DMACR);
8352 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8353 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8354 				& E1000_DMACR_DMACTHR_MASK);
8355 
8356 			/* transition to L0x or L1 if available..*/
8357 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8358 
8359 			/* watchdog timer= +-1000 usec in 32usec intervals */
8360 			reg |= (1000 >> 5);
8361 
8362 			/* Disable BMC-to-OS Watchdog Enable */
8363 			if (hw->mac.type != e1000_i354)
8364 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8365 
8366 			wr32(E1000_DMACR, reg);
8367 
8368 			/* no lower threshold to disable
8369 			 * coalescing(smart fifb)-UTRESH=0
8370 			 */
8371 			wr32(E1000_DMCRTRH, 0);
8372 
8373 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8374 
8375 			wr32(E1000_DMCTLX, reg);
8376 
8377 			/* free space in tx packet buffer to wake from
8378 			 * DMA coal
8379 			 */
8380 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8381 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8382 
8383 			/* make low power state decision controlled
8384 			 * by DMA coal
8385 			 */
8386 			reg = rd32(E1000_PCIEMISC);
8387 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8388 			wr32(E1000_PCIEMISC, reg);
8389 		} /* endif adapter->dmac is not disabled */
8390 	} else if (hw->mac.type == e1000_82580) {
8391 		u32 reg = rd32(E1000_PCIEMISC);
8392 
8393 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8394 		wr32(E1000_DMACR, 0);
8395 	}
8396 }
8397 
8398 /**
8399  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8400  *  @hw: pointer to hardware structure
8401  *  @byte_offset: byte offset to read
8402  *  @dev_addr: device address
8403  *  @data: value read
8404  *
8405  *  Performs byte read operation over I2C interface at
8406  *  a specified device address.
8407  **/
8408 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8409 		      u8 dev_addr, u8 *data)
8410 {
8411 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8412 	struct i2c_client *this_client = adapter->i2c_client;
8413 	s32 status;
8414 	u16 swfw_mask = 0;
8415 
8416 	if (!this_client)
8417 		return E1000_ERR_I2C;
8418 
8419 	swfw_mask = E1000_SWFW_PHY0_SM;
8420 
8421 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8422 		return E1000_ERR_SWFW_SYNC;
8423 
8424 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8425 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8426 
8427 	if (status < 0)
8428 		return E1000_ERR_I2C;
8429 	else {
8430 		*data = status;
8431 		return 0;
8432 	}
8433 }
8434 
8435 /**
8436  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8437  *  @hw: pointer to hardware structure
8438  *  @byte_offset: byte offset to write
8439  *  @dev_addr: device address
8440  *  @data: value to write
8441  *
8442  *  Performs byte write operation over I2C interface at
8443  *  a specified device address.
8444  **/
8445 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8446 		       u8 dev_addr, u8 data)
8447 {
8448 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8449 	struct i2c_client *this_client = adapter->i2c_client;
8450 	s32 status;
8451 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8452 
8453 	if (!this_client)
8454 		return E1000_ERR_I2C;
8455 
8456 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8457 		return E1000_ERR_SWFW_SYNC;
8458 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8459 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8460 
8461 	if (status)
8462 		return E1000_ERR_I2C;
8463 	else
8464 		return 0;
8465 
8466 }
8467 
8468 int igb_reinit_queues(struct igb_adapter *adapter)
8469 {
8470 	struct net_device *netdev = adapter->netdev;
8471 	struct pci_dev *pdev = adapter->pdev;
8472 	int err = 0;
8473 
8474 	if (netif_running(netdev))
8475 		igb_close(netdev);
8476 
8477 	igb_reset_interrupt_capability(adapter);
8478 
8479 	if (igb_init_interrupt_scheme(adapter, true)) {
8480 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8481 		return -ENOMEM;
8482 	}
8483 
8484 	if (netif_running(netdev))
8485 		err = igb_open(netdev);
8486 
8487 	return err;
8488 }
8489 
8490 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8491 {
8492 	struct igb_nfc_filter *rule;
8493 
8494 	spin_lock(&adapter->nfc_lock);
8495 
8496 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8497 		igb_erase_filter(adapter, rule);
8498 
8499 	spin_unlock(&adapter->nfc_lock);
8500 }
8501 
8502 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8503 {
8504 	struct igb_nfc_filter *rule;
8505 
8506 	spin_lock(&adapter->nfc_lock);
8507 
8508 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8509 		igb_add_filter(adapter, rule);
8510 
8511 	spin_unlock(&adapter->nfc_lock);
8512 }
8513 /* igb_main.c */
8514