1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62 
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 5
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 				"Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 				"Copyright (c) 2007-2013 Intel Corporation.";
74 
75 static const struct e1000_info *igb_info_tbl[] = {
76 	[board_82575] = &e1000_82575_info,
77 };
78 
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115 	/* required last entry */
116 	{0, }
117 };
118 
119 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120 
121 void igb_reset(struct igb_adapter *);
122 static int igb_setup_all_tx_resources(struct igb_adapter *);
123 static int igb_setup_all_rx_resources(struct igb_adapter *);
124 static void igb_free_all_tx_resources(struct igb_adapter *);
125 static void igb_free_all_rx_resources(struct igb_adapter *);
126 static void igb_setup_mrqc(struct igb_adapter *);
127 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128 static void igb_remove(struct pci_dev *pdev);
129 static int igb_sw_init(struct igb_adapter *);
130 static int igb_open(struct net_device *);
131 static int igb_close(struct net_device *);
132 static void igb_configure(struct igb_adapter *);
133 static void igb_configure_tx(struct igb_adapter *);
134 static void igb_configure_rx(struct igb_adapter *);
135 static void igb_clean_all_tx_rings(struct igb_adapter *);
136 static void igb_clean_all_rx_rings(struct igb_adapter *);
137 static void igb_clean_tx_ring(struct igb_ring *);
138 static void igb_clean_rx_ring(struct igb_ring *);
139 static void igb_set_rx_mode(struct net_device *);
140 static void igb_update_phy_info(unsigned long);
141 static void igb_watchdog(unsigned long);
142 static void igb_watchdog_task(struct work_struct *);
143 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145 						 struct rtnl_link_stats64 *stats);
146 static int igb_change_mtu(struct net_device *, int);
147 static int igb_set_mac(struct net_device *, void *);
148 static void igb_set_uta(struct igb_adapter *adapter);
149 static irqreturn_t igb_intr(int irq, void *);
150 static irqreturn_t igb_intr_msi(int irq, void *);
151 static irqreturn_t igb_msix_other(int irq, void *);
152 static irqreturn_t igb_msix_ring(int irq, void *);
153 #ifdef CONFIG_IGB_DCA
154 static void igb_update_dca(struct igb_q_vector *);
155 static void igb_setup_dca(struct igb_adapter *);
156 #endif /* CONFIG_IGB_DCA */
157 static int igb_poll(struct napi_struct *, int);
158 static bool igb_clean_tx_irq(struct igb_q_vector *);
159 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161 static void igb_tx_timeout(struct net_device *);
162 static void igb_reset_task(struct work_struct *);
163 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166 static void igb_restore_vlan(struct igb_adapter *);
167 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 static void igb_ping_all_vfs(struct igb_adapter *);
169 static void igb_msg_task(struct igb_adapter *);
170 static void igb_vmm_control(struct igb_adapter *);
171 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175 			       int vf, u16 vlan, u8 qos);
176 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178 				   bool setting);
179 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180 				 struct ifla_vf_info *ivi);
181 static void igb_check_vf_rate_limit(struct igb_adapter *);
182 
183 #ifdef CONFIG_PCI_IOV
184 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
186 #endif
187 
188 #ifdef CONFIG_PM
189 #ifdef CONFIG_PM_SLEEP
190 static int igb_suspend(struct device *);
191 #endif
192 static int igb_resume(struct device *);
193 #ifdef CONFIG_PM_RUNTIME
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 #endif
198 static const struct dev_pm_ops igb_pm_ops = {
199 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
200 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
201 			igb_runtime_idle)
202 };
203 #endif
204 static void igb_shutdown(struct pci_dev *);
205 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
206 #ifdef CONFIG_IGB_DCA
207 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
208 static struct notifier_block dca_notifier = {
209 	.notifier_call	= igb_notify_dca,
210 	.next		= NULL,
211 	.priority	= 0
212 };
213 #endif
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 /* for netdump / net console */
216 static void igb_netpoll(struct net_device *);
217 #endif
218 #ifdef CONFIG_PCI_IOV
219 static unsigned int max_vfs = 0;
220 module_param(max_vfs, uint, 0);
221 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
222                  "per physical function");
223 #endif /* CONFIG_PCI_IOV */
224 
225 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
226 		     pci_channel_state_t);
227 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
228 static void igb_io_resume(struct pci_dev *);
229 
230 static const struct pci_error_handlers igb_err_handler = {
231 	.error_detected = igb_io_error_detected,
232 	.slot_reset = igb_io_slot_reset,
233 	.resume = igb_io_resume,
234 };
235 
236 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
237 
238 static struct pci_driver igb_driver = {
239 	.name     = igb_driver_name,
240 	.id_table = igb_pci_tbl,
241 	.probe    = igb_probe,
242 	.remove   = igb_remove,
243 #ifdef CONFIG_PM
244 	.driver.pm = &igb_pm_ops,
245 #endif
246 	.shutdown = igb_shutdown,
247 	.sriov_configure = igb_pci_sriov_configure,
248 	.err_handler = &igb_err_handler
249 };
250 
251 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
252 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
253 MODULE_LICENSE("GPL");
254 MODULE_VERSION(DRV_VERSION);
255 
256 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
257 static int debug = -1;
258 module_param(debug, int, 0);
259 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
260 
261 struct igb_reg_info {
262 	u32 ofs;
263 	char *name;
264 };
265 
266 static const struct igb_reg_info igb_reg_info_tbl[] = {
267 
268 	/* General Registers */
269 	{E1000_CTRL, "CTRL"},
270 	{E1000_STATUS, "STATUS"},
271 	{E1000_CTRL_EXT, "CTRL_EXT"},
272 
273 	/* Interrupt Registers */
274 	{E1000_ICR, "ICR"},
275 
276 	/* RX Registers */
277 	{E1000_RCTL, "RCTL"},
278 	{E1000_RDLEN(0), "RDLEN"},
279 	{E1000_RDH(0), "RDH"},
280 	{E1000_RDT(0), "RDT"},
281 	{E1000_RXDCTL(0), "RXDCTL"},
282 	{E1000_RDBAL(0), "RDBAL"},
283 	{E1000_RDBAH(0), "RDBAH"},
284 
285 	/* TX Registers */
286 	{E1000_TCTL, "TCTL"},
287 	{E1000_TDBAL(0), "TDBAL"},
288 	{E1000_TDBAH(0), "TDBAH"},
289 	{E1000_TDLEN(0), "TDLEN"},
290 	{E1000_TDH(0), "TDH"},
291 	{E1000_TDT(0), "TDT"},
292 	{E1000_TXDCTL(0), "TXDCTL"},
293 	{E1000_TDFH, "TDFH"},
294 	{E1000_TDFT, "TDFT"},
295 	{E1000_TDFHS, "TDFHS"},
296 	{E1000_TDFPC, "TDFPC"},
297 
298 	/* List Terminator */
299 	{}
300 };
301 
302 /* igb_regdump - register printout routine */
303 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
304 {
305 	int n = 0;
306 	char rname[16];
307 	u32 regs[8];
308 
309 	switch (reginfo->ofs) {
310 	case E1000_RDLEN(0):
311 		for (n = 0; n < 4; n++)
312 			regs[n] = rd32(E1000_RDLEN(n));
313 		break;
314 	case E1000_RDH(0):
315 		for (n = 0; n < 4; n++)
316 			regs[n] = rd32(E1000_RDH(n));
317 		break;
318 	case E1000_RDT(0):
319 		for (n = 0; n < 4; n++)
320 			regs[n] = rd32(E1000_RDT(n));
321 		break;
322 	case E1000_RXDCTL(0):
323 		for (n = 0; n < 4; n++)
324 			regs[n] = rd32(E1000_RXDCTL(n));
325 		break;
326 	case E1000_RDBAL(0):
327 		for (n = 0; n < 4; n++)
328 			regs[n] = rd32(E1000_RDBAL(n));
329 		break;
330 	case E1000_RDBAH(0):
331 		for (n = 0; n < 4; n++)
332 			regs[n] = rd32(E1000_RDBAH(n));
333 		break;
334 	case E1000_TDBAL(0):
335 		for (n = 0; n < 4; n++)
336 			regs[n] = rd32(E1000_RDBAL(n));
337 		break;
338 	case E1000_TDBAH(0):
339 		for (n = 0; n < 4; n++)
340 			regs[n] = rd32(E1000_TDBAH(n));
341 		break;
342 	case E1000_TDLEN(0):
343 		for (n = 0; n < 4; n++)
344 			regs[n] = rd32(E1000_TDLEN(n));
345 		break;
346 	case E1000_TDH(0):
347 		for (n = 0; n < 4; n++)
348 			regs[n] = rd32(E1000_TDH(n));
349 		break;
350 	case E1000_TDT(0):
351 		for (n = 0; n < 4; n++)
352 			regs[n] = rd32(E1000_TDT(n));
353 		break;
354 	case E1000_TXDCTL(0):
355 		for (n = 0; n < 4; n++)
356 			regs[n] = rd32(E1000_TXDCTL(n));
357 		break;
358 	default:
359 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
360 		return;
361 	}
362 
363 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
364 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
365 		regs[2], regs[3]);
366 }
367 
368 /* igb_dump - Print registers, Tx-rings and Rx-rings */
369 static void igb_dump(struct igb_adapter *adapter)
370 {
371 	struct net_device *netdev = adapter->netdev;
372 	struct e1000_hw *hw = &adapter->hw;
373 	struct igb_reg_info *reginfo;
374 	struct igb_ring *tx_ring;
375 	union e1000_adv_tx_desc *tx_desc;
376 	struct my_u0 { u64 a; u64 b; } *u0;
377 	struct igb_ring *rx_ring;
378 	union e1000_adv_rx_desc *rx_desc;
379 	u32 staterr;
380 	u16 i, n;
381 
382 	if (!netif_msg_hw(adapter))
383 		return;
384 
385 	/* Print netdevice Info */
386 	if (netdev) {
387 		dev_info(&adapter->pdev->dev, "Net device Info\n");
388 		pr_info("Device Name     state            trans_start      "
389 			"last_rx\n");
390 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
391 			netdev->state, netdev->trans_start, netdev->last_rx);
392 	}
393 
394 	/* Print Registers */
395 	dev_info(&adapter->pdev->dev, "Register Dump\n");
396 	pr_info(" Register Name   Value\n");
397 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
398 	     reginfo->name; reginfo++) {
399 		igb_regdump(hw, reginfo);
400 	}
401 
402 	/* Print TX Ring Summary */
403 	if (!netdev || !netif_running(netdev))
404 		goto exit;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
407 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
408 	for (n = 0; n < adapter->num_tx_queues; n++) {
409 		struct igb_tx_buffer *buffer_info;
410 		tx_ring = adapter->tx_ring[n];
411 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
412 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
413 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
414 			(u64)dma_unmap_addr(buffer_info, dma),
415 			dma_unmap_len(buffer_info, len),
416 			buffer_info->next_to_watch,
417 			(u64)buffer_info->time_stamp);
418 	}
419 
420 	/* Print TX Rings */
421 	if (!netif_msg_tx_done(adapter))
422 		goto rx_ring_summary;
423 
424 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
425 
426 	/* Transmit Descriptor Formats
427 	 *
428 	 * Advanced Transmit Descriptor
429 	 *   +--------------------------------------------------------------+
430 	 * 0 |         Buffer Address [63:0]                                |
431 	 *   +--------------------------------------------------------------+
432 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
433 	 *   +--------------------------------------------------------------+
434 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
435 	 */
436 
437 	for (n = 0; n < adapter->num_tx_queues; n++) {
438 		tx_ring = adapter->tx_ring[n];
439 		pr_info("------------------------------------\n");
440 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
441 		pr_info("------------------------------------\n");
442 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
443 			"[bi->dma       ] leng  ntw timestamp        "
444 			"bi->skb\n");
445 
446 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
447 			const char *next_desc;
448 			struct igb_tx_buffer *buffer_info;
449 			tx_desc = IGB_TX_DESC(tx_ring, i);
450 			buffer_info = &tx_ring->tx_buffer_info[i];
451 			u0 = (struct my_u0 *)tx_desc;
452 			if (i == tx_ring->next_to_use &&
453 			    i == tx_ring->next_to_clean)
454 				next_desc = " NTC/U";
455 			else if (i == tx_ring->next_to_use)
456 				next_desc = " NTU";
457 			else if (i == tx_ring->next_to_clean)
458 				next_desc = " NTC";
459 			else
460 				next_desc = "";
461 
462 			pr_info("T [0x%03X]    %016llX %016llX %016llX"
463 				" %04X  %p %016llX %p%s\n", i,
464 				le64_to_cpu(u0->a),
465 				le64_to_cpu(u0->b),
466 				(u64)dma_unmap_addr(buffer_info, dma),
467 				dma_unmap_len(buffer_info, len),
468 				buffer_info->next_to_watch,
469 				(u64)buffer_info->time_stamp,
470 				buffer_info->skb, next_desc);
471 
472 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
473 				print_hex_dump(KERN_INFO, "",
474 					DUMP_PREFIX_ADDRESS,
475 					16, 1, buffer_info->skb->data,
476 					dma_unmap_len(buffer_info, len),
477 					true);
478 		}
479 	}
480 
481 	/* Print RX Rings Summary */
482 rx_ring_summary:
483 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
484 	pr_info("Queue [NTU] [NTC]\n");
485 	for (n = 0; n < adapter->num_rx_queues; n++) {
486 		rx_ring = adapter->rx_ring[n];
487 		pr_info(" %5d %5X %5X\n",
488 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
489 	}
490 
491 	/* Print RX Rings */
492 	if (!netif_msg_rx_status(adapter))
493 		goto exit;
494 
495 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
496 
497 	/* Advanced Receive Descriptor (Read) Format
498 	 *    63                                           1        0
499 	 *    +-----------------------------------------------------+
500 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
501 	 *    +----------------------------------------------+------+
502 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
503 	 *    +-----------------------------------------------------+
504 	 *
505 	 *
506 	 * Advanced Receive Descriptor (Write-Back) Format
507 	 *
508 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
509 	 *   +------------------------------------------------------+
510 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
511 	 *   | Checksum   Ident  |   |           |    | Type | Type |
512 	 *   +------------------------------------------------------+
513 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
514 	 *   +------------------------------------------------------+
515 	 *   63       48 47    32 31            20 19               0
516 	 */
517 
518 	for (n = 0; n < adapter->num_rx_queues; n++) {
519 		rx_ring = adapter->rx_ring[n];
520 		pr_info("------------------------------------\n");
521 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
522 		pr_info("------------------------------------\n");
523 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
524 			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
525 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
526 			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
527 
528 		for (i = 0; i < rx_ring->count; i++) {
529 			const char *next_desc;
530 			struct igb_rx_buffer *buffer_info;
531 			buffer_info = &rx_ring->rx_buffer_info[i];
532 			rx_desc = IGB_RX_DESC(rx_ring, i);
533 			u0 = (struct my_u0 *)rx_desc;
534 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
535 
536 			if (i == rx_ring->next_to_use)
537 				next_desc = " NTU";
538 			else if (i == rx_ring->next_to_clean)
539 				next_desc = " NTC";
540 			else
541 				next_desc = "";
542 
543 			if (staterr & E1000_RXD_STAT_DD) {
544 				/* Descriptor Done */
545 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
546 					"RWB", i,
547 					le64_to_cpu(u0->a),
548 					le64_to_cpu(u0->b),
549 					next_desc);
550 			} else {
551 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
552 					"R  ", i,
553 					le64_to_cpu(u0->a),
554 					le64_to_cpu(u0->b),
555 					(u64)buffer_info->dma,
556 					next_desc);
557 
558 				if (netif_msg_pktdata(adapter) &&
559 				    buffer_info->dma && buffer_info->page) {
560 					print_hex_dump(KERN_INFO, "",
561 					  DUMP_PREFIX_ADDRESS,
562 					  16, 1,
563 					  page_address(buffer_info->page) +
564 						      buffer_info->page_offset,
565 					  IGB_RX_BUFSZ, true);
566 				}
567 			}
568 		}
569 	}
570 
571 exit:
572 	return;
573 }
574 
575 /**
576  *  igb_get_i2c_data - Reads the I2C SDA data bit
577  *  @hw: pointer to hardware structure
578  *  @i2cctl: Current value of I2CCTL register
579  *
580  *  Returns the I2C data bit value
581  **/
582 static int igb_get_i2c_data(void *data)
583 {
584 	struct igb_adapter *adapter = (struct igb_adapter *)data;
585 	struct e1000_hw *hw = &adapter->hw;
586 	s32 i2cctl = rd32(E1000_I2CPARAMS);
587 
588 	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
589 }
590 
591 /**
592  *  igb_set_i2c_data - Sets the I2C data bit
593  *  @data: pointer to hardware structure
594  *  @state: I2C data value (0 or 1) to set
595  *
596  *  Sets the I2C data bit
597  **/
598 static void igb_set_i2c_data(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state)
605 		i2cctl |= E1000_I2C_DATA_OUT;
606 	else
607 		i2cctl &= ~E1000_I2C_DATA_OUT;
608 
609 	i2cctl &= ~E1000_I2C_DATA_OE_N;
610 	i2cctl |= E1000_I2C_CLK_OE_N;
611 	wr32(E1000_I2CPARAMS, i2cctl);
612 	wrfl();
613 
614 }
615 
616 /**
617  *  igb_set_i2c_clk - Sets the I2C SCL clock
618  *  @data: pointer to hardware structure
619  *  @state: state to set clock
620  *
621  *  Sets the I2C clock line to state
622  **/
623 static void igb_set_i2c_clk(void *data, int state)
624 {
625 	struct igb_adapter *adapter = (struct igb_adapter *)data;
626 	struct e1000_hw *hw = &adapter->hw;
627 	s32 i2cctl = rd32(E1000_I2CPARAMS);
628 
629 	if (state) {
630 		i2cctl |= E1000_I2C_CLK_OUT;
631 		i2cctl &= ~E1000_I2C_CLK_OE_N;
632 	} else {
633 		i2cctl &= ~E1000_I2C_CLK_OUT;
634 		i2cctl &= ~E1000_I2C_CLK_OE_N;
635 	}
636 	wr32(E1000_I2CPARAMS, i2cctl);
637 	wrfl();
638 }
639 
640 /**
641  *  igb_get_i2c_clk - Gets the I2C SCL clock state
642  *  @data: pointer to hardware structure
643  *
644  *  Gets the I2C clock state
645  **/
646 static int igb_get_i2c_clk(void *data)
647 {
648 	struct igb_adapter *adapter = (struct igb_adapter *)data;
649 	struct e1000_hw *hw = &adapter->hw;
650 	s32 i2cctl = rd32(E1000_I2CPARAMS);
651 
652 	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
653 }
654 
655 static const struct i2c_algo_bit_data igb_i2c_algo = {
656 	.setsda		= igb_set_i2c_data,
657 	.setscl		= igb_set_i2c_clk,
658 	.getsda		= igb_get_i2c_data,
659 	.getscl		= igb_get_i2c_clk,
660 	.udelay		= 5,
661 	.timeout	= 20,
662 };
663 
664 /**
665  *  igb_get_hw_dev - return device
666  *  @hw: pointer to hardware structure
667  *
668  *  used by hardware layer to print debugging information
669  **/
670 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
671 {
672 	struct igb_adapter *adapter = hw->back;
673 	return adapter->netdev;
674 }
675 
676 /**
677  *  igb_init_module - Driver Registration Routine
678  *
679  *  igb_init_module is the first routine called when the driver is
680  *  loaded. All it does is register with the PCI subsystem.
681  **/
682 static int __init igb_init_module(void)
683 {
684 	int ret;
685 	pr_info("%s - version %s\n",
686 	       igb_driver_string, igb_driver_version);
687 
688 	pr_info("%s\n", igb_copyright);
689 
690 #ifdef CONFIG_IGB_DCA
691 	dca_register_notify(&dca_notifier);
692 #endif
693 	ret = pci_register_driver(&igb_driver);
694 	return ret;
695 }
696 
697 module_init(igb_init_module);
698 
699 /**
700  *  igb_exit_module - Driver Exit Cleanup Routine
701  *
702  *  igb_exit_module is called just before the driver is removed
703  *  from memory.
704  **/
705 static void __exit igb_exit_module(void)
706 {
707 #ifdef CONFIG_IGB_DCA
708 	dca_unregister_notify(&dca_notifier);
709 #endif
710 	pci_unregister_driver(&igb_driver);
711 }
712 
713 module_exit(igb_exit_module);
714 
715 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
716 /**
717  *  igb_cache_ring_register - Descriptor ring to register mapping
718  *  @adapter: board private structure to initialize
719  *
720  *  Once we know the feature-set enabled for the device, we'll cache
721  *  the register offset the descriptor ring is assigned to.
722  **/
723 static void igb_cache_ring_register(struct igb_adapter *adapter)
724 {
725 	int i = 0, j = 0;
726 	u32 rbase_offset = adapter->vfs_allocated_count;
727 
728 	switch (adapter->hw.mac.type) {
729 	case e1000_82576:
730 		/* The queues are allocated for virtualization such that VF 0
731 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
732 		 * In order to avoid collision we start at the first free queue
733 		 * and continue consuming queues in the same sequence
734 		 */
735 		if (adapter->vfs_allocated_count) {
736 			for (; i < adapter->rss_queues; i++)
737 				adapter->rx_ring[i]->reg_idx = rbase_offset +
738 							       Q_IDX_82576(i);
739 		}
740 	case e1000_82575:
741 	case e1000_82580:
742 	case e1000_i350:
743 	case e1000_i354:
744 	case e1000_i210:
745 	case e1000_i211:
746 	default:
747 		for (; i < adapter->num_rx_queues; i++)
748 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
749 		for (; j < adapter->num_tx_queues; j++)
750 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
751 		break;
752 	}
753 }
754 
755 /**
756  *  igb_write_ivar - configure ivar for given MSI-X vector
757  *  @hw: pointer to the HW structure
758  *  @msix_vector: vector number we are allocating to a given ring
759  *  @index: row index of IVAR register to write within IVAR table
760  *  @offset: column offset of in IVAR, should be multiple of 8
761  *
762  *  This function is intended to handle the writing of the IVAR register
763  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
764  *  each containing an cause allocation for an Rx and Tx ring, and a
765  *  variable number of rows depending on the number of queues supported.
766  **/
767 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
768 			   int index, int offset)
769 {
770 	u32 ivar = array_rd32(E1000_IVAR0, index);
771 
772 	/* clear any bits that are currently set */
773 	ivar &= ~((u32)0xFF << offset);
774 
775 	/* write vector and valid bit */
776 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
777 
778 	array_wr32(E1000_IVAR0, index, ivar);
779 }
780 
781 #define IGB_N0_QUEUE -1
782 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
783 {
784 	struct igb_adapter *adapter = q_vector->adapter;
785 	struct e1000_hw *hw = &adapter->hw;
786 	int rx_queue = IGB_N0_QUEUE;
787 	int tx_queue = IGB_N0_QUEUE;
788 	u32 msixbm = 0;
789 
790 	if (q_vector->rx.ring)
791 		rx_queue = q_vector->rx.ring->reg_idx;
792 	if (q_vector->tx.ring)
793 		tx_queue = q_vector->tx.ring->reg_idx;
794 
795 	switch (hw->mac.type) {
796 	case e1000_82575:
797 		/* The 82575 assigns vectors using a bitmask, which matches the
798 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
799 		 * or more queues to a vector, we write the appropriate bits
800 		 * into the MSIXBM register for that vector.
801 		 */
802 		if (rx_queue > IGB_N0_QUEUE)
803 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
804 		if (tx_queue > IGB_N0_QUEUE)
805 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
806 		if (!adapter->msix_entries && msix_vector == 0)
807 			msixbm |= E1000_EIMS_OTHER;
808 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
809 		q_vector->eims_value = msixbm;
810 		break;
811 	case e1000_82576:
812 		/* 82576 uses a table that essentially consists of 2 columns
813 		 * with 8 rows.  The ordering is column-major so we use the
814 		 * lower 3 bits as the row index, and the 4th bit as the
815 		 * column offset.
816 		 */
817 		if (rx_queue > IGB_N0_QUEUE)
818 			igb_write_ivar(hw, msix_vector,
819 				       rx_queue & 0x7,
820 				       (rx_queue & 0x8) << 1);
821 		if (tx_queue > IGB_N0_QUEUE)
822 			igb_write_ivar(hw, msix_vector,
823 				       tx_queue & 0x7,
824 				       ((tx_queue & 0x8) << 1) + 8);
825 		q_vector->eims_value = 1 << msix_vector;
826 		break;
827 	case e1000_82580:
828 	case e1000_i350:
829 	case e1000_i354:
830 	case e1000_i210:
831 	case e1000_i211:
832 		/* On 82580 and newer adapters the scheme is similar to 82576
833 		 * however instead of ordering column-major we have things
834 		 * ordered row-major.  So we traverse the table by using
835 		 * bit 0 as the column offset, and the remaining bits as the
836 		 * row index.
837 		 */
838 		if (rx_queue > IGB_N0_QUEUE)
839 			igb_write_ivar(hw, msix_vector,
840 				       rx_queue >> 1,
841 				       (rx_queue & 0x1) << 4);
842 		if (tx_queue > IGB_N0_QUEUE)
843 			igb_write_ivar(hw, msix_vector,
844 				       tx_queue >> 1,
845 				       ((tx_queue & 0x1) << 4) + 8);
846 		q_vector->eims_value = 1 << msix_vector;
847 		break;
848 	default:
849 		BUG();
850 		break;
851 	}
852 
853 	/* add q_vector eims value to global eims_enable_mask */
854 	adapter->eims_enable_mask |= q_vector->eims_value;
855 
856 	/* configure q_vector to set itr on first interrupt */
857 	q_vector->set_itr = 1;
858 }
859 
860 /**
861  *  igb_configure_msix - Configure MSI-X hardware
862  *  @adapter: board private structure to initialize
863  *
864  *  igb_configure_msix sets up the hardware to properly
865  *  generate MSI-X interrupts.
866  **/
867 static void igb_configure_msix(struct igb_adapter *adapter)
868 {
869 	u32 tmp;
870 	int i, vector = 0;
871 	struct e1000_hw *hw = &adapter->hw;
872 
873 	adapter->eims_enable_mask = 0;
874 
875 	/* set vector for other causes, i.e. link changes */
876 	switch (hw->mac.type) {
877 	case e1000_82575:
878 		tmp = rd32(E1000_CTRL_EXT);
879 		/* enable MSI-X PBA support*/
880 		tmp |= E1000_CTRL_EXT_PBA_CLR;
881 
882 		/* Auto-Mask interrupts upon ICR read. */
883 		tmp |= E1000_CTRL_EXT_EIAME;
884 		tmp |= E1000_CTRL_EXT_IRCA;
885 
886 		wr32(E1000_CTRL_EXT, tmp);
887 
888 		/* enable msix_other interrupt */
889 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
890 		adapter->eims_other = E1000_EIMS_OTHER;
891 
892 		break;
893 
894 	case e1000_82576:
895 	case e1000_82580:
896 	case e1000_i350:
897 	case e1000_i354:
898 	case e1000_i210:
899 	case e1000_i211:
900 		/* Turn on MSI-X capability first, or our settings
901 		 * won't stick.  And it will take days to debug.
902 		 */
903 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
904 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
905 		     E1000_GPIE_NSICR);
906 
907 		/* enable msix_other interrupt */
908 		adapter->eims_other = 1 << vector;
909 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
910 
911 		wr32(E1000_IVAR_MISC, tmp);
912 		break;
913 	default:
914 		/* do nothing, since nothing else supports MSI-X */
915 		break;
916 	} /* switch (hw->mac.type) */
917 
918 	adapter->eims_enable_mask |= adapter->eims_other;
919 
920 	for (i = 0; i < adapter->num_q_vectors; i++)
921 		igb_assign_vector(adapter->q_vector[i], vector++);
922 
923 	wrfl();
924 }
925 
926 /**
927  *  igb_request_msix - Initialize MSI-X interrupts
928  *  @adapter: board private structure to initialize
929  *
930  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
931  *  kernel.
932  **/
933 static int igb_request_msix(struct igb_adapter *adapter)
934 {
935 	struct net_device *netdev = adapter->netdev;
936 	struct e1000_hw *hw = &adapter->hw;
937 	int i, err = 0, vector = 0, free_vector = 0;
938 
939 	err = request_irq(adapter->msix_entries[vector].vector,
940 			  igb_msix_other, 0, netdev->name, adapter);
941 	if (err)
942 		goto err_out;
943 
944 	for (i = 0; i < adapter->num_q_vectors; i++) {
945 		struct igb_q_vector *q_vector = adapter->q_vector[i];
946 
947 		vector++;
948 
949 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
950 
951 		if (q_vector->rx.ring && q_vector->tx.ring)
952 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
953 				q_vector->rx.ring->queue_index);
954 		else if (q_vector->tx.ring)
955 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
956 				q_vector->tx.ring->queue_index);
957 		else if (q_vector->rx.ring)
958 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
959 				q_vector->rx.ring->queue_index);
960 		else
961 			sprintf(q_vector->name, "%s-unused", netdev->name);
962 
963 		err = request_irq(adapter->msix_entries[vector].vector,
964 				  igb_msix_ring, 0, q_vector->name,
965 				  q_vector);
966 		if (err)
967 			goto err_free;
968 	}
969 
970 	igb_configure_msix(adapter);
971 	return 0;
972 
973 err_free:
974 	/* free already assigned IRQs */
975 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
976 
977 	vector--;
978 	for (i = 0; i < vector; i++) {
979 		free_irq(adapter->msix_entries[free_vector++].vector,
980 			 adapter->q_vector[i]);
981 	}
982 err_out:
983 	return err;
984 }
985 
986 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
987 {
988 	if (adapter->msix_entries) {
989 		pci_disable_msix(adapter->pdev);
990 		kfree(adapter->msix_entries);
991 		adapter->msix_entries = NULL;
992 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
993 		pci_disable_msi(adapter->pdev);
994 	}
995 }
996 
997 /**
998  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
999  *  @adapter: board private structure to initialize
1000  *  @v_idx: Index of vector to be freed
1001  *
1002  *  This function frees the memory allocated to the q_vector.  In addition if
1003  *  NAPI is enabled it will delete any references to the NAPI struct prior
1004  *  to freeing the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009 
1010 	if (q_vector->tx.ring)
1011 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1012 
1013 	if (q_vector->rx.ring)
1014 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1015 
1016 	adapter->q_vector[v_idx] = NULL;
1017 	netif_napi_del(&q_vector->napi);
1018 
1019 	/* igb_get_stats64() might access the rings on this vector,
1020 	 * we must wait a grace period before freeing it.
1021 	 */
1022 	kfree_rcu(q_vector, rcu);
1023 }
1024 
1025 /**
1026  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1027  *  @adapter: board private structure to initialize
1028  *
1029  *  This function frees the memory allocated to the q_vectors.  In addition if
1030  *  NAPI is enabled it will delete any references to the NAPI struct prior
1031  *  to freeing the q_vector.
1032  **/
1033 static void igb_free_q_vectors(struct igb_adapter *adapter)
1034 {
1035 	int v_idx = adapter->num_q_vectors;
1036 
1037 	adapter->num_tx_queues = 0;
1038 	adapter->num_rx_queues = 0;
1039 	adapter->num_q_vectors = 0;
1040 
1041 	while (v_idx--)
1042 		igb_free_q_vector(adapter, v_idx);
1043 }
1044 
1045 /**
1046  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1047  *  @adapter: board private structure to initialize
1048  *
1049  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1050  *  MSI-X interrupts allocated.
1051  */
1052 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1053 {
1054 	igb_free_q_vectors(adapter);
1055 	igb_reset_interrupt_capability(adapter);
1056 }
1057 
1058 /**
1059  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1060  *  @adapter: board private structure to initialize
1061  *  @msix: boolean value of MSIX capability
1062  *
1063  *  Attempt to configure interrupts using the best available
1064  *  capabilities of the hardware and kernel.
1065  **/
1066 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1067 {
1068 	int err;
1069 	int numvecs, i;
1070 
1071 	if (!msix)
1072 		goto msi_only;
1073 
1074 	/* Number of supported queues. */
1075 	adapter->num_rx_queues = adapter->rss_queues;
1076 	if (adapter->vfs_allocated_count)
1077 		adapter->num_tx_queues = 1;
1078 	else
1079 		adapter->num_tx_queues = adapter->rss_queues;
1080 
1081 	/* start with one vector for every Rx queue */
1082 	numvecs = adapter->num_rx_queues;
1083 
1084 	/* if Tx handler is separate add 1 for every Tx queue */
1085 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1086 		numvecs += adapter->num_tx_queues;
1087 
1088 	/* store the number of vectors reserved for queues */
1089 	adapter->num_q_vectors = numvecs;
1090 
1091 	/* add 1 vector for link status interrupts */
1092 	numvecs++;
1093 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1094 					GFP_KERNEL);
1095 
1096 	if (!adapter->msix_entries)
1097 		goto msi_only;
1098 
1099 	for (i = 0; i < numvecs; i++)
1100 		adapter->msix_entries[i].entry = i;
1101 
1102 	err = pci_enable_msix(adapter->pdev,
1103 			      adapter->msix_entries,
1104 			      numvecs);
1105 	if (err == 0)
1106 		return;
1107 
1108 	igb_reset_interrupt_capability(adapter);
1109 
1110 	/* If we can't do MSI-X, try MSI */
1111 msi_only:
1112 #ifdef CONFIG_PCI_IOV
1113 	/* disable SR-IOV for non MSI-X configurations */
1114 	if (adapter->vf_data) {
1115 		struct e1000_hw *hw = &adapter->hw;
1116 		/* disable iov and allow time for transactions to clear */
1117 		pci_disable_sriov(adapter->pdev);
1118 		msleep(500);
1119 
1120 		kfree(adapter->vf_data);
1121 		adapter->vf_data = NULL;
1122 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1123 		wrfl();
1124 		msleep(100);
1125 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1126 	}
1127 #endif
1128 	adapter->vfs_allocated_count = 0;
1129 	adapter->rss_queues = 1;
1130 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1131 	adapter->num_rx_queues = 1;
1132 	adapter->num_tx_queues = 1;
1133 	adapter->num_q_vectors = 1;
1134 	if (!pci_enable_msi(adapter->pdev))
1135 		adapter->flags |= IGB_FLAG_HAS_MSI;
1136 }
1137 
1138 static void igb_add_ring(struct igb_ring *ring,
1139 			 struct igb_ring_container *head)
1140 {
1141 	head->ring = ring;
1142 	head->count++;
1143 }
1144 
1145 /**
1146  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1147  *  @adapter: board private structure to initialize
1148  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1149  *  @v_idx: index of vector in adapter struct
1150  *  @txr_count: total number of Tx rings to allocate
1151  *  @txr_idx: index of first Tx ring to allocate
1152  *  @rxr_count: total number of Rx rings to allocate
1153  *  @rxr_idx: index of first Rx ring to allocate
1154  *
1155  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1156  **/
1157 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1158 			      int v_count, int v_idx,
1159 			      int txr_count, int txr_idx,
1160 			      int rxr_count, int rxr_idx)
1161 {
1162 	struct igb_q_vector *q_vector;
1163 	struct igb_ring *ring;
1164 	int ring_count, size;
1165 
1166 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1167 	if (txr_count > 1 || rxr_count > 1)
1168 		return -ENOMEM;
1169 
1170 	ring_count = txr_count + rxr_count;
1171 	size = sizeof(struct igb_q_vector) +
1172 	       (sizeof(struct igb_ring) * ring_count);
1173 
1174 	/* allocate q_vector and rings */
1175 	q_vector = kzalloc(size, GFP_KERNEL);
1176 	if (!q_vector)
1177 		return -ENOMEM;
1178 
1179 	/* initialize NAPI */
1180 	netif_napi_add(adapter->netdev, &q_vector->napi,
1181 		       igb_poll, 64);
1182 
1183 	/* tie q_vector and adapter together */
1184 	adapter->q_vector[v_idx] = q_vector;
1185 	q_vector->adapter = adapter;
1186 
1187 	/* initialize work limits */
1188 	q_vector->tx.work_limit = adapter->tx_work_limit;
1189 
1190 	/* initialize ITR configuration */
1191 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1192 	q_vector->itr_val = IGB_START_ITR;
1193 
1194 	/* initialize pointer to rings */
1195 	ring = q_vector->ring;
1196 
1197 	/* intialize ITR */
1198 	if (rxr_count) {
1199 		/* rx or rx/tx vector */
1200 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1201 			q_vector->itr_val = adapter->rx_itr_setting;
1202 	} else {
1203 		/* tx only vector */
1204 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1205 			q_vector->itr_val = adapter->tx_itr_setting;
1206 	}
1207 
1208 	if (txr_count) {
1209 		/* assign generic ring traits */
1210 		ring->dev = &adapter->pdev->dev;
1211 		ring->netdev = adapter->netdev;
1212 
1213 		/* configure backlink on ring */
1214 		ring->q_vector = q_vector;
1215 
1216 		/* update q_vector Tx values */
1217 		igb_add_ring(ring, &q_vector->tx);
1218 
1219 		/* For 82575, context index must be unique per ring. */
1220 		if (adapter->hw.mac.type == e1000_82575)
1221 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1222 
1223 		/* apply Tx specific ring traits */
1224 		ring->count = adapter->tx_ring_count;
1225 		ring->queue_index = txr_idx;
1226 
1227 		u64_stats_init(&ring->tx_syncp);
1228 		u64_stats_init(&ring->tx_syncp2);
1229 
1230 		/* assign ring to adapter */
1231 		adapter->tx_ring[txr_idx] = ring;
1232 
1233 		/* push pointer to next ring */
1234 		ring++;
1235 	}
1236 
1237 	if (rxr_count) {
1238 		/* assign generic ring traits */
1239 		ring->dev = &adapter->pdev->dev;
1240 		ring->netdev = adapter->netdev;
1241 
1242 		/* configure backlink on ring */
1243 		ring->q_vector = q_vector;
1244 
1245 		/* update q_vector Rx values */
1246 		igb_add_ring(ring, &q_vector->rx);
1247 
1248 		/* set flag indicating ring supports SCTP checksum offload */
1249 		if (adapter->hw.mac.type >= e1000_82576)
1250 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1251 
1252 		/*
1253 		 * On i350, i354, i210, and i211, loopback VLAN packets
1254 		 * have the tag byte-swapped.
1255 		 */
1256 		if (adapter->hw.mac.type >= e1000_i350)
1257 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1258 
1259 		/* apply Rx specific ring traits */
1260 		ring->count = adapter->rx_ring_count;
1261 		ring->queue_index = rxr_idx;
1262 
1263 		u64_stats_init(&ring->rx_syncp);
1264 
1265 		/* assign ring to adapter */
1266 		adapter->rx_ring[rxr_idx] = ring;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 
1273 /**
1274  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1275  *  @adapter: board private structure to initialize
1276  *
1277  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1278  *  return -ENOMEM.
1279  **/
1280 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1281 {
1282 	int q_vectors = adapter->num_q_vectors;
1283 	int rxr_remaining = adapter->num_rx_queues;
1284 	int txr_remaining = adapter->num_tx_queues;
1285 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1286 	int err;
1287 
1288 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1289 		for (; rxr_remaining; v_idx++) {
1290 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1291 						 0, 0, 1, rxr_idx);
1292 
1293 			if (err)
1294 				goto err_out;
1295 
1296 			/* update counts and index */
1297 			rxr_remaining--;
1298 			rxr_idx++;
1299 		}
1300 	}
1301 
1302 	for (; v_idx < q_vectors; v_idx++) {
1303 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1304 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1305 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1306 					 tqpv, txr_idx, rqpv, rxr_idx);
1307 
1308 		if (err)
1309 			goto err_out;
1310 
1311 		/* update counts and index */
1312 		rxr_remaining -= rqpv;
1313 		txr_remaining -= tqpv;
1314 		rxr_idx++;
1315 		txr_idx++;
1316 	}
1317 
1318 	return 0;
1319 
1320 err_out:
1321 	adapter->num_tx_queues = 0;
1322 	adapter->num_rx_queues = 0;
1323 	adapter->num_q_vectors = 0;
1324 
1325 	while (v_idx--)
1326 		igb_free_q_vector(adapter, v_idx);
1327 
1328 	return -ENOMEM;
1329 }
1330 
1331 /**
1332  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1333  *  @adapter: board private structure to initialize
1334  *  @msix: boolean value of MSIX capability
1335  *
1336  *  This function initializes the interrupts and allocates all of the queues.
1337  **/
1338 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1339 {
1340 	struct pci_dev *pdev = adapter->pdev;
1341 	int err;
1342 
1343 	igb_set_interrupt_capability(adapter, msix);
1344 
1345 	err = igb_alloc_q_vectors(adapter);
1346 	if (err) {
1347 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1348 		goto err_alloc_q_vectors;
1349 	}
1350 
1351 	igb_cache_ring_register(adapter);
1352 
1353 	return 0;
1354 
1355 err_alloc_q_vectors:
1356 	igb_reset_interrupt_capability(adapter);
1357 	return err;
1358 }
1359 
1360 /**
1361  *  igb_request_irq - initialize interrupts
1362  *  @adapter: board private structure to initialize
1363  *
1364  *  Attempts to configure interrupts using the best available
1365  *  capabilities of the hardware and kernel.
1366  **/
1367 static int igb_request_irq(struct igb_adapter *adapter)
1368 {
1369 	struct net_device *netdev = adapter->netdev;
1370 	struct pci_dev *pdev = adapter->pdev;
1371 	int err = 0;
1372 
1373 	if (adapter->msix_entries) {
1374 		err = igb_request_msix(adapter);
1375 		if (!err)
1376 			goto request_done;
1377 		/* fall back to MSI */
1378 		igb_free_all_tx_resources(adapter);
1379 		igb_free_all_rx_resources(adapter);
1380 
1381 		igb_clear_interrupt_scheme(adapter);
1382 		err = igb_init_interrupt_scheme(adapter, false);
1383 		if (err)
1384 			goto request_done;
1385 
1386 		igb_setup_all_tx_resources(adapter);
1387 		igb_setup_all_rx_resources(adapter);
1388 		igb_configure(adapter);
1389 	}
1390 
1391 	igb_assign_vector(adapter->q_vector[0], 0);
1392 
1393 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1394 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1395 				  netdev->name, adapter);
1396 		if (!err)
1397 			goto request_done;
1398 
1399 		/* fall back to legacy interrupts */
1400 		igb_reset_interrupt_capability(adapter);
1401 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1402 	}
1403 
1404 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1405 			  netdev->name, adapter);
1406 
1407 	if (err)
1408 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1409 			err);
1410 
1411 request_done:
1412 	return err;
1413 }
1414 
1415 static void igb_free_irq(struct igb_adapter *adapter)
1416 {
1417 	if (adapter->msix_entries) {
1418 		int vector = 0, i;
1419 
1420 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1421 
1422 		for (i = 0; i < adapter->num_q_vectors; i++)
1423 			free_irq(adapter->msix_entries[vector++].vector,
1424 				 adapter->q_vector[i]);
1425 	} else {
1426 		free_irq(adapter->pdev->irq, adapter);
1427 	}
1428 }
1429 
1430 /**
1431  *  igb_irq_disable - Mask off interrupt generation on the NIC
1432  *  @adapter: board private structure
1433  **/
1434 static void igb_irq_disable(struct igb_adapter *adapter)
1435 {
1436 	struct e1000_hw *hw = &adapter->hw;
1437 
1438 	/* we need to be careful when disabling interrupts.  The VFs are also
1439 	 * mapped into these registers and so clearing the bits can cause
1440 	 * issues on the VF drivers so we only need to clear what we set
1441 	 */
1442 	if (adapter->msix_entries) {
1443 		u32 regval = rd32(E1000_EIAM);
1444 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1445 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1446 		regval = rd32(E1000_EIAC);
1447 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1448 	}
1449 
1450 	wr32(E1000_IAM, 0);
1451 	wr32(E1000_IMC, ~0);
1452 	wrfl();
1453 	if (adapter->msix_entries) {
1454 		int i;
1455 		for (i = 0; i < adapter->num_q_vectors; i++)
1456 			synchronize_irq(adapter->msix_entries[i].vector);
1457 	} else {
1458 		synchronize_irq(adapter->pdev->irq);
1459 	}
1460 }
1461 
1462 /**
1463  *  igb_irq_enable - Enable default interrupt generation settings
1464  *  @adapter: board private structure
1465  **/
1466 static void igb_irq_enable(struct igb_adapter *adapter)
1467 {
1468 	struct e1000_hw *hw = &adapter->hw;
1469 
1470 	if (adapter->msix_entries) {
1471 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1472 		u32 regval = rd32(E1000_EIAC);
1473 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1474 		regval = rd32(E1000_EIAM);
1475 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1476 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1477 		if (adapter->vfs_allocated_count) {
1478 			wr32(E1000_MBVFIMR, 0xFF);
1479 			ims |= E1000_IMS_VMMB;
1480 		}
1481 		wr32(E1000_IMS, ims);
1482 	} else {
1483 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1484 				E1000_IMS_DRSTA);
1485 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1486 				E1000_IMS_DRSTA);
1487 	}
1488 }
1489 
1490 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1491 {
1492 	struct e1000_hw *hw = &adapter->hw;
1493 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1494 	u16 old_vid = adapter->mng_vlan_id;
1495 
1496 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1497 		/* add VID to filter table */
1498 		igb_vfta_set(hw, vid, true);
1499 		adapter->mng_vlan_id = vid;
1500 	} else {
1501 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1502 	}
1503 
1504 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1505 	    (vid != old_vid) &&
1506 	    !test_bit(old_vid, adapter->active_vlans)) {
1507 		/* remove VID from filter table */
1508 		igb_vfta_set(hw, old_vid, false);
1509 	}
1510 }
1511 
1512 /**
1513  *  igb_release_hw_control - release control of the h/w to f/w
1514  *  @adapter: address of board private structure
1515  *
1516  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1517  *  For ASF and Pass Through versions of f/w this means that the
1518  *  driver is no longer loaded.
1519  **/
1520 static void igb_release_hw_control(struct igb_adapter *adapter)
1521 {
1522 	struct e1000_hw *hw = &adapter->hw;
1523 	u32 ctrl_ext;
1524 
1525 	/* Let firmware take over control of h/w */
1526 	ctrl_ext = rd32(E1000_CTRL_EXT);
1527 	wr32(E1000_CTRL_EXT,
1528 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1529 }
1530 
1531 /**
1532  *  igb_get_hw_control - get control of the h/w from f/w
1533  *  @adapter: address of board private structure
1534  *
1535  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1536  *  For ASF and Pass Through versions of f/w this means that
1537  *  the driver is loaded.
1538  **/
1539 static void igb_get_hw_control(struct igb_adapter *adapter)
1540 {
1541 	struct e1000_hw *hw = &adapter->hw;
1542 	u32 ctrl_ext;
1543 
1544 	/* Let firmware know the driver has taken over */
1545 	ctrl_ext = rd32(E1000_CTRL_EXT);
1546 	wr32(E1000_CTRL_EXT,
1547 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1548 }
1549 
1550 /**
1551  *  igb_configure - configure the hardware for RX and TX
1552  *  @adapter: private board structure
1553  **/
1554 static void igb_configure(struct igb_adapter *adapter)
1555 {
1556 	struct net_device *netdev = adapter->netdev;
1557 	int i;
1558 
1559 	igb_get_hw_control(adapter);
1560 	igb_set_rx_mode(netdev);
1561 
1562 	igb_restore_vlan(adapter);
1563 
1564 	igb_setup_tctl(adapter);
1565 	igb_setup_mrqc(adapter);
1566 	igb_setup_rctl(adapter);
1567 
1568 	igb_configure_tx(adapter);
1569 	igb_configure_rx(adapter);
1570 
1571 	igb_rx_fifo_flush_82575(&adapter->hw);
1572 
1573 	/* call igb_desc_unused which always leaves
1574 	 * at least 1 descriptor unused to make sure
1575 	 * next_to_use != next_to_clean
1576 	 */
1577 	for (i = 0; i < adapter->num_rx_queues; i++) {
1578 		struct igb_ring *ring = adapter->rx_ring[i];
1579 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1580 	}
1581 }
1582 
1583 /**
1584  *  igb_power_up_link - Power up the phy/serdes link
1585  *  @adapter: address of board private structure
1586  **/
1587 void igb_power_up_link(struct igb_adapter *adapter)
1588 {
1589 	igb_reset_phy(&adapter->hw);
1590 
1591 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1592 		igb_power_up_phy_copper(&adapter->hw);
1593 	else
1594 		igb_power_up_serdes_link_82575(&adapter->hw);
1595 }
1596 
1597 /**
1598  *  igb_power_down_link - Power down the phy/serdes link
1599  *  @adapter: address of board private structure
1600  */
1601 static void igb_power_down_link(struct igb_adapter *adapter)
1602 {
1603 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1604 		igb_power_down_phy_copper_82575(&adapter->hw);
1605 	else
1606 		igb_shutdown_serdes_link_82575(&adapter->hw);
1607 }
1608 
1609 /**
1610  *  igb_up - Open the interface and prepare it to handle traffic
1611  *  @adapter: board private structure
1612  **/
1613 int igb_up(struct igb_adapter *adapter)
1614 {
1615 	struct e1000_hw *hw = &adapter->hw;
1616 	int i;
1617 
1618 	/* hardware has been reset, we need to reload some things */
1619 	igb_configure(adapter);
1620 
1621 	clear_bit(__IGB_DOWN, &adapter->state);
1622 
1623 	for (i = 0; i < adapter->num_q_vectors; i++)
1624 		napi_enable(&(adapter->q_vector[i]->napi));
1625 
1626 	if (adapter->msix_entries)
1627 		igb_configure_msix(adapter);
1628 	else
1629 		igb_assign_vector(adapter->q_vector[0], 0);
1630 
1631 	/* Clear any pending interrupts. */
1632 	rd32(E1000_ICR);
1633 	igb_irq_enable(adapter);
1634 
1635 	/* notify VFs that reset has been completed */
1636 	if (adapter->vfs_allocated_count) {
1637 		u32 reg_data = rd32(E1000_CTRL_EXT);
1638 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1639 		wr32(E1000_CTRL_EXT, reg_data);
1640 	}
1641 
1642 	netif_tx_start_all_queues(adapter->netdev);
1643 
1644 	/* start the watchdog. */
1645 	hw->mac.get_link_status = 1;
1646 	schedule_work(&adapter->watchdog_task);
1647 
1648 	return 0;
1649 }
1650 
1651 void igb_down(struct igb_adapter *adapter)
1652 {
1653 	struct net_device *netdev = adapter->netdev;
1654 	struct e1000_hw *hw = &adapter->hw;
1655 	u32 tctl, rctl;
1656 	int i;
1657 
1658 	/* signal that we're down so the interrupt handler does not
1659 	 * reschedule our watchdog timer
1660 	 */
1661 	set_bit(__IGB_DOWN, &adapter->state);
1662 
1663 	/* disable receives in the hardware */
1664 	rctl = rd32(E1000_RCTL);
1665 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1666 	/* flush and sleep below */
1667 
1668 	netif_tx_stop_all_queues(netdev);
1669 
1670 	/* disable transmits in the hardware */
1671 	tctl = rd32(E1000_TCTL);
1672 	tctl &= ~E1000_TCTL_EN;
1673 	wr32(E1000_TCTL, tctl);
1674 	/* flush both disables and wait for them to finish */
1675 	wrfl();
1676 	msleep(10);
1677 
1678 	igb_irq_disable(adapter);
1679 
1680 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1681 
1682 	for (i = 0; i < adapter->num_q_vectors; i++) {
1683 		napi_synchronize(&(adapter->q_vector[i]->napi));
1684 		napi_disable(&(adapter->q_vector[i]->napi));
1685 	}
1686 
1687 
1688 	del_timer_sync(&adapter->watchdog_timer);
1689 	del_timer_sync(&adapter->phy_info_timer);
1690 
1691 	netif_carrier_off(netdev);
1692 
1693 	/* record the stats before reset*/
1694 	spin_lock(&adapter->stats64_lock);
1695 	igb_update_stats(adapter, &adapter->stats64);
1696 	spin_unlock(&adapter->stats64_lock);
1697 
1698 	adapter->link_speed = 0;
1699 	adapter->link_duplex = 0;
1700 
1701 	if (!pci_channel_offline(adapter->pdev))
1702 		igb_reset(adapter);
1703 	igb_clean_all_tx_rings(adapter);
1704 	igb_clean_all_rx_rings(adapter);
1705 #ifdef CONFIG_IGB_DCA
1706 
1707 	/* since we reset the hardware DCA settings were cleared */
1708 	igb_setup_dca(adapter);
1709 #endif
1710 }
1711 
1712 void igb_reinit_locked(struct igb_adapter *adapter)
1713 {
1714 	WARN_ON(in_interrupt());
1715 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1716 		msleep(1);
1717 	igb_down(adapter);
1718 	igb_up(adapter);
1719 	clear_bit(__IGB_RESETTING, &adapter->state);
1720 }
1721 
1722 void igb_reset(struct igb_adapter *adapter)
1723 {
1724 	struct pci_dev *pdev = adapter->pdev;
1725 	struct e1000_hw *hw = &adapter->hw;
1726 	struct e1000_mac_info *mac = &hw->mac;
1727 	struct e1000_fc_info *fc = &hw->fc;
1728 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1729 
1730 	/* Repartition Pba for greater than 9k mtu
1731 	 * To take effect CTRL.RST is required.
1732 	 */
1733 	switch (mac->type) {
1734 	case e1000_i350:
1735 	case e1000_i354:
1736 	case e1000_82580:
1737 		pba = rd32(E1000_RXPBS);
1738 		pba = igb_rxpbs_adjust_82580(pba);
1739 		break;
1740 	case e1000_82576:
1741 		pba = rd32(E1000_RXPBS);
1742 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1743 		break;
1744 	case e1000_82575:
1745 	case e1000_i210:
1746 	case e1000_i211:
1747 	default:
1748 		pba = E1000_PBA_34K;
1749 		break;
1750 	}
1751 
1752 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1753 	    (mac->type < e1000_82576)) {
1754 		/* adjust PBA for jumbo frames */
1755 		wr32(E1000_PBA, pba);
1756 
1757 		/* To maintain wire speed transmits, the Tx FIFO should be
1758 		 * large enough to accommodate two full transmit packets,
1759 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1760 		 * the Rx FIFO should be large enough to accommodate at least
1761 		 * one full receive packet and is similarly rounded up and
1762 		 * expressed in KB.
1763 		 */
1764 		pba = rd32(E1000_PBA);
1765 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1766 		tx_space = pba >> 16;
1767 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1768 		pba &= 0xffff;
1769 		/* the Tx fifo also stores 16 bytes of information about the Tx
1770 		 * but don't include ethernet FCS because hardware appends it
1771 		 */
1772 		min_tx_space = (adapter->max_frame_size +
1773 				sizeof(union e1000_adv_tx_desc) -
1774 				ETH_FCS_LEN) * 2;
1775 		min_tx_space = ALIGN(min_tx_space, 1024);
1776 		min_tx_space >>= 10;
1777 		/* software strips receive CRC, so leave room for it */
1778 		min_rx_space = adapter->max_frame_size;
1779 		min_rx_space = ALIGN(min_rx_space, 1024);
1780 		min_rx_space >>= 10;
1781 
1782 		/* If current Tx allocation is less than the min Tx FIFO size,
1783 		 * and the min Tx FIFO size is less than the current Rx FIFO
1784 		 * allocation, take space away from current Rx allocation
1785 		 */
1786 		if (tx_space < min_tx_space &&
1787 		    ((min_tx_space - tx_space) < pba)) {
1788 			pba = pba - (min_tx_space - tx_space);
1789 
1790 			/* if short on Rx space, Rx wins and must trump Tx
1791 			 * adjustment
1792 			 */
1793 			if (pba < min_rx_space)
1794 				pba = min_rx_space;
1795 		}
1796 		wr32(E1000_PBA, pba);
1797 	}
1798 
1799 	/* flow control settings */
1800 	/* The high water mark must be low enough to fit one full frame
1801 	 * (or the size used for early receive) above it in the Rx FIFO.
1802 	 * Set it to the lower of:
1803 	 * - 90% of the Rx FIFO size, or
1804 	 * - the full Rx FIFO size minus one full frame
1805 	 */
1806 	hwm = min(((pba << 10) * 9 / 10),
1807 			((pba << 10) - 2 * adapter->max_frame_size));
1808 
1809 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1810 	fc->low_water = fc->high_water - 16;
1811 	fc->pause_time = 0xFFFF;
1812 	fc->send_xon = 1;
1813 	fc->current_mode = fc->requested_mode;
1814 
1815 	/* disable receive for all VFs and wait one second */
1816 	if (adapter->vfs_allocated_count) {
1817 		int i;
1818 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1819 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1820 
1821 		/* ping all the active vfs to let them know we are going down */
1822 		igb_ping_all_vfs(adapter);
1823 
1824 		/* disable transmits and receives */
1825 		wr32(E1000_VFRE, 0);
1826 		wr32(E1000_VFTE, 0);
1827 	}
1828 
1829 	/* Allow time for pending master requests to run */
1830 	hw->mac.ops.reset_hw(hw);
1831 	wr32(E1000_WUC, 0);
1832 
1833 	if (hw->mac.ops.init_hw(hw))
1834 		dev_err(&pdev->dev, "Hardware Error\n");
1835 
1836 	/* Flow control settings reset on hardware reset, so guarantee flow
1837 	 * control is off when forcing speed.
1838 	 */
1839 	if (!hw->mac.autoneg)
1840 		igb_force_mac_fc(hw);
1841 
1842 	igb_init_dmac(adapter, pba);
1843 #ifdef CONFIG_IGB_HWMON
1844 	/* Re-initialize the thermal sensor on i350 devices. */
1845 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1846 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1847 			/* If present, re-initialize the external thermal sensor
1848 			 * interface.
1849 			 */
1850 			if (adapter->ets)
1851 				mac->ops.init_thermal_sensor_thresh(hw);
1852 		}
1853 	}
1854 #endif
1855 	if (!netif_running(adapter->netdev))
1856 		igb_power_down_link(adapter);
1857 
1858 	igb_update_mng_vlan(adapter);
1859 
1860 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1861 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1862 
1863 	/* Re-enable PTP, where applicable. */
1864 	igb_ptp_reset(adapter);
1865 
1866 	igb_get_phy_info(hw);
1867 }
1868 
1869 static netdev_features_t igb_fix_features(struct net_device *netdev,
1870 	netdev_features_t features)
1871 {
1872 	/* Since there is no support for separate Rx/Tx vlan accel
1873 	 * enable/disable make sure Tx flag is always in same state as Rx.
1874 	 */
1875 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1876 		features |= NETIF_F_HW_VLAN_CTAG_TX;
1877 	else
1878 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1879 
1880 	return features;
1881 }
1882 
1883 static int igb_set_features(struct net_device *netdev,
1884 	netdev_features_t features)
1885 {
1886 	netdev_features_t changed = netdev->features ^ features;
1887 	struct igb_adapter *adapter = netdev_priv(netdev);
1888 
1889 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1890 		igb_vlan_mode(netdev, features);
1891 
1892 	if (!(changed & NETIF_F_RXALL))
1893 		return 0;
1894 
1895 	netdev->features = features;
1896 
1897 	if (netif_running(netdev))
1898 		igb_reinit_locked(adapter);
1899 	else
1900 		igb_reset(adapter);
1901 
1902 	return 0;
1903 }
1904 
1905 static const struct net_device_ops igb_netdev_ops = {
1906 	.ndo_open		= igb_open,
1907 	.ndo_stop		= igb_close,
1908 	.ndo_start_xmit		= igb_xmit_frame,
1909 	.ndo_get_stats64	= igb_get_stats64,
1910 	.ndo_set_rx_mode	= igb_set_rx_mode,
1911 	.ndo_set_mac_address	= igb_set_mac,
1912 	.ndo_change_mtu		= igb_change_mtu,
1913 	.ndo_do_ioctl		= igb_ioctl,
1914 	.ndo_tx_timeout		= igb_tx_timeout,
1915 	.ndo_validate_addr	= eth_validate_addr,
1916 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
1917 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1918 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
1919 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
1920 	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
1921 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1922 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
1923 #ifdef CONFIG_NET_POLL_CONTROLLER
1924 	.ndo_poll_controller	= igb_netpoll,
1925 #endif
1926 	.ndo_fix_features	= igb_fix_features,
1927 	.ndo_set_features	= igb_set_features,
1928 };
1929 
1930 /**
1931  * igb_set_fw_version - Configure version string for ethtool
1932  * @adapter: adapter struct
1933  **/
1934 void igb_set_fw_version(struct igb_adapter *adapter)
1935 {
1936 	struct e1000_hw *hw = &adapter->hw;
1937 	struct e1000_fw_version fw;
1938 
1939 	igb_get_fw_version(hw, &fw);
1940 
1941 	switch (hw->mac.type) {
1942 	case e1000_i210:
1943 	case e1000_i211:
1944 		if (!(igb_get_flash_presence_i210(hw))) {
1945 			snprintf(adapter->fw_version,
1946 				 sizeof(adapter->fw_version),
1947 				 "%2d.%2d-%d",
1948 				 fw.invm_major, fw.invm_minor,
1949 				 fw.invm_img_type);
1950 			break;
1951 		}
1952 		/* fall through */
1953 	default:
1954 		/* if option is rom valid, display its version too */
1955 		if (fw.or_valid) {
1956 			snprintf(adapter->fw_version,
1957 				 sizeof(adapter->fw_version),
1958 				 "%d.%d, 0x%08x, %d.%d.%d",
1959 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
1960 				 fw.or_major, fw.or_build, fw.or_patch);
1961 		/* no option rom */
1962 		} else if (fw.etrack_id != 0X0000) {
1963 			snprintf(adapter->fw_version,
1964 			    sizeof(adapter->fw_version),
1965 			    "%d.%d, 0x%08x",
1966 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
1967 		} else {
1968 		snprintf(adapter->fw_version,
1969 		    sizeof(adapter->fw_version),
1970 		    "%d.%d.%d",
1971 		    fw.eep_major, fw.eep_minor, fw.eep_build);
1972 		}
1973 		break;
1974 	}
1975 	return;
1976 }
1977 
1978 /**
1979  *  igb_init_i2c - Init I2C interface
1980  *  @adapter: pointer to adapter structure
1981  **/
1982 static s32 igb_init_i2c(struct igb_adapter *adapter)
1983 {
1984 	s32 status = E1000_SUCCESS;
1985 
1986 	/* I2C interface supported on i350 devices */
1987 	if (adapter->hw.mac.type != e1000_i350)
1988 		return E1000_SUCCESS;
1989 
1990 	/* Initialize the i2c bus which is controlled by the registers.
1991 	 * This bus will use the i2c_algo_bit structue that implements
1992 	 * the protocol through toggling of the 4 bits in the register.
1993 	 */
1994 	adapter->i2c_adap.owner = THIS_MODULE;
1995 	adapter->i2c_algo = igb_i2c_algo;
1996 	adapter->i2c_algo.data = adapter;
1997 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1998 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1999 	strlcpy(adapter->i2c_adap.name, "igb BB",
2000 		sizeof(adapter->i2c_adap.name));
2001 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2002 	return status;
2003 }
2004 
2005 /**
2006  *  igb_probe - Device Initialization Routine
2007  *  @pdev: PCI device information struct
2008  *  @ent: entry in igb_pci_tbl
2009  *
2010  *  Returns 0 on success, negative on failure
2011  *
2012  *  igb_probe initializes an adapter identified by a pci_dev structure.
2013  *  The OS initialization, configuring of the adapter private structure,
2014  *  and a hardware reset occur.
2015  **/
2016 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2017 {
2018 	struct net_device *netdev;
2019 	struct igb_adapter *adapter;
2020 	struct e1000_hw *hw;
2021 	u16 eeprom_data = 0;
2022 	s32 ret_val;
2023 	static int global_quad_port_a; /* global quad port a indication */
2024 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2025 	unsigned long mmio_start, mmio_len;
2026 	int err, pci_using_dac;
2027 	u8 part_str[E1000_PBANUM_LENGTH];
2028 
2029 	/* Catch broken hardware that put the wrong VF device ID in
2030 	 * the PCIe SR-IOV capability.
2031 	 */
2032 	if (pdev->is_virtfn) {
2033 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2034 			pci_name(pdev), pdev->vendor, pdev->device);
2035 		return -EINVAL;
2036 	}
2037 
2038 	err = pci_enable_device_mem(pdev);
2039 	if (err)
2040 		return err;
2041 
2042 	pci_using_dac = 0;
2043 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2044 	if (!err) {
2045 		pci_using_dac = 1;
2046 	} else {
2047 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2048 		if (err) {
2049 			dev_err(&pdev->dev,
2050 				"No usable DMA configuration, aborting\n");
2051 			goto err_dma;
2052 		}
2053 	}
2054 
2055 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2056 					   IORESOURCE_MEM),
2057 					   igb_driver_name);
2058 	if (err)
2059 		goto err_pci_reg;
2060 
2061 	pci_enable_pcie_error_reporting(pdev);
2062 
2063 	pci_set_master(pdev);
2064 	pci_save_state(pdev);
2065 
2066 	err = -ENOMEM;
2067 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2068 				   IGB_MAX_TX_QUEUES);
2069 	if (!netdev)
2070 		goto err_alloc_etherdev;
2071 
2072 	SET_NETDEV_DEV(netdev, &pdev->dev);
2073 
2074 	pci_set_drvdata(pdev, netdev);
2075 	adapter = netdev_priv(netdev);
2076 	adapter->netdev = netdev;
2077 	adapter->pdev = pdev;
2078 	hw = &adapter->hw;
2079 	hw->back = adapter;
2080 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2081 
2082 	mmio_start = pci_resource_start(pdev, 0);
2083 	mmio_len = pci_resource_len(pdev, 0);
2084 
2085 	err = -EIO;
2086 	hw->hw_addr = ioremap(mmio_start, mmio_len);
2087 	if (!hw->hw_addr)
2088 		goto err_ioremap;
2089 
2090 	netdev->netdev_ops = &igb_netdev_ops;
2091 	igb_set_ethtool_ops(netdev);
2092 	netdev->watchdog_timeo = 5 * HZ;
2093 
2094 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2095 
2096 	netdev->mem_start = mmio_start;
2097 	netdev->mem_end = mmio_start + mmio_len;
2098 
2099 	/* PCI config space info */
2100 	hw->vendor_id = pdev->vendor;
2101 	hw->device_id = pdev->device;
2102 	hw->revision_id = pdev->revision;
2103 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2104 	hw->subsystem_device_id = pdev->subsystem_device;
2105 
2106 	/* Copy the default MAC, PHY and NVM function pointers */
2107 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2108 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2109 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2110 	/* Initialize skew-specific constants */
2111 	err = ei->get_invariants(hw);
2112 	if (err)
2113 		goto err_sw_init;
2114 
2115 	/* setup the private structure */
2116 	err = igb_sw_init(adapter);
2117 	if (err)
2118 		goto err_sw_init;
2119 
2120 	igb_get_bus_info_pcie(hw);
2121 
2122 	hw->phy.autoneg_wait_to_complete = false;
2123 
2124 	/* Copper options */
2125 	if (hw->phy.media_type == e1000_media_type_copper) {
2126 		hw->phy.mdix = AUTO_ALL_MODES;
2127 		hw->phy.disable_polarity_correction = false;
2128 		hw->phy.ms_type = e1000_ms_hw_default;
2129 	}
2130 
2131 	if (igb_check_reset_block(hw))
2132 		dev_info(&pdev->dev,
2133 			"PHY reset is blocked due to SOL/IDER session.\n");
2134 
2135 	/* features is initialized to 0 in allocation, it might have bits
2136 	 * set by igb_sw_init so we should use an or instead of an
2137 	 * assignment.
2138 	 */
2139 	netdev->features |= NETIF_F_SG |
2140 			    NETIF_F_IP_CSUM |
2141 			    NETIF_F_IPV6_CSUM |
2142 			    NETIF_F_TSO |
2143 			    NETIF_F_TSO6 |
2144 			    NETIF_F_RXHASH |
2145 			    NETIF_F_RXCSUM |
2146 			    NETIF_F_HW_VLAN_CTAG_RX |
2147 			    NETIF_F_HW_VLAN_CTAG_TX;
2148 
2149 	/* copy netdev features into list of user selectable features */
2150 	netdev->hw_features |= netdev->features;
2151 	netdev->hw_features |= NETIF_F_RXALL;
2152 
2153 	/* set this bit last since it cannot be part of hw_features */
2154 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2155 
2156 	netdev->vlan_features |= NETIF_F_TSO |
2157 				 NETIF_F_TSO6 |
2158 				 NETIF_F_IP_CSUM |
2159 				 NETIF_F_IPV6_CSUM |
2160 				 NETIF_F_SG;
2161 
2162 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2163 
2164 	if (pci_using_dac) {
2165 		netdev->features |= NETIF_F_HIGHDMA;
2166 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2167 	}
2168 
2169 	if (hw->mac.type >= e1000_82576) {
2170 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2171 		netdev->features |= NETIF_F_SCTP_CSUM;
2172 	}
2173 
2174 	netdev->priv_flags |= IFF_UNICAST_FLT;
2175 
2176 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2177 
2178 	/* before reading the NVM, reset the controller to put the device in a
2179 	 * known good starting state
2180 	 */
2181 	hw->mac.ops.reset_hw(hw);
2182 
2183 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2184 	 * that doesn't contain a checksum
2185 	 */
2186 	switch (hw->mac.type) {
2187 	case e1000_i210:
2188 	case e1000_i211:
2189 		if (igb_get_flash_presence_i210(hw)) {
2190 			if (hw->nvm.ops.validate(hw) < 0) {
2191 				dev_err(&pdev->dev,
2192 					"The NVM Checksum Is Not Valid\n");
2193 				err = -EIO;
2194 				goto err_eeprom;
2195 			}
2196 		}
2197 		break;
2198 	default:
2199 		if (hw->nvm.ops.validate(hw) < 0) {
2200 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2201 			err = -EIO;
2202 			goto err_eeprom;
2203 		}
2204 		break;
2205 	}
2206 
2207 	/* copy the MAC address out of the NVM */
2208 	if (hw->mac.ops.read_mac_addr(hw))
2209 		dev_err(&pdev->dev, "NVM Read Error\n");
2210 
2211 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2212 
2213 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2214 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2215 		err = -EIO;
2216 		goto err_eeprom;
2217 	}
2218 
2219 	/* get firmware version for ethtool -i */
2220 	igb_set_fw_version(adapter);
2221 
2222 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2223 		    (unsigned long) adapter);
2224 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2225 		    (unsigned long) adapter);
2226 
2227 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2228 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2229 
2230 	/* Initialize link properties that are user-changeable */
2231 	adapter->fc_autoneg = true;
2232 	hw->mac.autoneg = true;
2233 	hw->phy.autoneg_advertised = 0x2f;
2234 
2235 	hw->fc.requested_mode = e1000_fc_default;
2236 	hw->fc.current_mode = e1000_fc_default;
2237 
2238 	igb_validate_mdi_setting(hw);
2239 
2240 	/* By default, support wake on port A */
2241 	if (hw->bus.func == 0)
2242 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2243 
2244 	/* Check the NVM for wake support on non-port A ports */
2245 	if (hw->mac.type >= e1000_82580)
2246 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2247 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2248 				 &eeprom_data);
2249 	else if (hw->bus.func == 1)
2250 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2251 
2252 	if (eeprom_data & IGB_EEPROM_APME)
2253 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2254 
2255 	/* now that we have the eeprom settings, apply the special cases where
2256 	 * the eeprom may be wrong or the board simply won't support wake on
2257 	 * lan on a particular port
2258 	 */
2259 	switch (pdev->device) {
2260 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2261 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2262 		break;
2263 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2264 	case E1000_DEV_ID_82576_FIBER:
2265 	case E1000_DEV_ID_82576_SERDES:
2266 		/* Wake events only supported on port A for dual fiber
2267 		 * regardless of eeprom setting
2268 		 */
2269 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2270 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2271 		break;
2272 	case E1000_DEV_ID_82576_QUAD_COPPER:
2273 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2274 		/* if quad port adapter, disable WoL on all but port A */
2275 		if (global_quad_port_a != 0)
2276 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2277 		else
2278 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2279 		/* Reset for multiple quad port adapters */
2280 		if (++global_quad_port_a == 4)
2281 			global_quad_port_a = 0;
2282 		break;
2283 	default:
2284 		/* If the device can't wake, don't set software support */
2285 		if (!device_can_wakeup(&adapter->pdev->dev))
2286 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2287 	}
2288 
2289 	/* initialize the wol settings based on the eeprom settings */
2290 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2291 		adapter->wol |= E1000_WUFC_MAG;
2292 
2293 	/* Some vendors want WoL disabled by default, but still supported */
2294 	if ((hw->mac.type == e1000_i350) &&
2295 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2296 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2297 		adapter->wol = 0;
2298 	}
2299 
2300 	device_set_wakeup_enable(&adapter->pdev->dev,
2301 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2302 
2303 	/* reset the hardware with the new settings */
2304 	igb_reset(adapter);
2305 
2306 	/* Init the I2C interface */
2307 	err = igb_init_i2c(adapter);
2308 	if (err) {
2309 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2310 		goto err_eeprom;
2311 	}
2312 
2313 	/* let the f/w know that the h/w is now under the control of the
2314 	 * driver. */
2315 	igb_get_hw_control(adapter);
2316 
2317 	strcpy(netdev->name, "eth%d");
2318 	err = register_netdev(netdev);
2319 	if (err)
2320 		goto err_register;
2321 
2322 	/* carrier off reporting is important to ethtool even BEFORE open */
2323 	netif_carrier_off(netdev);
2324 
2325 #ifdef CONFIG_IGB_DCA
2326 	if (dca_add_requester(&pdev->dev) == 0) {
2327 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2328 		dev_info(&pdev->dev, "DCA enabled\n");
2329 		igb_setup_dca(adapter);
2330 	}
2331 
2332 #endif
2333 #ifdef CONFIG_IGB_HWMON
2334 	/* Initialize the thermal sensor on i350 devices. */
2335 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2336 		u16 ets_word;
2337 
2338 		/* Read the NVM to determine if this i350 device supports an
2339 		 * external thermal sensor.
2340 		 */
2341 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2342 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2343 			adapter->ets = true;
2344 		else
2345 			adapter->ets = false;
2346 		if (igb_sysfs_init(adapter))
2347 			dev_err(&pdev->dev,
2348 				"failed to allocate sysfs resources\n");
2349 	} else {
2350 		adapter->ets = false;
2351 	}
2352 #endif
2353 	/* do hw tstamp init after resetting */
2354 	igb_ptp_init(adapter);
2355 
2356 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2357 	/* print bus type/speed/width info, not applicable to i354 */
2358 	if (hw->mac.type != e1000_i354) {
2359 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2360 			 netdev->name,
2361 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2362 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2363 			   "unknown"),
2364 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2365 			  "Width x4" :
2366 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2367 			  "Width x2" :
2368 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2369 			  "Width x1" : "unknown"), netdev->dev_addr);
2370 	}
2371 
2372 	if ((hw->mac.type >= e1000_i210 ||
2373 	     igb_get_flash_presence_i210(hw))) {
2374 		ret_val = igb_read_part_string(hw, part_str,
2375 					       E1000_PBANUM_LENGTH);
2376 	} else {
2377 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2378 	}
2379 
2380 	if (ret_val)
2381 		strcpy(part_str, "Unknown");
2382 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2383 	dev_info(&pdev->dev,
2384 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2385 		adapter->msix_entries ? "MSI-X" :
2386 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2387 		adapter->num_rx_queues, adapter->num_tx_queues);
2388 	switch (hw->mac.type) {
2389 	case e1000_i350:
2390 	case e1000_i210:
2391 	case e1000_i211:
2392 		igb_set_eee_i350(hw);
2393 		break;
2394 	case e1000_i354:
2395 		if (hw->phy.media_type == e1000_media_type_copper) {
2396 			if ((rd32(E1000_CTRL_EXT) &
2397 			    E1000_CTRL_EXT_LINK_MODE_SGMII))
2398 				igb_set_eee_i354(hw);
2399 		}
2400 		break;
2401 	default:
2402 		break;
2403 	}
2404 
2405 	pm_runtime_put_noidle(&pdev->dev);
2406 	return 0;
2407 
2408 err_register:
2409 	igb_release_hw_control(adapter);
2410 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2411 err_eeprom:
2412 	if (!igb_check_reset_block(hw))
2413 		igb_reset_phy(hw);
2414 
2415 	if (hw->flash_address)
2416 		iounmap(hw->flash_address);
2417 err_sw_init:
2418 	igb_clear_interrupt_scheme(adapter);
2419 	iounmap(hw->hw_addr);
2420 err_ioremap:
2421 	free_netdev(netdev);
2422 err_alloc_etherdev:
2423 	pci_release_selected_regions(pdev,
2424 				     pci_select_bars(pdev, IORESOURCE_MEM));
2425 err_pci_reg:
2426 err_dma:
2427 	pci_disable_device(pdev);
2428 	return err;
2429 }
2430 
2431 #ifdef CONFIG_PCI_IOV
2432 static int igb_disable_sriov(struct pci_dev *pdev)
2433 {
2434 	struct net_device *netdev = pci_get_drvdata(pdev);
2435 	struct igb_adapter *adapter = netdev_priv(netdev);
2436 	struct e1000_hw *hw = &adapter->hw;
2437 
2438 	/* reclaim resources allocated to VFs */
2439 	if (adapter->vf_data) {
2440 		/* disable iov and allow time for transactions to clear */
2441 		if (pci_vfs_assigned(pdev)) {
2442 			dev_warn(&pdev->dev,
2443 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2444 			return -EPERM;
2445 		} else {
2446 			pci_disable_sriov(pdev);
2447 			msleep(500);
2448 		}
2449 
2450 		kfree(adapter->vf_data);
2451 		adapter->vf_data = NULL;
2452 		adapter->vfs_allocated_count = 0;
2453 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2454 		wrfl();
2455 		msleep(100);
2456 		dev_info(&pdev->dev, "IOV Disabled\n");
2457 
2458 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2459 		adapter->flags |= IGB_FLAG_DMAC;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2466 {
2467 	struct net_device *netdev = pci_get_drvdata(pdev);
2468 	struct igb_adapter *adapter = netdev_priv(netdev);
2469 	int old_vfs = pci_num_vf(pdev);
2470 	int err = 0;
2471 	int i;
2472 
2473 	if (!adapter->msix_entries || num_vfs > 7) {
2474 		err = -EPERM;
2475 		goto out;
2476 	}
2477 	if (!num_vfs)
2478 		goto out;
2479 
2480 	if (old_vfs) {
2481 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2482 			 old_vfs, max_vfs);
2483 		adapter->vfs_allocated_count = old_vfs;
2484 	} else
2485 		adapter->vfs_allocated_count = num_vfs;
2486 
2487 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2488 				sizeof(struct vf_data_storage), GFP_KERNEL);
2489 
2490 	/* if allocation failed then we do not support SR-IOV */
2491 	if (!adapter->vf_data) {
2492 		adapter->vfs_allocated_count = 0;
2493 		dev_err(&pdev->dev,
2494 			"Unable to allocate memory for VF Data Storage\n");
2495 		err = -ENOMEM;
2496 		goto out;
2497 	}
2498 
2499 	/* only call pci_enable_sriov() if no VFs are allocated already */
2500 	if (!old_vfs) {
2501 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2502 		if (err)
2503 			goto err_out;
2504 	}
2505 	dev_info(&pdev->dev, "%d VFs allocated\n",
2506 		 adapter->vfs_allocated_count);
2507 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2508 		igb_vf_configure(adapter, i);
2509 
2510 	/* DMA Coalescing is not supported in IOV mode. */
2511 	adapter->flags &= ~IGB_FLAG_DMAC;
2512 	goto out;
2513 
2514 err_out:
2515 	kfree(adapter->vf_data);
2516 	adapter->vf_data = NULL;
2517 	adapter->vfs_allocated_count = 0;
2518 out:
2519 	return err;
2520 }
2521 
2522 #endif
2523 /**
2524  *  igb_remove_i2c - Cleanup  I2C interface
2525  *  @adapter: pointer to adapter structure
2526  **/
2527 static void igb_remove_i2c(struct igb_adapter *adapter)
2528 {
2529 	/* free the adapter bus structure */
2530 	i2c_del_adapter(&adapter->i2c_adap);
2531 }
2532 
2533 /**
2534  *  igb_remove - Device Removal Routine
2535  *  @pdev: PCI device information struct
2536  *
2537  *  igb_remove is called by the PCI subsystem to alert the driver
2538  *  that it should release a PCI device.  The could be caused by a
2539  *  Hot-Plug event, or because the driver is going to be removed from
2540  *  memory.
2541  **/
2542 static void igb_remove(struct pci_dev *pdev)
2543 {
2544 	struct net_device *netdev = pci_get_drvdata(pdev);
2545 	struct igb_adapter *adapter = netdev_priv(netdev);
2546 	struct e1000_hw *hw = &adapter->hw;
2547 
2548 	pm_runtime_get_noresume(&pdev->dev);
2549 #ifdef CONFIG_IGB_HWMON
2550 	igb_sysfs_exit(adapter);
2551 #endif
2552 	igb_remove_i2c(adapter);
2553 	igb_ptp_stop(adapter);
2554 	/* The watchdog timer may be rescheduled, so explicitly
2555 	 * disable watchdog from being rescheduled.
2556 	 */
2557 	set_bit(__IGB_DOWN, &adapter->state);
2558 	del_timer_sync(&adapter->watchdog_timer);
2559 	del_timer_sync(&adapter->phy_info_timer);
2560 
2561 	cancel_work_sync(&adapter->reset_task);
2562 	cancel_work_sync(&adapter->watchdog_task);
2563 
2564 #ifdef CONFIG_IGB_DCA
2565 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2566 		dev_info(&pdev->dev, "DCA disabled\n");
2567 		dca_remove_requester(&pdev->dev);
2568 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2569 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2570 	}
2571 #endif
2572 
2573 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2574 	 * would have already happened in close and is redundant.
2575 	 */
2576 	igb_release_hw_control(adapter);
2577 
2578 	unregister_netdev(netdev);
2579 
2580 	igb_clear_interrupt_scheme(adapter);
2581 
2582 #ifdef CONFIG_PCI_IOV
2583 	igb_disable_sriov(pdev);
2584 #endif
2585 
2586 	iounmap(hw->hw_addr);
2587 	if (hw->flash_address)
2588 		iounmap(hw->flash_address);
2589 	pci_release_selected_regions(pdev,
2590 				     pci_select_bars(pdev, IORESOURCE_MEM));
2591 
2592 	kfree(adapter->shadow_vfta);
2593 	free_netdev(netdev);
2594 
2595 	pci_disable_pcie_error_reporting(pdev);
2596 
2597 	pci_disable_device(pdev);
2598 }
2599 
2600 /**
2601  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2602  *  @adapter: board private structure to initialize
2603  *
2604  *  This function initializes the vf specific data storage and then attempts to
2605  *  allocate the VFs.  The reason for ordering it this way is because it is much
2606  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2607  *  the memory for the VFs.
2608  **/
2609 static void igb_probe_vfs(struct igb_adapter *adapter)
2610 {
2611 #ifdef CONFIG_PCI_IOV
2612 	struct pci_dev *pdev = adapter->pdev;
2613 	struct e1000_hw *hw = &adapter->hw;
2614 
2615 	/* Virtualization features not supported on i210 family. */
2616 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2617 		return;
2618 
2619 	pci_sriov_set_totalvfs(pdev, 7);
2620 	igb_pci_enable_sriov(pdev, max_vfs);
2621 
2622 #endif /* CONFIG_PCI_IOV */
2623 }
2624 
2625 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2626 {
2627 	struct e1000_hw *hw = &adapter->hw;
2628 	u32 max_rss_queues;
2629 
2630 	/* Determine the maximum number of RSS queues supported. */
2631 	switch (hw->mac.type) {
2632 	case e1000_i211:
2633 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2634 		break;
2635 	case e1000_82575:
2636 	case e1000_i210:
2637 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2638 		break;
2639 	case e1000_i350:
2640 		/* I350 cannot do RSS and SR-IOV at the same time */
2641 		if (!!adapter->vfs_allocated_count) {
2642 			max_rss_queues = 1;
2643 			break;
2644 		}
2645 		/* fall through */
2646 	case e1000_82576:
2647 		if (!!adapter->vfs_allocated_count) {
2648 			max_rss_queues = 2;
2649 			break;
2650 		}
2651 		/* fall through */
2652 	case e1000_82580:
2653 	case e1000_i354:
2654 	default:
2655 		max_rss_queues = IGB_MAX_RX_QUEUES;
2656 		break;
2657 	}
2658 
2659 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2660 
2661 	/* Determine if we need to pair queues. */
2662 	switch (hw->mac.type) {
2663 	case e1000_82575:
2664 	case e1000_i211:
2665 		/* Device supports enough interrupts without queue pairing. */
2666 		break;
2667 	case e1000_82576:
2668 		/* If VFs are going to be allocated with RSS queues then we
2669 		 * should pair the queues in order to conserve interrupts due
2670 		 * to limited supply.
2671 		 */
2672 		if ((adapter->rss_queues > 1) &&
2673 		    (adapter->vfs_allocated_count > 6))
2674 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2675 		/* fall through */
2676 	case e1000_82580:
2677 	case e1000_i350:
2678 	case e1000_i354:
2679 	case e1000_i210:
2680 	default:
2681 		/* If rss_queues > half of max_rss_queues, pair the queues in
2682 		 * order to conserve interrupts due to limited supply.
2683 		 */
2684 		if (adapter->rss_queues > (max_rss_queues / 2))
2685 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2686 		break;
2687 	}
2688 }
2689 
2690 /**
2691  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2692  *  @adapter: board private structure to initialize
2693  *
2694  *  igb_sw_init initializes the Adapter private data structure.
2695  *  Fields are initialized based on PCI device information and
2696  *  OS network device settings (MTU size).
2697  **/
2698 static int igb_sw_init(struct igb_adapter *adapter)
2699 {
2700 	struct e1000_hw *hw = &adapter->hw;
2701 	struct net_device *netdev = adapter->netdev;
2702 	struct pci_dev *pdev = adapter->pdev;
2703 
2704 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2705 
2706 	/* set default ring sizes */
2707 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2708 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2709 
2710 	/* set default ITR values */
2711 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2712 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2713 
2714 	/* set default work limits */
2715 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2716 
2717 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2718 				  VLAN_HLEN;
2719 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2720 
2721 	spin_lock_init(&adapter->stats64_lock);
2722 #ifdef CONFIG_PCI_IOV
2723 	switch (hw->mac.type) {
2724 	case e1000_82576:
2725 	case e1000_i350:
2726 		if (max_vfs > 7) {
2727 			dev_warn(&pdev->dev,
2728 				 "Maximum of 7 VFs per PF, using max\n");
2729 			max_vfs = adapter->vfs_allocated_count = 7;
2730 		} else
2731 			adapter->vfs_allocated_count = max_vfs;
2732 		if (adapter->vfs_allocated_count)
2733 			dev_warn(&pdev->dev,
2734 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2735 		break;
2736 	default:
2737 		break;
2738 	}
2739 #endif /* CONFIG_PCI_IOV */
2740 
2741 	igb_init_queue_configuration(adapter);
2742 
2743 	/* Setup and initialize a copy of the hw vlan table array */
2744 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2745 				       GFP_ATOMIC);
2746 
2747 	/* This call may decrease the number of queues */
2748 	if (igb_init_interrupt_scheme(adapter, true)) {
2749 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2750 		return -ENOMEM;
2751 	}
2752 
2753 	igb_probe_vfs(adapter);
2754 
2755 	/* Explicitly disable IRQ since the NIC can be in any state. */
2756 	igb_irq_disable(adapter);
2757 
2758 	if (hw->mac.type >= e1000_i350)
2759 		adapter->flags &= ~IGB_FLAG_DMAC;
2760 
2761 	set_bit(__IGB_DOWN, &adapter->state);
2762 	return 0;
2763 }
2764 
2765 /**
2766  *  igb_open - Called when a network interface is made active
2767  *  @netdev: network interface device structure
2768  *
2769  *  Returns 0 on success, negative value on failure
2770  *
2771  *  The open entry point is called when a network interface is made
2772  *  active by the system (IFF_UP).  At this point all resources needed
2773  *  for transmit and receive operations are allocated, the interrupt
2774  *  handler is registered with the OS, the watchdog timer is started,
2775  *  and the stack is notified that the interface is ready.
2776  **/
2777 static int __igb_open(struct net_device *netdev, bool resuming)
2778 {
2779 	struct igb_adapter *adapter = netdev_priv(netdev);
2780 	struct e1000_hw *hw = &adapter->hw;
2781 	struct pci_dev *pdev = adapter->pdev;
2782 	int err;
2783 	int i;
2784 
2785 	/* disallow open during test */
2786 	if (test_bit(__IGB_TESTING, &adapter->state)) {
2787 		WARN_ON(resuming);
2788 		return -EBUSY;
2789 	}
2790 
2791 	if (!resuming)
2792 		pm_runtime_get_sync(&pdev->dev);
2793 
2794 	netif_carrier_off(netdev);
2795 
2796 	/* allocate transmit descriptors */
2797 	err = igb_setup_all_tx_resources(adapter);
2798 	if (err)
2799 		goto err_setup_tx;
2800 
2801 	/* allocate receive descriptors */
2802 	err = igb_setup_all_rx_resources(adapter);
2803 	if (err)
2804 		goto err_setup_rx;
2805 
2806 	igb_power_up_link(adapter);
2807 
2808 	/* before we allocate an interrupt, we must be ready to handle it.
2809 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2810 	 * as soon as we call pci_request_irq, so we have to setup our
2811 	 * clean_rx handler before we do so.
2812 	 */
2813 	igb_configure(adapter);
2814 
2815 	err = igb_request_irq(adapter);
2816 	if (err)
2817 		goto err_req_irq;
2818 
2819 	/* Notify the stack of the actual queue counts. */
2820 	err = netif_set_real_num_tx_queues(adapter->netdev,
2821 					   adapter->num_tx_queues);
2822 	if (err)
2823 		goto err_set_queues;
2824 
2825 	err = netif_set_real_num_rx_queues(adapter->netdev,
2826 					   adapter->num_rx_queues);
2827 	if (err)
2828 		goto err_set_queues;
2829 
2830 	/* From here on the code is the same as igb_up() */
2831 	clear_bit(__IGB_DOWN, &adapter->state);
2832 
2833 	for (i = 0; i < adapter->num_q_vectors; i++)
2834 		napi_enable(&(adapter->q_vector[i]->napi));
2835 
2836 	/* Clear any pending interrupts. */
2837 	rd32(E1000_ICR);
2838 
2839 	igb_irq_enable(adapter);
2840 
2841 	/* notify VFs that reset has been completed */
2842 	if (adapter->vfs_allocated_count) {
2843 		u32 reg_data = rd32(E1000_CTRL_EXT);
2844 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2845 		wr32(E1000_CTRL_EXT, reg_data);
2846 	}
2847 
2848 	netif_tx_start_all_queues(netdev);
2849 
2850 	if (!resuming)
2851 		pm_runtime_put(&pdev->dev);
2852 
2853 	/* start the watchdog. */
2854 	hw->mac.get_link_status = 1;
2855 	schedule_work(&adapter->watchdog_task);
2856 
2857 	return 0;
2858 
2859 err_set_queues:
2860 	igb_free_irq(adapter);
2861 err_req_irq:
2862 	igb_release_hw_control(adapter);
2863 	igb_power_down_link(adapter);
2864 	igb_free_all_rx_resources(adapter);
2865 err_setup_rx:
2866 	igb_free_all_tx_resources(adapter);
2867 err_setup_tx:
2868 	igb_reset(adapter);
2869 	if (!resuming)
2870 		pm_runtime_put(&pdev->dev);
2871 
2872 	return err;
2873 }
2874 
2875 static int igb_open(struct net_device *netdev)
2876 {
2877 	return __igb_open(netdev, false);
2878 }
2879 
2880 /**
2881  *  igb_close - Disables a network interface
2882  *  @netdev: network interface device structure
2883  *
2884  *  Returns 0, this is not allowed to fail
2885  *
2886  *  The close entry point is called when an interface is de-activated
2887  *  by the OS.  The hardware is still under the driver's control, but
2888  *  needs to be disabled.  A global MAC reset is issued to stop the
2889  *  hardware, and all transmit and receive resources are freed.
2890  **/
2891 static int __igb_close(struct net_device *netdev, bool suspending)
2892 {
2893 	struct igb_adapter *adapter = netdev_priv(netdev);
2894 	struct pci_dev *pdev = adapter->pdev;
2895 
2896 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2897 
2898 	if (!suspending)
2899 		pm_runtime_get_sync(&pdev->dev);
2900 
2901 	igb_down(adapter);
2902 	igb_free_irq(adapter);
2903 
2904 	igb_free_all_tx_resources(adapter);
2905 	igb_free_all_rx_resources(adapter);
2906 
2907 	if (!suspending)
2908 		pm_runtime_put_sync(&pdev->dev);
2909 	return 0;
2910 }
2911 
2912 static int igb_close(struct net_device *netdev)
2913 {
2914 	return __igb_close(netdev, false);
2915 }
2916 
2917 /**
2918  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2919  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2920  *
2921  *  Return 0 on success, negative on failure
2922  **/
2923 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2924 {
2925 	struct device *dev = tx_ring->dev;
2926 	int size;
2927 
2928 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2929 
2930 	tx_ring->tx_buffer_info = vzalloc(size);
2931 	if (!tx_ring->tx_buffer_info)
2932 		goto err;
2933 
2934 	/* round up to nearest 4K */
2935 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2936 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2937 
2938 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2939 					   &tx_ring->dma, GFP_KERNEL);
2940 	if (!tx_ring->desc)
2941 		goto err;
2942 
2943 	tx_ring->next_to_use = 0;
2944 	tx_ring->next_to_clean = 0;
2945 
2946 	return 0;
2947 
2948 err:
2949 	vfree(tx_ring->tx_buffer_info);
2950 	tx_ring->tx_buffer_info = NULL;
2951 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2952 	return -ENOMEM;
2953 }
2954 
2955 /**
2956  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2957  *				 (Descriptors) for all queues
2958  *  @adapter: board private structure
2959  *
2960  *  Return 0 on success, negative on failure
2961  **/
2962 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2963 {
2964 	struct pci_dev *pdev = adapter->pdev;
2965 	int i, err = 0;
2966 
2967 	for (i = 0; i < adapter->num_tx_queues; i++) {
2968 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2969 		if (err) {
2970 			dev_err(&pdev->dev,
2971 				"Allocation for Tx Queue %u failed\n", i);
2972 			for (i--; i >= 0; i--)
2973 				igb_free_tx_resources(adapter->tx_ring[i]);
2974 			break;
2975 		}
2976 	}
2977 
2978 	return err;
2979 }
2980 
2981 /**
2982  *  igb_setup_tctl - configure the transmit control registers
2983  *  @adapter: Board private structure
2984  **/
2985 void igb_setup_tctl(struct igb_adapter *adapter)
2986 {
2987 	struct e1000_hw *hw = &adapter->hw;
2988 	u32 tctl;
2989 
2990 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
2991 	wr32(E1000_TXDCTL(0), 0);
2992 
2993 	/* Program the Transmit Control Register */
2994 	tctl = rd32(E1000_TCTL);
2995 	tctl &= ~E1000_TCTL_CT;
2996 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2997 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2998 
2999 	igb_config_collision_dist(hw);
3000 
3001 	/* Enable transmits */
3002 	tctl |= E1000_TCTL_EN;
3003 
3004 	wr32(E1000_TCTL, tctl);
3005 }
3006 
3007 /**
3008  *  igb_configure_tx_ring - Configure transmit ring after Reset
3009  *  @adapter: board private structure
3010  *  @ring: tx ring to configure
3011  *
3012  *  Configure a transmit ring after a reset.
3013  **/
3014 void igb_configure_tx_ring(struct igb_adapter *adapter,
3015                            struct igb_ring *ring)
3016 {
3017 	struct e1000_hw *hw = &adapter->hw;
3018 	u32 txdctl = 0;
3019 	u64 tdba = ring->dma;
3020 	int reg_idx = ring->reg_idx;
3021 
3022 	/* disable the queue */
3023 	wr32(E1000_TXDCTL(reg_idx), 0);
3024 	wrfl();
3025 	mdelay(10);
3026 
3027 	wr32(E1000_TDLEN(reg_idx),
3028 	     ring->count * sizeof(union e1000_adv_tx_desc));
3029 	wr32(E1000_TDBAL(reg_idx),
3030 	     tdba & 0x00000000ffffffffULL);
3031 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3032 
3033 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3034 	wr32(E1000_TDH(reg_idx), 0);
3035 	writel(0, ring->tail);
3036 
3037 	txdctl |= IGB_TX_PTHRESH;
3038 	txdctl |= IGB_TX_HTHRESH << 8;
3039 	txdctl |= IGB_TX_WTHRESH << 16;
3040 
3041 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3042 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3043 }
3044 
3045 /**
3046  *  igb_configure_tx - Configure transmit Unit after Reset
3047  *  @adapter: board private structure
3048  *
3049  *  Configure the Tx unit of the MAC after a reset.
3050  **/
3051 static void igb_configure_tx(struct igb_adapter *adapter)
3052 {
3053 	int i;
3054 
3055 	for (i = 0; i < adapter->num_tx_queues; i++)
3056 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3057 }
3058 
3059 /**
3060  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3061  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3062  *
3063  *  Returns 0 on success, negative on failure
3064  **/
3065 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3066 {
3067 	struct device *dev = rx_ring->dev;
3068 	int size;
3069 
3070 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3071 
3072 	rx_ring->rx_buffer_info = vzalloc(size);
3073 	if (!rx_ring->rx_buffer_info)
3074 		goto err;
3075 
3076 	/* Round up to nearest 4K */
3077 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3078 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3079 
3080 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3081 					   &rx_ring->dma, GFP_KERNEL);
3082 	if (!rx_ring->desc)
3083 		goto err;
3084 
3085 	rx_ring->next_to_alloc = 0;
3086 	rx_ring->next_to_clean = 0;
3087 	rx_ring->next_to_use = 0;
3088 
3089 	return 0;
3090 
3091 err:
3092 	vfree(rx_ring->rx_buffer_info);
3093 	rx_ring->rx_buffer_info = NULL;
3094 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3095 	return -ENOMEM;
3096 }
3097 
3098 /**
3099  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3100  *				 (Descriptors) for all queues
3101  *  @adapter: board private structure
3102  *
3103  *  Return 0 on success, negative on failure
3104  **/
3105 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3106 {
3107 	struct pci_dev *pdev = adapter->pdev;
3108 	int i, err = 0;
3109 
3110 	for (i = 0; i < adapter->num_rx_queues; i++) {
3111 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3112 		if (err) {
3113 			dev_err(&pdev->dev,
3114 				"Allocation for Rx Queue %u failed\n", i);
3115 			for (i--; i >= 0; i--)
3116 				igb_free_rx_resources(adapter->rx_ring[i]);
3117 			break;
3118 		}
3119 	}
3120 
3121 	return err;
3122 }
3123 
3124 /**
3125  *  igb_setup_mrqc - configure the multiple receive queue control registers
3126  *  @adapter: Board private structure
3127  **/
3128 static void igb_setup_mrqc(struct igb_adapter *adapter)
3129 {
3130 	struct e1000_hw *hw = &adapter->hw;
3131 	u32 mrqc, rxcsum;
3132 	u32 j, num_rx_queues;
3133 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3134 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3135 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3136 					0xFA01ACBE };
3137 
3138 	/* Fill out hash function seeds */
3139 	for (j = 0; j < 10; j++)
3140 		wr32(E1000_RSSRK(j), rsskey[j]);
3141 
3142 	num_rx_queues = adapter->rss_queues;
3143 
3144 	switch (hw->mac.type) {
3145 	case e1000_82576:
3146 		/* 82576 supports 2 RSS queues for SR-IOV */
3147 		if (adapter->vfs_allocated_count)
3148 			num_rx_queues = 2;
3149 		break;
3150 	default:
3151 		break;
3152 	}
3153 
3154 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3155 		for (j = 0; j < IGB_RETA_SIZE; j++)
3156 			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3157 		adapter->rss_indir_tbl_init = num_rx_queues;
3158 	}
3159 	igb_write_rss_indir_tbl(adapter);
3160 
3161 	/* Disable raw packet checksumming so that RSS hash is placed in
3162 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3163 	 * offloads as they are enabled by default
3164 	 */
3165 	rxcsum = rd32(E1000_RXCSUM);
3166 	rxcsum |= E1000_RXCSUM_PCSD;
3167 
3168 	if (adapter->hw.mac.type >= e1000_82576)
3169 		/* Enable Receive Checksum Offload for SCTP */
3170 		rxcsum |= E1000_RXCSUM_CRCOFL;
3171 
3172 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3173 	wr32(E1000_RXCSUM, rxcsum);
3174 
3175 	/* Generate RSS hash based on packet types, TCP/UDP
3176 	 * port numbers and/or IPv4/v6 src and dst addresses
3177 	 */
3178 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3179 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3180 	       E1000_MRQC_RSS_FIELD_IPV6 |
3181 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3182 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3183 
3184 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3185 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3186 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3187 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3188 
3189 	/* If VMDq is enabled then we set the appropriate mode for that, else
3190 	 * we default to RSS so that an RSS hash is calculated per packet even
3191 	 * if we are only using one queue
3192 	 */
3193 	if (adapter->vfs_allocated_count) {
3194 		if (hw->mac.type > e1000_82575) {
3195 			/* Set the default pool for the PF's first queue */
3196 			u32 vtctl = rd32(E1000_VT_CTL);
3197 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3198 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3199 			vtctl |= adapter->vfs_allocated_count <<
3200 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3201 			wr32(E1000_VT_CTL, vtctl);
3202 		}
3203 		if (adapter->rss_queues > 1)
3204 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3205 		else
3206 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3207 	} else {
3208 		if (hw->mac.type != e1000_i211)
3209 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3210 	}
3211 	igb_vmm_control(adapter);
3212 
3213 	wr32(E1000_MRQC, mrqc);
3214 }
3215 
3216 /**
3217  *  igb_setup_rctl - configure the receive control registers
3218  *  @adapter: Board private structure
3219  **/
3220 void igb_setup_rctl(struct igb_adapter *adapter)
3221 {
3222 	struct e1000_hw *hw = &adapter->hw;
3223 	u32 rctl;
3224 
3225 	rctl = rd32(E1000_RCTL);
3226 
3227 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3228 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3229 
3230 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3231 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3232 
3233 	/* enable stripping of CRC. It's unlikely this will break BMC
3234 	 * redirection as it did with e1000. Newer features require
3235 	 * that the HW strips the CRC.
3236 	 */
3237 	rctl |= E1000_RCTL_SECRC;
3238 
3239 	/* disable store bad packets and clear size bits. */
3240 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3241 
3242 	/* enable LPE to prevent packets larger than max_frame_size */
3243 	rctl |= E1000_RCTL_LPE;
3244 
3245 	/* disable queue 0 to prevent tail write w/o re-config */
3246 	wr32(E1000_RXDCTL(0), 0);
3247 
3248 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3249 	 * queue drop for all VF and PF queues to prevent head of line blocking
3250 	 * if an un-trusted VF does not provide descriptors to hardware.
3251 	 */
3252 	if (adapter->vfs_allocated_count) {
3253 		/* set all queue drop enable bits */
3254 		wr32(E1000_QDE, ALL_QUEUES);
3255 	}
3256 
3257 	/* This is useful for sniffing bad packets. */
3258 	if (adapter->netdev->features & NETIF_F_RXALL) {
3259 		/* UPE and MPE will be handled by normal PROMISC logic
3260 		 * in e1000e_set_rx_mode
3261 		 */
3262 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3263 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3264 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3265 
3266 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3267 			  E1000_RCTL_DPF | /* Allow filtered pause */
3268 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3269 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3270 		 * and that breaks VLANs.
3271 		 */
3272 	}
3273 
3274 	wr32(E1000_RCTL, rctl);
3275 }
3276 
3277 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3278                                    int vfn)
3279 {
3280 	struct e1000_hw *hw = &adapter->hw;
3281 	u32 vmolr;
3282 
3283 	/* if it isn't the PF check to see if VFs are enabled and
3284 	 * increase the size to support vlan tags
3285 	 */
3286 	if (vfn < adapter->vfs_allocated_count &&
3287 	    adapter->vf_data[vfn].vlans_enabled)
3288 		size += VLAN_TAG_SIZE;
3289 
3290 	vmolr = rd32(E1000_VMOLR(vfn));
3291 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3292 	vmolr |= size | E1000_VMOLR_LPE;
3293 	wr32(E1000_VMOLR(vfn), vmolr);
3294 
3295 	return 0;
3296 }
3297 
3298 /**
3299  *  igb_rlpml_set - set maximum receive packet size
3300  *  @adapter: board private structure
3301  *
3302  *  Configure maximum receivable packet size.
3303  **/
3304 static void igb_rlpml_set(struct igb_adapter *adapter)
3305 {
3306 	u32 max_frame_size = adapter->max_frame_size;
3307 	struct e1000_hw *hw = &adapter->hw;
3308 	u16 pf_id = adapter->vfs_allocated_count;
3309 
3310 	if (pf_id) {
3311 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3312 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3313 		 * to our max jumbo frame size, in case we need to enable
3314 		 * jumbo frames on one of the rings later.
3315 		 * This will not pass over-length frames into the default
3316 		 * queue because it's gated by the VMOLR.RLPML.
3317 		 */
3318 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3319 	}
3320 
3321 	wr32(E1000_RLPML, max_frame_size);
3322 }
3323 
3324 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3325 				 int vfn, bool aupe)
3326 {
3327 	struct e1000_hw *hw = &adapter->hw;
3328 	u32 vmolr;
3329 
3330 	/* This register exists only on 82576 and newer so if we are older then
3331 	 * we should exit and do nothing
3332 	 */
3333 	if (hw->mac.type < e1000_82576)
3334 		return;
3335 
3336 	vmolr = rd32(E1000_VMOLR(vfn));
3337 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3338 	if (aupe)
3339 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3340 	else
3341 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3342 
3343 	/* clear all bits that might not be set */
3344 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3345 
3346 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3347 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3348 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3349 	 * multicast packets
3350 	 */
3351 	if (vfn <= adapter->vfs_allocated_count)
3352 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3353 
3354 	wr32(E1000_VMOLR(vfn), vmolr);
3355 }
3356 
3357 /**
3358  *  igb_configure_rx_ring - Configure a receive ring after Reset
3359  *  @adapter: board private structure
3360  *  @ring: receive ring to be configured
3361  *
3362  *  Configure the Rx unit of the MAC after a reset.
3363  **/
3364 void igb_configure_rx_ring(struct igb_adapter *adapter,
3365 			   struct igb_ring *ring)
3366 {
3367 	struct e1000_hw *hw = &adapter->hw;
3368 	u64 rdba = ring->dma;
3369 	int reg_idx = ring->reg_idx;
3370 	u32 srrctl = 0, rxdctl = 0;
3371 
3372 	/* disable the queue */
3373 	wr32(E1000_RXDCTL(reg_idx), 0);
3374 
3375 	/* Set DMA base address registers */
3376 	wr32(E1000_RDBAL(reg_idx),
3377 	     rdba & 0x00000000ffffffffULL);
3378 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3379 	wr32(E1000_RDLEN(reg_idx),
3380 	     ring->count * sizeof(union e1000_adv_rx_desc));
3381 
3382 	/* initialize head and tail */
3383 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3384 	wr32(E1000_RDH(reg_idx), 0);
3385 	writel(0, ring->tail);
3386 
3387 	/* set descriptor configuration */
3388 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3389 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3390 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3391 	if (hw->mac.type >= e1000_82580)
3392 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3393 	/* Only set Drop Enable if we are supporting multiple queues */
3394 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3395 		srrctl |= E1000_SRRCTL_DROP_EN;
3396 
3397 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3398 
3399 	/* set filtering for VMDQ pools */
3400 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3401 
3402 	rxdctl |= IGB_RX_PTHRESH;
3403 	rxdctl |= IGB_RX_HTHRESH << 8;
3404 	rxdctl |= IGB_RX_WTHRESH << 16;
3405 
3406 	/* enable receive descriptor fetching */
3407 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3408 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3409 }
3410 
3411 /**
3412  *  igb_configure_rx - Configure receive Unit after Reset
3413  *  @adapter: board private structure
3414  *
3415  *  Configure the Rx unit of the MAC after a reset.
3416  **/
3417 static void igb_configure_rx(struct igb_adapter *adapter)
3418 {
3419 	int i;
3420 
3421 	/* set UTA to appropriate mode */
3422 	igb_set_uta(adapter);
3423 
3424 	/* set the correct pool for the PF default MAC address in entry 0 */
3425 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3426 			 adapter->vfs_allocated_count);
3427 
3428 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3429 	 * the Base and Length of the Rx Descriptor Ring
3430 	 */
3431 	for (i = 0; i < adapter->num_rx_queues; i++)
3432 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3433 }
3434 
3435 /**
3436  *  igb_free_tx_resources - Free Tx Resources per Queue
3437  *  @tx_ring: Tx descriptor ring for a specific queue
3438  *
3439  *  Free all transmit software resources
3440  **/
3441 void igb_free_tx_resources(struct igb_ring *tx_ring)
3442 {
3443 	igb_clean_tx_ring(tx_ring);
3444 
3445 	vfree(tx_ring->tx_buffer_info);
3446 	tx_ring->tx_buffer_info = NULL;
3447 
3448 	/* if not set, then don't free */
3449 	if (!tx_ring->desc)
3450 		return;
3451 
3452 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3453 			  tx_ring->desc, tx_ring->dma);
3454 
3455 	tx_ring->desc = NULL;
3456 }
3457 
3458 /**
3459  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3460  *  @adapter: board private structure
3461  *
3462  *  Free all transmit software resources
3463  **/
3464 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3465 {
3466 	int i;
3467 
3468 	for (i = 0; i < adapter->num_tx_queues; i++)
3469 		igb_free_tx_resources(adapter->tx_ring[i]);
3470 }
3471 
3472 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3473 				    struct igb_tx_buffer *tx_buffer)
3474 {
3475 	if (tx_buffer->skb) {
3476 		dev_kfree_skb_any(tx_buffer->skb);
3477 		if (dma_unmap_len(tx_buffer, len))
3478 			dma_unmap_single(ring->dev,
3479 					 dma_unmap_addr(tx_buffer, dma),
3480 					 dma_unmap_len(tx_buffer, len),
3481 					 DMA_TO_DEVICE);
3482 	} else if (dma_unmap_len(tx_buffer, len)) {
3483 		dma_unmap_page(ring->dev,
3484 			       dma_unmap_addr(tx_buffer, dma),
3485 			       dma_unmap_len(tx_buffer, len),
3486 			       DMA_TO_DEVICE);
3487 	}
3488 	tx_buffer->next_to_watch = NULL;
3489 	tx_buffer->skb = NULL;
3490 	dma_unmap_len_set(tx_buffer, len, 0);
3491 	/* buffer_info must be completely set up in the transmit path */
3492 }
3493 
3494 /**
3495  *  igb_clean_tx_ring - Free Tx Buffers
3496  *  @tx_ring: ring to be cleaned
3497  **/
3498 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3499 {
3500 	struct igb_tx_buffer *buffer_info;
3501 	unsigned long size;
3502 	u16 i;
3503 
3504 	if (!tx_ring->tx_buffer_info)
3505 		return;
3506 	/* Free all the Tx ring sk_buffs */
3507 
3508 	for (i = 0; i < tx_ring->count; i++) {
3509 		buffer_info = &tx_ring->tx_buffer_info[i];
3510 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3511 	}
3512 
3513 	netdev_tx_reset_queue(txring_txq(tx_ring));
3514 
3515 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3516 	memset(tx_ring->tx_buffer_info, 0, size);
3517 
3518 	/* Zero out the descriptor ring */
3519 	memset(tx_ring->desc, 0, tx_ring->size);
3520 
3521 	tx_ring->next_to_use = 0;
3522 	tx_ring->next_to_clean = 0;
3523 }
3524 
3525 /**
3526  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3527  *  @adapter: board private structure
3528  **/
3529 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3530 {
3531 	int i;
3532 
3533 	for (i = 0; i < adapter->num_tx_queues; i++)
3534 		igb_clean_tx_ring(adapter->tx_ring[i]);
3535 }
3536 
3537 /**
3538  *  igb_free_rx_resources - Free Rx Resources
3539  *  @rx_ring: ring to clean the resources from
3540  *
3541  *  Free all receive software resources
3542  **/
3543 void igb_free_rx_resources(struct igb_ring *rx_ring)
3544 {
3545 	igb_clean_rx_ring(rx_ring);
3546 
3547 	vfree(rx_ring->rx_buffer_info);
3548 	rx_ring->rx_buffer_info = NULL;
3549 
3550 	/* if not set, then don't free */
3551 	if (!rx_ring->desc)
3552 		return;
3553 
3554 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3555 			  rx_ring->desc, rx_ring->dma);
3556 
3557 	rx_ring->desc = NULL;
3558 }
3559 
3560 /**
3561  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3562  *  @adapter: board private structure
3563  *
3564  *  Free all receive software resources
3565  **/
3566 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3567 {
3568 	int i;
3569 
3570 	for (i = 0; i < adapter->num_rx_queues; i++)
3571 		igb_free_rx_resources(adapter->rx_ring[i]);
3572 }
3573 
3574 /**
3575  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3576  *  @rx_ring: ring to free buffers from
3577  **/
3578 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3579 {
3580 	unsigned long size;
3581 	u16 i;
3582 
3583 	if (rx_ring->skb)
3584 		dev_kfree_skb(rx_ring->skb);
3585 	rx_ring->skb = NULL;
3586 
3587 	if (!rx_ring->rx_buffer_info)
3588 		return;
3589 
3590 	/* Free all the Rx ring sk_buffs */
3591 	for (i = 0; i < rx_ring->count; i++) {
3592 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3593 
3594 		if (!buffer_info->page)
3595 			continue;
3596 
3597 		dma_unmap_page(rx_ring->dev,
3598 			       buffer_info->dma,
3599 			       PAGE_SIZE,
3600 			       DMA_FROM_DEVICE);
3601 		__free_page(buffer_info->page);
3602 
3603 		buffer_info->page = NULL;
3604 	}
3605 
3606 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3607 	memset(rx_ring->rx_buffer_info, 0, size);
3608 
3609 	/* Zero out the descriptor ring */
3610 	memset(rx_ring->desc, 0, rx_ring->size);
3611 
3612 	rx_ring->next_to_alloc = 0;
3613 	rx_ring->next_to_clean = 0;
3614 	rx_ring->next_to_use = 0;
3615 }
3616 
3617 /**
3618  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3619  *  @adapter: board private structure
3620  **/
3621 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3622 {
3623 	int i;
3624 
3625 	for (i = 0; i < adapter->num_rx_queues; i++)
3626 		igb_clean_rx_ring(adapter->rx_ring[i]);
3627 }
3628 
3629 /**
3630  *  igb_set_mac - Change the Ethernet Address of the NIC
3631  *  @netdev: network interface device structure
3632  *  @p: pointer to an address structure
3633  *
3634  *  Returns 0 on success, negative on failure
3635  **/
3636 static int igb_set_mac(struct net_device *netdev, void *p)
3637 {
3638 	struct igb_adapter *adapter = netdev_priv(netdev);
3639 	struct e1000_hw *hw = &adapter->hw;
3640 	struct sockaddr *addr = p;
3641 
3642 	if (!is_valid_ether_addr(addr->sa_data))
3643 		return -EADDRNOTAVAIL;
3644 
3645 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3646 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3647 
3648 	/* set the correct pool for the new PF MAC address in entry 0 */
3649 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3650 			 adapter->vfs_allocated_count);
3651 
3652 	return 0;
3653 }
3654 
3655 /**
3656  *  igb_write_mc_addr_list - write multicast addresses to MTA
3657  *  @netdev: network interface device structure
3658  *
3659  *  Writes multicast address list to the MTA hash table.
3660  *  Returns: -ENOMEM on failure
3661  *           0 on no addresses written
3662  *           X on writing X addresses to MTA
3663  **/
3664 static int igb_write_mc_addr_list(struct net_device *netdev)
3665 {
3666 	struct igb_adapter *adapter = netdev_priv(netdev);
3667 	struct e1000_hw *hw = &adapter->hw;
3668 	struct netdev_hw_addr *ha;
3669 	u8  *mta_list;
3670 	int i;
3671 
3672 	if (netdev_mc_empty(netdev)) {
3673 		/* nothing to program, so clear mc list */
3674 		igb_update_mc_addr_list(hw, NULL, 0);
3675 		igb_restore_vf_multicasts(adapter);
3676 		return 0;
3677 	}
3678 
3679 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3680 	if (!mta_list)
3681 		return -ENOMEM;
3682 
3683 	/* The shared function expects a packed array of only addresses. */
3684 	i = 0;
3685 	netdev_for_each_mc_addr(ha, netdev)
3686 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3687 
3688 	igb_update_mc_addr_list(hw, mta_list, i);
3689 	kfree(mta_list);
3690 
3691 	return netdev_mc_count(netdev);
3692 }
3693 
3694 /**
3695  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3696  *  @netdev: network interface device structure
3697  *
3698  *  Writes unicast address list to the RAR table.
3699  *  Returns: -ENOMEM on failure/insufficient address space
3700  *           0 on no addresses written
3701  *           X on writing X addresses to the RAR table
3702  **/
3703 static int igb_write_uc_addr_list(struct net_device *netdev)
3704 {
3705 	struct igb_adapter *adapter = netdev_priv(netdev);
3706 	struct e1000_hw *hw = &adapter->hw;
3707 	unsigned int vfn = adapter->vfs_allocated_count;
3708 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3709 	int count = 0;
3710 
3711 	/* return ENOMEM indicating insufficient memory for addresses */
3712 	if (netdev_uc_count(netdev) > rar_entries)
3713 		return -ENOMEM;
3714 
3715 	if (!netdev_uc_empty(netdev) && rar_entries) {
3716 		struct netdev_hw_addr *ha;
3717 
3718 		netdev_for_each_uc_addr(ha, netdev) {
3719 			if (!rar_entries)
3720 				break;
3721 			igb_rar_set_qsel(adapter, ha->addr,
3722 					 rar_entries--,
3723 					 vfn);
3724 			count++;
3725 		}
3726 	}
3727 	/* write the addresses in reverse order to avoid write combining */
3728 	for (; rar_entries > 0 ; rar_entries--) {
3729 		wr32(E1000_RAH(rar_entries), 0);
3730 		wr32(E1000_RAL(rar_entries), 0);
3731 	}
3732 	wrfl();
3733 
3734 	return count;
3735 }
3736 
3737 /**
3738  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3739  *  @netdev: network interface device structure
3740  *
3741  *  The set_rx_mode entry point is called whenever the unicast or multicast
3742  *  address lists or the network interface flags are updated.  This routine is
3743  *  responsible for configuring the hardware for proper unicast, multicast,
3744  *  promiscuous mode, and all-multi behavior.
3745  **/
3746 static void igb_set_rx_mode(struct net_device *netdev)
3747 {
3748 	struct igb_adapter *adapter = netdev_priv(netdev);
3749 	struct e1000_hw *hw = &adapter->hw;
3750 	unsigned int vfn = adapter->vfs_allocated_count;
3751 	u32 rctl, vmolr = 0;
3752 	int count;
3753 
3754 	/* Check for Promiscuous and All Multicast modes */
3755 	rctl = rd32(E1000_RCTL);
3756 
3757 	/* clear the effected bits */
3758 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3759 
3760 	if (netdev->flags & IFF_PROMISC) {
3761 		/* retain VLAN HW filtering if in VT mode */
3762 		if (adapter->vfs_allocated_count)
3763 			rctl |= E1000_RCTL_VFE;
3764 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3765 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3766 	} else {
3767 		if (netdev->flags & IFF_ALLMULTI) {
3768 			rctl |= E1000_RCTL_MPE;
3769 			vmolr |= E1000_VMOLR_MPME;
3770 		} else {
3771 			/* Write addresses to the MTA, if the attempt fails
3772 			 * then we should just turn on promiscuous mode so
3773 			 * that we can at least receive multicast traffic
3774 			 */
3775 			count = igb_write_mc_addr_list(netdev);
3776 			if (count < 0) {
3777 				rctl |= E1000_RCTL_MPE;
3778 				vmolr |= E1000_VMOLR_MPME;
3779 			} else if (count) {
3780 				vmolr |= E1000_VMOLR_ROMPE;
3781 			}
3782 		}
3783 		/* Write addresses to available RAR registers, if there is not
3784 		 * sufficient space to store all the addresses then enable
3785 		 * unicast promiscuous mode
3786 		 */
3787 		count = igb_write_uc_addr_list(netdev);
3788 		if (count < 0) {
3789 			rctl |= E1000_RCTL_UPE;
3790 			vmolr |= E1000_VMOLR_ROPE;
3791 		}
3792 		rctl |= E1000_RCTL_VFE;
3793 	}
3794 	wr32(E1000_RCTL, rctl);
3795 
3796 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3797 	 * the VMOLR to enable the appropriate modes.  Without this workaround
3798 	 * we will have issues with VLAN tag stripping not being done for frames
3799 	 * that are only arriving because we are the default pool
3800 	 */
3801 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3802 		return;
3803 
3804 	vmolr |= rd32(E1000_VMOLR(vfn)) &
3805 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3806 	wr32(E1000_VMOLR(vfn), vmolr);
3807 	igb_restore_vf_multicasts(adapter);
3808 }
3809 
3810 static void igb_check_wvbr(struct igb_adapter *adapter)
3811 {
3812 	struct e1000_hw *hw = &adapter->hw;
3813 	u32 wvbr = 0;
3814 
3815 	switch (hw->mac.type) {
3816 	case e1000_82576:
3817 	case e1000_i350:
3818 		if (!(wvbr = rd32(E1000_WVBR)))
3819 			return;
3820 		break;
3821 	default:
3822 		break;
3823 	}
3824 
3825 	adapter->wvbr |= wvbr;
3826 }
3827 
3828 #define IGB_STAGGERED_QUEUE_OFFSET 8
3829 
3830 static void igb_spoof_check(struct igb_adapter *adapter)
3831 {
3832 	int j;
3833 
3834 	if (!adapter->wvbr)
3835 		return;
3836 
3837 	for(j = 0; j < adapter->vfs_allocated_count; j++) {
3838 		if (adapter->wvbr & (1 << j) ||
3839 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3840 			dev_warn(&adapter->pdev->dev,
3841 				"Spoof event(s) detected on VF %d\n", j);
3842 			adapter->wvbr &=
3843 				~((1 << j) |
3844 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3845 		}
3846 	}
3847 }
3848 
3849 /* Need to wait a few seconds after link up to get diagnostic information from
3850  * the phy
3851  */
3852 static void igb_update_phy_info(unsigned long data)
3853 {
3854 	struct igb_adapter *adapter = (struct igb_adapter *) data;
3855 	igb_get_phy_info(&adapter->hw);
3856 }
3857 
3858 /**
3859  *  igb_has_link - check shared code for link and determine up/down
3860  *  @adapter: pointer to driver private info
3861  **/
3862 bool igb_has_link(struct igb_adapter *adapter)
3863 {
3864 	struct e1000_hw *hw = &adapter->hw;
3865 	bool link_active = false;
3866 
3867 	/* get_link_status is set on LSC (link status) interrupt or
3868 	 * rx sequence error interrupt.  get_link_status will stay
3869 	 * false until the e1000_check_for_link establishes link
3870 	 * for copper adapters ONLY
3871 	 */
3872 	switch (hw->phy.media_type) {
3873 	case e1000_media_type_copper:
3874 		if (!hw->mac.get_link_status)
3875 			return true;
3876 	case e1000_media_type_internal_serdes:
3877 		hw->mac.ops.check_for_link(hw);
3878 		link_active = !hw->mac.get_link_status;
3879 		break;
3880 	default:
3881 	case e1000_media_type_unknown:
3882 		break;
3883 	}
3884 
3885 	if (((hw->mac.type == e1000_i210) ||
3886 	     (hw->mac.type == e1000_i211)) &&
3887 	     (hw->phy.id == I210_I_PHY_ID)) {
3888 		if (!netif_carrier_ok(adapter->netdev)) {
3889 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3890 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
3891 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
3892 			adapter->link_check_timeout = jiffies;
3893 		}
3894 	}
3895 
3896 	return link_active;
3897 }
3898 
3899 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3900 {
3901 	bool ret = false;
3902 	u32 ctrl_ext, thstat;
3903 
3904 	/* check for thermal sensor event on i350 copper only */
3905 	if (hw->mac.type == e1000_i350) {
3906 		thstat = rd32(E1000_THSTAT);
3907 		ctrl_ext = rd32(E1000_CTRL_EXT);
3908 
3909 		if ((hw->phy.media_type == e1000_media_type_copper) &&
3910 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3911 			ret = !!(thstat & event);
3912 	}
3913 
3914 	return ret;
3915 }
3916 
3917 /**
3918  *  igb_watchdog - Timer Call-back
3919  *  @data: pointer to adapter cast into an unsigned long
3920  **/
3921 static void igb_watchdog(unsigned long data)
3922 {
3923 	struct igb_adapter *adapter = (struct igb_adapter *)data;
3924 	/* Do the rest outside of interrupt context */
3925 	schedule_work(&adapter->watchdog_task);
3926 }
3927 
3928 static void igb_watchdog_task(struct work_struct *work)
3929 {
3930 	struct igb_adapter *adapter = container_of(work,
3931 						   struct igb_adapter,
3932 						   watchdog_task);
3933 	struct e1000_hw *hw = &adapter->hw;
3934 	struct e1000_phy_info *phy = &hw->phy;
3935 	struct net_device *netdev = adapter->netdev;
3936 	u32 link;
3937 	int i;
3938 
3939 	link = igb_has_link(adapter);
3940 
3941 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
3942 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
3943 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3944 		else
3945 			link = false;
3946 	}
3947 
3948 	if (link) {
3949 		/* Cancel scheduled suspend requests. */
3950 		pm_runtime_resume(netdev->dev.parent);
3951 
3952 		if (!netif_carrier_ok(netdev)) {
3953 			u32 ctrl;
3954 			hw->mac.ops.get_speed_and_duplex(hw,
3955 							 &adapter->link_speed,
3956 							 &adapter->link_duplex);
3957 
3958 			ctrl = rd32(E1000_CTRL);
3959 			/* Links status message must follow this format */
3960 			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3961 			       "Duplex, Flow Control: %s\n",
3962 			       netdev->name,
3963 			       adapter->link_speed,
3964 			       adapter->link_duplex == FULL_DUPLEX ?
3965 			       "Full" : "Half",
3966 			       (ctrl & E1000_CTRL_TFCE) &&
3967 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3968 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3969 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3970 
3971 			/* check if SmartSpeed worked */
3972 			igb_check_downshift(hw);
3973 			if (phy->speed_downgraded)
3974 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3975 
3976 			/* check for thermal sensor event */
3977 			if (igb_thermal_sensor_event(hw,
3978 			    E1000_THSTAT_LINK_THROTTLE)) {
3979 				netdev_info(netdev, "The network adapter link "
3980 					    "speed was downshifted because it "
3981 					    "overheated\n");
3982 			}
3983 
3984 			/* adjust timeout factor according to speed/duplex */
3985 			adapter->tx_timeout_factor = 1;
3986 			switch (adapter->link_speed) {
3987 			case SPEED_10:
3988 				adapter->tx_timeout_factor = 14;
3989 				break;
3990 			case SPEED_100:
3991 				/* maybe add some timeout factor ? */
3992 				break;
3993 			}
3994 
3995 			netif_carrier_on(netdev);
3996 
3997 			igb_ping_all_vfs(adapter);
3998 			igb_check_vf_rate_limit(adapter);
3999 
4000 			/* link state has changed, schedule phy info update */
4001 			if (!test_bit(__IGB_DOWN, &adapter->state))
4002 				mod_timer(&adapter->phy_info_timer,
4003 					  round_jiffies(jiffies + 2 * HZ));
4004 		}
4005 	} else {
4006 		if (netif_carrier_ok(netdev)) {
4007 			adapter->link_speed = 0;
4008 			adapter->link_duplex = 0;
4009 
4010 			/* check for thermal sensor event */
4011 			if (igb_thermal_sensor_event(hw,
4012 			    E1000_THSTAT_PWR_DOWN)) {
4013 				netdev_err(netdev, "The network adapter was "
4014 					   "stopped because it overheated\n");
4015 			}
4016 
4017 			/* Links status message must follow this format */
4018 			printk(KERN_INFO "igb: %s NIC Link is Down\n",
4019 			       netdev->name);
4020 			netif_carrier_off(netdev);
4021 
4022 			igb_ping_all_vfs(adapter);
4023 
4024 			/* link state has changed, schedule phy info update */
4025 			if (!test_bit(__IGB_DOWN, &adapter->state))
4026 				mod_timer(&adapter->phy_info_timer,
4027 					  round_jiffies(jiffies + 2 * HZ));
4028 
4029 			pm_schedule_suspend(netdev->dev.parent,
4030 					    MSEC_PER_SEC * 5);
4031 		}
4032 	}
4033 
4034 	spin_lock(&adapter->stats64_lock);
4035 	igb_update_stats(adapter, &adapter->stats64);
4036 	spin_unlock(&adapter->stats64_lock);
4037 
4038 	for (i = 0; i < adapter->num_tx_queues; i++) {
4039 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4040 		if (!netif_carrier_ok(netdev)) {
4041 			/* We've lost link, so the controller stops DMA,
4042 			 * but we've got queued Tx work that's never going
4043 			 * to get done, so reset controller to flush Tx.
4044 			 * (Do the reset outside of interrupt context).
4045 			 */
4046 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4047 				adapter->tx_timeout_count++;
4048 				schedule_work(&adapter->reset_task);
4049 				/* return immediately since reset is imminent */
4050 				return;
4051 			}
4052 		}
4053 
4054 		/* Force detection of hung controller every watchdog period */
4055 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4056 	}
4057 
4058 	/* Cause software interrupt to ensure Rx ring is cleaned */
4059 	if (adapter->msix_entries) {
4060 		u32 eics = 0;
4061 		for (i = 0; i < adapter->num_q_vectors; i++)
4062 			eics |= adapter->q_vector[i]->eims_value;
4063 		wr32(E1000_EICS, eics);
4064 	} else {
4065 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4066 	}
4067 
4068 	igb_spoof_check(adapter);
4069 	igb_ptp_rx_hang(adapter);
4070 
4071 	/* Reset the timer */
4072 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4073 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4074 			mod_timer(&adapter->watchdog_timer,
4075 				  round_jiffies(jiffies +  HZ));
4076 		else
4077 			mod_timer(&adapter->watchdog_timer,
4078 				  round_jiffies(jiffies + 2 * HZ));
4079 	}
4080 }
4081 
4082 enum latency_range {
4083 	lowest_latency = 0,
4084 	low_latency = 1,
4085 	bulk_latency = 2,
4086 	latency_invalid = 255
4087 };
4088 
4089 /**
4090  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4091  *  @q_vector: pointer to q_vector
4092  *
4093  *  Stores a new ITR value based on strictly on packet size.  This
4094  *  algorithm is less sophisticated than that used in igb_update_itr,
4095  *  due to the difficulty of synchronizing statistics across multiple
4096  *  receive rings.  The divisors and thresholds used by this function
4097  *  were determined based on theoretical maximum wire speed and testing
4098  *  data, in order to minimize response time while increasing bulk
4099  *  throughput.
4100  *  This functionality is controlled by the InterruptThrottleRate module
4101  *  parameter (see igb_param.c)
4102  *  NOTE:  This function is called only when operating in a multiqueue
4103  *         receive environment.
4104  **/
4105 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4106 {
4107 	int new_val = q_vector->itr_val;
4108 	int avg_wire_size = 0;
4109 	struct igb_adapter *adapter = q_vector->adapter;
4110 	unsigned int packets;
4111 
4112 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4113 	 * ints/sec - ITR timer value of 120 ticks.
4114 	 */
4115 	if (adapter->link_speed != SPEED_1000) {
4116 		new_val = IGB_4K_ITR;
4117 		goto set_itr_val;
4118 	}
4119 
4120 	packets = q_vector->rx.total_packets;
4121 	if (packets)
4122 		avg_wire_size = q_vector->rx.total_bytes / packets;
4123 
4124 	packets = q_vector->tx.total_packets;
4125 	if (packets)
4126 		avg_wire_size = max_t(u32, avg_wire_size,
4127 				      q_vector->tx.total_bytes / packets);
4128 
4129 	/* if avg_wire_size isn't set no work was done */
4130 	if (!avg_wire_size)
4131 		goto clear_counts;
4132 
4133 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4134 	avg_wire_size += 24;
4135 
4136 	/* Don't starve jumbo frames */
4137 	avg_wire_size = min(avg_wire_size, 3000);
4138 
4139 	/* Give a little boost to mid-size frames */
4140 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4141 		new_val = avg_wire_size / 3;
4142 	else
4143 		new_val = avg_wire_size / 2;
4144 
4145 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4146 	if (new_val < IGB_20K_ITR &&
4147 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4148 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4149 		new_val = IGB_20K_ITR;
4150 
4151 set_itr_val:
4152 	if (new_val != q_vector->itr_val) {
4153 		q_vector->itr_val = new_val;
4154 		q_vector->set_itr = 1;
4155 	}
4156 clear_counts:
4157 	q_vector->rx.total_bytes = 0;
4158 	q_vector->rx.total_packets = 0;
4159 	q_vector->tx.total_bytes = 0;
4160 	q_vector->tx.total_packets = 0;
4161 }
4162 
4163 /**
4164  *  igb_update_itr - update the dynamic ITR value based on statistics
4165  *  @q_vector: pointer to q_vector
4166  *  @ring_container: ring info to update the itr for
4167  *
4168  *  Stores a new ITR value based on packets and byte
4169  *  counts during the last interrupt.  The advantage of per interrupt
4170  *  computation is faster updates and more accurate ITR for the current
4171  *  traffic pattern.  Constants in this function were computed
4172  *  based on theoretical maximum wire speed and thresholds were set based
4173  *  on testing data as well as attempting to minimize response time
4174  *  while increasing bulk throughput.
4175  *  this functionality is controlled by the InterruptThrottleRate module
4176  *  parameter (see igb_param.c)
4177  *  NOTE:  These calculations are only valid when operating in a single-
4178  *         queue environment.
4179  **/
4180 static void igb_update_itr(struct igb_q_vector *q_vector,
4181 			   struct igb_ring_container *ring_container)
4182 {
4183 	unsigned int packets = ring_container->total_packets;
4184 	unsigned int bytes = ring_container->total_bytes;
4185 	u8 itrval = ring_container->itr;
4186 
4187 	/* no packets, exit with status unchanged */
4188 	if (packets == 0)
4189 		return;
4190 
4191 	switch (itrval) {
4192 	case lowest_latency:
4193 		/* handle TSO and jumbo frames */
4194 		if (bytes/packets > 8000)
4195 			itrval = bulk_latency;
4196 		else if ((packets < 5) && (bytes > 512))
4197 			itrval = low_latency;
4198 		break;
4199 	case low_latency:  /* 50 usec aka 20000 ints/s */
4200 		if (bytes > 10000) {
4201 			/* this if handles the TSO accounting */
4202 			if (bytes/packets > 8000) {
4203 				itrval = bulk_latency;
4204 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4205 				itrval = bulk_latency;
4206 			} else if ((packets > 35)) {
4207 				itrval = lowest_latency;
4208 			}
4209 		} else if (bytes/packets > 2000) {
4210 			itrval = bulk_latency;
4211 		} else if (packets <= 2 && bytes < 512) {
4212 			itrval = lowest_latency;
4213 		}
4214 		break;
4215 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4216 		if (bytes > 25000) {
4217 			if (packets > 35)
4218 				itrval = low_latency;
4219 		} else if (bytes < 1500) {
4220 			itrval = low_latency;
4221 		}
4222 		break;
4223 	}
4224 
4225 	/* clear work counters since we have the values we need */
4226 	ring_container->total_bytes = 0;
4227 	ring_container->total_packets = 0;
4228 
4229 	/* write updated itr to ring container */
4230 	ring_container->itr = itrval;
4231 }
4232 
4233 static void igb_set_itr(struct igb_q_vector *q_vector)
4234 {
4235 	struct igb_adapter *adapter = q_vector->adapter;
4236 	u32 new_itr = q_vector->itr_val;
4237 	u8 current_itr = 0;
4238 
4239 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4240 	if (adapter->link_speed != SPEED_1000) {
4241 		current_itr = 0;
4242 		new_itr = IGB_4K_ITR;
4243 		goto set_itr_now;
4244 	}
4245 
4246 	igb_update_itr(q_vector, &q_vector->tx);
4247 	igb_update_itr(q_vector, &q_vector->rx);
4248 
4249 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4250 
4251 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4252 	if (current_itr == lowest_latency &&
4253 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4254 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4255 		current_itr = low_latency;
4256 
4257 	switch (current_itr) {
4258 	/* counts and packets in update_itr are dependent on these numbers */
4259 	case lowest_latency:
4260 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4261 		break;
4262 	case low_latency:
4263 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4264 		break;
4265 	case bulk_latency:
4266 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4267 		break;
4268 	default:
4269 		break;
4270 	}
4271 
4272 set_itr_now:
4273 	if (new_itr != q_vector->itr_val) {
4274 		/* this attempts to bias the interrupt rate towards Bulk
4275 		 * by adding intermediate steps when interrupt rate is
4276 		 * increasing
4277 		 */
4278 		new_itr = new_itr > q_vector->itr_val ?
4279 			  max((new_itr * q_vector->itr_val) /
4280 			  (new_itr + (q_vector->itr_val >> 2)),
4281 			  new_itr) : new_itr;
4282 		/* Don't write the value here; it resets the adapter's
4283 		 * internal timer, and causes us to delay far longer than
4284 		 * we should between interrupts.  Instead, we write the ITR
4285 		 * value at the beginning of the next interrupt so the timing
4286 		 * ends up being correct.
4287 		 */
4288 		q_vector->itr_val = new_itr;
4289 		q_vector->set_itr = 1;
4290 	}
4291 }
4292 
4293 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4294 			    u32 type_tucmd, u32 mss_l4len_idx)
4295 {
4296 	struct e1000_adv_tx_context_desc *context_desc;
4297 	u16 i = tx_ring->next_to_use;
4298 
4299 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4300 
4301 	i++;
4302 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4303 
4304 	/* set bits to identify this as an advanced context descriptor */
4305 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4306 
4307 	/* For 82575, context index must be unique per ring. */
4308 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4309 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4310 
4311 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4312 	context_desc->seqnum_seed	= 0;
4313 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4314 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4315 }
4316 
4317 static int igb_tso(struct igb_ring *tx_ring,
4318 		   struct igb_tx_buffer *first,
4319 		   u8 *hdr_len)
4320 {
4321 	struct sk_buff *skb = first->skb;
4322 	u32 vlan_macip_lens, type_tucmd;
4323 	u32 mss_l4len_idx, l4len;
4324 
4325 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4326 		return 0;
4327 
4328 	if (!skb_is_gso(skb))
4329 		return 0;
4330 
4331 	if (skb_header_cloned(skb)) {
4332 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4333 		if (err)
4334 			return err;
4335 	}
4336 
4337 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4338 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4339 
4340 	if (first->protocol == __constant_htons(ETH_P_IP)) {
4341 		struct iphdr *iph = ip_hdr(skb);
4342 		iph->tot_len = 0;
4343 		iph->check = 0;
4344 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4345 							 iph->daddr, 0,
4346 							 IPPROTO_TCP,
4347 							 0);
4348 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4349 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4350 				   IGB_TX_FLAGS_CSUM |
4351 				   IGB_TX_FLAGS_IPV4;
4352 	} else if (skb_is_gso_v6(skb)) {
4353 		ipv6_hdr(skb)->payload_len = 0;
4354 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4355 						       &ipv6_hdr(skb)->daddr,
4356 						       0, IPPROTO_TCP, 0);
4357 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4358 				   IGB_TX_FLAGS_CSUM;
4359 	}
4360 
4361 	/* compute header lengths */
4362 	l4len = tcp_hdrlen(skb);
4363 	*hdr_len = skb_transport_offset(skb) + l4len;
4364 
4365 	/* update gso size and bytecount with header size */
4366 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4367 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4368 
4369 	/* MSS L4LEN IDX */
4370 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4371 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4372 
4373 	/* VLAN MACLEN IPLEN */
4374 	vlan_macip_lens = skb_network_header_len(skb);
4375 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4376 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4377 
4378 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4379 
4380 	return 1;
4381 }
4382 
4383 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4384 {
4385 	struct sk_buff *skb = first->skb;
4386 	u32 vlan_macip_lens = 0;
4387 	u32 mss_l4len_idx = 0;
4388 	u32 type_tucmd = 0;
4389 
4390 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4391 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4392 			return;
4393 	} else {
4394 		u8 l4_hdr = 0;
4395 		switch (first->protocol) {
4396 		case __constant_htons(ETH_P_IP):
4397 			vlan_macip_lens |= skb_network_header_len(skb);
4398 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4399 			l4_hdr = ip_hdr(skb)->protocol;
4400 			break;
4401 		case __constant_htons(ETH_P_IPV6):
4402 			vlan_macip_lens |= skb_network_header_len(skb);
4403 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4404 			break;
4405 		default:
4406 			if (unlikely(net_ratelimit())) {
4407 				dev_warn(tx_ring->dev,
4408 					 "partial checksum but proto=%x!\n",
4409 					 first->protocol);
4410 			}
4411 			break;
4412 		}
4413 
4414 		switch (l4_hdr) {
4415 		case IPPROTO_TCP:
4416 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4417 			mss_l4len_idx = tcp_hdrlen(skb) <<
4418 					E1000_ADVTXD_L4LEN_SHIFT;
4419 			break;
4420 		case IPPROTO_SCTP:
4421 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4422 			mss_l4len_idx = sizeof(struct sctphdr) <<
4423 					E1000_ADVTXD_L4LEN_SHIFT;
4424 			break;
4425 		case IPPROTO_UDP:
4426 			mss_l4len_idx = sizeof(struct udphdr) <<
4427 					E1000_ADVTXD_L4LEN_SHIFT;
4428 			break;
4429 		default:
4430 			if (unlikely(net_ratelimit())) {
4431 				dev_warn(tx_ring->dev,
4432 					 "partial checksum but l4 proto=%x!\n",
4433 					 l4_hdr);
4434 			}
4435 			break;
4436 		}
4437 
4438 		/* update TX checksum flag */
4439 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4440 	}
4441 
4442 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4443 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4444 
4445 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4446 }
4447 
4448 #define IGB_SET_FLAG(_input, _flag, _result) \
4449 	((_flag <= _result) ? \
4450 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4451 	 ((u32)(_input & _flag) / (_flag / _result)))
4452 
4453 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4454 {
4455 	/* set type for advanced descriptor with frame checksum insertion */
4456 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4457 		       E1000_ADVTXD_DCMD_DEXT |
4458 		       E1000_ADVTXD_DCMD_IFCS;
4459 
4460 	/* set HW vlan bit if vlan is present */
4461 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4462 				 (E1000_ADVTXD_DCMD_VLE));
4463 
4464 	/* set segmentation bits for TSO */
4465 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4466 				 (E1000_ADVTXD_DCMD_TSE));
4467 
4468 	/* set timestamp bit if present */
4469 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4470 				 (E1000_ADVTXD_MAC_TSTAMP));
4471 
4472 	/* insert frame checksum */
4473 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4474 
4475 	return cmd_type;
4476 }
4477 
4478 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4479 				 union e1000_adv_tx_desc *tx_desc,
4480 				 u32 tx_flags, unsigned int paylen)
4481 {
4482 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4483 
4484 	/* 82575 requires a unique index per ring */
4485 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4486 		olinfo_status |= tx_ring->reg_idx << 4;
4487 
4488 	/* insert L4 checksum */
4489 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4490 				      IGB_TX_FLAGS_CSUM,
4491 				      (E1000_TXD_POPTS_TXSM << 8));
4492 
4493 	/* insert IPv4 checksum */
4494 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4495 				      IGB_TX_FLAGS_IPV4,
4496 				      (E1000_TXD_POPTS_IXSM << 8));
4497 
4498 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4499 }
4500 
4501 static void igb_tx_map(struct igb_ring *tx_ring,
4502 		       struct igb_tx_buffer *first,
4503 		       const u8 hdr_len)
4504 {
4505 	struct sk_buff *skb = first->skb;
4506 	struct igb_tx_buffer *tx_buffer;
4507 	union e1000_adv_tx_desc *tx_desc;
4508 	struct skb_frag_struct *frag;
4509 	dma_addr_t dma;
4510 	unsigned int data_len, size;
4511 	u32 tx_flags = first->tx_flags;
4512 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4513 	u16 i = tx_ring->next_to_use;
4514 
4515 	tx_desc = IGB_TX_DESC(tx_ring, i);
4516 
4517 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4518 
4519 	size = skb_headlen(skb);
4520 	data_len = skb->data_len;
4521 
4522 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4523 
4524 	tx_buffer = first;
4525 
4526 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4527 		if (dma_mapping_error(tx_ring->dev, dma))
4528 			goto dma_error;
4529 
4530 		/* record length, and DMA address */
4531 		dma_unmap_len_set(tx_buffer, len, size);
4532 		dma_unmap_addr_set(tx_buffer, dma, dma);
4533 
4534 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4535 
4536 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4537 			tx_desc->read.cmd_type_len =
4538 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4539 
4540 			i++;
4541 			tx_desc++;
4542 			if (i == tx_ring->count) {
4543 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4544 				i = 0;
4545 			}
4546 			tx_desc->read.olinfo_status = 0;
4547 
4548 			dma += IGB_MAX_DATA_PER_TXD;
4549 			size -= IGB_MAX_DATA_PER_TXD;
4550 
4551 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4552 		}
4553 
4554 		if (likely(!data_len))
4555 			break;
4556 
4557 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4558 
4559 		i++;
4560 		tx_desc++;
4561 		if (i == tx_ring->count) {
4562 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4563 			i = 0;
4564 		}
4565 		tx_desc->read.olinfo_status = 0;
4566 
4567 		size = skb_frag_size(frag);
4568 		data_len -= size;
4569 
4570 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4571 				       size, DMA_TO_DEVICE);
4572 
4573 		tx_buffer = &tx_ring->tx_buffer_info[i];
4574 	}
4575 
4576 	/* write last descriptor with RS and EOP bits */
4577 	cmd_type |= size | IGB_TXD_DCMD;
4578 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4579 
4580 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4581 
4582 	/* set the timestamp */
4583 	first->time_stamp = jiffies;
4584 
4585 	/* Force memory writes to complete before letting h/w know there
4586 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4587 	 * memory model archs, such as IA-64).
4588 	 *
4589 	 * We also need this memory barrier to make certain all of the
4590 	 * status bits have been updated before next_to_watch is written.
4591 	 */
4592 	wmb();
4593 
4594 	/* set next_to_watch value indicating a packet is present */
4595 	first->next_to_watch = tx_desc;
4596 
4597 	i++;
4598 	if (i == tx_ring->count)
4599 		i = 0;
4600 
4601 	tx_ring->next_to_use = i;
4602 
4603 	writel(i, tx_ring->tail);
4604 
4605 	/* we need this if more than one processor can write to our tail
4606 	 * at a time, it synchronizes IO on IA64/Altix systems
4607 	 */
4608 	mmiowb();
4609 
4610 	return;
4611 
4612 dma_error:
4613 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4614 
4615 	/* clear dma mappings for failed tx_buffer_info map */
4616 	for (;;) {
4617 		tx_buffer = &tx_ring->tx_buffer_info[i];
4618 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4619 		if (tx_buffer == first)
4620 			break;
4621 		if (i == 0)
4622 			i = tx_ring->count;
4623 		i--;
4624 	}
4625 
4626 	tx_ring->next_to_use = i;
4627 }
4628 
4629 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4630 {
4631 	struct net_device *netdev = tx_ring->netdev;
4632 
4633 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4634 
4635 	/* Herbert's original patch had:
4636 	 *  smp_mb__after_netif_stop_queue();
4637 	 * but since that doesn't exist yet, just open code it.
4638 	 */
4639 	smp_mb();
4640 
4641 	/* We need to check again in a case another CPU has just
4642 	 * made room available.
4643 	 */
4644 	if (igb_desc_unused(tx_ring) < size)
4645 		return -EBUSY;
4646 
4647 	/* A reprieve! */
4648 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4649 
4650 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4651 	tx_ring->tx_stats.restart_queue2++;
4652 	u64_stats_update_end(&tx_ring->tx_syncp2);
4653 
4654 	return 0;
4655 }
4656 
4657 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4658 {
4659 	if (igb_desc_unused(tx_ring) >= size)
4660 		return 0;
4661 	return __igb_maybe_stop_tx(tx_ring, size);
4662 }
4663 
4664 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4665 				struct igb_ring *tx_ring)
4666 {
4667 	struct igb_tx_buffer *first;
4668 	int tso;
4669 	u32 tx_flags = 0;
4670 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4671 	__be16 protocol = vlan_get_protocol(skb);
4672 	u8 hdr_len = 0;
4673 
4674 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4675 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4676 	 *       + 2 desc gap to keep tail from touching head,
4677 	 *       + 1 desc for context descriptor,
4678 	 * otherwise try next time
4679 	 */
4680 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4681 		unsigned short f;
4682 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4683 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4684 	} else {
4685 		count += skb_shinfo(skb)->nr_frags;
4686 	}
4687 
4688 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4689 		/* this is a hard error */
4690 		return NETDEV_TX_BUSY;
4691 	}
4692 
4693 	/* record the location of the first descriptor for this packet */
4694 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4695 	first->skb = skb;
4696 	first->bytecount = skb->len;
4697 	first->gso_segs = 1;
4698 
4699 	skb_tx_timestamp(skb);
4700 
4701 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4702 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4703 
4704 		if (!(adapter->ptp_tx_skb)) {
4705 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4706 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4707 
4708 			adapter->ptp_tx_skb = skb_get(skb);
4709 			adapter->ptp_tx_start = jiffies;
4710 			if (adapter->hw.mac.type == e1000_82576)
4711 				schedule_work(&adapter->ptp_tx_work);
4712 		}
4713 	}
4714 
4715 	if (vlan_tx_tag_present(skb)) {
4716 		tx_flags |= IGB_TX_FLAGS_VLAN;
4717 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4718 	}
4719 
4720 	/* record initial flags and protocol */
4721 	first->tx_flags = tx_flags;
4722 	first->protocol = protocol;
4723 
4724 	tso = igb_tso(tx_ring, first, &hdr_len);
4725 	if (tso < 0)
4726 		goto out_drop;
4727 	else if (!tso)
4728 		igb_tx_csum(tx_ring, first);
4729 
4730 	igb_tx_map(tx_ring, first, hdr_len);
4731 
4732 	/* Make sure there is space in the ring for the next send. */
4733 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4734 
4735 	return NETDEV_TX_OK;
4736 
4737 out_drop:
4738 	igb_unmap_and_free_tx_resource(tx_ring, first);
4739 
4740 	return NETDEV_TX_OK;
4741 }
4742 
4743 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4744 						    struct sk_buff *skb)
4745 {
4746 	unsigned int r_idx = skb->queue_mapping;
4747 
4748 	if (r_idx >= adapter->num_tx_queues)
4749 		r_idx = r_idx % adapter->num_tx_queues;
4750 
4751 	return adapter->tx_ring[r_idx];
4752 }
4753 
4754 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4755 				  struct net_device *netdev)
4756 {
4757 	struct igb_adapter *adapter = netdev_priv(netdev);
4758 
4759 	if (test_bit(__IGB_DOWN, &adapter->state)) {
4760 		dev_kfree_skb_any(skb);
4761 		return NETDEV_TX_OK;
4762 	}
4763 
4764 	if (skb->len <= 0) {
4765 		dev_kfree_skb_any(skb);
4766 		return NETDEV_TX_OK;
4767 	}
4768 
4769 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4770 	 * in order to meet this minimum size requirement.
4771 	 */
4772 	if (unlikely(skb->len < 17)) {
4773 		if (skb_pad(skb, 17 - skb->len))
4774 			return NETDEV_TX_OK;
4775 		skb->len = 17;
4776 		skb_set_tail_pointer(skb, 17);
4777 	}
4778 
4779 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4780 }
4781 
4782 /**
4783  *  igb_tx_timeout - Respond to a Tx Hang
4784  *  @netdev: network interface device structure
4785  **/
4786 static void igb_tx_timeout(struct net_device *netdev)
4787 {
4788 	struct igb_adapter *adapter = netdev_priv(netdev);
4789 	struct e1000_hw *hw = &adapter->hw;
4790 
4791 	/* Do the reset outside of interrupt context */
4792 	adapter->tx_timeout_count++;
4793 
4794 	if (hw->mac.type >= e1000_82580)
4795 		hw->dev_spec._82575.global_device_reset = true;
4796 
4797 	schedule_work(&adapter->reset_task);
4798 	wr32(E1000_EICS,
4799 	     (adapter->eims_enable_mask & ~adapter->eims_other));
4800 }
4801 
4802 static void igb_reset_task(struct work_struct *work)
4803 {
4804 	struct igb_adapter *adapter;
4805 	adapter = container_of(work, struct igb_adapter, reset_task);
4806 
4807 	igb_dump(adapter);
4808 	netdev_err(adapter->netdev, "Reset adapter\n");
4809 	igb_reinit_locked(adapter);
4810 }
4811 
4812 /**
4813  *  igb_get_stats64 - Get System Network Statistics
4814  *  @netdev: network interface device structure
4815  *  @stats: rtnl_link_stats64 pointer
4816  **/
4817 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4818 						struct rtnl_link_stats64 *stats)
4819 {
4820 	struct igb_adapter *adapter = netdev_priv(netdev);
4821 
4822 	spin_lock(&adapter->stats64_lock);
4823 	igb_update_stats(adapter, &adapter->stats64);
4824 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4825 	spin_unlock(&adapter->stats64_lock);
4826 
4827 	return stats;
4828 }
4829 
4830 /**
4831  *  igb_change_mtu - Change the Maximum Transfer Unit
4832  *  @netdev: network interface device structure
4833  *  @new_mtu: new value for maximum frame size
4834  *
4835  *  Returns 0 on success, negative on failure
4836  **/
4837 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4838 {
4839 	struct igb_adapter *adapter = netdev_priv(netdev);
4840 	struct pci_dev *pdev = adapter->pdev;
4841 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4842 
4843 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4844 		dev_err(&pdev->dev, "Invalid MTU setting\n");
4845 		return -EINVAL;
4846 	}
4847 
4848 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4849 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4850 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4851 		return -EINVAL;
4852 	}
4853 
4854 	/* adjust max frame to be at least the size of a standard frame */
4855 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4856 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4857 
4858 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4859 		msleep(1);
4860 
4861 	/* igb_down has a dependency on max_frame_size */
4862 	adapter->max_frame_size = max_frame;
4863 
4864 	if (netif_running(netdev))
4865 		igb_down(adapter);
4866 
4867 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4868 		 netdev->mtu, new_mtu);
4869 	netdev->mtu = new_mtu;
4870 
4871 	if (netif_running(netdev))
4872 		igb_up(adapter);
4873 	else
4874 		igb_reset(adapter);
4875 
4876 	clear_bit(__IGB_RESETTING, &adapter->state);
4877 
4878 	return 0;
4879 }
4880 
4881 /**
4882  *  igb_update_stats - Update the board statistics counters
4883  *  @adapter: board private structure
4884  **/
4885 void igb_update_stats(struct igb_adapter *adapter,
4886 		      struct rtnl_link_stats64 *net_stats)
4887 {
4888 	struct e1000_hw *hw = &adapter->hw;
4889 	struct pci_dev *pdev = adapter->pdev;
4890 	u32 reg, mpc;
4891 	u16 phy_tmp;
4892 	int i;
4893 	u64 bytes, packets;
4894 	unsigned int start;
4895 	u64 _bytes, _packets;
4896 
4897 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4898 
4899 	/* Prevent stats update while adapter is being reset, or if the pci
4900 	 * connection is down.
4901 	 */
4902 	if (adapter->link_speed == 0)
4903 		return;
4904 	if (pci_channel_offline(pdev))
4905 		return;
4906 
4907 	bytes = 0;
4908 	packets = 0;
4909 
4910 	rcu_read_lock();
4911 	for (i = 0; i < adapter->num_rx_queues; i++) {
4912 		u32 rqdpc = rd32(E1000_RQDPC(i));
4913 		struct igb_ring *ring = adapter->rx_ring[i];
4914 
4915 		if (rqdpc) {
4916 			ring->rx_stats.drops += rqdpc;
4917 			net_stats->rx_fifo_errors += rqdpc;
4918 		}
4919 
4920 		do {
4921 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4922 			_bytes = ring->rx_stats.bytes;
4923 			_packets = ring->rx_stats.packets;
4924 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4925 		bytes += _bytes;
4926 		packets += _packets;
4927 	}
4928 
4929 	net_stats->rx_bytes = bytes;
4930 	net_stats->rx_packets = packets;
4931 
4932 	bytes = 0;
4933 	packets = 0;
4934 	for (i = 0; i < adapter->num_tx_queues; i++) {
4935 		struct igb_ring *ring = adapter->tx_ring[i];
4936 		do {
4937 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4938 			_bytes = ring->tx_stats.bytes;
4939 			_packets = ring->tx_stats.packets;
4940 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4941 		bytes += _bytes;
4942 		packets += _packets;
4943 	}
4944 	net_stats->tx_bytes = bytes;
4945 	net_stats->tx_packets = packets;
4946 	rcu_read_unlock();
4947 
4948 	/* read stats registers */
4949 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4950 	adapter->stats.gprc += rd32(E1000_GPRC);
4951 	adapter->stats.gorc += rd32(E1000_GORCL);
4952 	rd32(E1000_GORCH); /* clear GORCL */
4953 	adapter->stats.bprc += rd32(E1000_BPRC);
4954 	adapter->stats.mprc += rd32(E1000_MPRC);
4955 	adapter->stats.roc += rd32(E1000_ROC);
4956 
4957 	adapter->stats.prc64 += rd32(E1000_PRC64);
4958 	adapter->stats.prc127 += rd32(E1000_PRC127);
4959 	adapter->stats.prc255 += rd32(E1000_PRC255);
4960 	adapter->stats.prc511 += rd32(E1000_PRC511);
4961 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
4962 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
4963 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
4964 	adapter->stats.sec += rd32(E1000_SEC);
4965 
4966 	mpc = rd32(E1000_MPC);
4967 	adapter->stats.mpc += mpc;
4968 	net_stats->rx_fifo_errors += mpc;
4969 	adapter->stats.scc += rd32(E1000_SCC);
4970 	adapter->stats.ecol += rd32(E1000_ECOL);
4971 	adapter->stats.mcc += rd32(E1000_MCC);
4972 	adapter->stats.latecol += rd32(E1000_LATECOL);
4973 	adapter->stats.dc += rd32(E1000_DC);
4974 	adapter->stats.rlec += rd32(E1000_RLEC);
4975 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
4976 	adapter->stats.xontxc += rd32(E1000_XONTXC);
4977 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4978 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4979 	adapter->stats.fcruc += rd32(E1000_FCRUC);
4980 	adapter->stats.gptc += rd32(E1000_GPTC);
4981 	adapter->stats.gotc += rd32(E1000_GOTCL);
4982 	rd32(E1000_GOTCH); /* clear GOTCL */
4983 	adapter->stats.rnbc += rd32(E1000_RNBC);
4984 	adapter->stats.ruc += rd32(E1000_RUC);
4985 	adapter->stats.rfc += rd32(E1000_RFC);
4986 	adapter->stats.rjc += rd32(E1000_RJC);
4987 	adapter->stats.tor += rd32(E1000_TORH);
4988 	adapter->stats.tot += rd32(E1000_TOTH);
4989 	adapter->stats.tpr += rd32(E1000_TPR);
4990 
4991 	adapter->stats.ptc64 += rd32(E1000_PTC64);
4992 	adapter->stats.ptc127 += rd32(E1000_PTC127);
4993 	adapter->stats.ptc255 += rd32(E1000_PTC255);
4994 	adapter->stats.ptc511 += rd32(E1000_PTC511);
4995 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4996 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4997 
4998 	adapter->stats.mptc += rd32(E1000_MPTC);
4999 	adapter->stats.bptc += rd32(E1000_BPTC);
5000 
5001 	adapter->stats.tpt += rd32(E1000_TPT);
5002 	adapter->stats.colc += rd32(E1000_COLC);
5003 
5004 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5005 	/* read internal phy specific stats */
5006 	reg = rd32(E1000_CTRL_EXT);
5007 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5008 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5009 
5010 		/* this stat has invalid values on i210/i211 */
5011 		if ((hw->mac.type != e1000_i210) &&
5012 		    (hw->mac.type != e1000_i211))
5013 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5014 	}
5015 
5016 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5017 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5018 
5019 	adapter->stats.iac += rd32(E1000_IAC);
5020 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5021 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5022 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5023 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5024 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5025 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5026 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5027 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5028 
5029 	/* Fill out the OS statistics structure */
5030 	net_stats->multicast = adapter->stats.mprc;
5031 	net_stats->collisions = adapter->stats.colc;
5032 
5033 	/* Rx Errors */
5034 
5035 	/* RLEC on some newer hardware can be incorrect so build
5036 	 * our own version based on RUC and ROC
5037 	 */
5038 	net_stats->rx_errors = adapter->stats.rxerrc +
5039 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5040 		adapter->stats.ruc + adapter->stats.roc +
5041 		adapter->stats.cexterr;
5042 	net_stats->rx_length_errors = adapter->stats.ruc +
5043 				      adapter->stats.roc;
5044 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5045 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5046 	net_stats->rx_missed_errors = adapter->stats.mpc;
5047 
5048 	/* Tx Errors */
5049 	net_stats->tx_errors = adapter->stats.ecol +
5050 			       adapter->stats.latecol;
5051 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5052 	net_stats->tx_window_errors = adapter->stats.latecol;
5053 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5054 
5055 	/* Tx Dropped needs to be maintained elsewhere */
5056 
5057 	/* Phy Stats */
5058 	if (hw->phy.media_type == e1000_media_type_copper) {
5059 		if ((adapter->link_speed == SPEED_1000) &&
5060 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5061 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5062 			adapter->phy_stats.idle_errors += phy_tmp;
5063 		}
5064 	}
5065 
5066 	/* Management Stats */
5067 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5068 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5069 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5070 
5071 	/* OS2BMC Stats */
5072 	reg = rd32(E1000_MANC);
5073 	if (reg & E1000_MANC_EN_BMC2OS) {
5074 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5075 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5076 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5077 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5078 	}
5079 }
5080 
5081 static irqreturn_t igb_msix_other(int irq, void *data)
5082 {
5083 	struct igb_adapter *adapter = data;
5084 	struct e1000_hw *hw = &adapter->hw;
5085 	u32 icr = rd32(E1000_ICR);
5086 	/* reading ICR causes bit 31 of EICR to be cleared */
5087 
5088 	if (icr & E1000_ICR_DRSTA)
5089 		schedule_work(&adapter->reset_task);
5090 
5091 	if (icr & E1000_ICR_DOUTSYNC) {
5092 		/* HW is reporting DMA is out of sync */
5093 		adapter->stats.doosync++;
5094 		/* The DMA Out of Sync is also indication of a spoof event
5095 		 * in IOV mode. Check the Wrong VM Behavior register to
5096 		 * see if it is really a spoof event.
5097 		 */
5098 		igb_check_wvbr(adapter);
5099 	}
5100 
5101 	/* Check for a mailbox event */
5102 	if (icr & E1000_ICR_VMMB)
5103 		igb_msg_task(adapter);
5104 
5105 	if (icr & E1000_ICR_LSC) {
5106 		hw->mac.get_link_status = 1;
5107 		/* guard against interrupt when we're going down */
5108 		if (!test_bit(__IGB_DOWN, &adapter->state))
5109 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5110 	}
5111 
5112 	if (icr & E1000_ICR_TS) {
5113 		u32 tsicr = rd32(E1000_TSICR);
5114 
5115 		if (tsicr & E1000_TSICR_TXTS) {
5116 			/* acknowledge the interrupt */
5117 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5118 			/* retrieve hardware timestamp */
5119 			schedule_work(&adapter->ptp_tx_work);
5120 		}
5121 	}
5122 
5123 	wr32(E1000_EIMS, adapter->eims_other);
5124 
5125 	return IRQ_HANDLED;
5126 }
5127 
5128 static void igb_write_itr(struct igb_q_vector *q_vector)
5129 {
5130 	struct igb_adapter *adapter = q_vector->adapter;
5131 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5132 
5133 	if (!q_vector->set_itr)
5134 		return;
5135 
5136 	if (!itr_val)
5137 		itr_val = 0x4;
5138 
5139 	if (adapter->hw.mac.type == e1000_82575)
5140 		itr_val |= itr_val << 16;
5141 	else
5142 		itr_val |= E1000_EITR_CNT_IGNR;
5143 
5144 	writel(itr_val, q_vector->itr_register);
5145 	q_vector->set_itr = 0;
5146 }
5147 
5148 static irqreturn_t igb_msix_ring(int irq, void *data)
5149 {
5150 	struct igb_q_vector *q_vector = data;
5151 
5152 	/* Write the ITR value calculated from the previous interrupt. */
5153 	igb_write_itr(q_vector);
5154 
5155 	napi_schedule(&q_vector->napi);
5156 
5157 	return IRQ_HANDLED;
5158 }
5159 
5160 #ifdef CONFIG_IGB_DCA
5161 static void igb_update_tx_dca(struct igb_adapter *adapter,
5162 			      struct igb_ring *tx_ring,
5163 			      int cpu)
5164 {
5165 	struct e1000_hw *hw = &adapter->hw;
5166 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5167 
5168 	if (hw->mac.type != e1000_82575)
5169 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5170 
5171 	/* We can enable relaxed ordering for reads, but not writes when
5172 	 * DCA is enabled.  This is due to a known issue in some chipsets
5173 	 * which will cause the DCA tag to be cleared.
5174 	 */
5175 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5176 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5177 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5178 
5179 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5180 }
5181 
5182 static void igb_update_rx_dca(struct igb_adapter *adapter,
5183 			      struct igb_ring *rx_ring,
5184 			      int cpu)
5185 {
5186 	struct e1000_hw *hw = &adapter->hw;
5187 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5188 
5189 	if (hw->mac.type != e1000_82575)
5190 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5191 
5192 	/* We can enable relaxed ordering for reads, but not writes when
5193 	 * DCA is enabled.  This is due to a known issue in some chipsets
5194 	 * which will cause the DCA tag to be cleared.
5195 	 */
5196 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5197 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5198 
5199 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5200 }
5201 
5202 static void igb_update_dca(struct igb_q_vector *q_vector)
5203 {
5204 	struct igb_adapter *adapter = q_vector->adapter;
5205 	int cpu = get_cpu();
5206 
5207 	if (q_vector->cpu == cpu)
5208 		goto out_no_update;
5209 
5210 	if (q_vector->tx.ring)
5211 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5212 
5213 	if (q_vector->rx.ring)
5214 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5215 
5216 	q_vector->cpu = cpu;
5217 out_no_update:
5218 	put_cpu();
5219 }
5220 
5221 static void igb_setup_dca(struct igb_adapter *adapter)
5222 {
5223 	struct e1000_hw *hw = &adapter->hw;
5224 	int i;
5225 
5226 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5227 		return;
5228 
5229 	/* Always use CB2 mode, difference is masked in the CB driver. */
5230 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5231 
5232 	for (i = 0; i < adapter->num_q_vectors; i++) {
5233 		adapter->q_vector[i]->cpu = -1;
5234 		igb_update_dca(adapter->q_vector[i]);
5235 	}
5236 }
5237 
5238 static int __igb_notify_dca(struct device *dev, void *data)
5239 {
5240 	struct net_device *netdev = dev_get_drvdata(dev);
5241 	struct igb_adapter *adapter = netdev_priv(netdev);
5242 	struct pci_dev *pdev = adapter->pdev;
5243 	struct e1000_hw *hw = &adapter->hw;
5244 	unsigned long event = *(unsigned long *)data;
5245 
5246 	switch (event) {
5247 	case DCA_PROVIDER_ADD:
5248 		/* if already enabled, don't do it again */
5249 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5250 			break;
5251 		if (dca_add_requester(dev) == 0) {
5252 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5253 			dev_info(&pdev->dev, "DCA enabled\n");
5254 			igb_setup_dca(adapter);
5255 			break;
5256 		}
5257 		/* Fall Through since DCA is disabled. */
5258 	case DCA_PROVIDER_REMOVE:
5259 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5260 			/* without this a class_device is left
5261 			 * hanging around in the sysfs model
5262 			 */
5263 			dca_remove_requester(dev);
5264 			dev_info(&pdev->dev, "DCA disabled\n");
5265 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5266 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5267 		}
5268 		break;
5269 	}
5270 
5271 	return 0;
5272 }
5273 
5274 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5275 			  void *p)
5276 {
5277 	int ret_val;
5278 
5279 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5280 					 __igb_notify_dca);
5281 
5282 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5283 }
5284 #endif /* CONFIG_IGB_DCA */
5285 
5286 #ifdef CONFIG_PCI_IOV
5287 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5288 {
5289 	unsigned char mac_addr[ETH_ALEN];
5290 
5291 	eth_zero_addr(mac_addr);
5292 	igb_set_vf_mac(adapter, vf, mac_addr);
5293 
5294 	/* By default spoof check is enabled for all VFs */
5295 	adapter->vf_data[vf].spoofchk_enabled = true;
5296 
5297 	return 0;
5298 }
5299 
5300 #endif
5301 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5302 {
5303 	struct e1000_hw *hw = &adapter->hw;
5304 	u32 ping;
5305 	int i;
5306 
5307 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5308 		ping = E1000_PF_CONTROL_MSG;
5309 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5310 			ping |= E1000_VT_MSGTYPE_CTS;
5311 		igb_write_mbx(hw, &ping, 1, i);
5312 	}
5313 }
5314 
5315 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5316 {
5317 	struct e1000_hw *hw = &adapter->hw;
5318 	u32 vmolr = rd32(E1000_VMOLR(vf));
5319 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5320 
5321 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5322 			    IGB_VF_FLAG_MULTI_PROMISC);
5323 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5324 
5325 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5326 		vmolr |= E1000_VMOLR_MPME;
5327 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5328 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5329 	} else {
5330 		/* if we have hashes and we are clearing a multicast promisc
5331 		 * flag we need to write the hashes to the MTA as this step
5332 		 * was previously skipped
5333 		 */
5334 		if (vf_data->num_vf_mc_hashes > 30) {
5335 			vmolr |= E1000_VMOLR_MPME;
5336 		} else if (vf_data->num_vf_mc_hashes) {
5337 			int j;
5338 			vmolr |= E1000_VMOLR_ROMPE;
5339 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5340 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5341 		}
5342 	}
5343 
5344 	wr32(E1000_VMOLR(vf), vmolr);
5345 
5346 	/* there are flags left unprocessed, likely not supported */
5347 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5348 		return -EINVAL;
5349 
5350 	return 0;
5351 }
5352 
5353 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5354 				  u32 *msgbuf, u32 vf)
5355 {
5356 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5357 	u16 *hash_list = (u16 *)&msgbuf[1];
5358 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5359 	int i;
5360 
5361 	/* salt away the number of multicast addresses assigned
5362 	 * to this VF for later use to restore when the PF multi cast
5363 	 * list changes
5364 	 */
5365 	vf_data->num_vf_mc_hashes = n;
5366 
5367 	/* only up to 30 hash values supported */
5368 	if (n > 30)
5369 		n = 30;
5370 
5371 	/* store the hashes for later use */
5372 	for (i = 0; i < n; i++)
5373 		vf_data->vf_mc_hashes[i] = hash_list[i];
5374 
5375 	/* Flush and reset the mta with the new values */
5376 	igb_set_rx_mode(adapter->netdev);
5377 
5378 	return 0;
5379 }
5380 
5381 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5382 {
5383 	struct e1000_hw *hw = &adapter->hw;
5384 	struct vf_data_storage *vf_data;
5385 	int i, j;
5386 
5387 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5388 		u32 vmolr = rd32(E1000_VMOLR(i));
5389 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5390 
5391 		vf_data = &adapter->vf_data[i];
5392 
5393 		if ((vf_data->num_vf_mc_hashes > 30) ||
5394 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5395 			vmolr |= E1000_VMOLR_MPME;
5396 		} else if (vf_data->num_vf_mc_hashes) {
5397 			vmolr |= E1000_VMOLR_ROMPE;
5398 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5399 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5400 		}
5401 		wr32(E1000_VMOLR(i), vmolr);
5402 	}
5403 }
5404 
5405 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5406 {
5407 	struct e1000_hw *hw = &adapter->hw;
5408 	u32 pool_mask, reg, vid;
5409 	int i;
5410 
5411 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5412 
5413 	/* Find the vlan filter for this id */
5414 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5415 		reg = rd32(E1000_VLVF(i));
5416 
5417 		/* remove the vf from the pool */
5418 		reg &= ~pool_mask;
5419 
5420 		/* if pool is empty then remove entry from vfta */
5421 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5422 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5423 			reg = 0;
5424 			vid = reg & E1000_VLVF_VLANID_MASK;
5425 			igb_vfta_set(hw, vid, false);
5426 		}
5427 
5428 		wr32(E1000_VLVF(i), reg);
5429 	}
5430 
5431 	adapter->vf_data[vf].vlans_enabled = 0;
5432 }
5433 
5434 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5435 {
5436 	struct e1000_hw *hw = &adapter->hw;
5437 	u32 reg, i;
5438 
5439 	/* The vlvf table only exists on 82576 hardware and newer */
5440 	if (hw->mac.type < e1000_82576)
5441 		return -1;
5442 
5443 	/* we only need to do this if VMDq is enabled */
5444 	if (!adapter->vfs_allocated_count)
5445 		return -1;
5446 
5447 	/* Find the vlan filter for this id */
5448 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5449 		reg = rd32(E1000_VLVF(i));
5450 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5451 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5452 			break;
5453 	}
5454 
5455 	if (add) {
5456 		if (i == E1000_VLVF_ARRAY_SIZE) {
5457 			/* Did not find a matching VLAN ID entry that was
5458 			 * enabled.  Search for a free filter entry, i.e.
5459 			 * one without the enable bit set
5460 			 */
5461 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5462 				reg = rd32(E1000_VLVF(i));
5463 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5464 					break;
5465 			}
5466 		}
5467 		if (i < E1000_VLVF_ARRAY_SIZE) {
5468 			/* Found an enabled/available entry */
5469 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5470 
5471 			/* if !enabled we need to set this up in vfta */
5472 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5473 				/* add VID to filter table */
5474 				igb_vfta_set(hw, vid, true);
5475 				reg |= E1000_VLVF_VLANID_ENABLE;
5476 			}
5477 			reg &= ~E1000_VLVF_VLANID_MASK;
5478 			reg |= vid;
5479 			wr32(E1000_VLVF(i), reg);
5480 
5481 			/* do not modify RLPML for PF devices */
5482 			if (vf >= adapter->vfs_allocated_count)
5483 				return 0;
5484 
5485 			if (!adapter->vf_data[vf].vlans_enabled) {
5486 				u32 size;
5487 				reg = rd32(E1000_VMOLR(vf));
5488 				size = reg & E1000_VMOLR_RLPML_MASK;
5489 				size += 4;
5490 				reg &= ~E1000_VMOLR_RLPML_MASK;
5491 				reg |= size;
5492 				wr32(E1000_VMOLR(vf), reg);
5493 			}
5494 
5495 			adapter->vf_data[vf].vlans_enabled++;
5496 		}
5497 	} else {
5498 		if (i < E1000_VLVF_ARRAY_SIZE) {
5499 			/* remove vf from the pool */
5500 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5501 			/* if pool is empty then remove entry from vfta */
5502 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5503 				reg = 0;
5504 				igb_vfta_set(hw, vid, false);
5505 			}
5506 			wr32(E1000_VLVF(i), reg);
5507 
5508 			/* do not modify RLPML for PF devices */
5509 			if (vf >= adapter->vfs_allocated_count)
5510 				return 0;
5511 
5512 			adapter->vf_data[vf].vlans_enabled--;
5513 			if (!adapter->vf_data[vf].vlans_enabled) {
5514 				u32 size;
5515 				reg = rd32(E1000_VMOLR(vf));
5516 				size = reg & E1000_VMOLR_RLPML_MASK;
5517 				size -= 4;
5518 				reg &= ~E1000_VMOLR_RLPML_MASK;
5519 				reg |= size;
5520 				wr32(E1000_VMOLR(vf), reg);
5521 			}
5522 		}
5523 	}
5524 	return 0;
5525 }
5526 
5527 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5528 {
5529 	struct e1000_hw *hw = &adapter->hw;
5530 
5531 	if (vid)
5532 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5533 	else
5534 		wr32(E1000_VMVIR(vf), 0);
5535 }
5536 
5537 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5538 			       int vf, u16 vlan, u8 qos)
5539 {
5540 	int err = 0;
5541 	struct igb_adapter *adapter = netdev_priv(netdev);
5542 
5543 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5544 		return -EINVAL;
5545 	if (vlan || qos) {
5546 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5547 		if (err)
5548 			goto out;
5549 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5550 		igb_set_vmolr(adapter, vf, !vlan);
5551 		adapter->vf_data[vf].pf_vlan = vlan;
5552 		adapter->vf_data[vf].pf_qos = qos;
5553 		dev_info(&adapter->pdev->dev,
5554 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5555 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5556 			dev_warn(&adapter->pdev->dev,
5557 				 "The VF VLAN has been set, but the PF device is not up.\n");
5558 			dev_warn(&adapter->pdev->dev,
5559 				 "Bring the PF device up before attempting to use the VF device.\n");
5560 		}
5561 	} else {
5562 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5563 			     false, vf);
5564 		igb_set_vmvir(adapter, vlan, vf);
5565 		igb_set_vmolr(adapter, vf, true);
5566 		adapter->vf_data[vf].pf_vlan = 0;
5567 		adapter->vf_data[vf].pf_qos = 0;
5568 	}
5569 out:
5570 	return err;
5571 }
5572 
5573 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5574 {
5575 	struct e1000_hw *hw = &adapter->hw;
5576 	int i;
5577 	u32 reg;
5578 
5579 	/* Find the vlan filter for this id */
5580 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5581 		reg = rd32(E1000_VLVF(i));
5582 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5583 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5584 			break;
5585 	}
5586 
5587 	if (i >= E1000_VLVF_ARRAY_SIZE)
5588 		i = -1;
5589 
5590 	return i;
5591 }
5592 
5593 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5594 {
5595 	struct e1000_hw *hw = &adapter->hw;
5596 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5597 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5598 	int err = 0;
5599 
5600 	/* If in promiscuous mode we need to make sure the PF also has
5601 	 * the VLAN filter set.
5602 	 */
5603 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5604 		err = igb_vlvf_set(adapter, vid, add,
5605 				   adapter->vfs_allocated_count);
5606 	if (err)
5607 		goto out;
5608 
5609 	err = igb_vlvf_set(adapter, vid, add, vf);
5610 
5611 	if (err)
5612 		goto out;
5613 
5614 	/* Go through all the checks to see if the VLAN filter should
5615 	 * be wiped completely.
5616 	 */
5617 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5618 		u32 vlvf, bits;
5619 
5620 		int regndx = igb_find_vlvf_entry(adapter, vid);
5621 		if (regndx < 0)
5622 			goto out;
5623 		/* See if any other pools are set for this VLAN filter
5624 		 * entry other than the PF.
5625 		 */
5626 		vlvf = bits = rd32(E1000_VLVF(regndx));
5627 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5628 			      adapter->vfs_allocated_count);
5629 		/* If the filter was removed then ensure PF pool bit
5630 		 * is cleared if the PF only added itself to the pool
5631 		 * because the PF is in promiscuous mode.
5632 		 */
5633 		if ((vlvf & VLAN_VID_MASK) == vid &&
5634 		    !test_bit(vid, adapter->active_vlans) &&
5635 		    !bits)
5636 			igb_vlvf_set(adapter, vid, add,
5637 				     adapter->vfs_allocated_count);
5638 	}
5639 
5640 out:
5641 	return err;
5642 }
5643 
5644 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5645 {
5646 	/* clear flags - except flag that indicates PF has set the MAC */
5647 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5648 	adapter->vf_data[vf].last_nack = jiffies;
5649 
5650 	/* reset offloads to defaults */
5651 	igb_set_vmolr(adapter, vf, true);
5652 
5653 	/* reset vlans for device */
5654 	igb_clear_vf_vfta(adapter, vf);
5655 	if (adapter->vf_data[vf].pf_vlan)
5656 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5657 				    adapter->vf_data[vf].pf_vlan,
5658 				    adapter->vf_data[vf].pf_qos);
5659 	else
5660 		igb_clear_vf_vfta(adapter, vf);
5661 
5662 	/* reset multicast table array for vf */
5663 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5664 
5665 	/* Flush and reset the mta with the new values */
5666 	igb_set_rx_mode(adapter->netdev);
5667 }
5668 
5669 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5670 {
5671 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5672 
5673 	/* clear mac address as we were hotplug removed/added */
5674 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5675 		eth_zero_addr(vf_mac);
5676 
5677 	/* process remaining reset events */
5678 	igb_vf_reset(adapter, vf);
5679 }
5680 
5681 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5682 {
5683 	struct e1000_hw *hw = &adapter->hw;
5684 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5685 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5686 	u32 reg, msgbuf[3];
5687 	u8 *addr = (u8 *)(&msgbuf[1]);
5688 
5689 	/* process all the same items cleared in a function level reset */
5690 	igb_vf_reset(adapter, vf);
5691 
5692 	/* set vf mac address */
5693 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5694 
5695 	/* enable transmit and receive for vf */
5696 	reg = rd32(E1000_VFTE);
5697 	wr32(E1000_VFTE, reg | (1 << vf));
5698 	reg = rd32(E1000_VFRE);
5699 	wr32(E1000_VFRE, reg | (1 << vf));
5700 
5701 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5702 
5703 	/* reply to reset with ack and vf mac address */
5704 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5705 	memcpy(addr, vf_mac, ETH_ALEN);
5706 	igb_write_mbx(hw, msgbuf, 3, vf);
5707 }
5708 
5709 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5710 {
5711 	/* The VF MAC Address is stored in a packed array of bytes
5712 	 * starting at the second 32 bit word of the msg array
5713 	 */
5714 	unsigned char *addr = (char *)&msg[1];
5715 	int err = -1;
5716 
5717 	if (is_valid_ether_addr(addr))
5718 		err = igb_set_vf_mac(adapter, vf, addr);
5719 
5720 	return err;
5721 }
5722 
5723 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5724 {
5725 	struct e1000_hw *hw = &adapter->hw;
5726 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5727 	u32 msg = E1000_VT_MSGTYPE_NACK;
5728 
5729 	/* if device isn't clear to send it shouldn't be reading either */
5730 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5731 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5732 		igb_write_mbx(hw, &msg, 1, vf);
5733 		vf_data->last_nack = jiffies;
5734 	}
5735 }
5736 
5737 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5738 {
5739 	struct pci_dev *pdev = adapter->pdev;
5740 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5741 	struct e1000_hw *hw = &adapter->hw;
5742 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5743 	s32 retval;
5744 
5745 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5746 
5747 	if (retval) {
5748 		/* if receive failed revoke VF CTS stats and restart init */
5749 		dev_err(&pdev->dev, "Error receiving message from VF\n");
5750 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
5751 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5752 			return;
5753 		goto out;
5754 	}
5755 
5756 	/* this is a message we already processed, do nothing */
5757 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5758 		return;
5759 
5760 	/* until the vf completes a reset it should not be
5761 	 * allowed to start any configuration.
5762 	 */
5763 	if (msgbuf[0] == E1000_VF_RESET) {
5764 		igb_vf_reset_msg(adapter, vf);
5765 		return;
5766 	}
5767 
5768 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5769 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5770 			return;
5771 		retval = -1;
5772 		goto out;
5773 	}
5774 
5775 	switch ((msgbuf[0] & 0xFFFF)) {
5776 	case E1000_VF_SET_MAC_ADDR:
5777 		retval = -EINVAL;
5778 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5779 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5780 		else
5781 			dev_warn(&pdev->dev,
5782 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5783 				 vf);
5784 		break;
5785 	case E1000_VF_SET_PROMISC:
5786 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5787 		break;
5788 	case E1000_VF_SET_MULTICAST:
5789 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5790 		break;
5791 	case E1000_VF_SET_LPE:
5792 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5793 		break;
5794 	case E1000_VF_SET_VLAN:
5795 		retval = -1;
5796 		if (vf_data->pf_vlan)
5797 			dev_warn(&pdev->dev,
5798 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5799 				 vf);
5800 		else
5801 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5802 		break;
5803 	default:
5804 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5805 		retval = -1;
5806 		break;
5807 	}
5808 
5809 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5810 out:
5811 	/* notify the VF of the results of what it sent us */
5812 	if (retval)
5813 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5814 	else
5815 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5816 
5817 	igb_write_mbx(hw, msgbuf, 1, vf);
5818 }
5819 
5820 static void igb_msg_task(struct igb_adapter *adapter)
5821 {
5822 	struct e1000_hw *hw = &adapter->hw;
5823 	u32 vf;
5824 
5825 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5826 		/* process any reset requests */
5827 		if (!igb_check_for_rst(hw, vf))
5828 			igb_vf_reset_event(adapter, vf);
5829 
5830 		/* process any messages pending */
5831 		if (!igb_check_for_msg(hw, vf))
5832 			igb_rcv_msg_from_vf(adapter, vf);
5833 
5834 		/* process any acks */
5835 		if (!igb_check_for_ack(hw, vf))
5836 			igb_rcv_ack_from_vf(adapter, vf);
5837 	}
5838 }
5839 
5840 /**
5841  *  igb_set_uta - Set unicast filter table address
5842  *  @adapter: board private structure
5843  *
5844  *  The unicast table address is a register array of 32-bit registers.
5845  *  The table is meant to be used in a way similar to how the MTA is used
5846  *  however due to certain limitations in the hardware it is necessary to
5847  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5848  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5849  **/
5850 static void igb_set_uta(struct igb_adapter *adapter)
5851 {
5852 	struct e1000_hw *hw = &adapter->hw;
5853 	int i;
5854 
5855 	/* The UTA table only exists on 82576 hardware and newer */
5856 	if (hw->mac.type < e1000_82576)
5857 		return;
5858 
5859 	/* we only need to do this if VMDq is enabled */
5860 	if (!adapter->vfs_allocated_count)
5861 		return;
5862 
5863 	for (i = 0; i < hw->mac.uta_reg_count; i++)
5864 		array_wr32(E1000_UTA, i, ~0);
5865 }
5866 
5867 /**
5868  *  igb_intr_msi - Interrupt Handler
5869  *  @irq: interrupt number
5870  *  @data: pointer to a network interface device structure
5871  **/
5872 static irqreturn_t igb_intr_msi(int irq, void *data)
5873 {
5874 	struct igb_adapter *adapter = data;
5875 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5876 	struct e1000_hw *hw = &adapter->hw;
5877 	/* read ICR disables interrupts using IAM */
5878 	u32 icr = rd32(E1000_ICR);
5879 
5880 	igb_write_itr(q_vector);
5881 
5882 	if (icr & E1000_ICR_DRSTA)
5883 		schedule_work(&adapter->reset_task);
5884 
5885 	if (icr & E1000_ICR_DOUTSYNC) {
5886 		/* HW is reporting DMA is out of sync */
5887 		adapter->stats.doosync++;
5888 	}
5889 
5890 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5891 		hw->mac.get_link_status = 1;
5892 		if (!test_bit(__IGB_DOWN, &adapter->state))
5893 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5894 	}
5895 
5896 	if (icr & E1000_ICR_TS) {
5897 		u32 tsicr = rd32(E1000_TSICR);
5898 
5899 		if (tsicr & E1000_TSICR_TXTS) {
5900 			/* acknowledge the interrupt */
5901 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5902 			/* retrieve hardware timestamp */
5903 			schedule_work(&adapter->ptp_tx_work);
5904 		}
5905 	}
5906 
5907 	napi_schedule(&q_vector->napi);
5908 
5909 	return IRQ_HANDLED;
5910 }
5911 
5912 /**
5913  *  igb_intr - Legacy Interrupt Handler
5914  *  @irq: interrupt number
5915  *  @data: pointer to a network interface device structure
5916  **/
5917 static irqreturn_t igb_intr(int irq, void *data)
5918 {
5919 	struct igb_adapter *adapter = data;
5920 	struct igb_q_vector *q_vector = adapter->q_vector[0];
5921 	struct e1000_hw *hw = &adapter->hw;
5922 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5923 	 * need for the IMC write
5924 	 */
5925 	u32 icr = rd32(E1000_ICR);
5926 
5927 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5928 	 * not set, then the adapter didn't send an interrupt
5929 	 */
5930 	if (!(icr & E1000_ICR_INT_ASSERTED))
5931 		return IRQ_NONE;
5932 
5933 	igb_write_itr(q_vector);
5934 
5935 	if (icr & E1000_ICR_DRSTA)
5936 		schedule_work(&adapter->reset_task);
5937 
5938 	if (icr & E1000_ICR_DOUTSYNC) {
5939 		/* HW is reporting DMA is out of sync */
5940 		adapter->stats.doosync++;
5941 	}
5942 
5943 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5944 		hw->mac.get_link_status = 1;
5945 		/* guard against interrupt when we're going down */
5946 		if (!test_bit(__IGB_DOWN, &adapter->state))
5947 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5948 	}
5949 
5950 	if (icr & E1000_ICR_TS) {
5951 		u32 tsicr = rd32(E1000_TSICR);
5952 
5953 		if (tsicr & E1000_TSICR_TXTS) {
5954 			/* acknowledge the interrupt */
5955 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5956 			/* retrieve hardware timestamp */
5957 			schedule_work(&adapter->ptp_tx_work);
5958 		}
5959 	}
5960 
5961 	napi_schedule(&q_vector->napi);
5962 
5963 	return IRQ_HANDLED;
5964 }
5965 
5966 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5967 {
5968 	struct igb_adapter *adapter = q_vector->adapter;
5969 	struct e1000_hw *hw = &adapter->hw;
5970 
5971 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5972 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5973 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5974 			igb_set_itr(q_vector);
5975 		else
5976 			igb_update_ring_itr(q_vector);
5977 	}
5978 
5979 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5980 		if (adapter->msix_entries)
5981 			wr32(E1000_EIMS, q_vector->eims_value);
5982 		else
5983 			igb_irq_enable(adapter);
5984 	}
5985 }
5986 
5987 /**
5988  *  igb_poll - NAPI Rx polling callback
5989  *  @napi: napi polling structure
5990  *  @budget: count of how many packets we should handle
5991  **/
5992 static int igb_poll(struct napi_struct *napi, int budget)
5993 {
5994 	struct igb_q_vector *q_vector = container_of(napi,
5995 						     struct igb_q_vector,
5996 						     napi);
5997 	bool clean_complete = true;
5998 
5999 #ifdef CONFIG_IGB_DCA
6000 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6001 		igb_update_dca(q_vector);
6002 #endif
6003 	if (q_vector->tx.ring)
6004 		clean_complete = igb_clean_tx_irq(q_vector);
6005 
6006 	if (q_vector->rx.ring)
6007 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6008 
6009 	/* If all work not completed, return budget and keep polling */
6010 	if (!clean_complete)
6011 		return budget;
6012 
6013 	/* If not enough Rx work done, exit the polling mode */
6014 	napi_complete(napi);
6015 	igb_ring_irq_enable(q_vector);
6016 
6017 	return 0;
6018 }
6019 
6020 /**
6021  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6022  *  @q_vector: pointer to q_vector containing needed info
6023  *
6024  *  returns true if ring is completely cleaned
6025  **/
6026 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6027 {
6028 	struct igb_adapter *adapter = q_vector->adapter;
6029 	struct igb_ring *tx_ring = q_vector->tx.ring;
6030 	struct igb_tx_buffer *tx_buffer;
6031 	union e1000_adv_tx_desc *tx_desc;
6032 	unsigned int total_bytes = 0, total_packets = 0;
6033 	unsigned int budget = q_vector->tx.work_limit;
6034 	unsigned int i = tx_ring->next_to_clean;
6035 
6036 	if (test_bit(__IGB_DOWN, &adapter->state))
6037 		return true;
6038 
6039 	tx_buffer = &tx_ring->tx_buffer_info[i];
6040 	tx_desc = IGB_TX_DESC(tx_ring, i);
6041 	i -= tx_ring->count;
6042 
6043 	do {
6044 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6045 
6046 		/* if next_to_watch is not set then there is no work pending */
6047 		if (!eop_desc)
6048 			break;
6049 
6050 		/* prevent any other reads prior to eop_desc */
6051 		read_barrier_depends();
6052 
6053 		/* if DD is not set pending work has not been completed */
6054 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6055 			break;
6056 
6057 		/* clear next_to_watch to prevent false hangs */
6058 		tx_buffer->next_to_watch = NULL;
6059 
6060 		/* update the statistics for this packet */
6061 		total_bytes += tx_buffer->bytecount;
6062 		total_packets += tx_buffer->gso_segs;
6063 
6064 		/* free the skb */
6065 		dev_kfree_skb_any(tx_buffer->skb);
6066 
6067 		/* unmap skb header data */
6068 		dma_unmap_single(tx_ring->dev,
6069 				 dma_unmap_addr(tx_buffer, dma),
6070 				 dma_unmap_len(tx_buffer, len),
6071 				 DMA_TO_DEVICE);
6072 
6073 		/* clear tx_buffer data */
6074 		tx_buffer->skb = NULL;
6075 		dma_unmap_len_set(tx_buffer, len, 0);
6076 
6077 		/* clear last DMA location and unmap remaining buffers */
6078 		while (tx_desc != eop_desc) {
6079 			tx_buffer++;
6080 			tx_desc++;
6081 			i++;
6082 			if (unlikely(!i)) {
6083 				i -= tx_ring->count;
6084 				tx_buffer = tx_ring->tx_buffer_info;
6085 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6086 			}
6087 
6088 			/* unmap any remaining paged data */
6089 			if (dma_unmap_len(tx_buffer, len)) {
6090 				dma_unmap_page(tx_ring->dev,
6091 					       dma_unmap_addr(tx_buffer, dma),
6092 					       dma_unmap_len(tx_buffer, len),
6093 					       DMA_TO_DEVICE);
6094 				dma_unmap_len_set(tx_buffer, len, 0);
6095 			}
6096 		}
6097 
6098 		/* move us one more past the eop_desc for start of next pkt */
6099 		tx_buffer++;
6100 		tx_desc++;
6101 		i++;
6102 		if (unlikely(!i)) {
6103 			i -= tx_ring->count;
6104 			tx_buffer = tx_ring->tx_buffer_info;
6105 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6106 		}
6107 
6108 		/* issue prefetch for next Tx descriptor */
6109 		prefetch(tx_desc);
6110 
6111 		/* update budget accounting */
6112 		budget--;
6113 	} while (likely(budget));
6114 
6115 	netdev_tx_completed_queue(txring_txq(tx_ring),
6116 				  total_packets, total_bytes);
6117 	i += tx_ring->count;
6118 	tx_ring->next_to_clean = i;
6119 	u64_stats_update_begin(&tx_ring->tx_syncp);
6120 	tx_ring->tx_stats.bytes += total_bytes;
6121 	tx_ring->tx_stats.packets += total_packets;
6122 	u64_stats_update_end(&tx_ring->tx_syncp);
6123 	q_vector->tx.total_bytes += total_bytes;
6124 	q_vector->tx.total_packets += total_packets;
6125 
6126 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6127 		struct e1000_hw *hw = &adapter->hw;
6128 
6129 		/* Detect a transmit hang in hardware, this serializes the
6130 		 * check with the clearing of time_stamp and movement of i
6131 		 */
6132 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6133 		if (tx_buffer->next_to_watch &&
6134 		    time_after(jiffies, tx_buffer->time_stamp +
6135 			       (adapter->tx_timeout_factor * HZ)) &&
6136 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6137 
6138 			/* detected Tx unit hang */
6139 			dev_err(tx_ring->dev,
6140 				"Detected Tx Unit Hang\n"
6141 				"  Tx Queue             <%d>\n"
6142 				"  TDH                  <%x>\n"
6143 				"  TDT                  <%x>\n"
6144 				"  next_to_use          <%x>\n"
6145 				"  next_to_clean        <%x>\n"
6146 				"buffer_info[next_to_clean]\n"
6147 				"  time_stamp           <%lx>\n"
6148 				"  next_to_watch        <%p>\n"
6149 				"  jiffies              <%lx>\n"
6150 				"  desc.status          <%x>\n",
6151 				tx_ring->queue_index,
6152 				rd32(E1000_TDH(tx_ring->reg_idx)),
6153 				readl(tx_ring->tail),
6154 				tx_ring->next_to_use,
6155 				tx_ring->next_to_clean,
6156 				tx_buffer->time_stamp,
6157 				tx_buffer->next_to_watch,
6158 				jiffies,
6159 				tx_buffer->next_to_watch->wb.status);
6160 			netif_stop_subqueue(tx_ring->netdev,
6161 					    tx_ring->queue_index);
6162 
6163 			/* we are about to reset, no point in enabling stuff */
6164 			return true;
6165 		}
6166 	}
6167 
6168 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6169 	if (unlikely(total_packets &&
6170 	    netif_carrier_ok(tx_ring->netdev) &&
6171 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6172 		/* Make sure that anybody stopping the queue after this
6173 		 * sees the new next_to_clean.
6174 		 */
6175 		smp_mb();
6176 		if (__netif_subqueue_stopped(tx_ring->netdev,
6177 					     tx_ring->queue_index) &&
6178 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6179 			netif_wake_subqueue(tx_ring->netdev,
6180 					    tx_ring->queue_index);
6181 
6182 			u64_stats_update_begin(&tx_ring->tx_syncp);
6183 			tx_ring->tx_stats.restart_queue++;
6184 			u64_stats_update_end(&tx_ring->tx_syncp);
6185 		}
6186 	}
6187 
6188 	return !!budget;
6189 }
6190 
6191 /**
6192  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6193  *  @rx_ring: rx descriptor ring to store buffers on
6194  *  @old_buff: donor buffer to have page reused
6195  *
6196  *  Synchronizes page for reuse by the adapter
6197  **/
6198 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6199 			      struct igb_rx_buffer *old_buff)
6200 {
6201 	struct igb_rx_buffer *new_buff;
6202 	u16 nta = rx_ring->next_to_alloc;
6203 
6204 	new_buff = &rx_ring->rx_buffer_info[nta];
6205 
6206 	/* update, and store next to alloc */
6207 	nta++;
6208 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6209 
6210 	/* transfer page from old buffer to new buffer */
6211 	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6212 
6213 	/* sync the buffer for use by the device */
6214 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6215 					 old_buff->page_offset,
6216 					 IGB_RX_BUFSZ,
6217 					 DMA_FROM_DEVICE);
6218 }
6219 
6220 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6221 				  struct page *page,
6222 				  unsigned int truesize)
6223 {
6224 	/* avoid re-using remote pages */
6225 	if (unlikely(page_to_nid(page) != numa_node_id()))
6226 		return false;
6227 
6228 #if (PAGE_SIZE < 8192)
6229 	/* if we are only owner of page we can reuse it */
6230 	if (unlikely(page_count(page) != 1))
6231 		return false;
6232 
6233 	/* flip page offset to other buffer */
6234 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6235 
6236 	/* since we are the only owner of the page and we need to
6237 	 * increment it, just set the value to 2 in order to avoid
6238 	 * an unnecessary locked operation
6239 	 */
6240 	atomic_set(&page->_count, 2);
6241 #else
6242 	/* move offset up to the next cache line */
6243 	rx_buffer->page_offset += truesize;
6244 
6245 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6246 		return false;
6247 
6248 	/* bump ref count on page before it is given to the stack */
6249 	get_page(page);
6250 #endif
6251 
6252 	return true;
6253 }
6254 
6255 /**
6256  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6257  *  @rx_ring: rx descriptor ring to transact packets on
6258  *  @rx_buffer: buffer containing page to add
6259  *  @rx_desc: descriptor containing length of buffer written by hardware
6260  *  @skb: sk_buff to place the data into
6261  *
6262  *  This function will add the data contained in rx_buffer->page to the skb.
6263  *  This is done either through a direct copy if the data in the buffer is
6264  *  less than the skb header size, otherwise it will just attach the page as
6265  *  a frag to the skb.
6266  *
6267  *  The function will then update the page offset if necessary and return
6268  *  true if the buffer can be reused by the adapter.
6269  **/
6270 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6271 			    struct igb_rx_buffer *rx_buffer,
6272 			    union e1000_adv_rx_desc *rx_desc,
6273 			    struct sk_buff *skb)
6274 {
6275 	struct page *page = rx_buffer->page;
6276 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6277 #if (PAGE_SIZE < 8192)
6278 	unsigned int truesize = IGB_RX_BUFSZ;
6279 #else
6280 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6281 #endif
6282 
6283 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6284 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6285 
6286 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6287 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6288 			va += IGB_TS_HDR_LEN;
6289 			size -= IGB_TS_HDR_LEN;
6290 		}
6291 
6292 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6293 
6294 		/* we can reuse buffer as-is, just make sure it is local */
6295 		if (likely(page_to_nid(page) == numa_node_id()))
6296 			return true;
6297 
6298 		/* this page cannot be reused so discard it */
6299 		put_page(page);
6300 		return false;
6301 	}
6302 
6303 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6304 			rx_buffer->page_offset, size, truesize);
6305 
6306 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6307 }
6308 
6309 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6310 					   union e1000_adv_rx_desc *rx_desc,
6311 					   struct sk_buff *skb)
6312 {
6313 	struct igb_rx_buffer *rx_buffer;
6314 	struct page *page;
6315 
6316 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6317 
6318 	page = rx_buffer->page;
6319 	prefetchw(page);
6320 
6321 	if (likely(!skb)) {
6322 		void *page_addr = page_address(page) +
6323 				  rx_buffer->page_offset;
6324 
6325 		/* prefetch first cache line of first page */
6326 		prefetch(page_addr);
6327 #if L1_CACHE_BYTES < 128
6328 		prefetch(page_addr + L1_CACHE_BYTES);
6329 #endif
6330 
6331 		/* allocate a skb to store the frags */
6332 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6333 						IGB_RX_HDR_LEN);
6334 		if (unlikely(!skb)) {
6335 			rx_ring->rx_stats.alloc_failed++;
6336 			return NULL;
6337 		}
6338 
6339 		/* we will be copying header into skb->data in
6340 		 * pskb_may_pull so it is in our interest to prefetch
6341 		 * it now to avoid a possible cache miss
6342 		 */
6343 		prefetchw(skb->data);
6344 	}
6345 
6346 	/* we are reusing so sync this buffer for CPU use */
6347 	dma_sync_single_range_for_cpu(rx_ring->dev,
6348 				      rx_buffer->dma,
6349 				      rx_buffer->page_offset,
6350 				      IGB_RX_BUFSZ,
6351 				      DMA_FROM_DEVICE);
6352 
6353 	/* pull page into skb */
6354 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6355 		/* hand second half of page back to the ring */
6356 		igb_reuse_rx_page(rx_ring, rx_buffer);
6357 	} else {
6358 		/* we are not reusing the buffer so unmap it */
6359 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6360 			       PAGE_SIZE, DMA_FROM_DEVICE);
6361 	}
6362 
6363 	/* clear contents of rx_buffer */
6364 	rx_buffer->page = NULL;
6365 
6366 	return skb;
6367 }
6368 
6369 static inline void igb_rx_checksum(struct igb_ring *ring,
6370 				   union e1000_adv_rx_desc *rx_desc,
6371 				   struct sk_buff *skb)
6372 {
6373 	skb_checksum_none_assert(skb);
6374 
6375 	/* Ignore Checksum bit is set */
6376 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6377 		return;
6378 
6379 	/* Rx checksum disabled via ethtool */
6380 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6381 		return;
6382 
6383 	/* TCP/UDP checksum error bit is set */
6384 	if (igb_test_staterr(rx_desc,
6385 			     E1000_RXDEXT_STATERR_TCPE |
6386 			     E1000_RXDEXT_STATERR_IPE)) {
6387 		/* work around errata with sctp packets where the TCPE aka
6388 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6389 		 * packets, (aka let the stack check the crc32c)
6390 		 */
6391 		if (!((skb->len == 60) &&
6392 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6393 			u64_stats_update_begin(&ring->rx_syncp);
6394 			ring->rx_stats.csum_err++;
6395 			u64_stats_update_end(&ring->rx_syncp);
6396 		}
6397 		/* let the stack verify checksum errors */
6398 		return;
6399 	}
6400 	/* It must be a TCP or UDP packet with a valid checksum */
6401 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6402 				      E1000_RXD_STAT_UDPCS))
6403 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6404 
6405 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6406 		le32_to_cpu(rx_desc->wb.upper.status_error));
6407 }
6408 
6409 static inline void igb_rx_hash(struct igb_ring *ring,
6410 			       union e1000_adv_rx_desc *rx_desc,
6411 			       struct sk_buff *skb)
6412 {
6413 	if (ring->netdev->features & NETIF_F_RXHASH)
6414 		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6415 }
6416 
6417 /**
6418  *  igb_is_non_eop - process handling of non-EOP buffers
6419  *  @rx_ring: Rx ring being processed
6420  *  @rx_desc: Rx descriptor for current buffer
6421  *  @skb: current socket buffer containing buffer in progress
6422  *
6423  *  This function updates next to clean.  If the buffer is an EOP buffer
6424  *  this function exits returning false, otherwise it will place the
6425  *  sk_buff in the next buffer to be chained and return true indicating
6426  *  that this is in fact a non-EOP buffer.
6427  **/
6428 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6429 			   union e1000_adv_rx_desc *rx_desc)
6430 {
6431 	u32 ntc = rx_ring->next_to_clean + 1;
6432 
6433 	/* fetch, update, and store next to clean */
6434 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6435 	rx_ring->next_to_clean = ntc;
6436 
6437 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6438 
6439 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6440 		return false;
6441 
6442 	return true;
6443 }
6444 
6445 /**
6446  *  igb_get_headlen - determine size of header for LRO/GRO
6447  *  @data: pointer to the start of the headers
6448  *  @max_len: total length of section to find headers in
6449  *
6450  *  This function is meant to determine the length of headers that will
6451  *  be recognized by hardware for LRO, and GRO offloads.  The main
6452  *  motivation of doing this is to only perform one pull for IPv4 TCP
6453  *  packets so that we can do basic things like calculating the gso_size
6454  *  based on the average data per packet.
6455  **/
6456 static unsigned int igb_get_headlen(unsigned char *data,
6457 				    unsigned int max_len)
6458 {
6459 	union {
6460 		unsigned char *network;
6461 		/* l2 headers */
6462 		struct ethhdr *eth;
6463 		struct vlan_hdr *vlan;
6464 		/* l3 headers */
6465 		struct iphdr *ipv4;
6466 		struct ipv6hdr *ipv6;
6467 	} hdr;
6468 	__be16 protocol;
6469 	u8 nexthdr = 0;	/* default to not TCP */
6470 	u8 hlen;
6471 
6472 	/* this should never happen, but better safe than sorry */
6473 	if (max_len < ETH_HLEN)
6474 		return max_len;
6475 
6476 	/* initialize network frame pointer */
6477 	hdr.network = data;
6478 
6479 	/* set first protocol and move network header forward */
6480 	protocol = hdr.eth->h_proto;
6481 	hdr.network += ETH_HLEN;
6482 
6483 	/* handle any vlan tag if present */
6484 	if (protocol == __constant_htons(ETH_P_8021Q)) {
6485 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6486 			return max_len;
6487 
6488 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6489 		hdr.network += VLAN_HLEN;
6490 	}
6491 
6492 	/* handle L3 protocols */
6493 	if (protocol == __constant_htons(ETH_P_IP)) {
6494 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6495 			return max_len;
6496 
6497 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6498 		hlen = (hdr.network[0] & 0x0F) << 2;
6499 
6500 		/* verify hlen meets minimum size requirements */
6501 		if (hlen < sizeof(struct iphdr))
6502 			return hdr.network - data;
6503 
6504 		/* record next protocol if header is present */
6505 		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6506 			nexthdr = hdr.ipv4->protocol;
6507 	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
6508 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6509 			return max_len;
6510 
6511 		/* record next protocol */
6512 		nexthdr = hdr.ipv6->nexthdr;
6513 		hlen = sizeof(struct ipv6hdr);
6514 	} else {
6515 		return hdr.network - data;
6516 	}
6517 
6518 	/* relocate pointer to start of L4 header */
6519 	hdr.network += hlen;
6520 
6521 	/* finally sort out TCP */
6522 	if (nexthdr == IPPROTO_TCP) {
6523 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6524 			return max_len;
6525 
6526 		/* access doff as a u8 to avoid unaligned access on ia64 */
6527 		hlen = (hdr.network[12] & 0xF0) >> 2;
6528 
6529 		/* verify hlen meets minimum size requirements */
6530 		if (hlen < sizeof(struct tcphdr))
6531 			return hdr.network - data;
6532 
6533 		hdr.network += hlen;
6534 	} else if (nexthdr == IPPROTO_UDP) {
6535 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6536 			return max_len;
6537 
6538 		hdr.network += sizeof(struct udphdr);
6539 	}
6540 
6541 	/* If everything has gone correctly hdr.network should be the
6542 	 * data section of the packet and will be the end of the header.
6543 	 * If not then it probably represents the end of the last recognized
6544 	 * header.
6545 	 */
6546 	if ((hdr.network - data) < max_len)
6547 		return hdr.network - data;
6548 	else
6549 		return max_len;
6550 }
6551 
6552 /**
6553  *  igb_pull_tail - igb specific version of skb_pull_tail
6554  *  @rx_ring: rx descriptor ring packet is being transacted on
6555  *  @rx_desc: pointer to the EOP Rx descriptor
6556  *  @skb: pointer to current skb being adjusted
6557  *
6558  *  This function is an igb specific version of __pskb_pull_tail.  The
6559  *  main difference between this version and the original function is that
6560  *  this function can make several assumptions about the state of things
6561  *  that allow for significant optimizations versus the standard function.
6562  *  As a result we can do things like drop a frag and maintain an accurate
6563  *  truesize for the skb.
6564  */
6565 static void igb_pull_tail(struct igb_ring *rx_ring,
6566 			  union e1000_adv_rx_desc *rx_desc,
6567 			  struct sk_buff *skb)
6568 {
6569 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6570 	unsigned char *va;
6571 	unsigned int pull_len;
6572 
6573 	/* it is valid to use page_address instead of kmap since we are
6574 	 * working with pages allocated out of the lomem pool per
6575 	 * alloc_page(GFP_ATOMIC)
6576 	 */
6577 	va = skb_frag_address(frag);
6578 
6579 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6580 		/* retrieve timestamp from buffer */
6581 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6582 
6583 		/* update pointers to remove timestamp header */
6584 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6585 		frag->page_offset += IGB_TS_HDR_LEN;
6586 		skb->data_len -= IGB_TS_HDR_LEN;
6587 		skb->len -= IGB_TS_HDR_LEN;
6588 
6589 		/* move va to start of packet data */
6590 		va += IGB_TS_HDR_LEN;
6591 	}
6592 
6593 	/* we need the header to contain the greater of either ETH_HLEN or
6594 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6595 	 */
6596 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6597 
6598 	/* align pull length to size of long to optimize memcpy performance */
6599 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6600 
6601 	/* update all of the pointers */
6602 	skb_frag_size_sub(frag, pull_len);
6603 	frag->page_offset += pull_len;
6604 	skb->data_len -= pull_len;
6605 	skb->tail += pull_len;
6606 }
6607 
6608 /**
6609  *  igb_cleanup_headers - Correct corrupted or empty headers
6610  *  @rx_ring: rx descriptor ring packet is being transacted on
6611  *  @rx_desc: pointer to the EOP Rx descriptor
6612  *  @skb: pointer to current skb being fixed
6613  *
6614  *  Address the case where we are pulling data in on pages only
6615  *  and as such no data is present in the skb header.
6616  *
6617  *  In addition if skb is not at least 60 bytes we need to pad it so that
6618  *  it is large enough to qualify as a valid Ethernet frame.
6619  *
6620  *  Returns true if an error was encountered and skb was freed.
6621  **/
6622 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6623 				union e1000_adv_rx_desc *rx_desc,
6624 				struct sk_buff *skb)
6625 {
6626 	if (unlikely((igb_test_staterr(rx_desc,
6627 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6628 		struct net_device *netdev = rx_ring->netdev;
6629 		if (!(netdev->features & NETIF_F_RXALL)) {
6630 			dev_kfree_skb_any(skb);
6631 			return true;
6632 		}
6633 	}
6634 
6635 	/* place header in linear portion of buffer */
6636 	if (skb_is_nonlinear(skb))
6637 		igb_pull_tail(rx_ring, rx_desc, skb);
6638 
6639 	/* if skb_pad returns an error the skb was freed */
6640 	if (unlikely(skb->len < 60)) {
6641 		int pad_len = 60 - skb->len;
6642 
6643 		if (skb_pad(skb, pad_len))
6644 			return true;
6645 		__skb_put(skb, pad_len);
6646 	}
6647 
6648 	return false;
6649 }
6650 
6651 /**
6652  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6653  *  @rx_ring: rx descriptor ring packet is being transacted on
6654  *  @rx_desc: pointer to the EOP Rx descriptor
6655  *  @skb: pointer to current skb being populated
6656  *
6657  *  This function checks the ring, descriptor, and packet information in
6658  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6659  *  other fields within the skb.
6660  **/
6661 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6662 				   union e1000_adv_rx_desc *rx_desc,
6663 				   struct sk_buff *skb)
6664 {
6665 	struct net_device *dev = rx_ring->netdev;
6666 
6667 	igb_rx_hash(rx_ring, rx_desc, skb);
6668 
6669 	igb_rx_checksum(rx_ring, rx_desc, skb);
6670 
6671 	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6672 
6673 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6674 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6675 		u16 vid;
6676 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6677 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6678 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6679 		else
6680 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6681 
6682 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6683 	}
6684 
6685 	skb_record_rx_queue(skb, rx_ring->queue_index);
6686 
6687 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6688 }
6689 
6690 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6691 {
6692 	struct igb_ring *rx_ring = q_vector->rx.ring;
6693 	struct sk_buff *skb = rx_ring->skb;
6694 	unsigned int total_bytes = 0, total_packets = 0;
6695 	u16 cleaned_count = igb_desc_unused(rx_ring);
6696 
6697 	do {
6698 		union e1000_adv_rx_desc *rx_desc;
6699 
6700 		/* return some buffers to hardware, one at a time is too slow */
6701 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6702 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6703 			cleaned_count = 0;
6704 		}
6705 
6706 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6707 
6708 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6709 			break;
6710 
6711 		/* This memory barrier is needed to keep us from reading
6712 		 * any other fields out of the rx_desc until we know the
6713 		 * RXD_STAT_DD bit is set
6714 		 */
6715 		rmb();
6716 
6717 		/* retrieve a buffer from the ring */
6718 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6719 
6720 		/* exit if we failed to retrieve a buffer */
6721 		if (!skb)
6722 			break;
6723 
6724 		cleaned_count++;
6725 
6726 		/* fetch next buffer in frame if non-eop */
6727 		if (igb_is_non_eop(rx_ring, rx_desc))
6728 			continue;
6729 
6730 		/* verify the packet layout is correct */
6731 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6732 			skb = NULL;
6733 			continue;
6734 		}
6735 
6736 		/* probably a little skewed due to removing CRC */
6737 		total_bytes += skb->len;
6738 
6739 		/* populate checksum, timestamp, VLAN, and protocol */
6740 		igb_process_skb_fields(rx_ring, rx_desc, skb);
6741 
6742 		napi_gro_receive(&q_vector->napi, skb);
6743 
6744 		/* reset skb pointer */
6745 		skb = NULL;
6746 
6747 		/* update budget accounting */
6748 		total_packets++;
6749 	} while (likely(total_packets < budget));
6750 
6751 	/* place incomplete frames back on ring for completion */
6752 	rx_ring->skb = skb;
6753 
6754 	u64_stats_update_begin(&rx_ring->rx_syncp);
6755 	rx_ring->rx_stats.packets += total_packets;
6756 	rx_ring->rx_stats.bytes += total_bytes;
6757 	u64_stats_update_end(&rx_ring->rx_syncp);
6758 	q_vector->rx.total_packets += total_packets;
6759 	q_vector->rx.total_bytes += total_bytes;
6760 
6761 	if (cleaned_count)
6762 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6763 
6764 	return (total_packets < budget);
6765 }
6766 
6767 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6768 				  struct igb_rx_buffer *bi)
6769 {
6770 	struct page *page = bi->page;
6771 	dma_addr_t dma;
6772 
6773 	/* since we are recycling buffers we should seldom need to alloc */
6774 	if (likely(page))
6775 		return true;
6776 
6777 	/* alloc new page for storage */
6778 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6779 	if (unlikely(!page)) {
6780 		rx_ring->rx_stats.alloc_failed++;
6781 		return false;
6782 	}
6783 
6784 	/* map page for use */
6785 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6786 
6787 	/* if mapping failed free memory back to system since
6788 	 * there isn't much point in holding memory we can't use
6789 	 */
6790 	if (dma_mapping_error(rx_ring->dev, dma)) {
6791 		__free_page(page);
6792 
6793 		rx_ring->rx_stats.alloc_failed++;
6794 		return false;
6795 	}
6796 
6797 	bi->dma = dma;
6798 	bi->page = page;
6799 	bi->page_offset = 0;
6800 
6801 	return true;
6802 }
6803 
6804 /**
6805  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6806  *  @adapter: address of board private structure
6807  **/
6808 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6809 {
6810 	union e1000_adv_rx_desc *rx_desc;
6811 	struct igb_rx_buffer *bi;
6812 	u16 i = rx_ring->next_to_use;
6813 
6814 	/* nothing to do */
6815 	if (!cleaned_count)
6816 		return;
6817 
6818 	rx_desc = IGB_RX_DESC(rx_ring, i);
6819 	bi = &rx_ring->rx_buffer_info[i];
6820 	i -= rx_ring->count;
6821 
6822 	do {
6823 		if (!igb_alloc_mapped_page(rx_ring, bi))
6824 			break;
6825 
6826 		/* Refresh the desc even if buffer_addrs didn't change
6827 		 * because each write-back erases this info.
6828 		 */
6829 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6830 
6831 		rx_desc++;
6832 		bi++;
6833 		i++;
6834 		if (unlikely(!i)) {
6835 			rx_desc = IGB_RX_DESC(rx_ring, 0);
6836 			bi = rx_ring->rx_buffer_info;
6837 			i -= rx_ring->count;
6838 		}
6839 
6840 		/* clear the hdr_addr for the next_to_use descriptor */
6841 		rx_desc->read.hdr_addr = 0;
6842 
6843 		cleaned_count--;
6844 	} while (cleaned_count);
6845 
6846 	i += rx_ring->count;
6847 
6848 	if (rx_ring->next_to_use != i) {
6849 		/* record the next descriptor to use */
6850 		rx_ring->next_to_use = i;
6851 
6852 		/* update next to alloc since we have filled the ring */
6853 		rx_ring->next_to_alloc = i;
6854 
6855 		/* Force memory writes to complete before letting h/w
6856 		 * know there are new descriptors to fetch.  (Only
6857 		 * applicable for weak-ordered memory model archs,
6858 		 * such as IA-64).
6859 		 */
6860 		wmb();
6861 		writel(i, rx_ring->tail);
6862 	}
6863 }
6864 
6865 /**
6866  * igb_mii_ioctl -
6867  * @netdev:
6868  * @ifreq:
6869  * @cmd:
6870  **/
6871 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6872 {
6873 	struct igb_adapter *adapter = netdev_priv(netdev);
6874 	struct mii_ioctl_data *data = if_mii(ifr);
6875 
6876 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6877 		return -EOPNOTSUPP;
6878 
6879 	switch (cmd) {
6880 	case SIOCGMIIPHY:
6881 		data->phy_id = adapter->hw.phy.addr;
6882 		break;
6883 	case SIOCGMIIREG:
6884 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6885 		                     &data->val_out))
6886 			return -EIO;
6887 		break;
6888 	case SIOCSMIIREG:
6889 	default:
6890 		return -EOPNOTSUPP;
6891 	}
6892 	return 0;
6893 }
6894 
6895 /**
6896  * igb_ioctl -
6897  * @netdev:
6898  * @ifreq:
6899  * @cmd:
6900  **/
6901 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6902 {
6903 	switch (cmd) {
6904 	case SIOCGMIIPHY:
6905 	case SIOCGMIIREG:
6906 	case SIOCSMIIREG:
6907 		return igb_mii_ioctl(netdev, ifr, cmd);
6908 	case SIOCSHWTSTAMP:
6909 		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6910 	default:
6911 		return -EOPNOTSUPP;
6912 	}
6913 }
6914 
6915 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6916 {
6917 	struct igb_adapter *adapter = hw->back;
6918 
6919 	if (pcie_capability_read_word(adapter->pdev, reg, value))
6920 		return -E1000_ERR_CONFIG;
6921 
6922 	return 0;
6923 }
6924 
6925 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6926 {
6927 	struct igb_adapter *adapter = hw->back;
6928 
6929 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6930 		return -E1000_ERR_CONFIG;
6931 
6932 	return 0;
6933 }
6934 
6935 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6936 {
6937 	struct igb_adapter *adapter = netdev_priv(netdev);
6938 	struct e1000_hw *hw = &adapter->hw;
6939 	u32 ctrl, rctl;
6940 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6941 
6942 	if (enable) {
6943 		/* enable VLAN tag insert/strip */
6944 		ctrl = rd32(E1000_CTRL);
6945 		ctrl |= E1000_CTRL_VME;
6946 		wr32(E1000_CTRL, ctrl);
6947 
6948 		/* Disable CFI check */
6949 		rctl = rd32(E1000_RCTL);
6950 		rctl &= ~E1000_RCTL_CFIEN;
6951 		wr32(E1000_RCTL, rctl);
6952 	} else {
6953 		/* disable VLAN tag insert/strip */
6954 		ctrl = rd32(E1000_CTRL);
6955 		ctrl &= ~E1000_CTRL_VME;
6956 		wr32(E1000_CTRL, ctrl);
6957 	}
6958 
6959 	igb_rlpml_set(adapter);
6960 }
6961 
6962 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6963 			       __be16 proto, u16 vid)
6964 {
6965 	struct igb_adapter *adapter = netdev_priv(netdev);
6966 	struct e1000_hw *hw = &adapter->hw;
6967 	int pf_id = adapter->vfs_allocated_count;
6968 
6969 	/* attempt to add filter to vlvf array */
6970 	igb_vlvf_set(adapter, vid, true, pf_id);
6971 
6972 	/* add the filter since PF can receive vlans w/o entry in vlvf */
6973 	igb_vfta_set(hw, vid, true);
6974 
6975 	set_bit(vid, adapter->active_vlans);
6976 
6977 	return 0;
6978 }
6979 
6980 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6981 				__be16 proto, u16 vid)
6982 {
6983 	struct igb_adapter *adapter = netdev_priv(netdev);
6984 	struct e1000_hw *hw = &adapter->hw;
6985 	int pf_id = adapter->vfs_allocated_count;
6986 	s32 err;
6987 
6988 	/* remove vlan from VLVF table array */
6989 	err = igb_vlvf_set(adapter, vid, false, pf_id);
6990 
6991 	/* if vid was not present in VLVF just remove it from table */
6992 	if (err)
6993 		igb_vfta_set(hw, vid, false);
6994 
6995 	clear_bit(vid, adapter->active_vlans);
6996 
6997 	return 0;
6998 }
6999 
7000 static void igb_restore_vlan(struct igb_adapter *adapter)
7001 {
7002 	u16 vid;
7003 
7004 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7005 
7006 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7007 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7008 }
7009 
7010 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7011 {
7012 	struct pci_dev *pdev = adapter->pdev;
7013 	struct e1000_mac_info *mac = &adapter->hw.mac;
7014 
7015 	mac->autoneg = 0;
7016 
7017 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7018 	 * for the switch() below to work
7019 	 */
7020 	if ((spd & 1) || (dplx & ~1))
7021 		goto err_inval;
7022 
7023 	/* Fiber NIC's only allow 1000 gbps Full duplex
7024 	 * and 100Mbps Full duplex for 100baseFx sfp
7025 	 */
7026 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7027 		switch (spd + dplx) {
7028 		case SPEED_10 + DUPLEX_HALF:
7029 		case SPEED_10 + DUPLEX_FULL:
7030 		case SPEED_100 + DUPLEX_HALF:
7031 			goto err_inval;
7032 		default:
7033 			break;
7034 		}
7035 	}
7036 
7037 	switch (spd + dplx) {
7038 	case SPEED_10 + DUPLEX_HALF:
7039 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7040 		break;
7041 	case SPEED_10 + DUPLEX_FULL:
7042 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7043 		break;
7044 	case SPEED_100 + DUPLEX_HALF:
7045 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7046 		break;
7047 	case SPEED_100 + DUPLEX_FULL:
7048 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7049 		break;
7050 	case SPEED_1000 + DUPLEX_FULL:
7051 		mac->autoneg = 1;
7052 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7053 		break;
7054 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7055 	default:
7056 		goto err_inval;
7057 	}
7058 
7059 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7060 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7061 
7062 	return 0;
7063 
7064 err_inval:
7065 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7066 	return -EINVAL;
7067 }
7068 
7069 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7070 			  bool runtime)
7071 {
7072 	struct net_device *netdev = pci_get_drvdata(pdev);
7073 	struct igb_adapter *adapter = netdev_priv(netdev);
7074 	struct e1000_hw *hw = &adapter->hw;
7075 	u32 ctrl, rctl, status;
7076 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7077 #ifdef CONFIG_PM
7078 	int retval = 0;
7079 #endif
7080 
7081 	netif_device_detach(netdev);
7082 
7083 	if (netif_running(netdev))
7084 		__igb_close(netdev, true);
7085 
7086 	igb_clear_interrupt_scheme(adapter);
7087 
7088 #ifdef CONFIG_PM
7089 	retval = pci_save_state(pdev);
7090 	if (retval)
7091 		return retval;
7092 #endif
7093 
7094 	status = rd32(E1000_STATUS);
7095 	if (status & E1000_STATUS_LU)
7096 		wufc &= ~E1000_WUFC_LNKC;
7097 
7098 	if (wufc) {
7099 		igb_setup_rctl(adapter);
7100 		igb_set_rx_mode(netdev);
7101 
7102 		/* turn on all-multi mode if wake on multicast is enabled */
7103 		if (wufc & E1000_WUFC_MC) {
7104 			rctl = rd32(E1000_RCTL);
7105 			rctl |= E1000_RCTL_MPE;
7106 			wr32(E1000_RCTL, rctl);
7107 		}
7108 
7109 		ctrl = rd32(E1000_CTRL);
7110 		/* advertise wake from D3Cold */
7111 		#define E1000_CTRL_ADVD3WUC 0x00100000
7112 		/* phy power management enable */
7113 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7114 		ctrl |= E1000_CTRL_ADVD3WUC;
7115 		wr32(E1000_CTRL, ctrl);
7116 
7117 		/* Allow time for pending master requests to run */
7118 		igb_disable_pcie_master(hw);
7119 
7120 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7121 		wr32(E1000_WUFC, wufc);
7122 	} else {
7123 		wr32(E1000_WUC, 0);
7124 		wr32(E1000_WUFC, 0);
7125 	}
7126 
7127 	*enable_wake = wufc || adapter->en_mng_pt;
7128 	if (!*enable_wake)
7129 		igb_power_down_link(adapter);
7130 	else
7131 		igb_power_up_link(adapter);
7132 
7133 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7134 	 * would have already happened in close and is redundant.
7135 	 */
7136 	igb_release_hw_control(adapter);
7137 
7138 	pci_disable_device(pdev);
7139 
7140 	return 0;
7141 }
7142 
7143 #ifdef CONFIG_PM
7144 #ifdef CONFIG_PM_SLEEP
7145 static int igb_suspend(struct device *dev)
7146 {
7147 	int retval;
7148 	bool wake;
7149 	struct pci_dev *pdev = to_pci_dev(dev);
7150 
7151 	retval = __igb_shutdown(pdev, &wake, 0);
7152 	if (retval)
7153 		return retval;
7154 
7155 	if (wake) {
7156 		pci_prepare_to_sleep(pdev);
7157 	} else {
7158 		pci_wake_from_d3(pdev, false);
7159 		pci_set_power_state(pdev, PCI_D3hot);
7160 	}
7161 
7162 	return 0;
7163 }
7164 #endif /* CONFIG_PM_SLEEP */
7165 
7166 static int igb_resume(struct device *dev)
7167 {
7168 	struct pci_dev *pdev = to_pci_dev(dev);
7169 	struct net_device *netdev = pci_get_drvdata(pdev);
7170 	struct igb_adapter *adapter = netdev_priv(netdev);
7171 	struct e1000_hw *hw = &adapter->hw;
7172 	u32 err;
7173 
7174 	pci_set_power_state(pdev, PCI_D0);
7175 	pci_restore_state(pdev);
7176 	pci_save_state(pdev);
7177 
7178 	err = pci_enable_device_mem(pdev);
7179 	if (err) {
7180 		dev_err(&pdev->dev,
7181 			"igb: Cannot enable PCI device from suspend\n");
7182 		return err;
7183 	}
7184 	pci_set_master(pdev);
7185 
7186 	pci_enable_wake(pdev, PCI_D3hot, 0);
7187 	pci_enable_wake(pdev, PCI_D3cold, 0);
7188 
7189 	if (igb_init_interrupt_scheme(adapter, true)) {
7190 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7191 		return -ENOMEM;
7192 	}
7193 
7194 	igb_reset(adapter);
7195 
7196 	/* let the f/w know that the h/w is now under the control of the
7197 	 * driver.
7198 	 */
7199 	igb_get_hw_control(adapter);
7200 
7201 	wr32(E1000_WUS, ~0);
7202 
7203 	if (netdev->flags & IFF_UP) {
7204 		rtnl_lock();
7205 		err = __igb_open(netdev, true);
7206 		rtnl_unlock();
7207 		if (err)
7208 			return err;
7209 	}
7210 
7211 	netif_device_attach(netdev);
7212 	return 0;
7213 }
7214 
7215 #ifdef CONFIG_PM_RUNTIME
7216 static int igb_runtime_idle(struct device *dev)
7217 {
7218 	struct pci_dev *pdev = to_pci_dev(dev);
7219 	struct net_device *netdev = pci_get_drvdata(pdev);
7220 	struct igb_adapter *adapter = netdev_priv(netdev);
7221 
7222 	if (!igb_has_link(adapter))
7223 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7224 
7225 	return -EBUSY;
7226 }
7227 
7228 static int igb_runtime_suspend(struct device *dev)
7229 {
7230 	struct pci_dev *pdev = to_pci_dev(dev);
7231 	int retval;
7232 	bool wake;
7233 
7234 	retval = __igb_shutdown(pdev, &wake, 1);
7235 	if (retval)
7236 		return retval;
7237 
7238 	if (wake) {
7239 		pci_prepare_to_sleep(pdev);
7240 	} else {
7241 		pci_wake_from_d3(pdev, false);
7242 		pci_set_power_state(pdev, PCI_D3hot);
7243 	}
7244 
7245 	return 0;
7246 }
7247 
7248 static int igb_runtime_resume(struct device *dev)
7249 {
7250 	return igb_resume(dev);
7251 }
7252 #endif /* CONFIG_PM_RUNTIME */
7253 #endif
7254 
7255 static void igb_shutdown(struct pci_dev *pdev)
7256 {
7257 	bool wake;
7258 
7259 	__igb_shutdown(pdev, &wake, 0);
7260 
7261 	if (system_state == SYSTEM_POWER_OFF) {
7262 		pci_wake_from_d3(pdev, wake);
7263 		pci_set_power_state(pdev, PCI_D3hot);
7264 	}
7265 }
7266 
7267 #ifdef CONFIG_PCI_IOV
7268 static int igb_sriov_reinit(struct pci_dev *dev)
7269 {
7270 	struct net_device *netdev = pci_get_drvdata(dev);
7271 	struct igb_adapter *adapter = netdev_priv(netdev);
7272 	struct pci_dev *pdev = adapter->pdev;
7273 
7274 	rtnl_lock();
7275 
7276 	if (netif_running(netdev))
7277 		igb_close(netdev);
7278 
7279 	igb_clear_interrupt_scheme(adapter);
7280 
7281 	igb_init_queue_configuration(adapter);
7282 
7283 	if (igb_init_interrupt_scheme(adapter, true)) {
7284 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7285 		return -ENOMEM;
7286 	}
7287 
7288 	if (netif_running(netdev))
7289 		igb_open(netdev);
7290 
7291 	rtnl_unlock();
7292 
7293 	return 0;
7294 }
7295 
7296 static int igb_pci_disable_sriov(struct pci_dev *dev)
7297 {
7298 	int err = igb_disable_sriov(dev);
7299 
7300 	if (!err)
7301 		err = igb_sriov_reinit(dev);
7302 
7303 	return err;
7304 }
7305 
7306 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7307 {
7308 	int err = igb_enable_sriov(dev, num_vfs);
7309 
7310 	if (err)
7311 		goto out;
7312 
7313 	err = igb_sriov_reinit(dev);
7314 	if (!err)
7315 		return num_vfs;
7316 
7317 out:
7318 	return err;
7319 }
7320 
7321 #endif
7322 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7323 {
7324 #ifdef CONFIG_PCI_IOV
7325 	if (num_vfs == 0)
7326 		return igb_pci_disable_sriov(dev);
7327 	else
7328 		return igb_pci_enable_sriov(dev, num_vfs);
7329 #endif
7330 	return 0;
7331 }
7332 
7333 #ifdef CONFIG_NET_POLL_CONTROLLER
7334 /* Polling 'interrupt' - used by things like netconsole to send skbs
7335  * without having to re-enable interrupts. It's not called while
7336  * the interrupt routine is executing.
7337  */
7338 static void igb_netpoll(struct net_device *netdev)
7339 {
7340 	struct igb_adapter *adapter = netdev_priv(netdev);
7341 	struct e1000_hw *hw = &adapter->hw;
7342 	struct igb_q_vector *q_vector;
7343 	int i;
7344 
7345 	for (i = 0; i < adapter->num_q_vectors; i++) {
7346 		q_vector = adapter->q_vector[i];
7347 		if (adapter->msix_entries)
7348 			wr32(E1000_EIMC, q_vector->eims_value);
7349 		else
7350 			igb_irq_disable(adapter);
7351 		napi_schedule(&q_vector->napi);
7352 	}
7353 }
7354 #endif /* CONFIG_NET_POLL_CONTROLLER */
7355 
7356 /**
7357  *  igb_io_error_detected - called when PCI error is detected
7358  *  @pdev: Pointer to PCI device
7359  *  @state: The current pci connection state
7360  *
7361  *  This function is called after a PCI bus error affecting
7362  *  this device has been detected.
7363  **/
7364 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7365 					      pci_channel_state_t state)
7366 {
7367 	struct net_device *netdev = pci_get_drvdata(pdev);
7368 	struct igb_adapter *adapter = netdev_priv(netdev);
7369 
7370 	netif_device_detach(netdev);
7371 
7372 	if (state == pci_channel_io_perm_failure)
7373 		return PCI_ERS_RESULT_DISCONNECT;
7374 
7375 	if (netif_running(netdev))
7376 		igb_down(adapter);
7377 	pci_disable_device(pdev);
7378 
7379 	/* Request a slot slot reset. */
7380 	return PCI_ERS_RESULT_NEED_RESET;
7381 }
7382 
7383 /**
7384  *  igb_io_slot_reset - called after the pci bus has been reset.
7385  *  @pdev: Pointer to PCI device
7386  *
7387  *  Restart the card from scratch, as if from a cold-boot. Implementation
7388  *  resembles the first-half of the igb_resume routine.
7389  **/
7390 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7391 {
7392 	struct net_device *netdev = pci_get_drvdata(pdev);
7393 	struct igb_adapter *adapter = netdev_priv(netdev);
7394 	struct e1000_hw *hw = &adapter->hw;
7395 	pci_ers_result_t result;
7396 	int err;
7397 
7398 	if (pci_enable_device_mem(pdev)) {
7399 		dev_err(&pdev->dev,
7400 			"Cannot re-enable PCI device after reset.\n");
7401 		result = PCI_ERS_RESULT_DISCONNECT;
7402 	} else {
7403 		pci_set_master(pdev);
7404 		pci_restore_state(pdev);
7405 		pci_save_state(pdev);
7406 
7407 		pci_enable_wake(pdev, PCI_D3hot, 0);
7408 		pci_enable_wake(pdev, PCI_D3cold, 0);
7409 
7410 		igb_reset(adapter);
7411 		wr32(E1000_WUS, ~0);
7412 		result = PCI_ERS_RESULT_RECOVERED;
7413 	}
7414 
7415 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7416 	if (err) {
7417 		dev_err(&pdev->dev,
7418 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7419 			err);
7420 		/* non-fatal, continue */
7421 	}
7422 
7423 	return result;
7424 }
7425 
7426 /**
7427  *  igb_io_resume - called when traffic can start flowing again.
7428  *  @pdev: Pointer to PCI device
7429  *
7430  *  This callback is called when the error recovery driver tells us that
7431  *  its OK to resume normal operation. Implementation resembles the
7432  *  second-half of the igb_resume routine.
7433  */
7434 static void igb_io_resume(struct pci_dev *pdev)
7435 {
7436 	struct net_device *netdev = pci_get_drvdata(pdev);
7437 	struct igb_adapter *adapter = netdev_priv(netdev);
7438 
7439 	if (netif_running(netdev)) {
7440 		if (igb_up(adapter)) {
7441 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7442 			return;
7443 		}
7444 	}
7445 
7446 	netif_device_attach(netdev);
7447 
7448 	/* let the f/w know that the h/w is now under the control of the
7449 	 * driver.
7450 	 */
7451 	igb_get_hw_control(adapter);
7452 }
7453 
7454 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7455 			     u8 qsel)
7456 {
7457 	u32 rar_low, rar_high;
7458 	struct e1000_hw *hw = &adapter->hw;
7459 
7460 	/* HW expects these in little endian so we reverse the byte order
7461 	 * from network order (big endian) to little endian
7462 	 */
7463 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7464 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7465 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7466 
7467 	/* Indicate to hardware the Address is Valid. */
7468 	rar_high |= E1000_RAH_AV;
7469 
7470 	if (hw->mac.type == e1000_82575)
7471 		rar_high |= E1000_RAH_POOL_1 * qsel;
7472 	else
7473 		rar_high |= E1000_RAH_POOL_1 << qsel;
7474 
7475 	wr32(E1000_RAL(index), rar_low);
7476 	wrfl();
7477 	wr32(E1000_RAH(index), rar_high);
7478 	wrfl();
7479 }
7480 
7481 static int igb_set_vf_mac(struct igb_adapter *adapter,
7482 			  int vf, unsigned char *mac_addr)
7483 {
7484 	struct e1000_hw *hw = &adapter->hw;
7485 	/* VF MAC addresses start at end of receive addresses and moves
7486 	 * towards the first, as a result a collision should not be possible
7487 	 */
7488 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7489 
7490 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7491 
7492 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7493 
7494 	return 0;
7495 }
7496 
7497 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7498 {
7499 	struct igb_adapter *adapter = netdev_priv(netdev);
7500 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7501 		return -EINVAL;
7502 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7503 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7504 	dev_info(&adapter->pdev->dev,
7505 		 "Reload the VF driver to make this change effective.");
7506 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7507 		dev_warn(&adapter->pdev->dev,
7508 			 "The VF MAC address has been set, but the PF device is not up.\n");
7509 		dev_warn(&adapter->pdev->dev,
7510 			 "Bring the PF device up before attempting to use the VF device.\n");
7511 	}
7512 	return igb_set_vf_mac(adapter, vf, mac);
7513 }
7514 
7515 static int igb_link_mbps(int internal_link_speed)
7516 {
7517 	switch (internal_link_speed) {
7518 	case SPEED_100:
7519 		return 100;
7520 	case SPEED_1000:
7521 		return 1000;
7522 	default:
7523 		return 0;
7524 	}
7525 }
7526 
7527 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7528 				  int link_speed)
7529 {
7530 	int rf_dec, rf_int;
7531 	u32 bcnrc_val;
7532 
7533 	if (tx_rate != 0) {
7534 		/* Calculate the rate factor values to set */
7535 		rf_int = link_speed / tx_rate;
7536 		rf_dec = (link_speed - (rf_int * tx_rate));
7537 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7538 			 tx_rate;
7539 
7540 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7541 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7542 			      E1000_RTTBCNRC_RF_INT_MASK);
7543 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7544 	} else {
7545 		bcnrc_val = 0;
7546 	}
7547 
7548 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7549 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7550 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7551 	 */
7552 	wr32(E1000_RTTBCNRM, 0x14);
7553 	wr32(E1000_RTTBCNRC, bcnrc_val);
7554 }
7555 
7556 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7557 {
7558 	int actual_link_speed, i;
7559 	bool reset_rate = false;
7560 
7561 	/* VF TX rate limit was not set or not supported */
7562 	if ((adapter->vf_rate_link_speed == 0) ||
7563 	    (adapter->hw.mac.type != e1000_82576))
7564 		return;
7565 
7566 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7567 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7568 		reset_rate = true;
7569 		adapter->vf_rate_link_speed = 0;
7570 		dev_info(&adapter->pdev->dev,
7571 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7572 	}
7573 
7574 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7575 		if (reset_rate)
7576 			adapter->vf_data[i].tx_rate = 0;
7577 
7578 		igb_set_vf_rate_limit(&adapter->hw, i,
7579 				      adapter->vf_data[i].tx_rate,
7580 				      actual_link_speed);
7581 	}
7582 }
7583 
7584 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7585 {
7586 	struct igb_adapter *adapter = netdev_priv(netdev);
7587 	struct e1000_hw *hw = &adapter->hw;
7588 	int actual_link_speed;
7589 
7590 	if (hw->mac.type != e1000_82576)
7591 		return -EOPNOTSUPP;
7592 
7593 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7594 	if ((vf >= adapter->vfs_allocated_count) ||
7595 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7596 	    (tx_rate < 0) || (tx_rate > actual_link_speed))
7597 		return -EINVAL;
7598 
7599 	adapter->vf_rate_link_speed = actual_link_speed;
7600 	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7601 	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7602 
7603 	return 0;
7604 }
7605 
7606 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7607 				   bool setting)
7608 {
7609 	struct igb_adapter *adapter = netdev_priv(netdev);
7610 	struct e1000_hw *hw = &adapter->hw;
7611 	u32 reg_val, reg_offset;
7612 
7613 	if (!adapter->vfs_allocated_count)
7614 		return -EOPNOTSUPP;
7615 
7616 	if (vf >= adapter->vfs_allocated_count)
7617 		return -EINVAL;
7618 
7619 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7620 	reg_val = rd32(reg_offset);
7621 	if (setting)
7622 		reg_val |= ((1 << vf) |
7623 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7624 	else
7625 		reg_val &= ~((1 << vf) |
7626 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7627 	wr32(reg_offset, reg_val);
7628 
7629 	adapter->vf_data[vf].spoofchk_enabled = setting;
7630 	return E1000_SUCCESS;
7631 }
7632 
7633 static int igb_ndo_get_vf_config(struct net_device *netdev,
7634 				 int vf, struct ifla_vf_info *ivi)
7635 {
7636 	struct igb_adapter *adapter = netdev_priv(netdev);
7637 	if (vf >= adapter->vfs_allocated_count)
7638 		return -EINVAL;
7639 	ivi->vf = vf;
7640 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7641 	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7642 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7643 	ivi->qos = adapter->vf_data[vf].pf_qos;
7644 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7645 	return 0;
7646 }
7647 
7648 static void igb_vmm_control(struct igb_adapter *adapter)
7649 {
7650 	struct e1000_hw *hw = &adapter->hw;
7651 	u32 reg;
7652 
7653 	switch (hw->mac.type) {
7654 	case e1000_82575:
7655 	case e1000_i210:
7656 	case e1000_i211:
7657 	case e1000_i354:
7658 	default:
7659 		/* replication is not supported for 82575 */
7660 		return;
7661 	case e1000_82576:
7662 		/* notify HW that the MAC is adding vlan tags */
7663 		reg = rd32(E1000_DTXCTL);
7664 		reg |= E1000_DTXCTL_VLAN_ADDED;
7665 		wr32(E1000_DTXCTL, reg);
7666 	case e1000_82580:
7667 		/* enable replication vlan tag stripping */
7668 		reg = rd32(E1000_RPLOLR);
7669 		reg |= E1000_RPLOLR_STRVLAN;
7670 		wr32(E1000_RPLOLR, reg);
7671 	case e1000_i350:
7672 		/* none of the above registers are supported by i350 */
7673 		break;
7674 	}
7675 
7676 	if (adapter->vfs_allocated_count) {
7677 		igb_vmdq_set_loopback_pf(hw, true);
7678 		igb_vmdq_set_replication_pf(hw, true);
7679 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7680 					      adapter->vfs_allocated_count);
7681 	} else {
7682 		igb_vmdq_set_loopback_pf(hw, false);
7683 		igb_vmdq_set_replication_pf(hw, false);
7684 	}
7685 }
7686 
7687 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7688 {
7689 	struct e1000_hw *hw = &adapter->hw;
7690 	u32 dmac_thr;
7691 	u16 hwm;
7692 
7693 	if (hw->mac.type > e1000_82580) {
7694 		if (adapter->flags & IGB_FLAG_DMAC) {
7695 			u32 reg;
7696 
7697 			/* force threshold to 0. */
7698 			wr32(E1000_DMCTXTH, 0);
7699 
7700 			/* DMA Coalescing high water mark needs to be greater
7701 			 * than the Rx threshold. Set hwm to PBA - max frame
7702 			 * size in 16B units, capping it at PBA - 6KB.
7703 			 */
7704 			hwm = 64 * pba - adapter->max_frame_size / 16;
7705 			if (hwm < 64 * (pba - 6))
7706 				hwm = 64 * (pba - 6);
7707 			reg = rd32(E1000_FCRTC);
7708 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7709 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7710 				& E1000_FCRTC_RTH_COAL_MASK);
7711 			wr32(E1000_FCRTC, reg);
7712 
7713 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7714 			 * frame size, capping it at PBA - 10KB.
7715 			 */
7716 			dmac_thr = pba - adapter->max_frame_size / 512;
7717 			if (dmac_thr < pba - 10)
7718 				dmac_thr = pba - 10;
7719 			reg = rd32(E1000_DMACR);
7720 			reg &= ~E1000_DMACR_DMACTHR_MASK;
7721 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7722 				& E1000_DMACR_DMACTHR_MASK);
7723 
7724 			/* transition to L0x or L1 if available..*/
7725 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7726 
7727 			/* watchdog timer= +-1000 usec in 32usec intervals */
7728 			reg |= (1000 >> 5);
7729 
7730 			/* Disable BMC-to-OS Watchdog Enable */
7731 			if (hw->mac.type != e1000_i354)
7732 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7733 
7734 			wr32(E1000_DMACR, reg);
7735 
7736 			/* no lower threshold to disable
7737 			 * coalescing(smart fifb)-UTRESH=0
7738 			 */
7739 			wr32(E1000_DMCRTRH, 0);
7740 
7741 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7742 
7743 			wr32(E1000_DMCTLX, reg);
7744 
7745 			/* free space in tx packet buffer to wake from
7746 			 * DMA coal
7747 			 */
7748 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7749 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7750 
7751 			/* make low power state decision controlled
7752 			 * by DMA coal
7753 			 */
7754 			reg = rd32(E1000_PCIEMISC);
7755 			reg &= ~E1000_PCIEMISC_LX_DECISION;
7756 			wr32(E1000_PCIEMISC, reg);
7757 		} /* endif adapter->dmac is not disabled */
7758 	} else if (hw->mac.type == e1000_82580) {
7759 		u32 reg = rd32(E1000_PCIEMISC);
7760 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7761 		wr32(E1000_DMACR, 0);
7762 	}
7763 }
7764 
7765 /**
7766  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7767  *  @hw: pointer to hardware structure
7768  *  @byte_offset: byte offset to read
7769  *  @dev_addr: device address
7770  *  @data: value read
7771  *
7772  *  Performs byte read operation over I2C interface at
7773  *  a specified device address.
7774  **/
7775 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7776 		      u8 dev_addr, u8 *data)
7777 {
7778 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7779 	struct i2c_client *this_client = adapter->i2c_client;
7780 	s32 status;
7781 	u16 swfw_mask = 0;
7782 
7783 	if (!this_client)
7784 		return E1000_ERR_I2C;
7785 
7786 	swfw_mask = E1000_SWFW_PHY0_SM;
7787 
7788 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7789 	    != E1000_SUCCESS)
7790 		return E1000_ERR_SWFW_SYNC;
7791 
7792 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
7793 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7794 
7795 	if (status < 0)
7796 		return E1000_ERR_I2C;
7797 	else {
7798 		*data = status;
7799 		return E1000_SUCCESS;
7800 	}
7801 }
7802 
7803 /**
7804  *  igb_write_i2c_byte - Writes 8 bit word over I2C
7805  *  @hw: pointer to hardware structure
7806  *  @byte_offset: byte offset to write
7807  *  @dev_addr: device address
7808  *  @data: value to write
7809  *
7810  *  Performs byte write operation over I2C interface at
7811  *  a specified device address.
7812  **/
7813 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7814 		       u8 dev_addr, u8 data)
7815 {
7816 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7817 	struct i2c_client *this_client = adapter->i2c_client;
7818 	s32 status;
7819 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
7820 
7821 	if (!this_client)
7822 		return E1000_ERR_I2C;
7823 
7824 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7825 		return E1000_ERR_SWFW_SYNC;
7826 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7827 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7828 
7829 	if (status)
7830 		return E1000_ERR_I2C;
7831 	else
7832 		return E1000_SUCCESS;
7833 
7834 }
7835 
7836 int igb_reinit_queues(struct igb_adapter *adapter)
7837 {
7838 	struct net_device *netdev = adapter->netdev;
7839 	struct pci_dev *pdev = adapter->pdev;
7840 	int err = 0;
7841 
7842 	if (netif_running(netdev))
7843 		igb_close(netdev);
7844 
7845 	igb_clear_interrupt_scheme(adapter);
7846 
7847 	if (igb_init_interrupt_scheme(adapter, true)) {
7848 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7849 		return -ENOMEM;
7850 	}
7851 
7852 	if (netif_running(netdev))
7853 		err = igb_open(netdev);
7854 
7855 	return err;
7856 }
7857 /* igb_main.c */
7858