1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40 
41 #define MAJ 5
42 #define MIN 6
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46 
47 enum queue_mode {
48 	QUEUE_MODE_STRICT_PRIORITY,
49 	QUEUE_MODE_STREAM_RESERVATION,
50 };
51 
52 enum tx_queue_prio {
53 	TX_QUEUE_PRIO_HIGH,
54 	TX_QUEUE_PRIO_LOW,
55 };
56 
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 				"Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 				"Copyright (c) 2007-2014 Intel Corporation.";
63 
64 static const struct e1000_info *igb_info_tbl[] = {
65 	[board_82575] = &e1000_82575_info,
66 };
67 
68 static const struct pci_device_id igb_pci_tbl[] = {
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 	/* required last entry */
105 	{0, }
106 };
107 
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109 
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 			    struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 			  netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 				   bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 				bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180 
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187 
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 			igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 	.notifier_call	= igb_notify_dca,
204 	.next		= NULL,
205 	.priority	= 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213 
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 		     pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218 
219 static const struct pci_error_handlers igb_err_handler = {
220 	.error_detected = igb_io_error_detected,
221 	.slot_reset = igb_io_slot_reset,
222 	.resume = igb_io_resume,
223 };
224 
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 
227 static struct pci_driver igb_driver = {
228 	.name     = igb_driver_name,
229 	.id_table = igb_pci_tbl,
230 	.probe    = igb_probe,
231 	.remove   = igb_remove,
232 #ifdef CONFIG_PM
233 	.driver.pm = &igb_pm_ops,
234 #endif
235 	.shutdown = igb_shutdown,
236 	.sriov_configure = igb_pci_sriov_configure,
237 	.err_handler = &igb_err_handler
238 };
239 
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244 
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249 
250 struct igb_reg_info {
251 	u32 ofs;
252 	char *name;
253 };
254 
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256 
257 	/* General Registers */
258 	{E1000_CTRL, "CTRL"},
259 	{E1000_STATUS, "STATUS"},
260 	{E1000_CTRL_EXT, "CTRL_EXT"},
261 
262 	/* Interrupt Registers */
263 	{E1000_ICR, "ICR"},
264 
265 	/* RX Registers */
266 	{E1000_RCTL, "RCTL"},
267 	{E1000_RDLEN(0), "RDLEN"},
268 	{E1000_RDH(0), "RDH"},
269 	{E1000_RDT(0), "RDT"},
270 	{E1000_RXDCTL(0), "RXDCTL"},
271 	{E1000_RDBAL(0), "RDBAL"},
272 	{E1000_RDBAH(0), "RDBAH"},
273 
274 	/* TX Registers */
275 	{E1000_TCTL, "TCTL"},
276 	{E1000_TDBAL(0), "TDBAL"},
277 	{E1000_TDBAH(0), "TDBAH"},
278 	{E1000_TDLEN(0), "TDLEN"},
279 	{E1000_TDH(0), "TDH"},
280 	{E1000_TDT(0), "TDT"},
281 	{E1000_TXDCTL(0), "TXDCTL"},
282 	{E1000_TDFH, "TDFH"},
283 	{E1000_TDFT, "TDFT"},
284 	{E1000_TDFHS, "TDFHS"},
285 	{E1000_TDFPC, "TDFPC"},
286 
287 	/* List Terminator */
288 	{}
289 };
290 
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 	int n = 0;
295 	char rname[16];
296 	u32 regs[8];
297 
298 	switch (reginfo->ofs) {
299 	case E1000_RDLEN(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDLEN(n));
302 		break;
303 	case E1000_RDH(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RDH(n));
306 		break;
307 	case E1000_RDT(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDT(n));
310 		break;
311 	case E1000_RXDCTL(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RXDCTL(n));
314 		break;
315 	case E1000_RDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDBAL(n));
318 		break;
319 	case E1000_RDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RDBAH(n));
322 		break;
323 	case E1000_TDBAL(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAL(n));
326 		break;
327 	case E1000_TDBAH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDBAH(n));
330 		break;
331 	case E1000_TDLEN(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDLEN(n));
334 		break;
335 	case E1000_TDH(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDH(n));
338 		break;
339 	case E1000_TDT(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDT(n));
342 		break;
343 	case E1000_TXDCTL(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TXDCTL(n));
346 		break;
347 	default:
348 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 		return;
350 	}
351 
352 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 		regs[2], regs[3]);
355 }
356 
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 	struct net_device *netdev = adapter->netdev;
361 	struct e1000_hw *hw = &adapter->hw;
362 	struct igb_reg_info *reginfo;
363 	struct igb_ring *tx_ring;
364 	union e1000_adv_tx_desc *tx_desc;
365 	struct my_u0 { u64 a; u64 b; } *u0;
366 	struct igb_ring *rx_ring;
367 	union e1000_adv_rx_desc *rx_desc;
368 	u32 staterr;
369 	u16 i, n;
370 
371 	if (!netif_msg_hw(adapter))
372 		return;
373 
374 	/* Print netdevice Info */
375 	if (netdev) {
376 		dev_info(&adapter->pdev->dev, "Net device Info\n");
377 		pr_info("Device Name     state            trans_start\n");
378 		pr_info("%-15s %016lX %016lX\n", netdev->name,
379 			netdev->state, dev_trans_start(netdev));
380 	}
381 
382 	/* Print Registers */
383 	dev_info(&adapter->pdev->dev, "Register Dump\n");
384 	pr_info(" Register Name   Value\n");
385 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 	     reginfo->name; reginfo++) {
387 		igb_regdump(hw, reginfo);
388 	}
389 
390 	/* Print TX Ring Summary */
391 	if (!netdev || !netif_running(netdev))
392 		goto exit;
393 
394 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396 	for (n = 0; n < adapter->num_tx_queues; n++) {
397 		struct igb_tx_buffer *buffer_info;
398 		tx_ring = adapter->tx_ring[n];
399 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 			(u64)dma_unmap_addr(buffer_info, dma),
403 			dma_unmap_len(buffer_info, len),
404 			buffer_info->next_to_watch,
405 			(u64)buffer_info->time_stamp);
406 	}
407 
408 	/* Print TX Rings */
409 	if (!netif_msg_tx_done(adapter))
410 		goto rx_ring_summary;
411 
412 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413 
414 	/* Transmit Descriptor Formats
415 	 *
416 	 * Advanced Transmit Descriptor
417 	 *   +--------------------------------------------------------------+
418 	 * 0 |         Buffer Address [63:0]                                |
419 	 *   +--------------------------------------------------------------+
420 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421 	 *   +--------------------------------------------------------------+
422 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
423 	 */
424 
425 	for (n = 0; n < adapter->num_tx_queues; n++) {
426 		tx_ring = adapter->tx_ring[n];
427 		pr_info("------------------------------------\n");
428 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 		pr_info("------------------------------------\n");
430 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431 
432 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 			const char *next_desc;
434 			struct igb_tx_buffer *buffer_info;
435 			tx_desc = IGB_TX_DESC(tx_ring, i);
436 			buffer_info = &tx_ring->tx_buffer_info[i];
437 			u0 = (struct my_u0 *)tx_desc;
438 			if (i == tx_ring->next_to_use &&
439 			    i == tx_ring->next_to_clean)
440 				next_desc = " NTC/U";
441 			else if (i == tx_ring->next_to_use)
442 				next_desc = " NTU";
443 			else if (i == tx_ring->next_to_clean)
444 				next_desc = " NTC";
445 			else
446 				next_desc = "";
447 
448 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449 				i, le64_to_cpu(u0->a),
450 				le64_to_cpu(u0->b),
451 				(u64)dma_unmap_addr(buffer_info, dma),
452 				dma_unmap_len(buffer_info, len),
453 				buffer_info->next_to_watch,
454 				(u64)buffer_info->time_stamp,
455 				buffer_info->skb, next_desc);
456 
457 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 				print_hex_dump(KERN_INFO, "",
459 					DUMP_PREFIX_ADDRESS,
460 					16, 1, buffer_info->skb->data,
461 					dma_unmap_len(buffer_info, len),
462 					true);
463 		}
464 	}
465 
466 	/* Print RX Rings Summary */
467 rx_ring_summary:
468 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 	pr_info("Queue [NTU] [NTC]\n");
470 	for (n = 0; n < adapter->num_rx_queues; n++) {
471 		rx_ring = adapter->rx_ring[n];
472 		pr_info(" %5d %5X %5X\n",
473 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 	}
475 
476 	/* Print RX Rings */
477 	if (!netif_msg_rx_status(adapter))
478 		goto exit;
479 
480 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481 
482 	/* Advanced Receive Descriptor (Read) Format
483 	 *    63                                           1        0
484 	 *    +-----------------------------------------------------+
485 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486 	 *    +----------------------------------------------+------+
487 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
488 	 *    +-----------------------------------------------------+
489 	 *
490 	 *
491 	 * Advanced Receive Descriptor (Write-Back) Format
492 	 *
493 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
494 	 *   +------------------------------------------------------+
495 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496 	 *   | Checksum   Ident  |   |           |    | Type | Type |
497 	 *   +------------------------------------------------------+
498 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 	 *   +------------------------------------------------------+
500 	 *   63       48 47    32 31            20 19               0
501 	 */
502 
503 	for (n = 0; n < adapter->num_rx_queues; n++) {
504 		rx_ring = adapter->rx_ring[n];
505 		pr_info("------------------------------------\n");
506 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 		pr_info("------------------------------------\n");
508 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510 
511 		for (i = 0; i < rx_ring->count; i++) {
512 			const char *next_desc;
513 			struct igb_rx_buffer *buffer_info;
514 			buffer_info = &rx_ring->rx_buffer_info[i];
515 			rx_desc = IGB_RX_DESC(rx_ring, i);
516 			u0 = (struct my_u0 *)rx_desc;
517 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518 
519 			if (i == rx_ring->next_to_use)
520 				next_desc = " NTU";
521 			else if (i == rx_ring->next_to_clean)
522 				next_desc = " NTC";
523 			else
524 				next_desc = "";
525 
526 			if (staterr & E1000_RXD_STAT_DD) {
527 				/* Descriptor Done */
528 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529 					"RWB", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					next_desc);
533 			} else {
534 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535 					"R  ", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					(u64)buffer_info->dma,
539 					next_desc);
540 
541 				if (netif_msg_pktdata(adapter) &&
542 				    buffer_info->dma && buffer_info->page) {
543 					print_hex_dump(KERN_INFO, "",
544 					  DUMP_PREFIX_ADDRESS,
545 					  16, 1,
546 					  page_address(buffer_info->page) +
547 						      buffer_info->page_offset,
548 					  igb_rx_bufsz(rx_ring), true);
549 				}
550 			}
551 		}
552 	}
553 
554 exit:
555 	return;
556 }
557 
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
565 static int igb_get_i2c_data(void *data)
566 {
567 	struct igb_adapter *adapter = (struct igb_adapter *)data;
568 	struct e1000_hw *hw = &adapter->hw;
569 	s32 i2cctl = rd32(E1000_I2CPARAMS);
570 
571 	return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573 
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
581 static void igb_set_i2c_data(void *data, int state)
582 {
583 	struct igb_adapter *adapter = (struct igb_adapter *)data;
584 	struct e1000_hw *hw = &adapter->hw;
585 	s32 i2cctl = rd32(E1000_I2CPARAMS);
586 
587 	if (state)
588 		i2cctl |= E1000_I2C_DATA_OUT;
589 	else
590 		i2cctl &= ~E1000_I2C_DATA_OUT;
591 
592 	i2cctl &= ~E1000_I2C_DATA_OE_N;
593 	i2cctl |= E1000_I2C_CLK_OE_N;
594 	wr32(E1000_I2CPARAMS, i2cctl);
595 	wrfl();
596 
597 }
598 
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 	struct igb_adapter *adapter = (struct igb_adapter *)data;
609 	struct e1000_hw *hw = &adapter->hw;
610 	s32 i2cctl = rd32(E1000_I2CPARAMS);
611 
612 	if (state) {
613 		i2cctl |= E1000_I2C_CLK_OUT;
614 		i2cctl &= ~E1000_I2C_CLK_OE_N;
615 	} else {
616 		i2cctl &= ~E1000_I2C_CLK_OUT;
617 		i2cctl &= ~E1000_I2C_CLK_OE_N;
618 	}
619 	wr32(E1000_I2CPARAMS, i2cctl);
620 	wrfl();
621 }
622 
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
629 static int igb_get_i2c_clk(void *data)
630 {
631 	struct igb_adapter *adapter = (struct igb_adapter *)data;
632 	struct e1000_hw *hw = &adapter->hw;
633 	s32 i2cctl = rd32(E1000_I2CPARAMS);
634 
635 	return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637 
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 	.setsda		= igb_set_i2c_data,
640 	.setscl		= igb_set_i2c_clk,
641 	.getsda		= igb_get_i2c_data,
642 	.getscl		= igb_get_i2c_clk,
643 	.udelay		= 5,
644 	.timeout	= 20,
645 };
646 
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 	struct igb_adapter *adapter = hw->back;
656 	return adapter->netdev;
657 }
658 
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
665 static int __init igb_init_module(void)
666 {
667 	int ret;
668 
669 	pr_info("%s - version %s\n",
670 	       igb_driver_string, igb_driver_version);
671 	pr_info("%s\n", igb_copyright);
672 
673 #ifdef CONFIG_IGB_DCA
674 	dca_register_notify(&dca_notifier);
675 #endif
676 	ret = pci_register_driver(&igb_driver);
677 	return ret;
678 }
679 
680 module_init(igb_init_module);
681 
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 	dca_unregister_notify(&dca_notifier);
692 #endif
693 	pci_unregister_driver(&igb_driver);
694 }
695 
696 module_exit(igb_exit_module);
697 
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 	int i = 0, j = 0;
709 	u32 rbase_offset = adapter->vfs_allocated_count;
710 
711 	switch (adapter->hw.mac.type) {
712 	case e1000_82576:
713 		/* The queues are allocated for virtualization such that VF 0
714 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 		 * In order to avoid collision we start at the first free queue
716 		 * and continue consuming queues in the same sequence
717 		 */
718 		if (adapter->vfs_allocated_count) {
719 			for (; i < adapter->rss_queues; i++)
720 				adapter->rx_ring[i]->reg_idx = rbase_offset +
721 							       Q_IDX_82576(i);
722 		}
723 		/* Fall through */
724 	case e1000_82575:
725 	case e1000_82580:
726 	case e1000_i350:
727 	case e1000_i354:
728 	case e1000_i210:
729 	case e1000_i211:
730 		/* Fall through */
731 	default:
732 		for (; i < adapter->num_rx_queues; i++)
733 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 		for (; j < adapter->num_tx_queues; j++)
735 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 		break;
737 	}
738 }
739 
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 	u32 value = 0;
745 
746 	if (E1000_REMOVED(hw_addr))
747 		return ~value;
748 
749 	value = readl(&hw_addr[reg]);
750 
751 	/* reads should not return all F's */
752 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 		struct net_device *netdev = igb->netdev;
754 		hw->hw_addr = NULL;
755 		netdev_err(netdev, "PCIe link lost\n");
756 	}
757 
758 	return value;
759 }
760 
761 /**
762  *  igb_write_ivar - configure ivar for given MSI-X vector
763  *  @hw: pointer to the HW structure
764  *  @msix_vector: vector number we are allocating to a given ring
765  *  @index: row index of IVAR register to write within IVAR table
766  *  @offset: column offset of in IVAR, should be multiple of 8
767  *
768  *  This function is intended to handle the writing of the IVAR register
769  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
770  *  each containing an cause allocation for an Rx and Tx ring, and a
771  *  variable number of rows depending on the number of queues supported.
772  **/
773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774 			   int index, int offset)
775 {
776 	u32 ivar = array_rd32(E1000_IVAR0, index);
777 
778 	/* clear any bits that are currently set */
779 	ivar &= ~((u32)0xFF << offset);
780 
781 	/* write vector and valid bit */
782 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
783 
784 	array_wr32(E1000_IVAR0, index, ivar);
785 }
786 
787 #define IGB_N0_QUEUE -1
788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
789 {
790 	struct igb_adapter *adapter = q_vector->adapter;
791 	struct e1000_hw *hw = &adapter->hw;
792 	int rx_queue = IGB_N0_QUEUE;
793 	int tx_queue = IGB_N0_QUEUE;
794 	u32 msixbm = 0;
795 
796 	if (q_vector->rx.ring)
797 		rx_queue = q_vector->rx.ring->reg_idx;
798 	if (q_vector->tx.ring)
799 		tx_queue = q_vector->tx.ring->reg_idx;
800 
801 	switch (hw->mac.type) {
802 	case e1000_82575:
803 		/* The 82575 assigns vectors using a bitmask, which matches the
804 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
805 		 * or more queues to a vector, we write the appropriate bits
806 		 * into the MSIXBM register for that vector.
807 		 */
808 		if (rx_queue > IGB_N0_QUEUE)
809 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810 		if (tx_queue > IGB_N0_QUEUE)
811 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813 			msixbm |= E1000_EIMS_OTHER;
814 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815 		q_vector->eims_value = msixbm;
816 		break;
817 	case e1000_82576:
818 		/* 82576 uses a table that essentially consists of 2 columns
819 		 * with 8 rows.  The ordering is column-major so we use the
820 		 * lower 3 bits as the row index, and the 4th bit as the
821 		 * column offset.
822 		 */
823 		if (rx_queue > IGB_N0_QUEUE)
824 			igb_write_ivar(hw, msix_vector,
825 				       rx_queue & 0x7,
826 				       (rx_queue & 0x8) << 1);
827 		if (tx_queue > IGB_N0_QUEUE)
828 			igb_write_ivar(hw, msix_vector,
829 				       tx_queue & 0x7,
830 				       ((tx_queue & 0x8) << 1) + 8);
831 		q_vector->eims_value = BIT(msix_vector);
832 		break;
833 	case e1000_82580:
834 	case e1000_i350:
835 	case e1000_i354:
836 	case e1000_i210:
837 	case e1000_i211:
838 		/* On 82580 and newer adapters the scheme is similar to 82576
839 		 * however instead of ordering column-major we have things
840 		 * ordered row-major.  So we traverse the table by using
841 		 * bit 0 as the column offset, and the remaining bits as the
842 		 * row index.
843 		 */
844 		if (rx_queue > IGB_N0_QUEUE)
845 			igb_write_ivar(hw, msix_vector,
846 				       rx_queue >> 1,
847 				       (rx_queue & 0x1) << 4);
848 		if (tx_queue > IGB_N0_QUEUE)
849 			igb_write_ivar(hw, msix_vector,
850 				       tx_queue >> 1,
851 				       ((tx_queue & 0x1) << 4) + 8);
852 		q_vector->eims_value = BIT(msix_vector);
853 		break;
854 	default:
855 		BUG();
856 		break;
857 	}
858 
859 	/* add q_vector eims value to global eims_enable_mask */
860 	adapter->eims_enable_mask |= q_vector->eims_value;
861 
862 	/* configure q_vector to set itr on first interrupt */
863 	q_vector->set_itr = 1;
864 }
865 
866 /**
867  *  igb_configure_msix - Configure MSI-X hardware
868  *  @adapter: board private structure to initialize
869  *
870  *  igb_configure_msix sets up the hardware to properly
871  *  generate MSI-X interrupts.
872  **/
873 static void igb_configure_msix(struct igb_adapter *adapter)
874 {
875 	u32 tmp;
876 	int i, vector = 0;
877 	struct e1000_hw *hw = &adapter->hw;
878 
879 	adapter->eims_enable_mask = 0;
880 
881 	/* set vector for other causes, i.e. link changes */
882 	switch (hw->mac.type) {
883 	case e1000_82575:
884 		tmp = rd32(E1000_CTRL_EXT);
885 		/* enable MSI-X PBA support*/
886 		tmp |= E1000_CTRL_EXT_PBA_CLR;
887 
888 		/* Auto-Mask interrupts upon ICR read. */
889 		tmp |= E1000_CTRL_EXT_EIAME;
890 		tmp |= E1000_CTRL_EXT_IRCA;
891 
892 		wr32(E1000_CTRL_EXT, tmp);
893 
894 		/* enable msix_other interrupt */
895 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896 		adapter->eims_other = E1000_EIMS_OTHER;
897 
898 		break;
899 
900 	case e1000_82576:
901 	case e1000_82580:
902 	case e1000_i350:
903 	case e1000_i354:
904 	case e1000_i210:
905 	case e1000_i211:
906 		/* Turn on MSI-X capability first, or our settings
907 		 * won't stick.  And it will take days to debug.
908 		 */
909 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
911 		     E1000_GPIE_NSICR);
912 
913 		/* enable msix_other interrupt */
914 		adapter->eims_other = BIT(vector);
915 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
916 
917 		wr32(E1000_IVAR_MISC, tmp);
918 		break;
919 	default:
920 		/* do nothing, since nothing else supports MSI-X */
921 		break;
922 	} /* switch (hw->mac.type) */
923 
924 	adapter->eims_enable_mask |= adapter->eims_other;
925 
926 	for (i = 0; i < adapter->num_q_vectors; i++)
927 		igb_assign_vector(adapter->q_vector[i], vector++);
928 
929 	wrfl();
930 }
931 
932 /**
933  *  igb_request_msix - Initialize MSI-X interrupts
934  *  @adapter: board private structure to initialize
935  *
936  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
937  *  kernel.
938  **/
939 static int igb_request_msix(struct igb_adapter *adapter)
940 {
941 	struct net_device *netdev = adapter->netdev;
942 	int i, err = 0, vector = 0, free_vector = 0;
943 
944 	err = request_irq(adapter->msix_entries[vector].vector,
945 			  igb_msix_other, 0, netdev->name, adapter);
946 	if (err)
947 		goto err_out;
948 
949 	for (i = 0; i < adapter->num_q_vectors; i++) {
950 		struct igb_q_vector *q_vector = adapter->q_vector[i];
951 
952 		vector++;
953 
954 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955 
956 		if (q_vector->rx.ring && q_vector->tx.ring)
957 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 				q_vector->rx.ring->queue_index);
959 		else if (q_vector->tx.ring)
960 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 				q_vector->tx.ring->queue_index);
962 		else if (q_vector->rx.ring)
963 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 				q_vector->rx.ring->queue_index);
965 		else
966 			sprintf(q_vector->name, "%s-unused", netdev->name);
967 
968 		err = request_irq(adapter->msix_entries[vector].vector,
969 				  igb_msix_ring, 0, q_vector->name,
970 				  q_vector);
971 		if (err)
972 			goto err_free;
973 	}
974 
975 	igb_configure_msix(adapter);
976 	return 0;
977 
978 err_free:
979 	/* free already assigned IRQs */
980 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981 
982 	vector--;
983 	for (i = 0; i < vector; i++) {
984 		free_irq(adapter->msix_entries[free_vector++].vector,
985 			 adapter->q_vector[i]);
986 	}
987 err_out:
988 	return err;
989 }
990 
991 /**
992  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be freed
995  *
996  *  This function frees the memory allocated to the q_vector.
997  **/
998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001 
1002 	adapter->q_vector[v_idx] = NULL;
1003 
1004 	/* igb_get_stats64() might access the rings on this vector,
1005 	 * we must wait a grace period before freeing it.
1006 	 */
1007 	if (q_vector)
1008 		kfree_rcu(q_vector, rcu);
1009 }
1010 
1011 /**
1012  *  igb_reset_q_vector - Reset config for interrupt vector
1013  *  @adapter: board private structure to initialize
1014  *  @v_idx: Index of vector to be reset
1015  *
1016  *  If NAPI is enabled it will delete any references to the
1017  *  NAPI struct. This is preparation for igb_free_q_vector.
1018  **/
1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022 
1023 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 	 * allocated. So, q_vector is NULL so we should stop here.
1025 	 */
1026 	if (!q_vector)
1027 		return;
1028 
1029 	if (q_vector->tx.ring)
1030 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031 
1032 	if (q_vector->rx.ring)
1033 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034 
1035 	netif_napi_del(&q_vector->napi);
1036 
1037 }
1038 
1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 	int v_idx = adapter->num_q_vectors;
1042 
1043 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 		pci_disable_msix(adapter->pdev);
1045 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 		pci_disable_msi(adapter->pdev);
1047 
1048 	while (v_idx--)
1049 		igb_reset_q_vector(adapter, v_idx);
1050 }
1051 
1052 /**
1053  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054  *  @adapter: board private structure to initialize
1055  *
1056  *  This function frees the memory allocated to the q_vectors.  In addition if
1057  *  NAPI is enabled it will delete any references to the NAPI struct prior
1058  *  to freeing the q_vector.
1059  **/
1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 	int v_idx = adapter->num_q_vectors;
1063 
1064 	adapter->num_tx_queues = 0;
1065 	adapter->num_rx_queues = 0;
1066 	adapter->num_q_vectors = 0;
1067 
1068 	while (v_idx--) {
1069 		igb_reset_q_vector(adapter, v_idx);
1070 		igb_free_q_vector(adapter, v_idx);
1071 	}
1072 }
1073 
1074 /**
1075  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076  *  @adapter: board private structure to initialize
1077  *
1078  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079  *  MSI-X interrupts allocated.
1080  */
1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 	igb_free_q_vectors(adapter);
1084 	igb_reset_interrupt_capability(adapter);
1085 }
1086 
1087 /**
1088  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089  *  @adapter: board private structure to initialize
1090  *  @msix: boolean value of MSIX capability
1091  *
1092  *  Attempt to configure interrupts using the best available
1093  *  capabilities of the hardware and kernel.
1094  **/
1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 	int err;
1098 	int numvecs, i;
1099 
1100 	if (!msix)
1101 		goto msi_only;
1102 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1103 
1104 	/* Number of supported queues. */
1105 	adapter->num_rx_queues = adapter->rss_queues;
1106 	if (adapter->vfs_allocated_count)
1107 		adapter->num_tx_queues = 1;
1108 	else
1109 		adapter->num_tx_queues = adapter->rss_queues;
1110 
1111 	/* start with one vector for every Rx queue */
1112 	numvecs = adapter->num_rx_queues;
1113 
1114 	/* if Tx handler is separate add 1 for every Tx queue */
1115 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 		numvecs += adapter->num_tx_queues;
1117 
1118 	/* store the number of vectors reserved for queues */
1119 	adapter->num_q_vectors = numvecs;
1120 
1121 	/* add 1 vector for link status interrupts */
1122 	numvecs++;
1123 	for (i = 0; i < numvecs; i++)
1124 		adapter->msix_entries[i].entry = i;
1125 
1126 	err = pci_enable_msix_range(adapter->pdev,
1127 				    adapter->msix_entries,
1128 				    numvecs,
1129 				    numvecs);
1130 	if (err > 0)
1131 		return;
1132 
1133 	igb_reset_interrupt_capability(adapter);
1134 
1135 	/* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 	/* disable SR-IOV for non MSI-X configurations */
1140 	if (adapter->vf_data) {
1141 		struct e1000_hw *hw = &adapter->hw;
1142 		/* disable iov and allow time for transactions to clear */
1143 		pci_disable_sriov(adapter->pdev);
1144 		msleep(500);
1145 
1146 		kfree(adapter->vf_mac_list);
1147 		adapter->vf_mac_list = NULL;
1148 		kfree(adapter->vf_data);
1149 		adapter->vf_data = NULL;
1150 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 		wrfl();
1152 		msleep(100);
1153 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 	}
1155 #endif
1156 	adapter->vfs_allocated_count = 0;
1157 	adapter->rss_queues = 1;
1158 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 	adapter->num_rx_queues = 1;
1160 	adapter->num_tx_queues = 1;
1161 	adapter->num_q_vectors = 1;
1162 	if (!pci_enable_msi(adapter->pdev))
1163 		adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165 
1166 static void igb_add_ring(struct igb_ring *ring,
1167 			 struct igb_ring_container *head)
1168 {
1169 	head->ring = ring;
1170 	head->count++;
1171 }
1172 
1173 /**
1174  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175  *  @adapter: board private structure to initialize
1176  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177  *  @v_idx: index of vector in adapter struct
1178  *  @txr_count: total number of Tx rings to allocate
1179  *  @txr_idx: index of first Tx ring to allocate
1180  *  @rxr_count: total number of Rx rings to allocate
1181  *  @rxr_idx: index of first Rx ring to allocate
1182  *
1183  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184  **/
1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 			      int v_count, int v_idx,
1187 			      int txr_count, int txr_idx,
1188 			      int rxr_count, int rxr_idx)
1189 {
1190 	struct igb_q_vector *q_vector;
1191 	struct igb_ring *ring;
1192 	int ring_count;
1193 	size_t size;
1194 
1195 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196 	if (txr_count > 1 || rxr_count > 1)
1197 		return -ENOMEM;
1198 
1199 	ring_count = txr_count + rxr_count;
1200 	size = struct_size(q_vector, ring, ring_count);
1201 
1202 	/* allocate q_vector and rings */
1203 	q_vector = adapter->q_vector[v_idx];
1204 	if (!q_vector) {
1205 		q_vector = kzalloc(size, GFP_KERNEL);
1206 	} else if (size > ksize(q_vector)) {
1207 		kfree_rcu(q_vector, rcu);
1208 		q_vector = kzalloc(size, GFP_KERNEL);
1209 	} else {
1210 		memset(q_vector, 0, size);
1211 	}
1212 	if (!q_vector)
1213 		return -ENOMEM;
1214 
1215 	/* initialize NAPI */
1216 	netif_napi_add(adapter->netdev, &q_vector->napi,
1217 		       igb_poll, 64);
1218 
1219 	/* tie q_vector and adapter together */
1220 	adapter->q_vector[v_idx] = q_vector;
1221 	q_vector->adapter = adapter;
1222 
1223 	/* initialize work limits */
1224 	q_vector->tx.work_limit = adapter->tx_work_limit;
1225 
1226 	/* initialize ITR configuration */
1227 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 	q_vector->itr_val = IGB_START_ITR;
1229 
1230 	/* initialize pointer to rings */
1231 	ring = q_vector->ring;
1232 
1233 	/* intialize ITR */
1234 	if (rxr_count) {
1235 		/* rx or rx/tx vector */
1236 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 			q_vector->itr_val = adapter->rx_itr_setting;
1238 	} else {
1239 		/* tx only vector */
1240 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 			q_vector->itr_val = adapter->tx_itr_setting;
1242 	}
1243 
1244 	if (txr_count) {
1245 		/* assign generic ring traits */
1246 		ring->dev = &adapter->pdev->dev;
1247 		ring->netdev = adapter->netdev;
1248 
1249 		/* configure backlink on ring */
1250 		ring->q_vector = q_vector;
1251 
1252 		/* update q_vector Tx values */
1253 		igb_add_ring(ring, &q_vector->tx);
1254 
1255 		/* For 82575, context index must be unique per ring. */
1256 		if (adapter->hw.mac.type == e1000_82575)
1257 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258 
1259 		/* apply Tx specific ring traits */
1260 		ring->count = adapter->tx_ring_count;
1261 		ring->queue_index = txr_idx;
1262 
1263 		ring->cbs_enable = false;
1264 		ring->idleslope = 0;
1265 		ring->sendslope = 0;
1266 		ring->hicredit = 0;
1267 		ring->locredit = 0;
1268 
1269 		u64_stats_init(&ring->tx_syncp);
1270 		u64_stats_init(&ring->tx_syncp2);
1271 
1272 		/* assign ring to adapter */
1273 		adapter->tx_ring[txr_idx] = ring;
1274 
1275 		/* push pointer to next ring */
1276 		ring++;
1277 	}
1278 
1279 	if (rxr_count) {
1280 		/* assign generic ring traits */
1281 		ring->dev = &adapter->pdev->dev;
1282 		ring->netdev = adapter->netdev;
1283 
1284 		/* configure backlink on ring */
1285 		ring->q_vector = q_vector;
1286 
1287 		/* update q_vector Rx values */
1288 		igb_add_ring(ring, &q_vector->rx);
1289 
1290 		/* set flag indicating ring supports SCTP checksum offload */
1291 		if (adapter->hw.mac.type >= e1000_82576)
1292 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293 
1294 		/* On i350, i354, i210, and i211, loopback VLAN packets
1295 		 * have the tag byte-swapped.
1296 		 */
1297 		if (adapter->hw.mac.type >= e1000_i350)
1298 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299 
1300 		/* apply Rx specific ring traits */
1301 		ring->count = adapter->rx_ring_count;
1302 		ring->queue_index = rxr_idx;
1303 
1304 		u64_stats_init(&ring->rx_syncp);
1305 
1306 		/* assign ring to adapter */
1307 		adapter->rx_ring[rxr_idx] = ring;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 	int q_vectors = adapter->num_q_vectors;
1324 	int rxr_remaining = adapter->num_rx_queues;
1325 	int txr_remaining = adapter->num_tx_queues;
1326 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 	int err;
1328 
1329 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 		for (; rxr_remaining; v_idx++) {
1331 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 						 0, 0, 1, rxr_idx);
1333 
1334 			if (err)
1335 				goto err_out;
1336 
1337 			/* update counts and index */
1338 			rxr_remaining--;
1339 			rxr_idx++;
1340 		}
1341 	}
1342 
1343 	for (; v_idx < q_vectors; v_idx++) {
1344 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346 
1347 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 					 tqpv, txr_idx, rqpv, rxr_idx);
1349 
1350 		if (err)
1351 			goto err_out;
1352 
1353 		/* update counts and index */
1354 		rxr_remaining -= rqpv;
1355 		txr_remaining -= tqpv;
1356 		rxr_idx++;
1357 		txr_idx++;
1358 	}
1359 
1360 	return 0;
1361 
1362 err_out:
1363 	adapter->num_tx_queues = 0;
1364 	adapter->num_rx_queues = 0;
1365 	adapter->num_q_vectors = 0;
1366 
1367 	while (v_idx--)
1368 		igb_free_q_vector(adapter, v_idx);
1369 
1370 	return -ENOMEM;
1371 }
1372 
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 	struct pci_dev *pdev = adapter->pdev;
1383 	int err;
1384 
1385 	igb_set_interrupt_capability(adapter, msix);
1386 
1387 	err = igb_alloc_q_vectors(adapter);
1388 	if (err) {
1389 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 		goto err_alloc_q_vectors;
1391 	}
1392 
1393 	igb_cache_ring_register(adapter);
1394 
1395 	return 0;
1396 
1397 err_alloc_q_vectors:
1398 	igb_reset_interrupt_capability(adapter);
1399 	return err;
1400 }
1401 
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 	struct net_device *netdev = adapter->netdev;
1412 	struct pci_dev *pdev = adapter->pdev;
1413 	int err = 0;
1414 
1415 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 		err = igb_request_msix(adapter);
1417 		if (!err)
1418 			goto request_done;
1419 		/* fall back to MSI */
1420 		igb_free_all_tx_resources(adapter);
1421 		igb_free_all_rx_resources(adapter);
1422 
1423 		igb_clear_interrupt_scheme(adapter);
1424 		err = igb_init_interrupt_scheme(adapter, false);
1425 		if (err)
1426 			goto request_done;
1427 
1428 		igb_setup_all_tx_resources(adapter);
1429 		igb_setup_all_rx_resources(adapter);
1430 		igb_configure(adapter);
1431 	}
1432 
1433 	igb_assign_vector(adapter->q_vector[0], 0);
1434 
1435 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 				  netdev->name, adapter);
1438 		if (!err)
1439 			goto request_done;
1440 
1441 		/* fall back to legacy interrupts */
1442 		igb_reset_interrupt_capability(adapter);
1443 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 	}
1445 
1446 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 			  netdev->name, adapter);
1448 
1449 	if (err)
1450 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 			err);
1452 
1453 request_done:
1454 	return err;
1455 }
1456 
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 		int vector = 0, i;
1461 
1462 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1463 
1464 		for (i = 0; i < adapter->num_q_vectors; i++)
1465 			free_irq(adapter->msix_entries[vector++].vector,
1466 				 adapter->q_vector[i]);
1467 	} else {
1468 		free_irq(adapter->pdev->irq, adapter);
1469 	}
1470 }
1471 
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 	struct e1000_hw *hw = &adapter->hw;
1479 
1480 	/* we need to be careful when disabling interrupts.  The VFs are also
1481 	 * mapped into these registers and so clearing the bits can cause
1482 	 * issues on the VF drivers so we only need to clear what we set
1483 	 */
1484 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 		u32 regval = rd32(E1000_EIAM);
1486 
1487 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 		regval = rd32(E1000_EIAC);
1490 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 	}
1492 
1493 	wr32(E1000_IAM, 0);
1494 	wr32(E1000_IMC, ~0);
1495 	wrfl();
1496 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 		int i;
1498 
1499 		for (i = 0; i < adapter->num_q_vectors; i++)
1500 			synchronize_irq(adapter->msix_entries[i].vector);
1501 	} else {
1502 		synchronize_irq(adapter->pdev->irq);
1503 	}
1504 }
1505 
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 	struct e1000_hw *hw = &adapter->hw;
1513 
1514 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 		u32 regval = rd32(E1000_EIAC);
1517 
1518 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 		regval = rd32(E1000_EIAM);
1520 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 		if (adapter->vfs_allocated_count) {
1523 			wr32(E1000_MBVFIMR, 0xFF);
1524 			ims |= E1000_IMS_VMMB;
1525 		}
1526 		wr32(E1000_IMS, ims);
1527 	} else {
1528 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 				E1000_IMS_DRSTA);
1530 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 	}
1533 }
1534 
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 	struct e1000_hw *hw = &adapter->hw;
1538 	u16 pf_id = adapter->vfs_allocated_count;
1539 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 	u16 old_vid = adapter->mng_vlan_id;
1541 
1542 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 		/* add VID to filter table */
1544 		igb_vfta_set(hw, vid, pf_id, true, true);
1545 		adapter->mng_vlan_id = vid;
1546 	} else {
1547 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 	}
1549 
1550 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 	    (vid != old_vid) &&
1552 	    !test_bit(old_vid, adapter->active_vlans)) {
1553 		/* remove VID from filter table */
1554 		igb_vfta_set(hw, vid, pf_id, false, true);
1555 	}
1556 }
1557 
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 	struct e1000_hw *hw = &adapter->hw;
1569 	u32 ctrl_ext;
1570 
1571 	/* Let firmware take over control of h/w */
1572 	ctrl_ext = rd32(E1000_CTRL_EXT);
1573 	wr32(E1000_CTRL_EXT,
1574 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576 
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 	struct e1000_hw *hw = &adapter->hw;
1588 	u32 ctrl_ext;
1589 
1590 	/* Let firmware know the driver has taken over */
1591 	ctrl_ext = rd32(E1000_CTRL_EXT);
1592 	wr32(E1000_CTRL_EXT,
1593 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595 
1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 	struct net_device *netdev = adapter->netdev;
1599 	struct e1000_hw *hw = &adapter->hw;
1600 
1601 	WARN_ON(hw->mac.type != e1000_i210);
1602 
1603 	if (enable)
1604 		adapter->flags |= IGB_FLAG_FQTSS;
1605 	else
1606 		adapter->flags &= ~IGB_FLAG_FQTSS;
1607 
1608 	if (netif_running(netdev))
1609 		schedule_work(&adapter->reset_task);
1610 }
1611 
1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616 
1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 				   enum tx_queue_prio prio)
1619 {
1620 	u32 val;
1621 
1622 	WARN_ON(hw->mac.type != e1000_i210);
1623 	WARN_ON(queue < 0 || queue > 4);
1624 
1625 	val = rd32(E1000_I210_TXDCTL(queue));
1626 
1627 	if (prio == TX_QUEUE_PRIO_HIGH)
1628 		val |= E1000_TXDCTL_PRIORITY;
1629 	else
1630 		val &= ~E1000_TXDCTL_PRIORITY;
1631 
1632 	wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634 
1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 	u32 val;
1638 
1639 	WARN_ON(hw->mac.type != e1000_i210);
1640 	WARN_ON(queue < 0 || queue > 1);
1641 
1642 	val = rd32(E1000_I210_TQAVCC(queue));
1643 
1644 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 		val |= E1000_TQAVCC_QUEUEMODE;
1646 	else
1647 		val &= ~E1000_TQAVCC_QUEUEMODE;
1648 
1649 	wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651 
1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 	int i;
1655 
1656 	for (i = 0; i < adapter->num_tx_queues; i++) {
1657 		if (adapter->tx_ring[i]->cbs_enable)
1658 			return true;
1659 	}
1660 
1661 	return false;
1662 }
1663 
1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 	int i;
1667 
1668 	for (i = 0; i < adapter->num_tx_queues; i++) {
1669 		if (adapter->tx_ring[i]->launchtime_enable)
1670 			return true;
1671 	}
1672 
1673 	return false;
1674 }
1675 
1676 /**
1677  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678  *  @adapter: pointer to adapter struct
1679  *  @queue: queue number
1680  *
1681  *  Configure CBS and Launchtime for a given hardware queue.
1682  *  Parameters are retrieved from the correct Tx ring, so
1683  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1684  *  for setting those correctly prior to this function being called.
1685  **/
1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 	struct igb_ring *ring = adapter->tx_ring[queue];
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	u32 tqavcc, tqavctrl;
1692 	u16 value;
1693 
1694 	WARN_ON(hw->mac.type != e1000_i210);
1695 	WARN_ON(queue < 0 || queue > 1);
1696 
1697 	/* If any of the Qav features is enabled, configure queues as SR and
1698 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699 	 * as SP.
1700 	 */
1701 	if (ring->cbs_enable || ring->launchtime_enable) {
1702 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704 	} else {
1705 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707 	}
1708 
1709 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1710 	if (ring->cbs_enable || queue == 0) {
1711 		/* i210 does not allow the queue 0 to be in the Strict
1712 		 * Priority mode while the Qav mode is enabled, so,
1713 		 * instead of disabling strict priority mode, we give
1714 		 * queue 0 the maximum of credits possible.
1715 		 *
1716 		 * See section 8.12.19 of the i210 datasheet, "Note:
1717 		 * Queue0 QueueMode must be set to 1b when
1718 		 * TransmitMode is set to Qav."
1719 		 */
1720 		if (queue == 0 && !ring->cbs_enable) {
1721 			/* max "linkspeed" idleslope in kbps */
1722 			ring->idleslope = 1000000;
1723 			ring->hicredit = ETH_FRAME_LEN;
1724 		}
1725 
1726 		/* Always set data transfer arbitration to credit-based
1727 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728 		 * the queues.
1729 		 */
1730 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733 
1734 		/* According to i210 datasheet section 7.2.7.7, we should set
1735 		 * the 'idleSlope' field from TQAVCC register following the
1736 		 * equation:
1737 		 *
1738 		 * For 100 Mbps link speed:
1739 		 *
1740 		 *     value = BW * 0x7735 * 0.2                          (E1)
1741 		 *
1742 		 * For 1000Mbps link speed:
1743 		 *
1744 		 *     value = BW * 0x7735 * 2                            (E2)
1745 		 *
1746 		 * E1 and E2 can be merged into one equation as shown below.
1747 		 * Note that 'link-speed' is in Mbps.
1748 		 *
1749 		 *     value = BW * 0x7735 * 2 * link-speed
1750 		 *                           --------------               (E3)
1751 		 *                                1000
1752 		 *
1753 		 * 'BW' is the percentage bandwidth out of full link speed
1754 		 * which can be found with the following equation. Note that
1755 		 * idleSlope here is the parameter from this function which
1756 		 * is in kbps.
1757 		 *
1758 		 *     BW =     idleSlope
1759 		 *          -----------------                             (E4)
1760 		 *          link-speed * 1000
1761 		 *
1762 		 * That said, we can come up with a generic equation to
1763 		 * calculate the value we should set it TQAVCC register by
1764 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1765 		 *
1766 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1767 		 *         -----------------            --------------    (E5)
1768 		 *         link-speed * 1000                 1000
1769 		 *
1770 		 * 'link-speed' is present in both sides of the fraction so
1771 		 * it is canceled out. The final equation is the following:
1772 		 *
1773 		 *     value = idleSlope * 61034
1774 		 *             -----------------                          (E6)
1775 		 *                  1000000
1776 		 *
1777 		 * NOTE: For i210, given the above, we can see that idleslope
1778 		 *       is represented in 16.38431 kbps units by the value at
1779 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1780 		 *       the granularity for idleslope increments.
1781 		 *       For instance, if you want to configure a 2576kbps
1782 		 *       idleslope, the value to be written on the register
1783 		 *       would have to be 157.23. If rounded down, you end
1784 		 *       up with less bandwidth available than originally
1785 		 *       required (~2572 kbps). If rounded up, you end up
1786 		 *       with a higher bandwidth (~2589 kbps). Below the
1787 		 *       approach we take is to always round up the
1788 		 *       calculated value, so the resulting bandwidth might
1789 		 *       be slightly higher for some configurations.
1790 		 */
1791 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792 
1793 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795 		tqavcc |= value;
1796 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797 
1798 		wr32(E1000_I210_TQAVHC(queue),
1799 		     0x80000000 + ring->hicredit * 0x7735);
1800 	} else {
1801 
1802 		/* Set idleSlope to zero. */
1803 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806 
1807 		/* Set hiCredit to zero. */
1808 		wr32(E1000_I210_TQAVHC(queue), 0);
1809 
1810 		/* If CBS is not enabled for any queues anymore, then return to
1811 		 * the default state of Data Transmission Arbitration on
1812 		 * TQAVCTRL.
1813 		 */
1814 		if (!is_any_cbs_enabled(adapter)) {
1815 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818 		}
1819 	}
1820 
1821 	/* If LaunchTime is enabled, set DataTranTIM. */
1822 	if (ring->launchtime_enable) {
1823 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 		 * for any of the SR queues, and configure fetchtime delta.
1825 		 * XXX NOTE:
1826 		 *     - LaunchTime will be enabled for all SR queues.
1827 		 *     - A fixed offset can be added relative to the launch
1828 		 *       time of all packets if configured at reg LAUNCH_OS0.
1829 		 *       We are keeping it as 0 for now (default value).
1830 		 */
1831 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835 	} else {
1836 		/* If Launchtime is not enabled for any SR queues anymore,
1837 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 		 * effectively disabling Launchtime.
1839 		 */
1840 		if (!is_any_txtime_enabled(adapter)) {
1841 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845 		}
1846 	}
1847 
1848 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 	 * CBS are not configurable by software so we don't do any 'controller
1850 	 * configuration' in respect to these parameters.
1851 	 */
1852 
1853 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1854 		   ring->cbs_enable ? "enabled" : "disabled",
1855 		   ring->launchtime_enable ? "enabled" : "disabled",
1856 		   queue,
1857 		   ring->idleslope, ring->sendslope,
1858 		   ring->hicredit, ring->locredit);
1859 }
1860 
1861 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1862 				  bool enable)
1863 {
1864 	struct igb_ring *ring;
1865 
1866 	if (queue < 0 || queue > adapter->num_tx_queues)
1867 		return -EINVAL;
1868 
1869 	ring = adapter->tx_ring[queue];
1870 	ring->launchtime_enable = enable;
1871 
1872 	return 0;
1873 }
1874 
1875 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1876 			       bool enable, int idleslope, int sendslope,
1877 			       int hicredit, int locredit)
1878 {
1879 	struct igb_ring *ring;
1880 
1881 	if (queue < 0 || queue > adapter->num_tx_queues)
1882 		return -EINVAL;
1883 
1884 	ring = adapter->tx_ring[queue];
1885 
1886 	ring->cbs_enable = enable;
1887 	ring->idleslope = idleslope;
1888 	ring->sendslope = sendslope;
1889 	ring->hicredit = hicredit;
1890 	ring->locredit = locredit;
1891 
1892 	return 0;
1893 }
1894 
1895 /**
1896  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1897  *  @adapter: pointer to adapter struct
1898  *
1899  *  Configure TQAVCTRL register switching the controller's Tx mode
1900  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1901  *  a call to igb_config_tx_modes() per queue so any previously saved
1902  *  Tx parameters are applied.
1903  **/
1904 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1905 {
1906 	struct net_device *netdev = adapter->netdev;
1907 	struct e1000_hw *hw = &adapter->hw;
1908 	u32 val;
1909 
1910 	/* Only i210 controller supports changing the transmission mode. */
1911 	if (hw->mac.type != e1000_i210)
1912 		return;
1913 
1914 	if (is_fqtss_enabled(adapter)) {
1915 		int i, max_queue;
1916 
1917 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1918 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1919 		 * so SP queues wait for SR ones.
1920 		 */
1921 		val = rd32(E1000_I210_TQAVCTRL);
1922 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1923 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1924 		wr32(E1000_I210_TQAVCTRL, val);
1925 
1926 		/* Configure Tx and Rx packet buffers sizes as described in
1927 		 * i210 datasheet section 7.2.7.7.
1928 		 */
1929 		val = rd32(E1000_TXPBS);
1930 		val &= ~I210_TXPBSIZE_MASK;
1931 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1932 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1933 		wr32(E1000_TXPBS, val);
1934 
1935 		val = rd32(E1000_RXPBS);
1936 		val &= ~I210_RXPBSIZE_MASK;
1937 		val |= I210_RXPBSIZE_PB_30KB;
1938 		wr32(E1000_RXPBS, val);
1939 
1940 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1941 		 * register should not exceed the buffer size programmed in
1942 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1943 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1944 		 * 4kB / 64.
1945 		 *
1946 		 * However, when we do so, no frame from queue 2 and 3 are
1947 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1948 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1949 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1950 		 */
1951 		val = (4096 - 1) / 64;
1952 		wr32(E1000_I210_DTXMXPKTSZ, val);
1953 
1954 		/* Since FQTSS mode is enabled, apply any CBS configuration
1955 		 * previously set. If no previous CBS configuration has been
1956 		 * done, then the initial configuration is applied, which means
1957 		 * CBS is disabled.
1958 		 */
1959 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1960 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1961 
1962 		for (i = 0; i < max_queue; i++) {
1963 			igb_config_tx_modes(adapter, i);
1964 		}
1965 	} else {
1966 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1967 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1968 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1969 
1970 		val = rd32(E1000_I210_TQAVCTRL);
1971 		/* According to Section 8.12.21, the other flags we've set when
1972 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1973 		 * don't set they here.
1974 		 */
1975 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1976 		wr32(E1000_I210_TQAVCTRL, val);
1977 	}
1978 
1979 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1980 		   "enabled" : "disabled");
1981 }
1982 
1983 /**
1984  *  igb_configure - configure the hardware for RX and TX
1985  *  @adapter: private board structure
1986  **/
1987 static void igb_configure(struct igb_adapter *adapter)
1988 {
1989 	struct net_device *netdev = adapter->netdev;
1990 	int i;
1991 
1992 	igb_get_hw_control(adapter);
1993 	igb_set_rx_mode(netdev);
1994 	igb_setup_tx_mode(adapter);
1995 
1996 	igb_restore_vlan(adapter);
1997 
1998 	igb_setup_tctl(adapter);
1999 	igb_setup_mrqc(adapter);
2000 	igb_setup_rctl(adapter);
2001 
2002 	igb_nfc_filter_restore(adapter);
2003 	igb_configure_tx(adapter);
2004 	igb_configure_rx(adapter);
2005 
2006 	igb_rx_fifo_flush_82575(&adapter->hw);
2007 
2008 	/* call igb_desc_unused which always leaves
2009 	 * at least 1 descriptor unused to make sure
2010 	 * next_to_use != next_to_clean
2011 	 */
2012 	for (i = 0; i < adapter->num_rx_queues; i++) {
2013 		struct igb_ring *ring = adapter->rx_ring[i];
2014 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2015 	}
2016 }
2017 
2018 /**
2019  *  igb_power_up_link - Power up the phy/serdes link
2020  *  @adapter: address of board private structure
2021  **/
2022 void igb_power_up_link(struct igb_adapter *adapter)
2023 {
2024 	igb_reset_phy(&adapter->hw);
2025 
2026 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2027 		igb_power_up_phy_copper(&adapter->hw);
2028 	else
2029 		igb_power_up_serdes_link_82575(&adapter->hw);
2030 
2031 	igb_setup_link(&adapter->hw);
2032 }
2033 
2034 /**
2035  *  igb_power_down_link - Power down the phy/serdes link
2036  *  @adapter: address of board private structure
2037  */
2038 static void igb_power_down_link(struct igb_adapter *adapter)
2039 {
2040 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2041 		igb_power_down_phy_copper_82575(&adapter->hw);
2042 	else
2043 		igb_shutdown_serdes_link_82575(&adapter->hw);
2044 }
2045 
2046 /**
2047  * Detect and switch function for Media Auto Sense
2048  * @adapter: address of the board private structure
2049  **/
2050 static void igb_check_swap_media(struct igb_adapter *adapter)
2051 {
2052 	struct e1000_hw *hw = &adapter->hw;
2053 	u32 ctrl_ext, connsw;
2054 	bool swap_now = false;
2055 
2056 	ctrl_ext = rd32(E1000_CTRL_EXT);
2057 	connsw = rd32(E1000_CONNSW);
2058 
2059 	/* need to live swap if current media is copper and we have fiber/serdes
2060 	 * to go to.
2061 	 */
2062 
2063 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2064 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2065 		swap_now = true;
2066 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
2067 		/* copper signal takes time to appear */
2068 		if (adapter->copper_tries < 4) {
2069 			adapter->copper_tries++;
2070 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071 			wr32(E1000_CONNSW, connsw);
2072 			return;
2073 		} else {
2074 			adapter->copper_tries = 0;
2075 			if ((connsw & E1000_CONNSW_PHYSD) &&
2076 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2077 				swap_now = true;
2078 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079 				wr32(E1000_CONNSW, connsw);
2080 			}
2081 		}
2082 	}
2083 
2084 	if (!swap_now)
2085 		return;
2086 
2087 	switch (hw->phy.media_type) {
2088 	case e1000_media_type_copper:
2089 		netdev_info(adapter->netdev,
2090 			"MAS: changing media to fiber/serdes\n");
2091 		ctrl_ext |=
2092 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094 		adapter->copper_tries = 0;
2095 		break;
2096 	case e1000_media_type_internal_serdes:
2097 	case e1000_media_type_fiber:
2098 		netdev_info(adapter->netdev,
2099 			"MAS: changing media to copper\n");
2100 		ctrl_ext &=
2101 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2103 		break;
2104 	default:
2105 		/* shouldn't get here during regular operation */
2106 		netdev_err(adapter->netdev,
2107 			"AMS: Invalid media type found, returning\n");
2108 		break;
2109 	}
2110 	wr32(E1000_CTRL_EXT, ctrl_ext);
2111 }
2112 
2113 /**
2114  *  igb_up - Open the interface and prepare it to handle traffic
2115  *  @adapter: board private structure
2116  **/
2117 int igb_up(struct igb_adapter *adapter)
2118 {
2119 	struct e1000_hw *hw = &adapter->hw;
2120 	int i;
2121 
2122 	/* hardware has been reset, we need to reload some things */
2123 	igb_configure(adapter);
2124 
2125 	clear_bit(__IGB_DOWN, &adapter->state);
2126 
2127 	for (i = 0; i < adapter->num_q_vectors; i++)
2128 		napi_enable(&(adapter->q_vector[i]->napi));
2129 
2130 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131 		igb_configure_msix(adapter);
2132 	else
2133 		igb_assign_vector(adapter->q_vector[0], 0);
2134 
2135 	/* Clear any pending interrupts. */
2136 	rd32(E1000_TSICR);
2137 	rd32(E1000_ICR);
2138 	igb_irq_enable(adapter);
2139 
2140 	/* notify VFs that reset has been completed */
2141 	if (adapter->vfs_allocated_count) {
2142 		u32 reg_data = rd32(E1000_CTRL_EXT);
2143 
2144 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2145 		wr32(E1000_CTRL_EXT, reg_data);
2146 	}
2147 
2148 	netif_tx_start_all_queues(adapter->netdev);
2149 
2150 	/* start the watchdog. */
2151 	hw->mac.get_link_status = 1;
2152 	schedule_work(&adapter->watchdog_task);
2153 
2154 	if ((adapter->flags & IGB_FLAG_EEE) &&
2155 	    (!hw->dev_spec._82575.eee_disable))
2156 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2157 
2158 	return 0;
2159 }
2160 
2161 void igb_down(struct igb_adapter *adapter)
2162 {
2163 	struct net_device *netdev = adapter->netdev;
2164 	struct e1000_hw *hw = &adapter->hw;
2165 	u32 tctl, rctl;
2166 	int i;
2167 
2168 	/* signal that we're down so the interrupt handler does not
2169 	 * reschedule our watchdog timer
2170 	 */
2171 	set_bit(__IGB_DOWN, &adapter->state);
2172 
2173 	/* disable receives in the hardware */
2174 	rctl = rd32(E1000_RCTL);
2175 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176 	/* flush and sleep below */
2177 
2178 	igb_nfc_filter_exit(adapter);
2179 
2180 	netif_carrier_off(netdev);
2181 	netif_tx_stop_all_queues(netdev);
2182 
2183 	/* disable transmits in the hardware */
2184 	tctl = rd32(E1000_TCTL);
2185 	tctl &= ~E1000_TCTL_EN;
2186 	wr32(E1000_TCTL, tctl);
2187 	/* flush both disables and wait for them to finish */
2188 	wrfl();
2189 	usleep_range(10000, 11000);
2190 
2191 	igb_irq_disable(adapter);
2192 
2193 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2194 
2195 	for (i = 0; i < adapter->num_q_vectors; i++) {
2196 		if (adapter->q_vector[i]) {
2197 			napi_synchronize(&adapter->q_vector[i]->napi);
2198 			napi_disable(&adapter->q_vector[i]->napi);
2199 		}
2200 	}
2201 
2202 	del_timer_sync(&adapter->watchdog_timer);
2203 	del_timer_sync(&adapter->phy_info_timer);
2204 
2205 	/* record the stats before reset*/
2206 	spin_lock(&adapter->stats64_lock);
2207 	igb_update_stats(adapter);
2208 	spin_unlock(&adapter->stats64_lock);
2209 
2210 	adapter->link_speed = 0;
2211 	adapter->link_duplex = 0;
2212 
2213 	if (!pci_channel_offline(adapter->pdev))
2214 		igb_reset(adapter);
2215 
2216 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2217 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2218 
2219 	igb_clean_all_tx_rings(adapter);
2220 	igb_clean_all_rx_rings(adapter);
2221 #ifdef CONFIG_IGB_DCA
2222 
2223 	/* since we reset the hardware DCA settings were cleared */
2224 	igb_setup_dca(adapter);
2225 #endif
2226 }
2227 
2228 void igb_reinit_locked(struct igb_adapter *adapter)
2229 {
2230 	WARN_ON(in_interrupt());
2231 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2232 		usleep_range(1000, 2000);
2233 	igb_down(adapter);
2234 	igb_up(adapter);
2235 	clear_bit(__IGB_RESETTING, &adapter->state);
2236 }
2237 
2238 /** igb_enable_mas - Media Autosense re-enable after swap
2239  *
2240  * @adapter: adapter struct
2241  **/
2242 static void igb_enable_mas(struct igb_adapter *adapter)
2243 {
2244 	struct e1000_hw *hw = &adapter->hw;
2245 	u32 connsw = rd32(E1000_CONNSW);
2246 
2247 	/* configure for SerDes media detect */
2248 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2249 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2250 		connsw |= E1000_CONNSW_ENRGSRC;
2251 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2252 		wr32(E1000_CONNSW, connsw);
2253 		wrfl();
2254 	}
2255 }
2256 
2257 void igb_reset(struct igb_adapter *adapter)
2258 {
2259 	struct pci_dev *pdev = adapter->pdev;
2260 	struct e1000_hw *hw = &adapter->hw;
2261 	struct e1000_mac_info *mac = &hw->mac;
2262 	struct e1000_fc_info *fc = &hw->fc;
2263 	u32 pba, hwm;
2264 
2265 	/* Repartition Pba for greater than 9k mtu
2266 	 * To take effect CTRL.RST is required.
2267 	 */
2268 	switch (mac->type) {
2269 	case e1000_i350:
2270 	case e1000_i354:
2271 	case e1000_82580:
2272 		pba = rd32(E1000_RXPBS);
2273 		pba = igb_rxpbs_adjust_82580(pba);
2274 		break;
2275 	case e1000_82576:
2276 		pba = rd32(E1000_RXPBS);
2277 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2278 		break;
2279 	case e1000_82575:
2280 	case e1000_i210:
2281 	case e1000_i211:
2282 	default:
2283 		pba = E1000_PBA_34K;
2284 		break;
2285 	}
2286 
2287 	if (mac->type == e1000_82575) {
2288 		u32 min_rx_space, min_tx_space, needed_tx_space;
2289 
2290 		/* write Rx PBA so that hardware can report correct Tx PBA */
2291 		wr32(E1000_PBA, pba);
2292 
2293 		/* To maintain wire speed transmits, the Tx FIFO should be
2294 		 * large enough to accommodate two full transmit packets,
2295 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2296 		 * the Rx FIFO should be large enough to accommodate at least
2297 		 * one full receive packet and is similarly rounded up and
2298 		 * expressed in KB.
2299 		 */
2300 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2301 
2302 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2303 		 * but don't include Ethernet FCS because hardware appends it.
2304 		 * We only need to round down to the nearest 512 byte block
2305 		 * count since the value we care about is 2 frames, not 1.
2306 		 */
2307 		min_tx_space = adapter->max_frame_size;
2308 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2309 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2310 
2311 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2312 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2313 
2314 		/* If current Tx allocation is less than the min Tx FIFO size,
2315 		 * and the min Tx FIFO size is less than the current Rx FIFO
2316 		 * allocation, take space away from current Rx allocation.
2317 		 */
2318 		if (needed_tx_space < pba) {
2319 			pba -= needed_tx_space;
2320 
2321 			/* if short on Rx space, Rx wins and must trump Tx
2322 			 * adjustment
2323 			 */
2324 			if (pba < min_rx_space)
2325 				pba = min_rx_space;
2326 		}
2327 
2328 		/* adjust PBA for jumbo frames */
2329 		wr32(E1000_PBA, pba);
2330 	}
2331 
2332 	/* flow control settings
2333 	 * The high water mark must be low enough to fit one full frame
2334 	 * after transmitting the pause frame.  As such we must have enough
2335 	 * space to allow for us to complete our current transmit and then
2336 	 * receive the frame that is in progress from the link partner.
2337 	 * Set it to:
2338 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2339 	 */
2340 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2341 
2342 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2343 	fc->low_water = fc->high_water - 16;
2344 	fc->pause_time = 0xFFFF;
2345 	fc->send_xon = 1;
2346 	fc->current_mode = fc->requested_mode;
2347 
2348 	/* disable receive for all VFs and wait one second */
2349 	if (adapter->vfs_allocated_count) {
2350 		int i;
2351 
2352 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2353 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2354 
2355 		/* ping all the active vfs to let them know we are going down */
2356 		igb_ping_all_vfs(adapter);
2357 
2358 		/* disable transmits and receives */
2359 		wr32(E1000_VFRE, 0);
2360 		wr32(E1000_VFTE, 0);
2361 	}
2362 
2363 	/* Allow time for pending master requests to run */
2364 	hw->mac.ops.reset_hw(hw);
2365 	wr32(E1000_WUC, 0);
2366 
2367 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2368 		/* need to resetup here after media swap */
2369 		adapter->ei.get_invariants(hw);
2370 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2371 	}
2372 	if ((mac->type == e1000_82575) &&
2373 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2374 		igb_enable_mas(adapter);
2375 	}
2376 	if (hw->mac.ops.init_hw(hw))
2377 		dev_err(&pdev->dev, "Hardware Error\n");
2378 
2379 	/* RAR registers were cleared during init_hw, clear mac table */
2380 	igb_flush_mac_table(adapter);
2381 	__dev_uc_unsync(adapter->netdev, NULL);
2382 
2383 	/* Recover default RAR entry */
2384 	igb_set_default_mac_filter(adapter);
2385 
2386 	/* Flow control settings reset on hardware reset, so guarantee flow
2387 	 * control is off when forcing speed.
2388 	 */
2389 	if (!hw->mac.autoneg)
2390 		igb_force_mac_fc(hw);
2391 
2392 	igb_init_dmac(adapter, pba);
2393 #ifdef CONFIG_IGB_HWMON
2394 	/* Re-initialize the thermal sensor on i350 devices. */
2395 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2396 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2397 			/* If present, re-initialize the external thermal sensor
2398 			 * interface.
2399 			 */
2400 			if (adapter->ets)
2401 				mac->ops.init_thermal_sensor_thresh(hw);
2402 		}
2403 	}
2404 #endif
2405 	/* Re-establish EEE setting */
2406 	if (hw->phy.media_type == e1000_media_type_copper) {
2407 		switch (mac->type) {
2408 		case e1000_i350:
2409 		case e1000_i210:
2410 		case e1000_i211:
2411 			igb_set_eee_i350(hw, true, true);
2412 			break;
2413 		case e1000_i354:
2414 			igb_set_eee_i354(hw, true, true);
2415 			break;
2416 		default:
2417 			break;
2418 		}
2419 	}
2420 	if (!netif_running(adapter->netdev))
2421 		igb_power_down_link(adapter);
2422 
2423 	igb_update_mng_vlan(adapter);
2424 
2425 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2427 
2428 	/* Re-enable PTP, where applicable. */
2429 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430 		igb_ptp_reset(adapter);
2431 
2432 	igb_get_phy_info(hw);
2433 }
2434 
2435 static netdev_features_t igb_fix_features(struct net_device *netdev,
2436 	netdev_features_t features)
2437 {
2438 	/* Since there is no support for separate Rx/Tx vlan accel
2439 	 * enable/disable make sure Tx flag is always in same state as Rx.
2440 	 */
2441 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2443 	else
2444 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2445 
2446 	return features;
2447 }
2448 
2449 static int igb_set_features(struct net_device *netdev,
2450 	netdev_features_t features)
2451 {
2452 	netdev_features_t changed = netdev->features ^ features;
2453 	struct igb_adapter *adapter = netdev_priv(netdev);
2454 
2455 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456 		igb_vlan_mode(netdev, features);
2457 
2458 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2459 		return 0;
2460 
2461 	if (!(features & NETIF_F_NTUPLE)) {
2462 		struct hlist_node *node2;
2463 		struct igb_nfc_filter *rule;
2464 
2465 		spin_lock(&adapter->nfc_lock);
2466 		hlist_for_each_entry_safe(rule, node2,
2467 					  &adapter->nfc_filter_list, nfc_node) {
2468 			igb_erase_filter(adapter, rule);
2469 			hlist_del(&rule->nfc_node);
2470 			kfree(rule);
2471 		}
2472 		spin_unlock(&adapter->nfc_lock);
2473 		adapter->nfc_filter_count = 0;
2474 	}
2475 
2476 	netdev->features = features;
2477 
2478 	if (netif_running(netdev))
2479 		igb_reinit_locked(adapter);
2480 	else
2481 		igb_reset(adapter);
2482 
2483 	return 1;
2484 }
2485 
2486 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487 			   struct net_device *dev,
2488 			   const unsigned char *addr, u16 vid,
2489 			   u16 flags,
2490 			   struct netlink_ext_ack *extack)
2491 {
2492 	/* guarantee we can provide a unique filter for the unicast address */
2493 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2494 		struct igb_adapter *adapter = netdev_priv(dev);
2495 		int vfn = adapter->vfs_allocated_count;
2496 
2497 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2498 			return -ENOMEM;
2499 	}
2500 
2501 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2502 }
2503 
2504 #define IGB_MAX_MAC_HDR_LEN	127
2505 #define IGB_MAX_NETWORK_HDR_LEN	511
2506 
2507 static netdev_features_t
2508 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2509 		   netdev_features_t features)
2510 {
2511 	unsigned int network_hdr_len, mac_hdr_len;
2512 
2513 	/* Make certain the headers can be described by a context descriptor */
2514 	mac_hdr_len = skb_network_header(skb) - skb->data;
2515 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2516 		return features & ~(NETIF_F_HW_CSUM |
2517 				    NETIF_F_SCTP_CRC |
2518 				    NETIF_F_HW_VLAN_CTAG_TX |
2519 				    NETIF_F_TSO |
2520 				    NETIF_F_TSO6);
2521 
2522 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2524 		return features & ~(NETIF_F_HW_CSUM |
2525 				    NETIF_F_SCTP_CRC |
2526 				    NETIF_F_TSO |
2527 				    NETIF_F_TSO6);
2528 
2529 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2530 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2531 	 */
2532 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2533 		features &= ~NETIF_F_TSO;
2534 
2535 	return features;
2536 }
2537 
2538 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2539 {
2540 	if (!is_fqtss_enabled(adapter)) {
2541 		enable_fqtss(adapter, true);
2542 		return;
2543 	}
2544 
2545 	igb_config_tx_modes(adapter, queue);
2546 
2547 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2548 		enable_fqtss(adapter, false);
2549 }
2550 
2551 static int igb_offload_cbs(struct igb_adapter *adapter,
2552 			   struct tc_cbs_qopt_offload *qopt)
2553 {
2554 	struct e1000_hw *hw = &adapter->hw;
2555 	int err;
2556 
2557 	/* CBS offloading is only supported by i210 controller. */
2558 	if (hw->mac.type != e1000_i210)
2559 		return -EOPNOTSUPP;
2560 
2561 	/* CBS offloading is only supported by queue 0 and queue 1. */
2562 	if (qopt->queue < 0 || qopt->queue > 1)
2563 		return -EINVAL;
2564 
2565 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2566 				  qopt->idleslope, qopt->sendslope,
2567 				  qopt->hicredit, qopt->locredit);
2568 	if (err)
2569 		return err;
2570 
2571 	igb_offload_apply(adapter, qopt->queue);
2572 
2573 	return 0;
2574 }
2575 
2576 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2577 #define VLAN_PRIO_FULL_MASK (0x07)
2578 
2579 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2580 				struct tc_cls_flower_offload *f,
2581 				int traffic_class,
2582 				struct igb_nfc_filter *input)
2583 {
2584 	struct flow_rule *rule = tc_cls_flower_offload_flow_rule(f);
2585 	struct flow_dissector *dissector = rule->match.dissector;
2586 	struct netlink_ext_ack *extack = f->common.extack;
2587 
2588 	if (dissector->used_keys &
2589 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2590 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2591 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2592 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2593 		NL_SET_ERR_MSG_MOD(extack,
2594 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2595 		return -EOPNOTSUPP;
2596 	}
2597 
2598 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2599 		struct flow_match_eth_addrs match;
2600 
2601 		flow_rule_match_eth_addrs(rule, &match);
2602 		if (!is_zero_ether_addr(match.mask->dst)) {
2603 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2604 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2605 				return -EINVAL;
2606 			}
2607 
2608 			input->filter.match_flags |=
2609 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2610 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2611 		}
2612 
2613 		if (!is_zero_ether_addr(match.mask->src)) {
2614 			if (!is_broadcast_ether_addr(match.mask->src)) {
2615 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2616 				return -EINVAL;
2617 			}
2618 
2619 			input->filter.match_flags |=
2620 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2621 			ether_addr_copy(input->filter.src_addr, match.key->src);
2622 		}
2623 	}
2624 
2625 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2626 		struct flow_match_basic match;
2627 
2628 		flow_rule_match_basic(rule, &match);
2629 		if (match.mask->n_proto) {
2630 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2631 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2632 				return -EINVAL;
2633 			}
2634 
2635 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2636 			input->filter.etype = match.key->n_proto;
2637 		}
2638 	}
2639 
2640 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2641 		struct flow_match_vlan match;
2642 
2643 		flow_rule_match_vlan(rule, &match);
2644 		if (match.mask->vlan_priority) {
2645 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2646 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2647 				return -EINVAL;
2648 			}
2649 
2650 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2651 			input->filter.vlan_tci = match.key->vlan_priority;
2652 		}
2653 	}
2654 
2655 	input->action = traffic_class;
2656 	input->cookie = f->cookie;
2657 
2658 	return 0;
2659 }
2660 
2661 static int igb_configure_clsflower(struct igb_adapter *adapter,
2662 				   struct tc_cls_flower_offload *cls_flower)
2663 {
2664 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2665 	struct igb_nfc_filter *filter, *f;
2666 	int err, tc;
2667 
2668 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2669 	if (tc < 0) {
2670 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2671 		return -EINVAL;
2672 	}
2673 
2674 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2675 	if (!filter)
2676 		return -ENOMEM;
2677 
2678 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2679 	if (err < 0)
2680 		goto err_parse;
2681 
2682 	spin_lock(&adapter->nfc_lock);
2683 
2684 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2685 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2686 			err = -EEXIST;
2687 			NL_SET_ERR_MSG_MOD(extack,
2688 					   "This filter is already set in ethtool");
2689 			goto err_locked;
2690 		}
2691 	}
2692 
2693 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2694 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2695 			err = -EEXIST;
2696 			NL_SET_ERR_MSG_MOD(extack,
2697 					   "This filter is already set in cls_flower");
2698 			goto err_locked;
2699 		}
2700 	}
2701 
2702 	err = igb_add_filter(adapter, filter);
2703 	if (err < 0) {
2704 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2705 		goto err_locked;
2706 	}
2707 
2708 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2709 
2710 	spin_unlock(&adapter->nfc_lock);
2711 
2712 	return 0;
2713 
2714 err_locked:
2715 	spin_unlock(&adapter->nfc_lock);
2716 
2717 err_parse:
2718 	kfree(filter);
2719 
2720 	return err;
2721 }
2722 
2723 static int igb_delete_clsflower(struct igb_adapter *adapter,
2724 				struct tc_cls_flower_offload *cls_flower)
2725 {
2726 	struct igb_nfc_filter *filter;
2727 	int err;
2728 
2729 	spin_lock(&adapter->nfc_lock);
2730 
2731 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2732 		if (filter->cookie == cls_flower->cookie)
2733 			break;
2734 
2735 	if (!filter) {
2736 		err = -ENOENT;
2737 		goto out;
2738 	}
2739 
2740 	err = igb_erase_filter(adapter, filter);
2741 	if (err < 0)
2742 		goto out;
2743 
2744 	hlist_del(&filter->nfc_node);
2745 	kfree(filter);
2746 
2747 out:
2748 	spin_unlock(&adapter->nfc_lock);
2749 
2750 	return err;
2751 }
2752 
2753 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2754 				   struct tc_cls_flower_offload *cls_flower)
2755 {
2756 	switch (cls_flower->command) {
2757 	case TC_CLSFLOWER_REPLACE:
2758 		return igb_configure_clsflower(adapter, cls_flower);
2759 	case TC_CLSFLOWER_DESTROY:
2760 		return igb_delete_clsflower(adapter, cls_flower);
2761 	case TC_CLSFLOWER_STATS:
2762 		return -EOPNOTSUPP;
2763 	default:
2764 		return -EOPNOTSUPP;
2765 	}
2766 }
2767 
2768 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2769 				 void *cb_priv)
2770 {
2771 	struct igb_adapter *adapter = cb_priv;
2772 
2773 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2774 		return -EOPNOTSUPP;
2775 
2776 	switch (type) {
2777 	case TC_SETUP_CLSFLOWER:
2778 		return igb_setup_tc_cls_flower(adapter, type_data);
2779 
2780 	default:
2781 		return -EOPNOTSUPP;
2782 	}
2783 }
2784 
2785 static int igb_setup_tc_block(struct igb_adapter *adapter,
2786 			      struct tc_block_offload *f)
2787 {
2788 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2789 		return -EOPNOTSUPP;
2790 
2791 	switch (f->command) {
2792 	case TC_BLOCK_BIND:
2793 		return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2794 					     adapter, adapter, f->extack);
2795 	case TC_BLOCK_UNBIND:
2796 		tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2797 					adapter);
2798 		return 0;
2799 	default:
2800 		return -EOPNOTSUPP;
2801 	}
2802 }
2803 
2804 static int igb_offload_txtime(struct igb_adapter *adapter,
2805 			      struct tc_etf_qopt_offload *qopt)
2806 {
2807 	struct e1000_hw *hw = &adapter->hw;
2808 	int err;
2809 
2810 	/* Launchtime offloading is only supported by i210 controller. */
2811 	if (hw->mac.type != e1000_i210)
2812 		return -EOPNOTSUPP;
2813 
2814 	/* Launchtime offloading is only supported by queues 0 and 1. */
2815 	if (qopt->queue < 0 || qopt->queue > 1)
2816 		return -EINVAL;
2817 
2818 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2819 	if (err)
2820 		return err;
2821 
2822 	igb_offload_apply(adapter, qopt->queue);
2823 
2824 	return 0;
2825 }
2826 
2827 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2828 			void *type_data)
2829 {
2830 	struct igb_adapter *adapter = netdev_priv(dev);
2831 
2832 	switch (type) {
2833 	case TC_SETUP_QDISC_CBS:
2834 		return igb_offload_cbs(adapter, type_data);
2835 	case TC_SETUP_BLOCK:
2836 		return igb_setup_tc_block(adapter, type_data);
2837 	case TC_SETUP_QDISC_ETF:
2838 		return igb_offload_txtime(adapter, type_data);
2839 
2840 	default:
2841 		return -EOPNOTSUPP;
2842 	}
2843 }
2844 
2845 static const struct net_device_ops igb_netdev_ops = {
2846 	.ndo_open		= igb_open,
2847 	.ndo_stop		= igb_close,
2848 	.ndo_start_xmit		= igb_xmit_frame,
2849 	.ndo_get_stats64	= igb_get_stats64,
2850 	.ndo_set_rx_mode	= igb_set_rx_mode,
2851 	.ndo_set_mac_address	= igb_set_mac,
2852 	.ndo_change_mtu		= igb_change_mtu,
2853 	.ndo_do_ioctl		= igb_ioctl,
2854 	.ndo_tx_timeout		= igb_tx_timeout,
2855 	.ndo_validate_addr	= eth_validate_addr,
2856 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2857 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2858 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2859 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2860 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2861 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2862 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2863 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2864 	.ndo_fix_features	= igb_fix_features,
2865 	.ndo_set_features	= igb_set_features,
2866 	.ndo_fdb_add		= igb_ndo_fdb_add,
2867 	.ndo_features_check	= igb_features_check,
2868 	.ndo_setup_tc		= igb_setup_tc,
2869 };
2870 
2871 /**
2872  * igb_set_fw_version - Configure version string for ethtool
2873  * @adapter: adapter struct
2874  **/
2875 void igb_set_fw_version(struct igb_adapter *adapter)
2876 {
2877 	struct e1000_hw *hw = &adapter->hw;
2878 	struct e1000_fw_version fw;
2879 
2880 	igb_get_fw_version(hw, &fw);
2881 
2882 	switch (hw->mac.type) {
2883 	case e1000_i210:
2884 	case e1000_i211:
2885 		if (!(igb_get_flash_presence_i210(hw))) {
2886 			snprintf(adapter->fw_version,
2887 				 sizeof(adapter->fw_version),
2888 				 "%2d.%2d-%d",
2889 				 fw.invm_major, fw.invm_minor,
2890 				 fw.invm_img_type);
2891 			break;
2892 		}
2893 		/* fall through */
2894 	default:
2895 		/* if option is rom valid, display its version too */
2896 		if (fw.or_valid) {
2897 			snprintf(adapter->fw_version,
2898 				 sizeof(adapter->fw_version),
2899 				 "%d.%d, 0x%08x, %d.%d.%d",
2900 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2901 				 fw.or_major, fw.or_build, fw.or_patch);
2902 		/* no option rom */
2903 		} else if (fw.etrack_id != 0X0000) {
2904 			snprintf(adapter->fw_version,
2905 			    sizeof(adapter->fw_version),
2906 			    "%d.%d, 0x%08x",
2907 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2908 		} else {
2909 		snprintf(adapter->fw_version,
2910 		    sizeof(adapter->fw_version),
2911 		    "%d.%d.%d",
2912 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2913 		}
2914 		break;
2915 	}
2916 }
2917 
2918 /**
2919  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2920  *
2921  * @adapter: adapter struct
2922  **/
2923 static void igb_init_mas(struct igb_adapter *adapter)
2924 {
2925 	struct e1000_hw *hw = &adapter->hw;
2926 	u16 eeprom_data;
2927 
2928 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2929 	switch (hw->bus.func) {
2930 	case E1000_FUNC_0:
2931 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2932 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2933 			netdev_info(adapter->netdev,
2934 				"MAS: Enabling Media Autosense for port %d\n",
2935 				hw->bus.func);
2936 		}
2937 		break;
2938 	case E1000_FUNC_1:
2939 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2940 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2941 			netdev_info(adapter->netdev,
2942 				"MAS: Enabling Media Autosense for port %d\n",
2943 				hw->bus.func);
2944 		}
2945 		break;
2946 	case E1000_FUNC_2:
2947 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2948 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2949 			netdev_info(adapter->netdev,
2950 				"MAS: Enabling Media Autosense for port %d\n",
2951 				hw->bus.func);
2952 		}
2953 		break;
2954 	case E1000_FUNC_3:
2955 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2956 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2957 			netdev_info(adapter->netdev,
2958 				"MAS: Enabling Media Autosense for port %d\n",
2959 				hw->bus.func);
2960 		}
2961 		break;
2962 	default:
2963 		/* Shouldn't get here */
2964 		netdev_err(adapter->netdev,
2965 			"MAS: Invalid port configuration, returning\n");
2966 		break;
2967 	}
2968 }
2969 
2970 /**
2971  *  igb_init_i2c - Init I2C interface
2972  *  @adapter: pointer to adapter structure
2973  **/
2974 static s32 igb_init_i2c(struct igb_adapter *adapter)
2975 {
2976 	s32 status = 0;
2977 
2978 	/* I2C interface supported on i350 devices */
2979 	if (adapter->hw.mac.type != e1000_i350)
2980 		return 0;
2981 
2982 	/* Initialize the i2c bus which is controlled by the registers.
2983 	 * This bus will use the i2c_algo_bit structue that implements
2984 	 * the protocol through toggling of the 4 bits in the register.
2985 	 */
2986 	adapter->i2c_adap.owner = THIS_MODULE;
2987 	adapter->i2c_algo = igb_i2c_algo;
2988 	adapter->i2c_algo.data = adapter;
2989 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2990 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2991 	strlcpy(adapter->i2c_adap.name, "igb BB",
2992 		sizeof(adapter->i2c_adap.name));
2993 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2994 	return status;
2995 }
2996 
2997 /**
2998  *  igb_probe - Device Initialization Routine
2999  *  @pdev: PCI device information struct
3000  *  @ent: entry in igb_pci_tbl
3001  *
3002  *  Returns 0 on success, negative on failure
3003  *
3004  *  igb_probe initializes an adapter identified by a pci_dev structure.
3005  *  The OS initialization, configuring of the adapter private structure,
3006  *  and a hardware reset occur.
3007  **/
3008 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3009 {
3010 	struct net_device *netdev;
3011 	struct igb_adapter *adapter;
3012 	struct e1000_hw *hw;
3013 	u16 eeprom_data = 0;
3014 	s32 ret_val;
3015 	static int global_quad_port_a; /* global quad port a indication */
3016 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3017 	int err, pci_using_dac;
3018 	u8 part_str[E1000_PBANUM_LENGTH];
3019 
3020 	/* Catch broken hardware that put the wrong VF device ID in
3021 	 * the PCIe SR-IOV capability.
3022 	 */
3023 	if (pdev->is_virtfn) {
3024 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3025 			pci_name(pdev), pdev->vendor, pdev->device);
3026 		return -EINVAL;
3027 	}
3028 
3029 	err = pci_enable_device_mem(pdev);
3030 	if (err)
3031 		return err;
3032 
3033 	pci_using_dac = 0;
3034 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3035 	if (!err) {
3036 		pci_using_dac = 1;
3037 	} else {
3038 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3039 		if (err) {
3040 			dev_err(&pdev->dev,
3041 				"No usable DMA configuration, aborting\n");
3042 			goto err_dma;
3043 		}
3044 	}
3045 
3046 	err = pci_request_mem_regions(pdev, igb_driver_name);
3047 	if (err)
3048 		goto err_pci_reg;
3049 
3050 	pci_enable_pcie_error_reporting(pdev);
3051 
3052 	pci_set_master(pdev);
3053 	pci_save_state(pdev);
3054 
3055 	err = -ENOMEM;
3056 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3057 				   IGB_MAX_TX_QUEUES);
3058 	if (!netdev)
3059 		goto err_alloc_etherdev;
3060 
3061 	SET_NETDEV_DEV(netdev, &pdev->dev);
3062 
3063 	pci_set_drvdata(pdev, netdev);
3064 	adapter = netdev_priv(netdev);
3065 	adapter->netdev = netdev;
3066 	adapter->pdev = pdev;
3067 	hw = &adapter->hw;
3068 	hw->back = adapter;
3069 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3070 
3071 	err = -EIO;
3072 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3073 	if (!adapter->io_addr)
3074 		goto err_ioremap;
3075 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3076 	hw->hw_addr = adapter->io_addr;
3077 
3078 	netdev->netdev_ops = &igb_netdev_ops;
3079 	igb_set_ethtool_ops(netdev);
3080 	netdev->watchdog_timeo = 5 * HZ;
3081 
3082 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3083 
3084 	netdev->mem_start = pci_resource_start(pdev, 0);
3085 	netdev->mem_end = pci_resource_end(pdev, 0);
3086 
3087 	/* PCI config space info */
3088 	hw->vendor_id = pdev->vendor;
3089 	hw->device_id = pdev->device;
3090 	hw->revision_id = pdev->revision;
3091 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3092 	hw->subsystem_device_id = pdev->subsystem_device;
3093 
3094 	/* Copy the default MAC, PHY and NVM function pointers */
3095 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3096 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3097 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3098 	/* Initialize skew-specific constants */
3099 	err = ei->get_invariants(hw);
3100 	if (err)
3101 		goto err_sw_init;
3102 
3103 	/* setup the private structure */
3104 	err = igb_sw_init(adapter);
3105 	if (err)
3106 		goto err_sw_init;
3107 
3108 	igb_get_bus_info_pcie(hw);
3109 
3110 	hw->phy.autoneg_wait_to_complete = false;
3111 
3112 	/* Copper options */
3113 	if (hw->phy.media_type == e1000_media_type_copper) {
3114 		hw->phy.mdix = AUTO_ALL_MODES;
3115 		hw->phy.disable_polarity_correction = false;
3116 		hw->phy.ms_type = e1000_ms_hw_default;
3117 	}
3118 
3119 	if (igb_check_reset_block(hw))
3120 		dev_info(&pdev->dev,
3121 			"PHY reset is blocked due to SOL/IDER session.\n");
3122 
3123 	/* features is initialized to 0 in allocation, it might have bits
3124 	 * set by igb_sw_init so we should use an or instead of an
3125 	 * assignment.
3126 	 */
3127 	netdev->features |= NETIF_F_SG |
3128 			    NETIF_F_TSO |
3129 			    NETIF_F_TSO6 |
3130 			    NETIF_F_RXHASH |
3131 			    NETIF_F_RXCSUM |
3132 			    NETIF_F_HW_CSUM;
3133 
3134 	if (hw->mac.type >= e1000_82576)
3135 		netdev->features |= NETIF_F_SCTP_CRC;
3136 
3137 	if (hw->mac.type >= e1000_i350)
3138 		netdev->features |= NETIF_F_HW_TC;
3139 
3140 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3141 				  NETIF_F_GSO_GRE_CSUM | \
3142 				  NETIF_F_GSO_IPXIP4 | \
3143 				  NETIF_F_GSO_IPXIP6 | \
3144 				  NETIF_F_GSO_UDP_TUNNEL | \
3145 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3146 
3147 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3148 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3149 
3150 	/* copy netdev features into list of user selectable features */
3151 	netdev->hw_features |= netdev->features |
3152 			       NETIF_F_HW_VLAN_CTAG_RX |
3153 			       NETIF_F_HW_VLAN_CTAG_TX |
3154 			       NETIF_F_RXALL;
3155 
3156 	if (hw->mac.type >= e1000_i350)
3157 		netdev->hw_features |= NETIF_F_NTUPLE;
3158 
3159 	if (pci_using_dac)
3160 		netdev->features |= NETIF_F_HIGHDMA;
3161 
3162 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3163 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3164 	netdev->hw_enc_features |= netdev->vlan_features;
3165 
3166 	/* set this bit last since it cannot be part of vlan_features */
3167 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3168 			    NETIF_F_HW_VLAN_CTAG_RX |
3169 			    NETIF_F_HW_VLAN_CTAG_TX;
3170 
3171 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3172 
3173 	netdev->priv_flags |= IFF_UNICAST_FLT;
3174 
3175 	/* MTU range: 68 - 9216 */
3176 	netdev->min_mtu = ETH_MIN_MTU;
3177 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3178 
3179 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3180 
3181 	/* before reading the NVM, reset the controller to put the device in a
3182 	 * known good starting state
3183 	 */
3184 	hw->mac.ops.reset_hw(hw);
3185 
3186 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3187 	 * that doesn't contain a checksum
3188 	 */
3189 	switch (hw->mac.type) {
3190 	case e1000_i210:
3191 	case e1000_i211:
3192 		if (igb_get_flash_presence_i210(hw)) {
3193 			if (hw->nvm.ops.validate(hw) < 0) {
3194 				dev_err(&pdev->dev,
3195 					"The NVM Checksum Is Not Valid\n");
3196 				err = -EIO;
3197 				goto err_eeprom;
3198 			}
3199 		}
3200 		break;
3201 	default:
3202 		if (hw->nvm.ops.validate(hw) < 0) {
3203 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3204 			err = -EIO;
3205 			goto err_eeprom;
3206 		}
3207 		break;
3208 	}
3209 
3210 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3211 		/* copy the MAC address out of the NVM */
3212 		if (hw->mac.ops.read_mac_addr(hw))
3213 			dev_err(&pdev->dev, "NVM Read Error\n");
3214 	}
3215 
3216 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3217 
3218 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3219 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3220 		err = -EIO;
3221 		goto err_eeprom;
3222 	}
3223 
3224 	igb_set_default_mac_filter(adapter);
3225 
3226 	/* get firmware version for ethtool -i */
3227 	igb_set_fw_version(adapter);
3228 
3229 	/* configure RXPBSIZE and TXPBSIZE */
3230 	if (hw->mac.type == e1000_i210) {
3231 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3232 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3233 	}
3234 
3235 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3236 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3237 
3238 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3239 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3240 
3241 	/* Initialize link properties that are user-changeable */
3242 	adapter->fc_autoneg = true;
3243 	hw->mac.autoneg = true;
3244 	hw->phy.autoneg_advertised = 0x2f;
3245 
3246 	hw->fc.requested_mode = e1000_fc_default;
3247 	hw->fc.current_mode = e1000_fc_default;
3248 
3249 	igb_validate_mdi_setting(hw);
3250 
3251 	/* By default, support wake on port A */
3252 	if (hw->bus.func == 0)
3253 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3254 
3255 	/* Check the NVM for wake support on non-port A ports */
3256 	if (hw->mac.type >= e1000_82580)
3257 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3258 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3259 				 &eeprom_data);
3260 	else if (hw->bus.func == 1)
3261 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3262 
3263 	if (eeprom_data & IGB_EEPROM_APME)
3264 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3265 
3266 	/* now that we have the eeprom settings, apply the special cases where
3267 	 * the eeprom may be wrong or the board simply won't support wake on
3268 	 * lan on a particular port
3269 	 */
3270 	switch (pdev->device) {
3271 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3272 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3273 		break;
3274 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3275 	case E1000_DEV_ID_82576_FIBER:
3276 	case E1000_DEV_ID_82576_SERDES:
3277 		/* Wake events only supported on port A for dual fiber
3278 		 * regardless of eeprom setting
3279 		 */
3280 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3281 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3282 		break;
3283 	case E1000_DEV_ID_82576_QUAD_COPPER:
3284 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3285 		/* if quad port adapter, disable WoL on all but port A */
3286 		if (global_quad_port_a != 0)
3287 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288 		else
3289 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3290 		/* Reset for multiple quad port adapters */
3291 		if (++global_quad_port_a == 4)
3292 			global_quad_port_a = 0;
3293 		break;
3294 	default:
3295 		/* If the device can't wake, don't set software support */
3296 		if (!device_can_wakeup(&adapter->pdev->dev))
3297 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3298 	}
3299 
3300 	/* initialize the wol settings based on the eeprom settings */
3301 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3302 		adapter->wol |= E1000_WUFC_MAG;
3303 
3304 	/* Some vendors want WoL disabled by default, but still supported */
3305 	if ((hw->mac.type == e1000_i350) &&
3306 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3307 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3308 		adapter->wol = 0;
3309 	}
3310 
3311 	/* Some vendors want the ability to Use the EEPROM setting as
3312 	 * enable/disable only, and not for capability
3313 	 */
3314 	if (((hw->mac.type == e1000_i350) ||
3315 	     (hw->mac.type == e1000_i354)) &&
3316 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3317 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3318 		adapter->wol = 0;
3319 	}
3320 	if (hw->mac.type == e1000_i350) {
3321 		if (((pdev->subsystem_device == 0x5001) ||
3322 		     (pdev->subsystem_device == 0x5002)) &&
3323 				(hw->bus.func == 0)) {
3324 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3325 			adapter->wol = 0;
3326 		}
3327 		if (pdev->subsystem_device == 0x1F52)
3328 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3329 	}
3330 
3331 	device_set_wakeup_enable(&adapter->pdev->dev,
3332 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3333 
3334 	/* reset the hardware with the new settings */
3335 	igb_reset(adapter);
3336 
3337 	/* Init the I2C interface */
3338 	err = igb_init_i2c(adapter);
3339 	if (err) {
3340 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3341 		goto err_eeprom;
3342 	}
3343 
3344 	/* let the f/w know that the h/w is now under the control of the
3345 	 * driver.
3346 	 */
3347 	igb_get_hw_control(adapter);
3348 
3349 	strcpy(netdev->name, "eth%d");
3350 	err = register_netdev(netdev);
3351 	if (err)
3352 		goto err_register;
3353 
3354 	/* carrier off reporting is important to ethtool even BEFORE open */
3355 	netif_carrier_off(netdev);
3356 
3357 #ifdef CONFIG_IGB_DCA
3358 	if (dca_add_requester(&pdev->dev) == 0) {
3359 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3360 		dev_info(&pdev->dev, "DCA enabled\n");
3361 		igb_setup_dca(adapter);
3362 	}
3363 
3364 #endif
3365 #ifdef CONFIG_IGB_HWMON
3366 	/* Initialize the thermal sensor on i350 devices. */
3367 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3368 		u16 ets_word;
3369 
3370 		/* Read the NVM to determine if this i350 device supports an
3371 		 * external thermal sensor.
3372 		 */
3373 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3374 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3375 			adapter->ets = true;
3376 		else
3377 			adapter->ets = false;
3378 		if (igb_sysfs_init(adapter))
3379 			dev_err(&pdev->dev,
3380 				"failed to allocate sysfs resources\n");
3381 	} else {
3382 		adapter->ets = false;
3383 	}
3384 #endif
3385 	/* Check if Media Autosense is enabled */
3386 	adapter->ei = *ei;
3387 	if (hw->dev_spec._82575.mas_capable)
3388 		igb_init_mas(adapter);
3389 
3390 	/* do hw tstamp init after resetting */
3391 	igb_ptp_init(adapter);
3392 
3393 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3394 	/* print bus type/speed/width info, not applicable to i354 */
3395 	if (hw->mac.type != e1000_i354) {
3396 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3397 			 netdev->name,
3398 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3399 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3400 			   "unknown"),
3401 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3402 			  "Width x4" :
3403 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3404 			  "Width x2" :
3405 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3406 			  "Width x1" : "unknown"), netdev->dev_addr);
3407 	}
3408 
3409 	if ((hw->mac.type >= e1000_i210 ||
3410 	     igb_get_flash_presence_i210(hw))) {
3411 		ret_val = igb_read_part_string(hw, part_str,
3412 					       E1000_PBANUM_LENGTH);
3413 	} else {
3414 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3415 	}
3416 
3417 	if (ret_val)
3418 		strcpy(part_str, "Unknown");
3419 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3420 	dev_info(&pdev->dev,
3421 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3422 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3423 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3424 		adapter->num_rx_queues, adapter->num_tx_queues);
3425 	if (hw->phy.media_type == e1000_media_type_copper) {
3426 		switch (hw->mac.type) {
3427 		case e1000_i350:
3428 		case e1000_i210:
3429 		case e1000_i211:
3430 			/* Enable EEE for internal copper PHY devices */
3431 			err = igb_set_eee_i350(hw, true, true);
3432 			if ((!err) &&
3433 			    (!hw->dev_spec._82575.eee_disable)) {
3434 				adapter->eee_advert =
3435 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3436 				adapter->flags |= IGB_FLAG_EEE;
3437 			}
3438 			break;
3439 		case e1000_i354:
3440 			if ((rd32(E1000_CTRL_EXT) &
3441 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3442 				err = igb_set_eee_i354(hw, true, true);
3443 				if ((!err) &&
3444 					(!hw->dev_spec._82575.eee_disable)) {
3445 					adapter->eee_advert =
3446 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3447 					adapter->flags |= IGB_FLAG_EEE;
3448 				}
3449 			}
3450 			break;
3451 		default:
3452 			break;
3453 		}
3454 	}
3455 
3456 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3457 
3458 	pm_runtime_put_noidle(&pdev->dev);
3459 	return 0;
3460 
3461 err_register:
3462 	igb_release_hw_control(adapter);
3463 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3464 err_eeprom:
3465 	if (!igb_check_reset_block(hw))
3466 		igb_reset_phy(hw);
3467 
3468 	if (hw->flash_address)
3469 		iounmap(hw->flash_address);
3470 err_sw_init:
3471 	kfree(adapter->mac_table);
3472 	kfree(adapter->shadow_vfta);
3473 	igb_clear_interrupt_scheme(adapter);
3474 #ifdef CONFIG_PCI_IOV
3475 	igb_disable_sriov(pdev);
3476 #endif
3477 	pci_iounmap(pdev, adapter->io_addr);
3478 err_ioremap:
3479 	free_netdev(netdev);
3480 err_alloc_etherdev:
3481 	pci_release_mem_regions(pdev);
3482 err_pci_reg:
3483 err_dma:
3484 	pci_disable_device(pdev);
3485 	return err;
3486 }
3487 
3488 #ifdef CONFIG_PCI_IOV
3489 static int igb_disable_sriov(struct pci_dev *pdev)
3490 {
3491 	struct net_device *netdev = pci_get_drvdata(pdev);
3492 	struct igb_adapter *adapter = netdev_priv(netdev);
3493 	struct e1000_hw *hw = &adapter->hw;
3494 
3495 	/* reclaim resources allocated to VFs */
3496 	if (adapter->vf_data) {
3497 		/* disable iov and allow time for transactions to clear */
3498 		if (pci_vfs_assigned(pdev)) {
3499 			dev_warn(&pdev->dev,
3500 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3501 			return -EPERM;
3502 		} else {
3503 			pci_disable_sriov(pdev);
3504 			msleep(500);
3505 		}
3506 
3507 		kfree(adapter->vf_mac_list);
3508 		adapter->vf_mac_list = NULL;
3509 		kfree(adapter->vf_data);
3510 		adapter->vf_data = NULL;
3511 		adapter->vfs_allocated_count = 0;
3512 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3513 		wrfl();
3514 		msleep(100);
3515 		dev_info(&pdev->dev, "IOV Disabled\n");
3516 
3517 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3518 		adapter->flags |= IGB_FLAG_DMAC;
3519 	}
3520 
3521 	return 0;
3522 }
3523 
3524 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3525 {
3526 	struct net_device *netdev = pci_get_drvdata(pdev);
3527 	struct igb_adapter *adapter = netdev_priv(netdev);
3528 	int old_vfs = pci_num_vf(pdev);
3529 	struct vf_mac_filter *mac_list;
3530 	int err = 0;
3531 	int num_vf_mac_filters, i;
3532 
3533 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3534 		err = -EPERM;
3535 		goto out;
3536 	}
3537 	if (!num_vfs)
3538 		goto out;
3539 
3540 	if (old_vfs) {
3541 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3542 			 old_vfs, max_vfs);
3543 		adapter->vfs_allocated_count = old_vfs;
3544 	} else
3545 		adapter->vfs_allocated_count = num_vfs;
3546 
3547 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3548 				sizeof(struct vf_data_storage), GFP_KERNEL);
3549 
3550 	/* if allocation failed then we do not support SR-IOV */
3551 	if (!adapter->vf_data) {
3552 		adapter->vfs_allocated_count = 0;
3553 		err = -ENOMEM;
3554 		goto out;
3555 	}
3556 
3557 	/* Due to the limited number of RAR entries calculate potential
3558 	 * number of MAC filters available for the VFs. Reserve entries
3559 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3560 	 * for each VF for VF MAC.
3561 	 */
3562 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3563 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3564 			      adapter->vfs_allocated_count);
3565 
3566 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3567 				       sizeof(struct vf_mac_filter),
3568 				       GFP_KERNEL);
3569 
3570 	mac_list = adapter->vf_mac_list;
3571 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3572 
3573 	if (adapter->vf_mac_list) {
3574 		/* Initialize list of VF MAC filters */
3575 		for (i = 0; i < num_vf_mac_filters; i++) {
3576 			mac_list->vf = -1;
3577 			mac_list->free = true;
3578 			list_add(&mac_list->l, &adapter->vf_macs.l);
3579 			mac_list++;
3580 		}
3581 	} else {
3582 		/* If we could not allocate memory for the VF MAC filters
3583 		 * we can continue without this feature but warn user.
3584 		 */
3585 		dev_err(&pdev->dev,
3586 			"Unable to allocate memory for VF MAC filter list\n");
3587 	}
3588 
3589 	/* only call pci_enable_sriov() if no VFs are allocated already */
3590 	if (!old_vfs) {
3591 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3592 		if (err)
3593 			goto err_out;
3594 	}
3595 	dev_info(&pdev->dev, "%d VFs allocated\n",
3596 		 adapter->vfs_allocated_count);
3597 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3598 		igb_vf_configure(adapter, i);
3599 
3600 	/* DMA Coalescing is not supported in IOV mode. */
3601 	adapter->flags &= ~IGB_FLAG_DMAC;
3602 	goto out;
3603 
3604 err_out:
3605 	kfree(adapter->vf_mac_list);
3606 	adapter->vf_mac_list = NULL;
3607 	kfree(adapter->vf_data);
3608 	adapter->vf_data = NULL;
3609 	adapter->vfs_allocated_count = 0;
3610 out:
3611 	return err;
3612 }
3613 
3614 #endif
3615 /**
3616  *  igb_remove_i2c - Cleanup  I2C interface
3617  *  @adapter: pointer to adapter structure
3618  **/
3619 static void igb_remove_i2c(struct igb_adapter *adapter)
3620 {
3621 	/* free the adapter bus structure */
3622 	i2c_del_adapter(&adapter->i2c_adap);
3623 }
3624 
3625 /**
3626  *  igb_remove - Device Removal Routine
3627  *  @pdev: PCI device information struct
3628  *
3629  *  igb_remove is called by the PCI subsystem to alert the driver
3630  *  that it should release a PCI device.  The could be caused by a
3631  *  Hot-Plug event, or because the driver is going to be removed from
3632  *  memory.
3633  **/
3634 static void igb_remove(struct pci_dev *pdev)
3635 {
3636 	struct net_device *netdev = pci_get_drvdata(pdev);
3637 	struct igb_adapter *adapter = netdev_priv(netdev);
3638 	struct e1000_hw *hw = &adapter->hw;
3639 
3640 	pm_runtime_get_noresume(&pdev->dev);
3641 #ifdef CONFIG_IGB_HWMON
3642 	igb_sysfs_exit(adapter);
3643 #endif
3644 	igb_remove_i2c(adapter);
3645 	igb_ptp_stop(adapter);
3646 	/* The watchdog timer may be rescheduled, so explicitly
3647 	 * disable watchdog from being rescheduled.
3648 	 */
3649 	set_bit(__IGB_DOWN, &adapter->state);
3650 	del_timer_sync(&adapter->watchdog_timer);
3651 	del_timer_sync(&adapter->phy_info_timer);
3652 
3653 	cancel_work_sync(&adapter->reset_task);
3654 	cancel_work_sync(&adapter->watchdog_task);
3655 
3656 #ifdef CONFIG_IGB_DCA
3657 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3658 		dev_info(&pdev->dev, "DCA disabled\n");
3659 		dca_remove_requester(&pdev->dev);
3660 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3661 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3662 	}
3663 #endif
3664 
3665 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3666 	 * would have already happened in close and is redundant.
3667 	 */
3668 	igb_release_hw_control(adapter);
3669 
3670 #ifdef CONFIG_PCI_IOV
3671 	igb_disable_sriov(pdev);
3672 #endif
3673 
3674 	unregister_netdev(netdev);
3675 
3676 	igb_clear_interrupt_scheme(adapter);
3677 
3678 	pci_iounmap(pdev, adapter->io_addr);
3679 	if (hw->flash_address)
3680 		iounmap(hw->flash_address);
3681 	pci_release_mem_regions(pdev);
3682 
3683 	kfree(adapter->mac_table);
3684 	kfree(adapter->shadow_vfta);
3685 	free_netdev(netdev);
3686 
3687 	pci_disable_pcie_error_reporting(pdev);
3688 
3689 	pci_disable_device(pdev);
3690 }
3691 
3692 /**
3693  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3694  *  @adapter: board private structure to initialize
3695  *
3696  *  This function initializes the vf specific data storage and then attempts to
3697  *  allocate the VFs.  The reason for ordering it this way is because it is much
3698  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3699  *  the memory for the VFs.
3700  **/
3701 static void igb_probe_vfs(struct igb_adapter *adapter)
3702 {
3703 #ifdef CONFIG_PCI_IOV
3704 	struct pci_dev *pdev = adapter->pdev;
3705 	struct e1000_hw *hw = &adapter->hw;
3706 
3707 	/* Virtualization features not supported on i210 family. */
3708 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3709 		return;
3710 
3711 	/* Of the below we really only want the effect of getting
3712 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3713 	 * igb_enable_sriov() has no effect.
3714 	 */
3715 	igb_set_interrupt_capability(adapter, true);
3716 	igb_reset_interrupt_capability(adapter);
3717 
3718 	pci_sriov_set_totalvfs(pdev, 7);
3719 	igb_enable_sriov(pdev, max_vfs);
3720 
3721 #endif /* CONFIG_PCI_IOV */
3722 }
3723 
3724 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3725 {
3726 	struct e1000_hw *hw = &adapter->hw;
3727 	unsigned int max_rss_queues;
3728 
3729 	/* Determine the maximum number of RSS queues supported. */
3730 	switch (hw->mac.type) {
3731 	case e1000_i211:
3732 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3733 		break;
3734 	case e1000_82575:
3735 	case e1000_i210:
3736 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3737 		break;
3738 	case e1000_i350:
3739 		/* I350 cannot do RSS and SR-IOV at the same time */
3740 		if (!!adapter->vfs_allocated_count) {
3741 			max_rss_queues = 1;
3742 			break;
3743 		}
3744 		/* fall through */
3745 	case e1000_82576:
3746 		if (!!adapter->vfs_allocated_count) {
3747 			max_rss_queues = 2;
3748 			break;
3749 		}
3750 		/* fall through */
3751 	case e1000_82580:
3752 	case e1000_i354:
3753 	default:
3754 		max_rss_queues = IGB_MAX_RX_QUEUES;
3755 		break;
3756 	}
3757 
3758 	return max_rss_queues;
3759 }
3760 
3761 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3762 {
3763 	u32 max_rss_queues;
3764 
3765 	max_rss_queues = igb_get_max_rss_queues(adapter);
3766 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3767 
3768 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3769 }
3770 
3771 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3772 			      const u32 max_rss_queues)
3773 {
3774 	struct e1000_hw *hw = &adapter->hw;
3775 
3776 	/* Determine if we need to pair queues. */
3777 	switch (hw->mac.type) {
3778 	case e1000_82575:
3779 	case e1000_i211:
3780 		/* Device supports enough interrupts without queue pairing. */
3781 		break;
3782 	case e1000_82576:
3783 	case e1000_82580:
3784 	case e1000_i350:
3785 	case e1000_i354:
3786 	case e1000_i210:
3787 	default:
3788 		/* If rss_queues > half of max_rss_queues, pair the queues in
3789 		 * order to conserve interrupts due to limited supply.
3790 		 */
3791 		if (adapter->rss_queues > (max_rss_queues / 2))
3792 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3793 		else
3794 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3795 		break;
3796 	}
3797 }
3798 
3799 /**
3800  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3801  *  @adapter: board private structure to initialize
3802  *
3803  *  igb_sw_init initializes the Adapter private data structure.
3804  *  Fields are initialized based on PCI device information and
3805  *  OS network device settings (MTU size).
3806  **/
3807 static int igb_sw_init(struct igb_adapter *adapter)
3808 {
3809 	struct e1000_hw *hw = &adapter->hw;
3810 	struct net_device *netdev = adapter->netdev;
3811 	struct pci_dev *pdev = adapter->pdev;
3812 
3813 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3814 
3815 	/* set default ring sizes */
3816 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3817 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3818 
3819 	/* set default ITR values */
3820 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3821 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3822 
3823 	/* set default work limits */
3824 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3825 
3826 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3827 				  VLAN_HLEN;
3828 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3829 
3830 	spin_lock_init(&adapter->nfc_lock);
3831 	spin_lock_init(&adapter->stats64_lock);
3832 #ifdef CONFIG_PCI_IOV
3833 	switch (hw->mac.type) {
3834 	case e1000_82576:
3835 	case e1000_i350:
3836 		if (max_vfs > 7) {
3837 			dev_warn(&pdev->dev,
3838 				 "Maximum of 7 VFs per PF, using max\n");
3839 			max_vfs = adapter->vfs_allocated_count = 7;
3840 		} else
3841 			adapter->vfs_allocated_count = max_vfs;
3842 		if (adapter->vfs_allocated_count)
3843 			dev_warn(&pdev->dev,
3844 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3845 		break;
3846 	default:
3847 		break;
3848 	}
3849 #endif /* CONFIG_PCI_IOV */
3850 
3851 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3852 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3853 
3854 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3855 				     sizeof(struct igb_mac_addr),
3856 				     GFP_KERNEL);
3857 	if (!adapter->mac_table)
3858 		return -ENOMEM;
3859 
3860 	igb_probe_vfs(adapter);
3861 
3862 	igb_init_queue_configuration(adapter);
3863 
3864 	/* Setup and initialize a copy of the hw vlan table array */
3865 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3866 				       GFP_KERNEL);
3867 	if (!adapter->shadow_vfta)
3868 		return -ENOMEM;
3869 
3870 	/* This call may decrease the number of queues */
3871 	if (igb_init_interrupt_scheme(adapter, true)) {
3872 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3873 		return -ENOMEM;
3874 	}
3875 
3876 	/* Explicitly disable IRQ since the NIC can be in any state. */
3877 	igb_irq_disable(adapter);
3878 
3879 	if (hw->mac.type >= e1000_i350)
3880 		adapter->flags &= ~IGB_FLAG_DMAC;
3881 
3882 	set_bit(__IGB_DOWN, &adapter->state);
3883 	return 0;
3884 }
3885 
3886 /**
3887  *  igb_open - Called when a network interface is made active
3888  *  @netdev: network interface device structure
3889  *
3890  *  Returns 0 on success, negative value on failure
3891  *
3892  *  The open entry point is called when a network interface is made
3893  *  active by the system (IFF_UP).  At this point all resources needed
3894  *  for transmit and receive operations are allocated, the interrupt
3895  *  handler is registered with the OS, the watchdog timer is started,
3896  *  and the stack is notified that the interface is ready.
3897  **/
3898 static int __igb_open(struct net_device *netdev, bool resuming)
3899 {
3900 	struct igb_adapter *adapter = netdev_priv(netdev);
3901 	struct e1000_hw *hw = &adapter->hw;
3902 	struct pci_dev *pdev = adapter->pdev;
3903 	int err;
3904 	int i;
3905 
3906 	/* disallow open during test */
3907 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3908 		WARN_ON(resuming);
3909 		return -EBUSY;
3910 	}
3911 
3912 	if (!resuming)
3913 		pm_runtime_get_sync(&pdev->dev);
3914 
3915 	netif_carrier_off(netdev);
3916 
3917 	/* allocate transmit descriptors */
3918 	err = igb_setup_all_tx_resources(adapter);
3919 	if (err)
3920 		goto err_setup_tx;
3921 
3922 	/* allocate receive descriptors */
3923 	err = igb_setup_all_rx_resources(adapter);
3924 	if (err)
3925 		goto err_setup_rx;
3926 
3927 	igb_power_up_link(adapter);
3928 
3929 	/* before we allocate an interrupt, we must be ready to handle it.
3930 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3931 	 * as soon as we call pci_request_irq, so we have to setup our
3932 	 * clean_rx handler before we do so.
3933 	 */
3934 	igb_configure(adapter);
3935 
3936 	err = igb_request_irq(adapter);
3937 	if (err)
3938 		goto err_req_irq;
3939 
3940 	/* Notify the stack of the actual queue counts. */
3941 	err = netif_set_real_num_tx_queues(adapter->netdev,
3942 					   adapter->num_tx_queues);
3943 	if (err)
3944 		goto err_set_queues;
3945 
3946 	err = netif_set_real_num_rx_queues(adapter->netdev,
3947 					   adapter->num_rx_queues);
3948 	if (err)
3949 		goto err_set_queues;
3950 
3951 	/* From here on the code is the same as igb_up() */
3952 	clear_bit(__IGB_DOWN, &adapter->state);
3953 
3954 	for (i = 0; i < adapter->num_q_vectors; i++)
3955 		napi_enable(&(adapter->q_vector[i]->napi));
3956 
3957 	/* Clear any pending interrupts. */
3958 	rd32(E1000_TSICR);
3959 	rd32(E1000_ICR);
3960 
3961 	igb_irq_enable(adapter);
3962 
3963 	/* notify VFs that reset has been completed */
3964 	if (adapter->vfs_allocated_count) {
3965 		u32 reg_data = rd32(E1000_CTRL_EXT);
3966 
3967 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3968 		wr32(E1000_CTRL_EXT, reg_data);
3969 	}
3970 
3971 	netif_tx_start_all_queues(netdev);
3972 
3973 	if (!resuming)
3974 		pm_runtime_put(&pdev->dev);
3975 
3976 	/* start the watchdog. */
3977 	hw->mac.get_link_status = 1;
3978 	schedule_work(&adapter->watchdog_task);
3979 
3980 	return 0;
3981 
3982 err_set_queues:
3983 	igb_free_irq(adapter);
3984 err_req_irq:
3985 	igb_release_hw_control(adapter);
3986 	igb_power_down_link(adapter);
3987 	igb_free_all_rx_resources(adapter);
3988 err_setup_rx:
3989 	igb_free_all_tx_resources(adapter);
3990 err_setup_tx:
3991 	igb_reset(adapter);
3992 	if (!resuming)
3993 		pm_runtime_put(&pdev->dev);
3994 
3995 	return err;
3996 }
3997 
3998 int igb_open(struct net_device *netdev)
3999 {
4000 	return __igb_open(netdev, false);
4001 }
4002 
4003 /**
4004  *  igb_close - Disables a network interface
4005  *  @netdev: network interface device structure
4006  *
4007  *  Returns 0, this is not allowed to fail
4008  *
4009  *  The close entry point is called when an interface is de-activated
4010  *  by the OS.  The hardware is still under the driver's control, but
4011  *  needs to be disabled.  A global MAC reset is issued to stop the
4012  *  hardware, and all transmit and receive resources are freed.
4013  **/
4014 static int __igb_close(struct net_device *netdev, bool suspending)
4015 {
4016 	struct igb_adapter *adapter = netdev_priv(netdev);
4017 	struct pci_dev *pdev = adapter->pdev;
4018 
4019 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4020 
4021 	if (!suspending)
4022 		pm_runtime_get_sync(&pdev->dev);
4023 
4024 	igb_down(adapter);
4025 	igb_free_irq(adapter);
4026 
4027 	igb_free_all_tx_resources(adapter);
4028 	igb_free_all_rx_resources(adapter);
4029 
4030 	if (!suspending)
4031 		pm_runtime_put_sync(&pdev->dev);
4032 	return 0;
4033 }
4034 
4035 int igb_close(struct net_device *netdev)
4036 {
4037 	if (netif_device_present(netdev) || netdev->dismantle)
4038 		return __igb_close(netdev, false);
4039 	return 0;
4040 }
4041 
4042 /**
4043  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4044  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4045  *
4046  *  Return 0 on success, negative on failure
4047  **/
4048 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4049 {
4050 	struct device *dev = tx_ring->dev;
4051 	int size;
4052 
4053 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4054 
4055 	tx_ring->tx_buffer_info = vmalloc(size);
4056 	if (!tx_ring->tx_buffer_info)
4057 		goto err;
4058 
4059 	/* round up to nearest 4K */
4060 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4061 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4062 
4063 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4064 					   &tx_ring->dma, GFP_KERNEL);
4065 	if (!tx_ring->desc)
4066 		goto err;
4067 
4068 	tx_ring->next_to_use = 0;
4069 	tx_ring->next_to_clean = 0;
4070 
4071 	return 0;
4072 
4073 err:
4074 	vfree(tx_ring->tx_buffer_info);
4075 	tx_ring->tx_buffer_info = NULL;
4076 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4077 	return -ENOMEM;
4078 }
4079 
4080 /**
4081  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4082  *				 (Descriptors) for all queues
4083  *  @adapter: board private structure
4084  *
4085  *  Return 0 on success, negative on failure
4086  **/
4087 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4088 {
4089 	struct pci_dev *pdev = adapter->pdev;
4090 	int i, err = 0;
4091 
4092 	for (i = 0; i < adapter->num_tx_queues; i++) {
4093 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4094 		if (err) {
4095 			dev_err(&pdev->dev,
4096 				"Allocation for Tx Queue %u failed\n", i);
4097 			for (i--; i >= 0; i--)
4098 				igb_free_tx_resources(adapter->tx_ring[i]);
4099 			break;
4100 		}
4101 	}
4102 
4103 	return err;
4104 }
4105 
4106 /**
4107  *  igb_setup_tctl - configure the transmit control registers
4108  *  @adapter: Board private structure
4109  **/
4110 void igb_setup_tctl(struct igb_adapter *adapter)
4111 {
4112 	struct e1000_hw *hw = &adapter->hw;
4113 	u32 tctl;
4114 
4115 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4116 	wr32(E1000_TXDCTL(0), 0);
4117 
4118 	/* Program the Transmit Control Register */
4119 	tctl = rd32(E1000_TCTL);
4120 	tctl &= ~E1000_TCTL_CT;
4121 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4122 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4123 
4124 	igb_config_collision_dist(hw);
4125 
4126 	/* Enable transmits */
4127 	tctl |= E1000_TCTL_EN;
4128 
4129 	wr32(E1000_TCTL, tctl);
4130 }
4131 
4132 /**
4133  *  igb_configure_tx_ring - Configure transmit ring after Reset
4134  *  @adapter: board private structure
4135  *  @ring: tx ring to configure
4136  *
4137  *  Configure a transmit ring after a reset.
4138  **/
4139 void igb_configure_tx_ring(struct igb_adapter *adapter,
4140 			   struct igb_ring *ring)
4141 {
4142 	struct e1000_hw *hw = &adapter->hw;
4143 	u32 txdctl = 0;
4144 	u64 tdba = ring->dma;
4145 	int reg_idx = ring->reg_idx;
4146 
4147 	wr32(E1000_TDLEN(reg_idx),
4148 	     ring->count * sizeof(union e1000_adv_tx_desc));
4149 	wr32(E1000_TDBAL(reg_idx),
4150 	     tdba & 0x00000000ffffffffULL);
4151 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4152 
4153 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4154 	wr32(E1000_TDH(reg_idx), 0);
4155 	writel(0, ring->tail);
4156 
4157 	txdctl |= IGB_TX_PTHRESH;
4158 	txdctl |= IGB_TX_HTHRESH << 8;
4159 	txdctl |= IGB_TX_WTHRESH << 16;
4160 
4161 	/* reinitialize tx_buffer_info */
4162 	memset(ring->tx_buffer_info, 0,
4163 	       sizeof(struct igb_tx_buffer) * ring->count);
4164 
4165 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4166 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4167 }
4168 
4169 /**
4170  *  igb_configure_tx - Configure transmit Unit after Reset
4171  *  @adapter: board private structure
4172  *
4173  *  Configure the Tx unit of the MAC after a reset.
4174  **/
4175 static void igb_configure_tx(struct igb_adapter *adapter)
4176 {
4177 	struct e1000_hw *hw = &adapter->hw;
4178 	int i;
4179 
4180 	/* disable the queues */
4181 	for (i = 0; i < adapter->num_tx_queues; i++)
4182 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4183 
4184 	wrfl();
4185 	usleep_range(10000, 20000);
4186 
4187 	for (i = 0; i < adapter->num_tx_queues; i++)
4188 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4189 }
4190 
4191 /**
4192  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4193  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4194  *
4195  *  Returns 0 on success, negative on failure
4196  **/
4197 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4198 {
4199 	struct device *dev = rx_ring->dev;
4200 	int size;
4201 
4202 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4203 
4204 	rx_ring->rx_buffer_info = vmalloc(size);
4205 	if (!rx_ring->rx_buffer_info)
4206 		goto err;
4207 
4208 	/* Round up to nearest 4K */
4209 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4210 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4211 
4212 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4213 					   &rx_ring->dma, GFP_KERNEL);
4214 	if (!rx_ring->desc)
4215 		goto err;
4216 
4217 	rx_ring->next_to_alloc = 0;
4218 	rx_ring->next_to_clean = 0;
4219 	rx_ring->next_to_use = 0;
4220 
4221 	return 0;
4222 
4223 err:
4224 	vfree(rx_ring->rx_buffer_info);
4225 	rx_ring->rx_buffer_info = NULL;
4226 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4227 	return -ENOMEM;
4228 }
4229 
4230 /**
4231  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4232  *				 (Descriptors) for all queues
4233  *  @adapter: board private structure
4234  *
4235  *  Return 0 on success, negative on failure
4236  **/
4237 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4238 {
4239 	struct pci_dev *pdev = adapter->pdev;
4240 	int i, err = 0;
4241 
4242 	for (i = 0; i < adapter->num_rx_queues; i++) {
4243 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4244 		if (err) {
4245 			dev_err(&pdev->dev,
4246 				"Allocation for Rx Queue %u failed\n", i);
4247 			for (i--; i >= 0; i--)
4248 				igb_free_rx_resources(adapter->rx_ring[i]);
4249 			break;
4250 		}
4251 	}
4252 
4253 	return err;
4254 }
4255 
4256 /**
4257  *  igb_setup_mrqc - configure the multiple receive queue control registers
4258  *  @adapter: Board private structure
4259  **/
4260 static void igb_setup_mrqc(struct igb_adapter *adapter)
4261 {
4262 	struct e1000_hw *hw = &adapter->hw;
4263 	u32 mrqc, rxcsum;
4264 	u32 j, num_rx_queues;
4265 	u32 rss_key[10];
4266 
4267 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4268 	for (j = 0; j < 10; j++)
4269 		wr32(E1000_RSSRK(j), rss_key[j]);
4270 
4271 	num_rx_queues = adapter->rss_queues;
4272 
4273 	switch (hw->mac.type) {
4274 	case e1000_82576:
4275 		/* 82576 supports 2 RSS queues for SR-IOV */
4276 		if (adapter->vfs_allocated_count)
4277 			num_rx_queues = 2;
4278 		break;
4279 	default:
4280 		break;
4281 	}
4282 
4283 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4284 		for (j = 0; j < IGB_RETA_SIZE; j++)
4285 			adapter->rss_indir_tbl[j] =
4286 			(j * num_rx_queues) / IGB_RETA_SIZE;
4287 		adapter->rss_indir_tbl_init = num_rx_queues;
4288 	}
4289 	igb_write_rss_indir_tbl(adapter);
4290 
4291 	/* Disable raw packet checksumming so that RSS hash is placed in
4292 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4293 	 * offloads as they are enabled by default
4294 	 */
4295 	rxcsum = rd32(E1000_RXCSUM);
4296 	rxcsum |= E1000_RXCSUM_PCSD;
4297 
4298 	if (adapter->hw.mac.type >= e1000_82576)
4299 		/* Enable Receive Checksum Offload for SCTP */
4300 		rxcsum |= E1000_RXCSUM_CRCOFL;
4301 
4302 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4303 	wr32(E1000_RXCSUM, rxcsum);
4304 
4305 	/* Generate RSS hash based on packet types, TCP/UDP
4306 	 * port numbers and/or IPv4/v6 src and dst addresses
4307 	 */
4308 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4309 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4310 	       E1000_MRQC_RSS_FIELD_IPV6 |
4311 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4312 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4313 
4314 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4315 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4316 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4317 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4318 
4319 	/* If VMDq is enabled then we set the appropriate mode for that, else
4320 	 * we default to RSS so that an RSS hash is calculated per packet even
4321 	 * if we are only using one queue
4322 	 */
4323 	if (adapter->vfs_allocated_count) {
4324 		if (hw->mac.type > e1000_82575) {
4325 			/* Set the default pool for the PF's first queue */
4326 			u32 vtctl = rd32(E1000_VT_CTL);
4327 
4328 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4329 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4330 			vtctl |= adapter->vfs_allocated_count <<
4331 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4332 			wr32(E1000_VT_CTL, vtctl);
4333 		}
4334 		if (adapter->rss_queues > 1)
4335 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4336 		else
4337 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4338 	} else {
4339 		if (hw->mac.type != e1000_i211)
4340 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4341 	}
4342 	igb_vmm_control(adapter);
4343 
4344 	wr32(E1000_MRQC, mrqc);
4345 }
4346 
4347 /**
4348  *  igb_setup_rctl - configure the receive control registers
4349  *  @adapter: Board private structure
4350  **/
4351 void igb_setup_rctl(struct igb_adapter *adapter)
4352 {
4353 	struct e1000_hw *hw = &adapter->hw;
4354 	u32 rctl;
4355 
4356 	rctl = rd32(E1000_RCTL);
4357 
4358 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4359 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4360 
4361 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4362 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4363 
4364 	/* enable stripping of CRC. It's unlikely this will break BMC
4365 	 * redirection as it did with e1000. Newer features require
4366 	 * that the HW strips the CRC.
4367 	 */
4368 	rctl |= E1000_RCTL_SECRC;
4369 
4370 	/* disable store bad packets and clear size bits. */
4371 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4372 
4373 	/* enable LPE to allow for reception of jumbo frames */
4374 	rctl |= E1000_RCTL_LPE;
4375 
4376 	/* disable queue 0 to prevent tail write w/o re-config */
4377 	wr32(E1000_RXDCTL(0), 0);
4378 
4379 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4380 	 * queue drop for all VF and PF queues to prevent head of line blocking
4381 	 * if an un-trusted VF does not provide descriptors to hardware.
4382 	 */
4383 	if (adapter->vfs_allocated_count) {
4384 		/* set all queue drop enable bits */
4385 		wr32(E1000_QDE, ALL_QUEUES);
4386 	}
4387 
4388 	/* This is useful for sniffing bad packets. */
4389 	if (adapter->netdev->features & NETIF_F_RXALL) {
4390 		/* UPE and MPE will be handled by normal PROMISC logic
4391 		 * in e1000e_set_rx_mode
4392 		 */
4393 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4394 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4395 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4396 
4397 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4398 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4399 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4400 		 * and that breaks VLANs.
4401 		 */
4402 	}
4403 
4404 	wr32(E1000_RCTL, rctl);
4405 }
4406 
4407 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4408 				   int vfn)
4409 {
4410 	struct e1000_hw *hw = &adapter->hw;
4411 	u32 vmolr;
4412 
4413 	if (size > MAX_JUMBO_FRAME_SIZE)
4414 		size = MAX_JUMBO_FRAME_SIZE;
4415 
4416 	vmolr = rd32(E1000_VMOLR(vfn));
4417 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4418 	vmolr |= size | E1000_VMOLR_LPE;
4419 	wr32(E1000_VMOLR(vfn), vmolr);
4420 
4421 	return 0;
4422 }
4423 
4424 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4425 					 int vfn, bool enable)
4426 {
4427 	struct e1000_hw *hw = &adapter->hw;
4428 	u32 val, reg;
4429 
4430 	if (hw->mac.type < e1000_82576)
4431 		return;
4432 
4433 	if (hw->mac.type == e1000_i350)
4434 		reg = E1000_DVMOLR(vfn);
4435 	else
4436 		reg = E1000_VMOLR(vfn);
4437 
4438 	val = rd32(reg);
4439 	if (enable)
4440 		val |= E1000_VMOLR_STRVLAN;
4441 	else
4442 		val &= ~(E1000_VMOLR_STRVLAN);
4443 	wr32(reg, val);
4444 }
4445 
4446 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4447 				 int vfn, bool aupe)
4448 {
4449 	struct e1000_hw *hw = &adapter->hw;
4450 	u32 vmolr;
4451 
4452 	/* This register exists only on 82576 and newer so if we are older then
4453 	 * we should exit and do nothing
4454 	 */
4455 	if (hw->mac.type < e1000_82576)
4456 		return;
4457 
4458 	vmolr = rd32(E1000_VMOLR(vfn));
4459 	if (aupe)
4460 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4461 	else
4462 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4463 
4464 	/* clear all bits that might not be set */
4465 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4466 
4467 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4468 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4469 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4470 	 * multicast packets
4471 	 */
4472 	if (vfn <= adapter->vfs_allocated_count)
4473 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4474 
4475 	wr32(E1000_VMOLR(vfn), vmolr);
4476 }
4477 
4478 /**
4479  *  igb_configure_rx_ring - Configure a receive ring after Reset
4480  *  @adapter: board private structure
4481  *  @ring: receive ring to be configured
4482  *
4483  *  Configure the Rx unit of the MAC after a reset.
4484  **/
4485 void igb_configure_rx_ring(struct igb_adapter *adapter,
4486 			   struct igb_ring *ring)
4487 {
4488 	struct e1000_hw *hw = &adapter->hw;
4489 	union e1000_adv_rx_desc *rx_desc;
4490 	u64 rdba = ring->dma;
4491 	int reg_idx = ring->reg_idx;
4492 	u32 srrctl = 0, rxdctl = 0;
4493 
4494 	/* disable the queue */
4495 	wr32(E1000_RXDCTL(reg_idx), 0);
4496 
4497 	/* Set DMA base address registers */
4498 	wr32(E1000_RDBAL(reg_idx),
4499 	     rdba & 0x00000000ffffffffULL);
4500 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4501 	wr32(E1000_RDLEN(reg_idx),
4502 	     ring->count * sizeof(union e1000_adv_rx_desc));
4503 
4504 	/* initialize head and tail */
4505 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4506 	wr32(E1000_RDH(reg_idx), 0);
4507 	writel(0, ring->tail);
4508 
4509 	/* set descriptor configuration */
4510 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4511 	if (ring_uses_large_buffer(ring))
4512 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4513 	else
4514 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4515 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4516 	if (hw->mac.type >= e1000_82580)
4517 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4518 	/* Only set Drop Enable if we are supporting multiple queues */
4519 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4520 		srrctl |= E1000_SRRCTL_DROP_EN;
4521 
4522 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4523 
4524 	/* set filtering for VMDQ pools */
4525 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4526 
4527 	rxdctl |= IGB_RX_PTHRESH;
4528 	rxdctl |= IGB_RX_HTHRESH << 8;
4529 	rxdctl |= IGB_RX_WTHRESH << 16;
4530 
4531 	/* initialize rx_buffer_info */
4532 	memset(ring->rx_buffer_info, 0,
4533 	       sizeof(struct igb_rx_buffer) * ring->count);
4534 
4535 	/* initialize Rx descriptor 0 */
4536 	rx_desc = IGB_RX_DESC(ring, 0);
4537 	rx_desc->wb.upper.length = 0;
4538 
4539 	/* enable receive descriptor fetching */
4540 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4541 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4542 }
4543 
4544 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4545 				  struct igb_ring *rx_ring)
4546 {
4547 	/* set build_skb and buffer size flags */
4548 	clear_ring_build_skb_enabled(rx_ring);
4549 	clear_ring_uses_large_buffer(rx_ring);
4550 
4551 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4552 		return;
4553 
4554 	set_ring_build_skb_enabled(rx_ring);
4555 
4556 #if (PAGE_SIZE < 8192)
4557 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4558 		return;
4559 
4560 	set_ring_uses_large_buffer(rx_ring);
4561 #endif
4562 }
4563 
4564 /**
4565  *  igb_configure_rx - Configure receive Unit after Reset
4566  *  @adapter: board private structure
4567  *
4568  *  Configure the Rx unit of the MAC after a reset.
4569  **/
4570 static void igb_configure_rx(struct igb_adapter *adapter)
4571 {
4572 	int i;
4573 
4574 	/* set the correct pool for the PF default MAC address in entry 0 */
4575 	igb_set_default_mac_filter(adapter);
4576 
4577 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4578 	 * the Base and Length of the Rx Descriptor Ring
4579 	 */
4580 	for (i = 0; i < adapter->num_rx_queues; i++) {
4581 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4582 
4583 		igb_set_rx_buffer_len(adapter, rx_ring);
4584 		igb_configure_rx_ring(adapter, rx_ring);
4585 	}
4586 }
4587 
4588 /**
4589  *  igb_free_tx_resources - Free Tx Resources per Queue
4590  *  @tx_ring: Tx descriptor ring for a specific queue
4591  *
4592  *  Free all transmit software resources
4593  **/
4594 void igb_free_tx_resources(struct igb_ring *tx_ring)
4595 {
4596 	igb_clean_tx_ring(tx_ring);
4597 
4598 	vfree(tx_ring->tx_buffer_info);
4599 	tx_ring->tx_buffer_info = NULL;
4600 
4601 	/* if not set, then don't free */
4602 	if (!tx_ring->desc)
4603 		return;
4604 
4605 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4606 			  tx_ring->desc, tx_ring->dma);
4607 
4608 	tx_ring->desc = NULL;
4609 }
4610 
4611 /**
4612  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4613  *  @adapter: board private structure
4614  *
4615  *  Free all transmit software resources
4616  **/
4617 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4618 {
4619 	int i;
4620 
4621 	for (i = 0; i < adapter->num_tx_queues; i++)
4622 		if (adapter->tx_ring[i])
4623 			igb_free_tx_resources(adapter->tx_ring[i]);
4624 }
4625 
4626 /**
4627  *  igb_clean_tx_ring - Free Tx Buffers
4628  *  @tx_ring: ring to be cleaned
4629  **/
4630 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4631 {
4632 	u16 i = tx_ring->next_to_clean;
4633 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4634 
4635 	while (i != tx_ring->next_to_use) {
4636 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4637 
4638 		/* Free all the Tx ring sk_buffs */
4639 		dev_kfree_skb_any(tx_buffer->skb);
4640 
4641 		/* unmap skb header data */
4642 		dma_unmap_single(tx_ring->dev,
4643 				 dma_unmap_addr(tx_buffer, dma),
4644 				 dma_unmap_len(tx_buffer, len),
4645 				 DMA_TO_DEVICE);
4646 
4647 		/* check for eop_desc to determine the end of the packet */
4648 		eop_desc = tx_buffer->next_to_watch;
4649 		tx_desc = IGB_TX_DESC(tx_ring, i);
4650 
4651 		/* unmap remaining buffers */
4652 		while (tx_desc != eop_desc) {
4653 			tx_buffer++;
4654 			tx_desc++;
4655 			i++;
4656 			if (unlikely(i == tx_ring->count)) {
4657 				i = 0;
4658 				tx_buffer = tx_ring->tx_buffer_info;
4659 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4660 			}
4661 
4662 			/* unmap any remaining paged data */
4663 			if (dma_unmap_len(tx_buffer, len))
4664 				dma_unmap_page(tx_ring->dev,
4665 					       dma_unmap_addr(tx_buffer, dma),
4666 					       dma_unmap_len(tx_buffer, len),
4667 					       DMA_TO_DEVICE);
4668 		}
4669 
4670 		/* move us one more past the eop_desc for start of next pkt */
4671 		tx_buffer++;
4672 		i++;
4673 		if (unlikely(i == tx_ring->count)) {
4674 			i = 0;
4675 			tx_buffer = tx_ring->tx_buffer_info;
4676 		}
4677 	}
4678 
4679 	/* reset BQL for queue */
4680 	netdev_tx_reset_queue(txring_txq(tx_ring));
4681 
4682 	/* reset next_to_use and next_to_clean */
4683 	tx_ring->next_to_use = 0;
4684 	tx_ring->next_to_clean = 0;
4685 }
4686 
4687 /**
4688  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4689  *  @adapter: board private structure
4690  **/
4691 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4692 {
4693 	int i;
4694 
4695 	for (i = 0; i < adapter->num_tx_queues; i++)
4696 		if (adapter->tx_ring[i])
4697 			igb_clean_tx_ring(adapter->tx_ring[i]);
4698 }
4699 
4700 /**
4701  *  igb_free_rx_resources - Free Rx Resources
4702  *  @rx_ring: ring to clean the resources from
4703  *
4704  *  Free all receive software resources
4705  **/
4706 void igb_free_rx_resources(struct igb_ring *rx_ring)
4707 {
4708 	igb_clean_rx_ring(rx_ring);
4709 
4710 	vfree(rx_ring->rx_buffer_info);
4711 	rx_ring->rx_buffer_info = NULL;
4712 
4713 	/* if not set, then don't free */
4714 	if (!rx_ring->desc)
4715 		return;
4716 
4717 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4718 			  rx_ring->desc, rx_ring->dma);
4719 
4720 	rx_ring->desc = NULL;
4721 }
4722 
4723 /**
4724  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4725  *  @adapter: board private structure
4726  *
4727  *  Free all receive software resources
4728  **/
4729 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4730 {
4731 	int i;
4732 
4733 	for (i = 0; i < adapter->num_rx_queues; i++)
4734 		if (adapter->rx_ring[i])
4735 			igb_free_rx_resources(adapter->rx_ring[i]);
4736 }
4737 
4738 /**
4739  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4740  *  @rx_ring: ring to free buffers from
4741  **/
4742 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4743 {
4744 	u16 i = rx_ring->next_to_clean;
4745 
4746 	if (rx_ring->skb)
4747 		dev_kfree_skb(rx_ring->skb);
4748 	rx_ring->skb = NULL;
4749 
4750 	/* Free all the Rx ring sk_buffs */
4751 	while (i != rx_ring->next_to_alloc) {
4752 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4753 
4754 		/* Invalidate cache lines that may have been written to by
4755 		 * device so that we avoid corrupting memory.
4756 		 */
4757 		dma_sync_single_range_for_cpu(rx_ring->dev,
4758 					      buffer_info->dma,
4759 					      buffer_info->page_offset,
4760 					      igb_rx_bufsz(rx_ring),
4761 					      DMA_FROM_DEVICE);
4762 
4763 		/* free resources associated with mapping */
4764 		dma_unmap_page_attrs(rx_ring->dev,
4765 				     buffer_info->dma,
4766 				     igb_rx_pg_size(rx_ring),
4767 				     DMA_FROM_DEVICE,
4768 				     IGB_RX_DMA_ATTR);
4769 		__page_frag_cache_drain(buffer_info->page,
4770 					buffer_info->pagecnt_bias);
4771 
4772 		i++;
4773 		if (i == rx_ring->count)
4774 			i = 0;
4775 	}
4776 
4777 	rx_ring->next_to_alloc = 0;
4778 	rx_ring->next_to_clean = 0;
4779 	rx_ring->next_to_use = 0;
4780 }
4781 
4782 /**
4783  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4784  *  @adapter: board private structure
4785  **/
4786 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4787 {
4788 	int i;
4789 
4790 	for (i = 0; i < adapter->num_rx_queues; i++)
4791 		if (adapter->rx_ring[i])
4792 			igb_clean_rx_ring(adapter->rx_ring[i]);
4793 }
4794 
4795 /**
4796  *  igb_set_mac - Change the Ethernet Address of the NIC
4797  *  @netdev: network interface device structure
4798  *  @p: pointer to an address structure
4799  *
4800  *  Returns 0 on success, negative on failure
4801  **/
4802 static int igb_set_mac(struct net_device *netdev, void *p)
4803 {
4804 	struct igb_adapter *adapter = netdev_priv(netdev);
4805 	struct e1000_hw *hw = &adapter->hw;
4806 	struct sockaddr *addr = p;
4807 
4808 	if (!is_valid_ether_addr(addr->sa_data))
4809 		return -EADDRNOTAVAIL;
4810 
4811 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4812 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4813 
4814 	/* set the correct pool for the new PF MAC address in entry 0 */
4815 	igb_set_default_mac_filter(adapter);
4816 
4817 	return 0;
4818 }
4819 
4820 /**
4821  *  igb_write_mc_addr_list - write multicast addresses to MTA
4822  *  @netdev: network interface device structure
4823  *
4824  *  Writes multicast address list to the MTA hash table.
4825  *  Returns: -ENOMEM on failure
4826  *           0 on no addresses written
4827  *           X on writing X addresses to MTA
4828  **/
4829 static int igb_write_mc_addr_list(struct net_device *netdev)
4830 {
4831 	struct igb_adapter *adapter = netdev_priv(netdev);
4832 	struct e1000_hw *hw = &adapter->hw;
4833 	struct netdev_hw_addr *ha;
4834 	u8  *mta_list;
4835 	int i;
4836 
4837 	if (netdev_mc_empty(netdev)) {
4838 		/* nothing to program, so clear mc list */
4839 		igb_update_mc_addr_list(hw, NULL, 0);
4840 		igb_restore_vf_multicasts(adapter);
4841 		return 0;
4842 	}
4843 
4844 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4845 	if (!mta_list)
4846 		return -ENOMEM;
4847 
4848 	/* The shared function expects a packed array of only addresses. */
4849 	i = 0;
4850 	netdev_for_each_mc_addr(ha, netdev)
4851 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4852 
4853 	igb_update_mc_addr_list(hw, mta_list, i);
4854 	kfree(mta_list);
4855 
4856 	return netdev_mc_count(netdev);
4857 }
4858 
4859 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4860 {
4861 	struct e1000_hw *hw = &adapter->hw;
4862 	u32 i, pf_id;
4863 
4864 	switch (hw->mac.type) {
4865 	case e1000_i210:
4866 	case e1000_i211:
4867 	case e1000_i350:
4868 		/* VLAN filtering needed for VLAN prio filter */
4869 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4870 			break;
4871 		/* fall through */
4872 	case e1000_82576:
4873 	case e1000_82580:
4874 	case e1000_i354:
4875 		/* VLAN filtering needed for pool filtering */
4876 		if (adapter->vfs_allocated_count)
4877 			break;
4878 		/* fall through */
4879 	default:
4880 		return 1;
4881 	}
4882 
4883 	/* We are already in VLAN promisc, nothing to do */
4884 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4885 		return 0;
4886 
4887 	if (!adapter->vfs_allocated_count)
4888 		goto set_vfta;
4889 
4890 	/* Add PF to all active pools */
4891 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4892 
4893 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4894 		u32 vlvf = rd32(E1000_VLVF(i));
4895 
4896 		vlvf |= BIT(pf_id);
4897 		wr32(E1000_VLVF(i), vlvf);
4898 	}
4899 
4900 set_vfta:
4901 	/* Set all bits in the VLAN filter table array */
4902 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4903 		hw->mac.ops.write_vfta(hw, i, ~0U);
4904 
4905 	/* Set flag so we don't redo unnecessary work */
4906 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4907 
4908 	return 0;
4909 }
4910 
4911 #define VFTA_BLOCK_SIZE 8
4912 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4913 {
4914 	struct e1000_hw *hw = &adapter->hw;
4915 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4916 	u32 vid_start = vfta_offset * 32;
4917 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4918 	u32 i, vid, word, bits, pf_id;
4919 
4920 	/* guarantee that we don't scrub out management VLAN */
4921 	vid = adapter->mng_vlan_id;
4922 	if (vid >= vid_start && vid < vid_end)
4923 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4924 
4925 	if (!adapter->vfs_allocated_count)
4926 		goto set_vfta;
4927 
4928 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4929 
4930 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4931 		u32 vlvf = rd32(E1000_VLVF(i));
4932 
4933 		/* pull VLAN ID from VLVF */
4934 		vid = vlvf & VLAN_VID_MASK;
4935 
4936 		/* only concern ourselves with a certain range */
4937 		if (vid < vid_start || vid >= vid_end)
4938 			continue;
4939 
4940 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4941 			/* record VLAN ID in VFTA */
4942 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4943 
4944 			/* if PF is part of this then continue */
4945 			if (test_bit(vid, adapter->active_vlans))
4946 				continue;
4947 		}
4948 
4949 		/* remove PF from the pool */
4950 		bits = ~BIT(pf_id);
4951 		bits &= rd32(E1000_VLVF(i));
4952 		wr32(E1000_VLVF(i), bits);
4953 	}
4954 
4955 set_vfta:
4956 	/* extract values from active_vlans and write back to VFTA */
4957 	for (i = VFTA_BLOCK_SIZE; i--;) {
4958 		vid = (vfta_offset + i) * 32;
4959 		word = vid / BITS_PER_LONG;
4960 		bits = vid % BITS_PER_LONG;
4961 
4962 		vfta[i] |= adapter->active_vlans[word] >> bits;
4963 
4964 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4965 	}
4966 }
4967 
4968 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4969 {
4970 	u32 i;
4971 
4972 	/* We are not in VLAN promisc, nothing to do */
4973 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4974 		return;
4975 
4976 	/* Set flag so we don't redo unnecessary work */
4977 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4978 
4979 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4980 		igb_scrub_vfta(adapter, i);
4981 }
4982 
4983 /**
4984  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4985  *  @netdev: network interface device structure
4986  *
4987  *  The set_rx_mode entry point is called whenever the unicast or multicast
4988  *  address lists or the network interface flags are updated.  This routine is
4989  *  responsible for configuring the hardware for proper unicast, multicast,
4990  *  promiscuous mode, and all-multi behavior.
4991  **/
4992 static void igb_set_rx_mode(struct net_device *netdev)
4993 {
4994 	struct igb_adapter *adapter = netdev_priv(netdev);
4995 	struct e1000_hw *hw = &adapter->hw;
4996 	unsigned int vfn = adapter->vfs_allocated_count;
4997 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4998 	int count;
4999 
5000 	/* Check for Promiscuous and All Multicast modes */
5001 	if (netdev->flags & IFF_PROMISC) {
5002 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5003 		vmolr |= E1000_VMOLR_MPME;
5004 
5005 		/* enable use of UTA filter to force packets to default pool */
5006 		if (hw->mac.type == e1000_82576)
5007 			vmolr |= E1000_VMOLR_ROPE;
5008 	} else {
5009 		if (netdev->flags & IFF_ALLMULTI) {
5010 			rctl |= E1000_RCTL_MPE;
5011 			vmolr |= E1000_VMOLR_MPME;
5012 		} else {
5013 			/* Write addresses to the MTA, if the attempt fails
5014 			 * then we should just turn on promiscuous mode so
5015 			 * that we can at least receive multicast traffic
5016 			 */
5017 			count = igb_write_mc_addr_list(netdev);
5018 			if (count < 0) {
5019 				rctl |= E1000_RCTL_MPE;
5020 				vmolr |= E1000_VMOLR_MPME;
5021 			} else if (count) {
5022 				vmolr |= E1000_VMOLR_ROMPE;
5023 			}
5024 		}
5025 	}
5026 
5027 	/* Write addresses to available RAR registers, if there is not
5028 	 * sufficient space to store all the addresses then enable
5029 	 * unicast promiscuous mode
5030 	 */
5031 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5032 		rctl |= E1000_RCTL_UPE;
5033 		vmolr |= E1000_VMOLR_ROPE;
5034 	}
5035 
5036 	/* enable VLAN filtering by default */
5037 	rctl |= E1000_RCTL_VFE;
5038 
5039 	/* disable VLAN filtering for modes that require it */
5040 	if ((netdev->flags & IFF_PROMISC) ||
5041 	    (netdev->features & NETIF_F_RXALL)) {
5042 		/* if we fail to set all rules then just clear VFE */
5043 		if (igb_vlan_promisc_enable(adapter))
5044 			rctl &= ~E1000_RCTL_VFE;
5045 	} else {
5046 		igb_vlan_promisc_disable(adapter);
5047 	}
5048 
5049 	/* update state of unicast, multicast, and VLAN filtering modes */
5050 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5051 				     E1000_RCTL_VFE);
5052 	wr32(E1000_RCTL, rctl);
5053 
5054 #if (PAGE_SIZE < 8192)
5055 	if (!adapter->vfs_allocated_count) {
5056 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5057 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5058 	}
5059 #endif
5060 	wr32(E1000_RLPML, rlpml);
5061 
5062 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5063 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5064 	 * we will have issues with VLAN tag stripping not being done for frames
5065 	 * that are only arriving because we are the default pool
5066 	 */
5067 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5068 		return;
5069 
5070 	/* set UTA to appropriate mode */
5071 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5072 
5073 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5074 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5075 
5076 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5077 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5078 #if (PAGE_SIZE < 8192)
5079 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5080 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5081 	else
5082 #endif
5083 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5084 	vmolr |= E1000_VMOLR_LPE;
5085 
5086 	wr32(E1000_VMOLR(vfn), vmolr);
5087 
5088 	igb_restore_vf_multicasts(adapter);
5089 }
5090 
5091 static void igb_check_wvbr(struct igb_adapter *adapter)
5092 {
5093 	struct e1000_hw *hw = &adapter->hw;
5094 	u32 wvbr = 0;
5095 
5096 	switch (hw->mac.type) {
5097 	case e1000_82576:
5098 	case e1000_i350:
5099 		wvbr = rd32(E1000_WVBR);
5100 		if (!wvbr)
5101 			return;
5102 		break;
5103 	default:
5104 		break;
5105 	}
5106 
5107 	adapter->wvbr |= wvbr;
5108 }
5109 
5110 #define IGB_STAGGERED_QUEUE_OFFSET 8
5111 
5112 static void igb_spoof_check(struct igb_adapter *adapter)
5113 {
5114 	int j;
5115 
5116 	if (!adapter->wvbr)
5117 		return;
5118 
5119 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5120 		if (adapter->wvbr & BIT(j) ||
5121 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5122 			dev_warn(&adapter->pdev->dev,
5123 				"Spoof event(s) detected on VF %d\n", j);
5124 			adapter->wvbr &=
5125 				~(BIT(j) |
5126 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5127 		}
5128 	}
5129 }
5130 
5131 /* Need to wait a few seconds after link up to get diagnostic information from
5132  * the phy
5133  */
5134 static void igb_update_phy_info(struct timer_list *t)
5135 {
5136 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5137 	igb_get_phy_info(&adapter->hw);
5138 }
5139 
5140 /**
5141  *  igb_has_link - check shared code for link and determine up/down
5142  *  @adapter: pointer to driver private info
5143  **/
5144 bool igb_has_link(struct igb_adapter *adapter)
5145 {
5146 	struct e1000_hw *hw = &adapter->hw;
5147 	bool link_active = false;
5148 
5149 	/* get_link_status is set on LSC (link status) interrupt or
5150 	 * rx sequence error interrupt.  get_link_status will stay
5151 	 * false until the e1000_check_for_link establishes link
5152 	 * for copper adapters ONLY
5153 	 */
5154 	switch (hw->phy.media_type) {
5155 	case e1000_media_type_copper:
5156 		if (!hw->mac.get_link_status)
5157 			return true;
5158 		/* fall through */
5159 	case e1000_media_type_internal_serdes:
5160 		hw->mac.ops.check_for_link(hw);
5161 		link_active = !hw->mac.get_link_status;
5162 		break;
5163 	default:
5164 	case e1000_media_type_unknown:
5165 		break;
5166 	}
5167 
5168 	if (((hw->mac.type == e1000_i210) ||
5169 	     (hw->mac.type == e1000_i211)) &&
5170 	     (hw->phy.id == I210_I_PHY_ID)) {
5171 		if (!netif_carrier_ok(adapter->netdev)) {
5172 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5173 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5174 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5175 			adapter->link_check_timeout = jiffies;
5176 		}
5177 	}
5178 
5179 	return link_active;
5180 }
5181 
5182 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5183 {
5184 	bool ret = false;
5185 	u32 ctrl_ext, thstat;
5186 
5187 	/* check for thermal sensor event on i350 copper only */
5188 	if (hw->mac.type == e1000_i350) {
5189 		thstat = rd32(E1000_THSTAT);
5190 		ctrl_ext = rd32(E1000_CTRL_EXT);
5191 
5192 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5193 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5194 			ret = !!(thstat & event);
5195 	}
5196 
5197 	return ret;
5198 }
5199 
5200 /**
5201  *  igb_check_lvmmc - check for malformed packets received
5202  *  and indicated in LVMMC register
5203  *  @adapter: pointer to adapter
5204  **/
5205 static void igb_check_lvmmc(struct igb_adapter *adapter)
5206 {
5207 	struct e1000_hw *hw = &adapter->hw;
5208 	u32 lvmmc;
5209 
5210 	lvmmc = rd32(E1000_LVMMC);
5211 	if (lvmmc) {
5212 		if (unlikely(net_ratelimit())) {
5213 			netdev_warn(adapter->netdev,
5214 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5215 				    lvmmc);
5216 		}
5217 	}
5218 }
5219 
5220 /**
5221  *  igb_watchdog - Timer Call-back
5222  *  @data: pointer to adapter cast into an unsigned long
5223  **/
5224 static void igb_watchdog(struct timer_list *t)
5225 {
5226 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5227 	/* Do the rest outside of interrupt context */
5228 	schedule_work(&adapter->watchdog_task);
5229 }
5230 
5231 static void igb_watchdog_task(struct work_struct *work)
5232 {
5233 	struct igb_adapter *adapter = container_of(work,
5234 						   struct igb_adapter,
5235 						   watchdog_task);
5236 	struct e1000_hw *hw = &adapter->hw;
5237 	struct e1000_phy_info *phy = &hw->phy;
5238 	struct net_device *netdev = adapter->netdev;
5239 	u32 link;
5240 	int i;
5241 	u32 connsw;
5242 	u16 phy_data, retry_count = 20;
5243 
5244 	link = igb_has_link(adapter);
5245 
5246 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5247 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5248 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5249 		else
5250 			link = false;
5251 	}
5252 
5253 	/* Force link down if we have fiber to swap to */
5254 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5255 		if (hw->phy.media_type == e1000_media_type_copper) {
5256 			connsw = rd32(E1000_CONNSW);
5257 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5258 				link = 0;
5259 		}
5260 	}
5261 	if (link) {
5262 		/* Perform a reset if the media type changed. */
5263 		if (hw->dev_spec._82575.media_changed) {
5264 			hw->dev_spec._82575.media_changed = false;
5265 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5266 			igb_reset(adapter);
5267 		}
5268 		/* Cancel scheduled suspend requests. */
5269 		pm_runtime_resume(netdev->dev.parent);
5270 
5271 		if (!netif_carrier_ok(netdev)) {
5272 			u32 ctrl;
5273 
5274 			hw->mac.ops.get_speed_and_duplex(hw,
5275 							 &adapter->link_speed,
5276 							 &adapter->link_duplex);
5277 
5278 			ctrl = rd32(E1000_CTRL);
5279 			/* Links status message must follow this format */
5280 			netdev_info(netdev,
5281 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5282 			       netdev->name,
5283 			       adapter->link_speed,
5284 			       adapter->link_duplex == FULL_DUPLEX ?
5285 			       "Full" : "Half",
5286 			       (ctrl & E1000_CTRL_TFCE) &&
5287 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5288 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5289 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5290 
5291 			/* disable EEE if enabled */
5292 			if ((adapter->flags & IGB_FLAG_EEE) &&
5293 				(adapter->link_duplex == HALF_DUPLEX)) {
5294 				dev_info(&adapter->pdev->dev,
5295 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5296 				adapter->hw.dev_spec._82575.eee_disable = true;
5297 				adapter->flags &= ~IGB_FLAG_EEE;
5298 			}
5299 
5300 			/* check if SmartSpeed worked */
5301 			igb_check_downshift(hw);
5302 			if (phy->speed_downgraded)
5303 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5304 
5305 			/* check for thermal sensor event */
5306 			if (igb_thermal_sensor_event(hw,
5307 			    E1000_THSTAT_LINK_THROTTLE))
5308 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5309 
5310 			/* adjust timeout factor according to speed/duplex */
5311 			adapter->tx_timeout_factor = 1;
5312 			switch (adapter->link_speed) {
5313 			case SPEED_10:
5314 				adapter->tx_timeout_factor = 14;
5315 				break;
5316 			case SPEED_100:
5317 				/* maybe add some timeout factor ? */
5318 				break;
5319 			}
5320 
5321 			if (adapter->link_speed != SPEED_1000)
5322 				goto no_wait;
5323 
5324 			/* wait for Remote receiver status OK */
5325 retry_read_status:
5326 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5327 					      &phy_data)) {
5328 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5329 				    retry_count) {
5330 					msleep(100);
5331 					retry_count--;
5332 					goto retry_read_status;
5333 				} else if (!retry_count) {
5334 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5335 				}
5336 			} else {
5337 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5338 			}
5339 no_wait:
5340 			netif_carrier_on(netdev);
5341 
5342 			igb_ping_all_vfs(adapter);
5343 			igb_check_vf_rate_limit(adapter);
5344 
5345 			/* link state has changed, schedule phy info update */
5346 			if (!test_bit(__IGB_DOWN, &adapter->state))
5347 				mod_timer(&adapter->phy_info_timer,
5348 					  round_jiffies(jiffies + 2 * HZ));
5349 		}
5350 	} else {
5351 		if (netif_carrier_ok(netdev)) {
5352 			adapter->link_speed = 0;
5353 			adapter->link_duplex = 0;
5354 
5355 			/* check for thermal sensor event */
5356 			if (igb_thermal_sensor_event(hw,
5357 			    E1000_THSTAT_PWR_DOWN)) {
5358 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5359 			}
5360 
5361 			/* Links status message must follow this format */
5362 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5363 			       netdev->name);
5364 			netif_carrier_off(netdev);
5365 
5366 			igb_ping_all_vfs(adapter);
5367 
5368 			/* link state has changed, schedule phy info update */
5369 			if (!test_bit(__IGB_DOWN, &adapter->state))
5370 				mod_timer(&adapter->phy_info_timer,
5371 					  round_jiffies(jiffies + 2 * HZ));
5372 
5373 			/* link is down, time to check for alternate media */
5374 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5375 				igb_check_swap_media(adapter);
5376 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5377 					schedule_work(&adapter->reset_task);
5378 					/* return immediately */
5379 					return;
5380 				}
5381 			}
5382 			pm_schedule_suspend(netdev->dev.parent,
5383 					    MSEC_PER_SEC * 5);
5384 
5385 		/* also check for alternate media here */
5386 		} else if (!netif_carrier_ok(netdev) &&
5387 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5388 			igb_check_swap_media(adapter);
5389 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5390 				schedule_work(&adapter->reset_task);
5391 				/* return immediately */
5392 				return;
5393 			}
5394 		}
5395 	}
5396 
5397 	spin_lock(&adapter->stats64_lock);
5398 	igb_update_stats(adapter);
5399 	spin_unlock(&adapter->stats64_lock);
5400 
5401 	for (i = 0; i < adapter->num_tx_queues; i++) {
5402 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5403 		if (!netif_carrier_ok(netdev)) {
5404 			/* We've lost link, so the controller stops DMA,
5405 			 * but we've got queued Tx work that's never going
5406 			 * to get done, so reset controller to flush Tx.
5407 			 * (Do the reset outside of interrupt context).
5408 			 */
5409 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5410 				adapter->tx_timeout_count++;
5411 				schedule_work(&adapter->reset_task);
5412 				/* return immediately since reset is imminent */
5413 				return;
5414 			}
5415 		}
5416 
5417 		/* Force detection of hung controller every watchdog period */
5418 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5419 	}
5420 
5421 	/* Cause software interrupt to ensure Rx ring is cleaned */
5422 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5423 		u32 eics = 0;
5424 
5425 		for (i = 0; i < adapter->num_q_vectors; i++)
5426 			eics |= adapter->q_vector[i]->eims_value;
5427 		wr32(E1000_EICS, eics);
5428 	} else {
5429 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5430 	}
5431 
5432 	igb_spoof_check(adapter);
5433 	igb_ptp_rx_hang(adapter);
5434 	igb_ptp_tx_hang(adapter);
5435 
5436 	/* Check LVMMC register on i350/i354 only */
5437 	if ((adapter->hw.mac.type == e1000_i350) ||
5438 	    (adapter->hw.mac.type == e1000_i354))
5439 		igb_check_lvmmc(adapter);
5440 
5441 	/* Reset the timer */
5442 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5443 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5444 			mod_timer(&adapter->watchdog_timer,
5445 				  round_jiffies(jiffies +  HZ));
5446 		else
5447 			mod_timer(&adapter->watchdog_timer,
5448 				  round_jiffies(jiffies + 2 * HZ));
5449 	}
5450 }
5451 
5452 enum latency_range {
5453 	lowest_latency = 0,
5454 	low_latency = 1,
5455 	bulk_latency = 2,
5456 	latency_invalid = 255
5457 };
5458 
5459 /**
5460  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5461  *  @q_vector: pointer to q_vector
5462  *
5463  *  Stores a new ITR value based on strictly on packet size.  This
5464  *  algorithm is less sophisticated than that used in igb_update_itr,
5465  *  due to the difficulty of synchronizing statistics across multiple
5466  *  receive rings.  The divisors and thresholds used by this function
5467  *  were determined based on theoretical maximum wire speed and testing
5468  *  data, in order to minimize response time while increasing bulk
5469  *  throughput.
5470  *  This functionality is controlled by ethtool's coalescing settings.
5471  *  NOTE:  This function is called only when operating in a multiqueue
5472  *         receive environment.
5473  **/
5474 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5475 {
5476 	int new_val = q_vector->itr_val;
5477 	int avg_wire_size = 0;
5478 	struct igb_adapter *adapter = q_vector->adapter;
5479 	unsigned int packets;
5480 
5481 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5482 	 * ints/sec - ITR timer value of 120 ticks.
5483 	 */
5484 	if (adapter->link_speed != SPEED_1000) {
5485 		new_val = IGB_4K_ITR;
5486 		goto set_itr_val;
5487 	}
5488 
5489 	packets = q_vector->rx.total_packets;
5490 	if (packets)
5491 		avg_wire_size = q_vector->rx.total_bytes / packets;
5492 
5493 	packets = q_vector->tx.total_packets;
5494 	if (packets)
5495 		avg_wire_size = max_t(u32, avg_wire_size,
5496 				      q_vector->tx.total_bytes / packets);
5497 
5498 	/* if avg_wire_size isn't set no work was done */
5499 	if (!avg_wire_size)
5500 		goto clear_counts;
5501 
5502 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5503 	avg_wire_size += 24;
5504 
5505 	/* Don't starve jumbo frames */
5506 	avg_wire_size = min(avg_wire_size, 3000);
5507 
5508 	/* Give a little boost to mid-size frames */
5509 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5510 		new_val = avg_wire_size / 3;
5511 	else
5512 		new_val = avg_wire_size / 2;
5513 
5514 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5515 	if (new_val < IGB_20K_ITR &&
5516 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5517 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5518 		new_val = IGB_20K_ITR;
5519 
5520 set_itr_val:
5521 	if (new_val != q_vector->itr_val) {
5522 		q_vector->itr_val = new_val;
5523 		q_vector->set_itr = 1;
5524 	}
5525 clear_counts:
5526 	q_vector->rx.total_bytes = 0;
5527 	q_vector->rx.total_packets = 0;
5528 	q_vector->tx.total_bytes = 0;
5529 	q_vector->tx.total_packets = 0;
5530 }
5531 
5532 /**
5533  *  igb_update_itr - update the dynamic ITR value based on statistics
5534  *  @q_vector: pointer to q_vector
5535  *  @ring_container: ring info to update the itr for
5536  *
5537  *  Stores a new ITR value based on packets and byte
5538  *  counts during the last interrupt.  The advantage of per interrupt
5539  *  computation is faster updates and more accurate ITR for the current
5540  *  traffic pattern.  Constants in this function were computed
5541  *  based on theoretical maximum wire speed and thresholds were set based
5542  *  on testing data as well as attempting to minimize response time
5543  *  while increasing bulk throughput.
5544  *  This functionality is controlled by ethtool's coalescing settings.
5545  *  NOTE:  These calculations are only valid when operating in a single-
5546  *         queue environment.
5547  **/
5548 static void igb_update_itr(struct igb_q_vector *q_vector,
5549 			   struct igb_ring_container *ring_container)
5550 {
5551 	unsigned int packets = ring_container->total_packets;
5552 	unsigned int bytes = ring_container->total_bytes;
5553 	u8 itrval = ring_container->itr;
5554 
5555 	/* no packets, exit with status unchanged */
5556 	if (packets == 0)
5557 		return;
5558 
5559 	switch (itrval) {
5560 	case lowest_latency:
5561 		/* handle TSO and jumbo frames */
5562 		if (bytes/packets > 8000)
5563 			itrval = bulk_latency;
5564 		else if ((packets < 5) && (bytes > 512))
5565 			itrval = low_latency;
5566 		break;
5567 	case low_latency:  /* 50 usec aka 20000 ints/s */
5568 		if (bytes > 10000) {
5569 			/* this if handles the TSO accounting */
5570 			if (bytes/packets > 8000)
5571 				itrval = bulk_latency;
5572 			else if ((packets < 10) || ((bytes/packets) > 1200))
5573 				itrval = bulk_latency;
5574 			else if ((packets > 35))
5575 				itrval = lowest_latency;
5576 		} else if (bytes/packets > 2000) {
5577 			itrval = bulk_latency;
5578 		} else if (packets <= 2 && bytes < 512) {
5579 			itrval = lowest_latency;
5580 		}
5581 		break;
5582 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5583 		if (bytes > 25000) {
5584 			if (packets > 35)
5585 				itrval = low_latency;
5586 		} else if (bytes < 1500) {
5587 			itrval = low_latency;
5588 		}
5589 		break;
5590 	}
5591 
5592 	/* clear work counters since we have the values we need */
5593 	ring_container->total_bytes = 0;
5594 	ring_container->total_packets = 0;
5595 
5596 	/* write updated itr to ring container */
5597 	ring_container->itr = itrval;
5598 }
5599 
5600 static void igb_set_itr(struct igb_q_vector *q_vector)
5601 {
5602 	struct igb_adapter *adapter = q_vector->adapter;
5603 	u32 new_itr = q_vector->itr_val;
5604 	u8 current_itr = 0;
5605 
5606 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5607 	if (adapter->link_speed != SPEED_1000) {
5608 		current_itr = 0;
5609 		new_itr = IGB_4K_ITR;
5610 		goto set_itr_now;
5611 	}
5612 
5613 	igb_update_itr(q_vector, &q_vector->tx);
5614 	igb_update_itr(q_vector, &q_vector->rx);
5615 
5616 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5617 
5618 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5619 	if (current_itr == lowest_latency &&
5620 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5621 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5622 		current_itr = low_latency;
5623 
5624 	switch (current_itr) {
5625 	/* counts and packets in update_itr are dependent on these numbers */
5626 	case lowest_latency:
5627 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5628 		break;
5629 	case low_latency:
5630 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5631 		break;
5632 	case bulk_latency:
5633 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5634 		break;
5635 	default:
5636 		break;
5637 	}
5638 
5639 set_itr_now:
5640 	if (new_itr != q_vector->itr_val) {
5641 		/* this attempts to bias the interrupt rate towards Bulk
5642 		 * by adding intermediate steps when interrupt rate is
5643 		 * increasing
5644 		 */
5645 		new_itr = new_itr > q_vector->itr_val ?
5646 			  max((new_itr * q_vector->itr_val) /
5647 			  (new_itr + (q_vector->itr_val >> 2)),
5648 			  new_itr) : new_itr;
5649 		/* Don't write the value here; it resets the adapter's
5650 		 * internal timer, and causes us to delay far longer than
5651 		 * we should between interrupts.  Instead, we write the ITR
5652 		 * value at the beginning of the next interrupt so the timing
5653 		 * ends up being correct.
5654 		 */
5655 		q_vector->itr_val = new_itr;
5656 		q_vector->set_itr = 1;
5657 	}
5658 }
5659 
5660 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5661 			    struct igb_tx_buffer *first,
5662 			    u32 vlan_macip_lens, u32 type_tucmd,
5663 			    u32 mss_l4len_idx)
5664 {
5665 	struct e1000_adv_tx_context_desc *context_desc;
5666 	u16 i = tx_ring->next_to_use;
5667 	struct timespec64 ts;
5668 
5669 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5670 
5671 	i++;
5672 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5673 
5674 	/* set bits to identify this as an advanced context descriptor */
5675 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5676 
5677 	/* For 82575, context index must be unique per ring. */
5678 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5679 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5680 
5681 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5682 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5683 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5684 
5685 	/* We assume there is always a valid tx time available. Invalid times
5686 	 * should have been handled by the upper layers.
5687 	 */
5688 	if (tx_ring->launchtime_enable) {
5689 		ts = ns_to_timespec64(first->skb->tstamp);
5690 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5691 	} else {
5692 		context_desc->seqnum_seed = 0;
5693 	}
5694 }
5695 
5696 static int igb_tso(struct igb_ring *tx_ring,
5697 		   struct igb_tx_buffer *first,
5698 		   u8 *hdr_len)
5699 {
5700 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5701 	struct sk_buff *skb = first->skb;
5702 	union {
5703 		struct iphdr *v4;
5704 		struct ipv6hdr *v6;
5705 		unsigned char *hdr;
5706 	} ip;
5707 	union {
5708 		struct tcphdr *tcp;
5709 		unsigned char *hdr;
5710 	} l4;
5711 	u32 paylen, l4_offset;
5712 	int err;
5713 
5714 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5715 		return 0;
5716 
5717 	if (!skb_is_gso(skb))
5718 		return 0;
5719 
5720 	err = skb_cow_head(skb, 0);
5721 	if (err < 0)
5722 		return err;
5723 
5724 	ip.hdr = skb_network_header(skb);
5725 	l4.hdr = skb_checksum_start(skb);
5726 
5727 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5728 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5729 
5730 	/* initialize outer IP header fields */
5731 	if (ip.v4->version == 4) {
5732 		unsigned char *csum_start = skb_checksum_start(skb);
5733 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5734 
5735 		/* IP header will have to cancel out any data that
5736 		 * is not a part of the outer IP header
5737 		 */
5738 		ip.v4->check = csum_fold(csum_partial(trans_start,
5739 						      csum_start - trans_start,
5740 						      0));
5741 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5742 
5743 		ip.v4->tot_len = 0;
5744 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5745 				   IGB_TX_FLAGS_CSUM |
5746 				   IGB_TX_FLAGS_IPV4;
5747 	} else {
5748 		ip.v6->payload_len = 0;
5749 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5750 				   IGB_TX_FLAGS_CSUM;
5751 	}
5752 
5753 	/* determine offset of inner transport header */
5754 	l4_offset = l4.hdr - skb->data;
5755 
5756 	/* compute length of segmentation header */
5757 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5758 
5759 	/* remove payload length from inner checksum */
5760 	paylen = skb->len - l4_offset;
5761 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5762 
5763 	/* update gso size and bytecount with header size */
5764 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5765 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5766 
5767 	/* MSS L4LEN IDX */
5768 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5769 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5770 
5771 	/* VLAN MACLEN IPLEN */
5772 	vlan_macip_lens = l4.hdr - ip.hdr;
5773 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5774 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5775 
5776 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5777 			type_tucmd, mss_l4len_idx);
5778 
5779 	return 1;
5780 }
5781 
5782 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5783 {
5784 	unsigned int offset = 0;
5785 
5786 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5787 
5788 	return offset == skb_checksum_start_offset(skb);
5789 }
5790 
5791 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5792 {
5793 	struct sk_buff *skb = first->skb;
5794 	u32 vlan_macip_lens = 0;
5795 	u32 type_tucmd = 0;
5796 
5797 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5798 csum_failed:
5799 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5800 		    !tx_ring->launchtime_enable)
5801 			return;
5802 		goto no_csum;
5803 	}
5804 
5805 	switch (skb->csum_offset) {
5806 	case offsetof(struct tcphdr, check):
5807 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5808 		/* fall through */
5809 	case offsetof(struct udphdr, check):
5810 		break;
5811 	case offsetof(struct sctphdr, checksum):
5812 		/* validate that this is actually an SCTP request */
5813 		if (((first->protocol == htons(ETH_P_IP)) &&
5814 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5815 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5816 		     igb_ipv6_csum_is_sctp(skb))) {
5817 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5818 			break;
5819 		}
5820 		/* fall through */
5821 	default:
5822 		skb_checksum_help(skb);
5823 		goto csum_failed;
5824 	}
5825 
5826 	/* update TX checksum flag */
5827 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5828 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5829 			  skb_network_offset(skb);
5830 no_csum:
5831 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5832 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5833 
5834 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5835 }
5836 
5837 #define IGB_SET_FLAG(_input, _flag, _result) \
5838 	((_flag <= _result) ? \
5839 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5840 	 ((u32)(_input & _flag) / (_flag / _result)))
5841 
5842 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5843 {
5844 	/* set type for advanced descriptor with frame checksum insertion */
5845 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5846 		       E1000_ADVTXD_DCMD_DEXT |
5847 		       E1000_ADVTXD_DCMD_IFCS;
5848 
5849 	/* set HW vlan bit if vlan is present */
5850 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5851 				 (E1000_ADVTXD_DCMD_VLE));
5852 
5853 	/* set segmentation bits for TSO */
5854 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5855 				 (E1000_ADVTXD_DCMD_TSE));
5856 
5857 	/* set timestamp bit if present */
5858 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5859 				 (E1000_ADVTXD_MAC_TSTAMP));
5860 
5861 	/* insert frame checksum */
5862 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5863 
5864 	return cmd_type;
5865 }
5866 
5867 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5868 				 union e1000_adv_tx_desc *tx_desc,
5869 				 u32 tx_flags, unsigned int paylen)
5870 {
5871 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5872 
5873 	/* 82575 requires a unique index per ring */
5874 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5875 		olinfo_status |= tx_ring->reg_idx << 4;
5876 
5877 	/* insert L4 checksum */
5878 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5879 				      IGB_TX_FLAGS_CSUM,
5880 				      (E1000_TXD_POPTS_TXSM << 8));
5881 
5882 	/* insert IPv4 checksum */
5883 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5884 				      IGB_TX_FLAGS_IPV4,
5885 				      (E1000_TXD_POPTS_IXSM << 8));
5886 
5887 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5888 }
5889 
5890 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5891 {
5892 	struct net_device *netdev = tx_ring->netdev;
5893 
5894 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5895 
5896 	/* Herbert's original patch had:
5897 	 *  smp_mb__after_netif_stop_queue();
5898 	 * but since that doesn't exist yet, just open code it.
5899 	 */
5900 	smp_mb();
5901 
5902 	/* We need to check again in a case another CPU has just
5903 	 * made room available.
5904 	 */
5905 	if (igb_desc_unused(tx_ring) < size)
5906 		return -EBUSY;
5907 
5908 	/* A reprieve! */
5909 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5910 
5911 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5912 	tx_ring->tx_stats.restart_queue2++;
5913 	u64_stats_update_end(&tx_ring->tx_syncp2);
5914 
5915 	return 0;
5916 }
5917 
5918 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5919 {
5920 	if (igb_desc_unused(tx_ring) >= size)
5921 		return 0;
5922 	return __igb_maybe_stop_tx(tx_ring, size);
5923 }
5924 
5925 static int igb_tx_map(struct igb_ring *tx_ring,
5926 		      struct igb_tx_buffer *first,
5927 		      const u8 hdr_len)
5928 {
5929 	struct sk_buff *skb = first->skb;
5930 	struct igb_tx_buffer *tx_buffer;
5931 	union e1000_adv_tx_desc *tx_desc;
5932 	struct skb_frag_struct *frag;
5933 	dma_addr_t dma;
5934 	unsigned int data_len, size;
5935 	u32 tx_flags = first->tx_flags;
5936 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5937 	u16 i = tx_ring->next_to_use;
5938 
5939 	tx_desc = IGB_TX_DESC(tx_ring, i);
5940 
5941 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5942 
5943 	size = skb_headlen(skb);
5944 	data_len = skb->data_len;
5945 
5946 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5947 
5948 	tx_buffer = first;
5949 
5950 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5951 		if (dma_mapping_error(tx_ring->dev, dma))
5952 			goto dma_error;
5953 
5954 		/* record length, and DMA address */
5955 		dma_unmap_len_set(tx_buffer, len, size);
5956 		dma_unmap_addr_set(tx_buffer, dma, dma);
5957 
5958 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5959 
5960 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5961 			tx_desc->read.cmd_type_len =
5962 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5963 
5964 			i++;
5965 			tx_desc++;
5966 			if (i == tx_ring->count) {
5967 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5968 				i = 0;
5969 			}
5970 			tx_desc->read.olinfo_status = 0;
5971 
5972 			dma += IGB_MAX_DATA_PER_TXD;
5973 			size -= IGB_MAX_DATA_PER_TXD;
5974 
5975 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5976 		}
5977 
5978 		if (likely(!data_len))
5979 			break;
5980 
5981 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5982 
5983 		i++;
5984 		tx_desc++;
5985 		if (i == tx_ring->count) {
5986 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5987 			i = 0;
5988 		}
5989 		tx_desc->read.olinfo_status = 0;
5990 
5991 		size = skb_frag_size(frag);
5992 		data_len -= size;
5993 
5994 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5995 				       size, DMA_TO_DEVICE);
5996 
5997 		tx_buffer = &tx_ring->tx_buffer_info[i];
5998 	}
5999 
6000 	/* write last descriptor with RS and EOP bits */
6001 	cmd_type |= size | IGB_TXD_DCMD;
6002 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6003 
6004 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6005 
6006 	/* set the timestamp */
6007 	first->time_stamp = jiffies;
6008 
6009 	skb_tx_timestamp(skb);
6010 
6011 	/* Force memory writes to complete before letting h/w know there
6012 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6013 	 * memory model archs, such as IA-64).
6014 	 *
6015 	 * We also need this memory barrier to make certain all of the
6016 	 * status bits have been updated before next_to_watch is written.
6017 	 */
6018 	dma_wmb();
6019 
6020 	/* set next_to_watch value indicating a packet is present */
6021 	first->next_to_watch = tx_desc;
6022 
6023 	i++;
6024 	if (i == tx_ring->count)
6025 		i = 0;
6026 
6027 	tx_ring->next_to_use = i;
6028 
6029 	/* Make sure there is space in the ring for the next send. */
6030 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6031 
6032 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6033 		writel(i, tx_ring->tail);
6034 	}
6035 	return 0;
6036 
6037 dma_error:
6038 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6039 	tx_buffer = &tx_ring->tx_buffer_info[i];
6040 
6041 	/* clear dma mappings for failed tx_buffer_info map */
6042 	while (tx_buffer != first) {
6043 		if (dma_unmap_len(tx_buffer, len))
6044 			dma_unmap_page(tx_ring->dev,
6045 				       dma_unmap_addr(tx_buffer, dma),
6046 				       dma_unmap_len(tx_buffer, len),
6047 				       DMA_TO_DEVICE);
6048 		dma_unmap_len_set(tx_buffer, len, 0);
6049 
6050 		if (i-- == 0)
6051 			i += tx_ring->count;
6052 		tx_buffer = &tx_ring->tx_buffer_info[i];
6053 	}
6054 
6055 	if (dma_unmap_len(tx_buffer, len))
6056 		dma_unmap_single(tx_ring->dev,
6057 				 dma_unmap_addr(tx_buffer, dma),
6058 				 dma_unmap_len(tx_buffer, len),
6059 				 DMA_TO_DEVICE);
6060 	dma_unmap_len_set(tx_buffer, len, 0);
6061 
6062 	dev_kfree_skb_any(tx_buffer->skb);
6063 	tx_buffer->skb = NULL;
6064 
6065 	tx_ring->next_to_use = i;
6066 
6067 	return -1;
6068 }
6069 
6070 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6071 				struct igb_ring *tx_ring)
6072 {
6073 	struct igb_tx_buffer *first;
6074 	int tso;
6075 	u32 tx_flags = 0;
6076 	unsigned short f;
6077 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6078 	__be16 protocol = vlan_get_protocol(skb);
6079 	u8 hdr_len = 0;
6080 
6081 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6082 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6083 	 *       + 2 desc gap to keep tail from touching head,
6084 	 *       + 1 desc for context descriptor,
6085 	 * otherwise try next time
6086 	 */
6087 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6088 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6089 
6090 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6091 		/* this is a hard error */
6092 		return NETDEV_TX_BUSY;
6093 	}
6094 
6095 	/* record the location of the first descriptor for this packet */
6096 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6097 	first->skb = skb;
6098 	first->bytecount = skb->len;
6099 	first->gso_segs = 1;
6100 
6101 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6102 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6103 
6104 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6105 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6106 					   &adapter->state)) {
6107 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6108 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6109 
6110 			adapter->ptp_tx_skb = skb_get(skb);
6111 			adapter->ptp_tx_start = jiffies;
6112 			if (adapter->hw.mac.type == e1000_82576)
6113 				schedule_work(&adapter->ptp_tx_work);
6114 		} else {
6115 			adapter->tx_hwtstamp_skipped++;
6116 		}
6117 	}
6118 
6119 	if (skb_vlan_tag_present(skb)) {
6120 		tx_flags |= IGB_TX_FLAGS_VLAN;
6121 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6122 	}
6123 
6124 	/* record initial flags and protocol */
6125 	first->tx_flags = tx_flags;
6126 	first->protocol = protocol;
6127 
6128 	tso = igb_tso(tx_ring, first, &hdr_len);
6129 	if (tso < 0)
6130 		goto out_drop;
6131 	else if (!tso)
6132 		igb_tx_csum(tx_ring, first);
6133 
6134 	if (igb_tx_map(tx_ring, first, hdr_len))
6135 		goto cleanup_tx_tstamp;
6136 
6137 	return NETDEV_TX_OK;
6138 
6139 out_drop:
6140 	dev_kfree_skb_any(first->skb);
6141 	first->skb = NULL;
6142 cleanup_tx_tstamp:
6143 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6144 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6145 
6146 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6147 		adapter->ptp_tx_skb = NULL;
6148 		if (adapter->hw.mac.type == e1000_82576)
6149 			cancel_work_sync(&adapter->ptp_tx_work);
6150 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6151 	}
6152 
6153 	return NETDEV_TX_OK;
6154 }
6155 
6156 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6157 						    struct sk_buff *skb)
6158 {
6159 	unsigned int r_idx = skb->queue_mapping;
6160 
6161 	if (r_idx >= adapter->num_tx_queues)
6162 		r_idx = r_idx % adapter->num_tx_queues;
6163 
6164 	return adapter->tx_ring[r_idx];
6165 }
6166 
6167 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6168 				  struct net_device *netdev)
6169 {
6170 	struct igb_adapter *adapter = netdev_priv(netdev);
6171 
6172 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6173 	 * in order to meet this minimum size requirement.
6174 	 */
6175 	if (skb_put_padto(skb, 17))
6176 		return NETDEV_TX_OK;
6177 
6178 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6179 }
6180 
6181 /**
6182  *  igb_tx_timeout - Respond to a Tx Hang
6183  *  @netdev: network interface device structure
6184  **/
6185 static void igb_tx_timeout(struct net_device *netdev)
6186 {
6187 	struct igb_adapter *adapter = netdev_priv(netdev);
6188 	struct e1000_hw *hw = &adapter->hw;
6189 
6190 	/* Do the reset outside of interrupt context */
6191 	adapter->tx_timeout_count++;
6192 
6193 	if (hw->mac.type >= e1000_82580)
6194 		hw->dev_spec._82575.global_device_reset = true;
6195 
6196 	schedule_work(&adapter->reset_task);
6197 	wr32(E1000_EICS,
6198 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6199 }
6200 
6201 static void igb_reset_task(struct work_struct *work)
6202 {
6203 	struct igb_adapter *adapter;
6204 	adapter = container_of(work, struct igb_adapter, reset_task);
6205 
6206 	igb_dump(adapter);
6207 	netdev_err(adapter->netdev, "Reset adapter\n");
6208 	igb_reinit_locked(adapter);
6209 }
6210 
6211 /**
6212  *  igb_get_stats64 - Get System Network Statistics
6213  *  @netdev: network interface device structure
6214  *  @stats: rtnl_link_stats64 pointer
6215  **/
6216 static void igb_get_stats64(struct net_device *netdev,
6217 			    struct rtnl_link_stats64 *stats)
6218 {
6219 	struct igb_adapter *adapter = netdev_priv(netdev);
6220 
6221 	spin_lock(&adapter->stats64_lock);
6222 	igb_update_stats(adapter);
6223 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6224 	spin_unlock(&adapter->stats64_lock);
6225 }
6226 
6227 /**
6228  *  igb_change_mtu - Change the Maximum Transfer Unit
6229  *  @netdev: network interface device structure
6230  *  @new_mtu: new value for maximum frame size
6231  *
6232  *  Returns 0 on success, negative on failure
6233  **/
6234 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6235 {
6236 	struct igb_adapter *adapter = netdev_priv(netdev);
6237 	struct pci_dev *pdev = adapter->pdev;
6238 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6239 
6240 	/* adjust max frame to be at least the size of a standard frame */
6241 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6242 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6243 
6244 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6245 		usleep_range(1000, 2000);
6246 
6247 	/* igb_down has a dependency on max_frame_size */
6248 	adapter->max_frame_size = max_frame;
6249 
6250 	if (netif_running(netdev))
6251 		igb_down(adapter);
6252 
6253 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6254 		 netdev->mtu, new_mtu);
6255 	netdev->mtu = new_mtu;
6256 
6257 	if (netif_running(netdev))
6258 		igb_up(adapter);
6259 	else
6260 		igb_reset(adapter);
6261 
6262 	clear_bit(__IGB_RESETTING, &adapter->state);
6263 
6264 	return 0;
6265 }
6266 
6267 /**
6268  *  igb_update_stats - Update the board statistics counters
6269  *  @adapter: board private structure
6270  **/
6271 void igb_update_stats(struct igb_adapter *adapter)
6272 {
6273 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6274 	struct e1000_hw *hw = &adapter->hw;
6275 	struct pci_dev *pdev = adapter->pdev;
6276 	u32 reg, mpc;
6277 	int i;
6278 	u64 bytes, packets;
6279 	unsigned int start;
6280 	u64 _bytes, _packets;
6281 
6282 	/* Prevent stats update while adapter is being reset, or if the pci
6283 	 * connection is down.
6284 	 */
6285 	if (adapter->link_speed == 0)
6286 		return;
6287 	if (pci_channel_offline(pdev))
6288 		return;
6289 
6290 	bytes = 0;
6291 	packets = 0;
6292 
6293 	rcu_read_lock();
6294 	for (i = 0; i < adapter->num_rx_queues; i++) {
6295 		struct igb_ring *ring = adapter->rx_ring[i];
6296 		u32 rqdpc = rd32(E1000_RQDPC(i));
6297 		if (hw->mac.type >= e1000_i210)
6298 			wr32(E1000_RQDPC(i), 0);
6299 
6300 		if (rqdpc) {
6301 			ring->rx_stats.drops += rqdpc;
6302 			net_stats->rx_fifo_errors += rqdpc;
6303 		}
6304 
6305 		do {
6306 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6307 			_bytes = ring->rx_stats.bytes;
6308 			_packets = ring->rx_stats.packets;
6309 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6310 		bytes += _bytes;
6311 		packets += _packets;
6312 	}
6313 
6314 	net_stats->rx_bytes = bytes;
6315 	net_stats->rx_packets = packets;
6316 
6317 	bytes = 0;
6318 	packets = 0;
6319 	for (i = 0; i < adapter->num_tx_queues; i++) {
6320 		struct igb_ring *ring = adapter->tx_ring[i];
6321 		do {
6322 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6323 			_bytes = ring->tx_stats.bytes;
6324 			_packets = ring->tx_stats.packets;
6325 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6326 		bytes += _bytes;
6327 		packets += _packets;
6328 	}
6329 	net_stats->tx_bytes = bytes;
6330 	net_stats->tx_packets = packets;
6331 	rcu_read_unlock();
6332 
6333 	/* read stats registers */
6334 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6335 	adapter->stats.gprc += rd32(E1000_GPRC);
6336 	adapter->stats.gorc += rd32(E1000_GORCL);
6337 	rd32(E1000_GORCH); /* clear GORCL */
6338 	adapter->stats.bprc += rd32(E1000_BPRC);
6339 	adapter->stats.mprc += rd32(E1000_MPRC);
6340 	adapter->stats.roc += rd32(E1000_ROC);
6341 
6342 	adapter->stats.prc64 += rd32(E1000_PRC64);
6343 	adapter->stats.prc127 += rd32(E1000_PRC127);
6344 	adapter->stats.prc255 += rd32(E1000_PRC255);
6345 	adapter->stats.prc511 += rd32(E1000_PRC511);
6346 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6347 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6348 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6349 	adapter->stats.sec += rd32(E1000_SEC);
6350 
6351 	mpc = rd32(E1000_MPC);
6352 	adapter->stats.mpc += mpc;
6353 	net_stats->rx_fifo_errors += mpc;
6354 	adapter->stats.scc += rd32(E1000_SCC);
6355 	adapter->stats.ecol += rd32(E1000_ECOL);
6356 	adapter->stats.mcc += rd32(E1000_MCC);
6357 	adapter->stats.latecol += rd32(E1000_LATECOL);
6358 	adapter->stats.dc += rd32(E1000_DC);
6359 	adapter->stats.rlec += rd32(E1000_RLEC);
6360 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6361 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6362 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6363 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6364 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6365 	adapter->stats.gptc += rd32(E1000_GPTC);
6366 	adapter->stats.gotc += rd32(E1000_GOTCL);
6367 	rd32(E1000_GOTCH); /* clear GOTCL */
6368 	adapter->stats.rnbc += rd32(E1000_RNBC);
6369 	adapter->stats.ruc += rd32(E1000_RUC);
6370 	adapter->stats.rfc += rd32(E1000_RFC);
6371 	adapter->stats.rjc += rd32(E1000_RJC);
6372 	adapter->stats.tor += rd32(E1000_TORH);
6373 	adapter->stats.tot += rd32(E1000_TOTH);
6374 	adapter->stats.tpr += rd32(E1000_TPR);
6375 
6376 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6377 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6378 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6379 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6380 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6381 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6382 
6383 	adapter->stats.mptc += rd32(E1000_MPTC);
6384 	adapter->stats.bptc += rd32(E1000_BPTC);
6385 
6386 	adapter->stats.tpt += rd32(E1000_TPT);
6387 	adapter->stats.colc += rd32(E1000_COLC);
6388 
6389 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6390 	/* read internal phy specific stats */
6391 	reg = rd32(E1000_CTRL_EXT);
6392 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6393 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6394 
6395 		/* this stat has invalid values on i210/i211 */
6396 		if ((hw->mac.type != e1000_i210) &&
6397 		    (hw->mac.type != e1000_i211))
6398 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6399 	}
6400 
6401 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6402 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6403 
6404 	adapter->stats.iac += rd32(E1000_IAC);
6405 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6406 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6407 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6408 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6409 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6410 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6411 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6412 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6413 
6414 	/* Fill out the OS statistics structure */
6415 	net_stats->multicast = adapter->stats.mprc;
6416 	net_stats->collisions = adapter->stats.colc;
6417 
6418 	/* Rx Errors */
6419 
6420 	/* RLEC on some newer hardware can be incorrect so build
6421 	 * our own version based on RUC and ROC
6422 	 */
6423 	net_stats->rx_errors = adapter->stats.rxerrc +
6424 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6425 		adapter->stats.ruc + adapter->stats.roc +
6426 		adapter->stats.cexterr;
6427 	net_stats->rx_length_errors = adapter->stats.ruc +
6428 				      adapter->stats.roc;
6429 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6430 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6431 	net_stats->rx_missed_errors = adapter->stats.mpc;
6432 
6433 	/* Tx Errors */
6434 	net_stats->tx_errors = adapter->stats.ecol +
6435 			       adapter->stats.latecol;
6436 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6437 	net_stats->tx_window_errors = adapter->stats.latecol;
6438 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6439 
6440 	/* Tx Dropped needs to be maintained elsewhere */
6441 
6442 	/* Management Stats */
6443 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6444 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6445 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6446 
6447 	/* OS2BMC Stats */
6448 	reg = rd32(E1000_MANC);
6449 	if (reg & E1000_MANC_EN_BMC2OS) {
6450 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6451 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6452 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6453 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6454 	}
6455 }
6456 
6457 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6458 {
6459 	struct e1000_hw *hw = &adapter->hw;
6460 	struct ptp_clock_event event;
6461 	struct timespec64 ts;
6462 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6463 
6464 	if (tsicr & TSINTR_SYS_WRAP) {
6465 		event.type = PTP_CLOCK_PPS;
6466 		if (adapter->ptp_caps.pps)
6467 			ptp_clock_event(adapter->ptp_clock, &event);
6468 		ack |= TSINTR_SYS_WRAP;
6469 	}
6470 
6471 	if (tsicr & E1000_TSICR_TXTS) {
6472 		/* retrieve hardware timestamp */
6473 		schedule_work(&adapter->ptp_tx_work);
6474 		ack |= E1000_TSICR_TXTS;
6475 	}
6476 
6477 	if (tsicr & TSINTR_TT0) {
6478 		spin_lock(&adapter->tmreg_lock);
6479 		ts = timespec64_add(adapter->perout[0].start,
6480 				    adapter->perout[0].period);
6481 		/* u32 conversion of tv_sec is safe until y2106 */
6482 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6483 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6484 		tsauxc = rd32(E1000_TSAUXC);
6485 		tsauxc |= TSAUXC_EN_TT0;
6486 		wr32(E1000_TSAUXC, tsauxc);
6487 		adapter->perout[0].start = ts;
6488 		spin_unlock(&adapter->tmreg_lock);
6489 		ack |= TSINTR_TT0;
6490 	}
6491 
6492 	if (tsicr & TSINTR_TT1) {
6493 		spin_lock(&adapter->tmreg_lock);
6494 		ts = timespec64_add(adapter->perout[1].start,
6495 				    adapter->perout[1].period);
6496 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6497 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6498 		tsauxc = rd32(E1000_TSAUXC);
6499 		tsauxc |= TSAUXC_EN_TT1;
6500 		wr32(E1000_TSAUXC, tsauxc);
6501 		adapter->perout[1].start = ts;
6502 		spin_unlock(&adapter->tmreg_lock);
6503 		ack |= TSINTR_TT1;
6504 	}
6505 
6506 	if (tsicr & TSINTR_AUTT0) {
6507 		nsec = rd32(E1000_AUXSTMPL0);
6508 		sec  = rd32(E1000_AUXSTMPH0);
6509 		event.type = PTP_CLOCK_EXTTS;
6510 		event.index = 0;
6511 		event.timestamp = sec * 1000000000ULL + nsec;
6512 		ptp_clock_event(adapter->ptp_clock, &event);
6513 		ack |= TSINTR_AUTT0;
6514 	}
6515 
6516 	if (tsicr & TSINTR_AUTT1) {
6517 		nsec = rd32(E1000_AUXSTMPL1);
6518 		sec  = rd32(E1000_AUXSTMPH1);
6519 		event.type = PTP_CLOCK_EXTTS;
6520 		event.index = 1;
6521 		event.timestamp = sec * 1000000000ULL + nsec;
6522 		ptp_clock_event(adapter->ptp_clock, &event);
6523 		ack |= TSINTR_AUTT1;
6524 	}
6525 
6526 	/* acknowledge the interrupts */
6527 	wr32(E1000_TSICR, ack);
6528 }
6529 
6530 static irqreturn_t igb_msix_other(int irq, void *data)
6531 {
6532 	struct igb_adapter *adapter = data;
6533 	struct e1000_hw *hw = &adapter->hw;
6534 	u32 icr = rd32(E1000_ICR);
6535 	/* reading ICR causes bit 31 of EICR to be cleared */
6536 
6537 	if (icr & E1000_ICR_DRSTA)
6538 		schedule_work(&adapter->reset_task);
6539 
6540 	if (icr & E1000_ICR_DOUTSYNC) {
6541 		/* HW is reporting DMA is out of sync */
6542 		adapter->stats.doosync++;
6543 		/* The DMA Out of Sync is also indication of a spoof event
6544 		 * in IOV mode. Check the Wrong VM Behavior register to
6545 		 * see if it is really a spoof event.
6546 		 */
6547 		igb_check_wvbr(adapter);
6548 	}
6549 
6550 	/* Check for a mailbox event */
6551 	if (icr & E1000_ICR_VMMB)
6552 		igb_msg_task(adapter);
6553 
6554 	if (icr & E1000_ICR_LSC) {
6555 		hw->mac.get_link_status = 1;
6556 		/* guard against interrupt when we're going down */
6557 		if (!test_bit(__IGB_DOWN, &adapter->state))
6558 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6559 	}
6560 
6561 	if (icr & E1000_ICR_TS)
6562 		igb_tsync_interrupt(adapter);
6563 
6564 	wr32(E1000_EIMS, adapter->eims_other);
6565 
6566 	return IRQ_HANDLED;
6567 }
6568 
6569 static void igb_write_itr(struct igb_q_vector *q_vector)
6570 {
6571 	struct igb_adapter *adapter = q_vector->adapter;
6572 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6573 
6574 	if (!q_vector->set_itr)
6575 		return;
6576 
6577 	if (!itr_val)
6578 		itr_val = 0x4;
6579 
6580 	if (adapter->hw.mac.type == e1000_82575)
6581 		itr_val |= itr_val << 16;
6582 	else
6583 		itr_val |= E1000_EITR_CNT_IGNR;
6584 
6585 	writel(itr_val, q_vector->itr_register);
6586 	q_vector->set_itr = 0;
6587 }
6588 
6589 static irqreturn_t igb_msix_ring(int irq, void *data)
6590 {
6591 	struct igb_q_vector *q_vector = data;
6592 
6593 	/* Write the ITR value calculated from the previous interrupt. */
6594 	igb_write_itr(q_vector);
6595 
6596 	napi_schedule(&q_vector->napi);
6597 
6598 	return IRQ_HANDLED;
6599 }
6600 
6601 #ifdef CONFIG_IGB_DCA
6602 static void igb_update_tx_dca(struct igb_adapter *adapter,
6603 			      struct igb_ring *tx_ring,
6604 			      int cpu)
6605 {
6606 	struct e1000_hw *hw = &adapter->hw;
6607 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6608 
6609 	if (hw->mac.type != e1000_82575)
6610 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6611 
6612 	/* We can enable relaxed ordering for reads, but not writes when
6613 	 * DCA is enabled.  This is due to a known issue in some chipsets
6614 	 * which will cause the DCA tag to be cleared.
6615 	 */
6616 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6617 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6618 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6619 
6620 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6621 }
6622 
6623 static void igb_update_rx_dca(struct igb_adapter *adapter,
6624 			      struct igb_ring *rx_ring,
6625 			      int cpu)
6626 {
6627 	struct e1000_hw *hw = &adapter->hw;
6628 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6629 
6630 	if (hw->mac.type != e1000_82575)
6631 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6632 
6633 	/* We can enable relaxed ordering for reads, but not writes when
6634 	 * DCA is enabled.  This is due to a known issue in some chipsets
6635 	 * which will cause the DCA tag to be cleared.
6636 	 */
6637 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6638 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6639 
6640 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6641 }
6642 
6643 static void igb_update_dca(struct igb_q_vector *q_vector)
6644 {
6645 	struct igb_adapter *adapter = q_vector->adapter;
6646 	int cpu = get_cpu();
6647 
6648 	if (q_vector->cpu == cpu)
6649 		goto out_no_update;
6650 
6651 	if (q_vector->tx.ring)
6652 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6653 
6654 	if (q_vector->rx.ring)
6655 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6656 
6657 	q_vector->cpu = cpu;
6658 out_no_update:
6659 	put_cpu();
6660 }
6661 
6662 static void igb_setup_dca(struct igb_adapter *adapter)
6663 {
6664 	struct e1000_hw *hw = &adapter->hw;
6665 	int i;
6666 
6667 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6668 		return;
6669 
6670 	/* Always use CB2 mode, difference is masked in the CB driver. */
6671 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6672 
6673 	for (i = 0; i < adapter->num_q_vectors; i++) {
6674 		adapter->q_vector[i]->cpu = -1;
6675 		igb_update_dca(adapter->q_vector[i]);
6676 	}
6677 }
6678 
6679 static int __igb_notify_dca(struct device *dev, void *data)
6680 {
6681 	struct net_device *netdev = dev_get_drvdata(dev);
6682 	struct igb_adapter *adapter = netdev_priv(netdev);
6683 	struct pci_dev *pdev = adapter->pdev;
6684 	struct e1000_hw *hw = &adapter->hw;
6685 	unsigned long event = *(unsigned long *)data;
6686 
6687 	switch (event) {
6688 	case DCA_PROVIDER_ADD:
6689 		/* if already enabled, don't do it again */
6690 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6691 			break;
6692 		if (dca_add_requester(dev) == 0) {
6693 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6694 			dev_info(&pdev->dev, "DCA enabled\n");
6695 			igb_setup_dca(adapter);
6696 			break;
6697 		}
6698 		/* Fall Through since DCA is disabled. */
6699 	case DCA_PROVIDER_REMOVE:
6700 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6701 			/* without this a class_device is left
6702 			 * hanging around in the sysfs model
6703 			 */
6704 			dca_remove_requester(dev);
6705 			dev_info(&pdev->dev, "DCA disabled\n");
6706 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6707 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6708 		}
6709 		break;
6710 	}
6711 
6712 	return 0;
6713 }
6714 
6715 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6716 			  void *p)
6717 {
6718 	int ret_val;
6719 
6720 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6721 					 __igb_notify_dca);
6722 
6723 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6724 }
6725 #endif /* CONFIG_IGB_DCA */
6726 
6727 #ifdef CONFIG_PCI_IOV
6728 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6729 {
6730 	unsigned char mac_addr[ETH_ALEN];
6731 
6732 	eth_zero_addr(mac_addr);
6733 	igb_set_vf_mac(adapter, vf, mac_addr);
6734 
6735 	/* By default spoof check is enabled for all VFs */
6736 	adapter->vf_data[vf].spoofchk_enabled = true;
6737 
6738 	/* By default VFs are not trusted */
6739 	adapter->vf_data[vf].trusted = false;
6740 
6741 	return 0;
6742 }
6743 
6744 #endif
6745 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6746 {
6747 	struct e1000_hw *hw = &adapter->hw;
6748 	u32 ping;
6749 	int i;
6750 
6751 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6752 		ping = E1000_PF_CONTROL_MSG;
6753 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6754 			ping |= E1000_VT_MSGTYPE_CTS;
6755 		igb_write_mbx(hw, &ping, 1, i);
6756 	}
6757 }
6758 
6759 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6760 {
6761 	struct e1000_hw *hw = &adapter->hw;
6762 	u32 vmolr = rd32(E1000_VMOLR(vf));
6763 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6764 
6765 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6766 			    IGB_VF_FLAG_MULTI_PROMISC);
6767 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6768 
6769 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6770 		vmolr |= E1000_VMOLR_MPME;
6771 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6772 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6773 	} else {
6774 		/* if we have hashes and we are clearing a multicast promisc
6775 		 * flag we need to write the hashes to the MTA as this step
6776 		 * was previously skipped
6777 		 */
6778 		if (vf_data->num_vf_mc_hashes > 30) {
6779 			vmolr |= E1000_VMOLR_MPME;
6780 		} else if (vf_data->num_vf_mc_hashes) {
6781 			int j;
6782 
6783 			vmolr |= E1000_VMOLR_ROMPE;
6784 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6785 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6786 		}
6787 	}
6788 
6789 	wr32(E1000_VMOLR(vf), vmolr);
6790 
6791 	/* there are flags left unprocessed, likely not supported */
6792 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6793 		return -EINVAL;
6794 
6795 	return 0;
6796 }
6797 
6798 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6799 				  u32 *msgbuf, u32 vf)
6800 {
6801 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6802 	u16 *hash_list = (u16 *)&msgbuf[1];
6803 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6804 	int i;
6805 
6806 	/* salt away the number of multicast addresses assigned
6807 	 * to this VF for later use to restore when the PF multi cast
6808 	 * list changes
6809 	 */
6810 	vf_data->num_vf_mc_hashes = n;
6811 
6812 	/* only up to 30 hash values supported */
6813 	if (n > 30)
6814 		n = 30;
6815 
6816 	/* store the hashes for later use */
6817 	for (i = 0; i < n; i++)
6818 		vf_data->vf_mc_hashes[i] = hash_list[i];
6819 
6820 	/* Flush and reset the mta with the new values */
6821 	igb_set_rx_mode(adapter->netdev);
6822 
6823 	return 0;
6824 }
6825 
6826 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6827 {
6828 	struct e1000_hw *hw = &adapter->hw;
6829 	struct vf_data_storage *vf_data;
6830 	int i, j;
6831 
6832 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6833 		u32 vmolr = rd32(E1000_VMOLR(i));
6834 
6835 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6836 
6837 		vf_data = &adapter->vf_data[i];
6838 
6839 		if ((vf_data->num_vf_mc_hashes > 30) ||
6840 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6841 			vmolr |= E1000_VMOLR_MPME;
6842 		} else if (vf_data->num_vf_mc_hashes) {
6843 			vmolr |= E1000_VMOLR_ROMPE;
6844 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6845 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6846 		}
6847 		wr32(E1000_VMOLR(i), vmolr);
6848 	}
6849 }
6850 
6851 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6852 {
6853 	struct e1000_hw *hw = &adapter->hw;
6854 	u32 pool_mask, vlvf_mask, i;
6855 
6856 	/* create mask for VF and other pools */
6857 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6858 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6859 
6860 	/* drop PF from pool bits */
6861 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6862 			     adapter->vfs_allocated_count);
6863 
6864 	/* Find the vlan filter for this id */
6865 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6866 		u32 vlvf = rd32(E1000_VLVF(i));
6867 		u32 vfta_mask, vid, vfta;
6868 
6869 		/* remove the vf from the pool */
6870 		if (!(vlvf & vlvf_mask))
6871 			continue;
6872 
6873 		/* clear out bit from VLVF */
6874 		vlvf ^= vlvf_mask;
6875 
6876 		/* if other pools are present, just remove ourselves */
6877 		if (vlvf & pool_mask)
6878 			goto update_vlvfb;
6879 
6880 		/* if PF is present, leave VFTA */
6881 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6882 			goto update_vlvf;
6883 
6884 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6885 		vfta_mask = BIT(vid % 32);
6886 
6887 		/* clear bit from VFTA */
6888 		vfta = adapter->shadow_vfta[vid / 32];
6889 		if (vfta & vfta_mask)
6890 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6891 update_vlvf:
6892 		/* clear pool selection enable */
6893 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6894 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6895 		else
6896 			vlvf = 0;
6897 update_vlvfb:
6898 		/* clear pool bits */
6899 		wr32(E1000_VLVF(i), vlvf);
6900 	}
6901 }
6902 
6903 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6904 {
6905 	u32 vlvf;
6906 	int idx;
6907 
6908 	/* short cut the special case */
6909 	if (vlan == 0)
6910 		return 0;
6911 
6912 	/* Search for the VLAN id in the VLVF entries */
6913 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6914 		vlvf = rd32(E1000_VLVF(idx));
6915 		if ((vlvf & VLAN_VID_MASK) == vlan)
6916 			break;
6917 	}
6918 
6919 	return idx;
6920 }
6921 
6922 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6923 {
6924 	struct e1000_hw *hw = &adapter->hw;
6925 	u32 bits, pf_id;
6926 	int idx;
6927 
6928 	idx = igb_find_vlvf_entry(hw, vid);
6929 	if (!idx)
6930 		return;
6931 
6932 	/* See if any other pools are set for this VLAN filter
6933 	 * entry other than the PF.
6934 	 */
6935 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6936 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6937 	bits &= rd32(E1000_VLVF(idx));
6938 
6939 	/* Disable the filter so this falls into the default pool. */
6940 	if (!bits) {
6941 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6942 			wr32(E1000_VLVF(idx), BIT(pf_id));
6943 		else
6944 			wr32(E1000_VLVF(idx), 0);
6945 	}
6946 }
6947 
6948 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6949 			   bool add, u32 vf)
6950 {
6951 	int pf_id = adapter->vfs_allocated_count;
6952 	struct e1000_hw *hw = &adapter->hw;
6953 	int err;
6954 
6955 	/* If VLAN overlaps with one the PF is currently monitoring make
6956 	 * sure that we are able to allocate a VLVF entry.  This may be
6957 	 * redundant but it guarantees PF will maintain visibility to
6958 	 * the VLAN.
6959 	 */
6960 	if (add && test_bit(vid, adapter->active_vlans)) {
6961 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6962 		if (err)
6963 			return err;
6964 	}
6965 
6966 	err = igb_vfta_set(hw, vid, vf, add, false);
6967 
6968 	if (add && !err)
6969 		return err;
6970 
6971 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6972 	 * we may need to drop the PF pool bit in order to allow us to free
6973 	 * up the VLVF resources.
6974 	 */
6975 	if (test_bit(vid, adapter->active_vlans) ||
6976 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6977 		igb_update_pf_vlvf(adapter, vid);
6978 
6979 	return err;
6980 }
6981 
6982 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6983 {
6984 	struct e1000_hw *hw = &adapter->hw;
6985 
6986 	if (vid)
6987 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6988 	else
6989 		wr32(E1000_VMVIR(vf), 0);
6990 }
6991 
6992 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6993 				u16 vlan, u8 qos)
6994 {
6995 	int err;
6996 
6997 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6998 	if (err)
6999 		return err;
7000 
7001 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7002 	igb_set_vmolr(adapter, vf, !vlan);
7003 
7004 	/* revoke access to previous VLAN */
7005 	if (vlan != adapter->vf_data[vf].pf_vlan)
7006 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7007 				false, vf);
7008 
7009 	adapter->vf_data[vf].pf_vlan = vlan;
7010 	adapter->vf_data[vf].pf_qos = qos;
7011 	igb_set_vf_vlan_strip(adapter, vf, true);
7012 	dev_info(&adapter->pdev->dev,
7013 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7014 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7015 		dev_warn(&adapter->pdev->dev,
7016 			 "The VF VLAN has been set, but the PF device is not up.\n");
7017 		dev_warn(&adapter->pdev->dev,
7018 			 "Bring the PF device up before attempting to use the VF device.\n");
7019 	}
7020 
7021 	return err;
7022 }
7023 
7024 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7025 {
7026 	/* Restore tagless access via VLAN 0 */
7027 	igb_set_vf_vlan(adapter, 0, true, vf);
7028 
7029 	igb_set_vmvir(adapter, 0, vf);
7030 	igb_set_vmolr(adapter, vf, true);
7031 
7032 	/* Remove any PF assigned VLAN */
7033 	if (adapter->vf_data[vf].pf_vlan)
7034 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7035 				false, vf);
7036 
7037 	adapter->vf_data[vf].pf_vlan = 0;
7038 	adapter->vf_data[vf].pf_qos = 0;
7039 	igb_set_vf_vlan_strip(adapter, vf, false);
7040 
7041 	return 0;
7042 }
7043 
7044 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7045 			       u16 vlan, u8 qos, __be16 vlan_proto)
7046 {
7047 	struct igb_adapter *adapter = netdev_priv(netdev);
7048 
7049 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7050 		return -EINVAL;
7051 
7052 	if (vlan_proto != htons(ETH_P_8021Q))
7053 		return -EPROTONOSUPPORT;
7054 
7055 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7056 			       igb_disable_port_vlan(adapter, vf);
7057 }
7058 
7059 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7060 {
7061 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7062 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7063 	int ret;
7064 
7065 	if (adapter->vf_data[vf].pf_vlan)
7066 		return -1;
7067 
7068 	/* VLAN 0 is a special case, don't allow it to be removed */
7069 	if (!vid && !add)
7070 		return 0;
7071 
7072 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7073 	if (!ret)
7074 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7075 	return ret;
7076 }
7077 
7078 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7079 {
7080 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7081 
7082 	/* clear flags - except flag that indicates PF has set the MAC */
7083 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7084 	vf_data->last_nack = jiffies;
7085 
7086 	/* reset vlans for device */
7087 	igb_clear_vf_vfta(adapter, vf);
7088 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7089 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7090 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7091 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7092 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7093 
7094 	/* reset multicast table array for vf */
7095 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7096 
7097 	/* Flush and reset the mta with the new values */
7098 	igb_set_rx_mode(adapter->netdev);
7099 }
7100 
7101 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7102 {
7103 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7104 
7105 	/* clear mac address as we were hotplug removed/added */
7106 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7107 		eth_zero_addr(vf_mac);
7108 
7109 	/* process remaining reset events */
7110 	igb_vf_reset(adapter, vf);
7111 }
7112 
7113 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7114 {
7115 	struct e1000_hw *hw = &adapter->hw;
7116 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7117 	u32 reg, msgbuf[3];
7118 	u8 *addr = (u8 *)(&msgbuf[1]);
7119 
7120 	/* process all the same items cleared in a function level reset */
7121 	igb_vf_reset(adapter, vf);
7122 
7123 	/* set vf mac address */
7124 	igb_set_vf_mac(adapter, vf, vf_mac);
7125 
7126 	/* enable transmit and receive for vf */
7127 	reg = rd32(E1000_VFTE);
7128 	wr32(E1000_VFTE, reg | BIT(vf));
7129 	reg = rd32(E1000_VFRE);
7130 	wr32(E1000_VFRE, reg | BIT(vf));
7131 
7132 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7133 
7134 	/* reply to reset with ack and vf mac address */
7135 	if (!is_zero_ether_addr(vf_mac)) {
7136 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7137 		memcpy(addr, vf_mac, ETH_ALEN);
7138 	} else {
7139 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7140 	}
7141 	igb_write_mbx(hw, msgbuf, 3, vf);
7142 }
7143 
7144 static void igb_flush_mac_table(struct igb_adapter *adapter)
7145 {
7146 	struct e1000_hw *hw = &adapter->hw;
7147 	int i;
7148 
7149 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7150 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7151 		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7152 		adapter->mac_table[i].queue = 0;
7153 		igb_rar_set_index(adapter, i);
7154 	}
7155 }
7156 
7157 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7158 {
7159 	struct e1000_hw *hw = &adapter->hw;
7160 	/* do not count rar entries reserved for VFs MAC addresses */
7161 	int rar_entries = hw->mac.rar_entry_count -
7162 			  adapter->vfs_allocated_count;
7163 	int i, count = 0;
7164 
7165 	for (i = 0; i < rar_entries; i++) {
7166 		/* do not count default entries */
7167 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7168 			continue;
7169 
7170 		/* do not count "in use" entries for different queues */
7171 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7172 		    (adapter->mac_table[i].queue != queue))
7173 			continue;
7174 
7175 		count++;
7176 	}
7177 
7178 	return count;
7179 }
7180 
7181 /* Set default MAC address for the PF in the first RAR entry */
7182 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7183 {
7184 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7185 
7186 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7187 	mac_table->queue = adapter->vfs_allocated_count;
7188 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7189 
7190 	igb_rar_set_index(adapter, 0);
7191 }
7192 
7193 /* If the filter to be added and an already existing filter express
7194  * the same address and address type, it should be possible to only
7195  * override the other configurations, for example the queue to steer
7196  * traffic.
7197  */
7198 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7199 				      const u8 *addr, const u8 flags)
7200 {
7201 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7202 		return true;
7203 
7204 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7205 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7206 		return false;
7207 
7208 	if (!ether_addr_equal(addr, entry->addr))
7209 		return false;
7210 
7211 	return true;
7212 }
7213 
7214 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7215  * 'flags' is used to indicate what kind of match is made, match is by
7216  * default for the destination address, if matching by source address
7217  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7218  */
7219 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7220 				    const u8 *addr, const u8 queue,
7221 				    const u8 flags)
7222 {
7223 	struct e1000_hw *hw = &adapter->hw;
7224 	int rar_entries = hw->mac.rar_entry_count -
7225 			  adapter->vfs_allocated_count;
7226 	int i;
7227 
7228 	if (is_zero_ether_addr(addr))
7229 		return -EINVAL;
7230 
7231 	/* Search for the first empty entry in the MAC table.
7232 	 * Do not touch entries at the end of the table reserved for the VF MAC
7233 	 * addresses.
7234 	 */
7235 	for (i = 0; i < rar_entries; i++) {
7236 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7237 					       addr, flags))
7238 			continue;
7239 
7240 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7241 		adapter->mac_table[i].queue = queue;
7242 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7243 
7244 		igb_rar_set_index(adapter, i);
7245 		return i;
7246 	}
7247 
7248 	return -ENOSPC;
7249 }
7250 
7251 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7252 			      const u8 queue)
7253 {
7254 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7255 }
7256 
7257 /* Remove a MAC filter for 'addr' directing matching traffic to
7258  * 'queue', 'flags' is used to indicate what kind of match need to be
7259  * removed, match is by default for the destination address, if
7260  * matching by source address is to be removed the flag
7261  * IGB_MAC_STATE_SRC_ADDR can be used.
7262  */
7263 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7264 				    const u8 *addr, const u8 queue,
7265 				    const u8 flags)
7266 {
7267 	struct e1000_hw *hw = &adapter->hw;
7268 	int rar_entries = hw->mac.rar_entry_count -
7269 			  adapter->vfs_allocated_count;
7270 	int i;
7271 
7272 	if (is_zero_ether_addr(addr))
7273 		return -EINVAL;
7274 
7275 	/* Search for matching entry in the MAC table based on given address
7276 	 * and queue. Do not touch entries at the end of the table reserved
7277 	 * for the VF MAC addresses.
7278 	 */
7279 	for (i = 0; i < rar_entries; i++) {
7280 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7281 			continue;
7282 		if ((adapter->mac_table[i].state & flags) != flags)
7283 			continue;
7284 		if (adapter->mac_table[i].queue != queue)
7285 			continue;
7286 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7287 			continue;
7288 
7289 		/* When a filter for the default address is "deleted",
7290 		 * we return it to its initial configuration
7291 		 */
7292 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7293 			adapter->mac_table[i].state =
7294 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7295 			adapter->mac_table[i].queue =
7296 				adapter->vfs_allocated_count;
7297 		} else {
7298 			adapter->mac_table[i].state = 0;
7299 			adapter->mac_table[i].queue = 0;
7300 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7301 		}
7302 
7303 		igb_rar_set_index(adapter, i);
7304 		return 0;
7305 	}
7306 
7307 	return -ENOENT;
7308 }
7309 
7310 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7311 			      const u8 queue)
7312 {
7313 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7314 }
7315 
7316 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7317 				const u8 *addr, u8 queue, u8 flags)
7318 {
7319 	struct e1000_hw *hw = &adapter->hw;
7320 
7321 	/* In theory, this should be supported on 82575 as well, but
7322 	 * that part wasn't easily accessible during development.
7323 	 */
7324 	if (hw->mac.type != e1000_i210)
7325 		return -EOPNOTSUPP;
7326 
7327 	return igb_add_mac_filter_flags(adapter, addr, queue,
7328 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7329 }
7330 
7331 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7332 				const u8 *addr, u8 queue, u8 flags)
7333 {
7334 	return igb_del_mac_filter_flags(adapter, addr, queue,
7335 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7336 }
7337 
7338 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7339 {
7340 	struct igb_adapter *adapter = netdev_priv(netdev);
7341 	int ret;
7342 
7343 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7344 
7345 	return min_t(int, ret, 0);
7346 }
7347 
7348 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7349 {
7350 	struct igb_adapter *adapter = netdev_priv(netdev);
7351 
7352 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7353 
7354 	return 0;
7355 }
7356 
7357 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7358 				 const u32 info, const u8 *addr)
7359 {
7360 	struct pci_dev *pdev = adapter->pdev;
7361 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7362 	struct list_head *pos;
7363 	struct vf_mac_filter *entry = NULL;
7364 	int ret = 0;
7365 
7366 	switch (info) {
7367 	case E1000_VF_MAC_FILTER_CLR:
7368 		/* remove all unicast MAC filters related to the current VF */
7369 		list_for_each(pos, &adapter->vf_macs.l) {
7370 			entry = list_entry(pos, struct vf_mac_filter, l);
7371 			if (entry->vf == vf) {
7372 				entry->vf = -1;
7373 				entry->free = true;
7374 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7375 			}
7376 		}
7377 		break;
7378 	case E1000_VF_MAC_FILTER_ADD:
7379 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7380 		    !vf_data->trusted) {
7381 			dev_warn(&pdev->dev,
7382 				 "VF %d requested MAC filter but is administratively denied\n",
7383 				 vf);
7384 			return -EINVAL;
7385 		}
7386 		if (!is_valid_ether_addr(addr)) {
7387 			dev_warn(&pdev->dev,
7388 				 "VF %d attempted to set invalid MAC filter\n",
7389 				 vf);
7390 			return -EINVAL;
7391 		}
7392 
7393 		/* try to find empty slot in the list */
7394 		list_for_each(pos, &adapter->vf_macs.l) {
7395 			entry = list_entry(pos, struct vf_mac_filter, l);
7396 			if (entry->free)
7397 				break;
7398 		}
7399 
7400 		if (entry && entry->free) {
7401 			entry->free = false;
7402 			entry->vf = vf;
7403 			ether_addr_copy(entry->vf_mac, addr);
7404 
7405 			ret = igb_add_mac_filter(adapter, addr, vf);
7406 			ret = min_t(int, ret, 0);
7407 		} else {
7408 			ret = -ENOSPC;
7409 		}
7410 
7411 		if (ret == -ENOSPC)
7412 			dev_warn(&pdev->dev,
7413 				 "VF %d has requested MAC filter but there is no space for it\n",
7414 				 vf);
7415 		break;
7416 	default:
7417 		ret = -EINVAL;
7418 		break;
7419 	}
7420 
7421 	return ret;
7422 }
7423 
7424 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7425 {
7426 	struct pci_dev *pdev = adapter->pdev;
7427 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7428 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7429 
7430 	/* The VF MAC Address is stored in a packed array of bytes
7431 	 * starting at the second 32 bit word of the msg array
7432 	 */
7433 	unsigned char *addr = (unsigned char *)&msg[1];
7434 	int ret = 0;
7435 
7436 	if (!info) {
7437 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7438 		    !vf_data->trusted) {
7439 			dev_warn(&pdev->dev,
7440 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7441 				 vf);
7442 			return -EINVAL;
7443 		}
7444 
7445 		if (!is_valid_ether_addr(addr)) {
7446 			dev_warn(&pdev->dev,
7447 				 "VF %d attempted to set invalid MAC\n",
7448 				 vf);
7449 			return -EINVAL;
7450 		}
7451 
7452 		ret = igb_set_vf_mac(adapter, vf, addr);
7453 	} else {
7454 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7455 	}
7456 
7457 	return ret;
7458 }
7459 
7460 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7461 {
7462 	struct e1000_hw *hw = &adapter->hw;
7463 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7464 	u32 msg = E1000_VT_MSGTYPE_NACK;
7465 
7466 	/* if device isn't clear to send it shouldn't be reading either */
7467 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7468 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7469 		igb_write_mbx(hw, &msg, 1, vf);
7470 		vf_data->last_nack = jiffies;
7471 	}
7472 }
7473 
7474 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7475 {
7476 	struct pci_dev *pdev = adapter->pdev;
7477 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7478 	struct e1000_hw *hw = &adapter->hw;
7479 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7480 	s32 retval;
7481 
7482 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7483 
7484 	if (retval) {
7485 		/* if receive failed revoke VF CTS stats and restart init */
7486 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7487 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7488 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7489 			goto unlock;
7490 		goto out;
7491 	}
7492 
7493 	/* this is a message we already processed, do nothing */
7494 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7495 		goto unlock;
7496 
7497 	/* until the vf completes a reset it should not be
7498 	 * allowed to start any configuration.
7499 	 */
7500 	if (msgbuf[0] == E1000_VF_RESET) {
7501 		/* unlocks mailbox */
7502 		igb_vf_reset_msg(adapter, vf);
7503 		return;
7504 	}
7505 
7506 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7507 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7508 			goto unlock;
7509 		retval = -1;
7510 		goto out;
7511 	}
7512 
7513 	switch ((msgbuf[0] & 0xFFFF)) {
7514 	case E1000_VF_SET_MAC_ADDR:
7515 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7516 		break;
7517 	case E1000_VF_SET_PROMISC:
7518 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7519 		break;
7520 	case E1000_VF_SET_MULTICAST:
7521 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7522 		break;
7523 	case E1000_VF_SET_LPE:
7524 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7525 		break;
7526 	case E1000_VF_SET_VLAN:
7527 		retval = -1;
7528 		if (vf_data->pf_vlan)
7529 			dev_warn(&pdev->dev,
7530 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7531 				 vf);
7532 		else
7533 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7534 		break;
7535 	default:
7536 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7537 		retval = -1;
7538 		break;
7539 	}
7540 
7541 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7542 out:
7543 	/* notify the VF of the results of what it sent us */
7544 	if (retval)
7545 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7546 	else
7547 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7548 
7549 	/* unlocks mailbox */
7550 	igb_write_mbx(hw, msgbuf, 1, vf);
7551 	return;
7552 
7553 unlock:
7554 	igb_unlock_mbx(hw, vf);
7555 }
7556 
7557 static void igb_msg_task(struct igb_adapter *adapter)
7558 {
7559 	struct e1000_hw *hw = &adapter->hw;
7560 	u32 vf;
7561 
7562 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7563 		/* process any reset requests */
7564 		if (!igb_check_for_rst(hw, vf))
7565 			igb_vf_reset_event(adapter, vf);
7566 
7567 		/* process any messages pending */
7568 		if (!igb_check_for_msg(hw, vf))
7569 			igb_rcv_msg_from_vf(adapter, vf);
7570 
7571 		/* process any acks */
7572 		if (!igb_check_for_ack(hw, vf))
7573 			igb_rcv_ack_from_vf(adapter, vf);
7574 	}
7575 }
7576 
7577 /**
7578  *  igb_set_uta - Set unicast filter table address
7579  *  @adapter: board private structure
7580  *  @set: boolean indicating if we are setting or clearing bits
7581  *
7582  *  The unicast table address is a register array of 32-bit registers.
7583  *  The table is meant to be used in a way similar to how the MTA is used
7584  *  however due to certain limitations in the hardware it is necessary to
7585  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7586  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7587  **/
7588 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7589 {
7590 	struct e1000_hw *hw = &adapter->hw;
7591 	u32 uta = set ? ~0 : 0;
7592 	int i;
7593 
7594 	/* we only need to do this if VMDq is enabled */
7595 	if (!adapter->vfs_allocated_count)
7596 		return;
7597 
7598 	for (i = hw->mac.uta_reg_count; i--;)
7599 		array_wr32(E1000_UTA, i, uta);
7600 }
7601 
7602 /**
7603  *  igb_intr_msi - Interrupt Handler
7604  *  @irq: interrupt number
7605  *  @data: pointer to a network interface device structure
7606  **/
7607 static irqreturn_t igb_intr_msi(int irq, void *data)
7608 {
7609 	struct igb_adapter *adapter = data;
7610 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7611 	struct e1000_hw *hw = &adapter->hw;
7612 	/* read ICR disables interrupts using IAM */
7613 	u32 icr = rd32(E1000_ICR);
7614 
7615 	igb_write_itr(q_vector);
7616 
7617 	if (icr & E1000_ICR_DRSTA)
7618 		schedule_work(&adapter->reset_task);
7619 
7620 	if (icr & E1000_ICR_DOUTSYNC) {
7621 		/* HW is reporting DMA is out of sync */
7622 		adapter->stats.doosync++;
7623 	}
7624 
7625 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7626 		hw->mac.get_link_status = 1;
7627 		if (!test_bit(__IGB_DOWN, &adapter->state))
7628 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7629 	}
7630 
7631 	if (icr & E1000_ICR_TS)
7632 		igb_tsync_interrupt(adapter);
7633 
7634 	napi_schedule(&q_vector->napi);
7635 
7636 	return IRQ_HANDLED;
7637 }
7638 
7639 /**
7640  *  igb_intr - Legacy Interrupt Handler
7641  *  @irq: interrupt number
7642  *  @data: pointer to a network interface device structure
7643  **/
7644 static irqreturn_t igb_intr(int irq, void *data)
7645 {
7646 	struct igb_adapter *adapter = data;
7647 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7648 	struct e1000_hw *hw = &adapter->hw;
7649 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7650 	 * need for the IMC write
7651 	 */
7652 	u32 icr = rd32(E1000_ICR);
7653 
7654 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7655 	 * not set, then the adapter didn't send an interrupt
7656 	 */
7657 	if (!(icr & E1000_ICR_INT_ASSERTED))
7658 		return IRQ_NONE;
7659 
7660 	igb_write_itr(q_vector);
7661 
7662 	if (icr & E1000_ICR_DRSTA)
7663 		schedule_work(&adapter->reset_task);
7664 
7665 	if (icr & E1000_ICR_DOUTSYNC) {
7666 		/* HW is reporting DMA is out of sync */
7667 		adapter->stats.doosync++;
7668 	}
7669 
7670 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7671 		hw->mac.get_link_status = 1;
7672 		/* guard against interrupt when we're going down */
7673 		if (!test_bit(__IGB_DOWN, &adapter->state))
7674 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7675 	}
7676 
7677 	if (icr & E1000_ICR_TS)
7678 		igb_tsync_interrupt(adapter);
7679 
7680 	napi_schedule(&q_vector->napi);
7681 
7682 	return IRQ_HANDLED;
7683 }
7684 
7685 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7686 {
7687 	struct igb_adapter *adapter = q_vector->adapter;
7688 	struct e1000_hw *hw = &adapter->hw;
7689 
7690 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7691 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7692 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7693 			igb_set_itr(q_vector);
7694 		else
7695 			igb_update_ring_itr(q_vector);
7696 	}
7697 
7698 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7699 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7700 			wr32(E1000_EIMS, q_vector->eims_value);
7701 		else
7702 			igb_irq_enable(adapter);
7703 	}
7704 }
7705 
7706 /**
7707  *  igb_poll - NAPI Rx polling callback
7708  *  @napi: napi polling structure
7709  *  @budget: count of how many packets we should handle
7710  **/
7711 static int igb_poll(struct napi_struct *napi, int budget)
7712 {
7713 	struct igb_q_vector *q_vector = container_of(napi,
7714 						     struct igb_q_vector,
7715 						     napi);
7716 	bool clean_complete = true;
7717 	int work_done = 0;
7718 
7719 #ifdef CONFIG_IGB_DCA
7720 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7721 		igb_update_dca(q_vector);
7722 #endif
7723 	if (q_vector->tx.ring)
7724 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7725 
7726 	if (q_vector->rx.ring) {
7727 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7728 
7729 		work_done += cleaned;
7730 		if (cleaned >= budget)
7731 			clean_complete = false;
7732 	}
7733 
7734 	/* If all work not completed, return budget and keep polling */
7735 	if (!clean_complete)
7736 		return budget;
7737 
7738 	/* Exit the polling mode, but don't re-enable interrupts if stack might
7739 	 * poll us due to busy-polling
7740 	 */
7741 	if (likely(napi_complete_done(napi, work_done)))
7742 		igb_ring_irq_enable(q_vector);
7743 
7744 	return min(work_done, budget - 1);
7745 }
7746 
7747 /**
7748  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7749  *  @q_vector: pointer to q_vector containing needed info
7750  *  @napi_budget: Used to determine if we are in netpoll
7751  *
7752  *  returns true if ring is completely cleaned
7753  **/
7754 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7755 {
7756 	struct igb_adapter *adapter = q_vector->adapter;
7757 	struct igb_ring *tx_ring = q_vector->tx.ring;
7758 	struct igb_tx_buffer *tx_buffer;
7759 	union e1000_adv_tx_desc *tx_desc;
7760 	unsigned int total_bytes = 0, total_packets = 0;
7761 	unsigned int budget = q_vector->tx.work_limit;
7762 	unsigned int i = tx_ring->next_to_clean;
7763 
7764 	if (test_bit(__IGB_DOWN, &adapter->state))
7765 		return true;
7766 
7767 	tx_buffer = &tx_ring->tx_buffer_info[i];
7768 	tx_desc = IGB_TX_DESC(tx_ring, i);
7769 	i -= tx_ring->count;
7770 
7771 	do {
7772 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7773 
7774 		/* if next_to_watch is not set then there is no work pending */
7775 		if (!eop_desc)
7776 			break;
7777 
7778 		/* prevent any other reads prior to eop_desc */
7779 		smp_rmb();
7780 
7781 		/* if DD is not set pending work has not been completed */
7782 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7783 			break;
7784 
7785 		/* clear next_to_watch to prevent false hangs */
7786 		tx_buffer->next_to_watch = NULL;
7787 
7788 		/* update the statistics for this packet */
7789 		total_bytes += tx_buffer->bytecount;
7790 		total_packets += tx_buffer->gso_segs;
7791 
7792 		/* free the skb */
7793 		napi_consume_skb(tx_buffer->skb, napi_budget);
7794 
7795 		/* unmap skb header data */
7796 		dma_unmap_single(tx_ring->dev,
7797 				 dma_unmap_addr(tx_buffer, dma),
7798 				 dma_unmap_len(tx_buffer, len),
7799 				 DMA_TO_DEVICE);
7800 
7801 		/* clear tx_buffer data */
7802 		dma_unmap_len_set(tx_buffer, len, 0);
7803 
7804 		/* clear last DMA location and unmap remaining buffers */
7805 		while (tx_desc != eop_desc) {
7806 			tx_buffer++;
7807 			tx_desc++;
7808 			i++;
7809 			if (unlikely(!i)) {
7810 				i -= tx_ring->count;
7811 				tx_buffer = tx_ring->tx_buffer_info;
7812 				tx_desc = IGB_TX_DESC(tx_ring, 0);
7813 			}
7814 
7815 			/* unmap any remaining paged data */
7816 			if (dma_unmap_len(tx_buffer, len)) {
7817 				dma_unmap_page(tx_ring->dev,
7818 					       dma_unmap_addr(tx_buffer, dma),
7819 					       dma_unmap_len(tx_buffer, len),
7820 					       DMA_TO_DEVICE);
7821 				dma_unmap_len_set(tx_buffer, len, 0);
7822 			}
7823 		}
7824 
7825 		/* move us one more past the eop_desc for start of next pkt */
7826 		tx_buffer++;
7827 		tx_desc++;
7828 		i++;
7829 		if (unlikely(!i)) {
7830 			i -= tx_ring->count;
7831 			tx_buffer = tx_ring->tx_buffer_info;
7832 			tx_desc = IGB_TX_DESC(tx_ring, 0);
7833 		}
7834 
7835 		/* issue prefetch for next Tx descriptor */
7836 		prefetch(tx_desc);
7837 
7838 		/* update budget accounting */
7839 		budget--;
7840 	} while (likely(budget));
7841 
7842 	netdev_tx_completed_queue(txring_txq(tx_ring),
7843 				  total_packets, total_bytes);
7844 	i += tx_ring->count;
7845 	tx_ring->next_to_clean = i;
7846 	u64_stats_update_begin(&tx_ring->tx_syncp);
7847 	tx_ring->tx_stats.bytes += total_bytes;
7848 	tx_ring->tx_stats.packets += total_packets;
7849 	u64_stats_update_end(&tx_ring->tx_syncp);
7850 	q_vector->tx.total_bytes += total_bytes;
7851 	q_vector->tx.total_packets += total_packets;
7852 
7853 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7854 		struct e1000_hw *hw = &adapter->hw;
7855 
7856 		/* Detect a transmit hang in hardware, this serializes the
7857 		 * check with the clearing of time_stamp and movement of i
7858 		 */
7859 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7860 		if (tx_buffer->next_to_watch &&
7861 		    time_after(jiffies, tx_buffer->time_stamp +
7862 			       (adapter->tx_timeout_factor * HZ)) &&
7863 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7864 
7865 			/* detected Tx unit hang */
7866 			dev_err(tx_ring->dev,
7867 				"Detected Tx Unit Hang\n"
7868 				"  Tx Queue             <%d>\n"
7869 				"  TDH                  <%x>\n"
7870 				"  TDT                  <%x>\n"
7871 				"  next_to_use          <%x>\n"
7872 				"  next_to_clean        <%x>\n"
7873 				"buffer_info[next_to_clean]\n"
7874 				"  time_stamp           <%lx>\n"
7875 				"  next_to_watch        <%p>\n"
7876 				"  jiffies              <%lx>\n"
7877 				"  desc.status          <%x>\n",
7878 				tx_ring->queue_index,
7879 				rd32(E1000_TDH(tx_ring->reg_idx)),
7880 				readl(tx_ring->tail),
7881 				tx_ring->next_to_use,
7882 				tx_ring->next_to_clean,
7883 				tx_buffer->time_stamp,
7884 				tx_buffer->next_to_watch,
7885 				jiffies,
7886 				tx_buffer->next_to_watch->wb.status);
7887 			netif_stop_subqueue(tx_ring->netdev,
7888 					    tx_ring->queue_index);
7889 
7890 			/* we are about to reset, no point in enabling stuff */
7891 			return true;
7892 		}
7893 	}
7894 
7895 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7896 	if (unlikely(total_packets &&
7897 	    netif_carrier_ok(tx_ring->netdev) &&
7898 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7899 		/* Make sure that anybody stopping the queue after this
7900 		 * sees the new next_to_clean.
7901 		 */
7902 		smp_mb();
7903 		if (__netif_subqueue_stopped(tx_ring->netdev,
7904 					     tx_ring->queue_index) &&
7905 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7906 			netif_wake_subqueue(tx_ring->netdev,
7907 					    tx_ring->queue_index);
7908 
7909 			u64_stats_update_begin(&tx_ring->tx_syncp);
7910 			tx_ring->tx_stats.restart_queue++;
7911 			u64_stats_update_end(&tx_ring->tx_syncp);
7912 		}
7913 	}
7914 
7915 	return !!budget;
7916 }
7917 
7918 /**
7919  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7920  *  @rx_ring: rx descriptor ring to store buffers on
7921  *  @old_buff: donor buffer to have page reused
7922  *
7923  *  Synchronizes page for reuse by the adapter
7924  **/
7925 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7926 			      struct igb_rx_buffer *old_buff)
7927 {
7928 	struct igb_rx_buffer *new_buff;
7929 	u16 nta = rx_ring->next_to_alloc;
7930 
7931 	new_buff = &rx_ring->rx_buffer_info[nta];
7932 
7933 	/* update, and store next to alloc */
7934 	nta++;
7935 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7936 
7937 	/* Transfer page from old buffer to new buffer.
7938 	 * Move each member individually to avoid possible store
7939 	 * forwarding stalls.
7940 	 */
7941 	new_buff->dma		= old_buff->dma;
7942 	new_buff->page		= old_buff->page;
7943 	new_buff->page_offset	= old_buff->page_offset;
7944 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7945 }
7946 
7947 static inline bool igb_page_is_reserved(struct page *page)
7948 {
7949 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7950 }
7951 
7952 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7953 {
7954 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7955 	struct page *page = rx_buffer->page;
7956 
7957 	/* avoid re-using remote pages */
7958 	if (unlikely(igb_page_is_reserved(page)))
7959 		return false;
7960 
7961 #if (PAGE_SIZE < 8192)
7962 	/* if we are only owner of page we can reuse it */
7963 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7964 		return false;
7965 #else
7966 #define IGB_LAST_OFFSET \
7967 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7968 
7969 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7970 		return false;
7971 #endif
7972 
7973 	/* If we have drained the page fragment pool we need to update
7974 	 * the pagecnt_bias and page count so that we fully restock the
7975 	 * number of references the driver holds.
7976 	 */
7977 	if (unlikely(!pagecnt_bias)) {
7978 		page_ref_add(page, USHRT_MAX);
7979 		rx_buffer->pagecnt_bias = USHRT_MAX;
7980 	}
7981 
7982 	return true;
7983 }
7984 
7985 /**
7986  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7987  *  @rx_ring: rx descriptor ring to transact packets on
7988  *  @rx_buffer: buffer containing page to add
7989  *  @skb: sk_buff to place the data into
7990  *  @size: size of buffer to be added
7991  *
7992  *  This function will add the data contained in rx_buffer->page to the skb.
7993  **/
7994 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7995 			    struct igb_rx_buffer *rx_buffer,
7996 			    struct sk_buff *skb,
7997 			    unsigned int size)
7998 {
7999 #if (PAGE_SIZE < 8192)
8000 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8001 #else
8002 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8003 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8004 				SKB_DATA_ALIGN(size);
8005 #endif
8006 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8007 			rx_buffer->page_offset, size, truesize);
8008 #if (PAGE_SIZE < 8192)
8009 	rx_buffer->page_offset ^= truesize;
8010 #else
8011 	rx_buffer->page_offset += truesize;
8012 #endif
8013 }
8014 
8015 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8016 					 struct igb_rx_buffer *rx_buffer,
8017 					 union e1000_adv_rx_desc *rx_desc,
8018 					 unsigned int size)
8019 {
8020 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8021 #if (PAGE_SIZE < 8192)
8022 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8023 #else
8024 	unsigned int truesize = SKB_DATA_ALIGN(size);
8025 #endif
8026 	unsigned int headlen;
8027 	struct sk_buff *skb;
8028 
8029 	/* prefetch first cache line of first page */
8030 	prefetch(va);
8031 #if L1_CACHE_BYTES < 128
8032 	prefetch(va + L1_CACHE_BYTES);
8033 #endif
8034 
8035 	/* allocate a skb to store the frags */
8036 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8037 	if (unlikely(!skb))
8038 		return NULL;
8039 
8040 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8041 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8042 		va += IGB_TS_HDR_LEN;
8043 		size -= IGB_TS_HDR_LEN;
8044 	}
8045 
8046 	/* Determine available headroom for copy */
8047 	headlen = size;
8048 	if (headlen > IGB_RX_HDR_LEN)
8049 		headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8050 
8051 	/* align pull length to size of long to optimize memcpy performance */
8052 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8053 
8054 	/* update all of the pointers */
8055 	size -= headlen;
8056 	if (size) {
8057 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8058 				(va + headlen) - page_address(rx_buffer->page),
8059 				size, truesize);
8060 #if (PAGE_SIZE < 8192)
8061 		rx_buffer->page_offset ^= truesize;
8062 #else
8063 		rx_buffer->page_offset += truesize;
8064 #endif
8065 	} else {
8066 		rx_buffer->pagecnt_bias++;
8067 	}
8068 
8069 	return skb;
8070 }
8071 
8072 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8073 				     struct igb_rx_buffer *rx_buffer,
8074 				     union e1000_adv_rx_desc *rx_desc,
8075 				     unsigned int size)
8076 {
8077 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8078 #if (PAGE_SIZE < 8192)
8079 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8080 #else
8081 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8082 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8083 #endif
8084 	struct sk_buff *skb;
8085 
8086 	/* prefetch first cache line of first page */
8087 	prefetch(va);
8088 #if L1_CACHE_BYTES < 128
8089 	prefetch(va + L1_CACHE_BYTES);
8090 #endif
8091 
8092 	/* build an skb around the page buffer */
8093 	skb = build_skb(va - IGB_SKB_PAD, truesize);
8094 	if (unlikely(!skb))
8095 		return NULL;
8096 
8097 	/* update pointers within the skb to store the data */
8098 	skb_reserve(skb, IGB_SKB_PAD);
8099 	__skb_put(skb, size);
8100 
8101 	/* pull timestamp out of packet data */
8102 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8103 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8104 		__skb_pull(skb, IGB_TS_HDR_LEN);
8105 	}
8106 
8107 	/* update buffer offset */
8108 #if (PAGE_SIZE < 8192)
8109 	rx_buffer->page_offset ^= truesize;
8110 #else
8111 	rx_buffer->page_offset += truesize;
8112 #endif
8113 
8114 	return skb;
8115 }
8116 
8117 static inline void igb_rx_checksum(struct igb_ring *ring,
8118 				   union e1000_adv_rx_desc *rx_desc,
8119 				   struct sk_buff *skb)
8120 {
8121 	skb_checksum_none_assert(skb);
8122 
8123 	/* Ignore Checksum bit is set */
8124 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8125 		return;
8126 
8127 	/* Rx checksum disabled via ethtool */
8128 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8129 		return;
8130 
8131 	/* TCP/UDP checksum error bit is set */
8132 	if (igb_test_staterr(rx_desc,
8133 			     E1000_RXDEXT_STATERR_TCPE |
8134 			     E1000_RXDEXT_STATERR_IPE)) {
8135 		/* work around errata with sctp packets where the TCPE aka
8136 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8137 		 * packets, (aka let the stack check the crc32c)
8138 		 */
8139 		if (!((skb->len == 60) &&
8140 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8141 			u64_stats_update_begin(&ring->rx_syncp);
8142 			ring->rx_stats.csum_err++;
8143 			u64_stats_update_end(&ring->rx_syncp);
8144 		}
8145 		/* let the stack verify checksum errors */
8146 		return;
8147 	}
8148 	/* It must be a TCP or UDP packet with a valid checksum */
8149 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8150 				      E1000_RXD_STAT_UDPCS))
8151 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8152 
8153 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8154 		le32_to_cpu(rx_desc->wb.upper.status_error));
8155 }
8156 
8157 static inline void igb_rx_hash(struct igb_ring *ring,
8158 			       union e1000_adv_rx_desc *rx_desc,
8159 			       struct sk_buff *skb)
8160 {
8161 	if (ring->netdev->features & NETIF_F_RXHASH)
8162 		skb_set_hash(skb,
8163 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8164 			     PKT_HASH_TYPE_L3);
8165 }
8166 
8167 /**
8168  *  igb_is_non_eop - process handling of non-EOP buffers
8169  *  @rx_ring: Rx ring being processed
8170  *  @rx_desc: Rx descriptor for current buffer
8171  *  @skb: current socket buffer containing buffer in progress
8172  *
8173  *  This function updates next to clean.  If the buffer is an EOP buffer
8174  *  this function exits returning false, otherwise it will place the
8175  *  sk_buff in the next buffer to be chained and return true indicating
8176  *  that this is in fact a non-EOP buffer.
8177  **/
8178 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8179 			   union e1000_adv_rx_desc *rx_desc)
8180 {
8181 	u32 ntc = rx_ring->next_to_clean + 1;
8182 
8183 	/* fetch, update, and store next to clean */
8184 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8185 	rx_ring->next_to_clean = ntc;
8186 
8187 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8188 
8189 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8190 		return false;
8191 
8192 	return true;
8193 }
8194 
8195 /**
8196  *  igb_cleanup_headers - Correct corrupted or empty headers
8197  *  @rx_ring: rx descriptor ring packet is being transacted on
8198  *  @rx_desc: pointer to the EOP Rx descriptor
8199  *  @skb: pointer to current skb being fixed
8200  *
8201  *  Address the case where we are pulling data in on pages only
8202  *  and as such no data is present in the skb header.
8203  *
8204  *  In addition if skb is not at least 60 bytes we need to pad it so that
8205  *  it is large enough to qualify as a valid Ethernet frame.
8206  *
8207  *  Returns true if an error was encountered and skb was freed.
8208  **/
8209 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8210 				union e1000_adv_rx_desc *rx_desc,
8211 				struct sk_buff *skb)
8212 {
8213 	if (unlikely((igb_test_staterr(rx_desc,
8214 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8215 		struct net_device *netdev = rx_ring->netdev;
8216 		if (!(netdev->features & NETIF_F_RXALL)) {
8217 			dev_kfree_skb_any(skb);
8218 			return true;
8219 		}
8220 	}
8221 
8222 	/* if eth_skb_pad returns an error the skb was freed */
8223 	if (eth_skb_pad(skb))
8224 		return true;
8225 
8226 	return false;
8227 }
8228 
8229 /**
8230  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8231  *  @rx_ring: rx descriptor ring packet is being transacted on
8232  *  @rx_desc: pointer to the EOP Rx descriptor
8233  *  @skb: pointer to current skb being populated
8234  *
8235  *  This function checks the ring, descriptor, and packet information in
8236  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8237  *  other fields within the skb.
8238  **/
8239 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8240 				   union e1000_adv_rx_desc *rx_desc,
8241 				   struct sk_buff *skb)
8242 {
8243 	struct net_device *dev = rx_ring->netdev;
8244 
8245 	igb_rx_hash(rx_ring, rx_desc, skb);
8246 
8247 	igb_rx_checksum(rx_ring, rx_desc, skb);
8248 
8249 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8250 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8251 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8252 
8253 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8254 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8255 		u16 vid;
8256 
8257 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8258 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8259 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8260 		else
8261 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8262 
8263 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8264 	}
8265 
8266 	skb_record_rx_queue(skb, rx_ring->queue_index);
8267 
8268 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8269 }
8270 
8271 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8272 					       const unsigned int size)
8273 {
8274 	struct igb_rx_buffer *rx_buffer;
8275 
8276 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8277 	prefetchw(rx_buffer->page);
8278 
8279 	/* we are reusing so sync this buffer for CPU use */
8280 	dma_sync_single_range_for_cpu(rx_ring->dev,
8281 				      rx_buffer->dma,
8282 				      rx_buffer->page_offset,
8283 				      size,
8284 				      DMA_FROM_DEVICE);
8285 
8286 	rx_buffer->pagecnt_bias--;
8287 
8288 	return rx_buffer;
8289 }
8290 
8291 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8292 			      struct igb_rx_buffer *rx_buffer)
8293 {
8294 	if (igb_can_reuse_rx_page(rx_buffer)) {
8295 		/* hand second half of page back to the ring */
8296 		igb_reuse_rx_page(rx_ring, rx_buffer);
8297 	} else {
8298 		/* We are not reusing the buffer so unmap it and free
8299 		 * any references we are holding to it
8300 		 */
8301 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8302 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8303 				     IGB_RX_DMA_ATTR);
8304 		__page_frag_cache_drain(rx_buffer->page,
8305 					rx_buffer->pagecnt_bias);
8306 	}
8307 
8308 	/* clear contents of rx_buffer */
8309 	rx_buffer->page = NULL;
8310 }
8311 
8312 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8313 {
8314 	struct igb_ring *rx_ring = q_vector->rx.ring;
8315 	struct sk_buff *skb = rx_ring->skb;
8316 	unsigned int total_bytes = 0, total_packets = 0;
8317 	u16 cleaned_count = igb_desc_unused(rx_ring);
8318 
8319 	while (likely(total_packets < budget)) {
8320 		union e1000_adv_rx_desc *rx_desc;
8321 		struct igb_rx_buffer *rx_buffer;
8322 		unsigned int size;
8323 
8324 		/* return some buffers to hardware, one at a time is too slow */
8325 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8326 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8327 			cleaned_count = 0;
8328 		}
8329 
8330 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8331 		size = le16_to_cpu(rx_desc->wb.upper.length);
8332 		if (!size)
8333 			break;
8334 
8335 		/* This memory barrier is needed to keep us from reading
8336 		 * any other fields out of the rx_desc until we know the
8337 		 * descriptor has been written back
8338 		 */
8339 		dma_rmb();
8340 
8341 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8342 
8343 		/* retrieve a buffer from the ring */
8344 		if (skb)
8345 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8346 		else if (ring_uses_build_skb(rx_ring))
8347 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8348 		else
8349 			skb = igb_construct_skb(rx_ring, rx_buffer,
8350 						rx_desc, size);
8351 
8352 		/* exit if we failed to retrieve a buffer */
8353 		if (!skb) {
8354 			rx_ring->rx_stats.alloc_failed++;
8355 			rx_buffer->pagecnt_bias++;
8356 			break;
8357 		}
8358 
8359 		igb_put_rx_buffer(rx_ring, rx_buffer);
8360 		cleaned_count++;
8361 
8362 		/* fetch next buffer in frame if non-eop */
8363 		if (igb_is_non_eop(rx_ring, rx_desc))
8364 			continue;
8365 
8366 		/* verify the packet layout is correct */
8367 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8368 			skb = NULL;
8369 			continue;
8370 		}
8371 
8372 		/* probably a little skewed due to removing CRC */
8373 		total_bytes += skb->len;
8374 
8375 		/* populate checksum, timestamp, VLAN, and protocol */
8376 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8377 
8378 		napi_gro_receive(&q_vector->napi, skb);
8379 
8380 		/* reset skb pointer */
8381 		skb = NULL;
8382 
8383 		/* update budget accounting */
8384 		total_packets++;
8385 	}
8386 
8387 	/* place incomplete frames back on ring for completion */
8388 	rx_ring->skb = skb;
8389 
8390 	u64_stats_update_begin(&rx_ring->rx_syncp);
8391 	rx_ring->rx_stats.packets += total_packets;
8392 	rx_ring->rx_stats.bytes += total_bytes;
8393 	u64_stats_update_end(&rx_ring->rx_syncp);
8394 	q_vector->rx.total_packets += total_packets;
8395 	q_vector->rx.total_bytes += total_bytes;
8396 
8397 	if (cleaned_count)
8398 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8399 
8400 	return total_packets;
8401 }
8402 
8403 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8404 {
8405 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8406 }
8407 
8408 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8409 				  struct igb_rx_buffer *bi)
8410 {
8411 	struct page *page = bi->page;
8412 	dma_addr_t dma;
8413 
8414 	/* since we are recycling buffers we should seldom need to alloc */
8415 	if (likely(page))
8416 		return true;
8417 
8418 	/* alloc new page for storage */
8419 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8420 	if (unlikely(!page)) {
8421 		rx_ring->rx_stats.alloc_failed++;
8422 		return false;
8423 	}
8424 
8425 	/* map page for use */
8426 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8427 				 igb_rx_pg_size(rx_ring),
8428 				 DMA_FROM_DEVICE,
8429 				 IGB_RX_DMA_ATTR);
8430 
8431 	/* if mapping failed free memory back to system since
8432 	 * there isn't much point in holding memory we can't use
8433 	 */
8434 	if (dma_mapping_error(rx_ring->dev, dma)) {
8435 		__free_pages(page, igb_rx_pg_order(rx_ring));
8436 
8437 		rx_ring->rx_stats.alloc_failed++;
8438 		return false;
8439 	}
8440 
8441 	bi->dma = dma;
8442 	bi->page = page;
8443 	bi->page_offset = igb_rx_offset(rx_ring);
8444 	bi->pagecnt_bias = 1;
8445 
8446 	return true;
8447 }
8448 
8449 /**
8450  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8451  *  @adapter: address of board private structure
8452  **/
8453 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8454 {
8455 	union e1000_adv_rx_desc *rx_desc;
8456 	struct igb_rx_buffer *bi;
8457 	u16 i = rx_ring->next_to_use;
8458 	u16 bufsz;
8459 
8460 	/* nothing to do */
8461 	if (!cleaned_count)
8462 		return;
8463 
8464 	rx_desc = IGB_RX_DESC(rx_ring, i);
8465 	bi = &rx_ring->rx_buffer_info[i];
8466 	i -= rx_ring->count;
8467 
8468 	bufsz = igb_rx_bufsz(rx_ring);
8469 
8470 	do {
8471 		if (!igb_alloc_mapped_page(rx_ring, bi))
8472 			break;
8473 
8474 		/* sync the buffer for use by the device */
8475 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8476 						 bi->page_offset, bufsz,
8477 						 DMA_FROM_DEVICE);
8478 
8479 		/* Refresh the desc even if buffer_addrs didn't change
8480 		 * because each write-back erases this info.
8481 		 */
8482 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8483 
8484 		rx_desc++;
8485 		bi++;
8486 		i++;
8487 		if (unlikely(!i)) {
8488 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8489 			bi = rx_ring->rx_buffer_info;
8490 			i -= rx_ring->count;
8491 		}
8492 
8493 		/* clear the length for the next_to_use descriptor */
8494 		rx_desc->wb.upper.length = 0;
8495 
8496 		cleaned_count--;
8497 	} while (cleaned_count);
8498 
8499 	i += rx_ring->count;
8500 
8501 	if (rx_ring->next_to_use != i) {
8502 		/* record the next descriptor to use */
8503 		rx_ring->next_to_use = i;
8504 
8505 		/* update next to alloc since we have filled the ring */
8506 		rx_ring->next_to_alloc = i;
8507 
8508 		/* Force memory writes to complete before letting h/w
8509 		 * know there are new descriptors to fetch.  (Only
8510 		 * applicable for weak-ordered memory model archs,
8511 		 * such as IA-64).
8512 		 */
8513 		dma_wmb();
8514 		writel(i, rx_ring->tail);
8515 	}
8516 }
8517 
8518 /**
8519  * igb_mii_ioctl -
8520  * @netdev:
8521  * @ifreq:
8522  * @cmd:
8523  **/
8524 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8525 {
8526 	struct igb_adapter *adapter = netdev_priv(netdev);
8527 	struct mii_ioctl_data *data = if_mii(ifr);
8528 
8529 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8530 		return -EOPNOTSUPP;
8531 
8532 	switch (cmd) {
8533 	case SIOCGMIIPHY:
8534 		data->phy_id = adapter->hw.phy.addr;
8535 		break;
8536 	case SIOCGMIIREG:
8537 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8538 				     &data->val_out))
8539 			return -EIO;
8540 		break;
8541 	case SIOCSMIIREG:
8542 	default:
8543 		return -EOPNOTSUPP;
8544 	}
8545 	return 0;
8546 }
8547 
8548 /**
8549  * igb_ioctl -
8550  * @netdev:
8551  * @ifreq:
8552  * @cmd:
8553  **/
8554 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8555 {
8556 	switch (cmd) {
8557 	case SIOCGMIIPHY:
8558 	case SIOCGMIIREG:
8559 	case SIOCSMIIREG:
8560 		return igb_mii_ioctl(netdev, ifr, cmd);
8561 	case SIOCGHWTSTAMP:
8562 		return igb_ptp_get_ts_config(netdev, ifr);
8563 	case SIOCSHWTSTAMP:
8564 		return igb_ptp_set_ts_config(netdev, ifr);
8565 	default:
8566 		return -EOPNOTSUPP;
8567 	}
8568 }
8569 
8570 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8571 {
8572 	struct igb_adapter *adapter = hw->back;
8573 
8574 	pci_read_config_word(adapter->pdev, reg, value);
8575 }
8576 
8577 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8578 {
8579 	struct igb_adapter *adapter = hw->back;
8580 
8581 	pci_write_config_word(adapter->pdev, reg, *value);
8582 }
8583 
8584 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8585 {
8586 	struct igb_adapter *adapter = hw->back;
8587 
8588 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8589 		return -E1000_ERR_CONFIG;
8590 
8591 	return 0;
8592 }
8593 
8594 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8595 {
8596 	struct igb_adapter *adapter = hw->back;
8597 
8598 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8599 		return -E1000_ERR_CONFIG;
8600 
8601 	return 0;
8602 }
8603 
8604 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8605 {
8606 	struct igb_adapter *adapter = netdev_priv(netdev);
8607 	struct e1000_hw *hw = &adapter->hw;
8608 	u32 ctrl, rctl;
8609 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8610 
8611 	if (enable) {
8612 		/* enable VLAN tag insert/strip */
8613 		ctrl = rd32(E1000_CTRL);
8614 		ctrl |= E1000_CTRL_VME;
8615 		wr32(E1000_CTRL, ctrl);
8616 
8617 		/* Disable CFI check */
8618 		rctl = rd32(E1000_RCTL);
8619 		rctl &= ~E1000_RCTL_CFIEN;
8620 		wr32(E1000_RCTL, rctl);
8621 	} else {
8622 		/* disable VLAN tag insert/strip */
8623 		ctrl = rd32(E1000_CTRL);
8624 		ctrl &= ~E1000_CTRL_VME;
8625 		wr32(E1000_CTRL, ctrl);
8626 	}
8627 
8628 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8629 }
8630 
8631 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8632 			       __be16 proto, u16 vid)
8633 {
8634 	struct igb_adapter *adapter = netdev_priv(netdev);
8635 	struct e1000_hw *hw = &adapter->hw;
8636 	int pf_id = adapter->vfs_allocated_count;
8637 
8638 	/* add the filter since PF can receive vlans w/o entry in vlvf */
8639 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8640 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8641 
8642 	set_bit(vid, adapter->active_vlans);
8643 
8644 	return 0;
8645 }
8646 
8647 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8648 				__be16 proto, u16 vid)
8649 {
8650 	struct igb_adapter *adapter = netdev_priv(netdev);
8651 	int pf_id = adapter->vfs_allocated_count;
8652 	struct e1000_hw *hw = &adapter->hw;
8653 
8654 	/* remove VID from filter table */
8655 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8656 		igb_vfta_set(hw, vid, pf_id, false, true);
8657 
8658 	clear_bit(vid, adapter->active_vlans);
8659 
8660 	return 0;
8661 }
8662 
8663 static void igb_restore_vlan(struct igb_adapter *adapter)
8664 {
8665 	u16 vid = 1;
8666 
8667 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8668 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8669 
8670 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8671 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8672 }
8673 
8674 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8675 {
8676 	struct pci_dev *pdev = adapter->pdev;
8677 	struct e1000_mac_info *mac = &adapter->hw.mac;
8678 
8679 	mac->autoneg = 0;
8680 
8681 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8682 	 * for the switch() below to work
8683 	 */
8684 	if ((spd & 1) || (dplx & ~1))
8685 		goto err_inval;
8686 
8687 	/* Fiber NIC's only allow 1000 gbps Full duplex
8688 	 * and 100Mbps Full duplex for 100baseFx sfp
8689 	 */
8690 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8691 		switch (spd + dplx) {
8692 		case SPEED_10 + DUPLEX_HALF:
8693 		case SPEED_10 + DUPLEX_FULL:
8694 		case SPEED_100 + DUPLEX_HALF:
8695 			goto err_inval;
8696 		default:
8697 			break;
8698 		}
8699 	}
8700 
8701 	switch (spd + dplx) {
8702 	case SPEED_10 + DUPLEX_HALF:
8703 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8704 		break;
8705 	case SPEED_10 + DUPLEX_FULL:
8706 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8707 		break;
8708 	case SPEED_100 + DUPLEX_HALF:
8709 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8710 		break;
8711 	case SPEED_100 + DUPLEX_FULL:
8712 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8713 		break;
8714 	case SPEED_1000 + DUPLEX_FULL:
8715 		mac->autoneg = 1;
8716 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8717 		break;
8718 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8719 	default:
8720 		goto err_inval;
8721 	}
8722 
8723 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8724 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8725 
8726 	return 0;
8727 
8728 err_inval:
8729 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8730 	return -EINVAL;
8731 }
8732 
8733 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8734 			  bool runtime)
8735 {
8736 	struct net_device *netdev = pci_get_drvdata(pdev);
8737 	struct igb_adapter *adapter = netdev_priv(netdev);
8738 	struct e1000_hw *hw = &adapter->hw;
8739 	u32 ctrl, rctl, status;
8740 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8741 	bool wake;
8742 
8743 	rtnl_lock();
8744 	netif_device_detach(netdev);
8745 
8746 	if (netif_running(netdev))
8747 		__igb_close(netdev, true);
8748 
8749 	igb_ptp_suspend(adapter);
8750 
8751 	igb_clear_interrupt_scheme(adapter);
8752 	rtnl_unlock();
8753 
8754 	status = rd32(E1000_STATUS);
8755 	if (status & E1000_STATUS_LU)
8756 		wufc &= ~E1000_WUFC_LNKC;
8757 
8758 	if (wufc) {
8759 		igb_setup_rctl(adapter);
8760 		igb_set_rx_mode(netdev);
8761 
8762 		/* turn on all-multi mode if wake on multicast is enabled */
8763 		if (wufc & E1000_WUFC_MC) {
8764 			rctl = rd32(E1000_RCTL);
8765 			rctl |= E1000_RCTL_MPE;
8766 			wr32(E1000_RCTL, rctl);
8767 		}
8768 
8769 		ctrl = rd32(E1000_CTRL);
8770 		ctrl |= E1000_CTRL_ADVD3WUC;
8771 		wr32(E1000_CTRL, ctrl);
8772 
8773 		/* Allow time for pending master requests to run */
8774 		igb_disable_pcie_master(hw);
8775 
8776 		wr32(E1000_WUC, E1000_WUC_PME_EN);
8777 		wr32(E1000_WUFC, wufc);
8778 	} else {
8779 		wr32(E1000_WUC, 0);
8780 		wr32(E1000_WUFC, 0);
8781 	}
8782 
8783 	wake = wufc || adapter->en_mng_pt;
8784 	if (!wake)
8785 		igb_power_down_link(adapter);
8786 	else
8787 		igb_power_up_link(adapter);
8788 
8789 	if (enable_wake)
8790 		*enable_wake = wake;
8791 
8792 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8793 	 * would have already happened in close and is redundant.
8794 	 */
8795 	igb_release_hw_control(adapter);
8796 
8797 	pci_disable_device(pdev);
8798 
8799 	return 0;
8800 }
8801 
8802 static void igb_deliver_wake_packet(struct net_device *netdev)
8803 {
8804 	struct igb_adapter *adapter = netdev_priv(netdev);
8805 	struct e1000_hw *hw = &adapter->hw;
8806 	struct sk_buff *skb;
8807 	u32 wupl;
8808 
8809 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8810 
8811 	/* WUPM stores only the first 128 bytes of the wake packet.
8812 	 * Read the packet only if we have the whole thing.
8813 	 */
8814 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8815 		return;
8816 
8817 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8818 	if (!skb)
8819 		return;
8820 
8821 	skb_put(skb, wupl);
8822 
8823 	/* Ensure reads are 32-bit aligned */
8824 	wupl = roundup(wupl, 4);
8825 
8826 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8827 
8828 	skb->protocol = eth_type_trans(skb, netdev);
8829 	netif_rx(skb);
8830 }
8831 
8832 static int __maybe_unused igb_suspend(struct device *dev)
8833 {
8834 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8835 }
8836 
8837 static int __maybe_unused igb_resume(struct device *dev)
8838 {
8839 	struct pci_dev *pdev = to_pci_dev(dev);
8840 	struct net_device *netdev = pci_get_drvdata(pdev);
8841 	struct igb_adapter *adapter = netdev_priv(netdev);
8842 	struct e1000_hw *hw = &adapter->hw;
8843 	u32 err, val;
8844 
8845 	pci_set_power_state(pdev, PCI_D0);
8846 	pci_restore_state(pdev);
8847 	pci_save_state(pdev);
8848 
8849 	if (!pci_device_is_present(pdev))
8850 		return -ENODEV;
8851 	err = pci_enable_device_mem(pdev);
8852 	if (err) {
8853 		dev_err(&pdev->dev,
8854 			"igb: Cannot enable PCI device from suspend\n");
8855 		return err;
8856 	}
8857 	pci_set_master(pdev);
8858 
8859 	pci_enable_wake(pdev, PCI_D3hot, 0);
8860 	pci_enable_wake(pdev, PCI_D3cold, 0);
8861 
8862 	if (igb_init_interrupt_scheme(adapter, true)) {
8863 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8864 		return -ENOMEM;
8865 	}
8866 
8867 	igb_reset(adapter);
8868 
8869 	/* let the f/w know that the h/w is now under the control of the
8870 	 * driver.
8871 	 */
8872 	igb_get_hw_control(adapter);
8873 
8874 	val = rd32(E1000_WUS);
8875 	if (val & WAKE_PKT_WUS)
8876 		igb_deliver_wake_packet(netdev);
8877 
8878 	wr32(E1000_WUS, ~0);
8879 
8880 	rtnl_lock();
8881 	if (!err && netif_running(netdev))
8882 		err = __igb_open(netdev, true);
8883 
8884 	if (!err)
8885 		netif_device_attach(netdev);
8886 	rtnl_unlock();
8887 
8888 	return err;
8889 }
8890 
8891 static int __maybe_unused igb_runtime_idle(struct device *dev)
8892 {
8893 	struct pci_dev *pdev = to_pci_dev(dev);
8894 	struct net_device *netdev = pci_get_drvdata(pdev);
8895 	struct igb_adapter *adapter = netdev_priv(netdev);
8896 
8897 	if (!igb_has_link(adapter))
8898 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8899 
8900 	return -EBUSY;
8901 }
8902 
8903 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8904 {
8905 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8906 }
8907 
8908 static int __maybe_unused igb_runtime_resume(struct device *dev)
8909 {
8910 	return igb_resume(dev);
8911 }
8912 
8913 static void igb_shutdown(struct pci_dev *pdev)
8914 {
8915 	bool wake;
8916 
8917 	__igb_shutdown(pdev, &wake, 0);
8918 
8919 	if (system_state == SYSTEM_POWER_OFF) {
8920 		pci_wake_from_d3(pdev, wake);
8921 		pci_set_power_state(pdev, PCI_D3hot);
8922 	}
8923 }
8924 
8925 #ifdef CONFIG_PCI_IOV
8926 static int igb_sriov_reinit(struct pci_dev *dev)
8927 {
8928 	struct net_device *netdev = pci_get_drvdata(dev);
8929 	struct igb_adapter *adapter = netdev_priv(netdev);
8930 	struct pci_dev *pdev = adapter->pdev;
8931 
8932 	rtnl_lock();
8933 
8934 	if (netif_running(netdev))
8935 		igb_close(netdev);
8936 	else
8937 		igb_reset(adapter);
8938 
8939 	igb_clear_interrupt_scheme(adapter);
8940 
8941 	igb_init_queue_configuration(adapter);
8942 
8943 	if (igb_init_interrupt_scheme(adapter, true)) {
8944 		rtnl_unlock();
8945 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8946 		return -ENOMEM;
8947 	}
8948 
8949 	if (netif_running(netdev))
8950 		igb_open(netdev);
8951 
8952 	rtnl_unlock();
8953 
8954 	return 0;
8955 }
8956 
8957 static int igb_pci_disable_sriov(struct pci_dev *dev)
8958 {
8959 	int err = igb_disable_sriov(dev);
8960 
8961 	if (!err)
8962 		err = igb_sriov_reinit(dev);
8963 
8964 	return err;
8965 }
8966 
8967 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8968 {
8969 	int err = igb_enable_sriov(dev, num_vfs);
8970 
8971 	if (err)
8972 		goto out;
8973 
8974 	err = igb_sriov_reinit(dev);
8975 	if (!err)
8976 		return num_vfs;
8977 
8978 out:
8979 	return err;
8980 }
8981 
8982 #endif
8983 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8984 {
8985 #ifdef CONFIG_PCI_IOV
8986 	if (num_vfs == 0)
8987 		return igb_pci_disable_sriov(dev);
8988 	else
8989 		return igb_pci_enable_sriov(dev, num_vfs);
8990 #endif
8991 	return 0;
8992 }
8993 
8994 /**
8995  *  igb_io_error_detected - called when PCI error is detected
8996  *  @pdev: Pointer to PCI device
8997  *  @state: The current pci connection state
8998  *
8999  *  This function is called after a PCI bus error affecting
9000  *  this device has been detected.
9001  **/
9002 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9003 					      pci_channel_state_t state)
9004 {
9005 	struct net_device *netdev = pci_get_drvdata(pdev);
9006 	struct igb_adapter *adapter = netdev_priv(netdev);
9007 
9008 	netif_device_detach(netdev);
9009 
9010 	if (state == pci_channel_io_perm_failure)
9011 		return PCI_ERS_RESULT_DISCONNECT;
9012 
9013 	if (netif_running(netdev))
9014 		igb_down(adapter);
9015 	pci_disable_device(pdev);
9016 
9017 	/* Request a slot slot reset. */
9018 	return PCI_ERS_RESULT_NEED_RESET;
9019 }
9020 
9021 /**
9022  *  igb_io_slot_reset - called after the pci bus has been reset.
9023  *  @pdev: Pointer to PCI device
9024  *
9025  *  Restart the card from scratch, as if from a cold-boot. Implementation
9026  *  resembles the first-half of the igb_resume routine.
9027  **/
9028 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9029 {
9030 	struct net_device *netdev = pci_get_drvdata(pdev);
9031 	struct igb_adapter *adapter = netdev_priv(netdev);
9032 	struct e1000_hw *hw = &adapter->hw;
9033 	pci_ers_result_t result;
9034 
9035 	if (pci_enable_device_mem(pdev)) {
9036 		dev_err(&pdev->dev,
9037 			"Cannot re-enable PCI device after reset.\n");
9038 		result = PCI_ERS_RESULT_DISCONNECT;
9039 	} else {
9040 		pci_set_master(pdev);
9041 		pci_restore_state(pdev);
9042 		pci_save_state(pdev);
9043 
9044 		pci_enable_wake(pdev, PCI_D3hot, 0);
9045 		pci_enable_wake(pdev, PCI_D3cold, 0);
9046 
9047 		/* In case of PCI error, adapter lose its HW address
9048 		 * so we should re-assign it here.
9049 		 */
9050 		hw->hw_addr = adapter->io_addr;
9051 
9052 		igb_reset(adapter);
9053 		wr32(E1000_WUS, ~0);
9054 		result = PCI_ERS_RESULT_RECOVERED;
9055 	}
9056 
9057 	return result;
9058 }
9059 
9060 /**
9061  *  igb_io_resume - called when traffic can start flowing again.
9062  *  @pdev: Pointer to PCI device
9063  *
9064  *  This callback is called when the error recovery driver tells us that
9065  *  its OK to resume normal operation. Implementation resembles the
9066  *  second-half of the igb_resume routine.
9067  */
9068 static void igb_io_resume(struct pci_dev *pdev)
9069 {
9070 	struct net_device *netdev = pci_get_drvdata(pdev);
9071 	struct igb_adapter *adapter = netdev_priv(netdev);
9072 
9073 	if (netif_running(netdev)) {
9074 		if (igb_up(adapter)) {
9075 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9076 			return;
9077 		}
9078 	}
9079 
9080 	netif_device_attach(netdev);
9081 
9082 	/* let the f/w know that the h/w is now under the control of the
9083 	 * driver.
9084 	 */
9085 	igb_get_hw_control(adapter);
9086 }
9087 
9088 /**
9089  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9090  *  @adapter: Pointer to adapter structure
9091  *  @index: Index of the RAR entry which need to be synced with MAC table
9092  **/
9093 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9094 {
9095 	struct e1000_hw *hw = &adapter->hw;
9096 	u32 rar_low, rar_high;
9097 	u8 *addr = adapter->mac_table[index].addr;
9098 
9099 	/* HW expects these to be in network order when they are plugged
9100 	 * into the registers which are little endian.  In order to guarantee
9101 	 * that ordering we need to do an leXX_to_cpup here in order to be
9102 	 * ready for the byteswap that occurs with writel
9103 	 */
9104 	rar_low = le32_to_cpup((__le32 *)(addr));
9105 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9106 
9107 	/* Indicate to hardware the Address is Valid. */
9108 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9109 		if (is_valid_ether_addr(addr))
9110 			rar_high |= E1000_RAH_AV;
9111 
9112 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9113 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9114 
9115 		switch (hw->mac.type) {
9116 		case e1000_82575:
9117 		case e1000_i210:
9118 			if (adapter->mac_table[index].state &
9119 			    IGB_MAC_STATE_QUEUE_STEERING)
9120 				rar_high |= E1000_RAH_QSEL_ENABLE;
9121 
9122 			rar_high |= E1000_RAH_POOL_1 *
9123 				    adapter->mac_table[index].queue;
9124 			break;
9125 		default:
9126 			rar_high |= E1000_RAH_POOL_1 <<
9127 				    adapter->mac_table[index].queue;
9128 			break;
9129 		}
9130 	}
9131 
9132 	wr32(E1000_RAL(index), rar_low);
9133 	wrfl();
9134 	wr32(E1000_RAH(index), rar_high);
9135 	wrfl();
9136 }
9137 
9138 static int igb_set_vf_mac(struct igb_adapter *adapter,
9139 			  int vf, unsigned char *mac_addr)
9140 {
9141 	struct e1000_hw *hw = &adapter->hw;
9142 	/* VF MAC addresses start at end of receive addresses and moves
9143 	 * towards the first, as a result a collision should not be possible
9144 	 */
9145 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9146 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9147 
9148 	ether_addr_copy(vf_mac_addr, mac_addr);
9149 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9150 	adapter->mac_table[rar_entry].queue = vf;
9151 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9152 	igb_rar_set_index(adapter, rar_entry);
9153 
9154 	return 0;
9155 }
9156 
9157 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9158 {
9159 	struct igb_adapter *adapter = netdev_priv(netdev);
9160 
9161 	if (vf >= adapter->vfs_allocated_count)
9162 		return -EINVAL;
9163 
9164 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9165 	 * flag and allows to overwrite the MAC via VF netdev.  This
9166 	 * is necessary to allow libvirt a way to restore the original
9167 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9168 	 * down a VM.
9169 	 */
9170 	if (is_zero_ether_addr(mac)) {
9171 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9172 		dev_info(&adapter->pdev->dev,
9173 			 "remove administratively set MAC on VF %d\n",
9174 			 vf);
9175 	} else if (is_valid_ether_addr(mac)) {
9176 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9177 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9178 			 mac, vf);
9179 		dev_info(&adapter->pdev->dev,
9180 			 "Reload the VF driver to make this change effective.");
9181 		/* Generate additional warning if PF is down */
9182 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9183 			dev_warn(&adapter->pdev->dev,
9184 				 "The VF MAC address has been set, but the PF device is not up.\n");
9185 			dev_warn(&adapter->pdev->dev,
9186 				 "Bring the PF device up before attempting to use the VF device.\n");
9187 		}
9188 	} else {
9189 		return -EINVAL;
9190 	}
9191 	return igb_set_vf_mac(adapter, vf, mac);
9192 }
9193 
9194 static int igb_link_mbps(int internal_link_speed)
9195 {
9196 	switch (internal_link_speed) {
9197 	case SPEED_100:
9198 		return 100;
9199 	case SPEED_1000:
9200 		return 1000;
9201 	default:
9202 		return 0;
9203 	}
9204 }
9205 
9206 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9207 				  int link_speed)
9208 {
9209 	int rf_dec, rf_int;
9210 	u32 bcnrc_val;
9211 
9212 	if (tx_rate != 0) {
9213 		/* Calculate the rate factor values to set */
9214 		rf_int = link_speed / tx_rate;
9215 		rf_dec = (link_speed - (rf_int * tx_rate));
9216 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9217 			 tx_rate;
9218 
9219 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9220 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9221 			      E1000_RTTBCNRC_RF_INT_MASK);
9222 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9223 	} else {
9224 		bcnrc_val = 0;
9225 	}
9226 
9227 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9228 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9229 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9230 	 */
9231 	wr32(E1000_RTTBCNRM, 0x14);
9232 	wr32(E1000_RTTBCNRC, bcnrc_val);
9233 }
9234 
9235 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9236 {
9237 	int actual_link_speed, i;
9238 	bool reset_rate = false;
9239 
9240 	/* VF TX rate limit was not set or not supported */
9241 	if ((adapter->vf_rate_link_speed == 0) ||
9242 	    (adapter->hw.mac.type != e1000_82576))
9243 		return;
9244 
9245 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9246 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9247 		reset_rate = true;
9248 		adapter->vf_rate_link_speed = 0;
9249 		dev_info(&adapter->pdev->dev,
9250 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9251 	}
9252 
9253 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9254 		if (reset_rate)
9255 			adapter->vf_data[i].tx_rate = 0;
9256 
9257 		igb_set_vf_rate_limit(&adapter->hw, i,
9258 				      adapter->vf_data[i].tx_rate,
9259 				      actual_link_speed);
9260 	}
9261 }
9262 
9263 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9264 			     int min_tx_rate, int max_tx_rate)
9265 {
9266 	struct igb_adapter *adapter = netdev_priv(netdev);
9267 	struct e1000_hw *hw = &adapter->hw;
9268 	int actual_link_speed;
9269 
9270 	if (hw->mac.type != e1000_82576)
9271 		return -EOPNOTSUPP;
9272 
9273 	if (min_tx_rate)
9274 		return -EINVAL;
9275 
9276 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9277 	if ((vf >= adapter->vfs_allocated_count) ||
9278 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9279 	    (max_tx_rate < 0) ||
9280 	    (max_tx_rate > actual_link_speed))
9281 		return -EINVAL;
9282 
9283 	adapter->vf_rate_link_speed = actual_link_speed;
9284 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9285 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9286 
9287 	return 0;
9288 }
9289 
9290 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9291 				   bool setting)
9292 {
9293 	struct igb_adapter *adapter = netdev_priv(netdev);
9294 	struct e1000_hw *hw = &adapter->hw;
9295 	u32 reg_val, reg_offset;
9296 
9297 	if (!adapter->vfs_allocated_count)
9298 		return -EOPNOTSUPP;
9299 
9300 	if (vf >= adapter->vfs_allocated_count)
9301 		return -EINVAL;
9302 
9303 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9304 	reg_val = rd32(reg_offset);
9305 	if (setting)
9306 		reg_val |= (BIT(vf) |
9307 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9308 	else
9309 		reg_val &= ~(BIT(vf) |
9310 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9311 	wr32(reg_offset, reg_val);
9312 
9313 	adapter->vf_data[vf].spoofchk_enabled = setting;
9314 	return 0;
9315 }
9316 
9317 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9318 {
9319 	struct igb_adapter *adapter = netdev_priv(netdev);
9320 
9321 	if (vf >= adapter->vfs_allocated_count)
9322 		return -EINVAL;
9323 	if (adapter->vf_data[vf].trusted == setting)
9324 		return 0;
9325 
9326 	adapter->vf_data[vf].trusted = setting;
9327 
9328 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9329 		 vf, setting ? "" : "not ");
9330 	return 0;
9331 }
9332 
9333 static int igb_ndo_get_vf_config(struct net_device *netdev,
9334 				 int vf, struct ifla_vf_info *ivi)
9335 {
9336 	struct igb_adapter *adapter = netdev_priv(netdev);
9337 	if (vf >= adapter->vfs_allocated_count)
9338 		return -EINVAL;
9339 	ivi->vf = vf;
9340 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9341 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9342 	ivi->min_tx_rate = 0;
9343 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9344 	ivi->qos = adapter->vf_data[vf].pf_qos;
9345 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9346 	ivi->trusted = adapter->vf_data[vf].trusted;
9347 	return 0;
9348 }
9349 
9350 static void igb_vmm_control(struct igb_adapter *adapter)
9351 {
9352 	struct e1000_hw *hw = &adapter->hw;
9353 	u32 reg;
9354 
9355 	switch (hw->mac.type) {
9356 	case e1000_82575:
9357 	case e1000_i210:
9358 	case e1000_i211:
9359 	case e1000_i354:
9360 	default:
9361 		/* replication is not supported for 82575 */
9362 		return;
9363 	case e1000_82576:
9364 		/* notify HW that the MAC is adding vlan tags */
9365 		reg = rd32(E1000_DTXCTL);
9366 		reg |= E1000_DTXCTL_VLAN_ADDED;
9367 		wr32(E1000_DTXCTL, reg);
9368 		/* Fall through */
9369 	case e1000_82580:
9370 		/* enable replication vlan tag stripping */
9371 		reg = rd32(E1000_RPLOLR);
9372 		reg |= E1000_RPLOLR_STRVLAN;
9373 		wr32(E1000_RPLOLR, reg);
9374 		/* Fall through */
9375 	case e1000_i350:
9376 		/* none of the above registers are supported by i350 */
9377 		break;
9378 	}
9379 
9380 	if (adapter->vfs_allocated_count) {
9381 		igb_vmdq_set_loopback_pf(hw, true);
9382 		igb_vmdq_set_replication_pf(hw, true);
9383 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9384 					      adapter->vfs_allocated_count);
9385 	} else {
9386 		igb_vmdq_set_loopback_pf(hw, false);
9387 		igb_vmdq_set_replication_pf(hw, false);
9388 	}
9389 }
9390 
9391 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9392 {
9393 	struct e1000_hw *hw = &adapter->hw;
9394 	u32 dmac_thr;
9395 	u16 hwm;
9396 
9397 	if (hw->mac.type > e1000_82580) {
9398 		if (adapter->flags & IGB_FLAG_DMAC) {
9399 			u32 reg;
9400 
9401 			/* force threshold to 0. */
9402 			wr32(E1000_DMCTXTH, 0);
9403 
9404 			/* DMA Coalescing high water mark needs to be greater
9405 			 * than the Rx threshold. Set hwm to PBA - max frame
9406 			 * size in 16B units, capping it at PBA - 6KB.
9407 			 */
9408 			hwm = 64 * (pba - 6);
9409 			reg = rd32(E1000_FCRTC);
9410 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9411 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9412 				& E1000_FCRTC_RTH_COAL_MASK);
9413 			wr32(E1000_FCRTC, reg);
9414 
9415 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9416 			 * frame size, capping it at PBA - 10KB.
9417 			 */
9418 			dmac_thr = pba - 10;
9419 			reg = rd32(E1000_DMACR);
9420 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9421 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9422 				& E1000_DMACR_DMACTHR_MASK);
9423 
9424 			/* transition to L0x or L1 if available..*/
9425 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9426 
9427 			/* watchdog timer= +-1000 usec in 32usec intervals */
9428 			reg |= (1000 >> 5);
9429 
9430 			/* Disable BMC-to-OS Watchdog Enable */
9431 			if (hw->mac.type != e1000_i354)
9432 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9433 
9434 			wr32(E1000_DMACR, reg);
9435 
9436 			/* no lower threshold to disable
9437 			 * coalescing(smart fifb)-UTRESH=0
9438 			 */
9439 			wr32(E1000_DMCRTRH, 0);
9440 
9441 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9442 
9443 			wr32(E1000_DMCTLX, reg);
9444 
9445 			/* free space in tx packet buffer to wake from
9446 			 * DMA coal
9447 			 */
9448 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9449 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9450 
9451 			/* make low power state decision controlled
9452 			 * by DMA coal
9453 			 */
9454 			reg = rd32(E1000_PCIEMISC);
9455 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9456 			wr32(E1000_PCIEMISC, reg);
9457 		} /* endif adapter->dmac is not disabled */
9458 	} else if (hw->mac.type == e1000_82580) {
9459 		u32 reg = rd32(E1000_PCIEMISC);
9460 
9461 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9462 		wr32(E1000_DMACR, 0);
9463 	}
9464 }
9465 
9466 /**
9467  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9468  *  @hw: pointer to hardware structure
9469  *  @byte_offset: byte offset to read
9470  *  @dev_addr: device address
9471  *  @data: value read
9472  *
9473  *  Performs byte read operation over I2C interface at
9474  *  a specified device address.
9475  **/
9476 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9477 		      u8 dev_addr, u8 *data)
9478 {
9479 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9480 	struct i2c_client *this_client = adapter->i2c_client;
9481 	s32 status;
9482 	u16 swfw_mask = 0;
9483 
9484 	if (!this_client)
9485 		return E1000_ERR_I2C;
9486 
9487 	swfw_mask = E1000_SWFW_PHY0_SM;
9488 
9489 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9490 		return E1000_ERR_SWFW_SYNC;
9491 
9492 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9493 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9494 
9495 	if (status < 0)
9496 		return E1000_ERR_I2C;
9497 	else {
9498 		*data = status;
9499 		return 0;
9500 	}
9501 }
9502 
9503 /**
9504  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9505  *  @hw: pointer to hardware structure
9506  *  @byte_offset: byte offset to write
9507  *  @dev_addr: device address
9508  *  @data: value to write
9509  *
9510  *  Performs byte write operation over I2C interface at
9511  *  a specified device address.
9512  **/
9513 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9514 		       u8 dev_addr, u8 data)
9515 {
9516 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9517 	struct i2c_client *this_client = adapter->i2c_client;
9518 	s32 status;
9519 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9520 
9521 	if (!this_client)
9522 		return E1000_ERR_I2C;
9523 
9524 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9525 		return E1000_ERR_SWFW_SYNC;
9526 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9527 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9528 
9529 	if (status)
9530 		return E1000_ERR_I2C;
9531 	else
9532 		return 0;
9533 
9534 }
9535 
9536 int igb_reinit_queues(struct igb_adapter *adapter)
9537 {
9538 	struct net_device *netdev = adapter->netdev;
9539 	struct pci_dev *pdev = adapter->pdev;
9540 	int err = 0;
9541 
9542 	if (netif_running(netdev))
9543 		igb_close(netdev);
9544 
9545 	igb_reset_interrupt_capability(adapter);
9546 
9547 	if (igb_init_interrupt_scheme(adapter, true)) {
9548 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9549 		return -ENOMEM;
9550 	}
9551 
9552 	if (netif_running(netdev))
9553 		err = igb_open(netdev);
9554 
9555 	return err;
9556 }
9557 
9558 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9559 {
9560 	struct igb_nfc_filter *rule;
9561 
9562 	spin_lock(&adapter->nfc_lock);
9563 
9564 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9565 		igb_erase_filter(adapter, rule);
9566 
9567 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9568 		igb_erase_filter(adapter, rule);
9569 
9570 	spin_unlock(&adapter->nfc_lock);
9571 }
9572 
9573 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9574 {
9575 	struct igb_nfc_filter *rule;
9576 
9577 	spin_lock(&adapter->nfc_lock);
9578 
9579 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9580 		igb_add_filter(adapter, rule);
9581 
9582 	spin_unlock(&adapter->nfc_lock);
9583 }
9584 /* igb_main.c */
9585