1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/bitops.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/netdevice.h> 13 #include <linux/ipv6.h> 14 #include <linux/slab.h> 15 #include <net/checksum.h> 16 #include <net/ip6_checksum.h> 17 #include <net/pkt_sched.h> 18 #include <net/pkt_cls.h> 19 #include <linux/net_tstamp.h> 20 #include <linux/mii.h> 21 #include <linux/ethtool.h> 22 #include <linux/if.h> 23 #include <linux/if_vlan.h> 24 #include <linux/pci.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/ip.h> 28 #include <linux/tcp.h> 29 #include <linux/sctp.h> 30 #include <linux/if_ether.h> 31 #include <linux/aer.h> 32 #include <linux/prefetch.h> 33 #include <linux/bpf.h> 34 #include <linux/bpf_trace.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/etherdevice.h> 37 #ifdef CONFIG_IGB_DCA 38 #include <linux/dca.h> 39 #endif 40 #include <linux/i2c.h> 41 #include "igb.h" 42 43 enum queue_mode { 44 QUEUE_MODE_STRICT_PRIORITY, 45 QUEUE_MODE_STREAM_RESERVATION, 46 }; 47 48 enum tx_queue_prio { 49 TX_QUEUE_PRIO_HIGH, 50 TX_QUEUE_PRIO_LOW, 51 }; 52 53 char igb_driver_name[] = "igb"; 54 static const char igb_driver_string[] = 55 "Intel(R) Gigabit Ethernet Network Driver"; 56 static const char igb_copyright[] = 57 "Copyright (c) 2007-2014 Intel Corporation."; 58 59 static const struct e1000_info *igb_info_tbl[] = { 60 [board_82575] = &e1000_82575_info, 61 }; 62 63 static const struct pci_device_id igb_pci_tbl[] = { 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 99 /* required last entry */ 100 {0, } 101 }; 102 103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 104 105 static int igb_setup_all_tx_resources(struct igb_adapter *); 106 static int igb_setup_all_rx_resources(struct igb_adapter *); 107 static void igb_free_all_tx_resources(struct igb_adapter *); 108 static void igb_free_all_rx_resources(struct igb_adapter *); 109 static void igb_setup_mrqc(struct igb_adapter *); 110 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 111 static void igb_remove(struct pci_dev *pdev); 112 static int igb_sw_init(struct igb_adapter *); 113 int igb_open(struct net_device *); 114 int igb_close(struct net_device *); 115 static void igb_configure(struct igb_adapter *); 116 static void igb_configure_tx(struct igb_adapter *); 117 static void igb_configure_rx(struct igb_adapter *); 118 static void igb_clean_all_tx_rings(struct igb_adapter *); 119 static void igb_clean_all_rx_rings(struct igb_adapter *); 120 static void igb_clean_tx_ring(struct igb_ring *); 121 static void igb_clean_rx_ring(struct igb_ring *); 122 static void igb_set_rx_mode(struct net_device *); 123 static void igb_update_phy_info(struct timer_list *); 124 static void igb_watchdog(struct timer_list *); 125 static void igb_watchdog_task(struct work_struct *); 126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 127 static void igb_get_stats64(struct net_device *dev, 128 struct rtnl_link_stats64 *stats); 129 static int igb_change_mtu(struct net_device *, int); 130 static int igb_set_mac(struct net_device *, void *); 131 static void igb_set_uta(struct igb_adapter *adapter, bool set); 132 static irqreturn_t igb_intr(int irq, void *); 133 static irqreturn_t igb_intr_msi(int irq, void *); 134 static irqreturn_t igb_msix_other(int irq, void *); 135 static irqreturn_t igb_msix_ring(int irq, void *); 136 #ifdef CONFIG_IGB_DCA 137 static void igb_update_dca(struct igb_q_vector *); 138 static void igb_setup_dca(struct igb_adapter *); 139 #endif /* CONFIG_IGB_DCA */ 140 static int igb_poll(struct napi_struct *, int); 141 static bool igb_clean_tx_irq(struct igb_q_vector *, int); 142 static int igb_clean_rx_irq(struct igb_q_vector *, int); 143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue); 145 static void igb_reset_task(struct work_struct *); 146 static void igb_vlan_mode(struct net_device *netdev, 147 netdev_features_t features); 148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 150 static void igb_restore_vlan(struct igb_adapter *); 151 static void igb_rar_set_index(struct igb_adapter *, u32); 152 static void igb_ping_all_vfs(struct igb_adapter *); 153 static void igb_msg_task(struct igb_adapter *); 154 static void igb_vmm_control(struct igb_adapter *); 155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 156 static void igb_flush_mac_table(struct igb_adapter *); 157 static int igb_available_rars(struct igb_adapter *, u8); 158 static void igb_set_default_mac_filter(struct igb_adapter *); 159 static int igb_uc_sync(struct net_device *, const unsigned char *); 160 static int igb_uc_unsync(struct net_device *, const unsigned char *); 161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 163 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 164 int vf, u16 vlan, u8 qos, __be16 vlan_proto); 165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 167 bool setting); 168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, 169 bool setting); 170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 171 struct ifla_vf_info *ivi); 172 static void igb_check_vf_rate_limit(struct igb_adapter *); 173 static void igb_nfc_filter_exit(struct igb_adapter *adapter); 174 static void igb_nfc_filter_restore(struct igb_adapter *adapter); 175 176 #ifdef CONFIG_PCI_IOV 177 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 179 static int igb_disable_sriov(struct pci_dev *dev); 180 static int igb_pci_disable_sriov(struct pci_dev *dev); 181 #endif 182 183 static int igb_suspend(struct device *); 184 static int igb_resume(struct device *); 185 static int igb_runtime_suspend(struct device *dev); 186 static int igb_runtime_resume(struct device *dev); 187 static int igb_runtime_idle(struct device *dev); 188 static const struct dev_pm_ops igb_pm_ops = { 189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 191 igb_runtime_idle) 192 }; 193 static void igb_shutdown(struct pci_dev *); 194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 195 #ifdef CONFIG_IGB_DCA 196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 197 static struct notifier_block dca_notifier = { 198 .notifier_call = igb_notify_dca, 199 .next = NULL, 200 .priority = 0 201 }; 202 #endif 203 #ifdef CONFIG_PCI_IOV 204 static unsigned int max_vfs; 205 module_param(max_vfs, uint, 0); 206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 207 #endif /* CONFIG_PCI_IOV */ 208 209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 210 pci_channel_state_t); 211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 212 static void igb_io_resume(struct pci_dev *); 213 214 static const struct pci_error_handlers igb_err_handler = { 215 .error_detected = igb_io_error_detected, 216 .slot_reset = igb_io_slot_reset, 217 .resume = igb_io_resume, 218 }; 219 220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 221 222 static struct pci_driver igb_driver = { 223 .name = igb_driver_name, 224 .id_table = igb_pci_tbl, 225 .probe = igb_probe, 226 .remove = igb_remove, 227 #ifdef CONFIG_PM 228 .driver.pm = &igb_pm_ops, 229 #endif 230 .shutdown = igb_shutdown, 231 .sriov_configure = igb_pci_sriov_configure, 232 .err_handler = &igb_err_handler 233 }; 234 235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 237 MODULE_LICENSE("GPL v2"); 238 239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 240 static int debug = -1; 241 module_param(debug, int, 0); 242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 243 244 struct igb_reg_info { 245 u32 ofs; 246 char *name; 247 }; 248 249 static const struct igb_reg_info igb_reg_info_tbl[] = { 250 251 /* General Registers */ 252 {E1000_CTRL, "CTRL"}, 253 {E1000_STATUS, "STATUS"}, 254 {E1000_CTRL_EXT, "CTRL_EXT"}, 255 256 /* Interrupt Registers */ 257 {E1000_ICR, "ICR"}, 258 259 /* RX Registers */ 260 {E1000_RCTL, "RCTL"}, 261 {E1000_RDLEN(0), "RDLEN"}, 262 {E1000_RDH(0), "RDH"}, 263 {E1000_RDT(0), "RDT"}, 264 {E1000_RXDCTL(0), "RXDCTL"}, 265 {E1000_RDBAL(0), "RDBAL"}, 266 {E1000_RDBAH(0), "RDBAH"}, 267 268 /* TX Registers */ 269 {E1000_TCTL, "TCTL"}, 270 {E1000_TDBAL(0), "TDBAL"}, 271 {E1000_TDBAH(0), "TDBAH"}, 272 {E1000_TDLEN(0), "TDLEN"}, 273 {E1000_TDH(0), "TDH"}, 274 {E1000_TDT(0), "TDT"}, 275 {E1000_TXDCTL(0), "TXDCTL"}, 276 {E1000_TDFH, "TDFH"}, 277 {E1000_TDFT, "TDFT"}, 278 {E1000_TDFHS, "TDFHS"}, 279 {E1000_TDFPC, "TDFPC"}, 280 281 /* List Terminator */ 282 {} 283 }; 284 285 /* igb_regdump - register printout routine */ 286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 287 { 288 int n = 0; 289 char rname[16]; 290 u32 regs[8]; 291 292 switch (reginfo->ofs) { 293 case E1000_RDLEN(0): 294 for (n = 0; n < 4; n++) 295 regs[n] = rd32(E1000_RDLEN(n)); 296 break; 297 case E1000_RDH(0): 298 for (n = 0; n < 4; n++) 299 regs[n] = rd32(E1000_RDH(n)); 300 break; 301 case E1000_RDT(0): 302 for (n = 0; n < 4; n++) 303 regs[n] = rd32(E1000_RDT(n)); 304 break; 305 case E1000_RXDCTL(0): 306 for (n = 0; n < 4; n++) 307 regs[n] = rd32(E1000_RXDCTL(n)); 308 break; 309 case E1000_RDBAL(0): 310 for (n = 0; n < 4; n++) 311 regs[n] = rd32(E1000_RDBAL(n)); 312 break; 313 case E1000_RDBAH(0): 314 for (n = 0; n < 4; n++) 315 regs[n] = rd32(E1000_RDBAH(n)); 316 break; 317 case E1000_TDBAL(0): 318 for (n = 0; n < 4; n++) 319 regs[n] = rd32(E1000_TDBAL(n)); 320 break; 321 case E1000_TDBAH(0): 322 for (n = 0; n < 4; n++) 323 regs[n] = rd32(E1000_TDBAH(n)); 324 break; 325 case E1000_TDLEN(0): 326 for (n = 0; n < 4; n++) 327 regs[n] = rd32(E1000_TDLEN(n)); 328 break; 329 case E1000_TDH(0): 330 for (n = 0; n < 4; n++) 331 regs[n] = rd32(E1000_TDH(n)); 332 break; 333 case E1000_TDT(0): 334 for (n = 0; n < 4; n++) 335 regs[n] = rd32(E1000_TDT(n)); 336 break; 337 case E1000_TXDCTL(0): 338 for (n = 0; n < 4; n++) 339 regs[n] = rd32(E1000_TXDCTL(n)); 340 break; 341 default: 342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 343 return; 344 } 345 346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 348 regs[2], regs[3]); 349 } 350 351 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 352 static void igb_dump(struct igb_adapter *adapter) 353 { 354 struct net_device *netdev = adapter->netdev; 355 struct e1000_hw *hw = &adapter->hw; 356 struct igb_reg_info *reginfo; 357 struct igb_ring *tx_ring; 358 union e1000_adv_tx_desc *tx_desc; 359 struct my_u0 { u64 a; u64 b; } *u0; 360 struct igb_ring *rx_ring; 361 union e1000_adv_rx_desc *rx_desc; 362 u32 staterr; 363 u16 i, n; 364 365 if (!netif_msg_hw(adapter)) 366 return; 367 368 /* Print netdevice Info */ 369 if (netdev) { 370 dev_info(&adapter->pdev->dev, "Net device Info\n"); 371 pr_info("Device Name state trans_start\n"); 372 pr_info("%-15s %016lX %016lX\n", netdev->name, 373 netdev->state, dev_trans_start(netdev)); 374 } 375 376 /* Print Registers */ 377 dev_info(&adapter->pdev->dev, "Register Dump\n"); 378 pr_info(" Register Name Value\n"); 379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 380 reginfo->name; reginfo++) { 381 igb_regdump(hw, reginfo); 382 } 383 384 /* Print TX Ring Summary */ 385 if (!netdev || !netif_running(netdev)) 386 goto exit; 387 388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 390 for (n = 0; n < adapter->num_tx_queues; n++) { 391 struct igb_tx_buffer *buffer_info; 392 tx_ring = adapter->tx_ring[n]; 393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 395 n, tx_ring->next_to_use, tx_ring->next_to_clean, 396 (u64)dma_unmap_addr(buffer_info, dma), 397 dma_unmap_len(buffer_info, len), 398 buffer_info->next_to_watch, 399 (u64)buffer_info->time_stamp); 400 } 401 402 /* Print TX Rings */ 403 if (!netif_msg_tx_done(adapter)) 404 goto rx_ring_summary; 405 406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 407 408 /* Transmit Descriptor Formats 409 * 410 * Advanced Transmit Descriptor 411 * +--------------------------------------------------------------+ 412 * 0 | Buffer Address [63:0] | 413 * +--------------------------------------------------------------+ 414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 415 * +--------------------------------------------------------------+ 416 * 63 46 45 40 39 38 36 35 32 31 24 15 0 417 */ 418 419 for (n = 0; n < adapter->num_tx_queues; n++) { 420 tx_ring = adapter->tx_ring[n]; 421 pr_info("------------------------------------\n"); 422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 423 pr_info("------------------------------------\n"); 424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 425 426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 427 const char *next_desc; 428 struct igb_tx_buffer *buffer_info; 429 tx_desc = IGB_TX_DESC(tx_ring, i); 430 buffer_info = &tx_ring->tx_buffer_info[i]; 431 u0 = (struct my_u0 *)tx_desc; 432 if (i == tx_ring->next_to_use && 433 i == tx_ring->next_to_clean) 434 next_desc = " NTC/U"; 435 else if (i == tx_ring->next_to_use) 436 next_desc = " NTU"; 437 else if (i == tx_ring->next_to_clean) 438 next_desc = " NTC"; 439 else 440 next_desc = ""; 441 442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 443 i, le64_to_cpu(u0->a), 444 le64_to_cpu(u0->b), 445 (u64)dma_unmap_addr(buffer_info, dma), 446 dma_unmap_len(buffer_info, len), 447 buffer_info->next_to_watch, 448 (u64)buffer_info->time_stamp, 449 buffer_info->skb, next_desc); 450 451 if (netif_msg_pktdata(adapter) && buffer_info->skb) 452 print_hex_dump(KERN_INFO, "", 453 DUMP_PREFIX_ADDRESS, 454 16, 1, buffer_info->skb->data, 455 dma_unmap_len(buffer_info, len), 456 true); 457 } 458 } 459 460 /* Print RX Rings Summary */ 461 rx_ring_summary: 462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 463 pr_info("Queue [NTU] [NTC]\n"); 464 for (n = 0; n < adapter->num_rx_queues; n++) { 465 rx_ring = adapter->rx_ring[n]; 466 pr_info(" %5d %5X %5X\n", 467 n, rx_ring->next_to_use, rx_ring->next_to_clean); 468 } 469 470 /* Print RX Rings */ 471 if (!netif_msg_rx_status(adapter)) 472 goto exit; 473 474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 475 476 /* Advanced Receive Descriptor (Read) Format 477 * 63 1 0 478 * +-----------------------------------------------------+ 479 * 0 | Packet Buffer Address [63:1] |A0/NSE| 480 * +----------------------------------------------+------+ 481 * 8 | Header Buffer Address [63:1] | DD | 482 * +-----------------------------------------------------+ 483 * 484 * 485 * Advanced Receive Descriptor (Write-Back) Format 486 * 487 * 63 48 47 32 31 30 21 20 17 16 4 3 0 488 * +------------------------------------------------------+ 489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 490 * | Checksum Ident | | | | Type | Type | 491 * +------------------------------------------------------+ 492 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 493 * +------------------------------------------------------+ 494 * 63 48 47 32 31 20 19 0 495 */ 496 497 for (n = 0; n < adapter->num_rx_queues; n++) { 498 rx_ring = adapter->rx_ring[n]; 499 pr_info("------------------------------------\n"); 500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 501 pr_info("------------------------------------\n"); 502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 504 505 for (i = 0; i < rx_ring->count; i++) { 506 const char *next_desc; 507 struct igb_rx_buffer *buffer_info; 508 buffer_info = &rx_ring->rx_buffer_info[i]; 509 rx_desc = IGB_RX_DESC(rx_ring, i); 510 u0 = (struct my_u0 *)rx_desc; 511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 512 513 if (i == rx_ring->next_to_use) 514 next_desc = " NTU"; 515 else if (i == rx_ring->next_to_clean) 516 next_desc = " NTC"; 517 else 518 next_desc = ""; 519 520 if (staterr & E1000_RXD_STAT_DD) { 521 /* Descriptor Done */ 522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 523 "RWB", i, 524 le64_to_cpu(u0->a), 525 le64_to_cpu(u0->b), 526 next_desc); 527 } else { 528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 529 "R ", i, 530 le64_to_cpu(u0->a), 531 le64_to_cpu(u0->b), 532 (u64)buffer_info->dma, 533 next_desc); 534 535 if (netif_msg_pktdata(adapter) && 536 buffer_info->dma && buffer_info->page) { 537 print_hex_dump(KERN_INFO, "", 538 DUMP_PREFIX_ADDRESS, 539 16, 1, 540 page_address(buffer_info->page) + 541 buffer_info->page_offset, 542 igb_rx_bufsz(rx_ring), true); 543 } 544 } 545 } 546 } 547 548 exit: 549 return; 550 } 551 552 /** 553 * igb_get_i2c_data - Reads the I2C SDA data bit 554 * @data: opaque pointer to adapter struct 555 * 556 * Returns the I2C data bit value 557 **/ 558 static int igb_get_i2c_data(void *data) 559 { 560 struct igb_adapter *adapter = (struct igb_adapter *)data; 561 struct e1000_hw *hw = &adapter->hw; 562 s32 i2cctl = rd32(E1000_I2CPARAMS); 563 564 return !!(i2cctl & E1000_I2C_DATA_IN); 565 } 566 567 /** 568 * igb_set_i2c_data - Sets the I2C data bit 569 * @data: pointer to hardware structure 570 * @state: I2C data value (0 or 1) to set 571 * 572 * Sets the I2C data bit 573 **/ 574 static void igb_set_i2c_data(void *data, int state) 575 { 576 struct igb_adapter *adapter = (struct igb_adapter *)data; 577 struct e1000_hw *hw = &adapter->hw; 578 s32 i2cctl = rd32(E1000_I2CPARAMS); 579 580 if (state) 581 i2cctl |= E1000_I2C_DATA_OUT; 582 else 583 i2cctl &= ~E1000_I2C_DATA_OUT; 584 585 i2cctl &= ~E1000_I2C_DATA_OE_N; 586 i2cctl |= E1000_I2C_CLK_OE_N; 587 wr32(E1000_I2CPARAMS, i2cctl); 588 wrfl(); 589 590 } 591 592 /** 593 * igb_set_i2c_clk - Sets the I2C SCL clock 594 * @data: pointer to hardware structure 595 * @state: state to set clock 596 * 597 * Sets the I2C clock line to state 598 **/ 599 static void igb_set_i2c_clk(void *data, int state) 600 { 601 struct igb_adapter *adapter = (struct igb_adapter *)data; 602 struct e1000_hw *hw = &adapter->hw; 603 s32 i2cctl = rd32(E1000_I2CPARAMS); 604 605 if (state) { 606 i2cctl |= E1000_I2C_CLK_OUT; 607 i2cctl &= ~E1000_I2C_CLK_OE_N; 608 } else { 609 i2cctl &= ~E1000_I2C_CLK_OUT; 610 i2cctl &= ~E1000_I2C_CLK_OE_N; 611 } 612 wr32(E1000_I2CPARAMS, i2cctl); 613 wrfl(); 614 } 615 616 /** 617 * igb_get_i2c_clk - Gets the I2C SCL clock state 618 * @data: pointer to hardware structure 619 * 620 * Gets the I2C clock state 621 **/ 622 static int igb_get_i2c_clk(void *data) 623 { 624 struct igb_adapter *adapter = (struct igb_adapter *)data; 625 struct e1000_hw *hw = &adapter->hw; 626 s32 i2cctl = rd32(E1000_I2CPARAMS); 627 628 return !!(i2cctl & E1000_I2C_CLK_IN); 629 } 630 631 static const struct i2c_algo_bit_data igb_i2c_algo = { 632 .setsda = igb_set_i2c_data, 633 .setscl = igb_set_i2c_clk, 634 .getsda = igb_get_i2c_data, 635 .getscl = igb_get_i2c_clk, 636 .udelay = 5, 637 .timeout = 20, 638 }; 639 640 /** 641 * igb_get_hw_dev - return device 642 * @hw: pointer to hardware structure 643 * 644 * used by hardware layer to print debugging information 645 **/ 646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 647 { 648 struct igb_adapter *adapter = hw->back; 649 return adapter->netdev; 650 } 651 652 /** 653 * igb_init_module - Driver Registration Routine 654 * 655 * igb_init_module is the first routine called when the driver is 656 * loaded. All it does is register with the PCI subsystem. 657 **/ 658 static int __init igb_init_module(void) 659 { 660 int ret; 661 662 pr_info("%s\n", igb_driver_string); 663 pr_info("%s\n", igb_copyright); 664 665 #ifdef CONFIG_IGB_DCA 666 dca_register_notify(&dca_notifier); 667 #endif 668 ret = pci_register_driver(&igb_driver); 669 return ret; 670 } 671 672 module_init(igb_init_module); 673 674 /** 675 * igb_exit_module - Driver Exit Cleanup Routine 676 * 677 * igb_exit_module is called just before the driver is removed 678 * from memory. 679 **/ 680 static void __exit igb_exit_module(void) 681 { 682 #ifdef CONFIG_IGB_DCA 683 dca_unregister_notify(&dca_notifier); 684 #endif 685 pci_unregister_driver(&igb_driver); 686 } 687 688 module_exit(igb_exit_module); 689 690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 691 /** 692 * igb_cache_ring_register - Descriptor ring to register mapping 693 * @adapter: board private structure to initialize 694 * 695 * Once we know the feature-set enabled for the device, we'll cache 696 * the register offset the descriptor ring is assigned to. 697 **/ 698 static void igb_cache_ring_register(struct igb_adapter *adapter) 699 { 700 int i = 0, j = 0; 701 u32 rbase_offset = adapter->vfs_allocated_count; 702 703 switch (adapter->hw.mac.type) { 704 case e1000_82576: 705 /* The queues are allocated for virtualization such that VF 0 706 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 707 * In order to avoid collision we start at the first free queue 708 * and continue consuming queues in the same sequence 709 */ 710 if (adapter->vfs_allocated_count) { 711 for (; i < adapter->rss_queues; i++) 712 adapter->rx_ring[i]->reg_idx = rbase_offset + 713 Q_IDX_82576(i); 714 } 715 fallthrough; 716 case e1000_82575: 717 case e1000_82580: 718 case e1000_i350: 719 case e1000_i354: 720 case e1000_i210: 721 case e1000_i211: 722 default: 723 for (; i < adapter->num_rx_queues; i++) 724 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 725 for (; j < adapter->num_tx_queues; j++) 726 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 727 break; 728 } 729 } 730 731 u32 igb_rd32(struct e1000_hw *hw, u32 reg) 732 { 733 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 734 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); 735 u32 value = 0; 736 737 if (E1000_REMOVED(hw_addr)) 738 return ~value; 739 740 value = readl(&hw_addr[reg]); 741 742 /* reads should not return all F's */ 743 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 744 struct net_device *netdev = igb->netdev; 745 hw->hw_addr = NULL; 746 netdev_err(netdev, "PCIe link lost\n"); 747 WARN(pci_device_is_present(igb->pdev), 748 "igb: Failed to read reg 0x%x!\n", reg); 749 } 750 751 return value; 752 } 753 754 /** 755 * igb_write_ivar - configure ivar for given MSI-X vector 756 * @hw: pointer to the HW structure 757 * @msix_vector: vector number we are allocating to a given ring 758 * @index: row index of IVAR register to write within IVAR table 759 * @offset: column offset of in IVAR, should be multiple of 8 760 * 761 * This function is intended to handle the writing of the IVAR register 762 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 763 * each containing an cause allocation for an Rx and Tx ring, and a 764 * variable number of rows depending on the number of queues supported. 765 **/ 766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 767 int index, int offset) 768 { 769 u32 ivar = array_rd32(E1000_IVAR0, index); 770 771 /* clear any bits that are currently set */ 772 ivar &= ~((u32)0xFF << offset); 773 774 /* write vector and valid bit */ 775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 776 777 array_wr32(E1000_IVAR0, index, ivar); 778 } 779 780 #define IGB_N0_QUEUE -1 781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 782 { 783 struct igb_adapter *adapter = q_vector->adapter; 784 struct e1000_hw *hw = &adapter->hw; 785 int rx_queue = IGB_N0_QUEUE; 786 int tx_queue = IGB_N0_QUEUE; 787 u32 msixbm = 0; 788 789 if (q_vector->rx.ring) 790 rx_queue = q_vector->rx.ring->reg_idx; 791 if (q_vector->tx.ring) 792 tx_queue = q_vector->tx.ring->reg_idx; 793 794 switch (hw->mac.type) { 795 case e1000_82575: 796 /* The 82575 assigns vectors using a bitmask, which matches the 797 * bitmask for the EICR/EIMS/EIMC registers. To assign one 798 * or more queues to a vector, we write the appropriate bits 799 * into the MSIXBM register for that vector. 800 */ 801 if (rx_queue > IGB_N0_QUEUE) 802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 803 if (tx_queue > IGB_N0_QUEUE) 804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 805 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 806 msixbm |= E1000_EIMS_OTHER; 807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 808 q_vector->eims_value = msixbm; 809 break; 810 case e1000_82576: 811 /* 82576 uses a table that essentially consists of 2 columns 812 * with 8 rows. The ordering is column-major so we use the 813 * lower 3 bits as the row index, and the 4th bit as the 814 * column offset. 815 */ 816 if (rx_queue > IGB_N0_QUEUE) 817 igb_write_ivar(hw, msix_vector, 818 rx_queue & 0x7, 819 (rx_queue & 0x8) << 1); 820 if (tx_queue > IGB_N0_QUEUE) 821 igb_write_ivar(hw, msix_vector, 822 tx_queue & 0x7, 823 ((tx_queue & 0x8) << 1) + 8); 824 q_vector->eims_value = BIT(msix_vector); 825 break; 826 case e1000_82580: 827 case e1000_i350: 828 case e1000_i354: 829 case e1000_i210: 830 case e1000_i211: 831 /* On 82580 and newer adapters the scheme is similar to 82576 832 * however instead of ordering column-major we have things 833 * ordered row-major. So we traverse the table by using 834 * bit 0 as the column offset, and the remaining bits as the 835 * row index. 836 */ 837 if (rx_queue > IGB_N0_QUEUE) 838 igb_write_ivar(hw, msix_vector, 839 rx_queue >> 1, 840 (rx_queue & 0x1) << 4); 841 if (tx_queue > IGB_N0_QUEUE) 842 igb_write_ivar(hw, msix_vector, 843 tx_queue >> 1, 844 ((tx_queue & 0x1) << 4) + 8); 845 q_vector->eims_value = BIT(msix_vector); 846 break; 847 default: 848 BUG(); 849 break; 850 } 851 852 /* add q_vector eims value to global eims_enable_mask */ 853 adapter->eims_enable_mask |= q_vector->eims_value; 854 855 /* configure q_vector to set itr on first interrupt */ 856 q_vector->set_itr = 1; 857 } 858 859 /** 860 * igb_configure_msix - Configure MSI-X hardware 861 * @adapter: board private structure to initialize 862 * 863 * igb_configure_msix sets up the hardware to properly 864 * generate MSI-X interrupts. 865 **/ 866 static void igb_configure_msix(struct igb_adapter *adapter) 867 { 868 u32 tmp; 869 int i, vector = 0; 870 struct e1000_hw *hw = &adapter->hw; 871 872 adapter->eims_enable_mask = 0; 873 874 /* set vector for other causes, i.e. link changes */ 875 switch (hw->mac.type) { 876 case e1000_82575: 877 tmp = rd32(E1000_CTRL_EXT); 878 /* enable MSI-X PBA support*/ 879 tmp |= E1000_CTRL_EXT_PBA_CLR; 880 881 /* Auto-Mask interrupts upon ICR read. */ 882 tmp |= E1000_CTRL_EXT_EIAME; 883 tmp |= E1000_CTRL_EXT_IRCA; 884 885 wr32(E1000_CTRL_EXT, tmp); 886 887 /* enable msix_other interrupt */ 888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 889 adapter->eims_other = E1000_EIMS_OTHER; 890 891 break; 892 893 case e1000_82576: 894 case e1000_82580: 895 case e1000_i350: 896 case e1000_i354: 897 case e1000_i210: 898 case e1000_i211: 899 /* Turn on MSI-X capability first, or our settings 900 * won't stick. And it will take days to debug. 901 */ 902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 903 E1000_GPIE_PBA | E1000_GPIE_EIAME | 904 E1000_GPIE_NSICR); 905 906 /* enable msix_other interrupt */ 907 adapter->eims_other = BIT(vector); 908 tmp = (vector++ | E1000_IVAR_VALID) << 8; 909 910 wr32(E1000_IVAR_MISC, tmp); 911 break; 912 default: 913 /* do nothing, since nothing else supports MSI-X */ 914 break; 915 } /* switch (hw->mac.type) */ 916 917 adapter->eims_enable_mask |= adapter->eims_other; 918 919 for (i = 0; i < adapter->num_q_vectors; i++) 920 igb_assign_vector(adapter->q_vector[i], vector++); 921 922 wrfl(); 923 } 924 925 /** 926 * igb_request_msix - Initialize MSI-X interrupts 927 * @adapter: board private structure to initialize 928 * 929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 930 * kernel. 931 **/ 932 static int igb_request_msix(struct igb_adapter *adapter) 933 { 934 struct net_device *netdev = adapter->netdev; 935 int i, err = 0, vector = 0, free_vector = 0; 936 937 err = request_irq(adapter->msix_entries[vector].vector, 938 igb_msix_other, 0, netdev->name, adapter); 939 if (err) 940 goto err_out; 941 942 for (i = 0; i < adapter->num_q_vectors; i++) { 943 struct igb_q_vector *q_vector = adapter->q_vector[i]; 944 945 vector++; 946 947 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector); 948 949 if (q_vector->rx.ring && q_vector->tx.ring) 950 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 951 q_vector->rx.ring->queue_index); 952 else if (q_vector->tx.ring) 953 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 954 q_vector->tx.ring->queue_index); 955 else if (q_vector->rx.ring) 956 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 957 q_vector->rx.ring->queue_index); 958 else 959 sprintf(q_vector->name, "%s-unused", netdev->name); 960 961 err = request_irq(adapter->msix_entries[vector].vector, 962 igb_msix_ring, 0, q_vector->name, 963 q_vector); 964 if (err) 965 goto err_free; 966 } 967 968 igb_configure_msix(adapter); 969 return 0; 970 971 err_free: 972 /* free already assigned IRQs */ 973 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 974 975 vector--; 976 for (i = 0; i < vector; i++) { 977 free_irq(adapter->msix_entries[free_vector++].vector, 978 adapter->q_vector[i]); 979 } 980 err_out: 981 return err; 982 } 983 984 /** 985 * igb_free_q_vector - Free memory allocated for specific interrupt vector 986 * @adapter: board private structure to initialize 987 * @v_idx: Index of vector to be freed 988 * 989 * This function frees the memory allocated to the q_vector. 990 **/ 991 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 992 { 993 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 994 995 adapter->q_vector[v_idx] = NULL; 996 997 /* igb_get_stats64() might access the rings on this vector, 998 * we must wait a grace period before freeing it. 999 */ 1000 if (q_vector) 1001 kfree_rcu(q_vector, rcu); 1002 } 1003 1004 /** 1005 * igb_reset_q_vector - Reset config for interrupt vector 1006 * @adapter: board private structure to initialize 1007 * @v_idx: Index of vector to be reset 1008 * 1009 * If NAPI is enabled it will delete any references to the 1010 * NAPI struct. This is preparation for igb_free_q_vector. 1011 **/ 1012 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1013 { 1014 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1015 1016 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1017 * allocated. So, q_vector is NULL so we should stop here. 1018 */ 1019 if (!q_vector) 1020 return; 1021 1022 if (q_vector->tx.ring) 1023 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1024 1025 if (q_vector->rx.ring) 1026 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 1027 1028 netif_napi_del(&q_vector->napi); 1029 1030 } 1031 1032 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1033 { 1034 int v_idx = adapter->num_q_vectors; 1035 1036 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1037 pci_disable_msix(adapter->pdev); 1038 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1039 pci_disable_msi(adapter->pdev); 1040 1041 while (v_idx--) 1042 igb_reset_q_vector(adapter, v_idx); 1043 } 1044 1045 /** 1046 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1047 * @adapter: board private structure to initialize 1048 * 1049 * This function frees the memory allocated to the q_vectors. In addition if 1050 * NAPI is enabled it will delete any references to the NAPI struct prior 1051 * to freeing the q_vector. 1052 **/ 1053 static void igb_free_q_vectors(struct igb_adapter *adapter) 1054 { 1055 int v_idx = adapter->num_q_vectors; 1056 1057 adapter->num_tx_queues = 0; 1058 adapter->num_rx_queues = 0; 1059 adapter->num_q_vectors = 0; 1060 1061 while (v_idx--) { 1062 igb_reset_q_vector(adapter, v_idx); 1063 igb_free_q_vector(adapter, v_idx); 1064 } 1065 } 1066 1067 /** 1068 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1069 * @adapter: board private structure to initialize 1070 * 1071 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1072 * MSI-X interrupts allocated. 1073 */ 1074 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1075 { 1076 igb_free_q_vectors(adapter); 1077 igb_reset_interrupt_capability(adapter); 1078 } 1079 1080 /** 1081 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1082 * @adapter: board private structure to initialize 1083 * @msix: boolean value of MSIX capability 1084 * 1085 * Attempt to configure interrupts using the best available 1086 * capabilities of the hardware and kernel. 1087 **/ 1088 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1089 { 1090 int err; 1091 int numvecs, i; 1092 1093 if (!msix) 1094 goto msi_only; 1095 adapter->flags |= IGB_FLAG_HAS_MSIX; 1096 1097 /* Number of supported queues. */ 1098 adapter->num_rx_queues = adapter->rss_queues; 1099 if (adapter->vfs_allocated_count) 1100 adapter->num_tx_queues = 1; 1101 else 1102 adapter->num_tx_queues = adapter->rss_queues; 1103 1104 /* start with one vector for every Rx queue */ 1105 numvecs = adapter->num_rx_queues; 1106 1107 /* if Tx handler is separate add 1 for every Tx queue */ 1108 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1109 numvecs += adapter->num_tx_queues; 1110 1111 /* store the number of vectors reserved for queues */ 1112 adapter->num_q_vectors = numvecs; 1113 1114 /* add 1 vector for link status interrupts */ 1115 numvecs++; 1116 for (i = 0; i < numvecs; i++) 1117 adapter->msix_entries[i].entry = i; 1118 1119 err = pci_enable_msix_range(adapter->pdev, 1120 adapter->msix_entries, 1121 numvecs, 1122 numvecs); 1123 if (err > 0) 1124 return; 1125 1126 igb_reset_interrupt_capability(adapter); 1127 1128 /* If we can't do MSI-X, try MSI */ 1129 msi_only: 1130 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1131 #ifdef CONFIG_PCI_IOV 1132 /* disable SR-IOV for non MSI-X configurations */ 1133 if (adapter->vf_data) { 1134 struct e1000_hw *hw = &adapter->hw; 1135 /* disable iov and allow time for transactions to clear */ 1136 pci_disable_sriov(adapter->pdev); 1137 msleep(500); 1138 1139 kfree(adapter->vf_mac_list); 1140 adapter->vf_mac_list = NULL; 1141 kfree(adapter->vf_data); 1142 adapter->vf_data = NULL; 1143 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1144 wrfl(); 1145 msleep(100); 1146 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1147 } 1148 #endif 1149 adapter->vfs_allocated_count = 0; 1150 adapter->rss_queues = 1; 1151 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1152 adapter->num_rx_queues = 1; 1153 adapter->num_tx_queues = 1; 1154 adapter->num_q_vectors = 1; 1155 if (!pci_enable_msi(adapter->pdev)) 1156 adapter->flags |= IGB_FLAG_HAS_MSI; 1157 } 1158 1159 static void igb_add_ring(struct igb_ring *ring, 1160 struct igb_ring_container *head) 1161 { 1162 head->ring = ring; 1163 head->count++; 1164 } 1165 1166 /** 1167 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1168 * @adapter: board private structure to initialize 1169 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1170 * @v_idx: index of vector in adapter struct 1171 * @txr_count: total number of Tx rings to allocate 1172 * @txr_idx: index of first Tx ring to allocate 1173 * @rxr_count: total number of Rx rings to allocate 1174 * @rxr_idx: index of first Rx ring to allocate 1175 * 1176 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1177 **/ 1178 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1179 int v_count, int v_idx, 1180 int txr_count, int txr_idx, 1181 int rxr_count, int rxr_idx) 1182 { 1183 struct igb_q_vector *q_vector; 1184 struct igb_ring *ring; 1185 int ring_count; 1186 size_t size; 1187 1188 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1189 if (txr_count > 1 || rxr_count > 1) 1190 return -ENOMEM; 1191 1192 ring_count = txr_count + rxr_count; 1193 size = struct_size(q_vector, ring, ring_count); 1194 1195 /* allocate q_vector and rings */ 1196 q_vector = adapter->q_vector[v_idx]; 1197 if (!q_vector) { 1198 q_vector = kzalloc(size, GFP_KERNEL); 1199 } else if (size > ksize(q_vector)) { 1200 kfree_rcu(q_vector, rcu); 1201 q_vector = kzalloc(size, GFP_KERNEL); 1202 } else { 1203 memset(q_vector, 0, size); 1204 } 1205 if (!q_vector) 1206 return -ENOMEM; 1207 1208 /* initialize NAPI */ 1209 netif_napi_add(adapter->netdev, &q_vector->napi, 1210 igb_poll, 64); 1211 1212 /* tie q_vector and adapter together */ 1213 adapter->q_vector[v_idx] = q_vector; 1214 q_vector->adapter = adapter; 1215 1216 /* initialize work limits */ 1217 q_vector->tx.work_limit = adapter->tx_work_limit; 1218 1219 /* initialize ITR configuration */ 1220 q_vector->itr_register = adapter->io_addr + E1000_EITR(0); 1221 q_vector->itr_val = IGB_START_ITR; 1222 1223 /* initialize pointer to rings */ 1224 ring = q_vector->ring; 1225 1226 /* intialize ITR */ 1227 if (rxr_count) { 1228 /* rx or rx/tx vector */ 1229 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1230 q_vector->itr_val = adapter->rx_itr_setting; 1231 } else { 1232 /* tx only vector */ 1233 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1234 q_vector->itr_val = adapter->tx_itr_setting; 1235 } 1236 1237 if (txr_count) { 1238 /* assign generic ring traits */ 1239 ring->dev = &adapter->pdev->dev; 1240 ring->netdev = adapter->netdev; 1241 1242 /* configure backlink on ring */ 1243 ring->q_vector = q_vector; 1244 1245 /* update q_vector Tx values */ 1246 igb_add_ring(ring, &q_vector->tx); 1247 1248 /* For 82575, context index must be unique per ring. */ 1249 if (adapter->hw.mac.type == e1000_82575) 1250 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1251 1252 /* apply Tx specific ring traits */ 1253 ring->count = adapter->tx_ring_count; 1254 ring->queue_index = txr_idx; 1255 1256 ring->cbs_enable = false; 1257 ring->idleslope = 0; 1258 ring->sendslope = 0; 1259 ring->hicredit = 0; 1260 ring->locredit = 0; 1261 1262 u64_stats_init(&ring->tx_syncp); 1263 u64_stats_init(&ring->tx_syncp2); 1264 1265 /* assign ring to adapter */ 1266 adapter->tx_ring[txr_idx] = ring; 1267 1268 /* push pointer to next ring */ 1269 ring++; 1270 } 1271 1272 if (rxr_count) { 1273 /* assign generic ring traits */ 1274 ring->dev = &adapter->pdev->dev; 1275 ring->netdev = adapter->netdev; 1276 1277 /* configure backlink on ring */ 1278 ring->q_vector = q_vector; 1279 1280 /* update q_vector Rx values */ 1281 igb_add_ring(ring, &q_vector->rx); 1282 1283 /* set flag indicating ring supports SCTP checksum offload */ 1284 if (adapter->hw.mac.type >= e1000_82576) 1285 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1286 1287 /* On i350, i354, i210, and i211, loopback VLAN packets 1288 * have the tag byte-swapped. 1289 */ 1290 if (adapter->hw.mac.type >= e1000_i350) 1291 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1292 1293 /* apply Rx specific ring traits */ 1294 ring->count = adapter->rx_ring_count; 1295 ring->queue_index = rxr_idx; 1296 1297 u64_stats_init(&ring->rx_syncp); 1298 1299 /* assign ring to adapter */ 1300 adapter->rx_ring[rxr_idx] = ring; 1301 } 1302 1303 return 0; 1304 } 1305 1306 1307 /** 1308 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1309 * @adapter: board private structure to initialize 1310 * 1311 * We allocate one q_vector per queue interrupt. If allocation fails we 1312 * return -ENOMEM. 1313 **/ 1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1315 { 1316 int q_vectors = adapter->num_q_vectors; 1317 int rxr_remaining = adapter->num_rx_queues; 1318 int txr_remaining = adapter->num_tx_queues; 1319 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1320 int err; 1321 1322 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1323 for (; rxr_remaining; v_idx++) { 1324 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1325 0, 0, 1, rxr_idx); 1326 1327 if (err) 1328 goto err_out; 1329 1330 /* update counts and index */ 1331 rxr_remaining--; 1332 rxr_idx++; 1333 } 1334 } 1335 1336 for (; v_idx < q_vectors; v_idx++) { 1337 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1338 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1339 1340 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1341 tqpv, txr_idx, rqpv, rxr_idx); 1342 1343 if (err) 1344 goto err_out; 1345 1346 /* update counts and index */ 1347 rxr_remaining -= rqpv; 1348 txr_remaining -= tqpv; 1349 rxr_idx++; 1350 txr_idx++; 1351 } 1352 1353 return 0; 1354 1355 err_out: 1356 adapter->num_tx_queues = 0; 1357 adapter->num_rx_queues = 0; 1358 adapter->num_q_vectors = 0; 1359 1360 while (v_idx--) 1361 igb_free_q_vector(adapter, v_idx); 1362 1363 return -ENOMEM; 1364 } 1365 1366 /** 1367 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1368 * @adapter: board private structure to initialize 1369 * @msix: boolean value of MSIX capability 1370 * 1371 * This function initializes the interrupts and allocates all of the queues. 1372 **/ 1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1374 { 1375 struct pci_dev *pdev = adapter->pdev; 1376 int err; 1377 1378 igb_set_interrupt_capability(adapter, msix); 1379 1380 err = igb_alloc_q_vectors(adapter); 1381 if (err) { 1382 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1383 goto err_alloc_q_vectors; 1384 } 1385 1386 igb_cache_ring_register(adapter); 1387 1388 return 0; 1389 1390 err_alloc_q_vectors: 1391 igb_reset_interrupt_capability(adapter); 1392 return err; 1393 } 1394 1395 /** 1396 * igb_request_irq - initialize interrupts 1397 * @adapter: board private structure to initialize 1398 * 1399 * Attempts to configure interrupts using the best available 1400 * capabilities of the hardware and kernel. 1401 **/ 1402 static int igb_request_irq(struct igb_adapter *adapter) 1403 { 1404 struct net_device *netdev = adapter->netdev; 1405 struct pci_dev *pdev = adapter->pdev; 1406 int err = 0; 1407 1408 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1409 err = igb_request_msix(adapter); 1410 if (!err) 1411 goto request_done; 1412 /* fall back to MSI */ 1413 igb_free_all_tx_resources(adapter); 1414 igb_free_all_rx_resources(adapter); 1415 1416 igb_clear_interrupt_scheme(adapter); 1417 err = igb_init_interrupt_scheme(adapter, false); 1418 if (err) 1419 goto request_done; 1420 1421 igb_setup_all_tx_resources(adapter); 1422 igb_setup_all_rx_resources(adapter); 1423 igb_configure(adapter); 1424 } 1425 1426 igb_assign_vector(adapter->q_vector[0], 0); 1427 1428 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1429 err = request_irq(pdev->irq, igb_intr_msi, 0, 1430 netdev->name, adapter); 1431 if (!err) 1432 goto request_done; 1433 1434 /* fall back to legacy interrupts */ 1435 igb_reset_interrupt_capability(adapter); 1436 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1437 } 1438 1439 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1440 netdev->name, adapter); 1441 1442 if (err) 1443 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1444 err); 1445 1446 request_done: 1447 return err; 1448 } 1449 1450 static void igb_free_irq(struct igb_adapter *adapter) 1451 { 1452 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1453 int vector = 0, i; 1454 1455 free_irq(adapter->msix_entries[vector++].vector, adapter); 1456 1457 for (i = 0; i < adapter->num_q_vectors; i++) 1458 free_irq(adapter->msix_entries[vector++].vector, 1459 adapter->q_vector[i]); 1460 } else { 1461 free_irq(adapter->pdev->irq, adapter); 1462 } 1463 } 1464 1465 /** 1466 * igb_irq_disable - Mask off interrupt generation on the NIC 1467 * @adapter: board private structure 1468 **/ 1469 static void igb_irq_disable(struct igb_adapter *adapter) 1470 { 1471 struct e1000_hw *hw = &adapter->hw; 1472 1473 /* we need to be careful when disabling interrupts. The VFs are also 1474 * mapped into these registers and so clearing the bits can cause 1475 * issues on the VF drivers so we only need to clear what we set 1476 */ 1477 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1478 u32 regval = rd32(E1000_EIAM); 1479 1480 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1481 wr32(E1000_EIMC, adapter->eims_enable_mask); 1482 regval = rd32(E1000_EIAC); 1483 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1484 } 1485 1486 wr32(E1000_IAM, 0); 1487 wr32(E1000_IMC, ~0); 1488 wrfl(); 1489 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1490 int i; 1491 1492 for (i = 0; i < adapter->num_q_vectors; i++) 1493 synchronize_irq(adapter->msix_entries[i].vector); 1494 } else { 1495 synchronize_irq(adapter->pdev->irq); 1496 } 1497 } 1498 1499 /** 1500 * igb_irq_enable - Enable default interrupt generation settings 1501 * @adapter: board private structure 1502 **/ 1503 static void igb_irq_enable(struct igb_adapter *adapter) 1504 { 1505 struct e1000_hw *hw = &adapter->hw; 1506 1507 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1508 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1509 u32 regval = rd32(E1000_EIAC); 1510 1511 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1512 regval = rd32(E1000_EIAM); 1513 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1514 wr32(E1000_EIMS, adapter->eims_enable_mask); 1515 if (adapter->vfs_allocated_count) { 1516 wr32(E1000_MBVFIMR, 0xFF); 1517 ims |= E1000_IMS_VMMB; 1518 } 1519 wr32(E1000_IMS, ims); 1520 } else { 1521 wr32(E1000_IMS, IMS_ENABLE_MASK | 1522 E1000_IMS_DRSTA); 1523 wr32(E1000_IAM, IMS_ENABLE_MASK | 1524 E1000_IMS_DRSTA); 1525 } 1526 } 1527 1528 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1529 { 1530 struct e1000_hw *hw = &adapter->hw; 1531 u16 pf_id = adapter->vfs_allocated_count; 1532 u16 vid = adapter->hw.mng_cookie.vlan_id; 1533 u16 old_vid = adapter->mng_vlan_id; 1534 1535 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1536 /* add VID to filter table */ 1537 igb_vfta_set(hw, vid, pf_id, true, true); 1538 adapter->mng_vlan_id = vid; 1539 } else { 1540 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1541 } 1542 1543 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1544 (vid != old_vid) && 1545 !test_bit(old_vid, adapter->active_vlans)) { 1546 /* remove VID from filter table */ 1547 igb_vfta_set(hw, vid, pf_id, false, true); 1548 } 1549 } 1550 1551 /** 1552 * igb_release_hw_control - release control of the h/w to f/w 1553 * @adapter: address of board private structure 1554 * 1555 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1556 * For ASF and Pass Through versions of f/w this means that the 1557 * driver is no longer loaded. 1558 **/ 1559 static void igb_release_hw_control(struct igb_adapter *adapter) 1560 { 1561 struct e1000_hw *hw = &adapter->hw; 1562 u32 ctrl_ext; 1563 1564 /* Let firmware take over control of h/w */ 1565 ctrl_ext = rd32(E1000_CTRL_EXT); 1566 wr32(E1000_CTRL_EXT, 1567 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1568 } 1569 1570 /** 1571 * igb_get_hw_control - get control of the h/w from f/w 1572 * @adapter: address of board private structure 1573 * 1574 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1575 * For ASF and Pass Through versions of f/w this means that 1576 * the driver is loaded. 1577 **/ 1578 static void igb_get_hw_control(struct igb_adapter *adapter) 1579 { 1580 struct e1000_hw *hw = &adapter->hw; 1581 u32 ctrl_ext; 1582 1583 /* Let firmware know the driver has taken over */ 1584 ctrl_ext = rd32(E1000_CTRL_EXT); 1585 wr32(E1000_CTRL_EXT, 1586 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1587 } 1588 1589 static void enable_fqtss(struct igb_adapter *adapter, bool enable) 1590 { 1591 struct net_device *netdev = adapter->netdev; 1592 struct e1000_hw *hw = &adapter->hw; 1593 1594 WARN_ON(hw->mac.type != e1000_i210); 1595 1596 if (enable) 1597 adapter->flags |= IGB_FLAG_FQTSS; 1598 else 1599 adapter->flags &= ~IGB_FLAG_FQTSS; 1600 1601 if (netif_running(netdev)) 1602 schedule_work(&adapter->reset_task); 1603 } 1604 1605 static bool is_fqtss_enabled(struct igb_adapter *adapter) 1606 { 1607 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false; 1608 } 1609 1610 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue, 1611 enum tx_queue_prio prio) 1612 { 1613 u32 val; 1614 1615 WARN_ON(hw->mac.type != e1000_i210); 1616 WARN_ON(queue < 0 || queue > 4); 1617 1618 val = rd32(E1000_I210_TXDCTL(queue)); 1619 1620 if (prio == TX_QUEUE_PRIO_HIGH) 1621 val |= E1000_TXDCTL_PRIORITY; 1622 else 1623 val &= ~E1000_TXDCTL_PRIORITY; 1624 1625 wr32(E1000_I210_TXDCTL(queue), val); 1626 } 1627 1628 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode) 1629 { 1630 u32 val; 1631 1632 WARN_ON(hw->mac.type != e1000_i210); 1633 WARN_ON(queue < 0 || queue > 1); 1634 1635 val = rd32(E1000_I210_TQAVCC(queue)); 1636 1637 if (mode == QUEUE_MODE_STREAM_RESERVATION) 1638 val |= E1000_TQAVCC_QUEUEMODE; 1639 else 1640 val &= ~E1000_TQAVCC_QUEUEMODE; 1641 1642 wr32(E1000_I210_TQAVCC(queue), val); 1643 } 1644 1645 static bool is_any_cbs_enabled(struct igb_adapter *adapter) 1646 { 1647 int i; 1648 1649 for (i = 0; i < adapter->num_tx_queues; i++) { 1650 if (adapter->tx_ring[i]->cbs_enable) 1651 return true; 1652 } 1653 1654 return false; 1655 } 1656 1657 static bool is_any_txtime_enabled(struct igb_adapter *adapter) 1658 { 1659 int i; 1660 1661 for (i = 0; i < adapter->num_tx_queues; i++) { 1662 if (adapter->tx_ring[i]->launchtime_enable) 1663 return true; 1664 } 1665 1666 return false; 1667 } 1668 1669 /** 1670 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb 1671 * @adapter: pointer to adapter struct 1672 * @queue: queue number 1673 * 1674 * Configure CBS and Launchtime for a given hardware queue. 1675 * Parameters are retrieved from the correct Tx ring, so 1676 * igb_save_cbs_params() and igb_save_txtime_params() should be used 1677 * for setting those correctly prior to this function being called. 1678 **/ 1679 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue) 1680 { 1681 struct igb_ring *ring = adapter->tx_ring[queue]; 1682 struct net_device *netdev = adapter->netdev; 1683 struct e1000_hw *hw = &adapter->hw; 1684 u32 tqavcc, tqavctrl; 1685 u16 value; 1686 1687 WARN_ON(hw->mac.type != e1000_i210); 1688 WARN_ON(queue < 0 || queue > 1); 1689 1690 /* If any of the Qav features is enabled, configure queues as SR and 1691 * with HIGH PRIO. If none is, then configure them with LOW PRIO and 1692 * as SP. 1693 */ 1694 if (ring->cbs_enable || ring->launchtime_enable) { 1695 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH); 1696 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION); 1697 } else { 1698 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW); 1699 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY); 1700 } 1701 1702 /* If CBS is enabled, set DataTranARB and config its parameters. */ 1703 if (ring->cbs_enable || queue == 0) { 1704 /* i210 does not allow the queue 0 to be in the Strict 1705 * Priority mode while the Qav mode is enabled, so, 1706 * instead of disabling strict priority mode, we give 1707 * queue 0 the maximum of credits possible. 1708 * 1709 * See section 8.12.19 of the i210 datasheet, "Note: 1710 * Queue0 QueueMode must be set to 1b when 1711 * TransmitMode is set to Qav." 1712 */ 1713 if (queue == 0 && !ring->cbs_enable) { 1714 /* max "linkspeed" idleslope in kbps */ 1715 ring->idleslope = 1000000; 1716 ring->hicredit = ETH_FRAME_LEN; 1717 } 1718 1719 /* Always set data transfer arbitration to credit-based 1720 * shaper algorithm on TQAVCTRL if CBS is enabled for any of 1721 * the queues. 1722 */ 1723 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1724 tqavctrl |= E1000_TQAVCTRL_DATATRANARB; 1725 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1726 1727 /* According to i210 datasheet section 7.2.7.7, we should set 1728 * the 'idleSlope' field from TQAVCC register following the 1729 * equation: 1730 * 1731 * For 100 Mbps link speed: 1732 * 1733 * value = BW * 0x7735 * 0.2 (E1) 1734 * 1735 * For 1000Mbps link speed: 1736 * 1737 * value = BW * 0x7735 * 2 (E2) 1738 * 1739 * E1 and E2 can be merged into one equation as shown below. 1740 * Note that 'link-speed' is in Mbps. 1741 * 1742 * value = BW * 0x7735 * 2 * link-speed 1743 * -------------- (E3) 1744 * 1000 1745 * 1746 * 'BW' is the percentage bandwidth out of full link speed 1747 * which can be found with the following equation. Note that 1748 * idleSlope here is the parameter from this function which 1749 * is in kbps. 1750 * 1751 * BW = idleSlope 1752 * ----------------- (E4) 1753 * link-speed * 1000 1754 * 1755 * That said, we can come up with a generic equation to 1756 * calculate the value we should set it TQAVCC register by 1757 * replacing 'BW' in E3 by E4. The resulting equation is: 1758 * 1759 * value = idleSlope * 0x7735 * 2 * link-speed 1760 * ----------------- -------------- (E5) 1761 * link-speed * 1000 1000 1762 * 1763 * 'link-speed' is present in both sides of the fraction so 1764 * it is canceled out. The final equation is the following: 1765 * 1766 * value = idleSlope * 61034 1767 * ----------------- (E6) 1768 * 1000000 1769 * 1770 * NOTE: For i210, given the above, we can see that idleslope 1771 * is represented in 16.38431 kbps units by the value at 1772 * the TQAVCC register (1Gbps / 61034), which reduces 1773 * the granularity for idleslope increments. 1774 * For instance, if you want to configure a 2576kbps 1775 * idleslope, the value to be written on the register 1776 * would have to be 157.23. If rounded down, you end 1777 * up with less bandwidth available than originally 1778 * required (~2572 kbps). If rounded up, you end up 1779 * with a higher bandwidth (~2589 kbps). Below the 1780 * approach we take is to always round up the 1781 * calculated value, so the resulting bandwidth might 1782 * be slightly higher for some configurations. 1783 */ 1784 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000); 1785 1786 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1787 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1788 tqavcc |= value; 1789 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1790 1791 wr32(E1000_I210_TQAVHC(queue), 1792 0x80000000 + ring->hicredit * 0x7735); 1793 } else { 1794 1795 /* Set idleSlope to zero. */ 1796 tqavcc = rd32(E1000_I210_TQAVCC(queue)); 1797 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; 1798 wr32(E1000_I210_TQAVCC(queue), tqavcc); 1799 1800 /* Set hiCredit to zero. */ 1801 wr32(E1000_I210_TQAVHC(queue), 0); 1802 1803 /* If CBS is not enabled for any queues anymore, then return to 1804 * the default state of Data Transmission Arbitration on 1805 * TQAVCTRL. 1806 */ 1807 if (!is_any_cbs_enabled(adapter)) { 1808 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1809 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB; 1810 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1811 } 1812 } 1813 1814 /* If LaunchTime is enabled, set DataTranTIM. */ 1815 if (ring->launchtime_enable) { 1816 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled 1817 * for any of the SR queues, and configure fetchtime delta. 1818 * XXX NOTE: 1819 * - LaunchTime will be enabled for all SR queues. 1820 * - A fixed offset can be added relative to the launch 1821 * time of all packets if configured at reg LAUNCH_OS0. 1822 * We are keeping it as 0 for now (default value). 1823 */ 1824 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1825 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM | 1826 E1000_TQAVCTRL_FETCHTIME_DELTA; 1827 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1828 } else { 1829 /* If Launchtime is not enabled for any SR queues anymore, 1830 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta, 1831 * effectively disabling Launchtime. 1832 */ 1833 if (!is_any_txtime_enabled(adapter)) { 1834 tqavctrl = rd32(E1000_I210_TQAVCTRL); 1835 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM; 1836 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA; 1837 wr32(E1000_I210_TQAVCTRL, tqavctrl); 1838 } 1839 } 1840 1841 /* XXX: In i210 controller the sendSlope and loCredit parameters from 1842 * CBS are not configurable by software so we don't do any 'controller 1843 * configuration' in respect to these parameters. 1844 */ 1845 1846 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n", 1847 ring->cbs_enable ? "enabled" : "disabled", 1848 ring->launchtime_enable ? "enabled" : "disabled", 1849 queue, 1850 ring->idleslope, ring->sendslope, 1851 ring->hicredit, ring->locredit); 1852 } 1853 1854 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue, 1855 bool enable) 1856 { 1857 struct igb_ring *ring; 1858 1859 if (queue < 0 || queue > adapter->num_tx_queues) 1860 return -EINVAL; 1861 1862 ring = adapter->tx_ring[queue]; 1863 ring->launchtime_enable = enable; 1864 1865 return 0; 1866 } 1867 1868 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue, 1869 bool enable, int idleslope, int sendslope, 1870 int hicredit, int locredit) 1871 { 1872 struct igb_ring *ring; 1873 1874 if (queue < 0 || queue > adapter->num_tx_queues) 1875 return -EINVAL; 1876 1877 ring = adapter->tx_ring[queue]; 1878 1879 ring->cbs_enable = enable; 1880 ring->idleslope = idleslope; 1881 ring->sendslope = sendslope; 1882 ring->hicredit = hicredit; 1883 ring->locredit = locredit; 1884 1885 return 0; 1886 } 1887 1888 /** 1889 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable 1890 * @adapter: pointer to adapter struct 1891 * 1892 * Configure TQAVCTRL register switching the controller's Tx mode 1893 * if FQTSS mode is enabled or disabled. Additionally, will issue 1894 * a call to igb_config_tx_modes() per queue so any previously saved 1895 * Tx parameters are applied. 1896 **/ 1897 static void igb_setup_tx_mode(struct igb_adapter *adapter) 1898 { 1899 struct net_device *netdev = adapter->netdev; 1900 struct e1000_hw *hw = &adapter->hw; 1901 u32 val; 1902 1903 /* Only i210 controller supports changing the transmission mode. */ 1904 if (hw->mac.type != e1000_i210) 1905 return; 1906 1907 if (is_fqtss_enabled(adapter)) { 1908 int i, max_queue; 1909 1910 /* Configure TQAVCTRL register: set transmit mode to 'Qav', 1911 * set data fetch arbitration to 'round robin', set SP_WAIT_SR 1912 * so SP queues wait for SR ones. 1913 */ 1914 val = rd32(E1000_I210_TQAVCTRL); 1915 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR; 1916 val &= ~E1000_TQAVCTRL_DATAFETCHARB; 1917 wr32(E1000_I210_TQAVCTRL, val); 1918 1919 /* Configure Tx and Rx packet buffers sizes as described in 1920 * i210 datasheet section 7.2.7.7. 1921 */ 1922 val = rd32(E1000_TXPBS); 1923 val &= ~I210_TXPBSIZE_MASK; 1924 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB | 1925 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB; 1926 wr32(E1000_TXPBS, val); 1927 1928 val = rd32(E1000_RXPBS); 1929 val &= ~I210_RXPBSIZE_MASK; 1930 val |= I210_RXPBSIZE_PB_30KB; 1931 wr32(E1000_RXPBS, val); 1932 1933 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ 1934 * register should not exceed the buffer size programmed in 1935 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB 1936 * so according to the datasheet we should set MAX_TPKT_SIZE to 1937 * 4kB / 64. 1938 * 1939 * However, when we do so, no frame from queue 2 and 3 are 1940 * transmitted. It seems the MAX_TPKT_SIZE should not be great 1941 * or _equal_ to the buffer size programmed in TXPBS. For this 1942 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64. 1943 */ 1944 val = (4096 - 1) / 64; 1945 wr32(E1000_I210_DTXMXPKTSZ, val); 1946 1947 /* Since FQTSS mode is enabled, apply any CBS configuration 1948 * previously set. If no previous CBS configuration has been 1949 * done, then the initial configuration is applied, which means 1950 * CBS is disabled. 1951 */ 1952 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ? 1953 adapter->num_tx_queues : I210_SR_QUEUES_NUM; 1954 1955 for (i = 0; i < max_queue; i++) { 1956 igb_config_tx_modes(adapter, i); 1957 } 1958 } else { 1959 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 1960 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 1961 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT); 1962 1963 val = rd32(E1000_I210_TQAVCTRL); 1964 /* According to Section 8.12.21, the other flags we've set when 1965 * enabling FQTSS are not relevant when disabling FQTSS so we 1966 * don't set they here. 1967 */ 1968 val &= ~E1000_TQAVCTRL_XMIT_MODE; 1969 wr32(E1000_I210_TQAVCTRL, val); 1970 } 1971 1972 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ? 1973 "enabled" : "disabled"); 1974 } 1975 1976 /** 1977 * igb_configure - configure the hardware for RX and TX 1978 * @adapter: private board structure 1979 **/ 1980 static void igb_configure(struct igb_adapter *adapter) 1981 { 1982 struct net_device *netdev = adapter->netdev; 1983 int i; 1984 1985 igb_get_hw_control(adapter); 1986 igb_set_rx_mode(netdev); 1987 igb_setup_tx_mode(adapter); 1988 1989 igb_restore_vlan(adapter); 1990 1991 igb_setup_tctl(adapter); 1992 igb_setup_mrqc(adapter); 1993 igb_setup_rctl(adapter); 1994 1995 igb_nfc_filter_restore(adapter); 1996 igb_configure_tx(adapter); 1997 igb_configure_rx(adapter); 1998 1999 igb_rx_fifo_flush_82575(&adapter->hw); 2000 2001 /* call igb_desc_unused which always leaves 2002 * at least 1 descriptor unused to make sure 2003 * next_to_use != next_to_clean 2004 */ 2005 for (i = 0; i < adapter->num_rx_queues; i++) { 2006 struct igb_ring *ring = adapter->rx_ring[i]; 2007 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 2008 } 2009 } 2010 2011 /** 2012 * igb_power_up_link - Power up the phy/serdes link 2013 * @adapter: address of board private structure 2014 **/ 2015 void igb_power_up_link(struct igb_adapter *adapter) 2016 { 2017 igb_reset_phy(&adapter->hw); 2018 2019 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2020 igb_power_up_phy_copper(&adapter->hw); 2021 else 2022 igb_power_up_serdes_link_82575(&adapter->hw); 2023 2024 igb_setup_link(&adapter->hw); 2025 } 2026 2027 /** 2028 * igb_power_down_link - Power down the phy/serdes link 2029 * @adapter: address of board private structure 2030 */ 2031 static void igb_power_down_link(struct igb_adapter *adapter) 2032 { 2033 if (adapter->hw.phy.media_type == e1000_media_type_copper) 2034 igb_power_down_phy_copper_82575(&adapter->hw); 2035 else 2036 igb_shutdown_serdes_link_82575(&adapter->hw); 2037 } 2038 2039 /** 2040 * igb_check_swap_media - Detect and switch function for Media Auto Sense 2041 * @adapter: address of the board private structure 2042 **/ 2043 static void igb_check_swap_media(struct igb_adapter *adapter) 2044 { 2045 struct e1000_hw *hw = &adapter->hw; 2046 u32 ctrl_ext, connsw; 2047 bool swap_now = false; 2048 2049 ctrl_ext = rd32(E1000_CTRL_EXT); 2050 connsw = rd32(E1000_CONNSW); 2051 2052 /* need to live swap if current media is copper and we have fiber/serdes 2053 * to go to. 2054 */ 2055 2056 if ((hw->phy.media_type == e1000_media_type_copper) && 2057 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 2058 swap_now = true; 2059 } else if ((hw->phy.media_type != e1000_media_type_copper) && 2060 !(connsw & E1000_CONNSW_SERDESD)) { 2061 /* copper signal takes time to appear */ 2062 if (adapter->copper_tries < 4) { 2063 adapter->copper_tries++; 2064 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 2065 wr32(E1000_CONNSW, connsw); 2066 return; 2067 } else { 2068 adapter->copper_tries = 0; 2069 if ((connsw & E1000_CONNSW_PHYSD) && 2070 (!(connsw & E1000_CONNSW_PHY_PDN))) { 2071 swap_now = true; 2072 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 2073 wr32(E1000_CONNSW, connsw); 2074 } 2075 } 2076 } 2077 2078 if (!swap_now) 2079 return; 2080 2081 switch (hw->phy.media_type) { 2082 case e1000_media_type_copper: 2083 netdev_info(adapter->netdev, 2084 "MAS: changing media to fiber/serdes\n"); 2085 ctrl_ext |= 2086 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2087 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2088 adapter->copper_tries = 0; 2089 break; 2090 case e1000_media_type_internal_serdes: 2091 case e1000_media_type_fiber: 2092 netdev_info(adapter->netdev, 2093 "MAS: changing media to copper\n"); 2094 ctrl_ext &= 2095 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 2096 adapter->flags |= IGB_FLAG_MEDIA_RESET; 2097 break; 2098 default: 2099 /* shouldn't get here during regular operation */ 2100 netdev_err(adapter->netdev, 2101 "AMS: Invalid media type found, returning\n"); 2102 break; 2103 } 2104 wr32(E1000_CTRL_EXT, ctrl_ext); 2105 } 2106 2107 /** 2108 * igb_up - Open the interface and prepare it to handle traffic 2109 * @adapter: board private structure 2110 **/ 2111 int igb_up(struct igb_adapter *adapter) 2112 { 2113 struct e1000_hw *hw = &adapter->hw; 2114 int i; 2115 2116 /* hardware has been reset, we need to reload some things */ 2117 igb_configure(adapter); 2118 2119 clear_bit(__IGB_DOWN, &adapter->state); 2120 2121 for (i = 0; i < adapter->num_q_vectors; i++) 2122 napi_enable(&(adapter->q_vector[i]->napi)); 2123 2124 if (adapter->flags & IGB_FLAG_HAS_MSIX) 2125 igb_configure_msix(adapter); 2126 else 2127 igb_assign_vector(adapter->q_vector[0], 0); 2128 2129 /* Clear any pending interrupts. */ 2130 rd32(E1000_TSICR); 2131 rd32(E1000_ICR); 2132 igb_irq_enable(adapter); 2133 2134 /* notify VFs that reset has been completed */ 2135 if (adapter->vfs_allocated_count) { 2136 u32 reg_data = rd32(E1000_CTRL_EXT); 2137 2138 reg_data |= E1000_CTRL_EXT_PFRSTD; 2139 wr32(E1000_CTRL_EXT, reg_data); 2140 } 2141 2142 netif_tx_start_all_queues(adapter->netdev); 2143 2144 /* start the watchdog. */ 2145 hw->mac.get_link_status = 1; 2146 schedule_work(&adapter->watchdog_task); 2147 2148 if ((adapter->flags & IGB_FLAG_EEE) && 2149 (!hw->dev_spec._82575.eee_disable)) 2150 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 2151 2152 return 0; 2153 } 2154 2155 void igb_down(struct igb_adapter *adapter) 2156 { 2157 struct net_device *netdev = adapter->netdev; 2158 struct e1000_hw *hw = &adapter->hw; 2159 u32 tctl, rctl; 2160 int i; 2161 2162 /* signal that we're down so the interrupt handler does not 2163 * reschedule our watchdog timer 2164 */ 2165 set_bit(__IGB_DOWN, &adapter->state); 2166 2167 /* disable receives in the hardware */ 2168 rctl = rd32(E1000_RCTL); 2169 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 2170 /* flush and sleep below */ 2171 2172 igb_nfc_filter_exit(adapter); 2173 2174 netif_carrier_off(netdev); 2175 netif_tx_stop_all_queues(netdev); 2176 2177 /* disable transmits in the hardware */ 2178 tctl = rd32(E1000_TCTL); 2179 tctl &= ~E1000_TCTL_EN; 2180 wr32(E1000_TCTL, tctl); 2181 /* flush both disables and wait for them to finish */ 2182 wrfl(); 2183 usleep_range(10000, 11000); 2184 2185 igb_irq_disable(adapter); 2186 2187 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 2188 2189 for (i = 0; i < adapter->num_q_vectors; i++) { 2190 if (adapter->q_vector[i]) { 2191 napi_synchronize(&adapter->q_vector[i]->napi); 2192 napi_disable(&adapter->q_vector[i]->napi); 2193 } 2194 } 2195 2196 del_timer_sync(&adapter->watchdog_timer); 2197 del_timer_sync(&adapter->phy_info_timer); 2198 2199 /* record the stats before reset*/ 2200 spin_lock(&adapter->stats64_lock); 2201 igb_update_stats(adapter); 2202 spin_unlock(&adapter->stats64_lock); 2203 2204 adapter->link_speed = 0; 2205 adapter->link_duplex = 0; 2206 2207 if (!pci_channel_offline(adapter->pdev)) 2208 igb_reset(adapter); 2209 2210 /* clear VLAN promisc flag so VFTA will be updated if necessary */ 2211 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 2212 2213 igb_clean_all_tx_rings(adapter); 2214 igb_clean_all_rx_rings(adapter); 2215 #ifdef CONFIG_IGB_DCA 2216 2217 /* since we reset the hardware DCA settings were cleared */ 2218 igb_setup_dca(adapter); 2219 #endif 2220 } 2221 2222 void igb_reinit_locked(struct igb_adapter *adapter) 2223 { 2224 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 2225 usleep_range(1000, 2000); 2226 igb_down(adapter); 2227 igb_up(adapter); 2228 clear_bit(__IGB_RESETTING, &adapter->state); 2229 } 2230 2231 /** igb_enable_mas - Media Autosense re-enable after swap 2232 * 2233 * @adapter: adapter struct 2234 **/ 2235 static void igb_enable_mas(struct igb_adapter *adapter) 2236 { 2237 struct e1000_hw *hw = &adapter->hw; 2238 u32 connsw = rd32(E1000_CONNSW); 2239 2240 /* configure for SerDes media detect */ 2241 if ((hw->phy.media_type == e1000_media_type_copper) && 2242 (!(connsw & E1000_CONNSW_SERDESD))) { 2243 connsw |= E1000_CONNSW_ENRGSRC; 2244 connsw |= E1000_CONNSW_AUTOSENSE_EN; 2245 wr32(E1000_CONNSW, connsw); 2246 wrfl(); 2247 } 2248 } 2249 2250 void igb_reset(struct igb_adapter *adapter) 2251 { 2252 struct pci_dev *pdev = adapter->pdev; 2253 struct e1000_hw *hw = &adapter->hw; 2254 struct e1000_mac_info *mac = &hw->mac; 2255 struct e1000_fc_info *fc = &hw->fc; 2256 u32 pba, hwm; 2257 2258 /* Repartition Pba for greater than 9k mtu 2259 * To take effect CTRL.RST is required. 2260 */ 2261 switch (mac->type) { 2262 case e1000_i350: 2263 case e1000_i354: 2264 case e1000_82580: 2265 pba = rd32(E1000_RXPBS); 2266 pba = igb_rxpbs_adjust_82580(pba); 2267 break; 2268 case e1000_82576: 2269 pba = rd32(E1000_RXPBS); 2270 pba &= E1000_RXPBS_SIZE_MASK_82576; 2271 break; 2272 case e1000_82575: 2273 case e1000_i210: 2274 case e1000_i211: 2275 default: 2276 pba = E1000_PBA_34K; 2277 break; 2278 } 2279 2280 if (mac->type == e1000_82575) { 2281 u32 min_rx_space, min_tx_space, needed_tx_space; 2282 2283 /* write Rx PBA so that hardware can report correct Tx PBA */ 2284 wr32(E1000_PBA, pba); 2285 2286 /* To maintain wire speed transmits, the Tx FIFO should be 2287 * large enough to accommodate two full transmit packets, 2288 * rounded up to the next 1KB and expressed in KB. Likewise, 2289 * the Rx FIFO should be large enough to accommodate at least 2290 * one full receive packet and is similarly rounded up and 2291 * expressed in KB. 2292 */ 2293 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024); 2294 2295 /* The Tx FIFO also stores 16 bytes of information about the Tx 2296 * but don't include Ethernet FCS because hardware appends it. 2297 * We only need to round down to the nearest 512 byte block 2298 * count since the value we care about is 2 frames, not 1. 2299 */ 2300 min_tx_space = adapter->max_frame_size; 2301 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN; 2302 min_tx_space = DIV_ROUND_UP(min_tx_space, 512); 2303 2304 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2305 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16); 2306 2307 /* If current Tx allocation is less than the min Tx FIFO size, 2308 * and the min Tx FIFO size is less than the current Rx FIFO 2309 * allocation, take space away from current Rx allocation. 2310 */ 2311 if (needed_tx_space < pba) { 2312 pba -= needed_tx_space; 2313 2314 /* if short on Rx space, Rx wins and must trump Tx 2315 * adjustment 2316 */ 2317 if (pba < min_rx_space) 2318 pba = min_rx_space; 2319 } 2320 2321 /* adjust PBA for jumbo frames */ 2322 wr32(E1000_PBA, pba); 2323 } 2324 2325 /* flow control settings 2326 * The high water mark must be low enough to fit one full frame 2327 * after transmitting the pause frame. As such we must have enough 2328 * space to allow for us to complete our current transmit and then 2329 * receive the frame that is in progress from the link partner. 2330 * Set it to: 2331 * - the full Rx FIFO size minus one full Tx plus one full Rx frame 2332 */ 2333 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); 2334 2335 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 2336 fc->low_water = fc->high_water - 16; 2337 fc->pause_time = 0xFFFF; 2338 fc->send_xon = 1; 2339 fc->current_mode = fc->requested_mode; 2340 2341 /* disable receive for all VFs and wait one second */ 2342 if (adapter->vfs_allocated_count) { 2343 int i; 2344 2345 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 2346 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 2347 2348 /* ping all the active vfs to let them know we are going down */ 2349 igb_ping_all_vfs(adapter); 2350 2351 /* disable transmits and receives */ 2352 wr32(E1000_VFRE, 0); 2353 wr32(E1000_VFTE, 0); 2354 } 2355 2356 /* Allow time for pending master requests to run */ 2357 hw->mac.ops.reset_hw(hw); 2358 wr32(E1000_WUC, 0); 2359 2360 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 2361 /* need to resetup here after media swap */ 2362 adapter->ei.get_invariants(hw); 2363 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 2364 } 2365 if ((mac->type == e1000_82575 || mac->type == e1000_i350) && 2366 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 2367 igb_enable_mas(adapter); 2368 } 2369 if (hw->mac.ops.init_hw(hw)) 2370 dev_err(&pdev->dev, "Hardware Error\n"); 2371 2372 /* RAR registers were cleared during init_hw, clear mac table */ 2373 igb_flush_mac_table(adapter); 2374 __dev_uc_unsync(adapter->netdev, NULL); 2375 2376 /* Recover default RAR entry */ 2377 igb_set_default_mac_filter(adapter); 2378 2379 /* Flow control settings reset on hardware reset, so guarantee flow 2380 * control is off when forcing speed. 2381 */ 2382 if (!hw->mac.autoneg) 2383 igb_force_mac_fc(hw); 2384 2385 igb_init_dmac(adapter, pba); 2386 #ifdef CONFIG_IGB_HWMON 2387 /* Re-initialize the thermal sensor on i350 devices. */ 2388 if (!test_bit(__IGB_DOWN, &adapter->state)) { 2389 if (mac->type == e1000_i350 && hw->bus.func == 0) { 2390 /* If present, re-initialize the external thermal sensor 2391 * interface. 2392 */ 2393 if (adapter->ets) 2394 mac->ops.init_thermal_sensor_thresh(hw); 2395 } 2396 } 2397 #endif 2398 /* Re-establish EEE setting */ 2399 if (hw->phy.media_type == e1000_media_type_copper) { 2400 switch (mac->type) { 2401 case e1000_i350: 2402 case e1000_i210: 2403 case e1000_i211: 2404 igb_set_eee_i350(hw, true, true); 2405 break; 2406 case e1000_i354: 2407 igb_set_eee_i354(hw, true, true); 2408 break; 2409 default: 2410 break; 2411 } 2412 } 2413 if (!netif_running(adapter->netdev)) 2414 igb_power_down_link(adapter); 2415 2416 igb_update_mng_vlan(adapter); 2417 2418 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2419 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2420 2421 /* Re-enable PTP, where applicable. */ 2422 if (adapter->ptp_flags & IGB_PTP_ENABLED) 2423 igb_ptp_reset(adapter); 2424 2425 igb_get_phy_info(hw); 2426 } 2427 2428 static netdev_features_t igb_fix_features(struct net_device *netdev, 2429 netdev_features_t features) 2430 { 2431 /* Since there is no support for separate Rx/Tx vlan accel 2432 * enable/disable make sure Tx flag is always in same state as Rx. 2433 */ 2434 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2435 features |= NETIF_F_HW_VLAN_CTAG_TX; 2436 else 2437 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2438 2439 return features; 2440 } 2441 2442 static int igb_set_features(struct net_device *netdev, 2443 netdev_features_t features) 2444 { 2445 netdev_features_t changed = netdev->features ^ features; 2446 struct igb_adapter *adapter = netdev_priv(netdev); 2447 2448 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2449 igb_vlan_mode(netdev, features); 2450 2451 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) 2452 return 0; 2453 2454 if (!(features & NETIF_F_NTUPLE)) { 2455 struct hlist_node *node2; 2456 struct igb_nfc_filter *rule; 2457 2458 spin_lock(&adapter->nfc_lock); 2459 hlist_for_each_entry_safe(rule, node2, 2460 &adapter->nfc_filter_list, nfc_node) { 2461 igb_erase_filter(adapter, rule); 2462 hlist_del(&rule->nfc_node); 2463 kfree(rule); 2464 } 2465 spin_unlock(&adapter->nfc_lock); 2466 adapter->nfc_filter_count = 0; 2467 } 2468 2469 netdev->features = features; 2470 2471 if (netif_running(netdev)) 2472 igb_reinit_locked(adapter); 2473 else 2474 igb_reset(adapter); 2475 2476 return 1; 2477 } 2478 2479 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 2480 struct net_device *dev, 2481 const unsigned char *addr, u16 vid, 2482 u16 flags, 2483 struct netlink_ext_ack *extack) 2484 { 2485 /* guarantee we can provide a unique filter for the unicast address */ 2486 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) { 2487 struct igb_adapter *adapter = netdev_priv(dev); 2488 int vfn = adapter->vfs_allocated_count; 2489 2490 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn)) 2491 return -ENOMEM; 2492 } 2493 2494 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags); 2495 } 2496 2497 #define IGB_MAX_MAC_HDR_LEN 127 2498 #define IGB_MAX_NETWORK_HDR_LEN 511 2499 2500 static netdev_features_t 2501 igb_features_check(struct sk_buff *skb, struct net_device *dev, 2502 netdev_features_t features) 2503 { 2504 unsigned int network_hdr_len, mac_hdr_len; 2505 2506 /* Make certain the headers can be described by a context descriptor */ 2507 mac_hdr_len = skb_network_header(skb) - skb->data; 2508 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN)) 2509 return features & ~(NETIF_F_HW_CSUM | 2510 NETIF_F_SCTP_CRC | 2511 NETIF_F_GSO_UDP_L4 | 2512 NETIF_F_HW_VLAN_CTAG_TX | 2513 NETIF_F_TSO | 2514 NETIF_F_TSO6); 2515 2516 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 2517 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN)) 2518 return features & ~(NETIF_F_HW_CSUM | 2519 NETIF_F_SCTP_CRC | 2520 NETIF_F_GSO_UDP_L4 | 2521 NETIF_F_TSO | 2522 NETIF_F_TSO6); 2523 2524 /* We can only support IPV4 TSO in tunnels if we can mangle the 2525 * inner IP ID field, so strip TSO if MANGLEID is not supported. 2526 */ 2527 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 2528 features &= ~NETIF_F_TSO; 2529 2530 return features; 2531 } 2532 2533 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue) 2534 { 2535 if (!is_fqtss_enabled(adapter)) { 2536 enable_fqtss(adapter, true); 2537 return; 2538 } 2539 2540 igb_config_tx_modes(adapter, queue); 2541 2542 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter)) 2543 enable_fqtss(adapter, false); 2544 } 2545 2546 static int igb_offload_cbs(struct igb_adapter *adapter, 2547 struct tc_cbs_qopt_offload *qopt) 2548 { 2549 struct e1000_hw *hw = &adapter->hw; 2550 int err; 2551 2552 /* CBS offloading is only supported by i210 controller. */ 2553 if (hw->mac.type != e1000_i210) 2554 return -EOPNOTSUPP; 2555 2556 /* CBS offloading is only supported by queue 0 and queue 1. */ 2557 if (qopt->queue < 0 || qopt->queue > 1) 2558 return -EINVAL; 2559 2560 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable, 2561 qopt->idleslope, qopt->sendslope, 2562 qopt->hicredit, qopt->locredit); 2563 if (err) 2564 return err; 2565 2566 igb_offload_apply(adapter, qopt->queue); 2567 2568 return 0; 2569 } 2570 2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) 2572 #define VLAN_PRIO_FULL_MASK (0x07) 2573 2574 static int igb_parse_cls_flower(struct igb_adapter *adapter, 2575 struct flow_cls_offload *f, 2576 int traffic_class, 2577 struct igb_nfc_filter *input) 2578 { 2579 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 2580 struct flow_dissector *dissector = rule->match.dissector; 2581 struct netlink_ext_ack *extack = f->common.extack; 2582 2583 if (dissector->used_keys & 2584 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) | 2585 BIT(FLOW_DISSECTOR_KEY_CONTROL) | 2586 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 2587 BIT(FLOW_DISSECTOR_KEY_VLAN))) { 2588 NL_SET_ERR_MSG_MOD(extack, 2589 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported"); 2590 return -EOPNOTSUPP; 2591 } 2592 2593 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 2594 struct flow_match_eth_addrs match; 2595 2596 flow_rule_match_eth_addrs(rule, &match); 2597 if (!is_zero_ether_addr(match.mask->dst)) { 2598 if (!is_broadcast_ether_addr(match.mask->dst)) { 2599 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address"); 2600 return -EINVAL; 2601 } 2602 2603 input->filter.match_flags |= 2604 IGB_FILTER_FLAG_DST_MAC_ADDR; 2605 ether_addr_copy(input->filter.dst_addr, match.key->dst); 2606 } 2607 2608 if (!is_zero_ether_addr(match.mask->src)) { 2609 if (!is_broadcast_ether_addr(match.mask->src)) { 2610 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address"); 2611 return -EINVAL; 2612 } 2613 2614 input->filter.match_flags |= 2615 IGB_FILTER_FLAG_SRC_MAC_ADDR; 2616 ether_addr_copy(input->filter.src_addr, match.key->src); 2617 } 2618 } 2619 2620 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 2621 struct flow_match_basic match; 2622 2623 flow_rule_match_basic(rule, &match); 2624 if (match.mask->n_proto) { 2625 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) { 2626 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter"); 2627 return -EINVAL; 2628 } 2629 2630 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE; 2631 input->filter.etype = match.key->n_proto; 2632 } 2633 } 2634 2635 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 2636 struct flow_match_vlan match; 2637 2638 flow_rule_match_vlan(rule, &match); 2639 if (match.mask->vlan_priority) { 2640 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) { 2641 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority"); 2642 return -EINVAL; 2643 } 2644 2645 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2646 input->filter.vlan_tci = match.key->vlan_priority; 2647 } 2648 } 2649 2650 input->action = traffic_class; 2651 input->cookie = f->cookie; 2652 2653 return 0; 2654 } 2655 2656 static int igb_configure_clsflower(struct igb_adapter *adapter, 2657 struct flow_cls_offload *cls_flower) 2658 { 2659 struct netlink_ext_ack *extack = cls_flower->common.extack; 2660 struct igb_nfc_filter *filter, *f; 2661 int err, tc; 2662 2663 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 2664 if (tc < 0) { 2665 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class"); 2666 return -EINVAL; 2667 } 2668 2669 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 2670 if (!filter) 2671 return -ENOMEM; 2672 2673 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter); 2674 if (err < 0) 2675 goto err_parse; 2676 2677 spin_lock(&adapter->nfc_lock); 2678 2679 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) { 2680 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2681 err = -EEXIST; 2682 NL_SET_ERR_MSG_MOD(extack, 2683 "This filter is already set in ethtool"); 2684 goto err_locked; 2685 } 2686 } 2687 2688 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) { 2689 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { 2690 err = -EEXIST; 2691 NL_SET_ERR_MSG_MOD(extack, 2692 "This filter is already set in cls_flower"); 2693 goto err_locked; 2694 } 2695 } 2696 2697 err = igb_add_filter(adapter, filter); 2698 if (err < 0) { 2699 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter"); 2700 goto err_locked; 2701 } 2702 2703 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list); 2704 2705 spin_unlock(&adapter->nfc_lock); 2706 2707 return 0; 2708 2709 err_locked: 2710 spin_unlock(&adapter->nfc_lock); 2711 2712 err_parse: 2713 kfree(filter); 2714 2715 return err; 2716 } 2717 2718 static int igb_delete_clsflower(struct igb_adapter *adapter, 2719 struct flow_cls_offload *cls_flower) 2720 { 2721 struct igb_nfc_filter *filter; 2722 int err; 2723 2724 spin_lock(&adapter->nfc_lock); 2725 2726 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node) 2727 if (filter->cookie == cls_flower->cookie) 2728 break; 2729 2730 if (!filter) { 2731 err = -ENOENT; 2732 goto out; 2733 } 2734 2735 err = igb_erase_filter(adapter, filter); 2736 if (err < 0) 2737 goto out; 2738 2739 hlist_del(&filter->nfc_node); 2740 kfree(filter); 2741 2742 out: 2743 spin_unlock(&adapter->nfc_lock); 2744 2745 return err; 2746 } 2747 2748 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter, 2749 struct flow_cls_offload *cls_flower) 2750 { 2751 switch (cls_flower->command) { 2752 case FLOW_CLS_REPLACE: 2753 return igb_configure_clsflower(adapter, cls_flower); 2754 case FLOW_CLS_DESTROY: 2755 return igb_delete_clsflower(adapter, cls_flower); 2756 case FLOW_CLS_STATS: 2757 return -EOPNOTSUPP; 2758 default: 2759 return -EOPNOTSUPP; 2760 } 2761 } 2762 2763 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2764 void *cb_priv) 2765 { 2766 struct igb_adapter *adapter = cb_priv; 2767 2768 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 2769 return -EOPNOTSUPP; 2770 2771 switch (type) { 2772 case TC_SETUP_CLSFLOWER: 2773 return igb_setup_tc_cls_flower(adapter, type_data); 2774 2775 default: 2776 return -EOPNOTSUPP; 2777 } 2778 } 2779 2780 static int igb_offload_txtime(struct igb_adapter *adapter, 2781 struct tc_etf_qopt_offload *qopt) 2782 { 2783 struct e1000_hw *hw = &adapter->hw; 2784 int err; 2785 2786 /* Launchtime offloading is only supported by i210 controller. */ 2787 if (hw->mac.type != e1000_i210) 2788 return -EOPNOTSUPP; 2789 2790 /* Launchtime offloading is only supported by queues 0 and 1. */ 2791 if (qopt->queue < 0 || qopt->queue > 1) 2792 return -EINVAL; 2793 2794 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable); 2795 if (err) 2796 return err; 2797 2798 igb_offload_apply(adapter, qopt->queue); 2799 2800 return 0; 2801 } 2802 2803 static LIST_HEAD(igb_block_cb_list); 2804 2805 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type, 2806 void *type_data) 2807 { 2808 struct igb_adapter *adapter = netdev_priv(dev); 2809 2810 switch (type) { 2811 case TC_SETUP_QDISC_CBS: 2812 return igb_offload_cbs(adapter, type_data); 2813 case TC_SETUP_BLOCK: 2814 return flow_block_cb_setup_simple(type_data, 2815 &igb_block_cb_list, 2816 igb_setup_tc_block_cb, 2817 adapter, adapter, true); 2818 2819 case TC_SETUP_QDISC_ETF: 2820 return igb_offload_txtime(adapter, type_data); 2821 2822 default: 2823 return -EOPNOTSUPP; 2824 } 2825 } 2826 2827 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf) 2828 { 2829 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD; 2830 struct igb_adapter *adapter = netdev_priv(dev); 2831 struct bpf_prog *prog = bpf->prog, *old_prog; 2832 bool running = netif_running(dev); 2833 bool need_reset; 2834 2835 /* verify igb ring attributes are sufficient for XDP */ 2836 for (i = 0; i < adapter->num_rx_queues; i++) { 2837 struct igb_ring *ring = adapter->rx_ring[i]; 2838 2839 if (frame_size > igb_rx_bufsz(ring)) { 2840 NL_SET_ERR_MSG_MOD(bpf->extack, 2841 "The RX buffer size is too small for the frame size"); 2842 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n", 2843 igb_rx_bufsz(ring), frame_size); 2844 return -EINVAL; 2845 } 2846 } 2847 2848 old_prog = xchg(&adapter->xdp_prog, prog); 2849 need_reset = (!!prog != !!old_prog); 2850 2851 /* device is up and bpf is added/removed, must setup the RX queues */ 2852 if (need_reset && running) { 2853 igb_close(dev); 2854 } else { 2855 for (i = 0; i < adapter->num_rx_queues; i++) 2856 (void)xchg(&adapter->rx_ring[i]->xdp_prog, 2857 adapter->xdp_prog); 2858 } 2859 2860 if (old_prog) 2861 bpf_prog_put(old_prog); 2862 2863 /* bpf is just replaced, RXQ and MTU are already setup */ 2864 if (!need_reset) 2865 return 0; 2866 2867 if (running) 2868 igb_open(dev); 2869 2870 return 0; 2871 } 2872 2873 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2874 { 2875 switch (xdp->command) { 2876 case XDP_SETUP_PROG: 2877 return igb_xdp_setup(dev, xdp); 2878 default: 2879 return -EINVAL; 2880 } 2881 } 2882 2883 static void igb_xdp_ring_update_tail(struct igb_ring *ring) 2884 { 2885 /* Force memory writes to complete before letting h/w know there 2886 * are new descriptors to fetch. 2887 */ 2888 wmb(); 2889 writel(ring->next_to_use, ring->tail); 2890 } 2891 2892 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter) 2893 { 2894 unsigned int r_idx = smp_processor_id(); 2895 2896 if (r_idx >= adapter->num_tx_queues) 2897 r_idx = r_idx % adapter->num_tx_queues; 2898 2899 return adapter->tx_ring[r_idx]; 2900 } 2901 2902 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp) 2903 { 2904 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2905 int cpu = smp_processor_id(); 2906 struct igb_ring *tx_ring; 2907 struct netdev_queue *nq; 2908 u32 ret; 2909 2910 if (unlikely(!xdpf)) 2911 return IGB_XDP_CONSUMED; 2912 2913 /* During program transitions its possible adapter->xdp_prog is assigned 2914 * but ring has not been configured yet. In this case simply abort xmit. 2915 */ 2916 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2917 if (unlikely(!tx_ring)) 2918 return IGB_XDP_CONSUMED; 2919 2920 nq = txring_txq(tx_ring); 2921 __netif_tx_lock(nq, cpu); 2922 /* Avoid transmit queue timeout since we share it with the slow path */ 2923 nq->trans_start = jiffies; 2924 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2925 __netif_tx_unlock(nq); 2926 2927 return ret; 2928 } 2929 2930 static int igb_xdp_xmit(struct net_device *dev, int n, 2931 struct xdp_frame **frames, u32 flags) 2932 { 2933 struct igb_adapter *adapter = netdev_priv(dev); 2934 int cpu = smp_processor_id(); 2935 struct igb_ring *tx_ring; 2936 struct netdev_queue *nq; 2937 int nxmit = 0; 2938 int i; 2939 2940 if (unlikely(test_bit(__IGB_DOWN, &adapter->state))) 2941 return -ENETDOWN; 2942 2943 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2944 return -EINVAL; 2945 2946 /* During program transitions its possible adapter->xdp_prog is assigned 2947 * but ring has not been configured yet. In this case simply abort xmit. 2948 */ 2949 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; 2950 if (unlikely(!tx_ring)) 2951 return -ENXIO; 2952 2953 nq = txring_txq(tx_ring); 2954 __netif_tx_lock(nq, cpu); 2955 2956 /* Avoid transmit queue timeout since we share it with the slow path */ 2957 nq->trans_start = jiffies; 2958 2959 for (i = 0; i < n; i++) { 2960 struct xdp_frame *xdpf = frames[i]; 2961 int err; 2962 2963 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); 2964 if (err != IGB_XDP_TX) 2965 break; 2966 nxmit++; 2967 } 2968 2969 __netif_tx_unlock(nq); 2970 2971 if (unlikely(flags & XDP_XMIT_FLUSH)) 2972 igb_xdp_ring_update_tail(tx_ring); 2973 2974 return nxmit; 2975 } 2976 2977 static const struct net_device_ops igb_netdev_ops = { 2978 .ndo_open = igb_open, 2979 .ndo_stop = igb_close, 2980 .ndo_start_xmit = igb_xmit_frame, 2981 .ndo_get_stats64 = igb_get_stats64, 2982 .ndo_set_rx_mode = igb_set_rx_mode, 2983 .ndo_set_mac_address = igb_set_mac, 2984 .ndo_change_mtu = igb_change_mtu, 2985 .ndo_do_ioctl = igb_ioctl, 2986 .ndo_tx_timeout = igb_tx_timeout, 2987 .ndo_validate_addr = eth_validate_addr, 2988 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2989 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 2990 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 2991 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 2992 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 2993 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 2994 .ndo_set_vf_trust = igb_ndo_set_vf_trust, 2995 .ndo_get_vf_config = igb_ndo_get_vf_config, 2996 .ndo_fix_features = igb_fix_features, 2997 .ndo_set_features = igb_set_features, 2998 .ndo_fdb_add = igb_ndo_fdb_add, 2999 .ndo_features_check = igb_features_check, 3000 .ndo_setup_tc = igb_setup_tc, 3001 .ndo_bpf = igb_xdp, 3002 .ndo_xdp_xmit = igb_xdp_xmit, 3003 }; 3004 3005 /** 3006 * igb_set_fw_version - Configure version string for ethtool 3007 * @adapter: adapter struct 3008 **/ 3009 void igb_set_fw_version(struct igb_adapter *adapter) 3010 { 3011 struct e1000_hw *hw = &adapter->hw; 3012 struct e1000_fw_version fw; 3013 3014 igb_get_fw_version(hw, &fw); 3015 3016 switch (hw->mac.type) { 3017 case e1000_i210: 3018 case e1000_i211: 3019 if (!(igb_get_flash_presence_i210(hw))) { 3020 snprintf(adapter->fw_version, 3021 sizeof(adapter->fw_version), 3022 "%2d.%2d-%d", 3023 fw.invm_major, fw.invm_minor, 3024 fw.invm_img_type); 3025 break; 3026 } 3027 fallthrough; 3028 default: 3029 /* if option is rom valid, display its version too */ 3030 if (fw.or_valid) { 3031 snprintf(adapter->fw_version, 3032 sizeof(adapter->fw_version), 3033 "%d.%d, 0x%08x, %d.%d.%d", 3034 fw.eep_major, fw.eep_minor, fw.etrack_id, 3035 fw.or_major, fw.or_build, fw.or_patch); 3036 /* no option rom */ 3037 } else if (fw.etrack_id != 0X0000) { 3038 snprintf(adapter->fw_version, 3039 sizeof(adapter->fw_version), 3040 "%d.%d, 0x%08x", 3041 fw.eep_major, fw.eep_minor, fw.etrack_id); 3042 } else { 3043 snprintf(adapter->fw_version, 3044 sizeof(adapter->fw_version), 3045 "%d.%d.%d", 3046 fw.eep_major, fw.eep_minor, fw.eep_build); 3047 } 3048 break; 3049 } 3050 } 3051 3052 /** 3053 * igb_init_mas - init Media Autosense feature if enabled in the NVM 3054 * 3055 * @adapter: adapter struct 3056 **/ 3057 static void igb_init_mas(struct igb_adapter *adapter) 3058 { 3059 struct e1000_hw *hw = &adapter->hw; 3060 u16 eeprom_data; 3061 3062 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 3063 switch (hw->bus.func) { 3064 case E1000_FUNC_0: 3065 if (eeprom_data & IGB_MAS_ENABLE_0) { 3066 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3067 netdev_info(adapter->netdev, 3068 "MAS: Enabling Media Autosense for port %d\n", 3069 hw->bus.func); 3070 } 3071 break; 3072 case E1000_FUNC_1: 3073 if (eeprom_data & IGB_MAS_ENABLE_1) { 3074 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3075 netdev_info(adapter->netdev, 3076 "MAS: Enabling Media Autosense for port %d\n", 3077 hw->bus.func); 3078 } 3079 break; 3080 case E1000_FUNC_2: 3081 if (eeprom_data & IGB_MAS_ENABLE_2) { 3082 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3083 netdev_info(adapter->netdev, 3084 "MAS: Enabling Media Autosense for port %d\n", 3085 hw->bus.func); 3086 } 3087 break; 3088 case E1000_FUNC_3: 3089 if (eeprom_data & IGB_MAS_ENABLE_3) { 3090 adapter->flags |= IGB_FLAG_MAS_ENABLE; 3091 netdev_info(adapter->netdev, 3092 "MAS: Enabling Media Autosense for port %d\n", 3093 hw->bus.func); 3094 } 3095 break; 3096 default: 3097 /* Shouldn't get here */ 3098 netdev_err(adapter->netdev, 3099 "MAS: Invalid port configuration, returning\n"); 3100 break; 3101 } 3102 } 3103 3104 /** 3105 * igb_init_i2c - Init I2C interface 3106 * @adapter: pointer to adapter structure 3107 **/ 3108 static s32 igb_init_i2c(struct igb_adapter *adapter) 3109 { 3110 s32 status = 0; 3111 3112 /* I2C interface supported on i350 devices */ 3113 if (adapter->hw.mac.type != e1000_i350) 3114 return 0; 3115 3116 /* Initialize the i2c bus which is controlled by the registers. 3117 * This bus will use the i2c_algo_bit structure that implements 3118 * the protocol through toggling of the 4 bits in the register. 3119 */ 3120 adapter->i2c_adap.owner = THIS_MODULE; 3121 adapter->i2c_algo = igb_i2c_algo; 3122 adapter->i2c_algo.data = adapter; 3123 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 3124 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 3125 strlcpy(adapter->i2c_adap.name, "igb BB", 3126 sizeof(adapter->i2c_adap.name)); 3127 status = i2c_bit_add_bus(&adapter->i2c_adap); 3128 return status; 3129 } 3130 3131 /** 3132 * igb_probe - Device Initialization Routine 3133 * @pdev: PCI device information struct 3134 * @ent: entry in igb_pci_tbl 3135 * 3136 * Returns 0 on success, negative on failure 3137 * 3138 * igb_probe initializes an adapter identified by a pci_dev structure. 3139 * The OS initialization, configuring of the adapter private structure, 3140 * and a hardware reset occur. 3141 **/ 3142 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3143 { 3144 struct net_device *netdev; 3145 struct igb_adapter *adapter; 3146 struct e1000_hw *hw; 3147 u16 eeprom_data = 0; 3148 s32 ret_val; 3149 static int global_quad_port_a; /* global quad port a indication */ 3150 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 3151 int err, pci_using_dac; 3152 u8 part_str[E1000_PBANUM_LENGTH]; 3153 3154 /* Catch broken hardware that put the wrong VF device ID in 3155 * the PCIe SR-IOV capability. 3156 */ 3157 if (pdev->is_virtfn) { 3158 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n", 3159 pci_name(pdev), pdev->vendor, pdev->device); 3160 return -EINVAL; 3161 } 3162 3163 err = pci_enable_device_mem(pdev); 3164 if (err) 3165 return err; 3166 3167 pci_using_dac = 0; 3168 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3169 if (!err) { 3170 pci_using_dac = 1; 3171 } else { 3172 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3173 if (err) { 3174 dev_err(&pdev->dev, 3175 "No usable DMA configuration, aborting\n"); 3176 goto err_dma; 3177 } 3178 } 3179 3180 err = pci_request_mem_regions(pdev, igb_driver_name); 3181 if (err) 3182 goto err_pci_reg; 3183 3184 pci_enable_pcie_error_reporting(pdev); 3185 3186 pci_set_master(pdev); 3187 pci_save_state(pdev); 3188 3189 err = -ENOMEM; 3190 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 3191 IGB_MAX_TX_QUEUES); 3192 if (!netdev) 3193 goto err_alloc_etherdev; 3194 3195 SET_NETDEV_DEV(netdev, &pdev->dev); 3196 3197 pci_set_drvdata(pdev, netdev); 3198 adapter = netdev_priv(netdev); 3199 adapter->netdev = netdev; 3200 adapter->pdev = pdev; 3201 hw = &adapter->hw; 3202 hw->back = adapter; 3203 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3204 3205 err = -EIO; 3206 adapter->io_addr = pci_iomap(pdev, 0, 0); 3207 if (!adapter->io_addr) 3208 goto err_ioremap; 3209 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */ 3210 hw->hw_addr = adapter->io_addr; 3211 3212 netdev->netdev_ops = &igb_netdev_ops; 3213 igb_set_ethtool_ops(netdev); 3214 netdev->watchdog_timeo = 5 * HZ; 3215 3216 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 3217 3218 netdev->mem_start = pci_resource_start(pdev, 0); 3219 netdev->mem_end = pci_resource_end(pdev, 0); 3220 3221 /* PCI config space info */ 3222 hw->vendor_id = pdev->vendor; 3223 hw->device_id = pdev->device; 3224 hw->revision_id = pdev->revision; 3225 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3226 hw->subsystem_device_id = pdev->subsystem_device; 3227 3228 /* Copy the default MAC, PHY and NVM function pointers */ 3229 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 3230 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 3231 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 3232 /* Initialize skew-specific constants */ 3233 err = ei->get_invariants(hw); 3234 if (err) 3235 goto err_sw_init; 3236 3237 /* setup the private structure */ 3238 err = igb_sw_init(adapter); 3239 if (err) 3240 goto err_sw_init; 3241 3242 igb_get_bus_info_pcie(hw); 3243 3244 hw->phy.autoneg_wait_to_complete = false; 3245 3246 /* Copper options */ 3247 if (hw->phy.media_type == e1000_media_type_copper) { 3248 hw->phy.mdix = AUTO_ALL_MODES; 3249 hw->phy.disable_polarity_correction = false; 3250 hw->phy.ms_type = e1000_ms_hw_default; 3251 } 3252 3253 if (igb_check_reset_block(hw)) 3254 dev_info(&pdev->dev, 3255 "PHY reset is blocked due to SOL/IDER session.\n"); 3256 3257 /* features is initialized to 0 in allocation, it might have bits 3258 * set by igb_sw_init so we should use an or instead of an 3259 * assignment. 3260 */ 3261 netdev->features |= NETIF_F_SG | 3262 NETIF_F_TSO | 3263 NETIF_F_TSO6 | 3264 NETIF_F_RXHASH | 3265 NETIF_F_RXCSUM | 3266 NETIF_F_HW_CSUM; 3267 3268 if (hw->mac.type >= e1000_82576) 3269 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4; 3270 3271 if (hw->mac.type >= e1000_i350) 3272 netdev->features |= NETIF_F_HW_TC; 3273 3274 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 3275 NETIF_F_GSO_GRE_CSUM | \ 3276 NETIF_F_GSO_IPXIP4 | \ 3277 NETIF_F_GSO_IPXIP6 | \ 3278 NETIF_F_GSO_UDP_TUNNEL | \ 3279 NETIF_F_GSO_UDP_TUNNEL_CSUM) 3280 3281 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES; 3282 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES; 3283 3284 /* copy netdev features into list of user selectable features */ 3285 netdev->hw_features |= netdev->features | 3286 NETIF_F_HW_VLAN_CTAG_RX | 3287 NETIF_F_HW_VLAN_CTAG_TX | 3288 NETIF_F_RXALL; 3289 3290 if (hw->mac.type >= e1000_i350) 3291 netdev->hw_features |= NETIF_F_NTUPLE; 3292 3293 if (pci_using_dac) 3294 netdev->features |= NETIF_F_HIGHDMA; 3295 3296 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 3297 netdev->mpls_features |= NETIF_F_HW_CSUM; 3298 netdev->hw_enc_features |= netdev->vlan_features; 3299 3300 /* set this bit last since it cannot be part of vlan_features */ 3301 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 3302 NETIF_F_HW_VLAN_CTAG_RX | 3303 NETIF_F_HW_VLAN_CTAG_TX; 3304 3305 netdev->priv_flags |= IFF_SUPP_NOFCS; 3306 3307 netdev->priv_flags |= IFF_UNICAST_FLT; 3308 3309 /* MTU range: 68 - 9216 */ 3310 netdev->min_mtu = ETH_MIN_MTU; 3311 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; 3312 3313 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 3314 3315 /* before reading the NVM, reset the controller to put the device in a 3316 * known good starting state 3317 */ 3318 hw->mac.ops.reset_hw(hw); 3319 3320 /* make sure the NVM is good , i211/i210 parts can have special NVM 3321 * that doesn't contain a checksum 3322 */ 3323 switch (hw->mac.type) { 3324 case e1000_i210: 3325 case e1000_i211: 3326 if (igb_get_flash_presence_i210(hw)) { 3327 if (hw->nvm.ops.validate(hw) < 0) { 3328 dev_err(&pdev->dev, 3329 "The NVM Checksum Is Not Valid\n"); 3330 err = -EIO; 3331 goto err_eeprom; 3332 } 3333 } 3334 break; 3335 default: 3336 if (hw->nvm.ops.validate(hw) < 0) { 3337 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 3338 err = -EIO; 3339 goto err_eeprom; 3340 } 3341 break; 3342 } 3343 3344 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { 3345 /* copy the MAC address out of the NVM */ 3346 if (hw->mac.ops.read_mac_addr(hw)) 3347 dev_err(&pdev->dev, "NVM Read Error\n"); 3348 } 3349 3350 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 3351 3352 if (!is_valid_ether_addr(netdev->dev_addr)) { 3353 dev_err(&pdev->dev, "Invalid MAC Address\n"); 3354 err = -EIO; 3355 goto err_eeprom; 3356 } 3357 3358 igb_set_default_mac_filter(adapter); 3359 3360 /* get firmware version for ethtool -i */ 3361 igb_set_fw_version(adapter); 3362 3363 /* configure RXPBSIZE and TXPBSIZE */ 3364 if (hw->mac.type == e1000_i210) { 3365 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 3366 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 3367 } 3368 3369 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0); 3370 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0); 3371 3372 INIT_WORK(&adapter->reset_task, igb_reset_task); 3373 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 3374 3375 /* Initialize link properties that are user-changeable */ 3376 adapter->fc_autoneg = true; 3377 hw->mac.autoneg = true; 3378 hw->phy.autoneg_advertised = 0x2f; 3379 3380 hw->fc.requested_mode = e1000_fc_default; 3381 hw->fc.current_mode = e1000_fc_default; 3382 3383 igb_validate_mdi_setting(hw); 3384 3385 /* By default, support wake on port A */ 3386 if (hw->bus.func == 0) 3387 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3388 3389 /* Check the NVM for wake support on non-port A ports */ 3390 if (hw->mac.type >= e1000_82580) 3391 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 3392 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 3393 &eeprom_data); 3394 else if (hw->bus.func == 1) 3395 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 3396 3397 if (eeprom_data & IGB_EEPROM_APME) 3398 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3399 3400 /* now that we have the eeprom settings, apply the special cases where 3401 * the eeprom may be wrong or the board simply won't support wake on 3402 * lan on a particular port 3403 */ 3404 switch (pdev->device) { 3405 case E1000_DEV_ID_82575GB_QUAD_COPPER: 3406 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3407 break; 3408 case E1000_DEV_ID_82575EB_FIBER_SERDES: 3409 case E1000_DEV_ID_82576_FIBER: 3410 case E1000_DEV_ID_82576_SERDES: 3411 /* Wake events only supported on port A for dual fiber 3412 * regardless of eeprom setting 3413 */ 3414 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 3415 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3416 break; 3417 case E1000_DEV_ID_82576_QUAD_COPPER: 3418 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 3419 /* if quad port adapter, disable WoL on all but port A */ 3420 if (global_quad_port_a != 0) 3421 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3422 else 3423 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 3424 /* Reset for multiple quad port adapters */ 3425 if (++global_quad_port_a == 4) 3426 global_quad_port_a = 0; 3427 break; 3428 default: 3429 /* If the device can't wake, don't set software support */ 3430 if (!device_can_wakeup(&adapter->pdev->dev)) 3431 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 3432 } 3433 3434 /* initialize the wol settings based on the eeprom settings */ 3435 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 3436 adapter->wol |= E1000_WUFC_MAG; 3437 3438 /* Some vendors want WoL disabled by default, but still supported */ 3439 if ((hw->mac.type == e1000_i350) && 3440 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 3441 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3442 adapter->wol = 0; 3443 } 3444 3445 /* Some vendors want the ability to Use the EEPROM setting as 3446 * enable/disable only, and not for capability 3447 */ 3448 if (((hw->mac.type == e1000_i350) || 3449 (hw->mac.type == e1000_i354)) && 3450 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) { 3451 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3452 adapter->wol = 0; 3453 } 3454 if (hw->mac.type == e1000_i350) { 3455 if (((pdev->subsystem_device == 0x5001) || 3456 (pdev->subsystem_device == 0x5002)) && 3457 (hw->bus.func == 0)) { 3458 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3459 adapter->wol = 0; 3460 } 3461 if (pdev->subsystem_device == 0x1F52) 3462 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 3463 } 3464 3465 device_set_wakeup_enable(&adapter->pdev->dev, 3466 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 3467 3468 /* reset the hardware with the new settings */ 3469 igb_reset(adapter); 3470 3471 /* Init the I2C interface */ 3472 err = igb_init_i2c(adapter); 3473 if (err) { 3474 dev_err(&pdev->dev, "failed to init i2c interface\n"); 3475 goto err_eeprom; 3476 } 3477 3478 /* let the f/w know that the h/w is now under the control of the 3479 * driver. 3480 */ 3481 igb_get_hw_control(adapter); 3482 3483 strcpy(netdev->name, "eth%d"); 3484 err = register_netdev(netdev); 3485 if (err) 3486 goto err_register; 3487 3488 /* carrier off reporting is important to ethtool even BEFORE open */ 3489 netif_carrier_off(netdev); 3490 3491 #ifdef CONFIG_IGB_DCA 3492 if (dca_add_requester(&pdev->dev) == 0) { 3493 adapter->flags |= IGB_FLAG_DCA_ENABLED; 3494 dev_info(&pdev->dev, "DCA enabled\n"); 3495 igb_setup_dca(adapter); 3496 } 3497 3498 #endif 3499 #ifdef CONFIG_IGB_HWMON 3500 /* Initialize the thermal sensor on i350 devices. */ 3501 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 3502 u16 ets_word; 3503 3504 /* Read the NVM to determine if this i350 device supports an 3505 * external thermal sensor. 3506 */ 3507 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 3508 if (ets_word != 0x0000 && ets_word != 0xFFFF) 3509 adapter->ets = true; 3510 else 3511 adapter->ets = false; 3512 if (igb_sysfs_init(adapter)) 3513 dev_err(&pdev->dev, 3514 "failed to allocate sysfs resources\n"); 3515 } else { 3516 adapter->ets = false; 3517 } 3518 #endif 3519 /* Check if Media Autosense is enabled */ 3520 adapter->ei = *ei; 3521 if (hw->dev_spec._82575.mas_capable) 3522 igb_init_mas(adapter); 3523 3524 /* do hw tstamp init after resetting */ 3525 igb_ptp_init(adapter); 3526 3527 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 3528 /* print bus type/speed/width info, not applicable to i354 */ 3529 if (hw->mac.type != e1000_i354) { 3530 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 3531 netdev->name, 3532 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 3533 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 3534 "unknown"), 3535 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 3536 "Width x4" : 3537 (hw->bus.width == e1000_bus_width_pcie_x2) ? 3538 "Width x2" : 3539 (hw->bus.width == e1000_bus_width_pcie_x1) ? 3540 "Width x1" : "unknown"), netdev->dev_addr); 3541 } 3542 3543 if ((hw->mac.type == e1000_82576 && 3544 rd32(E1000_EECD) & E1000_EECD_PRES) || 3545 (hw->mac.type >= e1000_i210 || 3546 igb_get_flash_presence_i210(hw))) { 3547 ret_val = igb_read_part_string(hw, part_str, 3548 E1000_PBANUM_LENGTH); 3549 } else { 3550 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 3551 } 3552 3553 if (ret_val) 3554 strcpy(part_str, "Unknown"); 3555 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 3556 dev_info(&pdev->dev, 3557 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 3558 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 3559 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 3560 adapter->num_rx_queues, adapter->num_tx_queues); 3561 if (hw->phy.media_type == e1000_media_type_copper) { 3562 switch (hw->mac.type) { 3563 case e1000_i350: 3564 case e1000_i210: 3565 case e1000_i211: 3566 /* Enable EEE for internal copper PHY devices */ 3567 err = igb_set_eee_i350(hw, true, true); 3568 if ((!err) && 3569 (!hw->dev_spec._82575.eee_disable)) { 3570 adapter->eee_advert = 3571 MDIO_EEE_100TX | MDIO_EEE_1000T; 3572 adapter->flags |= IGB_FLAG_EEE; 3573 } 3574 break; 3575 case e1000_i354: 3576 if ((rd32(E1000_CTRL_EXT) & 3577 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 3578 err = igb_set_eee_i354(hw, true, true); 3579 if ((!err) && 3580 (!hw->dev_spec._82575.eee_disable)) { 3581 adapter->eee_advert = 3582 MDIO_EEE_100TX | MDIO_EEE_1000T; 3583 adapter->flags |= IGB_FLAG_EEE; 3584 } 3585 } 3586 break; 3587 default: 3588 break; 3589 } 3590 } 3591 3592 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); 3593 3594 pm_runtime_put_noidle(&pdev->dev); 3595 return 0; 3596 3597 err_register: 3598 igb_release_hw_control(adapter); 3599 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 3600 err_eeprom: 3601 if (!igb_check_reset_block(hw)) 3602 igb_reset_phy(hw); 3603 3604 if (hw->flash_address) 3605 iounmap(hw->flash_address); 3606 err_sw_init: 3607 kfree(adapter->mac_table); 3608 kfree(adapter->shadow_vfta); 3609 igb_clear_interrupt_scheme(adapter); 3610 #ifdef CONFIG_PCI_IOV 3611 igb_disable_sriov(pdev); 3612 #endif 3613 pci_iounmap(pdev, adapter->io_addr); 3614 err_ioremap: 3615 free_netdev(netdev); 3616 err_alloc_etherdev: 3617 pci_release_mem_regions(pdev); 3618 err_pci_reg: 3619 err_dma: 3620 pci_disable_device(pdev); 3621 return err; 3622 } 3623 3624 #ifdef CONFIG_PCI_IOV 3625 static int igb_disable_sriov(struct pci_dev *pdev) 3626 { 3627 struct net_device *netdev = pci_get_drvdata(pdev); 3628 struct igb_adapter *adapter = netdev_priv(netdev); 3629 struct e1000_hw *hw = &adapter->hw; 3630 3631 /* reclaim resources allocated to VFs */ 3632 if (adapter->vf_data) { 3633 /* disable iov and allow time for transactions to clear */ 3634 if (pci_vfs_assigned(pdev)) { 3635 dev_warn(&pdev->dev, 3636 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 3637 return -EPERM; 3638 } else { 3639 pci_disable_sriov(pdev); 3640 msleep(500); 3641 } 3642 3643 kfree(adapter->vf_mac_list); 3644 adapter->vf_mac_list = NULL; 3645 kfree(adapter->vf_data); 3646 adapter->vf_data = NULL; 3647 adapter->vfs_allocated_count = 0; 3648 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 3649 wrfl(); 3650 msleep(100); 3651 dev_info(&pdev->dev, "IOV Disabled\n"); 3652 3653 /* Re-enable DMA Coalescing flag since IOV is turned off */ 3654 adapter->flags |= IGB_FLAG_DMAC; 3655 } 3656 3657 return 0; 3658 } 3659 3660 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 3661 { 3662 struct net_device *netdev = pci_get_drvdata(pdev); 3663 struct igb_adapter *adapter = netdev_priv(netdev); 3664 int old_vfs = pci_num_vf(pdev); 3665 struct vf_mac_filter *mac_list; 3666 int err = 0; 3667 int num_vf_mac_filters, i; 3668 3669 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 3670 err = -EPERM; 3671 goto out; 3672 } 3673 if (!num_vfs) 3674 goto out; 3675 3676 if (old_vfs) { 3677 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 3678 old_vfs, max_vfs); 3679 adapter->vfs_allocated_count = old_vfs; 3680 } else 3681 adapter->vfs_allocated_count = num_vfs; 3682 3683 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 3684 sizeof(struct vf_data_storage), GFP_KERNEL); 3685 3686 /* if allocation failed then we do not support SR-IOV */ 3687 if (!adapter->vf_data) { 3688 adapter->vfs_allocated_count = 0; 3689 err = -ENOMEM; 3690 goto out; 3691 } 3692 3693 /* Due to the limited number of RAR entries calculate potential 3694 * number of MAC filters available for the VFs. Reserve entries 3695 * for PF default MAC, PF MAC filters and at least one RAR entry 3696 * for each VF for VF MAC. 3697 */ 3698 num_vf_mac_filters = adapter->hw.mac.rar_entry_count - 3699 (1 + IGB_PF_MAC_FILTERS_RESERVED + 3700 adapter->vfs_allocated_count); 3701 3702 adapter->vf_mac_list = kcalloc(num_vf_mac_filters, 3703 sizeof(struct vf_mac_filter), 3704 GFP_KERNEL); 3705 3706 mac_list = adapter->vf_mac_list; 3707 INIT_LIST_HEAD(&adapter->vf_macs.l); 3708 3709 if (adapter->vf_mac_list) { 3710 /* Initialize list of VF MAC filters */ 3711 for (i = 0; i < num_vf_mac_filters; i++) { 3712 mac_list->vf = -1; 3713 mac_list->free = true; 3714 list_add(&mac_list->l, &adapter->vf_macs.l); 3715 mac_list++; 3716 } 3717 } else { 3718 /* If we could not allocate memory for the VF MAC filters 3719 * we can continue without this feature but warn user. 3720 */ 3721 dev_err(&pdev->dev, 3722 "Unable to allocate memory for VF MAC filter list\n"); 3723 } 3724 3725 /* only call pci_enable_sriov() if no VFs are allocated already */ 3726 if (!old_vfs) { 3727 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 3728 if (err) 3729 goto err_out; 3730 } 3731 dev_info(&pdev->dev, "%d VFs allocated\n", 3732 adapter->vfs_allocated_count); 3733 for (i = 0; i < adapter->vfs_allocated_count; i++) 3734 igb_vf_configure(adapter, i); 3735 3736 /* DMA Coalescing is not supported in IOV mode. */ 3737 adapter->flags &= ~IGB_FLAG_DMAC; 3738 goto out; 3739 3740 err_out: 3741 kfree(adapter->vf_mac_list); 3742 adapter->vf_mac_list = NULL; 3743 kfree(adapter->vf_data); 3744 adapter->vf_data = NULL; 3745 adapter->vfs_allocated_count = 0; 3746 out: 3747 return err; 3748 } 3749 3750 #endif 3751 /** 3752 * igb_remove_i2c - Cleanup I2C interface 3753 * @adapter: pointer to adapter structure 3754 **/ 3755 static void igb_remove_i2c(struct igb_adapter *adapter) 3756 { 3757 /* free the adapter bus structure */ 3758 i2c_del_adapter(&adapter->i2c_adap); 3759 } 3760 3761 /** 3762 * igb_remove - Device Removal Routine 3763 * @pdev: PCI device information struct 3764 * 3765 * igb_remove is called by the PCI subsystem to alert the driver 3766 * that it should release a PCI device. The could be caused by a 3767 * Hot-Plug event, or because the driver is going to be removed from 3768 * memory. 3769 **/ 3770 static void igb_remove(struct pci_dev *pdev) 3771 { 3772 struct net_device *netdev = pci_get_drvdata(pdev); 3773 struct igb_adapter *adapter = netdev_priv(netdev); 3774 struct e1000_hw *hw = &adapter->hw; 3775 3776 pm_runtime_get_noresume(&pdev->dev); 3777 #ifdef CONFIG_IGB_HWMON 3778 igb_sysfs_exit(adapter); 3779 #endif 3780 igb_remove_i2c(adapter); 3781 igb_ptp_stop(adapter); 3782 /* The watchdog timer may be rescheduled, so explicitly 3783 * disable watchdog from being rescheduled. 3784 */ 3785 set_bit(__IGB_DOWN, &adapter->state); 3786 del_timer_sync(&adapter->watchdog_timer); 3787 del_timer_sync(&adapter->phy_info_timer); 3788 3789 cancel_work_sync(&adapter->reset_task); 3790 cancel_work_sync(&adapter->watchdog_task); 3791 3792 #ifdef CONFIG_IGB_DCA 3793 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 3794 dev_info(&pdev->dev, "DCA disabled\n"); 3795 dca_remove_requester(&pdev->dev); 3796 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 3797 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 3798 } 3799 #endif 3800 3801 /* Release control of h/w to f/w. If f/w is AMT enabled, this 3802 * would have already happened in close and is redundant. 3803 */ 3804 igb_release_hw_control(adapter); 3805 3806 #ifdef CONFIG_PCI_IOV 3807 igb_disable_sriov(pdev); 3808 #endif 3809 3810 unregister_netdev(netdev); 3811 3812 igb_clear_interrupt_scheme(adapter); 3813 3814 pci_iounmap(pdev, adapter->io_addr); 3815 if (hw->flash_address) 3816 iounmap(hw->flash_address); 3817 pci_release_mem_regions(pdev); 3818 3819 kfree(adapter->mac_table); 3820 kfree(adapter->shadow_vfta); 3821 free_netdev(netdev); 3822 3823 pci_disable_pcie_error_reporting(pdev); 3824 3825 pci_disable_device(pdev); 3826 } 3827 3828 /** 3829 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 3830 * @adapter: board private structure to initialize 3831 * 3832 * This function initializes the vf specific data storage and then attempts to 3833 * allocate the VFs. The reason for ordering it this way is because it is much 3834 * mor expensive time wise to disable SR-IOV than it is to allocate and free 3835 * the memory for the VFs. 3836 **/ 3837 static void igb_probe_vfs(struct igb_adapter *adapter) 3838 { 3839 #ifdef CONFIG_PCI_IOV 3840 struct pci_dev *pdev = adapter->pdev; 3841 struct e1000_hw *hw = &adapter->hw; 3842 3843 /* Virtualization features not supported on i210 family. */ 3844 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 3845 return; 3846 3847 /* Of the below we really only want the effect of getting 3848 * IGB_FLAG_HAS_MSIX set (if available), without which 3849 * igb_enable_sriov() has no effect. 3850 */ 3851 igb_set_interrupt_capability(adapter, true); 3852 igb_reset_interrupt_capability(adapter); 3853 3854 pci_sriov_set_totalvfs(pdev, 7); 3855 igb_enable_sriov(pdev, max_vfs); 3856 3857 #endif /* CONFIG_PCI_IOV */ 3858 } 3859 3860 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter) 3861 { 3862 struct e1000_hw *hw = &adapter->hw; 3863 unsigned int max_rss_queues; 3864 3865 /* Determine the maximum number of RSS queues supported. */ 3866 switch (hw->mac.type) { 3867 case e1000_i211: 3868 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 3869 break; 3870 case e1000_82575: 3871 case e1000_i210: 3872 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 3873 break; 3874 case e1000_i350: 3875 /* I350 cannot do RSS and SR-IOV at the same time */ 3876 if (!!adapter->vfs_allocated_count) { 3877 max_rss_queues = 1; 3878 break; 3879 } 3880 fallthrough; 3881 case e1000_82576: 3882 if (!!adapter->vfs_allocated_count) { 3883 max_rss_queues = 2; 3884 break; 3885 } 3886 fallthrough; 3887 case e1000_82580: 3888 case e1000_i354: 3889 default: 3890 max_rss_queues = IGB_MAX_RX_QUEUES; 3891 break; 3892 } 3893 3894 return max_rss_queues; 3895 } 3896 3897 static void igb_init_queue_configuration(struct igb_adapter *adapter) 3898 { 3899 u32 max_rss_queues; 3900 3901 max_rss_queues = igb_get_max_rss_queues(adapter); 3902 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 3903 3904 igb_set_flag_queue_pairs(adapter, max_rss_queues); 3905 } 3906 3907 void igb_set_flag_queue_pairs(struct igb_adapter *adapter, 3908 const u32 max_rss_queues) 3909 { 3910 struct e1000_hw *hw = &adapter->hw; 3911 3912 /* Determine if we need to pair queues. */ 3913 switch (hw->mac.type) { 3914 case e1000_82575: 3915 case e1000_i211: 3916 /* Device supports enough interrupts without queue pairing. */ 3917 break; 3918 case e1000_82576: 3919 case e1000_82580: 3920 case e1000_i350: 3921 case e1000_i354: 3922 case e1000_i210: 3923 default: 3924 /* If rss_queues > half of max_rss_queues, pair the queues in 3925 * order to conserve interrupts due to limited supply. 3926 */ 3927 if (adapter->rss_queues > (max_rss_queues / 2)) 3928 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 3929 else 3930 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS; 3931 break; 3932 } 3933 } 3934 3935 /** 3936 * igb_sw_init - Initialize general software structures (struct igb_adapter) 3937 * @adapter: board private structure to initialize 3938 * 3939 * igb_sw_init initializes the Adapter private data structure. 3940 * Fields are initialized based on PCI device information and 3941 * OS network device settings (MTU size). 3942 **/ 3943 static int igb_sw_init(struct igb_adapter *adapter) 3944 { 3945 struct e1000_hw *hw = &adapter->hw; 3946 struct net_device *netdev = adapter->netdev; 3947 struct pci_dev *pdev = adapter->pdev; 3948 3949 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 3950 3951 /* set default ring sizes */ 3952 adapter->tx_ring_count = IGB_DEFAULT_TXD; 3953 adapter->rx_ring_count = IGB_DEFAULT_RXD; 3954 3955 /* set default ITR values */ 3956 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 3957 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 3958 3959 /* set default work limits */ 3960 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 3961 3962 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD; 3963 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3964 3965 spin_lock_init(&adapter->nfc_lock); 3966 spin_lock_init(&adapter->stats64_lock); 3967 #ifdef CONFIG_PCI_IOV 3968 switch (hw->mac.type) { 3969 case e1000_82576: 3970 case e1000_i350: 3971 if (max_vfs > 7) { 3972 dev_warn(&pdev->dev, 3973 "Maximum of 7 VFs per PF, using max\n"); 3974 max_vfs = adapter->vfs_allocated_count = 7; 3975 } else 3976 adapter->vfs_allocated_count = max_vfs; 3977 if (adapter->vfs_allocated_count) 3978 dev_warn(&pdev->dev, 3979 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 3980 break; 3981 default: 3982 break; 3983 } 3984 #endif /* CONFIG_PCI_IOV */ 3985 3986 /* Assume MSI-X interrupts, will be checked during IRQ allocation */ 3987 adapter->flags |= IGB_FLAG_HAS_MSIX; 3988 3989 adapter->mac_table = kcalloc(hw->mac.rar_entry_count, 3990 sizeof(struct igb_mac_addr), 3991 GFP_KERNEL); 3992 if (!adapter->mac_table) 3993 return -ENOMEM; 3994 3995 igb_probe_vfs(adapter); 3996 3997 igb_init_queue_configuration(adapter); 3998 3999 /* Setup and initialize a copy of the hw vlan table array */ 4000 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 4001 GFP_KERNEL); 4002 if (!adapter->shadow_vfta) 4003 return -ENOMEM; 4004 4005 /* This call may decrease the number of queues */ 4006 if (igb_init_interrupt_scheme(adapter, true)) { 4007 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 4008 return -ENOMEM; 4009 } 4010 4011 /* Explicitly disable IRQ since the NIC can be in any state. */ 4012 igb_irq_disable(adapter); 4013 4014 if (hw->mac.type >= e1000_i350) 4015 adapter->flags &= ~IGB_FLAG_DMAC; 4016 4017 set_bit(__IGB_DOWN, &adapter->state); 4018 return 0; 4019 } 4020 4021 /** 4022 * __igb_open - Called when a network interface is made active 4023 * @netdev: network interface device structure 4024 * @resuming: indicates whether we are in a resume call 4025 * 4026 * Returns 0 on success, negative value on failure 4027 * 4028 * The open entry point is called when a network interface is made 4029 * active by the system (IFF_UP). At this point all resources needed 4030 * for transmit and receive operations are allocated, the interrupt 4031 * handler is registered with the OS, the watchdog timer is started, 4032 * and the stack is notified that the interface is ready. 4033 **/ 4034 static int __igb_open(struct net_device *netdev, bool resuming) 4035 { 4036 struct igb_adapter *adapter = netdev_priv(netdev); 4037 struct e1000_hw *hw = &adapter->hw; 4038 struct pci_dev *pdev = adapter->pdev; 4039 int err; 4040 int i; 4041 4042 /* disallow open during test */ 4043 if (test_bit(__IGB_TESTING, &adapter->state)) { 4044 WARN_ON(resuming); 4045 return -EBUSY; 4046 } 4047 4048 if (!resuming) 4049 pm_runtime_get_sync(&pdev->dev); 4050 4051 netif_carrier_off(netdev); 4052 4053 /* allocate transmit descriptors */ 4054 err = igb_setup_all_tx_resources(adapter); 4055 if (err) 4056 goto err_setup_tx; 4057 4058 /* allocate receive descriptors */ 4059 err = igb_setup_all_rx_resources(adapter); 4060 if (err) 4061 goto err_setup_rx; 4062 4063 igb_power_up_link(adapter); 4064 4065 /* before we allocate an interrupt, we must be ready to handle it. 4066 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4067 * as soon as we call pci_request_irq, so we have to setup our 4068 * clean_rx handler before we do so. 4069 */ 4070 igb_configure(adapter); 4071 4072 err = igb_request_irq(adapter); 4073 if (err) 4074 goto err_req_irq; 4075 4076 /* Notify the stack of the actual queue counts. */ 4077 err = netif_set_real_num_tx_queues(adapter->netdev, 4078 adapter->num_tx_queues); 4079 if (err) 4080 goto err_set_queues; 4081 4082 err = netif_set_real_num_rx_queues(adapter->netdev, 4083 adapter->num_rx_queues); 4084 if (err) 4085 goto err_set_queues; 4086 4087 /* From here on the code is the same as igb_up() */ 4088 clear_bit(__IGB_DOWN, &adapter->state); 4089 4090 for (i = 0; i < adapter->num_q_vectors; i++) 4091 napi_enable(&(adapter->q_vector[i]->napi)); 4092 4093 /* Clear any pending interrupts. */ 4094 rd32(E1000_TSICR); 4095 rd32(E1000_ICR); 4096 4097 igb_irq_enable(adapter); 4098 4099 /* notify VFs that reset has been completed */ 4100 if (adapter->vfs_allocated_count) { 4101 u32 reg_data = rd32(E1000_CTRL_EXT); 4102 4103 reg_data |= E1000_CTRL_EXT_PFRSTD; 4104 wr32(E1000_CTRL_EXT, reg_data); 4105 } 4106 4107 netif_tx_start_all_queues(netdev); 4108 4109 if (!resuming) 4110 pm_runtime_put(&pdev->dev); 4111 4112 /* start the watchdog. */ 4113 hw->mac.get_link_status = 1; 4114 schedule_work(&adapter->watchdog_task); 4115 4116 return 0; 4117 4118 err_set_queues: 4119 igb_free_irq(adapter); 4120 err_req_irq: 4121 igb_release_hw_control(adapter); 4122 igb_power_down_link(adapter); 4123 igb_free_all_rx_resources(adapter); 4124 err_setup_rx: 4125 igb_free_all_tx_resources(adapter); 4126 err_setup_tx: 4127 igb_reset(adapter); 4128 if (!resuming) 4129 pm_runtime_put(&pdev->dev); 4130 4131 return err; 4132 } 4133 4134 int igb_open(struct net_device *netdev) 4135 { 4136 return __igb_open(netdev, false); 4137 } 4138 4139 /** 4140 * __igb_close - Disables a network interface 4141 * @netdev: network interface device structure 4142 * @suspending: indicates we are in a suspend call 4143 * 4144 * Returns 0, this is not allowed to fail 4145 * 4146 * The close entry point is called when an interface is de-activated 4147 * by the OS. The hardware is still under the driver's control, but 4148 * needs to be disabled. A global MAC reset is issued to stop the 4149 * hardware, and all transmit and receive resources are freed. 4150 **/ 4151 static int __igb_close(struct net_device *netdev, bool suspending) 4152 { 4153 struct igb_adapter *adapter = netdev_priv(netdev); 4154 struct pci_dev *pdev = adapter->pdev; 4155 4156 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 4157 4158 if (!suspending) 4159 pm_runtime_get_sync(&pdev->dev); 4160 4161 igb_down(adapter); 4162 igb_free_irq(adapter); 4163 4164 igb_free_all_tx_resources(adapter); 4165 igb_free_all_rx_resources(adapter); 4166 4167 if (!suspending) 4168 pm_runtime_put_sync(&pdev->dev); 4169 return 0; 4170 } 4171 4172 int igb_close(struct net_device *netdev) 4173 { 4174 if (netif_device_present(netdev) || netdev->dismantle) 4175 return __igb_close(netdev, false); 4176 return 0; 4177 } 4178 4179 /** 4180 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 4181 * @tx_ring: tx descriptor ring (for a specific queue) to setup 4182 * 4183 * Return 0 on success, negative on failure 4184 **/ 4185 int igb_setup_tx_resources(struct igb_ring *tx_ring) 4186 { 4187 struct device *dev = tx_ring->dev; 4188 int size; 4189 4190 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 4191 4192 tx_ring->tx_buffer_info = vmalloc(size); 4193 if (!tx_ring->tx_buffer_info) 4194 goto err; 4195 4196 /* round up to nearest 4K */ 4197 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 4198 tx_ring->size = ALIGN(tx_ring->size, 4096); 4199 4200 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 4201 &tx_ring->dma, GFP_KERNEL); 4202 if (!tx_ring->desc) 4203 goto err; 4204 4205 tx_ring->next_to_use = 0; 4206 tx_ring->next_to_clean = 0; 4207 4208 return 0; 4209 4210 err: 4211 vfree(tx_ring->tx_buffer_info); 4212 tx_ring->tx_buffer_info = NULL; 4213 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 4214 return -ENOMEM; 4215 } 4216 4217 /** 4218 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 4219 * (Descriptors) for all queues 4220 * @adapter: board private structure 4221 * 4222 * Return 0 on success, negative on failure 4223 **/ 4224 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 4225 { 4226 struct pci_dev *pdev = adapter->pdev; 4227 int i, err = 0; 4228 4229 for (i = 0; i < adapter->num_tx_queues; i++) { 4230 err = igb_setup_tx_resources(adapter->tx_ring[i]); 4231 if (err) { 4232 dev_err(&pdev->dev, 4233 "Allocation for Tx Queue %u failed\n", i); 4234 for (i--; i >= 0; i--) 4235 igb_free_tx_resources(adapter->tx_ring[i]); 4236 break; 4237 } 4238 } 4239 4240 return err; 4241 } 4242 4243 /** 4244 * igb_setup_tctl - configure the transmit control registers 4245 * @adapter: Board private structure 4246 **/ 4247 void igb_setup_tctl(struct igb_adapter *adapter) 4248 { 4249 struct e1000_hw *hw = &adapter->hw; 4250 u32 tctl; 4251 4252 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 4253 wr32(E1000_TXDCTL(0), 0); 4254 4255 /* Program the Transmit Control Register */ 4256 tctl = rd32(E1000_TCTL); 4257 tctl &= ~E1000_TCTL_CT; 4258 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 4259 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 4260 4261 igb_config_collision_dist(hw); 4262 4263 /* Enable transmits */ 4264 tctl |= E1000_TCTL_EN; 4265 4266 wr32(E1000_TCTL, tctl); 4267 } 4268 4269 /** 4270 * igb_configure_tx_ring - Configure transmit ring after Reset 4271 * @adapter: board private structure 4272 * @ring: tx ring to configure 4273 * 4274 * Configure a transmit ring after a reset. 4275 **/ 4276 void igb_configure_tx_ring(struct igb_adapter *adapter, 4277 struct igb_ring *ring) 4278 { 4279 struct e1000_hw *hw = &adapter->hw; 4280 u32 txdctl = 0; 4281 u64 tdba = ring->dma; 4282 int reg_idx = ring->reg_idx; 4283 4284 wr32(E1000_TDLEN(reg_idx), 4285 ring->count * sizeof(union e1000_adv_tx_desc)); 4286 wr32(E1000_TDBAL(reg_idx), 4287 tdba & 0x00000000ffffffffULL); 4288 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 4289 4290 ring->tail = adapter->io_addr + E1000_TDT(reg_idx); 4291 wr32(E1000_TDH(reg_idx), 0); 4292 writel(0, ring->tail); 4293 4294 txdctl |= IGB_TX_PTHRESH; 4295 txdctl |= IGB_TX_HTHRESH << 8; 4296 txdctl |= IGB_TX_WTHRESH << 16; 4297 4298 /* reinitialize tx_buffer_info */ 4299 memset(ring->tx_buffer_info, 0, 4300 sizeof(struct igb_tx_buffer) * ring->count); 4301 4302 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 4303 wr32(E1000_TXDCTL(reg_idx), txdctl); 4304 } 4305 4306 /** 4307 * igb_configure_tx - Configure transmit Unit after Reset 4308 * @adapter: board private structure 4309 * 4310 * Configure the Tx unit of the MAC after a reset. 4311 **/ 4312 static void igb_configure_tx(struct igb_adapter *adapter) 4313 { 4314 struct e1000_hw *hw = &adapter->hw; 4315 int i; 4316 4317 /* disable the queues */ 4318 for (i = 0; i < adapter->num_tx_queues; i++) 4319 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0); 4320 4321 wrfl(); 4322 usleep_range(10000, 20000); 4323 4324 for (i = 0; i < adapter->num_tx_queues; i++) 4325 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 4326 } 4327 4328 /** 4329 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 4330 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 4331 * 4332 * Returns 0 on success, negative on failure 4333 **/ 4334 int igb_setup_rx_resources(struct igb_ring *rx_ring) 4335 { 4336 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev); 4337 struct device *dev = rx_ring->dev; 4338 int size; 4339 4340 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 4341 4342 rx_ring->rx_buffer_info = vmalloc(size); 4343 if (!rx_ring->rx_buffer_info) 4344 goto err; 4345 4346 /* Round up to nearest 4K */ 4347 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 4348 rx_ring->size = ALIGN(rx_ring->size, 4096); 4349 4350 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 4351 &rx_ring->dma, GFP_KERNEL); 4352 if (!rx_ring->desc) 4353 goto err; 4354 4355 rx_ring->next_to_alloc = 0; 4356 rx_ring->next_to_clean = 0; 4357 rx_ring->next_to_use = 0; 4358 4359 rx_ring->xdp_prog = adapter->xdp_prog; 4360 4361 /* XDP RX-queue info */ 4362 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 4363 rx_ring->queue_index, 0) < 0) 4364 goto err; 4365 4366 return 0; 4367 4368 err: 4369 vfree(rx_ring->rx_buffer_info); 4370 rx_ring->rx_buffer_info = NULL; 4371 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 4372 return -ENOMEM; 4373 } 4374 4375 /** 4376 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 4377 * (Descriptors) for all queues 4378 * @adapter: board private structure 4379 * 4380 * Return 0 on success, negative on failure 4381 **/ 4382 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 4383 { 4384 struct pci_dev *pdev = adapter->pdev; 4385 int i, err = 0; 4386 4387 for (i = 0; i < adapter->num_rx_queues; i++) { 4388 err = igb_setup_rx_resources(adapter->rx_ring[i]); 4389 if (err) { 4390 dev_err(&pdev->dev, 4391 "Allocation for Rx Queue %u failed\n", i); 4392 for (i--; i >= 0; i--) 4393 igb_free_rx_resources(adapter->rx_ring[i]); 4394 break; 4395 } 4396 } 4397 4398 return err; 4399 } 4400 4401 /** 4402 * igb_setup_mrqc - configure the multiple receive queue control registers 4403 * @adapter: Board private structure 4404 **/ 4405 static void igb_setup_mrqc(struct igb_adapter *adapter) 4406 { 4407 struct e1000_hw *hw = &adapter->hw; 4408 u32 mrqc, rxcsum; 4409 u32 j, num_rx_queues; 4410 u32 rss_key[10]; 4411 4412 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 4413 for (j = 0; j < 10; j++) 4414 wr32(E1000_RSSRK(j), rss_key[j]); 4415 4416 num_rx_queues = adapter->rss_queues; 4417 4418 switch (hw->mac.type) { 4419 case e1000_82576: 4420 /* 82576 supports 2 RSS queues for SR-IOV */ 4421 if (adapter->vfs_allocated_count) 4422 num_rx_queues = 2; 4423 break; 4424 default: 4425 break; 4426 } 4427 4428 if (adapter->rss_indir_tbl_init != num_rx_queues) { 4429 for (j = 0; j < IGB_RETA_SIZE; j++) 4430 adapter->rss_indir_tbl[j] = 4431 (j * num_rx_queues) / IGB_RETA_SIZE; 4432 adapter->rss_indir_tbl_init = num_rx_queues; 4433 } 4434 igb_write_rss_indir_tbl(adapter); 4435 4436 /* Disable raw packet checksumming so that RSS hash is placed in 4437 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 4438 * offloads as they are enabled by default 4439 */ 4440 rxcsum = rd32(E1000_RXCSUM); 4441 rxcsum |= E1000_RXCSUM_PCSD; 4442 4443 if (adapter->hw.mac.type >= e1000_82576) 4444 /* Enable Receive Checksum Offload for SCTP */ 4445 rxcsum |= E1000_RXCSUM_CRCOFL; 4446 4447 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 4448 wr32(E1000_RXCSUM, rxcsum); 4449 4450 /* Generate RSS hash based on packet types, TCP/UDP 4451 * port numbers and/or IPv4/v6 src and dst addresses 4452 */ 4453 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 4454 E1000_MRQC_RSS_FIELD_IPV4_TCP | 4455 E1000_MRQC_RSS_FIELD_IPV6 | 4456 E1000_MRQC_RSS_FIELD_IPV6_TCP | 4457 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 4458 4459 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 4460 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 4461 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 4462 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 4463 4464 /* If VMDq is enabled then we set the appropriate mode for that, else 4465 * we default to RSS so that an RSS hash is calculated per packet even 4466 * if we are only using one queue 4467 */ 4468 if (adapter->vfs_allocated_count) { 4469 if (hw->mac.type > e1000_82575) { 4470 /* Set the default pool for the PF's first queue */ 4471 u32 vtctl = rd32(E1000_VT_CTL); 4472 4473 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 4474 E1000_VT_CTL_DISABLE_DEF_POOL); 4475 vtctl |= adapter->vfs_allocated_count << 4476 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 4477 wr32(E1000_VT_CTL, vtctl); 4478 } 4479 if (adapter->rss_queues > 1) 4480 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ; 4481 else 4482 mrqc |= E1000_MRQC_ENABLE_VMDQ; 4483 } else { 4484 mrqc |= E1000_MRQC_ENABLE_RSS_MQ; 4485 } 4486 igb_vmm_control(adapter); 4487 4488 wr32(E1000_MRQC, mrqc); 4489 } 4490 4491 /** 4492 * igb_setup_rctl - configure the receive control registers 4493 * @adapter: Board private structure 4494 **/ 4495 void igb_setup_rctl(struct igb_adapter *adapter) 4496 { 4497 struct e1000_hw *hw = &adapter->hw; 4498 u32 rctl; 4499 4500 rctl = rd32(E1000_RCTL); 4501 4502 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 4503 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 4504 4505 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 4506 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 4507 4508 /* enable stripping of CRC. It's unlikely this will break BMC 4509 * redirection as it did with e1000. Newer features require 4510 * that the HW strips the CRC. 4511 */ 4512 rctl |= E1000_RCTL_SECRC; 4513 4514 /* disable store bad packets and clear size bits. */ 4515 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 4516 4517 /* enable LPE to allow for reception of jumbo frames */ 4518 rctl |= E1000_RCTL_LPE; 4519 4520 /* disable queue 0 to prevent tail write w/o re-config */ 4521 wr32(E1000_RXDCTL(0), 0); 4522 4523 /* Attention!!! For SR-IOV PF driver operations you must enable 4524 * queue drop for all VF and PF queues to prevent head of line blocking 4525 * if an un-trusted VF does not provide descriptors to hardware. 4526 */ 4527 if (adapter->vfs_allocated_count) { 4528 /* set all queue drop enable bits */ 4529 wr32(E1000_QDE, ALL_QUEUES); 4530 } 4531 4532 /* This is useful for sniffing bad packets. */ 4533 if (adapter->netdev->features & NETIF_F_RXALL) { 4534 /* UPE and MPE will be handled by normal PROMISC logic 4535 * in e1000e_set_rx_mode 4536 */ 4537 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 4538 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 4539 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 4540 4541 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */ 4542 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 4543 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 4544 * and that breaks VLANs. 4545 */ 4546 } 4547 4548 wr32(E1000_RCTL, rctl); 4549 } 4550 4551 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 4552 int vfn) 4553 { 4554 struct e1000_hw *hw = &adapter->hw; 4555 u32 vmolr; 4556 4557 if (size > MAX_JUMBO_FRAME_SIZE) 4558 size = MAX_JUMBO_FRAME_SIZE; 4559 4560 vmolr = rd32(E1000_VMOLR(vfn)); 4561 vmolr &= ~E1000_VMOLR_RLPML_MASK; 4562 vmolr |= size | E1000_VMOLR_LPE; 4563 wr32(E1000_VMOLR(vfn), vmolr); 4564 4565 return 0; 4566 } 4567 4568 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter, 4569 int vfn, bool enable) 4570 { 4571 struct e1000_hw *hw = &adapter->hw; 4572 u32 val, reg; 4573 4574 if (hw->mac.type < e1000_82576) 4575 return; 4576 4577 if (hw->mac.type == e1000_i350) 4578 reg = E1000_DVMOLR(vfn); 4579 else 4580 reg = E1000_VMOLR(vfn); 4581 4582 val = rd32(reg); 4583 if (enable) 4584 val |= E1000_VMOLR_STRVLAN; 4585 else 4586 val &= ~(E1000_VMOLR_STRVLAN); 4587 wr32(reg, val); 4588 } 4589 4590 static inline void igb_set_vmolr(struct igb_adapter *adapter, 4591 int vfn, bool aupe) 4592 { 4593 struct e1000_hw *hw = &adapter->hw; 4594 u32 vmolr; 4595 4596 /* This register exists only on 82576 and newer so if we are older then 4597 * we should exit and do nothing 4598 */ 4599 if (hw->mac.type < e1000_82576) 4600 return; 4601 4602 vmolr = rd32(E1000_VMOLR(vfn)); 4603 if (aupe) 4604 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 4605 else 4606 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 4607 4608 /* clear all bits that might not be set */ 4609 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 4610 4611 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 4612 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 4613 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 4614 * multicast packets 4615 */ 4616 if (vfn <= adapter->vfs_allocated_count) 4617 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 4618 4619 wr32(E1000_VMOLR(vfn), vmolr); 4620 } 4621 4622 /** 4623 * igb_setup_srrctl - configure the split and replication receive control 4624 * registers 4625 * @adapter: Board private structure 4626 * @ring: receive ring to be configured 4627 **/ 4628 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring) 4629 { 4630 struct e1000_hw *hw = &adapter->hw; 4631 int reg_idx = ring->reg_idx; 4632 u32 srrctl = 0; 4633 4634 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 4635 if (ring_uses_large_buffer(ring)) 4636 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4637 else 4638 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; 4639 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 4640 if (hw->mac.type >= e1000_82580) 4641 srrctl |= E1000_SRRCTL_TIMESTAMP; 4642 /* Only set Drop Enable if VFs allocated, or we are supporting multiple 4643 * queues and rx flow control is disabled 4644 */ 4645 if (adapter->vfs_allocated_count || 4646 (!(hw->fc.current_mode & e1000_fc_rx_pause) && 4647 adapter->num_rx_queues > 1)) 4648 srrctl |= E1000_SRRCTL_DROP_EN; 4649 4650 wr32(E1000_SRRCTL(reg_idx), srrctl); 4651 } 4652 4653 /** 4654 * igb_configure_rx_ring - Configure a receive ring after Reset 4655 * @adapter: board private structure 4656 * @ring: receive ring to be configured 4657 * 4658 * Configure the Rx unit of the MAC after a reset. 4659 **/ 4660 void igb_configure_rx_ring(struct igb_adapter *adapter, 4661 struct igb_ring *ring) 4662 { 4663 struct e1000_hw *hw = &adapter->hw; 4664 union e1000_adv_rx_desc *rx_desc; 4665 u64 rdba = ring->dma; 4666 int reg_idx = ring->reg_idx; 4667 u32 rxdctl = 0; 4668 4669 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 4670 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 4671 MEM_TYPE_PAGE_SHARED, NULL)); 4672 4673 /* disable the queue */ 4674 wr32(E1000_RXDCTL(reg_idx), 0); 4675 4676 /* Set DMA base address registers */ 4677 wr32(E1000_RDBAL(reg_idx), 4678 rdba & 0x00000000ffffffffULL); 4679 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 4680 wr32(E1000_RDLEN(reg_idx), 4681 ring->count * sizeof(union e1000_adv_rx_desc)); 4682 4683 /* initialize head and tail */ 4684 ring->tail = adapter->io_addr + E1000_RDT(reg_idx); 4685 wr32(E1000_RDH(reg_idx), 0); 4686 writel(0, ring->tail); 4687 4688 /* set descriptor configuration */ 4689 igb_setup_srrctl(adapter, ring); 4690 4691 /* set filtering for VMDQ pools */ 4692 igb_set_vmolr(adapter, reg_idx & 0x7, true); 4693 4694 rxdctl |= IGB_RX_PTHRESH; 4695 rxdctl |= IGB_RX_HTHRESH << 8; 4696 rxdctl |= IGB_RX_WTHRESH << 16; 4697 4698 /* initialize rx_buffer_info */ 4699 memset(ring->rx_buffer_info, 0, 4700 sizeof(struct igb_rx_buffer) * ring->count); 4701 4702 /* initialize Rx descriptor 0 */ 4703 rx_desc = IGB_RX_DESC(ring, 0); 4704 rx_desc->wb.upper.length = 0; 4705 4706 /* enable receive descriptor fetching */ 4707 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 4708 wr32(E1000_RXDCTL(reg_idx), rxdctl); 4709 } 4710 4711 static void igb_set_rx_buffer_len(struct igb_adapter *adapter, 4712 struct igb_ring *rx_ring) 4713 { 4714 /* set build_skb and buffer size flags */ 4715 clear_ring_build_skb_enabled(rx_ring); 4716 clear_ring_uses_large_buffer(rx_ring); 4717 4718 if (adapter->flags & IGB_FLAG_RX_LEGACY) 4719 return; 4720 4721 set_ring_build_skb_enabled(rx_ring); 4722 4723 #if (PAGE_SIZE < 8192) 4724 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 4725 return; 4726 4727 set_ring_uses_large_buffer(rx_ring); 4728 #endif 4729 } 4730 4731 /** 4732 * igb_configure_rx - Configure receive Unit after Reset 4733 * @adapter: board private structure 4734 * 4735 * Configure the Rx unit of the MAC after a reset. 4736 **/ 4737 static void igb_configure_rx(struct igb_adapter *adapter) 4738 { 4739 int i; 4740 4741 /* set the correct pool for the PF default MAC address in entry 0 */ 4742 igb_set_default_mac_filter(adapter); 4743 4744 /* Setup the HW Rx Head and Tail Descriptor Pointers and 4745 * the Base and Length of the Rx Descriptor Ring 4746 */ 4747 for (i = 0; i < adapter->num_rx_queues; i++) { 4748 struct igb_ring *rx_ring = adapter->rx_ring[i]; 4749 4750 igb_set_rx_buffer_len(adapter, rx_ring); 4751 igb_configure_rx_ring(adapter, rx_ring); 4752 } 4753 } 4754 4755 /** 4756 * igb_free_tx_resources - Free Tx Resources per Queue 4757 * @tx_ring: Tx descriptor ring for a specific queue 4758 * 4759 * Free all transmit software resources 4760 **/ 4761 void igb_free_tx_resources(struct igb_ring *tx_ring) 4762 { 4763 igb_clean_tx_ring(tx_ring); 4764 4765 vfree(tx_ring->tx_buffer_info); 4766 tx_ring->tx_buffer_info = NULL; 4767 4768 /* if not set, then don't free */ 4769 if (!tx_ring->desc) 4770 return; 4771 4772 dma_free_coherent(tx_ring->dev, tx_ring->size, 4773 tx_ring->desc, tx_ring->dma); 4774 4775 tx_ring->desc = NULL; 4776 } 4777 4778 /** 4779 * igb_free_all_tx_resources - Free Tx Resources for All Queues 4780 * @adapter: board private structure 4781 * 4782 * Free all transmit software resources 4783 **/ 4784 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 4785 { 4786 int i; 4787 4788 for (i = 0; i < adapter->num_tx_queues; i++) 4789 if (adapter->tx_ring[i]) 4790 igb_free_tx_resources(adapter->tx_ring[i]); 4791 } 4792 4793 /** 4794 * igb_clean_tx_ring - Free Tx Buffers 4795 * @tx_ring: ring to be cleaned 4796 **/ 4797 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 4798 { 4799 u16 i = tx_ring->next_to_clean; 4800 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 4801 4802 while (i != tx_ring->next_to_use) { 4803 union e1000_adv_tx_desc *eop_desc, *tx_desc; 4804 4805 /* Free all the Tx ring sk_buffs */ 4806 dev_kfree_skb_any(tx_buffer->skb); 4807 4808 /* unmap skb header data */ 4809 dma_unmap_single(tx_ring->dev, 4810 dma_unmap_addr(tx_buffer, dma), 4811 dma_unmap_len(tx_buffer, len), 4812 DMA_TO_DEVICE); 4813 4814 /* check for eop_desc to determine the end of the packet */ 4815 eop_desc = tx_buffer->next_to_watch; 4816 tx_desc = IGB_TX_DESC(tx_ring, i); 4817 4818 /* unmap remaining buffers */ 4819 while (tx_desc != eop_desc) { 4820 tx_buffer++; 4821 tx_desc++; 4822 i++; 4823 if (unlikely(i == tx_ring->count)) { 4824 i = 0; 4825 tx_buffer = tx_ring->tx_buffer_info; 4826 tx_desc = IGB_TX_DESC(tx_ring, 0); 4827 } 4828 4829 /* unmap any remaining paged data */ 4830 if (dma_unmap_len(tx_buffer, len)) 4831 dma_unmap_page(tx_ring->dev, 4832 dma_unmap_addr(tx_buffer, dma), 4833 dma_unmap_len(tx_buffer, len), 4834 DMA_TO_DEVICE); 4835 } 4836 4837 /* move us one more past the eop_desc for start of next pkt */ 4838 tx_buffer++; 4839 i++; 4840 if (unlikely(i == tx_ring->count)) { 4841 i = 0; 4842 tx_buffer = tx_ring->tx_buffer_info; 4843 } 4844 } 4845 4846 /* reset BQL for queue */ 4847 netdev_tx_reset_queue(txring_txq(tx_ring)); 4848 4849 /* reset next_to_use and next_to_clean */ 4850 tx_ring->next_to_use = 0; 4851 tx_ring->next_to_clean = 0; 4852 } 4853 4854 /** 4855 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 4856 * @adapter: board private structure 4857 **/ 4858 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 4859 { 4860 int i; 4861 4862 for (i = 0; i < adapter->num_tx_queues; i++) 4863 if (adapter->tx_ring[i]) 4864 igb_clean_tx_ring(adapter->tx_ring[i]); 4865 } 4866 4867 /** 4868 * igb_free_rx_resources - Free Rx Resources 4869 * @rx_ring: ring to clean the resources from 4870 * 4871 * Free all receive software resources 4872 **/ 4873 void igb_free_rx_resources(struct igb_ring *rx_ring) 4874 { 4875 igb_clean_rx_ring(rx_ring); 4876 4877 rx_ring->xdp_prog = NULL; 4878 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 4879 vfree(rx_ring->rx_buffer_info); 4880 rx_ring->rx_buffer_info = NULL; 4881 4882 /* if not set, then don't free */ 4883 if (!rx_ring->desc) 4884 return; 4885 4886 dma_free_coherent(rx_ring->dev, rx_ring->size, 4887 rx_ring->desc, rx_ring->dma); 4888 4889 rx_ring->desc = NULL; 4890 } 4891 4892 /** 4893 * igb_free_all_rx_resources - Free Rx Resources for All Queues 4894 * @adapter: board private structure 4895 * 4896 * Free all receive software resources 4897 **/ 4898 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 4899 { 4900 int i; 4901 4902 for (i = 0; i < adapter->num_rx_queues; i++) 4903 if (adapter->rx_ring[i]) 4904 igb_free_rx_resources(adapter->rx_ring[i]); 4905 } 4906 4907 /** 4908 * igb_clean_rx_ring - Free Rx Buffers per Queue 4909 * @rx_ring: ring to free buffers from 4910 **/ 4911 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 4912 { 4913 u16 i = rx_ring->next_to_clean; 4914 4915 dev_kfree_skb(rx_ring->skb); 4916 rx_ring->skb = NULL; 4917 4918 /* Free all the Rx ring sk_buffs */ 4919 while (i != rx_ring->next_to_alloc) { 4920 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 4921 4922 /* Invalidate cache lines that may have been written to by 4923 * device so that we avoid corrupting memory. 4924 */ 4925 dma_sync_single_range_for_cpu(rx_ring->dev, 4926 buffer_info->dma, 4927 buffer_info->page_offset, 4928 igb_rx_bufsz(rx_ring), 4929 DMA_FROM_DEVICE); 4930 4931 /* free resources associated with mapping */ 4932 dma_unmap_page_attrs(rx_ring->dev, 4933 buffer_info->dma, 4934 igb_rx_pg_size(rx_ring), 4935 DMA_FROM_DEVICE, 4936 IGB_RX_DMA_ATTR); 4937 __page_frag_cache_drain(buffer_info->page, 4938 buffer_info->pagecnt_bias); 4939 4940 i++; 4941 if (i == rx_ring->count) 4942 i = 0; 4943 } 4944 4945 rx_ring->next_to_alloc = 0; 4946 rx_ring->next_to_clean = 0; 4947 rx_ring->next_to_use = 0; 4948 } 4949 4950 /** 4951 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 4952 * @adapter: board private structure 4953 **/ 4954 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 4955 { 4956 int i; 4957 4958 for (i = 0; i < adapter->num_rx_queues; i++) 4959 if (adapter->rx_ring[i]) 4960 igb_clean_rx_ring(adapter->rx_ring[i]); 4961 } 4962 4963 /** 4964 * igb_set_mac - Change the Ethernet Address of the NIC 4965 * @netdev: network interface device structure 4966 * @p: pointer to an address structure 4967 * 4968 * Returns 0 on success, negative on failure 4969 **/ 4970 static int igb_set_mac(struct net_device *netdev, void *p) 4971 { 4972 struct igb_adapter *adapter = netdev_priv(netdev); 4973 struct e1000_hw *hw = &adapter->hw; 4974 struct sockaddr *addr = p; 4975 4976 if (!is_valid_ether_addr(addr->sa_data)) 4977 return -EADDRNOTAVAIL; 4978 4979 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 4980 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 4981 4982 /* set the correct pool for the new PF MAC address in entry 0 */ 4983 igb_set_default_mac_filter(adapter); 4984 4985 return 0; 4986 } 4987 4988 /** 4989 * igb_write_mc_addr_list - write multicast addresses to MTA 4990 * @netdev: network interface device structure 4991 * 4992 * Writes multicast address list to the MTA hash table. 4993 * Returns: -ENOMEM on failure 4994 * 0 on no addresses written 4995 * X on writing X addresses to MTA 4996 **/ 4997 static int igb_write_mc_addr_list(struct net_device *netdev) 4998 { 4999 struct igb_adapter *adapter = netdev_priv(netdev); 5000 struct e1000_hw *hw = &adapter->hw; 5001 struct netdev_hw_addr *ha; 5002 u8 *mta_list; 5003 int i; 5004 5005 if (netdev_mc_empty(netdev)) { 5006 /* nothing to program, so clear mc list */ 5007 igb_update_mc_addr_list(hw, NULL, 0); 5008 igb_restore_vf_multicasts(adapter); 5009 return 0; 5010 } 5011 5012 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); 5013 if (!mta_list) 5014 return -ENOMEM; 5015 5016 /* The shared function expects a packed array of only addresses. */ 5017 i = 0; 5018 netdev_for_each_mc_addr(ha, netdev) 5019 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 5020 5021 igb_update_mc_addr_list(hw, mta_list, i); 5022 kfree(mta_list); 5023 5024 return netdev_mc_count(netdev); 5025 } 5026 5027 static int igb_vlan_promisc_enable(struct igb_adapter *adapter) 5028 { 5029 struct e1000_hw *hw = &adapter->hw; 5030 u32 i, pf_id; 5031 5032 switch (hw->mac.type) { 5033 case e1000_i210: 5034 case e1000_i211: 5035 case e1000_i350: 5036 /* VLAN filtering needed for VLAN prio filter */ 5037 if (adapter->netdev->features & NETIF_F_NTUPLE) 5038 break; 5039 fallthrough; 5040 case e1000_82576: 5041 case e1000_82580: 5042 case e1000_i354: 5043 /* VLAN filtering needed for pool filtering */ 5044 if (adapter->vfs_allocated_count) 5045 break; 5046 fallthrough; 5047 default: 5048 return 1; 5049 } 5050 5051 /* We are already in VLAN promisc, nothing to do */ 5052 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 5053 return 0; 5054 5055 if (!adapter->vfs_allocated_count) 5056 goto set_vfta; 5057 5058 /* Add PF to all active pools */ 5059 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5060 5061 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5062 u32 vlvf = rd32(E1000_VLVF(i)); 5063 5064 vlvf |= BIT(pf_id); 5065 wr32(E1000_VLVF(i), vlvf); 5066 } 5067 5068 set_vfta: 5069 /* Set all bits in the VLAN filter table array */ 5070 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;) 5071 hw->mac.ops.write_vfta(hw, i, ~0U); 5072 5073 /* Set flag so we don't redo unnecessary work */ 5074 adapter->flags |= IGB_FLAG_VLAN_PROMISC; 5075 5076 return 0; 5077 } 5078 5079 #define VFTA_BLOCK_SIZE 8 5080 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset) 5081 { 5082 struct e1000_hw *hw = &adapter->hw; 5083 u32 vfta[VFTA_BLOCK_SIZE] = { 0 }; 5084 u32 vid_start = vfta_offset * 32; 5085 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32); 5086 u32 i, vid, word, bits, pf_id; 5087 5088 /* guarantee that we don't scrub out management VLAN */ 5089 vid = adapter->mng_vlan_id; 5090 if (vid >= vid_start && vid < vid_end) 5091 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5092 5093 if (!adapter->vfs_allocated_count) 5094 goto set_vfta; 5095 5096 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 5097 5098 for (i = E1000_VLVF_ARRAY_SIZE; --i;) { 5099 u32 vlvf = rd32(E1000_VLVF(i)); 5100 5101 /* pull VLAN ID from VLVF */ 5102 vid = vlvf & VLAN_VID_MASK; 5103 5104 /* only concern ourselves with a certain range */ 5105 if (vid < vid_start || vid >= vid_end) 5106 continue; 5107 5108 if (vlvf & E1000_VLVF_VLANID_ENABLE) { 5109 /* record VLAN ID in VFTA */ 5110 vfta[(vid - vid_start) / 32] |= BIT(vid % 32); 5111 5112 /* if PF is part of this then continue */ 5113 if (test_bit(vid, adapter->active_vlans)) 5114 continue; 5115 } 5116 5117 /* remove PF from the pool */ 5118 bits = ~BIT(pf_id); 5119 bits &= rd32(E1000_VLVF(i)); 5120 wr32(E1000_VLVF(i), bits); 5121 } 5122 5123 set_vfta: 5124 /* extract values from active_vlans and write back to VFTA */ 5125 for (i = VFTA_BLOCK_SIZE; i--;) { 5126 vid = (vfta_offset + i) * 32; 5127 word = vid / BITS_PER_LONG; 5128 bits = vid % BITS_PER_LONG; 5129 5130 vfta[i] |= adapter->active_vlans[word] >> bits; 5131 5132 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]); 5133 } 5134 } 5135 5136 static void igb_vlan_promisc_disable(struct igb_adapter *adapter) 5137 { 5138 u32 i; 5139 5140 /* We are not in VLAN promisc, nothing to do */ 5141 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 5142 return; 5143 5144 /* Set flag so we don't redo unnecessary work */ 5145 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; 5146 5147 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE) 5148 igb_scrub_vfta(adapter, i); 5149 } 5150 5151 /** 5152 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 5153 * @netdev: network interface device structure 5154 * 5155 * The set_rx_mode entry point is called whenever the unicast or multicast 5156 * address lists or the network interface flags are updated. This routine is 5157 * responsible for configuring the hardware for proper unicast, multicast, 5158 * promiscuous mode, and all-multi behavior. 5159 **/ 5160 static void igb_set_rx_mode(struct net_device *netdev) 5161 { 5162 struct igb_adapter *adapter = netdev_priv(netdev); 5163 struct e1000_hw *hw = &adapter->hw; 5164 unsigned int vfn = adapter->vfs_allocated_count; 5165 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE; 5166 int count; 5167 5168 /* Check for Promiscuous and All Multicast modes */ 5169 if (netdev->flags & IFF_PROMISC) { 5170 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE; 5171 vmolr |= E1000_VMOLR_MPME; 5172 5173 /* enable use of UTA filter to force packets to default pool */ 5174 if (hw->mac.type == e1000_82576) 5175 vmolr |= E1000_VMOLR_ROPE; 5176 } else { 5177 if (netdev->flags & IFF_ALLMULTI) { 5178 rctl |= E1000_RCTL_MPE; 5179 vmolr |= E1000_VMOLR_MPME; 5180 } else { 5181 /* Write addresses to the MTA, if the attempt fails 5182 * then we should just turn on promiscuous mode so 5183 * that we can at least receive multicast traffic 5184 */ 5185 count = igb_write_mc_addr_list(netdev); 5186 if (count < 0) { 5187 rctl |= E1000_RCTL_MPE; 5188 vmolr |= E1000_VMOLR_MPME; 5189 } else if (count) { 5190 vmolr |= E1000_VMOLR_ROMPE; 5191 } 5192 } 5193 } 5194 5195 /* Write addresses to available RAR registers, if there is not 5196 * sufficient space to store all the addresses then enable 5197 * unicast promiscuous mode 5198 */ 5199 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) { 5200 rctl |= E1000_RCTL_UPE; 5201 vmolr |= E1000_VMOLR_ROPE; 5202 } 5203 5204 /* enable VLAN filtering by default */ 5205 rctl |= E1000_RCTL_VFE; 5206 5207 /* disable VLAN filtering for modes that require it */ 5208 if ((netdev->flags & IFF_PROMISC) || 5209 (netdev->features & NETIF_F_RXALL)) { 5210 /* if we fail to set all rules then just clear VFE */ 5211 if (igb_vlan_promisc_enable(adapter)) 5212 rctl &= ~E1000_RCTL_VFE; 5213 } else { 5214 igb_vlan_promisc_disable(adapter); 5215 } 5216 5217 /* update state of unicast, multicast, and VLAN filtering modes */ 5218 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE | 5219 E1000_RCTL_VFE); 5220 wr32(E1000_RCTL, rctl); 5221 5222 #if (PAGE_SIZE < 8192) 5223 if (!adapter->vfs_allocated_count) { 5224 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5225 rlpml = IGB_MAX_FRAME_BUILD_SKB; 5226 } 5227 #endif 5228 wr32(E1000_RLPML, rlpml); 5229 5230 /* In order to support SR-IOV and eventually VMDq it is necessary to set 5231 * the VMOLR to enable the appropriate modes. Without this workaround 5232 * we will have issues with VLAN tag stripping not being done for frames 5233 * that are only arriving because we are the default pool 5234 */ 5235 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 5236 return; 5237 5238 /* set UTA to appropriate mode */ 5239 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE)); 5240 5241 vmolr |= rd32(E1000_VMOLR(vfn)) & 5242 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 5243 5244 /* enable Rx jumbo frames, restrict as needed to support build_skb */ 5245 vmolr &= ~E1000_VMOLR_RLPML_MASK; 5246 #if (PAGE_SIZE < 8192) 5247 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) 5248 vmolr |= IGB_MAX_FRAME_BUILD_SKB; 5249 else 5250 #endif 5251 vmolr |= MAX_JUMBO_FRAME_SIZE; 5252 vmolr |= E1000_VMOLR_LPE; 5253 5254 wr32(E1000_VMOLR(vfn), vmolr); 5255 5256 igb_restore_vf_multicasts(adapter); 5257 } 5258 5259 static void igb_check_wvbr(struct igb_adapter *adapter) 5260 { 5261 struct e1000_hw *hw = &adapter->hw; 5262 u32 wvbr = 0; 5263 5264 switch (hw->mac.type) { 5265 case e1000_82576: 5266 case e1000_i350: 5267 wvbr = rd32(E1000_WVBR); 5268 if (!wvbr) 5269 return; 5270 break; 5271 default: 5272 break; 5273 } 5274 5275 adapter->wvbr |= wvbr; 5276 } 5277 5278 #define IGB_STAGGERED_QUEUE_OFFSET 8 5279 5280 static void igb_spoof_check(struct igb_adapter *adapter) 5281 { 5282 int j; 5283 5284 if (!adapter->wvbr) 5285 return; 5286 5287 for (j = 0; j < adapter->vfs_allocated_count; j++) { 5288 if (adapter->wvbr & BIT(j) || 5289 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) { 5290 dev_warn(&adapter->pdev->dev, 5291 "Spoof event(s) detected on VF %d\n", j); 5292 adapter->wvbr &= 5293 ~(BIT(j) | 5294 BIT(j + IGB_STAGGERED_QUEUE_OFFSET)); 5295 } 5296 } 5297 } 5298 5299 /* Need to wait a few seconds after link up to get diagnostic information from 5300 * the phy 5301 */ 5302 static void igb_update_phy_info(struct timer_list *t) 5303 { 5304 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer); 5305 igb_get_phy_info(&adapter->hw); 5306 } 5307 5308 /** 5309 * igb_has_link - check shared code for link and determine up/down 5310 * @adapter: pointer to driver private info 5311 **/ 5312 bool igb_has_link(struct igb_adapter *adapter) 5313 { 5314 struct e1000_hw *hw = &adapter->hw; 5315 bool link_active = false; 5316 5317 /* get_link_status is set on LSC (link status) interrupt or 5318 * rx sequence error interrupt. get_link_status will stay 5319 * false until the e1000_check_for_link establishes link 5320 * for copper adapters ONLY 5321 */ 5322 switch (hw->phy.media_type) { 5323 case e1000_media_type_copper: 5324 if (!hw->mac.get_link_status) 5325 return true; 5326 fallthrough; 5327 case e1000_media_type_internal_serdes: 5328 hw->mac.ops.check_for_link(hw); 5329 link_active = !hw->mac.get_link_status; 5330 break; 5331 default: 5332 case e1000_media_type_unknown: 5333 break; 5334 } 5335 5336 if (((hw->mac.type == e1000_i210) || 5337 (hw->mac.type == e1000_i211)) && 5338 (hw->phy.id == I210_I_PHY_ID)) { 5339 if (!netif_carrier_ok(adapter->netdev)) { 5340 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5341 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 5342 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 5343 adapter->link_check_timeout = jiffies; 5344 } 5345 } 5346 5347 return link_active; 5348 } 5349 5350 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 5351 { 5352 bool ret = false; 5353 u32 ctrl_ext, thstat; 5354 5355 /* check for thermal sensor event on i350 copper only */ 5356 if (hw->mac.type == e1000_i350) { 5357 thstat = rd32(E1000_THSTAT); 5358 ctrl_ext = rd32(E1000_CTRL_EXT); 5359 5360 if ((hw->phy.media_type == e1000_media_type_copper) && 5361 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 5362 ret = !!(thstat & event); 5363 } 5364 5365 return ret; 5366 } 5367 5368 /** 5369 * igb_check_lvmmc - check for malformed packets received 5370 * and indicated in LVMMC register 5371 * @adapter: pointer to adapter 5372 **/ 5373 static void igb_check_lvmmc(struct igb_adapter *adapter) 5374 { 5375 struct e1000_hw *hw = &adapter->hw; 5376 u32 lvmmc; 5377 5378 lvmmc = rd32(E1000_LVMMC); 5379 if (lvmmc) { 5380 if (unlikely(net_ratelimit())) { 5381 netdev_warn(adapter->netdev, 5382 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", 5383 lvmmc); 5384 } 5385 } 5386 } 5387 5388 /** 5389 * igb_watchdog - Timer Call-back 5390 * @t: pointer to timer_list containing our private info pointer 5391 **/ 5392 static void igb_watchdog(struct timer_list *t) 5393 { 5394 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5395 /* Do the rest outside of interrupt context */ 5396 schedule_work(&adapter->watchdog_task); 5397 } 5398 5399 static void igb_watchdog_task(struct work_struct *work) 5400 { 5401 struct igb_adapter *adapter = container_of(work, 5402 struct igb_adapter, 5403 watchdog_task); 5404 struct e1000_hw *hw = &adapter->hw; 5405 struct e1000_phy_info *phy = &hw->phy; 5406 struct net_device *netdev = adapter->netdev; 5407 u32 link; 5408 int i; 5409 u32 connsw; 5410 u16 phy_data, retry_count = 20; 5411 5412 link = igb_has_link(adapter); 5413 5414 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 5415 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 5416 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 5417 else 5418 link = false; 5419 } 5420 5421 /* Force link down if we have fiber to swap to */ 5422 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5423 if (hw->phy.media_type == e1000_media_type_copper) { 5424 connsw = rd32(E1000_CONNSW); 5425 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 5426 link = 0; 5427 } 5428 } 5429 if (link) { 5430 /* Perform a reset if the media type changed. */ 5431 if (hw->dev_spec._82575.media_changed) { 5432 hw->dev_spec._82575.media_changed = false; 5433 adapter->flags |= IGB_FLAG_MEDIA_RESET; 5434 igb_reset(adapter); 5435 } 5436 /* Cancel scheduled suspend requests. */ 5437 pm_runtime_resume(netdev->dev.parent); 5438 5439 if (!netif_carrier_ok(netdev)) { 5440 u32 ctrl; 5441 5442 hw->mac.ops.get_speed_and_duplex(hw, 5443 &adapter->link_speed, 5444 &adapter->link_duplex); 5445 5446 ctrl = rd32(E1000_CTRL); 5447 /* Links status message must follow this format */ 5448 netdev_info(netdev, 5449 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5450 netdev->name, 5451 adapter->link_speed, 5452 adapter->link_duplex == FULL_DUPLEX ? 5453 "Full" : "Half", 5454 (ctrl & E1000_CTRL_TFCE) && 5455 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 5456 (ctrl & E1000_CTRL_RFCE) ? "RX" : 5457 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 5458 5459 /* disable EEE if enabled */ 5460 if ((adapter->flags & IGB_FLAG_EEE) && 5461 (adapter->link_duplex == HALF_DUPLEX)) { 5462 dev_info(&adapter->pdev->dev, 5463 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 5464 adapter->hw.dev_spec._82575.eee_disable = true; 5465 adapter->flags &= ~IGB_FLAG_EEE; 5466 } 5467 5468 /* check if SmartSpeed worked */ 5469 igb_check_downshift(hw); 5470 if (phy->speed_downgraded) 5471 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 5472 5473 /* check for thermal sensor event */ 5474 if (igb_thermal_sensor_event(hw, 5475 E1000_THSTAT_LINK_THROTTLE)) 5476 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 5477 5478 /* adjust timeout factor according to speed/duplex */ 5479 adapter->tx_timeout_factor = 1; 5480 switch (adapter->link_speed) { 5481 case SPEED_10: 5482 adapter->tx_timeout_factor = 14; 5483 break; 5484 case SPEED_100: 5485 /* maybe add some timeout factor ? */ 5486 break; 5487 } 5488 5489 if (adapter->link_speed != SPEED_1000) 5490 goto no_wait; 5491 5492 /* wait for Remote receiver status OK */ 5493 retry_read_status: 5494 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS, 5495 &phy_data)) { 5496 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && 5497 retry_count) { 5498 msleep(100); 5499 retry_count--; 5500 goto retry_read_status; 5501 } else if (!retry_count) { 5502 dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); 5503 } 5504 } else { 5505 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); 5506 } 5507 no_wait: 5508 netif_carrier_on(netdev); 5509 5510 igb_ping_all_vfs(adapter); 5511 igb_check_vf_rate_limit(adapter); 5512 5513 /* link state has changed, schedule phy info update */ 5514 if (!test_bit(__IGB_DOWN, &adapter->state)) 5515 mod_timer(&adapter->phy_info_timer, 5516 round_jiffies(jiffies + 2 * HZ)); 5517 } 5518 } else { 5519 if (netif_carrier_ok(netdev)) { 5520 adapter->link_speed = 0; 5521 adapter->link_duplex = 0; 5522 5523 /* check for thermal sensor event */ 5524 if (igb_thermal_sensor_event(hw, 5525 E1000_THSTAT_PWR_DOWN)) { 5526 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 5527 } 5528 5529 /* Links status message must follow this format */ 5530 netdev_info(netdev, "igb: %s NIC Link is Down\n", 5531 netdev->name); 5532 netif_carrier_off(netdev); 5533 5534 igb_ping_all_vfs(adapter); 5535 5536 /* link state has changed, schedule phy info update */ 5537 if (!test_bit(__IGB_DOWN, &adapter->state)) 5538 mod_timer(&adapter->phy_info_timer, 5539 round_jiffies(jiffies + 2 * HZ)); 5540 5541 /* link is down, time to check for alternate media */ 5542 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 5543 igb_check_swap_media(adapter); 5544 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5545 schedule_work(&adapter->reset_task); 5546 /* return immediately */ 5547 return; 5548 } 5549 } 5550 pm_schedule_suspend(netdev->dev.parent, 5551 MSEC_PER_SEC * 5); 5552 5553 /* also check for alternate media here */ 5554 } else if (!netif_carrier_ok(netdev) && 5555 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 5556 igb_check_swap_media(adapter); 5557 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 5558 schedule_work(&adapter->reset_task); 5559 /* return immediately */ 5560 return; 5561 } 5562 } 5563 } 5564 5565 spin_lock(&adapter->stats64_lock); 5566 igb_update_stats(adapter); 5567 spin_unlock(&adapter->stats64_lock); 5568 5569 for (i = 0; i < adapter->num_tx_queues; i++) { 5570 struct igb_ring *tx_ring = adapter->tx_ring[i]; 5571 if (!netif_carrier_ok(netdev)) { 5572 /* We've lost link, so the controller stops DMA, 5573 * but we've got queued Tx work that's never going 5574 * to get done, so reset controller to flush Tx. 5575 * (Do the reset outside of interrupt context). 5576 */ 5577 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 5578 adapter->tx_timeout_count++; 5579 schedule_work(&adapter->reset_task); 5580 /* return immediately since reset is imminent */ 5581 return; 5582 } 5583 } 5584 5585 /* Force detection of hung controller every watchdog period */ 5586 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 5587 } 5588 5589 /* Cause software interrupt to ensure Rx ring is cleaned */ 5590 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 5591 u32 eics = 0; 5592 5593 for (i = 0; i < adapter->num_q_vectors; i++) 5594 eics |= adapter->q_vector[i]->eims_value; 5595 wr32(E1000_EICS, eics); 5596 } else { 5597 wr32(E1000_ICS, E1000_ICS_RXDMT0); 5598 } 5599 5600 igb_spoof_check(adapter); 5601 igb_ptp_rx_hang(adapter); 5602 igb_ptp_tx_hang(adapter); 5603 5604 /* Check LVMMC register on i350/i354 only */ 5605 if ((adapter->hw.mac.type == e1000_i350) || 5606 (adapter->hw.mac.type == e1000_i354)) 5607 igb_check_lvmmc(adapter); 5608 5609 /* Reset the timer */ 5610 if (!test_bit(__IGB_DOWN, &adapter->state)) { 5611 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 5612 mod_timer(&adapter->watchdog_timer, 5613 round_jiffies(jiffies + HZ)); 5614 else 5615 mod_timer(&adapter->watchdog_timer, 5616 round_jiffies(jiffies + 2 * HZ)); 5617 } 5618 } 5619 5620 enum latency_range { 5621 lowest_latency = 0, 5622 low_latency = 1, 5623 bulk_latency = 2, 5624 latency_invalid = 255 5625 }; 5626 5627 /** 5628 * igb_update_ring_itr - update the dynamic ITR value based on packet size 5629 * @q_vector: pointer to q_vector 5630 * 5631 * Stores a new ITR value based on strictly on packet size. This 5632 * algorithm is less sophisticated than that used in igb_update_itr, 5633 * due to the difficulty of synchronizing statistics across multiple 5634 * receive rings. The divisors and thresholds used by this function 5635 * were determined based on theoretical maximum wire speed and testing 5636 * data, in order to minimize response time while increasing bulk 5637 * throughput. 5638 * This functionality is controlled by ethtool's coalescing settings. 5639 * NOTE: This function is called only when operating in a multiqueue 5640 * receive environment. 5641 **/ 5642 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 5643 { 5644 int new_val = q_vector->itr_val; 5645 int avg_wire_size = 0; 5646 struct igb_adapter *adapter = q_vector->adapter; 5647 unsigned int packets; 5648 5649 /* For non-gigabit speeds, just fix the interrupt rate at 4000 5650 * ints/sec - ITR timer value of 120 ticks. 5651 */ 5652 if (adapter->link_speed != SPEED_1000) { 5653 new_val = IGB_4K_ITR; 5654 goto set_itr_val; 5655 } 5656 5657 packets = q_vector->rx.total_packets; 5658 if (packets) 5659 avg_wire_size = q_vector->rx.total_bytes / packets; 5660 5661 packets = q_vector->tx.total_packets; 5662 if (packets) 5663 avg_wire_size = max_t(u32, avg_wire_size, 5664 q_vector->tx.total_bytes / packets); 5665 5666 /* if avg_wire_size isn't set no work was done */ 5667 if (!avg_wire_size) 5668 goto clear_counts; 5669 5670 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 5671 avg_wire_size += 24; 5672 5673 /* Don't starve jumbo frames */ 5674 avg_wire_size = min(avg_wire_size, 3000); 5675 5676 /* Give a little boost to mid-size frames */ 5677 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 5678 new_val = avg_wire_size / 3; 5679 else 5680 new_val = avg_wire_size / 2; 5681 5682 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5683 if (new_val < IGB_20K_ITR && 5684 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5685 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5686 new_val = IGB_20K_ITR; 5687 5688 set_itr_val: 5689 if (new_val != q_vector->itr_val) { 5690 q_vector->itr_val = new_val; 5691 q_vector->set_itr = 1; 5692 } 5693 clear_counts: 5694 q_vector->rx.total_bytes = 0; 5695 q_vector->rx.total_packets = 0; 5696 q_vector->tx.total_bytes = 0; 5697 q_vector->tx.total_packets = 0; 5698 } 5699 5700 /** 5701 * igb_update_itr - update the dynamic ITR value based on statistics 5702 * @q_vector: pointer to q_vector 5703 * @ring_container: ring info to update the itr for 5704 * 5705 * Stores a new ITR value based on packets and byte 5706 * counts during the last interrupt. The advantage of per interrupt 5707 * computation is faster updates and more accurate ITR for the current 5708 * traffic pattern. Constants in this function were computed 5709 * based on theoretical maximum wire speed and thresholds were set based 5710 * on testing data as well as attempting to minimize response time 5711 * while increasing bulk throughput. 5712 * This functionality is controlled by ethtool's coalescing settings. 5713 * NOTE: These calculations are only valid when operating in a single- 5714 * queue environment. 5715 **/ 5716 static void igb_update_itr(struct igb_q_vector *q_vector, 5717 struct igb_ring_container *ring_container) 5718 { 5719 unsigned int packets = ring_container->total_packets; 5720 unsigned int bytes = ring_container->total_bytes; 5721 u8 itrval = ring_container->itr; 5722 5723 /* no packets, exit with status unchanged */ 5724 if (packets == 0) 5725 return; 5726 5727 switch (itrval) { 5728 case lowest_latency: 5729 /* handle TSO and jumbo frames */ 5730 if (bytes/packets > 8000) 5731 itrval = bulk_latency; 5732 else if ((packets < 5) && (bytes > 512)) 5733 itrval = low_latency; 5734 break; 5735 case low_latency: /* 50 usec aka 20000 ints/s */ 5736 if (bytes > 10000) { 5737 /* this if handles the TSO accounting */ 5738 if (bytes/packets > 8000) 5739 itrval = bulk_latency; 5740 else if ((packets < 10) || ((bytes/packets) > 1200)) 5741 itrval = bulk_latency; 5742 else if ((packets > 35)) 5743 itrval = lowest_latency; 5744 } else if (bytes/packets > 2000) { 5745 itrval = bulk_latency; 5746 } else if (packets <= 2 && bytes < 512) { 5747 itrval = lowest_latency; 5748 } 5749 break; 5750 case bulk_latency: /* 250 usec aka 4000 ints/s */ 5751 if (bytes > 25000) { 5752 if (packets > 35) 5753 itrval = low_latency; 5754 } else if (bytes < 1500) { 5755 itrval = low_latency; 5756 } 5757 break; 5758 } 5759 5760 /* clear work counters since we have the values we need */ 5761 ring_container->total_bytes = 0; 5762 ring_container->total_packets = 0; 5763 5764 /* write updated itr to ring container */ 5765 ring_container->itr = itrval; 5766 } 5767 5768 static void igb_set_itr(struct igb_q_vector *q_vector) 5769 { 5770 struct igb_adapter *adapter = q_vector->adapter; 5771 u32 new_itr = q_vector->itr_val; 5772 u8 current_itr = 0; 5773 5774 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 5775 if (adapter->link_speed != SPEED_1000) { 5776 current_itr = 0; 5777 new_itr = IGB_4K_ITR; 5778 goto set_itr_now; 5779 } 5780 5781 igb_update_itr(q_vector, &q_vector->tx); 5782 igb_update_itr(q_vector, &q_vector->rx); 5783 5784 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 5785 5786 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 5787 if (current_itr == lowest_latency && 5788 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 5789 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 5790 current_itr = low_latency; 5791 5792 switch (current_itr) { 5793 /* counts and packets in update_itr are dependent on these numbers */ 5794 case lowest_latency: 5795 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 5796 break; 5797 case low_latency: 5798 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 5799 break; 5800 case bulk_latency: 5801 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 5802 break; 5803 default: 5804 break; 5805 } 5806 5807 set_itr_now: 5808 if (new_itr != q_vector->itr_val) { 5809 /* this attempts to bias the interrupt rate towards Bulk 5810 * by adding intermediate steps when interrupt rate is 5811 * increasing 5812 */ 5813 new_itr = new_itr > q_vector->itr_val ? 5814 max((new_itr * q_vector->itr_val) / 5815 (new_itr + (q_vector->itr_val >> 2)), 5816 new_itr) : new_itr; 5817 /* Don't write the value here; it resets the adapter's 5818 * internal timer, and causes us to delay far longer than 5819 * we should between interrupts. Instead, we write the ITR 5820 * value at the beginning of the next interrupt so the timing 5821 * ends up being correct. 5822 */ 5823 q_vector->itr_val = new_itr; 5824 q_vector->set_itr = 1; 5825 } 5826 } 5827 5828 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, 5829 struct igb_tx_buffer *first, 5830 u32 vlan_macip_lens, u32 type_tucmd, 5831 u32 mss_l4len_idx) 5832 { 5833 struct e1000_adv_tx_context_desc *context_desc; 5834 u16 i = tx_ring->next_to_use; 5835 struct timespec64 ts; 5836 5837 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 5838 5839 i++; 5840 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 5841 5842 /* set bits to identify this as an advanced context descriptor */ 5843 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 5844 5845 /* For 82575, context index must be unique per ring. */ 5846 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 5847 mss_l4len_idx |= tx_ring->reg_idx << 4; 5848 5849 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 5850 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 5851 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 5852 5853 /* We assume there is always a valid tx time available. Invalid times 5854 * should have been handled by the upper layers. 5855 */ 5856 if (tx_ring->launchtime_enable) { 5857 ts = ktime_to_timespec64(first->skb->tstamp); 5858 skb_txtime_consumed(first->skb); 5859 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32); 5860 } else { 5861 context_desc->seqnum_seed = 0; 5862 } 5863 } 5864 5865 static int igb_tso(struct igb_ring *tx_ring, 5866 struct igb_tx_buffer *first, 5867 u8 *hdr_len) 5868 { 5869 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 5870 struct sk_buff *skb = first->skb; 5871 union { 5872 struct iphdr *v4; 5873 struct ipv6hdr *v6; 5874 unsigned char *hdr; 5875 } ip; 5876 union { 5877 struct tcphdr *tcp; 5878 struct udphdr *udp; 5879 unsigned char *hdr; 5880 } l4; 5881 u32 paylen, l4_offset; 5882 int err; 5883 5884 if (skb->ip_summed != CHECKSUM_PARTIAL) 5885 return 0; 5886 5887 if (!skb_is_gso(skb)) 5888 return 0; 5889 5890 err = skb_cow_head(skb, 0); 5891 if (err < 0) 5892 return err; 5893 5894 ip.hdr = skb_network_header(skb); 5895 l4.hdr = skb_checksum_start(skb); 5896 5897 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 5898 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ? 5899 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP; 5900 5901 /* initialize outer IP header fields */ 5902 if (ip.v4->version == 4) { 5903 unsigned char *csum_start = skb_checksum_start(skb); 5904 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 5905 5906 /* IP header will have to cancel out any data that 5907 * is not a part of the outer IP header 5908 */ 5909 ip.v4->check = csum_fold(csum_partial(trans_start, 5910 csum_start - trans_start, 5911 0)); 5912 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 5913 5914 ip.v4->tot_len = 0; 5915 first->tx_flags |= IGB_TX_FLAGS_TSO | 5916 IGB_TX_FLAGS_CSUM | 5917 IGB_TX_FLAGS_IPV4; 5918 } else { 5919 ip.v6->payload_len = 0; 5920 first->tx_flags |= IGB_TX_FLAGS_TSO | 5921 IGB_TX_FLAGS_CSUM; 5922 } 5923 5924 /* determine offset of inner transport header */ 5925 l4_offset = l4.hdr - skb->data; 5926 5927 /* remove payload length from inner checksum */ 5928 paylen = skb->len - l4_offset; 5929 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) { 5930 /* compute length of segmentation header */ 5931 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 5932 csum_replace_by_diff(&l4.tcp->check, 5933 (__force __wsum)htonl(paylen)); 5934 } else { 5935 /* compute length of segmentation header */ 5936 *hdr_len = sizeof(*l4.udp) + l4_offset; 5937 csum_replace_by_diff(&l4.udp->check, 5938 (__force __wsum)htonl(paylen)); 5939 } 5940 5941 /* update gso size and bytecount with header size */ 5942 first->gso_segs = skb_shinfo(skb)->gso_segs; 5943 first->bytecount += (first->gso_segs - 1) * *hdr_len; 5944 5945 /* MSS L4LEN IDX */ 5946 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; 5947 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 5948 5949 /* VLAN MACLEN IPLEN */ 5950 vlan_macip_lens = l4.hdr - ip.hdr; 5951 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; 5952 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 5953 5954 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, 5955 type_tucmd, mss_l4len_idx); 5956 5957 return 1; 5958 } 5959 5960 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 5961 { 5962 struct sk_buff *skb = first->skb; 5963 u32 vlan_macip_lens = 0; 5964 u32 type_tucmd = 0; 5965 5966 if (skb->ip_summed != CHECKSUM_PARTIAL) { 5967 csum_failed: 5968 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) && 5969 !tx_ring->launchtime_enable) 5970 return; 5971 goto no_csum; 5972 } 5973 5974 switch (skb->csum_offset) { 5975 case offsetof(struct tcphdr, check): 5976 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 5977 fallthrough; 5978 case offsetof(struct udphdr, check): 5979 break; 5980 case offsetof(struct sctphdr, checksum): 5981 /* validate that this is actually an SCTP request */ 5982 if (skb_csum_is_sctp(skb)) { 5983 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; 5984 break; 5985 } 5986 fallthrough; 5987 default: 5988 skb_checksum_help(skb); 5989 goto csum_failed; 5990 } 5991 5992 /* update TX checksum flag */ 5993 first->tx_flags |= IGB_TX_FLAGS_CSUM; 5994 vlan_macip_lens = skb_checksum_start_offset(skb) - 5995 skb_network_offset(skb); 5996 no_csum: 5997 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 5998 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 5999 6000 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); 6001 } 6002 6003 #define IGB_SET_FLAG(_input, _flag, _result) \ 6004 ((_flag <= _result) ? \ 6005 ((u32)(_input & _flag) * (_result / _flag)) : \ 6006 ((u32)(_input & _flag) / (_flag / _result))) 6007 6008 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 6009 { 6010 /* set type for advanced descriptor with frame checksum insertion */ 6011 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 6012 E1000_ADVTXD_DCMD_DEXT | 6013 E1000_ADVTXD_DCMD_IFCS; 6014 6015 /* set HW vlan bit if vlan is present */ 6016 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 6017 (E1000_ADVTXD_DCMD_VLE)); 6018 6019 /* set segmentation bits for TSO */ 6020 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 6021 (E1000_ADVTXD_DCMD_TSE)); 6022 6023 /* set timestamp bit if present */ 6024 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 6025 (E1000_ADVTXD_MAC_TSTAMP)); 6026 6027 /* insert frame checksum */ 6028 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 6029 6030 return cmd_type; 6031 } 6032 6033 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 6034 union e1000_adv_tx_desc *tx_desc, 6035 u32 tx_flags, unsigned int paylen) 6036 { 6037 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 6038 6039 /* 82575 requires a unique index per ring */ 6040 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6041 olinfo_status |= tx_ring->reg_idx << 4; 6042 6043 /* insert L4 checksum */ 6044 olinfo_status |= IGB_SET_FLAG(tx_flags, 6045 IGB_TX_FLAGS_CSUM, 6046 (E1000_TXD_POPTS_TXSM << 8)); 6047 6048 /* insert IPv4 checksum */ 6049 olinfo_status |= IGB_SET_FLAG(tx_flags, 6050 IGB_TX_FLAGS_IPV4, 6051 (E1000_TXD_POPTS_IXSM << 8)); 6052 6053 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 6054 } 6055 6056 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6057 { 6058 struct net_device *netdev = tx_ring->netdev; 6059 6060 netif_stop_subqueue(netdev, tx_ring->queue_index); 6061 6062 /* Herbert's original patch had: 6063 * smp_mb__after_netif_stop_queue(); 6064 * but since that doesn't exist yet, just open code it. 6065 */ 6066 smp_mb(); 6067 6068 /* We need to check again in a case another CPU has just 6069 * made room available. 6070 */ 6071 if (igb_desc_unused(tx_ring) < size) 6072 return -EBUSY; 6073 6074 /* A reprieve! */ 6075 netif_wake_subqueue(netdev, tx_ring->queue_index); 6076 6077 u64_stats_update_begin(&tx_ring->tx_syncp2); 6078 tx_ring->tx_stats.restart_queue2++; 6079 u64_stats_update_end(&tx_ring->tx_syncp2); 6080 6081 return 0; 6082 } 6083 6084 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 6085 { 6086 if (igb_desc_unused(tx_ring) >= size) 6087 return 0; 6088 return __igb_maybe_stop_tx(tx_ring, size); 6089 } 6090 6091 static int igb_tx_map(struct igb_ring *tx_ring, 6092 struct igb_tx_buffer *first, 6093 const u8 hdr_len) 6094 { 6095 struct sk_buff *skb = first->skb; 6096 struct igb_tx_buffer *tx_buffer; 6097 union e1000_adv_tx_desc *tx_desc; 6098 skb_frag_t *frag; 6099 dma_addr_t dma; 6100 unsigned int data_len, size; 6101 u32 tx_flags = first->tx_flags; 6102 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 6103 u16 i = tx_ring->next_to_use; 6104 6105 tx_desc = IGB_TX_DESC(tx_ring, i); 6106 6107 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 6108 6109 size = skb_headlen(skb); 6110 data_len = skb->data_len; 6111 6112 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 6113 6114 tx_buffer = first; 6115 6116 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 6117 if (dma_mapping_error(tx_ring->dev, dma)) 6118 goto dma_error; 6119 6120 /* record length, and DMA address */ 6121 dma_unmap_len_set(tx_buffer, len, size); 6122 dma_unmap_addr_set(tx_buffer, dma, dma); 6123 6124 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6125 6126 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 6127 tx_desc->read.cmd_type_len = 6128 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 6129 6130 i++; 6131 tx_desc++; 6132 if (i == tx_ring->count) { 6133 tx_desc = IGB_TX_DESC(tx_ring, 0); 6134 i = 0; 6135 } 6136 tx_desc->read.olinfo_status = 0; 6137 6138 dma += IGB_MAX_DATA_PER_TXD; 6139 size -= IGB_MAX_DATA_PER_TXD; 6140 6141 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6142 } 6143 6144 if (likely(!data_len)) 6145 break; 6146 6147 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 6148 6149 i++; 6150 tx_desc++; 6151 if (i == tx_ring->count) { 6152 tx_desc = IGB_TX_DESC(tx_ring, 0); 6153 i = 0; 6154 } 6155 tx_desc->read.olinfo_status = 0; 6156 6157 size = skb_frag_size(frag); 6158 data_len -= size; 6159 6160 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 6161 size, DMA_TO_DEVICE); 6162 6163 tx_buffer = &tx_ring->tx_buffer_info[i]; 6164 } 6165 6166 /* write last descriptor with RS and EOP bits */ 6167 cmd_type |= size | IGB_TXD_DCMD; 6168 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6169 6170 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 6171 6172 /* set the timestamp */ 6173 first->time_stamp = jiffies; 6174 6175 skb_tx_timestamp(skb); 6176 6177 /* Force memory writes to complete before letting h/w know there 6178 * are new descriptors to fetch. (Only applicable for weak-ordered 6179 * memory model archs, such as IA-64). 6180 * 6181 * We also need this memory barrier to make certain all of the 6182 * status bits have been updated before next_to_watch is written. 6183 */ 6184 dma_wmb(); 6185 6186 /* set next_to_watch value indicating a packet is present */ 6187 first->next_to_watch = tx_desc; 6188 6189 i++; 6190 if (i == tx_ring->count) 6191 i = 0; 6192 6193 tx_ring->next_to_use = i; 6194 6195 /* Make sure there is space in the ring for the next send. */ 6196 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6197 6198 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 6199 writel(i, tx_ring->tail); 6200 } 6201 return 0; 6202 6203 dma_error: 6204 dev_err(tx_ring->dev, "TX DMA map failed\n"); 6205 tx_buffer = &tx_ring->tx_buffer_info[i]; 6206 6207 /* clear dma mappings for failed tx_buffer_info map */ 6208 while (tx_buffer != first) { 6209 if (dma_unmap_len(tx_buffer, len)) 6210 dma_unmap_page(tx_ring->dev, 6211 dma_unmap_addr(tx_buffer, dma), 6212 dma_unmap_len(tx_buffer, len), 6213 DMA_TO_DEVICE); 6214 dma_unmap_len_set(tx_buffer, len, 0); 6215 6216 if (i-- == 0) 6217 i += tx_ring->count; 6218 tx_buffer = &tx_ring->tx_buffer_info[i]; 6219 } 6220 6221 if (dma_unmap_len(tx_buffer, len)) 6222 dma_unmap_single(tx_ring->dev, 6223 dma_unmap_addr(tx_buffer, dma), 6224 dma_unmap_len(tx_buffer, len), 6225 DMA_TO_DEVICE); 6226 dma_unmap_len_set(tx_buffer, len, 0); 6227 6228 dev_kfree_skb_any(tx_buffer->skb); 6229 tx_buffer->skb = NULL; 6230 6231 tx_ring->next_to_use = i; 6232 6233 return -1; 6234 } 6235 6236 int igb_xmit_xdp_ring(struct igb_adapter *adapter, 6237 struct igb_ring *tx_ring, 6238 struct xdp_frame *xdpf) 6239 { 6240 union e1000_adv_tx_desc *tx_desc; 6241 u32 len, cmd_type, olinfo_status; 6242 struct igb_tx_buffer *tx_buffer; 6243 dma_addr_t dma; 6244 u16 i; 6245 6246 len = xdpf->len; 6247 6248 if (unlikely(!igb_desc_unused(tx_ring))) 6249 return IGB_XDP_CONSUMED; 6250 6251 dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE); 6252 if (dma_mapping_error(tx_ring->dev, dma)) 6253 return IGB_XDP_CONSUMED; 6254 6255 /* record the location of the first descriptor for this packet */ 6256 tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 6257 tx_buffer->bytecount = len; 6258 tx_buffer->gso_segs = 1; 6259 tx_buffer->protocol = 0; 6260 6261 i = tx_ring->next_to_use; 6262 tx_desc = IGB_TX_DESC(tx_ring, i); 6263 6264 dma_unmap_len_set(tx_buffer, len, len); 6265 dma_unmap_addr_set(tx_buffer, dma, dma); 6266 tx_buffer->type = IGB_TYPE_XDP; 6267 tx_buffer->xdpf = xdpf; 6268 6269 tx_desc->read.buffer_addr = cpu_to_le64(dma); 6270 6271 /* put descriptor type bits */ 6272 cmd_type = E1000_ADVTXD_DTYP_DATA | 6273 E1000_ADVTXD_DCMD_DEXT | 6274 E1000_ADVTXD_DCMD_IFCS; 6275 cmd_type |= len | IGB_TXD_DCMD; 6276 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 6277 6278 olinfo_status = cpu_to_le32(len << E1000_ADVTXD_PAYLEN_SHIFT); 6279 /* 82575 requires a unique index per ring */ 6280 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 6281 olinfo_status |= tx_ring->reg_idx << 4; 6282 6283 tx_desc->read.olinfo_status = olinfo_status; 6284 6285 netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount); 6286 6287 /* set the timestamp */ 6288 tx_buffer->time_stamp = jiffies; 6289 6290 /* Avoid any potential race with xdp_xmit and cleanup */ 6291 smp_wmb(); 6292 6293 /* set next_to_watch value indicating a packet is present */ 6294 i++; 6295 if (i == tx_ring->count) 6296 i = 0; 6297 6298 tx_buffer->next_to_watch = tx_desc; 6299 tx_ring->next_to_use = i; 6300 6301 /* Make sure there is space in the ring for the next send. */ 6302 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 6303 6304 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) 6305 writel(i, tx_ring->tail); 6306 6307 return IGB_XDP_TX; 6308 } 6309 6310 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 6311 struct igb_ring *tx_ring) 6312 { 6313 struct igb_tx_buffer *first; 6314 int tso; 6315 u32 tx_flags = 0; 6316 unsigned short f; 6317 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 6318 __be16 protocol = vlan_get_protocol(skb); 6319 u8 hdr_len = 0; 6320 6321 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 6322 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 6323 * + 2 desc gap to keep tail from touching head, 6324 * + 1 desc for context descriptor, 6325 * otherwise try next time 6326 */ 6327 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 6328 count += TXD_USE_COUNT(skb_frag_size( 6329 &skb_shinfo(skb)->frags[f])); 6330 6331 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 6332 /* this is a hard error */ 6333 return NETDEV_TX_BUSY; 6334 } 6335 6336 /* record the location of the first descriptor for this packet */ 6337 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 6338 first->type = IGB_TYPE_SKB; 6339 first->skb = skb; 6340 first->bytecount = skb->len; 6341 first->gso_segs = 1; 6342 6343 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 6344 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6345 6346 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && 6347 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 6348 &adapter->state)) { 6349 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 6350 tx_flags |= IGB_TX_FLAGS_TSTAMP; 6351 6352 adapter->ptp_tx_skb = skb_get(skb); 6353 adapter->ptp_tx_start = jiffies; 6354 if (adapter->hw.mac.type == e1000_82576) 6355 schedule_work(&adapter->ptp_tx_work); 6356 } else { 6357 adapter->tx_hwtstamp_skipped++; 6358 } 6359 } 6360 6361 if (skb_vlan_tag_present(skb)) { 6362 tx_flags |= IGB_TX_FLAGS_VLAN; 6363 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 6364 } 6365 6366 /* record initial flags and protocol */ 6367 first->tx_flags = tx_flags; 6368 first->protocol = protocol; 6369 6370 tso = igb_tso(tx_ring, first, &hdr_len); 6371 if (tso < 0) 6372 goto out_drop; 6373 else if (!tso) 6374 igb_tx_csum(tx_ring, first); 6375 6376 if (igb_tx_map(tx_ring, first, hdr_len)) 6377 goto cleanup_tx_tstamp; 6378 6379 return NETDEV_TX_OK; 6380 6381 out_drop: 6382 dev_kfree_skb_any(first->skb); 6383 first->skb = NULL; 6384 cleanup_tx_tstamp: 6385 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) { 6386 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 6387 6388 dev_kfree_skb_any(adapter->ptp_tx_skb); 6389 adapter->ptp_tx_skb = NULL; 6390 if (adapter->hw.mac.type == e1000_82576) 6391 cancel_work_sync(&adapter->ptp_tx_work); 6392 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); 6393 } 6394 6395 return NETDEV_TX_OK; 6396 } 6397 6398 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 6399 struct sk_buff *skb) 6400 { 6401 unsigned int r_idx = skb->queue_mapping; 6402 6403 if (r_idx >= adapter->num_tx_queues) 6404 r_idx = r_idx % adapter->num_tx_queues; 6405 6406 return adapter->tx_ring[r_idx]; 6407 } 6408 6409 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 6410 struct net_device *netdev) 6411 { 6412 struct igb_adapter *adapter = netdev_priv(netdev); 6413 6414 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 6415 * in order to meet this minimum size requirement. 6416 */ 6417 if (skb_put_padto(skb, 17)) 6418 return NETDEV_TX_OK; 6419 6420 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 6421 } 6422 6423 /** 6424 * igb_tx_timeout - Respond to a Tx Hang 6425 * @netdev: network interface device structure 6426 * @txqueue: number of the Tx queue that hung (unused) 6427 **/ 6428 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 6429 { 6430 struct igb_adapter *adapter = netdev_priv(netdev); 6431 struct e1000_hw *hw = &adapter->hw; 6432 6433 /* Do the reset outside of interrupt context */ 6434 adapter->tx_timeout_count++; 6435 6436 if (hw->mac.type >= e1000_82580) 6437 hw->dev_spec._82575.global_device_reset = true; 6438 6439 schedule_work(&adapter->reset_task); 6440 wr32(E1000_EICS, 6441 (adapter->eims_enable_mask & ~adapter->eims_other)); 6442 } 6443 6444 static void igb_reset_task(struct work_struct *work) 6445 { 6446 struct igb_adapter *adapter; 6447 adapter = container_of(work, struct igb_adapter, reset_task); 6448 6449 rtnl_lock(); 6450 /* If we're already down or resetting, just bail */ 6451 if (test_bit(__IGB_DOWN, &adapter->state) || 6452 test_bit(__IGB_RESETTING, &adapter->state)) { 6453 rtnl_unlock(); 6454 return; 6455 } 6456 6457 igb_dump(adapter); 6458 netdev_err(adapter->netdev, "Reset adapter\n"); 6459 igb_reinit_locked(adapter); 6460 rtnl_unlock(); 6461 } 6462 6463 /** 6464 * igb_get_stats64 - Get System Network Statistics 6465 * @netdev: network interface device structure 6466 * @stats: rtnl_link_stats64 pointer 6467 **/ 6468 static void igb_get_stats64(struct net_device *netdev, 6469 struct rtnl_link_stats64 *stats) 6470 { 6471 struct igb_adapter *adapter = netdev_priv(netdev); 6472 6473 spin_lock(&adapter->stats64_lock); 6474 igb_update_stats(adapter); 6475 memcpy(stats, &adapter->stats64, sizeof(*stats)); 6476 spin_unlock(&adapter->stats64_lock); 6477 } 6478 6479 /** 6480 * igb_change_mtu - Change the Maximum Transfer Unit 6481 * @netdev: network interface device structure 6482 * @new_mtu: new value for maximum frame size 6483 * 6484 * Returns 0 on success, negative on failure 6485 **/ 6486 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 6487 { 6488 struct igb_adapter *adapter = netdev_priv(netdev); 6489 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD; 6490 6491 if (adapter->xdp_prog) { 6492 int i; 6493 6494 for (i = 0; i < adapter->num_rx_queues; i++) { 6495 struct igb_ring *ring = adapter->rx_ring[i]; 6496 6497 if (max_frame > igb_rx_bufsz(ring)) { 6498 netdev_warn(adapter->netdev, 6499 "Requested MTU size is not supported with XDP. Max frame size is %d\n", 6500 max_frame); 6501 return -EINVAL; 6502 } 6503 } 6504 } 6505 6506 /* adjust max frame to be at least the size of a standard frame */ 6507 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 6508 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 6509 6510 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 6511 usleep_range(1000, 2000); 6512 6513 /* igb_down has a dependency on max_frame_size */ 6514 adapter->max_frame_size = max_frame; 6515 6516 if (netif_running(netdev)) 6517 igb_down(adapter); 6518 6519 netdev_dbg(netdev, "changing MTU from %d to %d\n", 6520 netdev->mtu, new_mtu); 6521 netdev->mtu = new_mtu; 6522 6523 if (netif_running(netdev)) 6524 igb_up(adapter); 6525 else 6526 igb_reset(adapter); 6527 6528 clear_bit(__IGB_RESETTING, &adapter->state); 6529 6530 return 0; 6531 } 6532 6533 /** 6534 * igb_update_stats - Update the board statistics counters 6535 * @adapter: board private structure 6536 **/ 6537 void igb_update_stats(struct igb_adapter *adapter) 6538 { 6539 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 6540 struct e1000_hw *hw = &adapter->hw; 6541 struct pci_dev *pdev = adapter->pdev; 6542 u32 reg, mpc; 6543 int i; 6544 u64 bytes, packets; 6545 unsigned int start; 6546 u64 _bytes, _packets; 6547 6548 /* Prevent stats update while adapter is being reset, or if the pci 6549 * connection is down. 6550 */ 6551 if (adapter->link_speed == 0) 6552 return; 6553 if (pci_channel_offline(pdev)) 6554 return; 6555 6556 bytes = 0; 6557 packets = 0; 6558 6559 rcu_read_lock(); 6560 for (i = 0; i < adapter->num_rx_queues; i++) { 6561 struct igb_ring *ring = adapter->rx_ring[i]; 6562 u32 rqdpc = rd32(E1000_RQDPC(i)); 6563 if (hw->mac.type >= e1000_i210) 6564 wr32(E1000_RQDPC(i), 0); 6565 6566 if (rqdpc) { 6567 ring->rx_stats.drops += rqdpc; 6568 net_stats->rx_fifo_errors += rqdpc; 6569 } 6570 6571 do { 6572 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 6573 _bytes = ring->rx_stats.bytes; 6574 _packets = ring->rx_stats.packets; 6575 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 6576 bytes += _bytes; 6577 packets += _packets; 6578 } 6579 6580 net_stats->rx_bytes = bytes; 6581 net_stats->rx_packets = packets; 6582 6583 bytes = 0; 6584 packets = 0; 6585 for (i = 0; i < adapter->num_tx_queues; i++) { 6586 struct igb_ring *ring = adapter->tx_ring[i]; 6587 do { 6588 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 6589 _bytes = ring->tx_stats.bytes; 6590 _packets = ring->tx_stats.packets; 6591 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 6592 bytes += _bytes; 6593 packets += _packets; 6594 } 6595 net_stats->tx_bytes = bytes; 6596 net_stats->tx_packets = packets; 6597 rcu_read_unlock(); 6598 6599 /* read stats registers */ 6600 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 6601 adapter->stats.gprc += rd32(E1000_GPRC); 6602 adapter->stats.gorc += rd32(E1000_GORCL); 6603 rd32(E1000_GORCH); /* clear GORCL */ 6604 adapter->stats.bprc += rd32(E1000_BPRC); 6605 adapter->stats.mprc += rd32(E1000_MPRC); 6606 adapter->stats.roc += rd32(E1000_ROC); 6607 6608 adapter->stats.prc64 += rd32(E1000_PRC64); 6609 adapter->stats.prc127 += rd32(E1000_PRC127); 6610 adapter->stats.prc255 += rd32(E1000_PRC255); 6611 adapter->stats.prc511 += rd32(E1000_PRC511); 6612 adapter->stats.prc1023 += rd32(E1000_PRC1023); 6613 adapter->stats.prc1522 += rd32(E1000_PRC1522); 6614 adapter->stats.symerrs += rd32(E1000_SYMERRS); 6615 adapter->stats.sec += rd32(E1000_SEC); 6616 6617 mpc = rd32(E1000_MPC); 6618 adapter->stats.mpc += mpc; 6619 net_stats->rx_fifo_errors += mpc; 6620 adapter->stats.scc += rd32(E1000_SCC); 6621 adapter->stats.ecol += rd32(E1000_ECOL); 6622 adapter->stats.mcc += rd32(E1000_MCC); 6623 adapter->stats.latecol += rd32(E1000_LATECOL); 6624 adapter->stats.dc += rd32(E1000_DC); 6625 adapter->stats.rlec += rd32(E1000_RLEC); 6626 adapter->stats.xonrxc += rd32(E1000_XONRXC); 6627 adapter->stats.xontxc += rd32(E1000_XONTXC); 6628 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 6629 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 6630 adapter->stats.fcruc += rd32(E1000_FCRUC); 6631 adapter->stats.gptc += rd32(E1000_GPTC); 6632 adapter->stats.gotc += rd32(E1000_GOTCL); 6633 rd32(E1000_GOTCH); /* clear GOTCL */ 6634 adapter->stats.rnbc += rd32(E1000_RNBC); 6635 adapter->stats.ruc += rd32(E1000_RUC); 6636 adapter->stats.rfc += rd32(E1000_RFC); 6637 adapter->stats.rjc += rd32(E1000_RJC); 6638 adapter->stats.tor += rd32(E1000_TORH); 6639 adapter->stats.tot += rd32(E1000_TOTH); 6640 adapter->stats.tpr += rd32(E1000_TPR); 6641 6642 adapter->stats.ptc64 += rd32(E1000_PTC64); 6643 adapter->stats.ptc127 += rd32(E1000_PTC127); 6644 adapter->stats.ptc255 += rd32(E1000_PTC255); 6645 adapter->stats.ptc511 += rd32(E1000_PTC511); 6646 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 6647 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 6648 6649 adapter->stats.mptc += rd32(E1000_MPTC); 6650 adapter->stats.bptc += rd32(E1000_BPTC); 6651 6652 adapter->stats.tpt += rd32(E1000_TPT); 6653 adapter->stats.colc += rd32(E1000_COLC); 6654 6655 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 6656 /* read internal phy specific stats */ 6657 reg = rd32(E1000_CTRL_EXT); 6658 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 6659 adapter->stats.rxerrc += rd32(E1000_RXERRC); 6660 6661 /* this stat has invalid values on i210/i211 */ 6662 if ((hw->mac.type != e1000_i210) && 6663 (hw->mac.type != e1000_i211)) 6664 adapter->stats.tncrs += rd32(E1000_TNCRS); 6665 } 6666 6667 adapter->stats.tsctc += rd32(E1000_TSCTC); 6668 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 6669 6670 adapter->stats.iac += rd32(E1000_IAC); 6671 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 6672 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 6673 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 6674 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 6675 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 6676 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 6677 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 6678 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 6679 6680 /* Fill out the OS statistics structure */ 6681 net_stats->multicast = adapter->stats.mprc; 6682 net_stats->collisions = adapter->stats.colc; 6683 6684 /* Rx Errors */ 6685 6686 /* RLEC on some newer hardware can be incorrect so build 6687 * our own version based on RUC and ROC 6688 */ 6689 net_stats->rx_errors = adapter->stats.rxerrc + 6690 adapter->stats.crcerrs + adapter->stats.algnerrc + 6691 adapter->stats.ruc + adapter->stats.roc + 6692 adapter->stats.cexterr; 6693 net_stats->rx_length_errors = adapter->stats.ruc + 6694 adapter->stats.roc; 6695 net_stats->rx_crc_errors = adapter->stats.crcerrs; 6696 net_stats->rx_frame_errors = adapter->stats.algnerrc; 6697 net_stats->rx_missed_errors = adapter->stats.mpc; 6698 6699 /* Tx Errors */ 6700 net_stats->tx_errors = adapter->stats.ecol + 6701 adapter->stats.latecol; 6702 net_stats->tx_aborted_errors = adapter->stats.ecol; 6703 net_stats->tx_window_errors = adapter->stats.latecol; 6704 net_stats->tx_carrier_errors = adapter->stats.tncrs; 6705 6706 /* Tx Dropped needs to be maintained elsewhere */ 6707 6708 /* Management Stats */ 6709 adapter->stats.mgptc += rd32(E1000_MGTPTC); 6710 adapter->stats.mgprc += rd32(E1000_MGTPRC); 6711 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 6712 6713 /* OS2BMC Stats */ 6714 reg = rd32(E1000_MANC); 6715 if (reg & E1000_MANC_EN_BMC2OS) { 6716 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 6717 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 6718 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 6719 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 6720 } 6721 } 6722 6723 static void igb_tsync_interrupt(struct igb_adapter *adapter) 6724 { 6725 struct e1000_hw *hw = &adapter->hw; 6726 struct ptp_clock_event event; 6727 struct timespec64 ts; 6728 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR); 6729 6730 if (tsicr & TSINTR_SYS_WRAP) { 6731 event.type = PTP_CLOCK_PPS; 6732 if (adapter->ptp_caps.pps) 6733 ptp_clock_event(adapter->ptp_clock, &event); 6734 ack |= TSINTR_SYS_WRAP; 6735 } 6736 6737 if (tsicr & E1000_TSICR_TXTS) { 6738 /* retrieve hardware timestamp */ 6739 schedule_work(&adapter->ptp_tx_work); 6740 ack |= E1000_TSICR_TXTS; 6741 } 6742 6743 if (tsicr & TSINTR_TT0) { 6744 spin_lock(&adapter->tmreg_lock); 6745 ts = timespec64_add(adapter->perout[0].start, 6746 adapter->perout[0].period); 6747 /* u32 conversion of tv_sec is safe until y2106 */ 6748 wr32(E1000_TRGTTIML0, ts.tv_nsec); 6749 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec); 6750 tsauxc = rd32(E1000_TSAUXC); 6751 tsauxc |= TSAUXC_EN_TT0; 6752 wr32(E1000_TSAUXC, tsauxc); 6753 adapter->perout[0].start = ts; 6754 spin_unlock(&adapter->tmreg_lock); 6755 ack |= TSINTR_TT0; 6756 } 6757 6758 if (tsicr & TSINTR_TT1) { 6759 spin_lock(&adapter->tmreg_lock); 6760 ts = timespec64_add(adapter->perout[1].start, 6761 adapter->perout[1].period); 6762 wr32(E1000_TRGTTIML1, ts.tv_nsec); 6763 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec); 6764 tsauxc = rd32(E1000_TSAUXC); 6765 tsauxc |= TSAUXC_EN_TT1; 6766 wr32(E1000_TSAUXC, tsauxc); 6767 adapter->perout[1].start = ts; 6768 spin_unlock(&adapter->tmreg_lock); 6769 ack |= TSINTR_TT1; 6770 } 6771 6772 if (tsicr & TSINTR_AUTT0) { 6773 nsec = rd32(E1000_AUXSTMPL0); 6774 sec = rd32(E1000_AUXSTMPH0); 6775 event.type = PTP_CLOCK_EXTTS; 6776 event.index = 0; 6777 event.timestamp = sec * 1000000000ULL + nsec; 6778 ptp_clock_event(adapter->ptp_clock, &event); 6779 ack |= TSINTR_AUTT0; 6780 } 6781 6782 if (tsicr & TSINTR_AUTT1) { 6783 nsec = rd32(E1000_AUXSTMPL1); 6784 sec = rd32(E1000_AUXSTMPH1); 6785 event.type = PTP_CLOCK_EXTTS; 6786 event.index = 1; 6787 event.timestamp = sec * 1000000000ULL + nsec; 6788 ptp_clock_event(adapter->ptp_clock, &event); 6789 ack |= TSINTR_AUTT1; 6790 } 6791 6792 /* acknowledge the interrupts */ 6793 wr32(E1000_TSICR, ack); 6794 } 6795 6796 static irqreturn_t igb_msix_other(int irq, void *data) 6797 { 6798 struct igb_adapter *adapter = data; 6799 struct e1000_hw *hw = &adapter->hw; 6800 u32 icr = rd32(E1000_ICR); 6801 /* reading ICR causes bit 31 of EICR to be cleared */ 6802 6803 if (icr & E1000_ICR_DRSTA) 6804 schedule_work(&adapter->reset_task); 6805 6806 if (icr & E1000_ICR_DOUTSYNC) { 6807 /* HW is reporting DMA is out of sync */ 6808 adapter->stats.doosync++; 6809 /* The DMA Out of Sync is also indication of a spoof event 6810 * in IOV mode. Check the Wrong VM Behavior register to 6811 * see if it is really a spoof event. 6812 */ 6813 igb_check_wvbr(adapter); 6814 } 6815 6816 /* Check for a mailbox event */ 6817 if (icr & E1000_ICR_VMMB) 6818 igb_msg_task(adapter); 6819 6820 if (icr & E1000_ICR_LSC) { 6821 hw->mac.get_link_status = 1; 6822 /* guard against interrupt when we're going down */ 6823 if (!test_bit(__IGB_DOWN, &adapter->state)) 6824 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6825 } 6826 6827 if (icr & E1000_ICR_TS) 6828 igb_tsync_interrupt(adapter); 6829 6830 wr32(E1000_EIMS, adapter->eims_other); 6831 6832 return IRQ_HANDLED; 6833 } 6834 6835 static void igb_write_itr(struct igb_q_vector *q_vector) 6836 { 6837 struct igb_adapter *adapter = q_vector->adapter; 6838 u32 itr_val = q_vector->itr_val & 0x7FFC; 6839 6840 if (!q_vector->set_itr) 6841 return; 6842 6843 if (!itr_val) 6844 itr_val = 0x4; 6845 6846 if (adapter->hw.mac.type == e1000_82575) 6847 itr_val |= itr_val << 16; 6848 else 6849 itr_val |= E1000_EITR_CNT_IGNR; 6850 6851 writel(itr_val, q_vector->itr_register); 6852 q_vector->set_itr = 0; 6853 } 6854 6855 static irqreturn_t igb_msix_ring(int irq, void *data) 6856 { 6857 struct igb_q_vector *q_vector = data; 6858 6859 /* Write the ITR value calculated from the previous interrupt. */ 6860 igb_write_itr(q_vector); 6861 6862 napi_schedule(&q_vector->napi); 6863 6864 return IRQ_HANDLED; 6865 } 6866 6867 #ifdef CONFIG_IGB_DCA 6868 static void igb_update_tx_dca(struct igb_adapter *adapter, 6869 struct igb_ring *tx_ring, 6870 int cpu) 6871 { 6872 struct e1000_hw *hw = &adapter->hw; 6873 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 6874 6875 if (hw->mac.type != e1000_82575) 6876 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 6877 6878 /* We can enable relaxed ordering for reads, but not writes when 6879 * DCA is enabled. This is due to a known issue in some chipsets 6880 * which will cause the DCA tag to be cleared. 6881 */ 6882 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 6883 E1000_DCA_TXCTRL_DATA_RRO_EN | 6884 E1000_DCA_TXCTRL_DESC_DCA_EN; 6885 6886 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 6887 } 6888 6889 static void igb_update_rx_dca(struct igb_adapter *adapter, 6890 struct igb_ring *rx_ring, 6891 int cpu) 6892 { 6893 struct e1000_hw *hw = &adapter->hw; 6894 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 6895 6896 if (hw->mac.type != e1000_82575) 6897 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 6898 6899 /* We can enable relaxed ordering for reads, but not writes when 6900 * DCA is enabled. This is due to a known issue in some chipsets 6901 * which will cause the DCA tag to be cleared. 6902 */ 6903 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 6904 E1000_DCA_RXCTRL_DESC_DCA_EN; 6905 6906 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 6907 } 6908 6909 static void igb_update_dca(struct igb_q_vector *q_vector) 6910 { 6911 struct igb_adapter *adapter = q_vector->adapter; 6912 int cpu = get_cpu(); 6913 6914 if (q_vector->cpu == cpu) 6915 goto out_no_update; 6916 6917 if (q_vector->tx.ring) 6918 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 6919 6920 if (q_vector->rx.ring) 6921 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 6922 6923 q_vector->cpu = cpu; 6924 out_no_update: 6925 put_cpu(); 6926 } 6927 6928 static void igb_setup_dca(struct igb_adapter *adapter) 6929 { 6930 struct e1000_hw *hw = &adapter->hw; 6931 int i; 6932 6933 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 6934 return; 6935 6936 /* Always use CB2 mode, difference is masked in the CB driver. */ 6937 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 6938 6939 for (i = 0; i < adapter->num_q_vectors; i++) { 6940 adapter->q_vector[i]->cpu = -1; 6941 igb_update_dca(adapter->q_vector[i]); 6942 } 6943 } 6944 6945 static int __igb_notify_dca(struct device *dev, void *data) 6946 { 6947 struct net_device *netdev = dev_get_drvdata(dev); 6948 struct igb_adapter *adapter = netdev_priv(netdev); 6949 struct pci_dev *pdev = adapter->pdev; 6950 struct e1000_hw *hw = &adapter->hw; 6951 unsigned long event = *(unsigned long *)data; 6952 6953 switch (event) { 6954 case DCA_PROVIDER_ADD: 6955 /* if already enabled, don't do it again */ 6956 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 6957 break; 6958 if (dca_add_requester(dev) == 0) { 6959 adapter->flags |= IGB_FLAG_DCA_ENABLED; 6960 dev_info(&pdev->dev, "DCA enabled\n"); 6961 igb_setup_dca(adapter); 6962 break; 6963 } 6964 fallthrough; /* since DCA is disabled. */ 6965 case DCA_PROVIDER_REMOVE: 6966 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 6967 /* without this a class_device is left 6968 * hanging around in the sysfs model 6969 */ 6970 dca_remove_requester(dev); 6971 dev_info(&pdev->dev, "DCA disabled\n"); 6972 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 6973 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 6974 } 6975 break; 6976 } 6977 6978 return 0; 6979 } 6980 6981 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 6982 void *p) 6983 { 6984 int ret_val; 6985 6986 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 6987 __igb_notify_dca); 6988 6989 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 6990 } 6991 #endif /* CONFIG_IGB_DCA */ 6992 6993 #ifdef CONFIG_PCI_IOV 6994 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 6995 { 6996 unsigned char mac_addr[ETH_ALEN]; 6997 6998 eth_zero_addr(mac_addr); 6999 igb_set_vf_mac(adapter, vf, mac_addr); 7000 7001 /* By default spoof check is enabled for all VFs */ 7002 adapter->vf_data[vf].spoofchk_enabled = true; 7003 7004 /* By default VFs are not trusted */ 7005 adapter->vf_data[vf].trusted = false; 7006 7007 return 0; 7008 } 7009 7010 #endif 7011 static void igb_ping_all_vfs(struct igb_adapter *adapter) 7012 { 7013 struct e1000_hw *hw = &adapter->hw; 7014 u32 ping; 7015 int i; 7016 7017 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 7018 ping = E1000_PF_CONTROL_MSG; 7019 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 7020 ping |= E1000_VT_MSGTYPE_CTS; 7021 igb_write_mbx(hw, &ping, 1, i); 7022 } 7023 } 7024 7025 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7026 { 7027 struct e1000_hw *hw = &adapter->hw; 7028 u32 vmolr = rd32(E1000_VMOLR(vf)); 7029 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7030 7031 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 7032 IGB_VF_FLAG_MULTI_PROMISC); 7033 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7034 7035 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 7036 vmolr |= E1000_VMOLR_MPME; 7037 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 7038 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 7039 } else { 7040 /* if we have hashes and we are clearing a multicast promisc 7041 * flag we need to write the hashes to the MTA as this step 7042 * was previously skipped 7043 */ 7044 if (vf_data->num_vf_mc_hashes > 30) { 7045 vmolr |= E1000_VMOLR_MPME; 7046 } else if (vf_data->num_vf_mc_hashes) { 7047 int j; 7048 7049 vmolr |= E1000_VMOLR_ROMPE; 7050 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7051 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7052 } 7053 } 7054 7055 wr32(E1000_VMOLR(vf), vmolr); 7056 7057 /* there are flags left unprocessed, likely not supported */ 7058 if (*msgbuf & E1000_VT_MSGINFO_MASK) 7059 return -EINVAL; 7060 7061 return 0; 7062 } 7063 7064 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 7065 u32 *msgbuf, u32 vf) 7066 { 7067 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7068 u16 *hash_list = (u16 *)&msgbuf[1]; 7069 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7070 int i; 7071 7072 /* salt away the number of multicast addresses assigned 7073 * to this VF for later use to restore when the PF multi cast 7074 * list changes 7075 */ 7076 vf_data->num_vf_mc_hashes = n; 7077 7078 /* only up to 30 hash values supported */ 7079 if (n > 30) 7080 n = 30; 7081 7082 /* store the hashes for later use */ 7083 for (i = 0; i < n; i++) 7084 vf_data->vf_mc_hashes[i] = hash_list[i]; 7085 7086 /* Flush and reset the mta with the new values */ 7087 igb_set_rx_mode(adapter->netdev); 7088 7089 return 0; 7090 } 7091 7092 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 7093 { 7094 struct e1000_hw *hw = &adapter->hw; 7095 struct vf_data_storage *vf_data; 7096 int i, j; 7097 7098 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7099 u32 vmolr = rd32(E1000_VMOLR(i)); 7100 7101 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 7102 7103 vf_data = &adapter->vf_data[i]; 7104 7105 if ((vf_data->num_vf_mc_hashes > 30) || 7106 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 7107 vmolr |= E1000_VMOLR_MPME; 7108 } else if (vf_data->num_vf_mc_hashes) { 7109 vmolr |= E1000_VMOLR_ROMPE; 7110 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 7111 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 7112 } 7113 wr32(E1000_VMOLR(i), vmolr); 7114 } 7115 } 7116 7117 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 7118 { 7119 struct e1000_hw *hw = &adapter->hw; 7120 u32 pool_mask, vlvf_mask, i; 7121 7122 /* create mask for VF and other pools */ 7123 pool_mask = E1000_VLVF_POOLSEL_MASK; 7124 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf); 7125 7126 /* drop PF from pool bits */ 7127 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT + 7128 adapter->vfs_allocated_count); 7129 7130 /* Find the vlan filter for this id */ 7131 for (i = E1000_VLVF_ARRAY_SIZE; i--;) { 7132 u32 vlvf = rd32(E1000_VLVF(i)); 7133 u32 vfta_mask, vid, vfta; 7134 7135 /* remove the vf from the pool */ 7136 if (!(vlvf & vlvf_mask)) 7137 continue; 7138 7139 /* clear out bit from VLVF */ 7140 vlvf ^= vlvf_mask; 7141 7142 /* if other pools are present, just remove ourselves */ 7143 if (vlvf & pool_mask) 7144 goto update_vlvfb; 7145 7146 /* if PF is present, leave VFTA */ 7147 if (vlvf & E1000_VLVF_POOLSEL_MASK) 7148 goto update_vlvf; 7149 7150 vid = vlvf & E1000_VLVF_VLANID_MASK; 7151 vfta_mask = BIT(vid % 32); 7152 7153 /* clear bit from VFTA */ 7154 vfta = adapter->shadow_vfta[vid / 32]; 7155 if (vfta & vfta_mask) 7156 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask); 7157 update_vlvf: 7158 /* clear pool selection enable */ 7159 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7160 vlvf &= E1000_VLVF_POOLSEL_MASK; 7161 else 7162 vlvf = 0; 7163 update_vlvfb: 7164 /* clear pool bits */ 7165 wr32(E1000_VLVF(i), vlvf); 7166 } 7167 } 7168 7169 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan) 7170 { 7171 u32 vlvf; 7172 int idx; 7173 7174 /* short cut the special case */ 7175 if (vlan == 0) 7176 return 0; 7177 7178 /* Search for the VLAN id in the VLVF entries */ 7179 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) { 7180 vlvf = rd32(E1000_VLVF(idx)); 7181 if ((vlvf & VLAN_VID_MASK) == vlan) 7182 break; 7183 } 7184 7185 return idx; 7186 } 7187 7188 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid) 7189 { 7190 struct e1000_hw *hw = &adapter->hw; 7191 u32 bits, pf_id; 7192 int idx; 7193 7194 idx = igb_find_vlvf_entry(hw, vid); 7195 if (!idx) 7196 return; 7197 7198 /* See if any other pools are set for this VLAN filter 7199 * entry other than the PF. 7200 */ 7201 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; 7202 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK; 7203 bits &= rd32(E1000_VLVF(idx)); 7204 7205 /* Disable the filter so this falls into the default pool. */ 7206 if (!bits) { 7207 if (adapter->flags & IGB_FLAG_VLAN_PROMISC) 7208 wr32(E1000_VLVF(idx), BIT(pf_id)); 7209 else 7210 wr32(E1000_VLVF(idx), 0); 7211 } 7212 } 7213 7214 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid, 7215 bool add, u32 vf) 7216 { 7217 int pf_id = adapter->vfs_allocated_count; 7218 struct e1000_hw *hw = &adapter->hw; 7219 int err; 7220 7221 /* If VLAN overlaps with one the PF is currently monitoring make 7222 * sure that we are able to allocate a VLVF entry. This may be 7223 * redundant but it guarantees PF will maintain visibility to 7224 * the VLAN. 7225 */ 7226 if (add && test_bit(vid, adapter->active_vlans)) { 7227 err = igb_vfta_set(hw, vid, pf_id, true, false); 7228 if (err) 7229 return err; 7230 } 7231 7232 err = igb_vfta_set(hw, vid, vf, add, false); 7233 7234 if (add && !err) 7235 return err; 7236 7237 /* If we failed to add the VF VLAN or we are removing the VF VLAN 7238 * we may need to drop the PF pool bit in order to allow us to free 7239 * up the VLVF resources. 7240 */ 7241 if (test_bit(vid, adapter->active_vlans) || 7242 (adapter->flags & IGB_FLAG_VLAN_PROMISC)) 7243 igb_update_pf_vlvf(adapter, vid); 7244 7245 return err; 7246 } 7247 7248 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 7249 { 7250 struct e1000_hw *hw = &adapter->hw; 7251 7252 if (vid) 7253 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 7254 else 7255 wr32(E1000_VMVIR(vf), 0); 7256 } 7257 7258 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf, 7259 u16 vlan, u8 qos) 7260 { 7261 int err; 7262 7263 err = igb_set_vf_vlan(adapter, vlan, true, vf); 7264 if (err) 7265 return err; 7266 7267 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 7268 igb_set_vmolr(adapter, vf, !vlan); 7269 7270 /* revoke access to previous VLAN */ 7271 if (vlan != adapter->vf_data[vf].pf_vlan) 7272 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7273 false, vf); 7274 7275 adapter->vf_data[vf].pf_vlan = vlan; 7276 adapter->vf_data[vf].pf_qos = qos; 7277 igb_set_vf_vlan_strip(adapter, vf, true); 7278 dev_info(&adapter->pdev->dev, 7279 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 7280 if (test_bit(__IGB_DOWN, &adapter->state)) { 7281 dev_warn(&adapter->pdev->dev, 7282 "The VF VLAN has been set, but the PF device is not up.\n"); 7283 dev_warn(&adapter->pdev->dev, 7284 "Bring the PF device up before attempting to use the VF device.\n"); 7285 } 7286 7287 return err; 7288 } 7289 7290 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf) 7291 { 7292 /* Restore tagless access via VLAN 0 */ 7293 igb_set_vf_vlan(adapter, 0, true, vf); 7294 7295 igb_set_vmvir(adapter, 0, vf); 7296 igb_set_vmolr(adapter, vf, true); 7297 7298 /* Remove any PF assigned VLAN */ 7299 if (adapter->vf_data[vf].pf_vlan) 7300 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, 7301 false, vf); 7302 7303 adapter->vf_data[vf].pf_vlan = 0; 7304 adapter->vf_data[vf].pf_qos = 0; 7305 igb_set_vf_vlan_strip(adapter, vf, false); 7306 7307 return 0; 7308 } 7309 7310 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, 7311 u16 vlan, u8 qos, __be16 vlan_proto) 7312 { 7313 struct igb_adapter *adapter = netdev_priv(netdev); 7314 7315 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 7316 return -EINVAL; 7317 7318 if (vlan_proto != htons(ETH_P_8021Q)) 7319 return -EPROTONOSUPPORT; 7320 7321 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) : 7322 igb_disable_port_vlan(adapter, vf); 7323 } 7324 7325 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 7326 { 7327 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 7328 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 7329 int ret; 7330 7331 if (adapter->vf_data[vf].pf_vlan) 7332 return -1; 7333 7334 /* VLAN 0 is a special case, don't allow it to be removed */ 7335 if (!vid && !add) 7336 return 0; 7337 7338 ret = igb_set_vf_vlan(adapter, vid, !!add, vf); 7339 if (!ret) 7340 igb_set_vf_vlan_strip(adapter, vf, !!vid); 7341 return ret; 7342 } 7343 7344 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 7345 { 7346 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7347 7348 /* clear flags - except flag that indicates PF has set the MAC */ 7349 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC; 7350 vf_data->last_nack = jiffies; 7351 7352 /* reset vlans for device */ 7353 igb_clear_vf_vfta(adapter, vf); 7354 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf); 7355 igb_set_vmvir(adapter, vf_data->pf_vlan | 7356 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf); 7357 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan); 7358 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan)); 7359 7360 /* reset multicast table array for vf */ 7361 adapter->vf_data[vf].num_vf_mc_hashes = 0; 7362 7363 /* Flush and reset the mta with the new values */ 7364 igb_set_rx_mode(adapter->netdev); 7365 } 7366 7367 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 7368 { 7369 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7370 7371 /* clear mac address as we were hotplug removed/added */ 7372 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 7373 eth_zero_addr(vf_mac); 7374 7375 /* process remaining reset events */ 7376 igb_vf_reset(adapter, vf); 7377 } 7378 7379 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 7380 { 7381 struct e1000_hw *hw = &adapter->hw; 7382 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 7383 u32 reg, msgbuf[3]; 7384 u8 *addr = (u8 *)(&msgbuf[1]); 7385 7386 /* process all the same items cleared in a function level reset */ 7387 igb_vf_reset(adapter, vf); 7388 7389 /* set vf mac address */ 7390 igb_set_vf_mac(adapter, vf, vf_mac); 7391 7392 /* enable transmit and receive for vf */ 7393 reg = rd32(E1000_VFTE); 7394 wr32(E1000_VFTE, reg | BIT(vf)); 7395 reg = rd32(E1000_VFRE); 7396 wr32(E1000_VFRE, reg | BIT(vf)); 7397 7398 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 7399 7400 /* reply to reset with ack and vf mac address */ 7401 if (!is_zero_ether_addr(vf_mac)) { 7402 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 7403 memcpy(addr, vf_mac, ETH_ALEN); 7404 } else { 7405 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; 7406 } 7407 igb_write_mbx(hw, msgbuf, 3, vf); 7408 } 7409 7410 static void igb_flush_mac_table(struct igb_adapter *adapter) 7411 { 7412 struct e1000_hw *hw = &adapter->hw; 7413 int i; 7414 7415 for (i = 0; i < hw->mac.rar_entry_count; i++) { 7416 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE; 7417 eth_zero_addr(adapter->mac_table[i].addr); 7418 adapter->mac_table[i].queue = 0; 7419 igb_rar_set_index(adapter, i); 7420 } 7421 } 7422 7423 static int igb_available_rars(struct igb_adapter *adapter, u8 queue) 7424 { 7425 struct e1000_hw *hw = &adapter->hw; 7426 /* do not count rar entries reserved for VFs MAC addresses */ 7427 int rar_entries = hw->mac.rar_entry_count - 7428 adapter->vfs_allocated_count; 7429 int i, count = 0; 7430 7431 for (i = 0; i < rar_entries; i++) { 7432 /* do not count default entries */ 7433 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) 7434 continue; 7435 7436 /* do not count "in use" entries for different queues */ 7437 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) && 7438 (adapter->mac_table[i].queue != queue)) 7439 continue; 7440 7441 count++; 7442 } 7443 7444 return count; 7445 } 7446 7447 /* Set default MAC address for the PF in the first RAR entry */ 7448 static void igb_set_default_mac_filter(struct igb_adapter *adapter) 7449 { 7450 struct igb_mac_addr *mac_table = &adapter->mac_table[0]; 7451 7452 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); 7453 mac_table->queue = adapter->vfs_allocated_count; 7454 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7455 7456 igb_rar_set_index(adapter, 0); 7457 } 7458 7459 /* If the filter to be added and an already existing filter express 7460 * the same address and address type, it should be possible to only 7461 * override the other configurations, for example the queue to steer 7462 * traffic. 7463 */ 7464 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry, 7465 const u8 *addr, const u8 flags) 7466 { 7467 if (!(entry->state & IGB_MAC_STATE_IN_USE)) 7468 return true; 7469 7470 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) != 7471 (flags & IGB_MAC_STATE_SRC_ADDR)) 7472 return false; 7473 7474 if (!ether_addr_equal(addr, entry->addr)) 7475 return false; 7476 7477 return true; 7478 } 7479 7480 /* Add a MAC filter for 'addr' directing matching traffic to 'queue', 7481 * 'flags' is used to indicate what kind of match is made, match is by 7482 * default for the destination address, if matching by source address 7483 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used. 7484 */ 7485 static int igb_add_mac_filter_flags(struct igb_adapter *adapter, 7486 const u8 *addr, const u8 queue, 7487 const u8 flags) 7488 { 7489 struct e1000_hw *hw = &adapter->hw; 7490 int rar_entries = hw->mac.rar_entry_count - 7491 adapter->vfs_allocated_count; 7492 int i; 7493 7494 if (is_zero_ether_addr(addr)) 7495 return -EINVAL; 7496 7497 /* Search for the first empty entry in the MAC table. 7498 * Do not touch entries at the end of the table reserved for the VF MAC 7499 * addresses. 7500 */ 7501 for (i = 0; i < rar_entries; i++) { 7502 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i], 7503 addr, flags)) 7504 continue; 7505 7506 ether_addr_copy(adapter->mac_table[i].addr, addr); 7507 adapter->mac_table[i].queue = queue; 7508 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags; 7509 7510 igb_rar_set_index(adapter, i); 7511 return i; 7512 } 7513 7514 return -ENOSPC; 7515 } 7516 7517 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7518 const u8 queue) 7519 { 7520 return igb_add_mac_filter_flags(adapter, addr, queue, 0); 7521 } 7522 7523 /* Remove a MAC filter for 'addr' directing matching traffic to 7524 * 'queue', 'flags' is used to indicate what kind of match need to be 7525 * removed, match is by default for the destination address, if 7526 * matching by source address is to be removed the flag 7527 * IGB_MAC_STATE_SRC_ADDR can be used. 7528 */ 7529 static int igb_del_mac_filter_flags(struct igb_adapter *adapter, 7530 const u8 *addr, const u8 queue, 7531 const u8 flags) 7532 { 7533 struct e1000_hw *hw = &adapter->hw; 7534 int rar_entries = hw->mac.rar_entry_count - 7535 adapter->vfs_allocated_count; 7536 int i; 7537 7538 if (is_zero_ether_addr(addr)) 7539 return -EINVAL; 7540 7541 /* Search for matching entry in the MAC table based on given address 7542 * and queue. Do not touch entries at the end of the table reserved 7543 * for the VF MAC addresses. 7544 */ 7545 for (i = 0; i < rar_entries; i++) { 7546 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)) 7547 continue; 7548 if ((adapter->mac_table[i].state & flags) != flags) 7549 continue; 7550 if (adapter->mac_table[i].queue != queue) 7551 continue; 7552 if (!ether_addr_equal(adapter->mac_table[i].addr, addr)) 7553 continue; 7554 7555 /* When a filter for the default address is "deleted", 7556 * we return it to its initial configuration 7557 */ 7558 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) { 7559 adapter->mac_table[i].state = 7560 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; 7561 adapter->mac_table[i].queue = 7562 adapter->vfs_allocated_count; 7563 } else { 7564 adapter->mac_table[i].state = 0; 7565 adapter->mac_table[i].queue = 0; 7566 eth_zero_addr(adapter->mac_table[i].addr); 7567 } 7568 7569 igb_rar_set_index(adapter, i); 7570 return 0; 7571 } 7572 7573 return -ENOENT; 7574 } 7575 7576 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr, 7577 const u8 queue) 7578 { 7579 return igb_del_mac_filter_flags(adapter, addr, queue, 0); 7580 } 7581 7582 int igb_add_mac_steering_filter(struct igb_adapter *adapter, 7583 const u8 *addr, u8 queue, u8 flags) 7584 { 7585 struct e1000_hw *hw = &adapter->hw; 7586 7587 /* In theory, this should be supported on 82575 as well, but 7588 * that part wasn't easily accessible during development. 7589 */ 7590 if (hw->mac.type != e1000_i210) 7591 return -EOPNOTSUPP; 7592 7593 return igb_add_mac_filter_flags(adapter, addr, queue, 7594 IGB_MAC_STATE_QUEUE_STEERING | flags); 7595 } 7596 7597 int igb_del_mac_steering_filter(struct igb_adapter *adapter, 7598 const u8 *addr, u8 queue, u8 flags) 7599 { 7600 return igb_del_mac_filter_flags(adapter, addr, queue, 7601 IGB_MAC_STATE_QUEUE_STEERING | flags); 7602 } 7603 7604 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr) 7605 { 7606 struct igb_adapter *adapter = netdev_priv(netdev); 7607 int ret; 7608 7609 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7610 7611 return min_t(int, ret, 0); 7612 } 7613 7614 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr) 7615 { 7616 struct igb_adapter *adapter = netdev_priv(netdev); 7617 7618 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count); 7619 7620 return 0; 7621 } 7622 7623 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf, 7624 const u32 info, const u8 *addr) 7625 { 7626 struct pci_dev *pdev = adapter->pdev; 7627 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7628 struct list_head *pos; 7629 struct vf_mac_filter *entry = NULL; 7630 int ret = 0; 7631 7632 switch (info) { 7633 case E1000_VF_MAC_FILTER_CLR: 7634 /* remove all unicast MAC filters related to the current VF */ 7635 list_for_each(pos, &adapter->vf_macs.l) { 7636 entry = list_entry(pos, struct vf_mac_filter, l); 7637 if (entry->vf == vf) { 7638 entry->vf = -1; 7639 entry->free = true; 7640 igb_del_mac_filter(adapter, entry->vf_mac, vf); 7641 } 7642 } 7643 break; 7644 case E1000_VF_MAC_FILTER_ADD: 7645 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7646 !vf_data->trusted) { 7647 dev_warn(&pdev->dev, 7648 "VF %d requested MAC filter but is administratively denied\n", 7649 vf); 7650 return -EINVAL; 7651 } 7652 if (!is_valid_ether_addr(addr)) { 7653 dev_warn(&pdev->dev, 7654 "VF %d attempted to set invalid MAC filter\n", 7655 vf); 7656 return -EINVAL; 7657 } 7658 7659 /* try to find empty slot in the list */ 7660 list_for_each(pos, &adapter->vf_macs.l) { 7661 entry = list_entry(pos, struct vf_mac_filter, l); 7662 if (entry->free) 7663 break; 7664 } 7665 7666 if (entry && entry->free) { 7667 entry->free = false; 7668 entry->vf = vf; 7669 ether_addr_copy(entry->vf_mac, addr); 7670 7671 ret = igb_add_mac_filter(adapter, addr, vf); 7672 ret = min_t(int, ret, 0); 7673 } else { 7674 ret = -ENOSPC; 7675 } 7676 7677 if (ret == -ENOSPC) 7678 dev_warn(&pdev->dev, 7679 "VF %d has requested MAC filter but there is no space for it\n", 7680 vf); 7681 break; 7682 default: 7683 ret = -EINVAL; 7684 break; 7685 } 7686 7687 return ret; 7688 } 7689 7690 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 7691 { 7692 struct pci_dev *pdev = adapter->pdev; 7693 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7694 u32 info = msg[0] & E1000_VT_MSGINFO_MASK; 7695 7696 /* The VF MAC Address is stored in a packed array of bytes 7697 * starting at the second 32 bit word of the msg array 7698 */ 7699 unsigned char *addr = (unsigned char *)&msg[1]; 7700 int ret = 0; 7701 7702 if (!info) { 7703 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && 7704 !vf_data->trusted) { 7705 dev_warn(&pdev->dev, 7706 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 7707 vf); 7708 return -EINVAL; 7709 } 7710 7711 if (!is_valid_ether_addr(addr)) { 7712 dev_warn(&pdev->dev, 7713 "VF %d attempted to set invalid MAC\n", 7714 vf); 7715 return -EINVAL; 7716 } 7717 7718 ret = igb_set_vf_mac(adapter, vf, addr); 7719 } else { 7720 ret = igb_set_vf_mac_filter(adapter, vf, info, addr); 7721 } 7722 7723 return ret; 7724 } 7725 7726 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 7727 { 7728 struct e1000_hw *hw = &adapter->hw; 7729 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7730 u32 msg = E1000_VT_MSGTYPE_NACK; 7731 7732 /* if device isn't clear to send it shouldn't be reading either */ 7733 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 7734 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 7735 igb_write_mbx(hw, &msg, 1, vf); 7736 vf_data->last_nack = jiffies; 7737 } 7738 } 7739 7740 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 7741 { 7742 struct pci_dev *pdev = adapter->pdev; 7743 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 7744 struct e1000_hw *hw = &adapter->hw; 7745 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 7746 s32 retval; 7747 7748 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false); 7749 7750 if (retval) { 7751 /* if receive failed revoke VF CTS stats and restart init */ 7752 dev_err(&pdev->dev, "Error receiving message from VF\n"); 7753 vf_data->flags &= ~IGB_VF_FLAG_CTS; 7754 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7755 goto unlock; 7756 goto out; 7757 } 7758 7759 /* this is a message we already processed, do nothing */ 7760 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 7761 goto unlock; 7762 7763 /* until the vf completes a reset it should not be 7764 * allowed to start any configuration. 7765 */ 7766 if (msgbuf[0] == E1000_VF_RESET) { 7767 /* unlocks mailbox */ 7768 igb_vf_reset_msg(adapter, vf); 7769 return; 7770 } 7771 7772 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 7773 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 7774 goto unlock; 7775 retval = -1; 7776 goto out; 7777 } 7778 7779 switch ((msgbuf[0] & 0xFFFF)) { 7780 case E1000_VF_SET_MAC_ADDR: 7781 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 7782 break; 7783 case E1000_VF_SET_PROMISC: 7784 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 7785 break; 7786 case E1000_VF_SET_MULTICAST: 7787 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 7788 break; 7789 case E1000_VF_SET_LPE: 7790 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 7791 break; 7792 case E1000_VF_SET_VLAN: 7793 retval = -1; 7794 if (vf_data->pf_vlan) 7795 dev_warn(&pdev->dev, 7796 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 7797 vf); 7798 else 7799 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf); 7800 break; 7801 default: 7802 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 7803 retval = -1; 7804 break; 7805 } 7806 7807 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 7808 out: 7809 /* notify the VF of the results of what it sent us */ 7810 if (retval) 7811 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 7812 else 7813 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 7814 7815 /* unlocks mailbox */ 7816 igb_write_mbx(hw, msgbuf, 1, vf); 7817 return; 7818 7819 unlock: 7820 igb_unlock_mbx(hw, vf); 7821 } 7822 7823 static void igb_msg_task(struct igb_adapter *adapter) 7824 { 7825 struct e1000_hw *hw = &adapter->hw; 7826 u32 vf; 7827 7828 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 7829 /* process any reset requests */ 7830 if (!igb_check_for_rst(hw, vf)) 7831 igb_vf_reset_event(adapter, vf); 7832 7833 /* process any messages pending */ 7834 if (!igb_check_for_msg(hw, vf)) 7835 igb_rcv_msg_from_vf(adapter, vf); 7836 7837 /* process any acks */ 7838 if (!igb_check_for_ack(hw, vf)) 7839 igb_rcv_ack_from_vf(adapter, vf); 7840 } 7841 } 7842 7843 /** 7844 * igb_set_uta - Set unicast filter table address 7845 * @adapter: board private structure 7846 * @set: boolean indicating if we are setting or clearing bits 7847 * 7848 * The unicast table address is a register array of 32-bit registers. 7849 * The table is meant to be used in a way similar to how the MTA is used 7850 * however due to certain limitations in the hardware it is necessary to 7851 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 7852 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 7853 **/ 7854 static void igb_set_uta(struct igb_adapter *adapter, bool set) 7855 { 7856 struct e1000_hw *hw = &adapter->hw; 7857 u32 uta = set ? ~0 : 0; 7858 int i; 7859 7860 /* we only need to do this if VMDq is enabled */ 7861 if (!adapter->vfs_allocated_count) 7862 return; 7863 7864 for (i = hw->mac.uta_reg_count; i--;) 7865 array_wr32(E1000_UTA, i, uta); 7866 } 7867 7868 /** 7869 * igb_intr_msi - Interrupt Handler 7870 * @irq: interrupt number 7871 * @data: pointer to a network interface device structure 7872 **/ 7873 static irqreturn_t igb_intr_msi(int irq, void *data) 7874 { 7875 struct igb_adapter *adapter = data; 7876 struct igb_q_vector *q_vector = adapter->q_vector[0]; 7877 struct e1000_hw *hw = &adapter->hw; 7878 /* read ICR disables interrupts using IAM */ 7879 u32 icr = rd32(E1000_ICR); 7880 7881 igb_write_itr(q_vector); 7882 7883 if (icr & E1000_ICR_DRSTA) 7884 schedule_work(&adapter->reset_task); 7885 7886 if (icr & E1000_ICR_DOUTSYNC) { 7887 /* HW is reporting DMA is out of sync */ 7888 adapter->stats.doosync++; 7889 } 7890 7891 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 7892 hw->mac.get_link_status = 1; 7893 if (!test_bit(__IGB_DOWN, &adapter->state)) 7894 mod_timer(&adapter->watchdog_timer, jiffies + 1); 7895 } 7896 7897 if (icr & E1000_ICR_TS) 7898 igb_tsync_interrupt(adapter); 7899 7900 napi_schedule(&q_vector->napi); 7901 7902 return IRQ_HANDLED; 7903 } 7904 7905 /** 7906 * igb_intr - Legacy Interrupt Handler 7907 * @irq: interrupt number 7908 * @data: pointer to a network interface device structure 7909 **/ 7910 static irqreturn_t igb_intr(int irq, void *data) 7911 { 7912 struct igb_adapter *adapter = data; 7913 struct igb_q_vector *q_vector = adapter->q_vector[0]; 7914 struct e1000_hw *hw = &adapter->hw; 7915 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 7916 * need for the IMC write 7917 */ 7918 u32 icr = rd32(E1000_ICR); 7919 7920 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 7921 * not set, then the adapter didn't send an interrupt 7922 */ 7923 if (!(icr & E1000_ICR_INT_ASSERTED)) 7924 return IRQ_NONE; 7925 7926 igb_write_itr(q_vector); 7927 7928 if (icr & E1000_ICR_DRSTA) 7929 schedule_work(&adapter->reset_task); 7930 7931 if (icr & E1000_ICR_DOUTSYNC) { 7932 /* HW is reporting DMA is out of sync */ 7933 adapter->stats.doosync++; 7934 } 7935 7936 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 7937 hw->mac.get_link_status = 1; 7938 /* guard against interrupt when we're going down */ 7939 if (!test_bit(__IGB_DOWN, &adapter->state)) 7940 mod_timer(&adapter->watchdog_timer, jiffies + 1); 7941 } 7942 7943 if (icr & E1000_ICR_TS) 7944 igb_tsync_interrupt(adapter); 7945 7946 napi_schedule(&q_vector->napi); 7947 7948 return IRQ_HANDLED; 7949 } 7950 7951 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 7952 { 7953 struct igb_adapter *adapter = q_vector->adapter; 7954 struct e1000_hw *hw = &adapter->hw; 7955 7956 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 7957 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 7958 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 7959 igb_set_itr(q_vector); 7960 else 7961 igb_update_ring_itr(q_vector); 7962 } 7963 7964 if (!test_bit(__IGB_DOWN, &adapter->state)) { 7965 if (adapter->flags & IGB_FLAG_HAS_MSIX) 7966 wr32(E1000_EIMS, q_vector->eims_value); 7967 else 7968 igb_irq_enable(adapter); 7969 } 7970 } 7971 7972 /** 7973 * igb_poll - NAPI Rx polling callback 7974 * @napi: napi polling structure 7975 * @budget: count of how many packets we should handle 7976 **/ 7977 static int igb_poll(struct napi_struct *napi, int budget) 7978 { 7979 struct igb_q_vector *q_vector = container_of(napi, 7980 struct igb_q_vector, 7981 napi); 7982 bool clean_complete = true; 7983 int work_done = 0; 7984 7985 #ifdef CONFIG_IGB_DCA 7986 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 7987 igb_update_dca(q_vector); 7988 #endif 7989 if (q_vector->tx.ring) 7990 clean_complete = igb_clean_tx_irq(q_vector, budget); 7991 7992 if (q_vector->rx.ring) { 7993 int cleaned = igb_clean_rx_irq(q_vector, budget); 7994 7995 work_done += cleaned; 7996 if (cleaned >= budget) 7997 clean_complete = false; 7998 } 7999 8000 /* If all work not completed, return budget and keep polling */ 8001 if (!clean_complete) 8002 return budget; 8003 8004 /* Exit the polling mode, but don't re-enable interrupts if stack might 8005 * poll us due to busy-polling 8006 */ 8007 if (likely(napi_complete_done(napi, work_done))) 8008 igb_ring_irq_enable(q_vector); 8009 8010 return min(work_done, budget - 1); 8011 } 8012 8013 /** 8014 * igb_clean_tx_irq - Reclaim resources after transmit completes 8015 * @q_vector: pointer to q_vector containing needed info 8016 * @napi_budget: Used to determine if we are in netpoll 8017 * 8018 * returns true if ring is completely cleaned 8019 **/ 8020 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget) 8021 { 8022 struct igb_adapter *adapter = q_vector->adapter; 8023 struct igb_ring *tx_ring = q_vector->tx.ring; 8024 struct igb_tx_buffer *tx_buffer; 8025 union e1000_adv_tx_desc *tx_desc; 8026 unsigned int total_bytes = 0, total_packets = 0; 8027 unsigned int budget = q_vector->tx.work_limit; 8028 unsigned int i = tx_ring->next_to_clean; 8029 8030 if (test_bit(__IGB_DOWN, &adapter->state)) 8031 return true; 8032 8033 tx_buffer = &tx_ring->tx_buffer_info[i]; 8034 tx_desc = IGB_TX_DESC(tx_ring, i); 8035 i -= tx_ring->count; 8036 8037 do { 8038 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 8039 8040 /* if next_to_watch is not set then there is no work pending */ 8041 if (!eop_desc) 8042 break; 8043 8044 /* prevent any other reads prior to eop_desc */ 8045 smp_rmb(); 8046 8047 /* if DD is not set pending work has not been completed */ 8048 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 8049 break; 8050 8051 /* clear next_to_watch to prevent false hangs */ 8052 tx_buffer->next_to_watch = NULL; 8053 8054 /* update the statistics for this packet */ 8055 total_bytes += tx_buffer->bytecount; 8056 total_packets += tx_buffer->gso_segs; 8057 8058 /* free the skb */ 8059 if (tx_buffer->type == IGB_TYPE_SKB) 8060 napi_consume_skb(tx_buffer->skb, napi_budget); 8061 else 8062 xdp_return_frame(tx_buffer->xdpf); 8063 8064 /* unmap skb header data */ 8065 dma_unmap_single(tx_ring->dev, 8066 dma_unmap_addr(tx_buffer, dma), 8067 dma_unmap_len(tx_buffer, len), 8068 DMA_TO_DEVICE); 8069 8070 /* clear tx_buffer data */ 8071 dma_unmap_len_set(tx_buffer, len, 0); 8072 8073 /* clear last DMA location and unmap remaining buffers */ 8074 while (tx_desc != eop_desc) { 8075 tx_buffer++; 8076 tx_desc++; 8077 i++; 8078 if (unlikely(!i)) { 8079 i -= tx_ring->count; 8080 tx_buffer = tx_ring->tx_buffer_info; 8081 tx_desc = IGB_TX_DESC(tx_ring, 0); 8082 } 8083 8084 /* unmap any remaining paged data */ 8085 if (dma_unmap_len(tx_buffer, len)) { 8086 dma_unmap_page(tx_ring->dev, 8087 dma_unmap_addr(tx_buffer, dma), 8088 dma_unmap_len(tx_buffer, len), 8089 DMA_TO_DEVICE); 8090 dma_unmap_len_set(tx_buffer, len, 0); 8091 } 8092 } 8093 8094 /* move us one more past the eop_desc for start of next pkt */ 8095 tx_buffer++; 8096 tx_desc++; 8097 i++; 8098 if (unlikely(!i)) { 8099 i -= tx_ring->count; 8100 tx_buffer = tx_ring->tx_buffer_info; 8101 tx_desc = IGB_TX_DESC(tx_ring, 0); 8102 } 8103 8104 /* issue prefetch for next Tx descriptor */ 8105 prefetch(tx_desc); 8106 8107 /* update budget accounting */ 8108 budget--; 8109 } while (likely(budget)); 8110 8111 netdev_tx_completed_queue(txring_txq(tx_ring), 8112 total_packets, total_bytes); 8113 i += tx_ring->count; 8114 tx_ring->next_to_clean = i; 8115 u64_stats_update_begin(&tx_ring->tx_syncp); 8116 tx_ring->tx_stats.bytes += total_bytes; 8117 tx_ring->tx_stats.packets += total_packets; 8118 u64_stats_update_end(&tx_ring->tx_syncp); 8119 q_vector->tx.total_bytes += total_bytes; 8120 q_vector->tx.total_packets += total_packets; 8121 8122 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 8123 struct e1000_hw *hw = &adapter->hw; 8124 8125 /* Detect a transmit hang in hardware, this serializes the 8126 * check with the clearing of time_stamp and movement of i 8127 */ 8128 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 8129 if (tx_buffer->next_to_watch && 8130 time_after(jiffies, tx_buffer->time_stamp + 8131 (adapter->tx_timeout_factor * HZ)) && 8132 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 8133 8134 /* detected Tx unit hang */ 8135 dev_err(tx_ring->dev, 8136 "Detected Tx Unit Hang\n" 8137 " Tx Queue <%d>\n" 8138 " TDH <%x>\n" 8139 " TDT <%x>\n" 8140 " next_to_use <%x>\n" 8141 " next_to_clean <%x>\n" 8142 "buffer_info[next_to_clean]\n" 8143 " time_stamp <%lx>\n" 8144 " next_to_watch <%p>\n" 8145 " jiffies <%lx>\n" 8146 " desc.status <%x>\n", 8147 tx_ring->queue_index, 8148 rd32(E1000_TDH(tx_ring->reg_idx)), 8149 readl(tx_ring->tail), 8150 tx_ring->next_to_use, 8151 tx_ring->next_to_clean, 8152 tx_buffer->time_stamp, 8153 tx_buffer->next_to_watch, 8154 jiffies, 8155 tx_buffer->next_to_watch->wb.status); 8156 netif_stop_subqueue(tx_ring->netdev, 8157 tx_ring->queue_index); 8158 8159 /* we are about to reset, no point in enabling stuff */ 8160 return true; 8161 } 8162 } 8163 8164 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 8165 if (unlikely(total_packets && 8166 netif_carrier_ok(tx_ring->netdev) && 8167 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 8168 /* Make sure that anybody stopping the queue after this 8169 * sees the new next_to_clean. 8170 */ 8171 smp_mb(); 8172 if (__netif_subqueue_stopped(tx_ring->netdev, 8173 tx_ring->queue_index) && 8174 !(test_bit(__IGB_DOWN, &adapter->state))) { 8175 netif_wake_subqueue(tx_ring->netdev, 8176 tx_ring->queue_index); 8177 8178 u64_stats_update_begin(&tx_ring->tx_syncp); 8179 tx_ring->tx_stats.restart_queue++; 8180 u64_stats_update_end(&tx_ring->tx_syncp); 8181 } 8182 } 8183 8184 return !!budget; 8185 } 8186 8187 /** 8188 * igb_reuse_rx_page - page flip buffer and store it back on the ring 8189 * @rx_ring: rx descriptor ring to store buffers on 8190 * @old_buff: donor buffer to have page reused 8191 * 8192 * Synchronizes page for reuse by the adapter 8193 **/ 8194 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 8195 struct igb_rx_buffer *old_buff) 8196 { 8197 struct igb_rx_buffer *new_buff; 8198 u16 nta = rx_ring->next_to_alloc; 8199 8200 new_buff = &rx_ring->rx_buffer_info[nta]; 8201 8202 /* update, and store next to alloc */ 8203 nta++; 8204 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 8205 8206 /* Transfer page from old buffer to new buffer. 8207 * Move each member individually to avoid possible store 8208 * forwarding stalls. 8209 */ 8210 new_buff->dma = old_buff->dma; 8211 new_buff->page = old_buff->page; 8212 new_buff->page_offset = old_buff->page_offset; 8213 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 8214 } 8215 8216 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 8217 int rx_buf_pgcnt) 8218 { 8219 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 8220 struct page *page = rx_buffer->page; 8221 8222 /* avoid re-using remote and pfmemalloc pages */ 8223 if (!dev_page_is_reusable(page)) 8224 return false; 8225 8226 #if (PAGE_SIZE < 8192) 8227 /* if we are only owner of page we can reuse it */ 8228 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) 8229 return false; 8230 #else 8231 #define IGB_LAST_OFFSET \ 8232 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048) 8233 8234 if (rx_buffer->page_offset > IGB_LAST_OFFSET) 8235 return false; 8236 #endif 8237 8238 /* If we have drained the page fragment pool we need to update 8239 * the pagecnt_bias and page count so that we fully restock the 8240 * number of references the driver holds. 8241 */ 8242 if (unlikely(pagecnt_bias == 1)) { 8243 page_ref_add(page, USHRT_MAX - 1); 8244 rx_buffer->pagecnt_bias = USHRT_MAX; 8245 } 8246 8247 return true; 8248 } 8249 8250 /** 8251 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 8252 * @rx_ring: rx descriptor ring to transact packets on 8253 * @rx_buffer: buffer containing page to add 8254 * @skb: sk_buff to place the data into 8255 * @size: size of buffer to be added 8256 * 8257 * This function will add the data contained in rx_buffer->page to the skb. 8258 **/ 8259 static void igb_add_rx_frag(struct igb_ring *rx_ring, 8260 struct igb_rx_buffer *rx_buffer, 8261 struct sk_buff *skb, 8262 unsigned int size) 8263 { 8264 #if (PAGE_SIZE < 8192) 8265 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8266 #else 8267 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 8268 SKB_DATA_ALIGN(IGB_SKB_PAD + size) : 8269 SKB_DATA_ALIGN(size); 8270 #endif 8271 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 8272 rx_buffer->page_offset, size, truesize); 8273 #if (PAGE_SIZE < 8192) 8274 rx_buffer->page_offset ^= truesize; 8275 #else 8276 rx_buffer->page_offset += truesize; 8277 #endif 8278 } 8279 8280 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring, 8281 struct igb_rx_buffer *rx_buffer, 8282 struct xdp_buff *xdp, 8283 union e1000_adv_rx_desc *rx_desc) 8284 { 8285 #if (PAGE_SIZE < 8192) 8286 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8287 #else 8288 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 8289 xdp->data_hard_start); 8290 #endif 8291 unsigned int size = xdp->data_end - xdp->data; 8292 unsigned int headlen; 8293 struct sk_buff *skb; 8294 8295 /* prefetch first cache line of first page */ 8296 net_prefetch(xdp->data); 8297 8298 /* allocate a skb to store the frags */ 8299 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); 8300 if (unlikely(!skb)) 8301 return NULL; 8302 8303 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) { 8304 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb)) { 8305 xdp->data += IGB_TS_HDR_LEN; 8306 size -= IGB_TS_HDR_LEN; 8307 } 8308 } 8309 8310 /* Determine available headroom for copy */ 8311 headlen = size; 8312 if (headlen > IGB_RX_HDR_LEN) 8313 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN); 8314 8315 /* align pull length to size of long to optimize memcpy performance */ 8316 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long))); 8317 8318 /* update all of the pointers */ 8319 size -= headlen; 8320 if (size) { 8321 skb_add_rx_frag(skb, 0, rx_buffer->page, 8322 (xdp->data + headlen) - page_address(rx_buffer->page), 8323 size, truesize); 8324 #if (PAGE_SIZE < 8192) 8325 rx_buffer->page_offset ^= truesize; 8326 #else 8327 rx_buffer->page_offset += truesize; 8328 #endif 8329 } else { 8330 rx_buffer->pagecnt_bias++; 8331 } 8332 8333 return skb; 8334 } 8335 8336 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring, 8337 struct igb_rx_buffer *rx_buffer, 8338 struct xdp_buff *xdp, 8339 union e1000_adv_rx_desc *rx_desc) 8340 { 8341 #if (PAGE_SIZE < 8192) 8342 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; 8343 #else 8344 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 8345 SKB_DATA_ALIGN(xdp->data_end - 8346 xdp->data_hard_start); 8347 #endif 8348 unsigned int metasize = xdp->data - xdp->data_meta; 8349 struct sk_buff *skb; 8350 8351 /* prefetch first cache line of first page */ 8352 net_prefetch(xdp->data_meta); 8353 8354 /* build an skb around the page buffer */ 8355 skb = build_skb(xdp->data_hard_start, truesize); 8356 if (unlikely(!skb)) 8357 return NULL; 8358 8359 /* update pointers within the skb to store the data */ 8360 skb_reserve(skb, xdp->data - xdp->data_hard_start); 8361 __skb_put(skb, xdp->data_end - xdp->data); 8362 8363 if (metasize) 8364 skb_metadata_set(skb, metasize); 8365 8366 /* pull timestamp out of packet data */ 8367 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 8368 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb)) 8369 __skb_pull(skb, IGB_TS_HDR_LEN); 8370 } 8371 8372 /* update buffer offset */ 8373 #if (PAGE_SIZE < 8192) 8374 rx_buffer->page_offset ^= truesize; 8375 #else 8376 rx_buffer->page_offset += truesize; 8377 #endif 8378 8379 return skb; 8380 } 8381 8382 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter, 8383 struct igb_ring *rx_ring, 8384 struct xdp_buff *xdp) 8385 { 8386 int err, result = IGB_XDP_PASS; 8387 struct bpf_prog *xdp_prog; 8388 u32 act; 8389 8390 rcu_read_lock(); 8391 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 8392 8393 if (!xdp_prog) 8394 goto xdp_out; 8395 8396 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 8397 8398 act = bpf_prog_run_xdp(xdp_prog, xdp); 8399 switch (act) { 8400 case XDP_PASS: 8401 break; 8402 case XDP_TX: 8403 result = igb_xdp_xmit_back(adapter, xdp); 8404 break; 8405 case XDP_REDIRECT: 8406 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog); 8407 if (!err) 8408 result = IGB_XDP_REDIR; 8409 else 8410 result = IGB_XDP_CONSUMED; 8411 break; 8412 default: 8413 bpf_warn_invalid_xdp_action(act); 8414 fallthrough; 8415 case XDP_ABORTED: 8416 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 8417 fallthrough; 8418 case XDP_DROP: 8419 result = IGB_XDP_CONSUMED; 8420 break; 8421 } 8422 xdp_out: 8423 rcu_read_unlock(); 8424 return ERR_PTR(-result); 8425 } 8426 8427 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring, 8428 unsigned int size) 8429 { 8430 unsigned int truesize; 8431 8432 #if (PAGE_SIZE < 8192) 8433 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 8434 #else 8435 truesize = ring_uses_build_skb(rx_ring) ? 8436 SKB_DATA_ALIGN(IGB_SKB_PAD + size) + 8437 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 8438 SKB_DATA_ALIGN(size); 8439 #endif 8440 return truesize; 8441 } 8442 8443 static void igb_rx_buffer_flip(struct igb_ring *rx_ring, 8444 struct igb_rx_buffer *rx_buffer, 8445 unsigned int size) 8446 { 8447 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size); 8448 #if (PAGE_SIZE < 8192) 8449 rx_buffer->page_offset ^= truesize; 8450 #else 8451 rx_buffer->page_offset += truesize; 8452 #endif 8453 } 8454 8455 static inline void igb_rx_checksum(struct igb_ring *ring, 8456 union e1000_adv_rx_desc *rx_desc, 8457 struct sk_buff *skb) 8458 { 8459 skb_checksum_none_assert(skb); 8460 8461 /* Ignore Checksum bit is set */ 8462 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 8463 return; 8464 8465 /* Rx checksum disabled via ethtool */ 8466 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 8467 return; 8468 8469 /* TCP/UDP checksum error bit is set */ 8470 if (igb_test_staterr(rx_desc, 8471 E1000_RXDEXT_STATERR_TCPE | 8472 E1000_RXDEXT_STATERR_IPE)) { 8473 /* work around errata with sctp packets where the TCPE aka 8474 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 8475 * packets, (aka let the stack check the crc32c) 8476 */ 8477 if (!((skb->len == 60) && 8478 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 8479 u64_stats_update_begin(&ring->rx_syncp); 8480 ring->rx_stats.csum_err++; 8481 u64_stats_update_end(&ring->rx_syncp); 8482 } 8483 /* let the stack verify checksum errors */ 8484 return; 8485 } 8486 /* It must be a TCP or UDP packet with a valid checksum */ 8487 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 8488 E1000_RXD_STAT_UDPCS)) 8489 skb->ip_summed = CHECKSUM_UNNECESSARY; 8490 8491 dev_dbg(ring->dev, "cksum success: bits %08X\n", 8492 le32_to_cpu(rx_desc->wb.upper.status_error)); 8493 } 8494 8495 static inline void igb_rx_hash(struct igb_ring *ring, 8496 union e1000_adv_rx_desc *rx_desc, 8497 struct sk_buff *skb) 8498 { 8499 if (ring->netdev->features & NETIF_F_RXHASH) 8500 skb_set_hash(skb, 8501 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 8502 PKT_HASH_TYPE_L3); 8503 } 8504 8505 /** 8506 * igb_is_non_eop - process handling of non-EOP buffers 8507 * @rx_ring: Rx ring being processed 8508 * @rx_desc: Rx descriptor for current buffer 8509 * 8510 * This function updates next to clean. If the buffer is an EOP buffer 8511 * this function exits returning false, otherwise it will place the 8512 * sk_buff in the next buffer to be chained and return true indicating 8513 * that this is in fact a non-EOP buffer. 8514 **/ 8515 static bool igb_is_non_eop(struct igb_ring *rx_ring, 8516 union e1000_adv_rx_desc *rx_desc) 8517 { 8518 u32 ntc = rx_ring->next_to_clean + 1; 8519 8520 /* fetch, update, and store next to clean */ 8521 ntc = (ntc < rx_ring->count) ? ntc : 0; 8522 rx_ring->next_to_clean = ntc; 8523 8524 prefetch(IGB_RX_DESC(rx_ring, ntc)); 8525 8526 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 8527 return false; 8528 8529 return true; 8530 } 8531 8532 /** 8533 * igb_cleanup_headers - Correct corrupted or empty headers 8534 * @rx_ring: rx descriptor ring packet is being transacted on 8535 * @rx_desc: pointer to the EOP Rx descriptor 8536 * @skb: pointer to current skb being fixed 8537 * 8538 * Address the case where we are pulling data in on pages only 8539 * and as such no data is present in the skb header. 8540 * 8541 * In addition if skb is not at least 60 bytes we need to pad it so that 8542 * it is large enough to qualify as a valid Ethernet frame. 8543 * 8544 * Returns true if an error was encountered and skb was freed. 8545 **/ 8546 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 8547 union e1000_adv_rx_desc *rx_desc, 8548 struct sk_buff *skb) 8549 { 8550 /* XDP packets use error pointer so abort at this point */ 8551 if (IS_ERR(skb)) 8552 return true; 8553 8554 if (unlikely((igb_test_staterr(rx_desc, 8555 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 8556 struct net_device *netdev = rx_ring->netdev; 8557 if (!(netdev->features & NETIF_F_RXALL)) { 8558 dev_kfree_skb_any(skb); 8559 return true; 8560 } 8561 } 8562 8563 /* if eth_skb_pad returns an error the skb was freed */ 8564 if (eth_skb_pad(skb)) 8565 return true; 8566 8567 return false; 8568 } 8569 8570 /** 8571 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 8572 * @rx_ring: rx descriptor ring packet is being transacted on 8573 * @rx_desc: pointer to the EOP Rx descriptor 8574 * @skb: pointer to current skb being populated 8575 * 8576 * This function checks the ring, descriptor, and packet information in 8577 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 8578 * other fields within the skb. 8579 **/ 8580 static void igb_process_skb_fields(struct igb_ring *rx_ring, 8581 union e1000_adv_rx_desc *rx_desc, 8582 struct sk_buff *skb) 8583 { 8584 struct net_device *dev = rx_ring->netdev; 8585 8586 igb_rx_hash(rx_ring, rx_desc, skb); 8587 8588 igb_rx_checksum(rx_ring, rx_desc, skb); 8589 8590 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 8591 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 8592 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 8593 8594 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 8595 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 8596 u16 vid; 8597 8598 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 8599 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 8600 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 8601 else 8602 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 8603 8604 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 8605 } 8606 8607 skb_record_rx_queue(skb, rx_ring->queue_index); 8608 8609 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 8610 } 8611 8612 static unsigned int igb_rx_offset(struct igb_ring *rx_ring) 8613 { 8614 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0; 8615 } 8616 8617 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring, 8618 const unsigned int size, int *rx_buf_pgcnt) 8619 { 8620 struct igb_rx_buffer *rx_buffer; 8621 8622 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 8623 *rx_buf_pgcnt = 8624 #if (PAGE_SIZE < 8192) 8625 page_count(rx_buffer->page); 8626 #else 8627 0; 8628 #endif 8629 prefetchw(rx_buffer->page); 8630 8631 /* we are reusing so sync this buffer for CPU use */ 8632 dma_sync_single_range_for_cpu(rx_ring->dev, 8633 rx_buffer->dma, 8634 rx_buffer->page_offset, 8635 size, 8636 DMA_FROM_DEVICE); 8637 8638 rx_buffer->pagecnt_bias--; 8639 8640 return rx_buffer; 8641 } 8642 8643 static void igb_put_rx_buffer(struct igb_ring *rx_ring, 8644 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt) 8645 { 8646 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) { 8647 /* hand second half of page back to the ring */ 8648 igb_reuse_rx_page(rx_ring, rx_buffer); 8649 } else { 8650 /* We are not reusing the buffer so unmap it and free 8651 * any references we are holding to it 8652 */ 8653 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 8654 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE, 8655 IGB_RX_DMA_ATTR); 8656 __page_frag_cache_drain(rx_buffer->page, 8657 rx_buffer->pagecnt_bias); 8658 } 8659 8660 /* clear contents of rx_buffer */ 8661 rx_buffer->page = NULL; 8662 } 8663 8664 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 8665 { 8666 struct igb_adapter *adapter = q_vector->adapter; 8667 struct igb_ring *rx_ring = q_vector->rx.ring; 8668 struct sk_buff *skb = rx_ring->skb; 8669 unsigned int total_bytes = 0, total_packets = 0; 8670 u16 cleaned_count = igb_desc_unused(rx_ring); 8671 unsigned int xdp_xmit = 0; 8672 struct xdp_buff xdp; 8673 u32 frame_sz = 0; 8674 int rx_buf_pgcnt; 8675 8676 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 8677 #if (PAGE_SIZE < 8192) 8678 frame_sz = igb_rx_frame_truesize(rx_ring, 0); 8679 #endif 8680 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 8681 8682 while (likely(total_packets < budget)) { 8683 union e1000_adv_rx_desc *rx_desc; 8684 struct igb_rx_buffer *rx_buffer; 8685 unsigned int size; 8686 8687 /* return some buffers to hardware, one at a time is too slow */ 8688 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 8689 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8690 cleaned_count = 0; 8691 } 8692 8693 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 8694 size = le16_to_cpu(rx_desc->wb.upper.length); 8695 if (!size) 8696 break; 8697 8698 /* This memory barrier is needed to keep us from reading 8699 * any other fields out of the rx_desc until we know the 8700 * descriptor has been written back 8701 */ 8702 dma_rmb(); 8703 8704 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt); 8705 8706 /* retrieve a buffer from the ring */ 8707 if (!skb) { 8708 unsigned int offset = igb_rx_offset(rx_ring); 8709 unsigned char *hard_start; 8710 8711 hard_start = page_address(rx_buffer->page) + 8712 rx_buffer->page_offset - offset; 8713 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 8714 #if (PAGE_SIZE > 4096) 8715 /* At larger PAGE_SIZE, frame_sz depend on len size */ 8716 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size); 8717 #endif 8718 skb = igb_run_xdp(adapter, rx_ring, &xdp); 8719 } 8720 8721 if (IS_ERR(skb)) { 8722 unsigned int xdp_res = -PTR_ERR(skb); 8723 8724 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) { 8725 xdp_xmit |= xdp_res; 8726 igb_rx_buffer_flip(rx_ring, rx_buffer, size); 8727 } else { 8728 rx_buffer->pagecnt_bias++; 8729 } 8730 total_packets++; 8731 total_bytes += size; 8732 } else if (skb) 8733 igb_add_rx_frag(rx_ring, rx_buffer, skb, size); 8734 else if (ring_uses_build_skb(rx_ring)) 8735 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc); 8736 else 8737 skb = igb_construct_skb(rx_ring, rx_buffer, 8738 &xdp, rx_desc); 8739 8740 /* exit if we failed to retrieve a buffer */ 8741 if (!skb) { 8742 rx_ring->rx_stats.alloc_failed++; 8743 rx_buffer->pagecnt_bias++; 8744 break; 8745 } 8746 8747 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt); 8748 cleaned_count++; 8749 8750 /* fetch next buffer in frame if non-eop */ 8751 if (igb_is_non_eop(rx_ring, rx_desc)) 8752 continue; 8753 8754 /* verify the packet layout is correct */ 8755 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 8756 skb = NULL; 8757 continue; 8758 } 8759 8760 /* probably a little skewed due to removing CRC */ 8761 total_bytes += skb->len; 8762 8763 /* populate checksum, timestamp, VLAN, and protocol */ 8764 igb_process_skb_fields(rx_ring, rx_desc, skb); 8765 8766 napi_gro_receive(&q_vector->napi, skb); 8767 8768 /* reset skb pointer */ 8769 skb = NULL; 8770 8771 /* update budget accounting */ 8772 total_packets++; 8773 } 8774 8775 /* place incomplete frames back on ring for completion */ 8776 rx_ring->skb = skb; 8777 8778 if (xdp_xmit & IGB_XDP_REDIR) 8779 xdp_do_flush(); 8780 8781 if (xdp_xmit & IGB_XDP_TX) { 8782 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter); 8783 8784 igb_xdp_ring_update_tail(tx_ring); 8785 } 8786 8787 u64_stats_update_begin(&rx_ring->rx_syncp); 8788 rx_ring->rx_stats.packets += total_packets; 8789 rx_ring->rx_stats.bytes += total_bytes; 8790 u64_stats_update_end(&rx_ring->rx_syncp); 8791 q_vector->rx.total_packets += total_packets; 8792 q_vector->rx.total_bytes += total_bytes; 8793 8794 if (cleaned_count) 8795 igb_alloc_rx_buffers(rx_ring, cleaned_count); 8796 8797 return total_packets; 8798 } 8799 8800 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 8801 struct igb_rx_buffer *bi) 8802 { 8803 struct page *page = bi->page; 8804 dma_addr_t dma; 8805 8806 /* since we are recycling buffers we should seldom need to alloc */ 8807 if (likely(page)) 8808 return true; 8809 8810 /* alloc new page for storage */ 8811 page = dev_alloc_pages(igb_rx_pg_order(rx_ring)); 8812 if (unlikely(!page)) { 8813 rx_ring->rx_stats.alloc_failed++; 8814 return false; 8815 } 8816 8817 /* map page for use */ 8818 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 8819 igb_rx_pg_size(rx_ring), 8820 DMA_FROM_DEVICE, 8821 IGB_RX_DMA_ATTR); 8822 8823 /* if mapping failed free memory back to system since 8824 * there isn't much point in holding memory we can't use 8825 */ 8826 if (dma_mapping_error(rx_ring->dev, dma)) { 8827 __free_pages(page, igb_rx_pg_order(rx_ring)); 8828 8829 rx_ring->rx_stats.alloc_failed++; 8830 return false; 8831 } 8832 8833 bi->dma = dma; 8834 bi->page = page; 8835 bi->page_offset = igb_rx_offset(rx_ring); 8836 page_ref_add(page, USHRT_MAX - 1); 8837 bi->pagecnt_bias = USHRT_MAX; 8838 8839 return true; 8840 } 8841 8842 /** 8843 * igb_alloc_rx_buffers - Replace used receive buffers 8844 * @rx_ring: rx descriptor ring to allocate new receive buffers 8845 * @cleaned_count: count of buffers to allocate 8846 **/ 8847 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 8848 { 8849 union e1000_adv_rx_desc *rx_desc; 8850 struct igb_rx_buffer *bi; 8851 u16 i = rx_ring->next_to_use; 8852 u16 bufsz; 8853 8854 /* nothing to do */ 8855 if (!cleaned_count) 8856 return; 8857 8858 rx_desc = IGB_RX_DESC(rx_ring, i); 8859 bi = &rx_ring->rx_buffer_info[i]; 8860 i -= rx_ring->count; 8861 8862 bufsz = igb_rx_bufsz(rx_ring); 8863 8864 do { 8865 if (!igb_alloc_mapped_page(rx_ring, bi)) 8866 break; 8867 8868 /* sync the buffer for use by the device */ 8869 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 8870 bi->page_offset, bufsz, 8871 DMA_FROM_DEVICE); 8872 8873 /* Refresh the desc even if buffer_addrs didn't change 8874 * because each write-back erases this info. 8875 */ 8876 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 8877 8878 rx_desc++; 8879 bi++; 8880 i++; 8881 if (unlikely(!i)) { 8882 rx_desc = IGB_RX_DESC(rx_ring, 0); 8883 bi = rx_ring->rx_buffer_info; 8884 i -= rx_ring->count; 8885 } 8886 8887 /* clear the length for the next_to_use descriptor */ 8888 rx_desc->wb.upper.length = 0; 8889 8890 cleaned_count--; 8891 } while (cleaned_count); 8892 8893 i += rx_ring->count; 8894 8895 if (rx_ring->next_to_use != i) { 8896 /* record the next descriptor to use */ 8897 rx_ring->next_to_use = i; 8898 8899 /* update next to alloc since we have filled the ring */ 8900 rx_ring->next_to_alloc = i; 8901 8902 /* Force memory writes to complete before letting h/w 8903 * know there are new descriptors to fetch. (Only 8904 * applicable for weak-ordered memory model archs, 8905 * such as IA-64). 8906 */ 8907 dma_wmb(); 8908 writel(i, rx_ring->tail); 8909 } 8910 } 8911 8912 /** 8913 * igb_mii_ioctl - 8914 * @netdev: pointer to netdev struct 8915 * @ifr: interface structure 8916 * @cmd: ioctl command to execute 8917 **/ 8918 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 8919 { 8920 struct igb_adapter *adapter = netdev_priv(netdev); 8921 struct mii_ioctl_data *data = if_mii(ifr); 8922 8923 if (adapter->hw.phy.media_type != e1000_media_type_copper) 8924 return -EOPNOTSUPP; 8925 8926 switch (cmd) { 8927 case SIOCGMIIPHY: 8928 data->phy_id = adapter->hw.phy.addr; 8929 break; 8930 case SIOCGMIIREG: 8931 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 8932 &data->val_out)) 8933 return -EIO; 8934 break; 8935 case SIOCSMIIREG: 8936 default: 8937 return -EOPNOTSUPP; 8938 } 8939 return 0; 8940 } 8941 8942 /** 8943 * igb_ioctl - 8944 * @netdev: pointer to netdev struct 8945 * @ifr: interface structure 8946 * @cmd: ioctl command to execute 8947 **/ 8948 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 8949 { 8950 switch (cmd) { 8951 case SIOCGMIIPHY: 8952 case SIOCGMIIREG: 8953 case SIOCSMIIREG: 8954 return igb_mii_ioctl(netdev, ifr, cmd); 8955 case SIOCGHWTSTAMP: 8956 return igb_ptp_get_ts_config(netdev, ifr); 8957 case SIOCSHWTSTAMP: 8958 return igb_ptp_set_ts_config(netdev, ifr); 8959 default: 8960 return -EOPNOTSUPP; 8961 } 8962 } 8963 8964 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 8965 { 8966 struct igb_adapter *adapter = hw->back; 8967 8968 pci_read_config_word(adapter->pdev, reg, value); 8969 } 8970 8971 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 8972 { 8973 struct igb_adapter *adapter = hw->back; 8974 8975 pci_write_config_word(adapter->pdev, reg, *value); 8976 } 8977 8978 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 8979 { 8980 struct igb_adapter *adapter = hw->back; 8981 8982 if (pcie_capability_read_word(adapter->pdev, reg, value)) 8983 return -E1000_ERR_CONFIG; 8984 8985 return 0; 8986 } 8987 8988 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 8989 { 8990 struct igb_adapter *adapter = hw->back; 8991 8992 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 8993 return -E1000_ERR_CONFIG; 8994 8995 return 0; 8996 } 8997 8998 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 8999 { 9000 struct igb_adapter *adapter = netdev_priv(netdev); 9001 struct e1000_hw *hw = &adapter->hw; 9002 u32 ctrl, rctl; 9003 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 9004 9005 if (enable) { 9006 /* enable VLAN tag insert/strip */ 9007 ctrl = rd32(E1000_CTRL); 9008 ctrl |= E1000_CTRL_VME; 9009 wr32(E1000_CTRL, ctrl); 9010 9011 /* Disable CFI check */ 9012 rctl = rd32(E1000_RCTL); 9013 rctl &= ~E1000_RCTL_CFIEN; 9014 wr32(E1000_RCTL, rctl); 9015 } else { 9016 /* disable VLAN tag insert/strip */ 9017 ctrl = rd32(E1000_CTRL); 9018 ctrl &= ~E1000_CTRL_VME; 9019 wr32(E1000_CTRL, ctrl); 9020 } 9021 9022 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable); 9023 } 9024 9025 static int igb_vlan_rx_add_vid(struct net_device *netdev, 9026 __be16 proto, u16 vid) 9027 { 9028 struct igb_adapter *adapter = netdev_priv(netdev); 9029 struct e1000_hw *hw = &adapter->hw; 9030 int pf_id = adapter->vfs_allocated_count; 9031 9032 /* add the filter since PF can receive vlans w/o entry in vlvf */ 9033 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9034 igb_vfta_set(hw, vid, pf_id, true, !!vid); 9035 9036 set_bit(vid, adapter->active_vlans); 9037 9038 return 0; 9039 } 9040 9041 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 9042 __be16 proto, u16 vid) 9043 { 9044 struct igb_adapter *adapter = netdev_priv(netdev); 9045 int pf_id = adapter->vfs_allocated_count; 9046 struct e1000_hw *hw = &adapter->hw; 9047 9048 /* remove VID from filter table */ 9049 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) 9050 igb_vfta_set(hw, vid, pf_id, false, true); 9051 9052 clear_bit(vid, adapter->active_vlans); 9053 9054 return 0; 9055 } 9056 9057 static void igb_restore_vlan(struct igb_adapter *adapter) 9058 { 9059 u16 vid = 1; 9060 9061 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 9062 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 9063 9064 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID) 9065 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 9066 } 9067 9068 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 9069 { 9070 struct pci_dev *pdev = adapter->pdev; 9071 struct e1000_mac_info *mac = &adapter->hw.mac; 9072 9073 mac->autoneg = 0; 9074 9075 /* Make sure dplx is at most 1 bit and lsb of speed is not set 9076 * for the switch() below to work 9077 */ 9078 if ((spd & 1) || (dplx & ~1)) 9079 goto err_inval; 9080 9081 /* Fiber NIC's only allow 1000 gbps Full duplex 9082 * and 100Mbps Full duplex for 100baseFx sfp 9083 */ 9084 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 9085 switch (spd + dplx) { 9086 case SPEED_10 + DUPLEX_HALF: 9087 case SPEED_10 + DUPLEX_FULL: 9088 case SPEED_100 + DUPLEX_HALF: 9089 goto err_inval; 9090 default: 9091 break; 9092 } 9093 } 9094 9095 switch (spd + dplx) { 9096 case SPEED_10 + DUPLEX_HALF: 9097 mac->forced_speed_duplex = ADVERTISE_10_HALF; 9098 break; 9099 case SPEED_10 + DUPLEX_FULL: 9100 mac->forced_speed_duplex = ADVERTISE_10_FULL; 9101 break; 9102 case SPEED_100 + DUPLEX_HALF: 9103 mac->forced_speed_duplex = ADVERTISE_100_HALF; 9104 break; 9105 case SPEED_100 + DUPLEX_FULL: 9106 mac->forced_speed_duplex = ADVERTISE_100_FULL; 9107 break; 9108 case SPEED_1000 + DUPLEX_FULL: 9109 mac->autoneg = 1; 9110 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 9111 break; 9112 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 9113 default: 9114 goto err_inval; 9115 } 9116 9117 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 9118 adapter->hw.phy.mdix = AUTO_ALL_MODES; 9119 9120 return 0; 9121 9122 err_inval: 9123 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 9124 return -EINVAL; 9125 } 9126 9127 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 9128 bool runtime) 9129 { 9130 struct net_device *netdev = pci_get_drvdata(pdev); 9131 struct igb_adapter *adapter = netdev_priv(netdev); 9132 struct e1000_hw *hw = &adapter->hw; 9133 u32 ctrl, rctl, status; 9134 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 9135 bool wake; 9136 9137 rtnl_lock(); 9138 netif_device_detach(netdev); 9139 9140 if (netif_running(netdev)) 9141 __igb_close(netdev, true); 9142 9143 igb_ptp_suspend(adapter); 9144 9145 igb_clear_interrupt_scheme(adapter); 9146 rtnl_unlock(); 9147 9148 status = rd32(E1000_STATUS); 9149 if (status & E1000_STATUS_LU) 9150 wufc &= ~E1000_WUFC_LNKC; 9151 9152 if (wufc) { 9153 igb_setup_rctl(adapter); 9154 igb_set_rx_mode(netdev); 9155 9156 /* turn on all-multi mode if wake on multicast is enabled */ 9157 if (wufc & E1000_WUFC_MC) { 9158 rctl = rd32(E1000_RCTL); 9159 rctl |= E1000_RCTL_MPE; 9160 wr32(E1000_RCTL, rctl); 9161 } 9162 9163 ctrl = rd32(E1000_CTRL); 9164 ctrl |= E1000_CTRL_ADVD3WUC; 9165 wr32(E1000_CTRL, ctrl); 9166 9167 /* Allow time for pending master requests to run */ 9168 igb_disable_pcie_master(hw); 9169 9170 wr32(E1000_WUC, E1000_WUC_PME_EN); 9171 wr32(E1000_WUFC, wufc); 9172 } else { 9173 wr32(E1000_WUC, 0); 9174 wr32(E1000_WUFC, 0); 9175 } 9176 9177 wake = wufc || adapter->en_mng_pt; 9178 if (!wake) 9179 igb_power_down_link(adapter); 9180 else 9181 igb_power_up_link(adapter); 9182 9183 if (enable_wake) 9184 *enable_wake = wake; 9185 9186 /* Release control of h/w to f/w. If f/w is AMT enabled, this 9187 * would have already happened in close and is redundant. 9188 */ 9189 igb_release_hw_control(adapter); 9190 9191 pci_disable_device(pdev); 9192 9193 return 0; 9194 } 9195 9196 static void igb_deliver_wake_packet(struct net_device *netdev) 9197 { 9198 struct igb_adapter *adapter = netdev_priv(netdev); 9199 struct e1000_hw *hw = &adapter->hw; 9200 struct sk_buff *skb; 9201 u32 wupl; 9202 9203 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK; 9204 9205 /* WUPM stores only the first 128 bytes of the wake packet. 9206 * Read the packet only if we have the whole thing. 9207 */ 9208 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES)) 9209 return; 9210 9211 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES); 9212 if (!skb) 9213 return; 9214 9215 skb_put(skb, wupl); 9216 9217 /* Ensure reads are 32-bit aligned */ 9218 wupl = roundup(wupl, 4); 9219 9220 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl); 9221 9222 skb->protocol = eth_type_trans(skb, netdev); 9223 netif_rx(skb); 9224 } 9225 9226 static int __maybe_unused igb_suspend(struct device *dev) 9227 { 9228 return __igb_shutdown(to_pci_dev(dev), NULL, 0); 9229 } 9230 9231 static int __maybe_unused igb_resume(struct device *dev) 9232 { 9233 struct pci_dev *pdev = to_pci_dev(dev); 9234 struct net_device *netdev = pci_get_drvdata(pdev); 9235 struct igb_adapter *adapter = netdev_priv(netdev); 9236 struct e1000_hw *hw = &adapter->hw; 9237 u32 err, val; 9238 9239 pci_set_power_state(pdev, PCI_D0); 9240 pci_restore_state(pdev); 9241 pci_save_state(pdev); 9242 9243 if (!pci_device_is_present(pdev)) 9244 return -ENODEV; 9245 err = pci_enable_device_mem(pdev); 9246 if (err) { 9247 dev_err(&pdev->dev, 9248 "igb: Cannot enable PCI device from suspend\n"); 9249 return err; 9250 } 9251 pci_set_master(pdev); 9252 9253 pci_enable_wake(pdev, PCI_D3hot, 0); 9254 pci_enable_wake(pdev, PCI_D3cold, 0); 9255 9256 if (igb_init_interrupt_scheme(adapter, true)) { 9257 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9258 return -ENOMEM; 9259 } 9260 9261 igb_reset(adapter); 9262 9263 /* let the f/w know that the h/w is now under the control of the 9264 * driver. 9265 */ 9266 igb_get_hw_control(adapter); 9267 9268 val = rd32(E1000_WUS); 9269 if (val & WAKE_PKT_WUS) 9270 igb_deliver_wake_packet(netdev); 9271 9272 wr32(E1000_WUS, ~0); 9273 9274 rtnl_lock(); 9275 if (!err && netif_running(netdev)) 9276 err = __igb_open(netdev, true); 9277 9278 if (!err) 9279 netif_device_attach(netdev); 9280 rtnl_unlock(); 9281 9282 return err; 9283 } 9284 9285 static int __maybe_unused igb_runtime_idle(struct device *dev) 9286 { 9287 struct net_device *netdev = dev_get_drvdata(dev); 9288 struct igb_adapter *adapter = netdev_priv(netdev); 9289 9290 if (!igb_has_link(adapter)) 9291 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 9292 9293 return -EBUSY; 9294 } 9295 9296 static int __maybe_unused igb_runtime_suspend(struct device *dev) 9297 { 9298 return __igb_shutdown(to_pci_dev(dev), NULL, 1); 9299 } 9300 9301 static int __maybe_unused igb_runtime_resume(struct device *dev) 9302 { 9303 return igb_resume(dev); 9304 } 9305 9306 static void igb_shutdown(struct pci_dev *pdev) 9307 { 9308 bool wake; 9309 9310 __igb_shutdown(pdev, &wake, 0); 9311 9312 if (system_state == SYSTEM_POWER_OFF) { 9313 pci_wake_from_d3(pdev, wake); 9314 pci_set_power_state(pdev, PCI_D3hot); 9315 } 9316 } 9317 9318 #ifdef CONFIG_PCI_IOV 9319 static int igb_sriov_reinit(struct pci_dev *dev) 9320 { 9321 struct net_device *netdev = pci_get_drvdata(dev); 9322 struct igb_adapter *adapter = netdev_priv(netdev); 9323 struct pci_dev *pdev = adapter->pdev; 9324 9325 rtnl_lock(); 9326 9327 if (netif_running(netdev)) 9328 igb_close(netdev); 9329 else 9330 igb_reset(adapter); 9331 9332 igb_clear_interrupt_scheme(adapter); 9333 9334 igb_init_queue_configuration(adapter); 9335 9336 if (igb_init_interrupt_scheme(adapter, true)) { 9337 rtnl_unlock(); 9338 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9339 return -ENOMEM; 9340 } 9341 9342 if (netif_running(netdev)) 9343 igb_open(netdev); 9344 9345 rtnl_unlock(); 9346 9347 return 0; 9348 } 9349 9350 static int igb_pci_disable_sriov(struct pci_dev *dev) 9351 { 9352 int err = igb_disable_sriov(dev); 9353 9354 if (!err) 9355 err = igb_sriov_reinit(dev); 9356 9357 return err; 9358 } 9359 9360 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 9361 { 9362 int err = igb_enable_sriov(dev, num_vfs); 9363 9364 if (err) 9365 goto out; 9366 9367 err = igb_sriov_reinit(dev); 9368 if (!err) 9369 return num_vfs; 9370 9371 out: 9372 return err; 9373 } 9374 9375 #endif 9376 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 9377 { 9378 #ifdef CONFIG_PCI_IOV 9379 if (num_vfs == 0) 9380 return igb_pci_disable_sriov(dev); 9381 else 9382 return igb_pci_enable_sriov(dev, num_vfs); 9383 #endif 9384 return 0; 9385 } 9386 9387 /** 9388 * igb_io_error_detected - called when PCI error is detected 9389 * @pdev: Pointer to PCI device 9390 * @state: The current pci connection state 9391 * 9392 * This function is called after a PCI bus error affecting 9393 * this device has been detected. 9394 **/ 9395 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 9396 pci_channel_state_t state) 9397 { 9398 struct net_device *netdev = pci_get_drvdata(pdev); 9399 struct igb_adapter *adapter = netdev_priv(netdev); 9400 9401 netif_device_detach(netdev); 9402 9403 if (state == pci_channel_io_perm_failure) 9404 return PCI_ERS_RESULT_DISCONNECT; 9405 9406 if (netif_running(netdev)) 9407 igb_down(adapter); 9408 pci_disable_device(pdev); 9409 9410 /* Request a slot slot reset. */ 9411 return PCI_ERS_RESULT_NEED_RESET; 9412 } 9413 9414 /** 9415 * igb_io_slot_reset - called after the pci bus has been reset. 9416 * @pdev: Pointer to PCI device 9417 * 9418 * Restart the card from scratch, as if from a cold-boot. Implementation 9419 * resembles the first-half of the igb_resume routine. 9420 **/ 9421 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 9422 { 9423 struct net_device *netdev = pci_get_drvdata(pdev); 9424 struct igb_adapter *adapter = netdev_priv(netdev); 9425 struct e1000_hw *hw = &adapter->hw; 9426 pci_ers_result_t result; 9427 9428 if (pci_enable_device_mem(pdev)) { 9429 dev_err(&pdev->dev, 9430 "Cannot re-enable PCI device after reset.\n"); 9431 result = PCI_ERS_RESULT_DISCONNECT; 9432 } else { 9433 pci_set_master(pdev); 9434 pci_restore_state(pdev); 9435 pci_save_state(pdev); 9436 9437 pci_enable_wake(pdev, PCI_D3hot, 0); 9438 pci_enable_wake(pdev, PCI_D3cold, 0); 9439 9440 /* In case of PCI error, adapter lose its HW address 9441 * so we should re-assign it here. 9442 */ 9443 hw->hw_addr = adapter->io_addr; 9444 9445 igb_reset(adapter); 9446 wr32(E1000_WUS, ~0); 9447 result = PCI_ERS_RESULT_RECOVERED; 9448 } 9449 9450 return result; 9451 } 9452 9453 /** 9454 * igb_io_resume - called when traffic can start flowing again. 9455 * @pdev: Pointer to PCI device 9456 * 9457 * This callback is called when the error recovery driver tells us that 9458 * its OK to resume normal operation. Implementation resembles the 9459 * second-half of the igb_resume routine. 9460 */ 9461 static void igb_io_resume(struct pci_dev *pdev) 9462 { 9463 struct net_device *netdev = pci_get_drvdata(pdev); 9464 struct igb_adapter *adapter = netdev_priv(netdev); 9465 9466 if (netif_running(netdev)) { 9467 if (igb_up(adapter)) { 9468 dev_err(&pdev->dev, "igb_up failed after reset\n"); 9469 return; 9470 } 9471 } 9472 9473 netif_device_attach(netdev); 9474 9475 /* let the f/w know that the h/w is now under the control of the 9476 * driver. 9477 */ 9478 igb_get_hw_control(adapter); 9479 } 9480 9481 /** 9482 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table 9483 * @adapter: Pointer to adapter structure 9484 * @index: Index of the RAR entry which need to be synced with MAC table 9485 **/ 9486 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index) 9487 { 9488 struct e1000_hw *hw = &adapter->hw; 9489 u32 rar_low, rar_high; 9490 u8 *addr = adapter->mac_table[index].addr; 9491 9492 /* HW expects these to be in network order when they are plugged 9493 * into the registers which are little endian. In order to guarantee 9494 * that ordering we need to do an leXX_to_cpup here in order to be 9495 * ready for the byteswap that occurs with writel 9496 */ 9497 rar_low = le32_to_cpup((__le32 *)(addr)); 9498 rar_high = le16_to_cpup((__le16 *)(addr + 4)); 9499 9500 /* Indicate to hardware the Address is Valid. */ 9501 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) { 9502 if (is_valid_ether_addr(addr)) 9503 rar_high |= E1000_RAH_AV; 9504 9505 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR) 9506 rar_high |= E1000_RAH_ASEL_SRC_ADDR; 9507 9508 switch (hw->mac.type) { 9509 case e1000_82575: 9510 case e1000_i210: 9511 if (adapter->mac_table[index].state & 9512 IGB_MAC_STATE_QUEUE_STEERING) 9513 rar_high |= E1000_RAH_QSEL_ENABLE; 9514 9515 rar_high |= E1000_RAH_POOL_1 * 9516 adapter->mac_table[index].queue; 9517 break; 9518 default: 9519 rar_high |= E1000_RAH_POOL_1 << 9520 adapter->mac_table[index].queue; 9521 break; 9522 } 9523 } 9524 9525 wr32(E1000_RAL(index), rar_low); 9526 wrfl(); 9527 wr32(E1000_RAH(index), rar_high); 9528 wrfl(); 9529 } 9530 9531 static int igb_set_vf_mac(struct igb_adapter *adapter, 9532 int vf, unsigned char *mac_addr) 9533 { 9534 struct e1000_hw *hw = &adapter->hw; 9535 /* VF MAC addresses start at end of receive addresses and moves 9536 * towards the first, as a result a collision should not be possible 9537 */ 9538 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 9539 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses; 9540 9541 ether_addr_copy(vf_mac_addr, mac_addr); 9542 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr); 9543 adapter->mac_table[rar_entry].queue = vf; 9544 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE; 9545 igb_rar_set_index(adapter, rar_entry); 9546 9547 return 0; 9548 } 9549 9550 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 9551 { 9552 struct igb_adapter *adapter = netdev_priv(netdev); 9553 9554 if (vf >= adapter->vfs_allocated_count) 9555 return -EINVAL; 9556 9557 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC 9558 * flag and allows to overwrite the MAC via VF netdev. This 9559 * is necessary to allow libvirt a way to restore the original 9560 * MAC after unbinding vfio-pci and reloading igbvf after shutting 9561 * down a VM. 9562 */ 9563 if (is_zero_ether_addr(mac)) { 9564 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC; 9565 dev_info(&adapter->pdev->dev, 9566 "remove administratively set MAC on VF %d\n", 9567 vf); 9568 } else if (is_valid_ether_addr(mac)) { 9569 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 9570 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", 9571 mac, vf); 9572 dev_info(&adapter->pdev->dev, 9573 "Reload the VF driver to make this change effective."); 9574 /* Generate additional warning if PF is down */ 9575 if (test_bit(__IGB_DOWN, &adapter->state)) { 9576 dev_warn(&adapter->pdev->dev, 9577 "The VF MAC address has been set, but the PF device is not up.\n"); 9578 dev_warn(&adapter->pdev->dev, 9579 "Bring the PF device up before attempting to use the VF device.\n"); 9580 } 9581 } else { 9582 return -EINVAL; 9583 } 9584 return igb_set_vf_mac(adapter, vf, mac); 9585 } 9586 9587 static int igb_link_mbps(int internal_link_speed) 9588 { 9589 switch (internal_link_speed) { 9590 case SPEED_100: 9591 return 100; 9592 case SPEED_1000: 9593 return 1000; 9594 default: 9595 return 0; 9596 } 9597 } 9598 9599 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 9600 int link_speed) 9601 { 9602 int rf_dec, rf_int; 9603 u32 bcnrc_val; 9604 9605 if (tx_rate != 0) { 9606 /* Calculate the rate factor values to set */ 9607 rf_int = link_speed / tx_rate; 9608 rf_dec = (link_speed - (rf_int * tx_rate)); 9609 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) / 9610 tx_rate; 9611 9612 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 9613 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 9614 E1000_RTTBCNRC_RF_INT_MASK); 9615 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 9616 } else { 9617 bcnrc_val = 0; 9618 } 9619 9620 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 9621 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 9622 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 9623 */ 9624 wr32(E1000_RTTBCNRM, 0x14); 9625 wr32(E1000_RTTBCNRC, bcnrc_val); 9626 } 9627 9628 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 9629 { 9630 int actual_link_speed, i; 9631 bool reset_rate = false; 9632 9633 /* VF TX rate limit was not set or not supported */ 9634 if ((adapter->vf_rate_link_speed == 0) || 9635 (adapter->hw.mac.type != e1000_82576)) 9636 return; 9637 9638 actual_link_speed = igb_link_mbps(adapter->link_speed); 9639 if (actual_link_speed != adapter->vf_rate_link_speed) { 9640 reset_rate = true; 9641 adapter->vf_rate_link_speed = 0; 9642 dev_info(&adapter->pdev->dev, 9643 "Link speed has been changed. VF Transmit rate is disabled\n"); 9644 } 9645 9646 for (i = 0; i < adapter->vfs_allocated_count; i++) { 9647 if (reset_rate) 9648 adapter->vf_data[i].tx_rate = 0; 9649 9650 igb_set_vf_rate_limit(&adapter->hw, i, 9651 adapter->vf_data[i].tx_rate, 9652 actual_link_speed); 9653 } 9654 } 9655 9656 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 9657 int min_tx_rate, int max_tx_rate) 9658 { 9659 struct igb_adapter *adapter = netdev_priv(netdev); 9660 struct e1000_hw *hw = &adapter->hw; 9661 int actual_link_speed; 9662 9663 if (hw->mac.type != e1000_82576) 9664 return -EOPNOTSUPP; 9665 9666 if (min_tx_rate) 9667 return -EINVAL; 9668 9669 actual_link_speed = igb_link_mbps(adapter->link_speed); 9670 if ((vf >= adapter->vfs_allocated_count) || 9671 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 9672 (max_tx_rate < 0) || 9673 (max_tx_rate > actual_link_speed)) 9674 return -EINVAL; 9675 9676 adapter->vf_rate_link_speed = actual_link_speed; 9677 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 9678 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 9679 9680 return 0; 9681 } 9682 9683 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 9684 bool setting) 9685 { 9686 struct igb_adapter *adapter = netdev_priv(netdev); 9687 struct e1000_hw *hw = &adapter->hw; 9688 u32 reg_val, reg_offset; 9689 9690 if (!adapter->vfs_allocated_count) 9691 return -EOPNOTSUPP; 9692 9693 if (vf >= adapter->vfs_allocated_count) 9694 return -EINVAL; 9695 9696 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 9697 reg_val = rd32(reg_offset); 9698 if (setting) 9699 reg_val |= (BIT(vf) | 9700 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9701 else 9702 reg_val &= ~(BIT(vf) | 9703 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); 9704 wr32(reg_offset, reg_val); 9705 9706 adapter->vf_data[vf].spoofchk_enabled = setting; 9707 return 0; 9708 } 9709 9710 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting) 9711 { 9712 struct igb_adapter *adapter = netdev_priv(netdev); 9713 9714 if (vf >= adapter->vfs_allocated_count) 9715 return -EINVAL; 9716 if (adapter->vf_data[vf].trusted == setting) 9717 return 0; 9718 9719 adapter->vf_data[vf].trusted = setting; 9720 9721 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n", 9722 vf, setting ? "" : "not "); 9723 return 0; 9724 } 9725 9726 static int igb_ndo_get_vf_config(struct net_device *netdev, 9727 int vf, struct ifla_vf_info *ivi) 9728 { 9729 struct igb_adapter *adapter = netdev_priv(netdev); 9730 if (vf >= adapter->vfs_allocated_count) 9731 return -EINVAL; 9732 ivi->vf = vf; 9733 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 9734 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 9735 ivi->min_tx_rate = 0; 9736 ivi->vlan = adapter->vf_data[vf].pf_vlan; 9737 ivi->qos = adapter->vf_data[vf].pf_qos; 9738 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 9739 ivi->trusted = adapter->vf_data[vf].trusted; 9740 return 0; 9741 } 9742 9743 static void igb_vmm_control(struct igb_adapter *adapter) 9744 { 9745 struct e1000_hw *hw = &adapter->hw; 9746 u32 reg; 9747 9748 switch (hw->mac.type) { 9749 case e1000_82575: 9750 case e1000_i210: 9751 case e1000_i211: 9752 case e1000_i354: 9753 default: 9754 /* replication is not supported for 82575 */ 9755 return; 9756 case e1000_82576: 9757 /* notify HW that the MAC is adding vlan tags */ 9758 reg = rd32(E1000_DTXCTL); 9759 reg |= E1000_DTXCTL_VLAN_ADDED; 9760 wr32(E1000_DTXCTL, reg); 9761 fallthrough; 9762 case e1000_82580: 9763 /* enable replication vlan tag stripping */ 9764 reg = rd32(E1000_RPLOLR); 9765 reg |= E1000_RPLOLR_STRVLAN; 9766 wr32(E1000_RPLOLR, reg); 9767 fallthrough; 9768 case e1000_i350: 9769 /* none of the above registers are supported by i350 */ 9770 break; 9771 } 9772 9773 if (adapter->vfs_allocated_count) { 9774 igb_vmdq_set_loopback_pf(hw, true); 9775 igb_vmdq_set_replication_pf(hw, true); 9776 igb_vmdq_set_anti_spoofing_pf(hw, true, 9777 adapter->vfs_allocated_count); 9778 } else { 9779 igb_vmdq_set_loopback_pf(hw, false); 9780 igb_vmdq_set_replication_pf(hw, false); 9781 } 9782 } 9783 9784 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 9785 { 9786 struct e1000_hw *hw = &adapter->hw; 9787 u32 dmac_thr; 9788 u16 hwm; 9789 9790 if (hw->mac.type > e1000_82580) { 9791 if (adapter->flags & IGB_FLAG_DMAC) { 9792 u32 reg; 9793 9794 /* force threshold to 0. */ 9795 wr32(E1000_DMCTXTH, 0); 9796 9797 /* DMA Coalescing high water mark needs to be greater 9798 * than the Rx threshold. Set hwm to PBA - max frame 9799 * size in 16B units, capping it at PBA - 6KB. 9800 */ 9801 hwm = 64 * (pba - 6); 9802 reg = rd32(E1000_FCRTC); 9803 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 9804 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 9805 & E1000_FCRTC_RTH_COAL_MASK); 9806 wr32(E1000_FCRTC, reg); 9807 9808 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 9809 * frame size, capping it at PBA - 10KB. 9810 */ 9811 dmac_thr = pba - 10; 9812 reg = rd32(E1000_DMACR); 9813 reg &= ~E1000_DMACR_DMACTHR_MASK; 9814 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 9815 & E1000_DMACR_DMACTHR_MASK); 9816 9817 /* transition to L0x or L1 if available..*/ 9818 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 9819 9820 /* watchdog timer= +-1000 usec in 32usec intervals */ 9821 reg |= (1000 >> 5); 9822 9823 /* Disable BMC-to-OS Watchdog Enable */ 9824 if (hw->mac.type != e1000_i354) 9825 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 9826 9827 wr32(E1000_DMACR, reg); 9828 9829 /* no lower threshold to disable 9830 * coalescing(smart fifb)-UTRESH=0 9831 */ 9832 wr32(E1000_DMCRTRH, 0); 9833 9834 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 9835 9836 wr32(E1000_DMCTLX, reg); 9837 9838 /* free space in tx packet buffer to wake from 9839 * DMA coal 9840 */ 9841 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 9842 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 9843 9844 /* make low power state decision controlled 9845 * by DMA coal 9846 */ 9847 reg = rd32(E1000_PCIEMISC); 9848 reg &= ~E1000_PCIEMISC_LX_DECISION; 9849 wr32(E1000_PCIEMISC, reg); 9850 } /* endif adapter->dmac is not disabled */ 9851 } else if (hw->mac.type == e1000_82580) { 9852 u32 reg = rd32(E1000_PCIEMISC); 9853 9854 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 9855 wr32(E1000_DMACR, 0); 9856 } 9857 } 9858 9859 /** 9860 * igb_read_i2c_byte - Reads 8 bit word over I2C 9861 * @hw: pointer to hardware structure 9862 * @byte_offset: byte offset to read 9863 * @dev_addr: device address 9864 * @data: value read 9865 * 9866 * Performs byte read operation over I2C interface at 9867 * a specified device address. 9868 **/ 9869 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 9870 u8 dev_addr, u8 *data) 9871 { 9872 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 9873 struct i2c_client *this_client = adapter->i2c_client; 9874 s32 status; 9875 u16 swfw_mask = 0; 9876 9877 if (!this_client) 9878 return E1000_ERR_I2C; 9879 9880 swfw_mask = E1000_SWFW_PHY0_SM; 9881 9882 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 9883 return E1000_ERR_SWFW_SYNC; 9884 9885 status = i2c_smbus_read_byte_data(this_client, byte_offset); 9886 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 9887 9888 if (status < 0) 9889 return E1000_ERR_I2C; 9890 else { 9891 *data = status; 9892 return 0; 9893 } 9894 } 9895 9896 /** 9897 * igb_write_i2c_byte - Writes 8 bit word over I2C 9898 * @hw: pointer to hardware structure 9899 * @byte_offset: byte offset to write 9900 * @dev_addr: device address 9901 * @data: value to write 9902 * 9903 * Performs byte write operation over I2C interface at 9904 * a specified device address. 9905 **/ 9906 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 9907 u8 dev_addr, u8 data) 9908 { 9909 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 9910 struct i2c_client *this_client = adapter->i2c_client; 9911 s32 status; 9912 u16 swfw_mask = E1000_SWFW_PHY0_SM; 9913 9914 if (!this_client) 9915 return E1000_ERR_I2C; 9916 9917 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 9918 return E1000_ERR_SWFW_SYNC; 9919 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 9920 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 9921 9922 if (status) 9923 return E1000_ERR_I2C; 9924 else 9925 return 0; 9926 9927 } 9928 9929 int igb_reinit_queues(struct igb_adapter *adapter) 9930 { 9931 struct net_device *netdev = adapter->netdev; 9932 struct pci_dev *pdev = adapter->pdev; 9933 int err = 0; 9934 9935 if (netif_running(netdev)) 9936 igb_close(netdev); 9937 9938 igb_reset_interrupt_capability(adapter); 9939 9940 if (igb_init_interrupt_scheme(adapter, true)) { 9941 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 9942 return -ENOMEM; 9943 } 9944 9945 if (netif_running(netdev)) 9946 err = igb_open(netdev); 9947 9948 return err; 9949 } 9950 9951 static void igb_nfc_filter_exit(struct igb_adapter *adapter) 9952 { 9953 struct igb_nfc_filter *rule; 9954 9955 spin_lock(&adapter->nfc_lock); 9956 9957 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 9958 igb_erase_filter(adapter, rule); 9959 9960 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node) 9961 igb_erase_filter(adapter, rule); 9962 9963 spin_unlock(&adapter->nfc_lock); 9964 } 9965 9966 static void igb_nfc_filter_restore(struct igb_adapter *adapter) 9967 { 9968 struct igb_nfc_filter *rule; 9969 9970 spin_lock(&adapter->nfc_lock); 9971 9972 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) 9973 igb_add_filter(adapter, rule); 9974 9975 spin_unlock(&adapter->nfc_lock); 9976 } 9977 /* igb_main.c */ 9978