1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182 
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 			igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_TDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { __le64 a; __le64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state) {
581 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 	} else {
583 		i2cctl &= ~E1000_I2C_DATA_OE_N;
584 		i2cctl &= ~E1000_I2C_DATA_OUT;
585 	}
586 
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 }
590 
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state) {
605 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 	} else {
607 		i2cctl &= ~E1000_I2C_CLK_OUT;
608 		i2cctl &= ~E1000_I2C_CLK_OE_N;
609 	}
610 	wr32(E1000_I2CPARAMS, i2cctl);
611 	wrfl();
612 }
613 
614 /**
615  *  igb_get_i2c_clk - Gets the I2C SCL clock state
616  *  @data: pointer to hardware structure
617  *
618  *  Gets the I2C clock state
619  **/
620 static int igb_get_i2c_clk(void *data)
621 {
622 	struct igb_adapter *adapter = (struct igb_adapter *)data;
623 	struct e1000_hw *hw = &adapter->hw;
624 	s32 i2cctl = rd32(E1000_I2CPARAMS);
625 
626 	return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628 
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 	.setsda		= igb_set_i2c_data,
631 	.setscl		= igb_set_i2c_clk,
632 	.getsda		= igb_get_i2c_data,
633 	.getscl		= igb_get_i2c_clk,
634 	.udelay		= 5,
635 	.timeout	= 20,
636 };
637 
638 /**
639  *  igb_get_hw_dev - return device
640  *  @hw: pointer to hardware structure
641  *
642  *  used by hardware layer to print debugging information
643  **/
644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646 	struct igb_adapter *adapter = hw->back;
647 	return adapter->netdev;
648 }
649 
650 /**
651  *  igb_init_module - Driver Registration Routine
652  *
653  *  igb_init_module is the first routine called when the driver is
654  *  loaded. All it does is register with the PCI subsystem.
655  **/
656 static int __init igb_init_module(void)
657 {
658 	int ret;
659 
660 	pr_info("%s\n", igb_driver_string);
661 	pr_info("%s\n", igb_copyright);
662 
663 #ifdef CONFIG_IGB_DCA
664 	dca_register_notify(&dca_notifier);
665 #endif
666 	ret = pci_register_driver(&igb_driver);
667 	return ret;
668 }
669 
670 module_init(igb_init_module);
671 
672 /**
673  *  igb_exit_module - Driver Exit Cleanup Routine
674  *
675  *  igb_exit_module is called just before the driver is removed
676  *  from memory.
677  **/
678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681 	dca_unregister_notify(&dca_notifier);
682 #endif
683 	pci_unregister_driver(&igb_driver);
684 }
685 
686 module_exit(igb_exit_module);
687 
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690  *  igb_cache_ring_register - Descriptor ring to register mapping
691  *  @adapter: board private structure to initialize
692  *
693  *  Once we know the feature-set enabled for the device, we'll cache
694  *  the register offset the descriptor ring is assigned to.
695  **/
696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698 	int i = 0, j = 0;
699 	u32 rbase_offset = adapter->vfs_allocated_count;
700 
701 	switch (adapter->hw.mac.type) {
702 	case e1000_82576:
703 		/* The queues are allocated for virtualization such that VF 0
704 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 		 * In order to avoid collision we start at the first free queue
706 		 * and continue consuming queues in the same sequence
707 		 */
708 		if (adapter->vfs_allocated_count) {
709 			for (; i < adapter->rss_queues; i++)
710 				adapter->rx_ring[i]->reg_idx = rbase_offset +
711 							       Q_IDX_82576(i);
712 		}
713 		fallthrough;
714 	case e1000_82575:
715 	case e1000_82580:
716 	case e1000_i350:
717 	case e1000_i354:
718 	case e1000_i210:
719 	case e1000_i211:
720 	default:
721 		for (; i < adapter->num_rx_queues; i++)
722 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 		for (; j < adapter->num_tx_queues; j++)
724 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 		break;
726 	}
727 }
728 
729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 	u32 value = 0;
734 
735 	if (E1000_REMOVED(hw_addr))
736 		return ~value;
737 
738 	value = readl(&hw_addr[reg]);
739 
740 	/* reads should not return all F's */
741 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 		struct net_device *netdev = igb->netdev;
743 		hw->hw_addr = NULL;
744 		netdev_err(netdev, "PCIe link lost\n");
745 		WARN(pci_device_is_present(igb->pdev),
746 		     "igb: Failed to read reg 0x%x!\n", reg);
747 	}
748 
749 	return value;
750 }
751 
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 			   int index, int offset)
766 {
767 	u32 ivar = array_rd32(E1000_IVAR0, index);
768 
769 	/* clear any bits that are currently set */
770 	ivar &= ~((u32)0xFF << offset);
771 
772 	/* write vector and valid bit */
773 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774 
775 	array_wr32(E1000_IVAR0, index, ivar);
776 }
777 
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 	struct igb_adapter *adapter = q_vector->adapter;
782 	struct e1000_hw *hw = &adapter->hw;
783 	int rx_queue = IGB_N0_QUEUE;
784 	int tx_queue = IGB_N0_QUEUE;
785 	u32 msixbm = 0;
786 
787 	if (q_vector->rx.ring)
788 		rx_queue = q_vector->rx.ring->reg_idx;
789 	if (q_vector->tx.ring)
790 		tx_queue = q_vector->tx.ring->reg_idx;
791 
792 	switch (hw->mac.type) {
793 	case e1000_82575:
794 		/* The 82575 assigns vectors using a bitmask, which matches the
795 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796 		 * or more queues to a vector, we write the appropriate bits
797 		 * into the MSIXBM register for that vector.
798 		 */
799 		if (rx_queue > IGB_N0_QUEUE)
800 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 		if (tx_queue > IGB_N0_QUEUE)
802 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 			msixbm |= E1000_EIMS_OTHER;
805 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 		q_vector->eims_value = msixbm;
807 		break;
808 	case e1000_82576:
809 		/* 82576 uses a table that essentially consists of 2 columns
810 		 * with 8 rows.  The ordering is column-major so we use the
811 		 * lower 3 bits as the row index, and the 4th bit as the
812 		 * column offset.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue & 0x7,
817 				       (rx_queue & 0x8) << 1);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue & 0x7,
821 				       ((tx_queue & 0x8) << 1) + 8);
822 		q_vector->eims_value = BIT(msix_vector);
823 		break;
824 	case e1000_82580:
825 	case e1000_i350:
826 	case e1000_i354:
827 	case e1000_i210:
828 	case e1000_i211:
829 		/* On 82580 and newer adapters the scheme is similar to 82576
830 		 * however instead of ordering column-major we have things
831 		 * ordered row-major.  So we traverse the table by using
832 		 * bit 0 as the column offset, and the remaining bits as the
833 		 * row index.
834 		 */
835 		if (rx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       rx_queue >> 1,
838 				       (rx_queue & 0x1) << 4);
839 		if (tx_queue > IGB_N0_QUEUE)
840 			igb_write_ivar(hw, msix_vector,
841 				       tx_queue >> 1,
842 				       ((tx_queue & 0x1) << 4) + 8);
843 		q_vector->eims_value = BIT(msix_vector);
844 		break;
845 	default:
846 		BUG();
847 		break;
848 	}
849 
850 	/* add q_vector eims value to global eims_enable_mask */
851 	adapter->eims_enable_mask |= q_vector->eims_value;
852 
853 	/* configure q_vector to set itr on first interrupt */
854 	q_vector->set_itr = 1;
855 }
856 
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 	u32 tmp;
867 	int i, vector = 0;
868 	struct e1000_hw *hw = &adapter->hw;
869 
870 	adapter->eims_enable_mask = 0;
871 
872 	/* set vector for other causes, i.e. link changes */
873 	switch (hw->mac.type) {
874 	case e1000_82575:
875 		tmp = rd32(E1000_CTRL_EXT);
876 		/* enable MSI-X PBA support*/
877 		tmp |= E1000_CTRL_EXT_PBA_CLR;
878 
879 		/* Auto-Mask interrupts upon ICR read. */
880 		tmp |= E1000_CTRL_EXT_EIAME;
881 		tmp |= E1000_CTRL_EXT_IRCA;
882 
883 		wr32(E1000_CTRL_EXT, tmp);
884 
885 		/* enable msix_other interrupt */
886 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 		adapter->eims_other = E1000_EIMS_OTHER;
888 
889 		break;
890 
891 	case e1000_82576:
892 	case e1000_82580:
893 	case e1000_i350:
894 	case e1000_i354:
895 	case e1000_i210:
896 	case e1000_i211:
897 		/* Turn on MSI-X capability first, or our settings
898 		 * won't stick.  And it will take days to debug.
899 		 */
900 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 		     E1000_GPIE_NSICR);
903 
904 		/* enable msix_other interrupt */
905 		adapter->eims_other = BIT(vector);
906 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907 
908 		wr32(E1000_IVAR_MISC, tmp);
909 		break;
910 	default:
911 		/* do nothing, since nothing else supports MSI-X */
912 		break;
913 	} /* switch (hw->mac.type) */
914 
915 	adapter->eims_enable_mask |= adapter->eims_other;
916 
917 	for (i = 0; i < adapter->num_q_vectors; i++)
918 		igb_assign_vector(adapter->q_vector[i], vector++);
919 
920 	wrfl();
921 }
922 
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 	unsigned int num_q_vectors = adapter->num_q_vectors;
933 	struct net_device *netdev = adapter->netdev;
934 	int i, err = 0, vector = 0, free_vector = 0;
935 
936 	err = request_irq(adapter->msix_entries[vector].vector,
937 			  igb_msix_other, 0, netdev->name, adapter);
938 	if (err)
939 		goto err_out;
940 
941 	if (num_q_vectors > MAX_Q_VECTORS) {
942 		num_q_vectors = MAX_Q_VECTORS;
943 		dev_warn(&adapter->pdev->dev,
944 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 			 adapter->num_q_vectors, MAX_Q_VECTORS);
946 	}
947 	for (i = 0; i < num_q_vectors; i++) {
948 		struct igb_q_vector *q_vector = adapter->q_vector[i];
949 
950 		vector++;
951 
952 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953 
954 		if (q_vector->rx.ring && q_vector->tx.ring)
955 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 				q_vector->rx.ring->queue_index);
957 		else if (q_vector->tx.ring)
958 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 				q_vector->tx.ring->queue_index);
960 		else if (q_vector->rx.ring)
961 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 				q_vector->rx.ring->queue_index);
963 		else
964 			sprintf(q_vector->name, "%s-unused", netdev->name);
965 
966 		err = request_irq(adapter->msix_entries[vector].vector,
967 				  igb_msix_ring, 0, q_vector->name,
968 				  q_vector);
969 		if (err)
970 			goto err_free;
971 	}
972 
973 	igb_configure_msix(adapter);
974 	return 0;
975 
976 err_free:
977 	/* free already assigned IRQs */
978 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979 
980 	vector--;
981 	for (i = 0; i < vector; i++) {
982 		free_irq(adapter->msix_entries[free_vector++].vector,
983 			 adapter->q_vector[i]);
984 	}
985 err_out:
986 	return err;
987 }
988 
989 /**
990  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
991  *  @adapter: board private structure to initialize
992  *  @v_idx: Index of vector to be freed
993  *
994  *  This function frees the memory allocated to the q_vector.
995  **/
996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999 
1000 	adapter->q_vector[v_idx] = NULL;
1001 
1002 	/* igb_get_stats64() might access the rings on this vector,
1003 	 * we must wait a grace period before freeing it.
1004 	 */
1005 	if (q_vector)
1006 		kfree_rcu(q_vector, rcu);
1007 }
1008 
1009 /**
1010  *  igb_reset_q_vector - Reset config for interrupt vector
1011  *  @adapter: board private structure to initialize
1012  *  @v_idx: Index of vector to be reset
1013  *
1014  *  If NAPI is enabled it will delete any references to the
1015  *  NAPI struct. This is preparation for igb_free_q_vector.
1016  **/
1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020 
1021 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 	 * allocated. So, q_vector is NULL so we should stop here.
1023 	 */
1024 	if (!q_vector)
1025 		return;
1026 
1027 	if (q_vector->tx.ring)
1028 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029 
1030 	if (q_vector->rx.ring)
1031 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032 
1033 	netif_napi_del(&q_vector->napi);
1034 
1035 }
1036 
1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039 	int v_idx = adapter->num_q_vectors;
1040 
1041 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 		pci_disable_msix(adapter->pdev);
1043 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 		pci_disable_msi(adapter->pdev);
1045 
1046 	while (v_idx--)
1047 		igb_reset_q_vector(adapter, v_idx);
1048 }
1049 
1050 /**
1051  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1052  *  @adapter: board private structure to initialize
1053  *
1054  *  This function frees the memory allocated to the q_vectors.  In addition if
1055  *  NAPI is enabled it will delete any references to the NAPI struct prior
1056  *  to freeing the q_vector.
1057  **/
1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060 	int v_idx = adapter->num_q_vectors;
1061 
1062 	adapter->num_tx_queues = 0;
1063 	adapter->num_rx_queues = 0;
1064 	adapter->num_q_vectors = 0;
1065 
1066 	while (v_idx--) {
1067 		igb_reset_q_vector(adapter, v_idx);
1068 		igb_free_q_vector(adapter, v_idx);
1069 	}
1070 }
1071 
1072 /**
1073  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074  *  @adapter: board private structure to initialize
1075  *
1076  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1077  *  MSI-X interrupts allocated.
1078  */
1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081 	igb_free_q_vectors(adapter);
1082 	igb_reset_interrupt_capability(adapter);
1083 }
1084 
1085 /**
1086  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1087  *  @adapter: board private structure to initialize
1088  *  @msix: boolean value of MSIX capability
1089  *
1090  *  Attempt to configure interrupts using the best available
1091  *  capabilities of the hardware and kernel.
1092  **/
1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095 	int err;
1096 	int numvecs, i;
1097 
1098 	if (!msix)
1099 		goto msi_only;
1100 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1101 
1102 	/* Number of supported queues. */
1103 	adapter->num_rx_queues = adapter->rss_queues;
1104 	if (adapter->vfs_allocated_count)
1105 		adapter->num_tx_queues = 1;
1106 	else
1107 		adapter->num_tx_queues = adapter->rss_queues;
1108 
1109 	/* start with one vector for every Rx queue */
1110 	numvecs = adapter->num_rx_queues;
1111 
1112 	/* if Tx handler is separate add 1 for every Tx queue */
1113 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 		numvecs += adapter->num_tx_queues;
1115 
1116 	/* store the number of vectors reserved for queues */
1117 	adapter->num_q_vectors = numvecs;
1118 
1119 	/* add 1 vector for link status interrupts */
1120 	numvecs++;
1121 	for (i = 0; i < numvecs; i++)
1122 		adapter->msix_entries[i].entry = i;
1123 
1124 	err = pci_enable_msix_range(adapter->pdev,
1125 				    adapter->msix_entries,
1126 				    numvecs,
1127 				    numvecs);
1128 	if (err > 0)
1129 		return;
1130 
1131 	igb_reset_interrupt_capability(adapter);
1132 
1133 	/* If we can't do MSI-X, try MSI */
1134 msi_only:
1135 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 	/* disable SR-IOV for non MSI-X configurations */
1138 	if (adapter->vf_data) {
1139 		struct e1000_hw *hw = &adapter->hw;
1140 		/* disable iov and allow time for transactions to clear */
1141 		pci_disable_sriov(adapter->pdev);
1142 		msleep(500);
1143 
1144 		kfree(adapter->vf_mac_list);
1145 		adapter->vf_mac_list = NULL;
1146 		kfree(adapter->vf_data);
1147 		adapter->vf_data = NULL;
1148 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 		wrfl();
1150 		msleep(100);
1151 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 	}
1153 #endif
1154 	adapter->vfs_allocated_count = 0;
1155 	adapter->rss_queues = 1;
1156 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 	adapter->num_rx_queues = 1;
1158 	adapter->num_tx_queues = 1;
1159 	adapter->num_q_vectors = 1;
1160 	if (!pci_enable_msi(adapter->pdev))
1161 		adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163 
1164 static void igb_add_ring(struct igb_ring *ring,
1165 			 struct igb_ring_container *head)
1166 {
1167 	head->ring = ring;
1168 	head->count++;
1169 }
1170 
1171 /**
1172  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173  *  @adapter: board private structure to initialize
1174  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1175  *  @v_idx: index of vector in adapter struct
1176  *  @txr_count: total number of Tx rings to allocate
1177  *  @txr_idx: index of first Tx ring to allocate
1178  *  @rxr_count: total number of Rx rings to allocate
1179  *  @rxr_idx: index of first Rx ring to allocate
1180  *
1181  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1182  **/
1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 			      int v_count, int v_idx,
1185 			      int txr_count, int txr_idx,
1186 			      int rxr_count, int rxr_idx)
1187 {
1188 	struct igb_q_vector *q_vector;
1189 	struct igb_ring *ring;
1190 	int ring_count;
1191 	size_t size;
1192 
1193 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 	if (txr_count > 1 || rxr_count > 1)
1195 		return -ENOMEM;
1196 
1197 	ring_count = txr_count + rxr_count;
1198 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1199 
1200 	/* allocate q_vector and rings */
1201 	q_vector = adapter->q_vector[v_idx];
1202 	if (!q_vector) {
1203 		q_vector = kzalloc(size, GFP_KERNEL);
1204 	} else if (size > ksize(q_vector)) {
1205 		struct igb_q_vector *new_q_vector;
1206 
1207 		new_q_vector = kzalloc(size, GFP_KERNEL);
1208 		if (new_q_vector)
1209 			kfree_rcu(q_vector, rcu);
1210 		q_vector = new_q_vector;
1211 	} else {
1212 		memset(q_vector, 0, size);
1213 	}
1214 	if (!q_vector)
1215 		return -ENOMEM;
1216 
1217 	/* initialize NAPI */
1218 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1219 
1220 	/* tie q_vector and adapter together */
1221 	adapter->q_vector[v_idx] = q_vector;
1222 	q_vector->adapter = adapter;
1223 
1224 	/* initialize work limits */
1225 	q_vector->tx.work_limit = adapter->tx_work_limit;
1226 
1227 	/* initialize ITR configuration */
1228 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 	q_vector->itr_val = IGB_START_ITR;
1230 
1231 	/* initialize pointer to rings */
1232 	ring = q_vector->ring;
1233 
1234 	/* intialize ITR */
1235 	if (rxr_count) {
1236 		/* rx or rx/tx vector */
1237 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 			q_vector->itr_val = adapter->rx_itr_setting;
1239 	} else {
1240 		/* tx only vector */
1241 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 			q_vector->itr_val = adapter->tx_itr_setting;
1243 	}
1244 
1245 	if (txr_count) {
1246 		/* assign generic ring traits */
1247 		ring->dev = &adapter->pdev->dev;
1248 		ring->netdev = adapter->netdev;
1249 
1250 		/* configure backlink on ring */
1251 		ring->q_vector = q_vector;
1252 
1253 		/* update q_vector Tx values */
1254 		igb_add_ring(ring, &q_vector->tx);
1255 
1256 		/* For 82575, context index must be unique per ring. */
1257 		if (adapter->hw.mac.type == e1000_82575)
1258 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259 
1260 		/* apply Tx specific ring traits */
1261 		ring->count = adapter->tx_ring_count;
1262 		ring->queue_index = txr_idx;
1263 
1264 		ring->cbs_enable = false;
1265 		ring->idleslope = 0;
1266 		ring->sendslope = 0;
1267 		ring->hicredit = 0;
1268 		ring->locredit = 0;
1269 
1270 		u64_stats_init(&ring->tx_syncp);
1271 		u64_stats_init(&ring->tx_syncp2);
1272 
1273 		/* assign ring to adapter */
1274 		adapter->tx_ring[txr_idx] = ring;
1275 
1276 		/* push pointer to next ring */
1277 		ring++;
1278 	}
1279 
1280 	if (rxr_count) {
1281 		/* assign generic ring traits */
1282 		ring->dev = &adapter->pdev->dev;
1283 		ring->netdev = adapter->netdev;
1284 
1285 		/* configure backlink on ring */
1286 		ring->q_vector = q_vector;
1287 
1288 		/* update q_vector Rx values */
1289 		igb_add_ring(ring, &q_vector->rx);
1290 
1291 		/* set flag indicating ring supports SCTP checksum offload */
1292 		if (adapter->hw.mac.type >= e1000_82576)
1293 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294 
1295 		/* On i350, i354, i210, and i211, loopback VLAN packets
1296 		 * have the tag byte-swapped.
1297 		 */
1298 		if (adapter->hw.mac.type >= e1000_i350)
1299 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300 
1301 		/* apply Rx specific ring traits */
1302 		ring->count = adapter->rx_ring_count;
1303 		ring->queue_index = rxr_idx;
1304 
1305 		u64_stats_init(&ring->rx_syncp);
1306 
1307 		/* assign ring to adapter */
1308 		adapter->rx_ring[rxr_idx] = ring;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 
1315 /**
1316  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317  *  @adapter: board private structure to initialize
1318  *
1319  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1320  *  return -ENOMEM.
1321  **/
1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 {
1324 	int q_vectors = adapter->num_q_vectors;
1325 	int rxr_remaining = adapter->num_rx_queues;
1326 	int txr_remaining = adapter->num_tx_queues;
1327 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 	int err;
1329 
1330 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 		for (; rxr_remaining; v_idx++) {
1332 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333 						 0, 0, 1, rxr_idx);
1334 
1335 			if (err)
1336 				goto err_out;
1337 
1338 			/* update counts and index */
1339 			rxr_remaining--;
1340 			rxr_idx++;
1341 		}
1342 	}
1343 
1344 	for (; v_idx < q_vectors; v_idx++) {
1345 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347 
1348 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 					 tqpv, txr_idx, rqpv, rxr_idx);
1350 
1351 		if (err)
1352 			goto err_out;
1353 
1354 		/* update counts and index */
1355 		rxr_remaining -= rqpv;
1356 		txr_remaining -= tqpv;
1357 		rxr_idx++;
1358 		txr_idx++;
1359 	}
1360 
1361 	return 0;
1362 
1363 err_out:
1364 	adapter->num_tx_queues = 0;
1365 	adapter->num_rx_queues = 0;
1366 	adapter->num_q_vectors = 0;
1367 
1368 	while (v_idx--)
1369 		igb_free_q_vector(adapter, v_idx);
1370 
1371 	return -ENOMEM;
1372 }
1373 
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 	struct pci_dev *pdev = adapter->pdev;
1384 	int err;
1385 
1386 	igb_set_interrupt_capability(adapter, msix);
1387 
1388 	err = igb_alloc_q_vectors(adapter);
1389 	if (err) {
1390 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 		goto err_alloc_q_vectors;
1392 	}
1393 
1394 	igb_cache_ring_register(adapter);
1395 
1396 	return 0;
1397 
1398 err_alloc_q_vectors:
1399 	igb_reset_interrupt_capability(adapter);
1400 	return err;
1401 }
1402 
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 	struct net_device *netdev = adapter->netdev;
1413 	struct pci_dev *pdev = adapter->pdev;
1414 	int err = 0;
1415 
1416 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 		err = igb_request_msix(adapter);
1418 		if (!err)
1419 			goto request_done;
1420 		/* fall back to MSI */
1421 		igb_free_all_tx_resources(adapter);
1422 		igb_free_all_rx_resources(adapter);
1423 
1424 		igb_clear_interrupt_scheme(adapter);
1425 		err = igb_init_interrupt_scheme(adapter, false);
1426 		if (err)
1427 			goto request_done;
1428 
1429 		igb_setup_all_tx_resources(adapter);
1430 		igb_setup_all_rx_resources(adapter);
1431 		igb_configure(adapter);
1432 	}
1433 
1434 	igb_assign_vector(adapter->q_vector[0], 0);
1435 
1436 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 				  netdev->name, adapter);
1439 		if (!err)
1440 			goto request_done;
1441 
1442 		/* fall back to legacy interrupts */
1443 		igb_reset_interrupt_capability(adapter);
1444 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 	}
1446 
1447 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 			  netdev->name, adapter);
1449 
1450 	if (err)
1451 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 			err);
1453 
1454 request_done:
1455 	return err;
1456 }
1457 
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 		int vector = 0, i;
1462 
1463 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1464 
1465 		for (i = 0; i < adapter->num_q_vectors; i++)
1466 			free_irq(adapter->msix_entries[vector++].vector,
1467 				 adapter->q_vector[i]);
1468 	} else {
1469 		free_irq(adapter->pdev->irq, adapter);
1470 	}
1471 }
1472 
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 
1481 	/* we need to be careful when disabling interrupts.  The VFs are also
1482 	 * mapped into these registers and so clearing the bits can cause
1483 	 * issues on the VF drivers so we only need to clear what we set
1484 	 */
1485 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 		u32 regval = rd32(E1000_EIAM);
1487 
1488 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 		regval = rd32(E1000_EIAC);
1491 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 	}
1493 
1494 	wr32(E1000_IAM, 0);
1495 	wr32(E1000_IMC, ~0);
1496 	wrfl();
1497 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 		int i;
1499 
1500 		for (i = 0; i < adapter->num_q_vectors; i++)
1501 			synchronize_irq(adapter->msix_entries[i].vector);
1502 	} else {
1503 		synchronize_irq(adapter->pdev->irq);
1504 	}
1505 }
1506 
1507 /**
1508  *  igb_irq_enable - Enable default interrupt generation settings
1509  *  @adapter: board private structure
1510  **/
1511 static void igb_irq_enable(struct igb_adapter *adapter)
1512 {
1513 	struct e1000_hw *hw = &adapter->hw;
1514 
1515 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 		u32 regval = rd32(E1000_EIAC);
1518 
1519 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 		regval = rd32(E1000_EIAM);
1521 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 		if (adapter->vfs_allocated_count) {
1524 			wr32(E1000_MBVFIMR, 0xFF);
1525 			ims |= E1000_IMS_VMMB;
1526 		}
1527 		wr32(E1000_IMS, ims);
1528 	} else {
1529 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 				E1000_IMS_DRSTA);
1533 	}
1534 }
1535 
1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 {
1538 	struct e1000_hw *hw = &adapter->hw;
1539 	u16 pf_id = adapter->vfs_allocated_count;
1540 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 	u16 old_vid = adapter->mng_vlan_id;
1542 
1543 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 		/* add VID to filter table */
1545 		igb_vfta_set(hw, vid, pf_id, true, true);
1546 		adapter->mng_vlan_id = vid;
1547 	} else {
1548 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 	}
1550 
1551 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 	    (vid != old_vid) &&
1553 	    !test_bit(old_vid, adapter->active_vlans)) {
1554 		/* remove VID from filter table */
1555 		igb_vfta_set(hw, vid, pf_id, false, true);
1556 	}
1557 }
1558 
1559 /**
1560  *  igb_release_hw_control - release control of the h/w to f/w
1561  *  @adapter: address of board private structure
1562  *
1563  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564  *  For ASF and Pass Through versions of f/w this means that the
1565  *  driver is no longer loaded.
1566  **/
1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 {
1569 	struct e1000_hw *hw = &adapter->hw;
1570 	u32 ctrl_ext;
1571 
1572 	/* Let firmware take over control of h/w */
1573 	ctrl_ext = rd32(E1000_CTRL_EXT);
1574 	wr32(E1000_CTRL_EXT,
1575 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576 }
1577 
1578 /**
1579  *  igb_get_hw_control - get control of the h/w from f/w
1580  *  @adapter: address of board private structure
1581  *
1582  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583  *  For ASF and Pass Through versions of f/w this means that
1584  *  the driver is loaded.
1585  **/
1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 {
1588 	struct e1000_hw *hw = &adapter->hw;
1589 	u32 ctrl_ext;
1590 
1591 	/* Let firmware know the driver has taken over */
1592 	ctrl_ext = rd32(E1000_CTRL_EXT);
1593 	wr32(E1000_CTRL_EXT,
1594 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595 }
1596 
1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 {
1599 	struct net_device *netdev = adapter->netdev;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 
1602 	WARN_ON(hw->mac.type != e1000_i210);
1603 
1604 	if (enable)
1605 		adapter->flags |= IGB_FLAG_FQTSS;
1606 	else
1607 		adapter->flags &= ~IGB_FLAG_FQTSS;
1608 
1609 	if (netif_running(netdev))
1610 		schedule_work(&adapter->reset_task);
1611 }
1612 
1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 {
1615 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616 }
1617 
1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 				   enum tx_queue_prio prio)
1620 {
1621 	u32 val;
1622 
1623 	WARN_ON(hw->mac.type != e1000_i210);
1624 	WARN_ON(queue < 0 || queue > 4);
1625 
1626 	val = rd32(E1000_I210_TXDCTL(queue));
1627 
1628 	if (prio == TX_QUEUE_PRIO_HIGH)
1629 		val |= E1000_TXDCTL_PRIORITY;
1630 	else
1631 		val &= ~E1000_TXDCTL_PRIORITY;
1632 
1633 	wr32(E1000_I210_TXDCTL(queue), val);
1634 }
1635 
1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637 {
1638 	u32 val;
1639 
1640 	WARN_ON(hw->mac.type != e1000_i210);
1641 	WARN_ON(queue < 0 || queue > 1);
1642 
1643 	val = rd32(E1000_I210_TQAVCC(queue));
1644 
1645 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 		val |= E1000_TQAVCC_QUEUEMODE;
1647 	else
1648 		val &= ~E1000_TQAVCC_QUEUEMODE;
1649 
1650 	wr32(E1000_I210_TQAVCC(queue), val);
1651 }
1652 
1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654 {
1655 	int i;
1656 
1657 	for (i = 0; i < adapter->num_tx_queues; i++) {
1658 		if (adapter->tx_ring[i]->cbs_enable)
1659 			return true;
1660 	}
1661 
1662 	return false;
1663 }
1664 
1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666 {
1667 	int i;
1668 
1669 	for (i = 0; i < adapter->num_tx_queues; i++) {
1670 		if (adapter->tx_ring[i]->launchtime_enable)
1671 			return true;
1672 	}
1673 
1674 	return false;
1675 }
1676 
1677 /**
1678  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679  *  @adapter: pointer to adapter struct
1680  *  @queue: queue number
1681  *
1682  *  Configure CBS and Launchtime for a given hardware queue.
1683  *  Parameters are retrieved from the correct Tx ring, so
1684  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1685  *  for setting those correctly prior to this function being called.
1686  **/
1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 {
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	struct igb_ring *ring;
1692 	u32 tqavcc, tqavctrl;
1693 	u16 value;
1694 
1695 	WARN_ON(hw->mac.type != e1000_i210);
1696 	WARN_ON(queue < 0 || queue > 1);
1697 	ring = adapter->tx_ring[queue];
1698 
1699 	/* If any of the Qav features is enabled, configure queues as SR and
1700 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 	 * as SP.
1702 	 */
1703 	if (ring->cbs_enable || ring->launchtime_enable) {
1704 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 	} else {
1707 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 	}
1710 
1711 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1712 	if (ring->cbs_enable || queue == 0) {
1713 		/* i210 does not allow the queue 0 to be in the Strict
1714 		 * Priority mode while the Qav mode is enabled, so,
1715 		 * instead of disabling strict priority mode, we give
1716 		 * queue 0 the maximum of credits possible.
1717 		 *
1718 		 * See section 8.12.19 of the i210 datasheet, "Note:
1719 		 * Queue0 QueueMode must be set to 1b when
1720 		 * TransmitMode is set to Qav."
1721 		 */
1722 		if (queue == 0 && !ring->cbs_enable) {
1723 			/* max "linkspeed" idleslope in kbps */
1724 			ring->idleslope = 1000000;
1725 			ring->hicredit = ETH_FRAME_LEN;
1726 		}
1727 
1728 		/* Always set data transfer arbitration to credit-based
1729 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 		 * the queues.
1731 		 */
1732 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735 
1736 		/* According to i210 datasheet section 7.2.7.7, we should set
1737 		 * the 'idleSlope' field from TQAVCC register following the
1738 		 * equation:
1739 		 *
1740 		 * For 100 Mbps link speed:
1741 		 *
1742 		 *     value = BW * 0x7735 * 0.2                          (E1)
1743 		 *
1744 		 * For 1000Mbps link speed:
1745 		 *
1746 		 *     value = BW * 0x7735 * 2                            (E2)
1747 		 *
1748 		 * E1 and E2 can be merged into one equation as shown below.
1749 		 * Note that 'link-speed' is in Mbps.
1750 		 *
1751 		 *     value = BW * 0x7735 * 2 * link-speed
1752 		 *                           --------------               (E3)
1753 		 *                                1000
1754 		 *
1755 		 * 'BW' is the percentage bandwidth out of full link speed
1756 		 * which can be found with the following equation. Note that
1757 		 * idleSlope here is the parameter from this function which
1758 		 * is in kbps.
1759 		 *
1760 		 *     BW =     idleSlope
1761 		 *          -----------------                             (E4)
1762 		 *          link-speed * 1000
1763 		 *
1764 		 * That said, we can come up with a generic equation to
1765 		 * calculate the value we should set it TQAVCC register by
1766 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 		 *
1768 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1769 		 *         -----------------            --------------    (E5)
1770 		 *         link-speed * 1000                 1000
1771 		 *
1772 		 * 'link-speed' is present in both sides of the fraction so
1773 		 * it is canceled out. The final equation is the following:
1774 		 *
1775 		 *     value = idleSlope * 61034
1776 		 *             -----------------                          (E6)
1777 		 *                  1000000
1778 		 *
1779 		 * NOTE: For i210, given the above, we can see that idleslope
1780 		 *       is represented in 16.38431 kbps units by the value at
1781 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1782 		 *       the granularity for idleslope increments.
1783 		 *       For instance, if you want to configure a 2576kbps
1784 		 *       idleslope, the value to be written on the register
1785 		 *       would have to be 157.23. If rounded down, you end
1786 		 *       up with less bandwidth available than originally
1787 		 *       required (~2572 kbps). If rounded up, you end up
1788 		 *       with a higher bandwidth (~2589 kbps). Below the
1789 		 *       approach we take is to always round up the
1790 		 *       calculated value, so the resulting bandwidth might
1791 		 *       be slightly higher for some configurations.
1792 		 */
1793 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794 
1795 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 		tqavcc |= value;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		wr32(E1000_I210_TQAVHC(queue),
1801 		     0x80000000 + ring->hicredit * 0x7735);
1802 	} else {
1803 
1804 		/* Set idleSlope to zero. */
1805 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808 
1809 		/* Set hiCredit to zero. */
1810 		wr32(E1000_I210_TQAVHC(queue), 0);
1811 
1812 		/* If CBS is not enabled for any queues anymore, then return to
1813 		 * the default state of Data Transmission Arbitration on
1814 		 * TQAVCTRL.
1815 		 */
1816 		if (!is_any_cbs_enabled(adapter)) {
1817 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 		}
1821 	}
1822 
1823 	/* If LaunchTime is enabled, set DataTranTIM. */
1824 	if (ring->launchtime_enable) {
1825 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 		 * for any of the SR queues, and configure fetchtime delta.
1827 		 * XXX NOTE:
1828 		 *     - LaunchTime will be enabled for all SR queues.
1829 		 *     - A fixed offset can be added relative to the launch
1830 		 *       time of all packets if configured at reg LAUNCH_OS0.
1831 		 *       We are keeping it as 0 for now (default value).
1832 		 */
1833 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 	} else {
1838 		/* If Launchtime is not enabled for any SR queues anymore,
1839 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 		 * effectively disabling Launchtime.
1841 		 */
1842 		if (!is_any_txtime_enabled(adapter)) {
1843 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 		}
1848 	}
1849 
1850 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 	 * CBS are not configurable by software so we don't do any 'controller
1852 	 * configuration' in respect to these parameters.
1853 	 */
1854 
1855 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 		   ring->cbs_enable ? "enabled" : "disabled",
1857 		   ring->launchtime_enable ? "enabled" : "disabled",
1858 		   queue,
1859 		   ring->idleslope, ring->sendslope,
1860 		   ring->hicredit, ring->locredit);
1861 }
1862 
1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 				  bool enable)
1865 {
1866 	struct igb_ring *ring;
1867 
1868 	if (queue < 0 || queue > adapter->num_tx_queues)
1869 		return -EINVAL;
1870 
1871 	ring = adapter->tx_ring[queue];
1872 	ring->launchtime_enable = enable;
1873 
1874 	return 0;
1875 }
1876 
1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 			       bool enable, int idleslope, int sendslope,
1879 			       int hicredit, int locredit)
1880 {
1881 	struct igb_ring *ring;
1882 
1883 	if (queue < 0 || queue > adapter->num_tx_queues)
1884 		return -EINVAL;
1885 
1886 	ring = adapter->tx_ring[queue];
1887 
1888 	ring->cbs_enable = enable;
1889 	ring->idleslope = idleslope;
1890 	ring->sendslope = sendslope;
1891 	ring->hicredit = hicredit;
1892 	ring->locredit = locredit;
1893 
1894 	return 0;
1895 }
1896 
1897 /**
1898  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899  *  @adapter: pointer to adapter struct
1900  *
1901  *  Configure TQAVCTRL register switching the controller's Tx mode
1902  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903  *  a call to igb_config_tx_modes() per queue so any previously saved
1904  *  Tx parameters are applied.
1905  **/
1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908 	struct net_device *netdev = adapter->netdev;
1909 	struct e1000_hw *hw = &adapter->hw;
1910 	u32 val;
1911 
1912 	/* Only i210 controller supports changing the transmission mode. */
1913 	if (hw->mac.type != e1000_i210)
1914 		return;
1915 
1916 	if (is_fqtss_enabled(adapter)) {
1917 		int i, max_queue;
1918 
1919 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 		 * so SP queues wait for SR ones.
1922 		 */
1923 		val = rd32(E1000_I210_TQAVCTRL);
1924 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 		wr32(E1000_I210_TQAVCTRL, val);
1927 
1928 		/* Configure Tx and Rx packet buffers sizes as described in
1929 		 * i210 datasheet section 7.2.7.7.
1930 		 */
1931 		val = rd32(E1000_TXPBS);
1932 		val &= ~I210_TXPBSIZE_MASK;
1933 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 		wr32(E1000_TXPBS, val);
1936 
1937 		val = rd32(E1000_RXPBS);
1938 		val &= ~I210_RXPBSIZE_MASK;
1939 		val |= I210_RXPBSIZE_PB_30KB;
1940 		wr32(E1000_RXPBS, val);
1941 
1942 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 		 * register should not exceed the buffer size programmed in
1944 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 		 * 4kB / 64.
1947 		 *
1948 		 * However, when we do so, no frame from queue 2 and 3 are
1949 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 		 */
1953 		val = (4096 - 1) / 64;
1954 		wr32(E1000_I210_DTXMXPKTSZ, val);
1955 
1956 		/* Since FQTSS mode is enabled, apply any CBS configuration
1957 		 * previously set. If no previous CBS configuration has been
1958 		 * done, then the initial configuration is applied, which means
1959 		 * CBS is disabled.
1960 		 */
1961 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963 
1964 		for (i = 0; i < max_queue; i++) {
1965 			igb_config_tx_modes(adapter, i);
1966 		}
1967 	} else {
1968 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971 
1972 		val = rd32(E1000_I210_TQAVCTRL);
1973 		/* According to Section 8.12.21, the other flags we've set when
1974 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 		 * don't set they here.
1976 		 */
1977 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 		wr32(E1000_I210_TQAVCTRL, val);
1979 	}
1980 
1981 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 		   "enabled" : "disabled");
1983 }
1984 
1985 /**
1986  *  igb_configure - configure the hardware for RX and TX
1987  *  @adapter: private board structure
1988  **/
1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991 	struct net_device *netdev = adapter->netdev;
1992 	int i;
1993 
1994 	igb_get_hw_control(adapter);
1995 	igb_set_rx_mode(netdev);
1996 	igb_setup_tx_mode(adapter);
1997 
1998 	igb_restore_vlan(adapter);
1999 
2000 	igb_setup_tctl(adapter);
2001 	igb_setup_mrqc(adapter);
2002 	igb_setup_rctl(adapter);
2003 
2004 	igb_nfc_filter_restore(adapter);
2005 	igb_configure_tx(adapter);
2006 	igb_configure_rx(adapter);
2007 
2008 	igb_rx_fifo_flush_82575(&adapter->hw);
2009 
2010 	/* call igb_desc_unused which always leaves
2011 	 * at least 1 descriptor unused to make sure
2012 	 * next_to_use != next_to_clean
2013 	 */
2014 	for (i = 0; i < adapter->num_rx_queues; i++) {
2015 		struct igb_ring *ring = adapter->rx_ring[i];
2016 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 	}
2018 }
2019 
2020 /**
2021  *  igb_power_up_link - Power up the phy/serdes link
2022  *  @adapter: address of board private structure
2023  **/
2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026 	igb_reset_phy(&adapter->hw);
2027 
2028 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 		igb_power_up_phy_copper(&adapter->hw);
2030 	else
2031 		igb_power_up_serdes_link_82575(&adapter->hw);
2032 
2033 	igb_setup_link(&adapter->hw);
2034 }
2035 
2036 /**
2037  *  igb_power_down_link - Power down the phy/serdes link
2038  *  @adapter: address of board private structure
2039  */
2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 		igb_power_down_phy_copper_82575(&adapter->hw);
2044 	else
2045 		igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047 
2048 /**
2049  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2050  * @adapter: address of the board private structure
2051  **/
2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054 	struct e1000_hw *hw = &adapter->hw;
2055 	u32 ctrl_ext, connsw;
2056 	bool swap_now = false;
2057 
2058 	ctrl_ext = rd32(E1000_CTRL_EXT);
2059 	connsw = rd32(E1000_CONNSW);
2060 
2061 	/* need to live swap if current media is copper and we have fiber/serdes
2062 	 * to go to.
2063 	 */
2064 
2065 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 		swap_now = true;
2068 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 		   !(connsw & E1000_CONNSW_SERDESD)) {
2070 		/* copper signal takes time to appear */
2071 		if (adapter->copper_tries < 4) {
2072 			adapter->copper_tries++;
2073 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 			wr32(E1000_CONNSW, connsw);
2075 			return;
2076 		} else {
2077 			adapter->copper_tries = 0;
2078 			if ((connsw & E1000_CONNSW_PHYSD) &&
2079 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 				swap_now = true;
2081 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 				wr32(E1000_CONNSW, connsw);
2083 			}
2084 		}
2085 	}
2086 
2087 	if (!swap_now)
2088 		return;
2089 
2090 	switch (hw->phy.media_type) {
2091 	case e1000_media_type_copper:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to fiber/serdes\n");
2094 		ctrl_ext |=
2095 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		adapter->copper_tries = 0;
2098 		break;
2099 	case e1000_media_type_internal_serdes:
2100 	case e1000_media_type_fiber:
2101 		netdev_info(adapter->netdev,
2102 			"MAS: changing media to copper\n");
2103 		ctrl_ext &=
2104 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 		break;
2107 	default:
2108 		/* shouldn't get here during regular operation */
2109 		netdev_err(adapter->netdev,
2110 			"AMS: Invalid media type found, returning\n");
2111 		break;
2112 	}
2113 	wr32(E1000_CTRL_EXT, ctrl_ext);
2114 }
2115 
2116 /**
2117  *  igb_up - Open the interface and prepare it to handle traffic
2118  *  @adapter: board private structure
2119  **/
2120 int igb_up(struct igb_adapter *adapter)
2121 {
2122 	struct e1000_hw *hw = &adapter->hw;
2123 	int i;
2124 
2125 	/* hardware has been reset, we need to reload some things */
2126 	igb_configure(adapter);
2127 
2128 	clear_bit(__IGB_DOWN, &adapter->state);
2129 
2130 	for (i = 0; i < adapter->num_q_vectors; i++)
2131 		napi_enable(&(adapter->q_vector[i]->napi));
2132 
2133 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 		igb_configure_msix(adapter);
2135 	else
2136 		igb_assign_vector(adapter->q_vector[0], 0);
2137 
2138 	/* Clear any pending interrupts. */
2139 	rd32(E1000_TSICR);
2140 	rd32(E1000_ICR);
2141 	igb_irq_enable(adapter);
2142 
2143 	/* notify VFs that reset has been completed */
2144 	if (adapter->vfs_allocated_count) {
2145 		u32 reg_data = rd32(E1000_CTRL_EXT);
2146 
2147 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 		wr32(E1000_CTRL_EXT, reg_data);
2149 	}
2150 
2151 	netif_tx_start_all_queues(adapter->netdev);
2152 
2153 	/* start the watchdog. */
2154 	hw->mac.get_link_status = 1;
2155 	schedule_work(&adapter->watchdog_task);
2156 
2157 	if ((adapter->flags & IGB_FLAG_EEE) &&
2158 	    (!hw->dev_spec._82575.eee_disable))
2159 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160 
2161 	return 0;
2162 }
2163 
2164 void igb_down(struct igb_adapter *adapter)
2165 {
2166 	struct net_device *netdev = adapter->netdev;
2167 	struct e1000_hw *hw = &adapter->hw;
2168 	u32 tctl, rctl;
2169 	int i;
2170 
2171 	/* signal that we're down so the interrupt handler does not
2172 	 * reschedule our watchdog timer
2173 	 */
2174 	set_bit(__IGB_DOWN, &adapter->state);
2175 
2176 	/* disable receives in the hardware */
2177 	rctl = rd32(E1000_RCTL);
2178 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 	/* flush and sleep below */
2180 
2181 	igb_nfc_filter_exit(adapter);
2182 
2183 	netif_carrier_off(netdev);
2184 	netif_tx_stop_all_queues(netdev);
2185 
2186 	/* disable transmits in the hardware */
2187 	tctl = rd32(E1000_TCTL);
2188 	tctl &= ~E1000_TCTL_EN;
2189 	wr32(E1000_TCTL, tctl);
2190 	/* flush both disables and wait for them to finish */
2191 	wrfl();
2192 	usleep_range(10000, 11000);
2193 
2194 	igb_irq_disable(adapter);
2195 
2196 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197 
2198 	for (i = 0; i < adapter->num_q_vectors; i++) {
2199 		if (adapter->q_vector[i]) {
2200 			napi_synchronize(&adapter->q_vector[i]->napi);
2201 			napi_disable(&adapter->q_vector[i]->napi);
2202 		}
2203 	}
2204 
2205 	del_timer_sync(&adapter->watchdog_timer);
2206 	del_timer_sync(&adapter->phy_info_timer);
2207 
2208 	/* record the stats before reset*/
2209 	spin_lock(&adapter->stats64_lock);
2210 	igb_update_stats(adapter);
2211 	spin_unlock(&adapter->stats64_lock);
2212 
2213 	adapter->link_speed = 0;
2214 	adapter->link_duplex = 0;
2215 
2216 	if (!pci_channel_offline(adapter->pdev))
2217 		igb_reset(adapter);
2218 
2219 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221 
2222 	igb_clean_all_tx_rings(adapter);
2223 	igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2225 
2226 	/* since we reset the hardware DCA settings were cleared */
2227 	igb_setup_dca(adapter);
2228 #endif
2229 }
2230 
2231 void igb_reinit_locked(struct igb_adapter *adapter)
2232 {
2233 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 		usleep_range(1000, 2000);
2235 	igb_down(adapter);
2236 	igb_up(adapter);
2237 	clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239 
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241  *
2242  * @adapter: adapter struct
2243  **/
2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 	u32 connsw = rd32(E1000_CONNSW);
2248 
2249 	/* configure for SerDes media detect */
2250 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2252 		connsw |= E1000_CONNSW_ENRGSRC;
2253 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 		wr32(E1000_CONNSW, connsw);
2255 		wrfl();
2256 	}
2257 }
2258 
2259 void igb_reset(struct igb_adapter *adapter)
2260 {
2261 	struct pci_dev *pdev = adapter->pdev;
2262 	struct e1000_hw *hw = &adapter->hw;
2263 	struct e1000_mac_info *mac = &hw->mac;
2264 	struct e1000_fc_info *fc = &hw->fc;
2265 	u32 pba, hwm;
2266 
2267 	/* Repartition Pba for greater than 9k mtu
2268 	 * To take effect CTRL.RST is required.
2269 	 */
2270 	switch (mac->type) {
2271 	case e1000_i350:
2272 	case e1000_i354:
2273 	case e1000_82580:
2274 		pba = rd32(E1000_RXPBS);
2275 		pba = igb_rxpbs_adjust_82580(pba);
2276 		break;
2277 	case e1000_82576:
2278 		pba = rd32(E1000_RXPBS);
2279 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2280 		break;
2281 	case e1000_82575:
2282 	case e1000_i210:
2283 	case e1000_i211:
2284 	default:
2285 		pba = E1000_PBA_34K;
2286 		break;
2287 	}
2288 
2289 	if (mac->type == e1000_82575) {
2290 		u32 min_rx_space, min_tx_space, needed_tx_space;
2291 
2292 		/* write Rx PBA so that hardware can report correct Tx PBA */
2293 		wr32(E1000_PBA, pba);
2294 
2295 		/* To maintain wire speed transmits, the Tx FIFO should be
2296 		 * large enough to accommodate two full transmit packets,
2297 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2298 		 * the Rx FIFO should be large enough to accommodate at least
2299 		 * one full receive packet and is similarly rounded up and
2300 		 * expressed in KB.
2301 		 */
2302 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2303 
2304 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2305 		 * but don't include Ethernet FCS because hardware appends it.
2306 		 * We only need to round down to the nearest 512 byte block
2307 		 * count since the value we care about is 2 frames, not 1.
2308 		 */
2309 		min_tx_space = adapter->max_frame_size;
2310 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2311 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2312 
2313 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2314 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2315 
2316 		/* If current Tx allocation is less than the min Tx FIFO size,
2317 		 * and the min Tx FIFO size is less than the current Rx FIFO
2318 		 * allocation, take space away from current Rx allocation.
2319 		 */
2320 		if (needed_tx_space < pba) {
2321 			pba -= needed_tx_space;
2322 
2323 			/* if short on Rx space, Rx wins and must trump Tx
2324 			 * adjustment
2325 			 */
2326 			if (pba < min_rx_space)
2327 				pba = min_rx_space;
2328 		}
2329 
2330 		/* adjust PBA for jumbo frames */
2331 		wr32(E1000_PBA, pba);
2332 	}
2333 
2334 	/* flow control settings
2335 	 * The high water mark must be low enough to fit one full frame
2336 	 * after transmitting the pause frame.  As such we must have enough
2337 	 * space to allow for us to complete our current transmit and then
2338 	 * receive the frame that is in progress from the link partner.
2339 	 * Set it to:
2340 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2341 	 */
2342 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2343 
2344 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2345 	fc->low_water = fc->high_water - 16;
2346 	fc->pause_time = 0xFFFF;
2347 	fc->send_xon = 1;
2348 	fc->current_mode = fc->requested_mode;
2349 
2350 	/* disable receive for all VFs and wait one second */
2351 	if (adapter->vfs_allocated_count) {
2352 		int i;
2353 
2354 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2355 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2356 
2357 		/* ping all the active vfs to let them know we are going down */
2358 		igb_ping_all_vfs(adapter);
2359 
2360 		/* disable transmits and receives */
2361 		wr32(E1000_VFRE, 0);
2362 		wr32(E1000_VFTE, 0);
2363 	}
2364 
2365 	/* Allow time for pending master requests to run */
2366 	hw->mac.ops.reset_hw(hw);
2367 	wr32(E1000_WUC, 0);
2368 
2369 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2370 		/* need to resetup here after media swap */
2371 		adapter->ei.get_invariants(hw);
2372 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2373 	}
2374 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2375 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2376 		igb_enable_mas(adapter);
2377 	}
2378 	if (hw->mac.ops.init_hw(hw))
2379 		dev_err(&pdev->dev, "Hardware Error\n");
2380 
2381 	/* RAR registers were cleared during init_hw, clear mac table */
2382 	igb_flush_mac_table(adapter);
2383 	__dev_uc_unsync(adapter->netdev, NULL);
2384 
2385 	/* Recover default RAR entry */
2386 	igb_set_default_mac_filter(adapter);
2387 
2388 	/* Flow control settings reset on hardware reset, so guarantee flow
2389 	 * control is off when forcing speed.
2390 	 */
2391 	if (!hw->mac.autoneg)
2392 		igb_force_mac_fc(hw);
2393 
2394 	igb_init_dmac(adapter, pba);
2395 #ifdef CONFIG_IGB_HWMON
2396 	/* Re-initialize the thermal sensor on i350 devices. */
2397 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2398 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2399 			/* If present, re-initialize the external thermal sensor
2400 			 * interface.
2401 			 */
2402 			if (adapter->ets)
2403 				mac->ops.init_thermal_sensor_thresh(hw);
2404 		}
2405 	}
2406 #endif
2407 	/* Re-establish EEE setting */
2408 	if (hw->phy.media_type == e1000_media_type_copper) {
2409 		switch (mac->type) {
2410 		case e1000_i350:
2411 		case e1000_i210:
2412 		case e1000_i211:
2413 			igb_set_eee_i350(hw, true, true);
2414 			break;
2415 		case e1000_i354:
2416 			igb_set_eee_i354(hw, true, true);
2417 			break;
2418 		default:
2419 			break;
2420 		}
2421 	}
2422 	if (!netif_running(adapter->netdev))
2423 		igb_power_down_link(adapter);
2424 
2425 	igb_update_mng_vlan(adapter);
2426 
2427 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2428 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2429 
2430 	/* Re-enable PTP, where applicable. */
2431 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2432 		igb_ptp_reset(adapter);
2433 
2434 	igb_get_phy_info(hw);
2435 }
2436 
2437 static netdev_features_t igb_fix_features(struct net_device *netdev,
2438 	netdev_features_t features)
2439 {
2440 	/* Since there is no support for separate Rx/Tx vlan accel
2441 	 * enable/disable make sure Tx flag is always in same state as Rx.
2442 	 */
2443 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2444 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2445 	else
2446 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2447 
2448 	return features;
2449 }
2450 
2451 static int igb_set_features(struct net_device *netdev,
2452 	netdev_features_t features)
2453 {
2454 	netdev_features_t changed = netdev->features ^ features;
2455 	struct igb_adapter *adapter = netdev_priv(netdev);
2456 
2457 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2458 		igb_vlan_mode(netdev, features);
2459 
2460 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2461 		return 0;
2462 
2463 	if (!(features & NETIF_F_NTUPLE)) {
2464 		struct hlist_node *node2;
2465 		struct igb_nfc_filter *rule;
2466 
2467 		spin_lock(&adapter->nfc_lock);
2468 		hlist_for_each_entry_safe(rule, node2,
2469 					  &adapter->nfc_filter_list, nfc_node) {
2470 			igb_erase_filter(adapter, rule);
2471 			hlist_del(&rule->nfc_node);
2472 			kfree(rule);
2473 		}
2474 		spin_unlock(&adapter->nfc_lock);
2475 		adapter->nfc_filter_count = 0;
2476 	}
2477 
2478 	netdev->features = features;
2479 
2480 	if (netif_running(netdev))
2481 		igb_reinit_locked(adapter);
2482 	else
2483 		igb_reset(adapter);
2484 
2485 	return 1;
2486 }
2487 
2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2489 			   struct net_device *dev,
2490 			   const unsigned char *addr, u16 vid,
2491 			   u16 flags,
2492 			   struct netlink_ext_ack *extack)
2493 {
2494 	/* guarantee we can provide a unique filter for the unicast address */
2495 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2496 		struct igb_adapter *adapter = netdev_priv(dev);
2497 		int vfn = adapter->vfs_allocated_count;
2498 
2499 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2500 			return -ENOMEM;
2501 	}
2502 
2503 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2504 }
2505 
2506 #define IGB_MAX_MAC_HDR_LEN	127
2507 #define IGB_MAX_NETWORK_HDR_LEN	511
2508 
2509 static netdev_features_t
2510 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2511 		   netdev_features_t features)
2512 {
2513 	unsigned int network_hdr_len, mac_hdr_len;
2514 
2515 	/* Make certain the headers can be described by a context descriptor */
2516 	mac_hdr_len = skb_network_header(skb) - skb->data;
2517 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2518 		return features & ~(NETIF_F_HW_CSUM |
2519 				    NETIF_F_SCTP_CRC |
2520 				    NETIF_F_GSO_UDP_L4 |
2521 				    NETIF_F_HW_VLAN_CTAG_TX |
2522 				    NETIF_F_TSO |
2523 				    NETIF_F_TSO6);
2524 
2525 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2527 		return features & ~(NETIF_F_HW_CSUM |
2528 				    NETIF_F_SCTP_CRC |
2529 				    NETIF_F_GSO_UDP_L4 |
2530 				    NETIF_F_TSO |
2531 				    NETIF_F_TSO6);
2532 
2533 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2534 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2535 	 */
2536 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2537 		features &= ~NETIF_F_TSO;
2538 
2539 	return features;
2540 }
2541 
2542 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2543 {
2544 	if (!is_fqtss_enabled(adapter)) {
2545 		enable_fqtss(adapter, true);
2546 		return;
2547 	}
2548 
2549 	igb_config_tx_modes(adapter, queue);
2550 
2551 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2552 		enable_fqtss(adapter, false);
2553 }
2554 
2555 static int igb_offload_cbs(struct igb_adapter *adapter,
2556 			   struct tc_cbs_qopt_offload *qopt)
2557 {
2558 	struct e1000_hw *hw = &adapter->hw;
2559 	int err;
2560 
2561 	/* CBS offloading is only supported by i210 controller. */
2562 	if (hw->mac.type != e1000_i210)
2563 		return -EOPNOTSUPP;
2564 
2565 	/* CBS offloading is only supported by queue 0 and queue 1. */
2566 	if (qopt->queue < 0 || qopt->queue > 1)
2567 		return -EINVAL;
2568 
2569 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2570 				  qopt->idleslope, qopt->sendslope,
2571 				  qopt->hicredit, qopt->locredit);
2572 	if (err)
2573 		return err;
2574 
2575 	igb_offload_apply(adapter, qopt->queue);
2576 
2577 	return 0;
2578 }
2579 
2580 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2581 #define VLAN_PRIO_FULL_MASK (0x07)
2582 
2583 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2584 				struct flow_cls_offload *f,
2585 				int traffic_class,
2586 				struct igb_nfc_filter *input)
2587 {
2588 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2589 	struct flow_dissector *dissector = rule->match.dissector;
2590 	struct netlink_ext_ack *extack = f->common.extack;
2591 
2592 	if (dissector->used_keys &
2593 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2594 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2595 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2596 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2597 		NL_SET_ERR_MSG_MOD(extack,
2598 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2599 		return -EOPNOTSUPP;
2600 	}
2601 
2602 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2603 		struct flow_match_eth_addrs match;
2604 
2605 		flow_rule_match_eth_addrs(rule, &match);
2606 		if (!is_zero_ether_addr(match.mask->dst)) {
2607 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2608 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2609 				return -EINVAL;
2610 			}
2611 
2612 			input->filter.match_flags |=
2613 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2614 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2615 		}
2616 
2617 		if (!is_zero_ether_addr(match.mask->src)) {
2618 			if (!is_broadcast_ether_addr(match.mask->src)) {
2619 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2620 				return -EINVAL;
2621 			}
2622 
2623 			input->filter.match_flags |=
2624 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2625 			ether_addr_copy(input->filter.src_addr, match.key->src);
2626 		}
2627 	}
2628 
2629 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2630 		struct flow_match_basic match;
2631 
2632 		flow_rule_match_basic(rule, &match);
2633 		if (match.mask->n_proto) {
2634 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2635 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2636 				return -EINVAL;
2637 			}
2638 
2639 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2640 			input->filter.etype = match.key->n_proto;
2641 		}
2642 	}
2643 
2644 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2645 		struct flow_match_vlan match;
2646 
2647 		flow_rule_match_vlan(rule, &match);
2648 		if (match.mask->vlan_priority) {
2649 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2650 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2651 				return -EINVAL;
2652 			}
2653 
2654 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2655 			input->filter.vlan_tci =
2656 				(__force __be16)match.key->vlan_priority;
2657 		}
2658 	}
2659 
2660 	input->action = traffic_class;
2661 	input->cookie = f->cookie;
2662 
2663 	return 0;
2664 }
2665 
2666 static int igb_configure_clsflower(struct igb_adapter *adapter,
2667 				   struct flow_cls_offload *cls_flower)
2668 {
2669 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2670 	struct igb_nfc_filter *filter, *f;
2671 	int err, tc;
2672 
2673 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2674 	if (tc < 0) {
2675 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2676 		return -EINVAL;
2677 	}
2678 
2679 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2680 	if (!filter)
2681 		return -ENOMEM;
2682 
2683 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2684 	if (err < 0)
2685 		goto err_parse;
2686 
2687 	spin_lock(&adapter->nfc_lock);
2688 
2689 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2690 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2691 			err = -EEXIST;
2692 			NL_SET_ERR_MSG_MOD(extack,
2693 					   "This filter is already set in ethtool");
2694 			goto err_locked;
2695 		}
2696 	}
2697 
2698 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2699 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2700 			err = -EEXIST;
2701 			NL_SET_ERR_MSG_MOD(extack,
2702 					   "This filter is already set in cls_flower");
2703 			goto err_locked;
2704 		}
2705 	}
2706 
2707 	err = igb_add_filter(adapter, filter);
2708 	if (err < 0) {
2709 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2710 		goto err_locked;
2711 	}
2712 
2713 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2714 
2715 	spin_unlock(&adapter->nfc_lock);
2716 
2717 	return 0;
2718 
2719 err_locked:
2720 	spin_unlock(&adapter->nfc_lock);
2721 
2722 err_parse:
2723 	kfree(filter);
2724 
2725 	return err;
2726 }
2727 
2728 static int igb_delete_clsflower(struct igb_adapter *adapter,
2729 				struct flow_cls_offload *cls_flower)
2730 {
2731 	struct igb_nfc_filter *filter;
2732 	int err;
2733 
2734 	spin_lock(&adapter->nfc_lock);
2735 
2736 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2737 		if (filter->cookie == cls_flower->cookie)
2738 			break;
2739 
2740 	if (!filter) {
2741 		err = -ENOENT;
2742 		goto out;
2743 	}
2744 
2745 	err = igb_erase_filter(adapter, filter);
2746 	if (err < 0)
2747 		goto out;
2748 
2749 	hlist_del(&filter->nfc_node);
2750 	kfree(filter);
2751 
2752 out:
2753 	spin_unlock(&adapter->nfc_lock);
2754 
2755 	return err;
2756 }
2757 
2758 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2759 				   struct flow_cls_offload *cls_flower)
2760 {
2761 	switch (cls_flower->command) {
2762 	case FLOW_CLS_REPLACE:
2763 		return igb_configure_clsflower(adapter, cls_flower);
2764 	case FLOW_CLS_DESTROY:
2765 		return igb_delete_clsflower(adapter, cls_flower);
2766 	case FLOW_CLS_STATS:
2767 		return -EOPNOTSUPP;
2768 	default:
2769 		return -EOPNOTSUPP;
2770 	}
2771 }
2772 
2773 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2774 				 void *cb_priv)
2775 {
2776 	struct igb_adapter *adapter = cb_priv;
2777 
2778 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2779 		return -EOPNOTSUPP;
2780 
2781 	switch (type) {
2782 	case TC_SETUP_CLSFLOWER:
2783 		return igb_setup_tc_cls_flower(adapter, type_data);
2784 
2785 	default:
2786 		return -EOPNOTSUPP;
2787 	}
2788 }
2789 
2790 static int igb_offload_txtime(struct igb_adapter *adapter,
2791 			      struct tc_etf_qopt_offload *qopt)
2792 {
2793 	struct e1000_hw *hw = &adapter->hw;
2794 	int err;
2795 
2796 	/* Launchtime offloading is only supported by i210 controller. */
2797 	if (hw->mac.type != e1000_i210)
2798 		return -EOPNOTSUPP;
2799 
2800 	/* Launchtime offloading is only supported by queues 0 and 1. */
2801 	if (qopt->queue < 0 || qopt->queue > 1)
2802 		return -EINVAL;
2803 
2804 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2805 	if (err)
2806 		return err;
2807 
2808 	igb_offload_apply(adapter, qopt->queue);
2809 
2810 	return 0;
2811 }
2812 
2813 static LIST_HEAD(igb_block_cb_list);
2814 
2815 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2816 			void *type_data)
2817 {
2818 	struct igb_adapter *adapter = netdev_priv(dev);
2819 
2820 	switch (type) {
2821 	case TC_SETUP_QDISC_CBS:
2822 		return igb_offload_cbs(adapter, type_data);
2823 	case TC_SETUP_BLOCK:
2824 		return flow_block_cb_setup_simple(type_data,
2825 						  &igb_block_cb_list,
2826 						  igb_setup_tc_block_cb,
2827 						  adapter, adapter, true);
2828 
2829 	case TC_SETUP_QDISC_ETF:
2830 		return igb_offload_txtime(adapter, type_data);
2831 
2832 	default:
2833 		return -EOPNOTSUPP;
2834 	}
2835 }
2836 
2837 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2838 {
2839 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2840 	struct igb_adapter *adapter = netdev_priv(dev);
2841 	struct bpf_prog *prog = bpf->prog, *old_prog;
2842 	bool running = netif_running(dev);
2843 	bool need_reset;
2844 
2845 	/* verify igb ring attributes are sufficient for XDP */
2846 	for (i = 0; i < adapter->num_rx_queues; i++) {
2847 		struct igb_ring *ring = adapter->rx_ring[i];
2848 
2849 		if (frame_size > igb_rx_bufsz(ring)) {
2850 			NL_SET_ERR_MSG_MOD(bpf->extack,
2851 					   "The RX buffer size is too small for the frame size");
2852 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2853 				    igb_rx_bufsz(ring), frame_size);
2854 			return -EINVAL;
2855 		}
2856 	}
2857 
2858 	old_prog = xchg(&adapter->xdp_prog, prog);
2859 	need_reset = (!!prog != !!old_prog);
2860 
2861 	/* device is up and bpf is added/removed, must setup the RX queues */
2862 	if (need_reset && running) {
2863 		igb_close(dev);
2864 	} else {
2865 		for (i = 0; i < adapter->num_rx_queues; i++)
2866 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2867 			    adapter->xdp_prog);
2868 	}
2869 
2870 	if (old_prog)
2871 		bpf_prog_put(old_prog);
2872 
2873 	/* bpf is just replaced, RXQ and MTU are already setup */
2874 	if (!need_reset)
2875 		return 0;
2876 
2877 	if (running)
2878 		igb_open(dev);
2879 
2880 	return 0;
2881 }
2882 
2883 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2884 {
2885 	switch (xdp->command) {
2886 	case XDP_SETUP_PROG:
2887 		return igb_xdp_setup(dev, xdp);
2888 	default:
2889 		return -EINVAL;
2890 	}
2891 }
2892 
2893 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2894 {
2895 	/* Force memory writes to complete before letting h/w know there
2896 	 * are new descriptors to fetch.
2897 	 */
2898 	wmb();
2899 	writel(ring->next_to_use, ring->tail);
2900 }
2901 
2902 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2903 {
2904 	unsigned int r_idx = smp_processor_id();
2905 
2906 	if (r_idx >= adapter->num_tx_queues)
2907 		r_idx = r_idx % adapter->num_tx_queues;
2908 
2909 	return adapter->tx_ring[r_idx];
2910 }
2911 
2912 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2913 {
2914 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2915 	int cpu = smp_processor_id();
2916 	struct igb_ring *tx_ring;
2917 	struct netdev_queue *nq;
2918 	u32 ret;
2919 
2920 	if (unlikely(!xdpf))
2921 		return IGB_XDP_CONSUMED;
2922 
2923 	/* During program transitions its possible adapter->xdp_prog is assigned
2924 	 * but ring has not been configured yet. In this case simply abort xmit.
2925 	 */
2926 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2927 	if (unlikely(!tx_ring))
2928 		return IGB_XDP_CONSUMED;
2929 
2930 	nq = txring_txq(tx_ring);
2931 	__netif_tx_lock(nq, cpu);
2932 	/* Avoid transmit queue timeout since we share it with the slow path */
2933 	txq_trans_cond_update(nq);
2934 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2935 	__netif_tx_unlock(nq);
2936 
2937 	return ret;
2938 }
2939 
2940 static int igb_xdp_xmit(struct net_device *dev, int n,
2941 			struct xdp_frame **frames, u32 flags)
2942 {
2943 	struct igb_adapter *adapter = netdev_priv(dev);
2944 	int cpu = smp_processor_id();
2945 	struct igb_ring *tx_ring;
2946 	struct netdev_queue *nq;
2947 	int nxmit = 0;
2948 	int i;
2949 
2950 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2951 		return -ENETDOWN;
2952 
2953 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2954 		return -EINVAL;
2955 
2956 	/* During program transitions its possible adapter->xdp_prog is assigned
2957 	 * but ring has not been configured yet. In this case simply abort xmit.
2958 	 */
2959 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2960 	if (unlikely(!tx_ring))
2961 		return -ENXIO;
2962 
2963 	nq = txring_txq(tx_ring);
2964 	__netif_tx_lock(nq, cpu);
2965 
2966 	/* Avoid transmit queue timeout since we share it with the slow path */
2967 	txq_trans_cond_update(nq);
2968 
2969 	for (i = 0; i < n; i++) {
2970 		struct xdp_frame *xdpf = frames[i];
2971 		int err;
2972 
2973 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2974 		if (err != IGB_XDP_TX)
2975 			break;
2976 		nxmit++;
2977 	}
2978 
2979 	__netif_tx_unlock(nq);
2980 
2981 	if (unlikely(flags & XDP_XMIT_FLUSH))
2982 		igb_xdp_ring_update_tail(tx_ring);
2983 
2984 	return nxmit;
2985 }
2986 
2987 static const struct net_device_ops igb_netdev_ops = {
2988 	.ndo_open		= igb_open,
2989 	.ndo_stop		= igb_close,
2990 	.ndo_start_xmit		= igb_xmit_frame,
2991 	.ndo_get_stats64	= igb_get_stats64,
2992 	.ndo_set_rx_mode	= igb_set_rx_mode,
2993 	.ndo_set_mac_address	= igb_set_mac,
2994 	.ndo_change_mtu		= igb_change_mtu,
2995 	.ndo_eth_ioctl		= igb_ioctl,
2996 	.ndo_tx_timeout		= igb_tx_timeout,
2997 	.ndo_validate_addr	= eth_validate_addr,
2998 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2999 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3000 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3001 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3002 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3003 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3004 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3005 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3006 	.ndo_fix_features	= igb_fix_features,
3007 	.ndo_set_features	= igb_set_features,
3008 	.ndo_fdb_add		= igb_ndo_fdb_add,
3009 	.ndo_features_check	= igb_features_check,
3010 	.ndo_setup_tc		= igb_setup_tc,
3011 	.ndo_bpf		= igb_xdp,
3012 	.ndo_xdp_xmit		= igb_xdp_xmit,
3013 };
3014 
3015 /**
3016  * igb_set_fw_version - Configure version string for ethtool
3017  * @adapter: adapter struct
3018  **/
3019 void igb_set_fw_version(struct igb_adapter *adapter)
3020 {
3021 	struct e1000_hw *hw = &adapter->hw;
3022 	struct e1000_fw_version fw;
3023 
3024 	igb_get_fw_version(hw, &fw);
3025 
3026 	switch (hw->mac.type) {
3027 	case e1000_i210:
3028 	case e1000_i211:
3029 		if (!(igb_get_flash_presence_i210(hw))) {
3030 			snprintf(adapter->fw_version,
3031 				 sizeof(adapter->fw_version),
3032 				 "%2d.%2d-%d",
3033 				 fw.invm_major, fw.invm_minor,
3034 				 fw.invm_img_type);
3035 			break;
3036 		}
3037 		fallthrough;
3038 	default:
3039 		/* if option is rom valid, display its version too */
3040 		if (fw.or_valid) {
3041 			snprintf(adapter->fw_version,
3042 				 sizeof(adapter->fw_version),
3043 				 "%d.%d, 0x%08x, %d.%d.%d",
3044 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3045 				 fw.or_major, fw.or_build, fw.or_patch);
3046 		/* no option rom */
3047 		} else if (fw.etrack_id != 0X0000) {
3048 			snprintf(adapter->fw_version,
3049 			    sizeof(adapter->fw_version),
3050 			    "%d.%d, 0x%08x",
3051 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3052 		} else {
3053 		snprintf(adapter->fw_version,
3054 		    sizeof(adapter->fw_version),
3055 		    "%d.%d.%d",
3056 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3057 		}
3058 		break;
3059 	}
3060 }
3061 
3062 /**
3063  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3064  *
3065  * @adapter: adapter struct
3066  **/
3067 static void igb_init_mas(struct igb_adapter *adapter)
3068 {
3069 	struct e1000_hw *hw = &adapter->hw;
3070 	u16 eeprom_data;
3071 
3072 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3073 	switch (hw->bus.func) {
3074 	case E1000_FUNC_0:
3075 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3076 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3077 			netdev_info(adapter->netdev,
3078 				"MAS: Enabling Media Autosense for port %d\n",
3079 				hw->bus.func);
3080 		}
3081 		break;
3082 	case E1000_FUNC_1:
3083 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3084 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3085 			netdev_info(adapter->netdev,
3086 				"MAS: Enabling Media Autosense for port %d\n",
3087 				hw->bus.func);
3088 		}
3089 		break;
3090 	case E1000_FUNC_2:
3091 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3092 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3093 			netdev_info(adapter->netdev,
3094 				"MAS: Enabling Media Autosense for port %d\n",
3095 				hw->bus.func);
3096 		}
3097 		break;
3098 	case E1000_FUNC_3:
3099 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3100 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3101 			netdev_info(adapter->netdev,
3102 				"MAS: Enabling Media Autosense for port %d\n",
3103 				hw->bus.func);
3104 		}
3105 		break;
3106 	default:
3107 		/* Shouldn't get here */
3108 		netdev_err(adapter->netdev,
3109 			"MAS: Invalid port configuration, returning\n");
3110 		break;
3111 	}
3112 }
3113 
3114 /**
3115  *  igb_init_i2c - Init I2C interface
3116  *  @adapter: pointer to adapter structure
3117  **/
3118 static s32 igb_init_i2c(struct igb_adapter *adapter)
3119 {
3120 	struct e1000_hw *hw = &adapter->hw;
3121 	s32 status = 0;
3122 	s32 i2cctl;
3123 
3124 	/* I2C interface supported on i350 devices */
3125 	if (adapter->hw.mac.type != e1000_i350)
3126 		return 0;
3127 
3128 	i2cctl = rd32(E1000_I2CPARAMS);
3129 	i2cctl |= E1000_I2CBB_EN
3130 		| E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3131 		| E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3132 	wr32(E1000_I2CPARAMS, i2cctl);
3133 	wrfl();
3134 
3135 	/* Initialize the i2c bus which is controlled by the registers.
3136 	 * This bus will use the i2c_algo_bit structure that implements
3137 	 * the protocol through toggling of the 4 bits in the register.
3138 	 */
3139 	adapter->i2c_adap.owner = THIS_MODULE;
3140 	adapter->i2c_algo = igb_i2c_algo;
3141 	adapter->i2c_algo.data = adapter;
3142 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3143 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3144 	strscpy(adapter->i2c_adap.name, "igb BB",
3145 		sizeof(adapter->i2c_adap.name));
3146 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3147 	return status;
3148 }
3149 
3150 /**
3151  *  igb_probe - Device Initialization Routine
3152  *  @pdev: PCI device information struct
3153  *  @ent: entry in igb_pci_tbl
3154  *
3155  *  Returns 0 on success, negative on failure
3156  *
3157  *  igb_probe initializes an adapter identified by a pci_dev structure.
3158  *  The OS initialization, configuring of the adapter private structure,
3159  *  and a hardware reset occur.
3160  **/
3161 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3162 {
3163 	struct net_device *netdev;
3164 	struct igb_adapter *adapter;
3165 	struct e1000_hw *hw;
3166 	u16 eeprom_data = 0;
3167 	s32 ret_val;
3168 	static int global_quad_port_a; /* global quad port a indication */
3169 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3170 	u8 part_str[E1000_PBANUM_LENGTH];
3171 	int err;
3172 
3173 	/* Catch broken hardware that put the wrong VF device ID in
3174 	 * the PCIe SR-IOV capability.
3175 	 */
3176 	if (pdev->is_virtfn) {
3177 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3178 			pci_name(pdev), pdev->vendor, pdev->device);
3179 		return -EINVAL;
3180 	}
3181 
3182 	err = pci_enable_device_mem(pdev);
3183 	if (err)
3184 		return err;
3185 
3186 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3187 	if (err) {
3188 		dev_err(&pdev->dev,
3189 			"No usable DMA configuration, aborting\n");
3190 		goto err_dma;
3191 	}
3192 
3193 	err = pci_request_mem_regions(pdev, igb_driver_name);
3194 	if (err)
3195 		goto err_pci_reg;
3196 
3197 	pci_enable_pcie_error_reporting(pdev);
3198 
3199 	pci_set_master(pdev);
3200 	pci_save_state(pdev);
3201 
3202 	err = -ENOMEM;
3203 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3204 				   IGB_MAX_TX_QUEUES);
3205 	if (!netdev)
3206 		goto err_alloc_etherdev;
3207 
3208 	SET_NETDEV_DEV(netdev, &pdev->dev);
3209 
3210 	pci_set_drvdata(pdev, netdev);
3211 	adapter = netdev_priv(netdev);
3212 	adapter->netdev = netdev;
3213 	adapter->pdev = pdev;
3214 	hw = &adapter->hw;
3215 	hw->back = adapter;
3216 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3217 
3218 	err = -EIO;
3219 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3220 	if (!adapter->io_addr)
3221 		goto err_ioremap;
3222 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3223 	hw->hw_addr = adapter->io_addr;
3224 
3225 	netdev->netdev_ops = &igb_netdev_ops;
3226 	igb_set_ethtool_ops(netdev);
3227 	netdev->watchdog_timeo = 5 * HZ;
3228 
3229 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3230 
3231 	netdev->mem_start = pci_resource_start(pdev, 0);
3232 	netdev->mem_end = pci_resource_end(pdev, 0);
3233 
3234 	/* PCI config space info */
3235 	hw->vendor_id = pdev->vendor;
3236 	hw->device_id = pdev->device;
3237 	hw->revision_id = pdev->revision;
3238 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3239 	hw->subsystem_device_id = pdev->subsystem_device;
3240 
3241 	/* Copy the default MAC, PHY and NVM function pointers */
3242 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3243 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3244 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3245 	/* Initialize skew-specific constants */
3246 	err = ei->get_invariants(hw);
3247 	if (err)
3248 		goto err_sw_init;
3249 
3250 	/* setup the private structure */
3251 	err = igb_sw_init(adapter);
3252 	if (err)
3253 		goto err_sw_init;
3254 
3255 	igb_get_bus_info_pcie(hw);
3256 
3257 	hw->phy.autoneg_wait_to_complete = false;
3258 
3259 	/* Copper options */
3260 	if (hw->phy.media_type == e1000_media_type_copper) {
3261 		hw->phy.mdix = AUTO_ALL_MODES;
3262 		hw->phy.disable_polarity_correction = false;
3263 		hw->phy.ms_type = e1000_ms_hw_default;
3264 	}
3265 
3266 	if (igb_check_reset_block(hw))
3267 		dev_info(&pdev->dev,
3268 			"PHY reset is blocked due to SOL/IDER session.\n");
3269 
3270 	/* features is initialized to 0 in allocation, it might have bits
3271 	 * set by igb_sw_init so we should use an or instead of an
3272 	 * assignment.
3273 	 */
3274 	netdev->features |= NETIF_F_SG |
3275 			    NETIF_F_TSO |
3276 			    NETIF_F_TSO6 |
3277 			    NETIF_F_RXHASH |
3278 			    NETIF_F_RXCSUM |
3279 			    NETIF_F_HW_CSUM;
3280 
3281 	if (hw->mac.type >= e1000_82576)
3282 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3283 
3284 	if (hw->mac.type >= e1000_i350)
3285 		netdev->features |= NETIF_F_HW_TC;
3286 
3287 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3288 				  NETIF_F_GSO_GRE_CSUM | \
3289 				  NETIF_F_GSO_IPXIP4 | \
3290 				  NETIF_F_GSO_IPXIP6 | \
3291 				  NETIF_F_GSO_UDP_TUNNEL | \
3292 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3293 
3294 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3295 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3296 
3297 	/* copy netdev features into list of user selectable features */
3298 	netdev->hw_features |= netdev->features |
3299 			       NETIF_F_HW_VLAN_CTAG_RX |
3300 			       NETIF_F_HW_VLAN_CTAG_TX |
3301 			       NETIF_F_RXALL;
3302 
3303 	if (hw->mac.type >= e1000_i350)
3304 		netdev->hw_features |= NETIF_F_NTUPLE;
3305 
3306 	netdev->features |= NETIF_F_HIGHDMA;
3307 
3308 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3309 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3310 	netdev->hw_enc_features |= netdev->vlan_features;
3311 
3312 	/* set this bit last since it cannot be part of vlan_features */
3313 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3314 			    NETIF_F_HW_VLAN_CTAG_RX |
3315 			    NETIF_F_HW_VLAN_CTAG_TX;
3316 
3317 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3318 
3319 	netdev->priv_flags |= IFF_UNICAST_FLT;
3320 
3321 	/* MTU range: 68 - 9216 */
3322 	netdev->min_mtu = ETH_MIN_MTU;
3323 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3324 
3325 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3326 
3327 	/* before reading the NVM, reset the controller to put the device in a
3328 	 * known good starting state
3329 	 */
3330 	hw->mac.ops.reset_hw(hw);
3331 
3332 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3333 	 * that doesn't contain a checksum
3334 	 */
3335 	switch (hw->mac.type) {
3336 	case e1000_i210:
3337 	case e1000_i211:
3338 		if (igb_get_flash_presence_i210(hw)) {
3339 			if (hw->nvm.ops.validate(hw) < 0) {
3340 				dev_err(&pdev->dev,
3341 					"The NVM Checksum Is Not Valid\n");
3342 				err = -EIO;
3343 				goto err_eeprom;
3344 			}
3345 		}
3346 		break;
3347 	default:
3348 		if (hw->nvm.ops.validate(hw) < 0) {
3349 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3350 			err = -EIO;
3351 			goto err_eeprom;
3352 		}
3353 		break;
3354 	}
3355 
3356 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3357 		/* copy the MAC address out of the NVM */
3358 		if (hw->mac.ops.read_mac_addr(hw))
3359 			dev_err(&pdev->dev, "NVM Read Error\n");
3360 	}
3361 
3362 	eth_hw_addr_set(netdev, hw->mac.addr);
3363 
3364 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3365 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3366 		err = -EIO;
3367 		goto err_eeprom;
3368 	}
3369 
3370 	igb_set_default_mac_filter(adapter);
3371 
3372 	/* get firmware version for ethtool -i */
3373 	igb_set_fw_version(adapter);
3374 
3375 	/* configure RXPBSIZE and TXPBSIZE */
3376 	if (hw->mac.type == e1000_i210) {
3377 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3378 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3379 	}
3380 
3381 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3382 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3383 
3384 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3385 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3386 
3387 	/* Initialize link properties that are user-changeable */
3388 	adapter->fc_autoneg = true;
3389 	hw->mac.autoneg = true;
3390 	hw->phy.autoneg_advertised = 0x2f;
3391 
3392 	hw->fc.requested_mode = e1000_fc_default;
3393 	hw->fc.current_mode = e1000_fc_default;
3394 
3395 	igb_validate_mdi_setting(hw);
3396 
3397 	/* By default, support wake on port A */
3398 	if (hw->bus.func == 0)
3399 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3400 
3401 	/* Check the NVM for wake support on non-port A ports */
3402 	if (hw->mac.type >= e1000_82580)
3403 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3404 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3405 				 &eeprom_data);
3406 	else if (hw->bus.func == 1)
3407 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3408 
3409 	if (eeprom_data & IGB_EEPROM_APME)
3410 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3411 
3412 	/* now that we have the eeprom settings, apply the special cases where
3413 	 * the eeprom may be wrong or the board simply won't support wake on
3414 	 * lan on a particular port
3415 	 */
3416 	switch (pdev->device) {
3417 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3418 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3419 		break;
3420 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3421 	case E1000_DEV_ID_82576_FIBER:
3422 	case E1000_DEV_ID_82576_SERDES:
3423 		/* Wake events only supported on port A for dual fiber
3424 		 * regardless of eeprom setting
3425 		 */
3426 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3427 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3428 		break;
3429 	case E1000_DEV_ID_82576_QUAD_COPPER:
3430 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3431 		/* if quad port adapter, disable WoL on all but port A */
3432 		if (global_quad_port_a != 0)
3433 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3434 		else
3435 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3436 		/* Reset for multiple quad port adapters */
3437 		if (++global_quad_port_a == 4)
3438 			global_quad_port_a = 0;
3439 		break;
3440 	default:
3441 		/* If the device can't wake, don't set software support */
3442 		if (!device_can_wakeup(&adapter->pdev->dev))
3443 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3444 	}
3445 
3446 	/* initialize the wol settings based on the eeprom settings */
3447 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3448 		adapter->wol |= E1000_WUFC_MAG;
3449 
3450 	/* Some vendors want WoL disabled by default, but still supported */
3451 	if ((hw->mac.type == e1000_i350) &&
3452 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3453 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3454 		adapter->wol = 0;
3455 	}
3456 
3457 	/* Some vendors want the ability to Use the EEPROM setting as
3458 	 * enable/disable only, and not for capability
3459 	 */
3460 	if (((hw->mac.type == e1000_i350) ||
3461 	     (hw->mac.type == e1000_i354)) &&
3462 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3463 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3464 		adapter->wol = 0;
3465 	}
3466 	if (hw->mac.type == e1000_i350) {
3467 		if (((pdev->subsystem_device == 0x5001) ||
3468 		     (pdev->subsystem_device == 0x5002)) &&
3469 				(hw->bus.func == 0)) {
3470 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3471 			adapter->wol = 0;
3472 		}
3473 		if (pdev->subsystem_device == 0x1F52)
3474 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3475 	}
3476 
3477 	device_set_wakeup_enable(&adapter->pdev->dev,
3478 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3479 
3480 	/* reset the hardware with the new settings */
3481 	igb_reset(adapter);
3482 
3483 	/* Init the I2C interface */
3484 	err = igb_init_i2c(adapter);
3485 	if (err) {
3486 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3487 		goto err_eeprom;
3488 	}
3489 
3490 	/* let the f/w know that the h/w is now under the control of the
3491 	 * driver.
3492 	 */
3493 	igb_get_hw_control(adapter);
3494 
3495 	strcpy(netdev->name, "eth%d");
3496 	err = register_netdev(netdev);
3497 	if (err)
3498 		goto err_register;
3499 
3500 	/* carrier off reporting is important to ethtool even BEFORE open */
3501 	netif_carrier_off(netdev);
3502 
3503 #ifdef CONFIG_IGB_DCA
3504 	if (dca_add_requester(&pdev->dev) == 0) {
3505 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3506 		dev_info(&pdev->dev, "DCA enabled\n");
3507 		igb_setup_dca(adapter);
3508 	}
3509 
3510 #endif
3511 #ifdef CONFIG_IGB_HWMON
3512 	/* Initialize the thermal sensor on i350 devices. */
3513 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3514 		u16 ets_word;
3515 
3516 		/* Read the NVM to determine if this i350 device supports an
3517 		 * external thermal sensor.
3518 		 */
3519 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3520 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3521 			adapter->ets = true;
3522 		else
3523 			adapter->ets = false;
3524 		if (igb_sysfs_init(adapter))
3525 			dev_err(&pdev->dev,
3526 				"failed to allocate sysfs resources\n");
3527 	} else {
3528 		adapter->ets = false;
3529 	}
3530 #endif
3531 	/* Check if Media Autosense is enabled */
3532 	adapter->ei = *ei;
3533 	if (hw->dev_spec._82575.mas_capable)
3534 		igb_init_mas(adapter);
3535 
3536 	/* do hw tstamp init after resetting */
3537 	igb_ptp_init(adapter);
3538 
3539 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3540 	/* print bus type/speed/width info, not applicable to i354 */
3541 	if (hw->mac.type != e1000_i354) {
3542 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3543 			 netdev->name,
3544 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3545 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3546 			   "unknown"),
3547 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3548 			  "Width x4" :
3549 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3550 			  "Width x2" :
3551 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3552 			  "Width x1" : "unknown"), netdev->dev_addr);
3553 	}
3554 
3555 	if ((hw->mac.type == e1000_82576 &&
3556 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3557 	    (hw->mac.type >= e1000_i210 ||
3558 	     igb_get_flash_presence_i210(hw))) {
3559 		ret_val = igb_read_part_string(hw, part_str,
3560 					       E1000_PBANUM_LENGTH);
3561 	} else {
3562 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3563 	}
3564 
3565 	if (ret_val)
3566 		strcpy(part_str, "Unknown");
3567 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3568 	dev_info(&pdev->dev,
3569 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3570 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3571 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3572 		adapter->num_rx_queues, adapter->num_tx_queues);
3573 	if (hw->phy.media_type == e1000_media_type_copper) {
3574 		switch (hw->mac.type) {
3575 		case e1000_i350:
3576 		case e1000_i210:
3577 		case e1000_i211:
3578 			/* Enable EEE for internal copper PHY devices */
3579 			err = igb_set_eee_i350(hw, true, true);
3580 			if ((!err) &&
3581 			    (!hw->dev_spec._82575.eee_disable)) {
3582 				adapter->eee_advert =
3583 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3584 				adapter->flags |= IGB_FLAG_EEE;
3585 			}
3586 			break;
3587 		case e1000_i354:
3588 			if ((rd32(E1000_CTRL_EXT) &
3589 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3590 				err = igb_set_eee_i354(hw, true, true);
3591 				if ((!err) &&
3592 					(!hw->dev_spec._82575.eee_disable)) {
3593 					adapter->eee_advert =
3594 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3595 					adapter->flags |= IGB_FLAG_EEE;
3596 				}
3597 			}
3598 			break;
3599 		default:
3600 			break;
3601 		}
3602 	}
3603 
3604 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3605 
3606 	pm_runtime_put_noidle(&pdev->dev);
3607 	return 0;
3608 
3609 err_register:
3610 	igb_release_hw_control(adapter);
3611 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3612 err_eeprom:
3613 	if (!igb_check_reset_block(hw))
3614 		igb_reset_phy(hw);
3615 
3616 	if (hw->flash_address)
3617 		iounmap(hw->flash_address);
3618 err_sw_init:
3619 	kfree(adapter->mac_table);
3620 	kfree(adapter->shadow_vfta);
3621 	igb_clear_interrupt_scheme(adapter);
3622 #ifdef CONFIG_PCI_IOV
3623 	igb_disable_sriov(pdev);
3624 #endif
3625 	pci_iounmap(pdev, adapter->io_addr);
3626 err_ioremap:
3627 	free_netdev(netdev);
3628 err_alloc_etherdev:
3629 	pci_disable_pcie_error_reporting(pdev);
3630 	pci_release_mem_regions(pdev);
3631 err_pci_reg:
3632 err_dma:
3633 	pci_disable_device(pdev);
3634 	return err;
3635 }
3636 
3637 #ifdef CONFIG_PCI_IOV
3638 static int igb_disable_sriov(struct pci_dev *pdev)
3639 {
3640 	struct net_device *netdev = pci_get_drvdata(pdev);
3641 	struct igb_adapter *adapter = netdev_priv(netdev);
3642 	struct e1000_hw *hw = &adapter->hw;
3643 	unsigned long flags;
3644 
3645 	/* reclaim resources allocated to VFs */
3646 	if (adapter->vf_data) {
3647 		/* disable iov and allow time for transactions to clear */
3648 		if (pci_vfs_assigned(pdev)) {
3649 			dev_warn(&pdev->dev,
3650 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3651 			return -EPERM;
3652 		} else {
3653 			pci_disable_sriov(pdev);
3654 			msleep(500);
3655 		}
3656 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3657 		kfree(adapter->vf_mac_list);
3658 		adapter->vf_mac_list = NULL;
3659 		kfree(adapter->vf_data);
3660 		adapter->vf_data = NULL;
3661 		adapter->vfs_allocated_count = 0;
3662 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3663 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3664 		wrfl();
3665 		msleep(100);
3666 		dev_info(&pdev->dev, "IOV Disabled\n");
3667 
3668 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3669 		adapter->flags |= IGB_FLAG_DMAC;
3670 	}
3671 
3672 	return 0;
3673 }
3674 
3675 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3676 {
3677 	struct net_device *netdev = pci_get_drvdata(pdev);
3678 	struct igb_adapter *adapter = netdev_priv(netdev);
3679 	int old_vfs = pci_num_vf(pdev);
3680 	struct vf_mac_filter *mac_list;
3681 	int err = 0;
3682 	int num_vf_mac_filters, i;
3683 
3684 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3685 		err = -EPERM;
3686 		goto out;
3687 	}
3688 	if (!num_vfs)
3689 		goto out;
3690 
3691 	if (old_vfs) {
3692 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3693 			 old_vfs, max_vfs);
3694 		adapter->vfs_allocated_count = old_vfs;
3695 	} else
3696 		adapter->vfs_allocated_count = num_vfs;
3697 
3698 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3699 				sizeof(struct vf_data_storage), GFP_KERNEL);
3700 
3701 	/* if allocation failed then we do not support SR-IOV */
3702 	if (!adapter->vf_data) {
3703 		adapter->vfs_allocated_count = 0;
3704 		err = -ENOMEM;
3705 		goto out;
3706 	}
3707 
3708 	/* Due to the limited number of RAR entries calculate potential
3709 	 * number of MAC filters available for the VFs. Reserve entries
3710 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3711 	 * for each VF for VF MAC.
3712 	 */
3713 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3714 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3715 			      adapter->vfs_allocated_count);
3716 
3717 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3718 				       sizeof(struct vf_mac_filter),
3719 				       GFP_KERNEL);
3720 
3721 	mac_list = adapter->vf_mac_list;
3722 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3723 
3724 	if (adapter->vf_mac_list) {
3725 		/* Initialize list of VF MAC filters */
3726 		for (i = 0; i < num_vf_mac_filters; i++) {
3727 			mac_list->vf = -1;
3728 			mac_list->free = true;
3729 			list_add(&mac_list->l, &adapter->vf_macs.l);
3730 			mac_list++;
3731 		}
3732 	} else {
3733 		/* If we could not allocate memory for the VF MAC filters
3734 		 * we can continue without this feature but warn user.
3735 		 */
3736 		dev_err(&pdev->dev,
3737 			"Unable to allocate memory for VF MAC filter list\n");
3738 	}
3739 
3740 	/* only call pci_enable_sriov() if no VFs are allocated already */
3741 	if (!old_vfs) {
3742 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3743 		if (err)
3744 			goto err_out;
3745 	}
3746 	dev_info(&pdev->dev, "%d VFs allocated\n",
3747 		 adapter->vfs_allocated_count);
3748 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3749 		igb_vf_configure(adapter, i);
3750 
3751 	/* DMA Coalescing is not supported in IOV mode. */
3752 	adapter->flags &= ~IGB_FLAG_DMAC;
3753 	goto out;
3754 
3755 err_out:
3756 	kfree(adapter->vf_mac_list);
3757 	adapter->vf_mac_list = NULL;
3758 	kfree(adapter->vf_data);
3759 	adapter->vf_data = NULL;
3760 	adapter->vfs_allocated_count = 0;
3761 out:
3762 	return err;
3763 }
3764 
3765 #endif
3766 /**
3767  *  igb_remove_i2c - Cleanup  I2C interface
3768  *  @adapter: pointer to adapter structure
3769  **/
3770 static void igb_remove_i2c(struct igb_adapter *adapter)
3771 {
3772 	/* free the adapter bus structure */
3773 	i2c_del_adapter(&adapter->i2c_adap);
3774 }
3775 
3776 /**
3777  *  igb_remove - Device Removal Routine
3778  *  @pdev: PCI device information struct
3779  *
3780  *  igb_remove is called by the PCI subsystem to alert the driver
3781  *  that it should release a PCI device.  The could be caused by a
3782  *  Hot-Plug event, or because the driver is going to be removed from
3783  *  memory.
3784  **/
3785 static void igb_remove(struct pci_dev *pdev)
3786 {
3787 	struct net_device *netdev = pci_get_drvdata(pdev);
3788 	struct igb_adapter *adapter = netdev_priv(netdev);
3789 	struct e1000_hw *hw = &adapter->hw;
3790 
3791 	pm_runtime_get_noresume(&pdev->dev);
3792 #ifdef CONFIG_IGB_HWMON
3793 	igb_sysfs_exit(adapter);
3794 #endif
3795 	igb_remove_i2c(adapter);
3796 	igb_ptp_stop(adapter);
3797 	/* The watchdog timer may be rescheduled, so explicitly
3798 	 * disable watchdog from being rescheduled.
3799 	 */
3800 	set_bit(__IGB_DOWN, &adapter->state);
3801 	del_timer_sync(&adapter->watchdog_timer);
3802 	del_timer_sync(&adapter->phy_info_timer);
3803 
3804 	cancel_work_sync(&adapter->reset_task);
3805 	cancel_work_sync(&adapter->watchdog_task);
3806 
3807 #ifdef CONFIG_IGB_DCA
3808 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3809 		dev_info(&pdev->dev, "DCA disabled\n");
3810 		dca_remove_requester(&pdev->dev);
3811 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3812 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3813 	}
3814 #endif
3815 
3816 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3817 	 * would have already happened in close and is redundant.
3818 	 */
3819 	igb_release_hw_control(adapter);
3820 
3821 #ifdef CONFIG_PCI_IOV
3822 	rtnl_lock();
3823 	igb_disable_sriov(pdev);
3824 	rtnl_unlock();
3825 #endif
3826 
3827 	unregister_netdev(netdev);
3828 
3829 	igb_clear_interrupt_scheme(adapter);
3830 
3831 	pci_iounmap(pdev, adapter->io_addr);
3832 	if (hw->flash_address)
3833 		iounmap(hw->flash_address);
3834 	pci_release_mem_regions(pdev);
3835 
3836 	kfree(adapter->mac_table);
3837 	kfree(adapter->shadow_vfta);
3838 	free_netdev(netdev);
3839 
3840 	pci_disable_pcie_error_reporting(pdev);
3841 
3842 	pci_disable_device(pdev);
3843 }
3844 
3845 /**
3846  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3847  *  @adapter: board private structure to initialize
3848  *
3849  *  This function initializes the vf specific data storage and then attempts to
3850  *  allocate the VFs.  The reason for ordering it this way is because it is much
3851  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3852  *  the memory for the VFs.
3853  **/
3854 static void igb_probe_vfs(struct igb_adapter *adapter)
3855 {
3856 #ifdef CONFIG_PCI_IOV
3857 	struct pci_dev *pdev = adapter->pdev;
3858 	struct e1000_hw *hw = &adapter->hw;
3859 
3860 	/* Virtualization features not supported on i210 family. */
3861 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3862 		return;
3863 
3864 	/* Of the below we really only want the effect of getting
3865 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3866 	 * igb_enable_sriov() has no effect.
3867 	 */
3868 	igb_set_interrupt_capability(adapter, true);
3869 	igb_reset_interrupt_capability(adapter);
3870 
3871 	pci_sriov_set_totalvfs(pdev, 7);
3872 	igb_enable_sriov(pdev, max_vfs);
3873 
3874 #endif /* CONFIG_PCI_IOV */
3875 }
3876 
3877 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3878 {
3879 	struct e1000_hw *hw = &adapter->hw;
3880 	unsigned int max_rss_queues;
3881 
3882 	/* Determine the maximum number of RSS queues supported. */
3883 	switch (hw->mac.type) {
3884 	case e1000_i211:
3885 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3886 		break;
3887 	case e1000_82575:
3888 	case e1000_i210:
3889 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3890 		break;
3891 	case e1000_i350:
3892 		/* I350 cannot do RSS and SR-IOV at the same time */
3893 		if (!!adapter->vfs_allocated_count) {
3894 			max_rss_queues = 1;
3895 			break;
3896 		}
3897 		fallthrough;
3898 	case e1000_82576:
3899 		if (!!adapter->vfs_allocated_count) {
3900 			max_rss_queues = 2;
3901 			break;
3902 		}
3903 		fallthrough;
3904 	case e1000_82580:
3905 	case e1000_i354:
3906 	default:
3907 		max_rss_queues = IGB_MAX_RX_QUEUES;
3908 		break;
3909 	}
3910 
3911 	return max_rss_queues;
3912 }
3913 
3914 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3915 {
3916 	u32 max_rss_queues;
3917 
3918 	max_rss_queues = igb_get_max_rss_queues(adapter);
3919 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3920 
3921 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3922 }
3923 
3924 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3925 			      const u32 max_rss_queues)
3926 {
3927 	struct e1000_hw *hw = &adapter->hw;
3928 
3929 	/* Determine if we need to pair queues. */
3930 	switch (hw->mac.type) {
3931 	case e1000_82575:
3932 	case e1000_i211:
3933 		/* Device supports enough interrupts without queue pairing. */
3934 		break;
3935 	case e1000_82576:
3936 	case e1000_82580:
3937 	case e1000_i350:
3938 	case e1000_i354:
3939 	case e1000_i210:
3940 	default:
3941 		/* If rss_queues > half of max_rss_queues, pair the queues in
3942 		 * order to conserve interrupts due to limited supply.
3943 		 */
3944 		if (adapter->rss_queues > (max_rss_queues / 2))
3945 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3946 		else
3947 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3948 		break;
3949 	}
3950 }
3951 
3952 /**
3953  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3954  *  @adapter: board private structure to initialize
3955  *
3956  *  igb_sw_init initializes the Adapter private data structure.
3957  *  Fields are initialized based on PCI device information and
3958  *  OS network device settings (MTU size).
3959  **/
3960 static int igb_sw_init(struct igb_adapter *adapter)
3961 {
3962 	struct e1000_hw *hw = &adapter->hw;
3963 	struct net_device *netdev = adapter->netdev;
3964 	struct pci_dev *pdev = adapter->pdev;
3965 
3966 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3967 
3968 	/* set default ring sizes */
3969 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3970 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3971 
3972 	/* set default ITR values */
3973 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3974 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3975 
3976 	/* set default work limits */
3977 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3978 
3979 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3980 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3981 
3982 	spin_lock_init(&adapter->nfc_lock);
3983 	spin_lock_init(&adapter->stats64_lock);
3984 
3985 	/* init spinlock to avoid concurrency of VF resources */
3986 	spin_lock_init(&adapter->vfs_lock);
3987 #ifdef CONFIG_PCI_IOV
3988 	switch (hw->mac.type) {
3989 	case e1000_82576:
3990 	case e1000_i350:
3991 		if (max_vfs > 7) {
3992 			dev_warn(&pdev->dev,
3993 				 "Maximum of 7 VFs per PF, using max\n");
3994 			max_vfs = adapter->vfs_allocated_count = 7;
3995 		} else
3996 			adapter->vfs_allocated_count = max_vfs;
3997 		if (adapter->vfs_allocated_count)
3998 			dev_warn(&pdev->dev,
3999 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4000 		break;
4001 	default:
4002 		break;
4003 	}
4004 #endif /* CONFIG_PCI_IOV */
4005 
4006 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4007 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4008 
4009 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4010 				     sizeof(struct igb_mac_addr),
4011 				     GFP_KERNEL);
4012 	if (!adapter->mac_table)
4013 		return -ENOMEM;
4014 
4015 	igb_probe_vfs(adapter);
4016 
4017 	igb_init_queue_configuration(adapter);
4018 
4019 	/* Setup and initialize a copy of the hw vlan table array */
4020 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4021 				       GFP_KERNEL);
4022 	if (!adapter->shadow_vfta)
4023 		return -ENOMEM;
4024 
4025 	/* This call may decrease the number of queues */
4026 	if (igb_init_interrupt_scheme(adapter, true)) {
4027 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4028 		return -ENOMEM;
4029 	}
4030 
4031 	/* Explicitly disable IRQ since the NIC can be in any state. */
4032 	igb_irq_disable(adapter);
4033 
4034 	if (hw->mac.type >= e1000_i350)
4035 		adapter->flags &= ~IGB_FLAG_DMAC;
4036 
4037 	set_bit(__IGB_DOWN, &adapter->state);
4038 	return 0;
4039 }
4040 
4041 /**
4042  *  __igb_open - Called when a network interface is made active
4043  *  @netdev: network interface device structure
4044  *  @resuming: indicates whether we are in a resume call
4045  *
4046  *  Returns 0 on success, negative value on failure
4047  *
4048  *  The open entry point is called when a network interface is made
4049  *  active by the system (IFF_UP).  At this point all resources needed
4050  *  for transmit and receive operations are allocated, the interrupt
4051  *  handler is registered with the OS, the watchdog timer is started,
4052  *  and the stack is notified that the interface is ready.
4053  **/
4054 static int __igb_open(struct net_device *netdev, bool resuming)
4055 {
4056 	struct igb_adapter *adapter = netdev_priv(netdev);
4057 	struct e1000_hw *hw = &adapter->hw;
4058 	struct pci_dev *pdev = adapter->pdev;
4059 	int err;
4060 	int i;
4061 
4062 	/* disallow open during test */
4063 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4064 		WARN_ON(resuming);
4065 		return -EBUSY;
4066 	}
4067 
4068 	if (!resuming)
4069 		pm_runtime_get_sync(&pdev->dev);
4070 
4071 	netif_carrier_off(netdev);
4072 
4073 	/* allocate transmit descriptors */
4074 	err = igb_setup_all_tx_resources(adapter);
4075 	if (err)
4076 		goto err_setup_tx;
4077 
4078 	/* allocate receive descriptors */
4079 	err = igb_setup_all_rx_resources(adapter);
4080 	if (err)
4081 		goto err_setup_rx;
4082 
4083 	igb_power_up_link(adapter);
4084 
4085 	/* before we allocate an interrupt, we must be ready to handle it.
4086 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4087 	 * as soon as we call pci_request_irq, so we have to setup our
4088 	 * clean_rx handler before we do so.
4089 	 */
4090 	igb_configure(adapter);
4091 
4092 	err = igb_request_irq(adapter);
4093 	if (err)
4094 		goto err_req_irq;
4095 
4096 	/* Notify the stack of the actual queue counts. */
4097 	err = netif_set_real_num_tx_queues(adapter->netdev,
4098 					   adapter->num_tx_queues);
4099 	if (err)
4100 		goto err_set_queues;
4101 
4102 	err = netif_set_real_num_rx_queues(adapter->netdev,
4103 					   adapter->num_rx_queues);
4104 	if (err)
4105 		goto err_set_queues;
4106 
4107 	/* From here on the code is the same as igb_up() */
4108 	clear_bit(__IGB_DOWN, &adapter->state);
4109 
4110 	for (i = 0; i < adapter->num_q_vectors; i++)
4111 		napi_enable(&(adapter->q_vector[i]->napi));
4112 
4113 	/* Clear any pending interrupts. */
4114 	rd32(E1000_TSICR);
4115 	rd32(E1000_ICR);
4116 
4117 	igb_irq_enable(adapter);
4118 
4119 	/* notify VFs that reset has been completed */
4120 	if (adapter->vfs_allocated_count) {
4121 		u32 reg_data = rd32(E1000_CTRL_EXT);
4122 
4123 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4124 		wr32(E1000_CTRL_EXT, reg_data);
4125 	}
4126 
4127 	netif_tx_start_all_queues(netdev);
4128 
4129 	if (!resuming)
4130 		pm_runtime_put(&pdev->dev);
4131 
4132 	/* start the watchdog. */
4133 	hw->mac.get_link_status = 1;
4134 	schedule_work(&adapter->watchdog_task);
4135 
4136 	return 0;
4137 
4138 err_set_queues:
4139 	igb_free_irq(adapter);
4140 err_req_irq:
4141 	igb_release_hw_control(adapter);
4142 	igb_power_down_link(adapter);
4143 	igb_free_all_rx_resources(adapter);
4144 err_setup_rx:
4145 	igb_free_all_tx_resources(adapter);
4146 err_setup_tx:
4147 	igb_reset(adapter);
4148 	if (!resuming)
4149 		pm_runtime_put(&pdev->dev);
4150 
4151 	return err;
4152 }
4153 
4154 int igb_open(struct net_device *netdev)
4155 {
4156 	return __igb_open(netdev, false);
4157 }
4158 
4159 /**
4160  *  __igb_close - Disables a network interface
4161  *  @netdev: network interface device structure
4162  *  @suspending: indicates we are in a suspend call
4163  *
4164  *  Returns 0, this is not allowed to fail
4165  *
4166  *  The close entry point is called when an interface is de-activated
4167  *  by the OS.  The hardware is still under the driver's control, but
4168  *  needs to be disabled.  A global MAC reset is issued to stop the
4169  *  hardware, and all transmit and receive resources are freed.
4170  **/
4171 static int __igb_close(struct net_device *netdev, bool suspending)
4172 {
4173 	struct igb_adapter *adapter = netdev_priv(netdev);
4174 	struct pci_dev *pdev = adapter->pdev;
4175 
4176 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4177 
4178 	if (!suspending)
4179 		pm_runtime_get_sync(&pdev->dev);
4180 
4181 	igb_down(adapter);
4182 	igb_free_irq(adapter);
4183 
4184 	igb_free_all_tx_resources(adapter);
4185 	igb_free_all_rx_resources(adapter);
4186 
4187 	if (!suspending)
4188 		pm_runtime_put_sync(&pdev->dev);
4189 	return 0;
4190 }
4191 
4192 int igb_close(struct net_device *netdev)
4193 {
4194 	if (netif_device_present(netdev) || netdev->dismantle)
4195 		return __igb_close(netdev, false);
4196 	return 0;
4197 }
4198 
4199 /**
4200  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4201  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4202  *
4203  *  Return 0 on success, negative on failure
4204  **/
4205 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4206 {
4207 	struct device *dev = tx_ring->dev;
4208 	int size;
4209 
4210 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4211 
4212 	tx_ring->tx_buffer_info = vmalloc(size);
4213 	if (!tx_ring->tx_buffer_info)
4214 		goto err;
4215 
4216 	/* round up to nearest 4K */
4217 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4218 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4219 
4220 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4221 					   &tx_ring->dma, GFP_KERNEL);
4222 	if (!tx_ring->desc)
4223 		goto err;
4224 
4225 	tx_ring->next_to_use = 0;
4226 	tx_ring->next_to_clean = 0;
4227 
4228 	return 0;
4229 
4230 err:
4231 	vfree(tx_ring->tx_buffer_info);
4232 	tx_ring->tx_buffer_info = NULL;
4233 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4234 	return -ENOMEM;
4235 }
4236 
4237 /**
4238  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4239  *				 (Descriptors) for all queues
4240  *  @adapter: board private structure
4241  *
4242  *  Return 0 on success, negative on failure
4243  **/
4244 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4245 {
4246 	struct pci_dev *pdev = adapter->pdev;
4247 	int i, err = 0;
4248 
4249 	for (i = 0; i < adapter->num_tx_queues; i++) {
4250 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4251 		if (err) {
4252 			dev_err(&pdev->dev,
4253 				"Allocation for Tx Queue %u failed\n", i);
4254 			for (i--; i >= 0; i--)
4255 				igb_free_tx_resources(adapter->tx_ring[i]);
4256 			break;
4257 		}
4258 	}
4259 
4260 	return err;
4261 }
4262 
4263 /**
4264  *  igb_setup_tctl - configure the transmit control registers
4265  *  @adapter: Board private structure
4266  **/
4267 void igb_setup_tctl(struct igb_adapter *adapter)
4268 {
4269 	struct e1000_hw *hw = &adapter->hw;
4270 	u32 tctl;
4271 
4272 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4273 	wr32(E1000_TXDCTL(0), 0);
4274 
4275 	/* Program the Transmit Control Register */
4276 	tctl = rd32(E1000_TCTL);
4277 	tctl &= ~E1000_TCTL_CT;
4278 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4279 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4280 
4281 	igb_config_collision_dist(hw);
4282 
4283 	/* Enable transmits */
4284 	tctl |= E1000_TCTL_EN;
4285 
4286 	wr32(E1000_TCTL, tctl);
4287 }
4288 
4289 /**
4290  *  igb_configure_tx_ring - Configure transmit ring after Reset
4291  *  @adapter: board private structure
4292  *  @ring: tx ring to configure
4293  *
4294  *  Configure a transmit ring after a reset.
4295  **/
4296 void igb_configure_tx_ring(struct igb_adapter *adapter,
4297 			   struct igb_ring *ring)
4298 {
4299 	struct e1000_hw *hw = &adapter->hw;
4300 	u32 txdctl = 0;
4301 	u64 tdba = ring->dma;
4302 	int reg_idx = ring->reg_idx;
4303 
4304 	wr32(E1000_TDLEN(reg_idx),
4305 	     ring->count * sizeof(union e1000_adv_tx_desc));
4306 	wr32(E1000_TDBAL(reg_idx),
4307 	     tdba & 0x00000000ffffffffULL);
4308 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4309 
4310 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4311 	wr32(E1000_TDH(reg_idx), 0);
4312 	writel(0, ring->tail);
4313 
4314 	txdctl |= IGB_TX_PTHRESH;
4315 	txdctl |= IGB_TX_HTHRESH << 8;
4316 	txdctl |= IGB_TX_WTHRESH << 16;
4317 
4318 	/* reinitialize tx_buffer_info */
4319 	memset(ring->tx_buffer_info, 0,
4320 	       sizeof(struct igb_tx_buffer) * ring->count);
4321 
4322 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4323 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4324 }
4325 
4326 /**
4327  *  igb_configure_tx - Configure transmit Unit after Reset
4328  *  @adapter: board private structure
4329  *
4330  *  Configure the Tx unit of the MAC after a reset.
4331  **/
4332 static void igb_configure_tx(struct igb_adapter *adapter)
4333 {
4334 	struct e1000_hw *hw = &adapter->hw;
4335 	int i;
4336 
4337 	/* disable the queues */
4338 	for (i = 0; i < adapter->num_tx_queues; i++)
4339 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4340 
4341 	wrfl();
4342 	usleep_range(10000, 20000);
4343 
4344 	for (i = 0; i < adapter->num_tx_queues; i++)
4345 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4346 }
4347 
4348 /**
4349  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4350  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4351  *
4352  *  Returns 0 on success, negative on failure
4353  **/
4354 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4355 {
4356 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4357 	struct device *dev = rx_ring->dev;
4358 	int size, res;
4359 
4360 	/* XDP RX-queue info */
4361 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4362 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4363 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4364 			       rx_ring->queue_index, 0);
4365 	if (res < 0) {
4366 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4367 			rx_ring->queue_index);
4368 		return res;
4369 	}
4370 
4371 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4372 
4373 	rx_ring->rx_buffer_info = vmalloc(size);
4374 	if (!rx_ring->rx_buffer_info)
4375 		goto err;
4376 
4377 	/* Round up to nearest 4K */
4378 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4379 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4380 
4381 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4382 					   &rx_ring->dma, GFP_KERNEL);
4383 	if (!rx_ring->desc)
4384 		goto err;
4385 
4386 	rx_ring->next_to_alloc = 0;
4387 	rx_ring->next_to_clean = 0;
4388 	rx_ring->next_to_use = 0;
4389 
4390 	rx_ring->xdp_prog = adapter->xdp_prog;
4391 
4392 	return 0;
4393 
4394 err:
4395 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4396 	vfree(rx_ring->rx_buffer_info);
4397 	rx_ring->rx_buffer_info = NULL;
4398 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4399 	return -ENOMEM;
4400 }
4401 
4402 /**
4403  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4404  *				 (Descriptors) for all queues
4405  *  @adapter: board private structure
4406  *
4407  *  Return 0 on success, negative on failure
4408  **/
4409 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4410 {
4411 	struct pci_dev *pdev = adapter->pdev;
4412 	int i, err = 0;
4413 
4414 	for (i = 0; i < adapter->num_rx_queues; i++) {
4415 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4416 		if (err) {
4417 			dev_err(&pdev->dev,
4418 				"Allocation for Rx Queue %u failed\n", i);
4419 			for (i--; i >= 0; i--)
4420 				igb_free_rx_resources(adapter->rx_ring[i]);
4421 			break;
4422 		}
4423 	}
4424 
4425 	return err;
4426 }
4427 
4428 /**
4429  *  igb_setup_mrqc - configure the multiple receive queue control registers
4430  *  @adapter: Board private structure
4431  **/
4432 static void igb_setup_mrqc(struct igb_adapter *adapter)
4433 {
4434 	struct e1000_hw *hw = &adapter->hw;
4435 	u32 mrqc, rxcsum;
4436 	u32 j, num_rx_queues;
4437 	u32 rss_key[10];
4438 
4439 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4440 	for (j = 0; j < 10; j++)
4441 		wr32(E1000_RSSRK(j), rss_key[j]);
4442 
4443 	num_rx_queues = adapter->rss_queues;
4444 
4445 	switch (hw->mac.type) {
4446 	case e1000_82576:
4447 		/* 82576 supports 2 RSS queues for SR-IOV */
4448 		if (adapter->vfs_allocated_count)
4449 			num_rx_queues = 2;
4450 		break;
4451 	default:
4452 		break;
4453 	}
4454 
4455 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4456 		for (j = 0; j < IGB_RETA_SIZE; j++)
4457 			adapter->rss_indir_tbl[j] =
4458 			(j * num_rx_queues) / IGB_RETA_SIZE;
4459 		adapter->rss_indir_tbl_init = num_rx_queues;
4460 	}
4461 	igb_write_rss_indir_tbl(adapter);
4462 
4463 	/* Disable raw packet checksumming so that RSS hash is placed in
4464 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4465 	 * offloads as they are enabled by default
4466 	 */
4467 	rxcsum = rd32(E1000_RXCSUM);
4468 	rxcsum |= E1000_RXCSUM_PCSD;
4469 
4470 	if (adapter->hw.mac.type >= e1000_82576)
4471 		/* Enable Receive Checksum Offload for SCTP */
4472 		rxcsum |= E1000_RXCSUM_CRCOFL;
4473 
4474 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4475 	wr32(E1000_RXCSUM, rxcsum);
4476 
4477 	/* Generate RSS hash based on packet types, TCP/UDP
4478 	 * port numbers and/or IPv4/v6 src and dst addresses
4479 	 */
4480 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4481 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4482 	       E1000_MRQC_RSS_FIELD_IPV6 |
4483 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4484 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4485 
4486 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4487 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4488 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4489 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4490 
4491 	/* If VMDq is enabled then we set the appropriate mode for that, else
4492 	 * we default to RSS so that an RSS hash is calculated per packet even
4493 	 * if we are only using one queue
4494 	 */
4495 	if (adapter->vfs_allocated_count) {
4496 		if (hw->mac.type > e1000_82575) {
4497 			/* Set the default pool for the PF's first queue */
4498 			u32 vtctl = rd32(E1000_VT_CTL);
4499 
4500 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4501 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4502 			vtctl |= adapter->vfs_allocated_count <<
4503 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4504 			wr32(E1000_VT_CTL, vtctl);
4505 		}
4506 		if (adapter->rss_queues > 1)
4507 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4508 		else
4509 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4510 	} else {
4511 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4512 	}
4513 	igb_vmm_control(adapter);
4514 
4515 	wr32(E1000_MRQC, mrqc);
4516 }
4517 
4518 /**
4519  *  igb_setup_rctl - configure the receive control registers
4520  *  @adapter: Board private structure
4521  **/
4522 void igb_setup_rctl(struct igb_adapter *adapter)
4523 {
4524 	struct e1000_hw *hw = &adapter->hw;
4525 	u32 rctl;
4526 
4527 	rctl = rd32(E1000_RCTL);
4528 
4529 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4530 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4531 
4532 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4533 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4534 
4535 	/* enable stripping of CRC. It's unlikely this will break BMC
4536 	 * redirection as it did with e1000. Newer features require
4537 	 * that the HW strips the CRC.
4538 	 */
4539 	rctl |= E1000_RCTL_SECRC;
4540 
4541 	/* disable store bad packets and clear size bits. */
4542 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4543 
4544 	/* enable LPE to allow for reception of jumbo frames */
4545 	rctl |= E1000_RCTL_LPE;
4546 
4547 	/* disable queue 0 to prevent tail write w/o re-config */
4548 	wr32(E1000_RXDCTL(0), 0);
4549 
4550 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4551 	 * queue drop for all VF and PF queues to prevent head of line blocking
4552 	 * if an un-trusted VF does not provide descriptors to hardware.
4553 	 */
4554 	if (adapter->vfs_allocated_count) {
4555 		/* set all queue drop enable bits */
4556 		wr32(E1000_QDE, ALL_QUEUES);
4557 	}
4558 
4559 	/* This is useful for sniffing bad packets. */
4560 	if (adapter->netdev->features & NETIF_F_RXALL) {
4561 		/* UPE and MPE will be handled by normal PROMISC logic
4562 		 * in e1000e_set_rx_mode
4563 		 */
4564 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4565 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4566 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4567 
4568 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4569 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4570 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4571 		 * and that breaks VLANs.
4572 		 */
4573 	}
4574 
4575 	wr32(E1000_RCTL, rctl);
4576 }
4577 
4578 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4579 				   int vfn)
4580 {
4581 	struct e1000_hw *hw = &adapter->hw;
4582 	u32 vmolr;
4583 
4584 	if (size > MAX_JUMBO_FRAME_SIZE)
4585 		size = MAX_JUMBO_FRAME_SIZE;
4586 
4587 	vmolr = rd32(E1000_VMOLR(vfn));
4588 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4589 	vmolr |= size | E1000_VMOLR_LPE;
4590 	wr32(E1000_VMOLR(vfn), vmolr);
4591 
4592 	return 0;
4593 }
4594 
4595 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4596 					 int vfn, bool enable)
4597 {
4598 	struct e1000_hw *hw = &adapter->hw;
4599 	u32 val, reg;
4600 
4601 	if (hw->mac.type < e1000_82576)
4602 		return;
4603 
4604 	if (hw->mac.type == e1000_i350)
4605 		reg = E1000_DVMOLR(vfn);
4606 	else
4607 		reg = E1000_VMOLR(vfn);
4608 
4609 	val = rd32(reg);
4610 	if (enable)
4611 		val |= E1000_VMOLR_STRVLAN;
4612 	else
4613 		val &= ~(E1000_VMOLR_STRVLAN);
4614 	wr32(reg, val);
4615 }
4616 
4617 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4618 				 int vfn, bool aupe)
4619 {
4620 	struct e1000_hw *hw = &adapter->hw;
4621 	u32 vmolr;
4622 
4623 	/* This register exists only on 82576 and newer so if we are older then
4624 	 * we should exit and do nothing
4625 	 */
4626 	if (hw->mac.type < e1000_82576)
4627 		return;
4628 
4629 	vmolr = rd32(E1000_VMOLR(vfn));
4630 	if (aupe)
4631 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4632 	else
4633 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4634 
4635 	/* clear all bits that might not be set */
4636 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4637 
4638 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4639 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4640 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4641 	 * multicast packets
4642 	 */
4643 	if (vfn <= adapter->vfs_allocated_count)
4644 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4645 
4646 	wr32(E1000_VMOLR(vfn), vmolr);
4647 }
4648 
4649 /**
4650  *  igb_setup_srrctl - configure the split and replication receive control
4651  *                     registers
4652  *  @adapter: Board private structure
4653  *  @ring: receive ring to be configured
4654  **/
4655 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4656 {
4657 	struct e1000_hw *hw = &adapter->hw;
4658 	int reg_idx = ring->reg_idx;
4659 	u32 srrctl = 0;
4660 
4661 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4662 	if (ring_uses_large_buffer(ring))
4663 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4664 	else
4665 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4666 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4667 	if (hw->mac.type >= e1000_82580)
4668 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4669 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4670 	 * queues and rx flow control is disabled
4671 	 */
4672 	if (adapter->vfs_allocated_count ||
4673 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4674 	     adapter->num_rx_queues > 1))
4675 		srrctl |= E1000_SRRCTL_DROP_EN;
4676 
4677 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4678 }
4679 
4680 /**
4681  *  igb_configure_rx_ring - Configure a receive ring after Reset
4682  *  @adapter: board private structure
4683  *  @ring: receive ring to be configured
4684  *
4685  *  Configure the Rx unit of the MAC after a reset.
4686  **/
4687 void igb_configure_rx_ring(struct igb_adapter *adapter,
4688 			   struct igb_ring *ring)
4689 {
4690 	struct e1000_hw *hw = &adapter->hw;
4691 	union e1000_adv_rx_desc *rx_desc;
4692 	u64 rdba = ring->dma;
4693 	int reg_idx = ring->reg_idx;
4694 	u32 rxdctl = 0;
4695 
4696 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4697 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4698 					   MEM_TYPE_PAGE_SHARED, NULL));
4699 
4700 	/* disable the queue */
4701 	wr32(E1000_RXDCTL(reg_idx), 0);
4702 
4703 	/* Set DMA base address registers */
4704 	wr32(E1000_RDBAL(reg_idx),
4705 	     rdba & 0x00000000ffffffffULL);
4706 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4707 	wr32(E1000_RDLEN(reg_idx),
4708 	     ring->count * sizeof(union e1000_adv_rx_desc));
4709 
4710 	/* initialize head and tail */
4711 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4712 	wr32(E1000_RDH(reg_idx), 0);
4713 	writel(0, ring->tail);
4714 
4715 	/* set descriptor configuration */
4716 	igb_setup_srrctl(adapter, ring);
4717 
4718 	/* set filtering for VMDQ pools */
4719 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4720 
4721 	rxdctl |= IGB_RX_PTHRESH;
4722 	rxdctl |= IGB_RX_HTHRESH << 8;
4723 	rxdctl |= IGB_RX_WTHRESH << 16;
4724 
4725 	/* initialize rx_buffer_info */
4726 	memset(ring->rx_buffer_info, 0,
4727 	       sizeof(struct igb_rx_buffer) * ring->count);
4728 
4729 	/* initialize Rx descriptor 0 */
4730 	rx_desc = IGB_RX_DESC(ring, 0);
4731 	rx_desc->wb.upper.length = 0;
4732 
4733 	/* enable receive descriptor fetching */
4734 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4735 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4736 }
4737 
4738 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4739 				  struct igb_ring *rx_ring)
4740 {
4741 	/* set build_skb and buffer size flags */
4742 	clear_ring_build_skb_enabled(rx_ring);
4743 	clear_ring_uses_large_buffer(rx_ring);
4744 
4745 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4746 		return;
4747 
4748 	set_ring_build_skb_enabled(rx_ring);
4749 
4750 #if (PAGE_SIZE < 8192)
4751 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4752 		return;
4753 
4754 	set_ring_uses_large_buffer(rx_ring);
4755 #endif
4756 }
4757 
4758 /**
4759  *  igb_configure_rx - Configure receive Unit after Reset
4760  *  @adapter: board private structure
4761  *
4762  *  Configure the Rx unit of the MAC after a reset.
4763  **/
4764 static void igb_configure_rx(struct igb_adapter *adapter)
4765 {
4766 	int i;
4767 
4768 	/* set the correct pool for the PF default MAC address in entry 0 */
4769 	igb_set_default_mac_filter(adapter);
4770 
4771 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4772 	 * the Base and Length of the Rx Descriptor Ring
4773 	 */
4774 	for (i = 0; i < adapter->num_rx_queues; i++) {
4775 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4776 
4777 		igb_set_rx_buffer_len(adapter, rx_ring);
4778 		igb_configure_rx_ring(adapter, rx_ring);
4779 	}
4780 }
4781 
4782 /**
4783  *  igb_free_tx_resources - Free Tx Resources per Queue
4784  *  @tx_ring: Tx descriptor ring for a specific queue
4785  *
4786  *  Free all transmit software resources
4787  **/
4788 void igb_free_tx_resources(struct igb_ring *tx_ring)
4789 {
4790 	igb_clean_tx_ring(tx_ring);
4791 
4792 	vfree(tx_ring->tx_buffer_info);
4793 	tx_ring->tx_buffer_info = NULL;
4794 
4795 	/* if not set, then don't free */
4796 	if (!tx_ring->desc)
4797 		return;
4798 
4799 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4800 			  tx_ring->desc, tx_ring->dma);
4801 
4802 	tx_ring->desc = NULL;
4803 }
4804 
4805 /**
4806  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4807  *  @adapter: board private structure
4808  *
4809  *  Free all transmit software resources
4810  **/
4811 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4812 {
4813 	int i;
4814 
4815 	for (i = 0; i < adapter->num_tx_queues; i++)
4816 		if (adapter->tx_ring[i])
4817 			igb_free_tx_resources(adapter->tx_ring[i]);
4818 }
4819 
4820 /**
4821  *  igb_clean_tx_ring - Free Tx Buffers
4822  *  @tx_ring: ring to be cleaned
4823  **/
4824 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4825 {
4826 	u16 i = tx_ring->next_to_clean;
4827 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4828 
4829 	while (i != tx_ring->next_to_use) {
4830 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4831 
4832 		/* Free all the Tx ring sk_buffs or xdp frames */
4833 		if (tx_buffer->type == IGB_TYPE_SKB)
4834 			dev_kfree_skb_any(tx_buffer->skb);
4835 		else
4836 			xdp_return_frame(tx_buffer->xdpf);
4837 
4838 		/* unmap skb header data */
4839 		dma_unmap_single(tx_ring->dev,
4840 				 dma_unmap_addr(tx_buffer, dma),
4841 				 dma_unmap_len(tx_buffer, len),
4842 				 DMA_TO_DEVICE);
4843 
4844 		/* check for eop_desc to determine the end of the packet */
4845 		eop_desc = tx_buffer->next_to_watch;
4846 		tx_desc = IGB_TX_DESC(tx_ring, i);
4847 
4848 		/* unmap remaining buffers */
4849 		while (tx_desc != eop_desc) {
4850 			tx_buffer++;
4851 			tx_desc++;
4852 			i++;
4853 			if (unlikely(i == tx_ring->count)) {
4854 				i = 0;
4855 				tx_buffer = tx_ring->tx_buffer_info;
4856 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4857 			}
4858 
4859 			/* unmap any remaining paged data */
4860 			if (dma_unmap_len(tx_buffer, len))
4861 				dma_unmap_page(tx_ring->dev,
4862 					       dma_unmap_addr(tx_buffer, dma),
4863 					       dma_unmap_len(tx_buffer, len),
4864 					       DMA_TO_DEVICE);
4865 		}
4866 
4867 		tx_buffer->next_to_watch = NULL;
4868 
4869 		/* move us one more past the eop_desc for start of next pkt */
4870 		tx_buffer++;
4871 		i++;
4872 		if (unlikely(i == tx_ring->count)) {
4873 			i = 0;
4874 			tx_buffer = tx_ring->tx_buffer_info;
4875 		}
4876 	}
4877 
4878 	/* reset BQL for queue */
4879 	netdev_tx_reset_queue(txring_txq(tx_ring));
4880 
4881 	/* reset next_to_use and next_to_clean */
4882 	tx_ring->next_to_use = 0;
4883 	tx_ring->next_to_clean = 0;
4884 }
4885 
4886 /**
4887  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4888  *  @adapter: board private structure
4889  **/
4890 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4891 {
4892 	int i;
4893 
4894 	for (i = 0; i < adapter->num_tx_queues; i++)
4895 		if (adapter->tx_ring[i])
4896 			igb_clean_tx_ring(adapter->tx_ring[i]);
4897 }
4898 
4899 /**
4900  *  igb_free_rx_resources - Free Rx Resources
4901  *  @rx_ring: ring to clean the resources from
4902  *
4903  *  Free all receive software resources
4904  **/
4905 void igb_free_rx_resources(struct igb_ring *rx_ring)
4906 {
4907 	igb_clean_rx_ring(rx_ring);
4908 
4909 	rx_ring->xdp_prog = NULL;
4910 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4911 	vfree(rx_ring->rx_buffer_info);
4912 	rx_ring->rx_buffer_info = NULL;
4913 
4914 	/* if not set, then don't free */
4915 	if (!rx_ring->desc)
4916 		return;
4917 
4918 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4919 			  rx_ring->desc, rx_ring->dma);
4920 
4921 	rx_ring->desc = NULL;
4922 }
4923 
4924 /**
4925  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4926  *  @adapter: board private structure
4927  *
4928  *  Free all receive software resources
4929  **/
4930 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4931 {
4932 	int i;
4933 
4934 	for (i = 0; i < adapter->num_rx_queues; i++)
4935 		if (adapter->rx_ring[i])
4936 			igb_free_rx_resources(adapter->rx_ring[i]);
4937 }
4938 
4939 /**
4940  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4941  *  @rx_ring: ring to free buffers from
4942  **/
4943 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4944 {
4945 	u16 i = rx_ring->next_to_clean;
4946 
4947 	dev_kfree_skb(rx_ring->skb);
4948 	rx_ring->skb = NULL;
4949 
4950 	/* Free all the Rx ring sk_buffs */
4951 	while (i != rx_ring->next_to_alloc) {
4952 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4953 
4954 		/* Invalidate cache lines that may have been written to by
4955 		 * device so that we avoid corrupting memory.
4956 		 */
4957 		dma_sync_single_range_for_cpu(rx_ring->dev,
4958 					      buffer_info->dma,
4959 					      buffer_info->page_offset,
4960 					      igb_rx_bufsz(rx_ring),
4961 					      DMA_FROM_DEVICE);
4962 
4963 		/* free resources associated with mapping */
4964 		dma_unmap_page_attrs(rx_ring->dev,
4965 				     buffer_info->dma,
4966 				     igb_rx_pg_size(rx_ring),
4967 				     DMA_FROM_DEVICE,
4968 				     IGB_RX_DMA_ATTR);
4969 		__page_frag_cache_drain(buffer_info->page,
4970 					buffer_info->pagecnt_bias);
4971 
4972 		i++;
4973 		if (i == rx_ring->count)
4974 			i = 0;
4975 	}
4976 
4977 	rx_ring->next_to_alloc = 0;
4978 	rx_ring->next_to_clean = 0;
4979 	rx_ring->next_to_use = 0;
4980 }
4981 
4982 /**
4983  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4984  *  @adapter: board private structure
4985  **/
4986 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4987 {
4988 	int i;
4989 
4990 	for (i = 0; i < adapter->num_rx_queues; i++)
4991 		if (adapter->rx_ring[i])
4992 			igb_clean_rx_ring(adapter->rx_ring[i]);
4993 }
4994 
4995 /**
4996  *  igb_set_mac - Change the Ethernet Address of the NIC
4997  *  @netdev: network interface device structure
4998  *  @p: pointer to an address structure
4999  *
5000  *  Returns 0 on success, negative on failure
5001  **/
5002 static int igb_set_mac(struct net_device *netdev, void *p)
5003 {
5004 	struct igb_adapter *adapter = netdev_priv(netdev);
5005 	struct e1000_hw *hw = &adapter->hw;
5006 	struct sockaddr *addr = p;
5007 
5008 	if (!is_valid_ether_addr(addr->sa_data))
5009 		return -EADDRNOTAVAIL;
5010 
5011 	eth_hw_addr_set(netdev, addr->sa_data);
5012 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5013 
5014 	/* set the correct pool for the new PF MAC address in entry 0 */
5015 	igb_set_default_mac_filter(adapter);
5016 
5017 	return 0;
5018 }
5019 
5020 /**
5021  *  igb_write_mc_addr_list - write multicast addresses to MTA
5022  *  @netdev: network interface device structure
5023  *
5024  *  Writes multicast address list to the MTA hash table.
5025  *  Returns: -ENOMEM on failure
5026  *           0 on no addresses written
5027  *           X on writing X addresses to MTA
5028  **/
5029 static int igb_write_mc_addr_list(struct net_device *netdev)
5030 {
5031 	struct igb_adapter *adapter = netdev_priv(netdev);
5032 	struct e1000_hw *hw = &adapter->hw;
5033 	struct netdev_hw_addr *ha;
5034 	u8  *mta_list;
5035 	int i;
5036 
5037 	if (netdev_mc_empty(netdev)) {
5038 		/* nothing to program, so clear mc list */
5039 		igb_update_mc_addr_list(hw, NULL, 0);
5040 		igb_restore_vf_multicasts(adapter);
5041 		return 0;
5042 	}
5043 
5044 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5045 	if (!mta_list)
5046 		return -ENOMEM;
5047 
5048 	/* The shared function expects a packed array of only addresses. */
5049 	i = 0;
5050 	netdev_for_each_mc_addr(ha, netdev)
5051 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5052 
5053 	igb_update_mc_addr_list(hw, mta_list, i);
5054 	kfree(mta_list);
5055 
5056 	return netdev_mc_count(netdev);
5057 }
5058 
5059 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5060 {
5061 	struct e1000_hw *hw = &adapter->hw;
5062 	u32 i, pf_id;
5063 
5064 	switch (hw->mac.type) {
5065 	case e1000_i210:
5066 	case e1000_i211:
5067 	case e1000_i350:
5068 		/* VLAN filtering needed for VLAN prio filter */
5069 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5070 			break;
5071 		fallthrough;
5072 	case e1000_82576:
5073 	case e1000_82580:
5074 	case e1000_i354:
5075 		/* VLAN filtering needed for pool filtering */
5076 		if (adapter->vfs_allocated_count)
5077 			break;
5078 		fallthrough;
5079 	default:
5080 		return 1;
5081 	}
5082 
5083 	/* We are already in VLAN promisc, nothing to do */
5084 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5085 		return 0;
5086 
5087 	if (!adapter->vfs_allocated_count)
5088 		goto set_vfta;
5089 
5090 	/* Add PF to all active pools */
5091 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5092 
5093 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5094 		u32 vlvf = rd32(E1000_VLVF(i));
5095 
5096 		vlvf |= BIT(pf_id);
5097 		wr32(E1000_VLVF(i), vlvf);
5098 	}
5099 
5100 set_vfta:
5101 	/* Set all bits in the VLAN filter table array */
5102 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5103 		hw->mac.ops.write_vfta(hw, i, ~0U);
5104 
5105 	/* Set flag so we don't redo unnecessary work */
5106 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5107 
5108 	return 0;
5109 }
5110 
5111 #define VFTA_BLOCK_SIZE 8
5112 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5113 {
5114 	struct e1000_hw *hw = &adapter->hw;
5115 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5116 	u32 vid_start = vfta_offset * 32;
5117 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5118 	u32 i, vid, word, bits, pf_id;
5119 
5120 	/* guarantee that we don't scrub out management VLAN */
5121 	vid = adapter->mng_vlan_id;
5122 	if (vid >= vid_start && vid < vid_end)
5123 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5124 
5125 	if (!adapter->vfs_allocated_count)
5126 		goto set_vfta;
5127 
5128 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5129 
5130 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5131 		u32 vlvf = rd32(E1000_VLVF(i));
5132 
5133 		/* pull VLAN ID from VLVF */
5134 		vid = vlvf & VLAN_VID_MASK;
5135 
5136 		/* only concern ourselves with a certain range */
5137 		if (vid < vid_start || vid >= vid_end)
5138 			continue;
5139 
5140 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5141 			/* record VLAN ID in VFTA */
5142 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5143 
5144 			/* if PF is part of this then continue */
5145 			if (test_bit(vid, adapter->active_vlans))
5146 				continue;
5147 		}
5148 
5149 		/* remove PF from the pool */
5150 		bits = ~BIT(pf_id);
5151 		bits &= rd32(E1000_VLVF(i));
5152 		wr32(E1000_VLVF(i), bits);
5153 	}
5154 
5155 set_vfta:
5156 	/* extract values from active_vlans and write back to VFTA */
5157 	for (i = VFTA_BLOCK_SIZE; i--;) {
5158 		vid = (vfta_offset + i) * 32;
5159 		word = vid / BITS_PER_LONG;
5160 		bits = vid % BITS_PER_LONG;
5161 
5162 		vfta[i] |= adapter->active_vlans[word] >> bits;
5163 
5164 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5165 	}
5166 }
5167 
5168 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5169 {
5170 	u32 i;
5171 
5172 	/* We are not in VLAN promisc, nothing to do */
5173 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5174 		return;
5175 
5176 	/* Set flag so we don't redo unnecessary work */
5177 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5178 
5179 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5180 		igb_scrub_vfta(adapter, i);
5181 }
5182 
5183 /**
5184  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5185  *  @netdev: network interface device structure
5186  *
5187  *  The set_rx_mode entry point is called whenever the unicast or multicast
5188  *  address lists or the network interface flags are updated.  This routine is
5189  *  responsible for configuring the hardware for proper unicast, multicast,
5190  *  promiscuous mode, and all-multi behavior.
5191  **/
5192 static void igb_set_rx_mode(struct net_device *netdev)
5193 {
5194 	struct igb_adapter *adapter = netdev_priv(netdev);
5195 	struct e1000_hw *hw = &adapter->hw;
5196 	unsigned int vfn = adapter->vfs_allocated_count;
5197 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5198 	int count;
5199 
5200 	/* Check for Promiscuous and All Multicast modes */
5201 	if (netdev->flags & IFF_PROMISC) {
5202 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5203 		vmolr |= E1000_VMOLR_MPME;
5204 
5205 		/* enable use of UTA filter to force packets to default pool */
5206 		if (hw->mac.type == e1000_82576)
5207 			vmolr |= E1000_VMOLR_ROPE;
5208 	} else {
5209 		if (netdev->flags & IFF_ALLMULTI) {
5210 			rctl |= E1000_RCTL_MPE;
5211 			vmolr |= E1000_VMOLR_MPME;
5212 		} else {
5213 			/* Write addresses to the MTA, if the attempt fails
5214 			 * then we should just turn on promiscuous mode so
5215 			 * that we can at least receive multicast traffic
5216 			 */
5217 			count = igb_write_mc_addr_list(netdev);
5218 			if (count < 0) {
5219 				rctl |= E1000_RCTL_MPE;
5220 				vmolr |= E1000_VMOLR_MPME;
5221 			} else if (count) {
5222 				vmolr |= E1000_VMOLR_ROMPE;
5223 			}
5224 		}
5225 	}
5226 
5227 	/* Write addresses to available RAR registers, if there is not
5228 	 * sufficient space to store all the addresses then enable
5229 	 * unicast promiscuous mode
5230 	 */
5231 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5232 		rctl |= E1000_RCTL_UPE;
5233 		vmolr |= E1000_VMOLR_ROPE;
5234 	}
5235 
5236 	/* enable VLAN filtering by default */
5237 	rctl |= E1000_RCTL_VFE;
5238 
5239 	/* disable VLAN filtering for modes that require it */
5240 	if ((netdev->flags & IFF_PROMISC) ||
5241 	    (netdev->features & NETIF_F_RXALL)) {
5242 		/* if we fail to set all rules then just clear VFE */
5243 		if (igb_vlan_promisc_enable(adapter))
5244 			rctl &= ~E1000_RCTL_VFE;
5245 	} else {
5246 		igb_vlan_promisc_disable(adapter);
5247 	}
5248 
5249 	/* update state of unicast, multicast, and VLAN filtering modes */
5250 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5251 				     E1000_RCTL_VFE);
5252 	wr32(E1000_RCTL, rctl);
5253 
5254 #if (PAGE_SIZE < 8192)
5255 	if (!adapter->vfs_allocated_count) {
5256 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5257 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5258 	}
5259 #endif
5260 	wr32(E1000_RLPML, rlpml);
5261 
5262 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5263 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5264 	 * we will have issues with VLAN tag stripping not being done for frames
5265 	 * that are only arriving because we are the default pool
5266 	 */
5267 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5268 		return;
5269 
5270 	/* set UTA to appropriate mode */
5271 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5272 
5273 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5274 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5275 
5276 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5277 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5278 #if (PAGE_SIZE < 8192)
5279 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5280 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5281 	else
5282 #endif
5283 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5284 	vmolr |= E1000_VMOLR_LPE;
5285 
5286 	wr32(E1000_VMOLR(vfn), vmolr);
5287 
5288 	igb_restore_vf_multicasts(adapter);
5289 }
5290 
5291 static void igb_check_wvbr(struct igb_adapter *adapter)
5292 {
5293 	struct e1000_hw *hw = &adapter->hw;
5294 	u32 wvbr = 0;
5295 
5296 	switch (hw->mac.type) {
5297 	case e1000_82576:
5298 	case e1000_i350:
5299 		wvbr = rd32(E1000_WVBR);
5300 		if (!wvbr)
5301 			return;
5302 		break;
5303 	default:
5304 		break;
5305 	}
5306 
5307 	adapter->wvbr |= wvbr;
5308 }
5309 
5310 #define IGB_STAGGERED_QUEUE_OFFSET 8
5311 
5312 static void igb_spoof_check(struct igb_adapter *adapter)
5313 {
5314 	int j;
5315 
5316 	if (!adapter->wvbr)
5317 		return;
5318 
5319 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5320 		if (adapter->wvbr & BIT(j) ||
5321 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5322 			dev_warn(&adapter->pdev->dev,
5323 				"Spoof event(s) detected on VF %d\n", j);
5324 			adapter->wvbr &=
5325 				~(BIT(j) |
5326 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5327 		}
5328 	}
5329 }
5330 
5331 /* Need to wait a few seconds after link up to get diagnostic information from
5332  * the phy
5333  */
5334 static void igb_update_phy_info(struct timer_list *t)
5335 {
5336 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5337 	igb_get_phy_info(&adapter->hw);
5338 }
5339 
5340 /**
5341  *  igb_has_link - check shared code for link and determine up/down
5342  *  @adapter: pointer to driver private info
5343  **/
5344 bool igb_has_link(struct igb_adapter *adapter)
5345 {
5346 	struct e1000_hw *hw = &adapter->hw;
5347 	bool link_active = false;
5348 
5349 	/* get_link_status is set on LSC (link status) interrupt or
5350 	 * rx sequence error interrupt.  get_link_status will stay
5351 	 * false until the e1000_check_for_link establishes link
5352 	 * for copper adapters ONLY
5353 	 */
5354 	switch (hw->phy.media_type) {
5355 	case e1000_media_type_copper:
5356 		if (!hw->mac.get_link_status)
5357 			return true;
5358 		fallthrough;
5359 	case e1000_media_type_internal_serdes:
5360 		hw->mac.ops.check_for_link(hw);
5361 		link_active = !hw->mac.get_link_status;
5362 		break;
5363 	default:
5364 	case e1000_media_type_unknown:
5365 		break;
5366 	}
5367 
5368 	if (((hw->mac.type == e1000_i210) ||
5369 	     (hw->mac.type == e1000_i211)) &&
5370 	     (hw->phy.id == I210_I_PHY_ID)) {
5371 		if (!netif_carrier_ok(adapter->netdev)) {
5372 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5373 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5374 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5375 			adapter->link_check_timeout = jiffies;
5376 		}
5377 	}
5378 
5379 	return link_active;
5380 }
5381 
5382 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5383 {
5384 	bool ret = false;
5385 	u32 ctrl_ext, thstat;
5386 
5387 	/* check for thermal sensor event on i350 copper only */
5388 	if (hw->mac.type == e1000_i350) {
5389 		thstat = rd32(E1000_THSTAT);
5390 		ctrl_ext = rd32(E1000_CTRL_EXT);
5391 
5392 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5393 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5394 			ret = !!(thstat & event);
5395 	}
5396 
5397 	return ret;
5398 }
5399 
5400 /**
5401  *  igb_check_lvmmc - check for malformed packets received
5402  *  and indicated in LVMMC register
5403  *  @adapter: pointer to adapter
5404  **/
5405 static void igb_check_lvmmc(struct igb_adapter *adapter)
5406 {
5407 	struct e1000_hw *hw = &adapter->hw;
5408 	u32 lvmmc;
5409 
5410 	lvmmc = rd32(E1000_LVMMC);
5411 	if (lvmmc) {
5412 		if (unlikely(net_ratelimit())) {
5413 			netdev_warn(adapter->netdev,
5414 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5415 				    lvmmc);
5416 		}
5417 	}
5418 }
5419 
5420 /**
5421  *  igb_watchdog - Timer Call-back
5422  *  @t: pointer to timer_list containing our private info pointer
5423  **/
5424 static void igb_watchdog(struct timer_list *t)
5425 {
5426 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5427 	/* Do the rest outside of interrupt context */
5428 	schedule_work(&adapter->watchdog_task);
5429 }
5430 
5431 static void igb_watchdog_task(struct work_struct *work)
5432 {
5433 	struct igb_adapter *adapter = container_of(work,
5434 						   struct igb_adapter,
5435 						   watchdog_task);
5436 	struct e1000_hw *hw = &adapter->hw;
5437 	struct e1000_phy_info *phy = &hw->phy;
5438 	struct net_device *netdev = adapter->netdev;
5439 	u32 link;
5440 	int i;
5441 	u32 connsw;
5442 	u16 phy_data, retry_count = 20;
5443 
5444 	link = igb_has_link(adapter);
5445 
5446 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5447 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5448 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5449 		else
5450 			link = false;
5451 	}
5452 
5453 	/* Force link down if we have fiber to swap to */
5454 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5455 		if (hw->phy.media_type == e1000_media_type_copper) {
5456 			connsw = rd32(E1000_CONNSW);
5457 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5458 				link = 0;
5459 		}
5460 	}
5461 	if (link) {
5462 		/* Perform a reset if the media type changed. */
5463 		if (hw->dev_spec._82575.media_changed) {
5464 			hw->dev_spec._82575.media_changed = false;
5465 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5466 			igb_reset(adapter);
5467 		}
5468 		/* Cancel scheduled suspend requests. */
5469 		pm_runtime_resume(netdev->dev.parent);
5470 
5471 		if (!netif_carrier_ok(netdev)) {
5472 			u32 ctrl;
5473 
5474 			hw->mac.ops.get_speed_and_duplex(hw,
5475 							 &adapter->link_speed,
5476 							 &adapter->link_duplex);
5477 
5478 			ctrl = rd32(E1000_CTRL);
5479 			/* Links status message must follow this format */
5480 			netdev_info(netdev,
5481 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5482 			       netdev->name,
5483 			       adapter->link_speed,
5484 			       adapter->link_duplex == FULL_DUPLEX ?
5485 			       "Full" : "Half",
5486 			       (ctrl & E1000_CTRL_TFCE) &&
5487 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5488 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5489 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5490 
5491 			/* disable EEE if enabled */
5492 			if ((adapter->flags & IGB_FLAG_EEE) &&
5493 				(adapter->link_duplex == HALF_DUPLEX)) {
5494 				dev_info(&adapter->pdev->dev,
5495 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5496 				adapter->hw.dev_spec._82575.eee_disable = true;
5497 				adapter->flags &= ~IGB_FLAG_EEE;
5498 			}
5499 
5500 			/* check if SmartSpeed worked */
5501 			igb_check_downshift(hw);
5502 			if (phy->speed_downgraded)
5503 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5504 
5505 			/* check for thermal sensor event */
5506 			if (igb_thermal_sensor_event(hw,
5507 			    E1000_THSTAT_LINK_THROTTLE))
5508 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5509 
5510 			/* adjust timeout factor according to speed/duplex */
5511 			adapter->tx_timeout_factor = 1;
5512 			switch (adapter->link_speed) {
5513 			case SPEED_10:
5514 				adapter->tx_timeout_factor = 14;
5515 				break;
5516 			case SPEED_100:
5517 				/* maybe add some timeout factor ? */
5518 				break;
5519 			}
5520 
5521 			if (adapter->link_speed != SPEED_1000 ||
5522 			    !hw->phy.ops.read_reg)
5523 				goto no_wait;
5524 
5525 			/* wait for Remote receiver status OK */
5526 retry_read_status:
5527 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5528 					      &phy_data)) {
5529 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5530 				    retry_count) {
5531 					msleep(100);
5532 					retry_count--;
5533 					goto retry_read_status;
5534 				} else if (!retry_count) {
5535 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5536 				}
5537 			} else {
5538 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5539 			}
5540 no_wait:
5541 			netif_carrier_on(netdev);
5542 
5543 			igb_ping_all_vfs(adapter);
5544 			igb_check_vf_rate_limit(adapter);
5545 
5546 			/* link state has changed, schedule phy info update */
5547 			if (!test_bit(__IGB_DOWN, &adapter->state))
5548 				mod_timer(&adapter->phy_info_timer,
5549 					  round_jiffies(jiffies + 2 * HZ));
5550 		}
5551 	} else {
5552 		if (netif_carrier_ok(netdev)) {
5553 			adapter->link_speed = 0;
5554 			adapter->link_duplex = 0;
5555 
5556 			/* check for thermal sensor event */
5557 			if (igb_thermal_sensor_event(hw,
5558 			    E1000_THSTAT_PWR_DOWN)) {
5559 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5560 			}
5561 
5562 			/* Links status message must follow this format */
5563 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5564 			       netdev->name);
5565 			netif_carrier_off(netdev);
5566 
5567 			igb_ping_all_vfs(adapter);
5568 
5569 			/* link state has changed, schedule phy info update */
5570 			if (!test_bit(__IGB_DOWN, &adapter->state))
5571 				mod_timer(&adapter->phy_info_timer,
5572 					  round_jiffies(jiffies + 2 * HZ));
5573 
5574 			/* link is down, time to check for alternate media */
5575 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5576 				igb_check_swap_media(adapter);
5577 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5578 					schedule_work(&adapter->reset_task);
5579 					/* return immediately */
5580 					return;
5581 				}
5582 			}
5583 			pm_schedule_suspend(netdev->dev.parent,
5584 					    MSEC_PER_SEC * 5);
5585 
5586 		/* also check for alternate media here */
5587 		} else if (!netif_carrier_ok(netdev) &&
5588 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5589 			igb_check_swap_media(adapter);
5590 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5591 				schedule_work(&adapter->reset_task);
5592 				/* return immediately */
5593 				return;
5594 			}
5595 		}
5596 	}
5597 
5598 	spin_lock(&adapter->stats64_lock);
5599 	igb_update_stats(adapter);
5600 	spin_unlock(&adapter->stats64_lock);
5601 
5602 	for (i = 0; i < adapter->num_tx_queues; i++) {
5603 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5604 		if (!netif_carrier_ok(netdev)) {
5605 			/* We've lost link, so the controller stops DMA,
5606 			 * but we've got queued Tx work that's never going
5607 			 * to get done, so reset controller to flush Tx.
5608 			 * (Do the reset outside of interrupt context).
5609 			 */
5610 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5611 				adapter->tx_timeout_count++;
5612 				schedule_work(&adapter->reset_task);
5613 				/* return immediately since reset is imminent */
5614 				return;
5615 			}
5616 		}
5617 
5618 		/* Force detection of hung controller every watchdog period */
5619 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5620 	}
5621 
5622 	/* Cause software interrupt to ensure Rx ring is cleaned */
5623 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5624 		u32 eics = 0;
5625 
5626 		for (i = 0; i < adapter->num_q_vectors; i++)
5627 			eics |= adapter->q_vector[i]->eims_value;
5628 		wr32(E1000_EICS, eics);
5629 	} else {
5630 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5631 	}
5632 
5633 	igb_spoof_check(adapter);
5634 	igb_ptp_rx_hang(adapter);
5635 	igb_ptp_tx_hang(adapter);
5636 
5637 	/* Check LVMMC register on i350/i354 only */
5638 	if ((adapter->hw.mac.type == e1000_i350) ||
5639 	    (adapter->hw.mac.type == e1000_i354))
5640 		igb_check_lvmmc(adapter);
5641 
5642 	/* Reset the timer */
5643 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5644 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5645 			mod_timer(&adapter->watchdog_timer,
5646 				  round_jiffies(jiffies +  HZ));
5647 		else
5648 			mod_timer(&adapter->watchdog_timer,
5649 				  round_jiffies(jiffies + 2 * HZ));
5650 	}
5651 }
5652 
5653 enum latency_range {
5654 	lowest_latency = 0,
5655 	low_latency = 1,
5656 	bulk_latency = 2,
5657 	latency_invalid = 255
5658 };
5659 
5660 /**
5661  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5662  *  @q_vector: pointer to q_vector
5663  *
5664  *  Stores a new ITR value based on strictly on packet size.  This
5665  *  algorithm is less sophisticated than that used in igb_update_itr,
5666  *  due to the difficulty of synchronizing statistics across multiple
5667  *  receive rings.  The divisors and thresholds used by this function
5668  *  were determined based on theoretical maximum wire speed and testing
5669  *  data, in order to minimize response time while increasing bulk
5670  *  throughput.
5671  *  This functionality is controlled by ethtool's coalescing settings.
5672  *  NOTE:  This function is called only when operating in a multiqueue
5673  *         receive environment.
5674  **/
5675 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5676 {
5677 	int new_val = q_vector->itr_val;
5678 	int avg_wire_size = 0;
5679 	struct igb_adapter *adapter = q_vector->adapter;
5680 	unsigned int packets;
5681 
5682 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5683 	 * ints/sec - ITR timer value of 120 ticks.
5684 	 */
5685 	if (adapter->link_speed != SPEED_1000) {
5686 		new_val = IGB_4K_ITR;
5687 		goto set_itr_val;
5688 	}
5689 
5690 	packets = q_vector->rx.total_packets;
5691 	if (packets)
5692 		avg_wire_size = q_vector->rx.total_bytes / packets;
5693 
5694 	packets = q_vector->tx.total_packets;
5695 	if (packets)
5696 		avg_wire_size = max_t(u32, avg_wire_size,
5697 				      q_vector->tx.total_bytes / packets);
5698 
5699 	/* if avg_wire_size isn't set no work was done */
5700 	if (!avg_wire_size)
5701 		goto clear_counts;
5702 
5703 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5704 	avg_wire_size += 24;
5705 
5706 	/* Don't starve jumbo frames */
5707 	avg_wire_size = min(avg_wire_size, 3000);
5708 
5709 	/* Give a little boost to mid-size frames */
5710 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5711 		new_val = avg_wire_size / 3;
5712 	else
5713 		new_val = avg_wire_size / 2;
5714 
5715 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5716 	if (new_val < IGB_20K_ITR &&
5717 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5718 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5719 		new_val = IGB_20K_ITR;
5720 
5721 set_itr_val:
5722 	if (new_val != q_vector->itr_val) {
5723 		q_vector->itr_val = new_val;
5724 		q_vector->set_itr = 1;
5725 	}
5726 clear_counts:
5727 	q_vector->rx.total_bytes = 0;
5728 	q_vector->rx.total_packets = 0;
5729 	q_vector->tx.total_bytes = 0;
5730 	q_vector->tx.total_packets = 0;
5731 }
5732 
5733 /**
5734  *  igb_update_itr - update the dynamic ITR value based on statistics
5735  *  @q_vector: pointer to q_vector
5736  *  @ring_container: ring info to update the itr for
5737  *
5738  *  Stores a new ITR value based on packets and byte
5739  *  counts during the last interrupt.  The advantage of per interrupt
5740  *  computation is faster updates and more accurate ITR for the current
5741  *  traffic pattern.  Constants in this function were computed
5742  *  based on theoretical maximum wire speed and thresholds were set based
5743  *  on testing data as well as attempting to minimize response time
5744  *  while increasing bulk throughput.
5745  *  This functionality is controlled by ethtool's coalescing settings.
5746  *  NOTE:  These calculations are only valid when operating in a single-
5747  *         queue environment.
5748  **/
5749 static void igb_update_itr(struct igb_q_vector *q_vector,
5750 			   struct igb_ring_container *ring_container)
5751 {
5752 	unsigned int packets = ring_container->total_packets;
5753 	unsigned int bytes = ring_container->total_bytes;
5754 	u8 itrval = ring_container->itr;
5755 
5756 	/* no packets, exit with status unchanged */
5757 	if (packets == 0)
5758 		return;
5759 
5760 	switch (itrval) {
5761 	case lowest_latency:
5762 		/* handle TSO and jumbo frames */
5763 		if (bytes/packets > 8000)
5764 			itrval = bulk_latency;
5765 		else if ((packets < 5) && (bytes > 512))
5766 			itrval = low_latency;
5767 		break;
5768 	case low_latency:  /* 50 usec aka 20000 ints/s */
5769 		if (bytes > 10000) {
5770 			/* this if handles the TSO accounting */
5771 			if (bytes/packets > 8000)
5772 				itrval = bulk_latency;
5773 			else if ((packets < 10) || ((bytes/packets) > 1200))
5774 				itrval = bulk_latency;
5775 			else if ((packets > 35))
5776 				itrval = lowest_latency;
5777 		} else if (bytes/packets > 2000) {
5778 			itrval = bulk_latency;
5779 		} else if (packets <= 2 && bytes < 512) {
5780 			itrval = lowest_latency;
5781 		}
5782 		break;
5783 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5784 		if (bytes > 25000) {
5785 			if (packets > 35)
5786 				itrval = low_latency;
5787 		} else if (bytes < 1500) {
5788 			itrval = low_latency;
5789 		}
5790 		break;
5791 	}
5792 
5793 	/* clear work counters since we have the values we need */
5794 	ring_container->total_bytes = 0;
5795 	ring_container->total_packets = 0;
5796 
5797 	/* write updated itr to ring container */
5798 	ring_container->itr = itrval;
5799 }
5800 
5801 static void igb_set_itr(struct igb_q_vector *q_vector)
5802 {
5803 	struct igb_adapter *adapter = q_vector->adapter;
5804 	u32 new_itr = q_vector->itr_val;
5805 	u8 current_itr = 0;
5806 
5807 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5808 	if (adapter->link_speed != SPEED_1000) {
5809 		current_itr = 0;
5810 		new_itr = IGB_4K_ITR;
5811 		goto set_itr_now;
5812 	}
5813 
5814 	igb_update_itr(q_vector, &q_vector->tx);
5815 	igb_update_itr(q_vector, &q_vector->rx);
5816 
5817 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5818 
5819 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5820 	if (current_itr == lowest_latency &&
5821 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5822 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5823 		current_itr = low_latency;
5824 
5825 	switch (current_itr) {
5826 	/* counts and packets in update_itr are dependent on these numbers */
5827 	case lowest_latency:
5828 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5829 		break;
5830 	case low_latency:
5831 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5832 		break;
5833 	case bulk_latency:
5834 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5835 		break;
5836 	default:
5837 		break;
5838 	}
5839 
5840 set_itr_now:
5841 	if (new_itr != q_vector->itr_val) {
5842 		/* this attempts to bias the interrupt rate towards Bulk
5843 		 * by adding intermediate steps when interrupt rate is
5844 		 * increasing
5845 		 */
5846 		new_itr = new_itr > q_vector->itr_val ?
5847 			  max((new_itr * q_vector->itr_val) /
5848 			  (new_itr + (q_vector->itr_val >> 2)),
5849 			  new_itr) : new_itr;
5850 		/* Don't write the value here; it resets the adapter's
5851 		 * internal timer, and causes us to delay far longer than
5852 		 * we should between interrupts.  Instead, we write the ITR
5853 		 * value at the beginning of the next interrupt so the timing
5854 		 * ends up being correct.
5855 		 */
5856 		q_vector->itr_val = new_itr;
5857 		q_vector->set_itr = 1;
5858 	}
5859 }
5860 
5861 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5862 			    struct igb_tx_buffer *first,
5863 			    u32 vlan_macip_lens, u32 type_tucmd,
5864 			    u32 mss_l4len_idx)
5865 {
5866 	struct e1000_adv_tx_context_desc *context_desc;
5867 	u16 i = tx_ring->next_to_use;
5868 	struct timespec64 ts;
5869 
5870 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5871 
5872 	i++;
5873 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5874 
5875 	/* set bits to identify this as an advanced context descriptor */
5876 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5877 
5878 	/* For 82575, context index must be unique per ring. */
5879 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5880 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5881 
5882 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5883 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5884 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5885 
5886 	/* We assume there is always a valid tx time available. Invalid times
5887 	 * should have been handled by the upper layers.
5888 	 */
5889 	if (tx_ring->launchtime_enable) {
5890 		ts = ktime_to_timespec64(first->skb->tstamp);
5891 		skb_txtime_consumed(first->skb);
5892 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5893 	} else {
5894 		context_desc->seqnum_seed = 0;
5895 	}
5896 }
5897 
5898 static int igb_tso(struct igb_ring *tx_ring,
5899 		   struct igb_tx_buffer *first,
5900 		   u8 *hdr_len)
5901 {
5902 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5903 	struct sk_buff *skb = first->skb;
5904 	union {
5905 		struct iphdr *v4;
5906 		struct ipv6hdr *v6;
5907 		unsigned char *hdr;
5908 	} ip;
5909 	union {
5910 		struct tcphdr *tcp;
5911 		struct udphdr *udp;
5912 		unsigned char *hdr;
5913 	} l4;
5914 	u32 paylen, l4_offset;
5915 	int err;
5916 
5917 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5918 		return 0;
5919 
5920 	if (!skb_is_gso(skb))
5921 		return 0;
5922 
5923 	err = skb_cow_head(skb, 0);
5924 	if (err < 0)
5925 		return err;
5926 
5927 	ip.hdr = skb_network_header(skb);
5928 	l4.hdr = skb_checksum_start(skb);
5929 
5930 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5931 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5932 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5933 
5934 	/* initialize outer IP header fields */
5935 	if (ip.v4->version == 4) {
5936 		unsigned char *csum_start = skb_checksum_start(skb);
5937 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5938 
5939 		/* IP header will have to cancel out any data that
5940 		 * is not a part of the outer IP header
5941 		 */
5942 		ip.v4->check = csum_fold(csum_partial(trans_start,
5943 						      csum_start - trans_start,
5944 						      0));
5945 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5946 
5947 		ip.v4->tot_len = 0;
5948 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5949 				   IGB_TX_FLAGS_CSUM |
5950 				   IGB_TX_FLAGS_IPV4;
5951 	} else {
5952 		ip.v6->payload_len = 0;
5953 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5954 				   IGB_TX_FLAGS_CSUM;
5955 	}
5956 
5957 	/* determine offset of inner transport header */
5958 	l4_offset = l4.hdr - skb->data;
5959 
5960 	/* remove payload length from inner checksum */
5961 	paylen = skb->len - l4_offset;
5962 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5963 		/* compute length of segmentation header */
5964 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5965 		csum_replace_by_diff(&l4.tcp->check,
5966 			(__force __wsum)htonl(paylen));
5967 	} else {
5968 		/* compute length of segmentation header */
5969 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5970 		csum_replace_by_diff(&l4.udp->check,
5971 				     (__force __wsum)htonl(paylen));
5972 	}
5973 
5974 	/* update gso size and bytecount with header size */
5975 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5976 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5977 
5978 	/* MSS L4LEN IDX */
5979 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5980 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5981 
5982 	/* VLAN MACLEN IPLEN */
5983 	vlan_macip_lens = l4.hdr - ip.hdr;
5984 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5985 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5986 
5987 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5988 			type_tucmd, mss_l4len_idx);
5989 
5990 	return 1;
5991 }
5992 
5993 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5994 {
5995 	struct sk_buff *skb = first->skb;
5996 	u32 vlan_macip_lens = 0;
5997 	u32 type_tucmd = 0;
5998 
5999 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6000 csum_failed:
6001 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6002 		    !tx_ring->launchtime_enable)
6003 			return;
6004 		goto no_csum;
6005 	}
6006 
6007 	switch (skb->csum_offset) {
6008 	case offsetof(struct tcphdr, check):
6009 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6010 		fallthrough;
6011 	case offsetof(struct udphdr, check):
6012 		break;
6013 	case offsetof(struct sctphdr, checksum):
6014 		/* validate that this is actually an SCTP request */
6015 		if (skb_csum_is_sctp(skb)) {
6016 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6017 			break;
6018 		}
6019 		fallthrough;
6020 	default:
6021 		skb_checksum_help(skb);
6022 		goto csum_failed;
6023 	}
6024 
6025 	/* update TX checksum flag */
6026 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6027 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6028 			  skb_network_offset(skb);
6029 no_csum:
6030 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6031 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6032 
6033 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6034 }
6035 
6036 #define IGB_SET_FLAG(_input, _flag, _result) \
6037 	((_flag <= _result) ? \
6038 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6039 	 ((u32)(_input & _flag) / (_flag / _result)))
6040 
6041 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6042 {
6043 	/* set type for advanced descriptor with frame checksum insertion */
6044 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6045 		       E1000_ADVTXD_DCMD_DEXT |
6046 		       E1000_ADVTXD_DCMD_IFCS;
6047 
6048 	/* set HW vlan bit if vlan is present */
6049 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6050 				 (E1000_ADVTXD_DCMD_VLE));
6051 
6052 	/* set segmentation bits for TSO */
6053 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6054 				 (E1000_ADVTXD_DCMD_TSE));
6055 
6056 	/* set timestamp bit if present */
6057 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6058 				 (E1000_ADVTXD_MAC_TSTAMP));
6059 
6060 	/* insert frame checksum */
6061 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6062 
6063 	return cmd_type;
6064 }
6065 
6066 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6067 				 union e1000_adv_tx_desc *tx_desc,
6068 				 u32 tx_flags, unsigned int paylen)
6069 {
6070 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6071 
6072 	/* 82575 requires a unique index per ring */
6073 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6074 		olinfo_status |= tx_ring->reg_idx << 4;
6075 
6076 	/* insert L4 checksum */
6077 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6078 				      IGB_TX_FLAGS_CSUM,
6079 				      (E1000_TXD_POPTS_TXSM << 8));
6080 
6081 	/* insert IPv4 checksum */
6082 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6083 				      IGB_TX_FLAGS_IPV4,
6084 				      (E1000_TXD_POPTS_IXSM << 8));
6085 
6086 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6087 }
6088 
6089 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6090 {
6091 	struct net_device *netdev = tx_ring->netdev;
6092 
6093 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6094 
6095 	/* Herbert's original patch had:
6096 	 *  smp_mb__after_netif_stop_queue();
6097 	 * but since that doesn't exist yet, just open code it.
6098 	 */
6099 	smp_mb();
6100 
6101 	/* We need to check again in a case another CPU has just
6102 	 * made room available.
6103 	 */
6104 	if (igb_desc_unused(tx_ring) < size)
6105 		return -EBUSY;
6106 
6107 	/* A reprieve! */
6108 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6109 
6110 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6111 	tx_ring->tx_stats.restart_queue2++;
6112 	u64_stats_update_end(&tx_ring->tx_syncp2);
6113 
6114 	return 0;
6115 }
6116 
6117 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6118 {
6119 	if (igb_desc_unused(tx_ring) >= size)
6120 		return 0;
6121 	return __igb_maybe_stop_tx(tx_ring, size);
6122 }
6123 
6124 static int igb_tx_map(struct igb_ring *tx_ring,
6125 		      struct igb_tx_buffer *first,
6126 		      const u8 hdr_len)
6127 {
6128 	struct sk_buff *skb = first->skb;
6129 	struct igb_tx_buffer *tx_buffer;
6130 	union e1000_adv_tx_desc *tx_desc;
6131 	skb_frag_t *frag;
6132 	dma_addr_t dma;
6133 	unsigned int data_len, size;
6134 	u32 tx_flags = first->tx_flags;
6135 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6136 	u16 i = tx_ring->next_to_use;
6137 
6138 	tx_desc = IGB_TX_DESC(tx_ring, i);
6139 
6140 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6141 
6142 	size = skb_headlen(skb);
6143 	data_len = skb->data_len;
6144 
6145 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6146 
6147 	tx_buffer = first;
6148 
6149 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6150 		if (dma_mapping_error(tx_ring->dev, dma))
6151 			goto dma_error;
6152 
6153 		/* record length, and DMA address */
6154 		dma_unmap_len_set(tx_buffer, len, size);
6155 		dma_unmap_addr_set(tx_buffer, dma, dma);
6156 
6157 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6158 
6159 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6160 			tx_desc->read.cmd_type_len =
6161 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6162 
6163 			i++;
6164 			tx_desc++;
6165 			if (i == tx_ring->count) {
6166 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6167 				i = 0;
6168 			}
6169 			tx_desc->read.olinfo_status = 0;
6170 
6171 			dma += IGB_MAX_DATA_PER_TXD;
6172 			size -= IGB_MAX_DATA_PER_TXD;
6173 
6174 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6175 		}
6176 
6177 		if (likely(!data_len))
6178 			break;
6179 
6180 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6181 
6182 		i++;
6183 		tx_desc++;
6184 		if (i == tx_ring->count) {
6185 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6186 			i = 0;
6187 		}
6188 		tx_desc->read.olinfo_status = 0;
6189 
6190 		size = skb_frag_size(frag);
6191 		data_len -= size;
6192 
6193 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6194 				       size, DMA_TO_DEVICE);
6195 
6196 		tx_buffer = &tx_ring->tx_buffer_info[i];
6197 	}
6198 
6199 	/* write last descriptor with RS and EOP bits */
6200 	cmd_type |= size | IGB_TXD_DCMD;
6201 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6202 
6203 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6204 
6205 	/* set the timestamp */
6206 	first->time_stamp = jiffies;
6207 
6208 	skb_tx_timestamp(skb);
6209 
6210 	/* Force memory writes to complete before letting h/w know there
6211 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6212 	 * memory model archs, such as IA-64).
6213 	 *
6214 	 * We also need this memory barrier to make certain all of the
6215 	 * status bits have been updated before next_to_watch is written.
6216 	 */
6217 	dma_wmb();
6218 
6219 	/* set next_to_watch value indicating a packet is present */
6220 	first->next_to_watch = tx_desc;
6221 
6222 	i++;
6223 	if (i == tx_ring->count)
6224 		i = 0;
6225 
6226 	tx_ring->next_to_use = i;
6227 
6228 	/* Make sure there is space in the ring for the next send. */
6229 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6230 
6231 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6232 		writel(i, tx_ring->tail);
6233 	}
6234 	return 0;
6235 
6236 dma_error:
6237 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6238 	tx_buffer = &tx_ring->tx_buffer_info[i];
6239 
6240 	/* clear dma mappings for failed tx_buffer_info map */
6241 	while (tx_buffer != first) {
6242 		if (dma_unmap_len(tx_buffer, len))
6243 			dma_unmap_page(tx_ring->dev,
6244 				       dma_unmap_addr(tx_buffer, dma),
6245 				       dma_unmap_len(tx_buffer, len),
6246 				       DMA_TO_DEVICE);
6247 		dma_unmap_len_set(tx_buffer, len, 0);
6248 
6249 		if (i-- == 0)
6250 			i += tx_ring->count;
6251 		tx_buffer = &tx_ring->tx_buffer_info[i];
6252 	}
6253 
6254 	if (dma_unmap_len(tx_buffer, len))
6255 		dma_unmap_single(tx_ring->dev,
6256 				 dma_unmap_addr(tx_buffer, dma),
6257 				 dma_unmap_len(tx_buffer, len),
6258 				 DMA_TO_DEVICE);
6259 	dma_unmap_len_set(tx_buffer, len, 0);
6260 
6261 	dev_kfree_skb_any(tx_buffer->skb);
6262 	tx_buffer->skb = NULL;
6263 
6264 	tx_ring->next_to_use = i;
6265 
6266 	return -1;
6267 }
6268 
6269 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6270 		      struct igb_ring *tx_ring,
6271 		      struct xdp_frame *xdpf)
6272 {
6273 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6274 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6275 	u16 count, i, index = tx_ring->next_to_use;
6276 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6277 	struct igb_tx_buffer *tx_buffer = tx_head;
6278 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6279 	u32 len = xdpf->len, cmd_type, olinfo_status;
6280 	void *data = xdpf->data;
6281 
6282 	count = TXD_USE_COUNT(len);
6283 	for (i = 0; i < nr_frags; i++)
6284 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6285 
6286 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6287 		return IGB_XDP_CONSUMED;
6288 
6289 	i = 0;
6290 	/* record the location of the first descriptor for this packet */
6291 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6292 	tx_head->type = IGB_TYPE_XDP;
6293 	tx_head->gso_segs = 1;
6294 	tx_head->xdpf = xdpf;
6295 
6296 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6297 	/* 82575 requires a unique index per ring */
6298 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6299 		olinfo_status |= tx_ring->reg_idx << 4;
6300 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6301 
6302 	for (;;) {
6303 		dma_addr_t dma;
6304 
6305 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6306 		if (dma_mapping_error(tx_ring->dev, dma))
6307 			goto unmap;
6308 
6309 		/* record length, and DMA address */
6310 		dma_unmap_len_set(tx_buffer, len, len);
6311 		dma_unmap_addr_set(tx_buffer, dma, dma);
6312 
6313 		/* put descriptor type bits */
6314 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6315 			   E1000_ADVTXD_DCMD_IFCS | len;
6316 
6317 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6318 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6319 
6320 		tx_buffer->protocol = 0;
6321 
6322 		if (++index == tx_ring->count)
6323 			index = 0;
6324 
6325 		if (i == nr_frags)
6326 			break;
6327 
6328 		tx_buffer = &tx_ring->tx_buffer_info[index];
6329 		tx_desc = IGB_TX_DESC(tx_ring, index);
6330 		tx_desc->read.olinfo_status = 0;
6331 
6332 		data = skb_frag_address(&sinfo->frags[i]);
6333 		len = skb_frag_size(&sinfo->frags[i]);
6334 		i++;
6335 	}
6336 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6337 
6338 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6339 	/* set the timestamp */
6340 	tx_head->time_stamp = jiffies;
6341 
6342 	/* Avoid any potential race with xdp_xmit and cleanup */
6343 	smp_wmb();
6344 
6345 	/* set next_to_watch value indicating a packet is present */
6346 	tx_head->next_to_watch = tx_desc;
6347 	tx_ring->next_to_use = index;
6348 
6349 	/* Make sure there is space in the ring for the next send. */
6350 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6351 
6352 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6353 		writel(index, tx_ring->tail);
6354 
6355 	return IGB_XDP_TX;
6356 
6357 unmap:
6358 	for (;;) {
6359 		tx_buffer = &tx_ring->tx_buffer_info[index];
6360 		if (dma_unmap_len(tx_buffer, len))
6361 			dma_unmap_page(tx_ring->dev,
6362 				       dma_unmap_addr(tx_buffer, dma),
6363 				       dma_unmap_len(tx_buffer, len),
6364 				       DMA_TO_DEVICE);
6365 		dma_unmap_len_set(tx_buffer, len, 0);
6366 		if (tx_buffer == tx_head)
6367 			break;
6368 
6369 		if (!index)
6370 			index += tx_ring->count;
6371 		index--;
6372 	}
6373 
6374 	return IGB_XDP_CONSUMED;
6375 }
6376 
6377 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6378 				struct igb_ring *tx_ring)
6379 {
6380 	struct igb_tx_buffer *first;
6381 	int tso;
6382 	u32 tx_flags = 0;
6383 	unsigned short f;
6384 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6385 	__be16 protocol = vlan_get_protocol(skb);
6386 	u8 hdr_len = 0;
6387 
6388 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6389 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6390 	 *       + 2 desc gap to keep tail from touching head,
6391 	 *       + 1 desc for context descriptor,
6392 	 * otherwise try next time
6393 	 */
6394 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6395 		count += TXD_USE_COUNT(skb_frag_size(
6396 						&skb_shinfo(skb)->frags[f]));
6397 
6398 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6399 		/* this is a hard error */
6400 		return NETDEV_TX_BUSY;
6401 	}
6402 
6403 	/* record the location of the first descriptor for this packet */
6404 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6405 	first->type = IGB_TYPE_SKB;
6406 	first->skb = skb;
6407 	first->bytecount = skb->len;
6408 	first->gso_segs = 1;
6409 
6410 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6411 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6412 
6413 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6414 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6415 					   &adapter->state)) {
6416 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6417 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6418 
6419 			adapter->ptp_tx_skb = skb_get(skb);
6420 			adapter->ptp_tx_start = jiffies;
6421 			if (adapter->hw.mac.type == e1000_82576)
6422 				schedule_work(&adapter->ptp_tx_work);
6423 		} else {
6424 			adapter->tx_hwtstamp_skipped++;
6425 		}
6426 	}
6427 
6428 	if (skb_vlan_tag_present(skb)) {
6429 		tx_flags |= IGB_TX_FLAGS_VLAN;
6430 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6431 	}
6432 
6433 	/* record initial flags and protocol */
6434 	first->tx_flags = tx_flags;
6435 	first->protocol = protocol;
6436 
6437 	tso = igb_tso(tx_ring, first, &hdr_len);
6438 	if (tso < 0)
6439 		goto out_drop;
6440 	else if (!tso)
6441 		igb_tx_csum(tx_ring, first);
6442 
6443 	if (igb_tx_map(tx_ring, first, hdr_len))
6444 		goto cleanup_tx_tstamp;
6445 
6446 	return NETDEV_TX_OK;
6447 
6448 out_drop:
6449 	dev_kfree_skb_any(first->skb);
6450 	first->skb = NULL;
6451 cleanup_tx_tstamp:
6452 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6453 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6454 
6455 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6456 		adapter->ptp_tx_skb = NULL;
6457 		if (adapter->hw.mac.type == e1000_82576)
6458 			cancel_work_sync(&adapter->ptp_tx_work);
6459 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6460 	}
6461 
6462 	return NETDEV_TX_OK;
6463 }
6464 
6465 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6466 						    struct sk_buff *skb)
6467 {
6468 	unsigned int r_idx = skb->queue_mapping;
6469 
6470 	if (r_idx >= adapter->num_tx_queues)
6471 		r_idx = r_idx % adapter->num_tx_queues;
6472 
6473 	return adapter->tx_ring[r_idx];
6474 }
6475 
6476 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6477 				  struct net_device *netdev)
6478 {
6479 	struct igb_adapter *adapter = netdev_priv(netdev);
6480 
6481 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6482 	 * in order to meet this minimum size requirement.
6483 	 */
6484 	if (skb_put_padto(skb, 17))
6485 		return NETDEV_TX_OK;
6486 
6487 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6488 }
6489 
6490 /**
6491  *  igb_tx_timeout - Respond to a Tx Hang
6492  *  @netdev: network interface device structure
6493  *  @txqueue: number of the Tx queue that hung (unused)
6494  **/
6495 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6496 {
6497 	struct igb_adapter *adapter = netdev_priv(netdev);
6498 	struct e1000_hw *hw = &adapter->hw;
6499 
6500 	/* Do the reset outside of interrupt context */
6501 	adapter->tx_timeout_count++;
6502 
6503 	if (hw->mac.type >= e1000_82580)
6504 		hw->dev_spec._82575.global_device_reset = true;
6505 
6506 	schedule_work(&adapter->reset_task);
6507 	wr32(E1000_EICS,
6508 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6509 }
6510 
6511 static void igb_reset_task(struct work_struct *work)
6512 {
6513 	struct igb_adapter *adapter;
6514 	adapter = container_of(work, struct igb_adapter, reset_task);
6515 
6516 	rtnl_lock();
6517 	/* If we're already down or resetting, just bail */
6518 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6519 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6520 		rtnl_unlock();
6521 		return;
6522 	}
6523 
6524 	igb_dump(adapter);
6525 	netdev_err(adapter->netdev, "Reset adapter\n");
6526 	igb_reinit_locked(adapter);
6527 	rtnl_unlock();
6528 }
6529 
6530 /**
6531  *  igb_get_stats64 - Get System Network Statistics
6532  *  @netdev: network interface device structure
6533  *  @stats: rtnl_link_stats64 pointer
6534  **/
6535 static void igb_get_stats64(struct net_device *netdev,
6536 			    struct rtnl_link_stats64 *stats)
6537 {
6538 	struct igb_adapter *adapter = netdev_priv(netdev);
6539 
6540 	spin_lock(&adapter->stats64_lock);
6541 	igb_update_stats(adapter);
6542 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6543 	spin_unlock(&adapter->stats64_lock);
6544 }
6545 
6546 /**
6547  *  igb_change_mtu - Change the Maximum Transfer Unit
6548  *  @netdev: network interface device structure
6549  *  @new_mtu: new value for maximum frame size
6550  *
6551  *  Returns 0 on success, negative on failure
6552  **/
6553 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6554 {
6555 	struct igb_adapter *adapter = netdev_priv(netdev);
6556 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6557 
6558 	if (adapter->xdp_prog) {
6559 		int i;
6560 
6561 		for (i = 0; i < adapter->num_rx_queues; i++) {
6562 			struct igb_ring *ring = adapter->rx_ring[i];
6563 
6564 			if (max_frame > igb_rx_bufsz(ring)) {
6565 				netdev_warn(adapter->netdev,
6566 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6567 					    max_frame);
6568 				return -EINVAL;
6569 			}
6570 		}
6571 	}
6572 
6573 	/* adjust max frame to be at least the size of a standard frame */
6574 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6575 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6576 
6577 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6578 		usleep_range(1000, 2000);
6579 
6580 	/* igb_down has a dependency on max_frame_size */
6581 	adapter->max_frame_size = max_frame;
6582 
6583 	if (netif_running(netdev))
6584 		igb_down(adapter);
6585 
6586 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6587 		   netdev->mtu, new_mtu);
6588 	netdev->mtu = new_mtu;
6589 
6590 	if (netif_running(netdev))
6591 		igb_up(adapter);
6592 	else
6593 		igb_reset(adapter);
6594 
6595 	clear_bit(__IGB_RESETTING, &adapter->state);
6596 
6597 	return 0;
6598 }
6599 
6600 /**
6601  *  igb_update_stats - Update the board statistics counters
6602  *  @adapter: board private structure
6603  **/
6604 void igb_update_stats(struct igb_adapter *adapter)
6605 {
6606 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6607 	struct e1000_hw *hw = &adapter->hw;
6608 	struct pci_dev *pdev = adapter->pdev;
6609 	u32 reg, mpc;
6610 	int i;
6611 	u64 bytes, packets;
6612 	unsigned int start;
6613 	u64 _bytes, _packets;
6614 
6615 	/* Prevent stats update while adapter is being reset, or if the pci
6616 	 * connection is down.
6617 	 */
6618 	if (adapter->link_speed == 0)
6619 		return;
6620 	if (pci_channel_offline(pdev))
6621 		return;
6622 
6623 	bytes = 0;
6624 	packets = 0;
6625 
6626 	rcu_read_lock();
6627 	for (i = 0; i < adapter->num_rx_queues; i++) {
6628 		struct igb_ring *ring = adapter->rx_ring[i];
6629 		u32 rqdpc = rd32(E1000_RQDPC(i));
6630 		if (hw->mac.type >= e1000_i210)
6631 			wr32(E1000_RQDPC(i), 0);
6632 
6633 		if (rqdpc) {
6634 			ring->rx_stats.drops += rqdpc;
6635 			net_stats->rx_fifo_errors += rqdpc;
6636 		}
6637 
6638 		do {
6639 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6640 			_bytes = ring->rx_stats.bytes;
6641 			_packets = ring->rx_stats.packets;
6642 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6643 		bytes += _bytes;
6644 		packets += _packets;
6645 	}
6646 
6647 	net_stats->rx_bytes = bytes;
6648 	net_stats->rx_packets = packets;
6649 
6650 	bytes = 0;
6651 	packets = 0;
6652 	for (i = 0; i < adapter->num_tx_queues; i++) {
6653 		struct igb_ring *ring = adapter->tx_ring[i];
6654 		do {
6655 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6656 			_bytes = ring->tx_stats.bytes;
6657 			_packets = ring->tx_stats.packets;
6658 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6659 		bytes += _bytes;
6660 		packets += _packets;
6661 	}
6662 	net_stats->tx_bytes = bytes;
6663 	net_stats->tx_packets = packets;
6664 	rcu_read_unlock();
6665 
6666 	/* read stats registers */
6667 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6668 	adapter->stats.gprc += rd32(E1000_GPRC);
6669 	adapter->stats.gorc += rd32(E1000_GORCL);
6670 	rd32(E1000_GORCH); /* clear GORCL */
6671 	adapter->stats.bprc += rd32(E1000_BPRC);
6672 	adapter->stats.mprc += rd32(E1000_MPRC);
6673 	adapter->stats.roc += rd32(E1000_ROC);
6674 
6675 	adapter->stats.prc64 += rd32(E1000_PRC64);
6676 	adapter->stats.prc127 += rd32(E1000_PRC127);
6677 	adapter->stats.prc255 += rd32(E1000_PRC255);
6678 	adapter->stats.prc511 += rd32(E1000_PRC511);
6679 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6680 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6681 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6682 	adapter->stats.sec += rd32(E1000_SEC);
6683 
6684 	mpc = rd32(E1000_MPC);
6685 	adapter->stats.mpc += mpc;
6686 	net_stats->rx_fifo_errors += mpc;
6687 	adapter->stats.scc += rd32(E1000_SCC);
6688 	adapter->stats.ecol += rd32(E1000_ECOL);
6689 	adapter->stats.mcc += rd32(E1000_MCC);
6690 	adapter->stats.latecol += rd32(E1000_LATECOL);
6691 	adapter->stats.dc += rd32(E1000_DC);
6692 	adapter->stats.rlec += rd32(E1000_RLEC);
6693 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6694 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6695 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6696 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6697 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6698 	adapter->stats.gptc += rd32(E1000_GPTC);
6699 	adapter->stats.gotc += rd32(E1000_GOTCL);
6700 	rd32(E1000_GOTCH); /* clear GOTCL */
6701 	adapter->stats.rnbc += rd32(E1000_RNBC);
6702 	adapter->stats.ruc += rd32(E1000_RUC);
6703 	adapter->stats.rfc += rd32(E1000_RFC);
6704 	adapter->stats.rjc += rd32(E1000_RJC);
6705 	adapter->stats.tor += rd32(E1000_TORH);
6706 	adapter->stats.tot += rd32(E1000_TOTH);
6707 	adapter->stats.tpr += rd32(E1000_TPR);
6708 
6709 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6710 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6711 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6712 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6713 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6714 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6715 
6716 	adapter->stats.mptc += rd32(E1000_MPTC);
6717 	adapter->stats.bptc += rd32(E1000_BPTC);
6718 
6719 	adapter->stats.tpt += rd32(E1000_TPT);
6720 	adapter->stats.colc += rd32(E1000_COLC);
6721 
6722 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6723 	/* read internal phy specific stats */
6724 	reg = rd32(E1000_CTRL_EXT);
6725 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6726 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6727 
6728 		/* this stat has invalid values on i210/i211 */
6729 		if ((hw->mac.type != e1000_i210) &&
6730 		    (hw->mac.type != e1000_i211))
6731 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6732 	}
6733 
6734 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6735 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6736 
6737 	adapter->stats.iac += rd32(E1000_IAC);
6738 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6739 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6740 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6741 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6742 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6743 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6744 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6745 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6746 
6747 	/* Fill out the OS statistics structure */
6748 	net_stats->multicast = adapter->stats.mprc;
6749 	net_stats->collisions = adapter->stats.colc;
6750 
6751 	/* Rx Errors */
6752 
6753 	/* RLEC on some newer hardware can be incorrect so build
6754 	 * our own version based on RUC and ROC
6755 	 */
6756 	net_stats->rx_errors = adapter->stats.rxerrc +
6757 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6758 		adapter->stats.ruc + adapter->stats.roc +
6759 		adapter->stats.cexterr;
6760 	net_stats->rx_length_errors = adapter->stats.ruc +
6761 				      adapter->stats.roc;
6762 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6763 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6764 	net_stats->rx_missed_errors = adapter->stats.mpc;
6765 
6766 	/* Tx Errors */
6767 	net_stats->tx_errors = adapter->stats.ecol +
6768 			       adapter->stats.latecol;
6769 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6770 	net_stats->tx_window_errors = adapter->stats.latecol;
6771 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6772 
6773 	/* Tx Dropped needs to be maintained elsewhere */
6774 
6775 	/* Management Stats */
6776 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6777 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6778 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6779 
6780 	/* OS2BMC Stats */
6781 	reg = rd32(E1000_MANC);
6782 	if (reg & E1000_MANC_EN_BMC2OS) {
6783 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6784 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6785 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6786 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6787 	}
6788 }
6789 
6790 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6791 {
6792 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6793 	struct e1000_hw *hw = &adapter->hw;
6794 	struct timespec64 ts;
6795 	u32 tsauxc;
6796 
6797 	if (pin < 0 || pin >= IGB_N_PEROUT)
6798 		return;
6799 
6800 	spin_lock(&adapter->tmreg_lock);
6801 
6802 	if (hw->mac.type == e1000_82580 ||
6803 	    hw->mac.type == e1000_i354 ||
6804 	    hw->mac.type == e1000_i350) {
6805 		s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6806 		u32 systiml, systimh, level_mask, level, rem;
6807 		u64 systim, now;
6808 
6809 		/* read systim registers in sequence */
6810 		rd32(E1000_SYSTIMR);
6811 		systiml = rd32(E1000_SYSTIML);
6812 		systimh = rd32(E1000_SYSTIMH);
6813 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6814 		now = timecounter_cyc2time(&adapter->tc, systim);
6815 
6816 		if (pin < 2) {
6817 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6818 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6819 		} else {
6820 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6821 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6822 		}
6823 
6824 		div_u64_rem(now, ns, &rem);
6825 		systim = systim + (ns - rem);
6826 
6827 		/* synchronize pin level with rising/falling edges */
6828 		div_u64_rem(now, ns << 1, &rem);
6829 		if (rem < ns) {
6830 			/* first half of period */
6831 			if (level == 0) {
6832 				/* output is already low, skip this period */
6833 				systim += ns;
6834 				pr_notice("igb: periodic output on %s missed falling edge\n",
6835 					  adapter->sdp_config[pin].name);
6836 			}
6837 		} else {
6838 			/* second half of period */
6839 			if (level == 1) {
6840 				/* output is already high, skip this period */
6841 				systim += ns;
6842 				pr_notice("igb: periodic output on %s missed rising edge\n",
6843 					  adapter->sdp_config[pin].name);
6844 			}
6845 		}
6846 
6847 		/* for this chip family tv_sec is the upper part of the binary value,
6848 		 * so not seconds
6849 		 */
6850 		ts.tv_nsec = (u32)systim;
6851 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6852 	} else {
6853 		ts = timespec64_add(adapter->perout[pin].start,
6854 				    adapter->perout[pin].period);
6855 	}
6856 
6857 	/* u32 conversion of tv_sec is safe until y2106 */
6858 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6859 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6860 	tsauxc = rd32(E1000_TSAUXC);
6861 	tsauxc |= TSAUXC_EN_TT0;
6862 	wr32(E1000_TSAUXC, tsauxc);
6863 	adapter->perout[pin].start = ts;
6864 
6865 	spin_unlock(&adapter->tmreg_lock);
6866 }
6867 
6868 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6869 {
6870 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6871 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6872 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6873 	struct e1000_hw *hw = &adapter->hw;
6874 	struct ptp_clock_event event;
6875 	struct timespec64 ts;
6876 
6877 	if (pin < 0 || pin >= IGB_N_EXTTS)
6878 		return;
6879 
6880 	if (hw->mac.type == e1000_82580 ||
6881 	    hw->mac.type == e1000_i354 ||
6882 	    hw->mac.type == e1000_i350) {
6883 		s64 ns = rd32(auxstmpl);
6884 
6885 		ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6886 		ts = ns_to_timespec64(ns);
6887 	} else {
6888 		ts.tv_nsec = rd32(auxstmpl);
6889 		ts.tv_sec  = rd32(auxstmph);
6890 	}
6891 
6892 	event.type = PTP_CLOCK_EXTTS;
6893 	event.index = tsintr_tt;
6894 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6895 	ptp_clock_event(adapter->ptp_clock, &event);
6896 }
6897 
6898 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6899 {
6900 	struct e1000_hw *hw = &adapter->hw;
6901 	u32 ack = 0, tsicr = rd32(E1000_TSICR);
6902 	struct ptp_clock_event event;
6903 
6904 	if (tsicr & TSINTR_SYS_WRAP) {
6905 		event.type = PTP_CLOCK_PPS;
6906 		if (adapter->ptp_caps.pps)
6907 			ptp_clock_event(adapter->ptp_clock, &event);
6908 		ack |= TSINTR_SYS_WRAP;
6909 	}
6910 
6911 	if (tsicr & E1000_TSICR_TXTS) {
6912 		/* retrieve hardware timestamp */
6913 		schedule_work(&adapter->ptp_tx_work);
6914 		ack |= E1000_TSICR_TXTS;
6915 	}
6916 
6917 	if (tsicr & TSINTR_TT0) {
6918 		igb_perout(adapter, 0);
6919 		ack |= TSINTR_TT0;
6920 	}
6921 
6922 	if (tsicr & TSINTR_TT1) {
6923 		igb_perout(adapter, 1);
6924 		ack |= TSINTR_TT1;
6925 	}
6926 
6927 	if (tsicr & TSINTR_AUTT0) {
6928 		igb_extts(adapter, 0);
6929 		ack |= TSINTR_AUTT0;
6930 	}
6931 
6932 	if (tsicr & TSINTR_AUTT1) {
6933 		igb_extts(adapter, 1);
6934 		ack |= TSINTR_AUTT1;
6935 	}
6936 
6937 	/* acknowledge the interrupts */
6938 	wr32(E1000_TSICR, ack);
6939 }
6940 
6941 static irqreturn_t igb_msix_other(int irq, void *data)
6942 {
6943 	struct igb_adapter *adapter = data;
6944 	struct e1000_hw *hw = &adapter->hw;
6945 	u32 icr = rd32(E1000_ICR);
6946 	/* reading ICR causes bit 31 of EICR to be cleared */
6947 
6948 	if (icr & E1000_ICR_DRSTA)
6949 		schedule_work(&adapter->reset_task);
6950 
6951 	if (icr & E1000_ICR_DOUTSYNC) {
6952 		/* HW is reporting DMA is out of sync */
6953 		adapter->stats.doosync++;
6954 		/* The DMA Out of Sync is also indication of a spoof event
6955 		 * in IOV mode. Check the Wrong VM Behavior register to
6956 		 * see if it is really a spoof event.
6957 		 */
6958 		igb_check_wvbr(adapter);
6959 	}
6960 
6961 	/* Check for a mailbox event */
6962 	if (icr & E1000_ICR_VMMB)
6963 		igb_msg_task(adapter);
6964 
6965 	if (icr & E1000_ICR_LSC) {
6966 		hw->mac.get_link_status = 1;
6967 		/* guard against interrupt when we're going down */
6968 		if (!test_bit(__IGB_DOWN, &adapter->state))
6969 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6970 	}
6971 
6972 	if (icr & E1000_ICR_TS)
6973 		igb_tsync_interrupt(adapter);
6974 
6975 	wr32(E1000_EIMS, adapter->eims_other);
6976 
6977 	return IRQ_HANDLED;
6978 }
6979 
6980 static void igb_write_itr(struct igb_q_vector *q_vector)
6981 {
6982 	struct igb_adapter *adapter = q_vector->adapter;
6983 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6984 
6985 	if (!q_vector->set_itr)
6986 		return;
6987 
6988 	if (!itr_val)
6989 		itr_val = 0x4;
6990 
6991 	if (adapter->hw.mac.type == e1000_82575)
6992 		itr_val |= itr_val << 16;
6993 	else
6994 		itr_val |= E1000_EITR_CNT_IGNR;
6995 
6996 	writel(itr_val, q_vector->itr_register);
6997 	q_vector->set_itr = 0;
6998 }
6999 
7000 static irqreturn_t igb_msix_ring(int irq, void *data)
7001 {
7002 	struct igb_q_vector *q_vector = data;
7003 
7004 	/* Write the ITR value calculated from the previous interrupt. */
7005 	igb_write_itr(q_vector);
7006 
7007 	napi_schedule(&q_vector->napi);
7008 
7009 	return IRQ_HANDLED;
7010 }
7011 
7012 #ifdef CONFIG_IGB_DCA
7013 static void igb_update_tx_dca(struct igb_adapter *adapter,
7014 			      struct igb_ring *tx_ring,
7015 			      int cpu)
7016 {
7017 	struct e1000_hw *hw = &adapter->hw;
7018 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7019 
7020 	if (hw->mac.type != e1000_82575)
7021 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7022 
7023 	/* We can enable relaxed ordering for reads, but not writes when
7024 	 * DCA is enabled.  This is due to a known issue in some chipsets
7025 	 * which will cause the DCA tag to be cleared.
7026 	 */
7027 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7028 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7029 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7030 
7031 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7032 }
7033 
7034 static void igb_update_rx_dca(struct igb_adapter *adapter,
7035 			      struct igb_ring *rx_ring,
7036 			      int cpu)
7037 {
7038 	struct e1000_hw *hw = &adapter->hw;
7039 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7040 
7041 	if (hw->mac.type != e1000_82575)
7042 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7043 
7044 	/* We can enable relaxed ordering for reads, but not writes when
7045 	 * DCA is enabled.  This is due to a known issue in some chipsets
7046 	 * which will cause the DCA tag to be cleared.
7047 	 */
7048 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7049 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7050 
7051 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7052 }
7053 
7054 static void igb_update_dca(struct igb_q_vector *q_vector)
7055 {
7056 	struct igb_adapter *adapter = q_vector->adapter;
7057 	int cpu = get_cpu();
7058 
7059 	if (q_vector->cpu == cpu)
7060 		goto out_no_update;
7061 
7062 	if (q_vector->tx.ring)
7063 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7064 
7065 	if (q_vector->rx.ring)
7066 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7067 
7068 	q_vector->cpu = cpu;
7069 out_no_update:
7070 	put_cpu();
7071 }
7072 
7073 static void igb_setup_dca(struct igb_adapter *adapter)
7074 {
7075 	struct e1000_hw *hw = &adapter->hw;
7076 	int i;
7077 
7078 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7079 		return;
7080 
7081 	/* Always use CB2 mode, difference is masked in the CB driver. */
7082 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7083 
7084 	for (i = 0; i < adapter->num_q_vectors; i++) {
7085 		adapter->q_vector[i]->cpu = -1;
7086 		igb_update_dca(adapter->q_vector[i]);
7087 	}
7088 }
7089 
7090 static int __igb_notify_dca(struct device *dev, void *data)
7091 {
7092 	struct net_device *netdev = dev_get_drvdata(dev);
7093 	struct igb_adapter *adapter = netdev_priv(netdev);
7094 	struct pci_dev *pdev = adapter->pdev;
7095 	struct e1000_hw *hw = &adapter->hw;
7096 	unsigned long event = *(unsigned long *)data;
7097 
7098 	switch (event) {
7099 	case DCA_PROVIDER_ADD:
7100 		/* if already enabled, don't do it again */
7101 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7102 			break;
7103 		if (dca_add_requester(dev) == 0) {
7104 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7105 			dev_info(&pdev->dev, "DCA enabled\n");
7106 			igb_setup_dca(adapter);
7107 			break;
7108 		}
7109 		fallthrough; /* since DCA is disabled. */
7110 	case DCA_PROVIDER_REMOVE:
7111 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7112 			/* without this a class_device is left
7113 			 * hanging around in the sysfs model
7114 			 */
7115 			dca_remove_requester(dev);
7116 			dev_info(&pdev->dev, "DCA disabled\n");
7117 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7118 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7119 		}
7120 		break;
7121 	}
7122 
7123 	return 0;
7124 }
7125 
7126 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7127 			  void *p)
7128 {
7129 	int ret_val;
7130 
7131 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7132 					 __igb_notify_dca);
7133 
7134 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7135 }
7136 #endif /* CONFIG_IGB_DCA */
7137 
7138 #ifdef CONFIG_PCI_IOV
7139 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7140 {
7141 	unsigned char mac_addr[ETH_ALEN];
7142 
7143 	eth_zero_addr(mac_addr);
7144 	igb_set_vf_mac(adapter, vf, mac_addr);
7145 
7146 	/* By default spoof check is enabled for all VFs */
7147 	adapter->vf_data[vf].spoofchk_enabled = true;
7148 
7149 	/* By default VFs are not trusted */
7150 	adapter->vf_data[vf].trusted = false;
7151 
7152 	return 0;
7153 }
7154 
7155 #endif
7156 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7157 {
7158 	struct e1000_hw *hw = &adapter->hw;
7159 	u32 ping;
7160 	int i;
7161 
7162 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7163 		ping = E1000_PF_CONTROL_MSG;
7164 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7165 			ping |= E1000_VT_MSGTYPE_CTS;
7166 		igb_write_mbx(hw, &ping, 1, i);
7167 	}
7168 }
7169 
7170 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7171 {
7172 	struct e1000_hw *hw = &adapter->hw;
7173 	u32 vmolr = rd32(E1000_VMOLR(vf));
7174 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7175 
7176 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7177 			    IGB_VF_FLAG_MULTI_PROMISC);
7178 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7179 
7180 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7181 		vmolr |= E1000_VMOLR_MPME;
7182 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7183 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7184 	} else {
7185 		/* if we have hashes and we are clearing a multicast promisc
7186 		 * flag we need to write the hashes to the MTA as this step
7187 		 * was previously skipped
7188 		 */
7189 		if (vf_data->num_vf_mc_hashes > 30) {
7190 			vmolr |= E1000_VMOLR_MPME;
7191 		} else if (vf_data->num_vf_mc_hashes) {
7192 			int j;
7193 
7194 			vmolr |= E1000_VMOLR_ROMPE;
7195 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7196 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7197 		}
7198 	}
7199 
7200 	wr32(E1000_VMOLR(vf), vmolr);
7201 
7202 	/* there are flags left unprocessed, likely not supported */
7203 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7204 		return -EINVAL;
7205 
7206 	return 0;
7207 }
7208 
7209 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7210 				  u32 *msgbuf, u32 vf)
7211 {
7212 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7213 	u16 *hash_list = (u16 *)&msgbuf[1];
7214 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7215 	int i;
7216 
7217 	/* salt away the number of multicast addresses assigned
7218 	 * to this VF for later use to restore when the PF multi cast
7219 	 * list changes
7220 	 */
7221 	vf_data->num_vf_mc_hashes = n;
7222 
7223 	/* only up to 30 hash values supported */
7224 	if (n > 30)
7225 		n = 30;
7226 
7227 	/* store the hashes for later use */
7228 	for (i = 0; i < n; i++)
7229 		vf_data->vf_mc_hashes[i] = hash_list[i];
7230 
7231 	/* Flush and reset the mta with the new values */
7232 	igb_set_rx_mode(adapter->netdev);
7233 
7234 	return 0;
7235 }
7236 
7237 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7238 {
7239 	struct e1000_hw *hw = &adapter->hw;
7240 	struct vf_data_storage *vf_data;
7241 	int i, j;
7242 
7243 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7244 		u32 vmolr = rd32(E1000_VMOLR(i));
7245 
7246 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7247 
7248 		vf_data = &adapter->vf_data[i];
7249 
7250 		if ((vf_data->num_vf_mc_hashes > 30) ||
7251 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7252 			vmolr |= E1000_VMOLR_MPME;
7253 		} else if (vf_data->num_vf_mc_hashes) {
7254 			vmolr |= E1000_VMOLR_ROMPE;
7255 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7256 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7257 		}
7258 		wr32(E1000_VMOLR(i), vmolr);
7259 	}
7260 }
7261 
7262 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7263 {
7264 	struct e1000_hw *hw = &adapter->hw;
7265 	u32 pool_mask, vlvf_mask, i;
7266 
7267 	/* create mask for VF and other pools */
7268 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7269 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7270 
7271 	/* drop PF from pool bits */
7272 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7273 			     adapter->vfs_allocated_count);
7274 
7275 	/* Find the vlan filter for this id */
7276 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7277 		u32 vlvf = rd32(E1000_VLVF(i));
7278 		u32 vfta_mask, vid, vfta;
7279 
7280 		/* remove the vf from the pool */
7281 		if (!(vlvf & vlvf_mask))
7282 			continue;
7283 
7284 		/* clear out bit from VLVF */
7285 		vlvf ^= vlvf_mask;
7286 
7287 		/* if other pools are present, just remove ourselves */
7288 		if (vlvf & pool_mask)
7289 			goto update_vlvfb;
7290 
7291 		/* if PF is present, leave VFTA */
7292 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7293 			goto update_vlvf;
7294 
7295 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7296 		vfta_mask = BIT(vid % 32);
7297 
7298 		/* clear bit from VFTA */
7299 		vfta = adapter->shadow_vfta[vid / 32];
7300 		if (vfta & vfta_mask)
7301 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7302 update_vlvf:
7303 		/* clear pool selection enable */
7304 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7305 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7306 		else
7307 			vlvf = 0;
7308 update_vlvfb:
7309 		/* clear pool bits */
7310 		wr32(E1000_VLVF(i), vlvf);
7311 	}
7312 }
7313 
7314 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7315 {
7316 	u32 vlvf;
7317 	int idx;
7318 
7319 	/* short cut the special case */
7320 	if (vlan == 0)
7321 		return 0;
7322 
7323 	/* Search for the VLAN id in the VLVF entries */
7324 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7325 		vlvf = rd32(E1000_VLVF(idx));
7326 		if ((vlvf & VLAN_VID_MASK) == vlan)
7327 			break;
7328 	}
7329 
7330 	return idx;
7331 }
7332 
7333 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7334 {
7335 	struct e1000_hw *hw = &adapter->hw;
7336 	u32 bits, pf_id;
7337 	int idx;
7338 
7339 	idx = igb_find_vlvf_entry(hw, vid);
7340 	if (!idx)
7341 		return;
7342 
7343 	/* See if any other pools are set for this VLAN filter
7344 	 * entry other than the PF.
7345 	 */
7346 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7347 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7348 	bits &= rd32(E1000_VLVF(idx));
7349 
7350 	/* Disable the filter so this falls into the default pool. */
7351 	if (!bits) {
7352 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7353 			wr32(E1000_VLVF(idx), BIT(pf_id));
7354 		else
7355 			wr32(E1000_VLVF(idx), 0);
7356 	}
7357 }
7358 
7359 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7360 			   bool add, u32 vf)
7361 {
7362 	int pf_id = adapter->vfs_allocated_count;
7363 	struct e1000_hw *hw = &adapter->hw;
7364 	int err;
7365 
7366 	/* If VLAN overlaps with one the PF is currently monitoring make
7367 	 * sure that we are able to allocate a VLVF entry.  This may be
7368 	 * redundant but it guarantees PF will maintain visibility to
7369 	 * the VLAN.
7370 	 */
7371 	if (add && test_bit(vid, adapter->active_vlans)) {
7372 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7373 		if (err)
7374 			return err;
7375 	}
7376 
7377 	err = igb_vfta_set(hw, vid, vf, add, false);
7378 
7379 	if (add && !err)
7380 		return err;
7381 
7382 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7383 	 * we may need to drop the PF pool bit in order to allow us to free
7384 	 * up the VLVF resources.
7385 	 */
7386 	if (test_bit(vid, adapter->active_vlans) ||
7387 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7388 		igb_update_pf_vlvf(adapter, vid);
7389 
7390 	return err;
7391 }
7392 
7393 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7394 {
7395 	struct e1000_hw *hw = &adapter->hw;
7396 
7397 	if (vid)
7398 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7399 	else
7400 		wr32(E1000_VMVIR(vf), 0);
7401 }
7402 
7403 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7404 				u16 vlan, u8 qos)
7405 {
7406 	int err;
7407 
7408 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7409 	if (err)
7410 		return err;
7411 
7412 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7413 	igb_set_vmolr(adapter, vf, !vlan);
7414 
7415 	/* revoke access to previous VLAN */
7416 	if (vlan != adapter->vf_data[vf].pf_vlan)
7417 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7418 				false, vf);
7419 
7420 	adapter->vf_data[vf].pf_vlan = vlan;
7421 	adapter->vf_data[vf].pf_qos = qos;
7422 	igb_set_vf_vlan_strip(adapter, vf, true);
7423 	dev_info(&adapter->pdev->dev,
7424 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7425 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7426 		dev_warn(&adapter->pdev->dev,
7427 			 "The VF VLAN has been set, but the PF device is not up.\n");
7428 		dev_warn(&adapter->pdev->dev,
7429 			 "Bring the PF device up before attempting to use the VF device.\n");
7430 	}
7431 
7432 	return err;
7433 }
7434 
7435 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7436 {
7437 	/* Restore tagless access via VLAN 0 */
7438 	igb_set_vf_vlan(adapter, 0, true, vf);
7439 
7440 	igb_set_vmvir(adapter, 0, vf);
7441 	igb_set_vmolr(adapter, vf, true);
7442 
7443 	/* Remove any PF assigned VLAN */
7444 	if (adapter->vf_data[vf].pf_vlan)
7445 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7446 				false, vf);
7447 
7448 	adapter->vf_data[vf].pf_vlan = 0;
7449 	adapter->vf_data[vf].pf_qos = 0;
7450 	igb_set_vf_vlan_strip(adapter, vf, false);
7451 
7452 	return 0;
7453 }
7454 
7455 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7456 			       u16 vlan, u8 qos, __be16 vlan_proto)
7457 {
7458 	struct igb_adapter *adapter = netdev_priv(netdev);
7459 
7460 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7461 		return -EINVAL;
7462 
7463 	if (vlan_proto != htons(ETH_P_8021Q))
7464 		return -EPROTONOSUPPORT;
7465 
7466 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7467 			       igb_disable_port_vlan(adapter, vf);
7468 }
7469 
7470 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7471 {
7472 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7473 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7474 	int ret;
7475 
7476 	if (adapter->vf_data[vf].pf_vlan)
7477 		return -1;
7478 
7479 	/* VLAN 0 is a special case, don't allow it to be removed */
7480 	if (!vid && !add)
7481 		return 0;
7482 
7483 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7484 	if (!ret)
7485 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7486 	return ret;
7487 }
7488 
7489 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7490 {
7491 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7492 
7493 	/* clear flags - except flag that indicates PF has set the MAC */
7494 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7495 	vf_data->last_nack = jiffies;
7496 
7497 	/* reset vlans for device */
7498 	igb_clear_vf_vfta(adapter, vf);
7499 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7500 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7501 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7502 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7503 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7504 
7505 	/* reset multicast table array for vf */
7506 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7507 
7508 	/* Flush and reset the mta with the new values */
7509 	igb_set_rx_mode(adapter->netdev);
7510 }
7511 
7512 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7513 {
7514 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7515 
7516 	/* clear mac address as we were hotplug removed/added */
7517 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7518 		eth_zero_addr(vf_mac);
7519 
7520 	/* process remaining reset events */
7521 	igb_vf_reset(adapter, vf);
7522 }
7523 
7524 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7525 {
7526 	struct e1000_hw *hw = &adapter->hw;
7527 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7528 	u32 reg, msgbuf[3] = {};
7529 	u8 *addr = (u8 *)(&msgbuf[1]);
7530 
7531 	/* process all the same items cleared in a function level reset */
7532 	igb_vf_reset(adapter, vf);
7533 
7534 	/* set vf mac address */
7535 	igb_set_vf_mac(adapter, vf, vf_mac);
7536 
7537 	/* enable transmit and receive for vf */
7538 	reg = rd32(E1000_VFTE);
7539 	wr32(E1000_VFTE, reg | BIT(vf));
7540 	reg = rd32(E1000_VFRE);
7541 	wr32(E1000_VFRE, reg | BIT(vf));
7542 
7543 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7544 
7545 	/* reply to reset with ack and vf mac address */
7546 	if (!is_zero_ether_addr(vf_mac)) {
7547 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7548 		memcpy(addr, vf_mac, ETH_ALEN);
7549 	} else {
7550 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7551 	}
7552 	igb_write_mbx(hw, msgbuf, 3, vf);
7553 }
7554 
7555 static void igb_flush_mac_table(struct igb_adapter *adapter)
7556 {
7557 	struct e1000_hw *hw = &adapter->hw;
7558 	int i;
7559 
7560 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7561 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7562 		eth_zero_addr(adapter->mac_table[i].addr);
7563 		adapter->mac_table[i].queue = 0;
7564 		igb_rar_set_index(adapter, i);
7565 	}
7566 }
7567 
7568 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7569 {
7570 	struct e1000_hw *hw = &adapter->hw;
7571 	/* do not count rar entries reserved for VFs MAC addresses */
7572 	int rar_entries = hw->mac.rar_entry_count -
7573 			  adapter->vfs_allocated_count;
7574 	int i, count = 0;
7575 
7576 	for (i = 0; i < rar_entries; i++) {
7577 		/* do not count default entries */
7578 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7579 			continue;
7580 
7581 		/* do not count "in use" entries for different queues */
7582 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7583 		    (adapter->mac_table[i].queue != queue))
7584 			continue;
7585 
7586 		count++;
7587 	}
7588 
7589 	return count;
7590 }
7591 
7592 /* Set default MAC address for the PF in the first RAR entry */
7593 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7594 {
7595 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7596 
7597 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7598 	mac_table->queue = adapter->vfs_allocated_count;
7599 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7600 
7601 	igb_rar_set_index(adapter, 0);
7602 }
7603 
7604 /* If the filter to be added and an already existing filter express
7605  * the same address and address type, it should be possible to only
7606  * override the other configurations, for example the queue to steer
7607  * traffic.
7608  */
7609 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7610 				      const u8 *addr, const u8 flags)
7611 {
7612 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7613 		return true;
7614 
7615 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7616 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7617 		return false;
7618 
7619 	if (!ether_addr_equal(addr, entry->addr))
7620 		return false;
7621 
7622 	return true;
7623 }
7624 
7625 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7626  * 'flags' is used to indicate what kind of match is made, match is by
7627  * default for the destination address, if matching by source address
7628  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7629  */
7630 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7631 				    const u8 *addr, const u8 queue,
7632 				    const u8 flags)
7633 {
7634 	struct e1000_hw *hw = &adapter->hw;
7635 	int rar_entries = hw->mac.rar_entry_count -
7636 			  adapter->vfs_allocated_count;
7637 	int i;
7638 
7639 	if (is_zero_ether_addr(addr))
7640 		return -EINVAL;
7641 
7642 	/* Search for the first empty entry in the MAC table.
7643 	 * Do not touch entries at the end of the table reserved for the VF MAC
7644 	 * addresses.
7645 	 */
7646 	for (i = 0; i < rar_entries; i++) {
7647 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7648 					       addr, flags))
7649 			continue;
7650 
7651 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7652 		adapter->mac_table[i].queue = queue;
7653 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7654 
7655 		igb_rar_set_index(adapter, i);
7656 		return i;
7657 	}
7658 
7659 	return -ENOSPC;
7660 }
7661 
7662 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7663 			      const u8 queue)
7664 {
7665 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7666 }
7667 
7668 /* Remove a MAC filter for 'addr' directing matching traffic to
7669  * 'queue', 'flags' is used to indicate what kind of match need to be
7670  * removed, match is by default for the destination address, if
7671  * matching by source address is to be removed the flag
7672  * IGB_MAC_STATE_SRC_ADDR can be used.
7673  */
7674 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7675 				    const u8 *addr, const u8 queue,
7676 				    const u8 flags)
7677 {
7678 	struct e1000_hw *hw = &adapter->hw;
7679 	int rar_entries = hw->mac.rar_entry_count -
7680 			  adapter->vfs_allocated_count;
7681 	int i;
7682 
7683 	if (is_zero_ether_addr(addr))
7684 		return -EINVAL;
7685 
7686 	/* Search for matching entry in the MAC table based on given address
7687 	 * and queue. Do not touch entries at the end of the table reserved
7688 	 * for the VF MAC addresses.
7689 	 */
7690 	for (i = 0; i < rar_entries; i++) {
7691 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7692 			continue;
7693 		if ((adapter->mac_table[i].state & flags) != flags)
7694 			continue;
7695 		if (adapter->mac_table[i].queue != queue)
7696 			continue;
7697 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7698 			continue;
7699 
7700 		/* When a filter for the default address is "deleted",
7701 		 * we return it to its initial configuration
7702 		 */
7703 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7704 			adapter->mac_table[i].state =
7705 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7706 			adapter->mac_table[i].queue =
7707 				adapter->vfs_allocated_count;
7708 		} else {
7709 			adapter->mac_table[i].state = 0;
7710 			adapter->mac_table[i].queue = 0;
7711 			eth_zero_addr(adapter->mac_table[i].addr);
7712 		}
7713 
7714 		igb_rar_set_index(adapter, i);
7715 		return 0;
7716 	}
7717 
7718 	return -ENOENT;
7719 }
7720 
7721 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7722 			      const u8 queue)
7723 {
7724 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7725 }
7726 
7727 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7728 				const u8 *addr, u8 queue, u8 flags)
7729 {
7730 	struct e1000_hw *hw = &adapter->hw;
7731 
7732 	/* In theory, this should be supported on 82575 as well, but
7733 	 * that part wasn't easily accessible during development.
7734 	 */
7735 	if (hw->mac.type != e1000_i210)
7736 		return -EOPNOTSUPP;
7737 
7738 	return igb_add_mac_filter_flags(adapter, addr, queue,
7739 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7740 }
7741 
7742 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7743 				const u8 *addr, u8 queue, u8 flags)
7744 {
7745 	return igb_del_mac_filter_flags(adapter, addr, queue,
7746 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7747 }
7748 
7749 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7750 {
7751 	struct igb_adapter *adapter = netdev_priv(netdev);
7752 	int ret;
7753 
7754 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7755 
7756 	return min_t(int, ret, 0);
7757 }
7758 
7759 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7760 {
7761 	struct igb_adapter *adapter = netdev_priv(netdev);
7762 
7763 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7764 
7765 	return 0;
7766 }
7767 
7768 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7769 				 const u32 info, const u8 *addr)
7770 {
7771 	struct pci_dev *pdev = adapter->pdev;
7772 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7773 	struct list_head *pos;
7774 	struct vf_mac_filter *entry = NULL;
7775 	int ret = 0;
7776 
7777 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7778 	    !vf_data->trusted) {
7779 		dev_warn(&pdev->dev,
7780 			 "VF %d requested MAC filter but is administratively denied\n",
7781 			  vf);
7782 		return -EINVAL;
7783 	}
7784 	if (!is_valid_ether_addr(addr)) {
7785 		dev_warn(&pdev->dev,
7786 			 "VF %d attempted to set invalid MAC filter\n",
7787 			  vf);
7788 		return -EINVAL;
7789 	}
7790 
7791 	switch (info) {
7792 	case E1000_VF_MAC_FILTER_CLR:
7793 		/* remove all unicast MAC filters related to the current VF */
7794 		list_for_each(pos, &adapter->vf_macs.l) {
7795 			entry = list_entry(pos, struct vf_mac_filter, l);
7796 			if (entry->vf == vf) {
7797 				entry->vf = -1;
7798 				entry->free = true;
7799 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7800 			}
7801 		}
7802 		break;
7803 	case E1000_VF_MAC_FILTER_ADD:
7804 		/* try to find empty slot in the list */
7805 		list_for_each(pos, &adapter->vf_macs.l) {
7806 			entry = list_entry(pos, struct vf_mac_filter, l);
7807 			if (entry->free)
7808 				break;
7809 		}
7810 
7811 		if (entry && entry->free) {
7812 			entry->free = false;
7813 			entry->vf = vf;
7814 			ether_addr_copy(entry->vf_mac, addr);
7815 
7816 			ret = igb_add_mac_filter(adapter, addr, vf);
7817 			ret = min_t(int, ret, 0);
7818 		} else {
7819 			ret = -ENOSPC;
7820 		}
7821 
7822 		if (ret == -ENOSPC)
7823 			dev_warn(&pdev->dev,
7824 				 "VF %d has requested MAC filter but there is no space for it\n",
7825 				 vf);
7826 		break;
7827 	default:
7828 		ret = -EINVAL;
7829 		break;
7830 	}
7831 
7832 	return ret;
7833 }
7834 
7835 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7836 {
7837 	struct pci_dev *pdev = adapter->pdev;
7838 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7839 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7840 
7841 	/* The VF MAC Address is stored in a packed array of bytes
7842 	 * starting at the second 32 bit word of the msg array
7843 	 */
7844 	unsigned char *addr = (unsigned char *)&msg[1];
7845 	int ret = 0;
7846 
7847 	if (!info) {
7848 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7849 		    !vf_data->trusted) {
7850 			dev_warn(&pdev->dev,
7851 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7852 				 vf);
7853 			return -EINVAL;
7854 		}
7855 
7856 		if (!is_valid_ether_addr(addr)) {
7857 			dev_warn(&pdev->dev,
7858 				 "VF %d attempted to set invalid MAC\n",
7859 				 vf);
7860 			return -EINVAL;
7861 		}
7862 
7863 		ret = igb_set_vf_mac(adapter, vf, addr);
7864 	} else {
7865 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7866 	}
7867 
7868 	return ret;
7869 }
7870 
7871 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7872 {
7873 	struct e1000_hw *hw = &adapter->hw;
7874 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7875 	u32 msg = E1000_VT_MSGTYPE_NACK;
7876 
7877 	/* if device isn't clear to send it shouldn't be reading either */
7878 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7879 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7880 		igb_write_mbx(hw, &msg, 1, vf);
7881 		vf_data->last_nack = jiffies;
7882 	}
7883 }
7884 
7885 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7886 {
7887 	struct pci_dev *pdev = adapter->pdev;
7888 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7889 	struct e1000_hw *hw = &adapter->hw;
7890 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7891 	s32 retval;
7892 
7893 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7894 
7895 	if (retval) {
7896 		/* if receive failed revoke VF CTS stats and restart init */
7897 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7898 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7899 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7900 			goto unlock;
7901 		goto out;
7902 	}
7903 
7904 	/* this is a message we already processed, do nothing */
7905 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7906 		goto unlock;
7907 
7908 	/* until the vf completes a reset it should not be
7909 	 * allowed to start any configuration.
7910 	 */
7911 	if (msgbuf[0] == E1000_VF_RESET) {
7912 		/* unlocks mailbox */
7913 		igb_vf_reset_msg(adapter, vf);
7914 		return;
7915 	}
7916 
7917 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7918 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7919 			goto unlock;
7920 		retval = -1;
7921 		goto out;
7922 	}
7923 
7924 	switch ((msgbuf[0] & 0xFFFF)) {
7925 	case E1000_VF_SET_MAC_ADDR:
7926 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7927 		break;
7928 	case E1000_VF_SET_PROMISC:
7929 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7930 		break;
7931 	case E1000_VF_SET_MULTICAST:
7932 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7933 		break;
7934 	case E1000_VF_SET_LPE:
7935 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7936 		break;
7937 	case E1000_VF_SET_VLAN:
7938 		retval = -1;
7939 		if (vf_data->pf_vlan)
7940 			dev_warn(&pdev->dev,
7941 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7942 				 vf);
7943 		else
7944 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7945 		break;
7946 	default:
7947 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7948 		retval = -1;
7949 		break;
7950 	}
7951 
7952 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7953 out:
7954 	/* notify the VF of the results of what it sent us */
7955 	if (retval)
7956 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7957 	else
7958 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7959 
7960 	/* unlocks mailbox */
7961 	igb_write_mbx(hw, msgbuf, 1, vf);
7962 	return;
7963 
7964 unlock:
7965 	igb_unlock_mbx(hw, vf);
7966 }
7967 
7968 static void igb_msg_task(struct igb_adapter *adapter)
7969 {
7970 	struct e1000_hw *hw = &adapter->hw;
7971 	unsigned long flags;
7972 	u32 vf;
7973 
7974 	spin_lock_irqsave(&adapter->vfs_lock, flags);
7975 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7976 		/* process any reset requests */
7977 		if (!igb_check_for_rst(hw, vf))
7978 			igb_vf_reset_event(adapter, vf);
7979 
7980 		/* process any messages pending */
7981 		if (!igb_check_for_msg(hw, vf))
7982 			igb_rcv_msg_from_vf(adapter, vf);
7983 
7984 		/* process any acks */
7985 		if (!igb_check_for_ack(hw, vf))
7986 			igb_rcv_ack_from_vf(adapter, vf);
7987 	}
7988 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7989 }
7990 
7991 /**
7992  *  igb_set_uta - Set unicast filter table address
7993  *  @adapter: board private structure
7994  *  @set: boolean indicating if we are setting or clearing bits
7995  *
7996  *  The unicast table address is a register array of 32-bit registers.
7997  *  The table is meant to be used in a way similar to how the MTA is used
7998  *  however due to certain limitations in the hardware it is necessary to
7999  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8000  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8001  **/
8002 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8003 {
8004 	struct e1000_hw *hw = &adapter->hw;
8005 	u32 uta = set ? ~0 : 0;
8006 	int i;
8007 
8008 	/* we only need to do this if VMDq is enabled */
8009 	if (!adapter->vfs_allocated_count)
8010 		return;
8011 
8012 	for (i = hw->mac.uta_reg_count; i--;)
8013 		array_wr32(E1000_UTA, i, uta);
8014 }
8015 
8016 /**
8017  *  igb_intr_msi - Interrupt Handler
8018  *  @irq: interrupt number
8019  *  @data: pointer to a network interface device structure
8020  **/
8021 static irqreturn_t igb_intr_msi(int irq, void *data)
8022 {
8023 	struct igb_adapter *adapter = data;
8024 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8025 	struct e1000_hw *hw = &adapter->hw;
8026 	/* read ICR disables interrupts using IAM */
8027 	u32 icr = rd32(E1000_ICR);
8028 
8029 	igb_write_itr(q_vector);
8030 
8031 	if (icr & E1000_ICR_DRSTA)
8032 		schedule_work(&adapter->reset_task);
8033 
8034 	if (icr & E1000_ICR_DOUTSYNC) {
8035 		/* HW is reporting DMA is out of sync */
8036 		adapter->stats.doosync++;
8037 	}
8038 
8039 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8040 		hw->mac.get_link_status = 1;
8041 		if (!test_bit(__IGB_DOWN, &adapter->state))
8042 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8043 	}
8044 
8045 	if (icr & E1000_ICR_TS)
8046 		igb_tsync_interrupt(adapter);
8047 
8048 	napi_schedule(&q_vector->napi);
8049 
8050 	return IRQ_HANDLED;
8051 }
8052 
8053 /**
8054  *  igb_intr - Legacy Interrupt Handler
8055  *  @irq: interrupt number
8056  *  @data: pointer to a network interface device structure
8057  **/
8058 static irqreturn_t igb_intr(int irq, void *data)
8059 {
8060 	struct igb_adapter *adapter = data;
8061 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8062 	struct e1000_hw *hw = &adapter->hw;
8063 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8064 	 * need for the IMC write
8065 	 */
8066 	u32 icr = rd32(E1000_ICR);
8067 
8068 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8069 	 * not set, then the adapter didn't send an interrupt
8070 	 */
8071 	if (!(icr & E1000_ICR_INT_ASSERTED))
8072 		return IRQ_NONE;
8073 
8074 	igb_write_itr(q_vector);
8075 
8076 	if (icr & E1000_ICR_DRSTA)
8077 		schedule_work(&adapter->reset_task);
8078 
8079 	if (icr & E1000_ICR_DOUTSYNC) {
8080 		/* HW is reporting DMA is out of sync */
8081 		adapter->stats.doosync++;
8082 	}
8083 
8084 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8085 		hw->mac.get_link_status = 1;
8086 		/* guard against interrupt when we're going down */
8087 		if (!test_bit(__IGB_DOWN, &adapter->state))
8088 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8089 	}
8090 
8091 	if (icr & E1000_ICR_TS)
8092 		igb_tsync_interrupt(adapter);
8093 
8094 	napi_schedule(&q_vector->napi);
8095 
8096 	return IRQ_HANDLED;
8097 }
8098 
8099 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8100 {
8101 	struct igb_adapter *adapter = q_vector->adapter;
8102 	struct e1000_hw *hw = &adapter->hw;
8103 
8104 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8105 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8106 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8107 			igb_set_itr(q_vector);
8108 		else
8109 			igb_update_ring_itr(q_vector);
8110 	}
8111 
8112 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8113 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8114 			wr32(E1000_EIMS, q_vector->eims_value);
8115 		else
8116 			igb_irq_enable(adapter);
8117 	}
8118 }
8119 
8120 /**
8121  *  igb_poll - NAPI Rx polling callback
8122  *  @napi: napi polling structure
8123  *  @budget: count of how many packets we should handle
8124  **/
8125 static int igb_poll(struct napi_struct *napi, int budget)
8126 {
8127 	struct igb_q_vector *q_vector = container_of(napi,
8128 						     struct igb_q_vector,
8129 						     napi);
8130 	bool clean_complete = true;
8131 	int work_done = 0;
8132 
8133 #ifdef CONFIG_IGB_DCA
8134 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8135 		igb_update_dca(q_vector);
8136 #endif
8137 	if (q_vector->tx.ring)
8138 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8139 
8140 	if (q_vector->rx.ring) {
8141 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8142 
8143 		work_done += cleaned;
8144 		if (cleaned >= budget)
8145 			clean_complete = false;
8146 	}
8147 
8148 	/* If all work not completed, return budget and keep polling */
8149 	if (!clean_complete)
8150 		return budget;
8151 
8152 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8153 	 * poll us due to busy-polling
8154 	 */
8155 	if (likely(napi_complete_done(napi, work_done)))
8156 		igb_ring_irq_enable(q_vector);
8157 
8158 	return work_done;
8159 }
8160 
8161 /**
8162  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8163  *  @q_vector: pointer to q_vector containing needed info
8164  *  @napi_budget: Used to determine if we are in netpoll
8165  *
8166  *  returns true if ring is completely cleaned
8167  **/
8168 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8169 {
8170 	struct igb_adapter *adapter = q_vector->adapter;
8171 	struct igb_ring *tx_ring = q_vector->tx.ring;
8172 	struct igb_tx_buffer *tx_buffer;
8173 	union e1000_adv_tx_desc *tx_desc;
8174 	unsigned int total_bytes = 0, total_packets = 0;
8175 	unsigned int budget = q_vector->tx.work_limit;
8176 	unsigned int i = tx_ring->next_to_clean;
8177 
8178 	if (test_bit(__IGB_DOWN, &adapter->state))
8179 		return true;
8180 
8181 	tx_buffer = &tx_ring->tx_buffer_info[i];
8182 	tx_desc = IGB_TX_DESC(tx_ring, i);
8183 	i -= tx_ring->count;
8184 
8185 	do {
8186 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8187 
8188 		/* if next_to_watch is not set then there is no work pending */
8189 		if (!eop_desc)
8190 			break;
8191 
8192 		/* prevent any other reads prior to eop_desc */
8193 		smp_rmb();
8194 
8195 		/* if DD is not set pending work has not been completed */
8196 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8197 			break;
8198 
8199 		/* clear next_to_watch to prevent false hangs */
8200 		tx_buffer->next_to_watch = NULL;
8201 
8202 		/* update the statistics for this packet */
8203 		total_bytes += tx_buffer->bytecount;
8204 		total_packets += tx_buffer->gso_segs;
8205 
8206 		/* free the skb */
8207 		if (tx_buffer->type == IGB_TYPE_SKB)
8208 			napi_consume_skb(tx_buffer->skb, napi_budget);
8209 		else
8210 			xdp_return_frame(tx_buffer->xdpf);
8211 
8212 		/* unmap skb header data */
8213 		dma_unmap_single(tx_ring->dev,
8214 				 dma_unmap_addr(tx_buffer, dma),
8215 				 dma_unmap_len(tx_buffer, len),
8216 				 DMA_TO_DEVICE);
8217 
8218 		/* clear tx_buffer data */
8219 		dma_unmap_len_set(tx_buffer, len, 0);
8220 
8221 		/* clear last DMA location and unmap remaining buffers */
8222 		while (tx_desc != eop_desc) {
8223 			tx_buffer++;
8224 			tx_desc++;
8225 			i++;
8226 			if (unlikely(!i)) {
8227 				i -= tx_ring->count;
8228 				tx_buffer = tx_ring->tx_buffer_info;
8229 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8230 			}
8231 
8232 			/* unmap any remaining paged data */
8233 			if (dma_unmap_len(tx_buffer, len)) {
8234 				dma_unmap_page(tx_ring->dev,
8235 					       dma_unmap_addr(tx_buffer, dma),
8236 					       dma_unmap_len(tx_buffer, len),
8237 					       DMA_TO_DEVICE);
8238 				dma_unmap_len_set(tx_buffer, len, 0);
8239 			}
8240 		}
8241 
8242 		/* move us one more past the eop_desc for start of next pkt */
8243 		tx_buffer++;
8244 		tx_desc++;
8245 		i++;
8246 		if (unlikely(!i)) {
8247 			i -= tx_ring->count;
8248 			tx_buffer = tx_ring->tx_buffer_info;
8249 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8250 		}
8251 
8252 		/* issue prefetch for next Tx descriptor */
8253 		prefetch(tx_desc);
8254 
8255 		/* update budget accounting */
8256 		budget--;
8257 	} while (likely(budget));
8258 
8259 	netdev_tx_completed_queue(txring_txq(tx_ring),
8260 				  total_packets, total_bytes);
8261 	i += tx_ring->count;
8262 	tx_ring->next_to_clean = i;
8263 	u64_stats_update_begin(&tx_ring->tx_syncp);
8264 	tx_ring->tx_stats.bytes += total_bytes;
8265 	tx_ring->tx_stats.packets += total_packets;
8266 	u64_stats_update_end(&tx_ring->tx_syncp);
8267 	q_vector->tx.total_bytes += total_bytes;
8268 	q_vector->tx.total_packets += total_packets;
8269 
8270 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8271 		struct e1000_hw *hw = &adapter->hw;
8272 
8273 		/* Detect a transmit hang in hardware, this serializes the
8274 		 * check with the clearing of time_stamp and movement of i
8275 		 */
8276 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8277 		if (tx_buffer->next_to_watch &&
8278 		    time_after(jiffies, tx_buffer->time_stamp +
8279 			       (adapter->tx_timeout_factor * HZ)) &&
8280 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8281 
8282 			/* detected Tx unit hang */
8283 			dev_err(tx_ring->dev,
8284 				"Detected Tx Unit Hang\n"
8285 				"  Tx Queue             <%d>\n"
8286 				"  TDH                  <%x>\n"
8287 				"  TDT                  <%x>\n"
8288 				"  next_to_use          <%x>\n"
8289 				"  next_to_clean        <%x>\n"
8290 				"buffer_info[next_to_clean]\n"
8291 				"  time_stamp           <%lx>\n"
8292 				"  next_to_watch        <%p>\n"
8293 				"  jiffies              <%lx>\n"
8294 				"  desc.status          <%x>\n",
8295 				tx_ring->queue_index,
8296 				rd32(E1000_TDH(tx_ring->reg_idx)),
8297 				readl(tx_ring->tail),
8298 				tx_ring->next_to_use,
8299 				tx_ring->next_to_clean,
8300 				tx_buffer->time_stamp,
8301 				tx_buffer->next_to_watch,
8302 				jiffies,
8303 				tx_buffer->next_to_watch->wb.status);
8304 			netif_stop_subqueue(tx_ring->netdev,
8305 					    tx_ring->queue_index);
8306 
8307 			/* we are about to reset, no point in enabling stuff */
8308 			return true;
8309 		}
8310 	}
8311 
8312 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8313 	if (unlikely(total_packets &&
8314 	    netif_carrier_ok(tx_ring->netdev) &&
8315 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8316 		/* Make sure that anybody stopping the queue after this
8317 		 * sees the new next_to_clean.
8318 		 */
8319 		smp_mb();
8320 		if (__netif_subqueue_stopped(tx_ring->netdev,
8321 					     tx_ring->queue_index) &&
8322 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8323 			netif_wake_subqueue(tx_ring->netdev,
8324 					    tx_ring->queue_index);
8325 
8326 			u64_stats_update_begin(&tx_ring->tx_syncp);
8327 			tx_ring->tx_stats.restart_queue++;
8328 			u64_stats_update_end(&tx_ring->tx_syncp);
8329 		}
8330 	}
8331 
8332 	return !!budget;
8333 }
8334 
8335 /**
8336  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8337  *  @rx_ring: rx descriptor ring to store buffers on
8338  *  @old_buff: donor buffer to have page reused
8339  *
8340  *  Synchronizes page for reuse by the adapter
8341  **/
8342 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8343 			      struct igb_rx_buffer *old_buff)
8344 {
8345 	struct igb_rx_buffer *new_buff;
8346 	u16 nta = rx_ring->next_to_alloc;
8347 
8348 	new_buff = &rx_ring->rx_buffer_info[nta];
8349 
8350 	/* update, and store next to alloc */
8351 	nta++;
8352 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8353 
8354 	/* Transfer page from old buffer to new buffer.
8355 	 * Move each member individually to avoid possible store
8356 	 * forwarding stalls.
8357 	 */
8358 	new_buff->dma		= old_buff->dma;
8359 	new_buff->page		= old_buff->page;
8360 	new_buff->page_offset	= old_buff->page_offset;
8361 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8362 }
8363 
8364 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8365 				  int rx_buf_pgcnt)
8366 {
8367 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8368 	struct page *page = rx_buffer->page;
8369 
8370 	/* avoid re-using remote and pfmemalloc pages */
8371 	if (!dev_page_is_reusable(page))
8372 		return false;
8373 
8374 #if (PAGE_SIZE < 8192)
8375 	/* if we are only owner of page we can reuse it */
8376 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8377 		return false;
8378 #else
8379 #define IGB_LAST_OFFSET \
8380 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8381 
8382 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8383 		return false;
8384 #endif
8385 
8386 	/* If we have drained the page fragment pool we need to update
8387 	 * the pagecnt_bias and page count so that we fully restock the
8388 	 * number of references the driver holds.
8389 	 */
8390 	if (unlikely(pagecnt_bias == 1)) {
8391 		page_ref_add(page, USHRT_MAX - 1);
8392 		rx_buffer->pagecnt_bias = USHRT_MAX;
8393 	}
8394 
8395 	return true;
8396 }
8397 
8398 /**
8399  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8400  *  @rx_ring: rx descriptor ring to transact packets on
8401  *  @rx_buffer: buffer containing page to add
8402  *  @skb: sk_buff to place the data into
8403  *  @size: size of buffer to be added
8404  *
8405  *  This function will add the data contained in rx_buffer->page to the skb.
8406  **/
8407 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8408 			    struct igb_rx_buffer *rx_buffer,
8409 			    struct sk_buff *skb,
8410 			    unsigned int size)
8411 {
8412 #if (PAGE_SIZE < 8192)
8413 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8414 #else
8415 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8416 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8417 				SKB_DATA_ALIGN(size);
8418 #endif
8419 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8420 			rx_buffer->page_offset, size, truesize);
8421 #if (PAGE_SIZE < 8192)
8422 	rx_buffer->page_offset ^= truesize;
8423 #else
8424 	rx_buffer->page_offset += truesize;
8425 #endif
8426 }
8427 
8428 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8429 					 struct igb_rx_buffer *rx_buffer,
8430 					 struct xdp_buff *xdp,
8431 					 ktime_t timestamp)
8432 {
8433 #if (PAGE_SIZE < 8192)
8434 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8435 #else
8436 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8437 					       xdp->data_hard_start);
8438 #endif
8439 	unsigned int size = xdp->data_end - xdp->data;
8440 	unsigned int headlen;
8441 	struct sk_buff *skb;
8442 
8443 	/* prefetch first cache line of first page */
8444 	net_prefetch(xdp->data);
8445 
8446 	/* allocate a skb to store the frags */
8447 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8448 	if (unlikely(!skb))
8449 		return NULL;
8450 
8451 	if (timestamp)
8452 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8453 
8454 	/* Determine available headroom for copy */
8455 	headlen = size;
8456 	if (headlen > IGB_RX_HDR_LEN)
8457 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8458 
8459 	/* align pull length to size of long to optimize memcpy performance */
8460 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8461 
8462 	/* update all of the pointers */
8463 	size -= headlen;
8464 	if (size) {
8465 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8466 				(xdp->data + headlen) - page_address(rx_buffer->page),
8467 				size, truesize);
8468 #if (PAGE_SIZE < 8192)
8469 		rx_buffer->page_offset ^= truesize;
8470 #else
8471 		rx_buffer->page_offset += truesize;
8472 #endif
8473 	} else {
8474 		rx_buffer->pagecnt_bias++;
8475 	}
8476 
8477 	return skb;
8478 }
8479 
8480 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8481 				     struct igb_rx_buffer *rx_buffer,
8482 				     struct xdp_buff *xdp,
8483 				     ktime_t timestamp)
8484 {
8485 #if (PAGE_SIZE < 8192)
8486 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8487 #else
8488 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8489 				SKB_DATA_ALIGN(xdp->data_end -
8490 					       xdp->data_hard_start);
8491 #endif
8492 	unsigned int metasize = xdp->data - xdp->data_meta;
8493 	struct sk_buff *skb;
8494 
8495 	/* prefetch first cache line of first page */
8496 	net_prefetch(xdp->data_meta);
8497 
8498 	/* build an skb around the page buffer */
8499 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8500 	if (unlikely(!skb))
8501 		return NULL;
8502 
8503 	/* update pointers within the skb to store the data */
8504 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8505 	__skb_put(skb, xdp->data_end - xdp->data);
8506 
8507 	if (metasize)
8508 		skb_metadata_set(skb, metasize);
8509 
8510 	if (timestamp)
8511 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8512 
8513 	/* update buffer offset */
8514 #if (PAGE_SIZE < 8192)
8515 	rx_buffer->page_offset ^= truesize;
8516 #else
8517 	rx_buffer->page_offset += truesize;
8518 #endif
8519 
8520 	return skb;
8521 }
8522 
8523 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8524 				   struct igb_ring *rx_ring,
8525 				   struct xdp_buff *xdp)
8526 {
8527 	int err, result = IGB_XDP_PASS;
8528 	struct bpf_prog *xdp_prog;
8529 	u32 act;
8530 
8531 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8532 
8533 	if (!xdp_prog)
8534 		goto xdp_out;
8535 
8536 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8537 
8538 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8539 	switch (act) {
8540 	case XDP_PASS:
8541 		break;
8542 	case XDP_TX:
8543 		result = igb_xdp_xmit_back(adapter, xdp);
8544 		if (result == IGB_XDP_CONSUMED)
8545 			goto out_failure;
8546 		break;
8547 	case XDP_REDIRECT:
8548 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8549 		if (err)
8550 			goto out_failure;
8551 		result = IGB_XDP_REDIR;
8552 		break;
8553 	default:
8554 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8555 		fallthrough;
8556 	case XDP_ABORTED:
8557 out_failure:
8558 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8559 		fallthrough;
8560 	case XDP_DROP:
8561 		result = IGB_XDP_CONSUMED;
8562 		break;
8563 	}
8564 xdp_out:
8565 	return ERR_PTR(-result);
8566 }
8567 
8568 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8569 					  unsigned int size)
8570 {
8571 	unsigned int truesize;
8572 
8573 #if (PAGE_SIZE < 8192)
8574 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8575 #else
8576 	truesize = ring_uses_build_skb(rx_ring) ?
8577 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8578 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8579 		SKB_DATA_ALIGN(size);
8580 #endif
8581 	return truesize;
8582 }
8583 
8584 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8585 			       struct igb_rx_buffer *rx_buffer,
8586 			       unsigned int size)
8587 {
8588 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8589 #if (PAGE_SIZE < 8192)
8590 	rx_buffer->page_offset ^= truesize;
8591 #else
8592 	rx_buffer->page_offset += truesize;
8593 #endif
8594 }
8595 
8596 static inline void igb_rx_checksum(struct igb_ring *ring,
8597 				   union e1000_adv_rx_desc *rx_desc,
8598 				   struct sk_buff *skb)
8599 {
8600 	skb_checksum_none_assert(skb);
8601 
8602 	/* Ignore Checksum bit is set */
8603 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8604 		return;
8605 
8606 	/* Rx checksum disabled via ethtool */
8607 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8608 		return;
8609 
8610 	/* TCP/UDP checksum error bit is set */
8611 	if (igb_test_staterr(rx_desc,
8612 			     E1000_RXDEXT_STATERR_TCPE |
8613 			     E1000_RXDEXT_STATERR_IPE)) {
8614 		/* work around errata with sctp packets where the TCPE aka
8615 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8616 		 * packets, (aka let the stack check the crc32c)
8617 		 */
8618 		if (!((skb->len == 60) &&
8619 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8620 			u64_stats_update_begin(&ring->rx_syncp);
8621 			ring->rx_stats.csum_err++;
8622 			u64_stats_update_end(&ring->rx_syncp);
8623 		}
8624 		/* let the stack verify checksum errors */
8625 		return;
8626 	}
8627 	/* It must be a TCP or UDP packet with a valid checksum */
8628 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8629 				      E1000_RXD_STAT_UDPCS))
8630 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8631 
8632 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8633 		le32_to_cpu(rx_desc->wb.upper.status_error));
8634 }
8635 
8636 static inline void igb_rx_hash(struct igb_ring *ring,
8637 			       union e1000_adv_rx_desc *rx_desc,
8638 			       struct sk_buff *skb)
8639 {
8640 	if (ring->netdev->features & NETIF_F_RXHASH)
8641 		skb_set_hash(skb,
8642 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8643 			     PKT_HASH_TYPE_L3);
8644 }
8645 
8646 /**
8647  *  igb_is_non_eop - process handling of non-EOP buffers
8648  *  @rx_ring: Rx ring being processed
8649  *  @rx_desc: Rx descriptor for current buffer
8650  *
8651  *  This function updates next to clean.  If the buffer is an EOP buffer
8652  *  this function exits returning false, otherwise it will place the
8653  *  sk_buff in the next buffer to be chained and return true indicating
8654  *  that this is in fact a non-EOP buffer.
8655  **/
8656 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8657 			   union e1000_adv_rx_desc *rx_desc)
8658 {
8659 	u32 ntc = rx_ring->next_to_clean + 1;
8660 
8661 	/* fetch, update, and store next to clean */
8662 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8663 	rx_ring->next_to_clean = ntc;
8664 
8665 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8666 
8667 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8668 		return false;
8669 
8670 	return true;
8671 }
8672 
8673 /**
8674  *  igb_cleanup_headers - Correct corrupted or empty headers
8675  *  @rx_ring: rx descriptor ring packet is being transacted on
8676  *  @rx_desc: pointer to the EOP Rx descriptor
8677  *  @skb: pointer to current skb being fixed
8678  *
8679  *  Address the case where we are pulling data in on pages only
8680  *  and as such no data is present in the skb header.
8681  *
8682  *  In addition if skb is not at least 60 bytes we need to pad it so that
8683  *  it is large enough to qualify as a valid Ethernet frame.
8684  *
8685  *  Returns true if an error was encountered and skb was freed.
8686  **/
8687 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8688 				union e1000_adv_rx_desc *rx_desc,
8689 				struct sk_buff *skb)
8690 {
8691 	/* XDP packets use error pointer so abort at this point */
8692 	if (IS_ERR(skb))
8693 		return true;
8694 
8695 	if (unlikely((igb_test_staterr(rx_desc,
8696 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8697 		struct net_device *netdev = rx_ring->netdev;
8698 		if (!(netdev->features & NETIF_F_RXALL)) {
8699 			dev_kfree_skb_any(skb);
8700 			return true;
8701 		}
8702 	}
8703 
8704 	/* if eth_skb_pad returns an error the skb was freed */
8705 	if (eth_skb_pad(skb))
8706 		return true;
8707 
8708 	return false;
8709 }
8710 
8711 /**
8712  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8713  *  @rx_ring: rx descriptor ring packet is being transacted on
8714  *  @rx_desc: pointer to the EOP Rx descriptor
8715  *  @skb: pointer to current skb being populated
8716  *
8717  *  This function checks the ring, descriptor, and packet information in
8718  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8719  *  other fields within the skb.
8720  **/
8721 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8722 				   union e1000_adv_rx_desc *rx_desc,
8723 				   struct sk_buff *skb)
8724 {
8725 	struct net_device *dev = rx_ring->netdev;
8726 
8727 	igb_rx_hash(rx_ring, rx_desc, skb);
8728 
8729 	igb_rx_checksum(rx_ring, rx_desc, skb);
8730 
8731 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8732 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8733 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8734 
8735 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8736 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8737 		u16 vid;
8738 
8739 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8740 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8741 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8742 		else
8743 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8744 
8745 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8746 	}
8747 
8748 	skb_record_rx_queue(skb, rx_ring->queue_index);
8749 
8750 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8751 }
8752 
8753 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8754 {
8755 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8756 }
8757 
8758 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8759 					       const unsigned int size, int *rx_buf_pgcnt)
8760 {
8761 	struct igb_rx_buffer *rx_buffer;
8762 
8763 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8764 	*rx_buf_pgcnt =
8765 #if (PAGE_SIZE < 8192)
8766 		page_count(rx_buffer->page);
8767 #else
8768 		0;
8769 #endif
8770 	prefetchw(rx_buffer->page);
8771 
8772 	/* we are reusing so sync this buffer for CPU use */
8773 	dma_sync_single_range_for_cpu(rx_ring->dev,
8774 				      rx_buffer->dma,
8775 				      rx_buffer->page_offset,
8776 				      size,
8777 				      DMA_FROM_DEVICE);
8778 
8779 	rx_buffer->pagecnt_bias--;
8780 
8781 	return rx_buffer;
8782 }
8783 
8784 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8785 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8786 {
8787 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8788 		/* hand second half of page back to the ring */
8789 		igb_reuse_rx_page(rx_ring, rx_buffer);
8790 	} else {
8791 		/* We are not reusing the buffer so unmap it and free
8792 		 * any references we are holding to it
8793 		 */
8794 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8795 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8796 				     IGB_RX_DMA_ATTR);
8797 		__page_frag_cache_drain(rx_buffer->page,
8798 					rx_buffer->pagecnt_bias);
8799 	}
8800 
8801 	/* clear contents of rx_buffer */
8802 	rx_buffer->page = NULL;
8803 }
8804 
8805 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8806 {
8807 	struct igb_adapter *adapter = q_vector->adapter;
8808 	struct igb_ring *rx_ring = q_vector->rx.ring;
8809 	struct sk_buff *skb = rx_ring->skb;
8810 	unsigned int total_bytes = 0, total_packets = 0;
8811 	u16 cleaned_count = igb_desc_unused(rx_ring);
8812 	unsigned int xdp_xmit = 0;
8813 	struct xdp_buff xdp;
8814 	u32 frame_sz = 0;
8815 	int rx_buf_pgcnt;
8816 
8817 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8818 #if (PAGE_SIZE < 8192)
8819 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8820 #endif
8821 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8822 
8823 	while (likely(total_packets < budget)) {
8824 		union e1000_adv_rx_desc *rx_desc;
8825 		struct igb_rx_buffer *rx_buffer;
8826 		ktime_t timestamp = 0;
8827 		int pkt_offset = 0;
8828 		unsigned int size;
8829 		void *pktbuf;
8830 
8831 		/* return some buffers to hardware, one at a time is too slow */
8832 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8833 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8834 			cleaned_count = 0;
8835 		}
8836 
8837 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8838 		size = le16_to_cpu(rx_desc->wb.upper.length);
8839 		if (!size)
8840 			break;
8841 
8842 		/* This memory barrier is needed to keep us from reading
8843 		 * any other fields out of the rx_desc until we know the
8844 		 * descriptor has been written back
8845 		 */
8846 		dma_rmb();
8847 
8848 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8849 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8850 
8851 		/* pull rx packet timestamp if available and valid */
8852 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8853 			int ts_hdr_len;
8854 
8855 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8856 							 pktbuf, &timestamp);
8857 
8858 			pkt_offset += ts_hdr_len;
8859 			size -= ts_hdr_len;
8860 		}
8861 
8862 		/* retrieve a buffer from the ring */
8863 		if (!skb) {
8864 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8865 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8866 
8867 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8868 			xdp_buff_clear_frags_flag(&xdp);
8869 #if (PAGE_SIZE > 4096)
8870 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8871 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8872 #endif
8873 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8874 		}
8875 
8876 		if (IS_ERR(skb)) {
8877 			unsigned int xdp_res = -PTR_ERR(skb);
8878 
8879 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8880 				xdp_xmit |= xdp_res;
8881 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8882 			} else {
8883 				rx_buffer->pagecnt_bias++;
8884 			}
8885 			total_packets++;
8886 			total_bytes += size;
8887 		} else if (skb)
8888 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8889 		else if (ring_uses_build_skb(rx_ring))
8890 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8891 					    timestamp);
8892 		else
8893 			skb = igb_construct_skb(rx_ring, rx_buffer,
8894 						&xdp, timestamp);
8895 
8896 		/* exit if we failed to retrieve a buffer */
8897 		if (!skb) {
8898 			rx_ring->rx_stats.alloc_failed++;
8899 			rx_buffer->pagecnt_bias++;
8900 			break;
8901 		}
8902 
8903 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8904 		cleaned_count++;
8905 
8906 		/* fetch next buffer in frame if non-eop */
8907 		if (igb_is_non_eop(rx_ring, rx_desc))
8908 			continue;
8909 
8910 		/* verify the packet layout is correct */
8911 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8912 			skb = NULL;
8913 			continue;
8914 		}
8915 
8916 		/* probably a little skewed due to removing CRC */
8917 		total_bytes += skb->len;
8918 
8919 		/* populate checksum, timestamp, VLAN, and protocol */
8920 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8921 
8922 		napi_gro_receive(&q_vector->napi, skb);
8923 
8924 		/* reset skb pointer */
8925 		skb = NULL;
8926 
8927 		/* update budget accounting */
8928 		total_packets++;
8929 	}
8930 
8931 	/* place incomplete frames back on ring for completion */
8932 	rx_ring->skb = skb;
8933 
8934 	if (xdp_xmit & IGB_XDP_REDIR)
8935 		xdp_do_flush();
8936 
8937 	if (xdp_xmit & IGB_XDP_TX) {
8938 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8939 
8940 		igb_xdp_ring_update_tail(tx_ring);
8941 	}
8942 
8943 	u64_stats_update_begin(&rx_ring->rx_syncp);
8944 	rx_ring->rx_stats.packets += total_packets;
8945 	rx_ring->rx_stats.bytes += total_bytes;
8946 	u64_stats_update_end(&rx_ring->rx_syncp);
8947 	q_vector->rx.total_packets += total_packets;
8948 	q_vector->rx.total_bytes += total_bytes;
8949 
8950 	if (cleaned_count)
8951 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8952 
8953 	return total_packets;
8954 }
8955 
8956 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8957 				  struct igb_rx_buffer *bi)
8958 {
8959 	struct page *page = bi->page;
8960 	dma_addr_t dma;
8961 
8962 	/* since we are recycling buffers we should seldom need to alloc */
8963 	if (likely(page))
8964 		return true;
8965 
8966 	/* alloc new page for storage */
8967 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8968 	if (unlikely(!page)) {
8969 		rx_ring->rx_stats.alloc_failed++;
8970 		return false;
8971 	}
8972 
8973 	/* map page for use */
8974 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8975 				 igb_rx_pg_size(rx_ring),
8976 				 DMA_FROM_DEVICE,
8977 				 IGB_RX_DMA_ATTR);
8978 
8979 	/* if mapping failed free memory back to system since
8980 	 * there isn't much point in holding memory we can't use
8981 	 */
8982 	if (dma_mapping_error(rx_ring->dev, dma)) {
8983 		__free_pages(page, igb_rx_pg_order(rx_ring));
8984 
8985 		rx_ring->rx_stats.alloc_failed++;
8986 		return false;
8987 	}
8988 
8989 	bi->dma = dma;
8990 	bi->page = page;
8991 	bi->page_offset = igb_rx_offset(rx_ring);
8992 	page_ref_add(page, USHRT_MAX - 1);
8993 	bi->pagecnt_bias = USHRT_MAX;
8994 
8995 	return true;
8996 }
8997 
8998 /**
8999  *  igb_alloc_rx_buffers - Replace used receive buffers
9000  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9001  *  @cleaned_count: count of buffers to allocate
9002  **/
9003 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9004 {
9005 	union e1000_adv_rx_desc *rx_desc;
9006 	struct igb_rx_buffer *bi;
9007 	u16 i = rx_ring->next_to_use;
9008 	u16 bufsz;
9009 
9010 	/* nothing to do */
9011 	if (!cleaned_count)
9012 		return;
9013 
9014 	rx_desc = IGB_RX_DESC(rx_ring, i);
9015 	bi = &rx_ring->rx_buffer_info[i];
9016 	i -= rx_ring->count;
9017 
9018 	bufsz = igb_rx_bufsz(rx_ring);
9019 
9020 	do {
9021 		if (!igb_alloc_mapped_page(rx_ring, bi))
9022 			break;
9023 
9024 		/* sync the buffer for use by the device */
9025 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9026 						 bi->page_offset, bufsz,
9027 						 DMA_FROM_DEVICE);
9028 
9029 		/* Refresh the desc even if buffer_addrs didn't change
9030 		 * because each write-back erases this info.
9031 		 */
9032 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9033 
9034 		rx_desc++;
9035 		bi++;
9036 		i++;
9037 		if (unlikely(!i)) {
9038 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9039 			bi = rx_ring->rx_buffer_info;
9040 			i -= rx_ring->count;
9041 		}
9042 
9043 		/* clear the length for the next_to_use descriptor */
9044 		rx_desc->wb.upper.length = 0;
9045 
9046 		cleaned_count--;
9047 	} while (cleaned_count);
9048 
9049 	i += rx_ring->count;
9050 
9051 	if (rx_ring->next_to_use != i) {
9052 		/* record the next descriptor to use */
9053 		rx_ring->next_to_use = i;
9054 
9055 		/* update next to alloc since we have filled the ring */
9056 		rx_ring->next_to_alloc = i;
9057 
9058 		/* Force memory writes to complete before letting h/w
9059 		 * know there are new descriptors to fetch.  (Only
9060 		 * applicable for weak-ordered memory model archs,
9061 		 * such as IA-64).
9062 		 */
9063 		dma_wmb();
9064 		writel(i, rx_ring->tail);
9065 	}
9066 }
9067 
9068 /**
9069  * igb_mii_ioctl -
9070  * @netdev: pointer to netdev struct
9071  * @ifr: interface structure
9072  * @cmd: ioctl command to execute
9073  **/
9074 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9075 {
9076 	struct igb_adapter *adapter = netdev_priv(netdev);
9077 	struct mii_ioctl_data *data = if_mii(ifr);
9078 
9079 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9080 		return -EOPNOTSUPP;
9081 
9082 	switch (cmd) {
9083 	case SIOCGMIIPHY:
9084 		data->phy_id = adapter->hw.phy.addr;
9085 		break;
9086 	case SIOCGMIIREG:
9087 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9088 				     &data->val_out))
9089 			return -EIO;
9090 		break;
9091 	case SIOCSMIIREG:
9092 	default:
9093 		return -EOPNOTSUPP;
9094 	}
9095 	return 0;
9096 }
9097 
9098 /**
9099  * igb_ioctl -
9100  * @netdev: pointer to netdev struct
9101  * @ifr: interface structure
9102  * @cmd: ioctl command to execute
9103  **/
9104 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9105 {
9106 	switch (cmd) {
9107 	case SIOCGMIIPHY:
9108 	case SIOCGMIIREG:
9109 	case SIOCSMIIREG:
9110 		return igb_mii_ioctl(netdev, ifr, cmd);
9111 	case SIOCGHWTSTAMP:
9112 		return igb_ptp_get_ts_config(netdev, ifr);
9113 	case SIOCSHWTSTAMP:
9114 		return igb_ptp_set_ts_config(netdev, ifr);
9115 	default:
9116 		return -EOPNOTSUPP;
9117 	}
9118 }
9119 
9120 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9121 {
9122 	struct igb_adapter *adapter = hw->back;
9123 
9124 	pci_read_config_word(adapter->pdev, reg, value);
9125 }
9126 
9127 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9128 {
9129 	struct igb_adapter *adapter = hw->back;
9130 
9131 	pci_write_config_word(adapter->pdev, reg, *value);
9132 }
9133 
9134 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9135 {
9136 	struct igb_adapter *adapter = hw->back;
9137 
9138 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9139 		return -E1000_ERR_CONFIG;
9140 
9141 	return 0;
9142 }
9143 
9144 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9145 {
9146 	struct igb_adapter *adapter = hw->back;
9147 
9148 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9149 		return -E1000_ERR_CONFIG;
9150 
9151 	return 0;
9152 }
9153 
9154 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9155 {
9156 	struct igb_adapter *adapter = netdev_priv(netdev);
9157 	struct e1000_hw *hw = &adapter->hw;
9158 	u32 ctrl, rctl;
9159 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9160 
9161 	if (enable) {
9162 		/* enable VLAN tag insert/strip */
9163 		ctrl = rd32(E1000_CTRL);
9164 		ctrl |= E1000_CTRL_VME;
9165 		wr32(E1000_CTRL, ctrl);
9166 
9167 		/* Disable CFI check */
9168 		rctl = rd32(E1000_RCTL);
9169 		rctl &= ~E1000_RCTL_CFIEN;
9170 		wr32(E1000_RCTL, rctl);
9171 	} else {
9172 		/* disable VLAN tag insert/strip */
9173 		ctrl = rd32(E1000_CTRL);
9174 		ctrl &= ~E1000_CTRL_VME;
9175 		wr32(E1000_CTRL, ctrl);
9176 	}
9177 
9178 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9179 }
9180 
9181 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9182 			       __be16 proto, u16 vid)
9183 {
9184 	struct igb_adapter *adapter = netdev_priv(netdev);
9185 	struct e1000_hw *hw = &adapter->hw;
9186 	int pf_id = adapter->vfs_allocated_count;
9187 
9188 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9189 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9190 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9191 
9192 	set_bit(vid, adapter->active_vlans);
9193 
9194 	return 0;
9195 }
9196 
9197 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9198 				__be16 proto, u16 vid)
9199 {
9200 	struct igb_adapter *adapter = netdev_priv(netdev);
9201 	int pf_id = adapter->vfs_allocated_count;
9202 	struct e1000_hw *hw = &adapter->hw;
9203 
9204 	/* remove VID from filter table */
9205 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9206 		igb_vfta_set(hw, vid, pf_id, false, true);
9207 
9208 	clear_bit(vid, adapter->active_vlans);
9209 
9210 	return 0;
9211 }
9212 
9213 static void igb_restore_vlan(struct igb_adapter *adapter)
9214 {
9215 	u16 vid = 1;
9216 
9217 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9218 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9219 
9220 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9221 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9222 }
9223 
9224 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9225 {
9226 	struct pci_dev *pdev = adapter->pdev;
9227 	struct e1000_mac_info *mac = &adapter->hw.mac;
9228 
9229 	mac->autoneg = 0;
9230 
9231 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9232 	 * for the switch() below to work
9233 	 */
9234 	if ((spd & 1) || (dplx & ~1))
9235 		goto err_inval;
9236 
9237 	/* Fiber NIC's only allow 1000 gbps Full duplex
9238 	 * and 100Mbps Full duplex for 100baseFx sfp
9239 	 */
9240 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9241 		switch (spd + dplx) {
9242 		case SPEED_10 + DUPLEX_HALF:
9243 		case SPEED_10 + DUPLEX_FULL:
9244 		case SPEED_100 + DUPLEX_HALF:
9245 			goto err_inval;
9246 		default:
9247 			break;
9248 		}
9249 	}
9250 
9251 	switch (spd + dplx) {
9252 	case SPEED_10 + DUPLEX_HALF:
9253 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9254 		break;
9255 	case SPEED_10 + DUPLEX_FULL:
9256 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9257 		break;
9258 	case SPEED_100 + DUPLEX_HALF:
9259 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9260 		break;
9261 	case SPEED_100 + DUPLEX_FULL:
9262 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9263 		break;
9264 	case SPEED_1000 + DUPLEX_FULL:
9265 		mac->autoneg = 1;
9266 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9267 		break;
9268 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9269 	default:
9270 		goto err_inval;
9271 	}
9272 
9273 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9274 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9275 
9276 	return 0;
9277 
9278 err_inval:
9279 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9280 	return -EINVAL;
9281 }
9282 
9283 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9284 			  bool runtime)
9285 {
9286 	struct net_device *netdev = pci_get_drvdata(pdev);
9287 	struct igb_adapter *adapter = netdev_priv(netdev);
9288 	struct e1000_hw *hw = &adapter->hw;
9289 	u32 ctrl, rctl, status;
9290 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9291 	bool wake;
9292 
9293 	rtnl_lock();
9294 	netif_device_detach(netdev);
9295 
9296 	if (netif_running(netdev))
9297 		__igb_close(netdev, true);
9298 
9299 	igb_ptp_suspend(adapter);
9300 
9301 	igb_clear_interrupt_scheme(adapter);
9302 	rtnl_unlock();
9303 
9304 	status = rd32(E1000_STATUS);
9305 	if (status & E1000_STATUS_LU)
9306 		wufc &= ~E1000_WUFC_LNKC;
9307 
9308 	if (wufc) {
9309 		igb_setup_rctl(adapter);
9310 		igb_set_rx_mode(netdev);
9311 
9312 		/* turn on all-multi mode if wake on multicast is enabled */
9313 		if (wufc & E1000_WUFC_MC) {
9314 			rctl = rd32(E1000_RCTL);
9315 			rctl |= E1000_RCTL_MPE;
9316 			wr32(E1000_RCTL, rctl);
9317 		}
9318 
9319 		ctrl = rd32(E1000_CTRL);
9320 		ctrl |= E1000_CTRL_ADVD3WUC;
9321 		wr32(E1000_CTRL, ctrl);
9322 
9323 		/* Allow time for pending master requests to run */
9324 		igb_disable_pcie_master(hw);
9325 
9326 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9327 		wr32(E1000_WUFC, wufc);
9328 	} else {
9329 		wr32(E1000_WUC, 0);
9330 		wr32(E1000_WUFC, 0);
9331 	}
9332 
9333 	wake = wufc || adapter->en_mng_pt;
9334 	if (!wake)
9335 		igb_power_down_link(adapter);
9336 	else
9337 		igb_power_up_link(adapter);
9338 
9339 	if (enable_wake)
9340 		*enable_wake = wake;
9341 
9342 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9343 	 * would have already happened in close and is redundant.
9344 	 */
9345 	igb_release_hw_control(adapter);
9346 
9347 	pci_disable_device(pdev);
9348 
9349 	return 0;
9350 }
9351 
9352 static void igb_deliver_wake_packet(struct net_device *netdev)
9353 {
9354 	struct igb_adapter *adapter = netdev_priv(netdev);
9355 	struct e1000_hw *hw = &adapter->hw;
9356 	struct sk_buff *skb;
9357 	u32 wupl;
9358 
9359 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9360 
9361 	/* WUPM stores only the first 128 bytes of the wake packet.
9362 	 * Read the packet only if we have the whole thing.
9363 	 */
9364 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9365 		return;
9366 
9367 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9368 	if (!skb)
9369 		return;
9370 
9371 	skb_put(skb, wupl);
9372 
9373 	/* Ensure reads are 32-bit aligned */
9374 	wupl = roundup(wupl, 4);
9375 
9376 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9377 
9378 	skb->protocol = eth_type_trans(skb, netdev);
9379 	netif_rx(skb);
9380 }
9381 
9382 static int __maybe_unused igb_suspend(struct device *dev)
9383 {
9384 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9385 }
9386 
9387 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9388 {
9389 	struct pci_dev *pdev = to_pci_dev(dev);
9390 	struct net_device *netdev = pci_get_drvdata(pdev);
9391 	struct igb_adapter *adapter = netdev_priv(netdev);
9392 	struct e1000_hw *hw = &adapter->hw;
9393 	u32 err, val;
9394 
9395 	pci_set_power_state(pdev, PCI_D0);
9396 	pci_restore_state(pdev);
9397 	pci_save_state(pdev);
9398 
9399 	if (!pci_device_is_present(pdev))
9400 		return -ENODEV;
9401 	err = pci_enable_device_mem(pdev);
9402 	if (err) {
9403 		dev_err(&pdev->dev,
9404 			"igb: Cannot enable PCI device from suspend\n");
9405 		return err;
9406 	}
9407 	pci_set_master(pdev);
9408 
9409 	pci_enable_wake(pdev, PCI_D3hot, 0);
9410 	pci_enable_wake(pdev, PCI_D3cold, 0);
9411 
9412 	if (igb_init_interrupt_scheme(adapter, true)) {
9413 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9414 		return -ENOMEM;
9415 	}
9416 
9417 	igb_reset(adapter);
9418 
9419 	/* let the f/w know that the h/w is now under the control of the
9420 	 * driver.
9421 	 */
9422 	igb_get_hw_control(adapter);
9423 
9424 	val = rd32(E1000_WUS);
9425 	if (val & WAKE_PKT_WUS)
9426 		igb_deliver_wake_packet(netdev);
9427 
9428 	wr32(E1000_WUS, ~0);
9429 
9430 	if (!rpm)
9431 		rtnl_lock();
9432 	if (!err && netif_running(netdev))
9433 		err = __igb_open(netdev, true);
9434 
9435 	if (!err)
9436 		netif_device_attach(netdev);
9437 	if (!rpm)
9438 		rtnl_unlock();
9439 
9440 	return err;
9441 }
9442 
9443 static int __maybe_unused igb_resume(struct device *dev)
9444 {
9445 	return __igb_resume(dev, false);
9446 }
9447 
9448 static int __maybe_unused igb_runtime_idle(struct device *dev)
9449 {
9450 	struct net_device *netdev = dev_get_drvdata(dev);
9451 	struct igb_adapter *adapter = netdev_priv(netdev);
9452 
9453 	if (!igb_has_link(adapter))
9454 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9455 
9456 	return -EBUSY;
9457 }
9458 
9459 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9460 {
9461 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9462 }
9463 
9464 static int __maybe_unused igb_runtime_resume(struct device *dev)
9465 {
9466 	return __igb_resume(dev, true);
9467 }
9468 
9469 static void igb_shutdown(struct pci_dev *pdev)
9470 {
9471 	bool wake;
9472 
9473 	__igb_shutdown(pdev, &wake, 0);
9474 
9475 	if (system_state == SYSTEM_POWER_OFF) {
9476 		pci_wake_from_d3(pdev, wake);
9477 		pci_set_power_state(pdev, PCI_D3hot);
9478 	}
9479 }
9480 
9481 #ifdef CONFIG_PCI_IOV
9482 static int igb_sriov_reinit(struct pci_dev *dev)
9483 {
9484 	struct net_device *netdev = pci_get_drvdata(dev);
9485 	struct igb_adapter *adapter = netdev_priv(netdev);
9486 	struct pci_dev *pdev = adapter->pdev;
9487 
9488 	rtnl_lock();
9489 
9490 	if (netif_running(netdev))
9491 		igb_close(netdev);
9492 	else
9493 		igb_reset(adapter);
9494 
9495 	igb_clear_interrupt_scheme(adapter);
9496 
9497 	igb_init_queue_configuration(adapter);
9498 
9499 	if (igb_init_interrupt_scheme(adapter, true)) {
9500 		rtnl_unlock();
9501 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9502 		return -ENOMEM;
9503 	}
9504 
9505 	if (netif_running(netdev))
9506 		igb_open(netdev);
9507 
9508 	rtnl_unlock();
9509 
9510 	return 0;
9511 }
9512 
9513 static int igb_pci_disable_sriov(struct pci_dev *dev)
9514 {
9515 	int err = igb_disable_sriov(dev);
9516 
9517 	if (!err)
9518 		err = igb_sriov_reinit(dev);
9519 
9520 	return err;
9521 }
9522 
9523 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9524 {
9525 	int err = igb_enable_sriov(dev, num_vfs);
9526 
9527 	if (err)
9528 		goto out;
9529 
9530 	err = igb_sriov_reinit(dev);
9531 	if (!err)
9532 		return num_vfs;
9533 
9534 out:
9535 	return err;
9536 }
9537 
9538 #endif
9539 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9540 {
9541 #ifdef CONFIG_PCI_IOV
9542 	if (num_vfs == 0)
9543 		return igb_pci_disable_sriov(dev);
9544 	else
9545 		return igb_pci_enable_sriov(dev, num_vfs);
9546 #endif
9547 	return 0;
9548 }
9549 
9550 /**
9551  *  igb_io_error_detected - called when PCI error is detected
9552  *  @pdev: Pointer to PCI device
9553  *  @state: The current pci connection state
9554  *
9555  *  This function is called after a PCI bus error affecting
9556  *  this device has been detected.
9557  **/
9558 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9559 					      pci_channel_state_t state)
9560 {
9561 	struct net_device *netdev = pci_get_drvdata(pdev);
9562 	struct igb_adapter *adapter = netdev_priv(netdev);
9563 
9564 	netif_device_detach(netdev);
9565 
9566 	if (state == pci_channel_io_perm_failure)
9567 		return PCI_ERS_RESULT_DISCONNECT;
9568 
9569 	if (netif_running(netdev))
9570 		igb_down(adapter);
9571 	pci_disable_device(pdev);
9572 
9573 	/* Request a slot reset. */
9574 	return PCI_ERS_RESULT_NEED_RESET;
9575 }
9576 
9577 /**
9578  *  igb_io_slot_reset - called after the pci bus has been reset.
9579  *  @pdev: Pointer to PCI device
9580  *
9581  *  Restart the card from scratch, as if from a cold-boot. Implementation
9582  *  resembles the first-half of the __igb_resume routine.
9583  **/
9584 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9585 {
9586 	struct net_device *netdev = pci_get_drvdata(pdev);
9587 	struct igb_adapter *adapter = netdev_priv(netdev);
9588 	struct e1000_hw *hw = &adapter->hw;
9589 	pci_ers_result_t result;
9590 
9591 	if (pci_enable_device_mem(pdev)) {
9592 		dev_err(&pdev->dev,
9593 			"Cannot re-enable PCI device after reset.\n");
9594 		result = PCI_ERS_RESULT_DISCONNECT;
9595 	} else {
9596 		pci_set_master(pdev);
9597 		pci_restore_state(pdev);
9598 		pci_save_state(pdev);
9599 
9600 		pci_enable_wake(pdev, PCI_D3hot, 0);
9601 		pci_enable_wake(pdev, PCI_D3cold, 0);
9602 
9603 		/* In case of PCI error, adapter lose its HW address
9604 		 * so we should re-assign it here.
9605 		 */
9606 		hw->hw_addr = adapter->io_addr;
9607 
9608 		igb_reset(adapter);
9609 		wr32(E1000_WUS, ~0);
9610 		result = PCI_ERS_RESULT_RECOVERED;
9611 	}
9612 
9613 	return result;
9614 }
9615 
9616 /**
9617  *  igb_io_resume - called when traffic can start flowing again.
9618  *  @pdev: Pointer to PCI device
9619  *
9620  *  This callback is called when the error recovery driver tells us that
9621  *  its OK to resume normal operation. Implementation resembles the
9622  *  second-half of the __igb_resume routine.
9623  */
9624 static void igb_io_resume(struct pci_dev *pdev)
9625 {
9626 	struct net_device *netdev = pci_get_drvdata(pdev);
9627 	struct igb_adapter *adapter = netdev_priv(netdev);
9628 
9629 	if (netif_running(netdev)) {
9630 		if (igb_up(adapter)) {
9631 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9632 			return;
9633 		}
9634 	}
9635 
9636 	netif_device_attach(netdev);
9637 
9638 	/* let the f/w know that the h/w is now under the control of the
9639 	 * driver.
9640 	 */
9641 	igb_get_hw_control(adapter);
9642 }
9643 
9644 /**
9645  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9646  *  @adapter: Pointer to adapter structure
9647  *  @index: Index of the RAR entry which need to be synced with MAC table
9648  **/
9649 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9650 {
9651 	struct e1000_hw *hw = &adapter->hw;
9652 	u32 rar_low, rar_high;
9653 	u8 *addr = adapter->mac_table[index].addr;
9654 
9655 	/* HW expects these to be in network order when they are plugged
9656 	 * into the registers which are little endian.  In order to guarantee
9657 	 * that ordering we need to do an leXX_to_cpup here in order to be
9658 	 * ready for the byteswap that occurs with writel
9659 	 */
9660 	rar_low = le32_to_cpup((__le32 *)(addr));
9661 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9662 
9663 	/* Indicate to hardware the Address is Valid. */
9664 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9665 		if (is_valid_ether_addr(addr))
9666 			rar_high |= E1000_RAH_AV;
9667 
9668 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9669 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9670 
9671 		switch (hw->mac.type) {
9672 		case e1000_82575:
9673 		case e1000_i210:
9674 			if (adapter->mac_table[index].state &
9675 			    IGB_MAC_STATE_QUEUE_STEERING)
9676 				rar_high |= E1000_RAH_QSEL_ENABLE;
9677 
9678 			rar_high |= E1000_RAH_POOL_1 *
9679 				    adapter->mac_table[index].queue;
9680 			break;
9681 		default:
9682 			rar_high |= E1000_RAH_POOL_1 <<
9683 				    adapter->mac_table[index].queue;
9684 			break;
9685 		}
9686 	}
9687 
9688 	wr32(E1000_RAL(index), rar_low);
9689 	wrfl();
9690 	wr32(E1000_RAH(index), rar_high);
9691 	wrfl();
9692 }
9693 
9694 static int igb_set_vf_mac(struct igb_adapter *adapter,
9695 			  int vf, unsigned char *mac_addr)
9696 {
9697 	struct e1000_hw *hw = &adapter->hw;
9698 	/* VF MAC addresses start at end of receive addresses and moves
9699 	 * towards the first, as a result a collision should not be possible
9700 	 */
9701 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9702 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9703 
9704 	ether_addr_copy(vf_mac_addr, mac_addr);
9705 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9706 	adapter->mac_table[rar_entry].queue = vf;
9707 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9708 	igb_rar_set_index(adapter, rar_entry);
9709 
9710 	return 0;
9711 }
9712 
9713 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9714 {
9715 	struct igb_adapter *adapter = netdev_priv(netdev);
9716 
9717 	if (vf >= adapter->vfs_allocated_count)
9718 		return -EINVAL;
9719 
9720 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9721 	 * flag and allows to overwrite the MAC via VF netdev.  This
9722 	 * is necessary to allow libvirt a way to restore the original
9723 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9724 	 * down a VM.
9725 	 */
9726 	if (is_zero_ether_addr(mac)) {
9727 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9728 		dev_info(&adapter->pdev->dev,
9729 			 "remove administratively set MAC on VF %d\n",
9730 			 vf);
9731 	} else if (is_valid_ether_addr(mac)) {
9732 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9733 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9734 			 mac, vf);
9735 		dev_info(&adapter->pdev->dev,
9736 			 "Reload the VF driver to make this change effective.");
9737 		/* Generate additional warning if PF is down */
9738 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9739 			dev_warn(&adapter->pdev->dev,
9740 				 "The VF MAC address has been set, but the PF device is not up.\n");
9741 			dev_warn(&adapter->pdev->dev,
9742 				 "Bring the PF device up before attempting to use the VF device.\n");
9743 		}
9744 	} else {
9745 		return -EINVAL;
9746 	}
9747 	return igb_set_vf_mac(adapter, vf, mac);
9748 }
9749 
9750 static int igb_link_mbps(int internal_link_speed)
9751 {
9752 	switch (internal_link_speed) {
9753 	case SPEED_100:
9754 		return 100;
9755 	case SPEED_1000:
9756 		return 1000;
9757 	default:
9758 		return 0;
9759 	}
9760 }
9761 
9762 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9763 				  int link_speed)
9764 {
9765 	int rf_dec, rf_int;
9766 	u32 bcnrc_val;
9767 
9768 	if (tx_rate != 0) {
9769 		/* Calculate the rate factor values to set */
9770 		rf_int = link_speed / tx_rate;
9771 		rf_dec = (link_speed - (rf_int * tx_rate));
9772 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9773 			 tx_rate;
9774 
9775 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9776 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9777 			      E1000_RTTBCNRC_RF_INT_MASK);
9778 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9779 	} else {
9780 		bcnrc_val = 0;
9781 	}
9782 
9783 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9784 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9785 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9786 	 */
9787 	wr32(E1000_RTTBCNRM, 0x14);
9788 	wr32(E1000_RTTBCNRC, bcnrc_val);
9789 }
9790 
9791 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9792 {
9793 	int actual_link_speed, i;
9794 	bool reset_rate = false;
9795 
9796 	/* VF TX rate limit was not set or not supported */
9797 	if ((adapter->vf_rate_link_speed == 0) ||
9798 	    (adapter->hw.mac.type != e1000_82576))
9799 		return;
9800 
9801 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9802 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9803 		reset_rate = true;
9804 		adapter->vf_rate_link_speed = 0;
9805 		dev_info(&adapter->pdev->dev,
9806 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9807 	}
9808 
9809 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9810 		if (reset_rate)
9811 			adapter->vf_data[i].tx_rate = 0;
9812 
9813 		igb_set_vf_rate_limit(&adapter->hw, i,
9814 				      adapter->vf_data[i].tx_rate,
9815 				      actual_link_speed);
9816 	}
9817 }
9818 
9819 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9820 			     int min_tx_rate, int max_tx_rate)
9821 {
9822 	struct igb_adapter *adapter = netdev_priv(netdev);
9823 	struct e1000_hw *hw = &adapter->hw;
9824 	int actual_link_speed;
9825 
9826 	if (hw->mac.type != e1000_82576)
9827 		return -EOPNOTSUPP;
9828 
9829 	if (min_tx_rate)
9830 		return -EINVAL;
9831 
9832 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9833 	if ((vf >= adapter->vfs_allocated_count) ||
9834 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9835 	    (max_tx_rate < 0) ||
9836 	    (max_tx_rate > actual_link_speed))
9837 		return -EINVAL;
9838 
9839 	adapter->vf_rate_link_speed = actual_link_speed;
9840 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9841 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9842 
9843 	return 0;
9844 }
9845 
9846 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9847 				   bool setting)
9848 {
9849 	struct igb_adapter *adapter = netdev_priv(netdev);
9850 	struct e1000_hw *hw = &adapter->hw;
9851 	u32 reg_val, reg_offset;
9852 
9853 	if (!adapter->vfs_allocated_count)
9854 		return -EOPNOTSUPP;
9855 
9856 	if (vf >= adapter->vfs_allocated_count)
9857 		return -EINVAL;
9858 
9859 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9860 	reg_val = rd32(reg_offset);
9861 	if (setting)
9862 		reg_val |= (BIT(vf) |
9863 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9864 	else
9865 		reg_val &= ~(BIT(vf) |
9866 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9867 	wr32(reg_offset, reg_val);
9868 
9869 	adapter->vf_data[vf].spoofchk_enabled = setting;
9870 	return 0;
9871 }
9872 
9873 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9874 {
9875 	struct igb_adapter *adapter = netdev_priv(netdev);
9876 
9877 	if (vf >= adapter->vfs_allocated_count)
9878 		return -EINVAL;
9879 	if (adapter->vf_data[vf].trusted == setting)
9880 		return 0;
9881 
9882 	adapter->vf_data[vf].trusted = setting;
9883 
9884 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9885 		 vf, setting ? "" : "not ");
9886 	return 0;
9887 }
9888 
9889 static int igb_ndo_get_vf_config(struct net_device *netdev,
9890 				 int vf, struct ifla_vf_info *ivi)
9891 {
9892 	struct igb_adapter *adapter = netdev_priv(netdev);
9893 	if (vf >= adapter->vfs_allocated_count)
9894 		return -EINVAL;
9895 	ivi->vf = vf;
9896 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9897 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9898 	ivi->min_tx_rate = 0;
9899 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9900 	ivi->qos = adapter->vf_data[vf].pf_qos;
9901 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9902 	ivi->trusted = adapter->vf_data[vf].trusted;
9903 	return 0;
9904 }
9905 
9906 static void igb_vmm_control(struct igb_adapter *adapter)
9907 {
9908 	struct e1000_hw *hw = &adapter->hw;
9909 	u32 reg;
9910 
9911 	switch (hw->mac.type) {
9912 	case e1000_82575:
9913 	case e1000_i210:
9914 	case e1000_i211:
9915 	case e1000_i354:
9916 	default:
9917 		/* replication is not supported for 82575 */
9918 		return;
9919 	case e1000_82576:
9920 		/* notify HW that the MAC is adding vlan tags */
9921 		reg = rd32(E1000_DTXCTL);
9922 		reg |= E1000_DTXCTL_VLAN_ADDED;
9923 		wr32(E1000_DTXCTL, reg);
9924 		fallthrough;
9925 	case e1000_82580:
9926 		/* enable replication vlan tag stripping */
9927 		reg = rd32(E1000_RPLOLR);
9928 		reg |= E1000_RPLOLR_STRVLAN;
9929 		wr32(E1000_RPLOLR, reg);
9930 		fallthrough;
9931 	case e1000_i350:
9932 		/* none of the above registers are supported by i350 */
9933 		break;
9934 	}
9935 
9936 	if (adapter->vfs_allocated_count) {
9937 		igb_vmdq_set_loopback_pf(hw, true);
9938 		igb_vmdq_set_replication_pf(hw, true);
9939 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9940 					      adapter->vfs_allocated_count);
9941 	} else {
9942 		igb_vmdq_set_loopback_pf(hw, false);
9943 		igb_vmdq_set_replication_pf(hw, false);
9944 	}
9945 }
9946 
9947 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9948 {
9949 	struct e1000_hw *hw = &adapter->hw;
9950 	u32 dmac_thr;
9951 	u16 hwm;
9952 	u32 reg;
9953 
9954 	if (hw->mac.type > e1000_82580) {
9955 		if (adapter->flags & IGB_FLAG_DMAC) {
9956 			/* force threshold to 0. */
9957 			wr32(E1000_DMCTXTH, 0);
9958 
9959 			/* DMA Coalescing high water mark needs to be greater
9960 			 * than the Rx threshold. Set hwm to PBA - max frame
9961 			 * size in 16B units, capping it at PBA - 6KB.
9962 			 */
9963 			hwm = 64 * (pba - 6);
9964 			reg = rd32(E1000_FCRTC);
9965 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9966 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9967 				& E1000_FCRTC_RTH_COAL_MASK);
9968 			wr32(E1000_FCRTC, reg);
9969 
9970 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9971 			 * frame size, capping it at PBA - 10KB.
9972 			 */
9973 			dmac_thr = pba - 10;
9974 			reg = rd32(E1000_DMACR);
9975 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9976 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9977 				& E1000_DMACR_DMACTHR_MASK);
9978 
9979 			/* transition to L0x or L1 if available..*/
9980 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9981 
9982 			/* watchdog timer= +-1000 usec in 32usec intervals */
9983 			reg |= (1000 >> 5);
9984 
9985 			/* Disable BMC-to-OS Watchdog Enable */
9986 			if (hw->mac.type != e1000_i354)
9987 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9988 			wr32(E1000_DMACR, reg);
9989 
9990 			/* no lower threshold to disable
9991 			 * coalescing(smart fifb)-UTRESH=0
9992 			 */
9993 			wr32(E1000_DMCRTRH, 0);
9994 
9995 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9996 
9997 			wr32(E1000_DMCTLX, reg);
9998 
9999 			/* free space in tx packet buffer to wake from
10000 			 * DMA coal
10001 			 */
10002 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10003 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10004 		}
10005 
10006 		if (hw->mac.type >= e1000_i210 ||
10007 		    (adapter->flags & IGB_FLAG_DMAC)) {
10008 			reg = rd32(E1000_PCIEMISC);
10009 			reg |= E1000_PCIEMISC_LX_DECISION;
10010 			wr32(E1000_PCIEMISC, reg);
10011 		} /* endif adapter->dmac is not disabled */
10012 	} else if (hw->mac.type == e1000_82580) {
10013 		u32 reg = rd32(E1000_PCIEMISC);
10014 
10015 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10016 		wr32(E1000_DMACR, 0);
10017 	}
10018 }
10019 
10020 /**
10021  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10022  *  @hw: pointer to hardware structure
10023  *  @byte_offset: byte offset to read
10024  *  @dev_addr: device address
10025  *  @data: value read
10026  *
10027  *  Performs byte read operation over I2C interface at
10028  *  a specified device address.
10029  **/
10030 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10031 		      u8 dev_addr, u8 *data)
10032 {
10033 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10034 	struct i2c_client *this_client = adapter->i2c_client;
10035 	s32 status;
10036 	u16 swfw_mask = 0;
10037 
10038 	if (!this_client)
10039 		return E1000_ERR_I2C;
10040 
10041 	swfw_mask = E1000_SWFW_PHY0_SM;
10042 
10043 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10044 		return E1000_ERR_SWFW_SYNC;
10045 
10046 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10047 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10048 
10049 	if (status < 0)
10050 		return E1000_ERR_I2C;
10051 	else {
10052 		*data = status;
10053 		return 0;
10054 	}
10055 }
10056 
10057 /**
10058  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10059  *  @hw: pointer to hardware structure
10060  *  @byte_offset: byte offset to write
10061  *  @dev_addr: device address
10062  *  @data: value to write
10063  *
10064  *  Performs byte write operation over I2C interface at
10065  *  a specified device address.
10066  **/
10067 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10068 		       u8 dev_addr, u8 data)
10069 {
10070 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10071 	struct i2c_client *this_client = adapter->i2c_client;
10072 	s32 status;
10073 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10074 
10075 	if (!this_client)
10076 		return E1000_ERR_I2C;
10077 
10078 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10079 		return E1000_ERR_SWFW_SYNC;
10080 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10081 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10082 
10083 	if (status)
10084 		return E1000_ERR_I2C;
10085 	else
10086 		return 0;
10087 
10088 }
10089 
10090 int igb_reinit_queues(struct igb_adapter *adapter)
10091 {
10092 	struct net_device *netdev = adapter->netdev;
10093 	struct pci_dev *pdev = adapter->pdev;
10094 	int err = 0;
10095 
10096 	if (netif_running(netdev))
10097 		igb_close(netdev);
10098 
10099 	igb_reset_interrupt_capability(adapter);
10100 
10101 	if (igb_init_interrupt_scheme(adapter, true)) {
10102 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10103 		return -ENOMEM;
10104 	}
10105 
10106 	if (netif_running(netdev))
10107 		err = igb_open(netdev);
10108 
10109 	return err;
10110 }
10111 
10112 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10113 {
10114 	struct igb_nfc_filter *rule;
10115 
10116 	spin_lock(&adapter->nfc_lock);
10117 
10118 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10119 		igb_erase_filter(adapter, rule);
10120 
10121 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10122 		igb_erase_filter(adapter, rule);
10123 
10124 	spin_unlock(&adapter->nfc_lock);
10125 }
10126 
10127 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10128 {
10129 	struct igb_nfc_filter *rule;
10130 
10131 	spin_lock(&adapter->nfc_lock);
10132 
10133 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10134 		igb_add_filter(adapter, rule);
10135 
10136 	spin_unlock(&adapter->nfc_lock);
10137 }
10138 /* igb_main.c */
10139